
High Performance
LEVEL II COBOLTM
Language Reference

11111111
11111111 ___ II

High Performance LEVEL /I COBOL ™

Language Reference Manual

LEVEL II COBOL LANGUAGE REFERENCE MANUAL

AMENDMENT RECORD

Issue Dated Inserted by Signature Date
Number

2 October 1982 - Incorporated in this reprint-

3 December 1982 - Addendum incorporated in this reprint-

4 February 1983 - Addendum 2 incorporated in this reprint-

5 July 1983 - Incorporated in this reprint-

6 February 1984 - Typographical corrections -

7 April 1984 - Addendum 3 incorporated in this reprint-

8 May 1985 -Incorporated in this reprint -

Language Reference Manual iii

PREFACE

This manual describes the LEVEL IT COBOL language for programming
microcomputers. LEVEL II COBOL is based on the ANSI COBOL standard X3.23
(1974) (see Acknowledgement). It also describes the additional LEVEL II COBOL
features that exploit the capabilities of microprocessors.

Each release of LEVEL IT COBOL is characterized by a two-digit code in the form of
v.r where v is the version number and r is the release number within the version.

AUDIENCE

This manual is intended for programmers already familiar with COBOL on other
equipment.

MANUAL ORGANIZATION

Chapters 1 through 4 of the manual apply to all users and describe basic features of
the language. Chapters 5 through 7 describe language features for programming
the three file organization formats supported: sequential, relative and indexed.

Chapters 8 through 14 apply to all users and describe additional features and
facilities available with the standard language. The appendices supply reference
information pertinent to all systems.

*

RELATED PUBLICATIONS

No discussion of operating the LEVEL II COBOL compiler or Run-Time System is
incorporated in this manual. Please refer to the document:

LEVEL II COBOL Operating Guide
(for use with the relevant Operating System)

Language Reference Manual v

Preface

In the general formats, the ellipsis represents the position at which repetition
may occur at the user's option. The portion of the format that may be repeated
is determined as follows:

Given ... in a clause or statement format, scanning right to left, determine
the }or] immediately to the left of the ... ; continue scanning right to left and
determine the logically matching {or [; the ... applies to the words between
the determined pair of delimiters.

9. The term identifier means either a data-name or a subscripted data-name. An
identifier takes the following form:

data-name-l [< {
data-name-2 })]
Uteral-l

data-name-2 or literal-l must be a positive integer in the range 1 to the
number of elements in the table.

10. All numbers in this manual are decimal unless otherwise specified. The letters
hex after a number indicate that the number is in hexadecimal format.

11. Italics are used when a word or concept is first introduced.

Headings are presented in this manual in the following order ofimportance:

CHAPTER
Chapter Heading

TITLE

ORDER ONE HEADING

Order Two Heading

ORDER THREE HEADING Text two lines down

Order Four Heading

Order Five Heading: Text on same line

Language Rererenc~ Manual vii

TABLE OF CONTENTS

What Is LEVEL n COBOL?
Fonnats And Rules

General Fonnat
Syntax Rules
General Rules
Elements

Source Fonnat

Sequence Number
Indicator Area
AreasAandB

Lanuage Concepts

Character Set
Language Structure

CHAPTER 1
INTRODUCTION

CHAPTER 2
COBOL CONCEPTS

Separators
Character Strings

Concept of Computer Independent Data Description

Concept Of Levels

Language Reference Manual

1-1
1-3

1-3
1-3
1-4
1-4

1-4

1-4
1-5
1-6

2-1

2-1
2-2

2-2
2-3

2-12

2-12

ix

Procedure Division

General Description

Declarative
Procedures
Execution
General Format

Statements and Sentences

Conditional Statement
Conditional Sentence
Compiler Directing Statement
Compiler Directing Sentence
Imperative Statement
Imperative Sentence
Categories Of Statements

Reference Format

General Description
Reference Format Representation

Sequence Numbers
Continuation Of Lines
Blank Lines
Pseudo Text

Divsion, Section, Paragraph Formats

Division Header
Section Header
Paragraph Header, Paragraph-Name And Paragraph

Data Division Entries
Declaratives
Comment Lines

Reserved Words

Language Reference Manual

Table of Contents

2-32

2-32

2-32
2-32
2-33
2-33

2-34

2-35
2-35
2-35
2-36
2-36
2-37
2-38

2-40

2-40
2-41

2-42
2-42
2-42
2-43

2-43

2-43
2-43
2-43

2-44
2-45
2-45

2-45

xi

Data Division In The Nucleus

Working-Storage Section

Noncontiguous Working-Storage
Working-Storage Records
Initial Values

The Data Description-Complete Entry Skeleton

Function
General Format
Syntax Rules
General Rules

The BLANK WHEN ZERO Clause

Function
General Format
Syntax Rule
General Rules

The Data-Name Or FILLER Clause

Function
General Format
Syntax Rule
General Rule

The JUSTIFIED Clause

Function
General Format
Syntax Rules
General Rules

Level Number

Function
General Format
Syntax Rules
General Rules

Language Referencd Manual

Table of Contents

3-12

3-12

3-12
3-13
3-13

3-13

3-13
3-14
3-15
3-15

3-16

3-16
3-16
3-16
3-16

3-16

3-16
3-17
3-17
3-17

3-17

3-17
3-17
3-18
3-18

3-18

3-18
3-19
3-19
3-19

xiii

The VALUE Clause

Function
General Format
Syntax Rules
General Rules
Condition-Name Rules
Data Description Entries Other Than Condition-Names

Procedure Division In The N udeus

Arithmetic Expressions

Definition Of An Arithmetic Expression
Ari thmetic Operators
Formation And Evaluation Rules

Conditional Expressions

Simple Conditions
Class Conditions
Complex Conditions
Abbreviated Combined Relation Conditions

Common Phrases and General Rules for Statement Formats

The ROUNDED Phrase
The SIZE ERROR Phrase
The CORRESPONDING Phrase
Arithmetic Statements
Overlapping Operands
Multiple Results In Arithmetic Statements
Incompatible Data
Signed Receiving Items

The ACCEPr Statement

Function
General Formats
Syntax Rules
General Rules

Language Reference Manual

Table of Contents

3-41

3-41
3-41
3-42
3-42
3-43
3-43

3-45

3-45

3-45
3-45
3-46

3-48

3-48
3-51
3-53
3-56

3-58

3-58
3-59
3-60
3-60
3-61
3-61
3-62
3-62

3-63

3-63
3-63
3-63
3-64

xv

Table of Contents

The EXIT Statement 3-81

Function 3-81
General Format 3-81
Syntax Rules 3-81
General Rule 3-81

The GO TO Statement 3-82

Function 3-82
General Format 3-82
Syntax Rules 3-82
General Rules 3-83

The IF Statement 3-84

Function 3-84
General Format 3-84
Syntax Rules 3-84
General Rules 3-84

The INSPECT Statement 3-86

Function 3-86
General Format 3-86
Syntax Rules 3-87
General Rules 3-88

The MOVE Statement 3-95

Function 3-95
General Format 3-95
Syntax Rules 3-95
General Rules 3-96

The MULTIPLY Statement 3-100

Function 3-100
General Format 3-100
Syntax Rules 3-100
General Rules 3-101

Language Reference Manual xvii

CHAPTER 4
TABLE HANDLING

Introduction To The Table Handling Module
Data Division In The Table Handling Module

The OCCURS Clause

Function
General Format
Syntax Rules
General Rules

The USAGE Clause

Function
General Format
Syntax Rules
General Rules

Procedure Division In The Table Handling Module

Relation Condition

Table of Contents

4-1
4-1

4-1

4-1
4-2
4-2
4-4

4-5

4-5
4-5
4-5
4-5

4-6

4-6

Comparisons Involving Index-N ames And/Or Index Data Items 4-6

Overlapping Operands

The SEARCH Statement

Function
General Format
Syntax Rules
General Rules

The SET Statement

Function
General Format
Syntax Rules
General Rules

Language Reference Manual

4-6

4-7

4-7
4-7
4-9
4-9

4-14

4-14
4-14
4-14
4-15

xix

Table of Contents

The BLOCK CONTAINS Clause 5-17

Function 5-17
General Format 5-17
General Rule 5-17

The CODE-SET Clause 5-17

Function 5-17
General Format 5-17
Syntax Rules 5-18
General Rules 5-18

The DATA RECORDS Clause 5-18

Function 5-18
General Format 5-18
Syntax Rule 5-18
General Rules 5-19

The LABEL RECORDS Clause 5-19

Function 5-19
General Format 5-19
Syntax Rules 5-19
General Rules 5-19

The LINAGE Clause 5-20

Function 5-20
General Format 5-20
Syntax Rules 5-20
General Rules 5-21

The RECORD CONTAINS Clause 5-23

Function 5-23
General Format 5-23
General Rule 5-23

Language Reference Manual xxi

The REWRITE Statement

Function
General Format
Syntax Rules
General Rules

The UNLOCK Statement

Function
General Format
General Rules

The USE Statement

Function
General Format
Syntax Rules
General Rules

The WRITE Statement

Function
General Format
Syntax Rules
General Rules

CHAPTER 6
RELATIVE INPUT AND OUTPUT

Introduction To The Relative 1-0 Module

Language Concepts

Organization
Access Modes
Current Record Pointer
1-0 Status
The INVALID KEY Condition
The AT END Condition

Language Reference Manual

Table of Contents

5-41

5-41
5-41
5-41
5-41

5-43

5-43
5-43
5-43

5-44

5-44
5-44
5-44
5-45

5-46

5-46
5-46
5-46
5-47

6-1

6-1

6-1
6-1
6-2
6-2
6-4
6-5

xxiii

The LABEL RECORDS Clause

Function
General Format
Syntax Rule
General Rule

The RECORD CONTAINS Clause

Function
Format
General Rule

The VALUE OF Clause

Function
General Format
Syntax Rules
General Rules

Procedure Division In The Relative 1-0 Module

The CLOSE Statement

Function
General Format
Syntax Rule
General Rules

The COMMIT Statement

Function
Format
General Rules

The DELETE Statement

Function
General Format
Syntax Rules
General Rules

Language Reference Manual

Table of Contents

6-19

6-19
6-19
6-19
6-20

6-20

6-20
6-20
6-20

6-21

6-21
6-21
6-21
6-21

6-22

6-22

6-22
6-22
6-22
6-22

6-25

6-25
6-25
6-25

6-26

6-26
6-26
6-26
6-26

xxv

The WRITE Statement

Function
General Format
Syntax Rules
General Rules

CHAPTER 7
INDEXED INPUT AND OUTPUT

Introduction To The Indexed 1-0 Module

Language Concepts

Organization
Access Modes
Current Record Pointer
1-0 Status
The INVALID KEY Condition
The AT END Condition

Sharing Files On Multi-User Systems

Exclusive
Shareable

Single Record Lock
Multiple Record Locks

Environment Division In The Indexed 1-0 Module

Input-Output Section

The File-Control Paragraph
The File Control Entry
The 1-0 CONTROL Paragraph

Language Reference Manual

Table of Contents

6-44

6-44
6-44-
6-44
6-44

7-1

7-1

7-1
7-2
7-2
7-2
7-6
7-6

7-7

7-7
7-7

7-7
7-8

7-10

7-10

7-10
7-10
7-15

xxvii

Table of Contents

The CLOSE Statement 7M23

Function 7M23
General Format 7M23
Syntax Rule 7M23
General Rules 7M23

The COMMIT Statement 7M26

Function 7-26
General Format 7-26
General Rules 7-26

The DELETE Statement 7-27

Function 7-27
General Format 7M27
Syntax Rules 7-27
General Rules 7-27

The OPEN Statement 7M29

Function 7M29
General Format 7-29
Syntax Rule 7-29
General Rules 7-29

The READ Statement 7-33

Function 7-33
General Format 7M33
Syntax Rules 7-33
General Rules 7-34

The REWRITE Statement 7-38

Function 7-38
General Format 7-38
Syntax Rules 7-38
General Rules 7M38

Language Reference Manual xxix

The FILE-CONTROL Paragraph
The FILE-CONTROL Entry
The 1-0 CONTROL Paragraph

Data Division In The SORT-MERGE Module

File Section
The Sort- Merge File Description - Complete Entry Skeleton

Function
General Format
Syntax Rules

The DATA RECORDS Clause

Function
General Format
Syntax Rule
General Rules

The RECORD CONTAINS Clause

Function
General Format
General Rules

Procedure Division In The SORT-MERGE Module

The :MERGE Statement

Function
General Format
Syntax Rules
General Rules

The RELEASE Statement

Function
General Format
Syntax Rules
General Rules

Language Reference Manual

Table of Contents

8-1
8-2
8-3

8-5

8-5
8-5

8-5
8-5
8-6

8-6

8-6
8-6
8-6
8-7

8-7

8-7
8-7
8-7

8-9

8-9

8-9
8-9
8-9
8-11

8-14

8-14
8-14
8-14
8-14

xxxi

The SEGMENT LIMIT Clause

General Format
Syntax Rules
General Rules

Restrictions On Program Flow

The ALTER Statement
The PERFORM Statement
The MERGE Statement
The SORT Statement

Extra Intermediate Code Files

CHAPTER 10
LIBRARY

Introduction To The Library Module
The COpy Statement

Function
General Format
Syntax Rules
General Rules

CHAPTER 11

Table of Contents

9-5

9-5
9-5
9-5

9-6

9-6
9-6
9-7
9-7

9-8

10-1
10-2

10-2
10-2
10-2
10-3

DEBUG AND INTERACTIVE DEBUGGING

In troduction
Standard ANSI COBOL DEBUG

Compile Time Switch
COBOL DEBUG Object Time Switch
Environment Division in COBOL DEBUG

Language Reference Manual

11-1
11-1

11-2
11-2
11-3

xxxiii

The EXIT PROGRAM Statement

Function
General Format
Syntax Rules
General Rule

The GOBACK Statement

Function
General Format
Syntax Rule
General Rule

CHAPTER 13
COMMUNICATION

Introduction To The Communication Module

Function

Data Di vision In The Communication Module

Communication Section
The Communication Description-Complete Entry Skeleton

Function
General Format
Syntax Rules
General Rules

Procedure Division In The Communication Module

The ACCEPT MESSAGE COUNT Statement

Function
General Format
Syntax Rule
General Rules

Language Reference Manual

Table of Contents

12-12

12-12
12-12
12-12
12-12

12-13

12-13
12-13
12-13
12-13

13-1

13-1

13-1

13-1
13-2

13-2
13-2
13-3
13-7

13-13

13-13

13-13
13-13
13-13
13-13

xxxv

Table of Contents

APPENDIXA
GLOSSARY

APPENDIX B
IBM EXTENSIONS

APPENDIX C
COMMUNICATION FACILITY - CONCEPTS

Language Reference Manual xxxvii

FIGURES

Figure Title

1-1 Sample Program Listing Showing Source Format

2-1 Reference Format for a COBOL Source Line

3-1 Flowchart of VARYING Phrase of a PERFORM Statement
having One Condition

3-2 Flowchart for VARYING Phrase of PERFORM Statement
wi th Two Conditions

3-3 Flowchart for VARYING Phrase of PERFORM Statement
wi th Three Conditions

3-4 PERFORM Statements in Sequence

4-1 Flowchart of SEARCH Operation with Two WHEN Phrases

C-1 COBOL Communication Environment
C-2 Hierarchy of Queues

Language Reference Manual

Table of Contents

Page

1-6

2-41

3-107

3-108

3-109
3-110

4-13

C-3
C-8

xxxix

CHAPTER 1

INTRODUCTION

WHAT IS LEVEL II COBOL 1

COBOL (COmmon Business Oriented Language) is the most widely and extensively
used language for the programming of commercial and administrative data
processing.

LEVEL IT COBOL is a compact, interactive and standard COBOL Language System
which is designed for use on microprocessor-based computers and intelligent
terminals.

It is based on the ANSI COBOL as specified in American National Standard
Programming Language COBOL (ANSI X3.231974). The following modules are
fully implemented at Level II:

• Nucleus
• Table Handling
• Sequential Input and Output
• Relative Input and Output
• Indexed Input and Output
• Sort-Merge
• Segmentation
• Library
• Inter-Program Communication
• Debug
• Communications

This manual is intended as a reference work for LEVEL II COBOL programmers
and material from the ANSI COBOL language standard document is included.

The package has been proved to meet and exceed the COBOL ANSI standard X3.23
and has been certified by the Federal Software Testing Center (FSTC) under the I
direction of the General Services Administration (GSA) as validated at Federal
High Level.

Language Reference Manual 1 - 1

Introduction

LEVEL II COBOL programs are created using a conventional text editor. The
compiler compiles the programs and the Run-Time System links with the compiled
output to form a running user program. A listing of the LEVEL II COBOL program
is provided by the compiler during compilation. Error messages are inserted in the
listing.

LEVEL II COBOL is designed to be interfaced easily to any microprocessor
operating system. Detailed operating characteristics are dependent on the
particular host operating system used and are defined in the appropriate
LEVEL II COBOL Operating Guide.

*

FORMATS AND RULES

General Format

A general format is the specific arrangement of the elements of a clause or a
statement. Throughout this document a format is shown adjacent to information
defining the clause or statement. When more than one specific arrangement is
permitted, the general format is separated into numbered formats. Clauses must be
written in the sequence given in the general formats. (Clauses that are optional
must appear in the sequence shown if they are used). In certain cases, stated
explicitly in the rules associated with a given format, the clauses may appear in
sequences other than that shown. Applications, requirements or restrictions are
shown as rules.

Syntax Rules

Syntax rules are those rules that define or clarify the order in which words or
elements are arranged to form larger elements such as phrases, clauses, or
statements. Syntax rules also impose restrictions on individual words or elements.

These rules are used to define or clarify how the statement must be written, that is,
the order of the elements of the statement and restrictions on what each element
may represent.

Language Reference Manual 1-3

Introduction

Indicator Area

An asterisk * in this area marks the line as documentary comment only. Such a
comment line can appear anywhere in the program after the Identification Division
header. Any characters from the ASCn character set can be included in Area A and
Area B of the line.

A stroke I, in the indicator area acts as a comment line above but causes the page to
eject before printing the comment.

A "D" in the indicator area represents a debugging line. Areas A and B may contain
any valid COBOL sentence.

A "_" in the indicator area represents a continuation of the previous line without
spaces or the continuation of a non-numeric literal (see Chapter 2).

Language Reference Manual 1-5

000330
000340
000350

02 CRT-PROD-DESC PIC X(24).
02 FILLER PIC X(56).
02 CRT-UNIT-SIZE PIC 9(4).

000360 02 FILLER PIC X.
000370 PROCEDURE DIVISION.
000380 SRl.
000390
000400
000410

DISPLAY SPACE.
OPEN 1-0 STOCK-FILE.
DISPLAY SCREEN-HEADINGS.

000420 NORMAL-INPUT.
000430
000440

MOVE SPACE TO ENTER-IT.
DISPLAY ENTER-IT.

000450 CORRECT-ERROR.
ACCEPT ENTER-IT. 000460

000470
000480
000490
000500
000510
000520

IF CRT-STOCK-CODE • SPACE GO TO END-IT.
IF CRT-UN!T-SIZE NOT NUMERIC GO TO CORRECT-ERROR.
MOVE CRT-PROD-DESC TO PRODUCT-DESC.
MOVE CRT-UNIT-SIZE TO UNIT-SIZE.
MOVE CRT-STOCK-CODE TO STOCK-COOE.
WRITE STOCK-ITEM; INVALID GO TO CORRECT-ERROR.

000530 GO TO NORMAL-INPUT.
000540 END-IT.
000550
000560
000570
000580

CLOSE STOCK-FILE.
DISPLAY SPACE.
DISPLAY "END OF PROGRAM".
STOP RUN.

• LEVEL II COBOL V2.S stock1.cbl

• 29-Jan-85 10:41

Page 0002

• LEVEL II COBOL V2.5 revision 2
• Compiler Copyright (c) 1982 Micro Focus Ltd
•

URN OOOO/AAOO/OOOOOA
REF CNB-l00l00022

• Errors=OOOOO Data=01024 Code=00512 Dict a 00354:26159/26513 FIPS flagging off
'--v-J y '------------ --------------------~

1J[
Indicator

Area I
ClIS. Cols 8-11
1-6 Area A

Sequence
Number

Cols 12-72

AreaS

Introduction

Figure 1-1. Sample Program Listing Showing Source Format (Cont)

Language Reference Manual 1 - 7

CHAPTER 2

COBOL CONCEPTS

LANGUAGE CONCEPTS

Character Set

The most basic and indivisible unit of the language is the character. The set of
characters used to form LEVEL II COBOL character-strings and separators
includes the letters of the alphabet, digits and special characters. The character set
consists of the characters defined below:

Oto9
AtoZ

!1::I!:!:!~.jI.!ln.::lllt~gi!,il:flqll:!§_ill::llti!:_:;:!I::1::1~1::!::!i:ii:::\i!i!!:!::!:::l!:i:::i::!::!:::i::.i:::':::::i:::i:::::!::!:
Space
+ Plussign

*
Minus sign or hyphen
Asterisk
Oblique Stroke/Slash

= Equalsign
$

,
"

Dollar sign
Full stop or decimal point
Comma or decimal point
Semicolon
Quotation mark
Left Parenthesis
Right Parenthesis

> Greater than symbol
< Less than symbol

The LEVEL II COBOL language is restricted to the above character set, but the
content of non-numeric literals, comment lines and data may include any of the
characters from the ASCII character set. See the LEVEL II COBOL Pocket I
Guide

Language Reference Manual 2-1

COBOL Concepts

5. Pseudo-text delimiters are separators. An opening pseudo-text delimiter may
be immediately preceded by a space; a closing pseudo-text delimiter must be
immediately followed by one of the separators space, comma, semicolon, or
period.

Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo­
text. (See Chapter 10 Library)

6. The separator space may optionally immediately precede all separators except
the following:

a. As specified by reference format rules see Reference Format in this
Chapter.

b. The separator closing quotation mark. In this case, a preceding space is
considered as part of the nonnumeric literal and not as a separator.

c. The opening pseudo-text delimiter, where the preceding space is required.

7. The separator space is optional and can immediately follow any separator
except the opening quotation mark. In this case, a following space is
considered as part of the nonnumeric literal and not as a separator.

Any punctuation character which appears as part of the specification of a PICTURE
character-string (see Chapter 3) or numeric literal is not considered as a punctuation
character, but rather as a symbol used in the specification of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited only
by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the characters
which comprise the contents of nonnumeric literals, comment-entries, or comment
lines.

CHARACTER STRINGS

A character-string is a character or a sequence of contiguous characters which forms
a LEVEL IT COBOL word, a literal, a PICTURE character-string, or a comment­
entry. A character-string is delimited by separators.

Language Reference Manual 2-3

COBOL Concepts

index-names
library-names
mnemonic-names
paragraph-names
program-names
routine-names
section-names
text-names

All user-defined words, except segment-numbers and level-numbers, can belong to
one and only one of these disjoint sets. Further, all user-defined words within a
given disjoint set must be unique. (See Uniqueness Of Reference in this Section.)

With the exception of paragraph-name, section-name, level-number and segment­
number, all user-defined words must contain at least one alphabetic character.
Segment-numbers and level-numbers need not be unique; a given specification of a
segment-number or level-number may be identical to any other segment-number or
level-number and may even be identical to a paragraph-name or section-name.

Condition-Name:

Mnemonic-N ame:

A condition-name is a name which is assigned to a specific
value, set of values, or range of values, within a complete set of
values that a data item may assume. The data item itself is
called a conditional variable.

Condition-names may be defined in the Data Division or in the
SPECIAL-NAMES paragraph within the Environment
Division where a condition-name must be assigned to the ON
STATUS or OFF STATUS, or both, of the run time switches.

A condition-name is used only in the RERUN clause or in
conditions as an abbreviation for the relation condition; this
relation condition posits that the associated conditional
variable is equal to one of the set of values to which that
condition-name is assigned.

A mnemonic~name assigns a user-defined word to an
implementor-name. These associations are established in the
SPECIAL-NAMES paragraph of the Environment Division.
(See SPECIAL-NAMES in Chapter 3).

Language Reference Manual 2-5

KeyWords:

Optional Words:

Connectives:

COBOL Concepts

There are six types of reserved words:

1. Keywords
2. Optional words
3. Connecti ves
4. Special registers
5. Figurative constants
6. Special-character words

A key word is a word whose presence is required when the
format in which the word appears is used in a source program.
Within each formatt such words are uppercase and underlined.

Key words are of three types:

1. Verbs such as ADD t READ, and ENTER.
2. Required words, which appear in statement and entry

formats.
3. Words which have a specific functional meaning such as

NEGATIVE, SECTION, etc.

Within each format, uppercase words that are not underlined
are called optional words and may appear at the user's option.
The presence or absence of an optional word does not alter the
semantics of the COBOL program in which it appears.

There are three types of connectives:

1. Qualifier connectives that are used to associate a data­
name, a condition-name, and a text-name, or a
paragraph-name with its qualifier: OF, IN.

2. Series connectives that link two or more consecutive
operands: , (separator comma) or ; (separator semicolon).

3. Logical connectives that are used in the formation of
conditions: AND, OR.

Language Reference Manual 2 - 7

COBOL Concepts

All other punctuation characters are part of the value of the nonnumeric literal
rather than separators; all nonnumeric literals are category umeric. (See
The PICTURE Clause in 3).

Numeric Literals: A numeric literal is a character-string whose characters are
selected from the digits '0' through '9', the plus sign, the minus
sign, and/or the decimal point. The implementation allows for
numeric literals of 1 through 18 digits in length. The rules for
the formation of numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign character.
If a sign is used, it must appear as the leftmost character
of the literal. If the literal is unsigned, the literal is
positive.

3. A literal must not contain more than one decimal point.
The decimal point is treated as an assumed decimal
point, and may appear anywhere within the literal
except as the rightmost character. If the literal contains
no decimal point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric
literals, but is enclosed in quotation marks, it is a nonnumeric
literal and it is treated as such by the compiler.

4. The value of a numeric literal is the algebraic quantity
represented by the characters in the numeric literal.
Every numeric literal is category numeric. (See The
PICTURE Clause in Chapter 3).

The size of a numeric literal in standard data format characters is equal to the
number of digits specified by the user.

Language Reference Manual 2-9

COBOL Concepts

When a figurative constant represents a string of one or more characters, the length
of the string is determined by the compiler from context according to the following
rules:

1. When a figurative constant is associated with another data item, as when the
figurative constant is moved to or compared with another data item, the string
of characters specified by the figurative constant is repeated character by
character on the right until the size of the resultant string is equal to the size in
characters of the associated data item. This is done prior to and independent of
the application of any JUSTIFIED clause that may be associated with the data
item.

2. When a figurative constant is not associated with another data item, as when
the figurative constant appears in a DISPLAY, STRING, STOP or UNSTRING
statement, the length of the string is one character.

A figurative constant may be used wherever a literal appears in a format, except
that whenever the literal is restricted to having only numeric characters in it, the
only figurative constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-V ALUE(S) or LOW -V ALUE(S) are used in the
source program, the actual character associated with each figurative constant
depends upon the program collating sequence specified. (See The OBJECT·
COMPUTER Paragraph, and The SPECIAL·NAMES Paragraph in Chapter
3).

Each reserved word which is used to reference a figurative constant value is a
distinct character-string wi th the exception of the construction' ALL literal' which is
composed of two distinct character-strings.

PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters in the
COBOL character set used as symbols. See The PICTURE Clause in chapter 3 for
the PICTURE character-string and for the rules that govern their use.

Language Reference Manual 2- 11

COBOL Concepts

Level-Numbers

A system of level-numbers shows the organization of elementary items and group
items. Since records are the most inclusive data items, level-numbers for records
start at 01. Less inclusive data items are assigned higher (not necessarily
successive) level-numbers not greater in value than 49. A maximum of 49 levels in a
record is allowed. There are special level-numbers, 66, 77 and 88 which are
exceptions to this rule (see below). Separate entries are written in the source
program for each level-number used.

A group includes all group and elementary items following it until a level-number
less than or equal to the level-number of that group is encountered. All items which
are immediately subordinate to a given group item must be described using
identical level-numbers ater than the level-number used to describe that

Three types of entries exist for which there is no true concept oflevel. These are:

1. Entries that specify elementary items or groups introduced by a RENAMES
clause

2. Entries that specify noncontiguous working storage and linkage data items

3. Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of
regrouping data items have been assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions of other
items, and are not themselves subdivided, have been assigned the special level­
number 77.

Entries that specify condition-names, to be associated with particular values of a
conditional variable, have been assigned the special level-number 88.

Language Reference Manual 2 - 13

COBOL Concepts

2. As numeric characters defined by USAGE IS DISPLAY (See The USAGE
Clause in Chapter 3) one per byte in ASCll representation. If they are signed
and the sign is specified as INCLUDED, bit 6 of the leading or trailing byte of
the field is set for negative, depending on the field definition. If a SEPARATE
sign is specified as a one byte ASCll + or -, a sign is added as the leading or
trailing byte. If no SIGN clause is specified, bit 6 of the trailing digit is set to
indicate negative by default.

3. As numeric characters defined by USAGE IS COMP or COMPUTATIONAL in
pure binary form. If the field is signed the number is held in its twos­
complement form. Storage is then dependent on the number of 9's in the
PICTURE clause (see The PICTURE Clause in Chapter 3) and on whether
the field is SIGNed or not (see The SIGN Clause in Chapter 3).

Table 2-3 shows the storage requirements for each COMP(UTATIONAL)
PICTURE clause.

Table 2-3. Numeric Data Storage for the COMP(UTATIONAL) PICTURE
Clause.

N umber of Characters

Bytes Required Signed Unsigned

1 1-2 1-2

2 3-4 3-4

3 5-6 5-7

4 7-9 8-9

5 10-11 10-12

6 12-14 13-14

7 15-16 15-16

8 17-18 17-18

4.

Language Reference Manual 2 -15

COBOL Concepts

ALGEBRAIC SIGNS

Algebraic signs fall into two categories: operational signs, which are associated with
signed numeric data items and signed numeric literals to indicate their algebraic
properties; and editing signs, which appear on edited reports to identify the sign of
the item.

The SIGN clause permits the programmer to state explicitly, the location of the
operational sign. The clause is optional; if it is not used operational signs will be
represented as defined by setting bit 6 of the trailing digit for ASCII numbers. (see
above).

Editing signs are inserted into a data item through the use of the sign control
symbols of the PICTURE clause.

STANDARD ALIGNMENT RULES

The standard rules for positioning data within an elementary item depend on the
category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving
character positions with zero fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item
is treated as ifit had an assumed decimal point immediately following its
rightmost character and is aligned as in paragraph a. above.

2. If the receiving data item is a numeric edited data item, the data moved to the
edited item is aligned by decimal point with zero fill or truncation at either end
as required within the receiving character positions of the data item, except
where editing requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited data
item), alphanumeric edited or alphabetic, the sending data is moved to the
receiving character positions and aligned at the leftmost character position in
the data item with space fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are
modified as described in The JUSTIFIED Clause in Chapter 3.

Language Reference Manual 2 - 17

COBOL Concepts

The general formats for qualification are:

Format 1

{
data-name-l }
condition-name

[{~: } data-name-2]

Format 2

paragraph-name [{~: } section-name]

Format 3

text-name [{~: } library-name]

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same
hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one data item in a
source program, the data-name or condition-name must be qualified each time
it is referred to in the Procedure, Environment, and Data Divisions (except in
the REDEFINES clause where qualification is unnecessary and must not be
used.)

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must not
appear. A paragraph-name need not be qualified when referred to from within
the same section.

5. A data-name cannot be subscripted when itis being used as a qualifier.

Language Reference Manual 2 - 19

COBOL Concepts

The format is:

{
data-name }
condition name

(subscript-l [, subscript-2 [, 5ubscript-3] .••])

Indexing

References can be made to individual elements within a table of like elements by
specifying indexing for that reference. An index is assigned to that level of the table
by using the INDEXED BY phrase in the definition of a table. A name given in the
INDEXED BY phrase is known as an index-name and is used to refer to the assigned
index. The value of an index corresponds to the occurrence number of an element in
the associated table or any other table. An index-name must be initialized before it
is used as a table reference. An index-name can be given an initial value by a SET
statement.

Direct indexing is specified by using an index-name in the form of a subscript.
Relative indexing is specified when the index-name is followed by the operator + or
-, followed by an unsigned integer numeric literal all delimited by the balanced pair
of separators left parenthesis and right parenthesis following the table element
data-name. The occurrence number resulting from relative indexing is determined
by incrementing (where the operator + is used) or decrementing (when the operator
- is used), by the value of the literal, the occurrence number represented by the
value of the index. When more than one index-name is required, they are written in
the order of successively less inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table element,
the value contained in the index referenced by the index-name associated with the
table element must neither correspond to a value less than one nor to a value
greater than the highest permissible occurrence number of an element of the
associated table. This restriction also . es to the value resultant from relative

Language Reference Manual 2 - 21

COBOL Concepts

3. An index may be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit
storage of the values associated with index-names as data in a form specified by
the implementor. Such data items are called index data items.

4. literal-I, literal-3, literal-5, in the above format must be positive numeric
integers. literal-2, literal-4, literal-6 must be unsigned numeric integers.

Condition-Name

Each condition-name must be unique, or be made unique through qualification
and/or indexing, or subscripting. If qualification is used to make a condition-name
unique, the associated conditional variable may be used as the first qualifier. If
qualification is used, the hierarchy of names associated with the conditional
variable or the conditional variable itself must be used to make the condition-name
unique.

If references to a conditional variable require indexing or subscripting, then
references to any of its condition-names also require the same combination of
indexing or subscripting.

The format and restrictions on the combined use of qualification, subscripting, and
indexing of condition-names is exactly that of identifier except that data-name-I is
replaced by condition-name-l.

