
Programming Utilities

Reference Manual
Building Applications

•
UNISYS

• UNISYS CTOS®
Programming
Utilities
Reference Manual

Building Applications

Copyright© 1992, 1993 Unisys Corporation
All Rights Reserved
Unisys is a registered trademark of Unisys Corporation

CTOS Development
Utilities 12.2, 12.3

Priced Item

November 1993

Printed in USA
4359 4969-100

The names, places, andfor events used in this publication are not intended to correspond to any individual, group, or
association existing, living, or otherwise. Any similarity or likeness of the names, places, andfor events with the
names of any individual, living or otherwise, or that of any group or association is purely coincidental and
unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of duly executed agreement to
purchase or lease equipment or to lease software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special or consequential damages.

You should be careful to ensure that the use of this information and/or software material complies with the laws, rules,
and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes andfor additions.

RESTRICTED RIGHTS LEGEND. Use, reproduction, or disclosure is subject to the restrictions set forth in DFARS
252.227-7013 and FAR 52.227-14 for commercial computer software.

Copyright© 1992, 1993 Unisys Corporation
All Rights Reserved
Unisys is a registered trademark of Unisys Corporation

Convergent, Convergent Technologies, CTOS, and SuperGen are registered trademarks of Convergent
Technologies, Inc.

Context Manager, X-Bus, and X-Bus+ are trademarks of Convergent Technologies, Inc.

BTOS is a trademark of Unisys Corporation.

IBM, IBM PC, and 0Sf2 are registered trademarks of International Business Machines Corporation. Intel is a
registered trademark of Intel Corporation. MS-DOS, and Microsoft are registered trademarks of Microsoft
Corporation. Presentation Manager and Windows are trademarks of Microsoft Corporation. UNIX is a registered
trademark of AT&T. XVT is a trademark of XVT, Inc.

Contents

About This Manual

Introduction . xv
What This Manual Covers................ xv
Who Should Use This Manual . xv
How This Manual Is Organized. xvi
What Is New in This Manual......................... xix
Terminology Used in This Manual xix
Conventions Used in This Manual xx

Capitalization . xx
CTOS Naming Conventions . xx
CTOS File Naming . xx

Roots and Suffixes . xxi
File Suffixes. xxi

Where to Find More Information . xxii
Recommended Reading . xxiv

Section 1. Introduction to Building Applications

Introduction . 1-1
Building Applications Utilities . 1-1
Relationship Among the Development Utilities 1-2

Section 2. What Is the Linker?

Introduction . 2-1
What the Linker Does . 2-1
User Interfaces. 2·3

Command Forms . 2·3
Configuration File . 2-3
Input File Types . 2-4

Files the Linker Creates . 2-4
Understanding the Loader . 2-5

iii

Contents

Section 3. Using the Linker Command Forms

Introduction . 3-1
Using the Link VS and Link VG Command Forms 3-4
Link VG and Link VS Commands Parameter Fields 3-6
Examples . 3-17

Example: Listing Object Modules 3-17
Example: Searching Libraries' 3-20
Example: Using Overlays . 3-20
Sorting Procedure Names in Overlays.. 3-23

Configuring the Linker . 3·24
Search Path . 3-27 ·
Library References . 3-28

Library Search List . 3-29
Linker Configuration File Parameters. 3-31
Customizing Virtual Memory Sizes 3-40

Section 4. Reading the Linker Map File

Introduction . 4-1
A Simple Map File . 4-1

Version 6 Map File . 4-1
Addresses . 4-2
Protected Mode Selectors. 4-2
Names.................................. 4-3
Classes . 4-3

Version 8 Map File . 4-3
Map Files With Public Symbols, Line Numbers,
and Details . 4-5

Version 6 Map File . 4-5
Library References . 4-5
Public Symbols . 4-9
Line Numbers . 4-9
Command Form Parameter Details 4-1 O
Configurable Linker Work Areas 4-1 O

Version 8 Map File . 4-11

iv

Contents

Section 5. How the Linker Works

Introduction . 5-1
Linking Overview: A Two-Pass Process 5-1

Pass One . 5-1
Library Search Algorithm . 5-2
Dynamic and Static Linking 5-2

Pass Two . 5-3
From Source Modules to Run File on Disk 5-3

Arranging Object Module Components 5-4
Segment Element Names and Classes 5-4
Creating Linker Segments. 5-8

Specifying Linker Segment Order. 5-9
Combination Rules . 5-9
Addressing Linker Segments . 5-11
Placing Uninitialized (Communal) Variables in DGroup . 5-11
Alignment Attributes . 5-12
Summary of Segment Ordering 5-15
Segment Limits'. 5-15

Section 6. Advanced Linker Features

Introduction . 6-1
Program Memory Requirements . 6-1

Run-Time Library Code . 6-3
Simple Programs . 6-3
Overlay Programs. 6-3
Programs That Allocate Memory 6-4

Adjusting Stack Size . 6-4
Reducing the Stack . 6-4
Correcting Stack Overflow . 6-5

Allocating Memory Space . 6-5
DS Allocation . 6-6
The Memory Array . 6-7

Linking a Program With Overlays . 6-9
Customizing Segment Ordering. 6-1 o

First.asm File . 6-10
First.asm File Example.. 6-11

Example of Correcting a Segment
Ordering Error . 6-14

Configuration Fi le . 6-16

v

Contents

Section 7. What Is the Librarian?

What the Librarian Does . 7-1
How the Librarian Works . 7-2
Uses for the Librarian . 7-3

Section 8. Using the Librarian Command Form

Introduction . 8-1
Command Form . · 8-1
Parameter Fields . 8-2

Library Block Size , . 8-6
Conserving Library Space 8-7
Accommodating Large Modules 8-8

Library Index Procedures . 8-9
Duplicate Public Symbol Names 8-9
Uninitialized Variables . 8-9

Section 9. What Is the Module Definition Utility?

What the Module Definition Utility Does.. 9-1
Porting Presentation Manager Programs 9-1
How the Module Definition Command Works. 9-2
A Closer Look at Module Definition Command Output . . . 9-5

Object Module . 9-6
Import Library _ . 9-6

Section 10. Using the Module Definition Command Form

Introduction . 10-1
Command Form . 10-1
Parameter Fields . 10-2

Section 11. Writing a Module Definition File

Introduction . 11-1
The Need for a Module Definition File 11-1
General Syntax Rules . 11-2
Defining the Client Interface to a DLL ... : 11-3

Using an Import Library . 11-4
Using an Imports Statement . 11-4

vi

Contents

Porting Programs to CTOS . 11-5
Statements Included for Compatibility 11-5
CTOS Extensions . 11-6
Parameters Not Recognized . 11-6

Segment Attribute Recommendations 11-6

Section 12. Module Definition Statements

Statements . 12-1
Code.. 12-4
Data............ 12-6
Description . 12-8
ExeType . 12-9
Exports . 12-1 O
HeapSize. 12-12
Imports.. 12-13
Library . 12-15
LoadType.. 12-17
Name.. 12-18
Old............. 12-20
ProtMode . 12-21
RealMode . 12-22
RunType . 12-23
Segments . 12-25
StackSize . 12-27
Stub............ 12-28
Segment Attributes . 12-29
Instance and Shared Attribute Field Effects 12-32

Using Only the Shared Field . 12-32
Using Both the Shared and Instance Fields 12-32

Section 13. What Is the Resource Librarian?

Introduction . · 13-1
What Are Resources? . 13-3
What the Resource Librarian Does 13-3
How Resources Are Stored . 13-5
How the Resource Librarian Identifies Resources. 13-7

vii

Contents

Section 14. ·Using the Resource Librarian Command Form

Introduction . 14-1
Command Form . 14-1
Parameter Fields . 14-2
Examples of Adding Resources • 14-7

Example 1: Adding a Data File 14-7
Example 2: Adding a Single Resource
From a Run File . 14-8
Example 3: Adding Multiple Resources
From a Run File . 14-8

Examples of Deleting Resources. 14-9
Example 1: Deleting a Single Resource
From a Run File . 14-9
Example 2: Deleting Multiple Resources
From a Run File . 14-9

Example of Extracting a Resource 14-1 o
Example: Extracting a Resource From a Run File 14-1 O

Section 15. Using the Resource Librarian Configuration File

Introduction . 15-1
Resource Librarian Configuration File Format. 15-1

Example Resource Librarian Configuration File 15-2

Appendix A. Status Codes . A-1

Appendix B. Run File Reference . B-1

Appendix C. Object Module Formats (OMF) C-1

Appendix D. Calling Medium Model Procedures from a DLL . . . D-1

Appendix E. Version 4 Link Command . E-1

Glossary Glossary-1

Index lndex-1

viii

Figures

1-1. The CTOS Application and DLL Development Process 1-3

2-1. Linking Object Modules Into a Run File . 2-2

5-1. How the Linker Builds a Run File . 5-6
5-2. Combination of Stack and Common Segment Elements 5-10
5-3. How the Linker Builds a Run File (Not all Data in DGroup) 5-13

6-1. Real Mode Program With OS Allocation . 6-7
6-2. A Program With the Memory Array . 6-8

7-1. Using the Librarian to Manage Application Object Modules 7-2

8-1. Library Blocks . 8-7

9-1. Creating a DLL for Use by an Application . 9-3
9-2. Linking an Application to Access a DLL During Execution 9-4
9-3. Module Definition Command Output . 9-5

13-1. Adding Resources to a CTOS Run File . 13-2
13-2. Tasks Performed by the Resource Librarian 13-4

ix

Tables

ATM-1. File Suffixes . xxi

12-1.
12-2.
12-3.
12-4.
12-5.

13-1.

Recommendations for Selecting a Command Form
Overview of Linker Parameter Fields
Run File Mode Options

Module Definition Statements
Attribute Definitions
Segment Attribute Default Values
Shared Field Effects
Instance and Shared Field Effects

Resource Librarian File Definitions

3-3
3-5

3-11

12-2
12-30
12-31
12-32
12-33

13-6

xi

Examples

3-1. Linker Configuration File . 3-25
3-2. Library Reference Examples . 3-29

4-1. Sample Version 6 Map File . 4-2
4-2. Sample Version 8 Map File Showing a Nonshared

Segment Entry . 4-4
4-3. Sample Map for a Version 6 Run File Showing Lists of

Public Symbols, Line Numbers, and Details 4-6
4-4. Sample Map for a Version 8 Run File Showing

Public Symbols, Line Numbers, and Details 4-12

6-1. First.asm File . 6-12
6-2. The Map File Produced by the First.asm File. 6-13
6-3. Map File Showing Segment Ordering Error . 6-14
6-4. First.asm File Showing Corrected Segment Order............... 6-15

8-1. Sample Cross-Reference Listing . 8-5

11-1. Module Definition File Example . 11-2

xiii

About This Manual

Introduction
This manual describes how to use the following utilities to build
applications to run on CTOS operating systems:

• Linker

• Librarian

• Module Definition utility

• Resource Librarian

This manual should be used in conjunction with other manuals that
describe the Unisys family of information processing systems. (For a list
of these manuals, see "Related Documentation" later in his section.)

What This Manual Covers
The CTOS Development Utilities provide libraries and tools that the
programmer uses to develop CTOS applications. This manual
specifically focuses on the tools that are used to build executable files and
product libraries.

Who Should Use This Manual
This manual is designed for developers who need to build applications
that run on the CTOS operating system. This manual makes the
following assumptions:

• You understand the CTOS operating system, its file specifications,
and Executive commands. If you do not, see the Executive User's
Guide and the Executive Reference Manual.

xv

About This Manual

• You have a basic familiarity of programming on the CTOS operating
system. If you do not, see the introductory section of the
CTOS I Open Programming Practices and Standards, Application
Design and the CTOS Concepts Manual.

• You are familiar with the Intel architecture of 80X86 processors.

• If you are developing dynamic link libraries (DLLs) or porting these
libraries to CTOS, you should understand dynamic linking on CTOS
systems.

How This Manual Is Organized

xvi

This manual is organized as follows:

Section 1. Introduction to Building Applications

This section provides a general overview of the tools used to build
applications.

Part I Linker

Section 2. What Is the Linker?

This section introduces the Linker and the various Linker commands. It
also discusses the configuration file, the input to the Linker, and the files
the Linker creates.

Section 3. Using the Linker Command Forms

This section describes the Linker command forms and parameter fields.
Also included is a description of the configuration file.

Section 4. Reading the Linker Map File

This section explains how to read the map file produced by the Linker.

Section 5. How the Linker Works

This section provides theory on dynamic and static linking and explains
additional options available for linking more complex programs.

Section 6. Advanced Linker Features

This section describes the program memory requirements and includes a
description of how to customize segment ordering.

About This Manual

Part II Librarian

Section 7. What Is the Librarian?

This section describes the Librarian, a utility used to organize object
modules into groups.

Section 8. Using the Librarian Command Form

This section describes the Librarian command form and parameter fields.
The last part of the section describes how to specify library block size. ·

Part III Module Definition Utility

Section 9. What Is the Module Definition Utility?

This section provides a conceptual overview of the Module Definition
utility and introduces new terms pertaining to dynamic linking. It also
describes how to use the Module Definition utility to define the interface
between a client and a dynamic link library.

Section 10. Using the Module Definition Command Form

This section describes how to use the Module Definition command form
and explains command output.

Section 11. Writing a Module Definition File

This section describes general syntax rules for module definition file
statements and porting considerations, including compatible statements
and CTOS extensions to module definition syntax.

Section 12. Module Definition Statements

This section describes the module definition file statements. It also
describes how to interpret the results of using segment attributes, which
can be specified in Code, Data, and Segment statements.

Part IV Resource Librarian

Section 13. What Is the Resource Librarian?

This section describes the Resource Librarian, a utility used to place data
resources into run files.

xvii

About This Manual

xviii

Section 14. Using the Resource Librarian Command Form

This section provides a detailed explanation of the Resource Librarian
command form and parameter fields.

Section 15. Using the Resource Librarian Configuration File

This section describes the Resource Librarian configuration file.

Appendix A. Status Codes

This appendix describes error messages produced by all four utilities,
their possible causes, and actions you can take to resolve them.

Appendix B. Run File Reference

This appendix describes all the fields in Version 8 and Version 6 run file
headers.

Appendix C. Object Module Formats (0MF)

This appendix describes Intel object module formats (OMF) used by the
Linker.

Appendix D. Using Medium Model Procedures as Dynamic Link
Libraries

This appendix describes issues involved in calling medium model
procedures from DLLs.

Appendix E. Version 4 Link Command

This appendix describes the Link command user interface, the Version 4
run file headers, run file format, and Version 4 map file format.

A glossary follows the appendixes.

About This Manual

What Is New in This Manual
This manual includes the following new information:

• A new introductory section to the manual provides an overall frame
of reference to the utilities and shows the relationships among them.

• The introductory section for each utility includes an illustration that
represents the development process for that particular utility.

• The Linker support for Microsoft C case sensitivity is described in
Section 3, "Using the Linker Command Forms."

• It describes new Linker configuration file functionality, such as
displaying the current usage state of the Linker internal tables as
described in Section 3, "Using the Linker Command Forms."

• · Several Linker error codes are described in Appendix A, "Status
Codes."

Terminology Used in This Manual
There are three commands available for linking: Link VS, Link V6, and
Link. This manual uses the phrase "the Linker command forms" when
the text generally describes any of these commands. Otherwise, the
specific command name is used.

xix

About This Manual

Conventions Used in This Manual
This manual uses the following notations:

• Variable names are shown in italics for quick reference.

• File names are shown in italics for quick reference.

• Command names are shown in boldface.

• Configuration file entries are shown in italics.

• User-entered values are shown in boldface.

• Brackets [] enclose optional variables.

• The notation" ... "means that the preceding variable(s) can be
repeated.

Capitalization

By default, the utilities described in this manual are not case sensitive.
For example, you are not required to enter parameter values, for
example, in a particular case. Names can be entered in uppercase or
lowercase letters with no change in meaning. However, for ease in
reading, this manual follows the naming conventions for standardization
as described in "CTOS Naming Conventions," below.

CTOS Naming Conventions

For information about CTOS naming conventions, see "The CTOS
Programming Environment" in the CTOS Programming Guide,
Volume 1. For a comprehensive description of how to assign relevant
variable names, see the CTOS Procedural Interface Reference Manual.

CTOS File Naming

xx

The CTOS file naming conventions used in this manual are described
below.

About This Manual

Roots and Suffixes

Program file names have root names and suffixes. The root name
describes your source code text file. The suffix describes further
information about the file, for example, whether it is the source file, the
compiled version, the list file, the executable file, and so forth.

For example, the CTOS naming convention for describing a C language
source file is to append the suffix .c to the root name.

If MyProgram is the root name, the source file name is MyProgram.c.
(See Table ATM-1 for a list of suffixes used in this manual. Additional
file suffixes are given in the CTOS Programming Guide, Volume 1.)

File Suffixes

Table ATM-1 describes the file suffixes used in this manual.

Suffix

. asm

. c

def.1st

def.obj

. di/

imp.lib

. lib

.map

. obj

.res

. run

.sym

Table ATM-1. File Suffixes

Use

Assembler source file (Assembler or masm) .

C language source file .

List file from the Module Definition utility (not assigned by default).

Object module from the Module Definition utility.

Dynamic link library from the Linker (not assigned by default) .

Import library from the Module Definition utility (not assigned by default).

Library file created by the Librarian (not assigned by default) .

Map file from the Linker.

Object module from a compiler or the assembler .

Binary resource file .

Run file from the Linker (not assigned by default) .

Symbol file from the Linker.

xxi

About This Manual

Where to Find More Information

xx ii

This manual is one of a related manual set that documents the CTOS
family of information processing systems. For a description of each

·manual in the set and for order information, see your sales
representative or the Unisys Customer Product Information Catalog.

Documents referenced in this manual are listed below.

CTOS Executive Reference Manual

This reference manual is organized alphabetically by command name. It
includes comprehensive information about Executive features and the
commands packaged with the CTOS operating system and Standard
Software.

CTOS/Open Programming Practices and Standards, Application
Design

This manual describes the programming practices that must be followed
in order for an application to run on all CTOS platforms. In addition, the
manual serves as an introduction to programming in CTOS. It provides
information on several core areas such as basic inputJoutput (110), error
handling, parameter management, guidelines for protected mode
programming, writing nationalizable programs, writing system services,
stack format and calling conventions, mixed language programming,
writing multiprocess programs, overlays, customized SAM, and
communications programming. It includes programming examples.

CTOS Operating System Concepts Manual, Volume 1 and 2

This two-volume set introduces the CTOS III 1.1 workstation operating
system with multiprocessing capability. In addition, the manual
describes the CTOS II 3.4 and CTOS I 3.4 workstation operating
systems, and the CTOS/XE 3.4 operating system for shared resource
processors. The text provides an orientation to basic system concepts. the
programmer needs to understand to write programs to be run on CTOS.
Topics include DMA buffer management, system bus management,
memory management, demand paging, dynamic linking, and
semaphores.

About This Manual

CTOS Procedural Interface Reference Manual

This alphabetically organized four-volume reference manual describes
each of the programming operations for CTOS III, the real mode and
protected mode versions of CTOS II, and CTOS/XE. It also includes the
data structures.

CTOS Programming Guide, Volume 1 and 2

Volume I describes the programming interfaces to many internal
features of the operating system. It focuses primarily on features which
may not be common to all versions of the operating system, or to all

· hardware platforms. Volume II describes the programming interfaces to
features that are not internal to the operating system, but which are
packaged with it. The CTOS Programming Guide is meant to be used in
conjunction with CTOS I Open Programming Practices and Standards.

CTOS Programming Utilities Reference: Assembler

This guide describes using the CTOS Assembler. It is a new and revised
edition that includes the information on the Assembler previously
documented in the CTOS Development Utilities Programming Reference
Manual. It is meant to be used in conjunction with the Intel CPU
Programming Reference manuals.

· CTOS Programming Utilities Reference: Customization

This manual describes using the keyboard customization utilities to
support use of localized or custom keyboards.

CTOS Programming Utilities Reference: Installation and
Command Overview

This manual provides an introduction to the programming utility
commands distributed with the CTOS Development Utilities software
package. It also provides reference information on each command.

xx iii

About This Manual

CTOS Debugger User's Guide

This manual describes the features and commands supported by the
real-mode and protected-mode debuggers for CTOS I 3.4, CTOS II 3.4,
CTOS/XE 3.4, CTOS III 1.0. Hands-on exercises in using the commands
to debug programs are provided. This guide also describes how to use the
Debug File Utility to debug crash dumps and describes the Debugger
Application Programming Interface. For CTOS III 1.1, there is improved
handling of multiprocessing debugging for multiprocessor EISA-bus
workstations.

Recommended Reading

xx iv

For additional reference information on microprocessor architecture, see
the following books:

• Intel Corporation. iAPX 286 Programmer's Reference Manual.

• Intel Corporation. 80386 Programmer's Reference Manual.

• Intel Corporation. 80486 Programmer's Reference Manual.

For a discussion of OMF formats, see the following books:

• Intel Corporation. 8086 Relocatable Object Module Formats.
Intel Corporation, 1981. Order no. 121748-001.

• MS-DOS Encyclopedia. Microsoft Press, 1991.

For background information on OS/2 dynamic linking, see the following
book:

• Michael J .Young. Software Tools for OS I 2: Creating Dynamic Link
Libraries. Addison-Wesley, 1989.

Section 1
Introduction to Building Applications

Introduction
This section introduces the concept of building applications. It includes
the following information:

• A description of the tools that can be used to create an executable
file. Details of each utility are described in the following sections of
this manual.

• A process flow diagram that shows the development process for
building CTOS applications and dynamic link libraries (DLLs).

The libraries that are shipped with the building applications utilities are
listed in the Software Release Announcement.

Building Applications Utilities
The CTOS Development Utilities provide libraries and tools for
developing CTOS applications. This manual describes the core set of
utilities used most often in the development process:

• Linker

• Librarian

• Module Definition utility

• Resource Librarian

1-1

Introduction to Building Applications

The other development utilities (not described in this manual) are

• Assemble

• Convert Nls.sys

• Convert Public Case

• Convert Sys.keys

• Create Keyboard Data Block

• Histogram

• PMake

• Wrap

For more information about these, see the CTOS Programming Utilities
Reference Manual: Installation and Command Overview.

Relationship Among the Development Utilities

1-2

Figure 1-1 below shows the relationship among the various utilities
described in this manual when all are used. The part of this diagram
that applies to an individual utility is extracted and shown in the
introductory section to that utility.

Introduction to Building Applications

Figure 1-1. The CTOS Application and DLL Development Process

Module Definition
Source Code

Application
DLL

597.1-1

1-3

Introduction to Building Applications

1-4

Briefly, here is an overview of how to use each utility:

Linker You use the Linker to build executable files
to run on the CTOS operating system. It
produces standard CTOS run files as well as
dynamic link libraries. The Linker is
capable of both static and dynamic linking.

Librarian You use the Librarian to create libraries, add
object modules to static libraries, and delete
and extract object modules from libraries.
The Librarian can also produce a sorted
cross-reference of object modules and public
symbols within a library.

Module Definition utility You use the Module Definition utility to
create object modules that contain special
data required by the Linker to build dynamic
link libraries and set up import library
information that defines client interfaces to
those libraries.

Resource Librarian You use the Resource Librarian to maintain
sets of data resources within run files. For
example, you can use the Resource Librarian
to include resources such as dialog boxes for
graphical user interfaces, or even symbol
files in the run file. You can add, delete, or

. extract resources from a run file or a binary
resource file. The Resource Librarian can
also produce a list of resources within a run
file or a binary resource file.

Section 2
What Is the Linker?

Introduction
This section contains an overview of the Linker. It is a high-level
introduction to what the Linker does, how it accepts user input, and the
files it creates.

Details on how the Linker creates a run file are described in Section 5,
"How the Linker Works." If you are curious about the theory oflinking,
read that discussion now. If you use optional Linker features, you will
need to know about classes, segments, and other subjects described
there. However, if you have an immediate need to link a program,
proceed to "Linker User Interfaces" in Section 3, "Using the Linker
Command Forms." It explains how to link a simple program without
requiring knowledge of how the Linker works internally.

To find out how to read the map file, a file the Linker creates that
contains information on how the run file was organized, see Section 4,
"Reading the Linker Map File."

If you want to learn about program memory requirements, linking with
overlays, and customizing segment ordering, read Section 6, "Advanced
Linker Features."

What the Linker Does
The Linker accepts object modules (files produced by compilers and
assemblers), separates them into their component pieces, and groups
pieces of the same type. Then it recombines the components in a
prescribed order to form an executable image called a run file, adjusting
memory references accordingly. A run file is the image of a task (in
relocatable form) linked into the standard format required by the
operating system loader.

2-1

What Is the Linker?

2-2

Figure 2-1 below depicts how object modules are linked into a run file.
The Linker also accepts object files and libraries from the Module
Definition utility in support ofDLLs.

Linking is one part of the application and DLL development process. To
see how the Linker works in conjunction with the other building
applications utilities, see Figure 1-1 in Section 1, "Introduction to
Building Applications." J

Figure 2-1. Linking Object Modules Into a Run File

Assembly
Source Code

Object
Module

High-Language
· Source Code

Application
Run File

597.2-1

What Is the Linker?

User Interfaces
The Linker accepts user input through two main vehicles: a Linker
command form and a configuration file. Your input to the Linker is an
object module. The object module can be an assembly language module,
the output of any CTOS compiler, or the output from the Module
Definition utility.

Command Forms

This section describes two different Linker command forms: one for the
Link VS command and one for the Link V6 command. (An earlier
version of the command, Link, is discussed in Appendix E, "Version 4
Link Command." Link is no longer recommended but is still supported.)
Recommendations on which command to use are included in Section 3,
"Using the Linker Command Forms."

Version 8 run files are supported only on virtual memory operating
systems. If you need to run your application on another CTOS platform,
use a Version 6 run file. For more information, see Section 5, "How the
Linker Works."

Input from the command form takes precedence over input defined in
other sources. For example, a module definition file (used when you are
creating a DLL) can define some of the same parameters you can specify
in a Linker command form (such as stack and heap size). If, however,
you specify different values for the same parameters in both places, the
Linker uses the command form values. (For details on module definition
files, see Section 11, ''Writing a Module Definition File.")

Configuration File

Input can also be specified in the Linker configuration file (default name:
LinkerConfig.sys). In this file you can specify the library or library group
you want the Linker to search. You can also define more complex ·
parameter templates for performing procedures such as packing code or
translating far to near calls.

2-3

What Is the Linker?

Input File Types

The Linker uses object modules as input.

Input Type

Object Module

Description

Object modules can be created by supported
compilers or assemblers (including the object
module created by the Assembler from the
First.asm file. For information on the
First.asm file, see Section 6, "Advanced
Linker Features").

Files the Linker Creates

2-4

The Linker creates three types of files: a run file, a symbol file, and a
map file, as described below.

File Type

Run File

Meaning

The Linker combines object modules (files
produced by compilers and assemblers) into
run files.

A run file is linked into the standard format
required by the operating system loader. The
run file consists of at least a header and a
memory image. The header describes the run
file and provides certain initial values. It also
contains an array of pointers to intersegment
references that allow the operating system to
relocate the run file to any appropriate
memory location and access dynamically
linked modules.

A run file produced by the Linker can thus be
used with various memory configurations or as
one of several run files in a multitasking
program.

Run files are relocatable at run time.

Symbol File

Map File

What Is the Linker?

The Linker writes the names and locations of
all the public symbols in a program to the
symbol file. This file is useful for debugging.
(See Section 5, "How the Linker Works," for
details on how the Linker creates the symbol
file. See the CTOS Debugger User's Guide for
details on how to use it to debug programs.)

The map file contains an entry for each linker
segment and shows the relative address and
length of the segment in the run file memory
image. If there are link errors, they are
displayed in this file. (See Section 4, "Reading
the Linker Map File," for details on how to use
the map file.) ·

Understanding the Loader
The loader sets up the environment for the run file.

Using a run file for input, the loader produces an executable image in
memory. It reads the run file and interprets it to create memory,
selectors, and a process in an environment in which that run file can
execute.

On a virtual memory operating system, the loader fetches the DLLs a
program needs, loads them, and binds the client to them.

Three CTOS operations invoke the loader:

• Exit, where the current application program is terminated and the
exit run file is loaded.

• Chain, where a run file replaces the current application.

• LoadPrimaryTask (or LoadlnteractiveTask), where a run file is
loaded into a vacant application partition.

2-5

Section 3
Using the Linker Command Forms

Introduction
This section describes the Linker command forms and includes the
following information:

• Recommendations for selecting a particular Linker command form.

• A description of the Link VS and Link V6 command forms.

• Descriptions of all parameter fields.

• A description of run file mode options.

• A description of the Linker configuration file (the default name is
LinkerConfig.sys) and the configuration file parameters.

Linker User Interfaces
The Linker can read user-specified input from two sources:

• A command form

• An optional configuration file

The configuration file and command form work together to specify the
parameters for the link. You can specify all the information you need
from the command form. The configuration file offers you a chance to set
up the Linker specifically for your environment and the options you use
most often.

3-1

Using the Linker Command Forms

3-2

If you are linking a program written in a high-level language, and if
there is nothing unusual about the program, you probably do not need to
know much about how the Linker works or about most of its special
features and options.

If you are linking a program that has special requirements, you should
know the command line parameters and configuration file options that
can help you. For example, if your program allocates additional memory
at run time, you must provide an estimate of that memory. You can do
this with a couple of fields in the Linker command form. See "Link V6
and Link VS Commands Parameter Fields" for detailed descriptions of
these and all the parameter fields.

This section first describes how to use the command form options, then
goes on to describe the configuration file.

Using the Linker Command Forms

Selecting the Command Form to Use
The Linker offers two command forms: Link V6 and Link VS.

Though the Link V6 and Link VS command forms are exactly alike, the
commands produce different run files. Link V6 generates a run file that
runs on all operating systems. You use Link VS, however, when you
need to use DLLs or if you want your run file to run on a virtual memory
operating system only.

You can select the command form you need based on the
recommendations given in Table 3-1.

Table 3·1. Recommendations for Selecting a Command Form

Linking Command*

Type of Run File

Executes On

Execution Mode

DLLSupport

Link VS

VS Run File

CTOSlll

Protected

Yes

* For information on the Link command, see Appendix E.

Link VS

VS Run File

CTOSI
CTOSll
CTOSlll
CTOS/XE

Protected and Real

No

Note: The Link VS command generates a run file that only runs on
virtual mode operating systems. This is also the only command
that supports DLLs. In all other cases, use Link V6.

3-3

Using the Linker Command Forms

Using the Link VS and Link V6 Command
Forms

3-4

To use the Linker for a simple link, follow these steps:

1. On the Executive command line, type either Link V6 or Link VS,
and press RETURN.

2. Fill in the command form according to your needs. An example
command form is shown below. The parameter fields are described
in detail in Table 3-2.

Typically, you enter information in very few of the fields. Note that
the command form shows YourCCompiler.lib in the [Librarks] field.

Link VB
Object modules Prog.obj

~~~~~~~~~~~~ 

Run file _P_r_o~g_._r_un~~~~~~~~-
[Map file] 
[Publics?] 
[Line numbers?] 
[Stack, Dgroup heap size] 
[Max array, data] 
[Min array, data] 
[Run file mode] Protected 

~~~~~~~~~~~~ 

[Version]
[Libraries] YourCCompiler. lib
[DS allocation?]
[Symbol file)
[Copyright notice?]
[File to append]
[Linker config file]

3. Press GO. The Linker generates a run file and writes error
information to the screen.

The Linker searches the system libraries by default for the public names
of system procedure calls. However, it does not resolve references to
procedure calls in the programming language you use unless you are
either using a default language library, or you enter the specific name of
your language library either in the [Libraries] field of the command form
or in the Linker configuration file.

Using the Linker Command Forms

If you need the map file to include more information about your run file,
or if you need to specify certain memory constraints, you can fill out the
other parameter fields. This is described in detail later in this section.

Table 3-2. Overview of Linker Parameter Fields

Field Name Description

Object modules Name(s) of the object module file(s) or a library file with a list of
object modules to be drawn from it.

Run file Name of the run file you want to create.

[Map file] Name of the file that shows the relative address and length of
each segment in the memory image.

[Publics?] If Yes, the Linker lists the relative addresses of all public symbols
at the end of the map file.

[Une numbers?} If Yes, the Linker adds a list containing the address and line
number of each source statement.

[Stack, Dgroup heap size] Stack size and the DGroup heap size.

[Max array, data} Maximum amount of short-lived memory that will be reserved
within a partition.

[Min array, data] Minimum amount of short-lived memory that must be available
within a partition.

[Run file mode] Run file mode. See Table 3-3 for a description of the options.
The keyword you enter determines the type of run file.

[Version] Version number in the header of the run file and for the public
variable sbVerRun.

[Ubraries} Name(s) of library files to search for unresolved externals. The
library files must have been created by the Librarian utility.

[DS a/location?] If Yes, the program can allocate memory using the OS segment
address and the ExpandAreaSL call.

[Symbol file] File to which the Linker writes a symbol table of the run file.

[Copyright notice?] If Yes, the Linker includes a copyright notice in your run file.

[File to append] If Yes, the Linker appends a file of your choosing to the run file.

[Unker config file] Linker configuration file that you want to use for this link.

3-5

Using the Linker Command Forms

Link V6 and Link VS Commands Parameter
Fields

3-6

The parameter fields for all the linking commands are described below.

Object modules

Enter the name of one or more object module files.

You can also include the name of a library file with a list of the
object modules to be drawn from it. To do so, enclose the list of
object modules in parentheses after the name of the library file.
Separate the names with spaces. For example,

Aobj B.abj Ctos.lib (C DJ

The Linker combines these object modules to form a run file.

See "Examples," later in this section, for examples of how to fill in
this field to list object modules in overlays.

Run file

Enter the name of the run file to be created; for example,
FileName.run. (If you're using the Link VS command, this file
name can be that of a dynamic link library (DLL); for example,
FileName.dll.)

[Map file]

Default: FileName.map

Enter the name of the map file.

If you do not want a map file, enter [Nul], or enter [Vid] to see any
Linker output.

If you leave this field blank, the suffix to the run file name (if any) is
dropped and .map is added. For example, if the file is Prag.run, the
default map file is Prag.map.

(To interpret the map file, see Section 4, "Reading the Linker Map
File.")

[Publics?)

Default: No

Using the Linker Command Forms

Enter Yes to direct the Linker to list the relative addresses of all
public symbols at the end of the map file. The Linker sorts the
publics alphabetically by name and numerically by address.

If you enter No or leave the field blank, no public symbols are listed.

(For samples of map files listing public symbols, see Section 4,
"Reading the Linker Map File.")

[Line numbers?)

Default: No

If your object modules contain line numbers, enter Yes to direct the
Linker to add a list containing the address and line number of each
source statement following the list of public symbols in the map file.

Not all compilers produce object modules containing line number
information.

If you enter No or leave this field blank, the map file does not
include line numbers and addresses.

[Stack, Dgroup heap size)

Default: See below

You can enter two values in this field separated by a space.

The first value directs the Linker to change the stack size. Enter
the number of bytes in decimal format. The stack is composed of
words, so this number must be even.

Optionally, you can enter a second value (also in decimal number of
bytes) to direct the Linker to adjust the DGroup heap size for the
Microsoft C runtime. Separate the first and second values with a
space. Entering a second value causes the Linker to create a data
segment in DGroup with name, Heap, and class, Heap and assign it
the value specified. To force the heap to be as large as possible,
specify the keyword MaxVal instead of a byte value. Specifying
MaxVal adds enough heap to make DGroup = FFEFh. If you use a
heap value and do not enter a stack value, enter it as a pair of single
quotation marks.

3-7

Using the Linker Command Forms

3-8

If you leave this field blank, the default is the compiler's estimate of
the correct stack size for each module summed and the Microsoft C
compiler's estimate of the DGroup heap segment size, also for each
module summed.

You can alternatively adjust the heap size through a parameter in
the Linker configuration file or a module definition (.def) file.

IftheLinker encounters more than one heap segment within the
object modules, it creates a heap of the maximum size specified.

For details on estimating stack size, see Section 6, "Advanced
Linker Features." For details on adjusting the DGroup heap size
using the Linker configuration file, see "Configuring the Linker,"
later in this section. See Section 11, ''Writing a Module Definition
File" for details on creating module definition files.

[Max array, data]

Default: 0 0

See the description of [Min array, data] below. [Max data] is used
by Link VS. {Max array] is not used by Link VS.

[Min array, data]

Default: 0 0

Use these fields to specify the amount of short-lived memory the
application must allocate for real mode and the amount of
short-lived and long-lived memory the application must allocate for
protected mode. {Max array, data] and {Min array, data] are useful
for specifying the maximum amount of SL memory within a
partition. For virtual memory operating systems, the [Max array,
data] value specified can exceed the size of the partition.

Each field can contain two valu.es (decimal number of bytes),
separated by a space.

A value of 0 for {Max array, data] means to use all available
memory. If you do not fill in a value for [Max array, data], a
warning appears in the map file reminding you that yo11r program,
if loaded in a large partition, may force others to be swapped out.

Using the Linker Command Forms

For [Max array, data] and [Min array, data], fill in the first
parameter in each field to leave data space (the memory array)
above the highest memory address of a program.

[Min data] is used by Link VS. [Min array] is not used by Link VS.

For details on the memory array and program memory
requirements, see Section 6, "Advanced Linker Features."

[Run file mode]

Default: Protected mode for Link VS; real mode for Link V6 or
Link.

