
[t;i L • l i Context Manager II

Programming
Guide

•
UNISYS

• UNISYS CTOS®
Context Manager II
Programming
Guide

Copyright© 1993 Unisys Corporation
All rights reserved.
Unisys is a registered trademark of Unisys Corporation.
CTOS is a registered trademark of Convergent
Technologies, Inc., a wholly owned subsidiary of
Unisys Corporation.

Release 5.0

Priced Item

November 1993
Printed in US ·America
4393 4660-000

The names, places and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any indivdual, living or otherwise, or that of any group or
association is purely coincidental and unintended.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any procfuct and
related material disclosed herein are only furnished pursuant and subject to the terms and conditions of
a duly executed Program Product License or Agreement to purchase or lease equipment. The only
warranties made by Unisys, if any, with respect to the products described in this document are set forth
in such License or Agreement. Unisys cannot accept any financial or other responsibility that may be
the result of your use of the information in this document or software material, including direct, indirect,
special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Comments or suggestions regarding this document should be submitted on a User Communication
Form (UCF) with the CLASS specified as "Documentation", the Type specified as "Trouble Report", and
the product specified as the title and part number of the manual (for example, 4393 4660-000).

MS-DOS is a registered trademark of Microsoft Corp.

Unix is a registered trademark of UNIX System Laboratories Inc.

•
UNISYS Product Information

Announcement
0 New Release • Revision 0 Update 0 Errata

Title:

CTOS® Context Manager 115.0 Programming Guide

This Product Information Announcement (PIA) announces the release and
availability of the CTOS Context Manager II Programming Guide, release 5.0,
part number 4393 4660-000.

This Guide documents the new features in the 5.0 release of CTOS Context
Manager II. It also contains corrections to the 4.1 release of the
CTOS Context/Window Manager Programming Guide.

To order additional copies of this document:

Customers in the United States can call Unisys Direct at 1-800-448-1424

All other customers can contact their Unisys representative

Unisys personnel can order through the Electronic Literature Ordering (ELO)
system

Please address all technical and documentation comments relative to this release
to:

Unisys Corporation
Product Information
5155 Camino Ruiz
Camarillo, CA 93012

Call our feedback line at : (800) 729-0451

Or, fax your comments to: (805) 389-4483

Unisys is a registered trademark of Unisys Corporation.
CTOS is a registered trademark of Convergent Technologies, a wholly owned subsidiary of Unisys
Corporation.

Initial Announcement only: All Announcements:
BT082 BT081

System: CTOS
Release: Context Manager II 5.0

(November 1993)
Part Number: 4393 4660-000

Page Status

Page

iii
iv
v through ix
x
xi
xii
xiii through xiv
1-1through1-2
2-1 through 2-9
2-10
3-1 through 3-100
A-1 through A-8
B-1 through B-19
B-20
C-1 through C-2
Glossary-1 through 7
Glossary 8
Index 1 through 2

4393 4660-000

Issue

Original
Blank
Original
Blank
Original
Blank
Original
Original
Original
Blank
Original
Original
Original
Blank
Original
Original
Blank
Original

iii

Contents

About This Guide . xiii

Section 1: Overview of Context Manager

Components of Context Manager . 1-1

Section 2: How Applications Interact Under Context Manager

Video Overview . 2-2
Applications You Must Modify to Run

Under Context Manager . • . • . • 2-3
Applications That Write Directly to the Screen Map . . 2-3
Busy Wait Loops . 2-4
Changing the Values in the Low-Memory

Interrupt Vector Table . 2-5
Positioning the Cursor . 2·5
Modifying the Exit Run File . 2-5
Graphics Applications . 2-6
Modifying the Keyboard Translation Table 2-6
Full-Screen Applications on VGA Systems 2-6

Applications Suspended in Background 2-7
Applications You Can Swap . 2-8
Communication Between Contexts 2-8
Behavior of CTOS Products Under Context Manager 2-9

Section 3: Programming for Context Manager

Checking for Context Manager and ICMS Installation 3-1
Starting and Switching Contexts . 3-2
Context Handles . 3-4
Parent/Child Relationships of Contexts 3-5

Dependent and Independent Child Contexts 3-5
Three-Tiered Ancestry . 3-5
Context Termination and the CM User Interface 3-9

Specification of Context Attributes 3-9
Long-Hved Contexts . 3-1 O
Invisible Contexts . 3-1 O
Shared Video Contexts . 3-11

Behavior of Shared Video Contexts . 3-12

4393 4660-000 v

Contents

vi

Invoking Programs Requiring Video Initialization
Placing Information in the Context Manager

Configuration File
ICMS (lnterContext Message Service)

ICMS Message Sizing
ICMS Message Buffer Sizing

Context Manager Procedural Interfaces
CMCurrentVersion
CMCutData
CMQueryActiveContext
CMQueryAutoStartAppl
CMQueryConfigFile
CMQueryContextHandle
CMQueryErc
CMQuerylfGraphics
CMQueryOtherContexts
CMQueryParent
CMReadContextEvent
CMRegisterUIMS
CMResumeContext
CMSetParent
CMStartAppl
CMStartApplByBlock
CMStartApplByName
CMStartApplOptions
CMStartBkgdApplByBlock (continued)
CMStartBkgdApplByName
CMSuspendContext
CMSwitchContext
CMSwitchToExistingContext
CMTellMeWhenMyChildTerms
CMTerminateContext
CMTransferData
CMTranslateChToFnKey
CMTranslateChTolnfo
CMTranslateChToPh
CMTranslateFnKeyTolnfo
CMTranslatePhToCh
CMUpdateCurrentConfig
NotifyCM
ReadCMConfigFile

3-13

3-13
3-13
3-15
3-15
3-16
3-17
3-18
3-20
3-21
3-24
3-25
3-26
3-28
3-29
3-35
3-37
3-44
3-49
3-50
3-52
3-59
3-61
3-63
3-66
3-68
3-70
3-71
3-72
3-73
3-75
3-76
3-78
3-80
3-82
3-83
3-85
3-86
3-87
3-90

4393 4660-000

,._

Contents

ICMS Procedural Interfaces. 3-93
ICMSCheck . 3-94
ICMSCurrentVersion . 3-96
ICMSFlush . 3-97
ICMSSend . 3-98
ICMSWait . 3-99

Appendix A: Status Codes and Messages

Status Codes . A-1
Status Messages . A-5

Appendix B: Creating a Context Manager User Interface

Requirements
Recommendations
Initializing a User Interface through the CM Service ..
Creating Context Manager Screen Features

Using Action Keys
Listing Available Applications
Obtaining Function Key Information

Function Key Number
Function Key Abbreviations
Preset Function Keys

Starting Contexts
Switching Contexts
Terminating Contexts
Long-Lived Contexts
Contexts to be Autostarted
Context Starts, Switches, and Termination
Reporting Context Status Information
Allowing Context Halting
Using a Configured Exit Run File
Supporting Data Transfer
Updating the Screen
Reporting Mail
Details on CMReadContextEvent

Sample CM User Interface Program

4393 4660-000

8-1
8-2
8-3
8-4
8-6
8-7
8-8
8-8
8-8
8-9
8-9

8-10
8-11
8-11 .
8-11
8-12
8-13
8-14
8-14
8-14
8-16
8-16
8-17
8-18

vii

Contents

Appendix C: Rebuilding a System to Allow More Contexts . . • C-1

viii

Glossary

Index

Glossary-1

. lndex-1

4393 4660-000

Figures

3-1. Three-tiered Ancestry . 3-7
3-2. Results of Parent Context Termination 3-8
3-3. Shared Video Contexts . 3-11

B-1. Sample Context Manager User Interface Main Routine B-18

4393 4660-000 ix

Tables

1-1. Context Manager Files 1-2

2-1. Context States 2-7
2-2. Product Behavior Under Context Manager 2-9

B-1. Calls Used to Implement User Interface B-5

B-1. Calls Used to Implement User Interface (cont.) B-6

C-1. Sample Calculation of nPartitions Value C-2

4393 4660-000 xi

About This Guide

This guide contains programming and reference information for CTOS
Context Manager II.

Note: Throughout the rest of this guide, Context Manager II is
abbreviated to Context Manager.

Who Should Use This Guide
To use this guide, you should be familiar with:

• the internals of the CTOS operating system

• configuring and using Context Manager

• the design, code, and functionality of the applications in which you
want to include Context Manager API calls

How This Guide Is Arranged
The information in this guide is organized as follows:

• Section 1 provides an overview of Context Manager and its
configuration.

• Section 2 explains how Context Manager works with applications
that use its API calls.

• Section 3 contains the Context Manager API calls in alphabetical
order.

How to Use This Guide
If you are writing Context Manager API calls for the first time, you
should read sections 1 and 2 to gain an understanding of how Context
Manager works. Then you can go on to section 3 for the particular API
functions you need. You may find it helpful to look over the table of
contents before you begin.

4393 4660-000 xiii

About this Guide

Reference Material
This guide includes an index as well as three appendixes. Appendix A
lists and explains Status Codes and messages (these Status Codes and
messages are also listed in the CTOS Status Codes Reference Manual).
Appendix B provides information on creating your own Context Manager
user interface. Appendix C discusses techniques for rebuilding your
operating system to allow more contexts (partitions) than standard.

Related Product Information

xiv

Table 1 lists related product information you may find helpful.

Type of Information

CTOS Executive
commands

CTOS internals and
reference information,
VAM information

Installing and configuring
Context Manager

Using Context Manager

Information about
applications you plan to
run under Context
Manager

Table 1. Related Product Information

Document Title

CTOS Executive Reference Manual

CTOS Executive User's Guide

CTOS Operating System Concepts Manual

CTOS Programming Guide

CTOS Procedural Interface Reference Manual

CTOS Context Manager Installation and
Configuration Guide

CTOS Context Manager Operations Training Guide

The appropriate application manuals

4393 4660-000

Section 1
Overview of Context Manager

CTOS Context Manager is an application users or other applications can
use to manage multiple applications running concurrently on a
workstation. To an application running under it, Context Manager
functions as an extension of the operating system.

Context Manager requires the CTOS III 1.1 (or higher) operating system.

Components of Context Manager
Context Manager consists of the following components:

• Context Manager Service (CM Service)

The CM Service works with CTOS to provide an environment which
allows several interactive applications to run simultaneously.

• Context Manager Screen (CM Screen)

The CM Screen is the default Context Manager user interface. The
CM Screen monitors video and keyboard activity.

• CM Editor

The CM Editor is a configuration utility that enables you to choose
the applications to run under Context Manager.

• InterContext Message Service (ICMS)

ICMS is a system service that allows applications within Context
Manager partitions to communicate with each other through
messages. ICMS handles the storing, queuing, and dequeuing of
these messages.

Table 1-1 lists files associated with Context Manager.

4393 4660-000 1-1

Overview of Context Manager

Table 1-1. Context Manager Files

1-2

File Name

Cm Install.run

CmlnstallMsg.bin

CmVM.run

CmVMMsg.bin

Cm Null.run

CmScreen.run

CmScreenMsg.bin

Cm Editor.run

CmConfigMsg.bin

CmConfigFrm.Lib

Cmlnvoker.run

IC MS.run

Request. Cm.Sys

CmConfig.Sys

Cm.user

CmAPl.Lib

Description

Run file that installs Context Manager

Message file for the installation run file

Context Manager run file

Message tile for Context Manager

Exit run file for contexts under Context Manager

Run file for the default user interface, CM Screen

Message file for the default user interface, CM
Screen

CM Editor run file. You use CM Editor to edit
Context Manager configuration files

Message tile for the CM Editor

Library of forms used by CM Editor

Clears the display and creates frames like the
Executive

lnterContext Message Service (ICMS) run file

Loadable request file that defines CM Service
requests

Default Context Manager configuration file. You
can edit this file to include the applications you want
to run under Context Manager or you can create
other configuration files

If the file [Sys}<Sys>CmConfig.sys already exists on
your hard disk, the software installation procedure
does not overwrite it

Sample user file. If you enter the user name CM on
the SignOn form, this file loads Context Manager to
load automatically

If the file [Sys]<Sys>Cm. user already exists on your
hard disk, the software installation procedure does
not overwrite it

Llibrary of procedural interfaces you can link with
applications that use Context Manager

4393 4660-000

1~

Section 2
How Applications Interact Under Context
Manager

This section describes how applications interact under Context Manager.
It includes the following information:

• video overview

• application modifications under Context Manager

• suspended background applications

• applications you can swap

• communication with Context Manager

• behavior of CTOS products and system services under Context
Manager

The information described in this section presumes your familiarity with
CTOS. For information regarding the operating system, refer to the
CTOS Operating System Concepts Manual.

You should also be familiar with each application that you run under
Context Manager. Refer to the appropriate application's documentation
for information.

Context Manager requires the CTOS Ill 1.1 (or higher) operating system.
From the application programmer's viewpoint, Context Manager acts as
an extension of the operating system and takes over some of its
functions. It lets applications run concurrently, each using a separate
memory partition.

You can write your application program as ifit were running on a single­
partition operating system outside of the Context Manager software, but
the program must conform to the guidelines given in this section.

4393 4660-000 2-1

How Applications Interact Under Context Manager

Video Overview
Each memory partition has an application character map and a system
structure called the video pointer map.

The video pointer map is an array of pointers, one for each line of the
screen. These pointers always point to the location of the associated line
of the application's screen.

The application character map is an array that stores lines of the screen
when an application is running in the backgTOund.

When you switch from one context (context A) to another context (context
B), the following three steps occur:

• The real screen is copied into context A's character map.

• Context B's character map is copied to the real screen.

• The pointers in both video pointer maps are updated to reflect the
appropriate position, either on the real screen or in the application
character map.

2-2 4393 4660-000

How Applications Interact Under Context Manager

Applications You Must Modify to Run Under
Context Manager

Because Context Manager acts as an extension of the operating system,
most applications run without modification.

However, you must modify the following types of applications so they can
run under Context Manager:

• applications that write directly to the real screen map in memory

• applications containing busy wait loops

• applications that change a value in the low-memory interrupt vector
table directly in memory

• applications that position the cursor using the video controller port

• applications that change the exit run file

• graphics applications released prior to CTOS II 3.3

• applications that control the video and keyboard but do not at the
same time control all the lines of the screen

Note: Two applications cannot share communications ports. For
example, you cannot run two versions of the Asynchronous
Terminal Emulator at the same time since they both use
channel A.

Applications That Write Directly to the Screen Map

The mapping of video lines ensures that the output from write requests
goes to the correct place: either to the real screen or to the application
character map. The Video Access Method (V AM) and Video Display
Management (VDM) do this mapping invisibly to the application.
Therefore, applications that use V AM and VDM calls work without
modification under Context Manager.

Context Manager controls the mapping of the video lines to ensure that
the output from all write requests goes to the correct place: either to the
real screen or to the application character map. However, programs that
write directly to the screen cannot be detected; the output from their
write requests goes directly to the screen whether they own the lines of
the screen or not.

4393 4660-000 2-3

How Applications Interact Under Context Manager

To avoid this problem, you should use V AM to write to the display
instead of writing directly to the screen.

For information on using V AM and VDM calls to initialize the screen,
refer to the CTOS I Open Programming Practices and Standards. For
information on manipulating characters and character attributes using
V AM calls, refer to the CTOS Operating System Concepts Manual,
Volume I.

Note: If you are running an application written in Pascal version 4.0 or
earlier, you must indicate Yin the [Needs Exec screen?] field when
adding this application to the configuration file.

Busy Wait Loops

2-4

When dealing with the keyboard, you should not include busy wait loops
in your application code.

The usual way to read keystrokes from the keyboard is to issue a CTOS
ReadKbd call. An application using calls to ReadKbdDirect with mode 1
can generate a busy wait. Since mode 1 means that the operating system
returns immediately whether a character is available or not, you can
write an application to loop, awaiting a character to arrive.

When an application is running in foreground, Context Manager raises
that application's priority (that is, it gives it a lower numeric value).
However, when an application runs in background, its priority returns to
normal. If an application contains a busy loop and is running in
foreground, its priority is higher than the priorities of other applications
in background. Because the foreground application always runs,
background applications do not get processor time, and stop running.

4393 4660-000

How Applications Interact Under Context Manager

Changing the Values in the Low-Memory Interrupt Vector Table

If a single application is running, it can change any value in the low­
memory interrupt vector table without problems. Because more than one
application can run under Context Manager, each application must tell
the operating system that it wants to change one of the values in this
table. To do this, you use either of the following CTOS calls:

• SetlntHandler

• SetTrapHandler

You use SetlntHandler if your application should not be swapped (for
example, if the handler that you are providing is a hardware interrupt
service routine).