Explicit and Implicit Specifications

There are three types of explicit and implicit specifications that occur in COBOL
source programs:

1. Explicit and implicit Procedure Division references

2. Explicit and implicit transfers of control

3. Explicit and implicit attributes.

Language Reference Manual 2- 23

COBOL Concepts

In addition to the implicit transfer of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement. COBOL provides the following types
of implicit control flow alterations which override the statement-to-statement
transfers of control:

1. If a paragraph is being executed under control of another COBOL statement
(for example, PERFORM, USE, SORT and MERGE) and the paragraph is the
last paragraph in the range of the controlling statement, then an implied
transfer of control occurs from the last statement in the paragraph to the
control mechanism of the last executed controlling statement. Further, if a
paragraph is being executed under the control of a PERFORM statement which
causes iterative execution and that paragraph is the first paragraph in the
range of that PERFORM statement, an implicit transfer of control occurs
between the control mechanism associated with that PERFORM statement
and the first statement in that paragraph for each iterative execution of the
paragraph.

2. When a SORT or MERGE statement is executed, an implicit transfer of control
occurs to any associated input or output procedures.

3. When any COBOL statement is executed which results in the execution of a
declarative section, an implicit transfer of control to the declarative section
occurs. Note that another implicit transfer of control occurs after execution of
the declarative section, as described in (1) above.

Language Reference Manual 2-25

COBOL Concepts

PROGRAM STRUCTURE

A LEVEL II COBOL program consists of four divisions:

1. IDENTIFICATION DIVISION - An identification of the program.

2. ENVIRONMENT DIVISION - A description of the equipment to be used to
compile and run the program.

3. DATA DIVISION - A description of the data to be processed.

4. PROCEDURE DIVISION - A set of procedures to specify the operations to be
performed on the data.

Each division is divided into sections which are further divided into paragraphs,
which in turn are made up of sentences.

Within these subdivisions of a COBOL program, further subdivisions exist as
clauses and statements. A clause is an ordered set of COBOL elements that specify
an attribute of an entry, and a statement is a combination of elements in the
Procedure Division that include a COBOL verb and constitute a program
instruction.

Language Reference Manual 2 - 27

COBOL Concepts

ENVIRONMENT DIVISION

General Description

The Environment Division specifies a standard method of expressing those aspects
of a data processing problem that are dependent upon the physical characteristics of
a specific computer. This division allows specification of the configuration of the
compiling computer and the object computer. In addition, information relating to
input-output control, special hardware characteristics and control techniques can be
given.

The Environment Division must be included in every COBOL source program.

Organization

Two sections make up the Environment Division: the Configuration Section and the
Input-Output Section.

The Configuration Section deals with the characteristics of the source computer and
the object computer. This section is divided into three paragraphs: the SOURCE­
COMPUTER paragraph, which describes the computer configuration on which the
source program is compiled; the OBJECT-COMPUTER paragraph, which describes
the computer configuration on which the object program produced by the compiler is
to be run; and the SPECIAL-NAMES paragraph, which relates the implemention­
names used by the compiler to the mnemonic-names used in the source program.

The Input-Output Section deals with the information needed to control
transmission and handling of data between external media and the object program.
This section is divided into two paragraphs: the FILE-CONTROL paragraph which
names and associates the files with external media; and the I-O-CONTROL
paragraph which defines special control techniques to be used in the object program.

Structure

The following is the general format of the sections and paragraphs in the
Environment Division, and defines the order of presentation in the source program.

Language Reference Manual 2 - 29

COBOL Concepts

The FILE SECTION defines the structure of data files. Each file is defined by a
file description entry and one or more record descriptions. Record descriptions are
written immediately following the file description entry. The WORKING­
STORAGE SECTION describes records and noncontiguous data items which are
not part of external data files but are developed and processed internally. It also
describes data items whose values are assigned in the source program and do not
change during the execution of the object program. The LINKAGE SECTION
appears in the called program and describes data items that are to be referred to
by the calling program and the called program. Its structure is the same as the
WORKING-STORAGE SECTION. The communication section describes the data
item in the source program that will serve as the interface between the MCS
(Message Control System) and the program.

GENERAL FORMAT

The following gives the general format of the sections in the Data Division, and
defines the order of their presentation in the source program.

f ~ DIVISION. }

[

FILE SECTION.

file-description-entry [record-description-entry] ••.
[sort-merge-file-descriPtion-entry [record-description-entry]

[

WORKING-STORAGE SECTION.

[
77-1eVel-descriPtion-entry] 1
record-description-entry "j

[

LINKAGE SECTION.

[77-1evel-des~ri~tion-entry]]
record-descrlptlon-entry •.•

] .. ~ ... j

[

COMMUNICATION SECTION.]

[communication-description-entry [record-description-entr~ •• .] •••

Language Reference Manual 2 - 31

COBOL Concepts

A paragraph consists of a paragraph-name followed by a period and a space and by
zero, one, or more successive sentences. A paragraph ends immediately before the
next paragraph-name or section-name or at the end of the Procedure Division or, in
the declaratives portion of the Procedure Division, at the key words END
DECLARATIVES.

A sentence consists of one or more statements and is terminated by a period followed
by a space.

A statement is a syntactically valid combination of words and symbols beginning
with a COBOL verb.

The term identifier is defined as the word or words necessary to make unique
reference to a data item.

EXECUTION

Execution begins with the first statement of the Procedure Division, excluding
declaratives. Statements are then executed in the order in which they are presented
for compilation, except where the rules indicate some other order.

GENERAL FORMAT

Procedure Division Header

The Procedure Division is identified by and must begin with the following header:

PROCEDURE DIVISION [USING data-name-l [, data-name-2]].

Language Reference Manual 2 - 33

COBOL Concepts

CONDITIONAL STATEMENT

A conditional statement specifies that the truth value of a condition is to be
determined and that the subsequent action of the object program is dependent on
this truth value.

A conditional statement is one of the following:

• An IF, SEARCH or RETURN statement.

• A READ statement that specifies the AT END or INVALID KEY phrase.

• A WRITE statement that specifies the INVALID KEY or END-OF-PAGE
phrase.

• A START, REWRITE or DELETE statement that specifies the INVALID KEY
phrase.

• An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) that specifies the SIZE ERROR phrase.

• A RECEIVE statement that specifies a NO DATA phrase.

• A STRING, UNSTRING or CALL statement that specifies the ON
OVERFLOW phrase.

CONDITIONAL SENTENCE

A conditional sentence is a conditional statement, optionally preceded by an
imperative statement, terminated by a period followed by a space.

COMPILER DIRECTING STATEMENT

A compiler directing statement consists of a compiler directing verb and its
operands. The compiler directing verbs are COPY, ENTER and USE (see
The COpy Statement in Chapter 10, The ENTER Statement in Chapter 3, and
The USE Statement in Chapters 5, 6 and 7). A compiler directing statement
causes the compiler to take a specified action during compilation.

Language Reference Manual 2-35

1- Without the optional SIZE ERROR phrase.
2 - Without the optional INVALID KEY phrase.
3 - Without the optional ON OVERFLOW phrase.
4 - Without the optional NO DATA phrase.

COBOL Concepts

5 - Without the optional AT END phrase or INVALID KEY phrase.
6 - Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

When 'imperative-statement' appears in the general format of statements,
'imperative-statement' refers to that sequence of consecutive imperative statements
that must be ended by a period or an ELSE phrase associated with a previous IF
statement.

IMPERATIVE SENTENCE

An imperative sentence is an imperative statement terminated by a period followed
by a space.

Language Reference Manual 2 -37

COBOL Concepts

Category Verbs

ACCEPT (identifier)
CLOSE
DELETE
DISABLE
DISPLAY
ENABLE
OPEN

Input-Output READ
RECEIVE
REWRITE
SEND
START
STOP (literal)
WRITE

Inter-Program {CALL
Communicating CANCEL

{ MERGE
RELEASE

Ordering RETURN
SORT

fLTER CALL
Procedure Branching EXIT

GO TO
PERFORM

Table Handling {SEARCH
SET

IF is a verb in the COBOL sense; it is recognized that it is not a verb in English.

Language Reference Manual 2 - 39

COBOL Concepts

Reference Format Representation

The reference fonnat for a line is represented as in Figure 2-1.

I I I
Margin Margin Margin Margin Margin
L

1
"-

C A B R

61 ~ 1 ~ I 1 1

I 1 2 3 4 5 7 9 0 2 3
./

1
\.. ,.I, ..I ~ V' V'

Sequence Number Area Area A AreaB

Indicator Area

Margin L is immediately to the left of the leftmost character position of a
line.

Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character posi tions of a line.

Margin R is immediately to the right of the rightmost character position of
aline.

Figure 2-1. Reference Format for a COBOL Source Line.

The sequence number area occupies six character positions (1-6), and is between
Margin L and Margin C.

The indicator area is the 7th character position of a line.

Area A occupies character positions 8, 9, 10 and 11, and is between margin A and
marginB.

Area B occupies character positions 12 through 72 inclusive; it begins immediately
to the right of Margin Band tenninates immediately to the left of Margin R.

Language Reference Manual 2 - 41

COBOL Concepts

PSEUDO-TEXT

The character-strings and separators comprising pseudo-text may start in either
area A or area B. If, however, there is a hyphen in the indicator area of a line which
follows the opening pseudo-text delimiter, area A of the line must be blank; and the
normal rules for continuation of lines apply to the formation of text words. (See
Chapter 10, Library.)

Division, Section, Paragraph Formats

DIVISION HEADER

The division header must start in area A. (See Figure 2-1).

SECTION HEADER

The section header must start in area A. (See Figure 2-1).

A section consists of paragraphs in the Environment and Procedure Divisions and
Data Division entries in the Data Division.

PARAGRAPH HEADER, PARAGRAPH-NAME AND PARAGRAPH

A paragraph consists of a paragraph-name followed by a period and a space and by
zero, one or more sentences, or a paragraph header followed by one or more entries.
Comment entries may be included within a paragraph. The paragraph header or
paragraph-name starts in area A of any line following the first line of a division or a
section.

The first sentence or entry in a paragraph begins either on the same line as the
paragraph header or paragraph-name or in area B of the next nonblank line that is
not a comment line. Successive sentences or entries either begin in area B of the
same line as the preceding sentence or entry or in area B of the next nonblank line
that is not a comment line.

Language Reference Manual 2 -43

COBOL Concepts

Successive data description entries may have the same format as the first or may be
indented according to level-number. The entries in the output listing need be
indented only if the input is indented. Indentation does not affect the magnitude ofa
level-number.

When level-numbers are to be indented, each new level-number may begin any
number of spaces to the right of margin A. The extent of indentation to the right is
determined only by the width of the physical medium.

Declaratives

The key word DECLARATIVES and the key words END DECLARATIVES that
precede and follow, respectively, the decIaratives portion of the Procedure Division
must each appear on a line by themselves. Each must begin in area A and be
followed by a period and a space (see Figure 2-1).

Comment Lines

A comment line is any line with an asterisk in the continuation indicator area of the
line. A comment line can appear as any line in a source program after the
Identification Division header. Any combination of characters from the computer's
character set may be included in area A and area B of that line (see Figure 2-1). The
asterisk and the characters in area A and area B will be produced on the listing but
serve as documentation only. A special form of comment line represented by a
stroke in the indicator area of the line causes page ejection prior to printing the
comment.

Successive comment lines are allowed. Continuation of comment lines is permitted,
except that each continuation line must contain an '*' in the indicator area.

RESERVED WORDS

A full list of reserved words is given in the LEVEL II COBOL Pocket Guide.

Language Reference Manual 2 -45

CHAPTER 3

THE NUCLEUS

FUNCTION OF TH E NUCLEUS

The Nucleus provides a basic language capability for the internal processing of data
wi thin the basic structure of the four divisions of a program.

OVERALL LANGUAGE

Name Characteristics

LEVELII COBOL data-names need not begin with an alphabetic character; the
alphabetic characters may be positioned anywhere within the data-name.
Qualification is permitted and all data-names, condition-names, paragraph- names,
and text-names need not be unique.

Figurative Constants

All the following figurative constants may be used: ZERO, ZEROS, ZEROES,
SPACE, SPACES, HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW­
VALUES, QUOTE, QUOTES, and ALL literal.

Reference Format

A word or numeric literal can be broken in such a way that part of it appears on a
continuation line.

Language Reference Manual 3-1

The Nucleus

SYNTAX RULES

1. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

2. The comment-entry may be any combination of the characters from the
computer's character set and may be written in Area B on one or more lines.
The continuation of the comment-entry by the use of the hyphen in the
indicator area is not permitted.

The PROGRAM-ID Paragraph

FUNCTION

The PROGRAM-ID paragraph gives the name by which a program is identified.

GENERAL FORMAT

PROGRAM-ID. program-name.

SYNTAX RULES

1. The program-name must conform to the rules for formation of a user-defined
word.

GENERAL RULES

1. The PROGRAM-ID paragraph must contain the name of the prCI£1"lilIIl
must be

2. The program-name identifies the source program and all listings pertaining to
a particular program.

Language Reference Manual 3-3

The Nucleus

ENVIRONMENT DIVISION IN THE NUCLEUS

Configuration Section

THE SOURCE-COMPUTER PARAGRAPH

Function

The SOURCE-COMPUTER paragraph identifies the computer upon which the
program is to be compiled.

General Format

SOURCE-COMPUTER. computer-name.

Syntax Rule

computer-name must be one COBOL word defined by the user.

General Rules

The computer-name provides a means for identifying equipment configuration, in

;i-

Language Reference Manual 3-5

The Nucleus

b. Explicitly specified in condition-name conditions; see Condition Name
Condition (Conditional Variable).

3. If the PROGRAM COLLATING SEQUENCE clause is not specified, the
native collating sequence is used. The LEVEL II COBOL Pocket Guide I
lists the full ASCII collating sequence (native) and those characters used
in COBOL.

4. If the PROGRAM COLLATING SEQUENCE clause is specified, the progr.am
collating sequence is the collating sequence associated with the alphabet-name
specified in that clause.

5. The PROGRAM COLLATING SEQUENCE clause is also applied to any
nonnumeric merge or sort keys unless the COLLATING SEQUENCE phrase
of the respective SORT or MERGE statement is specified.

6. The PROGRAM COLLATING SEQUENCE clause applies only to the program
in which it is specified.

THE SPECIAL-NAMES PARAGRAPH

Function

The SPECIAL-NAMES paragraph provides a means of relating implementor-names
to user-specified mnemonic-names and of relating alphabet-names to character sets
and/or collating sequences.

Language Reference Manual 3-7

The Nucleus

Syntax Rules

1. mnemonic-names can be any COBOL user-defined word and at least one
constituent character must be alphabetic.

2. The literals specified in the literal phrase of the alphabet-name clause:

a. If numeric, must be unsigned integers and must have a value within the
range of one (1) through the maximum number of characters in the native
character set.

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must
each be one character in length.

3. If the literal phrase of the alphabet-name clause is specified a given character
must not be specified more than once in an alphabet-name clause.

4. The words THRU and THROUGH are equivalent.

General Rules

1. function-name-l specifies system devices or functions used by the compiler.
The programmer can associate any user-defined COBOL word with a function­
name. mnemonic-name-l, -2, etc can be used in the ACCEPT, DISPLAY or
WRITE statements.

2. The SWITCH clause must have at least one condition-name associated with it.
The switch is set at run-time by the operator and the setting may be
determined in the program by testing the condition-names. The setting of the
switches cannot be changed during execution.

Language Reference Manual 3-9

The Nucleus

If this clause is not present, only the currency sign is used in the PICTURE
clause.

7. The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the character-string of the PICTURE clause and
in numeric literals.

Language Reference Manual 3 -11

The Nucleus

Other data description clauses are optional and can be used to complete the
descri ption of the item if necessary.

WORKING-STORAGE RECORDS

Data elements and constants in Working-Storage which bear a definite hierarchic
relationship to one another must be grouped into records according to the rules for
formation of record descriptions. All clauses which are used in record descriptions in
the File Section can be used in record descriptions in the Working-Storage Section.

INITIAL VALUES

The initial value of any item in the Working-Storage Section except an index data
item is specified by using the VALUE clause with the data item. The initial value of
any index data item is unpredictable.

The Data Description-Complete Entry Skeleton

FUNCTION

A data description entry specifies the characteristics ofa particular item of data.

Language Reference Manual 3 - 13

The Nucleus

SYNTAX RULES

1. The level-number in Format 1 may be any number from 01-49 or 77.

2. The clauses may be written in any order with two exceptions: the data-name-l
or FILLER clause must immediately follow the level-number; the
REDEFINES clause, when used, must immediately follow the data-name-l
clause.

3. The PICTURE clause must be specified for every elementary item except an
index data item, in which case use of this clause is prohibited.

4. The words THRU and THROUGH are equivalent.

GENERAL RULES

1. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO, must not be specified except for an elementary data item.

2. Format 3 is used for each condition-name. Each condition-name requires a
separate entry with level-number 88. Format 3 contains the name of the
condition and the value, values, or range of values associated with the
condition-name. The condition-name entries for a particular conditional
variable must follow the entry describing the item with which the condition­
name is associated. A condition-name can be associated with any data
description entry which contains a level-number except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY).

d. An index data item (See The USAGE IS INDEX Clause in Chapter 4).

Language Reference Manual 3 - 15

GENERAL FORMAT

{
da ta - name}
FILLER

SYNTAX RULE

The Nucleus

In the File, Working-Storage, Communication and Linkage Sections, a data-name or
the key word FILLER must be the first word following the level-number in each data
description entry.

GENERAL RULE

The key word FILLER may be used to name an elementary item or'lIii:j::jin a
record. Under no circumstances can a FILLER item be referred toeXpHci tly.
However, the key word FILLER may be used as a conditional variable because such
use does not require explicit reference to the FILLER item but to its value.

The JUSTIFIED Clause

FUNCTION

The JUSTIFIED clause specifies non-standard positioning of data within a receiving
data item.

GENERAL FORMAT

{
JUSTIFIED } RIGHT
JUST

Language Reference Manual 3 - 17

The Nucleus

GENERAL FORMAT

level-number

SYNTAX RULES

1. A level-number is required as the first element in each data description entry.

2. Data description entries subordinate to an FD, CD, or SO entry must have
level-numbers with the values 01-49, 66 or 88. (See The File Description in
Chapter 5).

3. Data description entries in the Working-Storage Section and Linkage Section
must have level-numbers with the values 01-49,66, 77 or 88.

4. A level number may be a one or two digit number.

GENERAL RULES

1. The level-number 01 identifies the first entry in each record description.

2. Special level numbers have been assigned to certain entries where there is no
real concept of level:

a. The level-number 77 is assigned to identify noncontiguous working
storage data items, noncontiguous linkage data items, and can be used
only as described by Format 1 of the data description skeleton. (See The
Data Description - Complete Entry Skeleton in this chapter).

b. Level number 66 is assigned to identify RENAMES entries and can be
used only as described in Format 2 of the data description skeleton earlier
in this chapter.

c. Level number 88 is assigned to entries which define condition-names
associated with a conditional variable and can be used only as described
in Format 3 of the data description skeleton earlier in this chapter.

3. Multiple level 01 entries subordinate to any given level indicator, represent
implicit redefinitions of the same area.

Language Reference Manual 3 -19

The Nucleus

GENERAL RULES

There are five categories of data that can be described with a PICTURE clause:
alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited.
General rules within these categories are given below:

Alphabetic Data Rules

1. Its PICTURE character-string can only contain the symbols 'A', 'B'; and

2. Its contents when represented in standard data format must be any
combination of the twenty-six (26) letters of the Roman alphabet and the space
from the COBOL character set. Its length is limited only by the data division
having to be less than 64K bytes long.

Numeric Data Rules

1. Its PICTURE character-string can only contain the symbols '9', 'P', 'S', and 'V'.
The number of digit positions that can be described by the PICTURE character­
string must range from 1 to 18 inclusive.

2. If unsigned, the data in standard data format must be a combination of the
Arabic numerals '0', '1', '2', '3', '4', '5', '6', '7', '8', and '9'; if signed, the item may
also contain a ' +', '-', or other representation of an operational sign. (see The
SIGN Clause later in this chapter).

Alphanumeric Data Rules

1. Its PICTURE character-string is restricted to certain combinations of the
symbols 'A', 'X', '9', and the item is treated as if the character-string contained
all X's. A PICTURE character-string which contains all A's or all 9's does not
define an alphanumeric item; and

2. Its contents when represented in standard data format can consist of any
characters in the computer's character set. Its length is limited only by the
data division having to be less than 64K bytes long.

Language Reference Manual 3 - 21

The Nucleus

Elementary Item Size

The size of an elementary item, where size means the number of character positions
occupied by the elementary item in standard data format, is determined by the
number of allowable symbols that represent character positions. An integer which
is enclosed in parentheses following the symbols 'A', ',', 'X', '9', 'P', 'Z', '*', 'B', 'I', '0',
'+', '-', or the currency symbol indicates the number of consecutive occurrences of
the symbol. Note that the following symbols may appear only once in a given
PICTURE: 'S', 'V', '.', 'CR', and 'DB'.

Symbols Used

The functions of the symbols used to describe an elementary item are explained as
follows:

A Each 'A' in the character-string represents a character position which can
contain only a letter of the alphabet or a space.

BEach 'B' in the character-string represents a character position into which the
space character will be inserted.

PEach 'P' indicates an assumed decimal scaling position and is used to specify
the location of an assumed decimal point when the point is not within the
number that appears in the data item. The scaling position character 'P' is not
counted in the size of the data item. Scaling position characters are counted in
determining the maximum number of digit positions (18) in numeric edited
items or numeric items. The scaling position character 'P' can appear only to
the left or right as a continuous string of 'P's within a PICTURE description;
since the scaling position character 'P' implies an assumed decimal point (to
the left of 'P's if 'P's are leftmost PICTURE characters and to the right if 'P's
are rightmost PICTURE characters), the assumed decimal point symbol 'V' is
redundant as either the leftmost or rightmost character within such a
PICTURE description. The character 'P' and the insertion character '.' (period)
cannot both occur in the same PICTURE character-string. If, in any operation
involving conversion of data from one form of internal representation to
another, the data item being converted is described with the PICTURE
character 'P', each digit position described by a 'P' is considered to contain the
value zero, and the size of the data item is considered to include the digit
positions so described.

Language Reference Manual 3 - 23

The Nucleus

When the character '.' (period) appears in the character-string it is an editing
symbol which represents the decimal point for alignment purposes and in
addition, represents a character position into which the character '.' will be
inserted. The character '.' is counted in the size of the item. For a given
program the functions of the period and comma are exchanged if the clause
DECIMAL-POINT IS COMMA is stated in the SPECIAL-NAMES paragraph.
In this exchange the rules for the period apply to the comma and the rules for
the comma apply to the period wherever they appear in a PICTURE clause.
The insertion character '.' must not be the last character in the PICTURE
character-string.

+, -,CR,DB

*

cs

These symbols are used as editing sign control symbols. When used, they
represent the character position into which the editing sign control symbol will
be placed. The symbols are mutually exclusive in anyone character-string and
each character used in the symbol is counted in determining the size of the data
item.

Each '*' (asterisk) in the character-string represents a leading numeric
character position into which an asterisk will be placed when the contents of
that position is zero. Each '*' is counted in the size of the item.

The currency symbol in the character-string represents a character position
into which a currency symbol is to be placed. The currency symbol in a
character-string is represented by either the currency sign or by the single
character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. The currency symbol is counted in the size of the item.

EDITING RULES

There are two general methods of performing editing in the PICTURE clause, either
by insertion or by suppression and replacement. There are four types of insertion
editing available. They are:

• Simple insertion

• Special insertion

• Fixed insertion

• Floating insertion

Language Reference Manual 3-25

The Nucleus

Special Insertion Editing

The '.' (period) is used as the insertion character. In addition to being an insertion *
character it also represents the decimal point for alignment purposes. The
insertion character used for the actual decimal point is counted in the size of the
item. The use of the assumed decimal point, represented by the symbol 'V' and the
actual decimal point, represented by the insertion character, in the same
PICTURE character-string is disallowed. The result of special insertion editing is
the appearance of the insertion character in the item in the same position as
shown in the character-string.

Fixed Insertion Editing

The currency symbol and the editing sign control symbols, '+', '-', 'CR', 'DB', are *
the insertion characters. Only one currency symbol and only one of the editing
sign control symbols can be used in a given PICTURE character-string. When the
symbols 'CR' or 'DB' are used they represent two character positions in
determining the size of the item and they must represent the rightmost character
positions that are counted in the size of the item. The symbol' +' or '-', when used,
must be either the leftmost or rightmost character position to be counted in the
size of the item. The currency symbol must be the leftmost character.

Table 3-2. Editing Symbols in PICTURE Character-Strings

RESULT

EDITING SYMBOL IN

PICTURE CHARACTER-STRING DATA ITEM DATA ITEM

POSITIVE OR ZERO NEGATIVE

+ + -
- space -

CR 2 spaces CR

DB 2 spaces DB

Language Reference Manual 3 - 27

The Nucleus

Zero Suppression Editing

The suppression of leading zeros in numeric character positions is indicated by the
use of the alphabetic character 'Z' or the character ,*, (asterisk) as suppression
symbols in a PICTURE character-string. These symbols are mutually exclusive in a
given PICTURE character-string. Each suppression symbol is counted in
determining the size of the item. If'Z' is used, the replacement character will be the
space and if the asterisk is used, the replacement character will be '*'.

Zero suppression and replacement is indicated in a PICTURE character-string by
using a string of one or more of the allowable symbols to represent leading numeric
character positions which are to be replaced when the associated character position
in the data contains a zero. Any of the simple insertion characters embedded in the
string of symbols or to the immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing zero
suppression. One way is to represent any or all of the leading numeric character
positions to the left of the decimal point by suppression symbols. The other way is to
represent all of the numeric character positions in the PICTURE character-string by
suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading
zero in the data which corresponds to a symbol in the string is replaced by the
replacement character. Suppression terminates at the first non-zero digit in the
data represented by the suppression symbol string or at the decimal point,
whichever is encountered first.

If all numeric character positions in the PICTURE character-string are represented
by suppression symbols and the value of the data is not zero, the result is the same as
if the suppression characters were only to the left of the decimal point. If the value is
zero and the suppression symbol is 'Z', the entire data item will be spaces. If the
value is zero and the suppression symbol is '*', the data item will be all '*' except for
the actual decimal point.

The symbols '+', '-', '*', 'Z', and the currency symbol, when used as floating
replacement characters, are mutually exclusive within a given character-string.

Language Reference Manual 3 - 29

The Nucleus

Table 3-3. PICTURE Character Precedence Chart.

~
Non-Floating Floating Other Symbols

Symbol Insertion Symbols Insertion Symbols

Second B 0 / {±} {±} {~~} cs {:} {:} {±} ±} cs cs 9 A
S V P P

X
Symbol

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

/ x x x x x x x x x x x x x x x x x
Non

Floating x x x x x x x x x x x x x x x x
Insertion

Symbols x x x x x x x x x x

{±}

{±} x x x x x x x x x x x x x x

{~~} x x x x x x x x x x x x x x

cs x

{:} x x x x x x x

{:} x x x x x x x x x x x

{±} x x x x x x
Floating

Insertion {±} x x x x x x x x x x
Symbols

cs x x x x x x

cs x x x x x x x x x x

9 x x x x x x x x x x x x x x x

A
X

x x x x x
Other

Symbols S

V x x x x x x x x x x x x

p x x x x x x x x x x x x

p x x x x x

Language Reference Manual 3 - 31

The Nucleus

3. This clause must not be used in level 01 entries in the File Section. (See
General Rule 2 of The DATA RECORDS Clause in Chapter 5.)

4. This clause must not be used in level 01 entries in the Communication Section.

5. Data-name-2 may be subordinate to an entry which contains a REDEFINES
clause. The data description entry for data-name-2 cannot contain an
OCCURS clause. However data-name-2 may be subordinate to an item whose
data description entry contains an OCCURS clause. In this case, the reference
to data-name-2 in the REDEFINES clause may not be subscripted or indexed.
Neither the original definition nor the redefinition can include an item whose
size is variable as defined in the OCCURS clause. (See The OCCURS Clause
in Chapter 4).

6. No entry having a level-number numerically lower than the level-number of
data-name-2 and data-name-1 may occur between the data description entries
of data-name-2 and data-name-1.

GENERAL RULES

1. Redefinition starts at data-name-2 and ends when a level-number less than or
equal to that of data-name-2 is encountered.

2. When the level-number of data-name-1 is other than 01, it must specify the
same number of character positions that the data item referenced by data­
name-2 contains in ANSI standard COBOL. It is important to observe that I
the REDEFINES clause specifies the redefinition of a storage area, not of the
data items occupying the area.

3. Multiple redefinitions of the same character positions are permitted. The
entries giving the new descriptions of the character positions must follow the
entries defining the area being redefined, without intervening entries that
define new character positions. Multiple redefinitions of the same character
positions must all use the data-name of the entry that originally defined the
area.

4. The entries giving the new description of the character positions must not
contain any VALUE clauses except in condition-name entries.

Language Reference Manual 3 - 33

The Nucleus

3. data-name-1 cannot be used as a qualifier, and can only be qualified by the
names of the associated level 01, FD, CD or SD entries. Neither data-name-2
nor data-name-3 may have an OCCURS clause in its data description entry nor
be subordinate to an item that has an OCCURS clause in its data description
entry. (See The OCCURS Clause in Chapter 4.)

4. The beginning of the area described by data-name-3 must not be to the left of
the beginning of the area desribed by data-name-2. The end of the area
described by data-name-3 must be the right of the end of the area described by
data-name-2. data-name-3, therefore, cannot be subordinate to data-name-2.

5. data-name-2 and data-name-3 may be qualified.

6. The words THRU and THROUGH are equivalent.

7. None of the items within the range, including data-name-2 and data-name-3, if
specified, can be an item whose size is variable as defined in The OCCURS
Clause in Chapter 4.

GENERAL RULES

1. One or more RENAMES entries can be written for a logical record.

2. When data-name-3 is specified, data-name-1 is a group item which includes all
elementary items starting with data-name-2 (if data-name-2 is an elementary
item) or the first elementary item in data-name-2 (if data-name-2 is a group
item), and concluding with data-name-3 (ifdata-name-3 is an elementary item)
or the last elementary item in data-name-3 (if data-name-3 is a group item).

3. When data-name-3 is not specified, data-name-2 can be either a group or an
elementary item; when data-name-2 is a group item, data-name-1 is treated as
a group item, and when data-name-2 is an elementary item, data-name-1 is
treated as an elementary item.

Language Reference Manual 3 - 35

The Nucleus

GENERAL RULES

1. The optional SIGN clause, if present, specifies the position and the mode of
representation of the operational sign for the numeric data description entry to
which it applies, or for each numeric data description entry subordinate to the
group to which it applies. The SIGN clause applies only to numeric data
description entries whose PICTURE contains the character'S'; the'S' indicates
the presence of, but neither the representation nor, necessarily, the position of
the operational sign.

2. A numeric data description entry whose PICTURE contains the character'S',
but to which no optional SIGN clause applies, has an operational sign, but
neither the representation nor, necessarily, the position of the operational sign
is specified by the character'S'. In this (default) case, general rules 3 through 5
do not apply to such signed numeric data items. The representation of the
default operational sign is defined in Chapter 2 under the heading Selection
of Character Representation and Radix.

3. If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the leading
(or, respectively, trailing) digit position of the elementary numeric data
item.

b. The letter'S' in a PICTURE character-string is not counted in
determining the size of the item (in terms of standard data format
characters).

4. If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or, respectively,
trailing) character position of the elementary numeric data item; this
character position is not a digit position.

b. The letter'S' in a PICTURE character-string is counted in determining
the size of the item (in terms of standard data format characters).

c. The operational signs for positive and negative are the standard data
format characters' +' and '-', respectively.

5. Every numeric data description entry whose PICTURE contains the character
'S' is a signed numeric data description entry. If a SIGN clause applies to such
an entry and conversion is necessary for purposes of computation or
comparisons, conversion takes place automatically.

Language Reference Manual 3 - 37

The Nucleus

2. This clause specifies that the subject data item is to be aligned in the computer
such that no other data item occupies any of the character positions between
the leftmost and rightmost natural boundaries delimiting this data item. If the
number of character positions required to store this data item is less than the
number of character positions between those natural boundaries, the unused
character positions (or portions thereoO must not be used for any other data
item. Such unused character positions, however, are included in:

a. The size of any group item(s) to which the elementary item belongs; and

b. The character positions redefined when this data item is the object of a
REDEFINES clause.

3. SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the
elementary item is to be positioned between natural boundaries in such a way
as to effect efficient utilization of the elementary data item.

4. SYNCHRONIZED LEFT specifies that the elementary item is to be positioned
such that it will begin at the left character position of the natural boundary in
which the elementary item is placed.

5. SYNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate on the right character position of the
natural boundary in which the elementary item is placed.

6. Whenever a SYNCHRONIZED item is referenced in the source program, the
original size of the item, as shown in the PICTURE clause, is used in
determining any action that depends on size, such as justification, truncation
or overflow.

7. If the data description of an item contains the SYNCHRONIZED clause and an
operational sign, the sign of the item appears in the normal operational sign
position, regardless of whether the item is SYNCHRONIZED LEFT or
SYNCHRONIZED RIGHT.

8. When the SYNCHRONIZED clause is specified in a data description entry ofa
data item that also contains an OCCURS clause, or in a data description entry
of a data item subordinate to a data description entry that contains an
OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

Language Reference Manual 3 - 39

The Nucleus

2. This clause specifies the manner in which a data item is represented in the
storage of a computer. It does not affect the use of the data item, although the
specifications for some statements in the Procedure Division may restrict the
USAGE clause of the operands referred to. The USAGE clause may affect the
radix or type of character representation of the item.

3. A COMPUTATIONAL or COMPUTATIONAL-3 item is capable of
representing a value to be used in computations and must be numeric. If a
group item is described as COMPUTATIONAL(-3), the elementary items in
the group are COMPUTATIONAL(-3). The group item itself is not
COMPUTATIONAL(-3) and cannot be used in computations.