Enter one of the options shown in Table 3-3. The keyword that you
enter directs the Linker to make an entry in the run file header that
specifies the type ofrun file to the operating system loader.

If you enter the option PMOS, Protected, GDTProtected, or
LowDataGDTProtected when linking a run file, any run file
executes in real mode on a real mode operating system.

The run file mode options are described in Table 3-3. Additionally,
there is a special option not presented in the table. This option
allows you to conditionally run a program in real or protected mode.
For any keyword associated with the protected mode operation, you
can also specify one more value, the operating system version
number, for example:

3-9

Using the Linker Command Forms

3-10

Link V8
Object modules
Run file
[Map file]
[Publics?]
[Line numbers? l
[Stack, Dgroup heap size]
[Max array, data]
[Min array, data]
[Run file mode] Protected 13.0
[Version]
[Libraries]
[DS allocation?]
[Symbol file]
[Copyright notice?]
[File to append]
[Linker config file]

This means the run file is executed in protected mode if the
operating system internal version number is 13.0 or higher.
Otherwise, it runs in real mode.

Note: All run file mode options apply to the Link V6 command. As
shown in Table 3-3, not all the options apply to the Link VS
command. ·

Keyword

<blank>

V4

No

Yes

Real

Protected

GDTProtected

Using the Linker Command Forms

Table 3-3. Run File Mode Options

Applies to Link VS
Command Form?

No

No

No

No

No

Yes

Yes

Description

Causes the run file to execute in
protected mode when using the Link
VS command and in real mode when
using the Link V6 command.

Generates a Version 4 run file when
using Link V6.

Causes the run file to execute in real
mode when using Link V6.

Is equivalent to the SuppressStubs
option. See the description of
SuppressStubs.

Causes the run file to be executed in
real mode when using Link V6.

Indicates that the run file can run in
protected mode on a protected mode
operating system or in real mode on a
real mode operating system. In
protected mode, the run file uses a
local descriptor table (LDT). When
using Link VS, this option creates a
Version 8 run file. When using Link
V6, this option creates a Version 6 run
file.

Indicates the run file uses only the
GOT and can run in protected mode on
protected mode operating systems.

continued

3-11

Using the Linker Command Forms

Table 3-3. Run File Mode Options (cont. }

Applies to Link VS
Keyword Command Form?

HighMemProtected Yes

HighMemGDTProtected Yes

LowDataGDTProtected Yes

NRelProtected No

3-12

Description

On X-Bus hardware, specify Yes if
your application does not communicate
with Mode 3 OMA devices or system
services that communicate with such
devices. Specify No to prevent your
application from loading above the
16Mb point on any X-Bus hardware.
Not specifying this keyword causes the
system to load only the code portion of
a run file (not loaded remotely) above
16M bytes.

Provides the same function as
HighMemProtected but applies to
GOT-based rather than LDT-based
programs. See the Intel x86
Microprocessor Programmer's
Reference Manual for information
about LDT and GOT.

Indicates that the run file data should
be made accessible to real mode
programs. The run file uses the GOT
and can run in protected mode. It is
used by special operating system
services that return pointers to their
data (for example, the bit-mapped
video service).

Indicates that, unlike most Version 6
run files, this file is to be run only in
protected mode. Specifying
NRelProtected reduces the size of the
run file header by the size of the
Relocation Entry Table because this
table is not created. Note that if you·
specify this option, the run file is not
backward compatible on real mode
operating systems.

continued

Using the Linker Command Forms

Table 3-3. Run File Mode Options (cont.)

Keyword

CodeSharingServer

Applies to Link VS
Command Form?

Yes

HighMemCodeSharingServer Yes

SuppressStubs No

PMOS No

Description

Indicates that one copy of system
service code is to be shared by
multiple instances of the service. This
option prevents initialization code from
being deallocated for reuse as part of
short-lived memory.

On X-Bus hardware, specify Yes if
your application does not communicate
with Mode 3 OMA devices or system
services that communicate with such
devices. Specify No to prevent your
application from loading above the
16Mb point on any X-Bus hardware.

If you do not specify this keyword, the
system loads only the oode portion of a
run file (not loaded remotely) above
16M bytes.

Instructs the Linker not to generate
virtual memory management data
structures (such as RgStubs) it the
object modules list contains overlays.
Specifying SuppressStubs reduces the
size of the Version 6 run file header.
Such a program can only run in
protected mode.

If the object modules list does not
contain overlays or if the operating
system on which the program is
executed uses paging, this option has
no effect.

Indicates the run file is to be run under
the PMOS (protected mode operating
system) Service. This option is
documented for historic reasons only.
If PMOS is installed on your real mode
operating system, see your PMOS
documentation for details.

3-13

Using the Linker Command Forms

3-14

[Version]

Default: No

To specify a version in the header of the run file, enter an
alphanumeric string. If the version has embedded spaces, enclose
the entry in single quotation marks ('). The Linker performs the
following two procedures to the version string:

• It adds the prefix Ver to your entry and places the version
number in the strings table in a Version 8 run file header or in
the Version 4 or Version 6 run file header.

• It defines the Public variable sbVerRun in the statics segment in
DGroup as your string. The first byte of sb VerRun contains the
string length.

For example if you enter 1.0, the run file header contains 'Ver 1.0',
and the statics segment in DGroup contains sb VerRun as the
number 3 followed by the ASCII characters 1, ., and 0.

You can use the Executive Version command to display the version
number from the run file header. (See the CTOS Executive
Reference Manual for details on how to use the Version command.)

Note: If you are linking an operating system, you should specify a

[Libraries]

version to avoid getting an unresolved external error for the
Public variable sb Ver Run in the statics segment in DGroup.

Default: Ctos.lib and CtosToolKit.lib

To direct the Linker to search library files in addition to the default
libraries, enter the file name. Separate each name with a space.
The library files must have been created by the Librarian utility.

The default is to search the standard operating system libraries
Ctos.lib and CtosToolKit.lib in [Sys]<Sys> plus the libraries
indicated by object modules, such as those in Pascal and FORTRAN.
The standard operating system libraries are always the last
libraries searched.

Using the Linker Command Forms

The Linker treats the object modules that it selects from these
libraries as if they had been specified in the Object modules field;
that is, they are linked with the resident portion of a program that
uses overlays. To link object modules obtained from libraries into
overlays, you must name the library and the overlaid modules in the
Object modules field. (See "Examples" later in this section to see
how this is done.)

To suppress all default library searching, enter None in this field.
(It follows that you cannot have a library named None.)

To suppress default searching of libraries other than the ones you
want, including the standard operating system libraries, name the
libraries you want searched, followed by the word None. (See the
example in "Examples" later in this section.) You can also configure
the libraries you want searched through a configuration file entry.
(See "Configuring the Linker" later in this section.)

If duplicate definitions appear, the Linker defaults to the first
definition and emits a "multiple definition of symbol" message in the
map file.

[DS allocation?]

Default: Compiler dependent

Enter Yes to locate DGroup at the high address end of the 64K-byte
segment addressed by the DS register. Under this arrangement, the
last byte of DGroup is located at DS:OFFFF. By doing so, memory
can be allocated from DGroup using the ExpandAreaSL operation.
(This is the main reason for an application to choose this option
specifically, so it should be mentioned.)

Enter No to locate DGroup at the low address end of the 64K-byte
segment addressed by the DS register. When you enter No, there is
no DS allocation, and DGroup begins at DS:O.

If you leave this field blank, the default is dependent on which
compiler generated the object modules. For most compilers,
including Microsoft C, the default would be No. For programs
linked with any Pascal or Metaware High C™ small or compact
model object modules, the default is Yes.

3-15

Using the Linker Command Forms

3-16

Object module procedures and tasks produced by the Pascal and
BASIC compilers use a single value in DS during their entire
execution and include the group DGroup with DS equal to DGroup.
This feature must be used for linking Pascal tasks that make use of
the Pascal heap.

[Symbol file]

Default: FileName.sym

Enter the name of a file to which the Linker writes a symbol table of
the run file. The symbol table notes the names and locations of all
public symbols within the program.

The suffix to the run file name (if any) is dropped and .sym is added.
For example, if the file is Prog.run, the default symbol file is
Prog.sym.

If you do not want a symbol file, enter [Nul].

(See the CTOS Debugger User's Guide for details on how to use this
file when debugging.)

[Copyright notice?]

Default: None

Enter Yes to include the copyright string in your run file. The
default copyright string is:

'Copyright 1993 Unisys Corporation. All Rights
Reserv:ed. '

· To include your own copyright in the run file, enter a string enclosed
in single quotation marks (') in the field.

You can also use the :Copyright: entry in the Linker configuration
file. Enter a string enclosed in single quotation marks.

[File to append]

Default: None

Enter the name of a file that you would like to append to your run
file. This field is typically used to add legal information identifying
a run file.

Using the Linker Command Forms

[Linker config file]

Default: LinkerConfig.sys in current directory or
[Sys]<Sys>LinkerConfig. sys

Enter the name of a Linker configuration file to use as the
configuration file for this link. If you leave this blank, the default
Linker configuration file is used.

See "Configuring the ~inker" later in this section for more
information.

Examples
The following discussion shows several examples of how you can list
object modules and libraries in a Linker command form.

Example: Listing Object Modules

To build a run file from the three object modules, Aobj, B.obj, and C.obj,
fill in the Object modules field of the Linker command form this way:

Link VS
Object modules
Run file
[Map file]
[Publics?]

!

[Line numbers?]
[Stack, Dgroup heap size]
[Max array, data]
[Min array, data]
[Run file mode]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]
[Copyright notice?]
[File to append]
[Linker config file]

A.obj B.obj C.obj
Prog. run

3·17

Using the Linker Command Forms

3-18

You can list both ordinary object modules and specific ones to be
extracted from libraries. To extract from -a library, use this syntax:

LibraryName (Module1 Module2 .. .)

where Module 1, Module2, and so on, are the names of the object modules
(minus the .obj suffix) to be extracted. Note that these module names are
separated by spaces.

For example, assume that the Z.lib library contains the object modules V,
W, and X. To build a run file consisting of object modules A, B, W, X, and
C, fill in the Object modules field of the Linker form this way:

Link VB
Object modules
Run file
[Map file)
[Publics?)
[Line numbers? J
[Stack, Dgroup heap size)
[Max array, data]
[Min array, data)
[Run file mode)
[Version]
[Libraries]
[DS allocation?]
[Symbol. file]
[Copyright notice?]
[File to append)
[Linker config file]

A.obj B.obj Z.lib(W X) C.obj
Prog.run

Using the Linker Command Forms

The same run file results if the original W.obj and X.obj are specified in
the Object modules field as:

Link VB
Object modules
Run file
[Map file)
[Publics?)
[Line numbers?)
[Stack, Dgroup heap size]
[Max array, data)
[Min array, data)
[Run file mode]
[Version]
[Libraries)
[DS allocation?]
[Symbol file]
[Copyright notice?]
[File to append)
[Linker config file]

A.obj B.obj W.obj X.obj C.obj

Prog.run

3-19

Using the Linker Command Forms

Example: Searching Libraries
This example shows how the Linker searches the libraries specified in
the Linker command form. In this example, the Linker searches the
librariesAlib and B.lib, but no others.

Link V8
Object modules
Run file
[Map file]
[Publics?]
[Line numbers?]
[Stack, Dgroup heap size]
[Max array, data)
[Min array, data)
[Run file mode)
[Version)
[Libraries)
[DS allocation? J
[Symbol file)
[Copyright notice?]
[File to append)
[Linker config file)

A.obj
Prag.run

A.lib B.lib None

See also "Configuring the Linker" later in this section for a description of
how the Linker searches libraries when there are multiple library
references in the Linker configuration file.

Example: Using Overlays

3-20

The Linker supports virtual code management (overlays) in Version 4
and Version 6 run files. On a virtual memory operating system, all run
files are paged into memory on demand and the virtual code (overlay)
segments of Version 4 and Version 6 run files are treated the same as the
resident segments; they are paged in on demand. The Version 8 run file
format does not support virtual code management. For more information
on the paging service, see the CTOS Operating System Concepts Manual.

Using the Object modules field of the Linker command form, you can
construct a program containing code in overlays.

Using the Linker Command Forms

To use overlays, list first those modules with code that is to be
permanently resident in memory. Then list the first module to be
overlaid, followed by /o. List the remaining modules in that overlay.
Begin a new overlay by again appending /o to the first module in the new
overlay. (See the example below.)

1. To construct a run file using overlays, first list in the Object
modules field those modules that have code you want to place
entirely in the resident portion of the program. The command
would look like this:

Link VS
Object modules
Run file
[Map file]
[Publics?]
[Line numbers?]
[Stack, Dgroup heap size]
[Max array, data]
[Min array, data]
[Run file model
[Version]
[Libraries]
[DS allocation?]
[Symbol file]
[Copyright notice?]
[File to append]
[Linker config file]

A.ob'
Prog.run

3-21

Using the Linker Command Forms

3-22

2. Then continue by listing the first module that has code you want to
place in an overlay. Append lo to the name of this module. (The lo
is not case sensitive.) Now the command form would look like this:

Link VS
Object modules
Run file
[Map file]
[Publics?]
[Line numbers?]

A.obj B.obj/o
·Prag. run

[Stack, Dgroup heap size]
[Max array, data]
[Min array~ data]
[Run file mode]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]
[Copyright notice?]
[File to append]
[Linker config file]

3. Now list the names of all further object modules that have code that
is to appear in the same overlay with that of B.obj. Do not append
lo to their names.

4. To start a new overlay, once again list the name of the first module
in that overlay and append lo. Thus the module designated with lo
and all modules thereafter are placed in one overlay, until the next
lo designation is made.

Link VS
Object modules
Run file
[Map file]

[Linker config file]

A.obj B.obj/o C.obj D.obj/o E.obj
Prag.run

Using the Linker Command Forms

This run file consists of a resident portion with the code from A and
a nonresident portion made up of two overlays. One overlay
contains the code from B and C. The second contains the code from
D andE.

Note that modules from one library can be placed in separate overlays:
the /o syntax is simply used within the parentheses enclosing the library
module list.

Your module list cannot exceed one line. If it does, see the discussion of
at-files in the CTOS Executive Reference Manual.

Sorting Procedure Names in Overlays

If an overlay contains unsorted procedure names, swapping will probably
not work in real mode. Any module whose procedure names are emitted
in an order different from the order expected by the virtual code
management may cause the program to hang or crash.

The Sort Public Procedure Names command was developed as a
solution to this situation. This utility reads in an object module or
library and determines whether the public names are listed in the order
in which they occur in the module. If the public names are not ordered in
this way, the utility reorders them. For more information, see the CTOS
Programming Utilities Reference Manual: Installation and Command
Overview.

3-23

Using the Linker Command Forms

Configuring the Linker

3-24

You can make linking easier by using the Linker configuration file to
specify default values. You can also use the Linker configuration file to
specify additional parameter data as you would in the Linker command
form and to make it easier to enter the names of a group of libraries to
search. Example 3-1 below shows the contents of the default Linker
configuration file.

The Linker configuration file uses the standard CTOS configuration file
format. Each entry has the format:

: Keyword: Value

The valid keywords are described later in the subsection "Linker
Configuration File Parameters." Three special keywords are used to
define library references. They are described later in the subsection
"Library References."

The default Linker configuration file is LinkerConfig.sys and is shown
below. The file shown specifies only the standard operating system
libraries Ctos.lib and CtosToolK.it.lib and the nationalization library
ENLS.lib. You can add other libraries of your choice.

Using the Linker Command Forms

Example 3-1. Linker Configuration File

*** Parameters with Yes/No values.
:Details:No
:FarCallTranslation:No
:LineNumbers:No
:NonContiguousGroupOK:No
:MultipleDefSymbolsOK:No
:Publics:No
:SuppressWarnings:No

*** Parameters that specify area sizes within the Linker's
virtual memory

*** Used by the Linker to create V4, V6, or VS run files
MaxRgPdhCG:32
MaxRgRle:l27
MaxWorkingData:l024

*** Used by the Linker to create CodeView output file only
MaxCodeViewLines:511
MaxCodeViewCode:32

*** Used by the Linker to create V4 or V6 run files only
MaxRgRqlable:l27
MaxRgidct:32
MaxRgRlePStub:32

*** Used by the Linker to create VS run files only
MaxV8Strings: 64
MaxStringsTOC:l6
MaxirnportData: 16
MaxExportData:l6

*** Parameters that specify sizes up to 64Kb
MaxArray:O
MinArray:O

*** Parameters that specify sizes up to double 64Kb

3-25

Using the Linker Command Forms

3·26

Example 3-1. Linker Configuration File (cont.)

*** MaxData and MinData specify the amount of short-lived
memory the application will allocate for real mode, the
amount of short-lived and long-lived memory the application
will allocate for protected mode and the amount of virtual
short-lived and long-lived memory the application will
allocate for virtual mode OS.
MaxData:O
MinData:O

*** Miscellaneous parameters
:PackCode:No
:CaseSensitive:Yes/No/MSC

*** Parameters with no Linker defaults;
par.ameter values are examples (there is cno preceding ": ")

DGroupHeapSize:default specified by compilers that created
object files
StackSize:default specified by compilers that create object
files
RunFileMode: Default for V4 or V6 is Real; Default for VS is
Protected
ClassOrder:default specified in object files
ClassOrder: (MEMORY STACK DATA CONST CODE)
Undefined:Symbol of an external (Void Undefined is default)
Copyright:"Test CopyRight Example" (Void CopyRight is
default)

*** LibraryReference and CharacterCode parameters

Under each "LibraryReference" heading is a list of library
files. The "Default'' reference contal.ns the list of
libraries to be searched when nothing is specified. The
other lists can be accessed by specifying the name of the
reference on the [Libraries] field of the "Link V6" form as
follows

Link V6
Object modules
Run file

Libraries

MyFile.obj
MyFile.Run

(Services)

Using the Linker Command Forms

Example 3-1. Linker Configuration File (cont.)

Note that none of the libraries in the Default list are
searched when another list is specified.

The LibraryReference list also contains the
:CharacterCodeSet: parameter. Values for CharacterCodeSet
are SingleByte (default), Japan, China, and Korea.

:LibraryReference:Default
:LibraryFile: [sys)<sys>Ctos.lib
:LibraryFile: [sys)<sys>CtosToolKit.lib
:LibraryFile: [sys)<sys>ENLS.lib
:CharacterCodeSet:SingleByte

:LibraryReference:Japanese
:LibraryFile: [sys]<sys>Ctos.lib
:LibraryFile: [sys]<sys>CtosToolKit.lib
:LibraryFile: [sys]<sys>ENLS-J.lib
:CharacterCodeSet:Japan

:LibraryReference:XVT
:LibraryFile: [sys)<sys>Ctos.lib
:LibraryFile: [sys)<sys>CtosToolKit.lib
:LibraryFile: [sys]<sys>ENLS.lib
:CharacterCodeSet: [sys)<sys>XVT.lib

:LibraryReference:Service
:LibraryFile: [sys)<sys>Ctos.lib
:LibraryFile: [sys)<sys>CtosToolKit.lib
:LibraryFile: [sys)<sys>ENLS.lib
:LibraryFile: [sys)<sys>Mouse.lib
:·LibraryFile: [sys)<sys>Forms. lib
:LibraryFile: [sys)<sys>Exec.lib

Search Path

When you invoke the Linker through the Executive, the Linker uses the
following search path to locate the Linker configuration file:

1. The file name specified in the [Linker config file] field of the Linker
command form. ·

2. The current user's directory for the file named LinkerConfig.sys.

3-27

Using the Linker Command Forms

3. A .user file :LinkerConfigFile: entry. (The entry for :LinkerConfigFile:
contains the name of a user configuration file.)

4. The directory [Sys]<Sys> for the file named LinkerConfig.sys.

5. If it cannot find the file, or if it cannot find an entry in
LinkerConfig.sys for a parameter, it uses the default values in the
Linker code. See "Link V6 and Link V8 Commands Parameter
Fields" earlier for these values.

Library References

3-28

You can use the configuration file to make it easier to complete the
[Libraries] field of the Linker command form. In the configuration file
you can specify a name, called a library reference, that identifies a set of
libraries to search.

You can also specify the value of the character set bits in the header of
the run file. For more information about the character set, see the
discussion on the :CharacterCodeSet: configuration file entry.

A library search list is called a reference. A reference is defined in the
configuration file by a library reference keyword string followed by the
name of the reference list:

:LibraryReference:ReferenceName

Libraries to search are defined in the configuration file by listing them.
They appear after the Library Reference definition in the format:

:LibraryFile: [Vol]<Dir>LibraryName

Character code sets to search can also be defined. To do this, use the
format:

:CharacterCodeSet:

You can then specify the name of the character code set to be searched.
(See the example "Japan" in Example 3-2.)

Example 3-2 shows three examples of different library references,
excerpted from the Linker configuration file, shown earlier.

Using the Linker Command Forms

Example 3-2. Library Reference Examples

:LibraryReference:Default
:LibraryFile:[Sys]<Sys>Ctos.lib
:LibraryFile:[Sys]<Sys>CtosToolKit.lib
:LibraryFile:[Sys]<Sys>ENLS.lib

:LibraryReference:Japanese
:LibraryFile:[Sys]<Sys>Ctos.lib
:LibraryFile: [Sys]<Sys>CtosToolKit.lib
:LibraryFile:[Sys]<Sys>ENLS_J.lib
:CharacterCodeSet:Japan

:LibraryReference:Services
:LibraryFile: [Sys]<Sys>Ctos.lib
:LibraryFile: [Sys]<Sys>CtosToolKit.lib
:LibraryFile: [Sys]<Sys>ENLS.lib
:LibraryFile: [Sys]<Sys>XVT.lib
:LibraryFile: [!Sys]<Sys>Mouse.lib
:LibraryFile: [!Sys]<Sys>Forms.lib

The first library reference shown in Example 3-2 is the default library
reference. It consists of the following three libraries: Ctos.lib,
CtosToolKit.lib, and ENLS.lib in [Sys]<Sys>. The Linker searches the
default library list if you do not specify either an explicit library name or
a different reference in the [Librari,es] field of the Linker command form.

Library Search List

You must include the entry :LibraryReference:Default in the Linker
configuration file. The Linker automatically searches this list without
your having to specify it in the [Libraries] field· of the Linker command
form.

If you want to specify a library reference other than the default in the
Linker command form, you must enter the name of the reference,
enclosed in parentheses in the [Libraries] field. For example, for the
Linker to search the libraries listed under the Services library reference
shown in Example 3-2, you enter (Services) in the {Libraries] field as
shown below:

3-29

Using the Linker Command Forms

3-30

Link V8
Object modules
Run file·
[Map file]
[Publics?]
[Line numbers?]
[Stack, Dgroup heap size]
[Max array, data]
[Min array, data]
[Run file mode]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]
[Copyright notice?]
[File to append]
[Linker config file]

(Services)

You can specify only one library reference to be searched in the command
line at a time. Note that none of the libraries in the default reference list
is searched if you specify a different library reference on the command
line.

The Linker searches each library list from left to right in the following
order:

1. Libraries specified in Object modules in the Linker command form.

2. Libraries specified in the [Libraries] in the Linker command form.

3. Any language..:specific libraries it determines must be read.

4. Libraries in the library reference list in the configuration file.

If no configuration file exists, the Linker reads the Ctos.lib and
CtosToolKit.lib files from the [Sys]<Sys> directory and uses the built-in
default values for the language libraries.

If the Linker does not find the reference list you specified in a
configuration file, it places a warning in the map file, and the link
operation continues until completion. The warning message indicates a
failure to resolve the external references in the libraries.

Using the Linker Command Forms

Linker Configuration File Parameters

Linker configuration file parameters can appear in any order within the
Linker configuration file. These are optional fields. If they are omitted
from the configuration file, or, if no values are specified, the Linker uses
default values. Some of these values can also be specified in the Linker
command form. If a parameter value is specified in both the command
form and the configuration file, the command form input takes
precedence.

The parameters available for use in the Linker configuration file are as
follows:

:CaseSensitive:

Default: No

Enter Yes for a case-sensitive link. If you use Microsoft C and want
to link with a non-case-sensitive library (such as Ctos.lib), enter
MSC.

:CharacterCodeSet:

Default: None

This parameter controls how a 2-bit flag is set in Version 6 run file
headers and how a Word flag is set in Version 8 run file headers.
This flag notifies V AM that .the run file is expecting a particular
video environment.

Enter a character code. You can specify any of the following values:

SingleByte (default)
Japan
Korea
China

If you have :CharacterCodeSet:China in your LinkerConfig.sys file,
the Linker will set the appropriate flags in the resulting run file
header. At execution time, these flags will be read by the loader and
passed to V AM so that the correct video environment will be
established. The reason for this is that Chinese and Japanese run
files have certain vid~o and font requirements that V AM handles.

3-31

Using the Linker Command Forms

3-32

:ClassOrder:

Default: See below

You can use the :ClassOrder: parameter to specify preferred
segment class ordering.

Here is an example of the values in the :ClassOrder: parameter:

:ClassOrder: (CODE ENDCODE FAR_DATA FAR_MSG FAR_BSS ??SEG
DATAl RINGODATA INSTDATA MEDIATORTBL BEGDATA DATA CONST
MSG BSS ENDBSS STACK HEAP MEMORY MEM_DATA)

Classes are collected in the order in which they appear in between
the parentheses. Segments in other classes discovered in later
modules will be located after the classes listed here.

If :NonContiguousGroupOK: is No, segments that are part of
DGroup are collected together following the order of class names
(either from the :ClassOrder: parameter or the order within the .obj
modules).

For Version 8 run files, the ordering is also determined by operating
system requirements. The operating system requires the segments
to be ordered as follows:

1. Data

2. N onshared Data

3. Code

4. Nonshared Code

Within each of the four categories, the Linker orders the segments
as specified in the :ClassOrder: parameter, or as they appear in the
Object modules parameter in the Linker command form.

:CopyRight:

Default: None

You can place a copyright string in the run file. Here is an example
of a copyright string:

:CopyRight: "Copyright 1993 All Rights Reserved."

Using the Linker Command Forms

If your string has spaces in it, enclose the string inside quotation
marks.

In the Linker command form, you can specify whether or not you
want the copyright notice to be included in the run file. Unless you
enter a copyright string in the configuration file, a default copyright
string is included.

:DefaultConfigFile:

Default: See below

You can use a local Linker configuration file to include certain link
options for a specific language or program by specifying the file
name on the Linker command form. Your local configuration file
becomes the primary configuration file. The Linker can still make
references to the default configuration file for parameters not
configured in the local configuration file. For this to take place,
however, you must specify the default configuration file name
(secondary configuration file) for the :DefaultConfigFile: entry in
your local configuration file. The secondary configuration file can
specify another default configuration file, but if that configuration
file specifies a third, it is ignored.

Note: The default configuration file can bear any name of your
choosing, as long as the Linker can locate it.

:Details:

Default: No

Enter Yes to direct the Linker to enhance the map file to include
library reference information and documentation of link parameters
such as run file version, stack size, heap size, maximum array,
maximum data, minimum array, minimum data, run file mode,
version (as specified on the parameter line), whether DS Allocation
is used, and so forth. See the discussion in Section 4, "Reading the
Linker Map File."

:DGroupHeapSize:

Default: "No DGroup Heap"

To specify the decimal number of bytes in the DGroup heap, enter a
decimal integer from 0 to 65,535 (64K). To create a DGroup of 64K
bytes, enter the keyword MaxVal instead of a number.

3-33

Using the Linker Command Forms

3-34

DGroup heap size can also be specified on the Linker command form
or, for DLLs, in the Module Definition file. See "Link V6and Link
VS Commands Parameter Fields" earlier in this section and Section
11, "Writing a Module Definition File," respectively, for more
information.

:DsAllocation:

Default: No

Enter Yes to locate DGroup at the end of the 64K-byte segment
addressed by the DS register. If the data segment grows, it
overwrites whatever comes before it. You'll get a warning message
stating that some segments precede DGroup and that they will be
overwritten.

You can also specify DS allocation in the [DS allocation?] field of the
Linker command form. The command form entry takes precedence
over the configuration file entry. See "Link V6 and Link VS
Commands Parameter Fields" earlier in this section.

:FarCallTranslation:

Default: No

Enter No to prevent translation of far to near instructions.

Enter Yes to direct the Linker to translate far call instructions to
· near calls and far jump instructions to near jumps if the location

called or jumped to is in ~he same segment. This option is generally
used if the :PackCode: option is set to Yes or to a decimal integer.
The Linker does this by overwriting the following instruction
sequence:

CallDirectFar to Label

with the sequence

NOP, PushCS, CallDirectNear to Label

In some cases (especially with low-level languages), where code and
data are intermixed, the Linker (interpreting it as code) will process
it as code. The Linker inadvertently overwrites what appears to be
an instruction sequence that it assumes starts with CallDirectFar
but in fact it does not.

Using the Linker Command Forms

:FileToAppend:

Default: See below

Enter the name of the file to append to the run file. If you do not
include the name of a file, the Linker uses the file that is named in
the [File to append] field of the Linker command form. The
command form entry takes precedence over the configuration file
entry. If you leave this field blank, and you leave [File to append] in
the Linker command form blank, no file is appended.

See "Link V6 and Link V8 Commands Parameter Fields" earlier in
this section.

:LibraryReference:

Default: See below

Enter the library reference name you want to use to refer to a group
of libraries that you are likely to want to search for a particular
link. The library reference name is specified in the [Libraries] field
of the Linker command form.

See the subsection "Configuring the Linker" for details.

:Library File:

Default: None

Enter the library file name you want to specify in a group of
libraries to be searched when a particular library reference name is
specified in the [Libraries] field of the Linker command form.

See the subsection "Configuring the Linker" for details.

:LineNumbers:

Default: No

Enter Yes to direct the Linker to print line numbers from the object
file in the map file.

Note that including the entry :Details: Yes also causes line numbers
to be included in the map file.

You can also use the [Line numbers?] field in the Linker command
form to specify whether or not you want line numbers displayed in
the map file. The command form entry takes precedence over the
configuration file entry.

3-35

Using the Linker Command Forms

3-36

:MultipleDefSymbolsOK:

Default: No

Enter Yes to flag multiple definitions of symbols as a warning
rather than an error.

:NonContiguousGroupOK:

Default: No

Enter Yes to prevent the Linker from collecting segments in
DGroup. (For details on how the Linker arranges segments into
classes, see Section 5, "How the Linker Works.")

:Pack Code:

Default: No

Enter No to direct the Linker not to combine adjacent code
segments.

Enter Yes to direct the Linker to combine adjacent code segments
into the same physical segment (up to a maximum size of 64K bytes)
using the same LDT selector. If adding a code segment would cause
a segment to exceed 64K bytes, the Linker starts another code
segment and adds subsequent segments to this next segment until
either it runs out of code segments to add or it fills the physical
segment. Filling the segment repeats the process.

Enter a decimal integer of bytes from 0 to 65535 to combine code
segments up to the number of bytes specified.

:Publics:

Default: No

Enter Yes to list public symbols on the map file.

You can also specify publics in the [Publics?] field of the Linker
command form. The command form entry takes precedence over the
configuration file entry.

:RunFileMode:

Default: Protected for Link VS; real for Link V6

Enter the run file mode to the operating system loader. Possible
values are Protected and Real.

Using the Linker Command Forms

You can also specify run file mode in the [Run file mode ?J field of the
Linker command form. The command form entry takes precedence
over the configuration file entry.

:Stack Size:

Default: Compiler estimate

This parameter specifies the size of the stack segment. Enter a
decimal integer from 0 to 65535.

You can also specify stack size in the [Stack, DGroup heap size] field
of the Linker command form. The command form entry takes
precedence over the configuration file entry.

:Suppress Warnings:

Default: No

Enter Yes to suppress all warning information.

:Undefined:

Default: None

Enter a symbol name as an "external."

The :Undefined: parameter directs the Linker to enter the specified
symbol name as an "unresolved external" before any object modules
are opened. An unresolved external name forces the Linker to
search for the public reference to resolve an external name. If an
unresolved external is uniquely resolved within a library, this
feature can be used to force the Linker to extract an object module
from a library.

:MaxArray:

Default: 0

This specifies the maximum memory array above the highest
memory address of a task. Enter a decimal integer from 0 to 65535.

This parameter is ignored for Version 8 run files.

You can also specify maximum memory array in the [Max array,
data] field of the Linker command form. The command form entry
takes precedence over the configuration file entry.

3-37

Using the Linker Command Forms

3-38

:MaxData:

Default: 0

This specifies the maximum amount of short-lived memory the
application will use. Enter a decimal integer from 0 to 4294967295.
If you specify 0, all available memory is used.

For virtual memory operating systems, :MaxData: is the amount of
virtual short-lived memory. As a result, on a virtual memory
operating system, you can specify more memory than is contained in
the application's partition.

You can also specify the maximum amount of short-lived memory in
the [Max array, data] field of the Linker command form. The
command form entry takes precedence over the configuration file
entry.

:MinArray:

Default: 0

This specifies the minimum memory array above the highest
memory address of a task. Enter a decimal integer from 0 to 65535.

This parameter is ignored for Version 8 run files.

You can also specify minimum memory array in the [Min array,
data] field of the Linker command form. The command form entry
takes precedence over the configuration file entry.

:MinData:

Default: 0 ·

This specifies the minimum amount of short-lived memory the
application will use. Enter a decimal integer from 0 to 4294967295.

You can also specify minimum amount of short-lived memory in the
[Min array, data] field of the Linker command form. The command
form entry takes precedence over the configuration file entry.

:MaxExportData:

Default: 16

This specifies the number of sectors allocated for internal Linker
work area (Version 8 run files only). Enter a decimal integer from 0
to 16383.

Using the Linker Command Forms

:MaxlmportData:

Default: 16

This is the number of sectors allocated for an internal Linker work
area (Version 8 run files only). Enter a decimal integer from 0 to
16383.

:MaxRgldct:

Default: 32

This is the number of sectors allocated for an internal Linker work
area (Version 4 and Version 6 run files only). Enter a decimal
integer from 0 to 16383.

:MaxRgPdhCG:

Default: 32

This is the number of sectors allocated for an internal Linker work
area. Enter a decimal integer from 0 to 16383.

:MaxRgRlePStub:

Default: 32

This is the number of sectors allocated for an internal Linker work
area (Version 4 and Version 6 run files only). Enter a decimal
integer from 0 to 16383.

:MaxRgRle:

Default: 127

This is the number of sectors allocated for an internal Linker work
area. Enter a decimal integer from 0 to 16383.

:MaxRgRqlable:

Default: 127

This is the number of sectors allocated for an internal Linker work
area (Version 4 and Version 6 run files only). Enter a decimal
integer from 0 to 16383.

3-39

Using the Linker Command Forms

:MaxStringsTOC:

Default: 16

This is the number of sectors allocated for an internal Linker work
area (Version 8 run files only). Enter a decimal integer from 0 to
16383.

:MaxVBStrings:

Default: 64

This is the number of sectors allocated for an internal Linker work
area (Version 8 run files only). Enter a decimal integer from 0 to
16383.

:MaxWorkingData:

Default: 1024

This is the number of sectors allocated for an internal Linker work
area (Version 8 run files only). Enter a decimal integer from 0 to
16383.

Customizing Virtual Memory Sizes

3-40

In order to avoid burdening most links with the disk activity associated
with maximizing the size of Linker virtual memory,. virtual memory
blocks are sized for an average to large run file. If you have a very large
run file, you can tailor required virtual memory sizes depending on the
size of the link. This affects the performance of the Linker, not the
resulting application.

The following Linker configuration file parameters are affected:

:MaxRgRle:
:MaxExportData:
:MaximportData:
:MaxRgldct:
:MaxRgPdhCG:
:MaxRgRlePStub:
:MaxRgRle:
:MaxRgRlelable
:MaxStringsTOC:
:MaxV8Strings
:MaxWorkingData

Using the Linker Command Forms

The syntax is:

:Maxtablename:<number of 512-byte sectors>

For example, to specify 512 * 510 bytes for the RgRle table, the following
entry should be made in the Linker configuration file:

:MaxRgRle:SlO

The current release default for the table values is reported in the map
file if you specify Yes to :Details: in the Linker configuration file. If the
map file reports an overflow (a fatal error), you must increase the
maximum value as shown above.

The Linker places sizes of the areas, along with the size used, in the
details portion of the map file output.

3-41

Section 4
Reading the Linker Map File

Introduction
This section describes how to read the Linker map file. A map file shows
how the Linker builds a run file. It includes information such as where
segments are located, what their sizes are, if there are any nonshared
data segments not in DGroup, and a list of errors that occurred during
the link process.

A Simple Map File
The Linker produces a map file containing information about how the
Linker builds the run file.

The Linker produces a somewhat simpler map file for a Version 6 run file
than it does for a Version 8 run file. However, for either run file you can
specify wh~ther or not the map file displays public symbols, line
numbers, or details.

If you use the default values for [Publics?] and[Line numbers?] in the
Linker command form and omit the Linker configuration file entry
:Details:, the Linker produces a simple map file.

The discussion in the paragraphs that follow starts with the map file for
a Version 6 run file because it is simpler.

Version 6 Map File

Example 4-1 shows a simple map for a Version 6 run file. It consists of
three main components:

• Segment entries describing the size, location, and name of each
segment

• The program entry point

• A breakdown of the warnings and errors detected in the link

4-1

Reading the Linker Map File

Addresses

From left to right in Example 4-1, the first three columns show the
beginning and ending offset of each segment from the start of the
code/data and the length of each segment. The beginning addresses
under the column heading "Start" are offsets. The offsets are relative to
the base memory address at which the operating system loads the run
file. This base address is determined at run time.

