
CTIX™ OPERATING SYSTEM MANUAL

Version B
Volume 2

Specifications Subject to Change.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, Convergent, CT-DBMS, CT-MAIL, CT-Net,
CTIX, CTOS, DISTRIX, Document Designer, The Operator,

AWS, CWS, IWS, MegaFrame, MightyFrame,
MiniFrame, MiniFrame Plus, Voice/Data Services,

Voice Processor, and X-Bus are trademarks of
Convergent Technologies, Inc.

CTEX is derived from UNIX System V by Convergent
Technologies under license from AT&T. UNIX is a trademark of
AT&T Bell Laboratories.

Material excerpted from the UNIX System V User Reference
Manual, Administrator Reference Manual, and Programmer
Reference Manual is Copyright 1984 by AT&T Technologies.
Reprinted by permission.

This software and documentation is based in part on the Fourth
Berkeley Software Distribution under license from the Regents of
the University of California.

This manual was prepared on a Convergent Technologies
MegaFrame Computer System and was printed on an Imagen
8/300 Laser Printer.

First Edition (November 1985) B-09 -00635-01
Update Notice 1 (May 1986) 09-00793-01

Copyright © 1985, 1986 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. Title to and ownership of the documentation
contained herein shall at all times remain in Convergent
Technologies, Inc., and/or its suppliers. The full copyright
notice may not be modified except with the express written
consent of Convergent Technologies, Inc.

HOW TO USE THIS MANUAL

The CTIX Operating System Manual, Version B, describes the
commands, system calls, libraries, data files, and device
interfaces that make up the CTIX Operating System on
MiniFrame Computer Systems and MightyFrame Computer
Systems. Only internal-use and unbundled software products are
excluded. This manual should always be your starting point
when you need to find the documentation for a CTIX feature
with which you are unfamiliar.

The manual consists of a large number of short entries,
sometimes called "the man pages," after the command which
accesses the entries when they are kept online. Each entry
briefly documents some feature of CTIX. Some features require
longer documentation than an entry in this manual; such features
have an entry that outlines the feature and cross-references the
manual that documents the feature fully. Entries that do not
refer to other manuals are self-contained and are the final word
on the features they describe.

Organizat ion of t h e manual . The entries are organized into
seven sections in two volumes:

Volume 1:
1. Commands and Application Programs.

Volume 2:
2. System Calls.
3. Subroutines and Libraries.
4. File Formats.
5. Miscellaneous Facilities.
6. Games.
7. Special files.

Within each section, entries are alphabetical by title, except for
an intro entry at the beginning of each section.

Entry Tit le Convent ions . An entry title looks like this
example:

erf(3M)

1 11
Entry Type

Section Number

Name

5/86 - 10 -

Name is the name of the entry. Section Number indicates the
section that contains the entry. In this case, the entry is in
Section 3, which is in Volume 2. Entry Type is only on entries
that belong to special categories; refer to the section's intro entry
for an explanation. In this case, a reference to an<ro(3) would tell
you that er/3M) describes functions from the Math Library,
which the C compiler does not load by default.

Finding the entry y o u need. To find out which entry you
need, refer to the following guides:

• The Permuted Index. This indexes each significant word
in each entry's description. It is useful when you only
have a general notion what you're looking for. It is also
useful when you know the name of the command,
function, etc., that you are interested in, but there is no
entry by that name. To simplify its use, a complete
Permuted Index for both volumes is in each volume.

• The Table of Contents. This is a simple list of entries,
by section, together with the entry descriptions. Volume
1 has a Table of Contents for Section 1. Volume 2 has a
Table of Contents for Sections 2 through 7.

• The Table of Related Entries. For Volume 1 only. A
table of entries organized so that related entries are
grouped together.

Section organization. Each section begins with an intro entry,
which provides important general information for that section.

Section 1, Commands and Application Programs, describes
programs intended to be invoked directly by the user or by
command language procedures, as opposed to subroutines, which
are intended to be called by the user's programs. Commands
generally reside in the directory / b i n (for binary programs).
Some programs also reside in / u s r / b i n , to save space in /b in .
These directories are searched automatically by the command
interpreter called the shell. Commands that were not
transported from UNIX System V reside in / u s r / l o c a l / b i n ; this
directory is recommended for locally implemented programs.
Some administrative commands reside in / e t c and various other
places. The / e t c directory is searched automatically if you are
logged in as root; otherwise type out the full path name given
under SYNOPSIS or change the P A T H environment variable to
include the command's directory.

Section 2, System Calls, describes the entries into the CTIX
kernel, including the C language interfaces.

5/86 - 10 -

Section 3, Subroutines and Libraries, describes the available
library functions or subroutines. Their binary versions reside in
various system libraries in the directories / l i b and / u s r / l i b . See
intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular
kinds of files; for example, the format of the output of the link
editor is given in a.out{4). Excluded are files used by only one
command (for example, the assembler's intermediate files). In
general, the C language s t ruc t declarations corresponding to
these formats can be found in the directories / u s r / i n c l u d e and
/ u s r / i n c l u d e / s y s .

Section 5, Miscellaneous Facilities, contains a variety of things.
Included are descriptions of character sets, macro packages, etc.

Section 6, Games, describes the games and educational programs
that reside in the directory / u s r / g a m e s .

Section 7, Special Files, discusses the characteristics of files that
actually refer to input/output devices.

E n t r y organizat ion. All entries are based on a common
format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly
states its purpose.

The SYNOPSIS part summarizes the use of the program
being described. A few conventions are used, particularly in
Section 1 (Commands):

Boldface strings are literals and are to be typed just as
they appear.

Italic strings usually represent substitutable argument
prototypes and program names found elsewhere in the
manual (they are underlined in the typed version of the
entries).

Square brackets [] around an argument prototype
indicate that the argument is optional. When an
argument prototype is given as "name" or "file", it
always refers to a file name.

Ellipses . . . are used to show that the previous
argument prototype may be repeated.

A final convention is used by the commands themselves.
An argument beginning with a minus - , plus + , or
equal sign = is often taken to be some sort of flag

- 3 -

argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with - , + , or = .

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the
program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic
indications that may be produced. Messages that are
intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes
deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index derived from that
table precede Section 1. On each index line, the title of the
entry to which that line refers is followed by the appropriate
section number in parentheses. This is important because there
is considerable duplication of names among the sections, arising
principally from commands that exist only to exercise a
particular system call.

If the entries are online, they are available via the catman(1)
command.

- 4 -

PERMUTED INDEX

This index includes entries for all pages of both Volumes 1 and 2.
The entries themselves are based on the one-line descriptions or
titles found in the NAME portion of each manual page; the
significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that
has three columns. To use the index, read the center column to
look up specific commands by name or by subject topics. Note
that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the
entry, and a slash (/) indicates where the entry has been
continued or truncated. The right column gives the manual page
where the command or subject is described.

/ funct ions of HP 2640 and
/special functions of HP

special functions of /
/ funct ions of DASI

functions of DASI/ 300,
/or DASI 300 and

/ltol3: convert between
comparison. diff3:

T E K T R O N I X 4014/
/ for the T E K T R O N I X
functions of the DASI/

functions of the DASI
/parameters for Xylogics

between long integer/
fault ,

absolute value.
adb:

abs: return integer
ceiling, remainder,

tiop: terminal
socket, accept:

connection on a socket.
al low/prevent L P /

times o f / touch: update
times, utime: set file

accessibility of a /
numerical/ graphics:

drvalloc, drvbind:
in a / sputl, sgetl:

sadp: disk
common object file

file systems for optimal

2621-series terminals.
2640 and 2621-series/ .
300, 300s: handle . . .
300 and 300s terminals.
300s: handle special . .
300s terminals.
3-byte integers and long/
3-way differential file
4014: paginator for the .
4014 terminal
450: handle special . .
450 terminal, /special
772 hair-inch t ape / . .
a641, 164a: convert . . .
abort: generate an IOT
abs: return integer . . .
absolute debugger. . .
absolute value
absolute value/ /floor, .
accelerator interface. . .
accept a connection on a
accept: accept a
accept, reject:
access and modification
access and modification
access: determine . . .
access graphical and . .
access loadable drivers. .
access long integer da ta
access profiler
access routines, ldfcn:
access time, /copy . .

hp(l)
Mi)
300(1)
300(1)
300(1)
300(1)
13tol(3C)
dirr3(i)
4014(1)
4014(1)
450(1)
450(1)
xmset(lM)
a641(3C)
abort(3C)
abs(3C)
adb(l)
abs(3C)
floor(3M)
tiop(7)
accept(2N)
accept(2N)
accept(lM)
touch(l)
utime(2)
access(2)
graphics(lG)
lddrv(2)
sputl(3X)
sadp(lM)
ldfcn(4)
dcopy(lM)

5/86 - 10 -

locking: exclusive
/enduten t , utmpname:

access: determine
or disable process

acctcon2: connect-time
acctprc2: process

shell procedures for
acctwtmp: overview of

/ and miscellaneous
diskusg: generate disk

acct: per-process
/search and print process

/merge or add total
/ summary from per-process

/manipulate connect
runacct: run daily

process accounting,
accounting file format,

from per-process/
print process/
connect-time/

accounting, acctconl,
accton, acctwtmp:/

acctwtmp:/ acctdisk,
total accounting files,

acctdisk, acctdusg,
process accounting,

accounting, acctprcl,
/acctdusg, accton,
sin, cos, tan, asin,

killall: kill all
sag: system

sa l , sa2, sadc: system
sar: system

SCCS file editing
process data and system

protocols. Dialers:
hopefully interesting,

acctmerg: merge or
putenv: change or

/set DARPA Internet
/ inet_netof: Internet

setenet: write Ethernet
administer SCCS files.

admin: create and
interface, swap: swap

Cave.
alarm: set a process

alarm clock,
data segment space

calloc: main memory
fast main memory

accept, reject:
running process/ renice:

sort: sort
and link editor output .

access to regions of a / . .
access utmp file entry. . .
accessibility of a file. . . .
accounting, /enable . . .
accounting, acctconl, . .
accounting, acctprcl, . .
accounting, / turnacct : . .
accounting and / /accton,
accounting commands. . .
accounting data by user/ .
accounting file format. . .
accounting file(s)
accounting files
accounting records. . . .
accounting records. . . .
accounting
acct: enable or disable . .
acct: per-process
acctcms: command summary
acctcom: search and . . .
acctconl, acctcon2: . . .
acctcon2: connect-time . .
acctdisk, acctdusg, . . .
acctdusg, accton,
acctmerg: merge or add
accton, acctwtmp:/ . . .
acctprcl, acctprc2: . . .
acctprc2: process
acctwtmp: overview o f /
acos, atan, atan2:/ . . .
active processes
activity graph
activity report package.
activity reporter
activity, /pr in t current
activity, / report
ACU/modem calling . . .
adage, /pr in t a random, .
adb: absolute debugger,
add total accounting/ . .
add value to /
address from node name. .
address manipulation/ . .
address on disk
admin: create and
administer SCCS files. . .
administrative
advent: explore Colossal
alarm clock
alarm: set a process . . .
allocation, /change . . .
allocator, /realloc, . . .
allocator, /mallinfo: . . .
allow/prevent L P / . . .
alter priority of
and/or merge files. . . .
a.out: common assembler .

locking(2)
getut(3C)
access(2)
acct(2)
acctcon(lM)
acctprc(lM)
acctsh(lM)
acct(lM)
acct(lM)
diskusg(lM)
acct(4)
acctcom(l)
acctmerg(lM)
acctcms(lM)
fwtmp(lM)
runacct(lM)
acct(2)
acct(4)
acctcms(lM)
acctcom(l)
acctcon(lM)
acctcon(lM)
acct(lM)
acct(lM)
acctmerg(lM)
acct(lM)
acctprc(lM)
acctprc(lM)
acct(lM)
trig(3M)
killall(lM)
sag(lG)
sar(lM)
sar(l)
sact(l)
timex(l)
Dialers(5)
fortune(6)
adb(l)
acctmerg(lM)
putenv(3C)
setaddr(lNM)
inet(3N)
setenet(lNM)
admin(l)
admin(l)
swap(lM)
advent(6)
alarm(2)
alarm(2)
brk(2)
malloc(3C)
malloc(3X)
accept(lM)
renice(l)
sort(l)
a.out(4)

5/86 - 10 -

/ t o commands and application programs. . . . intro(l)
maintainer for portable/ ar: archive and library . . . ar(l)

format, ar: common archive file . . ar(4)
number: convert Arabic numerals to / number(6)
arithmetic/ be: arbitrary-precision bc(l)

maintainer for/ ar: archive and library ar(l)
cpio: format of cpio archive. cpio(4)

ar: common archive file format ar(4)
header of a member of an archive file, /archive . . . ldahread(3X)

/convert object and archive files to common/ . . convert(l)
ldahread: read the archive header of a / ldahread(3X)

tar: tape file archiver tar(l)
maintainer for portable archives, /and library . . . ar(l)

cpio: copy file archives in and out cpio(l)
varargs: handle variable argument list varargs(5)

/ ou tpu t of a varargs argument list vprintf(3S)
xargs: construct argument list(s) and/ . . . xargs(l)

/get option letter from argument vector getopt(3C)
expr: evaluate arguments as a n / expr(l)

echo: echo arguments echo(l)
be: arbitrary-precision arithmetic language bc(l)
drill in number facts, arithmetic: provide arithmetic(6)

expr: evaluate arguments as an expression expr(l)
as: assembler ^ (1)

/and detach serial lines as network interfaces. . . . s lat tach(lNM)
/locate a terminal to use as the virtual system/ . . . conlocate(lM)

asa: interpret ASA carriage control/ . . . asa(l)
carriage control/ asa: interpret ASA asa(l)

ascii: map of ASCII character set ascii(5)
hd: hexadecimal and ascii file dump hd(l)

character set. ascii: map of ASCII ascii(5)
long integer and base-64 ASCII string, /between . . a641(3C)

atof: convert ASCII string to / atof(3C)
strings: extract the ASCII text strings in a / . . strings(l)

date/ /localtime, gmtime, asctime, tzset: convert . . . ctime(3C)
sin, cos, tan, asin, acos, atan, atan2:/ . . trig(3M)

help: ask for help help(l)
editor/ a.out: common assembler and link a.out(4)

as: assembler as(l)
assertion, assert: verify program . . . assert(3X)

assert: verify program assertion assert(3X)
setbuf, setvbuf: assign buffering to a / . . . setbuf(3S)

out the list of blocks associated with/ /pr in t . . bcheck(lM)
commands at a later/ at, batch: execute at(l)

cos, tan, asin, acos, atan, atan2:/ sin, trig(3M)
/ t an , asin, acos, atan, atan2: trigonometric/ . . . trig(3M)

string to / atof: convert ASCII atof(3C)
strtod, atof: convert string to / . . . strtod(3C)

integer, strtol, atol, atoi: convert string to . . . strtol(3C)
string to / strtol, atol, atoi: convert strtol(3C)

slattach, sldetach: attach and detach serial/ . . slattach(lNM)
process, wait: await completion of wait(l)

and processing/ awk: pattern scanning . . . awk(l)
ungetc: push character back into input stream. . . ungetc(3S)

backgammon, back: the game of back(6)
back: the game of backgammon back(6)

fine: fast incremental backup finc(lM)

5/86 - 10 -

recover files from a backup tape, free: frec(lM)
banner: make posters. . . . banner(l)

terminal capability data base, termcap: termcap(4)
terminal capability data base, terminfo: terminfo(4)

/between long integer and base-64 ASCII string. . . . a641(3C)
/(visual) display editor based on ex vi(l)

proto file; set links based on. /lists from . . . qlist(l)
deliver portions of / basename, dirname: basename(l)
at a later time, at , batch: execute commands . a t (l)

arithmetic language, be: arbitrary-precision . . . bc(l)
list of blocks/ bcheck: print out the . . . bcheck(lM)

drvload: system/ brc, bcheckrc, re, powerfail, . . . brc(lM)
copy, bcopy: interactive block . . bcopy(lM)

bdiff: big diff bdiff(l)
cb: C program beautifier cb(l)

jO, j l , jn, yO, y l , yn: Bessel functions bessel(3M)
bfs: big file scanner bfs(l)

/install object files in binary directories cpset(lM)
fread, fwrite: binary input /ou tpu t fread(3S)

table, bsearch: binary search a sorted . . . bsearch(3C)
/tdelete, twalk: manage binary search trees tsearch(3C)

bind: bind a name to a socket. . . bind(2N)
socket, bind: bind a name to a . . . bind(2N)

jack, bj: the game of black . . . bj(6)
bj: the game of black jack bj(6)

bcopy: interactive block copy bcopy(lM)
sum: print checksum and block count of a file sum(l)

sync: update the super block sync(l)
/pr in t out the list of blocks associated with/ . . bcheck(lM)
number of free disk blocks, df: report df(lM)

manipulate Volume Home Blocks (VHB). libdev: . . . libdev(3X)
powerfail, drvload:/ brc, bcheckrc, rc brc(lM)

segment space/ brk, sbrk: change data . . . brk(2)
sorted table, bsearch: binary search a . . bsearch(3C)

stdio: standard buffered i npu t /ou tpu t / . . stdio(3S)
setbuf, setvbuf: assign buffering to a stream. . . . setbuf(3S)

mknod: build special file mknod(lM)
vme: VME bus interface vme(7)

between host and network byte order, /values byteorder(3N)
swab: swap bytes swab(3C)

cc: C compiler cc(l)
cflow: generate C flowgraph cflow(l)

epp: the C language preprocessor. . . cpp(l)
includes: determine C language preprocessor/ . . includes(l)

cb: C program beautifier. . . . cb(l)
lint: a C program checker lint(l)

cxref: generate C program/ cxref(l)
ctrace: C program debugger. . . . ctrace(l)

and share strings in C programs, /extract . . . xstr(l)
cprofile: setting up a C shell environment a t / . . cprofile(4)

cal: print calendar cal(l)
dc: desk calculator dc(l)

cal: print calendar cal(l)
service, calendar: reminder calendar(l)

system, cu: call another computer . . . cu(lC)
returned by s ta t system call, stat: data stat(5)

Dialers: ACU/modem calling protocols Dialers(5)

5/86 - 10 -

malloc, free, realloc, calloc: main memory/ . . . malloc(3C)
malloc, free, realloc, calloc, mallopt,/ malloc(3X)

/introduction to system calls and error numbers. . . intro(2)
link and unlink system calls, /unlink: exercise . . . link(lM)
requests to an L P / Ip, cancel: send/cancel lp(l)

termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)
asa: interpret ASA carriage control/ asa(l)

(variant of ex for casual users), /editor . . . edit(l)
print files, cat: concatenate and cat(l)

catman: create the cat files for the / catman(l)
files for the manual, catman: create the cat . . . catman(l)

advent: explore Colossal Cave advent(6)
beautifier. cb: C program <^(1)

cc: C compiler. cc(l)
directory, cd: change working cd(l)

commentary of an SCCS/ cdc: change the delta . . . cdc(l)
ceiling,/ floor, ceil, fmod, fabs: floor, . . . floor(3M)

/ceil, fmod, fabs: floor, ceiling, remainder,/ floor(3M)
flowgraph. cflow: generate C cflow(l)

delta: make a delta (change) to an SCCS/ . . . delta(l)
of running process by changing nice, /priority . . renice(l)
create an interprocess channel, pipe: pipe(2)

terminal's local RS-232 channels, /controlling . . . tp(7)
input / ungetc: push character back into ungetc(3S)
for/ eqnchar: special character definitions eqnchar(5)
the user, cuserid: get character login name of . . cuserid(3S)

/fgetc, getw: get character or word from a / . getc(3S)
/ fpu tc , putw: put character or word on a / . . putc(3S)

ascii: map of ASCII character set ascii(5)
ASA carriage control characters, / interpret . . . asa(l)

toascii: translate characters. /_tolower, . . . conv(3C)
isascii: classify characters, /iscntrl ctype(3C)

tr : translate characters t r (l)
dodisk, lastlogin,/ chargefee, ckpacct, acctsh(lM)

directory, chdir: change working . . . chdir(2)
/file system consistency check and interactive/ . . . fsck(lM)

directories/ uucheck: check the UUCP uucheck(IM)
constant-width text / cw, checkcw: prepare cw(l)

mathematical/ eqn, neqn, checkeq: format eqn(l)
lint: a C program checker lint(l)

password/group file checkers, pwck, grpck: . . . pwck(lM)
file systems with label checking, /labelit: copy . . volcopy(lM)
systems processed by/ checklist: list of file checklist(4)

documents/ mm, osdd, checkmm: print/check . . . mm(l)
of a file, sum: print checksum and block count . sum(l)

group, chown, chgrp: change owner or . . chown(l)
times: get process and child process times times(2)

wait: wait for child process to stop or / . . wait(2)
chmod: change mode. . . . chmod(l)

file, chmod: change mode of . . chmod(2)
group of a file, chown: change owner and . chown(2)

owner or group, chown, chgrp: change . . . chown(l)
directory, chroot: change root chroot(2)

directory for a / chroot: change root chroot(lM)
lastlogin,/ chargefee, ckpacct, dodisk acctsh(lM)

/iscntrl, isascii: classify characters ctype(3C)

5/86 - 10 -

uucp spool directory
screen,

clri:
clear:

s t a tus / ferror, feof,
interpreter) with

set a process alarm
cron:
used.

ldclose, ldaclose:
close:

descriptor,
fclose, fflush:

line-feeds,
advent: explore

deltas,
comb:

lines common to two/
nice: run a

root directory for a
env: set environment for

rcmd: remote shell
uux: CTEX to CTIX remote

hangups/ nohup: run a
with/ csh: a shell

getopt: parse
executable file for

/ the standard/restricted
a stream to a remote

da ta and / timex: time a
uuxqt: execute remote

stream to a remote
per-process/ acctcms:

system: issue a shell
condition evaluation

time: time a
list(s) and execute

miscellaneous accounting
intro: introduction to

at, batch: execute
graphical and numerical

install: install
mkhosts: make node name

useful with graphical
cdc: change the delta

format, ar:
link editor/ a.out:
and archive files to

access routines, ldfcn:
ldopen, ldaopen: open a

/line number entries of a
/ldaclose: close a

/ the file header of a
/of a section of a

/file header of a

clean-up. uucleanup: . .
clear: clear terminal . . .
clear i-node
clear terminal screen. . .
clearerr, fileno: stream . .
C-like syntax, /(command
clock, alarm:
clock demon
clock: report CPU time
close a common object /
close a file descriptor. . .
close: close a file
close or flush a stream. . .
clri: clear i-node
cmp: compare two files,
col: filter reverse
Colossal Cave
comb: combine SCCS . .
combine SCCS deltas. . .
comm: select or reject . .
command at low priority,
command, chroot: change
command execution. . . .
command execution. . . .
command execution. . . .
command immune to . .
(command interpreter) . .
command options
command, path: locate
command programming/ .
command, /for returning
command; report process .
command requests. . . .
command, rexec: return
command summary from .
command
command, test:
command
command, /argument . .
commands, /and
commands and application/
commands at a later/ . .
commands, /access . . .
commands
commands
commands, /network . .
commentary of an SCCS/
common archive file . . .
common assembler and
common formats, /object
common object file . . .
common object file for/
common object file/ . . .
common object file. . . .
common object file. . . .
common object file. . . .
common object file. . . .

uucleanup(lM)
clear(l)
clri(lM)
clear(l)
ferror(3S)
csh(l)
alarm(2)
cron(lM)
clock(3C)
ldclose(3X)
close(2)
close(2)
fclose(3S)
clri(lM)
cmp(l)
col(l)
advent(6)
comb(l)
comb(l)
comm(l)
nice(l)
chroot(lM)
env(l)
rcmd(lN)
uux(lC)
nohup(l)
csh(l)
getopt(l)
path(l)
sh(l)
rcmd(3N)
timex(l)
uuxqt(lM)
rexec(3N)
acctcms(lM)
system(3S)
test(l)
time(l)
xargs(l)
acct(lM)
intro(l)
a t(l)
graphics(lG)
install(lM)
mkhosts(lNM)
s ta t (lG)
cdc(l)
ar(4)
a.out(4)
convert(l)
ldfcn(4)
ldopen(3X)
ldlread(3X)
ldclose(3X)
ldfhread(3X)
ldlseek(3X)
ldohseek(3X)

5/86 - 10 -

/of a section of a common object file ldrseek(3X)
/section header of a common object file ldshread(3X)

/section of a common object file ldsseek(3X)
symbol table entry of a common object file, / a . . ldtbindex(3X)

/symbol table entry of a common object file ldtbread(3X)
/ t o the symbol table of a common object file ldtbseek(3X)
/line number entries in a common object file linenum(4)

nm: print name list of common object file nm(l)
/ information for a common object file reloc(4)

/section header for a common object file scnhdr(4)
/ information from a common object file strip(l)

/retrieve symbol name for common object file/ ldgetname(3X)
symbol table/ syms: common object file syms(4)

filehdr: file header for common object files filehdr(4)
Id: link editor for common object files 'd(l)

/p r in t section sizes of common object files size(l)
/select or reject lines common to two sorted/ . . comm(l)
/ report inter-process communication facilities/ . . ipcs(l)

/ s tandard interprocess communication package. . . stdipc(3C)
create an endpoint for communication, socket: . . socket(2N)

/file for uucp communications lines. . . . Devices(5)
diff: differential file comparator diff(l)

cmp: compare two files cmp(l)
an SCCS file, sccsdiff: compare two versions of . . sccsdiff(l)

3-way differential file comparison. diff3: diff3(l)
dircmp: directory comparison dircmp(l)

regular/ regcmp, regex: compile and execute regcmp(3X)
/regular expression compile and match/ regexp(5)

regular expression compile, regcmp: regcmp(l)
term: format of compiled term file term(4)

cc: C compiler c c (l)
tic: terminfo compiler tic(lM)

yacc: yet another compiler-compiler yacc(l)
/erfc: error function and complementary error/ . . . erf(3M)

wait: await completion of process. . . . wait(l)
pack, peat, unpack: compress and expand/ . . . pack(l)

symbol table/ ldtbindex: compute the index of a . . . ldtbindex(3X)
cu: call another computer system cu(lC)

files, cat: concatenate and print . . . cat(l)
command, test: condition evaluation test(l)

system, config: configure a CTIX . . config(lM)
uucp/ Devices: configuration file for Devices(5)

config: configure a CTIX system. . config(lM)
interface/ ifconfig: configure network ifconfig(lNM)
spooling/ lpadmin: configure the LP lpadmin(lM)

terminal to use as the/ conlocate: locate a conlocate(lM)
/wtmpfix: manipulate connect accounting/ fwtmp(lM)

connection on a socket, connect: initiate a connect(2N)
getpeername: get name of connected peer getpeername(2N)

out-going terminal line connection, / an dial(3C)
accept: accept a connection on a socket. . . accept(2N)

connect: initiate a connection on a socket. . . connect(2N)
part of a full-duplex connection, / shu t down . . shutdown(2N)

listen: listen for connections on a socket. . . listen(2N)
acctconl, acctcon2: connect-time accounting. . . acctcon(lM)

fsck, dfsck: file system consistency check and / . . . fsck(lM)
as the virtual system console, / t o use conlocate(lM)

5/86 - 10 -

terminal, console: console console(7)
console: console terminal console(7)

math: math functions and constants math(S)
cw, checkcw: prepare constant-width text fo r / . . cw(l)

mkfs: construct a file system. . . . mkfs(lM)
list(s) and / xargs: construct argument xargs(l)

/ tb l , and eqn constructs deroff(l)
wi th / Uutry: try to contact a remote system . . Uutry(lM)

Is: list contents of directory. . . . ls(l)
toe: graphical table of contents routines toc(lG)

csplit: context split csplit(l)
/ in terpre t ASA carriage control characters asa(l)

ioctl: control device ioctl(2)
fcntl: file control fcntl(2)

init, telinit: process control initialization init(lM)
msgctl: message control operations msgctl(2)

semctl: semaphore control operations semctl(2)
shmctl: shared memory control operations shmctl(2)

fcntl: file control options fcntl(5)
s tatus inquiry and job control, uustat: uucp . . . uustat(lC)

vc: version control v c (l)
772 half-inch tape controller. /Xylogics xmset(lM)

interface, t ty: controlling terminal tty(7)
local RS-232/ tp: controlling terminal's . . . tp(7)

terminals, term: conventional names for . . . term(5)
units: conversion program units(l)

dd: convert and copy a file. . . dd(l)
to English, number: convert Arabic numerals . . number(6)
floating-point/ atof: convert ASCII string to . . atof(3C)
integers/ 13tol, ltol3: convert between 3-byte . . 13tol(3C)

integer and / a641, 164a: convert between long . . . a64i(3C)
and archive files to / convert: convert object . . . convert(l)

/gmtime, asctime, tzset: convert date and time to / . ctime(3C)
ecvt, fevt, gcvt: convert floating-point/ . . . ecvt(3C)

scanf, fscanf, sscanf: convert formatted input. . . scanf(3S)
archive files/ convert: convert object and convert(l)

strtod, atof: convert string to / strtod(3C)
strtol, atol, atoi: convert string to / strtol(3C)

/htons, ntohl, ntohs: convert values between/ . . byteorder(3N)
dd: convert and copy a file dd(l)

bcopy: interactive block copy bcopy(lM)
and out. cpio: copy file archives in cpio(l)

optimal access/ dcopy: copy file systems for dcopy(lM)
label/ volcopy, labelit: copy file systems with . . . volcopy(lM)

files, cp, In, mv: copy, link or move CP(1)
rep: remote file copy rcp(lN)

system to CTIX system copy, uucp: CTIX uucp(lC)
CTIX-to-CTIX system file copy, /uupick: public . . . uuto(lC)

for the U U C P / uucico: copy-in/copy-out program . uucico(lM)
image file, core: format of core core(4)

core: format of core image file core(4)
atan, atan2:/ sin, cos, tan, asin, acos, trig(3M)

functions, sinh, cosh, tanh: hyperbolic . . . sinh(3M)
print checksum and block count of a file, sum: sum(l)

wc: word count wc(l)
or move files, cp, In, mv: copy, link . . . cp(l)

cpio: format of cpio archive cpio(4)

5/86 - 10 -

in and out. cpio: copy file archives . . . cpio(l)
archive, cpio: format of cpio cpio(4)

preprocessor, cpp: the C language cpp(l)
shell environment a t / cprofile: setting up a C . . . cprofile(4)

files in binary/ cpset: install object cpset(lM)
clock: report CPU time used clock(3C)

craps: the game of craps craps(6)
craps, craps: the game of craps(6)

images, crash: examine system . . . crash(lM)
or rewrite an existing/ creat: create a new file . . . creat(2)

tmpnam, tempnam: create a name for a / tmpnam(3S)
rewrite an/ creat: create a new file or creat(2)

fork: create a new process. . . . fork(2)
ctags: create a tags file ctags(l)

tmpfile: create a temporary file. . . tmpfiie(3S)
communication, socket: create an endpoint for . . . socket(2N)

channel, pipe: create an interprocess . . . pipe(2)
SCCS files, admin: create and administer . . . admin(l)

the manual, catman: create the cat files for . . . catman(l)
umask: set and get file creation mask umask(2)

cron: clock demon cron(lM)
file, crontab - user crontab . . . crontab(l)

crontab - user crontab file crontab(l)
generate C program cross-reference, cxref: . . . cxref(l)

optimization/ curses: CRT screen handling and . curses(3X)
generate hashing/ crypt, setkey, encrypt: . . . crypt(3C)
interpreter) with/ csh: a shell (command . . . csh(l)

csplit: context split csplit(l)
remote terminal, ct: spawn getty to a ct(lC)

file, ctags: create a tags ctags(l)
name for terminal, ctermid: generate file . . . ctermid(3S)

gmtime, asctime, tzset:/ ctime, localtime, ctime(3C)
software, ctinstall: install ctinstall(l)

execution, uux: CTIX to CTIX remote command . . uux(lC)
config: configure a CTIX system config(lM)

uucp: CTIX system to CTIX system copy uucp(lC)
system copy, uucp: CTIX system to CTIX . . . uucp(lC)

print name of current CTIX system, uname: . . . uname(l)
get name of current CTIX system, uname: . . . uname(2)

command execution, uux: CTIX to CTIX remote . . . uux(lC)
uuto, uupick: public CTIX-to-CTIX system file/ . uuto(lC)

debugger, ctrace: C program ctrace(l)
computer system, cu: call another cu(lC)

t t t , cubic: tic-tac-toe ttt(6)
uname: print name of current CTIX system. . . . uname(l)

uname: get name of current CTIX system. . . . uname(2)
gethostname: get name of current host gethostname(3N)

editing/ sact: print current SCCS file sact(l)
in the utmp file of the current user, / the slot . . . ttyslot(3C)

getcwd: get path-name of current working/ getcwd(3C)
handling and/ curses: CRT screen curses(3X)

interpolate smooth curve, spline: spline(lG)
login name of the user, cuserid: get character . . . cuserid(3S)

fields of each line of / cut: cut out selected cut(l)
of each line of a / cut: cut out selected fields . . . cut(l)

constant-width text for/ cw, checkcw: prepare . . . cw(l)
program/ cxref: generate C cxref(l)

5/86 - 10 -

runacct: run daily accounting runacct(lM)
from node/ setaddr: set DARPA Internet address . . setaddr(lNM)

Transfer Protocol/ f tpd: DARPA Internet File . . . f tpd(lNM)
server, telnetd: DARPA TELNET protocol . telnetd(lNM)

/user interface to the DARPA T F T P protocol. . . t f tp (lN)
Transfer / t f tpd : DARPA Trivial File t f tpd(lNM)

/special functions of DASI 300 and 300s/ 300(1)
/special functions of the DASI 450 terminal 450(1)

command; report process data and system/ / t ime a . timex(l)
terminal capability data base, termcap: termcap(4)
terminal capability da ta base, terminfo: terminfo(4)

generate disk accounting da ta by user ID diskusg(lM)
access long integer data in a / sputl, sgetl: . . . sputl(3X)

lock process, text, or data in memory, plock: . . plock(2)
prof: display profile data prof(l)

system call, s tat : data returned by s ta t . . . stat(5)
brk, sbrk: change data segment space/ brk(2)

types: primitive system data types types(5)
join: relational database operator join(l)

the mkfs(l) proto file database, /using qinstall(l)
tpu t : query terminfo database tpu t (l)

/asctime, tzset: convert date and time to string. . . ctime(3C)
date: print and set the date date(l)

date, date: print and set the . . . date(l)
dc: desk calculator dc(l)

for optimal access/ dcopy: copy file systems . . dcopy(lM)
file, dd: convert and copy a . . . dd(l)

adb: absolute debugger adb(l)
ctrace: C program debugger ctrace(l)

fsdb: file system debugger fsdb(lM)
sdb: symbolic debugger sdb(l)

a remote system with debugging on. /contact . . Uutry(lM)
neqn. /special character definitions for eqn and . . . eqnchar(5)

basename, dirname: deliver portions of pa th / . . basename(l)
a file, tail: deliver the last part of . . . tail(l)

commentary of an SCCS delta, /change the delta . . cdc(l)
SCCS/ delta: make a delta (change) to an delta(l)

SCCS/ cdc: change the delta commentary of an . . cdc(l)
rmdel: remove a delta from an SCCS file. . . rmdei(l)

(change) to an SCCS/ delta: make a delta delta(l)
comb: combine SCCS deltas comb(l)

cron: clock demon cron(lM)
errdemon: error-logging demon errdemon(lM)

the error-logging demon, / terminate errstop(lM)
mesg: permit or deny messages mesg(l)

nroff / t roff , tbl, and / deroff: remove deroff(l)
system: system description file system(4)

close: close a file descriptor close(2)
duplicate an open file descriptor, dup: dup(2)

dc: desk calculator dc(l)
/sldetach: attach and detach serial lines as/ . . . slattach(lNM)

of a file, access: determine accessibility . . . access(2)
preprocessor/ includes: determine C language . . . includes(l)

file: determine file type file(l)
drivers: loadable device drivers drivers(7)

for finite width output device, /fold long lines . . . fold(l)
table, master: master device information master(4)

5/86 - 10 -

ioctl: control device ioctl(2)
devnm: device name devnm(lM)

/ tekset , td: graphical device routines and / gdev(lG)
file for uucp/ Devices: configuration . . . Devices(5)

devnm: device name devnm(lM)
free disk blocks, df: report number of df(lM)

consistency check/ fsck, dfsck: file system fsck(lM)
out-going terminal line/ dial: establish an dial(3C)

calling protocols. Dialers: ACU/modem . . . Dialers(5)
bdiff: big diff bdiff(l)

comparator, diff: differential file diff(l)
differential file/ diff3: 3-way diff3(l)

sdiff: side-by-side difference program sdiff(l)
files, diffmk: mark differences between diffmk(l)

comparator, diff: differential file diff(l)
diff3: 3-way differential file/ diff3(l)

between files, diffmk: mark differences . . diffmk(l)
directories, dir: format of dir(4)

comparison, dircmp: directory dircmp(l)
uucheck: check the UUCP directories and / uucheck(lM)

object files in binary directories, /install cpset(lM)
dir: format of directories dir(4)

rmdir: remove files or directories, rm, r m (l)
cd: change working directory c d(l)

chdir: change working directory chdir(2)
chroot: change root directory chroot(2)

uucleanup: uucp spool directory clean-up uucleanup(lM)
dircmp: directory comparison. . . . dircmp(l)

unlink: remove directory entry unlink(2)
chroot: change root directory for a command. . . chroot(lM)
make a lost+found directory for fsck mklost+found(lM)
of current working directory, /path-name . . . getcwd(3C)
Is: list contents of directory ls(l)

mkdir, mkdirs: make a directory mkdir(l)
mvdir: move a directory mvdir(lM)
pwd: working directory name pwd(l)

or / mknod: make a directory, or a special . . . mknod(2)
portions of / basename, dirname: deliver basename(l)

LP printers, enable, disable: enable/disable . . . enable(l)
acct: enable or disable process/ acct(2)

modes, speed, and line discipline, / type, getty(lM)
modes, speed, and line discipline, / type uugetty(lM)

sadp: disk access profiler sadp(lM)
user/ diskusg: generate disk accounting data by . . diskusg(lM)

report number of free disk blocks, df: df(lM)
remove exchangeable disk, dismount: dismount(l)

disk: general disk driver disk(7)
driver, disk: general disk disk(7)

Ethernet address on disk, setenet: write setenet(lNM)
update: provide disk synchronization. . . . update(lM)

du: summarize disk usage du(l)
accounting da ta by user/ diskusg: generate disk . . . diskusg(lM)

mount, umount: mount and dismount file system. . . . mount(lM)
exchangeable disk, dismount: remove dismount(l)

/screen-oriented (visual) display editor based on/ . . vi(l)
prof: display profile data prof(l)

on local/ ruptime: display status of nodes . . . ruptime(lN)

5/86 - 10 -

hypot: Euclidean distance function hypot(3M)
generate uniformly distr ibuted/ /lcong48: . . . drand48(3C)

/checkmm: print/check documents formatted with/ . mm(l)
package for formatting documents, / the MM macro mm(5)

and / mmt, mvt: typeset documents, view graphs, . . mmt(l)
chargefee, ckpacct, dodisk, lastlogin,/ acctsh(lM)

whodo: who is doing what whodo(lM)
/atof: convert string to double-precision number. . . strtod(3C)

ptdl: RS-232 terminal download, tdl, gtdl, tdl(l)
lrand48, nrand48,/ drand48, erand48 drand48(3C)

graph: draw a graph graph(lG)
arithmetic: provide drill in number facts. . . . arithmetic(6)

Xylogics 772/ xmset: set drive parameters for xmset(lM)
disk: general disk driver disk(7)

sxt: pseudo-device driver sxt(7)
make a loadable driver for tunable variables. mktunedrv(lM)

drivers: loadable device drivers drivers(7)
/manage loadable drivers lddrv(lM)

drvbind: access loadable drivers, drvalloc lddrv(2)
drivers, drivers: loadable device . . drivers(7)

access loadable/ drvalloc, drvbind: lddrv(2)
drivers, drvalloc, drvbind: access loadable . . lddrv(2)

bcheckrc, rc, powerfail, drvload: system/ brc, . . . brc(lM)
usage, du: summarize disk du(l)

parts of an object/ dump: dump selected . . . dump(l)
s tatus information from dump, /error records and . errdead(lM)

and ascii file dump, hd: hexadecimal . . hd(l)
od: octal dump od(1)

an object file, dump: dump selected parts of . . . dump(l)
file descriptor, dup: duplicate an open . . . dup(2)

descriptor, dup: duplicate an open file . . . dup(2)
echo: echo arguments echo(l)

echo: echo arguments. . . . echo(l)
convert floating-point/ ecvt, fcvt, gcvt: ecvt(3C)

ed, red: text editor ed(l)
program, end, etext, edata: last locations in . . . end(3C)

(variant of ex for/ edit: text editor edit(l)
print current SCCS file editing activity, sact: . . . sact(l)

/(visual) display editor based on ex vi(l)
ed, red: text editor e d(l)

ex: text editor e x (l)
files. Id: link editor for common object . . ld(l)

ged: graphical editor ged(lG)
assembler and link editor output , /common . . a.out(4)

sed: stream editor sed(l)
for casual/ edit: text editor (variant of ex edit(l)

ldeeprom: load EEPROM ldeeprom(lM)
/user, real group, and effective group IDs getuid(2)

/getegid: get real user, effective user, real/ getuid(2)
FORTRAN, ratfor, or efl files, /split fsplit(l)

file for a / grep, egrep, fgrep: search a . . . grep(l)
enable/disable L P / enable, disable: enable(l)

process/ acct: enable or disable acct(2)
enable, disable: enable/disable L P / enable(l)

hashing/ crypt, setkey, encrypt: generate crypt(3C)
generate hashing encryption, /encrypt: . . . crypt(3C)

locations in program, end, etext, edata: last . . . end(3C)

5/86 - 10 -

/getgrnam, setgrent, endgrent, fgetgrent: get / . . getgrent(3C)
host entry, /sethostent, endhostent: get network . . gethostent(3N)

/getnetbyname, setnetent, endnetent: get network/ . . getnetent(3N)
socket: create an endpoint for/ socket(2N)

protocol/ /setprotoent , endprotoent: get getprotoent(3N)
/getpwnam, setpwent, endpwent, fgetpwent: get/ . getpwent(3C)

entry, /setservent, endservent: get service . . . getservent(3N)
/putut l ine, setutent, endutent, utmpname:/ . . . getut(3C)

Arabic numerals to English, /convert number(6)
nlist: get entries from name list. . . . nlist(3C)

linenum: line number entries in a common/ . . . linenum(4)
man, manprog: print entries in this manual. . . . man(l)

/macros for formatting entries in this manual. . . . man(5)
/manipulate line number entries of a common/ . . . ldlread(3X)
a / /seek to line number entries of a section of . . . ldlseek(3X)

a / /seek to relocation entries of a section of . . . ldrseek(3X)
wtmp: utmp and wtmp entry formats, utmp, . . . utmp(4)

get group file entry, /fgetgrent: getgrent(3C)
get network host entry, /endhostent: gethostent(3N)

endnetent: get network entry, /setnetent, getnetent(3N)
get protocol entry, /endprotoent: . . . getprotoent(3N)

get password file entry, /fgetpwent: getpwent(3C)
endservent: get service entry, /setservent, getservent(3N)

access utmp file entry, /u tmpname: getut(3C)
object file symbol table entry, /name for common . ldgetname(3X)

/index of a symbol table entry of a common object / . ldtbindex(3X)
/an indexed symbol table entry of a common object / . ldtbread(3X)

write password file entry, putpwent: putpwent(3C)
unlink: remove directory entry unlink(2)

command execution, env: set environment for . . env(l)
environment, environ: user environ(5)

/set t ing up a C shell environment at login/ . . . cprofile(4)
profile: setting up an environment at login/ . . . profile(4)

environ: user environment environ(5)
execution, env: set environment for command . env(l)

getenv: return value for environment name getenv(3C)
change or add value to environment, putenv: . . . putenv(3C)
inteface, and terminal environment, / terminal . . tset(l)

definitions for eqn and neqn. /character . eqnchar(5)
nroff / t roff , tbl, and eqn constructs, /remove . . deroff(l)

format mathematical/ eqn, neqn, checkeq: eqn(l)
character definitions/ eqnchar: special eqnchar(5)

rhosts: remote equivalent users rhosts(4N)
nrand48,/ drand48, erand48, lrand48 drand48(3C)
td: graphical/ hpd, erase, hardcopy, tekset, . . gdev(lG)

function and / erf, erfc: error erf(3M)
complementary/ erf, erfc: error function and . . erf(3M)

interface, err: error-logging err(7)
records and s ta tus / errdead: extract error . . . errdead(lM)

demon, errdemon: error-logging . . errdemon(lM)
format, errfile: error-log file errfile(4)

sys_nerr:/ perror, errno, sys_errlist perror(3C)
erf, erfc: error function and / erf(3M)

/and complementary error function erf(3M)
/sys_nerr: system error messages perror(3C)

/ t o system calls and error numbers intro(2)
errdead: extract error records and s ta tus / . . errdead(lM)

5/86 - 10 -

matherr : error-handling funct ion. . . matherr(3M)
errfile: error-log file format errfile(4)

errdemon: error-logging demon errdemon(lM)
errstop: terminate the error-logging demon errs top(lM)

err: error-logging interface. . . . err(7)
a report of logged errors, errpt: process . . . e r rp t (lM)

hashcheck: find spelling errors, /spellin spell(l)
of logged errors, errpt : process a report . . . e r rp t (lM)

error-logging demon, errstop: te rminate the . . . e r rs top(lM)
terminal line/ dial: establish an out-going . . . dial(3C)

se tmnt : establish mount table. . . . s e tmn t (lM)
loadable drivers, lddrv: manage lddrv(lM)

locations in / end, etext, edata: last end(3C)
disk, setenet: write E therne t address on se tenet(lNM)

function, hypot: Euclidean distance hypot(3M)
expression, expr: evaluate arguments as an . . expr(l)

test : condition evaluation command. . . . t e s t (l)
/ t ex t editor (variant of ex for casual users) edi t (l)

ex: text editor e x (l)
display editor based on ex. /(visual) vi(l)

crash: examine system images. . . crash(lM)
dismount: remove exchangeable disk dismount(l)

regions of a / locking: exclusive access to locking(2)
execve, execlp, execvp:/ execl, execv, execle exec(2)

execvp:/ execl, execv, execle, execve, execlp, . . . exec(2)
/execv, execle, execve, execlp, execvp: execute/ . . exec(2)

command, path: locate executable file for pa th (l)
execve, execlp, execvp: execute a file, /execle, . . . exec(2)

/ a r g u m e n t list(s) and execute command xargs(l)
later time, at , batch: execute commands at a . . a t (l)

regex: compile and execute regular/ regcmp, . . regcmp(3X)
requests, uuxqt: execute remote command . . uuxqt(lM)

environment for command execution, env: set env(l)
sleep: suspend execution for a n / sleep(l)
sleep: suspend execution for interval. . . . sleep(3C)

monitor: prepare execution profile monitor(3C)
remote shell command execution, rcmd: rcmd(lN)

rexecd: remote execution server rexecd(lNM)
profil: execution time profile. . . . profil(2)

to CTIX remote command execution, uux: CTIX . . . uux(lC)
execlp, execvp:/ execl, execv, execle, execve, exec(2)

execl, execv, execle, execve, execlp, execvp:/ . . exec(2)
/execle, execve, execlp, execvp: execute a file. . . . exec(2)

sys tem/ link, unlink: exercise link and unlink . . l ink(lM)
a new file or rewrite an existing one. /create creat(2)

process, exit, _exit: terminate exit(2)
process, exit, _exit: terminate exit(2)

sqrt : exponential , / exp, log, loglO, pow exp(3M)
unpack: compress and expand files. / pea t , pack(l)

a n d / expand, unexpand: expand tabs to spaces, . . . expand(l)
tabs to spaces, a n d / expand, unexpand: expand . expand(l)

advent: explore Colossal Cave. . . . advent(6)
/log, loglO, pow, sqrt: exponential, logari thm,/ . . exp(3M)

as an expression, expr: evaluate arguments . . expr(l)
m a t c h / regexp: regular expression compile and . . . regexp(5)

regcmp: regular expression compile regcmp(l)
evaluate arguments as an expression, expr: expr(l)

5/86 - 10 -

and execute regular expression, /compile regcmp(3X)
strings in C / xstr: extract and share xstr(l)

and s ta tus / errdead: extract error records errdead(lM)
strings in a / strings: extract the ASCII text . . . strings(l)

floor, ceil, fmod, fabs: floor, ceiling,/ floor(3M)
factor: factor a number factor(l)

factor: factor a number. . . factor(l)
values, true, false: provide truth true(l)

in a machine-independent fashion., /integer data . . . sputl(3X)
fine: fast incremental backup. . . finc(lM)

/mallopt, mallinfo: fast main memory/ malloc(3X)
abort: generate an IOT fault abort(3C)

flush a stream, fclose, fflush: close or . . . fclose(3S)
fcntl: file control fcntl(2)

options, fcntl: Tile control fcntl(5)
floating-point/ ecvt, fevt, gcvt: convert ecvt(3C)

fopen, freopen, fdopen: open a stream. . . . fopen(3S)
stream s ta tus / ferror, feof, clearerr, fileno: ferror(3S)
fileno: stream s ta tus / ferror, feof, clearerr, ferror(3S)

and statistics for a / ff: list file names ff(lM)
stream, fclose, fflush: close or flush a . . . fclose(3S)

getc, getchar, fgetc, getw: get/ getc(3S)
/setgrent, endgrent, fgetgrent: get group/ . . . getgrent(3C)

/setpwent, endpwent, fgetpwent: get password/ . . getpwent(3C)
a stream, gets, fgets: get a string from . . . gets(3S)

a pattern, grep, egrep, fgrep: search a file for . . . grep(l)
modification/ utime: set file access and utime(2)

ldfcn: common object file access routines ldfcn(4)
accessibility of a file, access: determine . . . access(2)

tar: tape file archiver tar(l)
out. cpio: copy file archives in and cpio(l)

grpek: password/group file checkers, pwck pwck(lM)
chmod: change mode of file chmod(2)

owner and group of a file, chown: change chown(2)
diff: differential file comparator diff(l)

3-way differential file comparison. diff3: . . . diff3(l)
fcntl: file control fcntl(2)
fcntl: file control options fcntl(5)

rep: remote file copy rcp(lN)
CTIX-to-CTIX system file copy, /public uuto(lC)

format of core image file, core: core(4)
umask: set and get file creation mask umask(2)

crontab - user crontab file crontab(l)
ctags: create a tags file ctags(l)

fields of each line of a file, /cut out selected . . . cut(l)
using the mkfs(l) proto file database, /software . . qinstall(l)
dd: convert and copy a file dd(l)

(change) to an SCCS file, /make a delta delta(l)
close: close a file descriptor close(2)

dup: duplicate an open file descriptor dup(2)
type, file: determine file file(l)

hexadecimal and ascii file dump, hd: hd(l)
parts of an object file, /dump selected dump(l)

sact: print current SCCS file editing activity sact(l)
fgetgrent: get group file entry, /endgrent, . . . getgrent(3C)

fgetpwent: get password file entry, /endpwent, . . . getpwent(3C)
utmpname: access utmp file entry, /endutent , . . . getut(3C)

5/86 - 10 -

putpwent : write password file entry putpwent(3C)
execvp: execute a file, /execve, execlp, exec(2)

/egrep, fgrep: search a file for a pat tern grep(l)
pa th : locate executable file for command pa th (l)

/open a common object file for reading ldopen(3X)
Devices: configuration file for uucp / Devices(5)
per-process accounting file format , acct: acct(4)

ar: common archive file fo rmat ar(4)
errfile: error-log file fo rmat errfile(4)

intro: introduction to file formats intro(4)
of a common object file function, /entr ies . . . ldlread(3X)

get a version of an SCCS file, get: get(l)
group: group file group(4)

object files, filehdr: file header for common . . . filehdr(4)
ldfhread: read the file header of a common/ . . ldfhread(3X)

/seek to the optional file header of a common/ . . ldohseek(3X)
split: split a file into pieces spl i t (l)

issue identification file, issue: issue(4)
a member of an archive file, /archive header of . . ldahread(3X)

close a common object file, /ldaclose: ldclose(3X)
of a common object file, / t h e file header ldfhread(3X)
of a common object file, /of a section ldlseek(3X)
of a common object file, /file header ldohseek(3X)
of a common object file, /of a section ldrseek(3X)
of a common object file, /section header ldshread(3X)
of a common object file, /section ldsseek(3X)

entry of a common object file, /of a symbol table . . ldtbindex(3X)
entry of a common object file, / symbol table ldtbread(3X)
table of a common object file, / t o the symbol ldtbseek(3X)

in a common object file, / n u m b e r entries . . . linenum(4)
link: link to a file link(2)

file;/ qlist: print out file lists f rom proto qlist(l)
access to regions of a file, /exclusive locking(2)

an ifile from an object file, mkifile: make mkifile(lM)
mknod: build special file mknod(lM)

or a special or ordinary file, / m a k e a directory, . . mknod(2)
ctermid: generate file name for terminal. . . . ctermid(3S)

mktemp: make a unique file name mktemp(3C)
s ta t is t ics / ff: list file names and f f (lM)

the fo rmat of a text file, newform: change . . . newform(l)
list of common object file, nm: print name nm(l)

null: the null file null(7)
/ t h e slot in the u tmp file of the cur ren t / t tyslot(3C)

/processes using a file or file s t ructure fuser(lM)
creat: create a new file or rewrite a n / creat(2)

passwd: password file passwd(4)
subsequent lines of one file, /several files or paste(l)

sof t -copy/ pg: file perusal filter for pg(l)
/ f tel l : reposition a file pointer in a / fseek(3S)

lseek: move read /wr i t e file pointer lseek(2)
prs: print an SCCS file prs(l)

read: read f rom file read(2)
for a common object file, / informat ion reloc(4)

a delta from an SCCS file, rmdel: remove rmdel(l)
bfs: big file scanner bfs(l)

two versions of an SCCS file, sccsdiff: compare . . . sccsdiff(l)
sccsfile: fo rmat of SCCS file sccsfile(4)

5/86 - 10 -

for a common object file, /section header scnhdr(4)
/file lists from proto file; set links based/ qlist(l)

fsize: report file size fsize(l)
i-node. openi: open a file specified by openi(2)

stat, fstat: get file status stat(2)
ASCII text strings in a file, /extract the strings(l)
from a common object file, / information strip(l)

/using a file or file structure fuser(lM)
and block count of a file, /p r in t checksum . . . sum(l)

synchronous write on a file, swrite: swrite(2)
/name for common object file symbol table entry. . . . ldgetname(3X)

syms: common object file symbol table/ syms(4)
check and / fsck, dfsck: file system consistency . . . fsck(lM)

fsdb: file system debugger. . . . fsdb(lM)
and statistics for a file system, /file names . . ff(lM)

fs: file system format fs(4)
mkfs: construct a file system mkfs(lM)

mount and dismount file system, /umount : . . . mount(lM)
mount: mount a file system mount(2)

ustat: get file system statistics ustat(2)
mnt tab: mounted file system table mnttab(4)

umount: unmount a file system umount(2)
system description file, system: system(4)

access/ dcopy: copy file systems for optimal . . dcopy(lM)
by/ checklist: list of file systems processed . . . checklist(4)
volcopy, labelit: copy file systems with label/ . . volcopy(lM)

the last part of a file, tail: deliver tail(l)
format of compiled term file., term: term(4)

create a temporary file, tmpfile: tmpfile(3S)
a name for a temporary file, / t empnam: create . . . tmpnam(3S)
modification times of a file, /upda te access and . . touch(l)

f tp: file transfer program. . . . f tp(lN)
f tpd: DARPA Internet File Transfer Protocol/ . . f tpd(lNM)
t f tpd: DARPA Trivial File Transfer Protocol/ . . t f tpd(lNM)

ftw: walk a file tree ftw(3C)
file: determine file type file(l)
TZ: time zone file tz(4)

previous get of an SCCS file, unget: undo a unget(l)
repeated lines in a file, uniq: report uniq(l)

and Permissions file. /UUCP directories . . uucheck(lM)
val: validate SCCS file val(l)

write: write on a file write(2)
umask: set file-creation mode mask. . . umask(l)

common object files, filehdr: file header for . . . filehdr(4)
ferror, feof, clearerr, fileno: stream s ta tus / . . . ferror(3S)

print process accounting file(s). /search and acctcom(l)
or add total accounting files, acctmerg: merge . . . acctmerg(lM)

and administer SCCS files, admin: create admin(l)
concatenate and print files, cat: cat(l)

cmp: compare two files cmp(l)
common to two sorted files, /or reject lines comm(l)
mv: copy, link or move files, cp, In CP(1)

mark differences between files, diffmk: diffmk(l)
header for common object files, filehdr: file filehdr(4)

find: find files find(l)
catman: create the cat files for the manual catman(l)

tape, free: recover files from a backup frec(lM)

5/86 - 10 -

specification in text files, fspec: format fspec(4)
ratfor, or efl files, /split FORTRAN, . . fsplit(l)

format of graphical files, /string, gps(4)
cpset: install object files in binary/ cpset(lM)

preprocessor include files. / C language includes(l)
introduction to special files, intro: intro(7)

editor for common object files. Id: link ld(l)
lockf: record locking on files lockf(3C)

rm, rmdir: remove files or directories r m (l)
/same lines of several files or subsequent/ paste(l)
compress and expand files, /peat , unpack: pack(l)

pr: print files pr(l)
sizes of common object files, /p r in t section size(l)
sort: sort and/or merge files sort(l)

/object and archive files to common formats. . . convert(l)
what: identify SCCS files what(l)

pg: file perusal filter for soft-copy/ pg(l)
greek: select terminal filter greek(l)

nl: line numbering filter nl(l)
line-feeds, col: filter reverse col(l)

device routines and filters, / t d : graphical . . . gdev(lG)
tplot: graphics filters tplot(lG)

backup, fine: fast incremental . . . finc(lM)
find: find files find(l)

find: find files find(l)
hyphen: find hyphenated words. . . hyphen(l)

t tyname, isatty: find name of a terminal. . . ttyname(3C)
for an object / lorder: find ordering relation . . . lorder(l)

/spellin, hashcheck: find spelling errors spell(l)
u tmp file of / ttyslot: find the slot in the ttyslot(3C)

/fold long lines for finite width o u t p u t / fold(l)
fish: play "Go Fish" fish(6)

fish: play "Go Fish". . . . fish(6)
tee: pipe fitting tee(l)

/convert ASCII string to floating-point number. . . . atof(3C)
/ fevt , gcvt: convert floating-point number to / . ecvt(3C)

/manipulate parts of floating-point numbers. . . frexp(3C)
floor, ceiling,/ floor, ceil, fmod, fabs: . . . floor(3M)

floor, ceil, fmod, fabs: floor, ceiling,/ floor(3M)
cflow: generate C flowgraph cflow(l)

fclose, fflush: close or flush a stream. fclose(3S)
ceiling,/ floor, ceil, fmod, fabs: floor floor(3M)

for finite width ou tpu t / fold: fold long lines fold(l)
finite width/ fold: fold long lines for fold(l)

open a stream, fopen, freopen, fdopen: . . . fopen(3S)
process, fork: create a new fork(2)

accounting file format, /per-process . . . acct(4)
ar: common archive file format ar(4)

errfile: error-log file format errfile(4)
fs: file system format fs(4)

for / eqn, neqn, checkeq: format mathematical text . eqn(l)
newform: change the format of a text file newform(l)

inode: format of an i-node inode(4)
file., term: format of compiled term . . term(4)

file, core: format of core image core(4)
cpio: format of cpio archive. . . . cpio(4)

dir: format of directories. . . . dir(4)

5/86 - 10 -

/primitive string,
sccsfile:

text files, fspec:
object file symbol table

or troff. tbl:
nroff:

archive files to common
introduction to file

u tmp and wtmp entry
fscanf, sscanf: convert

varargs/ /vsprintf: print
/ fpr in t f , sprintf: print

/pr in t /check documents
/ t h e macro package for

/ t he MM macro package for
th is / man: macros for
management, netman:

efl/ fsplit: split
hopefully interesting,/

format ted/ printf,
putc, putchar,
stream, puts,
input /ou tput ,

a backup tape,
df: report number of

main memory/ malloc,
mallopt, / malloc,

stream, fopen,
manipulate parts o f /

free: recover files
/line number information

/receive a message
get character or word

fgets: get a string
mkifile: make an ifile

rmdel: remove a delta
/get option letter

and status information
read: read

ncheck: generate names
nlist: get entries

DARPA Internet address
acctcms: command summary

/p r in t out file lists
getpw: get name

formatted input, scanf,
systems processed by

make a lost+found directory for
consistency check and /

debugger,
reposition a file/

specification in text /
ratfor, or efl files.

stat,
pointer/ fseek, rewind,

format of graphical/ . . gps(4)
format of SCCS file. . . sccsfile(4)
format specification in . . fspec(4)
format, syms: common . syms(4)
format tables for nroff . . tbl(l)
format text . nroff(l)
formats, /object and . convert(l)
formats, intro: intro(4)
formats, utmp, wtmp: . . utmp(4)
formatted input, scanf, . scanf(3S)
formatted output of a . vprintf(3S)
formatted output printf(3S)
formatted with the MM/ . mm(l)
formatting a permuted/ mptx(5)
formatting documents. . . mm(5)
formatting entries in . . . man(5)
form-based network . . . netman(lNM)
FORTRAN, ratfor, or . . fsplit(l)
fortune: print a random, . fortune(6)
fprintf, sprintf: print . . . printf(3S)
fputc, putw: p u t / . . . putc(3S)
fputs: put a string on a . puts(3S)
fread, fwrite: binary . . . fread(3S)
free: recover files from . . frec(lM)

df(lM)
free, realloc, calloc: . . . malloc(3C)
free, realloc, calloc, . . . malloc(3X)
freopen, fdopen: open a fopen(3S)
frexp, ldexp, modf: . . . frexp (3C)
from a backup tape. . . frec(lM)
from a common object / . strip(l)
from a socket . recv(2N)
from a stream, /getw: . . getc(3S)
from a stream, gets, . . . gets(3S)
from an object file. . . . mkifile(lM)
from an SCCS file. . . . rmdel(l)
from argument vector. . . getopt(3C)
from dump, /records . errdead(lM)
from file read(2)

ncheck(lM)
from name list nlist(3C)
from node name, /set . . setaddr(lNM)
from per-process/ . . . acctcms(lM)
from proto file; se t / . . . qlist(l)
from UID getpw(3C)
fs: file system format. . fs(4)
fscanf, sscanf: convert . scanf(3S)
fsck. /list of file . . . checklist(4)

mklost+found(lM)
fsck, dfsck: file system . . fsck(lM)
fsdb: file system fsdb(lM)
fseek, rewind, ftell: . . . fseek(3S)
fsize: report file size. . . . fsize(l)

fspec(4)
fsplit: split FORTRAN, . fsplit(l)
fstat: get file status. . . . stat(2)
ftell: reposition a file . . . fseek(3S)

5/86 - 10 -

interprocess/ f tok: s t andard stdipc(3C)
program, f t p : file transfer f t p (l N)

File Transfer Pro tocol / f tpd : D A R P A Internet . . . f t p d (l N M)
f tw: walk a file tree f tw(3C)

/ s h u t down par t of a full-duplex connection. . . . shutdown(2N)
erf, erfc: error funct ion a n d / erf(3M)

and complementary error function, / func t ion erf(3M)
gamma: log gamma function gamma(3M)
Euclidean distance function, hypot: hypot(3M)

of a common object file funct ion, /entr ies ldlread(3X)
mather r : error-handling funct ion matherr(3M)

prof: profile within a funct ion prof(5)
math : math funct ions and constants. . . math(5)

jn, yO, y l , yn: Bessel funct ions. jO, j l , bessel(3M)
power, square root functions, / logari thm, . . . exp(3M)

absolute value functions, / remainder , . . . floor(3M)
ocurse: optimized screen functions ocurse(3X)

/300s: handle special functions of DASI 300/ . . 300(1)
hp: handle special functions of HP 2640 a n d / . hp(l)

450/ 450: handle special functions of the DASI . . . 450(1)
cosh, tanh: hyperbolic functions, sinh, sinh(3M)

atan2: tr igonometric functions, /acos, a tan, . . . trig(3M)
processes using a file/ fuser: identify fuser(lM)
i n p u t / o u t p u t , fread, fwrite: binary fread(3S)
manipulate connect / fw tmp , wtmpfix: f w t m p (l M)

moo: guessing game moo(6)
back: the game of backgammon. . . . back(6)

bj: the game of black jack bj(6)
craps: the game of craps craps(6)

wump: the game of hunt- the-wumpus. . wump(6)
t rk: t rekkie game trk(6)

intro: introduction to games intro(6)
gamma: log gamma function gamma(3M)

function, gamma: log gamma gamma(3M)
ecvt, fcvt, gcvt: convert/ ecvt(3C)

ged: graphical editor. . . . ged(lG)
maze: generate a maze maze(6)
abort : generate an IOT fault abort(3C)
cflow: generate C flowgraph. . . . cflow(l)

cross-reference, cxref: generate C program cxref(l)
da ta by user / diskusg: generate disk accounting . . diskusg(lM)

terminal, ctermid: generate file name for . . . ctermid(3S)
crypt, setkey, encrypt: generate hashing/ crypt(3C)

i-numbers. ncheck: generate names from ncheck(lM)
simple lexical/ lex: generate programs for . . . lex(l)

/seed48, lcong48: generate uniformly/ drand48(3C)
simple random-number generator, rand, srand: . . rand(3C)

s t ream, gets, fgets: get a string from a gets(3S)
file, get: get a version of an SCCS . . get(l)

getsockopt, setsockopt: get and set options on / . . getsockopt(2N)
ulimit: get and set user limits. . . . ulimit(2)

of the user, cuserid: get character login name . . cuserid(3S)
/ge tchar , fgetc, getw: get character or word / . . . getc(3S)

list, nlist: get entries from name . . . nlist(3C)
umask: set and get file creation mask. . . . umask(2)

s t a t , fs ta t : get file s ta tus stat(2)
statistics, us ta t : get file system ustat(2)

5/86 - 10 -

SCCS file, get: get a version of an . . . get(l)
/endgrent, fgetgrent: get group file entry getgrent(3C)

getlogin: get login name getlogin(3C)
logname: get login name logname(l)

msgget: get message queue msgget(2)
getpw: get name from UID getpw(3C)

peer, getpeername: get name of connected . . . getpeername(2N)
system, uname: get name of current CTIX . uname(2)

host, gethostname: get name of current gethostname(3N)
/setnetent, endnetent: get network entry getnetent(3N)

/sethostent, endhostent: get network host entry. . . gethostent(3N)
unget: undo a previous get of an SCCS file unget(l)

argument/ getopt: get option letter from . . . getopt(3C)
/endpwent, fgetpwent: get password file entry. . . getpwent(3C)

working/ getcwd: get path-name of current . . getcwd(3C)
process times, times: get process and child . . . times(2)

/getpgrp, getppid: get process, process/ getpid(2)
/endprotoent: get protocol entry getprotoent(3N)

user,/ /getgid, getegid: get real user, effective . . . getuid(2)
/setservent, endservent: get service entry getservent(3N)

semget: get set of semaphores. . . . semget(2)
segment, shmget: get shared memory shmget(2)

getsockname: get socket name getsockname(2N)
terminal, t ty: get the name of the t ty(l)

time: get time time(2)
getw: get character or/ getc, getchar, fgetc, getc(3S)
get character or/ getc, getchar, fgetc, getw: getc(3S)

current working/ getcwd: get path-name of . getcwd(3C)
getuid, geteuid, getgid, getegid: get real user,/ . . . getuid(2)

environment name, getenv: return value for . . getenv(3C)
getegid: get/ getuid, geteuid, getgid, getuid(2)

real/ getuid, geteuid, getgid, getegid: get getuid(2)
getgrnam, setgrent,/ getgrent, getgrgid, getgrent(3C)
setgrent,/ getgrent, getgrgid, getgrnam, getgrent(3C)

getgrent, getgrgid, getgrnam, setgrent,/ getgrent(3C)
gethostent, gethostbyaddr,/ gethostent(3N)

/gethostbyaddr, gethostbyname,/ gethostent(3N)
gethostbyaddr,/ gethostent, gethostent(3N)

current host, gethostname: get name of . gethostname(3N)
name, getlogin: get login getlogin(3C)

getnetent, getnetbyaddr,/ getnetent(3N)
getnetent, getnetbyaddr, getnetbyname, setnetent,/ . getnetent(3N)

getnetbyname,/ getnetent, getnetbyaddr, . . getnetent(3N)
letter from argument/ getopt: get option getopt(3C)

options, getopt: parse command . . getopt(l)
password, getpass: read a getpass(3C)

connected peer, getpeername: get name of . getpeername(2N)
process,/ getpid, getpgrp, getppid: get . . . getpid(2)

getppid: get process,/ getpid, getpgrp, getpid(2)
getpid, getpgrp, getppid: get process,/ . . . getpid(2)

/getprotobynumber, getprotobyname,/ getprotoent(3N)
getprotoent, getprotobynumber,/ getprotoent(3N)

getprotobynumber,/ getprotoent, getprotoent(3N)
UID. getpw: get name from . . . getpw(3C)

getpwnam, setpwent,/ getpwent, getpwuid getpwent(3C)
getpwent, getpwuid, getpwnam, setpwent,/ . . . getpwent(3C)

setpwent,/ getpwent, getpwuid, getpwnam, . . . getpwent(3C)

