
",,-, . 't,&1'" t'f P't" 1t,":.rrr) ··-t

,

,1

'r .. -:

I~':.I i
1'1

!

.. " h" * •

ComputerAutomation
NAKED MINI. Division

18651 Von Karman, Irvine, California 92713 Tel 714 8338830 TWX 910 5951767

•
f\
! '
; .

i:
j,

CAl Limited
Hertford House, Denham Way, Rickmansworth, Herts WD3 2XD

TEL RICKMANSWORTH 71211 • TELEX 922654

OPERATING SYSTH1

ASSEMBLER LANGUAGE

REFERENCE MANUAL

96552-00A3 November 1977

l __ 6)_'9_77_Co_MP_unR AUTOMATION. INC. INTIDIN 'HrUfI." ...

o

REVISION HISTORY

Revision Issue Date Comments

A3 November 1977 Documentation correction

' ..

'5"

o

TABLE OF CONTENTS

Paragraph Page

Section 1. THE ASSEMBLER PROGRAM

1.1 INTRODUCTION . . 1-1

1.2 ASSEMBLER FILES. 1-2

1.3 SYNTAX NOTATION 1-4

1.4 SOURCE STATEMENT FORMAT 1-5

Section 2. OPERAND EXPRESSIONS

2.1 TERMS . '. . 2-2
2.1.1 Self-Defining Terms 2-2
2.1.2 Symbolic Terms . 2-4
2.1.3 Defined Terms. 2-4
2.1.4 Undefined Terms 2-4
2.1.5 Absolute Terms 2-5
2.1.6 Relocatable Terms . 2-5
2.1. 7 Unary Operators 2-5

0 2.2 COMPLEX EXPRESSIONS . 2-7
2.2.1 Binary Operators 2-8

2.3 ABSOLUTE AND RELOCATABLE EXPRESSIONS 2-9

2.4 LOGICAL EXPRESSIONS 2-11
-I

2.5 OPERAND EXPRESSION PREFIXES 2-12

Section 3. CODING MACHINE INSTRUCTIONS

3.1 CLASS 1: WORD REFERENCE 3-2

3.2 CLASS 2: BYTE IMMEDIATE. 3-3

3.3 CLASS 3: CONDITIONAL JUMP 3-4

3.4 CLASS 4: SINGLE REGISTER BIT CHANGE. 3-5

iii
~---7

TABLE OF CONTENTS (Cont'd)

Paragraph .

3.5

3.6

3.7

3.8

3.9

3.10

CLASS 5: REGISTER AND CONTROL

CLASS 6: INPUT /OUTPUT . . · . ·
CLASS 7: DOUBLE REGISTER BIT CHANGE

CLASS 8: BYTE REFERENCE . · . ·

CLASS 9: DOUBLE REGISTER ARITHMETIC

CLASS 10: STACK REFERENCE · · . .

Section 4. ASSEMBLER CONTROL

End of Source Program (END) .
Machine Instruction Set (MACH)
Listing Control (LIST)
Save Definitions (SAVE)

Section 5. SYMBOL AND DATA DEFINITION

Data Definition (DATA) . .
Equate Symbol Value (EQU)
Reserve Storage (RES)
Text Definition (TEXT) ..
Byte Address Constant (BAC)

Section 6. LOCATION CONTROL

Absolute Object Code (ABS)
,., Relocatable Object Code (REL).
. Scratchpad Relocatable Object Code (SREL)

Origin of Object Code (ORG)

Section 7. OBJECT PROGRAM LINKAGE

Entry Declaration .. (NAM/SNAM)
External Declaration (EXTR/SEXT) .
Demand LoAd (LOAD)
Reserve Chain Link (CHAN)
Example of Chain Structure and Usage.
External Reference Constant (REF /SREF) .

iv

Page

· 3-6

3-7

3-8

· · 3-9

· 3-11

· "-:-' :r:-12

4-2
4-3
4-4

· . 4-5

5-2
5-3
5-4
5-5

· . 5-6

;6-2
6-3
6-4
6-5

7-2
7-3
7-4
7-6
7-7
7-8

~

0

o

!

:1
I.: I'

I

OM , r ¥ , . .'

•

o

e" Ad ''''1 .-' \ -"biis' 'f"d '" oil " l' " "'I t'! 'M!:Hk"trt' r!2'w; ',b m' ,'1 ,·",'w e,teiw'i'iwmiilti tft·<Pi

TABLE OF CONTENTS (Cont'd)

Section 8. LITERALS

Allocate Literal Posl (LPOOL) 8-4

Section 9. SCRATCHPAD LITERALS

Scratchpad Literal Only (SPAD) 9-2

Section 10. CUNDITIONAL ASSEMBLY

Conditional Assembly Control (II:- T /IFF /ENDC)
Set Variable Value (SET)
Repeat Next Source Statement (REPT)

Section 11. MACRO FACILITY

Delimit Macro Definition (MACRO /ENDM)
Macro Call Statement
Macro Parameter Reference (#n)

Macro Parameter Count (#?) .

Generated Message (NOTE)
Macro Variable Label (! awx)
Macro Parameter Prefix Check
Macro Parameter Address Mode Stripping.

Section 12. LANGUAGE EXTENSIONS

Define New Data Format (FORM)
Using a New Data Format . .
Define New Op Code ($class)

Section 13. SUBROUTINE STRUCTURE MNEMONICS

Section 14. LINE CONTROL

10-2
10-4
10-5

11-2
11-3
11-4
11-6
11-7
11-8
11-9
11-10

12-2
12-3
12-4

Heading Title (TITL) 14-2
Line Skip (SPACE) 14-3
New Page (period) 14-3
Comment t,jne (asterisk) 14-3

v

o
, ,

TABLE OF CONTENTS (Cont'd)

Section 15. INTERPRETATION OF THE ASSEMBLY LISTING

Section 16. SAMPLE ASSEMBLY LISTING

Section 17. LINE FLAGS

Section uL OS: ASM

o
Appendix A. ASCII CHARACTER SET

Appendix B. MACHINE INSTRUCTION SETS

Appendix C. LSI-2 INSTRUCTIONS

Appendix D . LSI-3/0S INSTRUCTIONS

o

vi

I

""

"I
-'"I

•

1.1 , -, ,",,, ,t ,"r ',rug hI", ¥ H "" • j"M'n't"'ttm

ComputerAutomation ~

,.;

Section 1

THF. ASSEMBLER PROGRAM

1.1 INTRODUCTION
,

this publication describes the assembler language for Computer Automation 16-b~~ mini­
computers. Three separate CA Operating System programs accept this language and
translate it into object code.

MACR02 has all the facilities described in this mdnual. It is the general-purpose
assembler for all models of the LSI-2, LSI-1, and ALPHA-16. It is possible to run MACR02
on any hardware configuration which supports OS itself, but more than 16K of memory
is recommended, to handle a useful number of symbols and Macro Definitions.

OS: ASM is a simplified version of MACR02, intended for OS configurations with a
memory size of 16K or less. The most substantial difference between OS: ASM and the
other assemblers is its lack of a Macro Facility. Section 18 of this publication describes
other limitations of OS: ASM .

MACR03 has all the facilities described in this manua1. It runs on an LSI-2 under OS,
but generates object code intended for an LSI-3/05. The object code typically is processed
by the OS Link Editor before it is actually transferred to an LSI-3/05.