Example 4-1. Sample Version 6 Map File

Linker (version)

Run file V6>NoDetails.run
Link Start Time 01/30/92 13:51:20

Start Stop Length Name

OOOOOOOOh OOOOOOOOh OOOOh (0084h) ??SEG
OOOOOOOOh OOOOOOOOh OOOOh (008Ch) MEMORY
OOOOOOOOh 000007FFh 0800h (008Ch) STACK
00000800h 00000810h OOllh (008Ch) DATA
00000812h 0000081Dh OOOCh (008Ch) CONST
00000820h 00000822h 0003h (008Ch) STATICS
00000830h 0000086Dh 003Eh (0094h) SAMPLE CODE
00000870h 000008A4h 0035h (009Ch) FatalPro
OOOOOSBOh OOOODBE3h D334h (OOA4h) MEM SEGS

Program entry point at 0083:0000 (0094: 0000)

No warnings detected
No errors detected

Class

??SEG
MEMORY
STACK
DATA
CONST
CONST
CODE
CODE
MEM SEGS

Protected Mode Selectors

4-2

The fourth column in parentheses after the "Length" column shows
protected mode selectors. For each code segment, this selector is the
value of the CS register while it is executing, if the program is running in
protected mode. For a data segment, this number is the ES, DS, or SS
register that would be used to access data within it.

Reading the Linker Map Fiie

Names

The fifth column in Example 4-1 lists the name of each segment. Note
that in the example case of the name SAMPLE_ CODE, class Code
segment, the name shown is not the file name of the module.

In most high-level language programs, you assign the module name at
the beginning of the module. The compiler creates the code segment
name by appending the suffix _CODE to the assigned module name. The
resulting name is what the Linker reports in the map file.

In assembly language, you can directly name each segment as you wish.
The Assembler does not append a suffix to the segment name.

Many programmers choose to assign the same name as both the file
name of a module and the module name within the program, for easy
reference. This convention is particularly helpful when you are using the
map to decide what segments to place in overlays, because file names,
and not internal module names, are entered in the Object modules field of
a Linker command form. You are not required to use this convention,
however. (See "Examples" in Section 3, "Using the Linker Command

. Forms" for information about overlays.)

Classes

The sixth (rightmost) column in the map lists the class of each segment.
The Linker groups segments by class and uses class to assign order in
the program.

Version 8 Map File

A Version 8 map file can show several additional pieces of information
not included in the Version 6 map file. In Version 8 map files, ifthere
are any nonshared data segments not in DGroup, these segments are
listed as separate entries and can be identified by the string (Nonshared)
enclosed in parentheses following the segment Class. (For a description
of shared and nonshared segments, see the CTOS Operating System
Concepts Manual.)

Example 4-2 shows the same segment entries that are shown in
Example 4-1 plus one additional entry for a nonshared data segment.
(See the last segment entry.)

4-3

Reading the Linker Map File

4-4

Example 4-2. Sample Version 8 Map File
Showing a Nonshared Segment Entry

Linker (version)

Run file VB>NoDetails.run
Link Start Time : 11/26/91 07:53:40

·config File Config.sys

Start Stop Length Name

OOOOOODDh OOOOOOOOh ODO Oh (0084h) ??SEG
OOOOOOOOh OOOOOOOOh OOOOh (008Ch) MEMORY
OOOOOOOOh 000007FFh OBOOh (008Ch) STACK
OOOOOBOOh 00000810h OOllh (008Ch) DATA
00000812h OOODOBlDh OOOCh (008Ch) CONST
00000820h 00000822h 0003h (008Ch) STATICS
00000830h OOOODB63h D334h (0094h) MEM SEGS
0000DB70h OOOODBADh 003Eh (009Ch) SAMPLE CODE
OOOODBBOh OOOODBE4h 0035h (00A4h) FatalPro

Program entry point at 0083:0000 (0094:0000)

No warnings detected
No errors detected

Class

??SEG
MEMORY
STACK
DATA
CONST
CONST
MEM SEGS(NonShared)
CODE
CODE

For all segments within a given group, the selector number is the same.
(See the CTOS Programming Utilities Reference Manual: Assembler for a
discussion of groups.) In the example, note that the selector number for
the nonshared segment entry (0094h) is different from the selector
number for the DGroup segments (008Ch).

Reading the Linker Map File

Map Files With Public Symbols, Line Numbers,
and Details

Examples 4-3 and 4-4 show map files displaying public symbols, line
numbers, and other details about parameter information. You can
generate this additional information by specifying Yes for the Linker
fields [Publics?] and [Line numbers?] and for the configuration file entry
:Details:.

Version 6 Map File

The map shown in Example 4-3 is similar to the Version 6 map depicted
in Example 4-1. In addition it shows all public symbols and their
addresses, line numbers, and the details of other command line
parameters. Starting at the beginning of the map and proceeding to the
end, the following paragraphs examine each of these extra information
pieces.

Library References

In Example 4-3, we first see library reference information. This
information appears in the map file when you specify Yes in the :Details:
entry in the Linker configuration file. Library information can include

• The library name and block size (in bytes) for each library the
Linker searches

• The library version, if available

4-5

Reading the Linker Map File

4-6

Example 4-3. Sample Map for a Version 6 Run File
Showing Lists of Public Symbols, Line Numbers, and Details

(Part 1 of 3)

Linker xl/28

Run file V6>Sample.run
Link Start Time 01/30/92 13:51:20

Config File : TestConfig.sys

Library Reference: (Default) from file TestConfig.sys

Library: [Sys]<Sys>ENLS.Lib
Block size: 00512
Version: version (day month date, year, time)

Library: [Sys]<Sys>Ctos.lib
Block size: 00512
Version: version (day month date, year, time)

Library: ['Sys]<Sys>CtosToolKit.lib
Block size: 00512
Version: version (day month date, year, time)

Reading the Linker Map File

Example 4-3. Sample Map for a Version 6 Run File
Showing Lists of Public Symbols, Line Numbers, and Details

(Part 2 of 3)

Start Stop Length Name Class

OOOOOOOOh OOOOOOOOh OOOOh (0084h) ??SEG ??SEG
OOOOOOOOh OOOOOOOOh OOOOh (008Ch) MEMORY MEMORY
OOOOOOOOh 000007FFh 0800h (008Ch) STACK STACK
00000800h 00000810h OOllh (008Ch) DATA DATA
00000812h 0000081Dh OOOCh (008Ch) CONST CONST
00000820h 00000822h 0003h (008Ch) STATICS CONST
00000830h 0000086Dh 003Eh (0094h) SAMPLE CODE CODE
00000870h 000008A4h 0035h (009Ch) FatalPro CODE
000008BOh OOOODBE3h D334h (OOA4h) MEM SEGS MEM SEGS

Publics by name Address Overlay

CHECKERC 00000087:0028h (009C:0028h) Res
DELAY OOOOFFEF:033Ch (OOBC:800Eh) Call Gate
ErrorExit OOOOFFEF:0334h (OOC4:800Ah) Call Gate
EXIT OOOOFFEF:0336h (OOB4:800Bh) Call Gate
FatalError 00000087:0000h (009C:0000h) Res
fDevelopement 00000000:0810h (008C:0810h) Res
MAIN 00000083:000Dh (0094:000Dh) Res
PUTFRAMECHARS OOOOFFDF:0436h (00AC:8013h) CallGate
sbVerRun 00000000:0820h (008C:0820h) Res

Publics by value Address Overlay

ErrorExit OOOOFFEF:0334h (OOC4:800Ah) Call Gate
PUTFRAMECHARS OOOOFFDF:0436h (OOAC:8013h) CallGate
EXIT OOOOFFEF:0336h (OOB4:800Bh) Call Gate
DELAY OOOOFFEF:033Ch (OOBC:800Eh) CallGate
fDevelopement 00000000:0810h (008C:0810h) Res
sbVerRun 00000000:0820h (008C:0820h) Res
MAIN 00000083:000Dh (0094:000Dh) Res
FatalError 00000087:0000h (009C:0000h) Res
CHECKERC 00000087:0028h (009C:0028h) Res

4-7

Reading the Linker Map File

4-8

Example 4-3. Sample Map for a Version 6 Run File
Showing Lists of Public Symbols, Line Numbers, and Details

(Part 3 of 3)

Line numbers for SAMPLE CODE

00002 0083:0000H
00010 0083:0000H
00015 0083:000DH
00018 0083:003CH

00005 0083:0000H
00013 0083:0000H
00016 0083:0010H
00019 0083:0000H

00008 0083:0000H

00017 0083:002DH

00020 0083:0008H 00021 0083:000DH
Program entry point at 0083:0000 (0094:0000)

Linker Details

Linker Information:

Run file
Run file format
Stack

V6>Sample.run
Version 6
02048

Run file mode 2004h; Protected
CharacterCodeSet: SingleByte

Version
Max array 00000

xC
Max SL Memory

Min array 00000 Min SL Memory
DS Allocation not used(default)

Class ordering requested

0000000000
0000000000

??SEG MEMORY STACK DATA CONST CODE

Configurable Linker work areas:
Area Name Sectors Used Max Sectors
Rgidct 00000 00032 (default)
RgPdhCG 00001 00032 (default)
RgRlePStub 00000 00032 (default)
RgRle 00001 00127 (default)
WorkingData 00044 01024 (default)
RgRqLable 00001 00127 (default)

Link End Time 01/30/92 13:51:28

No warnings detected
No errors detected

Reading the Linker Map File

Public Symbols

Following the segment entries the public symbols are first sorted
alphabetically and then by location in the run file. To request that public
symbols be displayed, you enter Yes in the [Publics?] field in the Linker
command form.

In the list of public symbols in Example 4-3, the name of the public
symbol is followed by two addresses. The first is the address in real
mode, and the second is the address in protected mode.

The Overlay column contains Res if the symbol is in the resident portion
of the program, an integer (n) if it is in the nth overlay, and callgate if it
is a call gate to an operating system procedure.

Line Numbers

The public symbol lists are followed by a list of line numbers. To request
line numbers separately, you enter Yes in the[Line Numbers?] field in
the Linker command form.

Line numbers are intended for use during debugging. They allow you to
examine a known part of a program at a known address, even though .
there is no public symbol at that address. The addresses, however, are
relative to the beginning of the run file, so you must do some arithmetic
to use them.

Line numbers are not always available from all modules.

4-9

Reading the Linker Map File

Command Form Parameter Details

Near the end of the map file in Example 4-3, you see other details about
Linker command form parameters. (See the portion of the map entitled
"Linker Information." It is located after the program entry point line.)
These details are displayed along with the library reference information
when you specify Yes in the :Details: entry in the Linker configuration
file.

Command form parameter details can include the following information:

Run file header format
Stack size
Heap size
Maximum array
Maximum data
Minimum array
Minimum data
Run file mode
Version (as specified on the command line)
Whether DS Allocation is used

Configurable Linker Work Areas

4-10

Just before the error and warning messages at the very end ofthe map
file, is the portion of the map called "Configurable Linker work areas".
This portion contains information about the Max Table parameters that
you can define in the Linker configuration file.

Reading the Linker Map File

Version 8 Map File

Example 4-4 shows a map for a Version 8 run file. The map includes all
public symbols and addresses, line numbers, and other link details. The
library references and Linker command form references are the same as
those previously described in Example 4-3. (See the text describing
library references and parameter details shown in Example 4-3. Those
descriptions also apply to Example 4-4.)

In addition, when you specify Yes in the :Details: entry in the Linker
configuration file, a Version 8 map file shows imported and exported
publics by name. In Example 4-4 below, you can see the imported and
exported publics displayed in the Linker Details portion of the map file.
Note that under the imported publics section, both the name of the
imported public and the dynamic link library (DLL) it is found in are
displayed. (In this example, the DLL name is "user", and the procedure
name is "My Import".)

4-11

Reading the Linker Map File

4-12

Example 4-4. Sample Map for a Version 8 Run File
Showing Public Symbols, Line Numbers, and Details

(Part 1of3)

Linker xl/28

Run file V8>Sample.run
Link Start Time 01/30/92 13:51:07

Config File : TestConfig.sys

Library Reference: (Default) from file TestConfig.sys

Library: [Sys]<Sys>ENLS.Lib
Block size: 00512
Version: version (day month date, year, time)

Library: [Sys)<Sys>Ctos.lib
Block size: 00512
Version: version (day month date, year, time)

Library: [Sys]<Sys>CtosToolKit.lib
Block size: 00512
Version: version, (day month date, year, ~ime)

Start Stop Length Name Class

oooooo6oh OOOOOOOOh OOOOh (0084h) ??SEG ??SEG
OOOOOOOOh OOOOOOOOh OOOOh (008Ch) MEMORY MEMORY
OOOOOOOOh 000007FFh 0800h (008Ch) STACK· STACK
00000800h 00000810h OOllh (008Ch) DATA DATA
00000812h 0000081Dh OOOCh (008Ch) CONST CONST
00000820h 00000822h 0003h (008Ch) STATICS CONST
00000830h OOOODB63h D334h (0094h) MEM SEGS MEM SEGS

(NonShared)
OOOODB70h OOOODBADh 003Eh (009Ch) SAMPLE CODE CODE
OOOODBBOh OOOODBE4h 0035h (OOA4h) FatalPro CODE

Reading the Linker Map File

Example 4·4. Sample Map for a Version 8 Run File
Showing Public Symbols, Line Numbers, and Details

(Part 2 of 3)

Publics by name

CHECKERC
DELAY
ErrorExit
EXIT
FatalError
fDevelopement
MAIN
My Import
PUTFRAMECHARS
sbVerRun

Publics by value

My Import
ErrorExit
PUTFRAMECHARS
EXIT
DELAY
fDevelopement
sbVerRun
MAIN
FatalError
CHECKERC

Address

OOOOODBB:0028h
OOOOFFEF:033Ch
OOOOFFEF:0334h
OOOOFFEF:0336h
OOOOODBB:OOOOh
00000000:0810h
OOOOODB7:000Dh
OOOOOOOO:OOOOh
OOOOFFDF:0436h
00000000:0820h

Address

OOOOOOOO:OOOOh
OOOOFFEF:0334h
OOOOFFDF:0436h
OOOOFFEF:0336h
OOOOFFEF:033Ch
00000000:0810h
00000000:0820h
OOOOODB7:000Dh
OOOOODBB:OOOOh
OOOOODBB:0028h

Line numbers for SAMPLE CODE

00002 ODB7:0000H 00005 ODB7:0000H
00010 ODB7:0000H 00013 ODB7:0000H
00015 ODB7:000DH 00016 ODB7:0010H
00018 ODB7:003CH 00019 ODB7:0000H
00020 ODB7:0008H 00021 ODB7:000DH

Overlay

(00A4:0028h) Res
(00BC:800Eh) CallGate
(OOC4:800Ah) CallGate
(OOB4:800Bh) CallGate
(OOA4:0000h) Res
(008C:0810h) Res
(009C:OOODh) Res
(OOOO:OOOOh) Imp
(00AC:8013h) CallGate
(008C:0820h) Res

(0000: OOOOh)
(OOC4:800Ah)
(00AC:8013h)
(OOB4:800Bh)
(OOBC:800Eh)
(008C:0810h)
(008C:0820h)
(009C:OOODh)
(OOA4: OOOOh)
(OOA4:0028h)

Overlay

Imp
CallGate
Call Gate
Call Gate
CallGate
Res
Res
Res
Res
Res

00008 ODB7:0000H

00017 ODB7:002DH

Program entry point at ODB7:0000 (009C: 0000)

Linker Details

Exported publics by name Exported name

MAIN MAIN

4-13

Reading the Linker Map File

4-14

Example 4-4. Sample Map for a Version 8 Run File
Showing Public Symbols, Line Numbers, and Details

(Part 3 of 3)

Imported publics by name

My Import

Linker Information:

Run file
Run file format
Stack

V8>Sample.run
Version 8
02048

Dll

User.Myimport

Run file mode 2004h; Protected (default)
CharacterCodeSet: SingleByte

Version xC
ax array 00000 Max SL Memory = 0000000000
Min array = 00000 Min SL Memory = 0000000000
DS Allocation not used(default)

Class ordering requested
??SEG MEMORY STACK DATA CONST CODE

Configurable Linker work areas:
Area Name Sectors Used Max Sectors
ExportData 00001 00016 (default)
rt Data 00001 00016 (default)
RgPdhCG 00001 00032 (default)
RgRle 00001 00127 (default)
WorkingData 00044 01024 (default)
StringsTOC 00001 00016 (default)
V8Strings 00001 00064 (default)

Link End Time 01/30/92 13:51:16

No warnings detected
No errors detected .

Section 5
How the Linker Works

Introduction
This section includes a description of how the Linker organizes a run file
image and associates procedure references in the run file code to the
actual procedures called.

Linking can be dynamic or static. In either case, the way the Linker
searches for external references is the same. What actually happens to
the definition of the reference when the Linker finds it determines
whether the link is dynamic or static.

This section describes the Linker search algorithm. Then dynamic and
static linking are examined. Following this description, the focus is on
how the Linker organizes the contents of a run file.

A dynamic link library (DLL) can be a client program. The term "client
program" here means any program that calls a DLL, even ifit is a DLL
itself.

Linking Overview: A Two-Pass Process
The Linker makes two passes through the modules being linked. What
happens during these passes is described below.

Pass One
On the first pass, the Linker reads all object modules, extracting
segment, group, external symbol, and public symbol information, and it
builds an identifier information table in the Linker virtual memory. The
Linker examines this table for unresolved external references. If it finds
such references, it searches the libraries that you specify for object
modules whose public symbols resolve the external references.

5-1

How the Linker Works

Library Search Algorithm

Having built an identifier table during its first pass, the Linker runs
through all the symbols, checking to see whether any of them occurs in
the first library listed for searching. If it finds a symbol declared in a
module in the library, it extracts that module from the library and links
it into the program. The extracted module can contain further undefined
symbols.

The Linker cycles over the entire list of symbols, old and new, comparing
them to the first library until no further library modules are extracted.
It then steps to the second library and repeats this process, steps to the
third library, and so on for subsequent libraries. .

When the Linker has completed the search of the last library, it may
have extracted further undefined symbols from later libraries that were
defined in earlier libraries. The Linker thus goes back to the first library
and searches again for any undefined symbols. In this way, it cycles
through all the libraries repeatedly until it has made one complete cycle
without extracting any new module. At this point it stops and reports
any symbols that remain undefined.

Note: If there is a public symbol in more than one library, you have no
way of knowing which library the object module containing it is
drawn from. If the same public symbol is defined in more than
one library, and ifthat symbol is declared external in an
extracted library module, you cannot assume that the definition
used is in the first library listed for searching. From the point at
which it extracted the module, the Linker proceeds to the next
library and extracts the first definition it encounters.

Dynamic and Static Linking

5-2

During its search, the Linker finds a public symbol defined either in the
code and data of an object file, or as an import reference to a dynamic
link library (DLL).

If the Linker finds a conventional module, it performs a static link. In a
static link, the Linker copies the procedure code and data directly into
the application run file.

If, on the other hand, the Linker finds a reference to an import entry, it
sets up the run file so that it can perform a dynamic link at run time.

How the Linker Works

Dynamic linking is supported only by Version 8 run files executing on
virtual memory operating systems.

A dynamic link import entry is not the actual procedure or data; it's
simply a reference that indicates the name of the DLL where the
procedure or data is stored and the location of the import in the DLL.
The Linker writes import information in place of the address. Also, a
pointer to this location in the code is written to the Relocation Entries
table in the application run file header. (For details on run file format,
see Appendix B, "Run File Reference.")

In a dynamic link, no procedure code or data is copied to the application
run file. At load time the loader "fixes up" the memory address in the
procedure call in the code being loaded to point to the referenced import
so that execution can occur.

A static link is fairly straightforward. The run file already contains a
copy of the procedure with addresses adjusted to point to the procedure.

For details on CTOS DLLs, see "Dynamic Link Libraries" in the CTOS
Operating System Concepts Manual.

At the end of the first pass, the Linker reorganizes the segment order
and allocates blocks of virtual memory for each segment.

Pass Two

On the second pass, the Linker reads data from the object modules. It
assigns relative addresses, relocating as necessary, to all data in all°the
modules and then writes the fixed up data to the block of virtual memory
for the segment in which the data is located. At the end of this step, the
run file header is generated and the file is assembled by appending
tables and segment data in the proper order.

From Source Modules to Run File on Disk
The Linker combines object modules into a run file in the standard
format required by the operating system loader. The run file consists of
a header and a memory image. The header describes the run file and
provides certain initial values. It also contains an array of pointers that
allow the operating system to relocate the run file to any appropriate
memory location.

5-3

How the Linker Works

A run file produced by the Linker can thus be used with various memory
configurations or as one of several run files in a multitasking program.

Arranging Object Module Components -
The Linker accepts object modules, separates them into their component
pieces, collects pieces of the same types for efficiency, ·and uses a set of

. rules to· put these collections back together in a certain order to form a
run file image in memory.

The rules that the Linker uses to order the contents of object modules are
easiest to understand if we give names to the components and collections
of components involved and build a model like that shown in Figure 5-1.
For simplicity the model we use only approximates what the Linker
actually does, but it is sufficient to convey how the Linker works. (Note
that this example is not intended to correspond to the map examples in
Section 4, "Reading the Linker Map File.")

Segment Element Names and Classes

5-4

· The example in Figure 5-1 shows three object modules to be linked.
They have been listed in the Object modules field of the Linker command
form as follows:

Link V8
Object modules
Run file
[Map file]
[Publics?]
[Line numbers?]
[Stack, Dgroup heap size]
[Max array, data]
[Min array, data]
[Run file mode]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]
[Copyright notice?]
[File to append]
[Linker config file]

Modl.obj Mod2.obj Mod3.obj
Frog.run

YourCCompiler.lib

How the Linker Works

To provide an illustration of some Linker ordering rules, suppose that
Modi.obj was written in one language, and Mod2.obj and Mod3.obj in
another.

Each of these object modules includes several segment elements, each of
which has been declared PUBLIC. It so happens that all these object
modules have segment elements containing code, data, constants, and
stack (although this is not always the case). ·

Each segment element in each module has both a name and a class. In
high-level languages, the compiler assigns the name and class. In the
example in Figure 5-1, the name and class of each segment are
separated by a slash. For example, the following segment element has
the name Modi_code and is of class Code:

Modl_code/Code

This nomenclature can be confusing because many compilers assign
names to segment elements that are the same as the classes of the
elements. For example, the following segment within DGroup has the
name Heap and is of class Heap:

Heap/Heap

Usually the code segment element carries the name of the module: in
Modi.obj, the Modl segment element is of class Code. Some compilers
append the class name as part of the code segment element name, which
in this case results in Modl_code.

Note: The Linker treats any segment with a class name that ends in
the string 'Code' as a code segment.

The most common classes are Code, Data, Const, and Stack. A given
compiler always arranges the segment elements by class in a fixed order.

5-5

How the Linker Works

Figure 5-1. How the Linker Builds a Run File (Part 1 of 2)

5·6

Step 1.

Input Object Modules

Segment I-
Elements~

Step 2.

Mod1 .obj

Doto/Doto

Const/Const

Stock/Stock

Mod 1 _code/Code

Look at Mod 1 for
Order Sort

Mod2.obj

Mod2_code/Code

Doto/Doto

Const/Const

Stock/Stock

• Linker

f
x.run

Doto1/Doto

Doto2/Doto

Doto3/Doto

Const 1 /Const

Const2/Const

Const3/Const

Stock 1 /Stock

Stock2/Stock

Stock3/Stock

Mod Lcode/Code

Mod2..code/Code

Mod3.obj

Mod3_code/Code

Doto/Doto

Const/Const

Stock/Stock

Low

.___~M.__od_3 ___ co...,d_e_/_c_o_d~e-~ High

597.5-1a

How the Linker Works

Figure 5-1. How the Linker Builds a Run File (Part 2 of 2)

Step 3.

Establish Linker Segments

Step 4.

Doto/Doto

Const/Const

Stock/Stock

Mod Lcode/Code

Mod2_code/Code

Mod3_code/Code

Establish Segment
Addressing

DS=SS ~

SP~

Doto1
Doto2
Doto3

Const1
Const2
Const3

Stock1
Stock2
Stock3

Mod1_code

Mod2_code

Mod3_code

' If DGroup

Doto1
Doto2
Doto3

f-------------
Const1
Const2
Const3

f-------------1
Stock1
Stock2
Stock3

ModLcode

Mod2_code

Mod3_code

Low

High

DGroup <
64K bytes

J Separate Linker J Code Segments

597.5-1b

5-7

How the Linker Works

Note: The example in Figure 5-1 assumes that all data is in DGroup.
However, this may not always be the case. Figure 5-3, later in

. this section, shows an example of how data falls outside of
DGroup.

In assembly language you have more control over what the Linker
ultimately does. You can assign any name you want to any segment
element, and you can define more than one of a class and place them in
any order within the module. You can make up whatever class names
you want.

In the example, the segment elements in Modl.obj are in a different
order from those of the other two object modules. Apparently, the three
object modules were produced by two different compilers that do not
order segment elements in the same way, or an assembly language
programmer wrote one or more of these modules and chose the order of
segment elements within them. The order of classes in the first module
is used as the order of classes in the run file.

Creating Linker Segments

5-8

In the first pass, at the same time the Linker is resolving all external
references in the modules, it builds a table of classes and segment
elements. Starting with the first module listed (in the example in Figure
5-1, Modl.obj), it takes the first segment element in that module,
examines its class, creates a category for that class, and places the
segment element in that category. It then makes a second category for
the second class of segment element that it encounters, and so on
through the first module.

As a result, a category is created for each class. In the example, four
categories are created that are arranged in the same order as the four
segment element classes in Modl.obj: data, constants, stack, and code.

Having divided Modi.obj in this way, the Linker proceeds to Mod2.obj.
It takes each segment element in Mod2.obj, examines its class, and
places it in the Linker category already created for that class. If there is
no Linker category for the class, the Linker creates one and places it at
the end of the list of Linker categories.

How the Linker Works

By sorting all the segment elements of the three modules into their
respective categories, the Linker creates the four Linker segments shown
in Step 2 of Figure 5-1. As can be seen, each category is a new Linker
segment.

Specifying Linker Segment Order

Linker segment elements are ordered by class in the same order that
appears in the first module listed. Thus, you can impose an ordering
template on the Linker by writing an assembly language module that
does nothing except declare segment elements and classes in the desired
order. Place this module first in the list of modules to be linked. This
template object module is often called First.obj.

The segment name and segment class are reported on the map file
generated by the Linker. If segments appear out of order on the map file,
you can correct the order with a First.asm module that uses the same
segment name and segment class.

Combination Rules

Our model is incomplete without an indication of how segment elements
are combined or superimposed to form Linker segments.

In most cases, the Linker appends one segment element to another as it
goes through the modules and does not distinguish boundaries between a
segment element from one module and that from the next module. This
is true of data and constant segment elements.

In the case of stack segment elements, the Linker combines them by
overlaying them with their high addresses superimposed but with their
lengths added together. It then forces the total length of this aggregate
stack segment to a multiple of 16 bytes. This arrangement is shown in
the upper illustration in Figure 5-2. The fact that high addresses are
superimposed is unimportant unless you have created a label at the high
end of one of the stack segment elements. In such a case, the label floats
to the high end of the aggregate stack.

Compilers construct stack segments automatically. However, if your
entire program is written in assembly language, you must define an
explicit stack segment. (See the CTOS Programming Utilities Reference
Manual: Assembler for details.)

5-9

How the Linker Works

5-10

In the case of heap segment elements, elements that have been assigned
the combination attribute COMMON in assembly language (not shown in
this example) are special also. When COMMON segment elements are
combined, they are overlaid with low addresses superimposed. The
length is that of the largest element. This arrangement is also shown in
the lower illustration in Figure 5-2.

Figure 5-2. Combination of Stack and Common Segment Elements

High
Stack1

SK bytes
Low...__ __ _.

High

Stack2
1 OK bytes High

Law__ __ ___,

Stock3
7K bytes

High

Low.__ __ ~

High

Common3
7K bytes

Common2 Low
1 OK bytes__ __ ___,

Low....__ __ ___, ------~

Stack
22K bytes

High

....__ __ ___, Low

Common
1 OK bytes

High

High Common 1
SK bytes

Low ,___ __ __, -----------------'"-----'Low
597.5-2

Code segment elements are placed together, but they are not combined
unless they have identical names as well as the same class. (This rule
actually applies to all segment elements, but it is most obvious with code
segment elements.)

Step 3 in Figure 5-1 shows the Linker segments created in this example.

How the Linker Works

Addressing Linker Segments

Finally, the Linker establishes the way in which the hardware segment
registers address these Linker segments when the program is run. In
most cases, a group has been defined in the program.

A group is a named collection of Linker segments addressed at run time
with a common hardware segment register; that is, 16-bit offset
addressing can be used throughout the group. All the locations within
the group must be within 64K bytes of each other.

It is typical for a program to contain a group called DGroup, which
contains data, constants, and stack. (The memory model used by Ctos.lib
uses DGroup. In assembly language you can define whatever groups you
want, or none.) For DGroup, the hardware segment register is DS.

In protected mode, all the Linker segments in a group must be
contiguous. The Linker combines all the segments of a group into one
segment, which is addressed with one selector.

The example in Figure 5-1 contains DGroup, which is shown in Step 4.
In this type of run file, information is retained about where within
DGroup the data, constant, and stack Linker segments begin and end.
The value of the SS register is set equal to that of DS. SP is set to be
equal to the highest address in the group, as shown in the figure.

Groups are described in the CTOS Programming Utilities Referehce
Manual: Assembler. Models of segmentation are covered in
CTOS I Open Programming Practices and Standards.

Placing Uninitialized (Communal) Variables in DGroup

Usually the Linker places uninitialized variables in one segment,
DGroup, that is addressed using the DS register. Uninitialized variables
in Microsoft C (called communal variables), however, are an exception.
They may or may not be placed in DGroup, depending on the memory
model in which they are declared. Segments of class _BSS (small and
medium model) are placed in DGroup, but segments of class Huge_BSS
or FAR_BSS (huge, compact, or large memory model) are not. You can
use the map file to identify segment classes.

5-11

How the Linker Works

For details on interpreting the map file, see Section 4, "Reading the
Linker Map File." See the MS-DOS Encyclopedia for details on the
structure of a Microsoft C program containing communal variables.

Alignment Attributes

5-12

Segment elements have alignment attributes. Most compiled languages
assign these attributes automatically, but in assembly language, you
must assign them explicitly. (See the CTOS Programming Utilities
Reference Manual: Assembler for details.)

A segment can have one of several alignment attributes:

• Byte (a segment that can start at any address)

• Word (a segment that can start only at an address that is a multiple
of2)

• Paragraph (a segment that can start only at an address that is a
multiple of 16)

• Page (a segment starting at an address that is a multiple of 512)

The Linker forces segments that have their own selectors to be
paragraph aligned.

Note that segments in a group still follow alignment attributes.

The Linker packs segments containing data and code end to end.
Alignment characteristics can cause a gap between the segments. The
Linker adjusts the relative addresses in the segments accordingly.

Figure 5-1, shown earlier in this section, assumes all data is located in
DGroup. Since that may not always be the case, the example shown
below depicts a slightly different arrangement, where all data is not in
DGroup.

How the Linker Works

Figure 5-3. How the Linker Builds a Run File (Not all Data In DGroup)
(Part 1of2)

Step 1.

Input Object Modules

Segment!
Elements\.

Step 2.

. Mod1.obj

Stock/Stock

Const/Const

Doto/Doto

Mod Lcode/Code

Group:
Doto
Stock
Const

Look ot Mod 1 for
Order Sort

Mod2.obj

Stock/Stock

Const/Const

Doto/Doto

+
Group:
Stock

Linker Const

•
Doto

x.run

Stock 1 /Stock

Stock2/Stock

Stock3/Stock

Const 1 /Const

Const2/Const

Const3/Const

Doto1/Doto

Doto2/Doto

Doto3/Doto

Mod Lcode/Code

Mod3.obj

Mod3..code/Code

Stock/Stock

Const/Const

Doto/Doto

Low

Group:
Stock
Const

597.5-3a

5-13

How the Linker Works

5-14

Figure 5-3. How the Linker Builds a Run File (Not all Data In DGroup)
(Part 2 of 2)

Step 3.

Establish Linker Segments

Step 4.

Stock/Stock

Const/Const

Doto/Doto

Mod 1 _code/Code

Mod.2..code/Code

Mod3_code/Code

Establish Segment
Addressing

DS=SS ~

SP~

Stock1
Stock2
Stock3

Const1
Const2
Const3

Doto1
Doto2
Data3

ModLcode

Mod2_code

Mod3_code

if If DGroup

Stack1
Stack2
Stack3

1-------------
Const1
Const2
Const3

1--------------i
Dota1
Doto2

1------------4
Dato3

ModLcode

Mod2_code

Mod3_code

Low

High

DGroup <
64K bytes

J Separate Linker J Code Segments

597.5-3b

How the Linker Works

Summary of Segment Ordering
All segment elements of the first class observed by the Linker are placed
first in the run file, followed by all the segment elements of the second
class, and so on.

A group definition does not affect segment ordering. Rather, a group
definition asserts that all segments in a group are contained within a
64K-byte region in the run file. This is required if all the segments of the
group are to be addressed using an offset from a single value in a
segment register. In Version 6 and Version 8 run files, all segments in a
group are referenced by one selector and must be contiguous.

Segment Limits
Exact limits on the size of a program that can be linked are difficult to
compute. In general, the maximum size of a linkable program and the
speed at which the link takes place are directly related to the amount of
memory available in the partition in which the link occurs and the
number of public symbols in the program.

5-15

Section 6
Advanced Linker Features

Introduction
This section discusses estimating memory requirements, adjusting stack
size, allocating memory space, using overlays, and customizing segment
ordering.

Program Memory Requirements
The address space required by a program consists of the resident size of
the program plus memory allocated by the program. The operating
system creates the address space based on 1) the resident size of the
program, 2) the data portion of the [Min array, data} and [Max array,
data] fields in the Linker command form, and 3) the partition size and
type.

The data portion of the [Min array, data} and [Max array, data} fields of
each run file describe the minimum and maximum dynamic (allocated
long-lived and short-lived memory) memory required by the program.
These fields do not include the size of the resident portion of the
program. Programs that contain minimum data and maximum data of 0
are said to be unsized.

The CTOS operating system supports two application partition types:
fixed (type 2; see CreatePartition in the CTOS Procedural Interface
Reference Manual) and variable (type 6). Fixed partitions are provided to
offer a backward-compatible address space model with prior versions of
CTOS. Variable partitions are partitions in which the address space can
be modified to meet the needs of the currently loaded program.

6-1

Advanced Linker Features

6-2

For the purposes of this discussion, the components are named as
follows:

R Resident size of program
m Minimum data from run file
M Maximum data from run file
P Partition size (from CmConfig.sys or the CreatePartition request)

For unsized programs loaded in a fixed partition:

The resulting address space = P

For unsized programs loaded in a variable partition:

The resulting address space = P

For sized programs loaded in a fixed partition:

The resulting address space= P with the constraint that R+m < P

For sized programs loaded in a variable partition in CTOS II:

The resulting address space= Min (R+M, P) with the constraint that
R+m<P

For sized programs loaded in a variable partition in CTOS III:

The resulting address space = R+M with the constraint that R+m
<P

For example, consider a program with a resident size of 200K bytes,
minimum data of 50K bytes, and maximum data of 300K bytes:

R 200
m 50
M 300

The value for the resulting address space is calculated for a fixed
partition size as follows:

• If P = 200, then program load is rejected, and status code 400
(insufficient memory) is returned

• If P = 400, the resulting address space is 400

• If P = 600, the resulting address space is 600

Advanced Linker Features

The value for the resulting address space is calculated for a variable
partition size as follows:

• If P = 200, then program load is rejected, and status code 400
(insufficient memory) is returned

• If P = 400, for CTOS II the resulting address space is 400

• If P = 400, for CTOS III the resulting address space is 500

• If P = 600, the resulting address space is 500

Run-Time Library Code
For compiled languages like Pascal, even a minimal program requires
the language run-time library, as well as associated support code from
the standard operating system libraries. Almost all programs require
20K to 40K bytes of space for run-time library code for this reason. The
largest component usually is sequential access method code.

Code segm~nts from the run-time library are listed in the map file.

Simple Programs

For simple programs, you can read the memory required directly from
the map. The size is the "stop" address of the last segment listed in the
map. This number is the hexadecimal count in bytes from the first byte
of the first segment.

Overlay Programs
Overlay programs should usually be sized on the stop address of the last
segment of the resident portion, with the size of the required swap buffer
added in.

The Linker supports virtual memory management (overlays) in Version 4
and Version 6 run files. On a virtual memory operating system, the
virtual code (overlay) segments of Version 4 and Version 6 run files are
treated the same as the resident segments; they are paged in on demand.
The Version 8 run file format does not support virtual memory
management because it is provided for all run files by CTOS III (and
later) on which Version 8 run files execute. (For more information on the
paging service, see the CTOS Operating System Concepts Manual.)

6-3

Advanced Linker Features

Programs That Allocate Memory

To size a program that allocates memory, add the maximum amount of
memory that will be allocated. For programs that do DS allocation (for
example, Pascal programs that use the New function), add the extra
amount of DS that will be required. Use of the memory array is subject
to the availability of a minimal amount. (See "Allocating Memory Space"
later in this section for details.)

