R

- ae ay CC

ComputerAutomation

NAKED MINI. Division

18651 Von Karman, Irvine, California 92713 Tel 714 833 8830 TWX 910595 1767

CAl Limited
Hertford House, Denham Way, Rickmansworth, Herts WD3 2XD
TEL RICKMANSWORTH 71211 ¢ TELEX 922654

OPERATING SYSTEM
ASSEMBLER LANGUAGE
REFERENCE MANUAL

96552-00A3 November 1977

PRINTED IN THr U B~
)1977 COMPUTER AUTOMATION, INC.

.
ol

e

Revision

A3

o

REVISION HISTORY

Issue Date

November 1977

Comments

Documentation correction

Paragraph

N DN

DN N NN DNDDNDN

P b e et e b

1O U W N

TABLE OF CONTENTS
Page
Section 1. THE ASSEMBLER PROGRAM
INTRODUCTION v v v v v v e v v v 11
ASSEMBLER FILES.1-2
SYNTAX NOTATION v v v1-4
SOURCE STATEMENT FORMAT15
Section 2. OPERAND EXPRESSIONS
TERMS c e . 2-2
Self-Defining Terms . . 2-2
Symbolic Terms . . 2-4
Defined Terms. . 2-4
Undefined Terms . 2-4
Absolute Terms . 2-5
Relocatable Terms . . 2-5
Unary Operators . 2-5
COMPLEX EXPRESSIONS . . 2-7
Binary Operators . 2-8
ABSOLUTE AND RELOCATABLE EXPRESSIONS 2-9
LOGICAL EXPRESSIONS2-11
~ OPERAND EXPRESSION PREFIXES 212
Section 3. CODING MACHINE INSTRUCTIONS
CLASS 1: WORD REFERENCE32
CLASS 2: BYTE IMMEDIATE.33
CLASS 3:, CONDITIONAL JUMP34
CLASS 4: SINGLE REGISTER BIT CHANGE. 35
iii

TABLE OF CONTENTS (Cont'd)

Paragraph

3.5
3.6
3.7
3.8
3.9

3.10

CLASS 5: REGISTER AND CONTROL
CLASS 6: INPUT/OUTPUT.

CLASS 7: DOUBLE REGISTER BIT CHANGE
CLASS 8: BYTE REFERENCE

CLASS 9: DOUBLE REGISTER ARITHMETIC

CLASS 10: STACK REFERENCE

Section 4. ASSEMBLER CONTROL

End of Source Program (END) .
Machine Instruction Set (MACH) .
Listing Control (LIST)

Save Definitions (SAVE) .

Section 5. SYMBOL AND DATA DEFINITION

Data Definition (DATA)
Equate Symbol Value (EQU)
Reserve Storage (RES)

Text Definition (TEXT)

Byte Address Constant (BAC)

Section 6. LOCATION CONTROL

Absolute Object Code (ABS) .

_Relocatable Object Code (REL) . .

~ Scratchpad Relocatable Object Code (SREL)
Origin of Object Code (ORG) .

Section 7. OBJECT PROGRAM LINKAGE

Entry Declaration. (NAM/SNAM)

External Declaration (EXTR/SEXT) .
Demand Load (LOAD) .

Reserve Chain Link (CHAN) .

Example of Chain Structure and Usage .
External Reference Constant (REF/SREF) .

iv

Page

. 3-6

. 37

. 3-11

v 3-12

i R

e

TABLE OF CONTENTS (Cont'd)

Section 8. LITERALS

Allocate Literal Pozl (LPOOL)

Section 9. SCRATCHPAD LITERALS

Scratchpad Litcral Only (SPAD)

Section 10. CONDITIONAL ASSEMBLY

Conditional Assembly Control (IFT/IFF/ENDC)
Set Variable Value (SET) . ..
Repeat Next Source Statement (REPT)

Section 11. MACRO FACILITY

Delimit Macro Definition (MACRO/ENDM) .
Macro Call Statement .o .

Macro Parameter Reference (#n) .

Macro Parameter Count (#?) .

Generated Message (NOTE)

Macro Variable Label (fawx)

Macro Parameter Prefix Check .

Macro Parameter Address Mode Strlppmg

Section 12. LANGUAGE EXTENSIONS

Define New Data Format (FORM) .
Using a New Data Format
Define New Op Code ($class)

Section 13. SUBROUTINE STRUCTURE MNEMONICS

Section 14. LINE CONTROL

" Heading Title (TITL)
Line Skip (SPACE)

New Page (period)
Comment Iine (asterisk)

. 8-4

. 11-2
. 11-3
. 11-4
. 11-6
. 11-7
. 11-8
. 11-9
. 11-10

. 12-2
. 12-3
. 12-4

TABLE OF CONTENTS (Cont'd)
Section 15. INTERPRETATION OF THE ASSEMBLY LISTING
Section 16. SAMPLE ASSEMBLY LISTING
Section 17. LINE FLAGS
Section 18. 0S:ASM
Appendix A. ASCII CHARACTER SET
Appendix B. MACHINE INSTRUCTION SETS
Appendix C. LSI-2 INSTRUCTIONS

Appendix D. LSI-3/05 INSTRUCTIONS

vi

S TS P R

i
|

Section 1

THE ASSEMBLER PROGRAM

1.1 INTRODUCTION

This publication describes the assembler language for Computer Automation 16-b.t mini-
computers. Three separate CA Operating System programs accept this language ana
translate it into object code.

MACRO?2? has all the facilities described in this manual. It is the general-purpose
assembler for all models of the LS!-2, LSI-1, and ALPHA-16. It is possible to run MACRO2
on any hardware configuration which supports OS itself, but more than 16K of memory

is recommended, to handle a useful number of symbols and Macro Definitions.

OS: ASM is a simplified version of MACRO2, intended for OS configurations with a
memory size of 16K or less. The most substantial difference between OS: ASM and the
other assemblers is its lack of a Macro Facility. Section 18 of this publication describes
other limitations of OS: ASM.

MACRO3 has all the facilities described in this manual. It runs on an LSI-2 under OS,
but generates object code intended for an LSI-3/05. The object code typically is processed
by the OS Link Editor before it is actually transferred to an LSI-3/05.

Because the source language defined for all three programs is identical, this publication
uses the phrase "the assembler"” to denote whatever assembler is being used to accomplish
the translation from Source Program to Object Program, and designates the three different
assemblers by name -- MACRO2, OS: ASM, MACRO3 -- only when there is, in fact, a
meaningful distinction to be made.

Details on the operation of all three assemblers are published as part of OS User's Manual
(96530-00).

1-1

1.2 ASSEMBLER FILES

Source Input File

The primary (and required) input to the assembly process is the Source Input File.
Any input device may be used, including paper tape. The usual practice is to submit

a deck of punched cards for a new program, and to maintain old programs on disk with
OS: SFE or OS:EDT. The maximum length for a logical record is 80 bytes; the maximum
length for a physical block is 960 bytes.

A Source Input File may contain any number of separate Source Programs, each of which
terminates with its own END statement. Exactly one End-of- File must appear after the
END statement of the very last Source Program.

In this publication, the term "assembly" refers to the processing of each separate Source
Program. A new assembly starts with the next available record on the Source Input.File,
and ends with the next END statement. The execution of the assembler is terminated when
an End-of-File is reached on the Source Input File. Section 4 explains how a SAVE directive
may be used to communicate certain results of one assembly to all the assemblies which
follow it from the same Source Input File.

Assembly Listing File

The contents of the Source Input File are not listed immediately, as might be done by

a compiler, but are held until each assembly is complete. The source statements are
then reproduced side-by-side with the corresponding object code, error flags, and other
relevant information.

Sections 4 and 14 describe how the listing may be manipulated by various elements of
the Source Program. It is also possible to prevent the generation of an assembly listing
thru OS parameters.

Sections 15 and 16 contain a detailed explanation of the assembly listing, and a sample
of MACRO2 output.

Scratch File
The assembler requires working space on one magnetic device. This file is for internal

use only; a Close and Delete is issued when the assembler terminates normally.

Binary Output File .

The result of the assembly of each Source Program is a corresponding Object Program.
The Binary Output File contains all of the Object Programs generated during one execution
of the assembler. The file may be assigned to a paper tape punch, but ordinarily it is
made a named file on a magnetic'device, for convenient turn-around to the link editor.

1-2

T

=1

i

Nk il

o

The overall format of the Binary Output File is compatible with all other CA-supplied
software, including the various loaders and the Autoload program. However, as explained
in Section 7, the recommended approach is to assume that the assembler's Binary Output
File is destined for processing specifically by the OS link editor.

An OS parameter is available to prevent the assembler from opening and using a Binary

Output File, ‘and another OS parameter controls the placement of End-of-File records
cn a paper tape file.

Definition File

In some installations, a substantial amount »f assembler language programming is sharcd
by many different Source Programs. The Definition File makes it possible to maintain
and assign a collection of source statem:nts separately from the Source Input File, thus
making the statements available on a centralized basis.

A Definition File is identical in format to any Source Input File. It may contain one complete
Source Program, or a number of programs. It may be a deck of cards, a paper tape,
or a named file on a magnetic device, and may be assigned to the same physical device

~ as the current Source Input File, as long as it is accessible before the Source Input.

Ordinarily, a Definition File contains Macro Definitions, New Data Format and New Op
Code Definitions, SET and EQU statements, commentary, and other statements not intended
to generate any object code.

If an OS parameter specifies that a Definition File is available, the file is opened, processed,
and closed just as if it were a Source Input File. There are two distinctive aspects to
the processing:

1. No Binary Output is ever generated.

2. All of the definitions, symbols, and values established during Definition File Processing
are still available to the assembler while it processes the Source Input File, just
as if all the statements in the Definition File were physically included in every program
on the Source Input File.

Ah OS parameter is available to prevent the production of an assembly listing for the
Definition File. ‘

The Definition File facility is not available to OS: ASM, but the SAVE directive has a closely
related function.

1-3

1.3 SYNTAX NOTATION

This reference manual adopts a familar meta-linguistic notation to specify the valid syntax
for each type of source statement. Each statement type is displayed as if it were a card
located flush with the left edge of the narrative text; the distinction between the various
fields will be self-evident from their contents and horizontal spacing.

Syntax elements which begin with a capital letter, but are otherwise in lower case, are
generic terms, and are explained in the corresponding narrative.

A syntax element in upper case is a fixed part of the language.
An element surrounded by square brackets is optional.

A vertical stack indicates a choice of one entry from the stack.

Three periods following a right square bracket indicate an arbitrary repetition of.ale
contents of the last pair of brackets.

The following syntax chart illustrates the complete notation:

[Label] MNEM [Operand[, Operand] ces [Comments]]

1-4

B ik 45 el

“

1.4 SOURCE STATEMENT FORMAT

Each source statement occupies the first 72 bytes of an isolated logical input record; any
bytes remaining are discarded. Each statement is in the usual free-form arrangement --
four variable-length fields delimited by blank columns.

Label Field
The Label Field starts in Column 1 of each source statement. If Column 1 is blank, then

the Label Field is said to be empty, and ends with the first non-blank character -- that
is, with the start of the Operation Field.

If Column 1 is not blank, then every colu-nn up to the next blank is either a Label or some

type of assembler directive, such as a Comment Line, a New Page, or a New Op Code
Definition.

If Column 1 is an alphabetic character, then the field contains a Label -- the name of

a symbol or variable. The alphabetic character may be followed by 0 thru 5 alphanumeric
characters, followed in turn by at least one more blank.

Operation Field

The Operation Field starts with the first non-blank column after the Label Field. It contains
a character string identical in structure to a Label -- 1 to 6 alphanumeric characters,

the first of which must be alphabetic. This string is called a Mnemonic, and indicates

a machine instruction, a Macro Call, a New Op Code, or a New Data Format, or an
assembler directive.

Except for a directive, any Mnemonic can have its meaning changed at any point thru
facilities built into the assembler language.

At least one blank column must follow the Mnemonic; an arbitrary number of blanks may
be used to separate the Operation Field from the next field.

1-5

Operand Fiekld

The existence of the Operand Field depends upon the definition of the Mnemonic used

in the Operation Field. For some Mnemonics, no operands are meaningful, and the
assembler never processes any source statement columns to the right of the Operation
Field. For other Mnemonics, one or more operands are always required, and the assembler
expects them to start with the first non-blank column after the Operation Fie;d .

There are three types of statements which sometimes have an Operand Field, and sometimes
do not:

Macro Calls
END directives
LPOOL directives

For these, the programmer must either supply an Operand Field, or leave the rest.of *
the source statement blank.