Because the source language defined for all three programs is identical, this publication
uses the phrase "the assembler" to denote whatever assembler is being used to accomplish
the translation from Source Program to Object Program, and designates the three different
assemblers by name -- MACR02, OS: ASM, MACR03 -- only when there is, in fact, a
meaningful distinction to be made.

Details on the operation of Hll three assemblers are published as part of OS User's Manual
(96530-00) .

1-1

1.2 ASSEMBLER FILES

Source Input File

The primary (and required) input to the assembly process is the Source Input File.
Any input device may be used. including paper tape. The usual practice is to submit
a deck of punched cards for a new program. and to maintain old programs on disk with
OS: SFE or OS: EDT. The maximum length for a logical record is 80 bytes; the maximum
length for a physical block is 960 bytes.

A Source Input File may contain any number of separate Source Programs. each of which
terminates with its own END statement. Exactly one End-of- File must appear after the
END statement of the very last Source Program ..

In this publication. the term "assembly" refers to the processing of each separate Source
Program. A new assembly starts with the next available record on the Source Input.Fi1e.
and ends with the n~xt END statement. The execution of the assembler is terminated when
an End-of-File is reached on the Source Input File. Section 4 explains how a SAVE directive
may be used to communicate certain results of one assembly to all the assemblies which
follow it from the same Source Input File.

Assembly Listing File

The contents of the Source Input File are not listed immediately. as might be done by
a compiler. but are held until each assembly is complete. The source statements are
then reproduced side-by-side with the corresponding obj eet code, error flags. and other
relevant information.

Sections 4 and 14 describe how the listing may be manipulated by various elements of
the Source Program. It is also possible to prevent the generation of an assembly listing
thru OS parameters.

Sections 15 and 16 contain a detailed explanation of the assembly listing, and a sample
of MACR02 output.

Scratch File

The assembler requires working space on one magnetic device. This file is for internal
use only; a Close and Delete is issued when the assembler terminates normally.

Binary Output File

The result of the assembly of each Source Program is a corresponding Object Program.
The Binary Output File contains all of the Object Programs generated during one execution
of the assembler. The file may be assigned to a paper tape punch. but ordinarily it is
made a named file on a magnetic·device. for convenient turn-around to the link editor.

1-2

o

* j t· • VBn tct " rltn#' rtU'tbt"!! 1 trt 1 H" r • MUm h '& "PH eN 'M »"_H'eii' ··"'i "', '57T" '';''')0 '~ .. r .. 'msF?i;iFr== msrrn em m

0,------------------------ ComputerAutomation ~

The overall format of the Binary Output File is compatible with all other CA -supplied
software, including the various loaders and the Autoload program. However, as explained
in Section 7, the recommended approach is to assume that the assembler's Binary Output
File is destined for processing specifically by the OS link editor.

An OS parameter is available to prevent the assembler from opening and using a Binary
Output File, "and another OS parameter controls the placement of End-of-File records
on a paper tape file.

Definition File

In some installations, a sUbstantial amount If assembler language programming is shareJ
by many different Source Programs. The Definition File makes it possible to maintain
and assign a collection of source statemf:i1ts separately from the Source Input File, thus
making the statements available on a centralized basis.

A Definition File is identical in forlT.at to any Source Input File. It may contain one complete
Source Program, or a number of programs. It may be a deck of cards, a paper tape,
or a named file on a magnetic device, and may be assigned to the same physical device
as the current Source Input File, as long as it is accessible before the Source Input.
Ordinarily, a Definition File contains Macro Definitions, New Data Format and New Op
Code Definitions, SET and EQU statements, commentary, and other statements not intended

i···· to generate any object code.

If an OS parameter specifies that a Definition File is available, the file is opened, processed,
and closed just as if it were a Source Input File. There are two distinctive aspects to
the processing:

1. No Binary Output is ever generated.

2. All of the definitions, symbols, and values established during Definition File Processing
are still available to the assembler while it processes the Source Input File, just
as if all the statements in the Definition File were physically included in every program
on the Source Input File.

Ah OS parameter is available to prevent the production of an assembly listing fOl the
Definition File.

The Definition File facility is not available to OS: ASM, but the SAVE directive has a closely
related function.

1-3

1. 3 SYNTAX NOTATION

This reference manual adopts a familar meta-linguistic notation to specify the valid syntax
for each type of source statement. Each statement type is displayed as if it were a card
located flush with the left edge of the narrative text; the distinction between the various
fields will be self-evident from their contents and horizontal spacing.

Syntax elements which begin with a capital letter, but are otherwise in lower case, are
generic terms, and are explained in the corresponding narrative.

A syntax element in upper case is a fixed part of the language.

An element surrounded by square brackets is optional.

A vertical stack indicates a choice of one entry from the stack.
:,. q

' .. '
Three periods following a right square bracket indicate an arbitrary repetition of the
contents of the last pair of brackets.

The following syntax chart illustrates the complete notation:

MNEM [Operand[,Operand J. .. [comments]]

1-4

o

o

....

o
, ... ~' .. ~5. -, .. U···?S'7"'· t"'mtt;Z:mmm=·t ','mrs,..-

ComputarAutomation ~

1.4 SOURCE STATEMENT FORMAT

Each source statement occupies the first 72 bytes of an isolated logical input record; any
bytes remaining are discarded. Each statement is in the usual free-form arrangement -­
four variable-length fields delimited by blank columns.

Label Field

The Label Field starts in Column 1 of each source statement. If Column 1 is blank, then
the Label Field is said to be empty, and ends with the first non-blank character -- that
is, with the start of the Operation Field.

• . If Column 1 is not blank, then every colu,nn up to the next blank is either a Label or some
type of assembler directive t such as a Comment Line, a New Page t or a New Op Code
Defini tion .

If Column 1 is an alphabetic character t then the field contains a Label -- the name of
a symbol or variable. The alphabetic character may be followed by 0 thru 5 alphanumeric
characters. followed in turn by at least one more blank.

Operation Field

The Operation Field starts with the first non-blank column after the Label Field. It contains
a character string identical in structure to a Label -- 1 to 6 alphanumeric characters t
the first of which must be alphabetic. This string is called a Mnemonic. and indicates
a machine instruction, a Macro Call. a New Op Code. or a New Data Format. or an
assembler directive.

o Except for a directive, any Mnemonic can have its meaning changed at any point thru
facilities built into the assembler language.

At least one blank column must follow the Mnemonic; an arbitrary number of blanks may
be used to separate the Operation Field from the next field.

1-5

Operand Field

The .existence of the Operand Field depends upon the definition of the Mnemonic used
in the Operation Field. For some Mnemonics, no operands are meaningful, and the
assembler never processes any source statement columns to the right of the Operation
Field. For other Mnemollics, one or more operands are always required, and the assembler
expects them to start with the first non-blank column after the Operation Field.

"~ ..
There are three types of statements which sometimes have an Operand Field. and sometimes
do not:

Macro Calls
END directives
LPOOL directives

For these, the programmer must either supply an Operand Field, or leave the rest ,oJ "
the source statement blank.

Each operand is of arbitrary length, and is determined by the nature of the source statement
involved; the only restrictions are:

1. Single Quote characters must be paiI~ed.

2 . Blanks and commas cannot occur outside of quoted text strings.