Adjusting Stack Size
All compilers produce information in object modules about the amount of
stack needed to execute the code in the module (assuming that there is
no recursion). The Linker can compute the size of the required stack
segment by adding these amounts together. For safety, this information
usually specifies a stack that is larger than the actual requirements.

Reducing the Stack

6-4

If your program has a data segment that is close to the 64K-byte size
limit, in many cases you can reclaim space by reducing the stack size.
For example, if you link a program that uses Forms, ISAM, and
Graphics, the Linker supplies extra stack space for each of these
products. Examine the size of the default stack by looking at the map
file. (For details, see Section 4, "Reading the Linker Map File.") It is
often possible to reduce the amount of stack space by as much as
one-third without problems.

To estimate the needed stack size more closely, run the program under
the Debugger and set a breakpoint at the end of execution or at another
convenient point after which the stack has just reached its largest
requirement. Because the stack is initialized to zeros, you can now
check to see how much of the low part of the stack is still zeros in order
to find the maximum requirement. Allow another 128 bytes (64 bytes for
interrupt handlers and 64 bytes for making requests) and reduce the
stack size accordingly. See the CTOS Debugger User's Guide for more
information.

Advanced Linker Features

Correcting Stack Overflow

In rare cases, the compiler can supply information that causes the
Linker to undercompute the required stack size. An example is a
program with many recursive procedures.

The stack grows down from higher to lower addresses. If a program's
needs exceed the stack size, the stack can overwrite whatever precedes it
in the link map, causing abnormal program behavior. In this case,
relink the program, specifying a larger stack in the Linker command
form. The amount of stack needed is highly program dependent and
cannot be estimated neatly. Increase the stack to the maximum allowed
within the limitations of your data segment. If the program now runs
successfully, reduce the stack size according to the guidelines in
"Reducing the Stack."

Allocating Memory Space
A program can specify memory that it will need during execution, and
the compiler will emit records that will include this amount of memory
in the run file. This extra memory occupies space in the program's disk
file.

Sometimes it is more efficient for a program to allocate a portion of
memory only at load time or during execution. Usually, if a program
needs to allocate short-lived memory during execution, it does so by
calling AllocMemorySL or ExpandAreaSL, and the memory is allocated
toward lower addresses. This memory is addressed with
segment-and-offset addresses.

With the Linker, you can choose either or both of two unrelated options
for allocation of memory space at load or run time. These options are DS
allocation and the memory array (In the Linker configuration file, these
are :DSAllocation:, :MinArray:, and :MaxArray:. In the Linker command
form, these are [DSAllocation?], [Min array, data], and [Max array,
data]).

Under the DS allocation option, your program can allocate some
short-lived memory toward lower addresses as usual, but can address it
efficiently as ifit were part of DGroup with only 16-bit offset addresses.

6-5

Advanced Linker Features

Under the memory array option, the program can allocate memory at
high addresses above the program.

Note: The memory array is supported for backwards compatibility but
is not recommended.

DS Allocation

6-6

DS allocation allows your program to allocate some short-lived memory
toward lower addresses as usual, but also allows it to address the
memory efficiently with near pointers (16-bit offset addresses) relative to
DGroup. This is accomplished by expanding the data segment to its
maximum size as the means of providing run-time memory. The data
segment (addressed by DS) has a maximum size of 64K bytes, and your
program uses a certain amount of that, but the rest can be used for short
lived memory.

DS allocation allows you to define a maximum-size data segment, even
though your program's data segment would normally be smaller. The
excess space in this maximum data segment extends beyond your
program toward lower memory addresses. You allocate memory in this
space with AllocMemorySL or ExpandAreaSL. AllocMemorySL creates a
new segment and returns the segment's selector and an offset of zero.

To achieve this, you specify Yes in the [DS allocation?] field of the Linker
command form. The Linker then gives DS the lowest possible value that
still allows the data segment to encompass your program's data (or
DGroup). The Linker arranges the data in DGroup so that the last byte
of it is at offset OFFFFh from DS (see Figure 6-1).

Under this arrangement, the first byte of program data starts at an
offset x, where x is a value greater than 0. DGroup changes from the
usual expand-up segment type to an expand-down type. The excess
DGroup space between off set 0 and off set x-1 can be used by the
program to allocate short-lived memory using ExpandAreaSL.

Advanced Linker Features

Note that the program usually is arranged with the data segment as its
first or lowest-address segment. In real mode, many segments that
precede DGroup are in danger of being overwritten as DGroup is·
expanded downwards. The Linker automatically places DGroup in its
correct position when DS allocation is requested. If your compiler does
not order the classes in this way, or if you are writing in assembly
language, you must specify the segment ordering in the first object
module listed for linking.

Figure 6-1. Real Mode Program With DS Allocation

Progrom

Doto Portion

Unollocoted
Memory

High

'------~ Low
597.6-1

DS allocation has several advantages. It allows 16-bit DS-relative
addressing. In addition, memory allocated within this space adjoins the
common pool of available memory below the program, and it can be
deallocated and reallocated flexibly by the program. However, the
program must make procedure calls for memory allocation, and the
16-bit addressable space is less than 64K bytes.

The Memory Array
The memory array is allocated at the high-address end of your program
at load time, not through procedure calls. To use the memory array, in
the Link V6 command form, you specify values in the first parameters of
the [Max array, data] and [Min array, data] fields. (The [Max array,
data] and [Min array, data] fields have no effect for the Link VS
command.) Figure 6-2 shows the arrangement of your program with the
memory array at the high-end address.

6-7

Advanced Linker Features

6-8

Figure 6·2. A Program With the Memory Array

Memory Arroy

Progrom

Unollocoted
Memory

Operoting
System

High

Low
597.6-2

You do not have to know the size of your program or how much memory
is available in the partition to specify a memory array. The
cParMemArray field of the Application System Control Block structure
contains the number of paragraphs of memory array actually available.
If the partition cannot accommodate the minimum memory array,you
requested, the program .is not loaded, and the operating system returns
a status code and error message.

If you want the program always to load at the lowest possible address,
that is, with maximum memory array at the end of the program, set the
minimum to 0 and the maximum to 0 to take all allowable memory.

The memory array has several advantages. It is not limited to less than
64K bytes but can occupy all available memory in a partition. The
program need make no procedure calls to allocate memory during
execution. The program is at lower addresses than the memory array.
The memory array can be referenced from DS if DGroup is placed at the
end of the program. ·

The memory array is static, however. You cannot reclaim· any of it for
other uses, and it persists throughout execution. Also, in the form
described here, it cannot be referenced from DS. Usually, the ES
register is loaded with the lowest address of the memory array.

Advanced Linker Features

Linking a Program With Overlays
Note: On virtual memory operating systems, the paging service is used

to swap portions of a Version 6 or Version 8 run file into or out
of memory as needed. Calls to virtual memory management
(overlay procedures) in these cases are ignored. Overlays,
however, are supported in all Version 4 run files.

The virtual memory management facility allows an application program
that is larger than the memory in its partition to run, but with a
performance trade-off. For this purpose, the program's code is divided
into variable-length code segments. One, the resident code segment, is
permanently in memory. The remaining segments, or overlays, reside
on disk until they are needed. When a procedure in a nonresident
overlay is called, it is brought into memory.

The term code segment, as used here, does not mean the module's code
segment. An overlay, for example, can include differently named code
segments originating from several different modules.

The overlay management scheme does not provide for saving changes
made in overlays once they are in memory. Nothing is written back to
disk, so there is no need for a disk swap file. Code segments produced by
high-level language compilers are completely relocatable and read-only,
so a particular overlay code segment in memory that is no longer needed
can be overwritten by another code segment. When the first code
segment is needed again, it is reread from the run file.

Virtual memory management can be used with programs written in all
of the system's high-level languages, and also by assembly language
programs that follow certain rules. Little or no modification is needed to
make an existing program an overlay program. You must write a small
amount of overlay initialization code, and you must specify in the Linker
command form which modules are to contribute code to which overlays.
(See "Examples" in Section 3, "Using the Linker Command Forms," for
details on what to enter in the Object modules parameter field.)

The virtual memory management model is more fully described in the
CTOS Operating System Concepts Manual. For details on how to write
an overlay program or how to adapt an existing one, see CTOS I Open
Programming Practices and Standards Draft 1.0. Also see your
programming language manual.

6-9

Advanced Linker Features

The following cannot be put in overlays if the program is to be run in
real mode:

• Modules in which publics are not defined in the order in which they
occur in those modules

• Modules with zero length code segments

• In some languages, you cannot place certain modules from the
run-time library in overlays. This is the case when publics are not
defined in the order in which they occur in modules.

• Assembly language modules where the procedures do not follow
call/return conventions and certain other rules

Small-model C language programs are not compatible with virtual
memory management.

Customizing Segment Ordering
As stated previously, Linker segment elements are ordered by class in
the same order in which the Linker encounters them. Therefore, the
order of classes and segments in the first object module has a great
influence on how the run file segments are arranged. You can customize
segment ordering by

• Writing a First.asm file, generating a First.obj file from it and
putting that file first in the object modules list

or

• Using :ClassOrder: in the configuration file

First.asm File

6-10

You can influence the way the Linker arranges the run file segments by
writing a special assembly language program and generating an object
module from it. This object module is placed first in the list of modules to
be linked. This template object module often is called First.obj.

The segment name and segment class are reported on the map file
generated by the Linker. If segments appear out of order on the map file,
you can correct the order with a First.asm module that uses the same
segment name and segment class.

Advanced Linker Features

In order to do this, you need to know about how to specify SEGMENTS
and GROUPS in the Assembler. Following is a brief description of the
syntax; for more information, see the CTOS Programming Utilities
Reference Manual: Assembler.

Here are some general guidelines for writing a First.asm file. (An
example follows.)

• Use the SEGMENT directive to explicitly name a segment. The
SEGMENT directive also controls the alignment, combination, and
contiguity of segments. It has the following syntax:

[segname) SEGMENT [align-type] [combine-type)
['classname'J [segname) ENDS

The optional fields (in brackets) must be specified in the order given.

• Use the ENDS directive to indicate the end of a segment

• Use the GROUP directive to name the segments that are to be
contained in a Group

The Group directive specifies that certain segments lie within the
same 64K bytes of memory. It has the following syntax:

Groupname GROUP segname [, ...)

In this example, Groupname is a unique identifier used in referring
to the group. Segname is the name field of a SEGMENT directive.
A typical group name is DGroup, used to group data.

• Any text following a semicolon(;) on the line is a comment

First.asm File Example

In the example First.asm file shown below (Example 6-1), the sequence
of segment ordering is for illustration only. You can order segments
differently from that shown.

6-11

Advanced Linker Features

6-12

Example 6-1. First.asm File

; Segments of class 'CODE' appear first
; segname _TEXT, classname CODE

TEXT SEGMENT WORD PUBLIC 'CODE'
TEXT ENDS

; Segments of class 'ENDCODE' appear second
; segname _ETEXT, classname ENDCODE

ETEXT SEGMENT WORD PUBLIC 'ENDCODE'
ET EXT ENDS

; Segments of class
; segname FAR_DATA,
FAR DATA SEGMENT
FAR DATA ENDS

'FAR_DATA' appear next
classname FAR DATA

WORD PUBLIC 'FAR DATA'

; Segments of class 'DATA' appear next
; segname NEAR_DATA, classname DATA
NEAR DATA SEGMENT WORD PUBLIC 'DATA'
NEAR DATA ENDS

; segname NEAR_DATA, classname DATA
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

; Segments of class 'CONST' appear next
; segname CONST, classname CONST
CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

Segments of class 'STACK' next
segname STACK, classname STACK

Note that STACK is a special combine-type to be used
only with segname STACK, clasename STACK.

STACK SEGMENT WORD STACK 'STACK'
STACK ENDS

; Put the segments named NEAR_DATA,DATA,CONST,and STACK
; into DGroup
DGroup GROUP NEAR_DATA,DATA,CONST,STACK

END END directive identifies end of this module.
It is REQUIRED

Advanced Linker Features

The First.asm file shown in Example 6-1 produces the Linker segment
order shown in the map file below.

Example 6-2. The Map File Produced by the First.asm File

Linker (version)

Run file first.run
Link Start Time 01/07/92 08:59:46

Config File c.sys

Start Stop Length Name Class

OOOOOOOOh, OOOOOOOOh OOOOh (0084h) ??SEG ??SEG
OOOOOOOOh OOOOOOOOh OOOOh (008Ch) TEXT CODE
OOOOOOOOh OOOOOOOOh OOOOh (0094h) ETEXT ENDCODE
OOOOOOOOh OOOOOOOOh OOOOh (009Ch) FAR DATA FAR DATA
OOOOOOOOh OOOOOOOOh OOOOh (00A4h) NEAR DATA DATA
OOOOOOOOh OOOOOOOOh OOOOh (OOA4h) DATA DATA
OOOOOOOOh OOOOOOOOh OOOOh (00A4h) CONST CONST
OOOOOOOOh OOOOOOOlh 0002h (OOA4h) STATICS CONST
OOOOOOlOh OOOOOOlOh ODO Oh (00A4h) STACK STACK

No warnings detected
No errors detected

The map file shown above was produced using only the First.obj file
generated from the First.asm file shown in Example 6-1. In the Linker
command form, specify first.obj as the first entry in the Object modules
field, and specify first.run in the Run file field.

6-13

Advanced Linker Features

Example of Correcting a Segment Ordering Error

6-14

A First.asm file is useful in correcting segment ordering errors that
appear in the map file. The following example shows an error that
appears in the map file and how you can correct it by using a First.asm
file.

The error message displayed in the map file shown in Example 6-3
mentions two segments (selectors OOA4h and OOB4h) that were specified
to be in the same group, in this case, DGroup. The segment that occurs
between them (selector OOACh) is not specified to be a member of the
group and is the cause of the error. (For protected mode, all the Linker
segments in a group must be contiguous.

Example 6-3. Map File Showing Segment Ordering Error

Linker xl/6

Run file
Link Start Time

NonContiguousGroups.run
01/07/92 09:07:12

Conf ig File c.sys

Start Stop Length Name

OOOOOOOOh OOOOOOOOh OOOOh (0084h) ??SEG
OOOOOOOOh OOOOOOOOh OOOOh (008Ch) TEXT
OOOOOOOOh OOOOOOOOh OOOOh (0094h) ETEXT
OOOOOOOOh OOOOOOOOh OOOOh (009.Ch) FAR DATA
OOOOOOOOh OOOOOOOOh OOOOh (00A4h) CONST
OOOOOOOOh OOOOOOOlh 0002h (00A4h) STATICS
OOOOOOlOh OOOOOOlOh OOOOh (OOA4h) STACK
OOOOOOOOh . OOOOOOOOh OOOOh (00A4h) NEAR DATA
OOOOOOOOh OOOOOOOOh OOOOh (OOACh) DATA

No warnings detected
No errors detected

Class

??SEG
CODE
EN DC ODE
FAR DATA
CONST
CONST
STACK
DATA
DATA

Advanced Linker Features

The First.asm file shown in Figure 6-4 is the correct specification of the
segments that should be in DGroup.

Example 6-4. Ffrst.asm File Showing Corrected Segment Order

Segments of class 'CODE' appear first
segname TEXT, classname CODE

TEXT SEGMENT WORD PUBLIC 'CODE'
TEXT ENDS

; Segments of class 'ENDCODE' appear second
; segname ETEXT, classname ENDCODE

ETEXT SEGMENT WORD PUBLIC 'ENDCODE'
ETEXT ENDS

; Segments of class 'FAR_DATA' appear next
; segname FAR DATA, classname FAR DATA
FAR DATA SEGMENT WORD PUBLIC 'FAR DATA'
FAR DATA ENDS

; Segments ,of class 'CONST' appear next
; segname CONST, classname CONST
CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

Segments of class 'STACK' next
segname STACK, classname STACK

Note that STACK is a special combine-type to be used only
with segname STACK, classname STACK.

STACK SEGMENT WORD STACK 'STACK'
STACK ENDS

; Segments of class 'DATA' appear next
; segname NEAR_DATA, classname DATA
NEAR DATA SEGMENT WORD PUBLIC 'DATA'
NEAR DATA ENDS

; segname DATA, classname DATA
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

; Put the segments named NEAR DATA,DATA,CONST,and STACK into DGroup
DGroup GROUP NEAR_DATA,DATA,CONST,STACK

END END directive identifies end of this module.
It is REQUIRED

6-15

Advanced Linker Features

Configuration File

6-16

The recommended way to specify class ordering is in the Linker
configuration file. The :ClassOrder: parameter in the configuration file
allows you to override the configuration specified in the First.asm file.

The example map file shown in Example 6-2 was produced by using a
First.asm file. You can get the same Linker segment order shown in that
map file by using :ClassOrder: as follows:

:ClassOrder: (CODE ENCODE FAR DATA DATA CONST STACK)

Section 7
What Is the Librarian?

What the Librarian Does
The Librarian is a program development utility that creates and
maintains libraries of object modules.

You can perform the following operations when you use the Librarian
command from the Executive:

• Build a new library by specifying a new library file name and the
object module(s) to be included in it

• Modify a library by specifying object modules to be added or deleted.
(This includes the case in which a module in a library is to be
replaced by a new module with the same name.)

• Extract one or more object modules from a library and place them in
the current directory

• Produce a sorted cross-reference list of the object modules and public
symbols in the library

• Set the library block size while a library is being created or change
the block size in an existing library

7-1

What Is the Librarian?

How the Librarian Works

7-2

Figure 7-1 below shows how the Librarian manages application object
modules.

Figure 7-1. Using the Librarian to Manage Application Object Modules

Assembly
Source Code

Object
Module

High-Language
Source Code

Application
Library

Application
Run File

Object
Module

597.7-1

What Is the Librarian?

Maintaining libraries of object modules is one part of the application
development process. To see how the Librarian works in conjunction
with the other building applications utilities, see Figure 1-1 in Section 1,
"Introduction to Building Applications."

Uses for the Librarian
You can use a library in the following ways:

• If you specify a library in the [Libraries] field of the Linker
command form, the Linker searches the library for object modules
that satisfy unresolved external references. You do not have to
know the names of the object modules composing a library. The
Linker's library search algorithm automatically selects from the
library exactly the required modules.

Placing object modules in a library and linking several object
modules from a library specified in the [Libraries] field of the Linker
command form is faster than linking the same modules specified
individually in the Object modules field because, in the former case,
only one file is opened.

• You can use a library to collect several object modules and distribute
them as a single file. The Librarian extraction facility can be. used
to extract specific modules from the unit. You must specify the
desired object module to extract it from the library. For large
portions with many object modules, this is a way to save system
resources, such as free file headers. The Librarian extraction facility
is described in Section 8, "Using the Librarian Command Form," and
is also available in the Linker.

• You can use a library to collect several forms (which are actually
object modules) created with the Forms Editor. (See the BTOS II
Forms Designer Programming Guide.) You must specify the desired
form name to extract it from the library.

7-3

Section 8
Using the Librarian Command Form

Introduction
This section shows how to use the Librarian command form. The
parameters of the command are described also.

Command Form
To use the Librarian to build a new library, follow these steps:

1. On the Executive command line, type Librarian, and press
RETURN.

2. Fill in the command form according to your needs. An example
command form is shown below. The parameter fields are described
in the next subsection.

Librarian
Library file
[Files to add)
[Modules to delete]
[Modules to extract]
[Cross-reference file]

MyExarnple.lib
example.obj exarnple2.obj

[Suppress confirmation?]~~~~~~~~~~~~
[Library block size]
[Case sensitive?)

3. Press GO to execute the Librarian command.

By specifying the appropriate fields, you can request multiple operations
in one invocation of the Librarian. Modules are deleted, added, and
extracted, in that order. See the cross-reference file for the state of the
library after all operations are completed.

8-1

Using the Librarian Command Form

If you are revising a library module and wish to reinsert it, it is most
efficient to use the [Files to add] field and allow the Librarian to
overwrite the preexisting module of the same name. Deleting the old
module and adding the new one takes approximately twice as long.

If you do not want to receive a message asking for confirmation in this
kind of situation (for example, when the operation occurs in a Submit
file), respond Yes to the [Suppress confirmation?] field.

At the end of a library, a text string is often appended that identifies its
version. Often version and copyright information are appended to the
end of a library. Whenever you modify such a library, the data are lost;
for example, if the data are in a -old library file but not copied into a
more recent library file copied from the -old file.

Parameter Fields

8-2

The parameter fields in.the Librarian command are described below ..

Library file

Enter the file name of the object module library. Typically, it has
the following form:

LibraryName.lib

If the specified file already exists, it is the starting point for any
library to be built. Before changes are made, the contents of the
file are preserved intact in a file with the original name plus the
suffix -old. However, if no files are added and no modules are
deleted (for example, if you request a listing only), the input library
is not modified and no -old file is generated. If modifications are
requested, the updated library is named as specified by Library file.

If the specified file does not exist, you are prompted to confirm the
creation of a new library file. You can suppress this request for
confirmation by specifying Yes in the [Suppress confirmation?] field.

[Files to add]

Default: None

Enter the object module files that you want to add to the library.
Separate the names with spaces.

Using the Librarian Command Form

If you leave this field blank, no files are added.

The name of the added module within the library is derived from
the name of the added object file. All leading volume and directory
specifications and file prefixes are dropped. Any final extension
beginning with a period is dropped.

For example, if the file name is [Sys]<Jones>Sort.obj, the module
name is Sort. If the file name is <Jones>Working>Sort, the file
name is also Sort.

There is one exception to the naming rules just described. A
subdirectory name is kept as part of the object file name in the
library.

For example, if the file name is Test\Sort.obj, the module name in
the library is Test \Sort.

You are prompted for confirmation if an object module that you
want to add has the same name as an object module already in the
library. If you confirm the replacement, the file containing the
module with the same name replaces the existing object module.

When the Linker searches a library for public symbols to match
unresolved externals, it searches this index rather than the modules
themselves. Therefore, it is unusual to create a library in which two
object modules define the same public symbol. The symbol would be
absent from the index and, hence, hidden from the Linker. (This
kind of duplicate definition might reasonably occur in a library
intended just as a convenient unit in which to collect object modules,
and not for automatic search.)

You are also prompted for confirmation if a public symbol declared
in a module that is to be added conflicts with a public symbol
already in the library. If you confirm the duplication, the module
containing the duplicate definition is added, but the public symbols
(both old and new) are removed from the index of symbols searched
at the end of the library.

You can suppress these requests for confirmation by specifying Yes
in the [Suppress confirmation?] field.

8-3

Using the Librarian Command Form

8-4

[Modules to delete]

Default: None

Enter the list of modules that you want to delete from the library.
Separate the names with spaces. A module name should not include
the suffix .obj.

If you leave this field blank, no modules are deleted.

[Modules to extract]

Default: None

List the object modules in an existing library that you want to
extract to form individual object module files. Separate the names
with spaces. The specification is a list of entries in either of two
forms:

ModuleName

or

FileName(ModuleName)

If the first form is used, files containing the specified object modules
are created with names of the form ModuleName.obj. If the second
form is used, the file name can be specified explicitly.

When the Librarian is used to modify a library (the most common
use), the [Modules to extract] field is not used. Extraction does not
modify a library.

If you leave this field blank, no modules are extracted.

[Cross-reference file]

Default: None

Enter the name of the file to which the Librarian is to write a
cross-reference listing of public symbols and object module names.
A cross-reference listing has two parts:

1. The first part lists public symbols in alphabetic order and, for
each public symbol, the name of the module in which it occurs.

2. The second part lists module names in alphabetic order and, for
each module, the names of the public symbols it defines.

Using the Librarian Command Form

If the same symbol is defined in different modules within a library,
these duplicate symbol names are removed from the index of
symbols to be searched by the Linker. However, they are listed in
the cross-reference file. The first such symbol encountered is
followed by no asterisk, the second by one asterisk, and so on. The
modules in which they occur are listed (see Example 8-1).

Example 8-1 shows a sample listing produced if you use the
[Cross-reference file] field.

Example 8-1. Sample Cross-Reference Listing

Librarian (Version)

ANOTHERSAMPLEPROC .. example

MAIN•....... example

SAMPLEDATA example

SAMPLEPROC .•....... example

SAMPLETABLE example

example (Length 0093h bytes)

ANOTHERSAMPLEPROC
SAMPLEPROC

example2 (Length 0093h bytes)

ANOTHERSAMPLEPROC2
SAMPLEPROC*

[Suppress confi,rmation?]

Default: No

ANOTHERSAMPLEPROC2 .. example2

MAIN2 example2

SAMPLEDATA2 example2

SAMPLEPROC* example2

SAMPLETABLE2 example2

MAIN SAMPLEDATA
SAMPLE TABLE

MAIN2
SAMPLETABLE2

SAMPLEDATA2

Enter Yes if you do not want prompts for confirmation when
creating new library files (with the Library File field) or replacing
existing object modules (with the [Files to Add] field) or when adding
duplicate symbols.

If you enter No or leave this field blank, the Librarian issues
prompts for confirmation.

8-5

Using the Librarian Command Form

[Library block size]

Default: 512

Enter a value that is an integral power of2 between 16 (fourth
power of 2) and 32768 to specify the size in bytes of a library block.
For example, if you specify 32 (fifth power of 2), each library block
contains 32 bytes and each object module will start on an even
32-byte boundary. If your object modules are very small, you can
conserve space in your library by specifying a low value. For details,
see "Library Block Size," below.

[Case sensitive?]

Default: No

Enter Yes to mark the library for case sensitive linking. This
requires that. the symbol within the object modules be
case-sensitive.

Library Block Size

8-6

Blocks are the basic library units. Each object module is aligned with
the beginning of a block. The default block size is 512 bytes. The last
object module in a library must start within 64K minus 1 block from the
start of the library.

This 512K-byte block size has been found to work well for most libraries.
However, if most objects in a library are short (a DLL import library, for
example), the library will have a lot of wasted space and will use up
more disk space than necessary.

Conversely, if the library is to contain many object modules with an
average size significantly greater than 512 bytes, it is possible that not
all modules will fit in the library because they cannot be addressed.

The way in which you adjust for each of the above situations is described
in the paragraphs that follow.

Using the Librarian Command Form

Conserving Library Space

The [Library block size] parameter of the Librarian command allows
you the flexibility of specifying block size. If, for example, the library
you are writing contains many short modules, you can waste a
significant amount of library space by using the default block size
(512 bytes).

To illustrate this point, let's first look at the overall structure of a
library. Figure 8-1 shows a simple object module library containing very
small modules. The library is arranged in 32-byte blocks.

Figure 8-1. Library Blocks

Block O Library
Record Header

32

Block 1 Foaxxxxxxxxxxxxxxx
xxxxxxxxx

64
Barxxxxxxxxxxxxxxx

Block 2 xxxxxxxxxxxxxxxxxx

96 xxxxxxxxxxxxxxxxxx

Block 3 xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxx

128

Block 4 AnolherProcxxxxxx
xxxx

160

Index xxxxxxxxFoo01xxxxxx
xxxxxBar02xxxxx ••.

597.8-1

Briefly, the sample library consists of three main components: a record
header, the object modules, and an index.

8-7

Using the Librarian Command Forin

The first 32-byte block contains the library record header. In this case,
the header fits in the block. The object modules are contained in the
blocks following the header, as described below:

• Object module Foo is 16 bytes long. It is aligned with beginning of
block land the code occupies the first half of the block.

• Object module Bar is 48 bytes long. It occupies all of block 2 and the
first half of block 3.

• The object module AnotherProc starts at the beginning of Block 4.

To align the object modules on block boundaries, all unused bytes of
partially filled blocks are padded with zeroes.

In this example, modules Foo and Bar require a total of 96 bytes (three
32-byte blocks). If block size had not been specified in the Librarian
command form, these modules alone would require 1024 bytes (two
512-byte blocks).

Accommodating Large Modules

8-8

One consequence of not specifying a practical block size is that you may
not be able to access all the library procedures. This can occur
particularly if there are many modules with a size greater than
512bytes.

Look again at Figure 8-1. The library index lists each object module
procedure name followed by a word value; for example, Bar 02. The
value 02 indicates that the object module in which the public Bar is
defined starts in the second object module block.

Because of the one-word limit for specifying block position, the
maximum number of blocks in the object module section of a library is
64K If block size is small compared to object module size, and a library
contains many such modules, the total number of blocks required by all
the objects may exceed the 64K byte limit. To solve this problem, the
block size should be made larger. To estimate the correct block size, do
the following:

1. Issue the Files command on all object modules that you want to put
in the library.

2. Multiply the total number of pages the object modules occupy by
512.

Using the Librarian Command Form

3. Divide by 64K.

4. Round the result up to the next number that is a power of 2,
between 16 and 32, 768, inclusive.

Library Index Procedures
Typically, object module names, public procedures, and variables are
listed in the Library Index. This index is then searched to resolve
external references. However, two cases in which public procedures and
variables are not included in the Librarian index are described in the
paragraphs that follow.

Duplicate Public Symbol Names

In most cases, the Librarian places public symbol names in the library
index along with the block number in which the object module
containing the procedure starts (see Example 8-1). The exception is
when matching symbol names occur in two or more modules. In such a
case, the Librarian does not list the name or starting block number in
the index.

Uninitialized Variables

The Librarian does not list uninitialized (communal) variables in the
library index. (For more information on uninitialized variables, see
Section 5, "How the Linker Works.")

8-9

Section 9
What Is the Module Definition Utility?

What the Module Definition Utility Does
You use the Module Definition utility when you plan to build applications
that use dynamic link libraries (DLLs). The Module Definition utility
creates object modules that contain special data required by the Linker
to build DLLs. This utility also sets up the client interface to DLLs.

The Module Definition utility has a command form user interface that
accepts a text file, called a module definition file, as input. Using this
text file as input, the utility creates either an object module or an import
library listing DLLs and DLL procedure names, or both. Using the
information generated, the Linker and loader can associate DLL and
DLL procedure names, which are declared externally in a client program,
with the appropriate DLL procedure addresses.

Porting Presentation Manager Programs
The Module Definition utility is designed in part to make it easy to port
DLLs from other platforms that use them, such as Presentation
Manager. Presentation Manager is a collection ofDLLs. Programs that
call Presentation Manager (called clients) can run on CTOS if they have
the proper interface to the DLL. You can use the Module Definition
utility to define the interface, which is the list of imports a client
program uses that allows it to make calls. This in turn provides the
Linker with the information it requires to successfully link together
object modules and import libraries.

The syntax of a CTOS module definition file is similar to that accepted
by the Microsoft Linker. Any syntax rules not supported on CTOS are
recognized and then ignored by the CTOS Linker. In addition, there are
additional CTOS-unique features.

(For a list of supported features, see Section 11, "Writing a Module
Definition File.")

9-1

What Is the Module Definttlon Utility?

How the Module Definition Command Works

9-2

The input to the Module Definition command is a text file that
describes the name, attributes, exports, imports, and other
characteristics of a DLL or an application run file. To define these
characteristics, you include statements using the syntax described later ·
in this section.

From the module definition file, the Module Definition command can
create two different output files: an object module containing the list of
exportable procedures formatted according to Intel Object Module
Format (OMF) and an import library containing object modules in OMF
format.

The object module is combined with the other object modules as input to
the Linker for creating the DLL.

The import library is a standard library file that is combined with other
libraries the Linker searches when resolving external references in the
client. The client may be an application or anothet DLL. The import
library provides information that is stored in the client header that
allows the loader to locate the procedure in the DLL and determine its
address.

Figure 9-1 shows how the Module Definition utility and Linker interact
to produce a DLL and a client file (application run file). Figure 9-2
shows how an application accesses a DLL.

What Is the Module Definition Utility?

Figure 9-1. Creating a DLL for Use by an Application

Linked With
Application

To Access DLL

Module Definition
Source Code

High-Language
Source Code

Application
DLL

597.9-1

9-3

What Is the Module Definition Utility?

9-4

Figure 9-2. Linking an Application to Access a DLL During Execution

Assembly
Source Code

High-Language
Source Code

Applicotion
Library

Application
Run File

Module Definition
Source Code

}. Used To Creote
··· ······· Application DLL

597.9-2

Building DLLs and application run files are one part of the application
development process. To see how the Module Definition utility works in
conjunction with the other building applications utilities, see Figure 1-1
in Section, 1, "Introduction to Building Applications."

What Is the Module Definition Utility?

A Closer Look at Module Definition Command
Output

Upon closer examination of the OMF output files created by the Module
Definition command, you will see how the contents of these files are
used to create a DLL and a client user (see Figure 9-3). For information
about how to build a DLL and a client that calls it, see "Creating a
Dynamic Link Library" in the CTOS Programming Guide.

Figure 9-3. Module Definition Command Output

Printers.def

Library Printers
Exports

Imogen
Postscript
LaserJet

StockSize XXXX

Module Definition Utility

Object Module

Printersdef .obj

Imagen
Postscript
LaserJet

Import Library

Printersimp.Lib

Import OMF Record
For Imagen

Import OMF Record
For Postscript

Import OMF Record
For LaserJet .

597.9-3

9-5

What Is the Module Definition Utility?

Object Module

The object module created contains the name of a DLL and the names of
the procedures in the DLL that are exportable. The object module
shown in Figure 9-3 identifies the following three procedures in the DLL
called Printers:

• Imagen

• PostScript

• LaserJet

These procedure names are identical to public symbols in other object
modules that will be linked with this object module to produce the DLL.
Export procedures are just one type of DLL procedure. DLL code usually
contains procedures that are not exported as well. A DLL, for example,
can be a client of another DLL, and its code can be written such that it
calls other "local" procedures that are not exported.

Import Library

9-6

The object modules in the import library are linked with other modules
to create a DLL client. These objects provide the information the client
uses to access the DLL. All the object modules in this import library are
of the same type: a record in OMF format containing a DLL procedure
name and the corresponding DLL name (see Figure 9-3). Optionally,
the OMF record can contain an ordinal value indicating the position of
the procedure in the DLL. The import library resolves external
references to the DLL procedures called in a client program.

The Module Def"mition command creates an import library only if the
module definition file contains both a Library statement and an Exports
statement. The Library statement allows you to specify the DLL name.
The Exports statement lists the names of the DLL procedures to be
exported (see Figure 9-3). The Printers.def module definition file
contains a library statement specifying the DLL called Printers and an
Exports statement listing the three exportable procedures: Imagen,
Postscript, and LaserJet.

What Is the Module Definition Utility?

The Import library (to the right in Figure 9-3) contains an import OMF
record corresponding to each of the export procedures in the Printers
DLL. Each import record contains one of the DLL procedure names and
the name of the DLL (with the suffix imp.lib appended).

Note: An import record can also contain an ordinal value that
specifies a number unique to a DLL procedure. See the
description of the Exports statement in Section 12, "Module
Definition Statements." Ordinals are supported for
compatibility but are not recommended.

9-7

Section 10
Using the Module Definition Command
Form

Introduction
This section shows how to use the Module Definition command form.
The command fields are described later.

Command Form
To use the Module Definition command to create either an object
module or an import library that lists dynamic link libraries (DLLs),
follow these steps:

1. On the Executive command line, type Module Definition, and
press RETURN.

2. Fill in the command form according to your needs. The parameter
fields are described in the next subsection.

Module Definition
Input file (.def)
[Object module]
[Import library]
[List file]
[Suppress warnings?]
[Suppress ordinals?]
[Upper case?]

3. Press GO.

PMWIN.def
PMWINDef.obj
PMWINimp.lib
PMWINDef.lst
Yes
Yes

Note: For ease in porting programs, it is recommended that you use
the conventions for naming object, list, and library files
described in the next subsection. Doing so will enable you to
distinguish these files from the corresponding files produced by
compilers or assemblers and the Librarian.

10-1

Using the Module Definition Command Form

Parameter Fields

10-2

The parameter fields of the Module Definition command are listed
below. The default values are noted where appropriate.

Input file (.def)

Enter the name of module definition text file. (Guidelines for
writing this text file are given in Section 12, "Module Definition
Statements.") By convention, you add the suffix .def to the source
file root name. If, for example, the source file root name is X, the
input file name is X.def

[Object module]

Default: FileNamedefobj

Enter the name of the object module file to be created.

If you do not enter a name, the suffix (if any) is removed from the
input file name and def.obj is appended. If, for example, the input
file name is X.def, the suffix .def is removed, and def.obj is added to
create the object module file Xdef.obj.

The object file created will contain the data subsequently supplied
to the Linker to create a DLL or an application run file.

[Import library]

Default: None

To create an import library, enter the import library nam.e. The
convention is to replace the input file name suffix (if any) with
imp.lib. If, for example, the input file name is X.def, the suffix .def
is removed, and imp.lib is added to create the import library name
Ximp.lib.

An import library is created only if the module definition text file
contains a Library statement and an Exports statement. (For
details, see "A Closer Look at Module Definition Command Output"
in Se~tion 9, "What Is the Module Definition Utility?")

Using the Module Definition Command Form

[List file]

Default: FileNamedeflst

If you do not enter a name, the suffix (if any) is removed from the
input file name and def 1st is appended. If, for example, the input
file name isX.def, the suffix .defis removed, and def 1st is added to
create the list file Xdef 1st.

The Module Definition command writes any errors it detects to
this file.

You can examine this file in the Executive by using the Type
command and specifying the list file name in the command form.
You can also print it out or edit it. (See the CTOS Executive
Reference Manual for details on the Type command.)

[Suppress warnings?]

Default: No

Enter Yes to suppress warnings.

[Suppress ordinals?]

Default: No

Enter Yes to direct the Module Definition utility to ignore ordinals.

[Upper case?]