To allow your application to be swapped out, you use SetTrapHandler.
For example, you can swap your application if the handler you are
providing is a software interrupt service routine; no interrupts of this
type can occur while the application is swapped out. (For more
information, refer to the CTOS Operating System Concepts Manual.)

Positioning the Cursor

Since an application does not know whether it is running in foreground
or background, it must not output values to the video controller port to
move the cursor. Instead, use the CTOS procedure PosFrameCursor to
position the cursor.

Modifying the Exit Run File

When you choose an application to start, Context Manager chains to the
run file and sets the exit run file to CmNull.run. Therefore, CmNull.run
runs when the application is complete. CmNull.run sends a message to
Context Manager asking it to terminate the context. (Refer to
Communication with Context Manager in this section.) Upon receiving
this message, Context Manager terminates the appropriate context.

If you write an application that changes the exit run file, Context
Manager never gets the message that the application ended. In this case,
you must provide a way to run CmNull.run.

4393 4660-000 2-5

How Applications Interact Under Context Manager

For example, if the Executive sets itself as the exit run file, the Executive
reloads only after its application finishes. The command I~
Exit Executive runs CmNull.run, enabling you return to Context
Manager from the Executive.

Graphics Applications

All graphics applications must be relinked with CTOS Graphics Systems
2.1 if they were released prior to CTOS II 3.3.

Context Manager supports concurrent multiple graphics applications.
Graphics output does not go to the character map; it goes to the graphics
board.

Modifying the Keyboard Translation Table

Context Manager supports applications that modify the system keyboard
translation file through standard CTOS procedural calls. The standard
keyboard translation file is NlsKbd.sys. For further information, refer to
the CTOS Operating System Concepts Manual.

Full-Screen Applications on VGA Systems

2-6

On VGA systems, Context Manager supports only applications that run
full-screen and control all the lines of the video display when they are in
the foreground.

4393 4660-000

How Applications Interact Under Context Manager

Applications Suspended in Background
Applications are classified into four groups, depending on how they
communicate with the video display. The four groups are listed in
table 2-1. If an application writes directly to the video port, or moves the
cursor using the video controller port, or performs other such direct
manipulation of the video, Context Manager suspends it if it is in the
background, and marks it as either tentatively dirty or absolutely dirty.

State

Tentatively clean

Tentatively dirty

Absolutely clean

Absolutely dirty

Table 2-1. Context States

Description

Contexts start in this state.

Contexts in the tentatively clean state go to this state if they
call ResetVideo or ResetVideoGraphics.

Contexts go into this state if they call lnitVidFrame or
NotifyCM (msgType=8).

Contexts go into this state if they call NotifyCM
(msgType=9).

Note: The procedure calls in table 2-1 do not contain complete
parameter lists.

To mark an application explicitly as dirty (which prevents it from
running while in the background), use the CM Editor to add an asterisk
(*) to the end of the command name. (Refer to the CTOS Context
Manager Installation and Configuration Guide).

For example, to mark the Executive as dirty, you press the Rename (F7)
function key from the CM Editor display and change the name to
Executive*. Thereafter, Context Manager treats the application as if it
sent a message identifying itself as absolutely dirty.

You can also use the NotifyCM call to mark an application as explicitly
clean or dirty. For information on the NotifyCM call, refer to
Communication with Context Manager in this section.

Note: The detection of dirty applications is not foolproof; unpredictable
results (such as multiple cursors and overlapping text from
several applications) can occur unless you change applications
that are undetectable to Context Manager.

4393 4660-000 2-7

How Applications Interact Under Context Manager

Applications You Can Swap
You can only swap those applications that have exactly one outstanding
request. For applications that have more than one outstanding request,
you must change system services to allow swapping. To respond to
CTOS swap requests, they must either finish servicing the application
request or return the request to the operating system for requeuing when
the application swaps back in. Depending on the timing and the ability
of the system service to respond to a swap request, an application can be
swappable at one time but not another. For information on handling
swap requests, refer to the CTOS Operating System Concepts Manual.

Certain calls to CTOS, such as SetCommlsr and SetlntHandler, identify
an application as one that cannot be swapped. Real-time and
communications applications that include such calls are recognized as
unswappable. Therefore, Context Manager never tries to swap them to a
swap file.

To ensure that your application is not swapped, you can make a call to
the CTOS routine SetSwapDisable. (For further information on this
routine, ref er to the CTOS Operating System Concepts Manual.) To
mark an application explicitly as non-swappable, use the CM Editor to
add an exclamation point(!) to the end of the command(s) you want to
mark.

Communication Between Contexts

2-8

Applications running under Context Manager can communicate using
CTOS Inter-Process Communication (IPC) or Context Manager's ICMS
(lnterContext Message Service). The IPC facility manages
communication between processes either within a partition or between
partitions. ICMS manages storage, queuing, and dequeuing of messages
between application partitions.

For more information on IPC, refer to the CTOS Operating System
Concepts Manual; for more information on ICMS, refer to the CTOS
Context Manager Installation and Configuration Guide.

4393 4660-000

How Applications Interact Under Context Manager

Behavior of CTOS Products Under Context
Manager

Table 2-2 lists Unisys applications that are dirty or not entirely clean
with regard to Context Manager. The following terms and definitions
define an application's behavior:

• Clean indicates no side effects of the application running under
Context Manager.

• Dirty means that the application accesses video directly, addresses
the cursor through a port, changes color or font directly, and causes
unpredictable results when run in background.

• Busy Wait refers to applications that poll the keyboard or other
devices. It causes all other applications to suspend.

Table 2-2. Product Behavior Under Context Manager

Product

Asynchronous Terminal Emulator

BTE

Enhanced BISYNC 3270 Emulator

Forms Designer

OFIS Writer

PC Emulator

CTOS/Vpc

4393 4660-000

Status

Relatively clean

Dirty (loads its own fonts)

Dirty (loads its own fonts)

Dirty

Dirty

Dirty (loads its own fonts)

Dirty (loads its own fonts)

2-9

Section 3
Programming for Context Manager

This section provides programming information on Context Manager
features, including information on the following:

• checking for Context Manager installation

• starting and switching contexts

• context handles

• parent/child relationships of contexts

• specification of context attributes

• invoking programs that require video initialization

• placing information in the Context Manager configuration file

• !CMS (the InterContext Message Service)

• procedural interfaces for using Context Manager requests

• procedural interfaces for using ICMS requests

Checking for Context Manager and ICMS
Installation

You can use two calls to determine whether Context Manager is
installed:

• CMCurrentVersion

If Context Manager is installed, CMCurrentVersion returns its
version and revision levels. If Context Manager is not installed,
CMCurrentVersion returns Ere 12099 (Context Manager is not
installed).

• NotifyCM (message 0)

NotifyCM (message 0) returns Ere 0 if Context Manager is installed,
and Ere 33 if Context Manager is not installed.

4393 4660-000 3-1

Programming Context Manager

You can use ICMSCurrentVersion to determine whether !CMS is
installed. Like CMCurrentVersion, ICMSCurrentVersion returns the
version and revision levels of the !CMS. If !CMS is not instaBed,
ICMSCurrentVersion returns Ere 12108 (!CMS is not instaBed).

Other Context Manager calls can also return errors if Context Manager
or !CMS is not installed or if the the proper loadable request file,
Request.CM.sys is not loaded at system initialization. If Context
Manager or !CMS is not installed, invoking any Context Manager or
ICMS call returns status code 33 (Service not available). If the required
request code is not present, the call returns status code 31 (No such
request code).

Starting and Switching Contexts

3-2

A program running in one context can call Context Manager to start a
new application in another context. Similarly, a program in one context
can call Context Manager to switch ownership of the keyboard and
screen to another context.

When a new application is started, any path information not entered in
the configuration file or the data sent in the request for that application
is inherited from the parent context.

An outstanding request problem can occur when an application other
than a system service or the CM user interface calls Context Manager to
start a new context or to switch to an existing context. When a context
cans Context Manager to start or swap in a context, the caller may need
to be swapped out to create a vacant partition for the new context.
However, if a context has an outstanding request, it cannot be swapped.

4393 4660-000

Programming Context Manager

To avoid this, a program sends two separate requests to Context
Manager. The first request supplies the information about the new
context to start or the context to switch to. Context Manager responds to
the first request, and attempts to start or switch to the new context. The
second request is sent so that Context Manager can return any error that
was generated while starting the new context.

You can ensure that you correctly receive any errors during a context
start or switch by following calls to CMStartApplByBlock,
CMStartBkgdApplBy Block, CMStartApplByN ame,
CMStartBkgdApplByName, or CMSwitchToExistingContext with a call
to CMQueryErc (except if the call originates from a system service or the
user interface). CMQueryErc returns any errors that might have
occurred after the other calls.

Alternatively, you can use the CMStartAppl, CMStartApplOptions, and
CMSwitchContext routines. They make the calls to start or switch
contexts, and then call CMQueryErc to check the status code. Using
these routines, you can perform a context start or switch by coding a
single call.

4393 4660-000 3-3

Programming Context Manager

Context Handles

3-4

When an application is first started, Context Manager assigns it a
unique identifier known as a context handle. The context handle is
needed for all subsequent calls to Context Manager regarding that
context.

A context handle differs from a partition handle in that it allows for
differentiation of contexts over time.

For example, if you install Context Manager and start application A from
the Context Manager display and then finish application A, the display
reappears. If you again start application A, the first and second
invocations of application A have the same partition handle because they
are loaded into the same physical location of memory. However, they
have different context handles so that you can tell them apart.

If a program is to switch to another context, the program must supply
the context handle of the target context. To send a message using ICMS,
a program must also determine the context handle of the receiver. The
following are examples of context handle usage:

• The sender is a parent context that wants to send a message to one
of its child contexts. The context handle of the child is returned by
Context Manager when the parent starts the child.

• The sender is a child context that wants to send a message to its
parent. The child can call CMQueryParent to determine the context
handle of its parent.

• The sender and receiver are running concurrently. If context A
wants to switch to context B, context A issues a GetPartitionHandle
using the name ofB. Then, using the returned partition handle, it
calls TranslatePhtoCh to find the context handle of B.

Note: If a program is loaded by a call to Chain or Exit, the context
handle remains the same. For example, the context handle for all
programs started from the Executive in a partition is the same.
The context handle changes only after giving an Exit Executive
command and reloading a new Executive.

There are two reserved context handles. The context handle of Context
Manager Service is 0, and OFFFFh represents the null context handle.

4393 4660-000

Programming Context Manager

Parent/Child Relationships of Contexts
Every context has a parent, either the Context Manager user interface or
another context. A parent context is a context that calls upon the
Context Manager Service to create, switch, or terminate other contexts,
known as child contexts. When you start a new application from a
Context Manager user interface, that context's parent is the Context
Manager user interface. When a program calls Context Manager to start
a new application, the caller is the parent context and the new
application is the child.

Dependent and Independent Child Contexts

A child context can be either dependent or independent. A dependent
context is a context that depends on its parent for survival. When the
parent context is terminated, the dependent child context is also
terminated. An independent child context is a context that does not
depend on its parent for survival. If a parent context is terminated, the
Context Manager user interface becomes the parent of its independent
child context.

Three-Tiered Ancestry

The Context Manager Service supports a three-generational relationship
(parent, child, grandchild) among contexts under the Context Manager
user interface.

• If a parent context terminates, then the dependent children and
their dependent children are also terminated. The independent
children become children of the Context Manager user interface.

Note: If your application cannot or should not function after its
parent context terminates, you should ensure that your
application is started as a dependent child context.

• If a child context terminates, the parent context becomes the parent
of any independent grandchild context. The parent context becomes
the foreground context only ifthe child context had been the
foreground context.

Note: If your application should function after its parent context
terminates, you should ensure that your application is started
as an independent child context.

4393 4660-000 3-5

Programming Context Manager

3-6

Child contexts of a Context Manager user interface may be dependent or
independent. This status is determined by the original parent at the
time the child context is started, and the lBitDependent bit in the context
attribute byte tracks this information (Refer to Specification of Context
Attributes for more information).

Figure 3-1 is an example of the dependency relationships of three
generations of contexts started from a CM user interface. Figure 3-2
shows the results of the termination of the parent context shown in
figure 3-1.

4393 4660-000

Programming Context Manager

Figure 3-1. Three-tiered Ancestry

CM User Interface

Child 1
Independent

Grandchild 1
Independent

4393 4660-000

Grandchild 2
Dependent

Parent
Context

Child 2
Dependent

Grandchild 3
Independent

Grandchild 4
Dependent

3-7

Programming Context Manager

3-8

Figure 3-2. Results of Parent Context Termination

CM User Interface

Child 1
Independent

Grandchild 1
Independent

Grandchild 2
Dependent

I
Grand child 3

endent lndep

When the parent context terminates, independent child context Child 1
becomes the child of the CM User interface, and both the dependent and
independent children of Child 1 (Grandchild 1 and Grandchild 2) remain
intact.

When the parent context terminates, dependent child context Child 2
also terminates, along with its dependent child context, Grandchild 4.
However, the independent context Grandchild 3 survives and becomes a
child of the CM user interface.

4393 4660-000

Programming Context Manager

Context Termination and the CM User Interface

The CM Screen does not read the dependency attribute. When it
terminates while acting as the CM user interface, it terminates all
contexts regardless of whether they are dependent or independent.

You can create a Context Manager user interface to read the
lBitDependent status and treat its child contexts as either dependent or
independent with respect to the user interface itself. This would allow
all independent contexts to continue even after the Context Manager
user interface has been terminated, and become children of the
application specified as the exit run file for the CM user interface.

Note: You must specify an exit runfile other than the default
CMNull.run. CMNull.run terminates the Context Manager
Service, which terminates all contexts regardless of their
attributes.

You can also create a CM user interface that allows you to selectively
determine which independent child contexts to continue to execute after
the user interface terminates. Refer to Long-lived Contexts for details.

Specification of Context Attributes
Context Manager uses a context attribute byte to specify certain types of
child contexts: dependent, long-lived, invisible, or shared video. The
Context Manager call CMStartApplOptions allows this attribute byte to
be passed as one of the parameters.

This attribute can also be passed using the CMStartApplByName,
CMStartApplByBlock, CMStartBkgdApplByName, and
CMStartBkgdApplByBlock calls by using offset 13 within the request
block. However, to provide compatibility with existing programs using
any one of the CMStart calls, the fDependent flag must be set to value
OAh in order to tell Context Manager Service that the attribute byte
being passed is valid. For details on the context attribute byte, refer to
CMStartApplOptions. ,

4393 4660-000 3-9

Programming Context Manager

Long-lived Contexts

Long-lived contexts are independent child contexts that continue to exist
even after the Context Manager user interface has chained to its exit run
file.

The CM Screen does not recognize long-lived contexts. If CM Screen is
the Context Manager user interface and Context Manager terminates,
then all child contexts terminate, regardless of whether they are
designated as long-lived.

You can create a user interface that recognizes long-lived contexts by
reading the long-lived context attribute. This gives the CM user
interface the option of allowing selected contexts to continue executing
even after the interface itself terminates.

To designate a context as long-lived:

• specify long-lived as a context attribute, using a CMStartAppl call.

Refer to Specification of Context Attributes for details.

• configure the exit run file to something other than the default exit
run file, CMNull.run.

CMNull.run terminates the Context Manager Service, which
terminates all contexts regardless of their attributes.

A Context Manager user interface may query for information on long­
lived contexts (which may exist prior to running the Context Manager
user interface) using the CMQueryOtherContexts call. Refer to appendix
B for details.

Invisible Contexts

3-10

An invisible context is a context that does not report its existence to the
Context Manager user interface. This context type allows a task to run
without displaying this activity to the user.

To designate a context as invisible, specify invisible as a context attribute
in a CMStartAppl call. Refer to Specification of Context Attributes for
details.

4393 4660-000

Programming Context Manager

Shared Video Contexts

A shared video context is a context that maps its character map to its
parent context character map, allowing the child context to direct video
output to the screen even while it is running in the background. In this
case, the parent and child contexts are responsible for managing video
output to the screen to avoid overwriting each other's video output.
Figure 3-3 shows the relationship between shared video contexts.

If the parent context terminates, then the Context Manager Service
maps the independent child context partition character map back to its
own character map.

Figure 3-3. Shared Video Contexts

Partition Partition
Structures Structures

Char Map Char Map

Memory Memory

Kbd Buffer Kbd Buffer

Parent Partition Child Partition

4393 4660-000 3-11

Programming Context Manager

To designate a context as shared video, specify shared video as a context
attribute in a CMStartAppl call. Refer to Specification of Context
Attributes for details.

