
-•

EXPLORING

Edna lIyin Miller, Jim Crook, and June Loy

Exploring CTOS@

Edna [lyin Miller, Jim Crook, and June Loy

it
Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Explor1ng CTOS I Un1sys Corp.
p. cm.

Includes 1ndex.
ISBN 0-13-297342-1
1. D1str1buted operat1ng systems (Computers) 2. CTOS.

Corporat1on.
CA76.76.063E954 1991
005.4'3--dc20

This book was written, edited, and composed using the CroS-based
desktop publishing system, OFIS Document Designer. The system used
was a CroS-based 386 workstateion with VGA graphics. The graphics
were created in OFIS Graphics, then integrated into the cros Document
Designer files. The printer used was an Apple LaserWriter~

Text is New Century Schoolbook. Helvetica is used for headings. Program
listings are set in Courier.

Cover Design: April Bishop
Editing: Carol Collins
Production Editing: Antoinette Kohn
Illustrations: Jacqueline Mac Millan
Page Design: Milena Martin-Arana II © 1991 by Prentice·Hall, Ino = A Division of Simon & Schuster
- Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special SaleS/College Marketing
Prentice Hall
College Technical and Reference Division
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-297342-1

PRE:-.ITICE-HALL INTERNATIONAL (UK) LIMITED, London
PR~:NTIC~:-HALL OF AUSTRALIA PTy. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
SIMO:-.l & SCHUSTER ASIA PTE. LTD., Singapore
ElllTORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

1. Unlsys

90-27131
CIP

Contents

Preface xiii

Part 1. An Introduction to CTOS

Chapter 1. CTOS In Brief 3

The Working Model. 4
CTOS Support for the Model 4

A Message-Based Operating System 5
A Simple Cluster LAN. 5
A Modular, Extensible System 5

The Old Way. 6
A Building Blocks Approach . 7

Processes: the Building Blocks 8
Process Scheduling 8
Messages: the Mortar . 9
The Roles of Interprocess Communication (IPC) 11
The Role of the CTOS Kernel. 11
System Services. 11

Operating Across a Network 12
What Can You Do With This? . 13
What Does It Look Like? . 13

Chapter 2. Physical Systems 15

The X-Bus. 19
Cluster and TeleCluster 19
Larger Networks 22
Running MS-DOS Programs. 24

PC Emulator. 24
ClusterCard and ClusterShare . 24

Why CTOS Is What It Is. 25

iii

Contents

Chapter 3. Of History, Religion, and Marketing. 27

The First Direction. 28
Basic Decisions. 28
Networking From Day Two. 31
The Request Procedural Interface . 31
Changing Course........... 32
The Early Religion. 33
More Office Applications . 35
Why the Accident Was a Happy One. 36
A Turning Point . 36
Multitasking for the End User 38
Horizons and Realities: The 80186 and 80286 Chips 40
The DISTRIX experiment 42
First With the Most 43
DOS Compatibility. 45
First With the Most Again: The 80386 Chip. 48
The Big Time . 48
CTOS/Open 49
Religion and the Future 50

Part 2. CTOS and CTOS Applications

Chapter 4. Thinking About Distributed Applications. 55

Distributed Applications. 56
Large Computers . 56
Personal Computers. 56

Issues In Creating Distributed Applications. 57
Distributing Applications Under eTaS. 59

Chapter 5. Timekeeper: A CTOS Application. 61

A Look at Some Distributed Applications. 62
A Unique Application: Reporting Sports Results. 62
Interoffice Communication: eTOS Electronic Mail 64
Timekeeper: Our Distributed Application. 65

A Framework for the Design 65
The Design Environment 66

Steps Toward a Design. 67
Starting Simply . 67
Relating the Design to the Network 68
User Inputs and Outputs. 68
Needed Functions 69
Division of Labor. 69
Using Existing Pieces. 71

Understanding Some Underpinnings 72

w

Contents

Chapter 6. More About Messages 73

CTOS Processes. 74
Process Creation 75
Process States . 75
The Scheduling Algorithm 76

Interrupt and Trap Handlers. 79
Processes In Other Kinds of Systems 80
CTOS Programs. 80
Partitions . 82
Memory.. 85
Interprocess Communication. 87

Other Environments . 87
CTaS IPC: Messages and Exchanges 87

Messages . 87
The Exchange. 88

IPC Primitives. 90
Hiding the Mechanics: The Request/Response Model. . . 90

The Request Block. 91
Synchronous and Asynchronous Processing. 93

Requests Versus RPe. 94
A Few Other Mechanisms..... 95

Kernel Primitives. 95
System Common 95
Object Module Procedures. 96

Chapter 7. System Services 97

System Service/Client Interaction . 98
Partitions and User Numbers . 98
Request Codes.. 98
The Dynamics of Requests and Responses 98

Pointer Aliases 99
Reaction of the System Service 100

Connections . 101
Crossing the Network . 102

Agents 103
Filters ' . 106

Filters and Extensibility. 109
The Basic Structure of a System Service 109
A Look Ahead. 110

v

Contents

Chapter 8. Input/Output Overview. 111

Device-Dependence and Device-Independence. 112
Hierarchies of eTOS 110 Tools. 113

Primitives: Device-Dependent . 114
Tools Built on Primitives. 115

Sequential Access Method 115
Non-SAM Tools. .. 120

A eTOS 1/0 Road Map. 120
Video 121
Keyboard and Mouse. 121
Data Storage 122
Communications ,. 123
Printing . 124

Chapter 9. Video and Keyboard Options. 127

Video Frames and Attributes . 128
Frames...... 128
Video Attributes 129

Types of Video Hardware . 129
Levels of Video Access 129

Using Video Byte Streams . 131
Using VDM and VAM 131

Initializing the Video Subsystem. 131
Writing to the Video. 132

Keyboard Input Tools. 133
Keyboard Byte Streams . 133
Keyboard Management 134
System Input Process. 135
Mouse Services 135

Forms Package . 136
Graphical User Interface. 136

The eTOS GUI Solution.... 137
Presentation Manager. 137
Extensible Virtual Toolkit (XVT) 137
Context Manager's Role . 139
Later Additions 139

Some New Underpinnings 139

Chapter 10. Data Storage and Access...... 141

Disk Storage and the File System . 142
File Specifications. 142
Disk Structures and Reliability 143

System Image. 144
Allocation Bit Map. 144

vi

Contents

Master File Directory. 145
File Header Block . 146
Structures in Memory 146

File Manipulation 147
File System Access Methods. 148

File Management System Service 149
Synchronous File Access 149
Asynchronous File Access 150
Closing the File . 150

Sequential Access Method. 151
The Structured File Access Methods. 151
Other Data Base Approaches. 152

Chapter 11. Communications and Printing. 153

Cluster Communications . 154
Hierarchy of Communications Tools. 154

Serial Port Operations "........ 156
Communications Interrupt Service Routines 156
Asynchronous or Synchronous Communications
Applications. 157

Communications Byte Streams (SAMC) 158
Overlapping Execution . 158

A SAMC Customer: GPS . 159
Overview. 159
GPS Byte Streams . 160
Generic Print Access Method. 161
Calling the Print Service. 161
The Print Service 161
GPS Device Drivers . 161

Wide-Area Communications 162
The CTOS Network: BNet....................... 162
Beyond........ 165

Chapter 12. Prototype Until Done: Timekeeper Development.. 167

Timekeeper's Components 168
User Interface. 168
Data Storage 168
Reminder Service. 169
Mail Service 169
Networking . 169
Printing . 170

Native Language Support. 170
NLS Mechanism . 170
Message Files and XVT Resource Files 171

vii

Contents

Interactive Application . 172
Basic Design. 172
Requests to the Reminder Service. 173
Relationship With the Mail Service. 174
Printing Through GPAM . 175

Reminder System Service 176
Installation 176
Deinstallation 177
Reminder Loop Structure . 178
Interactions. 179

Interacting With ISAM . 180
Interacting With the Mail Service. 182

The Whole Picture. 183

Chapter 13. Even More About System Services 185

The Multlcllent System Service . 186
The Situation 186
Potential for Delays 187
Ending It All 188

An Event-Driven Model. 189
Blueprint for an Asynchronous System Service 189
Client Bookkeeping and Data Structures. 191
A Basic Set of Requests. 191

When to Use a Separate Process 192
Development Tools. 192

ServerGen 192
Asynchronous System Service Library. 195
Testing and Debugging 198

Multiprocess System Services. 198
Why Write a Multiprocess System Service? 198
Why Hesitate to Write One? . 199
Message-Based Semaphores 199
CTOS Electronic Mail: A Happy Example. 200

Summary 202

Part 3. CTOS and the Future

Chapter 14. Trends and Paper Napkins . 207

Standards and Interoperabllity: A CTOS Commitment. . . 209
Microprocessor Architecture. 211

Demand Paged Virtual Memory 212
80386 Flat Model (32 Bit Addressing) 213

CTOS as a Distributed Object System 213
The Far Term . 213

viii

Contents

Appendix A. ServerGen: A Sample System Service '. 215

FooServer. 216
ServerGen 224

Glossary . 233

Index... 259

lX

Figures

1-1. The Old Way... 7
1-2. The Building Blocks Approach . 7
1-3. An Example Showing Messages and Exchanges 10

2-1. A CTOS Modular Workstation 16
2-2. A CTOS Integrated Workstation. 17
2-3. Workstation Modules Showing the X-Bus Connection. 19
2-4. Two CTOS Clusters . 21
2-5. Two CTOS Networks . 23
2-6. A CTOS Cluster with PC, PS/2®, and CTOS Workstations. 25

3-1. Context Manager Interface. 39
3-2. CTOS Through Time ~ . 46

5-1. Timekeeper's Component Parts. 70
5-2. Timekeeper Components and Other CTOS Services 72

6-1. A System Including Six Processes. 76
6-2. Process A Enters the Waiting State. 77
6-3. Process F Enters the Ready State. 77
6-4. Steps in the Creation of a Program 81
6-5. Memory Organization of an Application Partition 83
6-6. The Executive Screen and the Run Command Form. 86
6-7. Three States of an Exchange. 89
6-8. General Form of the Request Block. 91
6-9. Details of the Request Block Header. 92

7-1. The Request-Response Model. 99
7-2. Client and Server Agents. 103
7 -3. Agents Across the Network 105
7-4. A One-Way Filter. 107
7-5. A Two-Way Filter. 108
7-6. Simplest Outline of a System Service 109

xi

8-1.
8-2.

8-3.
8-4.
8-5.
8-6.
8-7.
8-8.

9-1.
9-2.
9-3.

10-1.
10-2.

11-1.
11-2.
11-3.
11-4.
11-5.

12-1.
12-2.
12-3.

13-1.
13-2.
13-3.
13-4.
13-5.

Tables

A Simplistic Picture of a Byte Stream in Operation
The Hierarchy of Device-Independent and Device-Dependent

Calls in CTOS 1/0
Video 1/0 Tools
Keyboard and Mouse Management
Disk Storage Methods
Tape Storage Methods
Communications Methods
Two Printing Systems

Video Tools
Keyboard Tools .. .
Extensible Virtual Toolkit

Volume Control Structures and System Data Structures
File Access Methods

Communication Tools Hierarchy
Overview of Interrupt Handling
Generic Print System
The Seven-Layer OS I Model
BNet Block Diagram

Relationship of the Interactive Application to Other Software Entities
Reminder Service as Service and as Client
Timekeeper and its Services

Multiple Demands on a System Service
Deadlock in a Request Chain
Deadlock Avoidance with Synchronous Requests
Asynchronous System Service Model
Simplified Version of Mail Architecture

116

118
121
122
122
123
123
124

130
133
138

145
148

155
156
160
162
163

172
180
184

187
190
190
197
201

2-1. Some Types of Workstation Modules. 18

xii

Preface

It has been said that only authors, editors, and those who expect to be
acknowledged actually read prefaces, but we are writing one anyway because
we have a few things to tell you up front.

Exploring CTOS® is an introduction to an operating system whose name is not
widely known, although it is ten years old and well established. The writing of
this book was partly prompted by our continuing frustration at reading sober
and seemingly well researched articles that discuss at length the difficulties of
creating distributed or networked application systems, but never mention
CTOS, the only system in which networking is built in and transparent. We
tend to share the feelings of one reader of a British publication who, after
having read a rare but laudatory article about CTOS therein, wrote a letter to
the editor saying:

... Hopefully the marketing of eTaS/Open will lead to an end to the networked micro
debate and rid us of the awful technology games that advocates have played on
corporations throughout the world. Mter all, if you want to fly from New York to
London, you wouldn't choose a Sopwith Camel with an RB-211 strapped to the tail,
you'd go 747.1

1 The Guardian, London, October 17, 1989, Letters Page. Letter from Mike Fitzsimmons,
Computer Systems Manager, BBC Broadcasting Research, in response to an article by Jack
Schofield that appeared October 8, 1989.

xiii

Preface

As with all large pieces of software, the people around CTOS have
anthropomorphized it. CTOS has a warm, if unusual, personality. It tends to
make converts of people from other technical religions, even if in the beginning
they regard it with suspicion. First, however, they have to get an introductory
acquaintance with it. That is all that this book hopes to provide. We think
that computer people in management and marketing, as well as systems
people, will be able to follow our description here. Other, more detailed
reference documents are available for the programmer who really wants to try
out the system.

The book is divided into two parts. Part 1 gives a general overview and some
history of CTOS. Part 2 explains a little bit more about what distributed
applications are and takes a technical tour of CTOS to support our belief that it
is the preeminent platform for such applications.

A note of explanation is in order about the fact that when we describe the
history and evolution of CTOS in Chapter 3, we do not name the characters in
the drama. The idea here is that the book is about CTOS, not about
individuals. Many more people contributed to this system than we could name
or even track down at this point. Knowledgeable CTOS people who have
helped us by reviewing the manuscript have torn their hair out trying to
identify the mentioned players, but our belief is that most readers care less
about the names than about the story. (We are, of course, threatening to follow
up with a full-length expose that names names and tells all, but these threats
are probably toothless.)

We do want to name some names here, however: many people helped us to put
this book together. We are especially grateful to Jon Huie, Irv Kalb, Jeff
Seideman, Jay Spitzen, Esq., and Fred Zucker for taking time from other, busy
lives to help us reconstruct earlier days of CTOS development. Some very
important friends also helped us extensively with old memories, as well as with
concrete, current technical information and finally with manuscript reviews:
Karen Bedard, David Christie, Drew Hoffman, Jeff Krause, David "Louie"
Renaud, Steve Seike, Dave Stearns, and Greg Walsh.

We are also grateful for technical information and manuscript reviews from Joe
AItmaier, Stan Balazer, Thomas Ball, Michel Bouckaert, Alan Coleman, Peter
Cressman, Kevin D'Souza, Mark Emmerich, Jim Frandeen, Leo Freaney,
Christina Gibbs, Dan Gilson, Ed Kaulakis, Andy Little, Carolyn Lowenthal,
Gene Lucier, Rakesh Mahajan, John McGinty, Nitin Mehrotra, Alan Merrell,
Bert Miller, Val Miller, Margaret Morris, Dave Mullins, Dan Oberrotman, John
Quattlebaum, Mike Ribble, Steve Ricossa, Roger Roman, Noah Shaffer, Bill
Thomson, Karen Toland, Gijs Van Reijendam, and Bob Walker.

xiv

Preface

Special thanks go to Tom Germond for his initial legwork and first concept for
the book. In the course of many iterations, we have altered it considerably
from his plan, but the original themes that he identified still peek through.

Much material in Chapters 6 and 7, which explain interprocess communication
and system services, is based on descriptions from an unpublished paper by
Patrice Bremond-Gregoire. We thank him for generously permitting us to use
it, thus expediting our efforts.

CTOS programmers everywhere will join us in thanking Joe Altmaier and
Thomas Ball for allowing us to publish their ServerGen program (Appendix A),
a template that gives the inexperienced system service writer a real boost.

All errors, of course, are our own responsibility; but we thank editor Carol
Collins for her expert work in helping to ferret out as many as possibie. MiIena
Martin-Arana, Jacqueline Mac Millan, Nettie Kohn, and April Bishop handled
the artistic side of the book with patience, humor, and aplomb. We also thank
Andrew Keirn for his last minute assistance. Linnea de Jaager, Gloria Baker,
and William V. Vroman provided personal and professional encouragement and
support beyond the call of duty as we struggled to convert a raging ocean of
ideas and concepts into a few words on paper.

Finally, EM would like to thank Dave Stearns for being the teacher and mentor
he is, and Anna Ilyin McClain and Anita Eagleton for their continuing support
and reassurances when the ocean just seemed too deep. JC wants to thank
Elizabeth Groom for pushing (an understatement) both CTOS and this
engineer in the early days of CTOS, and he would also like to thank his
daughter, Charla, for continually demanding equal time! June thanks her
family, Greg, Ben, and Jessica, and her colleagues for their support during
those hectic weeks as we finalized this book.

Welcome to the CTOS world! We hope you enjoy the trip.

Edna Ilyin Miller
Jim Crook
June Loy

xv

Trademarks

Apple, Appletalk, and Macintosh are registered trademarks of Apple Computer, Inc.

Postscri pt is a registered trademark of Adobe Systems, Inc.

AT & T and UNIX are registered trademarks of American Telephone and Telegraph
Corporation.

BTOS is a trademark ofUnisys Corporation.

Bull is a registered trademark of Bull S.A.

Convergent, Convergent Technologies, CTOS, and NGEN are registered trademarks of
Convergent Technologies, Inc.

AWS, ClusterCard, ClusterShare, Context Manager, CTOSIVM, DISTRIX, IWS, Shared
Resource Processor, SRP, Telecluster, Voice Processor, and X-Bus are trademarks of
Convergent Technologies, Inc.

CP/M is a registered trademark of Digital Research, Inc.

Intel and Multibus are registered trademarks of Intel Corporation.

ffiM, 0812, PC/AT, and PS/2, are registered trademarks of Intemational Business
Machines Corporation.

Lotus is a registered trademark of Lotus Development Corporation.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corporation.

Motorola is a registered trademark of Motorola Corporation.

Oracle is a registered trademark of Oracle Corporation.

Novell and NetWare are registered trademarks of Novell, Inc.

Sun is a registered trademark of Sun Microsystems, Inc.

Unisys is a registered trademark of Unisys Corporation.

Xerox is a registered trademark of Xerox Corporation.

xvii

Part 1
An Introduction to eTOS

1
CTOS in Brief

eTOS is different from other operating
systems because its architecture is
modular and it is easily extended and
customized . .. it is optimized primarily
as a platform for a particular situation:
the modern business and the way most
people really do their work.

CTOS® is a protected-mode operating system that has a built-in local area
network. It runs on desktop workstations and servers based on the Intel®
family of 80x86 microprocessors, elegantly exploiting most of the advanced
features of these chips.

Although it has not had wide publicity, CTOS has had a steadily growing
installed base since its original introduction by Convergent Technologies® in
1980. Today, it runs on almost 800,000 computers around the world. An
advanced design to begin with, CTOS has continued to be a technical leader
since its inception.

CTOS is different from other operating systems because its architecture is
modular and it is easily extended and customized. Flexibility is its hallmark,
but it does not attempt to be, in fact, all things to all people. Rather, it is
optimized primarily as platform for a particular situation: the modern
business and the way most people really do their work.

3

eTOS in Brief

The Working Model

In a common scenario, individual people work on computers located in their
own offices or work areas. They need fast local computation, and also efficient
access to resources that are centralized at a server to reduce costs. They need
to share information. In other words, they need simple distributed computing.

People also do not normally work sequentially. Instead, they do what is called
multitasking: they intersperse work on several ongoing tasks at once. (For
example, a person may be referring to a spreadsheet, making corrections in a
document, and exchanging electronic mail messages with other people, all at
the same time.)

eTOS and the hardware that it runs on are a stable platform optimized for this
model of distributed, multitasking computing. Resilient and reliable, it offers
real-time, distributed processing that businesses can count on for their
mission-critical applications. Because CTOS is multitasking, users can run
several applications at the same time, switching from one to the other as
needed without necessarily stopping execution. Because it is distributed, users
have easy access to networked resources and services.

The CTOS platform efficiently supports not only end users, but also the
software developers who write applications for them. It provides developers
with an environment in which the necessary networking involved in
distributed applications is provided transparently by CTOS. This local area
network (LAN) is built-in at the lowest levels of the operating system and
hardware. Programs written using the CTOS application programming
interface are automatically networked.

eTOS Support for the Model

The technical bases for this good fit between CTOS and its users are its
multitasking (multiprogramming) nature and its very fast remote procedure
call (RPC).

An RPC is like an ordinary program procedure call, except that it is served by
code that resides on another computer, across a network connection from the
caller. Ideally the RPC works in such a way that an application can be
oblivious to the location where the call is actually served.

4

eTOS in Brief

Most personal computers and workstations are tied together by add-on
networks, so that on these systems, the RPC has been added on at a higher
level of software and hardware. These operating systems were also not built
from the start with networking in mind, as CTOS was. The result is that their
networking is more cumbersome and their RPC is slower.

CTOS supports fast RPC primarily in two ways: it is a message-based
operating system in which data is only selectively copied; and its fundamental
LAN conforms to the way most users access resources.

A Message-Based Operating System

A system running CTOS has multiple processes, or threads of execution. These
processes communicate with each other via small messages through a mailbox­
like system. A passed message can point to a larger data item that one process
wants to hand to another process. Pointers can merely be exchanged, and large
amounts of data do not necessarily have to be copied. (Only pertinent data is
copied when messages go across network connections.)

A Simple Cluster LAN

The CTOS cluster links a central server workstation to client workstations.
The cluster is implemented through a simple bus topology with RS-4221485
connections, or through TeleCluster™, which connects the workstations over
twisted pair (telephone wiring) in a star configuration.

Cluster networking capability is built into the operating system. The client
workstations have access to resources at the server, but not the converse.

This arrangement effectively supports the way most people work most of the
time. Because the configuration is simple, the CTOS cluster communication
software can be highly optimized, and. the cluster LAN can provide unusually
high performance (throughput) at moderate cost.

Of course, for those who need peer-to-peer access among workstations, this
capability can be added in a higher software layer. This easy addition
illustrates another important aspect of CTOS: its extensibility.

A Modular, Extensible System

CTOS was designed well before terms such as "message-based" or
"multitasking" came into fashion. Its modular, extensible architecture,
however, reflects its designers' innate understanding of the principles that
later carne to underlie distributed systems.

5

CTOS in Brief

The eTOS operating system has a very small kernel, or group of primitive
operations; but most of the eTOS system environment is made up of modules
called system services. These system services have roles that would be part of
kernel software in many other operating systems: they handle the file system,
various devices, and so on. System services can be loaded dynamically as
needed. They communicate with their application program clients and with
each other by means of the messages we have described. As a matter of fact,
this is the basis of the new micro-kernel architectures.

Because eTOS is modular, it is easily extended or customized. A system
service can be written by any experienced programmer and added to the
system, or a new system service can be substituted for an existing one. Such a
substitution does not require any other alterations as long as the messaging
interface is maintained.

Because of the scaffolding that is already present, it has not been hard for
eTOS developers to add what one of them calls "bolt-on-beauties" to eTOS as
time and technical breakthroughs have gone on. In this way, peer-to-peer
networking, the ability to handle a POSIX interface, and many other
capabilities have been added, and there will be many more.

The Old Way

There was a time when the demands on an operating system were simple, and
it could be designed as a monolithic collection of subroutines that performed
commonly needed duties. As time passed and needs grew, more and more
subroutines had to be added. To support peripherals and communication,
device-specific drivers were written. In fact, specificity was a hallmark of this
approach. It was like a wall composed of irregularly shaped stones. Nothing in
the structure could be changed or updated without changing the whole thing.
A computer running such an operating system had to load all of it, not just the
needed parts.

Over time, such a structure became more and more elaborate, rigid, and
enormous. The only other choice was to allow the operating system to remain
limited and eventually to become too unsophisticated to support users' needs.

Either way, at some point designers would have to grapple with the problems
of large-scale kernel rewrites and whole new operating systems that somehow
retained backward compatibility. Then they would have to stabilize and debug
their new systems all over again.

6

eTOS in Brief

Figure 1-1. The Old Way

A Building Blocks Approach

How much simpler it would be to keep an operating system current if it were
made up of separate building blocks with clean, regular interfaces! These
blocks could be put together, taken apart, substituted, and reassembled in
configurations that included only the needed functions. People other than the
original designers could add or substitute blocks of their own. Maybe the
blocks would not all have to be in the same place to work together.

CTOS is that building-block operating system. Its parts are separated so that
they function independently. The building blocks of CTOS are processes; the
mortar is made up of messages and exchanges.

Figure 1-2. The Building Blocks Approach

7

CTOS in Brief

Processes: the Building Blocks

For years, larger computers with single processors have been doing
multitasking. This sleight of hand makes them appear to run more than one
program at a time. Most human users naturally do their work in this way.
The idea is not new, but small-computer users have only recently been exposed
to it.

Multitasking is also called multiprogramming, where more than one program
is running at once, sharing the central processing unit over time in some way.
Now consider that each program may be composed of more than one process.
A process is an independent thread of execution, together with the hardware
context (the processor register values) necessary to that thread.

eTOS supports independent invocation and scheduling of multiple concurrent,
independent processes. eTOS processes, whether they are application
processes or are parts of eTOS itself, are regular building blocks with clean
interfaces.

For example, an electronic mail program might have two processes: one allows
the user to edit a mail message, while the other monitors incoming mail. Not
only does the mail program compete with other programs for use of the
processor; the two processes within it compete with each other and with all the
processes in all the other programs for processor time. Each must get the
processor time that it needs to do a good job for the user.

Process Scheduling

Multiple processes obviously do not really run at the same time on one
microprocessor, but it definitely appears so to the user. The different computer
systems that offer multitasking use varying mechanisms to simulate this
effect.

How does eTOS achieve the "simultaneous execution" of multiple processes
and make them all look as if they were running at "normal" speed?

Each process (thread of execution) within eTOS is assigned a priority and is
scheduled for execution based upon that priority. The eTOS kernel scheduler
performs the scheduling of the processes.

Process scheduling is driven by events. Whenever an event occurs during
execution of a process, such as an input/output event (110), that process can
lose control of the processor. A higher-priority process that is eligible for
execution is scheduled for immediate execution. This type of scheduling
technique is called event-driven, priority-ordered scheduling.

8

eTOS in Brief

Messages: the Mortar

In order to do business, individual eTOS processes send messages to each
other. This mechanism is called interprocess communication (lpe). Although
at the most primitive level, a message can be anything, it is usually a memory
address at which some relevant item of information can be found.

A message is passed from one process to another via an exchange. An
exchange is like a mailbox; it is a place where processes wait to receive
messages or, where messages are deposited to wait to be processed. Each
process is allocated an exchange when it is created, and it can ask for more if it
needs them.

eTOS is not unique in its use of this message-based model. It is unique in the
use of a special type of message, the request for service, which is usually
referred to more simply by the term request.

The request is the most common message in eTOS. Requests are specially
formatted messages that include a request block header that includes a request
code, which identifies the desired service, along with other information that
will be needed by the service, such as where to send the response and who is
sending the request.

With the help of the eTOS kernel, the request travels transparently to the user
or application program across networks to locate any special service.

To make it clear how this works, let's draw a simple analogy between the way
people use requests and the way eTOS processes use them.

Suppose Mary needs to have the Acme file copied so that she can take it with
her to her next client meeting. She writes the following note (request)

"I need a copy of the Acme file on my desk ASAP!"

and hands it to her administrative assistant, John. John pulls the file from his
cabinet and, because there is no copier in the office, decides to send it to a copy
center. He asks Fred, who operates the copy center, in a different building, to
return the copy to Mary's desk. Fred makes the copy and delivers it to the
desk where Mary is waiting.

9

CTOS in Brief

If Mary and Fred represent eTOS processes and John represents the eTOS
kernel, you can think of the interaction described above like this: Mary creates
a request that indicates the desired service (copying), some additional
information (the name of the Acme file), and the response exchange (her desk)
or where she will wait until the service is completed. She hands the request to
John (the eTOS kernel), who decides to route the request to Fred at the copy
center. Fred does the service and sends the results to the response exchange
(Mary's desk).

Mary could have elected to leave the office while the copy was made and to just
check her desk occasionally to see if the copy was ready yet. In real1ife she
certainly would have. As a eTOS process, she could also just stop and wait for
the file to appear, because she could count on the service being performed very
quickly.

10

Create
Request

Response Exchange

Route
Request

Process
Service
Request

Figure 1-3. An Example Showing Messages and Exchanges

eTOS in Brief

The Roles of Interprocess Communication (IPC)

eTOS is a message-based operating system. In eTOS in terprocess
communication, exchanges serve as message centers where processes send
messages or where they wait or check for messages. Overhead is minimized,
because, unless the request must go across the network, only the address of
data is passed, not the data itself.

Interprocess communications (lPC) actually has two different roles in the
CTOS world. IPC is the means of communication and of transmission of data
from one process to another. IPC also allows synchronization of processes
(controlling when they stop and start executing relative to each other). Thus, it
provides a means for the orderly sharing of resources among processes. We
shall discuss these aspects of IPC in Part 2.

The Role of the CTOS Kernel

In any exchange of messages, the CTOS kernel (like John in the example
above) is quietly and efficiently involved. At about 4000 bytes, it is tiny,
primitive, and powerful, containing only a few vital functions. The eTOS
kernel creates processes, assigning their exchanges, among other things. It
schedules processes preemptively for execution, based on priorities (0 through
255) that it has assigned to them. It acts as a postal service for communicating
processes, delivering messages back and forth between their exchanges. It also
controls inter-CPU communication (ICC) on larger servers that have multiple
processors.

System Services

Nearly all the other functions that one normally associates with an operating
system are actually performed by system service processes. System services
manage resources (the file system, communications, and so on) and provide
services that are requested by application program processes and by other
system service processes. In the analogy we used before, Fred was a system
service (copy service).

System services are well-behaved building blocks in the eTOS system.
Because of their standard message-based interfaces with the rest of the CTOS
world, they can be removed, substituted, and added at will. The "greater
CTOS" thus can be efficiently tailored to specific situations.

11

eTOS in Brief

A system service process receives IPC messages to request the performance of
its services. Examples of operating system services include opening or closing
disk files or accepting keyboard input.

System services can be linked in with the operating system or can be
dynamically installed. In operation, a dynamically installed system service
is indistinguishable from a linked-in system service.

The use of system service processes and the formalized interface provided by
IPC results in a highly modular environment that increases both reliability and
flexibility.

Operating Across a Network

The true beauty of a CTOS system service is that it can operate across a
network transparently to the process that requests its services. For example,
an application process on one computer can send off a request to a system
service to have a certain job performed; but the application does not have to
know where the system service resides. If it turns out that the desired system
service is not on the local machine, the request is automatically routed across
the network to where the service does reside. The response comes back in the
same way.

Remember that we said the request procedural interface is designed to make it
easy to pass such messages. Remember that in the analogy we used before
Mary and Fred did not have offices in the same place (computer). Somehow
the operating system set things up so that they did not need to know the exact
location (address) of each other's mailbox to exchange messages.

If the CTOS kernel has only essential responsibilities, then how is this routing
carried out? By additional system services that specialize in routing the
requests. They are called agents, and they are of the class of filter processes,
which trap and manipulate messages aimed at other services. We shall see a
great deal more of them and of other system services in Part 2.

12

CTOS in Brief

What Can You Do With This?

This way of doing things makes life easy for developers of distributed
applications. First, all the messaging we have talked about is neatly hidden
under standard application program interfaces (API) that look just like
traditional subroutine calls, so there is no new mechanism to learn unless you
want to.

Next, you can write a system service yourself. A new system service can be
part of an application or can be an extension to the operating system~ A system
service is just a program that observes certain rules and makes a few necessary
calls when starting and terminating. It does not take very long to understand
how system services work or to learn how to write the simplest kind of system
service.

Creating a more sophisticated system service as part of your application allows
you to place certain program functions in one location on a network and have
many users or instances of the program effectively share code across that
network. The same version of your application works on any physical
configuration, whether it involves one standalone system, a small local area
network, or a larger network. There is no such thing as a separate network
version of your application.

We briefly mentioned earlier that CTOS has the cluster network built-in. LAN
capabilities do not have to be "bolted on": the local network is part of CTOS.
The implications here for simplifying the development of distributed
applications such as electronic mail programs, for example, are enormous. Part
2 of this book will explore those implications in more detail.

The world in which CTOS lives and plays is moving toward architectures in
which software operates in a continuous loop that handles whichever of
multiple possible events occurs. These event-loop architectures support the
graphical user interfaces of the future. CTOS system services, which are
event-loop entities, are ideally suited for this environment.

What Does It Look Like?

CTOS obviously does not exist and perform in a vacuum. In fact, this modular
operating system runs on modular hardware. The next chapter gives a quick
overview of the physical side of the CTOS world.

13

2
Physical Systems

Because of its modular design, the
eTOS workstation can be easily and
quickly configured with as many or as
few features as are needed, and features
such as disk expansion, graphics, or
voice processing can be added as needs
and network configurations change.

Modular eTOS runs on modular, intelligent desktop workstations that can
stand alone, but that reach their full potential when configured into local- and
wide-area networks. The standard eTOS workstation comes in pieces that
look rather like groups of medium-size books. Each of these modules supports
a special function and set of features: processing, mass storage, graphics, tape
backup, and so on.

Easily latched together without tools by an untrained user, the computer has
an oblong footprint that allows it to fit easily on a desk, a bookshelf, or other
office furniture. Because the monitor and keyboard can be up to 16 feet away
from the processor, the workstation can easily fit into an environment in which
space is at a premium.

Figures 2-1 through 2-2 show simple workstation configurations.

15

Physical Systems

Figure 2-1. A eTOS Modular Workstation

Because of its modular design, the eTOS workstation can be configured with as
many or as few features as are needed; and features such as disk expansion,
graphics, or voice processing can be added as needs and network configurations
change. Disks and special function modules can be easily moved from one
system to another as needed. Even processor units can be easily changed for
upgrade or repair.

Certain processor models combine commonly needed features into one
enclosure: for example, the Intel 80386-based integrated workstation contains
hard and floppy disk drives as well as the processor, memory, and power
supply. Integrated workstations can take additional cards as well as modules
to enhance functionality.

16

Processor

Figure 2-2. A eTOS Integrated Workstation

Physical Systems

X-Bus
Expansion Card

Many special function modules are available from OEM manufacturers around
the world. They include a widely varied set of modules that expand communi­
cations functions as well as those that provide basic local functionality such as
memory and disk storage.

Table 2-1 lists some of the basic eTOS workstation modules.

17

Physical Systems

Table 2-1. Some Types of Workstation Modules

Module Description

Processor Includes 80286 or 80386 processor, system
RAM, 2 RS-232 ports, RS-422 or RS-485 port,
Centronics-compatible parallel port (bidirectional
in some models).

Expandable Processor Includes 80286 or 80386 processor, system RAM, 2
RS-232 ports, RS-485 port, Centronics-compatible
parallel port, and can be expanded with special function
cards or modules.

Integrated Processor Consists of 80286 or 80386 processor module
components with SCSI hard and floppy disks
and power supply in one module, and can be expanded
with special function cards or modules.

Disk Storage Available in several sizes and types, including
floppy/hard disk combination, floppy disk, removable
SCSI disk, SCSI hard disk, disk expansion, CD-ROM.

Tape Storage Provides SCSI quarter-inch streaming tape for
backup.

Graphics Controller Has support for VGA+ compatibility; hardware
graphics accel~rator; 1024 x 768 pixels.

General Communications Several modules, some of which contain coprocessors,
allow the addition of RS-232 communications ports.

Appletalk® Allows attachment to Appletalk network.

Ethernet Allows attachment to Ethernet network.

Token Ring Allows attachment to Token Ring network.

Voice Processor™ Contains CODEC, DTMF and rotary signaling
devices, DTMF tone decoder, etc., for
connection to voice and data networks.

FAX Receives and sends FAX messages.

18

Physical Systems

The X-Bus

What makes this arrangement work is the Extensible Bus (X-Bus™), which
provides the mechanical, logical, and power connections between modules. The
pins and sockets that anow the X-Bus segment in one module to be attached to
the segment in the next module can be seen along the lower edges of the sides
of each module. As one module is latched to another, the X-Bus can be
extended out to 24 inches.

The system modules are linked to and interact with the workstation processor
module via the X-Bus. Figure 2-3 shows this connection.

X-Bus Connector

Figure 2-3. Workstation Modules Showing the X-Bus Connection

Cluster and TeleCluster

Workstations can be connected to form a local area network caned a cluster.
One workstation (usually with many resources, such as disk and tape storage,
printers, communications gateways, and so on) is designated as the server
workstation. All other workstations on the cluster can use resources at the
server, as well as their own.

The server does not need to be a dedicated server used only as a file server as is
the case in many other LAN environments: it can also be used as a normal
workstation for one of the users on the cluster. Nor do all the workstations on
a cluster have to be of the same processor model: more recently acquired
workstations continue to work with older ones.

19

Physical Systems

Under this arrangement, some or all cluster workstations can be simply one
processor module with no disk at all or a nonexpandable workstation consisting
only of a processor/video controller unit, also without a disk. These machines
use the disk resources at the server. Diskless workstations reduce the cost of
setting up a cluster; but because they retain the sophisticated processing power
of the workstation, they remain highly responsive to the individual user. (In
fact, a cluster of only four workstations is price competitive with the same
number of personal computers on aLAN, and it has more capabilities.) If
cluster workstations do have local disks, they can continue to work using their
local disks even when the server is not running.

The maximum number of workstations that can be included on one cluster
varies with the specific type of processor unit used for the server and with
operating system configuration. Because these figures change with new
releases, we will not cite maximums here. Suffice it to say that many small
companies, and most departments within large companies, are able to include
all their employees on one cluster.

When it is desirable to have a very large cluster or to have a great deal of
centralized disk storage, larger dedicated servers with multiple, loosely coupled
processors can be set up. Such servers are often called Shared Resource
Processors.™ The loosely coupled processors that make up a Shared Resource
Processor can be dedicated to various functions. The processors run the CTOS
operating system and communicate with each other and with the rest of the
cluster LAN via the same message-based mechanism described in Chapter 1.
In line with the other CTOS computers, the Shared Resource Processor is a
modular machine that can accommodate as many specialized processors as
required in up to 6 expansion cabinets.

The workstation, CTOS, and the cluster were originally designed at a start-up
computer company called Convergent Technologies in 1979. At that time, the
decision was made to allow cluster workstations to have access to disks at the
server (client-server), but not the converse (peer-to-peer). This arrangement
allows greater security for individual workstations than one in which all
workstations can access files on all others. (More recently, a peer-to-peer
communication capability has been added as part of a higher communications
software layer distributed with the CTOS Network software.)

The members of a cluster can be connected to each other in either of two
ways: via a standard RS-422 cable connection or via the TeleClusterTM
hardware. TeleCluster allows connection via existing building telephone
twisted-pair wiring. TeleCluster is far more cost effective than any other
method of installing any LAN and is the method of choice where building
wiring permits it. Addition of a workstation to the cluster is a simple matter of
connecting the cables.

20

Physical Systems

Whatever the physical connections of the cluster, it is very simple to
administer because the cluster concept is built into eTOS and is not added on
later. A cluster can be set up and maintained by a nontechnical system
administrator. Moreover, the same operating environment runs on all
hardware, thus simplifying matters for end-users, system administrators, and
programmers, alike.

RS-422/485 Cluster

CTOS Clu

g"'" ",.,
" ,

Oc=JD

Server

-
0

-2
(

ster Workstation

r--
.::; 0

l

Server

r--
0

""

r::-I
L-I

CTOS Clust er Workstation

~
"'" "" ", ,

Oc=JD
r

r--
[J

~

L-I

t-

TeleCluster

-

CTOS Cluster Workstation

~
'"'' ",
"

Oc=:JD

./0
-

r-<

CTOS Cluster Workstation

-
~D

r J

CTOS Cluster Workstation

-
[J

'"
~
L-I ~

'"'' "" ,,,
"

Oc::=1D

I I I Hub ~BI I I
CTOS Cluster Workstation

[J

r:::L J
L.:...J

r--

~
"'" ", ,

Oc=:JO

Figure 2-4. Two CTOS Clusters

21

Physical Systems

Larger Networks

Clusters can in turn be connected via the CTOS Network software (sold under
various names, such as BNet or CT-Net), which establishes transparent
peer-to-peer connections among CTOS server workstations. Each connected
server is called a node. The CTOS Network operates as a logical extension of
the cluster. Users can simply add the node name to a file specification to
access files across the network.

The CTOS Network is media independent and can operate on RS-232,
switched, leased, synchronous, and asynchronous lines, as well as X.25
packet-switched networks, Token Ring, and Ethernet (thin, thick, or
twisted-pair).

As with the cluster, messages are passed over the CTOS Network
transparently to the originating program. Thus an application on a cluster
workstation can request a service that is not on that local workstation, and the
request can be transparently routed not only to the server of that cluster, but
beyond it to other network nodes for service. All this routing activity is
transparent not only to the human user of the applications, but also to the
application programmer. Through these connections, any resource (file,
dataset, printing service, mail, communication service) is available to any
cluster workstation.

22

Physical Systems

ETHERNET

TOKEN RING

r--,
I I
I I
I I
I I

: Wire Center :
I I
I I
I I L___ ___________________ _ ___________________ ~

Figure 2-5. Two eTOS Networks

23

Physical Systems

Running MS-DOS Programs

PC Emulator

As we shall see in the next chapter, CTOS systems were never intended as
personal computers and were never offered to the general public through retail
outlets. As time went on, however, and the IBM® PC and its relatives became
popular, more and more application software was written for these personal
systems. Eventually, users ofCTOS systems wanted to run some of these
programs.

CTOS developers responded by creating in several stages the capability of
running MS-DOS-based programs under CTOS. On the 80386-based
processors, CTOS uses the microprocessor's virtual 8086 mode and its own PC
Emulator software to support multiple concurrent instances of MS-DOS,® or
"virtual PCs". Use of a VGA monitor with the workstation allows a very high
degree of MS-DOS program compatibility. The 80286-based processors can
also run PC Emulator software if a PC Emulator coprocessor module is
attached.

By comparison, both UNIX® and OS/2TM plan to have in the near future the
same sort of capability that CTOS currently has. UNIX provides MS-DOS
functionality on an 80386-based workstation with the MS-DOS Merge product,
allowing the simultaneous execution of both MS-DOS and UNIX programs.
OS/2 currently utilizes the MS-DOS compatibility box, where the system must
be switched during run time from OS/2 to MS-DOS and vice versa. In the
future, OS/2 will utilize the VM-8086 feature of the 80386 chip to allow the
coexecution of several MS-DOS sessions simultaneously, a feature that CTOS
has provided for several years.

ClusterCard and ClusterShare

Running MS-DOS-based programs directly on a CTOS workstation was not the
only feature users wanted. Some users wanted the power and network
capabilities of the CTOS cluster, but already had an investment in simpler
MS-DOS oriented hardware. For these users, the ClusterCard™ board and
ClusterShare™ software were invented. ClusterCard is an expansion board
that fits any standard PC expansion slot and automatically configures itself for
the 8-bit PC or I6-bit AT expansion bus. ClusterShare is the software
interface. It consists of two parts: a system service that runs at the server and
an MS-DOS driver that runs on the PC.

24

Physical Systems

ClusterCard and ClusterShare integrate PCs into the cluster, allowing them to
use the CTOS server. The server can provide file, disk, printer, and mail
services to the PCs. Because ClusterShare uses the CTOS file system, PCs can
use files that are larger than 32M bytes on the CTOS server workstation.

Server

PS/2 with
ClusterCard

CTOS Cluster
Workstation

CTOS Cluster
Workstation

PC with
ClusterCard

Figure 2·6. A CTOS Cluster with PC, PS/2®, and CTOS Workstations

Why CTOS Is What It Is

CTOS and the CTOS workstations and servers are now at an exciting time in
their history. CTOS is evolving from a well-kept secret into a well-known open
system. Its developers are confronting thorny, technical and philosophical
questions as they tum this corner. To understand how CTOS became what it
is and to see where it is going, we need to step back into its past.

25

3
Of History, Religion, and Marketing

The principal designers decided early on
to create a message-based operating
system with low overhead that would
handle multiple processes in as near to
real time as possible . .. The designers
understood that eTOS would live in a
changing technical world. The modular
design would allow it to be updated
easily in the future, as well as tailored to
the special needs of various customers.

As is true of many other start-up computer firms, wild and wonderful tales of
exotic personalities and technical derring-do surround the early days of
Convergent Technologies. Some are true, some apocryphal; but together the
stories convey the feeling of a time that really did exist and really was
exhilarating for those who were there.

Convergent® (as it came to be called) was formed by a small group of hardware
engineering and marketing people who left Intel Corporation to do so in August
of 1979. Convergent culture still retains joking references to designing things
on paper napkins, because the concept for the Integrated Workstation (lWSTM),
Convergent's first hardware product, is supposed to have been sketched on a
napkin in a bar as the founders made the decision to go out on their own.

Within a few weeks, the tiny company had hired its first few software
engineers. All had extensive experience, but they were from extremely varied
backgrounds and had differing and strongly held technical views. No matter
what stories are told about the Convergent founders, it is incontestable that
they created an atmosphere in which these diverse talents came together and
cooperated and learned from each other, with spectacular results.