Default: No

Enter Yes to convert all export and import names to upper case.
This is useful when porting a case-sensitive Microsoft environment.

10-3

Section 11
Writing a Module Definition File

Introduction
This section provides guidelines for writing a module definition file. It
describes why a module definition file is necessary, general syntax rules
for all module definition files, how to define the client interface to a
dynamic link library (OLL), special considerations for porting programs
to CTOS, and recommendations about segment attributes.

The Need for a Module Definition File
When you create a DLL, you need to decide on the DLL features you
want to use. For example, you need to decide which procedures or data
you want to make available to clients. You also need to decide whether
or not you want them to share the data. You do that (and more) in the
module definition file.

The Module Definition utility creates two output files, an import library
and an object module. The most visible use of a module definition file is
to declare those procedures and/or data that you want to make accessible
to clients of the DLL. The import library contains the names of the
procedures and data that were listed as exported. When an application
is linked, the external references to procedures and data in the DLL are
resolved by entries in the import library, exactly as if it were an object
module library. The object module generated contains information that
the loader uses when it loads the DLL. The object module is linked into
theDLL.

Example 11-1 shows a typical module definition file. The statements
that comprise this type of file are described in detail in Section 12.

11-1

Writing a Module Definition File

Example 11-1. Module Definition File Example

LIBRARY QUEUE INITINSTANCE Queueinitialization

DESCRIPTION 'CTOS QUEUE EXAMPLE'

DATA Nonshared

SEGMENTS
Global Seg Class 'Far data' Shared
Queue_Seg Class 'Far_data' shared

EXPORTS
Queueinitialization
QueueAdd
QueueDelete
QueueStatus

For more information, see "Creating a Dynamic Link Library" in the
CTOS Programming Guide.

General Syntax Rules

11-2

A module definition file contains one or more statements. Each
statement is described in detail in Section 12, "Module Definition
Statements." The following are general rules you must follow when
writing statements:

1. To specify that an application be created, include a Name
statement. To specify that a DLL be created, include a Library
statement. If you use the Name or Library statement, it must
precede all other statements in the module definition file. It is an
error to have both a Name statement and a Library statement in
the same module definition file.

The recommended method is to use a Library statement and an
Exports statement for your DLL. From this information, one import
library is created that you can use to link with each client user. You
use a Name statement only if you are creating a separate module
definition file for each client. (For details, see "Using an Imports
Statement" later in this section.)

Writing a Module Definition File .

Note: In the absence of a Name or Library statement, the Linker
identifies the resulting run file as an application. To be able to
call DLL procedures, the application must be linked with the
import library generated for the DLL.

2. Source-level comments may be included by beginning a line with a
semicolon (;).

3. The Module Definition command is not case sensitive. Enter
keywords in uppercase or lowercase letters (for example, Name,
Library, and Segments). For readability, however, you are
encouraged to conform to the standard conventions for
capitalization. The convention is to begin each new word in the
statement name with a capital letter; for example:

Run Type
HeapSize
Exports

4. All numbers can be entered in decimal, hexadecimal, or octal by
using "C" notation: OxNNN in hexadecimal, ONNN in octal, or
NNN in decimal, where NNN is a valid number for the indicated
base.

5. Place character string sequences inside single or double quotation
marks. Strings have a maximum length of 255 characters.

6. Limit the size of names to 80 characters or less. Longer names are
truncated, and a warning is issued. Names are converted to
uppercase letters when placed in the output object module files.

7. Optionally place names such as SegmentName and EntryName in
single or double quotation marks. Quotation marks are required if
the name conflicts with a module definition keyword, such as Code
or Data.

Defining the Client Interface to a DLL
The client interface to a DLL can be defined in either of two ways: by
creating an import library or by creating a module definition file for each
client that imports DLL procedures.

11-3

Writing a Module Definition File

Using an Import Library

Using an import library is the recommended method of resolving
references to DLL procedures in client programs. It guarantees that the
contents of the client program will match what is in the DLL because the
complete interface to the DLL is automatically generated. All you need
to do is link the client with this import library and the references to DLL
procedures are set up correctly. The same import library can be linked
with each client that will use the DLL procedures.

To create an import library, you must specify an Exports statement and
a Library statement in the Module Definition text file. See Section 12,
"Module Definition Statements."

Using an Imports Statement

11-4

You can also define the client interface to a DLL by using an Imports
statement in the module definition text file.

Note: Although this method is supported for compatibility, it is not
recommended for new programs.

The Imports statement method requires that you create a separate
module definition file for each client that will call the DLL. In the
module definition file, you identify the DLL procedures with an Imports
statement and (optionally) the client name with a Name statement.

You only use the Name statement if the module definition file is for a
specific client application. (If you omit the Name statement, the name of
the resulting run file produced by the Linker is the name provided in the
Run file field of the Linker command.)

In the Imports statement you are required to list the names of all the
DLL procedures the client will import. Errors are generated if the
Linker input is not accurate. (For details on all statements you can
define in a module definition file, see Section 12, "Module Definition
Statements.") Also, each of these module definition files must be
updated every time the DLL interface described in the file is changed.
Otherwise, errors will occur.

Writing a Module Definition File

The Imports library method, in contrast, leaves the responsibility of
creating the client interface up to the computer. The interface is built
directly from the contents of the Exports statement, the very same
statement used to define the DLL in the first place. With this method,
you avoid introducing human error into the linking process and
duplication of error.

Porting Programs to CTOS
The Module Definition command facilitates porting programs from
other platforms. Because the syntax of the module definition input file is
very similar to that used for 08/2, you can run most module definition
files through the CTOS Module Definition utility and the CTOS Linker
without compatibility problems. The parser ignores syntax statements
and parameters having no CTOS meaning.

Some module definition syntax rules are included for ease of porting but
are not supported on CTOS. This means that the syntax rules are
ignored in the CTOS environment (that is, they have no meaning on the
CTOS operating system or are ignored by the CTOS Linker or the CTOS
Module Definition utility). If such syntax rules are present in a module
definition file, they will simply generate warnings. Other syntax rules
are supported but are not necessarily recommended in new programs if
there is a simpler or better solution. The following discussion provides
caveats for each of these types of situations.

Statements Included for Compatibility

The following statements are included for compatibility with ported
programs:

Exe Type
Old
Stub

Including these statements in a module definition file is allowed but they
have no effect. Consult your source documentation for details on these
statements.

11-5

Writing a Module Definition File

CTOS Extensions

The following are CTOS extensions to the Module Definition syntax:

Load Type
Run Type

Parameters Not Recognized

Statement fields not recognized in the CTOS environment are ignored by
the parser (for example, the ResidentName field in the Exports
statement). These fieids are allowed in ported programs, but they have
no effect.

The "Statements" descriptions in Section 12 include caveats for all such
fields.

Segment Attribute Recommendations

11-6

To describe segment attributes, it is recommended you use the Shared
attribute (with the mnemonic values Shared or Nonshared) rather
than the Instance attribute (with the values None, Single, or Multiple).
Combining both attributes is allowed and can be done if you elect to use
both attributes in a Data statement. Such combinations are supported
for compatibility with ported programs. However, to avoid unnecessary ·
complexity when creating new module definition files, observe the
recommendations given in the Data statement description in Section 12.

Section 12
Module Definition Statements

Statements
Each of the syntax statements that you can use in a module definition
file is described in this section. The statements are presented
alphabetically by name. Table 12-1 defines each of the statements
briefly. The following pages explain each statement in more detail.

12-1

Module Definition Statements

Statement

Code

. Data

Description

Exe Type

Exports

HeapSize

Imports

Library

LoadType

12-2

Table 12.1. Module Definition Statements

Description

Defines default attributes for segments of class Code. within the run
file produced by the Linker.

Defines default attributes for data segments within the run file
produced by the Linker.

Inserts a specified string of text into the run file. Uses include
copyright information or source control.

Ignored by the Module Definition command. For much of the same
. functionality it provides, use the.CTOS extension Run Type. Included
for compatibility.

Specifies the names and attributes of the procedures that are made
available (that is, exported) to other run-time modules.

Specifies the size in bytes of the local heap for the run file produced
by the Linker. The heap is placed in the automatic or default data
segment (DGroup).

Provides information to the Linker for resolving external references to
procedures in dynamic link libraries (DLLs). This statement is
supported but not recommended.

Specifies that the run file created by the Linker when it links in this
object module will be-a DLL rather than an application run file. It also
specifies the DLL name and its initialization type.

Specifies information used by the system loader. This information
indicates where the resulting run file can be executed in memory.

continued

Statement

Name

Old

ProtMode

Rea/Mode

Run Type

Segments

StackSlze

Stub

Module Definition Statements

Table 12·1. Module Definition Statements (cont.)

Description

Specifies that the resulting file created by the Linker when it links in
this object module will be an application run file (rather than a DLL).
It also specifies the application name and its type.

Ignored by the Linker. It is provided for ease of portation.

Specifies that the run file produced by the Linker will be run in
protected mode.

Specifies that the run file produced by the Linker will be run in real
mode.

Specifies additional information specific to the run file. The
information includes minimum and maximum operating system
version, minimum instruction set, minimum and maximum data sizes,
and library search specification.

Defines attributes for specific, named code or data segments in the
run file produced by the Linker.

Specifies the stack size of the run file produced by the Linker.

Ignored by the Module Definition command. It is included for ease
of portation.

The following pages contain detailed explanations of the statements
listed above.

12-3

Code

Code
Code [attribute]

Description

12-4

The Code statement defines default attributes for code segments within
the run file or DLL produced by the Linker. (A segment is a code
segment if its class name ends with "CODE".)

The attributes set in a Segment statement override any attribute setting
within a Code statement. A warning is issued if such a conflict is
encountered.

See "Segment Attributes," later in this section, for complete definitions
of segment attributes and details on the effects of combining segment
attributes.

Code

Parameters

attribute

An attribute from the following list of mnemonic values (the default
CTOS value is listed first in each case):

Attribute

Conforming

Discard*

ExecuteOnly

Iopl*

Load*

Movable*

Shared*

Valid Mnemonic Values

Nonconforming, Conforming

Discardable, N ondiscardable

ExecuteRead, ExecuteOnly

Nolopl, lopl

LoadOnCall, Preload

Moveable, Movable, Fixed

Shared, Nonshared

*CTOS ignores this attribute for Code segments.

Example

The attribute field must contain one of the values listed above.
Each attribute may appear at most one time. Order is not
important.

See Table 12-2, "Attribute Definitions," later in this section for a
complete description of each attribute.

Code ExecuteRead

12-5

Data

Data
Data [attribute]

Description

12-6

The Data statement defines default attributes for data segments within
the run file or DLL produced by the Linker.

The attributes set in a Segments statement override any attribute
setting in a Data statement. However, they do not override any
attribute setting in a Segments statement for data segments of any other
class name. ·A warning will be issued if such a conflict is encountered.

Note: The Instance attribute is supported for compatibility with ported
programs.

The Instance attribute fixes the attributes of the automatic data
segment (DGroup). It is also used as a default value for other data
segments. The default for non-DGroup segments can be overridden for a
specific segment with a Segments statement. If there are conflicts
between the instance attribute for a segment set with a Data statement
and the Shared attribute of the Segments statement for a segment data
of class 'Data', a warning is issued, and the conflicting data is ignored.

See "Segment Attributes" later in this section for complete definitions of
segment attributes and details on the effects of combining segment
attributes.

Data

Parameters

Note: It is recommended that you use the Shared attribute rather than
the Instance attribute in new programs. Instance is supported
for compatibility with ported programs.

attribute

An attribute from the following list of mnemonic values (CTOS
values by default are listed first):

Attribute Valid Mnemonic Values

Example

Discard* Discardable, N ondiscardable

Instance Single, Multiple, None

lo pl* Nolopl, lopl

Load* LoadOnCall, Preload

Movable* Moveable, Movable, Fixed

Read Only ReadWrite, ReadOnly

Shared Shared, Nonshared

*This attribute is ignored by virtual memory operating systems for
Data segments.

The attribute field must contain one of the attributes from the above
list. Each attribute may appear at most one time. Order is not
important.

See Table 12-2, "Attribute Definitions," later in this section for a
complete description of each attribute.

Data Shared

12-7

Description

Description
Description 'string'

Description

The Description statement inserts a specified string of text into the run
file. Uses include copyright information or source control.

Parameters

string

The string to be inserted.

Example

Description 'This is my copyright'

12-8

Exe Type

Exe Type
ExeType [0821 Windows I DOS4]

Description

The Module Definition command ignores this statement. For much of
the same functionality it provides, use the CTOS extension RunType.

12-9

Exports

Exports
Exports [exportDefinitions ...]

exportDefinitions

exportEntryName
[=internalName][@ord[ResidentN ame]][p Words][N oData]

Description

12-10

The Exports statement specifies the names and attributes of the
procedures that are made available (that is, exported) to other run time
modules.

The Exports statement is meaningful only for the following cases:

• Procedures within DLLs

• Procedures that are exported to another module (such as "exporting''
a window procedure to Presentation Manager)

• Procedures that execute with 1/0 privilege (not supported on CTOS)

Packaging the Exports information in a library relieves client
applications from having to use an Import statement in a module
definition file to access the exported function. Instead, the name of the
import library can be specified in the [Import library] parameter field of
the Module Definition command form.

Exports

Parameters

exportEntryName

Is a string that defines the exported procedure name as it is known
to other modules. If the exported procedure name is multiply
defined, a warning is returned.

internalName

Is a string that defines the actual name of the export procedure as it
appears within the module itself. If the actual name is not
specified, exportEntryName is assumed to be the internal name as
well. Internal names should not be multiply defined.

ord

Is an optional value supported for compatibility. Ifan ordinal value
is specified, it should not be duplicated in another Export definition.

Note: The ord value is supported for compatibility with ported
programs but is not recommended in new programs.

NoData

Directs the Linker to ignore any GW switch action in Microsoft
languages. For an explanation of GW switch, refer to the
Microsoft C documentation.

Note: CTOS ignores the following fields. For ease of portation, they
can be present in a program but have no effect.

ResidentName

pWords

Example

Exports Display Data
PutNumGlobal
PutNumN onshared
InitDisplay

12-11

Heap Size

HeapSize
HeapSize number maxVal

Description
HeapSize specifies the size in bytes of the local heap for the run file
produced by the Linker. The heap is placed in the automatic or default
data segment (DGroup).

Parameters
number

The size (in bytes) of the local heap.

max Val

Sets the heap size to (64K-DGroup) bytes. max Val directs the
loader to allocate a total of 64K bytes for DGroup.

Example
HeapSize MaxVal

12-12

Imports
Imports [lmportDefinitions ... J

lmportDefinitions

[internalName=] moduleName.entry

Description

Imports

Note: This statement is supported for compatibility with ported
programs. For new programs, it is recommended that you use
an import library, instead. For more information about setting
up an import library, see "Defining the Client Interface to a
DLL" in Section 11.

The Imports statement provides information to the Linker for resolving
external references to procedures in DLLs.

The Imports statement is supported. However, it is recommended that,
with your DLL, you provide an import library containing the information
for resolving externals. To create such a library, specify the name of the
import library in the ilmport library] field of the Module Definition
command form.

Parameters

internalName

The name that the importing module actually uses to call the
procedure. If internalName is not specified, it is assumed to be the
same name as entry. IfinternalName is multiply defined, a warning
will be issued.

moduleName

The name of the DLL that contains the function. If the
moduleName is the same as either your application name specified
in the Name statement, or your library name specified in your
Library statement, a warning is issued for self-referencing.

12-13

Imports

entry

The name of the procedure to be imported from the DLL identified
by moduleName. For compatibility, an ordinal value is also
supported for this parameter. The ordinal value is set in the
Exports statement when the DLL is created. (See the description of
the ord parameter in the Exports statement.) If an ordinal value is
given, intemalName is required.

Example

12-14

Imports DisplayLib.DisplayData
DisplayLib.PutNumGlobal
DisplayLib.PutNumNonshared
DisplayLib.InitDisplay

Library

Library
Library [libraryName] [initialization [initialProcedureName]] [appType]

Description

The Library statement specifies that the run file created by the Linker
when it links in this object module will be a DLL rather than an
application run file. It also specifies the DLL name and its initialization
type.

If the Library statement is present in the module definition file, the
Name statement may not appear.

If neither a Name statement nor a Library statement appears in the
module definition file, the Linker assumes that the resulting run file is
an application run file rather than a DLL.

Parameters

library Name

Any valid file name. It specifies the nondefault name of the DLL as
recognized by CTOS. The entry in the libraryName field should
match the entry in the Linker command field, especially if Export
statements are present in the module definition file input.

initialization

Specifies when the initialization procedure is to be called. The
initialization.procedure may be called either on the first load of the
DLL or for each access to the library. Mnemonic values for this field
are described below:

Mnemonic

InitGlobal

Initlnstance

Meaning

(default) initialProcedureName is called only
on first load of the DLL.

initialProcedureName is called on each
access to the DLL.

Note: The parameters initialProcedureName and appType are CTOS
extensions to module definition syntax.

12-15

Library

initialProcedureName

Specifies the procedure associated with the initial entry point.

appType

Specifies the application run type environment. This parameter has
the same values as appType in the Name statement. The Linker
uses the value of appType to ensure compatibility between object
modules and libraries. Mnemonic values for appType are described
below:

Mnemonic Value Meaning

WindowApi PM and XVT/PM programs

WindowCompat ·Character map,
Advanced video (AVIO),
Some Window API

NotWindowCompat (default) Regular video (VIO)

Dynamic Link Dynamic link library (default)

Example

Library DisplayLib Initlnstance InitDisplay

12-16

LoadType

LoadType
LoadType [loadSpec]

Description
Note: This statement is a CTOS extension to the module definition

syntax.

LoadType specifies information used by the system loader. This
information indicates where the resulting run file can be executed in
memory.

Parameters
loadSpec

Specifies information the loader uses to load and execute the run
file. loadSpec is one of the mnemonic values listed below:

Protected
GDTProtected
HighMemGdtProtected
LowDataGdtProtected
HighMemProtected
CodeSharingServer
HighMemCodeSharingServer

The Linker command form entry takes precedence over the module
definition file. For a definition of each of these values, see Section 3,
"Using the Linker Command Forms."

12-17

Name

Name
Name [appName] [app'.fype]

Description
The Name statement specifies that the resulting file created by the
Linker when it links in this object module will be an application run file
(rather than a DLL). It also specifies the application name and its type.

If the Name statement is present in the module definition file, the
Library statement may not appear. (See the Library statement.) If
neither a_ Name statement nor a Library statement appears in the
module definition file, the Linker assumes that the resulting file is an
application run file rather than a DLL.

Note: If the resulting application run file calls DLL procedures, its
interface to the DLL must be resolved. It is recommended that
the application be linked with the Imports library created with
the DLL. (For details, see "Defining the Client Interface to a
DLL" in Section 11.)

Parameters

12-18

Note: CTOS ignores the appName field. It is provided for ease of
portation. CTOS recognizes the application name specified in
the Linker command.

appName

Any valid file name.

Name

appType

Specifies the application run type environment. This parameter has
the same values as appType in the Library statement. The Linker
uses the value of appType to ensure compatibility between object
modules and libraries. Mnemonic values for appType are described
below:

Mnemonic Value

WindowApi

WindowCompat

N otwindowcompat

Meaning

PM and XVT/PM programs

Character map,
Advanced video (AVIO),
Some Window API

(default) Regular video (VIO)

Note: For PM and XVTl PM programs, you must specify the value
WindowApi for your program to run correctly.

Example

Name MyApp WindowCompat

12-19

Old

Old
Old 'fileNarne'

Description
The Linker ignores this statement. It is provided for ease of portation.

12-20

ProtMode

ProtMode
ProtMode

Description

The ProtMode statement specifies that the run file produced by the
Linker will run in protected mode.

Parameters

This statement has no parameters.

Example

ProtMode

12-21

Real Mode

Real Mode
RealMode

Description

The RealMode statement specifies that the run file produced by the
Linker will run in real mode.

Parameters

This statement has no parameters.

Example

RealMode

12-22

Run Type

Run Type
RunType [runSpec]

Description

The RunType statement specifies additional information specific to the
run file. The information includes minimum and maximum operating
system version, minimum instruction set, minimum and maximum data
sizes, and library search specification.

Note: This statement is a CTOS extension to the module definition
syntax. It should be used in place of the ExeType statement in
programs to be run on CTOS operating systems.

12-23

Run Type

Parameters

runSpec

Is one of the items described below. Each item contains an
identifying string (for example, Priority) followed by a specific value
(for example, 128).

Item

Priority <number>

Minlnstruction <number>

MinMathlnstruction <number>

MinOSVersion <version*>

MaxOSVersion <version*>

Description

Run-time priority of run file.
Values are in the range 0 to
255 (default: 128)

Minimum required processor.
Values are 80186, 80286,
80386 (default: 80186)

Minimum required math
processor. Values are 80287, .
80387 (default: 80287)

Minimum required operating
system. (default: 0)

Maximum required operating
system. (default: 0)

*The version is the operating system release/revision number. The
release is a major release number. Values are in the range 0 to 255.
The revision is a minor revision number. Values are in the range
0 to 255.

Example

12-24

RunType Priority 80
Minlnstruction 80386

Segments
Segments [SegmentDefinitions ...]

[SegmentDefinitions ...]

segmentName [Class 'className'] [attribute ...]

Description

Segments

The Segments statement defines attributes for specific, named code or
data segments in the run file produced by the Linker.

Parameters
segmentName

Specifies the name of a segment.

className

Specifies the segment class. If class is not specified, class 'CODE' is
assumed. Segments of class 'DATA' are classed with the automatic
data segment (DGroup) but do not need to be part of it if the sharing
attributes do not match and the segment is not grouped into
DGroup. Multiply defined segments of the same segment name and
same class name are not allowed.

FAR_DATA is the class that the Microsoft C compiler assigns to all
non-DGroup (i.e., "far") data segments. DGroup itself has a class
name of DATA.

12-25

Segments

attribute

An attribute from the following list of mnemonic values (the default
CTOS value is listed first in each case):

Attribute Valid Mnemonic Values

Conforming Nonconforming, Conforming

Discard* Discardable, N ondiscardable

ExecuteOnly ExecuteRead, ExecuteOnly

Iopl* Nolopl, Iopl

Load* LoadOnCall, Preload

Movable* Moveable, Movable, Fixed

Read Only ReadWrite, ReadOnly

Shared** Shared, Nonshared

*CTOS ignores this attribute.

**CTOS ignores this attribute for ReadOnly segments. (They are
always shared.)

The attribute field must contain one of the attributes listed. Each
attribute may appear at most one time. Order is not important.

See Table 12-2, "Attribute Definitions," later in this section for a
complete description of each attribute.

Example

Segments 'Nonshared' Class 'Nonshared' Nonshared

12-26

StackSlze

StackSize
StackSize number

Description
The StackSize statement specifies the stack size of the run file produced
by the Linker.

Parameters

number

The size (in bytes) of the stack. This value must be an even number.

Example
StackSize 1024

12-27

Stub

Stub
Stub 'fileName'

Description

12-28

The Module Definition command ignores this statement. It is included
for ease of portation.

Module Definition Statements

Segment Attributes
The Segments statement defines attributes for specific, named code, or
data segments in the run file produced by the Linker. This subsection
describes each of the segment attributes that you can specify and
summarizes how the attributes are used in each attribute's segment
class. For more information on the Segments statement, see the
description of that statement earlier in this section.

Following are two tables: the first table presents the attribute
definitions, and the second table shows the attribute default values for
virtual memory operating systems.

12-29

Module Definition Statements

12-30

Attribute

Conforming

Discard

ExecuteOnly

Instance

lopl

Load

Movable.

ReadOnly

Shared

Table 12-2. Attribute Definitions

Definition

Refers to 286 conforming. Typically used for device drivers.

Determines whether the operating system can swap this segment out
to disk. Ignored by virtual memory operating systems. All statements
may be swapped out when using virtual memory operating systems.

Determines whether code can be read-only or executed.

Applies only to the automatic data segment, which is a physical
segment typically called DGroup. DGroup is the physical segment
that contains the local stack and heap of the application.
SegmentType determines the sharing attributes of DGroup. It may
specify that DGroup be copied (not shared) for each instance of the
run file. Alternatively, it may specify that DGroup not be copied
(shared or global) for each instance of the run file.

Determines whether or not a segment has 1/0 privilege. If a segment
has 1/0 privilege, it can access the hardware directly.

Determines whether the segment is loaded when execution of the
module starts, or whether the segment is loaded when the module is
accessed.

Determines whether the segment can be moved around in memory.
Ignored by virtual memory operating systems. All segments are
movable in virtual memory operating systems.

Determines whether the segment can be read-only or read from and
written to.

Determines whether instances of a run file can share a ReadWrite
data segment. If not shared, each segment must be loaded
separately for each process.

Module Definition Statements

Table 12-3. Segment Attribute Default Values

Segment CTOSlll
Attribute Class Default

Conforming Code Nonconforming
Data Not applicable
other Nonconforming

Discard Code Ignored
Data Ignored
other Ignored

ExecuteOnly Code ExecuteRead
Data Not applicable
other Not applicable

Instance* Code Not applicable
Data (DGroup dll) Single (Shared)
Data (DGroup app) Single (Shared)
other Not applicable

lopl Code Ignored
Data Ignored
other Ignored

Load Code LoadOnCall
Data LoadOnCall
other LoadOnCall

Movable Code Ignored
Data Ignored
other Ignored

Read Only Code ReadOnly (always)
Data ReadWrite
other ReadWrite

Shared Code Shared (always)
Data Shared
Data ReadOnly Shared (always)
other Shared
other ReadOnly Shared (always)

* Within a Data statement in a module definition file, it is recommended you use the attribute
Shared.

12-31

Module Definition Statements

Instance and Shared Attribute Field Effects
Although the Instance field is supported for compatibility, it is
recommended that you use the Shared field for the Data statement
attribute parameter in new programs. (See the description of the Data
statement for segments in "Statements" earlier in this section.)

Using Only the Shared Field

Table 12-4 shows all segment types that can be generated by using only
the Shared attribute.

Table 12-4. Shared Field Effects

Shared Field 1

cnone>3

Shared

Nonshared

Automatic Data
Segment

Shared

Shared

Nonshared

1. Cannot be overridden with a Segments statement.

2. Can be overridden with a Segments statement.

3. Neither 'Shared' nor 'Nonshared' is specified.

Other Segments2

Shared

Shared

Nonshared

Using Both the Shared and Instance Fields

12-32

Although using both the Shared and Instance field is supported for
compatibility, doing so is not recommended. It leads to redundancy and
confuses the descriptions of segment types in your program. Table 12-5
shows all the combinations of segment types that can be generated by
using both of these fields.

Module Definition Statements

Table.12-5. Instance and Shared Field Effects

Automatic Data
Instance Field Shared Field1 Segment Other Segments2

<None>3 <none> 4 Shared Shared

<None> Shared Shared Shared

<None> Non shared Nonshared 5 Nonshared

Single <none> Shared Shared

Single Shared Shared Shared

Single Non shared Shared Nonshared

Multiple en one> Nonshared Nonshared 6

Multiple Shared Nonshared Shared

Multiple Non shared Nonshared Nonshared

1. Cannot be overridden with a Segments s.tatement.

2. Can be overridden with a Segments statement.

3. Neither 'Single' nor 'Multiple' is specified as a mnemonic value. 'None' is a valid mnemonic
value for the Instance field.

4. Neither 'Shared' nor 'Nonshared' is specified.

5. Because the Instance attribute is not specified, the Shared attribute takes effect.

6. Because the Shared attribute is not specified, the Instance attribute takes effect.

12-33

Section 13
What Is the Resource Librarian?

Introduction
The Resource Librarian allows you to maintain a program and its
associated data (or resources) in the same run file. This arrangement
makes it easy to correctly maintain corresponding versions of program
and data files because the information is contained together in one file.
For example, you can bind the correct version of a symbol file or a
message file together in its corresponding run file.

13-1

What Is the Resource Librarian?

13-2

Figure 13-1 shows how the Resource Librarian adds resources to a run
file.

Figure 13-1. Adding Resources to a CTOS Run File

Application
Run File

Resource
Source Code

Application
Run File

Resource
File

597.13-1

Adding resources to a run file is one part of the application development
process. To see how the Resource Librarian works in conjunction with
the other building applications utilities, see Figure 1-1 in Section 1,
"Introduction to Building Applications."

If you are a Presentation Manager or XVT programmer, you need to bind
resources into CTOS run files or dynamic link libraries (DLLs). The first
step in this process is to use Presentation Manager tools to create the
required resources. The next step is to use the Resource Librarian to
bind the resources to a run file or DLL.

The Resource Librarian can manipulate both CTOS and Presentation
Manager resources.

What Is the Resource Librarian?

The Resource Librarian supports Version 6 run files and Version 8 run
files. The Resource Librarian does not support Version 4 run files.

What Are Resources?
On CTOS, the term resource has historically meant anything required by
an application to carry out its normal execution. Memory, for example, is
a typical resource that an application requests from the memory
management service.

In the context of the Resource Librarian, resources are simply blocks of
data. Using the Resource Librarian, you can bind these resources to an
executable run file. As an example, font data included in a run file for
printing documents is a resource.

An application can directly access resources in a run file using the
resource operations available in the standard operating system libraries.
For a detailed discussion on how to use the resource operations, see
"Utility Operations" in the CTOS Operating System Concepts Manual.

What the Resource Librarian Does
Basically, the functions performed by the Resource Librarian are
analagous to those performed by the "regular" Librarian. The Resource
Librarian is particularly useful for creating and maintaining sets of
resources within run files. It can be used to add localized (translated)
resources to run files as well.

Using the Resource Librarian, you can:

• Add one or more resources to a run file or a DLL. Using as an input
source any file that stores resources (a run file, binary resource file,
or data file), you can add (copy) one or more resources to an output
target run file, DLL, or binary resource file.

• Extract (copy) a specified resource from a run file or a binary
resource file and copy it to a data file. (Remember, a data file is
considered by the Librarian as a single resource.) Extracting does
not modify the run file. You can then examine or modify the
resource in the data file, and then if needed, add it back to the run
file.

13-3

What Is the Resource Librarian?

13-4

• Delete resources from a run file or binary resource file.

• List the resources included in the resource set of a run file.

Figure 13-2 shows the types of tasks you can perform by using the
Resource Librarian.

Figure 13-2. Tasks Performed by the Resource Librarian

Source File Target File

File Types: File Types:
Binary Resource file [Resources to odd] Binary Resource file
Run file

This field copies one or more
DLL file resources from the source file
Doto file to the target file.

Source File

File Types:
[Resource to extract] Binary Resource file

-""
Run file

This field copies one resource
DLL file

from the source file to the
target file.

Source File

File Types:
Binary Resource file 1--[_R_e_so_u_r_c_es_to_de_l_e_te_] _____ _
Run file
DLL file

Source File

File.Types:
Binary Resource file
Run file
DLL file

This field deletes one or more
resources from the .source file.

[Resource list file]

This field lists the source file
resources in the target file.

Run file
DLL file

Target File

File Type:
Doto file

Target File

File Type:
List file

597.13-2

What Is the Resource Librarian?

How Resources Are Stored
Resources can be stored in four types of files that can be manipulated by
the Resource Librarian:

• Run file

• DLL (a type of run file)

• Binary resource file

• Data file

Using the Resource Librarian, you can move resources back and forth
between these different types of files.

The files used in the Resource Librarian and how they store resources
are summarized in Table 13-1.

13-5

What Is the Resource Librarian?

13-6

File Type Suffix

Run
file

DLL
file

Binary
Resource
file

Data
file

.run

.di/

.res

.bin
·.sym
.cfg
.txt
etc.

Table 13-1. Resource Librarian Fiie Definitions

Description

This file type must be a Version 6 run file created by a Version 12.0
or later version of the CTOS Linker or a Version 8 run file. It is
created in run file format.

A run file can contain multiple resources.

A DLL file is created by the CTOS Linker in Version 8 run file
format.

A DLL file can contain multiple resources.

This file type is created by a Resource Compiler or any other
resource tool, such as the Presentation Manager Dialog Box Editor.

A binary resource file can contain multiple resources.

If a file has a .res extension, it is assumed by the Resource
Librarian that each resource in the file has the following format.
Only binary resource files with this format are supported.

TYPE NAME FLAGS SIZE BYTES

TYPE Consists of a first byte (FFh) followed by an integer (2
bytes), which is an ordinal.

NAME Consists of a first byte (FFh) followed by an integer (2
bytes), which is an ordinal. There are no predefined
ordinals. ·

FLAGS An unsigned value (2 bytes), which contains the
memory manager flags.

SIZE A long value (4 bytes) showing how many bits are
contained in the resource following.

BYTES The stream of bytes that comprise the resource.

This file type can be either a binary or text file and can be created
by any application. It does not.have a specified format and can
have any file extension. For example, the Linker produces a
symbol (.sym) file; the Create Message File utility produces
msg.bin files; specific resource editors, such as the Icon Editor
utility, also produce data files.

A data file always comprises a single resource.

What Is the Resource Librarian?

How the Resource Librarian Identifies
Resources

The Resource Librarian identifies a resource by resource type and
resource ID using the following syntax:

ResourceType.ID.

The resource type and resource ID are numbers assigned to resources
within applications. The type code identifies a general class and the ID
number identifies an instance within that class. Default CTOS resource
type and ID numbers are listed in Appendix K of the CTOS Procedural
Interface Reference Manual. You may need to check your
application-specific documentation for other resource type and ID
numbers.

Resource type and ID numbers can be associated for memory purposes
with names. This name/number association is done within the Resource
Librarian configuration file (described in more detail in Section 15,
"Using the Resource Librarian Configuration File"). For example, the
symbol file associated with the Debugger is a resource listed as follows in
the Resource Librarian configuration file:

:ResourceType: Debugger 20000

:Resource ID: SymbolFile 1

This resource can be recognized by the Resource Librarian either by
number (20000.1) or by name (Debugger.Symbolfile). Note that if you
want the Resource Librarian to recognize the names of resources, you
must list the name of the Resource Librarian configuration file on the
{Resource config file] field of the Resource Librarian command form, as
described in Section 14.

13-7

Section 14
Using the Resource Librarian Command
Form

Introduction
This section describes how to use the Resource Librarian command form.
The parameters of the command are described later in this section.

The last part of this section includes examples of using the command
form to specify adding, extracting, and deleting resources.

Command Form
To use the Resource Librarian to manipulate resources within a given
resource set, follow these steps:

1. On the Executive command line, type Resource Librarian, and
press RETURN.

2. Fill in the command form according to your needs. The parameter
fields are described in the next subsection.

Resource Librarian
Run or Res file
[Resources to add]
[Resources to delete]
[Resource to extract]
[Resource config file]
[Resource list file]
[Suppress confirmation?]

3. Press GO.

14-1

Using the Resource Librarian Command Form

By specifying the appropriate fields, you can request multiple operations
in one execution of the Resource Librarian. Resources are deleted,
added, and extracted, in that order. Specify a file name in the [Resource
list file] field for a list ofresources in the run file after all operations are
completed.

If you have revised a resource and want to reinsert it, it is most efficient
to use the [Resources to add] field and allow the Resource Librarian to
overwrite the preexisting resource of the same name. Deleting the old
resource and adding the new one takes approximately twice as long.

Note that if you want the Resource Librarian to recognize the names of·
resources, you must list the name of the Resource Librarian
configuration file in the [Resource config file] field of the Resource
Librarian command form. ·

Parameter Fields

14-2

The parameter fields of the Resource Librarian command are
described below.

Run or Res file

Enter the name of either a binary resource file (.res file) or a run file
(including dynamic link library (DLL) files). The run file can be
either a Version 6 run file created by a 12.0 or later version of the
Linker or a Version 8 run file. You must complete the Run or Res
file field.

Resources contained in both Version 6 and Version 8 run files can be
shared among applications. Resources contained in a Version 8 run
file are also treated as virtual storage.

[Resources to add}

Default: None

Enter a list of resource specifications, separated by spaces, that you
want to add to the run file. The specified resources are copied from
the specified source file (a run file , binary resource file, or data file)
in the [Resources to Add] field and inserted into the target file (a run
file or binary resource file) specified on the Run or Res file line. A
copy of the original target file is made under target-old.

Using the Resource Librarian Command Form

You are prompted for confirmation if a resource that you want to
add has the same resource type code and ID as a resource already in
the target file. If you confirm the replacement, the resource in the
specified resource file replaces the resource of the same type code
and ID in the target file.

Note: The syntax for adding resources shown below differs according
to the type of file where the resources are stored. The syntax for
adding from a data file is different from adding from a binary
resource or a run file. (For an explanation of the different types
of files, see "How the Resource Librarian Identifies Resources" in
Section 13.)

Syntax for adding a single resource from a data file:

ResourceType.ID I DataFile ...

Example:

MENU.DESKTOP I ExecMenu.Res

Syntax for adding one or more resources from a run file:

RunFile(ResourceType.ID) ...

or

RunFile(Resource Wildcard) ...

Examples:

PmExec.run(3.1) or PmExec.run(MENU.Desktop)
PmExec.run(*.*)

Syntax for adding one or more resources from a binary resource
(.res) file:

BinaryResourceFile(ResourceType.ID) ...

or

BinaryResourceFile(Resource Wildcard) ...

Examples:

ExecMenu.Res(MENU.Desktop)
ExecMenu.Res(*. *)

(In this field, wildcards are not visibly expanded; the Resource
Librarian does the expansion instead.)

14-3

Using the Resource Librarian Command Form

14-4

[Resources to delete]

Default: None

Enter a list of resources that you want to delete from the run file.