86 - 21 -

string from a stream, gets, fgets: get a gets(3S)
/getservbyport, getservbyname,/ getservent(3N)

getservent, getservbyport,/ getservent(3N)
getservbyport,/ getservent, getservent(3N)

name, getsockname: get socket . . getsockname(2N)
get and set options on/ getsockopt, setsockopt: . . . getsockopt(2N)

settings used by getty. /and terminal . . . gettydefs(4)
type, modes, speed, and / getty: set terminal getty(lM)

terminal, ct: spawn getty to a remote ct(lC)
terminal settings used/ gettydefs: speed and gettydefs(4)
getegid: get real user,/ getuid, geteuid, getgid, . . . getuid(2)

getutline, pututl ine,/ getutent, getutid, getut(3C)
pututline,/ getutent, getutid, getutline, getut(3C)

getutent, getutid, getutline, pututline,/ . . . getut(3C)
getc, getchar, fgetc, getw: get character o r / . . . getc(3S)

ctime, localtime, gmtime, asctime, tzset:/ . . ctime(3C)
fish: play "Go Fish" fish(6)

longjmp: non-local goto, setjmp, setjmp(3C)
string, format of / gps: graphical primitive . . gps(4)

graph: draw a graph. . . . graph(lG)
graph: draw a graph graph(lG)

sag: system activity graph sag(lG)
graphics: access graphical and numerical/ . . graphics(lG)

/network useful with graphical commands. . . . s ta t (lG)
hardcopy, tekset, td: graphical device/ /erase, . . gdev(lG)

ged: graphical editor ged(lG)
/string, format of graphical files gps(4)

string, format o f / gps: graphical primitive gps(4)
contents routines, toe: graphical table of toc(lG)

gutil: graphical utilities gutil(lG)
graphical and numerical/ graphics: access graphics(lG)

tplot: graphics filters tplot(lG)
plot: graphics interface plot(4)

subroutines, plot: graphics interface plot(3X)
/ typeset documents, view graphs, and slides mmt(l)

/for typesetting view graphs and slides mv(5)
filter, greek: select terminal . . . greek(l)

search a file for a / grep, egrep, fgrep: grep(l)
/effective user, real group, and effective/ . . . getuid(2)

/get process, process group, and parent/ getpid(2)
chgrp: change owner or group, chown chown(l)

/endgrent, fgetgrent: get group file entry getgrent(3C)
group: group file group(4)

group: group file group(4)
setpgrp: set process group ID setpgrp(2)

id: print user and group IDs and names. . . . id(l)
group, and effective group IDs. /user, real . . . getuid(2)
setgid: set user and group IDs. setuid setuid(2)

newgrp: log in to a new group newgrp(l)
chown: change owner and group of a file chown(2)

signal to a process or a group of processes, / a . . . kill(2)
/upda te , and regenerate groups of programs make(l)

file checkers, pwck, grpek: password/group . . . pwck(lM)
signals, ssignal, gsignal: software ssignal(3C)

/or relocate a P T or GT local printer mktpy(l)
terminal download, tdl, gtdl, ptdl: RS-232 tdl(l)

hangman: guess the word hangman(6)

5/86 - 10 -

moo: guessing game moo(6)
utilities, gutil: graphical gutil(lG)

/ for Xylogics 772 half-inch t ape / xmset(lM)
processing, shutdown, halt: terminate all shutdown(lM)

of DASI 300/ 300, 300s: handle special functions . . 300(1)
of HP 2640 and / hp: handle special functions . . hp(l)

of the DASI 450/ 450: handle special functions . . 450(1)
list, varargs: handle variable argument . varargs(5)

curses: CRT screen handling and / curses(3X)
hangman: guess the word. . hangman(6)

/ run a command immune to hangups and quits nohup(l)
graphical/ hpd, erase, hardcopy, tekset, td: gdev(lG)

hinv: hardware inventory hinv(lM)
/hdestroy: manage hash search tables hsearch(3C)

/hashmake, spellin, hashcheck: find spelling/ . . spell(l)
/encrypt: generate hashing encryption crypt(3C)

hashcheck: find/ spell, hashmake, spellin, spell(l)
manage hash/ hsearch, hcreate, hdestroy: hsearch(3C)

ascii file dump, hd: hexadecimal and hd(l)
hsearch, hcreate, hdestroy: manage hash/ . . hsearch(3C)

object / scnhdr: section header for a common . . . scnhdr(4)
files, filehdr: file header for common object . filehdr(4)

ldfhread: read the file header of a common/ . . . ldfhread(3X)
to the optional file header of a common/ /seek ldohseek(3X)

indexed/named section header of a common/ / an . ldshread(3X)
/ read the archive header of a member of a n / . ldahread(3X)

help: ask for help help(l)
help: ask for help help(l)

file dump, hd: hexadecimal and ascii . . . hd(l)
inventory, hinv: hardware hinv(lM)

/manipulate Volume Home Blocks (VHB) libdev(3X)
fortune: print a random, hopefully interesting,/ . . . fortune(6)
/convert values between host and network byte/ . . byteorder(3N)
endhostent: get network host entry, /sethostent, . . gethostent(3N)

get name of current host, gethostname: gethostname(3N)
network, hosts: list of nodes on . . . hosts(4N)

/special functions of HP 2640 and 2621-series/ . hp(l)
functions of HP 2640/ hp: handle special hp(l)

tekset, td: graphical/ hpd, erase, hardcopy, . . . gdev(lG)
hdestroy: manage hash/ hsearch, hcreate hsearch(3C)

ntohs: convert values/ htonl, htons, ntohl, byteorder(3N)
convert values/ htonl, htons, ntohl, ntohs: byteorder(3N)

wump: the game of hunt-the-wumpus wump(6)
sinh, cosh, tanh: hyperbolic functions sinh(3M)

words, hyphen: find hyphenated . . hyphen(l)
hyphen: find hyphenated words hyphen(l)

distance function, hypot: Euclidean hypot(3M)
accounting data by user ID. generate disk diskusg(lM)

set or shared memory id. /queue, semaphore . . . ipcrm(l)
IDs and names, id: print user and group . . id(l)

set process group ID. setpgrp: setpgrp(2)
issue: issue identification file issue(4)

a file or file/ fuser: identify processes using . . fuser(lM)
what: identify SCCS files what(l)

id: print user and group IDs and names id(l)
and parent process IDs. /process group, getpid(2)
and effective group IDs. /user, real group, . . . getuid(2)

5/86 - 10 -

set user and group
network interface/

file, mkifile: make an
core: format of core

crash: examine system
nohup: run a command

/ C language preprocessor
language preprocessor/

fine: fast
/ tgo to , tputs : terminal
format t ing a permuted
ldtbindex: compute the

ptx: permuted
en t ry / ldtbread: read an

/ ldnshread: read an
o f / /ldnsseek: seek to an

inet_ntoa, /
In ternet / / ine t_makeaddr ,

/ inet_network, inet_ntoa,
address/ / inet_lnaof,

inet_addr,
inet_addr, inet_network,

init tab: script for the
control initialization,

telinit: process control
/drvload: system

volume, iv:
a socket, connect:

process, popen, pclose:
init process,

clri: clear
i-node.

inode: format of an
open a file specified by
blocks associated with

/ s t a r t and stop terminal
convert formatted

push character back into
fread, fwrite: binary

stdio: s tandard buffered
fileno: stream s ta tus
uustat : uucp s ta tus
sof tware/ qinstall:

install:
commands,

binary/ cpset:
or G T / mktpy, mvtpy:

ctinstall:
/set terminal, terminal

abs: return
/convert between long

/sgetl: access long
atoi: convert string to

/convert between 3-byte
3-byte integers and long

bcopy:
processing/ mailx:

IDs. setuid, setgid: setuid(2)
'config: configure ifconfig(lNM)
'ile from an object mkifile(lM)
mage file . core(4)
mages . crash(lM)
mmune to hangups and / . . nohup(l)
nclude files . includes(l)
ncludes: determine C . . . includes(l)
ncremental backup. finc(lM)
ndependent operations. . termcap(3X)
ndex. /package for mptx(5)
ndex of a symbol table/ . . ldtbindex(3X)
ndex • Ptx(l)
ndexed symbol table . . . ldtbread(3X)
ndexed/named section/ . ldshread(3X)
ndexed/named section . . . ldsseek(3X)
net_addr, inet_network, . . inet(3N)
net_lnaof, inet_netof: . . . inet(3N)
net_makeaddr , / inet(3N)
net_netof: Internet inet(3N)
net_network, inet_ntoa,/ . inet(3N)
net_ntoa, / . inet(3N)
nit process
nit, telinit: process init(lM)
nitialization. init, init(lM)
nitialization shell/ brc(lM)
nitialize and maintain . . . iv(l)
nitiate a connection on . connect(2N)
nitiate pipe to / f rom a . . . popen(3S)
ni t tab: script for the . . . inittab(4)

. clri(lM)
node: format of an inode(4)

-node, openi:
-node(s). / t h e list of . . . bcheck(lM)
nput and output
nput . /fscanf, sscanf: . . . scanf(3S)
nput stream, ungetc: . . . ungetc(3S)
n p u t / o u t p u t
n p u t / o u t p u t package. . . . stdio(3S)

nquiry and job control. . uus ta t (lC)
nstall and verify
nstall commands . install(lM)
nstall: install
nstall object files in cpset(lM)
nstall or relocate a P T . . . mktpy(l)
nstall software . ctinstall(l)
nteface, and terminal/ . . . t set(l)
nteger absolute value. . . . abs(3C)
nteger and base-64/ a641(3C)
nteger data in a / sputl(3X)
nteger. strtol, atol, strtol(3C)
ntegers and long/
ntegers. /between 13tol(3C)
nteractive block copy. . . . bcopy(lM)
nteractive message mailx(l)

5/86 - 10 -

/consistency check and interactive repair fsck(lM)
/ a random, hopefully interesting, adage fortune(6)

err: error-logging interface e r r (?)
qic: interface for QIC tape. . . . qic(7)

lp: parallel printer interface Ip(?)
mem, kmem: system memory interface mem(7)

/configure network interface parameters. . . . ifconfig(lNM)
plot: graphics interface plot(4)
plot: graphics interface subroutines. . . . plot(3X)

swap administrative interface, swap: swap(lM)
termio: general terminal interface termio(7)

terminal accelerator interface, tiop: tiop(7)
protocol, telnet: user interface to TELNET . . . telnet(lN)

T F T P / t f tp : user interface to the DARPA . . t f tp (lN)
controlling terminal interface, t ty: tty(7)

vme: VME bus interface vme(7)
serial lines as network interfaces, /and detach . . slattach(lNM)

node/ setaddr: set DARPA Internet address from . . . setaddr(lNM)
/ i n e t j n a o f , inet_netof: Internet address/ inet(3N)

Protocol/ f tpd: DARPA Internet File Transfer . . . f tpd(lNM)
and numbers for the internet. /names networks(4N)

protocols: list of Internet protocols protocols(4N)
services: list of Internet services services(4N)
curve, spline: interpolate smooth spline(lG)
control/ asa: interpret ASA carriage . . . asa(l)

csh: a shell (command interpreter) with C-like/ . . csh(l)
pipe: create an interprocess channel pipe(2)

ipcs: report inter-process/ ipcs(l)
ftok: standard interprocess/ stdipc(3C)

suspend execution for an interval, sleep: sleep(l)
suspend execution for interval, sleep: sleep(3C)

commands and / intro: introduction to . . . intro(l)
file formats, intro: introduction to . . . intro(4)

games, intro: introduction to . . . intro(6)
miscellany, intro: introduction to . . . intro(5)

special files, intro: introduction to . . . intro(7)
subroutines and / intro: introduction to . . . intro(3)

system calls and error/ intro: introduction to . . . intro(2)
and application/ intro: introduction to commands . intro(l)

formats, intro: introduction to file intro(4)
intro: introduction to games. . . . intro(6)

miscellany, intro: introduction to intro(5)
files, intro: introduction to special . . . intro(7)

subroutines and / intro: introduction to intro(3)
calls and error/ intro: introduction to system . . . intro(2)

generate names from i-numbers. ncheck: ncheck(lM)
hinv: hardware inventory hinv(lM)

ioctl: control device ioctl(2)
abort: generate an IOT fault abort(3C)

queue, semaphore set or/ ipcrm: remove a message . . ipcrm(l)
inter-process/ ipcs: report ipcs(l)

/isdigit, isxdigit, isalnum, isspace,/ ctype(3C)
islower, isdigit,/ isalpha, isupper ctype(3C)
/isgraph, iscntrl, isascii: classify/ ctype(3C)

terminal, t tyname, isatty: find name of a . . . t tyname(3C)
/isprint, isgraph, iscntrl, isascii:/ ctype(3C)
/isupper, islower, isdigit, isxdigit,/ ctype(3C)

5/86 - 10 -

/ ispunct, isprint,
isalpha, isupper,

/isspace, ispunct,
/ isalnum, isspace,
/isxdigit, isalnum,

system:
file, issue:

identification file,
isdigit,/ isalpha,
/islower, isdigit,

news: print news
maintain volume.
Bessel functions.

Bessel functions. jO,
bj: the game of black

functions. jO, j l ,
database operator.

/nrand48, mrand48,
processes, killa.ll:

process or a group of /
process,

processes,
interface, mem,

quiz: test your
between 3-byte integers/

long integer and / a641,
/copy file systems with
systems with/ volcopy,
scanning and processing

/ar i thmetic
cpp: the C

includes: determine C
/command programming

/ckpacct, dodisk,
shl: shell

/srand48, seed48,
common object files.

object file, ldclose,
archive header of a /

object file for/ ldopen,
a common object file.

parts o f / frexp,
file access routines,

header of a common/
symbol name for common/

manipulate/ Idlread,
ldlread, ldlinit,

ldlitem: manipulate/
to line number entries/

number entries/ Idlseek,
relocation/ ldrseek,

ldshread,
indexed/named/ ldsseek,

optional file header of /
common object file for/

to relocation entries/

isgraph, iscntrl,/ ctype(3C)
islower, isdigit,/ . ctype(3C)
isprint, isgraph,/ ctype(3C)
ispunct, isprint,/ ctype(3C)
isspace, ispunct,/ ctype(3C)
issue a shell command. . . . system(3S)
issue identification issue(4)

. issue(4)
isupper, islower, . ctype(3C)
isxdigit, isalnum,/ ctype(3C)

. news(l)
iv: initialize and . iv(l)
jO, j l , jn, yO, y l , yn: bessel(3M)
j l , jn, yO, y l , yn: bessel(3M)
jack • bj(6)
jn, yO, y l , yn: Bessel bessel(3M)
join: relational . join(l)
jrand48, srand48,/ drand48(3C)
kill all active . killall(lM)
kill: send a signal to a . . . kill(2)
kill: terminate a . kill(l)
k illa.ll: kill all active killall(lM)
kmem: system memory . . . mem(7)
knowledge . quiz(6)
13tol, ltol3: convert 13tol(3C)
164a: convert between . . . a641(3C)
label checking . volcopy(lM)
labelit: copy file . volcopy(lM)
language, awk: pattern . awk(l)
language . bc(l)
language preprocessor. . . • cpp(l)
language preprocessor/ . . . includes(l)
language . sh(l)
lastlogin, monacct,/ acctsh(lM)
layer manager . shl(l)
lcong48: generate/ drand48(3C)
Id: link editor for ld(l)
ldaclose: close a common . . ldclose(3X)
ldahread: read the ldahread(3X)
ldaopen: open a common . . . ldopen(3X)
ldclose, ldaclose: close . . . ldclose(3X)
ldeeprom: load EEPROM. . ldeeprom(lM)
ldexp, modf: manipulate . frexp(3C)
ldfcn: common object . . . ldfcn(4)
ldfhread: read the file . . . ldfhread(3X)
ldgetname: retrieve ldgetname(3X)
ldlinit, ldlitem: . ldlread(3X)
ldlitem: manipulate line/ . . ldlread(3X)
ldlread, ldlinit, . ldlread(3X)
Idlseek, Idnlseek: seek . . . ldlseek(3X)
ldnlseek: seek to line ldlseek(3X)
ldnrseek: seek to ldrseek(3X)
ldnshread: read an / ldshread(3X)
ldnsseek: seek to an ldsseek(3X)
ldohseek: seek to the ldohseek(3X)
ldopen, ldaopen: open a . ldopen(3X)
ldrseek, ldnrseek: seek . . . ldrseek(3X)

5/86 - 10 -

read an indexed/named/ ldshread, ldnshread: ldshread(3X)
to an indexed/named/ ldsseek, ldnsseek: seek . . . ldsseek(3X)

index of a symbol table/ ldtbindex: compute the . . ldtbindex(3X)
indexed symbol table/ ldtbread: read an ldtbread(3X)

symbol table of a / ldtbseek: seek to the ldtbseek(3X)
getopt: get option letter from argument/ . . . getopt(3C)
for simple lexical/ lex: generate programs . . . lex(l)

programs for simple lexical tasks, /generate . . lex(l)
update, lsearch, lfind: linear search and . . . lsearch(3C)

Volume Home Blocks/ libdev: manipulate libdev(3X)
to subroutines and libraries, / introduction . . intro(3)

relation for an object library, /f ind ordering . . . lorder(l)
ar: archive and library maintainer for / . . . ar(l)

ulimit: get and set user limits ulimit(2)
/an out-going terminal line connection. dial(3C)

/ type, modes, speed, and line discipline getty(lM)
/ type, modes, speed, and line discipline uugetty(lM)

line: read one line line(l)
common object / linenum: line number entries in a . . linenum(4)

/ldlitem: manipulate line number entries of a / . . ldlread(3X)
/ldnlseek: seek to line number entries of a / . . ldlseek(3X)

strip: strip symbol and line number information/ . strip(l)
nl: line numbering filter. . . . nl(l)

selected fields of each line of a file, / c u t o u t . . . cut(l)
/requests to an LP line printer IpU)

lpset: set parallel line printer options lpset(lM)
lpr: line printer spooler lpr(l)

line: read one line line(l)
update, lsearch, lfind: linear search and lsearch(3C)

col: filter reverse line-feeds col(l)
entries in a common/ linenum: line number . . . linenum(4)

/ a t t ach and detach serial lines as network/ slattach(lNM)
comm: select or reject lines common to two/ . . . comm(l)

for uucp communications lines. /file Devices(5)
ou tpu t / fold: fold long lines for finite width fold(l)

head: give first few lines head(l)
uniq: report repeated lines in a file uniq(l)

/files or subsequent lines of one file paste(l)
o r / paste: merge same lines of several files paste(l)

link, unlink: exercise link and unlink system/ . . link(lM)
object files. Id: link editor for common . . . ld(l)

/common assembler and link editor output a.out(4)
link: link to a file link(2)

cp, In, my: copy, link or move files cp(l)
link: link to a file link(2)

link and unlink system/ link, unlink: exercise link(lM)
from proto file; set links based on. /lists . . . qlist(l)

checker, lint: a C program lint(l)
directory. Is: list contents of ls(l)

statistics for a / ff: list file names and ff(lM)
get entries from name list, nlist: nlist(3C)
bcheck: print out the list of blocks/ bcheck(lM)
file, nm: print name list of common object . . . nm(l)

processed by/ checklist: list of file systems checklist(4)
protocols, protocols: list of Internet protocols(4N)

services, services: list of Internet services(4N)
network, hosts: list of nodes on hosts(4N)

5/86 - 10 -

by t e rmina l / t ty type : list of terminal types t ty type(4)
uuname: list U U C P system names. . . uuname(lC)

handle variable a rgument list, varargs: varargs(5)
of a varargs argument list, / f o rma t t ed ou tpu t . . vprintf(3S)

on a socket, listen: listen for connections . . . listen(2N)
connections on a / listen: listen for listen(2N)

/cons t ruc t a rgument list(s) and execute/ xargs(l)
qlist: print out file lists f rom proto file;/ . . . qlist(l)

move files, cp, In, mv: copy, link or cp(l)
ldeeprom: load E E P R O M ldeeprom(lM)

drivers: loadable device drivers. . . drivers(7)
mktunedrv : make a loadable driver fo r / mktunedrv(lM)

lddrv: manage loadable drivers lddrv(lM)
drvbind: access loadable drivers lddrv(2)

asctime, tzse t : / ctime, localtime, gmtime ctime(3C)
as t h e / conlocate: locate a terminal t o use . . conlocate(lM)

for command, pa th : locate executable file p a th (l)
end, etext, edata : last locations in program. . . . end(3C)

d a t a in memory, plock: lock process, text , or plock(2)
files, lockf: record locking on . . lockf(3C)

access to regions of a / locking: exclusive locking(2)
lockf: record locking on files lockf(3C)

gamma: log gamma function gamma(3M)
newgrp: log in to a new group. . . . newgrp(l)

exponential , / exp, log, loglO, pow, sqrt: exp(3M)
exponential , / exp, log, loglO, pow, sqrt: exp(3M)

/pow, sqrt: exponential, logarithm, power, square / . exp(3M)
uulog: ou tpu t logfile information uulog(lC)

process a report of logged errors, errpt : e r rp t (lM)
network, rwho: who is logged in on local rwho(lN)

getlogin: get login name getlogin(3C)
logname: get login name logname(l)

cuserid: get character login name of the user. . . . cuserid(3S)
logname: return login name of user logname(3X)
passwd: change login password passwd(l)

rlogin: remote login rlogin(lN)
rlogind: remote login server r logind(lNM)

login: sign on login(l)
a C shell environment at login time, / se t t ing up . . . cprofile(4)

up an environment at login time, / se t t ing profile(4)
logname: get login name. . . logname(l)

name of user, logname: return login . . . logname(3X)
/164a: convert between long integer and base-64/ . a641(3C)

sputl , sgetl: access long integer da ta in a / . . . sputl(3X)
3-byte integers and long integers, /between . . 13tol(3C)

width o u t p u t / fold: fold long lines for finite fold(l)
se t jmp , longjmp: non-local goto. . . se t jmp(3C)

relation for an ob jec t / lorder: find ordering lorder(l)
make a los t+found directory for fsck mklos t+found(lM)

nice: run a command a t low priority nice(l)
requests to an LP line/ lp, cancel: send/cancel . . . lp(l)

/ requests to an LP line printer lp(l)
interface, lp: parallel printer lp(7)

disable: enable/disable LP printers, enable, enable(l)
/ lpmove: s t a r t / s t o p the L P request scheduler a n d / . lpsched(lM)

reject: a l low/prevent LP requests, accept accept(lM)
lpadmin: configure the LP spooling system lpadmin(lM)

5/86 - 10 -

lpstat: print
LP spooling system.

L P / lpsched, lpshut,
spooler,

s t a r t / s top the L P /
printer options,

s ta r t / s top the / lpsched,
information.

drand48, erand48,
directory,

search and update,
file pointer.

3-byte integers/ 13tol,

values, values:
/ long integer da ta in a

formatt ing a / mptx: the
formatt ing/ mm: the MM

typesetting/ mv: a troff
m4:

entries in this/ man:
formatted with the MM

mail to users or read
to users or read mail,

mail, mail, rmail: send
message processing/
/free, realloc, calloc:

/mallopt, mallinfo: fast
regenerate groups/ make:

iv: initialize and
ar: archive and library

an SCCS file, delta:
mkdir, mkdirs:

special or / mknod:
mktunedrv:

mklost+found:
mktemp:

object file, mkifile:
and regenerate groups/

mk hosts:
banner:

terminal/ script:
memory/ /calloc, mallopt,

calloc: main memory/
calloc, mallopt,/

/ free, realloc, calloc,
formatting entries in/

entries in this manual,
/ t f ind , tdelete, twalk:

/hcreate, hdestroy:
lddrv:

form-based network
window: window

wm: window
shl: shell layer

fwtmp, wtmpfix:
/ldlinit, ldlitem:

LP status information. . . . lpstat(l)
lpadmin: configure the . . . lpadmin(lM)
lpmove: s ta r t / s top the . . . lpsched(lM)
lpr: line printer lpr(l)
lpsched, lpshut, lpmove: . . lpsched(lM)
lpset: set parallel line . . . lpset(lM)
lpshut, lpmove: lpsched(lM)
lpstat: print LP status . . . lpstat(l)
Irand48, nrand48,/ drand48(3C)
Is: list contents of 18(1)
lsearch, lfind: linear lsearch(3C)
lseek: move read/write . . . lseek(2)
ltol3: convert between . . . 13tol(3C)
m4: macro processor. . . . m4(l)
machine-dependent values(5)
machine-independent/ . . . sputl(3X)
macro package for mptx(5)
macro package for mm(5)
macro package for mv(5)
macro processor m4(l)
macros for formatting . . . man(5)
macros, /documents ram(l)
mail, mail, rmail: send . . . mail(l)
mail, rmail: send mail . . . mail(l)
mail to users or read mail(l)
mailx: interactive mailx(l)
main memory allocator. . . malloc(3C)
main memory allocator. . . malloc(3X)
maintain, update, and . . . make(l)
maintain volume iv(l)
maintainer for portable/ . . ar(l)
make a delta (change) to . . delta(l)
make a directory mkdir(l)
make a directory, or a . . . mknod(2)
make a loadable driver/ . . mktunedrv(lM)
make a lost+found directory/ mklost+found(lM)
make a unique file name. . . mktemp(3C)
make an ifile from an . . . mkifile(lM)
make: maintain, update, . . make(l)
make node name commands. mkhosts(lNM)

banner(l)
make typescript of script(l)
mallinfo: fast main malloc(3X)
malloc, free, realloc, malloc(3C)
malloc, free, realloc, malloc(3X)
mallopt, mallinfo: fas t / . . malloc(3X)
man: macros for man(5)
man, manprog: print man(l)
manage binary search/ . . . tsearch(3C)
manage hash search/ . . . hsearch(3C)
manage loadable drivers. . . lddrv(lM)
management, netman: . . . netman(lNM)
management primitives. . . window(7)
management wm(l)
manager shl(l)
manipulate connect/ fwtmp(lM)
manipulate line number / . . ldlread(3X)

5/86 - 10 -

frexp, ldexp, modf: manipulate parts o f / frexp(3C)
tables, route: manually manipulate the routing . . . route(lNM)

Blocks (VHB). libdev: manipulate Volume Home . libdev(3X)
/ Internet address manipulation routines. . . . inet(3N)

in this manual, man, manprog: print entries . . . man(l)
the cat files for the manual, catman: create . . catman(l)
print entries in this manual, man, manprog: . . man(l)

entries in this manual, / for formatting . . man(5)
routing tables, route: manually manipulate the . . route(lNM)

terminal input / rsterm: manually s tar t and stop . . rsterm(lM)
set. ascii: map of ASCII character . . ascii(5)

files, diffmk: mark differences between . . diffmk(l)
set file-creation mode mask, umask: umask(l)

and get file creation mask, umask: set umask(2)
information/ master: master device master(4)

information table, master: master device . . . master(4)
expression compile and match routines, /regular . . regexp(5)

constants, math: math functions and math(5)
constants, math: math functions and . math(5)

/neqn, checkeq: format mathematical text for/ . . . eqn(l)
function, matherr: error-handling . . matherr(3M)

maze: generate a maze. . . . maze(6)
maze: generate a maze maze(6)

vax: provide t r u t h / mc68k, p d p l l , u3b, u3b5, . machid(l)
interface, mem, kmem: system memory mem(7)

memcpy, memset: memory/ memccpy, memchr, memcmp, memory(3C)
memset: memory/ memccpy, memchr, memcmp, memcpy, memory(3C)
memory/ memccpy, memchr, memcmp, memcpy, memset: memory(3C)
memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)

realloc, calloc: main memory allocator, /free, . . malloc(3C)
/mallinfo: fast main memory allocator malloc(3X)

shmctl: shared memory control/ shmctl(2)
semaphore set or shared memory id. /queue ipcrm(l)

mem, kmem: system memory interface mem(7)
/memcmp, memcpy, memset: memory operations memory(3C)

shmop: shared memory operations shmop(2)
text, or da ta in memory, /lock process, . . plock(2)

shmget: get shared memory segment shmget(2)
memchr, memcmp, memcpy, memset: memory/ memccpy, memory(3C)

sort, sort and/or merge files sort(l)
accounting/ acctmerg: merge or add total acctmerg(lM)
several files or / paste: merge same lines of paste(l)

messages, mesg: permit or deny . . . mesg(l)
operations, msgctl: message control msgctl(2)
/recvfrom: receive a message from a socket. . . . recv(2N)

msgop: message operations msgop(2)
mailx: interactive message processing/ mailx(l)

msgget: get message queue msgget(2)
set o r / ipcrm: remove a message queue, semaphore . ipcrm(l)

send, sendto: send a message to a socket send(2N)
mesg: permit or deny messages mesg(l)

sys_nerr: system error messages. /sys_errlist, . . . perror(3C)
directory, mkdir, mkdirs: make a . . . mkdir(l)

directory, mkdir, mkdirs: make a mkdir(l)
system, mkfs: construct a file . . . mkfs(lM)

/software using the mkfs(l) proto file/ qinstall(l)
commands, mkhosts: make node name . mkhosts(lNM)

5/86 - 10 -

from an object file,
lost+found directory/

file.
or a special or/

file name,
relocate a P T or G T /

driver for tunable/
formatt ing/ mm: the

formatted with the
print/check documents/

for format t ing/
documents, view graphs,/

system table,
chmod: change

umask: set file-creation
chmod: change

/set terminal type,
/set terminal type,

o f / frexp, ldexp,
touch: update access and

/set file access and
/dodisk, lastlogin,
execution profile.

uusub:

perusal,
mount:

system, mount, umount:
system,

setmnt: establish
dismount file system,

table, mnttab:
mvdir:

In, mv: copy, link or
pointer, lseek:

LP request scheduler and
for formatting a /

/ lrand48, nrand48,
operations.

queue,
operations,

package for typesetting/
files, cp, In,

view graphs, and / mmt,
relocate a P T or / mktpy,

from i-numbers.
mathematical text/ eqn,

definitions for eqn and
network management.

s tatus.
/values between host and

/endnetent : get
/endhostent: get

hosts: list of nodes on
ifconfig: configure

detach serial lines as

mkifile: make an ifile . . . mkifile(lM)
mklost+found: make a . . . mklost+found(lM)
mknod: build special mknod(lM)
mknod: make a directory, mknod(2)
mktemp: make a unique . . mktemp(3C)
mktpy, mvtpy: install or . . mktpy(l)
mktunedrv: make a loadable mktunedrv(lM)
MM macro package for . . mm(5)
MM macros, /documents mm(l)
mm, osdd, checkmm: . . . mra(l)
mm: the MM macro package mm(5)
mmt, mvt: typeset mmt(l)
mnt tab: mounted file . . . mnt tab (4)
mode chmod(l)
mode mask umask(l)
mode of file chmod(2)
modes, speed, and line/ . . getty(lM)
modes, speed, and line/ . . uugetty(lM)
modf: manipulate parts . . frexp(3C)
modification times of a / . . touch(l)
modification times utime(2)
monacct, nulladm,/ acctsh(lM)
monitor: prepare monitor(3C)
monitor uucp network. . . . uusub(lM)
moo: guessing game moo(6)

more(l)
mount a file system mount(2)
mount and dismount file . . mount(lM)
mount: mount a file mount(2)
mount table setmnt(lM)
mount, umount: mount and mount(lM)
mounted file system mnttab(4)
move a directory mvdir(lM)

cp(l)
move read/write file lseek(2)
move requests, / the lpsched(lM)
mptx: the macro package . . mptx(5)
mrand48, jrand48,/ drand48(3C)
msgctl: message control . . msgctl(2)
msgget: get message msgget(2)
msgop: message msgop(2)
mv: a troff macro mv(5)
mv: copy, link or move . . . cp(l)
mvdir: move a directory. . . mvdir(lM)
mvt: typeset documents, . . mmt(l)
mvtpy: install or mktpy(l)
ncheck: generate names . . ncheck(lM)
neqn, checkeq: format . . . eqn(l)
neqn. /special character . . eqnchar(5)
netman: form-based netman(lNM)
netstat: show network . . . nets ta t (lN)
network byte order byteorder(3N)

getnetent(3N)
network host entry gethostent(3N)
network hosts(4N)
network interface/ ifconfig(lNM)
network interfaces. / and . . s lat tach(lNM)

5/86 - 10 -

netman: form-based
s ta tus of nodes on local

is logged in on local
netstat: show

stat : statistical
uucpd:

uusub: monitor uucp
numbers for the/

format of a text file.
group,

news: print

a process,
process by changing

low priority,
filter,

name list,
common object file,

mkhosts: make
Internet address from

rwhod:
/display status of

hosts: list of
immune to hangups and /

setjmp, longjmp:
/erand48, lrand48,

mathematical text for
tbl: format tables for
eqn/ deroff: remove

values/ htonl, htons,
htonl, htons, ntohl,

null: the

/lastlogin, monacct,
nl: line

number: convert Arabic
/access graphical and
t o / convert: convert

routines, ldfcn: common
selected parts of an

/ ldaopen: open a common
/entries of a common

ldaclose: close a common
file header of a common

of a section of a common
file header of a common

of a section of a common
header of a common

/section of a common
table entry of a common
table entry of a common

symbol table of a common
entries in a common

make an ifile from an
name list of common

information for a common

network management,
network, /display . .
network, rwho: who .
network status. . . .
network useful with/
network uucp server.
network
networks: names and
newform: change the .
newgrp: log in to a new
news items
news: print news items,
nice: change priority of
nice, /of running . .
nice: run a command at
nl: line numbering . .
nlist: get entries from
nm: print name list of
node name commands,
node name, /set DARPA
node status server,
nodes on local network,
nodes on network. . .
nohup: run a command
non-local goto. . . .
nrand48, mrand48,/ .
nroff: format text. . .
nroff or troff. / format
nroff or troff
nroff/ t roff , tbl, and
ntohl, ntohs: convert .
ntohs: convert values/
null file
null: the null file. . .
nulladm, prctmp,/ . .
numbering filter. . .
numerals to English. .
numerical commands,
object and archive files
object file access . .
object file, dump: dump
object file for reading,
object file function,
object file, ldclose,
object file, /read the
object file, /entries
object file, /optional
object file, /entries
object file, /section
object file
object file, / a symbol
object file, /symbol .
object file, / t o the
object file, /number .
object file, mkifile:
object file, nm: print
object file, /relocation

netman(lNM)
ruptime(lN)
rwho(lN)
nets ta t (lN)
s ta t (lG)
uucpd(lNM)
uusub(lM)
networks(4N)
newform(l)
newgrp(l)
news(l)
news(l)
nice(2)
renice(l)
nice(l)
nl(l)
nlist(3C)
nm(l)
mkhosts(lNM)
setaddr(lNM)
rwhod(lNM)
ruptime(lN)
hosts(4N)
nohup(l)
setjmp(3C)
drand48(3C)
nroff(l)
eqn(l)
tbl(l)
deroff(l)
byteorder(3N)
byteorder(3N)
null(7)
null(7)
acctsh(lM)
nl(l)
number(6)
graphics(lG)
convert(l)
ldfcn(4)
dump(l)
ldopen(3X)
ldlread(3X)
ldclose(3X)
ldfhread(3X)
ldlseek(3X)
ldohseek(3X)
ldrseek(3X)
ldshread(3X)
ldsseek(3X)
ldtbindex(3X)
ldtbread(3X)
ldtbseek(3X)
linenum(4)
mkifile(lM)
nm(l)
reloc(4)

5/86 - 10 -

header for a common object file, /section scnhdr(4)
/ f rom a common object file strip(l)

/symbol name for common object file symbol table/ . . ldgetname(3X)
format, syms: common object file symbol table . . syms(4)
file header for common object files, filehdr: filehdr(4)

cpset: install object files in binary/ . . . cpset(lM)
link editor for common object files. Id: W(l)

section sizes of common object files, /pr int size(l)
ordering relation for an object library. /find lorder(l)

od: octal dump od(l)
functions, ocurse: optimized screen . . ocurse(3X)

od: octal dump °d(l)
file/ ldopen, ldaopen: open a common object . . . ldopen(3X)

i-node. openi: open a file specified by . . . openi(2)
fopen, freopen, fdopen: open a stream fopen(3S)

dup: duplicate an open file descriptor dup(2)
writing, open: open for reading or open(2)

or writing, open: open for reading . . . open(2)
specified by i-node. openi: open a file openi(2)

profiler, prf: operating system Prf(7)
/prfdc, prfsnap, prfpr: operating system/ profiler(lM)

memcpy, memset: memory operations, /memcmp, . . . memory(3C)
msgctl: message control operations msgctl(2)

msgop: message operations msgop(2)
semaphore control operations, semctl: semctl(2)
semop: semaphore operations semop(2)

shared memory control operations, shmctl: shmctl(2)
shmop: shared memory operations shmop(2)

strcspn, strtok: string operations, /s t rspn, string(3C)
terminal independent operations, / tpu t s : termcap(3X)

relational database operator, join: join(l)
/copy file systems for optimal access time dcopy(lM)

/ C R T screen handling and optimization package. . . . curses(3X)
functions, ocurse: optimized screen ocurse(3X)

argument / getopt: get option letter from getopt(3C)
a / ldohseek: seek to the optional file header of . . . ldohseek(3X)

fcntl: file control options fcntl(5)
stty: set the options for a terminal. . . . s t ty(l)

getopt: parse command options getopt(l)
parallel line printer options, lpset: set lpset(lM)

/setsockopt: get and set options on sockets getsockopt(2N)
object / lorder: find ordering relation for an . . lorder(l)

/or a special or ordinary file mknod(2)
pr int /check/ mm, osdd, checkmm: mm(l)

dial: establish an out-going terminal line/ . . dial(3C)
and link editor output , /assembler a.out(4)

lines for finite width output device, /long . . . fold(l)
information, uulog: output logfile uulog(lC)

/p r in t formatted output of a varargs/ vprintf(3S)
sprintf: print formatted output , / fpr intf printf(3S)
stop terminal input and output , / s t a r t and rsterm(lM)

and / /accton, acctwtmp: overview of accounting . . . acct(lM)
file, chown: change owner and group of a . . . chown(2)

chown, chgrp: change owner or group chown(l)
compress and expand/ pack, peat, unpack: pack(l)

and optimization package, /handling curses(3X)
mptx: the macro package for formatting a / . mptx(5)

5/86 - 10 -

mm: the MM macro package for fo rmat t ing / . . mm(5)
view/ mv: a troff macro package for typesett ing . . mv(5)

system activity report package. /sa2, sadc: sar(lM)
buffered i n p u t / o u t p u t package, / s t andard stdio(3S)

communication package, / interprocess . . . stdipc(3C)
more, page: text perusal more(l)

T E K T R O N I X 4014/ 4014: paginator for the 4014(1)
options, lpset: set parallel line printer lpset(lM)

interface, lp: parallel printer lp(7)
772/ xmset: set drive parameters for Xylogics . . xmset(lM)

network interface parameters, /configure . . ifconfig(lNM)
/process group, and parent process IDs getpid(2)

getopt: parse command options. . . getopt(l)
password, passwd: change login . . . passwd(l)

passwd: password file. . . . passwd(4)
/ endpwent , fgetpwent: get password file entry getpwent(3C)

putpwent : write password file entry putpwent(3C)
passwd: password file passwd(4)

getpass: read a password getpass(3C)
passwd: change login password passwd(l)

checkers, pwck, grpck: password/group file pwck(lM)
of several files o r / paste: merge same lines . . paste(l)
file for command, path: locate executable . . . pa th (l)

deliver portions of path names, /d i rname: . . basename(l)
working/ getcwd: get path-name of current . . . getcwd(3C)

search a file for a pat tern, /egrep, fgrep: . . . grep(l)
processing/ awk: pat tern scanning and . . . awk(l)

until signal, pause: suspend process . . . pause(2)
and expand files, pack, peat, unpack: compress . . pack(l)

t o / f rom a / popen, pclose: initiate pipe popen(3S)
provide t r u t h / mc68k, p d p l l , u3b, u3b5, vax: . . . machid(l)
get name of connected peer, getpeername: getpeername(2N)

the UUCP directories and Permissions file, /check . . uucheck(lM)
mesg: permit or deny messages. . . mesg(l)

package for format t ing a permuted index, /macro . . mptx(5)
ptx: permuted index ptx(l)

file format , acct: per-process accounting . . . acct(4)
/ command summary from per-process accounting/ . . acctcms(lM)

sys_errlist, sys_nerr:/ perror, errno perror(3C)
soft-copy/ pg: file perusal filter for pg(l)

more, page: text perusal more(l)
for soft-copy/ pg: file perusal filter pg(l)

split: split a file into pieces spli t(l)
interprocess channel, pipe: create an pipe(2)

tee: pipe fitting tee(l)
popen, pclose: initiate pipe to / f rom a process. . . popen(3S)

fish: play "Go Fish" fish(6)
text, or da ta in / plock: lock process plock(2)

interface, plot: graphics plot(4)
subroutines, plot: graphics interface . . . plot(3X)

/f tel l : reposition a file pointer in a stream fseek(3S)
move read/wri te file pointer, lseek: lseek(2)

pipe to / f rom a process, popen, pclose: initiate . . . popen(3S)
library maintainer for portable archives. / and . . a r (l)

/d i rname: deliver portions of path names. . . basename(l)
banner: make posters banner(l)

exp, log, loglO, pow, sqrt: exponential,/ . . exp(3M)

5/86 - 10 -

/exponential, logarithm, power, square root / exp(3M)
brc, bcheckrc, rc, powerfail, drvload:/ brc(lM)

pr: print files pr(l)
/monacct , nulladm, prctmp, prdaily,/ acctsh(lM)

/nulladm, prctmp, prdaily, pr tacct , / acctsh(lM)
text for / cw, checkcw: prepare constant-width . . cw(l)

profile, monitor: prepare execution monitor(3C)
cpp: the C language preprocessor cpp(l)

/determine C language preprocessor include/ . . . includes(l)
file, unget: undo a previous get of an SCCS . . unget(l)

profiler, prf: operating system . . . prf(7)
prfld, prfstat, prfdc, prfsnap, prfpr: / . . . profiler(lM)

prfsnap, prfpr : / prfld, prfstat , prfdc, profiler(lM)
/pr fs ta t , prfdc, prfsnap, prfpr: operating system/ . . profiler(lM)

prfld, prfstat , prfdc, prfsnap, prfpr : / profiler(lM)
prfpr: operating/ prfld, prfstat , prfdc, prfsnap, . . . profiler(lM)

o f / gps: graphical primitive string, format . . gps(4)
types, types: primitive system data . . . types(5)

window management primitives, window: window(7)
hopefully/ fortune: print a random, fortune(6)

prs: print an SCCS file P r s (l)
date: print and set the date. . . . date(l)

cal: print calendar cal(l)
count of a file, sum: print checksum and block . sum(l)

editing activity, sact: print current SCCS file . . sact(l)
manual, man, manprog: print entries in this man(l)

cat: concatenate and print files cat(l)
pr: print files pr(l)

of / /vfpr intf , vsprintf: print formatted output . . vprintf(3S)
/ fpr int f , sprintf: print formatted output . . . printf(3S)

information, lpstat: print LP status lpstat(l)
common object file, nm: print name list of nm(l)

CTIX system, uname: print name of current . . . uname(l)
news: print news items news(l)

from proto file;/ qlist: print out file lists qlist(l)
blocks/ bcheck: print out the list of bcheck(lM)

acctcom: search and print process accounting/ . acctcom(l)
t rp t : print protocol trace t rp t (lNM)

common object / size: print section sizes of size(l)
and names, id: print user and group IDs . . id(l)

mm, osdd, checkmm: print/check documents/ . . mm(l)
lp: parallel printer interface Ip(7)

requests to an LP line printer, /send/cancel . . . lp(l)
a P T o r G T l o c a l printer, /or relocate mktpy(l)

lpset: set parallel line printer options lpset(lM)
lpr: line printer spooler lpr(l)

enable/disable LP printers, /disable: enable(l)
sprintf: pr int / printf, fprintf printf(3S)

run a command at low priority, nice: nice(l)
nice: change priority of a process nice(2)

process/ renice: alter priority of running renice(l)
logged errors, errpt: process a report of errpt(lM)

acct: enable or disable process accounting acct(2)
acctprcl, acctprc2: process accounting acctprc(lM)

/search and print process accounting/ acctcom(l)
alarm: set a process alarm clock alarm(2)

process/ times: get process and child times(2)

5/86 - 10 -

/pr ior i ty of running process by changing/ . . . renice(l)
init, telinit: process control / in i t (lM)

/ t i m e a command; report process d a t a and sys tem/ . t imex(l)
exit, _exit: t e rminate process exit(2)

fork: create a new process fork(2)
/ge tpp id : get process, process group, a n d / getpid(2)

setpgrp: set process group ID setpgrp(2)
group, and parent process IDs. /process . . . getpid(2)
script for the init process, ini t tab: init tab(4)

kill: te rminate a process kill(l)
change priority of a process, nice: nice(2)

kill: send a signal to a process or a group o f / . . . kill(2)
initiate pipe t o / f r o m a process, popen, pclose: . . . popen(3S)
/ge tpgrp , getppid: get process, process group, / . . getpid(2)

ps: report process s t a tus ps(X)
in memory, plock: lock process, text, or da ta . . . plock(2)

get process and child process times, times: . . . times(2)
wait: wait for child process to stop o r / wait(2)

ptrace: process trace ptrace(2)
pause: suspend process until signal pause(2)

await completion of process, wait: wai t (l)
/ l is t of file systems processed by fsck checklist(4)

a process or a group of processes, / a signal to . . . kill(2)
kitla.ll: kill all active processes killall(lM)

or file/ fuser: identify processes using a file fuser(lM)
/ p a t t e r n scanning and processing language awk (l)

halt: te rminate all processing, shutdown, . . . shu tdown(lM)
/ interact ive message processing system mailx(l)

m4: macro processor m4(l)
t r u th value about your processor type, /provide . . machid (l)

data , prof: display profile prof(l)
funct ion, prof: profile within a prof(5)

profile, profil: execution time . . . profil(2)
prof: display profile d a t a prof(l)

prepare execution profile, monitor: monitor(3C)
profil: execution time profile profil(2)

environment a t login/ profile: sett ing up an . . . profile(4)
funct ion, prof: profile within a prof(5)

prf: operat ing system profiler prf(7)
pr fpr : operat ing system profiler, / p r f snap , profiler(lM)

sadp: disk access profiler sadp(lM)
/ command programming language. . . sh(l)

/us ing the mkfs (l) proto file database qinstall(l)
/ o u t file lists f rom proto file; set l inks/ qlist(l)
/ endpro toen t : get protocol entry getprotoent(3N)

In ternet File Transfer Protocol server. / D A R P A . f t p d (l N M)
telnetd: D A R P A T E L N E T protocol server te lne td(lNM)

Trivial File Transfer Protocol server. / D A R P A . t f t p d (l N M)
user interface to T E L N E T protocol, telnet: te lnet(lN)

to the D A R P A T F T P protocol, / in terface t f t p (l N)
t rp t : print protocol trace t r p t (l N M)

A C U / m o d e m calling protocols. Dialers: Dialers(5)
Internet protocols, protocols: list of protocols(4N)

list of Internet protocols, protocols: protocols(4N)
update: provide d i sk / upda te (lM)

facts, ar i thmetic: provide drill in number . . arithmetic(6)
/ p d p l l , u3b, u3b5, vax: provide t r u th value/ machid(l)

5/86 - 10 -

true, false: provide t ru th values. . . . t rue(l)
prs: print an SCCS file. . . prs(l)

/p rc tmp, prdaily, prtacct, runacct , / acctsh(lM)
status, ps: report process ps(1)

sxt: pseudo-device driver. . . . sxt(7)
/uniformly distributed pseudo-random numbers. . . drand48(3C)

/install or relocate a P T or GT local printer. . . mktpy(l)
download, tdl, gtdl, ptdl: RS-232 terminal . . . tdl(l)

ptrace: process trace. . . . ptrace(2)
ptx: permuted index. . . . ptx(l)

input stream, ungetc: push character back into . . ungetc(3S)
putw: put character o r / putc, putchar, fputc, putc(3S)
put character o r / putc, putchar, fputc, putw: . . . putc(3S)

value to environment, putenv: change or add . . . putenv(3C)
file entry, putpwent: write password . putpwent(3C)

string on a stream, puts, fputs: put a puts(3S)
/getutid, getutline, pututline, setutent , / getut(3C)

putc, putchar, fputc, putw: put character o r / . . putc(3S)
password/group file/ pwck, grpck: pwck(lM)

name, pwd: working directory . . pwd(l)
tape, qic: interface for QIC . . . qic(7)

qic: interface for QIC tape qic(7)
verify software using/ qinstall: install and qinstall(l)
lists from proto file;/ qlist: print out file qlist(l)

qsort: quicker sort qsort(3C)
tpu t : query terminfo database. . . t pu t (l)

msgget: get message queue msgget(2)
ipcrm: remove a message queue, semaphore set o r / . . ipcrm(l)

qsort: quicker sort qsort(3C)
immune to hangups and quits, / run a command . . nohup(l)

knowledge, quiz: test your quiz(6)
random-number/ rand, srand: simple rand(3C)

fortune: print a random, hopefully/ fortune(6)
rand, srand: simple random-number generator. . rand(3C)

fsplit: split FORTRAN, ratfor, or efl files fsplit(l)
system/ brc, bcheckrc, rc, powerfail, drvload: . . . brc(lM)

command execution, rcmd: remote shell rcmd(lN)
ruserok: routines for/ rcmd, rresvport, rcmd(3N)

rep: remote file copy. . . . rcp(lN)
getpass: read a password getpass(3C)

table entry/ ldtbread: read an indexed symbol . . ldtbread(3X)
ldshread, ldnshread: read an indexed/named/ . . ldshread(3X)

read: read from file read(2)
send mail to users or read mail, mail, rmail: . . . mail(l)

line: read one line line(l)
read: read from file read(2)

of a member/ ldahread: read the archive header . . ldahread(3X)
a common/ ldfhread: read the file header of . . . ldfhread(3X)

a common object file for reading, /ldaopen: open . . ldopen(3X)
open: open for reading or writing open(2)

[seek: move read/write file pointer. . . . lseek(2)
memory/ malloc, free, realloc, calloc: main malloc(3C)
mallopt,/ malloc, free, realloc, calloc malloc(3X)

system, reboot: reboot the reboot(lM)
reboot: reboot the system reboot(lM)

/specify what to do upon receipt of a signal signal(2)
socket, recv, reevfrom: receive a message from a . . recv(2N)

5/86 - 10 -

lockf:
per-process accounting

errdead: extract error
connect accounting
backup tape, free:
a message from a/

message from a / recv,
ed,

and execute regular/
expression compile,

/maintain, update, and
execute regular/ regcmp,

expression compile and /
/exclusive access to

compile and / regexp:
compile, regcmp:

/compile and execute
requests, accept,

two/ comm: select or
lorder: find ordering

operator, join:
information for a /

mktpy, mvtpy: install or
/ldnrseek: seek to

for a common/ reloc:
/ fabs: floor, ceiling,

calendar:
uux: CTIX to CTIX

returning a stream to a
uuxqt: execute

return stream to a
rhosts:
rexecd:

rep:
rlogin:

rlogind:
execution, remd:

rshd:

Uutry: try to contact a
ct: spawn getty to a

SCCS file, rmdel:
semaphore set o r / ipcrm:

unlink:
disk, dismount:

directories, rm, rmdir:
and eqn/ deroff:

of running process by/
check and interactive

file, uniq: report
clock:
fsize:

communication/ ipes:
disk blocks, df:
errpt: process a

sadc: system activity
timex: time a command;

ps:

record locking on files. .
records, /summary from
records and s ta tus / . .
records, /manipulate
recover files from a . .
recv, reevfrom: receive .
reevfrom: receive a . .
red: text editor
regcmp, regex: compile .
regcmp: regular
regenerate groups o f /
regex: compile and . . .
regexp: regular
regions of a file
regular expression . . .
regular expression . . .
regular expression. . . .
reject: allow/prevent LP
reject lines common to .
relation for an object/ .
relational database . .
reloc: relocation
relocate a P T or G T / .
relocation entries of a / .
relocation information
remainder, absolute/ . .
reminder service. . . .
remote command/ . . .
remote command, /for .
remote command requests,
remote command, rexec:
remote equivalent users,
remote execution server,
remote file copy. . . .
remote login
remote login server. . .
remote shell command .
remote shell server. . .
remote system with/ . .
remote terminal. . . .
remove a delta from an
remove a message queue,
remove directory entry,
remove exchangeable . .
remove files or
remove nroff/ t roff , tbl, .
renice: alter priority . .
repair, /consistency . .
repeated lines in a . . .
report CPU time used. .
report file size
report inter-process . .
report number of free
report of logged errors. .
report package. /sa2,
report process data and/
report process status.

lockf(3C)
acctcms(lM)
errdead(lM)
fwtmp(lM)
frec(lM)
recv(2N)
recv(2N)
ed(l)
regcmp(3X)
regcmp(l)
make(l)
regcmp(3X)
regexp(5)
locking(2)
regexp(5)
regcmp(l)
regcmp(3X)
accept(lM)
comm(l)
lorder(l)
join(l)
reloc(4)
mktpy(l)
ldrseek(3X)
reloc(4)
floor(3M)
calendar(l)
uux(lC)
rcmd(3N)
uuxqt(lM)
rexec(3N)
rhosts(4N)
rexecd(lNM)
rcp(lN)
rlogin(lN)
rlogind(lNM)
rcmd(lN)
rshd(lNM)
Uutry(lM)
ct(lC)
rmdel(l)
ipcrm(l)
unlink(2)
dismount(l)
rm(l)
deroff(l)
renice(l)
fsck(lM)
uniq(l)
clock(3C)
fsize(l)
ipcs(l)
df(lM)
errpt(lM)
sar(lM)
timex(l)
ps(l)

5/86 - 10 -

a file, uniq: report repeated lines in . . uniq(l)
sar: system activity reporter sar(l)
fseek, rewind, ftell: reposition a file/ fseek(3S)

move/ / s t a r t / s top the LP request scheduler and . . . lpsched(lM)
reject: allow/prevent LP requests, accept accept(lM)

scheduler and move requests. / L P request . . . lpsched(lM)
syslocal: special system requests syslocal(2)
lp, cancel: send/cancel requests to an LP line/ . . . lp(l)

execute remote command requests, uuxqt: uuxqt(lM)
common/ ldgetname: retrieve symbol name for . . ldgetname(3X)

value, abs: return integer absolute . . . abs(3C)
user, logname: return login name of logname(3X)

remote command, rexec: return stream to a rexec(3N)
environment/ getenv: return value for getenv(3C)

call, s ta t : data returned by s ta t system . . stat(5)
/ruserok: routines for returning a stream to a / . . rcmd(3N)

col: filter reverse line-feeds col(l)
reposition a / fseek, rewind, ftell: fseek(3S)
/create a new file or rewrite an existing one. . . creat(2)
a remote command, rexec: return stream to . . . rexec(3N)

server, rexecd: remote execution . . rexecd(lNM)
equivalent users, rhosts: remote rhosts(4N)

rlogin: remote login rlogin(lN)
server, rlogind: remote login rlogind(lNM)

or directories, rm, rmdir: remove files . . . rm(l)
users or read/ mail, rmail: send mail to mail(l)

from an SCCS file, rmdel: remove a delta . . . rmdel(l)
directories, rm, rmdir: remove files or . . . rm(l)

chroot: change root directory chroot(2)
command, chroot: change root directory for a chroot(lM)
/logarithm, power, square root functions exp(3M)

manipulate the routing/ route: manually route(lNM)
/ t d : graphical device routines and filters gdev(lG)

/rresvport, ruserok: routines for returning a / . . rcmd(3N)
address manipulation routines. / Internet inet(3N)

object file access routines, ldfcn: common . . ldfcn(4)
compile and match routines, /expression . . . regexp(5)

table of contents routines, /graphical toc(lG)
manually manipulate the routing tables, route: . . . route(lNM)

routines for/ rcmd, rresvport, ruserok: rcmd(3N)
/ terminal 's local RS-232 channels tp(7)

tdl, gtdl, ptdl: RS-232 terminal/ tdl(l)
s tandard/res t r ic ted/ sh, rsh: shell, the sh(l)

server, rshd: remote shell rshd(lNM)
and stop terminal input / rsterm: manually s tar t . . . rs term(lM)

priority, nice: run a command at low . . . nice(l)
hangups and / nohup: run a command immune to . nohup(l)

runacct: run daily accounting. . . . runacct(IM)
accounting, runacct: run daily runacct(lM)

/prdaily, prtacct, runacct, shutacct , / acctsh(lM)
/al ter priority of running process by/ renice(l)

of nodes on local/ ruptime: display status . . . ruptime(lN)
rcmd, rresvport, ruserok: routines for/ . . . rcmd(3N)

on local network, rwho: who is logged in . . . rwho(lN)
server, rwhod: node status rwhod(lNM)

activity report / sa l , sa2, sadc: system . . . sar(lM)
activity report / sal , sa2, sadc: system sar(lM)

5/86 - 10 -

file editing activity, sact: print current SCCS . . sact(l)
report / sal , sa2, sadc: system activity sar(lM)

profiler, sadp: disk access sadp(lM)
graph, sag: system activity sag(lG)

reporter, sar: system activity sar(l)
segment space/ brk, sbrk: change data brk(2)

convert format ted/ scanf, fscanf, sscanf: scanf(3S)
bfs: big file scanner bfs(l)

language, awk: pattern scanning and processing . . awk(l)
delta commentary of an SCCS delta, /change the . cdc(l)

comb: combine SCCS deltas comb(l)
a delta (change) to an SCCS file, delta: make . . delta(l)

sact: print current SCCS file editing/ sact(l)
get: get a version of an SCCS file get(l)

prs: print an SCCS file prs(l)
remove a delta from an SCCS file, rmdel: rmdel(l)

two versions of an SCCS file, /compare . . . sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

a previous get of an SCCS file, unget: undo . . unget(l)
val: validate SCCS file val(l)

create and administer SCCS files, admin: admin(l)
what: identify SCCS files what(l)

versions of an SCCS/ sccsdiff: compare two . . . sccsdiff(l)
file, sccsfile: format of SCCS . . sccsfile(4)

/ t he LP request scheduler and move/ lpsched(lM)
system, uusched: the scheduler for the UUCP . . uusched(lM)

for a common object/ senhdr: section header . . . scnhdr(4)
clear: clear terminal screen clear(l)

ocurse: optimized screen functions ocurse(3X)
curses: CRT screen handling and / . . . curses(3X)

display editor/ vi: screen-oriented (visual) . . . vi(l)
process, inittab: script for the init inittab(4)

of terminal session, script: make typescript . . . script(l)
initialization shell scripts, /system brc(lM)

sdb: symbolic debugger. . . sdb(l)
difference program, sdiff: side-by-side sdiff(l)

grep, egrep, fgrep: search a file for a / grep(l)
bsearch: binary search a sorted table. . . . bsearch(3C)

accounting/ acctcom: search and print process . . acctcom(l)
lsearch, lfind: linear search and update lsearch(3C)

hdestroy: manage hash search tables, /hcreate, . . hsearch(3C)
twalk: manage binary search trees, /tdelete, . . . tsearch(3C)

common object / senhdr: section header for a scnhdr(4)
/read an indexed/named section header of a / ldshread(3X)
line number entries of a section of a common/ / t o . ldlseek(3X)

relocation entries of a section of a common/ / t o . ldrseek(3X)
/ t o an indexed/named section of a common/ . . . ldsseek(3X)

object / size: print section sizes of common . . size(l)
sed: stream editor sed(l)

/ j rand48, srand48, seed48, lcong48:/ drand48(3C)
ldsseek, ldnsseek: seek to an/ ldsseek(3X)
Idlseek, ldnlseek: seek to line number/ ldlseek(3X)

ldrseek, ldnrseek: seek to relocation/ ldrseek(3X)
file header/ ldohseek: seek to the optional ldohseek(3X)

of a common/ ldtbseek: seek to the symbol table . . ldtbseek(3X)
get shared memory segment, shmget: shmget(2)

brk, sbrk: change data segment space/ brk(2)

5/86 - 10 -

common to two/ comm: select or reject lines comm(l)
greek: select terminal filter greek(l)

line of a / cut: cut out selected fields of each . . . cut(l)
object file, dump: dump selected parts of an dump(l)

operations, semctl: semaphore control semctl(2)
semop: semaphore operations. . . . semop(2)

/remove a message queue, semaphore set or shared/ . . ipcrm(l)
semget: get set of semaphores semget(2)

control operations, semctl: semaphore semctl(2)
semaphores, semget: get set of semget(2)

operations, semop: semaphore semop(2)
socket, send, sendto: send a message to a send(2N)

process or a / kill: send a signal to a kill(2)
read mail, mail, rmail: send mail to users or mail(l)

message to a socket, send, sendto: send a send(2N)
an LP line/ lp, cancel: send/cancel requests to . . lp(1)

to a socket, send, sendto: send a message . . . send(2N)
/a t tach and detach serial lines as network/ . . slattach(lNM)

File Transfer Protocol server. /DARPA Internet . f tpd(lNM)
rexecd: remote execution server rexecd(lNM)

rlogind: remote login server rlogind(lNM)
rshd: remote shell server rshd(lNM)

rwhod: node status server rwhod(lNM)
DARPA TELNET protocol server, telnetd: telnetd(lNM)

File Transfer Protocol server. /DARPA Trivial . . t f tpd(lNM)
uucpd: network uucp server uucpd(lNM)

typescript of terminal session, script: make . . . script(l)
Internet address f rom/ setaddr: set DARPA setaddr(lNM)

buffering to a stream, setbuf, setvbuf: assign . . . setbuf(3S)
address on disk, setenet: write Ethernet . . . setenet(lNM)

group IDs. setuid, setgid: set user and setuid(2)
/getgrgid, getgrnam, setgrent, endgrent,/ getgrent(3C)

get / /gethostbyname, sethostent, endhostent: . . . gethostent(3N)
non-local goto, setjmp, longjmp: setjmp(3C)

generate hashing/ crypt, setkey, encrypt: crypt(3C)
table, setmnt: establish mount . . setmnt(lM)

ge t / /getnetbyname, setnetent, endnetent: . . . getnetent(3N)
group ID. setpgrp: set process setpgrp(2)

/getprotobyname, setprotoent, / getprotoent(3N)
/getpwuid, getpwnam, setpwent, endpwent, / . . . getpwent(3C)
get / /getservbyname, setservent, endservent: . . . getservent(3N)

options on/ getsockopt, setsockopt: get and set . . . getsockopt(2N)
environment/ cprofile: setting up a C shell cprofile(4)

environment a t / profile: setting up an profile(4)
/speed and terminal settings used by getty. . . . gettydefs(4)

and group IDs. setuid, setgid: set user . . . setuid(2)
system, setuname: set name of . . . setuname(lM)

/getutline, pututline, setutent, endutent , / getut(3C)
buffering to a / setbuf, setvbuf: assign setbuf(3S)
integer data in/ sputl, sgetl: access long sputl(3X)

s tandard/restr ic ted/ sh, rsh: shell, the sh(1)
xstr: extract and share strings in C / xstr(l)

operations, shmctl: shared memory control . . . shmctl(2)
/queue, semaphore set or shared memory id ipcrm(l)

operations, shmop: shared memory shmop(2)
shmget: get shared memory segment. . . shmget(2)

rcmd: remote shell command execution. . rcmd(lN)

5/86 - 10 -

interpreter)/ csh: a shell (command csh(l)
system: issue a shell command system(3S)

cprofile: setting up a C shell environment a t / . . . cprofile(4)
shl: shell layer manager shl(l)

/ s ta r tup , turnacct: shell procedures for / acctsh(lM)
system initialization shell scripts, /drvload: . . . brc(lM)

rshd: remote shell server rshd(lNM)
sh, rsh: shell, t he / sh(l)

manager, shl: shell layer shl(l)
control operations, shmctl: shared memory . . shmctl(2)

memory segment, shmget: get shared shmget(2)
operations, shmop: shared memory . . . shmop(2)

full-duplex/ shutdown: shut down part of a shutdown(2N)
/pr tacct , runacct, shutacct, s ta r tup , / acctsh(lM)

terminate all/ shutdown, halt: shutdown(lM)
of a full-duplex/ shutdown: shut down part . shutdown(2N)

program, sdiff: side-by-side difference . . . sdiff(l)
login: sign on login(l)

suspend process until signal, pause: pause(2)
to do upon receipt of a signal, /specify what . . . signal(2)

do upon receipt of a / signal: specify what to . . . signal(2)
group of / kill: send a signal to a process or a . . . kill(2)

gsignal: software signals, ssignal ssignal(3C)
/generate programs for simple lexical tasks lex(l)
generator, rand, srand: simple random-number . . . rand(3C)

acos, atan, atan2:/ sin, cos, tan, asin trig(3M)
hyperbolic functions, sinh, cosh, tanh: sinh(3M)

fsize: report file size fsize(l)
sizes of common object/ size: print section size(l)

size: print section sizes of common object/ . . size(l)
attach and detach/ slattach, sldetach: slattach(lNM)

detach serial/ slattach, sldetach: attach and slattach(lNM)
for an interval, sleep: suspend execution . . sleep(l)

for interval, sleep: suspend execution . . sleep(3C)
view graphs, and slides, /documents, mmt(l)
view graphs and slides, / for typesetting . . . mv(5)

the/ ttyslot: find the slot in the utmp file of . . . ttyslot(3C)
spline: interpolate smooth curve spline(lG)

accept a connection on a socket, accept: accept(2N)
bind: bind a name to a socket bind(2N)

a connection on a socket, /initiate connect(2N)
endpoint for/ socket: create an socket(2N)

for connections on a socket, listen: listen listen(2N)
getsockname: get socket name getsockname(2N)

receive a message from a socket, recv, reevfrom: . . . recv(2N)
send a message to a socket, send, sendto: . . . send(2N)

get and set options on sockets, /setsockopt: . . . getsockopt(2N)
/file perusal filter for soft-copy terminals pg(l)

ctinstall: install software ctinstall(l)
ssignal, gsignal: software signals ssignal(3C)

/install and verify software using the / qinstall(l)
sort: sort and/or merge files. . . sort(l)

qsort: quicker sort qsort(3C)
files, sort: sort and/or merge . . sort(l)

tsort: topological sort tsort(l)
lines common to two sorted files, /or reject . . . comm(l)

bsearch: binary search a sorted table bsearch(3C)

5/86 - 10 -

change da ta segment space allocation, /sbrk: . . brk(2)
/unexpand: expand tabs to spaces, and vice versa. . . . expand(l)

terminal, ct: spawn getty to a remote . . ct(lC)
files, fspec: format specification in text fspec(4)

openi: open a file specified by i-node openi(2)
receipt of a / signal: specify what to do upon . . signal(2)

terminal type, modes, speed, and line/ /set . . . getty(lM)
terminal type, modes, speed, and line/ /set . . . uugetty(lM)

settings/ gettydefs: speed and terminal gettydefs(4)
spellin, hashcheck:/ spell, hashmake, spell(l)

spell, hashmake, spellin, hashcheck: find/ . . spell(l)
/spellin, hashcheck: find spelling errors spell(l)

smooth curve, spline: interpolate spline(lG)
pieces, split: split a file into split(l)

csplit: context split csplit(l)
or efl files, fsplit: split FORTRAN, ratfor, . . fsplit(l)

pieces, split: split a file into split(l)
uucleanup: uucp spool directory/ uucleanup(lM)
lpr: line printer spooler Ipr(l)

/configure the LP spooling system lpadmin(lM)
printf, fprintf, sprintf: print format ted/ . . printf(3S)

long integer data in a / sputl, sgetl: access sputl(3X)
exp, log, loglO, pow, sqrt: exponential,/ exp(3M)

/logarithm, power, square root functions. . . . exp(3M)
random-number/ rand, srand: simple rand(3C)

/mrand48, jrand48, srand48, seed48,/ drand48(3C)
scanf, fscanf, sscanf: convert/ scanf(3S)

software signals, ssignal, gsignal: ssignal(3C)
i npu t /ou tpu t / stdio: standard buffered stdio(3S)

communication/ ftok: standard interprocess . . . stdipc(3C)
sh, rsh: shell, the s tandard/restr ic ted/ sh(l)

input / rsterm: manually s tar t and stop terminal . . rsterm(lM)
lpsched, lpshut, lpmove: s ta r t / s top the L P / lpsched(lM)

/runacct , shutacct, s tar tup, turnacct: shell/ . . acctsh(lM)
stat system call, s tat : data returned by . . . stat(5)

status, stat , fstat: get file stat(2)
network useful with/ stat : statistical s ta t (lG)

stat : data returned by s ta t system call stat(5)
useful with/ stat: statistical network s ta t (lG)

/list file names and statistics for a file/ ff(lM)
ustat: get file system statistics ustat(2)

dump, /error records and status information from . . errdead(lM)
lpstat: print LP status information lpstat(l)

clearerr, fileno: stream status inquiries, /feof, . . . ferror(3S)
control, uustat : uucp status inquiry and job . . . uusta t (lC)

communication facilities status, /inter-process . . . ipcs(l)
netstat: show network status nets tat(lN)

ruptime: display status of nodes on local/ . . ruptime(lN)
ps: report process status ps(l)

rwhod: node status server rwhod(lNM)
stat, fstat: get file status stat(2)

inpu t /ou tpu t package, stdio: standard buffered . . stdio(3S)
stime: set time stime(2)

for child process to stop or terminate, /wai t . . wait(2)
/manually s tar t and stop terminal input and / . . rsterm(lM)

strncmp, strcpy,/ strcat, strncat, strcmp, . . . string(3C)
/strcpy, strncpy, strlen, strchr, s trrchr, / string(3C)

5/86 - 10 -

s t rca t , s t rnca t , s t rcmp, s t rncmp, s t rcpy, / . str ing(3C)
/ s t r cmp , s t rncmp, strcpy, s trncpy, s t r len, / . . string(3C)

/ s t r p b r k , s t rspn, strcspn, s t r tok : s t r ing / . . . s tr ing(3C)
sed: s t ream editor sed(l)

fflush: close or flush a s tream, fclose fclose(3S)
freopen, fdopen: open a s t ream, fopen, fopen(3S)

a file pointer in a s tream, /reposition fseek(3S)
character or word from a s t ream, /ge tw: get getc(3S)

get a s tr ing f rom a s t ream, gets, fgets: gets(3S)
character or word on a s t ream, / p u t w : put putc(3S)

fpu ts : pu t a string on a s t ream, puts, puts(3S)
assign buffering to a s t ream, / se tvbuf : setbuf(3S)

/ feof , clearerr, fileno: s t ream s ta tus inquiries. . . ferror(3S)
/ rou t ines for re turning a s t ream to a remote / rcmd(3N)
command, rexec: re turn s t ream to a remote rexec(3N)

back into input s tream, / p u s h character . . ungetc(3S)
and base-64 ASCII string, / long integer a641(3C)

convert da te and time to string, /asct ime, tzset: . . . ctime(3C)
floating-point number to string, /gcvt : convert . . . ecvt(3C)

gps: graphical primitive string, format o f / gps(4)
gets, fgets: get a string f rom a s t ream. . . . gets(3S)

puts, fputs : put a string on a s tream puts(3S)
/ s t r spn , strcspn, s t r tok: s tr ing operations string(3C)

s t r tod, atof: convert str ing t o / s t r tod(3C)
atof: convert ASCII s tr ing to f loat ing-point/ . . atof(3C)
/a to l , atoi: convert str ing to integer strtol(3C)

ASCII text strings in a / strings: extract the s t r ings(l)
/ ex t r ac t the ASCII text strings in a file s t r ings(l)
xstr: extract and share strings in C programs. . . . xs t r (l)

line number informat ion/ strip: str ip symbol and . . . s t r ip(l)
n u m b e r / strip: str ip symbol and line . . . s t r ip (l)

/ s t rcpy , s trncpy, strlen, s trchr, s t r rchr , / . . . string(3C)
s t rncmp, / s t rcat , s t rncat , s t rcmp string(3C)

s t rcat , s t rncat , s t rcmp, s t rncmp, s t rcpy, / string(3C)
/strcmp, strncmp, strcpy, strncpy, strlen, strchr,/ . . string(3C)

/s t r len, s trchr, s t r rchr , s t rpbrk , s t r spn , / string(3C)
/ s t rncpy , strlen, s trchr, s t r rchr , s t rpb rk , / string(3C)

/ s t r r chr , s t rpbrk , s t rspn, s trcspn, s t r t ok : / . . string(3C)
str ing t o / s t r tod, atof: convert s t r tod(3C)

strspn, s trcspn, s t r tok: s t r ing/ / s t rpb rk , . . string(3C)
convert s tr ing t o / strtol, atol, atoi: strtol(3C)
using a file or file s t ructure , /processes . . . fuser(XM)

for a terminal , s t ty: set the options s t ty (l)
another user, su: become super-user or . . su(l)

intro: introduction to subroutines a n d / intro(3)
plot: graphics interface subroutines plot(3X)

/of several files or subsequent lines of one / . . paste(l)
block count of a file, sum: print checksum and . . sum(l)

du: summarize disk usage. . . . du (l)
acctcms: command summary from per-process/ . acctcms(lM)

sync: upda te the super block sync(l)
sync: upda te super-block sync(2)

user, su: become super-user or another . . . su(l)
interval, sleep: suspend execution for an . . sleep(l)
interval, sleep: suspend execution for . . . sleep(3C)

signal, pause: suspend process until . . . pause(2)
swab: swap bytes swab(3C)

5/86 - 10 -

interface, swap: swap administrative swap(lM)
swab: swap bytes swab(3C)

administrative/ swap: swap swap(lM)
write on a file, swrite: synchronous swrite(2)

driver, sxt: pseudo-device sxt(7)
strip: strip symbol and line number/ . . strip(l)

ldgetname: retrieve symbol name for common/ . ldgetname(3X)
/ for common object file symbol table entry ldgetname(3X)
/compute the index of a symbol table entry of a / . . ldtbindex(3X)

common/ /read an indexed symbol table entry of a . . ldtbread(3X)
syms: common object file symbol table format syms(4)

ldtbseek: seek to the symbol table of a common/ . ldtbseek(3X)
sdb: symbolic debugger sdb(l)

symbol table format, syms: common object file . . syms(4)
super-block, sync: update sync(2)

block, sync: update the super . . . sync(l)
update: provide disk synchronization update(lM)

file, swrite: synchronous write on a . . swrite(2)
interpreter) with C-like syntax, /shell (command . . csh(l)
system/ perror, errno, sys_errlist, sys_nerr: perror(3C)

requests, syslocal: special system . . . syslocal(2)
/errno, sys_errlist, sys_nerr: system error/ . . . perror(3C)

binary search a sorted table, bsearch: bsearch(3C)
object file symbol table entry, / for common . ldgetname(3X)

/ t he index of a symbol table entry of a common/ . ldtbindex(3X)
/read an indexed symbol table entry of a common/ . ldtbread(3X)

object file symbol table format, /common . . syms(4)
device information table, master: master . . . master(4)

mounted file system table, mnttab: mnttab(4)
/seek to the symbol table of a common object / . ldtbseek(3X)

toe: graphical table of contents/ toc(lG)
setmnt: establish mount table setmnt(lM)

troff. tbl: format tables for nroff or tbl(l)
manage hash search tables, /hdestroy: hsearch(3C)

manipulate the routing tables, route: manually . . route(lNM)
tabs: set tabs on a terminal tabs(l)

terminal, tabs: set tabs on a tabs(l)
expand, unexpand: expand tabs to spaces, and vice/ . . expand(l)

ctags: create a tags file ctags(l)
part of a file, tail: deliver the last tail(l)

atan2:/ sin, cos, tan, asin, acos, atan, trig(3M)
functions, sinh, cosh, tanh: hyperbolic sinh(3M)

Xylogics 772 half-inch tape controller, /for xmset(lM)
tar: tape file archiver tar(l)

files from a backup tape, free: recover frec(lM)
qic: interface for QIC tape qic(7)

tar : tape file archiver. . . . ta r (l)
for simple lexical tasks, /programs lex(l)

/remove nroff / t roff , tbl, and eqn constructs. . . deroff(l)
nroff or troff. tbl: format tables for . . . tbl(l)

/erase, hardcopy, tekset, td: graphical device/ gdev(lG)
binary/ tsearch, tfind, tdelete, twalk: manage . . . tsearch(3C)

terminal download, tdl, gtdl, ptdl: RS-232 . . . tdl(l)
tee: pipe fitting tee(l)

hpd, erase, hardcopy, tekset, td: graphical/ . . . gdev(lG)
4014: paginator for the TEKTRONIX 4014 terminal. 4014(1)

initialization, init, telinit: process control . . . init(lM)

5/86 - 10 -

telnetd: DARPA
/user interface to

to TELNET protocol,
protocol server,

for a temporary/ tmpnam,
tmpfile: create a

/create a name for a
for terminals,

term: format of compiled
term file-

capability data base,
for the TEKTRONIX 4014

of the DASI 450
interface, tiop:
base, termcap:
base, terminfo:
console: console

spawn getty to a remote
generate file name for
tdl, gtdl, ptdl: RS-232

/ terminal inteface, and
greek: select

/ tgets t r , tgoto, tputs:
/manually start and stop

tset: set terminal,
termio: general
t ty: controlling

establish an out-going
of terminal types by

clear: clear
/make typescript of

by/ gettydefs: speed and
set the options for a

tabs: set tabs on a
inteface, and/ tset: set

conlocate: locate a
t ty: get the name of the

isatty: find name of a
speed, and / getty: set

speed, and / uugetty: set
t tytype: list of

vt: virtual
of DASI 300 and 300s

HP 2640 and 2621-series
tp: controlling

filter for soft-copy
conventional names for

kill:

shutdown, halt:
exit, _exit:

error-logging/ errstop:
child process to stop or

tic:
tput : query

capability data base.
interface,

evaluation command.