4. The USAGE IS DISPLAY clause indicates that the format of the data is a
standard data format.

5. If the USAGE clause is not specified for an elementary item, or for any group to
which the item belongs, the usage is implicitly DISPLAY.

6. Space requirements for the various USAGE storage options are given under
Selection of Character Representation and Radix in Chapter 2.

The VALUE Clause

FUNCTION

The VALUE clause defines the value of constants, the initial value of working
storage items, and the values associated with a condition name.

GENERAL FORMAT

Format 1:

VALUE IS literal

Language Reference Manual 3 - 41

The Nucleus

b. If the category of the item is alphabetic, alphanumeric, alphanumeric
edited or numeric edited, all literals in the VALUE clause must be
nonnumeric literals. The literal is aligned in the data item as if the data
item had been described as alphanumeric. (See Standard Alignment
Rules in Chapter 2.) Editing characters in the PICTURE clause are
included in determining the size of the data item (see The
PICTURE Clause earlier in this chapter) but have no effect on
initialization of the data item. Therefore, the VALUE for an edited item
is presented in an edited form.

c. Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

2. A figurative constant may be substituted in both Format 1 and Format 2
wherever a literal is specified.

CONDITION-NAME RULES

1. In a condition-name entry, the VALUE clause is required. The VALUE clause
and the condition-name itself are the only two clauses permitted in the entry.
The characteristics of a condition-name are implicitly those of its conditional
variable.

2. Format 2 can be used only in connection with condition-names. Wherever the
THRU phrase is used, literal-l must be less than literal-2, literal-3 less than
literal-4, etc.

DATA DESCRIPTION ENTRIES OTHER THAN CONDITION-NAMES

Rules governing the use of the VALUE clause differ with the respective sections of
the Data Division:

1. In the File Section, the VALUE clause may be used only in condition-name
entries.

Language Reference Manual 3 -43

The Nucleus

PROCEDURE DIVISION IN THE NUCLEUS

Arithmetic Expressions

DEFINITION OF AN ARITHMETIC EXPRESSION

An arithmetic expression can be an identifier of a numeric elementary item, a
numeric literal, such identifers and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses. Any arithmetic expression may be preceded by
a unary operator. The permissible combinations of variables, numeric literals,
arithmetic operator and parentheses are given in Table 3-4, Combination of Symbols
in Arithmetic Expressions.

Those identifiers and literals appearing in an arithmetic expression must represent
either numeric elementary items or numeric literals on which arithmetic may be
performed.

ARITHMETIC OPERATORS

There are five binary arithmetic operators and two unary arithmetic operators that
may be used in arithmetic expressions. They are represented by specific characters
that may be preceded by a space and followed by a space.

Language Reference Manual 3 -45

The Nucleus

3. The ways in which operators, variables, and parentheses may be combined in
an arithmetic expression are summarized in Table 3-4, where:

a. The letter 'P' indicates a permissible pair of symbols.

b. The character '-' indicates an invalid pair.

c. 'Variable' indicates an identifier or Ii tera!.

Table 3-4. Combination ofSymhols in Arithmetic Expressions

FIRST SECOND SYMBOL

SYMBOL

Variable * /** - + Unary + or- ()

Variable - P - - p

* /** + - P - P P -
Unary + or- P - P P -
(p - p p -
) - p - - p

4. An arithmetic expression may only begin with the symbol '(" '+', '-', or a
variable and may only end with a ')' or a variable. There must be a one-to-one
correspondence between left and right parentheses of an arithmetic
expression such that each left parenthesis is to the left of its corresponding
right parenthesis.

5. Arithmetic expressions allow the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items.
See, for example, syntax rule 3 of The ADD Statement in this chapter.

Language Reference Manual 3 -47

The Nucleus

The first operand (identifier-l, literal-lor arithmetic-expression-l) is called the
subject of the condition; the second operand (identifier-2 or literal-2 or arithmetic­
expression-2) is called the object of the condition. The relation condition must
contain at least one reference to a variable.

The relational operator specifies the type of comparison to be made in a relation
condition. A space must precede and follow each reserved word comprising the
relational operator. When used, 'NOT' and the next key word or relation character
are one relational operator that defines the comparison to be executed for truth
value; for example, 'NOT EQUAL' is a truth test for an 'unequal'.

Comparison: 'NOT GREATER' is a truth test for an 'equal' or 'less' comparison. The
meaning of the relational operators is as shown in Table 3-5.

Table 3-5. Relational Operators.

Meaning Relational OQerator

Greater than or not greater than IS [NOT]GREATER THAN

IS [NOT]>

Less than or not less than IS [NOT]LESS THAN

IS [NOT] <

Equal to or not equal to IS [NOT1EQUALTO

IS [NOT] =

The required relational characters '>', '<', and '=' are not underlined to avoid confustion
with other symbols such as '~.: (greater than or equal to).

Comparison of Numeric Operands: For operands whose class is numeric a
comparison is made with respect to the algebraic value of the operands. The length
of the literal or arithmetic expression operands in terms of number of digits
represented, is not significant. Zero is considered a unique value regardless of the
sign.

Language Reference Manual 3 -49

The Nucleus

The first encountered pair of unequal characters is compared to determine
their relative position in the collating sequence. The operand that contains the
character that is positioned higher in the collating sequence is considered to be
the greater operand.

2. Operands of unequal size - if the operands are of unequal size, comparison
proceeds as though the shorter operand were extended on the right by
sufficient spaces to make the operands of equal size.

CLASS CONDITIONS

The class condition determines whether the operand is numeric, that is, consists
entirely of the characters '0', 'l', '2', '3', ... , '9', with or without the operational sign; or
alphabetic, that is, consists entirely of the characters 'A', 'B', 'C', ... , 'Z', space. The
general format for the class condition is as follows:

identifier IS [HOT] {
HUMERIC }
ALPHABETIC

The usage of the operand being tested must be described as display. When used,
'NOT' and the next key word specify one class condition that defines the class test to
be executed for truth value; for example, 'NOT NUMERIC' is a truth test for
determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description describes
the item as alphabetic or as a group item composed of elementary items whose data
description indicates the presence of operational sign(s). If the data description of
the item being tested does not indicate the presence of an operational sign, the item
being tested is determined to be numeric only if the contents are numeric and an
operational sign is not present. If the data description of the item does indicate the
presence of an operational sign, the.item being tested is determined to be numeric
only if the contents are numeric and a valid operational sign is present. Valid
operational signs for data items described with the SIGN IS SEPARATE clause are
the standard data format characters, ' + ' and '-'.

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be alphabetic
only if the contents consist of any combination of the alphabetic characters 'A'
through 'z' and the space.

Language Reference Manual 3 - 51

The Nucleus

Sign Condition

The sign condition determines whether or not the algebraic value of an arithmetic
expression is less than, greater than or equal to zero. The general format for a sign
condition is as follows:

{

POSITIVE}
arithmetic-expression IS [~J NEGATIVE

ZERO

When used, 'NOT' and the next key word specify one sign condition that defines that
algebraic test to be executed for truth value; for example, 'NOT ZERO' is a truth test
for a nonzero (positive or negative) value. An operand is positive if its value is
greater than zero, negative if its value is less than zero, and zero if its value is equal
to zero. The arithmetic expression must contain at least one reference to a variable.

COMPLEX CONDITIONS

A complex condition is formed by combining simple conditions, combined conditions
and/or complex conditions with logical connectors (logical operators 'AND' and 'OR')
or negating these conditions with logical negation (the logical operator 'NOT'). The
truth value of a complex condition, whether parenthesized or not, is that truth value
which results from the interaction of all the stated logical operators on the
individual truth values of simple conditions, or the intermediate truth values of
conditions logically connected or logically negated.

Language Reference Manual 3 -53

The Nucleus

where 'condition' may be:

a. A simple condition, or

b. A negated simple condition, or

c. A combined condi tion, or

d. A negated combined condition; that is, the 'NOT' logical operator followed
by a combined condition enclosed within parentheses, or

e. Combinations of the above, specified according to the rules summarized
in Table 3-6, Combinations of Conditions, Logical Operators, and
Parentheses.

*

Although parentheses need never be used when either' AND' or 'OR' (but not both) is
used exclusively in a combined condition, parentheses may be used to effect a final
truth value when a mixture of 'AND', 'OR' and 'NOT' is used. (See Table 3-6,
Combinations of Conditions, Logical Operators, and Parentheses below, and
Condition Evaluation Rules earlier in this chapter.)

Table 3-6 indicates the ways in which conditions and logical operators may be *
combined and parenthesized. There must be a one-to-one correspondence between
left and right parentheses such that each left parenthesis is matched by a
corresponding right parenthesis. The table assumes a left to right sequence of
elements.

Table 3-6. Combinations of Conditions, Logical Operators, and
Parentheses

Permitted location
E lemen t can be Element can be

Element in conditional preceded by only: followed by only:
expression

simple-condition Any OR, NOT, AND, (OR,AND,)

OR,orAND Not first or last simple-condition,) simple-condi tion,
NOT,(

NOT Not last OR, AND, (simple-condition, (

(Not last OR, NOT, AND, (simple-condi tion,
NOT, (

) Not first simple-condition,) OR,AND,)

Language Reference Manual 3 - 55

The Nucleus

Some examples of abbreviated combined and negated combined relation conditions
and expanded equivalents follow.

Abbreviated Combined
Relation Condition

a> bAND NOT < cORd

a NOT EQUAL bORe

NOTa = bORe

NOT (a GREATER b OR < c)

Expanded Equivalent

«a > b) AND (a NOT < c» OR (a NOT < d)

(a NOT EQUAL b) OR (a NOT EQUAL c)

(NOT (a = b» OR (a = c)

NOT «a GREATER b) OR (a < c»

NOT (a NOT> bAND c AND NOT d) NOT ««a NOT> b) AND
(a NOT> e» AND(NOT (a NOT> d»»

Condition Evaluation Rules

Parentheses may be used to specify the order in which individual conditions of
complex conditions are to be evaluated when it is necessary to depart from the
implied evaluation precedence. Conditions within parentheses are evaluated first,
and, within nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition. When parentheses are not used, or
parenthesized conditions are at the same level of inclusiveness, the following
hierarchical order of logical evaluation is implied until the final truth value is
determined:

1. Values are established for arithmetic expressions. (See Formation and
Evaluation Rules under Arithmetic Expressions in this chapter).

2. Truth values for simple conditions are established in the following order:

relation (following the expansion of any abbreviated relation condition)
class
condition-name
swi tch-status
sign

3. Truth values for negated conditions are established.

Language Reference Manual 3 - 57

The Nucleus

THE SIZE ERROR PHRASE

If, after decimal point alignment, the absolute value of a result exceeds the largest
value that can be contained in the associated resultant-identifier, a size error
condition exists. Division by zero always causes a size error condition. The size
error condition applies only to the final results, except in MULTIPLY and DIVIDE
statements; in which case the size error condition applies to the intermediate results
as well. If the ROUNDED phrase is specified, rounding takes place before checking
for size error. When such a size error condition occurs, the subsequent action
depends on whether or not the SIZE ERROR phrase is specified, as follows:

SIZE ERROR Phrase Not Specified

When a size error condition occurs, the value of those resultant-identifier(s) affected
is undefined. Values of resultant-identifier(s) for which no size error condition
occurs are unaffected by size errors that occur for other resultant-identifier(s) during
execution of this operation.

SIZE ERROR Phrase Specified

When a size error condition occurs, then the values ofresultant-identifier(s) affected
by the size errors are not altered. Values ofresultant-identifier(s) for which no size
error condition occurs are unaffected by size errors that occur for other resultant­
identifier(s) during execution of this operation. After completion of the execution of
this operation, the imperative statement in the SIZE ERROR phrase is executed.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT
statement with the CORRESPONDING phrase, if any of the individual operations
produces a size error condition, the imperative statement in the SIZE ERROR
phrase is not executed until all of the individual additions or subtractions are
completed.

Language Reference Manual 3 - 59

The Nucleus

2. The maximum size of each operand is 18 decimal digits. The composite of
operands, which is a hypothetical data item resulting from the superimposition
of specified operands in a statement aligned on their decimal points (see The
ADD Statement, The DIVIDE Statement, The MULTIPLY Statement and
The SUBTRACT Statement later in this chapter) must not contain more
than 18 decimal digits.

OVERLAPPING OPERANDS

When a sending and a receiving item in an arithmetic statement or an INSPECT,
MOVE, SET, STRING or UNSTRING statement share a part of their storage areas,
the result of the execution of such a statement is undefined.

MULTIPLE RESULTS IN ARITHMETIC STATEMENTS

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may
have multiple results. Such statements behave as though they had been written in
the following way:

1. A statement which performs all arithmetic necessary to arrive at the result to
be stored in the receiving items, and stores that result in a temporary storage
location.

2. A sequence of statements transferring or combining the value of this
temporary location with a single result. These statements are considered to be
written in the same left-to-right sequence in which the multiple results are
listed.

The result of the statement

ADD a, b,cTOc, d(c),e

Language Reference Manual 3-61

The Nucleus

The ACCEPT Statement

FUNCTION

The ACCEPT statement causes data keyed at the CRT console to be made available
to the program in a specified data item.

GENERAL FORMATS

Format 1

ACCEPT identifier

Format 3

•
[

FROM {mnemOnic-name}J
CONSOLE]

~ identifier [BQM

SYNTAX RULES

The mnemonic-name in Format 1 must also be specified in the SPECIAL-NAMES
paragraph of the Environment Division and must be associated with the console.

Language Reference Manual 3 - 63

The Nucleus

b. If the size of the transferred data record exceeds the size of the receiving
data item (or the portion of the receiving data item not yet occupied by
transferred data) only the leftmost characters of the input data are stored
in the receiving data item (or the portion remaining). The remaining
characters of the input data which do not fit into the receiving data item
are ignored.

Format 2

Language Reference Manual 3 - 65

The Nucleus

Format 3

18. The ACCEPT statement causes the information requested to be transferred to
the data item specified by identifier according to the rules of the MOVE
statement. DATE, DAY, and TIME are conceptual data items and, therefore,
are not described in the COBOL program.

Language Reference Manual 3 - 67

The Nucleus

The ADD Statement

FUNCTION

The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

GENERAL FORMAT

Formatl

{
identifier-l } [, identifier-2]

ADD li teral-l , li teral-2 •.. TO identifier-m [ROUNDED]

Format 2

Format 3

[.identifier-n [ROUNDED~... [;ON SIZE ERROR imperative-statement]

{
identifier-l} {identifier-2} [, identifier-3]
li teral-l ' li teral-2 , li teral-3 ...

GIVING identifier-m [ROUNDED] [identifier-n [ROUHDED]] _ ••

[; ON SIZE ERROR imperative-statement]

{
CORRESPONDING}

identifier-l TO identifier-2
CORR

ON ~ ERROR imperative-statement]

[ROUNDED]

Language Reference Manual 3 - 69

The Nucleus

The ALTER Statement

FUNCTION

The ALTER statement modifies a predetermined sequence of operations.

GENERAL FORMAT

~ procedure-name-l TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4] ..•

SYNTAX RULES

1. Each procedure-name-l, procedure-name-3, ... , is the name of a paragraph that
contains a single sentence consisting of a GO TO statement without the
DEPENDING phrase.

2. Each procedure-name-2, procedure-name-4, ... , is the name of a paragraph or
section in the Procedure Division.

GENERAL RULES

1. Execution of the ALTER statement modifies the GO TO statement in the
paragraph named procedure-name-l, procedure-name-3, ... , so that subsequent
executions of the modified GO TO statements cause transfer of control to
procedure-name-2, procedure-name-4, ... , respectively. Modified GO TO
statements in independent segments may, under some circumstances, be
returned to their initial states (see Independent Segments in Chapter 8).

2. A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with a
different segment-number.

All other uses of the ALTER statement are valid and are performed even if
procedure-name-l, procedure-name-3 is in an overlayable fixed segment.

Language Reference Manual 3 - 71

The Nucleus

The DISPLAY Statement

FUNCTION

The DISPLAY statement causes data to be transferred from specified data items to
the CRT screen.

GENERAL FORMATS

Format 1

DISPLAY{ i~entifier-l }[,{ identifier-2}] ... [{ mnemonic-name}]
Ilteral-l literal-2 UPON CONSOLE

SYNTAX RULES

1. The mnemonic-name in Format-l must be associated with the console in the
SPECIAL-NAMES paragraph in the Environment Division.

2. Each literal may be any figurative constant, except ALL.

Language Reference Manual 3 -73

The Nucleus

4. If the data item (or the portion of the data-item not yet transferred) is the
same size as the data record, the data item (or the portion not yet transferred)
is transferred.

5. If the data item (or the portion of the data item not yet transferred) is not the
same size as the data record, one of the following applies:

a. If the size of the data item (or the portion of the data item not yet
transferred) exceeds the size of the data record, the data item (or the
portion not yet transferred) is transferred to the data record, beginning
with the leftmost character and continuing until the data record is filled,
an additional data record is then requested.

h. If the size of the data record exceeds the size of the data item (or the
portion of the data item not yet transferred), the data item (or the
portion not yet transferred) is transferred to the data record beginning
with the leftmost character and continuing until the final character of
the data item has been transferred. The remaining characters in the
data record are space filled.

6. When operands in a DISPLAY statement are USAGE COMP or USAGE I
COMP-3 such operands are converted to USAGE DISPLAY. The size of the
sending item is the sum of the sizes associated with the operands (after
possible conversion) and the values of the operand are transferred in the
sequence in which they are encountered.

Language Reference Manual 3 -75

The Nucleus

The DIVIDE Statement

FUNCTION

The DMDE statement divides one numeric data item into others and sets the
values of data items equal to the quotient.

GENERAL FORMAT

Fonnatl

{
identifier-l}
literal-l !!!Q identifier-2 [ROUNDED]

[, identifier-3 [ROUNDED]] ••• [;ON SIZE ERROR imperative-statement]

Fonnat2

{
identifier-l}
literal-l INTO {

identifier-2 }
literal-2

GIVING identifier-3 [ROUNDED] [. identifier-4 lROUHDBD1] •••

[;ON SIZE ERROR imperative-statement]

Fonnat3

{
identifier-l}
literal-l !! {

identifier-2 }
literal-2

~ identifier-3 [ROUHDED] [. identifier-4 lROUHDBD1] •••

(;ON §!!! !!!QB imperative-statement]

Language Reference Manual 3 -77

The Nucleus

2. When Format 1 is used, the value ofidentifier-l or literal-l is divided into the
value ofidentifier-2. The value of the dividend (identifier-2) is replaced by this
quotient; similarly for identifier-lor literal-l and literal-3, etc.

3. When Format 2 is used, the value of identifier-lor literal-l is divided into
identifier-2 or literal-2 and the result is stored in identifier-3, identifier-4 etc.

4. When Format 3 is used, the value of identifier-lor literal-l is divided by the
value of identifier-2 or literal-2 and the result is stored in identifier-3,
identifier-4 etc.

5. Formats 4 and 5 are used when a remainder from the division operation is
desired, namely identifier-4. The remainder in COBOL is defined as the result
of subtracting the product of the quotient (identifier-3) and the divisor from the
dividend. Ifidentifier-3 is defined as a numeric edited item, the quotient used
to calculate the remainder is an intermediate field which contains the unedited
quotient. If ROUNDED is used, the quotient used to calculate the remainder is
an intermediate field which contains the quotient of the DIVIDE statement,
truncated rather than rounded.

6. In Formats 4 and 5, the accuracy of the REMAINDER data item (identifier-4)
is defined by the calculation described above. Appropriate decimal alignment
truncation (not rounding) will be performed for the content of the data item
referenced by identifier-4, as needed.

7. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the following
rules pertain:

a. If the size error occurs on the quotient, no remainder calculation is
meaningful. Thus, the contents of the data items referenced by both
identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the contents of the data item
referenced by identifier-4 remains unchanged, However, as with other
instances of multiple results of arithmetic statements, the user will have
to do his own analysis to recognize which situation has actually occurred.

Language Reference Manual 3 -79

The Nucleus

The EXIT Statement

FUNCTION

The EXIT statement provides a common end point for a series of procedures.

GENERAL FORMAT

!!!.'l.

SYNTAX RULES

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be the only sentence in the paragraph.

GENERAL RULE

An EXIT statement serves only to enable the user to assign a procedure-name to a
given point in a program. Such an EXIT statement has no other effect on the
compilation or execution of the program.

Language Reference Manual 3 -81

The Nucleus

GENERAL RULES

1. When a GO TO statement, represented by Format 1 is executed, control is
transferred to procedure-name-1 or to another procedure-name if the GO TO
statement has been modified by an ALTER statement.

2. If procedure-name-1 is not specified in Format 1, an ALTER statement,
referring to this GO TO statement, must be executed prior to the execution of
this GO TO statement.

3. When a GO TO statement represented by Format 2 is executed, control is
transferred to procedure-name-1, procedure-name-2, etc., depending on the
value of the identifier being 1, 2, ... , n. If the value of the identifier is anything
other than the positive or unsigned integers 1, 2, ... , n, then no transfer occurs
and control passes to the next statement in the normal sequence for execution.

Language Reference Manual 3 - 83

The Nucleus

b. If the condition is true and the NEXT SENTENCE phrase is specified
instead of statement-l, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

c. If the condition is false, statement-lor its surrogate NEXT SENTENCE
is ignored, and statement-2, if specified, is executed. If statement-2
contains a procedure branching or conditional statement, control is
explicitly transferred in accordance with the rules of that statement. If
statement-2 does not contain a procedure branching or conditional
statement, control passes to the next executable sentence. If the ELSE
statement-2 phrase is not specified, statement-l is ignored and control
passes to the next executable sentence.

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is
specified, statement-l is ignored, if specified, and control passes to the
next executable sentence.

2. statement-l and/or statement-2 may contain an IF statement. In this case the
IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF and ELSE
combinations, proceeding from left to right. Thus, any ELSE encountered is
considered to apply to the immediately preceding IF that has not been already
paired with an ELSE.

Language Reference Manual 3 -85

Format 3

INSPECT identifier 1 TALLYING

, identifier-2

[{mQ!!. }
~

REPLACING

SYNTAX RULES

All Formats

FOR {, {~~~DING} {!~~:~!~~~r-3}}
HARACTERS

IRITIAL ~~::;!~~~r-.} 1 } ...

INITIAL {
identifier-7 }]
li teral-S

The Nucleus

} ... } ..

1. identifier-l must reference either a group item or any category of elementary
item, described (either implicitly or explicitly) as USAGE IS DISPLAY.

2. identifier-3 ... identifier-n must reference either an elementary alphabetic,
alphanumeric or numeric item described (either implicitly or explicitly) as
USAGE IS DISPLA Y.

3. Each literal must be nonnumeric and may be any figurative constant, except
ALL.

4. literal-I, literal-2, literal-3, literal-4, and literal-5, and the data items
referenced by identifier-3, identifier-4, identifier-5, identifier-6, and identifier-
7 can be any number of characters in length up to the limit allowed for literals
or data items.

Language Reference Manual 3 - 87

The Nucleus

b. If any ofidentifier-1, identifier-S, identifier-4, identifier-5, identifier-6 or
identifier-7 is described as alphanumeric edited, numeric edited or
unsigned numeric, the data item is inspected as though it had been
redefined as alphanumeric (see general rule 2a) and the INSPECT
statement had been written to reference. the redefined data item.

c. If any ofidentifier-1, identifier-S, identifier-4, identifier-5, identifier-6 or
identifier-7 is described as signed numeric, the data item is inspected.as
though it had been moved to an unsigned numeric data item of the same
length and then the rules in general rule 2b had been applied. (See The
MOVE Statement later in this chapter).

S. In general rules 4 through 11 all references to literal-1, literal-2, literal-S,
lit.cral-4, and literal-5 apply equally to the contents of the data item referenced
by identifier-S, identifier-4, identifier-5, identifier-6, and identifier-7,
respectively.

4. During inspection of the contents of the data item referenced by identifier-1,
each properly matched occurrence of literal-1 is tallied (Formats 1 and S)
and/or each properly matched occurrence of literal-S is replaced by literal-4
(Formats 2 and S). •

5. The comparison operation to determine the occurrences ofliteral-1 to be tallied
and/or occurrences ofliteral-S to be replaced, occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are
considered in the order they are specified in the INSPECT statement from
left to right. The first literal-1, literal-S is compared to an equal number
of contiguous characters, starting with the leftmost character position in
the data item referenced by identifier-I. literal-1, literal-3 and that
portion of the contents of the data item referenced by identifier-l match
if, and only if, they are equal, character for character.

Language Reference Manual 3-89

The Nucleus

b. If the BEFORE phrase is specified, the associated literal-I, literal-3 or
the implied operand of the CHARACTERS phrase participates only in
those comparison cycles which involve that portion of the contents of the
data item referenced by identifier-I from its leftmost character position
up to, but not including, the first occurrence of literal-2, literal-5 within
the contents of the data item referenced by identifier-I. The position of
this first occurrence is determined before the first cycle of the comparison
operation described in general rule 5 is begun. If, on any comparison
cycle, literal-I, literal-3 or the implied operand of the CHARACTERS
phrase is not eligible to participate, it is considered not to match the
contents of the data item referenced by identifier-I. If there is no
occurrence of literal-2, literal-5 within the contents of the data item
referenced by identifier-I, its assqciated literal-I, literal-3, or the implied
operand of the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been specified.

c. If the AFTER phrase is specified, the associated literal-I, literal-3 or the
implied operand of the CHARACTERS phrase may participate only in
those comparison cycles which involve that portion of the contents of the
data item referenced 1;>y identifier-I from the character position
immediately to the right of the rightmost character position of the first
occurrence of literal-2, literal-5 within the contents of the data item
referenced by identifier-I and the rightmost character position of the data
item referenced by identifier-I. The position of this first occurrence is
determined before the first cycle of the comparison operation described in
general rule 5 is begun. If, on any comparison cycle, literal-I, literal-3 or
the implied operand of the CHARACTERS phrase is not eligible to
participate, it is considered not to match the contents of the data item
referenced by identifier-I. If there is no occurrence of literal-2, literal-5
within the contents of the data item referenced by identifier-I, its
associated literal-I, literal-3, or the implied operand of the
CHARACTERS phrase is never eligible to participate in the comparison
operation.

Format I

7. The contents of the data item referenced by identifier-2 is not initialized by the
execution of the INSPECT statement.

Language Reference Manual 3 - 91

The Nucleus

Format 3

11. A Format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-l had been
written with one statement being a Format 1 statement with TALLYING
phrases identical to those specified in the Format 3 statement, and the other
statement being a Format 2 statement with REPLACING phrases identical to
those specified in the Format 3 statement. The general rules given for
matching and counting apply to the Format 1 statement and the general rules
given for matching and replacing apply to the Format 2 statement.

EXAMPLES:

Six examples of the use of the INSPECT statement follow:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A",
count-l FOR LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-l = O.
Where word = ANALYST, count = 0, count-l = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A"
BY "E" AFTER INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count = 1, word = LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "B".

Language Reference Manual 3 - 93

The Nucleus

The MOVE Statement

FUNCTION

The MOVE statement transfers data, in accordance with the rules of editing, to one
or more data areas.

GENERAL FORMAT

Format 1

Format 2

{
identifier-l}
literal

TO identifier-2[,identifier-3]

MOVE {CORRESPONDING} identifer-l TO identifier-2
CORR

SYNTAX RULES

1. identifier-l and literal represent the sending area; identifier-2, identifier-3, ... ,
represent the receiving area.

2. CORR is an abreviation for CORRESPONDING.

3. When the CORRESPONDING phrase is used, both identifiers must be group
items.

4. An index data item cannot appear as an operand of a MOVE statement. (See
The USAGE Clause in this Chapter.)

Language Reference Manual 3 - 95

The Nucleus

The following rules apply to an elementary move between these categories:

a. i. The figurative constant SPACE, or an alphanumeric edited, or
alphabetic data item must not be moved to a numeric or numeric
edited data item.

ii. A numeric edited data item must not be moved to a numeric edited
data item.

b. A numeric literal, the figurative constant ZERO, a numeric data item or a
numeric edited data item must not be moved to an alphabetic data item.

c. A non-integer numeric literal or a non-integer numeric data item must
not be moved to an alphanumeric or alphanumeric edited data item.

d. All other elementary moves are legal and are performed according to the
rules given in general rule 4.

4. Any necessary conversion of data from one form of internal representation to
another takes place during legal elementary moves, along with any editing
specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving item,
alignment and any necessary space filling takes place as defined under
Standard Alignment Rules in this chapter. If the size of the sending
item is greater than the size of the receiving item, the excess characters
are truncated on the right after the receiving item is filled. If the sending
item is described as being signed numeric, the operational sign will not be
moved; if the operational sign occupies a separate character position (see
The SIGN Clause in this chapter). that character will not be moved and
the size of the sending item will be considered to be one less than its
actual size (in terms of standard data format characters).

b. When a numeric or numeric edited item is the receiving item, alignment
by decimal point and any necessary zero-filling takes place as defined
under the Standard Alignment Rules in Chapter 2, except where zeros I
are replaced because of editing requirements.

Language Reference Manual 3 -97

The Nucleus

Table 3·7. MOVE Statement Data Categories.

Category of Sending Data Item Category of Receiving Data Item1

Alphabetic Alphanumeric Numeric Integer ~umeric

Edited Numeric Non-Integer Edited

Alphanumeric

ALPHABETIC Yes/4c Yes/4a No/3a No/3a

ALPHANUMERIC Yes/4c Yes/4a Yes/4b Yes/4b

ALPHANUMERIC EDITED Yes/4c Yes/4a No/3a No/3a

NUMERIC INTEGER No/2b Yes/4a Yes/4b Yes/4b

NON-INTEGER No/3b No/3e Yes/4b Yes/4b

NUMERIC EDITED No/3b Yes/4a ¥t~I:·:i No/3a

1 - The relevant rule number is quoted in these columns

Language Reference Manual 3 - 99

The Nucleus

GENERAL RULES

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, Arithmetic
Statements Overlapping Operands and Multiple Results in Arithme~ic
Statements in this chapter.

2. When Format 1 is used, the value of identifier-l or literal-l is multiplied by the
value of identifier-2. The value of the multiplier (identifier-2) is replaced by
this product; similarly for identifier-lor literal-l and identifier-3, etc.

3. When Format 2 is used, the value of identifier-lor literal-l is multiplied by
identifier-2 or literal-2 and the result is stored in identifier-3, identifier-4, etc.

Language Reference Manual 3 - 101

The Nucleus

Format 4

PERFORM procedure-name-l [~HROUGH} procedure-name-2] THRU

{ identifier-2 } ~ identifier-) ~
VARYING index-name-l FROM index-name-2

literal-l

BY { identifier-4 } UNTIL condition-l
literal-2

[AFTE. { identifier-5 } ~ identifier-6 ~
FROM index-name-4

index-name-3 li teral-3

{ identifier-7 } UNTIL condition-2 BY li teral-4

[AFTER { identifier-8 } ~ identifier-g ~ FROM index-name-6
index-name-5 li teral-5

BY { identifier 1O} UNTIL condition-3 J] li teral-6

SYNTAX RULES

1. Each identifier represents a numeric elementary item described in the Data
Division. In Format 2, identifier-l must be described as a numeric integer.

2. Each literal represents a numeric literal.

3. The words THRU and THROUGH are equivalent.

4. If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must be an
integer data item.

b. The literal in the associated FROM phrase must be a positive integer.

c. The literal in the associated BY phrase must be a non-zero integer.

Language Reference Manual 3 - 103

The Nucleus

b. If procedure-name-l is a section-name and procedure-name-2 is not
specified, then the return is after the last statement of the last paragraph
in procedure-name-l.

c. If procedure-name-2 is specified and it is a paragraph-name, then the
return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then the return
is after the last statement of the last paragraph in the section.

4. There is no necessary relationship between procedure-name-l and
procedure-name-2 except that a consecutive sequence of operations is to be
executed beginning at the procedure named procedure-name-l and ending with
the execution of the procedure named procedure-name-2. In particular, GO
TO and PERFORM statements may occur between procedure-name-l and the
end of procedure-name-2. If there are two or more logical paths to the return
point, then procedure-name-2 may be the name of a paragraph consisting of the
EXIT statement, to which all of these paths must lead.

5. If control passes to these procedures other than via a PERFORM statement the
procedures are executed right through to the next executable statement in the
main program as if they were just part of the main program.

6. The PERFORM statements operate as follows with rule 5 above applying to all
formats:

a. Format 1 is the basic PERFORM statement. A procedure referenced by
this type of PERFORM statement is excecuted once and then control
passes to the next executable statement following the PERFORM
statement.

b. Format 2 is the PERFORM ... TIMES. The procedures are performed the
number of times specified by integer-lor by the initial value of the data
item referenced by identifier-l for the execution. If, at the time of
execution of a PERFORM statement, the value of the data item
referenced by identifier-l is equal to zero or is negative, control passes to
the next executable statement following the PERFORM statement.
Following the execution of the procedures the specified number of times
control is transferred to the next executable statement following the
PERFORM statement.

Language Reference Manual 3 - 105

ENTRANCE

set identifier-2 equal to

current FROM value

The Nucleus

True
J------------. Exit

Execute procedure-name-l

THRU procedure-name-2

Augment identifier-2 with

current BY value

Figure 3-1. Flowchart of VARYING Phrase of a PERFORM Statement
Having One Condition

In Format 4, when two identifiers are varied, identifier-2 and identifier-5 are
set to the current value of identifier-3 and identifier-6, respectively. After the
identifiers have been set, condition-l is evaluated; if true, control is transferred
to the next executable statement; if false, condition-2 is evaluated. If
condition-2 is false, procedure-name-l through procedure-name-2 is executed
once, then identifier-5 is augmented by identifier-7 or literal-4 and condition-2
is evaluated again. This cycle of evaluation and augmentation continues until
this condition is true. When condition-2 is true, identifier-5 is set to the value
ofliteral-3 or the current value ofidentifier-4 and condition-l is re-evaluated.
The PERFORM statement is completed if condition-l is true; if not, the cycles
continue until condition-l is true.

