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Preface 

It has been said that only authors, editors, and those who expect to be 
acknowledged actually read prefaces, but we are writing one anyway because 
we have a few things to tell you up front. 

Exploring CTOS® is an introduction to an operating system whose name is not 
widely known, although it is ten years old and well established. The writing of 
this book was partly prompted by our continuing frustration at reading sober 
and seemingly well researched articles that discuss at length the difficulties of 
creating distributed or networked application systems, but never mention 
CTOS, the only system in which networking is built in and transparent. We 
tend to share the feelings of one reader of a British publication who, after 
having read a rare but laudatory article about CTOS therein, wrote a letter to 
the editor saying: 

... Hopefully the marketing of eTaS/Open will lead to an end to the networked micro 
debate and rid us of the awful technology games that advocates have played on 
corporations throughout the world. Mter all, if you want to fly from New York to 
London, you wouldn't choose a Sopwith Camel with an RB-211 strapped to the tail, 
you'd go 747.1 

1 The Guardian, London, October 17, 1989, Letters Page. Letter from Mike Fitzsimmons, 
Computer Systems Manager, BBC Broadcasting Research, in response to an article by Jack 
Schofield that appeared October 8, 1989. 
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Preface 

As with all large pieces of software, the people around CTOS have 
anthropomorphized it. CTOS has a warm, if unusual, personality. It tends to 
make converts of people from other technical religions, even if in the beginning 
they regard it with suspicion. First, however, they have to get an introductory 
acquaintance with it. That is all that this book hopes to provide. We think 
that computer people in management and marketing, as well as systems 
people, will be able to follow our description here. Other, more detailed 
reference documents are available for the programmer who really wants to try 
out the system. 

The book is divided into two parts. Part 1 gives a general overview and some 
history of CTOS. Part 2 explains a little bit more about what distributed 
applications are and takes a technical tour of CTOS to support our belief that it 
is the preeminent platform for such applications. 

A note of explanation is in order about the fact that when we describe the 
history and evolution of CTOS in Chapter 3, we do not name the characters in 
the drama. The idea here is that the book is about CTOS, not about 
individuals. Many more people contributed to this system than we could name 
or even track down at this point. Knowledgeable CTOS people who have 
helped us by reviewing the manuscript have torn their hair out trying to 
identify the mentioned players, but our belief is that most readers care less 
about the names than about the story. (We are, of course, threatening to follow 
up with a full-length expose that names names and tells all, but these threats 
are probably toothless.) 

We do want to name some names here, however: many people helped us to put 
this book together. We are especially grateful to Jon Huie, Irv Kalb, Jeff 
Seideman, Jay Spitzen, Esq., and Fred Zucker for taking time from other, busy 
lives to help us reconstruct earlier days of CTOS development. Some very 
important friends also helped us extensively with old memories, as well as with 
concrete, current technical information and finally with manuscript reviews: 
Karen Bedard, David Christie, Drew Hoffman, Jeff Krause, David "Louie" 
Renaud, Steve Seike, Dave Stearns, and Greg Walsh. 

We are also grateful for technical information and manuscript reviews from Joe 
AItmaier, Stan Balazer, Thomas Ball, Michel Bouckaert, Alan Coleman, Peter 
Cressman, Kevin D'Souza, Mark Emmerich, Jim Frandeen, Leo Freaney, 
Christina Gibbs, Dan Gilson, Ed Kaulakis, Andy Little, Carolyn Lowenthal, 
Gene Lucier, Rakesh Mahajan, John McGinty, Nitin Mehrotra, Alan Merrell, 
Bert Miller, Val Miller, Margaret Morris, Dave Mullins, Dan Oberrotman, John 
Quattlebaum, Mike Ribble, Steve Ricossa, Roger Roman, Noah Shaffer, Bill 
Thomson, Karen Toland, Gijs Van Reijendam, and Bob Walker. 
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Preface 

Special thanks go to Tom Germond for his initial legwork and first concept for 
the book. In the course of many iterations, we have altered it considerably 
from his plan, but the original themes that he identified still peek through. 

Much material in Chapters 6 and 7, which explain interprocess communication 
and system services, is based on descriptions from an unpublished paper by 
Patrice Bremond-Gregoire. We thank him for generously permitting us to use 
it, thus expediting our efforts. 

CTOS programmers everywhere will join us in thanking Joe Altmaier and 
Thomas Ball for allowing us to publish their ServerGen program (Appendix A), 
a template that gives the inexperienced system service writer a real boost. 

All errors, of course, are our own responsibility; but we thank editor Carol 
Collins for her expert work in helping to ferret out as many as possibie. MiIena 
Martin-Arana, Jacqueline Mac Millan, Nettie Kohn, and April Bishop handled 
the artistic side of the book with patience, humor, and aplomb. We also thank 
Andrew Keirn for his last minute assistance. Linnea de Jaager, Gloria Baker, 
and William V. Vroman provided personal and professional encouragement and 
support beyond the call of duty as we struggled to convert a raging ocean of 
ideas and concepts into a few words on paper. 

Finally, EM would like to thank Dave Stearns for being the teacher and mentor 
he is, and Anna Ilyin McClain and Anita Eagleton for their continuing support 
and reassurances when the ocean just seemed too deep. JC wants to thank 
Elizabeth Groom for pushing (an understatement) both CTOS and this 
engineer in the early days of CTOS, and he would also like to thank his 
daughter, Charla, for continually demanding equal time! June thanks her 
family, Greg, Ben, and Jessica, and her colleagues for their support during 
those hectic weeks as we finalized this book. 

Welcome to the CTOS world! We hope you enjoy the trip. 

Edna Ilyin Miller 
Jim Crook 
June Loy 
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Part 1 
An Introduction to eTOS 





1 
CTOS in Brief 

eTOS is different from other operating 
systems because its architecture is 
modular and it is easily extended and 
customized . .. it is optimized primarily 
as a platform for a particular situation: 
the modern business and the way most 
people really do their work. 

CTOS® is a protected-mode operating system that has a built-in local area 
network. It runs on desktop workstations and servers based on the Intel® 
family of 80x86 microprocessors, elegantly exploiting most of the advanced 
features of these chips. 

Although it has not had wide publicity, CTOS has had a steadily growing 
installed base since its original introduction by Convergent Technologies® in 
1980. Today, it runs on almost 800,000 computers around the world. An 
advanced design to begin with, CTOS has continued to be a technical leader 
since its inception. 

CTOS is different from other operating systems because its architecture is 
modular and it is easily extended and customized. Flexibility is its hallmark, 
but it does not attempt to be, in fact, all things to all people. Rather, it is 
optimized primarily as platform for a particular situation: the modern 
business and the way most people really do their work. 
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The Working Model 

In a common scenario, individual people work on computers located in their 
own offices or work areas. They need fast local computation, and also efficient 
access to resources that are centralized at a server to reduce costs. They need 
to share information. In other words, they need simple distributed computing. 

People also do not normally work sequentially. Instead, they do what is called 
multitasking: they intersperse work on several ongoing tasks at once. (For 
example, a person may be referring to a spreadsheet, making corrections in a 
document, and exchanging electronic mail messages with other people, all at 
the same time.) 

eTOS and the hardware that it runs on are a stable platform optimized for this 
model of distributed, multitasking computing. Resilient and reliable, it offers 
real-time, distributed processing that businesses can count on for their 
mission-critical applications. Because CTOS is multitasking, users can run 
several applications at the same time, switching from one to the other as 
needed without necessarily stopping execution. Because it is distributed, users 
have easy access to networked resources and services. 

The CTOS platform efficiently supports not only end users, but also the 
software developers who write applications for them. It provides developers 
with an environment in which the necessary networking involved in 
distributed applications is provided transparently by CTOS. This local area 
network (LAN) is built-in at the lowest levels of the operating system and 
hardware. Programs written using the CTOS application programming 
interface are automatically networked. 

eTOS Support for the Model 

The technical bases for this good fit between CTOS and its users are its 
multitasking (multiprogramming) nature and its very fast remote procedure 
call (RPC). 

An RPC is like an ordinary program procedure call, except that it is served by 
code that resides on another computer, across a network connection from the 
caller. Ideally the RPC works in such a way that an application can be 
oblivious to the location where the call is actually served. 
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Most personal computers and workstations are tied together by add-on 
networks, so that on these systems, the RPC has been added on at a higher 
level of software and hardware. These operating systems were also not built 
from the start with networking in mind, as CTOS was. The result is that their 
networking is more cumbersome and their RPC is slower. 

CTOS supports fast RPC primarily in two ways: it is a message-based 
operating system in which data is only selectively copied; and its fundamental 
LAN conforms to the way most users access resources. 

A Message-Based Operating System 

A system running CTOS has multiple processes, or threads of execution. These 
processes communicate with each other via small messages through a mailbox­
like system. A passed message can point to a larger data item that one process 
wants to hand to another process. Pointers can merely be exchanged, and large 
amounts of data do not necessarily have to be copied. (Only pertinent data is 
copied when messages go across network connections.) 

A Simple Cluster LAN 

The CTOS cluster links a central server workstation to client workstations. 
The cluster is implemented through a simple bus topology with RS-4221485 
connections, or through TeleCluster™, which connects the workstations over 
twisted pair (telephone wiring) in a star configuration. 

Cluster networking capability is built into the operating system. The client 
workstations have access to resources at the server, but not the converse. 

This arrangement effectively supports the way most people work most of the 
time. Because the configuration is simple, the CTOS cluster communication 
software can be highly optimized, and. the cluster LAN can provide unusually 
high performance (throughput) at moderate cost. 

Of course, for those who need peer-to-peer access among workstations, this 
capability can be added in a higher software layer. This easy addition 
illustrates another important aspect of CTOS: its extensibility. 

A Modular, Extensible System 

CTOS was designed well before terms such as "message-based" or 
"multitasking" came into fashion. Its modular, extensible architecture, 
however, reflects its designers' innate understanding of the principles that 
later carne to underlie distributed systems. 
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The eTOS operating system has a very small kernel, or group of primitive 
operations; but most of the eTOS system environment is made up of modules 
called system services. These system services have roles that would be part of 
kernel software in many other operating systems: they handle the file system, 
various devices, and so on. System services can be loaded dynamically as 
needed. They communicate with their application program clients and with 
each other by means of the messages we have described. As a matter of fact, 
this is the basis of the new micro-kernel architectures. 

Because eTOS is modular, it is easily extended or customized. A system 
service can be written by any experienced programmer and added to the 
system, or a new system service can be substituted for an existing one. Such a 
substitution does not require any other alterations as long as the messaging 
interface is maintained. 

Because of the scaffolding that is already present, it has not been hard for 
eTOS developers to add what one of them calls "bolt-on-beauties" to eTOS as 
time and technical breakthroughs have gone on. In this way, peer-to-peer 
networking, the ability to handle a POSIX interface, and many other 
capabilities have been added, and there will be many more. 

The Old Way 

There was a time when the demands on an operating system were simple, and 
it could be designed as a monolithic collection of subroutines that performed 
commonly needed duties. As time passed and needs grew, more and more 
subroutines had to be added. To support peripherals and communication, 
device-specific drivers were written. In fact, specificity was a hallmark of this 
approach. It was like a wall composed of irregularly shaped stones. Nothing in 
the structure could be changed or updated without changing the whole thing. 
A computer running such an operating system had to load all of it, not just the 
needed parts. 

Over time, such a structure became more and more elaborate, rigid, and 
enormous. The only other choice was to allow the operating system to remain 
limited and eventually to become too unsophisticated to support users' needs. 

Either way, at some point designers would have to grapple with the problems 
of large-scale kernel rewrites and whole new operating systems that somehow 
retained backward compatibility. Then they would have to stabilize and debug 
their new systems all over again. 
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Figure 1-1. The Old Way 

A Building Blocks Approach 

How much simpler it would be to keep an operating system current if it were 
made up of separate building blocks with clean, regular interfaces! These 
blocks could be put together, taken apart, substituted, and reassembled in 
configurations that included only the needed functions. People other than the 
original designers could add or substitute blocks of their own. Maybe the 
blocks would not all have to be in the same place to work together. 

CTOS is that building-block operating system. Its parts are separated so that 
they function independently. The building blocks of CTOS are processes; the 
mortar is made up of messages and exchanges. 

Figure 1-2. The Building Blocks Approach 
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Processes: the Building Blocks 

For years, larger computers with single processors have been doing 
multitasking. This sleight of hand makes them appear to run more than one 
program at a time. Most human users naturally do their work in this way. 
The idea is not new, but small-computer users have only recently been exposed 
to it. 

Multitasking is also called multiprogramming, where more than one program 
is running at once, sharing the central processing unit over time in some way. 
Now consider that each program may be composed of more than one process. 
A process is an independent thread of execution, together with the hardware 
context (the processor register values) necessary to that thread. 

eTOS supports independent invocation and scheduling of multiple concurrent, 
independent processes. eTOS processes, whether they are application 
processes or are parts of eTOS itself, are regular building blocks with clean 
interfaces. 

For example, an electronic mail program might have two processes: one allows 
the user to edit a mail message, while the other monitors incoming mail. Not 
only does the mail program compete with other programs for use of the 
processor; the two processes within it compete with each other and with all the 
processes in all the other programs for processor time. Each must get the 
processor time that it needs to do a good job for the user. 

Process Scheduling 

Multiple processes obviously do not really run at the same time on one 
microprocessor, but it definitely appears so to the user. The different computer 
systems that offer multitasking use varying mechanisms to simulate this 
effect. 

How does eTOS achieve the "simultaneous execution" of multiple processes 
and make them all look as if they were running at "normal" speed? 

Each process (thread of execution) within eTOS is assigned a priority and is 
scheduled for execution based upon that priority. The eTOS kernel scheduler 
performs the scheduling of the processes. 

Process scheduling is driven by events. Whenever an event occurs during 
execution of a process, such as an input/output event (110), that process can 
lose control of the processor. A higher-priority process that is eligible for 
execution is scheduled for immediate execution. This type of scheduling 
technique is called event-driven, priority-ordered scheduling. 
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Messages: the Mortar 

In order to do business, individual eTOS processes send messages to each 
other. This mechanism is called interprocess communication (lpe). Although 
at the most primitive level, a message can be anything, it is usually a memory 
address at which some relevant item of information can be found. 

A message is passed from one process to another via an exchange. An 
exchange is like a mailbox; it is a place where processes wait to receive 
messages or, where messages are deposited to wait to be processed. Each 
process is allocated an exchange when it is created, and it can ask for more if it 
needs them. 

eTOS is not unique in its use of this message-based model. It is unique in the 
use of a special type of message, the request for service, which is usually 
referred to more simply by the term request. 

The request is the most common message in eTOS. Requests are specially 
formatted messages that include a request block header that includes a request 
code, which identifies the desired service, along with other information that 
will be needed by the service, such as where to send the response and who is 
sending the request. 

With the help of the eTOS kernel, the request travels transparently to the user 
or application program across networks to locate any special service. 

To make it clear how this works, let's draw a simple analogy between the way 
people use requests and the way eTOS processes use them. 

Suppose Mary needs to have the Acme file copied so that she can take it with 
her to her next client meeting. She writes the following note (request) 

"I need a copy of the Acme file on my desk ASAP!" 

and hands it to her administrative assistant, John. John pulls the file from his 
cabinet and, because there is no copier in the office, decides to send it to a copy 
center. He asks Fred, who operates the copy center, in a different building, to 
return the copy to Mary's desk. Fred makes the copy and delivers it to the 
desk where Mary is waiting. 
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If Mary and Fred represent eTOS processes and John represents the eTOS 
kernel, you can think of the interaction described above like this: Mary creates 
a request that indicates the desired service (copying), some additional 
information (the name of the Acme file), and the response exchange (her desk) 
or where she will wait until the service is completed. She hands the request to 
John (the eTOS kernel), who decides to route the request to Fred at the copy 
center. Fred does the service and sends the results to the response exchange 
(Mary's desk). 

Mary could have elected to leave the office while the copy was made and to just 
check her desk occasionally to see if the copy was ready yet. In real1ife she 
certainly would have. As a eTOS process, she could also just stop and wait for 
the file to appear, because she could count on the service being performed very 
quickly. 

10 
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The Roles of Interprocess Communication (IPC) 

eTOS is a message-based operating system. In eTOS in terprocess 
communication, exchanges serve as message centers where processes send 
messages or where they wait or check for messages. Overhead is minimized, 
because, unless the request must go across the network, only the address of 
data is passed, not the data itself. 

Interprocess communications (lPC) actually has two different roles in the 
CTOS world. IPC is the means of communication and of transmission of data 
from one process to another. IPC also allows synchronization of processes 
(controlling when they stop and start executing relative to each other). Thus, it 
provides a means for the orderly sharing of resources among processes. We 
shall discuss these aspects of IPC in Part 2. 

The Role of the CTOS Kernel 

In any exchange of messages, the CTOS kernel (like John in the example 
above) is quietly and efficiently involved. At about 4000 bytes, it is tiny, 
primitive, and powerful, containing only a few vital functions. The eTOS 
kernel creates processes, assigning their exchanges, among other things. It 
schedules processes preemptively for execution, based on priorities (0 through 
255) that it has assigned to them. It acts as a postal service for communicating 
processes, delivering messages back and forth between their exchanges. It also 
controls inter-CPU communication (ICC) on larger servers that have multiple 
processors. 

System Services 

Nearly all the other functions that one normally associates with an operating 
system are actually performed by system service processes. System services 
manage resources (the file system, communications, and so on) and provide 
services that are requested by application program processes and by other 
system service processes. In the analogy we used before, Fred was a system 
service (copy service). 

System services are well-behaved building blocks in the eTOS system. 
Because of their standard message-based interfaces with the rest of the CTOS 
world, they can be removed, substituted, and added at will. The "greater 
CTOS" thus can be efficiently tailored to specific situations. 
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A system service process receives IPC messages to request the performance of 
its services. Examples of operating system services include opening or closing 
disk files or accepting keyboard input. 

System services can be linked in with the operating system or can be 
dynamically installed. In operation, a dynamically installed system service 
is indistinguishable from a linked-in system service. 

The use of system service processes and the formalized interface provided by 
IPC results in a highly modular environment that increases both reliability and 
flexibility. 

Operating Across a Network 

The true beauty of a CTOS system service is that it can operate across a 
network transparently to the process that requests its services. For example, 
an application process on one computer can send off a request to a system 
service to have a certain job performed; but the application does not have to 
know where the system service resides. If it turns out that the desired system 
service is not on the local machine, the request is automatically routed across 
the network to where the service does reside. The response comes back in the 
same way. 

Remember that we said the request procedural interface is designed to make it 
easy to pass such messages. Remember that in the analogy we used before 
Mary and Fred did not have offices in the same place (computer). Somehow 
the operating system set things up so that they did not need to know the exact 
location (address) of each other's mailbox to exchange messages. 

If the CTOS kernel has only essential responsibilities, then how is this routing 
carried out? By additional system services that specialize in routing the 
requests. They are called agents, and they are of the class of filter processes, 
which trap and manipulate messages aimed at other services. We shall see a 
great deal more of them and of other system services in Part 2. 
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What Can You Do With This? 

This way of doing things makes life easy for developers of distributed 
applications. First, all the messaging we have talked about is neatly hidden 
under standard application program interfaces (API) that look just like 
traditional subroutine calls, so there is no new mechanism to learn unless you 
want to. 

Next, you can write a system service yourself. A new system service can be 
part of an application or can be an extension to the operating system~ A system 
service is just a program that observes certain rules and makes a few necessary 
calls when starting and terminating. It does not take very long to understand 
how system services work or to learn how to write the simplest kind of system 
service. 

Creating a more sophisticated system service as part of your application allows 
you to place certain program functions in one location on a network and have 
many users or instances of the program effectively share code across that 
network. The same version of your application works on any physical 
configuration, whether it involves one standalone system, a small local area 
network, or a larger network. There is no such thing as a separate network 
version of your application. 

We briefly mentioned earlier that CTOS has the cluster network built-in. LAN 
capabilities do not have to be "bolted on": the local network is part of CTOS. 
The implications here for simplifying the development of distributed 
applications such as electronic mail programs, for example, are enormous. Part 
2 of this book will explore those implications in more detail. 

The world in which CTOS lives and plays is moving toward architectures in 
which software operates in a continuous loop that handles whichever of 
multiple possible events occurs. These event-loop architectures support the 
graphical user interfaces of the future. CTOS system services, which are 
event-loop entities, are ideally suited for this environment. 

What Does It Look Like? 

CTOS obviously does not exist and perform in a vacuum. In fact, this modular 
operating system runs on modular hardware. The next chapter gives a quick 
overview of the physical side of the CTOS world. 
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2 
Physical Systems 

Because of its modular design, the 
eTOS workstation can be easily and 
quickly configured with as many or as 
few features as are needed, and features 
such as disk expansion, graphics, or 
voice processing can be added as needs 
and network configurations change. 

Modular eTOS runs on modular, intelligent desktop workstations that can 
stand alone, but that reach their full potential when configured into local- and 
wide-area networks. The standard eTOS workstation comes in pieces that 
look rather like groups of medium-size books. Each of these modules supports 
a special function and set of features: processing, mass storage, graphics, tape 
backup, and so on. 

Easily latched together without tools by an untrained user, the computer has 
an oblong footprint that allows it to fit easily on a desk, a bookshelf, or other 
office furniture. Because the monitor and keyboard can be up to 16 feet away 
from the processor, the workstation can easily fit into an environment in which 
space is at a premium. 

Figures 2-1 through 2-2 show simple workstation configurations. 
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Figure 2-1. A eTOS Modular Workstation 

Because of its modular design, the eTOS workstation can be configured with as 
many or as few features as are needed; and features such as disk expansion, 
graphics, or voice processing can be added as needs and network configurations 
change. Disks and special function modules can be easily moved from one 
system to another as needed. Even processor units can be easily changed for 
upgrade or repair. 

Certain processor models combine commonly needed features into one 
enclosure: for example, the Intel 80386-based integrated workstation contains 
hard and floppy disk drives as well as the processor, memory, and power 
supply. Integrated workstations can take additional cards as well as modules 
to enhance functionality. 
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Processor 

Figure 2-2. A eTOS Integrated Workstation 

Physical Systems 

X-Bus 
Expansion Card 

Many special function modules are available from OEM manufacturers around 
the world. They include a widely varied set of modules that expand communi­
cations functions as well as those that provide basic local functionality such as 
memory and disk storage. 

Table 2-1 lists some of the basic eTOS workstation modules. 
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Table 2-1. Some Types of Workstation Modules 

Module Description 

Processor Includes 80286 or 80386 processor, system 
RAM, 2 RS-232 ports, RS-422 or RS-485 port, 
Centronics-compatible parallel port (bidirectional 
in some models). 

Expandable Processor Includes 80286 or 80386 processor, system RAM, 2 
RS-232 ports, RS-485 port, Centronics-compatible 
parallel port, and can be expanded with special function 
cards or modules. 

Integrated Processor Consists of 80286 or 80386 processor module 
components with SCSI hard and floppy disks 
and power supply in one module, and can be expanded 
with special function cards or modules. 

Disk Storage Available in several sizes and types, including 
floppy/hard disk combination, floppy disk, removable 
SCSI disk, SCSI hard disk, disk expansion, CD-ROM. 

Tape Storage Provides SCSI quarter-inch streaming tape for 
backup. 

Graphics Controller Has support for VGA+ compatibility; hardware 
graphics accel~rator; 1024 x 768 pixels. 

General Communications Several modules, some of which contain coprocessors, 
allow the addition of RS-232 communications ports. 

Appletalk® Allows attachment to Appletalk network. 

Ethernet Allows attachment to Ethernet network. 

Token Ring Allows attachment to Token Ring network. 

Voice Processor™ Contains CODEC, DTMF and rotary signaling 
devices, DTMF tone decoder, etc., for 
connection to voice and data networks. 

FAX Receives and sends FAX messages. 

18 



Physical Systems 

The X-Bus 

What makes this arrangement work is the Extensible Bus (X-Bus™), which 
provides the mechanical, logical, and power connections between modules. The 
pins and sockets that anow the X-Bus segment in one module to be attached to 
the segment in the next module can be seen along the lower edges of the sides 
of each module. As one module is latched to another, the X-Bus can be 
extended out to 24 inches. 

The system modules are linked to and interact with the workstation processor 
module via the X-Bus. Figure 2-3 shows this connection. 

X-Bus Connector 

Figure 2-3. Workstation Modules Showing the X-Bus Connection 

Cluster and TeleCluster 

Workstations can be connected to form a local area network caned a cluster. 
One workstation (usually with many resources, such as disk and tape storage, 
printers, communications gateways, and so on) is designated as the server 
workstation. All other workstations on the cluster can use resources at the 
server, as well as their own. 

The server does not need to be a dedicated server used only as a file server as is 
the case in many other LAN environments: it can also be used as a normal 
workstation for one of the users on the cluster. Nor do all the workstations on 
a cluster have to be of the same processor model: more recently acquired 
workstations continue to work with older ones. 
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Under this arrangement, some or all cluster workstations can be simply one 
processor module with no disk at all or a nonexpandable workstation consisting 
only of a processor/video controller unit, also without a disk. These machines 
use the disk resources at the server. Diskless workstations reduce the cost of 
setting up a cluster; but because they retain the sophisticated processing power 
of the workstation, they remain highly responsive to the individual user. (In 
fact, a cluster of only four workstations is price competitive with the same 
number of personal computers on aLAN, and it has more capabilities.) If 
cluster workstations do have local disks, they can continue to work using their 
local disks even when the server is not running. 

The maximum number of workstations that can be included on one cluster 
varies with the specific type of processor unit used for the server and with 
operating system configuration. Because these figures change with new 
releases, we will not cite maximums here. Suffice it to say that many small 
companies, and most departments within large companies, are able to include 
all their employees on one cluster. 

When it is desirable to have a very large cluster or to have a great deal of 
centralized disk storage, larger dedicated servers with multiple, loosely coupled 
processors can be set up. Such servers are often called Shared Resource 
Processors.™ The loosely coupled processors that make up a Shared Resource 
Processor can be dedicated to various functions. The processors run the CTOS 
operating system and communicate with each other and with the rest of the 
cluster LAN via the same message-based mechanism described in Chapter 1. 
In line with the other CTOS computers, the Shared Resource Processor is a 
modular machine that can accommodate as many specialized processors as 
required in up to 6 expansion cabinets. 

The workstation, CTOS, and the cluster were originally designed at a start-up 
computer company called Convergent Technologies in 1979. At that time, the 
decision was made to allow cluster workstations to have access to disks at the 
server (client-server), but not the converse (peer-to-peer). This arrangement 
allows greater security for individual workstations than one in which all 
workstations can access files on all others. (More recently, a peer-to-peer 
communication capability has been added as part of a higher communications 
software layer distributed with the CTOS Network software.) 

The members of a cluster can be connected to each other in either of two 
ways: via a standard RS-422 cable connection or via the TeleClusterTM 
hardware. TeleCluster allows connection via existing building telephone 
twisted-pair wiring. TeleCluster is far more cost effective than any other 
method of installing any LAN and is the method of choice where building 
wiring permits it. Addition of a workstation to the cluster is a simple matter of 
connecting the cables. 
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Whatever the physical connections of the cluster, it is very simple to 
administer because the cluster concept is built into eTOS and is not added on 
later. A cluster can be set up and maintained by a nontechnical system 
administrator. Moreover, the same operating environment runs on all 
hardware, thus simplifying matters for end-users, system administrators, and 
programmers, alike. 
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Larger Networks 

Clusters can in turn be connected via the CTOS Network software (sold under 
various names, such as BNet or CT-Net), which establishes transparent 
peer-to-peer connections among CTOS server workstations. Each connected 
server is called a node. The CTOS Network operates as a logical extension of 
the cluster. Users can simply add the node name to a file specification to 
access files across the network. 

The CTOS Network is media independent and can operate on RS-232, 
switched, leased, synchronous, and asynchronous lines, as well as X.25 
packet-switched networks, Token Ring, and Ethernet (thin, thick, or 
twisted-pair). 

As with the cluster, messages are passed over the CTOS Network 
transparently to the originating program. Thus an application on a cluster 
workstation can request a service that is not on that local workstation, and the 
request can be transparently routed not only to the server of that cluster, but 
beyond it to other network nodes for service. All this routing activity is 
transparent not only to the human user of the applications, but also to the 
application programmer. Through these connections, any resource (file, 
dataset, printing service, mail, communication service) is available to any 
cluster workstation. 
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Running MS-DOS Programs 

PC Emulator 

As we shall see in the next chapter, CTOS systems were never intended as 
personal computers and were never offered to the general public through retail 
outlets. As time went on, however, and the IBM® PC and its relatives became 
popular, more and more application software was written for these personal 
systems. Eventually, users ofCTOS systems wanted to run some of these 
programs. 

CTOS developers responded by creating in several stages the capability of 
running MS-DOS-based programs under CTOS. On the 80386-based 
processors, CTOS uses the microprocessor's virtual 8086 mode and its own PC 
Emulator software to support multiple concurrent instances of MS-DOS,® or 
"virtual PCs". Use of a VGA monitor with the workstation allows a very high 
degree of MS-DOS program compatibility. The 80286-based processors can 
also run PC Emulator software if a PC Emulator coprocessor module is 
attached. 

By comparison, both UNIX® and OS/2TM plan to have in the near future the 
same sort of capability that CTOS currently has. UNIX provides MS-DOS 
functionality on an 80386-based workstation with the MS-DOS Merge product, 
allowing the simultaneous execution of both MS-DOS and UNIX programs. 
OS/2 currently utilizes the MS-DOS compatibility box, where the system must 
be switched during run time from OS/2 to MS-DOS and vice versa. In the 
future, OS/2 will utilize the VM-8086 feature of the 80386 chip to allow the 
coexecution of several MS-DOS sessions simultaneously, a feature that CTOS 
has provided for several years. 

ClusterCard and ClusterShare 

Running MS-DOS-based programs directly on a CTOS workstation was not the 
only feature users wanted. Some users wanted the power and network 
capabilities of the CTOS cluster, but already had an investment in simpler 
MS-DOS oriented hardware. For these users, the ClusterCard™ board and 
ClusterShare™ software were invented. ClusterCard is an expansion board 
that fits any standard PC expansion slot and automatically configures itself for 
the 8-bit PC or I6-bit AT expansion bus. ClusterShare is the software 
interface. It consists of two parts: a system service that runs at the server and 
an MS-DOS driver that runs on the PC. 
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ClusterCard and ClusterShare integrate PCs into the cluster, allowing them to 
use the CTOS server. The server can provide file, disk, printer, and mail 
services to the PCs. Because ClusterShare uses the CTOS file system, PCs can 
use files that are larger than 32M bytes on the CTOS server workstation. 

Server 

PS/2 with 
ClusterCard 

CTOS Cluster 
Workstation 

CTOS Cluster 
Workstation 

PC with 
ClusterCard 

Figure 2·6. A CTOS Cluster with PC, PS/2®, and CTOS Workstations 

Why CTOS Is What It Is 

CTOS and the CTOS workstations and servers are now at an exciting time in 
their history. CTOS is evolving from a well-kept secret into a well-known open 
system. Its developers are confronting thorny, technical and philosophical 
questions as they tum this corner. To understand how CTOS became what it 
is and to see where it is going, we need to step back into its past. 
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The principal designers decided early on 
to create a message-based operating 
system with low overhead that would 
handle multiple processes in as near to 
real time as possible . .. The designers 
understood that eTOS would live in a 
changing technical world. The modular 
design would allow it to be updated 
easily in the future, as well as tailored to 
the special needs of various customers. 

As is true of many other start-up computer firms, wild and wonderful tales of 
exotic personalities and technical derring-do surround the early days of 
Convergent Technologies. Some are true, some apocryphal; but together the 
stories convey the feeling of a time that really did exist and really was 
exhilarating for those who were there. 

Convergent® (as it came to be called) was formed by a small group of hardware 
engineering and marketing people who left Intel Corporation to do so in August 
of 1979. Convergent culture still retains joking references to designing things 
on paper napkins, because the concept for the Integrated Workstation (lWSTM), 
Convergent's first hardware product, is supposed to have been sketched on a 
napkin in a bar as the founders made the decision to go out on their own. 

Within a few weeks, the tiny company had hired its first few software 
engineers. All had extensive experience, but they were from extremely varied 
backgrounds and had differing and strongly held technical views. No matter 
what stories are told about the Convergent founders, it is incontestable that 
they created an atmosphere in which these diverse talents came together and 
cooperated and learned from each other, with spectacular results. 
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The First Direction 

CTOS has ended up as a potent operating system for distributed business 
applications. The ideas of the founders, however, had nothing to do with this 
marketplace. They had been heavily involved in the invention and marketing 
of the Intel Multibus®, a popular add-on board standard of the time. The 
associated Intel development systems, called "blue boxes," were hard to use 
and unreliable. 

The original Convergent Technologies product was envisioned as a 16-bit 
microprocessor-based workstation (the first use of that term) that would be a 
sleek, easy-to-use replacement for the Multibus and blue-box environment. It 
was aimed at developers of real-time systems such as test or communications 
equipment. The company name derived from the convergence of several 
ripening technologies: the 16-bit microprocessor; a small, built-in hard disk 
drive; high-quality video; and a truly excellent software development 
environment coming together in a small desktop system. 

The founders allotted one year for the development and release of this new 
machine: not, as one early developer comments, because there was any 
rational month-to-month plan, but because they wanted to ship it within that 
time. 

Basic Decisions 

Because the founders were from Intel, it may seem obvious that they would 
base their design for the IWS on the Intel 8086 microprocessor. However, 
they knew the drawbacks as well as the advantages of the 8086, and the 
forthcoming Motorola® 68000 was seriously considered. Timing determined 
the outcome: release of the Motorola chip was delayed, and Convergent went 
with the 8086 rather than wait several months for a chip that some developers 
would have preferred to use. 

This practical decision was the first of several that did not seem as momentous 
at the time as they later turned out to be. It was some time later that the IBM 
PC® was announced and the 8086 became established through it. It is because 
CTOS workstations and servers still are based on the Intel 80x86 family of 
microprocessors that they can run several concurrent instances of MS-DOS 
today. 
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With hardware design begun, the small company turned to the question of an 
operating system for the IWS. The principal software architect had been 
persuaded to leave Xerox® Corporation's Palo Alto Research Center (PARC) to 
join Convergent. With a strong academic and research background at Harvard 
University, SRI, and Xerox PARC, he was eager to create a commercially viable 
product that would use some of his theoretical ideas, yet be pragmatic. Over 
the next few weeks, several of his former colleagues at Xerox joined him. 
Affectionately nicknamed the "Xeroids," they contributed strong research 
abilities and recent academic ideas, as well as coding skill, to the Convergent 
mix. 

The principals were wise enough to realize that other points of view should be 
included in the software team. Even before all the Xeroids had joined up, 
Convergent had added experienced software engineers from the "real worlds" of 
large data-processing systems (SEL) and PBX design (Bell Northern Research), 
as well a UNIX developer from AT&T® Bell Laboratories. 

The first software decision was whether to port an existing operating system to 
the new hardware. Choices were limited. CPIM® was not nearly powerful 
enough. UNIX was still considered to be an unreliable academic system; and 
besides, it could not handle the real-time requirements of the specification. 
The only other suitable operating system was RMX-BO, the Intel blue-box 
operating system. It was message-based and closer to the real-time design that 
was needed; but after some serious consideration, the team rejected it. They 
believed that they themselves could create something better. 

A stimulating period of intellectual exchange followed. The developers were 
not tied to B-bit technology or to any kind of backward compatibility. 
Standards were not yet fashionable. They were free to create the most 
forward-looking system that could be reasonably produced. 

Papers from the computer science literature were passed around, and concepts 
from other areas of experience were unearthed. Everything was discussed 
intensely in group sessions that included not only the software team, but also 
hardware and product design engineers, marketing, and the company officers. 
Participants remember analyzing ideas from the Xerox Alto, Pilot, and the 
multiprocessing Thoth (developed at the University of Waterloo), among others. 
Conflicting ideas certainly arose at this time. A strong corporate culture had 
already taken root, however, and no schisms occurred. This culture was based 
on the respect each person had for the technical ability of the others, as well as 
on communication and trust. This factor of trust actually showed up in the 
design of CTOS later. 
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It is significant that those who were present often cannot remember which of 
them came up with any given aspect of the design. In their descriptions, they 
use the impersonal voice ("It was decided to do so-and-so") and often give credit 
to others for important ideas. This way of thinking, discussing, reaching 
consensus, and pulling together toward a goal became a culture that was 
passed down to later eTOS developers as they appeared. Even if those who did 
not subscribe to this culture were exceptionally talented, they did not survive 
in the long term. 

The principal designers decided early on to create a message-based operating 
system with low overhead that would handle multiple processes in as near to 
real time as possible. This aspect of the design came not only from RMX-BO, 
but also from the exposure of the Xeroids to message-based experiments and 
from the experience of the PBX designer who had seen it work before. 
Generally known message-based operating system designs did have the 
drawback of overhead related to the passing of data. Because they were 
designing a simple machine with no protection requirements, the team could 
get around this problem by passing only the memory addresses of data from 
one process to another. 

Another key (and related) decision was to keep the operating system kernel as 
small as possible and place many traditional operating system functions in 
separate processes called system services. Other processes (applications or 
other system services) would send requests to a system service; it would 
respond with the desired result and a status code. The eTOS kernel would 
only manage process scheduling and interprocess communication (message 
passing). The designers understood that eTOS would live in a changing 
technical world. The modular design would allow it to be updated easily in the 
future, as well as tailored to the special needs of various customers. 

Memory management was considered an application responsibility. There was 
one address space, a single memory partition. In the early days, eTOS was 
multiuser: the file system was one user, the human user the other. This 
concept was discarded before the first eTOS release, but it laid the basis in 
eTOS data structures for the much later development of multiple memory 
partitions. 

In deciding to create their own operating system and to make it message-based, 
the design team unwittingly set themselves up for a happy accident: 
networking. 
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Networking From Day Two 

Although support for networking was not explicitly included in the first 
hardware design for the IWS, the primary CTOS architect had networking in 
the back of his mind from the beginning of the project. 

Meanwhile, it became evident within a few months after the effort began that 
the IWS was going to be an expensive machine for customers. Convergent 
marketing and sales people began to pressure the engineers to reduce the cost 
of the IWS by removing, for example, the expensive hard disk and using only 
floppy disks. This suggestion struck horror to the hearts of the designers. 
Necessity brought forth the invention: the team came up with the notion of 
placing the expensive resources on one machine and connecting other, less 
expensive workstations (with or without their own disks) to that central one in 
such a way that they could all use the resources transparently. The idea for 
the Convergent cluster was born, yet how to implement it? 

There was no time to redesign the hardware, nor to design an elaborate 
peer-to-peer network of the kind known at Xerox. It fell to the most pragmatic 
and least academic of the lead software engineers to figure out how to retrofit 
networking onto hardware that had only one full-word DMA channel left 
available, and to design how the CTOS message-passing scheme was going to 
work across the new cluster. 

The Request Procedural Interface 

Meanwhile, by the second quarter of 1980, the rudiments ofCTOS were up and 
running. Excitement mounted as the team saw that their ideas were going to 
work well. There was one drawback, though, which revolved around the choice 
of a message-based implementation. Writing code explicitly to build data into a 
request block in client data space and to pass messages from process to process 
was not compatible with existing high-level programming languages or with 
the way experienced programmers thought. People were accustomed to the 
idea of subroutine calls. The new system was technically wonderful, but not 
particularly friendly. To recruit the allegiance of customers' developers, this 
situation must change. 

The solutions to this problem and to the networking problem came in one 
revolution. The concept of the way the request block was used was ripped up 
and redone, an event that reverberated through everyone's work. No longer 
would the programmer explicitly construct the request block. 
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The new approach was to hide the construction of the request block under a 
request procedural interface, which looked exactly like a traditional system 
call, with what appeared to be a function name followed by parameters. 
Transparently to the programmer, the linker would recognize requests as such. 
The new request block would be built, not by the programmer in the client's 
data space, but by the operating system on the client's stack. The request block 
would include a new header portion that indicated what the rest of the 
structure contained. In effect, it became self-describing. 

Moreover, the CTOS kernel would not simply pass pointers. It would take on a 
more active role. Operating system tables would understand the new request 
block format and be able to determine which exchange (and thus, which system 
service) was the target of the request. A request for a service that turned out 
not to be local could then be forwarded across the cluster to the server 
workstation. New system services, called the cluster workstation agent and 
the cluster server agent, were written to handle routing. 

Some ingenious work had to be done to shoehorn cluster communications into 
the one remaining DMA channel. It turned out to be possible if one byte of the 
word was outgoing and the other was incoming. (Later revisions of the IWS 
hardware design corrected this resource problem.) Using inexpensive RS-422 
lines at 307Kb, the first cluster did not have blistering speed, yet the team 
could see that it would work. 

The inventions of the request procedural interface and the self-describing 
request block were the real innovations in the early design of CTOS. All the 
other concepts were known, although perhaps not widely used up to that time. 
It was this breakthrough that made CTOS unique and set it up for a second 
happy accident and a future that was not at all what its creators had expected. 

Changing Course 

While the designers worked feverishly in cubicles and labs over the winter, the 
first Convergent salespeople were already on the road looking for the kinds of 
customers that the founders had envisioned. To everyone's amazement, they 
did not appear. (In fact, it is safe to say that very few people ever did create 
custom Multibus hardware and software to run on an IWS.) The salespeople 
were getting worried. Finally, in the spring of 1980, they got their first really 
large nibble. 
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Perhaps not surprisingly, that nibble came from Xerox Corporation, a company 
that certainly could appreciate advanced design. Xerox, however, wanted to 
put its own advanced word processor on the IWS for use in office environments. 
They also put a strong push behind the fledgling efforts toward networking, 
insisting that it be part of the product. They were interested in becoming an 
OEM for a distributed office system. (OEM stands for "original equipment 
manufacturer," but the term has come to denote a company that buys technical 
products from another company, puts its own name on them, and resells them.) 