Each operand is of arbitrary length, and is determined by the nature of the source statement
involved; the only restrictions are:

1. Single Quote characters must be paired.
2. Blanks and commas cannot occur outside of quoted text strings.

3. The last operand cannot extend past Column 72. The assembler does not allow continu-
ation of the Operand Field onto another logical input record.

Each operand is separated from the next by a comma, and the last operand -- unless it
extends to Column 72 -- must be followed by at least one blank column.

1-6

e e o e —

Comments Field

The Comments Field starts with the first non-blank column after the previous field, and
extends to the rightmost column of the source statement. The assembler does not process
the Comments Field, except to align it for a formatted listing.

If a given Mnemonic always requires an Operand Field, the Comments Field is not shown
on syntax charts in this publication, because it cannot affect the validity of a statement.

If a Mnemonic never involves an Operand Field, the syntax chart may show the generic
element Comments to emphasize that no operands are recognized.

For the few statement types which allow a Comments Field only if an Operand Field is
also present, the syntax chart will show this construction:

[Label] Mnemonic [Operand [Comments]]

Statement Fields as Listed

The assembler ordinarily reformats each source statement before listing it, to provide
uniform, more readable columns. If the source statements are keypunched on 80-column
cards, the usual coding practice is to use the same fixed columns maintained on the listing:

01 -- 06 Label Field

07 Blank
08 -- 13 Operation Field
14 Blank

15 -- 72 Operand Field
24 -- 72 Comments Field (if Column 23 is blank)
73 -- 80 Discarded on Input

1-7

Section 2

OPERAND EXPRESSIONS

Each operand of an assembler language source statement may be a simple term -- a number
or name -- or it may be a complex expression -- a formula consisting of several terms
and operators.

An important part of the assembler program is a 31-bit interpreter, or expression evaluator,
which represents a considerable advanc: in sophistication over most mini-computer
assemblers, including those previously available trom Computer Automation. Because

the possibilities for an operand expression are so broad, this entire section is devoted

to the rules for expressions.

For the most part, this section is concerned with what can be done in the assembly
language, rather than with what can't be done. There are few restrictions upon an operand
expression. Generally, if an expression has some unambiguous meaning, it is accepted
and assembled, on the principle that the programmer must intend something to result,
however unusual. This principle is particularly important in an assembler with a Macro
facility, because an operand expression is often generated in a roundabout way, rather
than coded directly by the programmer in the least number of terms.

2-1

2.1 TERMS
A term may be characterized in several different ways:
Self-Defining or Symbolic

‘Defined or Undefined
Absolute or Relocatable

2.1.1 Self-Defining Terms .

A self-defining term represents an immediate_ly available value in one of these notations:

Decimal Number
Octal Number
Hexadecimal Number
Text String

Decimal Numbers

A decimal number consists of 1 thru 5 decimal digits. It is distinguished from an octal
number by having no leading zeros. The largest acceptable decimal number is 65535.

Octal Numbers

An octal number consists of 1 thru 7 octal digits -- the characters 0 thru 7. It is
distinguished from a decimal number by having at least one leading zero. The largest
acceptable octal number is 0177777.

Hexadecimal Numbers

A hexadecimal number consists of 1 thru 4 hexadecimal digits -- the characters 0 thru
9 and A thru F. It is distinguished from a symbolic term by having a colon prefixed.
The largest acceptable hexadecimal number is : FFFF.

Text Strings

A text string consists of 1 or 2 ASCII characters. The string is delimited with a preceding
and a following Single Quote character. If a character in the text string must itself be

a Single Quote, it is represented by two successive Single Quotes in two columns of the
source statement. The assembler will accept any character in a text string, but in practice,
only printable characters and blanks are used in source statements; non-printable
characters are expressed as hexadecimal numbers.

2-2

B e e

|

Here are some examples of self-defining terms:

Decimal Numbers:

1

70
71
65535

Octal Numbers:
0

03
0777

Hexadecimal Numbers:

:0

:E

: 64

: OFF
: FFFF

Text Strings:

A
(F
Xx!
' '
T
U

2-3

. mmmmm———-

¢
2.1.2 Symbolic Terms

A symbol is the name of a value defined by the assembly process. Ordinarily, a symbol
consists of 1 thru 6 alphanumeric characters. As in most programming languages, the
first character of a symbolic name must be alphabetic -- that is, in the ASCII character
range A thru Z.

The assembler accepts embedded colons in symbolic names, but the use of colons is
reserved for CA-supplied software. -

One symbolic name has a special construction. An isolated character $ -- or Currency

Symbol -- represents the current value of the Location Counter at the point where the
$ is referenced.

2.1.3 Defined Terms

A defined term has a value known to the assembler. A self-defining term is, of course,
defined by its own representation. Certain symbols are considered predefined when

an assembly begins. These include all of the symbols which were defined during the
processing of a Definition File, and all of the symbols communicated to the current assembly
by a SAVE directive in a previous assembly.

At any point within an assembly, a term is also predefined if its nominal value has already
been conclusively determined. The nominal value of a symbol is the value it will have
after link-edit processing if the relocation bias is specified to be zero.

Each use of a symbol before it becomes defined is called a forward reference. Because

the assembler performs two passes over the Source Program, forward references are
allowed in almost all contexts. However, certain directives which control Pass 1 processing
will accept only predefined terms.

A symbol may be declared External by certain directives. An External symbol is considered
a kind of forward reference which does not become defined until link-edit time. An External
reference may be used in certain restricted contexts, as specified in the detailed descrip-
tions of each assembly language feature. :

2.1.4 Undefined Terms

If a symbolic name is found to be neither defined, nor declared External, at the end of
an assembly, it is considered undefined. Reference to an undefined term is usually an
error, and the source statement is flagged on the listing.

Undefined operands are accepted by an SPAD directive, by a Macro Call, and in other
special contexts for which no expression evaluation is performed.

i

S

= A

o

__CERERE TSR oy < F

2.1.5 Absolute Terms

An absolute term has the same value during the assembly as it will have after link-edit
processing, regardless of the relocation bias specified to the link editor. It follows that
self-defining terms are always absolute.

Symbolic terms are established as absolute if they are defined in certain ways. For
example, a symbol defined thru a SET or EQU to an absolute expression is absolute.
Similarly, a symbol defined as the Label of a statement within range of an ABS directive
is‘absolute.

2.,:1 .6 Relocatable Terms

A relocatable term has a nominal value during the assembly, but the value is subject
to change during link-edit processing. It follows that Externals are always considered
relocatable.

Symbolic terms are established as relocatable if they are defined in certain ways. For
example, a symbol defined thru a SET or EQU to a relocatable expression is relocatable.
Similarly, a symbol defined as the Label of a statement within range of a REL or SREL
directive is relocatable.

There are two distinct categories of relocatable terms, "ordinary" Relocatavle, and
Scratchpad Relocatable. Each has its own special uses, and each is affected by a different
bias at link-edit time. :

In most assembly language contexts, however, either both types of relocatable symbol
are acceptable, or neither is, and only absolute terms may be used.

2.1.7 Unary Operators

The value represented by a term, whether self-defining or symbolic, may be adjusted-
by a unary operator prefixed to the term. Unlike a binary operator, which is used to

combine two terms into a complex expression, a unary operator may appear at the very
beginning of an expression, or after a binary operator.

Unary Plus (+')

A + character prefixed to a term has no effect upon its value. It may be used to emphasize
that a term does not have a Unary Minus prefixed, or for any similar clarification of the
source statement.

Unary Minus (-)

A - character prefixed to a-term indicates 2's complementation of the signed arithmetic
value of the term.

2-5

Unary Not (\)

A \ character, which appears in the form = on some printers and keypunches, indicates
1's complementation of the bit-value of the term. A more precise definition for relocatable
terms is:

1. Perform 2's complementation
2. Subtract 1

Thus, for anjr absolute or relocatable term T,

\T is equivalent to -T-1

Restrictions .

At

To the first term in an expression, either 0, 1, or 2 successive unary operators may be
prefixed. To a term which is not the first in an expression, only 1 unary operator at
most may be prefixed.

Here are some examples of unary operators:

Expression Word Value in Hex
1 : 0001
+1 : 0001
-1 :FFFF
\1 :FFFE
“\-1 : 0000
-\1 : 0002

Assume that WN is a relocatable symbol with a nominal value of +1:

WN : 0001
+WN : 0001
\-WN : 0000
-\WN : 0002
--WN : 0001
\\WN : 0001

Ed

These expressions are errors, because they violate the rules explained under Absolute
and Relocatable Expressions:

\WN
-WN

2-6

2.2 COMPLEX EXPRESSIONS

"Terms are combined into complex expressions by using binary operators. An expression

is always evaluated from left to right. No binary operator takes precedence over any
other binary operator. If a binary operator is followed by a unary operator, the unary
operator is applied first.

As expression evaluation proceeds from left to right, the current partial result of the
evaluation, or intermediate value, is maintained as a 31-bit binary number, with a separate
sign. An incoming term is limited to a 16-bit absolute or 15-bit relocatable value, each
with a separate sign. The final evaluated result, or expression value, is also limited

to a 16-bit absolute or 15-bit relocatable value, with a separate sign.

As relocatable terms enter the expression evaluation, they cause the intermediate value

to fluctuate between absolute and relocatable, according to rules explained in a following
section. The nature of the final result determines whether the entire evaluated expression
is called an absolute expression or a relocatable expression, and whether its Load Attribute
is Absolute, Relocatable or Scratchpad Relocatable.

If the final reduction of the intermediate 31-bit value to 16 or 15 bits causes high-order
truncation of significant bits, the relevant source statement is flagged. The final value
is still assembled; it is the programmer's responsibility to decide if the Object Program
is usable.

To clarify the discussion which follows, these symbols are adopted:

\Y% The intermediate value of the expression evaluation process

T The leftmost unevaluated term, about to enter the expression evaluation
ABS Any absolute value, either intermediate or final

REL Any relocatable value, either intermediate or final

2-7

2.2.1 Binary Operators

Addition (V+T)

The expression V+T indicates the arithmetic addition of the signed values of V and T.

Subtraction (V-T)

The expression V-T indicates the arithmetic subtraction of the signed values of V and
T. If Vand T are not both absolute, a more precise definition is that V-T is equivalent
to V+-{I‘, in which the unary Minus is applied before the binary Plus.

Multiplication (V*T)

The expression V*T indicates the arithmetic multiplication of the signed values of V and
T. Either Vor T, or both, must be absoiute.

Division (V/T)

The expression V/T indicates the integer division of the signed values of V and T. Any
remainder is simply discarded. Both V and T must be absolute values. Any attempt
to use a relocatable value for division is an error.

If the value of T is 0, the source statement is flagged, the new intermediate value is
arbitrarily set to : FFFF, and evaluation continues.

Logical OR (V;T)

The expression V; T indicates a logical Inclusive OR of the bit values of V and T. The
new intermediate result is always considered an absolute value.

‘Logical AND (V&T)

The expression V&T indicates a logical AND of the bit values of V and T. The new
intermediate result is always considered an absolute value, except for the special cave
of T =':7FFF, which leaves V relocatable if it was before.

~

Logical Shift (V%T)

The expression V5T indicates that the 31-bit value of V is to be logically shifted the number

of binary places specified by T (including any unary operators prefixed to T). The
separate sign of V is not changed.

A shift right is negative; a shift left is positive. Any bits shifted out of either end of
V are lost. Zero bits are supplied on either end as needed.

T must be absolute. V may be absolute; V may also be relocatable, subject to the rules
for expression evaluation described below.

2-8

LSS th i oty

SOFSERERIESRL P e

o

-8

2.3 ABSOLUTE AND RELOCATABLE EXPRESSIONS

As expression evaluation proceeds, an assembler artifact called R (for Relocation Factor)
is associated with the current intermediate value V. At any point in the evaluation, R
has some signed numeric value.

It is the manipulation of R which determines whether or not an expression is acceptable
to the assembler, and whether the final expression is absolute or relocatable.

These are the rules for determining R at any intermediate or final point.

1.

9.

Set the initial value of R to 0.

If the very first term of the expression is relocatable, set R = 1. For -REL or \REL,
set R = -1.

As the evaluation proceeds, for each V+REL, set R = R+1. Interpret V+-REL as V-REL.
For each V-REL, set R = R-1. Interpret V--REL as V+REL.

For V%T, multiply R by 2 to the power of T. If R becomes a proper fraction, the.
expression is an error.

For V*ABS, set R = R*ABS.
For V¥REL, if R=0, set R=V. If R is not 0, V*REL is an error.
V/REL is always an error.

If R is not 0, V/ABS is an error.