This feature has the following restrictions:

• Neither the parent nor child contexts can use graphics or be
considered video dirty.

• The parent of a shared video child context must itself be a Context
Manager context.

• If a shared video child context calls any CTOS procedure that will
initialize video structures, then the screen will blank.

• The parent and child context must be memory-resident.

• The parent and child contexts are responsible for managing screen
size and screen attributes to ensure that they are identical between
the contexts sharing video.

• Parent-child is the only relationship supported; three-tiered
ancestry is not supported

Behavior of Shared Video Contexts

A shared video child context has the following characteristics:

• The child context inherits the color palette and control information
from its parent context.

• The child context displays in the same resolution as the parent
context.

• If any one of the shared video child siblings or the parent context is
the foreground context, they all are considered to be in the
foreground since their output is to the real screen.

• If a shared video child context or its parent is not the foreground
context, then the parent context and all its shared video children
write to the parent's partition character map.

• If the parent of a shared video child context is in the background,
the child context cannot be started in the foreground.

• If the parent of a shared video child context terminates or chains,
then all independent children will be treated as normal contexts.

3-12 4393 4660-000

1~

Programming Context Manager

Invoking Programs Requiring Video
Initialization

Programs written in some programming languages, notably Pascal and
C, cannot be invoked directly from Context Manager because they
require video initialization that is normally provided when the program
is loaded from the Executive. You can invoke these programs by
responding Yes to the [Needs Exec screen?] field in the CM Editor. (For
information regarding use of the CM Editor, refer to the
CTOS Context Manager II Installation and Configuration Guide)

Alternatively, you can write a small program that clears the screen and
then chains to your program.

Placing Information in the Context Manager
Configuration File

You can place any information in the Context Manager configuration file
that your program needs to read when it is running. To do this, you
press the More (FIO) key from the CM Editor, which overlays the
Command Editing Area with the More Information Area. (For
information regarding use of the CM Editor, refer to the
CTOS Context Manager II Installation and Configuration Guide.) You
provide information using the following syntax: :Field: Value.

Context Manager does not use this information unless you use a field
that is meaningful to it, such as :Params:.

ICMS {lnterContext Message Service)
Applications that are running in separate contexts under Context
Manager can communicate with each other by passing messages using
ICMS (the lnterContext Message Service). You use ICMS procedural
calls to send and receive messages. Refer to ICMS Procedural Interfaces
for details. ICMS is a separate system service that can be installed prior
to or during Context Manager installation.

4393 4660-000 3-13

Programming Context Manager

3-14

A context communicates with another context by sending a message to
ICMS, specifying the context handle of the receiver. Each context is
uniquely identified by a context handle that Context Manager assigns.
The receiver either waits for a message to arrive or periodically checks
for the arrival of a message. This makes ICMS similar to Interprocess
Communication (IPC).

ICMS differs from IPC in one important aspect: under IPC, only the
address of the message gets transferred. If the sender of the message
swaps to disk before the message is received, this procedure may not
work. Even though IPC has the address of the message, another context
that was swapped into the same physical partition can overwrite the
memory space that the message occupies.

ICMS copies the message into the ICMS memory space, where the
message waits for the receiver to claim it. Because ICMS copies the
actual message, you can write programs and use ICMS to pass messages
without worrying about swapping problems.

ICMS queues messages for each context and sends them out on a first-in,
first-out basis. When the ICMS memory space for messages is
exhausted, it dumps the messages to a disk file.

You use the CM Editor to configure the amount of memory allocated for
saving ICMS messages. The CM Editor assigns function key (F9) to
ICMS. When you press this key, a menu for the ICMS run file and the
number and sizes of messages overlays the command editing area. The
default is 1 message of 200 bytes.

If you plan to use ICMS extensively, you can install it at system
initialization through an entry in the JCL file. Refer to the
CTOS Context Manager II Installation and Configuration Guide for more
information about setting up Context Manager.

4393 4660-000

Programming Context Manager

ICMS Message Sizing

ICMS message sizes must be a multiple of 128. Because each message
includes 10 bytes of header information, the user-specified portion of the
message cannot exceed 118 bytes. If the message size is larger than 128
bytes, ICMS rounds it up to the nearest multiple of 128.

ICMS Message Buffer Sizing

The size of the message buffer allocated by ICMS to hold the messages in
memory is calculated by the following formula:

Message Buffer Size = Size of Message* Number of Messages

This buffer must be a multiple of 512. If the size of the message is a
multiple of512, then any number of messages is allowed. If the size of
the message is a multiple of 256, then the number of messages must be a
multiple of 2. Otherwise, the number of messages must be a multiple
of 4.

Increasing the number of messages improves performance. However, the
message buffer cannot exceed 32KB. When the number of messages sent
through ICMS exceeds the size of the message buffer, ICMS expands a
file on disk to accomodate additional messages. It writes the current
message buffer from memory to the disk and then reads in the newest
part of the file from disk to memory. Therefore, if queued messages
cause ICMS to access the disk file often, Context Manager performance
decreases.

4393 4660-000 3-15

Programming Context Manager

Context Manager Procedural Interfaces

3-16

Context Manager provides programmatic interfaces to its internal
functions of starting, switching, and terminating contexts. Anything you
can do from the Context Manager Screen is available as a procedural call.
Together with ICMS, which allows programs in different partitions to
communicate, these calls form tools to build a system of integrated
programs.

OFIS Designer makes extensive use of the functionality described here.
It allows a user to prepare a document that may contain text, graphics,
spreadsheets, and/or voice by automatically invoking programs such as
OFIS Graphics or OFIS Spreadsheet through the Context Manager
Service and passing messages through ICMS.

The following text describes procedural interfaces for the Context
Manager operations. For descriptions of other operations, refer to the
CTOS Procedural Interface Reference Manual.

To write code that uses any of the following procedural interfaces, you
must link your run file with the library file CmAPI.Lib.

This file resolves references to Context Manager requests and object
module procedures within your program. You install this file on your
hard disk when you first install the Context Manager software.

4393 4660-000

>•

Programming Context Manager

CMCurrentVersion

CMCurrentVersion (pbVersion, pbRevision): ErcType

Description

CMCurrentVersion lets a program determine the current version and
revision level of Context Manager. It first makes the following checks:

• Context Manager is installed

• Request.CM.sys is installed

Parameters

pbVersion is the memory address of a byte into which Context Manager
returns its version level.

Errors

pbRevision is the memory address of a byte into which Context
Manager returns its revision level.

12099 Context Manager is not installed.

Request Block

CmCurrentVersion is an object module procedure.

4393 4660-000 3-17

Programming Context Manager

CM Cut Data

CMCutData (chFrom, nLinestoPaste): ErcType

Description

This procedure is required for Context Manager's data transfer feature.
CMCutData allows the Context Manager Service to save the appropriate
partition keyboard table and number of lines to paste. The caller then
calls CMTransferData.

Parameters

Errors

chFrom is the context handle of the context from which the data
originates.

nLinestoPaste describes the number of screen lines to be transferred to
the receiving context. The maximum number of lines is 38.

12003 No such context handle.

12022 Paste already in progress.

12023 Invalid data transfer parameters.

12035 Data transfer is not supported from this application.

3-18 4393 4660-000

Programming Context Manager

CMCutData (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 80CFh

12 ch From 2

14 nlinestoPaste 2

4393 4660-000 3-19

Programming Context Manager

CMQuery ActiveContext

CMQueryActiveContext (pchRet): ErcType

Description

This call returns the context handle of the active context at the time this
request was processed by the Context Manager Service.

Parameters

pchRet is the memory address of a word to which the context handle of
the active context is returned.

Errors

None

Request Block

Offset

0

2

3

4

6

8

10

12

18

22

3-20

Field

sCntlnfo

RtCode

nReqPbCb

nRespPbCb

userNum

exchResp

ercRet

rqCode

reserved

pchRet

sch Rel

Size
(bytes)

2

2

2

2

6

4

2

Contents

6

0

0

65D8h

2

4393 4660-000

Programming Context Manager

CM Query AutoStartAppl

CMQueryAutoStartAppl (plnfo, slnfo, pAutoStartlnfo, sAutoStartlnfo):
ErcType

Description

This call returns to the calling application:

• a block of information about the array of autostart information

• a list of applications to be autostarted

Parameters

Errors

plnfo is the memory address of a structure returned by the Context
Manager Service that contains information about the AutoStartlnfo
array.

slnfo is a word value that contains the size of the Info structure.

pAutoStartlnfo is the memory address of an array of data structures to
which autostart info is returned.

sAutoStartlnfo is a word containing the size of the array to be returned.

12027 Not a registered CM user interface.

4393 4660-000 3-21

Programming Context Manager

CMQueryAutoStartAppl (continued)

Info Structure Definition

Offset

0

2

where:

Field

nAutoStart

sAutoStart

Size

2

2

nAutoStart is the number of applications listed in the AutoStartlnfo
array.

sAutoStart is the size of each autostart record returned in the
AutoStartlnfo array.

AutoStartlnfo Array Definition

3-22

AutoStartlnfo is an array of structures in which each structure
contains the following:

Offset

0

80

where:

Field

sbCommandName

sbRunFile

Size

80

80

sbCommandName is an array of bytes in which the first byte contains
the size of the context command name and the remaining bytes contain
the command name.

sbRunFile contains the fully qualified file specification to load the run
file. The first byte contains the size of the file specification in bytes.

4393 4660-000

Programming Context Manager

CMQueryAutoStanAppl (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 2

4 userNum 2

6 exchResp 2

8 ere Re! 2

10 rqCode 2 666Ch

12 reserved 6

18 pinto 4

22 slnfo 2

24 pAutoStartlnfo 4

28 sAutoStartlnfo 2

4393 4660-000 3-23

Programming Context Manager

CMQueryConfigFile

CMQueryConfigFile (pbBuf, cbBuf, pcbBufRet): ErcType

Description

The CMQueryConfigFile call returns the full file specification of the
current Context Manager configuration file.

Parameters

Errors

pbBuf and cbBuf describe the buffer where the name of the
configuration file is returned.

pcbBufRet is the memory address of a word value where the actual size
of the configuration file name is placed.

12002 Configuration buffer too small.

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 2

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 8077h

12 reserved 6

18 pbBuf 4

22 cbBuf 2

24 pbBufRet 4

28 cbBu!Ret 2 2

3-24 4393 4660-000

Programming Context Manager

CMQueryContextHandle

CMQueryContextHandle (pchRet): ErcType

Description

The CMQueryContextHandle call lets a program determine its own
context handle. This program can then identify itself to another program
by including its context handle in a message.

Parameters

pchRet is the memory address of a word value where the context handle
returns.

Errors

12001

Request Block

Offset

0

2

3

4

6

8

10

12

18

22

4393 4660-000

No such partition handle.

Field

sCntlnfo

RtCode

nReqPbCb

nRespPbCb

userNum

exchResp

ercRet

rqCode

reserved

pchRet

sch Rel

Size
(bytes)

2

2

2

2

6

4

2

Contents

6

0

0

8076h

2

3-25

Programming Context Manager

CMQueryErc

CMQueryErc (pErcRet): ErcType

Description

A program uses the CMQueryErc call to retrieve the status code
generated during processing by one of the following:

• CMStartApplByBlock

• CMStartApplByName

• CMStartBkgdApplByBlock

• CMStartBkgdApplByName

• CMSwitchToExistingContext

A call to one of these should be followed by a call to CMQueryErc.

A system service or application not started through the CM Service
should not call CMQueryErc.

Parameters

Errors

3-26

pErcRet is the memory address of a word value where the last error
code is returned.

None

4393 4660-000

Programming Context Manager

CMQueryErc (continued)

Request Block

Offset Field Size Contents
{bytes}

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 807Ch

12 reserved 6

18 pErcRet 4

22 sErcRet 2 2

4393 4660-000 3-27

Programming Context Manager

CMOuerylfGraphics

CMQuerylfGraphics (ch, pfGraphics): ErcType

Description

This procedure allows an application to determine whether a context has
registered itself as a graphics context.

Parameters

Errors

ch is the context handle of the context.

pfGraphics is the memory address of a flag to which the graphics
information is returned. A value of TRUE indicates that the context has
registered itself to as a graphics context.

12003 No such context handle.

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 80CEh

12 ch 2

14 reserved 4

18 p!Graphics 4

22 s!Graphics 2

3-28 4393 4660-000

Programming Context Manager

CMQueryOtherContexts

CMQueryOtherContexts (code, pHeaderBlock, sHeaderBlock,
pExistingContexts, sExistingContexts):
ErcType

Description

This call returns to the calling application:

• a header block of information about the array of existing context
information (returned in pHeaderBlock)

• a list of existing context handles and information about them
(returned in pExistingContexts)

The context information returned in the array will vary depending on the
value passed for code. Applications may use this array to obtain
information about other contexts running within the CM session.

Parameters

Code is a word value that specifies which type of context information is
returned. The following codes are supported:

0 For use by the CM interface application only to obtain information on any long-lived
contexts.

Return information on all peers of the calling context (those contexts which have
the same parent as the caller, and including the caller itself).

2 Return information on all child contexts (those contexts which have the caller as
their parent).

3 Return information on all contexts (including the caller, if applicable).

pHeaderBlock is the memory address of a structure provided by the
Context Manager Service that contains information about the returned
array (see pExistingContexts).

sHeaderBlock is a word value that contains the size of the header block
to be returned.

pExistingContexts is the memory address of an array of data
structures to which context-specific information is returned.

sExistingContexts is a word containing the size of the array to be
returned.

4393 4660-000 3-29

Programming Context Manager

CMQueryOtherContexts (continued)

Header Block Definition

3-30

Offset Field Size

0 iVersion 2

2 sHeader 2

4 sContextRecord 2

6 nContextRecords 2

8 ch Current 2

where:

iVersion is a counter supplied by Context Manager for the CM user
interface to use in its next call to CMReadContextEvent.

sHeader is the size of the header.

sContextRecord is the size of each record in the ExistingContexts
array.

nContextRecord is the number of records in the ExistingContexts
array.

ch Current is the context handle of the currently active context.

4393 4660-000

Programming Context Manager

CMQueryOtherContexts (continued)

ExistingContexts Array Definition

ExistingContexts is an array of structures in which each structure
contains the following:

Offset

0

2

4

84

85

92

93

Field

ch

ch Parent

sbCommandName

bFKey

sbAbbrev

bContextAttrs

bStatus

Size

2

2

80

7

Note: CmQueryOtherContexts determines the size of data to return
based on the size of the array passed by the caller.

4393 4660-000 3-31

Programming Context Manager

CMQueryOtherContexts (continued)

3-32

ch is a field containing the context handle.

chParent is a field containing the context handle of the parent of the
context.

sbCommandName is an array of bytes in which the first byte contains
the size of the context command name and the remaining bytes contain
the command name.

bFKey is a field that contains one of the following:

0-9

OFFh

The context's associated function key (0 corresponds to F1)

No function key associated with context

sbAbbrev is an array of bytes in which the first byte contains the size of
the context function key abbreviation and the remaining bytes contain
the function key abbreviation.

bContextAttrs is a byte which describes $pecial attributes associated
with child contexts. Any combination of the following types may be
specified within the attribute byte:

1 h IBitDependent A dependent child context is terminated if its parent
is terminated.

2h IBitlnvisible An invisible child context is not visible to the end
user from the CM interface unless it is
programatically switched to the foreground.

4h lBitSharedVid A shared video child context has its character map
mapped to its parent context's character map.

8h IBitlonglived A long-lived child context may continue to exist
even after the CM interface chains to a different
runfile.

10h IBitDebug A context started with this bit set to 1 will start in
the debugger.

4393 4660-000

Programming Context Manager

CMQueryOtherContexts (continued)

Errors

bStatus is a field containing the current status of the context:

0 =Running

1 =Waiting

2 =Done

3 =Locked

4 = Stopped or Halted

12000 A specified parameter does not exist.

12002 Configuration buffer too small.

12027 Not a registered CM user interface.

4393 4660-000 3-33

Programming Context Manager

CMQueryOtherContexts (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 3

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 6551h

12 code 2

14 reserved 4

18 pHeaderBlock 4

22 sHeaderBlock 2

24 pExistingContexts 4

28 sExistingContexts 2

3-34 4393 4660-000

Programming Context Manager

CMQueryParent

CMQueryParent (ch, pchRet): ErcType

Description

A program uses the CMQueryParent call to find out the context handle of
the parent of any context.