TELNET protocol server. . telnetd(lNM)
TELNET protocol. telnet(lN)
telnet: user interface telnet(lN)
telnetd: DARPA TELNET . telnetd(lNM)
tempnam: create a name . . tmpnam(3S)
temporary file . tmpfile(3S)
temporary file . tmpnam(3S)
term: conventional names . term(5)
term file . term(4)
term: format of compiled . . term(4)
termcap terminal termcap(4)
termina /paginator . . . 4014(1)
termina . /functions 450(1)
termina accelerator tiop(7)
termina capability data . termcap(4)
termina capability data . terminfo(4)
termina . console(7)
termina . ct(lC)
termina . ctermid: ctermid(3S)
termina download. tdl(l)
termina environment. . . . tset(l)
termina filter . greek(l)
termina independent/ . . . termcap(3X)
termina input and / rsterm(lM)
termina inteface, and / . . . tset(l)
termina interface . termio(7)
termina interface • tty(7)
termina line/ dial: dial(3C)
termina number, /list . . . ttytype(4)
termina screen . clear(l)
termina session . script(l)
termina settings used . . . gettydefs(4)
termina • stty: . s t ty(l)
termina . tabs(l)
termina , terminal tset(l)
termina to use as the / . . . conlocate(lM)
termina . t ty(l)
termina . t tyname, ttyname(3C)
termina type, modes, . . . getty(lM)
termina type, modes, . . . uugetty(lM)
termina types by/ ttytype(4)
termina • vt(7)
termina s. /functions . . . 300(1)
termina s. /functions of • h P (l)
termina 's local RS-232/ . • tp(7)
termina s. /file perusal • Pg(l)
termina s. term: term(5)
terminate a process. kill(l)
terminate all/ . shutdown(lM)
terminate process . exit(2)
terminate the . errstop(lM)
terminate, /wait for wait(2)
terminfo compiler . tic(lM)
terminfo database. tpu t (l)
terminfo: terminal terminfo(4)
termio: general terminal . termio(7)
test: condition . test(l)

5/86 - 10 -

quiz: test your knowledge quiz(6)
ed, red: text editor ed(l)

ex: text editor e x (l)
ex for casual/ edit: text editor (variant of . . . edit(l)

change the format of a text file, newform: newform(l)
format specification in text files, fspec: fspec(4)
/ fo rmat mathematical text for nroff or troff. . . . eqn(l)

/prepare constant-width text for troff cw(l)
nroff: format text nroff(l)

plock: lock process, text, or data in memory. . . plock(2)
more, page: text perusa] more(l)

/extract the ASCII text strings in a file strings(l)
troff: typeset text troff(l)

manage binary/ tsearch, tfind, tdelete, twalk: tsearch(3C)
interface to the DARPA T F T P protocol, /user . . . t f tp (lN)

the DARPA T F T P / t f tp : user interface to . . . t f tp (lN)
File Transfer Protocol/ t f tpd : DARPA Trivial . . . t f tpd(lNM)

tgetfiag, tgets tr , / tgetent, tgetnum, termcap(3X)
tgetent, tgetnum, tgetfiag, tgets tr , / termcap(3X)
tgetstr , / tgetent, tgetnum, tgetfiag, termcap(3X)

/ tge tnum, tgetfiag, tgetstr, tgoto, tputs : / . . . termcap(3X)
/tgetfiag, tgetstr, tgoto, tputs: terminal/ . . . termcap(3X)

tic: terminfo compiler. . . . tic(lM)
t t t , cubic: tic-tac-toe ttt(6)

process data and / timex: time a command; report . . t imex(l)
time: time a command time(l)

commands at a later time, /ba tch: execute . . . a t (l)
environment at login time, / u p a C shell cprofile(4)

for optimal access time, /copy file systems . . dcopy(lM)
time: get time time(2)

profil: execution time profile profil(2)
an environment at login time, /set t ing up profile(4)

stime: set time stime(2)
time: time a command. . . . t ime(l)

time: get time time(2)
/tzset: convert date and time to string. ctime(3C)

clock: report CPU time used clock(3C)
TZ: time zone file tz(4)

child process times, times: get process and . . . times(2)
access and modification times of a file, /upda te . . touch(l)

and child process times, /get process times(2)
access and modification times, utime: set file . . . utime(2)

report process data and / timex: time a command; . . t imex(l)
accelerator interface, tiop: terminal tiop(7)

temporary file, tmpfile: create a tmpfile(3S)
a name for a temporary/ tmpnam, tempnam: create . tmpnam(3S)

/_toupper, _t°l°\ver, toascii: t ranslate/ conv(3C)
contents routines, toe: graphical table of . . . toc(lG)

/pclose: initiate pipe to / f rom a process popen(3S)
/tolower, _toupper, _tolower, toascii:/ conv(3C)

_tolower,/ toupper, tolower, _toupper, conv(3C)
tsort: topological sort tsort(l)

acctmerg: merge or add total accounting files. . . . acctmerg(lM)
modification times of a / touch: update access and . . touch(l)

toupper, tolower, _toupper, _tolower,/ conv(3C)
_toupper, _tol°\ver,/ toupper, tolower, conv(3C)

terminal's local RS-232/ tp: controlling tp(7)

5/86 - 10 -

tplot: graphics filters. . . . tplot(lG)
database, tput : query terminfo tpu t (l)

/ tgets t r , tgoto, tputs: terminal/ termcap(3X)
characters, tr: translate t r (l)

ptrace: process trace ptrace(2)
t rpt : print protocol trace t rp t (lNM)

ftp: file transfer program f tp (lN)
DARPA Internet File Transfer Protocol/ ftpd: . . f tpd(lNM)
/DARPA Trivial File Transfer Protocol/ t f tpd(lNM)

/_tolower, toascii: translate characters conv(3C)
tr: translate characters t r (l)

f tw: walk a file tree ftw(3C)
manage binary search trees, / tdelete, twalk: . . . tsearch(3C)

trk: trekkie game trk(6)
/asin, acos, atan, atan2: trigonometric functions. . . trig(3M)

Protocol/ t f tpd: DARPA Trivial File Transfer t f tpd(lNM)
trk: trekkie game trk(6)

constant-width text for troff. /checkcw: prepare . . cw(l)
text for nroff or troff. /mathematical . . . eqn(l)

typesetting view/ mv: a troff macro package for . . mv(5)
tables for nroff or troff. tbl: format tbl(l)

troff: typeset text t roff(l)
trace, t rpt : print protocol t rp t (lNM)

t ru th values, true, false: provide t rue(l)
/u3b, u3b5, vax: provide t ru th value about your / . . machid(l)

true, false: provide t ruth values true(l)
system with/ Uutry: try to contact a remote . . Uutry(lM)

twalk: manage binary/ tsearch, tfind, tdelete, . . . tsearch(3C)
terminal inteface, and / tset: set terminal, tset(l)

tsort: topological sort. . . . tsort(l)
t t t , cubic: tic-tac-toe. . . . t t t(6)

terminal interface, t ty: controlling tty(7)
terminal, t ty: get the name of the . . t ty(l)

name of a terminal, t tyname, isatty: find ttyname(3C)
in the utmp file of the/ ttyslot: find the slot ttyslot(3C)

terminal types by/ t tytype: list of ttytype(4)
/ a loadable driver for tunable variables mktunedrv(lM)

/shutacct , s tar tup, turnacct: shell/ acctsh(lM)
tsearch, tfind, tdelete, twalk: manage binary/ . . . tsearch(3C)

file: determine file type file(l)
about your processor type, / t ru th value machid(l)

getty: set terminal type, modes, speed, and / . . getty(1M)
uugetty: set terminal type, modes, speed, and / . . uugetty(lM)

/list of terminal types by terminal/ ttytype(4)
data types, types: primitive system . . types(5)

primitive system data types, types: types(5)
session, script: make typescript of terminal . . . script(l)

graphs, and / mmt, mvt: typeset documents, view . . mmt(l)
troff: typeset text t roff(l)

/ t roff macro package for typesetting view graphs/ . . mv(5)
TZ: time zone file tz(4)

t ime/ /gmtime, asctime, tzset: convert date and . . . ctime(3C)
t r u t h / mc68k, p d p l l , u3b, u3b5, vax: provide . . machid(l)

mc68k, p d p l l , u3b, u3b5, vax: provide t r u th / . machid(l)
getpw: get name from UID getpw(3C)

ul: do underlining ul(l)
limits, ulimit: get and set user . . ulimit(2)

5/86 - 10 -

creation mask, umask: set and get file . . . umask(2)
mode mask, umask: set file-creation . . . umask(l)

dismount file/ mount, umount: mount and mount(lM)
system, umount: unmount a file . . umount(2)

current CTIX system, uname: get name of uname(2)
current CTEX system, uname: print name of . . . uname(l)

ul: do underlining ul(l)
an SCCS file, unget: undo a previous get of . . . unget(l)

spaces, and / expand, unexpand: expand tabs to . expand(l)
get of an SCCS file, unget: undo a previous . . . unget(l)

back into input stream, ungetc: push character . . . ungetc(3S)
/lcong48: generate uniformly distributed/ . . . drand48(3C)

lines in a file, uniq: report repeated . . . uniq(l)
mktemp: make a unique file name mktemp(3C)

program, units: conversion units(l)
and unlink system/ link, unlink: exercise link link(lM)

entry, unlink: remove directory . . unlink(2)
/exercise link and unlink system calls link(lM)

umount: unmount a file system. . . . umount(2)
expand/ pack, peat, unpack: compress and . . . pack(l)
modification/ touch: update access and touch(l)

groups/ make: maintain, update, and regenerate . . . make(l)
lfind: linear search and update, lsearch lsearch(3C)

synchronization, update: provide disk update(lM)
sync: update super-block sync(2)
sync: update the super block. . . sync(l)

du: summarize disk usage du(l)
/statistical network useful with graphical/ . . . s ta t (lG)

names, id: print user and group IDs and . . id(l)
setuid, setgid: set user and group IDs setuid(2)

crontab - user crontab file crontab(l)
login name of the user. /get character cuserid(3S)

real/ /getegid: get real user, effective user, getuid(2)
environ: user environment environ(5)

protocol, telnet: user interface to TELNET . telnet(lN)
DARPA T F T P / t f tp: user interface to the t f tp (lN)

ulimit: get and set user limits ulimit(2)
return login name of user, logname: logname(3X)

/get real user, effective user, real group, and/ . . . getuid(2)
super-user or another user, su: become su(1)

utmp file of the current user, / the slot in the . . . ttyslot(3C)
write: write to another user write(l)

of ex for casual users), /editor (variant . . edit(l)
/rmail: send mail to users or read mail mail(l)

remote equivalent users, rhosts: rhosts(4N)
wall: write to all users wall(lM)

/identify processes using a file or file/ fuser(lM)
/and verify software using the mkfs(l) proto/ . . qinstall(l)

statistics, ustat: get file system ustat(2)
gutil: graphical utilities gutil(lG)

and modification times, utime: set file access utime(2)
formats, utmp, wtmp: utmp and wtmp entry . . . utmp(4)

/u tmpname: access utmp file entry getut(3C)
/f ind the slot in the utmp file of the current/ . . ttyslot(3C)

wtmp entry formats, utmp, wtmp: utmp and . . utmp(4)
/setutent , endutent, utmpname: access u tmp/ . . getut(3C)

directories and / uucheck: check the UUCP . uucheck(lM)

5/86 - 10 -

program for the U U C P / uucico: copy-in/copy-out . . uucico(lM)
directory clean-up. uucleanup: uucp spool . . . uucleanupflM)

/configuration file for uucp communications/ . . . Devices(5)
CTIX system copy, uucp: CTIX system to . . . uucp(lC)
uucheck: check the UUCP directories and / . . . uucheck(lM)

uusub: monitor uucp network uusub(lM)
uucpd: network uucp server uucpd(lNM)

clean-up. uucleanup: uucp spool directory uucleanup(lM)
job control, uustat : uucp status inquiry and . . uustat(lC)

uuname: list UUCP system names. . . . uuname(lC)
/program for the UUCP system uucico(lM)

the scheduler for the UUCP system, uusched: . . uusched(lM)
server, uucpd: network uucp . . . uucpd(lNM)

type, modes, speed, and / uugetty: set terminal . . . uugetty(lM)
information, uulog: output logfile uulog(lC)

names, uuname: list UUCP system . uuname(lC)
CTIX-to-CTIX/ uuto, uupick: public uuto(lC)
for the UUCP system, uusched: the scheduler . . . uusched(lM)

inquiry and job/ uustat: uucp status uustat(lC)
network, uusub: monitor uucp uusub(lM)

CTIX-to-CTIX system/ uuto, uupick: public uuto(lC)
remote system with/ Uutry: try to contact a . . . Uutry(lM)
command execution, uux: CTIX to CTIX remote . uux(lC)

command requests, uuxqt: execute remote . . . uuxqt(lM)
val: validate SCCS file. . . val(l)

val: validate SCCS file val(l)
u3b5, vax: provide t ruth value about your/ /u3b, . . machid(l)

return integer absolute value, abs: abs(3C)
name, getenv: return value for environment . . . getenv(3C)
/remainder, absolute value functions floor(3M)

putenv: change or add value to environment. . . . putenv(3C)
/ntohl , ntohs: convert values between host and / . byteorder(3N)

machine-dependent/ values: values(5)
false: provide t ruth values, true, t rue(l)
machine-dependent values, values: values(5)

/ format ted output of a varargs argument list. . . . vprintf(3S)
argument list, varargs: handle variable . . varargs(5)

varargs: handle variable argument list. . . . varargs(5)
driver for tunable variables, / a loadable . . . mktunedrv(lM)

edit: text editor (variant of ex for/ edit(l)
mc68k, p d p l l , u3b, u3b5, vax: provide truth value/ . . machid(l)

vc: version control v c (l)
letter from argument vector, /get option getopt(3C)

assertion, assert: verify program assert(3X)
qinstall: install and verify software using/ . . . qinstall(l)

tabs to spaces, and vice versa, /unexpand: expand . expand(l)
vc: version control v c (l)

get: get a version of an SCCS file. . . get(l)
sccsdiff: compare two versions of an SCCS/ . . . sccsdiff(l)

pr int / vprintf, vfprintf, vsprintf: vprintf(3S)
Volume Home Blocks (VHB). /manipulate libdev(3X)

(visual) display editor/ vi: screen-oriented vi(l)
tabs to spaces, and vice versa, /expand expand(l)

/mvt : typeset documents, view graphs, and slides. . . mmt(l)
/package for typesetting view graphs and slides. . . . mv(5)
/ a terminal to use as the virtual system console. . . . conlocate(lM)

vt: virtual terminal v t(7)

5/86 - 10 -

vi: screen-oriented (visual) display editor/ . . . vi(l)
vme: VME bus interface vme(7)

vme: VME bus interface. . . vme(7)
file systems with label/ volcopy, labelit: copy . . . volcopy(lM)

libdev: manipulate Volume Home Blocks/ . . . libdev(3X)
initialize and maintain volume, iv: iv(l)

vsprintf: pr int / vprintf, vfprintf, vprintf(3S)
vprintf, vfprintf, vsprintf: pr int / vprintf(3S)

vt: virtual terminal v t(7)
of process, wait: await completion . . . wait(l)

to stop or / wait: wait for child process . . . wait(2)
process to stop or / wait: wait for child wait(2)

ftw: walk a file tree ftw(3C)
users, wall: write to all wall(lM)

wc: word count wc(l)
files, what: identify SCCS what(l)

of a / signal: specify what to do upon receipt . . signal(2)
whodo: who is doing what whodo(lM)

local network, rwho: who is logged in on rwho(lN)
who: who is on the system. . . . who(l)

system, who: who is on the who(l)
what, whodo: who is doing whodo(lM)

/long lines for finite width output device fold(l)
primitives, window: window management . . . window(7)

wm: window management. . . . wm(l)
management primitives, window: window window(7)

wm: window management. . wm(l)
cd: change working directory c<d(1)

chdir: change working directory chdir(2)
/get path-name of current working directory getcwd(3C)

pwd: working directory name. . . pwd(l)
on disk, setenet: write Ethernet address . . . setenet(lNM)

swrite: synchronous write on a file swrite(2)
write: write on a file write(2)

entry, putpwent: write password file putpwent(3C)
wall: write to all users wall(lM)

write: write to another user. . . . write(l)
write: write on a file. . . . write(2)

user, write: write to another . . . write(l)
open for reading or writing, open: open(2)

utmp, wtmp: utmp and wtmp entry formats utmp(4)
entry formats, utmp, wtmp: utmp and wtmp . . utmp(4)

connect/ fwtmp, wtmpfix: manipulate fwtmp(lM)
hunt-the-wumpus. wump: the game of wump(6)

argument list(s) and/ xargs: construct xargs(l)
parameters for Xylogics/ xmset: set drive xmset(lM)

strings in C programs, xstr: extract and share . . . xstr(l)
/se t drive parameters for Xylogics 772 half-inch/ . . . xmset(lM)

functions. jO, j l , jn, yO, y l , yn: Bessel bessel(3M)
jO, j l , jn, yO, y l , yn: Bessel/ bessel(3M)

compiler-compiler, yacc: yet another yacc(l)
jO, j l , jn, yO, y l , yn: Bessel functions bessel(3M)

TZ: time zone file tz(4)

5/86 - 10 -

TABLE OF CONTENTS

2. System Calls
intro introduction to system calls and error numbers
accept accept a connection on a socket
access determine accessibility of a file
acct enable or disable process accounting
alarm set a process alarm clock
bind bind a name to a socket
brk change da t a segment space allocation
chdir change working directory
chmod change mode of file
chown change owner and group of a file
chroot change root directory
close close a file descriptor
connect initiate a connection on a socket
creat create a new file or rewrite an existing one
dup duplicate an open file descriptor
exec execute a file
exit te rminate process
fcntl file control
fork create a new process
ge tpeername get name of connected peer
getpid get process, process group, and paren t process IDs
getsockname get socket name
getsockopt get and set options on sockets
getuid get user and group IDs
ioctl control device
kill send a signal to a process or a group of processes
lddrv access loadable drivers
link link to a file
listen listen for connections on a socket
locking exclusive access to regions of a file
lseek move read /wr i te file pointer
mknod make a directory, or a special or ordinary file
m o u n t m o u n t a file system
msgctl message control operat ions
msgget get message queue
msgop message operat ions
nice change priority of a process
open open for reading or writ ing
openi open a file specified by i-node
pause suspend process until signal
pipe create an interprocess channel
plock lock process, text , or da t a in memory
profil execution t ime profile
p t race process t race

5/86 - 10 -

read read f rom file
recv receive a message f rom a socket
semctl semaphore control operat ions
semget get set of semaphores
semop semaphore operations
send send a message to a socket
se tpgrp set process group ID
setuid set user and group IDs
shmctl shared memory control operat ions
shmget get shared memory segment
shmop shared memory operat ions
shu tdown shu t down pa r t of a full-duplex connection
signal specify w h a t to do upon receipt of a signal
socket create an endpoint for communicat ion
s t a t get file s t a tu s
st ime set t ime
swrite synchronous write on a file
sync upda te super-block
syslocal special system requests
t ime get t ime
t imes get process and child process t imes
ul imit get and set user limits
umask set and get file creation mask
u m o u n t u n m o u n t a file system
uname get name of current CTIX system
unlink remove directory entry
u s t a t get file system statistics
u t ime set file access and modification t imes
wai t wait for child process to stop or te rminate
write write on a file

3. S u b r o u t i n e s a n d L i b r a r i e s

intro introduction t o subroutines and libraries
a641 convert between long integer and base-64 ASCII string
abor t generate an IOT faul t
abs re turn integer absolute value
assert verify program assertion
atof convert ASCII str ing to floating-point number
bessel Bessel funct ions
bsearch binary search a sorted table
byteorder . . convert values between host and network byte order
clock report C P U time used
conv t ransla te characters
c rypt generate hashing encryption
ctermid generate file name for terminal
ctime convert date and t ime to str ing
ctype classify characters
curses C R T screen handling and opt imizat ion package
cuserid get character login name of the user
dial establish an out-going terminal line connection

5/86 - 10 -

drand48 . . generate uniformly dis t r ibuted pseudo-random numbers
ecvt convert f loating-point number to str ing
end last locations in program
erf error funct ion and complementary error funct ion
exp exponential, logarithm, power, square root funct ions
fclose close or flush a s t ream
ferror s t ream s ta tus inquiries
floor floor, ceiling, remainder, absolute value funct ions
fopen open a s t ream
fread binary i n p u t / o u t p u t
frexp manipula te pa r t s of f loat ing-point numbers
fseek reposition a file pointer in a s t ream
f tw walk a file tree
g a m m a log g a m m a funct ion
getc get character or word from a s t ream
getcwd get pa th -name of current working directory
getenv re turn value for environment name
getgrent get group file entry
ge thos ten t get network host entry
ge thos tname get name of current host
getlogin get login name
ge tne ten t get network entry
getopt get option letter from argument vector
getpass read a password
ge tpro toent get protocol entry
getpw get name from UID
ge tpwent get password file entry
gets get a string f rom a s t ream
getservent get service entry
ge tu t access u t m p file entry
hsearch manage hash search tables
hypot Euclidean distance funct ion
inet Internet address manipulat ion routines
13tol convert between 3-byte integers and long integers
ldahread . . read the archive header of a member of an archive file
ldclose close a common object file
ldfhread read the file header of a common object file
ldgetname retrieve symbol name for common object file
ldlread manipula te line number entries
ldlseek seek to line number entries of a section
ldohseek . . seek to the optional file header of a common object file
ldopen open a common object file for reading
ldrseek seek to relocation entries of a section
ldshread read an indexed/named section header
ldsseek . seek to an indexed /named section of a common object file
ldtbindex compute the index of a symbol table entry
ldtbread read an indexed symbol table entry
Idtbseek seek to the symbol table of a common object file
libdev manipula te Volume Home Blocks (VHB)
lockf record locking on files
logname re turn login name of user

5/86 - 10 -

lsearch linear search and update
malloc main memory allocator
malloc fast main memory allocator
ma the r r error-handling funct ion
memory memory operations
m k t e m p make a unique file name
moni tor prepare execution profile
nlist get entries f rom name list
ocurse optimized screen funct ions
perror system error messages
plot graphics interface subrout ines
popen initiate pipe t o / f r o m a process
printf pr in t fo rma t t ed ou tpu t
pu tc pu t character or word on a s t ream
putenv change or add value to environment
p u t p w e n t write password file entry
pu t s pu t a string on a s t ream
qsort quicker sort
r and simple random-number generator
rcmd rout ines for re turning a s t ream to a remote command
regcmp compile and execute regular expression
rexec re turn s t ream to a remote command
scanf convert fo rmat ted input
setbuf assign buffering to a s t ream
s e t j m p non-local goto
sinh hyperbolic funct ions
sleep suspend execution for interval
sputl . . access long integer d a t a in a machine-independent fashion.
ssignal sof tware signals
s td io s t andard buffered i n p u t / o u t p u t package
stdipc s t andard interprocess communicat ion package
str ing str ing operations
s t r tod convert string to double-precision number
strtol convert string to integer
swab swap bytes
system issue a shell command
t e rmcap terminal independent operat ions
tmpfi le create a temporary file
t m p n a m create a name for a temporary file
tr ig tr igonometric funct ions
tsearch manage binary search trees
t t y n a m e find name of a terminal
t tys lo t find the slot in the u t m p file of the current user
ungetc push character back into input s tream
vprintf pr int fo rmat ted o u t p u t of a varargs a rgument list

4 . F i l e F o r m a t s

intro introduct ion to file fo rmats
a .out common assembler and link editor ou tpu t
acct per-process accounting file format

5/86 - 4 -

ar common archive file fo rmat
checklist list of file systems processed by fsck
core fo rmat of core image file
cpio fo rmat of cpio archive
cprofile set t ing up a C shell environment a t login time
dir fo rmat of directories
errfile error-log file fo rmat
fi lehdr file header for common object files
fs file system fo rmat
fspec fo rmat specification in text files
ge t tydefs speed and terminal set t ings used by get ty
gps graphical primitive string, fo rmat of graphical files
group group file
hosts list of nodes on network
ini t tab script for the init process
inode format of an i-node
issue issue identification file
ldfcn common object file access routines
linenum line number entries in a common object file
mas ter master device information table
m n t t a b mounted file system table
networks names and numbers for the internet
passwd password file
plot graphics interface
profile sett ing up an environment a t login time
protocols list of Internet protocols
reloc relocation information for a common object file
rhosts remote equivalent users
sccsfile fo rmat of SCCS file
scnhdr section header for a common object file
services list of In ternet services
syms common object file symbol table fo rmat
system system description file
te rm fo rmat of compiled term file.
t e rmcap terminal capabili ty da t a base
te rminfo terminal capability da t a base
t t y t y p e list of terminal types by terminal number
tz t ime zone file
u t m p u t m p and w t m p entry fo rmats

5. M i s c e l l a n e o u s F a c i l i t i e s

intro introduction to miscellany
ascii map of ASCII character set
Devices configuration file for uucp communicat ions lines
Dialers A C U / m o d e m calling protocols
environ user environment
eqnchar special character definitions for eqn and neqn
fcntl file control options
man macros for format t ing entries in this manual
m a t h ma th funct ions and constants

5/86 - 10 -

m m the MM macro package for format t ing documents
m p t x the macro package for format t ing a pe rmuted index
mv . . a troff macro package for typeset t ing view graphs and slides
prof profile within a funct ion
regexp regular expression compile and match routines
s t a t da ta re turned by s ta t system call
te rm conventional names for terminals
types primitive system da t a types
values machine-dependent values
varargs handle variable argument list

6. Games
intro introduction to games
adven t explore Colossal Cave
ar i thmet ic provide drill in number facts
back the game of backgammon
bj the game of black jack
craps the game of craps
fish play " G o F i sh"
for tune pr in t a random, hopefully interesting, adage
hangman guess the word
maze generate a maze
moo guessing game
number convert Arabic numerals to English
quiz test your knowledge
t rk trekkie game
t t t t ic-tac-toe
w u m p the game of hun t - the -wumpus

7. Spec ia l F i l es

intro introduction to special files
console console terminal
disk general disk driver
drivers loadable device drivers
err error-logging interface
lp parallel printer interface
mem system memory interface
null the null file
prf operat ing system profiler
qic interface for QIC tape
sxt pseudo-device driver
termio general terminal interface
tiop terminal accelerator interface
t p controlling terminal ' s local RS-232 channels
t t y controlling terminal interface
vme VME bus interface
v t vir tual terminal
window window management primitives

5/86 - 10 -

INTRO (2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
^inc lude < e r r n o . h >

DESCRIPTION
This section describes all of the system calls.
System call entries that are suffixed by (2N) are part of
the CTIX networking packages. The link editor searches
these calls under the —1 socket option. To use these
calls you must have the network protocols on your
system. See the CTIX Internetworking Manual for
further information.
Most of these calls have one or more error returns. An
error condition is indicated by an otherwise impossible
returned value. This is almost always -1 ; the individual
descriptions specify the details. An error number is also
made available in the external variable errno. Errno is
not cleared on successful calls, so it should be tested only
after an error has been indicated.
Each system call description attempts to list all possible
error numbers. The following is a complete list of the
error numbers and their names as defined in
< e r r n o . h > .
1 EPERM Not super-user

Typically this error indicates an attempt to
modify a file in some way forbidden except to its
owner or super-user. It is also returned for
attempts by ordinary users to do things allowed
only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name or IPC
identifier is specified and the file or IPC
structure should exist but doesn't, or when one
of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that
specified by pid in kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or
quit), which the user has elected to catch,
occurred during a system call. If execution is
resumed after processing the signal, it will
appear as if the interrupted system call returned
this error condition.

- 1 -

INTRO(2)

5 EIO I/O error
Some physical I/O error has occurred. This
error may in some cases occur on a call following
the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which
does not exist, or beyond the limits of the
device. It may also occur when, for example, a
tape drive is not on-line or no disk pack is
loaded on a drive. On local terminals, it may
indicate that the host terminal lacks the
specified channel; for example, opening tpa256,
when tty256 refers to a Programmable Terminal,
not a Graphics Terminal.

7 E2BIG Arg list too long
An argument list longer than 10,240 bytes is
presented to a member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which,
although it has the appropriate permissions, does
not start with a valid magic number (see
a.out{ 4)), or the executable file requires
hardware that does not exist (e.g., floating-
point).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a
read (respectively, write) request is made to a
file which is open only for writing (respectively,
reading).

10 ECHILD No child processes
A wait was executed by a process that had no
existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table
is full or the user is not allowed to create any
more processes, or an IPC call is made with the
IPCJMOWAIT option and the caller would
block.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for
more space than the system is able to supply.

13 EACCES Permission denied
An attempt was made to access a file or IPC
structure in a way forbidden by the protection
system. From locking, an attempt to lock bytes
already under a checking lock.

- 2 -

INTRO(2)

14 EFAULT Bad address
The system encountered a hardware fault in
attempting to use an argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block
device was required, e.g., in mount.

16 EBUSY Device or resource busy
An attempt was made to mount a device that
was already mounted or an attempt was made to
dismount a device on which there is an active
file (open file, current directory, mounted-on file,
active text segment). It will also occur if an
attempt is made to enable accounting when it is
already enabled. The device or resource is
currently unavailable.

17 EEXIST File exists
An existing file or IPC structure was mentioned
in an inappropriate context, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate
system call to a device; e.g., read a write-only
device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory
is required, for example in a path prefix or as an
argument to chdir(2).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINVAL Invalid argument
Some invalid argument (e.g., dismounting a
non-mounted device; mentioning an undefined
signal in signal, or kill; reading or writing a file
for which Iseek has generated a negative
pointer). Also set by the math functions
described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no
more opens can be accepted.

24 EMFILE Too many open files
No process may have more than 20 file
descriptors open at a time. When a record lock
is being created with fcntl, there are too many
files with record locks on them.

- 3 -

INTRO(2)

25 ENOTTY Not a character device
An attempt was made to ioctl(2) a file that is
not a special character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-
procedure program that is currently open for
writing. Also an attempt to open for writing a
pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimit{2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no
free space left on the device. In fcntl, the setting
or removing of record locks on a file cannot be
accomplished because there are no more record
entries left on the system. In an IPC call, no
IPC identifiers are available.

29 ESPIPE Illegal seek
An Iseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was
made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum
number of links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process
to read the data. This condition normally
generates a signal; the error is returned if the
signal is ignored.

33 EDOM Math argument
The argument of a function in the math package
(3M) is out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package
(3M) is not representable within machine
precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a
type that does not exist on the specified message
queue; see msgop(2).

36 EIDRM Identifier Removed
This error is returned to processes that resume

- 4 -

INTRO (2)

execution due to the removal of an identifier
from the file system's name space (see msgctl(2),
semctl(2), and shmctl(2)).

37 ECHRNG Channel number out of range
Not used; retained for compatibility.

38 EL2NSYNC Level 2 not synchronized
Not used; retained for compatibility.

39 EL3HALT Level 3 halted
Not used; retained for compatibility.

40 EL3RST Level 3 reset
Not used; retained for compatibility.

41 ELNRNG Link number out of range
Not used; retained for compatibility.

42 EVNATCH Protocol driver not attached
Not used; retained for compatibility.

43 ENOCSI No CSI structure available
Not used; retained for compatibility.

44 EL2HLT Level 2 halted
Not used; retained for compatibility.

45 EDEADLK Record locking deadlock
Call cannot be honored because of a potential
deadlock. See fcntl(2).

46 ENOLCK No record locks available
No free entries are currently available in the
kernel lock array.

50 EBADE Invalid exchange
A user-specified exchange descriptor is out of
range or specifies an unallocated exchange.

51 EBADR Invalid request descriptor
An attempt has been made to reference a request
that is not outstanding.

52 EXFULL Exchange full
No request descriptors are currently available for
this exchange.

53 ENOANO No anode
Not used; retained for compatibility.

54 EBADRQC Invalid request code
No routing is currently available for this request
code.

55 EBADSLT Invalid slot
Not used; retained for compatibility.

5/86 - 5 -

INTRO (2)

56 EDEADLOCK Deadlock error
Call cannot be honored because of potential
deadlock or because lock table is full. See
locking{ 2).

57 EBFONT Bad font file format
Not used; retained for compatibility.

224 ENOHDW No hardware available for operation
The address specification exceeds the allowable
limits or the required hardware does not exist.
See exec{2).

225 EBADFS Bit-mapped file system is marked dirty
An attempt to mount a bit-mapped file system
failed due to the dirty flag being set for that file
system.

226 EWOULDBLOCK Operation would block
An operation which would cause a process to
block was attempted on a object in non-blocking
mode.

227 EINPROGRESS Operation now in progress
An operation which takes a long time to
complete (such as a co«nec<(2N)) was attempted
on a non-blocking object.

228 EALREADY Operation already in progress
An operation was attempted on a non-blocking
object which already had an operation in
progress.

229 ENOTSOCK Socket operation on non-socket
Self-explanatory.

230 EDESTADDRREQ Destination address required
A required address was omitted from an
operation on a socket.

231 EMSGSIZE Message too long
A message sent on a socket was larger than the
internal message buffer.

232 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support
the semantics of the socket type requested. For
example, you cannot use the ARPA Internet
UDP protocol with type SOCK_STREAM.

233 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the
system or no implementation for it exists.

234 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been

5/86 - 6 -

INTRO (2)

configured into the system or no implementation
for it exists.

235 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a
datagram socket.

236 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into
the system or no implementation for it exists.

237 EAFNOSUPPORT Address family not supported by
protocol
An address incompatible with the requested
protocol was used. For example, you shouldn't
necessarily expect to be able to use PUP Internet
addresses with ARPA Internet protocols.

238 EADDRINUSE Address already in use
Only one usage of each address is normally
permitted.

239 EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a
socket with an address not on this machine.

240 ENETDOWN Network is down
A socket operation encountered a dead network.

241 ENETUNREACH Network is unreachable
A socket operation was attempted to an
unreachable network.

242 ENETRESET Network dropped connection on reset
The host you were connected to crashed and
rebooted.

243 ECONNABORTED Software caused connection
abort
A connection abort was caused internal to your
host machine.

244 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This
normally results from the peer executing a
shutdown (2) call.

245 ENOBUFS No buffer space available
An operation on a socket or pipe was not
performed because the system lacked sufficient
buffer space.

246 EISCONN Socket is already connected
A connect request was made on an already
connected socket; or, a sendto or sendmsg
request on a connected socket specified a

5/86 - 7 -

INTRO (2)

destination other than the connected party.
247 ENOTCONN Socket is not connected

An request to send or receive data was
disallowed because the socket is not connected.

248 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because
the socket had already been shut down with a
previous shutdown(2) call.

249 ETOOMANYREFS Too many references: cant' splice

250 ETIMEDOUT Connection timed out
A connect request failed because the connected
party did not properly respond after a period of
time. (The timeout period is dependent on the
communication protocol.)

251 ECONNREFUSED Connection refused
No connection could be made because the target
machine actively refused it. This usually results
from trying to connect to a service which is
inactive on the foreign host.

252 EHOSTDOWN Host is down
The host is down.

253 EHOSTUNREACH No route to host
The gateway does not recognize the requested
host via the route specified.

254 ENOPROTOOPT Protocol not available
A bad option was specified in a getsockopt(2N)
or setsockopt(2N) call.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified
by a positive integer called a process ID. The range of
this ID is from 1 to 30,000.

Parent Process ID
A new process is created by a currently active process;
see fork(2). The parent process ID of a process is the
process ID of its creator.

Process Group ID
Each active process is a member of a process group that
is identified by a positive integer called the process
group ID. This ID is the process ID of the group leader.
This grouping permits the signaling of related processes;
see kill(2).

5/86 - 8 -

INTRO (2)

Tty Group ID
Each active process can be a member of a terminal group
that is identified by a positive integer called the tty
group ID. This grouping is used to terminate a group of
related processes upon termination of one of the
processes in the group; see exit(2) and signal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a
positive integer called a real user ID.
Each user is also a member of a group. The group is
identified by a positive integer called the real group ID.
An active process has a real user ID and real group ID
that are set to the real user ID and real group ID,
respectively, of the user responsible for the creation of
the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an
effective group ID that are used to determine file access
permissions (see below). The effective user ID and
effective group ID are equal to the process's real user ID
and real group ID respectively, unless the process or one
of its ancestors evolved from a process that had the set-
user-ID bit or set-group ID bit set; see exec (2).

Super-user
A process is recognized as a super-user process and is
granted special privileges if its effective user ID is 0.

Special Processes
The processes with a process ID of 0 and a process ID of
1 are special processes and are referred to as procO and
procl.
ProcO is the scheduler. Procl is the initialization
process (init). Procl is the ancestor of every other
process in the system and is used to control the process
structure.

File Descriptor
A file descriptor is a small integer used to do I/O on a
file. The value of a file descriptor is from 0 to 19. A
process may have no more than 20 file descriptors (0-19)
open simultaneously. A file descriptor is returned by
system calls such as open(2), or pipe(2). The file
descriptor is used as an argument by calls such as
read(2), write(2), ioctl(2), and close(2).

File Name
Names consisting of 1 to 14 characters may be used to
name an ordinary file, special file or directory.

5/86 - 9 -

INTRO (2)

These characters may be selected from the set of all
character values excluding \0 (null) and the ASCII code
for / (slash).
Note that it is generally unwise to use ?, [, or] as part
of file names because of the special meaning attached to
these characters by the shell. See «A(l). Although
permitted, it is advisable to avoid the use of unprintable
characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string
starting with an optional slash (/) , followed by zero or
more directory names separated by slashes, optionally
followed by a file name.
More precisely, a path name is a null-terminated
character string constructed as follows:
< path-name > : : = < file-name > | < path-prefix > < file-
name > | /
<path-pref ix>::=<rtpref ix>| /<rtpref ix>
< rtprefix > : : = < dirname > /| < rtprefix > < dirname > /
where <fi le-name> is a string of 1 to 14 characters
other than the ASCII slash and null, and < dirname > is
a string of 1 to 14 characters (other than the ASCII slash
and null) that names a directory. Any number of
consecutive slashes is equivalent to a single slash.
If a path name begins with a slash, the path search
begins at the root directory. Otherwise, the search
begins from the current working directory.
A slash by itself names the root directory.
Unless specifically stated otherwise, the null path name
is treated as if it named a non-existent file.

Directory
Directory entries are called links. By convention, a
directory contains at least two links, . and .., referred to
as dot and dot-dot respectively. Dot refers to the
directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root
directory and a current working directory for the purpose
of resolving path name searches. The root directory of a
process need not be the root directory of the root file
system.

File Access Permissions
Read, write, and execute/search permissions on a file are
granted to a process if one or more of the following are

5/86 - 10 -

INTRO (2)

true:
The effective user ID of the process is super-user.
The effective user ID of the process matches the
user ID of the owner of the file and the
appropriate access bit of the "owner" portion
(0700) of the file mode is set.
The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process matches the
group of the file and the appropriate access bit
of the "group" portion (070) of the file mode is
set.
The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process does not
match the group ID of the file, and the
appropriate access bit of the "other" portion
(07) of the file mode is set.

Otherwise, the corresponding permissions are denied.
Message Queue Identifier

A message queue identifier (msqid) is a unique positive
integer created by a msgget(2) system call. Each msqid
has a message queue and a data structure associated with
it. The data structure is referred to as msqid_ds and
contains the following members:
struct

ushort
ushort
ushort
ushort
time_t
time_t
time t

ipc_perm msg_perm;
/* operation permission struct */

number of msgs on q */
max number of bytes on q */
pid of last msgsnd operation */
pid of last msgrcv operation */
last msgsnd time */
last msgrcv time */
last change time */
Times measured in sees since */
00:00:00 GMT, Jan. 1, 1970 */

msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

/ *
/ *

/ *
/* / *
/ *
/ *

/*
M s g _ p e r m is an ipc_perm structure that specifies the
message operation permission (see below). This structure
includes the following members:
ushort cuid; / * creator user id */
ushort cgid; / * creator group id */
ushort uid; / * user id */
ushort gid; / * group id */
ushort mode; /* r/w permission */

5/86 - 11 -

INTRO (2)

M s g _ q n u m is the number of messages currently on the
queue. M s g _ q b y t e s is the maximum number of bytes
allowed on the queue. Msg_lsp id is the process id of
the last process that performed a msgsnd operation.
Msg_ lrp id is the process id of the last process that
performed a msgrcv operation. M s g _ s t i m e is the time
of the last msgsnd operation, m s g _ r t i m e is the time of
the last msgrcv operation, and m s g _ c t i m e is the time of
the last msgctl(2) operation that changed a member of
the above structure.

Message Operation Permissions
In the msgop(2) and msgctl(2) system call descriptions,
the permission required for an operation is given as
"{token}", where "token" is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.
The effective user ID of the process matches
msg_perm.[c lu id in the data structure
associated with msqid and the appropriate bit of
the "user" portion (0600) of m s g _ p e r m . m o d e
is set.
The effective user ID of the process does not
match msg_perm.[c]uid and the effective
group ID of the process matches
msg_perm.[c]g id and the appropriate bit of the
"group" portion (060) of m s g _ p e r m . m o d e is
set.
The effective user ID of the process does not
match msg_perm.[c]uid and the effective
group ID of the process does not match
msg_perm.[c]g id and the appropriate bit of the
"other" portion (06) of m s g _ p e r m . m o d e is set.

Otherwise, the corresponding permissions are denied.
Semaphore Identifier

A semaphore identifier (semid) is a unique positive
integer created by a semget(2) system call. Each semid
has a set of semaphores and a data structure associated
with it. The data structure is referred to as semid_ds
and contains the following members:

5/86 - 12 -

INTRO (2)

struct ipc_perm sem_perm;
/* operation permission struct */

ushort sem_nsems; / * number of sems in set */
time_t sem_otime; / * last operation time */
time_t sem_ctime; /* last change time */

/ •Times measured in sees */
/ * since 00:00:00 GMT, */
/ •Jan. 1, 1970 */

S e m _ p e r m is an ipc_perm structure that specifies the
semaphore operation permission (see below). This
structure includes the following members:
ushort cuid; / * creator user id */
ushort cgid; / * creator group id */
ushort uid; / * user id */
ushort gid; / * group id */
ushort mode; / * r/a permission */
The value of s e m _ n s e m s is equal to the number of
semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a
sem_num. Sem_num values run sequentially from 0 to
the value of sem_nsems minus 1. S e m _ o t i m e is the
time of the last semop (2) operation, and s e m _ c t i m e is
the time of the last semctl(2) operation that changed a
member of the above structure.

A semaphore is a data structure that contains the
following members:
ushort semval; / * semaphore value */
short sempid; / * pid of last operation */
ushort semncnt; / * # awaiting semval > cval */
ushort semzent; /* # awaiting semval = 0 */
S e m v a l is a non-negative integer. Sempid is equal to
the process ID of the last process that performed a
semaphore operation on this semaphore. S e m n c n t is a
count of the number of processes that are currently
suspended awaiting this semaphore's semval to become
greater than its current value. S e m z e n t is a count of
the number of processes that are currently suspended
awaiting this semaphore's semval to become zero.

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions,
the permission required for an operation is given as
"{token}", where "token" is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Alter by user

5/86 - 13 -

INTRO (2)

00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.
The effective user ID of the process matches
sem_perm.[c]uid in the data structure
associated with semid and the appropriate bit of
the "user" portion (0600) of s e m _ p e r m . m o d e
is set.
The effective user ID of the process does not
match sem_perm.[c]uid and the effective group
ID of the process matches sem_perm.[cjg id and
the appropriate bit of the "group" portion (060)
of s e m _ p e r m . m o d e is set.
The effective user ID of the process does not
match sem_perm.[c]uid and the effective group
ID of the process does not match
sem_perm.[c]g id and the appropriate bit of the
"other" portion (06) of s e m _ p e r m . m o d e is set.

Otherwise, the corresponding permissions are denied.
Shared Memory Identifier

A shared memory identifier (shmid) is a unique positive
integer created by a shmget(2) system call. Each shmid
has a segment of memory (referred to as a shared
memory segment) and a data structure associated with
it. The data structure is referred to as shmid_ds and
contains the following members:
struct ipc_perm shm_perm;

/* operation permission struct */
int shm_segsz; / * size of segment */
ushort shm_cpid; / * creator pid */
ushort shm_lpid; / * pid of last operation */
short shm_nattch; / * number of current attaches */
time_t shm_atime; / * last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; / * last change time */

/ * Times measured in sees since */
/* 00:00:00 GMT, Jan. 1, 1970 */

S h m _ p e r m is an ipc_perm structure that specifies the
shared memory operation permission (see below). This
structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

5/86 - 14 -

INTRO (2)

ushort gid; / * group id */
ushort mode; /* r/w permission */

S h m _ s e g s z specifies the size of the shared memory
segment. Shm_cp id is the process id of the process that
created the shared memory identifier. Shm_lp id is the
process id of the last process that performed a shmop(2)
operation. S h m _ n a t t c h is the number of processes that
currently have this segment attached. S h m _ a t i m e is
the time of the last shmat operation, s h m _ d t i m e is the
time of the last shmdt operation, and s h m _ c t i m e is the
time of the last shmctl(2) operation that changed one of
the members of the above structure.

Shared Memory Operation Permissions
In the shmop(2) and shmctl(2) system call descriptions,
the permission required for an operation is given as
"{token}", where "token" is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.
The effective user ID of the process matches
shm_perm. [c lu id in the data structure
associated with shmid and the appropriate bit of
the "user" portion (0600) of s h m _ p e r m . m o d e
is set.
The effective user ID of the process does not
match shm_perm.[c]uid and the effective
group ID of the process matches
shm_perm.[c]g id and the appropriate bit of the
"group" portion (060) of s h m _ p e r m . m o d e is
set.
The effective user ID of the process does not
match shm_perm.[c]uid and the effective
group ID of the process does not match
shm_perm.[c]g id and the appropriate bit of the
"other" portion (06) of s h m _ p e r m . m o d e is set.

Otherwise, the corresponding permissions are denied.
SEE ALSO

close(2), ioctl(2), open(2), pipe(2), read(2), write(2),
intro(3).
CTIX Internetworking Manual.

5/86 - 15 -

ACCEPT(2N)

NAME
accept - accept a connection on a socket

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
accept(s , addr, addrlen)
int s;
s t r u c t sockaddr *addr;
int *addrlen;

DESCRIPTION
Accept accepts a connection on a socket. The argument
s is a socket which has been created with socket(2),
bound to an address with bind(2), and is listening for
connections after a listen(2). Accept extracts the first
connection on the queue of pending connections, creates
a new socket with the same properties of « and allocates
a new file descriptor for the socket. If no pending
connections are present on the queue, and the socket is
not marked as non-blocking, accept blocks the caller
until a connection is present. If the socket is marked
non-blocking and no pending connections are present on
the queue, accept returns an error as described below.
The accepted socket, ns, may not be used to accept
more connections. The original socket a remains open.

The argument addr is a result parameter which is filled
in with the address of the connecting entity, as known to
the communications layer. The exact format of the addr
parameter is determined by the domain in which the
communication is occurring. The addrlen is a value-
result parameter; it should initially contain the amount
of space pointed to by addr; on return it will contain the
actual length (in bytes) of the address returned. This
call is used with connection-based socket types, currently
with SOCK_STREAM.

RETURN VALUE
The call returns - 1 on error. If it succeeds it returns a
non-negative integer which is a descriptor for the
accepted socket.

ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file,

not a socket.
[EOPNOTSUPP] The referenced socket is not of

type SOCK_STREAM.

- 1 -

ACCEPT(2N)

[EFAULT] The addr parameter is not in a
writable part of the user address
space.

SEE ALSO
bind(2N), connect(2N), listen(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 2 -

ACCESS (2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char *path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access
checks the named file for accessibility according to the
bit pattern contained in amode, using the real user ID in
place of the effective user ID and the real group ID in
place of the effective group ID. The bit pattern
contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the
following are true:
[ENOTDIR] A component of the path prefix is not a

directory.
[ENOENT] Read, write, or execute (search)

permission is requested for a null path
name.

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a

component of the path prefix.
[EROFS] Write access is requested for a file on a

read-only file system.
ETXTBSY

EACCES

[EFAULT]

Write access is requested for a pure
procedure (shared text) file that is being
executed.

Permission bits of the file mode do not
permit the requested access.

Path points outside the allocated
address space for the process.

The owner of a file has permission checked with respect
to the "owner" read, write, and execute mode bits.
Members of the file's group other than the owner have
permissions checked with respect to the "group" mode

- 1 -

ACCESS (2)

bits, and all others have permissions checked with
respect to the "other" mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is
returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

- 2 -

ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
Acct is used to enable or disable the system process
accounting routine. If the routine is enabled, an
accounting record will be written on an accounting file
for each process that terminates. Termination can be
caused by one of two things: an exit call or a signal; see
exit(2) and signal(2). The effective user ID of the calling
process must be super-user to use this call.
Path points to a path name naming the accounting file.
The accounting file format is given in acct(4).
The accounting routine is enabled if path is non-zero and
no errors occur during the system call. It is disabled if
path is zero and no errors occur during the system call.
Acct will fail if one or more of the following are true:
[EPERM] The effective user of the calling process

is not super-user.
[EBUSY] An attempt is being made to enable

accounting when it is already enabled.
[ENOTDIR] A component of the path prefix is not a

directory.
(ENOENT] One or more components of the

accounting file path name do not exist.
(EACCES] A component of the path prefix denies

search permission.
[EACCES] The file named by path is not an

ordinary file.
[EACCES] Mode permission is denied for the

named accounting file.
[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only

file system.
[EFAULT] Path points to an illegal address.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

- 1 -

ACCT(2)

SEE ALSO
exit(2), signal(2), acct(4).

- 2 -

ALARM (2)

NAME
alarm - set a process alarm clock

SYNOPSIS
uns igned a larm (sec)
uns igned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to
send the signal SIGALRM to the calling process after
the number of real time seconds specified by sec have
elapsed; see signal(2).
Alarm requests are not stacked; successive calls reset the
alarm clock of the calling process.
If sec is 0, any previously made alarm request is
canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining
in the alarm clock of the calling process.

SEE ALSO
pause(2), signal(2).

- 1 -

B I N D (2 N)

NAME
bind - bind a name to a socket

SYNOPSIS
^ inc lude < s y s / t y p e s . h >
^ inc lude < s y s / s o c k e t . h >
bind (s, name, namelen)
int s;
s truct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a
socket is created with soc£e<(2N), it exists in a name
space (address family) but has no name assigned. Bind
requests that name be assigned to the socket.

NOTES
The rules used in name binding vary between
communication domains. Consult the manual entries in
section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return
value of - 1 indicates an error, which is further specified
in the global errno.

ERRORS
The bind call will fail if:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is not a socket.
[EADDRNOTAVAIL] The specified address is not

available from the local machine.
[EADDRINUSE] The specified address is already in

use.
[EINVAL] The socket is already bound to an

address.
[EACCESS] The requested address is

protected, and the current user
has inadequate permission to
access it.

[EFAULT] The name parameter is not in a
valid part of the user address
space.

SEE ALSO
connect(2N), getsockname(2N), listen(2N), socket(2N).
CTIX Internetworking Manual.

5/86 - 1 -

BIND (2N)

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 2 -

BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *enddsj
char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the
amount of space allocated for the calling process's data
segment; see exec (2). The change is made by resetting
the process's break value and allocating the appropriate
amount of space. The break value is the address of the
first location beyond the end of the data segment. The
amount of allocated space increases as the break value
increases. The newly allocated space is set to zero.
Brk sets the break value to endds and changes the
allocated space accordingly.
Sbrk adds incr bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in
which case the amount of allocated space is decreased.
Brk and sbrk will fail without making any change in the
allocated space if one or more of the following are true:
[ENOMEM]

Such a change would result in more space
being allocated than is allowed by a system-
imposed maximum (see ulimit(2)). Note that
due to a lack of swap space this may be less
than what ulimit(2) reports.

[ENOMEM]
Such a change would result in the break
value being greater than or equal to the start
address of any attached shared memory
segment (see shmop(2)).

RETURN VALUE
Upon successful completion, brk returns a value of 0 and
sbrk returns the old break value. Otherwise, a value of
- 1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2).

- 1 -

CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. Chdir
causes the named directory to become the current
working directory, the starting point for path searches
for path names not beginning with / .
Chdir will fail and the current working directory will be
unchanged if one or more of the following are true:
[ENOTDIR] A component of the path name is not a

directory.
[ENOENT] The named directory does not exist.
[EACCES] Search permission is denied for any

component of the path name.
[EFAULT] Path points outside the allocated

address space of the process.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chroot(2).

- 1 -

CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets
the access permission portion of the named file's mode
according to the bit pattern contained in mode.
Access permission bits are interpreted as follows:

04000 Set user ID on execution.
02000 Set group ID on execution.
01000 Save text image after execution.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the process must match the
owner of the file or be super-user to change the mode of
a file.
If the effective user ID of the process is not super-user,
mode bit 01000 (save text image on execution) is cleared.
If the effective user ID of the process is not super-user
and the effective group ID of the process does not match
the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.
If an executable file is prepared for sharing then mode
bit 01000 prevents the system from abandoning the
swap-space image of the program-text portion of the file
when its last user terminates. Thus, when the next user
of the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time.
Chmod will fail and the file mode will be unchanged if
one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a

directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a

component of the path prefix.
[EPERM] The effective user ID does not match

the owner of the file and the effective

- 1 -

CHMOD(2)

user ID is not super-user.
[EROFSj The named file resides on a read-only

file system.
[EFAULT] Path points outside the allocated

address space of the process.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chown(2), mknod(2).

- 2 -

CHOWN (2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID
and group ID of the named file are set to the numeric
values contained in owner and group respectively.
Only processes with effective user ID equal to the file
owner or super-user may change the ownership of a file.
If chown is invoked by other than the super-user, the
set-user-ID and set-group-ID bits of the file mode, 04000
and 02000 respectively, will be cleared.
Chown will fail and the owner and group of the named
file will remain unchanged if one or more of the
following are true:
[ENOTDIR] A component of the path prefix is not a

directory.
[ENOENTj The named file does not exist.
[EACCES] Search permission is denied on a

component of the path prefix.
[EPERM] The effective user ID does not match

the owner of the file and the effective
user ID is not super-user.

[EROFS] The named file resides on a read-only
file system.

[EFAULT] Path points outside the allocated
address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chown(l), chmod(2).

- 1 -

CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path;

DESCRIPTION
Path points to a path name naming a directory. Chroot
causes the named directory to become the root directory,
the starting point for path searches for path names
beginning with / . The user's working directory is
unaffected by the chroot system call.
The effective user ID of the process must be super-user to
change the root directory.
The .. entry in the root directory is interpreted to mean
the root directory itself. Thus, .. cannot be used to
access files outside the subtree rooted at the root
directory.
Chroot will fail and the root directory will remain
unchanged if one or more of the following are true:
[ENOTDIR] Any component of the path name is not

a directory.
[ENOENT] The named directory does not exist.
[EPERM] The effective user ID is not super-user.
[EFAULT] Path points outside the allocated

address space of the process.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
chdir(2).

- 1 -

C L O S E (2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open,
dup, fcntl, or pipe system call. Close closes the file
descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated fildes)
are removed.
[EBADF] Close will fail if fildes is not a valid open file

descriptor.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

- 1 -

CONNECT (2N)

NAME
connect - initiate a connection on a socket

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ inc lude < s y s / s o c k e t . h >
connect (s, name, namelen)
int s;
s truct sockaddr ""name;
int namelen;

DESCRIPTION
Connect initiates a connection on a socket. The
parameter « is a socket. If it is of type SOCK_DGRAM,
then this call permanently specifies the peer to which
datagrams are to be sent; if it is of type
SOCK_STREAM, then this call attempts to make a
connection to another socket. The other socket is
specified by name; namelen is the length of name, which
is an address in the communications space of the socket.
Each communications space interprets the name
parameter in its own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned.
Otherwise a - 1 is returned, and a more specific error
code is stored in errno.

ERRORS
The call fails if:
[EBADF]
[ENOTSOCK]

[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[EISCONN]
[ETIMEDOUT]

[ECONNREFUSED]

[ENETUNREACH]

S is not a valid descriptor.
5 is a descriptor for a file, not a
socket.
The specified address is not
available on this machine.
Addresses in the specified address
family cannot be used with this
socket.
The socket is already connected.
Connection establishment timed
out without establishing a
connection.
The attempt to connect was
forcefully rejected.
The network is not reachable from
this host.

5/86 - 1 -

CONNECT(2N)

[EADDRINUSE] The address is already in use.
[EFAULT] The name parameter specifies an

area outside the process address
space.

SEE ALSO
accept(2N), getsockname(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 - 2 -

CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite
an existing file named by the path name pointed to by
path.

If the file exists, the length is truncated to 0 and the
mode and owner are unchanged. Otherwise, the file's
owner ID is set to the effective user ID, of the process the
group ID of the process is set to the effective group ID, of
the process and the low-order 12 bits of the file mode are
set to the value of mode modified as follows:

All bits set in the process's file mode creation
mask are cleared. See umask(2).
The "save text image after execution bit" of the
mode is cleared. See chmod(2).

Upon successful completion, the file descriptor is
returned and the file is open for writing, even if the
mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to
remain open across exec system calls. See fcntl(2). No
process may have more than 20 files open
simultaneously. A new file may be created with a mode
that forbids writing.
Creat will fail if one or more of the following are true:
[EACCES] Search permission is denied on a

component of the path prefix.
[EACCES] The file does not exist and the directory

in which the file is to be created does
not permit writing.

[EACCES] The file exists and write permission is
denied.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] A component of the path prefix does
not exist.

[ENOENT] The path name is null.
[EROFS] The named file resides or would reside

on a read-only file system.

- 1 -

CREAT(2)

[ETXTBSY] The file is a pure procedure (shared
text) file that is being executed.

[EISDIR] The named file is an existing directory.
[EMFILE] Twenty (20) file descriptors are

currently open.
[EFAULT] Path points outside the allocated

address space of the process.
[ENFILE] The system file table is full.
[EDEADLOCK] A side effect of a previous locking(2)

call.
RETURN VALUE

Upon successful completion, a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
chmod(2), close(2), dup(2), fcntl(2), locking(2), lseek(2),
open(2), read(2), umask(2), write(2).

- 2 -

D U P (2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fi ldes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open,
dup, fcntl, or pipe system call. Dup returns a new file
descriptor having the following in common with the
original:

Same open file (or pipe).
Same file pointer (i.e., both file descriptors share
one file pointer).
Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec
system calls. See fcntl(2).
The file descriptor returned is the lowest one available.
Dup will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file

descriptor.
[EMFILE] Twenty (20) file descriptors are

currently open.
RETURN VALUE

Upon successful completion a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

- 1 -

EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a
file

SYNOPSIS
int execl fpath , argO, a r g l , argn, 0)
char *patn , *argO, * a r g l , *argn;
int execv (path, argv)
char *patn, *argv[J;
int execle (path , argO, a r g l , ..., argn, 0, envp)
char *path, *argO, * a r g l , *argn, *envp[];
int execve (path, argv , envp)
char *path, *argv[], *envp[];
int execlp (file, argO, a r g l , argn, 0)
char •fi le, *argO, * a r g l , *argn;
int execvp (file, argv)
char *file, *argv[];

DESCRIPTION
Exec in all its forms transforms the calling process into a
new process. The new process is constructed from an
ordinary, executable file called the new process file.
This file consists of a header (see a.ou<(4)), a text
segment, and a data segment. The data segment
contains an initialized portion and an uninitialized
portion (bss). There can be no return from a successful
exec because the calling process is overlaid by the new
process.
When a C program is executed, it is called as follows:

m a i n (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. As
indicated, argc is conventionally at least one and the
first member of the array points to a string containing
the name of the file.
Path points to a path name that identifies the new
process file.
File points to the new process file. The path prefix for
this file is obtained by a search of the directories passed
as the environment line "PATH = " (see environ(5)).
The environment is supplied by the shell (see sh(l)).
ArgO, argl, ..., argn are pointers to null-terminated
character strings. These strings constitute the argument

EXEC(2)

list available to the new process. By convention, at least
argO must be present and point to a string that is the
same as path (or its last component).
Argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list
available to the new process. By convention, argv must
have at least one member, and it must point to a string
that is the same as path (or its last component). Argv is
terminated by a null pointer.
Envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the
new process. Envp is terminated by a null pointer. For
ex eel and execv, the C run-time start-off routine places
a pointer to the environment of the calling process in the
global cell:

ex tern char **environ;
and it is used to pass the environment of the calling
process to the new process.
File descriptors open in the calling process remain open
in the new process, except for those whose close-on-exec
flag is set; see fcntl(2). For those file descriptors that
remain open, the file pointer is unchanged.
Signals set to terminate the calling process will be set to
terminate the new process. Signals set to be ignored by
the calling process will be set to be ignored by the new
process. Signals set to be caught by the calling process
will be set to terminate the new process; see signal(2).
If the set-user-ID mode bit of the new process file is set
(see chmod(2)), exec sets the effective user ID of the new
process to the owner ID of the new process file.
Similarly, if the set-group-ID mode bit of the new process
file is set, the effective group ID of the new process is set
to the group ID of the new process file. The real user ID
and real group ID of the new process remain the same as
those of the calling process.
The shared memory segments attached to the calling
process will not be attached to the new process (see
shmop(2)).
Profiling is disabled for the new process; see profil(2).
The new process also inherits the following attributes
from the calling process:

nice value (see nice(2))
process ID
parent process ID

- 2 -

EXEC(2)

see

process group ID
semadj values (see semop(2))
tty group ID (see exit{2) and atgnal(2))
trace flag (see ptrace{2) request 0)
time left until an alarm clock signal
alarm{ 2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimtt(2))
utime, stime, cutime, and csttme (see times(2))

Exec will fail and return to the calling process if one or
more of the following are true:
[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

One or more components of the new
process path name of the file do not
exist.
A component of the new process path of
the file prefix is not a directory.
Search permission is denied for a
directory listed in the new process file's
path prefix.
The new process file is not an ordinary
file.
The new process file mode denies
execution permission.
The exec is not an execlp or execvp ,
and the new process file has the
appropriate access permission but an
invalid magic number in its header.
The new process file is a pure procedure
(shared text) file that is currently open
for writing by some process.
The new process requires more memory
than is allowed by the system-imposed
maximum. This limit is a configurable
quantity up to the limitations of the
hardware. It may be less due to
restrictions on swap space.
The number of bytes in the new
process's argument list is greater than
the system-imposed limit of 10,240
bytes.