10. For V; T set R = 0.

11. For V&T set R = 0, except that if T = : TFFF, leave R unchanged.

At any point, R = 0 indicates that the intermediate or final value is absolute.

If R is not 0, the intermediate or final value is relocatable.

When the evaluation is completed, R must be either 0 or 1. Any other final R is an error.

2-9

These rules apply to an expression with relocatable terms, all of which are either ordinary
Relocatable, or Scratchpad Relocatable. If both types appear within one expression,

a separate R must be maintained for each type; one R or the other, or both, must be zero
when the final value is determined.

One, and only one, External may appear in a complex expression. An External cannot

be multiplied or shifted, nor may a unary operator be applied to it. The final value must
be equivalent to External+ABS, in which ABS is a value no greater than positive or negative
: TFFF.

External+0 represents an "ordinary" External. External+ABS, with ABS not equal to
0, is called External with Offset. Only the link editor can handle an Object Program
containing External with Offset; all CA-supplied loaders will reject the Object Program
for having an invalid Loader Type Code. X

" oa

2-10

O

ARG G, okt -: Ml

cﬂnmmmﬁonm__

2.4 LOGICAL EXPRESSIONS

The terms and expressions described in the preceding sections are arithmetic in nature --
that is, they have certain signed numeric values. Several arithmetic expressions may

be combined into a logical expression, which is typically used to control the process

of conditional assembly.

A logical expression is an assertion about the relationship between several arithmetic
values. An assertion is either True or it is False; several such Truth Values may be
combined in a complex logical expression.

The standard notation is used for making assertions about arithmetic relationships:

Less Than
Equal To
Greater Than

vV LA

The logical operators may be used in any combination or permutation. If A and B are
any two arithmetic expressions, then all of these constructions are valid:

A=B

A<B

A>B ,
A=>B (A Equal To OR Greater Than B)
A>=B

A<>B (A Not Equal To B)

The values of two absolute expressions may be compared directly, as may the values

of two expressions, both of which are Relocatable or Scratchpad Relocatable. The rules
for mixing different types of values within one logical expression are described in the
section on Location Control Directives.

It is possible to construct complex logical expressions, such as:
A=B<=C<>D<E

This is equivalent to asserting that all of the following relationships hold:

A=B

B<=C

C<>D

D<E
It may be observed that each simple logical expression is still either True or False, and
that the individual Truth Values are logically ANDed together to yield one overall result.

The assembler will abandon the evaluation of a complex logical expression as soon as
the leftmost False value is determined.

The internal representation of True is the value +1, and False is carried as 0. If the
symbol TV was previously set or equated to the Truth Value of a logical expression, this
expression will reverse whichever Truth Value was preserved:

TV-1/-1

2-11

2.5 OPERAND EXPRESSION PREFIXES

For some classes of machine instructions and assembler directives, the entire operand
expression may be immediately preceded by certain characters which indicate a machine
Addressing Mode. The effect of each prefix is held off until the assembler has obtained

a final expression value.

The prefix characters are:

* Indirect Address
@ "~ Indexed
*@ Indirect Post-Indexed

= - Literal Pool Reference

2-12

0

e

i

T EEEE

SR R IR B

Section 3

CODING MACHINE INSTRUCTIONS

This section presents the valid assembler language syntax for each standard machine
instruction. The instructions are divided into Syntax Classes, corresponding to the number
of operands and to the Addressing Modes which are meaningful at machine level.

Syntax Class Machine Functior

Word Reference

Byte Immediate

Conditional Jump

Single Register Bit Change

Register and Control

Input/Output

Double Register Bit Change

Byte Reference

Double Register Arithmetic
0 Stack Reference

= O 00 0 U i Wi

For each class, the rules for the source statement Operand Field are spécified. Examples
are given, to aid the novice programmer in visualizing the connection between an abstract

syntax chart and a real Source Program.

An alphabetical list of every standard machine instruction mnemonic -- and which Syntax

Class it falls into -- is included in this publication as Appendix B.

3-1

3.1 CLASS 1: WORD REFERENCE

*

[Labe1]

@
- Mnemonic x@ |Operand

Operand Field

Exactly one expression.
Any absolute or relocatable value.
External allowed.

Addressing Mode Prefix

No Prefix Direct
* " Indirect Address
@ © Indexed
*@ Indirect Post-Indexed
= Literal Pool Reference
Examples
1. Direct:
LDA : 34

STA ABC+2

2. Indirect:

LDA *: 34

STA *PTR
3. Indexed:

LDA .- @ 34

STA @TABLE
4. Indirect Post-Indexed:

LDA *@: 34
STA *@PTR

5. Literal Pool Reference:

LDA =1000
LDX =TABEND-TABLE/2

3-2

e

RN

ki o

T

R §

3.2 CLASS 2: BYTE IMMEDIATE

[Label] Mnemonic Operand

Operand Field

Exactly one expression.
Any absolute value equivalent to the range : 0? thru : FF.

External not allowed.

Examples

1. Self-defining decimal operand:
CAI 16

2. Self-defining text string operand:
CAI A

3. .Symbolic Operand:

BANG EQU e
CAI BANG

3-3

i

3.3 CLASS 3: CONDITIONAL JUMP

[Label] Mnemonic Operand

Operand Field

Exactly one expression.
(For special case of LSI-2 mnemonic JOC, refer to Appendix)

Any absolute or relocatable value in the range
$-63 thru $+64

External not allowed.

Examples

1. Symbolic operand:
JAZ PARTY
2. Explicit relative location:

JAZ $-7

3-4

SRR Ml

\Examgles

3.4 CLASS 4: SINGLE REGISTER BIT CHANGE

[Label] Mnemonic Operand

Operand Field

Exactly one expression.

Any absolute value, within the limits of the instruction function:
0 thru 15 for BAO and BXO
1 thru 6 for SIN
1 thru 8 for Shifts

External not allowed.

1. Self-defining operand:
LRA 6
2. Symbolic operand:

SZ EQU 7
LRA SZ

3-5

3.5 CLASS 5: REGISTER AND CONTROL

[Label] Mnemonic [Comments]

Operand Field

None. Comments may immediately follow the Operation Field.

Examples

1. Label, mnemonic, no operands, comments:

COPY TXA TRANSFER X TO A

3-6

3.6 CLASS 6: INPUT/OUTPUT

[Label] Mnemonic Operand [, Operand]

Operand Field

Either 1 or 2 operands.
Each operand must be an absolute value.
Externals not allowed.

If only 1 operand is used, its value specifies the combined bits of the Device Address
and Function Code. '

If 2 operands are used, the first specifies the 5-bit Device Address, and the second
specifies the 3-bit Function Code.

Examples

1. One hex operand:
SEA :3C
2. Two decimal operands:
SEA 7,4

3. Two symbolic operands:

TTY EQU 7
INIT EQU 4
SEA TTY,INIT

3-7

3.7 CLASS 7: DOUBLE REGISTER BIT CHANGE v ~ i

[Label] Mnemonic Operand

Operand Field

Exactly one expression.
Any absolute value, from 1 to 16.

External not allowed.

Examples s ‘
1. Self-Defining Operand: J

LRR 6 |
2. Symbolic Operand:

SZ. EQU 7 |

LRR SZ - 1
|
|
|
|

3-8

3.8 CLASS 8: BYTE REFERENCE
*

[Label] Mnemonic | @ |Operand
*@

Operand Field

Exactly one expression.

Any absolute or relocatable value, except for the cases described on the next page.

External not allowed.

Addressing Mode Prefix

No Prefix Direct

* Indirect Address

G Indexed

*@ Indirect Post-Indexed

Expression Evaluation for Class 8

Each self-defining term represents a byte address value.
LDAB : 04
addresses the 4th byte of memory.

Each symbolic term represents a word address value, and is multiplied by 2 before
expression evaluation:

Q EQU 7

FLD TEXT - 'WXYZ!
LDAB Q
STAB FLD

The LDAB addresses the 7th word of memory, or the 14th byte. Similarly, the word value
of FLD, whether absolute or relocatable, must be doubled to produce a byte value.
LDAB FLD+3

addresses a location 3 bytes after the byte location of FLD -- the character 'Z' in the
assembled text.

3-9

Operand Locations Not Acceptable

For reasons explained in Section 6, under SREL, the assembler rejects a Byte Reference
instruction which attempts Explicit Indirect Addressing of a Scratchpad Relocatable location:

xxxB *SREL

For reasons explained in Section 9, Scratchpad Literals, the assembler rejects a Byte
Reference instruction which attempts Explicit Indirect Addressing of a location which
is beyond Direct Addressing Range:

xxxB *ABSBIG
in which ABSBIG is Absolute, but higher than directly addressable Scratchpad.
xxxB *RELFAR

in which RELFAR is Relocatable, but beyond Direct Relative Addressing Range of the
Byte Reference instruction.

Examples
1. Direct:
LDAB : 34
STAB ABC+2
2. Indirect:
STAB *PTR
PTR BAC CHAR+1
3. Indexed:
LDAB @ 34
_STAB @TABLE

4. Indirect Post-Indexed:
LDAB *@: 34
(At Word Location : 34)

BAC CHAR+1

3-10

o mme

e TS

s &

3.9 CLASS 9: DOUBLE REGISTER ARITHMETIC

[Label] Mnemonic [*]Op erand

Operand Field

Exactly one expression.
Any absolute or relocatable value.

External allowed.

Addressing Mode Prefix

4
No prefix Direct

* Indirect Address
Examples
1. Direct:
MPY JKL+3

2. Indirect:

DVD *DVSR

3-11

3.10 CLASS 10: STACK REFERENCE

[Label] Mnemonic Operandj ,+

Operand Field

,@

’

Exactly one expression, optionally followed by an Addressing Mode Specification.

Any absolute or relocatable value.

‘External allowed.

Addressing Mode Specification

No specification
,@

,+
Examples
1. Direct:
EMAS
2. Indexed:
IORS
3. Pop
LDAS
4. Push: 7
STXS

Direct (Value of Pointer)
Indexed (Pointer + Index Register)

Pop (Increment Pointer After Access)
Push (Decrement Pointer Before Access)

STK

STK, @

STK, +

STK, -

3-12

B

Section 4

ASSEMBLER CONTROL

The directives in this section, like the parameters communicated to the assembler from
Operating System commands, affect the overall process of assembly.

MACH and LIST usually appear at the sta: . of a Source Program. SAVE usually appears
just before END, which is the very last statement in any Source Program.

The function of each of these directives is related to, and overlaps, the function of an
OS parameter or facility.

A parameter to the link editor or loader may override the operand of an END statement,
and specify a new Transfer Address.

Certain parameters to the assembler may override the LIST directive, and completely
suppress the listing of the Definition File or Source Input File. '

The assignment of a Source Program as a Definition File has much the same result as
a SAVE statement.

The choice of executing MACRO2 versus MACRO3 in a sense overrides the MACH directive,
because MACRO3 rejects the instructions which the 3/05 does not share with other machines,
and MACRO2 cannot generate an Object Program which is usable on the 3/05.

4-1

- R E

- of the first word following the end of the Object Program.

End of Source Program (END)

[Label] END [Operand [Comments]]

This directive terminates the assembly of one Source Program. If the Source Input file
contains more than one Source Program, one END statement must appear as the final state-
ment of each program, including the last. An End-of-File alone, without a preceding

END in the last program, is an error. The same rules apply to a Definition File.

If a Source Program contains at least one LPOOL statement, a Literal Pool may be allocated
by the assembler when an END is reached. The Pool will appear on the listing, and in
the generated object code, before the END. Further detaiis may be found in the section
on Literal Pools.

The optional label of an END statement has the current value and Load Attribute of the.
Location Counter, after any Literal Pool generation. Unless a currently effective Location
Control Directive has disturbed the continuity of the object code -- for example, a backward
ORG, or a REL program interrupted with an SREL -- the label on an END is the address

The optionial operand specifies an execution-time Transfer Address. The operand may
be any absolute or relocatable expression with predefined terms, except that reference
to an External is not allowed.

The assembler communicates the Transfer Address -- or the fact that one was not specified
-- to the link editor and the loader. When a program is executed, the resolved Transfer
Address receives initial control.

If several different Transfer Addresses are available in a number of Object Programs
being linked together, the link editor will use the last Transfer Address processed.
Furthermore, the link editor will accept a parameter value which overrides all Transfer
Addresses in the Object Programs.

The programmer should observe that no Comments may be used in an END statement which
has no Operand.

4-2

S

Machine Instruction Set (MACH)

MACH Operand

This directive is meaningful only for a Source Program assembled with MACRO2, not
with MACRO3. It specifies the machine for which the program is intended, so the assembler.
can disallow those standard machine instruction mnemonics which would not be meaningful.