27

Of History, Religion, and Marketing

The First Direction

CTOS has ended up as a potent operating system for distributed business
applications. The ideas of the founders, however, had nothing to do with this
marketplace. They had been heavily involved in the invention and marketing
of the Intel Multibus®, a popular add-on board standard of the time. The
associated Intel development systems, called "blue boxes," were hard to use
and unreliable.

The original Convergent Technologies product was envisioned as a 16-bit
microprocessor-based workstation (the first use of that term) that would be a
sleek, easy-to-use replacement for the Multibus and blue-box environment. It
was aimed at developers of real-time systems such as test or communications
equipment. The company name derived from the convergence of several
ripening technologies: the 16-bit microprocessor; a small, built-in hard disk
drive; high-quality video; and a truly excellent software development
environment coming together in a small desktop system.

The founders allotted one year for the development and release of this new
machine: not, as one early developer comments, because there was any
rational month-to-month plan, but because they wanted to ship it within that
time.

Basic Decisions

Because the founders were from Intel, it may seem obvious that they would
base their design for the IWS on the Intel 8086 microprocessor. However,
they knew the drawbacks as well as the advantages of the 8086, and the
forthcoming Motorola® 68000 was seriously considered. Timing determined
the outcome: release of the Motorola chip was delayed, and Convergent went
with the 8086 rather than wait several months for a chip that some developers
would have preferred to use.

This practical decision was the first of several that did not seem as momentous
at the time as they later turned out to be. It was some time later that the IBM
PC® was announced and the 8086 became established through it. It is because
CTOS workstations and servers still are based on the Intel 80x86 family of
microprocessors that they can run several concurrent instances of MS-DOS
today.

28

Of His tory, Religion, and Marketing

With hardware design begun, the small company turned to the question of an
operating system for the IWS. The principal software architect had been
persuaded to leave Xerox® Corporation's Palo Alto Research Center (PARC) to
join Convergent. With a strong academic and research background at Harvard
University, SRI, and Xerox PARC, he was eager to create a commercially viable
product that would use some of his theoretical ideas, yet be pragmatic. Over
the next few weeks, several of his former colleagues at Xerox joined him.
Affectionately nicknamed the "Xeroids," they contributed strong research
abilities and recent academic ideas, as well as coding skill, to the Convergent
mix.

The principals were wise enough to realize that other points of view should be
included in the software team. Even before all the Xeroids had joined up,
Convergent had added experienced software engineers from the "real worlds" of
large data-processing systems (SEL) and PBX design (Bell Northern Research),
as well a UNIX developer from AT&T® Bell Laboratories.

The first software decision was whether to port an existing operating system to
the new hardware. Choices were limited. CPIM® was not nearly powerful
enough. UNIX was still considered to be an unreliable academic system; and
besides, it could not handle the real-time requirements of the specification.
The only other suitable operating system was RMX-BO, the Intel blue-box
operating system. It was message-based and closer to the real-time design that
was needed; but after some serious consideration, the team rejected it. They
believed that they themselves could create something better.

A stimulating period of intellectual exchange followed. The developers were
not tied to B-bit technology or to any kind of backward compatibility.
Standards were not yet fashionable. They were free to create the most
forward-looking system that could be reasonably produced.

Papers from the computer science literature were passed around, and concepts
from other areas of experience were unearthed. Everything was discussed
intensely in group sessions that included not only the software team, but also
hardware and product design engineers, marketing, and the company officers.
Participants remember analyzing ideas from the Xerox Alto, Pilot, and the
multiprocessing Thoth (developed at the University of Waterloo), among others.
Conflicting ideas certainly arose at this time. A strong corporate culture had
already taken root, however, and no schisms occurred. This culture was based
on the respect each person had for the technical ability of the others, as well as
on communication and trust. This factor of trust actually showed up in the
design of CTOS later.

29

Of History, Religion, and Marketing

It is significant that those who were present often cannot remember which of
them came up with any given aspect of the design. In their descriptions, they
use the impersonal voice ("It was decided to do so-and-so") and often give credit
to others for important ideas. This way of thinking, discussing, reaching
consensus, and pulling together toward a goal became a culture that was
passed down to later eTOS developers as they appeared. Even if those who did
not subscribe to this culture were exceptionally talented, they did not survive
in the long term.

The principal designers decided early on to create a message-based operating
system with low overhead that would handle multiple processes in as near to
real time as possible. This aspect of the design came not only from RMX-BO,
but also from the exposure of the Xeroids to message-based experiments and
from the experience of the PBX designer who had seen it work before.
Generally known message-based operating system designs did have the
drawback of overhead related to the passing of data. Because they were
designing a simple machine with no protection requirements, the team could
get around this problem by passing only the memory addresses of data from
one process to another.

Another key (and related) decision was to keep the operating system kernel as
small as possible and place many traditional operating system functions in
separate processes called system services. Other processes (applications or
other system services) would send requests to a system service; it would
respond with the desired result and a status code. The eTOS kernel would
only manage process scheduling and interprocess communication (message
passing). The designers understood that eTOS would live in a changing
technical world. The modular design would allow it to be updated easily in the
future, as well as tailored to the special needs of various customers.

Memory management was considered an application responsibility. There was
one address space, a single memory partition. In the early days, eTOS was
multiuser: the file system was one user, the human user the other. This
concept was discarded before the first eTOS release, but it laid the basis in
eTOS data structures for the much later development of multiple memory
partitions.

In deciding to create their own operating system and to make it message-based,
the design team unwittingly set themselves up for a happy accident:
networking.

30

Of His tory, Religion, and Marketing

Networking From Day Two

Although support for networking was not explicitly included in the first
hardware design for the IWS, the primary CTOS architect had networking in
the back of his mind from the beginning of the project.

Meanwhile, it became evident within a few months after the effort began that
the IWS was going to be an expensive machine for customers. Convergent
marketing and sales people began to pressure the engineers to reduce the cost
of the IWS by removing, for example, the expensive hard disk and using only
floppy disks. This suggestion struck horror to the hearts of the designers.
Necessity brought forth the invention: the team came up with the notion of
placing the expensive resources on one machine and connecting other, less
expensive workstations (with or without their own disks) to that central one in
such a way that they could all use the resources transparently. The idea for
the Convergent cluster was born, yet how to implement it?

There was no time to redesign the hardware, nor to design an elaborate
peer-to-peer network of the kind known at Xerox. It fell to the most pragmatic
and least academic of the lead software engineers to figure out how to retrofit
networking onto hardware that had only one full-word DMA channel left
available, and to design how the CTOS message-passing scheme was going to
work across the new cluster.

The Request Procedural Interface

Meanwhile, by the second quarter of 1980, the rudiments ofCTOS were up and
running. Excitement mounted as the team saw that their ideas were going to
work well. There was one drawback, though, which revolved around the choice
of a message-based implementation. Writing code explicitly to build data into a
request block in client data space and to pass messages from process to process
was not compatible with existing high-level programming languages or with
the way experienced programmers thought. People were accustomed to the
idea of subroutine calls. The new system was technically wonderful, but not
particularly friendly. To recruit the allegiance of customers' developers, this
situation must change.

The solutions to this problem and to the networking problem came in one
revolution. The concept of the way the request block was used was ripped up
and redone, an event that reverberated through everyone's work. No longer
would the programmer explicitly construct the request block.

31

Of History, Religion, and Marketing

The new approach was to hide the construction of the request block under a
request procedural interface, which looked exactly like a traditional system
call, with what appeared to be a function name followed by parameters.
Transparently to the programmer, the linker would recognize requests as such.
The new request block would be built, not by the programmer in the client's
data space, but by the operating system on the client's stack. The request block
would include a new header portion that indicated what the rest of the
structure contained. In effect, it became self-describing.

Moreover, the CTOS kernel would not simply pass pointers. It would take on a
more active role. Operating system tables would understand the new request
block format and be able to determine which exchange (and thus, which system
service) was the target of the request. A request for a service that turned out
not to be local could then be forwarded across the cluster to the server
workstation. New system services, called the cluster workstation agent and
the cluster server agent, were written to handle routing.

Some ingenious work had to be done to shoehorn cluster communications into
the one remaining DMA channel. It turned out to be possible if one byte of the
word was outgoing and the other was incoming. (Later revisions of the IWS
hardware design corrected this resource problem.) Using inexpensive RS-422
lines at 307Kb, the first cluster did not have blistering speed, yet the team
could see that it would work.

The inventions of the request procedural interface and the self-describing
request block were the real innovations in the early design of CTOS. All the
other concepts were known, although perhaps not widely used up to that time.
It was this breakthrough that made CTOS unique and set it up for a second
happy accident and a future that was not at all what its creators had expected.

Changing Course

While the designers worked feverishly in cubicles and labs over the winter, the
first Convergent salespeople were already on the road looking for the kinds of
customers that the founders had envisioned. To everyone's amazement, they
did not appear. (In fact, it is safe to say that very few people ever did create
custom Multibus hardware and software to run on an IWS.) The salespeople
were getting worried. Finally, in the spring of 1980, they got their first really
large nibble.

32

Of History, Religion, and Marketing

Perhaps not surprisingly, that nibble came from Xerox Corporation, a company
that certainly could appreciate advanced design. Xerox, however, wanted to
put its own advanced word processor on the IWS for use in office environments.
They also put a strong push behind the fledgling efforts toward networking,
insisting that it be part of the product. They were interested in becoming an
OEM for a distributed office system. (OEM stands for "original equipment
manufacturer," but the term has come to denote a company that buys technical
products from another company, puts its own name on them, and resells them.)

Convergent responded by pressing forward with the networked design; but the
relationship with Xerox did not last. Within a few months, Xerox decided to
pursue another course. Xerox had, however, left an indelible mark on
Convergent, in both marketing and engineering.

In marketing, the salespeople now understood where to look for OEM
customers. They saw to it that Convergent began to design and build its own
word processor.

In engineering, the Xerox experience subtly inserted a difference of opinion
about design direction. This difference later grew and was not resolved for
three years. The question was this one: was the machine really a tiny,
powerful, networked minicomputer replacement, or was it a platform for office
applications?

There were designers on each side of the question. Nevertheless, at this time
there was no overt disagreement between these two philosophical camps.
Money was tight, hours were long, everyone was just pulling together to get the
product out, and any customer prospect looked good.

The Early Religion

The first CTOS developers never sat down and talked about philosophy or a
design "religion" per se: they were too busy creating the product. One of them
likes to say that Nature was not designed but debugged into perfection.
Another quips that Jesus did not intend to start a new religion but to reform
Judaism. In other times and places, they had all seen things done wrong, and
they wanted to do things right.

Nevertheless, religious principles did emerge, even if they were not codified.
CTOS should be a message-based and real-time multiprocessing operating
system. It should stay small, it should be modular, it should have low
overhead. It should stay out of the application's way if the application needed
to interface with hardware. (This latter principle was to change later.)

33

Of History, Religion, and Marketing

A harder principle to describe is that CTOS should be open and trusting of the
application writer. The trust among the members of the first team was
reflected in the operating system's belief that applications would be voluntarily
well behaved. Since all application development was initially done in house or
by a few close OEM customers, this policy was successful. Things remained
that way for several years, even after CTOS was supporting multiple partitions
with concurrently running programs on the 80186 microprocessor, before the
80286 brought memory protection into the picture.

There were two basic tensions in the early development group. One was the
differing viewpoints between the more academic and the more pragmatic
members. The other was the most important religious principle of all, which
one participant expresses as "Ship it!"

The philosophical tension was used constructively. The research-oriented
members brought the message-based concept and networking to the product,
among other modern ideas. The pragmatists were concerned with
performance, creating a redundant and extra-reliable hard disk, using
algorithms that were known to work, keeping the cluster concept down to what
really could be done with the time and resources available, and generally
finding the simpler, faster, and smaller way to do things. Without the
academics, nothing would have been new; without the pragmatists, nothing
would have been shipped.

In any case, the religion of shipping it was real. Under the deadline pressure of
one year, the Ctosians (see-TOE-zhuns), as they carne to be called in the
Convergent vernacular, together built and shipped the IWS with CTOS version
1.0 on it. This achievement was phenomenal in a world where minicomputer
and mainframe design cycles commonly consumed several years.

The cluster code was not all implemented in CTOS 1.0, but the basic
development system was up and running. The team of 14 people had written
100,000 lines of systems code; created a linker, a loader, an editor, diagnostics,
device drivers, an easy, menu-oriented command-line interpreter, and a
sophisticated debugger; and ported several compilers. CTOS 1.0 shipped in
October 1980, just over a year after the first software engineers were hired.

34

Of History, Religion, and Marketing

More Office Applications

In February of 1981, two important events occurred: CTOS 2.0, with cluster
code up and stumbling, had its first customer ship; and Convergent signed its
first really big contract. A system integrator named C3, Inc. had the courage to
propose IWS/CTOS networks in response to a U. S. Coast Guard request for
proposal (RFP) that had been written with minicomputers and terminals in
mind. Convergent people went through a minor baptism offire as C3 taught
them the art of the government live test demonstration. The Coast Guard was
amazed and delighted with the CTOS system, which could do more than they
had asked for at a fraction of the cost they expected. It was a deal, and a big
one.

The Coast Guard not only wanted the distributed word processor that was
under development, but also needed spreadsheets, data bases, and other tools.
At Convergent, the end-user orientation now gained strength with the
acquisition of this real customer.

Problems with the cluster were quickly worked out, with another CTOS release
(3.0) in March of 1981. More large customer prospects began to appear as
Convergent went to trade shows and demonstrated its wares. A famous
product demonstration of this era was the so-called "kick-the-plug demo," in
which, while showing off the new word processor, the salesperson would
"accidentally" trip over the IWS power cord, jerking it out and causing the
machine to stop dead. As viewers gasped at this seeming disaster, the
salesperson would smile and plug in the cord; the system would automatically
reboot itself; and when entered, the word processor would replay every
keystroke that had been typed up to the point of the interruption. Nothing had
been lost. (One visiting engineer who saw this act at the Comdex show actually
decided on that basis that he wanted to find ajob working on CTOS systems.
He was later to join Convergent and participate in a turning point in the life of
CTOS.)

Another story from this era concerns the relationship of Convergent and
Microsoft® Corporation. Microsoft was developing MS-DOS and associated
tools; it was also known as a producer of compilers and office applications.
Convergent needed a BASIC compiler but had little ready cash. A trade was
worked out in which Microsoft received the source code for Convergent's linker
in exchange for some BASIC licenses. This linker, minus its application­
swapping technology, which Microsoft engineers deleted, became the linker
that MS-DOS developers received from Microsoft. Thus, developers all over the
world used a Convergent-written product in writing programs to run under
MS-DOS.

35

Of History, Religion, and Marketing

Why the 'Accident Was a Happy One

In 1981 and 1982, Convergent became more and more firmly planted as an
OEM supplier of networked office systems that were beyond the state of the
art. Convergent's top managers realized that a young company of its type
could not hope to do everything well, and so they did not attempt to establish a
direct sales force or enter the retail market. Instead they chose to rely upon
OEM customers for their marketing force.

Contracts, small and large, were signed; a lower-cost cluster workstation for
the office, the AWS,TM was designed and shipped. (AWS seems to have stood
for "Advanced Workstation.") Convergent OEMs began selling so many
workstations in Europe that software revisions had to be made for native­
language support. More application programmers and managers were hired.
An unheard-of electronic mail program, based on the distributed capabilities of
the operating system, was designed. CTOS itself went through several
released versions as it was shaken down and features were added.

The CTOS workstations had arrived in the right place by accident. The
accident was a happy one because CTOS was tremendously overdesigned for
what most people considered to be office application needs in the early 1980s.
(The less sophisticated IBM PC was forming the basis of their impressions.)
Yet this excess sophistication and power have allowed CTOS to support
unrestricted and easy development of distributed office applications well
beyond the state of the art for a decade. Nothing had to be added: it was all
built in from the start, with a different market in mind.

A Turning Point

Probably if the early pragmatists in the CTOS group had known that this
would be its market, they would not have wanted to implement a
message-based, networked architecture just to run word processors. They
would have deemed it costly, complex, and wasteful. They did not know, and
their work helped to create something that was not of their own world view.

At this time, the division of opinion that had started during the Xerox era was
growing. Some customers were primarily developers using the CTOS machines
as platforms for such things as telephone systems or interfaces to large
typesetting systems. They were in the minority, however. By the middle of
1982, the differences of philosophy surfaced as the team began to deal with a
major new idea: multiprogramming.

36

Of History, Religion, and Marketing

CTOS had been a multiprocessing system from the beginning, as the operating
system, system services, and the single application that was running each had
at least one process. The operating system scheduled these processes for
execution according to an event-driven, priority-based mechanism to preserve
real-time behavior.

Now a young staff engineer wrote an internal paper that proposed running
several programs at once. Memory would be divided into several partitions;
each program would have a partition. Applications would have the
responsibility for staying out of each other's memory space and not doing rude
things such as executing busy loops, and CTOS would extend its scheduling
and memory management capabilities to handle this situation. To achieve this
goal, an old religious tenet had to give way: it would not be appropriate, in
most cases, for an application to interact directly with hardware. Etiquette
now would require the application to go through CTOS for whatever it wanted.

Everyone agreed that this idea was a good one. The pragmatists, who were
setting the primary direction for CTOS at this time, recognized the idea as the
workstation equivalent of minicomputer and mainframe schemes in which the
user interacted with one partition or context, while other programs could run
in other partitions in background. The user's only access to these other
partitions was via a batch processing scheme involving job control language
(JCL) directives.

The multipartition concept was implemented in exactly this way in CTOS
version 7.1 in mid-1982. In an elegant extension of the scheme, it was possible
for the JCL programmer to write batch files so that jobs were enqueued to be
processed wherever there was an available processor on the network. The user
did not, and in fact could not, know on what workstation the job actually was
run. The result was returned to the initiating workstation. The basic concept
of transparent use of distributed processing power is being discussed as an
innovation today. Yet its forerunner was up and running on a commercial
system in 1982.

This multipartition scheme was ingenious and ahead of its time, as was so
much of CTOS, but it was difficult to use. Certainly the average office user
could not be expected to learn JCL. Most such users had trouble distinguishing
between the concepts of memory and mass storage. A large contingent among
the CTOS and related application developers believed that multipartition
should definitely be part of the CTOS world, but that such a multipartition
scheme should be entirely open to user interaction and have a new, easy user
interface. Arguments began between the two factions over the future direction
of their efforts.

37

Of History, Religion, and Marketing

None of those who were there seem to enjoy talking about this period. It was
the first overtly expressed split in the group that had come so far and achieved
so much together. In the end, those oriented toward the more technical,
large-system atmosphere, together with the original CTOS architect, had the
opportunity to go in a different direction by forming a new Convergent division
to design anew, larger system. (Over several years, the division they started
became Convergent's UNIX-related group.)

With the departure of these veterans, the influence of the founders' initial
marketing aims for the workstation finally faded. There was no longer any
question of where CTOS stood in the marketplace: it was a platform for
distributed office applications.

Multitasking for the End User

Those who remained to carry on the development of CTOS in 1983 were its
second generation of stewards. (Most of the original members were still at
Convergent, but had gone on to special projects of their own.) Most of the new
CTOS group had been on the staff from near the beginning, so there was
continuity in the culture. Again, they were from diverse backgrounds: two of
the original crew from Xerox, one from Data General, one with a background
in technical instruments, and so on. They shared a common vision of a
multipartition CTOS that would allow any end user to run multiple programs
at once, switching back and forth among them at will, interacting with each
one directly.

Part of this vision came from a technical stunt pulled offby an engineer who
was asked to come up with demonstration software to show to a prospective
large customer. This company, whose own customers were largely
stockbrokers, wanted users to be able to do word processing while a stock ticker
simultaneously ran across the bottom of the video. Basing his demonstration
software on the existing word processor, two other programs, and the
background batch capability of CTOS 7.1, the engineer was able to show the
prospect not just two but three programs on the screen at once. The customer
was persuaded. (To this day, no one other than its inventor knows how this
demonstration actually worked, because it was not thought by the others to be
possible at that time.)

38

Of History, Religion, and Marketing

After a pause to rewrite the file system, whose creators had not imagined disks
larger than 32 megabytes, the CTOS group went on to implement their vision
of multipart it ion CTOS. The group leader and primary agitator for this
viewpoint now created a team to implement a revolutionary new memory
management system and user interface. One of the members of that team
was the same young man who had been converted by the kick-the-plug
demonstration at Comdex. Others were user interface, operating system, and
file system specialists.

Context Manager,TM as this new interface was called, was designed so that its
use would be intuitively clear to end users (Figure 3-1). On one side of the
screen was a list of applications that could be started. On the other was a list
of applications that were already running and to which the user could return.
The applications could generally continue processing whether they were on the
screen or not. A bar cursor could be moved from item to item in these lists.
Simple keystroke commands allowed the user to switch contexts directly
without opening or closing applications. The computer was going to conform to
the user's way of working, not the converse.

Status Contexts you can return to I Applications yau can start I
Waiting Moil Art Designer
Waiting • Art Desig ner Document Designer

I Executive I I
Extended Multiplan
Logout
Moil

Press GO to activate a new application.

Figure 3-1. Context Manager Interface

39

Of History, Religion, and Marketing

The implementation of Context Manager had a clean architecture and little
impact on application programmers. CTOS and Context Manager entirely
handled context switches: applications did not need to know that they were
running in a multipartition environment. In fact, most applications written for
single-partition CTOS ran without change under the new scheme.

The emphasis on application politeness now grew. Not only were busy loops
taboo: writing directly to hardware would now be cause for CTOS to stop an
application when it was not the owner of the video. Few applications were
seriously affected by these rules, because most had been well brought up. Fast
communications programs that interacted with hardware were affected. These,
however, ran perfectly while they owned the video.

All this was implemented in 1983 on a computer that still was based on the
Intel 8086 microprocessor, with no special hardware support for saving context
states or for memory protection. In the growing PC marketplace, nothing of
the sort was yet imagined.

Horizons and Realities: The 80186 and 80286 Chips

While the interactive multipartition CTOS and Context Manager were being
developed during 1982 and 1983, another activity was getting started also.
Intel was getting ready to release the 80186 microprocessor (which did not
have many new features) and simultaneously was publishing specifications for
the 80286 chip that was supposed to follow on immediately.

The 8086-based IWS and A WSTM were doing well, paying the bills for further
research and development. It was time to design the next-generation
workstation, appropriately code-named NGEN®. Mer a brief tussle with the
idea of moving to the Motorola 68000, it was decided that the new machine
would be based on the new Intel chips. The 80186 version would be an interim
design, but the important version would be based on the 80286. The new
machine would have a modular, latch-together hardware design with external,
modular power supplies. It would allow the customer to buy only the hardware
functionality that was needed, and also to add functionality later.

In the summer of 1983, while most system developers were working on
IWS/AWS CTOS and Context Manager, three others holed up in a conference
room in a borrowed, empty building to work on the question of what operating
system would run on the new machine. Their commission was to focus on the
80286 chip, which would have important new features.

40

Of History, Religion, and Marketing

In the Intel 8086 segmented addressing scheme, a 16-bit segment address was
left-shifted by four bits and added to a 16-bit offset. The resultant 20-bit
address represented a physical memory location. One megabyte (220) of
address space could be handled in this way. Everyone, including Intel, knew
that 1Mb would soon be insufficient. (The industry had changed enormously in
three years. CTOS developers remember early arguments about whether
putting 256Kb on the AWS was overkill.)

In the 80286, the two 16-bit address components, now called selector and offset,
would remain, but they would not be added together. Instead, the selector
would essentially index into a table and be mapped to an actual memory base
location for a 64Kb segment. The offset, as before, identified the address
within the segment. This new approach allowed 16Mb of memory to be
addressed. It also allowed the implementation of memory protection. The new
scheme was called protected mode.

Porting real-address-mode CTOS to the 80286-based NGEN was not a foregone
conclusion. An engineering contingent external to the CTOS group tried to
show that UNIX should run as native on the NGEN. In a famous internal
demonstration, one of the more wizardly Ctosians did some quick coding to
show that a version of UNIX hosted on CTOS would in fact have much better
performance than native UNIX. Like so many other spur-of-the-moment
events, this one was to become a significant influence on the development of
CTOS.

Back in their conference room, having turned aside the immediate UNIX issue,
the three Ctosians embarked on what some later called the "Summer of Love,"
mainly for the violent arguments that apparently rattled the walls. At the
more conservative end of the spectrum, one wanted a simple port of the
existing CTOS that would preserve complete backward compatibility and be
out in a relatively short time. At the other end, another wanted immediate
implementation of forward-looking features that might take a while to achieve
and would cause compatibility issues for IWS/ A WS customers. The third, full
of ideas in his own right, was also the one who could see both sides and keep
everyone talking. In true Ctosian style, the three emerged at the end of the
summer with a design on paper.

The best and most painfully laid plans are not always executed. While the
three were debating, back in the NGEN design world things were not going so
well. Several hitches occurred in attempts to get hardware prototypes running.
At the same time, Intel was having great difficulty in meeting its shipping
commitments for the 80186 chip, and it postponed the date for the 80286 chip
considerably. Convergent had already sold the idea of NGEN to its customers.
They, in turn, stopped buying IWS and AWS to wait for it. Start-up style
pressures reappeared at Convergent.

41

Of History, Religion, and Marketing

Convergent came down out of the design clouds and reverted to its true
pragmatic nature. The 80286 project was shelved. Everyone, including our
three friends, was thrown into the breach to get the 80186 NGEN debugged
and a straightforward port of real-mode CTOS (with Context Manager) up and
running. Sleeping bags, pillows, and an unending stream of coffee appeared in
the labs, and the job got done. A single multipartition CTOS 9.0 with Context
Manager, with a new internal basis for eventual networking beyond one
cluster, and with run-time switches allowing it to work on IWS, AWS, and the
80186 NGEN, was released at the very end of 1983. Everyone went home to
the Christmas present most wanted: sleep.

The DISTRIX Experiment

NGEN and CTOS 9.0 and its next shakedown release, CTOS 9.1 (mid-1984),
were to be the stable basis of the CTOS world for some time. Further minor
releases supported specialized new hardware modules (such as streaming tape
and the Voice Processor and a new, low-cost, diskless cluster workstation, the
CWS.TM TeleCluster (which allowed connecting the cluster via existing
twisted-pair building wiring) was invented by a lead Ctosian and an
experienced hardware designer, who thereafter referred to themselves as the
''Twisted Pair."

Once the crew had recovered from the push to get NGEN out, a new direction
emerged within the group. UNIX, no longer just an academic operating
system, was being mentioned by some customer prospects. The Ctosians
already knew that a hosted UNIX would work better and faster on this
hardware than a native one, and a native UNIX would not support the true
distributed-system concept. A small group of engineers set off to create such a
hosted system at the behest ofa customer. The hosted UNIX was to be called
DISTRIXTM, for Distributed UNIX.

The project started out with more UNIX underpinnings than CTOS. Over the
two years of the project, gradually more and more CTOS components replaced
the UNIX ones, until only the surface layer was UNIX-like. Two of the
developers had been involved in the Summer of Love design, and they drew on
this design in creating a new CTOS underlying the UNIX exterior. The main
new feature was a conversion of the CTOS 9.0 multipartition scheme, in which
partition size was fIxed, to a variable-partition mechanism in which the
operating system could adjust the sizes of application partitions as needed.
Thus, no memory went to waste.

42

Of History, Religion, and Marketing

After two years of effort, DISTRIX was released in 1986. Convergent, however,
had not taken into account the religious nature of the UNIX community. To
these people, DISTRIX was not UNIX because it was mixed with another
operating system. It was small, fast, and distributed; but it was not the UNIX
they had in their college labs, and it did not do well in the marketplace.

The DISTRIX experiment actually did something for the CTOS world, however.
Almost immediately, a version of CTOS that used the variable partitions
developed for DISTRIX was issued. Called CTOS II, this version ran on the
80286 chip, which was now finally available, and around which a new NGEN
processor had been designed.

CTOS II was really only an intermediate way to get onto the 80286, because it
was still a real-mode operating system. It did not exploit the new memory
management and protection features of the chip, and memory above 1Mb could
not be reached. Regrouping after the DISTRIX excursion, the CTOS designers
began again to consider the move to full use of the 80286. Chip chasing, or
being the first company to implement new Intel functionality and show it at
the Comdex trade show, had become an unwritten part of the religion by now.
Other companies had built computers around the 80286 chip (for example, IBM
Corporation's PC/AT®), but none of them used its new features to address
memory above 1Mb. Convergent could still be first.

First With the Most

As demand increased, Convergent and its OEM customers were writing larger
and more ambitious applications. The need to exploit upper memory on the
80286 became pressing.

Efforts now divided into short-term and long-term solutions to the 80286
challenge. In the short term, a new add-on software product called the System
Performance Accelerator (SPA) was brought out. SPA allowed caching of
user-selected files in memory above the 1Mb limit. It was demonstrated with
great success at Comdex in the fall 1985, and it was the first released product
on the market to use upper memory.

43

Of History, Religion, and Marketing

The second, less flashy but more important short-term effort was the Protected
Mode Operating System Server (PMOSS). A system running real-mode CTOS
and the PMOSS system service could run its other system services above the
1Mb limit. This step was a great relief to those who were writing and
installing more and more system services and larger applications and, as a
result, running up against the one-megabyte memory limitation. It also
allowed a transitional period for system service writers to begin porting their
code to protected mode in parallel while the Ctosians developed a true
protected-mode operating system.

Protected-mode CTOS, or CTOSNM,TM which was the basis for the current
CTOS versions, was released in 1987. It grew from CTOS® II, which had been
derived from the CTOS underlying DISTRIX, which in turn had its origins in
the Summer of Love discussions. Thus, the winding road toward full 80286
support, started in 1982, finally reached its goal.

CTOSNM on the 80286 allowed full access to the 16Mb address space. It
employed the chip's hardware task switch mechanism for rapid process
switching. This factor also allowed processing of communications interrupts to
be more prompt than on other systems. CTOSNM used the chip's memory
protection mechanism, but not its rings of protection. Protection was not
nearly so important to CTOS customers as was the ability to reach upper
memory.

It had become part of the religion over the years always to retain backward
compatibility. CTOS customers and users should not be wrenched from one
system to the next. Convergent hardware had always been especially reliable,
and many an IWS was known to be quietly chugging along out in the world.
(In fact, there were working IWSs in the Convergent CTOS development group
as late as 1987.)

CTOSNM could not be made to run on the IWS and A WS, designed so many
years before. It could be made to support the running of real-mode programs,
though. RMOS (real-mode operating system), as this feature was called, was
not a separate product, but was (and is) the ability of CTOSNM to run any
older real-mode programs, whether written at Convergent or by other
suppliers, without change.

44

O{History, Religion, and Marketing

Running real-mode programs along with protected-mode programs on the
80286 required a technical trick. The 80286 processor could switch from real to
protected mode easily, but it could not switch back to real mode without a
processor reset. Every 80286 developer, not only Convergent, was faced with
this problem. Convergent's solution was internally referred to as the "software
finger," because it mimicked the finger that pushed the reset button. The
solution reset the processor through a special circuit and then skipped most of
the boot sequence to get quickly from protected to real mode.

DOS Compatibility

Back in 1984, in the era when arguments about porting CTOS to the PC were
common, one of the original Ctosians was assigned to a stopgap project:
porting MS-DOS to run hosted on CTOS for a customer whose own customers
wanted to run MS-DOS-based applications. This project was difficult, and the
result was not entirely satisfactory: MS-DOS applications had an alarming
tendency to push the operating system aside, take over the system, and do
strange things with hardware. As a result, many MS-DOS programs could not
run in this hosted mode. The hardware was simply not the same, and the
operating system was multitasking.

A new MS-DOS-compatibility solution was put into place with the 80286
version of CTOS. This solution, the PC Emulator, was both a hardware and
a software product. It included an expansion module, called the PC Emulator
module, with its own 80186 processor, and two software entities: a BIOS in
the module and a system service in the workstation that remapped and
handled 110.

This PC Emulator had much greater application compatibility than did the
hosted version of MS-DOS. Perhaps 80 to 85 percent of DOS applications could
now run normally. Exceptions were those programs, such as certain games
that depended on writing directly to the video map (indirection caused slow
performance), copy-protected programs, and certain communications programs
that required specialized hardware. Nevertheless, the PC Emulator was real
progress toward satisfying a certain group of users.

45

Of History, Religion, and Marketing

Intal

Motorola

eTOS

MSIDOS

OS/2

UNIX

Appla

46

1965-1969 1969
I

1973
I

8080

1979
I

8086

68000

1980
I

1981
I

80186

1982
I

80286

Convergent Technologies founded Multiprogramming
CTOS 1.0 CTOS (background)

CTOS 2.0, 3.0 (LAN)
Distributed Word Processor

86-DOS (Seatle Computer Products)
MS-DOS 1.0

Multics research UNIX in C, PDP-11 UNIX Time-Sharing System, 7th Ed.
UNIX for DEC PDP-7 Microsoft Xenix, 16-bit

Berkeley funded for 4.1 BSD

Apple II

Figure 3-2. eTOS Through Time

UNIX System III

(continued)

Of History, Religion, and Marketing

1983
I

68010

1984
I

1985
I

1986
I

80386

68020

1987
I

68030

1988
I

1989
I

80486

1990
I

Voice Processing Protected Mode CTOs (80286 and 80386);

1991
I

68040

Interactive Multiprogramming System Performance Accelerator Native PC Emulator (multiple 8086 contexts)
Context Manager Variable Partition CTOs
Modular NGEN design Protected Mode 0.5. Service

Electronic Mail PC Emulator Module First CTOS/Open API
Hosted MS-DOS TeleCluster

Ms·DOs 2.0 background print Ms·DOs 3.1 IBM Token Ring
IBM PC/XT, hard disk MS·DOs 3.3

Windows 3.0
(multitasking and
upper memory) Ms·DOs 3.0 (8086 mode) IBM P5I2

IBM PC/AT (80286) MS· DOS 4.01
Ms·DOs 3.1 (network for "clean" programs)

UNIX System V
System V.2
Virtual Memory
Paging

Sun NFs

IBM/Microsoft Agreement to Develop OS/2

System V.3
RFS, Streams

OS/2 1.0 Standard Edition
05121.1
Presentation Manager

System V.4lntegration

Macintosh Plus Macintosh sE Macintosh IIx,

05122.0

lisa-Graphicallnterface, mouse
Macintosh (68000) Hard disk, Macintosh SE130

expansion slot
Macintosh II (68020)

Figure 3·2. eTOS Through Time

47

Of History, Religion, and Marketing

First With the Most Again: The 80386 Chip

By 1986, Intel had brought out the long-awaited 80386 microprocessor. Not
only did the 80386 allow easy protected-mode-to-real-mode switching in both
directions, it also had a virtual 8086 mode in which the chip emulated its 8086
ancestor. In addition, it provided for the first time a large linear address space
based on the 32-bit address. Although the segmented architecture (the
two-part addresses composed of 16-bit selector and offset) could still be used for
backward compatibility, it was now theoretically possible to use a single 32-bit
address for the entire memory space (a maximum of 4Gb).

The 80386 capabilities freed designers from the mode-switch problems of the
80286, and CTOSNM immediately took advantage of this change. More
important was the ability to run a virtual 8086 machine. The long struggle for
MS-DOS compatibility was largely resolved, because now PC Emulator
software could run directly on the 80386. No separate compatibility hardware
module was needed. Moreover, multiple virtual 8086 contexts could be run at
the same time. Thus, a user not only could run MS-DOS directly on an
80386-based CTOS workstation but could run multiple instances of MS-DOS
at one time, switching back and forth among them. With this capability,
combined with their inherent networking and ability to link to mainframes, the
CTOS workstations suddenly took a quantum leap over what was available for
DOS users in the marketplace.

The Big Time

In 1988, while 80386-based development was going on, Convergent reached
agreement with its largest OEM customer, Unisys® Corporation, on merging
into one entity. (Unisys had a long history with Convergent products, first
marketing the IWS and AWS as the B20 Series, and later the NGEN as the
B25 Series of workstations.)

Convergent's days as a small company were over, yet contrary to what one
might expect, its spirit and technical leadership entered a renaissance. The
necessity to negotiate agreements about future design with several large OEMs
had started to put a real cramp on Convergent's development style. Merging
with one of those OEMs once again freed developers to follow a strong design
direction, as well as giving them more resources to do so.

Unisys also offered something that Convergent had never been able to muster
alone: extensive marketing and sales resources. It was now possible to think
of CTOS as an operating system that could become more widely recognized.

48

Of History, Religion, and Marketing

CTOS/Open

By 1988, the marketplace had become consumed with the idea of standards.
Ironically, the very systems that were understood to be standard through their
wide market acceptance, UNIX and MS-DOS, were becoming technically
outdated. Various enhancements to UNIX by different developers caused
splintering and factionalism to enter the UNIX picture by 1989. Meanwhile,
MS-DOS was waging a stubborn war of resistance against Microsoft's and
IBM's newly announced OS/2®, which was supposed to replace it. In addition,
Microsoft and IBM produced different versions of OS/2, and the need for
custom device drivers for specific hardware complicated the picture.

CTOS had its own problems in the area of standardization. As part of its
strategy of selling to OEMs, Convergent had licensed CTOS source code and
marketing rights to a number of its OEM customers. These companies had not
only developed some of their own hardware, but had also modified the
operating system. They had also renamed CTOS as BTOS,TM StarSys, Hero/OS,
TNOS, and so on, and had given new names to the workstation hardware as
well. In the early 1980's protection of proprietary rights was the watchword;
none of these vendors wanted to advertise that alternative solutions were
available from other vendors.

One OEM, Bull®, understood the growing pressure for standards in the
European marketplace and took the lead in beginning joint engineering
projects with Convergent aimed at eventual standardization of the operating
system. Unisys followed suit about a year later. In mid-1988, the three
companies formed a committee aimed not only at the technical formation of a
standard and common release, but also at joint promotion of this standard.
This committee worked with other source licensees and some independent
software vendors to develop a standard application program interface for
CTOS, the CTOS/Open API.

The task of standardization was not as difficult as in the UNIX or other worlds.
All the CTOS platforms were based on the Intel chips. The relatively few
changes that had been made had utilized CTOS's basic modularity and were
therefore simpler to deal with.

49

Of History, Religion, and Marketing

The CTOS/Open API for system services was announced at the first CTOS
International Convention in Paris, France, in June 1989, sponsored by the
Groupe du Standard CTOS, an independent group of end users, value-added
resellers, and software companies who wanted to see CTOS established as a
standard. The following year, Unisys and Bull announced at the convention
that they would use CTOS/Open as the name for their major CTOS marketing
initiatives. They also announced the formation of a standards organization:
the CTOS/Open Advisory Council. Continuing the work of the earlier
committee, this council in tum put forward additions to the CTOS/Open API,
and opened its membership to the business community interested in pursuing
the comprehensive standard environment demanded by users and application
developers.

The people who had left Intel ten years earlier with an idea for the IWS were
not there, but they would have enjoyed the show.

Religion and the Future

A technical religion, as we have seen, cannot afford to become rigid. Somehow
it must preserve its central philosophy while adjusting itself to the present and
the future.

As CTOS moves into its public phase, what has happened to the religion under
which it was designed? These days, CTOS development goes forward under a
series of eight stated principles. CTOS should be

• Open

• Modular

• Optimized

• Resilient

• Compatible

• Available from multiple sources

• Distributed

• Scalable

50

Of History, Religion, and Marketing

In this official list one can see some of the traits of the old, unofficial religion:
modularity, distributed nature, small size, strength and speed, openness, and
so on. CTaS still is and will be mostly message based. Real-time behavior is
not on the list, but it is assumed to be important. Above all, the Ctosians
continue to be pragmatists at heart, despite their love of the latest idea. After
all the heated arguments are heard, the still-small band of CTaS developers
will do the thing that will work best for their users.

A noteworthy event in the life of eTOS is the forthcoming release of a standard
graphical user interface. For the first time, CTaS will have a user interface
that is not home grown. This step is a response to the marketplace. Now that
CTaS has gone public, it must more directly conform to what the public
expects.

As resources and horizons for CTaS expand, many exciting ideas are gestating.
Whether these ideas, or others not yet conceived, come to fruition in the next
few years or not, some things about CTaS and its designers never change.
There will always be new influences; there will always be controversy; there
will always, in the end, be pragmatism. And there will always be someone
impetuously sketching an idea on a paper napkin.

51

Part 2
CTOS and CTOS Applications

4
Thinking About Distributed Applications

What is a distributed application? It is
an application that uses resources such
as electronic mail or a data base over a
network transparently. It is one that can
be divided into pieces, not all of which
must reside on the same computer to
work together. Distributing an
application is a good way to avoid
replicating the same code on many
machines . .. Through the use of system
services and message passing,
applications under eTOS have always
been distributed, and there has been no
need for a change or new approach in
designing them.

eTOS is an interesting, unique, and powerful basis for application design. The
particularly successful eTOS-based applications have been those that have
taken advantage of its unique capabilities. Many of these applications have
been designed for systems in which there is a central office or facility
communicating with branch offices. They have supported such activities as
airline reservation systems, banking, motor vehicle department operations,
court reporting, and many government needs.

Before we go on to discuss how such applications are designed under eTOS, we
should look a bit more closely at why distributed applications are important
and what is needed to support them. Applications do not exist in a pure
environment consisting of their creators' ideas about the next neat thing. They
are computerized solutions to real problems in a real world. It helps to step
back now and then and look at that world.

55

Thinking About Distributed Applications

Distributed Applications

In the real world, nontechnical people are generally trying to do more faster
with less all the time. Increasing productivity includes not only doing more
things in a shorter time but also doing them at a lower cost. Most nontechnical
people are not instinctively attracted to computers, but they have adopted
them as necessary tools that free them from routine work and help them to be
more creative. Computers also can make more information available and can
automate complex tasks.

The acquisition, deveiopment, set-up, and maintenance of computer tools costs
money: it thus costs money to save money. But we all want it to cost as little
as possible. Development of application software should be especially simple
and fast. Upgrading should occur at a reasonable cost.

Large Computers

Because they could increase productivity, large, centralized computers with
dumb terminals had become a necessity and a fact of life in business by the late
1970s. As with all good solutions, however, large computers introduced new
problems. Users had to deal with schedules and glass rooms, massive up and
down time, and fluctuating performance. As the computers grew, their
flexibility and responsiveness decreased. Users were serVing or waiting for the
computer a good part of the time. Productivity was not increasing.

Personal Computers

The advent of the microprocessor and the small computer based on it was a
boon to users. They did not love computers any more than they had before, but
they quickly adopted the desktop computer because it could help them
maximize their individual productivity. They might not have tremendous
processing power, but they had the tools when they wanted them. Small
computers gave users flexibility and control. Once again, they gained time for
individual creative work. They did not, however, have access to the work of
others nor to information needed by all.

Personal computers sprang up everywhere, and with them came new problems.
People who worked together started to use different types and versions of
software. They had trouble with file system maintenance and backup. Users
could not easily exchange data, and when they did, there were problems with
version control. The cost of these problems to organizations increased, and
overall productivity was threatened.

56

Thinking About Distributed Applications

Issues in Creating Distributed Applications

The idea of the network and of distributing applications arrived in the larger
business computing world as a compromise to keep everyone functioning and
productive. The concept was that if all these small computers could be made to
communicate with each other and with big computers, users could retain their
creative independence and flexibility, while the organization would gain
consistency, better exchange and version control, security, and so on. This
approach turned out to be a compromise deal in more than one way.
Networking and resource sharing had to be retrofitted onto systems that were
never designed with them in mind. On PCs, it was necessary to add new
dedicated server hardware as well as special boards and software. On
multiuser systems running versions of the UNIX operating system, competing
versions of complex add-on software were designed by different groups.

In both cases, add-on networking brought with it its own set of problems.
Adding a network in the first place was expensive. Furthermore, because
networks were not designed in from the beginning, all their administrative
workings were exposed and required constant care by technically experienced
system administrators. Both factors added to the cost of trying to reach higher
productivity.

The result was an improvement over the previous situation, but even after all
that work and expense, these networks readily supported only file transfer and
certain types of resource sharing. They did not create a platform for true
distributed applications.

What is a distributed application? It is an application that uses resources such
as electronic mail or a data base over a network transparently. It is one that
can be divided into pieces, not all of which must reside on the same computer to
work together. Distributing an application is a good way to avoid replicating
the same code on many machines. If some parts of an application can be
shared, they can be thought of as services and can be placed on one networked
computer. All the other members of the network need only run smaller client
portions of the application. The user should not have to know which parts
of the application are local and which are located across the network.
Performance should not become unacceptable as a result of distributing an
application.

57

Thinking About Distributed Applications

PCs running MS-DOS, even with added networks, did not easily support the
development of distributed applications. Such an application would need to
know the topology of its environment: what computers were on the network, on
what systems its other components could be found, and how to contact them. If
one vendor's application software was to work with that of other vendors, a
standardization issue ensued in which vendors had to make treaties (such as
the Lotus®-Intel-Microsoft agreement for extended memory). so that their
software products could work together.

Microsoft's OS/2, the follow-on to MS-DOS, addresses some distributed
application issues by data exchange at the pipe level. An operating system
in the early phases of growth, it still requires the network to be added on,
with associated administrative burdens and security issues. In addition,
replacement of older MS-DOS-based installations with new OS/2 software and
associated hardware is costly.

In both the DOS and OS/2 worlds, making an application work across a
network requires extensive knowledge of programming for the specific network
involved. There are several popular networks. The result is that some
programmers can make a very good living by specializing only in the intricacies
of one or more networks. Networking an application adds time and cost to a
development schedule.