EXEC (2)

[EFAULT] The new process file is not as long as
indicated by the size values in its
header.

[EFAULT] Path, argv, or envp point to an illegal
address.

[ENOHDW] The executable file requires hardware
that does not exist (such as floating-
point).

[ENOEXEC] The file format does not correspond to
that expected as specified with the
magic number (such as a hole in the
file).

[ENOEXEC] The virtual address specification in the
header(s) exceeds the allowed system
limits.

[EPERM] The process is being traced (see
ptrace{2)), but the file does not permit
reading.

RETURN VALUE
If exec returns to the calling process an error has
occurred; the return value will be - 1 and errno will be
set to indicate the error.

SEE ALSO
sh(l), alarm(2), exit(2), fork(2), nice(2), ptracef2|,
semop(2), signal(2), times(2), ulimit(2), umask(2),
a.out(4), environ(5).

5/86 - 4 -

EXIT(2)

NAME
exit, _exit - terminate process

SYNOPSIS
v o i d exit (s tatus)
int s ta tus ;
v o i d _exi t (s tatus)
int s ta tus ;

DESCRIPTION
Exit terminates the calling process with the following
consequences:

All of the file descriptors open in the calling
process are closed.
If the parent process of the calling process is
executing a wait, it is notified of the calling
process's termination and the low order eight
bits (i.e., bits 0377) of status are made available
to it; see wait(2).

If the parent process of the calling process is not
executing a wait, the calling process is
transformed into a zombie process. A zombie
process is a process that only occupies a slot in
the process table. It has no other space
allocated either in user or kernel space. The
process table slot that it occupies is partially
overlaid with time accounting information (see
< s y s / p r o c . h >) to be used by times.
The parent process ID of all of the calling
process's existing child processes and zombie
processes is set to 1. This means that the
initialization process (see intro(2)) inherits each
of these processes.
Each attached shared memory segment is
detached and the value of s h m _ n a t t a c h in the
data structure associated with its shared memory
identifier is decremented by 1.
For each semaphore for which the calling process
has set a semadj value (see semop(2)), that
semadj value is added to the semval of the
specified semaphore.
If the process has a process, text, or data lock,
an unlock is performed (see plock(2)).
An accounting record is written on the
accounting file if the system's accounting routine
is enabled; see acct (2).

- 1 -

EXIT (2)

If the process ID, tty group ID, and process group
ID of the calling process are equal (i.e., it is a
process group leader), the SIGHUP signal is sent
to each process that has a process group ID equal
to that of the calling process.
If the process is a process group leader, all
processes in its group are made members of the
null group.

The C function exit may cause cleanup actions before
the process exits. The function _exit circumvents all
cleanup.

SEE ALSO
intro(2), acct(2), plock(2), semop(2), signal(2), wait(2).

WARNING
See WARNING in signal(2).

- 2 -

FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
^ i n c l u d e < f c n t l . h >
int fcnt l (fildes, cmd, arg)
int fi ldes, cmd, arg;

DESCRIPTION
Fcntl provides for control over open files. Fildes is an
open file descriptor obtained from a creat, open, dup,
fcntl, or pipe system call.
The commands available are:
F_DUPFD Return a new file descriptor as follows:

Lowest numbered available file
descriptor greater than or equal to arg.
Same open file (or pipe) as the original
file.
Same file pointer as the original file (i.e.,
both file descriptors share one file
pointer).
Same access mode (read, write or
read/write).
Same file status flags (i.e., both file
descriptors share the same file status
flags).
The close-on-exec flag associated with
the new file descriptor is set to remain
open across exec (2) system calls.

F_GETFD Get the close-on-exec flag associated
with the file descriptor fildes. If the
low-order bit is 0 the file will remain
open across exec, otherwise the file will
be closed upon execution of exec.

F_SETFD Set the close-on-exec flag associated with
fildes to the low-order bit of arg (0 or 1
as above).

F.GETFL Get file status flags.
F_SETFL Set file status flags to arg. Only certain

flags can be set; see fcntl{5).
F_GETLK Get the first lock which blocks the lock

description given by the variable of type
struct flock pointed to by arg (see
fcntl{ 5)). The information retrieved

- 1 -

FCNTL(2)

overwrites the information passed to
fcntl in the flock structure. If no lock is
found that would prevent this lock from
being created, then the structure is
passed back unchanged except for the
lock type which will be set to F_UNLCK.

F_SETLK Set or clear a file segment lock
according to the variable of type struct
flock pointed to by arg [see fcntl(5)1.
The cmd F_SETLK is used to establish
read (FJIDLCK) and write (F_WRLCK)
locks, as well as remove either type of
lock (F_UNLCK). If a read or write lock
cannot be set, fcntl will return
immediately with an error value of - 1 .

F_SETLKW This cmd is the same as FJ5ETLK except
that if a read or write lock is blocked by
other locks, the process will sleep until
the segment is free to be locked.

A read lock prevents any process from write locking the
protected area. More than one read lock may exist for a
given segment of a file at a given time. The file
descriptor on which a read lock is being placed must
have been opened with read access.
A write lock prevents any process from read locking or
write locking the protected area. Only one write lock
may exist for a given segment of a file at a given time.
The file descriptor on which a write lock is being placed
must have been opened with write access.
The structure flock describes the type (l_type), starting
offset (l_whence), relative offset (l_start), size (Men), and
process id (l_pid) of the segment of the file to be
affected. The process id field is only used with the
F_GETLK cmd to return the value for a block in lock.
Locks may start and extend beyond the current end of a
file, but may not be negative relative to the beginning of
the file. A lock may be set to always extend to the end
of file by setting Men to zero (0). If such a lock also has
l_start set to zero (0), the whole file will be locked.
Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by
the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks
associated with a file for a given process are removed
when a file descriptor for that file is closed by that
process or the process holding that file descriptor

- 2 -

FCNTL(2)

terminates. Locks are not inherited by a child process in
a fork{2) system call.
Fcntl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file
descriptor.

[EMFILE] Cmd is FJ)UPFD and 20 file descriptors
are currently open.

[EINFILE] Cmd is F_PUPFD and arg is negative or
greater than 20.

[EINVAL] Cmd is F.GETLK, FJSETLK, or
SETLKW and arg or the data it points
to is not valid.

[EACCES] Cmd is F.SETLK; the type of lock
l_type) is a read (F_RDLCK) or write
F_WRLCK lock, and the segment of a
'ile to be locked is already write locked

by another process; or the type is a
write lock, and the segment of a file to
be locked is already read or write
locked by another process.

[EMFILE] Cmd is F.SETLK or F_SETLKW, the
type of lock is a read or write lock and
there are no more file locking headers
available (too many files have segments
locked).

[ENOSPC] Cmd is FJSETLK or F_SETLKW, the
type of lock is a read or write lock and
there are no more file locking headers
available (too many files have segments
locked) or there are no more record
locks available (too many file segments
locked).

[EDEADLK] Cmd is F_SETLK, when the lock is
blocked by some lock from another
process and sleeping (waiting) for that
lock to become free, this causes a
deadlock situation.

RETURN VALUE
Upon successful completion, the value returned depends
on cmd as follows:

F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order

bit is defined).

FCNTL(2)

F_SETFD Value other than - 1 .
F.GETFL Value of file flags.
F_SETFL Value other than - 1 .
F_GETLK Value other that - 1 .
F_SETLK Value other than - 1 .
F.SETLKW Value other than - 1 .

Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
close(2), exec(2), open(2), fcntl(5).

BUGS
Two forms of file locking are available: locking(2) and
fcntl(2). These two methods are not compatible; a lock
by one is not honored by the other.

- 4 -

FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process
child process) is an exact copy of the calling process
parent process). This means the child process inherits

the following attributes from the parent process:
environment
close-on-exec flag (see exec(2))
signal handling settings (i.e., SIG_DFL,
SIG_IGN, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice(2))
all attached shared memory segments (see
shmop{ 2))
process group ID
tty group ID (see exit(2) and signal{2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see
alarm (2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))

The child process differs from the parent process in the
following ways:

The child process has a unique process ID.
The child process has a different parent process
ID (i.e., the process ID of the parent process).
The child process has its own copy of the
parent's file descriptors. Each of the child's file
descriptors shares a common file pointer with
the corresponding file descriptor of the parent.
All semadj values are cleared (see semop(2)).
Process locks, text locks and data locks are not
inherited by the child plock(2)).
The child process's utime, stime, cutime, and
cstime are set to 0. The time left until an alarm
clock signal is reset to 0.

- 1 -

FCNTL(2)

F_SETFD Value other than - 1 .
F.GETFL Value of file flags.
FJ3ETFL Value other than - 1 .
F.GETLK Value other that - 1 .
F_SETLK Value other than -1 .
F.SETLKW Value other than -1 .

Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
close(2), exec(2), open(2), fcntl(5).

BUGS
Two forms of file locking are available: locking(2) and
fcntl(2). These two methods are not compatible; a lock
by one is not honored by the other.

- 4 -

FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process
child process) is an exact copy of the calling process
parent process). This means the child process inherits

the following attributes from the parent process:
environment
close-on-exec flag (see exec(2))
signal handling settings (i.e., SIG_DFL,
SIG_IGN, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice(2))
all attached shared memory segments (see
shmop(2))
process group ID
tty group ID (see exit(2) and signal (2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see
alarm{ 2))
current working directory
root directory
file mode creation mask (see umask{2))
file size limit (see ulimit(2))

The child process differs from the parent process in the
following ways:

The child process has a unique process ID.
The child process has a different parent process
ID (i.e., the process ID of the parent process).
The child process has its own copy of the
parent's file descriptors. Each of the child's file
descriptors shares a common file pointer with
the corresponding file descriptor of the parent.
All semadj values are cleared (see semop(2)).
Process locks, text locks and data locks are not
inherited by the child plock(2)).
The child process's utime, stime, cutime, and
cstime are set to 0. The time left until an alarm
clock signal is reset to 0.

FORK(2)

Fork will fail and no child process will be created if one
or more of the following are true:

[EAGAIN] The system-imposed limit on the total
number of processes under execution
would be exceeded.

[EAGAIN] The system-imposed limit on the total
number of processes under execution by
a single user would be exceeded.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to
the child process and returns the process ID of the child
process to the parent process. Otherwise, a value of - 1
is returned to the parent process, no child process is
created, and errno is set to indicate the error.

SEE ALSO
exchanges(2), exec(2), nice(2), plock(2),
semop(2), shmop(2), signal(2), times(2),
umask(2), wait(2).

ptrace(2L
ulimit(2),

- 2 -

GETPEERNAME (2N)

NAME
getpeername - get name of connected peer

SYNOPSIS
getpeername(s , name, namelen)
int s;
s truct sockaddr "'name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to
socket a. The namelen parameter should be initialized
to indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned
(in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, - 1 if it fails.

ERRORS
The call succeeds unless:
[EBADF] The argument a is not a valid

descriptor.
[ENOTSOCK] The argument a is a file, not a socket.
[ENOTCONN] The socket is not connected.
[ENOBUFS] Insufficient resources were available in

the system to perform the operation.
[EFAULT] The name parameter points to memory

not in a valid part of the process
address space.

SEE ALSO
bind(2N), socket(2N), getsockname(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTEX kernel that supports networking protocols.

GETPID (2)

NAME
getpid, getpgrp, getppid - get process, process group,
and parent process IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.
Getpgrp returns the process group ID of the calling
process.
Getppid returns the parent process ID of the calling
process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

GETSOCKNAME (2N)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(s , name, namelen)
int s;
s truct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified
socket (s). The namelen parameter should be initialized
to indicate the amount of space pointed to by name. On
return namelen contains the actual size of the name
returned (in bytes).

RETURN VALUE
A 0 is returned if the call succeeds, - 1 if it fails.

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK] The argument a is a file, not a socket.
[ENOBUFS] Insufficient resources were available in

the system to perform the operation.
[EFAULT] The name parameter points to memory

not in a valid part of the process
address space.

SEE ALSO
bind(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

GETSOCKOPT(2N)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
ge t sockopt (s , level, o p t n a m e , optva l , opt len)
int s, level, op tname;
char * optval ;
int ""optlen;

se t sockopt (s , level, o p t n a m e , optva l , opt len)
int s, level, op tname;
char ""optval;
int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated
with a socket. Options may exist at multiple protocol
levels; they are always present at the uppermost
"socket" level.
When manipulating socket options the level at which the
option resides and the name of the option must be
specified. To manipulate options at the "socket" level,
level is specified as SOL_SOCKET. To manipulate
options at any other level the protocol number of the
appropriate protocol controlling the option is supplied.
For example, to indicate an option is to be interpreted
by the TCP protocol, level should be set to the protocol
number of TCP; see getprotoent(3N).
The parameters optval and optlen are used to access
option values for setsockopt. For getsockopt they
identify a buffer in which the value for the requested
option(s) are to be returned. For getsockopt, optlen is a
value-result parameter, initially containing the size of
the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be
supplied as 0.
Optname and any specified options are passed
uninterpreted to the appropriate protocol module for
interpretation. The include file < s y s / s o c k e t . h >
contains definitions for "socket" level options; see
socket(2N). Options at other protocol levels vary in
format and name, consult the appropriate entries in
(4N).

RETURN VALUE
A 0 is returned if the call succeeds, - 1 if it fails.

- 1 -

GETSOCKOPT (2N)

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK] The argument a is a file, not a

socket.
[ENOPROTOOPT]
[EFAULT]

The option is unknown.
The options are not in a valid
part of the process address space.

SEE ALSO
socket(2N), getprotoent(3N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

GETUID (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective
user, real group, and effective group IDs

SYNOPSIS
unsigned short getuid ()
unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.
Geteuid returns the effective user ID of the calling
process.
Getgid returns the real group ID of the calling process.
Getegid returns the effective group ID of the calling
process.

SEE ALSO
intro(2), setuid(2).

- 1 -

IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION
Ioctl performs a variety of functions on character special
files (devices). The write-ups of various devices in
Section 7 discuss how ioctl applies to them.
Ioctl will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file

descriptor.
[ENOTTY] Fildes is not associated with a character

special device.
[EINVAL] Request or arg is not valid. See

Section 7.
[EINTR] A signal was caught during the ioctl

system call.
[EFAULT] The options are not in a valid part of

the process address space.
RETURN VALUE

If an error has occurred, a value of - 1 is returned and
errno is set to indicate the error.

SEE ALSO
termio(7).

5/86 - 1 -

KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes.
The process or group of processes to which the signal is
to be sent is specified by pid. The signal that is to be
sent is specified by sig and is either one from the list
given in signal(2), or 0. If sig is 0 (the null signal), error
checking is performed but no signal is actually sent.
This can be used to check the validity of pid.
The real or effective user ID of the sending process must
match the real or effective user ID of the receiving
process, unless the effective user ID of the sending
process is super-user.
The processes with a process ID of 0 and a process ID of
1 are special processes (see »ntro(2)) and will be referred
to below as procO and procl, respectively.
If pid is greater than zero, sig will be sent to the process
whose process ID is equal to pid. Pid may equal 1.
If pid is 0, sig will be sent to all processes excluding
procO and procl whose process group ID is equal to the
process group ID of the sender.
If pid is - 1 and the effective user ID of the sender is not
super-user, sig will be sent to all processes excluding
procO and procl whose real user ID is equal to the
effective user ID of the sender.
If pid is - 1 and the effective user ID of the sender is
super-user, sig will be sent to all processes excluding
procO and procl.
If pid is negative but not - 1 , sig will be sent to all
processes whose process group ID is equal to the absolute
value of pid.
Kill will fail and no signal will be sent if one or more of
the following are true:
[EINVAL] Sig is not a valid signal number.
[EINVAL] Sig is SIGKILL and pid is 1 (procl).
[ESRCH] No process can be found corresponding

to that specified by pid.
[EPERM] The user ID of the sending process is

not super-user, and its real or effective

- 1 -

KILL(2)

user ID does not match the real or
effective user ID of the receiving
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
kill(l), getpid(2), setpgrp(2), signal(2).

- 2 -

LDDRV(2)

NAME
drvalloc, drvbind - access loadable drivers

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s l o c a l . h >
include < s y s / d r v . h >

sys loca l (S Y S L _ A L L O C D R V , opt ion , ds)
int opt ion;
s t r u c t drval loc ""ds;

sys loca l (S Y S L _ B I N D D R V , opt ion , ds)
int opt ion;
s t r u c t drvbind *ds;

DESCRIPTION
These two functions accessed via syslocal(2) implement
the loadable driver functions of CTIX. They both require
super-user privilege.
Loading drivers consists of two phases: allocation of
virtual space, device numbers, and device IDs; and
binding. Fully relocating a driver into memory,
allocating physical space, plugging the device switch
tables, calling initialization routines, and unloading
require the same two phases in reverse.

SEE ALSO
lldrv(lM), syslocal(2).

- 1 -

LINK (2)

NAME
link - link to a file

SYNOPSIS
int link (p a t h l , path2)
char * p a t h l , *path2;

DESCRIPTION
Pathl points to a path name naming an existing file.
Path2 points to a path name naming the new directory
entry to be created. Link creates a new link (directory
entry) for the existing file.
Link will fail and no link will be created if one or more
of the following are true:
[ENOTDIR] A component of either path prefix is

not a directory.
[ENOENT] A component of either path prefix does

not exist.
[EACCES] A component of either path prefix

denies search permission.
[ENOENT] The file named by pathl does not exist.
[EEXIST] The link named by paths exists.
[EPERM] The file named by pathl is a directory

and the effective user ID is not super-
user.

[EXDEV] The link named by pathS and the file
named by pathl are on different logical
devices (file systems).

[ENOENT] Path2 points to a null path name.
[EACCES] The requested link requires writing in a

directory with a mode that denies write
permission.

[EROFS] The requested link requires writing in a
directory on a read-only file system.

[EFAULT] Path points outside the allocated
address space of the process.

[EMLINK] The maximum number of links to a file
would be exceeded.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
unlink(2).

- 1 -

LISTEN (2N)

NAME
listen - listen for connections on a socket

SYNOPSIS
listen (s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with
socket(2N), a backlog for incoming connections is
specified with listen, and then the connections are
accepted with accep<(2N). The listen call applies only to
sockets of type SOCK_STREAM or
SOCK_PKTSTREAM.
The backlog parameter defines the maximum length to
which the queue of pending connections may grow. If a
connection request arrives with the queue full the client
will receive an error with an indication of
ECONNREFUSED.

RETURN VALUE
A 0 return value indicates success; - 1 indicates an error.

ERRORS
The call fails if:
[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK] The argument s is not a socket.
[EOPNOTSUPP] The socket is not of a type that

supports the operation listen.
SEE ALSO

accept(2N), connect(2N), socket(2N).
CTIX Internetworking Manual.

BUGS
The backlog is currently limited (silently) to 5.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 - 1 -

LOCKING (2)

NAME
locking - exclusive access to regions of a file

SYNOPSIS
int locking (fi ledes, mode , size);
int fi ldes, mode;
long size;

DESCRIPTION
Locking places or removes a kernel-enforced lock on a
region of a file. The calling process has exclusive access
to regions it has locked. If another process uses read(2),
writel2), crea«(2), or open(2) (with 0 _ T R U N C) in a
way that reads or modifies part of the locked region, the
second process's system call does not return until the
lock is released, unless deadlock or some other error is
detected. A process whose execution is suspended in
such a manner is said to be blocked.
Parameters specify the file to be locked or unlocked, the
kind of lock or unlock, and the region affected:

• Filedes specifies the file to be locked or
unlocked; filedes is a file descriptor
returned by an open, create, pipe, fcntl,
or dup system call.

• Mode specifies the action: 0 for lock
removal; 1 for blocking lock; 2 for
checking lock. Blocking and checking
locks differ only if the attempted lock is
itself locked out: a blocking lock waits
until the existing lock or locks are
removed; a checking lock immediately
returns an error.

• The region affected begins at the current
file offset associated with filedes and is
size bytes long. If size is zero, the
region affected ends at the end of the
file.

Locking imposes no structure on a CTIX file. A process
can arbitrarily lock any unlocked byte and unlock any
locked byte. However, creating a large number of
noncontiguous locked regions can fill up the system's
lock table and make further locks impossible. It is
advisable that a program's use of locking segment the file
in the same way as does the program's use of read and
write.
A process is said to be deadlocked if it is sleeping until
an unlocking which is indirectly prevented by that same

LOCKING (2)

sleeping process. The kernel will not permit a read,
write, creat, open with 0 _ T R U N C , or blocking locking
if such a call would deadlock the calling process. Errno
is set to EDEADLOCK. The standard response to such
a situation is for the program to release all its existing
locked areas and try again. If a locking call fails because
the kernel's table of locked areas is full, again, errno is
set to EDEADLOCK and, again, the calling program
should release its existing locked areas.
Special files and pipes can be locked, but no
input/output is blocked.
Locks are automatically removed if the process that
placed the lock terminates or closes the file descriptor
used to place the lock.

SEE ALSO
create(2), close(2), dup(2), open(2), read(2), write(2).

RETURN VALUE
A return value of - 1 indicates an error, with the error
value in errno.
[EACCES] A checking lock on a region already

locked.
[EDEADLOCK] A lock that would cause deadlock or

overflow the system's lock table.
WARNING

Do not apply any standard input/output library function
to a locked file: this library does not know about locking.

BUGS
Two forms of file locking are available: locking(2) and
fcntl(2). These two methods are not compatible; a lock
by one is not honored by the other.

- 2 -

LSEEK (2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long lseek (fildes, offset , whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open,
dup, or fcntl system call. Lseek sets the file pointer
associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current

location plus offset.
If whence is 2, the pointer is set to the size of

the file plus offset.
Upon successful completion, the resulting pointer
location, as measured in bytes from the beginning of the
file, is returned.
Lseek will fail and the file pointer will remain unchanged
if one or more of the following are true:
[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.
[EINVAL and SIGSYS signal]

Whence is not 0, 1, or 2.
[EINVAL] The resulting file pointer would be

negative.
Some devices are incapable of seeking. The value of the
file pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer
indicating the file pointer value is returned. Otherwise,
a value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

- 1 -

MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int m k n o d (path , mode , dev)
char *path;
int mode , dev;

DESCRIPTION
Mknod creates a new file named by the path name
pointed to by path. The mode of the new file is
initialized from mode. Where the value of mode is
interpreted as follows:
0170000 file type; one of the following:

0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the
following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of
the process. The group ID of the file is set to the
effective group ID of the process.
Values of mode other than those above are undefined
and should not be used. The low-order 9 bits of mode
are modified by the process's file mode creation mask: all
bits set in the process's file mode creation mask are
cleared. See umask(2). If mode indicates a block or
character special file, dev is a configuration-dependent
specification of a character or block I/O device. If mode
does not indicate a block special or character special
device, dev is ignored.
Mknod may be invoked only by the super-user for file
types other than FIFO special.
Mknod will fail and the new file will not be created if
one or more of the following are true:
[EPERM] The effective user ID of the process is

not super-user.

- 1 -

MKNOD(2)

[ENOTDIR] A component of the path prefix is not a
directory.

(ENOENT] A component of the path prefix does
not exist.

[EROFS] The directory in which the file is to be
created is located on a read-only file
system.

[EEXIST]
[EFAULT]

The named file exists.
Path points outside the allocated
address space of the process.

RETURN VALUE
Upon successful completion a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
mkdir(l), chmod(2), exec(2), umask(2), fs(4).

- 2 -

MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int m o u n t (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
Mount requests that a removable file system contained
on the block special file identified by spec be mounted
on the directory identified by dir. Spec and dir are
pointers to path names.
Upon successful completion, references to the file dir will
refer to the root directory on the mounted file system.
The low-order bit of rwflag is used to control write
permission on the mounted file system; if 1, writing is
forbidden, otherwise writing is permitted according to
individual file accessibility.
Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are true:
[EPERM] The effective user ID is not super-user.
[ENOENT] Any of the named files does not exist.
[ENOTDIR] A component of a path prefix is not a

directory.
[ENOTBLK] Spec is not a block special device.
[ENXIO] The device associated with spec does

not exist.
[ENOTDIR] Dir is not a directory.
[EFAULT] Spec or dir points outside the allocated

address space of the process.
[EBUSY] Dir is currently mounted on, is

someone's current working directory, or
is otherwise busy.

[EBUSY] The device associated with spec is
currently mounted.

[EBUSY] There are no more mount table entries.
[EROFS] The low-order bit of rwflag is zero and

the volume containing the file system is
physically write-protected.

[EBADFS] An attempt to mount a bit-mapped file
system failed due to the dirty flag being
set for that file system.

5/86 - 1 -

MOUNT(2)

[ENXIO] The device is a swap partition.
[ENXIO] The superblock found on the specified

device does not have a correct magic
number.

RETURN VALUE
Upon successful completion a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
umount(2).

5/86 - 2 -

MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / m s g . h >
int msgct l (msqid, cmd, buf)
int msqid, cmd;
s t ruc t msqid_ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations
as specified by cmd. The following cmds are available:
IPC_STAT Place the current value of each member

of the data structure associated with
msqid into the structure pointed to by
buf. The contents of this structure are
defined in intro{2). {READ}

IPC_SET Set the value of the following members
of the data structure associated with
msqid to the corresponding value found
in the structure pointed to by buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a
process that has an effective user ID
equal to either that of super user or to
the value of msg_perm.uid in the data
structure associated with msqid. Only
super user can raise the value of
msg_qbytes .

IPC_RMID Remove the message queue identifier
specified by msqid from the system and
destroy the message queue and data
structure associated with it. This cmd
can only be executed by a process that
has an effective user ID equal to either
that of super user or to the value of
msg_perm.u id in the data structure
associated with msqid.

Msgctl will fail if one or more of the following are true:

- 1 -

MSGCTL(2)

[EINVAL]

[EINVAL]
[EACCES]

[EPERM]

Msqid is not a valid message queue
identifier.
Cmd is not a valid command.
Cmd is equal to IPC_STAT and
{READ} operation permission is denied
to the calling process (see intro(2)).
Cmd is equal to IPC_RMID or
IPC_SET. The effective user ID of the
calling process is not equal to that of
super user and it is not equal to the
value of msg_perm.uid in the data
structure associated with msqid.
Cmd is equal to IPC_SET, an attempt
is being made to increase to the value
of msg_qbytes , and the effective user
ID of the calling process is not equal to
that of super user.

[EFAULT] Buf points to an illegal address.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgget(2), msgop(2).

[EPERM]

MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / m s g . h >
int m s g g e t (key, msgf lg)
k e y _ t key;
int msgf lg;

DESCRIPTION
Msgget returns the message queue identifier associated
with key.
A message queue identifier and associated message queue
and data structure (see intro(2)) are created for key if
one of the following are true:

Key is equal to IPC_PRIVATE.
Key does not already have a message queue
identifier associated with it, and (msgflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the
new message queue identifier is initialized as follows:

Msg_perm.cuid , msg_perm.uid ,
msg_perm.cgid , and msg_perm.g id are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.
The low-order 9 bits of m s g _ p e r m . m o d e are
set equal to the low-order 9 bits of msgflg.
Msg_qnum, msg_lspid, msg_lrpid,
msg_s t ime , and msg_r t ime are set equal to 0.
M s g _ c t i m e is set equal to the current time.
M s g _ q b y t e s is set equal to the system limit.

Msgget will fail if one or more of the following are true:
[EACCES] A message queue identifier exists for

key, but operation permission (see
intro(2)) as specified by the low-order 9
bits of msgflg would not be granted.

[ENOENT] A message queue identifier does not
exist for key and (msgflg &
IPC.CREAT) is "false".

[ENOSPC] A message queue identifier is to be
created but the system-imposed limit on
the maximum number of allowed

- 1 -

MSGGET(2)

message queue identifiers system wide
would be exceeded.

[EEXIST] A message queue identifier exists for key
but ((megfig & IPC.CREAT) & (msgflg
81 IPC_EXCL)) is "true".

RETURN VALUE
Upon successful completion, a non-negative integer,
namely a message queue identifier, is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgctl(2), msgop(2).

- 2 -

MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
^ inc lude < s y s / t y p e s . h >
^ inc lude < s y s / i p c . h >
i n c l u d e < s y s / m s g . h >
int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
s truct msgbuf *msgp;
int msgsz, msgflg;
int msgrcv (msqid, msgp, msgsz, msg typ , msgflg)
int msqid;
s truct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated
with the message queue identifier specified by msqid.
{WRITE} Msgp points to a structure containing the
message. This structure is composed of the following
members:

long mtype- /* message type */
char mtext[j; /* message text */

Mtype is a positive integer that can be used by the
receiving process for message selection (see msgrcv
belowy. Mtext is any text of length msgsz bytes. Msgsz
can range from 0 to a system-imposed maximum.
Msgflg specifies the action to be taken if one or more of
the following are true:

The number of bytes already on the queue is
equal to msg_qbytes (see intro(2)).
The total number of messages on all queues
system-wide is equal to the system-imposed
limit.

These actions are as follows:
If (msgflg & IPC_NOWAIT) is "true", the
message will not be sent and the calling process
will return immediately.
If (msgflg & IPC_NOWAIT) is "false", the
calling process will suspend execution until one
of the following occurs:

- 1 -

MSGOP(2)

The condition responsible for the
suspension no longer exists, in which
case the message is sent.
Msqid is removed from the system (see
msgctl(2)). When this occurs, errno is
set equal to EIDRM, and a value of - 1
is returned.
The calling process receives a signal
that is to be caught. In this case the
message is not sent and the calling
process resumes execution in the
manner prescribed in signal(2)).

Msgsnd will fail and no message will be sent if one or
more of the following are true:
[EINVAL] Msqid is not a valid message queue

identifier.
[EACCES] Operation permission is denied to the

calling process (see intro(2)).
[EINVAL] Mtype is less than 1.
[EAGA1N] The message cannot be sent for one of

the reasons cited above and (msgflg &
IPC_NOWAIT) is "true".

[EINVAL] Msgsz is less than zero or greater than
the system-imposed limit.

[EFAULT] Msgp points to an illegal address.
Upon successful completion, the following actions are
taken with respect to the data structure associated with
msqid (see intro (2)).

M s g _ q n u m is incremented by 1.
Msg_lspid is set equal to the process ID of the
calling process.
M s g _ s t i m e is set equal to the current time.

Msgrcv reads a message from the queue associated with
the message queue identifier specified by msqid and
places it in the structure pointed to by msgp. {READ}
This structure is composed of the following members:

long mtype; /* message type */
char mtext[]; /* message text */

Mtype is the received message's type as specified by the
sending process. Mtext is the text of the message. Msgsz
specifies the size in bytes of mtext. The received
message is truncated to msgsz bytes if it is larger than

- 2 -

MSGOP(2)

msgsz and (msgflg & MSG_NOERROR) is "true". The
truncated part of the message is lost and no indication of
the truncation is given to the calling process.
Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the
queue is received.
If msgtyp is greater than 0, the first message of
type msgtyp is received.
If msgtyp is less than 0, the first message of the
lowest type that is less than or equal to the
absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the
desired type is not on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is "true", the
calling process will return immediately with a
return value of - 1 and errno set to ENOMSG.
If (msgflg k IPC_NOWAIT) is "false", the
calling process will suspend execution until one
of the following occurs:

A message of the desired type is placed
on the queue.
Msqid is removed from the system.
When this occurs, errno is set equal to
EIDRM, and a value of - 1 is returned.
The calling process receives a signal
that is to be caught. In this case a
message is not received and the calling
process resumes execution in the
manner prescribed in signal(2)).

Msgrcv will fail and no message will be received if one or
more of the following are true:
[EINVAL] Msqid is not a valid message queue

identifier.
[EACCES] Operation permission is denied to the

calling process.
[EINVAL] Msgsz is less than 0.
[E2BIG] Mtext is greater than msgsz and (msgflg

& MSG_NOERROR) is "false".
[ENOMSG] The queue does not contain a message

of the desired type and (msgtyp &
IPCJMOWAIT) is "true".

- 3 -

MSGOP(2)

[EFAULT] Msgp points to an illegal address.
Upon successful completion, the following actions are
taken with respect to the data structure associated with
msqid (see intro (2)).

Msg_qnum is decremented by 1.
M8g_lrpid is set equal to the process ID of the
calling process.
Msg_rt ime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal,
a value of - 1 is returned to the calling process and errno
is set to EINTR. If they return due to removal of msqid
from the system, a value of - I is returned and errno is
set to EIDRM.
Upon successful completion, the return value is as
follows:

Msgsnd returns a value of 0.
Msgrcv returns a value equal to the number of
bytes actually placed into mtext.

Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

- 4 -

NICE (2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the
calling process. A process's nice value is a positive
number for which a more positive value results in lower
CPU priority.
The system allows nice values only from - 8 to 39. The
nice system call grants nice values from - 8 to - 1 only to
super-user processes. These negative nice values cause
the CPU priority of the process to be fixed
independently of CPU usage of the process. Nice values
from 0 to 39 allow the system to adjust dynamically the
actual CPU priority of the process, temporarily lowering
it in proportion to the process's recent level of CPU
usage. If a super-user process requests a nice value
below - 8 , or if any other process requests a nice value
below 0, the system imposes a nice value of 0. If any
process requests a nice value above 39, the system
imposes a nice value of 39.
[EPERM] Nice will fail and not change the nice

value if incr is negative or greater than
40 and the effective user ID of the
calling process is not super-user.

RETURN VALUE
Upon successful completion, nice returns the new nice
value minus 20. Otherwise, a value of - 1 is returned
and errno is set to indicate the error.

SEE ALSO
nice(l), exec(2).

- 1 -

OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
^ i n c l u d e < f c n t l . h >
int open (path, of lag [, m o d e])
char *path;
int of lag , mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a
file descriptor for the named file and sets the file status
flags according to the value of oflag. Oflag values are
constructed by OR-ing flags from the following list (only
one of the first three flags below may be used):
0 _ R D 0 N L Y Open for reading only.
O . W R O N L Y

Open for writing only.
O . R D W R Open for reading and writing.
0 _ N D E L A Y This flag may affect subsequent reads and

writes. See read(2) and write(2).
When opening a FIFO with 0_RD0NLY or
0_WR0NLY set:
If 0_NDELAY is set:

An open for reading-only will
return without delay. An open
for writing-only will return an
error if no process currently has
the file open for reading.

If 0_NDELAY is clear:
An open for reading-only will
block until a process opens the file
for writing. An open for writing-
only will block until a process
opens the file for reading.

When opening a file associated with a
communication line:
If O.NDELAY is set:

The open will return without
waiting for carrier.

If O.NDELAY is clear:
The open will block until carrier is
present.

5/86 - 1 -

OPEN(2)

0 _ A P P E N D If set, the file pointer will be set to the
end of the file prior to each write.

0_DIRECT If set, subsequent reads or writes that
satisfy the following criteria will be moved
directly to or from the user space to the
physical media:

The transfer must start on a IK
byte boundary in the file, and it
must be in multiples of IK byte
blocks.

This option applies only to regular files.
Note that direct implies synchronous.

0 _ N 0 D I R E C T
Do not perform direct I/O for this file,
even if a transfer satisfies the system
default criteria.

0 _ S Y N C

O C R E A T

O T R U N C

0_EXCL

If set, all writes will be synchronous. This
option applies only to regular files.
If the file exists, this flag has no effect.
Otherwise, the owner ID of the file is set
to the effective user ID of the process, the
group ID of the file is set to the effective
group ID of the process, and the low-order
10 bits of the file mode are set to the
value of mode modified as follows (see
creat(2)):

All bits set in the file mode
creation mask of the process are
cleared. See vmask(2).
The "save text image after
execution bit" of the mode is
cleared. See chmod(2).

If the file exists, its length is truncated to
0 and the mode and owner are unchanged.
If 0_EXCL and 0_CREAT are set,
will fail if the file exists.

open

The file pointer used to mark the current position within
the file is set to the beginning of the file.
The new file descriptor is set to remain open across exec
system calls. See fcntl(2).
The named file is opened unless one or more of the
following are true:

5/86

OPEN(2)

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] 0_CREAT is not set and the named file
does not exist.

[EACCES] A component of the path prefix denies
search permission.

[EACCES] Oflag permission is denied for the
named file.

[EISDIR] The named file is a directory and oflag
is write or read/write.

[EROFS] The named file resides on a read-only
file system and oflag is write or
read/write.

[EMFILE] Twenty (20) file descriptors are
currently open.

[ENXIO] The named file is a character special or
block special file, and the device
associated with this special file does not
exist.

[ETXTBSY] The file is a pure procedure (shared
text) file that is being executed and
oflag is write or read/write.

[EFAULT] Path points outside the allocated
address space of the process.

[EEXIST] 0_CREAT and 0_EXCL are set, and the
named file exists.

[ENXIO] OJMDELAY is set, the named file is a
FIFO, 0_WR0NLY is set, and no process
has the file open for reading.

[EINTR] A signal was caught during the open
system call.

[ENFILE] The system file table is full.
[EDEADLOCK] A side effect of a previous locking(2)

call, when applying O.TRUNC .
RETURN VALUE

Upon successful completion, the
returned. Otherwise, a value of -
errno is set to indicate the error.

SEE ALSO
chmod(2), close(2), creat(2), dup(2), fcntl(2), locking(2),
lseek(2), read(2), umask(2), write(2).

file descriptor is
1 is returned and

5/86 - 3 -

OPENI (2)

NAME
openi - open a file specified by i-node

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
i n c l u d e < f c n t l . h >

int openi (dev, inode, of lag)
d e v _ t dev;
ino_t inode;
int of lag;

DESCRIPTION
Openi permits access to a file without reference to any
of its directory links. Because it doesn't use the
directory hierarchy, openi doesn't require any access
permission except from the file itself. Use of openi must
be authorized in advance by sysloeal(2).
Dev specifies the device number of the file system that
contains the file. Inode is the i-number of the file.
Oflag is a set of open flags, identical to those used with
open(2). The return value is a file descriptor, like that
returned by open.
A file descriptor returned by openi has the same
properties as one returned by open. It counts against
the per-process limit of 20 file descriptors.
The specified file is opened unless one or more of the
following are true:

The specified inode is not allocated. [ENOENT]
Oflag permission is denied for the named file.
[EACCES]
The named file is a directory. [EISDIR]
The named file resides on a read-only file system
and oflag is write or read/write. [EROFS]
Twenty (20) file descriptors are currently open.
[EMFILE]
The named file is a character special or block
special file. [ENXIO]
The file is a pure procedure (shared text) file
that is being executed and oflag is write or
read/write. [ETXTBSY]
Path points outside the process's allocated
address space. [EFAULT]
0_CREAT and 0_EXCL are set, and the named
file exists. [EEXIST]

- 1 -

OPENI (2)

0_NDELAY is set, the file is a FIFO, 0_WR0NLY
is set, and no process has the file open for
reading. [ENXIO]
The specified file system is not mounted.
[ENXIO]

RETURN VALUE
On success, returns a file descriptor, a nonnegative
integer. On failure, returns - 1 and sets errno.

SEE ALSO
creat(2), open(2), syslocal(2).

- 2 -

PAUSE (2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a
signal. The signal must be one that is not currently set
to be ignored by the calling process.
If the signal causes termination of the calling process,
pause will not return.
If the signal is caught by the calling process and control
is returned from the signal-catching function (see
signal(2)), the calling process resumes execution from the
point of suspension; with a return value of - 1 from
pause and errno set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

- 1 -

PIPE (2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int p ipe (f i ldes)
int fildes[2];

DESCRIPTION
Pipe creates an I/O mechanism called a pipe and returns
two file descriptors, fildea[0] and fildes[l\. Fildes[0] is
opened for reading and fildeajl] is opened for writing.
Up to 9K bytes of data are buffered by the pipe before
the writing process is blocked. A read only file
descriptor fildea[0] accesses the data written to fildes [l]
on a first-in-first-out (FIFO) basis.

[EMFILE] Pipe will fail if 19 or more file
descriptors are currently open.

[ENFILE] The system file table is full.
RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
sh(l), read(2), write(2).

5/86 - 1 -

PLOCK(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
inc lude < s y s / l o c k . h >
int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment
(text lock), its data and stack segments (data lock), or
both its text and data segments (process lock) into
memory. Locked segments are immune to all routine
swapping. Plock also allows these segments to be
unlocked. For 407 object modules TXTLOCK and
DATLOCK are identical. The effective user ID of the
calling process must be super-user to use this call. Op
specifies the following:
PROCLOCK lock text and data segments into

memory (process lock)
TXTLOCK lock text segment into memory (text

lock)
DATLOCK lock data segment into memory (data

lock)
UNLOCK remove locks
Shared regions (e.g., text) may be locked by anyone
using the text, but they may be unlocked only if the
caller is the last one using the region. Note that sticky-
bit text that is not explicitly unlocked will remain locked
in core even after the last process using it terminates.
Plock will fail and not perform the requested operation if
one or more of the following are true:
[EPERM] The effective user ID of the calling

process is not super-user.
[EINVAL] Op is equal to PROCLOCK and a

process lock, a text lock, or a data lock
already exists on the calling process.

[EINVAL] Op is equal to TXTLOCK and a text
lock, or a process lock already exists on
the calling process.

[EINVAL] Op is equal to DATLOCK and a data
lock, or a process lock already exists on
the calling process.

[EINVAL] Op is equal to UNLOCK and no type of
lock exists on the calling process.

- 1 -

PLOCK(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned to
the calling process. Otherwise, a value of - 1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

- 2 -

PROFIL (2)

NAME
profil - execution time profile

SYNOPSIS
vo id profil (buff , bufsiz, offset , scale)
char *buff;
int bufsiz, of fset , scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is
given by bufsiz. After this call, the user's program
counter (pc) is examined each clock tick (60th second);
offset is subtracted from it, and the result multiplied by
scale. If the resulting number corresponds to a word
inside buff, that word is incremented.
The scale is interpreted as an unsigned, fixed-point
fraction with binary point at the left: 0177777 (octal)
gives a 1-1 mapping of pc's to words in buff; 077777
(octal) maps each pair of instruction words together.
02(octal) maps all instructions onto the beginning of buff
(producing a non-interrupting core clock).
Profiling is turned off by giving a scale of 0 or 1. It is
rendered ineffective by giving a bufsiz of 0. Profiling is
turned off when an exec is executed, but remains on in
child and parent both after a fork. Profiling will be
turned off if an update in buff would cause a memory
fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(l), monitor(3C).

PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int p trace (request , pid, addr, data);
int request , pid, addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may
control the execution of a child process. Its primary use
is for the implementation of breakpoint debugging; see
sdb(l). The child process behaves normally until it
encounters a signal (see signal(2) for the list), at which
time it enters a stopped state and its parent is notified
via wait(2). When the child is in the stopped state, its
parent can examine and modify its "core image" using
ptrace. Also, the parent can cause the child either to
terminate or continue, with the possibility of ignoring
the signal that caused it to stop.

The request argument determines the precise action to
be taken by ptrace and is one of the following:
0 This request must be issued by the child process if

it is to be traced by its parent. It turns on the
child's trace flag that stipulates that the child
should be left in a stopped state upon receipt of a
signal rather than the state specified by func; see
signal(2). The pid, addr, and data arguments are
ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent
does not expect to trace the child.

The remainder of the requests can only be used by the
parent process. For each, pid is the process ID of the
child. The child must be in a stopped state before these
requests are made.
1, 2 With these requests, the word at location addr in

the address space of the child is returned to the
parent process. If I and D space are separated (as
on PDP-lls), request 1 returns a word from I space,
and request 2 returns a word from D space. If I
and D space are not separated (as on Convergent
Technologies 68000-family processors), either
request 1 or request 2 may be used with equal
results. The data argument is ignored. These two
requests will fail if addr is not the start address of
a word, in which case a value of - 1 is returned to
the parent process and the parent's errno is set to -
EIO

- 1 -

P T R A C E (2)

With this request, the word at location addr in the
child's USER area in the system's address space (see
< s y s / u s e r . h >) is returned to the parent process.
Addresses in this area range from 0 to USIZE on
Convergent Technologies 68000-family processors.
The data argument is ignored. This request will
fail if addr is not the start address of a word or is
outside the USER area, in which case a value of - 1
is returned to the parent process and the parent's
errno is set to EIO.

With these requests, the value given by the data
argument is written into the address space of the
child at location addr. If I and D space are
separated (as on PDP-lls), request 4 writes a word
into I space, and request 5 writes a word into D
space. If I and D space are not separated (as on
Convergent Technologies 68000-family processors),
either request 4 or request 5 may be used with
equal results. Upon successful completion, the
value written into the address space of the child is
returned to the parent. These two requests will fail
if addr is a location in a pure procedure space and
another process is executing in that space, or addr
is not the start address of a word. Upon failure a
value of - 1 is returned to the parent process and
the parent's errno is set to EIO.

With this request, a few entries in the child's USER
area can be written. Data gives the value that is
to be written and addr is the location of the entry.
The few entries that can be written are:

the general registers (i.e., registers 0 to 15
on Convergent Technologies 68000-family
processors).
all processor status bits except 8, 9, 10, 12,
and 13.

This request causes the child to resume execution.
If the data argument is 0, all pending signals
including the one that caused the child to stop are
canceled before it resumes execution. If the data
argument is a valid signal number, the child
resumes execution as if it had incurred that signal,
and any other pending signals are canceled. The
addr argument must be equal to 1 for this request.
Upon successful completion, the value of data is
returned to the parent. This request will fail if
data is not 0 or a valid signal number, in which
case a value of - 1 is returned to the parent process

PTRACE(2)

and the parent's errno is set to EIO.
8 This request causes the child to terminate with the

same consequences as exit(2).
9 This request sets the trace bit in the Processor

Status Word of the child (i.e., bit 15 on
Convergent Technologies 68000-family processors)
and then executes the same steps as listed above
for request 7. The trace bit causes an interrupt
upon completion of one machine instruction. This
effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-id
facility on subsequent exec(2) calls. If a traced process
calls exec, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following
are true:
[EIO]
[ESRCH]

Request is an illegal number.
Pid identifies a child that does not exist
or has not executed a ptrace with
request 0.

FILES
/usr/include / sys / page .h
/usr/include/sys / user.h

SEE ALSO
exec(2), signal(2), wait(2).

5/86 - 3 -

READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf , n b y t e)
int f i ldes;
char *buf;
uns igned nbyte ;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open,
dup, fcntl, or pipe system call.
Read attempts to read nbyte bytes from the file
associated with fildes into the buffer pointed to by buf.
On devices capable of seeking, the read starts at a
position in the file given by the file pointer associated
with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.
Devices that are incapable of seeking always read from
the current position. The value of a file pointer
associated with such a file is undefined.
Upon successful completion, read returns the number of
bytes actually read and placed in the buffer; this number
may be less than nbyte if the file is associated with a
communication line (see ioctl(2) and termio(7)), or if the
number of bytes left in the file is less than nbyte bytes.
A value of 0 is returned when an end-of-file has been
reached.
When attempting to read from an empty pipe (or FIFO):

If 0_NDELAY is set , the read will return a 0.

If 0_NDELAY is clear, the read will block until
data is written to the file or the file is no longer
open for writing.

When attempting to read a file associated with a tty
that has no data currently available:

If O.NDELAY is set, the read will return a 0.
If O.NDELAY is clear, the read will block until
data becomes available.

Read will fail if one or more of the following are true:
[EBADF] Fildes is not a valid file descriptor open

for reading.
[EFAULT] Buf points outside the allocated address

space.

- 1 -

READ(2)

[EINTR] A signal was caught during the read
system call.

[EDEADLOCK] A side effect of a previous locking(2)
call.

RETURN VALUE
Upon successful completion a non-negative integer is
returned indicating the number of bytes actually read.
Otherwise, a - 1 is returned and errno is set to indicate
the error.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), locking(2), open(2),
pipe(2), termio(7).

- 2 -

RECV (2 N)

NAME
recv, recvfrom - receive a message from a socket

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / s o c k e t . h >
recv(s , buf , len, f lags)
int s;
char *buf;
int len, f lags;
recvfrom(s , buf , len, f lags , f rom, fromlen)
int s;
char *buf;
int len, f lags;
s t ruc t sockaddr ""from;
int ""fromlen;

DESCRIPTION
Recv and recvfrom are used to receive messages from a
socket.
The recv call may be used only on a connected socket
(see connect(2)), while recvfrom may be used to receive
data on a socket whether it is in a connected state or
not.
If from is non-zero, the source address of the message is
filled in. Fromlen is a value-result parameter, initialized
to the size of the buffer associated with from, and
modified on return to indicate the actual size of the
address stored there. The length of the message is
returned in cc. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from; see
socket(2).
If no messages are available at the socket, the receive
call waits for a message to arrive.
The flags argument to a send call is formed by or 'ing
one or more of the values:
#defineMSG_PEEK 0x1

/* peek at incoming message */
#defineMSG_OOB 0x2

/ * process out-of-band data */
RETURN VALUE

These calls return the number of bytes received, or - 1 if
an error occurred.

ERRORS
The calls fail if:

- 1 -

RECV(2N)

[EBADF] The argument a is an invalid
descriptor.

[ENOTSOCK] The argument a is not a socket.
[EINTR] The receive was interrupted by

delivery of a signal before any
data was available for the receive.

[EFAULT] The data was specified to be
received into a non-existent or
protected part of the process
address space.

SEE ALSO
connect(2N), read(2), send(2), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTEX kernel that supports networking protocols.

- 2 -

SEMCTL (2)

NAME
semctl - semaphore control operations

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / s e m . h >
int semct l (semid, s e m n u m , cmd, arg)
int semid, cmd;
int s e m n u m ;
union s e m u n {

int val;
s t ruct semid_ds *buf;
ushort *array;

} arg;
DESCRIPTION

Semctl provides a variety of semaphore control
operations as specified by cmd.
The following cmds are executed with respect to the
semaphore specified by semid and semnum:
GETVAL Return the value of semval (see intro(2)).

{READ}
SETVAL Set the value of semval to arg.val.

{ALTER} When this cmd is successfully
executed, the semadj value corresponding
to the specified semaphore in all processes
is cleared.

GETPID Return the value of sempid. {READ}
GETNCNT Return the value of semncnt. {READ}
GETZCNT Return the value of semzent. {READ}
The following cmds return and set, respectively, every
semval in the set of semaphores.
GETALL Place semvals into array pointed to by

arg. array. {READ}
SETALL Set semvals according to the array

pointed to by arg.array. {ALTER} When
this cmd is successfully executed the
semadj values corresponding to each
specified semaphore in all processes are
cleared.

The following cmds are also available:
IPC_STAT Place the current value of each member

of the data structure associated with
semid into the structure pointed to by

- 1 -

SEMCTL (2)

arg.buf. The contents of this structure
are defined in intro(2). {READ}

IPC_SET Set the value of the following members of
the data structure associated with semid
to the corresponding value found in the
structure pointed to by arg.buf:
sem_perm.u id
sem_perm.g id
s e m _ p e r m . m o d e / * only low 9 b i ts * /

This cmd can only be executed
by a process that has an effective
user ID equal to either that of
super-user or to the value of
sem_perm.uid in the data
structure associated with semid.

IPC_RMID Remove the semaphore
identifier specified by
semid from the system and
destroy the set of
semaphores and data
structure associated with
it. This cmd can only be
executed by a process that
has an effective user ID
equal to either that of
super-user or to the value
of sem_perm.uid in the
data structure associated
with semid.

Semctl will fail if one or more of the
following are true:
[EINVAL] Semid is not a valid

semaphore identifier.
[EINVAL] Semnum is less than zero

or greater than
sem_nsems.

[EINVAL] Cmd is not a valid
command.

[EACCES] Operation permission is
denied to the calling
process (see intro(2)).

[ERANGE] Cmd is SETVAL or
SETALL and the value
to which semval is to be
set is greater than the

- 2 -

SEMCTL (2)

[EPERM]

system imposed
maximum.
Cmd is equal to
IPC_RMID or IPC_SET
and the effective user ID
of the calling process is
not equal to that of
super-user and it is not
equal to the value of
sem_perm.uid in the
data structure associated
with semid.

[EFAULT] Arg.buf points
illegal address.

to an

RETURN VALUE
Upon successful completion, the value returned depends
on cmd as follows:

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzent.
A value of 0.

1 is returned and errno is set to

GETVAL
GETPID
GETNCNT
GETZCNT
All others

Otherwise, a value of
indicate the error.

SEE ALSO
intro(2), semget(2), semop(2).

- 3 -

SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
^inc lude < s y s / t y p e s . h >
inc lude < s y s / i p c . h >
^inc lude < s y s / s e m . h >
int semget (key, nsems, semflg)
key_t key;
int nsems, semflg;

DESCRIPTION
Semget returns the semaphore identifier associated with
key.
A semaphore identifier and associated data structure and
set containing nsems semaphores (see intro(2)) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.
Key does not already have a semaphore
identifier associated with it, and (semflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the
new semaphore identifier is initialized as follows:

Sem_perm.cuid, sem_perm.uid,
sem_perm.cgid, and sem_perm.gid are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.
The low-order 9 bits of sem_perm.mode are
set equal to the low-order 9 bits of semflg.
Sem_nsems is set equal to the value of nsems.
Sem_ot ime is set equal to 0 and sem_ct ime is
set equal to the current time.

Semget will fail if one or more of the following are true:
[EINVAL] Nsems is either less than or equal to

zero or greater than the system-imposed
limit.

[EACCES] A semaphore identifier exists for key,
but operation permission (see intro (2))
as specified by the low-order 9 bits of
semflg would not be granted.

[EINVAL] A semaphore identifier exists for key,
but the number of semaphores in the
set associated with it is less than nsems
and nsems is not equal to zero.

- 1 -

SEMGET(2)

[ENOENT] A semaphore identifier does not exist
for key and (semflg & IPC_CREAT) is
"false".

[ENOSPC] A semaphore identifier is to be created
but the system-imposed limit on the
maximum number of allowed semaphore
identifiers system wide would be
exceeded.

[ENOSPC] A semaphore identifier is to be created
but the system-imposed limit on the
maximum number of allowed
semaphores system wide would be
exceeded.

[EEXIST] A semaphore identifier exists for key
but ((semflg &. IPC_CREAT) and
(semflgSc IPC_EXCL)) is "true".

RETURN VALUE
Upon successful completion, a non-negative integer,
namely a semaphore identifier, is returned. Otherwise, a
value of - 1 is returned and errno is set to indicate the
error.

SEE ALSO
intro(2), semctl(2), semop(2).

- 2 -

SEMOP (2)

NAME
semop - semaphore operations

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^inc lude < s y s / i p c . h >
^inc lude < s y s / s e m . h >
int semop (semid, sops, nsops)
int semid;
s truct sembuf **sops;
int nsops;

DESCRIPTION
Semop is used to atomically perform an array of
semaphore operations on the set of semaphores
associated with the semaphore identifier specified by
semid. Sops is a pointer to the array of semaphore-
operation structures. Nsops is the number of such
structures in the array. The contents of each structure
includes the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is
performed on the corresponding semaphore specified by
semid and sem_num.
Sem_op specifies one of three semaphore operations as
follows:

If sem_op is a negative integer, one of the
following will occur: {ALTER}

If semval (see «nfro(2)) is greater than
or equal to the absolute value of
sem_op, the absolute value of sem_op
is subtracted from semval. Also, if
(aemjlg & SEM_UNDO) is "true", the
absolute value of sem_op is added to
the calling process's semadj value (see
ex«<(2)) for the specified semaphore.
All processes suspended waiting for
semval are rescheduled.
If semval is less than the absolute value
of sem_op and (sem _flg &
IPC_NOWAIT) is "true", semop will
return immediately.
If semval is less than the absolute value
of sem_op and (sem _Jlg &
IPC_NOWAIT) is "false", semop will

- 1 -

SHMOP (2)

increment the semncnt associated with
the specified semaphore and suspend
execution of the calling process until
one of the following conditions occurs:

Semval becomes greater than or
equal to the absolute value of
sem_op. When this occurs, the
value of semncnt associated with the
specified semaphore is decremented,
the absolute value of sem_op is
subtracted from semval and, if
(semJig & SEM_UNDO) is "true",
the absolute value of sem_op is
added to the calling process's semadj
value for the specified semaphore,
and all the operations are tried
again.
The semid for which the calling
process is awaiting action is removed
from the system (see semctl(2)).
When this occurs, errno is set equal
to EIDRM, and a value of - 1 is
returned.
The calling process receives a signal
that is to be caught. When this
occurs, the value of semncnt
associated with the specified
semaphore is decremented, and the
calling process resumes execution in
the manner prescribed in signal(2).

If sem_op is a positive integer, the value of
sem_op is added to semval and, if (sem_flg &
SEM_UNDO) is "true", the value of sem_op is
subtracted from the calling process's semadj
value for the specified semaphore. {ALTER}
If sem_op is zero, one of the following will
occur: {READ}

If semval is zero, semop will return
immediately.
If semval is not equal to zero and
(semJig & IPCJ^OWAIT) is "true",
semop will return immediately.
If semval is not equal to zero and

- 2 -

SHMOP (2)

(semJig & IPC_NOWAIT) is "false",
semop will increment the semzcnt
associated with the specified semaphore
and suspend execution of the calling
process until one of the following
occurs:

Semval becomes zero, at which time
the value of semzcnt associated with
the specified semaphore is
decremented.
The semid for which the calling
process is awaiting action is removed
from the system. When this occurs,
errno is set equal to EIDRM, and a
value of - 1 is returned.
The calling process receives a signal
that is to be caught. When this
occurs, the value of semzcnt
associated with the specified
semaphore is decremented, and the
calling process resumes execution in
the manner prescribed in signal(2).

Semop will fail if one or more of the following are true
for any of the semaphore operations specified by sops:

not a valid semaphore [EINVAL] Semid is
identifier.

[EFBIG] Sem_num is less than zero or greater
than or equal to the number of
semaphores in the set associated with
semid.

[E2BIG] Nsops is greater than the system-
imposed maximum.

[EACCES] Operation permission is denied to the
calling process (see «ntro(2)).

[EAGAIN] The operation would result in
suspension of the calling process but
(semjlg & IPC_NOWAIT) is "true".

[ENOSPC] The limit on the number of individual
processes requesting an SEM_UNDO
would be exceeded.

[EINVAL] The number of individual semaphores
for which the calling process requests a
SEM UNDO would exceed the limit.

- 3 -

SHMOP (2)

[ERANGE] Aji operation would cause a semval to
overflow the system-imposed limit.

[ERANGE] An operation would cause a semadj
value to overflow the system-imposed
limit.

[EFAULT] Sops points to an illegal address.
Upon successful completion, the value of sempid for each
semaphore specified in the array pointed to by sops is set
equal to the process ID of the calling process.

RETURN VALUE
If semop returns due to the receipt of a signal, a value of
- 1 is returned to the calling process and errno is set to
EINTR. If it returns due to the removal of a semid from
the system, a value of - 1 is returned and errno is set to
EIDRM.
Upon successful completion, the value of semval at the
time of the call for the last operation in the array
pointed to by sops is returned. Otherwise, a value of - 1
is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

- 4 -

SEND (2N)

NAME
send, sendto - send a message to a socket

SYNOPSIS
inc lude < s y s / t y p e s . h >
inc lude < s y s / s o c k e t . h >
send(s, msg, len, f lags)
int s;
char *msg;
int len, flags;
sendto(s , msg, len, f lags, to , tolen)
int s;
char ""msg;
int len, flags;
s truct sockaddr *to;
int tolen;

DESCRIPTION
Send and sendto are used to transmit a message to
another socket (s). Send may be used only when the
socket is in a connected state, while sendto may be used
at any time.
The address of the target is given by to with tolen
specifying its size. The length of the message is given by
len. If the message is too long to pass atomically
through the underlying protocol, then the error
EMSGSIZE is returned, and the message is not
transmitted.
No indication of failure to deliver is implicit in a send.
Return values of - 1 indicate some locally detected
errors.
If no message space is available at the socket to hold the
message to be transmitted, then send blocks.
The flags parameter may be set to SOF_OOB to send
out-of-band data on sockets which support this notion
(e.g., SOCKJSTREAM).

RETURN VALUE
The call returns the number of characters sent, or - 1 if
an error occurred.

ERRORS
[EBADF]

[ENOTSOCK]
[EFAULT]

An invalid descriptor was
specified.
The argument s is not a socket.
An invalid user space address was
specified for a parameter.

- 1 -

SEND(2N)

[EMSGSIZE] The socket requires that message
be sent atomically, and the size of
the message to be sent made this
impossible.

SEE ALSO
recv(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 2 -

SETPGRP(2)

NAME
setpgrp - set process group ID

S Y N O P S I S
int setpgrp ()

D E S C R I P T I O N
Setpgrp sets the process group ID of the calling process to
the process ID of the calling process and returns the
process group ID.

R E T U R N V A L U E
Setpgrp returns the value of the process group ID.

S E E A L S O
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

N O T E
This function is incorrectly documented in the UNIX
System V Interface definition and other UNIX
documentation. The description here accurately
describes the system call.

- 1 -

SETUID (2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;
int setgid (gid)
int gid;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) ID and
effective user (group) ID of the calling process.
If the effective user ID of the calling process is super-
user, the real user (group) ID and effective user (group)
ID are set to uid (gid).
If the effective user ID of the calling process is not
super-user, but its real user (group) ID is equal to uid
(gid), the effective user (group) ID is set to uid (gid).
If the effective user ID of the calling process is not
super-user, but the saved set-user (group) ID from exec(2)
is equal to uid (gid), the effective user (group) ID is set to
uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the
calling process is not equal to uid (gid) and its effective
user ID is not super-user. [EPERM]
The uid is out of range. [EINVAL]

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
getuid(2), intro(2).

- 1 -

SHMCTL (2)

NAME
shmctl - shared memory control operations

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / s h m . h >
int shmct l (shmid, cmd, buf)
int shmid, cmd;
s truct shmid_ds *buf;

DESCRIPTION
Shmctl provides a variety of shared memory control
operations as specified by cmd. The following cmds are
available:
IPC_STAT Place the current value of each member of

the data structure associated with shmid
into the structure pointed to by buf. The
contents of this structure are defined in
[EINVAL] intro (2). {READ}

IPC_SET Set the value of the following members of
the data structure associated with shmid to
the corresponding value found in the
structure pointed to by buf :
shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */
This cmd can only be executed by a process
that has an effective user ID equal to either
that of super-user or to the value of
8hm_perm.uid in the data structure
associated with shmid.

SHM_LOCK Lock the shared memory segment
specified by shmid in memory. This
cmd can only be executed by a process
that has an effective user ID equal to
super user.

SHM_UNLOCK
Unlock the shared memory segment
specified by shmid. This cmd can only
be executed by a process that has an
effective user ID equal to super user.

IPC_RMID Remove the shared memory identifier
specified by shmid from the system and
destroy the shared memory segment
and data structure associated with it.
This cmd can only be executed by a

SHMCTL (2)

process that has an effective user ID
equal to either that of super-user or to
the value of shm_perm.uid in the
data structure associated with shmid.

Shmctl will fail if one or more of the following are true:
[EINVAL]

[EINVAL]

[EACCES]

[EPERM]

Shmid is not a valid shared memory
identifier.
Cmd is not a valid command.
Cmd is equal to IPC_STAT and
{READ} operation permission is denied
to the calling process (see «niro(2)).
Cmd is equal to IPC_RMID or
IPCJ3ET and the effective user ID of
the calling process is not equal to that
of super user and it is not equal to the
value of shm_perm.uid in the data
structure associated with shmid.
Cmd is equal to SHM_LOCK or
SHM_UNLOCK and the effective user
ID of the calling process is not equal to
that of super user.
Cmd is equal to SHM_UNLOCK and
the shared-memory segment specified
by shmid is not locked in memory.
Buf points to an illegal address.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), shmget(2), shmop(2).

[EPERM]

[EINVAL]

[EFAULT]

- 2 -

SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
^ i n c l u d e < s y s / s h m . h >
int s h m g e t (key, size, shmflg)
k e y _ t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory identifier associated
with key.
A shared memory identifier and associated data structure
and shared memory segment of size size bytes (see
intro(2)) are created for key if one of the following are
true:

Key is equal to IPC_PRIVATE
Key does not already have a shared memory
identifier associated with it, and (shmflg &
IPC_CREAT) is "true".

Upon creation, the data structure associated with the
new shared memory identifier is initialized as follows:

Shm_perm.cuid , shm_perm.uid ,
shm_perm.cg id , and shm_perm.g id are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.
The low-order 9 bits of s h m _ p e r m . m o d e are
set equal to the low-order 9 bits of shmflg.
Shm_segsz is set equal to the value of size.
Shm_lpid, shm_nat tch , shm_at ime , and
s h m _ d t i m e are set equal to 0.
S h m _ c t i m e is set equal to the current time.

Shmget will fail if one or more of the following are true:
[EINVAL] Size is less than the system-imposed

minimum or greater than the system-
imposed maximum.

[EACCES] A shared memory identifier exists for
key but operation permission (see
tn<ro(2)) as specified by the low-order 9
bits of shmflg would not be granted.

[EINVAL] A shared memory identifier exists for
key but the size of the segment
associated with it is less than size and

- 1 -

SHMGET(2)

size is not equal to zero.
[ENOENT] A shared memory identifier does not

exist for key and (shmflg k
IPC.CREAT) is "false".

[ENOSPC] A shared memory identifier is to be
created but the system-imposed limit on
the maximum number of allowed shared
memory identifiers system wide would
be exceeded.

[ENOMEM] A shared memory identifier and
associated shared memory segment are
to be created but the amount of
available physical memory is not
sufficient to fill the request.

[EEXIST] A shared memory identifier exists for
key but ((shmflg k IPC_CREAT) and
(shmflg k IPC_EXCL)) is "true".

RETURN VALUE
Upon successful completion, a non-negative integer,
namely a shared memory identifier is returned.
Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), shmctl(2), shmop(2).

- 2 -

SEMOP (2)

NAME
shmop - shared memory operations

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ inc lude < s y s / i p c . h >
^inc lude < s y s / s h m . h >
char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr
int shmflg;
int s h m d t (shmaddr)
char *shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated
with the shared memory identifier specified by shmid to
the data segment of the calling process. The segment is
attached at the address specified by one of the following
criteria:

If shmaddr is equal to zero, the segment is
attached at the first available address as selected
by the system.
If shmaddr is not equal to zero and (shmflg &
SHM_RND) is "true", the segment is attached
at the address given by (shmaddr - (shmaddr
modulus SHMLBA)).
If shmaddr is not equal to zero and (shmflg &
SHM_RND) is "false", the segment is attached
at the address given by shmaddr.

The segment is attached for reading if (shmflg &
SHM.RDONLY) is "true" {READ}, otherwise it is
attached for reading and writing {READ/WRITE}.
Shmat will fail and not attach the shared memory
segment if one or more of the following are true:
[EINVAL] Shmid is not a valid shared memory

identifier.
[EACCES] Operation permission is denied to the

calling process (see intro(2)).
[ENOMEM] The available data space is not large

enough to accommodate the shared
memory segment.

[EINVAL] Shmaddr is not equal to zero, and the
value of (shmaddr - (shmaddr modulus
SHMLBA)) is an illegal address.

- 1 -

SHMOP (2)

[EINVAL]

[EMFILE]

[EINVAL]

[EINVAL]

Shmaddr is not equal to zero, (shmflg &
SHM_RND) is "false", and the value of
shmaddr is an illegal address.
The number of shared memory
segments attached to the calling process
would exceed the system-imposed limit.
Shmdt detaches from the calling
process's data segment the shared
memory segment located at the address
specified by shmaddr.
Shmdt will fail and not detach the
shared memory segment if shmaddr is
not the data segment start address of a
shared memory segment.

RETURN VALUES
Upon successful completion, the return value is as
follows:

Shmat returns the data segment start address of
the attached shared memory segment.
Shmdt returns a value of 0.

Otherwise, a value of - 1 is returned and errno is set to
indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

- 2 -

SHUTDOWN (2N)

NAME
shutdown - shut down part of a full-duplex connection

S Y N O P S I S
shutdown(s , how)
int s, how;

D E S C R I P T I O N
The shutdown call causes all or part of a full-duplex
connection on the socket associated with s to be shut
down. If how is 0, then further receives will be
disallowed. If how is 1, then further sends will be
disallowed. If how is 2, then further sends and receives
will be disallowed.

