
• UNISYS CTOS

Pascal Compiler
Programming
Reference Manual

Copyright © 1987, 1991 Unisys Corporation
All Rights Reserved
Unisys is a registered trademark of
Unisys Corporation
CTOS is a registered trademark of
Convergent Technologies Inc., a wholly owned
subsidiary of Unisys Corporation

Relative to Release
Level 7.0
Priced Item

December 1991
Printed in U S America
5016793-003

The names, places, and/or events used in this publication are not
intended to correspond to any individual, group, or association
existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or
otherwise, or that of any group or association is purely coincidental
and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE
DOCUMENT. Any product and related material disclosed herein are
only furnished pursuant and subject to the terms and conditions of a
duly executed Program Product License or Agreement to purchase or
lease equipment. The only warranties made by Unisys, if any, with
respect to the products described in this document are set forth in
such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the
information in this document or software material, including direct,
indirect, special or consequential damages.

You should be very careful to ensure that the use of this information
and/or software material complies with the laws, rules, and regulations
of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice.
Revisions may be issued to advise of such changes and/or additions.
Comments or suggestions regarding this document should be
submitted on a User Communication Form (UCF) with the CLASS
specified as "Documentation", the Type specified as "Trouble
Report'', and the product specified as the title and part number of the
manual (for example, 5016793-003).

iii

Page Status
Page Issue

Title PCN-003
ii PCN-003
iii through ivA PCN-003
ivB Blank
v through xvi PCN-003
xvii through xviii PCN-002
xix PCN-003
xx Blank
1-1 through 1-2 PCN-001
1-3 PCN-003
1-4 Blank
2-1 through 2-6 PCN-003
3-1 through 3-2 PCN-003
3-3 through 3-4 PCN-002
3-5 through 3-6 PCN-003
3-7 through 3-8 Original
3-9 through 3-1 O PCN-001
3-11 Original
3-12 Blank
4-1 through 4-2 Original
4-3 through 4-4 PCN-001
5-1 through 5-6 PCN-002
5-7 through 5-12 Original
5-13 through 5-14 PCN-003
5-15 Original
5-16 Blank
6-1 through 6-8 Original
6-9 through 6-12 PCN-002
6-13 through 6-14 Original
7-1 through 7-2 Original
7-3 through 7-4 PCN-002
7-5 through 7-6 Original
7-7 through 7-8 PCN-003
7-9 through 7-16 Original
7-17 through 7-18 PCN-002
7-19 through 7-26 Original
7-27 through 7-28 PCN-001
7-29 through 7-34 Original
7-35 through 7-36 PCN-001
7-37 through 7-41 Original
7-42 Blank
8-1 through 8-6 Original
8-7 through 8-BA PCN-003
8-8B Blank
8-9 through 8-12 PCN-003

5016793-003

iv

Page

9-1 through 9-14
10-1 through 10-10
10-11 through 10-12
10-12A
10-126
10-13 through 10-18
11-1 through 11-22
12-1through12-4
12-5 through 12-6
12-7 through 12-8
12-9 through 12-10
12-11 through 12-12
12-13 through 12-22
12-23 through 12-24
12-25
12-26
13-1 through 13-2
13-3 through 13-6
13-7 through 13-14
13-15 through 13-16
13-1 7 through 13-20
13-21 through 13-22A
13-226
13-23 through 13-25
13-26
14-1 through 14-15
14-16
15-1 through 15-12
15-13 through 15-20
15-21 through 15-23
15-24
A-1 through A-2
A-3 through A-4
A-5 through A-18
A-19 through A-20
A-21 through A-26
A-27 through A-28
A-29 through A-30
A-31 through A-37
A-38
B-1
B-2
C-1 through C-2
C-3 through C-4
D-1 through D-2

Issue

Original
Original
PCN-003
PCN-002
Blank
Original
Original
Original
PCN-002
Original
PCN-001
PCN-002
Original
PCN-003
Original
Blank
Original
PCN-001
Original
PCN-002
Original
PCN-002
Blank
Original
Blank
Original
Blank
PCN-003
Original
PCN-003
Blank
Original
PCN-003
Original
PCN-003
Original
PCN-003
Original
PCN-002
Blank
Original
Blank
Original
PCN-001
PCN-003

Page Status

Page Status iv A

Page Issue

E-1 through E-2 PCN-001
E-3 Original
E-4 Blank
F-1 through F-2 PCN-002
G-1 through G-2 Original
G-3 through G-4 PCN-001
G-5 through G-6 PCN-003
G-7 through G-8 Original
H-1 through H-4 Original
H-5 through H-6 PCN-001
H-7 through H-8 Original
1-1 through 1-2 PCN-003
1-3 through 1-4 Original
1-5 through 1-6 PCN-003
1-7 through 1-20 Original
1-21 through 1-22 PCN-002
1-23 through 1-26 Original
1-27 through 1-30 PCN-002
1-31 through 1-32 PCN-002
1-33 PCN-003
1-34 Blank
J-1 PCN-001
J-2 Blank
K-1 PCN-002
K-2 Blank
Glossary-1 through Glossary-2 PCN-003
Glossary-3 through Glossary-? Original
Glossary-8 Blank
lndex-1 through lndex-14 PCN-003

5016793-003

Contents v

Title Page

Introduction xvii
How to Use This Manual xvii

Pascal Programming Language xvii
Procedures xvii
Sample Programs xvii
Reference Material xvii
Related Materials .. . xix
Terminology xix I
Section 1: Levels and Features 1-1
Pascal Levels 1-1
Standard Level 1-1
Extended Level 1-1
System Level .. . 1-1
Pascal Features 1-2

Section 2: Software Installation 2-1
CTOS Pascal Compiler Flies
Installing Using the Software Installation Command
Installing Using the Installation Manager
Floppy Installation
Installing from a Server
Deinstalling Using Installation Manager

2-1

I
2-2
2-4
2-4
2-5
2-5

Section 3: Language Overview 3-1
Pascal Notation 3-1
Metacommands 3-1
Identifiers and Constants 3-2
Data Types .. . 3-3
Variables and Values 3-4
Expressions 3-5
Statements .. . 3-6
Procedures and Functions 3-7
Compilands 3-8

Section 4: Pascal Notation 4-1
Components of Identifiers 4-1
Letters .. . 4-1
Digits 4-1
The Underscore Character 4-2
Separators .. . 4-2
Special Symbols 4-2
Punctuation .. . 4-3
Operators .. . 4-3
Reserved Words .. . 4-4
Unused Characters 4-4

5016793-003

vi Contents

Title Page

Section 5: Metacommands................................ 5-1
Optimization Level Control . 5-2
Debugging and Error Handling . 5-4
Source File Control . 5-9
Listing File Control . 5-12

Section 6: Identifiers and Constants . 6-1
Identifiers... 6-1
The Scope of Identifiers . 6-1
Predeclared Identifiers . 6-2
Constants.. 6-3
Constant Identifiers . 6-4
Numeric Constants . 6-5
REAL Constants. 6-6
INTEGER, WORD, and INTEGER4 Constants................. 6-7
Nondecimal Numbering . 6-8
Character Strings. 6-9
Structured Constants . 6-10
Constant Expressions. 6-12

Section 7: Data Types..................................... 7-1
Simple Data Types.. 7-2
Ordinal Types... 7-2

INTEGER... 7-3
WORD . 7-3
CHAR.. 7-4
BOOLEAN.. 7-4
Enumerated Types . 7-4
Subrange Types... 7-5

REAL.. 7-6
INTEGER4 . 7-7
Structured Data Types 7-8
Arrays.. 7-8
Super Arrays.. 7-10

Strings . 7-13
Lstri ngs . 7-14

Using Strings and Lstrings. 7-16
Records.. 7-18

Variant Records . 7-19
Explicit Field Offsets . 7-21

Sets.. 7-22
Files . 7-23

The Buffer Variable . 7-24
File Structures . 7-25

Contents vii

Title Page

BINARY Structure Files 7-25
ASCII Structure Files 7-25

File Access Modes 7-26
TERMINAL Mode Files 7-26
SEQUENTIAL Mode Files 7-27
DIRECT Mode Files 7-27

Predeclared Files INPUT and OUTPUT 7-27
Extended 1/0 Feature 7-28
System Level 1/0 7-30
Reference Types .. . 7-30
Pointer Types .. . 7-30
Address Types 7-33

Segment Parameters for the Address Types 7-35
Using the Address Types 7-36
Packed Types 7-37
Procedural and Functional Types 7-38
Type Compatibility 7-39
Type Identity and Reference Parameters 7-39
Type Compatibility and Expressions 7-40
Assignment Compatibility 7-41

Section 8: Variables and Values 8-1
Variable Declarations 8-2
The Value Section 8-2
Using Variables and Values 8-3
Components of Entire Variables and Values 8-4
Indexed Variables and Values 8-4
Field Variables and Values 8-5
File Buffers and Fields 8-5
Reference Variables 8-6
Attributes 8-7
The STATIC Attribute 8-8
The FAR Attribute 8-8A I
The PUBLIC and EXTERN Attributes 8-9
The ORIGIN Attribute 8-10
The READO NL Y Attribute 8-11
Combining Attributes 8-12

Section 9: Expressions 9-1
Simple Expressions 9-2
Boolean Expressions 9-5
Set Expressions 9-7
Function Designators 9-9
Evaluating Expressions 9-10
Other Expression Features 9-13

5016793-003

viii Contents

Title Page

The EVAL Procedure....................................... 9-13
The RESULT Function . 9-13
The RETYPE Function . 9-14

Section 1 O: Statements . 10-1
Statement Syntax. 10-1
Labels. 10-1
Statement Separation . 10-3
BEGIN and END... 10-4
Simple Statements. 10-4
Assignment Statements . 10-4
Procedure Statements . 10-6
The GOTO Statement. 10-7
The BREAK, CYCLE, and RETURN Statements 10-8
Structured Statements . 10-9
Compound Statements..................................... 10-9
Conditional Statements. 10-10

The IF Statement . 1 0-10
The CASE Statement . 10-11

Repetitive Statements . 10-12
The WHILE Statement... .. 10-12
The REPEAT Statement.................................. 10-13
The FOR Statement...................................... 10-13
The BREAK and CYCLE Statements..... 10-16
The WITH Statement. 1 0-17

Sequential Control. 10-18

Section 11: Procedures and Functions. 11-1
Procedures . 11-3
Functions . 11-4
Attributes and Directives. 11-8
The FORWARD Directive................................... 11-10
The EXTERN Directive . 11-10
The PUBLIC Attribute . 11-11
The ORIGIN Attribute 11-12
The PURE Attribute . 11-12
Procedure and Function Parameters. 11-13
Value Parameters. 11-14
Reference Parameters . 11-15

Super Array Parameters. 11-16
Constant and Segment Parameters. 11-17

Procedural and Functional Parameters... 11-18

Contents ix

Title Page

Section 12: Available Procedures and Functions 12-1
Dynamic Allocation Procedures . 12-2
Procedure DISPOSE (VARS P: Pointer); {Short Form} 12-2
Procedure DISPOSE (VARS P: Pointer; T1, T2, ... TN:
Tags); {Long Form}. 12-2
Procedure NEW (VARS P: Pointer); {Short Form}.............. 12-3
Procedure NEW (VARS P: Pointer; T1, T2, ... TN: Tags);
{Long Form} . 12-3
Data Conversion Procedures and Functions. 12-4
Function CHA (X: ORDINAL): CHAR; . 12-4
Function FLOAT (X: INTEGER): REAL;....................... 12-5
Function FLOAT4 (X: INTEGER4): REAL;..................... 12-5
Function ODD (X: ORDINAL): BOOLEAN; . 12-5
Function ORD (X: VALUE): INTEGER;........................ 12-5
Procedure PACK (CONSTS A: UNPACKED; I: INDEX; VARS
Z: PACKED);.. 12-6
Function PRED (X: ORDINAL): ORDINAL; . 12-6
Function ROUND (X: REAL): INTEGER;...................... 12-6
Function ROUND4 (X: REAL): INTEGER4;.................... 12-6
Function SUCC (X: ORDINAL}: ORDINAL;.................... 12-7
Function TRUNC (X: REAL): INTEGER; . 12-7
Function TRUNC4 (X: REAL): INTEGER4; . 12-7
Procedure UNPACK (CONSTS Z: PACKED; VARS A:
UNPACKED; I: INDEX);..................................... 12-7
Function WAD (X: VALUE): WORD;.......................... 12-8
Arithmetic Functions. 12-8
Function ABS (X: NUMERIC): NUMERIC;..................... 12-9
Function ARCTAN (X: REAL): REAL;......................... 12-9
Function COS (X: REAL): REAL; 12-9
Function EXP (X: REAL): REAL; . 12-9
Function LN (X: REAL): REAL; 12-9
Function SIN (X: REAL): REAL;.............................. 12-10
Function SOR (X: NUMERIC): NUMERIC; . 12-10
Function SOR (X): REAL;................................... 12-10
Real Functions . 12-1 o
Extended Level Intrinsics . 12-12
Procedure ABORT (CONST STRING, WORD, WORD);......... 12-13
Function BYLONG (INTEGER-WORD, INTEGER-WORD):
INTEGER4; . 12-13
Function BYWORD (ONE-BYTE, ONE-BYTE): WORD; 12-13
Function DECODE (CONST LSTR: LSTRING, X:M:N):
BOOLEAN; . 12-14
Function ENCODE (VAR LSTR: LSTRING, X:M:N):
BOOLEAN; . 12-14

5016793-003

x Contents

Title Page

Procedure EVAL (Expression, Expression, ...); 12-14
Function HIBYTE (INTEGER-WORD): BYTE;.................. 12-15
Function HIWORD (INTEGER4): WORD; . 12-15
Function LOBYTE (INTEGER-WORD): BYTE; 12-15
Function LOWER (Expression): VALUE;...................... 12-15
Function LOWORD (INTEGER4): WORD;..................... 12-15
Function RESULT (Function-Identifier): VALUE; 12-15
Function SIZEOF (VARIABLE): WORD; Function SIZEOF
VARIABLE, TAG1, TAG2, ... TAGN): WORD;.................. 12-16
Function UPPER (Expression): VALUE; . 12-16
System Level Intrinsics 12-16
Procedure FILLC (D: ADRMEM; N: WORD; C: CHAR);......... 12-16
Procedure FILLSC (D: ADSMEM; N: WORD; C: CHAR);........ 12-17
Procedure MOVEL (S, D: ADRMEM; N: WORD);.............. 12-17
Procedure MOVER (S, D: ADRMEM; N: WORD); 12-17
Procedure MOVESL (S, D: ADSMEM; N: WORD);............. 12-18
Procedure MOVESR (S, D: ADSMEM; N: WORD);............. 12-18
Function RETYPE (Type-ldent, Expression): TYPE-IDENT; 12-18
String Intrinsics . 12-19
Procedure CONCAT (VARS D: LSTRING; CONSTS S:
STRING);... 12-20
Procedure COPYLST (CONSTS S: STRING; VARS D:
LSTRING);.. 12-20
Procedure COPYSTR (CONSTS S: STRING; VARS D:
STRING);... 12-20
Procedure DELETE (VARS D: LSTRING; I, N: INTEGER); 12-20
Procedure INSERT (CONSTS S: STRING; VARS D:
LSTRING; I: INTEGER); 12-20
Function POSITN (CONSTS PAT: STRING; CONSTS S:
STRING; I: INTEGER): INTEGER;............................ 12-21
Function SCANEQ (LEN: INTEGER; PAT: CHAR; CONSTS S:
STRING; I: INTEGER): INTEGER;............................ 12-21
Function SCANNE (LEN: INTEGER; PAT: CHAR; CONSTS S:
STRING; I: INTEGER): INTEGER;............................ 12-21
Library Procedures and Functions.. 12-21
Initialization and Termination Routines . 12-22

Procedure BEGOQQ; . 12-22
Procedure BEGXQQ; . 12-22
Procedure ENDOQQ; . 12-22
Procedure ENDXQQ; . 12-22

Heap Management . 12-23
Function PreAllocHeap (VARS cbAlloc: WORD); ErcType;.... 12-23

I Procedure PreAllocLongHeap (cPara: WORD); EXTERN;. 12-23
No-Overflow Arithmetic Functions . 12-24

Contents xi

Title Page

Function LADDOK (A, B: INTEGER4; VAR C: INTEGER4):
BOOLEAN; . 12-24
Function LMULOK (A, B: INTEGER4; VAR C: INTEGER4):
BOOLEAN; . 12-24
Function SADDOK (A, B: INTEGER; VAR C: INTEGER):
BOOLEAN; . 12-24
Function SMULOK (A, B: INTEGER; VAR C: INTEGER):
BOOLEAN; . 12-25
Function UADDOK (A, B: WORD; VAR C: WORD): BOOLEAN;.. 12-25
Function UMULOK (A, B: WORD; VAR C: WORD): BOOLEAN;.. 12-25

Section 13: File-Oriented Procedures and Functions. 13-1
File System Primitive Procedures and Functions 13-1
EOF and EOLN . 13-2
GET and PUT . 13-3

Procedure GET (VAR F); . 13-3
Procedure PUT (VAR F); . 13-3

RESET and REWRITE...................................... 13-4
Procedure RESET (VAR F);............................... 13-4
Procedure REWRITE (VAR F);............................. 13-5

PAGE.. 13-5
Lazy Evaluation . 13-5
Textfile Input and Output. 13-7
READ and READLN. 13-10
READ Formats . 13-11
WRITE and WRITELN 13-14
Write Formats... 13-15
Extended Level 1/0 . 13-21
Extended Level Procedures............................... 13-21
Procedure ASSIGN (VAR F; CONSTS N: STRING);............ 13-21
Procedure CLOSE (VAR F);................................. 13-21
Procedure DISCARD (VAR F);. .. 13-22
Procedure READFN (VAR F: P1, P2, ... PN);.... 13-22
Procedure READSET (VAR F; VAR L: LSTRING, CONST S:
SETOFCHAR); . 13-23
Procedure SEEK (VAR F; N: INTEGER4); . 13-23
Temporary Files . 13-24

Section 14: Compilands. 14-1
Programs . 14-2
Modules . 14-4
Units... 14-7
The Interface Division . 14-1 o
The Implementation Division . 14-12

5016793-003

xii Contents

Title

Section 15: Compiling, Linking, and Executing Programs .. . I Compiling a Pascal Program
Linking a Pascal Program
Executing a Pascal Program
Run Time Size and Debugging
Compiling and Linking Large Programs
Avoiding Limits on Code Size
Avoiding Limits on Data Size

I Multiple Data Segments
Symbol Table in Far Memory
Working with Limits on Compile Time Memory
Identifiers .. .
Complex Expressions
Listing File Format
Source Program for Example Listing 1
Example Compiled Code Listing 1
Source Program for Example Listing 2
Example Compiled Code Listing 2
Limitations .. .

Appendix A: Error Messages
Compiler Front End Errors
Compiler Back End Errors
Compiler Internal Errors
Run Time Errors
File System Errors (1000-1099)
File System Errors (1100-1199)
Other Run Time Errors
Memory Errors (2000-2049)
Ordinal Arithmetic Errors (2050-2099)
Type REAL Arithmetic Errors (2100-2149)
Structured Type Errors (2150-2199)
INTEGER4 Errors (2200-2249)
Additional Errors (2400-2499)

Appendix 8: An Overview of the File System

Page

15-1
15-1
15-3
15-5
15-8
15-8
15-9
15-9

15-10A
15-1 OB

15-11
15-11
15-13
15-14
15-14
15-15
15-18
15-19
15-21

A-1
A-2

A-27
A-28
A-28
A-29
A-30
A-32
A-32
A-33
A-34
A-36
A-36
A-37

B-1

Contents xiii

Title Page

Appendix C: Run Time Architecture........................ C-1
Runtime Routines . C-2
Memory Organization . C-2
Initialization and Termination. C-4

Appendix D: Summary of Reserved Words D-1

Appendix E: Summary of Available Procedures and
Functions . E-1

Appendix F: Summary of Metacommands.................. F-1

Appendix G: Extended PASCAL Compared to ISO
Standard . G-1
Differences between Extended Pascal and Standard G-1
Summary of Extended Pascal Features . G-4
Syntactic and Pragmatic Features . G-5
Data Types and Modes . G-5
Operators and Intrinsics. G-6
Control Flow and Structure Features......................... G-7
Extended Level 1/0 and Flies.............................. G-7
System Level 1/0 . G-8

Appendix H: Control of the Video Display.................. H-1
Error Conditions in Escape Sequences . H-1
Video Display Coordinator . H-2
Controlling Character Attributes . H-2
Controlling Screen Attributes....... H-3
Controlling Cursor Position and Visibility H-4
Filling a Rectangle. H-4
Controlling Line Scrolling . H-6
Directing Video Display Output . H-6
Controlling Pausing between Full Frames.................. H-7
Controlling the Keyboard LED Indicators................... H-7
Erasing to the End of Line or Frame . H-8

Appendix I: Programming Hints . 1-1
Hint 1: Linking Pascal..................................... 1-1
Hint 2: Word and Integer Type Incompatibility.............. i-1
Hint 3: Overlays.. i-1
Hint 4: Program Parameters. i-3
Hint 5: Long Heap . 1-4
Hint 6: Multiprocessing . 1-5
Hint 7: Using Pascal with BTOS and Forms 1-5
BTOS Forms: Background.................................. 1-6

5016793-003

xiv Contents

Program Overview... 1-7
Program Description..................................... 1-7

Form Description.. 1-7
Program Flow Chart . 1-10

Detailed Program Description . 1-1 O
Initialization Code Section 1-10
Main Program. 1-1 O
Form Initialization Section . 1-12
Right Justification. 1-12
Program End. 1-13

Special Considerations when Using Pascal with BTOS... 1-13
Calling Non-Pascal Procedures and Functions from Pascal... 1-13
Parameter-Passing Modes. 1-14
Parameter-Passing Format for Calling Non-Pascal
Procedures . 1-14
Passing Parameters to a Non-Pascal Procedure 1-15

Hint 8: Accessing the System Date and Time Using Pascal.. 1-16
Date(fime Overview . 1-16
Program Example . 1-18
Hint 9: BTOS Status Codes. 1-20
Hint 1 O: Sample Pascal Program . 1-20
The Purpose of ValidateErc. 1-20
QUADS as Parameters to Non-Pascal Procedures............. 1-20
Hint 11: Minimizing the Size of Pascal Programs 1-32

I Hint 12: Using Far Variables............................... 1-33

Appendix J: Using the Math Server........................ J-1

Appendix K: Protected Mode Compatibility....... K-1

Glossary .. Glossary-1

Index . lndex-1

Illustrations xv

Figure Title Page

1-1 Form Example . 1-7
1-2 Forms Reporter Printout. 1-9
1-3 Forms Program Flowchart....................... 1-11

5016793-003

xvi Tables

Table Title Page

I 2-1 CTOS Pascal Compiler Files . 2-2

xvii

Introduction
This reference manual contains introductory, procedural, and
reference information on a compiler for a highly extended
version of the Pascal programming language. The version is
portable and consistent with the International Standard
Organization (ISO) standard. The compiler generates native
machine code instead of p-code.

To understand all the procedures and information in this
manual, you must:

a be familiar with the Executive level operations

a have a working knowledge of Pascal and the general
principles of programming

If you have used Executive level commands with BTOS and
have experience with the Pascal programming language, you
will have an easier time with the BTOS Pascal compiler;
however, all necessary procedures are in this manual.

How to Use This Manual
If you are using the BTOS Pascal compiler for the first time,
you should read sections 1, 2, and 3. They contain basic
information you will need for understanding Pascal levels and
features, installing the BTOS Pascal compiler software on
hard disk and dual floppy standalone systems, and obtaining
an overview of Pascal.

In any case, if you scan the contents and review the topics
before you start, you may find this manual easier to use. To
find definitions of unfamiliar words, use the glossary; to
locate specific information, use the Index.

Pascal Programming language

Sections 4 through 15 contain Pascal programming
information:

a For an explanation of Pascal notation, refer to section 4.

a For information on metacommands, which are compiler
directives that control certain conditions, refer to
section 5.

a For a description of identifiers, constants, data types,
variables, and values, refer to sections 6, 7, and 8.

5016793

xviii Introduction

o For an explanation of Pascal expressions and statements,
refer to sections 9 and 10.

o For a description of Pascal compilands, which include
programs, modules, and units, refer to section 14.

a For an explanation of how to compile, link, and execute
Pascal programs, refer to section 15.

Procedures
Sections 11, 12, and 13 contain procedures for Pascal
operations:

o For a description of procedures, functions, attributes,
directives, and various parameters, refer to section 11 .

o For a description of available procedures and functions,
refer to section 12.

o For a description of file-oriented procedures and functions,
refer to section 13.

Sample Programs
Short sample code sequences and occasional complete
sample programs appear in sections 5 through 14. In
addition, appendixes H and I contain some complete
programs.

Reference Material
This manual includes an index and 10 appendixes with
reference information:

a For error message information, refer to appendix A.

o For an overview of the file system, refer to appendix B.

o For a description of the run time architecture, refer to
appendix C.

a For a summary of reserved words, refer to appendix D.

a For a summary of available procedures and functions, refer
to appendix E.

o For a summary of the metacommands described in
section 5, refer to appendix F.

Introduction xix

o For a comparison between Extended Pascal and the ISO
standard, refer to appendix G.

o For an explanation of controlling the video display, refer
to appendix H.

o For programming suggestions, refer to appendix I.
o For an explanation of using the Math server, refer to

appendix J.
o For a discussion on protected mode compatibility, refer to

appendix K.
o For definitions of key terms used in this manual or

related to this software, refer to the glossary.

Related Materials

For more information about the operating system, you can
refer to the operating system reference documentation.

For more information about Executive level commands, refer
to the standard software operations documentation.

Terminology

CTOS is a Unisys operating system. It is also an umbrella
term that encompasses all varieties of the BTOS and CTOS
operating system.

5016793-003

I

Section 1 1-1

Levels and Features
Unlike many other compilers that produce intermediate
p-code for microcomputers. the Pascal Compiler described
here generates native machine code. Programs compiled to
native code execute much faster than those compiled to
p-code. Thus, with this Pascal Compiler, you get the
programming advantages of a high-level language without
sacrificing execution speed. Because of many low-level
escapes to the machine level, programs written in this Pascal
are often comparable in speed to programs written in
assembly language.

Pascal Levels
This Pascal is organized into three levels: standard,
extended, and system.

Standard Level
All standard ISO Pascal programs are intended to compile
and run correctly using this compiler. All of the extensions to
the language are provided in Appendix H of this manual.

Extended Level
The version of Pascal intended for use on your system
enhances ISO Pascal and is intended for structured and
relatively safe extensions, such as OTHERWISE in the CASE
statement and the construction of the BREAK statement.

System Level
The system level includes all features at the extended level
as well as unstructured, machine-oriented extensions that are
either useful or necessary for system programming tasks.
These additional extensions include the address types and
access to all File Control Block fields.

In addition to these language levels, the Pascal compiler
recognizes requests to specify the kind of error checking to
be generated. These are included in the Pascal
metacommands.

5016793

1-2 Levels and Features

Pascal Features
The following list includes some of the features available at
the extended and system levels of this Pascal. These
features are described in more detail later in this manual.

1 Underscore in identifiers, which improves readability.

2 Nondecimal numbering (hexadecimal, octal, and binary),
which facilitates programming at the byte and bit level.

3 Structured constants, which may be declared in the
declaration section of a program or used in statements.

4 Variable length strings (type LSTRING), as well as special
predeclared procedures and functions for LSTRINGs, which
overcome standard Pascal string handling capabilities.

5 Super arrays, a special variable length array whose
declaration permits passing arrays of different lengths to a
reference parameter, as well as dynamic allocation of
arrays of different lengths. ·

6 Predeclared unsigned BYTE (0-255) and WORD (0-65535)
types, which facilitate programming at the system level.

7 Address types (segmented and unsegmented), which allow
manipulation of actual machine addresses at the system
level.

8 String reads, which allow the standard procedures READ
and READLN to read strings as structures rather than
character by character.

9 Interface to assembly language, provided by PUBLIC and
EXTERN procedures, functions, and variables, which allows
low-level interfacing to assembly language and library
routines.

1 O VALUE section, where you may declare the initial constant
values of variables in a program.

11 Function return values of a structured type as well as of a
simple type.

12 Direct (random access) files, accessible with the SEEK
procedure, which enhance standard Pascal file-accessing
capabilities.

13 Lazy evaluation, a special internal mechanism for
interactive files that allows normal interactive input from
terminals.

Levels and Features 1-3

14 Structured BREAK and CYCLE statements, which allow
structured exits from a FOR, REPEAT, or WHILE loop;
and the RETURN statement, which allows a structured
exit from a procedure or function.

15 OTHERWISE in CASE statements, whereby you avoid
explicitly specifying each CASE constant.

16 STATIC attribute for variables, which allows you to
indicate that a variable is to be allocated at a fixed
location in memory rather than on the stack.

17 ORIGIN attribute, which may be given to variables,
procedures, and functions to indicate their absolute
location in memory.

18 Separate compilation of portions of a program (units and
modules).

19 Conditional compilation, using conditional metacommands
in your Pascal source file to switch on or off compilation
of parts of the source.

20 Allocation of the symbol table in far memory during
compilation, which automatically helps you compile larger
source modules. Using far memory, the symbol table is
not subject to a 64K limit, since the compiler can request
more memory from the system as needed.

21 Multiple data segments, which can be used when the total
program data is greater than 64K.

22 A FAR attribute for variables, which allows you to
indicate that a STATIC variable is to be allocated outside
of the default segment (DGROUP).

5016793-003

Section 2 2-1

Software Installation

You can use the procedures in this section to install your
CTOS Pascal Compiler software. Then you can run the
compiler by entering the Pascal command at the Executive
level.

You install the CTOS Pascal Compiler software from the
software diskettes. They are write-protected. You should not
write-enable them or use them as working copies.

If your system has a hard disk or is clustered, you can use
the Executive level Software Installation command to
install the CTOS Pascal Compiler software or you can use the
Installation Manager application. The CTOS Pascal Compiler
may reside in [Sys] <Sys> , or in any user-defined path. The
system directs the installation, prompting you when it
requires your response.

Text deleted by PCN-003

CTOS Pascal Compiler Files

The CTOS Pascal Compiler software includes the files listed
in table 2-1. The software installation procedure
automatically copies these files to your disk.

Text deleted by PCN-003

5016793-003

2-2 Software Installation

Table 2-1 CTOS Pascal Compiler Files

File Name Contains

PASCAL.lib

PASCAL8087.lib

PASCALFE. run

PASCALOPT.run

PASCALLST.run

PasMin.obj

Object modules used to resolve run time calls to
standard and extended Pascal pre-defined
functions and procedures.

Object modules to support direct use of the 8087
or 80287 numeric coprocessor.

Pascal front end.

Pascal optimizer.

Pascal code to produce compilation listings.

Object module used to link Pascal programs to
build a customized operating system. Contains
only entry points for loading a program into
memory.

I Pascal8087.fls

I First.obj

Lists object modules used to link programs that
use the 8087 Math Coprocessor.

Object module that orders segments for the linker.
If used, it must be the first in the list of object
modules that will be linked to form a run file.

I First.asm Source file that you can edit and assemble to
produce a customized First.obj.

I Text deleted by PCN-003

Installing Using the Software
Installation Command

To install the CTOS Pascal Compiler using the
Software Installation command, use the following
procedure:

1 Sign on to a CTOS workstation and set the path to
I [Sys] <Sys> or any user-defined path.

2 If the system is clustered, disable the cluster (with the
Executive Disable Cluster command) or power down the
other cluster units.

3 Insert the software diskette in the floppy drive [fO].

4 Enter Software Installation at an Executive level
command prompt and press GO.
The system prompts you to power down all cluster
workstations.

Software Installation

5 Respond to the prompt in one of the following ways:
o If you are installing software on a standalone

workstation, press GO to continue installation.

2-3

o If you are installing software on a server or cluster
workstation and you disabled the cluster, press GO to
continue installation.

D If you are installing software on a server or cluster
workstation and you did not disable the cluster, turn
off all other hard disk units and press GO to continue
installation.

6 The system displays the number of free sectors on your
volume and the required disk space for installation of the
Pascal compiler. If your system has the required disk
space, press GO to continue.

7 The system copies the run files and creates the Pascal
command.
When the system finishes software installation, the
highlighted message*** INSTALLATION OF CTOS I
PASCAL COMPILER COMPLETE *** appears,
followed by an Executive command prompt.

8 Remove the CTOS Pascal installation diskette and store it I
in a safe place.
If your workstation is clustered, you can resume cluster
operations (with the Resume Cluster command).

The Pascal command is now available at the Executive level
to compile Pascal programs. For compiler procedures, refer to
section 15.

Text deleted by PCN-003

Installing Using the Installation
Manager
Using Installation Manager, you can do a floppy installation
(Public or Private), install from a server, or deinstall the
software from the system.

Note: When deinstalling the software, you must manually
remove the files if you specified any other path than
[Sys]< Sys> during installation.

5016793-003

2-4 Software Installation

Floppy Installation

This installation uses the Install.jcl and Install.ctrl files from
the CTOS Pascal installation diskette.

To install CTOS Pascal using the Installation Manager
application, use the following procedure:

1 Insert the CTOS Pascal software diskette in the floppy
drive [fO).

2 Enter Floppy Install on the Executive Command line
and press GO.
The system displays windows labelled for Installation
Manager and Installation of CTOS Pascal and prompts
you for your response.

3 When the system displays Installation Defaults, choose
one of the following:
o select the Continue Installation option and press GO.
o select Examine/Change Defaults option and follow the

menu sequence.
The system displays a sequence of installation statements.

Note: If you are doing a Private installation, the system
prompts for a valid destination where the Pascal files will
be copied.

4 When prompted to do so, remove the CTOS Pascal
installation diskette and store it in a safe place.

Software Installation 2-5

Installing From a Server

This method allows a locally-booted cluster workstation to
download CTOS Pascal from a workstation server or shared
resource processor, if the software has been installed publicly
at the server using the Installation Manager application. The
Install From Server installation option loads the software to
the [Sys] volume and the commands to the command file
[Sys]< Sys> sys.cmds.

To install CTOS Pascal software on your workstation,
use the following procedure:

1 Enter Installation Manager at the Executive Command
line and press GO.
The system displays the Software Operation menu.

2 Select the Install New Software option and press GO.
The Install Media menu displays choices to install from
Floppy, Tape, or Server.

3 Select the From Server option and press GO.
The system displays all of the software that was publicly
installed.

Note: If you are doing a Private installation, the system
prompts for a valid destination where the Pascal files will be
copied.

4 Select the CTOS Pascal option and press GO.
The software is installed on your local workstation.

5016793-003

2-6 Software Installation

Deinstalling Using Installation
Manager

You can deinstall CTOS Pascal software from either the
server or the workstation using the Installation Manager
application. You should use this method of deinstallation if
you installed CTOS Pascal using Installation Manager.

To deinstall the CTOS Pascal software from the
server, use the following procedure:

1 Enter Installation Manager at the Executive Command
line and press GO.
The system displays the Software Operation menu.

2 Select the Remove Installed Software option and press
GO.
The system displays the Remove Installed Software menu.

3 Move the cursor to the Public Software option and press
GO.
The system displays all of the software that was publicly
installed.

Note: If you want to deinstall Private software, you should
select the Private Software option. When deinstalling the
software, you must manually remove the files if you
specified any other path than [Sys]< Sys> during
installation.

4 Select the CTOS Pascal option and press GO.
All CTOS Pascal software is deinstalled from your server
or shared resource processor (if Public was selected) or
your local workstation (if Private was selected).

Section 3 3-1

Language Overview

The Pascal language includes a large number of interrelated
components. The discussion begins with the basic elements,
with each component being discussed in relation to its next
higher-level component.

Pascal Notation

All Pascal programs consist of an irreducible set of symbols
with which the higher syntactic components of the language
are created. The underlying notation is the ASCII character
set, divided into the following syntactic groups:

1 Identifiers are the names given to individual instances of
components of the language.

2 Separators are characters that delimit adjacent numbers,
reserved words, and identifiers.

3 Special symbols include punctuation, operators, and
reserved words.

4 Some characters are unused but are available for use in a
comment or string literal.

Metacommands
The metacommands provide a control language for the Pascal
Compiler. The metacommands let you specify options that
affect the overall operation of a compilation. For example, you
can conditionally compile different source files, generate a
listing file, or enable or disable runtime error checking code.

Metacommands are inserted inside comment statements. All
of the metacommands begin with a dollar sign ($). Some may
also be given as switches when the compiler is invoked.

Although most implementations of Pascal have some type of
compiler control, the metacommands listed below are not part
of standard Pascal and hence are not portable.

5016793-003

3-2 Language Overview

The metacommands are listed below:

$BRAVE
$DEBUG
$ENTRY
$ERRORS
$GOTO
$INCLUDE
$IN CONST
$1NDEXCK
$1NITCK
$IF $THEN $ELSE $END
$INTEGER
$LINE
$LINESIZE
$LIST
$MATH CK
$MESSAGE
$NILCK
$0CODE

$PAGE
$PAGEIF
$PAGESIZE
$POP
$PUSH
$RANGECK
$REAL
$ROM
$RUNTIME
$SIMPLE
$SIZE
$SKIP
$SPEED
$STACKCK
$SUBTITLE
$SYMTAB
$TITLE
$WARN

Refer to section 5, Metacommands, for a more complete
discussion.

Identifiers and Constants

Identifiers are names that denote the constants, variables,
data types, procedures, functions, and other elements of a
Pascal program.

An identifier must begin with a letter (A through Z, or a
through z). The initial letter can be followed by any number I of letters, digits (0 through 9), or underscore characters. Only
the first 31 characters are used and identifiers must be
uniquely distinguished in the first 31 characters.

The compiler ignores the case of letters; thus A and a are
equivalent. The only restriction on identifiers is that you
must not choose a Pascal reserved word. Refer to section 4,
Pascal Notation, for a discussion on reserved words, or to
Appendix D, Summary of Reserved Words, for a complete list.

A constant is a value that you do not expect to change during
the course of a program. A constant can be:
o a number, such as 1.234 and 100.
o a string enclosed in single quotation marks, such as

'Miracle' or 'A1207'.

Language OvervielN 3-3

a a constant identifier that is a synonym for a numeric or
string constant.

You can declare constant identifiers in the CONST section of
a compiland, procedure, or function, using an indenting
convention for ease of reading:

CONST
REAL_CONST • 1.234;
MAX_VAL = 100;
TITLE ·'Pascal';

You can declare constants anywhere in the declaration
section of a compilable part of a program, any number of
times. Two powerful extensions in Pascal are structured
constants and constant expressions:

a VECTOR, in the following example, is an array constant:

CONST
VECTOR= VECTORTYPE (1 ,2,3,4,5);

a MAXV AL, in the following example, is a constant
expression. (A, 8, C, and D must also be constants.)

CONST
MAXVAL ·A ' (B DIV C) + D - 5;

Data Types
Much of the power and flexibility of Pascal lies in its data
typing capability. The data types can be divided into three
broad categories: simple, structured, and reference types.

1 A simple data type represents a single value. Simple types
include the following:

INTEGER enumerated
WORD subrange
CHAR REAL
BOOLEAN INTEGER4

2 The structured data type represents a collection of values.
Structured types include the following:

ARRAY
RECORD
SET
FILE

3 Reference types allow recursive definition of types in an
extremely powerful manner.

5016793

3-4 Language Overview

All variables in Pascal must be assigned a data type. A type
is either predeclared (for example, INTEGER and REAL) or
defined in the declaration section of a program. The following
type declaration creates a type that can store information
about a student:

TYPE
CLASSES· STRING (20);
STUDENT • RECORD

AGE 5 .. 18;
SEX (MALE, FEMALE); (Sex to be entered

tas 0 for male, 1
{for lemalel

GRADE INTEGER;
GRADE-PT REAL;
SCHEDULE ARRAY (1 .. 10) OF CLASSES;

END;
VAR

PERSON • STUDENT

Variables and Values
A variable is a value that you expect will change during the
course of a program. Every variable must be of a specific
data type.

After you declare a variable in the heading or declaration
section of a compiland, procedure or function, it may be
used in any of the following ways:

a You can initialize it in the VALUE section of a program.

a You can assign it a value with an assignment statement.

a You can pass it as a parameter to a procedure or function.

a You can use it in an expression.

Language Overview 3-5

The VALUE section is a feature that applies only to statically
allocated variables (those with a fixed address in memory).
You must first declare the variables, as shown in the
following example:

VAR
I : INTEGER;
J : INTEGER;
K : INTEGER;
L : INTEGER;

and assign initial values to them in the VALUE section:

VALUE
I : = 1;
J : = 2;
K: = 3;
L: = 4;

Later, in statements, you can assign the variables and use
them as operands in expressions:

I : = J + K + L;
J : = 1 + 2 + 3;
K : = (J * K) + 9 + (L DIV J);

Expressions

An expression is a formula for computing a value. It consists
of a sequence of operators (indicating the action to be
performed) and operands (the value on which the operation is
performed). Operands can contain function invocations,
variables, constants, or even other expressions. In the
following expression, plus (+) is an operator, while A and B
are operands:

A+ B

There are three basic kinds of expressions:
o Arithmetic expressions perform arithmetic operations on

the operands in the expression.
o Boolean expressions perform logical and comparison

operations with Boolean results.
o Set expressions perform combining and comparison

operations on sets, with Boolean or set results.

5016793-003

3-6 Language Overview

Expressions always return values of a specific type. For
instance, if A, B, C, and D are all REAL variables, then the
following expression evaluates to a REAL result:

A * B + (C I D) + 12.3

Expressions can also include function designators:

ADDREAL (2, 3) + (CID)

ADDREAL is a function that has been previously declared in
a program. It has two REAL value parameters, which it adds
together to obtain a total. This total is the return value of the
function, which is then added to (CID).

Expressions are not statements, but may be components of
statements. In the following example, the entire line is a
statement; only the portion after the equal sign is an
expression:

X : = 2 I 3 + A * B;

Statements

Statements perform actions, such as computing, assigning,
altering the flow of control, and reading and writing files.
Statements are found in the bodies of programs, procedures,
and functions and are executed as a program runs.

Comments

Comments may be incorporated into a Pascal program using
any of the following syntax forms:

(*comment text ... *)
{comment text ... }
{comment text (*comment text*) comment text}
!comment text ...

Any syntax using a beginning and ending delimiter may
encompass multiple lines of text.

language OvervielN 3-7

The following are the statements in Pascal:

Statement

Assignment

BREAK

CASE

CYCLE

FOR

GOTO

IF

Procedure call

REPEAT

RETURN

WHILE

WITH

Purpose

Replaces the current value of a variable with a new value.

Exits the currently executing loop.

Allows for the selection of one action from a choice of many,
based on the value of an expression.

Starts the next iteration of a loop.

Executes a statement repeatedly while a progression of values is
assigned to a control variable.

Continues processing at another part of the program.

Together with THEN and ELSE, allows for conditional execution
of a statement.

Invokes a procedure with actual parameter values.

Repeats a sequence of statements one or more times until a
Boolean expression becomes true.

Exits the current procedure, function, program, or
implementation.

Repeats a statement zero or more times until a Boolean
expression becomes false.

Opens the scope of a statement to include the fields of one or
more records, so that you can refer to the fields directly. There
are two forms:

a WITH PERSON DO, where PERSON is a
· variable assigned to a record type.

a WITH LINKA DO, where LINK is a pointer to a record.

Procedures and Functions
Procedures and functions act as subprograms that execute
under the supervision of a main program. However, unlike
programs, procedures and functions can be nested within
each other and can even call themselves. Furthermore, they
have sophisticated parameter-passing capabilities that
programs lack.

5016793

3-8 Language Overvievv

Procedures are invoked as statements. A function is a
procedure that returns a value of a particular type and can be
invoked in expressions wherever values are called for.

A procedure declaration, like a program, has a heading, a
declaration section, and a body.

Example of a procedure declaration:

PROCEDURE COUNT_TO(NUM INTEGER); !Heading!

VAR
I INTEGER;

BEGIN
FOR I : = 1 TO NUM DO
WRITELN (I);

END;

!Declaration section)

!Body)

A function declaration must indicate the type of return value.

Example of a function declaration:

FUNCTION ADD (VAL1, VAL2 : INTEGER): INTEGER;

BEGIN
ADD :s VAL1 + VAL2;

END;

!Heading)
!Body)

Procedures and functions look somewhat different from
programs, in that their parameters have types and other
options. Like the body of a program. the body of a procedure
or a function is enclosed by the reserved words BEGIN and
END; however, a semicolon rather than a period follows the
word "END".

Declaring a procedure or function is entirely distinct from
using it in a program. The procedure and function declared
above can actually appear in a program:

TARGET_NUMBER :=ADD (5, 6); !Function ADDI
COUNT_TO (TARGET_NUMBER); {Procedure COUNT_TOJ

Com pi lands
The Pascal Compiler processes programs, modules, and
implementations of units. Collectively, these compilable
programs and parts of programs are referred to as
compilands. You can compile modules and implementations
of units separately and then later link them to a program
without having to recompile the module or unit.

language Overvievv 3-9

The fundamental unit of compilation is a program. A program
has three parts:

o The program heading identifies the program and gives a
list of program parameters.

o The declaration section follows the program heading and
contains declarations of labels, constants, types, variables,
functions, and procedures. Some of these declarations are
optional.

o The body follows all declarations. It is enclosed by the
reserved words BEGIN and END, and is terminated by a
period. The period is the signal to the compiler that it has
reached the end of the source file.

The following program illustrates this three-part structure:

PROGRAM FRIDAY (INPUT.OUTPUT); {Program header}

LABEL
1 ;

CONST
DAYS_IN_WEEK • 7;

TYPE
KEYBOARD_INPUT • CHAR;

VAR
KEVIN : KEYBOARD_INPUT;

{Declaration section!

BEGIN {Program body)
WRITE(I IS TODAY FRIDAY? ');

1: READLN(KEYIN);
CASE KEVIN OF

'Y', 'y' : WRITELN('II' 's Friday.');
'N', 'n': WRITELN('lt"s not Friday.');

OTHERWISE
WRITELN('Enter Y or N.');
WR I TE ('PI ease re.enter: ') ;
GOTO 1;

END;
END;

END.

This three-part structure (heading, declaration section, body)
is used throughout Pascal language. Procedures, functions,
modules, and units are all similar in structure to a program.

Modules are program-like units of compilation that contain
the declaration of variables, constants, types, procedures,
and functions, but not program statements. You can compile
a module separately and later link it to a program, but it can
not be executed by itself.

5016793

3-10 Language Overvievv

Example of a module:

MODULE MODPART; (Module heading}

CONST
Pl· 3.14; (Declaration section!

PROCEDURE PARTA;
BEGIN

END.

WRITELN (.par ta.)
ENO;

A module, like a program, ends with a period. Unlike a
program, a module contains no program statements.

A unit has two sections: an interface and an implementation.
Like a module, an implementation can be compiled separately
and later linked to the rest of the program. The interface
contains the information that lets you connect a unit to other
units, modules, and programs.

Example of a unit:

INTERFACE; (Heading for interface}
UNIT MUSIC (SING, TOP);

VAR (Declarations for interface}
TOP : INTEGER;

PROCEDURE SING;
BEGIN (Body of interface!
ENO;

IMPLEMENTATION OF MUSIC; (Heading for implementation}

PROCEDURE SING; (Declaration for
imp I eme n I at ion I

VAR
I : INTEGER;

BEGIN

ENO
END;

BEGIN
TOP

END.

FOR I :- 1 TO TOP DO
BEGIN

WRITE ('FA');
WRITELN ('LA LA')

(Body of imp I emen tat i onl
5

Language Overview

A unit, like a program or a module. ends with a period.
Modules and units allow you to develop large structured
programs that can be broken into parts. This can be
advantageous in the following situations:

3-11

a If a program is large. breaking it into parts makes it easier
to develop. test. and maintain.

a If a program is large and recompiling the entire source file
is time consuming. breaking the program into parts saves
compilation time.

a If you intend to include certain routines in a number of
different programs, you can create a single object file that
contains these routines. Then you can link it to each of the
programs in which the routines are used.

a If certain routines have different implementations. you can
place them in a module to test the validity of an algorithm.
Later you can create and implement similar routines in
assembly language to increase the speed of the algorithm.

5016793

Metacommands 5-13

$0CODE+

Turns on the symbolic listing of the generated code to the
object listing file. Although the format varies with the target
code generator, it generally looks like an assembly listing,
with code addresses and operation mnemonics. In many cases,
the identifiers for procedure, function, and static variables are
truncated in the object listing file.

$PAGE+

Forces a new page in the source listing. The page number of
the listing file is automatically incremented.

$PAGE: <n>

Sets the page number of the next page of the source listing.
$PAGE:< n > does not force a new page in the listing file.

$PAGEIF: < n >

Conditionally performs $PAGE+, if the current line number of
t~e source file plus n is less than or equal to the current page
size.

$PAGESIZE: < n >

Sets the maximum size of a page in the source listing. The
default is 55 lines per page.

$SKIP: <n>

Skips n lines or to the end of the page in the source listing.

$SUBTITLE: '<subtitle> '

Sets the name of a subtitle that appears beneath the title at
the top of each page of the source listing.

Note: To print the subtitle on page 1 of the list file, define the I
subtitle before the title in the program.

$SYMTAB+

If this metacommand is on at the end of a procedure,
function, or compiland, it sends information about its
variables to the listing file. For example, see lines 14 and 17

5016793-003

5-14 Metacommands

in the sample listing file in section 15, Compiling, Linking,
and Executing Programs. The left columns contain the
following:
D the offset to the variable from the frame pointer for

variables in procedures and functions.
o the off set to the variable in the fixed memory area for

I main program and FAR and STATIC variables.

I

o the length of the variable.

A leading plus or minus sign indicates a frame offset. Note
that this offset is to the lowest address used by the variable.

The first line of the $SYMT AB listing contains the offset to
the return address, from the top of the frame (zero for the
main program) and the length of the frame, from the frame
pointer to the end, including front end temporary variables.
Code generator temporary variables are not included.

For functions, the second line contains the offset, length, and
type of the value returned by the functions. The remaining
lines list the variables, including their type and attribute
keywords, as shown below:

Keyword Meaning

Public Has the PUBLIC attribute

Extern Has the EXTERN attribute

Origin Has the ORIGIN attribute

Static Has the STATIC attribute

Far Has the FAR attribute

Const Has the READONL Y attribute

Value Occurs in a VALUE section

ValueP Is a value parameter

VarP Is a VAR or CONST parameter

VarsP Is a VARS or CONSTS parameter

ProcP Is a procedural parameter

Segmen Uses segmented addressing

Regis! Parameter passed in register

Section 4 4-1

Pascal Notation
All components of the Pascal language are constructed from
the standard ASCII character set. Characters make up lines,
each of which is separated by a character specific to the
operating system. Lines make up files. Within a line,
individual characters or groups of characters fall into one or
more of four broad categories:

o components of identifiers

o separators

o special symbols

o unused characters

Components of Identifiers
Identifiers are names that denote the constants, variables,
data types, procedures, functions, and other elements of a
Pascal program. Identifiers must begin with a letter;
subsequent components can include letters, digits, and
underscore characters. Identifiers can be of any length, but
must fit on a line. Only the first 31 characters are significant.

Letters
In identifiers, only the uppercase letters A through Z are
significant. You can use lowercase letters for identifiers in a
source program; however, the Pascal Compiler converts all
lowercase letters,in identifiers to the corresponding
uppercase letters.

letters in comments or in string literals can be either
uppercase or lowercase; no mapping of lowercase to
uppercase occurs in either comments or string literals.

Digits
Digits in Pascal are the numbers zero through nine. Digits can
occur in identifiers such as AS129M, or in numeric constants
such as 1.23 and 456.

5016793

4-2 Pascal Notation

The Underscore Character
The underscore U is the only nonalphanumeric character
allowed in identifiers. You can use it like a space to improve
the readability.

Separators
Separators delimit adjacent numbers, reserved words, and
identifiers. A separator can be:

a the space character

a the tab character

o the form feed character

o the new line marker

a the comment

Comments can take one of these forms:

{This is a comment enclosed in braces.}

(*This is an alternate form of comment.*)

You can also have comments that begin with an exclamation
point:

! The rest of this line is a comment.

For comments in this last form, the new line character
delimits the comment. Nested comments are permitted if
each level has different delimiters. In such cases, when a
comment is started, the compiler ignores succeeding text
until it finds the matching end-of-comment.

Special Symbols
Special symbols can be divided into:

a punctuation

o operators

o reserved words

Pascal Notation

Punctuation
Punctuation serves a variety of purposes, including the
following:

Symbol

{ }

[1

I I

Purpose

Braces delimit comments.

Brackets delimit array indices, sets, and attributes. They can also
replace the reserved words BEGIN and END in a program.

Parentheses delimit expressions, parameter lists, and program
parameters.

Single quotation marks enclose string literals •

• - The colon-equals symbol assigns values to variables in assignment
statements and VALUE sections.

The semicolon separates statements and declarations.

4-3

The colon separates variables from types, and labels from statements.

The equal sign separates identifiers and type clauses in a TYPE section.

The comma separates the components of lists.

The double period denotes a subrange.

The period designates the end of a program, indicates the fractional
part of a Real number, and also delimits fields in a record.

The up arrow denotes the value pointed to by a reference value.

The number sign denotes nondecimal numbers.

$ The dollar sign prefixes metacommands.

Operators
Operators are a form of punctuation that indicate some
operation to be performed. Some are alphabetic, others are
one or two nonalphanumeric characters. Operators that
consist of more than one character must not have a
separator between characters. The operators that consist
only of nonalphabetic characters are:

+ • I > < <> <= >=

5016793

Pascal Notation

Some operators (for example, NOT and DIV) are reserved
words instead of nonalphabetic characters. See section 8,
Expressions, for a complete list of the nonalphabetic
operators and a discussion of the use of operators in
expressions.

Reserved Words
Reserved words are a fixed part of Pascal language. They
include statement names (for example, BREAK) and words
like BEGIN and END that bracket the main body of a program.
Refer to appendix E, Summary of Pascal Reserved Words,
for a complete list.

You can not create an identifier that is the same as any
reserved word. You can, however, declare an identifier that
contains within it the letters of a reserved word (for example,
the identifier DOT containing the reserved word DO).

Unused Characters
A few printing characters are not used in Pascal:

% &
However, you can use them within comments or string
literals. A number of other nonprinting ASCII characters
generate error messages if you use them in a source file
other than in a comment or string literal:

o the characters from CHR (0) to CHR (31), except the tab
and form feed, CHR (9) and CHR (12), respectively

a the characters from CHR (127) to CHR (255)

The tab character, CHR (9), is treated like a space and is
passed on to the listing file. A form feed, CHR (12), is
treated like a space and starts a new page in the listing file.

The ISO standard for ASCII reserves some character
positions for national usage to permit larger alphabets,
diacritical marks, and so on. Note that the number sign (#) is
equivalent to the pound sign (L with a bar through it), as
ASCII #23; also the currency symbol($) is equivalent to the
scarab sign (a circle with four spikes), as ASCII #24. The
other 10 national symbols either are unused (#5C, #60, #7C,
and #7E) or have substitutes available(@ #40, [#5B,]

#5D, "' #5E, { #7B, and } #7D).

Section 5

Metacommands
Metacommands make up the compiler control language.
They are compiler directives that allow you to control such
things as:

o optimization level control

o debugging and error handling

o use of the source file during compilation

o listing file format

5-1

You can specify one or more metacommands at the start of
a comment; you should separate multiple metacommands
with either spaces or commas. Spaces, tabs, and line
markers between the elements of a metacommand are
ignored. Thus, the following are equivalent:

1$PAGE:121

ISPAGE : 121

To disable metacommands within comments, you place any
character that is not a tab or space in front of the first dollar
sign, as shown:

{x$PAGE:12l

You can change compiler directives during the course of a
program. For example, most of a program might use $LIST -
with a few sections using $LIST+ as needed. Some
metacommands, such as $LINESIZE, normally apply to an
entire compilation.

If you are writing Pascal programs for use with other
compilers, keep in mind the fact that metacommands are
always nonstandard and rarely transportable.

Metacommands invoke or set the value of a metavariable.
Metavariables are classified as typeless, integer, on/off
switch, or string.

5016793

5-2 Metacommands

o Typeless metavariables are invoked when used, as in
$PUSH.

o Integer metavariables can be set to a numeric value, as in
$PAGE:101.

o On/off switches can be set to a numeric value so that a
value greater than zero turns the switch on and a value
equal or less than zero turns it off, as in $MATHCK: 1.

o String metavariables can be set to a character string value,
such as with $TITLE:'COM PROGRAM'.

The following notations are used in metacommand
descriptions in this chapter:

Notation

+or -

:'<text>'

Meaning

Metacommand is typeless.

Metacommand is an on/off switch. + sets value to 1 (on). -
sets value to 0 (off). Default is indicated by + or - in heading.

Metacommand is an integer.

Metacommand is a string.

String values in metalanguage can be either a literal string or
string constant identifier. Constant expressions are not
allowed for either numbers or strings, although you can
achieve the same effect by declaring a constant identifier
equal to the expression and using the identifier in the
metacommand.

In metacommands only, Boolean and enumerated constants
are changed to their ORD values. Thus, a Boolean false value
becomes 0 and true becomes 1.

For a complete alphabetical listing of Pascal metacommands
refer to appendix G, Summary of Pascal Metacommands.

Optimization Level Control
The following metacommands allow you to control code
optimization.

Metacommands 5-3

Name Description

$SIMPLE Disables global optimization. This allows a sequence of operators of
the same precedence to evaluate left to right, instead of being
optimized into something not wanted. (See example in section 8
under Evaluating Expressions.I

$SIZE Minimizes size of code generated.

$SPEED Minimizes execution time of code.

The metacommands $INTEGER and $REAL set the length
(precision) of the standard INTEGER and REAL data types.
$INTEGER can be set to 2 (the default) only for 16-bit
integers. However, you can set $REAL to either 4 or 8 (the
default) to make type REAL identical to REAL4 or REALS,
respectively.

The $SIMPLE turns off common subexpression optimization
while $SIZE and $SPEED turn it back on. If $ROM is set, the
compiler gives a warning that static data will not be initialized
in either of the following situations:

a at a VALUE section.

a every place where static data initialization occurs due to
$1NITCK (described below in Debugging and Error
Handling).

5016793

5-4 Metacommands

Debugging and Error Handling
The following metacommands are for debugging and error
handling. They also generate code to check for runtime
errors:

Metacommand

$BRAVE+

$DEBUG-

$ENTRY

$ERRORS:<n>

$GOT0-

$1NDEXCK+

$1NITCK

$LINE

SMATHCK+

$NILCK+

$RANGECK+

$RUNTIME

$STACKCK+

SWARN+

Description

Sends error messages and warnings to the terminal screen.

Turns on or off all the debug checking (CK in
metacommands below).

Generates procedure entry/ exit calls for debugger.

Sets number of errors allowed per page (default is 25).

Flags GOTO statements as "considered harmful."

Checks for array index values in range, including super array
indices.

Checks for use of uninitialized values.

Generates line number calls for the debugger.

Checks for mathematical errors such as overflow and division
by zero.

Checks for bad pointer values.

Checks for subrange validity.

Determines context of runtime errors.

Checks for stack overflow at procedure or function entry.

Gives warning messages in listing file.

If any check is on when the compiler processes a statement,
tests relevant to the statement are done. A runtime error
invokes a call to the runtime support routine, EMSEQQ
(synonymous with ABORT). When EMSEQQ is called, the
compiler passes the following information to it:

a an error message.

a a standard error code.

a an operating system return code error status value.

Metacommands

EMSEOO also has available:

o the program counter at the location of the error.

a the stack pointer at the location of the error.

o the frame pointer at the location of the error.

o the current line number (if $LINE is on).

5-5

a the current procedure or function name and the source
filename in which the procedure or function was compiled
(if $ENTRY is on).

$BRAVE+

Sends error messages and warnings to your terminal (in
addition to writing them to the listing file). If the number of
errors and warnings is more than can fit on the screen, the
earlier ones scroll off and you will have to check the listing
file to see them all.

$DEBUG-

Turns on or off all of the debug switches (those that end
with CK). You may find it useful to use $DEBUG- at the
beginning of a program to turn all checking off and then
selectively turn on only the debug switches you want.
Alternatively, you can use this metacommand to turn all
debugging on at the start and then selectively turn off those
you do not need as the program progresses. By default,
some error checks are on and some off. This metacommand
should be turned off when programming interrupt handlers.

$ENTRY-

Generates procedure and function entry and exit calls. This
allows a debugger or error handler to determine the
procedure or function in which an error has occurred. Since
this switch generates a substantial amount of extra code for
each procedure and function, use it only when debugging.
Note that $LINE+ requires $ENTRY+. Thus, $LINE+ turns
on $ENTRY, and $ENTRY - turns off $LINE.

5-6 Metacommands

$ERRORS:<n>

Sets an upper limit for the number of errors allowed per
page. Compilation aborts if that number is exceeded. The
default is 25 errors and/or warnings per page.

$GOTO-

Flags GOTO statements with a warning that they are
considered harmful. This warning can be useful for the
following purposes:

a to encourage structured programming in an educational
environment.

a to flag all GOTO statements during the process of
debugging.

$INDEX CK

Checks that array index values, including super array indices,
are in range. Since array indexing occurs so often, bounds
checking is enabled separately from other subrange checking.

$1NITCK-

Checks for the occurrence of uninitialized values, such as the
following:

a uninitialized INTEGERs and 2-byte INTEGER subranges with
the hexadecimal value 16#8000.

a uninitialized 1-byte INTEGER subranges with the
hexadecimal value 16#80.

a uninitialized pointers with the value 1 (if $NILCK is also on).

a uninitialized REALs with a special value.

The $1NITCK metacommand generates code to perform the
following actions:

a set such values uninitialized when they are allocated.

a set the value of INTEGER range FOR-loop control variables
uninitialized when the loop terminates normally.

a set the value of a function that returns one of these types
uninitialized when the function is entered.

Metacommands 5-7

$1NITCK never generates any initialization or checking for
WORD or address types. Statically allocated variables are
loaded with their initial values. Also, $1NITCK does not check
values in an array or record when the array or record itself is
used.

Variables allocated on the stack or in the heap are assigned
initial values with generated code. $1NITCK does not initialize
any of the following classes of variables:

o variables mentioned in a VALUE section.

o variant fields in a record.

o components of a super array allocated with the NEW
procedure.

$LINE-

Generates a call to a debugger or error handler for each
source line of executable code. This allows the debugger to
determine the number of the line in which an error has
occurred. Because this metacommand generates a
substantial amount of extra code for each line in a program,
you should turn it on only when debugging. Note that
$LINE+ requires $ENTRY+, so $LINE+ turns on $ENTRY,
and $ENTRY- turns off $LINE.

$MATHCK+

Checks for mathematical errors, including INTEGER and
WORD overflow and division by zero. $MA THCK does not
check for an INTEGER result of exactly -MAXINT -1 (i.e.,
#8000); $1NITCK does catch this value if it is assigned and
later used.

Turning $MATHCK off does not always disable overflow
checking. There are, however, library routines that provide
addition and multiplication functions that permit overflow
(LADDOK, LMULOK, SADDOK, SMULOK, UADDOK, and
UMULOK). For a description of each of these functions see
chapter 11, Available Procedures and Functions.

5016793

5-8 Metacommands

$NILCK+

Checks for the following conditions:

o dereferenced pointers whose values are NIL.

o uninitialized pointers if $1NITCK is also on.

o pointers that are out of range.

o pointers that point to a free block in the heap.

$NILCK occurs whenever a pointer is dereferenced or passed
to the DISPOSE procedure. $NILCK does not check
operations on address types.

$RANGECK+

Checks subrange validity in the following circumstances:

o assignment to subrange variables.

o CASE statements without an OTHERWISE clause.

o actual parameters for the CHR, SUCC, and PRED functions.

o indices in PACK and UNPACK procedures.

o set and LSTRING assignments and value parameters.

o super array upper bounds passed to the NEW procedure.

$RUNTIME-

If the $RUNTIME switch is on when a procedure or function
is compiled, the location of an error is the place where the
procedure or function was called, rather than the location in
the procedure or function itself. This information is normally
sent to your terminal, but you could link in a custom version
of EMSEQQ, the error message routine, to do something
different (such as invoke the runtime debugger or reset a
controller). For more information on error handling, see
appendix D, Run Time Structure.

$STACKCK+

Checks for stack overflow when entering a procedure or
function and when pushing parameters larger than four bytes
on the stack.

Metacommands

$WARN+

Sends warning messages to the listing file (this is the
default). If this switch is turned off, only fatal errors are
printed in the source listing.

Source File Control
The following metacommands provide some measure of
control over the use of the source file during compilation.

Name Description

Allows conditional compilation of

5-9

$IF constant
$THEN <textl>
$ELSE <text2>

SEND

<text 1 > source if <constant> is greater
than zero.

$INCLUDE:' <filename>'

$1NCDNST: <text>

$MESSAGE:' <text>'

$POP

$PUSH

Switches compilation from current source
file to source file named.

Allows interactive setting of constant
values at compile time.

Allows display of a message on the
screen to indicate which version of a
program is compiling.

Restores saved value of all
metacommands.

Saves current value of all metacommands.