Multiuser time-sharing systems based on UNIX have operated on an extensive
electronic mail network for some time. This network, however, primarily
supported only file transfer until Sun Microsystems's Network File System
(NFS) and AT&T's Remote File System (RFS) appeared in 1987. These add-on
features allow transparent file access across the network, but not remote
procedure calling (RPC). Differing forms of RPC for UNIX exist, but they are
not as fast as that of CTOS. Applications that use this kind of networking are
written slightly differently from those that do not. Furthermore, UNIX
systems have never been renowned for simplicity of setup and administration,
and layers of networking software have not simplified these tasks.

In summary, most existing systems have approached networking and remote
procedure calling as add-ons or upgrades, which bring with them expense and
complexity. Productivity declines as inconvenience increases.

58

Thinking About Distributed Applications

Distributing Applications Under eTOS

Because CTOS-based systems are message based and were originally
overdesigned for the office-application marketplace, they have been able
to support increasingly sophisticated distributed applications without
encountering design limits. Through the use of system services and message
passing, applications under CTOS have always been distributed, and there has
been no need for a change or new approach in designing them.

In fact, it is not really possible to write an application under CTOS that is not
inherently distributed in nature. Applications do not need to know network
topology. They simply make requests, and the operating system takes care of
knowing where the service is located and passing requests and responses. The
message itself does not differ, whether the service is local or remote. The
format of the request block itself enforces standard behavior by all CTOS-based
applications. There is no need for external agreements in this area, no need for
special network artists.

To design a distributed application under CTOS, one first identifies the
separate tasks that will be performed by the application. The second step is to
identify which task-performing components could be shared among users.
These sharable components can then be written as system services. The
balance of the program, usually the user interface, is written to run locally and
make what appear to be procedure calls to the system service portions. That is
all there is to it.

Because networking and security are inherent in CTOS, there are no add-ons,
no special administrative needs, and no costs for these items. Writing a
distributed application takes no more effort than writing any other application.
There is no cost of writing a duplicate "network version" application. eTOS
itself is in no immediate danger of approaching design limits, so there is no
anticipated cost for large-scale replacement. All in all, CTOS systems provide
an environment of high productivity for the developer, the administrator, and
the user.

59

5
Timekeeper: A CTOS Application

Relate the application architecture to the
system architecture, which includes the
built-in network. Build your application
model on the message-based, distributed
CTOS model, the client-server architec­
ture. For those who have worked on
other kinds of systems, some rethinking
is in order here.

Computers are used for business. CTOS, especially, is a solution for the
modem business, where speedy and effective communication between
wide-flung parts of a company can mean profits, whereas slow or ineffective
communication means a loss.

Modem businesses need shared access to up-to-date data in a real time
fashion. Consider the problems of an airline company, where numerous
operators all over the world may answer requests for reservation information
and then book those reservations, changing a centralized or distributed data
base constantly. This can be done by tying the operations into tbe system with
varying levels of distribution: a single, centralized data base on a monolithic
computer used for all processing as well as data storage, a distributed data
base on multiple centralized sites, or a combination of remote sites and
centralized sites. The optimal situation for the end user (attempting to
minimize data communications connections while maximizing response time)
uses distributed processing, where some processing is done locally with a
centralized or even a distributed data base which is only tapped to process
transactions.

61

Timekeeper: A eTOS Application

The problems of the airline company are not unique. The same situation
occurs in the banking industry, the stock market, and even in keeping track of
sporting events. The problem all these businesses share is that they have
multiple operators who need to share data and are spread out over some
geographic area. The answer to the problem is distributed processing.

Another problem they all share is the need for the operators to communicate
with each other. One might not think this would be the computer's problem. It
isn't. But those people are also tied to the computer. They use it to do much of
their work. They would also be more effective if they could use it to
communicate. The answer to this problem is also distributed processing.

A Look at Some Distributed Applications

CTOS message-based operation, with its integral cluster and effective
networking, makes it an ideal platform for the development of distributed
applications. To illustrate this in more detail, we are going to explain to you
how a distributed application would be developed on CTOS. Along the way, we
will pause when necessary to fill in background information about how CTOS
works.

The application we will develop will be simple, so that we can complete our
description of it in a reasonable number of pages. Before we get to it, however,
let's look briefly at the features of two different, real-life, distributed
applications that take full advantage of the inherent capabilities of CTOS.

A Unique Application: Reporting Sports Results

Your first thought when a sports tournament comes to mind is certainly not
likely to be ''how do they manage their computer system?" In fact, however,
keeping track of and disseminating information at such an event is quite a job.
Several events are usually going on at one time. Scheduled competitions
change hourly. Results change with the minute. Competitors need
information, the public wants to know, and sportscasters and tournament
sponsors scramble to keep it all under control. This is a perfect opportunity for
a distributed application.

In such an application, centralized data storage of raw data is essential. So is
up-to-the-minute access to that data from multiple locations. Let's look at how
one application system solves this problem.

62

Timekeeper: A eTaS Application

The data base is set up using the ISAM system service and is located on one
server workstation. That server can be accessed from cluster workstations in
its own cluster and from workstations clustered to other server workstations in
the network. PC workstations as well as CTOS workstations can be included
in the clusters when a special cluster communications card and ClusterShare
software are installed.

An interactive application can be located at each cluster workstation at which
blow-by-blow results of the events can be recorded. The interactive application
can do all processing locally that requires interaction with the operator and
then can send the completed results to the ISAM system service at the server
workstation for storage in the data base. The results are thus all stored in one
central location.

Scheduling for events can be set up and stored in the data base as well. Again,
the interaction with the operator can be done with local processing. The
current schedule is stored centrally. From any cluster workstation running an
interactive application, anyone interested in the events could find out about the
latest schedule changes. Several clusters can be networked together.

Players can also call to find out when they are next scheduled to compete; they
hear a digitized recording that tens them when and where they compete. The
voice recording is all stored electronically on the computer and played back
using the services of the Telephone Manager system service, a device driver for
the CTOS Voice Processor module.

In this application, the local workstation actually sends a query regularly to
find out what new events may have just been completed and then, using
digitized voice processing, verbally announces new score changes or the results
of events as they occur. On request, special statistics about results are
calculated locally based on raw data retrieved from the data base. The
interaction with the user and the calculations are done locally, the raw data is
shared across the network. Several of these workstations are located at
various locations at the site, or away from it.

In this application, the PCs have a special and interesting role. As mentioned
above, they are tied into the network as cluster workstations using a
ClusterCard communications card. An MS-DOS based application running on
the PC uses ClusterShare software to connect to the CTOS server and to access
data in the CTOS ISAM data base. The PC displays the scores and other
results as an overlay on the television monitors that are showing events. In
this case the PC was chosen because a specific output channel was needed to
write to the television display.

63

Timekeeper: A eTOS Application

This system has been highly effective, providing up-to-the minute information
to many different sites. It is fast and responsive. It works the way the people
who use it need it to work. It is distributed processing in action.

Interoffice Communication: CTOS Electronic Mail

Nothing could be more representative of the office environment than the
memorandum, "memo" for short. And nothing probably wastes more trees or
takes more time in the office environment. That's why electronic mail is such a
success on all computer networks that offer it.

On CTOS, in an inherently networked environment, electronic mail is a
natural. The CTOS electronic mail product is extremely successful and very
widely used.

Mail is an interactive application that the user can use to read memos in his
in-tray, reply to them, forward them, or file them as necessary. File folders
that store messages can be opened and searched for relevant information.
Memos created by electronic mail have a standard memo-style format. To send
a message, the user simply types in the names of the people to whom he wants
the message to be delivered, typing just Reggie Smith or George Robinson on
the distribution list line. Remembering complicated addresses or code names is
not required. From the local workstation the user can send such memos
around the world. They can be sent to users on other networks, other systems,
even to a FAX machine.

How does the system work? Through distributed processing, of course.

An interactive application resides on each user's workstation. On the server
workstation are two system services, one of which sends and receives messages
for each user on the cluster, temporarily filing those messages in a mailbox
until the user requests to see his mail, at which point they are read into in the
in-tray. This is called the Mail Service. The other service, called the
Communications Manager, handles wider network communications, passing
messages on to other nodes in the network (other clusters) or to WAN s.

The Mail Service also provides the interactive application with the names of all
the users known to it (and to the wider network Communications Manager).

Each part of the system performs part of the processing. Each is located at the
place in the network where that processing can be performed most effectively
and efficiently.

64

Timekeeper: A CTOS Application

Timekeeper: Our Distributed Application

Keeping these two applications in mind, let's think about some other business
solutions. Software should provide a solution to a productivity problem. A
simple one to start with is the need to replace the business person's ubiquitous
paper To-Do list with something that can go it one better and offer reminders
as well. Embroidering on this theme, why not add an appointment calendar
that also can issue reminders if the user wants them?

That would be a simple application to serve an individual user, that you can
probably go out and buy for whatever computer you are using.

But what can you do with that application in the CTOS world? Suddenly we're
talking about the workgroup, about all the other people that the user needs to
interact with, and about the business environment. We can think about
distributing resources easily. We can think about doing more than one task at
once.

Suppose the calendars of all users in the group are centralized. The software
can then allow users to check other users' calendars to see when they are free.
Extending things a bit, this product can provide automatic calendar checking
and meeting scheduling, even looking to see what conference rooms (with
appropriate sizes and amenities) are available and choosing the best of them.
Then the software can automatically send a message to all meeting
participants with the meeting details, let the instigator know who is and is not
coming, tell everyone about any changes that are made, and issue reminders to
everyone.

Now we are really talking about a distributed application. Let's call this
product Timekeeper.

A Framework for the Design

In these few paragraphs, we have already gone through the first few steps in
specifying the requirements for a distributed system. In specifying the
requirements, the utmost importance is that the system meet the needs of the
end user. With our Timekeeper system, because it is simply an avenue for
displaying the architectural structure of CTOS, we do not have to delve any
deeper in specifying requirements.

65

Timekeeper: A eTOS Application

Once the requirements have been fully specified, we need to address them with
a functional description. We want to keep the process simple by replacing a
manual system with a computerized system.

Once the requirements have been specified and we have a functional
description of how the requirements are to be satisfied, we get to the design
phase. The first question should always be "What are we trying to do here?" Is
there an existing product that does all of what we want? Assuming that we
want a networked solution, is it appropriate to the CTOS server/client model?
Ifit does not make use of the network at all, ifit is only going to serve one user,
we probably should look into the DOS marketplace. CTOS is preeminently a
platform for distributed applications.

The Design Environment

eTOS has a modular architecture based around a small kernel of primitive
operations, to which additional modular system services can be added as
needed, where each system service is performing a specific class of functions.
With the division of functionality into separate services, we can identify certain
characteristics.

• The operating system environment is highly modular, and the modules are
independent in that they contain both data and methods.

• The operating system environment incorporates the accepted principle of
data hiding within these modules.

• The operating system environment is characterized by data abstraction:
the internals of a module can be changed without affecting the business
that the module carries on with other modules.

• Components communicate with each other by messages asking for results,
but not by telling each other how to carry out the work involved.

• Reuse, rather than reinvention, is emphasized within the operating system
environment.

66

Timekeeper: A eTOS Application

Steps Toward a Design

Keeping in mind the distributed, modular basis of the operating system, we
now need to translate our previous functional specification into a design. The
real nature of designing applications, no matter what the underlying system, is
holistic. Textbooks tout the advantages of top-down design because of the
decrease in the cost of integrating various system components; however,
top-down design coupled with successive refinement is the primary mode of
design within the industry. Because the CTOS operating system environment
embraces modular techniques with encapsulation offunctionality within the
modular components, a top-down, step-wise design process allows for rapid
prototyping with minimal functionality, followed by staged phases with
ever-increasing functionality.

Starting Simply

The main thing under CTOS is to start with a simple, general version. If you
can get this simple version working well, you can always add processes and
features in later versions. If, however, you start out with an ornate design
involving multiple processes and much functional filigree, you (or your
successors?) may end up on permanent debugging detail ... if, in fact, the
application ever works. As one developer says, "Don't get too beautiful with
your ideas."

Starting with a simple version is not necessarily simple in itself. It requires
that you think ahead about the application's future. What extensions will you
need to add later? Leave room and hooks for them. Anticipate that your
present "early" version will some day have to handle extended inputs and
status codes sent by later versions of the same product running on the same
network. In other words, set yourself up early to maintain backward
compatibility.

This principle applies to specific areas as well as to the overall design. Start
with fewer, more general "umbrella" data formats. Design fewer requests and
allow for added subcases within them. Allow in the beginning for requests to
be routed by file specification over the network. (Requests are discussed in
Chapter 7.) In the user interface, start simply and leave room to build.
Reorganized user interfaces in later versions are very difficult for users to
accept and learn.

Conversely, as you move to later versions, implement new features in terms of
your original model rather than adding more and more specialized code.

67

Timekeeper: A eTaS Application

In the case of Timekeeper, the specific application that we're focusing on,
we should think about the possibility that eventually it could be used
organization-wide rather than just in a small workgroup. We are not going
to design this capability into the first version, but we need to leave the
possibility open.

Relating the Design to the Network

One veteran Ctosian says, "You can't not design a networked application. So
you musn't write an application without considering the network." Relate the
application architecture to the system architecture, which includes the built-in
network. Build your application model on the message-based, distributed
CTOS model, the client-server architecture.

Although we shall talk about modularity more specifically a little further on, at
this point we are already thinking about Timekeeper in network terms. Parts
of Timekeeper will be centralized: the data about everyone's calendar, the
meeting rooms, the handling of mail messages between users. Other parts will
be specific and local to each end user.

User Inputs and Outputs

Now we arrive at what, in standalone systems, is the first step in application
design. What does the user expect to put into the application? What will the
user get back from it? This basic user 110 is the reason for the application's
existence. Note that we are not yet actually designing the user interface, but
only identifying what will pass through it.

With Timekeeper, users will input data destined for their own To-Do lists and
calendars. They will also input attempts to schedule meetings. They will write
notes to each other and input them to Timekeeper's mail message facility.

A Timekeeper administrative user will input all possible meeting rooms and
their sizes and amenities, and will maintain this list from time to time. This
administrator will also input and maintain the list of users. Users will make
some administrative inputs themselves, such as configuring the range of times
shown on their calendar days.

In return, Timekeeper will display various views of To-Do lists and Calendars
on demand. It will provide desired reminder outputs when duties and appoint­
ments fall due. It will respond to users about their attempts to schedule
meetings. It will send notifying messages to meeting participants. It may
need to notify the administrator of inconsistencies or difficulties it encounters.

68

Timekeeper: A eTaS Application

Needed Functions

What functions does Timekeeper need to perform in order to use these inputs
to provide the desired outputs?

Most obviously, it needs a user interface to receive those inputs and return
those outputs.

It needs to store all the data about users' calendars and To-Do lists. The
calendar data, at least, should be accessible to all users for inspection and
meeting scheduling: the implication is that Timekeeper will need networked
data storage.

Finally, it will need a way of checking the current time, comparing it to
appointment times on people's calendars and lists, and reminding them of
upcoming events or deadlines. Let's call this function the Reminder. You can
probably guess that Reminder is going to be a system service.

Division of Labor

Having thought about what the whole application system has to do, we are now
at the point of thinking more literally about the division of labor among its
parts. There are two issues: clientiserver division of labor and division of
programs into possible multiple processes. Of these two, we are going to take
up the first at a simple level here, with more complex issues to come later. We
shall defer the issue of multiple processes until after we have discussed
processes and interprocess communication further in Chapter 6.

What parts of the application are of value to more than one user in the
workgroup? What resources will be shared among users? These are the
questions that lead us to define the contents of system services, if any, in an
application system. In the case of Timekeeper, we have already seen that
calendars will need to be a centralized data resource. A system service often
arises as the manager where multiple clients will be making requests for such
a shared resource. (This is especially true where the resource is a physical one
such as a piece of hardware for data storage or transmission. Prefetching data,
control of user contention, and like duties are ideal for a system service.)

We have already suspected that we will need a Reminder system service. Its
duties will be to control and update the shared data, compare current time to
scheduled events, and return reminder notification to the clients.

69

Timekeeper: A CTOS Application

What parts of Timekeeper are user specific? Certainly user 110 is not shared.
An interactive application program for 110 will be written that will run locally
to each user. Instances of this interactive application will be the clients of the
Reminder system service, making requests to it to update the centralized data
and to remind them of upcoming events.

Where does the To-Do list data go? For simplicity, it goes into the centralized
data storage resource along with the calendar data. Although we are not going
to have users reading each others' To Do lists, the Reminder service will be
handling notification from these lists, so centralization makes sense. It also
allows us to use only one data format.

Interactive ... Reminder .. Centralized
Application -. System Service -- Data Storage

Figure 5-1. Timekeeper's Component Parts

We had also planned to transmit short, electronic text messages among users.
The user interface aspect of this facility could be part of the interactive
application portion of Timekeeper. What about the handling, routing, and
delivery of messages? That part sounds like another system service. (We shall
get back to this problem.)

One criterion to use in thinking about division of labor between clients and
system services is whether a given functionality must be always "on," always
up and running on the system, or whether you can afford to have it go away
with the user. The parts that must always be available go into the system
services.

At this point the designer should also think about what, if anything, should be
placed in libraries and what in system services. In general, system services
should handle the event-driven, real-time aspects of processing, while library
routines can be written to handle computation. (An example is eTOS Mouse
software, in which the real-time Mouse Service reports mouse movements and
clicks to the client, while the Mouse library routines handle conversion of this
information to whatever coordinate system is being used.) Bear in mind that
later revision of a library requires that the application be relinked with the
new library and reissued, whereas updates to a system service require
reissuing only the system service.

70

Timekeeper: A eTOS Application

One should be willing to make compromises with the principles outlined above
if performance issues intervene. A classic software design trade-off is that of
size versus performance. Putting code into a system service makes the
application smaller overall. But creating a very pure design in which the
system service does everything that is centralized in a very clean way can
sometimes have a performance impact (for example, where one character at a
time is being fetched and transmitted over the network).

Thoughtful design of user interfaces and modularity in the beginning can save
untold grief in later versions. It is worth hashing out all the issues and
problems you can think up at this stage.

Using Existing Pieces

In keeping with the modular nature of CTOS, we now look around to see what
needed bits of software already exist. We do not want to reinvent too many
wheels.

For our centralized data storage, we could write our own networked data base
(a lot of work), or we could use the ISAM (Indexed Sequential Access Method)
package, an existing CTOS networked data base. If we needed a more
elaborate data base we might consider using Oracle®.

For the Reminder system service, actually, we could just use the existing CTOS
Queue Manager, which has the ability to check the system time and dispatch
messages accordingly. Using the Queue Manager probably is the ideal thing to
do, in pure Ctosian terms. However, if we decided to do that, the rest of this
book would become decidedly boring, as we would never illustrate the writing
of a system service. Therefore, we shall write the Reminder Service from
scratch.

As for the delivery of electronic messages, we are going to do the right thing.
The CTOS Electronic Mail Service has all the functionality we need for
transmitting messages. There is no need for us to create another system
service here. We can just write the interactive application to call the Mail
Service API.

71

Timekeeper: A eTOS Application

Interactive , Reminder ISAM
Application

,
System Service - Service

~

,

Moil
Service

Figure 5-2. Timekeeper Components and Other CTOS Services

Understanding Some Underpinnings

Before we can refine our design and start coding away, we need to discuss two
additional conceptual areas. One is the way the CTOS message-based system
does its work. The other is the variety of available I/O tools under CTOS.

Chapter 6, therefore, examines messages and CTOS Interprocess
Communication (IPC), the underlying architectural concepts which allow
processes to communicate, and explains how the request/response model is
built on IPC.

Chapter 7 discusses system services, the entities which provide services to
multiple clients utilizing the IPC mechanism of Chapter 6, and how they are
able to work over the network transparently to their clients.

In Chapters 8 through 11, we look at I/O, ranging from the highest to the
lowest level tools, and from disk to wide-area communications.

In Chapter 12 we return with our new found-expertise to choose from this
smorgasbord a real-world set of tools with which to write Timekeeper.

72

6
More About Messages

CTOS has one principal means of
interprocess communication (IPC): the
mechanism of messages and exchanges.
Messages are the basis for consistency
and standardization of application
behavior under CTOS. Clients and
system services, all communicating
through the same mechanism, can
therefore be changed, substituted, and
reassembled in different ways without
requiring disruption and recoding of
their communication methods.

There are two basic approaches to interprocess communication within any
multiprocessing operating system environment: shared memory and message
passing. Since eTOS is a networked operating system, shared memory is not
possible; hence, messages make eTOS what it is. Its real-time nature, its
system services, its transparent networking are built with and on the basic
concept of messages.

Messages are the means of communication between processes in both eTOS
and applications. A greater level of concurrent processing is possible when a
multiprocessing system is message based. Most eTOS processes use
messaging to synchronize themselves with the operating system, system
services, and/or other processes. Because of this, at any given time in a eTOS
system, many different processes may be ready to run, although only one is
actually running at a time.

73

More About Messages

Actually, three kinds of entities compete for the processor under CTOS:
processes, device interrupt handlers, and trap handlers. Of these, processes
are the most important to us here. To understand how processes communicate
with each other, though, we must first describe the process itself.

eTOS Processes

The concept of a process has been described many times and in many ways, but
none of the definitions truly convey what one is. It is easiest to say that a
process is a running program; but under CTOS a program may have more than
one process. It is more accurate to say that a CTOS process is an independent
thread of execution, along with the hardware context: that is, the contents of
the processor registers that are necessary to that process. A process has a
stack (which contains its history) and a current execution point. A process
should not be confused with the code that it is executing: the same code can be
executed by several processes at the same time.

The context of a process consists of all the information required by the
processor to perform work on behalf of that process. This context includes both
hardware and software components.

The hardware context consists of the values to be loaded into the processor
registers when the process is scheduled for execution: for example, the CS:IP
(the code instruction to be executed) and the data segment (DS) and stack
segment (SS), which reference the location of the process's data and the
process's stack.

The software context consists of the default response exchange (where the
process has its messages sent), the priority at which the process is scheduled
for execution, and the interrupt vectors pointing to the software interrupt
routines that the process uses.

CTOS processes do not own resources: rather, a process is a resource owned by
a higher-level entity (the operating system or the application system of which it
is a part).

74

More About Messages

Process Creation

Any process within CTOS is started up in the same way. CreateProcess, a
kernel primitive, creates a new process and schedules it for execution.
CreateProcess is called by any of several higher routines that may be used
when an application is first loaded, either from an application or from the
Executive (the eTOS command line interpreter). An application that is
already executing and needs to establish a second, independent process also
uses CreateProcess.

For example, when the Executive application program is loaded into memory,
the initial Executive process is created. This process is the main routine by
which the user interfaces to the system. After the Executive is loaded, it in
turn makes a CreateProcess call to start the second Executive process, the time
process. This independent thread of execution periodically updates and
displays the time on the user's screen. Both processes are part of the same
application program, but have different threads of execution for more effective
use of system resources.

Each process is known to the operating system by its Process Control Block.
The Process Control Block is a system structure that contains information
about the process, including its execution state, priority, default response
exchange (to be discussed later), user number (a reference to its owner), and
context. The context of a process is made up of all the information necessary to
resume the execution of the process. This information includes the settings of
the microprocessor registers and other hardware registers.

Processes under CTOS have associated priorities ranging from a most-favored
priority of 0 to a least-favored one of255. (One might create a process of
priority 255 to, for example, determine how busy the CPU is.) Processes are
scheduled to run on the basis of these priorities; hence, CTOS is also priority
driven.

Process States

A process can be in one of three execution states: ready, running, or waiting.
A process is ready when it is competing for the processor; that is, it could use
the processor ifit were available. All the ready processes are linked in priority
order in a queue called the run queue. The process at the head of the run
queue (the one that has the most-favored priority of all the processes in the
ready state) is in the running state and is known as the running process. A
process is said to be waiting when it needs to receive a message before it can
resume processing (waiting for an event); hence, CTOS is also event driven.

75

More About Messages

Figure 6-1 shows a system that includes six processes. Processes A, B, C, and
D are ready. Processes E and F are waiting. Process A has the most favored
priority of the ready processes, so it is the running process.

Run
Queue

Running Ready Ready

A B c
Priority 4 Priority 5 Priority 5

Waiting Waiting

E F
Priority 2 Priority 8

Figure 6-1. A System Including Six Processes

Ready

D
Priority 9

A process can also be suspended. A process can be suspended by a user
command or by the system debugger, or when it is swapped out of memory, or
pending its termination. A suspended process can be ready or waiting. When a
process is both ready and suspended, it does not compete for the processor and
does not become the running process, even if it would normally have been at
the head of the run queue.

The Scheduling Algorithm

A process moves from the running to the waiting state when it needs to receive
a message to be able to continue executing, but that message is not yet
available. When the process enters the waiting state, it is taken out of the run
queue, and the next process in the queue becomes the running process. In
Figure 6-2, Process A is now waiting, and Process B has become the running
process.

76

More About Messages

Run
Queue

Running

B
Ready Ready

c D
Priority 5 Priority 5 Priority 9

Waiting Waiting Waiting

E A F
Priority 2 Priority 4 Priority 8

Figure 6-2. Process A Enters the Waiting State

When a waiting process receives a message, it enters the ready state and is
inserted in the run queue, behind all processes of the same or more-favored
priority and before any process of less-favored priority. In Figure 6-3, Process
F has received a message and is inserted into the run queue between Processes
C and D.

Run
"Queue

Running Ready Ready

B c F
Priority 5 Priority 5 Priority 8

Waiting Waiting

E A
Priority 2 Priority 4

Figure 6-3. Process F Enters the Ready State

Ready

D
Priority 9

When a process receiving a message has a more-favored priority than that of
the running process, this receiving process is inserted at the head of the run
queue and is made the running process.

77

More About Messages

As a consequence of the CTOS scheduling algorithm, a process cannot be
preempted by another process of the same or lower priority without waiting for
a message. This enables the enforcement of mutual exclusion in a single
processor environment between processes having the same priority and sharing
common variables without having to resort to using semaphores as is done in
UNIX or OS/2.

Process priorities range between 0 and 255, but are divided into groups as
follows:

o to 9
10 to 64
65 to 254

255

Operating system
System services
Application programs
Nun process

The operating system is given the most favored execution priority to ensure
that its work is performed as promptly as possible. System services, being
logical extensions to the operating system, have the next most-favored priority
level. The null process, the process with the least-favored priority, is executed
only when no other process is available to run.

A program can change its default priority with the ChangePriority call, but
care must be exercised in assigning priorities. Modifying one's process priority
may ensure that the process has control of the processor, but at the expense of
preventing even the operating system from functioning.

For application processes, CTOS uses time-slicing to ensure that no single
process can prevent others of the same priority from getting the processor. The
running process is moved to the end of the list of ready processes of the same
priority every 100 ms. This rule applies to processes with priorities in the
range 146 to 178 on CTOS workstations.

Time-slicing is available only within the specified range of priorities and not
within the range of priorities used by system processes, because the scheduling
algorithm mentioned above would be violated. High priority processes
performing system level work will never be preempted by a lower priority
process.

78

More About Messages

Interrupt and Trap Handlers

Remember that at the beginning of this chapter we pointed out that there are
three different entities that compete for the processor: processes, interrupt
handlers, and trap handlers.

Interrupt and trap handlers are software entities that have been declared to
the operating system as having to be executed when a given event occurs.
Interrupt handlers are triggered asynchronously by hardware events. Trap
handlers are initiated by software action (the execution of an INT instruction
or a fault, such as division by zero). Trap handlers are also called software
in terrupt handlers.

The Intel family of microprocessors support vectored interrupts. A vectored
interrupt is uniquely identified by an interrupt vector which is put on the
hardware data bus in response to an interrupt request by a peripheral device.

Interrupts invoked via the Trap Gate and Interrupt Gate are executed within
the current process's environment, including its stack, without an automatic
context switch. Interrupts invoked via a Task Gate, though, result in an
automatic context switch to the stack of the Interrupt Service Routine task.

An interrupt or trap halts the sequential execution of the currently executing
process. The current hardware context is saved, and control is then passed to
the interrupt or trap handler. Once the condition causing the interrupt or trap
is resolved, the interrupted process's context is restored and its execution is
resumed, or a process of more favored priority is executed via a context switch.

Interrupt handlers are usually written as part of a device-handling program.
Device handlers perform the hardware I/O to and from an external device. The
handler consists of a device handler process that manages the device and
initiates 1I0s, and a device interrupt handler that is executed when operations
are completed or status conditions change at the device.

Even though the two entities are executed asynchronously, they are parts of
the same program within CTOS. Communication and syncrhonization are
accomplished by using kernel primitives (e.g., PSend) and optionally shared
memory for buffer utilization and control information.

79

More About Messages

The device interrupt handler is executed when the external interrupt occurs. It
calls PSend to to start the execution of the device handler process, which has
been waiting at its exchange for some work to do. The kernel primitive is the
only way to synchronize the interrupt handler and the device handler process.
Synchronization is unidirectional only, from the interrupt handler to the device
handler process, even though data can flow in either direction with shared
memory.

Interrupt handlers are not commonly written by applications programmers.
They are primarily of interest to systems and communications programmers
and those who need to handle devices. As such, they are beyond our scope
here. Most eTOS vendors offer documentation that explains these subjects in
detail.

Processes in Other Kinds of Systems

Operating systems such as UNIX and OS/2 also manage multiple processes or
threads. UNIX processes can spawn child processes, creating a hierarchy of
processes in the system. eTOS processes do not do so.

When a UNIX child process is created, the entire parent process is copied, and
both continue to run. The child process must then chain, or the copies will
contain duplicate code and data. Memory cannot be shared, since each process
has its own user space.

The Sun Microsystems implementation of UNIX includes what are called
lightweight processes, which are multiple threads in the same address space.
These lightweight processes are similar to the threads of OS/2. eTOS
processe~ have more in common with these lightweight processes or threads
than with the classic UNIX processes, in that multiple eTOS processes can
exist within a program.

eTOS Programs

So far in this chapter we have looked at processes as distinct entities. We shall
return to examine the way in which they communicate via messages. First,
however, we shall take a short detour to look at programs, which may contain
more than one process, and at memory management. This discussion will
equip us with some concepts that we shall need in talking about interprocess
communication.

80

More About Messages

It is impossible to separate eTOS programs from the way they exist in
memory. Briefly, memory is divided into logical entities called partitions. A
memory partition is not necessarily a contiguous memory area, but it is
logically treated as such in these discussions for convenience. Each application
has a separate user number, sometimes called a partition handle, identifying
the partition in which it resides. We shall return to the details of partitions
shortly.

Programs are what an application writer constructs. They are the executable
entities that are run by users to do work. An executable program consists of
code, data, and one or more processes in memory. The steps in creation of a
program are shown in Figure 6-4.

Source Language Compilers/Assembler
Modules

+ (Code and Data)

Object
Modules

~ --" t
(Optional)
Library or

... Linker

Libraries

+ Operating System
Loader

Run File

t
Executable
Program in

Memory

Figure 6-4. Steps In the Creation of a Program

As in most other systems, the executable file, called a run file, is linked from
one or more object modules that were compiled or assembled from source code
written in any of several languages.

81

More About Messages

Commonly, many frequently used object modules are placed into an object
module library. Prime examples of this method are the CTOS development
libraries, CTOS.1ib and CTOSToolKit.1ib. These object module procedures are
an important adjunct to CTOS and contain the routines that support a major
I/O methodology, among other things. (See Chapter 8 for details.)

Once a run file is created, it can be loaded in any of several ways involving
related CTOS primitives, such as LoadTask, LoadInteractiveTask, and so on.
An application on an end user's system is most commonly loaded, not directly
by the user, but by a Chain primitive issued from the Executive command-line
interpreter or by a LoadInteractiveTask call from the Context Manager (which
is similar in function to the OS/2 Session Manager).

The Chain simply replaces the currently executing application within an
application partition with the new application. The Executive, for example, is
said to Chain to the application that the user invoked through its command
line. A Chain verifies that a given run file can be loaded into the application
partition. If there is not enough memory, the Chain fails, and control returns
to the caller, along with an error code.

Partitions

Multiprogramming under CTOS is supported with the division of memory into
areas called partitions. Before the Intel 80286 microprocessor provided
descriptor tables that allowed memory segments to be described in a virtual
way, CTOS memory partitions were real contiguous entities. Application
programmers were entirely responsible for managing application partition
memory and seeing that they did not overwrite each other's territories or that
of the operating system. The complexity of managing memory is one reason
MS-DOS does not provide multiprocessing capabilities.

Today, a CTOS "partition" is really a logical partition only, and pieces of it may
be scattered all over physical memory. CTOS uses the protected mode feature
of the 80286 and more advanced microprocessors in the same family to assume
responsibility for territorial boundaries. Partitions are still represented in
simple drawings as contiguous, but it must be remembered that they really are
not.

Memory can be viewed as two separate types: system partitions and
application partitions.

82

More About Messages

System partitions contain the operating system code and extensions to the
operating system, the system services. Recall that CTOS itself contains several
different processes: the Keyboard Process, the Resource Manager, the
Scheduler, the Termination Process, and so on. All the processes that are
started during the initialization of the operating system are in a single system
partition. Each system service loaded after the initialization of the operating
system is contained within its own partition.

Application partitions are created through a partition-managing program (for
example, Context Manager) or via a Chain from the operating system after
CTOS has completed its initialization sequence. This last method of creating
an application partition is the normal method used for the Executive. The
organization of application partition memory is shown in Figure 6-5.

High End of Memory

Low End of Memory

Application Program
(Code)

f-o---------
Short-Lived Memory

f-o---------
Common Unallocated

Memory Pool

~---------

Long-Lived Memory

Application
Partition

Figure 6-5. Memory Organization of an Application Partition

83

More About Messages

An application partition can be either fIXed or variable. A fixed partition
always uses a fixed amount of memory, whereas a variable partition can grow
with a program's needs. The operating system Loader determines whether a
partition is a fIXed or a variable one during the loading of a program. If a
partition is to be variable, the application must be sized during the binding
(linking) of the program. This information is present in the header of the
executable file (on eTOS called a run file). It specifies the maximum and
minimum amounts of memory required to load the program. If the minimum is
available at load time, the program is loaded. If more memory becomes
available, the application can grow to the maximum size specified in the run
file header.

Associated with each partition is a number called the user number (historically
also called the partition handle). This number is a 16-bit integer that uniquely
defines the partition and all the resources associated with the partition. It is
worth noting carefully that the user number is owned not by the application in
the partition, but by the partition itself. This fact becomes important when
dealing with system services and their clients. Resources include file handles,
short- and long-lived memory, and exchanges.

Associated with a memory partition are the ,application code, short-lived
memory, long-lived memory, a pool of unallocated memory, and the Local
Descriptor Table, or LDT (a table used by the hardware for addressing memory
segments on the 80286 and subsequent processors). The application code may
or may not be present: if multiple copies of the same program are executing at
the same time, only one copy of the program code is present in memory within
one partition. Usually, all other partitions in which the same program is
loaded are sharing the code of the first program that was loaded.

It is also possible (although not often done) to load more than one program into
the same partition.

When a program is initially loaded into memory within an application
partition, the code is loaded at what would traditionally have been the
high-address end of that memory partition. After the code has been loaded,
along with a structure known as the U-Structure (containing all the structures
needed by the operating system to manipulate an interactive partition), the
remaining memory is then divided into three different sections: short-lived
memory at the top of the partition, long-lived at the bottom, and a common pool
of unallocated memory in between. (Again, this scheme no longer bears any
relation to the physical position of pieces of the partition in memory.)

84

More About Messages

CTOS makes a distinction between user and system partitions. A system
partition is simply an extension of the operating system and is created when a
ConvertToSys operation is requested. U-Structures and long-lived memory
structures are not associated with a system partition.

Memory

Short-lived memory contains all the code and static data segments of an
application program. Additional short-lived memory can be allocated and
expanded by the program.

At the bottom of the partition is long-lived memory, which must be allocated by
the program if needed.

Short-lived memory grows from the top down; long-lived memory, from the
bottom up. The area between these two is the unallocated memory pool.

Memory can be deallocated or returned to the common pool of memory, with
the caveat that segments must be deallocated in a sequence exactly opposite
the order in which they were allocated (preventing fragmentation).

The terms short-lived and long-lived are associated with the contents of the
memory areas. Short-lived memory does not survive a Chain from one
application program to another within the partition, whereas long-lived
memory does. When an application program chains to another program, the
new application is loaded into the high area of the partition overwriting the
previous short lived memory. Because long-lived memory does survive a
Chain, though, parameters or information can be passed from one application
to the next via this mechanism.

For example, the Executive command-line interpreter provides a Run command
that is often used by developers to execute programs that are under develop­
ment and do not yet have defined invocation commands. The Executive
provides a simple forms interface for the user to fill in, so that no option
symbols need be remembered.

The Executive uses long-lived memory to pass parameters to a program
executed through the Run command; remember that, long-lived memory
survives a chain. Parameters entered by the user within the Run command
form are passed to the succeeding program via a data structure called the
Variable Length Parameter Block, which resides in long-lived memory.

(The Case and Command fields in this form are not pertinent to the present
discussion.)

85

More About Messages

Executive 12.0.0 (OS pClstrLfs 3.3)
Poth: [dO]<sys>

Command Run
Run

User: John
fri Oct 12. 1990 5:30 PM

IRun file IL.l ______________________ ---1

[Case]
[Commond]
[Param 1]
[Parom 2]
[Poram 3]
[Porom 4]
[Porom 5]
[Porom 6]
[Porom 7]
[Porom 8]
[Porom 9]
[Porom 10]

(
Porom 11]
Porom 12]

[Porom 13]
[Porom 14]
[Porom 15]
[Porom 16]

Figure 6-6. The Executive Screen and the Run Command Form

The advantage of this differentiation of memory is that it does enable the
simple passage of parameters between successive programs. However, there is
a price to this mechanism. All memory must be deallocated in exactly the
opposite order of allocation. If this order is not followed, memory within an
application partition can become checkerboarded, and the application can run
out of memory.

86

More About Messages

Interprocess Communication

Other Environments

UNIX and OS/2, which in large measure seems to have copied UNIX in this
regard, both have several mechanisms for communication between processes.
These include such things as anonymous or named pipes, sockets, queues, and
shared memory. The latter requires the use of semaphores to ensure integrity.
In the history of UNIX, each of these mechanisms was invented by different
people for different purposes. The result, in both systems, is little consistency.

By contrast, CTOS has one principal means of interprocess communication
(lPC): the mechanism of messages and exchanges. Messages are the basis for
consistency and standardization of application behavior under CTOS. Clients
and system services, all communicating through the same mechanism, can be
pulled apart, substituted, and reassembled in different ways without
disrupting or recoding the communication methods.

CTOS IPC: Messages and Exchanges

Messages

A CTOS message is the packet of information that can be passed from one
process to another, or from an interrupt handler to a process. A message
contains 32 bits of data. Often, a message is a pointer to a larger piece of
information. When using IPC directly, it is the programmer's responsibility to
make sure that the receiver of the message is in the same address space as the
sender (and thus can access the data), and that the sender does not destroy the
data before it has been received, or process it before it has been generated.
Practically, these rules mean that direct IPC is used between processes that
are part of the same application.

Protected mode operation on the Intel microprocessors uses indirect addressing
through descriptor tables. An application addresses items identified by entries
within its local descriptor table (LDT). The LDT contains selectors referencing
memory within the application's partition, whereas the global descriptor table
(GDT) contains selectors referencing global memory. Direct IPC messages are
accessed via the application's LDT. Hence, an address to a data element must
be an address within the program's local descriptor table; an address
referencing data within another application's LDT would result in a protection
fault.

87

More About Messages

Note that when the request/response mechanism, the next higher level of IPC,
is used, the programmer does not have to be concerned about addressability,
because the operating system ensures that requests are routed to the right
places.

The Exchange

An exchange is the focal point of IPC. Messages are sent to exchanges, not
directly to processes. Conversely, a process specifies the exchange at which it
expects a message. The exchange is a mailbox in which messages are deposited
and from which messages are taken.

When an application is loaded, it automatically is given one exchange: the
default response exchange, used in the next higher level of IPC, which we shall
discuss later. An application program can find out the identity of its default
response exchange by using the QueryDefaultRespExch procedure.

Programs can also dynamically allocate and deallocate other exchanges to be
used for direct IPC by using the AllocExch and DeallocExch primitives. An
application should not use its default response exchange for communicating
with another process.

An exchange has two queues associated with it: a queue of messages and a
queue of processes. They are managed as follows:

When a message is sent (using the Send primitive) to an exchange where no
process is waiting, the message is appended at the end of the queue of
messages. The queue of messages is a nonprioritized FIFO (first-in, first-out)
queue.

Alternatively, when a process demands a message (by issuing the Wait
primitive) from an exchange where no message is available, that process is put
at the end of the queue of processes (regardless of its priority), and it enters the
waiting state. This queue is likewise a FIFO queue: the first process in the
queue will receive the next message.

A process can alternatively use the Check primitive to examine an exchange to
see whether a message is present, but to continue processing if it is not.

When a message is sent to an exchange where at least one process is already
waiting, the message is immediately delivered to the first process in the queue.
That process is made ready and is inserted into the run queue. If the receiving
process has a priority higher than that of the sending (currently running)
process, it becomes the running process.

88

More About Messages

When a process asks (by Wait or by Check) for a message from an exchange
where a message is already queued, that process is handed the message and
remains in the running state.

Note that if the Wait chronologically precedes the Send, the system behaves
differently from the way it would if the Send preceded the Wait. In the first
case, the receiving process may lose the processor to another process of the
same priority. In the second case, this change would not occur.

The implication of the exchange algorithm is that at any given time at least one
of the two queues in the exchange is empty.

Processes

Messages

0) Exchange is Idle

Processes
P1 P1 P1

Messages

b) 3 Processes are Woiting

I
Processes I

_ Messages t-: ------IG)----CD
c) 2 Messages are Available

Figure 6-7. Three States of an Exchange

Figure 6-7 shows three states for an exchange. In Figure 6-7(a), we see an idle
exchange: no process is waiting and no message is available. Figure 6-7(b)
shows three processes waiting in the process queue. Pl will receive the very
next message sent to the exchange; P2, the following one; and P3, the third one,
regardless of the relative priorities ofPl, P2, and P3. In Figure 6-7(c), two
messages are available. Message A is the oldest; B is the more recent. The
next process to issue a Check or Wait primitive at that exchange will receive
message A The following process will receive message B.

CTOS exchanges are resources. They can be allocated and deallocated at will.

89

More About Messages

IPC Primitives

At the most basic level, CTOS IPC is carried out through the issuance of
three kernel primitives. Send sends a 32-bit message (usually a pointer) to an
identified exchange. Wait receives a message from an exchange. If no message
is present, the process waits (blocks) until one arrives. Check receives a
message from an exchange, but returns immediately with an error code if none
is available. Check never causes rescheduling of the processor.

We mentioned in Chapter 1 that the message and exchange system could be
used for purposes other than passing data. Indeed, Send and Wait can be used
with dummy values, simply for synchronization. They can also be used in
resource management where, for example, one process controls the resource
and others ask to use it. This usage is a form of semaphore control, and we
shall look more closely at it in Chapter 13.

The IPC primitives are used only between processes belonging to the same
application (or more formally, running in the same application partition).
Messages can be passed between applications in different partitions by another
mechanism called the Intercontext Message Service, but this method is used
only for special purposes that we shall not address here. The more common
way to pass messages between entities that are not in the same partition is the
use of requests and responses.

Hiding the Mechanics: The Request/Response Model

In order to communicate using the IPC mechanism, two processes need to have
knowledge of the exchange to be used. This requirement can be tolerated when
the two processes are part of the same program, but it is very constraining
when communication is between an application program and the operating
system. This area has been an area of extreme complication in distributed
processing. How is the target process named clearly?

To allow a program to ask other programs to perform functions on its behalf,
eTOS introduces the notion of requests. A request is a formal way for a
process to ask for a service to be performed by another process. A process
requests a service by using the Request primitive. This primitive accepts the
request block, the self-describing structure containing all the information
necessary to pass information between the service and the client.

Upon completion of the service, the other process must formally respond to the
request by using the Respond primitive.

90

More About Messages

For now, we shall call the process that issues the request the client and the
process that receives the request the service. Later, we shall extend these
names to the application systems that own the processes. However, context
should make it clear which one we are talking about.

We shall cover the routing of requests in detail in Chapter 7. Basically, the
client process issues a Request primitive to the operating system, passing a
pointer to the request block, which contains information about the desired
work to be done. The operating system determines what service is serving that
type of request and passes the request to that service. Similarly, the response
is passed back from service to client via the operating system. Request and
Respond are additional primitives that enhance the IPC mechanisms we
described previously and that allow formalized messaging between applications
not in the same partition.

The Request Block

The vehicle used to carry requests and responses back and forth is called a
request block. Figure 6-8 shows the request block in outline. The request
block header (which, in turn, is detailed in Figure 6-9) is a fixed-format
structure that contains general information applicable to any request block.
(During the early development of CTOS, it was this header portion that was
added when the request block was redesigned to allow it to be used across the
network.)

Request Block

Header

Control Information

Request PbCb

Response PbCb

Figure 6-8. General Form of the Request Block

The control information portion of the request block contains parameters
transferred from the client to the service. This area is used for short data
types, such as characters, integers, or doublewords passed by value; for
example, a file handle or a screen coordinate would usually be passed as
control information. Pointers should not be included in the control informa­
tion. Their proper place is in the following portion of the request block, the
PbCb pairs.

