
o

c

ENGINEERING upDATE FOR 2.0 PRINTGEN

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 1 of 120

Specifications Subject to Change.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Convergent, CT-DBMS, CT-MAIL, CT-Net, CTIX, CTOS,
DISTRIX, Document Designer, Generic Print System, The

Operator, AWS, CWS, IWS, MegaFrame, MiniFrame,
MightyFrame, and X-Bus are trademarks of

Convergent Technologies, Inc.

CP/M-86 is a registered trademark of Digital Research.
MS and GW are trademarks of Microsoft Corp.

UNIX is a trademark of Bell Laboratories.

Copyright 1985, 1986, 1987 by Conver~ent Technologies, Inc.,
San Jose, CA. Printed In USA.

All ri~hts reserved. Title to and ownership of the documentation
contamed herein shall at all times remain in Convergent
Technologies, Inc., and/or its suppliers. The full copyright notice
may not be modified except with the express written consent of
Convergent Technologies, Inc.

A-09-01159-01-C
Page 2 of 120

PRINTGEN
Engineering Update (DAA-170)

C

c

TABLE OF CONTENTS

1.0 PURPOSE and DEFINITION OF PRINTGEN 5

2.0 STRUCTURE and CONTENTS OF PRINTGEN 7

3.0 CONTENTS OF PRINTGEN DISTRIBUTION
DISKETIES ... 8

4.0 PRINTGEN INSTALLATION 13

5.0 ADDITIONS and CHANGES 15

6.0 STRUCTURE OF A GPS DEVICE DRIVER 16

7.0 DEVICE-DRIVER FONT PROCESSING 18

8.0 PAGE ORIENTATIONS and DIMENSIONS 21

8.1 Page Dimensions 21

8.2 Page Orientations 27

9.0 DEVICE-DEPENDENT FUNCTIONS 33

9.1

9.2

Required Device-Dependent Procedures 34

Graphics-Processing Device-Dependent
Procedures ~ 41

10.0 DEVICE-DRIVER STATUS MESSAGES 46

10.1 PAUSE Message 46

10.2 FONT-REQUIRED Message 47

10.3 FORM-REQUIRED Message 47

11.0 DEVICE-DEPENDENT OUTPUT ROUTINES 49

11.0 AVAILABLE GPS UTILITIES 52

11.1 Font-Related Utilities 53

11.2 Device-Setup-Field Utility 68

12.3 Miscellaneous Utility Functions 70

13.0 FONT ESCAPE SEQUENCES 74

14.0 GPS DATA STRUCTURES OF INTEREST 78

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 3 of 120

15.0 GPS CHARACTER-RECORD 83

16.0 GPS DEVICE-SPECIFICATION PARAMETERS 87

17.0 GPS 1.0 TO GPS 2.0 CONVERSION 94

17.1 Patching Existing GPS 1.1 Drivers o/~"

17.2 Changes Required for GPS 2.0 Link ~-.:~_~/

17.3 Adding GPS 2.0 Features 96

18.0 IMPLEMENTATION LANGUAGES 99

19.0 LINKING A NEW GPS DRIVER 100

20.0 DEBUGGING AIDS 104

21.0 EXAMPLES 107

22.0 GPS DEVICE-DRIVER STATUS CODES 111

22.1 GPS Status Codes 111

22.2 Font Service Status Codes 113

22.3 More GPS Status Codes 115

A-09-01159-01-C
Page 4 of 120

PRINTGEN
Engineering Update (DAA-170)

()

c

c

-~~-.-.. ---------.---.--.---~~----.---.. --------

1.0 PURPOSE and DEFINITION OF PRINTGEN

PrintGen is a tool kit which assists the programmer in creating a
new Generic Print System (GPS) device driver. GPS is an
abbreviation for the Generic Print System. PrintGen 2.0 addresses
the issues of creating a GPS 2.0 device driver.

PrintGen is

•

•

•

•

Documentation relevant to the description,
definition and creation of device-dependent
GPS device drivers.

Object modules for the device-independent
portion of a GPS device driver.

Various examples of device-dependent code
for GPS device drivers.

A collection of tools to simplify the creation of
a new device driver for GPS.

PrintGen is NOT -

•

•

An application or utility program which will
create GPS device drivers.

A tool for the "Printing Administrator".

• A menu-driven program to modify existing
drivers or to create new GPS drivers.

PrintGen's goal is to enable an experienced CTOS system
programmer to create a new GPS device driver within four weeks.
Many GPS device drivers can be implemented in less time.

More technically stated, the object of PrintGen is to 1) assist the
programmer in creating new device-dependent code, 2) l?rovide
all of the GPS-Core modules to the programmer, and 3) assist
the programmer in combining the provided GPS-Core modules
with the newly created device-dependent modules.

PRINTGEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 5 of 120

COMPATIBILITY NOTE

This version of PrintGen is an "engineering-update"
version to be used with the Currently-released GPS 2.0.
It entirely replaces the 1.1 version of PrintGen as well as
the s1.01 "engineeringJpecial" version. This
"engineering-update" version provides the facility to build
device drivers that are compatible with GPS 2.0 and that
include improvements made in GPS 2.0 device drivers.
Any drivers built by PrintGen for use with GPS 2.0 must
be built with this version of PrintGen.

A-09-011S9-01-C
Page 6 of 120

PRINTGEN
Engineering Update (DAA-170)

c

("""
. /

c

2.0 STRUCTURE and CONTENTS OF PRINTGEN

PrintGen consists of three basic components:

1) The PrintGen manual.

2) PrintGen files.

3) PrintGen examples.

PrintGen Manual -

This manual:

a.

b.

c.

d.

Defines what functions must be performed by
the device-dependent portion of any G PS
device driver.

Defines what procedural interfaces must be
present in any G PS device driver.

Defines the GPS data-output procedures that
must be used by the device-specific portion of
any GPS device driver.

Describes and defines the various GPS data
structures that are of· concern to the device
dependent code in any G PS driver .

e. Comments upon the example device-driver
source files that are included in PrintGen.

PrintGen Files

The PrintGen files provide the device-driver programmer
with:

a. The device-independent portion of any G PS
device driver.

b. Data-structure definitions which may be
included in the programmer's device
dependent code.

c. Commands and file-lists that control and
simplify the linkage of a new G PS device
driver.

PRIl'I'-GEN
Engineering Update (DAA-170)

A -09-01159-01-C
Page 7 of 120

PrintGen Examples -

Device-dependent source code for different types of GPS
device drivers is included with the PrintGen product. These
examples are taken from the set of Convergent Technologies
supported GPS device drivers. They complement the
defmitions in the PrintGen Manual by showing the
implementation of working GPS device drivers. Comments
upon the driver examples are found in the PrintGen Manual. ;/

Related Documentation -

3.0

Printin~ Guide.
Describes installation and use of GPS devices.

Generic Print System Pro~ammer's Guide.
Describes the components and architecture of G PS.

The eTOS 012eratin~ System Manual Volume I.
Describes yte Streams, and Byte-Stream Image
Modes.

CONTENTS OF PRINTGEN DISTRIBUTION
DISKETTES

This release of PrintGen is contained on two diskettes. Most files
are contained in an archive file on the two diskettes.

PrintGen-related files on the PrintGen-Installation diskettes

[diskette #1]

<Sys> HdInstall.sub

<CT> 2.0PrintGen.doc

A-09-01159-01-C
Page 8 of 120

PrintGen-installation file.

This document (Document
Designer 2.0 format).

PRINTGEN
Engineering Update (DAA-170)

(-"
'~ j '

o

c

[diskette #1]<CT>.Ol and [diskette #2]<CT>.02 (Archive File)

CtosTypes.h
String.h
String.mdf
CtosLib.edf
CtosTypes.edf

CommStatus_prelO.obj
CommNub_prelO.obj
lnitCo~prelO.obj
lnitComm.obj

2.0DevDr.lib

2.0Gpam.lib

GpsDb.ldf
DD.lit
structGps.h

DdParams.asm
DdParams.idf
DdParams.h

DdSam.idf
DdSam.h

GpsErc.idf
GpsErc.h

PRINTGEN

Ctos structure and subroutine
definitions.

Byte-Stream routines included in
GPS device drivers.

Library of G PS-Core routines.

Library containing G P AM
routines. (Version 2.0)

Defines data structures used by a
GPS device driver.

Template for the device-descrip
tion parameter file that must be
provlded with each GPS device
driver.

Procedural definitions of the
GPS-Core routines called by
device-dependent code for data
output.

Definitions of erc codes generat
ed by GPS device drivers. .

Engineering Update (DAA -170)
A-09-01159-01-C

Page 9 of 120

MinMax.idf
Convert.idf
CompileOptions.idf
DdChan~ePWheel.idf
DdUtilitIes.idf
FontUtil.h
FontUtil.idf
DdVp.idf
DRLTypes.h
DDLits.h
types.h
ulos.idf
Util.idf
XUtilDD.idf
DdFntLit.h
DdVpData.h

LinkGpsDriver. sub

AltVer.run

linkGpsFirst.f1s

linkGpsGr.fls

linkGpsGrStub.fls

linkGpsReqRes. fIs

linkDaisy.fls

A-09-011S9-01-C
Page 10 of 120

Definitions of Utility routines
used by the device-specific
source code of the example
device drivers.

Definitions of Submit file which
implements the Link GPS Driyer
command.

Utility used when creating a GPS
device driver that can be loaded
with the PMOS server. Run file
for ~ command.

List of GPS-Core routines that
must be the first object modules
in the list of object modules
specified to the Linker when
linking a GPS device driver.

List of GPS-Core graphics
modules.

List of GPS-Core modules that
must be included when graphics
processing is not supported by a
driver.

List of GPS-Core modules that
are required in all G PS device
drivers.

List of device-specific object
modules for the Daisy GPS
device driver.

PRINTGE~
Engineering Update (DAA -170)

c

c

linkDaisy .libr .fls

linkDaisy.sub

DaisyParams.asm
Daisy.c
DaisyJ)ata.c
DdConfig.c
DdFontChangeG. plm
DdSheet.c
Concat2.c
Concat3.c
Daisy.h
DdFDeLh
Ulcmp.c
Uc.c

linkHPLaserJeLfls

linkHpLaserJet.libr .fls

linkHPLaser J eLfls

HpParams.asm
HpLaserJet.plm

linklmagen8300 .fls

linklmagen8300.libr .f1s

linklmagen8300. sub

Ddlmagen8300. asm
DdlmagenDriver. plm
DdlmagenFont.c

PRINTGEN
Engineering Update (DAA -170)

List of device specific Library
files, if any, for the Daisy GPS
device driver.

Daisy submit file that links the
Daisy driver.

Daisy-driver source code.

List of device-specific object
modules for the HPLaserJet
G PS device driver.

List of device specific Library
files, if any, for the HPLaserJet
GPS device driver.

HPLaserJ et submit file that links
the HPLaserJet device driver.

HPLaserJet-driver source files.

List of device-specific object
modules for the Imagen8300
G PS device driver.

List of device specific Library
files, if any, for the Imagen8300
G PS device driver.

Imagen8300 submit file that links
the Imagen8300 device driver.

Imagen-driver source files.

A-09-01IS9-01-C
Page II of 120

linkLptSimple.fls

linkLptsimple.libr .fls

linkLptSimple. sub

LptSimple.c
LptParams.asm

Compile.-Examples.sub

CompileJ)ev.sub

PrtGen.fls

A-09-0llS9-01-C
Page 12 of 120

List of device-specific object
modules for the LptSimple GPS
device driver.

List of device specific Library
files, if any, for the LptSimple
GPS device driver.

Submit file that links the
LptSimple Device Driver by
means of the Link GPS Driver
command.

Simple-ASCII -printer driver
source files.

Submit file that compiles the
source files of the example
device drivers.

The Submit file that is called for
each of the four example device
drivers.

List of all the files in the Archive
file in the CT directories of the
PrintGen installation diskettes.

PRI1'c"TGEN
Engineering Update (DAA-170)

c

c

4.0 PRINTGEN INSTALLATION

PrintGen may be installed onto a workstation which has been
booted from a hard-disk -- it cannot be installed upon a system
that boots from a floppy disk. CTOS Standard Software 10.3, or
later is required for PnntGen installation and use.

The installation procedure:

a) Restores the PrintGen files from the distribution
diskettes archive file to various directories on the
currently pathed device. The directories will be created
if they do not already exist. Note that the user must
assure that existing dIrectories are of the size indicated
below or the compilation and link of example drivers
may fail. These directories are:

<2.0Daisy>
<2.0DaisyBld>
<2.0HP>
<2.0HPBld>
<2.0Imagen>
<2.0ImagenBld>
<2.0Lpt>
<2.0LptBld>

<2.0DevDrBld>
<2.0Gpam>
<2.0GpamBld>
<2.0GpsDef>
<2.0PrtGenBld>

200 Files
75 Files (default)

200 Files
75 Files (default)

200 Files
75 Files (default)

200 Files
75 Files (default)

75 Files ldefaultl
75 Files default
75 Files default

200 Files
75 Files (default)

b) Copies command files to the "system" directory. This is
usually the [Sys]<Sys> directory. Another "system"
directory may be specified -- see Installation
Procedure step 3 for the description of that installation
parameter.

c) Adds PrintGen commands to a command file. The
command file to which commands are added is usually
[Sys] <Sys>Sys.cmds. Another command file may be
specified -- see Installation-Procedure step 3 for the
description of that installation parameter.

PRIl'-'7GEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 13 of 120

PrintGen is installed onto a hard-disk workstation by performing
the following procedure:

1. Place the PrintGen-distribution diskette into floppy drive
fro].

2. Use the PATH command to set the path to the volume where ;/ -",
PrintGen directories will reside. Set default rassword to the
volume password for the PrintGen volume. I any installation "'-.. j

parameters other than the defaults are used, other volume
passwords may need to be set, or perhaps none at all.

3. Use the SUBMIT command to submit [fO]<Sys>Hdlnstall.
sub. The INSTALL command will work here; however,
there is no way to set installation parameters if the install is
done via the INSTALL command.

No parameters need be set, but there are two installation
parameters that may be specified by the installer.

Installation parameters - -

1) Installation Floppy Drive - This is the device from

#2)

which the PrintGen files are restored. It defaults to
[ro]. A different drive can be specified with this
SUBMIT parameter.

Command File This is the command file to which the
PrintGen commands are added. It defaults to
[Sys] <Sys>Sys.cmds. A different command file (e.g.,
[Sys]<Sys>Special.cmds) can be specified with the
third SUBMIT parameter.

Any of these parameters must be on the SUBMIT
command's "Parameters" line. Position is important. If a
value is to be entered on the second parameter, but not for
the first, a null parameter (i.e., ") must precede the second
parameter string on the "Parameters" line.

4. The Restore command will prompt the user to mount/insert
[ro]<ct>.Ol. This is the first of the two distribution
diskettes, and is already inserted in the drive -- the user
need only press <GO> at this point. When the Restore
command prompts the user for [fO]<ct>.02, he should
remove the first diskette, insert the second diskette and press
<GO>.

5. After the "installation-completed" message is displayed, the
PrintGen-distribution diskette is removed from [ro].

A-09-01159-01-C
Page 14 of 120

PRINTGEN
Engineering Update (DAA -170)

C~\
, y

c

6. On previous releases, the user could elect to copy the
Example files from a separate diskette. In this release, all
files are restored, including the example drivers and their
source.

7. All of the example GPS device drivers can be compiled by
submitting the following submit file: CompUe-Examples.sub.
This file invokes another submit file, CompUeJ)ev.sub, to
compile each of the example drivers. Examination of
CompUeJ)ev.sub will reveal the parameters required to com
pile and link the desired driver.

5.0 ADDITIONS and CHANGES

Fonts and character-translation:

Among the major new features introduced in GPS 2.0 are: 1) the
support of various fonts within a document; and 2) character
translation. These new device-driver features are described in the
following sections and subsections of this document:

• DEVICE-DRIVER FONT PROCESSING (page 18)
• Font-Related Utilities (page 53)

Page orientations and sizes:

GPS 2.0 has added a number of additional features to GPS in the
area of page orientations and page dimensions. Landscape and
portrait pages can now be printed in the same document. Device
page sizes can be specified at device-driver installation.

See the PAGE ORIENTATIONS and DIMENSIONS section
(page 21) for more information about page orientations and sizes.

Device-driver initialization:

Facilities have been added for device-dependent code that must
perform initilizations and resource allocations during installation,
before the device driver is converted to a CTOS system service.
See the descriEtion of the DdBeroreConvertG routine (page 34) in
the Required evice-Dependent Procedures subsection.

PRINTGEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 15 of 120

Debugging aids:

A number of features have been added to the GPS 2.0 device
drivers that aid the debugging of device-dependent code. These
are new features which have either been added explicitly for
debugging, or which also aid debugging in addition to their pnmary
purpose.

Debugging the device-dependent code of a G PS device driver is
aided by the following features:

• Debugger entry at device-driver installation.
• DdBeforeConvertG and DdFirstChanceG DDP routines.
• File output of output-device commands.

See the DEBUGGING AIDS section (page 104) of this document
for detailed information about these debugging aids.

GPS 1.0 --+ GPS 2.0 compatibility and conversion:

GPS 1.0 --+ GPS 2.0 compatibility issues are discussed in detail at
the appropriate places throughout this document. In addition, the
GPS 1 0 TO {IPS 2.0 CQNVERSION section (page 94) is
devoted to GPS 1.0 --+ GPS 2.0 conversion. That section
discusses several different conversion approaches. The different
approaches require different amounts of conversion effort and
Ylel,d different levels of GPS 2.0 functionality.

6.0 STRUCTURE OF A GPS DEVICE DRIVER

This section of the PrintGen Manual provides insight into the
architecture of a GPS device driver. This overview will aid the
programmer in understanding how the device-dependent portion
of a GPS device driver fits into the rest of the driver. It will also
aid the programmer in understanding which functions the device
dependent code must perform and which functions are already
implemented in the device-independent portion of a GPS device
dnver.

Two basic components comprise a GPS device driver. Those
components are:

• GPS device-driver~.
• GPS device-dependent portion (DDP).

The Core consists of all code that is used by all GPS device
drivers, independent of the actual output device being driven. All
code in any driver that is device-dependent comprises the DDP
code.

A-09-011S9-01-C
Page 16 of 120

PRINTGEN
Engineering Update (DAA -170)

/

c

c

The object of PrintGen is to: 1) assist the programmer in creating
new DDP code, 2) provide all of the GPS-Core modules to the
programmer, and 3) assist the programmer in combining the
provided GPS-Core modules with the newly created device
dependent modules.

One of the design goals of G PS, was to greatly simplify the task of
implementing new drivers. Consequently, the majority of a GPS
device driver's code is in the GPS Core -- relatively little DDP
code need be created to implement a new G PS device driver.

The DDP of a GPS device driver translates GPS data into device
specific data. It converts locations in GPS units of measure to the
appropriate device-specific locations, in the device's units of
measure. It converts GPS character-attribute flags into device
specific command sequences. It converts GPS color values into
the appropriate, device-dependent command sequences, etc.

From the perspective of the DDP, the GPS Core may be thought
of as perfonmng two functions. First, it provides character and
graphics information to the DDP for translation into a device
specific format; and, secondly, it takes the device-specific data
from the DDP and outputs it to that physical device.

Therefore, a GPS device driver is architecturally composed of two
parts: the GPS Core; and the DDP. But, using a data-flow
model, the DDP is sandwiched in the middle of the GPS Core -
it receives GPS data from the Core, translates it into device
specific data, and sends that new data to other half of the GPS
Core for output.

You can view the complete GPS device driver in terms of the "J am
Sandwich" model. The bread is the GPS Core, and the jam is the
DDP. The "jam" is surrounded by the "bread" -- one slice of the
GPS Core sends (GPS) data to the DDP while the other slice of
the GP1S Core receives (device-specific) data from the DDP of
the GPS device driver.

The text data received by the DDP from the GPS Core consists of
GPS Character Records. One of these records is received for
each character to be printed. A GPS Character Record specifies
which character is to be printed, and where it is to be printed on
the page. This record is fully defined in the Q£S
CHARACTER-RECORD section (page 83).

The graphics data received by the DDP from the GPS Core define
various graphics objects, in terms of GPS units. The graphics
data structure is defined for each ~aphics-processing routine in
the DEVICE-DEPENDENT FUNCTIONS section (page 33).

Output data emitted by the DDP of the GPS device driver is a
stream of bytes, in whatever format is proper for the particular
device supported by the driver.