Because the compiler keeps one look-ahead symbol, it
actually processes metacommands that follow a symbol
before it processes the symbol itself. This characteristic of
the compiler can be a factor in cases such as:

CONST
a . 1 ;

1$1 F Q $THEN!

CONST
a = 1;
DUMMY • O;

{$IF Q $THEN!

5016793

10 is undefined in the $IF.I

{Now a is def i ned.J

5-10

x :- p·;
!SN I LCK+J

x := p·;
!$NILCK-1

{NILCK applies top• here.I

fNILCK does not apply to p·.1

$IF <Constant> $THEN <text> $~ND

Metacommands

Allows for conditional compilation of a source text. If the
value of the constant is greater than zero, then source text
following the $IF is processed; otherwise it is not. An $IF
$THEN $ELSE construction can also be used, as in the
following example:

f $1 F BTOS $THENJ
SECTOR • S12;

!SELSEJ
SECTOR· S128;

f$ENDJ

To simulate an $1FNOT construction, use the following form
of the metacommand:

$IF <Constant> $ELSE <l8XI> SEND

The constant may be a literal number or constant identifier.
The text between $THEN, $ELSE, and $END is arbitrary; it
can include line breaks, comments, and other
metacommands (including nested $Ifs and so on). Any
metacommands within skipped text are ignored, except
corresponding $ELSE or $END metacommands.

Examples using the metaconditional:

!SIF FPCHIP $THEN!
CODEGEN (FADDCALL,T1,LEFTP)

{$END!
($IF COMPSYS $ELSE!

IF USERSYS THEN DOITTOIT
!SEND!

$INCLUDE

Allows the compiler to switch processing from the current
source to the file named. When the end of the file that was
included is reached, the compiler switches back to the
original source and continues compilation. Resumption of

Metacommands 5-11

compilation in the original source file begins with the line of
source text that follows the line in which the $INCLUDE
occurred. Therefore, the $INCLUDE metacommand should
always be last on a line.

$1NCONST

Allows you to enter the values of the constants (such as
those used in $1Fs) at compile time, rather than editing the
source. This is useful when you use metaconditionals to
compile a version of a source for a particular environment,
customer, etc. Compilation can be either interactive or
batch-oriented. For example, the metacommand
$1NCONST:YEAR produces the following prompt for the
constant YEAR:

lnconst: YEAR.

You need only give a response like:

I neons I: YEAR • 1985

The response is presumed to be of type WORD. The effect
is to declare a constant identifier named YEAR with the value
1985. This interactive setting of the constant YEAR is
equivalent to the constant declaration:

CONST YEAR + 1985;

$MESSAGE

Allows you to send messages to your terminal during
compilation. This is particularly useful if you use
metaconditionals extensively and need to know which
version of a program is being compiled.

Example of the $MESSAGE metacommand:

($MESSAGE: 'Message on terminal screen! 'I

$PUSH and $POP

Allow you to create a meta-environment you can store with
$PUSH and invoke with $POP. $PUSH and $POP are useful
in $INCLUDE files for saving and restoring the
metacommands in the main source file.

lin1R7!13

5-12 Metacommands

Listing File Control
You can format the listing file with these metacommands:

Metacommand

SU NE SIZE: <n>

$LIST+

SOCODE+

$PAGE+

SPAGE:<n>

SPAGEIF:<n>

SPAGESIZE:<n>

SSKIP:<n>

$SUBTITLE:' <text>'

SSYMTAB+

$TITLE:' <text>'

$LINESIZE:<n>

Description

Sets width of listing. Default is 131.

Turns on or off source listing. Errors are
always listed.

Turns on disassembled object code listing.

Skips to next page. Line number is not reset.

Sets page number for next page (does not
skip to next page).

Skips to next page if less than n lines left on
current page.

Sets length of listing in lines. Default is 55.

Skips n lines or to end of page.

Sets page subtitle.

Sends symbol table to listing file.

Sets page title.

Sets the maximum width of lines in the listing file. This value
normally defaults to 131 .

$LIST+

Turns on the source listing. Except for $UST - , the
metacommands themselves appear in the listing. The format
of the listing file is described in section 14, Compiling,
Linking, and Executing programs.

Metacommands 5-13

$0CODE+

Turns on the symbolic listing of the generated code to the
object listing file. Although the format varies with the target
code generator, it generally looks like an assembly listing,
with code addresses and operation mnemonics. In many
cases, the identifiers for procedure, function, and static
variables are truncated in the object listing file.

$PAGE+

Forces a new page in the source listing. The page number of
the listing file is automatically incremented.

$PAGE:<n>

Sets the page number of the next page of the source listing.
$PAGE:<n> does not force a new page in the listing file.

$PAGEIF:<n>

Conditionally performs $PAGE+, if the current line number of
the source file plus n is less than or equal to the current page
size.

$PAGESIZE:<n>

Sets the maximum size of a page in the source listing. The
default is 55 lines per page.

$SKIP:<n>

Skips n lines or to the end of the page in the source listing.

$SUBTITLE: '<subtitle>'

Sets the name of a subtitle that appears beneath the title at
the top of each page of the source listing.

$SYMTAB+

If this metacommand is on at the end of a procedure,
function, or compiland, it sends information about its
variables to the listing file. For example, see lines 14 and 17

5016793

5-14 Metacommands

in the sample listing file in section 14, Compiling, Linking,
and Executing Programs. The left columns contain the
following:

o the offset to the variable from the frame pointer or
variables in procedures and functions.

o the offset to the variable in the fixed memory area for main
program and ST A TIC variables.

o the length of the variable.

A leading plus or minus sign indicates a frame offset. Note
that this offset is to the lowest address used by the variable.

The first line of the $SYMTAB listing contains the offset to
the return address, from the top of the frame (zero for the
main program), and the length of the frame, from the frame
pointer to the end, including front end temporary variables.
Code generator temporary variables are not included.

For functions, the second line contains the offset, length, and
type of the value returned by the functions. The remaining
lines list the variables, including their type and attribute
keywords, as shown below:

Keyword M11ning

Public Has the PUBLIC attribute

Extern Has the EXTERN attribute

Origin Has the ORIGIN attribute

Static Has the ST A TIC attribute

Const Has the READONLY attribute

Value Occurs in a VALUE section

ValueP Is a value parameter

VarP Is a VAR or CONST parameter

VarsP Is a VARS or CONSTS parameter

ProcP Is a procedural parameter

Segmen Uses segmented addressing

Regist Parameter passed in register

Metacommands 5-15

$TITLE:' <title>'

Sets the name of a title that appears at the top of each page
of the source listing.

For information on Listing File format refer to section 14,
Compiling, Linking, and Executing Programs.

5016793

Section 6 6-1

Identifiers and Constants
Identifiers are the names given to individual instances of
components of the langusge. Constants are values that are
known before a program begins and will not change during
the run.

Identifiers
An identifier consists of a letter followed by additional
letters, digits, or underscores U. Identifiers denote
constants, variables, procedures, functions, programs, and
tag fields in records. Some features also use identifiers, such
as super arrays, types, modules, units, and statement labels.

Identifiers can be any length, but must fit on a line. Only the
first 31 characters are significant. An identifier longer than
the significant length causes the compiler to generate a
warning, but not a fatal error.

The identifiers used for a program, module, or unit are
passed to the linker, as are identifiers with PUBLIC or
EXTERN attribute.

The disassembled object code listing and debugger symbol
table can truncate variable and procedural identifiers to six
characters. Using identifiers of seven or fewer characters
saves time during compilation.

The Scope of Identifiers
An identifier is defined for the duration of the procedure,
function, program, module, implementation, or interface in
which you declare it. This holds true for any nested
procedures or functions. An identifier's association must be
unique within its scope; that is, it must not name more than
one thing at a time.

A nested procedure or function can redefine an identifier only
if it has not already been used within that structure.
However, the compiler does not identify such redefinition as
an error, but generally uses the first definition until the
second occurs. A special exception for reference types is
discussed in section 7, Data Types.

5016793

6-2 Identifiers and Constants

Predeclared Identifiers
This category includes the identifiers for predeclared types,
super array types, constants, file variables, functions, and
procedures. You can use them freely, without declaring
them. However, they differ from reserved words in that you
can redefine them whenever you wish. At the standard level,
the following identifiers are predeclared:

ABS EOLN MAXI NT PUT
ARCT AN EXP NEW READ
BOOLEAN FALSE ODD READLN
CHAR FLOAT ORD REAL
CHR GET OUTPUT RESET
COS INPUT PAGE REWRITE
DISPOSE INTEGER PACK ROUND
EOF LN PRED SIN

SOR
SQRT
succ
TEXT
TRUE
TRUNC
UNPACK
WRITE
WRITELN

The following identifiers are available at the extended and
system levels:

a String intrinsics

CONCAT
COPYLST
COPYSTR
DELETE

INSERT
POSITN
SCANEO
SCANNE

a Extended level intrinsics

ABORT
BYWORD
DECODE
ENCODE
EVAL

HIBYTE
LOBYTE
LOWER
RESULT
SIZE OF
UPPER

a System level intrinsics

FILLC
FILLSC
MOVEL
MOVER

MOVESL
MOVESR
RETYPE

ldentif iers and Constants

a Extended level 1/0

ASSIGN READFN
CLOSE READSET
DIRECT SEEK
DISCARD SEQUENTIAL
FCBFQQ TERMINAL
FILE MODES

a INTEGER4 type

BYLONG
FLOAT4
HIWORD
INTEGER4

a Super array type

LSTRING
NULL
STRING

a WORD type

MAXWORD
WORD
WAD

a Miscellaneous

AD RM EM
ADSMEM
BYTE
INTEGER1

Constants

LO WORD
MAXINT4
ROUND4
TRUNC4

INTEGER2
REAL4
REALS
SINT

6-3

A constant is a value that is known before a program starts
and that does not change as the program progresses.
Examples of constants include the number of days in the
week, your birthdate, the name of your dog, and the phases
of the moon.

5016793

8-4 Identifiers and Constants

A constant can be given an identifier, but you can not alter
the value associated with that identifier during the execution
of the program. Each constant implicitly belongs to some
category of data, as follows:

a Numeric constants are one of the several number types:
REAL, INTEGER, WORD, or INTEGER4.

a Character constants are strings of characters enclosed in
single quotation marks and are called string literals in
Pascal.

a Structured constants include constant arrays, records, and
typed sets.

Constant expressions allow you to compute a constant
based on the values of previously declared constants in
expressions. The identifiers defined in an enumerated type
are constants of that type and can not be used directly with
numeric (or string) constant expressions. These identifiers
can be used with the ORD, WRD, or CHR functions, as in
ORD (BLUE).

TRUE and FALSE are predeclared constants of type
BOOLEAN and can be redeclared. NIL is a constant of any
pointer type; however, because it is a reserved word, you
can not redefine it. Also, the null set is a constant of any set
type.

Numeric statement labels have nothing to do with numeric
constants; you can not use a constant identifier or
expression as a label. Internally, all constants are limited in
length to a maximum of 255 bytes.

Constant Identifiers
A constant identifier introduces the identifier as a synonym
for the constant. You should put these declarations in the
CONST section of a compiland, procedure, or function.

The general form. of a constant identifier declaration is the
identifier followed by an equal sign and the constant value.
The following program fragment includes three statements
that identify constants:

PROGRAM DEMO (INPUT, OUTPUT);
CONST

DAYSINYEAR • 365;
DAYSINWEEK • 7;
NAMEOFPLANET • 'EARTH';

Identifiers and Constants 6-5

In this example, the numbers 365 and 7 are numeric
constants. 'EARTH' is a string literal constant and must be
enclosed in single quotation marks. ISO Pascal defines a
strict order for setting out the declarations in the declaration
section of a program. as shown here:

CONST
MAX - 10;

TYPE
NAME =PACKED ARRAY (1 .. MAX) OF CHAR;

VAR
FIRST : NAME;

The extended level of Pascal relaxes this order and allows
more than one instance of each kind of declaration:

TYPE
COMPLEX = RECORD

R, I : REAL;
END;

CONST
P II • COMPLEX (3 . 141 6 , 0 0) ;

VAR
PIX : COMPLEX;

TYPE
IVEC =ARRAY (1 .. 3) OF COMPLEX;

CONST
PIVEC • IVEC (Pl I, Pl I, COMPLEX (0.0, 1.0));

Numeric Constants
Numeric constants are irreducible numbers. such as 45,
12.3, and 9E12. The notation of a numeric constant
generally indicates its type: REAL, INTEGER, WORD, or
INTEGER4. Numbers can have a leading plus sign (+) or
minus sign(-), except when the numbers are within
expressions. Therefore:

ALPHA := +10 !Val id)

ALPHA + -10 {Inv a I i di

The compiler truncates any number that exceeds a certain
maximum number of characters and gives a warning when
this occurs. The maximum length of constants (31) is the
same as the maximum length of identifiers.

The syntax for numeric constants applies not only to the
actual text of programs, but also to the content of textfiles
read by a program.

5016793

6-6

Examples of numeric constants:

123
+ 12.345
-1.7E-10

17E+3
-17E3

0.17
007

-26.0
26.0E12
1E1

Identifiers and Constants

Numeric constants can appear in any of the following:

o CONST sections

o expressions

o type clauses

o set constants

o structured constants

o CASE statement CASE constants

o variant record tag values

REAL Constants
The type of a number is REAL if the number includes a
decimal point or exponent. This provides about seven digits
of precision. with a maximum value of about 1. 701411 E38.
There is. however, a distinction between REAL values and
REAL constants. The REAL constant range can be a subset
of the REAL value range. The REAL numeric constants must
be greater than or equal to 1.0E-38 and less than 1.0E+38.

The compiler issues a warning if there is not at least one
digit on each side of a decimal point. A REAL number
starting or ending with a decimal point can be misleading.
For example, because a left parenthesis-period combination
symbol substitutes for a left square bracket, and a right
parenthesis-period for a right square bracket. the following
quantity:

(.1 +2.)

is interpreted as:

[1 +2)

Identifiers and Constants 6-7

Scientific notation in REAL numbers (as in 1.23E-6 or 4E7)
is supported. The decimal point and exponent sign are
optional when an exponent is given. Both the uppercase E
and the lowercase e are allowed in REAL numbers.
Uppercase D and lowercase d are also allowed to indicate an
exponent. This provides compatibility with other languages.

All Real constants are stored in REALS (double precision)
format. If you require a single precision REAL4 constant,
declare a REAL4 variable and give it your Real constant value
in a VALUE section.

INTEGER, WORD, and INTEGER4 Constants
The type of a non-REAL numeric constant is INTEGER,
WORD, or INTEGER4. The constants of each of these types
can assume the following range of values:

Type Range of Values Predeclared
(minimum/maximum) Constant

INTEGER - MAXINT to MAXINT MAXINT-32767

WORD 0 to MAXWORO MAXWOR0-65535

INTEGER4 -MAXINT4 to MAXINT4 MAXINT4-2147483647

MAXINT, MAXWORD, and MAXINT4 are all predeclared
constant identifiers. One of three things happens when you
declare a numeric constant identifier:

CJ A constant identifier from -MAXINT to MAXINT becomes
an INTEGER.

CJ A constant identifier from MAXINT + 1 to MAXWORD
becomes a WORD.

CJ A constant identifier from - MAX INT 4 to - MAXINT - 1 or
MAXWORD+ 1 to MAXINT4 becomes an INTEGER4.

However, any INTEGER type constant (including constant
expressions and values from -32767 to -1) automatically
changes to type WORD if necessary; when the INTEGER
value is negative, 65536 is added to it and the underlying
16-bit value is not changed.

5016793

6-8 Identifiers and Constants

For example, you can declare a subrange of type WORD as
WRD(0) .. 127; the upper bound of 127 is automatically given
the type WORD. The reverse is not true; constants of type
WORD are not automatically changed to type INTEGER.

The ORD and WRD functions also change the type of an
ordinal constant to INTEGER or WORD. Also, any INTEGER
or WORD constant automatically changes to type INTEGER4
if necessary, but the reverse is not true.

The following are examples of constant conversions:

Constant

0

-32768

32768

0 .. 20000

0 .. 50000

0 .. 80000

-1 .. 50000

Assumed Type

INTEGER could become WORD or INTEGER4

INTEGER4 only

WORD could become INTEGER4

INTEGER subrange

WORD subrange

Invalid: no INTEGER4 subranges

Invalid: becomes 65535 .. 50000
(that is, - 1 is treated as 65536)

Nondecimal Numbering
Pascal supports not only decimal number notation, but also
numbers in hexadecimal, octal, binary, or other base
numbering (where the base can range from 2 to 36). The
number sign (#) acts as a radix separator.

Examples of numbers in nondecimal notation:

16#FF02
10#987
8#776
2#111100

Leading zeros are recognized in the radix, so a number like
008#147 is permitted. In hexadecimal notation, upper or
lowercase letters A through F are permitted. A nondecimal
constant without the radix (such as #44) is assumed to be
hexadecimal. Nondecirnal notation does not imply a WORD
constant and can be used for INTEGER, WORD, or INTEGER4

Identifiers and Constants 6-9

constants. You must not use nondecimal notation for REAL
constants or numeric statement labels.

Character Strings

In Pascal, sequences of characters enclosed in single
quotation marks are called string literals to distinguish them
from string constants, which can be expressions or values of
the STRING type.

A string constant contains from 1 to 255 characters. A
string constant longer than one character is of type PACKED
ARRAY [1 .. n) OF CHAR, also known as the type STRING (n).
A string constant that contains just one character is of type
CHAR. However, the type changes from CHAR to PACKED
ARRAY [1 .. 1] OF CHAR (STRING (1)) if necessary. For
example, a constant ('A') of type CHAR could be assigned to
a variable of type STRING (1).

A literal apostrophe (single quotation mark) is represented by
two adjacent single quotation marks (for example, 'DON"T
GO'. The null string (")is not permitted. A string literal must
fit on a line. The compiler recognizes string literals enclosed
in double quotations marks nor accent marks('), instead of
single quotation marks, but issues a warning message when
it encounters them.

You can have string constants made up of concatenations of
other string constants including string constant identifiers,
the CHA () function, and structured constants of type
STRING. This is useful for representing string constants that
are longer than a.line or that contain nonprinting characters.
For example:

'THIS IS UNDERLINED' 'CHR(13) 'STRING (00 18 OF'_')

The LSTRING feature adds the super array type LSTRING.
LSTRING is similar to PACKED ARRAY [0 .. n] OF CHAR,
except that element 0 contains the length of the string,
which can vary from 0 to a maximum of 255. Note that, a
constant of type STRING (n) or CHAR changes automatically
to type LSTRING, if necessary. Refer to section 6, Data
Types, for a discussion of LSTRINGs.

NULL is a predeclared constant for the null LSTRING, .with the
element 0 (the only element) equal to CHA (0). NULL can not
be concatenated, since it is not of type STRING. It is the only
constant of type LSTRING.

5016793

6-10 Identifiers and Constants

Examples of string literal declarations:

NAME. 'John Jacob'; la valid string literal)
LETTER • 'Z'; I LETTER is o I type CHARI
QUOTED_QUOTE • ''''; !Quotes quote)
NULL_STRING ·NULL; !lnval id)
NULL_STRING • ''; flnval id)
DOUBLE - 'OK'; {generates a warning)

Structured Constants
ISO Pascal permits only the numeric and string constants
already mentioned, the pointer constant value NIL, and
untyped constant sets. With this Pascal, you can use
constant arrays, records, and typed sets. Structured
constants can be used anywhere a structured value is
allowed, in expressions as well as in CONST and VALUE
sections.

1 An array constant consists of a type identifier followed by
a list of constant values in parentheses separated by
commas.

Example of an array constant:

TYPE
VECT_TYPE ·ARRAY [-2 .. 2) OF INTEGER;

CONST
VECT • VECT_TYPE (5, 4, 3, 2, 1);

VAR
A : VECT_TYPE;

VALUE
A :- VECT;

2 A record constant consists of a type identifier followed by
a list of constant values in parentheses separated by
commas.

Example of a record constant:

TYPE
REC_TYPE • RECORD

A, B: BYTE;
C, D: CHAR;

END;
CONST

RECR • REC_TYPE (#20, 0, 'A', CHR (20));
VAR

FOO : REC_TYPE;
VALUE

FOO :- RECR;

Identifiers and Constants 6-11

3 A set constant consists of an optional set type identifier
followed by set constant elements in square brackets. Set
constant elements are separated by commas. A set
constant element is either an ordinal constant, or two
ordinal constants separated by two dots to indicate a
range of constant values.

Example of a set constant:

TYPE
COLOR_TYPE ·SET OF (RED, BLUE, WHITE, GRAY, GOLD);

CONST
SETC • COLOR_TYPE [RED, WHITE .. GOLD);

VAR
RAINBOW : COLOR_TYPE;

VALUE
RAINBOW ;. SETC;

A constant within a structured array or record constant must
have a type that can be assigned to the corresponding
component type. For records with variants, the value of a
constant element corresponding to a tag field selects a
variant, even if the tag field is empty. The number of
constant elements must equal the number of components in
the structure except for super array type structured
constants. Nested structured constants are permitted.

An array or record constant nested within another structured
constant must still have the preceding type identifier. For this
reason, a super array constant can have only one dimension.
(Refer to section 6, Data Types, for a discussion of super
arrays.) The size of the representation of a structured
constant must be from 1 to 255 bytes. If this 255-byte limit
is a problem, declare a structured variable with the
READONL Y attribute, and initialize its components in a
VALUE section.

5018793

6-12

Example of a complex structured constant:

TYPE
R3 =ARRAY [1 .. 3) OF REAL;

TYPE
SAMPLE = RECORD

I: INTEGER;
A: R3;
CASE BOOLEAN OF

Identifiers and Constants

TRUE: (S: SET OF 'A' .. 'Z'; P:. SAMPLE);
FALSE: (X: INTEGER);

END;
CONST

SAMP_CONST= SAMPLE (27, R3 (1.4, 1.4, 1.4),
TRUE, ['A' , 'E' , ' I ') , NIL) ;

Constant elements can be repeated with the phrase DO <n>
OF <Constant>, so the previous example could have included
"DO 3 OF 1.4" instead of "1 .4, 1.4, 1.4".

Pascal does not support set constant expressions, such as
['_'] + LETTERS, or file constant expressions. The constant
'ABC' of type STRING (3) is equivalent to the structured
constant STRING ('A', 'B', 'C'). LSTRING structured
constants are not permitted; use the corresponding STRING
constants instead.

Structured constants (and other structured values, such as
variables and values returned from functions) can be passed
by reference using CONST parameters. For more information,
see chapter 10, Procedures and Functions.

There are two kinds of set constants: one with an explicit
type, as in CHARSET [' A'..'Z'], and one with an unknown
type, as in (20 .. 40]. You can use either in an expression or
to define the value of a constant identifier. Set constants
with an explicit type can also be passed as a reference
(CONST) parameter. Sets of unknown type are unpacked, but
the type changes to PACKED if necessary.

Constant Expressions
Constant expressions allow you to compute constants based
on the values of previously declared constants in
expressions. Constant expressions can also occur within
program statements.

Identifiers and Constants

Example of a constant expression declaration:

CONST
HEIGHT_OF_LADDER • 6;
HEIGHT_OF_MAN • 6;
REACH = HEIGHT_OF_LADDER + HEIGHT_OF_MAN;

6-13

Because a constant expression may contain only constants
that you have declared earlier, the following is invalid:

CONST
MAX • A + B;
A • 10;
B • 20;

Certain functions may be used within constant expressions.
For example:

CONST
A = LOBYTE 1-23) DIV 23;
B • HI BYTE 1-A);

Listed below are functions and operators that can be used
with REAL, INTEGER, WORD, and other ordinal constants,
such as enumerated and subrange constants.

Type of Operand Functions and Operators

REAL, INTEGER Unary plus (+)
Unary minus (-)

INTEGER, WORD + DIV DR HIBYTE(I
- MOD NOT LOBYTE()
• AND XOR BYWORD()

Ordinal types < <- CHR() LOWER()
> >-ORO() UPPER!)
- <> WRD(I

Boolean AND NOT OR

ARRAY LOWER() UPPER(I

Any type SIZEOF(I RETYPE(I

5016793

6-14 Identifiers and Constants

Examples of constant expressions:

CONST
FOO. (100 + ORD('X')) '8#100 + ORD('Y');
MAXSIZE = 80;
X = (MAXSIZE > 80) OR (IN_TYPE = PAPERTAPE);

f X is a BOOLEAN constant!

In addition to the operators shown above for numeric
constants, you can use the string concatenation operator (*)
with string constants, as follows:

CONST
A-'abcdef';
M ·CHA (109);
ATOM· A' 'ghijkl' 'M;

!CHA j s a 11 owed)
{ATOM· 'abcdelghijklm'I

These constants can span more than one line but are still
limited to the 255 character maximum. These string constant
expressions are allowed wherever a string literal is allowed,
except in metacommands.

Section 7 7-1

Data Types
A data type is the set of values that a variable or value can
have within a program. Types are either predeclared or
declared explicitly. Types in Pascal fall into three broad
categories: simple, structured, and reference types.

Simple
Types

Structured
Types

Reference
Types

Procedural
and
Functional
Types

Ordinal types
INTEGER
WORD
CHAR
BOOLEAN
Enumerated types

Subrange types
REAL4,REAL8
INTEGER4

ARRAY OF type
General (OF any type)

SUPER ARRAY (OF type)
STRING (n)
LSTRING (n)

RECORD
SET OF type
FILE OF

General (binary) files
TEXT

Pointer Types
ADR OF type
ADS OF type

-MAXINT .. MAXINT
O .. MAXWORD
CHR(O) .. CHR(255)
(FALSE.TRUE)
e.g .•
(RED.BLUE)
e.g., 100 .. 5000

-MAXINT 4 .. MAXINT 4

[1 .. n] of CHAR
[O .. n] of CHAR

Like FILE OF
CHAR

e.g., ATREETIP
Relative address
Segmented address

Only as parameter
type

The type declaration associates an identifier with a type of
value. You declare types in the TYPE section of a program,
procedure, function, module, interface, or implementation
(not in the heading of a procedure or function). A type
declaration consists of an identifier followed by an equal sign
and a type clause.

5016793

7-2

Examples of type definitions:

TYPE
LINE • STRING (80);
NP = .PAGE;
PAGE • RECORD

NEXT PAGE
PAGENUM
LINES

NP;
1 .. 499;
ARRAY (1 .. 60) OF LINE;

Data Types

FACE
END;

(LEFT, RIGHT); !Enter 0 for left.I
{1 for rightl

After declaring the types, you can declare variables of the
types just defined in the VAR section of a program,
procedure, function, module, or interface, or in the heading of
a procedure or function. The following sample VAR section
declares variables of the types in the preceding sample TYPE
section:

VAR
PARAGRAPH : LINE;
BOOK : PAGE;

Simple Data Types
The simple data types are organized as follows:

a ordinal types

a REAL

a INTEGER4

Ordinal Types
Ordinal types are all finite and countable. They include the
following simple types:

a INTEGER a BOOLEAN

a WORD a enumerated types

a CHAR a subrange types

INTEGER4, though finite and countable, is not an ordinal
type.

Data Types 7-3

INTEGER

INTEGER values are a subset of the whole numbers and
range from - MAXINT through 0 to MAXINT. MAXI NT is the
predeclared constant 32767 (that is, 2A15 - 1). The value
-32768 is not a valid INTEGER; the compiler uses it to
check for uninitialized INTEGER and INTEGER subrange
variables.

INTEGER is not a subrange of INTEGER4. If it were, signed
expressions would have to be calculated using the INTEGER4
type and the result converted to INTEGER.

Expressions are always calculated using a base type, not a
subrange type. INTEGER type constants can be changed
internally to WORD type if necessary, but INTEGER variables
are not. INTEGER values change to REALS or INTEGER4 in an
expression, if necessary, but not to REAL4. The ORD
function converts a value of any ordinal type to an INTEGER
type.

The predeclared type INTEGER2 is identical to INTEGER.

WORD

The WORD and INTEGER types are similar, differing chiefly in
their range of values. Both are ordinal types. You can think of
WORD values as either a group of 16 bits or as a subset of
the whole numbers from 0 to MAXWORD (65535, which is
2A16 - 1). The WORD type is useful in several ways:

a to express values in the range from 32768 to 65535.

a to operate on machine addresses.

a to perform primitive machine operations, such as word
ANDing and word shifting, without using the INTEGER type
and running into the -32768 value.

Unlike INTEGERs, all WORDs are nonnegative values. The
WRD function changes any ordinal type value to WORD
type. Like INTEGER values, WORD values in an expression
are converted to the INTEGER4 type, if necessary. Having
both an INTEGER and a WORD type permits mapping of
16-bit quantities in either of two ways:

a as a signed value ranging from -32767 to +32767.

a as a positive value ranging from 0 to 65535.

5016793

7-4 Data Types

WORD and INTEGER values are not assignment compatible.
However, you must not mix WORD and INTEGER values in
an expression (although doing so generates a warning rather
than an error message).

CHAR
CHAR values are 8-bit ASCII values. CHAR is an ordinal type.
All 256-byte values are included in the type CHAR. In
addition, SET OF CHAR is supported. Relational comparisons
use the ASCII collating sequence.

The CHR function changes any ordinal type value to CHAR
type as long as ORD of the value is in the range from 0 to
255. (Refer to Appendix I, ASCII Character Codes, for a
complete listing of the ASCII character set.)

BOOLEAN

BOOLEAN is an ordinal type with only two (predeclared)
values: FALSE and TRUE. The BOOLEAN type is a special
case of an enumerated type, where ORD (FALSE) is 0 and
ORD (TRUE) is 1. This means that FALSE< TRUE.

You can redefine the identifiers BOOLEAN, FALSE, and
TRUE, but the compiler implicitly uses the former type in
Boolean expressions and in IF, REPEAT, and WHILE
statements.

There is no function that changes ordinal type values to the
BOOLEAN type. However, you can achieve this effect with
the ODD function for INTEGER and WORD values, or the
expression:

ORD Iv a I u e) <> 0

Enumerated Types

An enumerated type defines an ordered set of values. These
values are constants and are enumerated by the identifiers
that denote them.

Examples of enumerated type declarations:

FLAGCOLOR - (RED, WHITE, BLUE);
SUITS - (CLUB, DIAMOND, HEART, SPADE);
DOGS· (MAUDE, EMILY, BRENDAN);

Data Types 7-5

Every enumerated type is also an ordinal type. Identifiers for
all enumerated type constants must be unique within their
declaration level.

The ORD function can be used to change enumerated values
into INTEGER values. The WRD function changes enumerated
values into WORD values.

The RETYPE function can be used to change INTEGER or
WORD values to an enumerated type. For example:

IF RETYPE (COLOR, I) - BLUE THEN WR I TELN ('TRUE BLUE')

The values obtained by applying the ORD function to the
constants of an enumerated type always begin with zero.
Thus, the values obtained for the type FLAGCOLOR from the
example above are:

ORD (RED) • 0;
ORD (WHITE) • 1;
ORD (BLUE) • 2;

Since enumerated types are ordered, comparisons like
RED < GREEN can be useful. At times, access to the lowest
and highest values of the enumerated type is useful with the
LOWER and UPPER functions, as in the following example:

VAR
TINT: COLOR;

FOR TINT :- LOWER (TINT) TO UPPER (TINT) DO
PAINT (TINT);

Subrange Types

A subrange type is a subset of an ordinal type. The type
from which the subset is taken is called the host type.
Therefore, all subrange types are also ordinal types.

You can define a subrange type by giving the lower and
upper bound of the subrange (in that order). The lower bound
must not be greater than the upper bound, but the bounds
can be equal. The subrange type is frequently used as the
index type of an array bound or as the base type of a set.

Examples of subranges along with their host ordinal type:

INTEGER 100 .. 200
WORD WRD(1) .. 9
CHAR 'A' . .'Z'
enumerated type RED .. YELLOW

5016793

7-6 Data Types

Three subrange types are predeclared:

o BYTE· WRD(O) .. 255; (8-bi t WORD subrange}

o SINT • -127 .. 127; {8-bit INTEGER subrange}

o INTEGER1 = SINT;

The BYTE type is particularly useful in machine-oriented
applications. For example, the ADRMEM and ADSMEM types
normally treat memory as an array of bytes. However, since
the BYTE type is really a subrange of the WORD type,
expressions with BYTE values are calculated using 16-bit
instead of S-bit arithmetic if necessary.

In some cases (for example, an assignment of a BYTE
expression to a BYTE variable when the $MA THCK switch is
off), the compiler can optimize 16-bit arithmetic to S-bit
arithmetic. In general, using BYTE instead of WORD saves
memory at the expense of BYTE-to-WORD conversions in
expression calculations.

REAL
REAL values are nonordinal values of a given range and
precision. The REAL formats have a 24-bit mantissa and an
S-bit exponent, giving about seven digits of precision and a
maximum value of 1. 701411 E3S.

Pascal includes expanded numeric data types for processing
higher precision Real (and integer) numbers. For reals, this
includes support for single and double precision Real
numbers according to the IEEE floating-point standard.

Pascal provides three REAL types: REAL, REAL4, and
REALS. However, the type REAL is always identical to either
REAL4 or REALS. The choice is made with a metacommand,
$REAL:n, where n is either 4 or S. {$REAL:S} has the same
effect as TYPE REAL - REALS. The default type for REAL is
normally REAL4 but can be changed.

The REAL4 type is in 32-bit IEEE format, and the REALS
type is in 64-bit IEEE format. The IEEE standard format is as
follows:

o REAL4

o REALS

Sign bit, S-bit binary exponent with bias of
127, 23-bit mantissa

Sign bit, 11-bit binary exponent with bias of
1023, 52-bit mantissa

Data Types 7-7

In both cases, the mantissa has a hidden most significant bit
(always one) and represents a number greater than or equal to
1.0 but less than 2.0. An exponent of zero means a value of
zero, and the maximum exponent means a value called NaN
(not a number). Bytes are in reverse order; the lowest addressed
byte is the least significant mantissa byte.
The REAL4 numeric range is barely seven significant digits (24
bits), with an exponent range of E-3S to E + 3S. The REALS
numeric range includes over fifteen significant digits (53 bits),
with an exponent range of E-306 to E + 306.
REAL literals are converted first to REALS format and then to
REAL4 as necessary (for example, to be passed as a CONST
parameter or to initialize a variable in a VALUE section). If you
need actual REAL4 constants, you must declare them as
REAL4 variables (by adding the READONLY attribute) and
assign them a constant in a VALUE section.
Both REAL4 and REALS values are passed to intrinsic
functions as reference (CONSTS) parameters, rather than as
value parameters. The compiler accepts REAL expressions as
CONSTS parameters; it evaluates the expression, assigns the
result to a stack temporary, and passes the address of the
temporary. This is usually more efficient than passing the value
itself, especially in the REALS case.

Note: Two processes (programs) using REAL variables cannot
execute at the same time.

INTEGER4

Like INTEGER and WORD values, INTEGER4 values are a
subset of the whole numbers. INTEGER4 values range from
-MAXINT4 to MAXINT4. MAXINT4 is a predeclared constant

I
with the value of 2,147,4S3,647 (2-"" 31 - 1). Values outside this I
range are not valid INTEGER4 data types; for example, the
value 2,14 7,4S3,648 (2"" 31) is not a valid INTEGER4.

Unlike INTEGER and WORD, the INTEGER4 type is not
considered an ordinal type. There are no INTEGER4 subranges,
and INTEGER4 can not be an array index or the base type of a
set. Also, INTEGER4 values can not be used to control FOR
and CASE statements.

Values of type INTEGER or WORD in an expression change
automatically to INTEGER4 if the expression requires an
intermediate value that is out of the range of either INTEGER
or WORD. Values of type INTEGER4 do not change to REAL
in an expression; you must explicitly use the FLOAT4 function
to make the conversion.

5016793-003

7-8 Data Types

Structured Data Types

A structured data type is composed of other types. The
components of structured types are either simple types or
other structured types. A structured type is characterized by
the types of its components and by its structuring method. A
structured type can occupy up to 65534 bytes of memory. The
structured types in Pascal are:
o ARRAY range OF type
o SUPER ARRAY range OF type

STRING (n)
LSTRING (n)

o RECORD
o SET OF <base-type>
o FILE OF <type>

Because components of structures can be structured types
themselves, you can have, for example, an array of arrays, a
file of records containing sets, or a record containing a file
and another record.

Arrays

An array type is a structure that consists of a fixed number of
components. All of the components are of the same type
(called the component type).

The elements of the array are designated by indexes, which
are values of the index type of the array. The index type must
be an ordinal type: BOOLEAN, CHAR, INTEGER, WORD,
subrange, or enumerated.

Arrays in Pascal are one-dimensional, but since the
component type can also be an array, n-dimensional arrays
are supported as well.

Examples of type declarations for arrays:

TYPE
I NT _ARRAY : ARRAY
ARRAY_2D : ARRAY
MORAL_RAY : ARRAY

[l. .10] OF INTEGER;
[0 .. 7] OF ARRAY [0 .. 8] OF 0 .. 9;
[PEOPLE] OF (GOOD, EVIL);

Data Types 7-9

In the last declaration, PEOPLE is a subrange type, while
GOOD and EVIL are enumerated constants. A shorthand
notation available for n-dimensional arrays makes the
following statement the same as the second example in the
preceding paragraph:

ARRAY_2D: ARRAY (0 .. 7, 0 .. 8] OF 0 .. 9;

After declaring these arrays, you could assign to
components of the arrays with statements such as these:

INT_ARRAY (10) :- 1234;

ARRAY_2D (0,8) :- 9;

MORAL_RAY [Machi ave I Ii) > EVIL;

All of an n-dimensional PACKED array is packed; therefore,
these statements are equivalent:

PACKED ARRAY [1 .. 2, 3 .. 4] OF REAL;

PACKED ARRAY [1 .. 2] OF PACKED ARRAY [3 .. 4] OF REAL;

Example usage is illustrated in the following program.

PROGRAM ARRAYTYPES (INPUT, OUTPUT);
TYPE

VAR

INTARRAY =ARRAY (1 .. 10) OF INTEGER;
ARRAY2D =ARRAY [0 .. 7) OF ARRAY (0 .. 8) OF 0 .. 9;

(ARRAY2D is a two-dimensional array. The first is
an a r ray of e i g ht e I eme n ts (O. 7) , each of wh i ch i s
an array of nine elements (0·8). The elements of
the second array can take a value of 0·9.1

IA : INTARRAY;
A2D : ARRAY2D;

BEGIN

END.

IA[10) :- 1234;
A2D[0,8) :- 9;
WRITELN (IA[10]);
WRITELN (A2D[0,8]);

7-10 Data Types

Super Arrays
A super array is an example of super type. This is like a set
of types or a function that returns a type. Super types in
general, and super arrays in particular, are features of this
extended Pascal. The super array type has several important
uses. You can use them for any of the following purposes:

a To process strings.

Both STRING and LSTRING are predeclared super array
types. The LSTRING type handles variable length strings.
STRING handles fixed-length strings and strings more than
255 characters long.

a To dynamically allocate arrays of varying sizes.

Otherwise such arrays would need a maximum possible
size allocation.

a As the formal parameter type in a procedure or function.

Such a declaration makes the procedure or function usable
for a set or class of types, rather than for just a single
fixed-length type.

A super array type identifier specifies the set of types
represented by the super type. A later type declaration can
declare a normal type identifier as a type derived from that
class of types. This derived type is like any other type.

A super array type declaration is an array type declaration
prefixed with the keyword SUPER. Every array upper bound
is replaced with an asterisk, as follows:

TYPE
VECTOR - SUPER ARRAY (1 .. ') OF REAL;

Following the preceding type declaration, you could declare
the following variables:

VAR
ROW: VECTOR (10);
COL: VECTOR (30);
ROWP: ·vECTOR;

In this example, VECTOR is a super array type identifier.
VECTOR (10) and VECTOR (30) are type designators
denoting derived types. ROW and COL are variables of types
derived from VECTOR. ROWP is a pointer to the super array
type VECTOR.

Data Types 7-11

Super types allow only an array type with parametric upper
bounds. A super type is a class of types and not a specific
type. Thus, in the VAR section of a program, procedure, or
function, you can not declare the variables to be of a super
type. You must declare them as variables of a type derived
from the super type.

However, a formal reference parameter in a procedure or
function can be given a super type. This allows the routine to
operate on any of the possible derived types.

A pointer referent type can also be given a super type. This
allows a pointer to refer to any of the possible derived types.
A pointer referent to a super type allows dynamic arrays.
These arrays are allocated on the heap by passing their
upper bound to the procedure NEW. (Refer to section 12,
Available Procedures and Functions, for a description of the
procedure NEW.)

Example using the NEW procedure for dynamic allocation:

VAR
STR_PNT: ·suPER PACKED ARRAY [1 ... I OF CHAR;
VEC_PNT: ·suPER ARRAY [0 •.• ' 0 ••• I OF REAL;

NEW(STR_PNT, 12);
NEW (VEC_PNT, 9, 99 I;

An actual parameter in a procedure or function can be of a
super type rather than a derived type, but only if the
parameter is a reference parameter or pointer referent.
(These are the only kinds of variables that can be of a super
rather than a derived type.)

5111193

7-12 Data Types

Example of super arrays:

TYPE

VAR
VECTOR· SUPER ARRAY (1 .. ') OF REAL;

X: VECTOR (12);
Y: VECTOR (2');
Z: VECTOR (36);

FUNCTION SUM (VAR V: VECTOR): REAL;

VAR
S: REAL;
I: INTEGER;

BEGIN
s :- 0;
FOR I :· 1 TO UPPER (V) DO

S:-S+V[I);
SUM :- S;

END;

BEGIN tprograml

TOTAL :·SUM (X) +SUM (YI +SUM (Z);

END.

The normal type rules for components of a super array type
and for type designators that use a super array type allow
components to be assigned, compared, and pas·sed as
parameters.

The UPPER function returns the actual upper bound of a
super array parameter or referent. The maximum upper
bound of a type derived from a super array type is limited to
the maximum value of the index type implied by the lower
bound (for example, MAXINT, MAXWORD). Two super array
types are predeclared: STRING and LSTRING. The compiler
directly supports STRING and LSTRING types in the following
ways:

c STRING and STRING assignment

c STRING and STRING comparison

c LSTRING and STRING READs

c access to the length of a STRING with the UPPER function

Data Types 7-13

o access to maximum length of an LSTRING with the UPPER
function

o access to LSTRING length with STA.LEN and STR[O]

Strings

STRINGs are predeclared super arrays of characters:

TYPE
STA I NG • SUPER PACKED ARRAY [1 .. ') OF CHAR;

A string literal such as 'abcdefg' automatically has the type
STRING (n). The size of the array 'abcdefg' is 7. Thus, the
constant is of the STRING derived type, STRING (7).

Standard Pascal calls any packed array of characters with a
lower bound of one a string and permits a few special
operations on this type (for example, comparison and writing
that you can not do with other arrays).

The super array notation STRING (n) is identical to PACKED
ARRAY [1 .. n] OF CHAR (n can range from 1 to MAXINT).
There is no default for n, since STRING means the super
array type itself and not a string with a default length.

The identifier STRING is for a super array, so you can use it
only as a formal reference parameter type or pointer referent
type. You can not compare such a parameter or
dereferenced pointer or assign it as a whole.

Any variable or constant with the super array type STRING,
or one of the types CHAR or STRING (n) or PACKED ARRAY
[1 .. n] OF CHAR. can be passed to a formal reference
parameter of super array type STRING. Furthermore, a
variable of type LSTRING or LSTRING (n) can also be passed
to a formal reference parameter of type STRING.

The standard level supports the assigning, comparing, and
writing of STRINGs. The extended level permits reading
STRINGs, including the super array type STRING and a
derived type STRING (n). Reading a STRING causes input of
characters until the end of a line or the end of the STRING is
reached. If the end of the line is reached first, the rest of the
STRING is filled with blanks. Writing a string writes all of its ·
characters.

7-14 Data Types

Any two variables or constants with the type PACKED
ARRAY [1 .. n] OF CHAR or the type STRING (n) can be
compared or assigned if the lengths are equal. However,
since the length of a STRING super array type may vary,
comparisons and assignments are not allowed.

For example, the following is illegal:

PROCEDURE CANNOT_DO !VARS : STRING);
VAR

STA : STRING 110);
BEGIN

STR :- S (This assignment is illegal because
the length of Smay vary.}

END;

The PACKED prefix in the declaration PACKED ARRAY [1 .. n]
OF CHAR, as defined in the ISO standard, normally implies
that a component can not be passed as a reference
parameter. At the extended level, this restriction does not
apply.

The index type of a string is officially INTEGER, but WORD
type values can also be used to index a STRING. A number
of intrinsic procedures and functions for strings are discussed
in section 11, Procedures and Functions. Many of the
procedures and functions described work on STRINGs; some
apply only to LSTRINGs.

Lstrings
The LSTRING feature allows variable-length strings. LSTRING
(n) is predeclared as:

TYPE
LSTRING ·SUPER PACKED ARRAY (0 .. ') OF CHAR

However, a variable with the explicit type PACKED ARRAY
[O .. n] OF CHAR is not identical to the type LSTRING (n) even
though they are structurally the same. There is no default for
n; the range of n is from zero to 255. Characters in an
LSTRING can be accessed with the usual array notation.

Internally, LSTRINGs contain a length (l) followed by a string
of characters. The length is contained in element zero of the
LSTRING and can vary from 0 to the upper bound. The
length of an LSTRING variable T can be accessed as T[O]
with type CHAR, or as T.LEN with type BYTE. String
constants of type CHAR or STRING (n) are changed
automatically to type LSTRING.

Data Types 7-15

The predeclared constant NULL is the empty string, LSTRING
(0). NULL is the only constant with type LSTRING; there is no
way to define other LSTRING constants. As with STRINGS, a
CHAR component of an LSTRING can be passed as a
reference parameter, and WORD and INTEGER values can be
used to index an LSTRING.

Several operations work differently on LSTRINGs than on
STRINGs. Any LSTRING can be assigned to any other
LSTRING, if the current length of the right side is not greater
than the maximum length of the left side. Similarly, an
LSTRING can be passed as a value parameter to a procedure
or function, if the current length of the actual parameter is
not greater than the maximum length specified by the formal
parameter.

If the $RANGECK is on, the compiler checks the assignment
of LSTRINGs and the passing of LSTRING (n) parameters.
The actual number of bytes assigned or passed is the
minimum of the upper bounds of the LSTRINGs. Neither side
in an LSTRING assignment can be a parameter of the super
array type LSTRING; both must be types derived from it.

Examples of LSTRING assignments:

VAR
A
B
c

LSTRING (19);
LSTRING (14);
LSTRING (6);

{Dec I a r i n g the var i ab I es l

A :- '19 character string';
B :- '14 characters·;
C:-'shorty';
A :- B; {This is legal, since the length of B

is I es s than the maxi mum Ieng th of A .1

C :=A; {This is illegal, since the length of A
is greater than the maximum length of C.I

You can compare any two LSTRINGs, including super
arraytype LSTRINGs (the only super array type comparison
allowed). Reading an LSTRING variable causes input of
characters until the end of the current line or the end of the
LSTRING, and sets the length to the number of characters
read. Writing from an LSTRING writes the current length
string.

5016793

7-16 Data Types

Using Strings and Lstrings

This subsection describes the STRING and LSTRING
operations directly supported by the compiler. Also refer to
section 12, Available Procedures and Functions, for
descriptions of the following string procedures and functions:

CONCAT INSERT
COPYLST POSITN
COPYSTR SCANEQ
DELETE SCANNE

The procedures FILLC, FILLSC, MOVEL, MOVESL, MOVER,
and MOVESR also operate on strings. The compiler supports
STRINGs and LSTRINGs directly in the following ways:

o Assignment

You can assign any LSTRING value to any LSTRING
variable if the maximum length of the target variable is
greater than or equal to the current length of the source

· value and neither is the super array type LSTRING. If the
maximum length of the target is less than the current
length of the source, only the target length is assigned,
and a runtime error occurs if the range checking switch is
on. You can assign a STRING value to a STRING variable if
the length of both sides is the same and neither side is the
super array type STRING. Passing either STRING or
LSTRING as a value parameter is similar to making an
assignment.

o Comparison

The LSTRING operators< <= > >= <> =use the
length byte for string comparisons; the operands can be of
different lengths. Two strings must be the same length to
be considered equal. If two strings of different lengths are
equal up to the length of the shorter one, the shorter is
considered less than the longer one. The operands can be
of the super array type LSTRING. For STRINGs, the same
relational operators are available, but the lengths must be
the same and operands of the super array type STRINGs
are not allowed.

Data Types 7-17

o READs and WRITEs

READ LSTRING reads until the LSTRING is filled or until the
end-of-line is found. The current length is set to the
number of characters read. WRITE LSTRING uses the
current length. Refer also to READSET described in
section 12, File-Oriented Procedures and Functions, which
reads into an LSTRING as long as input characters are in a
given SET OF CHAR. READ STRING pads with spaces if
the line is shorter than the STRING. WRITE STRING writes
all the characters in the string. Both READ and WRITE
permit the super array types STRING and LSTRING, as well
as their derived types.

o Length access

You can access the current length of an LSTRING variable
T with T.LEN, which n is of type BYTE, or with T[O], which
is of type CHAR. This notation can assign a new length, as
well as determine the current length. The UPPER function
finds the maximum length of an LSTRING or the length of a
STRING. This is especially useful for finding the upper
bound of a super array reference parameter or pointer
referent.

You can not assign or compare mixed STRINGs and
LSTRINGs unless the STRING is constant. You can assign
STRINGs to LSTRINGs, or vice versa; with one of the move
routines or with the COPYSTR and COPYLST procedures.
Since constants of type STRING or CHAR change
automatically to type LSTRING if necessary, LSTRING
constants are considered normal STRING constants. NULL
(the zero length LSTRING) is the only explicit LSTRING
constant.

A special transformation lets you pass an actual LSTRING
parameter to a formal reference parameter of type STRING.
The length of the formal STRING is the actual length of the
LSTRING. Therefore, if LSTR (in the following example) is of
type LSTRING (n) or LSTRING, it can be passed to a

5016793

7-18 Data Types

procedure or function with a formal reference parameter of
type STRING. For example:

VAR
LSTR : LSTRING (10);

PROCEDURE TIE_STRING (VAR STR STRING);

TIE_STRING (LSTR);

In this case, UPPER (STR) is equivalent to LSTR.LEN.
Procedures and functions with reference parameters of super
type STRING can operate equally well on STRINGs and
LSTRINGs. The only reason to declare a parameter of type
LSTRING is when the length must be changed. Normally, an
LSTRING is either a VAR or a V AAS parameter in a
procedure or function, since a CONST or CONSTS parameter
of type LSTRING can not be changed.

Records
The record type is a structure consisting of a fixed number of
components, usually of different types. Each component of a
record type is called a field. The definition of a record type
specifies the type and an identifier for each field within the
record. The field values associated with field identifiers are
accessible with a field designator or the WITH statement.

For example, you could declare the following record type:

TYPE
SONG_NUMBER • 20;
SONG_TITLE ·STRING (80);
LP • RECORD

TITLE: LSTRING (100);
ARTIST : LSTRING (100);
PLASTIC : ARRAY

(1 .. SONG_NUMBER) OF SONG_ TITLE;
END;

You could then declare a variable of the type LP, as follows:

VAR
BEATLES_1 : LP;

Data Types 7-19

A component of the record could be accessed either with
the field designator or the WITH statement:

BEATLES_1.TITLE :- 'Meet The Beatles';
WITH BEATLES_1 DO

PLASTIC(1) 'I Wanna Hold Your Hand'

Variant Records

A record may have several variants, in which case a certain
field called the tag field indicates which variant to use. The
tag field may or may not have an identifier and storage in the
record. Some operations, such as the NEW and DISPOSE
procedures and the SIZEOF function, can specify a tag value
even if the tag is not stored as part of the record.

Examples of variant records:

TYPE
SHAPE - (SQUARE, CIRCLE);
COLOR= (BLUE, RED);
OBJECT • RECORD

X : REAL;
Y : REAL;
CASE TAG: SHAPE OF

SQUARE: (SIZE, ANGLE: REAL) ;
CIRCLE: (DIAMETER: REAL)

END; {RECORD!
FOO - RECORD

CASE BOOLEAN OF
TRUE: (I, J: INTEGER);
FALSE: (CASE COLOR OF BLUE: (X: REAL);

RED: (Y: INTEGER4));
END; {RECORD! ·

The CASE in a RECORD does not need an END statement,
because the END for the record definition also ends CASE ..

Only one variant part per record is allowed, and it must be
the last field of the record. However, this variant part can
also have a variant (and so on, to any level). All field
identifiers in a given record type must be unique, even in
different variants. For example, after declaring the record

6016793

7-20 Data Types

types above, you could create and then assign to the
variables as shown in the following example:

VAR
0, P : OBJECT;
F, G : FOO;

BEGIN
0.DIAMETER ;. 12.34;
P.SIZE := 1.2;
F.I 1; F.J :=2;
G.X 123.45;
G. Y > 678999

END;

f CASE of CI RCLEJ
(CASE of SQUARE)
(CASE of TRUE)
(CASE of FALSE and BLUEi
(CASE of FALSE and RED; this
overwrites G.X.J

Variant records interact with extended Pascal's features to
affect programming technique in two ways:

a Declaring a variant that contains a file is not safe. Any
change to the file's data using a field in another variant can
lead to 1/0 errors, even if the file is closed. In the following
example, any use of R leads to errors in F:

RECORD
CASE BOOLEAN OF

TRUE: (F: FILE OF REAL);
FALSE : (R:ARRAY (1 .. 100) OF REAL);

END;

a Giving initial data to several overlapping variants in a
variable in a VALUE section could have unpredictable
results. In the following example, the initial value of LAP is
uncertain:

VAR
LAP : RECORD

CASE BOOLEAN OF
TRUE : (I : I NTEGER4) ;
FALSE: (R: REAL);

END;
VALUE

LAP. I 10;
LAP. R . = 1 . 5;

Data Types 7-21

Explicit Field Offsets

You can assign explicit byte offsets to the fields in a record.
This system level feature can be useful for interfacing to
software in other languages, since control block formats may
not conform to the usual field allocation method. However,
because it also permits unsafe operations, such as
overlapping fields and word values at odd byte boundaries, it
is not recommended unless the interface is necessary. The
offset is enclosed in brackets; the number is the byte offset
to the start of the field.

Example showing assignment of explicit byte offsets:

TYPE
CPM • RECORD

NDRIVE [00): BYTE;
FILENM (01): STRING (8);
FILEXT (09): STRING (3);
EXTENT (12): BYTE;
CPMRES (13): STRING (20);
RECNUM (33): WORD;
RECOVF (35): BYTE;

END;

OVERLAP • RECORD
BYTEAR (00): ARRAY (0 .. 7) OF BYTE;
WORDAR [00): ARRAY [0 .. 3) OF WORD;
Bl TSAR (00): SET OF 0 .. 63;

END;

If you give any field an offset, ypu must give offsets to all
fields. For any offset that you omit, the compiler picks an
arbitrary value. Although the compiler processes a
declaration that includes both offsets and variant fields, you
should use only one or the other in a given program.

Although you can completely control field overlap with
explicit offsets, variants provide the long forms of the
procedures NEW, DISPOSE, and SIZEOF. To allocate
different length records, use the RETYPE and GETHQQ
procedures, instead of variants and the long form of NEW.
For example: ·

CPMPV :- RETYPE (CPMP, GETHOQ (36));

5016793

7-22 Data Types

The compiler does support structured constants for record
types with explicit offsets. Internally, odd length fields
greater than one are rounded to the next even length. For
example:

ODOR = RECORD
F1(00) : STRING (3);
F2(03) : CHAR;

END;

In this example, field F1 is four bytes long, so an assignment
to F1 overwrites F2. In such a record, all odd length fields
must be assigned first.

Sets

A set type defines the range of values that a set can
assume. This range of assumable values is the power set of
the base type you specify in the type definition. The power
set is the set of all possible sets that could be composed
from an ordinal base type. The null set, (), is a member of
every set.

Suppose you declare the following set types:

TYPE
HUES = SET OF COLOR;
CAPS· SET OF 'A' .. 'Z';
MATTER· SET OF (ANIMAL, VEGETABLE, MINERAL);

Then you declare variables like the following:

VAR
FLAG : HUES;
VOWELS : CAPS;
LIVE : MATTER;

Finally, you could assign these set variables:

FLAG :- [RED, WHITE, BLUE);
VOWELS:- ('A', 'E', 'I', 'O', 'U');
LIVE :- [ANIMAL, VEGETABLE);

The set elements must be enclosed in brackets. The ORD
value of the base type can range from 0 to 255. Thus, SET
OF CHAR is legal, but SET OF 1942 .. 1984 is not allowed. If
the range checking switch is on, passing a set as a value
parameter invokes a runtime compatibility check, unless the
formal and actual sets have the same type. Sets provide a

Data Types 7-23

clear and efficient way of giving several qualities or attributes
to an object. For example:

QUALITIES - SET OF (READY, GETSET, ACTIVE, DONE);

You could then assign the qualities with X := [GETSET,
ACTIVE] and test them with the following operations:

IN Tests a bit
+ Sets a bit

Clears a bit

For example, an appropriate construction could be:

IF ACTIVE IN X THEN WRITELN ('GO FISH');

You can also use SET OF 0 .. 15 to test and set the bits in a
WORD. Using WORDs both as a set of bits and as the
WORD type requires giving two types to the word, with a
variant record, the RETYPE function, or an address type.

Files
A file is a structure that consists of a sequence of
components, all of the same type. You must declare a file
variable to use it. However, the number of components in a
file is not fixed by declaring a FILE type.

Examples of FILE declarations:

TYPE
F1 • FILE OF COLOR;
F2 = FILE OF CHAR;
F3 • TEXT;

In Pascal, a file is conceptually another data type, like an
array, but with no bounds and with only one component
accessible at a time. However, a file usually corresponds to
one of the following:

o disk files

o terminals

o printers

o other input and output devices

This implies the following restriction in Pascal: a FILE OF FILE
is invalid, directly or indirectly. Other structures, such as a
FILE OF ARRA Vs and an ARRAY OF FILEs, are permitted.

5016793

7-24 Data Types

Pascal supports normal statically allocated files, files as local
variables (allocated on the stack), and files as pointer
referents (allocated on the heap). Except for files in super
arrays, the compiler generates code to initialize a file when it
is allocated and to CLOSE a file when it is deallocated.

Except for standard files INPUT and OUTPUT, files in a
program header must be given an operating system filename
when you run your program. You can use the ASSIGN and
READFN procedures to give explicit operating system
filenames to files not included in the program header.

Files in record variants or super array types are not
recommended; if you use them, the compiler issues a
warning. A file variable can not be assigned, compared, or
passed by value: it can be declared and passed only as a
reference parameter.

You can also indicate a file's access method or other
characteristics by specifying the mode of the file. The mode
is a value of the predeclared enumerated type FILEMODES.
The modes include the three base modes, SEQUENTIAL,
TERMINAL, and DIRECT. All files, except INPUT and
OUTPUT, are given SEQUENTIAL mode by default. INPUT
and OUTPUT are given the default mode TERMINAL.

The Buffer Variable

Every file F has an associated buffer variable F". The
procedures GET and PUT use this buffer variable to READ
from and WRITE to files. GET copies the current component
of the file to the buffer variable. PUT does the opposite; that
is, PUT copies the value of the buffer variable to the current
component. A buffer variable and its associated file could
look like this:

I a b c I d e I File F

T Pointer to current component

GJ Buffer variable

Data Types 7-25

The buffer variable can be referenced, that is, its value can
be fetched or stored like any other variable. This allows
execution of assignments like the following:

r :- · z •
C : • F'

A file buffer variable can be passed as a reference parameter
to a procedure or function or used as a record in a WITH
statement. However, the file buffer variable can not be
updated correctly if the file position changes within the
procedure, function, or WITH statement.

For example, the following use of a file buffer variable would
generate a warning at compile time:

VAR
A : TEXT;

PROCEDURE CHAR_PROC (VAR X CHAR);

CHARPROC (A') ; (Warn in g i s sued here l

File Structures

Files have two basic structures, BINARY and ASCII. These
correspond to raw data files and human-readable text files,
respectively.

BINARY Structure Files

The data type FILE OF type corresponds to BINARY structure
files. These correspond to unformatted operating system
files. Every record is one component of the file type (not to
be confused with the Pascal record type). Primitive
procedures such as GET and PUT operate on a record basis.

ASCII Structure Files

The data type TEXT corresponds to ASCII structure files.
These correspond to textual operating system files (called
textfiles). The Pascal TEXT type is like a FILE OF CHAR,
except that groups of characters are organized into lines and,
to a lesser extent, pages. Primitive file procedures, such as
GET and PUT, always operate on a character basis.

5018793

7-26 Data Types

T extfiles (files of type TEXT) are divided into lines with a line
marker, conceptually a character not of the type CHAR.
Although a textfile can in theory contain any value of type
CHAR, writing a particular character (for example. CHR (13),
carriage return, or CHR (10), line feed) can terminate the
current line (record). This character value is the line marker in
this case and, when read, always looks like a blank.

A declaration for a textfile can include an optional line length.
Setting the line length, which sets record length, is needed
only for DIRECT mode textfiles. You can specify line length
for other modes as well, but doing so has no effect. You
must specify the line length of a textfile as a constant in
parentheses after the word TEXT:

TYPE
NAMEADDR =TEXT (128);
DEFAULTX = TEXT;
SMALLBUF =TEXT (2);

File Access Modes

The file modes in Pascal are SEQUENTIAL, TERMINAL, and
DIRECT. SEQUENTIAL and TERMINAL mode ASCII structure
files can have variable length records (lines); DIRECT mode
files must have fixed length records or lines.

The declaration of a file in implies its structure, but not its
mode. For example, FILE OF STRING (80) indicates BINARY
structure, and TEXT indicates ASCII structure. An
assignment like F.MODE := DIRECT sets the mode and is
needed only to set the DIRECT mode.

TERMINAL Mode Files

TERMINAL mode files always correspond to an interactive
terminal or printer. TERMINAL mode files, like SEQUENTIAL
mode files, are opened at the beginning of the file for either
reading or writing. Records are accessed one after the other
until the end of the file is reached.

Operation of TERMINAL mode input for terminals depends on
the file structure (ASCII or BINARY). For ASCII structure (type
TEXT), entire lines are read at one time. This permits the
usual operating system intraline editing, including backspace,
advance cursor, and cancel. Characters are echoed to the
terminal screen while the line is being typed.

Data Types 7-27

For BINARY structure TERMINAL mode (usually type FILE OF
CHAR), you can read characters as you type them. No
intraline editing or echoing is done. This method permits
screen editing, menu selection, and other interactive
programming on a keystroke basis rather than line.

TERMINAL mode files use lazy evaluation to properly handle
normal interactive reading of the terminal keyboard. (For
details, refer to Lazy Evaluation, under section 13, File
Oriented Procedures and Functions.)

SEQUENTIAL Mode Files

SEQUENTIAL mode files are generally disk files or other
sequential access devices. Like TERMINAL mode files,
SEQUENTIAL mode files are opened at the beginning of the
file for either reading or writing, and records are accessed
one after another until the end of the file.

DIRECT Mode Files

DIRECT mode files are generally disk files or other random
access devices. DIRECT mode ASCII structure files, as well
as all BINARY structure files, have fixed-length records,
where a record is either a line or file component. (Here the
term record refers not to the normal Pascal record type, but
to a disk structuring unit.) DIRECT files are always opened for
both reading and writing, and records can be accessed
randomly by record number. There is no record number zero;
records begin with record number one.

Predeclared Files INPUT and OUTPUT
The INPUT and OUTPUT files are predeclared in every Pascal
program. These files get special treatment as program
parameters and are normally required as parameters in the
program heading:

PROGRAM ACTION (INPUT, OUTPUT);

If there are no program parameters and the program does
not use the files INPUT and OUTPUT, the heading can look
like this:

PROGRAM ACTION;

5018793

7-28 Data Types

However, you should include INPUT and OUTPUT as program
parameters if you use them, either explicitly or implicitly, in
the program itself:

WRITE (OUTPUT, 'Prompt:'); {Explicit use)
WRITE (' Prompt : ') ; 11 mp I i c i t use l

These examples would generate a warning if OUTPUT was
not declared in the program heading. The only effect of
INPUT and OUTPUT as program parameters is to suppress
this warning. Although you can redefine the identifiers INPUT
and OUTPUT, the file assumed by textfile input and output
procedures and functions (for example, READ, EOLN) is the
predeclared definition.

The procedures RESET (INPUT) and REWRITE (OUTPUT) are
generated automatically, whether or not INPUT and OUTPUT
are present as program parameters. (You may also use these
procedures explicitly.) INPUT and OUTPUT have ASCII
structure and TERMINAL mode. They are initially connected
to your terminal and opened automatically.

Extended 1/0 Feature
A file variable is really a record, of type FCBFQQ, called a file
control block. At the extended level, a few standard fields in
this record help you handle file modes and error trapping.
Additional fields and the record type FCBFQQ itself can be
used at the system level described under System 1/0
Feature. Along with access to certain FCB fields, extended
1/0 Feature also includes the following procedures:

ASSIGN READFN
CLOSE READSET
DISCARD SEEK

You should use the normal record field syntax to access FCB
fields. For a file F, the fields are named F.MODE, F.TRAP,
and F.ERRS. You can change or examine these fields at any
time.