91

More About Messages

As shown in Figure 6-8, a PbCb pair is a CTOS type made up of a pointer to an
array of bytes (Pb) and a count of bytes (Cb). In other words, a PbCb is an
array descriptor. Request PbCb pairs reference data arrays transmitted from
the client to the system service. Response PbCb pairs reference data arrays
transmitted back from the system service to the client.

Should particular data be passed from client to system service as control
information or via request PbCb pairs? The decision is based on the fact that a
PbCb has 6 bytes of overhead, whereas control information should be limited to
16 bytes. The entire request block must occupy less than 64 bytes. The way in
which the procedural interface for a request is defined also influences this
choice.

Response PbCb pairs are the only way (other than the error code) to return
data from the system service to a client. A service must not modify the request
block (except for the error code returned field), nor the data pointed to by
request PbCb pairs; nor should it assume any initial value for the areas pointed
to by response PbCb pairs. It is sometimes necessary for a system service to
temporarily modify the request block. In such a case, the system service must
ensure that any alterations are restored before responding to the request.

The client must not access (read or write) the request block nor any data
pointed to by any PbCb pair from the time it issues the Request primitive until
it has received back the pointer to the request block through a Wait or Check
primitive. Additionally, once the response is received, the data pointed to by
response pointers can be invalid if the returned error code is not zero
(indicating satisfactory completion).

Request Block Header

sCntlnfo Rt Code

nReqPbCb nRespPbCb

User Number

Response Exchange

Error Code Returned

Request Code

Figure 6-9. Details of the Request Block Header

92

More About Messages

Figure 6-9 details the structure of the request block header. The sCntlnfo field
indicates the size (in bytes) of the control information. The routing code is
reserved for use by the operating system kernel and should be set to 0 by the
client. (Doing so avoids receipt of a no-such-request error code where a remote
request is not locally defined.) The nReqPbCb field indicates the number of
request PbCb pairs in the request block. Similarly, the nRespPbCb field
indicates the number of response PbCb pairs.

The user number denotes the owner of the request block. This field is normally
set to 0 by the client and set to the correct value by the kernel. This field is
used by a system service to identify the owner of the resources it controls so
that it can dispose of them properly in case of the termination of the client.
The response exchange shows where the response to the request is to be sent.
It is an exchange that must have been previously allocated by the client.

The error code returned is a I6-bit quantity used to convey to the client the
success or the reason for the failure of the operation. As a convention, 0 is
reserved for successful completion, while any other number indicates a failure.
Finally, the request code field indicates what function the issuer of the request
block wants to have performed. CTOS uses this field to deliver the request
block to the proper service exchange.

When a process submits a request block (using the Request primitive), the
operating system makes the request block and the data pointed to by the PbCb
pairs available to the system service. After the work is completed, CTOS
makes the response data available to the client. These steps can be done
because of the structure of the request block and of the knowledge that it gives
to the operating system of the pointers and the flow of information. This
process is called aliasing. A global descriptor table entry is created for each
request and response PbCb pair, allowing the service access to the request data
and the client access to the response data. Hiding pointers in the control
information field or inside a structure pointed to by a PbCb pair would defeat
this mechanism; in fact, an application in which this was done would fail. A
protection fault would result because the aliasing would not have been
performed, and the required data could not be addressed.

Synchronous and Asynchronous Processing

A process that sends off a request for a service can proceed either
synchronously (waiting or blocking as soon as the request has been sent) or
asynchronously (continuing execution and checking its response exchange
periodically to see whether the service is complete).

93

More About Messages

Asynchronous processing requires the programmer to build the request block
literally: that is, filling out all the required parameters in the request block,
and then issuing the Request primitive to pass it to the operating system.

Most application requests, however, do not need to be asynchronous. Where
processing is synchronous, the application programmer has a much easier job.
The Request primitive is hidden under what is called a request procedural
interface. If, for example, the application needs to open a file, it merely makes
the Open File procedure call, passing the required parameters to the file
system, rather than constructing a request block for issuance to the file system.

The application programmer does not even need to know that this call will
actually become a request transmitted by CTOS to the file system service.
When this call is made, the operating system takes the passed parameters and
uses them to build the request block on the client's stack. As part of this
process, the operating system retrieves the default response exchange value
from the process control block of the issuing program and puts it in the request
block header. It then issues the Request on behalf of the client.

When the service issues the response, the operating system reads the request
block header to find out what the response exchange is. It extracts the
returned error code from the request block and hands it back to the caller/client
in register AX.

The caller is never the wiser about this whole process. The existence of the
application programming interface (API) made up partially of request
procedural interfaces makes the job of application programming very similar to
what it is under other systems.

Part of the work of writing a system service is defining the requests and the
associated request procedural interfaces that will make up the API for that
system service. We shall see more about that in Chapters 12 and 13.

Requests Versus RPe

Much has been written in the last several years of the importance of the
Remote Procedure Call (RPC). This concept is actually what system
programmers desire when writing an application system: a method for calling
a procedure to perform a service irrespective of the location of the service
routine. A truly distributed system requires this type of functionality. With
an RPC, the calling process waits for the receipt of the message, and when the
message is received, continues processing.

94

More About Messages

The CTOS RequestJResponse implementation of IPC provides all the
functionality of an RPC with one major enhancement. Because there is a
formalized manner for describing messages, indirect references to data are
possible. The operating system aliases indirect references on behalf of the
client and/or service, allowing access to data within different address spaces.
Additionally, the operating system, along with the networking software
(agents, which we will cover in the next chapter), routes the data referenced by
the PbCb pairs so that the client can function irrespective of the location of the
service and vice-versa.

A Few Other Mechanisms

Not all of the CTOS API is made up of hidden requests to services. All CTOS
procedural interfaces have the same form and are handled in the same way by
applications programmers, but some go to other destinations.

Kernel Primitives

CTOS has a limited number of kernel primitives: we have encountered some of
them (Send, Wait, and so on) in our discussion of IPC. The remaining ones
concern creating processes and manipulating them and their priorities;
handling requests and responses; and manipulating interrupt handlers.

System Common

In addition, some system routines that are frequently used and are always
used on the local workstation, or that require very high performance, are
defined as system common procedures. System common routines are accessed
in a manner similar to a UNIX kernel entry (however, they are not actually
part of the CTOS kernel): their entry points are accessed directly, unlike those
of system services. A system common procedure is executed by the calling
process rather than by another one, utilizing a feature of the Intel micropro­
cessor architecture called a Call Gate. Thus, the system common code must
reside on the same CPU with the caller. System common routines are not
network routable. They are synchronous and must be reentrant. (That is, the
system common routine must be able to be suspended, executed by another
process, and then later completed within the original scope, transparently to
either executing process.) System common routines have no global data. All
data must be stack relative to ensure its viability if the routine is suspended.

95

More About Messages

Since the calling process and the system common are not in the same address
space, it is the system common's responsibility to have any pointers made
addressable to prevent a protection fault.

CTOS has two varieties of system common routines. The first type is built into
the operating system at system generation. The second is the loadable type,
which can be loaded at wili by an application program. Functionally, the two
types are not distinct: they behave identically. The loadable type allows the
further customization of an operational environment.

Object Module Procedures

Libraries of object module procedures also exist. Code for these procedures is
bound into applications themselves at link time. In general, object module
procedures contain functionality that is more specialized than that in system
common procedures and would not be used by all programs on a system. They
tend to be computational rather than resource-related functions.

CTOS has three standard libraries: Ctos.1ib, CtosToolKit.1ib, and Enls.1ib.
Commonly used routines, development aides, and nationalization routines are
defined in these libraries.

Additional1ibraries are provided for many application packages. Programmers
can define new libraries by using the Librarian utility. This utility accepts
object modules and places them within a user-defined library file.

We shall look at these other mechanisms in more detail in Chapter 8.

96

7
System Services

When a client issues a request, it does
not need to know where the system
service is located. The system service
may be local (on the same CPU), or it
may be at the server workstation of the
cluster, or even at a workstation across a
CTOS Network. If the system service is
not local, the request is transparently
routed across the network to the system
service.

The previous chapter described many of the architectural concepts underlying
the eTOS messaging capabilities. Processes communicate with each other, so
processes, memory management, and messaging were covered in great detail.

Recall, though, that we stated that eTOS itself is not a single process; instead
there are several components to the operating system, each of which is also a
process. Recall also that we stated that operating system functionality could be
replaced and/or enhanced with user-written system services.

Now that you understand the underpinnings of eTOS message-based opera­
tion, we can begin to look at the way a system service actually goes about its
work. In previous chapters, we have talked generally about them. Now we
arrive at the point of discussing them in more detail. This chapter describes
the interaction between the system service and its clients. It also takes a look
at filter processes, a specialized type of system service.

97

System Services

System Service/Client Interaction

Remember that the request block is used to pass messages from one process to
another. Generally, in this interaction one process is the client, requesting a
service; the other responds by performing the service. The responding service
is called the server.

In Chapter 6 we looked at the request block format. Three fields from that
request block header play especially important roles in the client/server
interaction. These are the user number field and the request code field. The
request code identifies the service that is desired. The user number helps to
characterize the client. The file handle can be used to uniquely identify a
specific series of transactions associated with a specific user number.

Partitions and User Numbers

In Chapter 6 we also talked about the partition. An application system
executes inside a memory partition. Note, however, that an application system
and a partition are not synonymous. Although there is only one application
system per partition at a given time, application systems can succeed each
other in the same partition. When this happens, the succeeding application
inherits the application partition.

Each partition is identified by a l6-bit user number. It is this user number
that appears in the request block header. Whoever reads this field can tell
what partition originated the request.

Request Codes

The request code in the request block header is a number that uniquely
identifies the service that is desired (not who is going to perform the service).
The request code must be unique to ensure that conflicts do not occur. The
request code field is used by CTOS to deliver the request block in the proper
service exchange.

The Dynamics of Requests and Responses

eTOS maintains an internal table that maps each known request code to the
exchange at which it is served. This table is initialized at boot time and can be
changed dynamically. When a new system service is installed, it allocates one
or more exchanges at which it wants to receive requests for services. Then it
informs the operating system that it plans to serve certain requests at certain
exchanges.

98

System Services

To do so, the system service makes the ServeRq call once per request code,
giving the request code to be served and the system service's exchange. The
service then waits at its exchange for requests to come in. (See Figure 7-1.)

.. A1locExch -
AllocExch ,. - ServeRq

1. Look up Req uest
Request , Code , Wait

2. Roule Request to
Service Exchange

Woit ... Route Response lo Respond - Client Exchange -

Client Operating System System Service

Figure 7-1. The Request-Response Model

When a client makes a request, either directly or through the request
procedural interface, the operating system receives a pointer to the request
block. The operating system extracts the request code from the request block,
looks up in its table the exchange at which that particular request is served,
and enqueues the request block at that exchange.

POinter Aliases

Data pointed to by the PbCb pairs within the request block must be
addressable by both the client and the server process. Because the client
application and the system service that serves the request are in different
partitions, their memory is governed by two separate local descriptor tables.
Thus, the system service cannot immediately access the data that the client
wants to pass.

99

System Services

This problem is a general one for operating systems on the 80286 and later
Intel microprocessors that want to pass information from sender to recipient.
Protected-mode operation relies on the local descriptor tables to keep memory
for each application distinct. A global descriptor table keeps track of the
correlation between the local descriptors and the physical address, but is not
generally accessible to applications.

Under eTOS, the solution to the problem that occurs when the client and the
service need to pass data to each other is to create alias pointers in the
processor's global descriptor table (GDT) for the pointers in the sender's LDT
that indicate the location of the data. Once addresses exist in the GDT, they
are available to any process in the system, whereas the LDT values are
restricted to their owner. Thus, the system service can use the alias pointers in
the GDT to access the passed data.

It is interesting that although OS/2, designed to run on the same
microprocessors, encounters the same issue in the implementation of dynamic
link libraries, it resolves the problem differently. Under OS/2, certain positions
in the LDT of each process (the same positions for every process) are reserved
so that they can be used to refer to the same shared memory if necessary.

Each of these two approaches has its disadvantage: the eTOS method could
conceivably fill up and exhaust the GDT if many processes are running,
whereas the OS/2 approach uses up half or so of each LDT for shared memory
descriptors.

Reaction of the System Service

Up to this point, the system service has been a process in the waiting state,
waiting for a message so that it can become ready to run. When the message
(which is the address of the request block) arrives at its exchange, the system
service enters the ready state and in fact has a good chance of becoming the
running process, since its priority has been set higher than that of the client.

(Since system services can and do become clients of other system services, you
may be wondering what happens if the client in fact has a higher priority. The
answer is twofold. First, system services are usually waiting for work to do,
and while they are in a wait state, any other process at the same priority that
is available to run can be scheduled to run. Second, if necessary, processes can
change their priorities.)

100

System Services

The system service now does whatever is necessary to serve the request. If the
function succeeds, the system service inserts the value 0 into the error code
field of the request block. If it fails, the system service inserts a value that
represents the cause of that failure. The system service then calls Respond,
passing back the pointer to the request block. The system service can now
Wait again at its exchange (ifit is a synchronous system service; we will say
more on this subject later).

The operating system picks out the response exchange value from the request
block and thus knows where to enqueue it for the client. (The operating system
does not use the user number at this point.) If the call to the service was
originally made through the request procedural interface, the operating system
extracts the returned error code from the request block, adds it to the AX
register, and returns to the client. If the request was made directly by the
client using Request, the client receives back the pointer to the request block
from the system service and is responsible for extracting information directly.

Connections

Up till now we have a talked about the interaction between a client and server
process in terms of only a single transaction. However, CTOS provides the
capability for grouping transactions into a series of interactions between a
client and the system service that acts as the server.

Where a transaction is part of a series of interactions, the client and system
service are said to have a connection; where the transaction is a one-time-only
event, the relationship is said to be connectionless. A client may have several
connections simultaneously to the same or different system services. These
connections are all independent.

In setting up the connection, the client identifies the service it wants. The
system service, if the necessary resource is available, allows opening of the
connection and hands back to the client in the request block a reference
number to be used in further requests within that connection. This reference
number is usually called a handle.

A connection is first established, then used over a series of requests to do
something (such as read a sequential file), and then finally destroyed. In such
a case, the system service must remember not only what file is being read, but
also who the client is.

101

System Services

The operating system and network software, as well as the client and system
service, use the handle, although they may map it to different values in order
to keep it unique. Each connection or handle is associated with a given user.
This allow's multiple connections between a client and a system service. If the
user number was used rather than the handle, only a single connection would
have been possible.

Two types of system events can interfere with a connection: termination and
swapping. These require careful handling by both the operating system and
the system service that serves a request. When an application is terminated a
connection becomes no longer valid. In this case, the server process must scan
though all outstanding requests from this client (which it identifies by the user
number) and remove them from its queue. The situation is more complicated
when the operating system has swapped the client out of its partition. In this
case, the system service serving the request must respond, but it must queue
up its responses until it receives notification that the client has been swapped
back into the partition. Otherwise the response could go to the wrong client
and cause a protection fault that would cause a system crash. The operating
system and the server process use the user number to identify the partition in
which this change has taken place so that the system service can correctly
handle such pending requests.

Crossing the Network

Remember our discussion of the need for a formalized mechanism for an RPC?
An application system programmer would like to develop an application which
is oblivious to the fact that the application is either in a network or on a
standalone machine. The CTOS Request/Response model and the Request
Procedural Interface supply just this type of mechanism.

When a client issues a request, it does not need to know where the system
service is located. The system service may be local (on the same CPU), or it
may be at the server workstation of the cluster, or even at a workstation across
a CTOS Network. If the system service is not local, the request is
transparently routed across the network to the system service.

To understand how this is done, we first need to know a bit about agents.

102

System Services

Agents

An agent is a special type of system service process that intercepts requests
destined for other system services. Its function is to participate in routing a
request to a system service that is not on the same workstation with the client.

There are two kinds of agents: client agents and server agents. A client agent
resides on the same workstation as the original client process that issues the
request. The server agent resides on the same workstation with the system
service that serves the request. An agent of one kind communicates only with
agents of the other kind to transmit requests and responses. Figure 7-2 shows
a simple transfer between a client agent and a server agent. A special instance
of these two types of agents is when the client is at a local workstation and the
server agent is located at the server workstation of that cluster. Here, the
client agent is referred to as the cluster workstation agent, and the server
agent as the cluster server agent.

Client's CPU Server's CPU

Request Request

Respond Respond

Figure 7-2. Client and Server Agents

103

System Services

In a cluster workstation, if a function is requested and the system service is not
available locally, the request will be queued at the exchange of the cluster
workstation agent. This process converts the message for transmission across
the communications line to the server workstation. The workstation agent
process is included in a version of eTOS specialized for cluster workstations.

Once the message is received at the server workstation, the cluster server
agent reconstructs the original message and passes the request to the exchange
of the system service process. Again, the cluster server agent process is
included in a version of CTOS specialized for server workstations.

The format of the request block is what enables this efficient redirection of
messages within eTOS. The request block is easily redirected from a process
on one machine to another process on a different machine via agents. This is
because the request block is self-describing, as previously mentioned, and the
agents are able to transfer requests and responses between the cluster work­
station and the server workstation without any knowledge of what function is
requested or how it is to be performed.

This concept of agents may be extended another level with the eTOS net agent
that provides a wide-area network capability in conjunction with eTOS
Network software products, such as BN et. The net-agent is one system service,
consisting of two processes. One process plays the client role, while the other
acts as the server. The operation of these two processes parallels the operation
of the cluster communication agents, but allows messaging between two
servers in a wide area network. Again, the application systems programmer is
unaware of the network topology beneath the application.

There may be more than one pair of client and server agents between a client
and its system service. Figure 7-3 shows an example in which an application
on a local workstation sends off a request that is to be performed by a system
service that is running on the server workstation in a different cluster.

104

System Services

As shown in the lower left corner of the figure, an application makes a request,
which is intercepted by the cluster workstation agent because the system
service is not installed on the same processor as the client process. The cluster
workstation agent is a client agent. It transmits the request over the cluster
line to the cluster server agent, which in tum submits the request to the
operating system on the server workstation. The cluster server agent then
passes the message to the operating system which determines that the system
service is not local to it, and the request goes to the net agent on that server
workstation. The net agent transmits the request across the network to the
network agent on a different server workstation. The net agent then submits
the request to the operating system on the second server. This time, the
operating system is able to map the request to the actual system service. The
response to the request flows back through the system directly via the agents'
response exchanges in the same manner. No kernel routing is necessary.

Server Workstation Server Workstation

LAN

RS-422

Cluster Workstation

Application

Figure 7-3. Agents Across the Network

105

System Services

Filters

A filter process is a special kind of system service that a programmer may
write, which intercepts requests that were destined for another system service.

A filter must be installed after the original system service has been installed.
It uses the ServeRq call to indicate to the operating system that it will now
serve some or all of the requests sent to the original system service.

Prior to serving the request, though, the application must determine whether
the request is currently in use (in case the filter will be deinstalled, the
original system service must be reestablished). This is done by using the
Query RequestInfo call.

Upon deinstallation of the filter, the original exchange at which the request is
processed will be restored with a ServeRq call and the exchange defined by the
request information structure described above.

A filter that responds directly to the client making a request is called a
replacement filter. The filter is actually replacing the functionality of the
original system service.

If the filter preprocesses the request and then passes it on to the system
service, which then responds to the client, it is called a one-way filter.
One-way filters are used primarily to enhance statistics gathering (e.g., adding
a logging capability for tracking the issuing of certain requests).

Finally, a filter that captures the request, preprocesses and forwards it to the
system service, then captures the system service's response, postprocesses it,
and then responds to the client is a two-way filter. Two-way filters are used to
enhance functionality.

A filter process need not be consistent in the way it handles the various
requests of the original system service. It may act as a replacement filter for
some requests, use one-way or two-way filtering for others, and not filter some
at all. It must, though, serve the system service's termination, abort, and swap
requests.

106

System Services

A one-way filter scheme is shown in Figure 7-4. When the filter sends on the
request to the system service, it must use the ForwardRequest call, rather than
using Request. ForwardRequest does not require a matching Respond,
whereas Request does require one. This is because with one-way filtering, we
do not modify the contents of the request block. Within the request block is the
response exchange where the system service will send the response. The filter
process here simply intercepts the message, performs some amount of
processing depending on the message (not modifYing it, however), and then
passes the message to the exchange of the original system service process.

Request ForwardRequest

Respond

Figure 7-4. A One-Way Filter

However, you might wonder where we retrieve the identity (number) of the
original system service's exchange so that we can forward the request to that
exchange. Remember our discussion of the request blocks and operating
system tables? Associated with each request in the tables is the number of the
exchange to which that request would be sent. The only method of filtering
requests is to substitute the original service exchange with the new filter
system service's exchange via ServeRq. In doing so, though, we must keep
track of the original exchange information. This is where we get the proper
exchange for forwarding the request.

107

System Services

If there is a need to remove the filter, then the original exchange must
be replaced. In this case, the exchange returned with the original
Query RequestInfo call must be used in another ServeRq call. After this call
is completed, the Request table once again looks as it did prior to the filtering
of the original request.

A one-way filter does not modify the request block, because it will not have a
chance to restore the original values. For this reason, one-way filters are used
mainly for preprocessing or to collect statistics.

Request RequestDirect

Respond Respond

Figure 7-5. A Two-Way Filter

A two-way filter scheme is shown in Figure 7-5. When a two-way filter receives
a request, it modifies the response exchange field in the request block to reflect
its own exchange. It then passes the request to the system service by using the
RequestDirect primitive. When the system service responds, the request block
is delivered to the filter, which can then do some postprocessing and restore the
request block to its original form before responding to the client. The fact that
a two-way filter can modify the request block makes it much more powerful
than a one-way filter.

108

System Services

Filters and Extensibility

Now that we see how the filter process works, it is more apparent how truly
extensible CTOS is. If a one-way or two-way filter serves some, but not all, of
the requests destined for a given system service, it inherits all the functionality
of the system service that it does not replace. Thus, if you want to change only
one aspect of what an existing system service does, you do not have to rewrite
the whole thing: just put a filter in front of it.

The Basic Structure of a System Service

All system services have certain traits in common. They are easiest to see in
the simplest kind of system service, which is also the first kind that the CTOS
novice should try to write. This type is the single-process, synchronous system
service.

In its barest outline, the system service is a loop. As shown in Figure 7-6, it
contains a series of calls pertaining to its installation and to its conversion from
an application program to being part of the system software. After the
conversion, it notifies the operating system of the requests it will serve. It then
begins the server loop: as long as it lives, it will Wait at its exchange. When a
Wait is satisfied, it will process the received request. Having done so, it
responds and then it Waits again.

Installation

Bosic Server Loop {

GetPortitionHondle

AllocExch (and other resource allocations)

QueryRequestinfo

ConvertToSys

Exit

ChangePriority

SetPartitionName

ServeRq (one per request to be served)

While (True) .--------,

{
Wait

Process Request

L...-___ Respond --_

}
Figure 7-6. Simplest Outline of a System Service

109

System Services

Several ca11s are involved in the sequence of events in installing a system
service, and the actual sequence of the ca11s is important. However, since there
is a defined sequence, insta11ation logic can easily be copied by any system
service writer. We sha11 see the sequence in more detail when we write the
Reminder system service in Chapter 12.

A separate deinstallation utility program is also written to aid in removing a
system service that is no longer needed. This program simply issues a request
informing the service that it should deinsta11 (clean up its environment,
respond to any outstanding requests, and restore any filtered requests to their
original state). When the service has completed its cleanup, it responds to the
deinsta11ation utility, which then completes the deinstallation by removing the
service from the run-time environment.

A Look Ahead

Of course, even though writing a single-process, synchronous service is not very
difficult, writing system services frequently involves much more than we have
described above. The need for more sophisticated system services arises rather
quickly.

Suppose, for example, that your system service is located on the server
workstation of a large cluster and is managing a resource such as a data
storage or communications device. Multiple users are sending in requests for
services. If the processing of one request takes more than a very sma11 amount
of time, it delays processing of a11 the others. Your users are not going to be
very happy if they are stopped in their tracks while the requests sent by their
application interfaces are enqueued at your exchange, waiting for their turns.
Since the users do not know or care about requests, they only perceive that
their systems appear to be hung.

Secondly, if you can handle only one request at a time at one exchange, what
happens to the termination requests that the operating system sends you? The
operating system cannot finish up a termination until you have responded.
Performance on the whole cluster goes down.

So, in fact, there are other kinds of system services that you can write. You
can get involved with more than one process running within the system service.
You can also write the service so that it does asynchronous processing: it
carries on multiple conversations with clients at once. Each of these methods
has its advantages and its champions. We shall come back to them in
Chapter 13. But for now, let us go on to look at I/O under CTOS.

110

8
Input/Output Overview

For peripheral devices under CTOS,
both device-dependent and device­
independent I/O methods exist. In most
cases, the device-independent ones are
built on top of the device-dependent ones.
Each has its advantages. One of the
great flexibilities of application
programming under CTOS is that the
programmer can intermix device­
dependent and device-independent I/O
methods as suits the need. The burden
of understanding the device rests with
the application programmer when the
application does device-dependent I/O.
Conversely, device-independent I/O
hides the details of manipulating the
device from the application.

Networked system services, as the platform on which distributed applications
are built, are the heart of what makes eTOS unique. We have spent a lot of
time on them, and we shall come back to them again later. They are not,
however, all there is to eTOS. In this section, we shall add another layer to
our picture of eTOS structure as we discuss input/output options and how they
are related to each other in hierarchies.

Before we look at eTOS 110, we must first be clear about a few concepts.

111

Input I Output Overview

Device-Dependence and Device-Independence

Suppose you were writing a letter to ask someone to send you some
information. If you were writing to your sister, Sally, you might say,

Hi, Sal-

Remember how we talked about Methuselah Youngblood's
out-of-print treatise on aging gracefully? I'm pretty
sure I saw a copy bound in puce leather sitting on the
third shelf from the bottom in the bookcase in your
study. Would you mind lending me that? Please send
it by air. I need help.

Yours,

Peri

If, however, you were writing to a used-book broker to inquire about such
literature, you might say,

To Whom It May Concern:

Do you have any books about how to age gracefully? If
you do, I would appreciate your sending me one by
whatever shipping method you consider most expedient.

Sincerely,

Peregrine Brittlebone

In the first case, you know Sally pretty well, and you know how her house is
laid out, what is in the house, and where various objects are. Your letter is
specific in its details, based on your knowledge. Your relationship to Sally is
device-dependent: it depends on known qualities of that particular device,
Sally and her house.

112

Input / Output Overview

In the second case, you know nothing about the broker: name, facilities,
structures, formats, sources, or methods. You say only what you want to
receive as input (a certain kind of information); you know nothing about its
form or how to get it. Your communication is device-independent. In fact, it is
so generic that you could change the inside address and send exactly the same
letter to any of several institutions: bookstores, libraries, even Sally herself
(although she might be surprised at your formal tone). You could not, however,
send the first letter to anyone other than Sally and expect to have it
understood.

By analogy, processes can undertake 110 with peripheral devices in either
device-dependent or device-independent ways. A device-dependent 110
communication is specific to the kind of device, and the process must have
varying degrees of knowledge about the device and how its contents are
arranged in order to send output to it or receive input from it. The burden of
understanding the device (and the writing of a lot of sophisticated code) rests
with the application programmer when the application does device-dependent
110. Conversely, device-independent 110 hides the details of manipulating the
device from the application. Device-independent 110 communications are so
generic that, as with Peregrine's second letter, they can be sent To Whom It
May Concern: the same communication to any of several devices will still be
understood. This approach requires less of the application programmer. (The
necessary sophisticated code didn't go away: it was just written by someone
else.)

These approaches have their pros, cons, and trade-offs: we shall get to those as
we look in more detail at types of 110 under CTOS.

Hierarchies of eTaS 1/0 Tools

For peripheral devices under CTOS, both device-dependent and device­
independent 110 methods exist. In most cases, the device-independent ones
are built on top of the device-dependent ones. Each has its advantages. One
of the great flexibilities of application programming under CTOS is that the
programmer can intermix device-dependent and device-independent 110
methods as suits the need.

113

Input I Output Overview

Primitives: Device-Dependent

Each device has ways specific to itself in which it can be called for 110. These
primitive calls require the caller to know, for example, in making a video call,
what the screen coordinates are at which the next output should be made.
Similarly, the primitive for reading from disk requires the caller to know the
location of the data.

Primitives are tailored to the device and the task. They provide the highest
performance of any method but require the greatest programming skill and
knowledge. Most primitive 110 calls are requests to system services. Some are
calls to subroutines that are part of the operating system (but not of the kernel)
and are referred to as system common procedures. System common, as it is
called casually, is a little off the beaten track of Ctosian theory: it is more
reminiscent of UNIX or of other operating systems in which all system calls go
to routines that are part of monolithic system software.

System common (which we mentioned at the end of Chapter 6) is mainly
composed of those routines for which performance is so critical that the small
overhead inherent in request handling would not be tolerable. The largest part
of system common consists of primitives for video handling. System common
also includes other routines that are so commonly used (hence the name) that
to put them in link-time binding libraries would result in excessive duplication
of code. (Naturally, semaphore-based techniques must be used to police the
action in the system common area: another way in which the Ctosian religion
is not strict.)

Primitive calls, whether satisfied by system services or by system common
procedures, are the building blocks from which higher-level, more generic 110
tools are composed.

114

Input / Output Overview

Tools Built on Primitives

Sequential Access Method

The largest group of non primitive I/O tools is the group of object module
procedures called the Sequential Access Method (SAM). They are library
routines that are provided with CTOS but are not part of it; their code is copied
into applications at link time. The CTOS object module procedures are
contained within a development library, CTOS.lib, and are automatically
resolved during the linkage of an application system. Because they are object
module procedures, any application that requires them ends up with the object
code contained within its executable file. Object module procedures include
several different areas of functionality, but the Sequential Access Method
accounts for a substantial part of this group of routines.

The Sequential Access Method is more colloquially and easily referred to as
''byte streams," because that is precisely what it uses.

The CTOS byte-streams mechanism was the only part of the early CTOS
design that truly showed an influence from UNIX. (There was, you may
remember, one engineer from AT&T Bell Laboratories on the first CTOS team,
and this feature seems to have been his mark.) Under the UNIX byte streams
mechanism, every peripheral device is regarded in the same way, that is, as a
file, and input from or output to any device is an unformatted stream of bytes,
which must be parsed by the recipient. The CTOS idea of byte streams is
similar, except that devices are conceptualized in a generic way, and not
literally as nodes in the file system, as they are in UNIX. eTOS byte streams
are very similar in mechanism to UNIX and OS/2 pipes, although CTOS byte
streams do not directly support the transfer of streams of bytes between
programs. (Actually, a CTOS reseller is known to have created a system
service that uses byte streams to provide a pipe feature.)

Figure 8-1 is a very oversimplified picture of anybody's byte streams in action.
On the process side, the shipping department busily loads bytes, one after the
other, with nothing between them, onto the outgoing conveyor. This stream of
byte-boxes has no built-in meaningful pattern: they just slide out the exit door
one after the other. On the device side, the receiving department has a more
responsible function. The receiving worker lays some kind of template over the
stream of bytes as they flow in. The template adds meaning to the stream of
bytes. They can now be arranged on the dolly in patterns, ready for the
processing crew to act upon. Similarly, a byte stream can flow in the opposite
direction, from device to process. Now it is the device that puts out a generic
stream, and the process that must interpret what it receives.

115

Input I Output Overview

byte
byte
byte

PROCESS

PROCESSING

Communications
Medium

Communications
Medium

DEVICE

PROCESSING

byte
byte
byte
byte

Figure 8-1. A Simplistic Picture of a Byte Stream In Operation

116

Input / Output Overview

This picture of byte streams illustrates one of the prices of the device­
independent process, as well as the process itself. Clearly, some extra work is
going on here on both sides. The sender must pack things up in a completely
generic way, while the receiver must employ intelligent means of figuring out
what it has received. Someone has to figure out who the actual receiver is to be
and how to get there. All this doing and undoing means extra code: in eTOS,
the Sequential Access Method code that was bound in from libraries at link
time. Wouldn't it be more efficient in size and performance to have both sides
handle known data patterns directly, in a device-dependent manner? Yes, it
would. What do you get for using byte streams?

You get device-independence, with advantages of modularity, reusability, ease
of redirection to different devices, and ease of programming. The sender need
only know who the receiver is. The format of what is sent is the same for
various kinds of receivers. As a result, the sender could contain a generic
procedure (perhaps called OuttaHere), in which a sequence of byte stream calls
is made that are the same no matter who is the recipient in a given instance.
This same OuttaHere procedure could be called (with the name of the
recipient) in any number of different places within the sending program to
output data to different devices. This generic quality saves a lot of coding on
your part in the application. It also means that you do not have to know
anything about such matters as blocking factors on the disk or exact
coordinates on the video. Your code just works across the hardware platform.

A disadvantage of using byte streams is that there is large-scale duplication of
code that results when various applications, all calling for the same kinds of
110, bind into themselves the same code at link time. Historically, this problem
has existed in different systems, which now are starting to handle it in
different ways. OS/2 handles this problem by using dynamic link libraries, or
DLLs. eTOS soon will also use DLLs here. In dynamic linking, the necessary
code is not bound into the application's own executable file at link time.
Instead, it is ''bound'' at run time, as execution jumps to the needed routines,
which are separately resident on the system. With the use ofDLLs, multiple
applications can use the same library code without code duplication.
Semaphores are used to control access to critical sections of code.

Having drawn a neat picture of byte streams as a higher layer built upon
device-dependent primitives, we now need to fuzz it up a bit for the particular
case of eTOS byte streams. eTOS SAM does include this neat, generic layer of
byte streams that can be used with any device. It also, however, includes
device-dependent extensions to the basic byte stream calls. Thus there exist
both device-independent and device-independent routines within SAM, still
above the primitive level.

117

Input I Output Overview

N ow that we are into four levels of thinking about generality and specificity in
I/O, it seems best to draw a picture. In Figure 8-2, the vertical arrows
represent calls from higher layers being transparently expanded into
lower-level calls. Ultimately, all I/O calls are satisfied by request-based
services or System Common routines.

Device-Specific Application Code
Reusable Application

Procedures

I

(e.g •• "OuttaHere")
I

t
Device-Independent SAM

(e.g •• OpenByteStream)

I

,~ t
Device-Dependent SA~

(e.g •• OueryVidBs. OpenByteStreamlp)

Device - Specific Primitives

(e.g •• PutFromeChors. Open File)

I

I

Request-Based Service System Common

Application

Primitives

Figure 8-2. The Hierarchy of Device-Independent and Device-Dependent Calls
in CTOSI/O

The most often used device-independent SAM procedures are few and rather
obvious. They have names such as OpenByteStream, ReadBsRecord,
ReadByte, WriteBsRecord, WriteByte, and CloseByteStream. With each call,
the address and size of a device name (such as the video device name, [YID], or
the keyboard device name, [KBD], or a file specification) are passed, along with
the addresses of a work area and buffer to be used by SAM, and password and
mode information as needed.

118

Input / Output Overview

To use byte streams, an application must first open a device or file as a byte
stream. It does so by using the OpenByteStream operation, providing the file
specification and password for access to the device or file indicating whether
read, write, or modify access is desired. (Modify access allows both read and
write access.) A buffer is passed in the call to be used exclusively by the SAM
operations for 110. The byte stream is then defined by a byte stream work area
(BSWA). This parameter is the address of a 130-byte area also used
exclusively by the SAM operations. (However, operation specific infonnation is
contained here: for example, the read and write positions in the buffer.)
Remember, a template must be supplied for defining the stream of bytes. The
BSWA is the template. If the byte stream was opened in Read or Modify mode,
then the ReadBsRecord or ReadByte operations can be used.

Both calls take the address of the BSWA that was previously opened with the
OpenByteStream operation. The difference between the two, though, is that
the first allows a read of a variable amount of data into a buffer with the return
of the actual amount of characters read. The second allows a read of only a
single character. Why would you use one or the other? Communications
processing is dependent on specific characters, where the state may change
depending on the incoming character. Here one would use the ReadByte
operation. Disk processing, on the other hand, is more efficient when
operations are multisectored, so you would use ReadBsRecord here.

If the byte stream was opened in Modify or Write mode, then the
WriteBsRecord or WriteByte operations may be used.

Notice that both of these calls also take the address of the BSWA that
was previously opened with the OpenByteStream operation. The difference
between the two, though, is that the first allows a write of a variable amount of
data into a buffer with the return of the amount of characters written. The
second allows a write of only a single character.

In succeeding chapters, we shall be more specific about the contents of
device-dependent SAM. Suffice it for now to understand the general pattern
and to understand that CTOS SAM is configurable The basic package includes
asynchronous disk, keyboard, video, parallel printer, null, and spooler byte
streams. Also in existence are byte streams for communications, direct serial
printing, tape, and the Generic Print System (GPS, further discussed below
and in Chapter 11). You can configure the byte streams package to include
only what your program actually uses. You can even write your own device­
dependent byte stream for any device and add or substitute it into the package.
CTOS system documentation covers the method for this customization. In
Figure B-2, this kind of customization would be done within the layer labeled
Device-Dependen t SAM.

119

Input I 0ll:tput Overview

Non-SAM Tools

Not all high-level 110 methods are related to SAM. Two other packages, one
designed early on in the history of CTOS, and one just now coming into
existence, handle both keyboard and video and facilitate user interface design.

The simpler package, called Forms, first appeared in 1980 with the earliest
versions of CTOS. It enables the programmer to quickly and easily put
together screen forms for user input and output on character-based video.
Although in this day of the bit-mapped graphical, point-and-select user
interface, Forms appears to be old-fashioned, it is still useful for
character-based applications such as order entry. The Forms package has no
relation to byte streams; it is built directly on the Video Display Manager
(VDM) and Video Access Method (V AM), which are video primitives resident in
System Common.

A newer package, called Extensible Virtual Toolkit, or XVT, is an open
standard for creating graphical and character-based windowing user interfaces
for character~mapped and bit-mapped systems. XVT allows you to write a
single program that can run in several different window environments on
different operating systems, for example, MS-DOS, OS/2, and UNIX. XVT is
now becoming available as part of the CTOS/Open standard. It simplifies the
portation of applications from other environments to CTOS.

XVT handles video, keyboard, and mouse user inputs and outputs. It
can adjust to handle a range from the simplest character-based windows
through the most sophisticated bit-mapped graphical user interface. XVT is
implemented on top of the native toolkit for any given operating system, rather
than directly making operating system calls itself. In the CTOS environment,
XVT is built on whatever CTOS windowing system service is appropriate
for the hardware on which it is running. (We shall discuss XVT further in
Chapter 9.)

A eTOS 1/0 Road Map

To tidy up our thinking before continuing into further chapters on particular
areas, let us summarize the types of 110 under CTOS. Within each type, we
shall identify the hierarchy of 110 levels, if any. No system would be complete
without its exceptions, and we shall touch on those, too.

In the next few chapters we shall look at each area in a little more depth.

120

Input I Output Overview

Video

The relationships of the various video access tools and methods are shown in
Figure 8-3. The underlying primitive layer is composed of the Video Display
Manager and Video Access Method, which are resident in System Common or
are request based. Video byte streams and the Forms package are built on
VDM and V AM. XVT is built on the appropriate windowing package for the
hardware on which it runs. CCGI+, the graphics library, also depends on VDM
andVAM.

Generic SAM xvr

I I I , , t
Video Byte Streams Forms CCGI+ Presentotion Other

Manager Windows , , , , J

t t t t t
VDM-VAM (System Common)

Figure 8-3. Video 1/0 Tools

Keyboard and Mouse

Keyboard byte streams depend on an underlying keyboard management system
service, as shown in Figure 8-4. The Forms package also makes requests to
this service, as does XVT.

A separate system service handles the optional mouse. This system service
contains a query, ReadlnputEvent, that gets both keyboard and mouse events
as they occurred in time. (ReadlnputEvent is general and expandable to allow
for other kinds of events in the future.)

121

Input / Output Overview

Keyboard
Byte Streams

I

t

I • Forms Presentation
(Librory) Monoger

I I

t t
Keyboard Encoded/Unencoded Mode Primitives

(System Service)

Figure 8-4. Keyboard and Mouse Management

Data Storage

XVT

I • Other
Windows

I

t

Data storage can involve disk or tape. Disk storage methods (Figure 8-5) are
all ultimately built upon the device-dependent file system service. SAM (disk
byte streams) depends on it, as well as two less frequently used sets of object
module procedures, the Direct and Record Sequential Access Methods (DAM
and RSAM). In its most widely used form, the Indexed Sequential Access
Method (lSAM) is a system service that in turn makes requests of the file
system service. ISAM is a distributed data base tool.

Generic SAM

DAM RSAM I SAM

Disk Byte Streams (Object (Object (System
Module Module Service)

Procedures) Procedures)

File System Primitives
(System Service)

Figure 8-5. Disk Storage Methods

122

Input I Output Overview

Half-inch, quarter-inch (QIC), and digital audio (DAT) tape are supported. The
device-dependent tape system service underlies tape byte streams (Figure 8-6).

Tope Byte Streams

I

Tope System Service

Figure 8-6. Tape Storage Methods

Communications

Generic SAM allows you to treat a communications device in the same way as
any other device. This device-independent layer, in turn, calls communications
byte streams (SAMC), the communications device-dependent portion of SAM.
At the most primitive level are serial port management procedures that reside
in System Common for performance reasons. (Communications interrupt
service routines can be written to call serial port management procedures
directly.) Figure 8-7 shows these relationships.

SAM

I
l

Communications Byte Streams

I ,
Serial Port Operations (System Common)

Figure 8-7. Communications Methods

123

Input / Output Overview

Printing

The world of printing under CTOS can be confusing to the newcomer at first,
because it contains layers of old methods still maintained for backward
compatibility, side by side with the more recent Generic Print System (GPS).

The original SAM supports both parallel and serial printers as devices to which
byte stream output can be written. When you use this kind of direct printing to
a printing device from within an application program, the output goes directly
to a locally attached printer, and you cannot use any form of spooling. SAM
relies on lower-level communications byte stream routines to carry out the
work of direct printing.

Device-independent SAM also recognizes as a device [SPL], the original
spooling method designed for CTOS when applications did their own printing.
This method is casually referred to as the "old spooler," because, of course,
there is a new spooler. Again, communications byte streams underlies this
spooler.

The Generic Print System was designed as a more modular and device­
independent way of printing in 1986. It allows applications to request printing
services without containing printing code themselves, thus cutting out
enormous code duplication. GPS methods include GPS byte streams and the
Generic Print Access Method (GPAM). The GPS byte streams method is
simply the generic SAM we have already discussed, where a printer name
known to GPS is used as the device name. GPS byte streams allows only the
simplest kind of printing with no sophisticated formatting in the output.

GPS Byte Streams -~ GPAM Library SAM

I I I , , ,
GPS Print Service

"Old" Spooler
Byte Streams

I 1
'f 'f

Communications Byte Streams

Figure 8-8. Two Printing Systems

124

Input / Output Overview

GPAM is a separate, SAM-like library to which application programmers can
write. GPAM is GPS's own byte stream system. It allows sophisticated
formatting. GP AM, in turn, calls GPS byte streams.

GPS byte streams (SAM) makes requests to the underlying Print Services
system service in GPS. GPAM also makes some requests directly of the Print
Service. It is possible for application programmers to make requests directly to
the Print Service also, although this is usually done only for certain specific
purposes, and no special formatting can be used via this path. Figure 8-8
shows these relationships.

125

9
Video and Keyboard Options

With good user-friendly graphicalltser
interfaces becoming standard, it might
seem obvious to port one to CTOS and be
done with the problem. Typically,
however, CTOS developers have,not been
entirely satisfled with that approach.
CTOS has a strong tradition of
providing device-independent and
backward-compatible solutions that also
allow for extensibility in the future. The
developers examined the characteristics
of many products and decided to
combine two of them with what already
existed to make a truly comprehensive
solution that would open up many new
possibilities and provide a solid platform
for development through the 90s.

Having taken a brief tour of eTOS 110 tools at various levels, let us focus in
on the video and keyboard 110 possibilities and when they might be most
profitably used. We will look first at the video options, then keyboard
handling, and finally forward to new alternatives offered by a graphical user
interface.

127

Video and Keyboard Options

Video Frames and Attributes

Before we explain the video options, we need to define some terms used for
video.

Frames

A video frame is a rectangular area that you can define on the video display. It
can have an optional visible border, and its contents can be scrolled up and
down independently of other frames. Normally, CTOS is configured so that you
can create up to eight frames, but the operating system can be reconfigured to
support up to 256 frames.

The virtue of a frame is that what you write to it is automatically limited to
that frame and cannot overwrite the contents of other frames. If you are using
very simple video output, you may not need more than one frame. The first
(and default) frame is frame O. The CTOS Executive (the command-line
interpreter) sets up its video with three full-width frames. In this case, frame
o occupies the largest part of the video and is the frame with which the user
interacts. Frames 1 and 2 are narrow frames at the top of the screen that
display various status information and user notification messages.

A frame can cover any rectangular screen area, and frames can overlap each
other. The most commonly used frames are offull screen width, but narrower
ones can be defined for such purposes as small forms or pop-up windows.