Each disallowed Mnemonic is flagged "O" as if it were an invalid Operation Field. However,
the Operand Field is still processed correctly, and the generated object code is still the
right code for the instruction.

The required operand must be an absolute expression with predefined terms. The binary
value of the operand may specify any combination of the following machines:

Bit 02 LSI-2
Bit 01 LSI-1
Bit 00 ALPHA-16

The instruction subset common to all machines is always valid, and is equivalent to an
explicit MACH value of binary 000.

The assembler initially sets the MACH value to binary 010. Each MACH value is retained
until replaced by the next, or by a new assembly.

An appendix to this publication specifies the members of each machine instruction set.

4-3

=5,

= e ==

Listing Control (LIST)

LIST

This directive controls the appearance of the assembly listing as a whole. The required
operand must be an absolute expression with predefined terms. The binary value of
the operand may specify any combination of the following options:

Bit Hex Value
06 : 40
05 : 20
04 : 10
03 : 08
02 : 04
01 : 02
00 : 01

The assembler initially sets the LIST value to all zeros, which will produce a listing
adequate for most purposes. Each LIST value is retained until replaced by the next,
or by a new assembly. ’

For example, the following statement requests that Macro Definitions and Macro Expansions
be listed, and that statements skipped during expansion, or other conditional assembly,

also be listed:

LIST

Operand

:10+: 02

Meaning If Set

List SPACE statements before their generated blank lines
Do not list Macro Definitions

List Macro Expansions

Show only the first word generated by TEXT, DATA, BAC
Do not reformat source statements into uniform columns
List statements skipped during conditional assembly
Suppress all printed output

i

Save Definitions (SAVE)

SAVE Comments

This directive is used to communicate certain results of the current assembly to every
succeeding assembly, as if no END statement had intervened. The assembly containing
the SAVE directive effectively becomes a Definition File, except that it may be used to
generate Binary Output as well. Only reloading the entire assembler program will clear
the results of a SAVE.

Generally, only one SAVE appears in a given assembly, near the end of the Source Program.
The value of each ordinary symbol as defined at the point of the SAVE is passed to every
succeeding assembly as a predefined value. Certain artifacts of the assembly have defini-
tions which can be modified after a SAVE; for these, the last definition in the assembly

is passed on, regardless of the relative position of the SAVE statement: '

Macro Definitions

New Op Code Definitions ($class directives)
New Data Format Definitions (FORM directives)
SET variables

4-5

Section 5

SYMBOL AND DATA DEFINITION

The directives in this section are used to generate non-executable object code, and to
define symbols as the names of locations or values in the Source Program.

Although the capability of each of these di-ectives is quite broad, it is also fixed, be:cause
no standard assembler language directive can be redefined or replaced. However, it

is possible to add completely new directives to the language, and then use them like the
directives described here. Section 12 describes how this extension of the standard
language is accomplished.

The programmer is reminded that the Macro Facility may also be used to simulate less
generalized, more problem-oriented ways of allocating storage and specifying (or .
calculating) values. For example, the various Control Blocks used to communicate with
the Executive and with IOCS may be defined as Macros which verify that the requirements
of OS are being met, and then construct statements which involve Symbol and Data
Definition directives.

5-1

Data Definition (DATA)

[Labe1] ' paTaA [*]Operand[,[*]Operand]...

The DATA directive allocates storage for a number of words, and specifies the contents
of each word.

The optiondl label is the location of the first allocated word.

The DATA statement requires at least one operand. Each operand may be any aBsolute
or relocatable expression. Unlike other directives which allocate storage, a DATA directive
may be used to reference an External.

The contents of a generated word may be ﬂagged as an Indirect Address by prefixing
the corresponding operand with an asterisk.

I \" ’
The operands may be supplied in an arbitrary mixture of absolute, relocatable, direct,

and indirect values. Reference to the Location Counter -- the symbol $ -- within an operand|

expression is taken to be the location of the specific word generated by that operand.

A -DATA 0,-132,'LP',*: FF,ABS; : TFFF,$-$
%

R DATA $,R,*R+3,*$

E

X DATA SUB1,*SUB2

Statement A generates 6 words, each containing an absolute value. The nominal location
and the 16-bit contents of each word appear on a separate line of the assembly listing,
unless a LIST directive has specified that only the first word be shown.

Statement R generates 4 words of relocatable data. The first 2 words contain the same
value -- the relocatable address of R -~ and the last 2 words both contain the indirect
address of R+3.

If the names SUB1 and SUB2 are declared to be External in the Source Program, then
the 2 words generated by statement X appear on the listing as : 0000 and : 8000. Later
processing of the Object Program by the link editor will fill in the correct value of the
low-order 15 bits.

5-2

.

ComputerAutomation (Cf\ ——

Equate Symbol Value (EQU)

Name EQU Operand

This directive is used to define a symbol and its value without allocating any storage
to the symbol. EQU statements may be used anywhere in the Source Program, but they
are particularly useful in defining symbols which will be used extensively as terms in
expressions.

The name of the symbol to be defined is specified in the required Label Field, and must
be unique among all the symbols in the Source Program.

The EQU statement requires exactly one operand. The operand may be any absolute or
relocatable expression, except that reference to an External is not allowed. Forward
references are acceptable, but a directive which requires predefined operands (such

as an ORG or an IF) cannot use a symbolic term defined by an EQU with forward references.

This exarﬁple uses EQU to establish the destination of a jump without attaching a label
to a line of executable code. This technique facilitates modification of the Source Program.

, JMP DEST
* *
* *
DEST EQU $

The size of a table may be assigned a symbol this way:

DATA
EQU

TAB
TABSZE

An arbitrary ASCII character, especially a non-printable one, may be given a symbolic
name as a coding convenience, and to simplify a later change of the character value:

CR EQU : 8D
* *

*

CAI CR

5-3

Reserve Storage (RES)

[Laber] REs Count[,Value]

The RES directive allocates storage for a number of words. It may also be used to fill
all of the allocated words with a uniform value.

The optional label is the location of the first allocated word. The required Count specifies
the number of words to be allocated. The Count must be an absolute expression with
predefined terms. The value of the expression may be zero only if no Value is supplied.
The following two statements are equivalent:

TAG ~ RES 0
TAG EQU $

. e

The optional Value operand specifies the uniform contents of every allocated word. The
Value must be an absolute expression. Any combination of terms may be used, except
that reference to an External is not allowed. The following RES statement is equivalent
to the entire series of DATA statements shown, or to the REPT/DATA sequence:

TAG RES 3,:FF

% *

TAG DATA :FF
DATA :FF
DATA :FF

% * :

TAG REPT 3
DATA : FF

Note that a repeated DATA statement may have a relocatable expression as its operand,
but that a RES is more convenient to code if the desired storage contents represent an
absolute value.

If a Value field is not supplied, neither the assembler nor the loader will alter the reserved
locations. This facilitates either a source overlay, in which the RES locations are part
of a backward ORG, or an object overlay, in which the locader does not disturb existing
values in memory while loading object code allocated by a RES with no Value specification.

5-4

S S is o Mot .. SN

|

g e & A SR

Text Definition (TEXT)

[Label] TEXT 'String'

The TEXT directive allocates storage for a number of words, and specifies the contents
of these words as a single ASCII character string.

The optional label is the location of the first word of alloccted storage, which always
starts at the first available word location, even though the storage is filled with byte
values.

The required operand is an arbitrary str?ng of ASCII characters, including any desired
blanks and non-printable characters. The string must be delimited with a preceding
and a following Single Quote or Apostrophe character.

If a character in the generated string must itself be a Single Quote, it is represented by
two successive Single Quotes in two columns of the source statement. This should not

be confused with a single character called Double Quote, which has no special significance
in a TEXT string, and is therefore useful in punctuating assembled messages.

The characters in the TEXT string each represent one 8-bit byte, and are packed into
successive words until the string is exhausted. The assembler will fill the low-order
bits of the last word, if necessary, with : A0, an ASCII blank.

TAG TEXT '"THIS IS A SIMPLE MESSAGE'
WHAT TEXT vt COMMENT

The contents of the two words starting at WHAT will be blank/quote/quote/blank:

tAOAT
:ATAQ

~ Each word generated by a TEXT statement appears on a new line of the assembly listing.

A LIST directive may be used to suppress the extra lines.

-

5-5

Byte Address Constant (BAC)

[Label| ~ BAC Operand [,Operand] ...

The BAC directive allocates storage for a number of words, and specifies that the contents
of each word is the address of a byte location.

The optional label is the location of the first allocated word.

The BAC statement requires at least one operand. Each operand may be any absolute
or relocatable expression, except that referen_ce to an External is not allowed.

Each self-defining term in a BAC operand is used without change during evaluation of
the operand expression. For example,

BAC : 05 |
references the fifth byte of memory, and the word generated for the BAC contains : 0005.
Each symbolic term, even if it was defined by a SET or EQU to a self-defining term, is

always considered a word value, and is multiplied by 2 before evaluation of the operand
expression. « ' .

Q EQU 7

FLD - TEXT 'WXYZ'
BAC Q
BAC FLD

Each of these BAC operands is a symbolic term. The first references the seventh word
of memory, which is the fourteenth byte; the generated word contains : 000E. Similarly,
the value of FLD, whether absolute or relocatable, must be doubled to produce a byte
value.

An odd-numbered byte -- that is, the low-order byte within a given word-- may be refer-
enced by using an odd self—dgfining term in the operand expression:

‘BAC FLD+1,FLD+3

This statement will generate two words, containing the byte addresses of the characters
"X" and "Z" in the assembled text.

Each word generated by a BAC statement appears on a new line of the assembly listing,

along with the nominal word value of each operand. A LIST directive may be used to
suppress the extra lines.

5-6

SSECR S

MR B 1

Ll

- TAG EQU $

the Load Attribute of the evaluated expression, regardless of the current range.

The Load Attribute of a symbolic term is not a value immediately available to the Source

Section 6

LOCATION CONTROL

The directives in this section specify a new value for the Location Counter -- the nominal
location of the object code -- and for the Load Attribute -- Absolute, Relocatable, or
Scratchpad Relocatable.

The segment of code following each directive is called the range of the directive. A range
terminates with the next Location Control directive, or with an END statement.

Within a given range, the symbol $, or a symbol defined as the label of a storage allocation
or a machine instruction, acquires the Load Attribute of that range. Similarly, a label

defined by a simple reference to $ has the same Load Attribute as $, and the same as the
current range:

TAG SET $

A label defined with an EQU or a SET to a multi-term expression, however, acquires '

Program. However, a SET or an IF can take advantage of the defined relationships:
0 <SREL<REL< 1

Either type of Relocatable term may be distinguished from an Absolute term by the fact
that exactly one of these relationships is true, depending on the value of the Absolute
term:

ABS <0
- 1<ABS
It may be said that a Relocatable or Scratchpad Relocatable term, in the context of a
logical expression, represents a positive proper fraction, while an Absolute term represents

an integer:

"ABS ABS
-y e

SREL/REL

6-1

e e D E e 2 AT

Absolute Object Code (ABS)

ABS Operand

This directive sets the Load Attribute to Absolute, and the Location Counter to the value
of the operand. The result is a segment of object code which is link-edited to begin at
a fixed location in memory.

The i'equired operand is an absolute expression with predefined terms. The expression
must have a positive (or zero) value.

The following Source Program is coded to occupy the first two words of memory. Note
that the DATA statement within the range of the ABS is not restricted as to the value or
Load Attribute of its operand; the name PFRUP may turn out to be Absolute, Relocatable,
or Scratchpad Relocatable at link-edit time. :

ABS 0
EXTR PFRUP
JST *$+1

- DATA PFRUP
END

6-2

Relocatable Object Code (REL)

REL Operand

This directive sets the Load Attribute to Relocatable, and the Location Counter to the
value of the operand. The result is a segment of code which is link-edited to begin at
a location calculated as the sum of:

1. The REL operand value, plus

The Relocatable Bias parameter supplied to the link editor, plus

3. The next available location in memory, as REL code accumulates in the successive
Object Programs being linked together.

(3]

The Location column on the assembly listing contains the nominal location for each word
in a Relocatable range -- that is, relative to the REL operand.

The required operand is an expression with predefined terms. The Load Attribute of
the evaluated expression must be either Absolute or Relocatable.

For almost all applications, the following technique is appropriate for the main program,
and for each separately assembled subprogram.

REL 0
* *
* *

END

This technique defers until link-edit time the question of where in memory the program
will be executed. The link editor itself can change a program from Relocatable to Absolute,
if fixed memory locations are desired.