Data Types 7-29

o F .MODE: FILEMODES

This field contains the mode of the file: SEQUENTIAL,
TERMINAL, or DIRECT. These values are constants of the
predeclared enumerated type FILEMODES. The file system
uses the MODE field only during RESET and REWRITE.
Thus, changing the MODE field of an open file has no
effect and is discouraged. Except for INPUT and OUTPUT,
which have TERMINAL mode, a file's mode is
SEQUENTIAL by default.

o F. TRAP: BOOLEAN

If this field is TRUE, error trapping for file F is turned on.
Then, if an input/output error occurs, the program does
not abort and the error code can be examined. Initially,
F.TRAP is set FALSE. If FALSE and an 1/0 error occurs,
the program aborts. Closing the file sets the trap to false.
Note that reset and rewrite close the file.

D F.ERRS: WRD(0) .. 15

This field contains the error code for file F. An error code
of zero means no error; values from 1 to 15 imply an error
condition. If you attempt a file operation other than CLOSE
or DISCARD and F.ERRS is not zero, the program
immediately aborts if F.TRAP is FALSE. However, if
F. TRAP is TRUE, the attempted file operation is ignored
and the program continues.

CLOSE and DISCARD do not examine the initial value of
F .ERRS, so they are never ignored and do not cause an
immediate abort. If CLOSE or DISCARD themselves
generate an error condition, F. TRAP is used to determine
whether to trap the error or to abort.

An operation ignored because of an error condition does not
change the file itself, but can change the buffer variable or
READ procedure input variables. Refer to Appendix A, Error
Messages, for a complete listing of error messages and
warnings.

The Extended 1/0 Feature allows to you set the line length
for a textfile, as follows:

TYPE
SMALLBUF - TEXT (16);

VAR
RANDOMTEXT: TEXT (132);

5016793

7-30 Data Types

Declaring line length applies only to DIRECT mode ASCII
structure files where the line length is the record length used
for reading and writing. Setting the line length has no effect
on other ASCII files.

System Level 1/0
The System 1/0 Feature allows you to call procedures and
functions that have a formal reference parameter of type
FCBFQQ with an actual parameter of the type FILE OF type
or TEXT, or the identical FCBFQQ type.

The FCBFQQ type is the underlying record type used to
implement the file type. The interface for the target file
system FCBFQQ type (and any other types needed) is usually
part of the internal file system. Thus, procedures and
functions that reference FCBFQQ parameters can be called
with any file type, including predeclared procedures and
functions like CLOSE and READ.

Reference Types
A reference to a variable or constant is an indirect way to
access it. The pointer type is an abstract type for creating,
using, and destroying variables allocated from an area called
the heap. The heap is a dynamically growing and shrinking
region of memory allocated for pointer variables.

Pascal also provides two machine-oriented address types:
one for addresses that can be represented in 16 bits, the
other for addresses that require 32 bits.

Pointers are generally used for trees, graphs, and list
processing. Use of pointers is portable, structured, and
relatively safe.

Address types provide an interface to the hardware and
operating system. Their use is frequently unstructured, low
level, and unsafe.

Pointer Types
A pointer type is a set of values that point to variables of a
given type. The type of the variables pointed to is called the
reference type. Reference variables are all dynamically
allocated from the heap with the NEW procedure. Pascal
variables are normally allocated on the stack or at fixed
locations.

Data Types

You can perform only the following actions on pointers:

o assign them

o test them for equality and inequality with the two
operators - and <>

o pass them as value or reference parameters

a dereference them with the up arrow n

7-31

Every pointer type includes the pointer value NIL. Pointers are
frequently used to create list structures of records, as shown
in the following example:

TYPE
TREET IP • "TREE;
TREE • RECORD

VAL: INTEGER; (Value of TREE cell.I
LEFT, RIGHT: TREETIP

(Pointers to other TREETIP. cells.
Nole recursive definition.)

END;

Unlike most type declarations, a pointer type can refer to a
type of which it is itself a component. The declaration can
also refer to a type declared later in the same TYPE section,
as in TREE and TREETIP in the previous example.

Such a declaration is called a forward pointer declaration and
permits recursive and mutually recursive structures. Because
pointers are so often used in list structures, forward pointer
declarations occur frequently.

The compiler checks for one ambiguous pointer declaration.
Suppose the previous example was in a procedure nested in
another procedure that also declared a type TREE. Then the
reference type of TREETIP could be either the outer definition
or the one following in the same TYPE section. The compiler
assumes the TREE type intended is the one later in the same
TYPE section and gives the warning:

Pointer Type Assumed Forward

A pointer can have a super array type as a referent type. The
actual upper bounds of the array are passed to the NEW
procedure to create a heap variable of the correct size.
Forward pointer declarations of the super array type are not
allowed.

5018793

7-32 Data Types

You can not declare two pointers with different types and
then assign or compare them, even if they happen to point
to the same underlying type. An example of the wrong way
is:

TYPE

VAR

CLASS - .LEARN;
SCHOOL - "LEARN;

LEARN - RECORD

END;

MATH : CLASS;
DRAG : SCHOOL;

BEGIN
MATH:- DRAG !This is illegal.I

The example will work if changed to:

TYPE

VAR

CLASS • "LEARN;
LEARN • RECORD

END;

MATH : CLASS;
DRAG : CLASS;

BEGIN
DRAG ;. NIL;
CLASS :· DRAG;

END.

Programs usually contain only one type declaration for a
pointer to a given type. In the TREETIP example, the type of
LEFT and RIGHT could be ATREE instead of TREETIP, but
then you could not assign variables of type TREETIP to these
fields. However, it is sometimes useful to make sure that
two classes of pointers are not used together, even if they
point to the same type.

For example, suppose you have a type RESOURCE kept in a
list and declare two types, OWNER and USER, of type
ARESOURCE. The compiler would catch assignment of
OWNER values to USER variables and vice versa and issue a
warning message.

Data Types 7-33

If the $1NITCK is on, a newly created pointer has an
uninitialized value. If the NIL checking switch is on, pointer
values are tested for various invalid values. Invalid values
include NIL, uninitialized values, reference to a heap item that
has been DISPOSEd, or a value that is not valid as a heap
reference.

Address Types
The keywords ADR and ADS refer to the relative address
type and the segmented address type, respectively. As the
following example shows, you can use the keywords both as
type clause prefixes and as prefix operators:

VAR
I NT_VAR
REAL_ VAR
A_INT

AS_REAL

BEGIN
I NT_VAR
REAL_ VAR
A_I NT
AS_REAL
WRITELN

END.

INTEGER;
REAL;
ADR OF INTEGER;

!Declaration of ADR variable!
ADS OF REAL;

!Declaration of ADS variable!

. - 1;
3.1415;
ADR INT_VAR;

.• ADS REAL_VAR;
(A_I NT", AS_REAL")

!Integer variable!
!Real variable!
IADR used as operator}
IADS used as operator!
IUp arrow dereferences
the address types.}

You can declare a variable that is an address:

VAR
X : ADA OF BYTE;

Then, with the following record notation, you can assign
numeric values to the actual variable:

X.R := 16#FFFF

You can specify the assigned value in hexadecimal notation.
You can also assign to a segment field with the ADS type,
using the field notation .S (segment address). Thus, you can.

5016793

7-34 Data Types

declare a variable of an ADS type and then assign values to
its two fields:

VAR
Y : ADS OF WORD;

Y.S :- 16#0001
Y.R := 16#FFFF

As shown above, any 16-bit value can be directly assigned
to address type variables, using the .Rand .S fields. The
ADR and ADS operators obtain these addresses directly. The
example below assigns addresses this way to the variables
X and Y:

VAR
X ADA OF BYTE;
Y ADS OF WORD;
W WORD;
B BYTE;

X :- ADA B;
Y :- ADS W;

Pascal supports the following predeclared address types:

ADRMEM ·ADA OF ARRAY (0 .. 32765) OF BYTE;
ADSMEM ·ADS OF ARRAY [0 .. 32765) OF BYTE;

Since the type referred to by the address is an array of
bytes, indexing of bytes is possible. For example, if A is of
type ADRMEM, then K[15] is the byte at the address A.R +
15, where .R specifies an actual 16-bit address.

You can use the address types for a constant address (a
form of structured constant). You can also take the address
of a constant or expression. For example:

TYPE
ADRWORD • ADA OF WORD;
ADSWORD = ADS OF WORD;

VAR
W: WORD;
R: ADRWORD;

CONST
CONADR • ADRWORD (1234);

Data Types

BEGIN
W : = CONADR·;
W :· ADSWORD (0, 32)·;
W > (ADS W) .S;

R : = ADR ' 12 3 ' ;

R :- ADR (W DIV 2 + 1);

END;

{Get word at address 12341
{Get word at address 0:321
{Get value of OS segment

register!
{Get address of a constant

v a I uel
!Get address of expression

va I uel

7-35

However, constants or expressions that yield addresses can
not be used as the target of an assignment (or as a reference
parameter or WITH record), as shown:

CONST
ADSCON = ADSWORD (256, 64);

FUNCTION SOME_ADDRESS: ADSWORD;
BEGIN

ADSWORD (0, 32). :- W;
ADSCON" : = 12;
SOME_ADDREss· : • 100;

END;

Segment Parameters for the Address Types

!Va I i dl
!Va Ii d]

{Inv a I i dJ
{I nva I i dl
{I nva I i di

Two keywords, VARS and CONSTS, are available as
parameter prefixes, like VAR and CONST, to pass the
segmented address of a variable. If Pis of type ADS FOO,
then P" can be passed to a VARS formal parameter, such as
VARS X: FOO, but can not be passed to a VAR formal
parameter.

In the BTOS environment, a default data segment is
assumed, in which case a VAR parameter is passed as the
default data segment offset of a variable. A VARS parameter
is passed as both the segment value and the offset value.
Both VARS parameters and ADS variables have the offset
(.R) value in the WORD with the lower address and the
segment (.S) value in the address plus two.

In pointer type declarations, the up arrow n prefixes the
type pointed to; in program statements, it dereferences a
pointer so that the value pointed to can be assigned or
operated on. The up arrow also dereferences ADR and ADS
types in program statements.

5016793

7-36 Data Types

Component selection with the up arrow n is performed
before the unary operators ADR or ADS. Because the up
arrow n selector can appear after any address variable to
produce a new variable, for example, it can occur, in the
target of an assignment, a reference parameter, as well as in
expressions. Since ADS and ADR are prefix operators, they
are used only in expressions, where they apply only to a
variable or constant or expression.

Using the Address Types
The following example illustrates the rules that you must
follow to combine and intermingle the two address types:

VAR
P: ADS OF DATA;
0: ADR OF DATA;
X: DATA;

{P is segmented address of type DATA.)
{0 is relative address of type DATA.)
{Xis some variable of type DATA.)

BEGIN
p :- ADS

x : • p';

p :- ADS

X;

p·;

{Assign the address of X to P.J

{Assign to X the value pointed to by P.J

{Assign to P the address of the value
whose address is pointed to by P, which
is unchanged by this assignment.I

O :- ADR X; {Assign the relative address of X to 0.)

O.R :· (ADR X).R; {Assign the relative address of X
to 0, using the WORD type.)

P :- ADS a·; {Assign address of variable at a to
p .)

a:- ADR P'; {Invalid; you can not apply ADR to
ADS ••)

P.R .• 16#8000; {Assign 32768 to P's offset field.)

P.S .• 16; {Assign 16 to P' s segment f i e Id .)

Q.R :- P.R + 4; {Assign P's offset plus 4 to be the
value of O.J

END;

Data Types 7-37

The address type and pointer type should be treated as two
distinct types. The pointer type, in theory, is just an
undefined mapping from a variable to another variable. The
method of implementation is undefined. However, the
address type deals with actual machine addresses.

The following special facilities that use pointer variables are
not allowed with address variables.

o The NEW and DISPOSE procedures are only permitted with
pointers. NIL does not apply to the address type. There are
no special address values for empty. uninitialized. or invalid
addresses.

o The type ·address of super array type· is not supported in
the same way as ·pointer to super array type.· Getting the
address of a super array variable is still permitted with
ADR and ADS. For example, if a procedure or function
formal parameter is declared as VAR S: STRING, then
within the procedure or function, the expression ADS S is
fine. Unlike a pointer, the address does not contain any
upper bounds.

Packed Types
Any of the structured types can be PACKED. This could
economize storage at the possible expense of access time or
access code space. However, the following limitations apply
on the use of PACKED structures:

o The prefix PACKED is always ignored, except for type
checking. in sets, files, and arrays of characters, and has
no actual effect on the representation of records and other
arrays. Furthermore, PACKED can only precede one of the
structure names ARRAY. RECORD. SET. or FILE; it can not
precede a type identifier. For example, if COLORMAP is the
identifier for an unpacked array type, PACKED COLORMAP
is not accepted.

a A component of a PACKED structure can not be passed as
a reference parameter or used as the record of a WITH
statement, unless the structure is of a string type. Also,
obtaining the address of a PACKED component with ADR
or ADS is not permitted.

o A PACKED prefix applies only to the structure being
defined: any components of that structure that are also
structures are not packed unless you explicitly include the
reserved word PACKED in their definition.

5016793

7-38 Data Types

Note that the operators ADS and ADR do not apply to
procedures. However, the address of a procedure can be
computed. To illustrate, suppose a Pascal program contains
a public procedure Proc, declared as:

PROCEDURE Proc (w: WORD) [PUBLIC);

To compute the ADS of this procedure, declare an external
function GetProc, whose only parameter is a procedure with
the same arguments as Proc. For example:

TYPE
pProcType • ADS of WORD;

FUNCTION GetProc (PROCEDURE Proc(w: WORD)): pProcType;
Extern;

Then link into the program a Pascal module containing:

TYPE
pProcType • ADS of WORD;
opProcType • ADA of pProcType;

FUNCTION GetProc (opProc: opProcType; wJunk: WORD):
pProcType;

BEGIN
GetProc := opProc?;

END;

Procedural and Functional Types
Procedural and functional types are different from other
types. (Wherever the term procedural is used from here on,
both procedural and functional is implied.) You can not
declare an identifier for a procedural type in a TYPE section;
nor can you declare a variable of a procedural type.
However, you can use procedural types to declare the type
of a procedural parameter, and in this sense, they conform to
the Pascal idea of a type.

A procedural type defines a procedure or function heading
and gives any parameters. For a function, it also defines the
result type. The syntax of a procedural type is the same as a
procedure or function heading, including any attributes.

Example of a procedural type declaration:

PROCEDURE ZERO (FUNCTION FUN (X, Y: REAL): REAL)

Data Types 7-39

Type Compatibility
The type compatibility is the same as ISO Pascal with some
additional rules added for super array types, LSTRINGs, and
constant coercions (i.e., forced changes in the type of a
constant). Type transfer functions, to override the typing
rules, are available in some cases, like ORD and RETYPE.

Two types can be identical, compatible, or incompatible. An
expression may or may not be assignment compatible with a
variable, value parameter, or array index.

Type Identity and Reference Parameters
Two types are identical if they have the identical identifier or
if the identifiers are declared equivalent with a type definition
like:

TYPE
T1 • T2;

There is no difference between types T 1 and T2 in the
example above. Type identity is based on the name of the
types, and not on the way they are declared or structured.
Thus, for example, T1 and T2 are not identical in the
following declarations:

TYPE
T1 =ARRAY (1 .. 10) OF CHAR;
T2 =ARRAY (1 .. 10) OF CHAR;

Actual and formal reference parameters must be of identical
types. Or, if a formal reference parameter is of a super array
type, the actual parameter must be of the same super array
type or a type derived from it. Two record or array types
must be identical for assignment.

The only exception is for strings. Here, actual parameters of
type CHAR, STRING, STRING (n), LSTRING, and LSTRING (n)
are compatible with a formal parameter of super array type
STRING. Also, the type of a string constant will change to
any LSTRING type with a large enough bound. For example,
the type of 'ABC' will change to LSTRING (5) if necessary.

Furthermore, an actual parameter of any FILE type can be
passed to a formal parameter of a special record type
FCBFQQ. Similarly, an actual parameter of type FCBFQQ can
be passed to a formal parameter of any file type.

5016793

7-40 Data Types

STRING (n) is a shorthand notation for:

PACKED ARRAY (1 .. n] OF CHAR

The two types are identical. However, because variables with
the type LSTRING are treated specially in assignments,
comparisons, READs, and WRITES, LSTRING (n) is not a
shorthand notation for PACKED ARRAY (0 .. n] OF CHAR. The
two types are not identical, compatible, or assignment
compatible.

Type Compatibility and Expressions
Two simple or reference types are compatible if:

a They are identical.

a They are both ADR types.

a They are both ADS types.

a One is a subrange of the other.

a They are subranges of compatible types.

Two structured types are compatible if:

a They are identical.

a They are SET types with compatible base types.

a They are STRING derived types of equal length.

a They are LSTRING derived types.

However, two structured types are incompatible if:

a Either type is a FILE or contains a FILE.

a Either type is a super array type.

a One type is PACKED and the other is not.

Two values must be of compatible types when combined
with an operator in an expression. (Most operators have
additional limitations on the type of their operands. Refer to
section 9, Expressions, for details.) A CASE index expression
type must be compatible with all CASE constant values.
Note that two sets are never compatible if one is PACKED
and the other is not.

Data Types 7-41

Assignment Compatibility
Some types are implicitly compatible. This permits
assignment across type boundaries. For instance, assume
you declare the following variables:

VAR
DESTINATION : T_DEST;
SOURCE : T_SOURCE;

SOURCE is assignment compatible with DESTINATION (that
is, DESTINATION := SOURCE is permitted) if one of the
following is true:

o T _SOURCE and T _DEST are identical types.

o T _SOURCE and T _DEST are compatible and SOURCE has a
value in the range of subrange type T _DEST.

o T _DEST is of type REAL and T _SOURCE is compatible with
type INTEGER or INTEGER4.

o T _DEST is of type INTEGER4 and T _SOURCE is compatible
with type INTEGER or WORD.

Also, if T _DEST and T _SOURCE are compatible structured
types, then SOURCE is assignment compatible with
DESTINATION if one of the following is true:

o For SETs, every member of SOURCE is in the base type of
T_DEST.

o For LSTRINGs, UPPER (DESTINATION) >- SOURCE. LEN.

Other than in the assignment statement itself, assignment
compatibility is required in the following cases of implicit
assignment:

o Passing value parameter

o READ and READLN procedures

o Control variable and limits in a FOR statement

o Super array type array bounds, and array indexes

Assignment compatibility is usually known at compile time,
and an assignment generates simple instructions. However,
some subrange, set, and LSTRING assignments depend on
the value of the expression to be assigned and thus can not
be checked until runtime. If the $RANGECK is on, assignment
compatibility is checked at runtime. Otherwise, no checking
is done.

Section 8 8-1

Variables and Values
A variable is a value that is expected to change during the
course of a program. Every variable must be of a specific
data type. A variable can have an identifier. If A is a variable
of type INTEGER, then the use of A in a program actually
refers to the data denoted by A.

For example:

VAR
A: I NT EGER;

BEGIN
A : • 1;
A:-A+1;

END;

These statements would first assign a value of 1 to the data
denoted by A, and subsequently assign it a value of 2.

Variables are manipulated by using some sort of notation to
denote the variable, such as a variable identifier. In other
cases, variables can be denoted by array indices or record
fields or the dereferencing of pointer or address variables.
The compiler itself can sometimes create hidden variables
allocated on the stack in circumstances like the following:

o When you call a function that will return a structured result,
the compiler allocates a variable in the caller for the result.

o When you need the address of an expression (e.g., to
pass it as a reference parameter or to use it as a WITH
statement record or with ADR or ADS), the compiler
allocates a variable for the value of the expression.

o The initial and final values of a FOR loop can require
allocating a variable.

o When the compiler evaluates an expression, it can allocate
a variable to store intermediate results.

o Every WITH statement requires a variable to be allocated
for the address of the WITH record.

5018193

8-2 Variables and Values

Variable Declarations
A variable declaration consists of the identifier for the new
variable followed by a colon and a type. You can declare
variables of the same type by giving a list of the variable
identifiers followed by their common type. For example:

VAR
XCOORO, YCOORO: REAL

You can declare a variable in any of the following locations:

a VAR section of a program, procedure, function, module,
interface, or implementation

a formal parameter list of a procedure, function, or
procedural parameter

In a VAR section, you can declare a variable to be of any
valid type. In a formal parameter list, you can include only a
type identifier (that is, you can not declare a type in the
heading of a procedure or function). For example:

PROCEDURE NAME (GEORGE: ARRAY (1 .. 10) OF COLOR)
(lnval id; GEORGE is of a new type.}

VAR
VECTOR_A: VECTOR (10)

{Val id; VECTOR (10) is a type derived from
a super type.I

Each declaration of a file variable F of type FILE OF T implies
the declaration of a buffer variable of type T, denoted by F".
A file declaration also implies the declaration of a record .
variable of type FCBFQQ, whose fields are denoted as
F.TRAP, F.ERRS, F.MODE, and so on. Refer to section 13,
File-Oriented Procedures and Functions, for further
information on buffer variables and FCBFQQ fields.

The Value Section
The VALUE section allows you to give initial values to
variables in a program, module, procedure, or function. You
can also initialize the variable in an implementation, but not in
an interface. The VALUE section can include only statically
allocated variables, that is, any variable declared at the
program, module, or implementation level, or a variable with
the ST A TIC or PUBLIC attribute. Variables with the EXTERN
or ORIGIN attribute can not occur in a VALUE section since
they are not allocated by the compiler.

Variables and Values 8-3

The VALUE section can contain assignments of constants to
entire variables or to components of variables. For example:

VAR
ALPHA
ID
I

VALUE
ALPHA
ID I 1 I
I

REAL;
STRING (7);

.. I NT EGER;

2.23;
' J ' ;
1;

Using Variables and Values
A denotation of a variable can designate one of three things:

a an entire variable

a a component of a variable

a a variable referenced by a pointer

A value can be any of the following:

a a variable

a a constant

a a function designator

a a component of a value

a a variable referenced by a reference value

A function can also return an array, record, or set. The same
syntax used for variables can be used to denote components
of the structures these functions return.

This feature also allows you to dereference a reference type
that is returned by a function. However, you can use the
function designator as a value only, not as a variable. For
example, the following is invalid:

F (X, Y)" := 42;

You can declare constants of a structured type. Components
of a structured constant use the same syntax as variables of
the same type.

5016793

8-4 Variables and Values

Examples of structured constant components:

TYPE
REAL3 = ARRAY [1 .. 3) OF REAL; Ian array type)

CONST
PIES= REAL3 (3.14, 6.28, 9.42); Ian array constant)

X :- PIES (1) 'PIES [3);
Y :- REAL3 (1.1, 2.2, 3.3) [2);

!i.e., 3.14 • 9.42}
Ii. e. , 2. 21

Components of Entire Variables and Values
A variable identifier denotes an entire variable. A variable,
function designator, or constant denotes an entire value. A
component of a variable or value is denoted by the identifier
followed by a selector that specifies the component. The
form of a selector depends on the type of structure (array,
record, file, or reference).

Indexed Variables and Values
A component of an array is denoted by the array variable or
value followed by an index expression. The index expression
must be assignment compatible with the index type in the
array type declaration. An index type must always be an
ordinal type. The index itself must be enclosed in brackets
following the array identifier.

Examples of indexed variables and values:

ARRAY_OF_CHAR ['C'] !Denotes the Cth element.)

'STRING CONSTANT' (6) .• 'G';

ARRAY_FUNCTION (A, B) (C, DJ

{Assigns the 6th element,
the letter 'G' .J

!Denotes a component of a two-dimensional array
return.ed by ARRAY_FUNCTION (A, B). A and Bare actual
parameters . J

You can specify the current length of an LSTRING variable,
LSTR, in either of two ways:

a with the notation LSTR [O], to access the length as a
CHAR component

a with the notation LSTR.LEN, to access the length as a
BYTE value

Variables and Values 8-5

Field Variables and Values
A component of a record is denoted by the record variable
or value followed by the field identifier for the component.
Fields are separated by the period (.). In a WITH statement,
give the record variable or value once only. Within the WITH
statement, you can use the field identifier of a record variable
directly.

Examples of field variables and values:

PERSON.NAME :- 'PETE';

PEOPLE.DRIVERS.NAME :- 'JOAN':

WITH PEOPLE.DRIVERS DO
NAME : • 'GER I ' :

RECURSING_FUNC ('XYZ').BETA;
(Selects BETA I ield of record returned

by the lune! ion named RECURSIVE_FUNC.I

COMPLEX_TYPE (1.2, 3.14).REAL_PART;

Record field notation also applies to files for FCBFQQ fields,
to address type values for numeric representations, and to
LSTRINGs for the current length.

File Buffers and Fields
At any time only one component of a file is accessible. The
accessible component is determined by the current file
position and represented by the buffer variable. Depending
on the status of the buffer variable, fetching its value may
first read the value from the file. (This is called lazy
evaluation; refer to section 13, File Oriented Procedures and
Functions for more information).

If a file buffer variable is passed as a reference parameter or
used as a record of a WITH statement, the compiler issues a
warning to alert you to the fact that the value of the buffer
variable can not be correct after the position of the file is
changed with a GET or PUT procedure.

Examples of file reference variables:

INPUT'
ACCOUNTS_PAYABLE.FILE.

5016793

8-6 Variables and Values

Reference Variables
Reference variables or values denote data that refers to
some data type. There are three kinds of reference variables
and values:

a pointer variables and values

a ADR variables and values

a ADS variables and values

In general, a reference variable or value points to a data
object. Thus, the value of a reference variable or value is a
reference to that data object. To obtain the actual data
object pointed to, you must dereference the reference
variable by appending an up arrow n to the variable or value.

Example using pointer values:

VAR
P, Q: 'INTEGER; (PandQarepointers to integers.)

NEW (P);
NEW (Q);

p :- Q;

p• : • 12 3;

f Panda a reassigned refer enceJ
tva I ues to regions in memory
corresponding to data objects of type
INTEGER. J

tPandOnowpoint to the same region in
memory. J

(Assigns the value 123 to the INTEGER
value pointed tobyP. Since a points to
th i s Io cat ion as we 11 , a· i s a I so
assigned 123.J

Using NIL A is an error (since a NIL pointer does not reference
anything). You can also append an up arrow(") to a function
designator for a function that returns a pointer or address
type. In this case, the up arrow (") denotes the value
referenced by the return value. This variable can not be
assigned to or passed as a reference parameter.

Examples of functions returning reference values:

DATA1 :=FUNK1 (I, J)';
(FUNK1 returns a reference value. The
up a r row de re f ere n c es t he re f e r enc e
value returned, assigning the
re I ere n c e d data to DAT A 1 . J

Variables and Values 8-7

DATA2 : = FUNK2 (K, L)"' .FOO (2]
{FUNK2 returns a reference value. The up
arrow dereferences the reference value
returned. In this case, the dereferenced value
is a record. The array component FOO [2] of
that record is assigned to the variable DATA2.}

If P is of type ADR OF some type, then P.R denotes the
address value of type WORD. If Pis of type ADS OF some
type, then P.R denotes the offset portion of the address and
P.S denotes the segment portion of the address. Both portions
are of type WORD.

Examples of address variables:

BUFF_ADR.R
DATA_AREA.S

Attributes

A variable declaration or the heading of a procedure or
function can include one or more attributes. A variable
attribute gives special information about the variable to the
compiler.

The following attributes are provided for variables:

Attribute

STATIC

FAR

PUBLIC

EXTERN

ORIGIN

READONLY

Variable

Allocated at a fixed location, not on the stack.

Allocated at a fixed location outside the default data
segment; implies STATIC.

Accessible by other modules with EXTERN; implies
STATIC.

Declared PUBLIC in another module; implies STATIC.

Located at specified address; implies STATIC.

Cannot be altered or written to.

The EXTERN attribute is also a procedure and function
directive; PUBLIC and ORIGIN are also procedure and
function attributes. Refer to section 11, Procedures and
Functions, for a discussion of procedure and function
attributes and directives.

You can give attributes for variables only in a VAR section.
Specifying variable attributes in a TYPE section or a
procedure or function parameter list is not permitted.

5016793-003

I

8-8 Variables and Values

You can give one or more attributes in the variable
declaration, enclosed in brackets [] and separated by commas
(if specifying more than one attribute).

The brackets can occur in either of two places:
o An attribute in brackets after a variable identifier in a

VAR section applies to that variable only.
o An attribute in brackets after the reserved word VAR

applies to all of the variables in the section.

Examples that specify variable attributes:

VAR
A, B, C [EXTERN] : INTEGER; {Applies to Conly.)

VAR [PUBLIC]
A, B, C : INTEGER; {Applies to A, B, and C.}

VAR [PUBLIC]
A, B, C [ORIGIN 16#1000] : INTEGER;

{A, B, and C are all PUBLIC. ORIGIN of C is the absolute
hexadecimal address 1000.}

A, B, C [EXTERN] : INTEGER; I VAR [FAR]

{A, B, and C are all STATIC and FAR. C is PUBLIC in
another module.}

The Static Attribute
The STATIC attribute gives a variable a unique, fixed
location in memory. This is in contrast to a procedure or
function variable that is allocated on the stack or one that is
dynamically allocated on the heap. Use of STATIC variables
can save time and code space, but increases data space.

All variables at the program, module, or unit level are
automatically assigned a fixed memory location and given the
STATIC attribute. Functions and procedures that use
STATIC variables can execute recursively, but STATIC
variables must be used only for data common to all
invocations.

Files declared in a procedure or function with the STATIC
attribute are initialized when the routine is entered; they are
closed when the routine terminates like other files. However,
other STATIC variables are initialized only before program
execution. This means that, except for open FILE variables,
STATIC variables can be used to retain values between
invocations of a procedure or function.

Variables and Values

Example of STATIC variable declarations:

VAR
VECTOR [STATIC]: ARRAY [O .. MAXVEC] OF INTEGER;

VAR
[STATIC] I, J, K: 0 .. MAXVEC;

The STATIC attribute does not apply to procedures or
functions, as some other attributes do.

The FAR Attribute

8-BA

The FAR attribute gives a variable a unique, fixed location in
segmented memory. This location is outside of the default
data segment and accessible with a 32-bit segment:offset
address. This is in contrast to a procedure or function
variable that is allocated on the stack or one that is
dynamically allocated on the heap, or one that is statically
allocated in the default data segment. Use of far variables can
save space in the default data segment, but increases code
and execution time.

All far variables are given the STATIC attribute implicitly,
and work just like STATIC variables in a program. Far
variables are initialized before program execution, which
means they can be used to retain global values between
invocations of a procedure or function.

Example of a far variable declaration:

VAR [FAR]
msg [PUBLIC] : lstring(255);

VALUE
msg : = 'A message in far memory .. .';

The FAR attribute can not be applied to procedures or
functions, as some other attributes can.

5016793-003

Variables and Values 8-9

The PUBLIC and EXTERN Attributes

The PUBLIC attribute indicates a variable that can be
accessed by other loaded modules; the EXTERN attribute
identifies a variable that resides in some other loaded module.
Variables given the PUBLIC or EXTERN attribute are
implicitly STATIC.

Examples of PUBLIC and EXTERN variable declarations:

VAR

VAR

[EXTERN] GLOB El, GLOBE2: INTEGER;
{EXTERN means that they must be declared PUBLIC in
some other loaded module.}

BASE_PAGE [PUBLIC, ORIGIN #12FE]: BYTE;
{The variable BASE_pAGE is located at 12FE,
hexadecimal. Because it is also PUBLIC, it can be
accessed from other loaded modules that declare
BASE_PAGE with the EXTERN attribute.}

PUBLIC variables are usually allocated by the compiler
unless you also give them an ORIGIN. Giving a variable both
the PUBLIC and ORIGIN attributes tells the loader that a
global name has an absolute address.

If both PUBLIC and ORIGIN are present, the compiler does
not need the loader to resolve the address. However, the
identifier is still passed to the linker for use by other
modules.

EXTERN variables are not allocated by the compiler. Nor do
they have an ORIGIN, since giving both EXTERN and

5016793-003

8-10 Variables and Values

ORIGIN implies two different ways to access the variable.
The reserved word EXTERNAL is synonymous with
EXTERN.

Variables in the interface of a unit are automatically given
either the PUBLIC or EXTERN attribute. If a program,
module, or unit USES an interface, its variables are made
EXTERN; if you compile the IMPLEMENTATION of the
interface, its variables are made PUBLIC.

The ORIGIN Attribute
The ORIGIN attribute directs the compiler to locate a
variable at a given memory address. The address must be a
constant of any ordinal type. I/O ports, interrupt vectors,
operating system data, and other related data can be accessed
with the ORIGIN variables.

Examples of ORIGIN and STATIC variable declarations:

VAR
INTRVECT [ORIGIN 8#200]: WORD;

Variables with ORIGIN attribute are implicitly STATIC. Also,
they inhibit common subexpression optimization. For
example, if GATE has the ORIGIN attribute, the two
statements X : = GATE; Y: = GATE access GATE twice in
the order given, instead of using the first value for both
assignments. This ensures correct operation if GATE is a
memory-mapped input port. However, if GATE is passed as a
reference parameter, references to the parameter can be
optimized away.

ORIGIN variables are never allocated or initialized by the
compiler. The associated address only indicates where the
variable is found. ORIGIN always implies a memory address.

Giving the ORIGIN attribute in brackets immediately
following the VAR keyword is ambiguous and generates an
error during compilation. (It would be unclear to the compiler
whether all variables following should be at the same address
or whether addresses should be assigned sequentially.)

VAR
[ORIGIN O] FIRST: BYTE; {Invalid}
SECOND : BYTE

VAR
FIRST [ORIGIN O] : BYTE; {VALID}
SECOND : BYTE

Variables and Values

ORIGIN permits a segmented address using "segment:
offset" notation.

VAR
SEGVECT [ORIGIN 16#0001:16#FFFE]: WORD;

8-11

A variable with a segmented ORIGIN can not be used as the
control variable in a FOR statement.

The READONLY Attribute

The READONLY attribute prevents assignments to a
variable. It also prevents the variable being passed as a VAR
or VARS parameter. Also, a READONLY variable can not be
read with a READ statement or used as a FOR control
variable. You can use READONLY with any of the other
attributes.

Examples of READONLY variable declarations:

VAR
[READONLY]

I : INTEGER;
J [PUBLIC] : INTEGER;
K [EXTERN] : INTEGER;

{
I, J, and Kare all}
READONLY; J is also PUBLIC;}
K is also EXTERN.}

When [READO NL Y] is written ahead of one or more
variables (as above), or as VAR [READONLY] in one line, it
means every VAR listed is READO NL Y. When written within
a single variable declaration, it refers to only that one VAR.
The two listings below illustrate the difference.

VAR

VAR

I : INTEGER;
P : INTEGER;
T [READONLY] : INTEGER; {Tis READONLY}
J : INTEGER;

I : INTEGER;
P : INTEGER;
[READONLY] :
T : INTEGER;
J : INTEGER;

{T and J are READONLY}

CONST and CONSTS parameters, as well as FOR loop
control variables (while in the body of the loop), are
automatically given the READONLY attribute. READONLY
is the only variable attribute that does not imply STATIC
allocation.

5016793-003

8-12 Variables and Values

A variable that is both READONLY and either PUBLIC or
EXTERN in one source file is not necessarily READONLY
when used in another source file. The READONLY attribute
does not apply to procedures and functions.

Combining Attributes
You can give a variable multiple attributes. Separate the
attributes with commas and enclose the list in brackets, as
shown:

VAR [STATIC)
X, Y, Z [ORIGIN #FFFE, READONLY]: INTEGER;

I VAR
msg [FAR, PUBLIC) : l string(255);

In the above example, "Z" is a STATIC, READONLY variable

I with an ORIGIN at hexadecimal FFFE. "msg" is a STATIC,
FAR, and PUBLIC variable. The following rules apply when
you combine attributes:
o If you give a variable the EXTERN attribute, you should

not give it the ORIGIN or PUBLIC attributes in the
current compiland.

o If you give a variable the ORIGIN attribute, you should
not give it the EXTERN attribute. However, you can
combine ORIGIN with PUBLIC.

o If you give a variable the PUBLIC attribute, you should
not give it the EXTERN attribute. However, you can
combine PUBLIC with ORIGIN.

I o You can use STATIC, FAR, and READONLY with any
other attributes.

Section 9

Expressions
Expressions are constructions that equate to values. For
example, the following are all expressions:

A + 2

(A + 2)

(A + 2) ' (B - 3)

9-1

The operands in an expression can be a value or any other
expression. When any operator is applied to an expression,
that expression is called an operand. With parentheses for
grouping and operators that use other expressions, you can
construct expressions as long and complicated as desired.

Operations follow the rules of operator precedence. There
are four precedence laws which have the following order:

1 Unary

NOT (ADA ADS)

2 Multiplying

' I DIV MOD AND

3 Adding

+ - OR (XOR)

4 Relational

- <> <- >- < > ~

An expression is·either a value or the result of applying an
operator to one or two values. Although a value can be of
almost any type, most operators apply only to the following
types:

INTEGER
WORD
REAL

INTEGER4
BOOLEAN
SET

The relational operators also apply for the CHAR,
enumerated, string, and reference types. For all operators
(except the set operator IN), operands must have compatible
types.

5018793

9-2 Expressions

Simple Expressions
As a rule, the operands and the value resulting from an
operation are all of the same type. Occasionally, however,
the type of an operand is changed to the type required by an
operator.

This conversion occurs on two levels: one for constant
operands only, and one for all operands. INTEGER to WORD
conversion occurs for constant operands only. Conversion
from INTEGER to REAL and from INTEGER or WORD to
INTEGER4 occurs for all operands.

If necessary in constant expressions, INTEGER values change
to WORD type. You should be cautious when mixing
INTEGER and WORD constants in expressions. For example,
if CBASE is the constant 1 6#COOO and DELTA is the
constant -1, the following expression gives a WORD
overflow:

WAD (CBASE) + DELTA

The overflow occurs because DELTA is converted to the
WORD value 16#FFFF, and 16#COOO plus 16#FFFF is greater
than MAXWORD. However, the following would work:

WAD (ORD (CBASE) + DELTA)

This expression gives the INTEGER value -16385, which
changes to WORD 16#BFFF. If conversion is needed by an
operator or for an assignment, the compiler makes the
following conversions:

o from INTEGER to REAL or INTEGER4

o from WORD to INTEGER4

The following rules determine the type of the result of an
expression involving these simple types:

+ *

These operators apply to INTEGERs, REALs, WORDs, and
INTEGER4s, as shown in the following examples:

+123
A + 12
-23.4
A - 8
A ' B ' 3

Expressions 9-3

Mixtures of REALs with INTEGERs and of INTEGER4s with
INTEGERs or WORDs are allowed. Where both operands
are of the same type, the result type is the type of the
operands. If either operand is REAL, the result type is
REAL. Otherwise, if either operand is INTEGER4, the result
type is INTEGER4.

Unary plus (+) and minus (-) are supported, along with the
binary forms. Unary minus on a WORD type is 2's
complement (NOT is 1 's complement). Since there are no
negative WORD values, this always generates a warning.
Because unary minus has the same precedence level as the
adding operators, the following validities apply:

Y :- X • -1 (lnval id!

y :- x • (-1)

(-256 AND X)

{Va I i di

II nterpreted as -(256 ANO X)J

The valid form of Y is shown in the following program.

PROGRAM MINUS (INPUT, OUTPUT)
VAR

X : INTEGER
Y : I NT EGER

BEGIN (program)
x : • 15;
y :- 0;
y :-X • (-1);
WRITELN ('Y NOW IS . I Y);
WR I TELN (' «« BYE BYE »»');

END. (program)

2 I
This symbol is a true division operator. The result is
always REAL. Operands can be INTEGER or REAL (not
WORD or INTEGER4).

Examples of division:

34 f 26.4 • 1.28787 .. .
18 I 6 • 3.ooooo .. .

5018793

9-4 Expressions

3 DIV MOD

These are the operators for integer divide quotient and
remainder, respectively. The left operand (dividend) is
divided by the right operand (divisor).

Examples of integer division:

123 MOO 5 = 3
-12 3 MOO 5 = -3 (Sign o I res u 11 i s s i g n o I

dividend I
123 MOO -5 = 3
1.3 MOD 5 (Invalid with REAL operands!
123 DIV 5 • 24
1.3 DIV 5 (Invalid with REAL operands!

Both operands must be of the same type: INTEGER,
WORD, or INTEGER4 (not REAL). The sign of the
remainder (MOD) is always the sign of the dividend.

The semantics for DIV and MOD with negative operands
are different from ISO Pascal, but the resulting code is
more efficient.

Nots: Programs intended to be portable should not use DIV
and MOD unless both operands are positive.

4 AND - OR XOR NOT

These operators are bitwise logical functions. Operands
must be INTEGER or WORD or INTEGER4 (never a mixture)
and can not be REAL. The result has the type of the
operands.

NOT is a bitwise one complement operation on the single
operand. If an INTEGER variable V has the value MAXINT,
NOT V gives the invalid INTEGER value -32768. This
generates an error if the $1NITCK is on, and the value is
used later in a program.

Expressions

Given the following initial INTEGER values:

VAR
X : WORD;
Y : WORD;

BEGIN
x :- 211111000011110000;
y :- 2#1111111100000000;

9-5

the AND, OR, XOR, and NOT functions yield the following
values:

X AND Y

X OR Y

X XOR Y

1111000011110000
1111111100000000

1111000000000000

1111000011110000
1111111100000000

1111111111110000

1111000011110000
1111111100000000

0000111111110000

NOT X 1111000011110000

0000111100001111

Boolean Expressions
The Boolean operators available in Pascal are:

AND
NOT
>
>=

OR

<>

XOR
<
<=

You can also use P <> Q as an exclusive OR function. Since
FALSE< TRUE, P <= Q denotes the Boolean operation "P
implies Q." Furthermore, the Boolean operators AND and OR
are not the same as the WO.RD and INTEGER operators of
the same name that are bitwise logical functions. The
Boolean AND and OR operators may or may not evaluate
their operations. Consider the following:

WHILE (I <s MAX) AND (V [I) <> T) DO
I : = I + 1 ;

6018793

9-6 Expressions

If array V has an upper bound MAX, then the evaluation of V
[I] for I > MAX is a runtime error. This evaluation may or may
not take place. Sometimes both operands are evaluated
during optimization, and sometimes the evaluation of one can
cause the evaluation of the other to be skipped. In the latter
case, either operand can be evaluated first.

Alternatively, you can use the following construction:

WHILE I <•MAX DO
IFV[l)<>T

THEN I : - I + 1
ELSE BREAK;

The relational operators produce a Boolean result. The types
of the operands of a relational operator (except for IN) must
be compatible. If they are not compatible, one must be REAL
and the other compatible with INTEGER.

Reference types can be compared only with= and <>.To
compare an address type with one of the other relational
operators, you must use address field notation, as follows:

IF (A.A< B.R)
THEN <Statement>;

Except for the string types STRING and LSTRING, you can
not compare files, arrays, and records as wholes. Two
STRING types must have the same upper bound to be
compared, but two LSTRINGs can have different upper
bounds.

In LSTRING comparison, characters past the current length
are ignored. If the current length of one LSTRING is less than
the length of the other and all characters up to the length of
the shorter are equal, the compiler assumes the shorter one
is less than the longer one. However, two LSTRINGs are not
considered equal unless all current characters are equal, and
their current lengths are equal.

The inclusion of special not-a-number (NaN) values means
that a comparison between two Real numbers can have a
result other than less-than, equal, or greater-than. The
numbers can be unordered, meaning one or both are NaNs.
An unordered result is the same as ·not equal, not less than,
and not greater than.·

Expressions

For example, if variables A or B are NaN values:

1 A < B is false.

2 A <= B is false.

3 A > B is false.

4 A >- B is false.

5 A - B is false.

6 A <> B is true.

9-7

REAL comparisons do not follow the same rules as other
comparisons in many ways. A < B is not always the same
as NOT (B <- A); this prevents some optimizations
otherwise done by the compiler. If A is a NaN, then A <>A
is true. In fact, this is a good way to check for a NaN value.

Set Expressions
Pascal uses several operators in a different way when
applied to sets, as follows:

Operator

+
•

<>
<-and>
<and>
IN

Meaning in Set Operations

Set union
Set difference
Set intersection
Test set equality
Test set inequality
Test subset and superset
Test proper subset and superset
Test set membership

Any operand whose type is SET OF S, where Sis a
subrange of T, is treated as if it were SET OF T. (T is
restricted to the range from 0 to 255 or the equivalent ORD
values.) Either both operands must be PACKED or neither
must be PACKED, unless one operand is a constant or
constructed set.

With the IN operator, the left operand (an ordinal) must be
compatible with the base type of the right operand (a set).
The expression X IN B is TRUE if X is a member of the set B,
and FALSE otherwise. X can be outside of the range of the

5018793

9-8 Expressions

base type of B legally. For example, X IN Bis always false if
the following statements are true:

X = 1 11 is compatible, but not assignment)
B = SET OF 2 .. 9 I comp a I i b I e, w i I h 2 .. 9 . }

The symbols < and > are extended operators, since ISO
Pascal does not support them for sets. They test that a set
is a proper subset or superset of another set. Proper
subsetting does not permit a set as a subset if the two sets
are equal.

Expressions involving sets may use the set constructor,
which gives the elements in a set enclosed in square
brackets. Each element can be an expression whose type is
in the base type of the set or the lower and upper bounds of
a range of elements in the base type. Elements can not be
sets themselves.

Examples of sets involving set constructors:

SET_COLOR :- (RED, BLUE .. PURPLE) - [YELLOW)

SET_NUMBER :-
[12, J+K, TRUNC (EXP (X)) .. TRUNC (EXP (X+1)))

Set constructor syntax is similar to CASE constant syntax. If
X > Y then [X .. Y] denotes the empty set. Empty brackets
also denote the empty set and are compatible with all sets.
Also, if all elements are constant, a set constructor is the
same as a set constant.

Like other structured constants, the type identifier for a
constant set can be included in a set constant, as in
COLORSET [RED .. BLUE]. This does not mean that a set
constructor with variable elements can be given a type in an
expression: NUMBERSET [l..J] is invalid if I or J is a variable.

A set constructor such as (I, J, .. K] or an untyped set such as
(1, 5 .. 7], is compatible with either a PACKED or an unpacked
set. A typed set constant, such as DIGITS (1, 5 .. 7], is
compatible only with sets that are PACKED or unpacked,
respectively, in the same way as the explicit type of the
constant.

Expressions 9-9

Function Designators
A function designator specifies the activation of a function. It
consists of the function identifier followed by a list of actual
parameters in parentheses. These actual parameters
substitute, position for position, for their corresponding
formal parameters, defined in the function declaration.

The use of a function designator is illustrated in the following
program.

PROGRAM NUMBERS (INPUT, OUTPUT)
VAR

X : INTEGER;
Y : INTEGER;
Z : INTEGER;

FUNCTION ADD (A : INTEGER; B : INTEGER) : INTEGER;
{Declaration of lune! ion ADD
as integer.)

BEGIN {function)
ADD :- A + B;

END; lfunct ionJ
(ADD is functiondesignator.J

BEGIN {program)
x : • 15;
y :- 20;
z : • 0;
Z : • ADD (X, Y) ;
WRITELN ('Z IS NOW' Z);

END. (program)
fZwillbe35.J

Parameters can be variables, expressions, procedures, or
functions. If the parameter list is empty, the parentheses
must be omitted .. For more information refer to section 11,
Procedures and Functions.

The order of evaluation and binding of the actual parameters
varies depending on the optimizations used. If the $SIMPLE
metacommand is on, the order is left to right.

Functions have two different uses:

o In the mathematical sense, they take one or more values
from a domain to produce a resulting value in a range. In
this case, if the function never does anything else (such as.
assign to a global variable or do input/output), it is called a
pure function.

o The second type of function can have side effects, such as
changing a static variable or a file. Functions of this second
kind are said to be impure.

5016793

9-10 Expressions

In ISO Pascal, a function may return either a simple type or a
pointer. A pointer returned by a function can only be
compared, assigned, or passed as a value parameter. At the
extend level, a function can return any assignable type, that
is, any type except a file or super array. The usual selection
syntax for reference types, arrays, and records is allowed
following the function designator.

Examples of function designators:

SIN (X+Y)

NEXTREC (17) (Here the function return type is a
pointer, and the returned pointer
value is dereferenced.}

It is more efficient to return a component of a structure than
to return a structure, and then use only one component of it.
The compiler treats a function that returns a structure like a
procedure with an extra VAR parameter representing the
result of the function. The function caller allocates an unseen
variable (on the stack) to receive the return value, but this
variable is only allocated during execution of the statement
that contains the function invocation.

Evaluating Expressions
An operator at a higher level is applied before one at a lower
level. For instance, the following expression evaluates to 7
and not to 9:

1 + 2 • 3

You can use parentheses to change operator precedence.
Thus, the following evaluates to 9 rather than 7:

(1 + 2) • 3

If the $SIMPLE is on, sequences of operators of the same
precedence are executed from left to right. If the switch is
off, the compiler may rearrange expressions and evaluate
common subexpressions only once to generate optimized
code.

x • 3 + 12

is an optimization of:

3 ' (6 + (X - 2))

Expressions 9-11

These optimizations can occasionally give you unexpected
overflow errors. For example,

(I - 100) + (J - 100)

is optimized into the following:

(l+J)-200

This can result in an overflow error, although the original
expression did not, for example, if I and J were each 16400.

An expression in your source file may or may not actually be
evaluated when the program runs. For example, the
expression F(X + Y)*O is always zero, so the subexpression
(X + Y) and the function call need not be executed.

The compiler does not optimize Real expressions as much as
integer expressions, for example. This ensures that the result
of a Real expression is always what a simple evaluation of
the expression, as given, would be. For example, the integer
expression

((1 + I) - 1) '

is optimized to:

I • J

but the same expression with Real variables is not optimized
since the results can be different due to precision loss.
Common subexpressions, such as 2 • X in SIN (2 • X) • COS
(2 • X), can still be calculated just once and reloaded as
necessary, but they are saved in a special 80-bit intermediate
precision.

The order of evaluation may be fixed by parentheses:

(A + B) + C

is evaluated by adding A and B first, but

A + B + C

can be evaluated by adding A and 8, Band C, or even A and
C first.

Any expression can be passed as a CONST or CONSTS
parameter or have its address found. The expression is
calculated and stored in a temporary variable on the stack,
and the address of this temporary variable can be used as a
reference parameter or in some other address context.

5016793

9-12 Expressions

To avoid ambiguity, you should enclose such an expression
with operators or function calls in parentheses. For example,
to invoke a procedure FOO (CONST X, Y: INTEGER), FOO (I,
(J+ 14)) must be used instead of FOO (I, J+ 14). This implies
a subtle distinction in the case of functions. For example:

FUNCTION SUM (CONST A, B: I NT EGER): INTEGER;
BEGIN

SUM :- A;
IF B <> 0

THEN SUM:- SUM (SUM, (SUM (B, 0) - 1)) + 1;
END;

In this example, SUM is called recursively, subtracting one
from B until Bis zero.

The use of a function identifier in a WITH statement follows
a similar rule. For example, given a parameterless function,
COMPLEX, which returns a record, WITH COMPLEX means
·wlTH the current value of the function.· This can occur only
inside the COMPLEX function itself. However, WITH
(COMPLEX) causes the function to be called and the result
assigned to a temporary local variable.

Another way to describe this is to distinguish between
address and value phrases. The left-hand side of an
assignment, a reference parameter, the ADR and ADS
operators, and the WITH statement all need an address. The
right hand side of an assignment and a value parameter all
need a value.

If an address is needed but only a value is available, the
value must be put into memory so it has an address. For
constants, the value goes in static memory; for expressions,
the value goes in stack (local) memory. A function identifier
refers to the current value of the function as an address, but
causes the function to be called as a value.

In the scope of a function, the intrinsic procedure RESULT
permits a reference to the current value of a function instead
of invoking it recursively. For a function F, this means ADR F
and ADR RESULT (F) are the same: the address of the
current value of F. RESULT forces use of the current value in
the same way that putting the function in parentheses, as in
(F(X)), forces evaluation of the function.

Expressions 9-13

Other Expression Features
EV AL and RESULT are two procedures available for use with
expressions. EV AL obtains the effect of a procedure from a
function; RESULT yields the current value of a function within
a function or nested procedure or function. The function
RETYPE allows you to change the type of a value.

The EVAL Procedure
EV AL evaluates its parameters without actually calling
anything. Generally, you use EVAL to obtain the effect of a
procedure from a function. In such cases, the values returned
by functions are of no interest, so EV AL is useful only for
functions with side effects. For example, a function that
advances to the next item and also returns the item might be
called in EV AL just to advance to the next item; there is no
need to obtain a function return value.

Examples of the EVAL procedure:

EVAL (NEXTLABEL (TRUE))

EVAL (SIDEFUNC (X, Y), INDEX (4), COUNT)

The RESULT Function
Within the scope of a function, the intrinsic procedure
RESULT permits a reference to the current value of a function
instead of invoking it recursively. For a function F, this means
ADR F and ADR RESULT (F) are the same; that is, the
address of the current value of F. RESULT forces use of the
current value in the same way that putting the function in
parentheses as in (F (X)) forces evaluation of the function.

5016793

9-14

Examples of the RESULT function:

FUNCTION FACTORIAL (I: INTEGER): INTEGER;
BEGIN

FACTORIAL :- 1;
WHILE I > 1 DO

BEGIN

END;

FACTORIAL .• I 'RESULT (FACTORIAL);
I :- I - 1;

END;

FUNCTION ABSVAL (I: INTEGER): INTEGER;
BEGIN

ABSVAL :- I;
IF I < 0

THEN ABSVAL :- -RESULT (ABSVAL);
END;

The RETYPE Function

Expressions

You can change the type of a value by using the RETYPE
function. If the new type is a structure, RETYPE can be
followed by the usual selection syntax. You must be cautious
in using RETYPE since it works on the memory byte level,
and ignores whether the low-order byte of a two-byte
number comes first or second in memory.

Examples of the RETYPE function:

RETYPE (COLOR, 3); linverseofORDJ

RETYPE (STRING2, I 'J+K) (2); I effect may vary I

Section 10

Statements
The body of a program, procedure, or function contains
statements, which denote actions that the program can
execute. There are two types of statements, simple and
structured. A simple statement has no parts that are
themselves other statements. A structured statement
consists of two or more other statements.

Statement Syntax

10-1

Pascal statements are separated by a semicolon and
enclosed by reserved words, such as BEGIN and END. A
statement may begin with a label. These three elements of
statement syntax are discussed below.

Labels
Any statement referred to by a GOTO statement must have
a label. In standard Pascal, a label consists of one or more
digits; leading zeros are ignored. Constant identifiers,
expressions, and nondecimal notation can not serve as
labels. In extended Pascal, a label can also be an identifier.
All labels must be declared in a LABEL section.

Example using labels and GOTO statements, in a program
that loops forever:

PROGRAM LOOPS_FOREVER (INPUT, OUTPUT);
LABEL

1 '
HAWAII,
MAINLAND;

BEGIN
MAINLAND: GOTO 1;
HAWAII : WRITELN ('Here I am in Hawaii.');
1 : GOTO HAWA 11 ;

END.

5016793

10-2 Statements

To avoid the endless looping, the program can be rewritten
as follows to specify the number of trips to be taken to
Hawaii:

PROGRAM LOOPS_LIMITED (INPUT, OUTPUT);
LABEL

VAR

1 •
HAWAII,
MAINLAND;

TR I PS : INTEGER;
TIMES : INTEGER;

BEGIN (program)
TRIPS :- O;
TIMES :- 0;
WRITE ('Enter how many times you wish to go to

HAWAII : I I;
READLN (TIMES);
WHILE TRIPS< TIMES DO

BEGIN (wh i I e I r i p s < t i mes I
MAINLAND: GOTO 1;
HAWAII: WRITELN ('Here I am in Hawaii.');
TRIPS :- TRIPS+ 1;
CYCLE; {compares the WHILE statement with

its Ii mi ti
1 : GOTO HAWA I I ;

END; (wh i I e I r i p s < I i mes I
WR I TELN;
WRITELN;
WRITELN (' <« BYE BYE »> 'I;

END.

If, when asked how many times you want to go to Hawaii,
you answer 5, the program will print the line "Here I am in
Hawaii." five times.

Six lines will be printed instead of five if the WHILE is
changed to:

WHILE TRIPS<· TIMES DO

because the loop prints once for each TIMES from 0
through 5.

A loop label is any label immediately preceding a looping
statement; WHILE, REPEAT, FOR, BREAK, or CYCLE
statement all refer to a loop label.

Statements 10-3

Both a CASE constant list and a GOTO label may precede a
statement, in which case the CASE constants come first and
then the GOTO label. In the following example, 321 is a
CASE value, 123 is label:

321: 123: IF LOOP THEN GOTO 123

Statement Separation
Semicolons separate statements, not terminate them. For
example, the following statements are separated by
semicolons:

BEGIN

END

10: WRITELN;
A :- 2 + 3;
GOTO 10

A common error is terminating the THEN clause in an
IF/THEN/ELSE statement with a semicolon. Thus, the
following example generates a warning message:

IF A· 2 THEN
WRITELN; !Semicolon is wrong.I

ELSE
IF A • 3

Another common error is putting a semicolon after the DO in
a WHILE or FOR statement:

FOR I :- 1 TO 10 DO; (Semicolon is wrong.I
BEGIN

A[I) I;
B[I) :- 10 - I;

END;

The above example will execute an empty ten times, then
execute the array assignments once. Since there are
occasional legitimate uses for repeating an empty statement,
no warning is given when this occurs. The semicolon also
follows the reserved word END at the close of a block of
program statements.

5016793

10-4 Statements

BEGIN and END
Whenever you want a program to execute a group of
statements, you can enclose the block with the reserved
words BEGIN and END. For example, the following group of
statements between BEGIN and END are all executed if the
condition in the IF statement is TRUE:

IF (MAX> 10) THEN
BEGIN {max > 101

MAX • 10;
MIN • 0;
WRITELN (MAX,MIN)

END; {max > 101
WRITELN ('done')

You can also substitute a pair of square brackets for the pair
of keywords BEGIN and END.

Simple Statements
A simple statement is one in which no part constitutes
another statement. Simple statements are:

a the assignment statement.

a the procedure statement.

a the GOTO statement.

a the empty statement.

a the BREAK, CYCLE, and RETURN statements.

The empty statement contains no symbols and denotes no
action. It is included in the definition of the language primarily
to permit you to use a semicolon after the last statement in a
group of statements enclosed between BEGIN and END.

Assignment Statements
The assignment statement replaces the current value of a
variable with a new value, which you specify as an
expression. Assignment is denoted by an adjacent colon and
equal sign characters (:=).

Statements

Examples of assignment statements:

A :- B;

A[IJ :- 12' 4 + (B' C);

A : - ADD (1 , 1) ;

10-5

The value of the expression must be assignment compatible
with the type of the variable. Selection of the variable can
involve indexing an array or dereferencing a pointer or
address. If it does, the compiler can, depending on the
optimizations performed, mix these actions with the
evaluation of the expression. If the $SIMPLE metacommand
is on, the expression is evaluated first.

Within the block of a function, an assignment to the identifier
of the function sets the value returned by the function. The
assignment to a function identifier can occur either within the
actual body of the function or in the body of a procedure or
function nested within it.

If the $RANGECK is on, an assignment to a set, subrange, or
LSTRING variable can imply a runtime call to the error
checking code.

The optimizer allows each section of code without a label or
other point that could receive control to be eligible for
rearrangement and common subexpression elimination.
Naturally, the order of execution is retained when necessary.

Given these statements,

X :- A + C + B;
Y :. A + B;
Z : • A;

the compiler could generate code to perform the following
operations:

a Get the value of A and save it.

a Add the value of B and save the result.

a Add the value of C and assign it to X.

a Assign the saved A + B value to Y.

a Assign the saved A value to Z.

5016793

10-6 Statements

This optimization occurs only if assignment to X and Y and
getting the value of A, B, or C are all independent. If C is a
function without the PURE attribute and A is a global
variable, evaluating C could change A. Then since the order
of evaluation within an expression in this case is not fixed,
the value of A in the first assignment could be the old value
or the new one.

However, since the order of evaluation among statements is
fixed, the value of A in the second and third assignments is
the new value. The following actions can limit the ability of
the optimizer to find common subexpressions:

a assignment to a nonlocal variable.

a assignment to a reference parameter.

a assignment to the referent of a pointer.

a assignment to the referent of an address variable.

a calling a procedure.

a calling a function without the PURE attribute.

The optimizer does allow a single variable with two
identifiers, perhaps one as a global variable and one as a
reference parameter.

Procedure Statements
A procedure statement executes the procedure denoted by
the procedure identifier. For example:

PROCEDURE DO_IT;
BEGIN

WRITELN ('Did it')
ENO;

DO_IT is now a statement that can be executed simply by
invoking its name:

OO_IT

If you declare the procedure with a formal parameter list, the
procedure statement must include the actual parameters.
Predeclared procedures are also available. One of the
predeclared procedures is ASSIGN. You need not declare in
order to use it. For more information refer to section 11,
Available Procedures and Functions.

Statements 10-7

ASSIGN (INFILE, 'MYFILE')

Note that the ASSIGN procedure contains a parameter list.
These parameters are the actual parameters that are bound
to the formal parameters in the procedure declaration.

The GOTO Statement
A GOTO statement indicates that further processing
continues at another part of the program text, namely at the
place of the label. You must declare a LABEL in a LABEL
declaration section, before using it in a GOTO statement. The
following restrictions apply to the use of GOTO statements.
(See also the program LOOPS_LIMITED above.)

a A GOTO must not jump to a more deeply nested
statement, that is, into an IF, CASE, WHILE, REPEAT, FOR,
or WITH statement. GOTOs from one branch of an IF or
CASE statement to another are permitted. (See
LOOPS_LIMITED program.)

a A GOTO from one procedure or function to a label in the
main program or in a higher level procedure. or function is
permitted. A GOTO can jump out of one of these
statements, so long as the statement is directly within the
body of the procedure or function. However, such a jump
generates extra code both at the location of the GOTO and
at the location of the label. The GOTO and label must be in
the same compiland, since labels, unlike variables, can not
be given the PUBLIC attribute.

If the $GOTO metacommand is on, every GOTO statement is
flagged with a warning that reminds you that ·GOTOs are
considered harmful.· This can be useful either in an
educational environment or for finding all GOTOs in a
program in order to locate a bug. The J Oumps) column of
the listing file contains the following:

a A plus (+) or an asterisk (*) flags a GOTO to a label later in
the listing.

a A minus sign (-) or an asterisk (*) marks a GOTO to a
label already encountered in the listing.

5016793

10-8 Statements

The BREAK, CYCLE, and RETURN Statements
The BREAK, CYCLE, and RETURN statements are allowed in
addition to the simple statements already described. These
statements perform the following functions:

o BREAK exits the currently executing loop. (To observe this,
replace the CYCLE statement in the LOOPS-LIMITED
program with BREAK. The Hawaii message will be written
only one time, then Bye Bye.)

o CYCLE exits the current iteration of a loop and starts the
next iteration.

o RETURN exits the current procedure, function, program, or
implementation. (To observe this, replace the CYCLE
statement in the LOOPS-LIMITED program with RETURN.
The Hawaii message will be written only one time, with no
Bye Bye.)

All three statements are functionally equivalent to a GOTO
statement.

a A BREAK statement is a GOTO to the first statement after
a repetitive statement.

a A CYCLE statement is a GOTO to an implied empty
statement after the body of a repetitive statement. This
jump starts the next iteration of a loop. In either a WHILE
or REPEAT statement, CYCLE performs the Boolean test in
the WHILE or UNTIL clause before executing the statement
again. In a FOR statement, CYCLE goes to the next value
of the control variable.

a A RETURN statement is a GOTO to an implied empty
statement after the last statement in the current procedure
or function or the body of a program or implementation.

The J ijump) column in the listing file contains a plus sign (+)
or an asterisk (*) for a BREAK statement, a minus sign (-) or
an asterisk (*) for a CYCLE statement, and an asterisk (*) for
a RETURN statement. For more information, refer to Listing
File Format in section 15, Compiling, Linking, and Executing
Programs.

Statements 10-9

BREAK and CYCLE have two forms: one with a loop label
and one without. If you give a loop label, the label identifies
the loop to exit or restart. If you do not give a label, the
innermost loop is assumed, as shown in the following
example:

OUTER : FOR I :- 1 TO N1 DO
INNER : FOR J :- 1 TO N2 DO

IF A [I, J) • TARGET THEN
BREAK OUTER;

Structured Statements
Structured statements are themselves composed of other
statements. There are four kinds of structured statements:

a compound statements.

a conditional statements.

a repetitive statements.

a WITH statements.

The control level is shown in the the C (control) column of
the listing file. The value in the C column is incremented each
time control passes to a nested statement; conversely, this
value is decremented each time control passes back to the
nesting statement. This helps you search for a missing or
extra END in a program.

Compound Statements
The compound statement is a sequence of simple
statements enclosed by the reserved words BEGIN and END.
The components of a compound statement execute in the
same sequence as they appear in the source file.

Examples of compound statements:

BEGIN
TEMP :- A (1);
A(I) :- A [J);
A [J] : • TEMP;

END;

BEGIN
OPEN_DOOR;
LET_EM_IN;
CLOSE_DOOR;

END;

5016793

10-10 Statements

All conditional and repetitive control structures (except
REPEAT) operate on a single statement, not on multiple
statements with ending delimiters. You can substitute a pair
of square brackets for the BEGIN and END pair of reserved
words. Note that a right bracket (]) matches only a left
bracket ([) (not a BEGIN, CASE, or RECORD). In other words,
right bracket is not a synonym for END.