3. The last operand cannot extend past Column 72. The assembler does not allow continu-
ation of the Operand Field onto another logical input record. "t

Each operand is separated from the next by a comma, and the last operand -- unless it
extends to Column 72 -- must be followed by at least one blank column.

1-6

o

t f ,. t'i ". " .. dbmzt .

ComputerAutomation <rA
~ ... - Comments Field

.\

The Comments Field starts with the first non-blank column after the previous field, and
extends to the rightmost column of the source statement. The assembler does not process
the Comments Field, except to align it for a formatted listing.

If a given Mnemonic always requires an Operand Field, the Comments Field is not shown
on syntax charts in this publication, because it cannot affect the validity of a statement.

If a Mnemonic never involves an Operand Field, the syntax chart may show the generic
element Comments to emphasize that no operands are recognized.

For the few statement types which allow a Comments Field only if an Operand Field is
also present, the syntax chart will show this construction:

[Label] Mnemonic [Operand [comments]]

Statement Fields as Listed

The assembler ordinarily reformats each source statement before listing it, to provide
uniform, more readable columns. If the source statements are keypunched_on SO-column
cards, the usual coding practice is to use the same fixed columns maintained on the listing:

01 -- 06
07
08 -- 13
14
15 -- 72
24 -- 72
73 -- 80

Label Field
Blank
Operation Field
Blank
Operand Field
Comments Field (if Column 23 is blank)
Discarded on Input

1-7

- --- --------~-~-~-

------- ----

o

o

I,

il
,~i

I

I ..,

I,

i

i

,I

'I

M • j. , b'WS" " C" t# u!t "trltILtwis .. " . "-fj"" '0"'" ,'"

0 __ -------------- ComputerAutomation ~

Section 2

OPERAND EXPRESSIONS

Each operand of an assembler language source statement may be a simple term -- a number
or name -- or it may be a complex expression -- a formula consisting of several terms
and operators.

An important part of the assembler program is a 31-bit interpreter, or expression evaluator,
which represents a considerable advanc~ in sophistication over most mini-computer
assemblers, including those previously available trom Computer Automation. Because
the possibilities for an operand expression are so broad, this entire section is devoted
to the rules for expressions.

For the most part, this section is concerned with what can be done in the assembly
language, rather than with what can't be done. There are few restrictions upon an operand
expression. Generally, if an expression has some unambiguous meaning, it is accepted
and assembled, on the principle that the programmer must intend something to result,
however unusual. This principle is particularly important in an assembler with a Macro
facility, because an operand expression i~ often generated in a roundabout way, rather
than coded directly by the programmer in the least number of terms.

2-1

2.1 TERMS

A term may be characterized in several different ways:

Self-Defining or Symbolic
'Defined or Undefined
Absolute or Relocatable

2.1. 1 Self-Defining Terms !}c.

A self-defining term represents an immediately available vnlue in one of these notations:

Decimal Number
Octal Number
Hexadecimal Number
Text String

Decimal Numbers

....

A decimal number consists of 1 thru 5 decimal digits. It is distinguished from an octal
number by having no leading zeros. The largest acceptable decimal number is 65535.

Octal Numbers

An octal number consists of 1 thru 7 octal digits -- the characters 0 thru 7. It is
distinguished from a decimal number by having at least one leading zero. The largest
acceptable octal number is 0177777.

Hexadecimal Numbers

A hexadecimal number consists of 1 thru 4 hexadecimal digits -- the characters 0 thru
9 and A thl"u F. It is distinguished from a symbolic term by having a colon prefixed.
The largest acceptable hexadecimal number is : FFFF .

Text Strings

A text string consists of 1 or 2 ASCII characters. The string is delimited with a preceding
and a following Single Quote character. If a character in, the text string must itself be
a Single Quote, it is represented by two successive Single Quotes in two columns of the
source statement. The assembler will accept any character in a text string, but in practice,
only printable characters and blanks are used in source statements; non-printable
characters are expressed as hexadecimal numbers.

2-2

I ,.,
,

o

o

·'t. 'it. rldb± "_,, ¢\,. 'tt '"j it tBU t dwe t *ttItt'tH'net"MW'1 ,.,. g~ T'"T'W'vrrzm T smmrzm

e-----------------------

o

o

Here are some examples of self-defining terms:

Decimal Numbers:

1
70
777
65535

Octal Numbers:

o
03
0777

Hexadecimal Numbers:

: 0
:E
: 64
: OFF
:FFFF

Text Strings:

'A'
'*'
'XX'

'T I

, T'

2-3

(J

2 .1.2 Symbolic Terms

,

A syptbol is the name of a value defined by the assembly process. Ordinarily, a symbol
consists of 1 thru 6 alphanumeric characters. As in most programming languages, the
first character of a symbolic name must be alphabetic -- that is, in the ASCII character .
range A thru Z.

The assembler accepts embedded colons in symbolic names, but the use of colons is
reserved for CA -supplied software.

One symbolic name has a special construction. An isolated character $ -- or Currency
Symbol -- represents the current value of the Location Counter at the point where the
$ is referenced.

2 .1. 3 Defined Terms
. '
~,

A defined term has a value known to the assemble.r. A self-defining term is, of course,
defined by its own representation. Certain symbols are considered predefined when
an assembly begins. These include all of the symbols which were defined during the
processing of a Definition File, and all of the symbols communicated to the current assembly
by a SAVE directive in a previous assembly.

At any point within an assembly, a term is also predefined if its nominal value has already
been conclusively determined. The nominal value of a symbol is the value it will have
after link-edit processing if the relocation bias is specified to be zero.

Each use of a symbol before it becomes defined is called a forward reference. Because
the assembler performs two passes over the Source Program, forward references are
allowed in almost all contexts. However, certain directives which control Pass 1 processing
will accept only predefined terms.

A symbol may be declared External by certain directives. An External symbol is considered
a kind of forward reference which does not become defined until link-edit time. An External
reference may be used in certain restricted contexts, as specified in the detailed descrip­
tions of each assembly language feature.

2 .1.4 Undefined Term$
i'

If a symbolic name is found to be neither defined, nor declared External, at the end of
an assembly, it is considered undefined. Reference to an undefined term is usually an
error, and the source statement is flagged on the listing.

Undefined operands are accepted by an SPAD directive, by a Macro Call, and in other
special contexts for which no expression evaluation is performed.

2-4

"I
I ,

l' .,' j rtitJ¥' t . 'f 'f I"~] H't 'w6e<'%',. '=Wft1d'NfJ,rift "eM". .± .•.. ' ..••. " .. _",,, '1=;

2 .1.5 Absolute Terms

An absolute term has the same value during the assembly as it will have after link-edit
processing, regardless of the relocation bias specified to the link editor. ' It follows that
self-defining terms are always absolute.

Symbolic terms are established as absolute if they are defined in certain ways. For
example, a symbol defined thru a SET or EQU to an absoluh~ expression is absolute.
Similarly, a symbol defined as the Label of a statement within range of an ABS directive
is ~absolute .

~.

2.:1.6 Relocatable Terms
:

A relocatable term has a nominal value during the assembly, but the value is subject
to change during link-edit processing. It follows ~hat Externals are always considered
relocatable.

Symbolic terms are established as relocatable if they are defined in certain ways. For
example, a symbol defined thru a SET or EQU to a relocatable expression is relocatable.
Similarly, a symbol defined as the Label of a statement within range of a REL or SREL
directive is relocatable.