6-3

Scratchpad Relocatable Object Code (SREL)

SREL Operand

This directive sets the Load Attribute to Scratchpad Relocatable, and the Location Counter
to the value of the operand. The result is a segment of object code which is link-edited
to begin at a location calculated as the sum of:

1. The SREL operand value, plus

2. The Scratchpad Relocatable Bias parameter supplied to the link editor, plus

3. The next available location in Scratchpad, as SREL code accumulates in the successive
Object Programs being linked together.

The Location column on the assembly listing contains the nominal location for each word
in a Scratchpad Relocatable Range -- that is, relative to the SREL operand. e

The required operand is an expression with predefined terms. The Load Attribute of

the evaluated expression must be either Absolute or Scratchpad Relocatable. The value

of an Absolute expression must be no lower than : 00, and no higher than the end of machine
Scratchpad.

A Word Reference instruction may address a Scratchpad Relocatable location either directly
or indirectly. It is quite possible that accumulated SREL code will force the link-edited
location beyond the end of Scratchpad. In that case, for a Word Reference instruction,

the link editor provides one more level of Indirect Addressing, and creates a Scratchpad
Literal which points at the SREL location. For a Byte Reference instruction, another

level of indirection is not possible. The assembler therefore does not accept a Byte
Reference instruction with Explicit Indirect Addressing of a Scratchpad Relocatable location.

An SREL range is usually coded because certain words of storage must be available some-
where in Scratchpad, but the precise locations need not be fixed until link-edit time.

In the following example, PARTA and PARTB communicate with each other thru Direct
Addressing of COMM, no matter how large the main program grows.

* COMMUNICATIONS REGION
SREL 0
COMM RES 4,0
*
* 'MAIN PROGRAM
REL 0
PARTA EQU $
* *
STA COMM+1
* *
* *
PARTB EQU $
LDA - COMM+1
* * :
END

g

(hunpuhuﬁuﬁxndﬁwt(@?ﬂ& —_—

Origin of Object Code (ORG)

ORG Operand

This directive sets the Location Counter to the value of the operand. It does not alter
the current Load Attribute. The result is a segment of code which is link-edited to begin
at a location discontinuous from the previous segment, but with the same bias applied.

The Location column on the assembly listing reflects the discontinuity in nominal location
caused by an ORG.

The required operand is an expression with predefined terms. In particular, no term
may be a forward reference -- this error often occurs when pieces of a Source Program
are rearranged. The Load Attribute of the expression must be consistent with the ABS,
REL, or SREL range into which the ORG itself falls.

A forward ORG is equivalent to a RES with no second operand -- no specification of a
value to be filled in. This sequence reserves two card input buffers:

CARDSZ EQU 80

BUFF1 EQU $
ORG BUFF1+CARDSZ

BUFF2 EQU $
‘ ORG BUFF2+CARDS?Z

REST EQU $

A backward ORG is used to overlay, at link-edit time, an area previously defined. The
same location may be ORG'd back to as many times as needed. The last value assembled
will be the last one inserted by the link-editor.

The following sequence generates 256 consecutive words containing the values 0 thru
255; then ORGs back to the 64th word and clears it; then ORGs forward past the end of
the table, so unrelated data can follow.

TABLE REPT 256

DATA $-TABLE

ORG TABLE+63
TABZRO DATA 0

ORG TABLE+256
MORE DATA 2,4,8,16

A common coding error, and a difficult error to detect, is a backward ORG without a

later forward ORG, or without enough code-generating statements to bring the Location
Counter forward as far as intended. If the last ORG were omitted in the preceding example,
all of TABLE beyond TABZRO would be destroyed at link-edit time by the data starting

at MORE.

6-5

:
i

n

Section 7

OBJECT PROGRAM LINKAGE

The directives in this section are used to establish communication between separate
Object Programs. They generate records on the Binary Output File which contain
distinctive Loader Type Codes meaningful to the link editor.

The Binary Output File of the assembler ordinarily is used as the Binary Input File
or Library Input File for the link editor. Without exception, every Loader Type Code
which appears in the assembler's output is acceptable as input to the link editor.

It is possible to use the assembler to generate an Object Program which is acceptable
directly by the various CA-supplied loaders, or by the Autoload program. It is,
however, more convenient to simply run the assembler's output thru the link editor,
and produce an Absolute or Relocatable program as needed. This is the recommended
technique, and it is assumed in this section that the program which is used to pro-
cess the assembled Object Program is, in fact, the link editor.

Entry Declaration (NAM/SNAM)

NAM Name [,Name]...
SNAM Name [,Name]...

These directives are used to declare that certain names are to be made available to
the link editor for possible matching against unresolved Externals in other programs.
Each name must be defined somewhere within the assembly, either as a relocatable or

as an absolute symbol. The name may be defined with an EQU statement, but it must
not be a SET variable. '

NAM declares each name to be a Primary Entry. A Primary Entry which matches an
unresolved Primary External will force selection of the program which contains the
Primary Entry. A Primary Entry may also be resolved against a matching Secondary
External, once both programs have already been selected.

SNAM declares each name to be a Secondary Entry; A Secondary Entry will never force
selection, but it will be available for matching against an unresolved Primary or
Secondary External, once both programs have already been selected.

All entry declarations in an Object Program must be presented to the link editor
before the Object Program is processed. Therefore, the assembler imposes a restric-
tion upon the placement of NAM and SNAM statements in a Source Program -—- they must
appear before any machine instruction, and before any directive which generates
object code or other Binary Output records. The recommended placement for NAM and
SNAM statements is immediately after the Source Program's TITL and Macro Definitions.

Revised 5/77 - 7-2

External Declaration (EXTR/SEXT)

EXTR Name ,Name] ...
SEXT Name [,Name] .

These directives are used to declare that certain names may eventually appear as Entries
in other programs selected during link editor processing. Each name must be acceptable
as a label, but must not be defined anywhere in the assembly.

EXTR declares each name to be a Primary External. An unresolved Primary External
which matches a Primary Entry will force selection of the program which contains the
Primary Entry. An unresolved Primary External may also be resolved against a matching
Secondary Entry, once the program containing the Secondary Entry has already been
selected.

SEXT declares each name to be a Secondary External. An unresolved Secondary External
will never force selection, but will be resolved against a matching Primary or Secondary
Entry, once both programs have already been selected.

The mere appearance of a name in an EXTR or SEXT statement is not sufficient to create

an unresolved External. The name must actually be referenced somewhere in the assembly
before it is considered unresolved.

7-3

Demand Load (LOAD)

This directive is used to create unresolved Primary Externals. Typically, each name
is resolved against a matching Primary or Secondary Entry at link-edit time.

A name declared in an EXTR is a Primary External, but is not considered unresolved
unless the name is actually referenced somewhere in the assembly. No such reference

LOAD

Name[,Name]. -

is needed for a LOAD name.

A name declared in a REF is an unresolved Primary External, but each REF allocates
a word of storage, and a name cannot appear in more than one REF in an assembly. No
storage is consumed by a LOAD, and a name can appear in any number of LOAD statements.

Suppose these two subprograms are placed on an Object Program Library:

*

XA
XC

XB

SUB
NAM
SNAM
EQU
EQU

*
*

END

SUB
NAM
EQU

END

AC
XA
XC

$
$

7-4

S kR dadiecoe 4

e BT A S

o | s

SR K

i

ComputsrAutomation (G ——

This main program is assembled, and supmitted to the link editor:

* MAIN
SEXT XA ,XB,XC

LOAD XL
* *

* *

DATA XA,XB,XC
END

One, and only one, of these two segments is submitted to the link editor after MAIN, and
before AC and B:

* XL VERSION A * XL VERSION B
NAM XL NAM XL

XL RES 0 XL RES 0
LOAD XA LOAD XB
END END

If XL Version A is used, MAIN is linked with Subprogram AC. References to both XA
and XC are resolved. References to XB are left unresolved.

If XL Version B is used, MAIN is linked with Subprogram B. References to XB are resolved.
References to both XA and XC are left unresolved. '

Two points are of particular interest here:

1. MAIN has no use for XL itself. Except for the LOAD, no statement in MAIN even

references XL.. What MAIN wants is some combination of XA, XB, and XC.

2. XL occupies no storage at all. It is not really a subprogram, but a technique for
controlling the link-edit process.

7-5

i ca

. The second link in each chain contains the storage address of the tail; the third link contains

Reserve Chain Link (CHAN)

[Laber] cHAN [*]rdentifier

This directive facilitates the creation of a type of data structure known as a "chain" or
"linked list" or "threaded list." An example of chain structure and usage follows this

description.

For each use of the CHAN directive, the assembler reserves one word of storage. The
optional label is the location of this word, and may be used in any context as if it were
the label of a RES directive.

The required operand, called the Identifier, consists of 1 to 6 alphanumeric characters,
the first of which must be alphabetic. Embedded colons are permltted by the assembler,
but should be reserved for CA-supplied software.

All CHAN directives having precisely the same Identifier contribute storage to one specific
chain structure at link-edit time, regardless of whether the directives appeared in one
assembly or in several programs linked together.

The use of a particular alphanumeric string as an Identifier does not constitute a definition
of a symbol. The Identifier, as such, cannot appear in any statement other than a CHAN.
In theory , the same string could be used as the label of a statement, and references to

that label would be valid. In practice, using the same string both as a chain Identifier
and as an ordinary label is confusing and inadvisable.

An optional asterisk may be prefixed to the Identifier. At link-edit time, a high-order
"1" bit will be set in the word reserved by the CHAN directive. The meaning attached
to this bit is defined by the user's own chain-processing routine.

The words which belong to a specific chain -- its links -- are filled in at link-edit time.
It must be understood that the mere appearance on the BI or LI file of a chain Identifier
is not sufficient reason for a given program to be selected by the link editor; which
programs are selected, and which are not, is governed solely by resolution of External
references, to which the CHAN directive contributes nothing.

When a word reserved by the CHAN directive is encountered, its high-order bit is set
according to the user's specification, and the remaining 15 bits are made a direct storage
address. For a particular chain, the very first link processed is set to : 0000 or :8000.
This zeroed link is called the tail of the chain.

the address of the second link; and so on, until no links remain in the program. Itis
the responsibility of the program to know where the last link, or head of the chain, is
located. This implies careful control over the order in which obj ect p: programs, and the
CHAN directives within them, are presented to the link editor.

7-6

S e

e L B e

Example of Chain Structure and Usage

This chain is created by the CHAN and DATA directives shown:

HEADW "_>

Q’ > 1 > e 0
C1 B11 BO1 Al
C2 B02 A2
* PROGRAM A * PROGRAM B * PROGRAM C
CHAN w * CHAN w CHAN w
Al DATA 0 B01 DATA 0 C1 DATA 0
A2 DATA 0 B02 DATA 0 C2 DATA 0

* STORAGE

* UNRELATED

* TO CHAIN W
CHAN *W

B11 DATA 0

The chain is processed by this program, which must be link-edited last:

AHDW DATA HEADW
HEADW CHAN W HEAD OF CHAIN W
*
LDX AHDW INITIALIZE POINTER
LOOPW LDX @ X NOW CONTAINS A LINK
LLX 1 ELIMINATE POSSIBLE
LRX 1 FLAG FROM LINK WORD
JXZ ENDW IF LINK = 0, NO MORE PROCESSING
* .
* PROCESS DATA AT @1 AND @2 HERE
* FLAG MAY BE CHECKED BY REFERENCE TO @0
. _
JMP LOOPW

ENDW EQU $

7-7

e S L EEEERE R -

External Reference Constant (REF/SREF)

Name REF Comments
Name SREF Comments

These directives are used to declare that certain names are to be considered both internal
and external references, so that explicit linkage to another program may be used.

Within the assembly, the name is recognized as the label of a single word of storage,
which is reserved just as if the statement had used RES 1 rather than REF or SREF.
The name, therefore, must not appear in the label field of any other statement in the
assembly.

Simultaneously, the name is presented to the link editor as if it were the operand of an
EXTR or SEXT statement. The link editor fills the reserved word with the direct address
of the resolved Entry in another program.

The statement sequence shown here involves an implicit indirect link thru a word in a
Literal Pool or -- if no such word is available within addressing range -- a word in Scratch-
pad:

EXTR SUBR
JST SUBR

The following sequence allows the programmer to control explicitly the storage allocation
for the link, or even to build a table of External pointers:

SUBR REF
JST *SUBR

A REF statement creates an unresolved Primary External. An SREF statement creates
an unresolved Secondary External. Further details may be found in the description of
EXTR/SEXT.