A frame is created by use of the InitVidFrame procedure, which is part of the
Video Display Manager (VDM). The parameters passed with InitVidFrame
describe the extent of the frame in terms of screen columns and lines. They
also describe the border.

In addition to the InitVidFrame operation, other operations allow you to query
frame characteristics and to manipulate frame characters.

We are jumping ahead of ourselves, though. Before a frame can be initialized,
there are a number of calls which must first establish the video subsystem for
the application system. We shall examine these calls shortly.

128

Video and Keyboard Options

Video Attributes

Video attributes can pertain to the entire screen (blank, number of characters
per line, and so on) or to individual characters (bold, underlined, and so on).
Some attributes (reverse video, half-bright) can pertain to either the full-screen
or to characters.

To set video attributes on a full-screen attribute, the SetScreen VidAttr call is
used. The passed parameters define the screen attribute and whether the
attribute is set or reset.

Additional calls allow the setting and querying of individual characters.

Types of Video Hardware

Both character map and bit map monitors are supported by CTOS work­
stations. In each case there is a character map, although it is implemented
differently on the two types of hardware.

Color monitors are also supported. Programming the color capabilities of these
workstations involves calls to standard library functions to manipulate the
operating system's color control structures. These operations are separate from
the hierarchy of video 110 tools that we shall discuss below.

Levels of Video Access

There are several levels of video access available through CTOS, ranging from
the most device-independent to lower-level more device-specific.

Figure 9-1 (which repeats and extends Figure 8-3) shows the video output tools
and their interrelationships. Actually, this figure shows two generations of
higher-level tools: the Sequential Access Method (SAM), Forms, and CCGI+ on
the left, and the new graphical user interface (GUI) on the right.

129

Video and Keyboard Options

Device-Inde~endent SAM

OpenByteStream Extensible Virtual

WriteBsRecard
Toolkit (XVT)

CloseByteStream System Common Service

Etc.
I I I

• • -f
Video Byte Streams Presentotion

(Device-De~endent SAM) Forms CCGI+ Manager Other

Library Graphics Dynamic Windowing
QueryVid8s Library Link Services

Escape Code Extensions Libraries

I I J , , ,
Video Display Manager /Video Access ~ethod

VDM VAM
ResetVideo PutF rameCharsAndAttrs

InitVidFrame QueryFrameCharsAndAttrs

SetScreenVidAttr PasF rameCursor

Etc. Etc.

Figure 9-1. Video Tools

At the highest level among the traditional tools on the left is device-indepen­
dent SAM, or byte streams. These by-now-familiar library routines in turn call
the device-dependent SAM layer and the primitive layer, represented by the
Video Display Manager (VDM) and the Video Access Method (V AM). The
Forms library also makes calls to VDMN AM.

You can mix the use of these traditional tools within one program: if you are
primarily using video byte streams, there is nothing to prevent your resorting
to direct VDMNAM calls where you deem it necessary.

In recent years, graphics programming has often been done through the CCGI+
graphics library, which is compatible with the standard Computer Graphics
Interface (CGI). Graphics library routines in turn call V AM routines.

In addition, XVT can call whatever other windowing tool is present, depending
on the hardware: a character-based facility, Presentation Manager, and others
not yet identified.

130

Video and Keyboard Options

Using Video Byte Streams

Device-dependent video byte streams extends generic SAM in three ways.
First, certain characters (for example, up arrow, backspace, and tab) sent
through the byte stream are interpreted to move the cursor in various ways,
blank the frame, and so on. Second, multibyte escape sequences (beginning
with OFFh) can be sent to control a great many things, including screen
and character attributes, cursor position, and so on. Third, the one device­
dependent video byte stream operation, QueryVidBs, returns information to
the caller about the status of the current frame: the current frame number, its
size, number of lines, cursor position, attributes, and other characteristics.

To use video byte streams, the programmer must first set up the screen by
using VDM operations. In practice, developers usually use video byte
streams only when their programs will output a very simple stream of data
continuously to a screen inherited from another application, with all the frames
predefined. This usually means writing to frame 0 within the Executive
screen. Video byte streams are used throughout the Executive itself and
related utilities. For example, a listing of files within a directory, or the status
messages displayed during the copying of files, are easily and appropriately
output via video byte streams. If the display is to involve even slightly
sophisticated cursor or scrolling manipulation (back scrolling), among other
things, the programmer should immediately move to V AM. V AM also provides
better performance, at the cost of writing more complex code.

Using VDM and VAM

The operations of VDM pertain to screen set-up. If a program that uses video
byte streams does not inherit a set up screen from a previous program (usually
via a Chain from the Executive), it must call VDM to set up its own screen.

Initializing the Video Subsystem

First, the application must determine the level of video capability present on
the screen. If the application is going to use graphics, then graphics hardware
must be present. The QueryVidHdw call places hardware-specific information
in a user-supplied buffer.

Included in the information returned are the basic video capabilities (character
versus bit mapped), the size of the screen in terms of columns and lines, and
what graphics capabilities are available.

131

Video and Keyboard Options

The information returned by QueryVidHdw is necessary so that we can
initialize the video subsystem. We do so with the ResetVideo operation. This
operation suspends video refresh, resets all screen attributes, and changes the
values in the Video Control Block (one of the U-structure entities) to reflect the
values passed.

Next we initialize each of the video frames by using the InitVidFrame call that
we mentioned when we discussed frames, above. After the video frames have
been set, we make a SetScreen VidAttr call to set any desired screen video
attributes.

Next, the character map must be initialized for use by the video hardware. We
do so with an InitCharMap call, passing the size of the character map, which
we got from the Reset Video call. You can see that the various calls are
in terdependent.

From the ResetVideo operation until now, the video screen has been blank.
Errors received on these operations are not noticeable until the application
fails, making it a little bit more difficult to debug an application within this
critical section.

To enable the video refresh, we finally issue a SetScreen VidAttr call with the
video refresh attribute selected and its flag turned on as the parameters.

Writing to the Video

Once the sequence of VDM events is complete, the complete video subsystem is
ready for use by the application. All the video frames have been initialized and
can be used with direct V AM or VDM operations, SAM operations, or even
graphics or windowing operations.

The V AM operations give the programmer finer control over cursor position,
attributes, and scrolling than do the SAM operations that we have already
seen. VAM allows you to scroll entire or partial frames up and down. It
supports text editing: you can scroll up, for example, the top four lines of a
frame and insert a new line of text between the fourth and fifth lines.
Character attributes scroll along with the text they affect. You can write to
any position in the frame as needed.

V AM also contains primitive graphics operations that are not directly called by
applications programmers. Higher level graphics software depends on these
primitives.

132

Video and Keyboard Options

Keyboard Input Tools

At the primitive level, the keyboard is handled by a request-based system
service and an operating system keyboard process. Together these components
are called keyboard management. Figure 9-2 shows the keyboard input tools,
with keyboard management as the fundamental layer. At the SAM level,
keyboard byte streams depend on keyboard management.

Again, the new generation graphical user interface is shown at the right side of
the figure. It also relies on keyboard management for primitive procedures.

Keyboard Byte Streams

(SAM)

I

Forms
Library

I

Mouse
Services

I

Encoded
(Character)

Mode

Keyboard Management Service

Figure 9-2. Keyboard Tools

Keyboard Byte Streams

Extensible Virtual
Toolkit (XVT)

System Common Service

I I

f f
Presentation

Manager Other
Dynamic Windowing

Link Services
Libraries

I I
f / f

Unencoded
Mode

Keyboard byte streams provide the easiest way for an application to get
information from the keyboard, but they add all the overhead of byte streams
to the program They are also too slow for many situations, and so in fact they
are seldom used. Keyboard byte streams provide one character at a time to the
application.

133

Video and Keyboard Options

Keyboard Management

The keyboard system service can provide information to an application in
either of two ways. In character mode, the service reports one byte that
represents the key typed by the user. (A keyboard mapping table maps
keyboard codes to character codes.) In unencoded mode, the service reports
both the downstroke and the upstroke of any key pressed, and it reports these
events in the order in which they occur, for example:

left shift down
'A'key down
'A'keyup
left shift up

This approach allows the application great flexibility in assigning meaning to
keyboard interactions but requires more sophisticated and extensive
programming than does character mode. U nencoded mode is used, for
example, in text-editing applications. Character mode is, however, more
generally and easily used.

To set the mode of operation for the keyboard, we would use the
SetKbdUnencodedMode call, passing a flag value to determine whether
the mode is encoded or unencoded.

We can access keyboard data with the ReadKbd call, passing the address of the
next character to be read. This sequence of events shows that an encoded­
mode operation requires a single keyboard read, whereas the unencoded-mode
operation requires multiple reads.

In most cases the ReadInputEvent call is a better method of getting keyboard
data. This call is part of the keyboard process, but cooperates with the Mouse
Services that we shall discuss below. ReadlnputEvent returns an interleaved
stream of keyboard and mouse events as they occurred in time. It eliminates
the need for applications to construct polling busy loops to get this information.
Ifno mouse or other pointing device is present, ReadlnputEvent still works,
returning only keyboard events. The only disadvantage of this call is that it
does not work with the system input process (below).

Keyboard byte streams uses keyboard management only in character mode.

134

Video and Keyboard Options

System In put Process

The system input process is not really an integral part of the keyboard 110
hierarchy we have been discussing, but it is so closely associated that we shall
touch on it here. The system input process allows all keystrokes to be recorded
in a file at the same time as they are being reported to the application that
requested them. These keystrokes can then be played back from this file to the
application, just as if they were being typed at the keyboard again. The most
common use of this feature is through the Executive commands Record and
Submit. Using these commands, a user can directly create a such file to do, for
example, a routine backup, or to generate a monthly report that always
requires the same commands. Such files are called "submit files" under eTOS.
They are like macro or script files used with other systems. Submit files are
also used to automate testing and the building of executable files.

The system input process is flexible enough so that some keystrokes can be
designated to come from the real keyboard during the replay of a submit file. A
special sequence of characters (an escape sequence) informs the system input
process that the following keystrokes will be from the real keyboard rather
than from the submit file. The keyboard input then continues until the
character specified in the escape sequence is received from the keyboard (for
example, the Go or Finish key).

A submit file can also be composed directly in a text editor, rather than
recorded from actual commands. However, because the system input process
operates only in encoded mode, unencoded applications do not function with it.

Mouse Services

. Mouse and other pointing-device input are handled by a system service called
Mouse Services. This system service cooperates with the keyboard process to
provide input event information to the caller through the ReadInputEvent call.
Traditional and forthcoming user interfaces all rely on Mouse Services for
primitive mouse support.

t.'ll)

Video and Keyboard Options

Forms Package

Created early in the life ofCTOS, the Forms facility is a high-level interface
tool based on VDMN AM that consists of three parts: the Forms Editor, with
which you can design forms on the screen and save them into files; a Reporter
utility that can display information about a form; and an object module library
that displays the form, prompts the user to enter data, and returns the data to
the calling program. A "test drive" feature allows you to try out a form as soon
as you have designed it, without having to call it from an application program.

The Forms package is entirely character oriented, because when it was
designed, there were no graphics workstations. Forms created with this tool
have all the features needed for routine, character-oriented data handling.

Forms is still in use. It works well for relatively rapid creation of user
interfaces for such purposes as routine order entry on low-cost, character-based
systems.

Graphical User Interface

In recent years, as use of small computers in offices proliferated, user
interfaces from one system to another have become more standard. Graphics
hardware is also now much more common.

The original user interface for CTOS, the Executive, is a command interpreter
that works on a fill-in-the-blanks principle and presents the user with a simple
form to fill out for each command, rather than requiring that the user
remember the sequence of parameters as they must do with a command-line
in terpreter.

In 1980, before the birth of the Macintosh®, this was an advanced and user
friendly interface. In 1984, the CTOS Context Manager took another step
forward with an additional interface that allowed the user to interactively start
multitasking applications with point-and-select. In the 90s CTOS is moving to
the use of a new graphical user interface.

1.':U~

Video and Keyboard Options

The eTOS GUI Solution

With good, user-friendly GUIs becoming standard, it might seem obvious to
port one to eTOS and be done with the problem. Typically, however, eTOS
developers have not been entirely satisfied with that approach. eTOS has a
strong tradition of providing device-independent and backward-compatible
solutions that also allow for extensibility in the future. The developers
examined the characteristics of many products and decided to combine two of
them with what already existed to make a truly comprehensive solution that
would open up many new possibilities and provide a solid platform for

. development through the 90s.

Presentation Manager

One component of the new GUI is Microsoft's Presentation Manager. A
powerful tool for creation of complex, windowed application user interfaces
with standard components, Presentation Manager also offers a desktop
interface that permits applications to share the screen. However, Presentation
Manager has a large and complex API that takes some time for a programmer
to learn. Applications written to use Presentation Manager are not easily
ported to other windowed systems. Also, Presentation Manager is entirely
graphics oriented: it does not support a windowed environment on a
character-based monitor. If only Presentation Manager were offered,
applications that used it would be limited to run only on the more recently
produced graphics hardware.

Extensible Virtual Toolkit (XVT)

The complementary piece of the new GUI is XVT Software Inco's Extensible
Virtual Toolkit (XVT). As we mentioned earlier, XVT is an open standard for
creating graphical user interfaces for character-mapped and bit-mapped
systems. It provides the link that will allow applications developed for the
eTOS GUI to run with the same user interface on both types of systems.

XVT is also bridge tool. It allows you to write a single program that can run in
several different window environments on different operating systems. An
application written strictly to the standard XVT interface should be able to run
on systems as various as the Apple Macintosh and UNIX Motif systems, with
only recompilation and relinking.

XVT has a much simpler API than does Presentation Manager. However,
unlike Presentation Manager, it does not provide a user environment or
desktop.

1::17

Video and Keyboard Options

XVT is a layer between the application caller and whatever windowing
facilities ultimately run the user interface on a given system. If the system has
none, XVT supplies its own character-based windowing facility. On CTOS XVT
is implemented as a system common service that accepts calls through the
standard XVT interface. It has the great advantage that a CTOS application
written to XVT is compatible with all CTOS-based systems without recompiling
or relinking.

XVT is called extensible because, although you get the maximum portability by
writing strictly to the XVT API, you can request information (handles) from it
that would allow you to call the underlying windowing service (for example,
Presentation Manager) directly.

Figure 9-3 shows the position of XVT in various systems.

Application
Program

XVT
Interface

Figure 9-3. Extensible Virtual Toolkit

Macintosh

PC running
DOS Windows

PC running
OS/2 PM

Workstation
running UNIX,

Motif, and X-11

Any UNIX or
DOS System

Any CTOS
System

Video and Keyboard Options

Context Manager's Role

On character-based systems where the Presentation Manager desktop is not
present, the CTOS Context Manager continues to provide the user interface for
context switching. Full-screen standard or XVT windowed applications can be
started and swi~hed to from Context Manager.

This solution combines the advantages of each of the components. It is
relatively easy for programmers to write to XVT. The resulting programs can
be ported readily, and XVT -based applications from other environments can
easily enter the CTOS world. Both character-based and graphical environ­
ments are handled. Finally, users can do convenient interactive multitasking·
either through Presentation Manager's Desktop Manager, if that is available,
or through Context Manager, if it is not.

Later Additions

In the CTOS tradition, this scheme allows for both backward compatibility
with existing hardware and also for future change. Presentation Manager may
not be'the only windowing facility that developers want to use on CTOS in the
future. New facilities can be added to this general scheme as time goes by and
as needs change.

Some New Underpinnings

This new scheme could not reasonably be implemented in one great leap.
Rather, it has two stages. The first is implementation ofXVT for character­
based windowing. Later, a ported Presentation Manager for CTOS is to make
its appearance.

Porting Presentation Manager to CTOS requires that CTOS itself offer
facilities that have never been part of it before. Presentation Manager was
initially designed to run with Microsoft's OS/2. Aside from its associated
applications and utilities, it is a collection of dynamic link libraries.
Presentation Manager relies on semaphores and requires demand-paging for
memory management. Thus, semaphores, demand-paging, and dynamic link
libraries are being implemented in CTOS itself to support the new GUI.

139

Video and Keyboard Options

It is important to note here that CTOS is still and will be a primarily
message-based system. Developers should write to that model in order to get
the greatest benefits from CTOS. It will certainly be tempting for some people
to use the new semaphore facility to continue developing programs in ways to
which they are more accustomed. This kind of development probably cannot be
prevented, but it would result in mixed-style products that could not readily
play in the distributed CTOS world.

As usual, CTOS developers are implementing these new facilities, not as direct
copies from another system, but in ways that fit gracefully into the design of
eTOS and will provide CTOS with new paths in the future. In Chapter 14, we
shall take another look at those ideas.

140

10
Data Storage and Access

CTOS is, above all, a superlative
platform for distributed applications.
The file system and data access methods
were designed to support that
orientation.

Data storage under CTOS is primarily hard disk storage. Floppy disks, tape,
and CD-ROM are also supported. Here, we shall concentrate on hard disk file
system technology and tools. (Floppy disk access is similar, but stand-alone,
floppy-only systems are not part of the CTOS world.)

Before we plunge into structures and algorithms, we should pull back and
think about the larger role and goals of the CTOS file system and data access
methods. CTOS is, above all, a superlative platform for distributed
applications. The file system and data access methods were designed to
support that orientation. They do so principally in three areas:

• A simple, trustworthy architecture designed for optimal file access speed
and disk reliability. Speed is achieved by the placement of key file
structures in the center of the disk to minimize disk access time, hashing
techniques, and file-caching in main memory. Reliability is ensured by the
duplication of key file structures.

• A distributed file system and data base products that allow the user to
distribute a data base over a cluster or network.

141

Data Storage and Access

• Automatic Volume Recognition (AVR), by which eTOS can recognize and
mount a uniquely named volume (disk) on any workstation in a cluster Oocal
network) without any user interaction. This feature implies that if a
workstation is removed from the local network, its hard disk can be moved
to another workstation and simply used there, without any network
reconfiguration.

Disk Storage and the File System

File Specifications

The file system has a fixed hierarchy of four levels: network node, volume
(disk), directory, and file. A file's path is syntactically specified as follows:

{nodename} [volumename] <directoryname>filename

A node is a location in a CTOS Network. Each node may be a standalone
workstation or the server of a cluster. A node is specified as a character string
with a maximum length of 12 characters.

A volume is the physical media in a hard disk, or it is a floppy disk. Volumes
on a cluster must have unique names, but volumes on different network nodes
can have the same names. Like the node, a volume name is also a character
string with a maximum length of 12 characters. The system recognizes a
volume by its name, as distinct from the physical drive in which it rests. This
capability is the basis of A VR. (The physical drives also have standard internal
names that the operating system recognizes.)

A directory is a group of related files. Like the node and volume names, a
directory name is also specified as a character string with a maximum length of
12 characters. In fact, the directory is actually stored as a list of file names
with some additional information. When a file is added to the directory, the
file name is added to this list; when it is deleted, it is removed from the list. A
user cannot simply open a directory, as it is not recognizable to the file system
as such. Because of this structure, the CTOS file system is flat; that is, nested
(hierarchical) directories are not allowed.

142

Data Storage and Access

A file is a linear collection of bytes that the system considers to be a unit. The
name of the file is specified as a character string with a maximum length of 50
characters, which gives users a great deal of flexibility to assign file names
with meaning.

The CTOS file system has been based on the same premises since its
conception, although it has been substantially rewritten in the interim. The
question of moving from this simple, four-tiered system to a UNIX-like
hierarchical file system has been a matter of hot debate over several years, and
some work was done toward this end at one point. Many developers have
argued that no operating system can consider itself modern without a
hierarchical file system; while vendors close to the end-user community point
out that they cannot even get their users to create one new directory, much less
to understand trees of them. (In fact, there is a movement within the industry
to return to a flat type of file system for simplicity's sake).

Disk Structures and Reliability

The CTOS file system is highly reliable. Without the high level of reliability,
distributed processing would be impossible. This reliability is achieved
through the following capabilities:

• Duplication of volume control structures, ensuring that damage to a single
volume control structure will not cause data loss.

• Ordered updating of volume structures, ensuring that the volume will not be
corrupted by power failure, hardware malfunction, or software error.

A disk volume is formatted to contain volume-control structures. These
structures allow the file system to manage (allocate, deallocate, locate, and
avoid duplication of) the space on the disk volume. The control structures are
created when the disk is first initialized, and as such, the size of each is static
once the volume is initialized. Care must be taken in determining the size of
the control structures to prevent a key disk resource from expiring prematurely
(e.g., running out of fileheaders).

Figure 10-1 shows the file system structures in memory and on a hard disk
volume (within one workstation, for simplicity) that allow the file system to do
its work.

143

Data Storage and Access

The volume home block (VHB) is the anchor of the file system structures.
There are not one, but two copies of the VHB on the disk: the initial copy and
the working copy. The VHB points to all the other disk file system structures.
When a volume is mounted (which for a hard disk occurs at system boot), the
VHB is copied into memory. The working copy of the VHB on disk is updated
from the copy in memory as files are created and deleted.

The duplication of the VHB on disk is part of the strong reliability scheme in
the eTaS file structures. If one copy becomes unreadable because of disk
damage, the other is still available.

Among the various files and areas pointed to by the VHB, let us single out a
few: the system image, the allocation bit map, the master file directory (MFD),
and the file header block (FHB) area.

System Image

The system image is the disk-resident image of the operating system. We
mention this file in order to show the importance of the VHB during the
initialization of the system. During boot time, the boot ROM must access the
disk to load the operating system into memory. The location of the VHB is
important because the boot ROM accesses the same location on the disk no
matter what type of disk may be present (for example, a 20Mb disk versus a
140Mb one). The initial VHB is located at a predetermined location on track o.
The boot ROM looks at this location to read the initial VHB. The boot ROM
can then load the system image into memory based on the address of the
system image file specified within the VHB.

Allocation Bit Map

The allocation bit map represents each sector on the disk by a single bit. If a
bit is set, that sector is available for allocation. The file system uses this
structure in determining where new file extents can be placed. The size of the
allocation bit map depends on the size of the disk volume.

144

User File
Block(UFB)

Fh

One per File Handle

To
Caller

FhRet

In Memory

Volume
Home Block

(VHB)

File
Control Black

(FCB)

FAB

One or More per Open File

VHB

Allocation
Bit Map

Data Storage and Access

On Disk

Pointer to FHB

Figure 10-1. Volume Control Structures and System Data Structures

Master File Directory

The Master File Directory (MFD) is essentially a file, <Sys>Mfd.sys, that lists
all the directories on a volume. This file is created at volume initialization and
is not expandable. The file must, therefore, be originally created to hold the
maximum number of directories that will be needed. Each MFD entry points
to a disk area containing the directory information for that entry. Additional
information associated with each entry includes the password and protection
level for the directory and the maximum number of allowable files.

145

Data Storage and Access

Remember, that the directory is really a list of files. The directory consists of
one or more directory sectors. Randomization (hashing) determines the
directory sector in which a file entry is entered. Included along with entry
name is the file header block index, which points to the specific file header
block within the file header file, <Sys>FileHeaders.sys.

The MFD and directories provide for fast, efficient access to the file header
block (FHB) for a specific file.

File Header Block

The fileheaders file, <Sys>FileHeaders.sys, contains an FHB for every file on
the disk. Within an FHB is all the information associated with an individual
file, for example, the size, protection level, password, creation date, and so on.

The FHB, in turn, points to all the disk extents that make up the file. A disk
extent is a contiguous group of one or more disk sectors containing disk file
data. Thus, a file may be composed of an arbitrary collection of sectors.

In addition to the duplicate copies of the VHB, there are complete sets of
duplicate copies of the FHBs (an option specified during volume initialization).
These are on different disk sectors. The structures are updated when the
primary versions are updated. Again, the probability of loss of information
caused by disk damage is minimized by this design.

Frequently accessed structures, including both primary and secondary copies of
the FHBs, are located near the physical center of the disk. This placement
protects them from edge damage and also minimizes disk arm movement to
provide excellent performance.

Structures In Memory

On the memory side of the figure, we see the in-memory copy of the VHB. Also
shown is an example of a file control block (FCB) and several file area blocks
(F AB), each of which describes the physical structure of the file. When a file is
opened, an FCB is created for that file; and a FAB is created for each disk
extent of the open file. These structures enable rapid 110 because once the file
is open, the file system no longer has to go back to the disk-resident FHB for
additional file information.

Figure 10-1 does not show every structure or detail pertaining to the file
system, but it gives us enough information to support a cursory description of
some file system activities.

146

Data Storage and Access

File Manipulation

Files are handled by a request-based system service that is simply referred to
as the "file system." The file system actually consists of several processes, the t
key ones being the File System Process and the MassIO Process.

When a program requests that the file system create a file, the file system first
verifies that a volume (disk) of the requested name is already on-line by
examining the VHB in memory. Following pointers to the MFD, it then verifies
that a directory of the requested name is on that volume. Moving on to the
directory, it verifies that a file of the requested name does not already exist.
Having satisfied these requirements, it allocates an FHB and assigns the
requested number of disk sectors by consulting the allocation bit map. Finally,
it inserts an entry for the file into the directory.

When a program requests opening a file, a similar path is followed to the
directory, where the file system verifies that the file does exist. The file system
then allocates one FCB in memory, along with one or more FABs. It then
copies information from the FHB to the FCB and each of the FABs. Finally,
the file system returns a file handle, which identifies the FCB, to the caller for
use in subsequent calls pertaining to that file.

Since a file handle now exists, the caller of the Open request can now issue
requests to write or read sectors of the file, in addition to other operations. It is
at this point that CTOS provides a unique performance optimization by
utilizing a separate process, the MassIO process, to perform the disk read and
write operations. Note that in the scenario presented here, the file system
process handled the creation of the file, including the allocation of the disk
space, and also the opening of the file. In most system environments, read and
write operations are requested much more often than the opening and closing
of files. Thus, the system should be optimized for reading or writing the files
themselves.

This is implemented as follows: when a request to read or write a portion of
the file is issued, the file handle is used. These requests are routed to the
MassIO process thus bypassing the file system process. That is, requests for
simple file 110 do not get queued with requests such as CreateFile or OpenFile
that are relatively time consuming. Note that creating a file could cause
several disk 110 operations to occur itself, in addition to the verification and
search times as explained in the previous paragraphs. Read and write requests
are queued only with other read and write requests, and serviced by the
MassIO process, thus optimizing the response time for requestors of these
operations. This permits a higher level of throughput for file manipulation
operations.

147

Data Storage and Access

When the MassIO process receives user requests, it may break them up into
smaller I/O operations due to the physical structure of the disk medium. For
instance, a user may request a read of a logical 64 Kbyte segment of data. This
logical segment of data may in fact be represented by three different disk
extents. This results in MassIO performing three different low level read
operations, each corresponding to an individual extent. However, the data is
returned in one continguous buffer to the caller, who does not have to be aware
of this physical structure.

The CTOS file system is simple but fast, robust, and reliable. It is the best of
its type, and it is one of the longest-lasting contributions of those early
Ctosians whom we called the pragmatists in Chapter 3.

File System Access Methods

Figure 10-2 shows the two layers of file access methods. Underlying all the
higher-level methods is the file system. Calling the file system, in turn, are the
more frequently used SAM (sequential access method, or more commonly
known as byte streams) and ISAM (indexed sequential access method) and the
less often used DAM (direct access method) and RSAM (record sequential
access method). As with other devices, you can either use a higher-level
method for ease of programming or call the lower-level operations directly for
flexibility and performance.

SAM Device-
Dependent DAM RSAM I SAM

SAM
I I I I

t
, File System Service

, ,
(Synchronous; AsynChronous; Request Level)

Figure 10-2. File Access Methods

148

Data Storage and Access

File Management System Service

To perform I/O to a disk file with the file management operations, a program
can use the following sequence:

Create the file
Open the file
Write data to the file and subsequently read the data
Close the file

In using the file system directly, you would call the CreateFiIe operation to
create a file. The file name and password of the file to be created are passed as
parameters, along with the initial size of the file. The latter is used for
reserving disk sectors for the newly created file.

Once the file is created, it must be separately opened via the OpenFile
operation. The name and password of the file are passed as parameters, along
with the access mode (read, write, modify). This operation returns the file
handle by which you must subsequently refer to the open file. All other file
access operations require this file handle.

Once you have the file opened, you can write to or read from the file by using
either synchronous or asynchronous liD operations through the procedural
interface (or at the most primitive level, you can construct request blocks
directly). No matter which approach you use, you must know your file position
(by sector) yourself and specify it with each call. At the lowest level offile
system operation, that is, the Read and Write calls, the file system does not
maintain the current file position; it is up to the application programmer to
maintain this information.

Synchronous File Access

The easiest way for the programmer to interact with the file system is to use
the procedural interfaces Read and Write to do synchronous file I/O.
Synchronous liD means that control is not passed back to the issuer of the I/O
until the requested operation has been completed.

The Read operation transfers an integral number of sectors from disk to
memory. The familiar file handle is used to specify which file is to be read.
The target buffer's address and size are also specified as parameters, along
with the address within the file (which must also be at an integral sector
boundary). The operation returns the actual amount of data read.

149

Data Storage and Access

The Write operation transfers an integral number of sectors from memory to
disk. Once again, the file handle is used to specify which file is to be written.
The source buffer's address and size are also specified as parameters, along
with the address within the file. The operation returns the actual amount of
data written.

Both the Read and the Write operations have synonyms: ReadFile and
WriteFile. These synonyms are necessary when you are programming in a
language where Read and Write are reserved words: for example, in the C or
Pascal programming languages.

Asynchronous File Access

It is possible to have your program continue execution after initiating an 110
without waiting for the operation to be completed. If you use the ReadAsync or
WriteAsync procedural interfaces, the file system initiates 110, but your
program can continue computation until a later point. The program then
issues a CheckReadAsync or CheckWriteAsync call, at which point your
program blocks until the 110 is completed. This type of mechanism is useful
when you are implementing a double-buffering scheme within an application.

Closing the File

When you have completed the, processing of a file, you close it using the
operation CloseFile. This routine simply requires the file handle of the file that
is to be closed. Note that closing a file does not update the end-of-file pointer.
If a file has been extended, the end-of-file pointer must be updated to reflect
the current status of the file with the SetFileStatus call. Note, however, that
the End-of-File pointer is a logical pointer and does not affect the physical size
or contents of the file.

Note that files are handled a little differently under CTOS. A maximum file
length is specified when the file is created. You must keep track of the file
length and explicitly extend it by using ChangeFileLength if the file grows
beyond that maximum. That is, the file is not automatically extended when
you write past the end. This optimizes file system resource utilization.

However, if you are using byte streams or one of the higher level access
methods, the file is automatically extended as needed.

150

Data Storage and Access

Sequential Access Method

The byte stream interface is simpler to use than the direct file system calls.
When you call OpenByteStream, SAM calls the file system to create the file, if
it does not exist, and to open it. ReadBsRecord and WriteBsRecord and their
variations do not require you to restrict your I/O to sector-sized blocks. They
read or write sequentially at the preexisting file position. To do random file
access, you must use SetBsLfa, one of the two device-dependent SAM calls for
file access. When you close a file using CloseByteStream, any needed file
length changes are handled for you automatically.

Random access using byte streams is not as efficient as it is when you use the
file management operations directly, because you do not have as much control
over the amount of data being read. If you need randomization techniques,
then there are several structured file access methods which provide for
randomization.

The Structured File Access Methods

Besides SAM, there are three additional ways to access disk data within CTOS.
All three involve data records instead of unstructured bytes. RSAM accesses a
file that is a sequence of variable-length records. The other two methods, DAM
and ISAM, access a file that is a sequence of fixed-length records. (In fact,
DAM and ISAM can access the same data files.) Of the three methods, ISAM is
by far the most commonly used.

DAM and RSAM are contained in the standard CTOS libraries of object module
procedures. They allow their data files to be accessed by only one user at a
time. ISAM, on the other hand, is a separate package consisting of an object
module library, whose modules are linked into the calling applicaHon, and an
ISAM system service, which allows more than one user to access a file at the
same time. The ISAM system service, in tum, calls the file management
system service to handle its actual file I/O.

Whereas RSAM and DAM use only the data file, an ISAM data set uses two
files: the data file, containing the fIXed-length records; and an index file. The
index file provides a means of rapid access to information contained in the data
file records. Because all records within a data file have the same length, disk
management is simple and efficient: a record retrieved via the index allows the
subsequent sequential retrieval of records.

151

Data Storage and Access

ISAM allows the user to designate certain fields in each record as keys. For
each key field, the index file contains pointers to records that are sorted based
on the key field values. Suppose, for example, that all records are of the
following format:

First name
Last name
Address

The index could contain pointers to the records sorted alphabetically by the
contents of the "Last name" field.

Essentially, an ISAM data set is a DAM file with an extra index file for rapid
access to the records, allowing multiple key storage and retrieval. In some
cases, the size of the index file can be much greater than that of the data file.

If the ISAM system service is installed at both server and cluster workstations,
ISAM users can access data files at both their own and the server
workstations. In this way, ISAM supports distributed applications.

Other Data Base Approaches

ISAM is a good basis for distributed CTOS data base applications that will
handle a moderate volume of transactions. Applications with greater volume
needs can make use of the Oracle data base, which can run across a CTOS
network with multiple nodes.

152

11
Communications and Printing

Beyond the eTOS cluster are software
elements that can allow distributed
applications to extend themselves over a
large area, be it within a building or
across the world. All these programs
can be related to the Open Systems
Interconnection (OS1) standard of the
International Standards Organization
(ISO).

Communications is a big subject. This one word can be stretched to cover any
exchange between intelligent units: everything from getting a computer and a
printer to cooperate directly, to running elaborate mail programs on top of
standard protocols between unlike computers halfway around the world from
each other.

Here we look at communications tools in the CTOS environment, the system
software that lets you implement applications at any point along that
continuum of complexity. Then we pick up one example of a system that
depends on communications tools: the Generic Print System (GPS). Finally,
we touch on some wide-area communications products associated with CTOS
that also use these tools.

153

Communications and Printing

Cluster Communications

CTOS actually has two forms of communications. The local-area network that
was built into eTOS from the beginning was originally called the cluster.
Although this term is now falling into disuse with changing fashions in
marketing terminology, we shall continue to use it here to make clear certain
distinctions between cluster communications and the rest of the CTOS
communications world.

The cluster originally was said to consist of a master (more recently called the
server) and several cluster workstations (which were not slaves because they
could function independently). A server workstation and its cluster
workstations are connected via one logical multidrop line, and the server
cyclically polls the workstations every 1/20 second to see whether they have
requests for it. If the server has time at the end of a polling cycle, it repolls the
active workstations before starting over.

Cluster communications code is part of the operating system itself. The
request/response mechanism that we have so often mentioned works on top of
the cluster software. Cluster communication is completely transparent to the
application programmer: in Ctosian vernacular, "it just works". This fact is
what sets the CTOS cluster apart from other small-computer networks
available today.

We have revisited the cluster concept here only so that we can turn around
and say that is not what this chapter is about. It is about the building blocks
that make communication beyond the cluster lines possible, whether it is
communication with a local printer or over X.25 networks around the world.

Hierarchy of Communications Tools

Figure 11-1 shows the three layers of communications tools. Of the three,
device-dependent SAM for communications (SAMe) is by far the most
important to the programmer.

154

Communications and Printing

SAM

J
'f

Communications Byte Streams

I •
Serial Port Operations (System Common)

Figure 11-1. Communication Tools Hierarchy

In this familiar arrangement, serial port operations are the primitives in the
fundamental layer. Some of the serial port operations are part of a system
service. Others reside in system common for performance and so that they can
be called by interrupt service routines (lSRs).

The next layer is SAMC, which is casually called "comm byte streams." It is
device dependent; and unlike the situation with some other 110 hierarchies, it
is a complete API, not only a set of extensions to SAM. SAMC resides in the
standard libraries and is linked into applications. It calls the serial port
operations.

Let us recall our earlier discussion on byte streams. Corresponding to the
generic OpenByteStream operation is the device-dependent OpenByteStreamC
operation. The difference between the two calls is that the first is a generic
operation, while the second is specific to the utilization of the RS-232 serial
ports. In this call, the device specification can be [COMM] or [PTR]. The first
indicates a communications byte stream; the second, a printer byte stream.

At the top of the hierarchy in the figure is generic device-independent
SAM, once again. For communications, any SAM routine always
calls SAMC. SAM for communications is useful only in those cases in which
output might go, for example, to a disk file under some conditions and out over
a communications line under others. SAM also does not allow the application
to overlap continued execution with a communications can, which SAMC does
if the right routines are used. For these reasons, we shall focus the rest of our
discussion on the serial port operations and on SAMC.

155

Communications and Printing

Serial Port Operations

The serial port operations are written so that the caller, whether it is SAMC
or an application, does not incorporate into its own software any specific
knowledge of different port addresses, clock frequencies, and so on, that are
specific to different machines. Thus, programs that use these operations do not
have to be relinked to run on new hardware types. The serial port operations
also make raw interrupt handlers compatible with protected-mode CTOS.

The operations include routines that assign the caller to a communications
channel or reset the channel for use by someone else. Other routines include
setting up the DMA controller to transmit or receive data, reading or writing
status values, and manipulating the baud rate.

Communications Interrupt Service Routines

Communications occur through channels, which are external devices; and all
external devices interact with the operating system and applications through
interrupts. The operating system takes an incoming interrupt and determines
from a table (the Interrupt Descriptor Table in protected-mode systems) what
interrupt service routine (ISR) should get control in order to take care of the
event that the interrupt signals.

Under CTOS in general, an ISR (also called an interrupt handler) is part of a
larger device-handler program. The other part of this program is called the
device handler process. The two parts of the device handler program split the
work of handling the device itself and the client who wants to use the device.
Figure 11-2 shows that the device handler process is on the "client end" of this
chain and the interrupt handler is on the "device end."

Device Handler Program

Device
Client r ,

Interrupt r

Handler Device Program " Process " Handler " -- -- "'

Figure 11-2. Overview of Interrupt Handling

156

Communications and Printing

Especially in the case of communications handling, interrupts cannot wait
around too long to be taken care of; otherwise data can be lost. Thus the
interrupt handler specializes in taking care of things promptly and quickly so
as to be ready for the next interrupt, while the device handler process is called
into action less frequently to, say, empty a buffer that the interrupt handler is
filling, or to handle a request from or a response to a client program.

Most operating systems have external interrupts and methods of handling
them. What is interesting about the CTOS method is that the interrupt
handler and the device handler process communicate with each other by using
interprocess communication (lPC) primitives directly (as well as optional
shared memory). They can do so because they are parts of the same program,
even though they execute asynchronously, as if they were two processes. The
flow of IPC is unidirectional: only the device handler process can perform a
Wait, while the interrupt handler can perform the PSend primitive (a variant
of the IPC Send). Thus, the device handler process Waits at an exchange either
for a request message from a client wanting a service, or for a PSend message
from the interrupt handler representing status or data. The device handler
process is both a clearinghouse for information related to the device and the
agent responsible for determining what the device should do next.

Communications ISRs (interrupt handlers) are built on calls to the serial port
operations.

Asynchronous or Synchronous Communications Applications

At the risk of seeming to belabor the obvious, we should clarify some terms,
because we are about to use the same word to mean two different things.

Two types of protocols can be used by communications application programs.
In synchronous communications, clock signals are synchronized between
sender and receiver, and data is transmitted according to fixed time intervals.
In asynchronous data transfer, there is no regular or predictable time
relationship between sender and receiver.

Different communications ISRs are needed to support synchronous and
asynchronous communications under CTOS. The existing communications
110 tools shown in Figure 11-1 support asynchronous communications
programs. If you need to write a synchronous communications program to run
under CTOS, you must write your own communications ISRs, calling the serial
port operations to do so. CTOS systems documentation explains how do write
these ISRs.

157

Communications and Printing

Communications Byte Streams (SAMe)

SAMC is a set of standard library routines for device-handling. When you link
these routines into your application, you make your program into the device­
handler program we spoke of earlier. SAMC contains most of the interrupt
handlers required. However, to make applications hardware independent, a
few interrupt handlers are system common procedures in the operating system.
(Because a system common procedure is executed as part of the calling process,
this arrangement does not violate the need for processes to be within one
program in order to use IPC directly.)

The device-dependent interfaces of SAMC provide a more powerful and flexible
set of services than those available at the level of SAM. Although it is more
complex to use than SAM, SAMC comprises a complete set of services and can
act as a replacement for SAM, provided that only communications and no other
device types are being supported. Used in this fashion, SAMC is a general­
purpose device driver for asynchronous RS-232 communications. It can
form the heart of virtually any communications product except those that
use synchronous communications protocols. Both half- and full-duplex
communications are supported efficiently, with a variety of line control and
data editing options. Among other conveniences, using SAMC frees you from
writing interrupt handlers.

SAMC has been optimized for very high performance. It directly uses the
task-switching facilities of the recent Intel microprocessors. It has become the
basis for CTOS networking beyond the cluster level, as well as for printing
services and other applications that require serial communications.

Overlapping Execution

We were at pains to define asynchronous versus synchronous protocols above
because we also need to talk about asynchronous programming in another
sense. As we saw when we discussed system services in Chapter 7, a program
that makes a request for a service can wait (block) until it receives a response
before continuing execution. This program behaves in a synchronous manner,
which is the default when a request procedural interface is used. If the
program makes a request and goes on executing while that request is being
processed, later checking to see whether there is a response, this program is
behaving asynchronously. To achieve asynchronous behavior (overlapping
execution with 110, for example), you usually must build the request block and
issue the request primitive yourself.

158

Communications and Printing

Communications byte streams contains a duplicate set of operations for the two
purposes. Synchronous behavior (blocking, or nonoverlapping execution)
occurs when you use interfaces such as FillBufferC, FlushBufferC, and so forth.
For asynchronous behavior, you must use a variant set of interfaces with
analogous names: FillBufferAsyncC, FlushBufferAsyncC, and so on. Thus, to
achieve asynchronous execution in a communications program using SAMC,
you do not build the request block yourself. The asynchronous operations
include additional parameter options that allow the caller to specify what
SAMC should do it if needs to wait before the operation can be completed. As
an example, one option provides using the IPC primitive PSend to send a
message to a caller-specified exchange when completion becomes possible.

A SAMe Customer: GPS

As we saw in Chapter 8, both old and more recent printing methods coexist
in the CTOS world. The old methods have been preserved for backward
compatibility with venerable applications that have not reformed their ways,
and there is not much point in our elaborating on them here. What is more
interesting is to look at the Generic Print System (GPS), to which most
applications that print are now written, and which is a client of SAMC as
it communicates with printers.

GPS is a complex product that consists of a collection of system services and
libraries, not all running on the same workstation, which encapsulate the
various tasks of printing in a modular, device-independent manner and permit
applications to request printing without containing any printing code
themselves. Further, these applications can output a generic stream of
formatting commands that will be interpreted specifically for the destination
printer chosen.

Overview

Figure 11-3 shows a simplified diagram of the components of GPS. The central
element and traffic cop is the Print Service, which handles routing and spooling
of print jobs. The Print Service directs jobs to various device drivers, which are
system services themselves, each handling a type of printer. The printers
together with their device drivers may be located on the same workstation, on
other cluster workstations, or across the network on other nodes from the Print
Service. The Print Service "knows" all the printers on its own cluster by name,
and it needs a node specification to find a printer on another node. (Once it has
found such a remote printer, the Print Service lists and retains this
knowledge.)

159

Communications and Printing

Figure 11·3. Generic Print System

Cooperating in this picture are the Queue Manager, a CTOS system service
that is not part of GPS, and the Font Service.

On the application end, there are three choices. An application can use GPS
byte streams, or make calls to a byte-stream-like library called the Generic
Print Access Method (GPAM), at the lowest level make direct requests via
procedural interfaces to the Print Service.

GPS Byte Streams

GPS byte streams is a set of device-dependent SAM routines that are not
included in the default configuration of SAM that comes with CTOS, but
can be configured in when SAM is built. The GPS byte streams interface
is the familiar set of generic operations: OpenByteStream, WriteBsRecord,
CloseByteStream, and so on, where the printer name is specified as the target
device. GPS byte streams are simple to use and quite adequate for utilitarian
applications, but they support only characters, line feeds, and form feeds, and
no special formatting.

160

Communications and Printing

Generic Print Access Method

GP AM is essentially a page-description language. It is a library that can be
called to include formatting and graphics into the outgoing stream of data from
an application. GPAM inserts generic formatting commands and in turn calls
GPS byte streams for most tasks, although it does make a few direct requests
to the Print Service to set parameters.

Calling the Print Service

Applications can make requests of the Print Service through the request
procedural interface. An application cannot put formatting into its document
by making these requests: in fact, they usually are made for printer control
and status information only. Applications can and do call both GPAM and the
Print Service, the first for formatting, the second for status information.

The Print Service

In its routing function, the Print Service receives the print request, locates the
printer device driver, spools the job if necessary (with the help of the Queue
Manager), and finally sends it on to be printed. The Print Service then
monitors the printing process.

To route print requests between network nodes, the Print Services on the two
nodes interact with the net agents on their nodes. All the mechanics of passing
a print request across the network are transparent to the application that
submits the print job.

GPS Device Drivers

When a GPS device driver receives the stream of data associated with the print
request, it interprets the embedded generic formatting commands to the
highest level that it can for the printer it controls and then forwards the
stream to the printer. Formatting commands that are too sophisticated are
interpreted with the closest approximation possible on that printer, but are not
rejected.