Convergent responded by pressing forward with the networked design; but the 
relationship with Xerox did not last. Within a few months, Xerox decided to 
pursue another course. Xerox had, however, left an indelible mark on 
Convergent, in both marketing and engineering. 

In marketing, the salespeople now understood where to look for OEM 
customers. They saw to it that Convergent began to design and build its own 
word processor. 

In engineering, the Xerox experience subtly inserted a difference of opinion 
about design direction. This difference later grew and was not resolved for 
three years. The question was this one: was the machine really a tiny, 
powerful, networked minicomputer replacement, or was it a platform for office 
applications? 

There were designers on each side of the question. Nevertheless, at this time 
there was no overt disagreement between these two philosophical camps. 
Money was tight, hours were long, everyone was just pulling together to get the 
product out, and any customer prospect looked good. 

The Early Religion 

The first CTOS developers never sat down and talked about philosophy or a 
design "religion" per se: they were too busy creating the product. One of them 
likes to say that Nature was not designed but debugged into perfection. 
Another quips that Jesus did not intend to start a new religion but to reform 
Judaism. In other times and places, they had all seen things done wrong, and 
they wanted to do things right. 

Nevertheless, religious principles did emerge, even if they were not codified. 
CTOS should be a message-based and real-time multiprocessing operating 
system. It should stay small, it should be modular, it should have low 
overhead. It should stay out of the application's way if the application needed 
to interface with hardware. (This latter principle was to change later.) 
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A harder principle to describe is that CTOS should be open and trusting of the 
application writer. The trust among the members of the first team was 
reflected in the operating system's belief that applications would be voluntarily 
well behaved. Since all application development was initially done in house or 
by a few close OEM customers, this policy was successful. Things remained 
that way for several years, even after CTOS was supporting multiple partitions 
with concurrently running programs on the 80186 microprocessor, before the 
80286 brought memory protection into the picture. 

There were two basic tensions in the early development group. One was the 
differing viewpoints between the more academic and the more pragmatic 
members. The other was the most important religious principle of all, which 
one participant expresses as "Ship it!" 

The philosophical tension was used constructively. The research-oriented 
members brought the message-based concept and networking to the product, 
among other modern ideas. The pragmatists were concerned with 
performance, creating a redundant and extra-reliable hard disk, using 
algorithms that were known to work, keeping the cluster concept down to what 
really could be done with the time and resources available, and generally 
finding the simpler, faster, and smaller way to do things. Without the 
academics, nothing would have been new; without the pragmatists, nothing 
would have been shipped. 

In any case, the religion of shipping it was real. Under the deadline pressure of 
one year, the Ctosians (see-TOE-zhuns), as they carne to be called in the 
Convergent vernacular, together built and shipped the IWS with CTOS version 
1.0 on it. This achievement was phenomenal in a world where minicomputer 
and mainframe design cycles commonly consumed several years. 

The cluster code was not all implemented in CTOS 1.0, but the basic 
development system was up and running. The team of 14 people had written 
100,000 lines of systems code; created a linker, a loader, an editor, diagnostics, 
device drivers, an easy, menu-oriented command-line interpreter, and a 
sophisticated debugger; and ported several compilers. CTOS 1.0 shipped in 
October 1980, just over a year after the first software engineers were hired. 
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More Office Applications 

In February of 1981, two important events occurred: CTOS 2.0, with cluster 
code up and stumbling, had its first customer ship; and Convergent signed its 
first really big contract. A system integrator named C3, Inc. had the courage to 
propose IWS/CTOS networks in response to a U. S. Coast Guard request for 
proposal (RFP) that had been written with minicomputers and terminals in 
mind. Convergent people went through a minor baptism offire as C3 taught 
them the art of the government live test demonstration. The Coast Guard was 
amazed and delighted with the CTOS system, which could do more than they 
had asked for at a fraction of the cost they expected. It was a deal, and a big 
one. 

The Coast Guard not only wanted the distributed word processor that was 
under development, but also needed spreadsheets, data bases, and other tools. 
At Convergent, the end-user orientation now gained strength with the 
acquisition of this real customer. 

Problems with the cluster were quickly worked out, with another CTOS release 
(3.0) in March of 1981. More large customer prospects began to appear as 
Convergent went to trade shows and demonstrated its wares. A famous 
product demonstration of this era was the so-called "kick-the-plug demo," in 
which, while showing off the new word processor, the salesperson would 
"accidentally" trip over the IWS power cord, jerking it out and causing the 
machine to stop dead. As viewers gasped at this seeming disaster, the 
salesperson would smile and plug in the cord; the system would automatically 
reboot itself; and when entered, the word processor would replay every 
keystroke that had been typed up to the point of the interruption. Nothing had 
been lost. (One visiting engineer who saw this act at the Comdex show actually 
decided on that basis that he wanted to find ajob working on CTOS systems. 
He was later to join Convergent and participate in a turning point in the life of 
CTOS.) 

Another story from this era concerns the relationship of Convergent and 
Microsoft® Corporation. Microsoft was developing MS-DOS and associated 
tools; it was also known as a producer of compilers and office applications. 
Convergent needed a BASIC compiler but had little ready cash. A trade was 
worked out in which Microsoft received the source code for Convergent's linker 
in exchange for some BASIC licenses. This linker, minus its application­
swapping technology, which Microsoft engineers deleted, became the linker 
that MS-DOS developers received from Microsoft. Thus, developers all over the 
world used a Convergent-written product in writing programs to run under 
MS-DOS. 
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Why the 'Accident Was a Happy One 

In 1981 and 1982, Convergent became more and more firmly planted as an 
OEM supplier of networked office systems that were beyond the state of the 
art. Convergent's top managers realized that a young company of its type 
could not hope to do everything well, and so they did not attempt to establish a 
direct sales force or enter the retail market. Instead they chose to rely upon 
OEM customers for their marketing force. 

Contracts, small and large, were signed; a lower-cost cluster workstation for 
the office, the AWS,TM was designed and shipped. (AWS seems to have stood 
for "Advanced Workstation.") Convergent OEMs began selling so many 
workstations in Europe that software revisions had to be made for native­
language support. More application programmers and managers were hired. 
An unheard-of electronic mail program, based on the distributed capabilities of 
the operating system, was designed. CTOS itself went through several 
released versions as it was shaken down and features were added. 

The CTOS workstations had arrived in the right place by accident. The 
accident was a happy one because CTOS was tremendously overdesigned for 
what most people considered to be office application needs in the early 1980s. 
(The less sophisticated IBM PC was forming the basis of their impressions.) 
Yet this excess sophistication and power have allowed CTOS to support 
unrestricted and easy development of distributed office applications well 
beyond the state of the art for a decade. Nothing had to be added: it was all 
built in from the start, with a different market in mind. 

A Turning Point 

Probably if the early pragmatists in the CTOS group had known that this 
would be its market, they would not have wanted to implement a 
message-based, networked architecture just to run word processors. They 
would have deemed it costly, complex, and wasteful. They did not know, and 
their work helped to create something that was not of their own world view. 

At this time, the division of opinion that had started during the Xerox era was 
growing. Some customers were primarily developers using the CTOS machines 
as platforms for such things as telephone systems or interfaces to large 
typesetting systems. They were in the minority, however. By the middle of 
1982, the differences of philosophy surfaced as the team began to deal with a 
major new idea: multiprogramming. 
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CTOS had been a multiprocessing system from the beginning, as the operating 
system, system services, and the single application that was running each had 
at least one process. The operating system scheduled these processes for 
execution according to an event-driven, priority-based mechanism to preserve 
real-time behavior. 

Now a young staff engineer wrote an internal paper that proposed running 
several programs at once. Memory would be divided into several partitions; 
each program would have a partition. Applications would have the 
responsibility for staying out of each other's memory space and not doing rude 
things such as executing busy loops, and CTOS would extend its scheduling 
and memory management capabilities to handle this situation. To achieve this 
goal, an old religious tenet had to give way: it would not be appropriate, in 
most cases, for an application to interact directly with hardware. Etiquette 
now would require the application to go through CTOS for whatever it wanted. 

Everyone agreed that this idea was a good one. The pragmatists, who were 
setting the primary direction for CTOS at this time, recognized the idea as the 
workstation equivalent of minicomputer and mainframe schemes in which the 
user interacted with one partition or context, while other programs could run 
in other partitions in background. The user's only access to these other 
partitions was via a batch processing scheme involving job control language 
(JCL) directives. 

The multipartition concept was implemented in exactly this way in CTOS 
version 7.1 in mid-1982. In an elegant extension of the scheme, it was possible 
for the JCL programmer to write batch files so that jobs were enqueued to be 
processed wherever there was an available processor on the network. The user 
did not, and in fact could not, know on what workstation the job actually was 
run. The result was returned to the initiating workstation. The basic concept 
of transparent use of distributed processing power is being discussed as an 
innovation today. Yet its forerunner was up and running on a commercial 
system in 1982. 

This multipartition scheme was ingenious and ahead of its time, as was so 
much of CTOS, but it was difficult to use. Certainly the average office user 
could not be expected to learn JCL. Most such users had trouble distinguishing 
between the concepts of memory and mass storage. A large contingent among 
the CTOS and related application developers believed that multipartition 
should definitely be part of the CTOS world, but that such a multipartition 
scheme should be entirely open to user interaction and have a new, easy user 
interface. Arguments began between the two factions over the future direction 
of their efforts. 
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None of those who were there seem to enjoy talking about this period. It was 
the first overtly expressed split in the group that had come so far and achieved 
so much together. In the end, those oriented toward the more technical, 
large-system atmosphere, together with the original CTOS architect, had the 
opportunity to go in a different direction by forming a new Convergent division 
to design anew, larger system. (Over several years, the division they started 
became Convergent's UNIX-related group.) 

With the departure of these veterans, the influence of the founders' initial 
marketing aims for the workstation finally faded. There was no longer any 
question of where CTOS stood in the marketplace: it was a platform for 
distributed office applications. 

Multitasking for the End User 

Those who remained to carry on the development of CTOS in 1983 were its 
second generation of stewards. (Most of the original members were still at 
Convergent, but had gone on to special projects of their own.) Most of the new 
CTOS group had been on the staff from near the beginning, so there was 
continuity in the culture. Again, they were from diverse backgrounds: two of 
the original crew from Xerox, one from Data General, one with a background 
in technical instruments, and so on. They shared a common vision of a 
multipartition CTOS that would allow any end user to run multiple programs 
at once, switching back and forth among them at will, interacting with each 
one directly. 

Part of this vision came from a technical stunt pulled offby an engineer who 
was asked to come up with demonstration software to show to a prospective 
large customer. This company, whose own customers were largely 
stockbrokers, wanted users to be able to do word processing while a stock ticker 
simultaneously ran across the bottom of the video. Basing his demonstration 
software on the existing word processor, two other programs, and the 
background batch capability of CTOS 7.1, the engineer was able to show the 
prospect not just two but three programs on the screen at once. The customer 
was persuaded. (To this day, no one other than its inventor knows how this 
demonstration actually worked, because it was not thought by the others to be 
possible at that time.) 
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After a pause to rewrite the file system, whose creators had not imagined disks 
larger than 32 megabytes, the CTOS group went on to implement their vision 
of multipart it ion CTOS. The group leader and primary agitator for this 
viewpoint now created a team to implement a revolutionary new memory 
management system and user interface. One of the members of that team 
was the same young man who had been converted by the kick-the-plug 
demonstration at Comdex. Others were user interface, operating system, and 
file system specialists. 

Context Manager,TM as this new interface was called, was designed so that its 
use would be intuitively clear to end users (Figure 3-1). On one side of the 
screen was a list of applications that could be started. On the other was a list 
of applications that were already running and to which the user could return. 
The applications could generally continue processing whether they were on the 
screen or not. A bar cursor could be moved from item to item in these lists. 
Simple keystroke commands allowed the user to switch contexts directly 
without opening or closing applications. The computer was going to conform to 
the user's way of working, not the converse. 

Status Contexts you can return to I Applications yau can start I 
Waiting Moil Art Designer 
Waiting • Art Desig ner Document Designer 

I Executive I I 
Extended Multiplan 
Logout 
Moil 

Press GO to activate a new application. 

Figure 3-1. Context Manager Interface 
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The implementation of Context Manager had a clean architecture and little 
impact on application programmers. CTOS and Context Manager entirely 
handled context switches: applications did not need to know that they were 
running in a multipartition environment. In fact, most applications written for 
single-partition CTOS ran without change under the new scheme. 

The emphasis on application politeness now grew. Not only were busy loops 
taboo: writing directly to hardware would now be cause for CTOS to stop an 
application when it was not the owner of the video. Few applications were 
seriously affected by these rules, because most had been well brought up. Fast 
communications programs that interacted with hardware were affected. These, 
however, ran perfectly while they owned the video. 

All this was implemented in 1983 on a computer that still was based on the 
Intel 8086 microprocessor, with no special hardware support for saving context 
states or for memory protection. In the growing PC marketplace, nothing of 
the sort was yet imagined. 

Horizons and Realities: The 80186 and 80286 Chips 

While the interactive multipartition CTOS and Context Manager were being 
developed during 1982 and 1983, another activity was getting started also. 
Intel was getting ready to release the 80186 microprocessor (which did not 
have many new features) and simultaneously was publishing specifications for 
the 80286 chip that was supposed to follow on immediately. 

The 8086-based IWS and A WSTM were doing well, paying the bills for further 
research and development. It was time to design the next-generation 
workstation, appropriately code-named NGEN®. Mer a brief tussle with the 
idea of moving to the Motorola 68000, it was decided that the new machine 
would be based on the new Intel chips. The 80186 version would be an interim 
design, but the important version would be based on the 80286. The new 
machine would have a modular, latch-together hardware design with external, 
modular power supplies. It would allow the customer to buy only the hardware 
functionality that was needed, and also to add functionality later. 

In the summer of 1983, while most system developers were working on 
IWS/AWS CTOS and Context Manager, three others holed up in a conference 
room in a borrowed, empty building to work on the question of what operating 
system would run on the new machine. Their commission was to focus on the 
80286 chip, which would have important new features. 
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In the Intel 8086 segmented addressing scheme, a 16-bit segment address was 
left-shifted by four bits and added to a 16-bit offset. The resultant 20-bit 
address represented a physical memory location. One megabyte (220) of 
address space could be handled in this way. Everyone, including Intel, knew 
that 1Mb would soon be insufficient. (The industry had changed enormously in 
three years. CTOS developers remember early arguments about whether 
putting 256Kb on the AWS was overkill.) 

In the 80286, the two 16-bit address components, now called selector and offset, 
would remain, but they would not be added together. Instead, the selector 
would essentially index into a table and be mapped to an actual memory base 
location for a 64Kb segment. The offset, as before, identified the address 
within the segment. This new approach allowed 16Mb of memory to be 
addressed. It also allowed the implementation of memory protection. The new 
scheme was called protected mode. 

Porting real-address-mode CTOS to the 80286-based NGEN was not a foregone 
conclusion. An engineering contingent external to the CTOS group tried to 
show that UNIX should run as native on the NGEN. In a famous internal 
demonstration, one of the more wizardly Ctosians did some quick coding to 
show that a version of UNIX hosted on CTOS would in fact have much better 
performance than native UNIX. Like so many other spur-of-the-moment 
events, this one was to become a significant influence on the development of 
CTOS. 

Back in their conference room, having turned aside the immediate UNIX issue, 
the three Ctosians embarked on what some later called the "Summer of Love," 
mainly for the violent arguments that apparently rattled the walls. At the 
more conservative end of the spectrum, one wanted a simple port of the 
existing CTOS that would preserve complete backward compatibility and be 
out in a relatively short time. At the other end, another wanted immediate 
implementation of forward-looking features that might take a while to achieve 
and would cause compatibility issues for IWS/ A WS customers. The third, full 
of ideas in his own right, was also the one who could see both sides and keep 
everyone talking. In true Ctosian style, the three emerged at the end of the 
summer with a design on paper. 

The best and most painfully laid plans are not always executed. While the 
three were debating, back in the NGEN design world things were not going so 
well. Several hitches occurred in attempts to get hardware prototypes running. 
At the same time, Intel was having great difficulty in meeting its shipping 
commitments for the 80186 chip, and it postponed the date for the 80286 chip 
considerably. Convergent had already sold the idea of NGEN to its customers. 
They, in turn, stopped buying IWS and AWS to wait for it. Start-up style 
pressures reappeared at Convergent. 
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Convergent came down out of the design clouds and reverted to its true 
pragmatic nature. The 80286 project was shelved. Everyone, including our 
three friends, was thrown into the breach to get the 80186 NGEN debugged 
and a straightforward port of real-mode CTOS (with Context Manager) up and 
running. Sleeping bags, pillows, and an unending stream of coffee appeared in 
the labs, and the job got done. A single multipartition CTOS 9.0 with Context 
Manager, with a new internal basis for eventual networking beyond one 
cluster, and with run-time switches allowing it to work on IWS, AWS, and the 
80186 NGEN, was released at the very end of 1983. Everyone went home to 
the Christmas present most wanted: sleep. 

The DISTRIX Experiment 

NGEN and CTOS 9.0 and its next shakedown release, CTOS 9.1 (mid-1984), 
were to be the stable basis of the CTOS world for some time. Further minor 
releases supported specialized new hardware modules (such as streaming tape 
and the Voice Processor and a new, low-cost, diskless cluster workstation, the 
CWS.TM TeleCluster (which allowed connecting the cluster via existing 
twisted-pair building wiring) was invented by a lead Ctosian and an 
experienced hardware designer, who thereafter referred to themselves as the 
''Twisted Pair." 

Once the crew had recovered from the push to get NGEN out, a new direction 
emerged within the group. UNIX, no longer just an academic operating 
system, was being mentioned by some customer prospects. The Ctosians 
already knew that a hosted UNIX would work better and faster on this 
hardware than a native one, and a native UNIX would not support the true 
distributed-system concept. A small group of engineers set off to create such a 
hosted system at the behest ofa customer. The hosted UNIX was to be called 
DISTRIXTM, for Distributed UNIX. 

The project started out with more UNIX underpinnings than CTOS. Over the 
two years of the project, gradually more and more CTOS components replaced 
the UNIX ones, until only the surface layer was UNIX-like. Two of the 
developers had been involved in the Summer of Love design, and they drew on 
this design in creating a new CTOS underlying the UNIX exterior. The main 
new feature was a conversion of the CTOS 9.0 multipartition scheme, in which 
partition size was fIxed, to a variable-partition mechanism in which the 
operating system could adjust the sizes of application partitions as needed. 
Thus, no memory went to waste. 
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After two years of effort, DISTRIX was released in 1986. Convergent, however, 
had not taken into account the religious nature of the UNIX community. To 
these people, DISTRIX was not UNIX because it was mixed with another 
operating system. It was small, fast, and distributed; but it was not the UNIX 
they had in their college labs, and it did not do well in the marketplace. 

The DISTRIX experiment actually did something for the CTOS world, however. 
Almost immediately, a version of CTOS that used the variable partitions 
developed for DISTRIX was issued. Called CTOS II, this version ran on the 
80286 chip, which was now finally available, and around which a new NGEN 
processor had been designed. 

CTOS II was really only an intermediate way to get onto the 80286, because it 
was still a real-mode operating system. It did not exploit the new memory 
management and protection features of the chip, and memory above 1Mb could 
not be reached. Regrouping after the DISTRIX excursion, the CTOS designers 
began again to consider the move to full use of the 80286. Chip chasing, or 
being the first company to implement new Intel functionality and show it at 
the Comdex trade show, had become an unwritten part of the religion by now. 
Other companies had built computers around the 80286 chip (for example, IBM 
Corporation's PC/AT®), but none of them used its new features to address 
memory above 1Mb. Convergent could still be first. 

First With the Most 

As demand increased, Convergent and its OEM customers were writing larger 
and more ambitious applications. The need to exploit upper memory on the 
80286 became pressing. 

Efforts now divided into short-term and long-term solutions to the 80286 
challenge. In the short term, a new add-on software product called the System 
Performance Accelerator (SPA) was brought out. SPA allowed caching of 
user-selected files in memory above the 1Mb limit. It was demonstrated with 
great success at Comdex in the fall 1985, and it was the first released product 
on the market to use upper memory. 
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The second, less flashy but more important short-term effort was the Protected 
Mode Operating System Server (PMOSS). A system running real-mode CTOS 
and the PMOSS system service could run its other system services above the 
1Mb limit. This step was a great relief to those who were writing and 
installing more and more system services and larger applications and, as a 
result, running up against the one-megabyte memory limitation. It also 
allowed a transitional period for system service writers to begin porting their 
code to protected mode in parallel while the Ctosians developed a true 
protected-mode operating system. 

Protected-mode CTOS, or CTOSNM,TM which was the basis for the current 
CTOS versions, was released in 1987. It grew from CTOS® II, which had been 
derived from the CTOS underlying DISTRIX, which in turn had its origins in 
the Summer of Love discussions. Thus, the winding road toward full 80286 
support, started in 1982, finally reached its goal. 

CTOSNM on the 80286 allowed full access to the 16Mb address space. It 
employed the chip's hardware task switch mechanism for rapid process 
switching. This factor also allowed processing of communications interrupts to 
be more prompt than on other systems. CTOSNM used the chip's memory 
protection mechanism, but not its rings of protection. Protection was not 
nearly so important to CTOS customers as was the ability to reach upper 
memory. 

It had become part of the religion over the years always to retain backward 
compatibility. CTOS customers and users should not be wrenched from one 
system to the next. Convergent hardware had always been especially reliable, 
and many an IWS was known to be quietly chugging along out in the world. 
(In fact, there were working IWSs in the Convergent CTOS development group 
as late as 1987.) 

CTOSNM could not be made to run on the IWS and A WS, designed so many 
years before. It could be made to support the running of real-mode programs, 
though. RMOS (real-mode operating system), as this feature was called, was 
not a separate product, but was (and is) the ability of CTOSNM to run any 
older real-mode programs, whether written at Convergent or by other 
suppliers, without change. 
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Running real-mode programs along with protected-mode programs on the 
80286 required a technical trick. The 80286 processor could switch from real to 
protected mode easily, but it could not switch back to real mode without a 
processor reset. Every 80286 developer, not only Convergent, was faced with 
this problem. Convergent's solution was internally referred to as the "software 
finger," because it mimicked the finger that pushed the reset button. The 
solution reset the processor through a special circuit and then skipped most of 
the boot sequence to get quickly from protected to real mode. 

DOS Compatibility 

Back in 1984, in the era when arguments about porting CTOS to the PC were 
common, one of the original Ctosians was assigned to a stopgap project: 
porting MS-DOS to run hosted on CTOS for a customer whose own customers 
wanted to run MS-DOS-based applications. This project was difficult, and the 
result was not entirely satisfactory: MS-DOS applications had an alarming 
tendency to push the operating system aside, take over the system, and do 
strange things with hardware. As a result, many MS-DOS programs could not 
run in this hosted mode. The hardware was simply not the same, and the 
operating system was multitasking. 

A new MS-DOS-compatibility solution was put into place with the 80286 
version of CTOS. This solution, the PC Emulator, was both a hardware and 
a software product. It included an expansion module, called the PC Emulator 
module, with its own 80186 processor, and two software entities: a BIOS in 
the module and a system service in the workstation that remapped and 
handled 110. 

This PC Emulator had much greater application compatibility than did the 
hosted version of MS-DOS. Perhaps 80 to 85 percent of DOS applications could 
now run normally. Exceptions were those programs, such as certain games 
that depended on writing directly to the video map (indirection caused slow 
performance), copy-protected programs, and certain communications programs 
that required specialized hardware. Nevertheless, the PC Emulator was real 
progress toward satisfying a certain group of users. 
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First With the Most Again: The 80386 Chip 

By 1986, Intel had brought out the long-awaited 80386 microprocessor. Not 
only did the 80386 allow easy protected-mode-to-real-mode switching in both 
directions, it also had a virtual 8086 mode in which the chip emulated its 8086 
ancestor. In addition, it provided for the first time a large linear address space 
based on the 32-bit address. Although the segmented architecture (the 
two-part addresses composed of 16-bit selector and offset) could still be used for 
backward compatibility, it was now theoretically possible to use a single 32-bit 
address for the entire memory space (a maximum of 4Gb). 

The 80386 capabilities freed designers from the mode-switch problems of the 
80286, and CTOSNM immediately took advantage of this change. More 
important was the ability to run a virtual 8086 machine. The long struggle for 
MS-DOS compatibility was largely resolved, because now PC Emulator 
software could run directly on the 80386. No separate compatibility hardware 
module was needed. Moreover, multiple virtual 8086 contexts could be run at 
the same time. Thus, a user not only could run MS-DOS directly on an 
80386-based CTOS workstation but could run multiple instances of MS-DOS 
at one time, switching back and forth among them. With this capability, 
combined with their inherent networking and ability to link to mainframes, the 
CTOS workstations suddenly took a quantum leap over what was available for 
DOS users in the marketplace. 

The Big Time 

In 1988, while 80386-based development was going on, Convergent reached 
agreement with its largest OEM customer, Unisys® Corporation, on merging 
into one entity. (Unisys had a long history with Convergent products, first 
marketing the IWS and AWS as the B20 Series, and later the NGEN as the 
B25 Series of workstations.) 

Convergent's days as a small company were over, yet contrary to what one 
might expect, its spirit and technical leadership entered a renaissance. The 
necessity to negotiate agreements about future design with several large OEMs 
had started to put a real cramp on Convergent's development style. Merging 
with one of those OEMs once again freed developers to follow a strong design 
direction, as well as giving them more resources to do so. 

Unisys also offered something that Convergent had never been able to muster 
alone: extensive marketing and sales resources. It was now possible to think 
of CTOS as an operating system that could become more widely recognized. 
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CTOS/Open 

By 1988, the marketplace had become consumed with the idea of standards. 
Ironically, the very systems that were understood to be standard through their 
wide market acceptance, UNIX and MS-DOS, were becoming technically 
outdated. Various enhancements to UNIX by different developers caused 
splintering and factionalism to enter the UNIX picture by 1989. Meanwhile, 
MS-DOS was waging a stubborn war of resistance against Microsoft's and 
IBM's newly announced OS/2®, which was supposed to replace it. In addition, 
Microsoft and IBM produced different versions of OS/2, and the need for 
custom device drivers for specific hardware complicated the picture. 

CTOS had its own problems in the area of standardization. As part of its 
strategy of selling to OEMs, Convergent had licensed CTOS source code and 
marketing rights to a number of its OEM customers. These companies had not 
only developed some of their own hardware, but had also modified the 
operating system. They had also renamed CTOS as BTOS,TM StarSys, Hero/OS, 
TNOS, and so on, and had given new names to the workstation hardware as 
well. In the early 1980's protection of proprietary rights was the watchword; 
none of these vendors wanted to advertise that alternative solutions were 
available from other vendors. 

One OEM, Bull®, understood the growing pressure for standards in the 
European marketplace and took the lead in beginning joint engineering 
projects with Convergent aimed at eventual standardization of the operating 
system. Unisys followed suit about a year later. In mid-1988, the three 
companies formed a committee aimed not only at the technical formation of a 
standard and common release, but also at joint promotion of this standard. 
This committee worked with other source licensees and some independent 
software vendors to develop a standard application program interface for 
CTOS, the CTOS/Open API. 

The task of standardization was not as difficult as in the UNIX or other worlds. 
All the CTOS platforms were based on the Intel chips. The relatively few 
changes that had been made had utilized CTOS's basic modularity and were 
therefore simpler to deal with. 
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The CTOS/Open API for system services was announced at the first CTOS 
International Convention in Paris, France, in June 1989, sponsored by the 
Groupe du Standard CTOS, an independent group of end users, value-added 
resellers, and software companies who wanted to see CTOS established as a 
standard. The following year, Unisys and Bull announced at the convention 
that they would use CTOS/Open as the name for their major CTOS marketing 
initiatives. They also announced the formation of a standards organization: 
the CTOS/Open Advisory Council. Continuing the work of the earlier 
committee, this council in tum put forward additions to the CTOS/Open API, 
and opened its membership to the business community interested in pursuing 
the comprehensive standard environment demanded by users and application 
developers. 

The people who had left Intel ten years earlier with an idea for the IWS were 
not there, but they would have enjoyed the show. 

Religion and the Future 

A technical religion, as we have seen, cannot afford to become rigid. Somehow 
it must preserve its central philosophy while adjusting itself to the present and 
the future. 

As CTOS moves into its public phase, what has happened to the religion under 
which it was designed? These days, CTOS development goes forward under a 
series of eight stated principles. CTOS should be 

• Open 

• Modular 

• Optimized 

• Resilient 

• Compatible 

• Available from multiple sources 

• Distributed 

• Scalable 
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In this official list one can see some of the traits of the old, unofficial religion: 
modularity, distributed nature, small size, strength and speed, openness, and 
so on. CTaS still is and will be mostly message based. Real-time behavior is 
not on the list, but it is assumed to be important. Above all, the Ctosians 
continue to be pragmatists at heart, despite their love of the latest idea. After 
all the heated arguments are heard, the still-small band of CTaS developers 
will do the thing that will work best for their users. 

A noteworthy event in the life of eTOS is the forthcoming release of a standard 
graphical user interface. For the first time, CTaS will have a user interface 
that is not home grown. This step is a response to the marketplace. Now that 
CTaS has gone public, it must more directly conform to what the public 
expects. 

As resources and horizons for CTaS expand, many exciting ideas are gestating. 
Whether these ideas, or others not yet conceived, come to fruition in the next 
few years or not, some things about CTaS and its designers never change. 
There will always be new influences; there will always be controversy; there 
will always, in the end, be pragmatism. And there will always be someone 
impetuously sketching an idea on a paper napkin. 
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Thinking About Distributed Applications 

What is a distributed application? It is 
an application that uses resources such 
as electronic mail or a data base over a 
network transparently. It is one that can 
be divided into pieces, not all of which 
must reside on the same computer to 
work together. Distributing an 
application is a good way to avoid 
replicating the same code on many 
machines . .. Through the use of system 
services and message passing, 
applications under eTOS have always 
been distributed, and there has been no 
need for a change or new approach in 
designing them. 

eTOS is an interesting, unique, and powerful basis for application design. The 
particularly successful eTOS-based applications have been those that have 
taken advantage of its unique capabilities. Many of these applications have 
been designed for systems in which there is a central office or facility 
communicating with branch offices. They have supported such activities as 
airline reservation systems, banking, motor vehicle department operations, 
court reporting, and many government needs. 

Before we go on to discuss how such applications are designed under eTOS, we 
should look a bit more closely at why distributed applications are important 
and what is needed to support them. Applications do not exist in a pure 
environment consisting of their creators' ideas about the next neat thing. They 
are computerized solutions to real problems in a real world. It helps to step 
back now and then and look at that world. 
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Distributed Applications 

In the real world, nontechnical people are generally trying to do more faster 
with less all the time. Increasing productivity includes not only doing more 
things in a shorter time but also doing them at a lower cost. Most nontechnical 
people are not instinctively attracted to computers, but they have adopted 
them as necessary tools that free them from routine work and help them to be 
more creative. Computers also can make more information available and can 
automate complex tasks. 

The acquisition, deveiopment, set-up, and maintenance of computer tools costs 
money: it thus costs money to save money. But we all want it to cost as little 
as possible. Development of application software should be especially simple 
and fast. Upgrading should occur at a reasonable cost. 

Large Computers 

Because they could increase productivity, large, centralized computers with 
dumb terminals had become a necessity and a fact of life in business by the late 
1970s. As with all good solutions, however, large computers introduced new 
problems. Users had to deal with schedules and glass rooms, massive up and 
down time, and fluctuating performance. As the computers grew, their 
flexibility and responsiveness decreased. Users were serVing or waiting for the 
computer a good part of the time. Productivity was not increasing. 

Personal Computers 

The advent of the microprocessor and the small computer based on it was a 
boon to users. They did not love computers any more than they had before, but 
they quickly adopted the desktop computer because it could help them 
maximize their individual productivity. They might not have tremendous 
processing power, but they had the tools when they wanted them. Small 
computers gave users flexibility and control. Once again, they gained time for 
individual creative work. They did not, however, have access to the work of 
others nor to information needed by all. 

Personal computers sprang up everywhere, and with them came new problems. 
People who worked together started to use different types and versions of 
software. They had trouble with file system maintenance and backup. Users 
could not easily exchange data, and when they did, there were problems with 
version control. The cost of these problems to organizations increased, and 
overall productivity was threatened. 
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Issues in Creating Distributed Applications 

The idea of the network and of distributing applications arrived in the larger 
business computing world as a compromise to keep everyone functioning and 
productive. The concept was that if all these small computers could be made to 
communicate with each other and with big computers, users could retain their 
creative independence and flexibility, while the organization would gain 
consistency, better exchange and version control, security, and so on. This 
approach turned out to be a compromise deal in more than one way. 
Networking and resource sharing had to be retrofitted onto systems that were 
never designed with them in mind. On PCs, it was necessary to add new 
dedicated server hardware as well as special boards and software. On 
multiuser systems running versions of the UNIX operating system, competing 
versions of complex add-on software were designed by different groups. 

In both cases, add-on networking brought with it its own set of problems. 
Adding a network in the first place was expensive. Furthermore, because 
networks were not designed in from the beginning, all their administrative 
workings were exposed and required constant care by technically experienced 
system administrators. Both factors added to the cost of trying to reach higher 
productivity. 

The result was an improvement over the previous situation, but even after all 
that work and expense, these networks readily supported only file transfer and 
certain types of resource sharing. They did not create a platform for true 
distributed applications. 

What is a distributed application? It is an application that uses resources such 
as electronic mail or a data base over a network transparently. It is one that 
can be divided into pieces, not all of which must reside on the same computer to 
work together. Distributing an application is a good way to avoid replicating 
the same code on many machines. If some parts of an application can be 
shared, they can be thought of as services and can be placed on one networked 
computer. All the other members of the network need only run smaller client 
portions of the application. The user should not have to know which parts 
of the application are local and which are located across the network. 
Performance should not become unacceptable as a result of distributing an 
application. 
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PCs running MS-DOS, even with added networks, did not easily support the 
development of distributed applications. Such an application would need to 
know the topology of its environment: what computers were on the network, on 
what systems its other components could be found, and how to contact them. If 
one vendor's application software was to work with that of other vendors, a 
standardization issue ensued in which vendors had to make treaties (such as 
the Lotus®-Intel-Microsoft agreement for extended memory). so that their 
software products could work together. 

Microsoft's OS/2, the follow-on to MS-DOS, addresses some distributed 
application issues by data exchange at the pipe level. An operating system 
in the early phases of growth, it still requires the network to be added on, 
with associated administrative burdens and security issues. In addition, 
replacement of older MS-DOS-based installations with new OS/2 software and 
associated hardware is costly. 

In both the DOS and OS/2 worlds, making an application work across a 
network requires extensive knowledge of programming for the specific network 
involved. There are several popular networks. The result is that some 
programmers can make a very good living by specializing only in the intricacies 
of one or more networks. Networking an application adds time and cost to a 
development schedule. 

Multiuser time-sharing systems based on UNIX have operated on an extensive 
electronic mail network for some time. This network, however, primarily 
supported only file transfer until Sun Microsystems's Network File System 
(NFS) and AT&T's Remote File System (RFS) appeared in 1987. These add-on 
features allow transparent file access across the network, but not remote 
procedure calling (RPC). Differing forms of RPC for UNIX exist, but they are 
not as fast as that of CTOS. Applications that use this kind of networking are 
written slightly differently from those that do not. Furthermore, UNIX 
systems have never been renowned for simplicity of setup and administration, 
and layers of networking software have not simplified these tasks. 

In summary, most existing systems have approached networking and remote 
procedure calling as add-ons or upgrades, which bring with them expense and 
complexity. Productivity declines as inconvenience increases. 
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Distributing Applications Under eTOS 

Because CTOS-based systems are message based and were originally 
overdesigned for the office-application marketplace, they have been able 
to support increasingly sophisticated distributed applications without 
encountering design limits. Through the use of system services and message 
passing, applications under CTOS have always been distributed, and there has 
been no need for a change or new approach in designing them. 

In fact, it is not really possible to write an application under CTOS that is not 
inherently distributed in nature. Applications do not need to know network 
topology. They simply make requests, and the operating system takes care of 
knowing where the service is located and passing requests and responses. The 
message itself does not differ, whether the service is local or remote. The 
format of the request block itself enforces standard behavior by all CTOS-based 
applications. There is no need for external agreements in this area, no need for 
special network artists. 

To design a distributed application under CTOS, one first identifies the 
separate tasks that will be performed by the application. The second step is to 
identify which task-performing components could be shared among users. 
These sharable components can then be written as system services. The 
balance of the program, usually the user interface, is written to run locally and 
make what appear to be procedure calls to the system service portions. That is 
all there is to it. 

Because networking and security are inherent in CTOS, there are no add-ons, 
no special administrative needs, and no costs for these items. Writing a 
distributed application takes no more effort than writing any other application. 
There is no cost of writing a duplicate "network version" application. eTOS 
itself is in no immediate danger of approaching design limits, so there is no 
anticipated cost for large-scale replacement. All in all, CTOS systems provide 
an environment of high productivity for the developer, the administrator, and 
the user. 
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Relate the application architecture to the 
system architecture, which includes the 
built-in network. Build your application 
model on the message-based, distributed 
CTOS model, the client-server architec­
ture. For those who have worked on 
other kinds of systems, some rethinking 
is in order here. 

Computers are used for business. CTOS, especially, is a solution for the 
modem business, where speedy and effective communication between 
wide-flung parts of a company can mean profits, whereas slow or ineffective 
communication means a loss. 

Modem businesses need shared access to up-to-date data in a real time 
fashion. Consider the problems of an airline company, where numerous 
operators all over the world may answer requests for reservation information 
and then book those reservations, changing a centralized or distributed data 
base constantly. This can be done by tying the operations into tbe system with 
varying levels of distribution: a single, centralized data base on a monolithic 
computer used for all processing as well as data storage, a distributed data 
base on multiple centralized sites, or a combination of remote sites and 
centralized sites. The optimal situation for the end user (attempting to 
minimize data communications connections while maximizing response time) 
uses distributed processing, where some processing is done locally with a 
centralized or even a distributed data base which is only tapped to process 
transactions. 
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The problems of the airline company are not unique. The same situation 
occurs in the banking industry, the stock market, and even in keeping track of 
sporting events. The problem all these businesses share is that they have 
multiple operators who need to share data and are spread out over some 
geographic area. The answer to the problem is distributed processing. 

Another problem they all share is the need for the operators to communicate 
with each other. One might not think this would be the computer's problem. It 
isn't. But those people are also tied to the computer. They use it to do much of 
their work. They would also be more effective if they could use it to 
communicate. The answer to this problem is also distributed processing. 

A Look at Some Distributed Applications 

CTOS message-based operation, with its integral cluster and effective 
networking, makes it an ideal platform for the development of distributed 
applications. To illustrate this in more detail, we are going to explain to you 
how a distributed application would be developed on CTOS. Along the way, we 
will pause when necessary to fill in background information about how CTOS 
works. 

The application we will develop will be simple, so that we can complete our 
description of it in a reasonable number of pages. Before we get to it, however, 
let's look briefly at the features of two different, real-life, distributed 
applications that take full advantage of the inherent capabilities of CTOS. 

A Unique Application: Reporting Sports Results 

Your first thought when a sports tournament comes to mind is certainly not 
likely to be ''how do they manage their computer system?" In fact, however, 
keeping track of and disseminating information at such an event is quite a job. 
Several events are usually going on at one time. Scheduled competitions 
change hourly. Results change with the minute. Competitors need 
information, the public wants to know, and sportscasters and tournament 
sponsors scramble to keep it all under control. This is a perfect opportunity for 
a distributed application. 

In such an application, centralized data storage of raw data is essential. So is 
up-to-the-minute access to that data from multiple locations. Let's look at how 
one application system solves this problem. 
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The data base is set up using the ISAM system service and is located on one 
server workstation. That server can be accessed from cluster workstations in 
its own cluster and from workstations clustered to other server workstations in 
the network. PC workstations as well as CTOS workstations can be included 
in the clusters when a special cluster communications card and ClusterShare 
software are installed. 

An interactive application can be located at each cluster workstation at which 
blow-by-blow results of the events can be recorded. The interactive application 
can do all processing locally that requires interaction with the operator and 
then can send the completed results to the ISAM system service at the server 
workstation for storage in the data base. The results are thus all stored in one 
central location. 

Scheduling for events can be set up and stored in the data base as well. Again, 
the interaction with the operator can be done with local processing. The 
current schedule is stored centrally. From any cluster workstation running an 
interactive application, anyone interested in the events could find out about the 
latest schedule changes. Several clusters can be networked together. 

Players can also call to find out when they are next scheduled to compete; they 
hear a digitized recording that tens them when and where they compete. The 
voice recording is all stored electronically on the computer and played back 
using the services of the Telephone Manager system service, a device driver for 
the CTOS Voice Processor module. 

In this application, the local workstation actually sends a query regularly to 
find out what new events may have just been completed and then, using 
digitized voice processing, verbally announces new score changes or the results 
of events as they occur. On request, special statistics about results are 
calculated locally based on raw data retrieved from the data base. The 
interaction with the user and the calculations are done locally, the raw data is 
shared across the network. Several of these workstations are located at 
various locations at the site, or away from it. 