7-8

|
=
£

e e o

Section 8

LITERALS

A Literal is a word of storage, allocated for the operand of a Word Reference or Byte
Reference machine instruction. Unlike a word allocated by a DATA statement, the exact
location of a Literal is chosen not by the programmer, but by the assembler itself. In
certain cases, the fact that a Literal was required is unknown to the programmer until
the assembly listing is available for inspection.

A collection of Literals, grouped together in one area of memory, is called a Literal Pool.
The programmer can exercise some control over the location and size of a Literal Pool,
but again the assembler makes some of the decisions by itself.

Two coding techniques always generate Literals. One is an Explicit Literal operand --that
is, the source statement operand expression is prefixed by an = sign. Rather than writing:

ADD K1000
and remembering several pages later to include:
K1000 DATA 1000
the programmer writes:
| ADD =1000

and lets the assembler allocate the storage, fill in the value, and adjust the machine instruc-
tion address.

The other technique which predictably needs a Literal is a reference to a name already
declared External, and thus beyond any possible Direct Relative Addressing Range.
Typically, a subroutine call is involved:

EXTR SUBR
* * ‘
JST SUBR

The assembler makes the machine instruction indirect , and allocates a word in a Literal
Pool for the subroutine address. The result is the same as if the programmer had written
something like:

JST *XSUBR
* *

EXTR SUBR
XSUBR DATA SUBR

A related coding technique may or may not generate a Literal. In this case, backward
reference is made to a location which has already been defined. If the assembler calculates
that the location falls too far back for Direct Relative Addressing, the machine instruction
is made indirect, and an intermediate link is created in a Literal Pool.

8-1

PARTA EQU $

* *

% *

PARTB EQU $

* *

* *

CYCLE JMP PARTA

If the code in PARTA and PARTB is still under development, the distance between CYCLE
and PARTA may fluctuate in and out of JMP range with each re-assembly. This fact is
ordinarily of no concern to the programmer, because the assembler will decide for itself
which Addressing Mode is needed.

The need for each Literal arises within a segment of executable instructions. This is
exactly where the assembler can not allocate storage for the Literal, which is a word

of data. Instead, Literals accumulate until the programmer designates an appropriate
location for them with an LPOOL directive.

This process leads to the fourth, and final, coding sequence which can generate a Literal.
Again, the assembler's helpfulness in the calculation of Relative Addressing Ranges is
involved.

LOOP LDA FLDB
LDX =1000
* *
~ JMP LOOP
* ES
LPOOL
FLDA DATA 0,2,4,6,8,10
FLDB DATA 0
sk *
% *

When the assembler first processes the source statement labelled LOOP, the reference
to FLDB is still undefined. It is not an External. but it is a forward reference, and may
or may not prove to be out of range. The assembler provisionally decides that a Literal
would guarantee access to FLDB, makes the LDA indirect, and adds the Literal to the
current accumulation. The Explicit Literal in the LDX also joins the accumulation. |

j
/

The programmer finishes writing executable code, and begins some DATA statements. /
But first, to provide for the Explicit Literals in the last piece of code, and perhaps some |
other accumulated Literals, LPOOL is inserted. Among the words immediately allocated
under the LPOOL, the assembler includes one for the reference to FLDB, another for

=1000.

Now the assembler finds out where FLDB is, in relation to LOOP. If FLDB is out of range,
the Literal Pool entry really was needed, and the indirection already set in the LDA is
the only way to access FLDB.

8-2

ey S A T g A vt et = T T el

== v

Suppose, however, that FLDB turns out to be within range of the LDA. The instruction
is made direct to save execution time. The Literal Pool word, which would have been
a pointer to FLDB, is left unfilled.

The allocated storage remains in the program. Removing the allocation would involve
reassembly of the entire Source Program.

Literals take up storage. Techniques which generate Literals may use the storage
efficiently, and they may not. Only the programmer, not the assembler, can make that
decision.

To summarize, these techniques may generate Literals for Word Reference or Byte
Reference instructions: '

Prefixing an operand with an = sign.

Reference to a location known to be External. ,
Backward reference to a location beyond Direct Relative Backward Addressing Range.
Forward reference to a location not defined before the next LPOOL statement.

D W DN

8-3

Allocate Literal Pool (LPOOL)

[Label] LPOOL [Operand [Comments]]

This directive informs the assembler that it may allocate storage for whatever Literals
have been accumulated. The optional label is the location of the first allocated word.

No words are allocated if no Literals have been accumulated. Even the use of an Explicit
Literal between one LPOOL and the next does not always require a new Literal Pool entry.

A LDA =1000

* *

B LDA =500%2

* *

L1 LPOOL

* * . g
* *

C LDA =4%250

% *

L2 LPOOL

The Literal for =1000 in Literal Pool L1, originally created for instruction A, is shared

with instruction B -- the assembler can see that the same value is involved, even if the
source expression looks different. Furthermore, when C is processed, the assembler
checks for a matching value in all the Pools within backward range before it assumes

that a new value will be needed in a forward Pool. This can result in very efficient sharing
of Literal Pool allocations, if the programmer places LPOOL statements judiciously.

For C to share the Literal created for A, the starting location of the Pool at L1 must be
within the Relative Backward Addressing Range of C. It is not sufficient that the word
allocated for the =1000 be within range; the entire Pool must be close enough.

If L1 is not within range of C, a new Literal also containing =4*250 (that is, =1000) becomes
part of the forward Pool at L2. The new value is available for sharing with instructions
beyond L2 but within range of it.

The optional operand of an LPOOL statement is an absolute expression with predefined
terms and a value greater than zero. It specifies the maximum number of words allowed
in this Literal Pool, regardless of how many Literals have been accumulated. If more
words are needed, the leftover Literals will be held for the next available Literal Pool.

The programmer.should observe that no Comments may be used in an LPOOL statement
which has no operand. '

If an assembly contains at least one LPOOL statement, than all the Literals still accumulated
when the END statement is reached are allocated just as if the END were immediately pre-
ceded by an LPOOL. A dummy statement of LPOOL 1 at the start of the assembly is sufficient
to activate this provision for leftover Literals.

If an assembly contains no LPOOL statements at all, then no Literal Pools are ever generated.
Instead, every instruction which would have used Relative Addressing into a nearby
Literal Pool is set for Indirect Scratchpad Addressing. All of the Literals are converted
into Scratchpad Literals, which are described in the next section of this manual.

8-4

SR iR T i - B angl ot T e L0 -

O ‘ ' Computerautomation (O

B S | s S

N Section 9

SCRATCHPAD LITERALS

A Scratchpad Literal is a word of storage allocated by the link editor (or the loader),
and available to a Word Reference or Byte Reference instruction thru Scratchpad Addressing
Mode. The need for a Scratchpad Literal is determined during the assembly process,
o and communicated from the assembler to the link editor thru a distinctive Loader Type
Code in the generated Object Program.

Two coding techniques result in Scratchpad Literals. The more common situation is that
a Literal Pool Reference, either explicit or implicit, was used, as described in Section 8,
Literals, but that no Literal Pool space was available within range of the instruction which
involved the reference. This includes the extreme case of a Source Program which never
uses an LPOOL at all, such as a program originally coded for CA-supplied assemblers
lacking such a directive.

If at least one LPOOL statement appears in a Source Program, every instruction which
would have used a Literal Pool word, had one been available, but which used instead

a Scratchpad Literal, will be listed with a Warning Flag, on the assumption that the pro-
grammer intends the LPOOL statements to eliminate any requirement for storage in machine
Scratchpad.

Certain ways of using Word Reference or Byte Reference instructions always need Scratch-
m pad Literals. Specifically, if the operand expression is prefixed with the character @ --

which indicates Indexed Addressing -- then a Scratchpad Literal will be needed as an
indirect link if the operand value is either: :

1. Relocatable, or

, 2. Absolute, but higher than the machine limit for Direct Indexed Addressing (: 3F for
- - the 3/05, :FF for the other machines).

Even a combination of Literal Pool entries and Scratchpad Literals cannot provide a Byte
Reference instruction with access to every location in memory. The assembler rejects

‘ a Byte Reference instruction with Explicit Indirect Addressing if its operand (presumably

| the location of a Byte Address Constant) is not within Direct Addressing Range. Neither

a Scratchpad link nor a Literal Pool word can be used to access the BAC, and thru it

the actual data, because only one level of Indirect Addressing is available when the machine
? is in Byte Mode.

9-1

. i

Scratchpad Literal Only (SPAD)

SPAD Name [,Name] ...

This directive declares that certain names are to be excluded from ordinary Literal Pool
allocation. If at least one term of the operand expression of a Word Reference or Byte
Reference instruction is an SPAD name, and the assembler finds that a Literal is needed,
then the Literal will go into the Scratchpad Literal Pool.

Each name may be local to the assembly, or it may be declared External, or it may never
appear at all. An SPAD name may appear in a number of different SPAD statements.
An SPAD statement only affects other statements after it, not before.

An SPAD name is usually declared because the programmer is using LPOOL directives,
but anticipates that frequent references to a certain name would generate a considerable
number of unshared words in many different Literal Pools. In this situation, a Scratchpad
Literal is more conservative of storage, because the link editor eliminates duplicate values
before allocating the Scratchpad Literal Pool.

9-2

”l

Section 10

CONDITIONAL ASSEMBLY

The directives in this section constitute a small but powerful language, which can be
used to control the way the assembler processes a Source Program.

As in most languages, the programmer can define names and calculate values (with SET),
make conditional or unconditional jumps (with IFT and IFF), and specify repetition
controlled by a variable count (with REPT).

Although the Conditional Assembly directives are often used in combination with the Macro

Facility, the programmer should observe that they are also available in open code --
that is, in a sequence of source statements which are not part of a Macro Definition.

10-1

Conditional Assembly Control (IFT/IFF/ENDC)

IFT Operand
IFF Operand
. ENDC Comments

These directives specify whether a group of source statements is to be processed or
discarded. Conditional assembly begins each time an IFT or IFF statement is encountered,
and ends when the corresponding ENDC is found.

The required operand of an IF statement is an absolute expression with predefined terms.
The operand is always analyzed for its Truth Value:

0 means False
1 means True R
Any other value means True

As explained in another section, a logical expression has a value of 0 or 1 consistent
with the requirements of an IF statement.

IFT means Assemble If True. All the statements bounded by an IFT and its corresponding
ENDC are assembled if the operand of the IFT is True, and skipped otherwise.

IFF means Assemble If False. All the statements bounded by an IFF and its corresponding
ENDC are assembled if the operand of the IFF is False, and skipped otherwise.

If the value of V is True, the LDA/LDX statements in the following example will be
assembled, and the STA/STX statements will be discarded without being processed at
all.

IFT \Y%
LDA FLDA
LDX FLDX

, ENDC

* *

IFF A%
STA FLDA
STX FLDX
ENDC

Conversely, if the value of V is False, the LDA/LDX statements will be skipped, and the
STA/STX statements will be assembled.

The LIST directive may be used to force listing of any statements skipped during conditional
assembly.

10-2

T e

An IF statement, the series of following statements intended for conditional assembly,
and the corresponding ENDC statement are called collectively the range of the IF. Unlimited
nesting of ranges is permitted -- that is, a range may fall completely within another range,
as shown here.

IFT —— IFF
r_-* *
— IFF — IFT
* *
— ENDC IFF
* [ﬁ*
— IFT ENDC
* *
L ENDC — ENDC
* *®
—— ENDC — ENDC

Every IF must have a corresponding ENDC somewhere below it. An IFT True or an IFF
False with a missing ENDC will not affect the assembly, but will be flagged. An IFT False
or an IFF True with no ENDC, however, will skip all the way to the END statement.

The assembler has no way of detecting an unintentional overlap of ranges. A complex
series of IF statements may produce a situation in which the programmer expects this
structure: .

IFT

*

IFF

*

ENDC
*

ENDC

The assembler has a Range Counter which goes up for each IF and down for each ENDC.
It handles the structure like this, which is not what the programmer intended:

— IFT
*

IFF
l: »
ENDC
*
—— ENDC

A comment on each ENDC statement, as to which IF range it terminates, may be helpful
in coding complex range structures. An example is given in the section on Macro
Parameter Address Mode Stripping.

10-3

Set Variable Value (SET)

Name SET Operand

This directive is used to define or to redefine the value of a symbol. SET statements
may be used anywhere in the Source Program, but they are particularly useful in the
control of conditional assembly.

The name of the symbol, or SET Variable, to be affected is specified in the required Label
Field. A SET Variable name is unusual in this respect: it may be used in the Label Field
of more than one source statement without being rejected as a multiple definition. On

the contrary, a SET Variable has exactly one definition at any given point in the Source
Program, but that definition is replaced completely by another SET for the same variable,
even if the new SET has an invalid operand.