D I A G N O S T I C S
A 0 is returned if the call succeeds, - 1 if it fails.

E R R O R S
The call succeeds unless:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is a file, not a socket.
[ENOTCONN] The specified socket is not connected.

S E E A L S O
connect(2N), socket(2Nl.
CTIX Internetworking Manual.

N O T E
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

SSIGNAL(3C)

NOTES
There are some additional signals with numbers outside
the range 1 through 15 which are used by the Standard
C Library to indicate error conditions. Thus, some
signal numbers outside the range 1 through 15 are legal,
although their use may interfere with the operation of
the Standard C Library.

- 2 -

STDIO (3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
^ i n c l u d e < s t d i o . h >
FILE • s td in , *s tdout , *stderr;

D E S C R I P T I O N
The functions described in the entries of sub-class 3S of
this manual constitute an efficient, user-level I/O
buffering scheme. The in-line macros getc(3S) and
putc (3S) handle characters quickly. The macros getchar
and putchar, and the higher-level routines fgetc, fgets,
fprintf, fputc, fputs, fread, fseanf, fwrite, gets, getw,
printf, puts, putw, and scanf all use or act as if they use
getc and putc; they can be freely intermixed.
A file with associated buffering is called a stream and is
declared to be a pointer to a defined type FILE.
Fopen(3S) creates certain descriptive data for a stream
and returns a pointer to designate the stream in all
further transactions. Normally, there are three open
streams with constant pointers declared in the
<s td io .h> header file and associated with the standard
open files:

s td in standard input file
s t d o u t standard output file
s tderr standard error file

A constant NULL (0) designates a nonexistent pointer.
An integer-constant EOF (- 1) is returned upon end-of-
file or error by most integer functions that deal with
streams (see the individual descriptions for details).
An integer constant BUFSIZ specifies the size of the
buffers used by the particular implementation.
Any program that uses this package must include the
header file of pertinent macro definitions, as follows:

^include <s td io .h>
The functions and constants mentioned in the entries of
sub-class 3S of this manual are declared in that header
file and need no further declaration. The constants and
the following "functions" are implemented as macros
(redeclaration of these names is perilous): getc, getchar,
putc, putchar, ferror, feof, clearerr, and ftleno.

SEE ALSO
open(2), close(2), lseek(2), pipe(2), read(2), write(2),
ctermid(3S), cuserid(3S), fclose(3S), ferror(3S), fopen(3S ,
fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S),

- 1 -

STDIO (3S)

printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S),
system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder,
possibly including program termination. Individual
function descriptions describe the possible error
conditions.

- 2 -

STDIPC (3C)

NAME
ftok - standard interprocess communication package

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i p c . h >
k e y _ t f t o k (p a t h , id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user
to supply a key to be used by the msgget(2), semget(2),
and shmget(2) system calls to obtain interprocess
communication identifiers. One suggested method for
forming a key is to use the ftok subroutine described
below. Another way to compose keys is to include the
project ID in the most significant byte and to use the
remaining portion as a sequence number. There are
many other ways to form keys, but it is necessary for
each system to define standards for forming them. If
some standard is not adhered to, it will be possible for
unrelated processes to unintentionally interfere with each
other's operation. Therefore, it is strongly suggested
that the most significant byte of a key in some sense
refer to a project so that keys do not conflict across a
given system.

Ftok returns a key based on path and id that is usable in
subsequent msgget, semget, and shmget system calls.
Path must be the path name of an existing file that is
accessible to the process. Id is a character which
uniquely identifies a project. Note that ftok will return
the same key for linked files when called with the same
id and that it will return different keys when called with
the same file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key_t) —1 if path does not exist or if it is
not accessible to the process.

WARNING
If the file whose path is passed to ftok is removed when
keys still refer to the file, future calls to ftok with the
same path and id will return an error. If the same file is
recreated, then ftok is likely to return a different key
than it did the original time it was called.

STRING (3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strtok - string
operations

SYNOPSIS
^inc lude < s t r i n g . h >
char *strcat (s i , s2)
char *s l , *s2;
char *strncat (s i , s2, n)
char *s l , *s2;
int n;
int s trcmp (s i , s2)
char *s l , *s2;
int s t rncmp (s i , s2, n)
char * s l , *s2;
int n;
char *strcpy (s i , s2)
char *s l , *s2;
char * s trncpy (s i , s2, n)
char *s l , *s2;
int n;
int strlen (s)
char *s;
char *strchr (s, c)
char *s;
int c;
char *strrchr (s, c)
char *s;
int c;
char *strpbrk (s i , s2)
char *s l , *s2;
int s trspn (s i , s2)
char *s l , *s2;
int s trcspn (s i , s2)
char *s l , *s2;
char *strtok (s i , s2)
char *s l , *s2;

DESCRIPTION
The arguments si, s2 and s point to strings (arrays of
characters terminated by a null character). The
functions strcat, strncat, strcpy and strncpy all alter si.
These functions do not check for overflow of the array
pointed to by si.

- 1 -

STRING (3C)

Strcat appends a copy of string s2 to the end of string
si. Strncat appends at most n characters. Each returns
a pointer to the null-terminated result.
Strcmp compares its arguments and returns an integer
less than, equal to, or greater than 0, according as si is
lexicographically less than, equal to, or greater than s2.
Strncmp makes the same comparison but looks at at
most n characters.
Strcpy copies string sS to si, stopping after the null
character has been copied. Strncpy copies exactly n
characters, truncating s2 or adding null characters to si
if necessary. The result will not be null-terminated if
the length of s2 is n or more. Each function returns si.
Strlen returns the number of characters in s, not
including the terminating null character.
Strchr (strrchr) returns a pointer to the first (last)
occurrence of character c in string s, or a NULL pointer
if c does not occur in the string. The null character
terminating a string is considered to be part of the
string.
Strpbrk returns a pointer to the first occurrence in string
si of any character from string s2, or a NULL pointer if
no character from s2 exists in si.
Strspn (strcspn) returns the length of the initial segment
of string si which consists entirely of characters from
(not from) string s2.
Strtok considers the string si to consist of a sequence of
zero or more text tokens separated by spans of one or
more characters from the separator string s2. The first
call (with pointer s i specified) returns a pointer to the
first character of the first token, and will have written a
null character into si immediately following the
returned token. The function keeps track of its position
in the string between separate calls, so that subsequent
calls (which must be made with the first argument a
NULL pointer) will work through the string si
immediately following that token. In this way
subsequent calls will work through the string si until no
tokens remain. The separator string s2 may be different
from call to call. When no token remains in si, a NULL
pointer is returned.

N O T E
For user convenience, all these functions are declared in
the optional <string.h> header file.

- 2 -

STRING (3C)

BUGS
Strcmp and strncmp use native character comparison,
which is signed on Convergent Technologies 68000-
family processors. This means that characters are 8-bit
signed values; all ASCII characters have values of at
least 0; non-ASCII are negative. On some machines, all
characters are positive. Thus programs that only
compare ASCII values are portable; programs that
compare ASCII with non-ASCII values are not.
Character movement is performed differently in different
implementations. Thus, overlapping moves may yield
surprises.

- 3 -

STRTOD(3C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double s t r t o d (str, p tr)
char *str, **ptr;
double a to f (str)
char *str;

DESCRIPTION
Strtod returns as a double-precision floating-point
number the value represented by the character string
pointed to by str. The string is scanned up to the first
unrecognized character.
Strtod recognizes an optional string of "white-space"
characters (as defined by isspace in ctype(3C)), then an
optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E
followed by an optional sign or space, followed by an
integer.
If the value of ptr is not (char **)NULL, a pointer to the
character terminating the scan is returned in the location
pointed to by ptr. If no number can be formed, *ptr is
set to str, and zero is returned.
Atof(str) is equivalent to strtodfstr, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE is
returned (according to the sign of the value), and errno
i s s e t t o E R A N G E .
If the correct value would cause underflow, zero is
returned and errno is set to E R A N G E .

- 1 -

STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, •*ptr;
int base;
long atol (str)
char *str;
int atoi (str)
char *str;

DESCRIPTION
Strtol returns as a long integer the value represented by
the character string pointed to by str. The string is
scanned up to the first character inconsistent with the
base. Leading "white-space" characters (as defined by
isspace in ctype(ZG)) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the
character terminating the scan is returned in the location
pointed to by ptr. If no integer can be formed, that
location is set to str, and zero is returned.
If base is positive (and not greater than 36), it is used as
the base for conversion. After an optional leading sign,
leading zeros are ignored, and "Ox" or "OX" is ignored if
base is 16.
If base is zero, the string itself determines the base
thusly: After an optional leading sign a leading zero
indicates octal conversion, and a leading "Ox" or "OX"
hexadecimal conversion. Otherwise, decimal conversion
is used.
Truncation from long to int can, of course, take place
upon assignment or by an explicit cast.
Atol(str) is equivalent to strtolfstr, (char **)NULL, 10).
Atoi(str) is equivalent to (int) strtolfstr, (char **)NULL,
10).

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

BUGS
Overflow conditions are ignored.

- 1 -

S W A B (3 C)

NAME
swab - swap bytes

SYNOPSIS
void s w a b (from, to , nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the
array pointed to by to, exchanging adjacent even and
odd bytes. It is useful for carrying binary data between
PDP-lls and other machines. Nbytes should be even and
non-negative. If nbytes is odd and positive swab uses
nbytes-1 instead. If nbytes is negative, swab does
nothing.

- 1 -

S Y S T E M (3 S)

NAME
system - issue a shell command

SYNOPSIS
i n c l u d e < s t d i o . h >
int s y s t e m (string)
char 's tr ing;

DESCRIPTION
System causes the string to be given to «A(l) as input,
as if the string had been typed as a command at a
terminal. The current process waits until the shell has
completed, then returns the exit status of the shell.

FILES
/bin/sh

SEE ALSO
sh(l), exec(2).

DIAGNOSTICS
System forks to create a child process that in turn exec's
/ b i n / s h in order to execute string. If the fork or exec
fails, system returns a negative value and sets errno.

T E R M C A P (3 X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs -
terminal independent operations

SYNOPSIS
char P C ;
char *BC;
char *UP;
s h o r t ospeed;
t g e t e n t (bp, name)
char *bp, •name;
tge tnum(id)
char *id;
tge t f lag(id)
char *id;
char *
tgets tr (id , area)
char *id, **area;
char *
t g o t o (c m s t r , destcol , destl ine)
char *cmstr;
tputs (cp , a f fcnt , outc)
register char *cp;
int af fcnt;
int (*outc)();

DESCRIPTION
These functions extract and use information from
terminal descriptions that follow the conventions in
termcap(4). The functions only do basic screen
manipulation: they find and output specified terminal
function strings and interpret the c m string. Curses(3X)
describes a screen updating package built on termcap.
Tgetent finds and copies a terminal description. Name is
the name of the description; bp points to a buffer to hold
the description. Tgetent passes bp to the other termcap
functions; the buffer must remain allocated until the
program is done with the termcap functions.
Tgetent uses the T E R M and T E R M C A P environment
variables to locate the terminal description.
• If T E R M C A P isn't set or is empty, tgetent

searches for name in /etc/termcap.
• If T E R M C A P contains the full pathname of a

file (any string that begins with /), tgetent
searches for name in that file.

- 1 -

T E R M C A P (3 X)

• If T E R M C A P contains any string that does
not begin with / and T E R M is not set or
matches name, tgetent copies the T E R M C A P
string.

• If T E R M C A P contains any string that does
not begin with / and T E R M does not match
name, tgetent searches for name in
/etc/termcap.

Tgetent returns - 1 if it couldn't open the terminal
capability file, 0 if it couldn't find an entry for name,
and 1 upon success.
Tgetnum returns the value of the numeric capability
whose name is id. It returns - 1 if the terminal lacks the
specified capability or it is not a numeric capability.
Tgetfiag returns 1 if the terminal has boolean capability
whose name is id, 0 if it does not or it is not a boolean
capability.
Tgetstr copies and interprets the value of the string
capability named by id. Tgetstr expands instances in
the string of \ and \ It leaves the expanded string in
the buffer indirectly pointed to by area and leaves the
buffer's direct pointer pointing to the end of the
expanded string; for example,

tgetstr("cl", &ptr);

where ptr is a character pointer — not an array name!
Tgetstr returns a (direct) pointer to the beginning of the
string.
Tgoto interprets the % escapes in a cm string. It
returns cmstr with the % sequences changed to the
position indicated by destcol and destline. This function
must have the external variables BC and UP set to the
values of the be and up capabilities; if the terminal
lacks the capability, set the external variable to null. If
tgoto can't interpret all the % sequences in cm, it
returns "OOPS"
Tgoto avoids producing characters that might be
misinterpreted by the terminal interface. If expanding a
% sequence would produce a null, control-d, or null, the
function will, if possible, send the cursor to the next line
or column and use BC or UP to move to the correct
location. Note that tgoto does not avoid producing tabs;
a program must turn off the T A B 3 feature of the
terminal interface (termio(7)). This is a good idea
anyway: some terminals use the tab character as a

- 2 -

T E R M C A P (3 X)

nondestructive space.
Tputs directs the output of a string returned by tgetstr
or tgoto. This function must have the external variable
PC set to the value of the pc capability; if the terminal
lacks the capability, set the external variable to null.
Tputs interprets any delay at the beginning of the string.
Cp is the string to be output; affcnt is the number of
lines affected by the action (1 if "number of lines
affected" doesn't mean anything); and outc points to a
function that takes a single char argument and outputs
it, such as putchar.

FILES
/usr/lib/libtermcap.a library
/etc/termcap data base

SEE ALSO
ex(l), curses(3), termcap(5)

- 3 -

T M P F I L E (3 S)

NAME
tmpfile - create a temporary file

SYNOPSIS
^ inc lude < s t d i o . h >
FILE * tmpfi le ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated
by <mpnam(3S), and returns a corresponding FILE
pointer. If the file cannot be opened, an error message is
printed using perror(3C), and a NULL pointer is
returned. The file will automatically be deleted when
the process using it terminates. The file is opened for
update ("w+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C),
tmpnam(3S).

TMPNAM (3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
^ i n c l u d e < s t d i o . h >
char * t m p n a m (s)
char *s;
char * t e m p n a m (dir, pfx)
char *dir, *pfx;

DESCRIPTION
These functions generate file names that can safely be
used for a temporary file.
Tmpnam always generates a file name using the path-
prefix defined as P _ t m p d i r in the <stdio.h> header
file. If a is NULL, tmpnam leaves its result in an internal
static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If
a is not NULL, it is assumed to be the address of an
array of at least L t m p n a m bytes, where L _ t m p n a m
is a constant defined in <«<rf»o.A>; tmpnam places its
result in that array and returns a.

Tempnam allows the user to control the choice of a
directory. The argument dir points to the name of the
directory in which the file is to be created. If dir is
NULL or points to a string which is not a name for an
appropriate directory, the path-prefix defined as
P _ t m p d i r in the <stdio.h> header file is used. If that
directory is not accessible, / t m p will be used as a last
resort. This entire sequence can be up-staged by
providing an environment variable TMPDIR in the
user's environment, whose value is the name of the
desired temporary-file directory.
Many applications prefer their temporary files to have
certain favorite initial letter sequences in their names.
Use the pfx argument for this. This argument may be
NULL or point to a string of up to five characters to be
used as the first few characters of the temporary-file
name.
Tempnam uses malloe(3C) to get space for the
constructed file name, and returns a pointer to this area.
Thus, any pointer value returned from tempnam may
serve as an argument to free (see malloc(3C)). If
tempnam cannot return the expected result for any
reason, i.e. malloc(3C) failed, or none of the above
mentioned attempts to find an appropriate directory was
successful, a NULL pointer will be returned.

T M P N A M (3 S)

N O T E S
These functions generate a different file name each time
they are called.
Files created using these functions and either fopeni3S)
or creat(2) are temporary only in the sense that tney
reside in a directory intended for temporary use, and
their names are unique. It is the user's responsibility to
use unlink (2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C),
tmpfile(3S).

BUGS
If called more than 17,576 times in a single process, these
functions will start recycling previously used names.
Between the time a file name is created and the file is
opened, it is possible for some other process to create a
file with the same name. This can never happen if that
other process is using these functions or mktemp, and the
file names are chosen so as to render duplication by
other means unlikely.

- 2 -

TRIG (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric
functions

SYNOPSIS
^ inc lude < m a t h . h >
double sin (x)
double x;
double cos (x)
double x;
double t a n (x)
double x;
double asin (x)
double x;
double acos (x)
double x;
double a tan (x)
double x;
double a tan2 (y, x)
double y , x;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and
tangent of their argument, x, measured in radians.
Asin returns the arcsine of x, in the range —n/2 to 7t/2.

Acos returns the arccosine of a:, in the range 0 to k.
Atan returns the arctangent of x, in the range - t t /2 to
?r/2.
Atan2 returns the arctangent of y/x, in the range -ir to
Tr, using the signs of both arguments to determine the
quadrant of the return value.

DIAGNOSTICS
Sin, cos, and tan lose accuracy when their argument is
far from zero. For arguments sufficiently large, these
functions return zero when there would otherwise be a
complete loss of significance. In this case a message
indicating TLOSS error is printed on the standard error
output. For less extreme arguments causing partial loss
of significance, a PLOSS error is generated but no
message is printed. In both cases, errno is set to
ERANGE.
If the magnitude of the argument of asin or acos is
greater than one, or if both arguments of atanS are zero,
zero is returned and errno is set to EDOM. In addition,
a message indicating DOMAIN error is printed on the

- 1 -

TRIG (3M)

standard error output.
These error-handling procedures may be changed with
the function matherr(2M).

SEE ALSO
matherr(3M).

- 2 -

T S E A R C H (3 C)

N A M E
tsearch, tfind, tdelete, twalk - manage binary search
trees

SYNOPSIS
^inc lude < s e a r c h . h >
char • t search ((char *) key, (char **) rootp ,
compar)
int (*compar)();
char *tf ind ((char •) key, (char •*) rootp,
compar)
int (*compar)();
char *tdelete ((char *) key, (char **) rootp,
compar)
int (* compar)();
vo id twalk ((char •) root , action)
void (*action)();

DESCRIPTION
Tsearch, tfind, tdelete, and twalk are routines for
manipulating binary search trees. They are generalized
from Knuth (6.2.2) Algorithms T and D. All
comparisons are done with a user-supplied routine. This
routine is called with two arguments, the pointers to the
elements being compared. It returns an integer less
than, equal to, or greater than 0, according to whether
the first argument is to be considered less than, equal to
or greater than the second argument. The comparison
function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the
values being compared.
Tsearch is used to build and access the tree. Key is a
pointer to a datum to be accessed or stored. If there is a
datum in the tree equal to *key (the value pointed to by
key), a pointer to this found datum is returned.
Otherwise, *key is inserted, and a pointer to it returned.
Only pointers are copied, so the calling routine must
store the data. R o o t p points to a variable that points
to the root of the tree. A NULL value for the variable
pointed to by rootp denotes an empty tree; in this case,
the variable will be set to point to the datum which will
be at the root of the new tree.
Like tsearch, tfind will search for a datum in the tree,
returning a pointer to it if found. However, if it is not
found, tfind will return a NULL pointer. The arguments
for tfind are the same as for tsearch.

- 1 -

T S E A R C H (3 C)

Tdelete deletes a node from a binary search tree. The
arguments are the same as for tsearch. The variable
pointed to by roo tp will be changed if the deleted node
was the root of the tree. Tdelete returns a pointer to the
parent of the deleted node, or a NULL pointer if the node
is not found.
Twalk traverses a binary search tree. R o o t is the root
of the tree to be traversed. (Any node in a tree may be
used as the root for a walk below that node.) Action is
the name of a routine to be invoked at each node. This
routine is, in turn, called with three arguments. The
first argument is the address of the node being visited.
The second argument is a value from an enumeration
data type typedef enum { preorder, postorder, endorder,
leaf } VISIT; (defined in the <search.h> header file),
depending on whether this is the first, second or third
time that the node has been visited (during a depth-first,
left-to-right traversal of the tree), or whether the node is
a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

The pointers to the key and the root of the tree should
be of type pointer-to-eiement, and cast to type pointer-
to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast
into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures
containing a pointer to each string and a count of its
length. It then walks the tree, printing out the stored
strings and their lengths in alphabetical order.
#inc lude < s e a r c h . h >
inc lude < s t d i o . h >

s t ruct node {
/ * pointers to these are stored in the tree «/

char *string;
int length;

};
char string_space[10000]; / « space to store strings * /
s t ruc t node nodes[500|; / * nodes to store »/
s t ruc t node *root = NULL;

/ * this points to the root * /

main()
{

char »strptr = s t r ingjspace;
s t ruct node »nodeptr = nodes;

- 2 -

T S E A R C H (3 C)

void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) ! = NULL && i + + < 500) {
/ * set node */
n o d e p t r - > s t r i n g = s t rp t r ;
n o d e p t r - > l e n g t h = str len(strptr) ;
/ * pu t node into the tree » /
(void) tsearch((char *)nodeptr, &root,

node_compare);
/ * ad jus t pointers,

so we don ' t overwrite tree * /
s t rp t r + = n o d e p t r - > l e n g t h + 1;
n o d e p t r + + ;

}
twalk(root , print_node);

}
/ *

This routine compares two nodes, based on an
alphabetical ordering of the string Held.

*/
int
node_compare(nodel , node2)
s t ruct node *nodel , *node2;
{

re turn s t r c m p (n o d e l - > s t r i n g , n o d e 2 - > s t r i n g) ;
}
/*

This routine prints out a node, the first time
twalk encounters it.

void
print_node(node, order, level)
struct node "node;
VISIT order;
int level;
{

if (order = = preorder || order = = leaf) {
(void)printf("string = %20s, length = % d \ n " ,

(*node)- > s t r i ng , (*node)- > leng th) ;

}
}

SEE ALSO
bsearch(3C), hsearch(3C), lsearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not
enough space available to create a new node.
A NULL pointer is returned by tsearch, tfind and tdelete

T S E A R C H (3 C)

if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a
pointer to it. If not, tfind returns NULL, and tsearch
returns a pointer to the inserted item.

WARNINGS
The root argument to twalk is one level of indirection
less than the rootp arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order
in which tree nodes are visited. Tsearch uses preorder,
postorder and endorder to respectively refer to visting a
node before any of its children, after its left child and
before its right, and after both its children. The
alternate nomenclature uses preorder, inorder and
postorder to refer to the same visits, which could result
in some confusion over the meaning of postorder.

BUGS
If the calling function alters the pointer to the root,
results are unpredictable.

- 4 -

T T Y N A M E (3 C)

NAME
tty name, isatty - find name of a terminal

SYNOPSIS
char * t tyname (fildes)
int fildes;
int i satty (fildes)
int Hides;

DESCRIPTION
Ttyname returns a pointer to a string containing the
null-terminated path name of the terminal device
associated with file descriptor fildes.
Isatty returns 1 if fildes is associated with a terminal
device, 0 otherwise.

FILES
/dev/*

DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not
describe a terminal device in directory / d e v .

BUGS
The return value points to static data whose content is
overwritten by each call.

T T Y S L O T (3 C)

N A M E
ttyslot - find the slot in the utmp file of the current
user

SYNOPSIS
int t ty s lo t ()

DESCRIPTION
Ttyslot returns the index of the current user's entry in
the / e t c / u t m p file. This is accomplished by actually
scanning the file / e t c / i n i t t a b for the name of the
terminal associated with the standard input, the
standard output, or the error output (0, 1 or 2).

FILES
/etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered
while searching for the terminal name or if none of the
above file descriptors is associated with a terminal
device.

- 1 -

U N G E T C (3 S)

NAME
ungetc - push character back into input stream

SYNOPSIS
i n c l u d e < s t d i o . h >
int u n g e t c (c, s t ream)
int c;
FILE • s t ream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated
with an input stream. That character, c, will be
returned by the next getc(SS) call on that stream.
Ungetc returns c, and leaves the file stream unchanged.
One character of pushback is guaranteed, provided
something has already been read from the stream and
the stream is actually buffered. In the case that stream
is stdin, one character may be pushed back onto the
buffer without a previous read statement.
If c equals EOF, ungetc does nothing to the buffer and
returns EOF.
Fseek{3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns E O F if it cannot insert the character.

VPRINTF (3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a
varargs argument list

SYNOPSIS
i n c l u d e < s t d i o . h >
i n c l u d e < v a r a r g s . h >
int vprintf (format , ap)
char *format;
va_l ist ap;
int vfprintf (stream, format , ap)
FILE * stream;
char *format;
va_l ist ap;
int vsprintf (s, format , ap)
char *s, *format;
va_l ist ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf,
fprintf, and sprintf respectively, except that instead of
being called with a variable number of arguments, they
are called with an argument list as defined by
varargs(5).

EXAMPLE
The following demonstrates how vfprintf could be used to
write an error routine.
^include < s t d i o . h >
#include < v a r a r g s . h >

/*
* error should be called like
* error(function_name, format, argl , arg2...);
*/

/•VARARGSO*/
void
error(va_alist)
/* Note tha t the function_name and format arguments

* cannot be separately declared because of the
* definition of varargs.

va del
{

va_list args;
char *fmt;

- 1 -

VPRINTF (3S)

va_start(args);
/ * print out name of function causing error */

(void)fprintf(stderr, "ERROR in %s: va_arg(args, char *));
fmt = va_arg(args, char *);

/ * print out remainder of message */
(void)vfprintf(stderr, fmt, args);
va_end(args);
(void)abort();

}
SEE ALSO

printf(3S), varargs(5).

- 2 -

I N T R O (4)

N A M E
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C
s truct declarations for the file formats are given where
applicable. Usually, these structures can be found in the
directories / u s r / i n c l u d e or / u s r / i n c l u d e / s y s .
Entries suffixed by (4N) describe the configuration files
used with the CTIX networking packages. These files
can be manipulated directly (using a text editor) or with
netman(lNM).

SEE ALSO
Internet Protocol Transition Workbook. Menlo Park, CA:
Network Information Center, SRI International, 1982.
CTIX Internetworking Manual.

- 1 -

A . O U T (4)

N A M E
a.out - common assembler and link editor output

SYNOPSIS
^ inc lude < a . o u t . h >

DESCRIPTION
The file name a.out is the output file from the
assembler a«(l) and the link editor /rf(l). Both programs
will make a.out executable if there were no errors in
assembling or linking and no unresolved external
references.
A common object file consists of a file header, a CTIX
system header, a table of section headers, relocation
information, (optional) line numbers, a symbol table, and
a string table. The order is given below.

File header.
CTIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts (line numbers, symbol table and
string table) may be missing if the program was linked
with the — s option of ld(1) or if they were removed by
strip(1). Also note that the relocation information will
be absent if there were no unresolved external references
after linking. The string table exists only if the symbol
table contains symbols with names longer than eight
characters.
The sizes of each section (contained in the header,
discussed below) are in bytes and are even.
When an a .out file is loaded into memory for execution,
three logical segments are set up: the text segment, the
data segment (initialized data followed by uninitialized,
the latter actually being initialized to all O's), and a
stack. The text segment begins at location 0x0000 in the

- 1 -

A . O U T (4)

core image. The header is never loaded, except for
magic 0413 files created with the - F option of W(l). If
the magic number (the first field in the operating system
header) is 407 (octal), it indicates that the text segment
is not to be write-protected or shared, so the data
segment will be contiguous with the text segment. If the
magic number is 410 (octal), the data segment and the
text segment are not writable by the program; if other
processes are executing the same a.out file, the processes
will share a single text segment. Magic number 413
(octal) is the same as 410 (octal), except that 413 (octal)
permits demand paging. Both tne — z and —F options of
the loader ld(1) create a.out files with magic numbers
0413. If the — z option is used, both the text and data
sections of the file are on 1024-byte boundaries. If the
—F option is used, the text and data sections of the file
are contiguous. Loading a single 4096-byte page into
memory requires 4 transfers of 1024 bytes each for — z,
and typically one transfer of 4096 bytes for —F. Thus
a.out files created with —F can load faster and require
less disk space.

The stack begins at the end of memory and grows
towards lower addresses. The stack is automatically
extended as required. The data segment is extended
only as requested by the brk(2) system call.
The value of a word in the text or data portions that is
not a reference to an undefined external symbol is
exactly the value that will appear in memory when the
file is executed. If a word in the text involves a reference
to an undefined external symbol, the storage class of the
symbol-table entry for that word will be marked as an
"external symbol", and the section number will be set to
0. When the file is processed by the link editor and the
external symbol becomes defined, the value of the
symbol will be added to the word in the file.

File Header
The format of the filehdr header is

- 2 -

A . 0 U T (4)

struct filehdr

{
unsigned short f_magic; magic number */
unsigned short f_nscns; b number of sections * /
long f_timdat; /* time and date stamp * /
long f_symptr; / • file ptr to symtab »/
long f_nsyms; I* # symtab entries */
unsigned short f_opthdr; /• sizeof(opt hdr) * /
unsigned short f_flags; /• flags »/

};
CTIX System Header

The format of the CTIX system header is
typedef struct aouthdr
{

/» magic number » /
/« version stamp */
/« text size in bytes, padded » /
/» initialized data (.data) * /
/ * uninitialized data (.bss) */
/ * entry point * /
/» base of text used for this file • /

base of data used for this file * /

short magic;
short vstamp;
long tsize;
long dsize;
long bsize;
long entry;
long text_start
long data_start; /

} AOUTHDR;

Section Header
The format of the section header is
struct senhdr
{

char s_name[SYMNMLEN];/* section name * /
long s_paddr; / * physical address */
long s_vaddr; / * virtual address * /
long s_size; / * section size * /
long s_scnptr; / * file ptr to raw data * /
long s_relptr; /» file ptr to relocation */
long s_lnnoptr; / * file ptr to line numbers * /
unsigned short s_nreloc; / * # reloc entries * /
unsigned short s_nlnno; / * # line number entries */
long s_flags; / » flags » /

- 3 -

A . O U T (4)

Relocation
Object files have one relocation entry for each
relocatable reference in the text or data. If relocation
information is present, it will be in the following format:
struct reloc
{

long r_vaddr;/» (virtual) address of reference «/
long r_pymndx; /» index into symbol table * /
short r_type; / * relocation type */

};
The start of the relocation information is s_relptr from
the section header. If there is no relocation information,
sjrelptr is 0.

Symbol Table
The format of each symbol in the the symbol table is
#define SYMNMLEN 8
#def ine FILNMLEN 14
#def ine SYMESZ 18 / * the size of a SYMENT */

struct syment
{

union
{

char
struct
{

/» get a symbol name * /

_n_name[SYMNMLEN|; / * name of symbol */

long _n_zeroes;
long _n_offset;

} _n_n;
char *_n_nptr[2|;

}-n;
unsigned long n_value;
short n_scnum;
unsigned short n_type;
char n_sclass;
char n_numaux;

/ * value of symbol */
/* section number * /
/* type and derived type */
/* storage class * /
/* number of aux entries */

#def ine n_name _n._n_name
#def ine n_zeroes _n._n_n._n_zeroes
#def ine n_offset _n._n_n._n_offset
#define n_nptr _n._n_nptr[l]

Some symbols require more information than a single
entry; they are followed by auxiliary entries that are the
same size as a symbol entry. The format follows.

- 4 -

A . O U T (4)

union auxent {
struct {

long x_tagndx;
union {

struct {
unsigned short x_lnno;
unsigned short xjsize;

} x j n s z ;
long x_fsize;

} x_misc;
union {

struct {
long x j n n o p t r ;
long x_endndx;

} x j c n ;
struct {

unsigned short x_dimen[DIMNUM];
} x_ary;

} x_fcnary;
unsigned short x_tvndx;

} x_sym;

struct {
char x_fname[FILNMLEN];

} x j i l e ;

struct {
long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2|;

} x tv;
};
Indexes of symbol table entries begin at zero. The start
of the symbol table is f_aymptr (from the file header)
bytes from the beginning of the file. If the symbol table
is stripped, f_symptr is 0. The string table (if one exists)
begins at f_symptr + (f_nayma * SYMESZ) bytes from
the beginning of the file.

SEE ALSO
as(l), cc(l), ld(l), brk(2), filehdr(4), ldfcn(4), linenum(4),
reloc(4), scnhdr(4), syms(4).

- 5 -

ACCT(4)

NAME
acct - per-process accounting file format

SYNOPSIS
^ i n c l u d e < s y s / a c c t . h >

DESCRIPTION
Files produced as a result of calling acct(2) have records
in the form defined by < s y s / a c c t . h > , whose contents
are:
typedef

s t ruc t acct
{

char
char
ushort
ushort
dev_t
t ime_t
comp_t
comp_t
comp_t
comp_t
comp_t
comp_t
char

};

ushort comp_t; /» "floating point" «/
/« 13-bit fraction, 3-bit exponent »/

ac_flag; / * Accounting flag */
ac_stat; / * Exit s ta tus */
ac_uid; / * Accounting user ID »/
ac_gid; /» Accounting group ID * /
ac_tty; /» control typewriter */
ac_btime; / * Beginning time */
ac_utime; / * acctng user time in clock ticks */
ac_stime; / * acctng system time in clock ticks * /
ac_etime; / * acctng elapsed time in clock ticks «/
ac_mem; / * memory usage in clicks * /
ac_io; / * chars t rnsfrd by read/wr i te » /
ac_rw; /» number of block reads/wri tes */
ac_comm[8]; /« command name »/

extern s t ruct acct acctbuf;
extern struct inode *acctp; / * inode of accounting file */

#de f ine AFORK 01 / * has executed fork, but no exec */
#de f ine ASU 02 / * used super-user privileges »/
#de f ine ACCTF 0300 /* record type: 00 = acct * /

In ac_flag, the AFORK flag is turned on by each fork(2)
and turned off by an ezec(2). The ac_comm field is
inherited from the parent process and is reset by any
exec. Each time the system charges the process with a
clock tick, it also adds to acjmem the current process
size, computed as follows:

(data size) + (text size) / (number of in-core
processes using text)

The value of ac_mem / (ac_stime + ac_utime) can be
viewed as an approximation to the the resident-set size
(or mean process size), defined as the total number of
pages in memory. Note that this differs from the UNIX

- 1 -

A C C T (4)

System V formula, which is based on the current process
size; such a formula is inappropriate to a paging
environment.
The structure tacct .h, which resides with the source files
of the accounting commands, represents the total
accounting format used by the various accounting
commands:
/•
* total accounting (for acct period), also for day
• /

struct tacct {
uid_t ta_uid; / * userid * /
char ta_name[8j; / * login name * /
float ta_cpu[2|; j* cum. cpu time, p /np (mins) * /
float ta_kcore|2|; / * cum kcore-minutes, p /np » /
float ta_con(2]; / * cum. connect time, p/np, mins * /
float ta_du; / * cum. disk usage * /
long ta_pc; / * count of processes * /
unsigned short ta_sc; / * count of login sessions » /
unsigned short ta_dc; / * count of disk samples * /
unsigned short ta fee;/« fee for special services * /

};
SEE ALSO

acct(lM), acctcom(l), acct(2), exec(2), fork(2).
BUGS

The ac_mem value for a short-lived command gives little
information about the actual size of the command,
because ac_mem may be incremented while a different
command (e.g., the shell) is being executed by the
process.

A R (4)

NAME
ar - common archive file format

DESCRIPTION
The archive command ar(l) is used to combine several
files into one. Archives are used mainly as libraries to be
searched by the link editor ld(1).
Each archive begins with the archive magic string.

#define ARMAG " ! < a r c h > \ n "
/* magic string */

#define SARMAG 8
/* length of magic string */

Each archive which contains common object files (see
a.out(4)) includes an archive symbol table. This symbol
table is used by the link editor ld(1) to determine which
archive members must be loaded during the link edit
process. The archive symbol table (if it exists) is always
the first file in the archive (but is never listed) and is
automatically created and/or updated by ar.
Following the archive magic string are the archive file
members. Each file member is preceded by a file
member header which is of the following format:

#def ine ARFMAG " \ n " / * header trailer string » /

/ * file member header */

/» '/' terminated file member name »/
/« file member date * /
/» file member user identification */
/ * file member group identification */
/ * file member mode (octal) */
/ * file member size «/
/ * header trailer string » /

struct ar hdr
{

char ar_name[l6|;
char ar_date[12|;
char ar_uid(6];
char ar_gid|6];
char ar_mode[8|;
char ar_size|lO|;
char ar_fmag[2|;

};
All information in the file member headers is in printable
ASCII. The numeric information contained in the
headers is stored as decimal numbers (except for
ar_mode which is in octal). Thus, if the archive contains
printable files, the archive itself is printable.
The ar_name field is blank-padded and slash (/)
terminated. The ar_date field is the modification date
of the file at the time of its insertion into the archive.
Common format archives can be moved from system to

- 1 -

AR(4)

system as long as the portable archive command ar(l) is
used. Conversion tools such as arev(l) and convert(l)
exist to aid in the transportation of non-common format
archives to this format.
Each archive file member begins on an even byte
boundary; a newline is inserted between files if
necessary. Nevertheless the size given reflects the actual
size of the file exclusive of padding.
Notice there is no provision for empty areas in an
archive file.
If the archive symbol table exists, the first file in the
archive has a zero length name (i.e., ar_name[0] = =
'/'). The contents of this file are as follows:
• The number of symbols. Length: 4 bytes.
• The array of offsets into the archive file.

Length: 4 bytes * "the number of symbols".
• The name string table. Length: ar_size - (4

bytes * ("the number of symbols" -I- 1)).
The number of symbols and the array of offsets are
managed with agetl and aputl. The string table contains
exactly as many null terminated strings as there are
elements in the offsets array. Each offset from the array
is associated with the corresponding name from the
string table (in order). The names in the string table are
all the defined global symbols found in the common
object files in the archive. Each offset is the location of
the archive header for the associated symbol.

SEE ALSO
ar(l), arcv(l), convert(l), ld(l), strip(l), sputl(3X),
a.out(4).

BUGS
Strip(1) will remove all archive symbol entries from the
header. The archive symbol entries must be restored via
the t s option of the ar(1) command before the archive
can be used with the link editor /</(!).

- 2 -

CHECKLISTS)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory / e t c and contains a list of
at most 15 special file names. Each special file name is
contained on a separate line and corresponds to a file
system. Each file system will then be automatically
processed by the /scA:(lM) command.

SEE ALSO
fsck(lM).

- 1 -

C O R E (4)

NAME
core - format of core image file

DESCRIPTION
CTIX writes out a core image of a terminated process
when any of various errors occur. See signal(2) for the
list of reasons; the most common are memory violations,
illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in
the process's working directory (provided it can be;
normal access controls apply). A process with an
effective user ID different from the real user ID will not
produce a core image.
The first section of the core image is a copy of the
system's per-user data for the process, including the
registers as they were at the time of the fault. The size
of this section depends on the parameter USIZE, which
is defined in / u s r / i n c l u d e / s y s / p a g e . h . The
remainder represents the actual contents of the user's
core area when the core image was written. If the text
segment is read-only and shared, or separated from data
space, it is not dumped.
The format of the information in the first section is
described by the user structure of the system, defined in
/ u s r / i n c l u d e / s y s / u s e r . h . The important stuff not
detailed therein is the locations of the registers, which
are outlined in / u s r / i n c l u d e / s y s / r e g . h .

SEE ALSO
crash(lM), sdb(l), setuid(2), signal(2).

- 1 -

CPIO (4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the - c option of cpu>(l) is
not used, is:
struct {

short h_magic,
h_dev;

ushort h_ino,
h_mode,
h_uid,
h_gid;

short h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];
} Hdr;
When the —c option is used, the header information is
described by:
sscanf(Chdr,
' %6o%6o%6o%6o%6o%6o%6o%6o% 1 llo%6o% 1 llo%s",

&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino,
&Hdr.h_mode, &Hdr.h_uid, &Hdr.h_gid,
&Hdr.h_nlink, &Hdr.h_rdev, ^Longtime,
&Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime
and Hdr.h_filesize, respectively. The contents of each
file are recorded in an element of the array of varying
length structures, archive, together with other items
describing the file. Every instance of h_magic contains
the constant 070707 (octal). The items h_dev through
h_mtime have meanings explained in «<at(2). The length
of the null-terminated path name h_name, including the
null byte, is given by h_namesize.
The last record of the archive always contains the name
TRAILER!!!. Special files, directories, and the trailer are
recorded with h_filesize equal to zero.

SEE ALSO
cpio(l), find(I), stat(2).

- I -

C P R O F I L E (4)

NAME
cprofile - setting up a C shell environment at login time

DESCRIPTION
cprofile is for use with e«A(l). For every user of csh the
system file / e t c / c p r o f i l e is executed immediately upon
login. If the user's login directory contains a file named
.cshrc, that file will then be executed, followed by
commands from the .login file.
The following example is typical for a user's .cshrc file:

setenv PATH :$PATH:$HOME/bin
setenv MAIL /usr/mail/myname
setenv TERM pt
umask 022

The system file / e t c / c p r o f i l e can be customized to set
the TERM environment variable via tset(1) and to
automatically invoke twn(l) on RS-422 terminals.
For further information about setting variables, see
e«A(l) and «A(l).

FILES
$HOME/.login
$HOME/.cshrc
SHOME/.logout
/etc/cprofile

SEE ALSO
csh(l), cprofile(4), env(l), login(l), mail(l), sh(l), stty(l),
sufl), tset(l), wm(l), ttytype(4), environ(5), term(5).
MigntyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

D I R (4)

NAME
dir - format of directories

SYNOPSIS
^ inc lude < s y s / d i r . h >

DESCRIPTION
A directory behaves exactly like an ordinary file, save
that no user may write into a directory. The fact that a
file is a directory is indicated by a bit in the flag word of
its i-node entry (see /«(4)). The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ14
#endif
struct direct

ino_t d_ino;
char d_name[DIRSIZl;

};
By convention, the first two entries in each directory are
for . and . . . The first is an entry for the directory itself.
The second is for the parent directory. The meaning of
. . is modified for the root directory of the master file
system; there is no parent, so . • has the same meaning
as ..

SEE ALSO
fs(4).

- 1 -

ERRFILE(4)

NAME
errfile - error-log file format

SYNOPSIS
include < s y s / e r e c . h >

DESCRIPTION
When hardware errors are detected by the system, an
error record is generated and passed to the error-logging
daemon for recording in the error log for later analysis.
The default error log is / u s r / a d m / e r r f i l e .
The format of an error record depends on the type of
error that was encountered. Every record, however, has
a header with the following format:
struct errhdr {

short e_type; /* record type */
short e_len; /* bytes in record (inc hdr) */
time_t e_time; /* time of day */

}>
The permissible record types are as follows:
#def ine E.GOTS 010 /* start */
#def ine E_STOP 012 /• stop * /
#def ine E_TCHG 013 /• time change » /
#def ine E_CCHG 014 /• configuration change * /
#def ine E_BLK 020 /• block device error * /
#def ine E_STRAY 030 /* stray interrupt * /
#def ine E_PRTY 031 /* memory parity * /
#def ine E_BUSFLT 032 /* bus fault «/
#def ine E_CONS 040 /* console string » /
#def ine E_CONR 041 /* console record */
#def ine E.CONO 042 /• console overflow */
#def ine E_SERIAL 043 /• serial device driver error * /

Some records in the error file are of an administrative
nature. These include the startup record that is entered
into the file when logging is activated, the stop record
that is written if the daemon is terminated "gracefully",
and the time-change record that is used to account for
changes in the system's time-of-day. These records have
the following formats:

E R R F I L E (4)

struct est art {
short e_cpu; / » CPU type * /
struct utsname e_name; / * system names * /
short e_mmr3; / » boot reason from CDT * /
long e_syssize; / » system memory size * /
int e_fhole; / » 64K chunks of memory omitted * /
short e_bconf; / * block dev configuration «/
char e_panic; / » if reboot from panic, what was it * /

};
#def ine eend errhdr / * record header » /

struct etimchg {
t ime_t e_ntime; / * new time »/

};
Stray interrupts cause a record with the following format
to be logged:
struct estray {

physadr e_saddr; / * stray loc or device addr * /
short e_sbacty; / * active block devices » /

};
Memory subsystem error causes the following record to
be generated:
For MiniFramt systems:
struct eparity {

ushort e_gsr; / * general status register * /
ushort e_pte; / * pte for virtual address in BSR * /

};
For MightyFrame systems:
struct eparity {

uint e_gsr; j* general status register * /
};
Error records for block devices have the following
format:

- 2 -

E R R F I L E (4)

struct eblock {
dev_t e_dev;
physadr e_regloc;
short e_bacty;
struct iostat {

long io_ops;
long io_misc;
ushort io_unlog;

} e_ptats;
short e_bflags;
short e_trkoff;
daddr_t e_bnum;
ushort e_bytes;

/ • "true" major + minor dev no * /
/ * controller address « /
/ » other block I/O activity « /

/ * number read/writes * /
/ » number "other" operations « /
/ » number unlogged errors * /

/ » read/write, error, etc » /
/ * logical dev start trk *j
/ * logical block number « /
/ * number bytes to transfer » /

paddr_t e_memadd;/» buffer memory address » /
ushort e_rtry; / * number retries * /
short e_nreg; / * number device registers * /
short e_trks / * number of heads * /
short e_^ecs / » number of physical sectors per track */
short e ctlr / * controller type * /

};
The following values are used in the e_bflags word:
#define E_WRITE
#define EJREAD
#define E_NOIO
define EJ>HYS
#define E_MAP
#define E_ERROR
The error types

0 /* write operation */
1 /* read operation */
02 /* no I/O pending »/
04 /* physical I/O */
010 /* Unibus map in use */
020 /* I/O failed */

CONS and CONO are flagged by
errdemon(1M) and errdead and written to the console
log /etc/log/confile.

A bus fault generates the following record.

struct
short
caddrj
uint
ushort
ushort
uint
uint
uint

ebusflt {
e_type;
e_vaddr
e_bsrJ
e pte;
e_pid;
e_pc;
e_rps;
e_regs[l6];

f :
kind of fault */
virtual address of fault * /
combined bsrO and bsrl */
page frame of fault */
pid */
PC at time of fault * /

/* RPS at time of fault */
/* all the registers */

};
A serial driver error generates the following reports:
struct eserial { ushort e_type

ushort e dev
/* type of error */
/* which physical port */

- 3 -

ERRFILE (4)

SEE

};
The following types exist for e_type:
#define ECHLOS 0x1
#define ERXORUN 0x2
#define ENOCLIST 0x4
#define ENORBUF 0x8

ALSO
errdemon(lM).

/ * character lost in input FIFO */
/ * receiver overrun • /
/ * no new clist available */
/ • n o receive buffer available */

- 4 -

FILEHDR (4)

NAME
filehdr - file header for common object files

/*
I*
/*
/*

magic number */
number of sections */
time & date stamp */
file ptr to symtab */
symtab entries */
sizeof(opt hdr) */
flags * /

S Y N O P S I S
^ i n c l u d e < f i l e h d r . h >

D E S C R I P T I O N
Every common object file begins with a 20-byte header.
The following C s t ruc t declaration is used:
struct filehdr

unsigned short f_magic;
unsigned short f_nscns;
long f_timdat;
long f_symptr;
long f_nsyms;
unsigned short f_opthdr;
unsigned short f_flags;

};
F_symptr is the byte offset into the file at which the
symbol table can be found. Its value can be used as the
offset in fseek(3S) to position an I/O stream to the
symbol table. The operating system optional header is
always 36 bytes. The valid magic numbers are given
below.
#define MC68KWRMAGIC 0520

/* writeable text segments */
#defme MC68KROMAGIC 0521

/* readonly shareable text segments */
#defme MC68KPGMAGIC 0522

/* demand paged text segments */

The value in f_timdat is obtained from the time(2)
system call.
Flag bits currently defined are:
#define F_RELFLG 00001

/* relocation entries stripped */
00002
/* file is executable */
00004
/* line numbers stripped */
00010
/* local symbols stripped */
00020
/* minimal object file */
00040
/* update file, ogen produced */
00100

#define F_EXEC

#define F_LNNO

#defineF_LSYMS

#define F_MINMAL

#define F_UPDATE

#define F_SWABD

- 1 -

FILEHDR (4)

/* file is "pre-swabbed" */
#define F_AR32W 01000

/* non-DEC host,
including Convergent
Technologies systems */

#define F_PATCH 02000
/* "patch" list in opt hdr */

The CPU type is encoded in bits 04000 and 010000. The
FPU (floating-point unit) type is encoded in bits
0100000, 040000, and 020000. Macros are defined to set
and extract the CPU and FPU values as follows:

SETFPUfflag, value)
SETCPU(flag, value)
GETFPU(flag)
GETCPU(flag)

Value values for CPU are:

#defineF M68010 0
#define F_M68020 1

Valid values for FPU are:

#define F_NOFPU 0
#defineF_SOFT 1
#defineF_M68881 2
#define F_SKY 4

SEE ALSO
time(2), fseek(3S), a.out(4).

FS(4)

NAME
fs - file system format

SYNOPSIS
inc lude < s y s / f i l s y s . h >
i n c l u d e < s y s / t y p e s . h >
^inc lude < s y s / p a r a m . h >
^inc lude < s y s / f i l b i t m a p . h >

DESCRIPTION
Every file system storage volume has a common format
for certain vital information. Every such volume is
divided into a certain number of 512-byte long sectors.
Sector 0 is unused and is available to contain a bootstrap
program or other information.
Sector 1 is the super-block. The format of a super-block
is:
/*
* Structure of the super-block

struct filsys
{

ushort s. jsize; / * size in blocks of i-list * /
daddr_t s. .fsize; j * size in blocks of entire volume */
short s. .nfree; / * number of addresses in s_free */
daddr_t s. _free|NICFREE]; / » free block list * /
short s. .ninode; / * number of i-nodes in s_inode *l
ino_t s. _inode[NICINOD|; / * free i-node list * /
char s. .flock; / » lock during free list manipulation * /
char s. j lock; / * lock during i-list manipulation »/
char s. _fmod; / * super block modified flag * /
char s. _ronly; / * mounted read-only flag * /
time_t s. .time; / * last super block update * /
short s. _dinfo[4(; / * device information * /
daddr_t s. .tfree; / * total free blocks*/
ino_t s. .tinode; /» total free i-nodes * /
char s. _fname(6|; / * file system name */
char s. _fpack|6]; / * file system pack name */
sema_t s. .semflock;
sema_t s. _semilock;
long s. _file[l|;
short s. .fills; / * more adjust « /
short s. _bucnum; /» Bucket currently in use * /
daddr_t s. _buckets[2|; /» addresses of buckets for bitmap */
daddr_t s. .bitmap [2]; / * address of free bitmap */
char s. _fsbitmap; / * if set, file system has

a valid bitmap */
char s. .fsok; / * if set then file system clean */
short s. .0112(3]; /» used to be used by pilf * /

- 1 -

F S (4)

long s_magic; / *

long s_type; / *
long s_fill3[2|; / *

magic number to denote new
file system */

type of new file system * /
final ADMUSTMENT so

sizeof filsys is 512 * /

#de f ine FsMAGIC 0xfdl87e20 / * s_magic number * /
#de f ine F s l b 1 / * 512 byte block */
#def ine Fs2b 2 / * 1024 byte block */

CTIX recognizes two kinds of file systems, specified by

• Oriented to 512-byte I/O. Identified by an
s_type equal to F s l b . This type is also assumed
if s_magic is not equal to F s M A G I C . (This
type was originally the only type supported by
UNIX Systems; CTIX does not support this type.)

• Oriented to 1024-byte I/O. Identified by an
s_type equal to Fs2b. This is essentially the
standard file system for CTIX and UNIX System
V.

In the following description, the size of a logical block is
determined by the file system type. For the original
512-byte oriented file system, a block is 512 bytes. For
the 1024-byte oriented file system a block is 1024 bytes
or two sectors. The operating system takes care of all
conversions from logical block numbers to physical sector
numbers.
S_isize is the address of the first data block after the i-
list; the i-list starts just after the super-block, namely in
block 2; thus the i-list is a_taize-2 blocks long. S_Jsize
is the first block not potentially available for allocation
to a file. These numbers are used by the system to
check for bad block numbers; if an "impossible" block
number is allocated from the free list or is freed, a
diagnostic is written on the on-line console. Moreover,
the free array is cleared, so as to prevent further
allocation from a presumably corrupted free list.
The free list for each volume is maintained as follows.
The a_free array contains, in a /rcc [l], . . .,
a_free[a n /ree- l] , up to 49 numbers of free blocks.
S_free\0\ is the block number of the head of a chain of
blocks constituting the free list. The first long in each
free-chain block is the number (up to 50) of free-block
numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the

- 2 -

F S (4)

next member of the chain. To allocate a block:
decrement s_nfree, and the new block is s _ f r e e [s_nfree].
If the new block number is 0, no blocks remain, so give
an error. If s_nfree became 0, read in the block named
by the new block number, replace s_nfree by its first
word, and copy the block numbers in the next 50 longs
into the s_Jree array. To free a block, check if s_nfree
is 50; if so, copy s_nfree and the s_fret array into it,
write it out, and set s_nfree to 0. In any event set
s_free[s_nfree] to the freed block's number and
increment s_nfree.
S_tfree is the total free blocks available in the file
system.
S_ninodc is the number of free i-numbers in the s_inode
array. To allocate an i-node: if s_ninode is greater than
0, decrement it and return s_inode [s_ninode]. If it was
0, read the i-list and place the numbers of all free i-nodes
up to 100) into the s_inode array, then try again. To
ree an i-node, provided s_ninode is less than 100, place

its number into s_inode [s_ninode] and increment
s_ninode. If s_ninode is already 100, do not bother to
enter the freed i-node into any table. This list of i-nodes
is only to speed up the allocation process; the
information as to whether the i-node is really free or not
is maintained in the i-node itself.
S_tinode is the total free i-nodes available in the file
system.
S_flock and s_ilock are flags maintained in the core copy
of the file system while it is mounted and their values on
disk are immaterial. The value of s_fmod on disk is
likewise immaterial; it is used as a flag to indicate that
the super-block has changed and should be copied to the
disk during the next periodic update of file system
information.
S_ronly is a read-only flag to indicate write-protection.
S_time is the last time the super-block of the file system
was changed, and is the number of seconds that have
elapsed since 00:00 Jan. 1, 1970 (GMT). During a reboot,
the s_time of the super-block for the root file system is
used to set the system's idea of the time.
S_Jname is the name of the file system and s_fpack is
the name of the pack.
I-numbers begin at 1, and the storage for i-nodes begins
in block 2. Also, i-nodes are 64 bytes long. I-node 1 is
reserved for future use. I-node 2 is reserved for the root
directory of the file system, but no other i-number has a

- 3 -

F S (4)

built-in meaning. Each i-node represents one file. For
the format of an i-node and its flags, see tnode(4).
The s_fsok flag indicates that the file system was
unmounted after the last use, or that fsck was run
successfully. The a_Jsbitmap flag indicates that the file
system has a valid bitmap describing a number of blocks
that are omitted from the free list; these blocks are
placed on the bitmap (filbitmap.h). If both flags are
set, CTEX uses the bitmap; otherwise the old free list is
used and any blocks that were in the bitmap (not on the
free list) will be lost until fsck is run.

s_buckets and s_bitmap are the disk addresses of the
filbitmap structure; each address is for a 1024-byte logical
block.
All allocations of blocks are made from the bitmap. If a
block being deallocated is in the section of the disk
represented by s_bucknum, it is put in the bitmap. If
the block is not in the area represented by the bitmap, it
is put on the free list.
The format of the file system bitmap and bucket list is:

struct filbitmap {
/* list of buckets describing the free list */
ushort fb_buckets[l024];
/* bitmap describing free blocks no on the free list */
long fb_bitmap[512];

}»
FILES

/usr / include / sys / filsys.h
/usr/include/sys/stat.h
/ usr/include/sys / filbitmap.h

SEE ALSO
fsck(lM), fsdb(lM), mkfs(lM), inode(4).

- 4 -

FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on CTIX
with non-standard tabs, (i.e., tabs which are not set at
every eighth column). Such files must generally be
converted to a standard format, frequently by replacing
all tabs with the appropriate number of spaces, before
they can be processed by CTIX commands. A format
specification occurring in the first line of a text file
specifies how tabs are to be expanded in the remainder
of the file.
A format specification consists of a sequence of
parameters separated by blanks and surrounded by the
brackets < : and : > . Each parameter consists of a
keyletter, possibly followed immediately by a value. The
following parameters are recognized:

t tabs The t parameter specifies the tab settings
for the file. The value of tabs must be one
of the following:

1. a list of column numbers separated by
commas, indicating tabs set at the
specified columns;

2. a — followed immediately by an
integer n, indicating tabs at intervals
of n columns;

3. a - followed by the name of a
"canned" tab specification.

Standard tabs are specified by t—8, or
equivalently, t l , 9 ,17 ,25 ,e tc . The canned
tabs which are recognized are defined by the
tabs(1) command.

8size The s parameter specifies a maximum line
size. The value of size must be an integer.
Size checking is performed after tabs have
been expanded, but before the margin is
prepended.

mmargin The m parameter specifies a number of
spaces to be prepended to each line. The
value of margin must be an integer.

d The d parameter takes no value. Its
presence indicates that the line containing
the format specification is to be deleted
from the converted file.

FSPEC(4)

e The e parameter takes no value. Its
presence indicates that the current format is
to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not
supplied, are t—8 and mO. If the s parameter is not
specified, no size checking is performed. If the first line
of a file does not contain a format specification, the
above defaults are assumed for the entire file. The
following is an example of a line containing a format
specification:

* < :t5,10,15 s72:> *
If a format specification can be disguised as a comment,
it is not necessary to code the d parameter.
Several CTIX commands correctly interpret the format
specification for a file.

SEE ALSO
ed(l), newform(l), tabs(l).

- 2 -

GETTYDEFS (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The / e t c / g e t t y d e f s file contains information used by
getty(1M) to set up the speed and terminal settings for a
line. It supplies information on what the login prompt
should look like. It also supplies the speed to try next if
the user indicates the current speed is not correct by
typing a <break> character.
Each entry in / e t c / g e t t y d e f s has the following format:

label# initial-flags # final-flags # login-prompt
^next-label

Each entry is followed by a blank line. The various
fields can contain auoted characters of the form \ b , \ n ,
\ c , etc., as well as \nnn, where nnn is the octal value of
the desired character. The various fields are:
label This is the string against which getty tries

to match its second argument. It is often
the speed, such as 1200, at which the
terminal is supposed to run, but it need
not be (see below).

initial-flags These flags are the initial ioctl(2) settings
to which the terminal is to be set if a
terminal type is not specified to getty.
The flags that getty understands are the
same as the ones listed in
/ u s r / i n c l u d e / s y s / t e r m i o . h (see
termio(7)). Normally only the speed flag
is required in the initial-flags. Getty
automatically sets the terminal to raw
input mode and takes care of most of the
other flags. The initial-flag settings
remain in effect until getty executes
/oj»n(l).

final-flags These flags take the same values as the
initial-flags and are set just prior to getty
executes login. The speed flag is again
required. The composite flag SANE
takes care of most of the other flags that
need to be set so that the processor and
terminal are communicating in a rational
fashion. The other two commonly
specified final-flags are TAB3, so that
tabs are sent to the terminal as spaces,
and HUPCL, so that the line is hung up
on the final close.

G E T T Y D E F S (4)

login-prompt This entire field is printed as the login-
prompt. Unlike the above fields where
white space is ignored (a space, tab or
new-line), they are included in the login-
prompt field.

next-label If this entry does not specify the desired
speed, indicated by the user typing a
<break> character, then getty will
search for the entry with next-label as its
label field and set up the terminal for
those settings. Usually, a series of speeds
are linked together in this fashion, into a
closed set; for instance, 2400 linked to
1200, which in turn is linked to 300,
which finally is linked to 2400.

If getty is called without a second argument, then the
first entry of / e t c / B e t t y d e f s is used, thus making the
first entry of / e t c / g e t t y d e f s the default entry. It is
also used if getty can not find the specified label. If
/ e t c / g e t t y d e f s itself is missing, there is one entry built
into the command which will bring up a terminal at
9600 baud.
It is strongly recommended that after making or
modifying / e t c / g e t t y d e f s , it be run through getty with
the check option to be sure there are no errors.

FILES
/etc/gettydefs

SEE ALSO
getty(lM), login(l), ioctl(2), termio(7).

- 2 -

G P S (4)

N A M E
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several
routines have been developed to edit and display GPS
files on various devices. Also, higher level graphics
programs such as plot (in «<a<(lG)) and vtoc (in
<oe(lG)) produce GPS format output files.
A GPS is composed of five types of graphical data or
primitives.

GPS PRIMITIVES
lines The lines primitive has a variable number of

points from which zero or more connected
line segments are produced. The first point
given produces a move to that location. (A
move is a relocation of the graphic cursor
without drawing.) Successive points produce
line segments from the previous point.
Parameters are available to set color, weight,
and style (see below).

arc The arc primitive has a variable number of
points to which a curve is fit. The first point
produces a move to that point. If only two
points are included, a line connecting the
points will result; if three points a circular arc
through the points is drawn; and if more than
three, lines connect the points. (In the
future, a spline will be fit to the points if
they number greater than three.) Parameters
are available to set color, weight, and style.

t ex t The text primitive draws characters. It
requires a single point which locates the
center of the first character to be drawn.
Parameters are color, font, textsize, and
textangle.

hardware
The hardware primitive draws hardware
characters or gives control commands to a
hardware device. A single point locates the
beginning location of the hardware string.

comment A comment is an integer string that is
included in a GPS file but causes nothing to
be displayed. All GPS files begin with a
comment of zero length.

GPS(4)

GPS PARAMETERS
color Color is an integer value set for arc, lines,

and text primitives.
we ight Weight is an integer value set for arc and

lines primitives to indicate line thickness.
The value 0 is narrow weight, 1 is bold, and
2 is medium weight.

s ty le Style is an integer value set for lines and arc
primitives to give one of the five different
line styles that can be drawn on TEKTRONIX
4010 series storage tubes. They are:

0 solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

f o n t An integer value set for text primitives to
designate the text font to be used in drawing
a character string. (Currently font is
expressed as a four-bit weight value followed
by a four-bit style value.)

texts ize Textsize is an integer value used in text
primitives to express the size of the
characters to be drawn. Textsize represents
the height of characters in absolute universe-
units and is stored at one-fifth this value in
the size-orientation (so) word (see below).

textangle Textangle is a signed integer value used in
text primitives to express rotation of the
character string around the beginning point.
Textangle is expressed in degrees from the
positive x-axis and can be a positive or
negative value. It is stored in the size-
orientation («o) word as a value 256/360 of
it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:
lines cw points sw
a r c cw points sw
t e x t cw point sw so [string]
h a r d w a r e cw point [string]
c o m m e n t cw [«<r»nj]
cw Cw is the control word and begins all

primitives. It consists of four bits that
contain a primitive-type code and twelve bits
that contain the word-count for that

- 2 -

GPS (4)

primitive.
point(s) Points) is one or more pairs of integer

coordinates. Text and hardware primitives
only require a single point. Points) are
values within a Cartesian plane or universe
having 64K (-32K to +32K) points on each
axis.

sw Sw is the style-word and is used in lines, arc,
and text primitives. For all three, eight bits
contain color information. In arc and lines
eight bits are divided as four bits weight and
four bits style. In the text primitive eight bits
of sw contain the font.

so So is the size-orientation word used in text
primitives. Eight bits contain text size and
eight bits contain text rotation.

string String is a null-terminated character string.
If the string does not end on a word
boundary, an additional null is added to the
GPS file to insure word-boundary alignment.

SEE ALSO
graphics(lG), stat(lG), toc(lG).

G R O U P (4)

N A M E
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons;
each group is separated from the next by a new-line. If
the password field is null, no password is demanded.
This file resides in directory / e t c . Because of the
encrypted passwords, it can and does have general read
permission and can be used, for example, to map
numerical group ID's to names.

FILES
/etc/group

SEE ALSO
newgrp(l), passwd(l), crypt(3C), passwd(4).

- 1 -

H O S T S (4 N)

NAME
hosts - list of nodes on network

DESCRIPTION
The file / e t c / h o s t s is a list of nodes that share the
network, including the local node. It is referred to by
programs which need to translate between node names
and DARPA Internet addresses. Each line in the file
describes a single node on the network and consists of
three fields separated by any number of blanks or tabs:

address name alias ...
where

address is the DARPA Internet address.
Unless another type of address is
required by some node on the
network, address should be a Class
A address, which takes the form
net.node, where net is the network
number from / e t c / n e t w o r k s (see
networks(4)), which must be betwen
0 and 127; and node is a value
which must be unique for each node
and be between 0 and 16777215.

name is the official name of the node. If
the node is a computer system
running CTIX , it must claim this
node name by executing
setuname (1M) when it is initializing
itself.

aliases... is a list of alternate names for the
node. Aliases can be used in
network commands in place of the
official name.

The routines which search this file ignore comments
(portions of lines beginning with #) and blank lines.
Internet addresses can actually take one of four forms:

A A is a simple 32-bit integer.
A.B A is an eight-bit quantity occupying

the high-order byte and B is a 24-bit
quantity occupying the remaining
bytes. This form is suitable for a
Class A address of the form
net.node.

A.B.C A is an eight-bit quantity occupying
the high-order byte; B is an eight-bit

H O S T S (4 N)

quantity occupying the next byte;
and C is a 16-bit quantiy occupying
the remaining bytes. This form is
suitable for a Class B address of the
form 128.net.node.

EXAMPLE #

1.12
1.10
1.16
1.17

FILES
/etc/hosts

SEE ALSO
networks(4N).
CTIX Internetworking Manual.
For a discussion of network addresses, see "Address
Mappings," R F C 796 in the Internet Protocol Transition
Workbook, March 1982. Network Information Center,
SRI International, Menlo Park, CA 94025.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

A.BC.D The four parts each occupy a byte in
the address.

Engineering network

src net3 # Network Source Machine
test net2 # Network Test Machine
mifa # Software Development
mifb # Hardware Development

- 2 -

INITTAB (4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file is the script to init's role as a general
process dispatcher. The process that constitutes the
majority of init's process dispatching activities is the line
process / e t c / g e t t y that initiates individual terminal
lines. Other processes typically dispatched by init are
daemons and the shell.
The inittab file is composed of entries that are position
dependent and have the following format:

i d: rstate: ac tion: proc ess
Each entry is delimited by a newline, however, a
backslash (\) preceding a newline indicates a
continuation of the entry. Up to 512 characters per
entry are permitted. Comments may be inserted in the
process field using the sh(1) convention for comments.
Comments for lines that spawn gettys are displayed by
the who(l) command. It is expected that they will
contain some information about the line such as the
location. There are no limits (other than maximum
entry size) imposed on the number of entries within the
inittab file. The entry fields are:
id This is one to four characters used to uniquely

identify an entry.
rstate This defines the run-level in which this entry is

to be processed. Run-levels effectively
correspond to a configuration of processes in
the system. That is, each process spawned by
init is assigned a run-level or run-levels in
which it is allowed to exist. The run-levels are
represented by a number ranging from 0
through 6. As an example, if the system is in
run-level 1, only those entries having a 1 in the
rstate field will be processed. When init is
requested to change run-levels, all processes
which do not have an entry in the rstate field
for the target run-level will be sent the warning
signal (SIGTERM) and allowed a 20-second
grace period before being forcibly terminated
by a kill signal (SIGKILL). The rstate field
can define multiple run-levels for a process by
selecting more than one run-level in any
combination from 0—8. If no run-level is
specified, then the process is assumed to be
valid at all run-levels 0—6. Three other values,

INITTAB (4)

a, b and c, can appear in the ratate field, even
though they are not true run-levels. Entries
which have these characters in the ratate field

processed only when the telinit (see
them to be run
run-level of the

run-levels in that

ini<(lM)) process requests
(regardless of the current
system). They differ from
init can never enter run-level a, b or c. Also, a
request for the execution of any of these
processes does not change the current run-level.
Furthermore, a process started by an a, b or c
command is not killed when init changes levels.
They are only killed if their line in
/ e t c / i n i t t a b is marked of f in the action field,
their line is deleted entirely from / e t c / i n i t t a b ,
or init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the
process specified in the proceaa field. The
actions recognized by init are as follows:
r e s p a w n If the process does not exist then

start the process, do not wait for
its termination (continue
scanning the inittab file), and
when it dies restart the process.
If the process currently exists
then do nothing and continue
scanning the inittab file.

w a i t Upon init's entering the run-level
that matches the entry's rstate,
start the process and wait for its
termination. All subsequent
reads of the inittab file while init
is in the same run-level will cause
init to ignore this entry.

once Upon init's entering a run-level
that matches the entry's rstate,
start the process, do not wait for
its termination. When it dies, do
not restart the process. If upon
entering a new run-level, where
the process is still running from a
previous run-level change, the
program will not be restarted.

b o o t The entry is to be processed only
at init's boot-time read of the
inittab file. Init is to start the
process, not wait for its

- 2 -

INITTAB (4)

termination, and when it dies,
not restart the process. In order
for this instruction to be
meaningful, the rstate should be
the default or it must match
init's run-level at boot time.
This action is useful for an
initialization function following a
hardware reboot of the system.

boo twa i t The entry is to be processed only
at init's boot-time read of the
inittab file. Init is to start the
process, wait for its termination
and, when it dies, not restart the
process.

powerfail Execute the process associated
with this entry only when init
receives a power fail signal
(SIGPWR see signal(2)).

powerwai t Execute the process associated
with this entry only when init
receives a power fail signal
(SIGPWR) and wait until it
terminates before continuing any
processing of inittab.

off If the process associated with this
entry is currently running, send
the warning signal (SIGTERM)
and wait 20 seconds before
forcibly terminating the process
via the kill signal (SIGKILL). If
the process is nonexistent, ignore
the entry.

ondemand This instruction is really a
synonym for the respawn action.
It is functionally identical to
respawn but is given a different
keyword in order to divorce its
association with run-levels. This
is used only with the a, b or c
values described in the rstate
field.

initdefault An entry with this action is only
scanned when init initially
invoked. Init uses this entry, if it
exists, to determine which run-

- 3 -

INITTAB (4)

level to enter initially. It does
this by taking the highest run-
level specified in the rs tate field
and using that as its initial state.
If the rstate field is empty, this is
interpreted as 0123456 and so
init will enter run-level 8. Also,
the initdefault entry cannot
specify that init start in the
SINGLE USER state.
Additionally, if init does not find
an initdefault entry in
/ e t c / i n i t t a b , then it will request
an initial run-level from the user
at reboot time.

sysinit Entries of this type are executed
before init tries to access the
console. It is expected that this
entry will be only used to
initialize devices on which init
might try to ask the run-level
question. These entries are
executed and waited for before
continuing.

process This is a sh command to be executed. The
entire process field is prefixed with exec and
passed to a forked sh as sh —c 'exec
command'. For this reason, any legal sh syntax
can appear in the process field. Comments can
be inserted with the ; #comment syntax.