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 17 of 120

The DDP does not always translate the output data. If
TRANSPARENT, IMAGE or BINARY ima~e modes are in
effect, all of the data is sent directly from the mput slice of the
GPS Core to the output slice, completely bypassmg the DDP of
the driver. (These "image modes" are defined in the GPAM and
CTOS-bytestreams documentation.)

Some of the GPS Core code is used only in the processing of
graphics data. A GPS device driver which supports only textual \,,-"/
data need not be burdened with graphics-processing code which it
will never use. Exclusion of the Core's $faphics code may be
requested when the device-driver runfile IS being linked. The
details of this are described in the LINKING A NEW GPS
DRIVER section (page 1(0).

7.0 DEVICE-DRIVER FONT PROCESSING

Amon, the major new features introduced in GPS 2.0 are:
1 The support of various fonts within a document.
2 Character translation.

This section discusses what a GPS 2.0 device driver must
accomplish to support font translation, what information a device
driver obtains from the Convergent Font Database, and what font
translation actions are the responsibility of the device-dependent
code in any GPS 2.0 device driver. This section descnbes the
"font philosophy" of a GPS 2.0 device driver. Subsequent sections
detail the procedures providing font-translation services to
device-dependent code. This supplements the Font Database and
Font ServIce information provided in the Printini Guide.

Character translation is required for the use of various fonts within
a document, but is also a useful feature even with devices that can
output only one font. For example, the output character code
used to print a 8, varies from device to device. The character
translation feature in the GPS 2.0 device driver can be used to
translate the document's character code for 8 into the character
code required by the particular device to print the Ii character.
This section discusses the character translation feature in the more
general case of multiple-font translations, but is relevant for those
GPS 2.0 device drivers that support only one font and require
some character-code translations.

A-09-011S9-01-C
Page 18 of 120

PRINTGEN
Engineering Update (DAA -170)

/

The following definitions are used in the rest of this section and in
some subsequent sections.

A glyph is mark made by an output device. Often a printed
character and a glyph are the same thing, but not always. A is an
output character. Depending upon the output device's

(
\ capabilities, this character could be composed of either one or two

. glyphs. Some printers have a command that results in an ii glyph
,/ being printed, but on some other printers the ii is printed by

c

commanding the 'printer to output an a glyph and an umlaut glyph
at the same 10catlOn.

Let Q:

Let ,8

Let X

represent the character code for a character in a
document.

represent the code for a glyph that can be printed by a
device.

represent the command string which must be sent to a
device to cause a particular glyph to be printed.

The goal of a GPS 2.0 device driver, with respect to font
translation, is to perform the following translations:

a--+,8-+x

For a given a, find its corresponding ,8, and then find the X which
corresponds to that,8. Or to put it another way, for a given
character code in a document (a), find the value ({3) used to
represent that glyph on the particular output device, and then find
the device command (X) that must be sent to the device to cause
the desired glyph to be printed.

For example, assume the following:
1. The character code for ¢ in a document is 3.
2. A particular printer is capable of printing the ¢ glyph.
3. The code aSSigned to the ¢ glyph for this printer is 250.
4. The command that must be sent to this printer to print

the ¢ glyph is SHIFf-IN/123/SHIFT-OUT.
So cds 3.

f3 is 250.
X is SHIFf - INI123/SHIFf -OUT.

And the desired translation to print a ¢ upon this particular printer
is:

3 -+ 250 -+ SHIFf-IN/123/SHIFf-OUT.

The translation sequence:
a-+,8-+x

is more manageable when separated into its two components:
1. 0:-+,8
2. ,8 -+ X

PRINTGEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 19 of 120

The first translation (0' -+ (3) is referred to as the First-Level
Translation. The second «(3 -+ x) is referred to as the Second
Level Translation.

In general, the First-Level Translation is actually not a I-to-l
translation, but rather a I-to-many translation. Consider the
above case of a printer that prints an i by outputting two glyPhs
(an a and an umlaut) at the same position. In this case the Flrst
Level Translation must translate from the document code to the
printer's glyph codes. (And then the printer commands to print
each of these two glyphs are obtained by performing the Second
Level Translation u~on each of these two resultant glyph codes.)
So the First-Level Translation is really: '

0' -+ «(3,/3 ,/3 ... ,(3).
The Font Se~i~e 3 supports this I-to-many mapping in the First
Level Translation.

A GPS 2.0 device driver is organized such that the driver Core
controls the First-Level Translation, and the device-dependent
code controls the Second-Level Translation. (Utility routmes are
provided for use by the device-dependent code to extract the
Second-Level Translation information from the Font Database.)
This division between the Core and device-dependent code means
that the device-dependent code need not compose a character
from individual glyphs, and need not translate from the document
character code to the device's glyph codes. The Core passes to
the device-dependent code a series of device-glyph codes and the
location at which each glyph is to be placed upon the page. The
device-dependent code is then responsible for correctly
positioning the "printhead" and for obtamin~ and outputting the
corresponding print-glyph command. ConSIder again the above
case of a printer that prints an a by outputting two glyphs (an a
and an umlaut) at the same position. The Core will translate the
document code for a into the device's glyph code for an a and the
device's glyph code for an umlaut. These two glyph codes will be
passed to the device-dependent code, which is responsible for
obtaining and outputting the two corresponding printer commands.

Design of a particular GPS 2.0 device driver and the information
for that device in the Font Database are, therefore, interrelated.
Generally, the device-driver designer should also "design" the data
to be added to the Font Database for that device.

Subsequent sections in this document detail:
1. Routines called from device-dependent code to obtain

Second-Level Translation data.
2. Font-related information passed from the Core to the

device-dependent code for each printer glyph to be
printed.

3. Examples of how some of the Convergent-supplied
device drivers use these routines.

A-09-011S9-01-C
Page 20 of 120

PRINTGEN
Engineering Update (DAA -170)

c

c

8.0 PAGE ORIENTATIONS and DIMENSIONS

GPS 2.0 has added a number of additional features to GPS in the
area of page orientations and page dimensions. Landscape and
portrait pages can now be printed in the same document. Device
page sizes can be specified at device-driver installation.

To take full advantage of these new features, device-dependent
code and data must added for each hardware device that can
support them.

Page orientation and page dimensions are presented together in
this section because page orientation is determined by page
dimensions.

8.1 Page Dimensions

Several page-dimension sets exist in a GPS 2.0 device driver.
They are:

1~ PrintGen page-dimensions.
2 Installation page-dimensions.
3 GPAM page-dimensions.
4 Current page-dimensions.

These four page-dimensions are described in detail below.

PrintGen page-dimensions:

Each GPS 2.0 device driver includes a specification of the
maximum-sized page that can be supported by the device driver.
This page-dimension pair is specified in DDwPgLength and
DDwPgWidth. These two PrintGen variables are defined in the
GPS DEVICE-SPECIFICATION PARAMETERS section (page
87). .

These two variables had a different usage in GPS 1.0 device
drivers. In GPS 1.0 device drivers, they specified the driver's
page size for each page of each document. In GPS 2.0 device
drivers, these variables specify the driver's maximum page size.
The three other page-dimensions cannot exceed this driver
maximum page size.

PRI~7GEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 21 of 120

Installation page-dimensions:

Device page size is specified at device-driver installation. This
installation page-dimension becomes:

a. The default page size for all documents printed by this
driver.

b. The maximum page size for all documents printed by
this driver.

This installation-time, page-size specification allows a single
device driver to support different-sized paper in different
installation instances.

Installation page-size is limited by the PrintGen page-dimensions.
An installation page-size that is larger than the PrintGen-specified
page-size is not accepted. During installation, each installation
page-dimension that exceeds the corresponding PrlntGen page
dimension is replaced by the corresponding PrintGen page
dimension. For example, if the PrintGen page-size is 81f2 X 11
and a page-size of 14 X 10 is specified at device-driver
installation, then the resultant installation, default page-size will be
81/2 X 10.

Installation page-dimensions are specified b~ entering values into
the l&.ni1h and ~ fields of the Paie]2imensiQru; for GPS
Output section of Print Manager's device-driver installation form,
~~fp~o entering a value into the Chars Per Line (nQn-GPAM

field of the same Print Manager form. The "Chars Per
Line" value is a special-case, page-width specification, and is / '"
discussed later in this subsection. '

GPAM page-dimensions:

GPAM's GPAMBeginPage call may include page-dimension
specifications. This page-dimension information specifies the
page-dimensions to be used while printing the page data that
follows the GP AMBeginPage call. Any GP AM page-dimensions
replace the Installation page-dimensions for the page that follows.

GP AM page-dimensions are limited by the Installation page
dimensions. A GP AM page-size that is larger than the
installation-specified pa~e-size is not accepted. During
GPAMBeginPage-processmg, each GPAM page-dimension that

. exceeds the corresponding Installation page-dimension is replaced
by the corresponding Installation page-dimension.

A-09-011S9-01-C
Page 22 of 120

PRINTGEN
Engineering Update (DAA-170)

('~
, /

(
"~

" '\

C~

Current page-dimensions:

The page-dimensions currently in effect are the Current page
dimensions. These are the page-dimensions actually used by the
G PS Core in processing print data. Current page-dimension
values are a function of the preceding three types of GPS device
driver page-dimensions.

Usually, the Current page-dimensions are equal to either the
Installation page-dimensions or to the GPAM page-dimensions.
When printing a GPAM document, the Current page-dimensions
are usually equal to the GP AM page-dimensions. When printing a
non-GPAM document, the Current page-dimensions are usually
equal to the Installation page-dimensions. But they are sometimes
not equal to either the GP AM or Installation page-dimensions. As
descnbed above, Installation page-dimensions can be altered by
PrintGen page-dimension limitations, and GP AM page-dimensions
can be altered by Installation page-dimension limitations. Also,
the actual Current page-dimensions are affected by the I>:~:
orientation requested. This is described in the following
Orientations subsection (page 27).

When device-driver installation begins, the PrintGen page
dimensions are used as the Current page-dimensions. After the
Installation page-dimensions have been obtained (and perhaps
altered by PrintGen pa~e-dimension limitations), they become the
new Current page-dImensions. When any GPAM page
dimensions are encountered, their (perhaps altered) values become
the new Current page-dimension values. If a page-orientation
request necessitates a change in page-dimensions, then the new,
changed values become the new Current page-dimension values.

Page-dimension usage:

Page-dimension values have two primary uses in a GPS device
driver:

1. Page-orientation determination.
2. Device-dependent information.

Pa~e-orientation determination is discussed in the ~
Onentations subsection (page 27), which follows. Page-dimension
information is passed to the device-dependent code at the
beginning of each pa~e. (See the description of DdNewPageG in
the DEVICE-DEPENDENT FUNCTIQ~S section, page 40.)

Generally, the page-dimensions do not cause the Core to restrict
where characters or graphics may be placed on a page. A
GP AMReposition may be specified to any location within the 45" X
45" GPS page space, regardless of the page-dimensions. And
characters and graphic objects may be placed at any location
within the GPS page space. There are some special cases in

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 23 of 120

which the GPS Core does force placement of characters to be
within the Current page-dimensions. These involve the printing of
non-GP AM and unformatted documents, and are discussed
below.

Chars-Per-Line and non-GPAM documents:

When a non-GP AM document is being printed, the page width is
based upon number of columns instead of the specified J'age
width. This number-of-columns value is obtained from the Uars
Per Line (non-GPAM output) field of. the Print Manager's
device-installation form.

When a non-GP AM document is being printed, the page width is
based upon how many columns are available. When a GPAM
document is being printed, the page width is based upon the
specified size in inches.

A GPS 2.0 implementation detail is significant here. The GPS
Core's Current page-dimensions are always inches, never
columns, even when printing a non-GP AM document. When the
printin~ of a non-GP AM document is begun, the specified Ch.ars
Per Lme value is multiplied by the device driver's default
character width (DDwWidth) to ~enerate a page width in inches
that the Core can use for part of Its page-dimensions. If a device
driver has a particularly large default character width and a large
enough "columns" value is specified, then the Core will attempt to /
generate a page width that exceeds the 16-bit limit of GPS units.
If such overflow occurs, the resultant output is undefined. For 7

examrle, if a device driver's default character width is one-tenth
inch (144 GPS units), then the maximum valid value of Chars Per
~ is about 445.

Line wrapping and automatic FonnFeeds:

In a limited number of cases, the GPS Core will prevent an
attempt to place a character past the right edge of a page or
beyond the bottom of a page. These cases occur only in
unformatted documents.

An unformatted document is a document that does not contain
character-positioning commands. An ASCII text file is therefore
an unformatted document (LineFeed, CarriageReturn, Tab and
FormFeed are not character-positioning conimands for this
classification). A GP AM file mayor may not be a formatted
document. If it contains no character-positioning commands, then
it is an unformatted document.

Wh"en any attempt is made to place a character of an unformatted
document past the bottom of the page, a new page is begun, and

A-09-011S9-01-C
Page 24 of 120

PRINTGEN
Engineering Update (DAA-170)

that character is positioned at the beginning of this new page. The
offpage detection and new-page generation is performed by the
GPS Core. The page-length component of the Current page
dimensions determines the location of the bottom edge of the page.

Attempts to place an unformatted-document character past the
right edge of the page mayor may not be allowed. The default is
to allow such character placement. However, if Wrap: was
entered on the Deyice Setup field of Print Manager's device
driver installation form, then such past-the-right-edge placement
is not allowed by the Core. Rather the offending character is
placed at the beginning of the next line. The pa~e-width
component of the Current page-dimensions determmes the
location of the right edge of the page.

So for an ASCII text file that contains no FormFeeds, a new page
will be automatically created by the Core each time the current
page is filled. If Wrap: is not specified at installation and any
lines of the text are wider than the printer, the appearance of the
output depends only upon what the particular printer does when
an output line exceeds its capacity. If Wrap: is specified, then
these too-long text lines will be automatically nwrappedn onto the
next printer line by the GPS Core.

GPS 1.0 device drivers perform quite differently in this respect.
They force line wrappmg and automatic page eject for all
documents -- even formatted documents. By entering Wrap: on
the Deyice Setup field of Print Manager's device-driver
installation form, a GPS 2.0 device driver can be made to behave
like a GPS 1.0 device driver, when processing unformatted
documents.

Page borders:

The Paie Dimensions for GPS Output section of Print Manager's
device-driver installation form includes Border fields. Border
values are for special cases of printing hardware. Border values
are often reqUlred for laser-printer drivers. Even for laser
printers, these fields can usually be left blank.

Many of the laser printers are unable to print on all of their page's
character positions. Although these printers allow the commands
to print on these positions, they are unable to actually make any
marks on their page's at those locations. These dead z.ones are
alon9 one or more of the page's four ed,8es. The size of each
edge s dead zone usually differs from the SlZes of that page's other
dead zones. Their values vary among the different brands of laser
printers, and even vary among a given brand.

It is not unusual, for example, for the first one to three columns of
a laser printer to be unusable.

PRINTGEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 25 of 120

Default border values must be supplied as part of each GPS
device driver. If no border values are entered at device-driver
installation, then all of the driver's default border values are used.
For printers that do not have this dead-zone problem (non-laser
printers), the default border values should be O. For laser
printers, nominal border values for the supported printers should
be included in the GPS device driver. If the proper default border
values are built into the device driver, the user will rarely need to
enter any border values when installing the driver. Some ',,-./
experimentation with several copies of the given printer is usually
required to obtain these values.

A GPS device driver's default border values are stored in the
following device-driver variables:

• DDwLeftBorder Width of the page's left-edge
dead zone (GPS units).

• DDwRightBorder

• DDwTopBorder

Width of the page's right-edge
dead zone (GPS units).

•
Height of the page's top-edge
dead zone (GPS units).

DDwBottomBorder Height of the page's bottom
edge dead zone (GPS units).

These device-driver variables are listed in the GPS DEYICE
SPECIFICATION PARAMETERS section (page 87).

The border values affect the Core's Current-page-dimensions
calculations. They affect the page's default first-character
position, where auto-line~wrap occurs,. where auto-page-eject
occurs, auto-sizing of graphics, auto-centering of graphics, etc.

These printer border values should not be confused with
formatted-documents' margins. Values should nnu be entered
into the border fields at device-driver installation time in an
attempt to create document margins!

A-09-011S9-01-C
Page 26 of 120

PRINTGEN
Engineering Update (DAA -170)

c

o

c

8.2 Page Orientations

Two pa~e orientations are supported by the GPS 2.0 Core. Page
orientation information is passed from the G PS Core to the
device-dependent code at the beginning of each page.

A given printer mayor may not produce output in the two
orientations. Whether or not it does is determined by:

1) Whether or not the printer hardware can print in two
orientations.

2) Whether or not page-orientation support has been
included in the GPS device driver's device-dependent
code.

Page-orientation definitions:

The two page ori~ntations are named:
• PortraIt
• Landscape

When a ~age's hei~ht (or len~h) is Keater than its width, then
tbat page s orientatIOn is Portrait. (e painting of a portrait is
usually taller than it is wide.)

When a page's width is iTeater than the paie's heiiht (or length),
tben that page's orientation is Landscape. (The painting of a
landscape IS usually wider than it is tall.)

Desired page orientation may be specified by two means in a GPS
2.0 device driver.

First, a Portrait or Landscape orientation may be requested in the
GP AMBeginPage call. The bAspect field of the parameters
structure may be set to Landscape or Portrait.

Secondly, the Current page dimensions may be used to specify the
page orientation. If GPAMBeginPage's bAspect field is set to
default, then the Current page dimensions are evaluated by the
GPS Core. If the Current page dimensions have a height greater
than their width, Portrait orientation will be requested. If the
width is greater, Landscape orientation will be requested. The
Current page dimensions are also used to determine page
orientation when a document contains no GP AMBeginPage
specifications.

A bAspect value of Landscape or Portrait takes precedence over
Current page dimensions and GPAMBeginPage page dimensions.

GP AM applications may use either means of specifying page
orientation. The Convergent Document Designer, for example,
does not utilize the bAspect field at all. Rather every page of a

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 27 of 120

Document Designer document has specific dimensions associated
with it, and these dimensions are included in the GP AMBeginPage
calls. So at the beginning of each page, the GP AMBeginPage page
dimensions are used to specify the desired orientation for that
page.

A GPAM document may contain pages of both orientations. This
is true because at the beginning of each GP AM page, a new page
orientation may be requested. This is accomplished through use of /'
either the GP AMBeginPage bAspect value or the GP AMBeginPage
page dimensions.

Only one page orientation will exist in a non-GP AM document.
Since a non-GP AM document does not include GPAMBeginPage
calls, it cannot specify page orientation or page-dimensions.
Therefore the Installation page-dimensions will be used to select
page orientation, and the page orientation will not change within
the document.

For the same reasons, only one page orientation will exist in
GPAM documents that do not include GPAMBeginPage calls.

Such default page orientations ma¥ differ for non-G P AM and
GPAM documents, however. This IS because the Chars Per Line
value specifies the installation pa~e width for non-GP. AM
documents, while ~ (in inches) specifies it for GPAM
documents. The two are generally not the same, and may result in
different page orientations being requested. For example, assume
that a dnver is installed with the following page dimensions: 1)
Width = 81h", Length = 11" and Chars-Per-Line = 132. Assume
also that the device driver's default character width is 0.1 inch.
Then the default Current page-dimensions will differ for the two
types of documents. For a GP AM document the dimensions are
81f2 X 11, which specifies portrait orientation. For a non-GP AM
document the dimensions are 13.2 X 11, which specifies landscape
orientation (132 • 0.1" = 13.2").

DDP's page-orientation responsibilities:

A GPS device driver's device-dependent code must:
• Specify to the G PS Core whether or not this device

driver supports more than one page orientation.
• Access the page-orientation information provided by

the Core.
• Issue to the printer the necessary change-page

orientation commands.

DdDevOrient values specify the device driver's page-orientation
capabilities.

A-09-011S9-01-C
Page 28 of 120

PRINTGEN
Engineering Update (DAA-170)

c

Page-orientation information is passed to the DDP at the
beginning of each page.

The following PaieL and PaieP subsection describes the one case
in which the device-dependent code is not responsible for
generating the printer's change-page-orientation commands.

DdDevOrient values:

A data structure in each GPS device driver specifies the page
orientation capabilities of that device driver. The data structure is
DdDevOrient. See the GPS DEVICE-SPECIFICATION
PARAMETERS section (page 92) for the DdDevOrient-structure
definition and field values.