Syntax:

ResourceType.ID ...

or

ResourceType. Wildcard

or

Wildcard. Wildcard

Examples:

MENU.DESKTOP(3.1)
MENU.*

**
(In this field wildcards are not visibly expanded on the CTOS
command line; the Resource Librarian does the expansion instead.)

[Resources to extract]

Default: None

Syntax:

ResourceType.ID I Datafile

Example:

3.1 /X.res

Enter a ResourceType.ID I Datafile specification in the [Resources to
extract] field. The Resource Librarian creates the specified Datafile
and initializes it with the ResourceType.ID that is extracted from
the binary resource file or run file you specify on the Run or Res file
line. Extracting does not modify the run file or binary resource file.

Note that this field is used to extract (copy) a resource from a run
file or binary resource file and copy it to a data file only, not to
create another resource set.

Using the Resource Librarian Command Form

(In this field wildcards are not visibly expanded on the CTOS
Executive command line; the Resource Librarian does the expansion
instead.)

[Resource config file]

Default: ResourceLibConfig.sys

Enter the name of the default configuration file,
ResourceLibConfig.sys, or the name of a configuration file you have
created.

To specify resources by symbolic names instead of by numbers,
include the name of the Resource Librarian configuration file that
contains this information. Doing this also causes the Resource
Librarian output to use the same symbolic names to identify
resources.

If you specify a Resource Librarian configuration file as shown
below, processing messages will display resource names instead of
numbers.

Resource Librarian
Run or Res file
[Resources to add]
[Resources to delete]
[Resource to extract]
[Resource config file]
[Resource list file]
[Suppress confirmation?]

Test.run
Source.run(*.*)

ResourceLibConfig.sys
Test.toe

For more information, see Section 15, "Using the Resource Librarian
Configuration File."

14-5

Using the Resource Librarian Command Form

14-6

[Resource list file]

Default: None

Enter the name of a file that will list the resources contained in the
file specified in the Run or Res file field. The Resource Librarian
writes to this file a list of resource types and IDs, as well as the
length in bytes of each resource contained in the run file.

If you want the list file to show the names in addition to the
numbers of the resources, you need to specify a configuration file in
the [Resource config file] field as shown in the following example.

Resource Librarian
Run or Res file
[Resources to add]
[Resources to delete)
[Resource to extract]
[Resource conf ig file)
[Resource list file)
[Suppress confirmation?]

[Suppress confirmation?]

Default: No

Test.run

ResourceLibConfig.sys
Test.toe

Enter Yes if you do not want prompts for confirmation when
replacing existing resources (with the {Resources to Add] field). If
you enter No or leave this field blank, the Resource Librarian enters
prompts for confirmation.

Using the Resource Librarian Command Form

Examples of Adding Resources
Use the [Resources to add] field to copy resources from one file to
another. Using as a source any file that stores resources (a run file, a
binary resource file, or a data file), you can add (copy) one or more
resources to a target run file.

Note that the syntax you use differs depending on the type of file you are
adding (copying) from. Specifically, you need to use a slash (/) so that the
Resource Librarian can recognize a data file.

Note that .res or .dll can be substituted for .run in the following examples
of adding resources.

Example 1: Adding a Data File

A data file is considered by the Resource Librarian to comprise a single
resource.

To add the data file Test.sym (the source file), which is comprised of
resource Debug.Symbolfile, to the resource portion of the run file Test.run
(the target file), fill in the command form as follows:

Resource Librarian
Run or Res file
[Resources to add)
[Resources to delete]
[Resource to extract]
[Resource config file]
[Resource list file]
[Suppress confirmation?]

Test.run
Debug.SymbolFile/Test.syrn

ResourceLibConfig.sys

14-7

Using the Resource Librarian Command Form

Example 2: Adding a Single Resource From a Run File

To add resource KbdTransTable.4 (Type is KbdTranstable; ID is 4)
within the file Source.run to the resource portion of Target.run, fill in the
command form as follows:

Resource Librarian
Run or Res file
[Resources to add]
[Resources to delete]
[Resource to extract]
[Resource config file]
[Resource list file]
[Suppress confirmation?]

Target.run
Source.run(KbdTransTable.4)

ResourceLibConfig.sys

Example 3: Adding Multiple Resources From a Run File

14-8

To add all resources of type KbdTransTable within the file Source.run to
the resource portion of Target.run, fill in the command form as follows:

Resource Librarian
Run or Res file
[Resources to add]
[Resources to delete]
[Resource to extract]
[Resource config file]
[Resource list file]
[Suppress confirmation?]

Target.run
Source.run(KbdTransTable.*)

ResourceLibConfig.sys

Using the Resource Librarian Command Form

Examples of Deleting Resources
Use the [Resources to delete] field to delete resources from a run file or a
binary resource file.

Example 1: Deleting a Single Resource From a Run File

Note that Target.res or Target.dll can be substituted for Target.run in the
following examples of deleting resources.

To delete the resource Debugger.SymbolFile within the run file
Target.run, fill in the command form as follows:

Resource Librarian
Run or Res file
[Resources to add]
[Resources to delete]
[Resource to extract]
[Resource config file]
[Resource list file]
[Suppress confirmation?]

Target.run

Debugger.SymbolFile

ResourceLibConfig.sys

Example 2: Deleting Multiple Resources From a Run File

To delete all resources of type KbdTransTable within the run file
Target.run, fill in the command form as follows:

Resource Librarian
Run or Res file
[Resources to add]
[Resources to delete]
[Resource to extract]
[Resource config file)
[Resource list file)
[Suppress confirmation?]

Target.run

KbdTransTable.*

ResourceLibConfig.sys

14-9

Using the Resource Librarian Command Form

Example of Extracting a· Resource
Use the [Resources to extract] field to extract (copy) a resource from a run
file or a binary resource file and place it in a data file.

Note: Extracting does not modify the source file.

Example: Extracting a Resource From a Run File

The following example extracts the resource KbdTransTable.4 from the
run file Source.run. The resource contents are copied to a new data file
Target.bin which is created by the Resource Librarian. The file
Source.run is not modified.

Note that Source.res or Source.dll can be substituted for Source.run in
the following exa~ple.

Res.ource Librarian
Run or Res file
[Resources to add]
[Resources to delete]
[Resource to extract]
[Resource config file]
[Resource list file]
[Suppress confirmation?]

Source.run

KbdTransTable.4/Target.bin
ResourceLibConfig.sys

Section 15
Using the Resource Librarian
Configuration File

Introduction
The Resource Librarian configuration file is used to associate resource
types and ID numbers with names. (If you have not already done so, see
"How the Resource Librarian Identifies Resources" in Section 13 for more
information about resource types and IDs.) It also provides a means by
which you can look up resources in the event that you should forget the
name or number.

The default configuration file distributed with the software is
[Sys]<Sys>ResourceLibConfig.sys; however, you can create your own
configuration file.

Resource Librarian Configuration File Format
The resource operations used by the Resource Librarian recognize only
numbers; the configuration file provides a means of assigning more easily
remembered names to these numbers. Specifying the name of a resource
configuration file on the [Resource config file] line of the Resource
Librarian command form instructs the Resource Librarian to display and
use resource names instead of resource numbers when reporting about
its operations (add, extract, and delete).

If you specify a Resource Librarian configuration file when requesting
that the Resource Librarian produce a list file, the list file will list
resource names as well as numbers.

The Resource Librarian configuration file uses the standard
configuration file format:

:Keyword:Value

15-1

Using the Resource Librarian Configuration File

There are two valid entries:

• Resource Type

• Resource ID

Each identifier must define only one number. Any resource ID is
assumed to follow its corresponding resource type code. Both must be
specified for each resource to uniquely identify it for the Resource
Librarian.

Each entry contains a mnemonic name and a decimal value separated by
a space. The Resource Librarian uses the decimal value to identify the
resource. The mnemonic values can help you; you can enter them in the
Resource Librarian command form instead of entering the decimal
values. See "How the Resource Librarian Identifies Resources" in
Section 13 for more information.

Example Resource Librarian Configuration File

15-2

The following example shows a portion of the default configuration file
ResourceLibConfig.sys.

:ResourceType:Debugger 20000
: Resource ID: SymbolFile 1
:ResourceType:KbdTransData 20001
:ResourceID: TrKlUS 04 04h
:ResourceID: TrSGlOlK 33 2lh
:ResourceID: TrSG102K 101 65h
:ResourceID: TrK4 144 90h
:ResourceID: TrOEM23 176 BOhFFh

:ResourceType:KbdEmulData 20002
:Resource!D: EmKlUS 04 04h
: Resource ID: EmSGlOlK 33 2lh
:ResourceID: EmSG102K 101 65h
:ResourceID: EmK4 144 90h

Using the Resource Librarian Configuration File

For a complete listing of default CTOS resource types and IDs, see
Appendix Kin the CTOS Procedural Interface Reference Manual.

(For application specific resource type and resource ID numbers, you
may need to check your application documentation.)

15-3

Appendix A
Status Codes

Where to Find Help
When the results of a command are not what you expect, refer to the
description of that command earlier in this manual for detailed
information about the command and its parameter values.

When error messages occur, see the tables of error messages and
explanations. They contain the following:

• Two tables of Linker/Librarian error messages. Table A-1 contains
an alphabetized list of error messages that does not have status
codes assigned. Table A-2 contains a numerical list of
Linker/Librarian error messages with status code identification.

• Table A-3 contains Module Definition utility error messages.

• Table A-4 contains Resource Librarian error messages.

Linker and Librarian Messages
Linker and Librarian messages are similar because the structure and
functions of the two programs are related. Throughout this appendix,
references to Linker messages and solutions are also applicable to the
Librarian unless an exception is noted.

If an error occurs during linking, the following message appears:

There were x errors detected.

The map file includes descriptions of the errors.

A-1

Appendix A

Levels of Linker Errors

The Linker can encounter three levels of problems:

• Violation of a Linker convention that still allows the Linker to
produce a valid run file (program results can be affected)

• Violation of a Linker convention that produces a run file that you
cannot run (the system crashes if you try to run the file)

• Fatal errors that cause the Linker to abort the linking process (the
Linker does not produce a run file)

The Linker cannot always provide a complete diagnosis for each problem
because it may not have enough information. For some of the complex
problems, you must examine your program using clues from the Linker
messages.

Linker Compatibility

The Linker is compatible with only certain versions of Ctos.lib, the
compilers, and the Assembler. If you use an incompatible compiler,
Assembler, or Ctos.lib, errors can occur. See the Development Utilities
Software Release Announcement for details.

Causes of Linker Errors

A-2

Linker messages result from:

• Linker command input problems, such as erroneous file names or a
missing entry from a required field

These problems prevent the Linker from producing a run file.

• Capacity limitations, such as too many public symbols or not enough
memory

These limitations prevent the Linker from producing a run file.

Note: If the problem is a lack of memory, try running the program in q
larger partition or on a workstation with more memory.

·Appendix A

• Relocation or overlay problems

If you have a relocation error, you should try rearranging the input
modules listed in the Linker command form.

If the error persists, you must determine the program's segment size
requirement and reduce it. You can use the Linker map file
(filename.map) to determine segment lengths. You can allocate
large buffers to decrease the data segment memory requirements.

• 1/0 problems, such as an inability to create, read, write, or perform
other operations on disk files

These problems prevent the Linker from producing a run file.

A CTOS error code accompanies most 1/0 problems; refer to
Table A-2, or refer to your CTOS Status Codes Reference Manual.

• Compiler/Assembler problems, such as using the latest version of
the Linker on object modules produced by earlier versions of a
compiler or the Assembler.

Linker/Librarian Error Messages
This section contains two tables of Linker/Librarian error messages.

• Table A-1 is a list of messages that do not have status code
identification. The table provides an explanation/action for each
message.

• Table A-2 contains a numerical list of messages that have status
code identification. These messages also appear in your CTOS
Status Codes Reference Manual.

A-3

Appendix A

'

A-4

Message

Attribute for segment
of Name
<segment name>
Class
<segment class>

conflicts with other
segments within its
group.

Bad libraries
parameter. Right
paren expected after
library reference

Bad max parameter

Bad numeric
parameter

Bad OS version
parameter

Bad yes/no
parameter

Cannot prohibit OS
Allocation and use
High C small or
compact model.

Table A-1. Linker Messages

Explanation/Action

Other segments ot this group do not have the same
attributes. Attributes are specified in the module definition
file. See Section 12, "Module Definition Statements," tor a
list of segment attributes. You change the attributes in the
module definition tile. Groups may be set by your compiler
or in a First.asm module. See "Arranging Object Module
Components" in Section 5, "How the Linker Works.·

Invalid library reference on library parameter line input.

You entered a minimum higher than a maximum tor the
maximum array size, or the maximum data size in the Link,
Link V6 or Link VS command form fields.

You entered a nonnumeric character in a Unk, Link V6 or
Link VS command form field that requires a numeric value.

Invalid operating system version parameter on the Run file
mode parameter line to specify conditional run file mode.

You entered something other than yes or no in a Link,
Link V6 or Li.nk VS command form field that requires a
yes/no response.

Setting DsAllocation to 'NO' is incompatible with the object
modules you are using.

continued

Message

Code reader
confused at
procedure start.
Referenced in <object
module name> near
module offset xxxx.
OR
Code reader found
illegal instruction
<instruction>.
Referenced in <object
module name> near
module offset xxxx.

Code segment of
Name <Segment
name> Class
<segment class>
conflicts with other
segments within its
group.

Data segment of
Name <segment
name> Class
<segment class>
conflicts with other
segments within its
group.

DGroup is maximum
value; DSAllocation
turned off;
DSAllocation
segment ordering
maintained.
(Warning)

Appendix A

Table A-1. Linker Messages (cont.)

Explanation/Action

The code reader is looking for IDIV instructions. If this
error occurs, all instances of IDIV instructions may not be
identified. Not identifying these instructions will not affect
your resulting run tile unless you are running on an 80186
processor that does not correctly process IDIV instructions.

The other segments of this group are not code segments.
Groups may be set by your compiler or in a First.asm
module.

The other segments of this group are not data segments.
Groups may be set by your compiler or in a First.asm
module.

A segment of maximum length cannot expand any more,
so DSAllocation (an expand down selector) is not required,

continued

A-5

Appendix A

A-6

Message

DGroup too large; it is
xxxh bytes long.

DGroup too large; it is
XXXXh bytes.

Duplicate exported
ordinal XXX.

Duplicate segment
attribute directives
ignored (default data
segment).
Duplicate segment
attribute directives
ignored (default code
segment).
Duplicate segment
attribute directives
ignored (Segment of
name <segment
name> class
<segment class>).

Export <exported
procedure name>
specified in module
<module name>.
Procedure
exportation is
INVALID for non dll.

Table A-1. Linker Messages (cont.)

Explanation/ Action

DGroup must be less than 65535.

Note: If DGroup is maximized by the Unker, its maximum
size is 65520. This is for backwards compatibility
with previous versions of the operating system.

Offsets can only be 64K bytes; the group to which this
segment belongs will cause an offset greater than
64K bytes.

Ordinal xxxwas already specified.

Segment attribute directives have been processed more
than once for this segment and they differ.

Procedure is specified as an Export either in the module
definition object module or in the object module where it is
public.

continued

Message

IDIV instruct in
overlay

Illegal segment
address reference
type 1

Appendix A

Table A·1. Linker Messages (cont.)

Explanation/ Action

When a Pascal or FORTRAN program contains code that
results in an IDIV (integer division) instruction within an
overlay, this error results. It indicates a real problem only if
you plan to run the resulting run file on one of the affected
systems (one which uses an early production 80186
processor chip). Move the code containing IDIV into the
resident or ensure that all integer-division operands are
positive. The alternative is to avoid using the DIV operator
in Pascal, or an l/J construction in FORTRAN (where I
and J are integers), unless you are sure that all operands
are positive.

The Linker has not created a stub in the overlay stub array
data structure for a procedure you called in an overlay
(normally this is an Assembly program problem). If you are
trying to link an Assembly program:

• If the message "Warning proc near xxxxx in xxxxx
doesn't follow CALURET conventions" appeared during
the link, examine that location in your Assembly
program.

• If the message did not appear, examine your entire
Assembly program for call/return violations. The
location cited with the message indicates where the call
occurred. You can use this location to refer to a
compilation listing to see what was called.

Note: Some run-time library modules in noncurrent
versions of high-level language compilers generate
code that violates the Linker call/return
conventions. Either place such modules and the
calls to them in the resident portion of your code or
upgrade your compiler to the current level.

continued

A-7

Appendix A

A-8

Message

Illegal segment
address reference
type2

Illegal segment
address reference
type$

Incompatible
initialization
instructions file
<Object module
name>.

Incompatible window
access mode
encountered
processing <Object
module name>.

Input library is not
case sensitive.

Invalid
CharacterCodeSet
<CodeSet
parameter> specified
in the configuration
file for Version 4 run
file format.

Table A-1. Linker Messages (cont.)

Explanation/ Action

Parts of a procedure address have been separated. In a
swapping program, it is illegal to use only one part of a
two-part procedure address. In PUM you can generate this
error by using the construction P=@ProcedureName, which
generates the statement MOV AX, SEG Procedure.Name.
To find the overlay address of a PUM procedure name. you
must define the proced1,1re as a static constant in a
DECLARE statement.

Your Assembly program uses segment and offset in other
than the two allowed ways:

• A long CALL instruction

• A DD instruction

Examine your Assembly code. This error usually results
from using a far JMP. This is illegal in an overlay program.

A prior object module had a conflicting initialization
instruction.

A prior objeet module had a conflicting window access
mode.

The Convert Public Ca5e utility must be run on input library.
or input library must be created with case-sensitive
requested.

The configuration file parameter xxx for CharacterCodeSet
found in the Linker configuration file is not appropriate for
the target run file version.

continued

Message

Invalid character code
parameter in config
file - xxxx.

Invalid configuration
file parameter
<parameter name>
for non Version 8 run
file ignored
OR
Invalid configuration
file parameter
<parameter name>
for Version 8 run file
ignored.

Invalid library block
size in <library file
name>.

Invalid library header.

Invalid object module;
Read error (Input file)

Invalid source
debugger parameter

Invalid value in
configuration file for
parameter
<parameter name>.

Invalid yes/no
parameter in
configuration file for
parameter
<parameter name>.

Appendix A

Table A-1. Linker Messages (cont.)

Explanation/Action

xxxx is not a valid character code parameter.

The configuration file parameter <parameter name> found
in the Linker configuration file is not appropriate for the
target version of the run file.

Library was made with invalid block size.

Linker is unable to locate dictionary information for looking
up unresolved externals.

You specified an input file that is either corrupt, not a valid
object module, or not a library file. Check your file name
entry. Make sure your compiler or assembler is current.

Incorrect name for source debugger on source debugger
parameter line.

An invalid value was specified in the configuration file for
the <parameter name> parameter.

The Linker configuration file contains an invalid entry for
<parameter name>; either yes or no is expected.

continued

A-9

Appendix A

A·10

Message

Length for near
communal
<communal symbol>
is xxxh which
exceeds 64Kb.

Library reference
expected

Library reference not
found

LoadOnCall attribute .
for segment of Name
<segment name>
Class <segment
class> conflicts with
other segments within
its group.

Module compiled with
Publics is not resident

Multiple definition of
communal symbol
<communal symbol>
already defined as
public symbol.

Multiple definition of
public symbol <public
symbol> already
defined as communal
symbol <Communal
symbol>.

Table A-1. Linker Messages (cont.)

Explanation/ Action

Size of near communal symbols exceeds maximum of 64K
bytes. Near communal symbols are allocated for
uninitialized variables in small and medium models.

Library reference was not found in the configuration file.
See "Library References" in Section 3, "Using the Linker
Command Forms.·

This is an error for a Version 8 run file. The other
segments of this group do not have the LoadOnCall
attribute. You can change the attributes in the module
definition file.

This error message is applicable only for programs
generated by the BASIC compiler. You cannot locate
BASIC modules that contain public symbols in overlays.
Move the module to the resident segment, or remove the
data definitions from the module.

Errors occur for non-case-sensitive links to aid in identifying
symbols that have the same letters but not the same case.

Errors occur tor non-case-sensitive links to aid in
identifying symbols that have the same letters but not the
same case.

continued

Message

Multiple definition of
symbol <public
symbol name> in file
<Object module
name>.

No Overlay Fault
procedure loaded

No run file

No ST ACK segment

Non "CODE" class
loaded into overlay

Non contiguous
GROUPS not pMode
compatible.
(Selectors nnn and
mmm)

Appendix A

Table A-1. Linker Messages (cont.)

Explanation/ Action

The same public symbol is defined in two or more modules;
the Linker uses the first definition it encounters and issues
this error. You can determine which symbol the Linker
encounters first; proceed as follows:

1. List the location of each multiply defined symbol using
the Librarian.

2. List the object modules in the Link, Link V6, or Link VS
command form such that the Linker encounters the
symbol first.

In a program with overlays, no call to lnitOverlays or
lnitLargeOverlays exists, so the Overlay Handler is not
loaded. Add the call to your program.

You must specify a run file name (or dynamic link library
name) in the Link, Link V6, or Link VS command form.

You must provide a stack segment for Assembly language
programs. If you do not, the Linker creates a run file. but
the system crashes when you run it.

This error can be ignored in linked objects with no code
segments such as "nls.sys". A dynamic link library also
usually does not have a stack segment.

An overlay cannot contain a segment with a class other
than CODE. Segments in overlays can contain only
executable instructions. The program may run if the
affected overlay is not actually used as an overlay.

This error message is printed when the protected mode
requirement that all code segments on all data segments
be contiguous is violated, for example, binding modules in
which the original order of groups has not been preserved.
This message often occurs when binding assembler
modules with various compiler-generated modules.

Segments can be rearranged with either the First.asm file
or the Linker configuration file option :ClassOrder:.

continued

A-11

Appendix A

A-12

Message

NonShared attribute
for segment of Name
<Segment name>
Class <Segment
class> conflicts with
other segments within
its group.

NonShared DGroup
cannot be expanded
if DsAllocation is
requested. (Waming)

Object module
<object module
name> generat~d by
Microsoft C does not
support Version 4 run
files format
OR
Object module
<object module
name> generated by
MetaWare High C
does not support
Version 4 run files
format.

Odd°copyright string
length; truncated

Odd DGroup heap
size requested;
rounded up to xxxx

Odd length STACK in
<filename>; rounded
up. (Warning)

TableA-1. Linker Messages (cont.}

Explanation/Action

This is an error for a Version 8 run file. The other
segments of this group do not have the NonShared
attribute. You can change the attributes in the module
definition file.

DGroup may not be LoadOnCall data if DSAllocation is
requested.

Use Link V6 or Link VS to create run files for Microsoft C or
MetaWareHigh C.

Copyright string must have an even number of bytes.

DGroup heap size on the {Stack} parameter line must be
even.

This is a compiler error; make sure that you have the
current version. All stack lengths must be an even number
of bytes. The Linker adds one byte to the length of any
stack that is odd. The run file should execute correcdy.

continued

Message

Odd size stack
requested rounded up

Overlay with zero
length will cause real
mode Virtual Code
Segment
Management to fail.

Proc near xxxxx in
<object module
name> doesn't follow
CALURET
convention

Procedure
Exportation is
INVALID for non VS
run files.

Procedure
importation is
INVALID for non VS
run files

Program size
exceeds Linker
capacity

Appendix A

Table A-1. Linker Messages (cont.)

Explanation/Action

You requested an odd-length stack in the stack size
parameter of the Linker command or assembler. The
Linker adds one byte to the length of any stack that is odd;
the run file should execute correctly.

The overlay specified by the number xxx has zero length.
Zero-length overlays cannot be used with real mode virtual
code management.

The Linker call/return conventions have been violated. If
the message "Illegal segment address reference of type x·
appears, a fatal error has occurred.

If the call/return convention is not followed in a module in
an overlay, real mode overlay management may not work
correctly. Refer to the Explanation/Action for the "Illegal
segment address reference type x· m~ssage. This
violation can result from the use of a noncurrent compiler,
from placing a noncurrent run time library module in an
overlay, or from an Assembly program with a call/rel
problem. For more information about language calling
conventions, see the CTOS/Open Programming Practices
and Standards, Application Design Manual.

Procedure is specified as an Export either in the module
definition object module or in the object module where it is
public.

Procedure is specified as an Import either in the import
library or in the module definition object module.

Insufficient memory is available to the Linker in the
partition. Try running the Linker in a larger partition. There
is no fixed limit on the size of the program to be linked, but

. certain tables built by the Linker must be resident in
memory. If these tables cannot be built, this error results.

continued

A-13

Appendix A

A-14

Message

Re-assigning ST ACK
segment in
<filename>.

Relocate offset from
group is too large

Relocate offset is too
large

Relocate offset of
near reference is too
large

Table A-1. Linker Messages (cont.)

Explanation/Action

· Only .one segment can have the STACK combine type.

Group size exceeds 64K bytes, or, noncontiguous
segments occurred. If the error is caused by
noncontiguous segments, use an assembly language
program to declare the class names of the segments in a
different order and place this module first in the Linker
object modules field. This first module serves as a
template; the Linker orders segments from the following
modules in the same. way.

Refer to the explanation and action for the message
"Relocation offset from group is too large" above.

The procedure call or data reference uses a 16-bit address,
but the target object is too far away to be reached using
only 16 bits.

A near call requires that the called address be less than
64K bytes from the caller's address and that a 16-bit
address be used.

The run file produced is invalid.

You can either make your program smaller or reorder the
object modules to bring references and addresses closer
together.

If the message identifies a public symbol, you can use it to
identify the call.

If the message identifies a hexadecimal address, you can
examine a compilation list to identify the call.

If the caller and called address are from a high level
language, this error probably results from a data segment
variable reference.

If the caller or the called address are in Assembly
language, change the near call to a far call. If you cannot
do this, make sure that both addresses are in the same
group.

continued

Message

Requested heap size
exceeds 64K.

Requested stack size
exceeds 64 Kb

Run file header
exceeds 64Kb; Run
file cannot run on OS
prior to CTOS II 3.3
(Warning)

Segment of absolute
or unknown type

Segment of name
<segment name>
class <segment
class> not found;
attributes specifying
characteristics for that
segment ignored.

Shared attribute for
segment of Name
<segment name>
Class <Segment
class> conflicts with
other segments within
its group.

Size mismatch for
communal symbol
<communal symbol>
in file
<Object file name> vs.
communal symbol in
file <Object file name>
(warning)

Appendix A

Table A-1. Linker Messages (cont.)

Explanation/ Action

You requested a heap size that exceeds 64K bytes. You
must reduce your heap requirements.

You requested a stack size that exceeds 64K bytes. You
must reduce your stack requirements.

Enhancements to both the Linker and the operating system
will allow some run files with run file headers greater than
64K bytes to run that previously could not. A run file that
gets this message falls into that category and will not
execute on older operating systems.

All segments must be relocatable. This message can
result from using a nonsupported compiler. The run file the
Linker produced may be invalid.

Segment declared in module definition input, but no
segment definition exists in the object modules.

This is an error for a Version 8 run file. The other
segments of this group do not have the shared attribute.
You can change the attributes in the module definition file.

Uninitialized variables have a different total number of
elements or a different number of bytes in the specified
modules. You may want to make them the same size.

continued

A-15

Appendix A

A-16

Message

Symbol file hash table
overflow

Too many libraries.

Too many parameters
on stack line

Too many public
symbols

Total group size
exceeds 64k -
exceeded size is
XXXXh bytes.
OR
DGroup too large; it is
XXXXh bytes.

I

Table A-1. Linker Messages (cont.)

Explanation/Action

The program requires more table space than is currently
available to the Linker. The upper limit on the symbol table
is 997 pages. This message can also appear if you have
many long names for public symbols.

You must reduce the number of public symbols, or the
name length, before the Linker can produce a run file.

Maximum number of libraries is 100.

Too many parameters entered on the [Stack] parameter
line. The maximum number allowed is 2.

Insufficient memory is available. There is no fixed limit on
the size of the program to be linked, but certain tables built
by the Linker must be resident in memory. If these tables
cannot be built, this error results. If you are using the
Linker, increase the Linker's available memory or link the
files on a workstation with more memory.

If you are using the Librarian, divide your library into two
libraries. In a library where there are many multiply defined
symbols, the symbol table may be of adequate size if you
choose to add, delete, or extract modules, but it may be
exceeded if you request a listing. To list the
cr95s-reference of the symbols, the Librarian must expand
the single statement of a multiply defined symbol, creating
separate symbols with varying numbers of asterisks. In
this process, the symbol table can be exceeded.

Offsets can only be 64K bytes; the group to which this
segment belongs will require an offset of greater than
64K bytes.

continued

Message

Total size of resident
segments is xxxh
paragraphs at
segment name
<segment name>
class <Class name>.

Unresolved export
<export symbol
name>.

Unresolved externals

Warn: Module <Object
module name>
compiled with Publics
is not resident.

Warn: No First.Obj
found before Fortran-
86 module.

Appendix A

Table A·1. Linker Messages (cont.)

Explanation/Action

Size of resident segments exceed 64K paragraphs. This is
a warning for applications linked so that they can run in
protected mode. It is fatal for applications linked so that
they can run only in real mode. It is not an error at all if
either Link VS or NRelProtected has been requested in the
[Run file mode] field.

Export symbol is an unresolved external. (Its public
declaration has not been linked in.)

Your program contains references to external names that
do not have public definitions in any other module.

The map file contains an undefined symbol list.

The Linker produces a run file. For direct calls, the Linker
modifies the call to reference the Debugger. You can run
the program; however, the program response is
questionable. The system may crash.

You should add the definitions to an existing module or
provide a new module contiiining the definitions.

Note: If you do not specify a version when you are linking
the operating system, or any system that uses a
version number, this error results. The unresolved
extemal's name will be SBVERRUN in this case.

Warning emitted if an object module produced by the
BASIC compiler is placed in an overlay.

Warning emitted for FORTRAN object module.

A-17

Appendix A

Linker/Librarian Status Codes

A-18

Status codes from 1380 to 1390 indicate. some internal inconsistency in
the software, perhaps because of some work area or table being exceeded.
You should note the operation you were doing just before the problem
occurred. This information will be helpful in determining the error.

Status codes from 4400 to 4427 are specific to the Linker/Librarian
utility. The status codes from this range that do not appear on the list in
Table A-2 are part of internal Linker error checking; if you see an
unlisted status code displayed, report it to Unisys, because it results from
a Linker or compiler error.

Table A-2. Linker Status Codes

Code Explanation

400 There is not enough memory available in a specific partition to satisfy a
memory allocation request.

1380

1381

The Linker does not have enough memory available to link the file; You
commonly encounter this status code by generating a run file improperly
using the default for the [Max array, data] parameter, or by setting a
parameter too small to meet program needs.

To link the file:

Properly determine and use valid parameters.

If you are running the Linker under the Context Manager, reconfigure the
partition size.

Link the run file on a system with more memory.

Bad heap node pointer.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

Bad node link.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

continued

Code

1382

1383

1384

1385

1386

1387

1388

1389

1390

Appendix A

Table A-2. Linker Status Codes (cont.)

Explanation

Bad node tag.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

Count of register pointers node overflow.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

Count of register pointers node underflow.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

Dangling node backpointer.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

Double node registry.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

No node backpointers.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

No free node backpointer.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

Node not busy.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

Node not free.

An internal memory management error has occurred. If you observe such an
error, report it to your technical representative.

continued

A-19

Appendix A

A-20

Code

4400

4401

4402

4403

4404

Table A·2. Linker Status Codes (cont.)

Explanation

Attempt to access data outside of segment bounds, possibly bad object
module. Virtual address exceeds virtual area bounds.

1. Some of the virtual memory areas are configurable; if so, there are
directions in the map file above this message that specify which virtual
memory area size to increase in the Linker configuration file.

An example of such a message is:

Size of configurable virtual Linker area aaaa exceeded; default setting in
Linker configuration file is: Maxaaaa:xxxx

aaaa is the area and xxxx is the current setting.

2. If you did not use a segment directive in your Assembly program, or if you
dedare code or data outside any segment, the Assembler supplies a
segment named ??SEG. The resulting object module is invalid and the
Linker cannot produce a run file. In Assembly programs, make sure you
indude a segment directive. This error can also result from a compiler
error.

Virtual address is out of bounds ..

Fatal error. An internal failure has occurred. If you observe such 1:1n error,
report it to your technical representative.

Too many segment or class names.

You cannot declare more than 511 segments or different segment names in
one module; however, the program can contain more than 511 segments.
The Linker does not produce a run file. If necessary, divide the module.

Too many segments.

You cannot declare more than 511 segments or different segment names in
one module; however, the program can contain more than 511 segments.
The Linker does not produce a run file if you receive this message. If
necessary, divide the module.

continued

Code

4405

4406

4407

4408

4409

Appendix A

Table A-2. Linker Status Codes (cont.)

Explanation

Segment size exceeds 64K bytes.

Each segment cannot be larger than 64K bytes. This error pertains only to a
single segment, not to a group or sum of segments (for example, DATA,
CONST, and STACK). The link is aborted. The Linker does not produce a
run file. If you are writing in Assembly language or Pascal, reduce the size of
the segment to less than 64K bytes.

Too many groups.

Each module can contain a maximum of 10 groups, and the program can
contain a maximum of 512 groups.

Too many external symbols in one module.

The Linker does not have sufficient memory to link these modules. To link
the file:

If you are running the Linker under the Context Manager, reconfigure the
partition size.

Link the run file on a system with more memory.

Too many public symbols in one module.

The Linker does not have sufficient memory to link these modules. To link
the file:

If you are running the Linker under the Context Manager, reconfigure the
partition size.

Link the run file on a system with more memory.

Invalid object module.

A file you specified as an object module is not in object module format. This
could result from:

Compiler error

Damage to the file

Specification of a text file (such as the source file) instead of an object
module.

continued

A-21

Appendix A

Code

4410

4411

4412

4413

4414

4415

4416

A-22

Table A-2. Linker Status Codes (cont.)

Explanation

Linker discovered segment in second pass that it had not seen or proi:essed
correctly in the first pass.

Call your Unisys technical representative, and be prepared to send your
linking environment.

Too many common symbols in one module.

The Linker does not have sufficient memory to link the run file. To link
the file:

If you are running the Linker under the Context Manager, reconfigure the
partition size.

Link the run file on a system with more memory.

Linker discovered common symbol in second pass that it had not seen or
processed correctly in the first pass.

Call your Unisys technical representative.

Bad object module, segment, or group index out of range.

You included an invalid object module. Usually, this is the result of a
compiler error.

Too many public procedures in resident/overlay.

The resident portion and any single overlay can have a maximum of 4,096
procedures. Divide the code into more overlays.

Data offset exceeds the current maximum of 64K bytes.

CTOS and the Linker do not support this addressing mode.

Rewrite the module to keep all offsets to less than 64K bytes.

Object module has code that refers to a segment that is an overlay which is
illegal.

It is likely that a construct was used that determines a pointer to a procedure
and then passes cir otherwise uses the pointer. This is illegal if the procedure
pointed to is in an overlay or if the procedure that does this is in an overlay.

Do not do this.

continued

Code

4417

4418

4419

4420

4421

4422

Appendix A

Table A-2. Linker Status Codes (cont.)

Explanation

Object module has code that tries to use the selector of an absolute segment,
which is illegal.

Do not do this.

Too many global segments.

The Linker does not have sufficient memory to link the run file. To link
the file:

If you are running the Linker under the Context Manager, reconfigure the
partition size.

Link the run file on a system with more memory.

Too many segments.

The Linker does not have sufficient memory to link the run file. To link
the file:

If you are running the Linker under the Context Manager, reconfigure the
partition size.

Link the run file on a system with more memory.

Too many areas.

The Linker does not have sufficient memory to link the run file. To iink
the file:

If you are running the Linker under the Context Manager, reconfigure the
partition size.

Link the run file on a system with more memory.

This is an internal error generated when sorting procedures in one of several
ways. Either the sort procedure started sorting past the end of the allowable
range, or the flags set for the procedure comparison step are not correct. Call
your Unisys technical representative.

Bad object module, external index out of range.

You included an invalid object module. Usually this is the result of a
compiler error.

continued

A·23

Appendix A

A-24

Code

4423

4424

4425

4426

4427

4430

4431

4432

4433

Table A-2. Linker Status Codes (cont.)

Explanation

Bad object module, name index out of range.

You included an invalid object module. Usually this is the result of a
compiler error.

Bad sector.

Fatal error. Cannot open the file.

You may have used an illegal library format.

Bad Index.

The index read-in is out of range or does not follow OMF rules for indexes
greater than 128.

Run file header too large.

The run file header exceeds 64K bytes.

Multiple definition of IMPORT procedure. An IMPORT procedure is PUBLIC
in more than one object module.

Duplicate segment attribute directives ignored this code segment.

You probably specified segment attributes for code segments in a Code
record in a module definition file and then specified other segment attributes
in the same module definition file in a Segment statement or in another file.

Do one of the following:

You can fix your module definition file so that it does not define attributes for
segments two ways, or, make sure that the desired definition comes first in
the file.

Or, if the definitions are in two object modules, insure that the object module
with the desired definition is processed first by the Linker.

Duplicate segment attribute directives ignored this default data segment.

Duplicate segment attribute directives ignored this segment flag.

Appendix A

Module Definition Utility Messages
Table A-3 contains Module Definition utility error messages. A common
source of errors is incorrect syntax in the module definition input file for
Statements or Segment attributes. For information on syntax, see
Section 12, "Module Definition Statements."