In this application, the PCs have a special and interesting role. As mentioned 
above, they are tied into the network as cluster workstations using a 
ClusterCard communications card. An MS-DOS based application running on 
the PC uses ClusterShare software to connect to the CTOS server and to access 
data in the CTOS ISAM data base. The PC displays the scores and other 
results as an overlay on the television monitors that are showing events. In 
this case the PC was chosen because a specific output channel was needed to 
write to the television display. 
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This system has been highly effective, providing up-to-the minute information 
to many different sites. It is fast and responsive. It works the way the people 
who use it need it to work. It is distributed processing in action. 

Interoffice Communication: CTOS Electronic Mail 

Nothing could be more representative of the office environment than the 
memorandum, "memo" for short. And nothing probably wastes more trees or 
takes more time in the office environment. That's why electronic mail is such a 
success on all computer networks that offer it. 

On CTOS, in an inherently networked environment, electronic mail is a 
natural. The CTOS electronic mail product is extremely successful and very 
widely used. 

Mail is an interactive application that the user can use to read memos in his 
in-tray, reply to them, forward them, or file them as necessary. File folders 
that store messages can be opened and searched for relevant information. 
Memos created by electronic mail have a standard memo-style format. To send 
a message, the user simply types in the names of the people to whom he wants 
the message to be delivered, typing just Reggie Smith or George Robinson on 
the distribution list line. Remembering complicated addresses or code names is 
not required. From the local workstation the user can send such memos 
around the world. They can be sent to users on other networks, other systems, 
even to a FAX machine. 

How does the system work? Through distributed processing, of course. 

An interactive application resides on each user's workstation. On the server 
workstation are two system services, one of which sends and receives messages 
for each user on the cluster, temporarily filing those messages in a mailbox 
until the user requests to see his mail, at which point they are read into in the 
in-tray. This is called the Mail Service. The other service, called the 
Communications Manager, handles wider network communications, passing 
messages on to other nodes in the network (other clusters) or to WAN s. 

The Mail Service also provides the interactive application with the names of all 
the users known to it (and to the wider network Communications Manager). 

Each part of the system performs part of the processing. Each is located at the 
place in the network where that processing can be performed most effectively 
and efficiently. 
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Timekeeper: Our Distributed Application 

Keeping these two applications in mind, let's think about some other business 
solutions. Software should provide a solution to a productivity problem. A 
simple one to start with is the need to replace the business person's ubiquitous 
paper To-Do list with something that can go it one better and offer reminders 
as well. Embroidering on this theme, why not add an appointment calendar 
that also can issue reminders if the user wants them? 

That would be a simple application to serve an individual user, that you can 
probably go out and buy for whatever computer you are using. 

But what can you do with that application in the CTOS world? Suddenly we're 
talking about the workgroup, about all the other people that the user needs to 
interact with, and about the business environment. We can think about 
distributing resources easily. We can think about doing more than one task at 
once. 

Suppose the calendars of all users in the group are centralized. The software 
can then allow users to check other users' calendars to see when they are free. 
Extending things a bit, this product can provide automatic calendar checking 
and meeting scheduling, even looking to see what conference rooms (with 
appropriate sizes and amenities) are available and choosing the best of them. 
Then the software can automatically send a message to all meeting 
participants with the meeting details, let the instigator know who is and is not 
coming, tell everyone about any changes that are made, and issue reminders to 
everyone. 

Now we are really talking about a distributed application. Let's call this 
product Timekeeper. 

A Framework for the Design 

In these few paragraphs, we have already gone through the first few steps in 
specifying the requirements for a distributed system. In specifying the 
requirements, the utmost importance is that the system meet the needs of the 
end user. With our Timekeeper system, because it is simply an avenue for 
displaying the architectural structure of CTOS, we do not have to delve any 
deeper in specifying requirements. 
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Once the requirements have been fully specified, we need to address them with 
a functional description. We want to keep the process simple by replacing a 
manual system with a computerized system. 

Once the requirements have been specified and we have a functional 
description of how the requirements are to be satisfied, we get to the design 
phase. The first question should always be "What are we trying to do here?" Is 
there an existing product that does all of what we want? Assuming that we 
want a networked solution, is it appropriate to the CTOS server/client model? 
Ifit does not make use of the network at all, ifit is only going to serve one user, 
we probably should look into the DOS marketplace. CTOS is preeminently a 
platform for distributed applications. 

The Design Environment 

eTOS has a modular architecture based around a small kernel of primitive 
operations, to which additional modular system services can be added as 
needed, where each system service is performing a specific class of functions. 
With the division of functionality into separate services, we can identify certain 
characteristics. 

• The operating system environment is highly modular, and the modules are 
independent in that they contain both data and methods. 

• The operating system environment incorporates the accepted principle of 
data hiding within these modules. 

• The operating system environment is characterized by data abstraction: 
the internals of a module can be changed without affecting the business 
that the module carries on with other modules. 

• Components communicate with each other by messages asking for results, 
but not by telling each other how to carry out the work involved. 

• Reuse, rather than reinvention, is emphasized within the operating system 
environment. 
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Steps Toward a Design 

Keeping in mind the distributed, modular basis of the operating system, we 
now need to translate our previous functional specification into a design. The 
real nature of designing applications, no matter what the underlying system, is 
holistic. Textbooks tout the advantages of top-down design because of the 
decrease in the cost of integrating various system components; however, 
top-down design coupled with successive refinement is the primary mode of 
design within the industry. Because the CTOS operating system environment 
embraces modular techniques with encapsulation offunctionality within the 
modular components, a top-down, step-wise design process allows for rapid 
prototyping with minimal functionality, followed by staged phases with 
ever-increasing functionality. 

Starting Simply 

The main thing under CTOS is to start with a simple, general version. If you 
can get this simple version working well, you can always add processes and 
features in later versions. If, however, you start out with an ornate design 
involving multiple processes and much functional filigree, you (or your 
successors?) may end up on permanent debugging detail ... if, in fact, the 
application ever works. As one developer says, "Don't get too beautiful with 
your ideas." 

Starting with a simple version is not necessarily simple in itself. It requires 
that you think ahead about the application's future. What extensions will you 
need to add later? Leave room and hooks for them. Anticipate that your 
present "early" version will some day have to handle extended inputs and 
status codes sent by later versions of the same product running on the same 
network. In other words, set yourself up early to maintain backward 
compatibility. 

This principle applies to specific areas as well as to the overall design. Start 
with fewer, more general "umbrella" data formats. Design fewer requests and 
allow for added subcases within them. Allow in the beginning for requests to 
be routed by file specification over the network. (Requests are discussed in 
Chapter 7.) In the user interface, start simply and leave room to build. 
Reorganized user interfaces in later versions are very difficult for users to 
accept and learn. 

Conversely, as you move to later versions, implement new features in terms of 
your original model rather than adding more and more specialized code. 
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In the case of Timekeeper, the specific application that we're focusing on, 
we should think about the possibility that eventually it could be used 
organization-wide rather than just in a small workgroup. We are not going 
to design this capability into the first version, but we need to leave the 
possibility open. 

Relating the Design to the Network 

One veteran Ctosian says, "You can't not design a networked application. So 
you musn't write an application without considering the network." Relate the 
application architecture to the system architecture, which includes the built-in 
network. Build your application model on the message-based, distributed 
CTOS model, the client-server architecture. 

Although we shall talk about modularity more specifically a little further on, at 
this point we are already thinking about Timekeeper in network terms. Parts 
of Timekeeper will be centralized: the data about everyone's calendar, the 
meeting rooms, the handling of mail messages between users. Other parts will 
be specific and local to each end user. 

User Inputs and Outputs 

Now we arrive at what, in standalone systems, is the first step in application 
design. What does the user expect to put into the application? What will the 
user get back from it? This basic user 110 is the reason for the application's 
existence. Note that we are not yet actually designing the user interface, but 
only identifying what will pass through it. 

With Timekeeper, users will input data destined for their own To-Do lists and 
calendars. They will also input attempts to schedule meetings. They will write 
notes to each other and input them to Timekeeper's mail message facility. 

A Timekeeper administrative user will input all possible meeting rooms and 
their sizes and amenities, and will maintain this list from time to time. This 
administrator will also input and maintain the list of users. Users will make 
some administrative inputs themselves, such as configuring the range of times 
shown on their calendar days. 

In return, Timekeeper will display various views of To-Do lists and Calendars 
on demand. It will provide desired reminder outputs when duties and appoint­
ments fall due. It will respond to users about their attempts to schedule 
meetings. It will send notifying messages to meeting participants. It may 
need to notify the administrator of inconsistencies or difficulties it encounters. 
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Needed Functions 

What functions does Timekeeper need to perform in order to use these inputs 
to provide the desired outputs? 

Most obviously, it needs a user interface to receive those inputs and return 
those outputs. 

It needs to store all the data about users' calendars and To-Do lists. The 
calendar data, at least, should be accessible to all users for inspection and 
meeting scheduling: the implication is that Timekeeper will need networked 
data storage. 

Finally, it will need a way of checking the current time, comparing it to 
appointment times on people's calendars and lists, and reminding them of 
upcoming events or deadlines. Let's call this function the Reminder. You can 
probably guess that Reminder is going to be a system service. 

Division of Labor 

Having thought about what the whole application system has to do, we are now 
at the point of thinking more literally about the division of labor among its 
parts. There are two issues: clientiserver division of labor and division of 
programs into possible multiple processes. Of these two, we are going to take 
up the first at a simple level here, with more complex issues to come later. We 
shall defer the issue of multiple processes until after we have discussed 
processes and interprocess communication further in Chapter 6. 

What parts of the application are of value to more than one user in the 
workgroup? What resources will be shared among users? These are the 
questions that lead us to define the contents of system services, if any, in an 
application system. In the case of Timekeeper, we have already seen that 
calendars will need to be a centralized data resource. A system service often 
arises as the manager where multiple clients will be making requests for such 
a shared resource. (This is especially true where the resource is a physical one 
such as a piece of hardware for data storage or transmission. Prefetching data, 
control of user contention, and like duties are ideal for a system service.) 

We have already suspected that we will need a Reminder system service. Its 
duties will be to control and update the shared data, compare current time to 
scheduled events, and return reminder notification to the clients. 
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What parts of Timekeeper are user specific? Certainly user 110 is not shared. 
An interactive application program for 110 will be written that will run locally 
to each user. Instances of this interactive application will be the clients of the 
Reminder system service, making requests to it to update the centralized data 
and to remind them of upcoming events. 

Where does the To-Do list data go? For simplicity, it goes into the centralized 
data storage resource along with the calendar data. Although we are not going 
to have users reading each others' To Do lists, the Reminder service will be 
handling notification from these lists, so centralization makes sense. It also 
allows us to use only one data format. 

Interactive ... Reminder .. Centralized 
Application -. System Service -- Data Storage 

Figure 5-1. Timekeeper's Component Parts 

We had also planned to transmit short, electronic text messages among users. 
The user interface aspect of this facility could be part of the interactive 
application portion of Timekeeper. What about the handling, routing, and 
delivery of messages? That part sounds like another system service. (We shall 
get back to this problem.) 

One criterion to use in thinking about division of labor between clients and 
system services is whether a given functionality must be always "on," always 
up and running on the system, or whether you can afford to have it go away 
with the user. The parts that must always be available go into the system 
services. 

At this point the designer should also think about what, if anything, should be 
placed in libraries and what in system services. In general, system services 
should handle the event-driven, real-time aspects of processing, while library 
routines can be written to handle computation. (An example is eTOS Mouse 
software, in which the real-time Mouse Service reports mouse movements and 
clicks to the client, while the Mouse library routines handle conversion of this 
information to whatever coordinate system is being used.) Bear in mind that 
later revision of a library requires that the application be relinked with the 
new library and reissued, whereas updates to a system service require 
reissuing only the system service. 
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One should be willing to make compromises with the principles outlined above 
if performance issues intervene. A classic software design trade-off is that of 
size versus performance. Putting code into a system service makes the 
application smaller overall. But creating a very pure design in which the 
system service does everything that is centralized in a very clean way can 
sometimes have a performance impact (for example, where one character at a 
time is being fetched and transmitted over the network). 

Thoughtful design of user interfaces and modularity in the beginning can save 
untold grief in later versions. It is worth hashing out all the issues and 
problems you can think up at this stage. 

Using Existing Pieces 

In keeping with the modular nature of CTOS, we now look around to see what 
needed bits of software already exist. We do not want to reinvent too many 
wheels. 

For our centralized data storage, we could write our own networked data base 
(a lot of work), or we could use the ISAM (Indexed Sequential Access Method) 
package, an existing CTOS networked data base. If we needed a more 
elaborate data base we might consider using Oracle®. 

For the Reminder system service, actually, we could just use the existing CTOS 
Queue Manager, which has the ability to check the system time and dispatch 
messages accordingly. Using the Queue Manager probably is the ideal thing to 
do, in pure Ctosian terms. However, if we decided to do that, the rest of this 
book would become decidedly boring, as we would never illustrate the writing 
of a system service. Therefore, we shall write the Reminder Service from 
scratch. 

As for the delivery of electronic messages, we are going to do the right thing. 
The CTOS Electronic Mail Service has all the functionality we need for 
transmitting messages. There is no need for us to create another system 
service here. We can just write the interactive application to call the Mail 
Service API. 
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Timekeeper: A eTOS Application 
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Figure 5-2. Timekeeper Components and Other CTOS Services 

Understanding Some Underpinnings 

Before we can refine our design and start coding away, we need to discuss two 
additional conceptual areas. One is the way the CTOS message-based system 
does its work. The other is the variety of available I/O tools under CTOS. 

Chapter 6, therefore, examines messages and CTOS Interprocess 
Communication (IPC), the underlying architectural concepts which allow 
processes to communicate, and explains how the request/response model is 
built on IPC. 

Chapter 7 discusses system services, the entities which provide services to 
multiple clients utilizing the IPC mechanism of Chapter 6, and how they are 
able to work over the network transparently to their clients. 

In Chapters 8 through 11, we look at I/O, ranging from the highest to the 
lowest level tools, and from disk to wide-area communications. 

In Chapter 12 we return with our new found-expertise to choose from this 
smorgasbord a real-world set of tools with which to write Timekeeper. 
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6 
More About Messages 

CTOS has one principal means of 
interprocess communication (IPC): the 
mechanism of messages and exchanges. 
Messages are the basis for consistency 
and standardization of application 
behavior under CTOS. Clients and 
system services, all communicating 
through the same mechanism, can 
therefore be changed, substituted, and 
reassembled in different ways without 
requiring disruption and recoding of 
their communication methods. 

There are two basic approaches to interprocess communication within any 
multiprocessing operating system environment: shared memory and message 
passing. Since eTOS is a networked operating system, shared memory is not 
possible; hence, messages make eTOS what it is. Its real-time nature, its 
system services, its transparent networking are built with and on the basic 
concept of messages. 

Messages are the means of communication between processes in both eTOS 
and applications. A greater level of concurrent processing is possible when a 
multiprocessing system is message based. Most eTOS processes use 
messaging to synchronize themselves with the operating system, system 
services, and/or other processes. Because of this, at any given time in a eTOS 
system, many different processes may be ready to run, although only one is 
actually running at a time. 

73 



More About Messages 

Actually, three kinds of entities compete for the processor under CTOS: 
processes, device interrupt handlers, and trap handlers. Of these, processes 
are the most important to us here. To understand how processes communicate 
with each other, though, we must first describe the process itself. 

eTOS Processes 

The concept of a process has been described many times and in many ways, but 
none of the definitions truly convey what one is. It is easiest to say that a 
process is a running program; but under CTOS a program may have more than 
one process. It is more accurate to say that a CTOS process is an independent 
thread of execution, along with the hardware context: that is, the contents of 
the processor registers that are necessary to that process. A process has a 
stack (which contains its history) and a current execution point. A process 
should not be confused with the code that it is executing: the same code can be 
executed by several processes at the same time. 

The context of a process consists of all the information required by the 
processor to perform work on behalf of that process. This context includes both 
hardware and software components. 

The hardware context consists of the values to be loaded into the processor 
registers when the process is scheduled for execution: for example, the CS:IP 
(the code instruction to be executed) and the data segment (DS) and stack 
segment (SS), which reference the location of the process's data and the 
process's stack. 

The software context consists of the default response exchange (where the 
process has its messages sent), the priority at which the process is scheduled 
for execution, and the interrupt vectors pointing to the software interrupt 
routines that the process uses. 

CTOS processes do not own resources: rather, a process is a resource owned by 
a higher-level entity (the operating system or the application system of which it 
is a part). 
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Process Creation 

Any process within CTOS is started up in the same way. CreateProcess, a 
kernel primitive, creates a new process and schedules it for execution. 
CreateProcess is called by any of several higher routines that may be used 
when an application is first loaded, either from an application or from the 
Executive (the eTOS command line interpreter). An application that is 
already executing and needs to establish a second, independent process also 
uses CreateProcess. 

For example, when the Executive application program is loaded into memory, 
the initial Executive process is created. This process is the main routine by 
which the user interfaces to the system. After the Executive is loaded, it in 
turn makes a CreateProcess call to start the second Executive process, the time 
process. This independent thread of execution periodically updates and 
displays the time on the user's screen. Both processes are part of the same 
application program, but have different threads of execution for more effective 
use of system resources. 

Each process is known to the operating system by its Process Control Block. 
The Process Control Block is a system structure that contains information 
about the process, including its execution state, priority, default response 
exchange (to be discussed later), user number (a reference to its owner), and 
context. The context of a process is made up of all the information necessary to 
resume the execution of the process. This information includes the settings of 
the microprocessor registers and other hardware registers. 

Processes under CTOS have associated priorities ranging from a most-favored 
priority of 0 to a least-favored one of255. (One might create a process of 
priority 255 to, for example, determine how busy the CPU is.) Processes are 
scheduled to run on the basis of these priorities; hence, CTOS is also priority 
driven. 

Process States 

A process can be in one of three execution states: ready, running, or waiting. 
A process is ready when it is competing for the processor; that is, it could use 
the processor ifit were available. All the ready processes are linked in priority 
order in a queue called the run queue. The process at the head of the run 
queue (the one that has the most-favored priority of all the processes in the 
ready state) is in the running state and is known as the running process. A 
process is said to be waiting when it needs to receive a message before it can 
resume processing (waiting for an event); hence, CTOS is also event driven. 
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Figure 6-1 shows a system that includes six processes. Processes A, B, C, and 
D are ready. Processes E and F are waiting. Process A has the most favored 
priority of the ready processes, so it is the running process. 

Run 
Queue 

Running Ready Ready 

A B c 
Priority 4 Priority 5 Priority 5 

Waiting Waiting 

E F 
Priority 2 Priority 8 

Figure 6-1. A System Including Six Processes 

Ready 

D 
Priority 9 

A process can also be suspended. A process can be suspended by a user 
command or by the system debugger, or when it is swapped out of memory, or 
pending its termination. A suspended process can be ready or waiting. When a 
process is both ready and suspended, it does not compete for the processor and 
does not become the running process, even if it would normally have been at 
the head of the run queue. 

The Scheduling Algorithm 

A process moves from the running to the waiting state when it needs to receive 
a message to be able to continue executing, but that message is not yet 
available. When the process enters the waiting state, it is taken out of the run 
queue, and the next process in the queue becomes the running process. In 
Figure 6-2, Process A is now waiting, and Process B has become the running 
process. 
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Run 
Queue 

Running 

B 
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c D 
Priority 5 Priority 5 Priority 9 

Waiting Waiting Waiting 

E A F 
Priority 2 Priority 4 Priority 8 

Figure 6-2. Process A Enters the Waiting State 

When a waiting process receives a message, it enters the ready state and is 
inserted in the run queue, behind all processes of the same or more-favored 
priority and before any process of less-favored priority. In Figure 6-3, Process 
F has received a message and is inserted into the run queue between Processes 
C and D. 

Run 
"Queue 

Running Ready Ready 

B c F 
Priority 5 Priority 5 Priority 8 

Waiting Waiting 

E A 
Priority 2 Priority 4 

Figure 6-3. Process F Enters the Ready State 

Ready 

D 
Priority 9 

When a process receiving a message has a more-favored priority than that of 
the running process, this receiving process is inserted at the head of the run 
queue and is made the running process. 
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As a consequence of the CTOS scheduling algorithm, a process cannot be 
preempted by another process of the same or lower priority without waiting for 
a message. This enables the enforcement of mutual exclusion in a single 
processor environment between processes having the same priority and sharing 
common variables without having to resort to using semaphores as is done in 
UNIX or OS/2. 

Process priorities range between 0 and 255, but are divided into groups as 
follows: 

o to 9 
10 to 64 
65 to 254 

255 

Operating system 
System services 
Application programs 
Nun process 

The operating system is given the most favored execution priority to ensure 
that its work is performed as promptly as possible. System services, being 
logical extensions to the operating system, have the next most-favored priority 
level. The null process, the process with the least-favored priority, is executed 
only when no other process is available to run. 

A program can change its default priority with the ChangePriority call, but 
care must be exercised in assigning priorities. Modifying one's process priority 
may ensure that the process has control of the processor, but at the expense of 
preventing even the operating system from functioning. 

For application processes, CTOS uses time-slicing to ensure that no single 
process can prevent others of the same priority from getting the processor. The 
running process is moved to the end of the list of ready processes of the same 
priority every 100 ms. This rule applies to processes with priorities in the 
range 146 to 178 on CTOS workstations. 

Time-slicing is available only within the specified range of priorities and not 
within the range of priorities used by system processes, because the scheduling 
algorithm mentioned above would be violated. High priority processes 
performing system level work will never be preempted by a lower priority 
process. 
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Interrupt and Trap Handlers 

Remember that at the beginning of this chapter we pointed out that there are 
three different entities that compete for the processor: processes, interrupt 
handlers, and trap handlers. 

Interrupt and trap handlers are software entities that have been declared to 
the operating system as having to be executed when a given event occurs. 
Interrupt handlers are triggered asynchronously by hardware events. Trap 
handlers are initiated by software action (the execution of an INT instruction 
or a fault, such as division by zero). Trap handlers are also called software 
in terrupt handlers. 

The Intel family of microprocessors support vectored interrupts. A vectored 
interrupt is uniquely identified by an interrupt vector which is put on the 
hardware data bus in response to an interrupt request by a peripheral device. 

Interrupts invoked via the Trap Gate and Interrupt Gate are executed within 
the current process's environment, including its stack, without an automatic 
context switch. Interrupts invoked via a Task Gate, though, result in an 
automatic context switch to the stack of the Interrupt Service Routine task. 

An interrupt or trap halts the sequential execution of the currently executing 
process. The current hardware context is saved, and control is then passed to 
the interrupt or trap handler. Once the condition causing the interrupt or trap 
is resolved, the interrupted process's context is restored and its execution is 
resumed, or a process of more favored priority is executed via a context switch. 

Interrupt handlers are usually written as part of a device-handling program. 
Device handlers perform the hardware I/O to and from an external device. The 
handler consists of a device handler process that manages the device and 
initiates 1I0s, and a device interrupt handler that is executed when operations 
are completed or status conditions change at the device. 

Even though the two entities are executed asynchronously, they are parts of 
the same program within CTOS. Communication and syncrhonization are 
accomplished by using kernel primitives (e.g., PSend) and optionally shared 
memory for buffer utilization and control information. 
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The device interrupt handler is executed when the external interrupt occurs. It 
calls PSend to to start the execution of the device handler process, which has 
been waiting at its exchange for some work to do. The kernel primitive is the 
only way to synchronize the interrupt handler and the device handler process. 
Synchronization is unidirectional only, from the interrupt handler to the device 
handler process, even though data can flow in either direction with shared 
memory. 

Interrupt handlers are not commonly written by applications programmers. 
They are primarily of interest to systems and communications programmers 
and those who need to handle devices. As such, they are beyond our scope 
here. Most eTOS vendors offer documentation that explains these subjects in 
detail. 

Processes in Other Kinds of Systems 

Operating systems such as UNIX and OS/2 also manage multiple processes or 
threads. UNIX processes can spawn child processes, creating a hierarchy of 
processes in the system. eTOS processes do not do so. 

When a UNIX child process is created, the entire parent process is copied, and 
both continue to run. The child process must then chain, or the copies will 
contain duplicate code and data. Memory cannot be shared, since each process 
has its own user space. 

The Sun Microsystems implementation of UNIX includes what are called 
lightweight processes, which are multiple threads in the same address space. 
These lightweight processes are similar to the threads of OS/2. eTOS 
processe~ have more in common with these lightweight processes or threads 
than with the classic UNIX processes, in that multiple eTOS processes can 
exist within a program. 

eTOS Programs 

So far in this chapter we have looked at processes as distinct entities. We shall 
return to examine the way in which they communicate via messages. First, 
however, we shall take a short detour to look at programs, which may contain 
more than one process, and at memory management. This discussion will 
equip us with some concepts that we shall need in talking about interprocess 
communication. 
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It is impossible to separate eTOS programs from the way they exist in 
memory. Briefly, memory is divided into logical entities called partitions. A 
memory partition is not necessarily a contiguous memory area, but it is 
logically treated as such in these discussions for convenience. Each application 
has a separate user number, sometimes called a partition handle, identifying 
the partition in which it resides. We shall return to the details of partitions 
shortly. 

Programs are what an application writer constructs. They are the executable 
entities that are run by users to do work. An executable program consists of 
code, data, and one or more processes in memory. The steps in creation of a 
program are shown in Figure 6-4. 

Source Language Compilers/Assembler 
Modules 

+ (Code and Data) 

Object 
Modules 

~ --" t 
(Optional) 
Library or 

... Linker 

Libraries 

+ Operating System 
Loader 

Run File 

t 
Executable 
Program in 

Memory 

Figure 6-4. Steps In the Creation of a Program 

As in most other systems, the executable file, called a run file, is linked from 
one or more object modules that were compiled or assembled from source code 
written in any of several languages. 
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Commonly, many frequently used object modules are placed into an object 
module library. Prime examples of this method are the CTOS development 
libraries, CTOS.1ib and CTOSToolKit.1ib. These object module procedures are 
an important adjunct to CTOS and contain the routines that support a major 
I/O methodology, among other things. (See Chapter 8 for details.) 

Once a run file is created, it can be loaded in any of several ways involving 
related CTOS primitives, such as LoadTask, LoadInteractiveTask, and so on. 
An application on an end user's system is most commonly loaded, not directly 
by the user, but by a Chain primitive issued from the Executive command-line 
interpreter or by a LoadInteractiveTask call from the Context Manager (which 
is similar in function to the OS/2 Session Manager). 

The Chain simply replaces the currently executing application within an 
application partition with the new application. The Executive, for example, is 
said to Chain to the application that the user invoked through its command 
line. A Chain verifies that a given run file can be loaded into the application 
partition. If there is not enough memory, the Chain fails, and control returns 
to the caller, along with an error code. 

Partitions 

Multiprogramming under CTOS is supported with the division of memory into 
areas called partitions. Before the Intel 80286 microprocessor provided 
descriptor tables that allowed memory segments to be described in a virtual 
way, CTOS memory partitions were real contiguous entities. Application 
programmers were entirely responsible for managing application partition 
memory and seeing that they did not overwrite each other's territories or that 
of the operating system. The complexity of managing memory is one reason 
MS-DOS does not provide multiprocessing capabilities. 

Today, a CTOS "partition" is really a logical partition only, and pieces of it may 
be scattered all over physical memory. CTOS uses the protected mode feature 
of the 80286 and more advanced microprocessors in the same family to assume 
responsibility for territorial boundaries. Partitions are still represented in 
simple drawings as contiguous, but it must be remembered that they really are 
not. 

Memory can be viewed as two separate types: system partitions and 
application partitions. 
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System partitions contain the operating system code and extensions to the 
operating system, the system services. Recall that CTOS itself contains several 
different processes: the Keyboard Process, the Resource Manager, the 
Scheduler, the Termination Process, and so on. All the processes that are 
started during the initialization of the operating system are in a single system 
partition. Each system service loaded after the initialization of the operating 
system is contained within its own partition. 

Application partitions are created through a partition-managing program (for 
example, Context Manager) or via a Chain from the operating system after 
CTOS has completed its initialization sequence. This last method of creating 
an application partition is the normal method used for the Executive. The 
organization of application partition memory is shown in Figure 6-5. 

High End of Memory 

Low End of Memory 

Application Program 
(Code) 

f-o---------
Short-Lived Memory 

f-o---------
Common Unallocated 

Memory Pool 

~---------

Long-Lived Memory 

Application 
Partition 

Figure 6-5. Memory Organization of an Application Partition 
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An application partition can be either fIXed or variable. A fixed partition 
always uses a fixed amount of memory, whereas a variable partition can grow 
with a program's needs. The operating system Loader determines whether a 
partition is a fIXed or a variable one during the loading of a program. If a 
partition is to be variable, the application must be sized during the binding 
(linking) of the program. This information is present in the header of the 
executable file (on eTOS called a run file). It specifies the maximum and 
minimum amounts of memory required to load the program. If the minimum is 
available at load time, the program is loaded. If more memory becomes 
available, the application can grow to the maximum size specified in the run 
file header. 

Associated with each partition is a number called the user number (historically 
also called the partition handle). This number is a 16-bit integer that uniquely 
defines the partition and all the resources associated with the partition. It is 
worth noting carefully that the user number is owned not by the application in 
the partition, but by the partition itself. This fact becomes important when 
dealing with system services and their clients. Resources include file handles, 
short- and long-lived memory, and exchanges. 

Associated with a memory partition are the ,application code, short-lived 
memory, long-lived memory, a pool of unallocated memory, and the Local 
Descriptor Table, or LDT (a table used by the hardware for addressing memory 
segments on the 80286 and subsequent processors). The application code may 
or may not be present: if multiple copies of the same program are executing at 
the same time, only one copy of the program code is present in memory within 
one partition. Usually, all other partitions in which the same program is 
loaded are sharing the code of the first program that was loaded. 

It is also possible (although not often done) to load more than one program into 
the same partition. 

When a program is initially loaded into memory within an application 
partition, the code is loaded at what would traditionally have been the 
high-address end of that memory partition. After the code has been loaded, 
along with a structure known as the U-Structure (containing all the structures 
needed by the operating system to manipulate an interactive partition), the 
remaining memory is then divided into three different sections: short-lived 
memory at the top of the partition, long-lived at the bottom, and a common pool 
of unallocated memory in between. (Again, this scheme no longer bears any 
relation to the physical position of pieces of the partition in memory.) 
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CTOS makes a distinction between user and system partitions. A system 
partition is simply an extension of the operating system and is created when a 
ConvertToSys operation is requested. U-Structures and long-lived memory 
structures are not associated with a system partition. 

Memory 

Short-lived memory contains all the code and static data segments of an 
application program. Additional short-lived memory can be allocated and 
expanded by the program. 

At the bottom of the partition is long-lived memory, which must be allocated by 
the program if needed. 

Short-lived memory grows from the top down; long-lived memory, from the 
bottom up. The area between these two is the unallocated memory pool. 

Memory can be deallocated or returned to the common pool of memory, with 
the caveat that segments must be deallocated in a sequence exactly opposite 
the order in which they were allocated (preventing fragmentation). 

The terms short-lived and long-lived are associated with the contents of the 
memory areas. Short-lived memory does not survive a Chain from one 
application program to another within the partition, whereas long-lived 
memory does. When an application program chains to another program, the 
new application is loaded into the high area of the partition overwriting the 
previous short lived memory. Because long-lived memory does survive a 
Chain, though, parameters or information can be passed from one application 
to the next via this mechanism. 

For example, the Executive command-line interpreter provides a Run command 
that is often used by developers to execute programs that are under develop­
ment and do not yet have defined invocation commands. The Executive 
provides a simple forms interface for the user to fill in, so that no option 
symbols need be remembered. 

The Executive uses long-lived memory to pass parameters to a program 
executed through the Run command; remember that, long-lived memory 
survives a chain. Parameters entered by the user within the Run command 
form are passed to the succeeding program via a data structure called the 
Variable Length Parameter Block, which resides in long-lived memory. 

(The Case and Command fields in this form are not pertinent to the present 
discussion.) 
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Figure 6-6. The Executive Screen and the Run Command Form 

The advantage of this differentiation of memory is that it does enable the 
simple passage of parameters between successive programs. However, there is 
a price to this mechanism. All memory must be deallocated in exactly the 
opposite order of allocation. If this order is not followed, memory within an 
application partition can become checkerboarded, and the application can run 
out of memory. 
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Interprocess Communication 

Other Environments 

UNIX and OS/2, which in large measure seems to have copied UNIX in this 
regard, both have several mechanisms for communication between processes. 
These include such things as anonymous or named pipes, sockets, queues, and 
shared memory. The latter requires the use of semaphores to ensure integrity. 
In the history of UNIX, each of these mechanisms was invented by different 
people for different purposes. The result, in both systems, is little consistency. 

By contrast, CTOS has one principal means of interprocess communication 
(lPC): the mechanism of messages and exchanges. Messages are the basis for 
consistency and standardization of application behavior under CTOS. Clients 
and system services, all communicating through the same mechanism, can be 
pulled apart, substituted, and reassembled in different ways without 
disrupting or recoding the communication methods. 

CTOS IPC: Messages and Exchanges 

Messages 

A CTOS message is the packet of information that can be passed from one 
process to another, or from an interrupt handler to a process. A message 
contains 32 bits of data. Often, a message is a pointer to a larger piece of 
information. When using IPC directly, it is the programmer's responsibility to 
make sure that the receiver of the message is in the same address space as the 
sender (and thus can access the data), and that the sender does not destroy the 
data before it has been received, or process it before it has been generated. 
Practically, these rules mean that direct IPC is used between processes that 
are part of the same application. 

Protected mode operation on the Intel microprocessors uses indirect addressing 
through descriptor tables. An application addresses items identified by entries 
within its local descriptor table (LDT). The LDT contains selectors referencing 
memory within the application's partition, whereas the global descriptor table 
(GDT) contains selectors referencing global memory. Direct IPC messages are 
accessed via the application's LDT. Hence, an address to a data element must 
be an address within the program's local descriptor table; an address 
referencing data within another application's LDT would result in a protection 
fault. 
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Note that when the request/response mechanism, the next higher level of IPC, 
is used, the programmer does not have to be concerned about addressability, 
because the operating system ensures that requests are routed to the right 
places. 

The Exchange 

An exchange is the focal point of IPC. Messages are sent to exchanges, not 
directly to processes. Conversely, a process specifies the exchange at which it 
expects a message. The exchange is a mailbox in which messages are deposited 
and from which messages are taken. 

When an application is loaded, it automatically is given one exchange: the 
default response exchange, used in the next higher level of IPC, which we shall 
discuss later. An application program can find out the identity of its default 
response exchange by using the QueryDefaultRespExch procedure. 

Programs can also dynamically allocate and deallocate other exchanges to be 
used for direct IPC by using the AllocExch and DeallocExch primitives. An 
application should not use its default response exchange for communicating 
with another process. 

An exchange has two queues associated with it: a queue of messages and a 
queue of processes. They are managed as follows: 

When a message is sent (using the Send primitive) to an exchange where no 
process is waiting, the message is appended at the end of the queue of 
messages. The queue of messages is a nonprioritized FIFO (first-in, first-out) 
queue. 

Alternatively, when a process demands a message (by issuing the Wait 
primitive) from an exchange where no message is available, that process is put 
at the end of the queue of processes (regardless of its priority), and it enters the 
waiting state. This queue is likewise a FIFO queue: the first process in the 
queue will receive the next message. 

A process can alternatively use the Check primitive to examine an exchange to 
see whether a message is present, but to continue processing if it is not. 

When a message is sent to an exchange where at least one process is already 
waiting, the message is immediately delivered to the first process in the queue. 
That process is made ready and is inserted into the run queue. If the receiving 
process has a priority higher than that of the sending (currently running) 
process, it becomes the running process. 
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When a process asks (by Wait or by Check) for a message from an exchange 
where a message is already queued, that process is handed the message and 
remains in the running state. 

Note that if the Wait chronologically precedes the Send, the system behaves 
differently from the way it would if the Send preceded the Wait. In the first 
case, the receiving process may lose the processor to another process of the 
same priority. In the second case, this change would not occur. 

The implication of the exchange algorithm is that at any given time at least one 
of the two queues in the exchange is empty. 

Processes 

Messages 

0) Exchange is Idle 

Processes 
P1 P1 P1 

Messages 

b) 3 Processes are Woiting 

I 
Processes I 

_ Messages t-: ------IG)----CD 
c) 2 Messages are Available 

Figure 6-7. Three States of an Exchange 

Figure 6-7 shows three states for an exchange. In Figure 6-7(a), we see an idle 
exchange: no process is waiting and no message is available. Figure 6-7(b) 
shows three processes waiting in the process queue. Pl will receive the very 
next message sent to the exchange; P2, the following one; and P3, the third one, 
regardless of the relative priorities ofPl, P2, and P3. In Figure 6-7(c), two 
messages are available. Message A is the oldest; B is the more recent. The 
next process to issue a Check or Wait primitive at that exchange will receive 
message A The following process will receive message B. 

CTOS exchanges are resources. They can be allocated and deallocated at will. 
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IPC Primitives 

At the most basic level, CTOS IPC is carried out through the issuance of 
three kernel primitives. Send sends a 32-bit message (usually a pointer) to an 
identified exchange. Wait receives a message from an exchange. If no message 
is present, the process waits (blocks) until one arrives. Check receives a 
message from an exchange, but returns immediately with an error code if none 
is available. Check never causes rescheduling of the processor. 

We mentioned in Chapter 1 that the message and exchange system could be 
used for purposes other than passing data. Indeed, Send and Wait can be used 
with dummy values, simply for synchronization. They can also be used in 
resource management where, for example, one process controls the resource 
and others ask to use it. This usage is a form of semaphore control, and we 
shall look more closely at it in Chapter 13. 

The IPC primitives are used only between processes belonging to the same 
application (or more formally, running in the same application partition). 
Messages can be passed between applications in different partitions by another 
mechanism called the Intercontext Message Service, but this method is used 
only for special purposes that we shall not address here. The more common 
way to pass messages between entities that are not in the same partition is the 
use of requests and responses. 

Hiding the Mechanics: The Request/Response Model 

In order to communicate using the IPC mechanism, two processes need to have 
knowledge of the exchange to be used. This requirement can be tolerated when 
the two processes are part of the same program, but it is very constraining 
when communication is between an application program and the operating 
system. This area has been an area of extreme complication in distributed 
processing. How is the target process named clearly? 

To allow a program to ask other programs to perform functions on its behalf, 
eTOS introduces the notion of requests. A request is a formal way for a 
process to ask for a service to be performed by another process. A process 
requests a service by using the Request primitive. This primitive accepts the 
request block, the self-describing structure containing all the information 
necessary to pass information between the service and the client. 

Upon completion of the service, the other process must formally respond to the 
request by using the Respond primitive. 
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For now, we shall call the process that issues the request the client and the 
process that receives the request the service. Later, we shall extend these 
names to the application systems that own the processes. However, context 
should make it clear which one we are talking about. 

We shall cover the routing of requests in detail in Chapter 7. Basically, the 
client process issues a Request primitive to the operating system, passing a 
pointer to the request block, which contains information about the desired 
work to be done. The operating system determines what service is serving that 
type of request and passes the request to that service. Similarly, the response 
is passed back from service to client via the operating system. Request and 
Respond are additional primitives that enhance the IPC mechanisms we 
described previously and that allow formalized messaging between applications 
not in the same partition. 

The Request Block 

The vehicle used to carry requests and responses back and forth is called a 
request block. Figure 6-8 shows the request block in outline. The request 
block header (which, in turn, is detailed in Figure 6-9) is a fixed-format 
structure that contains general information applicable to any request block. 
(During the early development of CTOS, it was this header portion that was 
added when the request block was redesigned to allow it to be used across the 
network.) 

Request Block 

Header 

Control Information 

Request PbCb 

Response PbCb 

Figure 6-8. General Form of the Request Block 

The control information portion of the request block contains parameters 
transferred from the client to the service. This area is used for short data 
types, such as characters, integers, or doublewords passed by value; for 
example, a file handle or a screen coordinate would usually be passed as 
control information. Pointers should not be included in the control informa­
tion. Their proper place is in the following portion of the request block, the 
PbCb pairs. 
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As shown in Figure 6-8, a PbCb pair is a CTOS type made up of a pointer to an 
array of bytes (Pb) and a count of bytes (Cb). In other words, a PbCb is an 
array descriptor. Request PbCb pairs reference data arrays transmitted from 
the client to the system service. Response PbCb pairs reference data arrays 
transmitted back from the system service to the client. 

Should particular data be passed from client to system service as control 
information or via request PbCb pairs? The decision is based on the fact that a 
PbCb has 6 bytes of overhead, whereas control information should be limited to 
16 bytes. The entire request block must occupy less than 64 bytes. The way in 
which the procedural interface for a request is defined also influences this 
choice. 

Response PbCb pairs are the only way (other than the error code) to return 
data from the system service to a client. A service must not modify the request 
block (except for the error code returned field), nor the data pointed to by 
request PbCb pairs; nor should it assume any initial value for the areas pointed 
to by response PbCb pairs. It is sometimes necessary for a system service to 
temporarily modify the request block. In such a case, the system service must 
ensure that any alterations are restored before responding to the request. 

The client must not access (read or write) the request block nor any data 
pointed to by any PbCb pair from the time it issues the Request primitive until 
it has received back the pointer to the request block through a Wait or Check 
primitive. Additionally, once the response is received, the data pointed to by 
response pointers can be invalid if the returned error code is not zero 
(indicating satisfactory completion). 

Request Block Header 

sCntlnfo Rt Code 

nReqPbCb nRespPbCb 

User Number 

Response Exchange 

Error Code Returned 

Request Code 

Figure 6-9. Details of the Request Block Header 
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Figure 6-9 details the structure of the request block header. The sCntlnfo field 
indicates the size (in bytes) of the control information. The routing code is 
reserved for use by the operating system kernel and should be set to 0 by the 
client. (Doing so avoids receipt of a no-such-request error code where a remote 
request is not locally defined.) The nReqPbCb field indicates the number of 
request PbCb pairs in the request block. Similarly, the nRespPbCb field 
indicates the number of response PbCb pairs. 