Multip'le page-orientation processing will be done by the Core
only if the bOrients field specifies that the device is capable of
outputting in two orientations. If this field is set to one, the Core
will never notify the DDP of requests for page-orientation
changes.

The device's default page orientation is specified by the value set
in the bDerault field. If the driver supports only one page
orientation (bOrients = LI0RIENTATION), the value placed into
the bDerault field is irrelevant.

Laser printers' page borders (described in the previous subsection)
necessitate the bPtoL field. The Core must calculate the first and
last "columns" that will actually show up on a page. It must also
calculate the first and last usable lines. These values are
determined by page-border values. When page orientation
changes, these values are recalculated. If page orientation
changes from its default orientation, is the new Left Border now
the old Top Border or the old Bottom Border? It varies from
printer to printer. The value that is set into this bPtoL field
specifies whether it is the old Top Border or the old Bottom
Border. The other, needed border-rotation rules are also
specified by this field's value.

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 29 or 120

A $feat variety of orientation-change possibilities exist among the
vanous devices that support mUltiple page orientations. Therefore
the following should be done to determine the correct value for the
bPtoL field:

1. Set bPtoL to one of its two valid values. Valid bPtoL
values are 1 and 2. Symbol values defined in
DdParams.asm are LMINUS90 and LPLUS90.

2. Print a non-GP AM document in the non-default page
orientation. (This document should not begin with
spaces.)

3. If any of the first characters of each line do not show
up on the output page, then set bPtoL to its other valid
value.

If the driver supports only one page orientation (bOrients =
LIORIENTATION) , the value placed into the bPtoL field is
irrelevant. If the driver supports a multi-orientation printer that
does not have dead-zones on its page's edges, set bPtoL to either
of the two valid values.

The fLFntDev must always be set to FALSE in a GPS 2.0 device
driver.

Page-orientation information passed to DDP:

Each time that a J?age is begun, the GPS Core calls the DDP's
DdNewPageG routme. This call includes a pointer to the new
page's Page Descriptor. The Page Descriptor is a structure
containing information about the new page's dimensions and
orientation. It is defined in the GPS DATA STRUCTURES OF
INTEREST section (page 78). The bOrient field of the structure
specifies the page's orientation.

I t is the responsibility of the device-dependent code to interpret
the bOrient field, and issue the needed orientation-change
commands to the output device. Any font-selection operations
that are a function of page orientation must be handled by the
device-dependent code. Printing documents using both portrait
and landscape orientations is supported only to the extent that the
same printer fonts are available 10 both orientations.

A-09-011S9-01-C
Page 30 of 120

PRINTGEN
Engineering Update (DAA-170)

c

c

PageL and PageP:

The GPS Core does provide an orientation-change-command
output facility. It is called PageLlPageP. Its intended use is for
temporary, page-orientation support of new printers. The
PageLlPageP feature should be no longer needed after the driver
has been updated to support that new printer.

PageLlPageP is a GPS-Core feature that outputs change-page
orientation commands to the device. The commands that is sends
to the printer are specified by the user at device-driver
installation. PageLlPageP is relevant only if the DDP specifies
that it supports both page orientations.

Two different page-orientation command strings may be entered
into Print Manager's device-driver installation form. One is the
command which causes the device to switch to landscape
orientation -- this string is called the PageL string. The other is
the command which causes the device to switch to portrait
orientation -- it is called the PageP string.

A PageL string is specified by typing PageL:<hex-string> into the
DEVICE SETUP field of Print Manager's device-installation
form. A PageP string is specified by typing PageP:<hex-string>
into that field. <hex-string> is the command string that is to be
sent to the output device.

The PageL string is output to the device, DY the GPS Core, after
calling DdNewPageG if all of the following are true:

1. A PageL string was specified at device-driver
installation.

2. The new page's orientation is landscape.
3. Both page orientations are supported by the device

driver.

The PageP string is output to the device, by the GPS Core, after
calling DdNewPageG if all of the following are true:

1. A PageP string was specified at device-driver
installation.

2. The new page's orientation is portrait.
3. Both page orientations are supported by the device

driver.

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 31 of 120

It is not recommended that the PageLlPageP facility be considered
as a permanent solution to any device-support requirement.. A
better approach is to have a list of device names that are
recognized by the device-dependent code. The user enters one of
these names into the DEVICE SETUP field of Print Manager's
device-installation form when installing the device driver. The
DDP uses this information to select the device commands that it
should, itself, output when DdNewPageG is called. This approach
is less error prone, is easier for the user, and enables the device
dependent code to select the appropriate set of device-dependent
commands.

Another example of the use of PageL and PageP strings is in the
Convergent-supplied Daisy device driver. The goal was to make
it likely that many of the laser "daisy emulators" would work with
Convergent's driver, and that the page-orientation capabilities of
these daisy emulators could be used. This was accomplished by
specifying that the Daisy driver supports both page orientations
(DdDevOrient.bOrients = L20RIENTATIONS), and by utilizing
the PageL/PageP facility.

If a user specifies PageL and PageP strings when installing the
Convergent-supplied Daisy device driver, the appropriate
command string will be output (by the Core) to the attached
printer each time that page onentation changes.

If such a laser printer was to be used regularly with the Daisy
driver, PrintGen should be used to create a new version of the
device driver. This new version would recognize a new device
name that represents this laser daisy emulator Uust as it currently
recognizes names that represent the Diabl0630, Qume, etc.)
Occurrence of this new device name would signal the device
dependent code to output the required change-orientation
commands when its DdNewPageG is called by the Core.

A-09-011S9-01-C
Page 32 of 120

PRINTGEN
Engineering Update (DAA-170)

c

c'

9.0 DEVICE-DEPENDENT FUNCTIONS

This section lists the functions that must be provided by the DDP's
device-dependent code. These procedures are called by the GPS
device-dnver Core to pass characters to the DDP, pass graphics
objects to the DDP, begin and end documents, begin and end
pages, etc.

Not all of these functions must always be implemented. The
procedure specifications in this section are divided into two
groups:

• ALWAYS REQUIRED,
• REQUIRED ONLY FOR GRAPHICS PROCESSING.

Each procedure's specification consists of:

1) A procedure declaration.

2)

3)

This declaration includes the name of the
procedure; the procedure's parameters; and type of
value (if any) returned by the procedure.

PLM syntax is used for the procedure
declarations. If a procedure expects parameters, they
are enclosed in parentheses. If a data-type is assigned
to the procedure, then the procedure is called as a
function and returns a value of the specified data-type.

Most of the required device-dependent
procedures are called as functions, and most of these
functions return an error code. This is a one-word
value. It is equal to zero for no error, or equal to a
CTOS, GPS or user-define·d error code. Error codes
15300 to 15319 may be used by GPS device-driver
writers.

Description of the function to be performed by the
procedure.

Description of each input parameter.

For each input parameter, its use and data-type.
are described.

Please note that some input parameters are used
to specify where the procedure's output data is to be
placed.

PRINTGEN A-09-01159-01-C
Page 33 of 120 Engineering Update (DAA -170)

9.1 Required Device-Dependent Procedures

The following procedures must always be implemented in the DDP
of any G PS device driver.

DdBeCoreConvertG: PROCEDURE(plnfo, pInfoRet)
ERCTYPE PUBLIC REENTRANT;

This device-dependent routine is called after all of the installation
parameters have been obtained and processed by the Core, and
beCore the device driver is converted to a system service.

GPS 1.0 device drivers did not require this routine.

The purpose of this routine is to allow device-dependent
processing to be performed before ConvertToSys. Whether or not
this procedure does anything is determined by the device-driver
designer.

An error code must be returned by this procedure. If it is a non
zero value, installation of the device driver will terminate.

Parameters -

pInfo:

pInfoRet:

A pointer to an array of bytes. The first two
bytes contain the version word. This is the
version value obtained from the GPS request
file. No other fields are defined in this " Info"
byte structure for the 2.0 release of GPS.

A pointer to an array of bytes. Information
that is to be provided by the device-dependent
code should be placed into this byte array. No
such information is defined in this 2.0 release
of GPS. ThereCore, pInfoRet should NOT be
used by GPS 2.0 device drivers!

A stub for this procedure is included in the GPS 2.0 device-driver
Core library. If DdBeCoreConvertG will do no processing in a
particular device driver, then the already--defined stub may be
mcluded. It is included by referencing this library module in the
list of device-specific object modules.

A-09-011S9-01-C
Page 34 oC 120

PRINTGEN
Engineering Update (DAA -170)

c

DdBeginDocumentG: PROCEDURE(psbDocName, psbUserName)
ErcType PUBLIC REENTRANT;

This routine is called at the beginning of each document to notify
the DDP that a new document is being begun. Document and
User names are provided for possible use by the DDP. An "error
cede" (one word; equal to zero if no error) is returned by this
routine.

A "beginning of document" form-feed should NOT be done by this
routine.

Parameters -

psbDocName:

psbUserName:

A pointer to the "sb" string containing this new
document's name.

A pointer to the "sb" strin~ containing the
name of the user associated with this
document.

DdEndDocumentG: PROCEDURE ErcType PUBLIC
REENTRANT;

This routine is called at the end of each document, in case there is
any end-of-document processing that is to be done by the DDP of
the GPS device driver. If the end-of-document processing
requires that bytes be output to the port, it is the responsibility of
this routine to make that output happen (i.e., there will be no
subsequent call to DdFlushBufferG by the G PS Core to force
anything out). An "error code" is returned by this routine.

An "end of document" form-feed should NOT be done by this
routine.

Parameters - none

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 35 of 120

DdFirstChanceG: PROCEDURE ERCTYPE PUBLIC
REENTRANT;

This device-dependent routine is called at the very beginning of
device-driver installation (right after the conditional
INTERRUPT-3 instruction).

GPS 1.0 device drivers did not require this routine.

The intended purpose of this routine is for debugging by users of
PrintGen.

An error code must be returned by this procedure. If it is a non
zero value, installation of the device driver will terminate.

Parameters - none

A stub for this procedure is included in the GPS 2.0 device-driver
core library. If DdFirstChanceG will do no processing in a
particular device driver, then the already-defined stub may be
mcluded. It is included by referencing this library module in the
list of device-specific object modules.

DdFlushBufferG: PROCEDURE ErcType PUBLIC REENTRANT;

This procedure is called when any data currently buffered within
the DDP of the GPS device driver must be output to the device.
An "error code" is returned by this routine.

Parameters - none

A-09-011S9-01-C
Page 36 of 120

PRINTGEN
Engineering Update (DAA-170)

/

c

DdFormFeedG: PROCEDURE ErcType PUBLIC REENTRANT;

This routine is called when the GPS Core wishes a form-feed
operation to be performed. The DDP of the GPS device driver
has the res\?onsibility of flushing its buffers first, if necessary. An
"error code is returned by this routine.

This is device-dependent function is called at the end of each page
(and maybe at the beginning of a document). Another device
dependent function (DdNewPageG) is called at the beginning of
each page.

Parameters - none

PRIl'."G EN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 37 of 120

DdInitializeG: PROCEDURE(pbModeRet) ErcType PUBLIC
REENTRANT;

1bis routine is called when the port is acquired for the device
driver. 1bis occurs when the first document IS output to a spooled
device, or each time that a client acquires a direct-print device.
Any required output-device initialization or any initialization of
the DDP should be done by this routine. An "error code" is
returned by this procedure.

A value must be returned to GPS-Core by this routine -- the
returned value is the output ima~e-mode that the DDP will be
using. (See the parameter descnption below for a definition of
ima~e-mode values.) Both the DDP and Core output data to the
deVice. (The GPS Core outputs data directly during Transparent
mode, for example.) While the Core is doing its output, It uses
the ima~e-mode that it needs. When it has completed its data
output, It restores the port's image-mode to the value desired by
the DDP. The value returned by this DdInitializeG procedure is
this image-mode value that will be restored by the Core when
necessary.

Even though this routine must specify its desired image mode to
the GPS Core, the DDP of the GPS device driver must, itself,
initially set the port to the image mode that it desires.

Part of the initialization done by the DdInitializeG routine should
include a call "to SetDdSamMode to set the output port to the //,
image-mode value desired by the device-dependent code.
Generally, an image mode of Binary should be specified. Devices ./
that require control sequences, must use the Binary image mode.
If the Normal image mode is specified by this procedure, then any
RETURN's or TAB's output by the DDP are interpreted as
specified in the device-driver installation form. This interpretation
is performed by the CTOS output service.

A-09-011S9-01-C
Page 38 of 120

PRINTGEN
Engineering Update (DAA-170)

c

Parameters -

pbModeRet:

PRINTGEN

A pointer to the byte that the desired image
mode is to be written into by this procedure.
The valid image-mode values are:

o Normal,
1 Image, and
2 Binary.

(See the definitions of these image modes
under Printer Byte Streams and Spooler Byte
Streams in cros Volume 1.) Since the GPS
Core does the interpretation and extraction of
embedded escape sequences, the Image and
Binary modes are equivalent for the output
(device-dependent) portion of a G PS device
driver.

Engineering Update (DAA-170)
A-09-01159-01-C

Page 39 or 120

DdNewLineG: PROCEDURE ErcType PUBLIC REENTRANT;

This routine is called to cause device output to advance to the next
line. An "error code" is returned by this procedure.

Parameters - none

DdNewPageG:
PROCEDURE (pPD) ErcType PUBLIC REKNTRANT;

This routine is called to define the beginning of a new page of
output. The device-dependent routine should perfonn whatever
functions are necessary to begin a new page of output. Page
coordinates should be reset. A fonn-feed operation should NOT
be performed by this routine. The input parameter points to an
updated Page-Descriptor. An "error code" is returned by this
procedure.

(See also the above description of the DdForrnFeedG procedure.)

Parameters -

pPD: A. pointer to the Page-Descrigtor data
structure (defined in the or DATA
STRUCTURES OF INTEREST section, page
78.)

A-09-011S9-01-C
Page 40 of 120

PRINTGEN
Engineering Update (DAA -170)

\",-- ./

DdPutCharG: PROCEDURE (pToken) ErcType PUBLIC
REENTRANT;

This routine is called to give the next output character to the
device driver's DDP. The data passed to the device-dependent
code is a GPS Character Record. An "error code" is returned by
this procedure.

Parameters -

pToken:

PRINTGEN

A pointer to the GPS Character Record. The
GPS Character Record (also referred to as
the character token) contains the character to
be output, its page position, its attributes, its
font, etc. The GPS Character Record is
described in the GPS CHARACTER
RECORD section (page 83).

Engineering Update (DAA-170)
A-09-01159-01-C

Page 41 of 120

9.2 Graphics-Processing Device-Dependent Procedures

The following procedures must always be implemented in the DDP
of a GPS device driver that outputs graphics. A GPS device driver
that does not process graphics need not include these routines.

DdGrBeginG: PROCEDURE ErcType PUBLIC REENTRANT;

This procedure is called at the beginning of each graphics object,
or picture. This enables the DDP to perform any necessary text
processing termination and/or ~aphics-processing initialIzation.
An "error code" is returned by this routine.

Parameters - none

DdGrColorTableG: PROCEDURE(iColorTable, pbColorTable,
cwColorTable) ErcType PUBLIC REENTRANT;

This routine is called by the Core portion of the GPS driver to set
some or all of the device's color table. See the description of the
GPAMGrColorTable GPAM call in the Generic Print System
Pro~ramrner's Guide. The DDP of a GPS, graphics device driver
must include this function definition, even if it does not support
"colors". An "error code" is returned by this routine.

Parameters -

iColorTable:

pbColorTable:

cwColorTable:

This word is the index of the first palette entry
to be changed by this call to this procedure.

A pointer to the arrar of new color values to
placed into the device s color table.

lIDs word contains a count. It is a count of
the number of ~ in the array referenced
by pbColorTable.

A-09-011S9-01-C
Page 42 of 120

PRINTGEN
Engineering Update (DAA -170)

;/

C'·"" -\

,/

\
I

c

DdGrEndG: PROCEDURE ErcType PUBLIC REENTRANT;

This procedure is called at the end of each graphics picture that is
sent to the DDP. This enables the DDP to perform any necessary
~aphics-processing termination and/or text-processing
mitlalization. An "error code" is returned by this routine.

Parameters - none

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 43 of 120

DdGrPolyGonG: PROCEDURE (pPointsBfr , cPoints, spointsBrr,
fPerimeterVisible, iPerimeterColor,
iInteriorStyle, iHatch, iFillColor)

ErcType PUBLIC REENTRANT;

This function is called to draw a polygon. The parameters include
a list of points to be connected to form the polygon. The point- / '"
coordinate units are l440ths of an inch. Coordinates (0,0) address
the upper left of the page. An "error code" is returned by this ",-. j

routine.

Parameters -

pPointsBfr:

cPoints:

sPointsBfr:

A pointer to the array of points defining the
polygon.

This word is a count of the number of points
defining the polygon. Counts of zero and two
points are valid values -- the DDP must
cope with these possible values!

This word is a count of the number of bytes in
the PointsBfr.

fPerimeterVisible: If this flag is set to TRUE, then the line
defining the polygon's perimeter should be
drawn.

iPerimeterColor:

UnteriorStyle:

match:

iFmColor:

If the polygon's perimeter is to be drawn, then
it is to be drawn with the color specified by
this color-table index.
Not yet implemented! CWTently, this
parameter is always zero. This routine should
check for a value of zero in this parameter. If
it is equal to zero, then use the rill color for
the perimeter. Otherwise use the perimeter
color specified by this parameter.

This word index specifies what type of fill (if
any) is to be used in the polygon's interior.
See the Generic Print Slstem PrQ~ammer's
~ for the definition 0 interior styles.

If the polygon's interior is to be "hatched" ,
then this word specifies which of the hatch
types is to be used. See the Generic Print
System PrQ~ammer's Guide for the definition
of hatch types.

If the polygon's interior is to be filled, then it
is to be drawn with the color specified by this
color-table index.

A-09-011S9-01-C
Page 44 of 120

PRINTGEN
Engineering Update (DAA-170)

C~

(~

c

DdGrPo)yLineG: PROCEDURE(pPointsBfr, cPoints, sPointsBfr,
iCo)or, iLineType)
ErcType PUBLIC REENTRANT;

This function is called to draw a polyline. The parameters include
a list of points to be connected to form the polyline. The point
coordinate units are l440ths of an inch. Coordinates (0,0) address
the upper left of the page. An "error code" is returned by this
routine.

Parameters -

pPointsBfr:

cPoints:

sPointsBfr:

iColor:

iLineType:

PRINTGEN

A pointer to the array of points defining the
polyline.

This word is a count of the number of points
defining the polyline. Counts of zero and two
points are valid values - - the DDP must
cope with these possible values!

This word is a count of the number of bytes in
the PointsBfr.

The line is to be drawn with the color
specified by this color-table index.

This word specifies the type of line that is to
be used to draw this polyline. See the Generic
Print System PrQ~ammer's Guide for the
definition of line types.

Engineering Update (DAA -170)
A-09-011S9-01-C

Page 4S of 120

10.0 DEVICE-DRIVER STATUS MESSAGES

A large amount of status data is available for each installed GPS
device driver. Most of this data is ~enerated, collected and
maintained by the GPS Core. Applications obtain device-driver
status information through GetGPSStatus calls to the Generic Print
System.

Some of the status data can be directly generated by the device
dependent code. These items are three device-status messages.
The messages are:

1~ PAUSE message.
2 FONT-REQUIRED message.
3 FORM-REQUIRED message.

These messages can also be generated by the Core. Their is no
conflict between the Core-generation and DDP-generation of
these messages.

10.1 PAUSE Message

The reason that a device has been paused can be stated in this
message. For example, if a device has timed out, the Core places
an appropriate string into this status message.

See the description of the DdManualIntervention utility (page 71).
The DdManualIntervention utility always "activates" the PAUSE "\
message before pausing the device, and then "de-activates" the
PAUSE message after the device has been restarted. j

DDsbPauseMessage:

DDfShowPauseMessage:

A-09-01159-01-C
Page 46 of 120

Byte string containin~ the current
PAUSE message. Stnng is 61 bytes
long. The first byte of the string is
a count of the number of following
bytes that comprise the PAUSE
message.

When set to TRUE, the string in
DDsbPauseMessage is part of the
device driver's current status -
the PAUSE message is "activated".
When set to FALSE, the
information in DDsbPauseMessage
is not part of the current status -
the P A USE message is "de
activated" .

PRINTGEN
Engineering Update (DAA-170)

--~--------~-.-----~--~.