Parameters

Errors

ch is a word value indicating the context handle of the context whose
parent is desired. If ch is 0, the context handle of the calling context is
used.

pchRet is the memory address of a word value where the context handle
returns. A returned context handle of 1 means that the parent is the
Context Manager user interface. If a parent context is terminated for
any reason, the parent of the terminated context becomes the parent of
the orphaned child context.

12003 No such context handle.

4393 4660-000 3-35

Programming Context Manager

CMQueryParent (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 8078h

12 ch 2

14 reserved 4

18 pchRet 4

22 schRet 2 2

3-36 4393 4660-000

Programming Context Manager

CMReadContextEvent

CMReadContextEvent (iVersion, pEventBlock, sEventBlock): ErcType

Description

This request allows a CM interface to obtain specific information about
the Context Manager environment. CM interfaces should be able to
handle context events in a timely manner. Only applications which call
CMRegisterUIMS can take advantage of this call.

Parameters

iVersion is a word that acts as a counter that the Context Manager user
interface should increment each time it receives a response to this
request.

The Context Manager Service uses this parameter to determine whether
the interface has missed an event. If so, the interface should call
CMQueryOtherContexts in order to catch up on the state of the system
and to obtain the current value of iVersion. For further information on
using iVersion, refer to apppendix B.

pEventBlock is a memory address of a data structure into which
information pertaining to a specific event is returned to the caller.

sEventBlock is the size of the data structure, defined by the caller, into
which the information is to be returned. The amount of information
returned depends on the size of the event block passed by the user.

4393 4660-000 3-37

Programming Context Manager

CMReadContextEvent (continued)

EventBlock Structure Definition

Offset Field Size

0 bEvent

ch 2

3 ch Parent 2

5 rgData 80

85 bContextAttrs

86 ch Requester 2

88 bFkey

89 sbAbbrev 7

96 bStatus

3-38 4393 4660-000

Programming Context Manager

CMReadContextEvent (continued)

bEvent is the type of Context Manager event. Event types are the
following:

Event

2

3

Description

A programmatic context start has occurred in the foreground.

The information returned includes:

the context handle of the new context

the context handle of the parent context

a string containing the context name

a byte specifying any special child context attributes

the context handle of the context which requested the context start

a byte containing the function key of the new context

a string containing the context's abbreviation

a byte containing the status of the new context

A programmatic context start has occurred in the background.

The information returned includes:

the context handle of the new context

the context handle of the parent context

a string containing the context name

• a byte specifying any special child context attributes

the context handle of the context which requested the context start

• a byte containing the function key of the new context

a string containing the context's abbreviation

a byte containing the status of the new context

A programmatic context switch has occurred.

The information returned includes:

the context handle of the new foreground context

the context handle of the context that requested the switch

continued

4393 4660-000 3-39

Programming Context Manager

CMReadContextEvent (continued)

Event

5

4

6

7

8

9

10

11

12

13

3-40

Description

The CM Service has just updated the current CM config file.

This event is only sent if the CM interface passed fConfigUpdate =TRUE in
the CMRegisterUIMS call. The CM interface should re-read the current CM
config file to be consistent with the CM Service.

A context termination has occurred.

The information returned includes:

the context handle of the terminating context

• the termination error code

A context has been locked from user access. The information returned
includes the context handle of the locked context.

A context is now unlocked from user access. The information returned
includes the context handle of the unlocked context.

A context has been stopped. The information returned includes the context
handle of the stopped context.

A context is now running. The information returned includes the context
handle of the running context.

A context is now waiting. The information returned includes the context
handle of the waiting context.

An Executive context now has the status of Done. The information returned
includes the context handle of the Executive context.

A context has chained (Executive) and the command name is being updated.

The information returned includes:

• the context handle

• a string containing the new command name

A context has a new abbreviation (function key label).

The information returned includes:

the context handle

• a string containing the new abbreviation

continued

4393 4660-000

Programming Context Manager

CMReadContextEvent (continued)

Event

14

15

16

Description

A context termination has occurred.

The information returned includes:

the context handle of the terminating context

the termination message contained in rgData

A context has a new parent.

The information returned includes:

the context handle of the affected context

the context handle of the new parent context

An attempt is being made to log out of the system.

ch is a word containing the context handle of the context involved in the
event.

chParent is a word containing the context handle of the parent of the
context.

rgData is a string containing information pertaining to the context
event.

bContextAttr is a byte which describes special attributes associated
with child contexts. Any combination of the following types may be
specified within the attribute byte:

1 h IBitDependent A dependent child context will be terminated if its
parent is terminated.

2h IBitl nvisible

4h IBitSharedVid

Sh IBitLonglived

10h IBitDebug

4393 4660-000

An invisible child context will not be visible to the
end user from the CM interface unless it is
programatically switched to the foreground.

A shared video child context will have its character
map mapped to its parent context's character map.

A long-lived child context may continue to exist
even after the CM interface chains to a different
runfile.

A context started with this bit set to 1 will start in the
debugger.

3-41

Programming Context Manager

CMReadContextEvent (continued)

Errors

chRequestor is a word containing the context handle of the context
whose request caused the event.

bFKey a byte containing the function key of the child contexts. If there
is no function key associated with the child contexts, this value is OFFh.

sbAbbrev is a string containing the child context's abbreviation
(function key label).

bStatus is a byte containing the current status of the context:

0 =Running

1 =Waiting

2 =Done

3 =Locked

4 = Stopped or Halted

12027 Not a registered CM user interface.

12031 Missed event.

3-42 4393 4660-000

Programming Context Manager

CMReadContextEvent (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 65D7h

12 iVersion 2

14 reserved 4

18 pEventBlock 4

22 sEventBlock 2

4393 4660-000 3-43

Programming Context Manager

CMRegisterU IMS

CMRegisterUIMS (fConfigUpdate, pHeaderBlock, sHeaderBlock,
pExistingContexts, sExistingContexts,): ErcType

Description

Applications which act as replacements for the CM Screen (CM
interfaces) must make this call to coexist properly in a Context Manager
environment. Only one CM interface application is allowed within any
Context Manager session. The first application to call CMRegisterUIMS
becomes the Context Manager user interface.

Parameters

3-44

fConfigUpdate is a FLAG which is set to TRUE if the caller wants to be
notified if the CM con fig file is updated. If it is set to something other
than TRUE the CM Service will not do real-time updating of the CM
config file.

pHeaderBlock is the memory address of a structure provided by the
Context Manager Service that contains information about the returned
array (see pExistingContexts).

sHeaderBlock is a word value that contains the size of the header block
to be returned.

pExistingContexts is the memory address of an array of data
structures to which context-specific information is returned.

sExistingContexts is a word containing the size of the array to be
returned.

4393 4660-000

Programming Context Manager

CMRegisterUIMS (continued)

Header Block Definition

Offset

0

2

4

6

8

where:

Field

iVersion

sHeader

sContextRecord

nContextRecords

chCurrent

Size

2

2

2

2

2

iVersion is a counter supplied by Context Manager for the CM user
interface to use in its next call to CMReadContextEvent.

sHeader is the size of the header.

sContextRecord is the size of each record in the ExistingContexts
array.

nContextRecord is the number of records in the ExistingContexts
array.

chCurrent is the context handle of the currently active context.

4393 4660-000 3-45

Programming Context Manager

CMReglsterUIMS (continued)

ExlstlngContexts Array Definition

3-46

ExistingContexts is an array of structures in which each structure
contains the following:

Offset

0

2

4

84

85

92

93

Field

ch

chParent

sbCommandName

bFKey

sbAbbrev

bContextAttrs

bStatus

Size

2

2

80

7

1

Note: CMRegisterUIMS determines the size of data to return based on
the size of the array passed by the caller.

4393 4660-000

Programming Context Manager

CMRegisterUIMS (continued)

ch is a field containing the context handle.

chParent is a field containing the context handle of the parent of the
context.

sbCommandName is an array of bytes in which the first byte contains
the size of the context command name and the remaining bytes contain
the command name.

bFKey is a field that contains one of the following:

0-9

OFFh

The context's associated function key (0 corresponds to F1)

No function key associated with context

sbAbbrev is an array of bytes in which the first byte contains the size of
the context function key abbreviation and the remaining bytes contain
the function key abbreviation.

bContextAttrs is a byte which describes special attributes associated
with child contexts. Any combination Of the following types may be
specified within the attribute byte:

1 h IBitDependent A dependent child context will be
terminated if its parent is terminated.

2h IBitlnvisible

4h IBitSharedVid

Sh IBitLonglived

10h IBitDebug

4393 4660-000

An invisible child context will not be visible
to the end user from the CM interface
unless it is programmatically switched to
the foreground.

A shared video child context will have its
character map mapped to its parent
context's character map.

A long-lived child context may continue to
exist even after the CM interface chains to
a different runfile.

A context started with this bit set to 1 will
start in the debugger.

3-47

Programming Context Manager

CMRegisterUIMS (continued)

Errors

bStatus is a field containing the current status of the context:

0 =Running

1 =Waiting

2 =Done

3 =Locked

4 = Stopped or Halted

12000

12002

12026

12027

A specified parameter does not exist.

Configuration buffer too small.

A user interface for CM has already been registered.

Not a registered CM user interface.

Request Block

This is an object module procedure in cmAPI.Lib.

3-48 4393 4660-000

Programming Context Manager

CMResumeContext

CMResumeContext (ch): ErcType

Description

CMResumeContext allows a parent context to restart one of its child
contexts. If the child context is swapped out, its processes resume when
it is swapped back into memory. To reactivate a swapped-out child
context, calls to CMSwitchContext and CMResumeContext respectively
are necessary.

Parameters

ch is the context handle of the child context to be restarted.

Errors

811 Partition is already swapped

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 629Eh

12 ch 2

14 reserved 4

4393 4660-000 3-49

Programming Context Manager

CMSetParent

CMSetParent (chToSet, chNewParent): ErcType

Description

A program uses the CMSetParent call to change the parent of a context.
CMSetParent does not allow a context to become the parent of its own
parent or grandparent contexts.

Parameters

Errors

3-50

chToSet is the context handle of the context whose parent is to be
changed. If chToSet is 0, the context handle of the calling context is
used.

chNewParent is the context handle of the new parent context. Note
that if 0 is specified for this variable, the new parent is the Context
Manager user interface.

12003

12012

12013

12015

No such context handle.

No such parent context handle.

Cannot change parent to self.

Cannot adopt parent or grandparent context.
'

4393 4660-000

Programming Context Manager

CMSetParent (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 8082h

12 chToSet 2

14 ch New Parent 2

16 reserved 2

4393 4660-000 3-51

Programming Context Manager

CMStartAppl

CMStartAppl (fName, pbStartData, cbStartData, pVLPB,
fDependentChild, pchRet): ErcType

Description

CMStartAppl is called to start a new application. An application is
started in two ways: by name or by block. If an application is started by
name, the name supplied must exactly match a name in the current
Context Manager configuration file. If an application is started by block,
a block of information must be supplied to the Context Manager. This
block provides the same information normally supplied by the CM
configuration file.

If you want to start a context from a system service or application not
started through the CM Service, use one of the following calls instead of
CMStartAppl:

• CMStartApplByBlock

• CMStartApplByName

• CMStartBkgdApplByBlock

• CMStartBkgdApplByName

3-52 4393 4660-000

1-

Programming Context Manager

CMStartAppl (continued)

Parameters

tName is TRUE to start an application by name, or FALSE to start an
application by a block of information.

IffName is TRUE, pbStartData and cbStartData describe the name of
an application that matches one specified in the Context Manager's
configuration file. lffName is FALSE, they describe a block whose
definition is given in the StartData Block Definition.

pVLPB is the memory address of a variable length parameter block
(VLPB) that Context Manager is to use as the new context's VLPB. If
pVLPB is non-NIL, then the command case specified in the StartData
block is ignored.

fDependentChild is a flag that determines whether the context is
dependent on its parent context for survival. If this parameter is set to
TRUE, the child context is marked as dependent, and if the parent
context is terminated, the child is also terminated.

pchRet is the memory address of a word to which the context handle of
the new context is returned.

4393 4660-000 3-53

Programming Context Manager

CMStartAppl (continued)

StartData Block Definition

Offset Field Size

0 sbApplName 80

80 sbRunFile 80

160 sbAbbrev 7

167 wMemorySize 2

169 sbCase 3

172 bPresetFKey

173 fPresetFKey

174 bAutoStart

175 sbVolume 13

188 sbDirectory 13

201 sbPrefix 13

214 sbPassword 13

227 sbNode 13

240 !Dirty

241 fNeedsExecScreen

242 defaultColor 2

244 nPixelsWide 2

246 nPixelsHigh 2

248 sbExitRun File Spec 79

327 sbExitRunFilePswd 13

3-54 4393 4660-000

CMStartAppl (continued)

where:

Programming Context Manager

sbApplName contains the name of the application to start. The first
byte contains the size of the name in bytes.

sbRunFile contains the fully qualified file specification to load the run
file. The first byte contains the size of the file specification in bytes.

sbAbbrev contains the abbreviation that appears in the Context
Manager display for the associated function key. The first byte contains
the size of the abbreviation in bytes.

wMemorySize is the amount of memory needed to run this run file. To
specify a flexible partition sizing, set the high bit of this word value. To
specify all available memory, set this value to 0.

sbCase is the case value to use when invoking the run file.

bPresetFKey designates the function key (if any) to be assigned to the
application:

0-9

OFFh

The context's associated function key (0 corresponds to F1)

No function key associated with context

fPresetFKey is a flag that determines whether Context Manager will
use the value specified in bPresetFkey. IffPresetFKey is TRUE, Context
Manager assigns the specified function key to the application. If
fPresetFKey is FALSE, Context Manager ignores bPresetFKey.

4393 4660-000 3-55

Programming Context Manager

CMStartAppl (continued)

bAutoStart is ignored.

3-56

sbVolume contains the default volume to use for the new application.
The first byte contains the size of the volume specification in bytes.

sbDirectory contains the default directory to use for the new
application. The first byte contains the size of the default directory
specification in bytes.

sbPrefix contains the default prefix to use for the new application. The
first byte contains the size of the prefix specification in bytes.

sbPassword contains the default password to use for the new
application. The first byte contains the size of the password in bytes.

sbNode contains the default node to use for the new application. The
first byte contains the size of the node name in bytes.

IDirty is a flag that is TRUE ifthe application should only run when it is
in foreground.

fNeedsExecScreen is a flag that is TRUE if the application requires the
video to be initialized with frames as though it had been invoked from
the Executive.

defaultColor is a value from 0-12 that determines the default color for
the application. Color values correspond to the following colors:

Value Color Value Color

0 Green 7 Pink

Blue(Cyan) 8 Aqua

2 Amber 9 Magenta

3 Yellow 10 Lavender

4 White 11 Coral

5 Darkblue 12 Red

6 Purple

4393 4660-000

Programming Context Manager

CMStartAppl (continued)

nPixelsWide is a word value indicating the width of the screen. Specify
1024 for high resolution, 720 for low resolution.

nPixelsHigh is a word value indicating the height of the screen. Specify
768 for high resolution, 348 for low resolution.

Note: If an invalid combination of screen width and height is passed,
the started application inherits the resolution of the parent
context. If the resolution of the parent context is not available, the
started application inherits the resolution of the CM Service.

sbExitRunFileSpec contains the name of the exit run file. The first
byte contains the length of the string and the remainder contains the run
file name.

sbExitRunFilePswd contains the password of the exit run file. The
first byte contains the length of the string and the remainder contains
the password.

Note: Any path information that is not specified is inherited from the
parent context.

4393 4660-000 3-57

Programming Context Manager

CMStartAppl (continued)

Errors

12004 No such command.

12005 Size of memory partition too large.

12007 Missing Command name.

12008 Command name too long.

12009 Missing run file.

12010 Run file name too long.

12011 Missing memory size.

Request Block

3-58

CMStartAppl is an object module procedure. Depending on the value of
fName, CMStartAppl calls either CMStartApplByName or
CMStartApplByBlock, and then calls CMQueryErc to return the proper
status code.

4393 4660-000

Programming Context Manager

CMStartApplByBlock

CMStartApplByBlock (pbBlock, cbBlock, pVLPB, sVLPB,
fDependentChild, pchRet): ErcType

Description

A program uses the CMStartApplByBlock call to request Context
Manager to start a new application in another partition.

A call to CMStartApplByBlock should be followed immediately by a call
to CMQueryErc, except ifthe call originates from:

• a system service

• the CM user interface

• an application not started through the CM Service

(You can refer to CMStartAppl for further details).