Many GPS device drivers are available from various vendors to support
different printers including PostScript® printers. In addition, there is a device
driver developer's kit. The core of this kit contains control routines and a set of
rasterization and vectorization routines to interpret GP AM commands; the
developer adds printer-specific output routines.

161

Communications and Printing

Wide-Area Communications

Beyond the eTOS cluster are software elements that can allow distributed
applications to extend themselves over a large area, be it within a building or
across the world. All these programs can be related to the Open Systems
Interconnection (OSI) standard of the International Standards Organization
(ISO). This well-known, seven-layer OSI standard is shown in Figure 11-4.

7 Application

6 Presentation

5 Session

4 Tronsport

3 Network

2 Data Link

Physicol

Figure 11-4. The Seven-Layer 051 Model

The CTOS Network: BNet

The most important piece of the communications picture from the point of view
of distributed applications is the network that connects clusters together.
Interrelated with eTOS itself, the eTOS Network carries the message-based
architecture to a wider span, allowing applications access to other nodes
through the request-response mechanism. The application need only specify
the node name to work across the net.

The various OEM versions of eTOS also have various names for the eTOS
Network. We will use BNet here as the example.

BN et is composed of several cooperating system services. A simplified
overview of the parts of the network is shown in Figure 11-5.

162

Net Other 051
,..--

Agent Applications

051 Session

STI
051

BNet Cluster Transport
Transport Access WAN

051
Transport

LAN

,~ ,~

+ +
Async, Cluster X.25 Ethernet

Token Ring HOLC, Communications
etc.

Communications and Printing

Naming Service

I I
STI STI

I I
SNA DCA

Transport Transport

051
Layers

7

5

4

Figure 11-5. BNet Block Diagram

BN et provides bridge processing among heterogeneous networks, thus enabling
intertransport communications. BNet architecture is limited only by the
underlying transport and system environment. It provides network indepen­
dence and an open, standard interface to facilitate future expandability. It
supports unlimited simultaneous outstanding requests and unbounded
simultaneous logical connections.

BNet is a point-to-point routing system. If sending and receiving nodes are not
directly connected by the physical medium, other nodes act as intermediaries
by relaying the data packets from node to node between sender and receiver.

163

Communications and Printing

The top layer in Figure 11-5 corresponds to the application layer (layer 7) in
the OSI reference model. At this level are the Net Agent and Net Server,
which are two processes contained in one system service. We referred to that
one system service in Chapter 7 as the Net Agent. The Net Agent and Net
Server processes pass requests and responses to and from client application
programs. Other OSI applications, such as X.400 Message Handling Service
mail programs, are shown at this level also. They are not part ofBNet, but
they can utilize BNet to distribute services. Finally, the System Management
Services are shown in this top layer. This system service provides administra­
tive functions and a Naming Service. The other application-level components
can use the Naming Service to find unidentified network nodes for which they
have requests.

There is no need for an OSI presentation layer (layer 6) within BNet because
there are no interface incompatibilities to be bridged at this point.

Session control is layer 5 in the OSI model. From this point on, BNet offers
more than one option in the construction of a communications stack, partly for
historical reasons. One important component at this level is the OSI Session
Services system service. It interfaces with both the Net AgentJN et Server and
the other OSI applications above it. It also communicates with transport
layers below it.

Figure 11-5 also shows the Net AgentJNet Server communicating with two
other entities: the CTOS Network Transport and Cluster Access. The CTOS
Network Transport provides a pathway for lower-level communication via
synchronous and asynchronous media. Cluster Access allows the server
workstation or any cluster workstation to communicate with any other on the
cluster. Effectively, CTOS Network Cluster Access thus adds an optional layer
of peer-to-peer communication on top of the unidirectional cluster network.

The OSI Session Services layer communicates with a range of system services
called Sessiontrransport-LAN Interfaces (STI). These STIs manage various
transport backbone types, including SNA and DCA. Extension of this
mechanism to other transport entities is possible. The OSI Session system
service also can communicate directly (that is, without an intervening STI)
with the OSI Transport WAN to interface with X.25 public data networks.
SNA and DCA interfaces allow the user to run BNet services over an existing
WAN backbone, lowering the cost of CTOS networking.

164

Communications and Printing

Beyond

Auxiliary communications software products, including an SNA Network
Gateway and 3270 terminal emulator, are available to interface CTOS-
based workstations to the Systems Network Architecture (SNA) designed by
IBM Corporation. This software allows the workstations to communicate with
IBM mainframe computers.

Other communications software products are also available from a variety of
vendors to interface to most mainframes and minicomputers.

165

12
Prototype Until Done:

Timekeeper Development

In the CTOS world, unlike some others,
one generally does not write application
prototypes that are thrown away when
the "real" code is written. The more
common method is to write a "prototype"
that really is the core of the product,
successively refining it ... Our work on
Timekeeper involves designing two
major components: the local user's
interactive application and the
Reminder system service.

In the CTOS world, unlike some others, one generally does not write
application prototypes that are thrown away when the "real" code is written.
The more common method is to write a "prototype" that really is the core of the
product, successively refining it until it is in shape to be released (a process
called stepwise refinement). This first version includes as many existing pieces
as possible: there is no need to recreate the wheel.

167

Prototype Until Done: Timekeeper Development

Timekeeper's Components

It has been some time since we talked about Timekeeper back in Chapter 5,
so let us quickly review the design decisions we have already made about it.
Knowing more about CTOS I/O methods, we can now pick the ones that are
right for this project.

Timekeeper is to be a workgroup-oriented application that keeps calendars and
To-Do lists for group members, sending them reminders of events and
deadlines. It will allow users to check each other's calendars and schedule
meetings, with Timekeeper doing the work of matching up time slots and
finding an available conference room with the right amenities. It will also
allow users to send each other electronic messages.

User Interface

We shall design an interactive application to run locally at the user's work­
station, to accept inputs and return outputs, and to communicate with the
system services. Our best bet is to start right out using the new XVT bridge
tool. This approach will give us the greatest compatibility with future CTOS
systems.

XVT has a dialog box editor that enables us to prototype the user interface
interactively and to test run it separately from the application of which it will
be part.

XVT will handle keyboard, mouse, and video for us. Thus, for Timekeeper's
interactive application, we do not need to get involved with keyboard or video
byte streams or with the I/O methods underlying them: keyboard primitives
and V AMNDM. When we write the Reminder system service, we shall also
write a utility to deinstall it. This utility will put up simple screen messages to
a screen inherited from the Executive. Thus, video byte streams are a perfect
choice for use in the deinstallation utility because they will do the job with
minimal effort on our part.

Data Storage

Our data storage (calendar, meeting room, and To-Do list data) must be
centrally located so that it is accessible by all users. Of the methods we
discussed in Chapter 10, ISAM is clearly the most suitable. It is based on a
system service that can handle contention by users for the same data
resources, and its performance is excellent for the volume of transactions we
expect.

168

Prototype Until Done: Timekeeper Development

We could also use one of the two existing CTOS-compatible versions of Oracle,
but it is not the best choice in this particular case, because ISAM is faster for
the kind of work we expect to do. Oracle is optimized for very high transaction
volumes, at which level ISAM cannot perform as well.

As a result of this decision, we could use the file system directly for data access,
or we could use disk byte streams for access to configuration files. Direct file
system calls may be more efficient than the byte stream calls, in addition to
being easier to use. However, byte streams provide device independence and
the easy redirection of input and output.

Reminder Service

We decided in Chapter 5 to design the Reminder Service ourselves, although
Queue Manager would do the job for us. (Remember that we would really like
to use tools that are available without resorting to replication of existing
material, but that we are taking this route in this case simply for illustration's
sake.)

Mail Service

Our Reminder system service will pass user communications from the
interactive application to the existing Mail Service for delivery to other users.
The Reminder need only call the Mail Service API to do so. Mail notification
can be put into an application so that it displays an indication of new mail
when mail is received in a mailbox. Here is a prime example of taking
advantage of software that is already available. The entire communications
backbone is available, allowing a rapid implementation using preexisting tools.

Networking

In most other development environments, we would have to devote
considerable time and effort to make our program interface correctly with
separate network software-maybe of more than one type. Under CTOS, this
part comes for free. Ifwe set up our requests correctly, we do not need to give
networking another thought.

To allow for eventual implementation of Timekeeper over wide-area networks,
we simply need to route our requests by file specification, including the·
node-name component.

169

Prototype Until Done: Timekeeper Development

Printing

We cannot leave 110 methods without discussing everyone's favorite topic,
printing. We could just write to GPS byte streams, but although that would be
quick, it would not give us any special formatting. If users are going to want to
print out their calendars with nice grids of lines or special fonts, we will need
to write to GPAM anyway, so we may as well start out by doing so.

Native Language Support

eTOS has quietly acquired a large installed base around the world, much of it
in countries where the language is not English. Thus, in the course of eTOS
history, it became very important to make it easy for other people to convert
eTOS to their native languages without plowing through reams of code,
rebuilding the operating system, and risking the creation of new bugs in
doing so.

NLS (Native Language Support) is the facility by which both systems and
applications developers under eTOS make conversion simple. Using NLS
has two aspects. First, certain procedural interfaces that support language
conversion must be used in preference to other, older eTOS procedural
interfaces. Second, messages that will be displayed on the screen must be
segregated into a special disk file for easy editing. This file can be a traditional
eTOS message file; or if you are usingXVT, it can be the file in which the XVT
resources (such as fonts, dialog boxes, icons, and text) for that program are
kept.

We bring up the subject of NLS at this point because it is much easier to code
an application with the correct NLS calls the first time than to comb back
through the code and retrofit it with internationalization. This is especially
true with the message file, because hard-coded screen message strings must
not be used.

NLS Mechanism

NLS is based on a set of tables that define such language dependent elements
as date and time formats, number and currency formats, collating sequence,
keycap legends, and so on. These tables are in a system file on disk. When the
operating system is booted, these tables are loaded into a special memory area.
(Alternatively, if you are going to need to support more than one language at a
time, you can link the tables into your program.)

170

Prototype Until Done: Timekeeper Development

The tables are in an assembly language file that can be edited, assembled, and
linked, without change to the operating system. Thus, translators need touch
only this external file and need not rebuild CTOS or an NLS-based application.

The other half of the mechanism is a set of standard library object module
procedures that internationalized programs must use. These procedural
interfaces are easy to recognize by the 'Nls' string embedded in their names:
NlsFormatDateTime, NlsNumberAndCurrency, NlsYesNoOrBlank, for
example. These procedures refer to the NLS tables to determine what currency
symbol to use, what string means "yes" or "no," and so forth.

Message Files and XVT Resource Files

In addition to the NLS facility, you can use the message file or XVT resource
file to internationalize your application program. Using this facility, you
remove the messages from your applications and place them in the appropriate
message file. If you are using the traditional message file, you do not link the
message strings with your program, either by hard-coding them or by putting
them into a separate module of the program. If you are using the XVT resource
file, the compiler associates the correct objects with your program. As a result,
your program code remains language independent.

A traditional message file actually exists in two forms: text and binary.
You create your messages in text form. (The translator also later translates
them in this form.) Then you use a simple command to convert the text file
to a binary file so that the messages can be more quickly accessed by your
applications. In your program code, you use the message operations
(lnitMsgFile, GetMsg, PrintMsg, and alternates, which are in the standard
CTOS libraries) to display the messages. These routines are built on video byte
streams.

In the text file, messages are in a format that can be easily edited and
converted to binary by nonprogrammers. This fact saves expense during
translation efforts.

As with the NLS procedural interfaces, it is far easier to start off using the
message-file technology than to retrofit later.

171

Prototype Until Done: Timekeeper Development

Interactive Application

Our work on Timekeeper really boils down to designing only two of the major
components: the local user's interactive application and the Reminder system
service. We are assuming here that you know already how to write
applications in general, so we are going to focus on the CTOS tools that you
would use to implement the necessary elements of such an application system.

We shall start with the interactive application.

Basic DeSign

The main duties of the interactive application (IA) are accepting user
commands, figuring out what is wanted, making the necessary requests of
other services, and displaying video output to the user. Figure 12-1 shows how
the IA is related to other pieces of Timekeeper and system software.

Cluster Workstation

Timekeeper
Interactive
Application

Cluster
Communications

Server
Agent

Server

Figure 12-1. Relationship of the Interactive Application to Other Software Entities

172

Prototype Until Done: Timekeeper Development

One of the most important parts of the IA is the user interface. As we have
already mentioned, we shall use XVT's dialog box editor to create the various
elements of the user interface. We shall place all screen messages in the
resource file so that they can be easily nationalized. XVT itself makes NLS
calls where that is necessary, so we do not have to concern ourselves with those
aspects of internationalization.

Requests to the Reminder Service

One big thing that the IA will do is make requests of the Reminder system
service, which in turn will deal with all the other system services in the
Timekeeper application system. Although defining the requests that the IA
will use is really part of developing the Reminder system service, we are going
to discuss them here, because it is primarily the IA that will use the requests.

Reminder interfaces with the IA via a set of requests that are constructed
solely for the use of this application. What types of requests would be
necessary here? The most obvious is the abort/termination request, which
must be handled by the Reminder service (even though is not issued by the lA,
but by the operating system when the application exits). In addition, requests
to CreateReminder, ReadReminder, ModifyReminder, and DeleteReminder are
obvious. Not so obvious are session-oriented requests. We shall define two of
these, OpenReminder and CloseReminder. These session-oriented requests
allow multiple lAs (perhaps from different cluster workstations) to utilize the
Reminder service.

Before we show the formats of these requests in terms of procedural interfaces,
we really need to know the mode of operation of the requests. A Read of a
reminder will return a single reminder to the calling application. But how is
the application structured? The application may issue reads for all the
reminders for a specific day or all the reminders for a specified priority. The
number of reminders returned depends on what information is desired. Writes,
however, are different. A write will be issued either because of an update or
because a new reminder is being sent. Both the reads and the writes are valid
only if the session handle returned by the OpenReminder operation is included.

To initiate a session with the Reminder service, an OpenReminder call is
issued. All further Reminder operations require that this session handle be
passed as part of the parameter strings. The session handle logically
establishes a connection between the IA and the Reminder service. Multiple
connections are possible with each connection identified by the session handle.

173

Prototype Until Done: Timekeeper Development

To create a reminder, the IA issues a CreateReminder call. This call accepts
the address of the data area containing the reminder information and the
address of the memory area where the unique record identifier (URI) is
returned. The URI allows the user to modify a given record and store it back in
the data base with a Modify Reminder operation; this gives us the ability to go
directly to the record by using the underlying data base access routines.

To issue a read to return a reminder, a ReadReminder call is used, where the
session handle is passed, along with the address of the data area where the
reminder is returned. Additional parameters are the priority, the date
structure, and the memory address where the URI will be stored. Why are
these parameters necessary? The IA displays reminders based on priority or
based on the date. These two data elements are also keys within our ISAM
data base. This choice of parameters makes the connections among the lA, the
Reminder, and the ISAM data base simpler.

To delete an existing reminder, a DeleteReminder call is issued. The Reminder
handle is passed, together with the URI of the record being deleted.

To issue a write to either create a new reminder or update an existing
reminder, a WriteReminder call is issued, where the Reminder handle is
passed along with the reminder record. Additionally, a URI may be passed
(valid if an update to a previous existing record is being performed).

To close a Reminder session, a CloseReminder call is issued. Once this occurs,
the connection between the client and the Reminder service is discontinued.

Note that each of the operations mentioned above are very much like high-level
I/O operations with defined procedural interfaces allowing easy programmatic
interface. The operations could be object-module operations that would
translate the user's requested function into low-level file access methods.
However, since we are attempting a distributed application under CTOS, we
shall use loadable requests to implement the interfaces. Reminder is the
system service that will serve these requests, thereby making the service
available across the network to any user requiring programmatic access to the
Reminder Service.

Relationship With the Mail Service

The IA will not deal directly with the Mail Service, but will communicate with
it through the Reminder. We shall discuss the interface between Reminder
and the Mail Service later in this chapter. The calls to the Mail Service allow
us to utilize preexisting communications routines for the automatic routing of
messages.

174

Prototype Until Done: Timekeeper Development

Printing Through GPAM

The IA will need to send print requests and to provide for special formatting of
Reminder documents, such as calendars and meeting notices. It could also
provide printer status information to users. For this implementation, let us
assume, however, that users would use the Generic Print System's Print
Manager utility to check on status.

When the user issues a print request to the IA, it will use a GP AM data stream
to send the document for printing, adding commands to describe the
sophisticated formatting we need to provide calendar rules and special fonts.
GP AM communicates with the Generic Print System much like a byte stream.
Calls to GPAM's object-module procedures are used to described page
formatting, fonts, and graphics.

The the IA uses a call to GPAMOpen to open the data stream, specifying the
document to be printed, special characteristics of the print job, and both the
familiar work area buffer and an additional buffer for GP AM procedures.

Within the data stream a series of calls to GP AMs formatting routines describe
the characters to be printed and special formatting to be supplied. Graphics
routines can also be embedded in the data stream between calls to
GP AMBeginGraphics and GP AMEndGraphics.

The Generic Print System's Print Service, located at the server workstation,
routes the data stream to the specified printer anywhere in the cluster or
local-area network.

What makes the Generic Print System unique is that applications may prepare
device-independent print output that is automatically and transparently routed
across the network. Special device drivers are supplied for each printer
supported for use with CTOS systems. These drivers specifically accept print
requests with GPAM formatted files, or simple ASCII files sent through GPS
byte streams, and translate the contents into the device-specific information
needed to print the file on that printer. The device driver is installed only on
the workstation to which the printer is attached.

Thus, Timekeeper formats output in a generic way, and can print on any
supported CTOS printer. The code in our application is kept small. The
resources required to process the request are distributed, taking up memory
and disk space only where they are needed.

175

Prototype Until Done: Timekeeper Development

Reminder System Service

Our other major effort goes into the Reminder system service. To keep things
simple, we shall initially design a single-process, synchronous system service.
In the real world, this approach would be adequate as a prototype to enable us
to get the product up and running and see how it worked. Once we began to
have multiple users actually competing for data, we would need to consider the
methods described in Chapter 13 for writing a more sophisticated system
service.

Reminder, being a system service, has a specific structure that is mandated by
the types of operations required. It is a straightforward implementation with a
simple loop (wait until something is received; then perform the requested
operation). Before we describe the loop structure, though, let us look at how
the service is installed.

Installation

First we perform a call to GetPartitionHandle to see whether the service is
already installed in another partition. The Reminder service partition has a
unique partition name, and GetPartitionHandle will return the partition
number for the partition name requested. We do not want to attempt another
installation if Reminder is already running.

Ifno error results, Reminder is already executing, so we exit with an error
message indicating such. An alternative method could be utilized by
performing a Query RequestInfo operation passing one of the Reminder
requests as a parameter to determine whether the request is presently being
served.

N ext, we allocate any permanent resources to be used by the Reminder (for
example, exchanges or short-lived memory).

Then we query the status of all the requests to be served by Reminder.
We must serve the CreateReminder, ReadReminder, ModifyReminder, and
DeleteReminder requests, as well as OpenReminder and CloseReminder. We
query their status with a call to QueryRequestInfo for each request. A status
code of 'N 0 such request code' returned by this call indicates that the request
has not been served and thus that we can serve it. A status code of 'error OK'
returned would indicate that the request is served by some other process and
would complicate matters somewhat, forcing our system service to filter the
request: but this is another matter. Reminder will exit if a nonzero status
code is returned.

176

Prototype Until Done: Timekeeper Development

Once the requests have been served, we issue a call to ConvertToSys. This
operation changes all processes, exchanges, and memory in the partition from
application status to system service status. In Ctosian terms, the service at
this point becomes an extension of the operating system.

Next, we issue a call to Exit. This operation causes the reload of the exit run
file (normally the Executive). The Reminder service is now permanently
installed in memory as a system service.

To ensure that the service can complete its required activities in a timely
manner, Reminder then calls ChangePriority. The priority specified should be
a higher priority than all interactive applications (which normally run at
priority 80h).

Next a call to SetPartitionName is issued to identify the partition. Here the
partition number (0, indicating the current partition) and the name of the
Reminder service are passed as parameters. Remember the earlier step in
which we checked to see whether the partition was already installed? The call
checked for the same partition name that we used within this
SetPartitionN arne call.

Next, we make a ServeRq call for each of the requests to be served (in our case,
CreateReminder, ReadReminder, and so on).

Finally, the system service can go into its wait state, waiting for something to
do. When a request is then received by the Reminder, it will process that
request.

Deinstallation

Deinstalling a system service is not a trivial task. (Deinstallation is different
from the kind of termination we have talked about earlier. Termination refers
to the condition when an application program, or system service client, is
trying to cease execution.) Deinstallation takes place in three phases. First
the deinstallation utility (a separate program from Reminder) sends a
predefined message or even a deinstallation request to the system service. An
agreed-upon, 4-byte message from the deinstallation utility to the reminder
service is all that is necessary unless an eventual filter is required If a request
is required, then Reminder must be modified to serve and respond to this
request. The deinstallation message informs the service to shut down its
operation. Second, when the service receives the deinstallation message, it
must perform a sequence of operations. Finally, when the operations are
completed, the service responds to the deinstallation message and the
deinstallation utility cleans up what is left.

177

Prototype Until Done: Timekeeper Development

Once the Reminder receives the deinstallation message, it must check for open
connections with client applications (in this case, the IA). Reminder refuses to
deinstall if there is an open connection.

If Reminder is in a state where it can deinstall, we must restore the request
table in the operating system to its pristine state (the state it was in before
Reminder was installed) by issuing a ServeRq request for each of the requests
with the same information originally received in the request information
structure. (Note that we had to save this information before the Reminder
initially issued its own ServeRq calls.) We must issue the calls in reverse order
to that in which they were originally issued. (The connection-opening request
should be "unserved" first.) This approach will ensure that the service receives
no new requests while attempting to deinstall.

What do we do if we have any outstanding requests? We respond to all of them
with an appropriate error message (all except the deinstallation request). Thus
we ensure that no requests are lost when deinstallation is complete.

Next, Reminder closes any connections it has opened as a client (for example,
those with the Queue Manager, Mail Service, and ISAM Services).

Now Reminder unlocks its partition by calling SetPartitionLock. This
operation allows the service to be removed from the partition. Reminder then
responds to the deinstallation message, effectively informing the deinstallation
utility that Reminder is ready for removal.

Once all these steps have been completed, the Deinstallation utility then issues
an ExitAndRemove, which causes the service and its partition to be removed.

Reminder Loop Structure

Remember that a system service waits for a request and performs some
amount of processing based on the request before finally responding to the
request. What does this structure look like within Reminder? First, let us ask
from whom we expect messages: the user lA, the deinstallation utility, Mail
Service, and Queue Manager. We receive responses from the last two in
response to request primitives issued from Reminder itself. Why do we issue
primitives? Because we do not want to block. (The procedural interface causes
a process to wait until the requested service is completed.) We do not want to
wait until a mail message is received (we may wait forever) or wait for a queue
entry to be removed, so these operations are implemented with the primitive
Request rather than via the procedural interface.

178

Prototype Until Done: Timekeeper Development

Calls to ISAM need not be implemented via primitives, because they will be
issued immediately when access to the data base is required. We cannot
respond to a ReadReminder, WriteReminder, or DeleteReminder request until
the ISAM operation is finished, so we do not care if we block on ISAM. In
addition, operations that use the Queue Manager (with updates caused by
Writes and Deletes) can be done using the procedural interface for the same
reason.

Reminder waits at its exchange, the memory location where the pointer to a
request block is returned. Reminder then keys off the request to determine
what to do next.

If Reminder receives an OpenReminder request, the service initializes a
session for validating incoming requests from the IA A CloseReminder request
basically invalidates the session (although invalidation is dependent on
completion of all outstanding Reminder requests for that session).

If Reminder receives a CreateReminder, ReadReminder, WriteReminder,
or DeleteReminder request, the system service then issues a series of
requests to ISAM to perform the action requested by the user from the IA
CreateReminder, WriteReminder, and DeleteReminder also require an update
to the ISAM data base and to the Reminder Queue File, so Reminder then
performs these actions before responding to the CreateReminder,
WriteReminder, or DeleteReminder request.

Queue Manager responses are received when reminders become due. In our
simple system, we notify the user of a due reminder by causing a short
repetition of beeps. The user responds to these beeps by running the IA to read
the reminder.

Mail Service responses are received when reminders are received from remote
sites. These messages must then be stored in the ISAM data base and the
Reminder Queue.

Interactions

In addition to interacting with its clients, each copy of the Timekeeper
interactive application on the users' workstations, we have seen that the
Reminder Service will interact with the ISAM system service, which may be on
the same server or across the network. For simplicity, we shall consider it to
be on the same server. Reminder also must get system time information from
the operating system. Further, Reminder interacts with the Mail Service.
Figure 12-2 shows these relationships. For simplicity, we omit the local and
server agents and operating system involvement in the transfer of requests and
responses.

179

Prototype Until Done: Timekeeper Development

Cluster Workstation Server

.. System

!
Clock

Timekeeper _ ... Reminder r---. ISA~

Interactive System
Application - Service ~ Service

t
Moil

Service

Figure 12-2. Reminder Service as Service and as Client

Interacting With ISAM

The following steps show a very basic method for interfacing to ISAM. This
methodology is very simple; a real implementation would be more complex.
Remember that ISAM itself is a system service available to multiple clients.

To access ISAM, we issue a VerifyMultiUserISAM call. This can sends a
request to ISAM at the node where the application system is running. (In a
local area network where clusters are networked together, if ISAM is not local
to this node, then the request is simply passed to the node where it is resident.)
A nonzero status returned indicates that multiuser ISAM is not available.

If multiuser ISAM is not available, we issue a LoadSingleUserISAM can where
we pass the ISAM run file specification and password and the ISAM
configuration file specification and password as parameters along with the
status block. This call loads ISAM as a task and initializes communications
with ISAM. Memory is allocated as short-lived memory from the pool of
unallocated memory available to the application system. (Remember that in
this case the partition must be large enough for both the application and
single-user ISAM.)

180

Prototype Until Done: Timekeeper Development

We next issue an OpenISAM call to open the ISAM data set. A single call must
be issued for each ISAM data set. In our case, since we have a rather simple
data base, only one OpenISAM call will be issued. The call requires the data
set name as a parameter and returns a handle to be used for all subsequent
ISAM operations.

When records are read sequentially by keys, we would use the following
procedure: We first issue a SetUpISAM-IterationLimits call to initialize
a sequence of read operations for records that have keys for a specified
index (for example, all class A To-Do items). We then repetitively issue
ReadN extISAMRecord calls to retrieve all the records in key order from the
data set. A unique record identifier (URI) is returned for each record.
Selection of a displayed record on the To-Do list for deletion or modification
requires the URI for that item.

We issue a BeginTransaction call to mark the start of a transaction for the
application system. ISAM has a concept of a transaction definition that allows
for the definition of transactions that must be completed in totality. This
allows the programmer to ensure that a sequence of low-level ISAM operations
are completed successfully.

To store a new record in the data set, we call StoreISAMRecord. The indexes
are updated to reflect the presence of the new record with the
StoreISAMRecord operation.

To modify or delete an existing record, we first use a ReadUniqueISAMRecord
call to read the specified record identified by a given key. We then use the key
with a following ModifyISAMRecord or DeleteISAMRecord to modify or delete
the existing record. Again, all indexes are updated accordingly. With the
delete operation, all data in the record is destroyed.

We issue a CommitTransaction call to complete the transaction. Any records
that may have been locked are unlocked with the commit.

When we are done we must close the ISAM data set. Issue a CloseISAM ca11 to
close and release a11 the resources associated with the' open data set. Once this
ca11 is completed, the ISAM handle associated with the previous data set is no
longer valid.

As you can see, each of the operations allow a simple interaction between a
data base client and the ISAM system service. Since the interfaces are a11
requests, the ISAM service need not be local to the requesting application (in
our case, Reminder). This also shows how a service itself can be a client to
another service.

181

Prototype Until Done: Timekeeper Development

Interacting With the Mall Service

Reminder interfaces to the Mail Service to distribute reminders through the
network. Included are the passage of new reminders to be stored within the
ISAM data base and the passage of due reminders to the user.

The following steps show only the basics of interfacing to the Mail Service. In a
real implementation, you would have to consider other application-specific
details.

To send mail messages and attachments from the data base, we use an InitVm
call. This call initializes a memory buffer for use by the Message Facilities.
We must do so before using any of the other facilities.

To open a mail connection with the Mail Service, we use an EstabIishMailCon­
nection or OpenMailConnection call. A mail user name and mail password are
parameters for these calls. These parameters are retrieved from an installa­
tion parameter (from the VLPB), from a user file (from the MailCenterName
and MailUserName entries), or via a hard-coded value. These calls return a
parameter, the mail handle, which is used for all subsequent mail operations.
In addition, the path ([volume]<directory» indicating the location of the
Mailbox directory is returned. The OpenMailConnection also accepts an
additional parameter for specifying this type of mail connection (for example,
long-lived, or sending-mail only).

Next, an InitMaiIMsgBuffer call is issued to initialize a message buffer for
creating mail messages.

To create a message, we issue successive PutMsgComponent calls to construct
a mail message one field at a time within the previously allocated message
buffer (for example, the From and To fields) .

Once the message is assembled, we issue a CheckPointMsg call. This call
returns the size of the message for subsequent use in the SendMail call.

Next, we make a ReleaseMsg call to release the buffer so that the message can
be sent.

Finally, we use a SendMail call to begin the delivery process. This call
instructs the Mail Service to send a copy of the message to the designated
recipients.

A unique message ID is returned that identifies the message as it passes
through the mail system. The message is automatically routed to the mail
centers indicated by the names in the To field.

182

Prototype Until Done: Timekeeper Development

To receive updates in a mail message and/or attachment and incorporate them
into a data base, we issue a sequence of calls similar to that we used for
sending mail messages. We first use the InitVm call to initialize a memory
and then open a mail connection via an EstablishMailConnection or
OpenMailConnection call. Next, as before, we make an InitMailMsgBuffer call.

To retrieve the message components, we issue successive calls to
GetMsgComponentByld to decode the message from its binary format into
individual fields and components.

Once the components have been retrieved, we release the buffer by calling
ReleaseMsg. Next, we make a call to AcknowledgeMailReceipt to inform the
Mail Service that all parts of the message have been properly retrieved. The
Mail Service can then delete its copy of the message.

The steps from ReceiveMail to AcknowledgeMailReceipt are repeated until no
more mail is available. We can then issue a TerminateMailConnection to the
Mail Service to close the mail session.

Again, note that we are interfacing our Reminder Service to another system
service. Any process, whether it be an application or a system service can be a
client of any other process. All that is required is the issuing of a request.

The Whole Picture

Figure 12-3 shows many of the interactions among the various pieces related to
Timekeeper. To simplify matters, we leave out local and server agents. We
show only one user instance. We also do not deal with various configuration
files and other temporary files that would be present. The point here is to see
how a distributed CTOS application really ends up consisting of multiple
system services interacting with each other, all through the request/response
mechanism independent of the underlying network topology.

183

Prototype Until Done: Timekeeper Development

184

Timekeeper
Interactive
Application

Cluster
Workstation

Server or
Cluster Workstation

GPS Device
Driver

Font Service

Queue Manager

Spooled
Files

ISAM
"'--+-+--i Index File

Server

Figure 12-3. Timekeeper and its Services

ISAM
Data File

Mail
Folders

Disk attached
to Server

13
Even More About System Services

eTas is flexibly featured and permits a
variety of approaches. There are as
many strongly held opinions about the
right way to write a system service as
there are talented eTaS developers.
Here we shall pick a general path that
many agree on: a single-process,
asynchronous system service. Later we
shall examine a very different and less
commonly used method that involves
multiple processes.

One of the great virtues of CTOS is that it can be customized and extended.
You can do so by writing a system service and either substituting it for an
existing one or adding it on as a new one. You can also write a filter process, a
system service that intercepts messages headed for another system service and
either examines them and passes them on or serves them itself.

Because system services are built on the message-based CTOS interprocess
communication, they can be transparently distributed across the local cluster
network and almost transparently across wider networks. This factor
eliminates a lot of network programming from the process of writing a major
piece of distributed software.

CTOS has been successfully extended for special purposes in this way by
developers all over the world. One example is the POSIX system service, which
anows POSIX-compliant applications to execute under eTOS. Another is the
Cluster File Access system service, a filter process written to enable the server
workstation to access files at cluster workstations thereby providing basic
peer-to-peer communications capabilities for sharing files.

185

Even More About System Services

Real-world system services like these are complex and interesting to design.
This chapter is about some of these challenges and solutions.

The Multiclient System Service

Except for some hints now and then, we have so far discussed the system
service in its simplest form: the single-process, synchronous system service
that takes a request from a client, processes it, and responds to the waiting
client. Many sophisticated system services, however, face more complex
demands than this simple model can handle successfully.

Many system services have multiple clients concurrently sending requests to
them across the cluster and perhaps the network. In turn, system services
often make requests of other system services or interrupt handlers and must
await, receive, identify, and deal with their responses. Every system service
also must be able to handle termination and related requests made by the
operating system when an application client wants to terminate. These
termination requests may arrive at any time and must be handled promptly so
as not to cause delays throughout the network.

The Situation

Figure 13-1, which borrows from our Reminder system service example, shows
one situation of this kind. Three user-interface clients have sent in various
requests to Reminder. Reminder is servicing the first request. The other two
are waiting, queued at Reminder's service exchange. While they are waiting,
these user interface programs are blocked.

On the "back end," Reminder has made a request to the ISAM Service for data.
The ISAM Service in turn has sent a request to the file system. The ISAM
Service has also responded to a previous request that Reminder had made, and
this response is queued at Reminder's exchange.

In the middle of all this normal business, an application somewhere on the
cluster is terminating. The operating system has sent out termination requests
on its behalf. One of these termination requests is also queued at Reminder's
exchange, and it is fourth in line for attention.

186

From eTOS

Reminder
System
Service

Even More About System Services

I SAM
Service

File
System

Figure 13-1. Multiple Demands on a System Service

Potential for Delays

In the situation shown here, delays can snowball if the system service cannot
somehow interleave all these demands for its attention. If Reminder can
service only one request at a time (Rql in the figure) and cannot respond to
Client 1 until this work is complete, you can see that all other queued requests
and responses must wait.

187

Even More About System Services

Although this case is not represented in Figure 13-1, suppose that Reminder
were to make all its back-end calls to other system services synchronously:
that is, Reminder would make the call to ISAM and then would block while
waiting on a separate response exchange for ISAM to respond. The queued
items at the service exchange must wait also. If ISAM itself could handle only
one request at a time, delays would proliferate. (Of course, ISAM does not
operate in this way.)

Ending It All

The picture becomes even more interesting when we consider what happens
among system services when an application on the network is normally or
abnormally terminated or is swapped out to disk by its local operating system.
This application may have requests outstanding with various system services.
A system service thinks of a client in terms of its user number (its partition)
rather than by any unique identifier. Thus, if a system service were to respond
to a now nonexistent client, a protection fault would occur because the address
of the request block is no longer valid. If an LDT entry does per"chance exist for
the address of the request block, the response would be sent to the client,
however, the client most likely would have a protection fault in trying to
address the PbCb pairs within the request block. On such an occasion, the
operating system broadcasts to all system services a request asking them to
wind up their business with the victim neatly (usually by responding with a
special status code). System services then must respond to the operating
system so that the operating system can continue the termination, abort, or
swap.

Now suppose, the system service is off blocking while its own request is being
served elsewhere. If all system services operated this way, it could be a very
long time indeed before the operating system got back all the needed responses
to a termination/abort/swap request and could proceed. Meanwhile, users
sitting at inexplicably hung systems all over the network would be doing
user-like things such as continually pressing the GO (transmit) key until the
system finally responds.

As one developer puts it, the fastest way to make enemies in the CTOS world is
to mess up termination.

IBB

Even More About System Services

An Event-Driven Model

Recall that we have stated that CTOS is an implementation of the event-driven
model of processing. Within this model, whenever an event occurs (e.g., the
completion of an I/O operation) rescheduling occurs immediately, provided a
process is eligible for execution. An event-driven program, may never finish
once it is running. After starting, it may receive any number of different kinds
of inputs or requests in any order, and it must examine these inputs and choose
paths of execution based on their nature. It is a state machine that works on
multiple tasks at once.

Clearly, this event-driven or state-machine model is far more appropriate for a
sophisticated system service than is the traditional application written to
function within a single tasking operating system. There is nothing unique to
CTOS here: an operating system must deal with its world this way. Other
operating systems such as OS/2, the Macintosh operating system, and Novell®
Corporation's NetWare® network operating system all are faced with the same
problems and use event-driven solutions. The beauty of CTOS is the clean
separation of the applications and the system services by the messaging
mechanism. This mechanism is what allows the CTOS event-driven solution to
work in a single workstation or transparently across the network.

Blueprint for an Asynchronous System Service

CTOS is flexibly featured and permits a variety of approaches. There are as
many strongly held opinions about the right way to write a system service as
there are talented CTOS developers. Here we shall pick a general path that
many agree on: a single-process, asynchronous system service. Later we shall
examine a very different and less commonly used method that involves
multiple processes.

This asynchronous system service has one process and one exchange. At this
exchange it receives all its inputs. Thus, the single exchange is both its service
exchange and its response exchange. After receiving an input at this exchange,
the system service decides what the input is and identifies its source (a new
request, a response from a back-end request, termination from the operating
system). The system service then runs through decision code (for example, a
case statement) to choose a path for further action.

All the back-end requests that this system service makes to other system
services or to interrupt handlers (if it is managing a device) are asynchronous.
That is, the system service makes these requests but does not Wait for the
associated responses. Rather, it continues by returning to Wait at its one
exchange, thus immediately picking up the next item that is queued there.

189

Even More About System Services

Why this insistence on asynchronous requests throughout? A gremlin that
immediately pops up where calls among system services are not asynchronous
is the deadly embrace (or deadlock). A deadlock is the infinite wait that occurs
when system services call each other in a circular manner. Such a circular
type of situation is shown in Figure 13-2, where System Service A calls System
Service B, and B calls System Service C, but C in turn calls A

Service A Request Service B Request Service C
.... _ ...

Requests service Requests service Requests service
of B and waits. of C and waits. of A and waits.

~

A is waiting and cannot serve C.
B depends on C to respond to A. -

Deadlock occurs.

Figure 13-2. Deadlock in a Request Chain

. If you are using any synchronous requests, the only way to reduce the
possibility of deadlock is to structure the pattern in which system service calls
are made to be like the tree structure in Figure 13-3 rather than the circular
structure in Figure 13-2. Although it may seem simple to ensure that this is
the case, in practice it is not. Deadlock is the most common problem that
occurs during development of system services. For example, a potential
deadlock may be hidden where a system service in the chain makes a call to a
library that in turn makes a call to a system service higher in the chain.

Request
System

Request
System

Request
System Application

Service Service
~

Service
Client - -- A B C

Respond Respond Respond

Figure 13-3. Deadlock Avoidance with Synchronous Requests

190

Even More About System Services

Asynchronous system services decrease the possibility of deadlock and improve
the overall responsiveness of the system. However, system services that use
asynchronous processing are more complex to develop. Whether you use
asynchronous processing or not, simple data flow diagrams displaying the path
of messages through the system will help ensure rapid detection of a deadlock
condition.

Client Bookkeeping and Data Structures

Because an asynchronous, single-process system service handles requests from
multiple clients at one time, it must do careful bookkeeping as to the status of
each request and of its own back-end requests. To do so, it most commonly
assigns a data structure for each client request and perhaps one for each
back-end request. These data structures must be designed from the beginning
in such a way that all states can be represented and that termination status
can be shown for that client when necessary.

When the system service picks up a response from a back-end caU, it identifies
the client for whom the call was made. The system service then follows the
trail of status information through its bookkeeping data structures in order to
know what to do next for that client. In this way it can pick up the context of
any client at any time.

Handling a termination request in this scheme often involves placing it on an
internal queue to wait for back-end requests on behalf of that client to return.
During this time, only that client must wait. When the response does come in,
the system service dispatches a routine to pick up activities on behalf of that
client. This routine immediately determines from the client data structure
that the client is being terminated. It returns a special status code to the client
and then returns to the body of the system service. The system service then
responds to the operating system's termination request.

A Basic Set of Requests

As we saw in designing TimeKeeper in Chapter 12, there is a basic set of
requests that the developer defines for most system services. These include
connection oriented requests such as Open, Read, Write, Close, and
QueryStatus types, and the group of termination, abort, and swapping
requests. If conventional formats are used in the design of these requests, the
application interface to the system service is standard, and the system service
is easily networked both within the cluster and within a wide-area network.
System documentation from the various suppliers of CTOS usually describes
the mechanics of request design.

191

Even More About System Services

When to Use a Separate Process

One cannot always maintain a strictly one-process approach. Sometimes it is
necessary to add another process. One such case is where intensive CPU
activity is required: for example, in a data base search or a long sort. There is
a voice processing system service, for example, that does data compression on
the voice. This activity is done by a separate process.

In such a case, the main system service process runs at a more favorable
priority than does the CPU-intensive one. The main process hands off work to
the second process (via a direct IPC Send) and then goes back to Wait at its
exchange. The advantage is that the main process can act on any termination
or other request that it receives, bumping the second process from the
processor. Thus there are no client or termination delays caused by long tasks.

In general, a system service should never work longer than a few milliseconds
before going back to its main loop to Wait. On an 80386 microprocessor, this
amount of time allows for execution of thousands of machine instructions. In
this time, you can do almost anything other than large sorts or moving around
quantities of data. Creation of a second process should be reserved for such
cases.

The use of the second process often requires semaphore protection of a data
structure on which the worker process is operating. Processing of another
request from that same client, for example, could cause incorrect alteration of
the data structure while the main process has control.

Development Tools

ServerGen

ServerGen is an available tool that is a fill-in-the-blanks template for a subcase
of the asynchronous, single-process system service. It has been informally
passed around and used by developers in many companies as the basis for
successful system service implementations.

ServerGen segregates the standard parts of the system service from the parts
that must be written uniquely for that system service. It is a good illustration
of the initialization sequence that a system service must go through, as well as
its decision-making processes.

192

Even More About System Services

ServerGen shows how the system service determines whether what comes 'into
its exchange is a new request, a response coming back from another system
service, or a termination-related request. It does so basically by comparing the
response exchange named in the request block with its own exchange. If they
are the same, then the message is coming back from another system service. If
not, it is a new request (or termination).

The service has a simple loop structure once the environment has been
established (an exchange has been allocated, the requests have been served,
and the server has been converted to a system service). This loop structure in
pseudo code is as follows:

do forever
Wait for a message
Process the message

enddo

The routine for a processing the message checks the message to determine
what type of work is required of the service. In ServerGen, we have several
different types of messages: Timer messages set for performing periodic
functions, internal messages sent by the service to itself, new requests from
clients, responses from requests filtered to other servers, and system requests
(e.g., termination requests). Each request or message can be identified via the
request block information. The pseudocode structure for processing a message
is as follows:

if the Message is a Timer Block then
Process the Timer Message

elseif the Message is Internal then
Process an Internal Message

elsedo
if the Request Block contains my Exchange then

Restore the Client's Exchange
Process the Response

elseif the Request is a System Request then
Process the System Request

elseif the Request is a Client Request then
Process the Request

endif
enddo

The above pseudocode outlines what is done after receiving a message on the
ServerGen exchange. Next, ServerGen must respond to a message which has
been processed.

193

Even More About System Services

A message received from a client which is directly processed by ServerGen will
be responded immediately back to the client process.

A message received from a client which is filtered can either come back to the
ServerGen (in this case the response exchange in the request block must be
replaced with the ServerGen's exchange) or can return directly from the
filtered service to the client (in this case the response exchange is not replaced).

A message received from a filtered service must have the original client's
response exchange restored prior to responding to the original client.

The following is some pseudocode outlining the cases described above:

do case Request Type

ServerGen Request:
Respond to Client

One-Way Filter Request from Client:
Forward the Request to the Filtered Service

Two-Way Filter Request from Client:
Save the Client'S Exchange
Insert ServerGen Exchange in the Request Block
Issue RequestDirect to the Filtered Service

endcase

ServerGen does not handle all the situations that we discussed in the previous
chapter. It was built as a template for a two-way filter process, and it
assumes that the back-end call is to the default system service whose requests
it is intercepting. ServerGen does not handle the more general case of
asynchronous back-end requests. It can, however, give you an idea of how to
handle them.

Appendix A consists of the main code sequences of ServerGen for those readers
who would like to see an actual implementation of the asynchronous, single­
process system service.

194

Even More About System Services

Asynchronous System Service Library

Taking a very different approach from ServerGen is the Asynchronous System
Service Model. It is a method of creating an asynchronous system service
based on a library (Async.1ib) that handles the difficult parts of asynchronous
programming for you. In some CTOS versions, this library is included as part
of the CTOS system software.

In using the Asynchronous Model, you create a single-process program that
behaves as if it had multiple processes. It provides greater throughput than
would a simple single-process system service, but it greatly reduces problems
with synchronization and access to shared data that are inherent in
multiprocess programs. The design of the Asynchronous Model uses an implied
baton or semaphore, although not a real one, that is passed whenever a
back-end call is made. In this design, it is impossible for an execution thread to
block while holding the "baton."

In this model, the system service handles more than one transaction at a time.
Contexts are the key design element of the model. A context is an individual
execution thread (but not a process) that has its own stack history (such as
local variables). The system service process consists of multiple contexts, all
sharing the system service's process stack.