Table A-3. Module Definition Utility Messages

Message

<attribute symbol>
attribute has already
been set.

<attribute symbol>
ignored; LoadOnCall,
ReadOnly, Shared,
NolOPL, Discardable,
and Movable always set
for Code segments

<attribute symbol>
ignored; LoadOnCall,
NolOPL, Oiscardable,
and Movable always set
for Data segments

Code statement should
only appear once.

Data statement should
only appear once.

Import library not
created; Input file did
not contain Exports

Identifier truncated to
<truncated identifier>

Internal entry name
required with an ordinal
entry.

Explanation/Action

The <attribute symbol> attribute has already been set for
this segment.

The <attribute symbol> attribute is one. of the attributes
set for Code Segments.

The <attribute symbol> attribute is one of the attributes
set for Data Segments.

A Code statement has been specified inore than
one time.

A Data statement has been specified more than
one time.

An import library has not been created from the module
definition input since there were no exported entry names
specified.

The maximum size of an identifier is 80 characters.

An ordinal import entry name has been specified with no
internal name specified to invoke it.

continued

A-25

Appendix A

Table A-3. Module Definition Utility Messages (cont.)

A-26

Message

Invalid LoadSpec in
LoadType statement.

Minlnstruction should
be 8086, 80186, 80286,
or 80386.

Min Math Instruction
should be 8087, 80187,
80287, or 80387.

Multiply entered
segment <Sement
name> class <sement
class>

Ordinal value
<number> defined for
<export·1> and
<export-2>.

'pwords' field ignored
for xxx

'pwords' field required.

<Symbol> has been
definedas an
initialization procedure,
but not exported.

<symbol> is Multiply
defined as an exported
entryname.

<symbol> is Multiply
defined as an internal
entryname.

Token size exceeded:
<Symbol>

Explanation/ Action

An invalid loadspec has been specified in the LoadType
statement.

An invalid Minlnstruction has been specified.

An invalid MinMathlnstruction has been specified.

Segment <Sement name> class <sement class> has
been specified more than one time.

The ordinal value <number> has been defined for two
export procedures; their names are <export·1> and
<export-2> .

The current implementation ignores pwords field. This is
not an error.

Although the current implementation ignores the pwords
field, according to the syntax diagram, it should be here.
This is not an error.

The procedure <symbol> must be defined in the list of
exported procedures if it is to be accessed as an
initialization procedure.

The symbol <symbol> has been specified more than
once as an EXPORT in an export definition.

The symbol <symbol> has been specified more than
once as an internal entry name in an export definition or
in an import definition.

The token <symbol> has exceeded maximum token size
of 255; only the first 50 characters of <symbol> are
displayed.

Appendix A

Resource Librarian Messages
Table A-4 contains Resource Librarian error messages. A common
source of errors is incorrect syntax in the Resource Librarian command
form. For information on syntax, see Section 14, "Using the Resource
Librarian Command Form."

Table A-4. Resource Librarian Messages

Message

Identifier truncated to
<truncated identifier>

Internal error

Invalid add parameter
<copy of invalid add
parameter>

Invalid delete
parameter <Copy of
invalid delete
parameter>

Invalid extract
parameter <copy of
invalid extract
parameter>

Missing file name for
add parameter <Copy of
invalid add parameter>.
Missing file name for
extract parameter
<copy of invalid extract
parameter>.

Missing Resource
identifier in <Copy of
invalid parameter>

Explanation/Action

Maximum identifier size is 80 characters.

An internal failure has occurred. If you observe such an
error, report it to your technical representative.

Parameter in {Resources to add] field of command form
is incorrect.

Parameter in {Resources to delete] field of command
form is incorrect.

Parameter in [Resources to extract] field of command
form is incorrect.

The [Resources to add] and [Resources to extract] fields
require file names.

A "Resource ID" could not be found in the parameters
input <copy of invalid parameter>.

continued

A-27

Appendix A

Table A-4. Resource Librarian Messages (cont.)

A-28

Message

Missing Resource Type
in <Copy of invalid
parameter>

Missing) in <Copy of
invalid parameter>

Resource Type is
non integer: <symbol>.
Resource Id is
non integer: <symbol>.

Too many resources
specified by wild card
<wild card parameter>

Explanation/Action

A "Resource Type" could not be found in the parameters
input <Copy of invalid parameter>.

There should be a right parenthesis in parameter <copy
of invalid parameter>

<symbol> is not an integer. <symbol> is either
misspelled or is not in the Resource Libarian
configuration file.

The number of resources specified by the wild card <Wild
card parameter> exceeds the capacity of the Resource
Librarian. Try enumerating them.

Appendix B
Run File Reference

Introduction
This appendix is a run file reference. The first part describes the fields in
the run file headers. The second part of this appendix compares the run
file formats of Version 8 and Version 6 run files.

Run File Header Fields
The header fields in Version 8, Version 6, and Version 4 run files are
described in the tables that follow.

Version 8 Run File Header
The Version 8 run file header fields are described below.

B-1

Appendix B

Table B-1. Version 8 Run File Header Fields

Size
Offset Field (bytes) Description

0 wSignature 2 Run file signature = "WG"

2 ver 2 Run file format version = 08

4 cpnFile 2 Size of the data (in pages) in the run file after
this header (does not include resources).

6 wRev 2 Run file format subversion number.

8 wFlags 2 Additional space for flags that may need to be
passed to the loader.

10 wMinOSVersion 2 Minimum version of the operating system that
must be running for this run file to load and run
correctly.

12 wMaxOSVersion 2 Maximum version of the operating system that
must be running for this run file to load and run
correctly.

14 wPriority 2 Priority to be set for this run file when it is
loaded.

16 · blnstMin Value that indicates the minimum assembly
language instruction set that must be handled
to execute this run file.

17 bMathMin Value that indicates the minimum assembly
language floating point math instruction set
that must be handled to execute this run file.

18 cpnDir 2 Number of pages in the run file before the data
element.

20 cpnHdr 2 Number of pages in the header (before the
first run file table).

22 wChkSumHdr 2 Checksum of the header.

continued

B-2

Appendix B

Table B-1. Version 8 Run File Header Fields (cont.)

Size
Offset Field (bytes) Description

24 cModify 2 Number of times this run file was modified
(such as by the Debug File command) since it
was created.

26 snFirst 2 First (lowest) selector index in the run file.

28 cSn 2 Number of prototype descriptors.

30 fill 2 Reserved.

32 verAlt 2 Word of flags specifying the run file mode and
how code and data are handled.

34 date Time 4 Date and time the run file was created: this
same value goes into the symbol file for this
run file.

38 qbMinData 4 Minimum number of bytes of memory that
must be available for the run file to be loaded.

42 qbMaxData 4 Maximum number of bytes of memory that will
be allocated if available when the run file is
loaded.

46 wCodeSet 2 Character code set used for nationalization.

48 cbHeap 2 Number of bytes in Dgroup Heap.

50 rgbFutureUse 30 Pad with nulls to paragraph boundary.
Reserved for extensions.

78 cRfeDesc 2 Number of possible entries in the run file table
descriptor array (36).

continued

B-3

Appendix B

Table B-1. Version 8 Run File Header Fields {cont.)

Offset Field

80 rgRfeDesc

8-4

Size
(bytes)

36

Description

An array of 12-byte element descriptors. E.ach
descriptor describes an element of the run file
and provides a checksum for it.. The format of
a descriptor is shown below:

Size
Name (bytes) Description

plaElement 4 Paragraph
element address

cparElement 4 Count of
paragraphs

checksum 4 Checksum

Each element in a run file header is a single
function table. The descriptor numbers are
listed below. For a conceptual description of
each table, see Table B-4 later in this
appendix.

Index Table Name

0 Register Initialization Table

Strings Table

3 Prototype Descriptor Table

4 Export Information Block

10 Import Information Block

11 Relocation Entries Table

12 Resident (Preload) data

14 Nonshared data

20 Resident (Preload) code

29 Resources data

30 Resources Descriptor Table

Appendix B

Version 6 Run File Header

The Version 6 run file header fields are described below.

Table B-2. Version 6 Run File Header Fields

Size
Offset Field (bytes) Description

0 wSignature 2 Run file signature = "WG"

2 ver 2 Run file version = 06

4 cpnRes 2 Run file size (in paragraphs).

6 iRleMax 2 Maximum relocation entry index (maximum
number of fixups minus 1).

8 cParDirectory 2 Size of run file header (in paragraphs)
including all tables.

10 cParMinAlloc 2 Minimum memory array size (in paragraphs).

12 cParMaxAlloc 2 Maximum memory array size (in paragraphs).

14 saStack 2 Initial stack segment: initial value put in the
SS register.

16 raStacklnit 2 Initial stack offset: initial value put in the SP
register.

18 wChkSum 2 Run file checksum.

20 raStart 2 Initial code offset: initial value put in the IP
register.

22 saStart 2 Initial code segment: initial value put in the
CS register.

24 rbrgRle 2 Offset from the start of the run file to the start
of the of Relocation Entries Table.

26 iovMax 2 Maximum overlay index: one less than the
number of overlays.

28 saData 2 Initial value of the data segment: the initial
value put in the OS register.

continued,

B-5

Appendix B

Table B-2. Version 6 Run Fiie Header Fields (cont.)

Size
Offset Field (bytes) Description

30 allFs 2 OFFFFh.

32 verAlt 2 Contains information that is passed to the
loader, such as the run file mode, where data
is to be located, and whether code is to be
shared.

34 rbRgplDiv 2 Offset from the start of the run file to the start
of the IDIV Instruction Table.

36 cldiv 2 Number of entries in the table of IDIV
Instruction Table.

38 qbDataMin 4 Minimum number of bytes of memory that
must be available for the run file to be loaded.

42 qbDataMax 4 Maximum number of bytes of memory that will
be allocated if available when the run file is
loaded.

46 rbRgPdh 2 Offset from the start of the run file to the start
of the table of segment prototype descriptors.

48 iPdhMax 2 Maximum Prototype Descriptor Table index.

50 rbRgRqlablE 2 Offset from the start of the run file to the start
of the table to Call Gate Reference Table.

52 iRqlablEMax 2 Maximum Call Gate Reference Table index.

54 rbMpSnSa 2 Offset from the start of the run file to the start
of the table of Selector to Segment Mapping
Table.

56 iSnMax 2 Maximum Selector to Segment Mapping Table
index.

58 snFirst 2 Selector index of the first prototype descriptor.

60 EndRunFile 4 Ila to the start of the legalese at the end of the
run file. This is used by the resource compiler.

64 slData 2 First data segment selector.

continued

B-6

Appendix B

Table B-2. Version 6 Run File Header Fields (cont.)

Offset Field

66 cslData

68 slStack

70 cslStack

72 lfaSbVerRun

76 dateTime

80 cModify

82 qbCodeMin

86 qbCodeMax

90 rbrgRlePStub

92 iPStubMax

94 wOsVersion

96 ParaPad

Size
(bytes)

2

2

2

4

4

2

4

4

2

2

2

2

Description

Count of data segments.

Stack segment selector.

Constant 1.

Offset from the start of the run file to the
version string SbVerRun in DGroup.

Date and time when run file was created: this
same value goes into the symbol file for this
run file.

Number of times this run file was modified
(such as by the Debug File command) since it
was created.

Reserved.

Reserved.

Offset from the start of the run file to the start
of the Relocation Entries Table.

Maximum Protected Mode Overlay Fixup
Table index.

Operating system version for the Linker
command {Run file mode} option, Conditional
CTOS Protected.

Pad with nulls to paragraph boundary.

8-7

Appendix B

Run File Formats
This subsection describes Version 8 and Version 6 run file formats. (For
information on Version 4 run file formats, see Appendix E, "Version 4
Link Command.")

Version 8 Run File Format

B-8

Both executable application run files and dynamic link libraries have the
same Version 8 run file format.

Not all Version 8 run files must have all run file tables described in
Table B-4. The Linker creates a run file table only if it is needed.

Table Name

Header

Register
Initialization
Table

Strings Table

Prototype
Descriptor
Table

Table B-4. Version 8 Run File Formats

Description

See the discussion earlier under "Run File Header Fields."

Contains four byte values used by the loader to initialize the following
hardware registers: EIP, EFL, EAX,ECX, EBX, EDX, ESP, EBP, EDI,
ESI, EES, ECS, ESS, EDS, EFS, and EGS.

Stores strings. If the run file contains export or import information
blocks, for example, these blocks contain fields that may refer to
strings stored in this table.

Contains the data fields that will be placed in the system segment
descriptor when the run file is loaded. The segment address field
contains the lfa o.f the start of the segment in the run file. When the
loader loads the segment into memory, it writes the memory address
where the segment, identified by a selector, is loaded into this field.

There is a prototype descriptor in the table for each separately
addressable segment in the run file, including call gates. (For details
on the format of the prototype descriptor table, see the Intel manuals
listed in "About This Manual" following the Table of Contents in this
manual.) The Module Definition utility can set all the flags in this
table. (For details, see Section 12, "Module Definition Statements.")

continued

Table Name

Export
Information
Block

Import
Information
Block

Relocation
Entries
Table

Resident
(Preload)
Data

Nonshared
Data

Resident
(Preload) Code

Resource
Descriptor
Table

Resources
Data

Appendix B

Table B-4. Version B Run File Formats {cont.)

Description

Consists of information the Linker builds into a DLL from a module
definition file Exports statement. (For details, see Section 12,
"Module Definition Statements.") This information is used by the
loader to provide clients with addresses of procedures or data in the
DLL. An export descriptor for each DLL procedure or data contains
the address of a DLL procedure or data and an index (into the strings
table) to the name string used to access the procedure.

Consists of information the Linker builds into a client run file from a
module definition file Imports statement or an import library. The
loader uses this information to locate a DLL procedure a client calls.
If the procedure is not already in memory, the loader loads the DLL
the procedure is in. (For details, see Section 12, "Module Definition
Statements.")

Contains the locations in the run file code or data to which the loader
writes data when a run file is loaded. The data written can be the
address of a segment in a long pointer or a reference to a DLL
procedure. Because of paging, the loader fixes up only a single
4K-byte page of locations pointed to by the relocation entries at a
time. To expedite loading and fixing up pages, relocation entries for
any 4K-page are kept together.

Contains all the data that is loaded when the run file is loaded. This
data is loaded once. In the case of a DLL, the data is shared.

Contains all the nonshared data of a procedure. A copy of this data
is created for each client that calls a DLL procedure accessing the
nonshared data.

Contains all the code that is loaded when the run file is loaded. The
code is loaded once.

Used by the resource management tools to access resources.

Contains resource data used by the resource management tools to
access resources.

B-9

Appendix B

Version 6 Run File Format

B-10

Version 6 run files have the tables described in Table B-5.

Table Name

Header

IDIV
Instruction
Table

Prototype
Descriptor

Call
Gate
Reference

Selector to
Segment
Mapping

Protected
Mode
Overlay
Fixup

Relocation
Entries
Table

Table B-5. Version 6 Run File Formats

Description

See the discussion earlier under "Run File Header Fields."

Contains the locations of IDIV instructions. (This is needed to
handle a bug in early versions of the 80186 chip.)

Contains the data fields that will be placed in the system segment
descriptor when the run file is loaded. The segment address field
contains the Ila of the start of the segment in the run file. When
the loader loads the segment into memory, it writes the memory
address where the segment, identified by a selector, is loaded.

There is a prototype descriptor in the table for each separately
addressable segment in the run file, including call gates. (For
details on the format of the prototype descriptor table, see the Intel
manuals listed in "About This Manual" following the Table of
Contents in this manual.) The Module Definition utility can set all
the flags in this table. (For details, see Section 12, "Module
Definition Statements.")

Contains locations of references to call gates (system-common
procedure calls).

Contains the real mode segment addresses that correspond to the
specified segment selectors.

Contains the locations of selectors of procedures called in overlay
programs.

Contains the locations in the run file code or data to which the
loader writes data when a run file is loaded. The data written is
the address of a segment in a long pointer.

Appendix C
Object Module Formats (OMF)

Introduction
This appendix lists all of the Intel object module formats (OMF)
recognized by the Linker. The object module formats are described in the
MS-DOS Encyclopedia and Intel documentation, which are listed in
"About this Manual." ·

C-1

Appendix C

Table C-1. OMF Formats Recognized by Linker

Format Sub·
Name Acronym Code Class Class Source

Intel Link-86 RHEA DR 6E Intel
product

Re9ister REGINIT 70 Intel
initialization

Block definition BLKDEF 7A Intel
record to
specify
local symbols

Object module
Header

THEADR 80 Intel

Intel LHEADR 82 Intel
pre v1 .3Link-86
product

Absolute Data PEDATA 84 Intel

Absolute Data PIDATA 86 Intel
Arrays

Comment Records COME NT 88 None None Intel

Module end MOD END SA Intel

External names EXTDEF SC · Intel
definition

Public names PUBDEF 90 Intel
definition

Line numbers LINNUM 94 Intel

Compiler
generated names

LNAMES 96 Intel

Se~ment SEGDEF 9S Intel
De inition

Group GRPDEF 9A Intel
definition

continued

C-2

Appendix C

Table C-1 OMF Formats Recognized by Linker (cont.)

Format Sub·
Name Acronym Code Class Class Source

Fixup data FIXUPP 9C Intel

Logical
relocatable data

LEDATA AO Intel

Logical DLEDATA A1 Microsoft
relocatable data (1990)
(32-bit length)

Logical
relocatable LIDATA A2 Intel
data arrays

Common Data co Microsoft
(1982)

Communal names COMDEF BO Microsoft
c (5.0)

Local LEXTDEF 84 Microsoft
external names c (5.0)
definition

Local LPUBDEF 86 Microsoft
public names
definition

c (5.0)

Local
communal names LCOMDEF 88 Microsoft

c (5.0)

Import definition IMP DEF 88 AO 01 Microsoft
forOS/2,
Windows

Export definition EXP DEF 88 AO 02 Microsoft
forOS/2,
Windows

Module nam.e in library LIBMOD 88 A3 Microsoft

C-3

Appendix C

Communal Name Records
The Microsoft C compiler generates two types of communal name
(COMDEF) records: Near and Far. Near COMDEF records are
generated for Small and Medium memory models. Far COMDEF records
are generated Compact, Large, and Huge memory models. Only Far
COMDEF records have an element size field.

The Linker generates three types of communal segments: Near, Far, and
Huge. Near communal segments are created for near COMDEF records.
Far communal segments are created for far COMDEF records where
total size is less than 64K bytes. Huge communal segments are
generated for far COMDEF records where total size is greater than
64Kbytes. ·

Local Variables

The local variable records LEXDEF, LPUBDEF, and LCOMDEF, shown
in Table C-1, are for local variables that are to be treated as external,
public, and communal records, respectively. However, it is assumed that
there are no constraints on the uniqueness of variable names, since they
are local variables. The Linker does the following with variables
specified in these records:

1. It creates unique internal names for Microsoft local variables.

2. It treats these variables as if they were in an EXTDEF, PUBDEF or
COMDEF record, respectively.

Import and Export Definition Records

The import and export definition records are the EXPDEF and IMPDEF
record types shown in Table C-1. They actually are subsets of (have the
same or fewer fields than) the CTOS implementation of these records and
are handled in the same way the CTOS versions for the Module
Definition utility are handled. (For details, see "Import Definition
Records" and "Export Definition Records" later in this appendix.)

Library Module Records

C-4

This record is the LIBMOD record type shown in Table C-1. It is used to
set the flag that specifies that a module is from the Microsoft C compiler.

Appendix C

CTOS Module Definition Utility
The OMF formats emitted by the Module Definition utility are shown in
Table C-2. They are used in Version 8 run files only. If one of these
records is encountered while making a Version 4 or Version 6 run file,
the Linker ignores the record.

Table C-2. OMF Formats From CTOS Module Definition Utility

Format Sub-
Name Acronym Code Class Class Source

Application name APPNME 88 C1 00 CTOS for
PM port

Library name LIBNME 88 C1 00 CTOS for
PM port

Attributes for
code segments CODATR 88 co 03 CTOS for

PM port

Attributes for
DGroup segments DGRATR 88 co 04 CTOS for

PM port

Individual segment
attributes SEGATR 88 co 05 CTOS for

PM port

CTOS Export definition CTEXPD 88 co 06 CTOS for
PM port

CTOS Import definition CTIMPD 88 co 07 CTOSfor
PM port

Run file defaults RUN DEF 88 co 09 CTOS for
PM port

Application and Library Name Records

The first two OMF records shown in Table C-2 are used by the Linker to
determine whether an application run file (default) or a dynamic link
library (DLL) should be built.

C-5

Appendix C

Segment Attribute Records

C-6

The OMF records for segment attributes are CODATR, DGRATR, and
SEGATR:

CODATR

DGRATR

SEGATR

Allows the user to specify segment attributes for all
segments of class "CODE".

Allows the user to specify segment attributes for all
segments in DGroup.

Allows the user to specify segment attributes for a
segment the name of which is specified. !fit is not
specified, the segment is assumed to be class Code.

These records pass choices about segment attributes to the Linker. All
supported choices are shown in Table C-3 .

Table C-3. Segment Attribute Alternatives Used by the Linker

Attribute

Code readability

Code 286
conformance

Instance

Shared

Readonly

Mnemonic Value

ExecuteRead
ExecuteOnly

Conforming
Nonconforming

Multiple (Instance)
Single (Shared)
None

Shared
Nonshared

ReadOnly
Read Write

Segment Types
to Which
Attribute Applies

Code segments

Code segments

DGroup
data segments
only

Any data segments

Any segment

Appendix C

The Linker can do any of four things with this segment attribute
information:

1. Use the data specified in the CODATR and DGRATR records to
specify attributes for segments of class Code or in DGroup,
respectively.

2. Check segments within a group for consistency of attributes. If a
conflict is encountered, the link fails.

3. Use this data to determine which DLL segments are not intended to
be shared. Nonshared segments are placed in a separate element in
the Version 8 run file.

4. Enter this information in the appropriate flags fields in the
Prototype Descriptors for the segments to which the data applies.

Export Definition Records

The CTEXPD OMF record type in Table C-2 provides the name of a
procedure in a DLL and a way for a client to access that procedure, using
either an ordinal number or a name. The Linker uses this information to
create the Export Information Block in a Version 8 run file.

Import Definition Records

The import definition record type CTIMPD in Table C-2 provides a way
for a client to access a DLL procedure. It gives the name of the DLL and
either the procedure name recognized by the DLL or an ordinal value.
(The ordinal is another way to identify an import and is used for
portation.) The import definition record also contains the name by which
the client accesses a procedure.

C-7

Appendix C

Run Type Records

C-8

The run type record RUNDEF in Table C-2 provides information on the
following run file data:

1. Run-time priority

2. Minimum and maximum required operating system

3. Minimum instruction set needed by the run file

4. Minimum floating-point math instruction set needed by the run file

5. Valid load types are these values (the first four force the run file to
be of protected mode):

GDT
Protected
Low Data
HighMem
CodeSharingServer

6. Stack size (bytes)

7. Heap size (bytes)

Appendix D
Calling Medium Model Procedures from
a DLL

Introduction
The Intel medium model of computation works differently from the large
model. In medium model, the value of the address of the Data Segment
(DS) is equal to the value of the Stack Segment (SS); in large model these
values can differ. This means that serious problems might occur if a
client routine compiled in large model directly calls a function compiled
in medium model. Since DLLs must be compiled in large model, this is of
particular concern for programmers who write dynamic link libraries
(DLLs)

Note that this discussion uses the term large model to refer to all those
models of computation that do not assume equality of the DS and SS
registers. Some examples of members of this group are the compact,
large, and huge models of computation. Medium model is used to denote
those models, which assume DS is equal to SS. Small and medium
models are examples of this type.

DLLs are required to be linked from large model object modules.
Therefore, they generally cannot be linked with medium model objects.
Instead, all medium model objects need to be placed in their own special
DLL. In this special DLL, each medium model procedure call is
surrounded with code that "fixes" the incompatibility. A function
surrounded by code that fixes the DS/SS equality problem is called a
mediated function. Similarly, a DLL that contains a collection of these
mediated functions is called a mediated DLL.

This appendix describes when to use mediation, gives step-by-step
instructions on creating mediation code and linking mediated DLLs, and
explains what happens at execution.

0-1

Appendix D

This description assumes that you already know how to build a DLL, as
described earlier in this manual. For additional background information
on this subject see your compiler manual and the CTOS Operating
System Concepts Manual.

Large Model, Medium Model, and DLLs

D-2

A DLL is a type of a Version 8 run file, and, as such, it can have all the
elements of a loadable executable entity: code, stack, and data. Public
and static data usually are grouped together in one segment, the DLL's
DGroup. (The Linker performs this grouping for every run file, including
DLLs.) For this data to be accessible, DS must be set to the same value
as the DLL's DGroup.

When an application run file is loaded, the operating system sets the
values of CS, DS, and SS to the proper addresses. When the application
calls a procedure contained in a DLL; however, the operating system
leaves the current values of DS and SS. To access data that belongs to
the DLL, therefore, the called procedure itself must set the value of DS to
the value of the DLL's DGroup. At that point, DS and SS are not the
same, so the code must not assume that DS and SS are the same. To
insure that the code does not assume DS and SS are not the same, the
objects must be compiled as large model. CTOS Microsoft C generates
code to do this when a procedure is declared with the "_loadds" option.

Note that since the operating system does not change the values of SS
and the routines within the DLL cannot change it (and still execute
properly), the value of SS remains the same. This means that the
procedures in the DLL use the client's stack to reference arguments and
automatic (local) data. Therefore, a normal DLL needs no stack. Indeed,
any stack space just wastes space. (Since a DLL should be large model,
DS and SS are disjoint.) Later, we will see that a mediated DLL must
have stack. ·

Appendix D

Until the advent of DLLs, it was unnecessary for any library code to be
compiled in large model. Developers used medium model when they
compiled the code that is put into the various libraries (for example,
ISAM.lib, Ctos.lib, Mouse.lib, and so on.) Since it does not cause
problems to do so in medium model, code generated by some less than
careful compilers use SS and DS interchangeably. For example, in
preparation to making a call to another function, a compiler may
generate a "PUSH DS" instruction to push the segment address of an
automatic variable.

When to Use Mediation
You should assume that all object module libraries contain procedures
compiled in medium model, unless the software vendor specifically
makes it clear that they can be called from CTOS DLLs. Specifically,
Unisys object module libraries such as Ctos.lib 12.3 must be mediated
and placed into a DLL before their procedures can be accessed from
other, user-written DLL's.

Some newer libraries may not need to be mediated. Check the Software
Release Announcement or other release documentation for the library for
specific information.

Determining Which Procedures to Mediate
As stated above, the only procedures that you need to mediate are object
module procedures. You can look at your DLL's map and tell which
procedures are of what type; see Example D-1. When you link your DLL,
enter Yes in the [Publics?] field of the Linker command form.

D-3

Appendix D

Example D-1. DLL Map File

Linker 12.2.0

Run file :NonMediated.dll
Link Start Time :04/13/93 10:27:08

Conf ig file :LinkerConfig.Sys

Start Stop Length Name Class

OOOOOOOOh OOOOOOOOh DOD Oh (0084h) DATA DATA(NonShared)

OOOOOOOOh OOOOOOOOh OOOlh (0084h) DATA DATA(NonShared)

00000002h 00000002h OOOOh (0084h) CONST CONST(NonShared)

OOOOOOlOh 00000013h 0004h (0084h) STATICS CONST(NonShared)

00000014h 00000014h OOOOh (0084h) BSS BSS(NonShared)

00000020h 00000020h OOOOh (008Ch) ??SEG ??SEG(NonShared)

00000020h 0000041Fh 0400h (0094h) STACK STACK(NonShared)

00000420h 0000043Dh 001Eh (009Ch) CALL TEXT CODE

00000440h 00000474h 0035h (009Ch) FatalPro CODE

Publics by name Address Overlay

BEEP OOOOFFD0:0518h (0080:0034h) Call'Gate

CHECKERC 00000042:0048h (009C:0048h) Res

ErrorExit OOOOFFEF:0334h (00AC:800Ah) CallGate

exit OOOOFFEF:0336h (00A4:800Bh) CallGate

FatalError 00000042:0020h (009C:0020h) Res

fDevelopement OOOOOOOO:OOOOh (0084:0000h) Res

sbVerRun OOOOOOOO:OOlOh (0084: 0010h) Res

TheCall 00000042:0000h (009C:0000h) Res

Publics by value Address Overlay

fDevelopement OOOOOOOO:OOOOh (0084:0000h) Res

sbVerRun 00000000:0010h (0084:0010h) Res

BEEP OOOOFFD0:0518h (0080:0034h) CallGate

ErrorExit 0000FFEF:0334h (00AC:800Ah) CallGate

exit OOOOFFEF:0336h (00A4:800Bh) Call Gate

TheCall 00000042:0000h (009C:0000h) Res

FatalError 00000042:0020h (009C:0020h) Res

CHECKRC 00000042:0048h (009C:0048h) Res

No warnings detected

No errors detected

D-4

Appendix D

There are four possible values for the "Overlay'' column. They are Abs,
Imp, CallGate, and Res. Abs and CallGate denote procedures that do not
need to be mediated. They are requests, system common, or kernel calls.
Imp denotes an imported procedure (or data). They are procedures or
data from another DLL. They do not need to be mediated. Res denotes
resident code or data. These might need to be mediated, depending on
what model of computation they were compiled.

You should be concerned with procedures, not data. This is explained a
little later. Resident data can be readily differentiated from resident
procedures. Data will have the selector value of the data segment. This
can be found by looking at the "Class" column in the first part of the map.
Large model DGroup consists of (at least) Data and Constants. As can be
seen in the "Name" column of the Data class (and Const class), the .
selector value is 0084h.

The second part of the map file (headed by "Publics by name") identifies
all the resident procedures. (Those publics that are overlay type Res and
do not have a selector value of 0084h. This is the 4-digit value before the
colon, in the third column.) In this example, the resident procedures are
CheckErc, FatalError, and TheCall. (Note that public resident data are
fDevelopment and sbVerRun, but you do not need to be concerned with
these.)

Having identified the resident procedures, you can eliminate those that
are compiled in large model (and hence do not need to be mediated).

In this case, the only procedure compiled in large model is TheCall.

Our list consists of CheckErc and FatalError, which need to be placed in
a mediated DLL. If you want to check this, look up the calls in the CTOS
Procedural Interface Reference Manual. The documentation will verify
that they are indeed object module procedures.

The reason you do not need to be concerned with resident data is that all
data associated with CheckErc and FatalError will go away (to the
mediated DLL) when the procedures are placed in the mediated DLL.

D-5

Appendix D

Using a New Mediated DLL
After removing the appropriate procedures to a mediated DLL (see the
next section), your DLL must link with the DLL's import library. This is
done by adding the library name to the [Libraries] field in the Linker
command form or in the :LibraryReferences: entry in the Linker
configuration file.

As the last step, use the map file again to verify that the only resident
procedures are those that you wrote. The mediated procedures will have
an overlay of type Imp.

Creating a New Mediated DLL

D-6

This procedure describes how to set up a mediated DLL when the DLL is
first created.

The procedure described below shows an example that creates a
mediated DLL called Ctos.dll. It is suggested you follow the same
naming conventions used in the example, replacing "Ctos" with the name
of the library you are mediating.

The Development Utilities installs the following files in the directory
[Sys]<Mediator>:

MediatorFirst.obj
Mediator.asm
Mediator.mdf
Mediator.def

To create a mediated DLL:

1. Start the Editor.

2. In the Editor, copy the Mediator.asm file to a new file, for example
CtosMediator.asm.

3. Open the new file.

Appendix D

4. CtosMediator.asm must contain a macro for each procedure you
want to place in your mediated DLL.

Add one new line for each procedure you intend to export . The
format is

%Mediate(ProcedureName,N)

where

N is the total number of bytes in the parameter list for the
procedure. Parameters that are described as a byte should be
counted as two (2) bytes because parameters are always pushed onto
the stack with word-alignment. N should never be an odd value.

ProcedureName is the name of the procedure.

Example:

%Mediate(CloseByteStream,4)
%Mediate(OpenByteStream,24)

5. Assemble the file, creating a new mediator object file, as shown in
the example below.

Assembler
Source Files CtosMediator.Asm
[Errors only? J
[Macro expansion (GenOnly))
[object file) CtosMediator.Obj
[Print file
[Error file
[List on pass l?
[:fl:
[:fO: (Sys)<Edf>)

6. Using the Editor, copy Mediator.def to a new file, for example
Ctos.def.

7. Open the new module definition file.

D-7

AppendlxD

D-8

8. Change the entry MediatedDll, as shown below, to use the name of
your DLL. We are using Ctos as the example here.

LIBRARY MediatedDll INITINSTANCE InitMediator

becomes

LIBRARY Ctos INITINSTANCE InitMediator

9. Add one new entry to the EXPORTS section for each of the
procedure names that you added to mediator file in step 4. The
format is

ProcName = 1 ProcName

where

ProcName is the name of the procedure, and

1 ProcName

is the name of the mediated procedure which eventually calls
ProcName. l_ProcName was created when you assembled
CtosMediator.Asm.

Clients of the mediated DLL call CloseByteStream, but
(transparently to the client,) the DLL routes the call to
l_CloseByteStream which in turn calls CloseByteStream.

Note: Mediation requires that the mediated DLL's stack segment be
big enough to accommodate all calls that any single one of the
medium-model procedures you include might make. The
Mediator.def file sets stack size to 4096 to allow for this. This is
the recommended size for CTOS III. If you experience problems
in using the medium-model routines which you think may be
stack related, try increasing 4096 to a larger value.

Note also that reducing the size of this parameter does not
actually reduce memory requirements since the paging service
allocates memory in 4K-byte increments even if only one byte is
needed.

Appendix D

10. Use the Module Definition command to create the object and
imports files.

Module Definition
Input file (.def)
[Object file]
[Imports file]
[List file]
[Suppress warnings?]
[Suppress ordinals?]
[Upper case?]

Ctos.def
CtosDef.obj
Ctosimp.Lib
CtosDef.list

11. Link the DLL. A sample command form is shown below:

Link V8
Object modules
Run file
[Map file]
[Publics?]
[Line numbers?]
[Stack, Dgroup heap size]
[Max array, data]
[Min array, data]
[Run file mode]
[Version]
[Libraries]
[DS allocation?]
[Symbol file]
[Copyright notice?]
[File to append] ·
[Linker config file]

@LinkCtosDll. fls
Ctos.dll

0 0
0 0
Protected

(CtosDll)

LinkCTOSDll.fis contains the following object module files:

MediatorFirst.obj, CtosMediator.obj, CtosDefobj

Ensure that the segment ordering module, MediatorFirst.obj, is
listed first in the Object modules field of the Link VS command.

D-9

Appendix D

In the example above the file LinkerConfig.sys contains:

:LibraryReference:CtosDll
:LibraryFile: [Sys]<Sys>Ctos.lib
:LibraryFile: [Sys]<Sys>CtosToolKit.lib
:LibraryFile: [Sys]<Sys>Enls.lib

Note: For some compiler-specific object modules, the Linker sets
· [DSAllocation?] to Yes. Therefore, it is recommended that you
explicitly set [DSAllocation?] to No, even though this is the
default.

What Does the Mediator Do?

0-10

The mediator changes the large model environment (where DS doesn't
equal SS) to a medium model environment. It does this by setting DS
and SS equal to the value of the mediated DLL's DGroup. Note that this
implies that the mediated DLL must have some stack. The following
discussion gives details.

Mediated procedures must be kept in a mediated DLL. Mediated
procedures cannot be linked into a client DLL. Instead, the client DLL
links with the mediated DLL's import library (in the previous example,
Ctoslmp.lib.)

In the previous example given for the procedure, an envelope is created
in CtosMediator.obj for each procedure listed in CtosMedi.ator.asm.
These are each named l_ProcName, where ProcName is the name of the
medium model procedure.

The mediator consists of a series of steps that are sandwiched around the
call to the actual medium model procedure. In effect, the mediator
changes the large model environment into a medium model environment
in which the medium model procedure can be executed, and restores it
upon completion.

For example, a function in the client DLL calls CloseByteStream.
Ctos.dll is loaded and the address of the call is fixed up to the address of
l_CloseByteStream. The reason this occurs is that when the client DLL
was linked with Ctoslmp.lib, the Linker put in information that equated
CloseByteStream with l_CloseByteStream. Control then passes to
l_CloseByteStream which:

Appendix D

1. Saves DS and SS.

2. Changes DS to the DGroup of Ctos.dll.

This is necessary because the medium model procedure may use
module-level data. This data is made part of the DGroup for the
DLL at link time.

3. Locks out other callers by calling SemLock.

4. Copies parameters from the caller's stack to the Ctos.dll's stack.
This allows the mediator code to change the value of SS to that of
Ctos.dll.

Since the Ctos.dll stack segment is part of its DGroup, SS will equal
DS, thus allowing the medium model code to execute correctly.

5. Sets the value of SS:SP to the proper address in the Ctos.dll stack.

6. Calls the medium model function CloseByteStream.

After CloseByteStream returns, the following steps are executed:

1. Restores the caller's stack, including restoring DS and SS:SP to the
original values.

2. Releases the semaphore acquired in step 3 by calling SemClear.

Control then returns to the client DLL.

D-11

Appendix E
Version 4 Link Command

Introduction
This appendix describes those features of the Link command and related
files where there are differences from the Link V6 and Link VS
commands. (For information on Link V6 and Link VS, see Section 3,
"Using the Linker Command Forms.")