()

(~\

(~

10.2 FONT-REQUIRED Message

Message string which specifies the font that must be supplied by an
operator. This is not a complete font specification, and should not
be confused with a font key. The name of a print wheel required
by a Daisy-Wheel-printer, or the number of a required
HPLaser Jet font cartridge would be placed into this message
string.

This message string is a special case of the general PAUSE
message, and is redundant. It is used, however, because some
existing applications depend upon its presence. When some
operator action is needed to effect a font change, appropriate
messages should be placed into both the PAUSE message and the
FONT-REQUIRED message, and both of the messages should be
"activated". Only the font name (e.g., wheel name or cartridge
number) should be placed into the FONT-REQUIRED message.
A complete statement of what is to be done by the operator should
be placed into the PAUSE message.

DDsbFontNeeded:

DDfNeedFontChange:

Byte string containing the current
FONT-REQUIRED message.
String is 41 bytes long. The first
byte of the string is a count of the
number of following bytes that
comprise the FONT-REQUIRED
message.

When set to TRUE, the string in
DDsbFontNeeded is part of the
device driver's current status
the FONT-REQUIRED message
is "activated". When set to FALSE,
the information in DDsbFontNeeded
is not part of the current status -
the FONT-REQUIRED message
is "de-activated".
When set to TRUE, operator
intervention is required to effect the
requested font change. When set to
FALSE, no "font-change" interven
tion is required of the operator.

10.3 FORM-REQUIRED Message

Message string which specifies the form that must be supplied by
an operator.

This message string is a special case of the general PAUSE
message, and is often redundant. It is used, however, because
some existing applications depend upon its presence, and it

PRINTGEN
Engineering Update (DAA-170)

A-09-011S9-01-C
Page 47 of 120

contains only a form-name string. When some operator action is
needed to effect a forms change, appropriate messages should be
placed into both the PAUSE message and the FORM
REQUIRED message, and both of the messages should be
"activated". Only the form name (e.g., "PayrollChecks") should be
placed into the FORM-REQUIRED message. A complete
statement of what is to be done by the operator (e.g., "Load
Payroll Checks forms and restart printer".) should be placed into
the PAUSE message.

DDsbFormNeeded:

DDfNeedFonnsChange:

A-09-011S9-01-C
Page 48 of 120

Byte string containing the current
FORM-REQUIRED message.
String is 21 bytes long. The first
byte of the string is a count of the
number of following bytes that
comprise the FORM-REQUIRED
message.

When set to TRUE, the string in
DDsbFormNeeded is part of the
device driver's current status -
the FORM-REQUIRED message
is "activated". When set to FALSE,
the information in DDsbForm
Needed is not part of the current
status the FORM
REQUIRED message is "de
activated" .
When set to TRUE, operator
intervention is required to effect the
requested forms change. When set
to FALSE, no "forms-change"
intervention is required of the
operator.

PRINTGEN
Engineering Update (DAA -170)

/
(

()

("''','',\ \

/

11.0 DEVICE-DEPENDENT OUTPUT ROUTINES

This section lists the routines that are to be used for device output
by the DDP of the GPS device driver.

All device output performed by the DDP of the GPS device driver
must be done via the procedures listed in this section. The DDP
must never attempt output to the GPS device by directly accessing
1/0 ports or making calls to the CTOS 110 routines!

Each output procedure's specification consists of:

1) A procedure declaration.

2)

3)

This declaration includes the name of the
procedure; the procedure's parameters; and type of
value (if any) returned by the procedure.

PLM syntax is used for the procedure
declarations. If a procedure expects parameters, they
are enclosed in parentheses. If a data-type is assigned
to the procedure, then the rrocedure is called as a
function and returns a value 0 the specified data-type.

Most of these output procedures used by the
DDP of the GPS device driver jire called as functions,
and most of these functions return an error code. This
is a one-word value. It is equal to zero for no error, or
equal to one of CTOS or Generic Print System error
codes.

Description of the function that will be performed by
the procedure.

Description of each parameter

For each parameter, its use and data-type are
described.

Please note that some parameters are used to
specify where the called procedure will place "returned"
data values.

PLM declarations of these modules are in the PLM "INCLUDE"
file DdSam.idf, which comes with the PrintGen package.

PRINTGEN
Engineering Update (DAA -170)

A -09-011S9-01-C
Page 49 of 120

SetDdSamMode: PROCEDURE (bMode) ErcType PUBLIC
REENTRANT;

This procedure can be called by the DDP to set the device-output
image mode. (See the parameter description below for details.)
This procedure must be called at least once by the DDP's
DdInitializeG routine (see page 38). An "error code" (one word; /
equal to zero if no error) is returned by this routine.

Parameters -

bMode: A byte specifying the image-mode value for the GPS
outQut port. The valid image-mode values are:

o Normal, and
2 Binary.

Avoid using the Normal value, unless there is a
, compelling reason to do so.

(See the definitions of these image modes under Printer
Byte Streams and Spooler Byte Streams in The eros
Operatjni System Manual Volume 1.)

WriteDdSamByte: PROCEDURE (bChar) ErcType PUBLIC
REENTRANT;

Call this procedure to output one byte to the GPS device. An
"error code" is returned by this routine.

Parameters -

bChar: The byte that is to be output.

A-09-01159-01-C
Page 50 of 120

PRINTGEN
Engineering Update (DAA-170)

,/
(

c

WriteDdSamRecord: PROCEDURE (pb, cb, pCbRet) ErcType
PUBLIC REENTRANT;

Call this procedure to out~ut a string of bytes. The parameters
used when calling this routme specify the address of the string of
characters, the number of characters to be output, and the address
of the word to receive the successful-output count. An "error
code" is returned by this procedure.

Parameters -

pb: A pointer to the vector of bytes to be output to the
GPS device.

cb: A word containing a count of the number of bytes in the
byte vector pointed to by the parameter pb.

pCbRet: A pointer to a word that will be written into by the
WnteDdSam-Record procedure. WriteDdSamRecord
writes into this word a count of the number of bytes that
were actually output.

WriteDdXlatedByte

See the description of this "output" utility in the FONT
RELATED lITILITIES section (page 66).

PRI~"TGEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 51 of 120

12.0 AVAILABLE GPS UTILITIES

This section lists the functions that may be used by the device
driver's DDP. Some of these are part of the GPS Core, and some
are separate modules that may be linked into a GPS device driver.

Utilities are grouped into the following subsections:
Font-Related Utilities
Device-Setup-Field Utility
Miscellaneous Utility Functions

Each output procedure's specification consists of:

1) A procedure declaration.

This declaration includes the name of the
procedure; the procedure's parameters; and type of
value (if any) returned by the procedure.

PLM syntax is used for the procedure
declarations. If a procedure expects parameters, they
are enclosed in parentheses. If a data-type is assigned
to the procedure, then the procedure is called as a
function and returns a value of the specified data-type.

Most of these output procedures used by the
DDP of the GPS device driver are called as functions,
and most of these functions return an error code. This
is a one-word value. It is equal to zero for no error, or
equal to one of CTOS or Generic Print System error
codes.

2) Description of the function that will be performed by
the procedure.

3) Description of each parameter

For each parameter, its use and data-type are
described.

Please note that some parameters are used to
specify where the called procedure will place "returned"
data values.

A-09-01159-01-C
Page 52 of 120

PRINTGEN
Engineering Update (DAA-170)

/

r--"\
\,,-_/

c

12.1 Font-Related Utilities

The utilities described in this section are those which may be called
to obtain font-related information. The primary font information
required by device-dependent code is Second-Level Translation
data. Several routines described here provide this information.
The other routines return additional font-related information.

The details presented in this section supplement the Font Database
and Jfont Seryice information. provided m the PtU¥tf~i', and
the informatIon presented m the DEYICE- ONT
PROCESSING section (page 18) of this document.

Font Handles:

Since a document may consist of a variety of fonts, the desired
font must be specified when calling most of these font-data
utilities. A font IS specified by a font handle.

A font handle is a 16-bit datum. It is passed from the Core to the
DDP. It is part of the Character Record. Each character or
glyph passed to the device-dependent code for output has a font
handle associated with it. In this document, a variable or
parameter that contains a font handle is usually named iFont.
Font handles are created by the device-driver Core. Font handles
should not be changed by the device-dependent code, and no
meaning should be attached to any particular font-handle values.

Font handles are not reassigned within a given output document.
Therefore, various font data may be stored by the DDP, and
requested only when a new font handle value is encountered. Such
storage should be reset at the beginning of each output document.

Variety and Complexity of Font Utilities:

Not all of the routines listed here need be used to implement font
and character translation. In fact, use of them all in a single
device driver is usually erroneous. A variety of font utilities have
been pr~v.ided to servlce the variety of printer sophistications and
compleXIties.

At the simplest, there is a routine which may be called by the
device-dependent code to do all of the Second-Level Translation
and output work. At the other end of the complexity spectrum are
the rarely-used routines which return detailed, specialized font
related information. Most customer-written device drivers will
utilize neither the simplest nor the most complex utilities.

PRIr..'TGEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 53 of 120

The following font utilities can be roughly grouped as follows:

Simple/general -

Medium -

Complex/Specialized -

WriteDdXlatedByte

DdChX1ate
DdFntHandles
DdFntKey
DdGeWias

DdChWidth
DdDocToNative
DdFntConfig
DdGetChSet

The font-utility descriptions which follow describe the intended
usage of each routine. Each description states whether or not the
routine is "simple" or "complex".

Glyph and Character are used interchangeabll in the following
descriptions. This is done because all of the characters" p'assed
from the Core to the DDP for outjmt are actually ~~s. (GI~h
is defined in the DEVICE-DRYER FONT CESSI G
section of this document, page 18.) The term Character-Set is
used but not defined in the descriptions of the following utilities.
The definition and explanation of Character-Set is found in the
Font Database documentation.

A-09-01159-01-C
Page S4 of 120

PRINTGEN
Engineering Update (DAA -170)

("'\
j

DdCh Width: PROCEDURE(iFont, bChar, pwWidth)
ErcType PUBLIC REENTRANT;

Returns the width of the specified character for the specified Font.
An "error code" is returned by this procedure.

Device-dependent code should rarely find use for this routine, as
the width of each glyph or output character is included in that
glyph's Character-Record.

This routine could be used, for example, to obtain the width of the
device's underline glyph in a specific font.

Parameters -

iFont:

bChar:

pwWidth:

Font handle from Character-Record. (This
uniquely identifies the font and Character Set.)

Byte containing glyph code for which the width
is requested.

The width value will be placed into the word
pointed to by this parameter.

DdChWidth is one of the "complex" font utilities.

DdCh Width is part of the device-driver Core, and is always
available for use.

PRINTCEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 55 of 120

DdChXlate: PROCEDURE(iFont, bChar, prgbXltn, cbXltnMax,
pcbXltnRet) ErcType PUBLIC REENTRANT;

Called to get the (Font Service-provided) translation for a
character. The device-dependent code calls this routine to find
out what device-specific commands are required to ,p,rint the glyph I -,
specified in the Character-Record. An "error code is returned by
tbis procedure. /

When this routine is called with a Second-Level font handle, a
Second-Level Translation is returned. The Second-Level
Translation for an output glyph is the printer-command string
wbich causes that glyph to be printed. All of the font handles
passed to the DDP in Character-Records are Second-Level font
handles.

This routine is not limited to performing Second-Level
Translations. It also performs First-Level Trans
lations. Which translation it performs is controlled by
the font-handle value passed to it. All of the font
handles passed to the DDP in Character-Records
would cause Second-Level Translations to be
performed. Font handles which cause First-Level
Translations to be performed are those font handles
which represent document characters (the 0' characters,
as described in the DEVICE-DRIVER FONT
PROCESSING section (page 18). Other font utilities,
described in this section, may be used by device
dependent code to obtain such First-Level font
handles.

When the font-handle value (lFont) passed to
DdChXlate is that of a First-Level font handle,
DdChXlate assumes that bChar contains an 0' value,
and it performs a First-Level Translation (0' - f3).
When the font-handle value (lFont) passed to
DdChXlate is that of a Second-Level font handle,
DdChXlate assumes that bChar contains a f3 value, and
it performs a Second-Level Translation (8 - X).

Parameters -

iFont:

bChar:

Font handle of font for which the translation is
to be performed. This is usually the font·
handle from the Character-Record. (Tbis
uniquely identifies the font and CharacterSet.)

Byte containing the value of the character or
glyph to be translated.

A-09-011S9-01-C
Page S6 of 120

PRIJ'i'TGEN
Engineering Update (DAA-170)

c

c

prgbXltn:

cbXltnMax:

pcbXltnRet:

Points to the device-dependent code's string
that is to receive the translation data. This
memory must be defined and allocated by the
DDP. Format of the translation data is
described in the FONT ESCAPE
SEOUENCES section (page 74) of this
document, and in the Printmi Guide.

Size of prgbXltn in bytes. This is the
maximum size of any translation string that
will be returned by DdChXlate. Assure that
this string is large enough hold the longest
translation string specified for this device in
the Font Database.

Actual number of returned translation-data
bytes will be placed into the word referenced
by this pointer.

DdChXlate is part of the device-driver Core, and is always
available for use.

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 57 of 120

DdDocToNative: PROCEDURE(bCSID, bCharDoc, iFont,
pbCharN, piFontN, pwWidth)
ErcType PUBLIC REENTRANT;

Given a "document" character code (0) and a valid font handle,
this routine finds and returns the corresponding device sdyph code
«(3), its width and its font handle. It performs the P"irst-Level
Translation, and obtains the width of the printer glyph. An "error
code" is returned by this procedure.

This routine is a special combination of the DdCh Width and
DdChXlate routines. The font handle passed to DdDocToNative
may be either a First-Level or Second-Level font handle.
DdDocToNative always assumes that bCharDoc contains an Q

value, and always performs a First-Level Translation.

DdDocToNative is usually called by the device-dependent code to
obtain information about particular printer glyphs that were never
passed to it by the Core. If, for example, the DDP was to use the
printer's underline character to underline some other glyPh,
DdDocToNative could be called to obtain the appropnate
underline-glyph information from the Font Database. The value
of the bCharDoc parameter would be 5Fh, which is the code
assigned to the underline character in CT documents. The value
of the iFont parameter would be the font-handle value found in
the Character-Record of the glyph that is to be underlined. The
corresponding printer glyph code and its font handle would be
returned in the locations pointed to by pbCharN and piFontN,
respectively. These two returned values can then be used in a call
to DdChXlate to obtain the printer command string which will
cause the printer's underline glyph to be printed.

Restrictions -

1. Currently, only the CT "document" character set is
supported. Therefore, zero should be the value of the
bCSID parameter.

2. For a I-to-many First-Level Translation, only the first
char is returned to the location pointed at by pbCharN.

3. If no translation can be found; iFont, 0 and Ox20 are
returned in the locations pointed to by piFontN,
pwWidth and pbCharN respectively.

Parameters -

bCSID: Byte value specifying which "document"
character set.

A-09-011S9-01-C
Page S8 of 120

PRINTGEN
Engineering Update (DAA-170)

c

c.\ _/

bCharDoc:

iFont:

pbCharN:

piFontN:

pwWidth:

Byte containing the code of the "document"
character (a) for which the corresponding
"native"-character ({3), width and font-handle
are desired.

A valid font-handle for the desired font. May
be a Second-Level font handle.

The code for the corresponding "native"
printer glyph ({3) will be placed into the byte
pointed to by this pointer value.

The font handle for the printer glyph will be
placed into the font-handle variable pointed to
by this pointer value.

The printer glyph's width will be placed into
the word pointed to by this pointer value.

DdDocToNative is one of the "complex" font utilities.

DdDocToNative is not part of the device-driver Core. If
DdDocToNative is to be used, it must be added to the device
driver link. The DdDocToNative routine is contained in the
Font2Util module of the Core library.

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page S9 of 120

DdFntConfig: PROCEDURE(psbDevType, cbDevTypeMax)
FlagType PUBLIC REENTRANT;

Called to obtain some detailed information relevant to the Font
Service and how it is being used by this device driver. If the Font
Service is installed and in use, this function returns TRUE. The
(font) device type currently being used by the device driver is
copied into the client-specified string.

The Font Service is always installed when a GPS 2.0 device driver
is running. With GPS 2.0, DdFntConfig will alwjlys return TRUE. ./

The most likely reason that device-dependent code would call this
routine is to determine its Font-Device-Type. See the descri}'tion
of DDsbFDevice, in the GPS DEYlCE-SPECIFICATION
PARAMETERS section (page 92) for an explanation of Font-
Device-Type.

Parameters -

psbDevType:

cbDevTypeMax:

A pointer to the device-dependent code's
string that is to receive the Font-Device-Type
string. (Note that this is an "sb" structure.)

Word containing a count of the maximum
number of bytes that may be stored in the data
structure pomted to by psbDevType.

DdFntConfig is one of the "complex/specialized" font utilities.

DdFntConfig is not part of the device-driver Core. If
DdFntConfig is to be used, it must be added to the device-driver
link. The DdFntConfig routine is contained in the Font2Util
module of the Core library.

A-09-011S9-01-C
Page 60 of 120

PRINTGEN
Engineering Update (DAA -170)

/

(
'~

\

)

c;

DdFntHandles: PROCEDURE(iFont, phXlate, ph Width,
pwNumerator, pwDenominator,
pfMonoSpace)
ErcType PUBLIC REENTRANT;

This utility returns information about the iFont-specified font.
The returned information includes "handles" and characteristics
that may be used to uniquely identify the translation and width sets
associated with the font. An "error code" is returned by this
procedure.

Within a given document, a specific table of translations is
uniquely identified by a "translation handle". Within a given
document, a specific table of widths is uniquely identified by the
triple: ("width handle", numerator, denominator). The width
handle is inadequate for unique identification because "scaled"
fonts may use the same width table for many point sizes.

An example user of DdFntHandles is the Imagen8300 device
dependent code. The Imagen printer hardware performs character
translations itself, due to the very large number of possible glyphs
that it prints. Before a document can be printed on an Imagen
(using imPress), "maps", which convert 7-bit commands into
arbitrary, 16-bit glyph numbers, must be sent to the Imagen
printer. A variety of Imagen maps may be defined at the same
time, and need not be redefined within a document. There "are
many cases where the same Imagen map may be used for all of the
different point sizes of a particular family. Whenever the
Imagen8300 device driver must print a glyph whose font handle it
has not already processed, the device-dependent code calls
DdFntHandles to get the translation handle corresponding to this
new font handle. If that translation handle has never before been
encountered, then the DDP uses Font Service translation data to
define another Imagen map. If, however, this translation handle
has been encountered before, then the device-dependent code just
switches to the already-defined, corresponding Irna~en map. It
does not need to do the work of creating the map agam.

Parameters -

iFont:

phXlate:

PRINTGEN

Font handle which specifies the font for which
font information is desired. This is usually a
font handle from a Character-Record. (This
uniquely identifies the font and CharacterSet.)

Handle of the translation table associated with
iFont will be placed into the word referenced
by this pointer.

Engineering Update (DAA -170)
A-09-01159-01-C

Page 61 of 120

PhWidth:

pwNumerator:

pwDenominator:

pfMonoSpace:

Handle of the Width table associated with
iFont will be placed into the word referenced
by this pointer. (This handle, along with font
numerator and denominator, uniquely
identifies the width 'set associated with iFont.)

Each original width-table entry has been
multiplied by the value placed into the word
referenced by this pointer. The Font Service
and Core perform this scaling. The device
dependent code need not do any scaling.

Each original width-table entry has been
divided by the value placed into the word
referenced by this pointer. The Font Service
and Core perform this scaling. The device
dependent code need not do any scaling.

The byte referenced by this pointer is set to
TR UE if font is monospaced.

DdFntHandles is not part of the device-driver Core. If
DdFntHandles is to be used, it must be added to the device-driver
link. The DdFntHandles routine is contained in the Font2Util
module of the Core library.

A-09-01159-01-C
Page 62 of 120

PRTh"TGEN
Engineering Update (DAA -170)

./

c

C:

DdFntKey: PROCEDURE(iFont, pFontKey, cbFontKeyMax,
pcbFontKeyRet)
ErcType PUBLIC REENTRANT;

Obtains the font key corresponding to a font handle. An "error
code" is returned by this procedure.