Parameters

pbBlock and cbBlock describe a block of information about the new
application to be started. For the definition of the start block, refer to
CMStartAppl.

pVLPB and sVLPB: describe a variable length parameter block
(VLPB). NIL implies that Context Manager should create a VLPB as
though the user had selected this application from the Context Manager
display. Otherwise, Context Manager copies the VLPB described by
pVLPB and sVLPB and uses it as the VLPB for the new application.

fDependentChild is TRUE if the child context is marked as dependent
on its parent context for survival. If the parent is terminated, the child is
also terminated.

pchRet is the memory address of a word value to which the context
handle of the new application is to be returned.

4393 4660-000 3-59

Programming Context Manager

CMStartApplByBlock (continued)

Errors

12005 Size of memory partition too large.

12007 Missing command name.

12008 Command name too long.

12009 Missing run file.

12010 Run file name too long.

12011 Missing memory size.

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 2

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 8079h

12 fDependentChild

13 reserved 5

18 pCMlnfo 4

22 sCMlnfo 2

24 pVLPB 4

28 sVLPB 2

30 pchRet 4

34 schRet 2 2

3-60 4393 4660-000

Programming Context Manager

CMStartApplByName

CMStartApplByName (pbName, cbName, pVLPB, sVLPB,
fDependentChild, pchRet): ErcType

Description

A program uses the CMStartApplByName call to request Context
Manager to start a new application in another partition.

A call to CMStartApplByName should be followed immediately by a call
to CMQueryErc, except if the call originates from:

• a system service

• the CM user interface

• an application not started through the CM Service

(You can refer to CMStartAppl for further details).

Parameters

pbName and cbName describe the name of the application to be
started. The name must match the name of an application in Context
Manager's known list of applications supplied in its configuration file.

pVLPB and sVLPB describe a variable length parameter block (VLPB).
NIL implies that Context Manager should create a VLPB as though the
user had selected this application from the Context Manager display.
Otherwise, Context Manager copies the VLPB described by pVLPB and
sVLPB and uses it as the VLPB for the new application.

IDependentChild is TRUE ifthe child context is to be marked as
dependent on its parent context for survival. If the parent is terminated,
the child also is terminated.

pchRet is the memory address of a word value to which the context
handle of the new application is to be returned.

4393 4660-000 3-61

Programming Context Manager

CMStartApplByName (continued)

Errors

12004 No such command.

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 2

3 nRespPbCb

4 userNum 2

6 ex ch Resp 2

8 ercRet 2

10 rqCode 2 807Ah

12 fDependentChild

13 reserved 5

18 pCMlnfo 4

22 sCMlnfo 2

24 pVLPB 4

28 sVLPB 2

30 pchRet 4

34 schRet 2 2

3-62 4393 4660-000

Programming Context Manager

CMStartApplOptions

CMStartApplOptions (fName, ffiackground, pbStartData, cbStartData,
p VLPB, s VLPB, bContextAttrs, pchRet): ErcType

Description

This call starts any type of child context, either in the foreground or in a
background partition. The context attribute values are specified in the
bContextAttrs parameter. This procedure calls one of the following
procedures, depending on fName and ffiackground:

• CMStartApplByName

• CMStartBkgdApplbyName

• CMStartBkgdApplByBlock

• CMStartApplByBlock

CmStartApplOptions then calls CMQueryErc.

A system service or an application not started through the CM Service
should not call CMStartApplOptions.

Parameters

tName is a flag set to TRUE to start an application by name, or FALSE
to start an application by a block of information.

ffiackground is a flag set to TRUE to start an application in a
background partition and FALSE to start an application in the
foreground.

pbStartData and cbStartData vary depending on the value offName.
IffName is TRUE these parameters give the location and size of a string
containing the name of the application that matches one specified in the
Context Manager configuration file. IffName is FALSE, these
parameters give the location and size of the start block used to start a
context. For a definition of the start block, refer to CMStartAppl.

pVLPB and sVLPB describe a variable length parameter block (VLPB)
which is used as the new context's VLPB.

4393 4660-000 3-63

Programming Context Manager

CMStartApplOptions (continued)

bContextAttrs is a byte which describes special attributes associated
with child contexts. Any combination of the following types may be
specified within the attribute byte:

Context Attributes Definition

3-64

1h IBitDependent

2h IBitlnvisible

4h IBitSharedVid

8h IBitlonglived

10h IBitDebug

A dependent child context will be
terminated when its parent is
terminated.

An invisible child context will not be
visible to the end user from the
interface application unless it is
programatically switched to the
foreground.

A shared video child context will have
its character map mapped to its parent
context's character map.

A long-lived child context may continue
to exist even after the CM interface
chains to a different run file.

A context started with this bit set to 1
will start in the debugger

pchRet is the memory address of a word to which the context handle of
the new context is returned.

The long-lived and dependent attibutes cannot conflict; a context cannot
be both dependent and long-lived.

4393 4660-000

Programming Context Manager

CMStartApplOptions (continued)

Errors

12004 No such command.

12005 Size of memory partition too large.

12007 Missing command name.

12008 Command name too long.

12009 Missing run file.

12010 Run file name too long.

12011 Missing memory size.

This is an object module procedure in cmAPI.Lib

Note: Applications that directly call CMStartApplByName,
CMStartBkgdApplbyName, CMStartApplByBlock, or
CMStartBkgdApplByBlock, and specify context attributes, can
pass the bContextAttrs parameter at offset 13 in the appropriate
request block, provided that {Dependent is set to OAh.

If an application starts a shared video child context without using
CMStartApplOptions, the application should use
CMStartBkgdApplByName or CMStartBkgdApplByBlock. Otherwise, an
ere will be returned if the shared video child context is in the foreground
and its parent is in the background.

4393 4660-000 3-65

Programming Context Manager

CMStartBkgdApplByBlock (continued)

CMStartBkgdApplByBlock (pbBlock, cbBlock, pVLPB, sVLPB,
fDependentChild, pchRet): ErcType

Description

A program uses the CMStartBkgdApplByBlock call to ask Context
Manager to start a new application in another partition. This partition is
a background partition and is not immediately visible on the screen;
subsequently switching to this new application causes it to be visible on
the real screen.

A call to CMStartBkgdApplByBlock should be followed immediately by a
call to CMQueryErc, except ifthe call originates from:

• a system service

• the CM user interface

• an application not started through the CM Service

(You can refer to CMStartAppl for further details).

Context Manager locks the parent in memory and then unlocks it when
the child context has started in the background.

Parameters

3-66

pbBlock and cbBlock describe a block of information about the new
application to be started. For the definition of the start block, refer to
CMStartAppl.

pVLPB and sVLPB describe.a variable length parameter block (VLPB).
NIL implies that Context Manager should create a VLPB as though the
user had selected this appi'ication from the Context Manager display.
Otherwise, Context Manager copies the VLPB described by pVLPB and
sVLPB and uses it as the VLPB for the new application.

IDependentChild is TRUE ifthe child context is marked as dependent
on its parent context for survival. If the parent is terminated, the child
also is terminated.

pchRet is the memory address of a word value to which the context
handle of the new application is to be returned.

4393 4660-000

Programming Context Manager

CMStartBkgdApplByBlock (continued)

Errors

12005 Size of memory partition too large.

12007 Missing Command Name.

12008 Command name too long.

12009 Missing run file.

12010 Run file name too long.

12011 Missing memory size.

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 2

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 629Bh

12 fDependentChild

13 reserved 5

18 pCMlnfo 4

22 sCMlnfo 2

24 pVLPB 4

28 sVLPB 2

30 pchRet 4

34 schRet 2 2

4393 4660-000 3-67

Programming Context Manager

CMStartBkgdApplByName

CMStartBkgdApplByName (pbName, cbName, pVLPB, sVLPB,
fDependentChild, pchRet): ErcType

Description

A program uses the CMStartBkgdApplByName call to ask Context
Manager to start a new application in another partition. This partition is
a background partition and is not immediately visible on the screen;
subsequently switching to this new application causes it to be visible on
the real screen.

A call to CMStartBkgdApplByName should be followed immediately by a
call to CM Query Ere, except if the call originates from:

• a system service

• the CM user interface

• an application not started through the CM Service

(You can refer to CMStartAppl for further details).

Context Manager locks the parent in memory and then unlocks it when
the child context has started in the background.

Parameters

3-68

pbName and cbName describe the name of the application to be
started. The name must match the name of an application in Context
Manager's known list of applications supplied in its configuration file.

pVLPB and sVLPB: pVLPB is either NIL or points to a variable length
parameter block (VLPB). NIL implies that Context Manager should
create a VLPB as though the user had selected this application from the
Context Manager display. Otherwise, Context Manager copies the VLPB
described by pVLPB and sVLPB and uses it as the VLPB for the new
application.

IDependentChild is TRUE if the child context is marked as dependent
on its parent context for survival. If the parent is terminated, the child
also is terminated.

pchRet is the memory address of a word value to which the context
handle of the new application is to be returned.

4393 4660-000

Programming Context Manager

CMStartBkgdApplByName (continued)

Errors

12004 No such command

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 2

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 629Ch

12 IDependentChild

13 reserved 5

18 pCMlnfo 4

22 sCMlnfo 2

24 pVLPB 4

28 sVLPB 2

30 pchRet 4

34 schRet 2 2

4393 4660-000 3-69

Programming Context Manager

CMSuspendContext

CMSuspendContext (ch): ErcType

Description

CMSuspendContext allows a parent context to suspend one of its child
contexts. To restart the processes of the child context, an application
must call CMResumeContext.

If the child context is swapped out, an error is returned.

Parameters

ch is the context handle of the child context to be suspended.

Errors

811 Partition is already swapped

12030 Cannot suspend or resume child

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

Rt Code 0

2 nReqPbCb 0

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 629Dh

12 ch 2

14 reserved 4

3-70 4393 4660-000

Programming Context Manager

CMSwitchContext

CMSwitchContext (ch): ErcType

Description

CMSwitchContext switches the screen and keyboard to the context
specified by the given context handle.

Parameters

ch is the context handle of the context to switch to.

Errors

12003 No such context handle

12057 The swap file is full -- cannot swap any more contexts

Request Block

CMSwitchContext is an object module procedure. CMSwitchContext
calls CMSwitchToExistingContext, then calls CMQueryErc to return the
proper status code.

4393 4660-000 3-71

Programming Context Manager

CMSwitchToExistingContext

CMSwitchToExistingContext (ch): ErcType

Description

A program uses the CMSwitchToExistingContext call to ask Context
Manager to switch the screen and keyboard to an existing context. This
call should be immediately followed by a call to CMQueryErc.

Parameters

ch is the context handle of the context to switch to.

Errors

12003 No such context handle.

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 807Bh

12 ch 2

14 reserved 4

3-72 4393 4660-000

Programming Context Manager

CMTellMeWhenMyChildTerms

CMTellMeWhenMyChildTerms (ch, pExch) ErcType

Description

The CMTellMeWhenMyChildTerms call notifies Context Manager to
send back the termination error when the child context finishes.

The parent application must make this call immediately after starting
the child context. The parent obtains the child's ere by means of a
message sent by Context Manager to the exchange provided.

Context Manager sends the following structure:

ch WORD

ere WORD

The child context's context handle

The child context's termination ere

Context Manager sends the above message to the caller using the CTOS
function call Send. A four-byte field of information, not a pointer, is sent
to the caller's exchange. The low word contains the ch and the high word
contains the ere.

If the child context terminates because of operator intervention (for
example, because the user pressed ACTION+FINISH), Context
Manager returns ere 0.

Note: The NotifyCM procedure message 22 is similar to
CMTellMeWhenMyChildTerms. NotifyCM obtains termination
information for all children terminated after the NotifyCM call is
made.

Parameters

Errors

ch is the child application's context handle.

pExch is the memory address of an exchange where Context Manager
sends the termination message.

None.

4393 4660-000 3-73

Programming Context Manager

CMTellMeWhenMyChildTerms (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 61B9h

12 ch 2

14 reserved 4

18 pExch 4

22 sExch 2 2

3-74 4393 4660-000

Programming Context Manager

CMTerminateContext

CMTerminateContext (ch): ErcType

Description

The CMTerminateContext call lets a program terminate a context in
another partition. A program cannot terminate itself or Context
Manager in this way.

Parameters

ch is the context handle of the context to be terminated.

Errors

12003 No such context handle.

12006 Cannot kill self.

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 807Dh

12 ch 2

14 reserved 4

4393 4660-000 3-75

Programming Context Manager

CMTransferData

CMTransferData (chTo, pbBuffer, cbBuffer, mode): ErcType

Description

This procedure allows contexts to paste up to one line of video characters
into another context that is reading the keyboard. The Context Manager
Service translates the video characters into keystrokes and sends these
keystrokes to the receiving context.

Because a different translation table can be associated with each
partition, the Context Manager Service handles data transfer as a two
step process.

First, so that the video characters can be properly untranslated, the
CMCutData function stores the keyboard table associated with the
source application (the context where the data is coming from) and
number of lines to paste.

Second, after switching to the target (receiving) context, a call to
CMTransferData is made so that the Context Manager Service can
transfer the translated data into the target partition's keyboard buffer.

Parameters

3-76

chTo is the context handle of the context which is to receive the
transferred data.

pbBuffer and cbBuffer describe the video data which is to be
translated and sent to the receiving context. The maximum length of
this buffer is 146 characters.

mode specifies the mode which should be used to transfer the data. The
five supported modes are:

1 =Line

2 =Word

3 =Block

4 = Multiplan

5 = Spreadsheet

4393 4660-000

Programming Context Manager

CMTransferData

Errors

811 Partition is swapped

619 No buffer space

12003 No such context handle

12020 This application is not reading the keyboard

12023 Invalid data transfer parameters

Request Block

Offset Field Size
(bytes)

0 sCntlnfo

RtCode

2 nReqPbCb

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2

12 ch To 2

14 mode 2

16 reserved 2

18 pbBuffer 4

22 cbBuffer 2

Contents

6

0

0

6334h

4393 4660-000 3-77

Programming Context Manager

CMTranslateChToFnKey

CMTranslateChToFnKey (ch,pbFnKeyRet): ErcType

Description

The CMTranslateChToFnKey procedure allows a program to obtain the
function key associated with a Context Manager context handle. The
caller provides a context handle and the address of a byte where Context
Manager returns a value (0-9) representing the function key (Fl-FlO)
assigned to that context. If you specify 0 for ch, the procedure returns
the calling application's function key. CMTranslateChtoFnKey checks
for NULL pointers passed as parameters.

Parameters

Errors

ch is the context handle to be translated.

pbFnKeyRet is the memory address of a byte where the translated
function key is to be returned.

12003 No such context handle

12025 No function key for this context

3-78 4393 4660-000

Programming Context Manager

CMTranslateChToFnKey (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 OCOCOh

12 ch 2

14 reserved 4

18 pbFnKeyRet 4

22 sbFnKeyRet 2

4393 4660-000 3-79

Programming Context Manager

CMTranslateChTolnfo

CMTranslateChTolnfo(ch, plnfoRet): ErcType

Description

This procedure allows an application to query Context Manager for
information on other applications. The information returned includes
function key information, command name information, and whether the
context is in memory.

Parameters

ch is the context handle of the context about which information is to be
returned.

plnfoRet is the memory address of a data structure in which context
information is returned.

lnfoRet Structure Definition

3-80

Offset

0

2

Field

bFkey

flnMemory

sbCmdName

Size

80

bFKey is a field containing:

0-9

OFFh

The context's associated function key (0 corresponds to F1)

No function key associated with context

4393 4660-000

,_

Programming Context Manager

CMTranslateChTolnfo (continued)

Errors

flnMemory is a flag indicating whether the partition associated with
the function key is currently in memory.

sbCmdName is an array of bytes in which the first byte contains the
size of the context command name and the remaining bytes contain the
command name.

None

Request Block

This is an object module procedure in cmAPI.Lib.

4393 4660-000 3-81

Programming Context Manager

CMTranslateChToPh

CMTranslateChToPh (ch, pphRet): ErcType

Description

The CMTranslateChToPh allows a program to translate a context handle
into a partition handle.

Parameters

Errors

ch is the context handle to be translated. A context handle of 0 indicates
the CM Service.

pphRet is the memory address of a word value where the translated
partition handle is to be returned.