There are two distinct categories of relocatable terms, "ordinary" Relocataole, and
Scratchpad Relocatable. Each has its own special uses, and each is affected by a different
bias at link-edit time.

In most assembly language contexts, how~ver, either both types of relocatable symbol
are acceptable, or neither is, and only absolute terms may be used.

2.1.7 Unary Operators

The value represented by a term, whether self-defining or symbolic, may be adjusted'
by a unary operator prefixed to the term. Unlike a binary operator, which is used, to
combine two terms into a complex expression, a unary operator may appear at the very
beginning of an expression, or after a binary operator.

Unary Plus (+)

A + character prefixed to a term has no effect upon its value. It may be used to emphasize
that a term does not have a Unary Minus prefixed, or for any similar clarification of the
source statement.

Unary Minus (-)

A - character prefixed to a·term indicates 2's complementation of the signed arithmetic
value of the term.

2-5

Unary Not (\)

A \ character, which appears in the form..., on some printers and keypunches, indicates
l' s complementation of the bit-value of the term. A more precise definition for relocatable
terms is:

1. Perform 2'8 complementation
2 . Subtract 1

Thus, for any absolute or relocatable term T.

\T is equivalent to -T-1

Restrictions .
~,

To the first term in an expression, either 0, 1, or 2 successive unary operators may be
prefixed. To a term which is not the first in an expression, only 1 unary operator at
most may be prefixed.

Here are some examples of unary operators:

Expression

1
+1
-1
\1
\-1
-\ l'

Word Value in Hex

: 0001
:0001
:FFFF
:FFFE
: 0000
: 0002

Assume that WN is a relocatable symbol with a nominal value of +1:

WN : 0001
+WN : 0001
\-WN : 0000
-\WN : 0002
--WN : 0001
\\WN : 0001

"
These expressions are errors, because they violate the rules explained under Absolute
and Relocatable Expressions:

\WN
-WN

2-6

o

o

'\

#"db

o

c

~I

bt ct' tW¢' t,1 ,,' 'N1Tlu'ttNdmCit"wffl*M*dt S Ne"r "n , ... ~ o'"T7- °s-xm

ComputerAutomation (gi\\

2.2 COMPLEX EXPRESSIONS

'Terms are combined into complex expressions by using binary operators, An expression
is always evaluated from left to right. No binary operator takes precedence over any
other binary operator. If a binary operator is followed by a unary operator, the unary
operator is applied first.

As expression evaluation proceeds from left to right, the current partial result of the
evaluation, or intermediate value, is maintained as a 31-bit binary number, with a separate
sign, An incoming term is limited to a 16-bit absolute or 15-bit relocatable value, each
with a separate sign. The final evaluated result, or expression value, is also limited
to a 16-bit absolute or 15-bit relocatable value, with a geparate sign.

As relocatable terms enter the expression evaluation, they cause the intermediate value
to fluctuate between absolute and relocatable, according to rules explained in a following
section. The nature of the final result determines whether the entire evaluated expression
is called an absolute expression or a relocatable expression, and whether its Load Attribute
is Absolute, Relocatable or Scratchpad Relocatable.

If the final reduction of the intermediate 31-bit value to 16 or 15 bits causes high-order
truncation of significant bits. the relevant source statement is flagged. The final value
is still assembled; it is the programmer's responsibility to decide if the Object Program
is usable.

To clarify the discussion which follows. these symbols are adopted:

V The intermediate value of the expression evaluation process
T The leftmost unevaluated term, about to enter the expression evaluation
ABS Any absolute value, either intermediate or final
REL Any relocatable value, either intermediate or final

2-7

ComputerAutomation ~

2 .2.1 Binary Operators

Addition (V +T)

The expression V+T indicates the arithmetic addition of the signed values· of V and T.

Subtraction (V-T)

The expression V-T indicates the arithmetic subtraction of the sig'ned values of V and
T. If V and T are not both absolute. a more precisE: definition is that V -T is equivalent
to V+-~. in which the unary Minus is applied before the binary Plus.

Multiplication (V*T)

. ,"-
The expression V*T indicates the arithmetic multiplication of the signed values of V and
T. Either V or T. or both. must be absolute.

Division (V IT)

The expression V IT indicates the integer division of the signed values of V and T. Any
remainder is simply discarded. Both V and T must be absolute values. Any attempt
to use a relocatable value for division is an error.

If the value of T is O. the source statement is flagged. the new intermediate value is
arbitrarily set to : FFFF. and evaluation continues.

Logical OR (V; T)

The expression V; T indicates a logical Inclusive OR of the bit values of V and T. The
new intermediate result is always considered an absolute value.

Logical AND (V&T)

The expression V&T indicates a logical AND of the bit values of V and T. The new
inter",ediate result is always considered an absolute value. except for the special cabe
of T =' : 7FFF. which leaves V relocatable if it was before.

Logical Shift (V%T)

The expression V%T indicates that the 31-bit value of V is to be logically shifted the number
of binary places specified by T (including any unary operators prefixed to T). The
separate sign of V is not changed.

A shift right is negative; a shift left is positive. Any bits shifted out of either end ·of
V are lost. Zero bits are supplied on either end as needed.

T must be absolute. V may be' absolute; V may also be relocatable. subject to the rules
for expression evaluation described below.

2-8

o

..-....... ..

*" rot 'tt e l.ft! ,2Wt¥'!!Wer att", ·1m .. '. Mte e , "[0"" ';"3";0."'" i"-~5"'·rn"~·"W" '7;'- s=nnr

;;.::

j,
:It 2.3 ABSOLUTE AND RELOCATABLE EXPRESSIONS

As expression evaluation proceeds, an assembler artifact called R (for Relocation Factor)
is associated with the current intermediate value V. At any point in the evaluation, R
has some signed numeric value.

It is the manipulation of R which determines whether or not an expression is acceptable
to the assembler, and whether the final expression is absolute or relocatable.

These are the rules for determining R at any intermediate or final point.

1. Set the initial value of R to O.

• 2. If the very first term of the expression is relocatable, set R = 1. For -REL or \REL,
set R = -1.

3. As the evaluation proceeds, for each V+REL, set R = R+1. Interpret V+-REL as V-REL.

4. For each V-REL, set R = R-1. Interpret V--REL as V+REL.

5. For V%T, multiply R by 2 to the power of T. If R becomes a proper fraction, the.
expression is an error.

6. For V*ABS, set R = R*ABS.

7. For V*REL, if R = 0, set R = V. If R is not 0, V*REL is an error.

8. V /REL is always an error.

9 . If R is not 0, V / AB S is an error.

10. For V; T set R = O.

11. For V&T set R = 0, except that if T = : 7FFF, leave R unchanged.

At any point, R = 0 indicates that the intermediate or final value is absolute.

If R is not 0, the intermediate or final value is relocatable.

When the evaluation is completed, R must be either 0 or 1. Any other final R is an error.

2-9

--------." .. " --.--~~----

These rules apply to an expression with relocatable terms, all of which are either ordinary
Relocatable. or Scratchpad Relocatable. If both types appear within one expression,
a separate R must be maintained for each type; one R or the other, or both, must be zero
when the final value is determined.