FILES
/etc/inittab

SEE ALSO
getty(lM), init(lM), sh(l), who(l), exec(2), open(2),
signal(2).

- 4 -

INODE(4)

NAME
inode - format of an i-node

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >
^ i n c l u d e < s y s / i n o . h >

DESCRIPTION
An i-node for a plain file or directory in a file system has
the following structure defined by < s y s / i n o . h > .
/ * Inode structure as it appears on a disk block. */
struct
{

dinode

ushort di_mode; / *
short di_nlink; / *
ushort di_uid; / *
ushort di_gid; / *
off_t di_size; /»
char di_addr[40|;
time_t di_atime; /»
time_t di_mtime;/»
time_t di_ctime; / *

/ * disk block addresses */

};
/ *

* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.

* /
For the meaning of the defined types off_t and time_t
see types(5).

FILES
/ usr/include/sys/ino.h

SEE ALSO
stat(2), fs(4), types(5).

ISSUE (4)

NAME
issue - issue identification file

DESCRIPTION
The file / e t c / i s s u e contains the issue or project
identification to be printed as a login prompt. This is an
ASCII file which is read by program getty and then
written to any terminal spawned or respawned from the
/ e t c / i n i t t a b file.

FILES
/etc/issue

SEE ALSO
login(l).

5/86 - 1 -

LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
^ i n c l u d e < s t d i o . h >
^ i n c l u d e < f i l e h d r . h >
i n c l u d e < I d f c n . h >

DESCRIPTION
The common object file access routines are a collection
of functions for reading an object file that is in common
object file form. Although the calling program must
know the detailed structure of the parts of the object file
that it processes, the routines effectively insulate the
calling program from knowledge of the overall structure
of the object file.
The interface between the calling program and the
object file access routines is based on the defined type
LDFILE, defined as s truct Idfile, declared in the header
file ldfcn.h. The primary purpose of this structure is to
provide uniform access to both simple object files and to
object files that are members of an archive file.
The function ldopen(3X) allocates and initializes the
LDFILE structure and returns a pointer to the structure
to the calling program. The fields of the LDFILE
structure may be accessed individually through macros
defined in ldfcn.h and contain the following
information:
LDFILE *ldptr;
TYPE(ldptr) The file magic number, used to

distinguish between archive members
and simple object files.

OPTR(ldptr) The file pointer returned by fopen and
used by the standard input/output
functions.

OFFSET(ldptr) The file address of the beginning of the
object file; the offset is non-zero if the
object file is a member of an archive
file.

HEADER(ldptr) The file header structure of the object
file.

The object file access functions themselves may be
divided into four categories:
(1) functions that open or close an object file

- 1 -

LDFCN(4)

ldopen(3X) and Idaopen
open a common object file

ldclose(SX) and Idaclose
close a common object file

(2) functions that read header or symbol table
information

ldahread($X)
read the archive header of a member of
an archive file

ldjhread{ 3X)
read the file header of a common object
file

ldshread(3X) and Idnshread
read a section header of a common
object file

ldtbread(3X)
read a symbol table entry of a common
object file

ldgetname(3X)
retrieve a symbol name from a symbol
table entry or from the string table

(3) functions that position an object file at (seek to) the
start of the section, relocation, or line number
information for a particular section.

ldohseek{3X)
seek to the optional file header of a
common object file

ldsseek(3X) and Idnsseek
seek to a section of a common object file

ldreeek(SX) and Idnrseek
seek to the relocation information for a
section of a common object file

ldlseek(3X) and Idnlseek
seek to the line number information for
a section of a common object file

ldtbseek(ZX)
seek to the symbol table of a common
object file

(4) the function ldtbindex($X) which returns the index of
a particular common object file symbol table entry.
These functions are described in detail on their
respective manual pages.
All the functions except ldopen(ZX), Idgetname(3X),
Idaopen (3XJ, and Idtbtndex (3XJ, return either
SUCCESS or FAILURE, both constants defined in
ldfcn.h. Ldopen and Idaopen both return pointers to a

- 2 -

LDFCN(4)

LDFILE structure.
Additional access to an object file is provided through a
set of macros defined in ldfcn.h. These macros parallel
the standard input/output file reading and manipulating
functions, translating a reference of the LDFILE
structure into a reference to its file descriptor field.
The following macros are provided:

GETC(ldptr)
FGETC(ldptr)
GETW(ldptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEKfldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEOF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, buf)
STROFFSET(ldptr)

The STROFFSET macro calculates the address of the
string table in an object file. See the manual entries for
the corresponding standard input/output library
functions for details on the use of the rest of the macros.
The program must be loaded with the object file access
routine library libld.a.

WARNING
The macro FSEEK defined in the header file ldfcn.h
translates into a call to the standard input/output
function faeek(3S). FSEEK should not be used to seek
from the end of an archive file since the end of an
archive file may not be the same as the end of one of its
object file members!

SEE ALSO
fseek(3S), ldahread(3X), ldclose(3X), ldgetname(3X),
ldfhread(3X), ldlread(3X), ldlseek(3X), ldohseek(3X),
ldopen(3X), ldrseek(3X), ldlseek(3X), ldshread(3X),
ldtbindex(3X), ldtbread(3X), ldtbseek(3X).

- 3 -

L I N E N U M (4)

N A M E
linenum - line number entries in a common object file

SYNOPSIS
^ inc lude < l i n e n u m . h >

DESCRIPTION
Compilers based on pcc generate an entry in the object
file for each C source line on which a breakpoint is
possible (when invoked with the —g option; see ec(l)).
Users can then reference line numbers when using the
appropriate software test system (see sdb(1)). The
structure of these line number entries appears below.

struct lineno {
union

long l_symndx ;
long l_paddr;

} l_addr ;
unsigned short l_lnno ;

} >

Numbering starts with one for each function. The initial
line number entry for a function has l_lnno equal to zero,
and the symbol table index of the function's entry is in
l_symndx. Otherwise, l_lnno is non-zero, and l_paddr is
the physical address of the code for the referenced line.
Thus the overall structure is the following:

l_addr l_lnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

SEE ALSO
cc(l), sdb(l), a.out(4).

- 1 -

M A S T E R (4)

NAME
master - master device information table

DESCRIPTION
This file is used by the con/tj(lM) program to obtain
device information that enables it to generate the
configuration files. Do not modify it unless you fully
understand its construction. The file consists of 3 parts,
each separated by a line with a dollar sign ($) in column
1. Part 1 contains device information; part 2 contains
names of devices that have aliases; part 3 contains
tunable parameter information. Any line with an
asterisk (*) in column 1 is treated as a comment.
Part 1 contains lines consisting of 7 or 10 fields, with the
fields delimited by tabs and/or blanks:
Field 1: device name (8 chars, maximum).
Field 2: device mask (octal)-each "on" bit

indicates that the handler exists:
001000 has release handler for

downloadable drivers
tty header exists
initialization handler
power-failure handler
open handler
close handler
read handler
write handler
ioctl handler,

device type indicator (octal):
001000 cluster device

VME device
allow only one of these devices
suppress interrupt vector
required device
block device
character device
floating vector
fixed vector.

Field 4: handler prefix (4 chars, maximum).
Field 5: major device number for block-type

device.
Field 6: major device number for character-type

device.
Field 7: maximum number of devices on system.
Field 8: device vector size.
Field 9: device address type (VME modifier).
Field 10: device interrupt level.

Field 3:

000200
000100
000040
000020
000010
000004
000002
0 0 0 0 0 1

000400
000200
000040
000020
000010
000004
000002
0 0 0 0 0 1

- 1 -

MASTER (4)

Part 2 contains lines with 2 fields each:
Field 1: alias name of device (8 chars, maximum).
Field 2: reference name of device (8 chars,

maximum; specified in part 1).
Part 3 contains lines with 2 or 3 fields each:
Field 1: parameter name (as it appears in

description file; 20 chars, maximum)
parameter name (as it appears in the
conf.c file; 20 chars, maximum)
default parameter value (20 chars,
maximum; parameter specification is
required if this field is omitted)

Field 2:

Field 3:

FILES
/etc/master

SEE ALSO
config(lM).

- 2 -

M N T T A B (4)

NAME
mnttab - mounted file system table

SYNOPSIS
^inc lude < m n t t a b . h >

DESCRIPTION
Mnttab resides in directory / e t c and contains a table of
devices, mounted by the moun<(lM) command, in the
following structure as defined by < m n t t a b . h > :

Each entry is 70 bytes in length; the first 32 bytes are
the null-padded name of the place where the special file
is mounted; the next 32 bytes represent the null-padded
root name of the mounted special file; the remaining 6
bytes contain the mounted special file's read/write
permissions and the date on which it was mounted.
The maximum number of entries in mnttab is based on
the system parameter NMOUNT located in
/ u s r / s r c / u t s / c f / c o n f . c , which defines the number of
allowable mounted special files.

struct mnttab {
mt_dev[32];
mt_filsys[32];
mt_ro_flg;
mt_time;

char
char
short
time t

SEE ALSO
mount(lM), setmnt(lM).

N E T W O R K S (4 N)

N A M E
networks - names and numbers for the internet

DESCRIPTION
The file / e t c / n e t w o r k s lists networks on the internet.
Each line describes a single network and consists of the
following blank separated fields:

name number aliases ...
where

name is the official name of the network.
All nodes on the internet should use
the same official name for a given
network.

number is the network number, which
serves as part of the DARPA
Internet address for each node on
the internet. All nodes on the
internet must use the same number
for a given network.

aliases . . . is a blank-separated list of local
aliases for the network.
The routines which search this file
ignore comments (portions of lines
beginning with #) and blank lines.

EXAMPLE
Building 1 Internet
Engineering 1 #R&D
Production 2 ^Administration, etc.

SEE ALSO
hosts(4N).
CTIX Internetworking Manual.

FILES
/etc/networks

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

P A S S W D (4)

N A M E
passwd - password file

DESCRIPTION
Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
user name
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry
is separated from the next by a colon. Each user is
separated from the next by a new-line. If the password
field is null, no password is demanded; if the Shell field
is null, / b i n / s h is used.
This file resides in directory / e t c . Because of the
encrypted passwords, it can and does have general read
permission and can be used, for example, to map
numerical user IDs to names.
The encrypted password consists of 13 characters chosen
from a 64-character alphabet (., / , 0—8, A—Z, a - z) ,
except when the password is null, in which case the
encrypted password is also null. Password aging is
effected for a particular user if his encrypted password in
the password file is followed by a comma and a non-null
string of characters from the above alphabet. (Such a
string must be introduced in the first instance by the
super-user.)
The first character of the age, M say, denotes the
maximum number of weeks for which a password is
valid. A user who attempts to login after his password
has expired will be forced to supply a new one. The next
character, m say, denotes the minimum period in weeks
which must expire before the password may be changed.
The remaining characters define the week (counted from
the beginning of 1970) when the password was last
changed. (A null string is equivalent to zero.) M and m
have numerical values in the range 0 - 6 3 that correspond
to the 64-character alphabet shown above (i.e., / = 1
week; z = 63 weeks). If m — M = 0 (derived from the
string • or ..) the user will be forced to change his
password the next time he logs in (and the "age" will
disappear from his entry in the password file). If m >
M (signified, e.g., by the string . /) only the super-user
will be able to change the password.

- 1 -

PASSWD (4)

FILES
/etc/passwd

SEE ALSO
164l(3C), login(l), passwd(l), a64l(3C), crypt(3C),
getpwent(3C), group(4).

- 2 -

P L O T (4)

N A M E
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in
plot(3X) and are interpreted for various devices by
commands described in tplot(1G). A graphics file is a
stream of plotting instructions. Each instruction consists
of an ASCII letter usually followed by bytes of binary
information. The instructions are executed in order. A
point is designated by four bytes representing the x and
y values; each value is a signed integer. The last
designated point in an 1, m, n, or p instruction becomes
the "current point" for the next instruction.
Each of the following descriptions begins with the name
of the corresponding routine in plot(3X).
m move: The next four bytes give a new current point.
n cont: Draw a line from the current point to the point

given by the next four bytes. See tplot(lG).
p point: Plot the point given by the next four bytes.
1 line: Draw a line from the point given by the next

four bytes to the point given by the following four
bytes.

t label: Place the following ASCII string so that its
first character falls on the current point. The string
is terminated by a new-line.

e erase: Start another frame of output.
f linemod: Take the following string, up to a new-line,

as the style for drawing further lines. The styles are
"dotted", "solid", "longdashed", "shortdashed", and
"dotdashed". Effective only for the - T 4 0 1 4 and
- T v e r options of tplot{ 1G) (TEKTRONIX 4014
terminal and Versatec plotter).

s space: The next four bytes give the lower left corner
of the plotting area; the following four give the upper
right corner. The plot will be magnified or reduced
to fit the device as closely as possible.

Space settings that exactly fill the plotting area with
unity scaling appear below for devices supported by the
filters of tp/ot(lG). The upper limit is just outside the
plotting area. In every case the plotting area is taken to
be square; points outside may be displayable on devices
whose face is not square.

DASI 300 space(0, 0, 4096, 4096);

- 1 -

P L O T (4)

DASI 300s
DASI 450

space(0, 0, 4096, 4096
spacefO, 0, 4096, 4096

TEKTRONIX 4014 space 0, 0, 3120, 3120 ;
Versatec plotter space(0, 0, 2048, 2048);

SEE ALSO
graph(lG), tplot(lG), plot(3X), gps(4), term(5).

WARNING
The plotting library p/o<(3X) and the curses library
cur«e«(3X) both use the names erase() and moveQ. The
curses versions are macros. If you need both libraries,
put the plot(3X) code in a different source file than the
cursea(3X) code, and/or #undef move() and erase() in
the plot{3X) code.

PROFILE (4)

N A M E
profile - setting up an environment at login time

DESCRIPTION
If the file / e t c / p r o f i l e exists, it will be executed for
every Bourne shell user immediately upon login. After
this, if the user's login directory contains a file named
•profile, that file will be be executed (via . .profile)
before the user's session begins. The .profile is useful
for exporting environment variables and terminal modes.
The following example is typical for a user's .profile file:

PATH=:$PATH:$HOME/bin
MAIL=/usr/mail / myname
TERM=pt
export PATH MAIL TERM
umask 022

The system file / e t c / p r o f i l e can be customized to set
the TERM environment variable via t«e<(l) and to
automatically invoke u)m(l) on RS-422 terminals.
Shell environment variables that can be set are described
in sh(1).

FILES
$HOME/.profile
/ etc/profile

SEE ALSO
csh(l), cprofile(4), env(l), login(l), mail(l), sh(l), stty(l),
su(l), tset(l), wm(l), ttytype(4), environ(5), term(5).
MightyFrame Administrator's Reference Manual.
MiniFrame Administrator's Manual.

- 1 -

PROTOCOLS (4N)

NAME
protocols - list of Internet protocols

DESCRIPTION
The file / e t c / p r o t o c o l s lists known DARPA Internet
protocols. Each line describes a single protocol and
consists of the following blank separated fields:

name number aliases ...
where
name is the official name of the protocol.
number is the protocol number.
aliases . . . is a blank-separated list of local aliases for

the protocol.
The routines which search this file ignore comments
(portions of lines beginning with and blank lines.
Protocol names and numbers are specified by the SRI
Network Information Center. Do not change this file
unless you are familiar with DARPA Internet internals.

FILES
/etc/protocols

SEE ALSO
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 - 1 -

RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
include < r e l o c . h >

DESCRIPTION
Object files have one relocation entry for each
relocatable reference in the text or data. If relocation
information is present, it will be in the following format.
struct reloc {

long r_vaddr ;
/* (virtual) address of reference */

long r_symndx ;
/* index into symbol table * /

short r_type ; / * relocation type */
} >

* All generics
* reloc. already performed to symbol in the same section
* /

#define R_ABS 0

/*

•Motorola Processors 68000, 68010, and 68020

*/
#define R_DIR24 04
#define R_REL24 05
#define R_OPTl6 014
#define RJND24 015
#define RJND32 016
#define R_RELBYTE 017
#define R_RELWORD 020
#define R_RELLONG 021
#define R_PCRBYTE 022
#define R.PCRWORD 023
^define R_PCRLONG 024

As the link editor reads each input section and performs
relocation, the relocation entries are read. They direct
how references found within the input section are
treated.

- 1 -

R E L O C (4)

The reference is absolute, and no relocation
is necessary. The entry will be ignored.
A direct, 24-bit reference to a symbol's
virtual address.
A "PC-relative", 24-bit reference to a
symbol's virtual address. Relative
references occur in instructions such as
jumps and calls. The actual address used
is obtained by adding a constant to the
value of the program counter at the time
the instruction is executed.
An optimized, indirect, 16-bit reference
through a transfer vector. The instruction
contains the offset into the transfer vector
table to the transfer vector where the
actual address of the referenced word is
stored.
An indirect, 24-bit reference through a
transfer vector. The instruction contains
the virtual address of the transfer vector,
where the actual address of the referenced
word is stored.
An indirect, 32-bit reference through a
transfer vector. The instruction contains
the virtual address of the transfer vector,
where the actual address of the referenced
word is stored.

R_RELBYTE A direct 8-bit reference to a symbol's
virtual address.

RJRELWORD
A direct 16-bit reference to a symbol's
virtual address.

R_RELLONG A direct 32-bit reference to a symbol's
virtual address.

R_PCRBYTE A "PC-relative", 8-bit reference to a
symbol's virtual address.

R_PCRWORD
A "PC-relative", 16-bit reference to a
symbol's virtual address.

R_PCRLONG A "PC-relative", 32-bit reference to a
symbol's virtual address.

On the VAX processors relocation of a symbol index of -1
indicates that the relative difference between the current
segment's start address and the program's load address is

- 2 -

R_ABS

R—DIR24

R_REL24

R_0PT16

R_IND24

RJND32

RELOC(4)

added to the relocatable address.
Other relocation types will be defined as they are
needed.
Relocation entries are generated automatically by the
assembler and automatically utilized by the link editor.
A link editor option exists for removing the relocation
entries from an object file.

S E E A L S O
ld(l), strip(l), a.out(4), syms(4).

RHOSTS (4N)

NAME
rhosts - remote equivalent users

DESCRIPTION
These files grant permission for remote users to use local
user names without knowing the corresponding user
passwords. This is known as making the remote user
"equivalent" to the local user. This is convenient, for
example, when one person owns user names on more
than one node.
If a user's home directory contains a file named .rhosts,
remote users specified in the file are equivalent to the
local user. Each user specification in the file consists of
the remote user node name and user name, separated by
a space. For security reasons, .rhosts must belong to
the user granting the equivalence or to root.
The file / e t c / h o s t s . e q u i v is a list of remote nodes with
matching-name equivalence. The file lists remote nodes
one per line. On each node listed in / e t c /hos t s . equ iv ,
a remote user with the same name as a local user is
equivalent to the local user. In effect, the users are the
same if the names are the same.

FILES
$HOME/. rhosts
/ etc/hosts.equiv

SEE ALSO
rcmdflN), rcp(lN), rlogin(lN).
CTIX Internetworking Manual.

WARNINGS
When a system is listed in / e t c /hos t s . equ iv , its
security must be as good as local security.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

SCCSFILE(4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical
parts: the checksum, the delta table (contains
information about each delta), user names (contains
login names and/or numerical group IDs of users who
may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive
information about the file), and the body (contains the
actual text lines intermixed with control lines).
Throughout an SCCS file there are lines which begin with
the ASCII SOH (start of heading) character (octal 001).
This character is hereafter referred to as the control
character and will be represented graphically as
Any line described below which is not depicted as
beginning with the control character is prevented from
beginning with the control character.
Entries of the form DDDDD represent a five-digit string
(a number between 00000 and 99999).
Each logical part of an SCCS file is described in detail
below.
Checksum

The checksum is the first line of an SCCS file.
The form of the line is:

@hDDDDD

The value of the checksum is the sum of all
characters, except those of the first line. The
@h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of
entries of the form:

@s DDDDD/DDDDD/DDDDD
@d < t y p e > < S C C S I D > yr /mo/da hr:mi:se

< p g m r > DDDDD DDDDD
@i DDDDD ...
@x DDDDD ...
@g DDDDD ...
@m < M R number>

@c < c o m m e n t s > ...

- 1 -

SCCSFILE (4)

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The
second line (@d) contains the type of the delta
(currently, normal: D, and removed: R), the
SCCS ID of the delta, the date and time of
creation of the delta, the login name
corresponding to the real user ID at the time the
delta was created, and the serial numbers of the
delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial
numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR
number associated with the delta; the @c lines
contain comments associated with the delta.

The @e line ends the delta table entry.
User names

The list of login names and/or numerical group
IDs of users who may add deltas to the file,
separated by new-lines. The lines containing
these login names and/or numerical group IDs
are surrounded by the bracketing lines @u and
@U. An empty list allows anyone to make a
delta. Any line starting with a ! prohibits the
succeeding group or user from making deltas.

Flags
Keywords used internally (see admin(l) for more
information on their use). Each flag line takes
the form:
@f < f l a g > < optional text>

The following flags are defined:
@f t <type of program >
@f v < program name>
@f i < keyword string >
@f b
@f m < module name>
@ff < floor >
@f c < ceiling>
@fd < default-sid >
@f n

- 2 -

SCCSFILE (4)

@f j
@f 1 <lock-releases >
@f q <user defined >
@f z <reserved for use in interfaces>

The t flag defines the replacement for the %Y%
identification keyword. The v flag controls prompting
for MR numbers in addition to comments; if the optional
text is present it defines an MR number validity
checking program. The i flag controls the warning/error
aspect of the "No id keywords" message. When the i
flag is not present, this message is only a warning; when
the i flag is present, this message will cause a "fatal"
error (the file will not be gotten, or the delta will not be
made). When the b flag is present the —b keyletter may
be used on the get command to cause a branch in the
delta tree. The m flag defines the first choice for the
replacement text of the %M% identification keyword.
The f flag defines the "floor" release; the release below
which no deltas may be added. The c flag defines the
"ceiling" release; the release above which no deltas may
be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag
causes delta to insert a "null" delta (a delta that applies
no changes) in those releases that are skipped when a
delta is made in a new release (e.g., when delta 5.1 is
made after delta 2.7, releases 3 and 4 are skipped). The
absence of the n flag causes skipped releases to be
completely empty. The j flag causes get to allow
concurrent edits of the same base SID. The 1 flag defines
a list of releases that are locked against editing (g e t l l)
with the —e keyletter). The q flag defines the
replacement for the %Q% identification keyword. The
e flag is used in certain specialized interface programs.

Comments
Arbitrary text is surrounded by the bracketing
lines @t and @T. The comments section
typically will contain a description of the file's
purpose.

Body
The body consists of text lines and control lines.
Text lines do not begin with the control
character, control lines do. There are three
kinds of control lines: insert, delete, and end,
represented by:

@I DDDDD
@D DDDDD

- 3 -

SCCSFILE (4)

@E DDDDD

respectively. The digit string is the serial
number corresponding to the delta for the
control line.

SEE ALSO
admin(l), delta(l), getfl), prs(l).
CTIX Programmer's Guide, Section 9.

- 4 -

SCNHDR(4)

NAME
senhdr - section header for a common object file

SYNOPSIS
^ i n c l u d e < senhdr . h >

DESCRIPTION
Every common object file has a table of section headers
to specify the layout of the data within the file. Each
section within an object file has its own header. The C
structure appears below.
struct senhdr
{

char s. _name(SYMNMLEN]; / * section name * /
long s. .paddr; / * physical address * /
long s. .vaddr; / * virtual address * /
long s. .size; /* section size »/
long s. .senptr; /* file ptr to raw data * /
long s. .relptr; /* file ptr to relocation */
long s. Jnnoptr; /* file ptr to line numbers */
unsigned short s. .nreloc; / * # reloc entries * /
unsigned short s. .nlnno; /» # line number entries * /
long s. .flags; / * flags » /

};
File pointers are byte offsets into the file; they can be
used as the offset in a call to fseek(3S). If a section is
initialized, the file contains the actual bytes. An
uninitialized section is somewhat different. It has a size,
symbols defined in it, and symbols that refer to it. But
it can have no relocation entries, line numbers, or data.
Consequently, an uninitialized section has no raw data in
the object file, and the values for s_scnptr, s_relptr,
s_lnnoptr, s_nreloc, and 8_nlnno are zero.

SEE ALSO
ld(l), fseek(3S), a.out(4).

S E R V I C E S (4 N)

N A M E
services - list of Internet services

DESCRIPTION
The file / e t c / s erv i ce s lists known DARPA Internet
services. Each line describes a single service and consists
of the following blank separated fields:

name number/protocol aliases ...
where

name is the official name of the service.
number is the service number.
protocol is the name of the protocol (see

protocol(4N)) used by the service.
aliases . . . is a blank-separated list of local

aliases for the service.
The routines which search this file ignore comments
(portions of lines beginning with #) and blank lines.
Service names and numbers are specified by the SRI
Network Information Center. Do not change this file
unless you are familiar with DARPA Internet internals.

FILES
/etc/services

SEE ALSO
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

- 1 -

S Y M S (4)

N A M E
syms - common object file symbol table format

S Y N O P S I S
^ i n c l u d e < s y m s . h >

D E S C R I P T I O N
Common object files contain information to support
symbolic software testing (see sdb(1)1. Line number
entries, linenum(4), and extensive symbolic information
permit testing at the C source level. Every object file's
symbol table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The
members of the structure hold the name (null padded),
its value, and other information. The C structure is
given below.
#def ine SYMNMLEN 8
#de f ine FILNMLEN 14
#de f ine DIMNUM 4

s t ruc t syment
{

union / * all ways to get symbol name * /
{

char _n_name[SYMNMLEN]; / * symbol name * /
struct[
{

long _n_zeroes; / * = = OL when in string table */
long _n_offset; /* location of name in table */

} _n_n;

- 1 -

SYMS (4)

char n_nptr[2|; /» allows overlaying */
} - n ;
long n_value; /* value of symbol */
short n_scnum; /* section number */
unsigned short n_type; / * type and derived type */
char n_sclass; / • storage class */
char n_numaux; /» number of aux entries */

};
#define n_name _n._n_name
#def ine n_zeroes _n._n_n._n_zeroes
#def ine n_offset _n._n_n._n_offset
#def ine n_nptr _n._n_nptr[l]

Meaningful values and explanations for them are given in
both s y m s . h and Common Object File Format. Anyone
who needs to interpret the entries should seek more
information in these sources. Some symbols require more
information than a single entry; they are followed by
auxiliary entries that are the same size as a symbol
entry. The format follows.
union auxent {

struct

long x_tagndx;
union
{

struct {
unsigned shortx_lnno;
unsigned shortx_size;

x_lnsz;
ong x_fsize;

} x_misc;
union {

struct {
long x_lnnoptr;
long x_endndx;

} x_fcn;
struct

unsigned shortx_dimen[DIMNUM]
} x_ary;

} x_fcnary;
unsigned short x_tvndx;
x_sym;

- 2 -

SYMS (4)

struct

char x_fname [FILNMLEN];
} x_file;

struct

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} x_scn;

struct

long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2];

} x_tv;
};
Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(l), a.out(4), linenum(4).

CAVEATS
CTIX C longs are equivalent to ints and are converted to
ints in the compiler to minimize the complexity of the
compiler code generator. Thus the information about
which symbols are declared as longs and which, as ints,
does not show up in the symbol table.

SYSTEM (4)

NAME
system - system description file

DESCRIPTION
The system description describes tunable variables and
hardware configuration to the CTIX system.
The file is formatted in sections. Each section begins
with a section header (a ! followed by a single word).
Each section varies in format, depending upon the
format required by the program that uses the data
provided by that section.
In the example file the IVMESLOTS section describes
the VME boards for the EEPROM. The slot field is the
slot position in the VME bus. The type field is the board
type; board types may be:

1 CMC Ethernet board
2 Interphase SMD disk controller board
3 Xylogics 1/2-inch tape controller board

The address field is the location of the board. The
length field is the address space size of the board. The
optional initialization function name is an initialization
function that is called by the PROM at boot time.
The IVMECODE section consists of a list of files that
describe the executable code to be loaded into the
EEPROM. This section is required only if a bootable
initialization function was specified.

EXAMPLE
IFILENAMES
PROM_IFILE=/etc/lddrv/EEPROM.ifile
EEPROM_FILE=/dev/vme/eeprom
INIT_CFILE=tunevar.c
IVMESLOTS
* The following section describes the VME boards
*

*slot type address length [Initialization
* function name]
*

0 2 C1000000 512 initVs32
1 2 C1000200 512
*one CMC Ethernet controller)
2 1 C0DE0200 131072 *

IVMECODE
diskvs32.o

5/86 - 1 -

SYSTEM (4)

SEE ALSO
lddrv(lM), ldeeprom(lM), mktunedrv(lM), vme(7).
MightyFrame Administrator's Reference Manual.

FILES
/etc/system
/dev/vme/eeprom

5/86 - 2 -

TERM (4)

NAME
term - format of compiled term file.

SYNOPSIS
t e r m

DESCRIPTION
Compiled terminfo descriptions are placed under the
directory / u s r / l i b / t e r m i n f o . In order to avoid a linear
search of a huge CTIX system directory a two-level
scheme is used: / u s r / l i b / t e r m i n f o / c / n a m e where
name is the name of the terminal, and c is the first
character of name. Thus, act4 can be found in the file
/ u s r / l i b / t e r m i n f o / a / a c t 4 . Synonyms for the same
terminal are implemented by multiple links to the same
compiled file.

The format has been chosen so that it will be the same
on all hardware. An 8 or more bit byte is assumed, but
no assumptions about byte ordering or sign extension are
made.
The compiled file is created with the <jc(1M) program,
and read by the routine setupterm. Both of these pieces
of software are part of curses (3X). The file is divided
into six parts: the header, terminal names, boolean flags,
numbers, strings, and string table.
The header section begins the file. This section contains
six short integers in the format described below. These
integers are (1) the magic number (octal 0432); (2) the
size, in bytes, of the names section; (3) the number of
bytes in the boolean section; (4) the number of short
integers in the numbers section; (5) the number of offsets
(short integers) in the strings section; (6) the size, in
bytes, of the string table.
Short integers are stored in two 8-bit bytes. The first
byte contains the least significant 8 bits of the value,
and the second byte contains the most significant 8 bits.
(Thus, the value represented is 256*second+first.) The
value - 1 is represented by 0377, 0377; other negative
values are illegal. The - 1 generally means that a
capability is missing from this terminal. Note that this
format corresponds to the hardware of the VAX and
PDP-11. Machines where this does not correspond to the
hardware read the integers as two bytes and compute the
result.
The terminal names section comes next. It contains the
first line of the terminfo description, listing the various
names for the terminal, separated by the character.
The section is terminated with an ASCII NUL character.

5/86 - 1 -

TERM (4)

The boolean flags have one byte for each flag. This byte
is either 0 or 1 as the flag is present or absent. The
capabilities are in the same order as the file < term.h>.
Between the boolean section and the number section, a
null byte will be inserted, if necessary, to ensure that the
number section begins on an even byte. All short
integers are aligned on a short word boundary.
The numbers section is similar to the flags section. Each
capability takes up two bytes, and is stored as a short
integer. If the value represented is - 1 , the capability is
taken to be missing.
The strings section is also similar. Each capability is
stored as a short integer, in the format above. A value
of - 1 means the capability is missing. Otherwise, the
value is taken as an offset from the beginning of the
string table. Special characters in *X or \c notation are
stored in their interpreted form, not the printing
representation. Padding information $ < n n > and
parameter information %x are stored intact in
uninterpreted form.
The final section is the string table. It contains all the
values of string capabilities referenced in the string
section. Each string is null terminated.
Note that it is possible for setupterm to expect a
different set of capabilities than are actually present in
the file. Either the database may have been updated
since setupterm has been recompiled (resulting in extra
unrecognized entries in the file) or the program may
have been recompiled more recently than the database
was updated (resulting in missing entries). The routine
setupterm must be prepared for both possibilities - this
is why the numbers and sizes are included. Also, new
capabilities must always be added at the end of the lists
of boolean, number, and string capabilities.
As an example, an octal dump of the description for the
Microterm ACT 4 is included:

microterm|act4|microterm act iv,
cr=*M, cudl=*J, ind=*J, bel=*G, am, cubl=*H,
e d — e l = " , clear=*L, cup=*T%pl%c%p2%c,
cols#80, lines#24, cuf l=*X, cuul = *Z, home=*],

- 2 -

TERM (4)

000 032 001 \ 0 025 \ 0 \ b \ 0 212 \ 0 " \ 0 m i c r
020 o t e r m | a c t 4 | m i c r o
040 t e r m a c t i v \ 0 \0 001 \ 0 \ 0
060 \0 \ 0 \0 \ 0 \0 \ 0 \ 0 \ 0 \ 0 \0 \ 0 \0 \ 0 \ 0 \ 0 \ 0
100 \ 0 \ 0 P \ 0 377 377 030 \ 0 377 377 377 377 377 377 377 377
120 377 377 377 377 \ 0 \0 002 \0 377 377 377 377 004 \ 0 006 \ 0
140 \b \ 0 377 377 377 377 \ n \ 0 026 \0 030 \ 0 377 377 032 \ 0
160 377 377 377 377 034 \ 0 377 377 036 \ 0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 *

520 377 377 377 377 \ 0 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377 007 \ 0 \ r \ 0 \f \0 036 \ 0 037 \ 0
560 024 % p 1 % c % p 2 % c \ 0 \n \ 0 035 \ 0
600 \ b \ 0 030 \ 0 032 \0 \ n \0

Some limitations: total compiled entries cannot exceed
4096 bytes. The name field cannot exceed 128 bytes.

FILES
/usr/lib/terminfo/*/* compiled terminal capability
data base

SEE ALSO
curses(3X), terminfo(4).

T E R M C A P (4)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
This entry describes terminal-independent programming
conventions that originate at UC Berkeley. UNIX System
V initially borrowed termcap but has since changed to
the terminfo(4) convention. CTIX continues to support
termcap so as to be compatible with the Berkeley version
of the UNIX System. But use termin/o in new programs.

Termcap programs work from information supplied
through the T E R M and T E R M C A P environment
variables. The location of the description depends on
the value of T E R M C A P :
• If T E R M C A P is not set or is empty, T E R M

is the name of an description in /etc/termcap.
• If T E R M C A P has a value that begins with a / ,

T E R M is the name of an description in the file
named by T E R M C A P .

• If T E R M C A P begins with any character
except / , T E R M C A P contains the description.

A description begins with a list of its names, separated
by vertical bars. The rest of the description is a list of
capabilities, separated by colons. If you use more than
one line, precede each newline except the last with :\
Here's a simple example.

d5|vt50|dec vt50:\
:bs :cd=\EJ:ce=\EK:c l= \EH\EJ:co#80: l i#12: \
:nd=\EC:pt:up=\EA:

There are three kinds of capabilities:
• Boolean. These indicate the presence or absence

of a terminal feature by their presence or
absence. Boolean capabilities consist of two
characters (the capability name).

• Numeric. These indicate some numeric value
for the terminal, such as screen size or delay
required by a standard character. Numeric
capabilities consist of two characters (the
capability name), followed by a followed by a
decimal number.

• String. These indicate a sequence that is
performs some operation on the terminal. String

- 1 -

TERMCAP (4)

capabilities consist of two characters (the
capability name), optionally followed by a delay,
followed by a string.
The delay is the number of milliseconds the
program must wait after using the sequence;
specify no more than one decimal place. If the
delay is proportional to the number of lines
affected, end it with a *.
The string is a sequence of characters. The
following subsequences are specially interpreted.

\ E Escape Character
*x Control-z

\ n Newline
\r Return
\ t Tab
\d Backspace
\ f Formfeed

\xxx Octal value of xxx
\072 : in string
\200 null (\000 doesn't work)

Octal numbers must be three digits long.
Some strings are interpreted further, such as cm.
see something below.

You can follow any capability name with an to
indicate that the terminal lacks the capability. This is
only useful in conjunction with the tc capability; see
"Similar Terminals," below.
Here is a list of standard capabilities. (P) indicates a
string that might require padding; (P*) indicates a string
that might require proportional padding.

Name Type
ae str
al str
am bool
as str
be str
bs bool

bt str
bw bool

CC str

Pad? Description
Ends alternate character set.

*) Adds new blank line.
Terminal has automatic margins.

(P) Starts alternate character set.
Backspace if not control-h.
Terminal can backspace with
control-h.

(P) Back tab.
Backspace wraps from column 0
to last column.
Command character in prototype
if terminal settable.

- 2 -

TERMCAP (4)

cd str (P*)
ce str (P)
ch str (P)

cl str (P*)
cm str (P)

CO num
cr str (P*)
cs str h cv str (p)

da bool
dB num

db bool
dC num

dc str (p*)
dF num

dl str (p*)
dm str

(p*)

dN num

do str
dT num
ed str
ei str

eo str

ff str (p*)

he bool
hd str

ho str

hu str
hz str

ic str (p)
if str

im bool

in bool

Clears to end of display.
Clears to end of line.
Moves cursor horizontally to
specified column.
Clears screen.
Moves cursor to specified row and
column.
Number of columns in a line.
Carriage return if not control-m.
Change scrolling region.
Moves cursor vertically to
specified row.
Display can be retained above.
Delay after backspace, in
milliseconds.
Display can be retained below.
Delay after carriage return, in
milliseconds.
Delete character.
Delay after form feed, in
milliseconds.
Deletes line.
Enters delete mode.
Delay after newline, in
milliseconds.
Goes down one line.
Delay after tab, in milliseconds.
Ends delete mode.
Ends insert mode; give an empty
string if you've defined ic.
Can erase overstrikes with a
blank.
Hardcopy terminal page eject if
not form feed.
Hardcopy terminal.
Half-line down (forward 1/2
linefeed).
Move cursor to upper left corner
(home).
Half-line up (reverse 1/2 linefeed).
Hazeltine or other terminal that
can't print ~'s.
Insert character.
Name of file containing terminal
initialization.
Starts insert mode; give an empty
string if you've defined ic.
Insert mode distinguishes nulls on
display.

- 3 -

TERMCAP (4)

ip str (P*)
is str
kO-k9 str

kb str
kd str
ke str
kh str
kl str
kn num
ko str

kr str
ks str
ku str
10-19 str
li num

11 str
ma str

mi bool

ml str
ms bool

mu str

nc bool

nd str

nl str
ns bool

OS bool
pc str
pt bool

se str
sf str
sg num

so str
sr str
ta str

Pad after insertion.
Terminal initialization.
Sent by special (usually numeric)
function keys. If programmable,
set with is, if, vs, or ti.
Sent by backspace key.
Sent by terminal down arrow key.
Ends keypad transmit mode.
Sent by home key.
Sent by terminal left arrow key.
Number of special function keys.
Terminal capabilities that have
keys.
Sent by terminal right arrow key.
Begin keypad transmit mode.
Sent by terminal up arrow key.
Labels on special function keys.
Number of lines on screen or
page.
Last line, first column.
Command key map; used by ex
version 2 (Convergent uses
version 3).
Safe to move while in insert
mode.
Memory lock on above cursor.
Safe to move while in standout
and underline mode.
Memory unlock (turn off memory
lock).
No correctly working carriage
return (DM2500,H2000).
Non-destructive space (cursor
right).
Begin a new line if not newline.
A video terminal that doesn't
scroll!
Terminal overstrikes.
Pad character if not null.
Has hardware tabs; if they need
to be set put sequence in is or if.
Ends stand out mode.
Scrolls forwards.
Number of blank chars left by so
or se.
Begins stand out mode.
Scroll reverse (backwards).
Tab if not control-i or with
padding.

- 4 -

T E R M C A P (4)

tc str Name of terminal that has some
of the same capabilities; tc must
be the last capability,

te str Ends programs that do cursor
motion.

ti str Initializes programs that do
cursor motion.

uc str Underscores and moves past one
character.

ue str Ends underscore mode,
ug num Number of blank spaces that

surround underscore mode,
ul bool Terminal underlines

automatically even though it
can't overstrike

up str Upline (cursor up),
us str Start underscore mode,
vb str Visible bell (must not move

cursor).
ve str Ends open and visual modes,
vs str Initializes open and visual modes,
xb bool Beehive (fl=escape, f2=ctrl C).
xn bool Terminal ignores newline after

wrap (Concept),
xr bool Return clears to end of line and

goes to beginning of next line
(Delta Data).

xs bool Writing on standout mode text
produces standout mode text (HP
264?).

xt bool Destructive tabs, magic standout
character (Teleray 1061).

Pointers on Preparing Descriptions
• You may want to copy the description of a

similar terminal.
• Build up a description gradually, checking

partial descriptions with ex.
• Be aware that an unusual terminal may expose

bugs in ex. limitations in the termcap
convention.

Basic Capabilities
The following capabilities are common to most
terminals. The co capability gives the number of
columns per line. The li gives the number of lines on a
video terminal. The a m capability indicates that
writing off the right edge takes the cursor to the
beginning of the next screen. The cl capability tells how

- 5 -

T E R M C A P (4)

the terminal clears its screen. The bs indicates that the
terminal can backspace; but if the terminal doesn't use
control-h, specify be instead of bs. The oa capability
indicates that printing a character at an occupied
position doesn't destroy the existing character.
A couple of notes on moving off the edge. Programs
that use this convention never move the cursor off the
top or the left edge of the screen. On the other hand,
they assume that moving off the bottom edge scrolls the
display up.
These capabilities suffice to describe hardcopy and very
dumb terminals. For example, the Teletype Model 33
has this description.

t3 | 33 | tty33:co#72:os

This is LSI ADM3 (without the cursor addressing
option).

cl | adm3|3|lsi adm3:am:bs:cl=*Z:li#24:co#80
Cursor Addresses and Other Variables

If a string capability includes a variable value, use a %
escape to indicate the value. By default, programs take
these values to be zero origin (that is, the first possible
value is 0) and that the cm capability specifies two
values: row, then column. Use the %r or %i capability
if either assumption is incorrect.
These are the valid % escapes.

%d print the values as a decimal number
%2 print the values as a two-digit decimal number
%3 print the values as a three-digit decimal number
%. print the value in binary (but see below)
%+x add ASCII value of x to value, then print in

binary
%>xy if the next value is greater than the ASCII value

of x, add the ASCII value of y before using the
value's % escape

%v row is the first value in this cm
%i values are 1-origin
%% print a %
%n in this capability, exclusive or the values with

01400 before using the values' % escapes
(DM2500)

%B change the next value to binary coded decimal
((16*(x/10)) + (x%10) where x is the value)
before interpreting it

- 6 -

TERMCAP (4)

%D The next value is reverse-coded (x-2*(x%!6)
where x is the value; Delta Data)

A program should avoid using a cm sequence that
includes a tab, newline, control-d, or return, because the
terminal interface may misinterpret these characters. If
possible, use the cm sequence to move to the row or
column after the destination, then use local motion to
get to the destination.
Here are some examples of cm definitions. To position
the cursor of an HP2645 on row 3, column 12, you must
send the terminal "\E&al2c03Y", followed by a 6
millisecond delay: the HP2645 description includes
: c m = 8 \ E & % r % 2 c % 2 Y s . To position the cursor of
an ACT-IV, you send it a control-t, followed by the row
and column in binary; the ACT-IV description includes
:cm="T%.%.: The LSI ADM3a uses the set of
printable ASCII characters to represent row and column
values; its description includes : c m \ E = % + % + : .

Local and General Cursor Motions
Most terminals have short strings that trigger
commonly-used cursor motions. A non-destructive space
(BR nd) moves the cursor one position right. An upline
sequence (up) moves the cursor one position up. A home
sequence (ho) moves the cursor to the upper left hand
corner. A lower-left (11) goes to the other lefthand
corner. The 11 capability may be a sequence that moves
the cursor home, then up; but otherwise programs never
do this.

Area Clears
Some terminals have short sequences that clear all or
part of a display. Clear (cl) clears the screen and homes
the cursor; if clearing tne screen does not restore the
terminal's normal modes, cl should include the strings
that do. Clear to end of line (ce) clears from the
current cursor position to the right. Clear to end of
display (cd) clears from the current cursor position to
the bottom of the display; programs always move the
cursor to the beginning of the line before using cd.

Insert/Delete Line
Many terminals have strings that shift text starting at
the current cursor position. Programs always move the
cursor to the beginning of the line before using these
strings. Add line (al) shifts the current line and all
below it down a position leaving the cursor on the
newly-blanked line. Delete line (deletes the line the
cursor is on without moving the cursor. If a terminal
description has a al capability, you do not really need to

- 7 -

TERMCAP (4)

specify sb.
If deleting a line might produce a non-blank line at the
bottom of the screen, specify db. If scrolling backwards
might produce a non-blank line at the top of the screen,
specify da.

Insert/Delete Character
The termcap convention recognizes two kinds of terminal
insert/delete string.
• The first convention is by far more common.

Using insert or delete modes only affect
characters on the current line. Inserting a single
character shifts all characters, including all
blanks, to the right; the character on the right
edge of the screen is lost. No special capability
is required to describe this kind of terminal.

• The second convention is rarer and more
complicated. The terminal distinguishes
between blank spaces created by output tabs
(Oil) or spaces (040) from all other blanks; other
blanks are known as nulls. Inserting a character
eliminates the first null to the right of the
cursor; deleting a character doubles the first
null. If there are no nulls on the current line
inserting a character inserts the line's rightmost
character at the beginning of the next line. Use
the in capability to describe this kind of
terminal.

Notably among the second type are the Concept 100 and
Perkin Elmer Owl.
A simple experiment shows what type you have. Set the
terminal to its "local" mode. Clear the screen, then
type a short sequence of text. Move the cursor to the
right several spaces without using the space or tab
characters. Type a second short sequence of text. Move
the cursor back to the beginning of the first text. Start
the terminal's insert mode and begin tapping the space
bar. If you have the first kind of terminal, both
sequences of text will move at once, at whatever
character is at the right edge of the screen will be lost.
If you have the second kind of terminal, at first only the
first sequence of text will move; when the first sequence
hits the second sequence, it will push the second onto the
next line.
A terminal can have either an insert mode or the ability
to insert a single character. Specify insert mode with im
and ei. To specify that the terminal can insert a single

- 8 -

TERMCAP (4)

character, specify ic and specify empty strings for im
and ei. If you must delay or output more control text
after inserting a single character, specify ip.
If a terminal has both an insert mode and the ability to
insert a single character, it is usually best not to specify
ic.
Some programs operate more quickly if they are allowed
to move the cursor around randomly while in insert
mode. For example, vi has to delete a character when
you insert a character before a tab. If your terminal
permits this, specify move on insert mi. Beware of
terminals that foul up in subtle ways when you do this
notably Datamedia's.
Delete mode (dm), end delete mode (ed), and delete
character (dc) work like im, ei, and ic.

Highlighting, Underlining, and Visible Bells
Specify the terminals most distinctive display mode with
so se. Half intensity is usually not a good choice unless
the terminal is normally in reverse video.
The convention provides for underline mode and for
single character underlining. Specify underline mode
with us and ue. Specify a way to underline and move
past a character with uc; if your terminal can underline
a single character but doesn't automatically move on,
add a nondestructive space to the uc string.
Some terminals can't overstrike but still correctly
underline text without special help from the host
computer. If yours is one, specify ul.
If your terminal spaces before and after entering
standout and underline mode, specify ug.
Programs leave standout and underline mode before
moving the cursor or printing a newline.
If the terminal can flash the screen without moving the
cursor, specify v b (visual bell).
If the terminal needs to change working modes before
entering the open and visual modes of ex and vi, specify
v s and ve. respectively. These can be used to change,
e.g., from a underline to a block cursor and back.
If the terminal needs to be in a special mode when
running a program that addresses the cursor, specify ti
and te. This may be important if a terminal has more
than one page of memory. If the terminal has memory-
relative cursor addressing but not screen relative cursor
addressing, use ti to fix a screen-sized window into the

- 9 -

T E R M C A P (4)

terminal.
If a terminal can overstrike, programs assume that
printable spaces don't destroy anything, unless you
specify eo.

Keypad
Some terminals have keypads that transmit special
codes. If the keypad can be turned on and off, specify
ks and ke; if you don't, programs assume that the
keypad is always on. Specify the codes sent by cursor
motion keys with kl, kr, ku, kd, and kh. If there are
function keys specify the codes they send with f l , f2, f3,
f4, f5, fe , f7, f8, and f9. If these keys have labels other
than the usual "fO through" "f9", specify the labels U,
12, 13, 14, 15, 16, 17, 18, and 19. If there are other keys
that transmit the same code that the terminal expects
for a function, such as clear screen, mention the affected
capabilities in the ko capability. For example,
":ko=cl,ll,sf,sb:" says that the terminal has clear, home
down, scroll down, and scroll up keys that transmit the
same thing as the cl, 11, sf, and sb capabilities.

Terminal Initialization
If a terminal must be initialized, on login for example,
specify a short string with is or a file containing
initialization strings with if. Other capabilities include
is, an initialization string for the terminal, and if, the
name of a file containing long initialization strings. If
both are given, is is printed before if. If the terminal
has tab stops, these strings should first clear all stops,
then set new stops at the 9 column and every 8 columns
thereafter.

Similar Terminals
If a new terminal strongly resembles an existing
terminal, you can write a description of the new terminal
that only mentions the old terminal and the capabilities
that differ. The tc capability describes the old terminal;
it must be the last capability in the description. If the
old terminal has capabilities that the new one lacks,
specify an @ after the capability name.

The different entries you create with t c need not
represent terminals that are actually different. They can
represent different uses for a single terminal, or user
preferences as to which terminal features are desirable.
The following example defines a describes a variant of
the 2621 that never turns on the keypad.

hn | 2621nl:ks@:ke@:tc=2621:

- 10 -

TERMCAP (4)

FILES
/etc/termcap standard data base

SEE ALSO
ex(l), more(l), tset(l), ul(l), vi(l), curses(3), termcap(3),
terminfo(4).

BUGS
Ex allows only 256 characters for string capabilities, and
the routines in termcap(3) do not check for overflow of
this buffer.
The total length of a single description (excluding only
escaped newlines) may not exceed 1024 characters. If
you use tc , the combined description may not exceed
1024 characters.
The vs, and v e entries are specific to the vi program.
Not all programs support all entries. There are entries
that are not supported by any program.
The m a capability is obsolete and serves no function in
our database; Berkeley includes it for the benefit of
systems that cannot run version 3 of vi.

- 11 -

TERMINFO (4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/lib/terminfo/*/*

DESCRIPTION
Terminfo is a data base describing terminals, used, e.g.,,
by vt'(l) and curses(3X). Terminals are described in
terminfo by giving a set of capabilities which they have,
and by describing how operations are performed.
Padding requirements and initialization sequences are
included in terminfo.
Entries in terminfo consist of a number of separated
fields. White space after each is ignored. The first
entry for each terminal gives the names which are known
for the terminal, separated by characters. The first
name given is the most common abbreviation for the
terminal, the last name given should be a long name
fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All
names but the last should be in lower case and contain
no blanks; the last name may well contain upper case
and blanks for readability.
Terminal names (except for the last, verbose entry)
should be chosen using the following conventions. The
particular piece of hardware making up the terminal
should have a root name chosen, thus "hp2621". This
name should not contain hyphens, except that synonyms
may be chosen that do not conflict with other names.
Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an
indicator of the mode. Thus, a vtlOO in 132 column
mode would be vtlOO-w. The following suffixes should
be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vtlOO-w
-am With auto, margins (usually default) vtlOO-am
-nam Without automatic margins vtlOO-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) clOO-na
-np Number of pages of memory c l00-4p
-rv Reverse video clOO-rv
CAPABILITIES

The variable is the name by which the programmer (at
the terminfo level) accesses the capability. The capname
is the short name used in the text of the database, and is
used by a person updating the database. The i.code is
the two letter internal code used in the compiled

- 1 -

TERMINFO (4)

database, and always corresponds to the old t ermcap
capability name.
Capability names have no hard length limit, but an
informal limit of 5 characters has been adopted to keep
them short and to allow the tabs in the source file caps
to line up nicely. Whenever possible, names are chosen
to be the same as or similar to the ANSI X3.64-1979
standard. Semantics are also intended to match those of
the specification.
(P) indicates that padding may be specified
(G) indicates that the string is passed through tparm

with parameters as given (#«).
(*) indicates that padding may be based on the

number of lines affected
indicates the parameter.

Variable Cap- I. Description
Booleans name Code

auto_left_margin, bw bw cubl wraps from column 0 to last
column

auto_right_margin, am am Terminal has automatic margins
beehive_glitch, xsb xb Beehive (f l=escape, f2=c t r l C)
ceol_standout_glitch, xhp xs Standout not erased by overwriting

(hp)
eat_newline_glitch, xenl xn newline ignored after 80 cols

(Concept)
erase_overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g.,, dialup,

switch).
hard_copy, he he Hardcopy terminal
has_function_line hfl hf Terminal has a function key label

line
has_meta_key, km km Has a meta key (shift, sets parity

bit)
has_status_line, hs hs Has extra "status line"
insert_null_glitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above the

screen
memory_below, db db Display may be retained below the

screen
move_insert_mode, mir mi Safe to move while in insert mode
move_stan dou t_mod e, msgr ms Safe to move in standout modes
over_strike, OS OS Terminal overstrikes
status_line_esc_ok, eslok es Escape can be used on the status

line

5/86 - 2 -

TERMINFO(4)

teleray_glitch, xt xt Tabs ruin, magic so char (Teleray
1061)

tilde_glitch, hz hz Hazeltine; can not print ~'s
transparent_underline, ul ul underline character overstrikes
xon_xoff, xon xo Terminal uses xon/xoff handshaking

N u m b e r s !
columns, cols CO Number of columns in a line
init_tabs, it it Tabs initially every # spaces
line_attribute ldaat LA Line drawing character attribute
lines, lines li Number of lines on screen or page
lines_of_memory, lm lm Lines of memory if > lines. 0 means

varies
magic_cookie_glitch, xmc sg Number of blank chars left by smso

or rmso
padding_baud_rate, pb pb Lowest baud where cr/nl padding is

needed
virtual_terminal, vt vt Virtual terminal number (UNIX

system)
width_status_line, wsl ws No. columns in status line

S t r l n g s t
back_tab, cbt bt Back tab (P)
bell, ~ bel bl Audible signal (bell) (P)
carriage_return, cr cr Carriage return (P*)
change_scroll_region, csr cs change to lines # 1 through # 2

(vtlOO) (PG)
clear_all_tabs, tbc ct Clear all tab stops (P)
clear_screen, clear cl Clear screen and home cursor (P*)
clr_eol, el ce Clear to end of line (P)
clr_eos, ed cd Clear to end of display (P*)
column_address, hpa ch Set cursor column (PG)
command_character, cmdch CC Term. settable cmd char in

prototype
cursor_address, cup cm Screen rel. cursor motion row # 1 col

2 (PG)
cursor _down, cudl do Down one line
cursor_home, home ho Home cursor (if no cup)
cursor_invisible, civis vi Make cursor invisible
cursor _left, cubl le Move cursor left one space
cursor_me m_ad dress, mrcup CM Memory relative cursor addressing
cursor_normal, cnorm ve Make cursor appear normal (undo

vs/vi)
cursor_right, cufl nd Non-destructive space (cursor right)
cursor _to_ll, 11 11 Last line, first column (if no cup)
cursor_up, cuul up Upline (cursor up)
cursor _visible, cvvis vs Make cursor very visible
delete_character, dchl dc Delete character (P*)

- 3 -

TERM INFO (4)

delete_line, dll dl Delete line (P*)
dis_status_line, dsl ds Disable s tatus line
down_half_line, hd hd Half-line down (forward 1/2

linefeed)
enter_alt_charset_mode, smacs as Start alternate character set (P)
enter_blinlt_niode, blink mb Turn on blinking
enter_bold_mode, bold md Turn on bold (extra bright) mode
enter_ca_mode, smcup ti String to begin programs tha t use

expand center; lw(1.4i) lw(.4i) lw(.4i)
lw(1.8i).

enter_delete_mode, smdc dm Delete mode (enter)
enter_dim_mode, dim mh Turn on half-bright mode
enter_insert_mode, smir im Insert mode (enter);
enter_protected_mode, prot mp Turn on protected mode
enter_reverse_mode, rev mr Turn on reverse video mode
enter_secure_mode, invis mk Turn on blank mode (chars

invisible)
enter_standout_mode, smso so Begin stand out mode
enter_underline_mode, smul us Start underscore mode
erase_chars ech ec Erase # 1 characters (PG)
exit_alt_charset_mode, rmacs ae End alternate character set (P)
exit_attri b u te_mod e, sgrO me Turn off all attributes —
exit_ca_mode, rmcup te String to end programs tha t use cup
exit_delete_mode, rmdc ed End delete mode
exit_insert_mode, rmir ei End insert mode
exit_standout_mode, rmso se End stand out mode
exit_underline_mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move cursor)
form_feed, ff ff Hardcopy terminal page eject (P*)
from_status_line, fsl fs Return from status line
init_lstring, isl i l Terminal initialization string
init_2string, is2 i2 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
init file, if if Name of file containing is
insert_character, ichl ic Insert character (P)
inse r t j ine , ill al Add new blank line (P*)
insert_p adding, ip ip Insert pad after character inserted (p*
key_b&ckspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc, kdchl kD Sent by delete character key
key_dl, kdl l kL Sent by delete line key
key_down, kcudl kd Sent by terminal down arrow key
key_eic, krmir kM Sent by rmir or smir in insert mode
key_eol, kel kE Sent by clear-to-end-of-line key
key_eos, ked kS Sent by clear-to-end-of-screen key
key_fO, kfO kO Sent by function key fO

TERMINFO (4)

key_fl, kf l k l
key_flO, kflO ka
key_f2, kf2 k2
key_f3, kf3 k3
key_f4, kf4 k4
key_f5, kf5 k5
key_f6, kf6 k6
key_f7, k!7 k7
key_f8, kf8 k8
key_f9, kf9 k9
key_home, khome kh
key_ic, kichl kl
k e y j l , kill kA
k e y j e f t , kcubl kl
k e y j l , kll kH
key_npage, knp kN
key_ppage, kpp kP
key_right, kcufl kr
key_sf, kind kF
key_sr, kri kR
key_stab, khts kT
key_up, kcuul ku
keypad_local, rmkx ke
keypad_xmit, smkx ks

lab_fO, IfO 10
lab_fl , l f l 11
lab.f lO, lflO la
lab_f2, lf2 12
lab_f3, lf3 13
lab_f4, lf4 14
lab_f5, lf5 15
lab_f6, lf6 16
lab_f7, lf7 17
lab_f8, 1C8 18
lab_f9, ire 19
ld_upleft ldul TL
ld_upright Idur TR
ld_botleft ldul BL
ld_botright ldbl BR
ld_vertleft ldvl VL
ld_vertright Idvr VR
ld_hortop ldht T H
ld_horbot ldhb BH
ld_upleft ldul TL
ld_upleft ldul TL
Id_upleft ldul TL
meta_on, smm mm
meta_off, rmm mo

Sent by function key f l
Sent by function key flO
Sent by function key f2
Sent by function key f3
Sent by function key f4
Sent by function key f5
Sent by function key f6
Sent by function key (7
Sent by function key f8
Sent by function key f9
Sent by home key
Sent by ins char/enter ins mode key
Sent by insert line
Sent by terminal left arrow key
Sent by home-down key
Sent by next-page key
Sent by previous-page key
Sent by terminal right arrow key
Sent by scroll-forward/down key
Sent by scroll-backward/up key
Sent by set-tab key
Sent by terminal up arrow key
Out of "keypad transmit" mode
Pu t terminal in "keypad t ransmit"
mode
Labels on function key fO if not fO
Labels on function key f l if not f l
Labels on function key flO if not flO
Labels on function key f2 if not f2
Labels on function key f3 if not f3
Labels on function key f4 if not f4
Labels on function key f5 if not f5
Labels on function key f6 if not f6
Labels on function key f7 if not f7
Labels on function key f8 if not f8
Labels on function key f9 if not f9
Upper left corner box character
Upper right corner box character
Bottom left corner box character
Bottom right corner box character
Left-hand side box character
Right-hand side box character
Top side box character
Bottom horizontal box character
Upper left corner box character
Upper left corner box character
Upper left corner box character
Turn on "meta mode" (8th bit)
Turn off "meta mode"

- 5 -

TERMINFO (4)

newline, nel nw Newline (behaves like cr followed by If)
pad_char, pad pc Pad character (rather than null)
parm_dch, dch DC Delete # 1 chars (PG*)
parm_delete_line, dl DL Delete # 1 lines (PG*)
parm_down_cursor, cud DO Move cursor down # 1 lines (PG*)
parm_ich, ich IC Insert # 1 blank chars (PG*)
parm_index, indn SF Scroll forward # 1 lines (PG)
parm_insert_line, il AL Add # 1 new blank lines (PG*)
p ar m_l e ft_c u rsor, cub LE Move cursor left # 1 spaces (PG)
parm_right_cursor, cuf RI Move cursor right # 1 spaces (PG*)
parm_rindex, rin SR Scroll backward # 1 lines (PG)
parm_up_cursor, cuu UP Move cursor up # 1 lines (PG*)
pkey_key, pfkey pk Prog funct key # 1 to type string # 2
pkey_local, pfloc Pi Prog funct key # 1 to execute string # 2
pkey_xmit, pfx px Prog funct key # 1 to xmit string # 2
print_screen, mcO ps Print contents of the screen
prtr_off, mc4 pf Turn off the printer
prtr_on, mc5 po Turn on the printer
repeat_char, rep rp Repeat char # 1 # 2 times. (PG*)
reset_lstring, rs l r l Reset terminal completely to sane

modes.
reset_2string, rs2 r2 Reset terminal completely to sane

modes.
reset_3string, rs3 r3 Reset terminal completely to sane

modes.
reset_file, rf rf Name of file containing reset string
restore_cursor, re rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute set row) (PG)
save_cursor, sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll_reverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts St Set a tab in all rows, current column
set_window, wind wi Current window is lines # l - # 2

cols # 3 - # 4
tab, ht t a Tab to next 8 space hardware tab stop
to_status_line, tsl ts Go to status line, column # 1
underline_ohar, uc uc Underscore one char and move past it
up_half_line, hu hu Half-line up (reverse 1/2 linefeed)
init_prog, iprog iP Path name of program for init
key_al, kal K1 Upper left of keypad
key_a3, ka3 K3 Upper right of keypad
key_b2, kb2 K2 Center of keypad
key_cl, kcl K4 Lower left of keypad
key_c3, kc3 K5 Lower right of keypad
prtr_non, mc5p pO Turn on the printer for # 1 bytes

5/86 - 6 -

TERMINFO (4)

A Sample Entry
The following entry, which describes the Concept-100, is
among the more complex entries in the terminfo file as of
this writing.

conceptlOO | cl00| concept | cl04 | c l00-4p | concept 100,
am, bel=AG, b lank= \EH, b l ink=\EC, c l ea r=*L$<2*> , cnorm=\Ew,

cols#80, c r = A M $ < 9 > , cubl=*H, cud l=*J , c u f l = \ E = ,
c u p = \ E a % p l % ' '%+%c%p2%' '%+%c,
c u u l = \ E ; , cvv is=\EW, db, d c h l = \ E * A $ < 1 6 * > , d i m = \ E E , d l l = \ E - B $ < 3 * > ,
ed—\E*C$< 16*>, e l = \ E * U $ < 1 6 > , eo, f l a s h = \ E k $ < 2 0 > \ E K , h t = \ t $ < 8 > ,
i l l = \ E * R $ < 3 * > , in, ind="J , . i n d = " J $ < 9 > , i p = $ < 1 6 * > ,
i s2= \EU\Ef \E7 \E5 \E8 \E l \ENH\EK\E\200 \Eo&\200 \Eo \47 \E ,
kbs=*h, k c u b l = \ E > , k c u d l = \ E < , k c u f l = \ E = , k c u u l = \ E ; ,
k f l = \ E 5 , k f 2 = \ E 6 , k f 3 = \ E 7 , khome=\E?,
lines#24, mir, pb#9600, p r o t = \ E I , r e p = \ E r % p l % c % p 2 % ' '%+%c$<.2*>,
r e v = \ E D , r m c u p = \ E v $ < 6 > \ E p \ r \ n , rmi r= \E \200 , r m k x = \ E x ,
r m s o = \ E d \ E e , r m u l = \ E g , rmu l= \Eg , sgr0=\EN\200,
s m c u p = \ E U \ E v 8p\Ep\r , smi r= \E"P , smkx=\EX, smso= \EE\ED,
s m u l = \ E G , tabs, ul, v t#8 , xenl,

Entries may continue onto multiple lines by placing
white space at the beginning of each line except the first.
Comments may be included on lines beginning with
"#". Capabilities in terminfo are of three types:
Boolean capabilities which indicate that the terminal has
some particular feature, numeric capabilities giving the
size of the terminal or the size of particular delays, and
string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that
the Concept has automatic margins (i.e., an automatic
return and linefeed when the end of a line is reached) is
indicated by the capability am. Hence the description of
the Concept includes am. Numeric capabilities are
followed by the character '# ' and then the value. Thus
cols, which indicates the number of columns the
terminal has, gives the value '80' for the Concept.
Finally, string valued capabilities, such as el (clear to
end of line sequence) are given by the two-character
code, an '= ' , and then a string ending at the next
following ','• A delay in milliseconds may appear
anywhere in such a capability, enclosed in $ < . . >
brackets, as in e l = \ E K $ < 3 > , and padding characters
are supplied by tputs to provide this delay. The delay
can be either a number, e.g., '20', or a number followed
by an '*', i.e., '3*'. A '*' indicates that the padding
required is proportional to the number of lines affected

5/86 - 7 -

TERMINFO (4)

by the operation, and the amount given is the per-
affected-unit padding required. (In the case of insert
character, the factor is still the number of lines affected.
This is always one unless the terminal has xenl and the
software uses it.) When a '*' is specified, it is sometimes
useful to give a delay of the form '3.5' to specify a delay
per unit to tenths of milliseconds. (Only one decimal
place is allowed.)
A number of escape sequences are provided in the string
valued capabilities for easy encoding of characters there.
Both \ E and \ e map to an ESCAPE character, *x maps
to a control-x for any appropriate x, and the sequences
\ n \I \ r \ t \ b \ f \ s give a newline, linefeed, return,
tab, backspace, formfeed, and space. Other escapes
include for *, \ \ for \ , \ , for comma, \ : for :, and \0
for null. (\0 will produce \200, which does not terminate
a string but behaves as a null character on most
terminals.) Finally, characters may be given as three
octal digits after a \ .
Sometimes individual capabilities must be commented
out. To do this, put a period before the capability
name. For example, see the second ind in the example
above.

Preparing Descriptions
We now outline how to prepare descriptions of terminals.
The most effective way to prepare a terminal description
is by imitating the description of a similar terminal in
terminfo and to build up a description gradually, using
partial descriptions with vi to check that they are
correct. Be aware that a very unusual terminal may
expose deficiencies in the ability of the terminfo file to
describe it or bugs in vi. To easily test a new terminal
description you can set the environment variable
TERMINFO to a pathname of a directory containing the
compiled description you are working on and programs
will look there rather than in /usr/ l ib / terminfo. To get
the padding for insert line right (if the terminal
manufacturer did not document it) a severe test is to
edit /etc/passwd at 9600 baud, delete 16 or so lines from
the middle of the screen, then hit the !u' key several
times quickly. If the terminal messes up, more padding
is usually needed. A similar test can be used for insert
character.