During the execution of the procedures associated with the PERFORM
statement, any change to the VARYING variable (identifier-2 and
index-name-I), the BY variable (identifier-4), the AFTER variable (identifier-5
and index-name-3), or the FROM variable (identifier-3 and index-name-2) will
be taken into consideration and will affect the operation of the PERFORM
statement.

Language Reference Manual 3 - 107

ENTRANCE

set identifier-2, identifer-5,

identifier-8 to current
FROM values

True
;.-----------+ Exit

True

True
~----.....

procedure-name-l

THRU

procedure-name-2

Augment

identifier-8 with

current BY value

Set identifier-8 to

its current FROM

value

Augment

identifier-5with

current BY value

Augment identifier-2

with current BY

value

Set identifier-5 to its

current FROM value

The Nucleus

Figure 3-3. Flowchart for VARYING Phrase of PERFORM Statement with
Three Conditions

After the completion of a Format 4 PERFORM statement, identifier-5 and
identifier-8 contain the current value of identifier-6 and identifier-9
respectively. identifier-2 has a value that exceeds its last used setting by one
increment or decrement value, unless condition-l is true when the PERFORM
statement is entered, in which case identifier-2 contains the current value of
identifier-3.

Language Reference Manual 3 -109

The Nucleus

8. A PERFORM statement that appears in a section that is not an independent
segment can have within its range, in addition to any declarative sections
whose execution is caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more
non-independent segments.

h. Sections and/or paragraphs wholly contained in a single independent
segment.

9. A PERFORM statement that appears in an independent segment can have
within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more
non-independent segments.

h. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.

Language Reference Manual 3 - 111

The Nucleus

The STRING Statement

FUNCTION

The STRING statement provides juxtaposition of the partial or complete contents of
two or more data items into a single data item.

GENERAL FORMAT

{
identifier l}[identifier-2] ~identifier-3 ~

STRING. -, literal-2 ••• DELIMITED BY literal-3
--- Ilteral-l , SIZE

DELIMITED BY ~
i~entifier-6~]
Ilteral-6 •••
SIZE

INTO identifier-7 [WITH POINTER identifier-8]

[, ON OVERFLOW imperative-statement]

SYNTAX RULES

1. Each literal may be any figurative constant without the optional word ALL.

2. All literals must be described as nonnumeric literals, and all identifiers, except
identifier-8, must be described implicity or explicity as usage is DISPLAY.

3. identifier-7 must present an elementary alphanumeric data item without
editing symbols or the JUSTIFIED clause.

4. identifier-8 must represent an elementary numeric integer data item of
sufficient size to contain a value equal to the size plus 1 of the area referenced
by identifier-7. The symbol (P' may not be used in the PICTURE
character-string of iden tifier-B.

Language Reference Manual 3 - 113

The Nucleus

c. If the DELIMITED phrase is specified with the SIZE phrase, the entire
contents of literal-I, literal-2, or the contents of the data item referenced
by identifier-I, identifier-2, are transferred, in the sequence specified in
the STRING statement, to the data item referenced by identifier-7 until
all data has been transferred or the end of the data item referenced by
identifier-7 has been reached.

6. If the POINTER phrase is specified, identifier-8 is explicitly available to the
programmer, who is then responsible for setting its initial value. The initial
value must not be less than one.

7. If the POINTER phrase is not specified, the following general rules apply as if
the user had specified identifier-8 with an initial value of 1.

8. When characters are transferred to the data item referenced by identifier-7,
the moves behave as though the characters were moved one at a time from the
source into the character position of the data item referenced by identifier-7
designated by the value associated with identifier-8, and then identifier-8 was
increased by one prior to the move of the next character. The value associated
with identifier-8 is changed during execution of the STRING statement only by
the behaviour specified above.

9. At the end of execution of the STRING statement, only the portion of the data
item referenced by identifier-7 that was referenced during the execution of the
STRING statement is changed. All other portions of the data item referenced
by identifier-7 will contain data that was present before this execution of the
STRING statement.

10. If at any point at or after initialization of the STRING statement, but before
execution of the STRING statement is completed, the value associated with
identifier-8 is either less than one or exceeds the number of character positions
in the data item referenced by identifier-7, no (further) data is transferred to
the data item referenced by identifier-7, and the imperative statement in the
ON OVERFLOW phrase is executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions described in
general rule 10 above are encountered, control is transferred to the next
executable statement.

Language Reference Manual 3 - 115

The Nucleus

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits. (See The
Arithmetic Statements in this Chapter).

a. In Format 1 the composite of operands is determined by using all of the
operands in a given statement.

b. In Format 2 the composite of operands is determined by using all of the
operands in a given statement excluding the data items that follow the
word GIVING.

c. In Format 3 the composite operands is determined separately for each
pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

GENERAL RULES

1. See The ROUNDED Phrase, The SIZE ERROR Phrase, Arithmetic
Statements, Overlapping Operands and Multiple Results in Arithmetic
Statements in this Chapter.

2. In Format 1, all literals or identifiers preceding the word FROM are added
together and this total is subtracted from the current value of identifier-m
storing the result immediately into identifier-m, and repeating this process
respectively for each operand following the word FROM.

3. In Format 2, all literals or identifiers preceding the word FROM are added
together, the sum is subtracted from literal-m or identifier-m and the result of
the subtraction is stored as the new value ofidentifier-n, identifier-o, etc.

4. If Format 3 is used, data items in identifier-l are subtracted from and stored
into corresponding data items in identifier-2.

5. The compiler ensures enough places are carried so as not to lose significant
digits during execution.

Language Reference Manual 3 - 117

The Nucleus

5. No identifier may name a level 88 entry.

6. The DELIMITER IN phrase and the COUNT IN phrase may be specified only if
the DELIMITED BY phrase is specified.

GENERAL RULES

1. All references to identifier-2, literal-I, identifier-4, identifier-5 and
identifier-6, apply equally to identifier-3, literal-2, identifier-7, identifier-8 and
identifier-9, respectively, and all recursions thereof.

2. identifier-I represents the sending area.

3. identifier-4 represents the data receiving area. identifier-5 represents the
receiving area for delimiters.

4. literal-lor the data item referenced by identifier-2 specifies a delimiter.

5. The data-item referenced by identifier-6 represents the count of the number of
characters within the data item referenced by identifier-I isolated by the
delimiters for the move to the data-item referenced by identifier-4. This value
does not include a count of the delimiter character(s).

6. The data item referenced by identifier-IO contains a value that indicates a
relative character position within the area defined by identifier-1.

7. The data item referenced by identifier-II is a counter that records the number
of data items acted upon during the execution of an UNSTRING statement.

8. When a figurative constant is used as the delimiter, it stands for a single
character nonnumeric literal.

When the ALL phrase is specified, one occurrence or two or more contiguous
occurrences of literal-I (figurative constant or not) or the contents of the data
i tern referenced by iden tifier-2 are treated as if it were only one occurrence, and
this occurrence is moved to the receiving data item according to the rules in
general rule I3d.

Language Reference Manual 3 - 119

The Nucleus

If the end of the data item referenced by identifier-l is encountered before
the delimiting condition is met, the examination terminates with the last
character examined.

c. The characters thus examined (excluding the delimiting character(s), if
any) are treated as an elementary alphanumeric data item, and are
moved into the current receiving area according to the rules for the
MOVE statement. (See The MOVE Statement.)

d. If the DELIMITER IN phrase is specified, the delimiting character(s) are
treated as an elementary alphanumeric data item and are moved into the
data item referenced by identifer-5 according to the rules for the MOVE
statement. (see The MOVE Statement.) If the delimiting condition is
the end of the data item referenced by identifier-I, then the data item
referenced by identifier-5 is space filled.

e. If the COUNT IN phrase is specified, a value equal to the number of
characters thus examined (excluding the delimiter character(s) if any) is
moved into the area referenced by identifier-9 according to the rules for
an elementary move.

f. If the DELIMITED BY phrase is specified the string of characters is
further examined beginning with the first character to the right of the
delimiter. If the DELIMITED BY phrase is not specified, the string of
characters is further examined beginning with the character to the right
of the last character transferred.

g. After data is transferred to the data item referenced by identifier-4, the
current receiving area is the data item referenced by identifier-7. The
behaviour described in paragraph 13b through 13fis repeated until either
all the characters are exhausted in the data item referenced by
identifier-I, or until there are no more receiving areas.

14. The initialization of the contents of the data items associated with the
POINTER phrase or the TALLYING phrase is the responsibility of the user.

15. The contents of the data item referenced by identifier-lO will be incremented
by one for each character examined in the data item referenced by identifier-I.
When the execution of an UNSTRING statement with a POINTER phrase is
complete, the contents of the data item referenced by identifier-l0 will contain
a value equal to the intial value plus the number of characters examined in the
data item referenced by identifier-I.

Language Reference Manual 3 - 121

CHAPTER 4

TABLE HANDLING

INTRODUCTION TO THE TABLE HANDLING MODULE

The Table Handling module provides a capability for defining tables of contiguous
data items and accessing an item relative to its position in the table. Language
facilities are provided for specifying how many times an item is to be repeated. Each
item may be identified through use of a subscript or an index (see Chapter 2).

Table Handling provides a capability for accessing items in variable length tables
of multiple dimensions. In ANSI standard COBOL the maximum number of
.l.lJ.\JL.l".lIIJ.le dimensions is

DATA DIVISION IN THE TABLE HANDLING MODULE

The OCCURS Clause

FUNCTION

The OCCURS clause eliminates the need for separate entries for repeated data items
and supplies information required for the application of subscripts or indices.

Language Reference Manual 4-1

Table Handling

6. An INDEXED BY phrase is required if the subject of this entry, or an entry
subordinate to this entry, is to be referred to by indexing. The index-name
identified by this clause is not defined elsewhere, and not data,
can~()t be as.s.ocia~~d with lillY da~a hierarchy. :/:

7. A data description entry that contains Format-2 of the OCCURS clause may
only be followed, within that record description, by data description entries
which are subordinate to it.

8. The OCCURS clause cannot be specified in a data description entry that:

b. Describes an item whose size is variable. The size of an item is variable if
the data description of any subordinate item contains Format 2 of the
OCCURS clause.

9. In Format 2, the data item defined by data-name-l must not occupy a character
position within the range of the first character position defined by the data
description entry containing the OCCURS clause and the last character
position defined by the record description entry containing that OCCURS
clause.

10. If data-name-2 is not the subject of this entry, then:

a. All of the items identified by the data-names in the KEY IS phrase must
be within the group item which is the subject of this entry.

b. Items identified by the data-name in the KEY IS phrase must not contain
an OCCURS clause.

c. There must not be any entry that contains an OCCURS clause between
the items identified by the data-names in the KEY IS phrase and the
subject of this entry.

11. index-name-l, index-name-2, ... must be unique words within the program.

Language Reference Manual 4-3

Table Handling

5. The KEY IS phrase is used to indicate that the repeated data is arranged in
ascending or descending order according to the values contained data-name-2,
data-name-3, etc. The ascending or descending order is determined according
to the rules for comparison of operands (see Comparison of Numeric
Operands, Comparison of Nonnumeric Operands in Chapter 3). The data­
names are listed in their descending order of significance.

The USAGE Clause

FUNCTION

The USAGE clause specifies the format of a data item in the computer storage.

GENERAL FORMAT

[USAGE IS]

SYNTAX RULES

1. An index data item can be referenced explicitly only in a SEARCH or SET
statement, a relation condition, the USING phrase of a Procedure Division
header, or the USING phrase of a CALL statement.

2. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN
ZERO clauses cannot be used to describe group or elementary items described
with the USAGE IS INDEX clause.

GENERAL RULES

1. The USAGE clause can be written at any level. If the USAGE clause is written
at a group level, it applies to each elementary item in the group. The USAGE
clause of an elementary item cannot contradict the USAGE clause of a group to
which the item belongs.

Language Reference Manual 4-5

Table Handling

The SEARCH Statement

FUNCTION

The SEARCH statement is used to search a table for a table element that satisfies
the specified condition and to adjust the associated index-name to indicate that table
element.

GENERAL FORMAT

Format!

SEARCH identifier-l [VARYING { ~dentifier-2}] lndex-name-l

[: AT END imperative-statement-l]

WHEN condition-l

[, WIlER condiHon-2

Language Reference.Manual

{
imperative-statement-2 }
NEXT SENTENCE

{
imperative-statement-3}]
NEXT SENTENCE

4-7

Table Handling

SYNTAX RULES

1. In both Formats 1 and 2, identifier-I must not be subscripted or indexed, but its
description must contain an OCCURS clause and an INDEXED BY clause.
The description of identifier-I in Format 2 must also contain the KEY IS
phrase in its OCCURS clause.

2. identifier-2, when specified, must be described as USAGE IS INDEX or as a
numeric elementary item without any positions to the right of the assumed
decimal point.

3. In Format 1, condition-I, condition-2, etc., may be any condition as described
in Conditional Expressions in Chapter 3.

4. In Format 2, all referenced condition names must be defined as having only a
single value. The data-name associated with a condition-name must appear in
the KEY clause of identifier-1. Each data-name-l, data-name-2 may be
qualified. Each data-name-I, data-name-2 must be indexed by the first index­
name associated with identifier-l along with other indices or literal as
required, and must be referenced in the KEY clause of identifier-1.
identifier-3, identifier-4, or identifiers specified in arithmetic-expression-l,
arithmetic-expression-2 must not be referenced in the KEY clause of identifier­
lor be indexed by the first index-name associated with identifier-I.

In Format 2, when a data-name in the KEY clause of identifier-l is referenced,
or when a condition-name associated with a data-name in the KEY clause of
identifier-l is referenced, all preceding data-names in the KEY clause of
identifier-lor their associated condition-names must also be referenced.

GENERAL RULES

1. If Format 1 of the SEARCH is used, a serial type of search operation takes
place, starting with the current index setting.

Language Reference Manual 4-9

Table Handling

3. If Format 2 of the SEARCH is used, a non-serial operation may take place; the
initial setting of the index-name for identifier-l is ignored and its setting is
varied during the search operation with the restriction that at no time is it set
to a value that exceeds the value which corresponds to the last element of the
table, or that is less than the value that corresponds to the last element of the
table. The length of the table is discussed in the OCCURS clause. If any of
the conditions specified in the WHEN clause cannot be satisfied for any setting
of the index within the permitted range, control is passed to imperative­
statement-l of the AT END phrase, when specified, or to the next executable
sentence when this phrase is not specified; in either case the final setting of the
index is not predictable. If all conditions can be satisfied, the inde~ indicates
an occurrence that allows the condition to be satisfied, and control passes to
imperative-statement-2.

4. After execution of imperative-statement-l, imperative-statement-2, or
imperative-statement-3, that does not terminate with a GO TO statement,
control passes to the next executable sentence.

5. In Format 2, the index-name that is used for the search operation is the first (or
only) index-name that appears in the INDEXED BY phrase of identifier-I.
Any other index-names for identifier-l remain unchanged.

6. In Format 1, if the VARYING phrase is not used, the index-name that is used
for the search operation is the first (or only) index-name that appears in the
INDEXED BY phrase of identifier-I. Any other index-names for identifier-l
remain unchanged.

7. In Format 1, if the VARYING index-name-l phrase is specified, and if index­
name-l appears in the INDEXED BY phrase of identifier-l , that index-name is
used for this search. If this is not the case, or if the VARYING identifier-2
phrase is specified, the first (or only) index-name given in the INDEXED BY
phrase of identifier-l is used for the search. In addition, the following
operations will occur:

a. If the VARYING index-name-l phrase is used, and if index-name-l
appears in the INDEXED BY phrase of another table entry, the
occurrence number represented by index-name-l is incremented by the
same amount as, and at the same time as, the index-name associated with
identifier-l is incremented.

Language Reference Manual 4 - 11

Table Handling

Figure 4-1 shows a flowchart of the Format 1 SEARCH operation containing two
WHEN phrases.

START

Index setting:
highest permissible

occurrence number

> AT END 1 imperative-
~--------------------~~ statement-l

True ~ ________________________ ~~imperative-

statement-2

~ ____________ T_r_u_e __________ .limperative- 1

Increment

index-name for

identifier-l
index-name-l

if applicable

Increment

index-name (for
a different table)

or identifier-2

statement-3

2

1 - These operations are options included only when specified in the SEARCH
statement.

2 - Each of these control transfers is to the next executable sentence unless the
imperative-statement ends with a GO TO statement.

Figure 4·1. Flowchart of SERCH Operation with Two WHEN Phrases.

Language Reference Manual 4 - 13

Table Handling

GENERAL RULES

1.

2. If index-name-3 is specified, the value of the index before the execution of the
SET statement must correspond to an occurrence number of an element in the
associated table.

If index-name-4, index-name-5 is specified, the value of the index both before
and after the execution of the SET statement must correspond to an occurrence
number of an element in the associated table. If index-name-I, index-name-2
is specified, the value of the index after the execution of the SET statement
must correspond to an occurrence number of an element in the associated table.
The value of the index associated with an index-name after the execution of a
SEARCH or PERFORM statement may be undefined. (See The SEARCH
Statement and The PERFORM Statement in Chapter 3).

3. In Format 1, the following action occurs:

a. index-name-l is set to a value causing it to refer to the table element that
corresponds in occurrence number to the table element referenced by
index-name-3, identifier-3 or integer-I. If identifier-3 is an index data
item, or if index-name-3 is related to the same table as index-name-l, no
conversion takes place.

b. If identifier-l is an index data item, it may be set equal to either the
contents of index-name-3 or identifier-3 where identifier-3 is also an
index item; no conversion takes place in either case.

c. If identifier-l is not an index data item, it may be set only to an
occurrence number that corresponds to the value of index-name-3.
Neither identifier-3 nor integer-I can be used in this case.

d. The process is repeated for index-name-2, identifier-2, etc., if specified.
Each time the value of index-name-3 or identifier-3 is used as it was at
the beginning of the execution of the statement. Any subscripting or
indexing associated with identifier-I, etc., is evaluated immediately
before the value of the respective data item is changed.

Language Reference Manual 4 - 15

CHAPTER 5

SEQUENTIAL INPUT AND OUTPUT

INTRODUCTION TO THE SEQUENTIAL 1-0 MODULE

The sequential 1-0 module provides the capability of accessing records of a file in
established sequence. The sequence is established as a result of writing the records
to the file. It also provides for the specification of re-run points and the sharing of
memory areas among files.

Language Concepts

ORGANIZATION

Sequential files are organized such that each record in the file except the first has a
unique predecessor record, and each record except the last has a unique successor
record. These predecessor-successor relationships are established by the order of
WRITE statements when the file is created. Once established, the predecessor­
successor relationships do not change except in the case where records are added to
the end of the file.

ACCESS MODE

In the sequential access mode, the sequence in which records are accessed is the
order in which the records were originally written.

Language Reference Manual 5-1

Sequential Input And Output

3 Permanent Error. The input-output statement was unsuccessftIlly
executed as the result of a boundary violation for a sequential file or as
the result of an input-output error, such as data check parity error~ or
transmission error.

9 Operating System Error Message. The input-output statement was
unsuccessfully executed as a result of a condition that is specified by the
Operating System Error Message. This value is used only to indicate a
condition not indicated by other defined values of status key 1, or by
specified combinations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as
Status Key 2 and is used to further describe the results of the input-output
operation. This character may contain a value as follows:

• If no further information is available concerning the input-output operation,
then status key 2 contains a value of'O'.

• When status key 1 contains a value of '3' an irrecoverable error has occurred.
This is treated as a fatal error by the Operating System.

• When status key 1 contains a value of '9', the value of status key 2 is the
operating system error message number (for those operating systems which
designate errors numerically). The LEVEL II COBOL Operating Guide
contains details of this status-key-2 representation.

Note that it is not possible to extract this number directly.

*

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status key 2 are
shown in the following table. An 'X' at an intersection indicates a valid permissible
combination.

Language Reference Manual 5-3

Sequential Input And Output

SHARING FILES ON MULTI-USER SYSTEMS

The Run-Time System (RTS) supports the LEVEL IT COBOL multi-user facilities
which allow data files to be shared between users in a multi-user environment, and
allow programs accessing those files to prevent access to records or entire files
while data is being updated.

Files are either active or inactive: an inactive file is one that is not open to any run
unit, an active file is open to one or more run units.

Active files may be in one of two modes: exclusive or shareable.

Exclusive

A file which is in exclusive mode is open to one run unit only, and any other run
unit which attempts to access it receives a "File locked" error and is denied access.
Exclusive mode implies that a file lock is held by the one run unit which is able to
access the file; the file lock is released by that run unit closing the file.

Shareable

A file which is in shareable mode is available to any number of run units, each of
which may protect data while using the file by locking one record in the file. This
prevents other run units accessing the individual records that are locked, but does
not prevent access to the file otherwise. Line sequential files that are opened in
INPUT or EXTEND mode can explicitly or implicitly by made shareable, but
records cannot be locked in the file. A run unit cannot lock multiple records in a
file whose organization is sequential. Each run unit that is sharing access to a
sequential file may be locking a single record in that file.

SINGLE RECORD LOCK

A run unit that has specified single record locking for a file (either explicitly or
implicitly) can hold only one record lock in that file at any time. There are two
ways that a run unit can acquire a record lock: manually or automatically.

Language Reference Manual 5-5

Sequential Input And Output

Note that:

• A file opened for OUTPUT causes the file to become exclusive, regardless of
the specified lock mode.

• Explicitly or implicitly specifying automatic or manual record locking for a
file causes the file to become shareable. A file opened for 1-0 acquires record
locks, a file opened for INPUT or EXTEND never acquires record locks.

• The programmer can select the type of locking for individual files by
accepting the default locking (see Table 5-1) or by including a LOCK MODE
clause in the SELECT statement for a file (see The SELECT Statement
later in this chapter).

In single user environments the multi-user syntax has no effect at run-time, but
programs can be developed for use in both single and multi-user environments.

ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-0 MODULE

Input-Output Section

THE FILE-CONTROL PARAGRAPH

Function

The FILE-CONTROL paragraph names each file and allows specification of other
file-related information.

General Format

f FILE-CONTROL. t file-control-entry-l [file-control-entry-2]

Language Reference Manual 5-7

Sequential Input And Output

Syntax Rules

1. The SELECT clause must be specified first in the file control entry. The
clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only once as
file-name in the FILE-CONTROL paragraph. Each file specified in the file
control entry must have a file description entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

4. data-name-l must be defined in the Data Division as a two-character data item
of the category alphanumeric and must not be defined in the File Section or the
Communication Section.

5. data-name-l may be qualified.

6. When the ORGANIZATION IS SEQUENTIAL clause is not specified, the
ORGANIZATION IS SEQUENTIAL clause is implied.

7. The OPTIONAL phrase may only be specified for input files. Its specification is
required for input files that are not necessarily present each time the object
program is executed.

8. file-identifier is any user-defined word, but must not be the same as file-name.

Language Reference Manual 5-9

Sequential Input And Output

6. When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name-l after the
execution of every statement that references that file either explicitly or
implicitly. This value indicates the status of execution of the statement (See
1-0 Status in this chapter.)

7. file-iden tifier will be implicitly defined if it is not explici tly defined.

Language Reference Manual 5 - 11

Sequential Input And Output

Syntax Rules

I. The I-O-CONTROL paragraph is optional.

2. file-name-I must be a sequentially organized file.

3. The END OF REElJUNIT clause may only be used if file-name-2 is a
sequentially organized file.

4. When either the integer-I RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, user-defined-name must be given in the RERUN clause.

5. More than one RERUN clause may be specified for a given file-name-2 subject
to the following restrictions:

a. When mUltiple integer-I RECORD clauses are specified, no two of them
can specify the same file-name-2.

b. When multiple END OF REEL or END OF UNIT clauses are specified, no
two of them may specify the same file-name-2.

6. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are
considered separately in the following:

More than one SAME clause may be included in a program, however:

a. a file-name must not appear in more than one SAME AREA clause.

b. a file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names not appearing in that SAME AREA clause may also appear in
that SAME RECORD AREA clause. The rule that only one of the files
mentioned in a SAME AREA clause can be open at any given time takes
precedence over the rule that all files mentioned in a SAME RECORD
AREA clause can be open at any given time.

7. The files referenced in the SAME AREA or SAME RECORD AREA clause
need not all have the same organization or access.

Language Reference Manual 5 -13

Sequential Input And Output

Record Description Structure

A record description consists of a set of data description entries which describe the
characteristics of a particular record. Each data description entry consists of a level­
number followed by a data-name if required, followed by a series of independent
clauses as required. A record description has a hierarchical structure and therefore
the clauses used with an entry may vary considerably, depending upon whether or
not it is followed by subordinate entries. The structure of a record description is
defined in Concept Of Levels in Chapter 2, while the elements allowed in a record
description are shown in the Data Description - Complete Entry Skeleton in
Chapter 3.

The File Description-Complete Entry Skeleton

FUNCTION

The file description furnishes information concerning the physical structure,
identification, and record names pertaining to a given file.

Language Reference Manual 5 - 15

Sequential Input And Output

The BLOCK CONTAINS Clause

FUNCTION

The BLOCK CONTAINS clause specifies the size ora physical record.

GENERAL FORMAT

~ CONTAINS [inteqer-l TO] inteqer-2 {
RECORDS }
CHARACTERS

GENERAL RULE

The CODE-SET Clause

FUNCTION

The CODE-SET clause specifies the character code set used to represent data on the
external media.

GENERAL FORMAT

CODE-SET IS alphabet-name

Language Reference Manual 5 -17

Sequential Input And Output

GENERAL RULES

1. The presence of more than one data-name indicates that the file contains more
than one type of data record. These records may be of differing sizes, different
formats, etc. The order in which they are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is in no
way altered by the presence of more than one type of data record within the file.

The LABEL RECORDS Clause

FUNCTION

The LABEL RECORDS clause specifies whether labels are present.

GENERAL FORMAT

{
RECORDS IS } {STANDARD } LABEL

-- RECORDS ARE OMITTED

SYNTAX RULES

GENERAL RULES

Language Reference Manual 5 - 19

Sequential Input And Output

GENERAL RULES

1. The LINAGE clause provides a means for specifying the size of a logical page in
terms of number of lines. The logical page size is the sum of the values
referenced by each phrase except the FOOTING phrase. If the LINES AT TOP
or LINES AT BOTTOM phrases are not specified, the val ues for these functions
are zero. If the FOOTING phrase is not specified, the assumed value is equal to
integer-I, or the contents of the data item referenced by data-name-I~
whichever is specified.

There is not necessarily any relationship between the size of the logical page
and the size of a physical page.

2. The value of integer-l or the data item referenced by data-name-l specifies the
number of lines that can be written and/or spaced on the logical page. The
value must be greater than zero. That part of the logical page in which these
lines can be written and/or spaced is called the page body.

3. The value of integer-3 or the data item referenced by data-name-3 specifies the
number of lines that comprise the top margin on the logical page. The value
maybe zero.

4. The value of integer-4 or the data item referenced by data-name-4 specifies the
number of lines that comprise the bottom margin on the logical page. The
value may be zero.

5. The value ofinteger-2 or the data item referenced by data-name-2 specifies the
line number within the page body at which the footing area begins. The value
must be greater than zero and not greater than the value of integer-lor the
data item referenced by data-name-l.

The footing area comprises the area of the logical page between the line
represented by the value of integer-2 or the data item referenced by
data-name-2 and the line represented by the value of integer-I or the data item
referenced by data-name-l, inclusive.

6. The value of integer-I, integer-3, and integer-4, if specified, will be used at the
time the file is opened by the execution of an OPEN statement with the
OUTPUT phrase, to specify the number of lines that comprise each of the
indicated sections of a logical page. The value of integer-2, if specified, will be
used at that time to define the footing area. These values are used for all
logical pages written for the file during a given execution of the program.

Language Reference Manual 5 - 21

Sequential Input And Output

• When the ADVANCING identifier-2 or integer phrase of the
WRITE statement is specified, the LINAGE-COUNTER is
incremented by integer or the value '"Ji'the data item referenced by
identifier-2.

• When the ADVANCING phrase of the WRITE statement is not
specified, the LINAGE-COUNTER is incremented by the value one.
(See The WRITE Statement).

• The value of LINAGE-COUNTER is automatically reset to one
when the device is repositioned to the first line that can be written
on for each of the succeeding logical pages. (See The WRITE
Statement).

d. The value of LINAGE-COUNTER is automatically set to one at the time
an OPEN statement is executed for the associated file.

10. Each logical page is contiguous to the next with no additional spacing provided.

The RECORD CONTAINS Clause

FUNCTION

The RECORD CONTAINS clause specifies the size of data records.

GENERAL FORMAT

RECORD CONTAINS integer-l TO] integer-2 CHARACTERS

GENERAL RULE

The size of each data record is completely defined within the record description
the.refore. this clause is n~yer r~9uired~

Language Reference Manual 5 - 23

Sequential Input And Output

3. A figurative constant may be substituted in the format above wherever a
literal is specified.

PROCEDURE DIVISION IN THE SEQUENTIAL 1-0 MODULE

The CLOSE Statement

FUNCTION

The CLOSE statement terminates the processing of reels/units and files, with
optional rewind and/or lock or removal where applicable.

GENERAL FORMAT

[{~} [WITH HQ ~]

1
Y!.!! FOR REMOVAL

CLOSE file-name-l
WITH {NO REWIND}

LOCK

[file-n&ale-2
[{:~~ } [WITH NO REWIND] l] FOR REMOVAL

WITH {NO REWIHD }
LOCK

Language Reference Manual 5-25

Sequential Input And Output

Table 5-2. Relationship of Categories of Files and the Formats of the
CLOSE Statement

File Category

CLOSE Sequential Sequential

Statement Single- Multi-

Format Non-Reel/U nit ReeVUnit Reel/Unit

CLOSE C C,G C,G,A

CLOSE WITH LOCK C,E C,G,E C,G,E,A

CLOSE WITH NO REWIND X C,B C,B,A

CLOSE REEUUNIT X X F,G

CLOSE REEUUNIT X X F,D,G
FOR REMOVAL

CLOSE REEUUNIT X X F,B
WITH NO REWIND

The definitions of the symbols in the table are given below. Where the
definition depends on whether the file is an input, output or input-output file,
alternate definitions are given; otherwise, a definition applies to input, output,
and input-output files.

A. Previous ReelsIU ni ts Unaffected

Input Files and Input-Output Files:

All reels/units in the file prior to the current reeVunit are processed
except those reels/units controlled by a prior CLOSE REEL/uNIT
statement. If the current reel/unit is not the last in the file, the
reels/units in the file following the current one are not processed.

Output Files:

All reels/units in the file prior to the current reeVunit are processed
except those reels/units controlled by a prior CLOSE REELIUNIT
statement.

Language Reference Manual 5 - 27

Sequential Input And Output

F. Close ReellU ni t

Input Files:

The following operations take place:

1. A reel/unit swap.

2. The standard beginning reel/unit label procedure is executed.

The next executed READ statement for that file makes available the next
data record on the new reel/unit.

Output Files and Input-Output Files:

The following operations take place;

1. (For output files only.) The standard ending reel/unit label
procedure is executed.

2. A reel/unit swap.

3. The standard beginning reel/unit label procedure is executed.

For input-output files, the next executed READ statement that references
that file makes the next logical data record on the next mass storage unit
available. For output files, the next executed WRITE statement that
references that file directs the next logical data record to the next
reel/unit of the file.

G. Rewind

The current reel or analogous device is positioned at its physical
beginning.

x. Illegal

This is an illegal combination of a CLOSE option and a file category. The
results at object time are undefined.

Language Reference Manual 5 - 29

Sequential Input And Output

Language Reference Manual 5 - 31

Sequential Input And Output

4. The EXTEND phrase must not be specified with multiple file reels.

5. The files referenced in the OPEN statement need not all have the same
organization or access.

GENERAL RULES

1. The successful execution of an OPEN statement determines the availability of
the file and results in the file being in an open mode.

2. The successful execution of an OPEN statement makes the associated record
area available to the program.

3. Prior to the successful execution of an OPEN statement for a given file, no
statement (except for a SORT or MERGE statement with the USING or
GIVING phrases) can be executed that references that file, either explicitly or
implicitly.

4. An OPEN statement must be successfully executed prior to the execution of
any of the permissible input-output statement. In Table 5-3, 'X' at an I
intersection indicates that the specified statement, used in the sequential
access mode, may be used with the sequential file organization and open
mode given at the top of the column.

Table 5-3.

Statement

READ

WRITE

REWRITE

Permissible Combinations of Statements and OPEN Modes
for Sequential 1-0

Open Mode

Input Output Input-Output1 Extend

x x

x x

x

Language Reference Manual 5 - 33

Sequential Input And Output

12. For files being opened with the INPUT or 1-0 phrase, the OPEN statement sets
the current record pointer to the first record currently existing within the file.
Ifno records exist in the file, the current record pointer is set such that the next
executed READ statement for the file will result in an AT END condition. If
the file does not exist, OPEN INPUT will cause an error status.

13. When the EXTEND phrase is specified, the OPEN statement positions the file
immediately following the last logical record of that file. Subsequent WRITE
statements referencing the file will add records to the file as the file
had been with the OUTPUT······

14. When the EXTEND phrase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the OPEN statement
includes the following steps:

15.

a. The beginning file labels are processed only in the case of a single
reel/uni t file.

b. The beginning reel/unit labels on the last existing reel/unit are processed
as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file is being
opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with the
OUTPUT phrase.

16. When the 1-0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps:

a. The labels are checked in accordance with the operating system specified
conventions for input-output label checking.

Language Reference Manual 5-35

Sequential Input And Output

The READ Statement

FUNCTION

The READ statement makes available the next logical record from a file.