One, and only one, External may appear in a complex expression. An External cannot
be multiplied or shifted, nor maya unary operator be applied to it. The final value must
be equivalent to External+ABS, in which ABS is a value no greater than positive or negative
:7FFF.

External+O represents an "ordinary" External. External+ABS, with ABS not equal to
0, is called External with Offset. Only the link editor can handle an Obj ect Program
containing External with Offset; all CA-supplied loaders will reject the Object Program
for having an invalid Loader Type Code. . ""' ~,'

2-10

~

01
:,:~
1,[

I"~

I,

II

I
I

)''#Htt'' 't1<h '" t, MleM'Wtrlrll&"C'"&k"W***tw,_*",-HWi"MW«iise"'.:'.'IIlt.ir· 5 "~', •• " •• '"," 5"" "£1"''''7·'7''''7 n

o

2.4 LOGICAL EXPRESSIONS

The terms and expressions described ip the preceding sections are arithmetic in nature
that is, they have certain signed numeric values. Several arithmetic expressions may
be combined into a logical expression,' which is typically used to control the process
of conditional assembly.

A logical expression is an assertion about the relationship between several arithmetic
values. An assertion is either True or it is False; several such Truth Values may be
combined in a complex logical expression.

The standard notation is used for making assertions about arithmetic relationships:

< Less Than
= Equal To
> Greater Than

The logical operators may be used in any combination or permutation. If A and Bare
any two arithmetic expressions, then all of these constructions are valid:

A=B
A<B
A>B
A=>B (A Equal To OR Greater Than B)
A>=B
A<>B (A Not Equal To B)

The values of two absolute expressions may be compared directly, as may the values
of two expressions, both of which are Relocatable or Scratchpad Relocatable. The rules
for mixing different types of values within one logical expression are described in the
section on Location Control Directives.

It is possible to construct complex logical expressions, such as:

A=B<=C<>D<E

This is equivalent to asserting that all of the following relationships hold:

A=B
B<=C
C<>D
D<E

It may be observed that each simple logical expression is still either True or False, and
that the individual Truth Values are logically ANDed together to yield one overall result.
The assembler will abandon the evaluation of a complex logical expression as soon as
the leftmost False value is determined.

The internal representation of True is the value +1, and False is carried as O. If the
symbol TV was previously set or equated to the Truth Value of a logical expression, this
expression will reverse whichever Truth Value was preserved:

TV-l/-l

2-11

2.5 OPERAND EXPRESSION PREFIXES

For some classes of machine instructions and assembler directives. the entire operand
expression may be immediately preceded by certain characters which indicate a machine
Addressing Mode. The effect of each prefix is held off until the assembler has obtained
a final expression value.

The prefix characters are:

* Indirect Address
@ Indexed
*@ Indirect Post-Indexed
= Literal Pool Reference

. ,"'"'

2-12

~

01

.......... I
I

o

l' .

o
, . * t "teor&:*iirwd'ttfttt t!et'ni¢,i,'"' f • , •• i···· ti ".,~ ."0. r ''''-'0; .. , ·,,·t~- 7?F'''''OZZZ .,--;. srm' =

Section 3

CODING MACHINE INSTRUCTIONS

This section presents the valid assembler language syntax for each standard machine
instruction. The instructions are divided into Syntax Classes, corresponding to the number
of operands and to the Addressing Modes which are meaningful at machine level.

Syntax Class

1
2
3
4
5
6
7
8
9
10

Machine Functior..

Word Reference
Byte Immediate
Conditional Jump
Single Register Bit Change
Register and Control
Input/Output
Double Register Bit Change
Byte Reference
Double Register Arithmetic
Stack Reference

For each class, the rules for the source statement Operand Field are specified. Examples
are given, to aid the novice programmer in visualizing the connection between an abstract
syntax chart and a real Source Program.

C An alphabetical list of every standard machine instruction mnemonic -- and which Syntax
Class it falls into -- is included in this publication as Appendix B.

3-1

3.1 CLASS 1: WORD REFERENCE

Operand Field

Exactly one expression.
Any absolute or relocatable value.
External allowed.

Addressing Mode Prefix

No Prefix Direct
* Indirect Address
@' Indexed
*@ Indirect Post-Indexed
= Literal Pool Reference

Examples

1. Direct:

LDA :34
STA ABC+2

2. Indirect:

LDA *:34
STA *PTR

3. Indexed:

LDA @: 34
STA @fABLE

4. Indirect Post-Indexed:

LDA *@: 34
STA *@PTR

5. Literal Pool Reference:

LDA =1000
LDX =TABEND-TABLE/2

o

o

'\

"

3-2

o

7f"&' 't"HI"r,'" :NtefltivW& •• tbs r n"'p' t,. v-a: T'TSW :

3.2 CLASS 2: BYTE IMMEDIATE

~abe~ Mnemonic Operand

Operand Field

Exactly one expression.

Any absolute value equivalent to the range: On. thru : FF.

External not allowed.

Examples

1. Self-defining decimal operand:

CAl 16

2. Self-defining text string operand:

CAl IZI

3. Symbolic Operand:

BANG EQU
CAl

II I

BANG

3-3

3.3 CLASS 3: CONDITIONAL JUMP

[Label] Mnemonic Operand

Operand Field

Exactly one expression.
(For special case of LSI-2 mnemonic JOC, refer to Appendix)

Any absolute or relocatable value in the range

$- 63 thru $+64

External not allowed.

Examples

1. Symbolic operand:

JAZ PARTY

2. Explicit relative location:

JAZ $-7

3-4

, . ,,-' .'

o

o

~
__ I

·m 'lzrdut oX! $ tt 1h e'M 'fflM.mw±tt7t!'t'bit ." - ., "m '···"-"·n·"" '1'''" """7;;"7"= m'· t"Z

o ComputerAutomalion ~

o

I
i

tl 1--- _

3.4 CLASS 4: SINGLE REGISTER BIT CHANGE

[Label] Mnemonic Operand

Operand Field

Exactly one expression.

Any absolute value, within the limits of the ip..struction function:

o thru 15 for BAO and BXO
1 thru 6 for SIN
1 thru 8 for Shifts

External not allowed.

Examples

1. Self-defining operand:

LRA 6

2. Symbolic operand:

SZ EQU
LRA

7
SZ

3-5

3.5 CLASS 5: REGISTER AND CONTROL

[Label] Mnemonic [comments]

Operand Field

None. Comments may immediately follow the Operation Field.

Examples

1. Label t mnemonic. no operands t comments:

COpy TXA TRANSFER X TO A
.... ' .}. "

•
I
Ii

I'

I

I·;

I
3-6 I

d"if "!Ii!"* """'m 'We * "t' t'· HtW"j!:!J"l"!\n'i\:{'#':rlwefd''*t#f! ... 'wwtweu 'K"'iiet'·'.'WMirJiwiwWir;.',/!"· ·'-ii'"tF'''-~ r7W"C"'W-' .. -.~ ""3bf"C7'?'xm.,.."S-1 ttt' l

o
3.6 CLASS 6: INPUT jOUTPUT

[Label] Mnemonic Operand [,operand]

Operand Field

Either 1 or 2 operands.

Each operand must be an absolute value.

Externals not allowed.

o If only 1 operand is used, its value specIfies the combined bits of the Device Address
and Function Code.