12003 No such context handle

Request Block

Offset Field

0 sCntlnfo

RtCode

2 nReqPbCb

3 nRespPbCb

4 userNum

6 exchResp

8 ercRet

10 rqCode

12 ch

14 reserved

18 pphRet

22 sphRet

3-82

Size
(bytes)

2

2

2

2

2

4

4

2

Contents

6

0

0

807Eh

2

4393 4660-000

Programming Context Manager

CMTranslateFnKeyTolnfo

CMTranslateFnKeyTolnfo (bFKey, plnfoRet): ErcType

Description

The CMTranslateFnKeyTolnfo procedure allows a program to query for
information about another application running under Context Manager
associated with a function key.

Parameters

bFKey is the function key number from 0 to 9 (0 corresponds to Fl)

plnfoRet is the memory address of a data structure in which context
information is returned.

lnfoRet Structure Definition

Errors

Offset

0

2

3

Field

ch

!Swapped

sbCommandName

Size

2

80

ch is the context handle associated with the given function key

f'Swapped is a flag indicating if the partition associated with the
function key is currently swapped

sbCommandName is the command name of the context associated with
the given function key

12000 A specified parameter does not exist

12003 No such context handle

4393 4660-000 3-83

Programming Context Manager

CMTranslateFnKeyTolnfo (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 OC13Bh

12 bf key

13 reserved 5

18 plnfoRet 4

22 slnfoRet 2 83

3-84 4393 4660-000

Programming Context Manager

CMTranslatePhToCh

CMTranslatePhToCh (ph, pchRet): Erc'l'ype

Description

The CMTranslatePhToCh procedure allows a program to translate a
partition handle into a context handle.

Parameters

Errors

phis the partition handle to be translated. A partition handle of 0
indicates the CM Service.

pchRet is the memory address of a word value where the translated
context handle is to be returned.

12001 No such partition handle

Request Block

Offset Field

0 sCntlnfo

RtCode

2 nReqPbCb

3 nRespPbCb

4 userNum

6 exchResp

8 ercRet

10 rqCode

12 ph

14 reserved

18 pchRet

22 schRet

4393 4660-000

Size
(bytes)

2

2

2

2

2

4

4

2

Contents

6

0

0

807Fh

2

3-85

Programming Context Manager

CMUpdateCurrentConfig

CMUpdateCurrentConfig: ErcType

Description

Applications which modify the current Context Manager configuration
file can make this call to have the Context Manager Service update the
configuration information on a real time basis. The CM Editor, CM
Add Application, and CM Remove Application commands use this
function. Modifying the Context Manager configuration file with the
Executive Editor does not result in Context Manager automatically
reading the new information and updating itself.

Parameters

None.

Errors

None.

Request Block

3-86

Offset

0

2

3

4

6

8

10

Field

sCntlnfo

RtCode

nReqPbCb

nRespPbCb

userNum

exchResp

ercRet

rqCode

Size Contents
(bytes)

6

0

0

0

2

2

2

2 65D6h

Note: Upon a successful update of the current CM config information,
the CM Service will send out a CMReadContextEuent indicating
to the CM interface that an update has taken place.

4393 4660-000

Programming Context Manager

NotifyCM

NotifyCM (msgType, pbMsg, cbMsg): ErcType

Description

NotifyCM passes information from a context to Context Manager, stating
a condition of that context or asking for action by Context Manager.

Parameters

msgType is a word that contains a code for one of the following
messages:

Message

0

2

3

4

5

6

7

8

9

10

11-12

4393 4660-000

Description

Test to see if Context Manager is installed. Returns status code 0
(ercOK) if Context Manager is installed and status code 33 if Context
Manager is not installed.

Terminate this context and pass an ere (sent by CmNull)

New command (sent by the Executive)

Logout (sent by SignOn)

Terminate this context if you wish (sent by the Executive)

Change the parent of the calling context to be the Context Manager user
interface

Graphics application (sent automatically by all graphics applications)

Terminate this context and pass an error message (sent by CmNull)

This context can run in background (clean) (sent by any application)

This context cannot run in background (dirty) (sent by any application)

This context is no longer using graphics

Reserved

continued

3-87

Programming Context Manager

NotifyCM (continued)

Parameters

Errors

Message

13

14

15

16

17

18

19-21

22

23-27

Description

Lock this context from user access

Unlock this context from user access

Terminate this context when its parent terminates

Do not terminate this context when its parent terminates

Logout unconditionally

Change this context's function key abbreviation

Reserved

Notify caller when any child contexts terminate

Reserved

pbMsg and cbMsg describe the appropriate message. These are only
meaningful to Context Manager for messages of types 1, 2, 4, 7, 18, and
22.

Values 8 and 9: Depending on the sequence of calls that a program
makes to video routines, Context Manager marks that context as clean or
dirty (able or unable to run in background). Any program can override
this marking by including an explicit call to NotifyCM with the values 8
or 9.

Value 22, when you are waiting at an allocated exchange, wait with the
address of the message, not a pointer to the address. Use cbMessage to
pass the exchange to which notification is to be sent. Refer to
TellMeWhenMyChildTerms for a description of the data structure.

12000 A specified parameter does not exist.

3-88 4393 4660-000

Programming Context Manager

NotifyCM (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 102h

12 msgType 2

14 reserved 4

18 pbMsg 4

22 cbMsg 2

4393 4660-000 3-89

Programming Context Manager

ReadCMConfigFile

ReadCMConfigFile (prgbFileName, cbFileName, prgCommandlnfoRet,
pnCommandsRet, pActionChars, psblnterfaceExitRf):
ErcType

Description

A program uses this procedure to obtain command information within
the specified CM configuration file.

Note: This procedure allocates 1024 bytes of short-lived memory. You
should take this into account when sizing your run file. For more
information on sizing run files, refer to appendix B.

Parameters

3-90

prgbFileName is the name of the CM configuration file. This is
supplied by the calling application.

cbFileName is the length of the CM configuration file name. This is
supplied by the calling application.

prgCommandlnfoRet is the memory address of an array of structures
in which command information will be returned. The commands will be
arranged in alphabetical order, unless the file has been changed through
the use of the Executive Editor.

pnCommandsRet is the memory address of a word to which the total
number of commands in the specified configuration file will be returned.

pActionCharsRet is the memory address of an array which contains
the values of the action keys which are to be used to activate the data
transfer and the suspend and resume functions. This field can be set to 0
(zero) if the caller does not need this information.

psblnterfaceExitRF is the memory address of an array of bytes
containing information on the exit run file for the interface application.
The first byte of the array contains the size of the file name and the
remaining bytes contain the name of the run file. This field can be set to
zero if the caller does not need this information.

4393 4660-000

Programming Context Manager

ReadCMConfigFile (continued)

rgCommandlnfoRet Structure Definition

Offset Field Size

0 sbCommandName 80

80 sbAbbrev 7

87 bPresetFKey

88 f PresetFKey

89 bMode

sbCommandName is an array of bytes in which the first byte contains
the size of the command name and the remaining bytes contain the
command name.

sbAbbrev is an array of bytes in which the first byte contains the size of
the command name abbreviation and the remaining bytes contain the
command name abbreviation.

bPresetFKey is a field containing:

0-9

OFFh

The context's associated function key (0 corresponds to F1)

No function key associated with context

fPresetFKey is a flag that is set to TRUE if a preset function key value
has been passed to bPresetFKey, and FALSE if no value has been passed
to bPresetFKey.

bMode is a byte that contains the context's default data transfer mode.

4393 4660-000 3-91

Programming Context Manager

ReadCMConfig File (continued)

ActionCharsRet Structure Definition

Offset

0

2

Errors

None.

Request Block

ActionCut

Action Paste

Action Halt

Field

This is an object module procedure in cmAPI.Lib.

3-92

Size

4393 4660-000

Programming Context Manager

ICMS Procedural Interfaces

The following pages describe the procedural interfaces for ICMS
operations.

4393 4660-000 3-93

Programming Context Manager

ICMSCheck

ICMSCheck (pbMsg, cbMsg, pcbMsgRet): ErcType

Description

The ICMSCheck procedure allows a program to check for and possibly
receive a message sent by another context using ICMS. If a message is
queued waiting for this context, the message is returned.

Parameters

Errors

pbMsg and cbMsg describe a message buffer supplied by the calling
program.

pcbMsgRet is the memory address of a word value where the actual size
of the message is placed.

12103 No message available for this context

12106 Message too long

3-94 4393 4660-000

Programming Context Manager

ICMSCheck (continued)

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 2

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 8011h

12 reserved 6

18 pbMsg 4

22 cbMsg 2

24 pcbMsgRet 4

28 cbMsgRet 2 2

4393 4660-000 3-95

Programming Context Manager

ICMSCurrentVersion

ICMSCurrentVersion (pbVersion, pbRevision): ErcType

Description

The ICMSCurrentVersion procedure allows a program to determine the
current version and revision levels of ICMS. It checks to ensure that
Request.CM.sys is installed.

Parameters

Errors

pbVersion is the memory address of a byte into which ICMS returns the
current version.

pbRevision is the memory address of a byte into which the ICMS
returns the current revision.

12108 ICMS is not installed.

Request Block

ICMSCurrentVersion is an object module procedure.

3-96 4393 4660-000

Programming Context Manager

ICMSFlush

ICMSFlush (ch): ErcType

Description

The ICMSFlush procedure allows a program to flush any messages that
may be waiting in the ICMS for a given context. This call can be used,
for example, when program A in a given partition chains to program B.
Program B may initially flush waiting messages intended for A

Parameters

ch is the context handle of the context whose messages are to be flushed.

Errors

12003 No such context handle

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ere Rel 2

10 rqCode 2 8012h

12 ch 2

14 reserved 4

4393 4660-000 3-97

Programming Context Manager

ICMSSend

ICMSSend (ch, pbMsg, cbMsg): ErcType

Description

The ICMSSend procedure allows a program to send a message to another
context.

Parameters

ch is the context handle of the context where the message is to be sent.

pbMsg and cbMsg describe the message to be sent.

Errors

12003 No such context handle

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb

3 nRespPbCb 0

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 800Fh

12 ch 2

14 reserved 4

18 pbMsg 4

22 cbMsg 2

3-98 4393 4660-000

Programming Context Manager

ICMSWait

ICMSWait (pbMsg, cbMsg, pcbMsgRet): ErcType

Description

The ICMSWait procedure allows a program to wait for a message sent by
another context.

Parameters

Errors

pbMsg and cbMsg describe a buffer for the message supplied by the
calling program.

pcbMsgRet is the memory address of a word value where the actual size
of the message is placed.

12106 Message too long

4393 4660-000 3-99

Programming Context Manager

ICMSWait (continued)

1.~

Request Block

Offset Field Size Contents
(bytes)

0 sCntlnfo 6

RtCode 0

2 nReqPbCb 0

3 nRespPbCb 2

4 userNum 2

6 exchResp 2

8 ercRet 2

10 rqCode 2 8010h

12 reserved 6

18 pbMsg 4

22 cbMsg 2

24 pcbMsgRet 4

28 cbMsgRet 2 2

3-100 4393 4660-000

Appendix A
Status Codes and Messages

This section describes status codes and messages for CTOS Context
Manager. You can use this information for troubleshooting.

Status Codes
2440 This application must be invoked through the Executive program;

edit the configuration file.

2441

12000

12001

12002

12003

12004

12005

12006

12007

12008

12009

12010

12011

Note: Status code 2440 has a slightly different meaning for
Context Manager than for operating system errors.

A parameter contains an invalid value.

Unknown message.

No such partition handle.

Configuration buffer too small.

No such context handle.

No such command.

Information block size too large.

A context cannot call CMTerminateContext to terminate itself.

Using start by block, missing command name.

Using start by block, command name too long.

Using start by block, missing run file.

Using start by block, run file name too long.

Using start by block, missing memory size.

4393 4660-000 A-1

Status Codes and Messages

12012

12013

12014

12015

12020

12021

12022

12023

12024

12025

12026

12027

12029

12030

12031

12035

12057

A-2

No such parent context handle.

Cannot change parent to self.

Cannot switch to locked context.

Cannot adopt parent or grandparent context.

This application is not reading the keyboard.

This status indicates that the application selected to receive the
pasted data has been suspended or halted. Applications in this state
cannot read the keyboard, and therefore cannot receive pasted data.

Cannot paste to a submit program.

Paste is already in progress.

Invalid data transfer parameters.

This context cannot terminate the child context.

No function key for this context.

A user interface for Context Manager has already been registered.

Not a registered Context Manager user interface.

Cannot start shared video child context.

Cannot suspend or resume child context.

The caller has missed an event it should have received from
CMReadContext Event. To obtain current context information, the
caller should issue a call to CMQueryOtherContexts.

Data transfer is not supported from this application.

The user attempted to use the Data Transfer feature from an
application which does not have the necessary keyboard tables to
support Data Transfer.

The swap file is full -- cannot swap any more contexts.

4393 4660-000

12084

12085

12086

12087

12088

12089

12090

12091

12092

12093

12094

12095

12096

12097

12099

12100

12101

12102

12103

12104

12105

Status Codes and Messages

The run file needed for this application does not exist.

You cannot start any more contexts; maximum is 20.

There is no context to return to.

The swap file is full -- cannot swap any more contexts.

The run file is too large to run in any partition.

You cannot logout; there are contexts which must be finished.

Warning: There are unfinished contexts. Press GO to logout or
CANCEL to deny.

This context cannot be finished from the Context Manager.

The file specified as your swap file does not exist.

You can run only one graphics application at a time.

Cannot start an additional video-controlling application.

There is no current context.

An existing context cannot be swapped out to start a new
application.

There is not enough room in the swap file to swap the highlighted
context.

Context Manager is not installed.

ICMS is already installed.

ICMS internal error.

Cannot open the ICMS Disk Message file.

ICMS: No message available.

ICMS: No free messages.

ICMS: Not implemented.

4393 4660-000 A-3

Status Codes and Messages

12106

12107

12108

12109

40001

40002

40003

40004

40005

40006

400.07

40008

A-4

ICMS: The message sent was too long.

ICMS: This context is already waiting for messages.

ICMS is not installed.

Incorrect version or missing Request.CM.sys.

Context Manager inconsistency, suggest you save all contexts.

Internal error: Wrong exchange.

Internal error: Region status inconsistency.

Internal error: Swap file inconsistency.

Internal error: Too many swaps.

Internal error: Invalid line indices specified for a map switch.

Internal error: Swap count invalid.

Internal error: Unknown context status.

4393 4660-000

Status Codes and Messages

Status Messages
Status messages that may appear during use of Context Manager are described
below. The error code, if any, is shown in parentheses.

Not enough memory in this partition to run this application.
(Error 400)

When you select an application to start and press GO, the Context
Manager message area says Loading then Finishing ...
and then may give this error.

This error occurs when Context Manager tries to start an application
in a partition that is too small for the application. The number
specified in the Memory Required field of the Context Manager
configuration file is too small for that application. You edit the
Context Manager configuration file to change the entry in the
Memory Required field for that application.

When you have finished editing the configuration file, save the
configuration file changes. If you are using the default Context
Manager interface, the configuration is updated automatically.

Not enough memory. (Error 400)

This error can occur if you enter a command from the Executive and
the partition running the Executive is too small to support the
particular program started by the command. For example, you may
have entered the OFIS Mail command, which starts the CTOS
electronic mail application. To avoid this error, instead of increasing
the memory allocated for the Executive, you can add OFIS Mail as a
separate application to your Context Manager configuration file and
start it through Context Manager rather than the Executive.

When you have finished editing the configuration file, ,save the
changes you have made to it. If you are using the default Context
Manager interface, the configuration is updated automatically.

4393 4660-000 A-5

Status Codes and Messages

A-6

This version of the OS cannot support any more contexts.
(Error 801)

When you try to start a new application from the Context Manager
screen, this message may be displayed.

Refer to the CTOS Context Manager II Programming Guide for an
explanation of how to generate a new version of the operating system
that supports more contexts.

A context in memory cannot be swapped out. (Error 813)

A context in memory cannot be swapped out because it cannot be
quieted; that is, the program has requests outstanding after
swapping requests have been issued by the operating system. This
error is usually caused by system services that do not handle
swapping correctly.

Either wait until the context in memory is finished, or finish the
context that is in memory, and then try to switch your context again.

Note: This message and the next are the same, but have
different error codes and slightly different meanings.

A context in memory cannot be swapped out. (Error 815)

A context in memory cannot be swapped out because it has served a
request, served interrupts, or is communicating with a serial or
parallel port.

Either wait until the context in memory is finished, or finish the
context that is in memory, and then try to switch your context again.

4393 4660-000

Status Codes and Messages

This application must be invoked through the Exec; edit the
Config File.