GENERAL FORMAT

~ filename RECORD [~ identifier]

:)l)f.lllll:::~!:~l:: [; AT gQ imperative-statement]

SYNTAX RULES

1. The INTO phrase must not be used when the input file contains logical records
of various sizes as indicated by their record descriptions. The storage area
associated with identifier and the record area associated with file-name must
not be the same storage area.

2. The AT END phrase must be specified if no applicable USE procedure is
specified for file-name.

GENERAL RULES

1. The associated file must be open in the INPUT or 1-0 mode at the time this
statement is executed. (See The OPEN Statement in this chapter.)

2. The record to be made available by the READ statement is determined as
follows:

a. Hthe current record pointer was positioned by the execution of the OPEN
statement, the record pointed to by the current record pointer is made
available.

b. If the current record pointer was positioned by the execution of a previous
READ statement, the current record pointer is updated to point to the
next existing record in the file and then that record is made available.

Language Reference Manual 5 - 37

Sequential Input And Output

10. If a file described with the OPTIONAL clause is not present at the time the file
is opened, then at the time of the execution of the first READ statement for the
file, the AT END condition occurs and the execution of the READ statement is
unsuccessful. The standard end of file procedures are not performed. (See The
FILE-CONTROL Paragraph and The OPEN Statement and The USE
Statement descriptions in this chapter.) Execution of the program then
proceeds as in general rule 12.

11. If, at the time of the execution of a READ statement, no next logical record
exists in the file, the AT END condition occurs, and the execution of the READ
statement is considered unsuccessful. (See 1-0 Status.)

12. When the AT END condition is recognized the following actions are taken in
the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an AT END condition. (See 1-0 Status.)

b. If the AT END phrase is specified in the statement causing the condition,
control is transferred to the AT END imperative-statement. Any USE
procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file and that procedure is
executed.

When the AT END condition occurs, execution of the input-output
statement which caused the condition is unsuccessful.

13. Following the unsuccessful execution of any READ statement, the contents of
the associated record area and the position of the current record pointer are
undefined.

14. When the AT END condition has been recognized, a READ statement for that
file must not be executed without first executing a successful CLOSE
statement followed by the execution of a successful OPEN statement for that
file.

Language Reference Manual 5 - 39

Sequential Input And Output

The REWRITE Statement_

FUNCTION

The REWRITE statement logically replaces a record existing in a disk file.

GENERAL FORMAT

REWRITE record-name [FROM identifier]

SYNTAX RULES

1. record-name and identifier must not refer to the same storage area.

2. record-name is the name of a logical record in the File Section of the Data
Division and may be qualified.

GENERAL RULES

1. The file associated with record-name must be a disk file and must be open in
the 1-0 mode at the time of execution of this statement. (See The
OPEN Statement in this chapter.)

2. The last input-output statement executed for the associated file prior to the
execution of the REWRITE statement must have been a successfully executed
READ statement. The operating system logically replaces the record that was
accessed by the READ statement.

3. The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced.

Language Reference Manual 5 - 41

Sequential Input And Output

Language Reference Manual 5 - 43

Sequential Input And Output

GENERAL RULES

1. The designated procedures are executed by the input-output system after
completing the standard input-output error routine; or upon recognition of the
AT END condition, when the AT END phrase has not been specified in the
input-output statement.

2. After execution of a USE procedure, control is returned to the invoking routine.

3. Within a USE procedure, there must not be any reference to any non­
declarative procedures. Conversely, in the nondeclarative portion there must
be no reference to procedure-names that appear in the declarative portion,
except that PERFORM statements may refer to a USE statement or to the
procedures associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement that
would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

Language Reference Manual 5 -45

Sequential Input And Output

6. If the END-OF-PAGE phrase is specified, the LINAGE clause must be specified
in the file description entry for the associated file.

7. The words END-OF-PAGE and EOP are equivalent.

8. The ADVANCING TAB phrase cannot be specified when writing a record to a
file whose file description entry contains the LINAGE clause.

GENERAL RULES

1. The associated file must be open in the OUTPUT or EXTEND mode at the
time of the execution of this statement. (See The OPEN Statement in this
chapter.)

2. The logical record released by the execution of the WRITE statement is no
longer available in the record area unless the associated file is named in a
SAME RECORD AREA clause or the execution of the WRITE statement was
unsuccessful due to a boundary violation.

The logical record is also available to the program as a record of other files
referenced in the SAME RECORD AREA clause as the associated output file,
as well as to the file associated with record-name.

3. The results of the execution of the WRITE statement with the FROM phrase is
equivalent to the execution of:

a. The statement:

MOVE identifier-l TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE
statement.

Language Reference Manual 5 -47

Sequential Input And Output

iv. If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to the rules
i, ii and iii above.

v. If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced according to the rules
i, ii and iii above.

vi. If PAGE is specified, the record is presented on the logical page
before or after (depending on the phrase used) the device is
repositioned to the next logical page. If the record to be written is
associated with a file whose file description entry contains a
LINAGE clause, the repositioning is to the first line that can be
written on the next logical page as specified in the LINAGE clause.

10. If the logical end of the representation of the printed page is reached during the
execution of a WRITE statement with the END-OF-PAGE phrase, the
imperative-statement specified in the END-OF-PAGE phrase is executed. The
logical end is specified in the LINAGE clause associated with record-name.

11. An end-of-page condition is reached whenever the execution of a given WRITE
statement with the END-OF-PAGE phrase occurs when the execution of such a
WRITE statement causes the LINAGE-COUNTER to equal or exceed the value
specified by integer-2 or the data item referenced by data-name-2 of the
LINAGE clause, if specified. In this case, the WRITE statement is executed
and then the imperative statement in the END-OF-PAGE phrase is executed.

An automatic page overflow condition is reached whenever the execution of a
given WRITE statement (with or without an END-OF-PAGE phrase) cannot be
fully accommodated within the current page body.

Language Reference Manual 5-49

CHAPTER 6

RELATIVE INPUT AND OUTPUT

INTRODUCTION TO THE RELATIVE 1-0 MODULE

The relative 1-0 module provides the capability of accessing records of a mass
storage file in either a random or sequential manner. Each record in a relative file
is uniquely identified by an integer value greater than zero which specifies the
record's ordinal position in the file.

Language Concepts

ORGANIZATION

Relative file organization is permitted only on disk devices. A relative file consists
of records which are identified by relative record numbers. The file may be
thought of as composed of a serial string of areas, each capable of holding a logical
record. Each of these areas is denominated by a relative record number. Record
storage and retrieval is based on this number. For example, the tenth record is the
one addressed by relative record number ten, and is in the tenth record area,
whether or not records have been written in the first through the ninth record
areas.

ACCESS MODES

In the sequential access mode, the sequence in which records are accessed is the
ascending order of the relative record numbers of all records which currently exist
within the file.

In the random access mode, the sequence in which records are accessed is controlled
by the programmer. The desired record is accessed by placing its relative record
number in a relative key data item.

Language Reference Manual 6-1

Relative Input And Output

1 At End. The sequential READ statement was unsuccessfully executed
either as a result of an attempt to read a record when no next logical
record exists in the file or as a result of the first READ statement being
executed for a file described with the OPTIONAL clause, and that file was
not available to the program at the time its associated OPEN statement
was executed.

3 Permanent Error. The input-output statement was unsuccessfully
executed as the result of a boundary violation for a sequential file or as
the result of an input-output error, such as data check parity error, or
transmission error.

9 Operating System Error Message. The input-output statement was
unsuccessfully executed as the result of a condi tion that is specified by the
Operating System. This value is used only to indicate a condition not
indicated by other defined values of status key 1, or by specified
combinations of the values of status key 1 and status key 2.

Status Key 2

The rightmost character position of the FILE STATUS data item is known as status
key 2 and is used to further describe the results of the input-output operation. This
character contains a value as follows:

• If no further information is available concerning the input-output operation,
then status key 2 contains a value of'O'

• When status key 1 contains a value of '2' indicating an INVALID KEY
condition, status key 2 is used to designate the cause of that condition by the
following values:

2 Indicates a duplicate key value. An attempt has been made to write
a record that would create a duplicate key in a relative file.

3 Indicates no record found. An attempt has been made to access a
record, identified by a key, and that record does not exist in the file.

4 Indicates a boundary violation. An attempt has been made to write
beyond the externally-defined boundaries of a relative file. This is
normally treated as a fatal error by the operating system.

Language Reference Manual 6-3

Relative Input And Output

When the INVALID KEY condition is recognized, the operating system takes these
actions in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this file, to
indicate an INVALID KEY condition. (See 1-0 Status in this chapter.)

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.
Any USE procedure specified for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is specified,
either explicitly or implicitly, for this file, that procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output statement
which recognized the condition is unsuccessful, and the file is not affected.

NOTE:

INVALID KEY does not trap errors when Status key 1 is set to 9. Such errors
must be trapped either by explicitly testing the Status key or by using
declaratives instead of the INVALID KEY clause.

THE AT END CONDITION

The AT END condition can occur as a result of the execution of a READ statement.
For details of the causes of the condition, see The READ Statement later in this
chapter.

Language Reference Manual 6-5

Relative Input And Output

Manual Record Locking

The run unit acquires a lock only ifit accesses a record with a READ WITH LOCK
statement. The lock is released by the same run unit a) accessing any record in
the file with any file operation except START, b) executing an UNLOCK
statement on that file, c) executing a COMMIT statement or d) closing the file.

Automatic Record Locking

The run unit acquires a lock whenever it reads a record in the file. The lock is
released by the same run unit a) accessing any record in the same file with any file
operation except START, b) executing an UNLOCK statement on that file, c)
issuing a COMMIT statement or d) closing the file.

MULTIPLE RECORD LOCKS

A run unit that has specified multiple record locking for a file may hold a number
of record locks in one file simultaneously. This prevents other run units accessing
those locked records, but does not deny them access to any records that are not
locked. There are two ways record locks can be acquired: manually or
automatically.

Manual Record Locking

The run unit acquires a lock only ifit accesses a record with a READ WITH KEPr
LOCK statement. If the WRITE LOCK compiler directive has been specified at the
time the program was compiled then a lock is acquired if the run unit accesses the
file with a WRITE or REWRITE statement. The locks are released by the same
run unit a) executing an UNLOCK statement for that file, b) executing a
COMMIT statement or c) closing the file.

Language Reference Manual 6-7

Relative Input And Output

Note that:

• A file opened for OUTPUT causes the file to become exclusive, regardless of
the specified lock mode.

• Explicitly or implicitly specifying automatic or manual record locking for a
file causes the file to become shareable. A file opened for 1-0 acquires record
locks, a file opened for INPUT never acquires record locks.

• The programmer can select the type of locking for individual files by
accepting the default locking (see Table 6-1) or by including a LOCK MODE
clause in the SELECT statement for a file (see The SELECT Statement
later in this chapter).

In single user environments the multi-user syntax has no effect at run-time but
programs can be developed for use in both single and multi-user environments.

ENVIRONMENT DIVISION IN THE RELATIVE 1-0 MODULE

Input-output Section

THE FILE-CONTROL PARAGRAPH

Function

The FILE-CONTROL paragraph names each file and allows specification of other
file-related information. (See also the LEVEL II COBOL Operating Guide.)

General Format

FILE-CONTROL file-control-entry-l [file-control-entry-2]

Language Reference Manual 6-9

Relative Input And Output

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

4. data-name-2 must be defined in the Data Division as a two-character data item
of the category alphanumeric and must not be defined in the File Section or the
Communication Section.

5. data-name-l and data-name-2 may be qualified.

6. If a relative file is to be referenced by a START statement, the RELATIVE
KEY phrase must be specified for that file.

7. data-name-l must not be defined in a record description entry associated with
that file-name.

8. The data item referenced by data-name-l must be defined as an unsigned
integer.

9. file-identifier is any user-defined word, but must not be the same as the file­
name.

General Rules

1. The ASSIGN clause specifies the association of the file referenced by file-
name to a storage medium. See the LEVEL II COBOL Guide.
The first assi t takes effect.' ' ..

2. The RESERVE clause allows the user to specify the number of input-output
areas allocated.

Language Reference Manual 6 -11

Relative Input And Output

Language Reference Manual 6 -13

Relative Input And Output

6. The two forms of the SAME clause (SAME AREA, SAME RECORD AREA) are
considered separately in the following:

More than one SAME clause may be included in a program, however:'

a. a file-name must not appear in more than one SAME AREA clause.

b. a file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in the SAME RECORD AREA clause. However, additional
file-names not appearing in that SAME AREA clause may also appear in
that SAME RECORD AREA clause. The rule that only one of the files
mentioned in a SAME AREA clause can be open at any given time takes
precedence over the rule that all files mentioned in a SAME RECORD
AREA clause can be open at any given time.

7. The files referenced in the SAME AREA or SAME RECORD AREA clauses
need not all have the same organization or access.

General Rules

2. The SAME AREA clause specifies that two or more files that do not represent
sort or merge files are to use the same memory area during processing. The
area being shared includes all storage areas (including alternate areas)
assigned to the files specified; therefore, it is not valid to have more than one of
the files open at the same time.

Language Reference Manual 6 -15

Relative Input And Output

The File Description - Complete Entry Skeleton

FUNCTION

The file description furnishes information concerning the physical structure,
identification, and record names pertaining to a given file.

GENERAL FORMAT

FD file-name

[
; BLOCK COIfTAIIfS [integer-l TO] integer-2 {RECORDS }]

CHARACTERS

(; ~ COIfTAIIfS [integer-3 TO] integer-4 CHARACTERS]

f; ~ {RECORD IS } {STAlfDARD } 1
RECORDS ARE OMITTED J

[; VALUE OF data-name-l IS jdata-name-2}
11iteral-l]

[, data-name-3 IS {d~ta-name-4}]
Ilteral-2 •••

{
RECORD IS } data-name-5 [,data-name-6] •••]
RECORDS ARE

SYNTAX RULES

1. The level indicator FD identifies the beginning of a file description and must
precede the file-name.

2. The clauses which follow the name of the file are oJ)1~iOltlal
of

3. One or more record description entries must follow the file description entry.

Language Reference Manual 6 -17

Relative Input And Output

SYNTAX RULE

data-name-l and data-name-2 are the names of data records and should have 01
level-number record descriptions, with the same names, associated with them.

GENERAL RULES

1. The presence of more than one data-name indicates that the file contains more
than one type of data record. These records may be of differing sizes, different
formats, etc. The order in which they are listed is not significant.

2. Conceptually, all data records within a file share the same area. This is in no
way altered by the presence of more than one type of data record within the file.

The LABEL RECORDS Clause

FUNCTION

The LABEL RECORDS clause specifies whether labels are present.

GENERAL FORMAT

~ {RECORD IS }{STANDARD}
RECORDS ARE OMITTED

SYNTAX RULE

Language Reference Manual 6 -19

Relative Input And Output

The VALU E OF Clause

FUNCTION

The VALUE OF clause particularizes the description of an item in the label records I
associated with a file.

GENERAL FORMAT

VALUE OF data-name-l IS
{

data-name-2 }
literal-l

[
,data-name-3 IS {data-name-4}] ..•

literal-2

SYNTAX RULES

1. Data-names should be qualified when necessary, but cannot be subscripted or
indexed, nor can they be items described with the USAGE IS INDEX clause

2. data-name-2, data-name-4 etc, must be in the Working-Storage Section

GENERAL RULES

The compiler checks that data-name-1 matches in value data-name-2 or literal-
1, data-name-3 matches in value data-name-4 or literal-2, etc, for input files.
For output files the value of data-name-2 or literal-1 is substituted for data­
name-1, the value of data-name-4 or literal-2 is substituted for data-name-3,
etc.

2. A figurative constant may be substituted in the format above wherever a
literal is specified.

Language Reference Manual 6 - 21

Relative Input And Output

The definitions of the symbols in the table are given below. Where the
definition depends on whether the file is an input, output or input-output file,
alternate definitions are given; otherwise, a definition applies to input, output,
and input-output files.

A. Close File

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are specified for the
file, the labels are processed according to the operating system label
convention. The behaviour of the CLOSE statement when label records
are specified but not present, or when label records are not specified but
are present, is undefined. If the file is positioned at its end and label
records are not specified for the file, label processing does not take place
but other closing operations dependent on the Run-Time System (RTS)
are executed. See your LEVEL II COBOL Operating Guide. If the
file is positioned other than at its end, the closing operations dependent
on the RTS are executed, but there is no ending label processing.

Input Files and Input-Output Files (Random or Dynamic Access
Mode);
Output Files (Random, Dynamic, or Sequential Access Mode):

Iflabel records are specified for the file, the labels are processed according
to the operating system standard label convention. The behaviour of the
CLOSE statement when label records are specified but not present, or
when label records are not specified but are present, is undefined. Iflabel
records are not specified for the file, label processing does not take place
but other closing operations dependent on the RTS are executed.

B. File Lock

This file cannot be opened again during this execution of this run unit.

3. The action taken if a file is in the open mode when a STOP RUN statement is
executed is to close the file. The action taken for a file that has been opened in
a called program and not closed in that program prior to the execution of a
CANCEL statement for the program is to close the file.

Language Reference Manual 6 - 23

Relative Input And Output

Language Reference Manual 6-25

Relative Input And Output

4. After the succesful execution of a DELETE statement, the identified record has
been logically removed from the file and can no longer be accessed.

5. The execution of a DELETE statement does not affect the contents of the record
area associated with file-name.

6. The current record pointer is not affected by the execution of a DELETE
statement.

7. The execution of the DELETE statement causes the value of the specified FILE
STATUS data item, if any, associated with the file-name to be updated. See
1-0 Status in this chapter.

Language Reference Manual 6- 27

Relative Input And Output

Table 6-2. Permissible Combinations of Statements and OPEN Modes for
Relative 1-0

File Access Open Mode

Mode Statement Input Output Input-Output

Sequential READ X X
WRITE X
REWRITE X
START X X
DELETE X

Random READ X X
WRITE X X
REWRITE X
START
DELETE X

Dynamic READ X X
WRITE X X
REWRITE X
START X X
DELETE X

5. A file may be opened with the INPUT, OUTPUT, and 1-0 phrases in the same
program. Following the initial execution of an OPEN statement for a file, each
subsequent execution for that same file must be preceded by the execution of a
CLOSE statement for that file.

6. Execution of the OPEN statement does not obtain or release the first data
record.

7. The ASSIGNed name in the SELECT statement for a file is processed as
follows:

a. When the INPUT phrase is specified, the execution of the OPEN
statement causes the ASSIGNed name to be checked in accordance with
the operating system conventions for opening files for input.

Language Reference Manual 6 - 29

Relative Input And Output

Language Reference Manual 6 - 31

Relative Input And Output

SYNTAX RULES

1. The INTO phrase must not be used when the input file contains logical records
of various sizes as indicated by their record descriptions. The storage area
associated with identifier and the record area associated with file-name must
not be the same storage area.

2. Format 1 must be used for all files in sequential access mode. *
3. Format 1 (with the NEXT phrase) must be specified for files in dynamic access

mode, when records are to be retrieved sequentially.

4. Format 2 or Format 4 is used for files in random access mode or for files in
dynamic access mode when records are to be retrieved randomly.

5. The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

GENERAL RULES

1. The associated files must be open in the INPUT or 1-0 mode at the time this
statement is executed. See The OPEN Statement in this chapter

2. The record to be made available by a Format 1 or Format 3 READ statement
is determined as follows:

a. The record, pointed to by the current record pointer, is made available
provided that the current record pointer was positioned by the START or
OPEN statement and the record is still accessible through the path
indicated by the current record pointer; if the record is no longer
accessible, which may have been caused by the deletion of the record, the
current record pointer is updated to point to the next existing record in
the file and that record is then made available.

Language Reference Manual 6 - 33

Relative Input And Output

10. When the AT END condition is recognized the following actions are taken in
the specified order:

a. A value is placed into the FILE STATUS data item, if specified for this
file, to indicate an AT END condition. (See {-o Status in this chapter.)

b. If the AT END phrase is specified in the statement causing the condition,
control is transferred to the AT END imperative-statement. Any USE
procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must be
specified, either explicitly or implicitly, for this file, and that procedure is
executed.

When the AT END condition occurs, execution of the input-output
statement which caused the condition is unsuccessful.

11. Following the unsuccessful execution of any READ statement, the contents of
the associated record area and the position of the current record pointer are
undefined.

12. When the AT END condition has been recognized, a Format 1 or Format 3
READ statement for that file must not be executed without first executing one
of the following:

a. A successful CLOSE statement followed by the execution of a successful
OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 or Format 4 READ statement for that file.

13. For a file for which dynamic access mode is specified, a Format 1 or Format 3
READ statement with the NEXT phrase specified causes the next logical
record to be retrieved from the file as described in general rule 2.

14. If the RELATIVE KEY phrase is specified, the execution of a Format 1 or
Format 3 READ statement updates the contents of the RELATIVE KEY data
item such that it contains the relative record number of the record made
available.

Language Reference Manual 6- 35

Relative Input And Output

The REWRITE Statement

FUNCTION

The REWRITE statement logically replaces a record existing in a disk file.

GENERAL FORMAT

REWRITE record-name [FROM identifier] [:INVALID KEY imperative-statement]

SYNTAX RULES

1. record-name and identifier must not refer to the same storage area.

2. record-name is the name of a logical record in the File Section of the Data
Division and may be qualified.

3. The INVALID KEY phrase must not be specified for a REWRITE statement
which references a file in sequential access mode.

4. The INVALID KEY phrase must be specified in the REWRITE statement for
files in the random or dynamic access mode for which an appropriate USE
procedure is not specified.

GENERAL RULES

1. The file associated with record-name must be open in the 1-0 mode at the time
of execution of this statement. (See The OPEN Statement in this chapter.)

2. For files in the sequential access mode, the last input-output statement
executed for the associated file prior to the execution of the REWRITE
statement must have been a successfully executed READ statement. The
operating system logically replaces the record that was accessed by the READ
statement.

Language Reference Manual 6-37

Relative Input And Output

The START Statement

FUNCTION

The START statement provides a basis for logical positioning within a relative file,
for subsequent sequential retrieval of records.

GENERAL FORMAT

START fil.-n ... [KEY

(iIHVALID KEY imperative-statement]

NOTE:

The required relational characters '>', and '<' and '=' are not underlined to
avoid confusion with other symbols such as '>' (greater than or equal to).

SYNTAX RULES

1. file-name must be the name of a file with sequential or dynamic access.

2. data-name may be qualified.

3. The INVALID KEY phrase must be specified if no applicable USE procedure is
specified for file-name.

4. data-name, if specified, must be the data item specified in the RELATIVE KEY
phrase of the associated file control entry.

GENERAL RULES

1. file-name must be open in the INPUT or 1-0 mode at the time that the START
statement is executed. (See The OPEN Statement in this chapter.)

Language Reference Manual 6 - 39

Relative Input And Output

Language Reference Manual 6-41

Relative Input And Output

GENERAL RULES

1. The designated procedures are executed by the input-output system after
completing the standard input-output error routine, or upon recognition of the
INVALID KEY or AT END conditions when the INVALID KEY or AT END
phrases have not been specified in the input-output statement.

2. After execution of a USE procedure, control is returned to the invoking routine.

3. Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion there
must be no reference to procedure-names in the declarative portion, except that
PERFORM statements may refer to a USE statement or to the procedures
associated with such a USE statement.

4. Within a USE procedure, there must not be the execution of any statement that
would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

Language Reference Manual 6-43

Relative Input And Output

3. The results of the execution of the WRITE statement with the FROM phrase is
equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE
statement.

After execution of the WRITE statement is complete, the information in
the area referenced by identifier is available, even though the
information in the area referenced by record-name may not be. (See
general rule 2 above.)

4. The current record pointer is unaffected by the execution of a WRITE
statement.

5. The execution of the WRITE statement causes the value of the FILE STATUS
data item, if any, associated with the file to be updated. (See 1-0 Status in this
chapter.)

6. The maximum record size for a file is established at the time the file is created
and must not subsequently be changed.

7. The number of character positions on a mass storage device required to store a
logical record in a file mayor may not be equal to the number of character
positions defined by the logical description of that record in the program.

8. The execution of the WRITE statement releases a logical record to the
operating system.

Language Reference Manual 6-45

Relative Input And Output

Language Reference Manual 6-47

CHAPTER 7

INDEXED INPUT AND OUTPUT

INTRODUCTION TO THE INDEXED 1-0 MODULE

The indexed 1-0 module provides the capability of accessing records of a mass I
storage file in either a random or sequential manner. Each record in an indexed
file is uniquely identified by the value of one or more keys wi thin that record.

Language Concepts

ORGANIZATION

A file whose organization is indexed is a mass storage file in which data records may
be accessed by the value ofa key. A record description may include one or more key
data items, each of which is associated with an index. Each index provides a logical
path to the data records according to the contents of a data item within each record
which is the record key for that index.

The data item named in the RECORD KEY clause of the file control entry for a file
is the prime record key for that file. For purposes of inserting, updating and
deleting records in a file, each record is identified solely by the value of its prime
record key. This value therefore be and must not be when
updalting the record.

A data item named in the ALTERNATE RECORD KEY clause of the file control
entry for a file is an alternative record key for that file. The value of an alternative
record key may be non-unique if the DUPLICATES phrase is specified for it. These
keys provide alternative access paths for retrieval of records from the file. A
maximum number of80 alternate keys can be specified.

Language Reference Manual 7 - 1

Indexed Input And Output

Status Key 1

The leftmost character position of the FILE STATUS data item is known as status
key 1 and is set to indicate one of the following conditions upon completion of the
input-output operation.

'0' - Successful Completion
'1' - AtEnd
'2' - Invalid Key
'3' - Permanent Error
'9' - Operating System Error Message

The meaning of the above indications are as follows:

0- Successful Completion. The input-output statement was successfully
executed.

1 - At End. The Format 1 READ statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical record exists in
the file.

2 - Invalid Key. The input-output statement was unsuccessfully executed as
a result of one of the following:

Sequence Error
Duplicate Key
No Record Found
Boundary Violation

3 - Permanent Error. The input-output statement was unsuccessful as the
result of an input-output error, such as data check, parity error, or
transmission error.

9 - Operating System Error Message. The input-output statement was
unsuccessfully executed as a result of a condition that is specified by the
Operating System Error Message number. This value is used only to
indicate a condition not indicated by other defined values of status key 1,
or by specified combinations of the value of status key 1 and status key 2.

Language Reference Manual 7-3

Indexed Input And Output

• When status key 1 contains a value of '9' the value of status key 2 is the
operating system error message number (for those operating systems which
designate errors numerically). The LEVEL II COBOL Operating Guide
specific to your operating system contains details of the status-key-2
representation.

Note that it is not possible to extract this number directly.

Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the value of status key 1 and status key 2 are
shown in the following table. An 'X' at an intersection indicates a valid permissible
combination.

Status Key 1 Status Key 2

No Further ~quence Duplicate No Record Boundary
Information Error Key Found Violation

(0) (1) (2) (3) (4)

Successful X X
Completion (0)

At End (1) X

Invalid Key (2) X X X X

Permanent Error (3) X

Implementor Defined (9) Operating System Error Message Number
*

Language Reference Manual 7-5

Indexed Input And Output

SHARING FILES ON MULTI-USER SYSTEMS

The Run-Time System (RTS) supports the LEVEL II COBOL multi-user facilities
which allow data files to be shared between users in a multi-user environment, and
allow programs accessing those files to prevent access to records or entire files
while data is being updated.

Files are either active or inactive: an inactive file is one that is not open to any run
unit, an active file is open to one or more run units.

Active files may be in one of two modes: exclusive or shareable.

Exclusive

A file which is in exclusive mode is open to one run unit only, and any other run
unit which attempts to access it receives a "File locked" error and is denied access.
Exclusive mode implies that a file lock is held by the one run unit which is able to
access the file; the file lock is released by that run unit closing the file.

Shareable

A file which is in shareable mode is available to any number of run units, each of
which may protect data while using the file by locking one or more records in the
file. This prevents other run units accessing the individual records that are locked,
but does not prevent access to the file otherwise. Files that are opened in INPUT
mode are shareable, but records cannot be locked in the file. Each run unit that is
sharing access to file a may be locking either a single record or multiple records in
that file. A run unit cannot select single record locking and multiple record
locking for the same file.

SINGLE RECORD LOCK

A run unit that has specified single record locking for a file (either explicitly or
implicitly) can hold only one record lock in that file at any time. There are two
ways that a run unit can acquire a record lock: manually or automatically.

Language Reference Manual 7-7

Indexed Input And Output

Automatic Record Locking

The run unit acquires a lock whenever it reads a record in the file. If the
WRlTELOCK compiler directive has been specified at the time the program was
compiled then a lock is acquired if the run unit accesses the file with a WRITE or
REWRITE statement. The locks are released by the same run unit a) executing
an UNLOCK statement for that file, b) executing a COMMIT statement or c)
closing the file.

Table 7-1 shows the default type oflocking which is used when files are opened in a
particular open mode. The default locking can be modified if the AUTOLOCK
compiler directive was specified at the time the program was compiled. The table
also indicates whether the default type of locking may be overridden for individual
files. This is done by inserting a suitable clause in the SELECT statement for the
file; refer to The SELECT Statement later in this chapter for details of the
required syntax.

Table 7-1. Default Locking for Indexed Data Files

OPEN mode No Directive AUTOLOCK Override in
Directive SELECT Statement

INPUT No lock No lock Yes, but only
to EXCLUSIVE

1-0 Exclusive Automatic Yes
lock on
single record

OUTPUT Exclusive Exclusive No

Note that:

• A file opened for OUTPUT causes the file to become exclusive, regardless of
the specified lock mode.

• Explicitly or implicitly specifying automatic or manual record locking for a
file causes the file to become shareable. A file opened for 1-0 acquires record
locks, a file opened for INPUT never acquires record locks.

• The programmer can select the type of locking for individual files by
accepting the default locking (see Table 7-1) or by including a LOCK MODE
clause in the SELECT statement for a file (see The SELECT Statement
later in this chapter).

In single user environments the multi-user syntax has no effect at run-time but
programs can be developed for use in both single and multi-user environments.

Language Reference Manual 7-9

General Format

ASSIGN TO
{

external-file-name-l i teral }
file-identifier

1~1:11:111:IIIIIIII~illilllllll~IIIIIIIII~lli:lll~
. ,.,

ORGANIZATION IS INDEXED

~
SEOUENTIAL~]
DYNAMIC
RANDOM

; RECORD KEY IS data-name-l

t!'~!!~~::::::J.:I::::::":!:!i:'#!!lt:!~:r:::

Indexed Input And Output

*

[:~!~;;'~~;:;:i:;;~;;:;:9i;i~:~::: data-name-3 [WITH DUPLICATES]] •••

[;FILE STATUS IS data-name-5]

Syntax Rules

1. The SELECT clause must be specified first in the file control entry. The
clauses which follow the SELECT clause may appear in any order.

2. Each file described in the Data Division must be named once and only once as
file-name in the FILE-CONTROL paragraph. Each file specified in the file
control entry must have a file description entry in the Data Division.

3. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

Language Reference Manual 7 - 11

Indexed Input And Output

4. When the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization. For indexed files this sequence is the
order of ascending record key values within a given key of reference.

5. When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name-5 after the
execution of every statement that references that file either explicitly or
implicitly. This value indicates the status of execution of the statement. (See
1-0 Status in this chapter.)

6. If the access mode is random, the value of the record key data item indicates
the record to be accessed.

7. When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly. (See general rules 4 and 6.)

8. The RECORD KEY clause specifies the record key that is the prime record key
for the file. The values of the prime record key must be unique among records
of the file. This prime record key provides an access path to records in an
indexed file.

9. An ALTERNATE RECORD KEY clause specifies a record key that is an
alternative record key for the file. This alternate record key provides an
alternate access path to records in an indexed file.

11. The data description of data-name-1 and data-name-3 as well as relative
locations within a record must be the same as that used when the file was
created. The number of alternate keys for the file must also be the same as
that used when the file was created.

12. The DUPLICATES phrase specifies that the value of the associated alternate
record key may be duplicated within any of the records in the file. If the
DUPLICATES phrase is not specified, the value of the associated alternate
record key must not be duplicated among any of the records in the file.

13. If file-identifier is not explicitly defined it will be implicitly defined.

Language Refe.rence Manual 7 - 13

Indexed Input And Output

THE 1-0 CONTROL PARAGRAPH

Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established and the memory area which is to be shared by different files.

General Format

[: SAME [RECORD] AREA FOR file-name-3 [, file-name-4] •..] ...

Syntax Rules

1. The I-O-CONTROL paragraph is optional.

2. file-name-l must be a sequentially organized file.

3. When either the integer-l RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, user-defined-name must be given in the RERUN clause. I

4. When multiple integer-l RECORDS clauses are specified, no two of them may
specify the same file-name-2.

5. Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

Language Reference Manual 7 - 15

Indexed Input And Output

3. The SAME RECORD AREA clause specifies that two or more files are to use
the same memory area for processing of the current logical record. All of the
files may be open at the same time. A logical record in the SAME RECORD
AREA is considered as a logical record of each opened output file whose file­
name appears in this SAME RECORD AREA clause and of the most recently
read input file whose file-name appears in this SAME RECORD AREA clause.
This is equivalent to an implicit redefinition of the area; that is, records are
aligned on the leftmost character position.

DATA DIVISION IN THE INDEXED 1-0 MODULE

File Section

In a COBOL program the file description entry (FD) represents the highest level of
organization in the File Section. The File Section header is followed by a file
description entry consisting of a level indicator (FD), a file-name and a series of
independent clauses. The FD clauses specify the size of the logical and physical
records, the presence or absence of label records, the value of implementor-defined
label items, and the names of the data records which comprise the file. The entry
itself is terminated by a period.