If 2 operands are used, the first specifies the 5-bit Device Address, and the second
specifies the 3-bit Function Code.

Examples

1. One hex operand:

SEA :3C

2 . Two decimal operands:

SEA 7,4

o 3. Two symbolic operands:

TTY
INIT

EQU
EQU
SEA

7
4
TTY,INIT

3-7

3.7 CLASS 7: DOUBLE REGISTER BIT CHANGE

[Label] Mnemonic Oper~nd

Operand Field

Exactly one expression.

Any absolute value. from 1 to 16.

External not allowed.

Examples

1. Self-Defining Operand:

LRR 6

2. Symbolic Operand:

SZ EQU
LRR

7
SZ

3-8

o

•

I

I··

Iii
I,

I

~I

I·
I
I

I

I

~i

i

'ct "! " .. t· J t .,'** * .. e'MW % ' .. ' , . riu W Men"'·"''']"""''·· ,., -t1"''T?"'1f''''''t·~·· ·"7.,TQ'WrrZS m'ms

o ComputerAutomation ~

3.8 CLASS 8: BYTE REFERENCE

Operand Field

Exactly one expression.

Any absolute or relocatable value, except for the cases described on the next page.

o External not allowed.

Addressing Mode Prefix

No Prefix

*
@

*@

Direct
Indirect Address
Indexed
Indirect Post-Indexed

Expression Evaluation for Class 8

Each self-defining term represents a byte address value.

LDAB : 04

o addresses the 4th byte of memory.

Each symbolic term represents a word address value, and is multiplied by 2 before
expression evaluation:

Q
FLD

EQU
TEXT
LDAB
STAB

7
'WXYZ'
Q
FLD

The LDAB addresses the 7th word of memory, or the 14th byte. Similarly, the word value
of FLD, whether absolute or relocatable, must be doubled to produce a byte value.

LDAB FLD+3

addresses a location 3 bytes after the byte location of FLD -- the character 'Z' in the
assembled text.

3-9

Operand IDcations Not Acceptable

For reasons explained in Section 6, under SREL, the assembler rejects a Byte Reference
instruction which attempts Explicit Indirect Addressing of a Scratchpad Relocatable location:

xxxB *SREL

For reasons explained in Section 9, Scratchpad Literals, the assembler rejects a Byte
Reference instruction which attempts Explicit Indirect Addressing of a location which
is beyond Direct Addressing Range:

xxxB *ABSBIG

in which ABSBIG is Absolute, but higher than directly addressable Scratchpad .

xxxB *RELFAR
.

in which RELF AR is Relocatable, but beyond Direct Relative Addressing Range of the
Byte Reference instruction.

Examples

1. Direct:

2. Indirect:

PTR

3. Indexed:

LDAB
STAB

STAB
BAC

LDAB
STAB

: 34
ABC+2

*PTR
CHAR+1

@:34
@fABLE

4. Indirect. Post-.lndexed:

LDAB *@:34

(At Word Location: 34)

BAC CHAR + 1

3-10

o

•

I
I

-I
I

i.i
: i

I

o

o

* , 'rliiihtf'titL&..I!j±,'1 •. '6inw::e'd' 'ft d teo

ComputerAutomation ~

3.9 CLASS 9: DOUBLE REGISTER ARITHMETIC

Mnemonic [*]Operand

Operand Field

Exactly one expression.

Any absolute or relocatable value.

External allowed.

Addressing Mode Prefix

\
No prefix Direct

* Indirect Address

Examples

1. Direct:

MPY JKL+3

2. Indirect:

DVD *DVSR

3-11

3.10 CLASS 10: STACK REFERENCE

Operand Field

Exactly one expression t optionally followed by an Addressing Mode Specification.

Any absolute or relocatable value.

External allowed.

Addressing Mode Specification

No specification
,@
,+

Examples

1. Direct:

EMAS

2. Indexed:

IORS

3. Pop:

LDAS

4. Push: ,

STXS

Direct (Value of Pointer)
Indexed (Pointer + Index Register)
Pop (Increment Pointer After Access)
Push (Decrement Pointer Before Access)

STK

STK,@

STK,+

STK,-

3-12

... -

o

,
. A'

o

o

c

'I

Nt • ft' i' '»i'#& ±'¥rH'FnHi*riiW .1" .. 1' &""r'# rt",rH*'it"S1hwflt!. . r "'~"'T"" , zmrwzs mmnsmm

Section 4

","..SSEMBLER CONTROL

The directives in this section, like the paramf'ters communicated to the assembler from
Operating System commands, affect the overall process of assembly.

MACH and LIST usually appear at the stal ~ of a Source Program. SAVE usually appears
just before END, which is the very last statement in any Source Program.

The function of each of these directives is related to, and overlaps, the function of an
OS parameter or facility.

A parameter to the link editor or loader may override the operand of an END statement,
and specify a new Transfer Address.

Certain parameters to the assembler may override the LIST directive, and completely
suppress the listing of the Definition File or Source Input File.

The assignment of a Source Program as a Definition File has much the same result as
a SAVE statement.

The choice of executing MACR02 versus MACR03 in a sense overrides the MACH directive,
because MACR03 rejects the instructions which the 3/05 does not share with other machines,
and MACR02 cannot generate an Object Program which is usable on the 3/05.

4-1

End of Source Program (END)

END [operand [comments]]

This directive terminates the assembly of one Source Program .. If the Source Input file
contains more than one Source Program, one END statement must appear as the final state­
ment of each program, including the last. An End-of-File alone, without a preceding
END in the last program. is an error. The same rules apply to a Definition File:"

If a Source Program contains at least one LPOOL statement, a Literal Pool may b~ allocated
by the assembler when an END is reached. The Pool will appear on the listing, and in
the generated object code, before the END. Further details may be found in the section
on Literal Pools.

The optional label of an END statement has the current value and Load Attribute of the·,
Location Counter, after any Literal Pool generation. Unless a currently effective Lo~ation
Control Directive has disturbed the continuity of the object COde -- for example, a backward
ORO, or a REL program interrupted with an SREL -- the label on an END is the address
of the first word following the end of the Obj ect Program.

The optional operand specifies an execution-time Transfer Address. The operand may
be any absolute or relocatable expression with predefined terms, except that reference
to an External is not allowed.

The assembler communicates the Transfer Address -- or the fact that one was not specified
-- to the link editor and the loader. When a program is executed, the resolved Transfer
Address receives initial control.

If several different Transfer Addresses are available in a number of Object Programs
being linked together, the link editor will use the last Transfer Address processed.
Furthermore, the link editor will accept a parameter value which overrides all Transfer
Addresses in the Object Programs.

The programmer should observe that no Comments may be used in an END statement which
has no Operand.

4-2

•

.."

.,

,

I

:1

I
'I

I
:1

i

#1 'k f m t t sa ,f ritittir= :!!ttsM'tietfttttf*'tt . ""r"·' .,-. '"'''"'i&'··'''M1'S''m;= ,

o~ ________________ ~ __ _

Machine Instruction Set (MACH)

MACH Operand

This directive is meaningful only for a Source Program assembled with MACR02, not
with MACR03. It specifies the machine for which the program is intended, so the assembler,
can disallow those standard machine instruction mnemonics which would not be meaningful.

Each disallowed Mnemonic is flagged "0" as if it were an invalid Operation Field. However,
the Operand Field is still processed correctly, and the generated object code is still the
right code for the instruction.