The user number denotes the owner of the request block. This field is normally 
set to 0 by the client and set to the correct value by the kernel. This field is 
used by a system service to identify the owner of the resources it controls so 
that it can dispose of them properly in case of the termination of the client. 
The response exchange shows where the response to the request is to be sent. 
It is an exchange that must have been previously allocated by the client. 

The error code returned is a I6-bit quantity used to convey to the client the 
success or the reason for the failure of the operation. As a convention, 0 is 
reserved for successful completion, while any other number indicates a failure. 
Finally, the request code field indicates what function the issuer of the request 
block wants to have performed. CTOS uses this field to deliver the request 
block to the proper service exchange. 

When a process submits a request block (using the Request primitive), the 
operating system makes the request block and the data pointed to by the PbCb 
pairs available to the system service. After the work is completed, CTOS 
makes the response data available to the client. These steps can be done 
because of the structure of the request block and of the knowledge that it gives 
to the operating system of the pointers and the flow of information. This 
process is called aliasing. A global descriptor table entry is created for each 
request and response PbCb pair, allowing the service access to the request data 
and the client access to the response data. Hiding pointers in the control 
information field or inside a structure pointed to by a PbCb pair would defeat 
this mechanism; in fact, an application in which this was done would fail. A 
protection fault would result because the aliasing would not have been 
performed, and the required data could not be addressed. 

Synchronous and Asynchronous Processing 

A process that sends off a request for a service can proceed either 
synchronously (waiting or blocking as soon as the request has been sent) or 
asynchronously (continuing execution and checking its response exchange 
periodically to see whether the service is complete). 
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Asynchronous processing requires the programmer to build the request block 
literally: that is, filling out all the required parameters in the request block, 
and then issuing the Request primitive to pass it to the operating system. 

Most application requests, however, do not need to be asynchronous. Where 
processing is synchronous, the application programmer has a much easier job. 
The Request primitive is hidden under what is called a request procedural 
interface. If, for example, the application needs to open a file, it merely makes 
the Open File procedure call, passing the required parameters to the file 
system, rather than constructing a request block for issuance to the file system. 

The application programmer does not even need to know that this call will 
actually become a request transmitted by CTOS to the file system service. 
When this call is made, the operating system takes the passed parameters and 
uses them to build the request block on the client's stack. As part of this 
process, the operating system retrieves the default response exchange value 
from the process control block of the issuing program and puts it in the request 
block header. It then issues the Request on behalf of the client. 

When the service issues the response, the operating system reads the request 
block header to find out what the response exchange is. It extracts the 
returned error code from the request block and hands it back to the caller/client 
in register AX. 

The caller is never the wiser about this whole process. The existence of the 
application programming interface (API) made up partially of request 
procedural interfaces makes the job of application programming very similar to 
what it is under other systems. 

Part of the work of writing a system service is defining the requests and the 
associated request procedural interfaces that will make up the API for that 
system service. We shall see more about that in Chapters 12 and 13. 

Requests Versus RPe 

Much has been written in the last several years of the importance of the 
Remote Procedure Call (RPC). This concept is actually what system 
programmers desire when writing an application system: a method for calling 
a procedure to perform a service irrespective of the location of the service 
routine. A truly distributed system requires this type of functionality. With 
an RPC, the calling process waits for the receipt of the message, and when the 
message is received, continues processing. 
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The CTOS RequestJResponse implementation of IPC provides all the 
functionality of an RPC with one major enhancement. Because there is a 
formalized manner for describing messages, indirect references to data are 
possible. The operating system aliases indirect references on behalf of the 
client and/or service, allowing access to data within different address spaces. 
Additionally, the operating system, along with the networking software 
(agents, which we will cover in the next chapter), routes the data referenced by 
the PbCb pairs so that the client can function irrespective of the location of the 
service and vice-versa. 

A Few Other Mechanisms 

Not all of the CTOS API is made up of hidden requests to services. All CTOS 
procedural interfaces have the same form and are handled in the same way by 
applications programmers, but some go to other destinations. 

Kernel Primitives 

CTOS has a limited number of kernel primitives: we have encountered some of 
them (Send, Wait, and so on) in our discussion of IPC. The remaining ones 
concern creating processes and manipulating them and their priorities; 
handling requests and responses; and manipulating interrupt handlers. 

System Common 

In addition, some system routines that are frequently used and are always 
used on the local workstation, or that require very high performance, are 
defined as system common procedures. System common routines are accessed 
in a manner similar to a UNIX kernel entry (however, they are not actually 
part of the CTOS kernel): their entry points are accessed directly, unlike those 
of system services. A system common procedure is executed by the calling 
process rather than by another one, utilizing a feature of the Intel micropro­
cessor architecture called a Call Gate. Thus, the system common code must 
reside on the same CPU with the caller. System common routines are not 
network routable. They are synchronous and must be reentrant. (That is, the 
system common routine must be able to be suspended, executed by another 
process, and then later completed within the original scope, transparently to 
either executing process.) System common routines have no global data. All 
data must be stack relative to ensure its viability if the routine is suspended. 
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Since the calling process and the system common are not in the same address 
space, it is the system common's responsibility to have any pointers made 
addressable to prevent a protection fault. 

CTOS has two varieties of system common routines. The first type is built into 
the operating system at system generation. The second is the loadable type, 
which can be loaded at wili by an application program. Functionally, the two 
types are not distinct: they behave identically. The loadable type allows the 
further customization of an operational environment. 

Object Module Procedures 

Libraries of object module procedures also exist. Code for these procedures is 
bound into applications themselves at link time. In general, object module 
procedures contain functionality that is more specialized than that in system 
common procedures and would not be used by all programs on a system. They 
tend to be computational rather than resource-related functions. 

CTOS has three standard libraries: Ctos.1ib, CtosToolKit.1ib, and Enls.1ib. 
Commonly used routines, development aides, and nationalization routines are 
defined in these libraries. 

Additional1ibraries are provided for many application packages. Programmers 
can define new libraries by using the Librarian utility. This utility accepts 
object modules and places them within a user-defined library file. 

We shall look at these other mechanisms in more detail in Chapter 8. 
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When a client issues a request, it does 
not need to know where the system 
service is located. The system service 
may be local (on the same CPU), or it 
may be at the server workstation of the 
cluster, or even at a workstation across a 
CTOS Network. If the system service is 
not local, the request is transparently 
routed across the network to the system 
service. 

The previous chapter described many of the architectural concepts underlying 
the eTOS messaging capabilities. Processes communicate with each other, so 
processes, memory management, and messaging were covered in great detail. 

Recall, though, that we stated that eTOS itself is not a single process; instead 
there are several components to the operating system, each of which is also a 
process. Recall also that we stated that operating system functionality could be 
replaced and/or enhanced with user-written system services. 

Now that you understand the underpinnings of eTOS message-based opera­
tion, we can begin to look at the way a system service actually goes about its 
work. In previous chapters, we have talked generally about them. Now we 
arrive at the point of discussing them in more detail. This chapter describes 
the interaction between the system service and its clients. It also takes a look 
at filter processes, a specialized type of system service. 
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System Service/Client Interaction 

Remember that the request block is used to pass messages from one process to 
another. Generally, in this interaction one process is the client, requesting a 
service; the other responds by performing the service. The responding service 
is called the server. 

In Chapter 6 we looked at the request block format. Three fields from that 
request block header play especially important roles in the client/server 
interaction. These are the user number field and the request code field. The 
request code identifies the service that is desired. The user number helps to 
characterize the client. The file handle can be used to uniquely identify a 
specific series of transactions associated with a specific user number. 

Partitions and User Numbers 

In Chapter 6 we also talked about the partition. An application system 
executes inside a memory partition. Note, however, that an application system 
and a partition are not synonymous. Although there is only one application 
system per partition at a given time, application systems can succeed each 
other in the same partition. When this happens, the succeeding application 
inherits the application partition. 

Each partition is identified by a l6-bit user number. It is this user number 
that appears in the request block header. Whoever reads this field can tell 
what partition originated the request. 

Request Codes 

The request code in the request block header is a number that uniquely 
identifies the service that is desired (not who is going to perform the service). 
The request code must be unique to ensure that conflicts do not occur. The 
request code field is used by CTOS to deliver the request block in the proper 
service exchange. 

The Dynamics of Requests and Responses 

eTOS maintains an internal table that maps each known request code to the 
exchange at which it is served. This table is initialized at boot time and can be 
changed dynamically. When a new system service is installed, it allocates one 
or more exchanges at which it wants to receive requests for services. Then it 
informs the operating system that it plans to serve certain requests at certain 
exchanges. 
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To do so, the system service makes the ServeRq call once per request code, 
giving the request code to be served and the system service's exchange. The 
service then waits at its exchange for requests to come in. (See Figure 7-1.) 

.. A1locExch -
AllocExch ,. - ServeRq 

1. Look up Req uest 
Request , Code , Wait 

2. Roule Request to 
Service Exchange 

Woit ... Route Response lo Respond - Client Exchange -

Client Operating System System Service 

Figure 7-1. The Request-Response Model 

When a client makes a request, either directly or through the request 
procedural interface, the operating system receives a pointer to the request 
block. The operating system extracts the request code from the request block, 
looks up in its table the exchange at which that particular request is served, 
and enqueues the request block at that exchange. 

POinter Aliases 

Data pointed to by the PbCb pairs within the request block must be 
addressable by both the client and the server process. Because the client 
application and the system service that serves the request are in different 
partitions, their memory is governed by two separate local descriptor tables. 
Thus, the system service cannot immediately access the data that the client 
wants to pass. 
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This problem is a general one for operating systems on the 80286 and later 
Intel microprocessors that want to pass information from sender to recipient. 
Protected-mode operation relies on the local descriptor tables to keep memory 
for each application distinct. A global descriptor table keeps track of the 
correlation between the local descriptors and the physical address, but is not 
generally accessible to applications. 

Under eTOS, the solution to the problem that occurs when the client and the 
service need to pass data to each other is to create alias pointers in the 
processor's global descriptor table (GDT) for the pointers in the sender's LDT 
that indicate the location of the data. Once addresses exist in the GDT, they 
are available to any process in the system, whereas the LDT values are 
restricted to their owner. Thus, the system service can use the alias pointers in 
the GDT to access the passed data. 

It is interesting that although OS/2, designed to run on the same 
microprocessors, encounters the same issue in the implementation of dynamic 
link libraries, it resolves the problem differently. Under OS/2, certain positions 
in the LDT of each process (the same positions for every process) are reserved 
so that they can be used to refer to the same shared memory if necessary. 

Each of these two approaches has its disadvantage: the eTOS method could 
conceivably fill up and exhaust the GDT if many processes are running, 
whereas the OS/2 approach uses up half or so of each LDT for shared memory 
descriptors. 

Reaction of the System Service 

Up to this point, the system service has been a process in the waiting state, 
waiting for a message so that it can become ready to run. When the message 
(which is the address of the request block) arrives at its exchange, the system 
service enters the ready state and in fact has a good chance of becoming the 
running process, since its priority has been set higher than that of the client. 

(Since system services can and do become clients of other system services, you 
may be wondering what happens if the client in fact has a higher priority. The 
answer is twofold. First, system services are usually waiting for work to do, 
and while they are in a wait state, any other process at the same priority that 
is available to run can be scheduled to run. Second, if necessary, processes can 
change their priorities.) 

100 



System Services 

The system service now does whatever is necessary to serve the request. If the 
function succeeds, the system service inserts the value 0 into the error code 
field of the request block. If it fails, the system service inserts a value that 
represents the cause of that failure. The system service then calls Respond, 
passing back the pointer to the request block. The system service can now 
Wait again at its exchange (ifit is a synchronous system service; we will say 
more on this subject later). 

The operating system picks out the response exchange value from the request 
block and thus knows where to enqueue it for the client. (The operating system 
does not use the user number at this point.) If the call to the service was 
originally made through the request procedural interface, the operating system 
extracts the returned error code from the request block, adds it to the AX 
register, and returns to the client. If the request was made directly by the 
client using Request, the client receives back the pointer to the request block 
from the system service and is responsible for extracting information directly. 

Connections 

Up till now we have a talked about the interaction between a client and server 
process in terms of only a single transaction. However, CTOS provides the 
capability for grouping transactions into a series of interactions between a 
client and the system service that acts as the server. 

Where a transaction is part of a series of interactions, the client and system 
service are said to have a connection; where the transaction is a one-time-only 
event, the relationship is said to be connectionless. A client may have several 
connections simultaneously to the same or different system services. These 
connections are all independent. 

In setting up the connection, the client identifies the service it wants. The 
system service, if the necessary resource is available, allows opening of the 
connection and hands back to the client in the request block a reference 
number to be used in further requests within that connection. This reference 
number is usually called a handle. 

A connection is first established, then used over a series of requests to do 
something (such as read a sequential file), and then finally destroyed. In such 
a case, the system service must remember not only what file is being read, but 
also who the client is. 
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The operating system and network software, as well as the client and system 
service, use the handle, although they may map it to different values in order 
to keep it unique. Each connection or handle is associated with a given user. 
This allow's multiple connections between a client and a system service. If the 
user number was used rather than the handle, only a single connection would 
have been possible. 

Two types of system events can interfere with a connection: termination and 
swapping. These require careful handling by both the operating system and 
the system service that serves a request. When an application is terminated a 
connection becomes no longer valid. In this case, the server process must scan 
though all outstanding requests from this client (which it identifies by the user 
number) and remove them from its queue. The situation is more complicated 
when the operating system has swapped the client out of its partition. In this 
case, the system service serving the request must respond, but it must queue 
up its responses until it receives notification that the client has been swapped 
back into the partition. Otherwise the response could go to the wrong client 
and cause a protection fault that would cause a system crash. The operating 
system and the server process use the user number to identify the partition in 
which this change has taken place so that the system service can correctly 
handle such pending requests. 

Crossing the Network 

Remember our discussion of the need for a formalized mechanism for an RPC? 
An application system programmer would like to develop an application which 
is oblivious to the fact that the application is either in a network or on a 
standalone machine. The CTOS Request/Response model and the Request 
Procedural Interface supply just this type of mechanism. 

When a client issues a request, it does not need to know where the system 
service is located. The system service may be local (on the same CPU), or it 
may be at the server workstation of the cluster, or even at a workstation across 
a CTOS Network. If the system service is not local, the request is 
transparently routed across the network to the system service. 

To understand how this is done, we first need to know a bit about agents. 
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Agents 

An agent is a special type of system service process that intercepts requests 
destined for other system services. Its function is to participate in routing a 
request to a system service that is not on the same workstation with the client. 

There are two kinds of agents: client agents and server agents. A client agent 
resides on the same workstation as the original client process that issues the 
request. The server agent resides on the same workstation with the system 
service that serves the request. An agent of one kind communicates only with 
agents of the other kind to transmit requests and responses. Figure 7-2 shows 
a simple transfer between a client agent and a server agent. A special instance 
of these two types of agents is when the client is at a local workstation and the 
server agent is located at the server workstation of that cluster. Here, the 
client agent is referred to as the cluster workstation agent, and the server 
agent as the cluster server agent. 

Client's CPU Server's CPU 

Request Request 

Respond Respond 

Figure 7-2. Client and Server Agents 
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In a cluster workstation, if a function is requested and the system service is not 
available locally, the request will be queued at the exchange of the cluster 
workstation agent. This process converts the message for transmission across 
the communications line to the server workstation. The workstation agent 
process is included in a version of eTOS specialized for cluster workstations. 

Once the message is received at the server workstation, the cluster server 
agent reconstructs the original message and passes the request to the exchange 
of the system service process. Again, the cluster server agent process is 
included in a version of CTOS specialized for server workstations. 

The format of the request block is what enables this efficient redirection of 
messages within eTOS. The request block is easily redirected from a process 
on one machine to another process on a different machine via agents. This is 
because the request block is self-describing, as previously mentioned, and the 
agents are able to transfer requests and responses between the cluster work­
station and the server workstation without any knowledge of what function is 
requested or how it is to be performed. 

This concept of agents may be extended another level with the eTOS net agent 
that provides a wide-area network capability in conjunction with eTOS 
Network software products, such as BN et. The net-agent is one system service, 
consisting of two processes. One process plays the client role, while the other 
acts as the server. The operation of these two processes parallels the operation 
of the cluster communication agents, but allows messaging between two 
servers in a wide area network. Again, the application systems programmer is 
unaware of the network topology beneath the application. 

There may be more than one pair of client and server agents between a client 
and its system service. Figure 7-3 shows an example in which an application 
on a local workstation sends off a request that is to be performed by a system 
service that is running on the server workstation in a different cluster. 
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As shown in the lower left corner of the figure, an application makes a request, 
which is intercepted by the cluster workstation agent because the system 
service is not installed on the same processor as the client process. The cluster 
workstation agent is a client agent. It transmits the request over the cluster 
line to the cluster server agent, which in tum submits the request to the 
operating system on the server workstation. The cluster server agent then 
passes the message to the operating system which determines that the system 
service is not local to it, and the request goes to the net agent on that server 
workstation. The net agent transmits the request across the network to the 
network agent on a different server workstation. The net agent then submits 
the request to the operating system on the second server. This time, the 
operating system is able to map the request to the actual system service. The 
response to the request flows back through the system directly via the agents' 
response exchanges in the same manner. No kernel routing is necessary. 

Server Workstation Server Workstation 

LAN 

RS-422 

Cluster Workstation 

Application 

Figure 7-3. Agents Across the Network 
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Filters 

A filter process is a special kind of system service that a programmer may 
write, which intercepts requests that were destined for another system service. 

A filter must be installed after the original system service has been installed. 
It uses the ServeRq call to indicate to the operating system that it will now 
serve some or all of the requests sent to the original system service. 

Prior to serving the request, though, the application must determine whether 
the request is currently in use (in case the filter will be deinstalled, the 
original system service must be reestablished). This is done by using the 
Query RequestInfo call. 

Upon deinstallation of the filter, the original exchange at which the request is 
processed will be restored with a ServeRq call and the exchange defined by the 
request information structure described above. 

A filter that responds directly to the client making a request is called a 
replacement filter. The filter is actually replacing the functionality of the 
original system service. 

If the filter preprocesses the request and then passes it on to the system 
service, which then responds to the client, it is called a one-way filter. 
One-way filters are used primarily to enhance statistics gathering (e.g., adding 
a logging capability for tracking the issuing of certain requests). 

Finally, a filter that captures the request, preprocesses and forwards it to the 
system service, then captures the system service's response, postprocesses it, 
and then responds to the client is a two-way filter. Two-way filters are used to 
enhance functionality. 

A filter process need not be consistent in the way it handles the various 
requests of the original system service. It may act as a replacement filter for 
some requests, use one-way or two-way filtering for others, and not filter some 
at all. It must, though, serve the system service's termination, abort, and swap 
requests. 
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A one-way filter scheme is shown in Figure 7-4. When the filter sends on the 
request to the system service, it must use the ForwardRequest call, rather than 
using Request. ForwardRequest does not require a matching Respond, 
whereas Request does require one. This is because with one-way filtering, we 
do not modify the contents of the request block. Within the request block is the 
response exchange where the system service will send the response. The filter 
process here simply intercepts the message, performs some amount of 
processing depending on the message (not modifYing it, however), and then 
passes the message to the exchange of the original system service process. 

Request ForwardRequest 

Respond 

Figure 7-4. A One-Way Filter 

However, you might wonder where we retrieve the identity (number) of the 
original system service's exchange so that we can forward the request to that 
exchange. Remember our discussion of the request blocks and operating 
system tables? Associated with each request in the tables is the number of the 
exchange to which that request would be sent. The only method of filtering 
requests is to substitute the original service exchange with the new filter 
system service's exchange via ServeRq. In doing so, though, we must keep 
track of the original exchange information. This is where we get the proper 
exchange for forwarding the request. 
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If there is a need to remove the filter, then the original exchange must 
be replaced. In this case, the exchange returned with the original 
Query RequestInfo call must be used in another ServeRq call. After this call 
is completed, the Request table once again looks as it did prior to the filtering 
of the original request. 

A one-way filter does not modify the request block, because it will not have a 
chance to restore the original values. For this reason, one-way filters are used 
mainly for preprocessing or to collect statistics. 

Request RequestDirect 

Respond Respond 

Figure 7-5. A Two-Way Filter 

A two-way filter scheme is shown in Figure 7-5. When a two-way filter receives 
a request, it modifies the response exchange field in the request block to reflect 
its own exchange. It then passes the request to the system service by using the 
RequestDirect primitive. When the system service responds, the request block 
is delivered to the filter, which can then do some postprocessing and restore the 
request block to its original form before responding to the client. The fact that 
a two-way filter can modify the request block makes it much more powerful 
than a one-way filter. 
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Filters and Extensibility 

Now that we see how the filter process works, it is more apparent how truly 
extensible CTOS is. If a one-way or two-way filter serves some, but not all, of 
the requests destined for a given system service, it inherits all the functionality 
of the system service that it does not replace. Thus, if you want to change only 
one aspect of what an existing system service does, you do not have to rewrite 
the whole thing: just put a filter in front of it. 

The Basic Structure of a System Service 

All system services have certain traits in common. They are easiest to see in 
the simplest kind of system service, which is also the first kind that the CTOS 
novice should try to write. This type is the single-process, synchronous system 
service. 

In its barest outline, the system service is a loop. As shown in Figure 7-6, it 
contains a series of calls pertaining to its installation and to its conversion from 
an application program to being part of the system software. After the 
conversion, it notifies the operating system of the requests it will serve. It then 
begins the server loop: as long as it lives, it will Wait at its exchange. When a 
Wait is satisfied, it will process the received request. Having done so, it 
responds and then it Waits again. 

Installation 

Bosic Server Loop { 

GetPortitionHondle 

AllocExch (and other resource allocations) 

QueryRequestinfo 

ConvertToSys 

Exit 

ChangePriority 

SetPartitionName 

ServeRq (one per request to be served) 

While (True) .--------, 

{ 
Wait 

Process Request 

L...-___ Respond --_ ...... 

} 
Figure 7-6. Simplest Outline of a System Service 
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Several ca11s are involved in the sequence of events in installing a system 
service, and the actual sequence of the ca11s is important. However, since there 
is a defined sequence, insta11ation logic can easily be copied by any system 
service writer. We sha11 see the sequence in more detail when we write the 
Reminder system service in Chapter 12. 

A separate deinstallation utility program is also written to aid in removing a 
system service that is no longer needed. This program simply issues a request 
informing the service that it should deinsta11 (clean up its environment, 
respond to any outstanding requests, and restore any filtered requests to their 
original state). When the service has completed its cleanup, it responds to the 
deinsta11ation utility, which then completes the deinstallation by removing the 
service from the run-time environment. 

A Look Ahead 

Of course, even though writing a single-process, synchronous service is not very 
difficult, writing system services frequently involves much more than we have 
described above. The need for more sophisticated system services arises rather 
quickly. 

Suppose, for example, that your system service is located on the server 
workstation of a large cluster and is managing a resource such as a data 
storage or communications device. Multiple users are sending in requests for 
services. If the processing of one request takes more than a very sma11 amount 
of time, it delays processing of a11 the others. Your users are not going to be 
very happy if they are stopped in their tracks while the requests sent by their 
application interfaces are enqueued at your exchange, waiting for their turns. 
Since the users do not know or care about requests, they only perceive that 
their systems appear to be hung. 

Secondly, if you can handle only one request at a time at one exchange, what 
happens to the termination requests that the operating system sends you? The 
operating system cannot finish up a termination until you have responded. 
Performance on the whole cluster goes down. 

So, in fact, there are other kinds of system services that you can write. You 
can get involved with more than one process running within the system service. 
You can also write the service so that it does asynchronous processing: it 
carries on multiple conversations with clients at once. Each of these methods 
has its advantages and its champions. We shall come back to them in 
Chapter 13. But for now, let us go on to look at I/O under CTOS. 
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Input/Output Overview 

For peripheral devices under CTOS, 
both device-dependent and device­
independent I/O methods exist. In most 
cases, the device-independent ones are 
built on top of the device-dependent ones. 
Each has its advantages. One of the 
great flexibilities of application 
programming under CTOS is that the 
programmer can intermix device­
dependent and device-independent I/O 
methods as suits the need. The burden 
of understanding the device rests with 
the application programmer when the 
application does device-dependent I/O. 
Conversely, device-independent I/O 
hides the details of manipulating the 
device from the application. 

Networked system services, as the platform on which distributed applications 
are built, are the heart of what makes eTOS unique. We have spent a lot of 
time on them, and we shall come back to them again later. They are not, 
however, all there is to eTOS. In this section, we shall add another layer to 
our picture of eTOS structure as we discuss input/output options and how they 
are related to each other in hierarchies. 

Before we look at eTOS 110, we must first be clear about a few concepts. 
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Device-Dependence and Device-Independence 

Suppose you were writing a letter to ask someone to send you some 
information. If you were writing to your sister, Sally, you might say, 

Hi, Sal-

Remember how we talked about Methuselah Youngblood's 
out-of-print treatise on aging gracefully? I'm pretty 
sure I saw a copy bound in puce leather sitting on the 
third shelf from the bottom in the bookcase in your 
study. Would you mind lending me that? Please send 
it by air. I need help. 

Yours, 

Peri 

If, however, you were writing to a used-book broker to inquire about such 
literature, you might say, 

To Whom It May Concern: 

Do you have any books about how to age gracefully? If 
you do, I would appreciate your sending me one by 
whatever shipping method you consider most expedient. 

Sincerely, 

Peregrine Brittlebone 

In the first case, you know Sally pretty well, and you know how her house is 
laid out, what is in the house, and where various objects are. Your letter is 
specific in its details, based on your knowledge. Your relationship to Sally is 
device-dependent: it depends on known qualities of that particular device, 
Sally and her house. 
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In the second case, you know nothing about the broker: name, facilities, 
structures, formats, sources, or methods. You say only what you want to 
receive as input (a certain kind of information); you know nothing about its 
form or how to get it. Your communication is device-independent. In fact, it is 
so generic that you could change the inside address and send exactly the same 
letter to any of several institutions: bookstores, libraries, even Sally herself 
(although she might be surprised at your formal tone). You could not, however, 
send the first letter to anyone other than Sally and expect to have it 
understood. 

By analogy, processes can undertake 110 with peripheral devices in either 
device-dependent or device-independent ways. A device-dependent 110 
communication is specific to the kind of device, and the process must have 
varying degrees of knowledge about the device and how its contents are 
arranged in order to send output to it or receive input from it. The burden of 
understanding the device (and the writing of a lot of sophisticated code) rests 
with the application programmer when the application does device-dependent 
110. Conversely, device-independent 110 hides the details of manipulating the 
device from the application. Device-independent 110 communications are so 
generic that, as with Peregrine's second letter, they can be sent To Whom It 
May Concern: the same communication to any of several devices will still be 
understood. This approach requires less of the application programmer. (The 
necessary sophisticated code didn't go away: it was just written by someone 
else.) 

These approaches have their pros, cons, and trade-offs: we shall get to those as 
we look in more detail at types of 110 under CTOS. 

Hierarchies of eTaS 1/0 Tools 

For peripheral devices under CTOS, both device-dependent and device­
independent 110 methods exist. In most cases, the device-independent ones 
are built on top of the device-dependent ones. Each has its advantages. One 
of the great flexibilities of application programming under CTOS is that the 
programmer can intermix device-dependent and device-independent 110 
methods as suits the need. 
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Primitives: Device-Dependent 

Each device has ways specific to itself in which it can be called for 110. These 
primitive calls require the caller to know, for example, in making a video call, 
what the screen coordinates are at which the next output should be made. 
Similarly, the primitive for reading from disk requires the caller to know the 
location of the data. 

Primitives are tailored to the device and the task. They provide the highest 
performance of any method but require the greatest programming skill and 
knowledge. Most primitive 110 calls are requests to system services. Some are 
calls to subroutines that are part of the operating system (but not of the kernel) 
and are referred to as system common procedures. System common, as it is 
called casually, is a little off the beaten track of Ctosian theory: it is more 
reminiscent of UNIX or of other operating systems in which all system calls go 
to routines that are part of monolithic system software. 

System common (which we mentioned at the end of Chapter 6) is mainly 
composed of those routines for which performance is so critical that the small 
overhead inherent in request handling would not be tolerable. The largest part 
of system common consists of primitives for video handling. System common 
also includes other routines that are so commonly used (hence the name) that 
to put them in link-time binding libraries would result in excessive duplication 
of code. (Naturally, semaphore-based techniques must be used to police the 
action in the system common area: another way in which the Ctosian religion 
is not strict.) 

Primitive calls, whether satisfied by system services or by system common 
procedures, are the building blocks from which higher-level, more generic 110 
tools are composed. 
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Tools Built on Primitives 

Sequential Access Method 

The largest group of non primitive I/O tools is the group of object module 
procedures called the Sequential Access Method (SAM). They are library 
routines that are provided with CTOS but are not part of it; their code is copied 
into applications at link time. The CTOS object module procedures are 
contained within a development library, CTOS.lib, and are automatically 
resolved during the linkage of an application system. Because they are object 
module procedures, any application that requires them ends up with the object 
code contained within its executable file. Object module procedures include 
several different areas of functionality, but the Sequential Access Method 
accounts for a substantial part of this group of routines. 

The Sequential Access Method is more colloquially and easily referred to as 
''byte streams," because that is precisely what it uses. 

The CTOS byte-streams mechanism was the only part of the early CTOS 
design that truly showed an influence from UNIX. (There was, you may 
remember, one engineer from AT&T Bell Laboratories on the first CTOS team, 
and this feature seems to have been his mark.) Under the UNIX byte streams 
mechanism, every peripheral device is regarded in the same way, that is, as a 
file, and input from or output to any device is an unformatted stream of bytes, 
which must be parsed by the recipient. The CTOS idea of byte streams is 
similar, except that devices are conceptualized in a generic way, and not 
literally as nodes in the file system, as they are in UNIX. eTOS byte streams 
are very similar in mechanism to UNIX and OS/2 pipes, although CTOS byte 
streams do not directly support the transfer of streams of bytes between 
programs. (Actually, a CTOS reseller is known to have created a system 
service that uses byte streams to provide a pipe feature.) 

Figure 8-1 is a very oversimplified picture of anybody's byte streams in action. 
On the process side, the shipping department busily loads bytes, one after the 
other, with nothing between them, onto the outgoing conveyor. This stream of 
byte-boxes has no built-in meaningful pattern: they just slide out the exit door 
one after the other. On the device side, the receiving department has a more 
responsible function. The receiving worker lays some kind of template over the 
stream of bytes as they flow in. The template adds meaning to the stream of 
bytes. They can now be arranged on the dolly in patterns, ready for the 
processing crew to act upon. Similarly, a byte stream can flow in the opposite 
direction, from device to process. Now it is the device that puts out a generic 
stream, and the process that must interpret what it receives. 
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byte 
byte 
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Figure 8-1. A Simplistic Picture of a Byte Stream In Operation 

116 



Input / Output Overview 

This picture of byte streams illustrates one of the prices of the device­
independent process, as well as the process itself. Clearly, some extra work is 
going on here on both sides. The sender must pack things up in a completely 
generic way, while the receiver must employ intelligent means of figuring out 
what it has received. Someone has to figure out who the actual receiver is to be 
and how to get there. All this doing and undoing means extra code: in eTOS, 
the Sequential Access Method code that was bound in from libraries at link 
time. Wouldn't it be more efficient in size and performance to have both sides 
handle known data patterns directly, in a device-dependent manner? Yes, it 
would. What do you get for using byte streams? 

You get device-independence, with advantages of modularity, reusability, ease 
of redirection to different devices, and ease of programming. The sender need 
only know who the receiver is. The format of what is sent is the same for 
various kinds of receivers. As a result, the sender could contain a generic 
procedure (perhaps called OuttaHere), in which a sequence of byte stream calls 
is made that are the same no matter who is the recipient in a given instance. 
This same OuttaHere procedure could be called (with the name of the 
recipient) in any number of different places within the sending program to 
output data to different devices. This generic quality saves a lot of coding on 
your part in the application. It also means that you do not have to know 
anything about such matters as blocking factors on the disk or exact 
coordinates on the video. Your code just works across the hardware platform. 

A disadvantage of using byte streams is that there is large-scale duplication of 
code that results when various applications, all calling for the same kinds of 
110, bind into themselves the same code at link time. Historically, this problem 
has existed in different systems, which now are starting to handle it in 
different ways. OS/2 handles this problem by using dynamic link libraries, or 
DLLs. eTOS soon will also use DLLs here. In dynamic linking, the necessary 
code is not bound into the application's own executable file at link time. 
Instead, it is ''bound'' at run time, as execution jumps to the needed routines, 
which are separately resident on the system. With the use ofDLLs, multiple 
applications can use the same library code without code duplication. 
Semaphores are used to control access to critical sections of code. 

Having drawn a neat picture of byte streams as a higher layer built upon 
device-dependent primitives, we now need to fuzz it up a bit for the particular 
case of eTOS byte streams. eTOS SAM does include this neat, generic layer of 
byte streams that can be used with any device. It also, however, includes 
device-dependent extensions to the basic byte stream calls. Thus there exist 
both device-independent and device-independent routines within SAM, still 
above the primitive level. 

117 



Input I Output Overview 

N ow that we are into four levels of thinking about generality and specificity in 
I/O, it seems best to draw a picture. In Figure 8-2, the vertical arrows 
represent calls from higher layers being transparently expanded into 
lower-level calls. Ultimately, all I/O calls are satisfied by request-based 
services or System Common routines. 

Device-Specific Application Code 
Reusable Application 

Procedures 

I 

(e.g •• "OuttaHere") 
I 

t 
Device-Independent SAM 

(e.g •• OpenByteStream) 

I 

,~ t 
Device-Dependent SA~ 

(e.g •• OueryVidBs. OpenByteStreamlp) 

Device - Specific Primitives 

(e.g •• PutFromeChors. Open File) 

I 

I 

Request-Based Service System Common 

Application 

Primitives 

Figure 8-2. The Hierarchy of Device-Independent and Device-Dependent Calls 
in CTOSI/O 

The most often used device-independent SAM procedures are few and rather 
obvious. They have names such as OpenByteStream, ReadBsRecord, 
ReadByte, WriteBsRecord, WriteByte, and CloseByteStream. With each call, 
the address and size of a device name (such as the video device name, [YID], or 
the keyboard device name, [KBD], or a file specification) are passed, along with 
the addresses of a work area and buffer to be used by SAM, and password and 
mode information as needed. 
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To use byte streams, an application must first open a device or file as a byte 
stream. It does so by using the OpenByteStream operation, providing the file 
specification and password for access to the device or file indicating whether 
read, write, or modify access is desired. (Modify access allows both read and 
write access.) A buffer is passed in the call to be used exclusively by the SAM 
operations for 110. The byte stream is then defined by a byte stream work area 
(BSWA). This parameter is the address of a 130-byte area also used 
exclusively by the SAM operations. (However, operation specific infonnation is 
contained here: for example, the read and write positions in the buffer.) 
Remember, a template must be supplied for defining the stream of bytes. The 
BSWA is the template. If the byte stream was opened in Read or Modify mode, 
then the ReadBsRecord or ReadByte operations can be used. 

Both calls take the address of the BSWA that was previously opened with the 
OpenByteStream operation. The difference between the two, though, is that 
the first allows a read of a variable amount of data into a buffer with the return 
of the actual amount of characters read. The second allows a read of only a 
single character. Why would you use one or the other? Communications 
processing is dependent on specific characters, where the state may change 
depending on the incoming character. Here one would use the ReadByte 
operation. Disk processing, on the other hand, is more efficient when 
operations are multisectored, so you would use ReadBsRecord here. 

If the byte stream was opened in Modify or Write mode, then the 
WriteBsRecord or WriteByte operations may be used. 

Notice that both of these calls also take the address of the BSWA that 
was previously opened with the OpenByteStream operation. The difference 
between the two, though, is that the first allows a write of a variable amount of 
data into a buffer with the return of the amount of characters written. The 
second allows a write of only a single character. 

In succeeding chapters, we shall be more specific about the contents of 
device-dependent SAM. Suffice it for now to understand the general pattern 
and to understand that CTOS SAM is configurable The basic package includes 
asynchronous disk, keyboard, video, parallel printer, null, and spooler byte 
streams. Also in existence are byte streams for communications, direct serial 
printing, tape, and the Generic Print System (GPS, further discussed below 
and in Chapter 11). You can configure the byte streams package to include 
only what your program actually uses. You can even write your own device­
dependent byte stream for any device and add or substitute it into the package. 
CTOS system documentation covers the method for this customization. In 
Figure B-2, this kind of customization would be done within the layer labeled 
Device-Dependen t SAM. 
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Non-SAM Tools 

Not all high-level 110 methods are related to SAM. Two other packages, one 
designed early on in the history of CTOS, and one just now coming into 
existence, handle both keyboard and video and facilitate user interface design. 

The simpler package, called Forms, first appeared in 1980 with the earliest 
versions of CTOS. It enables the programmer to quickly and easily put 
together screen forms for user input and output on character-based video. 
Although in this day of the bit-mapped graphical, point-and-select user 
interface, Forms appears to be old-fashioned, it is still useful for 
character-based applications such as order entry. The Forms package has no 
relation to byte streams; it is built directly on the Video Display Manager 
(VDM) and Video Access Method (V AM), which are video primitives resident in 
System Common. 

A newer package, called Extensible Virtual Toolkit, or XVT, is an open 
standard for creating graphical and character-based windowing user interfaces 
for character~mapped and bit-mapped systems. XVT allows you to write a 
single program that can run in several different window environments on 
different operating systems, for example, MS-DOS, OS/2, and UNIX. XVT is 
now becoming available as part of the CTOS/Open standard. It simplifies the 
portation of applications from other environments to CTOS. 

XVT handles video, keyboard, and mouse user inputs and outputs. It 
can adjust to handle a range from the simplest character-based windows 
through the most sophisticated bit-mapped graphical user interface. XVT is 
implemented on top of the native toolkit for any given operating system, rather 
than directly making operating system calls itself. In the CTOS environment, 
XVT is built on whatever CTOS windowing system service is appropriate 
for the hardware on which it is running. (We shall discuss XVT further in 
Chapter 9.) 

A eTOS 1/0 Road Map 

To tidy up our thinking before continuing into further chapters on particular 
areas, let us summarize the types of 110 under CTOS. Within each type, we 
shall identify the hierarchy of 110 levels, if any. No system would be complete 
without its exceptions, and we shall touch on those, too. 

In the next few chapters we shall look at each area in a little more depth. 
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Video 

The relationships of the various video access tools and methods are shown in 
Figure 8-3. The underlying primitive layer is composed of the Video Display 
Manager and Video Access Method, which are resident in System Common or 
are request based. Video byte streams and the Forms package are built on 
VDM and V AM. XVT is built on the appropriate windowing package for the 
hardware on which it runs. CCGI+, the graphics library, also depends on VDM 
andVAM. 

Generic SAM xvr 

I I I , , t 
Video Byte Streams Forms CCGI+ Presentotion Other 

Manager Windows , , , , J 

t t t t t 
VDM-VAM (System Common) 

Figure 8-3. Video 1/0 Tools 

Keyboard and Mouse 

Keyboard byte streams depend on an underlying keyboard management system 
service, as shown in Figure 8-4. The Forms package also makes requests to 
this service, as does XVT. 

A separate system service handles the optional mouse. This system service 
contains a query, ReadlnputEvent, that gets both keyboard and mouse events 
as they occurred in time. (ReadlnputEvent is general and expandable to allow 
for other kinds of events in the future.) 
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Figure 8-4. Keyboard and Mouse Management 

Data Storage 

XVT 

I • Other 
Windows 
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Data storage can involve disk or tape. Disk storage methods (Figure 8-5) are 
all ultimately built upon the device-dependent file system service. SAM (disk 
byte streams) depends on it, as well as two less frequently used sets of object 
module procedures, the Direct and Record Sequential Access Methods (DAM 
and RSAM). In its most widely used form, the Indexed Sequential Access 
Method (lSAM) is a system service that in turn makes requests of the file 
system service. ISAM is a distributed data base tool. 

Generic SAM 

DAM RSAM I SAM 

Disk Byte Streams (Object (Object (System 
Module Module Service) 

Procedures) Procedures) 

File System Primitives 
(System Service) 

Figure 8-5. Disk Storage Methods 
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Half-inch, quarter-inch (QIC), and digital audio (DAT) tape are supported. The 
device-dependent tape system service underlies tape byte streams (Figure 8-6). 

Tope Byte Streams 

I 

Tope System Service 

Figure 8-6. Tape Storage Methods 

Communications 

Generic SAM allows you to treat a communications device in the same way as 
any other device. This device-independent layer, in turn, calls communications 
byte streams (SAMC), the communications device-dependent portion of SAM. 
At the most primitive level are serial port management procedures that reside 
in System Common for performance reasons. (Communications interrupt 
service routines can be written to call serial port management procedures 
directly.) Figure 8-7 shows these relationships. 

SAM 

I 
l 

Communications Byte Streams 

I , 
Serial Port Operations (System Common) 

Figure 8-7. Communications Methods 
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Printing 

The world of printing under CTOS can be confusing to the newcomer at first, 
because it contains layers of old methods still maintained for backward 
compatibility, side by side with the more recent Generic Print System (GPS). 

The original SAM supports both parallel and serial printers as devices to which 
byte stream output can be written. When you use this kind of direct printing to 
a printing device from within an application program, the output goes directly 
to a locally attached printer, and you cannot use any form of spooling. SAM 
relies on lower-level communications byte stream routines to carry out the 
work of direct printing. 