The name of a SET Variable must not appear in the Label Field of any type of statement
except a SET statement; such an appearance would constitute multiple definition.

The SET statement requires exactly one operand. The operand may be any absolute or
relocatable expression, except that reference to an External is not allowed. Forward
references are acceptable, but a directive which requires predefined operands (such

as an ORG or an IF) cannot use a symbolic term defined by a SET with forward references.

If a SET statement appears within a Macro Expansion, the definition and value of the SET
Variable are not lost at the end of the expansion. A SET Variable is a Global Variable,
as opposed to a Macro Parameter reference, which is a Local Variable within one expansion.

In the following examples it is assumed that the symbols A,B,C, and D have previously
defined values. A simple assignment of a value to a SET Variable named V would be coded:

\% SET A+B-C-D

Assignment of a logical value of 0 or 1 for later use in a conditional assembly:

A% SET A+B=C

Reversing the logical value -- making 0 into 1, or 1 into 0 -- is accomplished here:
\Y% SET ~ v-1/-1

Further examples of using SET Variables may be found in the description of the Macro
Facility.

10-4

Computerhutomation (Cf\ ——

Repeat Next Source Statement (REPT)

[Label] REPT Operand

When this directive is used, the immediately following source statement is assembled

as if it were repeated a number of times in the Source Program. The required operand

must be an absolute expression with predefined terms. The value of the operand determines
the total number of times the next statement will be assembled.

If the statement being repeated is not a Macro Call, it appears only once on the listing,
regardless of how many times it is assembled. The object code shown on the listing
corresponds to the final repetition. If a Macro Call is being repeated, each call line appears
on the listing.

A specification of less than 2 occurrences results in the next statement being assembled
exactly once, just as if the REPT had not been used.

" The optional label has the current value of the Location Counter. The statement to be

repeated should not have a label, else multiple occurrences will generate erroneous multiple
definitions of the label.

Suppose the following 4 statements appear on the source file (and the assembly listing):
* BEFORE EXAMPLE
TABLE REPT 3
: DATA $-TABLE*50
* AFTER EXAMPLE

The object code generated will be the same as if the sequence had been:

* BEFORE EXAMPLE

TABLE EQU $
DATA $-TABLE*50
DATA $-TABLE*50
DATA $-TABLE*50

* AFTER EXAMPLE

The Location Counter reference is one word higher for each DATA statement, so the final
result is equivalent to:

TABLE DATA 0,50,100

10-5

i

Section 11

MACRO FACILITY

A Macro is a named group of source statements, presented to the assembler in a way which -
makes each use of the name equivalent to reproducing the whole group. The term "Macro"
is informally used to denote three related aspects of the assembly language: the Macro
Definition, the Macro Call, and the Macro Expansion.

Macro Definition: a declaration that a specific name is to be attached to a group of
statements. The declaration is accompanied by the statements, which the assembler stores
for future reference. A Macro Definition intended for only one program is usually made

a part of the program; a definition intended for more general use is usually made available
on a Definition File.

Macro Call: a source statement which actually uses the name declared in a Macro Definition.
The name appears in the Operation Field, and the Operand Field may be completely different
for each Macro Call. :

Macro Expansion: a result of the assembler's processing of a Macro Call. On the assembly
listing, the Macro Expansion resembles a series of statements which have been inserted
physically into the Source Program, immediately after the Macro Call statement. Each

Line Number is the same as for the Macro Call line, but a Plus Sign is appended to suggest
that the Macro Expansion lines have been added to the Source Program by the assembler.

If a Macro Call simply reproduced a fixed series of statements, it would be little more

than a convenient coding technique. The real power of the Macro Facility is that Conditional
Assembly statements may be included in the Macro Definition. The operands of the Macro
Call may be examined and validated to determine the path of the Conditional Assembly.

The operands may also be made to appear at designated points within any field of the

Macro Expansion statements, a process called substitution.

Substitution and Conditional Assembly, used separately or together in the Macro Definition,

allow the operands of each Macro Call to generate a unique Macro Expansion, just as
the operands of a directive or a machine instruction may generate unique object code.

11-1

Delimit Macro Definition (MACRO/ENDM)

MACRO Mnemonic
ENDM Comments

These two directives delimit a group of source statements which are to be saved by the
assembler as a Macro Definition, and specify the Mnemonic to be used in the Macro Call.

The Macro Definition must appear in the Source Program before the new Mnemonic is
recognized as a Macro Call for this particular definition. The Macro Definition also must
appear before any Word Reference or Byte Reference instruction which creates a Literal
in the same Source Program, else the definition is not accepted. The usual practice is
to group all definitions ahead of the executable part of a Source Program.

The Macro Mnemonic must consist of 1 to 6 alphanumeric characters, the first of which
must be alphabetic. Embedded colons are permitted by the assembler, but are reserved
for CA-supplied software.

The new Mnemonic may replace any existing Mnemonic for a machine instruction, a New
Op Code, a New Data Format, or a previously defined Macro. The new Mnemonic cannot
replace a standard assembler directive.

Every source statement between MACRO and ENDM is considered part of the Macro Definition
Certain directives are not allowed within a Macro Definition:

MACRO -
ENDM
END

When the Macro Definition statements are saved by the assembler, these elements are
discarded, and will not appear in a Macro Expansion:

Comment Lines -- that is, statements with an asterisk in Column_ 1
The Comments Field of each statement
Superfluous blanks between the Label, Operation, and Operand Fields

The fact that the fields are separated by only one blank column is not ordinarily evident,
because the assembler spreads the Macro Expansion into columns uniform with the rest
of the listing, unless a LIST directive has specified that no reformatting be done.

The listing or suppression of Macro Definitions, or of Macro Expansions, may be controlled
separately with the LIST directive.

11-2

[—

RS Chat il N

w

Macro Call Statement

[Label] Mnemonic [Op erand [,Operand] ce [Comm ent s]]

A Macro Call is a source statement in which the Operation Field contains a Mnemonic
established in a previous Macro Definition. The syntax of a Macro Call is similar to that
of a machine instruction statement, except that the rules for the Operand Field are more

liberal .

The optional label is defined to have the Location Counter value and Load Attribute which
were current at the point of the Macro Call. This definition applies consistently to every
Macro Call, even if the first generated statement in the expansion turns out to be a directive
or another Macro Call. This labelled call:

TAG XXX PARAM
is equivalent to this sequence:

TAG EQU $
XXX . PARAM

Each operand of a Macro Call is termed a parameter. A parameter may be an expression,
a quoted text string, or an arbitrary series of characters. Neither a comma nor a blank

may appear outside a quoted text string.

A particular Macro Call may have any number of parameters, or none at all. If the Operand
Field contains a series of parameters, the assembler recognizes that a parameter within

the series has been deliberately omitted whenever a comma is not immediately preceded

by a parameter. In this Macro Call, parameters 1, 4, 7, and 8 are omitted -- that is,

there are still 10 parameters in the context of a Parameter Reference or a Parameter Count,

as explained later.
XXX ’B,C’ ’E’F9,’I’J

A Macro Call may appear in any context valid for a machine instruction. In particular

it may appear within the definition of another Macro. This technique of having one Macro
generate a call for another Macro is termed nesting, and is allowed to 3 levels deeper
than the original call. A nested call may have operands involving the constructions #n,
#?, and so on (as described in following sections), to communicate values from an outer
call to the next inner call. ‘

The assembler allows recursion -- the calling of a Macro within its own definition --
to a limit of 4 levels. If the Macro Definition's own conditional assembly statements do
not prevent deeper recursion, the assembler will simulate an ENDM and generate an Error

Flag.

11-3

Macro Parameter Reference (#n)

Within a Macro Expansion, the construction
#n

is recognized as a reference to a parameter of the Macro Call. It represents all of the
characters in one parameter, as delimited by commas or spaces not embedded in a quoted
text string.

The rules for this construction are:

First, the character #
Next, an unsigned decimal number

or, alternatively,

First, the character #
Then, one SET Variable or symbol name with an absolute predefined value

The value of n specifies which parameter of the Macro Call is being referenced; #1 is

the first parameter, #2 is the second, and so on. The reference may be concatenated
with any characters which the assembler can distinguish from the #, the decimal number,
or the name.

Each Parameter Reference will be replaced in the Macro Expansion by the actual characters
in the corresponding parameter of the Macro Call. This character replacement is called
substitution. The Label Field, Operation Field, and Operand Field of a statement may

be modified by substitution; the Comments Field will never be modified. No substitution
is performed within operand text strings.

A reference to a parameter which is omitted from the current Macro Call, or to a parameter
which is beyond the last one actually present, results in the substitution of exactly one
blank character.

11-4

The following definition illustrates some of the possibilities for Parameter Reference.

MACRO
#1 DATA
DATA
TEXT
LDA#7
XXXCT SET
DATA
DATA
TEXT
ENDM

XXX

#2

*#1,#4+1

#5

#6

#3-331
#XXXCT
#XXXCT+1
'MESSAGE #1'

This Macro Call has 6 parameters:

XXX

TAG,$,333,FLD,'AA BB CC,DD',FLD

The result will be this Macro Expansion:

TAG DATA
DATA
TEXT
LDA

XXXCT SET
DATA
DATA
TEXT

$

*TAG,FLD+1
'AA BB CC,DD'
FLD

333-331

$

$+1
'MESSAGE #1'

11-5

-Macro Parameter Count (#?) .

Within a Macro Expansion, the construction

#?

is available for reference and substitution. It represents the exact number of parameters
in the particular Macro Call being expanded.

A reference to #? may occur in any context appropriate for an absolute expression with
predefined terms, such as the operand of a REPT, SET, IFT, or IFF. This makes #? a
powerful tool for the control of conditional assembly.

In the following definition, each call to XXX is validated as having between 1 and 3 param-

eters, and a NOTE is generated if the call is incorrect. s
MACRO XXX
XXXCT SET 0<#7<4
IFF XXXCT
NOTE S,'XXX CALL WITH'...#?...PARAMETERS
ENDC
* * REST OF DEFINITION
* *
ENDM

11-6

.
A
i
d
]
I
k

e

el

Generated Message (NOTE)
NOTE [Flag,] Message

The NOTE directive generates a message on the assembly listing. An Error or Warning
Flag may also be generated. This directive may appear anywhere in the Source Program,
but it is particularly useful in a Macro Definition.

The optional first operand is a single ASCII character followed by a comma. If the character
is "W" the NOTE will contribute to the count and chainback for WARNING at the end of

the assembly listing. If the character is not "W" the NOTE will contribute to the count

and chainback for ERRORS. In either case, the character will appear as a Line Flag on

the listing.

Whether a Flag is supplied or not, the NOTE statement will be reproduced on the listing,
even if it occurs within a Macro Expansion for which listing has been suppressed.

If a NOTE statement is included within a Macro Definition, the message is taken to end
with the first occurrence of a blank not embedded in a quoted text string. Substitution

is performed within the message, but not if a Parameter Reference is embedded in a quoted
text string.

MACRO XXX
NOTE 'THIS CALL HAS'...#?...'PARAMS, STARTING WITH'.. .#1
ENDM

The result of a call to this macro might appear as:

XXX A,B,C
NOTE '"THIS CALL HAS'...3...'PARAMS, STARTING WITH'.. .A

11-7

Macro Variable Label (!awx)

Within a Macro Expansion, the construction
tawx

is available for reference and substitution. It represents a character string which will
be unique for each Macro Expansion, and is therefore useful in the Label Field of a generated|
statement.

The rules for this construction are:

First, the character !
Next, an alphabetic character
Optionally, one or two more alphanumeric characters

In the Macro Expansion, the assembler will drop the character !, and suffix the remaining
one, two, or three characters with a 3-digit decimal number (000 thru 999) which is unique
for each Macro Expansion, including each level of a nested expansion.

The result, called a Macro Variable Label, may be used in any context appropriate for
a symbolic term. Ordinarily, it is used for a local memory reference within the generated
code.

MACRO XXX
LDA #1
JAZ XXX

* *

* *

1 XXX EQU $
ENDM

If the expansion of a Macro Call for XXX happens to be the 33rd time the assembler has
expanded any Macro Definition -- not merely XXX -- then the JAZ and EQU lines will
be generated as

JAZ XXX032
* *

*® *

XXX032 EQU $

s caia

11-8

)

Macro Parameter Prefix Check

Within a Macro Expansion, the construction

#n[x]

is available for substitution. It is equivalent to the numeral 1 if the specified
character appears in either the first or second position (or both) of the designated
parameter, and to the numeral O otherwise.