A font key is a set of values that request or specify a font in the
Font Database. A font key is used by the Core to request font
information from the Font Service. The Font Service returns
another font key (along with the requested font data) which
specifies that font for which the data has been returned. If the
specified font cannot be exactly matched in the Font Database, the
Font Service determines which font data should be returned, and
this second font key describes that font. The Core assigns font
handles to the obtained data, and passes font handles to the
device-dependent code. When DdFntKey is called with such a
font handle, DdFntKey obtains and returns the corresponding font
key.

Parameters -

iFont:

pFontKey:

cbFontKeyMax:

pcbFontKeyRet:

Font handle (from Character-Record) that
uniquely identifies the font and CharacterSet.

The corresponding font key will be placed into
the data area pointed to by this parameter.

Word containing a count of the number of
bytes in the data area that is to receive the
font key.

Actual byte count of the returned font key will
be placed into the word pointed to by this
parameter.

DdFntKey is part of the device-driver Core, and is always
available for use.

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 63 of 120

DdGetAlias: PROCEDURE(iFont, prgbAlias, cbAliasMax,
pcbAliasRet)
ErcType PUBLIC REENTRA~'T;

Routine returns the "alias" string corresponding to the specified
font-handle. The Font Database defines an "alias" string for each
font/CharacterSet pairing. An "error code" is returned by this
procedure.

The font alias is a string of arbitrary function and format. Its
definition and usage is device dependent.

The Daisy driver, for example, uses it to store the name of the
print wheel needed to print characters in the requested font. The
simple ASCII driver does not use it at all.

Parameters -

iFont:

prgbAlias:

cbAliasMax:

pcbAliasRet:

Font handle specifying the font/CharacterSet
whose alias stnng is to be obtained.

Points to the device-dependent code's string
that is to receive the alias string.

Word containing a count of the maximum
number of bytes that may be placed into the
string referenced by prgbAlias.

Actual number of bytes in the returned alias
string will be placed into the word referenced
by this pointer.

DdGetAlias is part of the device-driver Core, and is always
available for use.

A-09-011S9-01-C
Page 64 of 120

PRINTGEN
Engineering Update (DAA-170)

/

o

c

DdGetChSet: PROCEDURE(iFont, bCharSet, piFont)
ErcType PUBLIC REENTRANT;

This routine . may be called to obtain the font handle for an
additional CharacterSet of the specified font. Given a valid font
handle and CharacterSet identifier, the font handle specifically for
that CharacterSet will be returned. (CharacterSets and valid
CharacterSet identifiers are defined in the Font Database
documentation.) An "error code" is returned by this procedure.

If a font handle has not yet been defined for the specified
font/CharacterSet combination, the Core will create it and update
its tables before returning the new font handle to the caller of this
utility.

Parameters -

iFont:

bCharSet:

piFont:

A valid font handle, used to specify the
desired font. It does not matter which of the
font's CharacterSets is referenced by this font
handle. Usually this will be a font-handle
value obtained via a Character-Record from
the Core, but it may be any Core-defined font
handle for the desired font.

Byte containing a Character Set identifier.
This specifies which Character Set to get the
font handle for.

Pointer to a word. A font handle will be
placed into this word by DdGetChSet. This
new font handle will reference the same font
that iFont does, but it will also be the font
handle assigned to the bCharSet-specified
Character-Set.

DdGetChSet is one of the "complex/specialized" font utilities.

DdGetChSet is part of the device-driver Core, and is always
available for use.

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 65 of 120

WriteDd.XIatedByte: PROCEDURE(iFont, bChar)
ErcType PUBLIC REENTRANT;

This utility provides the simplest means of outputting printer
glyphs from the device-dependent code. It does all of the
Second-Level Translations, and outputs the resultant printer
commands to the device. (More flexibili~ and control may be
obtained by using some of the other utilities described in this
section.) An "error code" is returned by this procedure. ./-~

WriteDdXlatedByte takes a font handle and a printer-glyph code
«(3) as input parameters. It performs the Second-Level
Translation, and outputs the resultant printer commands (X) to the
hardware device. If this routine is called with the iFont and bChar
values from a given Character-Record, the appropriate printer
commands are output by it. Thus, the device-dependent routine is
relieved of the responsibility for obtaining and outputting the
printer commands (X) corresponding to each printer-glyph· code
((3) received from the Core.

(WriteDdXlatedByte is very much a GPS out{}ut utility, and could
have been described in the DEYICE-DEPENDENT OUTPUT
ROlITINES section (page 49). It is described here, however,
since it also involves font translations.)

An example of a routine that would use this routine is the Daisy
device driver. Assume that one of its glyph codes «(3) is 250.
Assume also that the corresponding Second-Level Translation
converts 250 to the three command bytes:

(SHIFT-IN, 123, SHIFT-OUT).
Then calling WriteDdXlatedByte with bChar = 250, will result in
the three byte-values:

SHIFT-IN
123
SHIFT-OUT

being output to the printer for the device-dependent routine.

An example of a routine that would not (in fact, could not) use
this routine is the Imagen8300 device driver. Before it can output
any characters of a particular font, the driver must construct and
download a "mapping" table for that entire font. Thus, the Imagen
driver must collect all of a font's Second-Level Translations at
one time to construct this Imagen "mapping" command. The
Imagen driver makes use of the DdChXlate routine to accomplish
this.

See translation-escape rules 3, 5 and 6 in the FONT ESCAPE
SEOUENCES section (page 74)· for details of
W riteDdXlatedByte' s Second-Level-Translation processing.

A-09-011S9-01-C
Page 66 of 120

P~"GEN
Engineering Update (DAA-170)

o

(~-'.'.' \
/

(
\1
~/

Parameters -

iFont:

bChar:

Font handle corresponding to the printer glyph
that is to be printed. 1bis font handle is
usually from the Character-Record that
contained the printer glyph to be output.

Byte containin~ the code for the printer glyph
that is to be pnnted by this routine.

WriteDdXlatedByte is a "simple/general" font utility.

WriteDdXlatedByte is part of the device-driver Core, and is
always available for use.

PRINTGEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 67 of 120

12.2 Device-Setup-Field Utility

The Print Manager's device-driver installation form includes a
"Device Setup" field. Device-dependent parameter strings may be
entered in this string when installing a GPS device driver. All data
entered into the "Device Setup" field will be found in the device
driver string DdInstall.sbDevParams.

The following utility may be used to test for arbitrary keywords in
the "Device Setup" field, and to obtain the associated data strings.

A-09-01159-01-C
Page 68 of 120

PRINTGEN
Engineering Update (DAA-170)

c

()

c

DdGetSetupKey: PROCEDURE(pS, cS, pV, cVMax,
pcVRet) WORD PUBLIC REENTRANT;

This routine finds a key-word in the device-parameters string, and
returns the string following that key-word.

A caller-defined string is passed to this routine. It searches for
that string in the "Device Setup" field. If found, the function value
returned by DdGetSetupKey is an index into
DdInstall.sbDevParams. This is the index of the first byte
following the matched string. If the caller-defined string is not
found, the function value returned by DdGetSetupKey will be
OFFFFb.

The caller of this utility also specifies a recipient string. If the
caller-specified key-word string is found, then the string following
this key word is copied by DdGetSetupKey into the receiving
string. This "following" string is terminated by the first space after
the key word.

Parameters -

pS:

cS:

pV:

cVMax:

pcVRet:

A pointer to the key-word string to search
for.

Word containing the count of the number of
bytes in the string referenced by pS.

Pointer to a data area defined by the caller. If
the key-word string is found, then the string
following it is copied into this data area.

Word containing a count of the maximum
number of bytes that may be copied to the
data area referenced by p V.

Pointer to a word in which will be placed the
length (bytes) of the string following the key
word.

DdGetSetupKey is part of the device-driver Core, and is always
available for use.

PRINTGEN
Engineering Update (DAA-170)

A-09-011S9-01-C
Page 69 of 120

12.3 Miscellaneous Utility Functions

This section describes a variety of functions available for use by
the writer of a GPS device driver. In some cases, these are
routines which should be used to request some data or action from
the GPS Core. In other cases, they are just general utilities which
are already implemented in the Core.

DdHexToB: PROCEDURE(prgbH, bcbH, prgbB, bcbBMax,
pbcbBRet) ErcType PUBLIC REENTRAr\,,;

This routine will convert a hexadecimal-character string into a
string of binary, byte values.

If the character string does not have an even number of bytes, or
has characters that are not hex digits, then an error is returned.

Parameters -

prgbH:

bcbH:

prgbB:

bcbBMax:

pbcbBRet:

Pointer to the string of hexadecimal characters
that are to be converted into binary values.

A byte containing the number of characters in
the string referenced by prgbH.

Pointer to a string. Resultant binary bytes are
placed into this string.

A byte containing the maximum number of
bytes in the string referenced by prgbB.

Pointer to a byte. Number of binary bytes
placed into the string referenced by prgbB is
written into this byte.

DdHexToB is part of the device-driver Core, and is always
available for use.

A-09-011S9-01-C
Page 70 of 120

PRINTGEN
Engineering Update (DAA -170)

c

c

DdManualIntervention: PROCEDURE
ErcType PUBLIC REENTRANT;

This routine will cause device output to pause until a restart
operation is performed upon that device.

Before calling this routine, the device-dependent code should
usually set up some status messages that explain what operator
action is reqUlred.

Before pausing device output, the DdManualIntervention utility
"activates" the device's "pause message". Before returning to the
caller, it "de-activates" the "pause message". If other of the
driver's messages are to be dIsplayed, the~ should be "activated"
before calling DdManualIntervention, and de-activated" after the
call to DdManualIntervention. (See the DEVICE-DRIVER
STATUS MESSAGES section (page 46) for a definition of these
messages and their usage.)

If the print job has already been cancelled at the time that
DdManualIntervention is called, then ErcDdCancelled is returned
as the function's value, and the printer is not paused.

Parameters - none

DdManualIntervention is part of the device-driver Core, and is
always available for use.

PRINTGEN
Engineering Update (DAA-170)

A-09-011S9-01-C
Page 71 of 120

DdChangeForm: PROCEDURE (psbFonn)
ErcType PUBLIC REENTRANT;

This routine may be called by the device-dependent code to
initiate and perform "forms change" processing by an operator.
The device-driver Core detects forms-change requests and
processes them. Therefore, it is usually not necessary for the
DDP to worry about processing forms changes. The
DdChangeForm utility may, however, be used by device
dependent code if necessary.

DdChangeForm does the following:
• Nothing if the requested form is already the current

form.
• Sets up the various "forms needed" messages to be

displayed with the device's status.
• Puts the device into its paused state, until a restart

operation is performed upon the device.
• Updates the Core's "current form" information.

If the name of the requested form is the null string, then the form
specified in DdsbFormDoc is the form that is requested. If
DdsbFormDoc contains a null string, then the "standard" form is
requested of the operator.

Parameters -

psbForm: Pointer to an "sb" string of bytes. 1bis string
contains the name of the form to be loaded
before resuming output. This form name may
be the null string. Length of this string must
not be greater than 21 bytes.

DdChangeForm is part of the device-driver Core, and is always
available for use.

A-09-01159-01-C
Page 72 of 120

PRINTGEN
Engineering Update (DAA -170)

/'

o

(j

c

MovB: PROCEDURE(prgbSource, prgbDest, cb)
PUBLIC REENTRANT;

This routine is the equivalent of the built-in, PLM MovB
procedure. If device-dependent code is written in PLM, there is
little point in using this GPS-driver routine. When using some
other language such a C, this is a bandy routine that is already a
part of the GPS device driver.

MovB may be called to copy a specified number of bytes from one
location to another.

No defined function value is returned by MovB.

Parameters -

prgbSource:

prgbDest:

cb:

Pointer to a byte. This byte contains the first
of the bytes that are to be copied to another
location.

Pointer to a byte. This byte is where the first
of the copied bytes will be placed.

Word containing a count of the number of
bytes to be copied.

MovB is part of the device-driver Core, and is always available
for use.

PR.Il'."TGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 73 of 120

13.0 FONT ESCAPE SEQUENCES

GPS's interpretation of First-Level-Translation data and Second
Level-Translation data is discussed in this section.

The purpose and formats of these font translations is discussed in
the Font Database documentation, and in the DEVICE-DRIVER "'--_./
FONT PROCESSING section (page 18) of this document.
Reading and understanding that information is prerequisite to
understanding this section.

Translation data is returned to GPS by the Font Service. Some
the returned translation values have special meanin~ for GPS.
These special values are called translation escapes, or Just escapes.
All font translations are strings of one or more bytes. All
translation escapes recognized by GPS are byte values.

Translation escapes are relevant to GPS device driver designers
for several reasons. The designer is necessarily involved in the
definition of the format and data used in the Font Database's font
translations for her device. The GPS Core uses the First-Level
Translation data to define the printer glyphs to be output for each
character received. Certain translation values (escapes) have pre
defined meanings for the GPS Core. The device-driver deslgner
must not attempt to reuse these values for some other purpose,
and she must understand the Core's interpretation of them so that
she may properly command the Core via her First-Level
Translation data. Some utilities are provided to the G PS device
driver designer to perform Second-Level Translation functions
and to output the Second-Level-Translation data. These utilities
associate specific meaning with certain of the Second-Level
values. Again, the GPS driver designer must know which these
are and how they will be interpreted.

"Actual" and "suggested" translation escapes are described in the
Font Database documentation.

Actual translation escapes are those used and generated by the
Font Tool and Font Database. Included in this set would be the
following escapes:

• Nil • Alternate Character Set 1
• Alternate Character Set 2
• Alternate Character Set 3

A-09-01159-01-C
Page 74 of 120

PRINTGEN
Engineering Update (DAA-170)

./

C

c

c

Suggested translation escapes are those which may be entered by
the Font-Tool user. Included in this set would be the following
"escapes":

• Quote
• 16 Bit Code
• Shift Left
• Shift Out
• Printer Escape

The two sets may intersect -- i.e., the Font-Tool user may enter
translation-escape values which are the same as those generated
by the Font Tool.

GPS adds more translation-escape rules. These rules state what
escapes are recognized by the GPS device driver, and how it
interprets them. The rest of this section lists these translation
escape rules.

The basic translation-escape rule is:
The GPS Core and font utilities will recognize all
documented actual and suggested translation escapes.

Detailed GPS translation-escape rules:

1. The Font-Tool user must enter all desired translation
escaJ;'es, ~ those which are the "actual" Font
ServIce escapes (e.g., Nil, Alternate-Character-Set-
1, Alternate-Character-Set-2 and Alternate
Character-Set-3).

2. The GPS routine DdChXlate returns a translation
string. The returned translation string includes the
translation escapes contained in the font translations.

Examples:

-+ A translation of 0105 is entered by the Font-Tool
user. DdChXlate returns the 2-byte string {01,05}.

-+ A translation of 05 is entered by the Font-Tool
user. DdChXlate returns the I-byte string {05}.

-+ A translation of 2505 is entered by the Font-Tool
user. DdChXlate returns the 2-byte string {25,05}.

-+ A translation of 0000 is entered by the Font-Tool
user. DdChXlate returns the 2-byte string {OO,OO}.

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 75 of 120

-+ A translation of 070100 is entered by the Font-Tool
user. DdChXlate returns the 3-byte string
{07,01,00}.

3. The GPS routine WriteDdXlatedByte obtains and
outputs the Second-Level-Translation data
corresponding to the specified printer-glyph code. All /--',
translation escapes in the obtained data are interpreted;
not output! (Although the interpretation of some of the
"escapes" does result in the output of their value
e.g., Shift-Out.)

Examples:

-+ A translation of 0105 is entered by the Font-Tool
user. WriteDdXlatedByte outputs the I-byte string
{OS}.

-+ A translation of 05 is entered by the Font-Tool
user.. WriteDdXlatedByte does not output anything
(because OS is the Shift-Up escape, a First-Level
Translation, which is an ignored error).

-+ A translation of 2S0S is entered by the Font-Tool
user. WriteDdXlatedByte outputs the I-byte string
{2S} (because OS is the Shift-Up escape, a First
Level Translation, which is ap ignored error).

-+ A translation of 0000 is entered by the Font-Tool
user. WriteDdXlatedByte outputs nothing (because
00 is the Nil escape, which is an ignored error).

-+ A translation of 070100 is entered by the Font-Tool
user. WriteDdXlatedByte outputs the I-byte string
{OO} (because 07 is the Alternate-Character-Set-I
escape, a First-Level Translation, which is an
ignored error; and 01 "quotes" the following 00
byte.)

-+ A translation of OFOIOO is entered by the Font
Tool user. WriteDdXlatedByte outputs the 2-byte
string {OF,OO} (because OF is the Shift-In esca:pe,
which is output as OF; and 01 "quotes" the followmg
00 byte.)

A-09-01IS9-01-C
Page 76 of 120

P~lGEN
Engineering Update (DAA-170)

o

(:'

c

4. Translation escapes that are legal in First-Level
Translations:
• Quote
• Shift-Left
• Shift-Right
• Shift-Up'
• Shift-Down
• Altemate-Character-Set-l
• Altemate-Character-Set-2
• Alternate-Character-Set-3
• Cell-Width
Any other translation escapes in the First-Level
Translation data are ignored when the Core is
processing First-Level Translations.

5. Translation escapes that are legal in Second-Level
Translations:
• Quote
• 16-Bit
• Shift-Out
• Shift-In
• ESC (lBh)
Any other translation escapes in the Second-Level-
Translation data are ignored by the WriteDdXlatedByte
utility.

6. Any of the following Font Service "escapes" imply
Quote also:
• Altemate-Character-Set-l
• Alternate-Character-Set-2
• Alternate-Character-Set-3
• Cell-Width

Therefore, glyph code 04 in Alternate-Character-Set-3
should be specified in a First-Level Translation by
entering 0904, n.Q1 090104.

This also implies that the Alternate-Character-Set
Selection translation escape should immediately precede
the printer-glyph codes that it affects.

7. 10h is recognized and processed as a valid First-Level
translation escape. This is the "Cel1-Width" escape.
When this escape is used, there should be a printer
glyph code immediately fol1owing.

The width associated with this printer-glyph defines the
width of the character cell. If any whitespace
underlining or over striking is in 'effect, a whitespace
token for this width is generated by the Core to
underline or overstrike the output character.

PRII\'7GEN
Engineering Update (DAA-170)

A-09-011S9-01-C
Page 77 of 120

14.0 GPS DATA STRUCTURES OF INTEREST

GPS data structures that are used by the DDP of a GPS device
driver are documented in this section.

PLM definitions for these data structures are included in .~../
GpsDB.idf. C-language definitions are in StructGps.h.

Please note that the following other data structures are described
in other sections of this manual:

• GPS Character Record
• GPS Device-Specification parameters

Font Data Structures:

Font Service data structures of relevance to a GPS device driver
are documented in the Printini Guide. The structures of
particular interest to device-dependent code are: 1) font key, and
2) alias string.

Page Descriptor:

The information in this structure is passed to the DDP of a GPS
device driver at the beginning of each page. Page-size and
orientation information are contained in this structure.

This structure is defined by PageDescDDType in GpsDB.idf.

The Page Descriptor has been expanded for GPS 2.0. Each GPS
1.0 Page Descriptor was 8 bytes long. It is now 11 bytes. The
additional information is in the structure's bOrient, bVer and
bStamp fields.

A-09-011S9-01-C
Page 78 of 120

PRINTGEN
Engineering Update (DAA -170)

c

c

Dermition -
Field
Name

wLMx

wRMx

wTMy

wB:My

bOrient

bVer

bStamp

Size
(bytes)

2

2

2

2

1

1

1

Usage

Location of page's left margin.

Location of page's right margin.

Location of page's top margin.

Location of page's bottom
margin.

Specifies the requested page
orientation.
Valid values:

1 = Landscape
2 = Portrait

Page-Descriptor format version.
The value contained in the b Ver
field for this (GPS 2.0) format of
the Page Descriptor is 10.

A "check" byte which should
contain OSAh. If it does not
contain OSAh, then the b Ver
field is not valid.

Page width may be obtained by subtracting the contents of wLMx
from the contents of wRMx. Page length may be obtained by
subtracting the contents of wTMy from the contents of wBMy.

Break - at - Installation Flag:

See the DEBUGGING AIDS section (page 104) for information
about the use of this flag in debugging GPS device drivers.

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 79 or 120

Cancellation Flag:

The flag DDfCanceling is set to TRUE when the current document
has been cancelled. It is reset to FALSE when the end of the
cancelled document is encountered by the GPS Core. Useless
processing can often be avoided by the device-dependent code if it
tests DDfCanceling after each call to the GPS Output routines.