The application you have chosen requires that you enter a parameter
or parameters that should be supplied from the Executive, by means
of an Executive command form. Use the following procedure to
correct this error:

1. Use the CM Editor to edit your Context Manager configuration
file.

2. Display the configuration information for the application.

3. Change the entry in the Run file to [Sys]<Sys>Exec.run.

4. Change the entry in the [Command case] field to CM.

5. Save the configuration file changes.

An existing context cannot be swapped out to start a new
application.

If you select a new application and press GO, the above message may
appear. This means that all memory partitions into which the new
application would fit are already occupied by contexts that are not
allowed to swap out.

Either wait until the context(s) in memory are finished, or finish a
context that is in memory, and then try to start your application
again.

You cannot activate a data transfer session from a graphics
context.

If you press the action character configured to start a data transfer
session from a context that has registered itself to the Context
Manager Service as a graphics context, the above message will
appear.

You must select data from a context that does not register itself as a
graphics context.

4393 4660-000 A-7

Status Codes and Messages

A-8

The data transfer feature has been disabled.

One or both action characters used to transfer data are disabled.

To configure the action key characters, use the CM Editor to edit
your Context Manager configuration file. Press FS to display the
action key character form, and then enter a new character in the
character field.

4393 4660-000

Appendix B
Creating a Context Manager User Interface

You can create a customized user interface for the Context Manager
Service as a replacement for CM Screen. This appendix provides
information on creating a user interface to the Context Manager Service.

This appendix includes:

• a list of requirements and recommendations for the interface

• a table of procedural calls and their corresponding functions

• information for creating the features equivalent to various existing
CM Screen features

• a sample main routine for a Context Manager user interface

Requirements
A CM user interface must:

• be a protected mode compatible V6 run file

• be Video-clean

• be Swap-disabled

• call CMRegisterUIMS

• link with CmAPI.Lib

4393 4660-000 B-1

Creating a Context Manager User Interface

Recommendations

8-2

A CM user interface should:

• have a sized run file

Unisys recommends that a user interface have a sized run file
so that it does not use any unnecessary memory.

• run in the 21h - 50h priority range

A user interface should run in the 21h to 50h priority range so
that it receives events in a timely manner without interfering
with system services that require a higher priority (for example,
the Mouse Service).

• be error-resilient

A user interface should be error-resilient so that it does not
terminate if it receives an error it cannot handle. If the exit run
file of the user interface is set to [Sys]<Sys>CMNull.run and
the user interface exits upon error, the Context Manager
Service terminates all contexts and deinstalls itself.

• be responsible for AutoStarting applications

A user interface should be responsible for autostarting
applications. The interface can use the
CMQueryAutoStartAppl call to obtain a list of applications
marked for auto starting and then use any of the CMS tart
requests to start them.

• set the exit run file

A user interface should set the exit run file for itself using the
CTOS function SetExitRunFile. For more information, refer to
the CTOS Procedural Interface Reference Manual.

4393 4660-000

Creating a Context Manager User Interface

Initializing a User Interface through the CM
Service

When you use the Install Context Manager command to install a CM
user interface, the Context Manager Service:

• starts the user interface specified in the
[CM Interface Run File Name] parameter

• creates a partition for the user interface of the size specified in the
[Partition Size (K)] parameter of fixed size, unless the first character
is a less-than sign(<) or, if no size is specified, a flexible partition of
the default size (95K).

• names the user interface partition CMUI

• initializes the video if the [Initialize Screen?] parameter is set to Yes.
Interfaces written in the C programming language require that this
parameter be set.

4393 4660-000 8-3

Creating a Context Manager User Interface

Creating Context Manager Screen Features

B-4

This section contains information on creating features that exist in CM
Screen that you may want to include in your user interface. None of
these features is required.

Information for creating features equivalent to CM Screen is included for
the following features:

• using action keys

• listing available applications

• obtaining function key information

• starting contexts

• switching contexts

• terminating contexts

• obtaining information about autostarted and long-lived contexts

• obtaining information about context starts, switches, and
termination

• reporting context status information

• allowing context halting

• using a configured exit run file

• supporting data transfer

• updating the screen

• reporting mail

Table B-1 provides a quick reference to the calls associated with a
specified CM Screen feature.

4393 4660-000

Creating a Context Manager User Interface

Table B-1. Calls Used to Implement User Interface

Feature

Action keys

Available applications

Function key information

Starting contexts

Switching contexts

Terminating contexts

Long-lived contexts

Contexts to be Autostarted

Context starts, switches, and termination

Context status information

Context halting

4393 4660-000

Applicable Calls

ReadActionKbd
(OS request)

CMOueryConfigFile
ReadCMConfigFile

ReadCMConfig File
CMTranslateChToFnKey
C MT ranslateCh T ol nfo
CMTranslateFnKeyTolnfo
CMQueryOtherContexts

CMStartAppl
CMStartApplByName
CMStartApplByBlock
CMStartBkgdApplByName
CMStartBkgdApplByBlock
CMStartApplOptions

CMSwitchContext
CMSwitchToExistingContext

CMTerminateContext

CMRegisterUIMS
CMQueryOtherContexts

CMQueryAutoStartAppl

CMQueryOtherContexts
CMReadContextEvent
CMQueryActiveContext

CMOueryOtherContexts
CMReadContextEvent
CMTranslateChTolnfo
CMTranslateFnKeyTolnfo
GetPStructure(OS request)

CMSuspendContext
CMResumeContext
ReadCMConfigFile

continued

8-5

Creating a Context Manager User Interface

Table B-1. Calls Used to Implement User Interface (cont.)

Feature

Exit run file

Data transfer

Interactive updates

Mail reporting

Applicable Calls

ReadCMConfigFile

CMCutData
CMTransferData
CMQuerylfGraphics
ReadCMConfigFile

CMRegisterUIMS
CMReadContextEvent
CMUpdateCurrentConfig
ReadCMConfigFile

MailCheck(OS request)

Using Action Keys

B-6

A user can bring the user interface to the foreground by using Action
keys. Action keys are used because they are global to all contexts.
Normal keystroke and code key combinations cannot be used because the
active context receives those keystrokes. Your user interface must issue
a ReadActionKbd request in order to use Action keys.

4393 4660-000

Creating a Context Manager User Interface

Listing Available Applications

The CM Screen lists the applications available for the user to start in the
'Applications you can start' area of the screen. A user interface can
execute the following calls to obtain information on available
applications:

• CMQueryConfigFile

• ReadCMConfigFile

CMQueryConfigFile returns the full file specification of the CM
configuration file that is currently in use. This configuration file name
can then be used in a call to ReadCMConfigFile so that the user interface
application can obtain command information on the applications
configured in the CM configuration file. This information can then be
used by the user interface to display a list of the available applications.

4393 4660-000 B-7

Creating a Context Manager User Interface

Obtaining Function Key Information

A CM user interface can use three types of function key information:

• the function key number only

• the function key abbreviation

• the preset value, if any, for a function key

CM Screen displays a function key abbreviation on the function key row
when an application is started. It displays any preset function keys on
the function key row when CM Screen is invoked, and changes them
upon update of the configuration file if applicable.

Function Key Number

After a context has been started, CMTranslateChToFnKey can be used to
obtain a function key number. If the application has a preset function
key, this number is returned. If a function key is preset to 0 or all 10
function keys are in use at the time the context is started, OFFh is
returned, indicating there is no function key for the context.

Function Key Abbreviations

8-8

The following calls return function key abbreviations:

• ReadCMConfigFile

• CMTranslateChTolnfo

• CMTranslateFnKeyTolnfo

• CMQueryOtherContexts

ReadCMConfigFile retrieves function key abbreviations at the same time
it obtains application information. The information can be saved and
used as contexts are started.

CMTranslateChTolnfo, CMTranslateFnKeyTolnfo, or
CMQueryOtherContexts can be used to obtain function key abbreviations
after contexts have been started. CMTranslateChTolnfo and
CMTranslateFnKeyTolnfo return a function key abbreviation for a single
context only, based on the context handle or function key passed;
CMQueryOtherContexts includes function key abbreviations for all
active contexts.

4393 4660-000

Creating a Context Manager User Interface

Preset Function Keys

Preset function key information is returned only from the
ReadCMConfigFile call. ReadCMConfigFile returns the preset function
key information from the specified CM configuration file. The preset key
number is returned as a parameter in each Command Info structure. A
function key of 0 (no function key) is returned as OFFh.

Starting Contexts

Before allowing users to start contexts, a user interface must determine
what type of child contexts to start. The following areas should be
considered:

• foreground or background

• dependent, independent, or long-lived

Contexts can be started in the foreground or in the background. If
contexts are started in the foreground, the user may immediately begin
work in that context, but must return to the user interface to start
another context. If the contexts are started in the background, the user
may start several contexts at one time and then choose the context to
work with, but this would require an extra step if only one application is
started at a given time. All contexts started from CM Screen are started
in the foreground.

Contexts can be dependent, independent, or long lived. If contexts are
started as dependent children to the user interface, they are terminated
by the Context Manager Service when the user exits the interface. If
contexts are started as independent or long-lived, the Context Manager
Service does not terminate them when the user interface finishes
(providing the exit run file for the user interface is not CMNull.run), but
the user interface may terminate them itself as part of its exit routine.
All applications started from CM Screen are started as dependent
children.

4393 4660-000 8-9

Creating a Context Manager User Interface

Contexts can also be invisible or have shared video capabilities. No
events for an invisible context are reported to a user interface. Shared
video children share the video with at least one other context. These are
not attributes that would be beneficial to assign to all contexts, but a
user interface might give the user the ability to choose to start a context
with one of these attributes. CM Screen does not allow these attributes
to be used for contexts started from the 'Applications you can start' menu
area.

The following calls can be used to start contexts:

• CMStartAppl

• CMStartApplByName

• CMStartApplByBlock

• CMStartBkgdApplBy Name

• CMStartBkgdApplBy Block

• CMStartApplOptions

You can use all of these calls through the Context Manager procedural
interfaces. You can also use most of these calls by building the request
block. You cannot build request blocks for CMStartAppl and
CMStartApplOptions, which are object module procedures.

In procedural call form, only CMStartApplOptions can be used to start
contexts with an invisible, shared video, or long-lived attribute.
However, in their request forms all calls can start contexts with these
attributes by passing the attribute byte at offset 13 in the request block.

Switching Contexts

B-10

The CM Screen allows users to switch contexts by pressing
ACTION+NEXT, ACTION+Numeric Minus, ACTION+FnKey, or GO
from CM Screen. Two calls can be used to switch contexts:

• CMSwitchContext

• CMSwitchToExistingContext

Either call will cause the context passed as a parameter to become the
foreground context.

4393 4660-000

Creating a Context Manager User Interface

Terminating Contexts

The CM Screen allows users to termintate contexts by pressing
ACTION+ FINISH from the CM Screen. You can terminate contexts by
using the CMTerminateContext procedure.

Long-Lived Contexts

Long-lived contexts may exist before a user interface is installed. If a
user interface wants to adopt these contexts, or allow the user to access
them from the user interface, it can use one of the following calls:

• CMRegisterUIMS

• CMQueryOtherContexts

CMRegisterUIMS can be conveniently used when the user interface
registers itself with the Context Manager Service. Wben called,
CMRegisterUIMS returns a list of the existing contexts. Alternatively,
CMQueryOtherContexts can be used to obtain the same information at
any time during program execution, by providing it with a Code value
ofO.

CM Screen uses the CMRegisterUIMS method to obtain information
about long-lived contexts that exist before it is installed.

Contexts to be Autostarted

The user interface is responsible for starting contexts marked as
autostarting. To obtain a list of the contexts to be autostarted, you can
use the CM QueryAutoStartAppl call. CM Screen uses this call to obtain
a list of contexts to be autostarted, and then starts them in background
except for the last one, which it starts in the foreground.

4393 4660-000 B-11

Creating a Context Manager User Interface

Context Starts, Switches, and Termination

B-12

The following three calls allow a user interface to keep correct
information on the state of contexts:

• CMQueryOtherContexts

• CMReadContextEvent

• CMQueryActiveContext

CMQueryOtherContexts returns information on all contexts. This
information must then be compared to the information obtained from the
previous call to CMQueryOtherContexts to determine which contexts are
new to the list and which contexts no longer exist in the list. The user
interface can then update its display accordingly.

CMReadContextEvent allows an application to keep up-to-date
information on the state of contexts. When a request has been made to
CMReadContextEvent, the Context Manager Service reports all
programmatic starts and switches, as well as other information, so that
an interface application can display these contexts on the screen in
addition to its own children. CMReadContextEvent reports this
information even ifthe user interface itself caused a change in the state
of a context. The Context Manager Service also reports context
termination so that a context can be removed from the screen. Error
codes or messages are included with the termination event to be used by
the interface application if it is to display this information for the user.
CM Screen uses this method to display context information.

Note: Refer to Details on CMReadContextEuent for further information
on using this request.

You can use CMQueryActiveContext at any time to determine the
context handle of the active context.

4393 4660-000

1~

Creating a Context Manager User Interface

Reporting Context Status Information

A CM user interface can obtain context status information by using the
following calls:

• CMQueryOtherContexts

• CMTranslateChTolnfo

• CMTranslateFnKeyTolnfo

• CMReadContextEvent

• GetPStructure(OS request)

If a user interface is using CMQueryOtherContexts to learn of changes in
the context environment, it can use the status that is returned with this
call. CMQueryOtherContexts allows a user interface to report the
following states:

• Running

• Waiting

• Done

• Locked

• Stopped .

If a user interface is only required to report to the user when a context is
in memory, use CMTranslateChTolnfo or CMTranslateFnKeyTolnfo.

If a user interface is to report locked, unlocked, stopped, running,
waiting, or done status information, you can use the
CMReadContextEvent request. A new status is reported to the
application program at the time that it changes, eliminating the need for
the application to repeatedly make a call to find out if the status has
changed from the current one.

Note: Refer to Details on CMReadContextEvent for further information
on using this request.

To obtain information on whether contexts have been swapped, use the
operating system call GetPStructure to obtain the pointer to the partition
swap status. To update the swap status of a context, check the partition
swap array for that partition entry. Note that this array is indexed by
partition handles, not context handles.

4393 4660-000 B-13

Creating a Context Manager User Interface

Allowing Context Halting

To allow users to configure a halt action keystroke, the user interface
must use the ReadCMConfigFile call to retrieve this information from
the CM configuration file. To support a user configurable suspend
keystroke, the user interface can use the pActionCharsRet parameter to
request the information configured in the CM configuration file when it
calls ReadCMConfigFile.

To support context halting, a user interface need only use two calls:

• CMSuspendContext

• CMResumeContext

If a user interface is to allow the user to suspend a context by performing
a specific action (such as the ACTION+S keystroke used by the CM
Screen), the user interface should call CMSuspendContext. This
suspends the context until the user prompts the user interface to resume
the context. The user interface can call CMResumeContext at that time
to resume normal context operation.

Using a Configured Exit Run File

If a user interface is to allow its exit run file to be configured by the user,
it can use the ReadCMConfigFile call to retrieve the interface exit run
file information specified in the CM configuration file. The user interface
can specify that it wants this information by using the
psblnterfaceExitRF parameter. Once the interface exit run file has been
obtained, the user interface can then use the SetExitRunFile operating
system call to set this file to be its exit run file.

Supporting Data Transfer

B-14

If the user interface is to support user configurable keystrokes for cut
and paste actions, it can obtain this information when it calls
ReadCMConfigFile by using the pActionCharsRet parameter.

If the user interface is to support user configurable data transfer modes,
it also needs to call ReadCMConfigFile for this information. This is
returned in the Mode parameter of the Command Info structure.

4393 4660-000

Creating a Context Manager User Interface

You use the following calls to perform data transfer:

• CMQuerylfGraphics

Call CMQuerylfGraphics from the source context before a cut
operation to ensure that the user is not trying to cut from a
graphics context.

• CMCutData

CMCutData saves the keyboard translation table and passes
the number of lines of data to be transferred.

• CMTransferData

CMTransferData untranslates the characters in the buffer and
sends them to the operating system, which forwards them to
the receiving application. CMTransferData allows contexts to
paste up to one line of video characters into another context
that is reading the keyboard. This information can be stored in
a buffer so that blocks of text can be transferred at one time.

The CM Screen provides a data transfer (cut/paste) menu to users.

4393 4660-000 8-15

Creating a Context Manager User Interface

Updating the Screen

Three calls are involved in handling interactive updating of the screen
when the user changes the current CM configuration file:

• CMRegisterUIMS

• CMReadContextEvent

• ReadCMConfigFile

First, when the user interface calls CMRegisterUIMS, it must set the
fWantsConfigUpdate flag to TRUE to let the CM Service know that it
wants to be notified of CM configuration file updates.