Brackets can not be used as synonyms for BEGIN and END
to enclose the body of a program, implementation,
procedure, or function. Only BEGIN and END can be used for
this purpose.

Examples of brackets replacing BEGIN and END:

IF FLAG THEN
(X :- 1; Y :- -1 I

ELSE
(X :. -1; Y :- O);

WHILE P.N <>NIL DO
(Q :-P; P :· P.N; DISPOSE (Q));

Conditional Statements
A conditional statement selects for execution only one of its
component statements. The conditional statements are the IF
and CASE statements. You should use the IF statement for
one or two conditions, the CASE statement for multiple
conditions.

The IF Statement

The IF statement allows for conditional execution of a
statement. If the Boolean expression following the IF is true,
the statement following the THEN is executed. If the Boolean
expression following the IF is false, the statement following
the ELSE, if present, is executed.

Examples of IF statements:

IF I > 0 THEN
I I 1 (No semicolon before ELSE.I

ELSE
I : • I + 1;

IF (I <-TOP) AND (ARRI (I]<> TARGET) THEN
I : • I + 1;

Statements

IF I<= TOP THEN
IF ARRI [I] < > TARGET THEN

I : = I + 1;

IF I = 1 THEN
IF J = 1 THEN

WRITELN ('I equals J')
ELSE

WRITELN ('DONE only if I= 1 and J< > 1')

10-11

{This ELSE is paired with the most deeply nested IF.
Thus, the second WRITELN is executed only if I = 1
and J < > 1.}

IF I = 1 THEN
BEGIN {I = 1}

IFJ = 1 THEN
WR I TE LN (' I e qua 1 s J ') ;

END{I=1}
ELSE

WRITELN ('DONE only if I < > 1 ')
{Now the ELSE is paired with the first IF, since the
second IF statement is bracketed by the BEGIN/END pair.
Thus, the second WRITELN is executed if I < > 1.}

A semicolon preceding an ELSE is always incorrect. The
compiler skips it during compilation and issues a warning
message.

Note: When you use IF to test the equality for a value that is
the result of a floating point computation, the value internal
cannot be exact. Make the test for the range over which the
accuracy of the value can vary.

For example: IF ABS (A-1.0) < 1.0E-6 THEN ...

This text returns true if the value of A is 1.0 with a relative error
of less than 1.0E-6.

The CASE Statement

The CASE statement consists of an expression (called the
CASE index) and a list of statements. Each statement is
preceded by a constant list, called a CASE constant list. The
one statement executed is the one whose CASE constant list
contains the current value of the CASE index. The CASE
index and all constants must be of compatible, ordinal types.

Caution: Do not use a SINT (short integer) type for the index
variable in a CASE statement.

5016793-003

10-12

Examples of CASE statements:

CASE OPERATOR OF
PLUS: X := X +Y;
MINUS: X : = X - Y;
TIMES: X := X *Y

Statements

END; {OPERATOR is the CASE index. PLUS, MINUS,
and TIMES are CASE constants.}

CASE NEXTCH OF
'A' .. 'Z', '-' : IDENTIFIER;
' + ', '_', '*', '/' : OPERATOR;
OTHERWISE

WRITE ('Unknown Character')

END;

The CASE syntax is the same for RECORD variant
declarations. In standard Pascal, a CASE constant is one or
more constants separated by commas. With extended Pascal,
you can substitute a range of constants, such as 'A' .. 'Z', for a
single constant. No constant value can apply to more than
one statement.

The CASE statement can also be ended with an
OTHERWISE clause. The OTHERWISE clause contains
additional statements to be executed in the event that the
CASE index value is not in the given set of CASE constant
values. Note that OTHERWISE can not be used with
RECORD declarations. If the CASE index value is not in the
set and no OTHERWISE clause is present, one of two things
happen:
o If the $RANG ECK is on, a runtime error is generated.
o If the $RAN GECK is off, the result is undefined and may

not be relied upon to perform consistently.

Depending on optimization, the code generated by the
compiler for a CASE statement can be either a jump table or
series of comparisons (or both). If it is a jump table, a jump
to an arbitrary location in memory can occur. This can
happen if the control variable is out of range and the range
checking switch is off.

Repetitive Statements

Repetitive statements specify repeated execution of a
statement. These statements are functionally equivalent to
GOTO but easier to use. There are six kinds: WHILE,
REPEAT, FOR, BREAK, CYCLE, and WITH.

Statements

WHILE NOT MICKEY DO
BEGIN

NEXTMOUSE;
MICE :- MICE+ 1;

END;

10-13

The WHILE statement should be used when the loop may
not need to be executed. WHILE is evaluated, then executed
if true. When it is known that at least one iteration of the
loop is needed, the REPEAT statement (below) should be
used instead.

The REPEAT Statement

The REPEAT statement repeats a sequence of statements
one or more times until a Boolean expression becomes true.

Examples of REPEAT statements:

REPEAT
READ (LINEBUFF);
COUNT :- COUNT+ 1;

UNTIL EOF;

REPEAT GAME UNTIL TIRED;

REPEAT
FILL_GLASS;
DRINK_GLASS_FULL;

UNTIL (BOTTLE· EMPTY) OR (PERSON - BLOTTO);

A REPEAT statement is always executed once, then
evaluated to see if it should go again, which it will if the
condition is false . .This differs from WHILE, which may not
execute its loop at all.

The FOR Statement

The FOR statement instructs the compiler to execute a
statement repeatedly while a progression of values is
assigned to a variable, called the control variable of the FOR
statement. The values assigned start with a value called the
initial value and end with one. called the final value.

5016793

10-14 Statements

The FOR statement has two forms; one where the control
variable increases in value, and one where it decreases in
value:

FOR I : • 1 TO 1 0 DO 11 i s I he con I r o I var i ab I e . J
SUM:- SUM+ VICTORVECTOR [I);

FOR CH :- 'Z' DOWNTO 'A' DO

WRITE (CH);

!CH is the control
variable.)

You can also use a FOR statement to step through the
values of a set as follows:

FOR TINT :- LOWER (SHADES) TO UPPER (SHADES) DO
IF TINT IN SHADES
THEN PAINT_AREA (TINT);

The following are explicit rules defined within ISO Pascal
regarding the control variables in FOR statements:

a It must be of an ordinal type.

a It must also be an entire variable, not a component of a
structure.

a It must be local to the immediately enclosing program,
procedure, or function and can not be a reference
parameter of the procedure or function.

However, in this extended Pascal, the control variable may
also be any ST A TIC variable, such as a variable declared at
the program level, unless the variable has a segmented
ORIGIN attribute.

a No assignments to the control variable are allowed in the
repeated statement. This error is caught by making the
control variable READONL Y within the FOR statement; it is
not caught when a procedure or function invoked by the
repeated statement alters the control variable. The control
variable can not be passed as a VAR {or VARS) parameter
to a procedure or function.

a The initial and final values of the control variable must be
compatible with the type of the control variable. If the
statement is executed, both the initial and final values must
also be assignment compatible with the control variable.
The initial value is always evaluated first, and then the final
value. Both are evaluated only once before the statement
executes.

Statements 10-15

o The control variable has no value once it is out of the FOR
loop.

The statement following the DO is not executed if:

o The initial value is greater than the final value in the TO
case.

o The initial value is less than the final value in the DOWNTO
case.

The sequence of values given the control variable starts with
the initial value. This sequence is defined with the SUCC
function for the TO case, or the PRED function for the
DOWNTO case until the last execution of the statement
when the control variable has its final value.

The value of the control variable after a FOR statement
terminates naturally (whether or not the body executes) is
undefined. It may vary due to optimization and, if $1NITCK is
on, can be set to an uninitialized value. ·

However, the value of the control variable after leaving a FOR
statement with GOTO or BREAK is defined as the value it
had at the time of exit.

At the standard level, the body of a FOR statement may or
may not be executed, so a test is necessary to see whether
the body should be executed at all. However, if the control
variable is of type WORD (or a subrange) and its initial value
is a constant zero, the body must be executed no matter
what the final value. In this case, no extra test need be
executed, and no code is generated to perform such a test.

You can use temporary control variables:

FOR VARcontrol-variable

The prefix VAR causes the control variable to be declared
local to the FOR statement, that is, at a lower scope; it need
not be declared in a VAR section. Such a control variable is
not available outside the FOR statement, and any other
variable with the same identifier is not available within the
FOR statement itself. Other synonymous variables are,
however, available to procedures or functions called within
the FOR statement.

5016793

10-16

Examples of temporary control variables:

FOR VAR I :- 1 TO 100 DO
SUM:- SUM+ VICTOR [I);

FOR VAR COUNTDOWN :- 10 DOWNTO LIFT_OFF DO
MONITOR_ROCKET;

The BREAK and CYCLE Statements

Statements

In theory, a program using the BREAK and CYCLE
statements does not need to use any GOTO statements.
Each of these two statements has two forms, one with a
loop label and one without. A loop label is a normal GOTO
label prefixed to a FOR, WHILE, or REPEAT statement. You
should use integers for labels referenced by GOTOs and
identifiers for loop labels.

Examples of CYCLE and BREAK statements:

LABEL
SEARCH,
CLIMB;

SEARCH: WHILE I <· l_TOP DO
IF PILE (I) • TARGET THEN

BREAK SEARCH
ELSE I : - I + 1 ;

FOR I :- 1 TO N DO
IF NEXT [I) - NIL THEN

BREAK;

CLIMB: WHILE NOT ITEM'.LEAF DO
BEGIN (NOT ITEM". LEAF!

IF ITEM".LEFT <>NIL THEN
BEGIN (LEFT<> Nill

ITEM:- ITEM".LEFT;
CYCLE CLIMB;

END; (LEFT <> NI LI
IF ITEM". RIGHT <> NIL THEN

BEGIN (RIGHT <>NIL)
ITEM :- ITEM".RIGHT;
CYCLE CLIMB;

ENO; (RIGHT<> NIL)
WRITELN ('Very strange node.');
BREAK CLIMB;

ENO; (NOT ITEM".LEAF}

Statements 10-17

ThG WITH Statement

The WITH statement opens the scope of a statement to
include the fields of one or more records, so you can refer to
the fields directly. For example, the following statements are
equivalent:

WITH PERSON DO WRITE (NAME, ADDRESS, PHONE);

WRITE (PERSON.NAME, PERSON.ADDRESS, PERSON.PHONE);

The record given can be a variable, constant identifier,
structured constant, or function identifier; it can not be a
component of a PACKED structure. If you use a function
identifier, it refers to the local result variable of the function.

The record given can also be any expression in parentheses,
in which case the expression is evaluated and the result
assigned to a temporary (hidden) variable. If you want to
evaluate a function designator, you must enclose it in
parentheses.

You can give a list of records after the WITH statement
separated by commas. Each record must be of a different
type from all the others, since the field identifiers refer only
to the last instance of the record with the type. These
statements are equivalent:

WITH PMODE, OMODE DO statement

WITH PMODE DO WITH QMOOE 00 statement

Any record variable of a WITH statement that is a
component of another variable is selected before the
statement is executed. Active WITH variables should not be
passed as VAR or VARS parameters, nor can their pointers
be passed to the DISPOSE procedure. However, these errors
are not caught by the compiler. Assignments to any of the
record variables in the WITH list or components of these
variables are allowed, as long as the WITH record is a
variable.

Every WITH statement allocates an address variable that
holds the address of the record. If the record variable is on
the heap, the pointer to it should not be DISPOSEd within the
WITH statement. If the record variable is a file buffer, no 1/0
should be done to the file within the WITH statement.

5016793

10-18 Statements

Sequential Control
To increase execution speed or to ensure correct evaluation,
it is often useful in IF, WHILE, and REPEAT statements to
treat the Boolean expression as a series of tests. If one test
fails, the remaining tests are not executed. The sequential
control operators provide for the following tests:

1 AND THEN

X AND THEN Y is false if X is false; Y is evaluated only if
Xis true.

2 OR ELSE

OR ELSE Y is true if X is true; Y is evaluated only if X is
false.

If you use several sequential control operators, the compiler
evaluates them strictly from left to right. You can include
only these operators in the Boolean expression of an IF,
WHILE, or UNTIL clause; they can not be used in other
Boolean expressions. Furthermore, they can not occur in
parentheses and are evaluated after all other operators.

Examples of sequential control operat9rs:

IF SYM <> NIL AND THEN SYM". VAL < 0 THEN
NEXT_SYMBOL;

WHILE I <•MAX AND THEN VECT (I] <>KEY DO
I : • I + 1;

REPEAT
GEN (VAL);

UNTIL VAL • 0 OR ELSE (QU DIV VAL) • O;

WHILE POOR AND THEN GETTING_POORER
OR ELSE BROKE AND THEN BANKRUPT DO

GET_RICH;

Section 11

Procedures and Functions
As the complexity of a program increases, it becomes
increasingly important that it be both readable and
understandable, yet at the same time this goal is less
achievable. Additionally, large programs may need to be
proven correct by analysis, rather than by testing and
retesting.

11-1

The key to making large programs manageable is the use of
a structured approach, in which the program goals are
defined in the smallest possible terms, with each unit
corresponding to the solution of a specific aspect of the
overall problem.

Pascal provides these structures in two forms of subroutines,
called functions and procedures. In simplest terms, the
functions allow the creation of new operations, and the
procedures allow creation of new Pascal statements.
Functions compute and return values. Procedures perform
specific, though potentially complex, tasks.

The general format for procedures and functions is similar to
the format for programs. The format includes a heading,
declarations, and a body. The declaration of a procedure or
function associates an identifier with a portion of a program.
Later, you can activate that portion of the program with the
appropriate procedure statement or function designator.

Procedures and functions act as subprograms that execute
under the supervision of a main program. Unlike programs,
however, procedures and functions can be nested within
each other and can even call themselves. Furthermore, they
have sophisticated parameter passing capabilities that
programs lack.

Procedures are invoked as program statements. Functions
can be invoked in program statements wherever a value is
called for.

The following are a simple procedure and function that
accomplish the same task: prompting the user to respond
Yes or No at a decision point.

6016793

11-2 Procedures and Functions

VAR {global}
YN : BOOLEAN
A : CHAR;

PROCEDURE YES;
BEGIN {procedure}

WRITE(' (Y - N)'); {writes prompt!
READLN (A); treads response}
YN : - (A - 'Y') OR (A • 'y') ;

END; !YES!

or the alternative to the procedure:

FUNCTION YES : BOOLEAN;
BEGIN {function!

WRITE(' (Y - N)'); {writes prompt}
READLN (A); {reads response!
YES:- (A· 'Y') OR (As 'y');

END; !YES!

After the operation, Procedure Yes has changed the value of
variable YN to true or false depending on user input, while
Function Yes has directly assumed the value true or false.
They would be used within a program as follows:

Ill using procedure!
WRITE ('Do you wish to quit? ');
YES;
IF YN - TRUE THEN

QUIT;
ELSE

CONTINUE;

or alternatively:

Ill using function}
WRITE ('Do you wish to quit? ');
IF YES • TRUE THEN

QUIT;
ELSE

CONTINUE;

Procedures and Functions 11-3

Procedures
The general format of a procedure declaration is illustrated by
the next example. The heading is followed by:

a declarations for labels, constants, types, variables, and
values

a local procedures and functions

a the body, which is enclosed by the reserved words BEGIN
and END (the latter followed by a semicolon)

Example of a procedure declaration:

PROCEDURE MODEL (I : INTEGER; R: REAL l; (Heading}

LABEL (Beginning of declaration section!
123;

CONST
ATOP· 199;

TYPE
INDEX • 0 .. ATOP;

VAR
ARAY: ARRAY (INDEX] OF REAL;

J: INDEX;

FUNCTION FONE (RX: REAL): REAL; (Function declaration}
BEGIN

FONE :- RX *
END;

PROCEDURE FOUT (RY: REAL); (Procedure declaration}
BEGIN

WRITE ('Output is ', RY)
END;

BEGIN (Body of procedure MODEL}
FOR J :- 0 TO ATOP DO

IF GLOBALVAR THEN
FOUT (FONE (R + ARAY [Jill

ELSE
GOTO 123;

(Activation of procedure FOUT with
value return by function FONEI

123: WRITELN ('Done'f;
END;

5016793

11-4 Procedures and Functio~s

When the body of a procedure finishes execution, control
returns to the program element that called it. At the standard
level, the order of declarations must be as follows:

o LABEL

o CONST

o TYPE

o VAR

o procedures and functions

At the extended level, you can have any number of LABEL,
CONST, TYPE, VAR, and VALUE sections, as well as
procedure and function declarations, in any order. However,
putting variable declarations after procedure and function
declarations guarantees that these variables will not be used
by any of the procedures or functions.

In general, the initial values of variables are not defined. The
VALUE section, which should follow the VAR section, lets
you explicitly initialize program, module, implementation,
ST A TIC, and PUBLIC variables. If the initialization switch
($1NITCK) is on, all INTEGER, INTEGER subrange, REAL, and
pointer variables are set to an uninitialized value. File
variables are always initialized, regardless of the setting of
the initialization switch.

Functions
Functions are the same as procedures, except that they are
invoked in an expression instead of a statement, and they
return a value.

Function declarations define the parts of a program that
compute a value. Functions are activated when a function
designator, which is part of an expression, is evaluated.

A function declaration has the same format as a procedure
declaration, except that the heading also gives the type of
value returned by the function.

Example of a function heading:

FUNCTION MAXIMUM (I, J: INTEGER): INTEGER;

Procedures and Functions 11-5

Within the block of a function, either in the body itself or in a
procedure or function nested within the block, at least one
assignment to the function identifier must be executed to set
the return value. The compiler does not check for this
assignment at runtime, unless the initialization switch is on
and the returned type is INTEGER, REAL, or a pointer.
However, if there is no assignment at all to the function
identifier, the compiler issues an error message.

At the standard level, functions can return any simple type
(ordinal, REAL, or INTEGER4) or a pointer. At the extended
level, functions can return any simple, structured, or
reference type. They can not return any type that can not be
assigned, for example, a super array type or a structure
containing a file. However, a super array derived type is
permitted.

A function identifier in an expression invokes the function
recursively, rather than giving the current value of·the
function.

To obtain the current value, you must use the function
RESULT, which is available at the extended level. This
function takes the function identifier as a parameter. The
following is an example of a RESULT function used to obtain
the current value of a function within an expression:

FUNCTION FACT (F: REAL): REAL;
BEGIN

FACT := 1 ;
WHILE F > 1 DO

BEGIN
FACT.:= RESULT (FACT) ' F;
F:=F-1;

END;
END;

Using the RESULT function is more efficient than using a
separate local variable for the value of the function and then
assigning this local variable to the function identifier before
returning. If the function has a structured value, the usual
component selection syntax can follow the RESULT function.

5016793

11-6 Procedures and Functions

A function identifier on the left side of an assignment refers
to the local variable of the function, which contains its
current value, instead of invoking the function recursively.
Other places where using the function identifier refers to this
local variable are the following:

o a reference parameter

o the record of a WITH statement

o the operand of an ADA or ADS operator

All of these uses involve getting the address (not the value)
of a variable.

Instead of using the local variable of the function, you may
want to invoke the function and use the return value. Getting
the address of an expression involves evaluating the
expression, putting the resulting value into a temporary
(hidden) variable, and using the address of this variable. To
do this for a function, you must force evaluation by putting
the function designator in parentheses as follows:

PROGRAM REC (INPUT, OUTPUT);
{$SIMPLE! (Tells compiler not to optimize code, to prevent

evaluating an expression before run time.I
TYPE

IREC • RECORD
I : INTEGER;

END;

VAR
DAY
z

LSTRING (15);
INTEGER;
INTEGER;
INTEGER;

y
AMT
FOO IREC;

FUNCTION SUM (A: INTEGER; B: INTEGER): IREC;
(Return sum of A and B.J

VAR
FIE IREC;
FE IREC;

Procedures and Functions

BEGIN {FUNCTION SUMI
IF AMT - 0 THEN

11-7

WRITELN ('AMT AT FIRST FUNCTION CALL IS : ',AMT);
IF AMT<> 0 THEN

BEGIN {AMT <>01 {shows recursion decrementing BJ
FIE.I :- A+ B;
WR I TELN ('AMT IS : ' , AMT, ' FIE IS : ' , FIE. I) ;

END; !AMT <>0)
AMT :- AMT+ 1;

IF (DAY - 'TUESDAY') OR (DAY - 'Tuesday') OR
(DAY • 'tuesday') THEN

BEGIN {DAY/TUESDAY) II I you enter
Tuesday, the following happens:)

IF B - 0 THEN
BEGIN {B • 0

FE. I : • A;
SUM :- FE;
RETURN;

END; {B • 0

{When B • 0 , I u n ct i on I
{goes back th rough its)
(recursive calls, I
(adding up. SUM.I is I
110 each, 5 t i mes . J
{That is added to I
(result of SUM:- FE, J
!or 20, and the total I
fol 70 is returned to I
{ t he ca I I i n g pro g ram. I

WITH (SUM (A, B-1)) DO
BEGIN IW/ (SUM (A, B-1))I

{Calls self; all variables are)
(new, value 0 , so . . . I

SUM. I : - l + 10;
(SUM. I equa Is 10 I or each of SJ
{ t i mes t h rough t he ca I I s . I

END; (WI (SUM (A, B-1) I I
END !DAY/ TUESDAY}

ELSE (If you enter anything but)
WITH SUM DO {Tuesday, the function)

BEGIN {W/SUM) {returns A+ B, or 25.}
I :- A + B;

END; IW I SUMI
END; (FUNCTION SUMI

BEGIN {PROGRAM)
AMT :- 0;
z :- 20;
y :- 5;
WRITE ('ENTER DAY ');
READLN (DAY);
FOO :- SUM (Z, Y);
WRITELN (FOO. I);

END. {PROGRAM)

50\6793

11-8 Procedures and Functions

If you replace 10 with AMT in the section WITH (SUM (A,
B-1)) DO, you will not get the same results, because AMT
is global. Its value is 6 at the time the function runs back
through itself, and at each recursion, giving 30 + 20 instead
of 50 + 20.

Attributes and Directives
An attribute gives additional information about a procedure
or function. Attributes are available at the extended level of
Pascal. They are placed after the heading, enclosed in
brackets, and separated by commas.

Available attributes include ORIGIN, PUBLIC, and PURE.

A directive gives information about a procedure or function,
but it also indicates that only the heading of the procedure or
function occurs by replacing the block (declarations and
body) normally included after the heading.

EXTERN and FORWARD are the only directives available.
EXTERN can only be used with procedures or functions
directly nested in a program, module, implementation, or
interface. This restriction prevents access to nonlocal stack
variables.

The following attributes and directives apply to procedures
and functions:

Name

FORWARD

EXTERN

PUBLIC

ORIGIN

PURE

Purpose

A directive. Lets you call a procedure or function before you give its
block in the source file.

A directive. Indicates that a procedure or function resides in another
loaded module.

An attribute. Indicates that a procedure or function can be accessed
by other loaded modules.

An attribute. Tells the compiler where the code for an EXTERN
procedure or function resides.

An attribute. Signifies that the function does not modify any global
variables.

Procedures and Functions 11-9

The following rules apply when you combine attributes in the
declaration of procedures and functions:

a Any function may be given the PURE attribute.

a Procedures and functions with attributes must be nested
directly within a program, module, or unit. The only
exception to this rule is the PURE attribute.

a PUBLIC and EXTERN are mutually exclusive, as are PUBLIC
and ORIGIN.

The EXTERN or FORWARD directive is given automatically to
all constituents of the interface of a unit; in the
implementation, PUBLIC is given automatically to all
constituents that are not EXTERN.

Since you declare the constituents of a unit only in the
interface (not in the implementation), the interface is where
you give the attributes. You can give the EXTERN. directive in
an implementation by declaring all EXTERN procedures and
functions first; you can not use ORIGIN in either the interface
or implementation of a unit.

In a module, you can give a group of attributes in the heading
to apply to all directly nested procedures and functions. The
only exception to this rule is the ORIGIN attribute, which may
apply only to a single procedure or function.

If the PUBLIC attribute is one of a group of attributes in the
heading of a module. an EXTERN attribute given to a
procedure or function within the module explicitly overrides
the global PUBLIC attribute. If the module heading has no
attribute clause, the PUBLIC attribute is assumed for all
directly nested procedures and functions.

The PUBLIC attribute allows a procedure or function to be
called by other loaded code, and can not be used with the
EXTERN directive. The EXTERN directive permits a call to
some other loaded code, using either the ORIGIN address or
the linker. PUBLIC, EXTERN, and ORIGIN provide a low level
way to link Pascal routines with other routines in Pascal or
other languages.

A procedure or function declaration with the EXTERN or
FORWARD directive consists only of the heading without an
enclosed block. EXTERN routines have an implied block
outside of the program. FORWARD routines are fully
declared (have a block) later in the same compiland. Both
directives are available at the standard level. The keyword

5016793

11-10 Procedures and Functions

EXTERNAL is a synonym for EXTERN. The PURE attribute
applies only to functions not to procedures.

The FORWARD Directive
A FORWARD declaration allows you to call a procedure or
function before you fully declare it in the source text. This
permits indirect recursion, where A calls B and B calls A.
You can make a FORWARD declaration by specifying a
procedure or function heading, followed by the directive
FORWARD. Later, you can actually declare the procedure or
function without repeating the formal parameter list or any
attributes or the return type of a function.

Example of a FORWARD declaration:

FUNCTION ALPHA (Q, R: REAL): REAL [PUBLIC]; FORWARD;

PROCEDURE BETA (VARS, T: REAL); (Call for ALPHA!
BEGIN

T :- ALPHA (S, 3.14);
END;

FUNCTION ALPHA; (Actual declaration of ALPHA,)
BEGIN (wi thou! parameter I isl}

ALPHA :- (Q + R);
IF R < 0.0 THEN

BETA (3.14,ALPHA);
END;

The EXTERN Directive
The EXTERN directive identifies a procedure or function that
resides in another loaded module. You give only the heading
of the procedure or function followed by the word EXTERN.
The actual implementation of the procedure or function is
presumed to exist in some other module.

EXTERN is an attribute when used with a variable, but a
directive when used with a procedure or function. The
EXTERN directive for a particular procedure or function within
a module overrides the PUBLIC attribute given for the entire
module. The EXTERN directive is also permitted in an
implementation of a unit for a constituent procedure or
function.

Procedures and Functions 11-11

All such external constituents must be declared at the
beginning of the implementation before all other procedures
and functions. Any procedure or function with the EXTERN
directive must be directly nested within a program.

Examples of procedure and function headings with EXTERN
directive:

FUNCTION POWER (X, Y: REAL): REAL; EXTERN;

PROCEDURE ACCESS (KEY: KTYP) [ORIGIN SYSB+4);
EXTERN;

In the above examples, the function POWER is declared
EXTERN, as is the procedure ACCESS. Both are implemented
in external compilands. ACCESS also has the ORIGIN
attribute. Note that when a procedure or a function is
declared EXTERN, it can not have already been declared
forward.

The PUBLIC Attribute
The PUBLIC attribute indicates a procedure or function that
you can access from other loaded modules. In general. you
access PUBLIC procedures and functions from other loaded
modules by declaring them EXTERN in the modules that call
them. Thus, you can declare a procedure PUBLIC and define
it in one module, and use it in another simply by declaring it
EXTERN in the other module.

As with variables, the identifier of the procedure or function
is passed to the linker, where it can be truncated if the linker
requires it. PUBLIC and ORIGIN are mutually exclusive;
PUBLIC routines need a following block, and ORIGIN routines
must be EXTERN.

Any procedure or function with the PUBLIC attribute must be
directly nested within a program or implementation. Linkage
between Pascal routines can be done with separately
compiled units, discussed in section 14, Compilands.

Examples of procedures and functions declared PUBLIC:

FUNCTION POWER (X, Y: REAL): REAL [PUBLIC);
BEG I N IP UBL I C i n d i c a I e s I h e f u n c I i on POWER i s

{available to other modules.}

END;

5016793

11-12 Procedures and Functions

PROCEDURE ACCESS (KEY: KTYP) [ORIGIN SYSB+4, PUBLIC);
BEGIN

(Invalid since ORIGIN must also be EXTERN.I

END;

The ORIGIN Attribute
The ORIGIN attribute must be used with the EXTERN
directive; ORIGIN indicates to the compiler the location of the
procedure or function, so that the linker does not require a
corresponding PUBLIC identifier. For example:

FUNCTION A_TO_D (C: SINT): SINT [ORIGIN #100];
EXTERN;

In the above example, the function A_ TO_D takes a SINT
value as a parameter (SINT is the predeclared integer
subrange from -127 to + 127). The function is located at
the hexadecimal address 100.

ORIGIN always implies EXTERN. Thus, procedures or
functions that have previously been declared FORWARD can
not be declared with the ORIGIN attribute. This also means
that ORIGIN can not be given as an attribute after the module
heading.

The ORIGIN attribute can not be used with a constituent of a
unit, either in an interface or in an implementation. As with
variables, the origin can be a segmented address. A
nonsegmented procedural origin assumes the current code
segment with the offset given with the attribute.

The PURE Attribute
The PURE attribute applies only to functions, not to
procedures or variables. PURE indicates to the compiler
optimizer that the function does not modify any global
variables either directly or by calling some other procedure or
function.

Example of a PURE declaration:

FUNCTION AVERAGE (CONST TABLE: RVECTOR): REAL [PURE];

As an illustration, examine these statements:

A : = VEC [I ' 10 t 7] ;
B := FOO;
C : = VEC [I ' 10 + 9)

Procedures and Functions 11-13

If the function FOO is given the PURE attribute, the optimizer
generates code to compute 1"10 once. However, FOO, if it is
not declared PURE can modify I so that I* 10 must be
recomputed after the call to FOO.

Functions are not considered PURE unless given the attribute
explicitly. A PURE function can not:

a assign to a nonlocal variable

a use the value of a global variable

a have any VAR or V AAS parameters (CONST and CONSTS
parameters are permitted)

a modify the referents of references passed by value, for
example, pointer or address type referents

a call any functions that are not PURE

a do input or output

Since the result of a PURE function with the same
parameters must always be the same, the entire function call
can be optimized away. For example, if in the following
statements DSIN is PURE, the compiler calls DSIN once:

HX :- A' DSIN (P(I, J] ' 2);
HY:- B' DSIN (P(I, J) '2);

Procedure and Function Parameters
Procedures and functions can take three types of
parameters:

a value parameters

a reference parameters

a procedural and functional parameters

A formal parameter is the parameter given when the
procedure or function is declared with an identifier in the
heading. When the function or procedure is called, an actual
parameter substitutes for the formal parameter given earlier;
here the parameter takes the form of a variable or value or
expression.

5016793

11-14 Procedures and Functions

The following parameter features are available at the
extended level:

a A super array type can be passed as a reference
parameter.

a A reference parameter can be declared READONL Y.

a Explicit segmented reference parameters can be declared.

Value Parameters
When a value parameter is passed, the actual parameter is
an expression. That expression is evaluated in the scope of
the calling procedure or function and assigned to the formal
parameter. The formal parameter is a variable local to the
procedure or function called. Thus, formal value parameters
are always local to a procedure or function.

Example of value parameters:

FUNCTION ADD (A, B, C : REAL): REAL; IA, B, and Care
formal parameters.)

x : - ADD (y I ADD (1 . 111 , 2 . 2 2 2 I 3. 3 3 3) I (z • 4)) ;

In the above function invocation, the expressions Y, ADD
(1.111,2.222,3.333), and (Z • 4) make up the actual
parameters. These expressions must all evaluate to the type
REAL. The actual parameter expression must be assignment
compatible with the type of the formal parameter.

Passing structured types by value is legal; however, it is
inefficient, since the entire structure must be copied. A value
parameter of a SET, LSTRING, or subrange type can also
require a runtime error check if the $RANGECK is on. In
addition, SET and LSTRING value parameters can require
extra generated code for size adjustment.

A file variable or super array variable can not be passed as a
value parameter, since it can not be assigned. However, a
variable with a type derived from a super array or file buffer
variable can be passed. Passing a file buffer variable as a
value parameter implies normal evaluation of the buffer
variable.

Procedures and Functions 11-15

Reference Parameters
At the standard level, the keyword VAR precedes the formal
parameter. Furthermore, the actual parameter must be a
variable, not an expression. The formal parameter denotes
this actual variable during the execution of the procedure.
Any operation on the formal parameter is performed
immediately on the actual parameter by passing the machine
address of the actual variable to the procedure. This address
is an offset into the default data segment.

Example of variable parameters:

PROCEDURE CHANGE_VARS (VAR A, B, C : INTEGER);
(A, B, and C are formal reference parameters.}

CHANGE_VARS (X, Y, Z);

In the above example, X, Y, and Z must be variables, not
expressions. Also, the variables X, Y, and Z are altered
whenever the formal parameters A, B, and C are altered in
the declared procedure. This differs from the handling of
value parameters, which can affect only the copies of values
of variables.

If the selection of the variable involves indexing an array or
dereferencing a pointer or address, these actions are
executed before the procedure itself. The type of the actual
parameter must be identical to the type of the formal
parameter.

Passing a nonlocal variable as a VAR parameter puts a slash
(/) or percent sign (%) in the G (global) column of the listing
file. (Refer to section 15, Compiling, Linking, and Executing
Programs, for information about significance of these
characters in the G column of the listing.) The following can
not be passed as VAR parameters:

a a component of a PACKED structure (except CHAR of a
STRING or LSTRING)

a any variable with a READONL Y attribute (includes CONST
and CONSTS parameters and the FOR control variable)

Passing a file buffer variable by reference generates a
warning message because it bypasses the normal file system
call generated by the use of any buffer variable. These calls
are not generated when a file variable is passed by
reference.

5016793

11-16 Procedures and Functions

A VAR parameter passes an address that is really an offset
into a default data segment. In some cases, access to
objects residing in other segments is required. To pass these
objects by reference, you must instruct the compiler to use a
segmented address containing both segment register and
offset values. The extended level includes the parameter
prefix VARS instead of VAR:

PROCEDURE CONCATS (VARS T, S: STRING);

Note that a V AAS can only be used as a data parameter in
procedures and functions not in the declaration section of
programs, procedures, and functions.

Super Array Parameters

Super array parameters can appear as formal reference
parameters. This allows a procedure or function to operate
on an array with a particular super array type (also a
component type and index type), but without any fixed upper
bounds. The formal parameter is a reference parameter of
the super array type itself.

The actual parameter type must be a type derived from the
super array type or the super array type itself, that is,
another reference parameter or dereferenced pointer. Except
for comparing LSTRINGs, super array type parameters can
not be assigned or compared as a whole.

The actual upper and lower bounds of the array are available
with the UPPER and LOWER functions; this permits routines
that can operate on arrays of any size. An LSTRING actual
parameter can be passed to a reference parameter of the
super array type STRING. Therefore, the super array
parameter STRING can be used for procedures and functions
that operate on strings of both STRING and LSTRING types.

Example of super array parameters:

TYPE
REALS· ARRAY (0 .. ') OF REAL;

PROCEDURE SUMAS (VAR X: REALS; CONST X: REALS);
BEGIN

END;

Procedures and Functions 11-17

Constant and Segment Parameters

At the extended level, a formal parameter preceded by the
reserved word CONST implies that the actual parameter is a
READONL Y reference parameter. This is especially useful for
parameters of structured types, which can be constants,
since it eliminates the need for a time-consuming value
parameter copy. The actual parameter can be a variable,
function result, or constant value.

No assignments can be made to the CONST parameter or
any of its components. CONST super array types are
permitted. A CONST parameter in one procedure can not be
passed as a VAR parameter to another procedure. However,
it is permissible to pass a VAR parameter in one procedure
as a CONST parameter in another.

Example of a CONST parameter:

PROCEDURE ERROR !CONST ERRMSG: STRING);

A CONST parameter passes an address that is really an
offset into a default data segment. In some cases, access to
objects residing in other segments is required. To pass these
objects by reference, you must instruct the compiler to use a
segmented address that contains both segment register and
offset values. The extended level includes the parameter
prefix CONSTS, instead of CONST. Use of CONSTS
parameters parallels use of V AAS for formal reference
parameters.

Example of a CONSTS parameter:

PROCEDURE CAT !VARS T: STRING; CONSTS S: STRING);

Note that a CONSTS parameter can be used only as a data
parameter in procedures and functions, not in the declaration
section of programs, procedures, and functions.

You can also pass the value of an expression as a CONST or
CONSTS parameter. The expression is evaluated and
assigned to a temporary (hidden) variable in the frame of the
calling procedure or function. You should enclose such an
expression in parentheses to force its evaluation.

A function identifier can be passed by reference as a VAR,
V AAS, CONST, or CONSTS parameter. The local variable of
the function is passed, so the call must occur in the function
body or in a procedure or function declared with the function.

5016793

11-18 Procedures and Functions

The value returned by a function designator can also be
passed, like any expression, as a CONST or CONSTS
parameter. Like any expression passed by reference, the
function designator should be enclosed in parentheses as
follows:

PROCEDURE WRITE_ANSWER (CONSTS A: INTEGER);
BEGIN

WRITELN ('THE ANSWER IS , ' A)
END;

FUNCTION ANSWER: INTEGER;
BEGIN

ANSWER :- 42;
WRITE_ANSWER (ANSWER); !Pass reference to local}

END; {variable.}

PROCEDURE HITCH_HIKE;
BEGIN

WRITE_ANSWER ((ANSWER)) (Call ANSWER, assign to l
END; !temporary variable, pass

reference to temporary
variable.}

Procedural and Functional Parameters
When a procedural or functional parameter is passed, the
actual identifier is that for a procedure or function. The formal
parameter is a procedure or function heading, including any
attributes, preceded by the reserved word PROCEDURE or
FUNCTION.

For example, examine these declarations:

TYPE
DOOR • (FRONT, BARN, CELL, DOG_HOUSE);
SPEED • (FAST, SLOW, NORMAL);
DIRECTION ~ (OPEN, SHUT);

PROCEDURE OPEN_DOOR_WIDE
(VAR A : DOOR; B: SPEED; C DIRECTION);

PROCEDURE SLAM_OOOR
(VAR DR : DOOR; SP SPEED; DIR DIRECTION);

PROCEDURE LEAVE_AJAR
(VAR DO : DOOR; SS SPEED; DD DIRECTION);

Procedures and Functions 11-19

All of the procedures in the example have parameter lists of
equal length. The types of the parameters are not only
compatible but also identical. The formal parameters need
not be identically named.

A procedural or functional parameter can accept one of these
procedures if the procedure or function is set up correctly as
shown:

FUNCTION DOOR_STATUS (PROCEDURE MOVE_OOOR
(VAR X: DOOR; Y: SPEED; Z: DIRECTION);
VAR XX: DOOR; YY: SPEED; ZZ: OIRECTION):INTEGER;

{"PROCEDURE MOVE_DOOR" is the formal procedural!
{parameter. The next two fines are other formal!
{parameters.I

BEGIN {door_status}
DOOR_STATUS := O;
MOVE_OOOR(XX, YY, ZZ);

{One of the three procedures declared}
{previously is executed here.I

IF XX· BARN ANO ZZ ·SHUT
THEN OOOR_STATUS ;. 1;

IF XX = CELL ANO ZZ • OPEN
THEN DOOR_STATUS ;. 2

IF XX= DOG_HOUSE ANO ZZ ·SHUT
THEN OOOR_STATUS :- 3

ENO;

Use of the procedural parameter MOVEDOOR could occur in
program statements as follows:

IF OOOR_STATUS
(SLAM_OOOR, CELL, FAST, SHUT) • 0

THEN
SOCIETY :- SAFE;

IF DOOR_STATUS
(OPEN_OOOR_WIOE, BARN, SLOW, OPEN) • 0

THEN
COWS_ARE_OUT ;. TRUE;

IF DOOR_STATUS
(LEAVE_AJAR, DOG_HOUSE, SLOW, OPEN) • 0

THEN
DOG_CAN_GET_IN :- TRUE;

11-20 Procedures and Functions

In each of the above cases, the actual procedure list is
compatible with the formal list, both in number and in type of
parameters. If the parameter passed were a functional
parameter, then the function return value would also have to
be of an identical type.

In addition, the set of attributes for both the formal and
actual procedural type must be the same, except that the
PUBLIC and ORIGIN attributes and EXTERN directive are
ignored.

A PUBLIC or EXTERN procedure, or any local procedure at
any nesting level, can be passed to the same type of formal
parameter. However, the PURE attribute and any calling
sequence attributes must match. Also, in systems with
segmented code addresses, a procedure or function passed
as a parameter to an EXTERN procedure or function must
itself be PUBLIC or EXTERN.

You can not pass predeclared procedures and functions
compiled as inline code; you can pass them only in called
subroutines. Also, the READ, WRITE, ENCODE, and DECODE
families are translated into other calls by the compiler based
on the argument types, and so can not be passed.
Corresponding routines in the file unit or encode/decode unit
can be passed, however. For example, a READ of an
INTEGER becomes a call to RTIFOO, and this procedure can
be passed as a parameter.

The following intrinsic procedures and functions can not be
passed as procedure or function parameters:

o at the standard level:

ABS EOLN PACK SOR
ARCTAN EXP PAGE SORT
CHR LN PRED succ
cos NEW READ UNPACK
DISPOSE ODD READLN WRITE
EOF ORD SIN WRITELN

o at the extended and system levels:

BYLONG FLOAT4 READFN SIZE OF
BYWORD HIBYTE READSET TRUNC
DECODE HIWORD RESULT TRUNC4
ENCODE LOBYTE RETYPE UPPER
EVAL LOWER ROUND WRD
FLOAT LOWORD ROUND4

Procedures and Functions 11-21

When a procedure or function passed as a parameter is
finally activated, any nonlocal variables accessed are those in
effect at the time the procedure or function is passed as a
parameter rather than those in effect when it is activated.
Internally, both the address of the routine and the address of
the upper frame (in the stack) are passed.

The following example of formal procedure use is explained
below:

PROCEDURE ALPHA;
VAR I: INTEGER;

PROCEDURE DELTA;
BEGIN

WRITELN ('Delta done')
END;

PROCEDURE BETA (PROCEDURE XPR);
VAR GLOB: INTEGER;

PROCEDURE GAMMA;
BEGIN

GLOB :- GLOB+ 1;
END;
BEGIN !Start BETAI

GLOB :- 0;
IF I - 0

END;

THEN BEGIN
I : • 1 ;
XPR;
BET A (GAMMA) ;
END

ELSE BEGIN
GLOB :- GLOB+ 1;
XPR;
END

BEGIN !Start ALPHAI
I : • 0;
BETA (DELTA);

END;

The events that take place in the previous example are:

1 ALPHA is called.

2 BET A is called, passing the procedure DELTA.

5016793

11-22 Procedures and Functions

3 This latter call creates an instance of GLOB on the stack
(call it GLOB1).

4 BET A first clears GLOB 1 by setting it to zero. Then, since I
is 0, the THEN clause is executed, which sets I to one and
executes XPR, which is bound to DELTA.

5 Therefore, 'Delta done' is written to OUTPUT.

6 Now BET A is called recursively. BET A is passed GAMMA,
and, at this time, the access path to any nonlocal variables
used by GAMMA, for example, GLOB1 is passed as well.

7 The second call to BET A creates another instance of GLOB
(GLOB2). When GLOB2 is cleared this time, I is 1, so
GLOB2 is incremented.

8 Then XPR is called, which is bound to GAMMA, so
GAMMA is executed and increments the instance of GLOB
active when GAMMA was passed to BET A, GLOB 1.

9 GAMMA returns, the second BET A call returns, the first
BETA call returns, and finally, ALPHA returns.

Section 12 12-1

Available Procedures and Functions
Standard procedures and functions are predeclared in Pascal.
This means that they do not have to be declared in a
program and that they can be redefined. Pascal provides
additional predeclared procedures and functions that are
available only at the extended and system levels. They
should be avoided if portability is necessary. Pascal also
includes some useful library procedures and functions that
you must declare EXTERN in order to use.

Pascal implements three kinds of procedures and functions:

a Those that are predeclared and the compiler translates into
other calls or special generated code. (You cannot pass
these as parameters).

a Those that are predeclared but you call them normally
(except for a name change).

a Those that are not predeclared but are available as part of
the Pascal runtime library. (You must declare these
explicitly.)

Procedures and functions are grouped according to
implementation levels and functions. These groups are listed
below:

Category

File system

Dynamic
allocation

Data
conversion

Arithmetic

Extended level
intrinsics

System level
intrinsics

String
intrinsics

Library

5016793

Purpose

Operate on files of different modes and structures.

Dynamically allocate and deallocate data structures on
the heap at runtime.

Convert data from one type to another.

Perform common transcendental and other numeric
functions. ·

Provide additional procedures and functions at the
extended level of Pascal.

Provide additional procedures and functions at the
system level of Pascal.

Operate on STRING and LSTRING type data.

Available in the Pascal runtime library; they are not
predeclared. You must declare them with the EXTERN
directive.

12-2 Available Procedures and Functions

The File System procedures and functions are discussed
separately in section 13, File-Oriented Procedures and
Functions.

Dynamic Allocation Procedures
The procedures, NEW and DISPOSE, allow dynamic
allocation and deallocation of data structures at runtime.
NEW allocates a variable in the heap, and DISPOSE releases
it.

Procedure DISPOSE (VARS P: Pointer); {Short Form}
This procedure releases the memory used for the variable
pointed to by P. P must be a valid pointer; it cannot be NIL,
uninitialized, or pointing at a heap item that already has been
DISPOSEd. These are checked if the NIL checking switch is
on.

P should not be a reference parameter or a WITH statement
record pointer, but these errors are not caught. A DISPOSE
of a WITH statement record can be done without problems
at the end of the WITH statement.

If the variable is a super array type or a record with variants,
you can safely use the short form of DISPOSE to release the
variable, regardless of whether it was allocated with the long
or short form of NEW. Using the short form of DISPOSE on a
heap variable allocated with the long form of NEW is an
ISO-defined error not caught in this Pascal.

Procedure DISPOSE (VARS P: Pointer; T1, T2, ... TN: Tags);
{long Form}

This procedure works the same way as the short form.
However, the long form checks the size of the variable
against the size implied by the tag field or array upper bound
values T1, T2, ... Tn. These tag values should be the same
as defined in the corresponding NEW procedure. Also refer
to the SIZEOF function, which uses the same array upper
bounds or tag value parameters to return the number of
bytes in a variable.

Available Procedures and Functions 12-3

Procedure NEW (VARS P: Pointer); {Short Form}
This procedure allocates a new variable V on the heap and at
the same time assigns a pointer to V to the pointer variable
P (a VARS parameter). The type of V is determined by the
pointer declaration of P. If Vis a super array type, you
should use the long form of the procedure. If V is a record
type with variants, the variants giving the largest possible
size are assumed, permitting any variant to be assigned to
PA.

Procedure NEW (VARS P: Pointer; T1, T2, ... TN: Tags);
{Long Form}
This procedure allocates a variable with the variant specified
by the tag field values T1 through Tn. The tag field values
are listed in the order in which they are declared. Any trailing
tag fields can be omitted.

If all tag field values are constant, Pascal allocates only the
amount of space required on the heap, rounded up to a word
boundary. The value of any omitted tag fields is assumed to
be such that the maximum possible size is allocated.

If some tag fields are not constant values, the compiler uses
one of two strategies:

a It assumes that the first nonconstant tag field and all
following tags have unknown values, and allocates the
maximum size necessary.

a It generates a special runtime call to a function that
calculates the record size from the variable tag values
available. This depends on the implementation. A similar
procedure applies to DISPOSE and SIZE OF.

You should set all tag fields to their proper values after the
call to NEW and never change them. The compiler does not:

a assign tag values

a check that they are initialized correctly

a check that their value is not changed during execution

In ISO Pascal, a variable created with the long form of NEW
cannot be:

a used as an expression operand

a passed as a parameter

a assigned a value

5016793

12-4 Available Procedures and Functions

ISO Pascal does not catch these errors. Fields within the
record can be used normally.

Assigning a larger record to a smaller one allocated with the
long form of NEW would wipe out part of the heap. This
condition is difficult to detect at compile time. Therefore, any
assignment to a record in the heap that has variants uses the
actual length of the record in the heap, rather than the
maximum length.

However, an assignment to a field of an invalid variant can
destroy part of another heap variable or the heap structure
itself. This error is only detected when all tag values are
explicit.

The extended level allows pointers to super arrays. The long
form of NEW is used as described above, except that array
upper bound values are given instead of tag values. All upper
bounds must be given. Bounds can be constants or
expressions; in any case, only the size required is allocated.

The entire array referenced by such a pointer cannot be
assigned or compared, except that LSTRINGs can always be
compared. The entire array can be passed as a reference
parameter if the formal parameter is of the same super array
type. Components of the array can be used normally.

Data Conversion Procedures and Functions
You should use the following procedures and functions to
convert data from one type to another:

Function CHR (X: ORDINAL): CHAR;
This function converts any ordinal type to CHAR. The ASCII
code for the result is ORD (X). This is an extension to the
ISO Pascal, which requires X to be of type INTEGER. An
error occurs if ORD (X) > 255 or ORD (X) < 0. However, the
error is caught only if the range checking switch is on.

Available Procedures and Functions 12-5

Function FLOAT (X: INTEGER): REAL;
This function converts an INTEGER value to a REAL value.
You normally do not need this function, since
INTEGER-to-REAL is usually done automatically. However,
because FLOAT is needed by the runtime package, it is
included at the standard level.

Function FLOAT4 (X: INTEGER4): REAL;
This function converts an INTEGER4 value to a REAL value.
This type conversion is also done automatically. However, it
is possible that you could lose precision.

Function ODD (X: ORDINAL): BOOLEAN;
This function tests the ordinal value X to see whether it is
odd. ODD is TRUE only if ORD (X) is odd; otherwise it is
FALSE.

Function ORD (X: VALUE): INTEGER;
This function converts to INTEGER any value of one of the
types shown below:

Type of X

INTEGER

WORD <- MAXINT

WORD > MAXINT

CHAR

Enumerated

INTEGER4

Pointer

5016793

Return value

x
x
X - 2 • (MAXINT + 1) (Same 16 bits as at start)

ASCII code for X

Position of X in the type definition, starting with 0

Lower 16 bits: same as ORD (LOWORD (INTEGER4))

Integer value of pointer

12-6 Available Procedures and Functions

Procedure PACK (CONSTS A: UNPACKED; I: INDEX; VARS
Z: PACKED);
This procedure moves elements of an unpacked array to a
packed array. If A is an ARRAY [M .. N) OF T and Z is a
PACKED ARRAY [U .. V) OFT, then PACK (A, I, Z) is the
same as:

FOR J : = U TO V DO Z [J) : - A [J - U + I)

In both PACK and UNPACK, the parameter I is the initial
index within A. The bounds of the arrays and the value of I
must be reasonable; that is, the number of components in
the unpacked array A from I to M must be at least as great
as the number of components in the packed array Z. The
range checking switch controls checking of the bounds.

Function PRED (X: ORDINAL): ORDINAL;
This function determines the ordinal predecessor to X. The
ORD of the result returned is equal to ORD (X) - 1 when the
ordinal type is word, ORD (PREDCK))(X)-1 when X:=
MAXINT. An error occurs if the predecessor is out of range
or overflow occurs. These errors are caught if appropriate
debug switches are on.

Function ROUND (X: REAL): INTEGER;
This function rounds X away from zero. X is of type REAL4
or REALS; the return value is of type INTEGER.

Examples:

ROUND (1 . 6) is 2

ROUND (-1.6) is -2

An error occurs if ABS (X + 0.5) >= MAXINT.

Function ROUND4 (X: REAL): INTEGER4;
This function rounds Real X away from zero. X is of type
REAL4 or REALS; the return value is of type INTEGER4.

Examples:

ROUND4 (1 . 6) is 2

ROUND4 (-1.6) is -2

Available Procedures and Functions 12-7

An error occurs if ABS (X + 0.5) >= MAXINT4.

Function SUCC (X: ORDINAL): ORDINAL;
This function determines the ordinal successor to X. The
ORD of the returned result is equal to ORD (X) + 1 when the
ordinal type is word, ORD (SUCC(X)+ 1 when X: = MAXINT.
An error occurs if the successor is out of range or overflow
occurs. These errors are caught if appropriate debug
switches are on.

Function TRUNC (X: REAL): INTEGER;
This function truncates X toward zero. X is of type REAL4 or
REALS, and the return value is of type INTEGER.

Examples:

TRUNC { 1 . 6) is 1

TRUNC { -1 . 6) is -1

An error occurs if ABS (X - 1.0) >= MAXINT.

Function TRUNC4 (X: REAL}: INTEGER4;
This function truncates Real X towards zero. X is of type
REAL4 or REALS, and the return value is of type INTEGER4.

Examples:

TRUNC4 { 1 . 6) is 1

TRUNC4 (-1.6) is· -1

An error occurs if ABS (X - 1.0) >= MAXINT4.

Procedure UNPACK (CONSTS Z: PACKED; VARS A:
UNPACKED; I: INDEX};
This procedure moves elements a from packed array to an
unpacked array. If A is an ARRAY [M .. N] OFT, and Z is a .
PACKED ARRAY [U .. V] OF T,then the above call is the same
as:

FOR J : = U TO V DO A [J - U + I) : = Z [JI

5016793

12-8 Available Procedures and Functions

In both PACK and UNPACK, the parameter I is the initial
index within A. The bounds of the arrays and the value of I
must be reasonable; that is, the number of components in
the unpacked array A from I to M must be at least as great
as the number of components in the packed array Z. The
range checking switch controls checking of the bounds.

Also refer to PROCEDURE PACK.

Function WRD (X: VALUE): WORD;
This function converts to WORD any of the types shown
below:

Type of X

WORD

INTEGER>- 0

INTEGER< 0

CHAR

Enumerated

INTEGER4

Pointer

Return Value

x
x
X + MAXWORD + 1 (same 16 bits as at start)

ASCII code for X

Position of X in the type definition, starting with 0

Lower 16 bits: same as LOWORD(INTEGER4)

Word value of pointer

Arithmetic Functions
All arithmetic functions take a CONSTS parameter of type
REAL4 or REALS, or a type compatible with INTEGER
(labeled numeric). ABS and SQR also take WORD and
INTEGER4 values.

All functions on REAL data types check for an invalid
(uninitialized) value. They also check for particular error
conditions and generate a runtime error message if an error
condition is found.

If the math checking switch is on, errors in the use of the
functions ABS and SQR on INTEGER, WORD, and INTEGER4
data generate a runtime error message. If the switch is off,
the result of an error is undefined.

Available Procedures and Functions 12-9

Function ABS (X: NUMERIC): NUMERIC;
This function returns the absolute value of X. Both X and the
return value are of the same numeric type: REAL4, REALS,
INTEGER, WORD, or INTEGER4. Since WORD values are
unsigned, ABS (X) always returns X if Xis of type WORD.

Function ARCTAN (X: REAL): REAL;
This function returns the arc tangent of X in radians. Both X
and the return value are of type REAL. To force a particular
precision, you must declare A TSRQQ (CONSTS REAL4)
and/or A TDRQQ (CONSTS REALS) and use them instead.

FUNCTION ATSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION ATORQQ (CONSTS A: REALS): REALS;

Function COS (X: REAL): REAL;
This function returns the cosine of X in radians. Both X and
the return value are of type REAL. To force a particular
precision, you must declare CNSRQQ (CONSTS REAL4)
and/or CNDRQQ (CONSTS REALS) and use them instead.

FUNCTION CNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION CNORQQ (CONSTS A: REALS): REALS;

Function EXP (X: REAL): REAL;
This function returns the exponential value of X, that is, e to
the X. Both X and the return value are of type REAL. To
force a particular·precision, you must declare EXSRQQ
(CONSTS REAL4) and/or EXDRQQ (CONSTS REALS) and use
them instead.

FUNCTION EXSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION EXORQQ (CONSTS A: REALS): REALS;

Function LN (X: REAL): REAL;
This function returns the log~rithm, base e, of X. Both X and.
the return value are of type REAL. To force a particular
precision, you must declare LNSRQQ (CONSTS REAL4)
and/or LNDRQQ (CONSTS REALS) and use them instead. An

. error occurs if X is less than or equal to zero.

FUNCTION LNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION LNORQQ (CONSTS A: REALS): REALS;

5016793

Available Procedures and Functions

Function SIN (X: REAL): REAL;
This function returns the sine of X in radians. Both X and the
return value are of type REAL. To force a particular precision,
you must declare SNSRQQ (CONSTS REAL4) and/or
SNDRQQ (CONSTS REALS) and use them instead.

FUNCTION SNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION SNORQQ (CONSTS A: REALS): REALS;

Function SOR (X: NUMERIC): NUMERIC;
This function returns the square of X, where X is of type
REAL, INTEGER, WORD, or INTEGER4.

Function SQRT (X): REAL;
This function returns the square root of X, where X is of
type REAL. To force a particular precision, you must declare
SRSRQQ (CONSTS REAL4) and/or SRDRQQ (CONSTS
REALS) and use them instead. An error occurs if X is less
than 0.

FUNCTION SRSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION SRORQQ (CONSTS A: REALS): REALS;

Real Functions
The Pascal runtime library provides several additional REAL4
and REALS functions. If you use them, all variable parameters
must be passed as VARS and the functions must be
declared with the EXTERN directive.

FUNCTION ACSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION ACORQQ (CONSTS A: REALS): REALS;

These functions return the arc cosine of A. Both A and the
return value are of type REAL4 or REALS.

FUNCTION AISRQQ (CONSTS A: REAL4): REAL4;

The above function returns the integral part of A, truncated
toward zero. Both A and the return value are of type REAL4.

FUNCTION ANSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION ANORQQ (CONSTS A: REALS): REALS;

Like AISRQQ and AIDRQQ, these functions return the
truncated integral part of A, but round away from zero. Both
A and the return value are of type REAL4 or REALS.

Available Procedures and Functions

FUNCTION ASSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION ASORQQ (CONST$ A: REALS): REALS;

These functions return the arc sine of A. Both A and the
return value are of type REAL4 or REALS.

FUNCTION A2SRQQ (A, B: REAL4): REAL4;
FUNCTION A20RQQ (A, B: REALS): REALS;

12-11

These functions return the arc tangent of (A/B). Both A and
B, as well as the return value, are of type REAL4 or REALS.

FUNCTION CHSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION CHORQQ (CONSTS A: REALS): REALS;

These functions return the hyperbolic cosine of A. Both A
and the return value are of type REAL4 or REALS.

FUNCTION LOSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION LOORQQ (CONSTS A: REALS): REALS;

These functions return the logarithm, base 10, of A. Both A
and the return value are of type REAL4 or REALS.

FUNCTION MOSRQQ (CONSTS A, B: REAL4): REAL4;
FUNCTION MOORQQ (CONSTS A, B: REALS): REALS;

A modulo B, defined as:

MOSRQQ (A, B) - A - A I SRQQ (A/B) ' B
MOORQQ (A, B) = A - AIORQQ (A/B) ' B

Both A and Bare of type REAL4 or REALS.

FUNCTION MNSRQQ (CONSTS A, B: REAL4): REAL4;
FUNCTION MNORQQ (CONSTS A, B: REALS): REALS;

These functions return the value of A or B, whichever is
smaller. Both A and Bare of type REAL4 or REALS.

FUNCTION MXSRQQ (CONSTS A, B: REAL4): REAL4;
FUNCTION MXORQQ (CONSTS A, B: REALS): REALS;

These functions return the value of A or B, whichever is
larger. Both A and Bare of type REAL4 or REALS.

FUNCTION PIORQQ (CONSTS A: REALS; CONSTS B: INTEGER4):
REALS;

FUNCTION PI SRQQ (CONS TS A: REAL4; CONSTS B: I NTEGER4):
REAL4;

These functions return the value is A **B (A to the INTEGER
power of B). A is of type REAL4 or REALS.

5016793

12-12 Available Procedures and Functions

FUNCTION PRSRQQ (A, B: REAL4): REAL4;
FUNCTION PRORQQ (A, B: REALS): REALS;

These functions return the value A *"B (A to the REAL power
of B). Both A and Bare of type REAL4 or REALS.

FUNCTION SHSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION SHORQQ (CONSTS A: REALS): REALS;

These functions return the hyperbolic sine of A. A is of type
REAL4 or REALS.

FUNCTION THSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION THORQQ (CONSTS A: REALS): REALS;

These functions return the hyperbolic tangent of A. Both A
and the return value are of type REAL4 or REALS.

FUNCTION TNSRQQ (CONSTS A: REAL4): REAL4;
FUNCTION TNORQQ (CONSTS A: REALS): REALS;

These functions return the tangent of A. Both A and the
return value are of type REAL4 or REALS.

Some common mathematical functions are not standard in
Pascal, but are relatively simple to accomplish with program
statements or to define as functions in a program. Some
typical definitions are as follows:

SIGN (X) i s ORD (X > 0) - ORO (X < 0)
POWER (X, Y) is EXP (Y' LN (X))

You could also write your own functions to do the same
thing. For example:

FUNCTION POWER (A, B: REAL): REAL (PURE);
BEGIN

IF A <• 0
THEN

ABORT ('Nonplus real to power', 24, O);
POWER :- EXP (B ' LN (A));

END;

Extended Level Intrinsics
The following intrinsic procedures and functions are available
at the extended level:

Available Procedures and Functions 12-13

Procedure ABORT (CONST STRING, WORD, WORD);
This procedure halts program execution in the same way as
an internal runtime error. The STRING (or LSTRING) is an
error message. The string parameter is a CONST, not a
CONSTS parameter. The first WORD is an error code (refer
to appendix A, Error Messages, for error code allocations);
the second WORD can be anything. The second WORD is
sometimes used to return a file error status code from the
operating system.

The parameters, as well as any information about the
machine state (program counter, frame pointer, stack pointer)
are given to you in a termination message or are available to
the debugging package. This is true of the source position of
the ABORT call, if the $LINE and/or $ENTRY debugging
switches are on as well.

If the $RUNTIME switch is on, then error message_s give the
location of the procedure or function that has called the
routine in which ABORT was called. If $RUNTIME is on,
$LINE and $ENTRY should be off, and routines in a source
file should only call other $RUNTIME routines.

Function BYLONG (INTEGER-WORD, INTEGER-WORD):
INTEGER4;
This function converts WORDS or INTEGERS (or the
LOWORDs of INTEGER4s) to an INTEGER4 value. BYLONG
concatenates its operands:

BYLONG {A, B) =

ORD (LOWORD (A)) ' 65535 +WAD (HIWORD (B))

If the first value is of type WORD, its most significant bit
becomes the sign of the result.

Function BYWORD (ONE-BYTE, ONE-BYTE): WORD;
This function converts bytes (or the LOBYTEs of INTEGERs
or WORDs) to a WORD value. It takes two parameters of
any ordinal type. BYWORD returns a WORD with the first
byte in the most significant part and the second byte in the
least significant part:

BYWORD {A, B) = LOBYTE(A) ' 256 + LOBYTE(B)

5016793

12-14 Available Procedures and Functions

If the first value is of type WORD, its most significant bit
becomes the sign of the result.

function DECODE (CONST LSTR: LSTRING, X:M:N):
BOOLEAN;
This function converts the character string in the LSTRING to
its internal representation and assigns this to X. If the
character string is not a valid external ASCII representation of
a value whose type is assignment compatible with X,
DECODE returns FALSE and the value of Xis undefined.
When Xis a subrange, DECODE returns FALSE if the value is
out of range (regardless of the setting of the range checking
switch). Leading and trailing spaces and tabs in the LSTRING
are ignored. All other characters in the LSTRING must be part
of the representation.

X must be one of the types INTEGER, WORD, enumerated,
one of their subranges, BOOLEAN, REAL4, REALS,
INTEGER4, or a pointer (address types need the .R or .S
suffix). The LSTR parameter must reside in the default data
segment.

Function ENCODE (VAR LSTR: LSTRING, X:M:N): BOOLEAN;
This function converts the expression X to its external ASCII
representation and puts this character string into LSTR. This
returns TRUE, unless the LSTRING is too small to hold the
string generated. In this case, ENCODE returns FALSE and
the value of the LSTR is undefined. ENCODE works the same
as the WRITE procedure, including the use of M and N
parameters (refer to section 13, File-Oriented Procedures and
Functions, for a discussion of these parameters).

X must be one of the types INTEGER, WORD, enumerated,
one of their subranges, BOOLEAN, REAL4, REALS,
INTEGER4, or a pointer (address types need the .R or .S
suffix). The LSTR parameter must reside in the default data
segment.

Procedure EVAL (Expression, Expression, ...);

This procedure evaluates expression parameters only, but
accepts any number of parameters of any type. EVAL is
used to evaluate an expression as a statement; it is
commonly used to evaluate a function for its side effects
without using the function return value.