Stack sharing is possible because each context has a unique stack pointer (SP)
value. While a given context is being executed, the stack pointer is set to the
appropriate value for that context. Before a second context executes, the stack
of the first context is saved in a memory structure. Then the stack pointer
value is changed to represent the stack for the second context. Because the
stack of a context is saved, any context can be resumed where it stopped
executing simply by having SP set to its stack pointer value.

In essence, the use of the shared stack is equivalent to having a stack for each
context, or in other words, the shared stack emulates a multiprocess service.
There is a parallel here with the use of bookkeeping data structures that we
discussed earlier, but here the mechanism is hidden from the programmer.

195

Even More About System Services

The asynchronous system service of this model basically works as follows:

do while true
Wait for a Request
if the Request is mine then

Resume the Context /* a back-end call */
else begin /* a new request coming in */

Process the Request
Place the Status code in the Request Block
Respond to the Client
end

endif
enddo

With the exception that resuming a context does not mean a process switch,
you can see that the general logic is the same as what we have discussed
before. Figure 13-4 shows the program flow for this model.

The system service waits for either a request or a response. If a request
arrives, the system service can process that request. If the system service
needs to send a request to an external agent, it does not wait for the response.
Instead, it sends the request using one of the asynchronous request library
routines. Within this routine, the context that sent the request is saved, and
the system service process returns to the top of its Wait loop to wait for other
requests or responses to arrive. If a response from an external agent (another
system service) arrives, the context that originally sent the request is resumed.
This scheme is analogous to what would occur if several CTOS processes were
used instead of the contexts, except that a context does not give up control
other than by making a back-end call.

The Asynchronous Model provides a common-code module in the C language
that includes the code that must be written for any system service. In addition,
you write a main module that serves the requests defined for your service. (In
this respect, the Asynchronous Model and the ServerGen program in Appendix
A are similar, but in other ways they are quite different.)

196

Initialize

Wait at service
exchange for

a request

Yes
>--~~ Process request

Resume context

Respond to
client

Even More About System Services

Yes Send
asynchronous

request to
externol agent

Save context
in heop

r-igure 13-4. Asynchronous System Service Model

197

Even More About System Services

The Asynchronous Model has advantages and disadvantages. It was created in
1989 to underlie and simplify a complex multiprocess system service that had
some unresolved problems. At this writing, it has not yet been widely used
otherwise. Some eTOS theoreticians consider it a brilliant implementation
of a tool that hides the complexity of system service writing from the
programmer. Others, while not denying that the mechanism is valuable,
believe that it should be internal to eTOS rather than existing in a system
service. Nevertheless, this method might be the easiest one to use when
porting to eTOS a program from another system that expects to use multiple
processes.

Testing and Debugging

A final, purely pragmatic word of advice to system service writers from those
who have written them is that you cannot expect to successfully develop a
complex system service without a thorough understanding of the eTOS
Debugger and the Intel microprocessor's registers. At this level of
programming, print statements are not going to help you much.

Multiprocess System Services

As we mentioned earlier, there is another approach to designing a multiclient
system service. This method, instead of using a single process and interleaving
action on requests from different clients, uses multiple processes. Each process
is synchronous and can serve any client.

While this approach might seem the most intuitively obvious one to, for
example, the UNIX developer, the eTOS environment is quite different. For
example, a second process, once begun, cannot be made to rejoin a parent
process. eTOS processes also have a certain overhead in system resources.
Overusing them can be expensive.

Why Write a Multiprocess System Service?

Despite their pitfalls, multiprocess synchronous system services have the
advantage of being easier to conceptualize and visualize, easier to implement
initially, and easier to maintain than the single-process, asynchronous system
service. If designed correctly, they also have the great virtue of extensibility,
as we shall see in a later example.

198

Even More About System Services

Why Hesitate to Write One?

Generally, writing a successful multiprocess system service requires such great
ability to perceive possible difficulties and such immensely meticulous
programming that it is something only a very careful expert should attempt.
The creation of multiple processes brings with it multiple opportunities for
deadlock. Also, several processes competing for access to the same data
structures require the use of semaphore protection. It is possible to create
processes that block while holding large semaphores. Finally, there is the
process overhead and consumption of system resources that can balloon in an
overly ambitious design. An example of this last statement was the initial
release of the Generic Print System (GPS); later versions corrected the initial
design.

It is especially important in writing a multiprocess system service to keep your
initial design simple and to study your modularity carefully. You should plan
on adding functionality only after the first design is proved workable.

Message-Based Semaphores

CTOS developers generally dislike the concept of semaphores (a message-based
system really does not require them). However, some software designers
appreciate the simplicity of use of semaphores. Simple semaphores fall
naturally out of eTOS IPC. Suppose a program has three processes: two user
processes and a system service process. The system service process owns a
buffer. The two user processes are bidding for use of an output port.

At initialization, the program allocates an exchange, and an initializing
message (which could be a pointer to the buffer) is sent to the exchange. (Note
that we are using IPC directly here, because all these processes are part of the
same program.) A user process that wants the buffer does a Wait at the
exchange. If the message is present, that user gets the buffer. When this user
is through with the buffer, it Sends the message to the exchange again. If the
other user does a Wait in the mean time, it is blocked until the message arrives
and the buffer is thus available.

This method generalizes neatly to multiple buffers. The messages identifying
the buffers can be queued at the exchange, and a process that does a Wait gets
the next available buffer. No confusion can occur: as long as one process owns
a message, no other process can interfere.

199

Even More About System Services

Clearly, this method can be used to control access to entities other than buffers,
too. The message used as a baton does not have to be a pointer: it could have
any value or be a dummy such as O.

This kind of semaphore, which you implement yourself based on IPC, should
not be confused with traditional semaphore facilities inherent in the operating
system, such as those in OS/2.

eTOS Electronic Mail: A Happy Example

Among many excellent office applications that have been developed at different
companies to run under CTOS, arguably the best and most widely used is the
CTOS electronic mail program, an elegantly simple, richly featured electronic
mail system that encircles the world on multiple media in some installations.
It is sold under various names including CT-Mail and B-Mail. Originated in
1982 and continuously extended since, the mail program is a very cleanly
designed example of the multiprocess approach to solving the problems we
have delineated. It also exemplifies some other good CTOS design principles.

Mail was begun with a deceptively simple architecture and highly generalized
data formats. Nevertheless, a lot of thought went into creating hooks and
leaving latitude for later developments that might or might not be on an
existing marketing "wish list." The basic design has three parts: an
interactive user application on the local workstations; a central Mail Service;
and a Communications Manager Service that had to be written because
network software beyond the cluster level did not yet exist in 1982.

A simplified version of the design of the central mail system service, the Mail
Service, is shown in Figure 13-5. The figure shows three processes inside the
box that represents the Mail Service: one nicknamed the Overlord and two
Drones. Actually, there can be up to four Drones at once. Drone processes are
identical to each other.

200

Even More About System Services

I Client I Rq Rq

Communicatians
Manager

I Client I Rq System Service

+ ' I Client I Rq Rq Anather
.-

exchDrane
... II--- Mail Service

.- (Remote)

Send Wait Wait

It

Overlard Drone 1 Drane 2

Wait Send Send

exchOverlard
...
...

Mail Service

Figure 13-5. Simplified Version of Mall Architecture

The first version of the Mail Service contained only two processes: the
Overlord and one Drone. The idea was to get the product working successfully
with only these two processes, and then to consider adding more. This first
version operated only within the local cluster network. In the next version,
communication with other clusters was added, and at this point a second Drone
was introduced so that delays would not occur at the Mail Service's input
exchange. Development continued in this way, with features (and Drone
processes) being added to a working structure.

The Overlord and the Drone have very different duties and do not compete for
resources such as data structures or files. The Overlord communicates with
the system clock and decides what should be done (for example, when to make
certain connections to other Mail Services). Once it has decided what to do, the
Overlord Sends a message to the Drones' exchange (which is the only
externally visible Mail Service exchange) and gives up control. The Overlord's
duties all can be executed quickly, and it runs at a more favorable priority than
does the Drone.

201

Even More About System Services

Drones Wait at the Drone exchange. Any Drone can process any request that
comes in here, whether it is a command from the Overlord or a request from an
interactive client application, a remote Mail Service, or a Communications
Manager system service. Drones carry out time-consuming duties that involve
disk accesses, sending mail, and so forth. They run at a less favorable priority
than that of the Overlord. Drones can Send messages to the Overlord using
internal exchanges such as the one shown as exchOverlord in the figure.

The Overlord never accesses files. When there was only one Drone, there was
no competition for file access. As more Drones appeared, these identical
processes did need to access the same structures and files, so message-based
semaphores were used to protect them.

The Communications Manager System Service in Mail is actually a creature
that is rather rare in the CTOS world: it is an installed system service that
does not serve any requests. Instead, it only makes requests of the Mail
Service to find out what it should do. Because it does not serve requests, it has
no issues with termination. Also, with such a design, it is possible to add as
many Communications Managers as you like with no need to coordinate
between them, because coordination is all done through one central point. It
also allows installation of more than one Communications Manager on one
workstation, something that is not possible where a system service serves
requests.

The system service that serves no requests is the key to the extensibility of
Mail. At various times, through this mechanism, support for gateways to other
mail systems and for facsimile transmission from the user's interactive Mail
interface have been added. These additions, while some have involved minor
changes to Mail, have never required redesign of the Mail Service.

Summary

If you are new to the CTOS world and want to write a system service, the best
way to start is with an academic exercise: a single-process, synchronous
system service like the one we outlined for TimeKeeper in Chapter 12. Going
on from that point, your best approach is to use the ServerGen template if at
all possible. If you need to extend your model to make asynchronous back-end
calls to other system services or interrupt handlers, you can at least refer to
ServerGen for guidance in initialization, identification of inputs,
decision-making code, and termination handling.

202

Even More About System Services

In general, the experience of many CTOS system service writers has shown
that the best approach for a sophisticated system service is the single-process,
asynchronous system service. If you wish to consider a duplicate multiprocess
design such as that used in Mail, you probably should have reasons comparable
to Mail's extensive and varied networking and need for extensibility to do so.

Writing system services is a challenge worth undertaking, not only for the
resulting cleanly distributed product, but also because it will further your
understanding and appreciation of the CTOS architecture.

203

Part 3
CTOS and the Future

14
Trends and Paper Napkins

A simple and extensible system like this
one allows designers to think up
enormous wish lists of enhancements,
whether based on their own innovations
or the newest industry breakthroughs.
Almost all of these things could be done,
but only some of them can be. As the
idea people continue to sketch, the
practical ones remind them that one
must consider the needs of the real world
and the real tasks for which people want
to use these systems.

When the people who started Convergent Technologies sketched their first
design on a paper napkin, they were just carrying part of the larger computer
culture into their new venture. The excitement of creativity has always fueled
people like them and always will.

Those first people hired other people who knew that the processes of creativity
were not going to stop with them. They knew that CTOS would live in a
changing technological world, and they designed it for that world. They did
such a good job of that flexible design that it is hard for us to remember that
they were working at a time when 256 Kb was a tremendous amount of
memory to put into a workstation, and everyone was hoping that 8-inch disk
technology would be reliable early enough to put into their first workstation.

207

Trends and Paper Napkins

They did such a good~ob, as a matter offact, that they have presented their
successors with temptation. A simple and extensible system like this one
allows designers to think up enormous wish lists of enhancements, whether
based on their own innovations or the newest industry breakthroughs.

Almost all such enhancements could be done, but, in a practical world, only
some of them will be. As the idea people continue to sketch, the practical ones
remind them that one must cQnsider the needs of the real world and the real
tasks for which people want to use these systems.

As we said earlier, CTOS development is firmly rooted in several basic
principles. The first designers began with modularity, distributed processing,
strength, speed, flexibility. Soon compatibility and resiliency also became
important. Today, those principles are summed up in the following list:

• Open

• Modular

• Optimized

• Resilient

• Compatible

• Available from Multiple Sources

• Distributed

• Scalable

Future development will continue to be based on these principles. The
operating system will remain small and modular, optimized for distributed
processing and easy customization. Developers will remain committed to
compatibility and to producing a stable platform operating system that can
continue to· support developers and users alike on into the 90s.

208

Trends and Paper Napkins

This chapter is intended to discuss possible future developments for CTOS. It
touches on the directions and strengths CTOS has had in the past and makes
some attempts to foretell the direction for the future. Since, however, the ideas
that are sketched on paper napkins are ideas that grow interactively in the
stimulating environment that is produced when trends in new technology corne
together, this chapter can only hint at what will happen in the CTOS
environment. The operating system was born out of an effort to take
advantage of new technology and has grown out of an effort to stay abreast
with and effectively apply each new advance. Paper napkins can easily be
crumpled up and thrown away; likewise, the plans outlined here should not be
taken too literally, because we know they'll change with time.

Now, let's take a look at where we might go in the future.

Standards and Interoperability: A CTOS Commitment

The CTOS commitments to compatibility and open systems are long-standing.
With the introduction ofCTOS/Open in 1989, CTOS established itself as an
open platform. CTOS/Open makes available an Applications Programming
Interface that provides commonality across the various suppliers' versions of
CTOS to ensure that applications run optimally from one to the other. It will
continue to grow and to provide added functionality as the industry and CTOS
continue to grow.

CTOS is also committed to be a platform that embraces other existing and
forthcoming standards. It is establishing itself as a base platform onto which
the most successful industry standards will be integrated. CTOS developers
understand that interoperability and the ability to run specific applications on
multiple platforms are of prime importance to users. By embracing standards
and the applications that run on them, CTOS will be providing users with an
integrated solution platform not matched by any other platform vendor.

In the 90s, CTOS will provide support for several standards. They already
include: (PC-Compatible) DOS and Windows™, and will soon include POSIX
and Presentation Manager. We shall touch on each of these briefly. Others, of
course, will also be included as standards are established.

209

Trends and Paper Napkins

Several versions of a DOS platform emulation product were already available
on CTOS in the mid-80s. With the advent of 80386-based CTOS systems, a
software-only solution became available. CTOS now provides a complete
environment for supporting off-the-shelf DOS-based programs, including those
requiring VGA video. Since the entire PC environment, including the BIOS, is
emulated as part of one CTOS context, DOS and CTOS applications run
concurrently. The DOS environment supports Windows and will support
evolving DOS standards, such as the DOS Protected Mode Interface (DPMI).

CTOS will also provide POSIX compliance, as one of the first non-UNIX
platforms to do so. The IEEE developed the POSIX standard partly as a result
of a need for a nonproprietary standard for the AT&T UNIX System V
platform. It provides a common platform for applications, to ensure that they
can be used on multiple platforms with minimal portation work. Although the
API is similar to UNIX, it is intended to have a wider application. CTOS will
integrate the POSIX platform by implementing a system service that will
support the POSIX application programming interface (API). In addition, the
shell and utilities part of the POSIX standard will also be provided on CTOS.
This marriage of CTOS and POSIX will allow POSIX applications to have
access to many of the facilities provided by CTOS, such as built-in networking.
This illustrates synergistic value of having CTOS encompass other standards.

Future versions of CTOS will include Presentation Manager as the CTOS
standard Graphical User Interface. This will allow PM-based applications to
be easily ported to run in the CTOS environment. Future versions of CTOS
will also provide support for Dynamic Linked Libraries, which are essential for
Presentation Manager-based applications. This basic framework will allow PM
applications to work in the CTOS/Open environment.

An additional set of standards which CTOS provides on-going support for is
Open Systems Interconnection (OSI). The set of standards under the umbrella
of OSI provides a basis for designing software systems which allow
communication between dissimilar platforms. The standards define both the
interaction between computer systems and the functions necessary for
communications. Systems designed to be compatible with the OSI standards,
therefore, provide compatibility with products designed to function to the
standards.

210

Trends and Paper Napkins

The model for compatible communications, as specified by the International
Standards Organization, is the OSI Reference Model. Here communications is
divided into seven different layers, each of which is a group of related
functions. OSI protocols define the functions the layers represent. The
layering scheme allows a greater flexibility in choosing systems, equipment,
and or software, e.g., one system may have all layers implemented in software,
an alternate system may have the lower layers implemented in hardware with
the remaining in software.

CTOS has current implementations of the lower 5 levels, Physical, Data Link,
Network, Transport, and Session, within various communications services.
Also, X.400 (OSI Mail) and Fl'AM (File Transfer Access and Methods) are
implemented as extensions of the Presentation Layer. Support for X.500
(Directory Services) will also be made available in the future.

A strong future direction for the CTOS platform will be to continue to respond
to the emergence of new standards, adding support for them and for applica­
tions designed to them. Looking back, the first CTOS developers did not live in
a world of standards. On the contrary, in 1980 all the platform vendors were
competing to have the best new and different system. The designers who gave
CTOS the message-based system service as a way to support flexibility in the
future could not possibly have imagined that one day this facility would
actually enable CTOS to support such a wide set of emerging industry
standards. Luckily they did design a flexible and modular system. The
world continues to change, and CTOS will change with it.

Microprocessor Architecture

In general, CTOS will continue to take advantage of architectural opportunities
presented by ongoing developments in the Intel80x86 family ofmicroproces­
sors. CTOS has been functional on every Intel 80x86 microprocessor and will
be functional on following microprocessors because of the advantages those
systems give to the systems programmer while retaining compatibility with
previous versions. Recall that CTOS now functions on the 80186,80286 and
80386 processors and will soon function on the 80486 microprocessor.

There have always been discussions of putting CTOS on other kinds of
hardware-other people's hardware or multiprocessor hardware. These
discussions are likely to continue.

211

Trends and Paper Napkins

Demand Paged Virtual Memory

A program is said to execute in "virtual memory" when it uses a linear address
space that is larger than available physical memory. CTOS currently provides
only a limited form of virtual memory in that an application may optionally
use demand segmentation of code within its own partition. Initially, this
mechanism was implemented purely in software and later used the demand
segmentation features of the 80286.

Since the introduction of the 80386, true virtual memory based on demand
paging has been a possibility for CTOS. Demand paging is a form of virtual
memory management in which a program's linear address space is composed of
contiguous fixed sized regions called pages. A page is either mapped to
physical memory or is marked as "not present". Demand paging requires
hardware support for mapping linear to physical addresses and for detecting
"not present" pages.

When the program accesses a "not present" page, a page fault occurs. The
operating system resolves the fault by mapping the page to physical memory,
and if necessary, copying the contents of the page from a disk. In order to
resolve a page fault, the operating system may have to take physical memory
from another page, and possibly write the contents of the "replaced" page to
disk.

Over the years, CTOS developers avoided virtual memory management due to
the belief that virtual systems provide poor performance. Today, this objection
is no longer valid as current virtual memory policies are known to deliver
effective performance.

The main benefit of demand paging in CTOS is more flexible memory
management for applications and servers. A paged environment is more
flexible because it allows dynamic use of memory, such as allocating/dealloca­
ting data structures or loading/unloading code, without the problem of splitting
memory into numerous unusable fragments.

Demand paging is particularly useful in the following CTOS environments:

• Workstations, especially servers, that need more system services than will
fit in available memory. Currently, eTOS system services must be entirely
memory resident.

• Workstations that run more applications than will fit in available memory.
Without demand paging, CTOS must swap out entire applications when
memory is oversubscribed. With demand paging, each application can
continue even though some pages are not present.

212

Trends and Paper Napkins

• Diskless workstations. Such workstations help to reduce the cost of
computing. Virtual memory means that a workstation can be configured
with less memory, further reducing the cost.

80386 Flat Model (32 Bit Addressing)

Implementation of CTOS support for direct use of the 32-bit address space,
possible for the first time on the 80386 microprocessor, is a matter of debate.
CTOS people around the world are clearly aware of the trend in this direction,
and there is a growing desire to support 32-bit applications written to run
under UNIX. Strong voices are remInding everyone that if 32-bit support is
implemented, it should be interoperable with existing l6-bit systems.

eTOS as a Distributed Object System

There is a strong trend in the industry to move toward object-oriented
execution environments. Such environments emphasize reusability and
interoperability of code :plodules or objects. They offer the advantages of
reduced application size and increasingly standard operation for similar
functions. . .

We repeatedly emphasized throughout this book how very modular and
extensible the CTOS architecture is. CTOS is, therefore, well-positioned to
adopt some of the features associated with object-based environments. In
addition, its distributed heritage is well established. That distributed
architecture would provide a solid platform to allow for easy interoperability
of distributed system objects.

CTOS is already adopting the look and feel of the object-oriented user interface.
The CTOS response to the move in the industry toward an object-oriented
approach to programming is yet to be seen.

The Far Term

The modular, extensible architecture that forms the platform for CTOS has
proved to be a firm basis for growth in the 80s. In the 90s that same unique
strength, combined with the robustness eTOS has gained through maturity
and through years of testing in real world situations, makes it an excellent
platform on which to continue to build. We don't know exactly where the
future will lead, but ·we do know that CTOS will respond to new trends and
capabilities as the computer industry continues to grow.

213

A
ServerGen: A Sample System Service

... because we believe in the practical
side of things . ..

This appendix contains two modules written in the C programming language.
When compiled and linked along with a few user written routines, these
modules comprise a functional system service, which we have called
ServerGen. Chapter 13 describes how ServerGen works.

The initial module is called FooServer.C. It contains sample procedures for
proving ServerGen's functionality. The other module is Server.C, the main
code module in ServerGen.

SerGen is structured with a main routine which first calls an Initialization
Routine (where requests are shared and conversion to a system process are
accomplished). The service then goes into a loop where the service waits for a
message, processes it, and then loops back to the wait.

ServerGen has external stubs which reference user written procedures,
examples of which are included in FooServer.C. Note that we have not
included these here.

215

ServerGen: A Sample System Service

FooServer
/* FooServer.c -- Test server using the system service. lib. Stores a buffer

of open
* file specs, then writes them to a file and deinstalls.

*
* Log:
* 10/28/85 JA Created - PLM
* 2/7/86 TB Converted to C

*/

idefine ParamBlkType 1
idefine RqType 1

idefine SysConfigType 1

idefine SysTimeType 1

idefine TrbType 1

idefine ErrorExitString

idefine CheckErc 1
idefine AllocMemorySL 1

idefine SetMsgRet 1
idefine SetPartitionName
idefine CreateFile 1
idefine OpenFile 1
idefine Write 1

idefine CloseFile 1

idefine Beep 1

1

1

iinclude "[sys]<h>CTOSLib.h"

iinclude "[sys]<h>String.h"
iinclude "ServerGen.h"

/* application-specific definitions */

ide fine RQOPENFILE 4

idefine RQOPENFILELL

idefine RQCLOSEALLFILES
idefine RQFILESYSTEMABORT

97

19
112

idefine RQREOPENFILE 294

idefine IBHEXERC 5

#define ERCNOTIMPLEMENTED 7

idefine BUFFERSIZE 512

idefine BUFFERSIZEL 512L

216

ServerGen: A Sample System Service

1* Structures defined by every service *1
unsigned rgServeRq[] = {

RQOPENFILE, RQOPENFILELL, RQREOPENFILE, RQCLOSEALLFILES, RQFILESYSTEMABORT

} ;

unsigned nServeRq = 5;

1* scratch space for deinstall, 1 word per rqCode in rgServeRq *1
unsigned rgRqExch[5];

1* System requests (termination, abort, swap) served or filtered *1
unsigned rgSystemRq[] = { RQCLOSEALLFILES, RQFILESYSTEMABORT };

unsigned nSystemRq = 2;

1* Application specific declarations *1
char *pBuf;

int ib;

char postScript[] = " erc xxxxh\n";

1* Application local subroutines *1
char rgHex[] "0123456789ABCDEF";

void

ConvertWHex(Word w, char pRete])

int i;

for(i = 3; i >= 0; i--) {

pRet[i] = rgHex[w & OxF];

w = w » 4;

1* Standard routines that may be present in all servers. *1

void

Initialize ()

1* This procedure is called after requests are verified but

* before requests are actually served. AlIOS calls are valid here.

* Do error checking, memory or exchange allocation, config file reading,

* extraction of arguments from the command form etc.

217

ServerGen: A Sample System Service

*
* This example service checks the os type, then allocates and clears a

* buffer for use during the processing of requests.

*1

if(pConfig->fMultipartition == 0)

ErrorExitString(ERCNOTIMPLEMENTED, "as must be MultiPartition", 25);

CheckErc (AllocMemorySL (BUFFERSIZE, &pBuf));

pBuf = 0; 1 null-terminate buffer */

1* Set message to be printed upon successful installation - */

CheckErc(SetMsgRet("Installation complete.", 22));

1* Requests have been served. Installation succeeds or fails.

* From now on all routines must use RequestDirect to issue as calls listed

* in rgServeRq above, issuing the rqs to the exchange recorded in rgRqExch.

* Other requests may still be issued via procedural interface (by name).

*
* Some as calls now no longer work after ConvertToSys. System services

* have no video structures so calls to VAM or VDM are illegal

* (PutFrameChars etc).

* In SinglePartition os,

* memory allocation/deallocation is illegal,

*
*
*
*
*
*
*
*
*
*
*
*/

218

exchange allocation is illegal,

files must be opened using OpenFileLL,

interrupt routines may no longer be set,

byte streams are not supported.

In MultiPartition os,

memory deal location will work, then the memory may be reallocated,

but long-lived memory is gone,

exchanges may be freely allocated,

files operate normally,

interrupt routines may be set/reset normally,

bytestreams other than Video are supported.

ServerGen: A Sample System Service

/* Optional:

*
* This procedure is called once after installation. Do things that need

* not occur unless installation is successful, such as starting the timer.

*/

void

Start ()

/* rqTime.counter = rqTime.counterReload; */

CheckErc(SetPartitionName(O, "FooServer", 9));

/* The following five routines are called as messages are received.

* Only one routine is ever called at once, i.e. no problems with

* reentrancy, recursion or semaphores.

*
* Each routine returns a Word which may have the following values -

* 10k the routine discharged the request itself; do nothing

*
*
*
*
*

lRespond the request has been processed, respond to the user

lForward the request should be forwarded to the regular handler

lPass like lForward, but when it is done call HandleRespond

lOkDeinstall like 10k; also deinstall the service

lRespondDeinstall like lRespond; also deinstall the service

* lForwardDeinstall like lForward; also deinstall the service

*
* HandleRequest and HandleSystemRequest return different values in each

* sort of server:

* A pure system service uses lRespond. An asynchronous server uses 10k.

* lForward and lPass are used by one-way and two-way filters, respectively.

*
* Timer and HandleMessage always return 10k.

* HandleRespond returns lRespond or maybe 10k.

*
* The Deinstall values are the same as the regular values except after

* discharging the request, the system service unserves the requests,

* flushes the exchange and exits.

*/

219

ServerGen: A Sample System Service

/* Optional

*
* rqTimer has counted down to O. See OS call OpenRTClock.

* void

* Timer(char *pRq)

* {
* return (10k) ;

* }
*/

Word

HandleRequest(struct RqType *pRq)

/* An original request has been issued whose request code field matches

* one of those in the rgServeRq array. Perform applications-specific

* operations. Fields of the request block based on the pointer pRq

* that may be changed are -

* pRq->ercRet error code to be returned to caller

* pRq->pb-> response buffer(s) pointed to by the request block

* Any request block field may be examined. See Operating System Manual

* for a description of request blocks.

*/

/* This example service records the name of every file opened, until its

* name buffer is full. It then deinstalls. This is a two-way filter.

*/

if(BUFFERSIZE - ib >= pRq->sO) {

strncpy(pBuf + ib, (const char *) (pRq->pO), pRq->sO);

ib += pRq->sO;

return (lPass) ;

} else

return(lForwardDeinstall);

220

ServerGen: A Sample System Service

Word

HandleSystemRequest(struct RqType *pRq)

/* A system request has been issued whose request code field matches
* one of those in the rgSystemRq array. All requests with the same userNum

* as the system request must be processed before the system request is

* returned (via Respond). Requests for that userNum remembered by the

* service must be backed out (ercSwapping), aborted (ercAbort) or

* completed (erc), and Respond called for each.

* There are three kinds of system request, depending on the value of the

* first word of control info in the request block header:

*
* 1st word cntl info Complete Abort Back out

* Swapping ercSwapping (37) ok ok

* Abort ercAbort (8200) ok ok

* Termination other erc ok ok

*
* All system request processing must be done quickly or the termination
* process will take a long time, appearing as a delay or hang to the user.

*
* If this service is a filter, it must filter system requests of the

* filtered service, and pass them one- or two-way just as other filtered

* requests are passed (lForward or lPass). The default HandleSystemRequest

* routine (inStdServer.Lib) returns lForward. If the filter service is two­

* way the user MUST write a HandleSystemRequest routine that returns lPass,

* and the user HandleRespond must accept system requests, probably just

* returning lRespond. This ensures requests passed to the filtered service

* are flushed before the system request is returned.

*/

/* This example service doesn't store requests, so it need only

* pass the system request to the filtered service. Since this

* is a two-way pass-through filter, it MUST two-way filter the

* system requests too (lPass instead of lForward).

*/
return(lPass);

221

ServerGen: A Sample System Service

Word

HandleRespond(struct RqType *pRq)

/* A request block has come back via Respond. It was previously received

* at HandleRequest, which returned with the code lPass. The request was

* passed to the normal receiver of that request, which completed it and

* Responded back to us. This routine may now examine the results of the
* operation, and then must let the request be Responded.

*1

switch (pRq->rqCode)

case RQOPENFILE:

case RQOPENFILELL:

case RQREOPENFILE:

1* This example service records the error code returned from any open. *1
if(BUFFERSIZE - ib >= sizeof(postScript)) {

ConvertWHex(pRq->ercRet, &postScript[IBHEXERC]);
strncpy(pBuf + ib, postScript, strlen(postScript));

ib += strlen(postScript);

return(lRespond);

} else

return(lRespondDeinstall);

default: 1* System request come back from filtered service.

No requests stored in this filter,

filtered service has been flushed,

lPassed request also flushed.

Ok to respond.

*/

return(lRespond);

1* Optional

* Word
* HandleMessage(Word w)

*
*
*
*
*

222

An interrupt routine has sent a one-word message to the server.

This message may be a data byte or word, or it may indicate some

condition such as "buffer full".

The interrupt routine cannot make requests, so it must "poke" the

server somehow, and the server makes the requests.

ServerGen: A Sample System Service

*
*
*
*
*
*

The interrupt routine could have set a flag that is checked by the

service, but then the flag would have to be polled, e.g. every l/lOth

second the timer routine could check the flag. Sending a message

usually is a better solution because the condition is noticed

instantly, also without using any processor time for polling.

*
* {
* return (10k) i

* }
*/

void

Cleanup ()

/* The service is deinstalling. The requests have been served back to their

* original destinations. All requests pending have been discharged.

* The service process is about to disappear. Do any final operations

* such as writing a log entry or flushing a buffer.

* It is ok to issue requests by name that this service had been serving.

*/

Word fh, cbWritei

/* This example service writes the name buffer to a file. */

CreateFile (" [sys] <sys>OpenNames.dat", 23, NULL, 0, BUFFERSIZEL)i

if(!OpenFile(&fh, " [sys]<sys>OpenNames.dat", 23, NULL, 0, Ox6D6D»

Write (fh, pBuf, BUFFERSIZE, OL, &cbWrite)i

CloseFile (fh) i

Beep () i

}

223

ServerGen: A Sample System Service

ServerGen
pragma Memory_model (Big);
1* Module SERVER MAIN *1

#undef Debug
#inelude "[Sys]<h>SysCom.h"

#define PebType 1
#define RqType 1
#define TrbType 1
#define SysConfigType 1

#define AlloeExeh 1
#define DealloeExeh 1
#define OpenRTCloek 1
#define Respond 1
#define Request 1
#define Wait 1
#define Check 1
#define ForwardRequest 1
#define Send 1
#define RequestDireet 1
#define QueryRequestInfo 1
#define ServeRq 1
#def1ne ConvertToSys 1
#define ChangePriority 1
#define Exit 1
#define ErrorExit 1
#define SetMsgRet 1
#define CheekEre 1
#define crash 1
#define GetpStrueture 1
#define OsVersion 1
#inelude "[Sys]<h>CTOSLib.h"

static Byte C_l[] = {
"Installation failed"};

extern void ProeessMessage(FLAG
extern EreType KillProeess(Word
extern void ExitAndRemove();

void
CrashIfEreNotOk(EreType ere)
{

if (ere != ereOK)
Crash (ere) ;

224

fNewRqOk) ;
pid) ;

#define RqErc 1
#include "[Sys]<h>Erc.h"

/* GetpStructure case values */
const IGetpExParDesc = 0;
const IGetpCharMap = 1;
const IGetpVCB = 2;
const IGetpAscb = 3;
const IGetpVLPB = 4· ,
const IGetpBcb = 5;
const IGetpTypeAhead = 6;
const IGetpRgpVidMemLine = 7;
const IGetpRgLineMap = 8;
const IGetpContextStatus = 9;
const IGetpOPcbRun =0 x24C
const FpType = 10;/* 1st SRP board
const stubRqCode = Ox7462;/* 'tb'
const exchNil = 0;

typedef struct PcbType pcbRun;
typedef Offset oPcbRun;
typedef struct RqType rq;
typedef struct {

Byte waste[64];
Byte cbName;
Byte rgName[30];

} Ascb;

hardware
*/

typedef struct SysConfigType config;

config *pConfig;
Pointer pTime;
Ascb *pASCB;
Word wVersion;
ExchType exchServe;
FLAG fConvertToSys = {I};

ServerGen: A Sample System Service

type */

/* External data are defined in the user-written module. */

extern Word rgServeRq[l];
extern Word nServeRq;
extern Word rgRqExch [1] ;
extern Word rgSystemRq[I];
extern Word nSystemRq;

/* The following two external symbols may be omitted from user program. */
extern struct TrbType rqTime;
static Pointer prqTime = {

&rqTime};

225

ServerGen: A Sample System Service

/* Local variables for server main program. */
static rq *pRq;
static struct {
Pointer pRq:
ExchType exchResp:

} rgRcb[lO);
static oPcbRun *poPcbRun:
static pcbRun *pPcbRun:
static ErcType erc;
static Word wRet:

/* External procedures are defined in the user-written module.
All routines except HandleRequest may be omitted.
Omitted routines resolved from library of stubs StdServer.Lib.

*/
extern void Initialize ():
extern void Start () :
extern Word Timer (Pointer pRq) :
extern Word HandleRequest(Pointer pRq) :
extern Word HandleSystemRequest(Pointer
extern Word HandleRespond(Pointer
extern Word HandleMessage(Word
extern void Cleanup():

Word
Findw(Word rg[], Word w, Word cb)
(

Word ib:
for(ib = 0: ib < cb: ib++)
(if (rg[ib) == w) return ib;
return OxFFFF;

void
Ini t ()
{

Word iRq;
struct {

Word exch;
Word lsc;

} rqInfo;

w) :
pRq) ;

/* Address some interesting structures.

pRq) :

Their pointers are public so user gets them without effort. */
erc GetpStructure(IGetpAscb, 0, &pASCB);
erc OsVersion(&wVersion);
erc GetpStructure(ATpSysTime, 0, &pTime);
erc GetpStructure(ATpConfiguration, 0, &pConfig);
if (pConfig->fMultipartition == 0) { /* Single Partition only */
erc = GetpStructure(IGetpOPcbRun, 0, &poPcbRun);
pPcbRun = (Pointer)BuildPtr(SelectorOf(poPcbRun), *poPcbRun);

}

226

ServerGen: A Sample System Service

}

CheckErc(AllocExch(&exchServe»;

1* Use the user-defined structures, if present. *1
if (rqTirne.rqCode != StubRqCode) {

}

rqTirne.exchResp = exchServe;
CheckErc(OpenRTClock(&rqTirne»;

iRq = 0;
while (iRq < nServeRq) {

}

CheckErc(QueryRequestInfo(rgServeRq[iRq), &rqInfo, sizeof(rqInfo»);
rgRqExch[iRq) = rqInfo.exch;
iRq = iRq + 1;

Initialize ();

1* Don't ConvertToSys if flag set *1
if (fConvertToSys) {
erc = ConvertToSys();
if (erc != ercOK)

CheckErc(SetMsgRet(C_1, sizeof(C_1»);
ErrorExit(erc);

}

iRq = 0;
while (iRq < nServeRq) {

}

1* if exch is served on XE530 1.4, first unserve it *1
if ((rgRqExch[iRq) != 0)

&& (pConfig->HardwareType >= FpType)
&& wVersion < OxOBOO)
CrashIfErcNotOk(ServeRq(rgServeRq[iRq), 0»;

CrashIfErcNotOk(ServeRq(rgServeRq[iRq), exchServe»;
iRq = iRq + 1;

Start () ;

if (rqTirne.rqCode != StubRqCode) {
rqTirne.cEvents 0;
rqTirne.counter rqTirne.counterReload;

}

1* Find a free Rcb and register the rq in it. *1
typedef struct RqType rq;
static void
AllocRcb(rq *pRq)
{

Word iRcb;

227

ServerGen: A Sample System Service

for (iRcb = 0 ; iRcb <= Last (rgRcb) ; iRcb++)
if (rgRcb[iRcb].exchResp == exchNil) {

rgRcb[iRcb].exchResp = pRq->respExch;
pRq->respExch = exchServe;
rgRcb[iRcb].pRq = (Pointer)pRq;
return;

}

}

wRet 1= Ox10:/*No rcb available, cause to deinstall*/
}

/* Find the Rcb for the rq and restore the rq. Free the Rcb. */
typedef struct RqType rq;
static void
RestoreRcb(rq *pRq)
{

Word iRcb;

for (iRcb = 0 ; iRcb <= Last (rgRcb) ; iRcb++)
if (rgRcb[iRcb] .pRq == pRq

}

&& rgRcb[iRcb] .exchResp != exchNil)
pRq->respExch = rgRcb[iRcb] .exchResp;
rgRcb[iRcb].exchResp = exchNil;
return;

}

Crash(ercInconsistency);
}

/* Check if any Rcb active. If so, wait for respond to rq. */
static void
FlushRcb ()
{

Word iRcb;

while (1) {
for (iRcb = 0 ; iRcb <= Last (rgRcb) ; iRcb++) {
if (rgRcb[iRcb] .exchResp != exchNil)
goto WaitForAnotherRq;

return;/*No more rcb in use.*/

WaitForAnotherRq:

}

}

CheckErc(Wait(exchServe, &pRq));
ProcessMessage(FALSE);

228

ServerGen: A Sample System Service

void
DcInstall ()
{

Word iRq:

if (rqTime.rqCode != StubRqCode)
rqTime.eounter = 0; /*Turn off*/

for (iRq = 0; iRq < nServeRq; iRq++)
CrashIfEreNotOk(ServeRq(rgServeRq[iRq], 0»:
CrashIfEreNotOk(ServeRq(rgServeRq[iRq], rgRqExeh[iRq]»:

}

FlushReb () ;

while (Cheek (exehServe, &pRq) == ereOK) {
(void)ProeessMessage(FALSE);

}

Cleanup ():

/*Vp*/
if (pConfig->fMultipartition == 3) ExitAndRemove():
/*MP*/
if «pConfig->fMultipartition) & 1) Exit();
/*SP with KillProeess*/
CrashIfEreNotOk(DealloeExeh(exehServe»:
if (wVersion >= Ox0900)
CrashIfEreNotOk(KillProeess(*poPebRun»:

/*SP, old*/
CrashIfEreNotOk(ChangePriority(OxOFF»:
ere = Wait (pPebRun->exehgSyne, &pRq); /*forever*/

void
ProeessMessage(FLAG fNewRqOk)
{

Word wCase;
Word iRqExeh;
ExehType rqExeh;

if «pRq == prqTime) && (rqTime.rqCode != StubRqCode»
if (fNewRqOk)

wRet Timer (pRq);
else

wRet = 0: /*Ok, don't deinstall*/

229

ServerGen: A Sample System Service

else if (SelectorOf(pRq) == 0)
if (fNewRqOk)

wRet HandleMessage(OffsetOf(pRq»:
else

wRet 0: /*Ok, don't deinstall*/

else {
if (pRq->respExch == exchServe)
RestoreRcb(pRq):
wRet = HandleRespond(pRq):

} else if (Findw(rgSystemRq, pRq->rqCode, nSystemRq)
!= OxFFFF)

wRet = HandleSystemRequest(pRq):
else if (fNewRqOk)

wRet = HandleRequest(pRq);
else {

}

/*new rq not ok, deinstalling*/
pRq->ercRet = ercServiceNotAvail;
CrashIfErcNotOk(Respond(pRq»;
wRet = 0;

wCase = wRet & OxOF;

if (wCase <= 3)
switch (wCase)
case 0: /*0 - no action*/
break;

case 1: /*1 - Respond*/
CrashIfErcNotOk(Respond(pRq»;
break;

case 2: /*2 - Forward*/
{

if «iRqExch = Findw(rgServeRq, pRq->rqCode, nServeRq»
== OxOFFFF)

rqExch 0;
else

rqExch rgRqExch[iRqExch];
if (rqExch == 0) {

pRq->ercRet = ercServiceNotAvail;
CrashIfErcNotOk(Respond(pRq»;

} else
CrashIfErcNotOk(ForwardRequest(rqExch, pRq»;

break;
case 3: /*3 - Pass*/

/*Diddle rq.exchResp to come back to us.*/
AllocRcb (pRq) ;

230

if «iRqExch = Findw(rgServeRq, pRq->rqCode, nServeRq»
== OxOFFFF)

ServerGen: A Sample System Service

}

}

rqExch 0;
else

rqExch rgRqExch[iRqExch];
if (rqExch == 0) (
pRq->ercRet = ercServiceNotAvail;
1* To HandleRespond *1
CrashlfErcNotOk(Send(exchServe, pRq»;

} else
CrashlfErcNotOk(RequestDirect(rqExch, pRq»;

break;
}/* CASE *1

1* Main program *1

void
main(Word argc, char *argv[])
(

Init ();
while (1)

CheckErc(Wait(exchServe, &pRq»;
ProcessMessage(TRUE);

}

}

if ««wRet) » 4» & 1) 1* Ox10 bit is signal to deinstall *1
Delnstall () ;

231

Glossary

A

abort request

Notifies system services that clients have terminated. Upon notification,
system services can release resources, such as open files and locked
ISAM records, allocated to the terminating clients. Issuing an abort
request ensures that no requests are returned to the program after it has
been terminated and replaced in memory by another program. The abort
request also informs system services that resources allocated to the
program should be freed.

application partition

A partition of user memory in which an application program can execute.
A workstation can have any number of application partitions, with an
application program executing concurrently in each. See also system
partition.

application program

Can consist of code, data, and one or more processes executing in an
application partition. If the program is executing in a variable partition,
the program's code can be located anywhere in memory and can be
shared by the same type of program in a different variable partition.

Applications Programming Interface (API)

The collection of operations or interfaces that an application can use to
interface to a given software entity.

asynchronous operation

A procedure or protocol that allows for a response within a window of
time rather than at an exact time interval.

233

Glossary

Automatic Volume Recognition

B

The method by which eTaS can recognize and mount a uniquely named
volume (disk) on any workstation in a cluster. This feature implies that
if a workstation is removed from the local network, its hard disk can be
moved to another workstation and simply used there, without any
network reconfiguration.

bootstrap

To start (to boot) the system by reloading the operating system from
disk. On other systems, this is often known as initial program load.

byte stream

c

A character-oriented, readable (input) or writable (output) sequence of
8 bit bytes used by the Sequential Access Method to transfer data to or
from a device. An input byte stream can be read until either the program
chooses to stop reading or it receives status code 1 ("End of file"). An
output byte stream can be written until the program chooses to stop
writing.

CCGI+

An applications programming interface for CTOS that meets the ANSI
CGI standard.

Check

A kernel primitive used by a client to determine if a message is queued
at a specified exchange. If one or more messages are queued, the
message that was first queued is removed from the queue, and its
memory address is returned to the client. If no messages are queued,
status code 14 (''No message available") is returned.

client

234

A process that requests a service provided by a system service. Any
process, even a built-in operating system process, can be a client process,
since any process can request system services. See also system service.

Glossary

cluster

A local resource-sharing network consisting of a server connected to
cluster workstations. One high-speed RS-422 or RS-485 channel is
standard on each workstation. In cluster configurations connected to a
server workstation, the server and all of the workstations connected to it
use this channel for intercluster communications. For large clusters
with a shared resource processor server, multiple channels are provided.
The operating system executes in each cluster workstation and in the
server. See also cluster workstation, CTOS Network, server, server
workstation, and TeleCluster.

cluster agent .

See cluster workstation agent.

Cluster server agent

Reconverts a message from a workstation connected to the cluster line to
an interprocess request that is queued at the exchange of the request­
based system service on the server that actually performs the intended
function. The Server Agent includes the cluster code at the server that
polls the cluster workstation for requests. See also cluster workstation
agent.

cluster workstation

A workstation in a cluster configuration, connected to a server. See also
cluster and server.

Cluster workstation agent

Converts interprocess requests to interstation messages for transmission
to the server. The Cluster Agent service process is included at system
build in a system image that is to be used on a cluster workstation. A
Cluster Agent is the code that responds to Server Agent polling by
sending a request to the server or by informing the server that it has no
request to send. It is also sometimes referred to as the workstation
agent. See also cluster server agent.

ClusterCard

An expansion card for IBM-PC compatible cQmputers that provides
cluster communications channels. The card is used to integrate PCs into
a CTOS cluster.

235

Glossary

ClusterShare

Software that, when used in conjunction with an IBM-PC compatible
with a ClusterCard installed, integrates the PC into a CTOS cluster.