Document Type:

By examining the byte DDhDocType, the DDP can discover
whether it is processing data from a GPAM or non-GPAM
document. It is not necessary for the DDP to make this
determination, but if there is a desire to do so, DDhDocType
contains the information.

Valid DDhDocType values:
1 = G PAM document.

. 2 = non-GP AM document.
3 = non-G P AM document.

A . correct value in DDhDocType is
document's first call to DdPutCharG.
processed is a non-GPAM document,
NORMAL, then DdPutCharG will
DDhDocType's validity cannot be assured.

DdShare:

not assured until the
If the document being

and image-mode is not
not be called and

DdShare is a large structure that contains a great deal of
document-status information. Most of it is used by the GPS Core
and should not be depended upon l?y the DDP. DdShare fields
that contain valid data of use to the DDP are listed and described
below.

This structure is defined by SharedDDType and BeginPageDDType.
in GpsD B .idf.

A-09-01159-01-C
Page 80 of 120

PRINTGEN
Engineering Update (DAA -170)

/

/

C

c

o

DdShare fields that may be used by the device-dependent code:

Field Size
Name <bytes)

bQuality 1

wBinOut 2

bSides 1

fStagger 1

Usage

(See OPAMBeginPage descrip
tion in the Generic Print System
Pr0iTammer's Guide.)

This field is mis-named in the
structure definition used by OPS
device drivers. It is the field
actually named wBinIn. (See
OP AMBeginPage description in
the Generic Print System
ProiTammer's Guide.)

(See GP AMBeginPage descrip
tion in the Generic Print System
PrQiTammer's Guide.)

(See OP AMBeginPage descrip
tion in the Generic Print System
Pro~amrner's Guide.)

If these DdShare values are to be used by device-dependent code,
they should be examined when DdNewPageG is called. The
above-listed values are then valid for that new page. Examination
of DdShare values when DdPutCharG has been called, generally
yields invalid data.

Driver-Process Stacks:

A GPS device driver will have up to three stacks. It always has at
least two stacks. If it processes graphics, then it must have three
stacks.

The three stacks are:
• Control-Process stack.
• Data-Process stack.
• VDM-!nterpreter stack.

One of the stack's sizes is specified in the LINK command. The
other two stacks' sizes are specified in the device driver's Device
Specifications-Parameters module. (See the GPS DEYICE
SEECIFICATION PARAMETERS section, page 87.)

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 81 of 120

The size of the Control-Process stack is specified in the device
driver LINK command. The Control Process generally requires
the least stack space. Usually, the LINK command's default stack
size is more than adequate for any GPS device driver.

All device-dependent code runs in the Data Process. All data
output is performed by the device driver's Data Process.
Therefore, the Data Process often requires more stack than the
Control Process. How many bytes are needed for the Data
Process stack varies with each GPS device driver since the
requirement is dependent upon the implementation of the DDP in
each device driver. The space to be allocated for the Data
Process stack is specified in the driver's Device-Specifications
Parameters module. The symbol sDpStack specifies the number of
bytes to be allocated to the Data-Process stack. The
recommended starting value for sDpStack is 2048.

Any stack-overflow problems will almost certainly involve only the
Data-Process stack. To change the size of this stack: 1) the
value of sDpStack must be changed; 2) the Device
Specifications-Parameters module must be re-assembled; and 3)
the device driver must be re-linked.

If the GPS device driver in question does not process graphics
data, the VDM-Interpreter stack is JlQ1 required. If graphics data / ."'.
is to be processed, then space must be allocated for the VDM-
Interpreter stack. The space to be allocated for the VDM- J
InteTEreter stack is specified in the driver's Device
Speclfications-Parameters module. The symbol sStackVI specifies
the number of bytes to be allocated to the VD M - Interpreter stack.
If graphics is not supported, set the sStackVI symbol to 1. Set the
symbol to 2048, if graphics is supported by the device driver.
(Note: the s:ymbol sVdmWA must also be set to specific values
for the "graphics" and "non-graphics" cases.)

A-09-0I159-01-C
Page 82 of 120

PRINTGEN
Engineering Update (DAA-I'O)

c

15.0 GPS CHARACTER-RECORD

All of the information about a character is passed from the GPS
Core to the DDP in a data structure called the GPS Character
Record. This data structure is also sometimes referred to as the
"character token". This section defines the GPS Character
Record. Each time that the device-dependent's DdPutCharG
procedure is called~ it receives one character from GPS Core via a
GPS Character Record.

The following is a PLM definition of the GPS Character Record,
and some of the character-attribute symbols used in it. Following
the PLM definition are detailed explanations of the record's fields
and subfields. This definition also occurs in the files GpsDB.idf
and structGps.h, which are distributed with the PrintGen package.

NOTE: Some changes have been made to the Character
Record dermition in GPS 2.0. The GPS 2.0 Character Record
differs from the GPS 1.0 Character Record.

DECLARE TokenDDType LITERALLY 'STRUCTURE (
wX WORD
,wY WORD
,bChar BITE
,bOverstrikeChar BITE
,iFont WORD
,wSpaceWidth WORD
,bAttr BITE
,wColor WORD
,wBlkldNext WORD)'

,sTokenD DType

,mskBold
,mskUnder
,mskDUnder
,MSKITALIC
,mskOStrike
,mskWhiteSpace

LITERALLY '15'

LITERALLY 'lOOO$OOOOB'
LITERALLY 'OI00$OOOOB'
LITERALLY '00 1 O$OOOOB,
LITERALLY 'OOOl$OOOOB~
LITERALLY 'OOOO$l000B'
LITERALLY 'OOOO$OOlOB'

PRI~"TGEN
Engineering Update (DAA-170)

A-09-01159-01-C
Page 83 of 120

Fields of the GPS Character Record are defined as follows --

wX

wY

bChar

X-position of this character or white-spaces'
left edge (in GPS units).

Y -position of this character or white-spaces'
baseline (in GPS units).

Code of printer glyph ({3) to be output, if an
output glyph is associated with this token.

bOverstrikeChar Relevant only if mskOStrike is set. If
mskOStrike is set, then this is the printer
glyph that bChar should be overstruck with.
If mskOStrike is set and bOverstrikeChar = 0,
then the device's default overstrike-glyph is to
be used. The Character Record's font handle
(iFont) specifies the font/CharacterSet for the
overstrike printer glyph -- i.e., iFont applies
to both bChar and bOverstrikeChar.

iFont A font handle. This font-handle value
specifies the font and Character Set of the
printer glyphs in the Character Record. It is
used in calls to the font-related GPS utilities.
Font-handle values should never be modified
by device-dependent code, and no meaning
should be associated with any particular font- /~"
handle value. For a given fontlCharacterSet
combination, the font handle assigned to it will \,,~ . ./
remain constant for an entire document. All
font handles are redefined at the beginning of
each document.

WSpaceWidth Width (in GPS units) of the printer glyph
(bCbar) to be output, if the mskWhiteSpace
attribute bit is 1lQUd.
If the mskWhiteSpace attribute bit is ill, then
this field contains the width of the whitespace
being defined.
Width is in GPS units.

bAttr A byte of attribute flags. These attribute bits
specify the attributes associated with the
printer glyph, and are described, separately,
below.

wColor Number of color that is to be used for this
character.

wBIkIdNext GPS internal use.

A-09-011S9-01-C
Page 84 of 120

PRINTGEN
Engineering Update (DAA -170)

c

The attribute bits found in the bAttr field are defined as
follows --

mskBold

mskUnder

When set, indicates that BOLD has been
requested for this erinter glyph, and that a
bold font is not available. The DDP may opt
to do something (such as increasing hammer
energy) to cause the printer glyph to appear
bold.

When not set, indicates: 1) that BOLD has
not been requested for this printer gl¥J>h; or 2)
that BOLD was requested for this printer
glyph and a bold font has been assigned to this
printer glyph.

When set, indicates that UNDERLINING is
in effect for this printer glyph or whitespace.
When not set, indicates that UNDERLINING
is not in effect for this printer glyph or
whitespace.

MskDUnder When set, indicates that DOUBLE-
UNDERLINING is in effect for this printer
glyph or whitespace.
When not set, indicates that DOUBLE
UNDERLINING is Dot in effect for this

(~.~/... printer glyph or whitespace.
_. This bit is relevant only when mskUnder is set.

MSKITALIC When set, indicates. that ITALIC has been
requested for this printer glyph, and that a
italic font is not available. The DDP may opt
to do something (such as tilting the glyph) to
cause the printer glyph to appear italic.

PRINTGEN

When not set, indicates: 1) that IT ALI C has
not been requested for this printer glyph; or 2)
that IT ALI C was requested for this printer
glyph and an italic font has been assigned to
this printer glyph.

Engineering Update (DAA-170)
A-09-011S9-01-C

Page 8S of 120

MskOStrike When set, indicates that OVERSTRIKING is
in effect for this printer glyph or whitespace.
When not set, indicates that
OVERSTRIKING is not in effect for this
printer glyph or whitespace.
What pnnter glyph will be used for / ~,
overstriking depends upon the contents of the
bOversbikeChar field of this token. "'_ /

MskWhiteSpace When set, indicates that this token defines
a whitespace. The width of the whitespace is
found in the wSpaceWidth field of this token.
This token does NOT contain an output
character (although it may include an
"overstrike character"). . The contents of
bChar are undefined. The other bits in the
bAttr field specify all of the attributes
currently in effect.

See below for more information about
whitespace.

Whitespace must be explicitly defined in a GPS document.
Whitespace is a blank area that can be underlined and/or
overstruck. Whitespace is defined two ways:

1) "Blank" characters output b~ a WriteRecord or
. PlaceCharacter (spaces and tabs).

2) Use of the GPAMDermeWhiteSpace operation.

If underscoring and! or overstriking of a blank area is desired, this
blank area upon the page must be a wbitespace area defined by
one of the two methods described above. Blank areas that result
from a Reposition alone cannot be underscored or overstruck.

There are no subscript or superscript attributes associated with any
characters presented to the DDP of the GPS device driver. The
GPS Core positions subscript or superscript characters
appropriately, and passes them to the DDP of the GPS device
dnver with those positions specified in their GPS Character
Record. Therefore, an underlined superscript, for example, may
result in two GPS Character Records being sent to the DDP -
one containing the superscript character itself, and the other
containing the underlined whitespace.

A-09-011S9-01-C
Page 86 of 120

PRINTGEN
Engineering Update (DAA -170)

o

()

o

16.0 GPS DEVICE-SPECIFICATION PARAMETERS

A number of parameters that depend upon the particular output
device are ~ouped together by GPS into one module. This
module and 1ts parameters are discussed here.

DdParams.asm is an example of this module. It is also the
template for this module, and contains a number of definitions that
need not and should not be changed by the device-driver writer.
DdParams.idf is a PLM include file that may be used to define this
module's declarations. DdParams.h is the C-Ianguage include file.

Each GPS device driver must have a Device-Specification
Parameters module that has been customized for the particular
device that is being controlled. This new module must be included
in the linker's list of device-dependent object modules.

Note that many of the parameter variables are set to symbolic
values within the Device-Specification Parameters file. Usually, a
parameter variable within this module can be set by redefining the
appropriate symbol in the Device-Specification Parameters
module.

Not all of the parameters appearing in the Device
Specification Parameters module are described here.
Those that are not described should not be changed in
any new Device-Specification-Parameters module.

Some changes have been made to the Device
Specifications-Parameters module dermition in GPS
2.0. The GPS 2.0 Device-Specifications-Parameters
module differs from the GPS 1.0 Device
Specifications-Parameters module.

If a GPS 1.0 device driver is being converted to GPS
2.0, the GPS 2.0 DdParams.asm should be used as the
basis for the driver's Device-Specifications-Parameters
module. The existing parameters module should D.Q1
just be modified in accordance with the following item
descriptions! New parameters and values not described
below are included in the GPS 2.0 version of
DdParams.asm.

Some of the following "fields" are described as "Symbols". These
are assembler symbols (as -defined by EQU directives). Anytime
that any such "symbol" parameters are changed, the device driver's
Device-Specifications-Parameters module must be re-assembled
and linked before the change will take effect.

PRINTGEN
Engineering Update (DAA -170)

A -09-0 1159-0 1-C
Page 87 of 120

Definition -
Field 1Jsage
Name

sStackVI (Symbol) Number of bytes to be allocated to
the GPS device driver's VDM-Interpreter
stack. Recommended value for a device that
supports graphics is 2048. Recommended
value for a device that does Il.01 support
graphics is 1.

sVdmWA (Symbol) Number of bytes to be allocated to
the GPS device driver's VDM-Interpreter
work area. Recommended value for a device
that supports graphics is 2048. Recommended
value for a device that does Il.01 support
graphics is 1.

sDpStack (Symbol) Number of bytes to be allocated to
the stack of the GPS device driver's Data
Process stack. (A GPS device driver has two
}?rocesses -- the Data Process and the
Control Process.) The size of the Control
Process stack is set in the LINK command
form when the driver is linked. The size of
the Data-Process stack cannot be set through
a LINK-form entry. The Data-Process stack
size can only be chaD.!?ed by changing the
sDpStack symbol m the Device
Specifications-Parameters module and re
assembling it. The Data Process is more
sensitive to stack size than is the Control
Process. All device-dependent code runs in
the Data Process. The recommended starting
value for sDpStack is 2048.

A-09-01159-01-C
Page 88 of 120

PRINTGEN
Engineering Update (DAA -170)

c

DDsHeap

DDwWidth

DDwHeight

Contains number of bytes to be allocated for
the GPS Core's "character heap". The
device-driver Core uses this data area to sort
and store Character Records before sending
them to the DDP. The default value (4096) is
recommended. When the end of a pa~e is
encountered, any Character Records still in
this heap are passed to DdPutCharG.
Anytime that another Character Record must
be created and this heap is already full of
Character Records, the first Character Record
is output to DdPutCharG to make room for
the new Character Record. Increasing the
size of this heap allows more Character
Records to be created and sorted before any
are sent to the DDP. Recommended
minimum value for this symbol is 1048.
Recommended value for laser-printer drivers
is 4096.

Device's default character width (in GPS
units). The default character width used by
the GPS Core during character processing
depends upon the character width of the
current font.

Device's default character height (in GPS
units). This value is used as the point size
when requesting the device's default font at
the beginning of each document.

DDwSLDDistance Device's default "line feed" distance. This
value is used unless some other value has been
specified in a GPAMSetSLD command.

DDyDVnderScore

DDxTabWidth

PRINTGEN

This variable is included for optional use by
the device-dependent code. It is intended to
be used as the "offset from baseline" for
placement of double underlines. For single
font devices, this value can be "tuned" from
the debugger to obtain the desired offset. For.
multi-font device's, this value might be a
factor to be scaled to get the correct offset for
a given font size.

Distance between horizontal tabs. This value
is used if actual TAB codes are received via
GP AMWriteRecord or GP AMPlaceCharacter
calls.

Engineering Update (DAA -170)
A-09-011S9-01-C

Page 89 of 120

DDwPgLength

DDwPgWidth

Maximum page length for the device. Actual
page length is specified at device-driver
InStallation. See the £AQE
ORIENTATIONS and DIMENSIONS
subsection (page 21) for more information
about page dimensions.

Maximum page width for the device. Actual
page width is specified at device-driver
InStallation. See the £AQE
ORIENTATIONS and DIMENSIONS
subsection (page 21) for more information
about page dlIDensions.

DDwLeftBorder Defines the default "left border" width for the
device. This value may be changed at device-
driver installation time. See the fAQE

DDwRightBorder

D DwTopBorder

ORIENTATIONS and DIMENSIONS
section (page 21) for more information about
page borders.

Defines the default "right border" width for the
device. This value may be changed at device-
driver installation time. See the £AQE
ORIENTATIONS and DIMENSIONS
section (page 21) for more information about
page borders.

Defines the default "top border" width for the
device. This value may be changed at device-
driver installation time. See the fAQE
ORIENTATIONS . and DIMENSIONS
section (page 21) for more information about
page borders.

DDwBottomBorder Defines the default "bottom border" width for
the device. This value may be changed at
device-driver installation time. See the
PAGE ORIENTATIONS and
DIMENSIONS section (page 21) for more
information about page borders.

A-09-011S9-01-C
Page 90 of 120

PRINTGEN
Engineering Update (DAA -170)

/

o

o

c

DDwDataPriority

DDfAlpha

DDfGraph

DDnwSpeed

DDnwColors

DDcNulls
DDbNull

bcNFonts

PRI~lGEN

Driver's default Data-Process priority. This
value may be changed at device-driver instal
lation. The Data Process is the driver process
that does most of the work, and performs
output. The default Data-Process priority
should be such that it does not block
interactive applications running on the same
workstation. The number in this variable
should never be less than 21.

Must be set to TRUE if output device
supports textual output. Set to FALSE,
otherwise.

Must be set to TRUE if output device
suppor~s graphics output. Set to FALSE,
otheTWlse.

Device's speed in characters per second.

Number of colors supported by this device.
Set to zero if single-color device. This is
configuration information, for use by the
DDP. The Core does not use it.

Currently, several combinations of
ByteStream code, processor-module type and
device speed result in the last couple of
characters being left in the serial I/O chip.
So, any time that a port is being released, the
character DDbNull is automatically output
DDcNulls times. If the device is a strictly
[lpt]-port device, DDcNulls may be set to 0,
and none of these "flush" characters will be
output. The value placed in DDbNull should
be a byte treated as a null by the output
device -- i.e., it should not result in any
positionin~ of the output device, and it should
not result In the printing of any glyphs.

(Symbol) Specifies the number of entries that
will be allocated in the "nominal fonts" table.
The minimum value for this symbol is 3. Its
default value is 15. Increasing its value may
speed the processing of some multi-font
documents.

Engineering Update (DAA -170)
A-09-011S9-01-C

Page 91 of 120

bcTBMin

DDsbFDevice

DdDevOrient

bOrients

(Symbol) Specifies the Minimum number of
heap blocks which must be reserved for font
tables. The minimum value for this symbol· is
4. Increasing its value may speed the
processing of some multi-font documents. If
Its value is increased, the default font-heap /~--
size may no longer be lar~e enough. The size
of the font-heap can be mcreased at device- /
driver installation.

The device's default font-device type is placed
into this sb string. This string is referenced in
calls to the Font Service. It specifies for
which type of output device the requested font
data is obtained.
The default font-device type may be
overwritten at device-driver installation. If
any string is placed into the device-driver
installation form's FONT DEVICE field, that
string will overwrite the string in
DDsbFDevice. Therefore, DDsbFDevice must
be defined to be a certain fixed length, rather
than just the length of the device's default
font-device-type string. The DDsbFDevice
example in DdParams.asm is set up with the
proper assembler directives to assure this.

This is a structure defined in DdParams.asm.
It contains fields that define the device's
page-orientation capabilities. Since it is a
structure", it should be included in each GPS

device driver in the same order that it is in
DdParams.asm. No DdDevOrient field can be
left out, and the order of the fields should not
be changed. See the £A.QE
ORIENTATIONS and DIMENSIONS
section (page 21) for more information about
page orientations.

Descriptions of DdDevOrient's fields follow:

(DdDevOrient field) Specifies how many
orientations the deVIce is capable of. If it can
print in both portrait and landscape page
orientations, the value of this field will be 2.
Symbol values defined in DdParams.asm are
LI0RIENTATION and L20RIENTATIONS.

A-09-01159-01-C
Page 92 of 120

PRINTGEN
Engineering Update (DAA -170)

(
~'\

, ,!

j

c

BDefault

bPtoL

fLFntDev

PRINTGEN

(DdDevOrient field) If bOrients
L20RIENTATIONS, this field specifies the
device's default page orientation. Symbol
values defined in DdParams.asm are
LLANDSCAPE and LPORTRAIT.

(DdDevOrient field) If bOrients
L20RIENT A TIONS, this field specifies the
direction of text rotation when changing from
portrait to landscape orientation. Symbol
values defined m DdParams.asm are
LMINUS90 and LPLUS90. See the f.AGE
ORIENTATIONS and DIMENSIONS
section (page 21) for more information about
the use of this field.

(DdDevOrient field) This field is reserved for
future use, and must now be set to FALSE.

Engineering Update (DAA -170)
A-09-011S9-01-C

Page 93 of 120

17.0 GPS 1.0 TO GPS 2.0 CONVERSION

This section contains guidelines for the conversion of customer
written GPS 1.0 device drivers to GPS 2.0 device drivers. It
addresses varying levels of conversion. The levels vary from
patch-existing-driver-to-make-it-work, to modify-driver
to-add-GPS 2.0 capabilities.