The rules for this construction are:

First, a valid Macro Parameter Reference
Second, a Left Square Bracket character
Third, an ASCII character' string

Fourth, a Right Square Bracket character

The Prefix Check may be used to validate the presence or absence of an Address Mode
Prefix before generating a machine instruction. For example, each of these operands

specifies indexing:

XXX @TAG
XXX *@TAG

The following Prefix Check will detect either usage of the @ character:

MACRO XXX

IFT #1[e)

NOTE OPERAND ILLEGALLY INDEXED'...#1
ENDC

DATA #1

ENDM

'Note that any ASCII character string except one containing a blank is valid.

11-9

COmputerAutomaﬁonm—-——-

L/ 1L PasLAY

Macro Parameter Address Mode Stripping

Within a Macro Expansion, the construction
#m[]

is available for substitution. It represents all of the characters in one parameter, except
that every occurrence of the following characters in the first or second position is dropped:

* Indirect Address
@ Indexed
= Literal Pool Reference
The rules for this construction are:
First, a valid Macro Parameter Reference
Second, a Left Square Bracket

Third, a Right Square Bracket

The following example shows how this construction might be used with Prefix Checks.

MACRO XXX
XXXII SET #1[*]a#1(@] INDEXED INDIRECT?
XXXLT SET #1[=] LITERAL?
IFT XXXII
* * CODE FOR *@ MODE
ENDC XXXI1
IFF XXXII SKIP REST IF *@
IFT XXXLT
* * CODE FOR = MODE
ENDC XXXLT
IFF XXXLT SKIP REST IF =
* * CODE FOR NEITHER *@ NOR =
ENDC XXXLT '
ENDC XXXII
' XXX DATA #1[]
ENDM

11-10

g

Section 12

LANGUAGE EXTENSIONS

The standard assembly language, as described in this publication, may be enhanced

by an unlimited number of Language Extensions. New Data Formats may be defined for

the allocation and filling of storage. New Op Codes may be defined for the direct generation
of machine instructions.

A statement generated by the Macro Facility still looks like any other source statement,
and still must be assembled the same way. A Language Extension, in contrast, becomes
an organic part of the assembly language. The Mnemonic is recognized, and the operands
are processed, just as for any other directive or machine instruction. The appropriate
object code is generated directly from the source statement.

Of course, New Data Formats and New Op Codes may appear within a Macro Definition.

A combination of these features may be used to define a new problem-oriented language
bearing little resemblance to the original standard language.

12-1

ComputerAutomation m —

Define New Data Format (FORM)

FORM Mnemonic, Width ,Width

FORM communicates to the assembler the Mnemonic to be used for a New Data directive,
and specifies the format of the object data to be generated by the new directive.

The FORM must appear in the Source Program before the new Mnemonic is used. Otherwise
the previous definition of the Mnemonic, if in fact there was one at all, will govern the
generated object code. The FORM also must appear before any Word Reference or Byte
Reference instruction which creates a Literal in the same Source Program, else the definition
is not accepted. The usual practice is to group all definitions ahead of the executable

part of a Source Program.

The new Mnemonic must consist of 1 to 6 alphanumeric characters, the first of which must
be alphabetic. Embedded colons are permitted by the assembler, but are reserved for
CA-supplied software.

The new Mnemonic may replace any existing Mnemonic for a machine instruction, a Macro,
a New Op Code, or a previously defined New Data Format. The new Mnemonic cannot
replace a standard assembler directive.

Each Width in the FORM statement specifies the size in bits of a field in the generated
object data. Each specification must be an absolute expression with predefined terms.
The value of the expression must be in the range 1 thru 16.

The first field-width describes the high-order bit field of the generated object data.
Each successive field-width then describes the next contiguous field. Any number of
fields may be described. It is not necessary that the total width of all the fields together
exactly fill an integer number of words.

For example, the following statement defines a new directive named CONT. Each time

a CONT directive is used, the assembler will generate up to 25 bits of data, starting with
the high-order bit of a word, then fill the unspecified low-order bits of the last word
with binary 0's. V

FORM CONT,2,2,4,3,7,1,6

12-2

o

Using a New Data Format

; [Label] Mnemonic Operand [,Operand] “ee

Once a New Data Format Mnemonic has been defined with a FORM, it becomes a part of
the assembly language. The rules for coding a statement which uses the new Mnemonic
are similar to the rules for a DATA statement, except for some restrictions on the operand
expressions.

; Regardless of the total width of the data generated by the New Data Format, the assembler
i always starts the data at the high-order bit of a new word. The optional label is the loca-
tion of this word, and may be used in any context appropriate for a symbolic term.

o The Operation Field of the statement contains exactly the same Mnemonic used in the corre-
sponding FORM directive. ’

At least one operand is required. Each operand must be an absolute expression. Any
combination of terms may be used, except that a reference to an External is not allowed.

The first operand specifies the contents of the high-order bit field of the generated object
data. Each successive operand then specifies the contents of the next contiguous bit
field. If the statement contains less operands than were specified in the corresponding
FORM, the omitted trailing operands are taken to be zeros. It is not valid to supply more
operands than were specified in the FORM.

If the value of an operand expression is positive, then the binary representation of the
value must fit into the width of the bit field. If the value is negative, the width of the
field must be equal to the number of bits in a full word, else the negative value is not
accepted by the assembler. An invalid operand value results in a zeroed field and an
0 Error Flag, but does not affect the proper boundaries and contents of the other bit fields.

The following example shows the definition and use of a New Data Format.

FORM CONT,2,2,4,3,7,1,6
ON EQU 1
L EQU 3
- M , SET L+1
TAG CONT L,0,M,5,64,0N,2*M-1

The result will be a defined symbol, TAG, labelling the first word of this generated object
data:

11 00 0100 101 1000000 1 000111 ...

The assembler will supply enough trailing binary 0's to fill out the final word.

12-3

Computerhutomation (C/A\

Define New Op Code ($class)

$class Mnemonic :hhhh

This directive communicates to the assembler the Mnemonic to be used for a new machine
instruction (or a variant of an existing one), and specifies the object code to be generated
by the new Mnemonic.

The directive consists of a Currency character in Column 1 of the source statement.
This character is never used in Column 1 for any other purpose. The immediately following
1 or 2 columns contain the Class Number of a standard assembler Syntax Class.

The detailed operand requirements for each Syntax Class are described in another section.
The machine level representations of the operands are described in the Appendix for
each machine. The Syntax Classes and their most distinctive features are summarized

in the following table.

Class . Words Machine Operands Indirect Indexed Other
Number Generated Function Allowed Mode Mode Mode
1 1 Word Reference 1 * @ =
2 1 Byte Immediate 1
3 1 Conditional Jump 2
4 1 Single Register 1
5 1 Register and 0
Control
6 1 Input/Output 2
7 1 Double Register 1
8 1 Byte Reference 1 * @
9 2 Double Register 1 *
S Arithmetic
10 2 Stack Reference 1 @ + or -

The $class directive must appear in the Source Program before the New Op Code is used.
Otherwise the previous definition of the Mnemonic, if in fact there was one at all, will
govern the generated object code.

MACRO3 does not accept $7, $9, and $10.

12-4

The new Mnemonic consists of 1 to 6 alphanumeric characters, the first of which must
be alphabetic. Embedded colons are permitted by the assembler, but are reserved for
CA-supplied software.

The New Op Code Mnemonic may replace any existing Mnemonic for a machine instruction,
a Macro, a New Data Format, or a previously defined New Op Code. The new Mnemonic
cannot replace a standard assembler directive.

The required operand is a 4-digit hexadecimal number. It specifies which bits in the
first word of the generated object code are to be forced to 1's by the assembler. This
bit pattern is called the Skeleton of the instruction.

The operands used with the New Op will determine the final appearance of the object
code. An Appendix to this publication describes how the contents of certain bit fields
are either calculated from the operand values, or set by various Address Mode
specifications.

As exarriples of defining a New Op Code, some Skeletons built into the assembler for
convenient coding of LSI-2 instructions will be reconstructed.

The following two statements are equivalent:

JMP $
WAIT

WAIT has no operands, so it must be in Class 5. JMP $ is a Class 1 instruction, with
one operand, and generates a fixed word of code, : F600. The New Op Code is thus defined

by:
$5 WAIT :F600
The following two statements are equivalent:

JMP *NAME
RTN NAME

Both RTN and JMP require exactly one Word Reference operand; both are in Class 1.
The Skeleton for JMP, flagged Indirect, is : F100. The definition of RTN, therefore, is:

$1 RTN :F100

12-5

ComputerAutomation (O ——~

Finally, consider the following sequence, which might be used to transfer control in a
uniform way to external subroutines:

JST *$+1
DATA SUBR

Suppose a New Op Code were desired, so the two lines could always be replaced by:
GOSUB SUBR

GOSUB has exactly one operand. The generated object code must be two words long,

and must contain the address of the operand in the second word. Syntax Class 9 fits

the intended source statement format.

The existing machine instructions in Class 9 are used for Double Register Arithmetic -

functions, but the machine level functions of a New Op need not be related to the functions

of any other instruction in the same class.

The Skeleton for JST *$+1 is the fixed word : FB00. The New Op Code definition is:

$9 GOSUB :FB00

12-6

.|

1

Section 13

SUBROUTINE STRUCTURE MNEMONICS

[Label] CALL Name
Name ENT Comments
[Label] RTN Name

‘These Mnemonics provide a uniform way to communicate with a closed subroutine. They

are not directives, and may be replaced by other definitions.

CALL is used as an executable operation, equivalent to the machine instruction JST.
It performs two functions:

1. Store the Return Link -- the address of the next instruction after the CALL -- at
the effective memory location of the operand.

2. Transfer control to the first word after the stored Return Link.

The operand of a CALL may be any operand valid for a Word Reference instruction.
Ordinarily, the name of an ENT is used. If the name has been declared External, an implicit
indirect reference thru a Literal Pool or thru Scratchpad might be used. An explicit
indirect reference thru a REF is another possibility.

ENT is used as the destination of a CALL and of a RTN. The generated machine code

is not intended for inline execution; it is simply a word of storage reserved for the Return
Link by assembling a HLT instruction. The first executable instruction in the subroutine
is coded immediately following the ENT. The ENT name may be local to the program,

or declared a Primary or Secondary Entry as needed.

RTN is used to return to the calling program. It is equivalent to JMP *Name, and will

perform an unconditional transfer of control indirectly thru the Return Link. The operand
of a RTN is therefore identical to the name of the corresponding ENT .

13-1

F
1
i
i
!
}

Section 14

LINE CONTROL

These directives are used to enhance the visual quality of the assembly listing. They
have no effect upon the process of object code generation, and may appear at any point
within the Source Program.

A Line Control Directive is never active within a Macro Definition. Any directive appearing
between MACRO and ENDM is simply reproduced with the rest of the listed definition.

If a Macro Expansion is being listed, a Line Control Directive within the expansion affects
the listing at the line on which the directive would have appeared.

If a Macro Expansion is not being listed, the effect of a Line Control Directive within the
expansion is determined by whether or not at least one code-generating statement occurs
in the expansion between the Macro Call and the directive.

A Line Control Directive occurring before any code-generating statements in an unlisted
Macro Expansion affects the listing before the appearance of the Macro Call itself.

A Line Control Directive occurring after the first code-generating statement functions
as if the expansion were being listed in d in full.

For example, if the Macro Definition contains a SPACE directive immediately after MACRO,
at least one code-generating statement, and another SPACE just before ENDM, then the
Macro Call for an unlisted expansion will be set off from the surrounding source statements
by blank lines preceding and following the call. In this context, the dummy statement

RES 0 is sufficient as a code-generating statement:

MACRO XXX

SPACE 1
RES 0)
* *
* ¥
SPACE 1
ENDM
* BEFORE
TAG XXX PARAM
* AFTER

If Macro Expansion listing is suppressed, the result will be:

* BEFORE
TAG XXX PARAM
* AFTER

14-1

Heading Title (TITL)

TITL Title

This directive supplies the titles which appear in the page heading of the assembler listing.
Starting exactly one blank after the last letter of TITL, the remaining characters of the
source statement are taken to be the desired title.

The very first TITL directive in an assembly determines the master title, which appears
in the first line of the heading, along with the page number, date, and assembly starting
time. The master title is initially blank. Once set, it can be cleared only by a new
assembly.

Each TITL directive after the first determines the subtitle, which appears in the second
line of the heading, along with the name and version of the assembler program itself,
and the assignments of the source and object files. The subtitle is initially blank, and
each new subtitle completely replaces the previous one.

A TITL statement is never listed. At the point where it would have appeared on the listing,
the effect of a New Page directive is simulated.

If a TITL statement is included within a Macro Definition, the title is taken to end with
the first occurrence of a blank not embedded in a quoted <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>