The required operand must be an absolute expression with predefined terms. The binary
value of the operand may specify any combination of the following machines:

Bit 02
Bit 01
Bit 00

LSI-2
LSI-1
ALPHA-16

The instruction subset common to all machines is always valid, and is equivalent to an
explicit MACH value of binary 000.

The assembler initially sets the MACH value to binary 010. Each MACH value is ,retained
until replaced by the next, or by a new assembly.

An appendix to this publication specifies the members of each machine instruction set.

4-3

Listing Control (LIST)

LIST Operand

This directive controls the appearance of the assembly listing as a whole. The required
operand must be an absolute expression with predefined terms. The binary value of
the operand may specify any combination of the following options:

Bit

06
05
04
03
02
01
00

Hex Value

: 40
:20
: 10
: 08
: 04
: 02
: 01

Meaning If Set

List SPACE statements before their generated blank lines
Do not list Macro Definitions
List Macro Expansions
Show only the first word generated by TEXT, DATA, B!.\C
Do not reformat source statements into uniform colurrihs
List statements skipped during conditional assembly
Suppress all printed output

The assembler initially sets the LIST value to all zeros. which will produce a listing
adequate for most purposes. Each LIST value is retained until replaced by the next,
or by a new assembly.

For example, the following statement requests that Macro Definitions and Macro Expansions
be listed, and that statements skipped during expansion, or other conditional assembly,
also be listed:

LIST : 10+: 02

4-4

•

, .
I

I

I

'!

:1
, ,
~I

~

''('nt"'J,"'@ "'",""W "'''Wt'M
§ @j ! 'rbbif . t,' t sri wiotttnlr! * 'f'£'112""

t)~---------------------- ComputerAutomation ~

Save Definitions (SAVE)

SAVE Comments

This directive is used to communicate certain results of the current assembly to every
succeeding assembly, as if no END statement had intervened. The assembly containing
the SAVE directive effectively becomes a Definition File, except that it may be used to
generate Binary Output as well. Only reloading the entire assembler program will clear
the results of a SAVE.

Generally, only one SAVE appears in a given assembly, near the end of the Source Program.
The value of each ordinary symbol as defined at the point of the SAVE is passed to every
succeeding assembly as a predefined value. Certain artifacts of the assembly have defini­
tions which can be modified after a SAVE; for these, the last definition in the assembly
fs passed on, regardless of the relative position of the SAVE statement: .

Macro Definitions
New Op Code Definitions ($class directives)
New Data Format Definitions (FORM directives)
SET variables

4-5

o

•

I:

ii .l

~ ,.
Il
11

I

t1h b'

o

o

ii

j

t 2» en ' , rt tr

Section 5

SYMBOL AND DATA DEFINITION

The directives in this section are used to generate non -executable obj ect code, and to
define symbols as the names of locations or values in the Source Program.

Although the capability of each of these dj "ectives is quite broad, it is also fixed, becuuse
no standard assembler language directivcl can be redefined or replaced. However, it
is possible to add completely new direc tives to the language, and then use them like the
directives described here. Section 12 describes how this extension of the standard
language is accomplished.

The programmer is reminded that the Macro Facility may also be used to simulate less
generalized, more problem-oriented ways of allocating storage and specifying (or
calculating) values. For example, the various Control Blocks used to communicate with
the Executive and with 10CS may be defined as Macros which verify that the requirements
of OS are being met, and then construct statements which involve Symbol and 'Data
Definition directives.

.5-1

Data Definition (DATA)

[Label] DATA [•]Operand[. [*] Operand] ...

The DATA directive allocates storage for a number of words, and specifies the c~mtents
of each word.

The optional label is the location of the first allocated word.

, ,
"

The DATA statement requires at least one operand. Each operand may be any absolute
or relocatable expression. Unlike other directives which allocate storage, a DA[,A directive
may be used. to reference an External. !

The contents of a generated word may be flagged as an Indirect Address by prefixing
the corresponding operand with an asterisk.

~ .
The operands may be supplied in an arbitrary mixture of absolute, relocatable, di;'ect,
and indirect values. Reference to the Location Counter -- the symbol $ -- within an operand
ex.p~ession is taken to be the location of the specific word generated by that operand. '

A

*
R

*
x

DATA

DATA

DATA

0,-132 ,'LP' , *: FF ,ABS; :7FFF, $-$

$,R,*R+3,*$

SUBI.*SUB2

Statement A generates 6 words, each containing an absolute value. The nominal location
and the I6-bit contents of each word appear on a separate line of the assembly listing,
unless a LIST directive has specified that only the first word be shown.

Statement R generates 4 words of relocatable data. The first 2 words contain the same
va[ue -- the relocatable address of R -- and the last 2 words both contain the indirect
address of R+3.

,f the names SUBI and SUB2 are declared to be Rxternal in the Source Program, then
the 2 words generated by statement X appear on the listing as : 0000 and : 8000. Later
processing of the Object Program by the link editor will fill in the correct value of the
low-order i5 bits.

5-2

o

•

OWtwh 'j

o

o

o

't . p'.ffip 'M ,,, '5 *t Wb" * ' ~,t f' WMhttW_ ' ri' Y .

Equate Symbol Value (EQU)

Name EQU Operand

This directive is used to define a symbol and its value without allocating any storage
to the symbol. EQU statements may be used anywhere in the Source Program, but they
are particularly useful in defining symbols which will be used extensively as terms in
expressions.

•
The name of the symbol to be defined is specified in the required Label Field, and must
be unique among all the symbols in the Source Program.

The EQU statement requires exactly one operand. The operand may be any absolute or
relocatable expression, except that reference to an External is not allowed. Forward
references are acceptable, but a directive which requires predefined operands (such
as an ORa or an IF) cannot use a symbolic term defined by an EQU with forward references.

This example uses EQU to establish the destination of a jump without attaching a label
to a line of executable code. This technique facilitates modification of the Source Program.

*
*
DEST

JMP DEST

*
*
EQU $

The siz.e of a table may be assigned a symbol this way:

TAB
TABSZE

DATA
EQU

0,2,4,6,8
$-TAB

An arbitrary ASCII character, especially a non-printable one, may be given a symbolic
name as a coding convenience, and to siFplify a later change of the character value:

CR

*
*

EQU

*
*
CAl

:8D

CR

5-3

---,,~.-------------

Reserve Storage (RES)

[Label] RES Count[,Value]

The RES directive allocates storage for a number of words. It may also be used to fill
all of the allocated words with a uniform value.

The optional label is the location of the first allocated word. The required Count specifies
the number of words to be allocated. The Count must be an absolute expression with
predefined terms. The value of the expression may be zero only if no Value is supplied.
The following two statements are equivalent:

TAG
TAG

RES
EQU

o
$

The optional Value operand specifies the uniform contents of every allocated word. The
Value must be an absolute expression. Any combination of terms may be used, except
that reference to an External is not allowed. The following RES statement is equivalent
to the entire series of DATA statements shown, or to the REPT /DATA sequence:

TAG

*
TAG

*
TAG

RES

*
DATA
DATA
DATA

*
REPT
DATA

3,: FF

:FF
:FF
:FF

3
:FF

Note that a repeated DATA statement may have a relocatable expression as its operand,
but that a RES is more convenient to code if the desired storage contents represent an
absolute value.