Device-independent SAM also recognizes as a device [SPL], the original 
spooling method designed for CTOS when applications did their own printing. 
This method is casually referred to as the "old spooler," because, of course, 
there is a new spooler. Again, communications byte streams underlies this 
spooler. 

The Generic Print System was designed as a more modular and device­
independent way of printing in 1986. It allows applications to request printing 
services without containing printing code themselves, thus cutting out 
enormous code duplication. GPS methods include GPS byte streams and the 
Generic Print Access Method (GPAM). The GPS byte streams method is 
simply the generic SAM we have already discussed, where a printer name 
known to GPS is used as the device name. GPS byte streams allows only the 
simplest kind of printing with no sophisticated formatting in the output. 

GPS Byte Streams -~ GPAM Library SAM 

I I I , , , 
GPS Print Service 

"Old" Spooler 
Byte Streams 

I 1 
'f 'f 

Communications Byte Streams 

Figure 8-8. Two Printing Systems 
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GPAM is a separate, SAM-like library to which application programmers can 
write. GPAM is GPS's own byte stream system. It allows sophisticated 
formatting. GP AM, in turn, calls GPS byte streams. 

GPS byte streams (SAM) makes requests to the underlying Print Services 
system service in GPS. GPAM also makes some requests directly of the Print 
Service. It is possible for application programmers to make requests directly to 
the Print Service also, although this is usually done only for certain specific 
purposes, and no special formatting can be used via this path. Figure 8-8 
shows these relationships. 
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Video and Keyboard Options 

With good user-friendly graphicalltser 
interfaces becoming standard, it might 
seem obvious to port one to CTOS and be 
done with the problem. Typically, 
however, CTOS developers have,not been 
entirely satisfled with that approach. 
CTOS has a strong tradition of 
providing device-independent and 
backward-compatible solutions that also 
allow for extensibility in the future. The 
developers examined the characteristics 
of many products and decided to 
combine two of them with what already 
existed to make a truly comprehensive 
solution that would open up many new 
possibilities and provide a solid platform 
for development through the 90s. 

Having taken a brief tour of eTOS 110 tools at various levels, let us focus in 
on the video and keyboard 110 possibilities and when they might be most 
profitably used. We will look first at the video options, then keyboard 
handling, and finally forward to new alternatives offered by a graphical user 
interface. 
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Video Frames and Attributes 

Before we explain the video options, we need to define some terms used for 
video. 

Frames 

A video frame is a rectangular area that you can define on the video display. It 
can have an optional visible border, and its contents can be scrolled up and 
down independently of other frames. Normally, CTOS is configured so that you 
can create up to eight frames, but the operating system can be reconfigured to 
support up to 256 frames. 

The virtue of a frame is that what you write to it is automatically limited to 
that frame and cannot overwrite the contents of other frames. If you are using 
very simple video output, you may not need more than one frame. The first 
(and default) frame is frame O. The CTOS Executive (the command-line 
interpreter) sets up its video with three full-width frames. In this case, frame 
o occupies the largest part of the video and is the frame with which the user 
interacts. Frames 1 and 2 are narrow frames at the top of the screen that 
display various status information and user notification messages. 

A frame can cover any rectangular screen area, and frames can overlap each 
other. The most commonly used frames are offull screen width, but narrower 
ones can be defined for such purposes as small forms or pop-up windows. 

A frame is created by use of the InitVidFrame procedure, which is part of the 
Video Display Manager (VDM). The parameters passed with InitVidFrame 
describe the extent of the frame in terms of screen columns and lines. They 
also describe the border. 

In addition to the InitVidFrame operation, other operations allow you to query 
frame characteristics and to manipulate frame characters. 

We are jumping ahead of ourselves, though. Before a frame can be initialized, 
there are a number of calls which must first establish the video subsystem for 
the application system. We shall examine these calls shortly. 
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Video Attributes 

Video attributes can pertain to the entire screen (blank, number of characters 
per line, and so on) or to individual characters (bold, underlined, and so on). 
Some attributes (reverse video, half-bright) can pertain to either the full-screen 
or to characters. 

To set video attributes on a full-screen attribute, the SetScreen VidAttr call is 
used. The passed parameters define the screen attribute and whether the 
attribute is set or reset. 

Additional calls allow the setting and querying of individual characters. 

Types of Video Hardware 

Both character map and bit map monitors are supported by CTOS work­
stations. In each case there is a character map, although it is implemented 
differently on the two types of hardware. 

Color monitors are also supported. Programming the color capabilities of these 
workstations involves calls to standard library functions to manipulate the 
operating system's color control structures. These operations are separate from 
the hierarchy of video 110 tools that we shall discuss below. 

Levels of Video Access 

There are several levels of video access available through CTOS, ranging from 
the most device-independent to lower-level more device-specific. 

Figure 9-1 (which repeats and extends Figure 8-3) shows the video output tools 
and their interrelationships. Actually, this figure shows two generations of 
higher-level tools: the Sequential Access Method (SAM), Forms, and CCGI+ on 
the left, and the new graphical user interface (GUI) on the right. 
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Figure 9-1. Video Tools 

At the highest level among the traditional tools on the left is device-indepen­
dent SAM, or byte streams. These by-now-familiar library routines in turn call 
the device-dependent SAM layer and the primitive layer, represented by the 
Video Display Manager (VDM) and the Video Access Method (V AM). The 
Forms library also makes calls to VDMN AM. 

You can mix the use of these traditional tools within one program: if you are 
primarily using video byte streams, there is nothing to prevent your resorting 
to direct VDMNAM calls where you deem it necessary. 

In recent years, graphics programming has often been done through the CCGI+ 
graphics library, which is compatible with the standard Computer Graphics 
Interface (CGI). Graphics library routines in turn call V AM routines. 

In addition, XVT can call whatever other windowing tool is present, depending 
on the hardware: a character-based facility, Presentation Manager, and others 
not yet identified. 
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Using Video Byte Streams 

Device-dependent video byte streams extends generic SAM in three ways. 
First, certain characters (for example, up arrow, backspace, and tab) sent 
through the byte stream are interpreted to move the cursor in various ways, 
blank the frame, and so on. Second, multibyte escape sequences (beginning 
with OFFh) can be sent to control a great many things, including screen 
and character attributes, cursor position, and so on. Third, the one device­
dependent video byte stream operation, QueryVidBs, returns information to 
the caller about the status of the current frame: the current frame number, its 
size, number of lines, cursor position, attributes, and other characteristics. 

To use video byte streams, the programmer must first set up the screen by 
using VDM operations. In practice, developers usually use video byte 
streams only when their programs will output a very simple stream of data 
continuously to a screen inherited from another application, with all the frames 
predefined. This usually means writing to frame 0 within the Executive 
screen. Video byte streams are used throughout the Executive itself and 
related utilities. For example, a listing of files within a directory, or the status 
messages displayed during the copying of files, are easily and appropriately 
output via video byte streams. If the display is to involve even slightly 
sophisticated cursor or scrolling manipulation (back scrolling), among other 
things, the programmer should immediately move to V AM. V AM also provides 
better performance, at the cost of writing more complex code. 

Using VDM and VAM 

The operations of VDM pertain to screen set-up. If a program that uses video 
byte streams does not inherit a set up screen from a previous program (usually 
via a Chain from the Executive), it must call VDM to set up its own screen. 

Initializing the Video Subsystem 

First, the application must determine the level of video capability present on 
the screen. If the application is going to use graphics, then graphics hardware 
must be present. The QueryVidHdw call places hardware-specific information 
in a user-supplied buffer. 

Included in the information returned are the basic video capabilities (character 
versus bit mapped), the size of the screen in terms of columns and lines, and 
what graphics capabilities are available. 
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The information returned by QueryVidHdw is necessary so that we can 
initialize the video subsystem. We do so with the ResetVideo operation. This 
operation suspends video refresh, resets all screen attributes, and changes the 
values in the Video Control Block (one of the U-structure entities) to reflect the 
values passed. 

Next we initialize each of the video frames by using the InitVidFrame call that 
we mentioned when we discussed frames, above. After the video frames have 
been set, we make a SetScreen VidAttr call to set any desired screen video 
attributes. 

Next, the character map must be initialized for use by the video hardware. We 
do so with an InitCharMap call, passing the size of the character map, which 
we got from the Reset Video call. You can see that the various calls are 
in terdependent. 

From the ResetVideo operation until now, the video screen has been blank. 
Errors received on these operations are not noticeable until the application 
fails, making it a little bit more difficult to debug an application within this 
critical section. 

To enable the video refresh, we finally issue a SetScreen VidAttr call with the 
video refresh attribute selected and its flag turned on as the parameters. 

Writing to the Video 

Once the sequence of VDM events is complete, the complete video subsystem is 
ready for use by the application. All the video frames have been initialized and 
can be used with direct V AM or VDM operations, SAM operations, or even 
graphics or windowing operations. 

The V AM operations give the programmer finer control over cursor position, 
attributes, and scrolling than do the SAM operations that we have already 
seen. VAM allows you to scroll entire or partial frames up and down. It 
supports text editing: you can scroll up, for example, the top four lines of a 
frame and insert a new line of text between the fourth and fifth lines. 
Character attributes scroll along with the text they affect. You can write to 
any position in the frame as needed. 

V AM also contains primitive graphics operations that are not directly called by 
applications programmers. Higher level graphics software depends on these 
primitives. 
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Keyboard Input Tools 

At the primitive level, the keyboard is handled by a request-based system 
service and an operating system keyboard process. Together these components 
are called keyboard management. Figure 9-2 shows the keyboard input tools, 
with keyboard management as the fundamental layer. At the SAM level, 
keyboard byte streams depend on keyboard management. 

Again, the new generation graphical user interface is shown at the right side of 
the figure. It also relies on keyboard management for primitive procedures. 
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Figure 9-2. Keyboard Tools 
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Keyboard byte streams provide the easiest way for an application to get 
information from the keyboard, but they add all the overhead of byte streams 
to the program They are also too slow for many situations, and so in fact they 
are seldom used. Keyboard byte streams provide one character at a time to the 
application. 
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Keyboard Management 

The keyboard system service can provide information to an application in 
either of two ways. In character mode, the service reports one byte that 
represents the key typed by the user. (A keyboard mapping table maps 
keyboard codes to character codes.) In unencoded mode, the service reports 
both the downstroke and the upstroke of any key pressed, and it reports these 
events in the order in which they occur, for example: 

left shift down 
'A'key down 
'A'keyup 
left shift up 

This approach allows the application great flexibility in assigning meaning to 
keyboard interactions but requires more sophisticated and extensive 
programming than does character mode. U nencoded mode is used, for 
example, in text-editing applications. Character mode is, however, more 
generally and easily used. 

To set the mode of operation for the keyboard, we would use the 
SetKbdUnencodedMode call, passing a flag value to determine whether 
the mode is encoded or unencoded. 

We can access keyboard data with the ReadKbd call, passing the address of the 
next character to be read. This sequence of events shows that an encoded­
mode operation requires a single keyboard read, whereas the unencoded-mode 
operation requires multiple reads. 

In most cases the ReadInputEvent call is a better method of getting keyboard 
data. This call is part of the keyboard process, but cooperates with the Mouse 
Services that we shall discuss below. ReadlnputEvent returns an interleaved 
stream of keyboard and mouse events as they occurred in time. It eliminates 
the need for applications to construct polling busy loops to get this information. 
Ifno mouse or other pointing device is present, ReadlnputEvent still works, 
returning only keyboard events. The only disadvantage of this call is that it 
does not work with the system input process (below). 

Keyboard byte streams uses keyboard management only in character mode. 
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System In put Process 

The system input process is not really an integral part of the keyboard 110 
hierarchy we have been discussing, but it is so closely associated that we shall 
touch on it here. The system input process allows all keystrokes to be recorded 
in a file at the same time as they are being reported to the application that 
requested them. These keystrokes can then be played back from this file to the 
application, just as if they were being typed at the keyboard again. The most 
common use of this feature is through the Executive commands Record and 
Submit. Using these commands, a user can directly create a such file to do, for 
example, a routine backup, or to generate a monthly report that always 
requires the same commands. Such files are called "submit files" under eTOS. 
They are like macro or script files used with other systems. Submit files are 
also used to automate testing and the building of executable files. 

The system input process is flexible enough so that some keystrokes can be 
designated to come from the real keyboard during the replay of a submit file. A 
special sequence of characters (an escape sequence) informs the system input 
process that the following keystrokes will be from the real keyboard rather 
than from the submit file. The keyboard input then continues until the 
character specified in the escape sequence is received from the keyboard (for 
example, the Go or Finish key). 

A submit file can also be composed directly in a text editor, rather than 
recorded from actual commands. However, because the system input process 
operates only in encoded mode, unencoded applications do not function with it. 

Mouse Services 

. Mouse and other pointing-device input are handled by a system service called 
Mouse Services. This system service cooperates with the keyboard process to 
provide input event information to the caller through the ReadInputEvent call. 
Traditional and forthcoming user interfaces all rely on Mouse Services for 
primitive mouse support. 
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Forms Package 

Created early in the life ofCTOS, the Forms facility is a high-level interface 
tool based on VDMN AM that consists of three parts: the Forms Editor, with 
which you can design forms on the screen and save them into files; a Reporter 
utility that can display information about a form; and an object module library 
that displays the form, prompts the user to enter data, and returns the data to 
the calling program. A "test drive" feature allows you to try out a form as soon 
as you have designed it, without having to call it from an application program. 

The Forms package is entirely character oriented, because when it was 
designed, there were no graphics workstations. Forms created with this tool 
have all the features needed for routine, character-oriented data handling. 

Forms is still in use. It works well for relatively rapid creation of user 
interfaces for such purposes as routine order entry on low-cost, character-based 
systems. 

Graphical User Interface 

In recent years, as use of small computers in offices proliferated, user 
interfaces from one system to another have become more standard. Graphics 
hardware is also now much more common. 

The original user interface for CTOS, the Executive, is a command interpreter 
that works on a fill-in-the-blanks principle and presents the user with a simple 
form to fill out for each command, rather than requiring that the user 
remember the sequence of parameters as they must do with a command-line 
in terpreter. 

In 1980, before the birth of the Macintosh®, this was an advanced and user 
friendly interface. In 1984, the CTOS Context Manager took another step 
forward with an additional interface that allowed the user to interactively start 
multitasking applications with point-and-select. In the 90s CTOS is moving to 
the use of a new graphical user interface. 
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The eTOS GUI Solution 

With good, user-friendly GUIs becoming standard, it might seem obvious to 
port one to eTOS and be done with the problem. Typically, however, eTOS 
developers have not been entirely satisfied with that approach. eTOS has a 
strong tradition of providing device-independent and backward-compatible 
solutions that also allow for extensibility in the future. The developers 
examined the characteristics of many products and decided to combine two of 
them with what already existed to make a truly comprehensive solution that 
would open up many new possibilities and provide a solid platform for 

. development through the 90s. 

Presentation Manager 

One component of the new GUI is Microsoft's Presentation Manager. A 
powerful tool for creation of complex, windowed application user interfaces 
with standard components, Presentation Manager also offers a desktop 
interface that permits applications to share the screen. However, Presentation 
Manager has a large and complex API that takes some time for a programmer 
to learn. Applications written to use Presentation Manager are not easily 
ported to other windowed systems. Also, Presentation Manager is entirely 
graphics oriented: it does not support a windowed environment on a 
character-based monitor. If only Presentation Manager were offered, 
applications that used it would be limited to run only on the more recently 
produced graphics hardware. 

Extensible Virtual Toolkit (XVT) 

The complementary piece of the new GUI is XVT Software Inco's Extensible 
Virtual Toolkit (XVT). As we mentioned earlier, XVT is an open standard for 
creating graphical user interfaces for character-mapped and bit-mapped 
systems. It provides the link that will allow applications developed for the 
eTOS GUI to run with the same user interface on both types of systems. 

XVT is also bridge tool. It allows you to write a single program that can run in 
several different window environments on different operating systems. An 
application written strictly to the standard XVT interface should be able to run 
on systems as various as the Apple Macintosh and UNIX Motif systems, with 
only recompilation and relinking. 

XVT has a much simpler API than does Presentation Manager. However, 
unlike Presentation Manager, it does not provide a user environment or 
desktop. 
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XVT is a layer between the application caller and whatever windowing 
facilities ultimately run the user interface on a given system. If the system has 
none, XVT supplies its own character-based windowing facility. On CTOS XVT 
is implemented as a system common service that accepts calls through the 
standard XVT interface. It has the great advantage that a CTOS application 
written to XVT is compatible with all CTOS-based systems without recompiling 
or relinking. 

XVT is called extensible because, although you get the maximum portability by 
writing strictly to the XVT API, you can request information (handles) from it 
that would allow you to call the underlying windowing service (for example, 
Presentation Manager) directly. 

Figure 9-3 shows the position of XVT in various systems. 
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Figure 9-3. Extensible Virtual Toolkit 

Macintosh 

PC running 
DOS Windows 

PC running 
OS/2 PM 

Workstation 
running UNIX, 

Motif, and X-11 

Any UNIX or 
DOS System 

Any CTOS 
System 



Video and Keyboard Options 

Context Manager's Role 

On character-based systems where the Presentation Manager desktop is not 
present, the CTOS Context Manager continues to provide the user interface for 
context switching. Full-screen standard or XVT windowed applications can be 
started and swi~hed to from Context Manager. 

This solution combines the advantages of each of the components. It is 
relatively easy for programmers to write to XVT. The resulting programs can 
be ported readily, and XVT -based applications from other environments can 
easily enter the CTOS world. Both character-based and graphical environ­
ments are handled. Finally, users can do convenient interactive multitasking· 
either through Presentation Manager's Desktop Manager, if that is available, 
or through Context Manager, if it is not. 

Later Additions 

In the CTOS tradition, this scheme allows for both backward compatibility 
with existing hardware and also for future change. Presentation Manager may 
not be'the only windowing facility that developers want to use on CTOS in the 
future. New facilities can be added to this general scheme as time goes by and 
as needs change. 

Some New Underpinnings 

This new scheme could not reasonably be implemented in one great leap. 
Rather, it has two stages. The first is implementation ofXVT for character­
based windowing. Later, a ported Presentation Manager for CTOS is to make 
its appearance. 

Porting Presentation Manager to CTOS requires that CTOS itself offer 
facilities that have never been part of it before. Presentation Manager was 
initially designed to run with Microsoft's OS/2. Aside from its associated 
applications and utilities, it is a collection of dynamic link libraries. 
Presentation Manager relies on semaphores and requires demand-paging for 
memory management. Thus, semaphores, demand-paging, and dynamic link 
libraries are being implemented in CTOS itself to support the new GUI. 
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It is important to note here that CTOS is still and will be a primarily 
message-based system. Developers should write to that model in order to get 
the greatest benefits from CTOS. It will certainly be tempting for some people 
to use the new semaphore facility to continue developing programs in ways to 
which they are more accustomed. This kind of development probably cannot be 
prevented, but it would result in mixed-style products that could not readily 
play in the distributed CTOS world. 

As usual, CTOS developers are implementing these new facilities, not as direct 
copies from another system, but in ways that fit gracefully into the design of 
eTOS and will provide CTOS with new paths in the future. In Chapter 14, we 
shall take another look at those ideas. 
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Data Storage and Access 

CTOS is, above all, a superlative 
platform for distributed applications. 
The file system and data access methods 
were designed to support that 
orientation. 

Data storage under CTOS is primarily hard disk storage. Floppy disks, tape, 
and CD-ROM are also supported. Here, we shall concentrate on hard disk file 
system technology and tools. (Floppy disk access is similar, but stand-alone, 
floppy-only systems are not part of the CTOS world.) 

Before we plunge into structures and algorithms, we should pull back and 
think about the larger role and goals of the CTOS file system and data access 
methods. CTOS is, above all, a superlative platform for distributed 
applications. The file system and data access methods were designed to 
support that orientation. They do so principally in three areas: 

• A simple, trustworthy architecture designed for optimal file access speed 
and disk reliability. Speed is achieved by the placement of key file 
structures in the center of the disk to minimize disk access time, hashing 
techniques, and file-caching in main memory. Reliability is ensured by the 
duplication of key file structures. 

• A distributed file system and data base products that allow the user to 
distribute a data base over a cluster or network. 
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• Automatic Volume Recognition (AVR), by which eTOS can recognize and 
mount a uniquely named volume (disk) on any workstation in a cluster Oocal 
network) without any user interaction. This feature implies that if a 
workstation is removed from the local network, its hard disk can be moved 
to another workstation and simply used there, without any network 
reconfiguration. 

Disk Storage and the File System 

File Specifications 

The file system has a fixed hierarchy of four levels: network node, volume 
(disk), directory, and file. A file's path is syntactically specified as follows: 

{nodename} [volumename] <directoryname>filename 

A node is a location in a CTOS Network. Each node may be a standalone 
workstation or the server of a cluster. A node is specified as a character string 
with a maximum length of 12 characters. 

A volume is the physical media in a hard disk, or it is a floppy disk. Volumes 
on a cluster must have unique names, but volumes on different network nodes 
can have the same names. Like the node, a volume name is also a character 
string with a maximum length of 12 characters. The system recognizes a 
volume by its name, as distinct from the physical drive in which it rests. This 
capability is the basis of A VR. (The physical drives also have standard internal 
names that the operating system recognizes.) 

A directory is a group of related files. Like the node and volume names, a 
directory name is also specified as a character string with a maximum length of 
12 characters. In fact, the directory is actually stored as a list of file names 
with some additional information. When a file is added to the directory, the 
file name is added to this list; when it is deleted, it is removed from the list. A 
user cannot simply open a directory, as it is not recognizable to the file system 
as such. Because of this structure, the CTOS file system is flat; that is, nested 
(hierarchical) directories are not allowed. 
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A file is a linear collection of bytes that the system considers to be a unit. The 
name of the file is specified as a character string with a maximum length of 50 
characters, which gives users a great deal of flexibility to assign file names 
with meaning. 

The CTOS file system has been based on the same premises since its 
conception, although it has been substantially rewritten in the interim. The 
question of moving from this simple, four-tiered system to a UNIX-like 
hierarchical file system has been a matter of hot debate over several years, and 
some work was done toward this end at one point. Many developers have 
argued that no operating system can consider itself modern without a 
hierarchical file system; while vendors close to the end-user community point 
out that they cannot even get their users to create one new directory, much less 
to understand trees of them. (In fact, there is a movement within the industry 
to return to a flat type of file system for simplicity's sake). 

Disk Structures and Reliability 

The CTOS file system is highly reliable. Without the high level of reliability, 
distributed processing would be impossible. This reliability is achieved 
through the following capabilities: 

• Duplication of volume control structures, ensuring that damage to a single 
volume control structure will not cause data loss. 

• Ordered updating of volume structures, ensuring that the volume will not be 
corrupted by power failure, hardware malfunction, or software error. 

A disk volume is formatted to contain volume-control structures. These 
structures allow the file system to manage (allocate, deallocate, locate, and 
avoid duplication of) the space on the disk volume. The control structures are 
created when the disk is first initialized, and as such, the size of each is static 
once the volume is initialized. Care must be taken in determining the size of 
the control structures to prevent a key disk resource from expiring prematurely 
(e.g., running out of fileheaders). 

Figure 10-1 shows the file system structures in memory and on a hard disk 
volume (within one workstation, for simplicity) that allow the file system to do 
its work. 
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The volume home block (VHB) is the anchor of the file system structures. 
There are not one, but two copies of the VHB on the disk: the initial copy and 
the working copy. The VHB points to all the other disk file system structures. 
When a volume is mounted (which for a hard disk occurs at system boot), the 
VHB is copied into memory. The working copy of the VHB on disk is updated 
from the copy in memory as files are created and deleted. 

The duplication of the VHB on disk is part of the strong reliability scheme in 
the eTaS file structures. If one copy becomes unreadable because of disk 
damage, the other is still available. 

Among the various files and areas pointed to by the VHB, let us single out a 
few: the system image, the allocation bit map, the master file directory (MFD), 
and the file header block (FHB) area. 

System Image 

The system image is the disk-resident image of the operating system. We 
mention this file in order to show the importance of the VHB during the 
initialization of the system. During boot time, the boot ROM must access the 
disk to load the operating system into memory. The location of the VHB is 
important because the boot ROM accesses the same location on the disk no 
matter what type of disk may be present (for example, a 20Mb disk versus a 
140Mb one). The initial VHB is located at a predetermined location on track o. 
The boot ROM looks at this location to read the initial VHB. The boot ROM 
can then load the system image into memory based on the address of the 
system image file specified within the VHB. 

Allocation Bit Map 

The allocation bit map represents each sector on the disk by a single bit. If a 
bit is set, that sector is available for allocation. The file system uses this 
structure in determining where new file extents can be placed. The size of the 
allocation bit map depends on the size of the disk volume. 
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Figure 10-1. Volume Control Structures and System Data Structures 

Master File Directory 

The Master File Directory (MFD) is essentially a file, <Sys>Mfd.sys, that lists 
all the directories on a volume. This file is created at volume initialization and 
is not expandable. The file must, therefore, be originally created to hold the 
maximum number of directories that will be needed. Each MFD entry points 
to a disk area containing the directory information for that entry. Additional 
information associated with each entry includes the password and protection 
level for the directory and the maximum number of allowable files. 
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Remember, that the directory is really a list of files. The directory consists of 
one or more directory sectors. Randomization (hashing) determines the 
directory sector in which a file entry is entered. Included along with entry 
name is the file header block index, which points to the specific file header 
block within the file header file, <Sys>FileHeaders.sys. 

The MFD and directories provide for fast, efficient access to the file header 
block (FHB) for a specific file. 

File Header Block 

The fileheaders file, <Sys>FileHeaders.sys, contains an FHB for every file on 
the disk. Within an FHB is all the information associated with an individual 
file, for example, the size, protection level, password, creation date, and so on. 

The FHB, in turn, points to all the disk extents that make up the file. A disk 
extent is a contiguous group of one or more disk sectors containing disk file 
data. Thus, a file may be composed of an arbitrary collection of sectors. 

In addition to the duplicate copies of the VHB, there are complete sets of 
duplicate copies of the FHBs (an option specified during volume initialization). 
These are on different disk sectors. The structures are updated when the 
primary versions are updated. Again, the probability of loss of information 
caused by disk damage is minimized by this design. 

Frequently accessed structures, including both primary and secondary copies of 
the FHBs, are located near the physical center of the disk. This placement 
protects them from edge damage and also minimizes disk arm movement to 
provide excellent performance. 

Structures In Memory 

On the memory side of the figure, we see the in-memory copy of the VHB. Also 
shown is an example of a file control block (FCB) and several file area blocks 
(F AB), each of which describes the physical structure of the file. When a file is 
opened, an FCB is created for that file; and a FAB is created for each disk 
extent of the open file. These structures enable rapid 110 because once the file 
is open, the file system no longer has to go back to the disk-resident FHB for 
additional file information. 

Figure 10-1 does not show every structure or detail pertaining to the file 
system, but it gives us enough information to support a cursory description of 
some file system activities. 
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File Manipulation 

Files are handled by a request-based system service that is simply referred to 
as the "file system." The file system actually consists of several processes, the t 
key ones being the File System Process and the MassIO Process. 

When a program requests that the file system create a file, the file system first 
verifies that a volume (disk) of the requested name is already on-line by 
examining the VHB in memory. Following pointers to the MFD, it then verifies 
that a directory of the requested name is on that volume. Moving on to the 
directory, it verifies that a file of the requested name does not already exist. 
Having satisfied these requirements, it allocates an FHB and assigns the 
requested number of disk sectors by consulting the allocation bit map. Finally, 
it inserts an entry for the file into the directory. 

When a program requests opening a file, a similar path is followed to the 
directory, where the file system verifies that the file does exist. The file system 
then allocates one FCB in memory, along with one or more FABs. It then 
copies information from the FHB to the FCB and each of the FABs. Finally, 
the file system returns a file handle, which identifies the FCB, to the caller for 
use in subsequent calls pertaining to that file. 

Since a file handle now exists, the caller of the Open request can now issue 
requests to write or read sectors of the file, in addition to other operations. It is 
at this point that CTOS provides a unique performance optimization by 
utilizing a separate process, the MassIO process, to perform the disk read and 
write operations. Note that in the scenario presented here, the file system 
process handled the creation of the file, including the allocation of the disk 
space, and also the opening of the file. In most system environments, read and 
write operations are requested much more often than the opening and closing 
of files. Thus, the system should be optimized for reading or writing the files 
themselves. 

This is implemented as follows: when a request to read or write a portion of 
the file is issued, the file handle is used. These requests are routed to the 
MassIO process thus bypassing the file system process. That is, requests for 
simple file 110 do not get queued with requests such as CreateFile or OpenFile 
that are relatively time consuming. Note that creating a file could cause 
several disk 110 operations to occur itself, in addition to the verification and 
search times as explained in the previous paragraphs. Read and write requests 
are queued only with other read and write requests, and serviced by the 
MassIO process, thus optimizing the response time for requestors of these 
operations. This permits a higher level of throughput for file manipulation 
operations. 
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When the MassIO process receives user requests, it may break them up into 
smaller I/O operations due to the physical structure of the disk medium. For 
instance, a user may request a read of a logical 64 Kbyte segment of data. This 
logical segment of data may in fact be represented by three different disk 
extents. This results in MassIO performing three different low level read 
operations, each corresponding to an individual extent. However, the data is 
returned in one continguous buffer to the caller, who does not have to be aware 
of this physical structure. 

The CTOS file system is simple but fast, robust, and reliable. It is the best of 
its type, and it is one of the longest-lasting contributions of those early 
Ctosians whom we called the pragmatists in Chapter 3. 

File System Access Methods 

Figure 10-2 shows the two layers of file access methods. Underlying all the 
higher-level methods is the file system. Calling the file system, in turn, are the 
more frequently used SAM (sequential access method, or more commonly 
known as byte streams) and ISAM (indexed sequential access method) and the 
less often used DAM (direct access method) and RSAM (record sequential 
access method). As with other devices, you can either use a higher-level 
method for ease of programming or call the lower-level operations directly for 
flexibility and performance. 

SAM Device-
Dependent DAM RSAM I SAM 

SAM 
I I I I 

t 
, File System Service 

, , 
(Synchronous; AsynChronous; Request Level) 

Figure 10-2. File Access Methods 
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File Management System Service 

To perform I/O to a disk file with the file management operations, a program 
can use the following sequence: 

Create the file 
Open the file 
Write data to the file and subsequently read the data 
Close the file 

In using the file system directly, you would call the CreateFiIe operation to 
create a file. The file name and password of the file to be created are passed as 
parameters, along with the initial size of the file. The latter is used for 
reserving disk sectors for the newly created file. 

Once the file is created, it must be separately opened via the OpenFile 
operation. The name and password of the file are passed as parameters, along 
with the access mode (read, write, modify). This operation returns the file 
handle by which you must subsequently refer to the open file. All other file 
access operations require this file handle. 

Once you have the file opened, you can write to or read from the file by using 
either synchronous or asynchronous liD operations through the procedural 
interface (or at the most primitive level, you can construct request blocks 
directly). No matter which approach you use, you must know your file position 
(by sector) yourself and specify it with each call. At the lowest level offile 
system operation, that is, the Read and Write calls, the file system does not 
maintain the current file position; it is up to the application programmer to 
maintain this information. 

Synchronous File Access 

The easiest way for the programmer to interact with the file system is to use 
the procedural interfaces Read and Write to do synchronous file I/O. 
Synchronous liD means that control is not passed back to the issuer of the I/O 
until the requested operation has been completed. 

The Read operation transfers an integral number of sectors from disk to 
memory. The familiar file handle is used to specify which file is to be read. 
The target buffer's address and size are also specified as parameters, along 
with the address within the file (which must also be at an integral sector 
boundary). The operation returns the actual amount of data read. 
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The Write operation transfers an integral number of sectors from memory to 
disk. Once again, the file handle is used to specify which file is to be written. 
The source buffer's address and size are also specified as parameters, along 
with the address within the file. The operation returns the actual amount of 
data written. 

Both the Read and the Write operations have synonyms: ReadFile and 
WriteFile. These synonyms are necessary when you are programming in a 
language where Read and Write are reserved words: for example, in the C or 
Pascal programming languages. 

Asynchronous File Access 

It is possible to have your program continue execution after initiating an 110 
without waiting for the operation to be completed. If you use the ReadAsync or 
WriteAsync procedural interfaces, the file system initiates 110, but your 
program can continue computation until a later point. The program then 
issues a CheckReadAsync or CheckWriteAsync call, at which point your 
program blocks until the 110 is completed. This type of mechanism is useful 
when you are implementing a double-buffering scheme within an application. 

Closing the File 

When you have completed the, processing of a file, you close it using the 
operation CloseFile. This routine simply requires the file handle of the file that 
is to be closed. Note that closing a file does not update the end-of-file pointer. 
If a file has been extended, the end-of-file pointer must be updated to reflect 
the current status of the file with the SetFileStatus call. Note, however, that 
the End-of-File pointer is a logical pointer and does not affect the physical size 
or contents of the file. 

Note that files are handled a little differently under CTOS. A maximum file 
length is specified when the file is created. You must keep track of the file 
length and explicitly extend it by using ChangeFileLength if the file grows 
beyond that maximum. That is, the file is not automatically extended when 
you write past the end. This optimizes file system resource utilization. 

However, if you are using byte streams or one of the higher level access 
methods, the file is automatically extended as needed. 
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Sequential Access Method 

The byte stream interface is simpler to use than the direct file system calls. 
When you call OpenByteStream, SAM calls the file system to create the file, if 
it does not exist, and to open it. ReadBsRecord and WriteBsRecord and their 
variations do not require you to restrict your I/O to sector-sized blocks. They 
read or write sequentially at the preexisting file position. To do random file 
access, you must use SetBsLfa, one of the two device-dependent SAM calls for 
file access. When you close a file using CloseByteStream, any needed file 
length changes are handled for you automatically. 

Random access using byte streams is not as efficient as it is when you use the 
file management operations directly, because you do not have as much control 
over the amount of data being read. If you need randomization techniques, 
then there are several structured file access methods which provide for 
randomization. 

The Structured File Access Methods 

Besides SAM, there are three additional ways to access disk data within CTOS. 
All three involve data records instead of unstructured bytes. RSAM accesses a 
file that is a sequence of variable-length records. The other two methods, DAM 
and ISAM, access a file that is a sequence of fixed-length records. (In fact, 
DAM and ISAM can access the same data files.) Of the three methods, ISAM is 
by far the most commonly used. 

DAM and RSAM are contained in the standard CTOS libraries of object module 
procedures. They allow their data files to be accessed by only one user at a 
time. ISAM, on the other hand, is a separate package consisting of an object 
module library, whose modules are linked into the calling applicaHon, and an 
ISAM system service, which allows more than one user to access a file at the 
same time. The ISAM system service, in tum, calls the file management 
system service to handle its actual file I/O. 

Whereas RSAM and DAM use only the data file, an ISAM data set uses two 
files: the data file, containing the fIXed-length records; and an index file. The 
index file provides a means of rapid access to information contained in the data 
file records. Because all records within a data file have the same length, disk 
management is simple and efficient: a record retrieved via the index allows the 
subsequent sequential retrieval of records. 

151 



Data Storage and Access 

ISAM allows the user to designate certain fields in each record as keys. For 
each key field, the index file contains pointers to records that are sorted based 
on the key field values. Suppose, for example, that all records are of the 
following format: 

First name 
Last name 
Address 

The index could contain pointers to the records sorted alphabetically by the 
contents of the "Last name" field. 

Essentially, an ISAM data set is a DAM file with an extra index file for rapid 
access to the records, allowing multiple key storage and retrieval. In some 
cases, the size of the index file can be much greater than that of the data file. 

If the ISAM system service is installed at both server and cluster workstations, 
ISAM users can access data files at both their own and the server 
workstations. In this way, ISAM supports distributed applications. 

Other Data Base Approaches 

ISAM is a good basis for distributed CTOS data base applications that will 
handle a moderate volume of transactions. Applications with greater volume 
needs can make use of the Oracle data base, which can run across a CTOS 
network with multiple nodes. 
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Communications and Printing 

Beyond the eTOS cluster are software 
elements that can allow distributed 
applications to extend themselves over a 
large area, be it within a building or 
across the world. All these programs 
can be related to the Open Systems 
Interconnection (OS1) standard of the 
International Standards Organization 
(ISO). 

Communications is a big subject. This one word can be stretched to cover any 
exchange between intelligent units: everything from getting a computer and a 
printer to cooperate directly, to running elaborate mail programs on top of 
standard protocols between unlike computers halfway around the world from 
each other. 

Here we look at communications tools in the CTOS environment, the system 
software that lets you implement applications at any point along that 
continuum of complexity. Then we pick up one example of a system that 
depends on communications tools: the Generic Print System (GPS). Finally, 
we touch on some wide-area communications products associated with CTOS 
that also use these tools. 
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Cluster Communications 

CTOS actually has two forms of communications. The local-area network that 
was built into eTOS from the beginning was originally called the cluster. 
Although this term is now falling into disuse with changing fashions in 
marketing terminology, we shall continue to use it here to make clear certain 
distinctions between cluster communications and the rest of the CTOS 
communications world. 

The cluster originally was said to consist of a master (more recently called the 
server) and several cluster workstations (which were not slaves because they 
could function independently). A server workstation and its cluster 
workstations are connected via one logical multidrop line, and the server 
cyclically polls the workstations every 1/20 second to see whether they have 
requests for it. If the server has time at the end of a polling cycle, it repolls the 
active workstations before starting over. 

Cluster communications code is part of the operating system itself. The 
request/response mechanism that we have so often mentioned works on top of 
the cluster software. Cluster communication is completely transparent to the 
application programmer: in Ctosian vernacular, "it just works". This fact is 
what sets the CTOS cluster apart from other small-computer networks 
available today. 

We have revisited the cluster concept here only so that we can turn around 
and say that is not what this chapter is about. It is about the building blocks 
that make communication beyond the cluster lines possible, whether it is 
communication with a local printer or over X.25 networks around the world. 

Hierarchy of Communications Tools 

Figure 11-1 shows the three layers of communications tools. Of the three, 
device-dependent SAM for communications (SAMe) is by far the most 
important to the programmer. 
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SAM 
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Communications Byte Streams 

I • 
Serial Port Operations (System Common) 

Figure 11-1. Communication Tools Hierarchy 

In this familiar arrangement, serial port operations are the primitives in the 
fundamental layer. Some of the serial port operations are part of a system 
service. Others reside in system common for performance and so that they can 
be called by interrupt service routines (lSRs). 

The next layer is SAMC, which is casually called "comm byte streams." It is 
device dependent; and unlike the situation with some other 110 hierarchies, it 
is a complete API, not only a set of extensions to SAM. SAMC resides in the 
standard libraries and is linked into applications. It calls the serial port 
operations. 

Let us recall our earlier discussion on byte streams. Corresponding to the 
generic OpenByteStream operation is the device-dependent OpenByteStreamC 
operation. The difference between the two calls is that the first is a generic 
operation, while the second is specific to the utilization of the RS-232 serial 
ports. In this call, the device specification can be [COMM] or [PTR]. The first 
indicates a communications byte stream; the second, a printer byte stream. 

At the top of the hierarchy in the figure is generic device-independent 
SAM, once again. For communications, any SAM routine always 
calls SAMC. SAM for communications is useful only in those cases in which 
output might go, for example, to a disk file under some conditions and out over 
a communications line under others. SAM also does not allow the application 
to overlap continued execution with a communications can, which SAMC does 
if the right routines are used. For these reasons, we shall focus the rest of our 
discussion on the serial port operations and on SAMC. 

155 



Communications and Printing 

Serial Port Operations 

The serial port operations are written so that the caller, whether it is SAMC 
or an application, does not incorporate into its own software any specific 
knowledge of different port addresses, clock frequencies, and so on, that are 
specific to different machines. Thus, programs that use these operations do not 
have to be relinked to run on new hardware types. The serial port operations 
also make raw interrupt handlers compatible with protected-mode CTOS. 

The operations include routines that assign the caller to a communications 
channel or reset the channel for use by someone else. Other routines include 
setting up the DMA controller to transmit or receive data, reading or writing 
status values, and manipulating the baud rate. 

Communications Interrupt Service Routines 

Communications occur through channels, which are external devices; and all 
external devices interact with the operating system and applications through 
interrupts. The operating system takes an incoming interrupt and determines 
from a table (the Interrupt Descriptor Table in protected-mode systems) what 
interrupt service routine (ISR) should get control in order to take care of the 
event that the interrupt signals. 

Under CTOS in general, an ISR (also called an interrupt handler) is part of a 
larger device-handler program. The other part of this program is called the 
device handler process. The two parts of the device handler program split the 
work of handling the device itself and the client who wants to use the device. 
Figure 11-2 shows that the device handler process is on the "client end" of this 
chain and the interrupt handler is on the "device end." 

Device Handler Program 

Device .... .... 
Client r , 

Interrupt r 

Handler Device Program " Process " Handler " -- -- "' 

Figure 11-2. Overview of Interrupt Handling 
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Especially in the case of communications handling, interrupts cannot wait 
around too long to be taken care of; otherwise data can be lost. Thus the 
interrupt handler specializes in taking care of things promptly and quickly so 
as to be ready for the next interrupt, while the device handler process is called 
into action less frequently to, say, empty a buffer that the interrupt handler is 
filling, or to handle a request from or a response to a client program. 

Most operating systems have external interrupts and methods of handling 
them. What is interesting about the CTOS method is that the interrupt 
handler and the device handler process communicate with each other by using 
interprocess communication (lPC) primitives directly (as well as optional 
shared memory). They can do so because they are parts of the same program, 
even though they execute asynchronously, as if they were two processes. The 
flow of IPC is unidirectional: only the device handler process can perform a 
Wait, while the interrupt handler can perform the PSend primitive (a variant 
of the IPC Send). Thus, the device handler process Waits at an exchange either 
for a request message from a client wanting a service, or for a PSend message 
from the interrupt handler representing status or data. The device handler 
process is both a clearinghouse for information related to the device and the 
agent responsible for determining what the device should do next. 