Available Procedures and Functions 12-15

function HIBYTE (INTEGER-WORD): BYTE;
This function returns the most significant byte of an INTEGER
or WORD. The most significant byte can be the first or the
second addressed byte of the word.

function HIWORD (INTEGER4): WORD;
This function returns the high-order word of the four bytes of
the INTEGER4. The sign bit of the INTEGER4 becomes the
most significant bit of the WORD.

function LOBYTE (INTEGER-WORD): BYTE;
This function returns the least significant byte of an INTEGER
or WORD. The least significant byte can be the first or the
second addressed byte of the word.

function LOWER (Expression): VALUE;
This function takes a single parameter of one of the following
types: array, set, enumerated, or subrange. The value
returned by LOWER is one of the following:

o the lower bound of an array

a the first allowable element of a set

a the first value of an enumerated type

a the lower bound of a subrange

LOWER uses the-type, not the value, of the expression. The
value returned by LOWER is always a constant.

function LOWORD (INTEGER4): WORD;
This function returns the low-order WORD of the four bytes
of the INTEGER4.

function RESULT (function-Identifier): VALUE;
This function is used to access the current value of a
function. It can be used only within the body of the function
itself or in a procedure or function nested within it.

5016793

12-16 Available Procedures and Functions

Function SIZEOF (VARIABLE): WORD;
Function SIZEOF (VARIABLE, TAG1, TAG2, ... TAGN):
WORD;

This function returns the size of a variable in bytes. Tag
values or array upper bounds are set as in the NEW and
DISPOSE functions. If the variable is a record with variants,
and the first form is used, the maximum size possible is
returned. If the variable is a super array, the second form,
which gives upper bounds, must be used. The result is
rounded off to even numbers.

Function UPPER (Expression): VALUE;
This function takes a single parameter of one of the following
types: array, set, enumerated, or subrange. The value
returned by UPPER is one of the following:

o the upper bound of an array

o the last allowable element of a set

o the last value of an enumerated type

o the upper bound of a subrange

The value returned by UPPER is always a constant, unless
the expression is of a super array type. In this case, the
actual upper bound of the super array type is returned. Note
that the type and not the value of the expression is used for
UPPER.

System Level Intrinsics
The system intrinsic feature provides the following
procedures and functions:

Procedure FILLC (D: ADRMEM; N: WORD; C: CHAR);
This procedure fills D with N copies of the CHAR C. No
bounds checking is done. The MOVE and FILL procedures
take value parameters of type ADRMEM and ADSMEM, but
since all ADA (or ADS) types are compatible, the ADA (or
ADS) of any variable or constant can be used as the actual
parameter. These are dangerous but sometimes useful
procedures.

Available Procedures and Functions 12-17

Procedure FILLSC (D: ADSMEM; N: WORD; C: CHAR);
This procedure fills D with N copies of the CHAR C. No
bounds checking is done. The MOVE and FILL procedures
take value parameters of type ADRMEM and ADSMEM, but
since all ADR (or ADS) types are compatible, the ADR (or
ADS) of any variable or constant can be used as the actual
parameter. These are dangerous but sometimes useful
procedures.

Procedure MOVEL (S, D: ADRMEM; N: WORD);
This procedure moves N characters (bytes) starting at SA to
DA, beginning with the lowest addressed byte of each array.
Regardless of the value of the range and index checking
switches, there is no bounds checking.

Example:

MOVEL (ADR 'New String Value', ADR V, 16)

You must use MOVEL and MOVESL to shift bytes left or
when the address ranges do not overlap. The MOVE and
FILL procedures take value parameters of type ADRMEM and
ADSMEM, but since all ADR (or ADS) types are compatible,
the ADR (or ADS) of any variable or constant can be used as
the actual parameter. These are dangerous but sometimes
useful procedures.

Procedure MOVER (S, D: ADRMEM; N: WORD);
This procedure is like MOVEL, but starts at the highest
addressed byte of each array. Use MOVER and MOVESR to
shift bytes right. As with MOVEL, there is no bounds
checking.

Example:

MOVER (ADR V(OJ, ADR V(4), 12)

The MOVEs and Fills take value parameters of type
ADRMEM and ADSMEM, but since all ADR (or ADS) types
are compatible, the ADR (or ADS) of any variable or constant
can be used as the actual parameter. These are dangerous
but sometimes useful procedures.

5018793

12-18 Available Procedures and Functions

Procedure MOVESL (S, D: ADSMEM;:N: WORD};
This moves N characters (bytes) starting at SA to DA,
beginning with the lowest addressed byte of each array.
Regardless of the value of the range and index checking
switches, no bounds checking takes place.

Example:

MOVESL (ADS 'New String Value', ADS V, 16)

You must use MOVEL and MOVE SL to shift bytes left or
when the address ranges do not overlap. The MOVE and
FILL procedures take value parameters of type ADRMEM and
ADSMEM, but since all ADR (or ADS) types are compatible,
the ADR (or ADS) of any variable or constant can be used as
the actua! parameter. These are dangerous but sometimes
useful procedures.

Procedure MOVESR (S, D: ADSMEM; N: WORD);
This procedure is like MOVESL, but starts at the highest
addressed byte of each array. Use MOVER and MOVESR to
shift bytes right. As with MOVESL, no bounds checking
takes place.

Example:

MOVESR (ADR V[O), ADR V[4), 12)

The MOVE and FILL procedures take value parameters of
type ADRMEM and ADSMEM, but since all ADR (or ADS)
types are compatible, the ADR (or ADS) of any variable or
constant can be used as the actual parameter. These are
dangerous but sometimes useful procedures.

Function RETYPE (Type-ldent, Expression): TYPE-IDENT;
This function provides a generic type escape, returns the
value of the given expression as if it had the type named by
the type identifier. The types implied by the type identifier
and the expression should usually have the same length, but
this is not required. RETYPE for a structure can be followed
by component selectors (array index, fields, reference, etc.).
RETYPE is a dangerous type escape and may not work as
intended.

Available Procedures and Functions 12-19

Example:

TYPE
COLOR. (RED, BLUE, GREEN);
S2 ·STRING (2);

VAR
C #CHAR:
I #INTEGER:
J #INTEGER:
R #REAL4;
TINT : #COLOR:

R :- RETYPE (REAL4, 'abed');

fHerea4-bytestring literal is converted into a Real number.
Note that REAL4 numbers also require 4 bytes.I

TINT :- RETYPE (COLOR, 2)

!Here 2 is converted into a color which in this case is GREEN. This
is a fairly safe use of the RETYPE lune! ion.I

C :- RETYPE (S2, I) [J]

!Here I is retyped into a two-character string. Then J selects a
s i n g I e character o I the st r i n g wh i ch i s ass i g n e d to C. J

There are two other ways to change type in Pascal:

a You can declare a record with one variant of each type
needed, assign an expression to one variant, and then get
the value back from another variant. (This is an error not
caught at the standard level.)

a You can declare an address variable of the type wanted
and assign to it the address of any other variable (using
ADA).

Each of these methods has its own subtle differences and
quirks and should be avoided whenever possible.

String Intrinsics
The string intrinsics feature provides a set of procedures and
functions, some of which operate on STRINGs, LSTRINGs,
and some on LSTRINGs only.

5016793

12-20 Available Procedures and Functions

Procedure CONCAT (VARS D: LSTRING; CONSTS S:
STRING);
This procedure concatenates S to the end of D. The length
of D increases by the length of S. An error occurs if 0 is too
small, that is, if UPPER (0) < O.LEN + UPPER (S).

Procedure COPYLST (CONSTS S: STRING; VARS D:
LSTRING);
This procedure copies S to LSTRING D. The length of 0 is
set to UPPER (S). An error occurs if the length of S is greater
than the maximum length of D, that is, if UPPER (S) >UPPER
(0).

Procedure COPYSTR (CONSTS S: STRING; VARS D:
STRING);
This procedure copies S to STRING D. The remainder of 0 is
set to blanks if UPPER (S) < UPPER (D). An error occurs if
the length of Sis greater than the maximum length of 0, that
is, if UPPER (S) > UPPER (D).

Procedure DELETE (VARS D: LSTRING; I, N: INTEGER);
This procedure deletes N characters from 0, starting with 0
[I]. An error occurs if an attempt is made to delete more
characters starting at I than it is possible to delete, that is, if
D.LEN < (I + N - 1).

Procedure INSERT (CONSTS S: STRING; VARS D: LSTRING;
I: INTEGER);

This procedure inserts S starting just before 0 [I]. An error
occurs if O is too small, that is, if:

UPPER (0) <UPPER (S) + O.LEN + 1

or if:

D.LEN < I

Available Procedures and Functions 12-21

Function POSITN (CONSTS PAT: STRING; CONSTS S:
STRING; I: INTEGER): INTEGER;
This function returns the integer position of the pattern PAT
in S, starting the search at S [I]. If PAT is not found or if I >
upper (S), the return value is 0. If PAT is the null string, the
return value is I. There are no error conditions.

Function SCANEQ (LEN: INTEGER; PAT: CHAR; CONSTS S:
STRING; I: INTEGER): INTEGER;
This function scans, starting at S [I], and returns the number
of characters skipped. SCANEQ stops scanning when a
character equal to pattern PAT is found or LEN characters
have been skipped. If LEN< 0, SCANEQ scans backwards
and returns a negative number. SCANEQ returns the LEN
parameter if it finds no characters equal to pattern PAT
found or if I > UPPER (S). There are no error conditions.

Function SCANNE (LEN: INTEGER; PAT: CHAR; CONSTS S:
STRING; I: INTEGER): INTEGER;
This function is like SCANEQ, but stops scanning when a
character not equal to pattern PAT is found. Scans, starting
at S [I], and returns the number of characters skipped.
SCANEQ stops scanning when a character not equal to
pattern PAT is found or LEN characters have been skipped. If
LEN < 0, SCANEQ scans backwards and returns a negative
number. SCANEQ returns LEN parameter if it finds all
characters equal to pattern PAT found or if I > UPPER (S).
There are no error conditions.

Library Procedures and Functions
The following routines are not predeclared but are available
to you in the Pascal runtime library. You must declare them,
with the EXTERN directive, before using them in a program.

There are three kinds of these routines:

o Initialization and termination

o Heap management

o No-overflow arithmetic functions

5016793

12-22 Available Procedures and Functions

Initialization and Termination Routines

Procedure BEGOQQ;

This procedure is called during initialization, and the default
version does nothing. However, you can write your own
version of BEGOQQ, if you want, to invoke a debugger or to
write customized messages, such as the time of execution to
a screen.

Procedure BEGXQQ;

After your program is linked and loaded, BEGXQQ is the
defined entry point for the load module. As the overall
initialization routine, BEGXQQ performs the following actions:

a It resets the stack and the heap.

a It initializes the file system.

a It calls BEGOQQ.

a It calls the program body.

Invoking this procedure to restart a program does not take
care of closing any files that may have previously been
opened. Similarly, it does not re-initialize variables originally
set in a VALUE section or with the initialization switch on.

Procedure ENDOQQ;

This procedure is called during termination and the default
version does nothing. However, you can write your own
version of ENDOQQ to invoke a debugger or to write
customized messages, such as the time of execution, to a
terminal screen. Since ENDOQQ is called after errors are
processed, if ENDOQQ itself invokes an error, the result is an
infinite termination loop.

Procedure ENDXQQ;

This procedure is the overall termination routine and
performs the following actions:

1 It calls ENDOQQ.

2 It terminates the file system (closing any open files).

Available Procedures and Functions 12-23

3 It returns to the operating system (or whatever called
BEGXQQ).

ENDXQQ can be useful for ending program execution from
inside a procedure or function, without calling ABORT.

Heap Management

Function PreAllocHeap (VARS cbAlloc: WORD);
ErcType;

This function allows the user to specify how much space will
be dedicated to the Pascal heap. The heap grows to this
amount and then stops. The user can use short-lived memory
without worrying about overlapping memory with the heap.
CbAlloc is the amount of bytes to allocate for the heap. If
cbAlloc is #OFFFF then the maximum storage is allocated for
the heap. ErcType is a BTOS error code. If the function is
successful, the BTOS status is 0, otherwise an operating
system error is detected.

Procedure PreAilocLongHeap (cPara: WORD);
EXTERN;

This procedure allocates as much short-lived memory as I
possible for the short heap. 'cPara' is retained only for
downward compatibility.

FUNCTION ALLMQQ(Wants: WORD): ADSMEM;
FUNCTION GETMQQ(Wants: WORD): ADSMEM;

These functions allocate a block of 'Wants' bytes on the long I
heap and returns the block address. The block cannot have
more than 64K bytes.

FUNCTION FREMQQ(Block: ADSMEM): WORD;
PROCEDURE DISMQQ(Block: ADSMEM);

This function and procedure free a memory block from the
long heap. FREMQQ returns zero if no errors are
encountered, nonzero otherwise. The difference between them
is that DISMQQ crashes the runtime if an error is detected.

5016793-003

12-24 Available Procedures and Functions

No-Overflow Arithmetic Functions

These functions implement 16-bit and 32-bit modulo
arithmetic. Overflow or carry is returned, instead of invoking
a runtime error.

Function LADDOK (A, B: INTEGER4; VAR C:
INTEGER4): BOOLEAN;

This function sets C equal to A plus B. It is one of two
functions that do 32-bit signed arithmetic without causing a
runtime error, even if the arithmetic debugging switch is on.
Both LADDOK and LMULOK return TRUE if there is no
overflow, and FALSE if there is. These routines are useful for
extended-precision arithmetic, modulo 2A 32 arithmetic, and
arithmetic based on user input data.

Function LMULOK (A, B: INTEGER4; VAR C:
INTEGER4): BOOLEAN;

This function sets C equal to A times B. It is one of two
functions that do 32-bit signed arithmetic without causing a
runtime error on overflow. Normal arithmetic can cause a
runtime error even if the arithmetic debugging switch is off.
Both LMULOK and LADDOK return TRUE if there is no
overflow, and FALSE if there is. These routines are useful for
extended-precision arithmetic, modulo 2A 32 arithmetic, and
arithmetic based on user input data.

Function SADDOK (A, B: INTEGER; VAR C:
INTEGER): BOOLEAN;

This function sets C equal to A plus B. It is one of two
functions that do 16-bit signed arithmetic without causing a
runtime error on overflow. Normal arithmetic can cause a
runtime error even if the arithmetic debugging switch is off.
Both SAD DOK and SMULOK return TRUE if there is no
overflow, and FALSE if there is. These routines can be useful
for extended-precision arithmetic, modulo 2A 16 arithmetic,
and arithmetic based on user input data.

Available Procedures and Functions 12-25

Function SMULOK (A, 8: INTEGER; VAR C: INTEGER): BOOLEAN;

This function sets C equal to A times B. It is one of two
functions that do 16-bit signed arithmetic without causing a
runtime error on overflow. Normal arithmetic can cause a
runtime error, even if the arithmetic debugging switch is off.
Each routine returns TRUE if there is no overflow, and FALSE
if there is. These routines can be useful for
extended-precision arithmetic, modulo 2A 16 arithmetic, and
arithmetic based on user input data.

Function UADDOK (A, B: WORD; VAR C: WORD): BOOLEAN;

This function sets C equal to A plus B. It is one of two
functions that do 1 6-bit unsigned arithmetic without causing
a runtime error on overflow. Normal arithmetic can cause a
runtime error even if the arithmetic debugging switch is off.
The following is the binary carry resulting from this addition
of A and B:

WAD (NOT UADDOK (A, 8, C)))

Both UADDOK and UMULOK return TRUE if there is no
overflow, and FALSE if there is. These routines are useful for
extended-precision arithmetic, modulo 2A16 arithmetic, and
arithmetic based on user input data.

Function UMULOK (A, B: WORD; VAR C: WORD): BOOLEAN;

This function sets C equal to A times B. It is one of two
functions that do 1 6-bit unsigned arithmetic without causing
a runtime error on overflow. Normal arithmetic can cause a
runtime error even if the arithmetic debugging switch is off.
Each routine returns TRUE if there is no overflow and FALSE
if there is. These routines are useful for extended-precision
arithmetic, modulo 2A 16 arithmetic, and arithmetic based on
user input data.

5016793

Section 13 13-1

File-Oriented Procedures and Functions
The previous section described eight categories of
procedures and functions that are available to you, either
because they are predeclared or bec;:ause they are part of the
Pascal runtime library. All except those that relate to file
input and output were discussed in detail.

This present section discusses all of the file 1/0 procedures
and functions, and also lazy evaluation, which is a special
feature that makes it easier to use files.

The Pascal file system supports a variety of procedures and
functions that operate on files of different modes and
structures. These procedures and functions can be
categorized as follows:

Category

Primitive

Textfile 1/0

Extended
level 1/0

Procedures

GET
PAGE
PUT
RESET
REWRITE

READ
READLN
WRITE
WRITELN

ASSIGN
CLOSE
DISCARD
READSET
READFN
SEEK

Functions

EDF
EOLN

File System Primitive Procedures and Functions
The seven primitive file system procedures and functions,
which perform file 1/0 at the most basic level, are described
in this section. Later descriptions of READ and WRITE
procedures are defined in terms of the primitives GET and
PUT. In all descriptions which follow, F is a file parameter
(files are always reference parameters), and F" is the buffer
variable.

5016793

13-2 File-Oriented Procedures and Functions

All file variables operated on by these procedures must
reside in the default data segment. This restriction increases
the efficiency of file system calls.

EDF and EOLN
The functions EOF and EOLN check for end-of-file and
end-of-line conditions, respectively. They return a BOOLEAN
result. In general, these values indicate when to stop reading
a line or a file.

FUNCTION EOF: BOOLEAN;
FUNCTION EOF (VAR F): BOOLEAN;

This function indicates whether the buffer variable FA is
positioned at the end of the file F for SEQUENTIAL and
TERMINAL file modes. Therefore, if EOF (F) is TRUE, either
the file is being written or the last GET has reached the end
of the file.

With the DIRECT file mode, if EOF (F) is TRUE, either the last
operation was a WRITE (the file may or may not be
positioned at the end in this case) or the last GET reached
the end of the file.

EOF without a parameter is equivalent to EOF (INPUT). EOF
(INPUT) is generally never TRUE, except when INPUT is
reassigned to another file. Calling the EOF (F) function
accesses the buffer variable FA.

FUNCTION EOLN: BOOLEAN;
FUNCTION EOLN (VAR F): BOOLEAN;

This function indicates whether the current position of the file
is at the end of a line in the textfile F after a GET (F). The file
must have ASCII structure.

According to the ISO standard, calling EOLN (F) when EOF (F)
is TRUE is an error. In this Pascal, this error is caught in most
cases. The file F must be a file of type TEXT.

If EOLN (F) is TRUE, the value of FA is a space, but the file is
positioned at a line marker. EOLN without a parameter is
equivalent to EOLN (INPUT). Calling the EOLN (F) function
accesses the buffer variable FA.

File-Oriented Procedures and Functions 13-3

GET and PUT
The primitive procedures GET and PUT are used to read to
and write from the buffer variable, F". GET assigns the next
component of a file to the buffer variable. PUT performs the
inverse operation and writes the value of the buffer variable
to the next component of the file F.

Procedure GET (VAR F);

If there is a next component in the file F, then:

1 The current file position is advanced to the next
component.

2 The value of this component is assigned to the buffer
variable FA.

3 EOF (F) becomes FALSE.

Advancing and assigning can be deferred internally,
depending on the mode of the file. If no next component
exists, then EOF (F) becomes TRUE and the value of FA
becomes undefined. EOF (F) must be FALSE before GET (F),
since reading past the end of file produces a runtime error.

However, if F has mode DIRECT, EOF (F) can be TRUE or
FALSE, since DIRECT mode permits repeated GET operations
at the end of the file. If FA is a record with variants, the
compiler reads the variant with the maximum size.

Procedure PUT (VAR F);

This procedure writes the value of the file buffer variable FA
at the current file position and then advances the position to
the next component.

For SEQUENTIAL and TERMINAL mode files, PUT is
permitted if the previous operation on F was a REWRITE,
PUT, or other WRITE procedure, and if it was not a
RESET, GET, or other READ procedure.

2 For DIRECT mode files, PUT may occur immediately after a
RESET or GET. Exceptions to these rules cause errors to
be generated. The value of FA always becomes undefined
after a PUT.

5016793

13-4 File-Oriented Procedures and Functions

EOF (F) must be TRUE before PUT (F), unless Fis a DIRECT
mode file. EOF (F) is always TRUE after PUT (F). If F' is a
record with variants, the variant with the maximum size is
written.

RESET and REWRITE
The procedures RESET and REWRITE are used to set the
current position of a file to its beginning. RESET is used to
prepare for later GET and READ operations. REWRITE is
used to prepare for later PUT and WRITE operations.

Procedure RESET (VAR F);

This procedure resets the current file position to its beginning
and does a GET (F). If the file is not empty, the first
component of F is assigned to the buffer variable F", and
EOF (F) becomes false. If the file is empty, the value of F" is
undefined and EOF (F) becomes true. RESET initializes a file F
prior to its being read. For DIRECT files, writing can be done
after RESET as well.

A RESET closes the file and then opens it in a way that is
dependent on the operating system. An error occurs if the
filename has not been set (as a program parameter or with
ASSIGN or READFN) or if the file cannot be found by the
operating system. If an error occurs during RESET, the file is
closed, even if the file was opened correctly and the error
came with the initial GET.

RESET (INPUT) is done automatically when a program is
initialized, but is also allowed explicitly. RESET on a file with
mode DIRECT allows either reading or writing, but the file is
not created automatically. Also, the initial GET reads record
number one on a DIRECT mode file.

Note that an explicit GET (F) immediately following a RESET
(F) assigns the second component of the file to the buffer
variable. However, a READ (F, X) following a RESET (F) sets
X to the first component of F, since READ (F, X) is "X : = F";
GET(F)".

File-Oriented Procedures and Functions 13-5

Procedure REWRITE (VAR F);

This procedure positions the current file to its beginning. The
value of FA is undefined and EOF (F) becomes TRUE. This is
needed to initialize a file F before writing (for DIRECT files,
reading can be done after REWRITE also).

A REWRITE closes the file and then opens it in a way that is
dependent on the operating system. If the file does not exist
in the operating system, it is created. If it does exist, its old
value is lost (unless it has mode DIRECT). The filename must
have been set (as a program parameter or with ASSIGN or
READFN).

If an error occurs during REWRITE, the file is closed. An
existing file with the same name is not affected when a
REWRITE error occurs.

REWRITE (OUTPUT) is done automatically when a program is
initialized, but can also be done explicitly if desired. REWRITE
on a DIRECT mode file allows both reading and writing.
REWRITE does not do an initial PUT the way RESET does an
initial GET.

PAGE
The procedure PAGE helps in formatting textfiles. It is not a
necessary procedure in the same sense as GET and PUT.

PROCEDURE PAGE;
PROCEDURE PAGE (VAR F);

This procedure causes skipping to the top of a new page
when the textfile Fis printed. Since PAGE writes to the file,
the initial conditions described for PUT must be TRUE. The
file must have ASCII structure. PAGE without a parameter is
equivalent to PAGE (OUTPUT).

If F is not positioned at the start of a line, PAGE (F) first
writes a line marker to F. If F has mode SEQUENTIAL or
DIRECT, then PAGE (F) writes a form feed, CHR (12). If F has
mode TERMINAL, the effect is defined by the operating
system interface, which usually writes a form feed.

Lazy Evaluation
Lazy evaluation is designed to solve a recurring problem in
Pascal, specifically, reading from a terminal in a natural way.
The underlying problem is that the ISO standard defines the

5016793

13-6 File-Oriented Procedures and Functions

procedure RESET with an initial GET.

Although acceptable in Pascal original batch processing,
sequential file environment, this kind of read-ahead does not
work for interactive f/O. Lazy evaluation provides for
deferring actual physical input (textfiles only) when a buffer
variable is evaluated.

For example, if a normal file is RESET and then READ, the
RESET procedure calls the GET procedure, which sets the
buffer variable to the first component of the file. However, if
the file is a terminal, this first component does not yet exist.

Therefore, at a terminal, you must first type a character to
accommodate the GET procedure. Only then would you be
prompted for any input. Lazy evaluation eliminates this
problem for textfiles by giving the file buffer variable a special
status value that is either full or empty.

The normal condition after a GET (F) is empty. The status is
full after a buffer variable has been assigned to or assigned
from; full implies that the buffer variable value is equal to the
currently pointed-to component. Empty implies just the
opposite, that the buffer variable value does not equal the
value of the currently pointed-to component and input to the
buffer variable has been deferred.

These rules are summarized as follows:

Statement

GET (F)

GET (f)

Reference
to F.

Reference
to F.

Status
at call

Full

Empty

Full

Empty

Action Status
on exit

Point to next file component. Becomes Empty
EMPTY since value pointed to is not in
buffer variable.

Load buffer variable with current file Empty
component, then point to next file
component. Becomes EMPTY since
value pointed to is not in buffer variable.

No action required. Full

Load buffer variable with current Full
file component.

File-Oriented Procedures and Functions 13-7

Note that RESET (F) first sets the status full and then calls
GET, which sets the status to empty without any physical
input.

Example of lazy evaluation with automatic REWRITE call:

{INPUT is au I oma I i ca 11 y a I ext I i I e. I
{RESET (INPUT); done automatically.)
WRITE (OUTPUT, 'Enter number: ');
READLN (INPUT, FOO);

The automatic initial call to the RESET procedure calls a GET
procedure, which changes the buffer variable status from full
to empty. The first physical action to the terminal is the
prompt output from the WRITE. READLN does a series of
the following operations:

I emp : • INPUT";
GET (INPUT) ;

Physical input occurs when each INPUT" is fetched and the
GET procedure sets the status back to empty.

READLN ends with the sequence:

WHILE NOT EOLN DO GET (INPUT);
GET (INPUT) ;

This operation skips trailing characters and the line marker.
The EOLN function invokes the physical input. Entering the
carriage return sets the EOLN status. Both the GET procedure
in the WHILE loop and the trailing GET set the status back to
empty. The last physical input in the sequence above is
reading the carriage return.

Textfile Input and Output
Human-readable input and output in standard Pascal are done
with textfiles. T extfiles are files of type TEXT and always
have ASCII structure. Normally, the standard textfiles INPUT
and OUTPUT are given as program parameters in the
PROGRAM heading:

PROGRAM IN_AND_OUT (INPUT.OUTPUT);

Other textfiles usually represent some input or output device
such as a terminal, a card reader, a line printer, or an
operating system disk file. The extended level permits using
additional files not given as program parameters. To facilitate
the handling of textfiles, the four standard procedures READ,
READLN, WRITE, and WRITELN are provided in addition to
the procedures GET and PUT.

5016793

13-8 File-Oriented Procedures and Functions

These procedures are more flexible in the syntax for their
parameter lists, allowing for a variable number of parameters.
Moreover, the parameters need not necessarily be of type
CHAR, but can also be of certain other types, in which case
the data transfer is accompanied by an implicit data
conversion operation. In some cases, parameters can include
additional formatting values that affect the data conversions
used.

If the first variable is a file variable, then it is the file to be
read or written. Otherwise, the standard files INPUT and
OUTPUT are automatically assumed as default values in the
cases of reading and writing, respectively.

These two files have TERMINAL mode and ASCII structure
and are predeclared as:

VAR INPUT, OUTPUT: TEXT;

The files INPUT and OUTPUT are treated like other textfiles.
They can be used with ASSIGN, CLOSE, RESET, REWRITE,
and the other procedures and functions. However, even if
present as program parameters, they are not initialized with a
filename. Instead, they are assigned to the user's terminal.
RESET of INPUT and REWRITE of OUTPUT are done
automatically, whether or not they are present as program
parameters.

Textfiles represent a special case among file types insofar as
they are structured into lines by line markers. If upon reading
a textfile F, the file position is advanced to a line marker, that
is, past the last character of a line, then the value of the
buffer variable F" becomes a blank, and the standard function
EOLN (F) yields the value true. For example:

T
{EOLN = TRUE} IF"= ' 'l

File-Oriented Procedures and Functions 13-9

Advancing the file position once more causes one of three
things to happen:

o If the end of the file is reached, then EOF (F) becomes
TRUE.

o If the next line is empty, a blank is assigned to F- and
EOLN (F) remains TRUE.

o Otherwise, the first character of the next line is assigned to
F- and EOLN (F) is set to FALSE.

Since line markers are not elements of type CHAR in
standard Pascal, they can, in theory, be generated only by
the procedure WRITELN. However, in this Pascal, an actual
character can be used for the line marker. It can therefore be
possible to WRITE a line marker, but not to READ one.

When a textfile being written is closed, a final line marker is
automatically appended to the last line of any nonempty file
in which the last character is not already a line marker.

When a textfile being read reaches the end of a nonempty
file, a line marker for the last line is returned even if one was
not present in the file. Therefore, lines in a textfile always
end with a line marker.

Any list of data written by a WRITELN is usually readable
with the same list in a READLN (unless an LSTRING occurs
that is not on the end of the list.)

Interactive prompt and response is very easy in Pascal. To
have input on the same line as the response, use WRITE for
the prompt. READLN must always be used for the response.
For example:

WRITE ('Enter command: ');
READLN (response);

If no file is given, most of the textfile procedures and
functions assume either the INPUT file or the OUTPUT file.
For example, if I is of type INTEGER, then READ (I) is the
same as READ (INPUT, I).

5016793

13-10

READ and READLN
PROCEDURE READ
PROCEDURE READLN

File-Oriented Procedures and Functions

READ and READLN read data from textfiles. Both are defined
in terms of the more primitive operation, GET. That is, if Pis
of type CHAR, then READ (F, P) is equivalent to:

BEGIN
P :- F'; (Assign buffer variable F' to P.J
GET (F); {Assign next component of file to F'.l

END;

READ can take more than a single parameter, as in READ (F,
P1, P2, ... Pn). This is equivalent to the following:

BEGIN
READ (F, P1);
READ (F, P2);

READ (F, Pn);
END;

The procedure READLN is very much like READ, except that
it reads up to and including the end-of-line. At the primitive
GET level, without parameters, READLN is equivalent to the
following:

BEGIN
WHILE NOT EOLN (F) DO GET (F);
GET (F);

END;

A READLN with parameters, as in READLN (F, P1, P2, ... Pn),
is equivalent to the following:

BEGIN
READ (F, P1, P2, Pn);
READLN (F) ;

END;

READLN is often used to skip to the beginning of the next
line. It can be used only with textfiles (ASCII mode).

File-Oriented Procedures and Functions 13-11

If no other file is specified, both READ and READLN read
from the standard INPUT file. Therefore, the name INPUT
need not be designated explicitly. For example, these two
READ statements perform identical actions:

READ (P1, P2, P3);
READ (INPUT, P1, P2, P3); {Reads INPUT by default!

At the standard level, parameters P1, P2, and P3 above
must be of one of the following types:

CHAR
INTEGER
REAL

The extended level also allows READ variables of the
following types:

WORD
an enumerated type
BOOLEAN
INTEGER4
a pointer type
STRING
LS TR ING

When the compiler reads a variable of a subrange type, the
value read must be in range. Otherwise, an error occurs
regardless of the setting of the range checking switch.

The procedure READ can also read from a file that is not a
textfile, that is, has BINARY mode. The form READ (F, P1,
P2, ... Pn) can be used on a BINARY file. However, this
READ will not work as expected after a SEEK on a DIRECT
mode file. For BINARY files, READ (F, X) is equivalent to:

BEGIN
X : • F·;
GET (F) ;

ENO;

READ Formats
The READ process for formatted types (everything except
CHAR, STRING, and LSTRING) first reads characters into an
internal LSTRING and then decodes the string to get the
value.

5016793

13-12 File-Oriented Procedures and Functions

Two important points apply to formatted reads:

o Leading spaces, tabs, form feeds, and line markers are
skipped. For example, when doing READLN (I, J, K) where
I, J, and Kare integers, the numbers can all be on the
same line or spread over several lines.

o Characters are read as long as they are in the set of
characters valid for the type wanted. For example,
H -1-2-3w is read as the string of characters for a single
INTEGER, but gives an error when the string is decoded.
This means that items should be separated by spaces,
tabs, line markers, or characters not permitted in the
format reads.

Most of the formatting rules below apply also to the function
DECODE.

1 INTEGER and WORD types

If Pis of type INTEGER, WORD, or a subrange thereof,
then READ (F, P) implies reading a sequence of characters
from F which form a number according to the normal
Pascal syntax, and then assigning the number to P.
Nondecimal notation (16#C007, 8#74, 10#19, 2#101,
#Face) is accepted for both INTEGER and WORD, with a
radix of 2 through 36. If Pis of an INTEGER type, a leading
plus (+) or minus (-) sign is accepted. If P is of a WORD
type, then numbers up to MAXWORD are accepted
(32768 .. 65535).

2 REAL and INTEGER4 types

If P is of type REAL, or at the extended level type
INTEGER4, READ (F, P) implies reading a sequence of
characters from F that form a number of the appropriate
type and assigning the number to P. Nondecimal notation
is not accepted for REAL numbers, but is accepted for
INTEGER4 numbers. When reading a REAL value, a number
with a leading or trailing decimal point is accepted, even
though this form gives a warning if used as a constant in a
program.

3 Enumerated and Boolean types

At the extended level, if P is an enumerated type or
BOOLEAN, a number is read as a WORD subrange and a
value assigned to P such that the number is the ORD of the
enumerated type value. In addition, if P is type BOOLEAN,

File-Oriented Procedures and Functions 13-13

reading one of the character sequences 'TRUE' or 'FALSE'
cause true and false, respectively, to be assigned to P. The
number read must be in the range of the ORD values of the
variable.

4 Reference types

At the extended level, if Pis a pointer type, a number is
read as a WORD and assigned to P in a way that depends
on your implementation; so that writing a pointer and later
reading it yields the same pointer value. The address types
should be read as WORDs using .R or .S notation.

5 String types

At the extended level, if Pis a STRING (n), then the next n
characters are read sequentially into P. Preceding line
markers, spaces, tabs, or form feeds are not skipped. If
the line marker is encountered before n characters have
been read, the remaining characters in P are set to blanks,
and the file position remains at the line marker.

If the STRING is filled with n characters before the line
marker is encountered, the file position remains at the next
character. In a few implementations, there may be a limit
of 255 characters on the length of a STRING read. P can
be the super array type STRING, for example, a reference
parameter or pointer referent variable.

At the extended level, if Pis an LSTRING (n), then the next
n characters are read sequentially into P, and the length of
the LSTRING is set ton. Preceding line markers, spaces,
tabs, or form feeds are not skipped. If the line marker is
encountered before n characters have been read, the
length of the LSTRING is set to the number of characters
read, and the file position remains at the line marker.

If the LSTRING is filled with n characters before the line
marker is encountered, the file position remains at the next
character. P can be the super array type LSTRING, for
example, a reference parameter or pointer referent
variable. READ (LSTRING) is handy when reading entire
lines from a textfile, especially when the length of the line
is needed. For example, the easiest way to copy a textfile
is by using READLN and WRITELN with an LSTRING
variable.

5016793

13-14

WRITE and WRITELN
PROCEDURE WRITE
PROCEDURE WRITELN

File-Oriented Procedures and Functions

These procedures write data to textfiles. WRITE and
WRITELN are defined in terms of the more primitive
operation, PUT; that is, if Pis an expression of type CHAR
and Fis a file of type TEXT, then WRITE (F, P) is equivalent
to:

BEGIN
F' : s P;
PUT (F);

END;

{Assign P to buffer variable F')
I Ass i g n F' Io n ex I comp one n I o I I i I e I

WRITE can take more than one parameter, as in WRITE (F,
P1, P2, ... Pn). This is equivalent to:

BEGIN
WRITE (F, P1);
WRITE (F, P2);

WR I TE (F, Pn);
END;

The procedure WRITELN writes a line marker to the end of a
line. In all other respects, WRITELN is analogous to WRITE.
Thus, WRITELN (F, P1, P2, ... Pn) is equivalent to:

BEGIN
WRITE (P1, P2, ..• Pn);
WR I TEL N (F) ;

END;

If either WRITE or WRITELN has no file parameter, the
default file parameter is OUTPUT. Therefore, the first
statement in each of the following pairs is equivalent to the
second:

WR I TE (P 1 , P 2 , . . . P n) ;
WRITE (OUTPUT, P1, P2, ... Pn);

WR I TEL N (P 1 , P 2 , .. . P n) ;
WRITELN (OUTPUT, P1, P2, ... Pn);

At the standard level, parameters in a WRITE can be
expressions of any of the following types:

CHAR BOOLEAN
INTEGER STRING
REAL

File-Oriented Procedures and Functions

At the extended level, expressions can also be of the
following types:

WORD
INTEGER4
LSTRING

an enumerated type
a pointer type

13-15

The parameters can take optional M and N values. Although
the procedure WRITE can also write to a BINARY file (not a
textfile), this is not recommended for DIRECT files after a
SEEK operation; the complementary READ form does not
work as you would expect. For BINARY files, WRITE (F, X) is
equivalent to:

BEGIN
F :- X;
PUT (F);

END;

The form WRITE (F, P1, P2, ... Pn) is also acceptable.
BINARY writes do not accept M and N values.

Write Formats
In textfiles, data parameters to WRITE and WRITELN can
take one of the following forms:

P P:M P:M:N P: :N

The M and N values can be considered value parameters of
type INTEGER and are used for formatting in various ways.
The extended level permits M and N values for WRITES, and
permits giving N without Mas in:

p:: N

Using them in a nonstandard way is an error not caught at
the standard level. In some cases only M, or N, or neither, is
actually used; unused M and N values are ignored.

Omitting M or N is the same as using the value MAXINT. For
example, WRITE (12:MAXINT) uses the default M value (8 in
this case). M and N values are not accepted for BINARY files.
In WRITE, the M value is the. field width used as the number
of characters to write. In ISO-Pascal, M must be greater than
zero, and if the expression being written requires less than M
characters, then it is padded on the left with spaces.

5016793

13-16 File-Oriented Procedures and Functions

At the extended level, M can also be negative or zero. If it is
negative, the absolute value of Mis used, but padding of
spaces occurs on the right instead of the left. If it is zero, no
characters are written. These are ISO standard errors not
caught in this Pascal.

If the representation of the expression cannot fit in ABS (M)
character positions, then extra positions are used as needed
for numeric types, or the value is truncated on the right for
string types. If Mis omitted or equal to MAXINT, a default
value is used.

The N value signifies:

CJ the number of decimal places if P is of type REAL.

CJ the output radix if Pis of type INTEGER, WORD,
INTEGER4, or pointer.

CJ the numeric or identifier value if P is of an enumerated
type.

Most of the following formatting rules apply to the function
ENCODE as well.

1 INTEGER and WORD types

If Pis of type INTEGER, WORD, or a subrange thereof,
then the decimal representation of Pis written on the file.
If P is a negative INTEGER, a leading minus sign is always
written. WORD values are never negative. For INTEGER
and WORD values, the default M value is 8.

If ABS (M) is smaller than the representation of the
number, additional character positions are used as needed.
N is used to write in hexadecimal, decimal, octal, binary, or
other base numbering using N equal to a number from 2 to
36; this is an extension to the ISO standard. If N is not 10
(or omitted or MAXINT), then padding on the left is with
zeros and not spaces. Omitting N or setting N to MAXINT
or 10 implies a decimal radix.

WORD decimal numbers from 32768 to 65535 are written
normally and not in their negative integer equivalents. All
values written should be separated by spaces or some
other character not valid in numbers, so that values are
read as separate numbers.

File-Oriented Procedures and Functions 13-17

2 REAL and INTEGER4 types

If P is of type REAL, a decimal representation of the
number P, rounded to the specified number of decimal
places, is written on the file. If the N is missing or equal to
MAXINT, a floating-point representation of P is written to
the file, consisting of a coefficient and a scale factor. If N is
included, a rounded fixed point representation of P is
written to the file with N digits after the decimal point. If N
is zero, P is written as a rounded integer with a decimal
point. The default value of M for REAL values is 14.

The following are examples of WRITE operations on REAL
values:

Statement

WRITE (123.456)
WRITE (123.456:20)
WRITE (123.456::3)
WRITE (123.456:2:3)
WRITE (123.456:-20:3)

Output

' 1.2345600E + 02'
' 1.2345600000000E +tl2'
. 123.456'
• 123.456'
'123.456

At the extended level if P is of type INTEGER4, the decimal
representation of P is written on the file. The N value is
used to set the radix as in type INTEGER. The default M
value is 14.

3 Enumerated and Boolean types

If P is an enumerated type and N is omitted or equal to
MAXINT, then ORD (P) is written on the file as if it were an
INTEGER.

At the standard level, if P is of type BOOLEAN, then one
of the strings 'TRUE' or 'FALSE' is written to the file as a
STRING. The ORD value is never written for BOOLEAN
types as it is for enumerated types (although you can use
WRITE(ORD(P)) instead).

4 Reference types

At the extended level, if P·is a pointer type, then Pis
written as a WORD. This is done in an implementation
defined way, such that writing a pointer and later reading it
produces the same pointer value. The address types
should be written as WORD values using .R or .s. notation.

5016793

13-18 File-Oriented Procedures and Functions

5 String types

If Pis of type STRING (n), then the value of Pis written on
the file. The default value of Mis the length of the STRING,
n. If ABS (M) is less than the length of the string, then only
the first ABS (M) characters are written. If M is zero,
nothing is written. The right portion of the STRING is
always truncated, even if M is negative. In a few
implementations, there can be a limit of 255 characters on
the length of a STRING write.

At the extended level if Pis of type LSTRING (n), then the
value of P is written on the file. The default value of M is
the current length of the string, P.LEN. If ABS (M) is less
than the current length, then only the first ABS (M)
characters are written. If M is zero, then nothing is written.
The right portion of the LSTRING is always truncated, even
if M is negative. If ABS (M) is greater than the current
length, spaces, not characters, fill the remaining positions
past the length in the LSTRING. Note that a string of M
blanks can be written with NULL:M.

The following program shows how to:

o declare files and reset them.

o declare records and record pointers and reset them.

o get the dynamic length of a string, convert the information
to something usable in a format statement, and "pretty
print" the screen output, no matter what length of input.

o input a set value, as in (male, female), where you enter 0
for the first and 1 for the second.

PROGRAM TEST {INPUT, OUTPUT);
{$SIMPLE} {Prevents optimization of code in compiler}

CONST
FILEID = '(SYS]<PASCAL>HORSES. INF';

{Says 'File on Sys volume in Pascal directory
named Horses. inf' is now Fi leid. Therefore,
using Fi leid is I ike typing the whole string.}

TYPE
CLASSES = LSTRING (17); {Used to get dynamic length!
SHORTSTR =STRING (5);
POINTF ="STUDENT; {Pointer to record type student}

File-Oriented Procedures and Functions 13-19

STUDENT = RECORD
POINT POINTF;
AGE 5 .. 18;
SEX {MALE, FEMALE); {In th i s case , ma I e = 0 ,

GRADE
GRADE_PT
SCHEDULE

I ema I e • 1 l
ARRAY [1 .. 7) OF INTEGER;
REAL;
ARRAY [.. 7) OF CLASSES;

END;

VAR
PERSON
BASE
NEXT
TIMES

ANSWER

INFO

FI ELD

STUDENT;
POI NTF;
POI NTF;
INTEGER;

CHAR;

TEXT;

CHAR;

FIELDLEN : INTEGER;
MORE INTEGER;

SPACE CHAR;

M INTEGER;

BEGIN !Program}
SPACE := ' ';

!Variable for record}
{Pointer variables}
{Pointer variable}
{For loop to Iii I in classes and
grades}

{For reading answer to more data
question}

{Variable for disk Ii le to hold
student info}

{To get char value of lstring
length}

{To convert char value to ord}
{To Ii nd di f le rence be tween
fieldlen and 181

(To put blank spaces for pretty
printout}

{For loop to print spaces}

{Assigns a space to variable
space}

ASSIGN (INFO, FILEID1);

REWRITE {INFO);

{Assigns the string held in
fileid1 to info}

5016793

WITH PERSON DO
BEGIN {W/PERSON}

BASE ;. NIL;
NEW {NEXT);
BASE := NEXT;
REPEAT

WI TH NEXT' DO

13-20

END.

File-Oriented Procedures and Functions

BEGIN (W/NExn
WRITE ('Enter student age: ');
REAOLN (AGE);
WRITELN;
WRITE ('Enter sex, 0 for male, 1 for

I ema I e : ') ;
REAOLN (SEX) ;
WR I TELN;
FOR TIMES :- 1 TO 7 DO !Start loop to

read in data)
BEGIN (TIMES)

WRITE ('Enter class: ');
REAOLN (SCHEDULE [TIMES]);
FIELD:= ((SCHEDULE (TIMES))

[0 J) ;
(Get char value to length)

FIELOLEN :=ORO (FIELD);
(Conver t ch a r v a I u e to
integer value)

MORE := 18 - FIELDLEN;
(Find spaces needed for
pretty print)

WRITE ('Enter grade for ·,
SCHEDULE [TIMES) : FIELOLEN);

FOR M := 1 TO MORE DO
(Start loop for printing
spaces)

WRITE (SPACE);
WRITE (': ');
REAOLN (GRADE (TIMES));
WRITELN;

ENO; (TIMES!
WRITE ('Enter grade point average: ');
REAOLN (GRAOE_PT);
POINT :·NIL;

ENO; (W /NEXT"!
NEW (NEXT);
POINT:= NEXT; (Point assigned to point at

WR I TELN;
WRITELN;

next record)

WRITE ('Enter another student? (Y or N) ');
READLN (ANSWER) ;

UNTIL (ANSWER= 'N') OR (ANSWER= 'n');d
ENO; (W/PERSONJ

WR I TELN;
WR I TELN;
WRITELN (' <<<< BYE BYE >>>> ');

File-Oriented Procedures and Functions

Extended Level 1/0
The following additional 1/0 features are available at the
extended level:

13-21

a You can access three FCB fields: F.MODE, F.TRAP, and
F.ERRS.

a A number of additional procedures are predeclared.

a Temporary files are available.

The Extended Level 1/0 discussion in section 7, Data Types,
explains FCB fields in the context of files. The additional
procedures and temporary files are described below.

Extended Level Procedures
The following paragraphs describe extended level
procedures.

Procedure ASSIGN (VAR F; CONSTS N: STRING);
This procedure assigns an operating system filename in a
STRING (or LSTRING) to a file F. As a rule, ASSIGN truncates
any trailing blanks. ASSIGN overrides any filename set
previously. A filename must be set before the first RESET or
REWRITE on a file. ASSIGN on an open file (after RESET or
REWRITE but before CLOSE) produces an error. ASSIGN to
INPUT or OUTPUT files is allowed; however, these two files
must be closed beforehand because they are automatically
opened upon assi.gnment.

Procedure CLOSE (VAR F);
This procedure performs an operating system close on a file,
ensuring that the file access is terminated correctly. This is
especially important for file variables allocated on the stack
or the heap. Since these files must be closed before a
RETURN or DISPOSE loses the file control block, they are
closed automatically when a RETURN or DISPOSE releases
stack or heap file variables. ·

File variables with the ST A TIC attribute in procedures and
functions are also closed automatically when the procedure
or function returns. Files allocated statically at the program,
module, or implementation level are automatically closed
when the entire program terminates.

5016793

13-22 File-Oriented Procedures and Functions

If necessary, when a CLOSE is executed, a file being written
to has its operating system buffers flushed. However, the
buffer variable is not PUT. If a file of type TEXT is being
written and the last nonempty line does not end with a line
marker, one is added to the end of the last line. If the file has
the mode SEQUENTIAL and is being written, an end-of-file is
written.

Note that some runtime errors can remove control from the
Pascal runtime system. In these cases, files being written
cannot be closed, and the information in them can be lost. A
CLOSE on a file that is already closed or never opened (no
RESET or REWRITE) is permitted. CLOSE is not ignored if
error trapping is on and there was a previous error. CLOSE
turns off error trapping for the file, and clears the error status
if no errors were found.

Procedure DISCARD (VAR f);

This procedure closes and deletes an open file. DISCARD is
much like CLOSE except that the file is deleted.

Procedure READFN (VAR F: P1, P2, ... PN);
This procedure is the same as READ (not READLN) with two
exceptions:

a File parameter F should be present (INPUT is assumed, but
a warning is given if F is omitted).

a If a parameter P is of type FILE, a sequence of characters
forming a valid filename is read from F and assigned to P in
the same manner as ASSIGN.

Parameters of other types are read in the same way as the
READ procedure.

Note that READFN is like READ, not like READLN, and does
not read the trailing line marker. If the first parameter in a
READFN call is a file of any type, it is assumed to be the
textfile from which characters are read. It is not assumed
that the file name should be read using INPUT as the default
source.

READFN is used internally to read program parameters. It is
useful when reading a filename and assigning the filename to
some file in one operation.

File-Oriented Procedures and Functions 13-23

Procedure READSET (VAR F; VAR L: LSTRING, CONST S:
SETOFCHAR);
This procedure reads characters and puts them into L, as
long as the characters are in the set S and there is room in L.
If no file parameter is given, INPUT is assumed as in READ
and WRITE. Leading spaces, tabs, form feeds, and line
markers are always skipped. Reading stops at the first line
marker, which is never in the type CHAR.

READSET, along with ENCODE, is used by the runtime
system to do the formatted READ procedures, as well as to
read filenames with READFN. It is handy when reading and
parsing input lines for simple command scanners. The L and
S parameters must reside in the default data segment.

Procedure SEEK (VAR F; N: INTEGER4);
In contrast to normal sequential files, DIRECT files are
random access structures. SEEK is used to randomly access
components of such files. To use a DIRECT file, the MODE
field must be set to DIRECT before the file is opened with
RESET or REWRITE; the file F must be a DIRECT mode file. If
the file is actually read or written sequentially, the usual
READ and WRITE procedures can be used.

SEEK modifies a field in file F so that the next GET or PUT
applies to record number N. The record number parameter N
can be of type INTEGER or WORD, as well as of type
INTEGER4. For textfiles (ASCII structure), records are lines;
for other files (BINARY structure), records are components.
Record numbers ·Start at one not zero. If F is an ASCII file,
SEEK sets the lazy evaluation status empty. If F is a BINARY
file, SEEK waits for 1/0 to finish and sets the concurrent 1/0
status ready.

SEEK is best illustrated by some examples. Assume for
instance, that a BINARY structured, DIRECT mode file
contains the following CHAR contents:

I ·A' I 'B' I ·c· I ·0 · I ·~· I ·F' I 'G' I
N 1 2 3 4 5 6 7 8

5016793

13-24 File-Oriented Procedures and Functions

An implicit SEEK 1 is done after a REWRITE or a RESET.
Thus, with DIRECT mode files, the following sequences of
commands could be given:

RESET (F); {lnitialSEEK1, followedbyGET;F'nowholds'A'l

SEEK (F, 5); {Filepositionsetto5;F'stillholds'A'l

C := F'; IC i s now e qua I t o ' A ' , no I 'E' l

Note that the fifth component is not assigned to C, as you
would expect. To obtain this value, the following sequences
of commands should be executed:

RESET (F); {Initial SEEK1, followed by GET; F'now
holds 'A'.}

SEEK (F, 5); {File positioned at 5.l

GET (F); {Fi le buffer variable is loaded with 'E' .1

C:=F'; {Cgetsvalue'E'.l

Always follow a SEEK (F, N) with a GET to assure that the
nth component is contained in the buffer variable.

GET and PUT operate normally on DIRECT mode files with
BINARY structured files. However, READ and WRITE work
only with ASCII files, that is, textfiles. READ does not work
with DIRECT mode BINARY files, because it assigns the
buffer variable value before it performs a GET. On the other
hand, GET and PUT are not normally used with
ASCII-structured DIRECT mode files. Lazy evaluation makes
READ and WRITE more appropriate. Care should always be
taken when mixing normal sequential operations with DIRECT
mode SEEK operations.

Temporary Files
Sometimes a program needs a scratch file for temporary,
intermediate data. If this is the case, you can create a
temporary file that is independent of the operating system.
To do so without having to give the file a name in a specific
format, ASSIGN a zero character as the name of the file. For
example:

ASSIGN (F, CHR (0)) ;

File-Oriented Procedures and Functions 13-25

The file system creates a unique name for the file when it
sees that the zero character has been assigned as a name. In
environments where several running jobs are sharing a file
directory, the job number is usually part of the name.
Temporary files are deleted when they are closed, either
explicitly or when the file gets deallocated. RESET and
REWRITE do not delete the file.

5016793

Section 14 14-1

Com pi lands
A compiland is a source file capable of being compiled by
the compiler. Pascal permits three kinds of compilands:
programs, modules, and implementations of units. Use of
modules and implementations of units allows you to create
separately compiled routines that can be linked to a program
without re-compilation.

Example of a compilable program:

PROGRAM MAIN (INPUT, OUTPUT);
BEGIN

WRITELN ('Main Program');
END. !Main)

Example of a compilable module:

MODULE MOD_DEMO; (No parameter list in heading)

PROCEDURE MOD_PROC;
BEGIN

WRITELN ('Output from MOD_PROC in MOD_DEMO. ');
END;

END. IMod_DemoJ

Example of a compilable unit:

INTERFACE;
UNIT UNIT_DEMO (UNIT_PROC);

PROCEDURE UNIT_PROC;
END;
IMPLEMENTATION OF UNIT_DEMO;

PROCEDURE UNIT_PROC;
BEGIN

IUNIT_PROC is the only
exported identifier)

WRITELN ('Output from UNIT_PROC in UNIT_DEMO. ');
END;

END. !Uni t_OemoJ

If you compile MODULE MOD_DEMO and UNIT UNIT _DEMO
separately. you can later incorporate them into the main
program as shown below:

INTERFACE; !INTERFACE required at the start of any
source that implements or uses a unit.)

UNIT UNIT_DEMO (UNIT_PROC);
PROCEDURE UNIT_PROC;

END;

5016793

14-2 Compilands

PROGRAM MAIN (INPUT, OUTPUT);
USES UNIT_DEMO; !USES clause below needed to connect

implementation and program.I

PROCEDURE MOD_PROC; EXTERN;

BEGIN

(EXTERN declaration
needed to connect
module's procedure.)

WRITELN('Output from Main Program.');
MOD_PROC;
UNIT_PROC;

END. !End of main program.I

When the program MAIN is compiled, the output consists of
the following:

o output from Main Program

o output from MOD_PROC declared in MOD_DEMO

o output from UNIT _PROC declared in UNIT _DEMO

The rules governing the construction and use of programs,
modules, and units are discussed in the following sections.

Programs
Except for its heading and the addition of a period at the
end, a Pascal program has the same format as a procedure
declaration. The statements between the keywords BEGIN
and END are called the body of the program.

Example of a program:

(Program heading)
PROGRAM ALPHA (INPUT, OUTPUT, A_FILE, PARAMETER);

!Declaration section!
VAR

A_FILE: TEXT;
PARAMETER: STRING (10);

!Program body!
BEGIN

REWRITE (A_FILE);
WRITELN (A_FILE, PARAMETER);

END. !Ends with period!

Compilands 14-3

The word ALPHA following the reserved word PROGRAM is
the program identifier. The program identifier becomes the
identifier for a parameterless PUBLIC procedure, at a scope
above all other identifiers in the program. This procedure also
has the PUBLIC identifier ENTGQQ, which is called during
initialization to start program execution.

You could call the program body as a PUBLIC procedure from
another program, a module or unit, using the program
identifier or ENTGQQ as the procedure name, but doing so is
not recommended. This means that you can redeclare the
program identifier within a program, and the usual scoping
rules apply. The program identifier is at the same level as the
predeclared identifiers, so giving a program an identifier like
INTEGER or READ generates an error message.

The program parameters denote variables that are set from
outside the program. The program communicates with its
environment through these variables.

At the standard level, all variables of any FILE type should be
present as program parameters; there is no other way to
give an operating system filename to the file. However, at
the extended level, you can use the ASSIGN and READFN
procedures to assign filenames, so file variables need not
appear as program parameters.

Program parameters differ from procedure parameters; they
are not passed as parameters to the procedure that is the
body of the program. All program parameters must be
declared in the variable declaration part of the block
constituting the program. If there are no program parameters
and the files INPUT and OUTPUT are not referenced, you
could use the following form instead:

PROGRAM identifier;

The two standard files INPUT and OUTPUT receive special
treatment as program parameters. Their values are not set
like other program parameters and should not be declared;
they have been predeclared. Each should be present as a
program parameter if used either explicitly or implicitly in the
program:

WRITE (OUTPUT, 'Prompt: '); (Explicit use)
READLN (INPUT, P);

WR I TE ('Prompt: ')
READLN (P);

5016793

(Implicit use)

14-4 Compilands

The compiler gives a warning if you use them in the program
but omit them as program parameters. The only effect of
INPUT and OUTPUT as program parameters is to suppress
this warning.

You may redefine the identifiers INPUT and OUTPUT.
However, all textfile input and output procedures and
functions (READ, EOLN, etc.) still use the original definition.
RESET (INPUT) and REWRITE (OUTPUT) are generated
automatically, whether or not they are present as program
parameters; you can also generate them explicitly.

Program initialization gives a value to every program
parameter variable, except INPUT and OUTPUT. Each
parameter must be either of a simple type or of a STRING,
LSTRING, or FILE type, that is, any type accepted by the
READFN procedure. Program parameters must be entire
variables; no component selection is permitted.

Internally, each program parameter uses the file INPUT and
generates READFN calls. Before each parameter is read, a
special call is made to the internal routine PPMFQQ. PPMFQQ
gets characters returned from an operating system interface
routine called PPMUQQ, which gets them from the command
line. PPMFQQ then effectively puts those characters at the
start of the file INPUT. The identifier of the parameter is
passed to both routines (PPMFQQ and PPMUQQ).

Modules
Modules provide a simple, straightforward method for
combining several compilable segments into one program.
Units provide a more powerful and structured method for
achieving the same end.

Basically, a module is a program without a body. The
identifier in the module heading has the same scope as a
program identifier. The heading can also include attributes
that apply to all procedures and functions in the module.
There are no module parameters; nor is there a module
body. A module ends with the reserved word END and a
period.

Compilands

Example of a module:

MODULE BETA [PUBLIC);

PROCEDURE GAMMA;
BEGIN

WRITELN ('Gamma');
ENO;

FUNCTION DELTA: WORD;
BEGIN

DELTA :: 123;
ENO;

ENO.

14-5

{Optional attributes!

{No body before END}

After the module identifier, you can give one or more
attributes (in brackets) to apply to all of the procedures and
functions nested directly in the module. Depending on which
attributes you specify, if any, the following assumptions or
restrictions apply:

o If there is no attribute list at all, the PUBLIC attribute is
assumed. However, if a list is present but empty, PUBLIC
is not assumed.

o The EXTERN directive used with a particular procedure or
function overrides the PUBLIC attribute given (or assumed)
for the entire module.

o EXTERN and ORIGIN cannot be given as attributes for an
entire module, although you can specify them for individual
procedures and functions.

o If PURE is used, the module must contain only functions for
PURE.

o PUBLIC is the default attribute for all procedures and
functions. However, in some cases, a PUBLIC procedure
call has more overhead than a purely local one. In other
cases, the identifier of a local procedure can conflict with a
global identifier passed to the linker. To avoid these
problems, use PUBLIC with selected individual procedures
and functions and empty brackets for the entire module,
for example, MODULE BETA[];.

Although a module contains no body, only declarations, you
may use it as a parameterless procedure; that is, you can
declare the module identifier as a procedure and call it from

5016793

14-6 Compilands

other programs, modules, or units. This module procedure
(unlike a similar procedure for programs or units) is never
called automatically, since there is no way for the compiler to
know whether a module has been loaded and thus whether
to generate a call to it.

However, in some cases, the compiler generates module
initialization code that should be executed by calling the
module as an EXTERN procedure. If such code is necessary, ·
the compiler gives the warning:

Initialize Module

If you see this message, declare the module as a
parameterless EXTERN procedure and call the procedure
once before anything in the module is accessed. (You need
to do this if module declares any FILE variables.)

Given a module M that declares its own file variables, a
program that uses M should look like this:

PROGRAM P (INPUT, OUTPUT)

PROCEDURE M; EXTERN;
BEGIN

M;

END.

(Runtime call initializes)
(file variables.)

If the module USES any interfaces that require initialization,
the compiler generates a warning that you should declare the
module EXTERN and call it as described in the previous
paragraph.

If module M does not contain any of its own file variables or
use any initialized units, there is no need to invoke M as a
procedure in the body of the program or to declare it as an
EXTERN procedure.

Variables within modules are not automatically given any
attributes. Except for the initialization of FILE variables
mentioned above, variables within modules are the same as
program variables.

Compilands

Units
Units provide a structured way to access separately
compiled modules. A unit has two parts:

o an interface

o an implementation

14-7

The interface appears at the front of an implementation of a
unit and at the front of any program, module, interface, or
implementation that uses a unit.

A unit contains constants, types, super types, variables,
procedures, and functions; all of which are declared in the
interface of the unit. Any program, module, or
implementation or another interface can use an interface. An
implementation contains the bodies of the procedures and
functions in a unit, as well as optional initialization for the
unit.

When you are using units, their interfaces go before
everything else in a source file, either in an
IMPLEMENTATION or in the program, module, or other unit
that uses it. By separating the interface from the
implementation, you can write and compile a program before
or while writing the implementation. Or, you can load a
program with one of several implementations (for example,
one in Pascal or one in assembly language).

A large Pascal program is often better organized as a main
program and a number of units. However, only a program,
module, interface, or implementation can USE a unit, not an
individual procedure or function.

A program, module, implementation, or interface that uses
an interface must start with the source file for that interface.
Generally, the interface source file is a separate file, and an
$INCLUDE metacommand at the start of the source file
brings in the interface source itself at compile time. Because
there is then only one master copy of the interface, this is
easier and more reliable than physically inserting the interface
everywhere it is used (and running the risk of ending up with
several different versions).

In some applications, you may wish to have several versions
of the same interface. For example, there is a separate
version of the file control block interface for every target file
system; the $1NCLUDEd file is copied from the desired

5016793

14-8 Compilands

interface version before the program using it is compiled.
Naturally, every version must declare the common identifiers;
each version could also have some constant values for use in
$IF metacommands for the version-specific portions of the
interface.

A source file of any kind contains zero or more unit
interfaces, separated by semicolons, and followed by a
program, a module, or an implementation, which is followed
by a period. Each of these entities is called a division. Refer
to The Interface Division, and The Implementation Division, in
this section for details about divisions.

A unit consists of the unit identifier, followed by a list of
identifiers in parentheses. These identifiers are called the
constituents of the unit and are the ones provided by a unit
or required by a program, module, or other unit. The unit is
preceded by the keyword UNIT for a provided unit or USES
for a required one.

All unit identifiers in a source file must be unique. The
identifiers in parentheses, however, can differ in the
providing and requiring divisions. Correspondence between
identifiers provided and required is by position in the list
(similar to formal and actual parameters in procedures).

The identifier list in a USES clause is optional; if not given,
the identifiers in the UNIT list are used by default. Giving
different identifiers in a USES clause allows you to change
the identifiers in case several different interfaces have
identifier conflicts. Multiple USES clauses can be combined;
thus, the following statements are equivalent:

USES A; USES B; USES C;
USES A, B, C;

Note also that a unit can introduce optional initialization code.
Such code is implied by the words BEGIN and END at the
end of an interface, and is provided in an optional body in an
IMPLEMENTATION.

Example of a unit that introduces initialization code:

The program file, PLOTBOX:

($1 NCLUDE: 'GRAPH I 'l
PROGRAM PLOTBOX (INPUT, OUTPUT);

USES GRAPHICS (MOVE, PLOT);
(MOVE and PLOT are USEd identifiers.}

Compilands 14-9

BEGIN
MOVE (0, 0);
PLOT (10, 0); PLOT (10, 10);
PLOT (0 , 1 0) ; PLOT (0 , 0) ;

END.

The interface file, GRAPH!:

INTERFACE;
UNIT GRAPHICS (BJUMP, WJUMP);

{Exported identifiers are BJUMP and WJUMP. In
the above PROGRAM, MOVE and PLOT are aliases
for these identifiers.)

PROCEDURE BJ UMP (X, Y: INTEGER) ;
PROCEDURE WJ UMP (X, Y: INTEGER) ;

{Procedure headings only above.
BEGIN {Implies initialization code.I
END;

The implementation file:

($1 NCLUDE: 'GRAPH I' J
1$1 NCLUDE: 'BASEPL' I
· {The following implementation USES the UNIT

BASEPL. The interface is included above and
the unit used below.)

IMPLEMENTATION OF GRAPHICS;
{Implementation is invisible to user .I

USES BASEPLOT;
{Procedures BJUMP and WJUMP are implemented
below. Only the identifiers are given in the
heading. The parameter I is ts are given in
the interface.)

PROCEDURE BJUMP;
BEGIN

DRAWL I NE (BLACK, X, Y);
END;

PROCEDURE WJUMP;
BEGIN

DRAWLINE (WHITE, X, Y);
END:

BEGIN {Begin initialization.I
DRAWLINE (BLACK, 0, 0);

END.

14-10 Compilands

The interface file, BASEPL:

INTERFACE;
UNIT BASEPLOT (BLACK, WHITE, DRAWLINE);

{Other identifiers besides procedure identifiers can
be exported. BLACK and WHITE are exported constant
ident i I iers.l

TYPE
RAINBOW= (BLACK, WHITE, RED, BLUE, GREEN);

PROCEDURE ORAWLINE (C: RAINBOW; H, V: INTEGER);
{No BEGIN; therefore, not an initialized unit.I

ENO;

A USES clause can occur only directly after a program,
module, interface, or implementation heading. When the
compiler encounters a USES clause, it enters each
constituent identifier (from the UNIT clause or USES clause
itself) in the symbol table. Identifiers for variables,
procedures, and functions are associated with the
corresponding identifiers in the interface, which then become
external references for the linker.