Record Description Structure

A record description consists of a set of data description entries which describe the
characteristics of a particular record. Each data description entry consists of a level­
number followed by a data-name if required, followed by a series of independent
clauses as required. A record descri ption has a hierarchical structure and therefore
the clauses used with an entry may vary considerably, depending upon whether or
not it is followed by subordinate entries. The structure of a record description is
defined in Concepts of Levels in Chapter 2 while the elements allowed in a record
description are shown in The Data Description - Complete Entry Skeleton in
Chapter 3.

Language Reference Manual 7 - 17

Indexed Input And Output

The BLOCK CONTAINS Clause

FUNCTION

The BLOCK CONTAINS clause specifies the size of a physical record.

GENERAL FORMAT

BLOCK CONTAINS [integer-l TO] integer-2
{

RECORDS }
CHARACTERS

GENERAL RULE

Language Reference Manual 7 -19

Indexed Input And Output

GENERAL FORMAT

{
RECORD IS } {STANDARD}

~ RECORDS ARE OMITTED

SYNTAX RULE

GENERAL RULE

The RECORD CONTAINS Clause

FUNCTION

The RECORD CONTAINS clause specifies the size of data records.

GENERAL FORMAT

RECORD CONTAINS (integer-l TO] integer-2 CHARACTERS

GENERAL RULE

The size of each data record is completely defined within the record description
entry, therefore this clause is never required. ':;

Language Reference Manual 7 - 21

Indexed Input And Output

For an output file, at the appropriate time the value of data-name-l is made
equal to the value of literal-l, or of a data-name-2, whichever has been
specified.

3. A figurative constant may be substituted in the format above wherever a
Ii teral is specified.

PROCEDURE DIVISION IN THE INDEXED 1-0 MODULE

The CLOSE Statement

FUNCTION

The CLOSE statement terminates the processing of files.

GENERAL FORMAT

CLOSE file-name-l [WITH LOCK] [, file-name-2 [WITH LOCK]]

SYNTAX RULE

The files referenced in the CLOSE statement need not all have the same
organization or access.

GENERAL RULES

1. A CLOSE statement may only be executed for a file in an open mode.

2. Indexed files are classified as belonging to the category of non-sequential
single/multi-reellunit. The results of executing each type of CLOSE for this
category of file are summarized in the following table.

Language Reference Manual 7 - 23

Indexed Input And Output

B. File Lock

This file cannot be opened again during this execution of this run unit.

3. The action taken if a file is in the open mode when a STOP RUN statement is
executed is to close the file. The action taken for a file that has been opened in
a called program and not closed in that program prior to the execution of a
CANCEL statement for that program is to close the file.

4. If a CLOSE statement has been executed for a file, no other statement can be
executed that references that file, either explicitly or implicitly, unless an
intervening OPEN statement for that file is executed.

5. Following the successful execution of a CLOSE statement, the record area
associated with file-name is no longer available. The unsuccessful execution of
such a CLOSE statement leaves the availability of the record area undefined.

6. If WITH LOCK is specified, the file cannot be reopened in the current
execution of the run unit.

Language Reference Manual 7 - 25

Indexed Input And Output

The DELETE Statement

FUNCTION

The DELETE statement logically removes a record from a mass storage file.

GENERAL FORMAT

~ file-name RECORD [; INVALID KEY imperative-statement)

SYNTAX RULES

1. The INVALID KEY phrase must not be specified for a DELETE statement I
which references a file which is in sequential access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE procedure is not specified.

GENERAL RULES

1. The associated file must be open in 1-0 mode at the time of the execution of this
statement. (See The OPEN Statement later in this chapter.)

2. For files in the sequential access mode, the last input-output statement
executed for file-name prior to the execution of the DELETE statement must
have been a successfully executed READ statement. The operating system
logically removes from the file the record that was accessed by that READ
statement.

Language Reference Manual 7 - 27

Indexed Input And Output

The OPEN Statement

FUNCTION

The OPEN statement initiates the processing of files. It also performs checking
and/or writing oflabels and other input-output operations.

GENERAL FORMAT

{

INPUT file-name-l
OUTPUT file-name-J
1-0 file-name-5

SYNTAX RULE

[, file-name-2]
[, file-name-4]
[, f ile-name-6]

... } ...

...

The files referenced in the OPEN statement need not all have the same organization
or access.

GENERAL RULES

1. The successful execution of the OPEN statement determines the availability of
the file and results in the file being in an open mode.

2. The successful execution of the OPEN statement makes the associated record
area available to the program.

3. Prior to the successful execution of an OPEN statement for a given file, no
statement can be executed that references that file, either explicitly or
implicitly.

4. An OPEN statement must be successfully executed prior to the execution of
any of the permissible input-output statements. In Table 7-2, Permissible I
Statements, 'X' at an intersection indicates that the specified statement, used
in the access mode given for that row, may be used with the indexed file
organization and the open mode given at the top of the column.

Language Reference Manual 7 - 29

Indexed Input And Output

8. The file description entry for file-name-1, file-name-2, file-name-5, or file­
name-6 must be equivalent to that used when this file was created.

9. For files being opened with the INPUT or 1-0 phrase, the OPEN statement
sets the current record pointer to the first record currently existing within the
file. For indexed files, the prime record key is established as the key of
reference and is used to determine the first record to be accessed. If no records
exist in the file, the current record pointer is set such that the next executed
Format 1 or Format 3 READ statement for the file will result in an AT END
condition. If the file does not exist, INPUT will cause an error status.

10. The 1-0 phrase permits the openin~ .. or. a file. for both. input an.d. .. output
operations.

11. When the 1-0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps:

a. The labels are checked in accordance with the operating system specified
conventions for input-output label checking.

b. The new labels are written in accordance with the operating system
specified conventions for input-output label writing.

12. Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file contains no data
records.'············

13. The execution of the OPEN statement causes the value of the FILE STATUS
data item to be updated (see 1-0 Status in this chapter).

Language Reference Manual 7 - 31

Indexed Input And Output

The READ Statement

FUNCTION

For sequential access, the READ statement makes available the next logical record
from a file. For random access, the READ statement makes available a specified
record from a mass storage file.

GENERAL FORMAT

Format!

READ file-name [NEXT] RECORD [INTO identifier]

:.III:i:i:i.~~::i:~:: [; AT END imperative-statement]

Format 2

READ file-name RECORD [INTO identifier]

::!lg::::::I1I~~:~i::. [; INVALID KEY imperative-statement

Format 3

READ file-name [NEXT] RECORD [INTO identifier]

"tI.::~:~I.~~:::t::.1.:::: [; AT END imperative-statement]

Format 4

READ file-name RECORD [INTO identifier]

"tll!;:l:l:ll~!::II::l::~~!.J.:::: [; INVALID KEY imperative-statement]

SYNTAX RULES

1. The INTO phrase must not be used when the input file contains logical records
of various sizes as indicated by their record descriptions. The storage area
associated with identifier and the storage area which is the record area
associated with file-name must not be the same storage area.

Language Reference Manual 7 - 33

Indexed Input And Output

b. If the current record pointer was positioned by the execution of a previous
READ statement, the current record pointer is updated to point to the
next existing record in the file with the established key of reference and
then that record is made available.

3. The execution of the READ statement causes the value of the FILE STATUS
data item, if any, associated with file-name to be updated. (See 1-0 Status in
this chapter.)

4. Regardless of the method used to overlap access time with processing time, the
concept of the READ statement is unchanged in that a record is available to the
object program prior to the execution of any statement following the READ
statement.

5. When the logical records of a file are described with more than one record
description, these records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents of any data
items which lie beyond the range of the current data record are undefined at
the completion of the execution of the READ statement.

6. If the INTO phrase is specified, the record being read is moved from the record
area to the area specified by identifier according to the rules specified for the
MOVE statement without the CORRESPONDING phrase. The implied
MOVE does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with identifier is
evaluated after the record has been read and immediately before it is moved to
the data item.

7. When the INTO phrase is used, the record being read is available in both the
input record area and the data area associated with identifier.

8. If, at the time of execution of a Format 1 or Format 3 READ statement, the
position of current record pointer for that file is undefined, the execution of
that READ statement is unsuccessful.

9. If, at the time of the execution of a Format lor Format 3 READ statement, no I
next logical record exists in the file, the AT END condition occurs, and the
execution of the READ statement is considered unsuccessful. (See 1-0 Status
in this chapter.)

Language Reference Manual 7-35

Indexed Input And Output

15. If the KEY phrase is not specified in a Format 2 or Format 4 READ statement, I
the prime record key is established as the key of reference for this retrieval. If
the dynamic access mode is specified, this key of reference is also used for
retrievals by any subsequent executions of Format 1 or Format 3 READ I
statement for the file.

16. For an indexed file if the KEY phrase is specified in a Format 2 or Format 4
READ statement, data-name is established as the key of reference for this
retrieval. If the dynamic access mode is specified, this key of reference is also
used for retrievals by any subsequent executions of Format 1 or Format 3
READ statements for the file until a different key of reference is established
for the file.

17. Execution of a Format 2 or Format 4 READ statement causes the value of the I
key of reference to be compared with the value contained in the corresponding
data item of the stored records in the file, until the first record having an
equal value is found. The current record pointer is positioned to this record
which is then made available. If no record can be so identified, the INVALID
KEY condition exists and execution of the READ statement is unsuccessful.
(See The INVALID KEY Condition in this chapter.)

Language Reference Manual 7 -37

Indexed Input And Output

4. The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area unless the associated file is
named in a SAME RECORD AREA clause, in which case the logical record is
available to the program as a record of other files appearing in the same SAME
RECORD AREA clause as the associated 1-0 file, as well as to the file
associated with record-name.

5. The execution of a REWRITE statement with the FROM phrase is equivalent
to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM
phrase. The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of the REWRITE statement.

6. The current record pointer is not affected by the execution of a REWRITE
statement.

7. The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See
1-0 Status.)

8. For a file in the sequential access mode, the record to be replaced is specified by
the value contained in the prime record key. When the REWRITE statement is
executed the value contained in the prime record key data item of the record to
be replaced must be equal to the value of the prime record key of the last record
read from this file.

9. For a file in the random or dynamic access mode, the record to be replaced is
specified by the prime record key data item.

10. The contents of alternative record key data items of the record being rewritten
may differ from those in the record being replaced. The operating system
utilizes the content of the record key data items during the execution of the
REWRITE statement in such a way that subsequent access of the record may
be made based upon any of those specified record keys.

Language Reference Manual 7 - 39

Indexed Input And Output

The START Statement

FUNCTION

The START statement provides a basis for logical positioning within an indexed file,
for subsequent sequential retrieval of records.

GENERAL FORMAT

START file-name [KEY

[:IHVALID KEY imperative-statement]

NOTE:

The required relational characters '>', and '<' and '=' are not underlined to
avoid confusion with other symbols such as '>' (greater than or equal to).

SYNTAX RULES

1. file-name must be the name of an indexed file.

2. file-name must be the name of a file with sequential or dynamic access.

3. data-name may be qualified.

4. The INVALID KEY phrase must be specified if no applicable USE procedure is
specified for file-name.

5. If file-name is the name of an indexed file, and if the KEY phrase is specified,
data-name may reference a data item specified as a record key associated with
file-name, or it may reference any data item of category alpanumeric
subordinate to the data-name of a data item specified as a record key associated
with file-name whose leftmost character position corresponds to the leftmost
character position of that record key data item.

Language Reference Manual 7 - 41

Indexed Input And Output

b. If the KEY phrase is specified, and data-name is specified as a record key
for file-name, that record key becomes the key of reference.

c. If the KEY phrase is specified, and data-name is not specified as a record
key for file-name, the record key whose leftmost character position
corresponds to the leftmost character position of the data item specified
by data-name, becomes the key of reference.

8. If the execution of the START statement is not successful, the key of reference
is undefined.

Language Reference Manual 7-43

Indexed Input And Output

The USE Statement

FUNCTION

The USE statement specifies procedures for input-output error handling that are in
addi tion to the standard procedures provided by the input-output control system.

GENERAL FORMAT

~
file-name-l [, file-name-2] ••• ~
INPUT

USE AFTER STANDARD { =TION }PROCEDUREOH ~~~PUT •

SYNTAX RULES

1. A USE statement, when present, must immediately follow a section header in
the dec1aratives section and must be followed by a period followed by a space.
The remainder of the section must consist of zero, one or more procedural
paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; it merely defines the conditions
calling for the execution of the USE procedures.

3. The same file-name can appear in a different specific arrangement of the
format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution ot~ore than one USE procedure.

4. The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

5. The files implicitly referenced in a USE statement need not all have the same
organization or access.

Language Reference Manual 7-45

Indexed Input And Output

The WRITE Statement

FUNCTION

The WRITE statement releases a logical record for an output or input-output file.

GENERAL FORMAT

WRITE record-name [FROM identifier] ; [INVALID KEY imperative-statement]

SYNTAX RULES

1. record-name and identifier must not reference the same storage area.

2. The record-name is the name of a logical record in the File Section of the Data
Division and may be qualified.

3. The INVALID KEY phrase must be specified if an applicable USE procedure is
not specified for the associated file.

GENERAL RULES

1. The associated file must be open in the OUTPUT or 1-0 mode at the time of the
execution of this statement. (See The OPEN Statement in this chapter.)

2. The logical record released by the execution of the WRITE statement is no
longer available in the record area unless the associated file is napled in a
SAME RECORD AREA clause or the execution of the WRITE statement is
unsuccessful due to an INVALID KEY condition. The logical record is
available to the program from the file associated with record-name and from
other files referenced in the same SAME RECORD AREA clause as the
associated output file.

Language Reference Manual 7 -47

Indexed Input And Output

11. The data item specified as the prime record key must be set by the program to
the desired value prior to the execution of the WRITE statement.

12. If sequential access mode is specified for the file, records must be released to
the operating system is ascending order of prime record key values.

13. If random or dynamic access mode is specified, records may be released to the
operating system in any program-specified order.

14. When the ALTERNATE RECORD KEY clause is specified in the file control
entry for an indexed file, the value of the alternate record key may be non­
unique only if the DUPLICATES phrase is specified for that data item. In this
case the operating system provides storage of records such that when records
are accessed sequentially, the order of retrieval of those records is the order in
which they are released to the operating system.

15. The INVALID KEY condition exists under the following circumstances:

a. When sequential access mode is specified for a file opened in the output
mode, and the value of the prime record key is not greater than the value
of the prime record key of the previous record, or:

b. When the file is opened in the output or 1-0 mode, and the value of the
prime record key is equal to the value of a prime record key of a record
already existing in the file, or:

c. When the file is opened in the output or 1-0 mode, and the value of an
alternate record key for which duplicates are not allowed equals the
corresponding data item of a record already existing in the file, or:

d. When an attempt is made to write beyond the externally defined
boundaries of the file.

16. When the INVALID KEY condition is recognized the execution of the WRITE
statement is unsuccessful, the contents of the record area are unaffected and
the FILE STATUS data item, if any, associated with file-name of the associated
file is set to a value indicating the cause of the condition. Execution of the
program proceeds according to the rules stated under The INVALID KEY
Condition (see also 1-0 Status in this chapter).

Language Reference Manual 7 -49

CHAPTER 8

SORT-MERGE

INTRODUCTION TO THE SORT-MERGE MODULE

The Sort-Merge module provides the'capability to order one or more files of records,
or to combine two or more identically ordered files of records, according to a set of
user-specified keys contained wi thin each record. Optionally, a user may apply some
special processing to each of the individual records by input or output procedures.
This special processing may be applied before and/or after the records are ordered by
the SORT or after the records have been combined by the MERGE.

Relationship with Sequential 1-0 Module

The files specified in the USING and GIVING phrases of the SORT and MERGE
statements must be described implicitly or explicity in the FILE-CONTROL
paragraph as having sequential organization. No input-output statement may be
executed for the file named in the sort-merge file description.

ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE

Input-Output Section

THE FILE-CONTROL PARAGRAPH

Function

The FILE-CONTROL paragraph names each file and allows specification of other
file-related information.

Language Reference Manual 8 - 1

SORT-MERGE

THE I-O-CONTROL PARAGRAPH

Function

The I-O-CONTROL paragraph specifies the memory area which is to be shared by
different files.

General Format

{ :~~~RD } AREA FOR file-name-J [,file-name-4] •••] •••
SORT-MERGE

Syntax Rules

1. The I-O-CONTROL paragraph is optional.

2. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

3. If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at
least one of the file-names must represent a sort or merge file. Files that do not
represent sort or merge files may also be named in the clause.

4. The three formats of the SAME clause (SAME RECORD AREA, SAME SORT
AREA, SAME SORT-MERGE AREA) are considered separately in the
following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME RECORD AREA
clause.

b. A file-name that represents a sort or merge file must not appear in more
than one SAME SORT AREA or SAME SORT-MERGE AREA clause.

Language Reference Manual 8-3

SORT-MERGE

c. Files other than sort or merge files do not share the same storage area
with each other. If the user wishes these files to share the same storage
area with each other, he must also include in the program a SAME AREA
or SAME RECORD AREA clause naming these files.

d. During the execution of a SORT or MERGE statement that refers to a sort
or merge file named in this clause, any non sort-merge files named in this
clause must not be open.

DATA DIVISION IN THE SORT-MERGE MODULE

File Section

An SD file description gives information about the size and the names of the data
records associated with the file to be sorted or merged. There are no label
procedures which the user can control, and the rules for blocking and internal
storage are peculiar to the SORT and MERGE statements.

The Sort-Merge File Description - Complete Entry Skeleton

FUNCTION

The sort-merge file description furnishes information concerning the physical
structure, identification and record names of the file to be sorted or merged.

GENERAL FORMAT

SD file-name

[: RECORD CONTAINS [integer-l TO]

[
: DATA { RECORD IS } data-name-l

RECORDS ARE

Language Reference Manual

integer-2 CHARACTERS]

[, data-name-2] 000]

8-5

SORT-MERGE

GENERAL RULES

2. The presence of more than one data-name indicates that the file contains more
than one type of data record. These records maybe of differing sizes, different
formats, etc. The order in which they are listed is not significant.

3. Conceptually, all data records within a 'file share the same area. This is in no
way altered by the presence of more than one type of data record within the file.

The RECORD CONTAINS Clause

FUNCTION

The RECORD CONTAINS clause specifies the size of data records.

GENERAL FORMAT

RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS

GENERAL RULES

1.

Language Reference Manual 8-7

SORT-MERGE

PROCEDURE DIVISION IN THE SORT-MERGE MODULE

The MERGE Statement

FUNCTION

The MERGE statement combines two or more identically sequenced files on a set of
specified keys, and during the process makes records available, in merge order, to an
output procedure or to an output file.

GENERAL FORMAT

{
ASCENDING } KEY data-name-l [, data-name-2]

MERGE file-name-l ON DESCENDING

[ON {~~~~:~~~~G} KEY data-name-3 [, data-name-4] •••] •••

[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [, file-name-4]

~
OUTPUT PROCEDURE IS section-name-l [{ ;::~UGH} section-name-2

--
GIVING file-name-5

SYNTAX RULES

1. file-name-l must be described in a sort-merge file description entry in the Data
Divison.

2. section-name-l represents the name of an output procedure.

Language Reference Manual 8-9

SORT-MERGE

GENERAL RULES

1. The MERGE statement will merge all records contained on file-name-2, file­
name-3, and file-name-4. The files referenced in the MERGE statement must
not be open at the time the MERGE statement is executed. These files are
automatically opened and closed by the merge operation with all implicit
functions performed, such as the execution of any associated USE procedures.
The terminating function for all files is performed as if a CLOSE statement,
without optional phrases, had been executed for each file.

2. The data-names following the word KEY are listed from left to right in the
MERGE statement in order of decreasing significance without regard to how
they are divided into KEY phrases. In the format data-name-l is the major
key, data-name-2 is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will be
from the lowest value of the contents of the data items identified by the
KEY data-names to the highest value, according to the rules for
comparison of operands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will
be from the highest value of the contents of the data items identified by
the KEY data-names to the lowest value, according to the rule for
comparison of operands in a relation condi tion.

3. The collating sequence that applies to the comparison of the nonnumeric key
data i terns specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATING
SEQUENCE phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program collating
sequence.

Language Reference Manual 8 - 11

SORT-MERGE

6. Segmentation, as defined in Chapter 9, can be applied to programs containing
the MERGE statement. However, the following restrictions apply:

a. If the MERGE statement appears in a section that is not in an
independent segment, then any output procedure referenced by that
MERGE statement must appear:

• Totally within non-independent segments, or

• Wholly contained in a single independent segment.

b. If a MERGE statement appears in an independent segment, then any
output procedure referenced by that MERGE statement must be
contained:

• Totally within non-independent segments, or

• Wholly within the same independent segment as that MERGE
statement.

7. If the GIVING phrase is specified, all the merged records in file-name-l are
automatically written on file-name-5 as the implied output procedure for this
MERGE statement.

8. In the case of equal compare, according to the rules for comparison of operands
in a relation condition, on the contents of the data items identified by all the
KEY data-names between records from two or more input files (file-name-2,
file-name-3, file-name-4, ...), the records are written on file-name-5 or returned
to the output procedure, depending on the phrase specified, in the order that
the associated input files are specified in the MERGE statement.

9. The results of the merge operation are predictable only when the records in the
files referenced by file-name-2, file-name-3, ... , are ordered as described in the
ASCENDING or DESCENDING KEY clause associated with the MERGE
statement.

Language Reference Manual 8 - 13

SORT-MERGE

3. After the execution of the RELEASE statement, the logical record is no longer
available in the record area unless the associated sort-merge file is named in a
SAME RECORD AREA clause. The logical record is also available to the
program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated sort-merge file, as well as to the file associated
with record-name. When control passes from the input procedure, the file
consists of all those records which were placed in it by the execution of
RELEASE statements.

Language Reference Manual 8 - 15

SORT-MERGE

2. The execution of the RETURN statement causes the next record, in the order
specified by the keys listed in the SORT or MERGE statement, to be made
available for processing in the record areas associated with the sort or merge
file.

3. If the INTO phrase is specified, the current record is moved from the input area
to the area specified by identifier according to the rules for the MOVE
statement without the CORRESPONDING phrase. The implied MOVE does
not occur if there is an AT END condition. Any subscripting or indexing
associated with identifier is evaluated after the record has been returned and
immediately before it is moved to the data item.

4. When the INTO phrase is used, the data is available in both the input record
area and the data area associated with identifier.

5. If no next logical record exists for the file at the time of the execution of a
RETURN statement, the AT END condition occurs. The contents of the record
areas associated with the file when the AT END condition occurs are
undefined. After the execution of the imperative-statement in the AT END
phrase, no RETURN statement may be executed as part of the current output
procedure.

Language Reference Manual 8 - 17

SORT-MERGE

3. file-name-2, file-name-3 and file-name-4 must be described in a file description
entry, not in a sort-merge file description entry, in the Data Division. The
actual size of the logical record(s) described for file-name-2, file-name-3 and
file-name-4 must be equal to the actual size of the logical record(s) described for
file-name-!. If the data descriptions of the elementary items that make up
these records are not identical, it is the programmer's responsibility to describe
the corresponding records in such a manner so as to cause equal amounts of
character positions to be allocated for the corresponding records.

4. data-name-I, data-name-2, data-name-3, and data-name-4 are KEY data­
names and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-!.

b. KEY data-names may be qualified.

c. The data items identified by KEY data-names must not be variable
length items.

d. If file-name-I has more than one record description, then the data items
identified by KEY data-names need be described in only one of the record
descri ptions.

e. None of the data items identified by KEY data-names can be described by
an entry which either contains an OCCURS clause or is subordinate to an
entry which contains an OCCURS clause.

5. The words THRU and THROUGH are equivalent.

6. SORT statements may appear anywhere except in the declaratives portion of
the Procedure Division or in an input or output procedure associated with a
SORT or MERGE statement.

7. No more than one file-name from a multiple file reel can appear in the SORT
statement.

Language Reference Manual 8 - 19

SORT-MERGE

The input procedure must consist of one or more sections that appear
contiguously in a source program and do not form a part of any output
procedure. In order to transfer records to the file referenced by file-name-I, the
input procedure must include the execution of at least one RELEASE
statement. Control must not be passed to the input procedure when a related
SORT statement is being executed. The input procedure can include any
procedures needed to select, create, or modify records. The restrictions on the
procedural statements within the input procedure are as follows:

a. The input procedure must not contain any SORT or MERGE statements.

b. The input procedure must not contain any explicit transfers of control to
points outside the input procedure; ALTER, GO TO, and PERFORM
statements in the input procedure are not permitted to refer to procedure­
names outside the input procedure. COBOL statements are allowed that
will cause an implied transfer of control to declaratives.

c. The remainder of the Procedure Division must not contain any transfers
of control to points inside the input procedure; ALTER, GO TO and
PERFORM statements in the remainder of the Procedure Division must
not refer to procedure-names within the input procedure.

5. If an input procedure is specified, control is passed to the input procedure
before file-name-l is sequenced by the SORT statement. The compiler inserts a
return mechanism at the end of the last section in the input procedure and
when control passes the last statement in the input procedure, the records that
have been released to file-name-I are sorted.

6. The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form part of any input procedure.
In order to make sorted records available for processing, the output procedure
must include the execution of at least one RETURN statement. Control must
not be passed to the output procedure except when a related SORT statement is
being executed. The output procedure may consist of any procedures needed to
select, modify or copy the records that are being returned, one at a time in
sorted order, from the sort file. The restrictions on the procedural statements
within the output procedure are as follows:

a. The output procedure must not contain any SORT or MERGE statements.

Language Reference Manual 8 - 21

SORT-MERGE

9. If the USING phrase is specified, all the records in file-name-2 and file-name-3
are transferred automatically to file-name-l. At the times of execution of the
SORT statement, file-name-2 and file-name-3 must not be open. The SORT
statement automatically initiates the processing of, makes available the
logical records for, and terminates the processing offile-name-2 and file-name-
3. These implicit functions are performed such that any associated USE
Procedures are executed. The terminating function for all files is performed as
if a CLOSE statement, without optional phrases, had been executed for each
file. The SORT statement also automatically performs the implicit functions of
moving the records from the file area of file-name-2 and file-name-3 to the file
area for file-name-1 and the release of records to the initial phase of the sort
operation.

10. If the GIVING phrase is specified, all the sorted records in file-name-l are
automatically written on file-name-4 as the implied output procedure for this
SORT statement. At the time of execution of the SORT statement file-name-4
must not be open. The SORT statement automatically initiates the processing
of, releases the logical records to, and terminates the processing of file-name-4.
These implicit functions are performed such that any associated USE
procedures are executed. The terminating function is performed as if a CLOSE
statement, without optional phrases, had been executed for the file. The SORT
statement also automatically performs the implicit functions of the return of
the sorted records from the final phase of the sort operation and the moving of
the records from the file area for file-name-l to the file area for file-name-4.

Language Reference Manual 8- 23

CHAPTER 9

SEGMENTATION

INTRODUCTION TO THE SEGMENTATION MODULE

The Segmentation module provides a capability to specify object program overlay
requiremen ts.

Segmentation provides a facility for specifying permanent and independent
segments. All segments specified as permanent segments must be contiguous in the
source program. Segmentation also allows the intermixing of sections with different
segment-numbers and allows the fixed portion of the source program to contain
segments that may be overlaid.

GENERAL DESCRIPTION OF SEGMENTATION

COBOL segmentation is a facility that provides a means by which the user may
communicate with the compiler to specify object program overlay requirements.

COBOL segmentation deals only with segmentation of procedures. As such, only the
Procedure Division is considered in determining segmentation requirements for an
object program.

Language Reference Manual 9 - 1

Segmentation

INDEPENDENT SEGMENTS

An independent segment is defined as part of the object program which can overlay,
and can be overlaid by either a fixed overlayable segment or another independent
segment. An independent segment is in its initial state whenever control is
transferred (either implicitly or explicitly) to that segment for the first time during
the execution of a program. On subsequent transfers of control to the segment, an
independent segment is also in its initial state when:

1. Control is transferred to that segment as a result of the implicit transfer of
control between consecutive statements from a segment with a different
segment-number.

2. Control is transferred to that segment as the result of the implicit transfer of
control between a SORT or MERGE statement, in a segment with a different
segment-number, and an associated input or output procedure in that
independent segment.

3. Control is transferred explicitly to that segment from a segment with a
different segment-number (with the exception noted in paragraph 2 below).

On subsequent transfer of control to the segment, an independent segment is in its
last-used state when:

1. Control is transferred implicitly to that segment from a segment with a
different segment-number (except as noted in paragraph 1).

2. Control is transferred explicitly to that segment as the result of the execution
of an EXIT PROGRAM statement.

Segmentation Classification

Sections which are to be segmented are classified, using a system of segment­
numbers and the following criteria:

1. Logic Requirements - Sections which must be available for reference at all
times, or which are referred to very frequently, are normally classified as
belonging either to one of the overlayable fixed segments or to one of the
permanent segments; sections which are used less frequently are normally
classified as belonging to one of the independent segments, depending on logic
requirements.

Language Reference Manual 9-3

Segmentation

3. Sections in the declaratives must contain segment-numbers less than 50.

GENERAL RULES

1. All sections which have the same segment-number constitute a program
segment. All sections which have the same segment-number need not be
physically contiguous in the source program.

2. Segments with segment-number 0 through 49 belong to the fixed portion of the
object program.

3. Segments with segment-number 50 through 99 are independent segments.

The SEGMENT LIMIT Clause

GENERAL FORMAT

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph and
has the following format:

[, SEGMENT-LIMIT IS segment-number]

SYNTAX RULES

segment-number must be an integer ranging in value from 1 through 49.

GENERAL RULES

Language Reference Manual 9-5

Segmentation

A PERFORM statement that appears in an independent segment can have within
its range, in addition to any declarative sections whose execution is caused within
that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more non­
independent segments.

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.

The MERGE Statement

If the MERGE statement appears in a section that is not in an independent segment,
then any output procedure referenced by that MERGE statement must appear:

a. Totally within non-independent segments, or

b. Wholly contained in a single independent segment.

If a MERGE statement appears in an independent segment, then any output
procedure referenced by that MERGE statement must be contained:

a. Totally wi thin non-independent segments, or

b. Wholly within the same independent segment as that MERGE statement.

The SORT Statement

If a SORT statement appears in a section that is not an independent segment, then
any input procedures or output procedures referenced by that SORT statement must
appear:

a. Totally within non-independent segments, or

b. Wholly contained in a single independent segment.

Language Reference Manual 9-7

CHAPTER 10

LIBRARY

INTRODUCTION TO THE LIBRARY MODULE

The Library module provides a capability for specifying text that is to be copied from
a source user-library file. This is usually created using any suitable source text
editor.

LEVEL II COBOL libraries consist of disk files that contain source to be made I
available to the compiler. The effect of the interpretation of the COpy statement is
to insert text into the source program, where it will be treated by the compiler as
part of the source program. All occurrences of a given literal, identifier, word or
group of words in the library text can be replaced with alternate text during the
copy process. The library module also provides for the availability of more than one
COBOL library at compile time.

Language Reference Manual 10 - 1

Library

7. A COpy statement may occur in the source program anywhere a character­
string or a separator may occur except that a COpy statement must not occur
within a COpy statemen.t.

8. text-name defines a unique external file name which conforms to the rules for
user defined words (note lower case is translated to case).

9.

GENERAL RULES

1. The compilation of a source program containing COpy statement is logically
equivalent to processing all COpy statements prior to the processing of the
resulting source program.

2. The effect of processing a COpy statement is that the library text associated
with text-name is copied into the source program, logically replacing the entire
COpy statement, beginning with the reserved word COpy and ending with
the punctuation character period, inclusive.

3. If the REPLACING phrase is not specified, the library text is copied
unchanged.

If the REPLACING phrase is specified, the library text is copied and each
properly matched occurrence of pseudo-text-I, identifier-I, word-I, and literal­
I in the library text is replaced by the corresponding pseudo-text-2, identifier-
2, word-2, or literal-2.

4. For purposes of matching, identifier-I, word-I, and literal-l are treated as
pseudo-text containing only identifier-I, word-I, or literal-I, respectively.

Language Reference Manual 10 - 3

Library

6. A comment line occurring in the library text and pseudo-text-1 is interpreted, I
for purposes of matching, as a single space. Comment lines appearing in
pseudo-text-2 and library text are copied into the source program unchanged.

7. Debugging lines are permitted within library text and pseudo-text-2.
Debugging lines are not permitted within pseudo-text-1; text-words within a
debugging line participate in the matching rules as if the 'D' did not appear in
the indicator area. If a COpy statement is specified on a debugging line, then
the text that is the result of the processing of the COpy statement will appear
as though it were specified on debugging lines with the following exception:
comment lines in library text will appear as comment lines in the resultant
source program.

8. The text produced as a result of the complete processing of a COpy statement
must not contain a COpy statement.

9. The syntatic correctness of the library text cannot be independently
determined. The syntatic correctness of the entire COBOL source program
cannot be determined until all COpy statements have been completely
processed.

10. Library text must conform to the rules for COBOL reference format.

11. For purposes of compilation, text-words after replacement are placed in the
source program according to the rules for reference format as described in
Chapter 1.

12.

Language Reference Manual 10 - 5

CHAPTER 11

DEBUG AND INTERACTIVE DEBUGGING

INTRODUCTION

Standard ANSI COBOL debugging provides a means by which the user can describe
the conditions under which procedures are to be monitored during the execution of
the object program.

The optional ANIMATOR debugging product is also available, and brings a
program to life on the screen animating it by displaying the source code during run
time with the cursor moving from COBOL source statement to statement.
ANIMATOR is a fully interactive symbolic debugging tool that complies with the
published GSA certification standard enabling the setting of breakpoints,
examination and alteration of data and the changing of the flow of control. It is
supplied with its own manual.

This Chapter describes the standard ANSI '74 COBOL DEBUG module.

STANDARD ANSI COBOL DEBUG

The decisions of what to monitor and what information to display are explicitly in
the domain of the user. The COBOL Debug facility simply provides a convenient
access to pertinent information.