Communications ISRs (interrupt handlers) are built on calls to the serial port 
operations. 

Asynchronous or Synchronous Communications Applications 

At the risk of seeming to belabor the obvious, we should clarify some terms, 
because we are about to use the same word to mean two different things. 

Two types of protocols can be used by communications application programs. 
In synchronous communications, clock signals are synchronized between 
sender and receiver, and data is transmitted according to fixed time intervals. 
In asynchronous data transfer, there is no regular or predictable time 
relationship between sender and receiver. 

Different communications ISRs are needed to support synchronous and 
asynchronous communications under CTOS. The existing communications 
110 tools shown in Figure 11-1 support asynchronous communications 
programs. If you need to write a synchronous communications program to run 
under CTOS, you must write your own communications ISRs, calling the serial 
port operations to do so. CTOS systems documentation explains how do write 
these ISRs. 
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Communications Byte Streams (SAMe) 

SAMC is a set of standard library routines for device-handling. When you link 
these routines into your application, you make your program into the device­
handler program we spoke of earlier. SAMC contains most of the interrupt 
handlers required. However, to make applications hardware independent, a 
few interrupt handlers are system common procedures in the operating system. 
(Because a system common procedure is executed as part of the calling process, 
this arrangement does not violate the need for processes to be within one 
program in order to use IPC directly.) 

The device-dependent interfaces of SAMC provide a more powerful and flexible 
set of services than those available at the level of SAM. Although it is more 
complex to use than SAM, SAMC comprises a complete set of services and can 
act as a replacement for SAM, provided that only communications and no other 
device types are being supported. Used in this fashion, SAMC is a general­
purpose device driver for asynchronous RS-232 communications. It can 
form the heart of virtually any communications product except those that 
use synchronous communications protocols. Both half- and full-duplex 
communications are supported efficiently, with a variety of line control and 
data editing options. Among other conveniences, using SAMC frees you from 
writing interrupt handlers. 

SAMC has been optimized for very high performance. It directly uses the 
task-switching facilities of the recent Intel microprocessors. It has become the 
basis for CTOS networking beyond the cluster level, as well as for printing 
services and other applications that require serial communications. 

Overlapping Execution 

We were at pains to define asynchronous versus synchronous protocols above 
because we also need to talk about asynchronous programming in another 
sense. As we saw when we discussed system services in Chapter 7, a program 
that makes a request for a service can wait (block) until it receives a response 
before continuing execution. This program behaves in a synchronous manner, 
which is the default when a request procedural interface is used. If the 
program makes a request and goes on executing while that request is being 
processed, later checking to see whether there is a response, this program is 
behaving asynchronously. To achieve asynchronous behavior (overlapping 
execution with 110, for example), you usually must build the request block and 
issue the request primitive yourself. 
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Communications byte streams contains a duplicate set of operations for the two 
purposes. Synchronous behavior (blocking, or nonoverlapping execution) 
occurs when you use interfaces such as FillBufferC, FlushBufferC, and so forth. 
For asynchronous behavior, you must use a variant set of interfaces with 
analogous names: FillBufferAsyncC, FlushBufferAsyncC, and so on. Thus, to 
achieve asynchronous execution in a communications program using SAMC, 
you do not build the request block yourself. The asynchronous operations 
include additional parameter options that allow the caller to specify what 
SAMC should do it if needs to wait before the operation can be completed. As 
an example, one option provides using the IPC primitive PSend to send a 
message to a caller-specified exchange when completion becomes possible. 

A SAMe Customer: GPS 

As we saw in Chapter 8, both old and more recent printing methods coexist 
in the CTOS world. The old methods have been preserved for backward 
compatibility with venerable applications that have not reformed their ways, 
and there is not much point in our elaborating on them here. What is more 
interesting is to look at the Generic Print System (GPS), to which most 
applications that print are now written, and which is a client of SAMC as 
it communicates with printers. 

GPS is a complex product that consists of a collection of system services and 
libraries, not all running on the same workstation, which encapsulate the 
various tasks of printing in a modular, device-independent manner and permit 
applications to request printing without containing any printing code 
themselves. Further, these applications can output a generic stream of 
formatting commands that will be interpreted specifically for the destination 
printer chosen. 

Overview 

Figure 11-3 shows a simplified diagram of the components of GPS. The central 
element and traffic cop is the Print Service, which handles routing and spooling 
of print jobs. The Print Service directs jobs to various device drivers, which are 
system services themselves, each handling a type of printer. The printers 
together with their device drivers may be located on the same workstation, on 
other cluster workstations, or across the network on other nodes from the Print 
Service. The Print Service "knows" all the printers on its own cluster by name, 
and it needs a node specification to find a printer on another node. (Once it has 
found such a remote printer, the Print Service lists and retains this 
knowledge.) 
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Figure 11·3. Generic Print System 

Cooperating in this picture are the Queue Manager, a CTOS system service 
that is not part of GPS, and the Font Service. 

On the application end, there are three choices. An application can use GPS 
byte streams, or make calls to a byte-stream-like library called the Generic 
Print Access Method (GPAM), at the lowest level make direct requests via 
procedural interfaces to the Print Service. 

GPS Byte Streams 

GPS byte streams is a set of device-dependent SAM routines that are not 
included in the default configuration of SAM that comes with CTOS, but 
can be configured in when SAM is built. The GPS byte streams interface 
is the familiar set of generic operations: OpenByteStream, WriteBsRecord, 
CloseByteStream, and so on, where the printer name is specified as the target 
device. GPS byte streams are simple to use and quite adequate for utilitarian 
applications, but they support only characters, line feeds, and form feeds, and 
no special formatting. 
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Generic Print Access Method 

GP AM is essentially a page-description language. It is a library that can be 
called to include formatting and graphics into the outgoing stream of data from 
an application. GPAM inserts generic formatting commands and in turn calls 
GPS byte streams for most tasks, although it does make a few direct requests 
to the Print Service to set parameters. 

Calling the Print Service 

Applications can make requests of the Print Service through the request 
procedural interface. An application cannot put formatting into its document 
by making these requests: in fact, they usually are made for printer control 
and status information only. Applications can and do call both GPAM and the 
Print Service, the first for formatting, the second for status information. 

The Print Service 

In its routing function, the Print Service receives the print request, locates the 
printer device driver, spools the job if necessary (with the help of the Queue 
Manager), and finally sends it on to be printed. The Print Service then 
monitors the printing process. 

To route print requests between network nodes, the Print Services on the two 
nodes interact with the net agents on their nodes. All the mechanics of passing 
a print request across the network are transparent to the application that 
submits the print job. 

GPS Device Drivers 

When a GPS device driver receives the stream of data associated with the print 
request, it interprets the embedded generic formatting commands to the 
highest level that it can for the printer it controls and then forwards the 
stream to the printer. Formatting commands that are too sophisticated are 
interpreted with the closest approximation possible on that printer, but are not 
rejected. 

Many GPS device drivers are available from various vendors to support 
different printers including PostScript® printers. In addition, there is a device 
driver developer's kit. The core of this kit contains control routines and a set of 
rasterization and vectorization routines to interpret GP AM commands; the 
developer adds printer-specific output routines. 
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Wide-Area Communications 

Beyond the eTOS cluster are software elements that can allow distributed 
applications to extend themselves over a large area, be it within a building or 
across the world. All these programs can be related to the Open Systems 
Interconnection (OSI) standard of the International Standards Organization 
(ISO). This well-known, seven-layer OSI standard is shown in Figure 11-4. 

7 Application 
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3 Network 

2 Data Link 

Physicol 

Figure 11-4. The Seven-Layer 051 Model 

The CTOS Network: BNet 

The most important piece of the communications picture from the point of view 
of distributed applications is the network that connects clusters together. 
Interrelated with eTOS itself, the eTOS Network carries the message-based 
architecture to a wider span, allowing applications access to other nodes 
through the request-response mechanism. The application need only specify 
the node name to work across the net. 

The various OEM versions of eTOS also have various names for the eTOS 
Network. We will use BNet here as the example. 

BN et is composed of several cooperating system services. A simplified 
overview of the parts of the network is shown in Figure 11-5. 
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Figure 11-5. BNet Block Diagram 

BN et provides bridge processing among heterogeneous networks, thus enabling 
intertransport communications. BNet architecture is limited only by the 
underlying transport and system environment. It provides network indepen­
dence and an open, standard interface to facilitate future expandability. It 
supports unlimited simultaneous outstanding requests and unbounded 
simultaneous logical connections. 

BNet is a point-to-point routing system. If sending and receiving nodes are not 
directly connected by the physical medium, other nodes act as intermediaries 
by relaying the data packets from node to node between sender and receiver. 
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The top layer in Figure 11-5 corresponds to the application layer (layer 7) in 
the OSI reference model. At this level are the Net Agent and Net Server, 
which are two processes contained in one system service. We referred to that 
one system service in Chapter 7 as the Net Agent. The Net Agent and Net 
Server processes pass requests and responses to and from client application 
programs. Other OSI applications, such as X.400 Message Handling Service 
mail programs, are shown at this level also. They are not part ofBNet, but 
they can utilize BNet to distribute services. Finally, the System Management 
Services are shown in this top layer. This system service provides administra­
tive functions and a Naming Service. The other application-level components 
can use the Naming Service to find unidentified network nodes for which they 
have requests. 

There is no need for an OSI presentation layer (layer 6) within BNet because 
there are no interface incompatibilities to be bridged at this point. 

Session control is layer 5 in the OSI model. From this point on, BNet offers 
more than one option in the construction of a communications stack, partly for 
historical reasons. One important component at this level is the OSI Session 
Services system service. It interfaces with both the Net AgentJN et Server and 
the other OSI applications above it. It also communicates with transport 
layers below it. 

Figure 11-5 also shows the Net AgentJNet Server communicating with two 
other entities: the CTOS Network Transport and Cluster Access. The CTOS 
Network Transport provides a pathway for lower-level communication via 
synchronous and asynchronous media. Cluster Access allows the server 
workstation or any cluster workstation to communicate with any other on the 
cluster. Effectively, CTOS Network Cluster Access thus adds an optional layer 
of peer-to-peer communication on top of the unidirectional cluster network. 

The OSI Session Services layer communicates with a range of system services 
called Sessiontrransport-LAN Interfaces (STI). These STIs manage various 
transport backbone types, including SNA and DCA. Extension of this 
mechanism to other transport entities is possible. The OSI Session system 
service also can communicate directly (that is, without an intervening STI) 
with the OSI Transport WAN to interface with X.25 public data networks. 
SNA and DCA interfaces allow the user to run BNet services over an existing 
WAN backbone, lowering the cost of CTOS networking. 
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Beyond 

Auxiliary communications software products, including an SNA Network 
Gateway and 3270 terminal emulator, are available to interface CTOS-
based workstations to the Systems Network Architecture (SNA) designed by 
IBM Corporation. This software allows the workstations to communicate with 
IBM mainframe computers. 

Other communications software products are also available from a variety of 
vendors to interface to most mainframes and minicomputers. 
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Prototype Until Done: 

Timekeeper Development 

In the CTOS world, unlike some others, 
one generally does not write application 
prototypes that are thrown away when 
the "real" code is written. The more 
common method is to write a "prototype" 
that really is the core of the product, 
successively refining it ... Our work on 
Timekeeper involves designing two 
major components: the local user's 
interactive application and the 
Reminder system service. 

In the CTOS world, unlike some others, one generally does not write 
application prototypes that are thrown away when the "real" code is written. 
The more common method is to write a "prototype" that really is the core of the 
product, successively refining it until it is in shape to be released (a process 
called stepwise refinement). This first version includes as many existing pieces 
as possible: there is no need to recreate the wheel. 
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Timekeeper's Components 

It has been some time since we talked about Timekeeper back in Chapter 5, 
so let us quickly review the design decisions we have already made about it. 
Knowing more about CTOS I/O methods, we can now pick the ones that are 
right for this project. 

Timekeeper is to be a workgroup-oriented application that keeps calendars and 
To-Do lists for group members, sending them reminders of events and 
deadlines. It will allow users to check each other's calendars and schedule 
meetings, with Timekeeper doing the work of matching up time slots and 
finding an available conference room with the right amenities. It will also 
allow users to send each other electronic messages. 

User Interface 

We shall design an interactive application to run locally at the user's work­
station, to accept inputs and return outputs, and to communicate with the 
system services. Our best bet is to start right out using the new XVT bridge 
tool. This approach will give us the greatest compatibility with future CTOS 
systems. 

XVT has a dialog box editor that enables us to prototype the user interface 
interactively and to test run it separately from the application of which it will 
be part. 

XVT will handle keyboard, mouse, and video for us. Thus, for Timekeeper's 
interactive application, we do not need to get involved with keyboard or video 
byte streams or with the I/O methods underlying them: keyboard primitives 
and V AMNDM. When we write the Reminder system service, we shall also 
write a utility to deinstall it. This utility will put up simple screen messages to 
a screen inherited from the Executive. Thus, video byte streams are a perfect 
choice for use in the deinstallation utility because they will do the job with 
minimal effort on our part. 

Data Storage 

Our data storage (calendar, meeting room, and To-Do list data) must be 
centrally located so that it is accessible by all users. Of the methods we 
discussed in Chapter 10, ISAM is clearly the most suitable. It is based on a 
system service that can handle contention by users for the same data 
resources, and its performance is excellent for the volume of transactions we 
expect. 
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We could also use one of the two existing CTOS-compatible versions of Oracle, 
but it is not the best choice in this particular case, because ISAM is faster for 
the kind of work we expect to do. Oracle is optimized for very high transaction 
volumes, at which level ISAM cannot perform as well. 

As a result of this decision, we could use the file system directly for data access, 
or we could use disk byte streams for access to configuration files. Direct file 
system calls may be more efficient than the byte stream calls, in addition to 
being easier to use. However, byte streams provide device independence and 
the easy redirection of input and output. 

Reminder Service 

We decided in Chapter 5 to design the Reminder Service ourselves, although 
Queue Manager would do the job for us. (Remember that we would really like 
to use tools that are available without resorting to replication of existing 
material, but that we are taking this route in this case simply for illustration's 
sake.) 

Mail Service 

Our Reminder system service will pass user communications from the 
interactive application to the existing Mail Service for delivery to other users. 
The Reminder need only call the Mail Service API to do so. Mail notification 
can be put into an application so that it displays an indication of new mail 
when mail is received in a mailbox. Here is a prime example of taking 
advantage of software that is already available. The entire communications 
backbone is available, allowing a rapid implementation using preexisting tools. 

Networking 

In most other development environments, we would have to devote 
considerable time and effort to make our program interface correctly with 
separate network software-maybe of more than one type. Under CTOS, this 
part comes for free. Ifwe set up our requests correctly, we do not need to give 
networking another thought. 

To allow for eventual implementation of Timekeeper over wide-area networks, 
we simply need to route our requests by file specification, including the· 
node-name component. 
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Printing 

We cannot leave 110 methods without discussing everyone's favorite topic, 
printing. We could just write to GPS byte streams, but although that would be 
quick, it would not give us any special formatting. If users are going to want to 
print out their calendars with nice grids of lines or special fonts, we will need 
to write to GPAM anyway, so we may as well start out by doing so. 

Native Language Support 

eTOS has quietly acquired a large installed base around the world, much of it 
in countries where the language is not English. Thus, in the course of eTOS 
history, it became very important to make it easy for other people to convert 
eTOS to their native languages without plowing through reams of code, 
rebuilding the operating system, and risking the creation of new bugs in 
doing so. 

NLS (Native Language Support) is the facility by which both systems and 
applications developers under eTOS make conversion simple. Using NLS 
has two aspects. First, certain procedural interfaces that support language 
conversion must be used in preference to other, older eTOS procedural 
interfaces. Second, messages that will be displayed on the screen must be 
segregated into a special disk file for easy editing. This file can be a traditional 
eTOS message file; or if you are usingXVT, it can be the file in which the XVT 
resources (such as fonts, dialog boxes, icons, and text) for that program are 
kept. 

We bring up the subject of NLS at this point because it is much easier to code 
an application with the correct NLS calls the first time than to comb back 
through the code and retrofit it with internationalization. This is especially 
true with the message file, because hard-coded screen message strings must 
not be used. 

NLS Mechanism 

NLS is based on a set of tables that define such language dependent elements 
as date and time formats, number and currency formats, collating sequence, 
keycap legends, and so on. These tables are in a system file on disk. When the 
operating system is booted, these tables are loaded into a special memory area. 
(Alternatively, if you are going to need to support more than one language at a 
time, you can link the tables into your program.) 
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The tables are in an assembly language file that can be edited, assembled, and 
linked, without change to the operating system. Thus, translators need touch 
only this external file and need not rebuild CTOS or an NLS-based application. 

The other half of the mechanism is a set of standard library object module 
procedures that internationalized programs must use. These procedural 
interfaces are easy to recognize by the 'Nls' string embedded in their names: 
NlsFormatDateTime, NlsNumberAndCurrency, NlsYesNoOrBlank, for 
example. These procedures refer to the NLS tables to determine what currency 
symbol to use, what string means "yes" or "no," and so forth. 

Message Files and XVT Resource Files 

In addition to the NLS facility, you can use the message file or XVT resource 
file to internationalize your application program. Using this facility, you 
remove the messages from your applications and place them in the appropriate 
message file. If you are using the traditional message file, you do not link the 
message strings with your program, either by hard-coding them or by putting 
them into a separate module of the program. If you are using the XVT resource 
file, the compiler associates the correct objects with your program. As a result, 
your program code remains language independent. 

A traditional message file actually exists in two forms: text and binary. 
You create your messages in text form. (The translator also later translates 
them in this form.) Then you use a simple command to convert the text file 
to a binary file so that the messages can be more quickly accessed by your 
applications. In your program code, you use the message operations 
(lnitMsgFile, GetMsg, PrintMsg, and alternates, which are in the standard 
CTOS libraries) to display the messages. These routines are built on video byte 
streams. 

In the text file, messages are in a format that can be easily edited and 
converted to binary by nonprogrammers. This fact saves expense during 
translation efforts. 

As with the NLS procedural interfaces, it is far easier to start off using the 
message-file technology than to retrofit later. 
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Interactive Application 

Our work on Timekeeper really boils down to designing only two of the major 
components: the local user's interactive application and the Reminder system 
service. We are assuming here that you know already how to write 
applications in general, so we are going to focus on the CTOS tools that you 
would use to implement the necessary elements of such an application system. 

We shall start with the interactive application. 

Basic DeSign 

The main duties of the interactive application (IA) are accepting user 
commands, figuring out what is wanted, making the necessary requests of 
other services, and displaying video output to the user. Figure 12-1 shows how 
the IA is related to other pieces of Timekeeper and system software. 

Cluster Workstation 

Timekeeper 
Interactive 
Application 

Cluster 
Communications 

Server 
Agent 

Server 

Figure 12-1. Relationship of the Interactive Application to Other Software Entities 
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One of the most important parts of the IA is the user interface. As we have 
already mentioned, we shall use XVT's dialog box editor to create the various 
elements of the user interface. We shall place all screen messages in the 
resource file so that they can be easily nationalized. XVT itself makes NLS 
calls where that is necessary, so we do not have to concern ourselves with those 
aspects of internationalization. 

Requests to the Reminder Service 

One big thing that the IA will do is make requests of the Reminder system 
service, which in turn will deal with all the other system services in the 
Timekeeper application system. Although defining the requests that the IA 
will use is really part of developing the Reminder system service, we are going 
to discuss them here, because it is primarily the IA that will use the requests. 

Reminder interfaces with the IA via a set of requests that are constructed 
solely for the use of this application. What types of requests would be 
necessary here? The most obvious is the abort/termination request, which 
must be handled by the Reminder service (even though is not issued by the lA, 
but by the operating system when the application exits). In addition, requests 
to CreateReminder, ReadReminder, ModifyReminder, and DeleteReminder are 
obvious. Not so obvious are session-oriented requests. We shall define two of 
these, OpenReminder and CloseReminder. These session-oriented requests 
allow multiple lAs (perhaps from different cluster workstations) to utilize the 
Reminder service. 

Before we show the formats of these requests in terms of procedural interfaces, 
we really need to know the mode of operation of the requests. A Read of a 
reminder will return a single reminder to the calling application. But how is 
the application structured? The application may issue reads for all the 
reminders for a specific day or all the reminders for a specified priority. The 
number of reminders returned depends on what information is desired. Writes, 
however, are different. A write will be issued either because of an update or 
because a new reminder is being sent. Both the reads and the writes are valid 
only if the session handle returned by the OpenReminder operation is included. 

To initiate a session with the Reminder service, an OpenReminder call is 
issued. All further Reminder operations require that this session handle be 
passed as part of the parameter strings. The session handle logically 
establishes a connection between the IA and the Reminder service. Multiple 
connections are possible with each connection identified by the session handle. 
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To create a reminder, the IA issues a CreateReminder call. This call accepts 
the address of the data area containing the reminder information and the 
address of the memory area where the unique record identifier (URI) is 
returned. The URI allows the user to modify a given record and store it back in 
the data base with a Modify Reminder operation; this gives us the ability to go 
directly to the record by using the underlying data base access routines. 

To issue a read to return a reminder, a ReadReminder call is used, where the 
session handle is passed, along with the address of the data area where the 
reminder is returned. Additional parameters are the priority, the date 
structure, and the memory address where the URI will be stored. Why are 
these parameters necessary? The IA displays reminders based on priority or 
based on the date. These two data elements are also keys within our ISAM 
data base. This choice of parameters makes the connections among the lA, the 
Reminder, and the ISAM data base simpler. 

To delete an existing reminder, a DeleteReminder call is issued. The Reminder 
handle is passed, together with the URI of the record being deleted. 

To issue a write to either create a new reminder or update an existing 
reminder, a WriteReminder call is issued, where the Reminder handle is 
passed along with the reminder record. Additionally, a URI may be passed 
(valid if an update to a previous existing record is being performed). 

To close a Reminder session, a CloseReminder call is issued. Once this occurs, 
the connection between the client and the Reminder service is discontinued. 

Note that each of the operations mentioned above are very much like high-level 
I/O operations with defined procedural interfaces allowing easy programmatic 
interface. The operations could be object-module operations that would 
translate the user's requested function into low-level file access methods. 
However, since we are attempting a distributed application under CTOS, we 
shall use loadable requests to implement the interfaces. Reminder is the 
system service that will serve these requests, thereby making the service 
available across the network to any user requiring programmatic access to the 
Reminder Service. 

Relationship With the Mail Service 

The IA will not deal directly with the Mail Service, but will communicate with 
it through the Reminder. We shall discuss the interface between Reminder 
and the Mail Service later in this chapter. The calls to the Mail Service allow 
us to utilize preexisting communications routines for the automatic routing of 
messages. 
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Printing Through GPAM 

The IA will need to send print requests and to provide for special formatting of 
Reminder documents, such as calendars and meeting notices. It could also 
provide printer status information to users. For this implementation, let us 
assume, however, that users would use the Generic Print System's Print 
Manager utility to check on status. 

When the user issues a print request to the IA, it will use a GP AM data stream 
to send the document for printing, adding commands to describe the 
sophisticated formatting we need to provide calendar rules and special fonts. 
GP AM communicates with the Generic Print System much like a byte stream. 
Calls to GPAM's object-module procedures are used to described page 
formatting, fonts, and graphics. 

The the IA uses a call to GPAMOpen to open the data stream, specifying the 
document to be printed, special characteristics of the print job, and both the 
familiar work area buffer and an additional buffer for GP AM procedures. 

Within the data stream a series of calls to GP AMs formatting routines describe 
the characters to be printed and special formatting to be supplied. Graphics 
routines can also be embedded in the data stream between calls to 
GP AMBeginGraphics and GP AMEndGraphics. 

The Generic Print System's Print Service, located at the server workstation, 
routes the data stream to the specified printer anywhere in the cluster or 
local-area network. 

What makes the Generic Print System unique is that applications may prepare 
device-independent print output that is automatically and transparently routed 
across the network. Special device drivers are supplied for each printer 
supported for use with CTOS systems. These drivers specifically accept print 
requests with GPAM formatted files, or simple ASCII files sent through GPS 
byte streams, and translate the contents into the device-specific information 
needed to print the file on that printer. The device driver is installed only on 
the workstation to which the printer is attached. 

Thus, Timekeeper formats output in a generic way, and can print on any 
supported CTOS printer. The code in our application is kept small. The 
resources required to process the request are distributed, taking up memory 
and disk space only where they are needed. 
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Reminder System Service 

Our other major effort goes into the Reminder system service. To keep things 
simple, we shall initially design a single-process, synchronous system service. 
In the real world, this approach would be adequate as a prototype to enable us 
to get the product up and running and see how it worked. Once we began to 
have multiple users actually competing for data, we would need to consider the 
methods described in Chapter 13 for writing a more sophisticated system 
service. 

Reminder, being a system service, has a specific structure that is mandated by 
the types of operations required. It is a straightforward implementation with a 
simple loop (wait until something is received; then perform the requested 
operation). Before we describe the loop structure, though, let us look at how 
the service is installed. 

Installation 

First we perform a call to GetPartitionHandle to see whether the service is 
already installed in another partition. The Reminder service partition has a 
unique partition name, and GetPartitionHandle will return the partition 
number for the partition name requested. We do not want to attempt another 
installation if Reminder is already running. 

Ifno error results, Reminder is already executing, so we exit with an error 
message indicating such. An alternative method could be utilized by 
performing a Query RequestInfo operation passing one of the Reminder 
requests as a parameter to determine whether the request is presently being 
served. 

N ext, we allocate any permanent resources to be used by the Reminder (for 
example, exchanges or short-lived memory). 

Then we query the status of all the requests to be served by Reminder. 
We must serve the CreateReminder, ReadReminder, ModifyReminder, and 
DeleteReminder requests, as well as OpenReminder and CloseReminder. We 
query their status with a call to QueryRequestInfo for each request. A status 
code of 'N 0 such request code' returned by this call indicates that the request 
has not been served and thus that we can serve it. A status code of 'error OK' 
returned would indicate that the request is served by some other process and 
would complicate matters somewhat, forcing our system service to filter the 
request: but this is another matter. Reminder will exit if a nonzero status 
code is returned. 
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Once the requests have been served, we issue a call to ConvertToSys. This 
operation changes all processes, exchanges, and memory in the partition from 
application status to system service status. In Ctosian terms, the service at 
this point becomes an extension of the operating system. 

Next, we issue a call to Exit. This operation causes the reload of the exit run 
file (normally the Executive). The Reminder service is now permanently 
installed in memory as a system service. 

To ensure that the service can complete its required activities in a timely 
manner, Reminder then calls ChangePriority. The priority specified should be 
a higher priority than all interactive applications (which normally run at 
priority 80h). 

Next a call to SetPartitionName is issued to identify the partition. Here the 
partition number (0, indicating the current partition) and the name of the 
Reminder service are passed as parameters. Remember the earlier step in 
which we checked to see whether the partition was already installed? The call 
checked for the same partition name that we used within this 
SetPartitionN arne call. 

Next, we make a ServeRq call for each of the requests to be served (in our case, 
CreateReminder, ReadReminder, and so on). 

Finally, the system service can go into its wait state, waiting for something to 
do. When a request is then received by the Reminder, it will process that 
request. 

Deinstallation 

Deinstalling a system service is not a trivial task. (Deinstallation is different 
from the kind of termination we have talked about earlier. Termination refers 
to the condition when an application program, or system service client, is 
trying to cease execution.) Deinstallation takes place in three phases. First 
the deinstallation utility (a separate program from Reminder) sends a 
predefined message or even a deinstallation request to the system service. An 
agreed-upon, 4-byte message from the deinstallation utility to the reminder 
service is all that is necessary unless an eventual filter is required If a request 
is required, then Reminder must be modified to serve and respond to this 
request. The deinstallation message informs the service to shut down its 
operation. Second, when the service receives the deinstallation message, it 
must perform a sequence of operations. Finally, when the operations are 
completed, the service responds to the deinstallation message and the 
deinstallation utility cleans up what is left. 
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Once the Reminder receives the deinstallation message, it must check for open 
connections with client applications (in this case, the IA). Reminder refuses to 
deinstall if there is an open connection. 

If Reminder is in a state where it can deinstall, we must restore the request 
table in the operating system to its pristine state (the state it was in before 
Reminder was installed) by issuing a ServeRq request for each of the requests 
with the same information originally received in the request information 
structure. (Note that we had to save this information before the Reminder 
initially issued its own ServeRq calls.) We must issue the calls in reverse order 
to that in which they were originally issued. (The connection-opening request 
should be "unserved" first.) This approach will ensure that the service receives 
no new requests while attempting to deinstall. 

What do we do if we have any outstanding requests? We respond to all of them 
with an appropriate error message (all except the deinstallation request). Thus 
we ensure that no requests are lost when deinstallation is complete. 

Next, Reminder closes any connections it has opened as a client (for example, 
those with the Queue Manager, Mail Service, and ISAM Services). 

Now Reminder unlocks its partition by calling SetPartitionLock. This 
operation allows the service to be removed from the partition. Reminder then 
responds to the deinstallation message, effectively informing the deinstallation 
utility that Reminder is ready for removal. 

Once all these steps have been completed, the Deinstallation utility then issues 
an ExitAndRemove, which causes the service and its partition to be removed. 

Reminder Loop Structure 

Remember that a system service waits for a request and performs some 
amount of processing based on the request before finally responding to the 
request. What does this structure look like within Reminder? First, let us ask 
from whom we expect messages: the user lA, the deinstallation utility, Mail 
Service, and Queue Manager. We receive responses from the last two in 
response to request primitives issued from Reminder itself. Why do we issue 
primitives? Because we do not want to block. (The procedural interface causes 
a process to wait until the requested service is completed.) We do not want to 
wait until a mail message is received (we may wait forever) or wait for a queue 
entry to be removed, so these operations are implemented with the primitive 
Request rather than via the procedural interface. 
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Calls to ISAM need not be implemented via primitives, because they will be 
issued immediately when access to the data base is required. We cannot 
respond to a ReadReminder, WriteReminder, or DeleteReminder request until 
the ISAM operation is finished, so we do not care if we block on ISAM. In 
addition, operations that use the Queue Manager (with updates caused by 
Writes and Deletes) can be done using the procedural interface for the same 
reason. 

Reminder waits at its exchange, the memory location where the pointer to a 
request block is returned. Reminder then keys off the request to determine 
what to do next. 

If Reminder receives an OpenReminder request, the service initializes a 
session for validating incoming requests from the IA A CloseReminder request 
basically invalidates the session (although invalidation is dependent on 
completion of all outstanding Reminder requests for that session). 

If Reminder receives a CreateReminder, ReadReminder, WriteReminder, 
or DeleteReminder request, the system service then issues a series of 
requests to ISAM to perform the action requested by the user from the IA 
CreateReminder, WriteReminder, and DeleteReminder also require an update 
to the ISAM data base and to the Reminder Queue File, so Reminder then 
performs these actions before responding to the CreateReminder, 
WriteReminder, or DeleteReminder request. 

Queue Manager responses are received when reminders become due. In our 
simple system, we notify the user of a due reminder by causing a short 
repetition of beeps. The user responds to these beeps by running the IA to read 
the reminder. 

Mail Service responses are received when reminders are received from remote 
sites. These messages must then be stored in the ISAM data base and the 
Reminder Queue. 

Interactions 

In addition to interacting with its clients, each copy of the Timekeeper 
interactive application on the users' workstations, we have seen that the 
Reminder Service will interact with the ISAM system service, which may be on 
the same server or across the network. For simplicity, we shall consider it to 
be on the same server. Reminder also must get system time information from 
the operating system. Further, Reminder interacts with the Mail Service. 
Figure 12-2 shows these relationships. For simplicity, we omit the local and 
server agents and operating system involvement in the transfer of requests and 
responses. 
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Figure 12-2. Reminder Service as Service and as Client 

Interacting With ISAM 

The following steps show a very basic method for interfacing to ISAM. This 
methodology is very simple; a real implementation would be more complex. 
Remember that ISAM itself is a system service available to multiple clients. 

To access ISAM, we issue a VerifyMultiUserISAM call. This can sends a 
request to ISAM at the node where the application system is running. (In a 
local area network where clusters are networked together, if ISAM is not local 
to this node, then the request is simply passed to the node where it is resident.) 
A nonzero status returned indicates that multiuser ISAM is not available. 

If multiuser ISAM is not available, we issue a LoadSingleUserISAM can where 
we pass the ISAM run file specification and password and the ISAM 
configuration file specification and password as parameters along with the 
status block. This call loads ISAM as a task and initializes communications 
with ISAM. Memory is allocated as short-lived memory from the pool of 
unallocated memory available to the application system. (Remember that in 
this case the partition must be large enough for both the application and 
single-user ISAM.) 
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We next issue an OpenISAM call to open the ISAM data set. A single call must 
be issued for each ISAM data set. In our case, since we have a rather simple 
data base, only one OpenISAM call will be issued. The call requires the data 
set name as a parameter and returns a handle to be used for all subsequent 
ISAM operations. 

When records are read sequentially by keys, we would use the following 
procedure: We first issue a SetUpISAM-IterationLimits call to initialize 
a sequence of read operations for records that have keys for a specified 
index (for example, all class A To-Do items). We then repetitively issue 
ReadN extISAMRecord calls to retrieve all the records in key order from the 
data set. A unique record identifier (URI) is returned for each record. 
Selection of a displayed record on the To-Do list for deletion or modification 
requires the URI for that item. 

We issue a BeginTransaction call to mark the start of a transaction for the 
application system. ISAM has a concept of a transaction definition that allows 
for the definition of transactions that must be completed in totality. This 
allows the programmer to ensure that a sequence of low-level ISAM operations 
are completed successfully. 

To store a new record in the data set, we call StoreISAMRecord. The indexes 
are updated to reflect the presence of the new record with the 
StoreISAMRecord operation. 

To modify or delete an existing record, we first use a ReadUniqueISAMRecord 
call to read the specified record identified by a given key. We then use the key 
with a following ModifyISAMRecord or DeleteISAMRecord to modify or delete 
the existing record. Again, all indexes are updated accordingly. With the 
delete operation, all data in the record is destroyed. 

We issue a CommitTransaction call to complete the transaction. Any records 
that may have been locked are unlocked with the commit. 

When we are done we must close the ISAM data set. Issue a CloseISAM ca11 to 
close and release a11 the resources associated with the' open data set. Once this 
ca11 is completed, the ISAM handle associated with the previous data set is no 
longer valid. 

As you can see, each of the operations allow a simple interaction between a 
data base client and the ISAM system service. Since the interfaces are a11 
requests, the ISAM service need not be local to the requesting application (in 
our case, Reminder). This also shows how a service itself can be a client to 
another service. 
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Interacting With the Mall Service 

Reminder interfaces to the Mail Service to distribute reminders through the 
network. Included are the passage of new reminders to be stored within the 
ISAM data base and the passage of due reminders to the user. 

The following steps show only the basics of interfacing to the Mail Service. In a 
real implementation, you would have to consider other application-specific 
details. 

To send mail messages and attachments from the data base, we use an InitVm 
call. This call initializes a memory buffer for use by the Message Facilities. 
We must do so before using any of the other facilities. 

To open a mail connection with the Mail Service, we use an EstabIishMailCon­
nection or OpenMailConnection call. A mail user name and mail password are 
parameters for these calls. These parameters are retrieved from an installa­
tion parameter (from the VLPB), from a user file (from the MailCenterName 
and MailUserName entries), or via a hard-coded value. These calls return a 
parameter, the mail handle, which is used for all subsequent mail operations. 
In addition, the path ([volume]<directory» indicating the location of the 
Mailbox directory is returned. The OpenMailConnection also accepts an 
additional parameter for specifying this type of mail connection (for example, 
long-lived, or sending-mail only). 

Next, an InitMaiIMsgBuffer call is issued to initialize a message buffer for 
creating mail messages. 

To create a message, we issue successive PutMsgComponent calls to construct 
a mail message one field at a time within the previously allocated message 
buffer (for example, the From and To fields) . 

Once the message is assembled, we issue a CheckPointMsg call. This call 
returns the size of the message for subsequent use in the SendMail call. 

Next, we make a ReleaseMsg call to release the buffer so that the message can 
be sent. 

Finally, we use a SendMail call to begin the delivery process. This call 
instructs the Mail Service to send a copy of the message to the designated 
recipients. 

A unique message ID is returned that identifies the message as it passes 
through the mail system. The message is automatically routed to the mail 
centers indicated by the names in the To field. 
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To receive updates in a mail message and/or attachment and incorporate them 
into a data base, we issue a sequence of calls similar to that we used for 
sending mail messages. We first use the InitVm call to initialize a memory 
and then open a mail connection via an EstablishMailConnection or 
OpenMailConnection call. Next, as before, we make an InitMailMsgBuffer call. 

To retrieve the message components, we issue successive calls to 
GetMsgComponentByld to decode the message from its binary format into 
individual fields and components. 

Once the components have been retrieved, we release the buffer by calling 
ReleaseMsg. Next, we make a call to AcknowledgeMailReceipt to inform the 
Mail Service that all parts of the message have been properly retrieved. The 
Mail Service can then delete its copy of the message. 

The steps from ReceiveMail to AcknowledgeMailReceipt are repeated until no 
more mail is available. We can then issue a TerminateMailConnection to the 
Mail Service to close the mail session. 

Again, note that we are interfacing our Reminder Service to another system 
service. Any process, whether it be an application or a system service can be a 
client of any other process. All that is required is the issuing of a request. 

The Whole Picture 

Figure 12-3 shows many of the interactions among the various pieces related to 
Timekeeper. To simplify matters, we leave out local and server agents. We 
show only one user instance. We also do not deal with various configuration 
files and other temporary files that would be present. The point here is to see 
how a distributed CTOS application really ends up consisting of multiple 
system services interacting with each other, all through the request/response 
mechanism independent of the underlying network topology. 
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13 
Even More About System Services 

eTas is flexibly featured and permits a 
variety of approaches. There are as 
many strongly held opinions about the 
right way to write a system service as 
there are talented eTaS developers. 
Here we shall pick a general path that 
many agree on: a single-process, 
asynchronous system service. Later we 
shall examine a very different and less 
commonly used method that involves 
multiple processes. 

One of the great virtues of CTOS is that it can be customized and extended. 
You can do so by writing a system service and either substituting it for an 
existing one or adding it on as a new one. You can also write a filter process, a 
system service that intercepts messages headed for another system service and 
either examines them and passes them on or serves them itself. 

Because system services are built on the message-based CTOS interprocess 
communication, they can be transparently distributed across the local cluster 
network and almost transparently across wider networks. This factor 
eliminates a lot of network programming from the process of writing a major 
piece of distributed software. 

CTOS has been successfully extended for special purposes in this way by 
developers all over the world. One example is the POSIX system service, which 
anows POSIX-compliant applications to execute under eTOS. Another is the 
Cluster File Access system service, a filter process written to enable the server 
workstation to access files at cluster workstations thereby providing basic 
peer-to-peer communications capabilities for sharing files. 
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Real-world system services like these are complex and interesting to design. 
This chapter is about some of these challenges and solutions. 

The Multiclient System Service 

Except for some hints now and then, we have so far discussed the system 
service in its simplest form: the single-process, synchronous system service 
that takes a request from a client, processes it, and responds to the waiting 
client. Many sophisticated system services, however, face more complex 
demands than this simple model can handle successfully. 

Many system services have multiple clients concurrently sending requests to 
them across the cluster and perhaps the network. In turn, system services 
often make requests of other system services or interrupt handlers and must 
await, receive, identify, and deal with their responses. Every system service 
also must be able to handle termination and related requests made by the 
operating system when an application client wants to terminate. These 
termination requests may arrive at any time and must be handled promptly so 
as not to cause delays throughout the network. 

The Situation 

Figure 13-1, which borrows from our Reminder system service example, shows 
one situation of this kind. Three user-interface clients have sent in various 
requests to Reminder. Reminder is servicing the first request. The other two 
are waiting, queued at Reminder's service exchange. While they are waiting, 
these user interface programs are blocked. 

On the "back end," Reminder has made a request to the ISAM Service for data. 
The ISAM Service in turn has sent a request to the file system. The ISAM 
Service has also responded to a previous request that Reminder had made, and 
this response is queued at Reminder's exchange. 

In the middle of all this normal business, an application somewhere on the 
cluster is terminating. The operating system has sent out termination requests 
on its behalf. One of these termination requests is also queued at Reminder's 
exchange, and it is fourth in line for attention. 
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Figure 13-1. Multiple Demands on a System Service 

Potential for Delays 

In the situation shown here, delays can snowball if the system service cannot 
somehow interleave all these demands for its attention. If Reminder can 
service only one request at a time (Rql in the figure) and cannot respond to 
Client 1 until this work is complete, you can see that all other queued requests 
and responses must wait. 
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Although this case is not represented in Figure 13-1, suppose that Reminder 
were to make all its back-end calls to other system services synchronously: 
that is, Reminder would make the call to ISAM and then would block while 
waiting on a separate response exchange for ISAM to respond. The queued 
items at the service exchange must wait also. If ISAM itself could handle only 
one request at a time, delays would proliferate. (Of course, ISAM does not 
operate in this way.) 

Ending It All 

The picture becomes even more interesting when we consider what happens 
among system services when an application on the network is normally or 
abnormally terminated or is swapped out to disk by its local operating system. 
This application may have requests outstanding with various system services. 
A system service thinks of a client in terms of its user number (its partition) 
rather than by any unique identifier. Thus, if a system service were to respond 
to a now nonexistent client, a protection fault would occur because the address 
of the request block is no longer valid. If an LDT entry does per"chance exist for 
the address of the request block, the response would be sent to the client, 
however, the client most likely would have a protection fault in trying to 
address the PbCb pairs within the request block. On such an occasion, the 
operating system broadcasts to all system services a request asking them to 
wind up their business with the victim neatly (usually by responding with a 
special status code). System services then must respond to the operating 
system so that the operating system can continue the termination, abort, or 
swap. 