If the sample program above were compiled, every reference
to the procedure PLOT would generate an external reference
to WJUMP. However, references to DRAWLINE would use
the same identifier for the external reference.

Constants and types (including any super array types) in the
interface are entered in the program symbol table (along with
any new identifier). Thus, a type in an interface is identical to
the corresponding type in the USES clause.

Record field identifiers are the same in the program,
interface, and implementation. Enumerated type constant
identifiers must be given explicitly, if needed; they are not
automatically implied by the enumerated type identifier.
Labels cannot be provided by an interface, since the target
label of a GOTO must occur in the same division as the
GOTO.

The Interface Division
The structure of an interface is as follows:

a An interface section starts with the reserved word
INTERFACE, an optional version number in parentheses,
and a semicolon.

Compilands 14-11

o Next comes the keyword UNIT, the unit identifier, the
parenthesized list of exported constituent identifiers, and
another semicolon.

o Any other units required by this interface come next in
USES clauses.

o The last section is the actual declarations for all identifiers
given in the interface list, using the usual CONST, TYPE,
and VAR sections and procedure and function headings, in
any order. No LABEL or VALUE sections are permitted.

o The interface ends with BEGIN END if it has initialization, or
just with END if it has no initialization.

Except for ORIGIN, which cannot currently be used in
interfaces, most available attributes can be given to
variables, procedures, and functions. Because the PUBLIC or
EXTERN attribute or EXTERN directive is given automatically,
you must not specify attributes that can conflict, for
example, PUBLIC and EXTERN.

Usually the only identifiers you can declare are the
constituents, but other identifiers are permitted. If the
interface needs a call to initialize the unit, the keyword BEGIN
generates the call. The interface ends with the reserved
word END and a semicolon.

Example of an interface division:

INTERFACE (3);
UN IT KEYF I LE IF I NDKEY I I NSKEY I DEL KEY I KEYREC, ;

USES KEYPRIM (KFCB, KEYREC);

PROCEDURE FINDKEY (CONST NAME: LSTRING;
VAR

KEY: KEYREC;
VAR

REC: LSTRING);
PROCEDURE INSKEY (CONST REC: LSTRING;

VAR
KEY: KEYREC) ;

PROCEDURE DELKEY (CONST KEY: KEYREC);
PROCEDURE NEWKEY (CONST KEY: KEYREC);

BEGIN {Signifies initialized unit.I
END;

5016793

14-12 Compilands

In this example, KEYREC is part of the unit KEYPRIM, but is
exported as part of the unit KEYFILE. KFCB is also part of the
KEYPRIM unit, but is not exported by the KEYFILE unit.
NEWKEY is defined in the interface, but not exported by the
KEYFILE unit. This is permitted, but is pointless, since
NEWKEY is unknown even in the implementation of the unit.

Memory available at compile time limits the number of
identifiers the compiler can process. This limit can be a
problem if you have many interfaces; especially interfaces
that use other interfaces. The symptom is the following error
message:

Compiler Out Of Memory

The message occurs before the final USES clause in the
program, module, or implementation you are compiling. The
cure is to reduce the number of identifiers in interfaces USEd
by other interfaces. For example, make a single interface that
contains only types (and type-related constants) shared by
your other interfaces, and only USE this interface in the
others.

If you include any file variables in the interface, the unit must
be initialized. When you declare a file in an interface, the
compiler does not give the usual warning,

Initialize Variable

If your interface contains files, be sure to end it with BEGIN
END so that it can be initialized.

The Implementation Division
You can compile an implementation of a unit separately from
other programs, modules, or units, but you must compile it
along with its interface.

The structure of an implementation is as follows:

1 An implementation of an interface starts with the reserved
words IMPLEMENTATION OF, followed by the unit
identifier and a semicolon.

2 Next comes a USES clause for units needed only for its
own use.

3 Then come the usual LABEL, CONST ANT, TYPE, VAR,
and VALUE sections and all procedures and functions
mentioned as constituents, which must be in the outer
block or used internally in any order.

Compilands 14-13

VALUE and LABEL sections can appear in the implementation
but not in the interface.

Example of an implementation:

IMPLEMENTATION OF KEYFILE;
USES KEYPRIM (KEYBLOCK, KEYREC);

VAR
KEYTEMP: KEYREC;

PROCEDURE FINDKEY;
BEGIN

(Code Io r FI NDKEYI

END;

PROCEDURE INKEY;
BEGIN

(Code for INKEYI

END;

PROCEDURE DELKEY;
BEGIN

(Code Io r DELKEYI

END;

BEGIN

IA n y i n i t i a I i z a t i on code goes he re .1

END.

Constants, variables, and types declared in the interface are
not redeclared in the implementation. However, you can
declare other private ones. Procedures and functions that are
constituents of the unit do not include their parameter list (it
is implied by the interface) or any attributes. (The PUBLIC
attribute is implied, unless the EXTERN directive is given
explicitly.)

All procedures and functions in the INTERFACE must be
defined in the IMPLEMENTATION. However, they can be
given the EXTERN directive so that several
IMPLEMENT A TIONs (or an IMPLEMENTATION and assembly

5016793

14-14 Compilands

code) can implement a single INTERFACE. All procedures and
functions with the EXTERN directive must appear first; the
compiler checks for this and issues an error message if the
EXTERN directive is missing or misplaced.

You can implement a unit in assembly language, in which
case all variables, procedures, and functions should generate
public definitions for the loader. If the interface is not
implemented in Pascal, it must give the proper calling
sequence attribute (of course, you must be familiar with
calling sequences and internal representation of parameters).

Several Pascal runtime units are implemented partially in
Pascal and partially in assembly language. As mentioned, any
IMPLEMENTATION section that does not implement all
interface procedures and functions must, at the start of the
IMPLEMENTATION, declare such procedures and functions to
be EXTERN.

An implementation, like a program, may have a body. The
body is executed when the program that uses the unit is
invoked, so any initialization needed by the unit can be done.
This includes internal initialization, such as file variable
initialization, as well as user initialization code. If the source
file contains several units, each implementation body is called
in the order its USES clause appears found in the source file.
However, initialization code for a unit is executed only once,
no matter how many clauses refer to it.

The body, as in a program, is a list of statements enclosed
with the reserved words BEGIN and END. At initialization
time, the version number of the interface with which the
implementation was compiled is compared against the
version number of the interface with which the program was
compiled. These must be the same. This checking prevents
you from trying to run a program with obsolete
implementations. If no version number is given, zero is
assumed.

The keyword BEGIN before the final END indicates a unit with
initialization. If the word BEGIN is omitted, the
implementation must not have a body and no initialization
takes place. Uninitialized units lack:

o user initialization code

o a guarantee of only one initialization ·

o a version number check

Compilands 14-15

The format for an initialized implementation of a unit is similar
to a program:

IMPLEMENTATION OF unit· identifier
Declarations
BEGIN

Body (Initialization code}
END.

The format for an uninitialized implementation of a unit is
similar to a module:

IMPLEMENTATION OF unit·identifier
Declarations

(No initialization code}
END.

If the implementation for an uninitialized unit declares any
files or USES any interfaces that require initialization, the
compiler warns you to initialize the implementation.
Initialization is done automatically if you add the keyword
BEGIN to both the interface and the implementation. As with
a module, you can declare an uninitialized unit to be a
procedure with the EXTERN attribute and then initialize it by
calling it from the program.

5016793

Section 15

Compiling, Linking, and
Executing Programs

15-1

Before it can be executed, a Pascal program must be compiled
into an object module and then linked with any other object
modules required to make up the run file.

Compiling a Pascal Program

The procedure for compiling a Pascal program is described
below. The procedure requires a command form to be filled
in. The way to fill in a form is described in the BTOS
Systems Standard Software Operation Guide.

You invoke the Pascal compiler with the Executive Pascal
command. The following form appears:

Pascal
Source File
[Object file]
[List file]
[Object list file]

The meanings of the fields are as follows:

Field Name

Source file

[Object file]

[List file]

[Object list file]

5016793-003

Description

The name of the Pascal source file to be
compiled.

The name of the destination file for the object
code that results from the compilation.

The name of the file to be written with a listing of
the compilation.

The name of the file for the listing of the object
code that results from the compilation.

I

15-2 Compiling, Linking, and Executing Programs

If no object file is specified, a default object file is chosen as
follows: Pascal treats the source name as a character string,
strips off any suffix beginning with the character period (.)
and adds the characters .Obj. The result is the name of the
file. For example, if the source file is:

[Dev] <Jones> Main

then the default object file is:

[Dev]< Jones> Main.Obj

If the source file is:

Prag.Pas

then the default object file is:

Prag.Obj

If no list file is specified, the default list file is chosen in a
manner similar to the default object except that the string
added is .Lst instead of .Obj. To list portions of the list file,
refer to the $LIST metacommand.

Text deleted by PCN-003

Compiling, Linking, and Executing Programs

Linking a Pascal Program

The procedure for linking a Pascal program is described
below.

Text deleted by PCN-003

15-3

Invoke the Linker as described in the BTOS Linker/Librarian
Programming Reference Manual.

The following special features of the Linker as applied to
Pascal are important:

[Libraries]

When linking a Pascal program, the Linker automatically
searches the library file [Sys]< Sys> Pascal.Lib for any

I

unresolved external symbols. If the Pascal Compiler has I
been installed using a path other than [Sys] <Sys> , you
will have to include that path in your file specification.

[DS allocation?]

The default (yes) directs the Linker to offset all references
to group DGroup. You must use DS allocation (the default)
to link Pascal tasks that use the Pascal heap, because the
Pascal object modules use a single value in DS during their
entire execution and include the group DGroup, with DS
equal to DGroup. If a task using DS allocation is loaded at
the high end of memory, the space below the task can be
conveniently used as a dynamically allocatable area
containing data referenced relative to DS.

In the following example, "Myprogram.pas" uses the Pascal I
heap and the Pascal Compiler resides in [Sys] <Pascal> .
First.obj is used to order the segments correctly for the
Linker. If used, it must be the first in the list of object
modules that will be linked to form a run file.

5016793-003

15-4 Compiling, Linking, and Executing Programs

Bind
Object modules

Run file
[Map file]
[Publics?]
[Line Number?]
[Stack size]
[Max array, data, code]
[Min array, data, code]
[Run file mode]
[Version]
[Libraries]

[DS Allocation?]
[Symbol file]

[Sys]< Pascal> First.obj
Myprogram.obj
Myprogram.run

[Sys] <Pascal> Pascal.lib
[Sys] <Sys> Ctos.lib
[Sys] <Sys> CtosToolkit.lib
none
Yes

The following example shows how to link programs that use
the 8087 Math Coprocessor. In this example, Pascal resides in
[Sys] <Sys > .

Bind
Object modules

Run file
[Map file]
[Publics?]
[Line Number?]
[Stack size]
[Max array, data, code]
[Min array, data, code]
[Run file mode]
[Version]
[Libraries]
[DS Allocation?]
[Symbol file]

Myprogram.obj
@[Sys]< Sys> Pascal8087.FLS
Myprogram.run

Yes

Text deleted by PCN-003

Compiling, Linking, and Executing Programs 15-5

Text deleted by PCN-003

Executing a Pascal Program
The procedure for running a Pascal program is described
below.

Text deleted by PCN-003

Once a run file has been created with the Linker, a Pascal
program can be run either of two ways:
o By using the Executive Run command
o By creating a customized command (using the Executive

New Command command) and invoking it.

5016793-003

I

I

I

15-6 Compiling, Linking, and Executing Programs

The latter approach allows fields in the form for the
customized command to be passed to Pascal program
parameters declared in the Pascal program header. For
example, when the following is used in conjunction with an
Executive command having two fields, the video display
shows the contents of these two fields:

PROGRAM ReadParam (OUTPUT, fieldl, field2);

VAR
fieldl, field2 : LSTRING (255);

BEGIN
Writeln(fieldl);
Writeln(field2);

END

Text deleted by PCN-003

Compiling, Linking, and Executing Programs 15-7

Text deleted by PCN-003 I

5016793-003

15-8 Compiling, Linking, and Executing Programs

Run Time Size and Debugging
When running, Pascal occupies approximately 130K bytes:
lOK of data (including the stack) and 120K of code, which
implements the Pascal files system, heap, error handling,
encode/decode, and includes SAM and DAM from Ctos.lib.
(Included is 57K of memory for Reals, Sets, and LStrings,
which occupy 29K, 2.2K, and 4.5K, respectively.

Units also use the run-time library, although using modules
does not. Use of the $DEBUG metacommand also invokes the
run-time.

If you do not use these facilities, you can suppress their
inclusion in your program by explicitly linking in the module
Pasmin.obj. You then have to do all memory management,
input-output, and so forth, by calls to BTOS facilities. If you
link in Pasmin.obj, you can set [DS allocation?] to either yes
or no.

All Pascal static data, including the lOK of system static data
mentioned above, is limited to 64K. Therefore, you can have
up to 54K of user static data and heap. You can dynamically
allocate data above this limit by using the Pascal long heap. It
can be longer than the 64K byte limit of the short heap.

To access data in the long heap, you must specify both the
segment and off set addresses; that is, data is accessed using
ADS type variables. If enough memory is not available at
allocation request time from the long heap, memory from the
short heap is allocated. You can pre-allocate short-lived
memory for the long heap with PreAllocLongHeap.

Since the normal Pascal heap is allocated dynamically in
short-lived storage and must be contiguous, once you allocate
short-lived memory, the short heap cannot grow larger. The
function PreAllocHeap allows you to pre-allocate the short
heap. Although you can allocate and address storage with no
limit other than total physical memory, no single Pascal
object can exceed 64K bytes, which is the space required for
an array of 16K Real numbers.

Compiling and Linking Large
Programs

Occasionally, you may find that a large program exceeds one
or more physical limits on the size of program the compiler,
the linker, or your machine can handle. This section describes
some ways to avoid or work within such limits.

Compiling, Linking, and Executing Programs 15-9

Avoiding Limits on Code Size

The upper limit on the size of code that can be generated at
one time by the Pascal Compiler is 64K bytes. However, since
you can compile any number of compilands separately and
link them together later, the real program size limit is not
64K but the amount of memory available.

For example, you can separately compile six different
compilands of 50K bytes each. Linking them together
produces a program with 300K bytes of code.

In practice, a source file large enough to generate 64K bytes
of code would be thousands of lines long, and unwieldy both
to edit and to maintain. A better practice is to break a large
program into modules and units, to better structure the
development and maintenance process.

As always, there is a tradeoff between size and speed.
Procedure and function calls within a module to routines
without the PUBLIC attribute are somewhat faster since
intrasegment calls, which run faster, are generated rather
than intersegment calls.

Avoiding Limits on Data Size

Data includes your main variables, the stack, and the heap.
Pascal operates with data in two regions of memory:
o the default data segment
o the segmented data space

The upper limit on the amount of data that can reside in the
default data segment is also 64K bytes. You can go beyond
this limit by taking advantage of the ability to place certain
kinds of data outside the default data segment, using FAR I
variables, ADS variables, VARS and CONSTS parameters,
and segmented ORIGIN variables.

The default data segment normally holds the following:
o all statically allocated variables
o constants that reside in memory
o heap variables
o the stack, which holds parameters, return addresses, stack

variables, and such

5016793-003

15-10 Compiling, Linking, and Executing Programs

Operations with data in the default data segment are more
efficient; that is, these operations generate less code and run
faster than those with data that can be in any segment.
Almost all operations work equally well on data outside the
default data segment.

The segmented data space includes the entire address space,
including the default data segment. Data outside the default

I data segment can be referenced using FAR and ADS
(segmented address) variables, VARS and CONSTS
parameters, and segmented ORIGIN variables. Refer to the
appropriate sections in this manual for a discussion of these
Pascal features.

Only in the following cases must data reside in the default
data segment:
o file variables
o the LSTRING parameters to ENCODE and DECODE
o all parameters to READSET

I To allocate data outside the default data segment using ADS
variables, you must go outside the Pascal system itself. If you
already know the address of free blocks of memory on your
computer, you can use these addresses in a segmented
ORIGIN attribute or assign them to an ADS variable.

Many applications use a large block of memory for primary
data, as well as other variables to control access and
processing of this data. For example, a text editor has a work
area, a data base system has a data area or index area, and so
on. This large block can be managed outside the default data

I segment by combining FAR and ADS variables.

In the default data segment, the heap and the stack grow
toward each other. Heap allocation attempts to use existing
disposed blocks in the heap itself before growing into memory
shared with the stack.

As a part of this process, adjacent disposed blocks are merged,
and free blocks at the end of the heap become available to the
stack.

However, only heap allocation (NEW or GETHQQ) releases
free heap blocks to the stack. Therefore, if you are running
out of stack after a number of DISPOSE operations, make
the following call:

EVAL (GETHQQ (65534));

Compiling, Linking, and Executing Programs 15-1 OA

Multiple Data Segments

The architecture of the 80x86 microprocessor is such that
data can be accessed within the default data segment using
just the 16-bit offset value. This is possible because the
segment address for the default segment is always known.
This 16 bit-offset value is called a "near" address, and since
only 16-bit arithmetic is required to access a near item, near
references to data are smaller and more efficient.

When data lies outside the default segment (DGROUP), the
address must use the 32-bit segment and offset value. Such
addresses are called "far" addresses. Accessing far data is
more expensive in terms of program speed and size, but using
them allows your program to address all memory, rather than
just a 64K piece.

In previous versions, the Pascal medium memory model
provides a single segment for program data and multiple
segments for program code. DGROUP contains all initialized
global and static data. The upper limit on the amount of data
that can reside in this default data segment is 64K bytes.

With Release 7.0 of the CTOS Pascal Compiler, you can
(while staying within the Pascal Language itselO go beyond
this limit by using the new FAR attribute to place data items
outside the default data segment. Program data can occupy
any amount of space and are given as many segments as
needed. You can statically allocate, initialize and reference
data with no limit other than total physical memory.

The allocation of data in far memory is NOT automatic, but
it is flexible. You must use the FAR attribute in order to
indicate which of those variables you want outside of
DGROUP. Far variables are allocated sequentially and as they
appear in the source file.

If the size of the next far variable plus the size of the current
far data segment exceed 64K, a new segment is created to
hold the far variable. This process continues until all far
variables have been allocated. A single module may use as
many far data segments as needed. (Refer to section 8 for
more information on the FAR attribute.)

5016793-003

15-1 OB Compiling, Linking, and Executing Programs

Symbol Table in Far Memory

The CTOS Pascal Compiler (Release 7.0) uses far memory to
avoid former limitations on the size of the symbol table. You
do not need to understand the details of compiler operation to
make use of this feature. Nor do you need to use any special
options or statements. The greater capacity of the symbol
table automatically allows you to compile larger source
modules than was previously possible.

Like other compiled languages, CTOS Pascal uses a symbol
table to keep track of each unique name in a source file. The
table includes the names of all variables, symbolic constants,
procedures, and functions. It also provides type information
on each entry. This information is required for the compiler
to analyze Pascal statements. The symbol table lists names in
ASCII format. The more and the longer the names that
appear in the table, the more memory is required.

Previous versions of Pascal limited the symbol table to a 64K
area called DGROUP. This area alsci contains the compiler's
stack and internal data. The compiler's stack has to be as
large as possible in order to handle deeply-nested loops in a
Pascal program. When compiling large modules in earlier
versions, a user sometimes had to reduce the stack size, use
shorter names, or break up modules.

In this version of the CTOS Pascal Compiler, the symbol
table is removed from the DGROUP area (leaving more room
for the stack) and located in far memory, which is limited
only by the size of system memory. (Far memory is
manipulated with 32-bit addresses rather than 16-bit
addresses, which can address only a range of 64K.)

Note: Although the compiler's internal stack can now be
larger, it is still limited in size. Therefore, it is still possible to
run out of compiler memory when compiling exceptionally
complicated modules.

Compiling, Linking, and Executing Programs 15-11

Working with Limits on Compile Time Memory

During compilation, large programs are most often limited in
the number of identifiers in any one source file. They are
occasionally limited by the complexity of the program itself. If
one of these limits is reached, you see the following error
message:

Compiler Out Of Memory

There is no particular limit on number of bytes in a source
file. The number of lines is limited to 32767, but in practice
any source file this large will run into other limits first.

Identifiers

Pass one of the compiler can handle a maximum of about a
thousand identifiers visible at any one time. This assumes a
64K default data segment (about 160K of memory total); it
also assumes that most of your identifiers are seven
characters or shorter and are not PUBLIC or EXTERN.

Once a procedure or function is compiled, its local identifiers
can be released to provide room for new ones. Several
methods of reducing the number of identifiers in a program
are described below.
o Break your program into modules or units

The best way to reduce the number of identifiers is to
break up your program into modules or units. When
dividing your application into pieces, one guiding principle
is to minimize the number of shared (PUBLIC and
EXTERN) identifiers. This is good programming practice,
and it makes compilation easier.
Breaking up a program can force you to choose between a
shared variable and a shared procedure or function.
Usually a shared procedure or function is cleaner; it is
easier to trace the use of a procedure than the use of a
variable, for example. However, a shared variable is
usually more efficient in terms of memory required and
number of identifiers used.

5016793-003

I

15-12 Compiling, Linking, and Executing Programs

o Simplify your identifiers
Although it reduces the readability of a program (since
naming something is a more readable way of referring to
it than giving an arbitrary number), you can simplify your
identifiers by replacing names with numbers. If necessary,
any of the following may help:
Change enumerated types into WORD types and use
numbers instead of identifiers.
Use constant literals instead of constant identifiers.
Combine related procedures and functions into single ones
with a parameter indicating the type of call.
Combine variables into an array, and refer to the variables
using constant array indices.

Text deleted by PCN-003

Compiling, Linking, and Executing Programs 15-13

A special caution is required regarding interfaces. When an
interface USES another interface, it must import all identifiers
in the other interface. To do this, the other interface must
have been declared, so that the identifiers occur twice. If a
third interface USES both of the first two, the first interface
identifiers occur three times and the second interface
identifiers occur twice, and so on. This is an easy way to run
out of identifiers.

The only reason an interface needs to USE another interface
is to import identifiers for types; an interface has no use for
variables, procedures, and functions. You can declare a
single interface with global types. This is the only interface
used by other interfaces. Once compilation is past the USES
clause in the PROGRAM, MODULE, or IMPLEMENTATION,
many of these extra identifiers are removed.

Complex Expressions

It is also possible to run out of memory in Pass One with any
of the following:

o a very complex statement or expression (one that is very
deeply nested)

o a large number of error messages

o a large number of structured constants including string
constants

You may be able to change literal strings and other
structured constants into EXTERN READONL Y variables
which are initialized (as PUBLIC variables) in another module.

If a program gets through Pass One without running out of
memory, it gets through Pass Two. The major exception
occurs with complex basic blocks as in the following:

o sequences of statements with no labels or other breaks

o sequences of statements containing very long expressions
or parameter lists, especially a WRITE or WRITELN
procedure call with many expressions

If pass two runs out of memory, it displays the following
message:

Compiler Out Of Memory

5016793

15-14 Compiling, Linking, and Executing Programs

The error message gives a line number reference. If there is a
particularly long expression or parameter list near this line,
break it up by assigning parts of the expression to local
variables (or using multiple WRITE calls). If this does not
work, add labels to statements to break the basic block.

Listing File Format
Two example listings are included below, one that does not
run and one that does. Comment lines identify some of the
differences. The discussion of listing file format is keyed to
these example listings, which follow the source codes that
produced them when compiled.

Source Program for Example Listing 1

(This example does not run.)

I $T I TL E : ' F 00 ' l IP u t s t i I I e on page l
IS SUB T I TL E : ' F i r s I F 00 ' l IP u t s sub I i I I e on page l
/$PAGE: 11 !Puts page number on page!
!SLINE-l !Sends I ine numbers to debugger!

PROGRAM FOO (input, output);
!SSYMTAB~I !Sends symbol table to listing file!

VAR
i : integer;
k : array 1-9 .. OJ of integer;

FUNCTION bar (VAR j : integer): integer;
VAR

K: array [O .. 9]
BEGIN !lune! ion bar!

GOTO 1;
i : • bar (j) ;
1 : j : = bar (i) ;

GOTO 1;
RETURN;
GOTO 1;
i ;. bar (i) ;
j := bar (j) ;
bar:=j;

END; !function bar!
BEGIN !program!·

i := 5;
i := ba q i);

END. !program!

of integer;
!This wi 11 Ii nk and produce!
la I isl file because of theJ
/bar:= j line below, but l
lit will go into an endless!
!loop. If you fix that, ill
!will crash from stack I
1overflow.1

!Needed for linking!

Compiling, Linking, and Executing Programs 15-15

Example Compiled Code Listing 1

(This example does not run. Comments are same as Source,
but some are repositioned or omitted on this narrower page.)

FOO
Fi rs t FOO

JG IC Line#
00 1

2

3
4

10 5
6

10 7
10 8
1 0 9

20 10
20 11
20 12
20 13

- 21 14
14

= 21 15
I 21 16
- 21 17
• 21 18
- 21 19
% 21 20

21 21
= 21 22

10 23

S ym tab 23

Pascal (release numberl
I$ TI TL E : . F 00' I
($SUBTITLE: 'First FOO'!

(Puts ti tie on page!
(Puts subtitle on

page I
($PAGE: 11 !Puts page number on page!
($LINH !Sends Ii ne numbers to debugger I
PROGRAM FOO (input, output);
($SYMTAB-l !Sends symbol table to listing

f i I e I
VAR

integer ;
array [-9 .. OJ of integer;

FUNCTION bar (VAR j : integerl: integer;
VAR

K: array (0 .. 9) of integer;
BEGIN (function bar!

GOTO 1;
···········'Warning 281 Label Assumed

Declared
i := bar (j I;
1: j := bar(i);

GOTO 1;
RETURN;
GOTO 1;
i := bar (i);
j := bar (j);
bar := j :

END; (function bar!

Offset
2
2

+ 4
22

Length
24

2
2

20

Va r i ab I e - BAR
Return offset. Frame length
(function returnl :Integer
J : Integer VarP
K :Array

10 24 BEGIN (program!
11 25 i := 5;
11 26 i := bar(i):
00 27 END. (program!

5016793

15-16

Symtab 27

Compiling, Linking, and Executing Programs

Offset
0

20
22

Length
42
2

20

Variable
Return offset, Frame length
I :Integer Static
K :Array Static

Errors Warns In Pass One
0 1

Every page has a heading that includes such information as
your title and subtitle, set with the metacommands $TITLE
and $SUBTITLE, respectively. If these metacommands
appear on the first source line, they take effect on the first
page. The page number appears in the right side of the first
line of the heading. You can set the page number with
$PAGE:<n> or start a new page with $PAGE+.

The fourth line of the listing contains the column labels. The
contents of the first three columns are described below:

o JG column

This contains flag characters generated for your
information. Jump flags, which appear under J, can contain
one of the following characters:

+ forward jump (BREAK or GOTO a label not yet
encountered)

backward jump (CYCLE or GOTO a label already
encountered)

* other jumps (RETURN or a mixture of jumps)

Codes for global variables (not local to the current procedure
or function) appear under G:

assignment to a nonlocal variable

/ passing a nonlocal variable as a reference parameter

% a combination of the two

o IC column

This has information about the current nesting levels. The
digit under I refers to the identifier (scope) level, which
changes with procedure and function declarations, and
with record declarations and WITH statements. The digit
under C refers to the control statement level; this number
changes with BEGIN and END pairs, CASE and END pairs.
and REPEAT and UNTIL pairs. It is useful for finding
missing END keywords.

Compiling, linking, and Executing Programs 15-17

If a line is not actively used by the compiler, all these
columns are blank. Thus you can locate a portion of the
source accidentally commented out or skipped due to an
$IF and $END pair.

o Line column

This shows the line number of the line in the source file.
An $1NCLUDEd file gets its own sequence of line numbers.
If $LINE is on, this line number and the source file name
identify runtime errors.

Two kinds of compiler messages appear in the listing: errors
and warnings. A compilation with any errors cannot generate
code. A compilation with warnings can generate code, but
the result may not execute correctly. Warnings start with the
word Warning and a number, as in line 14 in the sample
listing. Errors start with an error number. Refer to appendix
A, Error Messages, for a complete listing of all warning and
error messages.

The metacommand $BRA VE+ sends error and warning
messages to your terminal as well as to the listing file.
However, if there are more than can fit on a single screen,
the first ones will scroll off. You can suppress warning
messages with the metacommand $WARN-, but this is not
generally recommended.

The location of the error is indicated in the listing file with an
up arrow n. The message itself may appear to the left or
right of the arrow and is preceded with a dashed line.

Sometimes the compiler does not detect an error until after
the listing of the following line. In this case, the error
message line number is not in sequence.

Tabs are allowed in the source and are passed on to the
listing unchanged. If the tab spacing is every eight columns.
the error pointer(") is generally correct. However, an error
pointer near the end of a line may be displaced if the
following line has tabs.

If the compiler encounters an error from which it cannot
recover, it gives the message Compiler Cannot Continue!.
This message appears if any of the following occurs:

o The keyword PROGRAM (IMPLEMENTATION, INTERFACE,
or MODULE) is not found, or the program, module, or unit
identifier is missing.

o The compiler encounters an unexpected end-of-file.

5016793

15-18 Compiling, Linking, and Executing Programs

a The compiler finds too many errors; the maximum number
of errors per page is set with the $ERRORS
metacommand. (The default is 25.)

a The identifier scope becomes too deeply nested.

When the compiler is unable to continue for whatever
reason, it simply writes the rest of the program to the listing
file with very little error checking.

Source Program for Example Listing 2
(This example runs.)

($TITLE: 'FOO'} (Puts title on page}
($SUBTITLE: 'First FOO'} (Puts subtitle on page}
f$PAGE:1} (Puts page number on page}
($SIMPLE} {Prevents compiler from optimizing code}
($BRAVE+! (Sends error messages to screen and Ii sting

f i I e}
($LINE+} (Turns on $ENTRY and sends line numbers to

debugger, which wi 11 be needed}

PROGRAM FOO (input, output);
($SYMTAB+I (Sends symbol table to listing file)

LABEL

VAR
1

i : integer;
k: integer;

FUNCTION bar (VAR integer): integer;
LABEL

1
2

BEGIN (function bar)
i :- i + 5;
GOTO 1;
2 : I : - I;

bar :- 10;
IF j < 0 THEN

RETURN
ELSE

BEGIN (j < 01
1 : i : • i • 5;

GOTO 2;
END; (j < 0)

END; (function bar)

Compiling, Linking, and Executing Programs

{$PAGE:2l
!$PAGE+l
{$SSUBTITLE: 'FOOtwo'l

BEGIN {program!
k > 0;
i := 5;
i : • bar (i) ;
1 : IF k = 1 THEN

i : = 200;
WRITELN (i);
IF i • 0 THEN

BEGIN ti = 01
k : = 1 ;
GOTO 1;

{Sets next page number!
{Skips to next pa gel
!Sub tit I e for next pagel

END ti= 01 !No semicolon before ELSE!
ELSE

WR I TELN (' «<«« BYE BYE »»>»');
END. {program}

Example Compiled Code Listing 2

15-19

(This example runs. Comments are same as Source, but
some are repositioned or omitted on this narrower page.)

FOO
Fi rs t FOO

JG IC Line# Pas ca I (release number)
00 1 {$TITLE: 'FOO' l {Puts title on page}

2 {$SUBTITLE: ' F i r s t F 00' l t p u t s sub t i t I e on
pa gel

3 {$PAGE: 1} {Puts page number on page}
4 {$SIMPLE} {Prevents compiler from

optimizing code}
5 {$BRAVE+} !Sends error messages to screen
6 and listing file}
7 {$LI NE+} {Turns on $ENTRY and sends I ine
8 numbers to debugger, which wi 11

be needed}
10 9 PROGRAM FOO (input, output);

1 0 {$SYMTAB+l {Sends symbol table to listing
f i I el

10 11 LABEL
12 1 · '

1 0 13 VAR
1 0 14 integer;
10 15 integer;

16

5016793

15-20 Compiling, Linking, and Executing Programs

20 17 FUNCTION bar (VAR j integer): integer;
20 18 LABEL
20 19 1
20 20 2
20 21 BEGIN (function bar}
21 22 i := i + 5;
21 23 GOTO 1;
21 24 2 j:=i;
21 25 bar := 10;
21 26 IF j < 0 THEN
21 27 RETURN
21 28 ELSE
21 29 BEGIN Ii < 01
22 30 1 i :- i • 5;
22 31 GOTO 2;
21 32 END; (j < 01
10 33 END; (function bar!

Symtab 33 Offset Length Variable - BAR
2 4
2 2

+ 4 2

Return offset, Frame length
(function return) :Integer
J :Integer VarP

34
35 !$PAGE:2l (Sets next page number!

JG IC Line#
36
37

38

Pascal (release number)
!$PAGE+)
($SSUBT I TLE: 'FOO two' I

10 39 BEGIN {program!
11 40 k :=0;
11 41 i := 5;
11 42 i := bar(i);
11 43 1: IF k = 1 THEN
11 44 i :-200;
11 45 WRITELN (i);
11 46 IF i = 0 THEN
11 47 BEGIN (i = 01
12 48 k:=1;
12 49 GOTO 1;

!Skips to next page!
(Subtitle for next

page!

12 50 END Ii = 01 !No semicolon before ELSE!
11 51 ELSE
11 52 WR I TELN (' «<«« BYE BYE

»»»>');
00 53 END. {program!

Compiling, Linking, and Executing Programs 15-21

Symtab 53 Variable Offset
0

16
18

Length
20

2
2

Return offset, Frame length

Errors
0

Limitations

I : Integer Static
K : Integer Static

Warns in Pass One
0

1 The SIN function is inaccurate for input values outside
the range -100 < x < 100. In particular, the SIN
function returns the result 0.0 for input values outside
the range -l.3E7 < x < 1.3E7. The way to work around
this limitation is to do range reduction before calling the
SIN function, to ensure accurate results.

2 You cannot use the same name for a program (or module)
and a public procedure (or function) within the same
compilation unit. Using an identical name does not result
in a compilation error, but causes the following error
while linking:
multiple defined publics

3 Sometimes the SIZEOF function does not return the
correct size of a record if the record is declared using
explicit byte offsets.

4 Incorrect code is generated for non-decimal constants
greater than 65535. The workaround method is to use
decimal constants always.

5 You cannot use the compiler directive $DEBUG+ in
Pascal modules that contain interrupt handlers.

6 Integer4 data types are not totally compatible with
integers, words, and constants. The equation i4: =w-c,
where i4 is of type integer4, w is of type word and c is a
constant, results in i4: = (64k + c)-w when w < c. (The c
can also be an integer, an integer variable, a word, or a
word variable.) The values in the expression are not
changed to integer4 before the expression is evaluated.
Changing the equation to i4: = -c + w can change the
result of the assignment.
A detour in which j4 is of type integer 4 is as follows:

j4: =O;

j4: =j4+w-c;

5016793-003

15-22 Compiling, Linking, and Executing Programs

7 Complex expressions involving multiplication by 512
sometimes yields incorrect code. The problem can be
avoided by breaking the expression into simpler parts or
by using the $SIMPLE metacommand. $SIMPLE turns
off compiler optimizations.

I Text deleted by PCN-003
8 The Pascal compiler sometimes generates code that

exceeds the segment limit. This causes a failure in
real/protected mode on B2S and B3S workstations.
This occurs because Pascal sometimes does full-word
operand fetches from memory even when the object being
accessed is a byte. When the object being accessed is the
last byte in a segment, a limit fault occurs.
One workaround is to store the operand in a temporary
byte variable to force a byte fetch from memory. The
temporary variable can then be used in the intended
expression. Another workaround is to expand the field by
padding it with an additional byte.

I 9 The function CONCAT should not be used to combine a
string which is indexed with a function. This function is
called twice: once to obtain the length of the string and
once to obtain the pointer to the string. This creates
problems when the function returns a different value.
A possible workaround is to use a temporary value as the
parameter after assigning the function value to the
temporary value.

I 10 The Pascal compiler is linked as "unsized". BTOS
allocates all of available memory to the compiler when
loading it into memory. To control the amount of memory
used for Pascal, run the compiler in a Context

I 11

Manager-specified partition of approximately 250K bytes.
Some REAL4 variables will appear truncated rather than
rounded when displayed as P:M:N, where N is greater
than or equal to 2. This happens because the encoding of
REAL4 variables is done by assigning the REAL4 value to
a REALS and encoding the REALS. Using the SOxS7
Numeric Co-Processor (or SOxS7 emulation), the REALS
result of the assignment may be a truncated version of the
REALS result produced by a decode operation. The loss of
precision introduced by the assignment is numerically
insignificant, but the rounding digit may have changed.

Compiling, Linking, and Executing Programs 15-23

For example, a REAL4 variable with a value of 2.995,
when assigned to a REALS, will result in a value of
(approximately) 2.99499988. The encoded result for a
format will be 2.99 (truncated) rather than the rounded
3.00 one would expect.

12 Although there is no limit to the size of the symbol table,
the internal stack still is limited in size. Therefore, it is
still possible to run out of compiler memory when
compiling exceptionally complicated modules.

13 The FAR attribute cannot be applied to procedures and
functions.

14 Since special keywords such as FAR are specific to the
segmented architecture of the 80x86 family of
microprocessors, they are not portable to other operating
systems.

15 Because address arithmetic is performed only on 16 bits,
no single data item may be larger than a segment (i.e., no
larger than FFFO hex). Huge arrays are not supported.

16 In a large memory model, the SS register is the only
register that stays fixed while DS and ES change
dynamically to reference various data segments. For
example, if a module has a default data segment
containing static variables for the module (compilation
unit), DS is setup to point to that segment upon entry to
the module. In the CTOS Pascal medium memory model,
the DS and SS registers stay fixed while ES is used to
access far variables. No such setup of DS exists for other
data segments, except for DGROUP.

17 There is no support for a large-model library in CTOS
Pascal, therefore, some kinds of data must reside in the
default segment. For instance, library functions for file
I/0 assume file variables reside in the default data
segment; therefore, passing the segmented address of a far
file variable is illegal and the compiler will report an error.
The same applies to the LSTRING parameters passed to
ENCODE and DECODE, and all parameters passed to
READSET.

5016793-003

Appendix A A-1

Error Messages
This appendix lists all of the error numbers and messages
you are likely to encounter while using the Pascal Compiler
and run time system. These error conditions fall into the
following categories:

o compile time warnings

o compile time errors caught

o compiler internal errors

o errors (both compile time and run time) defined by the ISO
standard not caught in this extended Pascal

o run time file system errors

o run time nonfile system errors caught only if the
appropriate switch is on

o run time nonfile system errors always caught

Error conditions may:

o go undetected

o be detected by the compiler

o be detected by the run time system

An error is caught if the compiler or run time system detects
the error and gives you a message. A warning is an error
that is caught by the compiler but fixed so that the compiled
source might run correctly. Substitution mistakes (for
example, using a colon instead of an equal sign) and some
other syntax errors (using a semicolon before an ELSE) are
common errors that generate only a warning message and
are fixed by the compiler. However, you should go back into
the source file and make corrections or you will keep getting
the same warning message every time you compile.

Compile time errors include all of the conditions described in
this manual as invalid, illegal, not permitted, and so on. The
ISO standard defines a number of error conditions that are
described as errors not caught in this Pascal. Generally, these
are infrequent or very hard-to-detect conditions and not
caught as errors in this Pascal.

5016793

A-2 Error Messages

Compiler Front End Errors
Front end error and warning messages consist of a number
and a message. Most messages appear with a row of
dashes and an arrow that points to the location of the error.
Three (messages 128, 129, and 130) appear only after the
body of the routine in which they occur. The word Warning
identifies warnings as such; all other messages report errors
in the program.

The front end recovers from most errors; that is, it corrects
the condition and continues the compilation. There are,
however, a few front end errors (panic errors) from which the
compiler cannot recover. In these cases, you see the
message:

Compiler Cannot Continue!

The compiler then does little else except list the rest of the
program. These errors occur under the following
circumstances:

a There are more errors than the number n set by the
$ERRORS metacommand.

a An end of file occurs when not expected.

a Identifier scopes are nested too deeply.

a The compiler cannot find the keyword PROGRAM,
MODULE, or IMPLEMENTATION.

a The compiler cannot find the PROGRAM, MODULE, or
IMPLEMENTATION identifier.

a A file system error occurs. The message will include the
filename and one of the following phrases:

HARD DAT A (check sum error)
DISK FULL (disk is full)
FILE ACCESS (file not found)
FILE SYSTEM . (other or internal error)

Error Messages

The front end can also get one of two compiler run time
errors:
o Error: Compiler Out of Memory

A-3

This usually occurs when too many identifiers have been
declared. Refer to Compiling and Linking Large Programs,
in section 15, for suggestions on how to handle this
situation.

o Error: Compiler Internal Error
This message should never appear. If it does, please report
the condition to your local Unisys representative. I

If the word Warning appears before a message, the
intermediate code file produced by the front end is correct.
The condition that produced the warning is not severe, but is
considered unsafe. Messages that indicate true errors halt any
writing to intermediate files, which are discarded when the
front end is finished.

The error message Compiler signifies the failure of an
internal consistency check. This message should never appear.
If it does, please report the condition to your local Unisys I
representative.

The following list of compiler front end errors includes the
error number and message, with a brief explanation of the
condition that generates the message.

Code

101

Message

Invalid Line Number

There are too many lines in the source file (limit is
32767).

102 Line Too Long Truncated

There are too many characters in the line (current limit is
142 characters).

103 Identifier Too Long Truncated

An identifier is longer than the maximum length permitted
and has been truncated.

104 Number Too Long Truncated

5016793-003

A numeric constant is too long and has been truncated.
Numeric constants are limited to the same maximum
length as identifiers.

A-4

Code

105

Error Messages

Message

End Of String Not Found

The line ended before the closing quotation mark was
found.

106 Assumed String

The compiler encountered a double quotation mark (") or
a back-quote mark (') and assumed that they enclose a
string. Use single quotation marks instead.

107 Unexpected End Of File

While scanning, the compiler found an unexpected
end-of-file in a number, metacommand, or other illegal
location.

108 Metacommand Expected Command Ignored

The compiler found a dollar sign ($) at the start of a
comment, but not a metacommand identifier.

109 Unknown Metacommand Ignored

The compiler found a metacommand identifier that it did
not recognize or that is invalid.

110 Constant Identifier Unknown or Invalid Assumed Zero

The constant identifier following a metacommand is
unknown (as in $DEBUG: A) or not a constant of the right
type. The compiler has replaced the unknown or
incorrect value with zero.

111 [Unassigned]

112 Invalid Numeric Constant Assumed Zero

The constant following a metacommand was a numeric
constant (for example, $DEBUG: 123456) that has the
wrong format or is out of range. The compiler has
replaced the incorrect value with zero.

113 Invalid Meta Value Assumed Zero

The value following a metacommand is neither a constant
nor an identifier. The compiler has replaced the incorrect
value with zero.

114 Invalid Metacommand

The compiler expected but did not find one of the
following after a metacommand: +, -, or :. The
metacommand has been ignored by the compiler.

115 Wrong Type Value For Metacommand Skipped

The value following the metacommmand was an integer
but should have been a string (or vice versa). The
metacommand has been ignored by the compiler.

Error Messages A-5

Code Message

116 Meta Value Out Of Range Skipped

The integer value given for the $UNESIZE metacommand was below
16 or above 160. Or n is neither 4 nor 8 for $REAL:n nor 2 for
$INTEGER. In any of these cases, the compiler ignores the metacommand.

117 File Identifier Too Long Skipped

The string value given for the filename in a $INCLUDE metacommand
was too long. The metacommand has been ignored. The maximum is
96 characters.

118 Too Many File Levels

There are too many nested levels of files brought in by the
$INCLUDE metacommand. The $INCLUDE metacommand is ignored.

119 Invalid Initialize Metacommand

A $POP metacommand has no corresponding $PUSH metacommand.

120 CONST Identifier Expected

121

The compiler did not find an identifier following an $1NCONST
metacommand. The $1NCONST metacommand is ignored.

Invalid INPUT Number Assumed Zero

The user input invoked by $1NCONST was invalid in some way and
is assumed to be zero.

122 Invalid Metacommand Skipped

The compiler found an $IF metacommand but no subsequent $THEN
or $ELSE. The $IF command has been ignored.

123 Unexpected Metacommand Skipped

The compiler found a $THEN metacommand unrelated to any $IF
metacommand. The $THEN command is ignored.

124 Unexpected Metacommand

The compiler found a metacommand not enclosed in comment
delimiters, but processed it anyway.

125 Assumed Hexadecimal

The compiler assumes heading number without 16 warning.

126 Invalid Real Constant

5016793

The compiler found a type REAL constant with a leading or a trailing
decimal point. The constant' s value is accepted anyway.

A-6 Error Messages

Code Message

127 Invalid Character Skipped

The compiler found a character in the source file that is not
acceptable in program text.

128 Forward Proc Missing: <procedure>

The compiler found a procedure or function declared FORWARD but
could not find the procedure or function itself. This message appears
in the symbol table area of the listing file.

129 Label Not Encountered: <label>

The compiler could not find any use of a label you declared in a
LABEL section. This message occurs in the symbol table area of the
listing file.

130 Program Parameter Bad: <parameter>

The compiler encountered this program parameter, which was never
declared or has an unacceptable type. This message occurs in the
symbol table area of the listing file.

131 [Unassigned]

132 [Unassigned]

133 Type Size Overflow

The data type declared implies a structure bigger than the maximum
of 65534 bytes.

134 Constant Memory Overflow

Constant memory allocation has exceeded the maximum of 65534 bytes.

135 Static Memory Overflow

Static memory allocation has exceeded the maximum of 65534 bytes.

136 Stack Memory Overflow

Stack frame memory allocation has exceeded the maximum of 65534
bytes.

137 Integer Constant Overflow

The value of a type INTEGER, signed constant expression is out of range.

138 Word Constant Overflow

The value of a type WORD or other unsigned constant expression is
out of range.

Error Messages A-7

Code Message

139 Value Not In Range For Record

In a structured constant, long form of the NEW, DISPOSE, or SIZEOF
procedure, or other application, the record tag value is not in the
range of the variant.

140 Too Many Compiler Labels

The compiler needs internal labels, and the program is too big. You
must break your program into smaller pieces.

141 Compiler

142 Too Many Identifier Levels

The identifier scope level exceeds 15. This is a panic error.

143 Compiler

144 Compiler

This error can occur if the PASKEY file format is incorrect.

145 Identifier Already Declared

The compiler found an identifier declared more than once in a given
scope level.

146 Unexpected End Of File

While parsing, the compiler found an end-of-file where it should not
be in a statement, declaration, and so on.

147 : Assumed -

The compiler found a colon where there should have been an equal
sign and proceeded as if the correct symbol were present.

148 = Assumed :

The compiler found an equal sign where it expected a colon and
proceeded as if the correct symbol were present.

149 := Assumed =

The compiler found a colon followed by an equal sign where it
expected an equal sign only and proceeded as if the correct symbol
were present.

150 = Assumed :=

The compiler found an equal sign where it expected a colon followed
by an equal sign and proceeded as if the correct symbol were present.

A-8 Error Messages

Code Message

151 [Assumed (

The compiler found a left bracket where it expected a left
parenthesis and proceeded as if the correct symbol were present.

152 (Assumed [

The compiler found a left parenthesis where it expected a left
bracket and proceeded as if the correct symbol were present.

153) Assumed)

The compiler found a right parenthesis where it expected a right
bracket and proceeded as if the correct symbol were present.

154) Assumed)

The compiler found a right bracket where it expected a right
parenthesis and proceeded as if the correct symbol were present.

155 ; Assumed •

156

157 .. 161

162

The compiler found a semicolon where it expected a comma and
proceeded as if the correct symbol were present.

, Assumed;

The compiler found a comma where it expected a semicolon and
proceeded as if the correct symbol were present.

[Unassigned]

Insert Symbol

The compiler did not find a symbol it expected, but proceeded as if it
were present. This message should not occur; it is a minor compiler
error. If it does, please report it to Burroughs Corporation.

163 Insert ,

The compiler did not find a comma where it expected one, but
proceeded as if it were present.

164 Insert ;

The compiler did not find a semicolon where it expected one, but
proceeded as if it were present.

165 Insert -

The compiler did not find an equal sign where it expected one, but
proceeded as if it were present.

Error Messages A-9

Code Message

166 Insert : =

The compiler did not find a colon followed by an equal sign where it
expected one, but proceeded as if it were present.

167 Insert OF

The compiler did not find an OF where it expected one, but
proceeded as if it were present.

168 Insert]

The compiler did not find a right bracket where it expected one, but
proceeded as if it were present.

169 Insert)

The compiler did not find a right parenthesis where it expected one,
but proceeded as if it were present.

170 Insert [

The compiler did not find a left bracket where it expected one, but
proceeded as if it were present.

171 Insert (

The compiler did not find a left parenthesis where it expected one,
but proceeded as if it were present.

172 Insert DO

The compiler did not find a DO where it expected one, but proceeded
as if it were present.

173 Insert :

The compiler did not find a colon where it expected one, but
proceeded as if it were present.

174 Insert .

The compiler did not find a period where it expected one, but
proceeded as if it were present.

175 Insert ..

The compiler did not find a double period where it expected one, but
proceeded as if it were present.

176 Insert END

The compiler did not find an END where it expected one, but
proceeded as if it were present.

A-10 Error Messages

Code Message

177 Insert TO

The compiler did not find a TO where it expected one, but proceeded
as if it were present.

178 Insert THEN

The compiler did not find a THEN where it expected one, but
proceeded as if it were present.

179 Insert •

180 .. 184

185

186

The compiler did not find an asterisk where it expected one, but
proceeded as if it were present.

[Unassigned]

Invalid Symbol Begin Skip

The compiler found a symbol it expected, but only after some other
invalid symbols. The invalid symbols were skipped, beginning at the
point where message 185 appears and ending where message 186
appears.

End Skip

The compiler found a symbol it expected, but only after some other
invalid symbols. The invalid symbols were skipped, beginning at the
point where message 185 appears and ending where message 186
appears.

187 End Skip

This message marks the end of skipped source text for any message,
except message 185, that ended with the phrase Begin Skip.

188 Section Or Expression Too Long

The compiler has reached its limit. Try rearranging the program or
breaking up an expression with assignments to intermediate values.

189 Invalid Set Operator Or Function

Your source file includes an incorrect use of a set operator or
function (for example, MOD operator or ODD function with sets).

190 Invalid Real Operator Or Function

Your source file includes an incorrect use of an operator or function
on a REAL value (for example, MOD operator or ODD function with reals).

Error Messages A-11

Code Message

191 Invalid Value Type For Operator Or Function

For example, MOD operator or ODD function with enumerated type.

192 .. 193 [Unassigned]

194 Type Too Long

Use of variable or type with greater than 32766 bytes.

195 Compiler

196 Zero Size Value

Your source file includes the empty record HRECORD END" as if it
had a size.

197 Compiler

198 Constant Expression Value Out Of Range

The value of a constant expression is out of range in an array index,
subrange assignment, or other subrange.

199 Integer Type Not Compatible With Word Type

An expression tries to mix INTEGER and WORD type values. This
common error indicates confusing signed and unsigned arithmetic;
either change the positive signed value to unsigned with WRD (I or
change the unsigned value (< MAXINT) to signed with ORD ().

200 [Unassigned]

201 Types Not Assignment Compatible

You have attempted to use incompatible types in an assignment
statement or value parameter. Refer to Type Compatibility, in section
6. for type compatibility rules.

202 Types Not Compatible In Expression

You have attempted to mix incompatible types in an expression. Refer
to Type Compatibility. in section 6, for type compatibility rules.

203 Not Array Begin Skip

A variable followed by a left bracket lor parenthesis) is not array.
The compiler has skipped from here to where message 187 appears.

204 Invalid Ordinal Expression Assumed Integer Zero

5016793

The expression has the wrong type or a type that is not ordinal. The
compiler assumes the value of the expression to be zero.

A-12 Error Messages

Code Message

205 Invalid Use Of PACKED Components

A component of a PACKED structure has no address (it can not be
on a byte boundary) and cannot be passed by reference.

206 Not Record Field Ignored

A variable followed by a period is not a record, an address, or file,
and has been ignored by the compiler.

207 Invalid Field

A valid field name does not follow a record variable and a period,
and has been ignored by the compiler.

208 File Dereference Considered Harmful

When the compiler calculates the address of a file buffer variable, it
cannot do the special actions normally done with buffer variables
(that is, lazy evaluation, for textfiles). Since the buffer variable at
this address may not be valid, such a practice is considered harmful.

209 Cannot Dereference Value

The variable followed by an arrow is not a pointer, address, or file;
therefore the compiler cannot dereference the value pointed to.

210 Invalid Segment Address

A variable resides at segmented address, but a default segment
address is needed. You may need to make a local copy of the variable.

211 Ordinal Expression Invalid Or Not Constant

212 .. 213

214

The compiler found an invalid or nonconstant expression where it
expected a constant ordinal expression.

[Unassigned)

Out Of Range For Set 255 Assumed

The compiler found an element of a set constant whose ordinal value
exceeded 255 and assumed a value of 255.

215 Type Too Long Or Contains File Begin Skip

The compiler found a structured constant that exceeded 255 bytes or
contains a FILE or LSTRING type.

216 Extra Array Components Ignored

The compiler found an array constant that had too many components
for the array type. The excess components were ignored.

Error Messages A-13

Code Message

217 Extra Record Components Ignored

The compiler found a record constant that had too many components
for the record type. The excess components were ignored.

218 Constant Value Expected Zero Assumed

The compiler found a nonconstant value in a structured constant and
assumed its value was zero.

219 [Unassigned]

220 Compiler

221 Components Expected For Type

The compiler found too few components for the type of a structured
constant.

222 Overflow 255 Components In String Constant

The compiler found a string constant that exceeded 255 bytes.

223 Use NULL

Use the predeclared constant NULL instead of two quotation marks.

224 Cannot Assign With Supertype Lstring

A super array LSTRING cannot be the source or the target of an
assignment.

225 String Expression Not Constant

String concatenation with the asterisk applies only to constants.

226 String ~xpected Character 255 Assumed

The compiler found a string constant with no characters, perhaps the
result of using NULL, and assumed the value CHR(255).

227 Invalid Address Of Function

An assignment or other address reference to the function value is not
within the scope of the function; or RESULT is used outside the
scope of the function.

228 Cannot Assign To Variable

Assignment to READONLY. CONST, or FOR control variable is not
permitted.

229 [Unassigned]

5016793

A-14 Error Messages

Code Message

230 Unknown Identifier Assumed Integer Begin Skip

The compiler found an unknown identifier, for which it requires an
address, and has skipped to a comma, semicolon, or right parenthesis.

231 VAR Parameter Or WITH Record Assumed Integer Begin Skip

The compiler found an invalid symbol where it requires an address,
and has skipped to a comma, semicolon, or right parenthesis.

232 Cannot Assign To Type

The target of an assignment is a file or cannot be assigned for some
other reason.

233 Invalid Procedure Or Function Parameter Begin Skip

The compiler found an incorrect use of an intrinsic procedure or
function. The error could be one of the following:

o The first parameter of NEW or DISPOSE is not a pointer variable.

o The record tag value of a NEW, DISPOSE, or SIZEOF procedure
could not be found.

o The super array in a NEW, DISPOSE, or SIZEOF procedure had too
many bounds.

o The super array in a NEW, DISPOSE, or SIZE OF procedure had too
few bounds.

o The super array for a NEW or SIZEOF procedure has been given
no bounds.

o You attempted to use a WRD or ORD function on a value not of
an ordinal type.

o You attempted to use the LOWER or UPPER functions on an
invalid value or type.

o PACK or UNPACK on super array or file, or an array that is or is
not packed as expected.

o The first parameter for a RETYPE is not a type identifier.

o The parameter for a RESULT function is not a function identifier.

o You attempted to use an intrinsic procedure or function that was
not available.

o The ORD or WRD of an INTEGER4 value is out of range.

o The parameter given for HIWORD or LOWORD is not an ordinal or
INTEGER4.

Error Messages A-15

Code Message

234 Type Invalid Assumed Integer

The parameter given to READ, WRITE. ENCODE, or DECODE is not of
type INTEGER, WORD. INTEGER4, REAL, BOOLEAN, enumerated, a
pointer; or the parameter given for a READ or WRITE is not of type
CHAR, STRING, LSTRING. Also, the parameter for a READFN is not
of one of these types or type FILE. The compiler has assumed it to
be of type INTEGER. This error also occurs if a program parameter
does not have a readable type, in which case the error occurs at the
keyword BEGIN for the main program.

235 Assumed File INPUT

Because the first parameter for a READFN is not a file, INPUT is assumed.

236 Invalid Segment For File

File parameters must always reside in the default seg"!ent.

237 Assumed INPUT

INPUT was not given as a program parameter and has been assumed.

238 Assumed OUTPUT

OUTPUT was not given as a program parameter and has been assumed.

Invalid Segment Variable

Variable resides at segmented address, but a default segment address
is needed. It may need to make local copy of variable.

239 Not Lstring Or Invalid Segment

The target of a READSET, ENCODE, or DECODE must be an
LSTRING in the default segment. One or both of these conditions is
missing.

240 [Unassigned]

242 File Parameter Expected Begin Skip

The READSET procedure expects, but cannot find, a textfile
parameter. The compiler has ignored the procedure and resumed
where message 187 appears.

243 Character Set Expected

The READSET procedure expects, but cannot find, a SET OF CHAR
parameter.

244 Unexpected Parameter Begin Skip

5016793

The compiler found more than one parameter given for an EOF,
EOLN, or PAGE, and has ignored the extra.

A-16 Error Messages

Code Nlessage

2 45 Not Text File

You attempted to use an EOLN, PAGE, READLN, or WRITELN on
some file other than a textfile.

246 [Unassigned]

247 Invalid Function

Use of the intrinsic function WRD.

248 Size Not Identical

The RETYPE function may not work as intended, since the
parameters given are of unequal length.

249 Procedural Type Parameter List Not Compatible

The parameter lists for formal and actual procedural parameters are
not compatible. That is, the number of parameters, the function
result type, a parameter type, or attributes are different.

250 Cannot Use Procedure With Attribute

251

You attempted to call a procedure with an invalid attribute.

Unexpected Parameter Begin Skip

The compiler found a left parenthesis, indicating a procedure or
function, but no parameters, and has skipped to where message 187
appears.

252 Cannot Use Procedure Or Function As Parameter

You attempted to pass this intrinsic procedure or function as a
parameter, which is not permitted.

253 Parameter Not Procedure Or Function Begin Skip

The compiler expected, but cannot find, a procedural parameter here,
and has skipped to where message 187 appears.

254 Supertype Array Parameter Not Compatible

The actual parameter given is not of the same type or is not derived
from the same super type as the formal parameter.

255 Compiler

256 VAR Or CONST Parameter Types Not Identical

The actual and formal reference parameter types are not identical, as
they must be.

Error Messages A-17

Code Message

25 7 Parameter List Size Wrong Begin Skip

The compiler found too many or too few parameters in a list. If too
many, the excess has been skipped.

258 Invalid Procedural Parameter To EXTERN

A procedure or function that is neither PUBLIC nor EXTERN is being
passed as a parameter to a procedure or function declared EXTERN.
(The compiler invokes the actual procedure or function with
intrasegment calls, and so cannot pass them to an external code
segment.)

259 Invalid Set Constant For Type

The set is not constant, base types are not identical, or the constant
is too big.

260 Unknown Identifier In Expression Assumed Zero

The identifier in an expression is undefined or possibly misspelled.

261 Identifier Wrong In Expression Assumed Zero

262

262 .. 264

265

The identifier in an expression is incorrect (for example, file type
identifier) and has been assumed to be zero.

Assumed Parameter Index Or Field Begin Skip

After error 260 or 261, anything in parentheses or square brackets,
or a dot followed by an identifier is skipped.

[Unassigned]

Invalid Numeric Constant Assumed Zero

There is· a decode error in an assumed INTEGER or INTEGER4 literal
constant; the number is too big, has invalid characters, and so on.
The incorrect constant has been assumed to be zero.

266 [Unassigned]

267 Invalid Real Numeric Constant

There is a decode error in an assumed type REAL literal constant;
the number is too big, has invalid characters, and so on.

268 Cannot Begin Expression. Skipped

A symbol that cannot start an expression has been deleted.

269 Cannot Begin Expression Assumed Zero

A symbol that cannot start an expression has been prefixed with a zero.

5016793

A-18

Code

270

271

272

273 .. 274

275

276

Error Messages

Message

Constant Overflow

The divisor in a DIV or MOD function is the constant zero (INTEGER
or WORD), which is not permitted.

[Unassigned]

Word Constant Overflow

A WORD constant minus a WORD constant has given a negative result.

[Unassigned]

Invalid Range

The lower bound of a subrange is greater than the upper bound (for
example, 2 .. 1).

CASE Constant Expected

The compiler expects, but cannot find, a constant value for a CASE
statement or record variant.

278 Invalid Symbol

Use of .. in CASE or record variant.

277 Value Already In Use

In a CASE statement or record variant, the value has already been
assigned (as in CASE 1 .. 3: XXX; 2: YYY; END).

279 Label Expected

The compiler expects, but cannot find, a label.

280 Invalid Integer Label

A label uses nondecimal notation (for example, 8# 77), which is not
allowed.

281 Label Assumed Declared

The compiler found a label that did not appear in the LABEL section.

282 [Unassigned]

283 Expression Not Boolean Type

The expression following an IF, WHILE, or UNTIL statement must be
BOOLEAN.

284 Skip To End Of Statement

The compiler found, and has skipped, an unexpected ELSE or UNTIL
clause.

Error Messages A-19

Code

285

286

Message

Compiler

; Ignored

The compiler found and has ignored a semicolon before
an ELSE statement. (The semicolon is not required in this
case.)

287 [Unassigned]

288 : Skipped

The compiler found, and has ignored, a colon after an
OTHERWISE statement. (The colon is not required in this
case.)

289 Variable Expected For FOR Statement Begin Skip

The compiler expects, but cannot find, a variable identifier
after a FOR statement and has skipped to where
message 187 appears.

290 [Unassigned]

291 Incorrect Control Variable in FOR Statement

The compiler has found an incorrect control variable in a
FOR statement. Specifically, the control variable is but
should not be one of the following:

o type REAL, INTEGER4, or another non-ordinal type.

o the component of an array, record, or file type.

o the referent of a pointer type or address type.

o in the stack or heap unless locally declared.

I

o nonlocally declared unless in static (non-segmented) I
memory.

o a variable with a segmented STATIC attribute (FAR). I
o a reference parameter (VAR or VARS parameter).
o a variable with a segmented ORIGIN attribute.

292 Skip To:=

The compiler expects, but cannot find, an assignment in
a FOR statement, and has skipped to the next : =.

293 GOTO Invalid

The GOTO or label here involves an invalid GOTO
statement.

294 GOTO Considered Harmful

5016793-003

As directed, if the $GOTO metacommand is on, the
compiler has found a GOTO statement.

A-20

Code

295

296

297

298

299

300

Error Messages

Message

[Unassigned]

Label Not Loop Label

The label after a BREAK or CYCLE statement is not a
loop label (that is, does not label a FOR, WHILE, or
REPEAT statement).

Not In Loop
'

The compiler has found a BREAK or CYCLE statement
outside a FOR, WHILE, or REPEAT statement.

Record Expected Begin Skip

The compiler expects but cannot find a record variable in
a WITH statement and has skipped to where message
187 appears.

[Unassigned]

Label Already In Use Previous Use Ignored
The compiler found a label that has already appeared in
front of a statement and has ignored the previous use.

301 Invalid Use Of Procedure Or Function Parameter

The compiler has found a procedure parameter used as
a function or a function parameter used as a procedure.

302 [Unassigned]

303 Unknown Identifier Skip Statement

The compiler has found an undefined (or possibly
misspelled) identifier at the beginning of a statement and
has ignored the entire statement.

304 Invalid Identifier Skip Statement

The compiler has found an incorrect identifier at the
beginning of a statement (for example, file type identifier)
and has ignored the entire statement.

305 Statement Not Expected

The compiler has found a MODULE or uninitialized
IMPLEMENTATION with a body enclosed with the
reserved words BEGIN and END.

306 Function Assignment Not Found

The compiler expects but cannot find an assignment of
the value of a function somewhere in its body.

Error Messages A-21

Code Message

307 Unexpected END Skipped

The compiler found and ignored an END without a matching BEGIN,
CASE, or RECORD.

308 Compiler

309 Attribute Invalid

The compiler found an attribute valid only for procedures and
functions given to a variable, an attribute valid only for a variable
given to a procedure or function, or an invalid mix of attributes (for
example, PUBLIC and EXTERN).

310 Attribute Expected

The compiler expects but cannot find a valid attribute, following the
left bracket.

311 Skip To Identifier

The compiler skipped an invalid (that is, unexpected) symbol to get
to the identifier that follows.

312 Identifier Expected

The compiler found something that was not an identifier where it
expected a list of identifiers.

313 [Unassigned)

314 Identifier Expected Skip To ;

The compiler expects but cannot find the declaration of a new
identifier and has skipped to the next semicolon.

315 Type Uriknown Or Invalid Assumed Integer Begin Skip

The return type for a parameter or function is incorrect; that is, it is
not an identifier or is undeclared, or the value parameter or function
value is a file or super array. The compiler has assumed the type is
INTEGER and skipped to where message 187 appears.