The features of the language that support the COBOL Debug module are:

• A compile time switch -- WITH DEBUGGING MODE.

• An object time switch.

• A USE FOR DEBUGGING statement.

• A special register -- DEBUG-ITEM.

• Debugging lines.

Language Reference Manual 11 -1

Debug

Environment Division in COBOL DEBUG

THE WITH DEBUGGING MODE CLAUSE

Function

The WITH DEBUGGING MODE clause indicates that all debugging sections and all
debugging lines are to be compiled. If this clause is not specified, all debugging lines
and sections are compiled as if they were comment lines.

General Format

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE].

General Rules

1. If the WITH DEBUGGING MODE clause is specified in the SOURCE­
COMPUTER paragraph of the Configuration Section of a program, all USE
FOR DEBUGGING statements and all debugging lines are compiled.

2. If the WITH DEBUGGING MODE clause is not specified in the SOURCE­
COMPUTER paragraph of the Configuration Section of a program, any USE
FOR DEBUGGING statements and all associated debugging sections, and any
debugging lines are compiled as if they were comment statements.

Language Reference Manual 11 - 3

Debug

4. Except for the USE FOR DEBUGGING statement itself, statements appearing
within a given debugging section may reference procedure-names defined
within a different USE procedure only with a PERFORM statement.

5. Procedure-names defined within debugging sections must not appear within
USE FOR DEBUGGING statements.

6. Any' given identifier, cd-name, file-name, or procedure-name may appear in
only one USE FOR DEBUGGING statement and may appear only once in that
statement.

7. The ALL PROCEDURES phrase can appear only once in a program.

8. When the ALL PROCEDURES phrase is specified, procedure-name-I,
procedure-name-2, ... must not be specified in any USE FOR DEBUGGING
statement.

9. If the data description entry of the data item referenced by identifier-I,
identifier-2, ... , contains an OCCURS clause or is subordinate to a data
description entry that contains an OCCURS clause, identifier-I, identifier-2,
... , must be specified without the subscripting or indexing normally required.

10. References to the special register DEBUG-ITEM are restricted to references
from within a debugging section.

General Rules

1. In the following general rules all references to cd-name-l, identifier-I,
procedure-name-l, and file-name-l apply equally to cd-name-2, identifier-2,
procedure-name-2 and file-name-2 respectively.

2. Automatic execution of a debugging section is not caused by a statement
appearing in a debugging section.

3. When file-name-l is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any OPEN or CLOSE statement that references
file-name-l, and

Language Reference Manual '11 - 5

Debug

7. When identifier-I is specified without the ALL REFERENCES OF phrase, that
debugging section is executed at each of the following times:

a. In the case of a WRITE or REWRITE statement that explicitly references
identifier-2, immediately before the execution of that WRITE or
REWRITE statement and after the execution of any implicit move
resulting from the presence of the FROM phrase.

b. In the case of a PERFORM statement in which a VARYING, AFTER or
UNTIL phrase references identifier-I, immediately after each
initialization, modification or evaluation of the contents of the data item
referenced by identifier-l.

c. Immediately after the execution of any other COBOL statement that
explicitly references and causes the contents of the data item referenced
by identifier-I to be changed.

If identifier-I is specified in a phrase that is not executed or evaluated, the
associated debugging section is not executed.

8. The associated debugging section is not executed for a specific operand more
than once as a result of the execution of a single statement, regardless of the
number of times that operand is explicitly specified. In the case of a
PERFORM statement which caused iterative execution of a referenced
procedure, the associated debugging section is executed once for each iteration.

Within an imperative statement, each individual occurrence of an imperative
verb identifies a separate statement for the purpose of debugging.

9. When cd-name-I is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any ENABLE, DISABLE, and SEND statement
that references cd-name-I,

b. After the execution of a RECEIVE statement referencing cd-name-I that
does not result in the execution of the NO DATA imperative-statement,
and

c. After the execution of an ACCEPT MESSAGE COUNT statement that
references cd-name-I.

Language Reference Manual 11 - 7

Debug

All qualifiers of the name are separated in DEBUG-NAME by the word IN or
OF.

Subscripts/indices, if any, are not entered into DEBUG-NAME.

15. If the reference to a data item that causes the debugging section to be executed
is subscripted or indexed, the occurrence number of each level is entered in
DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3 respectively as necessary.

16. DEBUG-CONTENTS is a data item that is large enough to contain the data
required by the following general rules.

17. If the first execution of the first nondeclarative procedure in the program
causes the debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the first statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains 'START PROGRAM'.

18. If a reference to procedure-name-1 in an ALTER statement causes the
debugging section to be executed, the following condi tions exist:

a. DEBUG-LINE identifies the ALTER statement that references
procedure-name-l.

b. DEBUG-NAME contains procedure-name-l.

c. DEBUG-CONTENTS contains the applicable procedure-name associated
with the TO phrase of the ALTER statement.

19. If the transfer of control associated with the execution of a GO TO statement
causes the debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the GO TO statement whose execution transfers
control to procedure-name-l.

b. DEBUG-NAME contains procedure-name-l.

Language Reference Manual 11 - 9

Debug

23. If an implicit transfer of control from the previous sequential paragraph to
procedure-name-l causes the debugging section to be executed, the following
condi tions exist:

a. DEBUG-LINE identifies the previous statement.

b. DEBUG-NAME contains procedure-name-l.

c. DEBUG-CONTENTS contains 'FALL THROUGH'.

24. If references to file-name-l, cd-name-l causes the debugging section to be
executed, then:

a. DEBUG-LINE identifies the source statement that references
file-name-l, cd-name-l.

b. DEBUG-NAME contains the name offile-name-I, cd-name-l.

c. For READ, DEBUG-CONTENTS contains the entire record read.

d. For all other references to file-name-l, DEBUG-CONTENTS contains
spaces.

e. For any reference cd-name-I, DEBUG-CONTENTS contains the contents
of the area associated with the cd-name.

25. If a reference to identifier-l causes the debugging section to be executed, then:

a. DEBUG-LINE identifies the source statement that references
identifier-I,

b. DEBUG-NAME contains the name of identifier-I, and

c. DEBUG-CONTENTS contains the contents of the data item referenced
by identifier-2 at the time that control passes to the debugging section
(see General Rules 6 and 7).

Language Reference Manual 11 - 11

CHAPTER 12

INTERPROGRAM COMMUNICATION

INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE

The Inter-Program Communication module provides a facility by which a program
can communicate with one or more programs. This provides a programmer with a
modular programming capability. Each module when CALLed is loaded
dynamically by the Run-Time System. Communication is provided by:

• The ability to transfer control from one program to another within a run unit

• The ability for both programs to have access to the same data items.

DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

Lin kage Section

The Linkage Section in a program is meaningful if and only if the object program is
to function under the control of a CALL statement, and the CALL statement in the
calling program contains a USING phrase.

The Linkage Section is used for describing data that is available through the calling
program but is to be referred to in both the calling and the called program. No space
is allocated in the program for data items referenced by data-names in the Linkage
Section of that program. Procedure Division references to these data items are
resolved at object time by equating the reference in the called program to the
location used in the calling program. In the case of index-names, no such
correspondence is established. Index-names in the called and calling program
always refer to separate indices.

Language Reference Manual 12 - 1

Interprogram Communication

Linkage Records

Data elements in the Linkage Section which bear a definite hierarchic relationship
to one another must be grouped into records according to the rules for formation of
record descriptions. Any clause which is used in an input or output record
descri ption can be used in a Linkage Section.

Initial Values

The VALUE clause must not be specified in the Linkage Section except in condition­
name entries (level 88).

PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION
MODULE

The Procedure Division Header

The Procedure Division is identified by and must begin with the following header:

PROCEDURE DIVISION [USING data-name-l [, data-name-2] •••]

The USING phrase is present if and only if the object program is to function under
the control of a CALL statement, and the CALL statement in the calling program
contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division header must be
defined as a data item in the Linkage Section of the program in which this header
occurs, and it must have a 01 or 77 level-number.

Within a called program, Linkage Section data items are processed according to
their data descriptions given in the called program.

Language Reference Manual 12 - 3

Interprogram Communication

The CALL Statement.

FUNCTION

The CALL statement causes control to be transferred from one object program to
another, within the run unit.

GENERAL FORMAT

Format 1

{
identifier-l}

CALL literal-l
[USING data-name-l [, data-name-2] ...]

[; ON OVERFLOW imperative-statement]

SYNTAX RULES

1. literal-lmust be a nonnumeric literal·'":

2. identifier-l must be defined as an alphanumeric data item whose usage is
DISPLAY

3. The USING phrase is included in the CALL statement only if there is a USING
phrase in the Procedure Division header of the called program and the number
of operands in each USING phrase must be identical.

Language Reference Manual 12·5

Interprogram Communication

5. If during the execution of a CALL statement, it is determined that· the
available portion of run-time memory is incapable of accommodating the
program specified in the CALL statement, the next sequential instruction is
executed. If ON OVERFLOW has been specified, the associated imperative
statement is executed before the next instruction is executed.

6. Called programs may contain CALL statements. However, a called program
must not contain a call statement that directly or indirectly calls the calling
program.

7. The data-names, specified by the USING phrase of the CALL statement,
indicate those data items available to a calling program that may be referred to
in the called program. The order of appearance of the data-names in the
USING phrase of the CALL statement and the USING phrase in the Procedure
Division header is critical. Corresponding data-names refer to a single set of
data which is available to the called and calling program. The correspondence
is positional, not by name. In the case of index-names, no such correspondence
is established. Index-names in the called and calling program always refer to
separate indices.

8. The CALL statement may appear anywhere within a segmented program.
Therefore, when a CALL statement appears in a section with a segment­
number greater than or equal to 50, that segment is in its last used state when
the EXIT PROGRAM statement returns control to the calling program.

Language Reference Manual 12 - 7

Interprogram Communication

4. A called program is cancelled either by being referred to as the operand of a
CANCEL statement or by the termination of the run unit of which the program
is a member.

5. No action is taken when a CANCEL statement is executed naming a program
that has not been called in this run unit or has been called and is at present
cancelled. Control passes to the next statement.

Language Reference Manual 12 - 9

Interprogram Communication

Language Reference Manual 12 - 11

Interprogram Communication

Language Reference Manual 12 - 13

CHAPTER 13

COMMUNICATION

INTRODUCTION TO THE COMMUNICATION MODULE

Function

The communication module provides the ability to access, process, and create
messages or portions thereof. It provides the ability to communicate through a
Message Control System (MCS) with local and remote communication devices.

DATA DIVISION IN THE COMMUNICATION MODULE

Communication Section

In a COBOL program the communication description entries (CD) represent the
highest level of organization in the Communication Section. The Communication
Section header is followed by a communication description entry consisting of a level
indicator (CD), a data-name and a series of independent clauses. These clauses
indicate the queues and sub-queues, the message date and time, the source, the text
length, the status and end keys, and message count of input. These clauses specify
the destination count, the text length, the status and error keys, and destinations for
output. The entry itself is terminated by a period. These record areas may be
implicitly redefined by user-specified record description entries following the
various communication description clauses.

Language Reference Manual 13 - 1

Communication

SYNTAX RULES

Format 1:

1. A CD must appear only in the Communication Section.

2. Within a single program, the INITIAL clause may be specified in only one CD.
The INITIAL clause must not be used in a program that specifies the USING
phrase of the Procedure Division Header. (See The Procedure Division
Header.)

3. Except for the INITIAL clause, the optional clauses may be written in any
order.

4. If neither option in the format is specified, a level 01 data description entry
must follow the CD description entry. Either option may be followed by a level
01 data description entry.

5. For each input CD, a record area of 87 contiguous standard data format
characters is allocated. This record area is defined to the MCS as follows:

a. The SYMBOLIC QUEUE clause defines data-name-1 as the name of an
elementary alphanumeric data item of 12 characters occupying positions
1-12 in the record.

b. The SYMBOLIC SUB-QUEUE-1 clause defines data-name-2 as the name
of an elementary alphanumeric data item of 12 characters occupying
positions 13-24 in the record.

c. The SYMBOLIC SUB-QUEUE-2 clause defines data-name-3 as the name
of an elementary alphanumeric data item of 12 characters occupying
posi tions 25-36 in the record.

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name
of an elementary alphanumeric data item of 12 characters occupying
positions 37-48 in the record.

e. The MESSAGE DATE clause defines data-name-5 as the name of a data
item whose implicit description is that of an integer of6 digits without an
operational sign occupying character positions 49-54 in the record.

Language Reference Manual 13 - 3

Communication

Use of either option results in a record whose implicit description is equivalent
to the following:

IMPLICIT DESCRIPTION

01 data-name-O.

02 data-name-1 PICTURE

02 data-name-2 PICTURE

02 data-name-3 PICTURE

02 data-name-4 PICTURE
02 data-name-S PICTURE

02 data-name-6 PICTURE

02 data-name-7 PICTURE

02 data-name-8 PICTURE

02 data-name-9 PICTURE

02 data-name-10 PICTURE

02 data-name-11 PICTURE

NOTE:

X(12).

X(12) •
X (12) •
X (12) •
9 (06) .

9(08).
X(12) •
9(04).
X.
xx.
9(06).

COMMENT

SYMBOLIC QUEUE

SYMBOLIC SUB-QUEUE-1
SYMBOLIC SUB-QUEUE-2

SYMBOLIC SUB-QUEUE-3
MESSAGE DATE

MESSAGE TIME
SYMBOLIC SOURCE
TEXT LENGTH
END KEY
STATUS KEY
MESSAGE COUNT

In the above, the information under 'COMMENT' is for clarification and
is not part of the description.

6. Record description entries following an input CD implicitly redefine this record
and must describe a record of exactly 87 characters. Multiple redefinitions of
this record are permitted; however, only the first redefinition may contain
VALUE clauses. However, the MCS will always reference the record according
to the data descriptions defined in syntax rule 5.

7. data-name-1, data-name-2, ... , data-name-11 must be unique within the CD.
Within this series, any data-name may be replaced by the reserved word
FILLER.

Format 2:

8. A CD must appear only in the Communication Section.

9. If none of the optional clauses of the CD is specified, a level 01 data description
entry must follow the CD description entry.

Language Reference Manual 13 - 5

Communication

NOTE:

In the above, the information under 'COMMENT' is for clarification and
is not part of the description.

11. Record descriptions following an output CD implictly redefine this record.
Multiple redefinitions of this record are permitted; however, only the first
redefinition may contain VALUE clauses. Note that the MCS will always
reference the record according to the data descriptions defined in syntax
rule 10.

12. data-name-1, data-name-2, ... , data-name-5 must be unique within a CD.

13. If the DESTINATION TABLE OCCURS clause is not specified, one ERROR
KEY and one SYMBOLIC DESTINATION area is assumed. In this case,
neither sUbscripting nor indexing is permitted when referencing these data
items.

14. If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and
data-name-5 may only be referred to by subscripting or indexing.

15. There is no restriction on the value of the data item referenced by data-name-1
and integer-2.

GENERAL RULES

Format 1:

1. The input CD information constitutes the communication between the MCS
and the program as information about the message being handled. This
information does not come from the terminal as part of the message.

2. The contents of the data items referenced by data-name-2, data-name-3, and
data-name-4, when not being used must contain spaces.

3. The data items referenced by data-name-1, data-name-2, data-name-3, and
data-name-4 contain symbolic names designating queues, sub-queues, ...
respectively. All symbolic names must follow the rules for the formation of
system-names, and must have been previously defined to the MeS.

Language Reference Mar'Ual 13-7

Communication

S. The contents of data-name-6 have the format HHMMSSTT (hours, minutes,
seconds, hundredths of a second) and its contents represent the time at which
the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-6 are only updated by
the MCS as part of the execution of the RECEIVE statement.

9. During the execution of a RECEIVE statement, the MCS provides, in the data
item referenced by data-name-7, the symbolic name of the communications
terminal that is the source of the message being transferred. This symbolic
move must follow the rules for the formation of system names. However, if the
symbolic name of the communication terminal is not known to the MCS, the
contents of the data item referenced by data-name-7 will contain spaces.

10. The MCS indicates via the contents of the data item referenced by data-name-S
the number of character positions filled as a result of the execution of the
RECEIVE statement. (See The RECEIVE Statement later in this Chapter.)

11. The contents of the data item referenced by data-name-9 are set only by the
MCS as part of the execution of a RECEIVE statement according to the
following rules:

a. When the RECEIVE MESSAGE phrase is specified, then data-name-9 is
set to one of the following:

• If an end of group has been detected, the contents of the data item
referenced by data-name-9 are set to 3;

• If an end of message has been detected, the contents of the data item
referenced by data-name-9 are set to 2;

• If less than a message has been detected, the contents of the data
item referenced by data-name-9 are set to O.

b. When the RECEIVE SEGMENT phrase is specified, data-name-9 is set to
one of the following:

• If an end of group has been detected, the contents of the data item
referenced by data-name-9 are set to 3;

• If an end of message has been detected, the contents of the data item
referenced by data-name-9 are set to 2;

Language Reference Manual 13 - 9

Communication

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT
statement the value of the data item referenced by data-name-1 is outside the
range of 1 through integer-2, an error condition is indicated and the execution of
the SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement is terminated.

16. It is the responsibility of the user to insure that the value of the data item
referenced by data-name-1 is valid at the time of execution of the SEND,
ENABLE OUTPUT, or DISABLE OUTPUT statement.

17. As part of the execution of a SEND statement, the MCS will interpret the
contents of the data item referenced by data-name-2 to be the user's indication
of the number ofleftmost character positions of the data item referenced by the
associated SEND identififer from which data is to be transferred. (See The
SEND Statement later in this Chapter).

18. Each occurrence of the data item referenced by data-name-5 contains a
symbolic destination previously known to the MCS. These symbolic
destination names must follow the rules for the formation of system-names.

19. The contents of the data item referenced by data-name-3 indicate the status
condition of the previously executed SEND, ENABLE OUTPUT or DISABLE
OUTPUT statement.

The actual association between the contents of the data item referenced by
data-name-3 and the status condition itselfis defined in Table 13-1.

20. If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE
OUTPUT statement, the MCS determines that any specified destination is
unknown, the contents of the data item referenced by data-name-3 and all
occurrences of the data items referenced by data-name-4 are updated.

The contents of the data item referenced by data-name-4 when equal to 1
indicate that the associated value in the area referenced by data-name-5 has
not been previously defined to the MCS. Otherwise, the contents of the data
item referenced by data-name-4 are set to zero.

Language Reference Manual 13 - 11

Communication

PROCEDURE DIVISION IN THE COMMUNICATION MODULE

The ACCEPT MESSAGE COUNT Statement

FUNCTION

The ACCEPT MESSAGE COUNT statement causes the number of messages in a
queue to be made available.

GENERAL FORMAT

ACCEPT cd-name MESSAGE COUNT

SYNTAX RULE

cd-name must reference an input CD.

GENERAL RULES

1. The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT
field specified for cd-name to be updated to indicate the number of messages
that exist in a queue, sub-queue-l,

2. Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of
the area specified by a communication description entry must contain at least
the name of the symbolic queue to be tested. Testing the condition causes the
contents of the data items referenced by data-name-lO (STATUS KEY) and
data-name-l (MESSAGE COUNT) of the area associated with the
communication entry to be appropriately updated. (See The Communication
Description - Complete Entry Skeleton.)

Language Reference Manual 13 - 13

Communication

3. When the INPUT phrase without the optional word TERMINAL is specified,
the logical paths for all of the sources associate4 with the queues and sub­
queues specified by the contents of data-name-l (SYMBOLIC QUEUE)
through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by
cd-name are deactivated.

4. When the OUTPUT phrase is specified, the logical path for destination, or the
logical paths for all destinations, specified by the contents of the data item
referenced by data-name-5 (SYMBOLIC DESTINATION) of the area
referenced by cd-name are deactivated.

5. literal-lor the contents of the data-name referenced by identifier-l will be
matched with a password built into the system. The DISABLE statement will
be honored only if literal-lor the contents of the data item referenced by
identifier-l match the system password. When literal-lor the contents of the
data item referenced by identifier-l do not match the system password, the
value of the STATUS KEY item in the area referenced by cd-name is updated.

The MCS must be capable of handling a password of from one to ten characters
inclusive.

6. The MCS will insure that the execution of a DISABLE statement will cause the
logical disconnection at the earliest time the source or destination is inactive.
The execution of the DISABLE statement will never cause the remaining
portion of the message to be terminated during transmission to or from a
terminal.

Language Reference Manual 13 - 15

Communication

3. When the INPUT phrase without the optional word TERMINAL is specified,
the logical paths for all of the sources associated with the queue and sub­
queues specified by the contents of data-name-l (SYMBOLIC QUEUE)
through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by
cd-name are activated.

4. When the OUTPUT phrase is specified, the logical path for destination, or the
logical paths for all destinations, specified by the contents of the data item
referenced by data-name-5 (SYMBOLIC DESTINATION) of the area
referenced by cd-name are activated.

5. literal-lor the contents of the data item referenced by identifier-l will be
matched with a password built into the system. The ENABLE statement will
be honored only if literal-lor the contents of the data item referenced by
identifier-l match the system password. When literal-lor the contents of the
data item referenced by identifier-l do not match the system password, the
value of the STATUS KEY item in the area referenced by cd-name is updated.

The MCS must be capable of handling a password of from one to ten characters
inclusive.

Language Reference Manual 13 - 17

Communication

3. When during the execution of a RECEIVE statement, the MCS makes data
available in the data item referenced by identifier-I, control is transferred to
the next executable statement, whether or not the NO DATA phrase is
speCified.

4. When, during the execution of a RECEIVE statement, the MCS does not make
data available in the data item referenced by identifier-I:

a. If the NO DATA phrase is specified, the RECEIVE operation is
terminated with the indication that action is complete (see general
rule 5), and the imperative statement in the NO DATA phrase is
executed.

b. If the NO DATA phrase is not specified, execution of the object program is
suspended until data is made available in the data item referenced by
identifier-I.

c. If one or more queues or sub-queues is unknown to the MCS, control
passes to the next executable statement, whether or not the NO DATA
phrase is specified. (See Table 13-1 for Status.)

5. The data items identified by the input CD are appropriately updated by the
Message Control System at each execution of a RECEIVE statement.

6. A single execution of a RECEIVE statement never returns to the data item
referenced by identifier-l more than a single message (when the MESSAGE
phrase is used) or a single segment (when the SEGMENT phrase is used).
However, the MCS does not pass any portion of a message to the object program
until the entire message is available in the input queue, even if the SEGMENT
phrase of the RECEIVE statement is specified.

7. When the MESSAGE phrase is used, end of segment indicators are ignored,
and the following rules apply to the data transfer:

a. If a message is the same size as the area referenced by identifier-I, the
message is stored in the area referenced by identifier-I.

b. If a message size is less than the area referenced by identifier-I, the
message is aligned to the leftmost character position of the area
referenced by identifier-l with no space fill.

Language Reference Manual 13 - 19

Communication

The SEND Statement

FUNCTION

The SEND statement causes a message, a message segment, or a portion of a
message or segment to be released to one or more output queues maintained by the
Message Control System.

GENERAL FORMAT

Format 1:

SEND cd-name FROM identifier-l

Format 2:

SEND cd-name [FROM identifier-l]

f
~~{

identifier_3}
{

BEFORE} integer
AFTER ADVANCING
-- {mnemonic-name}

PAGE

Language Reference Manual

~
WITH identifier-2 ~
WITH ESI
WITH EMI
WITH EGI

[~~::s]t)]

13 - 21

Communication

3. As part of the execution of a SEND statement, the MeS will interpret the
contents of the data item referenced by data-name-2 (TEXT LENGTH) of the
area referenced by cd-name to the user's indication of the number ofleftmost
character positions of the data item referenced by identifier-1 from which I
data is to be transferred.

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of
the area referenced by cd-name are zero, no characters of the data item
referenced by identifier-1 are transferred.

If the contents of the data item referenced by data-name-2 (TEXT LENGTH) of
the area referenced by cd-name are outside the range of zero through the size of
the data item referenced by identifier-1 inclusive, an error is indicated by the
value of the data item referenced by data-name-3 (STATUS KEY) of the area
referenced by cd-name, and no data is transferred. (See Table 13-1 for Status.)

4. As part of the execution of a SEND statement, the contents of the data item
referenced by data-name-3 (STATUS KEY) of the area referenced by cd-name
is updated by the MeS. (See The Communication Description - Complete
Entry Skeleton.)

5. The effect of having special control characters within the contents of the data
item referenced by identifier-1 is undefined.

6. A single execution of a SEND statement for Format 1 releases only a single
portion of a message or of a message segment to the MeS.

A single execution of a SEND statement of Format 2 never releases to the MeS
more than a single message or a single message segment as indicated by the
contents of the data item referenced by identifier-2 or by the specified indicator
ESI, EM! or EGI.

However, the MeS will not transmit any portion of a message to a
communications device until the entire message is placed in the output queue.

7. During the execution of the run unit, the disposition of a portion of a message
not terminated by an EM! or EGI is undefined. However, the message does not
logically exist for the MeS and hence cannot be sent to a destination.

Language Reference Manual 13 - 23

Communication

11. The hierarchy of ending indicators is EGI, EMI, ESI. An EGI need not be
preceded by an ESI or EMI. An EMI need not be preceded by an ESI.

12. The ADVANCING phrase allows control of the vertical positioning of each
message or message segment on a communication device where vertical
positioning is applicable. Ifvertical positioning is not applicable on the device,
the MCS will ignore the vertical positioning specified or implied.

13. If identifier-2 is specified and the content of the data item referenced by
identifier-2 is zero, the ADVANCING phrase is ignored by the MeS.

14. On a device where vertical positioning is applicable and the ADVANCING
phrase is not specified, automatic advancing is provided to act as if the user had
specified AFTER ADVANCING 1 LINE.

15. If the ADVANCING phrase is implictly or explicitly specified and vertical
positioning is applicable, the following rules apply:

a. If identifier-3 or integer is specified, characters transmitted to the
communication device will be repositioned vertically downward the
number of lines equal to the value associated with the data item
referenced by identifier-3 or integer.

b. If mnemonic-name is specified, characters transmitted to the
communication device will be positioned according to the rules specified
for that communication device.

c. If the BEFORE phrase is used, the message or message segment is
represented on the communication device before vertical repositioning
according to general rules 15a and 15b above.

d. If the AFTER phrase is used, the message or message segment is
represented on the communication device after vertical repositioning
according to general rules 15a and 15b above.

e. If PAGE is specified, characters transmitted to the communication device
will be represented on the device before or after (depending upon the
phrase used) the device is repositioned to the next page. If PAGE is
specified but page has no meaning in conjunction with a specific device,
then advancing is provided to act as if the user had specified BEFORE or
AFTER (depending upon the phrase used) ADVANCING 1 LINE.

Language Reference Manual 13 - 25

CHAPTER 14

PROGRAMMING TECHNIQUES, USEFUL HINTS,
AND PROGRAM SIZING

PROGRAMMING TECHNIQUES

Although COBOL is written in an essentially free formt the user will find that a
few self-imposed disciplines will be beneficial. It is suggested that these shO\~ld
include the following:

1. Use of the first 256 bytes of working-storage for variables which are frequently
referenced will produce more compact and efficient code.

2. Use subscripts as sparingly as possible because each subscript has a storage
requirement approximately equal to the size of a normal instruction.

3. For ACCEPT and DISPLAY the compiler generates one inst~uction per
elementary item of the data-name being displayed or accepted. Therefore
redefine a group of fields as a single field for DISPLAY whenever possible and
avoid unnecessary numbers of small fields in an ACCEPT.

4. Use FILLER instead of a data-name for any elementary field not referenced
explicitly because the word FILLER is compacted to one character in the Data
Dictionary.

5. Keep the number of digits in numeric fields as small as possible.

6. Whenever possible move a group instead of several elementary moves.

Language Reference Manual 14 - 1

Techniques, Hints and Sizing

The maximum number of bytes available for the user's program and work space for
any' given configuration, can be found in the appropriate LEVEL II COBOL I
Operating Guide. A guide for calculating the size of the program that is produced
is as follows:

The sum of the record size for each file in bytes
+ the record size for each Working-Storage record in bytes
+ the number of characters in all Procedure Division literals
+ 60 bytes per file
+ 300 bytes control area
+ 6 bytes per COBOL instruction with the following qualifiers:

for an ACCEPTIDISPLA Y statement add 3 bytes per elementary item within
the accepted or displayed data-name.

for every subscript used in a statement add 7 bytes

for a comparison add 6 bytes

for an implicit comparison for example, PERFORM UNTIL, READ AT END,
add 6 bytes

Data Dictionary

The Data Dictionary is constructed as the program is compiled. Its size depends on
the host operating system. Each user-defined name will have an entry in this I
dictionary. The number of bytes required for each entry is given in Table 14-1.

Language Reference Manual 14 - 3

INTRODUCTION

APPENDIX A
GLOSSARY

The terms in this Chapter are defined in accordance with their meaning as used in
this document describing LEVEL II COBOL and may not have the same meaning for
other languages.

These definitions are also intended to be either reference material or introductory
material to be reviewed prior to reading the detailed language specifications that
are contained in this manual. For this reason, these definitions are, in most
instances, brief and do not include detailed syntactic rules.

Language Reference Manual A -1

Glossary

Arithmetic Expression

An arithmetic expression can be an identifier or a numeric elementary item, a
numeric literal, such identifiers and literals separated by arithmetic operators,
two arithmetic expressions separated by an arithmetic operator, or an
arithmetic expression enclosed in parentheses.

Arithmetic Operator

A single character, or a fixed two-character combination, that belongs to the
following set:

Character

+

*

**

Ascending Key

Meaning

Addition
Subtraction
Multiplication
Division
Exponentiation

A key upon the values of which data is ordered starting with the lowest value of
key up to the highest value of key in accordance with the rules for comparison
of the data items.

Assumed Decimal Point

A decimal point position which does not involve the existence of an actual
character in a data item. The assumed decimal point has logical meaning but
no physical representation.

At End Condition

A condition caused in one of three circumstances:

1. During the execution of a READ statement for a sequentially accessed
file.

2. During the execution of a RETURN statement when no next logical
record exists for the associated sort or merge file.

Language Reference Manual A- 3

+

*
/
=
$

>
<

Character Position

Plus Sign
Minus Sign
Asterisk
Stroke (Virgule or Slash)
Equal Sign
Currency Sign
Comma
Semicolon
Period (Decimal Point, Fullstop)

Quotation Mark

Left Parenthesis
Right Parenthesis
Greater Than Symbol
Less Than Symbol

Glossary

A character position is the amount of physical storage required to store a single
standard data format character described as usage in DISPLAY.

Character-String

A sequence of contiguous characters which form a LEVEL II COBOL word, a
literal, a PICTURE character-string or a comment-entry.

Class Condition

The proposition, for which a truth value can be determined, that the content of
an item is wholly alphabetic or is wholly numeric.

Clause

A clause is an ordered set of consecutive LEVEL II COBOL character-strings
whose purpose is to specify an attribute of an entry.

COBOL Word

(See Word).

Language Reference Manual A - 5

Glossary

Communication Device

A mechanism (hardware or hardware/software) capable of sending data to a
queue and/or receiving data from a queue. This mechanism may be a computer
or a peripheral device. One or more programs containing communication
description entries and residing within the same computer define one or more
of these mechanisms.

Communication Section

The section of the Data Division that describes the interface areas between the
MCS and the program, composed of one or more CD description entries.

Compile Time

The time at which an LEVEL II COBOL source program is translated by the
compiler to an LEVEL II COBOL intermediate code program.

Compiler-Directing Statement

A statement, beginning with a compiler-directing verb, that causes the
compiler to take a specific action during compilation.

Complex Condition

A condition in which one or more logical operators act upon one or more
conditions. (See Negated Simple Condition, Combined Condition,
Negated Combined Condition).

Computer-Name

A system-name that identifies the computer upon which the program is to be
compiled or run.

Condition

A status of a program at execution time for which a truth value can be
determined. Where the term condition (condition-I, condition-2, ...) appears in
these language specifications in or in reference to condition (condition-I,
condition-2, ...) of a general format, it is a conditional expression consisting of
either a simple condition optionally parenthesised, or a negated simple
condition.

Language Reference Manual A-7

Glossary

Contiguous Items

Items that are described by consecutive entries in the DATA DIVISION, and
that bear a definite hierarchic relationship to one another.

Counter

A data item used for storing numbers or number representations in a manner
that permits these numbers to be increased or decreased by the value of
another number, or to be changed or reset to zero or to an arbitrary posi ti ve or
negative value.

Currency Sign

The character n$n (dollar sign) in the LEVEL IT COBOL character set.

Currency Symbol

The character defined by the CURRENCY SIGN clause in the SPECIAL­
NAMES paragraph. If no CURRENCY SIGN clause is present in an
LEVEL IT COBOL source program, the currency symbol is identical to the
currency sign.

Current Record

The record which is available in the record area associated with the file.

Current Record Pointer

A conceptual entity that is used in the selection of the next record from a file.

Language Reference Manual A-9

Glossary

Declaratives

A set of one or more special purpose sections written at the beginning of the
PROCEDURE DIVISION, the first of which is preceded by the key word
DE CLARA TIVES and the last of which is followed by the key words END
DE CLARATIVES. A declarative is composed of a section header, followed by a
USE compiler directing sequence, followed by a set of associated paragraphs (0
or more).

Declara tive·Sentence

A compiler-directing sentence consisting of a single USE statement terminated
by the separator period (.).

Delimiter

A character (or sequence of contiguous characters) that identifies the end of a
string of characters, and separates that string of characters from the following
string of characters. A delimiter is not part of the string of characters that it
delimits.

Descending Key

A key upon the values of which data is ordered starting with the highest value
of key down to the lowest value of key, in accordance with the rules for
comparing data items.

Destination

The symbolic identification of the receiver ofa transmission from a queue.