Computer Graphics Interface (CGI)

ANSI standard graphics application programming interface.

connection

Where a transaction is part of a series of interactions, the client and
system service are said to have a connection; where the transaction is a
one-time-only event, the relationship is said to be connectionless. A
client may have several connections simultaneously to the same or
different system services. These connections are all independent.

context

The collection of all information about a process. The context has both
hardware and software components. The hardware context of a process
consists of values to be loaded into process or registers when the process
is scheduled for execution. This includes the registers that control the
location of the process's stack. The software context of a process consists
of its default response exchange and the priority at which it is to be
scheduled for execution. The Process Control Block is a system data
structure that is the root of the combined hardware and software context
of a process.

This term is sometimes also used to refer to the process itself.

Context Manager

A partition managing program that the user interacts with to start and
switch back and forth between applications.

context switch

236

Occurs when a process is interrupted and its register contents are saved.
When a process is preempted by a process with a higher priority, the
operating system saves the hardware context of the preempted process in
that Process Control Block. When the preempted process is rescheduled
for execution, the operating system restores the content of the registers.
The context switch permits the process to resume as though it were
never interrupted. See also process, process context, and Process Control
Block.

Glossary

CTOS

Distributed, message-based operating system that runs on 8Ox86
microprocessors.

CTOS Network

A network consisting of server workstations connected by communica­
tions lines. Each server workstation is a node or junction in the network.
A CTOS Network provides access to the system services of inter con­
nected cluster configurations. Cluster workstations in the network can
access files on any node. CTOS Network software is sold under various
names including BNet and CT-Net.

CTOS/Open Advisory Council

D

DAM

The CTOS/Open Advisory Council was formed as a joint effort of
manufacturers, reseller, distributors, software developers, hardware
developers, and users to establish and promote the CTOS-based
architecture as a standard of distributed network computing.
CTOS/Open defines a set offeatures that are common to the current
and future versions of CTOS operating systems.

See Direct Access Method.

deadlock

Also called "deadly embrace", deadlock is the state which results when
two or more processes or programs are stopped, each waiting for a
response that depends on the other stopped program.

default response exchange

Each process is given a unique default response exchange when it is
created. This special exchange is automatically used as the response
exchange whenever a client process uses the request procedural interface
to a system service. For this reason, the direct use of the default
response exchange is not recommended. The use of the default response
exchange is limited to requests of a synchronous nature. That is, the
client process, after specifying the exchange in a Request, must wait for a
response before specifying it again (indirectly or directly) in another
Request. See also exchange and response exchange.

237

Glossary

demand-paging

A form of virtual memory management in which a program's linear
address space is series of contiguous fIxed sized regions called pages. A
page is either mapped to physical memory or is marked as 'not present'.
Demand paging requires hardware support for mapping linear to
physical addresses and for detecting 'not present' pages.

device-dependent

Describes program interfaces closest to the actual hardware. A device
dependent program performs 110 to a limited number of devices. See
also device-independent.

device driver

A software program that provides the interface between a device such as
a printer and other software. The device driver interprets the requests of
other programs and provides device specifIc instructions.

device-independent

Describes program interfaces that are not close to the hardware. A
device-independent program can perform 110 to a variety of devices.
The Sequential Access Method operations, such as OpenByteStream,
ReadByteStream, and CloseByteStream, are device-independent
operations. See also device-dependent.

Direct Access Method (DAM)

Provides random access to disk fIle records identifIed by record number.
The record size is specified when the DAM fIle is created. DAM supports
COBOL relative 110, but can also be called directly from any of the
supported languages.

Direct Memory Access (DMA)

Access to memory that does not require processor intervention. A DMA
controller in the processor module controls the transfer of data over the
X-Bus to the main processor's memory.

directory

238

A collection of related fIles on one volume. A directory is protected by a
directory password.

Glossary

disk extent

One or more contiguous disk sectors that compose all or part of a file.

distributed processing

DMA

Processing which is spread-out, or distributed, between one or more
machines in a network.

See Direct Memory Access.

dynamically installed system service

E

A program that was loaded as an application program and converted
itself into a system service using the ConvertToSys operation. Once
installed, a dynamically installed system service has the same capa­
bilities as a system service that was linked with the System Image
during system build. A dynamically installed system service must use
CTOS operations (rather than system build parameters) to identify the
request codes that it serves, specify its execution priority, establish its
interrupt handlers, and so forth.

event

An external occurence which causes a response in the process itself.

event-driven priority-ordered scheduling

When processes are scheduled for execution based on their priorities and
system events, not on a time limit imposed by the scheduler. See also
process and event.

exchange

The path over which messages are communicated from process to
process (or from interrupt handler to process). An exchange consists of
two first-in, first-out (FIFO) queues: one of processes waiting for
messages and the other of messages for which no process has yet waited.
An exchange is referred to by a unique 16 bit integer. See also default
response exchange and response exchange.

239

Glossary

Executive

An interactive application program that accepts commands from the
workstation user and requests the operating system to load programs to
execute those commands.

exit run file

A user-specified executable file that is loaded and activated when an
application program exits. Each application partition has its own exit
run file.

Extensible Virtual Toolkit (XVT)

F

FAB

FeB

FHB

A software library that provides for windowing applications one
application programming interface that can be used to provide a
graphical user interface or a graphics-like character-mode version of
such across multiple operating system platforms and multiple graphical
interfaces. For example, an XVT program can use the same calls to
provide a Macintosh interface and an X-Windows interface.

See File Area Block.

See File Control Block.

See File Header Block.

File Area Block

240

There is a File Area Block for each disk extent in an open file. The F AB
specifies where the sectors are and how many there are in the disk
extent. The FAB is pointed to by a File Control Block or another FAB.
The FAB is memory-resident. See also disk extent.

Glossary

File Control Block

There is a File Control Block (FCB) for each open file. The FCB contains
information about the file such as the device on which it is located, the
user count (that is, how many file handles currently refer to this file),
and the file mode (modify, peek, or read). The FCB is pointed to by a
User Control Block and contains a pointer to a chain of File Area Blocks.
The FCB is memory-resident.

file handle

A 16-bit integer that uniquely identifies an open file. It is returned by
the OpenFile operation and is used to refer to the file in subsequent
operations such as Read, Write, and DeleteFile.

File Header Block

There is a File Header Block (FHB) for each file. The FHB of each file
contains information about that file such as its name, password,
protection level, the date/time it was created, the date/time it was last
modified, and the disk address and size of each of its Disk Extents. The
FHB is disk resident and one sector in size.

file specification

A full file specification is a string of characters that specifies the location
of a file within a CTOS Network. It includes a node name, volume
name, directory name, file name, and can include a password. A file
specification can be shortened to leave out the node, volume, and/or
directory names if desired. In those cases the operating system assumes
that the current path should be used.

file system

A CTOS multiprocess system service that manages file manipulation.

filter process

A system service process that can be included in the System Image at
system build or dynamically installed at any time. A filter process is
interposed between a client process and a system service process that
operate as though they are communicating directly with each other. The
Service Exchange table is adjusted to route requests through the desired
filter process. Filters can be one or two-way filters.

241

Glossary

frame

A separate, rectangular area of the screen. A frame can have any desired
width and height (up to those of the entire screen).

full file

Consists of a node name, volume name, directory name, and file name.

G

GDT

See Global Descriptor Table.

Generic Print Access Method (GPAM)

Provides high-level 110 for complex documents that may include text,
graphics, or special text attributes. GP AM is an object module library
that provides device independent formatting commands used for
printing. GP AM is used typically to add rich formatting characteristics
to text that is output to a printing device.

Generic Print System (GPS)

The Generic Print System is made up of a set of dynamically installed
system services, which work together to handle communication between
application programs, the operating system, and the printers and
plotters currently installed.

Global Descriptor Table (GDT)

GPS

A protected mode structure that contains descriptors for segments,
which are shared by all programs. See also Local Descriptor Table
(LDT).

See Generic Print System.

Indexed Sequential Access Method (ISAM)

242

Provides efficient, yet flexible, random access to fixed-length records
identified by multiple keys stored in disk files.

Glossary

Interprocess Communication (lPC)

The method by which individual CTOS processes communicate by
sending messages to each other. In this processes exchanges serve as
message centers, where processes send messages or where they wait or
check for messages. Processes use the request procedural interface to
send such messages.

interrupt

External or internal; an event that interrupts the sequential execution of
processor instructions. When an interrupt occurs, the current hardware
context (the state of the hardware registers) is saved. This context save
is performed partly by the processor and partly by the operating system.

ISAM

See Indexed Sequential Access Method.

K

kernel

L

LDT

The most primitive and the most powerful component of the operating
system. It executes with a higher priority than any process but it is not
itself a process. The kernel is responsible for the scheduling of process
execution; it also provides IPC primitives.

See Local Descriptor Table.

linker

Links one or more object files into a run file to be loaded into memory.

Local Descriptor Table (LDT)

A protected mode structure in memory that contains descriptors for
segments accessable to a run file. The operating system constructs the
LDT based on information provided by the Linker.

243

Glossary

local file system

Allows a cluster workstation to access files on a local hard disk(s) as well
as files on the hard disk(s) at the server. The filter process of the local
file system intercepts each file access request and directs it to the local
file system or to the server workstation.

long-lived memory

M

An area of memory in an application partition. It is used for parameters
or data passed from an application program to a succeeding application
program in the same partition. If a character map other than the one in
the system partition is needed, it must be allocated in the long-lived
memory area of the application partition. See also application partition
and system partition.

Master File Directory

There is an entry for each directory on the volume in the Master File
Directory (MFD), including the Sys directory. The position of an entry
within the MFD is determined by randomization (hashing) techniques.
The entry contains the directory's name, password, location, and size.
The Master File Directory is disk resident.

message

MFD

244

The entity transmitted between processes by the interprocess communic­
ation facility. It conveys information and provides synchronization
between processes. Although only a single 4-byte data item is literally
communicated between processes, this data item is usually the memory
address of a larger data structure. The larger data structure is called the
message, while the 4-byte data item is conventionally called the address
of the message. The message can be in any part of memory that is under
the control of the sending process. By convention, control of the memory
that contains the message is passed along with the message.

See Master File Directory.

Glossary

multiprogramming

The ability to run more than one program in memory at the same time.
Multiprogramming supports the independent invocation and scheduling
of multiple processes. In addition, it provides for concurrent I/O and for
multiple processor implementations.

multitasking

See Multiprocessing.

multiprocessing

N

The ability for any program to have more than one process (thread of
execution). Multiprocessing also is called multitasking.

Native Language Support (NLS)

The CTOS facilities that support translation of software programs by
providing special operations that deal with language-specific formats
such as date-time formats and that support separate message files, so
that message strings and prompts can be easily translated without
requiring recompilation and relinking of application programs.

Net Agent

A system service process located at a server workstation that receives
requests over the network destined for request-based system services
located at remote nodes and forwards these requests to the remote nodes.

Net Server

node

A process that responds to requests from Net Agent processes. The Net
Server receives a request block from the Net Agent, executes the request
on behalf of the remote client, and returns the response to the originating
Net Agent. See also Net Agent.

A server workstation in a CTOS Network. Node also refers to the first
element (node name) of a full file specification.

245

Glossary

o
object module procedure

A procedure supplied as part of an object module file. It is linked with
the user-written object modules of an application program and is not
supplied as part of the System Image. Most application programs only
require a subset of these procedures. When the application program is
linked, the desired procedures are linked together in the run file of the
application. The Sequential Access Method is an example of object
module procedures. See also system-common procedure.

operation

p

An operating system kernel primitive, system service, system-common
procedure, or object- module procedure.

partition

A logical part of memory, specifically allocated for use by a program such
as the operating system or an application system. Processor memory can
be divided into several partitions. The partitions can vary in size during
use.

partition handle

Another name for a user number. See user number.

Partition Management facility

Permits concurrent execution of multiple application programs, each in
its own partition. It provides operations for creating, managing, and
removing application partitions.

PbCb

246

A 6-byte entity consisting of the 4-byte memory address of a byte string
followed by the 2 byte count of the bytes in that byte string.

Glossary

PC Emulator

CTOS software that allows MS-DOS to be run in a partition of memory
on 80386 workstations in Virtual 8086 mode. The PC Emulator can also
be run on 80286 workstations with a PC Emulator coprocessor module
attached.

primary partition

When a single application partition exists in memory, this partition is
called the primary partition. A primary partition is not under the control
of a partition managing program, such as the Context Manager.

primitive

An operation performed by the kernel. See also kernel.

priority

Indicates a process's importance relative to other processes and is
assigned at process creation. Priorities range from a high of 0 to a low
of 254.

priority-ordered scheduling

A scheduling algorithm by which processes are scheduled for execution
based on priority.

procedure

A subroutine.

process

An independent thread of execution for a program along with the context
(that is, the processor registers) necessary to that thread. One or more
processes are created each time a program is scheduled for execution. A
process is assigned a priority when it is created so that the operating
system can schedule its execution appropriately. See also priority.

247

Glossary

process context

The collection of all information about a process. The context has both
hardware and software components. The hardware context of a process
consists of values to be loaded into processor registers when the process
is scheduled for execution. This includes the registers that control the
location of the process's stack. The software context of a process consists
of its default response exchange and the priority at which it is to be
scheduled for execution. The Process Control Block is a system data
structure that is the root of the combined hardware and software context
of a process. See also context switch and Process Control Block (PCB).

Process Control Block (PCB)

A system data structure that is the root of the combined hardware and
software context of a process. A PCB is the physical representation of a
process. See also process context.

processor

Consists of the central processing unit (CPU), memory, and associated
circuitry.

program

Consists of executable code, data, and one or more processes. The code
and data can be unique to the program or shared with other programs. A
program is created by translating source programs into object modules
and then linking them together. This results in a run file that is stored
on disk. When requested by a currently active program, such as the
Executive, the operating system reads the run file into the application
partition, relocates intersegment references, and schedules it for
execution. The new run file can coexist with or replace other run files.
See also primary task, run file, and secondary task.

protected mode

248

One of the CTOS operational modes. In protected mode, application
programs can use all available free memory above the first megabyte up
to the maximum allowed by the processor and the hardware. Features of
protected mode are a different type of addressing that uses protected
mode structures, such as LDTs and GDTs, to define segments; protection
that imposes limits on the memory that programs can access; and virtual
8086 mode, which provides for running multiple operating systems in
different memory partitions concurrently. See also Global Descriptor
Table, Local Descriptor Table, real mode, virtual 8086 mode.

Glossary

Q

Queue l'danager

R

RAM

The Queue Manager is a system service that controls named,
priority-ordered, disk-based queues.

Random access memory.

ready state

One of three states in which a process can exist. A process is in the ready
state when it could be running, but a higher priority process is currently
running. Any number of processes can be in the ready state at a time.
See also running state and waiting state.

real mode

One of the CTOS operational modes. In real mode, application programs
can only access memory within the first megabyte. See also protected
mode.

Record Sequential Access Method (RSAM)

Provides blocked, spanned, and overlapped input and output. An RSAM
file is a sequence of fixed-length or variable-length records. Files can be
opened for read, write, or append operations.

reentrant code

Code that can be executed by more than one process at the same time.
System-common procedures, for example, must be written in reentrant
code

Remote Procedure Call (RPC)

A method for calling a procedure to perform a service irrespective of the
location of the service routine. With an RPC, the calling process waits for
the receipt of the message and when the message is received continues
processing. RPC is implemented on CTOS by the Interprocess
Communication facility.

249

Glossary

Request

Kernel primitive that directs a request for a system service from a client
process to the service exchange of the system service process. Before the
primitive is issued, the data required for the system service is arranged
in a request block in the client's memory. The easiest way for the client
to access the service is to use the request procedural interface, which
automatically builds the request block. See also request procedural
interface.

request block

A block of memory provided by a client that contains a special type of
message formatted according to specific conventions and used by all
interprocess communications to the operating system. The memory
address of the request block is provided by the client during a Request
primitive and by the system service during a Respond primitive. A
request block is the "element" that the application program (or the
operating system) sends to the operating system to request that a
particular operation be performed.

request code

A 16 bit value that uniquely identifies a system service. For example,
the request code for the Write operation is 36. The request code is used
both to route a request to the appropriate system service process and to
specify to that process which of the several services it provides is
currently being requested.

request procedural interface

A convenient way to access system services, compatible with high-level
languages, such as C and Pascal, as well as assembly language. The
request procedural interface is a routine within the CTOS operating
system that is executed when a program calls a request-based operation.
The routine builds a request block message and calls the Request
primitive, while the calling program is placed in the waiting state at its
default response exchange for the system service to respond. See also
default response exchange, Request, Respond, and Wait.

Respond

250

A kernel primitive used to pass a response back to a client process.
Respond is typically used in conjunction with Request for
communications between applications that are not located in the same
partition.

Glossary

response exchange

The exchange at which the requesting client process waits for the
response from a request-based system service. See also default response
exchange and exchange.

ROM

Read-only memory.

RSAM

See Record Sequential Access Method.

run file

An executable file, created by the Linker, that contains object modules
linked together into code and data segments.

running state

s
SAM

SCSI

One of three states in which a process can exist. A process is in the
running state when the processor is actually executing its instructions.
Only one process at a time can be in the running state. See also ready
state and waiting state.

See Sequential Access Method.

Small Computer Systems Interface, an American National Standard for
the interconnection of computers with peripheral devices such as disk
drives, tape drives, and printers.

semaphore

A synchronization primitive to coordinate the activities of two or more
processes that are running at the same time and sharing information.

251

Glossary

send

A kernel primitive typically used for communication between processes
in the same partition (user number). Send accepts any 4-byte field as a
parameter. This is usually, but not necessarily, the address ofa
message.

Sequential Access Method (SAM)

Provides device-independent access to a default set of real devices, such
as the screen, printer, files, and keyboard. To transfer data to or from
the device, SAM uses a character-oriented sequence of bytes known as a
byte stream.

server

A workstation that has a cluster server agent and which acts a server or
hub for cluster communications. A server can also be a shared resource
processor.

Server Agent

See cluster server agent.

server workstation

A server workstation can serve a cluster configuration. The server work­
station provides file management, queue management, and other
services to all the cluster workstations. In addition, it supports its own
interactive programs. See also cluster workstation.

service exchange

An exchange that is assigned to a request-based system service process
when the system service is dynamically installed or at system build. The
system service process waits for requests for its services at its service
exchange.

Shared Resource Processor

252

A multiprocessor, floor-standing eTOS server. The shared resource
processor can be configured to run various programs on each of its loosely
coupled processors and can be expanded to contain up to six cabinets,
each of which can contain up to 6 processor boards.

Ulossary

short-lived memory

An area of memory in an application partition. When a run file is loaded,
the operating system allocates short-lived memory to contain its code and
data. (Note that code that is shared by other sized programs in other
variable partitions can be located anywhere in memory.) Short-lived
memory also can be allocated directly by a client process in its own
partition. Common uses of short-lived memory are I/O buffers and the
Pascal heap. See also application partition.

spooler

swap

A dynamically installed system service that transfers text from disk files
to the printer interfaces of the workstation on which the spooler is
installed. It can simultaneously control the operation of several printers.
A disk-based, priority-ordered queue controlled by the Queue Manager
contains the file specifications of the files to be printed and the
parameters (such as the number of copies and whether to delete the file
after printing) controlling the printing. This allows the spooler to resume
printing automatically when reinstalled following an operating system
reload.

To copy a partition (user number) into memory or out of memory to a
disk file. Swapping is managed by a partition managing program on
multipartition operating systems or by the operating system itself on
variable partition systems.

system common procedure

A system-common procedure performs a common system function, such
as returning the current date and time. The code of the system-common
procedure is included in the System Image and is executed in the same
context and at the same priority as the invoking process. The Video
Access Method, for example, is a system-common procedure. See also
object module procedure.

system common service

A system service process that contains system-common procedures. See
also system service.

System Image

Contains a run file (executable file) copy of the operating system
([Sys]<Sys>SysImage. sys).

253

Glossary

system memory

An area of memory that is reserved for use by the operating system.

system partition

Con tains the operating system or dynamically installed system services.
See also application partition.

system request

Issued by the operating system to system services to notify the services of
clients that are terminating or are being swapped out of memory.

system service

T

An operating system process that provides services to client processes.
System service processes are of two types: request-based system services
and system common services. Request-based system service processes
serve requests submitted by client processes throughout the network;
whereas, system-common services contain system-common procedures
that can be used by clients at the local workstation. System service
processes can be dynamically installed or linked with the System Image
at system build.

TeleCluster

u

A system that supports connection of cluster workstations to a server
over twisted-pair (telephone) wiring in a star configuration.

user number

254

A I6-bit integer that uniquely identifies the programs and/or the
resources associated with a partition. A user number (historically the
same as a partition handle) is not associated with a partition's particular
size or physical location in memory, because partitions are not static
memory cells into which programs are loaded: a partition is created at
the time a program is loaded into memory and is removed when the
program is terminated. Each application partition has a different user
number. Processes in the same application partition share the same user
number. A process obtains its user number with the GetUserNumber
operation.

Glossary

v
VAM

See Video Access Method.

Variable Length Parameter Block (VLPB)

U sed by the Executive to communicate parameters to a succeeding
application in the partition in which the VLPB is located. The VLPB is
created in the long-lived memory of an application partition, and its
memory address is stored in the Application System Control Block. See
also Application System Control Block.

variable partition

VDM

VHB

Can use up to the maximum amount of memory specified at link time
(when the program to be loaded into the partition was sized).

See Video Display Management.

See Volume Home Block.

Video Access Method (VAM)

Provides direct access to the characters and attributes of each frame.
VAM can put a string of characters anywhere in a frame, specify
character attributes for a string of characters, scroll a frame up or down
a specified number of lines, position a cursor in a frame, and reset a
frame.

Video Display Management (VDM)

Provides direct control over the way that the video appears. With it, an;,
application program can determine the level of video capability, load a
new character font into the font RAM, change screen attributes, stop
video refresh, calculate the amount of memory needed for the character
map based on the desired number of columns and lines and the presence
or absence of character attributes, initialize each of the frames, and
initialize the character map.

255

Glossary

virtual 8086 mode

An operational mode supported by Intel microprocessors beginning with
the 80386. In virtual 8086 mode, multiple operating systems, such as
MS-DOS, can execute in memory in a multiprogramming environment.
A region of memory is allocated and assigned the operating system
characteristics of an 8086 microprocessor: the region provides a 1
megabyte address space within which a program can execute.
Concurrently, application programs can execute in real mode or in
protected mode in other memory regions. All executing programs have
virtual machine capability. See also multiprogramming, Partition
managing program, and virtual machine.

virtual memory

A technique that makes the apparent size of memory in an application
partition (from the perspective of the application programmer) greater
than its physical size. The primary mechanisms for the implementation
of virtual memory are page swapping and segment swapping. (The use
of program overlays is riot considered virtual memory because it is not
transparent to the application programmer.)

VLPB

See Variable Length Parameter Block.

volume

The medium of a disk drive that was formatted and initialized for eTOS
with a volume name, a password, and volume control structures such as
the Volume Home Block, the File Header Blocks, the Master File
directory, and so forth. A floppy disk and the medium sealed inside a
hard disk are examples of volumes.

volume Control structures

256

Allow the file management system to manage (allocate, deallocate,
locate, avoid duplication of) the space on the volume not already allocated
to the volume control structures themselves. A volume contains a
number of volume control structures: the Volume Home Block, the File
Header Blocks, the Master File directory, and the allocation bit map,
among others.

Glossary

Volume Home Block (VHB)

w
Wait

There is a Volume Home Block for each volume. The VHB is the root
structure (that is, the starting point for the tree structure) of information
on a disk volume. The VHB contains information about the volume such
as its name and the date it was created. The VHB also contains the
memory addresses of the Log file, the System Image, the crash dump
area, the allocation bit map, the Master File directory, and the File
Header Blocks. The VHB is disk resident and one sector in size.

The kernel primitive that a client calls to be placed in the waiting state.
See waiting state.

waiting state

One of three states in which a process can exist. A process is in the
waiting state when it is waiting at an exchange for a message. A process
enters the waiting state when it must synchronize with other processes.
A process can only enter the waiting state by voluntarily issuing a Wait
kernel primitive that specifies an exchange at which no messages are
currently queued. The process remains in the waiting state until another
process (or interrupt handler) issues a Send (or PSend, Request, or
Respond) kernel primitive that specifies the same exchange that was
specified by the Wait primitive. Any number of processes can be in the
waiting state at a time. See also ready state and running state.

Workstation Agent

See cluster workstation agent.

x
X-Bus

XVT

The extensible bus used to connect modules on a modular eTOS
workstation.

Sec Extensible Virtual Toolkit.

257

Index

8Ox86 family of microprocessors, 3,
17 to 18,40 to 42

80186,40 to 42
80286, 40 to 42, 43 to 45, 82, 100
80386,48,100
8086, 27 to 29
descriptor tables, 87
virtual 8086 mode, 24 to 25, 48

A
Abort request, 173
Addressing, 41, 84 to 87
Agent, 12, 102 to 105
Allocation Bit Map, 144
Appletalk,18
Application

asynchronous execution, 94, 158
to 159

chain, 82
CTOS design, 61 to 73
distributed, 55 to 59
example, 65 to 72, 168 to 184
requests, 173 to 174

execution, 81
extensibility, 67
input/output, 68, 115 to 119
interaction with system services,

178 to 184
loading, 82
modular design, 65
multitasking and, 8, 38 to 40
passing messages, 90
priority, 8, 78
processes, 8

synchronous, 94
termination, 102, 188
use of message, 178 to 179
user number, 98

Application partition, 98
Application programming interface,

94
CTOS/Open, 49 to 50

Architecture
design principles, 33 to 34
event-loop, 13
overview, 3 to 12 (See also

Interprocess Communication,
System service)

Array,91
Asynchronous execution, 158 to 159
Asynchronous System Service

Library, 194 to 198
Attributes, 129
Automatic Volume Recognition, 142
AWS, 36

B
Batch processing, 37 to 38
Bind, 84
Blocking, 94, 188
BNet, 20, 22, 31 to 32, 142, 162 to

164
Boot ROM, 144
Buffer, 199
Bull, 49
Bus, 17
Byte stream, 115 to 119

communications, 155, 158 to 161

259

Index

GPS, 125, 160
keyboard, 133 to 135
video, 130

Byte stream work area, 119

c
C3, Inc, 35
Cache, 43
Call gate, 95 to 96
CCGI+, 130
CD-ROM, 18, 141
Central processing unit

80186, 40 to 42
80286, 40 to 42, 43 to 45
80386,48
multitasking (See Multitasking)

CGI, 130
Chain, 82 to 85
Change priority, 78
Check, 88 to 90, 94
Client, 91,69, 173, 186 to 188, 198

to 202
Client agent, 102 to 105
Client-server model, 20, 98 to 101,

101 to 102, 154
application example, 70 to 72

Cluster, 4, 5, 19 to 22, 154
adding a workstation, 20
agents, 102 to 105
application, 63
development, 31
PC compatibility, 24 to 25
peer-to-peer, 5, 6, 20, 22, 164
routing, 31 to 32, 102 to 105
sharing resources, 19
size, 20

Cluster Access, 164
Cluster File Access, 20
Cluster server agent, 102 to 105
Cluster workstation agent, 102 to

105
ClusterCard, 24 to 25
ClusterShare, 24 to 25

260

Coast Guard, 35
Code segment, 85
Command-line interpreter, 75, 85,

128, 135, 136
Communications, 153 to 165

byte streams, 158 to 161
hardware, 16 to 17
hardware independent

programming, 158
OSI162
synchronous programs, 157]
network, 162 to 165 (See also

Cluster, CTOS Network)
Communications channels, 123, 155
Communications Manager, 200 to

202
Compatibility, MS-DOS, 23 to 25
Compatibility box (See RMOS)
Computer, CTOS workstation, 15 to

19
Computer Graphics Interface, 130
Concurrent processing, 38 to 40

(See also Multitasking)
Connection, 101 to 102, 173

terminating, 178
Context, 37 to 38, 195

of a process, 74
Context Manager, 38 to 40, 83, 139
Convergent Technologies, 3, 27
ConvertToSys, 85, 177
CreateFile, 149
CreateProcess, 75
CT-Net (See CTOS Network)
CTOS

80186 version, 40 to 42
80286 version, 43 to 45
80386 version, 48
and MS-DOS, 24 to 25, 45, 48
.applications, 61 to 73

design, 65 to 72
example, 168 to 184

application programming
interface, 94

architecture, 33 to 34

communications programming,
156

customization, 6
design principles, 33 to 34, 50
development history, 27 to 51
timeline, 46 to 47

device-independence, 115 to 119
distributed processing, 55 to 59
event-driven model, 189 to 191
file system, 141 to 152
Generic Print System, 159 to 161
hosted operating systems, 24 to

25,45,48
initialization, 83
installed base, 3
interrupt handling, 156 to 157
kernel, 4, 8, 11,30, 95 to 96
markets, 3
memory, 43, 81 to 87
multitasking, 37 to 38
partitions, 81 to 87
protected mode, 43 to 45
scheduling, 75 to 78
system image, 144 (See also

Cluster, CTOS Network)
CTOS Network, 20, 22, 142, 162 to

164
routing, 31 to 32

CTOS workstation, 15 to 19
diskless, 20
graphics, 17 to 18
integrated 17

CTOS/Open, 49 to 50
CTOSNM,44
Customization, 6, 11 to 12, 106 to

110, 119

D
DAM, 148, 151 to 152
Data base, 61, 141, 151 to 152, 168

to 169
networked example, 180 to 181

Index

Data format, 66
Data records, 151
Data segment, 85
Data storage, 141 to 142

centralized, 168 to 169
Data structures, 199
Deadlock, 190, 199
Debugging, 67, 198
Deinstallation, 177 to 178
Demand-paging, 139
Descriptor tables, 88
Design (See Architecture)
Development history, 46 to 47
Device

communications interrupt, 156 to
157

driver, 161
handler, 79, 156 to 157
device-dependent 110, 112 to 113,

114
device-independent 110, 112 to

113, 1135to 119
disk, 15 to 17, 141 to 142

Digital voice, 18
Direct Access Method, 148, 151 to

152
Directory, 142
Directory, Master File Directory,

145
Disk, 15 to 17, 122, 141 to 142

allocation bit map, 144
naming, 142
moving, 142
reliability, 141
structures, 143 to 145

Distributed processing, 4 to 5, 12 to
13, 37, 55 to 59, 94 to 95, 178
to 184

applications, 55 to 59, 61 to 73
event-driven model, 189 to 191
example, 168 to 184
example of interaction of system

services, 178 to 184

261

Index

file system, 141 to 152
interprocess communication, 90 to

93
network programming, 169
printing, 159 to 161

Dynamic Link Libraries, 117, 139

E
Electronic mail, 64, 182 to 184, 200

to 202
End-of-file, 150
Ethernet, 18, 22 to 23
Event, 8, 13, 189 to 191

keyboard, 134
Event-loop architecture, 13
Example

application, 65 to 72, 167 to 184
Asynchronous System Service

Library, 194 to 198
GPAM,175
printing, 175
requests, 173 to 174
ServerGen, 192 to 194, 206 to 223
system service design, 173 to 175,

192 to 194, 206 to 223
Exchange, 7, 9 to 10, 32, 87 to 90

and filters, 107
and requests, 90
checking, 179
default response, 74
request code, 98 to 99

Executable file, 81,83
Execution, process states, 75 to 76
Executive, 75, 85, 128, 135, 136
Extensible Bus, 19
Extensible Virtual Toolkit, 120, 137

to 139, 168

F
Fault, 79, 87
FAX, 18

262

FHB,146
File, 143

allocation bit map, 144
caching, 43
creation, 149
end-of-file, 150
executable, 81, 84
file specification, 142 to 143
file system, 141 to 152
input/output, 149 to 150
manipulation, 147
Master File Directory, 145
random access, 151
run file, 81, 83
system image, 144

File Access Methods, 148 to 152
File area block, 146
File handle, 98, 147, 149
File header block, 146
File server (See Server)
File specification, 142 to 143
File structures, 142 to 147
File system, 141 to 152

access methods, 148 to 152
File System process, 147 to 148
hierarchical, 143
MassIO process, 147 to 148
reliability, 143 to 146

File System process, 147 to 148
Fileheaders, 143, 146
Filter process, 12, 106 to 106, 194
Font Service, 160
Fonts, 175
Formatting, 175
Forms, 120, 136
Forward request, 107
Frame, 128

G
GDT, 87, 100
Generic Print Access Method, 161

Generic Print System, 124 to 125,
159 to 161

Global descriptor table, 87, 100
GPAM, 124 to 125, 161

example, 175
GPS,175
Graphical user interface, 51, 136 to

140
Graphics, 17 to 18

printing, 175
Groupe du Standard CTOS, 50

H
Handle, 101 to 102, 176
Hardware, 15 to 25
Hosted operating systems (See

Operating systems, hosted)

IBM-PC, compatibility, 24 to 25
IDT, 156 to 157
Indexed Sequential Access Method,

148, 151 to 152
example of use, 180 to 181

Input/output, 68, 111 to 125
communications channels, 123
device-dependence, 112 to 113,

114
device-independence, 112 to 113,

115 to 119
Disk, 122
Forms, 120, 136
Generic Print System, 124 to 125
GPAM, 124 to 125
Graphical User Interface, 136 to

140
Keyboard, 121, 133 to 136
Mouse, 121, 135
Printers, 124 to 125
Storage Devices, 122
Video, 121, 127 to 136
XVT, 120

Index

Installation, system service, 176 to
177

Integrated workstation, 17, 27
Intel microprocessor, 3, 17 to 18

80186,40 to 42
80286, 40 to 42, 43 to 45, 82, 100
80386,48,100
8086, 27 to 29
virtual 8086 mode, 24 to 25, 48

Internationalization, 170 to 171
Interprocess communication, 5, 9 to

11,30 to 32, 73, 87 to 93
session handle, 173

Interrupts, 79 to 80, 156 to 157
and IPC, 155

Interrupt Descriptor Table, 156 to
157

Interrupt Service Routine, 156 to
157

Interrupt vectors, 74
ISAM, 63, 71 to 72, 148,151 to 152

example of use, 180 to 181
ISR, 156 to 157
IWS, 27

J-K
Job control language, 37

Kernel, 6, 8, 11,30, 95 to 96
Keyboard, 121, 133 to 136

byte streams, 133 to 135
international characters, 170
mode, 134

L
Language, Native Language

Support, 170 to 171
LDT, 84, 87
Libraries, 70, 82, 96
Link, 81, 84
Load, 84

263

Index

Local Area Network (See Cluster,
CTOS Network, Ethernet,
Token ring)

Local Descriptor Table, 84, 87, 99
to 100

Long-lived memory, 85

M
Macintosh, 189
Macros, 135
Mail, 64, 182 to 184, 200 to 202
Mail Service, 169, 174, 200 to 202

example of use, 182 to 184
MassIO process, 147 to 148
Master File Directory, 145
Memory, 30, 37 to 40, 81 to 87

allocating, 176, 180
partition, 38 to 40, 43, 81 to 87
shared, 195
virtual, 82

Message, 5, 7, 9 to 12, 62, 73 to 96
asynchronous, 178
event-driven model, 189 to 191
exchange, 88 to 89
network, 22
passing across a network, 12, 102

to 105
request, 31 to 32, 90 to 95
sending and receiving, 178
synchronous, 178
wait, 193

Message files, 171
MFD, 145
Microprocessor

80186,40 to 42
80286, 40 to 42, 43 to 45, 82, 100
80386,48,100
8086, 27 to 29
Descriptor tables, 87

Modules, hardware, 15
Monitors, 129 (See also Video)
Motorola 68000,28
Mouse, 121, 135

264

MS-DOS, 24 to 25, 45, 48, 58
Multibus, 28
Multipartition (See Partition)
Multiprocessing (See Multitasking)
Multiprocessor server, 20
Multiprogramming (See

Multitasking)
Multitasking, 4, 8, 37 to 38

Context Manager, 38 to 40 (See
also Processes)

N
Nationalization, 170 to 171
Net Agent, 164
Net Server, 164
Network, 4, 12 to 13

agents, 102 to 105, 164
distributed processing and

applications, 55 to 59, 68, 169
peer-to-peer, 5, 6, 20, 22, 164
remote procedure call, 90 to 95,

102 to 105
speed,5
wide-area, 162 to 165 (See also

Cluster, CTOS Network)
NFS, 58
NLS, 170 to 171
Node, 22, 142

o
Object module procedures, 82, 86
OEM, 17, 33, 35, 36
Open Systems Interconnection, 162
OpenByteStream, 119, 151
Operating system

event-driven model, 189 to 191
hosted, 24 to 25, 42, 45, 48
MS-DOS, 24 to 25,45,48
OS/2, 58, 80, 87, 100, 189
priority, 78
system image, 144
UNIX, 58, 87, 80

Oracle, 152
OS/2, 189

distributed processing, 58
interprocess communication, 87
local descriptor table, 100
processes, 80

OSI, 162

p

Packets, 87
Paranel port, 155
Parameters, passing, 86
Partition, 30, 37 to 38, 81 to 87, 82

to 87,188
application, 83
fixed,84
variable, 84
handling, 176
locking, 177 to 178
system, 83
user number, 98
variable, 42

Partition handle, 81, 83, 176, 188
(See also User number, 188)

Path, 142
PbCb, 91, 99 to 100
PC Emulation, 24 to 25 (See also

MS-DOS)
Peer-to-peer, 5, 6, 20, 22, 164
Personal Computer (See MS-DOS)
Pipe, 87, 115
PMOSS,44
Pointer, 32, 87, 91, 92, 99 to 100
POSIX, 185
Presentation Manager, 130, 137,

138
Primitives, 6, 88 to 90, 95 to 96

device-dependent 110, 114
using, 178 to 179

Print Service, 159, 161
Printers, 19, 124 to 125

device driver, 161

Index

Printing, 159 to 161
example, 175

Priority, 8, 74, 75, 78, 192
changing, 78

Process, 5, 7 to 8, 74 to 78
asynchronous, 94
chaining, 82
communicating with another

process, 88
context, 74
creating, 75
identifying, 75
messages, 90
multiprocess system service, 192,

198 to 202
parent, 198
priority, 8, 75, 78
ready, 75
request, 202
running, 75
scheduling algorithm, 75 to 78
shared stack, 195
states, 75 to 76
suspended, 76
synchronization, 90
synchronous, 94
using multiple processes, 192
waiting, 75

Process Control Block, 75
Processor, 15 to 17, 19

80186, 40 to 42
80286, 40 to 42, 43 to 45, 82, 100
80386,48,100
registers, 74
use, 74

Program
asynchronous execution, 94, 158

to 159
byte streams, 119
chain, 82
distributed, 55 to 59
execution, 81
loading, 82

265

Index

modular design, 69
multitasking and, 8, 38 to 40
partition, 98
passing messages, 90
priority, 8, 78
processes, 8
synchronous, 94
termination, 102, 188
use of message, 178 to 179
user number, 98 (See also

Application)
Protected mode, 42 to 45

descriptor tables, 87
Protected Mode Operating System

Service, 44
Protection fault, 87
PS/2, 24 to 25

Q
QueryVidHdw, 131
Queue Manager, 71 to 72, 160

R
Read, 149
ReadBSRecord, 119
ReadByte, 119
ReadInputEvent, 134
Ready state, 75 to 76
Real mode, 41, 44
Record access, 151
Record Sequential Access Method,

148, 151 to 152
Recovery, 35
Reminder system service, requests,

173 to 174
Remote Procedure Call, 4 to 5, 9,

58,90 to 95
network communications, 102 to

105 (See also Interprocess
Communication, Request)

Request, 4 to 5, 9 to 10, 12, 30, 31
to 32,59,90 to 95, 202

266

asynchronous use, 158 to 159
connection, 101 to 102
data passed, 99 to 100
exchange, 98 to 99
file specification, 169
network, 22
network routing, 102 to 105
request block, 91 to 92
request code, 98 to 99
response to client, 188
status query, 176

Request block, 31, 91 to 92, 104,
108

Request Code, 98 to 99
Request table, 178
Resiliency, 35, 141 to 142
Resource files, 171
Resource management, 90
Resource sharing, 19 to 22
Respond, 90, 107
RFS, 58
RMOS,44
Routing, 22, 91 to 93, 102 to 105
RS-232, 18, 22
RS-4221485, 5, 32
RSAM, 148,151 to 152
Run file, 81, 84
Run queue, 75
Running state, 75 to 76

s
SAM, 115 to 119, 148, 151 to 152
Scheduling, 8, 75 to 78
Semaphores, 87,90, 117, 139, 192,

199
Send, 88 to 90
Sequential Access Method, 115 to

119, 148, 151 to 152
communications byte streams, 155
GPS byte streams, 160

Serial port, 155
Server, 19, 63, 103 to 105, 154

and PCs, 24 to 25

shared resource processor, 20 (See
also System Service)

Server agent, 102 to 105
ServerGen, 192 to 194, 206 to 223
ServeRq,99, 106, 177
Session handle, 173
Session services, 164
Shared resource processor, 20
Short-lived memory, 85
Sockets, 87
SPA, 43
Spooler, 124 to 125
Stack, 32, 74, 195
Standards

CTOS/Open, 49 to 50
OSI,162

STI, 164
Storage Devices, 122
Submit, 135
Subroutines, 6
Swapping, 102
System common, 95 to 96, 158
System Input Process, 135
System Performance Accelerator,

43
System Service, 6, 11 to 12,30,97

to 110, 185 to 203
agent, 102 to 105
asynchronous, 189 to 191
Asynchronous System Service

Library, 194 to 198
client interaction, 98 to 101, 173 .
communications, 101 to 102
connection to client, 101 to 102
data structures, 199
deinstallation, 177 to 178
example, 69 to 72, 109, 173 to

174, 176 to 184, 192 to 194,
206 to 223

installation, 176
interactions, 178 to 184, 186 to

188
multiclient, 186 to 188
multiple processes, 192

Index

multiprocess, 198 to 202
network, 12 to 13
optimization, 191
partition, 82
priority, 78, 100, 192
protected mode operation, 44
request, 90 to 93, 98 to 101, 173 to

174,202
ServerGen, 192 to 194
service process, 193
sharing data with a client, 93
structure, 109 to 110
synchronous, 198 to 202
system common, 95 to 96
template, 192 to 194
termination, 102, 188
use of data structures, 191
user number, 188

System services (See also Filter
processes)

System structures
allocation bit map, 144
disk structures, 143 to 146
process control block, 75
U -Structure, 84
variable length parameter block,

85
volume home block, 144

T
Tape drives, 19
TeleCluster, 5, 19 to 22
Telephone wiring, 20
Terminals, 20
Termination, 102, 173, 188, 191

system service, 177 to 178
Thick net, 22
Thin net, 22
Time-slicing, 78
Timekeeper (example), 65 to 72,

168 to 184
Token Ring, 18, 22 to 23
Transaction, 101, 181

267

Index

Translation, 170 to 171
Trap handlers, 79 to 80
Twisted pair, 5, 20,22

u
U -Structure, 84
Unisys,48
UNIX

distributed processing, 58
interprocess communication, 87
processes, 80

User interface, 51
design, 168
Executive, 136
Forms, 120, 136
Graphical User Interface, 136 to

140
multitasking, 38 to 40
XVT, 120

User number, 75, 81, 84, 98, 101 to
102, 188

v
V AM, 130 to 132
Variable Length Parameter

Block, 85
VDM, 130 to 132
VGA,24
VHB,l44
Video, 121, 127 to 136

attributes, 129
byte streams, 131

Video Access Method, 130 to 132

268

Video Display Manager, 130 to 132
Video frame, 128
Virtual 8086, 24 to 25, 48
Voice Processor, 18
Volume, 142

control structures, 143 to 146 (See
also Disk)

Volume home block, 144

w
Wait, 88 to 90, 189, 192, 202

maximum time to 190
Waiting state, 75 to 76
Wide Area Network, 162 to 165 (See

also eTOS Network)
Windowing, 120, 130, 136 to 140
Word processor, 35
Workstation, 15 to 19

adding to cluster, 20
AWS, 36, 40
diskless, 20
graphics, 1 7 to 18
IWS, 27, 40
NGEN, 40 to 42

Write, 149

x
X-Bus, 19
X.25, 22, 164
Xerox, 33
XVT,120, 130,137to 139, 168

resource files, 171

EXPLORING CTOS@
With over 800,000 units installed, the CTOS~ operating
system has still been called the best-kept secret in the
computer world. Since 1981, CTOS has remained the only
commercially available, message-based distributed oper­
ating system for microprocessor-based computers. Its
modular architecture and unique networking capabilities
are ideally suited for the needs of today's computer users
and their work environment.

Exploring eTOS provides a conceptual oveNiew of the
CTOS architecture. Clear and easy-to-use, this book is a
must- read selection for those interested in distributed
operating systems, and for those interested in developing
networked applications.

In this book you'll find out:

• What CTOS is and how it was developed.

• How this message-based operating system implements
the clientiseNer model.

• Why a message-based environment is ideal for easy
development of networked or distributed applications.

• How CTOS provides built-in, transparent networking for
distributed applications.

• How CTOS is modularized through the use of system
seNices.

• How device-independent inputloutput provides an
application with added flexibil,ity. .

• How CTOS provides multitasking for distributed
applications.

PRENTICE HALL
Englewood Cliffs, N.J. 07632

ISBN 0-13-297342-1

90000>

9 780 132 973427