316 Identifier Expected

The compiler expects but cannot find an identifier after the word
PROCEDURE or FUNCTION in parameter list.

317 [Unassigned]

318 Compiler

319 Compiler

5016793

A-22 Error Messages

Code Message

320 Previous Forward Skip Parameter List

The compiler found a definition of a FORWARD (or INTERFACE)
procedure or function that unnecessarily repeats the parameter list
and function return type.

321 Not EXTERN

The compiler found a procedure or function with the ORIGIN attribute
but lacking the EXTERN attribute as well.

322 Invalid Attribute With Function Or Parameter

The compiler found an invalid attribute.

323 Invalid Attribute In Procedure Or Function

The compiler has found a nested procedure or function that has
attributes or is declared EXTERN. Neither of these conditions is permitted.

324 Compiler

325 Already Forward

You attempted to use FORWARD twice for the same procedure or
function.

326 Identifier Expected For Procedure Or Function

The compiler expects but cannot find an identifier following the
keywords PROCEDURE or FUNCTION.

327 Invalid Symbol Skipped

The compiler found and ignored a FORWARD or EXTERN directive in
an interface.

328 EXTERN Invalid With Attribute

The compiler found an EXTERN procedure also declared PUBLIC. This
is not permitted.

329 Ordinal Type Identifier Expected Integer Assumed Begin Skip

The compiler expects but cannot find an ordinal type identifier for a
record tag type. It has skipped what is given in the source file and
assumed type INTEGER.

330 Contains File Cannot Initialize

You have used a file in a record variant. This is allowed, but
considered unsafe, and is not initialized automatically with the usual
NEWFQQ call.

Error Messages A-23

Code Message

331 Type Identifier Expected Assumed Character

The compiler expects but cannot find an ordinal type identifier. It
assumes that what it does find is of type CHAR.

332 Invalid Type

Declaring the WORD type.

333 Not Supertype Assumed String

The compiler has found what looks like a super array type
designator. However, the type identifier is not for a super array type,
so the compiler assumes it to be of the super array type STRING.

334 Type Expected Integer Assumed

The compiler expects but cannot find a type clause or type identifier
and has assumed the expected type to be type INTEG~R.

335 Out Of Range 255 For Lstring

The compiler has found an LSTRING designator whose upper bound
exceeds 255.

336 Cannot Use Supertype Use Designator

A super array type can be used only as a reference parameter or a
pointer referent. Other variables cannot be given a super array type.
Use a super array designator.

337 Supertype Designator Not Found

The compiler expects but cannot find a super array designator that
gives the upper bounds of the super array.

338 Contains File Cannot Initialize

The compiler has found a super array of a file type. While allowed,
this is considered unsafe and is not initialized automatically with the
usual NEWFOO call.

339 Supertype Not Array Skip To; Assumed Integer

The compiler expects but cannot find the keyword ARRAY following
SUPER in a type clause. It has assumed that the type is INTEGER
and skipped to the next semicolon.

340 Invalid Set Range Integer Zero To 255 Assumed

5016793

The compiler has found an invalid range for the base type of a set
and assumed it to be of type INTEGER with a range from zero to 255.

A-24 Error Messages

Code Message

341 File Contains File

The compiler has found but does not permit a file type that contains
a file type, either directly or indirectly.

342 PACKED Identifier Invalid Ignored

The compiler expects but cannot find one of words ARRAY, RECORD,
SET, or FILE following the reserved word PACKED. Any type
identifier following PACKED is not permitted.

343 Unexpected PACKED

The compiler found the keyword PACKED applied to one of the
nonstructured types.

344 [Unassigned]

345 Skip To;

The compiler expects but cannot find a semicolon at the end of a
declaration (which is not at the end of the line). It has assumed the
next semicolon is the end of the declaration.

346 Insert ;

The compiler expects but cannot find a semicolon at end of the
declaration (which coincides with the end of a line). It has inserted a
semicolon where it expected to find one.

347 Cannot Use Value Section With ROM Memory

If the $ROM metacommand is on, you may not have a VALUE section.

348 UNIT Procedure Or Function Invalid EXTERN

A required EXTERN declaration occurs later than it should in an
IMPLEMENTATION. (Any interface procedures and functions not
implemented must be declared EXTERN at the beginning.)

349 [Unassigned]

350 Not Array Begin Skip

The variable followed by a left bracket in a VALUE section is not an array.

351 Not Record Begin Skip

The variable followed by a period in a VALUE section is not a record type.

352 Invalid Field

Within a VALUE section, the identifier assumed to be a field is not in
the record.

Error Messages A-25

Code Message

353 Constant Value Expected

Within a VALUE section, a variable has been initialized to something
other than a constant.

354 Not Assignment Operator Skip To ;

Within a VALUE section, the assignment operator is missing.

355 Cannot Initialize Identifier Skip To ;

Within a VALUE section, there is a symbol that is not a variable
declared at this level in fixed (STATIC) memory. Or, it has an illegal
ORIGIN or EXTERN attribute.

356 Cannot Use Value Section

A VALUE section has been incorrectly included in the INTERFACE,
rather than in the IMPLEMENTATION.

357 Unknown Forward Pointer Type Assumed Integer

The identifier for the referent of a reference type declared earlier in
this TYPE (or VAR) section was never declared itself.

358 Pointer Type Assumed Forward

The TYPE section includes a pointer or address type for which the
referent type was already declared in an enclosing scope. Since the
identifier for the referent type was declared again later in the same
TYPE section, the compiler used the second definition. In the
following example the forward type, REAL, is used:

PROGRAM OUTS I DE;
TYPE A· WORD;
PROCEDURE B;
TYPE C- 'A;
A-REAL;

359 Cannot Use Label Section

The compiler found a LABEL section incorrectly included in an
INTERFACE, rather than in an IMPLEMENTATION.9

360 Forward Pointer To Supertype

361

5016793

The referent of a reference type declared in this TYPE section is a
super array type. The declaration the super array type does not occur
until after the reference.

Constant Expression Expected Zero Assumed

An expression in a CONST section is not constant.

A-26 Error Messages

Code Nlessage

362 Attribute Invalid

A VAR section mixes incorrectly the PUBLIC or ORIGIN attribute with
EXTERN. Or, ORIGIN appears in attribute brackets after the keyword VAR.

363 [Unassigned]

364 Contains File Initialize Module

The comp~er found an uninitialized file variable in a module. You
must call the module as a parameterless procedure to initialize the files.

365 Origin Variable Contains File Cannot Initialize

The compiler found an uninitialized file variable with the ORIGIN
attribute. Since ORIGIN variables are never initialized, you must
initialize this file yourself.

366 UNIT Identifier Expected Skip To ;

The compiler expects but cannot find an identifier after the keyword
USES.

367 Initialize Module To Initialize UNIT

You must call the module as a procedure to initialize it. (A USES
clause triggers a unit initialization call.)

368 Identifier List Too Long Extra Assumed Integer

In a USES clause with a list of identifiers, the compiler found more
identifiers in the list than are constituents of the interface. The extra
ones are assumed to be type identifiers identical to INTEGER.

369 End Of UNIT Identifier List Ignored

In a USES clause with a list of identifiers, the compiler found fewer
identifiers in the list than are constituents of the interface. The
remaining interface constituents are not provided as part of the USES
clause.

370 [Unassigned]

371 UNIT Identifier Expected

An identifier is missing after the phrase INTERFACE; UNIT.

372 Compiler

The compiler expects, but cannot find, the keyword UNIT in an
INTERFACE.

Error Messages A-27

Code

373

Message

Identifier in UNIT List Not Declared
One of the identifiers in the interface UNIT list was not
declared in the body of the interface.

374 Program Identifier Expected

An identifier is missing after the keyword PROGRAM or
MODULE. This is a panic error.

375 UNIT Identifier Expected

The unit identifier is missing after the phrase
IMPLEMENTATION OF. This is a panic error.

376 Program Not Found

The compiler expects but cannot find one of the
reserved words PROGRAM, MODULE, or
IMPLEMENTATION OF. This is a panic error. (This error
can occur if the source file is not a cornpiland.)

377 File End Expected Skip To End

The compiler found additional source text after what
appeared to be the end and ignored everything after
what it thought was the end.

378 Program Not Found

The compiler expects but cannot find the main body of
a compiland or the final END.

Compiler Back End Errors

The main source of back end errors is user error from either
the optimizer or the code generator. There are very few of
these errors. All are concerned with limitations that cannot
be detected by the front end.

Back end errors cause an immediate abort, and an error
number and approximate listing line number appear on your
screen.

5016793-003

A-28 Error Messages

The back end errors are as follows:

Code

2

3

4

5

Message

Attempt to divide by zero.
For example, A DIV 0.

Overflow during integer constant folding.
For example, MAXINT + A + MAXINT.

Expression too complex/Too many internal labels.
Try breaking up expression with intermediate value
assigns.

Too many procedures and/or functions.
Try breaking up compiland into modules or units.

Range error (number too large to fit into target).

Compiler Internal Errors

All errors labeled Compiler in the subsection Compiler Front
End Errors are compiler internal errors that should never
occur. In the event that one does occur, please report it to

I your local Unisys representative immediately.

The back end of the compiler also makes a large number of
internal consistency checks. These checks should always be
correct and never give an internal error.

When they do occur, back end internal error messages have
the following format:

*** Internal Error NNN

NNN is the internal error number, which ranges from 1 to
999. There is little you can do when an internal error occurs,
except report it and perhaps modify your program near the
line where the error occurred.

Run Time Errors

Errors detected at run time are either file system errors or
other program exceptions. File system error codes range from
1000 to 1199, in two divisions. Other run time error codes
range from 2000 to 2999, with several divisions.

Error Messages

File System Errors (1000-1099)
File system error codes range from 1000 to 1099. Error
codes go into the ERRC field of the file control block. File
system errors are reported in the following format:

? Error: <error type> error in file <filename>

A-29

Error Code <error code>, System status <Status code>
PC = <program counter>, FP = <frame pointer>, SP =

<Stack pointer>

If <error code> is in the range 1000 - 1099, then the error
was detected by BTOS and <status code> is a BTOS status
code. Refer to the BTOS Reference Manual.

File system errors all have the format:

<error type> error in file <filename>

followed by the error code. The <error type> field is based
on the ERRS field of the file control block, as follows:

Code Message

0 No error

Hard Data

2

3

4

5

6

7

8

5016793

Hard data error (parity, CRC, check sum, and so on).

Device Name

Invalid unit/device/volume name format or number.

Operation

Invalid operation: GET if EDF, RESET a printer, and so on.

File System

File system internal error, ERRS > 15, and so on.

Device Offline

Unit/device/volume no longer available.

Lost File

File itself no longer available.

File Name

Invalid syntax, name too long, no temporary names, and so on.

Device Full

Disk or directory full.

A-30 Error Messages

Code Message

9 Unknown Device

Unit/device/volume not found.

10 File Not Found

File itself not found.

11 Protected File

Duplicate filename; write-protected.

12 File In Use

File in use, concurrency lock, already open.

13 File Not Open

File closed, 1/0 to unopen FCB.

14 Data Format

Data format error, decode error, range error.

15 Line Too long

Buffer overflow, line too long.

File System Errors (1100-1199)
If the <error code> is in the range 1100-1999, then the
error was detected by the Pascal file system. These errors
are explained below.

Code Message

1100 ASSIGN or READFN of filename to open file

This error is caught only for textfiles

11 01 Reference to buffer variable of closed textfile

1102 Textfile READ or WRITE call to closed file

1103 READ when EDF is true (SEQUENTIAL mode)

1104 READ to REWRITE file, or WRITE to RESET file (SEQUENTIAL mode)

11 05 EDF call to closed file

11 06 GET call to closed file

1107 GET call when EOF is true (SEQUENTIAL mode)

Error Messages A-31

Code Message

1108 GET call to REWRITE file (SEQUENTIAL mode)

1109 PUT call to closed file

1110 PUT call to RESET file (SEQUENTIAL mode)

1111 Line too long in DIRECT textfile

1112 Decode error in textfile READ BOOLEAN

1113 Value out of range in textfile READ CHAR

1114 Decode error in textfile READ INTEGER

1115 Decode error in textfile READ SINT (integer subrange)

1116 Decode error in textfile READ REAL

1117 LSTRING target not big enough in READSET

1118 Decode error in textfile READ WORD

1119 Decode error in teA1file READ BYTE (word subrange)

1120 SEEK call to closed file

1121 SEEK call to file not in DIRECT mode

1122 Encode error (field width > 255) in textfile
WRITE BOOLEAN

1123 Encode error (field width > 255) in textfile
WRITE INTEGER

1124 Encode error (field width > 255) in textfile
WRITE REAL

1125 Encode error (field width > 255) in textfile
WRITE WORD

1126 Decode error (field width > 255) in textfile
READ INTEGER4

1127 Encode error (field width > 255) in textfile
WRITE INTEGER4

5016793

A-32 Error Messages

Other Run Time Errors
Nonfile system error codes range from 2000 to 2999. In
some cases, metacommands control whether or not the
compiler checks for the error. In other cases, the compiler
always checks. The list below indicates which, if any,
metacommand controls the error checking.

Memory Errors (2000-2049)
Since the stack and the heap grow toward each other, all
memory errors are related. For example, a stack overflow
can cause a Heap Is Invalid error if $ST ACKCK is off and the
stack overflows.

Code Message

2000 Stack Overflow

The stack (frame) ran out of memory while calling a procedure or
function. This condition is checked if the $ST ACKCK metacommand
is on, and can be checked in some other cases.

2001 No Room In Heap

The heap ran out of room for a new variable during the NEW
(GETHOO) procedure. This error is always caught.

2002 Heap Is Invalid

During the NEW (GETHOO) procedure, the allocation algorithm
discovered the heap structure is wrong. This error is always caught.

2003 Heap Allocator Interrupted

An interrupt procedure interrupted NEW (GETHOO) and did a NEW
call itself. The heap allocator modifies the heap, so it is a critical
section. This error is not caught in all versions.

2004 Allocation Internal Error

There was an unexpected error return when GETHOO was requesting
additional heap space from the operating system. Please report
occurrences of this error to Burroughs Corporation.

2031 NIL Pointer Reference

DISPOSE or $NILCK+ found a pointer with a NIL (i.e., 0) value.

2032 Uninitialized Pointer

DISPOSE or $NILCK+ found an uninitialized (value 1) pointer. This
occurs only if the metacommand $1NITCK is on.

Error Messages A-33

Code Message

2033 Invalid Pointer Range

DISPOSE or $NILCK + found a pointer that does not point into the
heap or is otherwise invalid. (It may have pointed to a disposed block
that was removed from the heap and given back to the system.)

2034 Pointer To Disposed Var

DISPOSE or $NILCK + found a pointer to a heap block that has been
disposed. Calling DISPOSE twice for the same variable is invalid.

2035 Long DISPOSE Sizes Unequal

In a long form of DISPOSE, the actual length of the variable did not
equal the length based on the tag values given.

Ordinal Arithmetic Errors (2050-2099)

Code Message

2050 No CASE Value Matches Selector

In a CASE statement without an OTHERWISE clause, none of the
branch statements had a CASE constant value equal to the selector
expression value. This error is checked only if the $RANGECK
metacommand is on.

2051 Unsigned Divide By Zero

A WORD value was divided by zero. This error is checked only if the
$MATHCK metacommand is on.

2052 Signed Divide By Zero

An INTEGER value was divided by zero. This error is checked only if
the $MATHCK metacommand is on.

2053 Unsigned Math Overflow

A WORD result is outside the range zero to MAXWORD. This error
is checked only if the $MATHCK metacommand is on.

2054 Signed Math Overflow

5016793

An INTEGER result is outside the range from - MAXINT to
+MAXINT. This error is checked only if the $MATHCK
metacommand is on.

A-34 Error Messages

Code Message

2055 Unsigned Value Out Of Range

The source value for assignment or value parameter is out of range
for the target value. The target can be a subrange of WORD
(including BYTE), or CHAR, or an enumerated type. This error can
also occur in SUCC and PRED functions and when the length of an
LSTRING is assigned. All of these conditions are checked if the
$RANGECK metacommand is on.

The error also occurs when an array index is out of bounds and the
array has an unsigned index type. This condition is checked when the
$1NDEXCK metacommand is on.

2056 Signed Value Out Of Range

This error is similar to message 2055, but applies to the INTEGER
type and its subranges.

205 7 Uninitialized 16 Bit Integer Used

Either an INTEGER or 16-bit INTEGER subrange variable is used
without being assigned first, or such a variable has the invalid value
of - 32768. This condition is checked if the $1NITCK metacommand
is on.

2058 Uninitialized 8 Bit Integer Used

Either a SINT or 8-bit INTEGER subrange variable is used without
being assigned first, or such a variable has the invalid value of
- 128. This condition is checked if the $1NITCK metacommand is on.

Type REAL Arithmetic Errors (2100-2149)

Code Message

2100 REAL Divide By Zero

A REAL value is divided by zero. This error is always caught.

2101 REAL Math Overflow

A REAL value is too large for representation. This error is always caught.

2104 SORT of Negative Argument

The parameter for a square root function is less than zero. This error
is always caught.

Error Messages A-35

Code Message

2105 LN of Non-Positive Argument

The parameter of a natural log function is less than or equal to zero.
. This error is always caught.

2106 TRUNC/ROUND Argument Range

The REAL parameter of a TRUNC, TRUNC4, ROUND, or ROUND4
function is outside the range of INTEGERs. This error is always caught.

2131 Tangent Argument Too Small

The parameter for a T ANROO function is so small that the result is
invalid. This error is always caught.

2132 Arcsin or Arccos of REAL > 1.0

The parameter of an ASNROO or ACSROO function is greater than
one. This error is always caught.

2133 Negative Real To Real Power

The first argument of an PRDROO or PRSROO function is less than
zero. This error is always caught.

2134 Real Zero To Negative Power

There was an attempt to raise zero to a negative power in one of
the functions PISROO, PIDROO, PRDROO, or PRSROO.

2135 REAL Math Underflow

The significance of a REAL expression has been reduced to zero.

2136 REAL Indefinite !Uninitialized Or Previous Error)

The REAL value called infinity was encountered. This can occur if the
$1NITCK metacommand is on and an uninitialized REAL value is used,
or if a previous error set a variable to indefinite as part of its
masked error response.

2138 REAL IEEE Denormal Detected

A very small Real number was generated and may no longer be valid
due to loss of significance.

2139 Reserved

2140 REAL Arithmetic Processor Instruction Illegal Or Not Emulated

An attempt was made to execute an illegal arithmetic coprocessor
instruction, or the floating point emulator cannot emulate a legal
coprocessor instruction.

A-36 Error Messages

Structured Type Errors (2150-2199)

Code Message

2150 String Too Long in COPYSTR

The source string for a COPYSTR intrinsic function is too large for
the target string. This error is always caught.

2151 Lstring Too Long In Intrinsic Procedure

The target LSTRING is too small in an INSERT, DELETE, CONCAT, or
COPYLST intrinsic procedure. This error is always caught.

2180 Set Element Greater Than 255

The value in a constructed set exceeds the maximum of 255. This
error is always caught.

2181 Set Element Out Of Range

The value in a set assignment or set value parameter is too large for
the target set. This error is caught only if the $RANGECK
metacommand is on.

INTEGER4 Errors (2200-2249)

Code Message

2200 Long Integer Divide By Zero

An INTEGER4 value is divided by zero. This error is always caught.

2201 Long Integer Math Overflow

An INTEGER4 value is too large for representation. This error is
always caught.

2234 Reserved

Error Messages A-37

Additional Errors (2400-2499)

Code Message

2400 INTEGER4 Zero to Negative Power

2450 Unit Version Number Mismatch

During unit initialization, the user (with USES clause) and
implementation of an interface were found compiled with unequal
interface version numbers. This error is always caught.

5016793

Appendix B B-1

An Overview of the File System
This extended Pascal is designed to be easily interfaced to
the operating system. The standard interface has two parts:

o a file information block (FIB) declaration

o a set of procedures and functions, that are called from
Pascal at run time to perform input and output

This interface supports three access methods: TERMINAL,
SEQUENTIAL, and DIRECT.

Each file has an associated FIB. The FIB record type begins
with a number of standard fields that are independent of the
operating system. Following these standard fields are fields
such as buffers, and other data that are dependent on the
operating system.

The advanced Pascal user can access FIB fields directly, as
explained the subsection Files in section 7, Data Types.

Pascal has two special file control blocks that correspond to
the keyboard and the screen of your terminal. These two file
control blocks are always available. They are the predeclared
files INPUT and OUTPUT (which you can reassign and
generally treat like any other files).

For files, each FIB ends with a pointer to the buffer variable
that contains the current file component.

File information blocks always reside in the default data
segment, so they can be referenced with the offset (ADR)
addresses instead of the segmented (ADS) addresses.

File variables can occur in three locations:

o in static memory

o on the stack as local variables

o or in the heap as heap variables

The generated code initializes file information blocks when
they are allocated and closes them when they are
deallocated. For example, a fixed number of file slots may be
available, or the routines for heap allocation can be used. A
FIB can be created or destroyed, but never moved or copied.

5016793

Appendix C C-1

Run Time Architecture
A successful Pascal compilation produces an object file that
can be linked with other files to produce an executable file.
Object files can come from any of the following:

a Pascal programs, modules or units

a User code in other high level languages

a Assembly language

a Routines in standard run time modules that support
facilities such as error handling, heap variable allocation, or
input/output

Run Time Routines
Pascal run time entry points and variables conform to the
naming convention: all names are six characters, and the last
three are a unit identification letter followed by the letters
QQ. The following show the unit identifier suffixes:

Suffix Unit function

AGO Complex Real
BOO Compile time utilities
COO Encode, decode
000 Double precision Real
EOQ Error handling
FOO Pascal file system
GOO Generated code helpers
HOO Heap allocator
IOQ Generated code helpers
JOO Generated code helpers
KOO FCB definition
LOO STRING, LSTRING
MOO Reserved
NQO Long integer
000 Other miscellaneous routines
POU Reserved
000 Reserved
ROO Real (single precision)
SQQ Set operations
TOO Reserved
UQQ Operating system file system
WOO Reserved
XOQ Initialize/terminate
YOO Special utilities
ZOO Reserved

5016793

C-2 Run Time Architecture

Memory Organization
The memory in your BTOS workstation is divided into
segments, each containing up to 64K bytes. The relocatable
object format and linker also put segments into classes and
groups. All segments with the same class name are loaded
next to each other. All segments with the same group name
must reside in one area up to 64K long; that is, all segments
in a group can be accessed with one segment register.

Pascal defines a single group, DGROUP, which is addressed
using the DS or SS segment register. Normally, DS and SS
contain the same value, although DS can be changed
temporarily to some other segment and changed back again.
SS is never changed; its segment registers always contain
abstract segment values and the contents are never
examined or operated on. Long addresses, such as ADS
variables, use the ES segment register for addressing.

Memory is allocated within DGROUP for all static variables,
constants which reside in memory, the stack, and the heap.
Memory in DGROUP is allocated from the top down; that is,
the highest addressed byte has DGROUP offset 65535, and
the lowest allocated byte has some positive offset. This
allocation means offset zero in DGROUP may address a byte
in the code portion of memory, in the operating system
below the code, or even below absolute memory address
zero. (In the latter case the values in OS and SS are
negative.)

DGROUP has two parts:

a a variable length lower portion containing the heap and the
stack

a a fixed length upper portion containing static variables and
constants

After your program is loaded, during initialization the fixed
upper portion is moved upward as much as possible to make
room for the lower portion. If there is enough memory,
DGROUP is expanded to the full 64K bytes. If there is not
enough for this, it is expanded as much as possible.

Run Time Architecture C-3

1 0000:0000

The beginning of memory on the system contains interrupt
vectors, which are segmented addresses. Usually the first
32 to 64 are reserved for the operating system. Following
these vectors is the resident portion of BTOS.

BTOS provides for loading additional code above it, which
remains resident and is considered part of the operating
system as well. Examples of resident additional code are
those codes for a print spooler, queue manager, and so
on.

2 BASE:OOOO

Here, BASE means the starting location for loaded
programs, sometimes called the transient program area.
When you invoke a Pascal program, loading begins here.
The beginning of your program contains the code portion,
with one or more code segments. These code segments
are in the same order as the object modules given to the
linker, followed by object modules loaded from libraries.

3 DGROUP:LO

Next comes the DGROUP data area, containing the
following:

Segment Class Description

HEAP MEMORY Pointer variables, some files

MEMORY MEMORY (not used)
STACK STACK Frame variables and data
DATA DATA Static variables

CONST CONST Constant data

The stack and the heap grow toward each other, the stack
downward and the heap upward.

4 DGROUP:TOP

Here, TOP means 64K bytes (4K paragraphs) above
DGROUP:OOOO (that is, just past the end of DGROUP).

5016793

C-4 Run Time Architecture

5 HIMEM:OOOO

The segment named HIMEM (class HIMEM) gives the
highest used location in the program. The segment itself
contains no data, but its address is used during
initialization. Available memory starts here and can be
accessed with ADS variables.

Initialization and Termination
Every executable file contains one, and only one, starting
address. As a rule, when Pascal object modules are involved,
this starting address is at the entry point BEGXQQ in the
module PASSMAX. A Pascal program (as opposed to a
module or implementation) has a starting address at the
entry point ENTGQQ. BEGXQQ calls ENTGQQ.

The following discussion assumes that a Pascal main
program and other object modules are loaded and executed.
However, you can also link a main program in assembly or
some other language with other object modules in Pascal. In
this case, some of the initialization and termination may need
to be done by the user program.

When a program is linked with the run time library and
execution begins, several levels of initialization are required.
The levels in order are:

1 machine-oriented initialization

2 run time initialization

3 program and unit initialization.

Appendix D

Summary of Reserved Words
Reserved words at the standard level:

AND
ARRAY
BEGIN
CASE
CONST
DIV
DO
DOWNTO
ELSE
END
FILE
FOR
FUNCTION
GOTO
IF
IN
LABEL
MOD

NIL
NOT
OF
OR
PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT
SET
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

Additional reserved words at the extended level:

BREAK
CONSTS
CYCLE
IMPLEMENTATION
INTERFACE
MODULE

OTHERWISE
RETURN
UNIT
USES
VALUE
VARS
XOR

Additional reserved words at the system level:

ADR
ADS

Names of attributes:

EXTERN
EXTERNAL
ORIGIN
PUBLIC

Names of directives:

EXTERN
EXTERNAL
FORWARD

5016793

PURE
READONLY
STATIC

D-1

D-2 Summary of Reserved Words

Logically, directives are reserved words. Since additional.
directives are allowed in ISO Pascal, all are included at the
standard level. Note that EXTERN is both a directive and an
attribute. EXTERNAL is a synonym for EXTERN in both cases.

Appendix E E-1

Summary of Available Procedures and
Functions
This appendix lists all available functions and procedures and
the name of the group in which they are presented in section
12, Available Procedures and Functions.

Name

ABORT
ABS
ACDRQQ
ACSRQQ
AISRQQ
ALLMQQ
ANDRQO
ANSRQQ
ARCTAN
ASDRQQ
ASSROO
ASSIGN
ATDRQQ
ATSRQO
A2DROO
A2SRQO
BEGOOO
BEGXQO
BYLONG
BYWORD
CHDROO
CHR
CHSRQO
CLOSE
CNDROO
CNSROQ
CONCAT
COPYLST
COPYSTR
cos
DECODE
DELETE
DISCARD
DISMOO
DISPOSE
ENCODE
ENDOQO
ENDXOQ

5016793

Description

Terminate program
Absolute value function
REALS arc cosine function
REAL4 arc cosine function
REAL4 truncate function
Allocates a block on the long heap
REALS round toward zero
REAL4 round toward zero
Arc tangent function
REALS arc sine function
REAL4 arc sine function
Assign filename
REALS arc tangent function
REAL4 arc tangent (A/B)
REALS arc tangent (A/B)
REAL4 arc tangent function
Initialize user
Overall initialization
WORD or INTEGER to INTEGER4
Put bytes in word
REALS hyperbolic cosine
Get ASCII char of value

.REAL4 hyperbolic cosine
Close file
REAL4 cosine function
REAL4 cosine function
Concatenate LSTRING
Copy to LSTRING
Copy to STRING
Cosine function
Decode LSTRING to variable
Remove portion of LSTRING
Close and delete file
FREMOO with error checking
Dispose of heap item
Encode expression to LSTRING
User termination
Program termination

Category

Extended level
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Library
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
File system
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Library
Library
Extended level
Extended level
Arithmetic
Data conversion
Arithmetic
File system
Arithmetic
Arithmetic
String
String
String
Arithmetic
Extended level
String
File system
Library
Dynamic allocation
Extended level
library
Library

E-2

Name

EOF
EOLN
EVAL
EXORQQ
EXP
EXSRQQ
FILLC
FILLSC
FLOAT
FLOAT4
FREMQQ
GET
GETMQQ
HIBYTE
HIWORD
INSERT
LADDOK
LODRQQ
LOSRQQ
LMULOK
LN
LNORQQ
LNSRQQ
LO BYTE
LOWER
LOWORD
MDDRQQ
MDSRQQ
MNDRQQ
MNSRQQ
MOVEL
MOVER
MOVE SL
MOVE SR
MXDRQQ
MXSRQQ
NEW
ODD
ORD
PACK
PAGE
PIORQQ
PISRQQ
POSITN
PREALLOCHEAP

Summary of Available Procedures and Functions

Description

Boolean end-of-file
Boolean end-of-line
Evaluate functions
REALS exponential function
Exponential function
REAL4 exponential function
Fill area with C, relative
Fill area with C, segmented
Convert INTEGER to REAL
Convert INTEGER4 to REAL
Frees a block from the long heap
Get next file component
ALLMQQ with error checking
Get high BYTE
Get high WORD
Insert string
32-bit signed addition check
REALS log base ten function
REAL4 log base ten function
32-bit signed multiply check
Natural log function
REALS natural log
REAL4 natural log
Get low BYTE
Get lower bound
Get low WORD
REALS modulo function
REAL4 modulo function
REALS minimum function
REAL4 minimum function
Move bytes left, relative
Move bytes right, relative
Move bytes left, segmented
Move bytes right, segmented
REALS maximum function
REAL4 maximum function
Allocate new heap item
Boolean odd function
Get ordinal value
Pack CHAR array
Write new page
REALS to INTEGER power
REAL4 to INTEGER power
Find position of substring.
Allocates space to be dedicated to
Pascal short heap

Category

File system
File system
Extended level
Arithmetic
Arithmetic
Arithmetic
System level
System level
Data conversion
Data conversion
Library
File system
Library
Extended level
Extended level
String
Library
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic
Extended level
Extended level
Extended level
Arithmetic
Arithmetic
Arithmetic
Arithmetic
System level
System level
System level
System level
Arithmetic
Arithmetic
Dynamic allocation
Data conversion
Data conversion
Data conversion
File System
Arithmetic
Arithmetic
String
Library

Summary of Available Procedures and Functions E-3

Name Description Category

PREALLOCLONGHEAP Allocates space to be dedicated to Library
Pascal long heap

PRED Predecessor function Data conversion
PRDRQQ REALS to REALS power Arithmetic
PRSRQQ REAL4 to REAL4 power Arithmetic
PUT Put value to file File system
READ Read file File system
READFN Read filename File system
READLN Read file to end of line File system
READSET Read set File system
RESET Ready file for read File system
RESULT Return result of function Extended level
RETYPE Force expression to type System level
REWRITE Ready file for write File system
ROUND Round REAL Data conversion
ROUND4 Round INTEGER4 Data conversion
SAOOOK 16-bit signed addition check Library
SCANEO Scan until char found String
SCANNE Scan until char not found String
SEEK Position at direct file record File system
SHOROO REALS hyperbolic sine Arithmetic
SHSRQO REAL 4 hyperbolic sine Arithmetic
SIN Sine function Arithmetic
SIZE OF Get size of structure Extended level
SMULOK 16-bit signed multiply check Library
SNOROO REALS sine function Arithmetic
SNSROO REAL4 sine function Arithmetic
SOR Square function Arithmetic
SORT Square root function Arithmetic
SROROO REALS square root Arithmetic
SRSROO · REALS square root Arithmetic
succ Successor function Data conversion
THOROO REALS hyperbolic tangent Arithmetic
THSROO REAL4 hyperbolic tangent Arithmetic
TNOROO REALS tangent function Arithmetic
TNSROO REAL4 tangent function Arithmetic
TRUNC Truncate REAL Data conversion
TRUNC4 Truncate INTEGER4 Data conversion
UADDOK Unsigned addition check Library
UMULOK Unsigned multiply check Library
UNPACK Unpack STRING to array Data conversion
UPPER Get upper bound Extended level
WRD Convert to WORD value Data conversion
WRITE Write file File system
WRITELN Write line to file File system

5018793

Appendix F F-1

Summary of Metacommands
This appendix provides a single alphabetical list of all of the
metacommands described in section 5, Metacommands. Any
default is shown immediately after the metacommand.

Metacommand

$BRAVE+

$DEBUG

$ENTRY

$ERRORS:25

$GOTO-

$IF <constant>
$THEN <textb
$ELSE <text2>

$END

$INCLUDE:' <file>'

$IN CONST

$1NOEXCK+

$1NITCK

$1NTEGER

$LINE

$LINESIZE:79

$LIST+

$MATHCK+

$MESSAGE

$NILCK+

$0CODE+

$PAGE+

$PAGE:<n>

$PAGEIF:<n>

$PAGESIZE:55

$POP

5016793

Action

Sends messages to the terminal screen.

Turns on or off all error checking (CK).

Generates procedure entry and exit calls for debugger.

Sets number of errors allowed per page.

Flags GOTOs as "considered harmful:

Allows conditional compilation of <textl > source if
<constant> is greater than zero.

Switches compilation to file named.

Allows interactive setting of constant values at
compile time.

Checks for array index values in range.

Checks for use of uninitialized values.

Sets the length of the INTEGER type.

Generates line number calls for debugger.

Sets width of source listing.

Turns on or off source listing.

Checks for mathematical errors.

Displays a message on terminal screen.

Checks for bad pointer values.

Turns on or off object code listing.

Skips to next page.

Sets page number for next page.

Skips to next page if less than <n> lines left.

Sets page length of source listing.

Restores saved value of all metacommands.

F-2

Metacommand

$PUSH

$RANGECK+

$REAL

$ROM

$RUNTIME

$SIMPLE

$SIZE

$SKIP:<n>

$SPEED

$STACKCK+

$SUBTITLE:' <SUbt>'

$SYMTAB+

$TITLE:' <title>'

$WARN+

Summary of Metacommands

Action

Saves current value of all metacommands.

Checks for subrange validity.

Sets the length of the REAL type.

Warns on static initialization.

Determines context of run time errors.

Disables global optimizations.

Minimizes size of code generated.

Skips <n> lines or to end of page.

Minimizes execution time of code.

Checks for stack overflow at entry.

Sets page subtitle.

Sends symbol table to source listing.

Gives page title for source listing.

Gives warning messages in source listing.

Appendix G

Extended Pascal Compared to ISO
Standard

G-1

This appendix describes differences in the way certain things
are done or allowed in Extended Pascal and the ISO
standard, and also summarizes the Pascal extensions.

Differences between Extended Pascal and Standard
The ISO standard defines a large number of error conditions,
but allows a particular implementation to handle an error by
documenting the fact that the error is not caught. These
errors not caught, and other differences between this
extended Pascal and the ISO standard, are described below.

Extended Pascal allows the following minor extensions to the
current ISO/ ANSI/IEEE standard:

a a question mark and an at-sign as substitutes for the up
arrow n

a the underscore L) in identifiers

As a result of the way the compiler binds identifiers, the new
reserved words added at the extended and system levels
cannot be used as identifiers at the standard level. A new
directive, EXTERN, and new predeclared functions are
standard in extended Pascal.

The differences between the standard level of this Pascal and
the current ISO/ ANSI/IEEE standard:

a The ISO standard requires a separator between numbers
and identifiers or keywords.

In some cases, this extended Pascal does not require a
separator between a number and an identifier or keyword;
for example, 1 OOmod is accepted as 100 mod without
error.

a The ISO standard does not allow passing a component of
a PACKED structure as a reference parameter.

Extended Pascal specificaHy permits passing a CHAR
element of a PACKED ARRAY [1 .. n] OF CHAR as a
reference parameter. Passing a tag field as a reference is
an error not caught. Passing other packed components
gives the usual error.

5016793

G-2 Extended Pascal Compared to ISO Standard

o The ISO standard does not include the textfile line-marker
character in the set of CHAR values.

This extended Pascal permits all 256 8-bit values as CHAR
values.

o The ISO standard requires a variant to be given for all
possible tag values.

This extended Pascal permits a variant record declaration
in which not all tag values are given.

o The ISO standard requires that an identifier have only one
meaning in any scope.

In extended Pascal, using an identifier and then redeclaring
it in the same scope is an error not caught. For example,
the following,

CONST X-Y; VAR Y: CHAR;

has two meanings for Yin the same scope. This Pascal
generally uses the latest definition for an identifier. There is
one ambiguous case: If you declare type FOO in one scope
and in an inner scope TYPE P - "FOO; FOO - type; then
FOO has two meanings and intent is ambiguous. In this
case, the compiler uses the later definition of FOO and
issues a warning.

o The ISO standard requires field width M to be greater than
zero in WRITE and WRITELN procedures.

Extended Pascal treats M < 0 as if M = ABS(M), but field
expansion takes place from the right rather than the left. M
can also be zero, to WRITE nothing. Textfile WRITE(LN)
parameters can take both M and N parameters (ignored if
not needed). The form V::N is allowed. When writing an
INTEGER, the N parameter sets the output radix; when
writing an enumerated type, the N parameter sets the
ordinal number or constant identifier option.

o ISO standard does not allow a variable created with the
long form of NEW to be assigned, used in an expression,
or passed as a parameter. However, this is difficult to
check for at compile time and expensive to check at run
time.

Extended Pascal allows assignments to these variables
using the actual length of the target variable. The ISO
standard error is not caught.

Extended Pascal Compared to ISO Standard G-3

o ISO standard does not allow the short form of DISPOSE to
be used on a structure allocated with the long form of
NEW. The ISO standard permits only a variable allocated
with the long form of NEW to be released with the long
form of DISPOSE, and all tag fields should never change
between the calls.

Extended Pascal allows the short form of DISPOSE to be
used on a structure allocated with the long form of NEW,
and does not check for changes in tag values.

o ISO standard declares that when a change of variant
occurs (such as when a new tag value is assigned), all the
variant fields become undefined.

Extended Pascal does not set the fields uninitialized when a
new tag is assigned and so does not catch use of a variant
field with an undefined value.

o ISO standard does not allow a variable with an active
reference (that is, the records of an executing WITH
statement or an actual reference parameter) to be disposed
(if a heap variable) or changed by a GET or PUT (if a file
buffer variable).

This Pascal does not catch these as errors.

o ISO standard currently defines I MOD J as an error if J < 0
and the result of MOD is positive, even if I is negative.

This extended Pascal does not currently use the new draft
standard semantics for the MOD operator. Programs
intended to be portable should not use MOD unless both
operands are ppsitive.

a ISO standard at Level 1 defines conformant array.

This extended Pascal does not implement the conformant
array concept in Level 1 of the ISO standard. Super arrays
provide much the same functionality in a more ~exible way.

a The ISO standard requires the control variable of a FOR
loop to be local to the immediate block. Any assignment
to this control variable is an error.

This extended Pascal allows a nonlocal variable to be used
if it is ST A TIC, so either a local variable or one at the
PROGRAM level can be a FOR statement control variable.
This Pascal also does not detect an assignment to the
control variable as an error if assignment occurs in a
procedure or function called within the FOR statement.

5016793

G-4 Extended Pascal Compared to ISO Standard

a ISO standard requires the CHA argument to be INTEGER.

Extended Pascal allows CHA to take any ordinal type.

Summary of Extended Pascal Features
The following summarizes Pascal extensions to the ISO
standard. Unless otherwise noted, all are at the extended
level.

Syntactic and Pragmatic Features
a The metalanguage (standard level)

$BRAVE
$DEBUG
$ENTRY
$ERRORS
$GOTO
$INCLUDE
$1NCONST
$1NDEXCK
$1NTICK
$IF $THEN $ELSE $END
$INTEGER
$LINE
$LINESIZE
$LIST
$MATHCK
$MESSAGE
$NILCK
$0CODE
$0PTBUG

a Extra listing (standard level)

$PAGE
$PAGEIF
$PAGESIZE
$POP
$PUSH
$RANGECK
$REAL
$RUNTIME
$SIZE
$SKIP
$SPEEDS
$STACKCK
$SUBTITLE
$SYMTAB
$TITLE
$WARN

a flags for jumps, globals, identifier level, control level,
header, trailer

a textual error and warning messages

a Syntactic additions

a Exclamation point (I) as comment to end of line

a Square brackets equivalent to BEGIN and END

Extended Pascal Compared to ISO Standard G-5

D Nondecimal number notation
o Numeric constants with # or nn# (where nn = 2 .. 36)
o DECODE/READ takes # notation
o ENCODE/WRITE with N of 2, 8, 10, 16

o Extended CASE range
o For CASE statements and record variants
o OTHERWISE for all other values except records
o A..B for range of values

Data Types and Modes
o WORD type, WRD function, MAXWORD constant
o REAL4 and REALS types
o INTEGER4 type, MAXINT4 const
o FLOAT4, ROUND4, and TRUNC4 functions
o Address types (system level)

o ADR and ADS types and operators
o VARS and CONSTS parameters

o SUPER array types
o Conformant parameters
o Dynamic length heap variables
o Multidimensional super arrays
o STRING and LSTRING super types

o LSTRING type NULL constant, .LEN field
o Explicit byte offsets in records (system level)
o CONST and CONSTS reference parameters for constants

and expressions
D Structured (array, record, and set) constants
o Extended functions returning any assignable type
o Variable selection on values returned from functions
o Attributes

EXTERN PURE
EXTERNAL READONLY
ORIGIN
PUBLIC

5016793-003

STATIC
FAR I

G-6 Extended Pascal Compared to ISO Standard

Operators and Intrinsics
D Extended level operators:

o Bitwise logical: AND OR NOT XOR
o Set operators: < >

o Constant expressions:
o String constant concatenation with * operator
o Numeric, ordinal, Boolean expressions in type clauses
o Other constant functions:

CHR UPPER
DIV WRD
HIBYTE *
HIWORD +
LO BYTE
LOWER <
LO WORD <=
MOD <>
ORD =
RETYPE >
SIZEOF > =

o Additional intrinsic functions at extend level:
ABORT LO WORD
BYLONG RESULT
BYWORD SIZE OF
DECODE UPPER
ENCODE HIWORD
EVAL BYTE
HIBYTE LOWER
LO BYTE

o Additional intrinsic functions at system level:
FILLC MOVE SL
FILLSC
MOVEL
MOVER

MOVE SR
RETYPE

Extended Pascal Compared to ISO Standard

o intrinsic functions that operate on strings:

o for STRING or LSTRING:COPYSTR POSITN SCANEQ
SCANNE

o for LSTRING only: CONCA T INSERT DELETE COPYLST

o REAL library functions (standard level)

o Pascal library functions (standard level):

BEGOQQ LMULOK
BEGXQQ SADDOK
ENDOQQ SMULOK
ENDXQQ UADDOK
LADDOK UMULOK

Control Flow and Structure Features
o Control flow statements: BREAK, CYCLE, and RETURN

G-7

o Sequential control operators: AND THEN and OR ELSE in
IF, WHILE, REPEAT

o Extended FOR loop:FOR VAR variable

o VALUE section to initialize static variables

o Mixed order LABEL, CONST, TYPE, VAR, VALUE sections

o Compilable MODULES with global attributes

o UNIT INTERFACE and IMPLEMENTATION:

o Interface version numbers, version checking

o Optional rename of constituents

o Guaranteed unique unit initialization

o Optional unit initialization

Extended Level 1/0 and Files
o Textfile line length declaration, TEXT (nnn)

o READ enumerated, Boolean, pointer, STRING, LSTRING

o WRITE enumerated, pointer, LSTRING

o Negative M value to justify left instead of right

o Temporary files

5016793

G-8 Extended Pascal Compared to ISO Standard

o DIRECT mode files, SEEK procedure

o ASSIGN, CLOSE, DISCARD, READSET, READFN
procedures

o FILEMODES type and constants, F.MODE access

o Error trapping, F.TRAP and F.ERRS access

System Level 1/0
Pascal extensions to the ISO standard offers full FCBFQQ
type equivalent to FILE types.

Appendix H H-1

Control of the Video Display
A Pascal program can control the video display by writing a
multi byte escape sequence to the video display. In this way,
a program can:

o control character attributes (blinking, reverse video,
underscoring, half bright)

o control screen attributes (reverse video, half bright)

o control cursor positioning and visibility

o fill a rectangle with a single character

o control scrolling of lines

o direct video display output to any frame

o control pausing between full frames of data

o control the keyboard LED indicators

o erase to the end of the current line or frame

A multibyte escape sequence consists of the video display
escape character, a command character, and parameters.
The video display escape character is CHR{255). To print an
escape character, you should precede it with another escape
character.

To supplement the information below with a more detailed,
language-independent explanation of video escape
sequences, refer to Video Byte Streams in the BTOS
Reference Manual.

Error Conditions in Escape Sequences
An escape character sequence is in error if the command
characters or parameters are unrecognized or the parameters
are inconsistent.

5016793

H-2 Control of the Video Display

The following program turns on the cursor, writes the
message ·This is a test•, and waits for input:

PROGRAM Test (INPUT, OUTPUT);
VAR

51 : L5TRING (128)

BEGIN
51 :- CHR(255) ' 'vn';
Write (51, 'This is a test');
Read In;

END.

Video Display Coordinates
Pascal interprets some parameters as x and y coordinates on
the video display.

A value of 255 for x or y specifies the last column or line of
the frame, respectively.

If the value of x or y is less than 255 and greater than the
last column or line, then the escape sequence is in error.

The concatenation operator • can be used only to create
constant string expressions. Therefore the following code is
incorrect:

VAR
i : I NT EGER;
sir : 5TRING(4);
sir· CHR(255) ' 'C' 'CHR(O) 'CHR(i);

This code is incorrect because CHR(i) is not constant, but
varies with i. To create variable string expressions with
concatenation, you can use the LSTRING intrinsic CONCAT.

Controlling Character Attributes
This is done with the 'A' command.

Format 1:

Format 2:

Purpose:

CHR (255) • 'A<parameter>'

CHR(255) * 'AZ'

Format 1 is used to enable or disable
character attributes for characters
following the escape sequence. The
following shows the attributes enabled or
disabled for each escape sequence using
the 'A' command.

Control of the Video Display H-3

An x in the following table indicates that
the attribute is enabled; otherwise, it is
disabled. The character attributes are:
blinking (B), reverse video (R), underlining
(U), and half bright (H).

B R u H

CHR(255) • 'AA'
CHR(2551 • 'AB' x
CHR(2551 • 'AC' x
CHR(255) • 'AD' x x
CHR(255) • 'AE' x
CHR(2551 • 'AF' x x
CHR(2551 • 'AG' x x
CHR(255) • 'AH' x x x
CHR(2551 • 'Al' x
CHR(255) • 'AJ' x x
CHR(255) • 'AK' x x
CHR(255) * 'AL' x x x
CHR(255) • 'AM' x x
CHR(255) •'AN' x x x
CHR(255) • 'AO' x x x
CHR(255) * 'AP' x x x x

Format 2 is used to enable a mode
whereby writing a character into a
character position does not change the
character attributes of that character
position.

Controlling Screen Attributes
This is done with the 'H' and 'R' commands.

Format 1:

Format 2:

5016793

CHR(255) * 'H <parameter>

as in: CHR(255) * 'HN';
CHR(255) * 'HF';

where <parameter> is N or F
(from the last letter of ON and
OFF).

CHR(255) * 'R <parameter>

as in: CHR(255) * 'RN';
CHR(255) * 'RF';

where <parameter> is N or F.

H-4

Purpose:

Control of the Video Display

Format 1 is used to turn the half bright
attribute on if the <parameter> is N. It is
used to turn the half bright attribute off if
the <parameter> is F.

Format 2 is used to turn the reverse
video attribute on if the <parameter> is
N. It is used to turn the reverse video
attribute off if the <parameter> is F.

Controlling Cursor Position and Visibility
This is done with the 'C' and 'V' commands.

Format 1:

Format 2:

Purpose:

CHR(255) * 'C' * CHR(<Xposition>) *
CHR(Yposition>)

where <Xposition> and <Yposition> are
integer expressions.

CHR(255) *'V <parameter>·

where <parameter> is N or F.

Format 1 is used to position the cursor at
coordinates (<Xposition>, <Yposition>).

Format 2 is used to make the cursor
visible if the <parameter> is N. It is used
to make the cursor invisible if the
<parameter> is F.

Filling a Rectangle
This is done with the 'F' command.

Format:

Purpose:

CHR(255) * 'F' * 'character'
• CHR(<Xposition>) * CHR(<Yposition>)
* CHR(<width>) * CHR(<height>)

where <character> is any character;
<Xposition>, <Yposition>, <Width>,
and <length> are integer expressions.

The 'F' command is used to fill a
rectangle on the video display with
<character>. The currently enabled
character attributes are given to each
character in the rectangle. A <character>
always specifies a character in the
standard character set.

Control of the Video Display H-5

The coordinates (<Xposition>,
<Yposition>) specify the upper left
corner of the rectangle. A value of 255
for <Width> and <height> specifies,
respectively, the remaining width or
height of the frame.

An example of attribute control is illustrated below:

PROGRAM BLINK (INPUT, OUTPUT);

IT h i s program s I a r Is I he ch a r a c I er s on the screen b I i n k i n g, w i th
WR I TE l N S 1 , I i n i shes th a t I i n e w i th b I i n k i n g ch a r act er s say i n g
'Th i s i s a t es I " and w r i I es I WO b I an k I i n es . Then a I WRITE LN s 2 '
the cursor i s sen I Io I he I as I I i n e and I i I t y spaces I r om the
left,where itwriteS<««< BYE BYE »»»,which also
b I inks. I

IA I I ch a r a c I er s w i 11 b I ink u n I i I the CRT a It r i bu I es are res e I
w i I h a n 0 I h e r c a I I I 0 WR I TE c HR (2 5 5) • ' A A ' . Th a I w i I I t u r n 0 ff
al I attributes: bl inking, under I ine, reverse video, and half
b r i g ht .)

VAR
S1 LSTRING(128); !Stringcanbeshorter.J

S2 LSTRING(128); !This stores the cursor Ccommand
and x y posi lions.)

BEGIN !program)
S1 := CHR9255) • 'Al'; !This puts the command to

blinkinS1.J

S2 := CHR(255) ' 'C' ' CHR(50) ' CHR(5)
!CHR(SO) is how far from the left the cursorwi II
beput.CHR(25) is thebottomlineontheCRT.A
numb e r h i g he r t ha n 2 5 i n I he y po s i t i on w i I I
res u I I i n a run t i me er r or .1

WRITELN ($1, 'This is a test ');
WRITELN;
WRITELN;
WR I TELN (S2, '««« BYE BYE »>»>');

END. !program)

5016793

H-6 Control of the Video Display

Controlling Line Scrolling
This is done with the ·s· command.

Format:

Purpose:

CHR(255) * 'S'
* CHR(<firstline>) * CHR(<lastline>)
* CHR(<Count>) * '<direction>'

where <direction> is D or U.

If the <direction> is D, the ·s· command
is used to scroll down a portion of the
frame beginning at line <firstline> and
extending to (but not including)
<lastline>. The <Count> lines are
scrolled and the top<count> lines of the
frame portion are filled with blanks.

If the <direction> is U, the ·s· command
is used to scroll up a portion of the frame
beginning at line <lastline> and extending
to (but not including) <firstline>. The
<count> lines are scrolled and the
bottom <Count> lines of the frame
portion are filled with blanks.

Directing Video Display Output
This is done with the ·x· command.

Format:

Purpose:

CHR(255) * ·x· * CHR(<frame>)

The 'X' command is used to direct video
output to the <frame> 'th frame of the
video display.

If the <frame> is 1, the ·x· command is
used to direct video output to the Status
Frame at the top of the video display.

Control of the Video Display H-7

Controlling Pausing Between Full Frames
This is done with the ·p· command.

Format:

Purpose:

CHR(255) * 'P<parameter>'

where <parameter> is N or F.

If the <parameter> is N, the ·p·
command is used to enable the pause
facility. When the pause facility is
enabled and further output to the frame
would cause data to be scrolled off the
top of the frame. the message:

Press NEXT PAGE to continue

is displayed on the last line of the frame.

If the <parameter> is F. the 'P' command
is used to disable the pause facility.

Controlling the Keyboard LED Indicators
This is done with the T command.

Format:

Purpose:

5016793

CHR(255) * 'kparameter>N' or
CHR(255) * 'l<parameter>F'

where <parameter> is 1, 2. 3, 8, 9, 0,
or T.
'kparameter>N' turns ON the led.
'kparameter>F' turns OFF the led.

The T command is used to turn on an
LED indicator on the keyboard according
to the following table.

Parameter Key

1 Fl
2 F2
3 F3
8 F8
9 F9
0 FlO
T OVERTYPE

H-8 Control of the Video Display

Erasing to the End of the Line or Frame
This is done with the 'E' command.

Format:

Purpose:

CHR(255) * 'E<parameter> ·

where <parameter> is Lor F.

If the <parameter> is L, the 'E' command
is used to erase to the end of the line.

If the <parameter> is F, the 'E' command
is used to erase to the end of the frame.

Erases sets characters to spaces and
turns off all character attributes.

Appendix I

Programming Hints
This appendix contains suggestions for ways of approaching
or dealing with various programming situations.

Hint 1: Linking Pascal

1-1

Linking can be a lengthy operation because library searching
in the Linker is required. The operation time can be
decreased if Publics or Line Numbers are not requested. Link
time can also be decreased by including the modules that
appear in the map file after an initial link in the Object
Modules field of the link command. After extensive
modifications to the program, you must verify the list of
included modules.

Linking Pascal as described above includes the full Pascal run
time program in the run file. To avoid using it, refer to
section 15.

Hint 2: Word and Integer Type
Incompatibility
Warnings are generated during the first compilation of a
program for type incompatibilities between WORDs and
INTEGERs. In many programs, the incompatibility of
WORDs and INTEGERs can be ignored; however, the use of
WORD variables where the compiler expects INTEGER
values can generate bad code.

Caution is advised when using array indexing and integer
subranges. If the compiler generates signed arithmetic for
array indexing and is given a WORD value greater than
32767, the code generates a negative offset in the array. To
avoid type incompatibility problems, you must coerce
subranges to be of type WORD by using the WRD function, or
coerce WORD variables to be of type INTEGER by using the
ORD function.

Hint 3: Overlays
This version of Pascal is compatible with the Virtual Code
Management facility. You must link with Linker 7.0 (or later
version) and BTOS.lib 7.0 (or later version).

As with all programs that use the Virtual Code Management
facility, the swap buffer must be allocated and initialized
before any overlay is called.

5016793-003

I

1-2 Programming Hints

To include portions of the Pascal run time program in
overlays:

1 Include PasSwp.obj in the Object Modules line of the
Linker command form for releases of BTOS Pascal prior
to 6.0. For release level 6.0.1 and above, do not specify
PasSwp.obj.

2 Write two procedures called BEGOQQ and ENDOQQ to
perform user initialization and termination. These
procedures must be included when the Pascal program is
linked.

Pascal provides an entry point, BEGOQQ, to initialize a
program before any Pascal run time initialization takes place.
If the Pascal run time program is placed in overlays, they
must allocate and initialize the swap buffer in BEGOQQ to
insure that the swap buffer is ready when the Pascal run
time program is invoked.

The entry point ENDOQQ is called when a Pascal program is
exited. For the purposes of using the Virtual CODE facility,
this entry point can be an empty procedure.

For example:

{This module uses BEGOQQ to allocate and initialize a 10240 byte
swap buffer.}

{$DEBUG-}

MODULE MISOQQ[];

TYPE
Pointer = ADS OF WORD;
ErcType = WORD;

PROCEDURE InitlargeOverlays(pb:Pointer;cb:WORD);EXTERN;
FUNCTION AllocMemoryLL(cb:WORD;

ppbRet:Pointer):ErcType;EXTERN;
PROCEDURE FaltalError(erc:ErcType);EXTERN;

PROCEDURE ENDOQQ; BEGIN END;

{The procedure ENDOQQ must be included to satisfy an external in the
Pascal run time program.}

Programming Hints 1-3

PROCEDURE BEGOQQ(PUBLIC];
VAR

ere : ErcType;
pSwapBulfer (PUBLIC) : Pointer;

BEGIN !BEGOQQJ
ere:= AllocMemoryll(10240, ADS

pSwapBul fer I;
IFerC<>O
THEN FatalError(erc);
lnillargeOverlays(pSwapBufler, 640);

110240 f 16 = 6401
ENO; !BEGOOQJ

ENO.

Certain modules in the Pascal run time program must always
be resident in memory. Incorrect execution of the Virtual
Code facility can result from including any of the following
modules in an overlay:

Cmpd7Alt
ErreeAlt
Oemr7Alt

Comr7Alt
He ah
Pasmax

Emtr7Alt
Lscw7Alt
Riauqq

Emur7Alt
MishcAlt
Ribuqq

Emus7Alt
Misg6Alt
Rndc7

Erre
Misy
TsdrAlt

The Linker can also issue CALL/RET convention warnings
involving these modules. The warnings can be ignored if the
modules are always resident in memory.

Hint 4: Program Parameters
If program parameters other than the special parameters
INPUT and OUTPUT are used, the program must be installed
as an Executive command with the corresponding
parameters. For example, a program that types a file to the
video with the filename as input would be installed as an
Executive command with one field, Filename. Following is a
listing of this type of program:

!TYPE command: Type a Ii le to video. Accept a Ii le as a program
pa r a me t e r ; open th i s I i I e I o r r ea d i n g . Re ad one by t e I r om t he
input Ii le and echo it to video. Loop until end-of·fileon
input.I

1-4 Programming Hints

PROGRAM TypeFile(OUTPUT,lnFile);
VAR

B : BYTE;
lnFi le : FILE OF BYTE; (The Ii le to type to video}

BEGIN
RESET(lnFi le); (Open the input Ii le, ready to

begin typing}
WRITELN('Typing ... '); floopuntilEOFoninput}
WHILE NOT EOF(lnFile) DO

END.

BEGIN
READ(lnFile, B);
WRITE(CHR(B));

END;
WRITELN;
WRITELN ('Done.');

Hint 5: Long Heap

(Read a byte I rom input Ii I e}
(Echo this byte to the video,
echoing entire file}

(Finished typing}

In this Pascal, there are two heaps: a short heap and a long
heap. For the short heap, the function PREALLOCHEAP can
be used for allocation. The long heap is an additional
memory area available to Pascal programs. It can be longer
than the 64K-byte limit of the short heap. A Pascal program
can allocate and deallocate memory from the long heap using
the functions described below.

To access data in the long heap, the user must specify both
the segment and the offset addresses (that is, data is
accessed using ADS type variables). If not enough memory is
available at allocation request time from the long heap,
memory from the short heap is allocated.

The following functions and procedure can be used with the
long heap:

o FUNCTION ALLMQQ(Wants: WORD): ADSMEM;

Allocates a block of Wants number of bytes on the long
heap and returns this block address. The block can not
have more than 64K bytes.

o FUNCTION FREMQQ(Blocks: ADSMEM): WORD;

Frees a memory block from the long heap. Returns zero if
no errors are encountered, non-zero otherwise.

Programming Hints

o FUNCTION GETMQQ(Wants:Word):ADSMEM;
Performs ALLMQQ with error checking.

o PROCEDURE DISMQQ(Blocks: ADSMEM);
Performs FREMQQ with error checking. If an error is
detected this procedure will crash the run time.

The first call to a long heap allocation routine allocates as
much short-lived memory as possible for the short heap.
Then all the rest of the short-lived memory is allocated for
the long heap to satisfy current and future requests.

1-5

To avoid allocation of all the rest of short-lived memory for
the long heap, pre-allocate short-lived memory for the heap
using the procedure:

PREALLOCLONGHEAP(cPara: WORD): EXTERN;

This procedure allocates as much short-lived memory as
possible for the short heap. 'cPara' is retained only for
downward compatibility.

Hint 6: Multiprocessing

The Pascal 1.0 run time routines are not re-entrant.
Therefore, if a program creates several processes that
concurrently execute code written in Pascal, only one process
can be executing Pascal run time code at a time. Pascal
programs can be run in different partitions at the same time.

Hint 7: Using Pascal with BTOS and
Forms

The following paragraphs describe a program written in
Pascal that uses calls to BTOS Video Management, File
Management, and the BTOS Forms software package. The
form used in the program is provided to structure the input
of data to the program.

5016793-003

I

I

1-6 Programming Hints

Note: The following is a working example of how to access
external procedures. The program does work. However, it is
not intended to be a finished application program. For the sake
of simplicity and clarity, most normal error-checking has been
left out.

BTOS Forms: Background

The BTOS Forms package provides the programmer with the
capability of designing a form with an interactive Forms
Editor. A form is an application-defined collection of
graphical rulings and text captions that can be displayed on
the video display. A form includes fields that are defined to
accept user input and display application program-supplied or
computed data.

Forms are stored in a disk file and can later be linked to an
application program and used as a vehicle for interactive data
input and output.

The BTOS Forms Facility consists of two major components:
o An Interactive Forms Editor, along with FReport (the

Forms Reporter utility)
o The Forms run time modules

The Interactive Forms Editor is used to design a form for the
specific application. The programmer can draw various styles
of rulings, define text captions, and designate fields to be
filled in at run time. Upon completion of the design, the form
is stored in a file so it can be accessed later by the application
program using the Forms run time procedures.

The Forms Reporter utility produces a report describing the
form and information about its fields.

The Forms run-time procedures consist of a library of object
modules that can be linked to the application program or the
interpreter (in the case of BASIC and COBOL). The
procedures provide the capabilities to display a previously
designed form, obtain information about the form, prompt
the user to enter data into the form, and return data to the
calling application program.

Programming Hints 1-7

Program Overview

A general description and a flow chart of the Forms program
are presented below.

Program Description

This program exemplifies the use of a form to input
information on parts sold by a salesman, and makes use of
several types of external calls:

o The video is initialized through calls to VDM (Video Display
Management) and VAM (Video Access Method).

o The Form file is opened and closed through calls to File
Management.

o Through various run time calls, the user is prompted to
enter the salesman's name, part numbers, and the quantity
of each part sold. The total price of the quantitY of parts is
then displayed. When all the part numbers have been
entered, the total price of all the parts is displayed as
Amount Due.

Form Description
The form used by this program is the same one that is
referred to throughout the BTOS Forms Designer Programming
Reference Manual as Tutorial.Form. It is displayed in
figure 1-1.

Figure 1-1 Form Example

salesnm: 0 0 0 0 0 0 0 0 0 0 DO 0 0 0 0 0 0 0 0 0 DO 0 0 0 0

Part No. Quan. Price Total

000000000 0000000 0000000 0000000

000000000 0000000 0000000 0000000

000000000 0000000 0000000 0000000

000000000 0000000 0000000 0000000

000000000 0000000 0000000 0000000

ffilotrlt due: 0000000

5016793

1-8 Programming Hints

The form has the following fields: Salesman, PartNumber,
Quantity, Price, TotalPrice, and AmountDue.

A field is an area into which the user types data or the
program outputs data. When the form is designed, each field
is given a name and is defined as either a single or a
repeating field. An example of a single field is AMOUNT DUE
in the form. A repeating field is a set of individual fields
sharing a common field name and distinguished by an index.
PART NO is an example of a repeating field.

The program accesses a field through the field name (for
repeating fields) and an index.

For more information about the structure of the form and its
fields, see figure 1-2, the Forms Reporter printout of a section
of Tutorial.Form.

Programming Hints 1-9

Figure 1-2 Forms Reporter Printout

FReport

Fi I e Tutorial.Form
[Form)
[Fields?)
[Output) Tutorial .FReport

Form name: Tutorial size: 897 bytes
height: 16 width: 34 number of fie Ids: 22

Field name: Salesman
Row: 0 Column 12 Width: 20
Repeating? No Index: (f i rs t : I as t :
Def au It:
Show default? Yes Auto-exit? No Unselected: C Selected:

Field name: PartNumber
Row: 4 Column: 1 Width
Repeating? Yes Index: 1
Default:

9
(first: I as t : 5)

E

Show default? Yes Auto-exit? No Unselected: A Selected: E

Field name: Quantity
Row: 4 Column: 11 Width: 6
Repeating? Yes Index: (first: last: 5)
Default: 1
Show default? No Auto-exit? No Unselected: A Selected: E

Field name: UnitPrice
Row: 4 Column: 18 Width: 7
Repeating? Yes Index: 1(first: I as t : 5)
Def au It:
Show default: Yes Auto-exit? No Unselected: A Selected: E

Field name: TotalPrice
Row: 4 Column: 26 Width: 7
Repeating? Yes Index: 1 (first: last: 5)
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E

Field name: AmountDue
Row: 14 Column: 26 Width: 7
Repeating? No Index: 1 (first: last:
Default:
Show default? Yes Auto-exit? No Unselected: A Selected: E

5016793

1-10 Programming Hints

Program Flowchart

Figure 1-3 is a flowchart of the Forms program.