Basic Capabilities
The number of columns on each line for the terminal is
given by the cols numeric capability. If the terminal is
a CRT, then the number of lines on the screen is given

5/86 - 8 -

TERMINFO (4)

by the lines capability. If the terminal wraps around to
the beginning of the next line when it reaches the right
margin, then it should have the a m capability. If the
terminal can clear its screen, leaving the cursor in the
home position, then this is given by the clear string
capability. If the terminal overstrikes (rather than
clearing a position when a character is struck over) then
it should have the os capability. If the terminal is a
printing terminal, with no soft copy unit, give it both he
and os. (os applies to storage scope terminals, such as
TEKTRONIX 4010 series, as well as hard copy and APL
terminals.) If there is a code to move the cursor to the
left edge of the current row, give this as cr. (Normally
this will be carriage return, control M.) If there is a code
to produce an audible signal (bell, beep, etc) give this as
bel.
If there is a code to move the cursor one position to the
left (such as backspace) that capability should be given
as c u b l . Similarly, codes to move to the right, up, and
down should be given as c u f l , c u u l , and c u d l . These
local cursor motions should not alter the text they pass
over, for example, you would not normally use ' c u f l = '
because the space would erase the character moved over.
A very important point here is that the local cursor
motions encoded in terminfo are undefined at the left
and top edges of a CRT terminal. Programs should
never attempt to backspace around the left edge, unless
bw is given, and never attempt to go up locally off the
top. In order to scroll text up, a program will go to the
bottom left corner of the screen and send the ind (index)
string.
To scroll text down, a program goes to the top left
corner of the screen and sends the ri (reverse index)
string. The strings ind and ri are undefined when not
on their respective corners of the screen.
Parameterized versions of the scrolling sequences are
indn and rin which have the same semantics as ind and
ri except that they take one parameter, and scroll that
many lines. They are also undefined except at the
appropriate edge of the screen.
The a m capability tells whether the cursor sticks at the
right edge of the screen when text is output, but this
does not necessarily apply to a c u f l from the last
column. The only local motion which is defined from
the left edge is if bw is given, then a c u b l from the left
edge will move to the right edge of the previous row. If
bw is not given, the effect is undefined. This is useful

5/86 - 9 -

TERMINFO(4)

for drawing a box around the edge of the screen, for
example. If the terminal has switch selectable automatic
margins, the terminfo file usually assumes that this is on;
i.e., am. If the terminal has a command which moves to
the first column of the next line, that command can be
given as nel (newline). It does not matter if the
command clears the remainder of the current line, so if
the terminal has no cr and If it may still be possible to
craft a working nel out of one or both of them.
These capabilities suffice to describe hardcopy and
glass-tty terminals. Thus the model 33 teletype is
described as
33 | tty33 | tty | model 33 teletype,
bel=*G, cols#72, cr="M, cudl=~J, he, ind=~J, os,
while the Lear Siegler ADM-3 is described as
adm3 | 3 | lsi adm3,
am, bel=*G, clear="Z, cols#80, cr=*M, cubl=*H, cudl="J,
ind=~J, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters
in the terminal are described by a parameterized string
capability, with printf(3S) like escapes %x in it. For
example, to address the cursor, the cup capability is
given, using two parameters: the row and column to
address to. (Rows and columns are numbered from zero
and refer to the physical screen visible to the user, not to
any unseen memory.) If the terminal has memory
relative cursor addressing, that can be indicated by
mrcup.
The parameter mechanism uses a stack and special %
codes to manipulate it. Typically a sequence will push
one of the parameters onto the stack and then print it in
some format. Often more complex operations are
necessary.
The % encodings have the following meanings:
%%
%d
%2d
%3d
%02d
%03d
%c
%s

outputs '%'
print pop() as in printf
print pop() like %2d
print pop() like %3d

as in printf
print pop() gives %c
print pop() gives %s

push ith parm
set variable [a-z] to pop()

86 - 10 -

TERMINFO (4)

%g[a-z] get variable [a-z] and push it
%'c' char constant c
%{nn} integer constant nn

%+ %- %*%/%m
arithmetic (%m is mod): push(pop()
op pop())

%& %\ %" bit operations: push(pop() op pop())
%= %> %< logical operations: push(pop()

op popQ)
%\%~ unary operations push(op pop())
%i add 1 to first two parms (for ANSI

terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-if's are possible ala Algol 68:
%? c. %t b. %e c9 %t b9 %e c,
%t bg %e c^ %t b^ %e %;
c- are conditions, d- are bodies,

l ' l

Binary operations are in postfix form with the operands
in the usual order. That is, to get x-5 one would use
"%gx%{5}%-
Consider the HP2645, which, to get to row 3 and column
12, needs to be sent \E&al2c03Y padded for 6
milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column
are printed as two digits. Thus its cup capability is
cup=6\E&%p2%2dc%pl%2dY.
The Microterm ACT-IY needs the current row and
column sent preceded by a "T, with the row and column
simply encoded in binary, cup=*T%pl%c%p2%c.
Terminals which use %c need to be able to backspace
the cursor (cubl) . and to move the cursor up one line on
the screen (cuul) . This is necessary because it is not
always safe to transmit \ n TD and \r , as the system
may change or discard them. .(The library routines
dealing with terminfo set tty modes so that tabs are
never expanded, so \ t is safe to send. This turns out to
be essential for the Ann Arbor 4080.)
A final example is the LSI ADM-3a, which uses row and
column offset by a blank character, thus
C U p = \ E = % p l % ' '%+%c%P2%' '%+%c. After
sending ' \ E = ' , this pushes the first parameter, pushes
the ASCII value for a space (32), adds them (pushing the
sum on the stack in place of the two previous values)

- 11 -

TERMINFO (4)

and outputs that value as a character. Then the same is
done for the second parameter. More complex arithmetic
is possible using the stack.
If the terminal has row or column absolute cursor
addressing, these can be given as single parameter
capabilities hpa (horizontal position absolute) and v p a
(vertical position absolute). Sometimes these are shorter
than the more general two parameter sequence (as with
the hp2645) and can be used in preference to cup . If
there are parameterized local motions (e.g., move n
spaces to the right) these can be given as cud, cub, cuf,
and cuu with a single parameter indicating how many
spaces to move. These are primarily useful if the
terminal does not have cup, such as the TEKTRONIX
4025.

Cursor Motions
If the terminal has a fast way to home the cursor (to
very upper left corner of screen) then this can be given
as home; similarly a fast way of getting to the lower
left-hand corner can be given as 11; this may involve
going up with c u u l from the home position, but a
program should never do this itself (unless 11 does)
because it can make no assumption about the effect of
moving up from the home position. Note that the home
position is the same as addressing to (0,0): to the top left
corner of the screen, not of memory. (Thus, the \EH
sequence on HP terminals cannot be used for home.)

Area Clears
If the terminal can clear from the current position to the
end of the line, leaving the cursor where it is, this should
be given as el. If the terminal can clear from the current
position to the end of the display, then this should be
given as ed. E d is only defined from the first column of
a line. (Thus, it can be simulated by a request to delete
a large number of lines, if a true ed is not available.)

Insert/delete line
If the terminal can open a new blank line before the line
where the cursor is, this should be given as il l; this is
done only from the first position of a line. The cursor
must then appear on the newly blank line. If the
terminal can delete the line which the cursor is on, then
this should be given as dl l ; this is done only from the
first position on the line to be deleted. Versions of i l l
and d l l which take a single parameter and insert or
delete that many lines can be given as il and dl. If the
terminal has a settable scrolling region (like the vtlOO)
the command to set this can be described with the csr

5/86 - 12 -

TERMINFO (4)

capability, which takes two parameters: the top and
bottom lines of the scrolling region. The cursor position
is, alas, undefined after using this command. It is
possible to get the effect of insert or delete line using this
command - the sc and rc (save and restore cursor)
commands are also useful. Inserting lines at the top or
bottom of the screen can also be done using ri or ind on
many terminals without a true insert/delete line, and is
often faster even on terminals with those features.
If the terminal has the ability to define a window as part
of memory, which all commands affect, it should be
given as the parameterized string wind. The four
parameters are the starting and ending lines in memory
and the starting and ending columns in memory, in that
order.
If the terminal can retain display memory above, then
the da capability should be given; if display memory can
be retained below, then db should be given. These
indicate that deleting a line or scrolling may bring non-
blank lines up from below or that scrolling back with ri
may bring down non-blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with
respect to insert/delete character which can be described
using terminfo. The most common insert/delete
character operations affect only the characters on the
current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and
the Perkin Elmer Owl, make a distinction between typed
and untyped blanks on the screen, shifting upon an
insert or delete only to an untyped blank on the screen
which is either eliminated, or expanded to two untyped
blanks. You can determine the kind of terminal you
have by clearing the screen and then typing text
separated by cursor motions. Type abc def using local
cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the
terminal in insert mode. If typing characters causes the
rest of the line to shift rigidly and characters to fall off
the end, then your terminal does not distinguish between
blanks and untyped positions. If the abc shifts over to
the def which then move together around the end of the
current line and onto the next as you insert, you have
the second type of terminal, and should give the
capability in, which stands for insert null. While these
are two logically separate attributes (one line vs.
multiline insert mode, and special treatment of untyped
spaces) we have seen no terminals whose insert mode

5/86 - 13 -

TERMINFO (4)

cannot be described with the single attribute.
Terminfo can describe both terminals which have an
insert mode, and terminals which send a simple sequence
to open a blank position on the current line. Give as
smir the sequence to get into insert mode. Give as rmir
the sequence to leave insert mode. Now give as i ch l
any sequence needed to be sent just before sending the
character to be inserted. Most terminals with a true
insert mode will not give ichl ; terminals which send a
sequence to open a screen position should give it here.
(If your terminal has both, insert mode is usually
preferable to i ch l . Do not give both unless the terminal
actually requires both to be used in combination.) If post
insert padding is needed, give this as a number of
milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single
character may also be given in ip. If your terminal
needs both to be placed into an 'insert mode' and a
special code to precede each inserted character, then
both smir /rmir and i ch l can be given, and both will be
used. The ich capability, with one parameter, n, will
repeat the effects of i ch l n times.

It is occasionally necessary to move around while in
insert mode to delete characters on the same line (e.g., if
there is a tab after the insertion position). If your
terminal allows motion while in insert mode you can give
the capability mir to speed up inserting in this case.
Omitting mir will affect only speed. Some terminals
(notably Datamedia's) must not have mir because of the
way their insert mode works.
Finally, you can specify d c h l to delete a single
character, dch with one parameter, n, to delete n
characters, and delete mode by giving smdc and rmdc
to enter and exit delete mode (any mode the terminal
needs to be placed in for d c h l to work).
A command to erase n characters (equivalent to
outputting n blanks without moving the cursor) can be
given as ech with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display
attributes, these can be represented in a number of
different ways. You should choose one display form as
standout mode, representing a good, high contrast, easy-
on-the-eyes, format for highlighting error messages and
other attention getters. (If you have a choice, reverse
video plus half-bright is good, or reverse video alone.)
The sequences to enter and exit standout mode are given

5/86 - 14 -

TERMINFO (4)

as smso and rmso, respectively. If the code to change
into or out of standout mode leaves one or even two
blank spaces on the screen, as the TVI 912 and Teleray
1061 do, then x m c should be given to tell how many
spaces are left.
Codes to begin underlining and end underlining can be
given as smul and rmul respectively. If the terminal
has a code to underline the current character and move
the cursor one space to the right, such as the Microterm
Mime, this can be given as uc.
Other capabilities to enter various highlighting modes
include blink (blinking) bold (bold or extra bright) dim
(dim or half-bright) invis (blanking or invisible text)
prot (protected) rev (reverse video) sgrO (turn off all
attribute modes) smacs (enter alternate character set
mode) and rmacs (exit alternate character set mode).
Turning on any of these modes singly may or may not
turn off other modes.
If there is a sequence to set arbitrary combinations of
modes, this should be given as sgr (set attributes),
taking 7 parameters. Each parameter is either 0 or 1, as
the corresponding attribute is on or off. The 7
parameters are, in order: standout, underline, reverse,
blink, dim, bold, alternate character set. Not all modes
need be supported by sgr, only those for which
corresponding separate attribute commands exist.
Terminals with the "magic cookie" glitch (xmc) deposit
special "cookies" when they receive mode-setting
sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals,
such as the HP 2621, automatically leave standout mode
when they move to a new line or the cursor is addressed.
Programs using standout mode should exit standout
mode before moving the cursor or sending a newline,
unless the msgr capability, asserting that it is safe to
move in standout mode, is present.
If the terminal has a way of flashing the screen to
indicate an error quietly (a bell replacement) then this
can be given as flash; it must not move the cursor.
If the cursor needs to be made more visible than normal
when it is not on the bottom line (to make, for example,
a non-blinking underline into an easier to find block or
blinking underline) give this sequence as cvvis. If there
is a way to make the cursor completely invisible, give
that as civis. The capability cnorm should be given
which undoes the effects of both of these modes.

- 15 -

TERMINFO (4)

If the terminal needs to be in a special mode when
running a program that uses these capabilities, the codes
to enter and exit this mode can be given as smcup and
rmcup. This arises, for example, from terminals like
the Concept with more than one page of memory. If the
terminal has only memory relative cursor addressing and
not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor
addressing to work properly. This is also used for the
TEKTRONIX 4025, where smcup sets the command
character to be the one used by terminfo.
If your terminal correctly generates underlined characters
(with no special codes needed) even though it does not
overstrike, then you should give the capability ul. If
overstrikes are erasable with a blank, then this should be
indicated by giving eo.

Keypad
If the terminal has a keypad that transmits codes when
the keys are pressed, this information can be given. Note
that it is not possible to handle terminals where the
keypad only works in local (this applies, for example, to
the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as smkx and
rmkx. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow,
up arrow, down arrow, and home keys can be given as
k c u b l , k c u f l , k c u u l , k c u d l , and khome respectively.
If there are function keys such as fO, f l , ..., flO, the
codes they send can be given as kfO, k f l , kflO. If
these keys have labels other than the default fO through
flO, the labels can be given as lfO, l f l , ..., lflO. The
codes transmitted by certain other special keys can be
given: kll (home down), kbs (backspace), ktbc (clear all
tabs), kctab (clear the tab stop in this column), kclr
(clear screen or erase key), k d c h l (delete character),
k d l l (delete line), krmir (exit insert mode), kel (clear to
end of line), ked (clear to end of screen), k ich l (insert
character or enter insert mode), k i l l (insert line), knp
(next page), kpp (previous page), kind (scroll
forward/down), kri (scroll backward/up), khts (set a
tab stop in this column). In addition, if the keypad has
a 3 by 3 array of keys including the four arrow keys, the
other five keys can be given as k a l , ka3, kb2, k c l , and
kc3. These keys are useful when the effects of a 3 by 3
directional pad are needed.

Tabs and Initialization
If the terminal has hardware tabs, the command to
advance to the next tab stop can be given as ht (usually

- 16 -

TERMINFO (4)

control I). A "backtab" command which moves leftward
to the next tab stop can be given as cbt. By convention,
if the teletype modes indicate that tabs are being
expanded by the computer rather than being sent to the
terminal, programs should not use ht or cbt even if they
are present, since the user may not have the tab stops
properly set. If the terminal has hardware tabs which
are initially set every n spaces when the terminal is
powered up, the numeric parameter it is given, showing
the number of spaces the tabs are set to. This is
normally used by the tset command to determine
whether to set the mode for hardware tab expansion, and
whether to set the tab stops. If the terminal has tab
stops that can be saved in nonvolatile memory, the
terminfo description can assume that they are properly
set.
Other capabilities include is l , is2, and is3, initialization
strings for the terminal, iprog, the path name of a
program to be run to initialize the terminal, and if, the
name of a file containing long initialization strings.
These strings are expected to set the terminal into modes
consistent with the rest of the terminfo description.
They are normally sent to the terminal, by the tset
program, each time the user logs in. They will be
printed in the following order: is l ; is2; setting tabs using
tbc and hts; if; running the program iprog; and finally
is3. Most initialization is done with is2. Special
terminal modes can be set up without duplicating strings
by putting the common sequences in is2 and special
cases in i s l and is3. A pair of sequences that does a
harder reset from a totally unknown state can be
analogously given as rs l , rs2, rf, and rs3, analogous to
is2 and if. These strings are output by the reset
program, which is used when the terminal gets into a
wedged state. Commands are normally placed in rs2
and rf only if they produce annoying effects on the
screen and are not necessary when logging in. For
example, the command to set the vtlOO into 80-column
mode would normally be part of is2, but it causes an
annoying glitch of the screen and is not normally needed
since the terminal is usually already in 80 column mode.

If there are commands to set and clear tab stops, they
can be given as tbc (clear all tab stops) and hts (set a
tab stop in the current column of every row). If a more
complex sequence is needed to set the tabs than can be
described by this, the sequence can be placed in is2 or if.
Certain capabilities control padding in the teletype
driver. These are primarily needed by hard copy

- 17 -

TERMINFO (4)

terminals, and are used by the tset program to set
teletype modes appropriately. Delays embedded in the
capabilities cr, ind, c u b l , ff, and tab will cause the
appropriate delay bits to be set in the teletype driver. If
pb (padding baud rate) is given, these values can be
ignored at baud rates below the value of pb.
Miscel laneous
If the terminal requires other than a null (zero) character
as a pad, then this can be given as pad. Only the first
character of the p a d string is used.
If the terminal has an extra "status line" that is not
normally used by software, this fact can be indicated. If
the status line is viewed as an extra line below the
bottom line, into which one can cursor address normally
(such as the Heathkit hl9's 25th line, or the 24th line of
a vtlOO which is set to a 23-line scrolling region), the
capability hs should be given. Special strings to go to
the beginning of the status line and to return from the
status line can be given as tsl and fsl. (fsl must leave
the cursor position in the same place it was before tsl. If
necessary, the sc and rc strings can be included in tsl
and fsl to get this effect.) The parameter tsl takes one
parameter, which is the column number of the status line
the cursor is to be moved to. If escape sequences and
other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which
turns off the status line (or otherwise erases its contents)
should be given as dsl. If the terminal has commands to
save and restore the position of the cursor, give them as
sc and rc. The status line is normally assumed to be the
same width as the rest of the screen, e.g., cols. If the
status line is a different width (possibly because the
terminal does not allow an entire line to be loaded) the
width, in columns, can be indicated with the numeric
parameter wsl.
If the terminal can move up or down half a line, this can
be indicated with hu (half-line up) and hd (half-line
down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy
terminal can eject to the next page (form feed), give this
as ff (usually control L).
If there is a command to repeat a given character a
given number of times (to save time transmitting a large
number of identical characters) this can be indicated
with the parameterized string rep. The first parameter
is the character to be repeated and the second is the
number of times to repeat it. Thus, tparm(repeat_char,

- 18 -

TERMINFO (4)

'x', 10) is the same as 'xxxxxxxxxx'.
If the terminal has a settable command character, such
as the TEKTRONIX 4025, this can be indicated with
cmdch. A prototype command character is chosen
which is used in all capabilities. This character is given
in the cmdch capability to identify it. The following
convention is supported on CTIX: The environment is to
be searched for a C C variable, and if found, all
occurrences of the prototype character are replaced with
the character in the environment variable.
Terminal descriptions that do not represent a specific
kind of known terminal, such as switch, dialup, patch,
and network, should include the gn (generic) capability
so that programs can complain that they do not know
how to talk to the terminal. (This capability does not
apply to virtual terminal descriptions for which the
escape sequences are known.)
If the terminal uses xon/xoff handshaking for flow
control, give xon. Padding information should still be
included so that routines can make better decisions
about costs, but actual pad characters will not be
transmitted.
If the terminal has a "meta key" which acts as a shift
key, setting the 8th bit of any character transmitted,
this fact can be indicated with km. Otherwise, software
will assume that the 8th bit is parity and it will usually
be cleared. If strings exist to turn this "meta mode" on
and off, they can be given as s m m and rmm.
If the terminal has more lines of memory than will fit on
the screen at once, the number of lines of memory can be
indicated with lm. A value of l m # 0 indicates that the
number of lines is not fixed, but that there is still more
memory than fits on the screen.
If the terminal is one of those supported by the UNIX
virtual terminal protocol, the terminal number can be
given as vt .
Media copy strings which control an auxiliary printer
connected to the terminal can be given as mcO: print the
contents of the screen, mc4: turn off the printer, and
mc5: turn on the printer. When the printer is on, all
text sent to the terminal will be sent to the printer. It is
undefined whether the text is also displayed on the
terminal screen when the printer is on. A variation
mc5p takes one parameter, and leaves the printer on for
as many characters as the value of the parameter, then
turns the printer off. The parameter should not exceed

- 19 -

TERMINFO (4)

255. All text, including mc4, is transparently passed to
the printer while an mc5p is in effect.
Strings to program function keys can be given as pfkey,
pfloc, and pfx. Each of these strings takes two
parameters', the function key number to program (from 0
to 10) and the string to program it with. Function key
numbers out of this range may program undefined keys
in a terminal dependent manner. The difference between
the capabilities is that pfkey causes pressing the given
key to be the same as the user typing the given string;
pfloc causes the string to be executed by the terminal in
local; and pfx causes the string to be transmitted to the
computer.
If the terminal is capable of drawing solid line boxes,
possibly by changing to a special character set, this may
be specified. Eight single-line drawing characters may be
given. The eight eight characters that may be specified
represent the top left corner, top right corner, bottom
left corner, bottom right corner left side, right side, top
side, and bottom side of a solid line box. The four
corner are specified with ldul, ldur, ldbl, and ldbr.
The four sides may be specified with ldvl, ldvr, ldht,
and ldhb. If the terminal must be in a special mode to
draw the line characters, specify the necessary sequences
to enter and exit the mode as one of the six highlight
modes (alternate character set is usually a good choice);
then give the mode number as a numeric value to ldatt.
The correspondence of highlight modes and numeric
values is as follows:
1 underline
2 reverse
3 blink
4 dim
5 bold
6 alternate character set
7 standout.

Glitches and Braindamage
Hazeltine terminals, which do not allow characters to
be displayed should indicate he.
Terminals which ignore a linefeed immediately after an
a m wrap, such as the Concept and vtlOO, should
indicate xenl.
If el is required to get rid of standout (instead of merely
writing normal text on top of it), xhp should be given.
Teleray terminals, where tabs turn all characters moved
over to blanks, should indicate x t (destructive tabs).
This glitch is also taken to mean that it is not possible
to position the cursor on top of a "magic cookie", that

- 20 -

TERMINFO (4)

to erase standout mode it is instead necessary to use
delete and insert line.
The Beehive Superbee, which is unable to correctly
transmit the escape or control C characters, has xsb,
indicating that the f l key is used for escape and f2 for
control C. (Only certain Superbees have this problem,
depending on the ROM.)
Other specific terminal problems may be corrected by
adding more capabilities of the form x i .

Similar Terminals
If there are two very similar terminals, one can be
defined as being just like the other with certain
exceptions. The string capability use can be given with
the name of the similar terminal. The capabilities given
before use override those in the terminal type invoked
by use. A capability can be cancelled by placing xx@ to
the left of the capability definition, where xx is the
capability. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,
defines a 2621-nl that does not have the smkx or rmkx
capabilities, and hence does not turn on the function key
labels when in visual mode. This is useful for different
modes for a terminal, or for different user preferences.

FILES
/usr/lib/terminfo/?/* files containing terminal

descriptions
SEE ALSO

tic(lM), curses(3X), printf(3S), termcap(4), term(5).

- 21 -

T T Y T Y P E (4)

NAME
ttytype - list of terminal types by terminal number

DESCRIPTION
Ttytype is a text file that contains, for each terminal
configured, the terminal type as described in termcap(4).
It is used by tset(l) when that program sets the TERM
environment variable.
A line in ttytype consists of a terminal name (one of the
abbreviations from the first field of the termcap entry),
followed by a space, followed by the special file name of
the terminal without the initial / d e v / .

EXAMPLES
pt ttyOOO

FILES
/etc/ttytype

SEE ALSO
tset(l), termcap(4).

TZ (4)

NAME
TZ - time zone file

D E S C R I P T I O N
The / e t c / T Z file describes the time zone for the locality
of the CTIX system. The file contains a single entry of
the form:

zSTn[zDT]
where zST is the standard three-letter abbreviation for
the standard time zone; n is the difference in hours from
Greenwich time; and zDT is the standard three-letter
abbreviation for daylight saving time, if observed in the
area.
The earth is divided into twenty-four (0 to 23)
longitudinal standard time zones. Adjacent time zones
are one hour (15 degrees) apart, beginning at Greenwich
(0 degrees), with some variations in local legal time.
For the meridians of North America the principal time
zones are:

AST4ADT

EST5EDT

CST6CDT

MST7MDT

PST8PDT

YST9YDT

HST10HDT

NSTl lNDT

FILES

/etc/TZ
S E E A L S O MightyFrame Administrator's Reference Manual.

Atlantic Standard Time/Daylight
Saving Time (60 degrees)
Eastern Standard Time/Daylight
Saving Time (75 degrees)
Central Standard Time/Daylight Saving
Time (90 degrees)
Mountain Standard Time/Daylight
Saving Time (105 degrees)
Pacific Standard Time/Daylight Saving
Time (120 degrees)
Yukon Standard Time/Daylight Saving
Time (135 degrees)
Hawaiian Standard Time/Daylight
Saving Time (150 degrees)
Nome Standard Time/Daylight Saving
Time (165 degrees)

- 1 -

UTMP (4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
^ inc lude < s y s / t y p e s . h >
^ inc lude < u t m p . h >

DESCRIPTION
These files, which hold user and accounting information
for such commands as u>Ao(l), u>rife(l), and login(1),
have the following structure as defined by < u t m p . h > :
#de f ine UTMP_FILE " / e t c / u t m p "
#de f ine W T M P . J I L E " / e t c / w t m p "
#de f ine u t_name ut_user

s t ruc t u tmp {
char ut_user[8];

/ » User login name * /
char ut id [4];

/ * / e t c / i n i t t ab id (usually line #) */
char ut_line[l2];

/ » device name (console, lnxx) */
short ut _pid;

/ * process id » /
short u t_type;

/* type of entry * /
s t ruc t exi t_status {

short e_termination;
/ * Process termination s ta tus */

short e_exit;
/ * Process exit s t a tu s * /

} ut_exit;
/ » The exit s ta tus of a process
* marked as DEAD_PROCESS. */

t ime_t ut_time;
/ * time entry was made »/

};

- 1 -

UTMP (4)

/* Definitions for ut_type
define EMPTY 0
define RUN_LVL 1
define BOOT_TIME
#define OLD_TIME
#define NEW_TIME
#define INIT_PROCESS

#define LOGIN_PROCESS

#define USER_PROCESS

define DEAD_PROCESS
#define ACCOUNTING
define UTMAXTYPE

2
3
4
5
/* Process spawned by "init" */
8
/ • A "getty" process waiting for login • /
7
/ • A user process */
8
9
ACCOUNTING
/* Largest legal value of ut_type «/

/ * Special strings or formats used in the " u t j i n e " field */
/ * when accounting for something other than a process */
/ * No str ing for the u t j i n e field can be more than 11 * /
/» chars + a NULL in length * /
#de f ine RUNLVL_MSG "run-level % c "
#de f ine BOOT_MSG
#def ine OTIME_MSG
#def ine NTIME_MSG

"system boo t"
"old t ime"
"new t ime"

FILES

SEE

/usr/include/utmp.h
/etc/utmp
/etc/wtmp

ALSO
login(l), who(l), write(l), getut(3C).

- 2 -

INTRO (319)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as
macro packages, character set tables, etc.

- 1 -

A S C I I (5)

N A M E
ascii - map of ASCII character set

SYNOPSIS
cat / u s r / p u b / a s c i i

DESCRIPTION
Ascii is a map of the ASCII character set, giving both
octal and hexadecimal equivalents of each character, to
be printed as needed. It contains:

000 nu 1 001 soh 002 s t x 003 e t x 004 eot 006 enq 006 ack 007 be 1
010 bs Oi l h t 012 nl 013 v t 014 up 016 cr 016 so 017 s i
020 d i e 021 d e l 022 dc2 023 dc3 024 de4 026 nak 026 syn 027 e t b
030 can 031 em 032 sub 033 esc 034 f s 035 g« 036 r s 037 us
040 sp 041 1 042 it 043 # 044 t 046 % 046 & 047 '

050 (051) 062 • 063 + 064 , 066 - 066 067 /
060 0 091 1 062 2 063 3 064 4 066 6 066 6 067 7
070 8 071 9 072 073 ; 074 < 076 = 076 > 077 t
100 3 101 A 102 B 103 C 104 D 106 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 116 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 126 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 136 1 136 - 137
140 \ 141 a 142 b 143 C 144 d 145 e 146 f 147 g
150 h 161 i 162 j 163 k 164 1 166 m 156 n 167 0
100 P 161 q 162 r 163 8 164 t 165 u 166 V 167 w
170 X 171 y 172 i 173 { 174 176 } 176 - 177 de l

00 nu 1 01 s oh 02 s t x 03 e t x 04 eot 05 enq 06 ack 07 be 1
08 bs OB ht 0a nl 0b v t 0c np Od cr Oe so Of s i
10 d i e 11 d e l 12 dc2 13 dc3 14 dc4 16 nak 16 syn 17 e t b
18 can 10 em l a sub lb esc l c f s Id gs l e r s I f us
20 sp 21 ! 22 n 23 # 24 $ 25 % 26 & 27 '

28 (28) 2a • 2b + 2c , 2d - 2e 2f /
30 0 31 1 32 2 33 3 34 4 36 6 36 6 37 7
38 8 39 9 3a 3b ; 3c < 3d 3e > 3f ?

40 a 41 A 42 B 43 C 44 D 46 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4 f O
60 P 61 Q 52 R 63 S 64 T 66 U 66 V 67 W
68 X 59 Y 5a Z 6b [6c \ 6d 1 6e * 6 f
60 V 61 a 62 b 63 c 64 d 66 e 66 f 67 g
68 h 69 i 6a j 6b k 6c 1 6d m 6e n 6 f 0
70 P 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 X 79 y 7a i 7b { 7c 7d } 7e - 7 f de l

FILES
/usr/pub/ascii

DEVICES (5)

NAME
Devices - configuration file for uucp communications
lines

SYNOPSIS
/ usr / l ib / u u c p / D evices

DESCRIPTION
/ u s r / l i b / u u c p / D e v i c e s is a text file that contains
configuration specifications for communications devices,
such as modems or direct lines. Each line in the file
describes a single device and how it communicates with a
remote system. Comment lines begin with a pound sign
(#) . The UUCP system uses the
/ u s r / l i b / u u c p / D e v i c e s file in conjunction with the
/ u s r / l i b / u u c p / D i a l e r s file to place a call.
Each line containes five or more fields delimited by
spaces. The first field is the line type as specified in the
/ u s r / l i b / u u c p / S y s t e m s file; for direct lines, the first
field is the name of the remote system.
The remaining fields give the device name; the calling
device indicator (such as for 801 calling units), if used;
the speed, which may be specified as ANY; and the
name of the caller as specified in the
/ u s r / l i b / u u c p / D i a l e r s file. The last field, the name
of the caller, may be followed by a token format
(containing\D or \T); pairs of these dialer name/token
format fields can De repeated if more than one dialer
must be used in succession to make the connection. If
no token format is specified, a \ D is used for a dialer
name that references the / u s r / l i b / u u c p / D i a l e r s file; a
\ T is used for internal dialer types such as 801. Unused
fields are replaced by a hyphen (—).

EXAMPLE
The following entry configures a 1200-baud intelligent
modem on device contty for use with UUCP:

ACU contty - 1200 penril
FILES

/usr/lib/uucp/Devices
/usr/lib / uucp/Dialers
/usr/lib/uucp/Systems

SEE ALSO
uucp(lC), dial(3C), Dialers(5).
MightyFrame Administrator's Reference Manual.

5/86 - 1 -

DIALERS(5)

NAME
Dialers - ACU/modem calling protocols

S Y N O P S I S
/ u s r / l i b / u u c p / D i a l e r s

D E S C R I P T I O N
Dialers describes the call-placing protocols for
intelligent modems, ACUs (automatic calling units), and
other serial switched devices such as data switches.
When a connection is requested via the UUCP system,
CTIX looks for a description of the called system in the
/ u s r / l i b / u u c p / S y s t e m s file, where the type of line is
specified for connection to that system. CTIX then
checks the / u s r / l i b / u u c p / D e v i c e s file for a
description of the line, its speed and its Dialers name.
The Dialers name given in the Devices file corresponds
to the first field of the Dialers file.

Dialers is a text file that contains the dialing script for
the modems that are configured in the Devices file.
Each description begins on a new line and has three or
more fields, delimited by spaces.
The first field of the description is the name of the
modem or device as specified in the Devices file.
The second field specifies the codes used by that
particular modem for secondary dial tone (=) and pause
(-) ; this field enables CTIX to translate from the
standard 801 codes (= and —) to the special characters
used by that particular device.
The remaining fields are the chat script that is necessary
to establish communication with the modem.
The modem chat script is composed of command strings
to the modem and response strings expected in return
from the modem. The strings consist of ASCII and
control characters that are recognized by the individual
modem or device. Spaces delimit the end of a send or
receive sequence. The first string is an expect string.
Several modems and switches are already provided in the
Dialers file. Additional devices can be configured by
studying the manufacturers' manuals to determine the
appropriate send/receive sequences for other modems.
In the string sequences of the send/receive fields the
following escape sequences represent control codes:
\ d d d Octal number.
\ c Suppress new line (valid only after \ r or at the

end of a field).

5/86 - 1 -

DIALERS(5)

\ d Delay (two seconds).
\ D Substitute the telephone number (from the

/ u s r / l i b / u u c p / S y s t e m s file or c«(lC)),
without character translation.

\ e Turn off echo checking.
\ E Turn on echo checking (for slow devices).
\ K Insert a BREAK.
\ n New-line.
\ p Pause (a slight delay of one-quarter to one-half

second).
\ r Carriage return.
\ T Substitute the telephone number (from the

/ u s r / l i b / u u c p / S y s t e m s file or cu(lC)), with
character translation. Character translation
interprets the 801 codes in the second field and
expands any symbols found in the
/ u s r / l i b / u u c p / D i a l c o d e s file.

Comments delimited by a pound sign (#) , spaces, or
tabs are ignored. Any line terminated by a backslash (\)
continues to the next line.

E X A M P L E
The following example establishes communication with a
Ventel modem:
ventel = & - % "" \ r \ p \ r \ c $ < K \ T % % \ r > \ c ONLINE!

The first field, "ventel," is the name of the modem that
corresponds to a "ventel" caller type in the fifth or
subsequent field of a Devices file entry. The second
field describes the modem's convention for the secondary
dial tone (&) and a pause {%) command. The
remaining fields consist of five strings separated by
spaces. The five strings are interpreted as follows:
1. The first expect string ("") is null.
2. Send to the modem a series of carriage returns to

elicit a prompt.
3. The modem should respond with a dollar sign ($).
4. Send the telephone number (\T) to the modem.
5. Upon connection the modem should respond with the

string 'ONLINE!'.
F I L E S

/usr/ l ib/uucp/Devices
/usr/l ib/uucp/Dialcodes
/usr / l ib/uucp/Systems

5/86

DIALERS(5)

SEE ALSO
uucp(lC), dial(3C), Devices(5).
MightyFrame Administrator's Reference Manual.

5/86 - 3 -

ENVIRON (5)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made
available by exec(2) when a process begins. By
convention, these strings have the form "name=value".
The following names are used by various commands:
PATH The sequence of directory prefixes that sA(l),

timet 1), n«ce(l), nohup(1), etc., apply in
searcning for a file known by an incomplete path
name. The prefixes are separated by colons (:).
Login(1) sets P A T H = : / b i n : / u s r / b i n .

HOME Name of the user's login directory, set by
login(1) from the password file passwd(4).

TERM The kind of terminal for which output is to be
prepared. This information is used by
commands, such as mm(1), or tplot(1G), which
may exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz
where x x x is standard local time zone
abbreviation, n is the difference in hours from
GMT, and zzz is the abbreviation for the
daylight-saving local time zone, if any; for
example, EST5EDT.

Further names may be placed in the environment by the
export command and "name=value" arguments in
«A(1), or by ea:ec(2). It is unwise to conflict with certain
shell variables that are frequently exported by .profile
files: MAIL, PS1, PS2, IFS.

SEE ALSO
env(l), login(l), mm(l), nice(l), nohup(l), time(l),
tplot(lG), sh(l), exec(2), getenv(3C), profile(4), term(5).

- 1 -

E Q N C H A R (5)

N A M E
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn / u s r / p u b / e q n c h a r [files] | trof f [options]
neqn / u s r / p u b / e q n c h a r [files] | nroff [options]

DESCRIPTION
Eqnchar contains troff(1) and nroff character definitions
for constructing characters that are not available on the
Wang Laboratories, Inc. C / A / T phototypesetter. These
definitions are primarily intended for use with egn(l)
and neqn; eqnchar contains definitions for the following
characters:
ciplus © II II square •
citimes tangle / circle O
wig r angle > blot •
-wig = hbar n bullet •
> wig > ppd i prop cc
< Wig < < -> —> empty 0
= wig = < => member e
star # I < < nomem t
bigstar * > > cup u
= dot = ang L cap n
orsign V rang L inct c
andsign A Sdot subset c
= del A thf supset D
oppA V quarter 'A 'subset C
oppE 3 3quarter J/4 .'supset D
angstrom A degree °

= = < = = < = = > = = >

FILES
/ usr/pub/eqnchar

SEE ALSO
eqn(l), nroff(l), troff(l).

FCNTL(5)

NAME
fcntl - file control options

SYNOPSIS
i n c l u d e < f c n t l . h >

DESCRIPTION
The fcntl(2) function provides for control over open files.
T h e include f i le desc r ibes requests a n d arguments t o
fcntl a n d open(2).

/ * Flag values accessible to open(2) and fcntl(2) * /
/ * (The first three can only be set by open) *j
#def ine 0 _ R D 0 N L Y 0
#def ine 0 _ W R 0 N L Y 1
#def ine 0 _ R D W R 2
#def ine 0 _ N D E L A Y 04 / * Non-blocking I/O */
#de f ine 0 _ A P P E N D 010 / * append

(writes guaranteed at the end) * /
#def ine 0 _ S Y N C 020 / * synchronous write option * /
#de f ine 0 _ D I R E C T 020000 / * perform direct I /O * /
^def ine Q_NODIRECT 040000 / * disable direct I /O */

/ * Flag values accessible only to open(2) */
#def ine 0 _ C R E A T 00400 / * open with file create

(uses third open arg)*/
#def ine 0 _ T R U N C 01000 / * open with truncation */
#de f ine 0 _ E X C L 02000 j* exclusive open */

/ * fcntl(2) requests * /
#de f ine F _ D U P F D 0 / * Duplicate fildes * /
#de f ine F_GETFD 1 / * Get fildes flags * /
#def ine F_SETFD 2 / * Set fildes flags * /
#def ine F_GETFL 3 / * Get file flags * /
#de f ine F_SETFL 4 j* Set file flags * /
#de f ine F . G E T L K 5 / * Get blocking file locks * /
#de f ine F_SETLK 6 / * Set or clear file locks and fail

on busy * /
#de f ine F_SETLKW 7 / * Set or clear file locks and wait

on busy * /

/ * file segment locking control structure * /
struct flock {

short Ltype;
short l_whence
long l_start;
long Men; / * if 0 then until EOF */
int 1 p id; / * returned with F_GETLK * /

5/86 - 1 -

FCNTL(5)

j* file segment locking types * /
#def ine F_RDLCK 01
#def ine F_WRLCK 02
#def ine F_UNLCK 03

SEE ALSO
fcntl(2), open(2).

/ * Read lock * /
/ * Write lock */

/ * Remove locks *

5/86 - 2 -

M A N (5)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nrof f —man files

DESCRIPTION
These troff(1) macros are used to lay out the format of
the entries of this manual. A skeleton entry may be
found in the file / u s r / m a n / u _ m a n / m a n O / s k e l e t o n .
These macros are used by the man(l) command.
Any text argument below may be one to six "words".
Double quotes ("") may be used to include blanks in a
"word". If text is empty, the special treatment is
applied to the next line that contains text to be printed.
For example, .1 may be used to italicize a whole line, or
.SM followed by .B to make small bold text. By default,
hyphenation is turned off for nroff, but remains on for
troff.

Type font and size are reset to default values before each
paragraph and after processing font- and size-setting
macros, e.g., .1, ,RB, .SM. Tab stops are neither used
nor set by any macro except .DT and .TH.
Default units for indents in are ens. When in is
omitted, the previous indent is used. This remembered
indent is set to its default value (7.2 ens in troff, 5 ens in
nroff-this corresponds to 0.5" in the default page size)
by .TH, .P, and .RS, and restored by .RE.
.TH t s c n Set the title and entry heading; t is the title,

« is the section number, c is extra
commentary, e.g., "local", n is new manual
name. Invokes .DT (see below).

.SH text Place subhead text, e.g., SYNOPSIS, here.
•SS text Place sub-subhead text, e.g., Options , here.
.B text Make text bold.
.1 text Make text italic.
.SM text Make text 1 point smaller than default point

size.
.RI a b Concatenate roman a with italic b, and

alternate these two fonts for up to six
arguments. Similar macros alternate
between any two of roman, italic, and bold:

.IR .RB .BR .IB .BI
.P Begin a paragraph with normal font, point

size, and indent. .PP is a synonym for .P.
.HP in Begin paragraph with hanging indent.
.TP in Begin indented paragraph with hanging tag.

The next line that contains text to be

- 1 -

M A N (5)

printed is taken as the tag. If the tag does
not fit, it is printed on a separate line.
Same as .TP in with tag t; often used to get
an indented paragraph without a tag.
Increase relative indent (initially zero).
Indent all output an extra in units from the
current left margin.
Return to the kth relative indent level
(initially, k=I; k= 0 is equivalent to fc = l);
if k is omitted, return to the most recent
lower indent level.
Produces proprietary markings; where m
may be P for PRIVATE, N for NOTICE,
B P for BELL LABORATORIES
PROPRIETARY, or B R for BELL
LABORATORIES RESTRICTED.
Restore default tab settings (every 7.2 ens in
troff, 5 ens in nroff).
Set the interparagraph distance to v vertical
spaces. If v is omitted, set the
interparagraph distance to the default value
(0.4v in troff, l v in nroff).

The following strings are defined:
\ # R ® in troff, (R e g .) in nroff.
*S Change to default type size.
* (Tm Trademark indicator.
The following number registers are given default values
by .TH:
IN

LL
PD

CAVEATS
In addition to the macros, strings, and number registers
mentioned above, there are defined a number of internal
macros, strings, and number registers. Except for names
predefined by troff and number registers d, m, and y, all
such internal names are of the form XA, where X is one
of),], and }, and A stands for any alphanumeric
character.
If a manual entry needs to be preprocessed by cw(l),
egn(l) (or negn), and/or tbl(1), it must begin with a
special line (described in man(l)), causing the man
command to invoke the appropriate preprocessor(s).
The programs that prepare the Table of Contents and
the Permuted Index for this Manual assume the NAME

.IP t in

.RS in

.RE k

.PM m

.DT

.PD v

Left margin indent relative to subheads
(default is 7.2 ens in troff, 5 ens in nroff).
Line length including IN.
Current interparagraph distance.

M A N (5)

section of each entry consists of a single line of input
that has the following format:

name), name, name . . .] \ - explanatory text
The macro package increases the inter-word spaces (to
eliminate ambiguity) in the SYNOPSIS section of each
entry.
The macro package itself uses only the roman font (so
that one can replace, for example, the bold font by the
constant-width font-see ew(l)). Of course, if the input
text of an entry contains requests for other fonts (e.g., .1,
.RB, \ f l) , the corresponding fonts must be mounted.

/usr/man/[uaj_man/manO/skeleton
SEE ALSO

man(l), nroff(l).
BUGS

If the argument to .TH contains any blanks and is not
enclosed by double quotes (""), there will be bird-
dropping-like things on the output.

FILES
/usr/lib/tmac/tmac .an

.an

- 3 -

M A T H (5)

NAME
math - math functions and constants

SYNOPSIS
i n c l u d e < m a t h . h >

DESCRIPTION
This file contains declarations of all the functions in the
Math Library (described in Section 3M), as well as
various functions in the C Library (Section 3C) that
return floating-point values.
It defines the structure and constants used by the
matherr{3M) error-handling mechanisms, including the
following constant used as an error-return value:
HUGE The maximum value of a single-

The following mathematical constants are defined for
user convenience:

For the definitions of various machine-dependent
"constants," see the description of the <values.h>
header file.

precision floating-point number.

M_LOG2E
M_LOG 10E
M_LN2
M_LN10
M_PI

M_E

M_SQRT2
M_SQRTl_2

FILES
/usr/include/math.h

SEE ALSO
intro(3), matherr(3M), values(5).

M M (5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
m m [options] [files]
nroff —mm [options] [files]
nroff —cm [options] [files]

DESCRIPTION
This package provides a formatting capability for a very
wide variety of documents. It is the standard package
used by the BTL typing pools and documentation
centers. The manner in which a document is typed in
and edited is essentially independent of whether the
document is to be eventually formatted at a terminal or
is to be phototypeset. See the references below for
further details.
The —mm option causes nroff and troff(1) to use the
non-compacted version of the macro package, while the
—cm option results in the use of the compacted version,
thus speeding up the process of loading the macro
package.

FILES
/usr/lib/tmac/tmac.m pointer to the non-

compacted version of
the package

/usr/lib / macros/mm [nt] non-compacted
version of the package

/usr/lib/macros/cmp.[nt].[dt].m compacted version of
the package

/usr/l ib/macros/ucmp.[nt].m initializers for the
compacted version of
the package

SEE ALSO
mm(l), mmt(l), nroff(l).
MM-Memorandum Macros by D. W. Smith and J. R.
Mashey.
Typing Documents with MM by D. W. Smith and E. M.
Piskorik.

- 1 -

MPTX(5)

NAME
mptx - the macro package for formatting a permuted
index

SYNOPSIS
nroff - m p t x [options] [files] [options] [files]

DESCRIPTION
This package provides a definition for the .xx macro
used for formatting a permuted index as produced by
ptx(1). This package does not provide any other
formatting capabilities such as headers and footers. If
these or other capabilities are required, the mptx macro
package may be used in conjuction with the MM macro
package. In this case, the —mptx option must be
invoked after the —mm call. For example:

nroff - c m -mptx file
or

mm - mptx file
FILES

/usr/lib / tmac /tmac .ptx

/usr/lib/macros/ptx

pointer to the non-compacted
version of the package
non-compacted version of the
package

SEE ALSO
mm(l), nroff(l), ptx(l), mm(5).

- 1 -

M V (5)

N A M E
mv - a troff macro package for typesetting view graphs
and slides

SYNOPSIS
m v t [— a] [options] [files]
t r o f f [- a] [- r X l] — m v [options] [files]

DESCRIPTION
This package makes it easy to typeset view graphs and
projection slides in a variety of sizes. A few macros
(briefly described below) accomplish most of the
formatting tasks needed in making transparencies. All of
the facilities of troff(1), ew(l), egn(l), and tbl(1) are
available for more difficult tasks.
The output can be previewed on most terminals, and, in
particular, on the Tektronix 4014, as well as on the
Versatec printer. For these two devices, specify the
—rXl option (this option is automatically specified by
the mvt command-q.v.-when that command is invoked
with the —T4014 or —Tvp options). To preview output
on other terminals, specify the —a option.
The available macros are:
.VS [n] [t] [rf] Foil-start macro; foil size is to be

7" X 7"; n is the foil number, t is the
foil identification, rf is the date; the
foil-start macro resets all parameters
(indent, point size, etc.) to initial
default values, except for the values
of i and rf arguments inherited from a
previous foil-start macro; it also
invokes the .A macro (see below).
The naming convention for this and
the following eight macros is that the
first character of the name (V or S)
distinguishes between view graphs and
slides, respectively, while the second
character indicates whether the foil is
square (S), small wide (w), small high
(h), big wide (W), or big high (H).
Slides are skinnier" than the
corresponding view graphs: the ratio
of the longer dimension to the shorter
one is larger for slides than for view
graphs. As a result, slide foils can be
used for view graphs, but not vice
versa; on the other hand, view graphs
can accommodate a bit more text.

- 1 -

M V (5)

. V w [»] M

.Vh [»] [A

. V W [n] [A

.VH [»] [A

.Sw [»] IA

.Sh [»] IA

.SW M IA

.SH M [A

.A M

.B [m [a]]

•C [m [a] }

.D [m [«]]

. T string

•i [««] [« M 1

•s [p] [/]

Same as •VS, except that foil size is
7" wide X 5" high.
Same as .VS, except that foil size is
5" X7".

except

Same as .VS, except that foil size is
7" X5.4"

except

Same as '.VS, except that foil size is
7"X9".

except

Same as •VS, except that foil size is
7" X5".

except

Same as .VS, except that foil size is
5" X7".

.VS, except

Same as .VS, except that foil size is
7" X5.4"

except

Same as '.VS, except that foil size is
7" X9".
Place text that follows at the first
indentation level (left margin); the
presence of x suppresses the lk line
spacing from the preceding text.
Place text that follows at the second
indentation level; text is preceded by
a mark; m is the mark (default is a
large bullet); a is the increment or
decrement to the point size of the
mark with respect to the prevailing
point size (default is 0); if s is 100, it
causes the point size of the mark to
be the same as that of the default
mark.
Same as .B, but for the third
indentation level; default mark is a
dash.
Same as .B, but for the fourth
indentation level; default mark is a
small bullet.
String is printed as an over-size,
centered title.
Change the current text indent (does
not affect titles); in is the indent (in
inches unless dimensioned, default is
0); if «n is signed, it is an increment
or decrement; the presence of a
invokes the .A macro (see below) and
passes x (if any) to it.
Set the point size and line length; p is
the point size (default is "previous");
if p is 100, the point size reverts to
the initial default for the current foil-

- 2 -

M V (5)

start macro; if p is signed, it is an
increment or decrement (default is 18
for .VS, .VH, and .SH, and 14 for
the other foil-start macros); / is the
line length (in inches unless
dimensioned; default is 4.2" for .Vh,
3.8" for .Sh, 5" for .SH, and 6" for
the other foil-start macros).

.DF n / [n / . . .]
Define font positions; may not appear
within a foil's input text (i.e., it may
only appear after all the input text for
a foil, but before the next foil-start
macro); n is the position of font /; up
to four "n / " pairs may be specified;
the first font named becomes the
prevailing font; the initial setting is
(H is a synonym for G):

.DF 1 H 2 I 3 B 4 S
.DV [a] [6] [c] [rf] Alter the vertical spacing between

indentation levels; a is the spacing for
.A, b is for .B, c is for .C, and rf is
for .D; all non-null arguments must
be dimensioned; null arguments leave
the corresponding spacing unaffected;
initial setting is:

.DV ,5v .5v .5v Ov
. U strl [strS} Underline strl and concatenate str2

(if any) to it.
The last four macros in the above list do not cause a
break; the .1 macro causes a break only if it is invoked
with more than one argument; all the other macros cause
a break.
The macro package also recognizes the following upper-
case synonyms for the corresponding lower-case troff
requests:

.AD .BR .CE .Fl .HY .NA .NF .NH .NX .SO
.SP .TA .TI
The T m string produces the trademark symbol.
The input tilde (~) character is translated into a blank
on output.
See the user's manual cited below for further details.

FILES
/ usr/lib/tmac /tmac .v
/usr/lib/macros/vmca

- 3 -

M V (5)

SEE ALSO
cw(l), eqn(l l mmt(l), tbl(l), troffll).
A Macro Package for View (Jraphs and Slides by
T. A. Dolotta and D. W. Smith.

BUGS
The . V W and .SW foils are meant to be 9" wide by 7"
high, but because the typesetter paper is generally only
8" wide, they are printed 7" wide by 5.4" high and have
to be enlarged by a factor of 9/7 before use as view
graphs; this makes them less than totally useful.

- 4 -

P R O F (5)

NAME
prof - profile within a function

SYNOPSIS
define MARK
^inc lude < p r o f . h >
vo id MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be
treated the same as a function entry point. Execution of
the mark will add to a counter for that mark, and
program-counter time spent will be accounted to the
immediately preceding mark or to the function if there
are no preceding marks within the active function.
Name may be any combination of up to six letters,
numbers or underscores. Each name in a single
compilation must be unique, but may be the same as any
ordinary program symbol.
For marks to be effective, the symbol MARK must be
defined before the header file <pro/ .A> is included.
This may be defined by a preprocessor directive as in the
synopsis, or by a command line argument, i.e:

cc - p -DMARK foo.c

If MARK is not defined, the MAM(name) statements
may be left in the source files containing them and will
be ignored.

EXAMPLE
In this example, marks can be used to determine how
much time is spent in each loop. Unless this example is
compiled with MARK defined on the command line, the
marks are ignored.

^include <prof .h>

foo()

int i, j;

MARK(loopl);

for (i = 0; i < 2000; i + +) {
}

- 1 -

PROF(5)

MARK(loop2);
for (j = 0; j < 2000; j + +) { . 1

SEE ALSO
prof(l), profil(2), monitor(3C).

- 2 -

REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
d e f i n e INIT <declarations>
d e f i n e GETC() <getc code>
d e f i n e PEEKC() <peekc code>
d e f i n e UNGETC(c) < ungetc code>
def ine RETURN(pointer) < return code>
d e f i n e ERROR(val) <error code>
^ i n c l u d e < r e g e x p . h >
char *compile (instring, expbuf , endbuf , eof)
char *instring, *expbuf, * endbuf;
int eof;
int s tep (string, expbuf)
char * s t n n g , *expbuf;
ex tern char * loc l , *loc2, *locs;
ex tern int circf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression
matching routines in the form of ed(1), defined in
/ u s r / i n c l u d e / r e g e x p . h . Programs such as ed(1),
sed(1), grep(1), fc«(l), expr(l), etc., which perform
regular expression matching use this source file. In this
way, only this file need be changed to maintain regular
expression compatibility.
The interface to this file is unpleasantly complex.
Programs that include this file must have the following
five macros declared before the "^include <regexp.h>"
statement. These macros are used by the compile
routine.
GETC() Return the value of the next

character in the regular expression
pattern. Successive calls to
GETC() should return successive
characters of the regular
expression.

PEEKC() Return the next character in the
regular expression. Successive
calls to PEEKC() should return
the same character (which should
also be the next character

UNGETC(c)
returned by GETC()).
Cause the argument c to be
returned by the next call to

R E G E X P (5)

RETURN(potnfer)

ERROR(va/)

ERROR
11
16
25
36
41
42
43
44

GETC() (and PEEKC()). No
more that one character of
pushback is ever needed and this
character is guaranteed to be the
last character read by GETC().
The value of the macro
UNGETC(e) is always ignored.
This macro is used on normal exit
of the compile routine. The value
of the argument pointer is a
pointer to the character after the
last character of the compiled
regular expression. This is useful
to programs which have memory
allocation to manage.
This is the abnormal return from
the compile routine. The
argument val is an error number
(see table below for meanings).
This call should never return.

MEANING
Range endpoint too large.
Bad number.
"\digit" out of range.
Illegal or missing delimiter.
No remembered search string.
\ (\) imbalance.
To loo many \ (.
More than 2 numbers given in
\ { \>-45 } expected after \ .

46 First number exceeds second in

M , 49 [J imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by
the compile routine but is useful for programs that pass
down different pointers to input characters. It is
sometimes used in the INIT declaration (see below).
Programs which call functions to input characters or
have characters in an external array can pass down a
value of ((char *) 0) for this parameter.
The next parameter expbuf is a character pointer. It
points to the place where the compiled regular expression

- 343 -

R E G E X P (5)

will be placed.
The parameter endbuf is one more than the highest
address where the compiled regular expression may be

f laced. If the compiled expression cannot fit in
endbuf - expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end
of the regular expression. For example, in ed(1), this
character is usually a / .
Each program that includes this file must have a
d e f i n e statement for INIT. This definition will be
placed right after the declaration for the function
compile and the opening curly brace ({). It is used for
dependent declarations and initializations. Most often it
is used to set a register variable to point the beginning of
the regular expression so that this register variable can
be used in the declarations for GETC(), PEEKC() and
UNGETC(). Otherwise it can be used to declare external
variables that might be used by GETC(), PEEKC() and
UNGETC(). See the example below of the declarations
taken from grep(1).
There are other functions in this file which perform
actual regular expression matching, one of which is the
function step. The call to step is as follows:

step(string, expbuf)
The first parameter to step is a pointer to a string of
characters to be checked for a match. This string should
be null terminated.
The second parameter expbuf is the compiled regular
expression which was obtained by a call of the function
compile.
The function step returns non-zero if the given string
matches the regular expression, and zero if the
expressions do not match. If there is a match, two
external character pointers are set as a side effect to the
call to step. The variable set in step is loci. This is a
pointer to the first character that matched the regular
expression. The variable loc2, which is set by the
function advance, points to the character after the last
character that matches the regular expression. Thus if
the regular expression matches the entire line, loci will
point to the first character of string and loc2 will point
to the null at the end of string.
Step uses the external variable circf which is set by
compile if the regular expression begins with \ If this is
set then step will try to match the regular expression to

REGEXP(5)

the beginning of the string only. If more than one
regular expression is to be compiled before the first is
executed the value of circf should be saved for each
compiled expression and circf should be set to that saved
value before each call to step.
The function advance is called from step with the same
arguments as step. The purpose of step is to step
through the string argument and call advance until
advance returns non-zero indicating a match or until the
end of string is reached. If one wants to constrain string
to the beginning of the line in all cases, step need not be
called; simply call advance.
When advance encounters a * or \ { \ } sequence in the
regular expression, it will advance its pointer to the
string to be matched as far as possible and will
recursively call itself trying to match the rest of the
string to the rest of the regular expression. As long as
there is no match, advance will back up along the string
until it finds a match or reaches the point in the string
that initially matched the * or \ { \ } . It is sometimes
desirable to stop this backing up before the initial point
in the string is reached. If the external character pointer
Iocs is equal to the point in the string at sometime
during the backing up process, advance will break out of
the loop that backs up and will return zero. This is used
by ed(1) and «e</(l) for substitutions done globally (not
just the first occurrence, but the whole line) so, for
example, expressions like s / y * / / g do not loop forever.

The additional external variables sed and nbra are used
for special purposes.

The following is an example of how the regular
expression macros and calls look from grep(1):

#include <regexp.h>

(void) compile(*argv, expbuf, &expbuf[ESIZE], '\0');

if (step(linebuf, expbuf))
succeed();

EXAMPLES

#define INIT
#define GETC()
#define PEEKCf)

register char *sp = instring;
*sp++)
*sp)
- - s p)

return;
regerr()

- 4 -

R E G E X P (5)

FILES
/usr/include/regexp.h

SEE ALSO
bs(l), ed(l), expr(l), grep(l), sed(l).

BUGS
The handling of circf is kludgy.
The actual code is probably easier to understand than
this manual page.

STAT(5)

NAME
stat - data returned by stat system call

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ inc lude < s y s / s t a t . h >

DESCRIPTION
The system calls stat and fstat return data whose
structure is defined by this include file. The encoding of
the field st_mode is defined in this file also.
/*

* Structure of the result of stat
*!

stat

dev_t st_dev;
ino_t st_ino;
ushort st_mode;
short st_nlink;
ushort st_uid;
ushort st_gid;
dev_t st_rdev;
o f f j st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

#def ine S J F M T 0170000 /* type of file */
#define S J F D I R 0040000 /• directory */
#define S J F C H R 0020000 /• character special */
#define S J F B L K 0060000 /• block special »/
#define S J F R E G 0100000 /* regular */
#def ine S J F I F O 0010000 /• fifo */
#define SJSUID 04000 / * set user id on execution */
#define S J S G I D 02000

/ * set group id on execution */
#define S J S V T X 01000

save swapped text even after use */
#define S J R E A D 00400 /* read permission, owner */
#define S J W R I T E

00200 /« write permission, owner */
#def ine S J E X E C 00100

/ * execute/search permission, owner */

FILES
/usr/include/sys/types.h
/usr/include/sys/stat.h

- 1 -

S T A T (5)

SEE ALSO
stat(2), types(5).

TERM (5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g.,
tafcs(l), man(l) and are maintained as part of the shell
environment (see sh(1), profile(4), and environ(5)) in the
variable $TERM:
pt Convergent Technologies Programmable

Terminal
gt Convergent Technologies Graphics Terminal
freedom Liberty Freedom 100
1520 Datamedia 1520
1620 DIABLO 1620 and others using the HyType II

printer
1 6 2 0 - 1 2

same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed

mode
2631-e Hewlett-Packard 2631 line printer - expanded

mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the

2640 series)
300 DASI/DTC/GSI 300 and others using the

HyType I printer
300-12 same, in 12-pitch mode
300s DASI/DTC/GSI 300s
382 DTC 382
300s-12 same, in 12-pitch mode
3045 Datamedia 3045
33 TELETYPE Model 33 KSR
37 TELETYPE Model 37 KSR
4 0 - 2 TELETYPE Model 40/2
4 0 - 4 TELETYPE Model 40/4
4540 TELETYPE Model 4540
3270 IBM Model 3270
4000a Trendata 4000a
4014 TEKTRONIX 4014
43 TELETYPE Model 43 KSR
450 DASI 450 (same as Diablo 1620)
450-12 same, in 12-pitch mode
735 Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

line-feed and other special escape sequences;
likely to work when the real terminal type is

- 1 -

TERM (5)

not known to the program
sync generic name for synchronous TELETYPE 4540-

compatible terminals
lp generic name for a line printer
Up to 8 characters, chosen from [-a-zO-9] , make up a
basic terminal name. Terminal sub-models and
operational modes are distinguished by suffixes beginning
with a —. Names should generally be based on original
vendors, rather than local distributors. A terminal
acquired from one vendor should not have more than one
distinct basic name.
Commands whose behavior depends on the type of
terminal should accept arguments of the form —Tterm
where term is one of the names given above; if no such
argument is present, such commands should obtain the
terminal type from the environment variable $TERM,
which, in turn, should contain term.

SEE ALSO
man(l), mm(l), nroff(l), tplot(lG), sh(l), stty(l), tabs(l),
profile(4), environ(5).

BUGS
This is a small candle trying to illuminate a large, dark
problem. Programs that ought to adhere to this
nomenclature do so somewhat fitfully.

T Y P E S (5)

NAME
types - primitive system data types

SYNOPSIS
^ i n c l u d e < s y s / t y p e s . h >

DESCRIPTION
The data types defined in the include file are used in
CTIX code; some data of these types are accessible to
user code:

typedef struct { int r[l]; J *
typedef long aad
typedef char *
typedef unsigned int
typedef unsigned short
typedef ushort
typedef short
typedef long
typedef int
typedef short
typedef long
typedef long
typedef long

physadr;
'addr_t;

caddr_t;
uint;
ushort;
ino_t;
cnt_t;
time_t;
label_t[l3];
dev_t;
off_t;
paddr_t;
key_t;

The form dadirjt is used for disk addresses except in an
i-node on disk, see fs(4). Times are encoded in seconds
since 00:00:00 GMT, January 1, 1970. The major and
minor parts of a device code specify kind and unit
number of a device. Offsets are measured in bytes from
the beginning of a file. The labeljt variables are used to
save the processor state while another process is running.

SEE ALSO
fs(4).

V A L U E S (5)

N A M E
values - machine-dependent values

SYNOPSIS
^inc lude < v a l u e s . h >

DESCRIPTION
This file contains a set of manifest constants,
conditionally defined for particular processor
architectures.
The model assumed for integers is binary representation
(one's or two's complement), where the sign is
represented by the value of the high-order bit.
BITS(type)

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

MAXINT

The number of bits in a specified
type (e.g., int).
The value of a short integer with
only the high-order bit set (in
most implementations, 0x8000).
The value of a long integer with
only the high-order bit set (in
most implementations,
0x80000000).
The value of a regular integer
with only the high-order bit set
(usually the same as HIBITS or
HIBITL).
The maximum value of a signed
short integer (in most
implementations, 0x7FFF =
32767).
The maximum value of a signed
long integer (in most
implementations, 0x7FFFFFFF -
2147483647).
The maximum value of a signed
regular integer (usually the same
as MAXSHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT

MAXDOUBLE, LN MAXDOUBLE

The maximum value of
a single-precision
floating-point number,
and its natural
logarithm.
The maximum value of
a double-precision
floating-point number,
and its natural

- 1 -

VALUES (5)

MINFLOAT, LN.MINFLOAT

MINDOUBLE, LN_MINDOUBLE

FSIGNIF

DSIGNIF

FILES
/usr/include/values.h

SEE ALSO
intro(3), math(5).

logarithm.
The minimum positive
value of a single-
precision floating-point
number, and its
natural logarithm.
The minimum positive
value of a double-
precision floating-point
number, and its
natural logarithm.

The number of significant bits in
the mantissa of a single-precision
floating-point number.
The number of significant bits in
the mantissa of a double-precision
floating-point number.

- 2 -

VARARGS(5)

NAME
varargs - handle variable argument list

SYNOPSIS
^ i n c l u d e < v a r a r g s . h >
va_a l i s t
va_dc l
v o i d v a _ s t a r t (p v a r)
va_ l i s t pvar ;
type v a _ a r g (p v a r , type)
va_ l i s t pvar;
v o i d v a _ e n d (p v a r)
va_ l i s t pvar ;

DESCRIPTION
This set of macros allows portable procedures that
accept variable argument lists to be written. Routines
that have variable argument lists (such as printf(ZS)) but
do not use varargs are inherently nonportable, as
different machines use different argument-passing
conventions.
va_a l i s t is used as the parameter list in a function
header.
va_dc l is a declaration for va_alist. No semicolon
should follow va_dcl.
va_ l i s t is a type defined for the variable used to
traverse the list.
v a _ s t a r t is called to initialize pvar to the beginning of
the list.
v a _ a r g will return the next argument in the list pointed
to by pvar. Type is the type the argument is expected
to be. Different types can be mixed, but it is up to the
routine to know what type of argument is expected, as it
cannot be determined at runtime.
v a _ e n d is used to clean up.
Multiple traversals, each bracketed by va_start ...
va_end, are possible.

EXAMPLE
This example is a possible implementation of execl(2).
^include <varargs.h>
#define MAXARGS 100

/* execl is called by
execl(file, argl, arg2, ..., (char *)0);

VARARGS(5)

execl(va_alist)
va_dcl {

va_list ap;
char *file;
char *args[MAXARGS];
int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while ((args[argno++] = va_arg(ap, char *))

! = (char *)0)
j

va_end(ap);
return execv(file, args);

SEE ALSO
exec(2), printf(3S).

BUGS
It is up to the calling routine to specify how many
arguments there are, since it is not always possible to
determine this from the stack frame. For example, execl
is passed a zero pointer to signal the end of the list.
Printf can tell how many arguments are there by the
format.
It is non-portable to specify a second argument of char,
short, or float to va_arg, since arguments seen by the
called function are not char, short, or float. C converts
char and short arguments to int and converts float
arguments to double before passing them to a function.

- 2 -

INTRO (6)

NAME
intro - introduction to games

DESCRIPTION
This section describes the recreational and educational
programs found in the directory / u s r / g a m e s . The
availability of these programs may vary irom system to
system.

- 1 -

ADVENT(6)

NAME
advent - explore Colossal Cave

SYNOPSIS
/ usr / g a m e s / a d v e n t

DESCRIPTION
Advent is Adventure, the original computer-moderated
role-playing game. It accepts commands of one or two
English words and responds by describing situations and
how your commands affect them. The object of the
game is to retrieve the treasures from Colossal Cave,
placing them in the Well House.
Part of the game is figuring out the useful commands,
but the following are worth knowing in advance:
help Basic hints.
quit End the game and give final score.
suspend Save the game's current state in a file called

$HOME/adv.susp. The next time you play
the game will you automatically start from
where you left off instead of from the
beginning.

FILES
/usr/games/advfiles/*
$HOME / adv .susp

WARNINGS
Kibitzing this sort of game properly is a fine art. People
who tell you about the shortcuts can spoil the game,
especially in the early stages.
Some movement verbs, such as follow, work only well
enough to get you lost. Compass points are more (but
not completely) reliable.
Only the first five characters of an input word are
significant.
The command vocabulary and control of objects is
limited. But discovering limitations has become part of
the game.

ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
/ u s r / g a m e s / a r i t h m e t i c [H—x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and
waits for an answer to be typed in. If the answer is
correct, it types back "Right!", and a new problem. If
the answer is wrong, it replies "What?", and waits for
another answer. Every twenty problems, it publishes
statistics on correctness and the time required to answer.
To quit the program, type an interrupt (delete).
The first optional argument determines the kind of
problem to be generated; + , —, x, and / respectively
cause addition, subtraction, multiplication, and division
problems to be generated. One or more characters can
be given; if more than one is given, the different types of
problems will be mixed in random order; default is +—.
Range is a decimal number; all addends, subtrahends,
differences, multiplicands, divisors, and quotients will be
less than or equal to the value of range. Default range
is 10.
At the start, all numbers less than or equal to range are
equally likely to appear. If the respondent makes a
mistake, the numbers in the problem which was missed
become more likely to reappear.
As a matter of educational philosophy, the program will
not give correct answers, since the learner should, in
principle, be able to calculate them. Thus the program
is intended to provide drill for someone just past the first
learning stage, not to teach number facts de novo. For
almost all users, the relevant statistic should be time per
problem, not percent correct.

- 1 -

BACK(6)

NAME
back - the game of backgammon

SYNOPSIS
/ usr / g a m e s / b a c k

DESCRIPTION
Back is a program which provides a partner for the game
of backgammon. It is designed to play at three different
levels of skill, one of which you must select. In addition
to selecting the opponent's level, you may also indicate
that you would like to roll your own dice during your
turns (for the superstitious players). You will also be
given the opportunity to move first. The practice of
each player rolling one die for the first move is not
incorporated.
The points are numbered 1-24, with 1 being white's
extreme inner table, 24 being brown's inner table, 0
being the bar for removed white pieces and 25 the bar
for brown. For details on how moves are expressed, type
y when back asks "Instructions?" at the beginning of the
game. When back first asks "Move?", type ? to see a
list of move options other than entering your numerical
move.
When the game is finished, back will ask you if you want
the log. If you respond with y, back will attempt to
append to or create a file back.log in the current
directory.