Now suppose, the system service is off blocking while its own request is being 
served elsewhere. If all system services operated this way, it could be a very 
long time indeed before the operating system got back all the needed responses 
to a termination/abort/swap request and could proceed. Meanwhile, users 
sitting at inexplicably hung systems all over the network would be doing 
user-like things such as continually pressing the GO (transmit) key until the 
system finally responds. 

As one developer puts it, the fastest way to make enemies in the CTOS world is 
to mess up termination. 
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An Event-Driven Model 

Recall that we have stated that CTOS is an implementation of the event-driven 
model of processing. Within this model, whenever an event occurs (e.g., the 
completion of an I/O operation) rescheduling occurs immediately, provided a 
process is eligible for execution. An event-driven program, may never finish 
once it is running. After starting, it may receive any number of different kinds 
of inputs or requests in any order, and it must examine these inputs and choose 
paths of execution based on their nature. It is a state machine that works on 
multiple tasks at once. 

Clearly, this event-driven or state-machine model is far more appropriate for a 
sophisticated system service than is the traditional application written to 
function within a single tasking operating system. There is nothing unique to 
CTOS here: an operating system must deal with its world this way. Other 
operating systems such as OS/2, the Macintosh operating system, and Novell® 
Corporation's NetWare® network operating system all are faced with the same 
problems and use event-driven solutions. The beauty of CTOS is the clean 
separation of the applications and the system services by the messaging 
mechanism. This mechanism is what allows the CTOS event-driven solution to 
work in a single workstation or transparently across the network. 

Blueprint for an Asynchronous System Service 

CTOS is flexibly featured and permits a variety of approaches. There are as 
many strongly held opinions about the right way to write a system service as 
there are talented CTOS developers. Here we shall pick a general path that 
many agree on: a single-process, asynchronous system service. Later we shall 
examine a very different and less commonly used method that involves 
multiple processes. 

This asynchronous system service has one process and one exchange. At this 
exchange it receives all its inputs. Thus, the single exchange is both its service 
exchange and its response exchange. After receiving an input at this exchange, 
the system service decides what the input is and identifies its source (a new 
request, a response from a back-end request, termination from the operating 
system). The system service then runs through decision code (for example, a 
case statement) to choose a path for further action. 

All the back-end requests that this system service makes to other system 
services or to interrupt handlers (if it is managing a device) are asynchronous. 
That is, the system service makes these requests but does not Wait for the 
associated responses. Rather, it continues by returning to Wait at its one 
exchange, thus immediately picking up the next item that is queued there. 
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Why this insistence on asynchronous requests throughout? A gremlin that 
immediately pops up where calls among system services are not asynchronous 
is the deadly embrace (or deadlock). A deadlock is the infinite wait that occurs 
when system services call each other in a circular manner. Such a circular 
type of situation is shown in Figure 13-2, where System Service A calls System 
Service B, and B calls System Service C, but C in turn calls A 

Service A Request Service B Request Service C 
.... _ ... 

Requests service Requests service Requests service 
of B and waits. of C and waits. of A and waits. 

~ 

A is waiting and cannot serve C. 
B depends on C to respond to A. -

Deadlock occurs. 

Figure 13-2. Deadlock in a Request Chain 

. If you are using any synchronous requests, the only way to reduce the 
possibility of deadlock is to structure the pattern in which system service calls 
are made to be like the tree structure in Figure 13-3 rather than the circular 
structure in Figure 13-2. Although it may seem simple to ensure that this is 
the case, in practice it is not. Deadlock is the most common problem that 
occurs during development of system services. For example, a potential 
deadlock may be hidden where a system service in the chain makes a call to a 
library that in turn makes a call to a system service higher in the chain. 

Request 
System 

Request 
System 

Request 
System Application .... .... ... 

Service Service 
~ 

Service 
Client - -- A B C 

Respond Respond Respond 

Figure 13-3. Deadlock Avoidance with Synchronous Requests 
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Asynchronous system services decrease the possibility of deadlock and improve 
the overall responsiveness of the system. However, system services that use 
asynchronous processing are more complex to develop. Whether you use 
asynchronous processing or not, simple data flow diagrams displaying the path 
of messages through the system will help ensure rapid detection of a deadlock 
condition. 

Client Bookkeeping and Data Structures 

Because an asynchronous, single-process system service handles requests from 
multiple clients at one time, it must do careful bookkeeping as to the status of 
each request and of its own back-end requests. To do so, it most commonly 
assigns a data structure for each client request and perhaps one for each 
back-end request. These data structures must be designed from the beginning 
in such a way that all states can be represented and that termination status 
can be shown for that client when necessary. 

When the system service picks up a response from a back-end caU, it identifies 
the client for whom the call was made. The system service then follows the 
trail of status information through its bookkeeping data structures in order to 
know what to do next for that client. In this way it can pick up the context of 
any client at any time. 

Handling a termination request in this scheme often involves placing it on an 
internal queue to wait for back-end requests on behalf of that client to return. 
During this time, only that client must wait. When the response does come in, 
the system service dispatches a routine to pick up activities on behalf of that 
client. This routine immediately determines from the client data structure 
that the client is being terminated. It returns a special status code to the client 
and then returns to the body of the system service. The system service then 
responds to the operating system's termination request. 

A Basic Set of Requests 

As we saw in designing TimeKeeper in Chapter 12, there is a basic set of 
requests that the developer defines for most system services. These include 
connection oriented requests such as Open, Read, Write, Close, and 
QueryStatus types, and the group of termination, abort, and swapping 
requests. If conventional formats are used in the design of these requests, the 
application interface to the system service is standard, and the system service 
is easily networked both within the cluster and within a wide-area network. 
System documentation from the various suppliers of CTOS usually describes 
the mechanics of request design. 
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When to Use a Separate Process 

One cannot always maintain a strictly one-process approach. Sometimes it is 
necessary to add another process. One such case is where intensive CPU 
activity is required: for example, in a data base search or a long sort. There is 
a voice processing system service, for example, that does data compression on 
the voice. This activity is done by a separate process. 

In such a case, the main system service process runs at a more favorable 
priority than does the CPU-intensive one. The main process hands off work to 
the second process (via a direct IPC Send) and then goes back to Wait at its 
exchange. The advantage is that the main process can act on any termination 
or other request that it receives, bumping the second process from the 
processor. Thus there are no client or termination delays caused by long tasks. 

In general, a system service should never work longer than a few milliseconds 
before going back to its main loop to Wait. On an 80386 microprocessor, this 
amount of time allows for execution of thousands of machine instructions. In 
this time, you can do almost anything other than large sorts or moving around 
quantities of data. Creation of a second process should be reserved for such 
cases. 

The use of the second process often requires semaphore protection of a data 
structure on which the worker process is operating. Processing of another 
request from that same client, for example, could cause incorrect alteration of 
the data structure while the main process has control. 

Development Tools 

ServerGen 

ServerGen is an available tool that is a fill-in-the-blanks template for a subcase 
of the asynchronous, single-process system service. It has been informally 
passed around and used by developers in many companies as the basis for 
successful system service implementations. 

ServerGen segregates the standard parts of the system service from the parts 
that must be written uniquely for that system service. It is a good illustration 
of the initialization sequence that a system service must go through, as well as 
its decision-making processes. 
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ServerGen shows how the system service determines whether what comes 'into 
its exchange is a new request, a response coming back from another system 
service, or a termination-related request. It does so basically by comparing the 
response exchange named in the request block with its own exchange. If they 
are the same, then the message is coming back from another system service. If 
not, it is a new request (or termination). 

The service has a simple loop structure once the environment has been 
established (an exchange has been allocated, the requests have been served, 
and the server has been converted to a system service). This loop structure in 
pseudo code is as follows: 

do forever 
Wait for a message 
Process the message 

enddo 

The routine for a processing the message checks the message to determine 
what type of work is required of the service. In ServerGen, we have several 
different types of messages: Timer messages set for performing periodic 
functions, internal messages sent by the service to itself, new requests from 
clients, responses from requests filtered to other servers, and system requests 
(e.g., termination requests). Each request or message can be identified via the 
request block information. The pseudocode structure for processing a message 
is as follows: 

if the Message is a Timer Block then 
Process the Timer Message 

elseif the Message is Internal then 
Process an Internal Message 

elsedo 
if the Request Block contains my Exchange then 

Restore the Client's Exchange 
Process the Response 

elseif the Request is a System Request then 
Process the System Request 

elseif the Request is a Client Request then 
Process the Request 

endif 
enddo 

The above pseudocode outlines what is done after receiving a message on the 
ServerGen exchange. Next, ServerGen must respond to a message which has 
been processed. 
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A message received from a client which is directly processed by ServerGen will 
be responded immediately back to the client process. 

A message received from a client which is filtered can either come back to the 
ServerGen (in this case the response exchange in the request block must be 
replaced with the ServerGen's exchange) or can return directly from the 
filtered service to the client (in this case the response exchange is not replaced). 

A message received from a filtered service must have the original client's 
response exchange restored prior to responding to the original client. 

The following is some pseudocode outlining the cases described above: 

do case Request Type 

ServerGen Request: 
Respond to Client 

One-Way Filter Request from Client: 
Forward the Request to the Filtered Service 

Two-Way Filter Request from Client: 
Save the Client'S Exchange 
Insert ServerGen Exchange in the Request Block 
Issue RequestDirect to the Filtered Service 

endcase 

ServerGen does not handle all the situations that we discussed in the previous 
chapter. It was built as a template for a two-way filter process, and it 
assumes that the back-end call is to the default system service whose requests 
it is intercepting. ServerGen does not handle the more general case of 
asynchronous back-end requests. It can, however, give you an idea of how to 
handle them. 

Appendix A consists of the main code sequences of ServerGen for those readers 
who would like to see an actual implementation of the asynchronous, single­
process system service. 
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Asynchronous System Service Library 

Taking a very different approach from ServerGen is the Asynchronous System 
Service Model. It is a method of creating an asynchronous system service 
based on a library (Async.1ib) that handles the difficult parts of asynchronous 
programming for you. In some CTOS versions, this library is included as part 
of the CTOS system software. 

In using the Asynchronous Model, you create a single-process program that 
behaves as if it had multiple processes. It provides greater throughput than 
would a simple single-process system service, but it greatly reduces problems 
with synchronization and access to shared data that are inherent in 
multiprocess programs. The design of the Asynchronous Model uses an implied 
baton or semaphore, although not a real one, that is passed whenever a 
back-end call is made. In this design, it is impossible for an execution thread to 
block while holding the "baton." 

In this model, the system service handles more than one transaction at a time. 
Contexts are the key design element of the model. A context is an individual 
execution thread (but not a process) that has its own stack history (such as 
local variables). The system service process consists of multiple contexts, all 
sharing the system service's process stack. 

Stack sharing is possible because each context has a unique stack pointer (SP) 
value. While a given context is being executed, the stack pointer is set to the 
appropriate value for that context. Before a second context executes, the stack 
of the first context is saved in a memory structure. Then the stack pointer 
value is changed to represent the stack for the second context. Because the 
stack of a context is saved, any context can be resumed where it stopped 
executing simply by having SP set to its stack pointer value. 

In essence, the use of the shared stack is equivalent to having a stack for each 
context, or in other words, the shared stack emulates a multiprocess service. 
There is a parallel here with the use of bookkeeping data structures that we 
discussed earlier, but here the mechanism is hidden from the programmer. 
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The asynchronous system service of this model basically works as follows: 

do while true 
Wait for a Request 
if the Request is mine then 

Resume the Context /* a back-end call */ 
else begin /* a new request coming in */ 

Process the Request 
Place the Status code in the Request Block 
Respond to the Client 
end 

endif 
enddo 

With the exception that resuming a context does not mean a process switch, 
you can see that the general logic is the same as what we have discussed 
before. Figure 13-4 shows the program flow for this model. 

The system service waits for either a request or a response. If a request 
arrives, the system service can process that request. If the system service 
needs to send a request to an external agent, it does not wait for the response. 
Instead, it sends the request using one of the asynchronous request library 
routines. Within this routine, the context that sent the request is saved, and 
the system service process returns to the top of its Wait loop to wait for other 
requests or responses to arrive. If a response from an external agent (another 
system service) arrives, the context that originally sent the request is resumed. 
This scheme is analogous to what would occur if several CTOS processes were 
used instead of the contexts, except that a context does not give up control 
other than by making a back-end call. 

The Asynchronous Model provides a common-code module in the C language 
that includes the code that must be written for any system service. In addition, 
you write a main module that serves the requests defined for your service. (In 
this respect, the Asynchronous Model and the ServerGen program in Appendix 
A are similar, but in other ways they are quite different.) 
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The Asynchronous Model has advantages and disadvantages. It was created in 
1989 to underlie and simplify a complex multiprocess system service that had 
some unresolved problems. At this writing, it has not yet been widely used 
otherwise. Some eTOS theoreticians consider it a brilliant implementation 
of a tool that hides the complexity of system service writing from the 
programmer. Others, while not denying that the mechanism is valuable, 
believe that it should be internal to eTOS rather than existing in a system 
service. Nevertheless, this method might be the easiest one to use when 
porting to eTOS a program from another system that expects to use multiple 
processes. 

Testing and Debugging 

A final, purely pragmatic word of advice to system service writers from those 
who have written them is that you cannot expect to successfully develop a 
complex system service without a thorough understanding of the eTOS 
Debugger and the Intel microprocessor's registers. At this level of 
programming, print statements are not going to help you much. 

Multiprocess System Services 

As we mentioned earlier, there is another approach to designing a multiclient 
system service. This method, instead of using a single process and interleaving 
action on requests from different clients, uses multiple processes. Each process 
is synchronous and can serve any client. 

While this approach might seem the most intuitively obvious one to, for 
example, the UNIX developer, the eTOS environment is quite different. For 
example, a second process, once begun, cannot be made to rejoin a parent 
process. eTOS processes also have a certain overhead in system resources. 
Overusing them can be expensive. 

Why Write a Multiprocess System Service? 

Despite their pitfalls, multiprocess synchronous system services have the 
advantage of being easier to conceptualize and visualize, easier to implement 
initially, and easier to maintain than the single-process, asynchronous system 
service. If designed correctly, they also have the great virtue of extensibility, 
as we shall see in a later example. 

198 



Even More About System Services 

Why Hesitate to Write One? 

Generally, writing a successful multiprocess system service requires such great 
ability to perceive possible difficulties and such immensely meticulous 
programming that it is something only a very careful expert should attempt. 
The creation of multiple processes brings with it multiple opportunities for 
deadlock. Also, several processes competing for access to the same data 
structures require the use of semaphore protection. It is possible to create 
processes that block while holding large semaphores. Finally, there is the 
process overhead and consumption of system resources that can balloon in an 
overly ambitious design. An example of this last statement was the initial 
release of the Generic Print System (GPS); later versions corrected the initial 
design. 

It is especially important in writing a multiprocess system service to keep your 
initial design simple and to study your modularity carefully. You should plan 
on adding functionality only after the first design is proved workable. 

Message-Based Semaphores 

CTOS developers generally dislike the concept of semaphores (a message-based 
system really does not require them). However, some software designers 
appreciate the simplicity of use of semaphores. Simple semaphores fall 
naturally out of eTOS IPC. Suppose a program has three processes: two user 
processes and a system service process. The system service process owns a 
buffer. The two user processes are bidding for use of an output port. 

At initialization, the program allocates an exchange, and an initializing 
message (which could be a pointer to the buffer) is sent to the exchange. (Note 
that we are using IPC directly here, because all these processes are part of the 
same program.) A user process that wants the buffer does a Wait at the 
exchange. If the message is present, that user gets the buffer. When this user 
is through with the buffer, it Sends the message to the exchange again. If the 
other user does a Wait in the mean time, it is blocked until the message arrives 
and the buffer is thus available. 

This method generalizes neatly to multiple buffers. The messages identifying 
the buffers can be queued at the exchange, and a process that does a Wait gets 
the next available buffer. No confusion can occur: as long as one process owns 
a message, no other process can interfere. 
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Clearly, this method can be used to control access to entities other than buffers, 
too. The message used as a baton does not have to be a pointer: it could have 
any value or be a dummy such as O. 

This kind of semaphore, which you implement yourself based on IPC, should 
not be confused with traditional semaphore facilities inherent in the operating 
system, such as those in OS/2. 

eTOS Electronic Mail: A Happy Example 

Among many excellent office applications that have been developed at different 
companies to run under CTOS, arguably the best and most widely used is the 
CTOS electronic mail program, an elegantly simple, richly featured electronic 
mail system that encircles the world on multiple media in some installations. 
It is sold under various names including CT-Mail and B-Mail. Originated in 
1982 and continuously extended since, the mail program is a very cleanly 
designed example of the multiprocess approach to solving the problems we 
have delineated. It also exemplifies some other good CTOS design principles. 

Mail was begun with a deceptively simple architecture and highly generalized 
data formats. Nevertheless, a lot of thought went into creating hooks and 
leaving latitude for later developments that might or might not be on an 
existing marketing "wish list." The basic design has three parts: an 
interactive user application on the local workstations; a central Mail Service; 
and a Communications Manager Service that had to be written because 
network software beyond the cluster level did not yet exist in 1982. 

A simplified version of the design of the central mail system service, the Mail 
Service, is shown in Figure 13-5. The figure shows three processes inside the 
box that represents the Mail Service: one nicknamed the Overlord and two 
Drones. Actually, there can be up to four Drones at once. Drone processes are 
identical to each other. 
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Figure 13-5. Simplified Version of Mall Architecture 

The first version of the Mail Service contained only two processes: the 
Overlord and one Drone. The idea was to get the product working successfully 
with only these two processes, and then to consider adding more. This first 
version operated only within the local cluster network. In the next version, 
communication with other clusters was added, and at this point a second Drone 
was introduced so that delays would not occur at the Mail Service's input 
exchange. Development continued in this way, with features (and Drone 
processes) being added to a working structure. 

The Overlord and the Drone have very different duties and do not compete for 
resources such as data structures or files. The Overlord communicates with 
the system clock and decides what should be done (for example, when to make 
certain connections to other Mail Services). Once it has decided what to do, the 
Overlord Sends a message to the Drones' exchange (which is the only 
externally visible Mail Service exchange) and gives up control. The Overlord's 
duties all can be executed quickly, and it runs at a more favorable priority than 
does the Drone. 

201 



Even More About System Services 

Drones Wait at the Drone exchange. Any Drone can process any request that 
comes in here, whether it is a command from the Overlord or a request from an 
interactive client application, a remote Mail Service, or a Communications 
Manager system service. Drones carry out time-consuming duties that involve 
disk accesses, sending mail, and so forth. They run at a less favorable priority 
than that of the Overlord. Drones can Send messages to the Overlord using 
internal exchanges such as the one shown as exchOverlord in the figure. 

The Overlord never accesses files. When there was only one Drone, there was 
no competition for file access. As more Drones appeared, these identical 
processes did need to access the same structures and files, so message-based 
semaphores were used to protect them. 

The Communications Manager System Service in Mail is actually a creature 
that is rather rare in the CTOS world: it is an installed system service that 
does not serve any requests. Instead, it only makes requests of the Mail 
Service to find out what it should do. Because it does not serve requests, it has 
no issues with termination. Also, with such a design, it is possible to add as 
many Communications Managers as you like with no need to coordinate 
between them, because coordination is all done through one central point. It 
also allows installation of more than one Communications Manager on one 
workstation, something that is not possible where a system service serves 
requests. 

The system service that serves no requests is the key to the extensibility of 
Mail. At various times, through this mechanism, support for gateways to other 
mail systems and for facsimile transmission from the user's interactive Mail 
interface have been added. These additions, while some have involved minor 
changes to Mail, have never required redesign of the Mail Service. 

Summary 

If you are new to the CTOS world and want to write a system service, the best 
way to start is with an academic exercise: a single-process, synchronous 
system service like the one we outlined for TimeKeeper in Chapter 12. Going 
on from that point, your best approach is to use the ServerGen template if at 
all possible. If you need to extend your model to make asynchronous back-end 
calls to other system services or interrupt handlers, you can at least refer to 
ServerGen for guidance in initialization, identification of inputs, 
decision-making code, and termination handling. 
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In general, the experience of many CTOS system service writers has shown 
that the best approach for a sophisticated system service is the single-process, 
asynchronous system service. If you wish to consider a duplicate multiprocess 
design such as that used in Mail, you probably should have reasons comparable 
to Mail's extensive and varied networking and need for extensibility to do so. 

Writing system services is a challenge worth undertaking, not only for the 
resulting cleanly distributed product, but also because it will further your 
understanding and appreciation of the CTOS architecture. 
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14 
Trends and Paper Napkins 

A simple and extensible system like this 
one allows designers to think up 
enormous wish lists of enhancements, 
whether based on their own innovations 
or the newest industry breakthroughs. 
Almost all of these things could be done, 
but only some of them can be. As the 
idea people continue to sketch, the 
practical ones remind them that one 
must consider the needs of the real world 
and the real tasks for which people want 
to use these systems. 

When the people who started Convergent Technologies sketched their first 
design on a paper napkin, they were just carrying part of the larger computer 
culture into their new venture. The excitement of creativity has always fueled 
people like them and always will. 

Those first people hired other people who knew that the processes of creativity 
were not going to stop with them. They knew that CTOS would live in a 
changing technological world, and they designed it for that world. They did 
such a good job of that flexible design that it is hard for us to remember that 
they were working at a time when 256 Kb was a tremendous amount of 
memory to put into a workstation, and everyone was hoping that 8-inch disk 
technology would be reliable early enough to put into their first workstation. 
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They did such a good~ob, as a matter offact, that they have presented their 
successors with temptation. A simple and extensible system like this one 
allows designers to think up enormous wish lists of enhancements, whether 
based on their own innovations or the newest industry breakthroughs. 

Almost all such enhancements could be done, but, in a practical world, only 
some of them will be. As the idea people continue to sketch, the practical ones 
remind them that one must cQnsider the needs of the real world and the real 
tasks for which people want to use these systems. 

As we said earlier, CTOS development is firmly rooted in several basic 
principles. The first designers began with modularity, distributed processing, 
strength, speed, flexibility. Soon compatibility and resiliency also became 
important. Today, those principles are summed up in the following list: 

• Open 

• Modular 

• Optimized 

• Resilient 

• Compatible 

• Available from Multiple Sources 

• Distributed 

• Scalable 

Future development will continue to be based on these principles. The 
operating system will remain small and modular, optimized for distributed 
processing and easy customization. Developers will remain committed to 
compatibility and to producing a stable platform operating system that can 
continue to· support developers and users alike on into the 90s. 
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This chapter is intended to discuss possible future developments for CTOS. It 
touches on the directions and strengths CTOS has had in the past and makes 
some attempts to foretell the direction for the future. Since, however, the ideas 
that are sketched on paper napkins are ideas that grow interactively in the 
stimulating environment that is produced when trends in new technology corne 
together, this chapter can only hint at what will happen in the CTOS 
environment. The operating system was born out of an effort to take 
advantage of new technology and has grown out of an effort to stay abreast 
with and effectively apply each new advance. Paper napkins can easily be 
crumpled up and thrown away; likewise, the plans outlined here should not be 
taken too literally, because we know they'll change with time. 

Now, let's take a look at where we might go in the future. 

Standards and Interoperability: A CTOS Commitment 

The CTOS commitments to compatibility and open systems are long-standing. 
With the introduction ofCTOS/Open in 1989, CTOS established itself as an 
open platform. CTOS/Open makes available an Applications Programming 
Interface that provides commonality across the various suppliers' versions of 
CTOS to ensure that applications run optimally from one to the other. It will 
continue to grow and to provide added functionality as the industry and CTOS 
continue to grow. 

CTOS is also committed to be a platform that embraces other existing and 
forthcoming standards. It is establishing itself as a base platform onto which 
the most successful industry standards will be integrated. CTOS developers 
understand that interoperability and the ability to run specific applications on 
multiple platforms are of prime importance to users. By embracing standards 
and the applications that run on them, CTOS will be providing users with an 
integrated solution platform not matched by any other platform vendor. 

In the 90s, CTOS will provide support for several standards. They already 
include: (PC-Compatible) DOS and Windows™, and will soon include POSIX 
and Presentation Manager. We shall touch on each of these briefly. Others, of 
course, will also be included as standards are established. 
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Several versions of a DOS platform emulation product were already available 
on CTOS in the mid-80s. With the advent of 80386-based CTOS systems, a 
software-only solution became available. CTOS now provides a complete 
environment for supporting off-the-shelf DOS-based programs, including those 
requiring VGA video. Since the entire PC environment, including the BIOS, is 
emulated as part of one CTOS context, DOS and CTOS applications run 
concurrently. The DOS environment supports Windows and will support 
evolving DOS standards, such as the DOS Protected Mode Interface (DPMI). 

CTOS will also provide POSIX compliance, as one of the first non-UNIX 
platforms to do so. The IEEE developed the POSIX standard partly as a result 
of a need for a nonproprietary standard for the AT&T UNIX System V 
platform. It provides a common platform for applications, to ensure that they 
can be used on multiple platforms with minimal portation work. Although the 
API is similar to UNIX, it is intended to have a wider application. CTOS will 
integrate the POSIX platform by implementing a system service that will 
support the POSIX application programming interface (API). In addition, the 
shell and utilities part of the POSIX standard will also be provided on CTOS. 
This marriage of CTOS and POSIX will allow POSIX applications to have 
access to many of the facilities provided by CTOS, such as built-in networking. 
This illustrates synergistic value of having CTOS encompass other standards. 

Future versions of CTOS will include Presentation Manager as the CTOS 
standard Graphical User Interface. This will allow PM-based applications to 
be easily ported to run in the CTOS environment. Future versions of CTOS 
will also provide support for Dynamic Linked Libraries, which are essential for 
Presentation Manager-based applications. This basic framework will allow PM 
applications to work in the CTOS/Open environment. 

An additional set of standards which CTOS provides on-going support for is 
Open Systems Interconnection (OSI). The set of standards under the umbrella 
of OSI provides a basis for designing software systems which allow 
communication between dissimilar platforms. The standards define both the 
interaction between computer systems and the functions necessary for 
communications. Systems designed to be compatible with the OSI standards, 
therefore, provide compatibility with products designed to function to the 
standards. 
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The model for compatible communications, as specified by the International 
Standards Organization, is the OSI Reference Model. Here communications is 
divided into seven different layers, each of which is a group of related 
functions. OSI protocols define the functions the layers represent. The 
layering scheme allows a greater flexibility in choosing systems, equipment, 
and or software, e.g., one system may have all layers implemented in software, 
an alternate system may have the lower layers implemented in hardware with 
the remaining in software. 

CTOS has current implementations of the lower 5 levels, Physical, Data Link, 
Network, Transport, and Session, within various communications services. 
Also, X.400 (OSI Mail) and Fl'AM (File Transfer Access and Methods) are 
implemented as extensions of the Presentation Layer. Support for X.500 
(Directory Services) will also be made available in the future. 

A strong future direction for the CTOS platform will be to continue to respond 
to the emergence of new standards, adding support for them and for applica­
tions designed to them. Looking back, the first CTOS developers did not live in 
a world of standards. On the contrary, in 1980 all the platform vendors were 
competing to have the best new and different system. The designers who gave 
CTOS the message-based system service as a way to support flexibility in the 
future could not possibly have imagined that one day this facility would 
actually enable CTOS to support such a wide set of emerging industry 
standards. Luckily they did design a flexible and modular system. The 
world continues to change, and CTOS will change with it. 

Microprocessor Architecture 

In general, CTOS will continue to take advantage of architectural opportunities 
presented by ongoing developments in the Intel80x86 family ofmicroproces­
sors. CTOS has been functional on every Intel 80x86 microprocessor and will 
be functional on following microprocessors because of the advantages those 
systems give to the systems programmer while retaining compatibility with 
previous versions. Recall that CTOS now functions on the 80186,80286 and 
80386 processors and will soon function on the 80486 microprocessor. 

There have always been discussions of putting CTOS on other kinds of 
hardware-other people's hardware or multiprocessor hardware. These 
discussions are likely to continue. 
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Demand Paged Virtual Memory 

A program is said to execute in "virtual memory" when it uses a linear address 
space that is larger than available physical memory. CTOS currently provides 
only a limited form of virtual memory in that an application may optionally 
use demand segmentation of code within its own partition. Initially, this 
mechanism was implemented purely in software and later used the demand 
segmentation features of the 80286. 

Since the introduction of the 80386, true virtual memory based on demand 
paging has been a possibility for CTOS. Demand paging is a form of virtual 
memory management in which a program's linear address space is composed of 
contiguous fixed sized regions called pages. A page is either mapped to 
physical memory or is marked as "not present". Demand paging requires 
hardware support for mapping linear to physical addresses and for detecting 
"not present" pages. 

When the program accesses a "not present" page, a page fault occurs. The 
operating system resolves the fault by mapping the page to physical memory, 
and if necessary, copying the contents of the page from a disk. In order to 
resolve a page fault, the operating system may have to take physical memory 
from another page, and possibly write the contents of the "replaced" page to 
disk. 

Over the years, CTOS developers avoided virtual memory management due to 
the belief that virtual systems provide poor performance. Today, this objection 
is no longer valid as current virtual memory policies are known to deliver 
effective performance. 

The main benefit of demand paging in CTOS is more flexible memory 
management for applications and servers. A paged environment is more 
flexible because it allows dynamic use of memory, such as allocating/dealloca­
ting data structures or loading/unloading code, without the problem of splitting 
memory into numerous unusable fragments. 

Demand paging is particularly useful in the following CTOS environments: 

• Workstations, especially servers, that need more system services than will 
fit in available memory. Currently, eTOS system services must be entirely 
memory resident. 

• Workstations that run more applications than will fit in available memory. 
Without demand paging, CTOS must swap out entire applications when 
memory is oversubscribed. With demand paging, each application can 
continue even though some pages are not present. 
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• Diskless workstations. Such workstations help to reduce the cost of 
computing. Virtual memory means that a workstation can be configured 
with less memory, further reducing the cost. 

80386 Flat Model (32 Bit Addressing) 

Implementation of CTOS support for direct use of the 32-bit address space, 
possible for the first time on the 80386 microprocessor, is a matter of debate. 
CTOS people around the world are clearly aware of the trend in this direction, 
and there is a growing desire to support 32-bit applications written to run 
under UNIX. Strong voices are remInding everyone that if 32-bit support is 
implemented, it should be interoperable with existing l6-bit systems. 

eTOS as a Distributed Object System 

There is a strong trend in the industry to move toward object-oriented 
execution environments. Such environments emphasize reusability and 
interoperability of code :plodules or objects. They offer the advantages of 
reduced application size and increasingly standard operation for similar 
functions. . . 

We repeatedly emphasized throughout this book how very modular and 
extensible the CTOS architecture is. CTOS is, therefore, well-positioned to 
adopt some of the features associated with object-based environments. In 
addition, its distributed heritage is well established. That distributed 
architecture would provide a solid platform to allow for easy interoperability 
of distributed system objects. 

CTOS is already adopting the look and feel of the object-oriented user interface. 
The CTOS response to the move in the industry toward an object-oriented 
approach to programming is yet to be seen. 

The Far Term 

The modular, extensible architecture that forms the platform for CTOS has 
proved to be a firm basis for growth in the 80s. In the 90s that same unique 
strength, combined with the robustness eTOS has gained through maturity 
and through years of testing in real world situations, makes it an excellent 
platform on which to continue to build. We don't know exactly where the 
future will lead, but ·we do know that CTOS will respond to new trends and 
capabilities as the computer industry continues to grow. 
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... because we believe in the practical 
side of things . .. 

This appendix contains two modules written in the C programming language. 
When compiled and linked along with a few user written routines, these 
modules comprise a functional system service, which we have called 
ServerGen. Chapter 13 describes how ServerGen works. 

The initial module is called FooServer.C. It contains sample procedures for 
proving ServerGen's functionality. The other module is Server.C, the main 
code module in ServerGen. 

SerGen is structured with a main routine which first calls an Initialization 
Routine (where requests are shared and conversion to a system process are 
accomplished). The service then goes into a loop where the service waits for a 
message, processes it, and then loops back to the wait. 

ServerGen has external stubs which reference user written procedures, 
examples of which are included in FooServer.C. Note that we have not 
included these here. 
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FooServer 
/* FooServer.c -- Test server using the system service. lib. Stores a buffer 

of open 
* file specs, then writes them to a file and deinstalls. 

* 
* Log: 
* 10/28/85 JA Created - PLM 
* 2/7/86 TB Converted to C 

*/ 

idefine ParamBlkType 1 
idefine RqType 1 

idefine SysConfigType 1 

idefine SysTimeType 1 

idefine TrbType 1 

idefine ErrorExitString 

idefine CheckErc 1 
idefine AllocMemorySL 1 

idefine SetMsgRet 1 
idefine SetPartitionName 
idefine CreateFile 1 
idefine OpenFile 1 
idefine Write 1 

idefine CloseFile 1 

idefine Beep 1 

1 

1 

iinclude "[sys]<h>CTOSLib.h" 

iinclude "[sys]<h>String.h" 
iinclude "ServerGen.h" 

/* application-specific definitions */ 

ide fine RQOPENFILE 4 

idefine RQOPENFILELL 

idefine RQCLOSEALLFILES 
idefine RQFILESYSTEMABORT 

97 

19 
112 

idefine RQREOPENFILE 294 

idefine IBHEXERC 5 

#define ERCNOTIMPLEMENTED 7 

idefine BUFFERSIZE 512 

idefine BUFFERSIZEL 512L 
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1* Structures defined by every service *1 
unsigned rgServeRq[] = { 

RQOPENFILE, RQOPENFILELL, RQREOPENFILE, RQCLOSEALLFILES, RQFILESYSTEMABORT 

} ; 

unsigned nServeRq = 5; 

1* scratch space for deinstall, 1 word per rqCode in rgServeRq *1 
unsigned rgRqExch[5]; 

1* System requests (termination, abort, swap) served or filtered *1 
unsigned rgSystemRq[] = { RQCLOSEALLFILES, RQFILESYSTEMABORT }; 

unsigned nSystemRq = 2; 

1* Application specific declarations *1 
char *pBuf; 

int ib; 

char postScript[] = " erc xxxxh\n"; 

1* Application local subroutines *1 
char rgHex[] "0123456789ABCDEF"; 

void 

ConvertWHex(Word w, char pRete]) 

int i; 

for(i = 3; i >= 0; i--) { 

pRet[i] = rgHex[w & OxF]; 

w = w » 4; 

1* Standard routines that may be present in all servers. *1 

void 

Initialize () 

1* This procedure is called after requests are verified but 

* before requests are actually served. AlIOS calls are valid here. 

* Do error checking, memory or exchange allocation, config file reading, 

* extraction of arguments from the command form etc. 

217 



ServerGen: A Sample System Service 

* 
* This example service checks the os type, then allocates and clears a 

* buffer for use during the processing of requests. 

*1 

if(pConfig->fMultipartition == 0) 

ErrorExitString(ERCNOTIMPLEMENTED, "as must be MultiPartition", 25); 

CheckErc (AllocMemorySL (BUFFERSIZE, &pBuf)); 

*pBuf = 0; 1* null-terminate buffer */ 

1* Set message to be printed upon successful installation - */ 

CheckErc(SetMsgRet("Installation complete.", 22)); 

1* Requests have been served. Installation succeeds or fails. 

* From now on all routines must use RequestDirect to issue as calls listed 

* in rgServeRq above, issuing the rqs to the exchange recorded in rgRqExch. 

* Other requests may still be issued via procedural interface (by name). 

* 
* Some as calls now no longer work after ConvertToSys. System services 

* have no video structures so calls to VAM or VDM are illegal 

* (PutFrameChars etc). 

* In SinglePartition os, 

* memory allocation/deallocation is illegal, 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*/ 
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exchange allocation is illegal, 

files must be opened using OpenFileLL, 

interrupt routines may no longer be set, 

byte streams are not supported. 

In MultiPartition os, 

memory deal location will work, then the memory may be reallocated, 

but long-lived memory is gone, 

exchanges may be freely allocated, 

files operate normally, 

interrupt routines may be set/reset normally, 

bytestreams other than Video are supported. 
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/* Optional: 

* 
* This procedure is called once after installation. Do things that need 

* not occur unless installation is successful, such as starting the timer. 

*/ 

void 

Start () 

/* rqTime.counter = rqTime.counterReload; */ 

CheckErc(SetPartitionName(O, "FooServer", 9)); 

/* The following five routines are called as messages are received. 

* Only one routine is ever called at once, i.e. no problems with 

* reentrancy, recursion or semaphores. 

* 
* Each routine returns a Word which may have the following values -

* 10k the routine discharged the request itself; do nothing 

* 
* 
* 
* 
* 

lRespond the request has been processed, respond to the user 

lForward the request should be forwarded to the regular handler 

lPass like lForward, but when it is done call HandleRespond 

lOkDeinstall like 10k; also deinstall the service 

lRespondDeinstall like lRespond; also deinstall the service 

* lForwardDeinstall like lForward; also deinstall the service 

* 
* HandleRequest and HandleSystemRequest return different values in each 

* sort of server: 

* A pure system service uses lRespond. An asynchronous server uses 10k. 

* lForward and lPass are used by one-way and two-way filters, respectively. 

* 
* Timer and HandleMessage always return 10k. 

* HandleRespond returns lRespond or maybe 10k. 

* 
* The Deinstall values are the same as the regular values except after 

* discharging the request, the system service unserves the requests, 

* flushes the exchange and exits. 

*/ 
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/* Optional 

* 
* rqTimer has counted down to O. See OS call OpenRTClock. 

* void 

* Timer(char *pRq) 

* { 
* return (10k) ; 

* } 
*/ 

Word 

HandleRequest(struct RqType *pRq) 

/* An original request has been issued whose request code field matches 

* one of those in the rgServeRq array. Perform applications-specific 

* operations. Fields of the request block based on the pointer pRq 

* that may be changed are -

* pRq->ercRet error code to be returned to caller 

* pRq->pb-> response buffer(s) pointed to by the request block 

* Any request block field may be examined. See Operating System Manual 

* for a description of request blocks. 

*/ 

/* This example service records the name of every file opened, until its 

* name buffer is full. It then deinstalls. This is a two-way filter. 

*/ 

if(BUFFERSIZE - ib >= pRq->sO) { 

strncpy(pBuf + ib, (const char *) (pRq->pO), pRq->sO); 

ib += pRq->sO; 

return (lPass) ; 

} else 

return(lForwardDeinstall); 
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Word 

HandleSystemRequest(struct RqType *pRq) 

/* A system request has been issued whose request code field matches 
* one of those in the rgSystemRq array. All requests with the same userNum 

* as the system request must be processed before the system request is 

* returned (via Respond). Requests for that userNum remembered by the 

* service must be backed out (ercSwapping), aborted (ercAbort) or 

* completed (erc), and Respond called for each. 

* There are three kinds of system request, depending on the value of the 

* first word of control info in the request block header: 

* 
* 1st word cntl info Complete Abort Back out 

* Swapping ercSwapping (37) ok ok 

* Abort ercAbort (8200) ok ok 

* Termination other erc ok ok 

* 
* All system request processing must be done quickly or the termination 
* process will take a long time, appearing as a delay or hang to the user. 

* 
* If this service is a filter, it must filter system requests of the 

* filtered service, and pass them one- or two-way just as other filtered 

* requests are passed (lForward or lPass). The default HandleSystemRequest 

* routine (inStdServer.Lib) returns lForward. If the filter service is two­

* way the user MUST write a HandleSystemRequest routine that returns lPass, 

* and the user HandleRespond must accept system requests, probably just 

* returning lRespond. This ensures requests passed to the filtered service 

* are flushed before the system request is returned. 

*/ 

/* This example service doesn't store requests, so it need only 

* pass the system request to the filtered service. Since this 

* is a two-way pass-through filter, it MUST two-way filter the 

* system requests too (lPass instead of lForward). 

*/ 
return(lPass); 
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Word 

HandleRespond(struct RqType *pRq) 

/* A request block has come back via Respond. It was previously received 

* at HandleRequest, which returned with the code lPass. The request was 

* passed to the normal receiver of that request, which completed it and 

* Responded back to us. This routine may now examine the results of the 
* operation, and then must let the request be Responded. 

*1 

switch (pRq->rqCode) 

case RQOPENFILE: 

case RQOPENFILELL: 

case RQREOPENFILE: 

1* This example service records the error code returned from any open. *1 
if(BUFFERSIZE - ib >= sizeof(postScript)) { 

ConvertWHex(pRq->ercRet, &postScript[IBHEXERC]); 
strncpy(pBuf + ib, postScript, strlen(postScript)); 

ib += strlen(postScript); 

return(lRespond); 

} else 

return(lRespondDeinstall); 

default: 1* System request come back from filtered service. 

No requests stored in this filter, 

filtered service has been flushed, 

lPassed request also flushed. 

Ok to respond. 

*/ 

return(lRespond); 

1* Optional 

* Word 
* HandleMessage(Word w) 

* 
* 
* 
* 
* 
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An interrupt routine has sent a one-word message to the server. 

This message may be a data byte or word, or it may indicate some 

condition such as "buffer full". 

The interrupt routine cannot make requests, so it must "poke" the 

server somehow, and the server makes the requests. 
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* 
* 
* 
* 
* 
* 

The interrupt routine could have set a flag that is checked by the 

service, but then the flag would have to be polled, e.g. every l/lOth 

second the timer routine could check the flag. Sending a message 

usually is a better solution because the condition is noticed 

instantly, also without using any processor time for polling. 