17.1 Patching Existing GPS 1.1 Drivers

Temporarily, it may be necessary to use a GPS 1.1 device driver
with the GPS 2.0 software. Because of the new Request.9.sys file,
this is not directly possible. The GPS 1.1 device driver run file
must be patched wIth the Debug File utility so that it will work
with the new request file.

In order to patch the GPS 1.1 driver, the symbol file created when
the device driver was built must be available. In the example
below, the name of the driver is LptFrobnitzDd. The characters in
bold face indicate what the user typed in. Special characters are
enclosed in angle brackets, and are capitalized, as in <GO>. If
either of the values to be changed do not have the correct values
(OOOB and 11D1), you should abort the Debug File command
without making the changes, since you did not specify the correct
symbol file.

Command
File name
[Write?]
[Image mode?]

Debug File <RETURN>
LptFrobnitzDd.Run <RETURN>
Yes <GO>

Debugger 10.3 (File Mode)
% 'LptFrobnitzDd.Sym' <CODE-F>
%DDwVersionMax <RIGHT-ARROW> OOOB 14 <RETURN>
%VpAdd+41E <RIGHT-ARROW> 11D1 0 <RETURN>
% <FINISH>

When these two changes have been made in the run file, the device
driver should work with the GPS 2.0 request file. Documents
should print, though any font changes will be ignored.

Note that this procedure is valid only for GPS 1.1 device drivers,
and is D..Q1 valid for GPS 1.0 drivers.

A-09-011S9-01-C
Page 94 of 120

PRINTGEN
Engineering Update (DAA -170)

./

(':
j

17.2 Changes Required for GPS 2.0 Link

A number of the new features and bug fixes of GPS 2.0 can be
taken advantage of in the customer-written device driver by
linking it with the new, GPS 2.0 Core routines. Such new features
include some of the GPS 2.0 character-translation features.
Before this linkage can be performed, several changes must be
made to the GPS 1.1 device-dependent code. The following is a
guide to the changes that must be made to GPS 1.1 device
dependent code before it can be linked with the GPS 2.0 Core
routines.

New, required device-dependent-code procedures:

The DDP of each GPS 2.0 device driver must include two new
procedures. These two procedures are the device-dependent
procedures DdBeforeConvertG and DdFirstChanceG. These
procedures are explained in the ReQuired Deyice-Dependent
.Erocedures section {page 34). .

Core Utilities no longer available:

The GetFontInfo Core-utility should not be referenced by GPS
2.0 device drivers.

Changes in Char-Token structure:

Changes have been made to the Character Record passed to
DdPutCharG. The GPS CHARACTER-RECORD section (page
83) describes font-related changes made to the Character Record.
The Character Record's font index now has a format and
interpretation which differs from those in a GPS 1.0 device driver.
Unless the device-dependent code is modified to implement the
GPS 2.0 version of fonts and character-translations, the DDP
should not attempt to interpret or use the Character Record's font
index.

Therefore, this "second level" of GPS 2.0 conversion is not
practical for multi-font devices.

PRINTGEN
Engineering Update (DAA-170)

A-09-011S9-01-C
Page 9S of 120

Device - Parameters changes:

The GPS DEVICE-SPECIFICATION PARAMEIERS section
(page 87) describes the Device-Specifications-Parameters module.
Each GPS device driver must mclude this module. The ills.
DEVICE-SPECIFICATION PARAMETERS section describes
the required format and contents of a GPS 2.0 Device
Specifications-Parameters module.

Some variables have been removed from the GPS 2.0 Device
Specifications-Parameters module. Some have been added. The
driver will not link if the driver's Device-Specifications
Parameters module is not of the described GPS 2.0 format. The
driver will not install and run properly if that module does not
contain the valid values listed in the GPS DEVICE
SPECIFICATION PARAMETERS section.

Device-Parameter Deletions:
DDsbSheetFeeder
DDrgbSheetFeeder

Device-Parameter Additions:
DDcNulls
DDbNulls
DDrgNFonts
DDbcNfonts
DDbcTBMin
DDsbFDevice

17.3 Adding GPS 2.0 Features

To fully convert a GPS 1.0 device driver to a GPS 2.0 device
driver, implementation of the following new features must be
considered:

1. Device-driver installation initializations.
2. Font and character translations.
3. Landscape and portrait page orientations.

Installation Initializations:

New options have been provided in GPS 2.0 for the initialization
of device-d~pendent code when the device driver is being
installed. These new options involve implementing device
dependent procedures DdBeforeConvertG and DdFirstChanceG.
These procedures are explained in the ReQuired Deyice
Dependent Procedures section (page 34).

A-09-011S9-01-C
Page 96 of 120

PRThrrGEN
Engineering Update (DAA -170)

c

c

Font and Character Translations:

The major new functionalities of variable. fonts and character
translation are described in the DEVICE-DRIVER FONT
PROCESSING section (page 18). The Foot-Related Utilities
section (page 53) describes Core-utility routines which provide
translation services to the device-dependent code. The fi£S
CHARACTER-RECORD section (page 83) describes font
related changes made to the Character Record passed to
DdPutCharG. The Printin~ Guide describes what data should be
entered into the Font Database, and how to do it.

Landscape and Portrait Page Orientations:

The PAGE ORIENTATIONS and DIMENSIONS section (page
21) describes the page-orientation options supported by GPS 2.0.
A device driver that is to support rotated page orientatIons should
examine the page-orientation field of the page-description record
each time that DdNewPageG is called. The page-orientation field
specifies the page orientation desired by the document creator.

The device's parameter module must be changed to signal support
of mUltiple .pa!e orientations. See the description of DdDevOrient
in . the GPs. DEVICE-SPECIFICATION PARAMETERS
section (page 92).

Device-Parameters changes:

The GPS DEVICE-SPECIFICATION PARAMETERS section
(page 87) describes the Device-Specifications-Parameters module.
Each GPS device driver must mclude this module. The illS.
DEVICE-SPECIFICATION PARAMETERS section describes
the required format and contents of a GPS 2.0 Device
Specifications-Parameters module.

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 97 of 120

Some variables have been removed from the GPS 2.0 Device
Specifications-Parameters module. Some have been added. The
driver will not link if the driver's Device-Specifications
Parameters module is not of the described GPS 2.0 format. The
driver will not install and run properly if that module does not
contain the valid values listed in the GPS DEYICE
SPECIFICATION PARAMETERS section.

Device-Parameter Deletions:
DDsbSheetFeeder
DDrgbSheetFeeder

Device-Parameter Additions:
DDcNulls
DDbNulls
DDrgNFonts
DDbcNfonts
DDbcTBMin
DDsbFDevice

A-09-011S9-01-C
Page 98 of 120

PRINTGEN
Engineering Update (DAA-170)

/

/ .. "

o

("'''
,)

j

c

18.0 IMPLEMENTATION LANGUAGES

. Any of the CTOS-environment languages supported by
Convergent Technologies can be used to write the DDP for a GPS
device driver. The recommended programming languages are C
and PASCAL.

The key requirement is conformance to the calling and parameter
passing protocol used by the GPS-Core routines. The protocol
used by the GPS-Core routines is the same as that defmed for
accessing CTOS services in each of the programming-languages'
reference manuals.

For langua~es that have that option, "medium model" IllllS1 be
used. This is particularly important for the workstation C
language, as the parameters will be passes in the wrong order if
"medium model" is not used.

Device I/O need not (and generally should not) be done from the
device-dependent code.

PRI1'."GEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 99 of 120

19.0 LINKING A NEW GPS DRIVER

A new GPS device driver is linked by combining the new DDP
object modules with the GPS device-driver Core object modules.
PnntGen provides a special link command, Link GPS Driyer,
which performs this linkage.

This section describes the Link GPS Driyer command. The
command differs somewhat from that in GPS 1.0 releases.

When you use this command, your default path should be the path
to your PrintGen directory. .

Before you use the Link GPS Driyer command, all of the device
dependent source modules must be compiled or assembled.

The Link GPS Driyer command has the following form:

Link GPS Driver
Device Dependent Object Files
Device Driver Root Name
Library Version PrerlX
[version]
[Graphics? (default = no)]
[Text? (default = yes)]
[Stack Size (1024)]
[Swapping? (default = no)]
[V6 nmflle ? (default = no)]

Parameter-definitions for the Link GPS Driyer command:

Device Dependent Object Files

Device-dependent object files. This strin~ should name
a file that contains the names of the devIce-dependent
object files. These are the object files resulting from
the compilation or assembly of the source files written
for a specific output device. This parameter should
NOT be the name(s) of actual object module file(s) -
it must the name of a text file containing the object
filenames. Generally there will be at least two device
dependent object-files listed in the specified names file:
1) the device-specification parameter file, and 2) the
device-dependent processing code.
This parameter must be present.

A-09-011S9-01-C
Page 100 of 120

PRINTGEN
Engineering Update (DAA -170)

o

c

Device Driver Root Name

Root of the name that will be given to the device-driver
runfile. The string DD.run will be appended to the
device-driver name specified by this parameter. If the
value of this earameter is Epson, then the resulting
device driver Will be named: EpsonDD.nm.
This parameter must be present.

Library Version PrerlX.

This string will have .$ prefixed, DeyDrBld> appended,
and will specify the directory where the master build
library is found.
This parameter must be present.

[version]

Version string that will be assigned to the device-driver
runfile. If this parameter is left blank, the current
date-time string will be used for the runfile's version
string.

[Graphics? (default = no)]

Allows the user to specify whether or not to include the
device-driver Core's graphics modules. If this
parameter is blank, the sraphics modules are not
mcluded in the device-dnver runfile -- if an\-'
characters are specified for this parameter (including
"NO"), the sraphics modules are included. If the
driver's deVICe does not support graphics, this
parameter should be left blank to reduce the size of the
device driver. But if the device does su~wort graphics,
this parameter should be set to "YES, so that the
required graphics routines will be included in the
resultant device driver.

[Text? (default = yes)]

This parameter should always be left blank when linking
a GPS 2.0 device driver.

PRINTGEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 101 of 120

[Stack Size (1024)]

Stack size (in bytes) for the device-driver runfile. This
parameter defaults to 1024. This is the Control
Process stack. (See the Driyer-Process Stacks
subsection, ~age 81, for information about a G PS
device driver s various stacks.)

[Swapping? (default = no)]

This parameter should always be left blank when linking
a GPS 2.0 device driver.

[V 6 runf"J.1e ? (default = no)]

This flag controls whether a Version-6 run file will be
built. The Default is No. This parameter should be set
to "YES", except when the driver must run on a system
that does not support the Version-6 run file (e.g.,
SRP-CTOS-3.2). If the Version-6 run file is not
selected, the string m will be prepended to the driver's
run-file name. If the value of this parameter is blank
and the Root-Name parameter is Epson, then the
resulting device driver will be named: mEpsonDD.nm.

The user is able to specify libraries that are to be referenced in the
device-driver link. . ([Sys]<Sys>CTOS.llb is always included,
automatically.) The Link GPS Driyer command will reference the ",
file link<root>.llbs.ns, where <root> is the Root-Name
parameter. For example, if the Root-Name parameter is Epson,
then the Link GPS Driyercommand will reference the file
linkEpson.libr .ns. This file should contain the names of the
libraries that are to be included in the device-driver link. Such a
"libraries" file must be present for the Link GPS Driyer command
to function properly. If no libraries are required, then an empty
"libraries" file must be created.

After the Link GPS Driyer command has been successfully
executed, the resultant runfile may be installed as a GPS device
driver. The command has not been successfully executed if any
errors have been listed upon the workstation display or in the
resultant runfile map (the resultant runfile map is the file whose
name is the driver name root with the string...Dlall appended to it).
The new device driver is installed by enterin~ its runfile name 10

the Driyer Run File field of Print Manager s device-installation
form.

A submit file, [Sys]<Sys>LinkGpsDriver.sub, implements the Link
GPS Driyer command. This submit file causes the user-specified
device-dependent object files and the required device-driver core
object files to be linked, and in the correct order. Generally there
will be at least two device-dependent object files -- the device-

A-09-011S9-01-C
Page 102 of 120

PRINTGEN
Engineering Update (DAA -170)

o

c

specification parameter file, and the device-dependent processing
code. There is no reason why the device-dependent processing
code cannot consist of multiple object-file modules. There are
some device-driver core files that are always included, and other
device-driver Core files that mayor may not be included,
depending upon whether or not graphics was requested.

It is not required that the Link GPS Driyer command be used to
, link a new G PS device driver. The user may sometimes need to

set up his own link command -- although the supplied command
will be adequate in most of the situations. If a customized device
driver link command must be developed, use
[Sys]<Sys>LinkGpsDriver.sub as a guide.

The DDSegOrder module from the GPS device-driver
must be first in the list of modules to be linked.

PRINTGEN
Engineering Update (DAA-170)

A-09-011S9-01-C
Page 103 of 120

20.0 DEBUGGING AIDS

Debugging the device-dependent code of a GPS device driver is
aided by the following features:

• Debugger entry at device-driver installation.
• DdBeCoreConvertG DDP routine.
• DdFirstChanceG DDP routine.
• File output.

Debugger entry:

Debugger entry can be forced at the beginnin~ of device-driver
installation. Entering the debugger at this pornt enables one to
examine data structures and to set breakpoints before the device
driver is converted to a system service.

A one-byte variable in the device driver controls this debugger
entry. This flag variable is mreak. If it is set to FALSE (0), the
debugger is llQ1 invoked at device-driver installation. By default,
mreak is FALSE. If mreak is set to TRUE (OFFb), the debu~ger
is invoked when the device driver begins its installation processrng.

It is not necessary re-compile and re-link a device driver just to
change mreak's value. The DEBUG FILE command can be used
to change mreak's value in the device-driver runfile.

DdBeCoreConvertG routine:

DdBeCoreConvertG is a required DDP routine. It is called during
device-driver installation, before the device driver is converted to
a system service. It is called aCter all of the installation
parameters have been obtained and processed by the core.

A breakpoint at this routine may aid the debugging of driver
initialization bugs. A breakpoint at this routine enables one to
examine all of the device-driver installation data.

A detailed descrilStion of the DdBeroreConvertG routine is in the
DEVICE-DEPE DENT FUNCTIONS section (page 34).

DdFirstChanceG routine:

DdFirstChanceG is a re<J.uired DDP routine. It is called at the
very beginning of deVIce-driver installation Gust after the
invocation of the debugger, if mreak is set). ("\

A breakpoint at this routine may aid the debugging of driver
initialization bugs. This routine is called before the GPS Core has

A-09-011S9-01-C
Page 104 or 120

PRINTGEN
Engineering Update (DAA-170)

•

c

c

done its initialization processing, before the Data Process is
created and before the device driver is converted to a system
service.

A detailed description of the DdFirstChanceG routine is in the
DEYICE-DEPENDENT FUNCTIONS section (page 36).

File output:

It is possible to output the printer-command data to a CTOS disk
file, instead of to the printer port. Such a file can then be
DUMPed to determine what exactly would have been sent to the
printer. User-written debugging tools can easily read the data
output to such files. ByteStream routines can be used to read
these files.

Two things must be done to capture device-driver output on a
CTOS file:

1) The device driver must be re-linked with a different
SamGen file.

2) @ must be entered into the first character J?Osition of
the Device Setup field in the device driver's mstallation
form.

ByteStream support for disk files must be present for this file
output to work. Such ByteStream support is not included in the
usual device-driver run files, because It makes the driver larger.
So a SamGen that does include the ByteStream disk-file support
must be: 1) editted; 2) assembled; and 3) linked with the rest of
the device-driver object modules. The new, resultant device
driver is then capable of supporting disk-file output.

The new SamGen object module should replace the SamgenDD
module specified in the list of device-driver link files. Assume,
for example, that the SamGen module supporting disk
ByteStreams is named SamgenDDF.asm. Then SamgenDDF would
replace SamgenDD in the list of object files to link into the device
dnver.

PRI~'7GEN
Engineering Update (DAA -170)

A-09-01159-01-C
Page 105 of 120

The following is an example of such a SamGen specification that
includes disk ByteStreams:

$INCLUDE (samgen.mdf)

\Init

\DeviceOpen([Lptj ,OpenByteStreamLpt)

\DeviceOpen([Ptr] ,OpenByteStreamC)

'DeviceOpen([Disk] ,OpenByteStreamSD)

\tagProcs(tagDiskRead,FillBufferSD,FlushBufIllegal,CheckPointBsSD,

ReleaseByteStreamSD,SetImageModeIllegal)

\tagProcS(tagDiskWrite,FillBufIllegal,FlushBufferSD,CheckPointBsSD,

ReleaseByteStreamSD,SetImageModeIllegal)

\tagProCs(tagDisKModify,FillBufferSD,FlushBufferSD,CheckPointBsSD,

ReleaseByteStreamSD,SetImageModeIllegal)

'tagProCs(tagLptwrite,FillBufIllegal,FlushBufferLpt,CheckPointBsLpt,

ReleaseByteStreamLpt,SetImageModeLpt)

'tagProcs(tagPtrWrite,FillBufIllegal,FlushBufferC,CheckPointBsC,

ReleaseByteStreamC,SetlmageModeC)

\DevDepProc(GetBsLfa,GetBsLfaSync)

\DevDepProc(SetBsLfa,SetBsLfaSync)

\DevDepProc(SetlmageMode,SetlmageModeBrc)

'Final

If disk-file output is desired, @ must be in the first character
position of the Device Setup field when the device driver is
lDstalled. Just having a SamGen that supports disk outEut will not
cause all device-driver output to be sent to disk. The @ character
specifies that disk output will be performed. If the device driver
is installed without @ in Deyice Setup's first column, the driver
will behave in the usual manner and send all output to its printer
port.

Since the "disk output" switch (@) is specified in the device
driver's installation form, device-driver output can only be
rerouted at device-driver installation. If disk output is desired, @
is placed into Device Setup's first column, and all subsequent print
jobs will send all printer output to the disk file. To resume output
to the printer, G PS must be removed and the device driver
reinstalled without @ in the Deyice Setup field.

When file output is in effect, all printer output is written to
[Sys] <Gps>GPS.dmp. Output cannot be directed to another file,
but existing [Sys]<Gps>GPS.dmp's can, of course, be renamed to
other filenames between print jobs. More than one GPS device
driver, sharing the same <Gps> directory, should not attempt
concurrent file output.

A-09-01159-01-C
Page 106 of 120

PRINTGEN
Engineering Update (DAA -170)

c

c

21.0 EXAMPLES

Examples of the following GPS device drivers' DDP's are
included in the PrintGen product:

• Daisy
• HPLaser Jet
• Imagen8300
• LptSimple

For each of these examJ?le GPS device drivers, there is a brief
description of its capabilities below, and a list of its source files.
These source files are located in the Archive file on the [fO]<ct>
directories of the PrintGen distribution diskettes. These files are
restored from the distribution diskettes when the rest of the
PrintGen files are restored. After PrintGen has been installed, the
user should submit the <2.0PrtGenBld>CompiJeJ:xamples.sub
file which will compile the device specific source files and create
the four sample device drivers.

Daisy -

G PS daisy-wheel-device driver. Supports bold,
strikethrough, underline, print-wheel mapping, multiple
print-wheels, sheet-feeders, etc. Does not sUl?port graphics.
Spoke-mapping and overstrike informatIon that was
formerly obtained from ". whl" files is now obtained from the
Font Service. The font " ali as" (obtained from the Font
Database) is formatted in such a way that it specifies either a
print wheel or a font cartridge. The alias may also contain
command strin~s that are sent to the printer to switch to a
different (cartnd~e) font. If the current font cartridge or
print wheel contams the requested font, the user is not asked
to load it again. These features facilitate the use of laser
printers that emulate the Diabl0630 printer.