BUGS
The only level really worth playing is "expert", and it
only plays the forward game.
Back will complain loudly if you attempt to make too
many moves in a turn, but will become very silent if you
make too few.
Doubling is not implemented.
Back will occasionally not allow a legal move when you
have a man on the bar.

FILES

B J (6)

NAME
bj - the game of black jack

SYNOPSIS
/ usr / g a m e s / b j

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the
game of black jack (or twenty-one) as might be found in
Reno. The following rules apply:
The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer
natural loses $2. Both dealer and player naturals is
a "push" (no money exchange).
If the dealer has an ace up, the player is allowed to
make an "insurance" bet against the chance of a
dealer natural. If this bet is not taken, play
resumes as normal. If the bet is taken, it is a side
bet where the player wins $2 if the dealer has a
natural and loses $1 if the dealer does not.
If the player is dealt two cards of the same value,
he is allowed to "double". He is allowed to play
two hands, each with one of these cards. (The bet
is doubled also; $2 on each hand.)
If a dealt hand has a total of ten or eleven, the
player may "double down". He may double the
bet ($2 to $4) and receive exactly one more card on
that hand.
Under normal play, the player may "hit" (draw a
card) as long as his total is not over twenty-one. If
the player "busts" (goes over twenty-one), the
dealer wins the bet.
When the player "stands" (decides not to hit), the
dealer hits until he attains a total of seventeen or
more. If the dealer busts, the player wins the bet.
If both player and dealer stand, the one with the
largest total wins. A tie is a push.

The machine deals and keeps score. The following
questions will be asked at appropriate times. Each
question is answered by y followed by a new-line for
"yes", or just new-line for "no".

? (means, "do you want a hit?")
Insurance?
Double down?

- 1 -

B J (6)

Every time the deck is shuffled, the dealer so states and
the "action" (total bet) and "standing" (total won or
lost) is printed. To exit, hit the interrupt key (DEL) and
the action and standing will be printed.

CRAPS (6)

NAME
craps - the game of craps

SYNOPSIS
/ u s r / g a m e s / c r a p s

DESCRIPTION
Craps is a form of the game of craps that is played in
Las Vegas. The program simulates the roller, while the
user (the player) places bets. The player may choose, at
any time, to bet with the roller or with the House. A
bet of a negative amount is taken as a bet with the
House, any other bet is a bet with the roller.
The player starts off with a "bankroll" of $2,000.
The program prompts with:

The bet can be all or part of the player's bankroll. Any
bet over the total bankroll is rejected and the program
prompts with bet? until a proper bet is made.
Once the bet is accepted, the roller throws the dice. The
following rules apply (the player wins or loses depending
on whether the bet is placed with the roller or with the
House; the odds are even). The first roll is the roll
immediately following a bet:

any other number is the point, roll again
(Rule 2 applies).

2. On subsequent rolls:

If a player loses the entire bankroll, the House will offer
to lend the player an additional $2,000. The program
will prompt:

marker?
A yes (or y) consummates the loan. Any other reply
terminates the game.
If a player owes the House money, the House reminds the
player, before a bet is placed, how many markers are
outstanding.
If, at any time, the bankroll of a player who has
outstanding markers exceeds $2,000, the House asks:

bet?

1. On the first roll:
7 or 11
2, 3, or 12

wins for the roller;
wins for the House;

point
7
any other number

roller wins;
House wins;
roll again.

- 1 -

C R A P S (6)

Repay marker?
A reply of yes (or y) indicates the player's willingness to
repay the loan. If only 1 marker is outstanding, it is
immediately repaid. However, if more than 1 marker are
outstanding, the House asks:

How many?
markers the player would like to repay. If an invalid
number is entered (or just a carriage return), an
appropriate message is printed and the program will
prompt with How many? until a valid number is
entered.
If a player accumulates 10 markers (a total of $20,000
borrowed from the House), the program informs the
player of the situation and exits.
Should the bankroll of a player who has outstanding
markers exceed $50,000, the total amount of money
borrowed will be automatically repaid to the House.
Any player who accumulates $100,000 or more breaks
the bank. The program then prompts:

New game?
to give the House a chance to win back its money.
Any reply other than yes is considered to be a no
(except in the case of bet? or How many?). To exit,
send an interrupt (break), DEL, or control-D. The
program will indicate whether the player won, lost, or
broke even.

MISCELLANEOUS
The random number generator for the die numbers uses
the seconds from the time of day. Depending on system
usage, these numbers, at times, may seem strange but
occurrences of this type in a real dice situation are not
uncommon.

F I S H (6)

N A M E
fish - play "Go Fish"

SYNOPSIS
/ u s r / g a m e s / f i s h

DESCRIPTION
Fish plays the game of Go Fish, a childrens' card game.
The Object is to accumulate 'books' of 4 cards with the
same face value. The players alternate turns; each turn
begins with one player selecting a card from his hand,
and asking the other player for all cards of that face
value. If the other player has one or more cards of that
face value in his hand, he gives them to the first player,
and the first player makes another request. Eventually,
the first player asks for a card which is not in the second
player's hand: he replies 'GO FISH!' The first player
then draws a card from the 'pool' of undealt cards. If
this is the card he had last requested, he draws again.
When a book is made, either through drawing or
requesting, the cards are laid down and no further action
takes place with that face value.

To play the computer, simply make guesses by typing a,
2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, or k when asked. Hitting
return gives you information about the size of my hand
and the pool, and tells you about my books. Saying 'p'
as a first guess puts you into 'pro' level; the default is
pretty dumb.

FORTUNE(6)

NAME
fortune - print a random, hopefully interesting, adage

SYNOPSIS
/ u s r / g a m e s / f o r t u n e [-] [— wslao]

DESCRIPTION
Fortune with no arguments prints out a random adage.
The flags mean:
—-w Waits before termination for an amount of time

calculated from the number of characters in the
message. This is useful if it is executed as part of
the logout procedure to guarantee that the message
can be read before the screen is cleared.

—s Short messages only.
—1 Long messages only.
—o Choose from an alternate list of adages, often used

for potentially offensive ones.
—a Choose from either list of adages.

FILES
/ usr / games/lib/fortunes, dat

AUTHOR
Ken Arnold

HANGMAN (6)

NAME
hangman - guess the word

SYNOPSIS
/ u s r / g a m e s / h a n g m a n [arg]

DESCRIPTION
Hangman chooses a word at least seven letters long from
a dictionary. The user is to guess letters one at a time.
The optional argument arg names an alternate
dictionary.

FILES
/usr/lib/w2006

BUGS
Hyphenated compounds are run together.

- 1 -

M A Z E (6)

NAME
maze - generate a maze

SYNOPSIS
/ u s r / g a m e s / m a z e [seed [d] [n] [b]]

DESCRIPTION
Maze prints a maze. It uses the system clock as the
random number seed. If seed is specified, maze uses it
as the seed and shows the solution. An n suppresses the
solution, a b shows backouts, and a d provides
debugging information.

BUGS
Some mazes (especially small ones) have no solutions.

- 1 -

M O O (6)

NAME
moo - guessing game

SYNOPSIS
/ u s r / g a m e s / m o o

DESCRIPTION
Moo is a guessing game imported from England. The
computer picks a number consisting of four distinct
decimal digits. The player guesses four distinct digits
being scored on each guess. A "cow" is a correct digit in
an incorrect position. A "bull" is a correct digit in a
correct position. The game continues until the player
guesses the number (a score of four bulls).

NUMBER (6)

NAME
number - convert Arabic numerals to English

SYNOPSIS
/ usr / games / number

DESCRIPTION
Number copies the standard input to the standard
output, changing each decimal number to a fully spelled
out version.

QUIZ (6)

NAME
quiz - test your knowledge

SYNOPSIS
/ u s r / g a m e s / q u i z [- i file] [- t] [category 1
category2]

DESCRIPTION
Quiz gives associative knowledge tests on various
subjects. It asks items chosen from categoryl and
expects answers from categoryS, or vice versa. If no
categories are specified, quiz gives instructions and lists
the available categories.
Quiz tells a correct answer whenever you type a bare
new-line. At the end of input, upon interrupt, or when
questions run out, quiz reports a score and terminates.
The —t flag specifies "tutorial" mode, where missed
questions are repeated later, and material is gradually
introduced as you learn.
The —i flag causes the named file to be substituted for
the default index file. The lines of these files have the
syntax:

line = category new-line | category : line
category = alternate I category [alternate
alternate = empty | alternate primary
primary = character | [category] | option
option = { category }

The first category on each line of an index file names an
information file. The remaining categories specify the
order and contents of the data in each line of the
information file. Information files have the same syntax.
Backslash \ is used as with «A(1) to quote syntactically
significant characters or to insert transparent new-lines
into a line. When either a question or its answer is
empty, quiz will refrain from asking it.

FILES
/usr/games/lib/quiz/index
/usr/games/lib/quiz/*

BUGS
The construct "al ab" does not work in an information
file. Use "a{b}".

T R K (6)

NAME
trk - trekkie game

SYNOPSIS
/ u s r / g a m e s / t r k [[—a] file]

DESCRIPTION
Trk is a game of space glory and war. Below is a
summary of commands. For complete documentation,
see Trek by Eric Allman.
If a filename is given, a log of the game is written onto
that file. If the —a flag is given before the filename,
that file is appended to, not truncated.
The game will ask you what length game you would like.
Valid responses are "short", "medium", and "long".
You may also type "restart", which restarts a previously
saved game. You will then be prompted for the skill, to
which you must respond "novice", "fair", "good",
"expert", "commadore", or "impossible". You should
normally start out as a novice and work up.
In general, throughout the game, if you forget what is
appropriate, the game will tell you what it expects if you
just type in a question mark.

COMMAND SUMMARY
abandon
capture
cloak up/down
computer request; ...
damages
destruct
dock
help
impulse course distance
lrscan
move course distance
phasers automatic amount
phasers manual amtl coursel spreadl ...
torpedo course [yes] angle/no
r a m course distance
rest time
shell
shields up/down
srscan [yes/no]
status
terminate [yes/no]
undock
visual course
warp warp_factor

- 1 -

TTT(6)

NAME
ttt, cubic - tic-tac-toe

SYNOPSIS
/ u s r / g a m e s / t t t
/ u s r / g a m e s / c u b i c

DESCRIPTION
Ttt is the X and O game popular in the first grade. This
is a learning program that never makes the same mistake
twice.
Although it learns, it learns slowly. It must lose nearly
80 games to completely know the game.
Cubic plays three-dimensional tic-tac-toe on a 4 X 4 X 4
board. Moves are specified as a sequence of three
coordinate numbers in the range 1-4.

FILES
/usr/games/ttt.k learning file

- 1 -

WUMP (6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/ u s r / g a m e s / w u m p

DESCRIPTION
Wump plays the game of "Hunt the Wumpus." A
Wumpus is a creature that lives in a cave with several
rooms connected by tunnels. You wander among the
rooms, trying to shoot the Wumpus with an arrow,
meanwhile avoiding being eaten by the Wumpus and
falling into Bottomless Pits. There are also Super Bats
which are likely to pick you up and drop you in some
random room.
The program asks various questions which you answer
one per line; it will give a more detailed description if
you want.
This program is based on one described in People's
Computer Company, 2, 2 (November 1973).

BUGS
It will never replace Adventure.

- 1 -

INTRO (7)

NAME
intro - introduction to special files

SYNOPSIS
^ inc lude < s y s / s o c k e t . h >

/* internetworking only */
^ inc lude < n e t / r o u t e . h >
^ inc lude < n e t / i f . h >

DESCRIPTION
This section describes various special files that refer to
specific hardware peripherals and CTIX System device
drivers. The names of the entries are generally derived
from names for the hardware, as opposed to the names of
the special files themselves. Characteristics of both the
hardware device and the corresponding CTIX system
device driver are discussed where applicable.

INTERNETWORKING
Entries that describe network protocol use are marked
(7N). These protocols are available only with a special
version of the CTEX kernel that supports
internetworking. For further information, see the CTIX
Inernetworking Manual.
All network protocols are associated with a specific
protocol-family. A protocol-family provides basic
services to the protocol implementation to allow it to
function within a specific network environment. These
services may include packet fragmentation and
reassembly, routing, addressing, and basic transport. A
protocol-family may support multiple methods of
addressing, though the current protocol implementations
do not. A protocol-family is normally comprised of a
number of protocols, one per aocfcet(2N) type. It is not
required that a protocol-family support all socket types.
A protocol-family may contain multiple protocols
supporting the same socket abstraction.
A protocol supports one of the socket abstractions
detailed in soc£e<(2N). A specific protocol may be
accessed either by creating a socket of the appropriate
type and protocol-family, or by requesting the protocol
explicitly when creating a socket. Protocols normally
accept only one type of address format, usually
determined by the addressing structure inherent in the
design of the protocol-family/network architecture.
Certain semantics of the basic socket abstractions are
protocol specific. All protocols are expected to support
the basic model for their particular socket type, but
may, in addition, provide non-standard facilities or
extensions to a mechanism. For example, a protocol

5/86 - 1 -

INTRO (7)

supporting the SOCK_STREAM abstraction may allow
more than one byte of out-of-band data to be
transmitted per out-of-band message.
A network interface is similar to a device interface.
Network interfaces comprise the lowest layer of the
networking subsystem, interacting with the actual
transport hardware. An interface may support one or
more protocol families and/or address formats. The
SYNOPSIS section of each network interface entry gives
a sample specification of the related drivers for use in
providing a system description to the config(1M)
program. The DIAGNOSTICS section lists messages
which may appear on the console and in the system error
log / u s r / a d m / m e s s a g e s due to errors in device
operation.

PROTOCOLS
The system currently supports only the DARPA Internet
protocols fully. Raw socket interfaces are provided to IP
protocol layer of the DARPA Internet, to the IMP link
layer (1822), and to Xerox PUP-1 layer operating on top
of 3Mb/s Ethernet interfaces. Consult the appropriate
manual pages in this section for more information
regarding the support for each protocol family.

ADDRESSING
Associated with each protocol family is an address
format. The following address format is supported:

#define A F J N E T 2
/* internetwork: UDP, TCP, etc. */

ROUTING
The network facilities provide limited packet routing. A
simple set of data structures comprise a "routing table"
used in selecting the appropriate network interface when
transmitting packets. This table contains a single entry
for each route to a specific network or host. A user
process, the routing demon, maintains this data base
with the aid of two socket specific ioctl(2) commands,
SIOCADDRT and SIOCDELRT. The commands allow
the addition and deletion of a single routing table entry,
respectively. Routing table manipulations may only be
carried out by the superuser.

A routing table entry has the following form, as defined
in < n e t / r o u t e . h > :

5/86

INTRO(7)

struct rtentry {
u_long rt_hash;
struct sockaddr rt_dst;
struct sockaddr rt_gateway;
short rt_flags;
short rt_refcnt;
u_long rt_use;
struct ifnet *rt_ifp;

}>

with rt_Jlags defined from,

#define RTF_UP 0x1
/* route usable */

#define RTF_GATEWAY 0x2
/* destination is a gateway */

#define RTF_HOST 0x4
/* host entry (net otherwise) */

Routing table entries come in three types: for a specific
host, for all hosts on a specific network, for any
destination not matched by entries of the first two types
(a wildcard route). When the system is booted, each
network interface that is autoconfigured installs a
routing table entry when it wishes to have packets sent
through it. Normally the interface specifies the route
through it is a "direct" connection to the destination
host or network. If the route is direct, the transport
layer of a protocol family usually requests the packet be
sent to the same host specified in the packet. Otherwise,
the interface may be requested to address the packet to
an entity different from the eventual recipient (i.e., the
packet is forwarded).
Routing table entries installed by a user process may not
specify the hash, reference count, use, or interface fields;
these are filled in by the routing routines. If a route is
in use when it is deleted (rt_refcnt is nonzero), the
resources associated with it will not be reclaimed until
further references to it are released.
The routing code returns EEXIST if requested to
duplicate an existing entry, ESRCH if requested to delete
a nonexistant entry, or ENOBUFS if insufficient
resources were available to install a new route.
User processes read the routing tables through the
/ d e v / k m e m device.
The rt_use field contains the number of packets sent
along the route. This value is used to select among
multiple routes to the same destination. When multiple

5/86 - 3 -

INTRO (7)

routes to the same destination exist, the least used route
is selected.
A wildcard routing entry is specified with a zero
destination address value. Wildcard routes are used only
when the system fails to find a route to the destination
host and network. The combination of wildcard routes
and routing redirects can provide an economical
mechanism for routing traffic.

INTERFACES
Each network interface in a system corresponds to a
path through which messages may be sent and received.
A network interface usually has a hardware device
associated with it.
At boot time each interface which has underlying
hardware support makes itself known to the system
during the autoconfiguration process. Once the interface
has acquired its address, it is expected to install a
routing table entry so that messages may be routed
through it. Most interfaces require some part of their
address specified with an SIOCSIFADDR ioctl before
they will allow traffic to flow through them. On
interfaces where the network-link layer address mapping
is static, only the network number is taken from the
ioctl; the remainder is found in a hardware-specific
manner. On interfaces which provide dynamic network-
link layer address mapping facilities (e.g. lOMb/s
Ethernets), the entire address specified in the ioctl is
used.

The following ioctl calls may be used to manipulate
network interfaces. Unless specified otherwise, the
request takes an ifrequest structure as its parameter.
This structure has the form
struct ifreq {

char ifr_name[l6];
/* name of interface (e.g. "ecO") */

union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
short ifru_flags;

} ifr_ifru;
^define ifr_addrifr_ifru.ifru_addr

/* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr

/* other end of p-to-p link */
d e f in e i f r_f 1 ags i f r_i f ru. i f r u_f 1 ags

/* flags */

5/86 - 4 -

INTRO(7)

SIOCSIFADDR
Set interface address. Following the address
assignment, the "initialization" routine for the
interface is called.

SIOCGIFADDR
Get interface address.

SIOCSIFDSTADDR
Set point-to-point address for interface.

SIO CGIFDSTADDR
Get point-to-point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is
marked down, any processes currently routing
packets through the interface are notified.

SIOCGIFFLAGS
Get interface flags.

SIOCGIFCONF
Get interface configuration list. This request
takes an ifconf structure (see below) as a value-
result parameter. The ifc_Ien field should be
initially set to the size of the buffer pointed to
by ifc_buf. On return it will contain the length,
in bytes, of the configuration list.

/ *
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

struct ifconf {
int ifc_len;

/* size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

) ifc_ifcu;
^define ifc_buf ifc_ifcu.ifcu_buf

/* buffer address */
#define ifc_req ifc_ifcu.ifcu_req

/* array of structures returned */

SEE ALSO
config(lM), ioctl(2), socket(2N), intro(7).

5/86 - 5 -

C 0 N S 0 L E (7)

NAME
console - console terminal

DESCRIPTION
The special file / d e v / c o n s o l e designates a standard
destination for system diagnostics. The kernel writes its
diagnostics to this file, as does any user process with
messages of systemwide importance. Unless CTIX is
configured with the kernel debugger, console is not
associated with a terminal; console messages are written
to / e t c / l o g / c o n f i l e . If console is associated with a
physical terminal (configured with the kernel debugger),
then console messages appear on that terminal.

Note that inittab(4) does not normally post a getty on
console because it has no source for interactive input.
Console messages are saved in a circular buffer. Reading
console retrieves the messages and removes them from
the buffer.
If CTIX is configured with the kernel debugger (see
config(1M)), then ttyOOO is associated with the console.
This means that console messages also go to ttyOOO and
that a Control-B on ttyOOO starts the kernel debugger.
The size of the console circular buffer is configured with
the config(iM) parameter cbufsz. The default is 4096
bytes.
The following ioctl(2) commands are acceptd:
ioctl(fd, CONERRl;

Fd must De open to console . All console output
is to be duplicated in the error message queue.
See err (7).

ioctl(fd, CONBUF);
Fd must be open to console. No console output
is to be duplicated in the error message queue.
This is the initial condition.

ioctl(fd, CON_SET, port)
Fd must be open to console. Port is the minor
device number of the RS-232 line that will be
the new debugger console; port must be a valid
RS-232 channel. The function returns the
number of the new debugger console port.

ioctl(fd, CON.LOC)
Fd must be open to console. The function
returns the number of the current debugger
console port.

5/86 - 1 -

CONSOLE(7)

FILES
/dev/console
/etc/log/confile

SEE ALSO
conlocate(lM), syslocal(2).

WARNING
Normal system processing is suspended while the kernel
debugger is active.

5/86 - 2 -

DISK(7)

NAME
disk - general disk driver

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
^ inc lude < s y s / g d i s k . h >
^ inc lude < s y s / g d i o c t l . h >

DESCRIPTION
The files
/ dev / r d s k / cO dOsO
through
/ dev/rdsk/cardxsar
and
/dev/dsk/cOdOsO
through
/ d e v / d s k / c x d z s x
refer to CTIX device names and slices, where car is the
controller number, dz is the drive number, sa: is the slice
number, and a; is a hexadecimal digit. An r in the
name indicates the character (raw) interface,
MightyFrame and MiniFrame format a disk with 512-
byte physical sectors. Winchester disks have 17 physical
sectors per track. SMD drives have 33 to 65 physical
sectors per track.
Block input/output uses 1024-byte logical blocks.
Winchester disks have 8 logical blocks on each track,
with the leftover physical block available as an alternate
for a bad block. SMD disks have 16 to 32 logical blocks
on each track, with the leftover physical block available
as an alternate for a bad block.
Logical block zero contains the Volume, Home Block,
which describes the disk. The following structure defines
the volume home block.
struct vhbd {

uint magic; /* Mitiframe disk format code */
int chksum; /* adjustment so 32 bit sum starting

from magic for IK bytes sums to - 1 */
struct gdswprt dsk; j * specific description of this disk */
struct partit partab[MAXSLICE];/* partition table */
struct resdes{ /* reserved area special files * j

daddr_t blkstart; /* start logical block # */
ushort nblocks; j * length in logical blocks

(zero implies not present) * j
} resmap[8];

/ * resmap consists of the following entries:
* loader area
* bad block table

5/86 - 1 -

DISK(7)

7

dump area
down load image file
Bootable program,
size determined by a.out format. nblocks=

char
long

fpulled;
time;

struct gdswprt2 dsk2;
char minires|38);

/* dismounted last time? */
/* time last came on line */
/* Drive specific parameters */
/* for future mini/miti frame
enhancements */

char sysres[292]; /* custom system area */
struct mntnam mntname[MAXSLICE];

/* names for auto mounting; nui
* string means no auto mount
* not used in mitiframe */

char userres[2S6|; /* user area */

struct gdswprt {
char name[6|;
ushort cyls;
ushort heads;
ushort psectrk;
ushort pseccyl;
char flags;
char step;

ushort sectorsz;

printf name */
the number of cylinders for this disk */
number of heads per cylinder */
number of physical sectors per track * j
number of physical sectors per cylinder */
floppy density and high tech drive flags */
stepper motor rate to controller -

ST 506 only • /
size of physical sectors (in bytes) */

struct gdswprt2 {
short wpccyl;

ushort enetaddr[3|;

unchar gapl ;
unchar gap2;
char filler[28];

};

/ * value to program for R W C / W P C
ST 506 only * j
/* Ethernet station address -
* MiniFrame only */

/ * Gap size on SMD drives */

struct parti t{
union {

uint strk;
struct {

ushort strk;

} sz;
} old;

/ * s tar t track number (new style) */

I* s tar t track # */
ushort nsecs; /* # logical blocks available to user */

5/86 - 9 .

DISK (7)

If a volume home block is valid, magic is equal to
VHBMAGIC and the 32-bit sum of the volume home
block's bytes is OxFFFFFFFF (-1); chksum is the
adjustment that makes the sum come out right.
Dsk describes the peculiarities of the disk, including
deliberate deviations from the system standard.
Dsk.flags the bitwise or of zero or more of the following
constants:
FPDENSITY

FPMIXDENS

(MiniFrame only) If on, the
disk is double density; if
off, the disk is single
density.
(MiniFrame only) If off,
FPDENSITY specifies the
density of the first track; if
on, the first track is single
density regardless of
FPDENSITY
(ST506 only) If on, head
select bit 3 is valid; if off,
reduced write current is
valid.
If off, the old style slice
(partition) table is in use; if
on, the new style slice table
is in use.
(ST506 only) If on, set
reduced write current/write
precompensation.
H I T E C H selects write
precompensation.
If on, the disk is a floppy
or removable hard disk
cartridge. If off, the disk is
a Winchester.
If on, the SMD drive is
formatted with an extra
sector on each track. (This
sector is ignored by CTIX
but is required for some
disk drives, notably the
Eagle-XP.)

Dsk.step specifies a stepper motor rate for the ST506;
use 14 in this field.

HITECH

NEWPARTTAB

RWCPWC

EXCHANGEABLE

FORMATEXTRA

5/86 - 3 -

DISK (7)

Partab divides the disk into slices (partitions).
Fpulled indicates whether an exchangeable disk was
properly removed from the drive. The system sets this
field to 1 when the disk is inserted in the drive. To clear
fpulled, run dismount(lM); see that entry.

Mntname, minires, and userres are reserved for future
use.
Resmap describes the files that share Slice 0 with the
Volume Home Block. Provision is made for eight such
files, but only five have been assigned slots in resmap.
Each resmap entry gives the starting location (logical
block number) and length (logical blocks). A length of
zero indicates that the file is not provided. The first five
entries in resmap describe:
1. The loader. When the system is reset or turned

on, the boot prom loads the loader into the
loader address and jumps execution to it. The
function of the loader is to search for and load a
program that will boot the system.
On MightyFrame the loader searches the tape,
onboard Winchester disks 0, 1, and 2, and the
VME, in that order. On MiniFrame the loader
searches the tape, the floppy disk, and
Winchester disks 1 and 0, in that order.
On each disk, the loader first checks for a
standalone program. If the disk lacks a
standalone program, the loader checks for a
CTIX kernel, which must be a CTIX executable
object file called / u n i x in the file system in slice
1. When the loader locates an appropriate
program, it preserves the crash dump table,
loads the program it found at the address it was
linked at (0x0 if unknown) and executes it. If no
disk contains an appropriate file, the loader
continues searching until an appropriate disk is
inserted.

2. The bad block table, which always begins at
logical block 1 of the disk. Each logical block in
the bad block table consists of a four-byte
checksum followed by 127 bad block cells. The
checksum is a value that makes the 32-bit sum
of the logical block be OxFFFFFFFF (-1) . A
bad block cell is defined by the following
structure.

5/86 - 3 -

DISK (7)

struct bbcell {
ushort cyl; / * the cylinder of the bad block */
ushort badblk; /* the physical sector address of

the bad block within the cylinder cyl */
ushort altblk; /* track number of alternate * /
ushort nxtind; /* index into the cell array for next

bad block cell for this cylinder * j

};
A single sequence of numbers, starting from zero,
identifies the checksums and cells. In each cell
in use, cyl identifies a cylinder that contains the
bad block; badblk physical block offset within
the cylinder of the bad block; altblk identifies
the track that contains the alternate block;
nextind (not used in MightyFrame) identifies the
next cell for a bad block on the same cylinder or
is zero if this is the last one.

3. The dump area. After Reset or Suicide, the
Boot prom dumps processor registers, the
memory map, a crash dump block, and the
contents of physical memory, until it runs out of
room in the dump area.

4. The down load image area. The down load
images are described by a table at the beginning
of the area. The area is described by the
following array.

struct dldent {
short d_strt;
/ * block displacement from down load index * /
short d_sz;
/ * # of blocks for this entry * /

};
The image number is the index for dldent.
D_strt is the offset in bytes of the image from
the beginning of the down load image area; d__sz
is the size in bytes of the image.

5. A bootable program, usually a diagnostic. This
is the program the loader considers a substitute
for the / u n i x file. The program must be in
a.out(4) format with magic number 407 or be a
simple memory image.
If the fifth entry in resmap has a zero address
but a nonzero length, the loader looks at the
beginning of slice 1 for the program.

5/86 - 3 -

DISK (7)

Slice 0 is called the Reserved Area. Only the volume
home block and the files described by resmap can be in
the Reserved Area. A formatted disk used by a working
system certainly has at least one more slice.
Ioctl system calls use the following structure,
struct gdioctl {

ushort status; /* status */
struct gdswprt params; /* description of the disk * J
struct gdswprt2 params2; /* more description of the disk * j
short ctrltyp; /* the type of disk controller * j
short driveno;

};
Status is the bitwise or of the following constants.
VALID_VHB A valid Volume Header Block has been

read.
DRV_READY The disk is on line.
PULLED Last removal of disk from drive was not

preceded by proper dismount.
Params is a gdswprt structure, the same type used in the
volume header block.
Dsktype is equal to
GD_WD1010 for Western Digital 1010 ST506

Controller
GD_WD2010 for Western Digital 2010 ST506

Controller
GD_WD2797 for Western Digital 2797 Floppy Disk

Controller
GD_RAMDISK for RAM Disk Emulator
GD_SMD3200 for Interphase SMD3200 disk controller
CTIX understands the following disk ioctl calls.
ioctl(fd, GDIOCTYPE, 0)

Returns GDIOC if fd is a file descriptor for a
disk special file.

ioctl(fd, GDGETA, gdctl_ptr)
Gdctl_ptr is a pointer to a gdioctl structure.
Ioctl fills the structure with information about
the disk.

ioctl(fd, GDSETA, gdctl_ptr)
Gdctl_ptr is a pointer to a gdioctl structure.
Ioctl passes the description of the disk to the
disk driver. This is primarily meant for reading
disks created by other kinds of computers.

5/86 - 3 -

DISK (7)

ioc t l (fd , GDFORMAT, p t r)
Ptr p o i n t s t o f o r m a t i n g i n f o r m a t i o n . T h e disk
d r ive r f o r m a t s a t r a c k .

ioc t l (fd , GDDISMNT)
Ioctl i n f o r m s t h e d r ive r t h a t t h e user i n t e n d s t o
r e m o v e the disk f r o m t h e dr ive . W h e n th is
s y s t e m call success fu l ly r e t u r n s , t he d r ive r has
f l u s h e d all d a t a in t h e b u f f e r cache a n d w a i t e d
fo r all queued t r a n s f e r s t o c o m p l e t e . T h e las t
t r a n s f e r is t o wr i t e o u t t h e V o l u m e H o m e Block
w i t h t h e fpulled f lag c lea red . O n c e th i s call
r e t u r n s t h e dr ive is inaccess ib le un t i l a new disk
is i n se r t ed .

SEE ALSO
i v (l) , m k n o d (l M) , ioct l (2) .

5/86 - 3 -

DRIVERS (7)

NAME
drivers - loadable device drivers

DESCRIPTION
A loadable driver is equivalent to a fixed, linked-in
device driver. It has access to all kernel subroutines and
global data. After it is loaded, it is effectively part of
the running kernel.
Differences between loadable and ordinary drivers
involve their driver ID, init routine, release routine, and
interrupt processing.

Init Routine
Loadable drivers may have an init routine that is
executed when the driver is bound, and a release routine
that is executed when the driver is unbound (see
Iddrv(llsA) for a description of driver allocation and bind
operations). Init routines check for the existence of
hardware, initialize the hardware, put the interrupt
service routine for the hardware into the interrupt chain,
and do other similar tasks.

Release Routine
Release routines make sure the device or driver is idle,
turn off the device, take the interrupt service routine out
of the interrupt chain, and similar tasks. A typical action
for a release routine to take when the device is not idle is
to set an error code in u.u_error and return.

Driver ID
All drivers have a driver ID. Preloaded drivers have a
driver ID of 0. Loaded drivers are given an ID when
they allocate virtual space. The driver ID is
automatically set when the driver is linked. The ID
should never be modified by the driver itself; the ID is
used to identify the driver to the system when making
certain requests.

EXAMPLE
/ * init, release, interrupt service routines */
/ * for loadable device >
#include < s y s / d r v . h >
#define XYZ_VECNO
#define XYZ_BUSY
#define XYZ_OPEN
int xyzzint();

extern int D F L T J D ;
static int Drv_id = &I
int xy_base;
int xy_flags;

cyzzy */

0x60
1

DFLT ID;

/* interrupt vector number */
r nags */

/* interrupt service routine * j

/* set drive ID */

- 1 -

DRIVERS (7)

xy_init()
{

if (set_vec(Drv_id, XYZ_VECNO, xyzzyint) < 0)
{

u.u_error = EBUSY;
return;

}

< d o hardware initialization>

}
xy_release()
{

if (xy.flags & (XY BUSY | XY OPEN))
{

u.u_error = EBUSY;
return;

}

< t u r n off device>

reset_vec (Drv id, XYZ VECNO);
}
xyzzyint()
{

<c lear i n t e r rup t>

< process i n t e r rup t>

}
SEE ALSO

Writing MightyFrame Device Drivers.

5 / 8 6 - 2 -

ERR(7)

NAME
err - error-logging interface

DESCRIPTION
Minor device 0 of the err driver is the interface between
a process and the system's error-record collection
routines. The driver may be opened only for reading by
a single process with super-user permissions. Each read
causes an entire error record to be retrieved and
removed; the record is truncated if the read request is for
less than the record's length.
An appropriate command to the console sends console
information to the error record queue. See console(7).

FILES
/dev/error special file

SEE ALSO
errdemon(lM), console(7).

- 1 -

L P (7)

N A M E
lp - parallel printer interface

DESCRIPTION
Lp is an interface to the parallel printer channel. Bytes
written are sent to the printer. Opening and closing
froduce page ejects. Unlike the serial interfaces
termio(7)), the lp driver never prepends a carriage

return to a new line (line feed). The lp driver does have
options to filter output, for the benefit of printers with
special requirement. The driver also controls page
format. Page format and filter options are controlled
with ioctl(2):

#include <sys/ lprio .h>
ioctl(fildes, command, arg)

where command is one of the following constants:
LPRGET Get the current page format and put it

in the lprio structure pointed to by
arg.

LPRSET Set the current page format from the
location pointed to by arg-, this location
is a structure of type lprio, declared in
the header file:

struct lprio {
short ind;
short col;
short line;

};
Arg should be declared as follows:

struct lprio *arg;
Ind is the page indent in columns,
initially 4. Col is the number of
columns in a line, initially 132, Line is
the number lines on a page, initially 66.
A newline that extends over the end of
a page is output as a formfeed. Lines
longer than the line length minus the
indent are truncated.

- 1 -

LP(7)

LPRSOPTS Set the filter options from arg, which
must be of type Int. Arg should be the
logical or of one or more of the
following constants, defined in the
header file:

Constant Value Meaning

LPNOBS 4 No back space. Set this bit if the
printer cannot properly interpret
backspace characters. The driver uses
carriage return to produce equivalent
overstriking.

LPRAW 8 Raw output. Set this bit if the driver
must not edit output in any way. The
driver ignores all other option bits.

LPCAP 16 Capitals. This option supports printers
with a "half-ASCII" character set.
Lowercase is translated to uppercase.
The following special character^ are
translated: { to } to •); * to - ; | to
4; " to - .

LPNOCR 32 No Carriage Return. This option
supports printers that do not respond to
a carriage return (character OD
hexadecimal). Carriage returns are
changed to newlines. If No Newline is
also set, carriage returns are changed to
form feeds.

LPNOFF 64 No Form Feed. This option supports
printers that do not respond to a form
feed (character OC hexadecimal). Form
Feeds are changed to newlines. If No
Newline is also set, form feeds are
changed to carriage returns.

LPNONL 128 No Newline. This option supports
printers that do not respond to a
newline (character OA hexadecimal).
Newlines are changed to carriage
returns. If No Carriage Return is also
set, newlines are changed to form feeds.

Setting all three of No Carriage Return, No New Line,
and No Form Feed has the same effect as setting none of
them.
LPRGOPTS Return the current state of the filter

options.

- 2 -

L P (7)

Note that once set, options will remain intact through a
close.

F I L E S
/dev/lpT

SEE ALSO
lpr(l), lpset(l).

- 3 -

MEM(7)

NAME
mem, kmem - system memory interface

DESCRIPTION
Mem is a special file that is an image of the system
memory. It may be used, for example, to examine, and
even to patch the system.
Byte addresses in mem are interpreted as memory
addresses. References to non-existent locations cause
errors to be returned.
Examining and patching device registers is likely to lead
to unexpected results when read-only or write-only bits
are present.
The file kmem is the same as mem except that kernel
virtual memory rather than physical memory is accessed.
On the MightyFrame system accessing 0 to 24 megabytes
allows a process to read its own space. 0x7F800000 to
0x80000000 allows a process to read the kernel.
Nonvalid pages cause errors to be returned.

SEE ALSO
vme(7).

FILES
/dev/mem
/ dev/kmem

- 1 -

N U L L (7)

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.
Reads from a null special file always return 0 bytes.

FILES
/dev/null

- 1 -

P R F (7)

NAME
prf - operating system profiler

DESCRIPTION
The file prf provides access to activity information in
the operating system. Writing the file loads the
measurement facility with text addresses to be
monitored. Reading the file returns these addresses and
a set of counters indicative of activity between adjacent
text addresses.
The recording mechanism is driven by the system clock
and samples the program counter at line frequency.
Samples that catch the operating system are matched
against the stored text addresses and increment
corresponding counters for later processing.
The file prf is a pseudo-device with no associated
hardware.

FILES
/dev/prf

SEE ALSO
config(lM), profiler(lM).

- 1 -

Q I C (7)

N A M E
qic - interface for QIC tape

DESCRIPTION
This interface provides access to quarter-inch streaming
tape (QIC). QIC tape drives are supported only as
character devices. If the system has a default tape
device (such as the QIC on a MightyFrame system), the
rmtO and r m t 4 devices exist and are linked to the
appropriate real device names. To get the raw, rewind
on close device, use rmtO. To get the raw, no-rewind on
close device, use rmt4.
Tape files are separated by tape marks, also known as
EOFs. Closing a file open for writing writes one tape
mark; if the device was no-rewind, the tape is left
positioned just after the single QIC tape mark. Note
that it is not possible to overwrite a tape mark. Writing
must begin either at the beginning of the tape or after
any previously recorded data.
Each read or write reads or writes the next physical
block. A read must match the size of a normal tape
block. The size of a write determines the size of the next
block; Write sizes must be a multiple of 512.
Read/write buffers must begin on an even address; this
is the same alignment as short. Seeks are ignored.
Reading a tape mark produces a zero-length read and
leaves the tape positioned after the mark; the program
can, without closing the device, read the next tape file.
The following commands are supported for QIC tape via
ioetl(2):

^inc lude < s y s / t s i o c t l . h >
ioctl (fildes, cmd, arg)

where cmd is one of the following:
TPGETA Get the current status of the tape

controller. Arg must be a pointer to a
tpio struction defined as follows:

struct tpio {
unsigned status;
short under;

};
TPCMD Specify a command to the tape

controller as specified in arg. The
following are legal values of arg:

QIC (7)

FILES

TPIOCTYPE

/dev/rmt?
/dev/rqic/*

tape status,
be read via

SENSE Perform a read
The result may
TPGETA

TRESET Reset the tape controller.
REWIND

Issue a rewind command.
ERASE Issue an erase tape command.
RETEN Issue a retension tape

command.
Return TPIOC if fildes is a file
descriptor for a tape special file.

WARNING
A nondata error cannot be recovered from except
closing the device.
A QIC tape has no special mark for end of tape,
opposed to end of file.

by

SXT(7)

NAME
sxt - pseudo-device driver

DESCRIPTION
Sxt is a pseudo-device driver that interposes a discipline
between the standard tty line disciplines and a real
device driver. The standard disciplines manipulate
virtual tty structures (channels) declared by the sxt
driver. Sxt acts as a discipline manipulating a real tty
structure declared by a real device driver. The sxt driver
is currently only used by the shl (1) command.
Virtual ttys are named by inodes in the subdirectory
/ d e v / s x t and are allocated in groups of up to eight. To
allocate a group, a program should exclusively open a file
with a name of the form / d e v / s x t / ? ? 0 (channel 0) and
then execute a SXTIOCLINK ioctl call to initiate the
multiplexing.
Only one channel, the controlling channel, can receive
input from the keyboard at a time; others attempting to
read will be blocked.
There are two groups of ioetl(2) commands supported by
sxt. The first group contains the standard ioctl
commands described in termio(7), with the addition of
the following:
TIOCEXCL Set exclusive use mode: no further opens are

permitted until the file has been closed.
TIOCNXCL Reset exclusive use mode: further opens are

once again permitted.
The second group are directives to sxt itself. Some of
these may only be executed on channel 0.
SXTIOCLINK Allocate a channel group and multiplex

the virtual ttys onto the real tty. The
argument is the number of channels to
allocate. This command may only be
executed on channel 0. Possible errors
include:

EINVAL The argument is out of
range.

ENOTTY The command was not
issued from a real tty.

ENXIO linesw is not configured
with sxt.

EBUSY An SXTIOCLINK
command has already
been issued for this real

- 1 -

S X T (7)

SXTIOCSWTCH

SXTIOCWF

SXTIOCUBLK

SXTIOCSTAT

SXTIOCTRACE

tty.

ENOMEM There is no system
memory available for
allocating the virtual tty
structures.

EBADF Channel 0 was not
opened before this call.

Set the controlling channel. Possible
errors include:
EINVAL An invalid channel

number was given.
EPERM The command was not

executed from channel 0.
Cause a channel to wait until it is
the controlling channel. This
command will return the error,
EINVAL, if an invalid channel
number is given.
Turn off the l o b l k control flag in the
virtual tty of the indicated channel.
The error EINVAL will be returned
if an invalid number or channel 0 is
given.
Get the status (blocked on input or
output) of each channel and store in
the sxtblock structure referenced by
the argument. The error EFAULT
will be returned if the structure
cannot be written.
Enable tracing. Tracing information
is written to / d e v] osm. This
command has no effect if tracing is
not configured.

SXTIOCNOTRACE Disable tracing. This command has
no effect if tracing is not configured.

FILES
/dev/sxt/??[0-7]
/ usr/include / sys/sxt.h

Virtual tty devices
Driver specific definitions.

SEE ALSO
shl(l), stty(l), ioctl(2), open(2), termio(7).

- 2 -

T E R M I O (7)

N A M E
termio - general terminal interface

DESCRIPTION
CTIX systems use a single interface convention for all
RS-232 and cluster (RS-422) terminals, although cluster
terminals do not use all the features of the convention.
The convention is almost completely taken from the
UNIX System V interface for asynchronous terminals.
Three kinds of terminals use this convention:
• RS-232 terminals connected to channels on the

MightyFrame or MiniFrame itself.
• Cluster terminals. Generally a cluster channel

supports more than one terminal and some
terminals are indirectly connected through other
(daisy-chained) terminals. Cluster terminals use
the same interface as directly connected RS-232
terminals, except that hardware control
operations are meaningless on cluster terminals.
(Note that "cluster terminal" refers to the way
the terminal is used, not to the terminal itself; a
Convergent Technologies terminal can serve as
an RS-232 terminal or as a cluster terminal.)

• Local RS-232 terminals. These are connected to
RS-232 channels on cluster terminals. They
actually use the cluster terminal's RS-422
channel to communicate with the host computer
system, but work like regular RS-232 terminals.

A single naming convention applies to regular RS-232
and cluster terminals; a second, related, convention
applies to local RS-232 terminals. A direct RS-232 or
cluster terminal has a name of the form / d e v / t t y z x x ,
where xxx is the terminal's number expressed in three
digits. A local RS-232 terminal has a name of the form
/ d e v / t p / c x x x where c is the RS-232 channel number (a
or b), and xxx is the accomodating cluster terminal's
terminal number expressed in three digits. A local RS-
232 terminal cannot be opened prior to the first open on
the associated RS-422 terminal since the last reboot of
the system.
When a terminal file is opened, it normally causes the
process to wait until a connection is established. In
practice, users' programs seldom open these files; they
are opened by getty and become a user's standard input,
output, and error files. The very first terminal file
opened by the process group leader of a terminal file not
already associated with a process group becomes the

- 1 -

T E R M I O (7)

control terminal for that process group. The control
terminal plays a special role in handling quit and
interrupt signals, as discussed below. The control
terminal is inherited by a child process during a fork(2).
A process can break this association by changing its
process group using setpgrp(2).
A terminal associated with one of these files ordinarily
operates in full-duplex mode. Characters may be typed
at any time, even while output is occurring, and are only
lost when the system's character input buffers become
completely full, which is rare, or when the user has
accumulated the maximum allowed number of input
characters that have not yet been read by some program.
Currently, this limit is 256 characters. When the input
limit is reached, all the saved characters are thrown
away without notice.
Normally, terminal input is processed in units of lines.
A line is delimited by a newline (ASCII LF) character, an
end-of-file (ASCII EOT) character, or an end-of-line
character. This means that a program attempting to
read will be suspended until an entire line has been
typed. Also, no matter how many characters are
requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole
line at once; any number of characters may be requested
in a read, even one, without losing information.
During input, erase and kill processing is normally done.
By default, the character generated by a Programmable
Terminal BACK SPACE key (ASCII BS, Control-H on
most terminals) erases the last character typed, except
that it will not erase beyond the beginning of the line.
By default, the character @ kills (deletes) the entire
input line, and optionally outputs a newline character.
Both these characters operate on a key-stroke basis,
independently of any backspacing or tabbing that may
have been done. Both the erase and kill characters may
be entered literally by preceding them with the escape
character (\) . In this case the escape character is not
read. The erase and kill characters may be changed.
Certain characters have special functions on input.
These functions and their default character values are
summarized as follows:
INTR (Rubout or ASCII DEL; generated by a

Programmable Terminal DELETE key)
generates an interrupt signal which is sent to
all processes with the associated control
terminal. Normally, each such process is

- 2 -

T E R M I O (7)

forced to terminate, but arrangements may be
made either to ignore the signal or to receive a
trap to an agreed-upon location; see signal(2).

QUIT (Control-| or ASCII FS; generated by a
Programmable Terminal CODE-CANCEL key)
generates a quit signal. Its treatment is
identical to the interrupt signal except that,
unless a receiving process has made other
arrangements, it will not only be terminated
but a core image file (called core) will be
created in the current working directory.

SWTCH ASCII NUL is used by the job control facility,
shl, to change the current layer to the control
layer.

ERASE (Control-h or ASCII BS; generated by a
Programmable Terminal BACKSPACE key)
erases the preceding character. It will not
erase beyond the start of a line, as delimited
by a NL, EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by a
NL, EOF, or EOL character.

EOF (Control-d or ASCII EOT; generated by a
Programmable Terminal FINISH key) may be
used to generate an end-of-file from a terminal.
When received, all the characters waiting to be
read are immediately passed to the program,
without waiting for a newline, and the EOF is
discarded. Thus, if there are no characters
waiting, which is to say the EOF occurred at
the beginning of a line, zero characters will be
passed back, which is the standard end-of-file
indication.

NL (ASCII LF) is the normal line delimiter. It can
not be changed or escaped.

EOL (ASCII NUL) is an additional line delimiter, like
NL. It is not normally used.

STOP (Control-s or ASCII DC3) can be used to
temporarily suspend output. It is useful with
CRT terminals to prevent output from
disappearing before it can be read. While
output is suspended, STOP characters are
ignored and not read.

START (Control-q or ASCII DCl) is used to resume
output which has been suspended by a STOP
character. While output is not suspended,

- 3 -

T E R M I O (7)

START characters are ignored and not read.
The start/stop characters can not be changed
or escaped.

The character values for INTR, QUIT, SWTCH, ERASE,
KILL, EOF, and EOL may be changed to suit individual
tastes. The ERASE, KILL, and EOF characters may be
escaped by a preceding \ character, in which case no
special function is done.
When the carrier signal from the datarset drops, a
hangup signal is sent to all processes that have this
terminal as the control terminal. Unless other
arrangements have been made, this signal causes the
processes to terminate. If the hangup signal is ignored,
any subsequent read returns with an end-of-file
indication. Thus, programs that read a terminal and test
for end-of-file can terminate appropriately when hung up
on.
When one or more characters are written, they are
transmitted to the terminal as soon as previously-written
characters have finished typing. Input characters are
echoed by putting them in the output queue as they
arrive. If a process produces characters more rapidly
than they can be typed, it will be suspended when its
output queue exceeds some limit. When the queue has
drained down to some threshold, the program is resumed.
Several toctl(2) system calls apply to terminal files. The
primary calls use the following structure, defined in
< t e r m i o . h > :
#define NCC 8
struct termio {

unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes »/
unsigned short c_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc[NCC];

/* control chars */
} '
The special control characters are defined by the array
c_cc. The relative positions and initial values for each
function are as follows:

0 VINTR DEL
1 YQUIT FS
2 VERASE BS
3 VKILL @
4 VEOF EOT

- 4 -

T E R M I O (7)

5 VEOL NUL
6 reserved
7 VSWTCH NUL

The c_iflag field describes the basic terminal input
control:
IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity

errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 0000400 Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on

input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart

output.
IXOFF 0010000 Enable start/stop input control.
If IGNBRK is set, the break condition (a character
framing error with data all zeros) is ignored, that is, not
put on the input queue and therefore not read by any
process. Otherwise if BRKINT is set, the break condition
will generate an interrupt signal and flush both the input
and output queues. If IGNPAR is set, characters with
other framing and parity errors are ignored.
If PARMRK is set, a character with a framing or parity
error which is not ignored is read as the three-character
sequence: 0377, 0, X, where X is the data of the
character received in error. To avoid ambiguity in this
case, if ISTRIP is not set, a valid character of 0377 is
read as 0377, 0377. If PARMRK is not set, a framing or
parity error which is not ignored is read as the character
NUL (0).
If INPCK is set, input parity checking is enabled. If
INPCK is not set, input parity checking is disabled. This
allows output parity generation without input parity
errors.
If ISTRIP is set, valid input characters are first stripped
to 7-bits, otherwise all 8-bits are processed.

- 5 -

T E R M I O (7)

If INLCR is set, a received NL character is translated into
a CR character. If IGNCR is set, a received CR character
is ignored (not read). Otherwise if ICRNL is set, a
received CR character is translated into a NL character.
If IUCLC is set, a received uppercase alphabetic
character is translated into the corresponding lower-case
character.
If IXON is set, start/stop output control is enabled. A
received STOP character will suspend output and a
received START character will restart output. All
start/stop characters are ignored and not read. If IXANY
is set, any input character, will restart output which has
been suspended.
If EXOFF is set, the system will transmit START/STOP
characters when the input queue is nearly empty/full.
The initial input control value is all-bits-clear.
The c_oflag field specifies the system treatment of
output:
OPOST 0000001 Postprocess output.
OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.
ONOCR 0000020 No CR output at column 0.
ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:
NLO 0
NL1 0000400
CRDLY 0003000 Select carriage-return delays:
CRO 0
CRl 0001000
CR2 0002000
CR3 0003000
TABDLY 0014000 Select horizontal-tab delays:
TABO 0
TABl 0004000
TAB2 0010000
TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0
BS1 0020000
VTDLY 0040000 Select vertical-tab delays:
VTO 0
VT1 0040000
FFDLY 0100000 Select form-feed delays:

- 6 -

T E R M I O (7)

FFO 0
FFl 0100000
If OPOST is set, output characters are postrprocessed as
indicated by the remaining flags, otherwise characters
are transmitted without change.
If OLCUC is set, a lower-case alphabetic character is
transmitted as the corresponding upper-case character.
This function is often used in conjunction with IUCLC.
If ONLCR is set, the NL character is transmitted as the
CR-NL character pair. If OCRNL is set, the CR character
is transmitted as the NL character. If ONOCR is set, no
CR character is transmitted when at column 0 (first
position). If ONLRET is set, the NL character is assumed
to do the carriage-return function; the column pointer
will be set to 0 and the delays specified for CR will be
used. Otherwise the NL character is assumed to do just
the line-feed function; the column pointer will remain
unchanged. The column pointer is also set to 0 if the CR
character is actually transmitted.
The delay bits specify how long transmission stops to
allow for mechanical or other movement when certain
characters are sent to the terminal. In all cases a value
of 0 indicates no delay. If OFILL is set, fill characters
will be transmitted for delay instead of a timed delay.
This is useful for high baud rate terminals which need
only a minimal delay. If OFDEL is set, the fill character
is DEL, otherwise NUL.
If a form-feed or vertical-tab delay is specified, it lasts
for about 2 seconds.
new-line delay lasts about 0.10 seconds. If ONLRET is
set, the carriage-return delays are used instead of the
new-line delays. If OFILL is set, two fill characters will
be transmitted.
Carriage-return delay type 1 is dependent on the current
column position, type 2 is about 0.10 seconds, and type 3
is about 0.15 seconds. If OFILL is set, delay type 1
transmits one or two fill characters, and type 2, four fill
characters.
Horizontal-tab delay type 1 is dependent on the current
column position. Type 2 is about 0.10 seconds. Type 3
specifies that tabs are to be expanded into spaces. If
OFILL is set, two fill characters will be transmitted for
any delay.
Backspace delay lasts about 0.05 seconds. If OFILL is
set, one fill character will be transmitted.

T E R M I O (410)

The actual delays depend on line speed and system load.
The initial output control value is all bits clear.
The e_cflag field describes the hardware control of the
terminal:
CBAUD 0000017 Baud rate:

B0 OHang up
B50 000000150 baud
B75 000000275 baud
B110 0000003110 baud
B134 0000004134.5 baud
B150 0000005150 baud
B200 0000006200 baud
B300 0000007300 baud
B600 0000010600 baud
B1200 00000111200 baud
B1800 00000121800 baud
B2400 00000132400 baud
B4800 00000144800 baud
B9600 00000159600 baud
B19200 000001619200 baud
B38400 000001738400 baud

CSIZE 0000060 Character size:
CS5 05 bits
CS6 00000206 bits
CS7 00000407 bits
CS8 00000608 bits

CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.
LOBLK 0010000 Block layer output.
The CBAUD bits specify the baud rate. The zero baud
rate, BO, is used to hang up the connection. If BO is
specified, the data-terminal-ready signal will not be
asserted. Normally, this will disconnect the line. For
any particular hardware, impossible speed changes are
ignored.
The CSIZE bits specify the character size in bits for both
transmission and reception. This size does not include
the parity bit, if any. If CSTOPB is set, two stop bits are
used, otherwise one stop bit. For example, at 110 baud,
two stops bits are required.
If PARENB is set, parity generation and detection is
enabled and a parity bit is added to each character. If

T E R M I O (7)

parity is enabled, the PARODD flag specifies odd parity if
set, otherwise even parity is used.
If CREAD is set, the receiver is enabled. Otherwise, no
characters will be received.
If LOBLK is set, the output of a job control layer will be
blocked when it is not the current layer. Otherwise the
output generated by that layer will be multiplexed onto
the current layer.
If HUPCL is set, the line will be disconnected when the
last process with the line open closes it or terminates.
That is, the datarterminal-ready signal will not be
asserted.
If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control. Otherwise modem
control is assumed.
The initial hardware control value after open is B9600,
CS8, CREAD, HUPCL.
The e_lflag field of the argument structure is used by the
line discipline to control terminal functions. The basic
line discipline (0) provides the following:
ISIG 0000001 Enable signals.
ICANON 0000002 Canonical input (erase and kill

processing).
XCASE 0000004 Canonical upper/lower

presentation.
ECHO 0000010 Enable echo.
ECHOE 0000020 Echo erase character as BS-SP-BS
ECHOK 0000040 Echo NL after kill character.
ECHONL 0000100 Echo NL.
NOFLSH 0000200 Disable flush after interrupt or

quit.
If ISIG is set, each input character is checked against the
special control characters INTR, SWTCH, and QUIT. If
an input character matches one of these control
characters, the function associated with that character is
performed. If ISIG is not set, no checking is done. Thus
these special input functions are possible only if ISIG is
set. These functions may be disabled individually by
changing the value of the control character to an
unlikely or impossible value (e.g., 0377).
If ICANON is set, canonical processing is enabled. This
enables the erase and kill edit functions, and the

- 9 -

T E R M I O (7)

assembly of input characters into lines delimited by NL,
EOF, and EOL. If ICANON is not set, read requests are
satisfied directly from the input queue. The values of
VMIN and VTIME control how many and when
characters will be returned. If both are 0, reads come
back immediately if no characters are present. If VMIN
is greater than 0 and VTIME is equal to 0, the read will
wait until at least VMIN characters have been received.
If VMIN is equal to 0 and VTIME is greater than 0, the
read will return after VTIME tenths of a second,
regardless of whether any characters have been received.
Note that in this case a read may return 0, which is
indistinguishable from end-of-file. If VMIN is greater
than 0 and VTIME is greater than 0, the timeout period
starts after the first character has been received; thus a
read will always return greater than or equal to 1. This
allows fast bursts of input to be read efficiently while
still allowing single character input. The MIN and TIME
values are stored in the position for the EOF and EOL
characters, respectively. The time value represents
tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case
letter is accepted on input by preceding it with a \
character, and is output preceded by a \ character. In
this mode, the following escape sequences are generated
on output and accepted on input:

For example, A is input as \ a , \ n as \ \ n , and \ N as
\ \ \ n -
If ECHO is set, characters are echoed as received.
When ICANON is set, the following echo functions are
possible. If ECHO and ECHOE are set, the erase
character is echoed as ASCII BS SP BS, which will clear
the last character from a CRT screen. If ECHOE is set
and ECHO is not set, the erase character is echoed as
ASCII SP BS. If ECHOK is set, the NL character will be
echoed after the kill character to emphasize that the line
will be deleted. Note that an escape character preceding
the erase or kill character removes any special function.
If ECHONL is set, the NL character will be echoed even if
ECHO is not set. This is useful for terminals set to local

for: use:
\

L

- 10 -

T E R M I O (7)

echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF
character, this prevents terminals that respond to EOT
from hanging up.
If NOFLSH is set, the normal flush of the input and
output queues associated with the quit, switch, and
interrupt characters will not be done.
The initial line-discipline control value is all bits clear.
The primary iocf/(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:
TCGETA Get the parameters associated with

the terminal and store in the
termio structure referenced by
arg.

TCSETA Set the parameters associated with
the terminal from the structure
referenced by arg. The change is
immediate.

TCSETAW Wait for the output to drain before
setting the new parameters. This
form should be used when
changing parameters that will
affect output.

TCSETAF Wait for the output to drain, then
flush the input queue and set the
new parameters.

Additional ioctl(2) calls have the form:
ioctl (fildes, command, arg)
int arg;

The commands using this form are:
TCSBRK Wait for the output to drain. If

arg is 0, then send a break (zero
bits for 0.25 seconds).

TCXONC Start/stop control. If arg is 0,
suspend output; if 1, restart
suspended output; if 2, transmit
XOFF; if 3, transmit XON.

TCFLSH If arg is 0, flush the input queue; if
1, flush the output queue; if 2,
flush both the input and output
queues.

- 11 -

T E R M I O (7)

FILES
/dev/tty*
/dev/ tp /*

SEE ALSO
stty(l), fork(2), ioctl(2), setpgrp(2), signal(2), tp(7),
tty(7).

WARNING
The default value for ERASE is backspace rather than
the historical # .

BUGS
Local RS-232 terminals do not currently provide hangup
(BO), draining, flushing, or delay.

- 12 -

TIOP (7)

NAME
tiop - terminal accelerator interface

SYNOPSIS
i n c l u d e < s y s / t i o p . h >

DESCRIPTION
The tiop driver provides loading and unloading functions
for the terminal accelerator. The open of device
/ d e v / t i o p will fail if either a terminal accelerator board
is not present, or if it is already loaded. The only
allowable function after opening the tiop device is to
issue an ioctl to download the accelerator. The following
command is supported via ioctl:
I OP ATTACH Download the IOP; arg must point to

an area in the caller's space where the
first 4 bytes are a count of the number
of bytes to be loaded into the
accelerator. The actual data must
follow the count field immediately.
The count bytes are copied into the
accelerator starting at memory location
0. After loading, the accelerator is reset
and begins execution at 0 in its
memory. After a successful
IOP ATTACH all but two onboard RS-
232 ports will be controlled by the
accelerator.

T P (7)

NAME
tp - controlling terminal's local RS-232 channels

DESCRIPTION
The t p devices accesses the RS-232 channels on the
controlling terminal. The terminal must be a cluster
terminal configured to permit use of the local RS-232
channels (see termio(7). Just as / d e v / t t y permits a
process to convenient! access its process group's

/ d e v / t p b access the controlling terminal's RS-232
channels without reference to the terminal number. This
is convenient for accessing the user's local hardware,
such as a telephone with an RS-232 interface.

controlling terminal tty(7)), / d e v / t p a and

SEE ALSO
tty(7).

- 1 -

TTY(7)

NAME
tty - controlling terminal interface

DESCRIPTION
The file / d e v / t t y is, in each process, a synonym for the
control terminal associated with the process group of
that process, if any. It is useful for programs or shell
sequences that wish to be sure of writing messages on the
terminal no matter how output has been redirected. It
can also be used for programs that demand the name of
a file for output, when typed output is desired and it is
tiresome to find out what terminal is currently in use.
If the terminal is under window management, a process
group is controlled by a specific window and I/O on
/ d e v / t t y is directed to that window. A terminal can
control one process group in each window. See
window (7).

FILES
/dev/tty
/dev/tty*

SEE ALSO
tp(7), window(7).

- 1 -

VME (7)

NAME
vme - VME bus interface

DESCRIPTION
Vme files are a set of special files that are images of the
VME bus. They may be used, for example, to examine,
and to modify memory and registers on the VME bus.
Byte addresses in vme are interpreted as memory
addresses. For a read, references to non-existent
locations cause errors to be returned; for a write, nothing
is written and no error is returned.
Examining and patching device registers is likely to lead
to unexpected results when read-only or write-only bits
are present.
The structure for ioctl calls is:

#defineVMGETREG (V + 0)
#defineVMSETREG (V + l)

struct vmeioctl {
unchar vm_mreg;
unchar mv_preg;
unchar vm_ireg;

};
The standard VME interface EEPROM contents are:
#define VME_SLOTS 16

struct vmeeprom {

/ * Make the entire prom checksum to - 1 */
int checksum;

/ * EEPROM flags (diag/unix) *j
int flags;

/ * Offset into EEPROM from the start of code */
ushort codeoffset;

/ * unused, reserved */
char unused[2|;

struct {
/* Board identification for this slot */
char type;

/* reserved for future use */
char unused[7|;

- 1 -

VME (7)

/* Address of the board; in MightyFrame I /O space */
uint address;

/* Amount of address space taken up by the board */
uint length;

j* Pointer to an optional initialization function */
int (*initfp)();

} slots[VME_SLOTS|;

/* Reserve the rest for controller code */
char drivers[7860|;

};
#def ine VMEE_DIAG 0 /* Diag has cleared/set EEPROM */
#def ine VMEE_LOADED 1 j* unix has loaded driver information */

#def ine VMET_CMC 1 /* CMC Ethernet controller */
#def ine VMET_V3200 2 /* Interphase SMD controller */

/dev/vme/a l6 64K bytes of short address space
/dev/vme/a24 32M bytes of standard address

space
/dev/vme/a321 low 2 gigabytes of extended

address space
/dev/vme/a32h high 2 gigabytes of extended

address space
/dev/vme/eeprom 8K VME interface EEPROM

SEE ALSO
ldeeprom(lM), system(4), mem(7).
MightyFrame VME Expansion Manual.

FILES

V T (7)

NAME
vt - virtual terminal

DESCRIPTION
A virtual terminal provides a terminal-like
communication channel between two processes. Each
virtual terminal consists of two devices: a slave device,
whose name is of the form / d e v / t t y p x x , where xx is the
virtual terminal number; and a master device, whose
name is of the form / d e v / v t x x , where xx is the virtual
terminal number. The slave device responds to system
calls just like a real terminal (see termio(7)) so that it
can control interactive programs such as vi. But instead
of doing actual input/output, reads and writes on the
slave device are written and read on the corresponding
master device by another process. A typical use of a
virtual terminal is to put a network server on the master
device and login program on the slave.
The number of virtual terminals must be configured.
See config(lM).
The process on the master device can exercise flow
control on the slave device, much as a real terminal
would use XON/XOFF to exercise flow control on a
terminal device. The parameterless ioctl(2) TIOCSTOP
stops output to the slave device as if with an XOFF
character; the parameterless ioctl(2) TIOCSTART restarts
output, as if with an XON character.

FILES
/dev/ttyp?? slave devices
/dev/vt?? master devices

SEE ALSO
config(lM), ttyname(3C), termio(7).

5/86 - 1 -

W I N D O W (7)

NAME
window - window management primitives

SYNOPSIS
^ i n c l u d e < s y s / w i n d o w . h >

DESCRIPTION
Window managment (wm(1)) provides a superset of
windowless terminal features. This entry describes
terminal file features special to window management.
Window management features are designed not to
interfere with programs that do not know about window
management. Such design includes simple extensions to
the UNIX System's standard concepts of file descriptor
and control terminal.
• Each terminal file descriptor has an associated

window number, a small positive integer that
identifies a window. A window number is the
most primitive way to refer to a window, and
should not be confused with the window ID used
by window management subroutines. A new
window gets the smallest window number not
already in use. Closing a window frees its
number for possible assignment to a later
window. Output and control calls on the file
descriptor apply only to the descriptor's window;
input calls succeed only when the window is
active.

A file descriptor created by a dup(2) or inherited
across a fork(2) inherits the original descriptor's
window number. All the file descriptors in such
a chain of inheritance, provided they belong to
processes in the same process group, are affected
when ioctl changes the window number of any of
them.

• When a process group's control terminal is under
window managment, the process group is
actually controlled by a particular window.
Such can have more than one process group,
each controlled by a different window.
Keyboard-generated signals (interrupt and quit)
go to the process group controlled by the active
window.

When the user creates a new window by using the SPLIT
key, the window manager forks a process for that
window. The new process inherits file descriptors for
standard input (0), standard output (l), and standard
error (2) that are associated with the new window. The

- 1 -

W I N D O W (7)

new process is leader of a process group controlled by the
new window. The new process also inherits the
environment of the parent process, which is the window
manager itself.
Programs that create and use windows use window
management ioctl(2) calls. Such calls take the form

ioctl (fildes, command, arg)
struct wioctl *arg;

Fildes is a file descriptor for terminal and window
affected, command is a window management command
(see below) arg is a pointer to the following structure,
declared in < s y s / w i n d o - w . h > :

#define NWCC 2

struct wioctl {
wndw_t wi_dfltwndw;
wndw_t wi_wndw;
slot_t wi_mycpuslot;
slot_t wi_destcpuslot;
port_t wi_bport;
char wi_dummy;
unsigned char wi_cc[NWCC];

}>
Window management ioctl calls get (WIOCGET) and set
(WIOCSET and WIOCSETP) terminal attributes described
in the wioctl structure:

wi_dfltwndw The window number for the
process's default window. If the
process does an open on
/ d e v / t t y , the new file
descriptor is associated with the
default window.

wi_wndw The window number for the
window that fildes (ioctl's first
parameter) is associated with.

wi_mycpuslot (This field is required for
historical reasons and is not
meaningful to the host.)

wi_destcpuslot (This field is required for
historical reasons; it is not
meaningful to the host
processor.)

wi_bport (This field is required for
historical reasons; it is not
meaningful to the host

- 2 -

W I N D O W (7)

processor.)
wi_cc (This field is required for

historical reasons; it is not
meaningful to the host
processor.) Not used by the
CTIX kernel. A value supplied
by a WIOCSET or WIOCSETP is
stored in a place associated with
window wp_wndw. A
subsequent WIOCGET on the
same window retrieves the
information.

Here are the window management ioctl commands:
WIOCGET

WIOCSET

WIOCSETP

Get information on calling
process and file descriptor
fildes. Fill in arg.
Set values for calling
process and file descriptor
fildes from information in
arg. Has no effect on
process group-control
terminal relationship.
Set values for calling
process and file descriptor
fildes from information in
arg. The window specified
in arg->wt_wndw becomes
the process's group's
controlling terminal
provided the following:

• The calling process
is the process group
leader.

• The process group is
not currently
controlled by
another window on
this or any other
terminal.

specified
is not

a control

The
window
already
window.

WIOCLRP Only valid executed by process
group leader. The process group

- 3 -

W I N D O W (7)

ceases to have a control terminal
or window and the control
terminal/window ceases to control
any process group. The process
group is free to find another
control terminal/window, and the
old control terminal/window is
free to become the control
terminal/window for another
process group.

WIOCCLUSTER
Ioctl returns 1 if and only if the
terminal is a cluster terminal.

WIOCD1RECT Enable direct sending of terminal
IPC requests.

WIO CUNDIRECT
Disable direct sending of terminal
IPC requests.

An open on a terminal special file other than / d e v / t t y
(for example, /dev/ttyOOO) produces a file descriptor
for the lowest-numbered open window. Ioctl can move
this file descriptor to any window.
An open can also obtain a controlling terminal/window.
The requirements are the same as for WIOCSETP.

FILES
/dev/t ty - control terminal
/dev/tty??? - terminals

SEE ALSO
stty(l), wm(l), dup(2), fork(2), ioctl(2), open(2|,
wmgetid(3X), wmlayout(3X), wmop(3X), wmsetid(3X),
termio(7), tty(7).

WARNINGS
WIOCDIRECT and WIOCUNDIRECT are required by the
operating system. Their use by user programs is
inadvisable.

- 4 -