* 
* { 
* return (10k) i 

* } 
*/ 

void 

Cleanup () 

/* The service is deinstalling. The requests have been served back to their 

* original destinations. All requests pending have been discharged. 

* The service process is about to disappear. Do any final operations 

* such as writing a log entry or flushing a buffer. 

* It is ok to issue requests by name that this service had been serving. 

*/ 

Word fh, cbWritei 

/* This example service writes the name buffer to a file. */ 

CreateFile (" [sys] <sys>OpenNames.dat", 23, NULL, 0, BUFFERSIZEL)i 

if(!OpenFile(&fh, " [sys]<sys>OpenNames.dat", 23, NULL, 0, Ox6D6D» 

Write (fh, pBuf, BUFFERSIZE, OL, &cbWrite)i 

CloseFile (fh) i 

Beep () i 

} 
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ServerGen 
pragma Memory_model (Big); 
1* Module SERVER MAIN *1 

#undef Debug 
#inelude "[Sys]<h>SysCom.h" 

#define PebType 1 
#define RqType 1 
#define TrbType 1 
#define SysConfigType 1 

#define AlloeExeh 1 
#define DealloeExeh 1 
#define OpenRTCloek 1 
#define Respond 1 
#define Request 1 
#define Wait 1 
#define Check 1 
#define ForwardRequest 1 
#define Send 1 
#define RequestDireet 1 
#define QueryRequestInfo 1 
#define ServeRq 1 
#def1ne ConvertToSys 1 
#define ChangePriority 1 
#define Exit 1 
#define ErrorExit 1 
#define SetMsgRet 1 
#define CheekEre 1 
#define crash 1 
#define GetpStrueture 1 
#define OsVersion 1 
#inelude "[Sys]<h>CTOSLib.h" 

static Byte C_l[] = { 
"Installation failed"}; 

extern void ProeessMessage(FLAG 
extern EreType KillProeess(Word 
extern void ExitAndRemove(); 

void 
CrashIfEreNotOk(EreType ere) 
{ 

if (ere != ereOK) 
Crash (ere) ; 
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fNewRqOk) ; 
pid) ; 



#define RqErc 1 
#include "[Sys]<h>Erc.h" 

/* GetpStructure case values */ 
const IGetpExParDesc = 0; 
const IGetpCharMap = 1; 
const IGetpVCB = 2; 
const IGetpAscb = 3; 
const IGetpVLPB = 4· , 
const IGetpBcb = 5; 
const IGetpTypeAhead = 6; 
const IGetpRgpVidMemLine = 7; 
const IGetpRgLineMap = 8; 
const IGetpContextStatus = 9; 
const IGetpOPcbRun =0 x24C 
const FpType = 10;/* 1st SRP board 
const stubRqCode = Ox7462;/* 'tb' 
const exchNil = 0; 

typedef struct PcbType pcbRun; 
typedef Offset oPcbRun; 
typedef struct RqType rq; 
typedef struct { 

Byte waste[64]; 
Byte cbName; 
Byte rgName[30]; 

} Ascb; 

hardware 
*/ 

typedef struct SysConfigType config; 

config *pConfig; 
Pointer pTime; 
Ascb *pASCB; 
Word wVersion; 
ExchType exchServe; 
FLAG fConvertToSys = {I}; 

ServerGen: A Sample System Service 

type */ 

/* External data are defined in the user-written module. */ 

extern Word rgServeRq[l]; 
extern Word nServeRq; 
extern Word rgRqExch [1] ; 
extern Word rgSystemRq[I]; 
extern Word nSystemRq; 

/* The following two external symbols may be omitted from user program. */ 
extern struct TrbType rqTime; 
static Pointer prqTime = { 

&rqTime}; 
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/* Local variables for server main program. */ 
static rq *pRq; 
static struct { 
Pointer pRq: 
ExchType exchResp: 

} rgRcb[lO); 
static oPcbRun *poPcbRun: 
static pcbRun *pPcbRun: 
static ErcType erc; 
static Word wRet: 

/* External procedures are defined in the user-written module. 
All routines except HandleRequest may be omitted. 
Omitted routines resolved from library of stubs StdServer.Lib. 

*/ 
extern void Initialize (): 
extern void Start () : 
extern Word Timer (Pointer pRq) : 
extern Word HandleRequest(Pointer pRq) : 
extern Word HandleSystemRequest(Pointer 
extern Word HandleRespond(Pointer 
extern Word HandleMessage(Word 
extern void Cleanup(): 

Word 
Findw(Word rg[], Word w, Word cb) 
( 

Word ib: 
for(ib = 0: ib < cb: ib++) 
( if (rg[ib) == w) return ib; 
return OxFFFF; 

void 
Ini t () 
{ 

Word iRq; 
struct { 

Word exch; 
Word lsc; 

} rqInfo; 

w) : 
pRq) ; 

/* Address some interesting structures. 

pRq) : 

Their pointers are public so user gets them without effort. */ 
erc GetpStructure(IGetpAscb, 0, &pASCB); 
erc OsVersion(&wVersion); 
erc GetpStructure(ATpSysTime, 0, &pTime); 
erc GetpStructure(ATpConfiguration, 0, &pConfig); 
if (pConfig->fMultipartition == 0) { /* Single Partition only */ 
erc = GetpStructure(IGetpOPcbRun, 0, &poPcbRun); 
pPcbRun = (Pointer)BuildPtr(SelectorOf(poPcbRun), *poPcbRun); 

} 
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} 

CheckErc(AllocExch(&exchServe»; 

1* Use the user-defined structures, if present. *1 
if (rqTirne.rqCode != StubRqCode) { 

} 

rqTirne.exchResp = exchServe; 
CheckErc(OpenRTClock(&rqTirne»; 

iRq = 0; 
while (iRq < nServeRq) { 

} 

CheckErc(QueryRequestInfo(rgServeRq[iRq), &rqInfo, sizeof(rqInfo»); 
rgRqExch[iRq) = rqInfo.exch; 
iRq = iRq + 1; 

Initialize (); 

1* Don't ConvertToSys if flag set *1 
if (fConvertToSys) { 
erc = ConvertToSys(); 
if (erc != ercOK) 

CheckErc(SetMsgRet(C_1, sizeof(C_1»); 
ErrorExit(erc); 

} 

iRq = 0; 
while (iRq < nServeRq) { 

} 

1* if exch is served on XE530 1.4, first unserve it *1 
if ((rgRqExch[iRq) != 0) 

&& (pConfig->HardwareType >= FpType) 
&& wVersion < OxOBOO) 
CrashIfErcNotOk(ServeRq(rgServeRq[iRq), 0»; 

CrashIfErcNotOk(ServeRq(rgServeRq[iRq), exchServe»; 
iRq = iRq + 1; 

Start () ; 

if (rqTirne.rqCode != StubRqCode) { 
rqTirne.cEvents 0; 
rqTirne.counter rqTirne.counterReload; 

} 

1* Find a free Rcb and register the rq in it. *1 
typedef struct RqType rq; 
static void 
AllocRcb(rq *pRq) 
{ 

Word iRcb; 
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for (iRcb = 0 ; iRcb <= Last (rgRcb) ; iRcb++) 
if (rgRcb[iRcb].exchResp == exchNil) { 

rgRcb[iRcb].exchResp = pRq->respExch; 
pRq->respExch = exchServe; 
rgRcb[iRcb].pRq = (Pointer)pRq; 
return; 

} 

} 

wRet 1= Ox10:/*No rcb available, cause to deinstall*/ 
} 

/* Find the Rcb for the rq and restore the rq. Free the Rcb. */ 
typedef struct RqType rq; 
static void 
RestoreRcb(rq *pRq) 
{ 

Word iRcb; 

for (iRcb = 0 ; iRcb <= Last (rgRcb) ; iRcb++) 
if (rgRcb[iRcb] .pRq == pRq 

} 

&& rgRcb[iRcb] .exchResp != exchNil) 
pRq->respExch = rgRcb[iRcb] .exchResp; 
rgRcb[iRcb].exchResp = exchNil; 
return; 

} 

Crash(ercInconsistency); 
} 

/* Check if any Rcb active. If so, wait for respond to rq. */ 
static void 
FlushRcb () 
{ 

Word iRcb; 

while (1) { 
for (iRcb = 0 ; iRcb <= Last (rgRcb) ; iRcb++) { 
if (rgRcb[iRcb] .exchResp != exchNil) 
goto WaitForAnotherRq; 

return;/*No more rcb in use.*/ 

WaitForAnotherRq: 

} 

} 

CheckErc(Wait(exchServe, &pRq)); 
ProcessMessage(FALSE); 
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void 
DcInstall () 
{ 

Word iRq: 

if (rqTime.rqCode != StubRqCode) 
rqTime.eounter = 0; /*Turn off*/ 

for (iRq = 0; iRq < nServeRq; iRq++) 
CrashIfEreNotOk(ServeRq(rgServeRq[iRq], 0»: 
CrashIfEreNotOk(ServeRq(rgServeRq[iRq], rgRqExeh[iRq]»: 

} 

FlushReb () ; 

while (Cheek (exehServe, &pRq) == ereOK) { 
(void)ProeessMessage(FALSE); 

} 

Cleanup (): 

/*Vp*/ 
if (pConfig->fMultipartition == 3) ExitAndRemove(): 
/*MP*/ 
if «pConfig->fMultipartition) & 1) Exit(); 
/*SP with KillProeess*/ 
CrashIfEreNotOk(DealloeExeh(exehServe»: 
if (wVersion >= Ox0900) 
CrashIfEreNotOk(KillProeess(*poPebRun»: 

/*SP, old*/ 
CrashIfEreNotOk(ChangePriority(OxOFF»: 
ere = Wait (pPebRun->exehgSyne, &pRq); /*forever*/ 

void 
ProeessMessage(FLAG fNewRqOk) 
{ 

Word wCase; 
Word iRqExeh; 
ExehType rqExeh; 

if «pRq == prqTime) && (rqTime.rqCode != StubRqCode» 
if (fNewRqOk) 

wRet Timer (pRq); 
else 

wRet = 0: /*Ok, don't deinstall*/ 
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else if (SelectorOf(pRq) == 0) 
if (fNewRqOk) 

wRet HandleMessage(OffsetOf(pRq»: 
else 

wRet 0: /*Ok, don't deinstall*/ 

else { 
if (pRq->respExch == exchServe) 
RestoreRcb(pRq): 
wRet = HandleRespond(pRq): 

} else if (Findw(rgSystemRq, pRq->rqCode, nSystemRq) 
!= OxFFFF) 

wRet = HandleSystemRequest(pRq): 
else if (fNewRqOk) 

wRet = HandleRequest(pRq); 
else { 

} 

/*new rq not ok, deinstalling*/ 
pRq->ercRet = ercServiceNotAvail; 
CrashIfErcNotOk(Respond(pRq»; 
wRet = 0; 

wCase = wRet & OxOF; 

if (wCase <= 3) 
switch (wCase) 
case 0: /*0 - no action*/ 
break; 

case 1: /*1 - Respond*/ 
CrashIfErcNotOk(Respond(pRq»; 
break; 

case 2: /*2 - Forward*/ 
{ 

if «iRqExch = Findw(rgServeRq, pRq->rqCode, nServeRq» 
== OxOFFFF) 

rqExch 0; 
else 

rqExch rgRqExch[iRqExch]; 
if (rqExch == 0) { 

pRq->ercRet = ercServiceNotAvail; 
CrashIfErcNotOk(Respond(pRq»; 

} else 
CrashIfErcNotOk(ForwardRequest(rqExch, pRq»; 

break; 
case 3: /*3 - Pass*/ 

/*Diddle rq.exchResp to come back to us.*/ 
AllocRcb (pRq) ; 
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} 

} 

rqExch 0; 
else 

rqExch rgRqExch[iRqExch]; 
if (rqExch == 0) ( 
pRq->ercRet = ercServiceNotAvail; 
1* To HandleRespond *1 
CrashlfErcNotOk(Send(exchServe, pRq»; 

} else 
CrashlfErcNotOk(RequestDirect(rqExch, pRq»; 

break; 
}/* CASE *1 

1* Main program *1 

void 
main(Word argc, char *argv[]) 
( 

Init (); 
while (1) 

CheckErc(Wait(exchServe, &pRq»; 
ProcessMessage(TRUE); 

} 

} 

if ««wRet) » 4» & 1) 1* Ox10 bit is signal to deinstall *1 
Delnstall () ; 
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A 

abort request 

Notifies system services that clients have terminated. Upon notification, 
system services can release resources, such as open files and locked 
ISAM records, allocated to the terminating clients. Issuing an abort 
request ensures that no requests are returned to the program after it has 
been terminated and replaced in memory by another program. The abort 
request also informs system services that resources allocated to the 
program should be freed. 

application partition 

A partition of user memory in which an application program can execute. 
A workstation can have any number of application partitions, with an 
application program executing concurrently in each. See also system 
partition. 

application program 

Can consist of code, data, and one or more processes executing in an 
application partition. If the program is executing in a variable partition, 
the program's code can be located anywhere in memory and can be 
shared by the same type of program in a different variable partition. 

Applications Programming Interface (API) 

The collection of operations or interfaces that an application can use to 
interface to a given software entity. 

asynchronous operation 

A procedure or protocol that allows for a response within a window of 
time rather than at an exact time interval. 
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Automatic Volume Recognition 

B 

The method by which eTaS can recognize and mount a uniquely named 
volume (disk) on any workstation in a cluster. This feature implies that 
if a workstation is removed from the local network, its hard disk can be 
moved to another workstation and simply used there, without any 
network reconfiguration. 

bootstrap 

To start (to boot) the system by reloading the operating system from 
disk. On other systems, this is often known as initial program load. 

byte stream 

c 

A character-oriented, readable (input) or writable (output) sequence of 
8 bit bytes used by the Sequential Access Method to transfer data to or 
from a device. An input byte stream can be read until either the program 
chooses to stop reading or it receives status code 1 ("End of file"). An 
output byte stream can be written until the program chooses to stop 
writing. 

CCGI+ 

An applications programming interface for CTOS that meets the ANSI 
CGI standard. 

Check 

A kernel primitive used by a client to determine if a message is queued 
at a specified exchange. If one or more messages are queued, the 
message that was first queued is removed from the queue, and its 
memory address is returned to the client. If no messages are queued, 
status code 14 (''No message available") is returned. 

client 
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A process that requests a service provided by a system service. Any 
process, even a built-in operating system process, can be a client process, 
since any process can request system services. See also system service. 
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cluster 

A local resource-sharing network consisting of a server connected to 
cluster workstations. One high-speed RS-422 or RS-485 channel is 
standard on each workstation. In cluster configurations connected to a 
server workstation, the server and all of the workstations connected to it 
use this channel for intercluster communications. For large clusters 
with a shared resource processor server, multiple channels are provided. 
The operating system executes in each cluster workstation and in the 
server. See also cluster workstation, CTOS Network, server, server 
workstation, and TeleCluster. 

cluster agent . 

See cluster workstation agent. 

Cluster server agent 

Reconverts a message from a workstation connected to the cluster line to 
an interprocess request that is queued at the exchange of the request­
based system service on the server that actually performs the intended 
function. The Server Agent includes the cluster code at the server that 
polls the cluster workstation for requests. See also cluster workstation 
agent. 

cluster workstation 

A workstation in a cluster configuration, connected to a server. See also 
cluster and server. 

Cluster workstation agent 

Converts interprocess requests to interstation messages for transmission 
to the server. The Cluster Agent service process is included at system 
build in a system image that is to be used on a cluster workstation. A 
Cluster Agent is the code that responds to Server Agent polling by 
sending a request to the server or by informing the server that it has no 
request to send. It is also sometimes referred to as the workstation 
agent. See also cluster server agent. 

ClusterCard 

An expansion card for IBM-PC compatible cQmputers that provides 
cluster communications channels. The card is used to integrate PCs into 
a CTOS cluster. 
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ClusterShare 

Software that, when used in conjunction with an IBM-PC compatible 
with a ClusterCard installed, integrates the PC into a CTOS cluster. 

Computer Graphics Interface (CGI) 

ANSI standard graphics application programming interface. 

connection 

Where a transaction is part of a series of interactions, the client and 
system service are said to have a connection; where the transaction is a 
one-time-only event, the relationship is said to be connectionless. A 
client may have several connections simultaneously to the same or 
different system services. These connections are all independent. 

context 

The collection of all information about a process. The context has both 
hardware and software components. The hardware context of a process 
consists of values to be loaded into process or registers when the process 
is scheduled for execution. This includes the registers that control the 
location of the process's stack. The software context of a process consists 
of its default response exchange and the priority at which it is to be 
scheduled for execution. The Process Control Block is a system data 
structure that is the root of the combined hardware and software context 
of a process. 

This term is sometimes also used to refer to the process itself. 

Context Manager 

A partition managing program that the user interacts with to start and 
switch back and forth between applications. 

context switch 
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Occurs when a process is interrupted and its register contents are saved. 
When a process is preempted by a process with a higher priority, the 
operating system saves the hardware context of the preempted process in 
that Process Control Block. When the preempted process is rescheduled 
for execution, the operating system restores the content of the registers. 
The context switch permits the process to resume as though it were 
never interrupted. See also process, process context, and Process Control 
Block. 
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CTOS 

Distributed, message-based operating system that runs on 8Ox86 
microprocessors. 

CTOS Network 

A network consisting of server workstations connected by communica­
tions lines. Each server workstation is a node or junction in the network. 
A CTOS Network provides access to the system services of inter con­
nected cluster configurations. Cluster workstations in the network can 
access files on any node. CTOS Network software is sold under various 
names including BNet and CT-Net. 

CTOS/Open Advisory Council 

D 

DAM 

The CTOS/Open Advisory Council was formed as a joint effort of 
manufacturers, reseller, distributors, software developers, hardware 
developers, and users to establish and promote the CTOS-based 
architecture as a standard of distributed network computing. 
CTOS/Open defines a set offeatures that are common to the current 
and future versions of CTOS operating systems. 

See Direct Access Method. 

deadlock 

Also called "deadly embrace", deadlock is the state which results when 
two or more processes or programs are stopped, each waiting for a 
response that depends on the other stopped program. 

default response exchange 

Each process is given a unique default response exchange when it is 
created. This special exchange is automatically used as the response 
exchange whenever a client process uses the request procedural interface 
to a system service. For this reason, the direct use of the default 
response exchange is not recommended. The use of the default response 
exchange is limited to requests of a synchronous nature. That is, the 
client process, after specifying the exchange in a Request, must wait for a 
response before specifying it again (indirectly or directly) in another 
Request. See also exchange and response exchange. 
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demand-paging 

A form of virtual memory management in which a program's linear 
address space is series of contiguous fIxed sized regions called pages. A 
page is either mapped to physical memory or is marked as 'not present'. 
Demand paging requires hardware support for mapping linear to 
physical addresses and for detecting 'not present' pages. 

device-dependent 

Describes program interfaces closest to the actual hardware. A device 
dependent program performs 110 to a limited number of devices. See 
also device-independent. 

device driver 

A software program that provides the interface between a device such as 
a printer and other software. The device driver interprets the requests of 
other programs and provides device specifIc instructions. 

device-independent 

Describes program interfaces that are not close to the hardware. A 
device-independent program can perform 110 to a variety of devices. 
The Sequential Access Method operations, such as OpenByteStream, 
ReadByteStream, and CloseByteStream, are device-independent 
operations. See also device-dependent. 

Direct Access Method (DAM) 

Provides random access to disk fIle records identifIed by record number. 
The record size is specified when the DAM fIle is created. DAM supports 
COBOL relative 110, but can also be called directly from any of the 
supported languages. 

Direct Memory Access (DMA) 

Access to memory that does not require processor intervention. A DMA 
controller in the processor module controls the transfer of data over the 
X-Bus to the main processor's memory. 

directory 
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A collection of related fIles on one volume. A directory is protected by a 
directory password. 
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disk extent 

One or more contiguous disk sectors that compose all or part of a file. 

distributed processing 

DMA 

Processing which is spread-out, or distributed, between one or more 
machines in a network. 

See Direct Memory Access. 

dynamically installed system service 

E 

A program that was loaded as an application program and converted 
itself into a system service using the ConvertToSys operation. Once 
installed, a dynamically installed system service has the same capa­
bilities as a system service that was linked with the System Image 
during system build. A dynamically installed system service must use 
CTOS operations (rather than system build parameters) to identify the 
request codes that it serves, specify its execution priority, establish its 
interrupt handlers, and so forth. 

event 

An external occurence which causes a response in the process itself. 

event-driven priority-ordered scheduling 

When processes are scheduled for execution based on their priorities and 
system events, not on a time limit imposed by the scheduler. See also 
process and event. 

exchange 

The path over which messages are communicated from process to 
process (or from interrupt handler to process). An exchange consists of 
two first-in, first-out (FIFO) queues: one of processes waiting for 
messages and the other of messages for which no process has yet waited. 
An exchange is referred to by a unique 16 bit integer. See also default 
response exchange and response exchange. 
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Executive 

An interactive application program that accepts commands from the 
workstation user and requests the operating system to load programs to 
execute those commands. 

exit run file 

A user-specified executable file that is loaded and activated when an 
application program exits. Each application partition has its own exit 
run file. 

Extensible Virtual Toolkit (XVT) 

F 

FAB 

FeB 

FHB 

A software library that provides for windowing applications one 
application programming interface that can be used to provide a 
graphical user interface or a graphics-like character-mode version of 
such across multiple operating system platforms and multiple graphical 
interfaces. For example, an XVT program can use the same calls to 
provide a Macintosh interface and an X-Windows interface. 

See File Area Block. 

See File Control Block. 

See File Header Block. 

File Area Block 
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There is a File Area Block for each disk extent in an open file. The F AB 
specifies where the sectors are and how many there are in the disk 
extent. The FAB is pointed to by a File Control Block or another FAB. 
The FAB is memory-resident. See also disk extent. 
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File Control Block 

There is a File Control Block (FCB) for each open file. The FCB contains 
information about the file such as the device on which it is located, the 
user count (that is, how many file handles currently refer to this file), 
and the file mode (modify, peek, or read). The FCB is pointed to by a 
User Control Block and contains a pointer to a chain of File Area Blocks. 
The FCB is memory-resident. 

file handle 

A 16-bit integer that uniquely identifies an open file. It is returned by 
the OpenFile operation and is used to refer to the file in subsequent 
operations such as Read, Write, and DeleteFile. 

File Header Block 

There is a File Header Block (FHB) for each file. The FHB of each file 
contains information about that file such as its name, password, 
protection level, the date/time it was created, the date/time it was last 
modified, and the disk address and size of each of its Disk Extents. The 
FHB is disk resident and one sector in size. 

file specification 

A full file specification is a string of characters that specifies the location 
of a file within a CTOS Network. It includes a node name, volume 
name, directory name, file name, and can include a password. A file 
specification can be shortened to leave out the node, volume, and/or 
directory names if desired. In those cases the operating system assumes 
that the current path should be used. 

file system 

A CTOS multiprocess system service that manages file manipulation. 

filter process 

A system service process that can be included in the System Image at 
system build or dynamically installed at any time. A filter process is 
interposed between a client process and a system service process that 
operate as though they are communicating directly with each other. The 
Service Exchange table is adjusted to route requests through the desired 
filter process. Filters can be one or two-way filters. 
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frame 

A separate, rectangular area of the screen. A frame can have any desired 
width and height (up to those of the entire screen). 

full file 

Consists of a node name, volume name, directory name, and file name. 

G 

GDT 

See Global Descriptor Table. 

Generic Print Access Method (GPAM) 

Provides high-level 110 for complex documents that may include text, 
graphics, or special text attributes. GP AM is an object module library 
that provides device independent formatting commands used for 
printing. GP AM is used typically to add rich formatting characteristics 
to text that is output to a printing device. 

Generic Print System (GPS) 

The Generic Print System is made up of a set of dynamically installed 
system services, which work together to handle communication between 
application programs, the operating system, and the printers and 
plotters currently installed. 

Global Descriptor Table (GDT) 

GPS 

A protected mode structure that contains descriptors for segments, 
which are shared by all programs. See also Local Descriptor Table 
(LDT). 

See Generic Print System. 

Indexed Sequential Access Method (ISAM) 
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Provides efficient, yet flexible, random access to fixed-length records 
identified by multiple keys stored in disk files. 
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Interprocess Communication (lPC) 

The method by which individual CTOS processes communicate by 
sending messages to each other. In this processes exchanges serve as 
message centers, where processes send messages or where they wait or 
check for messages. Processes use the request procedural interface to 
send such messages. 

interrupt 

External or internal; an event that interrupts the sequential execution of 
processor instructions. When an interrupt occurs, the current hardware 
context (the state of the hardware registers) is saved. This context save 
is performed partly by the processor and partly by the operating system. 

ISAM 

See Indexed Sequential Access Method. 

K 

kernel 

L 

LDT 

The most primitive and the most powerful component of the operating 
system. It executes with a higher priority than any process but it is not 
itself a process. The kernel is responsible for the scheduling of process 
execution; it also provides IPC primitives. 

See Local Descriptor Table. 

linker 

Links one or more object files into a run file to be loaded into memory. 

Local Descriptor Table (LDT) 

A protected mode structure in memory that contains descriptors for 
segments accessable to a run file. The operating system constructs the 
LDT based on information provided by the Linker. 
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local file system 

Allows a cluster workstation to access files on a local hard disk(s) as well 
as files on the hard disk(s) at the server. The filter process of the local 
file system intercepts each file access request and directs it to the local 
file system or to the server workstation. 

long-lived memory 

M 

An area of memory in an application partition. It is used for parameters 
or data passed from an application program to a succeeding application 
program in the same partition. If a character map other than the one in 
the system partition is needed, it must be allocated in the long-lived 
memory area of the application partition. See also application partition 
and system partition. 

Master File Directory 

There is an entry for each directory on the volume in the Master File 
Directory (MFD), including the Sys directory. The position of an entry 
within the MFD is determined by randomization (hashing) techniques. 
The entry contains the directory's name, password, location, and size. 
The Master File Directory is disk resident. 

message 

MFD 
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The entity transmitted between processes by the interprocess communic­
ation facility. It conveys information and provides synchronization 
between processes. Although only a single 4-byte data item is literally 
communicated between processes, this data item is usually the memory 
address of a larger data structure. The larger data structure is called the 
message, while the 4-byte data item is conventionally called the address 
of the message. The message can be in any part of memory that is under 
the control of the sending process. By convention, control of the memory 
that contains the message is passed along with the message. 

See Master File Directory. 
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multiprogramming 

The ability to run more than one program in memory at the same time. 
Multiprogramming supports the independent invocation and scheduling 
of multiple processes. In addition, it provides for concurrent I/O and for 
multiple processor implementations. 

multitasking 

See Multiprocessing. 

multiprocessing 

N 

The ability for any program to have more than one process (thread of 
execution). Multiprocessing also is called multitasking. 

Native Language Support (NLS) 

The CTOS facilities that support translation of software programs by 
providing special operations that deal with language-specific formats 
such as date-time formats and that support separate message files, so 
that message strings and prompts can be easily translated without 
requiring recompilation and relinking of application programs. 

Net Agent 

A system service process located at a server workstation that receives 
requests over the network destined for request-based system services 
located at remote nodes and forwards these requests to the remote nodes. 

Net Server 

node 

A process that responds to requests from Net Agent processes. The Net 
Server receives a request block from the Net Agent, executes the request 
on behalf of the remote client, and returns the response to the originating 
Net Agent. See also Net Agent. 

A server workstation in a CTOS Network. Node also refers to the first 
element (node name) of a full file specification. 
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o 
object module procedure 

A procedure supplied as part of an object module file. It is linked with 
the user-written object modules of an application program and is not 
supplied as part of the System Image. Most application programs only 
require a subset of these procedures. When the application program is 
linked, the desired procedures are linked together in the run file of the 
application. The Sequential Access Method is an example of object 
module procedures. See also system-common procedure. 

operation 

p 

An operating system kernel primitive, system service, system-common 
procedure, or object- module procedure. 

partition 

A logical part of memory, specifically allocated for use by a program such 
as the operating system or an application system. Processor memory can 
be divided into several partitions. The partitions can vary in size during 
use. 

partition handle 

Another name for a user number. See user number. 

Partition Management facility 

Permits concurrent execution of multiple application programs, each in 
its own partition. It provides operations for creating, managing, and 
removing application partitions. 

PbCb 
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A 6-byte entity consisting of the 4-byte memory address of a byte string 
followed by the 2 byte count of the bytes in that byte string. 
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PC Emulator 

CTOS software that allows MS-DOS to be run in a partition of memory 
on 80386 workstations in Virtual 8086 mode. The PC Emulator can also 
be run on 80286 workstations with a PC Emulator coprocessor module 
attached. 

primary partition 

When a single application partition exists in memory, this partition is 
called the primary partition. A primary partition is not under the control 
of a partition managing program, such as the Context Manager. 

primitive 

An operation performed by the kernel. See also kernel. 

priority 

Indicates a process's importance relative to other processes and is 
assigned at process creation. Priorities range from a high of 0 to a low 
of 254. 

priority-ordered scheduling 

A scheduling algorithm by which processes are scheduled for execution 
based on priority. 

procedure 

A subroutine. 

process 

An independent thread of execution for a program along with the context 
(that is, the processor registers) necessary to that thread. One or more 
processes are created each time a program is scheduled for execution. A 
process is assigned a priority when it is created so that the operating 
system can schedule its execution appropriately. See also priority. 
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process context 

The collection of all information about a process. The context has both 
hardware and software components. The hardware context of a process 
consists of values to be loaded into processor registers when the process 
is scheduled for execution. This includes the registers that control the 
location of the process's stack. The software context of a process consists 
of its default response exchange and the priority at which it is to be 
scheduled for execution. The Process Control Block is a system data 
structure that is the root of the combined hardware and software context 
of a process. See also context switch and Process Control Block (PCB). 

Process Control Block (PCB) 

A system data structure that is the root of the combined hardware and 
software context of a process. A PCB is the physical representation of a 
process. See also process context. 

processor 

Consists of the central processing unit (CPU), memory, and associated 
circuitry. 

program 

Consists of executable code, data, and one or more processes. The code 
and data can be unique to the program or shared with other programs. A 
program is created by translating source programs into object modules 
and then linking them together. This results in a run file that is stored 
on disk. When requested by a currently active program, such as the 
Executive, the operating system reads the run file into the application 
partition, relocates intersegment references, and schedules it for 
execution. The new run file can coexist with or replace other run files. 
See also primary task, run file, and secondary task. 

protected mode 
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One of the CTOS operational modes. In protected mode, application 
programs can use all available free memory above the first megabyte up 
to the maximum allowed by the processor and the hardware. Features of 
protected mode are a different type of addressing that uses protected 
mode structures, such as LDTs and GDTs, to define segments; protection 
that imposes limits on the memory that programs can access; and virtual 
8086 mode, which provides for running multiple operating systems in 
different memory partitions concurrently. See also Global Descriptor 
Table, Local Descriptor Table, real mode, virtual 8086 mode. 
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Q 

Queue l'danager 

R 

RAM 

The Queue Manager is a system service that controls named, 
priority-ordered, disk-based queues. 

Random access memory. 

ready state 

One of three states in which a process can exist. A process is in the ready 
state when it could be running, but a higher priority process is currently 
running. Any number of processes can be in the ready state at a time. 
See also running state and waiting state. 

real mode 

One of the CTOS operational modes. In real mode, application programs 
can only access memory within the first megabyte. See also protected 
mode. 

Record Sequential Access Method (RSAM) 

Provides blocked, spanned, and overlapped input and output. An RSAM 
file is a sequence of fixed-length or variable-length records. Files can be 
opened for read, write, or append operations. 

reentrant code 

Code that can be executed by more than one process at the same time. 
System-common procedures, for example, must be written in reentrant 
code 

Remote Procedure Call (RPC) 

A method for calling a procedure to perform a service irrespective of the 
location of the service routine. With an RPC, the calling process waits for 
the receipt of the message and when the message is received continues 
processing. RPC is implemented on CTOS by the Interprocess 
Communication facility. 
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Request 

Kernel primitive that directs a request for a system service from a client 
process to the service exchange of the system service process. Before the 
primitive is issued, the data required for the system service is arranged 
in a request block in the client's memory. The easiest way for the client 
to access the service is to use the request procedural interface, which 
automatically builds the request block. See also request procedural 
interface. 

request block 

A block of memory provided by a client that contains a special type of 
message formatted according to specific conventions and used by all 
interprocess communications to the operating system. The memory 
address of the request block is provided by the client during a Request 
primitive and by the system service during a Respond primitive. A 
request block is the "element" that the application program (or the 
operating system) sends to the operating system to request that a 
particular operation be performed. 

request code 

A 16 bit value that uniquely identifies a system service. For example, 
the request code for the Write operation is 36. The request code is used 
both to route a request to the appropriate system service process and to 
specify to that process which of the several services it provides is 
currently being requested. 

request procedural interface 

A convenient way to access system services, compatible with high-level 
languages, such as C and Pascal, as well as assembly language. The 
request procedural interface is a routine within the CTOS operating 
system that is executed when a program calls a request-based operation. 
The routine builds a request block message and calls the Request 
primitive, while the calling program is placed in the waiting state at its 
default response exchange for the system service to respond. See also 
default response exchange, Request, Respond, and Wait. 

Respond 
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A kernel primitive used to pass a response back to a client process. 
Respond is typically used in conjunction with Request for 
communications between applications that are not located in the same 
partition. 
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response exchange 

The exchange at which the requesting client process waits for the 
response from a request-based system service. See also default response 
exchange and exchange. 

ROM 

Read-only memory. 

RSAM 

See Record Sequential Access Method. 

run file 

An executable file, created by the Linker, that contains object modules 
linked together into code and data segments. 

running state 

s 
SAM 

SCSI 

One of three states in which a process can exist. A process is in the 
running state when the processor is actually executing its instructions. 
Only one process at a time can be in the running state. See also ready 
state and waiting state. 

See Sequential Access Method. 

Small Computer Systems Interface, an American National Standard for 
the interconnection of computers with peripheral devices such as disk 
drives, tape drives, and printers. 

semaphore 

A synchronization primitive to coordinate the activities of two or more 
processes that are running at the same time and sharing information. 
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send 

A kernel primitive typically used for communication between processes 
in the same partition (user number). Send accepts any 4-byte field as a 
parameter. This is usually, but not necessarily, the address ofa 
message. 

Sequential Access Method (SAM) 

Provides device-independent access to a default set of real devices, such 
as the screen, printer, files, and keyboard. To transfer data to or from 
the device, SAM uses a character-oriented sequence of bytes known as a 
byte stream. 

server 

A workstation that has a cluster server agent and which acts a server or 
hub for cluster communications. A server can also be a shared resource 
processor. 

Server Agent 

See cluster server agent. 

server workstation 

A server workstation can serve a cluster configuration. The server work­
station provides file management, queue management, and other 
services to all the cluster workstations. In addition, it supports its own 
interactive programs. See also cluster workstation. 

service exchange 

An exchange that is assigned to a request-based system service process 
when the system service is dynamically installed or at system build. The 
system service process waits for requests for its services at its service 
exchange. 

Shared Resource Processor 
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A multiprocessor, floor-standing eTOS server. The shared resource 
processor can be configured to run various programs on each of its loosely 
coupled processors and can be expanded to contain up to six cabinets, 
each of which can contain up to 6 processor boards. 
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short-lived memory 

An area of memory in an application partition. When a run file is loaded, 
the operating system allocates short-lived memory to contain its code and 
data. (Note that code that is shared by other sized programs in other 
variable partitions can be located anywhere in memory.) Short-lived 
memory also can be allocated directly by a client process in its own 
partition. Common uses of short-lived memory are I/O buffers and the 
Pascal heap. See also application partition. 

spooler 

swap 

A dynamically installed system service that transfers text from disk files 
to the printer interfaces of the workstation on which the spooler is 
installed. It can simultaneously control the operation of several printers. 
A disk-based, priority-ordered queue controlled by the Queue Manager 
contains the file specifications of the files to be printed and the 
parameters (such as the number of copies and whether to delete the file 
after printing) controlling the printing. This allows the spooler to resume 
printing automatically when reinstalled following an operating system 
reload. 

To copy a partition (user number) into memory or out of memory to a 
disk file. Swapping is managed by a partition managing program on 
multipartition operating systems or by the operating system itself on 
variable partition systems. 

system common procedure 

A system-common procedure performs a common system function, such 
as returning the current date and time. The code of the system-common 
procedure is included in the System Image and is executed in the same 
context and at the same priority as the invoking process. The Video 
Access Method, for example, is a system-common procedure. See also 
object module procedure. 

system common service 

A system service process that contains system-common procedures. See 
also system service. 

System Image 

Contains a run file (executable file) copy of the operating system 
([Sys]<Sys>SysImage. sys). 
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system memory 

An area of memory that is reserved for use by the operating system. 

system partition 

Con tains the operating system or dynamically installed system services. 
See also application partition. 

system request 

Issued by the operating system to system services to notify the services of 
clients that are terminating or are being swapped out of memory. 

system service 

T 

An operating system process that provides services to client processes. 
System service processes are of two types: request-based system services 
and system common services. Request-based system service processes 
serve requests submitted by client processes throughout the network; 
whereas, system-common services contain system-common procedures 
that can be used by clients at the local workstation. System service 
processes can be dynamically installed or linked with the System Image 
at system build. 

TeleCluster 

u 

A system that supports connection of cluster workstations to a server 
over twisted-pair (telephone) wiring in a star configuration. 

user number 
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A I6-bit integer that uniquely identifies the programs and/or the 
resources associated with a partition. A user number (historically the 
same as a partition handle) is not associated with a partition's particular 
size or physical location in memory, because partitions are not static 
memory cells into which programs are loaded: a partition is created at 
the time a program is loaded into memory and is removed when the 
program is terminated. Each application partition has a different user 
number. Processes in the same application partition share the same user 
number. A process obtains its user number with the GetUserNumber 
operation. 
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v 
VAM 

See Video Access Method. 

Variable Length Parameter Block (VLPB) 

U sed by the Executive to communicate parameters to a succeeding 
application in the partition in which the VLPB is located. The VLPB is 
created in the long-lived memory of an application partition, and its 
memory address is stored in the Application System Control Block. See 
also Application System Control Block. 

variable partition 

VDM 

VHB 

Can use up to the maximum amount of memory specified at link time 
(when the program to be loaded into the partition was sized). 

See Video Display Management. 

See Volume Home Block. 

Video Access Method (VAM) 

Provides direct access to the characters and attributes of each frame. 
VAM can put a string of characters anywhere in a frame, specify 
character attributes for a string of characters, scroll a frame up or down 
a specified number of lines, position a cursor in a frame, and reset a 
frame. 

Video Display Management (VDM) 

Provides direct control over the way that the video appears. With it, an;, 
application program can determine the level of video capability, load a 
new character font into the font RAM, change screen attributes, stop 
video refresh, calculate the amount of memory needed for the character 
map based on the desired number of columns and lines and the presence 
or absence of character attributes, initialize each of the frames, and 
initialize the character map. 
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virtual 8086 mode 

An operational mode supported by Intel microprocessors beginning with 
the 80386. In virtual 8086 mode, multiple operating systems, such as 
MS-DOS, can execute in memory in a multiprogramming environment. 
A region of memory is allocated and assigned the operating system 
characteristics of an 8086 microprocessor: the region provides a 1 
megabyte address space within which a program can execute. 
Concurrently, application programs can execute in real mode or in 
protected mode in other memory regions. All executing programs have 
virtual machine capability. See also multiprogramming, Partition 
managing program, and virtual machine. 

virtual memory 

A technique that makes the apparent size of memory in an application 
partition (from the perspective of the application programmer) greater 
than its physical size. The primary mechanisms for the implementation 
of virtual memory are page swapping and segment swapping. (The use 
of program overlays is riot considered virtual memory because it is not 
transparent to the application programmer.) 

VLPB 

See Variable Length Parameter Block. 

volume 

The medium of a disk drive that was formatted and initialized for eTOS 
with a volume name, a password, and volume control structures such as 
the Volume Home Block, the File Header Blocks, the Master File 
directory, and so forth. A floppy disk and the medium sealed inside a 
hard disk are examples of volumes. 

volume Control structures 
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Allow the file management system to manage (allocate, deallocate, 
locate, avoid duplication of) the space on the volume not already allocated 
to the volume control structures themselves. A volume contains a 
number of volume control structures: the Volume Home Block, the File 
Header Blocks, the Master File directory, and the allocation bit map, 
among others. 
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Volume Home Block (VHB) 

w 
Wait 

There is a Volume Home Block for each volume. The VHB is the root 
structure (that is, the starting point for the tree structure) of information 
on a disk volume. The VHB contains information about the volume such 
as its name and the date it was created. The VHB also contains the 
memory addresses of the Log file, the System Image, the crash dump 
area, the allocation bit map, the Master File directory, and the File 
Header Blocks. The VHB is disk resident and one sector in size. 

The kernel primitive that a client calls to be placed in the waiting state. 
See waiting state. 

waiting state 

One of three states in which a process can exist. A process is in the 
waiting state when it is waiting at an exchange for a message. A process 
enters the waiting state when it must synchronize with other processes. 
A process can only enter the waiting state by voluntarily issuing a Wait 
kernel primitive that specifies an exchange at which no messages are 
currently queued. The process remains in the waiting state until another 
process (or interrupt handler) issues a Send (or PSend, Request, or 
Respond) kernel primitive that specifies the same exchange that was 
specified by the Wait primitive. Any number of processes can be in the 
waiting state at a time. See also ready state and running state. 

Workstation Agent 

See cluster workstation agent. 

x 
X-Bus 

XVT 

The extensible bus used to connect modules on a modular eTOS 
workstation. 

Sec Extensible Virtual Toolkit. 
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