Source files:

<2.0Daisy>Concat2.c
<2.0Daisy> Concat3.c
<2 .0Daisy> Daisy.c
<2.0Daisy> DaisyJ)ata.c
<2.0Daisy> DaisyParams.asm
<2.0Daisy> DdFontChangeG .plm
<2.0Daisy> DdConfig.c
<2.0Daisy> DdSheet.c
<2.0Daisy> UICmp.c
<2.0Daisy> Uc.c

<2 .ODaisyBld> linkDaisy .fIs
<2.0DaisyBld> linkDaisy .libr .fIs
<2.0DaisyBld>linkDaisy.sub

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 107 of 120

<2.0GpsDef> CtosTy'pes.h
<2.0GpsDef> CompileOptions.idf
<2.0GpsDef> CtosLib.edf
<2.0GpsDef>CtosTypes.edf
<2.0GpsDef> daisy .h
<2.0GpsDef> DD . lit
<2.0GpsDef> DdFdef.h
<2.0GpsDef> DdParams.h
<2.0GpsDef> DdSam.idf
<2.0GpsDef> DdUtilities.idf
<2.0GpsDef> FontUtil.idf
<2.0GpsDef> gpserc.h
<2 .OGpsDef> string.h
<2 .OGpsDef> StructG PS.h
<2.0GpsDef>types.h

HPLaserJet -

GPS device driver for the HPLaserJet. Supports
underlining, bold, overstrike, mUltiple fonts, etc. This
version does not support graphics. The font " ali as" (obtained
from the Font Database) is formatted in such a way that it
specifies the name of the cartridge containing the desired
font, and the command string that must be sent to the printer
to switch to that font. If the current font cartridge contains
the requested font, the user is not asked to load it again.

Source files:

<2.0HP> HPParams.asm
<2 .OHP> HPLaser Jet. plm

<2.0HPBld> linkHPLaser J et.fls
. <2.0HPBld>linkHPLaserJet.libr.fls

<2.0HPBld> linkHPLaser Jet. sub

<2 .OGpsDef> CompileOptions.idf
<2.0GpsDef> DdParams.idf
<2.0GpsDef> DdSam.idf
<2.0GpsDef> DdUtilities.idf
<2.0GpsDef>GpsDb.ldf
<2.0GpsDef> GpsErc.idf
<2.0GpsDef> Convert.idf
<2.0GpsDef> CtosLib.edf
<2 .OGpsDef> CtosTypes.edf
<2.0GpsDef> DD.lit
<2.0GpsDef> DdVp.idf
<2.0GpsDef> Font Util.idf
<2.0GpsDef> MinMax.idf
<2.0GpsDef>ulos.idf
<2.0GpsDef> Util.idf
<2.0GpsDef> XUtilDD.idf

A-09-011S9-01-C
Page 108 of 120

PRINTGEN
Engineering Update (DAA-170)

o

C·""/
/

-~----"" .. "-.~~-"

Imagen8300 -

GPS device driver for text and graphics. Supports bold,
strikethrough, underline, etc. It also supports both portrait
and landscape rage orientations. ImPress is used by the
driver to contro the Imagen printer. The Imagen8300 device
driver uses the Font Database's Second-Level Translation to
map from an 8-bit character code to the Imagen, 16-bit
GASCII code. For each font used, the corresponding
Second-Level Translation data for all characters is
downloaded to the Imagen printer to create its mapping
table. Since the DDP is receiving 8-bit character codes, and
the Ima,Pren can only accept 7-bit character codes, two
Imagen families" must be created for each font used. If the
character code's high bit is set, the "upper" family of Imagen
characters is selected before sendin~ the lower seven bits of
that character code to the Imagen pnnter.

Source files:

<2 .OImagen> Ddlmagen8300 .asm
<2.0Imagen> DdlmagenDriver.plm
<2.0Imagen> DdlmagenFont.c

<2.0ImagenBld> linkImagen8300.fls
<2.0ImagenBld> linkimagen8300.1ibr .fIs
<2.0ImagenBld > linklmagen8300. sub

<2 .OGpsDef> CompileOptions.idf
<2 .OGpsDef> CtosTypes.edf
<2.0GpsDef>ctostypes.h
<2.0GpsDef> D D .lit
<2.0GpsDef> DdChangePWheel.idf
<2.0GpsDef> DDParams.idf
<2.0GpsDef> DdSam.idf
<2.0GpsDef> DdUtilities.idf
<2.0GpsDef> FontUtil.h
<2.0GpsDef>GpsD B .idf
<2.0GpsDef> GpsErc.idf
<2.0GpsDef> UIOs.idf

PRINTGEN
Engineering Update (DAA -170)

A-09-011S9-01-C
Page 109 of 120

LptSimpJe -

GPS device driver for simple ASCII, character printers.
Does not support graphics, underlining, bold, etc.

Source files:

<2.0Lpt> LptPararns.asm
<2.0Lpt> LptSimple.c

<2.0LptBld> linkLptSimple.fls
<2.0LptBld> linkLptSimple.libr .fls
<2.0LptBld> linkLptSimple.sub

<2.0GpsDef> CtosTypes.h
<2.0GpsDef> DdFDef.h
<2.0GpsDef> DDLits.h
<2.0GpsDef> DDParams.h
<2.0GpsDef> DdSam.h
<2.0GpsDef> DRLTypes.h
<2.0GpsDef>structGPS.h
<2.0GpsDef> DDVpData.h
<2.0GpsDef> DDFntLit.h

A-09-01159-01-C
Page 110 of 120

PRINTGEN
Engineering Update (DAA-170)

o

c

22.0 GPS DEVICE-DRIVER STATUS CODES

Some of the GPS and Font Service error codes are included in this
PrintGen document. They do not replace the status codes
published in the Status Codes manual and the GPS release notice.
For some of the following status codes, more explanation is
included in this document. The above two documents list such
status codes as resulting from "internal errors". This PrintGen
document lists DDP/Core interface errors that could cause these
"internal errors".

22.1 GPS Status Codes

The set of GPS device-driver status codes include the following.
They are listed in ascending order:

~ Meanini

4531 to Reserved for future use.
4534

4535 Invalid "Hex" string. A hexadecimal string of byte
values entered into the device-driver installation form
is invalid because:
1. It contains non-hexadecimal digits.
2. It contains an odd number of hexadecimal

digits.
This ere is returned by the DdHexToB utility.

4536 GPAM data, or "NORMAL image-mode" data has
been sent to the BinaryMode device driver that is
provided with the Generic Print System. Only
IMAGE image-mode" data or "BINARY image

mode" data will be processed by the BinaryMode
driver.

4537 An attempt was made to acquire a GPS device that is
paused (a direct-print GPS device may be "paused"
when it is not acquired to prevent its use by GPS).
The device must be RESTARTed before it can be
acquired for output.

PRINTGEN
Engineering Update (D AA -170)

A-09-01159-0I-C
Page 111 or 120

4538

4539

A SetImageModeGPS request sent to a GPS device
driver while also sending It GPAM data. The ima~e
mode of a GPS device driver cannot be set while It is
processing a GP AM document. If a "pass-throush"
mode is required with GP AM data, consider usmg
GPAM's GPAMBegin-Transparent and GPAMEnd
Transparent functions.

More than one SetGPSParams request was sent to a
GPS device driver for a single document. Or the
SetGPSParams request was made after a WriteGPSFile
request had already been made. The SetGPSParams
request must occur between the OpenGPSFile request
and the first WriteGPSFile request; and there cannot
be more than one SetGPSParams request between
these other two requests.

4540 The GPS device driver's output port is not currently
acquired, and this request cannot be executed when
the port is not aC~U1red. If the device driver is
installed for "direct printing (not spooled), some
other application may be currently printing to the
device-driver's "shared" port.

4541 This device-control command cannot be executed
now, because another device-control command has
not yet completed execution. . Wait a few seconds,
and try the desired device-control command again.

4542 An ALIGN or RESTART command was attempted
upon a device that is not p'aused. A GPS device must
be paused before it will process an ALIGN or
RESTART command.

4552 The specified restart location could not be found in
the document. (This is a change to the GPS 1.0
documentation of this error value.)

4553 An ALIGN command was received by a GPS device
that was not processing a document. (Chis is a change
to the· GPS 1.0 documentation of this error value.)

4561 This error should not occur in GPS 2.0 device
drivers. Custom pre-2.0 GPS device drivers may
report this error when processing data created by
Document Designer 2.0.

4574 This error should not occur in GPS 2.0 device
drivers.

A-09-01159-01-C
Page 112 of 120

PJm-.'-GEN
Engineering Update (DAA -170)

22.2 Font Service Status Codes

The following are status codes used by the Font Senice. They
are listed in ascending order. (More GPS device-driver status

.. code definitions follow this section.)

c

("~~
/

c

.GQd.e.

13900

13901

13902

13903

13904

13905

Meanin~

Font Senice Not Running - 1bis is returned by
Deinstall Font Service if there is no Font Service to
deinstall.

Incorrect Version Font Database - The Font Service
returns this status code when it fails to install. The
version of the runtime font database is incompatible
with the version of the Font Service. Future releases
of the font system will require that you regenerate the
runtime font database, using the re-released Font
Tool, to obtain a version of the font database
compatible with the re-released Font Service. Verify
that you have the correct version of font system
software installed, and regenerate the runtime font
database if necessary. It is also possible that the file
provided to the Font Service is not a valid runtime
font database at all.

Font Database Inconsistency - The Font Service
returns this status code when it discovers an internal
inconsistency in the process of serving a request. If
regenerating the font database does not clear up the
problem, contact technical support.

Font Key Not Found - The Font Service returns this
status code when the reduced font key is not found in
the font database. Verify that the regeneration of the
runtime font does not result in errors (e.g., records
flagged as invalid). If the problem persists, contact
technical support.

Insufficient Font Service Buffer Space - The Font
Service returns this status code when it does not have
sufficient buffer space to service the request.
Reinstall the Font Service, specifying a larger amount
of buffer space.

Insufficient Space to Return Font Info - The Font
Service returns this status code when the client of the
Font Service calls it with less than minimal space to
return the font data.

PRII\iGEN A-09-01159-01-C
Page 113 of 120 Engineering Update (DAA -170)

13906 Cannot Install - This is returned by the Font Service
when it fails to install because the Font Service
request codes are already being served by some
service. Verify that the Font Service has not already
been installed.
NOTE: Removing GPS does llQ1 remove the Font
Service.

13907 Cannot Deinstall - This is returned by Deinstall Font
Service under a single partition operatmg system.

13908 Font Data Unavailable - This is returned by the Font
Service when the reduced font key does not refer to
the ty{>e of data requested. For example, this status
code IS returned if a raster font is requested for a
device type for which rasters are inapplicable or
otherwise unavailable. Examine the returned font
key. If the data should be available, check for an
error in the editable font database (e.g., the raster
font is not named in the font key, or the
corresponding font file is not present in that path) and
regenerate the font database.

13909 Invalid Font Character Set Id - The Font Service
returns this status code when the request parameters
contain a character set id which is ~enerally invalid for
the particular request (e.g., 0 is Invalid on requests
for the device alias), or invalid for the particular font
key (e.g., 82 hex when the font key refers to only two
character sets).

13910 No Such Font Device Type - GetFontDeviceList
returns this status code when iDe vice in the request is
greater or equal to the total number of device types.

13911 No Such Font Family -GetFontFamilyList returns this
status code when iFamily in the request is greater or
equal to the total number of font families.

13912 Invalid Font Key - font key passed on Font Service
request is invalid. For example, it may be of
incorrect size.

13913 Invalid Font Handle - Handle passed on Font Service
request does not match the handle for any item of the
type (raster font or translation Jable) requested.

A-09-011S9-01-C
Page 114 of 120

PRIr-.'-GEN
Engineering Update (DAA -170)

-.

,/

"
''"' ./

...

c

C:

22.3 More GPS Status Codes

The set of GPS device-driver status codes include the following.
They are listed in ascending order:

~

15300 -
15319

Meanina

Reserved for use by the device-dependent
portion of GPS device drivers. The meanings of these
error codes will depend upon which GPS device
driver is being used. Refer to the device-driver
descriptions for definition of these error codes.
Writers of device-dependent code may assign any
needed error status codes from this range. Therefore,
each code within this 15300 - 15319 range may have
mUltiple meanings -- one for each of the device
drivers that it is defined in. The Release Notice for
each G PS device driver should include the definitions
of the status codes in the 15300 - 15319 range for
that particular driver.
For example, the Convergent-supplied
Imagen8300DD.nm driver uses error codes in this
range. They are as follows:

Imagen - Driver

~

15300

15301

Meanina

The document specifies more distinct fonts
than can be output in one document by the
Imagen8300 device driver. Reduce the
number of fonts in the document.

An erroneous 2nd-level-translation value
has been encountered in the Font
Database's font-translation data for the
Imagen printer. Verify that the
Imagen8300 device driver was installed
with a valid "Font Device Type" string
(leaving this field blank will cause the
correct font data to be used if the
Convergent-supplied Font Database is
being used). Use the Font Tool to correct
the Imagen's translation data in the Font
Database.

PRI~"GEN A-09-01159-01-C
Page 115 of 120 Engineering Update (DAA-170)

15320

15321

15302

15303

15304

An erroneous 2nd-level-translation value
has been encountered in the Font
Database's font-translation data for the
Imagen printer. Verify that the
Imagen8300 device driver was installed
with a valid 'Tont Device Type" string
(leaving this field blank will cause the
correct font data to be used if the
Convergent-supplied Font Database is
being used). Use the Font Tool to correct
the Imagen's translation data in the Font
Database.

More Imagen-printer "Families" than can
be used at one time, are required by this
document. Reduce the number of fonts in
the document.

More Imagen-printer "Maps" than can be
used at one time, are required by this
document. Reduce the number of fonts in
the document.

The Font Device Type specified by the GPS device
driver does not exist in the font database accessed by
the device driver. All G PS device drivers have a
default Font Device Type. A different Font Device
Type may be specified at installation time. Each
installed GPS device driver must have access to an
installed font database that contains font data designed
for that device driver.
The Font Device Type that will be used by default is
the "sb" string in DDsbFDevice (in the Devlce-Specifi
cations-Parameters module). Since this is an "sb"
string, the first byte must be a count of the following
characters that specify the default Font Device Type.
A terminating null b~e is not required, and should llQ1
be included in string s byte count.

This is an internal error that indicates a problem in
the software you are using. Consult Technical
Support.

A-09-01159-01-C
Page 116 of 120

PIm.'7GEN
Engineering Update (DAA-170)

•

•

o

c

c

15322

15323
15324

15325

15326

15327

15328

15329

The G PS device driver has detected a bad "font
handle". It could be an internal Core error, but most
likely it is caused by an error in the device-dependent
code. A call by the DDP to one of the GPS font
utilities included an invalid font handle as one of its
parameters. Device-dependent code must not modify
or attempt to generate font handles. Also, font
handle values cannot be saved from one document to
the next.

The GPS device driver's "actual-font"
information tables have overflowed. This is an
internal error that indicates a problem in the software
you are using. Consult Technical Support.

An invalid "font handle" was present in a call to
DdFntHandles within the GPS device driver. Most
probably a call by the DDP to DdFntHandles included
an invalid font handle as one of its parameters.
Device-dependent code must not modify or attempt
to generate font handles. Also, font-handle values
cannot be saved from one document to the next.

The recipient data structure specified in a call to
DdFntKey within the GPS device driver was too short.
The data structure pointed to by pFontKey must be at
least 70 bytes for GPS 2.0.

The alias of a document character set was requested.
Only native, device character sets have aliases. An
alias cannot be requested for Character-Set O. The
first Character-Set for which an alias may be
requested is Character-Set 80h.

An invalid "font handle" was present in a call to
DdGetAlias within the G PS device driver. Most
probably, a call by the DDP to DdGetAlias included
an invalid font handle as one of its parameters.
Device-dependent code must not modify or attempt
to generate font handles. Also, font-handle values
cannot be saved from one document to the next.

Reserved for future use.

PRI~IGEN A-09-01159-01-C
Page 117 or 120 Engineering Update (DAA -170)

15330 An invalid "font handle" was leresent in a call to
DdGetChSet within the GPS evice driver. Most
probably, a call bh the DDP to DdGetChSet included
an invalid font andle as one of its parameters.
Device-dependent code must not modify or attempt
to generate font handles. Also, font-handle values
cannot be saved from one document to the next.

15331 The recipient data structure specified in a call to
DdGetAlias within the GPS device driver was too
short. The data structure ~ointed to by prgbAlias
must be at least 41 bytes in G S 2.0.

15332 The recipient data structure specified in a call to
DdChXlate within the G PS device driver was too
short. The data structure pointed to by prgbXltn
must be large enough to contain the longest of the
Second-Level Translations specified for this device
type.

15333 This is an internal error that indicates a problem in
the software you are using. Consult Technical
Support.

15334 Insufficient "Font Buffer" space was allocated when
installing the driver. The default installation value
(4KB) is adequate for all ConverAent-supplied GPS
device drivers, but some custom PS devIce drivers
may require more. 2KB is the minimum allowed.
One cause of this is a large number of very complex
Second-Level Translations. This reqUIres more
memory for the GPS Core to access and process the
translation data.

15335 - This is an internal error indicatin~ a problem in the
15339 software you are using. Consult echnical Support.

15340 May indicate an error in the translation
15341 escape sequences in the font database data being

accessed by this driver. Verify that the rules stated in
the EQtIT ESCAfE SEQUE~CES.section (J?age 74)
are bein~ollowed in the First-Level TranslatIons and
Second- vel Translations specified for this device
type.

A-09-01159-01-C
Page 118 of 120

PRINTGEN
Engineering Update (DAA-170)

•

•

"

...

.,

c

15342

15343 -
15345

15346

15347

15348 -
15353

15354

An invalid "2nd-Ievel translation" was detected by the
WriteDdXlateByte utility. This could be the result of
several things:
1. Erroneous translation specification in the

accessed font database.
2. Font handle for the wrong character set

passed to WriteDdXlateByte.
3. Inappropriate character value passed to

WnteDdXlateByte.
Verify that the rules stated in the FQNT ESCAPE
SEQUENCES section (page 74) are being followed
in the First-Level Translations and Second-Level
Translations specified for this device type.

This is an internal error indicating a problem in the
software you are using. Consult Technical Support.

An invalid "font handle" was present in a call to
DdChWidth within the GPS device driver. Most
probably, a call by the DDP to DdChWidth included
an invalid font handle as one of its parameters.
Device-dependent code must not modify or attempt
to generate font handles. Also, font-handle values
cannot be saved from one document to the next.

An invalid "font handle" was present in a call to
DdFntKey within the G PS device driver. Most
probably, a call by the DDP to DdFntKey included an
mvalid font handle as one of its parameters. Device
dependent code must not modify or attempt to
generate font handles. Also, font-handle values
cannot be saved from one document to the next.

This is an internal error indicating a problem in the
software you are using. Consult Technical Support.

An invalid "font handle" was present in a call to
DdChXlate within the GPS device driver. Most
probably, a call by the DDP to DdChXlate included
an invalid font handle as one of its parameters.·
Device-dependent code must not modify or attempt
to generate font handles. Also, font-handle values
cannot be saved from one document to the next.

PRI~"GEN A-09-011S9-01-C
Page 119 of 120 Engineering Update (DAA -170)

15412 For GPS 2.0, the fLFntDev field of the DdDevOrient
15413 structure in the Device-Specifications-Parameters

module must be set to FALSE to prevent these errors
at device-driver installation.

15414 An invalid "Pa,e-Portrait String" was specified in the
"Device Setup field of the installation form. Page-
Portrait strings must contain only hexadecimal digits,
are limited to 20 digits, and there must be an even
number of digits.

15415 An invalid "Page-Landscape String" was specified in
the "Device Setup" field of the installation form.
Page-Landscape strings must contain only
hexadecimal dIgits, are limited to 20 digits, and there
must be an even number of digits.

15416 An invalid "Reset String" was specified in the "Device
Setup" field of the installation form. Reset strings
must contain only hexadecimal digits, and there must
be an even number of digits.

15417 Indicates inconsistencies in the DdDevOrient structure
in the Device-Specifications-Parameters module.
Error is caused by one or more of the following
inconsistencies:
1. The bOrients field contains value other than 1

or 2.
2. The bOrients field equals 2, and the bPtoL

field contains a value' other than 1 or 2.
3. The bOrients field equals 2, and the bDeCault

field contains a value other than 1 or 2.
4. The fLFntDev field not equal to FALSE.
5. The bOrients field equals 2, and the bDeCault

field's value does not agree with the
orientation implied by DDwPgWidth and
DDwPgLength.

15418 The GPS 2.0 loadable requests have not been
installed. The system must be rebooted after installing
the GPS 2.0 loadable request file.

15419 The version of the installation parameters data and of
the GPS device driver is incomftatible. Verify that the
GPS 2.0 Installer (GpsInsta l.run) is being used.
Consider deleting the existing .state and .config files
for the affected device before repeating the
installation process.

A-09-01159-01-C
Page 120 oC 120

PRThi7GEN
Engineering Update (DAA-170)

,.

..

"'---~/