When to Use the Link Command
It is generally recommended that you use the Link VS (Version 8) or
Link V6 (Version 6) commands instead of the Link (Version 4)
command, since these commands allow you to take better advantage of
the newest features of the operating system.

However, the Link command is supported for backwards compatibility.
You can use Link to link real mode programs that run on all of the
following systems:

• Virtual memory operating systems

• Protected or real mode workstation operating systems without
virtual memory

• CTOS/XE real mode processors

E-1

Appendix E

Table E-1 shows the capabilities of the Link command in detail.

Linking Command

Creates

Executes On

Execution Mode

DLL Support

Table E-1. Capabilities of the Link Command

UnkV4

V4 Run File

CTOSI
BTOS
XE/BTOS
CTOS/SRP
CTOSll
BTOSll
CTOSNM
CTOS/XE
CTOSlll

Real

·No

Link User Interface
As explained in Section 3, there are three command forms: Link VS,
Link VG, and Link. Each produces a different run file. However, ifyou
already know about one command, you will be familiar with the others
even if you haven't used them. The few differences in the command form
fields are discussed below.

Differences Between Linker Command Forms

E-2

• The command form names are Link VS, Link VG, and Link. The
names are different because each command is a different command
case (produces a different default run file type).

• The Link command contains the parameter fields [Max memory
array size] and [Min memory array size] in place of the Link VS and
Link VG command parameter fields [Max array, data] and [Min
array, data].

All the other command form parameter fields are the same. A
description of each field is given in Section 3, "Using the Linker
Command Forms."

Appendix E

Validity of Run File Mode Parameters With the Link Command

Table E-2 indicates whether or not a run file mode parameter is valid
with a Link command form. The value Yes means that the keyword is
valid with the Link command form. The value No means that the
keyword is invalid.

Table E-2. Validity of Run File Mode Parameters with Link

Run File Mode Parameter

Keyword

V4

No

Yes

Real

Protected

GDTProtected

HlghMemGDTPtotected

HlghMemProtected

LowDataGDTProtected

NRelProtected

CodeSharingServer

HighMemCodeSharingServer

SuppressStubs

PMOS

Valid

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

Yes

No

E-3

Appendix E

Using Overlays

For Version 4 run files, the Linker can create overlays for use with the
virtual code management facility.

Under CTOS III, all run files are paged into memory on demand. Under
CTOS III, the virtual code (overlay) segments of Version 4 run files are
treated the same as the resident segments; they are paged in on demand.
(For more information on the paging service, see the CTOS Operating
System Concepts Manual.)

For information on how to create overlays, see "Examples" in Section 3
and "Program Memory Requirements" in Section 6.

Grouping Segments

The Linker combines all the segments of a group into one segment, which
is addressed with one selector. However, in a Version 4 run file other
portions of the program may fall between the beginning and the end of a
group, as long as the distance from the beginning to the end of the group
does not exceed 64K bytes.

Version 4 Run File Formats

E-4

Link creates a Version 4 run file by default. A Version 4 run file is
executed in real mode only. For this reason, its run file format is fairly
straightforward. (It is similar to the Version 6 run file format, but it has
fewer tables.) See Figure E-1. The run file header consists of regions
1 and 2 in the figure. These regions correspond to the numbered
comments below:

1. The run file header fields are described in detail later in Table E-4.

2. Two tables in the header are an !DIV Instructions Table and the
Relocation Entries Table. (See Table E-3 for a description of each of
these tables.)

Following the run file header, the run file code and data start. If there
are any overlays, these are contained in the overlay region beyond the
code and data.

Table Name

Header

IDIV Instructions
Table

Relocation Entries
Table

Appendix E

Figure E-1. Version 4 Run File Format

(i) { 1----He-ade_r ---i

0 { Relocation Entries Table

1---------l

IDIV Instructions

Code and Doto

Overlays (if any}

597.E-1

Table E-3. Version 4 Run File Header Tables

Description

See Table E-4 below.

Contains the locations of IDIV instructions. (This is needed to
handle a bug in early versions of the 80186 chip.)

Contains the locations in the run file code or data to which the
loader writes data when a run file is loaded. The data written is the
address of a segment in a long pointer.

E-5

Appendix E

Version 4 Run File Header

The Version 4 run file header fields is shown in Table E-4.

Table E-4. Version 4 Run File Header Fields

Size
Offset Field (bytes) Description

0 wSignature 2 Run file signature = "WG"

2 ver 2 Run file version = 04

4 cpnRes 2 Run file size (in paragraphs).

6 iRleMax 2 Maximum relocation entry index
(maximum number of fixups minus 1).

8 cParDirectory 2 Size of run file header (in paragraphs),
including all tables.

10 cParMinAlloc 2 Minimum memory array size (in
paragraphs).

12 cParMaxAlloc 2 Maximum memory array size (in
paragraphs).

14 saStack 2 Initial stack segment: initial value put in the
SS register.

16 raStacklnit 2 Initial stack offset: initial value put in the
SP register.

18 wChkSum 2 Run file checksum.

20 raStart 2 Initial code offset: initial value put in the
IP register.

22 saStart 2 Initial code segment: initial value put in the
CS register.

24 rbRgRle 2 Offset from the start of the run file to the
start of the Relocation Entries Table.·

26 iovMax 2 Maximum overlay index (one less than the
number of overlays).

continued

E-6

Appendix E

Table E-4. Version 4 Run File Header Fields (cont.)

Size
Offset Field (bytes) Description

28 saData 2 Initial value of the data segment: initial
value put in the DS register.

30 allFs 2 OFFFFh.

32 verAlt 2 OOOOh.

34 rbrglDiv 2 Offset from the start of the run file to the
start of the IDIV Instruction Table.

36 cl div 2 Number of entries in the IDIV Instruction
Table.

38 ParaPad 10 Pad with nulls to paragraph boundary.

48 rgrleTable Relocation Entries Table Its size is [4 *
cldiv] bytes. It starts at an offset of
rbrglDiv = 48 + [4 • (iRleMax + 1)] bytes.

ldivTable IDIV Instruction Table. starts here. Its size
is 4 * (iRleMax + 1)] bytes.

E-7

Appendix E

Version 4 Map File
The Linker produces a map file containing information about the link.
You can specify whether or not the map file displays public symbols or
line numbers.

A Simple Map File

If you use the default values for [Publics?] and [Line numbers?] in the
Link command form and omit the Linker configuration file entry
:Details:, the Linker produces a simple map file. (Another way to
generate this map file is to enter the default value No for each parameter
just mentioned.) ·

Example E-1 shows a simple map for a Version 4 run file. It consists of
three main components:

• Segment entries describing the size, location, and name of each
segment

• The program entry point

• A breakdown of the warnings and errors detected in the link

Addresses

E-8

From left to right in Example E-1, the first three columns show the
beginning and ending addresses and the length of each segment. The
beginning addresses under the column heading Start are offsets. The
offsets are relative to the base memory address at which the operating
system loads the run file. This base address is determined at run time.

Appendix E

Example E-1. Sample Version 4 Map File

Linker (version)

Run file V4>Sample.run
Link Start Time 01/30/92 13:51:31

Conf ig File T~stConfig.sys

Start Stop Length Name Class

OOOOOh OOOOOh OOOOh ??SEG ??SEG
OOOOOh OOOOOh OOOOh MEMORY MEMORY
OOOOOh OO?FFh 0800h STACK STACK
00800h 00810h OOllh DATA DATA
00812h 0081Dh OOOCh CONST CONST
00820h 00822h 0003h STATICS CONST
00830h 0086Dh 003Eh SAMPLE CODE CODE
00870h 008A4h 0035h FatalPro CODE

Program entry point at 0082:0002

No warnings detected
No errors detected

Names

The fourth column in Example E-1 lists the name of each segment. Note
that in the example case of the name SAMPLE_CODE, class Code
segment, the name shown is not the file name of the module.

In most high-level language programs, you assign the module name at
the beginning of the module. The compiler creates the code segment
name by appending the suffix _CODE to the assigned module name. The
resulting name is reported in the map file by the Linker.

In assembly language, you can directly name each segment as you wish.
The Assembler does not append a suffix to the segment name.

E-9

Appendix E

Many programmers choose to assign the same name as both the file
name of a module and the module name within the program, for easy
reference. This convention is particularly helpful when you are using the
map to decide what segments to place in overlays, because file names,
and not internal module names, are entered in the Object modules field of
a Link command form. You are not required to use this convention,
however.

Classes

The fifth (rightmost) column in the map lists the class of each segment.
The Linker groups segments by class and uses class to assign order in
the program.

Map Files With Public Symbols, Line Numbers, and Details

Example E-2 shows the same basic map file just shown in Example E-1.
Now, however, the map file shows public symbols, line numbers, and
other details about parameter information. You can generate this

·additional information by specifying Yes for the Link command line
parameters [Publics?] and [Line numbers?] and for the configuration file
entry :Details:.

Library References

Example E-2 shows library reference information. This information
appears in the map file when you enter Yes for the :Details: option in the
Linker configuration file. Library information can include

• The library name and page size (in bytes) for each library the Linker
searches

• . The library version, if available

Public Symbols

E-10

Following the segment entries, public symbols are first sorted
alphabetically and then numerically. To request that public symbols be
displayed, enter Yes for the [Publics?] parameter in the Link command
fo~ .

Appendix E

Example E-2. Sample Map for a Version 4 Run File
Showing Lists of Public Symbols, Line Numbers, and Details

(Part 1 of 3)

Linker (version)

Run file V4>Sample.run
Link Start Time 01/30/92 13:51:31

Config File TestConfig.sys

Library Reference: (Default) from file TestConfig.sys

Library: [Sys]<Sys>ENLS.Lib
Block size: 00512
Version: xl3.0.E (tuesday january 7, 1992, 16:16)

Library: [Sys]<Sys>Ctos.lib
Block size: 00512
Version: xl3.0.E (tuesday january 7, 1992, 16:12)

Library: [Sys]<Sys>CtosToolKit.lib
Block size: 00512
Version: xl3.0.E (tuesday january 7,

Start Stop Length Name

OOOOOh OOOOOh OOOOh ??SEG

1992, 16:14)

Class

??SEG
OOOOOh OOOOOh OOOOh MEMORY MEMORY
OOOOOh 007FFh 0800h STACK STACK
00800h 00810h OOllh DATA DATA
00812h 0081Dh OOOCh CONST CONST
00820h 00822h 0003h STATICS CONST
00830h 0086Dh 003Eh SAMPLE CODE CODE
00870h 008A4h 0035h FatalPro CODE

E-11

Appendix E

E-12

Example E-2. Sample Map for a Version 4 Run File
Showing Lists of Public Symbols, Line Numbers, and Details

(Part 2 of 3)

Publics by name Address Overlay

AllocPSub FF1F:l03Ah Abs
AltDmaMapBufferFast FESF: 1C32h Abs

·AltDmaUnmapBuffer FESF: 1C34h Abs
AltMapDmaBufferFast FE5F:lC32h Abs
AltUnmapDmaBuffer FESF: 1C34h Abs
AsiaNub FE7F: 1A3Eh Abs
AssignKbd FFEF:0330h Abs
AssignVidOwner FFEF:033Eh Abs
BitBlt FFCF:0532h Abs

Publics by value Address Overlay

SystemCommonConnect FDFF:2230h Abs
ConnectProcedure FDFF:2230h Abs
SetVideoLocators FE3F: 1E30h Abs
GetModuleAddress FE4F: 1D30h Abs
UpdateStatistics FESF: 1C30h Abs
Codeikbd FE6F: 1B30h Abs
DiscardLocalPageMap FE7F:lA30h Abs
SemQuery FE8F:l930h Abs

Line numbers for SAMPLE CODE

00002 0083:0000H 00005 0083:0000H 00008 0083:0000H
00010 0083:0000H 00013 0083:0000H
00015 0083:000DH 00016 0083:0010H 00017 0083:002DH
00018 0083:003CH 00019 0083:0000H
00020 0083:0008H 00021 0083:000DH
Program entry point at 0083:0000

Appendix E

Example E-2. Sample Map for a Version 4 Run Fiie
Showing Lists of Public Symbols, Line Numbers, and Details

(Part 3 of 3)

Linker Details

Linker Information:

Run file V4>Sample.run
Run file format Version 4
Stack 02048
Run file mode OOOlh; Real (default)
CharacterCodeSet: SingleByte

Version xC
Max array 00000
Min array 00000
DS Allocation not used(default)

Class ordering requested
??SEG MEMORY STACK DATA CONST CODE

Configurable Linker work areas:
Area Name Sectors Used Max Sectors
Rg!dct 00000 00032 (default)
RgPdhCG 00000 00032 (default)
RgRlePStub 00000 00032 (default)
RgRle 00001 00127 (default)
WorkingData 00044 01024 (default)
RgRqLable 00000

00127 (default)

Link End Time : 01/30/92 13:51:36

No warnings detected
No errors detected

The Address column in Example E-2 contains the notation
XXXX:YYYYh. This is the hexadecimal address of the public symbol.

The Overlay column contains Res if the symbol is in the resident portion
of the program, an integer (n) if it is in the nth overlay, and Abs if it is a
call gate to an operating system procedure.

E-13

Appendix E

Line Numbers

The public symbol lists are followed by a list of line numbers. To request
line numbers separately, enter Yes in the [Line Numbers?] field in the
Link command form.

Line numbers are intended for use during debugging. They allow you to
examine a known part of a program at a known address, even though
there is no public symbol at that address. The addresses, however, are
relative to the beginning of the run file, so you must do some arithmetic
to use them.

Command Form Parameter Details

Towards the end of the map file in Example E-2, there are other details
about Link command form parameters. (See the portion of the map
entitled "Linker Information." It is located between the program entry
point line and the error and warning messages at the very end of the
map.) These details are displayed along with the library reference
information when you specify Yes for the :Details: option in the Linker
configuration file.

Command form parameter details can include the following information:

Run file version
Stack size
Heap size
Maximum array
Maximum data
Minimum array
Minimum data
Run file mpde
Version (as specified on the command line)
Whether DS Allocation is used

Configurable Linker Work Areas

E-14

Finally, just before the error and warning messages at the very end of
the map file is the portion of the map called "Configurable Linker work
areas," This portion contains information about the Max Table
parameters that you can define in the Linker configuration file.

Glossary

A
absolute segments

An absolute segment that has a negative frame value is considered to be
a call gate. Each system common, kernel and request procedure called in
a program receives a separate segment.

An absolute segment whose frame value is zero or greater is considered
to be an absolute segment at the physical segment address specified by
the frame value.

absolute symbol

A symbol that is a call gate to an operating system procedure.

alignment attribute

Specifies whether a segment element can be aligned on a byte, word, or
paragraph boundary.

archive (POSIX/UNIX)

c

An archive file or archive library is a collection of data gathered from
several files. Each of the files within an archive is called a member. The
command ar(l) collects data for use as a library.

Character Code Set

An entry in the runfile header that specifies the character set designator
for the application. It may be specified to the Linker using
LinkerConfig.sys. Character Code Set values may specify character sets
such as Japanese, Korean, Chinese, or single byte (the default).

class name

An arbitrary symbol used to designate a class.

Glossary-1

Glossary

CodeSharingServer

The runfile mode that allows multiple installations of the same server on
the same processor to share code (local descriptor table-based only).

Code View

A window-oriented menu-driven debugger implemented by Microsoft
that allows tracing and debugging for high-level-language and
assembly-language programs.

Conditional Protected

D

The run-file mode that specifies that the run file runs protected if the
internal operating system version is the specified level or greater;
otherwise, it runs in real mode.

DGroup

The name of the group oflogical segments that make up the automatic
data segment. Each of the logical segments stores a specific type of data.
Typical contents of DGroup may include initialized external and static
data, the stack, constants. See also group.

DS allocation

An option in the Linker that locates DGroup at the end of a 64K-byte
segment addressed by the DS register.

Dynamic Link Library (DLL)

A dynamic linked library is a loadable file that contains code that an
application can call and cause to be run. The code in a dynamic linked
library would in the past have had to be linked into the application. The
format of a dynamic linked library is NOT the same as the format of a
CTOS object module library. The format of a dynamic linked library IS
identical to the format of a version 8 runfile.

Glossary-2

Glossary

E
export

A procedure in a dynamic link library (DLL) that may be used by another
program or DLL.

external reference

A reference from one object module to variables and entry points of other
object modules. ·

extraction

F

.The copying of a module from a library into another file or into a program
being linked. Extraction does not delete the extracted module from the
library.

fixups

Sometimes a compiler or an assembler encounters addresses whose
values cannot be determined from the source code. One example is
addresses of external symbols.

Addresses for fumps can be determined either at link time or load time.

Typically, a translator emits fixup information for the Linker to
determine the correct address. The Linker can fully resolve all
references except those that refer to the segment address of a relocatable
segment.

Since run-file code and data is relocatable, the Linker does not have
enough information to determine the segment location portion of a long
address. The Linker fills in all known portions of the address and
records the location of the indeterminate portions. When the segment is
loaded, the Loader has the information needed to complete the address.
The Loader "fixes up" the address by writing the address at the location
recorded by the Linker.

Glossary-3

Glossary

G
GDTProtected

The run-file mode of a run file produced by the Linker can be executed in
protected mode under protected mode version of the operating system
and will get its segment selectors from the global descriptor table.

global data segment

A data segment defined by a dynamic-linked library module, one copy of
which is shared by all client processes.

global descriptor table (GDT)

A table that is used to address segments within a protected mode system.
Within the GDT, there are segment descriptors that describe all of the
segments that comprise a system's global address space. There is always
one GDT, which is always in effect. See the iAPX 286 Programmer's
Reference Manual and the 80386 Programmer's Reference Manual.

global initialization

DLL initialization procedures called once by the first DLL client.

group

H

A named collection of linker segments that is addressed at run time with
a common hardware segment register. To make the addressing work, all
the bytes within a group must be within 64K of each other.

The run-file mode of a run file that can be executed on the NGEN Series
386i processor in memory configurations that exceed 16M bytes.

HighMem

The runfile mode of a runfile that can be executed on the NGen
Series 386i processor in memory configurations that exceed 16Mb.

HighMemCodeSharingServer

The runfile mode that allows multiple installations of the same server on
the same processor to share code (local descriptor table-based only). Can
be executed on the NGEN Series 386i processor in memory
configurations that exceed 16M bytes.

Glossary-4

Glossary

HighMemGdtProtected

The run-file mode of a run file that can be executed in protected mode
under protected mode version of the operating system, will use the global
descriptor table, and can be executed on the NGEN Series 386i processor
in memory configurations that exceed 16M bytes.

HighMemProtected

The run-file mode of a run file that can be executed in protected mode
under protected mode version of the operating system, will use the local
descriptor table, and can be executed on the NGEN Series 386i processor
in memory configurations that exceed 16M bytes.

import

A procedure call. When invoked, it accesses code in a DLL.

import library

A library file that contains the names of dynamic link libraries (DLLs)
and their procedures that can be called by a client. There is a separate
object module for each procedure. Each module contains the name of the
DLL and the procedure. The Linker uses this library to resolve external
references to DLL procedures in client programs.

instance initialization

L

DLL initialization procedures called each time a client calls a DLL
procedure.

Librarian

A program development utility that creates and maintains libraries of
object modules. The Linker can search automatically in such libraries to
select just those object modules referred to by a program.

Glossary-5

Glossary

library block

A basic library unit. Each object module in a library is aligned with the
beginning of a block. The default block size is 512 bytes, but the size can
be changed through a parameter to the Librarian command.

Linker

A program development utility that combines object modules (files
produced by compilers and assemblers) into run files.

Linker segment

A single entity consisting of all segment elements with the same segment
name.

Loader

A part of the operating system that reads a run file, copies part of it to
memory, gives it the resources it needs to execute, and puts it on the run
queue.

local descriptor table (LDT)

A table that is used to address segments; it is maintained for each··
program executing in protected mode. Each code or data segment in the
program has a unique selector (an index into the table) and a
corresponding unique entry in the LDT. The LDT is an array of these
entries, called descriptors, which are eight bytes long and contain various
information about the segment. Each program has its own LDT, which is
in effect when the program is executing. See the iAPX 286 Programmer's
Reference Manual and the 80386 Programmer's Reference Manual.

LowDataGdtProtected

The runfile mode that specifies that the runfile's data should be made
accessible to Real mode programs. The runfile produced by the Linker
can be executed in Protected mode under Protected mode version of the
operating system and will use the global descriptor table.

Glossary-6

Glossary

M
map file

A file, created by the Linker, that contains an entry for each Linker
segment and shows the relative address and length of the segment in the
memory image. It can also list public symbols and line numbers with
addresses, library references specified in the Linker configuration file,
and information on other options specified in a link.

memory array

Data space allocated at load time above the highest address of a
program.

module

Generally means an object file, the contents of an object file within a
library file, or a DLL itself.

module definition file

N

A file that defines the specific requirements of a dynamic link library
(DLL) or DLL client.

Nonshared segment

A data segment defined by a dynamic-link library that is not shared by
multiple client processes; the system loads a separate copy of an
N onshared data segment for each new client. The selector for such a
segment comes from the client's LDT. All copies of this segment have the
same selector value. Every time a procedure in a dynamic linked library
with an Nonshared segment is called, a copy of the Nonshared segment is
made for the caller's exclusive use. The converse is shared data.

NRelProtected

The run-file mode that specifies that the run file should be run only in
Protected mode. Since the relocation reference table is not required in
the run file header in Protected mode, specifying NRelProtected can
reduce the size of the run file header by the size of the relocation
reference table.

Glossary-7

Glossary

0
object module

A file that is the result of a single compilation or assembly. A single
object module is contained in an object module file (.obj), while many
object modules can be contained in a library file (.lib).

Object Module Format (OMF)

The set of data formats of the various types of records that can make up
an object module file. (See Appendix B.)

object module libraries

An object module library is a file that contains distinguishable object
modules and a table that lists public names and the location in the
library of the module in which they occur. This is what historically the
term CTOS library has meant. An object module library is created by the
Librarian from one or more object modules.

offset

The relative distance in bytes of a memory location from the beginning
of a segment.

overlay

p

page

A code segment made up of the code from one or more object modules.
An overlay is loaded into memory as a unit and is not permanently
resident in memory. Overlays are not supported in V8 and V6 run files
on CTOS V Series operating systems: the paging service swaps program
sections into and out of memory instead.

A 512-byte section of memory or a file; also called a sector.

paragraph

A 16-byte section of memory or a file.

Glossary-a

Glossary

Protected Mode Operating System (PMOS) server

A product that makes it possible for real mode versions of CTOS to run
servers in protected mode. PMOS is included in this manual for historic
reasons only. For details, see your PMOS documentation.

protected virtual address mode (protected mode)

A mode of operation for the 80286 and 80386 microprocessors. It
determines how memory is addressed. In protected mode you can
address more than lM byte of memory, and programs are prevented from
accidentally using or modifying the code or data of other programs.
80286 and 80386 microprocessors can operate in either protected mode
or real mode.

Prototype Descriptor

A data structure used by the protected mode operating system that
contains a prototype of the hardware System Segment Descriptor. The
information contained in the data structure includes the segment base
(i.e., the memory address at which the segment starts), the size of the
segment, and the segment usage flags. In the run file, the segment base
field of the prototype of the System Segment Descriptor contains the
address (lfa) in the run file where the segment starts.

Note that the memory address at which the segment starts is not known
when the run file is created; this data is written in by the Loader when it
loads the run file. Therefore, anything in the segment base fields in a
prototype descriptor in the runfile is overwritten when the prototype
descriptor is loaded into memory. Since this data is lost, the segment
base fields in a prototype descriptor for a segment in the runfile are used
to hold the logical file address in the runfile of the start of that segment.

Some prototype descriptor information may be specified in the module
definition file.

public symbol

An ASCII character string associated with a public variable, a public
value, or a public procedure.

public variable

A variable whose address can be referenced by a module other than the
module in which the variable is defined.

Glossary-9

Glossary

R
real address mode (real mode)

A mode of operation for the 8086 and 80186 microprocessors. It
determines how memory is addressed. In real mode, you can address up
to lM b1te of memory. 8086 arid 80186 microprocessors operate in real
mode at all times. 80286 and 80386 microprocessors can operate in
either real mode or protected mode.

relocation

The operating system relocates a program image in available memory by
supplying physical addresses for the logical addresses in the run file at
load time.

relocation directory

An array of locators used by the operating system in relocating the
program image.

resident

The resident portion of a program remains in memory throughout
execution. See also overlay and Virtual Code Management.

resource data

An item of data that is not part of the runfile proper but is inserted into
the run file so that file transfer processes (i.e., Copy, Backup, Restore,
etc.) that move the run file also move the resource. Resources are added
to a file, deleted from a file or edited by the Resource Librarian.
Examples of resources could include the symbol file, a nationalization
file, etc.

Resource Descriptor Table

A table that contains a information about resources inserted into a file.
It also specifies the type of resource, the offset to the start of the resource
and the number of bytes in the resource.

run file

The image of a program (in relocatable form) linked into the standard
format required by the operating system loader. The run file consists of
a header and a memory image.

Glossary-1 O

Glossary

s
sector

A 512-byte section of memory or a file.

segment

A contiguous (usually large) area of memory that consists of an integral
number of paragraphs. Segments are usually classified into one of three
types: code, static data, or dynamic data. Each kind of segment can be
either shared or nonshared.

segment element

A section of an object module. Each segment element has a segment
name.

Shared Segment

Only one copy of this type of segment is made by the loader when a
runfile is loaded. All users that access the runfile access this one copy of
the segment. A shared segment can contain either code or data. The
converse is a NonShared segment.

short-lived memory

u

An area of memory in an application partition. When a program is
loaded, the operating system allocates short-lived memory to contain its
code and data. Short-lived memory can also be allocated directly by a
client process in its own partition. Common uses of short-lived memory
are inputJoutput buffers and the Pascal heap.

unresolved external reference

A public symbol that is used by some module but not defined by any of
the modules being linked.

Glossary-11

Glossary

v
Virtual Code Management

A method of virtual memory supported by the CTOS operating systems.
(On Virtual Memory CTOS III systems, the paging service performs this
function instead if the run file is a Version 6 or Version 8. In these cases,
calls to virtual code management are ignored.) The code of each program
is divided into variable-length segments that reside on disk in a run file.
As the program executes, only those code segments that are required at a
particular time actually reside in the main memory of the application
partition; the other code segments remain on disk until they, in turn, are
required. When a particular code segment is no longer required, it is
simply overlaid by another code. segment.

Glossary-12

Index

B
binary resource file, 13-5, 13-6

c
class order

configuration file, 6-16
specifying, 6-16

code segment, 6-9
Code statement, 12-2, 12-4

example, 12-5
parameters, 12-5

communal name records, C-4
import and export definition, C-4
library module, C-4
local variables, C-4

communal segment
far, C-4
huge, C-4
near, C-4

cross-reference listing
example, 8-5
parts, 8-4

CTOS Microsoft C, D-2
stack segment (SS), D-1

D
data file, 13-5, 13-6
data segment (DS), D-1
Data statement, 12-2, 12-6

example, 12-7
parameters, 12-7

Description statement, 12-2, 12-8
example, 12-8
parameters, 12-8

development utilities, 1-1, 1-2
DGroup, 3-7, 4-3, 5-11, 6-6

DS register, 5-11
errors, A-5, A-12
locating, 3-15
uninitialized variables, 5-11

DLL, 13-5, 13-6, 5-1, D-1, D-2
accessing, 9-3, 9-4
building, 9-1
calling medium model procedures,

D-1
creating, 9-3
creating a mediated, D-6
creating client interface, 11-3
large model, D-1, D-10, D-2
map file, D-4
mediated, D-1, D-6
medium model, D-1, D-10, D-2
porting, 9-1

DLL client, 9-6
DLL procedures, 9-6
DS allocation, 3-5, 6-3, 6-5, 6-6

advantages, 6-7
errors, A-4, A-5
specifying, 3-15, 3-34

dynamic link library (See DLL)

lndex-1

Index

E
ExeType statement, 11-5, 12-2,

12-9
Exports statement, 12-10, 12-2

example, 12-11
parameters, ; -12-11

F
First.asm file, 5-9, 6-10, A-11, A-4,

A-5
example, 6-12, 6-13, 6-15

fixed partition, 6-1
function

mediated, D-1

H
HeapSize statement, 12-2, 12-12

example, 12-12
parameters, 12-12

import definition records, C-7
import library, 9-2, 9-7

contents, 9-7
creating, 10-2, 11-4
using, 11-4

Imports statement, 11-4, 12-2,
12-13

example, 12-14
parameters, 12-13

Intel object module formats (OMF),
C-1

lndex-2

L
libary files

examples, 3-20
searching, 3-20

Librarian
blocks, 8-6
command form, 8-1
cross-reference listing, 8-4
error messages, A-1, A-3
library index, 8-9
managing object modules, 7-2
public symbols, 8-9
status codes, A-18
uninitialized variables, 8-9
using, 1-4, 7-1, 7-3

Librarian command form
parameter fields, 8-2
using, 8-1

Librarian, 7-1
library

components, 8-7
conserving space, 8-7

library block size, 8-6
library file

creating, 3-14
specifying, 3-35, 8-2

library index, 8-9
procedures, 8-9
public symbol names, 8-9

library reference, 3-28
examples, 3-29
specifying, 3-35

library search list, 3-29
searching, 3-30

Library statement, 12-2, 12-15
example, 12-16
parameters, 12-15

Link command, E-1
capabilities, E-2
run file mode parameters, E-3
user interface, E-2
using, E-1

Link command form
parameter details, E-14

Link V6, 3-3
Link VS, 3-3
Linker

code segment, 6-9
command form selection, 3-3
command form, . 3-3
command forms, 2-3
configuration file, 2-3, 3-1, 3-24
configuring, 3-24
customizing segment ordering,

6-10
DGroup, 5-11
error messages, A-1, A-3, A-4
file types, 2-4
First.asm file, 6-10
group, 5-11
heap size, 3-7
input, 9-2
library files, 3-14
library reference, 3-28
library search list, 3-29
map file, 3-6, 4-1
memory array, 6-7
memory requirements, 6-1
memory space, 6-1
object module formats, C-1
object module, 2-3, 3-6
overlays, 6-1
overview, 2-1

Index

program memory requirements,
6-1

run file mode, 3-5
run file, 3-6
search path, 3-27
segment attribute alternatives,

C-6
segment class order, 3-32
segment limits, 5-15
segment order, 5-15, 6-1, 6-16
segments, E-4
stack size, 3-7, 6-1
status codes, A-18
user interfaces, 2-3, 3-1
using, 1-4
virtual memory management, 6-9
virtual memory size, 3-40

Linker command forms
Link V6, 2-3
Link VS, 2-3
Link, 2-3, E-1
parameter fields, 3-5, 3-6
using, 3-4

Linker commands
differences, E-2
Link, E-1
Version 4, E-1

Linker configuration file, 3-1, 3-24,
6-16

example, 3-25
parameters, 3-31
specifying, 3-17, 3-33

Linker errors
causes, A-2
levels, A-2

Linker map file, 4-1
reading, 4-1
simple, 4-1
Version 6, 4-1
Version 8, 4-3

lndex-3

Index

Linker segment order
correcting, 5-9
First.asm file, 5-9
specifying, 5-9

Linker segments
addressing, 5-11
combining, 5-9
creating, 5-8

linking, 9-4
DLL, 5-1
dynamic, 5-1
dynamic and static, 5-2
library search algorithm, 5-2
object module, 5-3
overview, 5-1
pass one, 5-1
pass two, 5-3
passes, 5-1
run file, 5-3
static, 5-1

loader, 2-5
invoking, 2-5

LoadType statement, 12-2, 12-17
parameters, 12-17

M
map file, 2-5, 3-6
mediation, D-1, D-10

using, D-3
memory array, 6-7
memory requirements

estimating, 6-1
memory space

allocating, 6-1, 6-5
memory array, 6-5

Microsoft C compiler
communal name records, C-4

lndex-4

Module Definition command, 9-2
Module Definition command form,

10-1
input, 9-2
object modules, 9-2
output, 9-5, 9-6
output files, 9-2
parameter fields, 10-2
porting programs, 11-5

module definition file, 11-1
Code statement, 12-2, 12-4
CTOS extensions, 11-6
Data statement, 12-2, 12-6
Description statement, 12-2, 12-8
example, 11-2
ExeType statement, 11-5, 12-2,

12-9
Exports statement, 12-2, 12-10
guidelines, 11-1
HeapSize statement, 12-2, 12-12
Imports statement, 11-4, 12-2,

12-13
Library statement, 11-2, 12-2,

12-15
LoadType statement, 12-2, 12-17
Name statement, 11-2, 12-3,

12-18
Old statement, 11-5, 12-3, 12-20
ProtMode statement, 12-3, 12-21
purpose, 11-1
RealMode statement, 12-3, 12-22
RunType statement, 12-3, 12-23
segment attributes, 11-6
Segments statement, 12-3, 12-25
StackSize statement, 12-3, 12-27
statements, 11-2, 12-1
Stub statement, 11-5, 12-3, 12-28
syntax, 11-2
writing, 11-1

module definition statements, 11-2,
12-1

module definition text file
specifying, 10-2

Module Definition utility, 9-1, 10-1
command form, 10-1
error messages, A-25
Intel object module formats (OMF),

C-5
producing DLLs, 9-2
using, 1-4

N
Name statement, 12-3, 12-18

example, 12-19
parameters, 12-18

0
object module

arranging components, 5-4
contents, 9-6
creating, 10-2
examples, 3-17
Intel Object Module Format

(OMF), 9-2
linking, 2-2
segment element, 5-4, 5-5

object module procedures
mediating, D-3

object module, 2-1, 2-4, 3-6, 5-3,
7-3, 9-6

in blocks, 8-8
linking, 7-3
managing, 7-2

Old statement, 11-5, 12-3, 12-20

overlays, 6-9
example, 3-20
linking with, 6-9

Index

sorting procedure names in, 3-23
using, 3-20, 3-21, 6-1

p

Presentation Manager, 9-1
creating resources, 13-2

Presentation Manager programs
porting, 9-1

procedure names
sorting, 3-23

ProtMode statement, 12-3, 12-21
example, 12-21
parameters, 12-21

public symbols, 8-9

R
RealMode statement, 12-3, 12-22

example, 12-22
parameters, 12-22

resource
adding to run file, 13-2, 13-3,

14-2, 14-7, 14-8
defined, 13-3
deleting, 13-4, 14-4, 14-9
extracting, 13-3, 14-4, 14-10
ID, 13-7
identifying, 13-7
listing, 13-4, 14-5
storing, 13-5
type, 13-7

resource ID, 13-7

lndex-5

Index

Resource Librarian
adding resources, 13-2
binary resource file, 13-5, 13-6
command form, 14-1
configuration file, 14-5, 15-1
data file, 13-5, 13-6
DLL, 13-5, 13-6
error messages, A-27
file definitions, 13-6
file support, 13-3
identifying resources, 13-7
run file, 13-5, 13-6
tasks, 13-4
using, 1-4, 13-3

Resource Librarian command form,
14-1

adding resources, 14-2
deleting resources, 14-4
extracting resources, 14-4
listing resources, 14-5
parameter fields, 14-2

Resource Librarian configuration
file, 15-1

example, 15-2
format, 15-1
specifying, 14-5

Resource Librarian, 13-1
resource type, 13-7
resource, 13-1
run file, 2-1, 2-4, 3-6, 5-3, 13-5, 13-6

building, 5-6, 5-13
format, B-8
header fields, B-1
linking, 2-4
version, 3-14

run file mode, 3-9
options, 3-11
specifying, 3-9, 3-36
validity of parameters, E-3

lndex-6

run type record, C-8
RunType statement, 12-3, 12-23

example, 12-24
parameters, 12-24

s
segment attributes, 12-29

default values, 12-31
definitions, 12-30
describing, 11-6
field effects, 12-32
recommendations, 11-6

segment attribute records, C-6
segment element, 5-4, 5-12

class, 5-5
name, 5-5
alignment attributes, 5-12

segment limits, 5-15
segment ordering, 5-15

correcting, 6-14
customizing, 6-1, 6-10
example, 6-14
First.asm file, 6-10

Segment statement, 12-3, 12-25
example, 12-26
parameters, 12-25

stack
correcting overflow, 6-5
reducing, 6-4

stack segment (SS), 5-11
stack size

adjusting, 6-1, 6-4
specifying, 3-37

StackSize statement, 12-3, 12-27
example, 12-27
parameters, 12-27

status codes, A-1

Stub statement, 11-5, 12-3, 12-28
symbol file, 2-5

specifying, 3-16

u
uninitialized variables, 8-9

v
variable partition, 6-1
Version 4 Link command, E-1
Version 4 map file, E-8

addresses, E-8
classes, E-10
details, E-10
example, E-9, E-11
library references, E-10
line numbers, E-10, E-14
names, E-9
public symbols, E-10

Version 4 run file
format, E-4
header fields, B-1, E-6
header tables, E-5
using overlays, E-4

Version 6 map file, 4-1
addresses, 4-2
classes, 4-3
components, 4-1
details, 4-5, 4-10
example, 4-2, 4-6
library reference, 4-5
line numbers, 4-5, 4-9
names, 4-3

Index

protected mode selectors, 4-2
public symbols, 4-5, 4-9

Version 6 run file, 13-3
format, B-10
header fields, B-1, B-5

Version 8 map file, 4-3
example, 4-4, 4-12

Version 8 run file, 13-3, C-5
format, B-8
header fields, B-1

virtual memory management, 6-9
virtual memory size

customizing, 3-40

lndex-7

11
43594969-100