Detailed Program Description
The following paragraphs describe the program in detail.

Initialization Code Section

In this section, a set of variables and constants is defined for
the BTOS and Forms procedures, as well as for the Pascal
program. Following the lists of variables and constants is a
group of functions and procedures that are called to pass the
parameters, by reference from the program to BTOS and
back.

Main Program

The program begins by loading an array with the prices that
are to be used in the program, then a call is made to the
procedure lnitializeVideo which was defined in the
initialization section. lnitializeVideo makes a series of calls to
the Video Management services which do the following:

a Reset the Video Control Block

a Initialize a frame

a Initialize the character map

a Turn on the video-refresh attribute

Programming Hints

Figure 1-3 forms Program Flowchart

Initialize Video

Open Form File
ant1

Open Form

Request
salesman's Name

Request Part No.

Look-up Price
and Write Price

In Field

Request Quantity

Compute Total
Part Price

and Write Total
In Field

5016793

No

Add Total Part
Price and Write
In Amount Due

Field

1-11

1-12 Programming Hints

Form Initialization Section

The next step is to initialize the form. The file that contains
the form is opened through a call to the file management
procedure OpenFile. The form is read into the Forms work
area using OpenForm. The form image is now stored in a
work area of the program and form file is no longer needed;
so it is closed.

Next the form is displayed on the screen. DisplayForm reads
the form from the work area and displays it in the desired
position. The last two parameters sent to DisplayForm
specify the column and line number. In this program, an
integer constant (Center, which had been defined with the
value 255) is specified for each of these parameters. This
value specifies that the form is to be centered on the video.

The form prompts the user to enter the name of a salesman.
A loop is defined to cause continual retries in the event that
an Invalid Data error is returned. This is the only instance of
this kind of error checking in this program; it is included as
an example. The remainder of the error checking is handled
with a Pascal procedure, ValidateErc, which is described in
more detail later.

The Salesman field is defined as non-repeating. All the other
fields used in the program are repeating. For this reason it is
now necessary to call the GetFieldlnfo procedure to access
the information pertaining to the field characteristics.

A loop begins that sequence through the fields of the form
prompting the user for input through a call to UserFillField.
UserFillField requires, as parameters, a pointer to the forms
work area in the program, a pointer to the lnitState and
ExitState structures, and the name of the field on the form to
be filled. The variable Field defines the FieldNames in
sequence that are prompted for input.

Right Justification

In two parts of the program, there are two sets of ReadField
and WriteField operations. The reason for this is
right-justification of the integers input for the PartNumber and
Quantity fields. ReadField and WriteField require a Type
parameter to define the data being read. If the Type specified

Programming Hints 1-13

is Binary, the pointer pbRet set to an integer (that is, Part or
Quantity), and the number of bytes for cb or cbMax equal to
2, then a ReadField followed by a WriteField causes the input
to be right-justified. There is no simple way to cause the
Forms run time to do this with other types of data, since the
only other Type defined is Character.

Each dollar and cents field is treated as a string of
characters. The mathematics for the TotalPrice and
AmountDue fields is performed by using the non-standard
Pascal intrinsics ENCODE and DECODE. Right justification of
these fields just involves decoding the LSTRING into a REAL,
doing whatever calculation is required, then encoding the
field-edited REAL back into an LSTRING which can be written
back onto the form with a WriteField Character operation.

Program End

After all of the defined fields are filled, the program
terminates with a call to the EXTERNal procedure Exit.

Special Considerations when Using Pascal with BTOS
The following paragraphs describe calling non-Pascal
procedures using BTOS.

Calling Non-Pascal Procedures and Functions from Pascal

In the sample program, there are several calls to Video
Management, Forms, and File Management functions and
procedures. (For the sake of simplicity, these external
operations are referred to as procedures throughout the
remainder of this discussion.)

The standard object module procedures (such as those
mentioned) are available for use from all languages running
with BTOS and are packaged external to the languages.
ISAM, Forms, and Sort/Merge procedures are each packaged
in separate libraries. The device managers and process
manager procedures are part of BTOS. The following
paragraphs provide a description of how these procedures
can be invoked from a Pascal program.

5016793

1-14 Programming Hints

Parameter-Passing Modes

Parameters are passed to non-Pascal procedures in two
modes: by value and by reference.

The characteristics of the parameters to be passed to a
non-Pascal procedure are implied through the parameter
names in the procedure interface definition. (Refer to the
BTOS Reference Manual.)

The name of a parameter that is passed by reference is
prefixed by a p. Any parameter whose name is not prefixed
by a p is passed by value. A parameter whose value is set
by the called procedure (that is, returned) has a parameter
name with the suffix Ret.

Parameter-Passing format for Calling Non~Pascal Procedures

Non-Pascal procedures are invoked by the procedure name
after it has been declared EXTERN.

If the procedure returns a value, the procedure name can
appear in any numeric expression. Most BTOS procedures
return an error code as their value. Therefore, in a Pascal
program, they are invoked in the following manner:

PROGRAM loo (lnput,Output);

TYPE ErcType • WORD;

VAR [PUBLIC)
ere : WORD;
I oo f i I e : WORD;

FUNCTION CloseFile (FileHandle WORD) ErcType; EXTERN;

BEGIN
ere :. CloseFi le(fooli le);

END.

where ere is the error code returned and foofile is a
parameter required by the procedure.

'\

Programming Hints 1-15

Passing Parameters to a Non-Pascal Procedure

Parameters are passed to non-Pascal procedures by
reference or as values, and depending on the mode of the
parameter, must either be 1, 2, or 4-byte unsigned-integers.
When an array or a string of characters is to be sent as a
parameter, a 4-byte segmented address pointer to the data
is sent.

Pointers are a concept used in Pascal to interface with the
procedures written in 8086 object module format. A pointer
is a 32-bit address structure that represents the absolute
address of the variable in memory. (For more information on
8086 addressing, refer to The 8086/8088 Primer, Second
Edition, by Stephen P. Morse, Hayden Book Co., Inc., or
similar documentation.)

The procedural interface for the non-Pascal procedures
defines which parameters are to be passed to the procedure
as pointers (passed by reference) and which are to be
passed as values. A pointer to a variable in the program is
sent as the parameter when the parameter is a string, an
array, or a buffer, or when a value is to be set in the variable
by the called procedure.

The following is the procedural interface for the function
OpenFile as given in the BTOS Reference Manual, in the File
Management section:

OpenFi le (pFhRet, pbFi leSpec, cbFi leSpec, pbPassword,
cbPassword, mode) : erctype

where:

o mode, cbFileSpec, cbPassword are parameters passed to
OpenFile by value, and

o pbFileSpec, pbPassword are parameters passed to
OpenFile by reference

o pFhRet is a parameter, passed by reference, whose value
is set (that is, returned) by OpenFile

o erctype is the value returned by OpenForm.

5016793

1-16 Programming Hints

This procedure is called from Pascal as follows:

PROGRAM loo (Input ,Output);

TYPE
ere type = WORD;
Pointer = ADS of WORD;

CONST
ModeMod
filename
password

VAR [PUBLIC]

= #6D6D; ('Hexcode for 'mm'
'My f i I e';
'mumb I e ·;

.)

FUNCTION Openfile (pFhRet: Pointer; pbFileSpec: Pointer;
cbFileSpec: WORD; pbPassword: Pointer;
cbPassword: WORD; mode: WORD):
erctype; EXTERN;

BEGIN
ere := OpenFi le (ADS fh, ADS filename, SizeOf

(filename), ADS password, SizeOI
(password), ModeMod);

('More Program Statements ')

END.

Notice that the parameters sent by reference (that is, using
the ADS function) are strings and a variable, fh, whose value
is to be set by the procedure.

Hint 8: Accessing the System Date and Time Using
Pascal
Most application programs occasionally need to include the
current date and/or time in their processing. There are
several procedural calls available in BTOS to allow the user
to retrieve the date and time field from the system and
expand it into a readable day, date, and time. The following
paragraphs describe the date and time access in Pascal.

Programming Hints 1-17

Date/Time Overview

With date and time manipulation in BTOS, there are basically
two structures. The date and time are kept internally in
system memory as a 3-word field containing the count of
50-Hz or 60-Hz clock ticks, the count of 100-ms periods
elapsed since the last second, the count of seconds since
midnight or noon, and the count of 12-hour periods since
March 1, 1952. (Refer to the BTOS Reference Manual.)

The last two words are returned to the program when the
date/time is requested; the first word can be examined when
precise timings are needed. The expanded date and time
format is a 4-word structure with the year, month, day of
month, day of week, hour, minute, and second imbedded in
it.

The compact system format can be used to time-stamp
records, for example, while occupying only a four-:byte field.
The format of the compacted date also makes it useful for
date calculations. For example, the date of thirty days from
now can be obtained by adding 60 (12-hour periods) to the
count which specified days in the system format, and then
expand it. Refer to the Pascal language program example
below.

If two dates are subtracted, the result divided by two is the
number of days apart the two dates are. The day-of-week
field can also be examined in a program (where it is returned
initially as a number O=Sun to 6=Sat) to perhaps look for the
next business day after thirty days from now.

The following calls are available in BTOS to access the
system date/time structure, and are documented in the
BTOS Reference Manual: ·

CompactDate Time Converts the expanded date/time
format to the system format.

ExpandDate Time Expands the system format to the
expanded date/time format.

GetDateTime Returns the current date and time in
the system format.

Analyzing the expanded date/time format using these
routines can be tricky in a high-level language. The expanded
date is returned to the program as a 64-bit data type for
which few of the languages have a built-in structure. The
facilities are available, however, for the information to be
extracted.

5016793

1-18 Programming Hints

Program Example

The following is an example of a Pascal program, which
obtains the system date and time and expands it. The
routine displays the day of the week, the date, and the time
obtained from the system.

In a Pascal program, a structure can be defined, as in
ExpType, that breaks the date and time down into the
individual fields. Therefore, the calls simply need to be made
to GetDateTime and ExpandDateTime, and the fields of the
expanded date are available. This is a fairly straightforward
example since the Pascal language is suited to record
structures.

Also included is an example of date calculations. After the
date is displayed once, the date thirty days from now is
displayed by adding 60 half-days, or 30 days, to the second
word in the system date/time before expanding it.

PROGRAM GetTimeAndDate (Output);

TYPE

VAR

SysType • RECORD
secs WORD;
days WORD;

END;

ExpType • RECORD
year
month
dayofmo
dayolwk
hour

WORD;
BYTE;
BYTE;
BYTE;
BYTE;
BYTE;
BYTE;

min
sec

END;
pSysType • ADS of SysType;
pExpType ·ADS of ExpType;

pDa teT imeRe t
DateTime
pExpDateTimeRet
ExpDateTime
Day
ere

pSysType;
SysType;
pExpType;
ExpType;
STRING (3) ;
WORD;

FUNCTION GetDateTime (pDateTimeRet: pSysType): WORD; EXTERN;

Programming Hints

PROCEDURE Get It [PUBLIC);

BEGIN
pDataTimeRet :=ADS DateTime;
ere := GetDateTime (pDateTimeRet);
I F ere <> 0
THEN

WRITELN { 'GetDateTime ere* ', ere);
END;

FUNCTION ExpandDateTime {DateTime: SysType;

1-19

pExpDateTimeRet: pExpType): WORD; EXTERN;

PROCEDURE Expandit [PUBLIC);

BEGIN
pExpDateTimeRet :=ADS ExpDateTime;
ere :- ExpandDateTime(DateTime, pExpDateTimeRet);
1Fere<>0
THEN

WRITELN { 'ExpandDateTime ere- ·, ere);
END;

PROCEDURE Displaylt [PUBLIC);

BEGIN
CASE ExpDateTime.dayolwk OF

0: Day : 'Sun';
1: Day 'Mon';
2: Day 'Tue';
3: Day .= 'Wed';
4: Day.= 'Thu';
5: Day.= 'Fri';
6: Day 'Sat';

END;
WRITELN {'Day of week is·. Day);
WRITELN {'Date is ',{ExpDateTime.month + 1), '/',

ExpDateTime.dayofmo, ' of the year',.
ExpDateTime.year);

WRITELN ('Time is ', ExpDateTime.hour, ': ·.
ExpDateTime.min, ':', ExpDateTime.see);

END;
BEGIN

Get It;
Expand It;
Displaylt;
DateTime.days := DateTime.days + 60;
Expand It;
Displaylt;

END.

5016793

1-20 Programming Hints

Hint 9: BTOS Status Codes
BTOS status codes are displayed as hexadecimal values in
Pascal 1.0 run time error messages. Some former versions
displayed decimal values. The BTOS Reference Manual lists
the status codes with both decimal and hexadecimal values.

Hint 10: Sample Pascal Program
The following program illustrates many points; two of them
are explained below.

The Purpose of ValidateErc

In this program, extensive use is made of a procedure
ValidateErc. It determines if the value returned from an
EXTERNal function is equal to 0 (the normal case), or 1 (the
error case). If the value returned to ValidateErc <> 0, then an
error-exit procedure is invoked. The program exits to the
Executive, and the error code and error message are
displayed.

QUADS as Parameters to Non-Pascal Procedures

Several BTOS procedures require a QUAD value to be sent
as a parameter. A QUAD is a 32-bit (4-byte) unsigned
integer, which contains a number in the range 0 to
4,294,976,295. The QUAD type has the same definition as
the Pointer type, ADS of WORD.

In the lnitCharMap routine, the high-order and low-order
words of the variable CharMap are set to zero with the
format:

CharMap.s :=O
CharMap. r :a 0

Note: The SizeOf function does not always return the correct
size of an array. In the following program example, the SizeOf
function works, but any changes made to the program can
cause the SizeOf function to return an incorrect value.

Programming Hints

PROGRAM FormExample (Input, Output);

I $Debug· I (' Turn off the Debugger ')

(' BEGIN INITIALIZATION & DECLARATION SECTION ')

TYPE

Pointer
Quad
ErcType
FlagType

VAR [PUBLIC)

CharMap
sMap
nCols
nLines
iFrame
iColStart
iLineStart

CONST

FrameZero
ColumnZero
RowZero
Center
BlankSpace
i At t r

ADS of WORD;
= ADS of WORD;

WORD
BOOLEAN

Variable initialization for VIDEO I

QUAD
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

I Constant declarations for VIDEO I

= 0
= 0
= 0

255
= 32
= 1

1-21

VAR (PUBLIC) (Variable&ARRAY initialization for FORMS&FILEJ

Fi leHandle
Index
cBytesRead
Price
TotalPrice
Amount Due
UnitPrice
DeCodeReal
Part
Quantity
FrameNumber
DeCodelntr
vtype
Field
NumStr

5016793

WORD
WORD
WORD
REAL
REAL
REAL
REAL
REAL
INTEGER
INTEGER
INTEGER
INTEGER
LSTRING(10)
LSTRING(11)
LSTRING(20)

1-22 Programming Hints

StrCodeNum
Prices
Form
In it St ate
ExitState
Field Info

LSTRING(20) ;
ARRAY[1 .. 1 OJ
ARRAY[1.. 2000]
ARRAY [1 .. 4)
ARRAY [1 .. 4)
ARRAY [1 .. 17)

of REAL;
of BYTE;
of WORD;
of WORD;
of WORD;

CONST I Constant dee Iara ti ons for FORMS & FI LE MANAGEMENT I

FormFile . '<Sys>Tutorial.Form';
FormName 'Tutorial'
Password 'Nu 11'
ModeRead . #6D7s
lnvalidData . #3700 ;
(' True . #OFF; Predefined Pase a I Const · for

reference ')
(t False . #00 ; Predefined Pase a I Const for

reference ')

(t END of INITIALIZATION 7 DECLARATION SECTION t)

(' BEGIN DECLARATION OF VIDEO CONTROL FUNCTIONS ')
v
FUNCTION ResetFrame (i Frame INTEGER ErcType;EXTERN;

FUNCTION ResetVideo (nCols INTEGER
nL i nes INTEGER
f A I Ir FlagType
bSpace BYTEGER
nLines INTEGER
psMapRet BYTE
bBorderChar BYTE
psMapRet POINTER) ErcType;

EXTERN;

'

FUNCTION lnitVidFrame(IFrame
iColStart
iLineStart
nCols
nLines
border Des c
bBorderChar
bBorderAttr
fDblHigh
fDblWide

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
BYTE
BYTE
BYTE
FlagType
FlagType
EXTERN;

): ErcType;

FUNCTION lnitCharMap (pMap
sMap

QUAD
INTEGER
EXTERN;

ErcType;

Programming Hints 1-23

INTEGER , FUNCTION SetScreenVidAttr(iAttr
!On FlagType }: ErcType;

EXTERN;

(' END OF VIDEO CONTROL FUNCTIONS ')

('BEGIN DECLARATION OF FILE MANAGEMENT FUNCTIONS'}

FUNCTION OpenFi le (pFhRet Pointer
pbF i I eSpec Pointer
cbF i I eSpec WORD
pbPassWord Pointer
cbPassWord WORD
Mode WORD ErcType;

EXTERN;

FUNCTION CloseFile FileHandle: WORD } ErcType;
EXTERN;

(. END OF FILE MANAGEMENT FUNCTIONS . }

(. BEGIN DECLARATION OF FORMS FUNCTIONS . }
FUNCTION OpenForm (Fi leHandle WORD ·

pbFormName Pointer
cbFormName WORD
pFormRet Pointer
cbMax WORD) ErcType;

EXTERN;

FUNCTION DisplayForm (pForm Pointer·
iFrame WORD
iCol WORD
i Line WORD } ErcType;

EXTERN;

FUNCTION GetFieldlnfo (pForm
pbFieldName
cbFieldName
Index
pFieldlnfoRet
cbFieldlnfoMax

FUNCTION User Fi llField (pForm
pbFieldName
cbFieldName
Index
plnitState
pExitStateRet

5016793

Pointer
Pointer
WORD
WORD }
Pointer
WORD)
EXTERN;

Pointer
Pointer
WORD
WORD
Pointer
Pointer)
EXTERN;

ErcType;

ErcType;

1-24

FUNCTION ReadField (pForm
pbField
cbFieldName
Index
pbRet
cbMax
pcRet
pType

FUNCTION WriteField (pForm
pbFieldName
cbFieldName
Index
pb
eb
pType

FUNCTION DefaultField (pForm
pbFieldName
ebFieldName
Index

(' END OF FORMS FUNCTIONS ')

('BEGIN DECLARATION OF PROCEDURES')

PROCEDURE ErrorExit Ere WORD

PROCEDURE ValidateEre Ere WORD

BEGIN
IFEre<>O

THEN
ErrorExit (Ere)

End;

PROCEDURE lnitializeVideo [PUBLIC)

BEGIN

Programming Hints

Pointer
Pointer
WORD
WORD
Pointer
WORD
Pointer
Pointer)
EXTERN;

Pointer
Pointer
WORD
WORD
Pointer
WORD
Pointer)
EXTERN;

Pointer
Pointer
WORD
WORD)
EXTERN;

EXTERN

PUBLIC

ErcType;

ErcType;

ErcType;

ValidateEre (Resetvideo
(80'
28'
TRUE,
32,
ADS sMap)) ;

(Number of Columns to use
(Number of Rows to use
!Include Character Attributes
!Blank Character Font Space
(Pointer to Size of Character
(Map returned by Function

Programming Hints 1-25

Va I i date Er c (I n i t Vi d Frame
(FrameZero, !Frame number to lni ti al ize
ColumnZero, !Column Number (Lit) to start
RowZero, !Row Number to Start at
80, (Number of Columns to use
28, !Number of Rows to use
0, !Frame Border Description
0, !Character used for Border l
0, !Character Attribute of Border!
FALSE,
FALSE)) ;

CharMap.s 0; Set High and Low order WORDs of
Quad to Zero I

CharMap.r O;

ValidateErc (lnitCharMap (CharMap, sMap));
IZero=Use System Character Map. Indicate Size
Of Character Map returned by ResetVideo.)

Val idateErc (SetScreenVidAttr(1, TRUE));
11 = VideoRefreshattribute.
Turnonselectedattribute.l

End; {Initialize Video Procedure l

PROCEDURE Exit EXTERN

(' END OF PROCEDURES ')

(•••••••••••••••••MA IN PR 0 GRAM••••••••••••••••*)

BEGIN

(' First, load the array with the Parts Prices')

Prices[1)
Prices(2]
Prices(3)
Prices(4]
Prices[5]
Prices(6]
Prices[7)
Prices[8)
Prices[9)
Prices[10)

9.95;
15.87;
3. 31;

19.78;
12.23;
11.89;

7. 7 5;
15.57;
8. 95;

34.04;

('Next, initialize the Video. ')

Initial izeVideo;

5016793

1-26 Programming Hints

(' Now let's get the Form. ')

('The binary-coded object module of the form to be displayed is
storedinafilecalledTutorial.form.Thefileisopenedandthe
i n Io r mat ion copied i n to memory . The f i I e i s then c I o s e d w i th no
furtheraccessneeded.Theformisthendisplayedonthescreen.')

('Open the binary-coded Form file ')

Val idateErc (OpenFi le (Ads Fi leHandle,
Ads FormFi le,
SizeOI (FormFile),
Ads Password,
SizeOI (Password),
ModeRead));

('Move the file information into memory')

ValidateErc (OpenForm (FileHandle,
Ads FormFi le,
SizeOI (FormFile },
Ads Form,
SizeOI (Form))),

('Close the Ii le ')

ValidateErc (Closefile FileHandle));

(. Display the form as it was created by the Forms

ValidateErc (DisplayForm (Ads Form,
0,
255,
255)) ;

(. Request that the operator enter the Salesman's

INDEX .c 0;
Field 'Salesman';
lni tState(1) .c 0;

Editor ')

name •)

Programming Hints

REPEAT
ValidateErc (UserFillField (Ads Forms,

Ads Field[1].
Field.len,
Index
Ads lnitState,

1-27

Ads ExitState));

IF ExitState[2] = lnvalidData
THEN lnitState[1] :- ExitState(1];

UNTIL ExitState[2] <> lnvalidData;

('Get information about the Field structures ')

Field := 'PartNumber';

ValidateErc (GetFieldlnfo (Ads Form,
Ads Field[1J,
Field.len,
1 '
Ads Fieldlnfo,
Sizeof (Fieldlnfo))):

('Loop from the beginning to end of repeating fields, ')
('getting the PartNumber first and then validating it. 'I

AmountDue := O;

FOR Index :- Fieldlnfo[9) to Fieldlnfo[10) DO

5016793

BEGIN:

DeCodelntr:- O;

REPEAT

Par t
Field
lni tState[1) :-

O;
'Par tNumbe r';
O:

ValidateErc (DefaultField (Ads Form,
Ads Field[1),
Field.len,
Index)) ;

ValidateErc (UserFillField (Ads Form,
Ads Field[1),
Field.len,
Index,
Ads lnitState,
Ads ExitState));

1-28

Fie Id
Vtype

' Par t Number ' ;
'Character.·;

Programming Hints

ValidateErc (DefaultField (Ads Form,
Ads Field[l),
Field. len,
Index,

NumStr. I en :=cBy t esRead;

UNTIL DECODE (NumStr,DeCodelntr)
AND (DeCodelntr < 11)
AND (DeCodelntr > 0) ;

Ads N urns t r [1 J ,
7,
Ads cBytesRead,
Ads Vtype[1]));

(' Now that we've received a val id input let's Right· ')
(' Justify it by doing a Re-Write to the information ')
(' in the Part Number field ')

Field 'PartNumber';
Vtype 'Binary.';

Val idateErc (ReadField

Field .= 'PartNumber';
Vtype 'Binary.·;

Val idateErc (Wri teField

(Ads Form,
Ads Field[1].
Field. len,
Index,
Ads Part,
2,
Ads cBytesRead,
Ads Vtype[l]));

(Ads Form,
Ads Field[1].
Field. len,
Index,
Ads Part,
2,
Ads Vtype[1]) ;

(' Look up the UnitPrice with the Part as an Index ')

Part DeCodelntr;
UnitPrice :=Prices [Part];

Programming Hints 1-29

(' Translate the UnitPrice into an edited LString ')

IF ENCODE (StrCodeNum,UnitPrice:7:2)
THEN

(' Write the Unit Price onto the UnitPrice Field ')

Field :a 'UnitPrice';
Vtype :- 'Character.·;

Val idateErc (WriteField (Ads Form,
Ads Field[1],
Field. !en,
Index,
Ads St rCodeNum[1]
7.
Ads Vtype[1]));

(' Now request the Quantity of parts from the Operator ')

REPEAT

5016793

Field
Vtype
lnit State[1]

'Ou ant i t y • ;
'Character.·;
'Character.';

Val idateErc (DefaultField

Val idateErc (UserFi I !Field

ValidateErc (ReadField

NumStr. len:=cBytesRead;

(Ads Form,
Ads Field(1].
Field. ten,
Index)) ;

(Ads Form,
Ads Field(1],
Field.len,
Index,
Ads lnitState,
Ads ExitState));

(Ads Form,
Ads Field[1).
Field. Ian,
Index,
Ads NumStr(1].
7,
Ads cBytesRead,
Ads Vtype(1]));

1-30

UNTIL DECODE (NumStr,DeCodelntr)
AND (DeCodelntr < 9999)
AND (Decodelntr > 0);

Programming Hints

(' Now that we've received a valid input let's Right-Justify it

(.

(.

bydoingaRe-Write to the information in the Quantity
f i e Id. ')

Vtype >'Binary.';

ValidateErc (ReadField (Ads Form,
Ads Field(1),
Field.Ian,
Index,
Ads Quantity,
2,
Ads cBytesRead,
Ads Vtype(1)));

Val idateErc (WriteField (Ads Form,
Ads Field[1),
Field.Ian,
Index,
Ads Quantity,
2 t
Ads Vtype[1]));

Calculate, Right-Justify and display the TotalPrice

TotalPrice := UnitPrice •Quantity;

IF ENCODE (StrCodeNum,TotalPrice:7:2)
THEN
Fie Id := 'TotalPrice';
Vtype :='Character.';

Val idateErc (WriteField (Ads Form,
Ads Field[1J.
Field.Ian,
Index,
Ads StrCodeNum[1).
7'
Ads Vtype[1))) ;

Calculate, Right-Justify and display the AmountDue

AmountDue := AmountDue + TotalPrice;

.)

.)

Programming Hints 1-31

IF ENCODE !StrCodeNum,AmountDue:7:2)
THEN

Field := 'TotalPrice';
Vtype := 'Character.';

Val idateErc WriteField (Ads Form,

END;

Ads Field(1],
Field. len,
Index,
Ads StrCodeNum[1]
7,
Ads Vtype[1]));

(' Exit Back to the Executive Gracefully ')

Ex i t

END.

5016793

Programming Hints 1-33

Hint 12: Using Far Variables

Since accessing data outside the default data segment is
slower than accessing data within the default data segment,
programs will run faster if the most frequently-accessed
variables are allocated in the default data segment.

Example:

TYPE MESSAGE = LSTRING(255);

VAR
a: ARRAY [l. .3000] OF CHAR;
b [FAR]: ARRAY [l .• 100] OF MESSAGE;

In this declaration, array "a" represents frequently-used data
that were deliberately placed in DGROUP for fast access. On
the other hand, array "b" represents seldom-used data that
might cause the default data segment to exceed 64K.

Far variables have ADS type and can be combined with ADS
variables to manipulate data in far memory. To compile
faster, initialize far variables in the VALUE section in the
same order as you declare them in the VAR section.

5016793-003

Glossary-1

Glossary

Applications. Applications are programs that provide a complete user interface.

ASCII. ASCII, the American Standard Code for Information Interchange, defines
the character set codes used for information exchange between equipment.

Asynchronous Terminal Emulator. The Asynchronous Terminal Emulator (ATE)
allows a workstation to emulate an asynchronous character-oriented ASCII
terminal (glass TIY).

ATE. See Asynchronous Terminal Emulator.

Attribute. An attribute gives additional information about a procedure or function
(for example, the ORIGIN attribute tells the compiler where the code for an
EXTERN procedure or function resides). Attributes are available at the extended
level of Pascal.

Buffer variable. A buffer variable (F'1') is associated with every file F. The GET
and PUT procedures use the buffer variable to READ from and WRITE to files.

Code listing. A code listing is an English-language display of compiled code.

Compiland. A compiland is a source file that the compiler is capable of
compiling. Pascal permits three kinds of compilands: programs, modules, and
implementation of units.

Compiler. BTOS Compilers translate high level language programs into BTOS
object modules (machine code).

Constant. A constant is a value that you know prior to running a program and
do not expect to change while the program runs. Typical constants could be your
birthdate, the number of days in the week, the name of your dog, and the phases
of the moon.

Constant identifier. A constant identifier introduces the identifier as a synonym
for the constant. Constant identifier declarations consist of the identifier, followed
by an equal sign and the constant value. You should put constant declarations in
the CONST section of a compiland, procedure, or function.

Crash dump. A crash dump is the output (memory dump) resulting from a
system failure.

Customizer. The BTOS Customizer software provides object module files that
allow you to customize the operating system.

Data type. A data type is a set of values that a variable or value can have within
a program. Types are either predeclared or declared explicitly. In Pascal, types
can represent a single value (simple data type), can be a collection of values
(structured data type), or can allow recursive definition of types (reference type).

Directive. A directive gives information about a procedure or function (for
example, the EXTERN directive indicates that a procedure or function resides in
another loaded module). It also replaces the block (declarations and body)
normally included after the heading to indicate that only the procedure's or
function's heading occurs.

5016793-003

Glossary-2

Executive. The Executive is the BTOS user interface program; it provides
access to many convenient utilities for file management.

Explicit field offsets. Explicit field offsets are assigned to a record's fields when
interfacing to software in other languages (since control block formats may not
conform to the usual field allocation method); however, because explicit field
offsets permit unsafe operations, It is recommended that you not use them unless
the interface is necessary.

Expression. An expression is either a value or a formula for computing a value.
It consists of a sequence of operators that indicate the action to be performed (for
example, A + 2) and operands. There are three basic kinds of expressions:
arithmetic, Boolean, and set.

I Far Variables. These are variables declared with the FAR attribute that
possess a unique, fixed location in segmented memory outside of the default data
segment (DGROUP). They are referenced with a 32-bit address instead of a 16-bit
offset address.

Field. A field is an area in a display form that contains parameters.

Fiie. A fife is a structure made up of a sequence of components, all of the same
type. File structures are either BINARY (raw data files) or ASCII (human-readable
text fifes).

Function. A function is a procedure that returns a value of a particular type, is
invoked in expressions wherever values are called for, and can pass parameters.
You can nest functions within themselves and have functions call themselves.
Functions can be pure or impure.

Function designator. A function designator specifies that a function has been
activated. It consists of the function identifier, followed by a list of parenthetical
"actual parameters" (which substitute, point for point, for their corresponding
"formal parameters" in the function declaration).

Identifier. An identifier is a name (other than a Pascal reserved word) that
denotes a constant, variable, procedure, function, program, or tag field in a I record. An identifier begins with an uppercase or lowercase alphabetical letter,
followed by additional letters, digits O through 9, or underscores. Only the first 31
characters are used and identifiers must be uniquely distinguished ir. the first 31
characters.

Impure function. An impure function is a function that causes side effects when
used (such as changing a file's·static variable).

Language Development. The BTOS Language Development software provides
the Linker, Librarian, and Assembler programs (LINK, LIBRARIAN, and
ASSEMBLE Executive commands).

LED. LED stands for light-emitting diode (the red light on a keyboard key) .

.lib. ".lib" is the standard file name suffix for library files.

Librarian. The Librarian is a program that creates and maintains object module
libraries. The Linker can search automatically in such libraries to select only those
object modules that a program calls.

Library. A library is a stored collection of object modules (complete routines or
subroutines) that are available for linking into run files.

Library file. A library file can contain one or more object modules. The file
name normally includes the suffix ".lib".

Glossary-3

Link. LINK is the Executive command that displays the Linker command form.

Linked-list data structure. A linked-list data structure contains elements that link
words or link pointers connect.

Linker. The Linker is a program that combines object modules (files that Compilers
and Assemblers produce) into run files.

LSTRING. LSTRING is a feature that allows variable-length strings. Characters in an
LSTRING can be accessed with the usual array notation .

. map. .map is the standard file name suffix for list files.

Memory array. A memory array is data space the BTOS Loader allocates above the
highest task address.

Metacommands. Metacommands comprise the compiler control language. Using
metacommands, you can specify options that affect the overall compilation operation;
for example, you can conditionally compile different sources, generate a listing file, or
enable or disable runtime error checking code. You prefix metacommands with a dollar
sign and insert them within comment statements.

Module. A module is a program without a body. It contains the declaration of
variables, types, procedures, and functions but does not contain program statements; it
ends with the reserved word END and a period.

No-overflow arithmetic function. The no-overflow arithmetic function uses 16-bit
and 32-bit modulo arithmetic. It returns the overflow or carried number instead of
invoking a runtime error.

Numeric constants. Numeric constants are numbers that cannot be reduced (such as
45, 12.3, and 9E12). A numeric constant's notation generally indicates whether the
numeric constant is a REAL, INTEGER, WORD, or INTEGER4 type .

. obj. .obj is the standard file name suffix for object module files.

Object module. An object module is the result of a single Compiler or Assembler
function. You can link the object module with other object modules into BTOS run files.

Offset. The offset is the number of bytes between the beginning of a segment and
the memory location.

Operator. An operator is a form of punctuation that indicates some operation to be
performed. Operators can be alphabetic, or one or two alphanumeric characters.

Overlay. An overlay is a code segment made up of the code from one or more object
modules. An overlay is loaded into memory as a unit and is not permanently
memory-resident. See also virtual code segment management.

Parameter. A parameter is a variable or constant that is transferred to and from a
subroutine or program.

Pascal. Pascal is one of the high level languages you can use to write BTOS
programs. You can use the Pascal Compiler to convert the programs into BTOS object
modules.

5016793

Glossary-4

Pointer type. A pointer type is a set of values that points to variables of a given
type (known as the reference type).

Procedure. A procedure acts as a subprogram that executes under the main
program's supervision. Procedures are invoked as program statements. You can nest
procedures within themselves and have procedures call themselves.

Process. A process is a program that is running.

Pure function. A pure function is a function that performs only one action (such as
only taking one or more values from a domain to produce a resulting value in a range).

Real constant. A real constant is a number that includes a decimal point or
exponent, providing about seven digits of precision with a maximum value of about
l.701411E38. REAL numeric constants must be greater than or equal to 1.0E-38 and
less than 1.0E + 38.

Record. A structure consisting of a fix11d number of components, usually of different
types. The definition of a record type specifies the type and an identifier for each field
(or component) within the record.

Reference variable. A reference variable points to a data object; thus, the value of
a reference variable is a reference to that data object. There are three kinds of
reference variables: pointer variables, ADR variables, and ADS variables.

Reserved word. A reserved word is a fixed part of the Pascal language. Reserved
words include statement names (for example, BREAK) and words like BEGIN and END
that bracket the main body of the program.

Reverse video. Reverse video displays dark characters on a light screen .

. run. .run is the standard file name suffix for run files.

Run file. A run file is a complete program: a memory image of a task in relocatable
form, linked into the standard format BTOS requires. You use the Linker to create run
files.

Run file checksum. The Run-file checksum is a number the linker produces based
on the summation of words in the file. The system uses the checksum to check the
validity of the run file.

Segment. A segment is a contiguous area of memory that consists of an integral
number of paragraphs. Segments are usually classified into one of three types: code,
static data, or dynamic data. Each kind can be either shared or nonshared.

Segment address. The segment address is the segment base address. For an
8086/80186 microprocessor, a segment address refers to a paragraph (16 bytes).

Segmented address. A segmented address is an address that specifies both a
segment base and an offset.

Segment element. A segment element is a section of an object module. Each
segment element has a segment name.

Glossary-5

Segment override. Segment override is operating code that causes the 8086/80186
to use the segment register specified by the prefix instead of the segment register that
it would normally use when executing an instruction.

Separator. A separator delimits numbers, reserved words, and identifiers. Separators
can be the space character, tab character, form feed character, new line marker, or
comment.

Short-lived memory. Short-lived memory is the memory area in an application
partition. When BTOS loads a task, it allocates short-lived memory to contain the task
code and data. A client process can also load short-lived memory in its own partition.

Simple data type. Simple data type is a data type that is organized as finite and
countable (ordinal type), as a nonordinal value of a given range and precision (REA), or
as a subset of the whole numbers (INTEGER4).

Simple statement. A simple statement is a statement in which no part constitutes
another statement. The assignment statement and procedure statement are two kinds
of simple statements.

Stack. A stack is a region of memory accessible from one end by means of a stack
pointer.

Stack frame. The stack frame is a region of a stack corresponding to the dynamic
invocation of a procedure. It consists of procedural parameters, a return address, a
saved-frame pointer, and local variables.

Stack pointer. A stack pointer is the indicator to the top of a stack. The stack
pointer is stored in the registers SS:SP.

Statement. A statement appears in the body of a program, procedure, or function to
denote actions that can be executed (such as reading files). There are two kinds of
statements: simple and structured.

String constant. A string constant contains from 1 to 255 characters and can
consist of concatenations of other string constants including string constant identifiers,
the CHR () function, and structured constants of the STRING type.

String literal. A string literal is a sequence of characters enclosed in a single
quotation mark. (The single quotation mark distinguishes string literals from string
constants.)

Structured statement. A structured statement is a statement that consists of other
statements. Compound statements and conditional statements are two kinds of
structured statements .

. sym. .sym is the standard file name suffix for the symbol file.

Symbol. Symbols can be alphanumeric and/or any other characters (such as
underscore, period, dollar sign, pound sign, or exclamation mark).

Symbol file. The Linker symbol file (suffix .sym) contains a list of all public
symbols.

5016793

Glossary-&

Symbolic instructions. Symbolic instructions are instructions containing mnemonic
characters corresponding to Assembly language instructions. These instructions cannot
contain user-defined public symbols.

Sys.Cmds. The Executive command file ([Sys]<SYS>Sys.Cmds) contains information
on each Executive command.

System build. System build is the collective name for the sequence of actions
necessary to construct a customized BTOS image.

System image. The system image file ([Sys]<SYS>Syslmage.Sys) contains a run file
copy of BTOS.

System partition. The system partition contains BTOS and dynamically installed
system services.

System process. A system process is any process that is not terminated when the
user calls Exit.

System service process. A system service process is an operating system process
that services and responds to requests from client processes.

Task. A task consists of executable code, data, and one or more processes.

Task image. A task image is a program stored in a run file that contains code
segments and/or static data segments.

Temporary file. A temporary file is a file that is independent of the operating
system. You can create temporary files when a program needs a scratch file for
temporary, intermediate data.

Text file. A text file contains bytes that represent printable characters or control
characters (such as tab, new line, etc.). ·

UCB. See User Control Block.

Unit. A unit provides a structured way to access separately compiled modules. It
consists of an interface and an implementation.

Unresolved external reference. An unresolved external reference is a public symbol
that is not defined, but is used by the modules you are linking.

User control block. The User Control Block (UCB) contains the default volume,
directory, password, and file prefix set by the last Set Path or Set Prefix operation.

User process. A user process is any process that is terminated when the user calls
Exit.

Utilities. Utilities are programs that use the Executive user interface (such as Floppy
Copy or lvolume).

Variable. A variable is a value that you expect will change during the course of a
program. Every variable must be of a specific data type, and may have an identifier.

Glossary-7

Variable attribute. A variable attribute gives the compiler special information about
the variable. For example, the READONLY attribute prevents a variable from being
altered or written to. You can give multiple attributes to a variable.

Variable declaration. A variable declaration consists of the identifier for a new
variable, followed by a colon and a type.

Video attributes. Video attributes control the presentation of characters on the
display.

Virtual code segment management. Virtual code segment management is the
virtual memory method BTOS supports.

The method works as follows: The Linker divides the code into task segments that
reside on disk (in the run file). As the run file executes, only the task segments that
are required at a particular time reside in the application partition's main memory; the
other task segments remain on disk until the application requires them. When the
application no longer requires a task segment, another task segment overlays it.

5016793

Index
A

Accessing the system date and time using Pascal, 1-16
Additional error messages (2400-2499), A-37
Address reference data type, 7-33

segment parameters, 7-35
using the, 7-36

Applications, Glossary-1
Arithmetic

expressions, 3-5
operations, 3-5
procedures and functions, 12-8, 12-24

Arrays, 7-8
ASCII, Glossary-1

character set, 3-1
structure files, 7-25

Assignment statements, 3-6, 10-4
Asynchronous Terminal Emulator, Glossary-1
ATE, Glossary-1
Attributes, 8-7, 11-8, Glossary-1

combining, 8-12
EXTERN, 8-9
FAR, 8-8A
ORIGIN, 8-10
PUBLIC, 8-9
PURE, 11-8, 11-12
READQNLY, 8-11
STATIC, 8-8

Avoiding limits on
code size, 15-9
data size, 15-9

B

Back end error messages, A-27
BINARY structure files, 7-25
Body program parts, 3-9
Boolean

expressions, 3-5, 9-5
ordinal data type, 7-4

BREAK statement, 3-7, 10-8, 10-16
BTOS status codes, 1-20
Buffer variable, 7-24, Glossary-1

c
CASE statement, 3-7, 10-11
Character

ASCII set, 3-1
strings, 6-9
underscore, 4-2

5016793-003

lndex-1

lndex-2

CHAR ordinal data type, 7-4
Code size

avoiding limits on, 15-9
Combining and comparison operations, 3-5
Combining attributes, 8-12
Commands

DISABLE CLUSTER, 2-2
FLOPPY INSTALL, 2-4
INSTALLATION MANAGER, 2-4
metacommands, 3-1, Glossary-3
RESUME CLUSTER, 2-3
SOFTWARE INSTALLATION, 2-1

Comparison and combining operations, 3-5
Compatibility of data types, 7-39
Compilands, 3-8, 14-1, Glossary-1

modules, 14-4
programs, 14-2
units, 14-7

Compiler, 1-1, Glossary-1
installing it, 2-2

Compile time memory
working with limits on, 15-11

Compiling and linking large programs, 15-8
avoiding limits on code size, 15-9
avoiding limits on data size, 15-9

Compiling a Pascal program, 15-1
complex expressions, 15-13
identifiers, 15-11
working with limits on Compile time memory, 15-11

Components of identifiers
digits, 4-1
letters, 4-1
the underscore character, 4-2

Compound statements, 10·9
Conditional statements, 10-10

CASE statement, 10-11
IF statement, 10-1 0

Constant, Glossary-1
expressions, 6-12
identifiers, 6-4, Glossary-2

Constants, 3-2, 6-3, Glossary-1
character strings, 6-9
expressions, 6-12
identifiers, 6-4
INTEGER, WORD and INTEGER4, 6-7
nondecimal numbering, 6-8
numeric, 6-5
REAL, 6-6
structured, 6-1 O

Controlling the video display of
character attributes, H-2
line scrolling, H-2
pausing between full frames, H-7
screen attributes, H-3
the cursor position and its visibility, H-4
the keyboard LED indicators, H-7

Coordinates of the video display, H-2
Crash dump, Glossary-1
Customizer, Glossary-1
CYCLE statement, 3-7, 10-8, 10-16

D

Data conversion procedure, 12-4
Data size

avoiding limits on, 15-9
Data types, Glossary-2

compatibility, 7-39
extended Pascal, G-5
packed, 7-37
procedural and functional, 7-1
reference, 3-3, 7-1
simple, 3-3, 7-1
structured, 3-3, 7-1

Debugging and error handling metacommands, 5-4, 15-8
Declaration section, 3-8
Deinstalling CTOS Pascal, 2-5
Digital components of identifiers, 4-1
Directing the video display output, H-6
Directives, 11-8, Glossary-2

EXTERN, 11-8, 11-10
FORWARD, 11-8, 11-10

DIRECT mode files, 7-27
DISABLE CLUSTER command, 2-2
Dynamic allocation procedures, 12-2

E

Empty statement, 10-3
EMSEQQ, 5-4
Enumerated ordinal data type, 7-4
Erasing to the end of a line or frame, H-8
Error conditions in escape sequences, H-1

5016793-003

lndex-3

lndex-4

Error messages, A-1
additional (2400-2499), A-37
back end errors, A-27
file system errors (1000-1099), A-29
file system errors (11 00-1199), A-30
front end errors, A-2
INTEGER4 errors (2200-2249), A-36
internal errors, A-28
memory errors (2000-2049), A-32
run time errors, A-28
structured type errors (2150-2199), A-36
type REAL arithmetic errors (2100-2149), A-34

EVAL procedure, 9-13
Evaluation

expressions, 9-1 0
lazy, 13-5

Examples of listing file format, 15-14
Executing a Pascal program, 15-5

limitations, 15-21
Executive, Glossary-2
Explicit field offsets, 7-21, Glossary-2
Expressions, 9-1, Glossary-2

arithmetic, 3-5
Boolean, 3-5, 9-5
complex, 15-13
constant, 6-12
evaluating, 9-10
function designators, 9-9
other features, 9-13
set, 3-5, 9-7
simple, 9-2

Extended 1/0 feature, 7-28
Extended level, 1-1

intrinsics identifier, 6-2
1/0 identifier, 6-3
predeclared identifiers, 6-2
procedures, 12-12
reserved words, D-1

Extended Pascal
compared to ISO Standard, G-1

Extended Pascal features
summary of, G-4

EXTERN
attribute, 8-9
directive, 11-8, 11-1 O

F
FAR

attribute, 8-7, 8-8A
memory, 15-1 OA
programming hints, 1-33
symbol table in far memory, 15-1 OB
variables, Glossary-2

Features, 1-2
Field, Glossary-2
File access modes

DIRECT mode files, 7-27
SEQUENTIAL mode files, 7-27
TERMINAL mode files, 7-26

File-oriented procedures and functions, 13-1
extended level 1/0, 13-21
primitive, 13-1
temporary files, 13-24
textfile 1/0, 13-7

Files, structured data type
ASCII structure, 7-25
BINARY structure, 7-25
Buffer variable, 7-24
file structures, 7-25

File system
errors (1000-1099), A-29
errors (1100-1199), A-30
overview, B-1
procedures, 13-1

Filling in a rectangle in the video display, H-4
First.asm, 2-2
First.ob], 2-2
Form example, 1-7
Floppy installation, 2-4
Forms program flowchart, 1-11
Forms reporter printout, 1-9
FOR statement, 3-7, 10-13
FORWARD directive, 11-8
Front end error messages, A-2
Function designator, 9-9, Glossary-2
Functions, 3-7, 11-4, 12-1, Glossary-2

arithmetic, 12-8
designators, 9-9
EVAL procedure, 9-13
impure, Glossary-2
keywords, 5-14
no-overflow arithmetic, 12-24, Glossary-3
pure, Glossary-4
REAL, 12-10
RESULT, 9-13
RETYPE, 9-14

5016793-003

lndex-5

lndex-6

G
GOTO statement, 3-7, 10-7

H
Heap management, 12-23

Identifiers, 3-2, Glossary-2
components 4-1
constant, 6-4, Glossary-1
INTEGER4 type, 6-3
miscellaneous, 6-3
predeclared, 6-2
the scope of, 6-1

IF statement, 3-7, 10-10
Impure function, Glossary-2
Incompatibility

word and integer type, 1-1
Installing

from a floppy, 2-4
from a server, 2-5
software installation, 2-1
the Math Server, J-1
using the Installation Manager, 2-4
using the Software Installation Command, 2-2

INTEGER
constant, 6-7

INTEGER4, 7-7
constant, 6-7
errors (2200-2249), A-36
predeclared identifiers, 6-2
type identifier, 6-3

Internal error messages, A-28
Intrinsics identifier, 6-2
1/0 identifier, 6-3
ISO standard

compared to extended Pascal, G-1

L

Language
development, Glossary-2
overview, 3-1

Lazy evaluation, 13-5
LED, Glossary-2
Letter components of identifiers, 4-1
Letters, 4-1

Levels
extended, 1-1
standard, 1-1
system, 1-1

Levels and features, 1-1
Lib, Glossary-2
Librarian, Glossary-2
Library, Glossary-2
Library file, Glossary-2
Library procedures and functions

heap management, 12-23
initialization and termination routines, 12-22
no-overflow arithmetic functions, 12-24

Limits on
code size, 15-9
compile time memory, 15-11
data size, 15-9
executing a program, 15-21

Line categories
components of identifiers, 4-1
separators, 4-2
special symbols, 4-2
unused characters, 4-4

Link, Glossary-3
Linked-list data structure, Glossary-3
Linker, Glossary-3
Linking a Pascal program, 15-3
Listing

code, Glossary-1
examples of file format, 15-14
file control, 5-12

Logical and comparison operations, 3-5
LSTRING, 7-14, Glossary-3

M
Map, Glossary-3
Math coprocessor, J-1
Math Server, J-1
MAXINT, 6-7, 7-3
MAXINT4, 6-7, 7-7
MAXWORD, 6-7, 7-3
Memory array, Glossary-3
Memory errors (2000-2049), A-32
Metacommands, 3-1, Glossary-3

summary of, F-1
to control code optimization, 5-2
to control debugging and error handling, 5-4
to control listing file format, 5-12
to control use of the source file during compilation, 5-9

5016793-003

lndex-7

Index-a

Minimizing program size, 1-32
Miscellaneous identifiers, 6-3
Module compiland, 14-4
Modules, 3-9, 14-4, Glossary-3
Multiprocessing programming hints, 1-5
Multiple data segments, 15·1 OA

N
Names of

attributes, D-1
directives, D-1

Nondecimal numbering, 6-8
No-overflow arithmetic function, 12-24, Glossary-3
Notation, 3-1, 4-1
Numeric constants, 6-5, Glossary-3

0
Obj, Glossary-3
Object module, 2-1, Glossary-3
Object module files, 2·1
Offset, Glossary-3

explicit field, Glossary-3
Operations

arithmetic, 3-5
combining and comparison, 3-5
logical and comparison, 3-5

Operator, Glossary-3
Operators, 4-3, G-6
Ordinal data types

BOOLEAN, 7-4
CHAR, 7-4
enumerated types, 7-4
INTEGER, 7-3
subrange types, 7-5
WORD, 7-3

ORIGIN attribute, 8-10, 11-12
Overlay, Glossary-3

programming hints, 1-1

p

Packed data types, 7-37
Parameter, Glossary-3
Pascal, Glossary-3

Compiler, 1-1
Compiler files, 2-2
extended features, 1-2, G-4
levels, 1-1
linking, 1-1
object modules, 2-1
sample program, 1-20
three-part structure, 3-9
using it to access the system date and time, 1-16
using it with BTOS and forms, 1-5

PASCALFE.run, 2-2
PASCAL.lib, 2-2
PASCALLST.run, 2-2
PASCALOPT.run, 2-2
PASCAL8087.lib, 2-2
PasMin.obj, 2-2
Pointer type, 7-30, Glossary-4
Predeclared files 1/0, 7-27
Predeclared identifiers, 6-2

extended level intrinsics, 6-2
extended level 1/0, 6-3
INTEGER4 type, 6-3
miscellaneous, 6-3
string intrinsics, 6-2
super array type, 6-3
system level intrinsics, 6-2
WORD type, 6-3

Procedural and functional data types, 7-38
Procedure, Glossary-4
Procedure call statement, 3-7
Procedures, 3-7, 11-1
Procedures and functions, 11-1, 12-1, E-1

arithmetic, 12-8
attributes and directives, 11-8
data conversion, 12-4
dynamic allocation, 12-2
EVAL, 9-13
extended level intrinsics, 12-12
file system, 13-1
functions, 11-4
library, 12-21
parameters, 11-13
primitive, 13-1
procedures, 11-3
REAL, 12-10
string intrinsics, 12-19

5016793-003

lndex-9

lndex-10

Procedures and functions (continued)
summary of, E-1
system level intrinsics, 12-16
temporary files, 13-24
textfi le 1/0, 13-7

Procedure statements, 10-6
Process, Glossary-4
Program compiland, 14-2
Programming hints

accessing the system date and time using Pascal, 1-16
BTOS status codes, 1-20
linking Pascal, 1-1
long heap, 1-4
minimizing program size, 1-32
multiprocessing, 1-5
overlays, 1-1
program parameters, 1-3
sample Pascal programs, 1-20
using Pascal with BTOS and forms, 1-5
using far variables, 1-33
word and integer type incompatibility, 1-1

Program parts
body, 3-9
declaration section, 3-9
heading, 3-9

Programs, 14-2
Protected Mode, K-1
PUBLIC attribute, 8-9, 11-11
Punctuation, 4-3
PURE attribute, 11-12
Pure function, Glossary-4

R
READONLY attribute, 8-11
REAL

constants, 6-6, Glossary-4
functions, 12-10

Record, Glossary-4
Records

explicit field offsets, 7-21
variant, 7-1 9

Reference data type, 3-3, 7-1
address types, 7-33
pointer types, 7-30

Reference variable, Glossary-4
REPEAT statement, 3-7, 10-13
Repetitive statements

BREAK statement, 10-16
CYCLE statement, 10-16
FOR statement, 10-13
REPEAT statement, 10-13
WHILE statement, 10-12
WITH statement, 10-17

Reserved words, 4-4, D-1, Glossary-4
extended level, D-1
names of attributes, D-1
names of directives, D-1
standard level, D-1
system level, D-1

RESULT function, 9-13
RESUME CLUSTER command, 2-3
RETURN statement, 3-7, 10-8
RETYPE function, 9-14
Reverse video, Glossary-4
Routines of run time, C-1
Run, Glossary-4
Run file, Glossary-4

checksum, Glossary-4
Run time architecture, C-1

initialization and termination, C-4
memory organization, C-2
routines, C-1

Run time error messages, A-28
Run time size and debugging, 15-8
Runtime support routine, 5-4

s
Sample Pascal program, 1-20
Scope of identifiers, 6-1
Segment, Glossary-4
Segment address, Glossary-4
Segmented address, Glossary-4
Segment element, Glossary-4
Segment override, Glossary-5
Separators, 4-2, Glossary-5
Sequential control, 10-18
SEQUENTIAL mode files, 7-27
Set expressions, 3-5, 9-7
Sets, 7-22
Short-lived memory, 15-8, Glossary-5
Simple expressions, 9-2
Simple data types, 3-3, Glossary-5

INTEGER4, 7-7
ordinal, 7-2
REAL, 7-6

Simple statements, Glossary-5
assignment statements, 10-4
BREAK statement, 10-8
CYCLE statement, 10-8
empty statement, 1 0-4
GOTO statement, 10-7
procedure statements, 10-6
RETURN statement, 10-8

5016793-003

lndex-11

lndex-12

Software installation, 2-1
using the Installation Manager, 2-4
using the Software Installation command, 2-2

SOFTWARE INSTALLATION command, 2-1
Source file control, 5-9
Special symbols

operators, 4-3
punctuation, 4-3
reserved words, 4-4

Stack, Glossary-5
frame, Glossary-5
pointer, Glossary-5

Standard level, 1-1
reserved words, 0-1

Statements, 3-6, 10-1, Glossary-5
assignment, 3-7, 10-4
BREAK, 3-7, 10-8, 10-16
CASE, 3-7, 10-11
compound, 10-9
CYCLE, 3-7, 10-8, 10-16
empty, 10-4
FOR, 10-13
GOTO, 3-7, 10-7
IF, 3-7, 10-10
procedure call, 3-7
REPEAT, 3-7, 10-13
RETURN, 3-7, 10-8
simple, 10-4
structured, 10-9
syntax, 1 0-1
WHILE, 10-12
WITH, 10-17

Statement syntax
begin and end, 10-4
labels, 10-1
statement separation, 10-3

STATIC attribute, 8-8
String

character, 6-9
constant, Glossary-5
intrinsics identifiers, 6-2
literal, Glossary-5

Strings, 7-13
Structured constants, 6-1 o
Structured data types, 3-3, 7-8

array, 7-8
file access modes, 7-26
files, 7-23
records, 7-18
sets, 7-22
super array, 7-10

Structured statements, Glossary-5
compound statements, 1 0-9
conditional statements, 10-10
repetitive statements, 1 0-12
sequential control, 10-18

Structured type errors (2150-2199), A-36
Subrange ordinal data type, 7-5
Summary of

extended Pascal features, G-4
metacommands, F-1
procedures and functions, E-1

Super arrays
Lstrings, 7-14
strings, 7-13
type identifiers, 6-3
using strings and Lstrings, 7-16

Sym, Glossary-5
Symbol, Glossary-5

special, 4-2
Symbol fife, Glossary-5
Symbol table in far memory, 15-108
Symbolic instructions, Glossary-5
Syntactic and pragmatic features, G-4
Sys.Cmds, Glossary-6
System

T

build, Glossary-6
image, Glossary-6
level, 1-1
level intrinsics identifiers, 6-2
level 1/0, 7-30
partition, Glossary-6
process, Glossary-6
service process, Glossary-6

Task, Glossary-6
image, Glossary-6

Temporary files, 13-24, Glossary-6
TERMINAL mode files, 7-26
Terminology, xix
Text file, Glossary-6
Type compatibility

assignment compatibility, 7-41
type compatibility and expression, 7-40
type identity and reference parameters, 7-39

Type REAL arithmetic errors (2100-2149), A-34

5016793-003

lndex-13

lndex-14

u
UCB, Glossary-6
Underscore character, 4-2
Unit compiland, 14-7
Units, 3-10, 14-7, Glossary-6

implementation division, 14-12
interface division, 14-1 O

Unresolved external reference, Glossary-6
Unused characters, 4-4
User

control block, Glossary-6
process, Glossary-6

Using
far variables, 1-33
strings and Lstrings, 7-16
variables and values, 8-3

Utilities, Glossary-6

v
Variable, Glossary-6

buffer, Glossary-1
declaration, Glossary-?

Variables and values, 3-4, 8-1
attributes, 8-7, Glossary-?
declarations, 8-2
reference, Glossary-4
the value section, 8-2
using variables and values, 8-3

Variant records, 7-19
Video attributes, Glossary-7
Video display control

controlling character attributes, H-2
controlling cursor position and visibility, H-4
controlling line scrolling, H-6
controlling pausing between full frames, H-7
controlling screen attributes, H-3
controlling the keyboard LED indicators, H-7
coordinates, H-2
directing video display output, H-6
erasing to the end of the line or frame, H-8
error conditions in escape sequence, H-1
filling a rectangle, H-4

Virtual code segment management, Glossary-7

w
WHILE statement, 3-7, 10-12
WITH statement, 3-7, 10-17
WORD

constant, 6-7
ordinal data type, 7-2
reserved, D-1, Glossary-4
type identifiers, 6-3

111
501679300P003

• UNISYS

Title:

Product Information
Announcement
o New Release o Revision • Update o New Mail Code

CTOS Pascal Compiler Programming Reference Manual

This Product Information Announcement (PIA) announces the
release and availability of Update 3 to the CTOS Pascal
Compiler Programming Reference Manual, part number
5016793. Information in this manual is relative to release level
7.0, effective December 1991.

Update 3 adds Errata 1 information, corrections, and
information on new software functionality to the 7.0 level of the
CTOS Pascal Compiler Programming Reference Manual.
Update 3 is not appropriate for use with software release levels
prior to 7.0. For a complete list of new functionality, see the
CTOS Pascal Compiler Software Release Announcement
relative to release level 7.0, part number
4164 2620-000. To update your manual, remove and insert the
pages listed in Table 1.

You can order copies of this update and other CTOS product
information using the part numbers listed in Table 2. Where
applicable, Table 2 provides the part number for product
information plus the appropriate binder and slipcase, if any.
Contact your Unisys representative to get part numbers for
binders and slipcases, if you need these items.

Table 2 also contains information on new and existing
Universal Mailing List (UML) codes for this manual, as well as
the products and library of which it is a part .. The UML system
is the method Unisys uses to ensure your product information
is current and complete.

CTOS is a registered trademark of Convergent Technologies, Inc., a
wholly-owned subsidiary of Unisys Corporation.
MAPPER and Unisys are registered trademarks and MAPPER is a registered
service mark of Unisys Corporation.

Announcement only: Annoucement and attachments: System: CTOS/BTOS
not applicable see Table 1 Release: 1.0.0

October 1991
Part Number:

5016793-003

If you subscribe to a UML code, you will automatically receive
future product information announcements. Any product
information you receive relates only to the UML code you
choose. Each UML code represents either individual product
information (or multi-volume sets); a library of product
information; or all product information relating to a product.

Table 1. CTOS Pascal Programming Reference Manual

First Remove

Title page
v through xvi
xix
1-3 through 1-4
2-1 through 2-4
3-1 through 3-2
3-5 through 3-6
5-13 through 5-14
7-7 through 7-8
8-7 through 8-8

8-9 through 8-12
10-11through10-12
12-23 through 12-24
15-1 through 15-1 O

15-11through15-12
15-21 through 15-23
A-3 through A-4
A-19 through A-20
A-27 through A-28
D-1 through D-2
G-5 through G-6
1-1 through 1-2
1-5 through 1-6

Glossary-1 through 2
lndex-1 through 14

Update Pages ·

Then Insert

Title page
v through xvi
xix
1-3 through 1-4
2-1 through 2-6
3-1 through 3-2
3-5 through 3-6
5-13 through 5-14
7-7 through 7-8
8-7 through 8-8
8-8A
8-9 through 8-12
10-11through10-12
12-23 through 12-24
15-1through15-10
15-1 OA through 15-1 OB
15-11 through 15-12
15-21 through 15-23
A-3 through A-4
A-19 through A-20
A-27 through A-28
D-1 through D-2
G-5 through G-6
1-1 through 1-2
1-5 through 1-6
1-33
Glossary-1 through 2
lndex-1 through 14

Changes are indicated by vertical bars in the outside margins
of the replacement pages.

In combination with the different types of customer product
information, each UML code can represent the following:

• Announcement Category

Unisys announces product offerings using a Product
Information Announcement (PIA) and a Software Release
Announcement (SRA). You are reading a PIA. The SRA
provides you with a concise technical description of the
software release it announces, as well as specific ordering
information.

You can subscribe to a UML code for the SRA only, or for
all announcements (PIA, SRA, and discontinuance
announcements).

Note: When you order product information, either alone or
as part of another product package, a PIA is
included, if available. A PIA is not included with a
Software Release Announcement.

• Release Level

You can order product information related to a particular
release level by using the item's part number. You can also
subscribe to a UML code for product information
announcements relative to the current and all future
release levels. (This is called "ongoing".)

For each UML code, you can indicate the quantity of product
information you want Unisys to send to each address. For each
UML mailing, Unisys checks for duplicate or overlapping
subscriptions to ensure you receive the correct quantity.

In preparation for your UML subscription, you may want to
review Table 2 to make sure your existing manual is current
and complete. Order any product information you require (by
part number) to bring you up to date, then select the UML
code or codes that match your software announcement needs
and place your subscription order.

To order priced copies by part number, contact Unisys Direct
at (800) 448-1424, or your Unisys representative or reseller.
For UML subscriptions, contact your Unisys representative or
reseller. (Unisys personnel: UML subscription and special
product information ordering and UML subscription instructions
are at the end of this PIA.)

Table 2. Part Numbers and UML Codes for CTOS Pascal
Product Information

UML Code for
Part Number Announcement

Documentation,
Documentation Binder &

SRA Description Release Only Slipcase All Only

CTOS Pascal 5.1 5016793 j4164 BT169 BT170
Compiler (Note 1) 3131-000 (Note 2) (Note 2)

Programming
Reference Manual
(included with
style 820-PAS)

Update 1 6.0 5016793-001 - - -
(included with style
B20-PA6)

Update 2 6.1 5016793-002 - - -
(included with style
B20-PA6)

Errata 1 6.2 5016793-E01 - - -
(included with style
B20-PA6)

Update 3 7.0 5016793-003 - - -
(included with style
825-PAS)
(incorporates
Errata 1)

Software Release 7.0 14164 - BT169 BT170
Announcement 2620-000 Note 2) (Note 2)

Note 1: When you order this part number, you also receive any existing
updates and/or erratas to the manual.

Note 2: BT169 is for a subscription to all CTOS Pascal Compiler
announcements (SRA, PIA, and Discontinuance Announcements), for
all future releases. BT170 is for subscription to all
CTOS Pascal Compiler SRAs only, for all future releases.

Please address all technical communication relative to this
manual to:

Unisys Corporation
Product Information
5155 Camino Ruiz
Camarillo, CA 93012

The Following Section Is For Unisys Personnel Only

For UML subscriptions or Electronic Literature Ordering (ELO),
contact your Literature Coordinator.

You can identify your UML Literature Coordinator by accessing
the corporate MAPPER® system, DISMAP, and the
UML-COORD run. Enter your organization number or cost
center and the Payroll Location Code for the facility printing
your payroll checks. If you need a UML Literature Coordinator
for yoyr location, assign this responsibility to an individual with
DISMAP access. Have that person contact UML Maintenance
Information Distribution (MID) (see Table 3) to request security
clearance and instructions.

If you have no ELO Literature Coordinator for your location,
contact the ELO Customer Service Department as listed in
Table 3.

Table 3. UML Coordinator Contacts

Mail OFIS Link Phone FAX

Universal Malling List (UML)

Unisys Corporation MLW2/Corp NET2 NET2

Maintenance Information 423-6269 423-6892
Distribution (215) (215)

P.O. Box 500 986-6269 986-6892
Blue Bell, PA 19424-0035

If you need an ELO Literature Coordinator for your location,
assign this responsibility to an individual with DISMAP access
and have that person contact the ELO Manager at NET2

690-4935 for ELO ordering instructions.