Language Reference Manual A-11

Glossary

Editing Character

A single character or a fixed two-character combination belonging to the same
set:

Character Meaning

B Space
0 Zero
+ Plus
- Minus
CR Credit
DB Debit
Z Zero Suppress

* Check Protect
$ Currency Sign
, Comma

Period (Decimal Point)
/ Stroke (Virgule, Slash)

Elementary Item

A data item that is described as not being further logically subdivided.

End of Procedure Division

The physical position in a LEVEL II COBOL source program after which no
further procedures appear.

Entry

Any descriptive set of consecutive clauses terminated by a period (.) and
written in the IDENTIFICATION DIVISION, ENVIRONMENT DIVISION or
DATA DIVISION of an LEVEL II COBOL source program.

Environment Clause

A clause that appears as part of an ENVIRONMENT DIVISION entry.

Language Reference Manual A -13

Glossary

File Organization

The permanent logical file structure established at the time that a file is
created.

File Section

The section of the Data Division that contains file description entries together
with their associated record descriptions.

Format

A specific arrangement of a set of data.

Group Item

A named contiguous set of elementary or group items.

High Order End

The leftmost character of a string of characters.

I-O-CONTROL

The name of an ENVIRONMENT DIVISION paragraph in which object
program requirements for specific inputJoutput techniques, rerun points,
sharing of same areas by several data files, and multiple file storage on a single
inputJoutput device are specified.

1-0 Mode

The state of a file after execution of an OPEN statement, with the 1-0 phrase
specified for that file, and before the execution of a CLOSE statement for that
file.

Language Reference Manual A -15

Glossary

Indexed Organization

The permanent logical file structure in which each record is identified by the
value of one or more keys within that record.

Indicator Area

The leftmost parameter position of a LEVEL IT COBOL source record that
indicates the use of the record.

Input File

A file that is opened in the input mode.

Input Mode

The state of a file after execution of an OPEN statement, with the INPUT
phrase specified for that file, and before the execution of a CLOSE statement
for that file.

Input-Output File

A file that is opened in the 1-0 mode.

Input-Output Section

The section of the ENVIRONMENT DIVISION that names the files and the
external media used by a program and which provides information required for
transmission and handling of data during execution of the run-time program.

Input Procedure

A set of statements that is executed each time a record is released to the sort
file.

Integer

A numeric literal or a numeric data item that does not include any character
positions to the right of the assumed decimal point. Where integer appears in
general formats, integer must not be a numeric data item, and must not be
signed, nor zero unless explicitly allowed by the rules of that format.

Language Reference Manual A - 17

Glossary

Level-Number

A user-defined word which indicates the position of a data item in the
hierarchical structure of a logical record or which indicates special properties
of a data description entry. A level-number is expressed as a one or two digit
number. Level-numbers in the range 1 through 49 indicate the position of a
data item in the hierarchical structure of a logical record.

Level-numbers in the range 1 through 9 may be written either as a single
digit or as a zero followed by a significant digit. Level-numbers 66, 77 and 88
iden tify special properties of a data descri ption en try. I

Library-Name

A user-defined word that names a LEVEL II COBOL library source file that is
to be used by the compiler for a given source program compilation.

Library-Text

A sequence of character-strings and/or separators in a COBOL library.

Linkage Section

The section in the DATA DIVISION of the called program that describes data
items available from the calling program. These data items may be referred to
by both the calling and called program.

Literal

A character-string whose value is implied by the ordered set of characters
comprising the string.

Language Reference Manual A -19

Glossary

Message Indicators

EGI (end of group indicator), EMI (end of message indicator), and ESI (end of
segment indicator) are conceptual indications that serve to notify the MCS that
a specific condition exists (end of group, end of message, end of segment).
Within the hierarchy ofEGI, EMI, and ESI, an EGI is conceptually equivalent
to an ESI, EMI, and EGI. An EMI is conceptually equivalent to an ESI and
EMI. Thus, a segment may be terminated by an ESI, EMI, or EGI. A message
may be terminated by an EMI or EGI.

Message Segment

Data that forms a logical subdivision of a message normally associated with an
end of segment indicator. (See Message Indicators).

Mnemonic-Name

A user-defined word that is associated in the ENVIRONMENT DIVISION with
a specified implementor-name.

Native Character Set

The implementor-defined character set associated with the computer specified
in the OBJECT-COMPUTER paragraph.

Native Collating Sequence

The implementor-defined collating sequence associated with the computer
specified in the OBJECT-COMPUTER paragraph.

Negated Combined Condition

The 'NOT' logical operator immediately followed by a parenthesized combined
condition.

Negated Simple Condition

The 'NOT' logical operator immediately followed by a simple condition.

Language Reference Manual A - 21

Glossary

N urneric I tern

A data item whose description restricts its contents to a value represented by
characters chosen from the digits '0' through '9'; if signed, the item may also
contain a ' +', ' -', or other representation of an operational sign.

Numeric Literal

A literal composed of one or more numeric characters that also may contain
either a decimal point, or an algebraic sign, or both. The decimal point must
not be the rightmost character. The algebraic sign, if present, must be the
leftmost character.

o bject-Cornputer

The name of an ENVIRONMENT DIVISION paragraph in which the computer
environment, within which the run-time program is executed, is described.

Open Mode

The state of a file after execution of an OPEN statement for that file and before
the execution of a CLOSE statement for that file. The particular open mode is
specified in the OPEN statement as either INPUT, OUTPUT, 1-0 or EXTEND.

Operand

Whereas the general definition of operand is tthat component which is operated
upon', for the purposes of this pUblication, any lowercase word (or words) that
appears in a statement or entry format may be considered to be an operand
and, as such, is an implied reference to the data indicated by the operand.

Operational Sign

An algebraic sign, associated with a numeric data item or a numeric literal, to
indicate whether its value is positive or negative.

Optional Word

A reserved word that is included in a specified format only to improve the
readabili ty of the language and whose presence is optional to the user when the
format in which the word appears is used in a source program.

Language Reference Manual A- 23

In the ENVIRONMENT DIVISION:

SOURCE-COMPUTER.

OBJECT-COMPUTER.
SPECIAL-NAMES.

FILE-CONTROL.
I-O-CONTROL.

Paragraph-Name

Glossary

A user-defined word that identifies and begins a paragraph in the
PROCEDURE DIVISION.

Phrase

A phrase is an ordered set of one or more consecutive COBOL character-strings
that form a portion of a LEVEL II COBOL procedural statement or of a COBOL
clause.

Physical Record

(See Block)

Prime Record Key

A key whose contents uniquely identify a record within an indexed file.

Procedure

A paragraph or group of logically successive paragraphs, or a section or group
oflogically successive sections, within the PROCEDURE DIVISION.

Procedure-Name

A user-defined word which is used to name a paragraph or section in the
PROCEDURE DIVISION. It consists of a paragraph-name or a section-name.

Program-Name

A user-defined word that identifies a COBOL source program.

Language Reference Manual A-25

Glossary

Queue Name

A symbolic name that indicates to the MCS (Message Control System) the
logical path by which a message or a portion of a completed message may be
accessible in a queue.

Random Access

An access mode in which the program-specified value of a key data item
identifies the logical record that is obtained from, deleted from or placed into a
relative or indexed file.

Record

(see Logical Record)

Record Area

A storage area allocated for the purpose of processing the record described in a
record description entry in the File Section.

Record Description

(See Record Description Entry)

Record Description Entry

The total set of data description entries associated with a particular record.

Record Key

A key, either the prime record key or an alternate record key, whose contents
identify a record within an indexed file.

Record-Name

A user-defined word that names a record described in a record description entry
in the DATA DIVISION.

Language Reference Manual A-27

Glossary

Relative File

A file with relative organization.

Relative Key

A key whose contents identify a logical record in a relative file.

Relative Organization

The permanent logical file structure in which each record is uniquely identified
by an integer value greater than zero, which specifies the record's logical
ordinal position in the file.

Reserved Word

A COBOL word specified in the list of words which may be used in COBOL
source programs, but which must not appear in the programs as user-defined
words or system-names.

Routine-Name

A user-defined word that identifies a procedure written in a language other
than COBOL

Language Reference Manual A - 29

Glossary

Segment-Number

A user-defined word which classifies sections in the PROCEDURE DIVISION
for purposes of segmentation. Segment-numbers may contain only the
characters '0', '1', ... , '9'. A segment-number may be expressed either as a one or
two digit number, and is checked for syn tax only.

Sentence

A sequence of one or more statements, the last of which is terminated by a
period followed by a space.

Separator

A punctuation character used to delimit character-strings.

Sequential Access

An access mode in which logical records are obtained from or placed into a file
in a consecutive predecessor-to-successor logical record sequence determined
by the order of records in the file.

Sequential File

A file with sequential organization.

Sequential Organization

The permanent logical file structure in which a record is identified by a
predecessor-successor relationship established when the record is placed into
the file.

Sign Condition

The proposition, for which a truth value can be determined, that the algebraic
value of a data item or an arithmetic expression is either less than, greater
than, or equal to zero.

Language Reference Manual A - 31

Special Character

A character that belongs to the following set:

Character

+

*

=
$

"

>
<

Meaning

plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

Special-Character Word

Glossary

A reserved word which is an arithmetic operator or a relation character.

SPECIAL-NAMES

The name of an ENVIRONMENT DIVISION paragraph in which
implementor-names are related to user-specified mnemonic-names.

Special Registers

Compiler generated storage areas whose primary use is to store information
produced in conjunction with the user of specified COBOL features.

Language Reference Manual A-33

Glossary

Symbol Function

The use of specified characters in the PICTURE clause to represent data types.

System-Name

A COBOL word which is used to communicate with the operating environment.

Syntax

The order in which elements must be put together to form a program.

Table

A set of logically consecutive items of data that are defined in the DATA
DIVISION by means of the OCCURS clause.

Table Element

A data item that belongs to the set of repeated items comprising a table.

Terminal

The originator of a transmission to a queue, or the receiver of a transmission
from a queue.

Text-Name

A user-defined word which identifies library text.

Text-Word

Any character-string or separator, except space, in a COBOL library or in
pseudo-text.

Truth Value

The representation of the result of the evaluation of a condition in terms of one
of two values

true
false

Language Reference Manual A-35

APPENDIX B

IBM EXTENSIONS

The following IBM extensions are implemented in the full LEVEL II COBOL
product:

1. "ID" is a synonym for "IDENTIFICATION".

2. SKIPn where n is 1, 2, or 3 causes the specified number of blank lines to be
inserted, SKIPn can occur anywhere in the source program and causes the
specified number of lines to be skipped after this statement.

3. EJECT causes a new page to be thrown. EJECT can occur anywhere in the
source program and causes the output that follows to start on a new page.

4. GOBACK causes execution to return to the calling program, or to the
operating system if the program containing this verb is not a called program.
This verb is the equivalent of the LEVEL IT COBOL syntax:

EXIT PROGRAM.

STOP RUN.

5. A PASSWORD can be associated with a file in the SELECT statement.

6. ENTRY literal USING data-name-1 [, data-name-2]... can be used to define
an alternative entry point to a subprogram. This syntax is equivalent to the
LEVEL IT COBOL phrase PROCEDURE DIVISION USING. The ENTRY
phrase is for documentary purposes only.

These LEVEL IT COBOL extensions are allowed only if the IBM directive is set on
the compiler command line (see the LEVEL II COBOL Operating Guide).

Language Reference Manual B-1

APPENDIXC

COMMUNICATION FACILITY - CONCEPTS

The communication facility provides the ability to access, process, and create
messages or portions thereof. It provides the ability to communicate through a
Message Control System with local and remote communication devices.

THE MESSAGE CONTROL SYSTEM

The implementation of the communication facility requires that a Message Control
System (MCS) be present in the COBOL object program's operating environment.

The MCS is the logical interface to the operating system under which the COBOL
object program operates. The primary functions of the MCS are the following:

1. To act as an interface between the COBOL object program and the network of
communication devices, in much the same manner as an operating system acts
as an interface between the COBOL object program and such devices as card
readers, magnetic tape and mass storage devices, and printers.

2. To perform line discipline, including such tasks as dial-up, polling, and
synchronization.

3. To perform device-dependent tasks, such as character translation and insertion
of control characters, so that the COBOL user can create device-dependent
programs.

Language Reference Manual c - 1

Communication Facility - Concepts

2. The SEND statement, which causes data associated with the COBOL object
program to be passed to one or more queues, and;

3. The ACCEPT statement with the COUNT phrase, which causes the MCS to
indicate to the COBOL object program the number of complete messages in the
specified queue structure.

The COBOL source program uses two statements to control the interface between
the MeS and the communication devices:

1. The ENABLE statement, which establishes logical connection between the
MCS and one or more given communication devices, and;

2. The DISABLE statement, which breaks a logical connection between the MCS
and one or more given communication devices.

These relationships are shown in Figure C-l, COBOL Communication I
Environment.

COBOL Program

RECEIVE

SEND

Commun­
ications
Descrip­

tions
(CD)

SEND __

Interface

Message Control System
(MCS)

Communications
Devices

MCS / Communications
Device Interface

Figure C-l. COBOL Communication Environment

Language Reference Manual (-3

Communication Facility - Concepts

DETERMINING THE METHOD OF SCHEDULING

A COBOL source program can be written so that its object program can operate with
either of the two modes of scheduling. In order to determine which method was used
to load the COBOL object program, the following is one technique that may be used:

1. One CD must contain a FOR INITIAL INPUT clause.

2. The PROCEDURE DIVISION may contain statements to test the initial value
of the symbolic queue name in that CD. If it is space-filled, job control
statements were used to schedule the COBOL object program. If not space
filled, the MCS has invoked the COBOL object program and replaced the
spaces with the symbolic name of the queue containing the message to be
processed.

THE CONCEPT OF MESSAGES AND MESSAGE SEGMENTS

A message consists of some arbitrary amount of information, usually character data,
whose beginning and end are defined or implied. As such, messages comprise the
fundamental but not necessarily the most elementary unit of data to be processed in
a COBOL communication environment.

Messages may be logically subdivided into smaller units of data called message
segments which are delimited within a message by means of end of segment
indicators (ESI). A message consisting of one or more segments is delimited from the
next message by means of an end of message indicator (EMI). In a similar manner, a
group of several messages may be logically separated from succeeding messages by
means of an end of group indicator (EGl). When a message or message segment is
received by the COBOL program, a communication description interface area is
updated by the MCS to indicate which, if any, delimiter was associated with the text
transferred during the execution of that RECEIVE statement. On output the
delimiter, if any, to be associated with the text released to the MCS during execution
of a SEND statement is specified or referenced in the SEND statement. Thus the
presence of these logical indicators is recognized and specified both by the MCS and
by the COBOL object program; however, no indicators are included in the message
text processed by COBOL programs.

Language Reference Manual C-5

Communication Facility - Concepts

2. When the COBOL object program creates output messages at a speed faster
than the destination can receive them.

Enabling and Disabling Logical Connectives

Usually, the MCS will logically connect and disconnect sources and destinations
based on time of day, message activity, or other factors unrelated to the COBOL
program. However, the COBOL program has the ability to perform these functions
through use of the ENABLE and DISABLE statements.

A key is required in both statements in order to prevent indiscriminate use of the
facility by a COBOL user who is not aware of the total network environment, and
who may therefore disrupt system functions by the untimely issuance of ENABLE
and DISABLE statements. However, this action never interrupts a transmission.

Enqueueing and Dequeueing Methods

In systems that allow the user to specify certain MeS functions, it may be necessary
that the user specify to the MCS, prior to execution of programs which reference
these facilities, the selection algorithm and other designated MCS functions to be
used by the MCS in placing messages in the various queues. A typical selection
algorithm, for example, would specify that all messages from a given source be
placed in a given input queue, or that all messages to be sent to a given destination
be placed in a given output queue.

Dequeueing is often done on a first in, first out basis. Thus, messages dequeued from
either an input or output queue are those messages which have been in the queue for
the longest period of time. However, the MCS can, upon prior specification by the
user, dequeue on some other basis, that is, priority queueing can be employed.

Language Reference Manual (-7

Communication Facility - Concepts

The following examples illustrate the effect of the algorithms shown in Figure C-2:

1. The program executes a RECEIVE statement, specifying via the CD:

Queue A
MCS returns: MessageZl

2. The program executes a RECEIVE statement, specifying via the CD:

Queue A
sub-queue-l C
MCS returns: Message Y7

3. The program executes a RECEIVE statement, specifying via the CD:

Queue A
Sub-queue-l B
Sub-queue-2 E
MCS returns: Message Xl

4. The program executes a RECEIVE statement, specifying via the CD:

Queue A
Sub-queue-l C
Sub-queue-2 G
Sub-queue-3 N
MCS returns: Message X6

To access the next message in a queue, regardless of which sub-queue that message
may be in, only the queue name need be specified. The MCS, when supplying the
message, will return to the COBOL object program any applicable sub-queue
names via the data items in the associated CD. If, however, the next message in a
given sub-queue is desired, both the queue name and any applicable sub-queue
names must be specified.

For output, the COBOL user specifies only the destination(s) of the message, and
the MCS places the message in the proper output queue structure.

There is no one-to-one relationship between a communication device and a
source/destination. A source or destination may consist of one or more physical
devices. The device or devices which comprise a source/destination are defined to
the MCS.

Language Reference Manual (-9

A

ACCEPT AT statement,
3-66

ACCEPT FROM CONSOLE
statement,

3-64,14-2
ACCEPT FROM CRT statement,

3-66
ACCEPT MESSAGE COUNT
statement,

13-13
ACCEPT statement,

3-63 to 3-68, 14-1
Accept/Display module,

3-65,3-66
Access mode,

A-2
ACCESS MODE clause,

5-9,6-11,7-11
ADD statement,

3-69,3-70
ADVANCING FORMFEED phrase,

5-46,5-48
ADVANCING PAGE phrase,

5-49,13-25
ADVANCING phrase,

13-22, 13-25
ADVANCING TAB phrase,

5-46 to 5-48
AFTER phrase,

3-88,3-90,3-91,3-103,3-104,
3-106,5-49,13-25

Algebraic signs,
2-17

Alignment rules,
2-17

ALL Ii teral,
2-10,3-1

ALL phrase,
3-92

ALL PROCEDURES phrase,
11-5

Language Reference Manual

ALL REFERENCES OF phrase,
11-6,11-7

Alphabetic character,
2-5,A-2

Alphabetic data rules,
3-21

Alphabet-name clause,
3-9,3-10,5-18

Alphan umeric character,
A-2

Alphanumeric data rules,
3-21

Alphanumeric edited data rules,
3-22

ALTER statement,
2-26,3-71,9-6

Alternate keys,
7-1

Index

ALTERNATE RECORD KEY clause,
7-13,7-49

ANIMATOR,
1-2,11-1, A-2

Area A,
1-4 to 1-6,2-41,2-43 to 2-45

AreaB,
1-4 to 1-6,2-41 to 2-45

AREA-VALUE data item,
5-10,6-11, 7-12

Arithmetic expressions,
3-45,3-47, A-3

Arithmetic operators,
3-45,A-3

Arithmetic statements,
3-60

Arithmetic statements, multiple
results in,

3-61
Ascending key,

4-1, A-3
ASCENDING KEY phrase,

4-10,8-11,8-20

Index - 1

COBOL debug, standard ANSI,
11-1

COBOL library,
2-20,10-2

COBOL verb,
2-27

COBOL word,
2-4,A-5

CODE-SET clause,
3-10,3-36,5-17,5-18

Collating sequence,
A-6

COLLATING SEQUENCE phrase,
3-10

Combination of symbols in arithmetic
expressions,

3-47
Combinations of conditions, logical
operators and parentheses,

3-55
Combined relation conditions,

3-56, A-6
Comma,

2-2,3-24,3-26
Comment entry,

2-12, A-6
Comment line,

2-1,2-45, A-6
COMMIT statement,

5-31,6-25, 7-26
Communication description entry
(CD),

13-1, A-6, C-2
Communication description - complete
entry skeleton,

13-2
Communication module,

13-1
Communication section,

2-31, 13-1, A-7
Communication status,

13-12

Language Reference Manual

CaMP, USAGE IS,
2-15,3-75

COMP-3,
2-16

COMP-3, USAGE IS,
2-15,3-75

Comparison,

Index

3-49,3-90,3-91,4-6
Comparison of nonnumeric operands,

3-50
Comparison of numeric operands,

3-49
Compile time switch,

11-2
Compiler directing sentence,

2-36
Compiler directing statemen t,

2-35,A-7
Compiler directive CRTWIDTH,

3-64
Complex condi tions,

3-48,3-53, A-7
COMPUTATIONAL, USAGE IS,

2-15,3-75
COMPUTATIONAL-3, USAGE IS,

2-15,3-75
COMPUTE statement,

3-72
Computer independent data
description,

2-12
Computer-name,

3-5,3-6
Concept of levels,

2-12
Condition,

A-7
Condition evaluation rules,

3-57
Conditional expressions,

3-48, A-8
Conditional sentence,

2-35

Index - 3

Data division in the table handling
module,

4-1
Data item,

A-10
DATA RECORDS clause,

5-18,6-18,7-20,8-6
Data-name,

3·15, A-10
DATE,

3-67,3-68
DATE compiler directive,

3-4
DATE-COMPILED paragraph,

3-4
DAY,

3-67,3-68
Debug and interactive debugging,

11-1
Debugging line,

1-5,10-5,11·12
DEBUGGING MODE clause,

11-2
DEBUG-ITEM,

11-2,11-5,11-8
Decimal numeric item,

2-14
DECIMAL-POINT IS COMMA clause,

3·11,3-25
Declaratives,

2·32,2·45, A-II
DECLARATIVES header,

11-4
Declarative section,

2-25,2-32
Default locking for indexed files,

7-9
Default locking for relative files,

6-8
Default locking for sequential files,

5-6
DELETE statement,

6-26,7-27

Language Reference Manual

DELIMITED BY phrase,
3-114,3-115,3-119 to 3-121

DELIMITER IN phrase,
3-119,3-121

Delimiter,
A-II

Dequeuing,
C-6, C-7

Descending keys,
4·1, A-II

DESCENDING KEY phrase,
4-10,8-11,8-20

Destination,
A-II

DESTINATION COUNT clause,
13-6

Index

DESTINATION TABLE OCCURS
clause,

13-7
DISABLE statement,

13-14,13-15
DISPLAY AT statement,

3-76
DISPLAY SPACE statement,

2-11,3·76
DISPLA Y statement,

3·73 to 3·76, 14-1
DISPLA Y UPON statement,

3-74
DISPLAY, USAGE IS,

2·15,3-36
DIVIDE statement,

3-77 to 3-79
Division,

A-12
Division format,

2-43
Division header,

2-43, A-12
DUPLICATES phrase,

7-13
Dynamic access mode,

6·2,6-12,7·2, A-12

Index - 5

Explicit attribute,
2-26

Explicit specification,
2-23

Extend mode,
A-14

EXTEND phrase,
5-32 to 5-35

Extra intermediate code files,
9-8

F

FD (See File description.)
Figurative constant,

2-8,2-10,3-1, A-14
Figurative constant values,

2-10
File control entry,

5-8 to 5-11,6-10 to 6-13, 7-10 to
7-14,8-2

FILE-CONTROL paragraph,
2-29,5-7,5-9,6-9,6-10,7-10,8-1,
8-2,A-14

File description - complete entry
skeleton,

5-15,6-17,7-18
File description entry (FD),

5-14,6-16,7-17, A-14
File organization,

A-15
File section,

2-31,3-13,5-14,6-16,7-17,8-5,
A-15

FILE STATUS data item,
5-38,5-39,5-42,5-48,5-50,6-2,
6-3, 6-5, 6-30, 6-34, 6-35, 6-38,
6-40, 6-45,6-46,7-3,7-4,7-5,
7-31, 7-35, 7-36, 7-39, 7-42, 7-48,
7-49

Language Reference Manual

Index

FILE STATUS clause,
5-2,5-11,6-2,6-12,7-2,7-13

Files, exclusive,
5-5,5-11,6-6,7-7, 7-9,7-32

Files, shareable,
5-5,5-36,6-6,6-9,6-12,7-7, 7-14,
7-32

FILLER clause,
3-15,3-16,3-17,3-65,14-1

Fixed insertion editing,
3-27

Fixed portion,
9-2

FLAG directive,
2-27

Floating insertion editing,
3-26,3-28

FOOTING phrase,
5-21

For documentation purposes only,
viii

FOR REMOVAL phrase,
5-30

Formats and rules,
1-3

Format of division,
2-43

Format of paragraph,
2-43

Format of section,
2-43

Format of source,
1-4

Format of statement,
3-58

Formation and evaluation rules,
3-46

FORMFEED IS clause,
3-12

FORMS-2,
1-2, A-15

Index -7

Indicator area,
1-4, 1-5,2-41,2-42, A-17

INITIAL clause,
12-4,13-3

Initial values,
3-13,12-3

Input file,
A-17

Input mode,
A-17

INPUT phrase,
5-34,5-35,6-29,6-30,7-30,7-31

Input queues,
C-2

Input-output file,
A-17

Input-output section,
2-29,5-7,6-9,7-10,8-1, A-17

INPUT TERMINAL phrase,
13-14,13-16

Insertion characters,
3-27

Insertion editing, fixed,
3-27

Insertion editing, floating,
3-28

Insertion editing, simple,
3-26

Insertion editing, special,
3-27

INSPECT statement,
3-86 to 3-94

Intermediate code,
A-18

Internal buffer overflow,
2-20,2-21

Inter-program communication,
12-1

Inter-program communication module,
12-1

INTO phrase,
5-37,5-38,6-33,6-34,7-33,7-35,
8-16

Language Reference Manual

Index

INVALID KEY condition,
6-4,6-5,6-38,6-46,7-4,7-6,7-37,
7-40,7-42,7-49, A-18

INVALID KEY phrase,
6-26,6-33,6-37,6-44,7-27, 7-38

I-O-CONTROL paragraph,
2-29,5-12 to 5-14, 6-13 to 6-16,
7-15 to 7-17, 8-3, 8-4, A-15

1-0 mode,
A-15

1-0 phrase,
5-32,5-34,5-35,6-29,6-30, 7-30,
7-31

1-0 status,
5-2, 6-2, 7-2

J

Japanese,
3-67

JUSTIFIED clause,
3-15,3-17,3-18

K

Key,
A-18

KEY IS phrase,
4-3,4-9,6-40, 7-37, 7-42,8-20

Keyword,
2-7, A-18

L

Language structure,
2-2

Index - 9

Message control system,
2-31,13-1,13-18,13-23,13-24,
A-20, C-1, C-2, C-6, C-7

Message count,
A-20

MESSAGE COUNT clause,
13-4

MESSAGE DATE clause,
13-3

Message indicators,
A-21

MESSAGE phrase,
13-19

Message segment,
13-18, 13-21, 13-22, A-21, C-5

MESSAGE TIME clause,
13-4

Mnemonic-name,
2-5, A-21

MOVE statement,
3-95 to 3-99

MOVE statement data categories,
3-99

MULTIPLE FILE clause,
5-14

Multiple record locking,
6-7,6-38,6-47,7-8, 7-40, 7-50

MULTIPLE REEL phrase,
5-10

Multiple results in arithmetic
statements,

3-61
MULTIPLE UNIT phrase,

5-10
MUL TIPL Y statement,

3-100,3-101
Multi-user facilities,

5-5,6-6, 7-7

Language Reference Manual

N

Names,
3-1

NATIVE phrase,
3-10

Negated simple condition,
3-54

Next executable statement,
2-26, A-22

NEXT phrase,
6-33,6-35, 7-34, 7-36

NO DATA phrase,
13-19

NO REWIND phrase,
5-32

Noncontiguous linkage storage,
12-2

Noncontiguous working-storage,
3-12,

Nonnumeric literals,
2-1,2-8

NOT OPTIONAL phrase,
5-9, 6-11, 6-30

Notation in this manual,
vi

Nucleus,
3-1

Numeric character,
A-22

Numeric data rules,
3-21

Numeric edited data rules,
3-22

Numeric Ii teral,
2-9

o

Index

OBJECT-COMPUTER paragraph,
2-29,3-6

Index - 11

Procedure,
2·32, A-25

Procedure division,
2-32 to 2-40

Procedure division header,
2-33,12-3

Procedure division in COBOL debug,
11-4

Procedure division in the
communication module,

13-13
Procedure division in the indexed 1-0
module,

7-23
Procedure division in the inter­
program communication module,

12-3
Procedure division in the nucleus,

3-45
Procedure division in the relative 1-0
module,

6-22
Procedure division in the sequential
1-0 module,

5-25
Procedure division in the sort-merge
module,

8-9
Procedure division in the table
handling module,

4-6
Procedure division references,

2-23,2-24
PROCEDURE DMSION USING
statement,

12-3,12-4
Procedure-name,

2-32
PROGRAM COLLATING
SEQUENCE clause,

3-6,3-7,3-10
Progam flow, restrictions on,

9-6

Language Reference Manual

Program name,
A-25

Program segments,
9-2

Program segments, structure of,
9-4

Program structure,
2-27

PROGRAM-ID paragraph,
2-28,3·3

Programming techniques,
14-1

Pseudo-text,
2·43s A-26

Q

Qualification,
2-17,2-19,2-20

Qualifier,
2-17,2-19,2-20, A-26

Queue hierarchy,
C-8

Queues,
A-26,C·6

Quotation mark,
2-2

QUOTE,
2.10,3-1

R

Random access mode,
6·1,6-12,7·2, A-27

READ statement,

Index

5-37 to 5-40, 6-32 to 6-36, 7-33 to
7-37

RECEIVE statement,
13-18 to 13-20

Index - 13

Rules, numeric edited data,
3-22

Rules, precedence,
3-30

Rules, syntax,
1-3

Run-Time System,
A-29

Run unit,
A-30

S

SAME AREA clause,
5-13,5-14,6-15, 7-16, 8-3

SAME clause,
5-13

SAME RECORD AREA clause,
5-13,6-15,6-16,6-38,7-16,7-17,
7-39

SAME SORT AREA,
8-3,8-4

SAME SORT-MERGE AREA,
8-3,8-4

Scheduling,
C-4, C-5

SD (See sort-merge file description.)
SEARCH statement,

4-7 to 4-13
Section,

2-27,2-43, A-30
Section header,

2-43,3-12, A-30
Section-name,

1-6,2-6
Segmentation,

9-1
Segmentation classification,

9-3
Segmentation control,

9-4

Language Reference Manual

SEGMENT-LIMIT clause,
9-2, 9-5, 9-6

Segment-numbers,
9-3,9-4, A-31

SEGMENT phl!ase,
13-20

SELECT clause,
5-9,6-10, 7-11

Semicolon,
2-2

SEND statement,
13-21 to 13-25

Sentence,
2-27,2-33,2-34, A-31

Sentence, conditional,
2-35

Separator,
2-2, A-31

Index

SEPARATE CHARACTER phrase,
3-37

Sequence number,
1-4,2-41,2-42

Sequential access mode,
5-1,6-1,6-12,7-2, A-31

Sequential file organization,
A-31

Sequential input and output,
5-1

Sequential 1-0,
5-1

SET statement,
2-21,4-14 to 4-16

Shareable files,
5-5,5-36,6-6,6-9,6-12,7-7,7-14,
7-32

Sharing files,
5-5,6-6,7-7

Sign condition,
3-53

SIGN clause,
2-17, 3-24, 3-36

SIGN IS SEPARATE clause,
3-36,3-51,5-18

Index - 15

Structure of record description,
5-15,6-16,7-17

Sub-queue,
A-34

Subscript,
2-20,2·21,14-1, A-34

Subscripting,
2-20

Subscripting, restrictions,
2-22

SUBTRACT statement,
3-116,3-117

SWITCH clause,
3-9

Switch-status condition,
3-52

Symbolic destination,
3-10

SYMBOLIC DESTINATION clause,
13-6

Symbolic queue,
C-2

SYMBOLIC QUEUE clause,
13-3

SYMBOLIC SOURCE clause,
13-4

SYMBOLIC SUB-QUEUE clause,
13-3

SYNCHRONIZED clause,
3-15,3-38

Syntax,
A-35

Syntax, optional,
2-27

Syn tax rules,
1-3

SYSIN IS clause,
3-11

SYSOUT IS clause,
3-11

System-names,
2-6

Language Reference Manual

T

TAB IS clause,
3-12

Table,
A-35

Table element,
2-20,2-21, A-35

Table handling,
4-1

Tally,
3-86,3-92

TALL YING phrase,
3-89,3-93,3-121,3-122

Techniques, programming,
14-1

TEXT LENGTH clause,
13-4,13-6

TIME,
3-67,3-68

Transfers of control,

Index

2-23 to 2-26, 3-102, 9-3,9-4

u

Uniqueness of reference,
2-18,2-23

UNLOCK statement,
5-43,6-41, 7-44

UNSTRING statement,
3-118 to 3-122

UNTIL phrase,
3-106

USAGE clause,
3-40,4-5

USAGE IS COMP clause,
2-15,3-40,3-75

Index - 17

WRITE statement,

z

5-46 to 5-50, 6-44 to 6-47, 7-47 to
7-50

ZERO,
2-10,2-11,3-1

Zero suppression editing,
3-26,3-29

Language Reference Manual

Index

Index - 19

USER'S COMMENT SHEET

High Performance LEVEL II COBOL Til

Language Rererence, First Edition
09-01991-01

We welcome your comments and suggestions. They help us
improve our manuals. Please give specific page and paragraph
references whenever possible.

Does this manual provide the information you need? Is it
at the right level? What other types of manuals are needed?

Is this manual written clearly? What is unclear?

Is the format of this manual convenient in arrangement, in size?

Is this manual accurate? What is inaccurate?

Name ____________________________ ___ Date ____ --

Title _____ - _________ _ Phone ___ --

Company Name/Department ______________ _

Address _____________ ~----________ ---------------

City __________ _ State~~_ Zip Code ____ -

Thank you. All comments become the property of
Convergent Technologies, Inc.