After CMRegisterUIMS has been called, the user interface makes the
CMReadContextEvent request. When an application, such as CM Editor,
calls CMUpdateCurrentConfig, the Context Manager Service returns
Event 5 after updating the current CM configuration file information. If
the fWantsConfigUpdate flag is not set to TRUE when the user interface
calls CMRegisterUIMS, the Context Manager Service does not update
the CM configuration file information, and the event is not returned to
the caller.

Finally, a user interface has to obtain the updated configuration file
information. To do this, ReadCMConfigFile can be called to obtain the
new information in the CM configuration file. With this information, the
screen can then be updated appropriately.

Reporting Mail

8-16

The operating system call MailCheck is used by a user interface to notify
users of incoming mail. This call should be made each time the user
interface becomes the active context. It also should be timed while the
user interface remains the active context and called after a given time
interval. CM Screen uses a time interval of30 seconds. Refer to the
CTOS Procedural Interface Reference Manual for more information.

4393 4660-000

,.

Creating a Context Manager User Interface

Details on CMReadContextEvent

When using the CMReadContextEvent request, you must increment
iVersion each time you get a response from the CMReadContextEvent
request. The Context Manager Service uses the iVersion parameter of
the CMReadContextEvent request block to keep track of the event in the
event queue you last received. When the Context Manager Service
receives a CMReadContextEvent request, it compares its internal
iVersion with the iVersion you passed. If the discrepancy between the
two is greater than 9, an error is returned informing the requestor that
events have been missed because Context Manager Service only queues
the last 10 events. If you do not increment iVersion each time you get a
response from the CMReadContextEvent request, you will soon get out of
synch with the Context Manager Service and this error will be returned
continually instead of events.

To recover from missed events, you must call CMQueryOtherContexts to
obtain the current context information and the contents of iVersion. This
information can then be compared to the last context information you
received, and you can then update the interface display to the current
state. For example, compare the context handles returned from
CMQueryOtherContexts to the known context handles to see if any
contexts have been started or terminated since your last event.

4393 4660-000 B-17

Creating a Context Manager User Interface

Sample CM User Interface Program

B-18

Figure B-1 contains a simplified example of a main routine for a Context
Manager user interface.

Figure B-1. Sample Context Manager User Interface Main Routine

void MainLoop(void)
{

BYTE Key;
struct rqHeader *prqHeader;
struct rqReadKbd *prqReadKbd;
struct rqRead.ActionKbd *prqRead.ActionKbd;
rqCMReadContextEventType *prqReadContextEvent;
WORD MyExch, MyUserNum;

I* set up for UIMS and draw screen */
UIMSSetup();

/* get user number and exchange */
GetUserNumber(&MyUserNum);
AllocExch(&MyExch);

I* initialize request blocks */
prqHeader = (struct rqHeader *) calloc(l, sizeof(struct

rqHeader));

prqReadKbd = (struct rqReadKbd *)
calloc(l, sizeof(struct rqReadKbd));

prqReadKbd->sCntinfo = 6;
prqReadKbd->nRespPbCb = 1;
prqReadKbd->UserNum = MyUserNum;
prqReadKbd->ExchResp = MyExch;
prqReadKbd->rqCode = RQREADKBD;
prqReadKbd->pCharRet = &Key;
prqReadKbd->sCharRet = 2;

prqRead.ActionKbd = (struct rqRead.ActionKbd *) calloc(l,
sizeof(struct rqReadActionKbd));

prqRead.ActionKbd->sCntinfo = 6;
prqRead.ActionKbd->nRespPbCb = 1;
prqRead.ActionKbd->UserNum = MyUserNum;
prqRead.ActionKbd->ExchResp = MyExch;
prqRead.ActionKbd->rqCode = RQREADACTIONKBD;
prqRead.ActionKbd->fGlobal = TRUE;
prqRead.ActionKbd->pActionCharRet &Key;
prqRead.ActionKbd->sActionCharRet = 2;

4393 4660-000

Creating a Context Manager User Interface

Figure B-1. Sample Context Manager User Interface Main Routine (cont.)

prqReadContextEvent = (rqCMReadContextEventType *)
calloc(l, sizeof(rqCMReadContextEventType));

prqReadContextEvent->sCntinfo = 6;
prqReadContextEvent->nRespPbCb = l;
prqReadContextEvent->UserNum = MyUserNum;
prqReadContextEvent->ExchResp = MyExch;
prqReadContextEvent->rqCode = RQCMREADCONTEXTEVENT;
prqReadContextEvent->pEventBlock = (EventinfoType *)

calloc(l, sizeof(EventinfoType));
prqReadContextEvent->sEventBlock

sizeof(EventinfoType);

/* issue requests */
CheckErc(Request(prqReadKbd));
CheckErc(Request(prqReadActionKbd));
CheckErc(Request(prqReadContextEvent));

do
Wait(MyExch, &prqHeader);

ClearMsg();
switch(prqHeader->rqCode)

}

case RQREADKBD :
if (! MenuArea)

HandleAvailApps(Key);
else

HandleAvailCont(Key);
Request(prqReadKbd);

break;

case RQREADACTIONKBD
HandleActionKey(Key);
Request(prqReadActionKbd);

break;

case RQCMREADCONTEXTEVENT
HandleEvents(prqReadContextEvent->pEventBlock);
prqReadContextEvent->iVersion++;
Request(prqReadContextEvent);

break;

while (FOREVER);

4393 4660-000 B-19

Appendix C
Rebuilding a System to Allow More
Contexts

The number of partitions specified at system build using the nPartitions
parameter in the sysgen prefix file determines the number of contexts
that Context Manager can support simultaneously up to a maximum of
20. The nPartitions parameter usually refers to the physical division of
memory; however, Context Manager uses nPartitions as virtual entities.
You specify the physical division of memory when you edit a Context
Manager configuration file. In the following discussion, nPartitions
refers to virtual partitions.

As you create a context, the system assigns a virtual partition to it. If
the number of contexts the system supports is exceeded during the
operation of Context Manager, the following message appears:

This version of the OS cannot support any more contexts.

You can rebuild your system to include more virtual partitions, and
therefore more contexts (to a maximum of 20), by modifying the prefix
file of your operating system. To determine the prefix file for your
workstation, refer to the CTOS Operating System Concepts Manual.

The prefix file contains a line similar to the following: %Set(nPartitions,
6). Only prefix files for multipartition operating systems (the operating
system Context Manager requires) have this entry.

To determine the number of partitions needed, you add the number of
partitions the operating system requires, the number of partitions
Context Manager requires, the number of contexts you want, and the
number of installed system services. Table C-1 shows an example of this
calculation.

You change the n in nPartitions to this sum. You must then assemble
the sysgen files and link the CTOS version, following the directions in
the CTOS Operating System Concepts Manual.

4393 4660-000 C-1

Rebuilding a System to Allow More Contexts

Environment:

C-2

Table C-1. Sample Calculation of nPartitions Value

User requires enough paritions for five application contexts and
three system services. The value to specify for n in nPartitions
is 11, calculated as follows:

Operating system partition

System services

Context Manager partition

CM user interface partition

Application partitions

Total partitions needed:

+ 3

+ 1

+ 1

+ 5

= 11

4393 4660-000

Glossary

A
Absolutely clean context state

Contexts are considered absolutely clean if they call either InitVidFrame
or NotifyCM (8).

Absolutely dirty context state

Contexts are considered absolutely dirty if they perform the procedure
NotifyCM (9). If the context is not the foreground context and is marked
absolutely dirty, Context Manager suspends the application.

Action function key (F8)

When you press this key in the protected mode CM Editor, you can
change the default action keys assigned to the Cut, Paste, and Halt
features.

Application

B

In this guide, an application is a general term describing applications,
utilities, or programs that you can run using Context Manager. A list of
applications available appears on the Context Manager display under the
heading Applications you can start.

Background

Any context other than the current context that is showing is said to be
in the background.

Busy Wait status

Busy Wait status refers to applications that poll the keyboard or other
devices. It causes all other contexts to be suspended.

4393 4660-000 Glossary-1

Glossary

c
Child context

A child context is a context that has been created, or can be switched or
terminated by another context referred to as a parent context.

Clean state

Clean state indicates no side effects of the program running under
Context Manager.

CM Add Application

This command allows you to add an application to a specified
configuration file.

CMAPI.lib

CMAPI.lib is a file that contains procedural interfaces for using Context
Manager and !CMS requests.

CmConfig.sys file

CmConfig.sys is a sample Context Manager configuration file. You can
edit this file or create other configuration files to conform to the
applications you want to access through Context Manager. CmConfig.sys
is the default configuration file.

CM Editor

The CM Editor is a separate program that allows you to set up Context
Manager to meet your needs. You use the CM Editor to edit the Context
Manager configuration file and create additional user-specific
configuration files.

CmEditor.run file

CmEditor.run is the CM Editor run file. This editor lets you edit a
Context Manager configuration file.

Cmlnstall.run file

Cmlnstall.run is the run file that installs Context Manager.

Glossary-2 4393 4660-000

Glossary

Cmlnvoker.run file

Cmlnuoker.run clears the screen and creates frames similar to the
Executive frame. It also allows pre-configured parameters to be passed
to a context.

CmNull.run file

CmNull.run is the exit run file for all Context Manager contexts.

CmScreen.run file

CMScreen.run is the default Context Manager user interface.

CmVm.run file

CmVm.run is the Context Manager run file.

Cm.user file

Cm.user is a sample user file. If you type the user name CM at the
SignOn form, this file lets Context Manager load automatically. You can
edit this file or create other user files for automatic startup of Context
Manager.

Config.sys

Config.sys is the CTOS configuration file that can be modified to use
Crashdump.sys or another user-specified file as the swap file.

Context

A context is an active application. The most recently started context has
control of the screen and keyboard.

Context handle

The context handle is a unique identifier that Context Manager assigns
to an application when the application is started. The context handle is
needed for applications using the CM and ICMS procedural interfaces.

Context Manager

Context Manager is a software utility that allows several applications,
utilities, or programs to run concurrently on a CTOS multipartition
Unisys operating system.

Context states

There are four context states: tentatively clean, tentatively dirty,
absolutely clean, absolutely dirty. (Refer to individual glossary entries.)

4393 4660-000 Glossary-3

Glossary

D
Default value

A default value gets assigned automatically if you do not specify a value.

Dependent child context

A dependent child context is a child context that depends upon its parent
for survival. If the parent of the dependent child context terminates, the
dependent child context also terminates.

Dirty state

Dirty state means the program accesses the video directly, addresses the
cursor through a port, or changes color or font directly.

Dollar directory

A dollar directory is where the system places temporary files.

E
Executive application

The Executive application refers to the Executive Command level. It lets
you enter Executive commands through Context Manager. Applications
that do not meet the parameter requirements of Context Manager must
be accessed indirectly through the Executive rather than directly through
Context Manager.

Exit Run File key (F4)

F

When you press this key from the CM Editor display, you can specify the
exit run file for the CM user interface or the Context Manager Service.

Foreground context

The Foreground context is the context that currently controls the screen
and keyboard. If you switch contexts, the context you switch to becomes
the foreground context.

Glossary-4 4393 4660-000

ICMS

Glossary

The InterContext Message Service is an installable system service that
lets contexts communicate with each other.

ICMS key (F9)

You use this key to access the InterContext Message Service menu in the
CM Editor.

!CMS.run file

This is the InterContext Message Service run file.

Independent child context

An independent child context is a child context that does not depend
upon its parent context for survival. If the parent context terminates,
the independent child context does not automatically terminate.

Invisible context

IPC

L

An invisible context is an application partition which is started in the
background. It does not have as associated function key and its existence
is not reported to the CM user interface.

Interprocess Communication facility is an operating system facility that
uses messages and exchanges to synchronize communication between
processes.

Long-lived context

A long-lived context is a context that continues to exist even though the
CM user interface has chained to another runfile. Long-lived contexts
can exist either in the foreground or the background.

4393 4660-000 Glossary-5

Glossary

M
Memory Area

The Memory Area appears in the lower left portion of the Command
Editing Area on the CM Editor display when you press Memory (Fl). It
contains fields in which you enter memory and partition information.

Memory key (Fl)

When you press this key from the CM Editor display, the system moves
the highlight to the first field of the Memory Area.

More key (FlO)

p

This key is available after you have entered a name in the Command
Name field of the CM Editor and pressed RETURN or Create (F5).

Parent

A parent context calls upon Context Manager to create, switch, or
terminate other contexts (known as child contexts).

Partition

R

A partition is a defined portion of workstation memory. Under Context
Manager, the operating system resides in the low end of memory and
Context Manager resides in the primary partition. As you begin each
application, Context Manager creates the partition and places the
application in that partition.

Request.CM.sys

This is a loadable request file defining Context Manager Service
requests.

Glossary-6 4393 4660-000

Glossary

s
Shared video context

A shared video context is a context that maps its character map to its
parent context character map, allowing the child context to direct video
output to the screen even while it is running in the background.

Swap file

A swap file is a file to which Context Manager can swap contexts and
thus increase the number of available contexts. You have the option of
creating a swap file. However, swapping increases the flexibility of
Context Manager by allowing you to open up to twenty applications at
the same time.

Swap key (F8)

When you press this key from the CM Editor display, the system prompts
you to identify the swap file for this configuration file.

Swapped context

A swapped context refers to a context that Context Manager temporarily
puts in your system's swap file, thus leaving room for you to open more
applications when your system partitions are full. The swapping
capability and the extent of swapping are dependent upon the size of the
configured swap file.

Tentatively clean context state

All contexts start in a tentatively clean state.

Tentatively dirty context state

A context enters a Tentatively dirty context state before it can be
classified as clean, dirty, absolutely clean, or absolutely dirty.

Video pointer map

The video pointer map is a system structure for each memory partition.
It is an array of pointers, one for each line of the video screen, that
always points to the location of the associated line of the application's
character screen.

4393 4660-000 Glossary-?

Index

A
Ancestry, three-tiered, 3-5
Applications you must modify to run

under Context Manager, 2-3
Attributes, context, specification

of, 3-9

B
Background, application

suspended in, 2-7
Busy wait loops, 2-4

c
Child contexts, dependent and

independent, 3-5
CM Editor, 1-1
CM Screen, 1-1
CM Service, 1-1
CM.user, 1-2
CmAPI.lib, 1-2
CmConfigFrm.Lib, 1-2
CmConfigMsg.bin, 1-2
CmEditor.run, 1-2
Cmlnstall.run, 1-2
CmlnstallMsg.bin, 1-2
Cmlnvoker.run, 1-2
CmNull.run, 1-2
CmScreen.run, 1-2
CmScreenMsg.bin, 1-2
CmVM.run, 1-2
CmVMMsg.bin, 1-2

4393 4660-000

Communications between
contexts, 2-8

Components of Context Manager, 1-1
Configuration file (Context Manager),

placing information in, 3-13
Context attributes, specification of, 3-9
Context handles, 3-4
Context Manager Screen, 1-1
Context Manager Service, 1-1
Context states, 2-7
Context termination, and the CM user

interface, 3-9
Contexts

starting, 3-2
switching, 3-2

Contexts, communications
between, 2-8

Contexts, invisible, 3-10
Contexts, long-lived, 3-10
Contexts, shared video, 3-11
Cursor positioning, 2-5

D
Dependent child contexts, 3-5

E
Exit run file, modifying, 2-5

F
Full-screen applications on VGA

systems, 2-6

lndex-1

Index

G
Graphics applications, 2-6

ICMS, 1-1, 3-13
ICMS,

message buffer sizing, 3-15
message sizing, 3-15

!CMS.run, 1-2
Independent child contexts, 3-5
Installation, checking for Context

Manager and ICMS, 3-1
InterContext Message

Service, 1-1, 3-13
Invisible contexts, 3-10

K
Keyboard translation table,

modifying, 2-6

L
Long-lived contexts, 3-10
Low-memory interrupt vector table,

changing values in, 2-5

0
Overview of Context Manager, 1-1

lndex-2

p

Parent/child relationships of
contexts, 3-5

R
Request.CM.Sys, 1-2

s
Screen map, applications that write

directly to the, 2-3
Shared video contexts, 3-11
Specification of context attributes, 3-9
Swap, applications you can, 2-8

T
Termination, context, and the CM user

interface, 3-9
Three-tiered ancestry, 3-5

u
User interface, 3-9

v
VGA systems, full-screen

applications on, 2-6
Video initialization, invoking

programs requiring, 3-13
Video overview, 2-2

4393 4660-000

I·

43934660-000