If a Value field is not supplied, neither the assembler nor the loader will alter the reserved
locations. This facilitates either a source overlay, in which the RES locations are part
of a backward ORG, or an object overlay, in which the loader does not disturb existing
values in memory while loading object code allocated by a RES with no Value specification.

5-4

•

1 .teew , t '± ... ·.*'*1 ib "C'*# t , httt'!!""'" 'd'" , " .- .,w ..

~

~ '.Com-.... Automation PIA ~I 0--------- .--' ~\\

I~.I
~

'I
',I

I

I
!

"'!

Text Definition (TEXT)

[Label] TEXT 'String'

The TEXT directive allocates storage for a number of words, and specifies the contents
of these words as a single ASCII ch2racter string.

The optional label is the location of the first word of allocated storage, which always
starts at the first available word location, even though the storage is filled with byte
values.

The required operand is an arbitrary strfng of ASCII characters, including any de::.ired
blanks and non-printable characters. The string must be delimited with a preceding
and a following Single Quote or Apostrophe character.

If a character in the generated string must itself be a Single Quote, it is represented by
two successive Single Quotes in two columns of the source statement. This should not
be confused with a single character called Double Quote, which has no special significance
in a TEXT string, and is therefore useful in punctuating assembled messages.

The characters in the TEXT string each represent one 8-bit byte, and are packed into
successive words until the string is exhllusted. The assembler will fill the low-order
bits of the last word, if necessary, with: AO, an ASCII blank.

TAG
WHAT

TEXT
TEXT

'THIS IS A SIMPLE MESSAGE'
""" COMMENT

The contents of the two words starting at WHAT will be blank/quote/quote/blank:

: AOA7
:A7AO

Each word generated by a TEXT statement appears on a new line of the assembly listing.
A LIST directive may be used to suppress the extra lines.

5-5

Byte Address Constant (BAC)

[Label] BAC Operand [• Operand] .•.

The BAC directive allocates storage for a number of words, and specifies that the contents
of each word is the address of a byte location.

The optional label is the location of the first allocated word.

The BAC statement requires at least one operand. Each operand may be any absolute
or relocatable expression. except that reference to an External is not allowed.

Each self-defining term in a BAC operand is used without change during evaluation of a
the operand expression. For example, _

BAC : 05

references the fifth byte of memory. and the word generated for the BAC contains : 0005.

Each symbolic term. even if it was defined by a SET or EQU to a self-defining term. is
always considered a word value, and is multiplied by 2 before evaluation of the operand
expression.

Q
FLD

EQU
TEXT
BAC
BAC

7
'WXYZ'
Q
FLD

Each of these BAC operands is a symbolic term. The first references the seventh word
of memory, which is the fourteenth byte; the generated word contains : OOOE. Similarly, •
the value of FLD. whether absolute or relocatable, must be doubled to produce a byte
value.

An odd-numbered byte -- that is, the low-order byte within a given word-- may be refer­
enced by using an odd self-defining term in the operand expression: .

:BAC FLD+l,FLD+3

This statement w:ill generate two words, containing the byte addresses of the characters
"X" and "z" in the assembled text.

Each word generated by a BAC statement appears on a new line of the assembly listing,
along with the nominal word value of each operand. A LIST directive may be used to
suppress the extra lines.

5-6

!1 t #t) '(,',I ." ,.,j , , t "/s'tt" 'w'nrlw.'.>trtfifitl'ltIfr11'n,iwrit,t "t t ' ' "''i'' · .. ·TT ·7'5SSZmZZm W ~S m

~
~ C)~--------------------------- ComputarAutomalion ~

I
1

!
,I

•

o

... ,

Section 6

LOCA TION CONTROL

The directives in this section specify a new value for the Location Counter -- the nominal
location of the object code -- and for the Load Attribute -- Absolute, Relocatable, or
Scratchpad Relocatable .

The segment of code following each directive is called the range of the directive. A range
terminates with the next Location Control directive. or with an END statement.

Within a given range, the symbol $, or a symbol defined as the label of a storage allocation
or a machine instruction, acquires the Load Attribute of that range. Similarly, a label
defined by a simple reference to $ has the same Load Attribute as $, and the same as the
current range:

TAG
TAG

EQU
SET

$
$

A label defined with an EQU or a SET to a multi-term expression, however, acquires
the ,Load Attribute of the evaluated expression, regardless of the current range.

The Load Attribute of a symbolic term is not a value immediately available to the Source
Program; However ,a SET or an IF can take advantage of the defined relationships:

o < SREL < REL < 1

Either type of Relocatable term may be distinguished from an Absolute term by the fact
that exactly one of these relationships is true, depending on the value of the Absolute
term:

ABS < 0

" 1 < ABS

It may be said that a Relocatable or Scratchpad Relocatable term. in the context of a
logical expression, represents a positive proper fraction, while an Absolute term represents
an integer:

ABS ABS .. •
a

SRELjREL
.. •

0 1

6-1

Absolute Object Code (ABS)

ABS Operand

This directive sets the Load Attribute to Absolute, and the Location Counter to the value
of the operand. The result is a segment of object code which is link-edited to begin at
a fixed location in memory.

The required operand is an absolute expression with predefined terms. The expression
must have a positive (or zero) value.

The following Source Program is coded to occupy the first two words of memory. Note

o

that the DATA statement within the range of the ABS is not restricted as to the value or •
Load Attribute- of its operand; the name PFRUP may turn out to be Absolute, Relocatable,
or Scratchpad Relocatable at link-edit time. ,,_

ABS
EXTR
JST
DATA
END

o
PFRUP
*$+1
PFRUP

6-2

•

'·"'rr.

•

w'ws'. '''tri' 'b'···'" I .. ", t, $.11 eM ''lttt''1 .. S'Md". "j"'"' "j "6·'" · .. ··~rii'·

ComputerAutomation CA
Relocatable Object Code (REL)

REL Operand

This directive sets the Load Attribute to Relocatable, and the Location Counter to the
value of the operand. The result is a segment of code which is link-edited to begin at
a location calculated as the sum of:

1. The REL operand value, plus
2. The Relocatable Bias parameter supplied to the link editor. plus
3. The next available location in memory, as REL code accumulates in the successive

Object Programs being linked together .

The Location column on the assembly listing contains the nominal location for each word
in a Relocatable range -- that is, relative to the REL operand.

The required operand is an expression with predefined terms. The Load Attribute of
the evaluated expression must be either Absolute or Relocatable.

For almost all applications, the following technique is appropriate for the main program.
and for each separately assembled subprogram.

*
*

REL

*
*
END

o

This technique defers until link-edit time the question of where in memory the program
~ill be executed. The link editor itself can change a program from Relocatable to Absolute, o if fixed memory locations are desired.

6-3

Scratchpad Relocatable Object Code (SREL)

SREL Operand

This directive sets the Load Attribute to Scratchpad Relocatable, and the Location Counter
to the value of the operand. The result is a segment of object code which is link-edited
to begin at a location calculated as the sum of:

1. The SREL operand value, plus
2. The Scratchpad Relocatable Bias parameter supplied to the link editor. plus
3. The next available location in Scratchpad, as SREL code accumulates in the successive

o

Obj ect Programs being linked together. •

The Location column on the assembly listing contains the nominal location for each word
in a Scratchpad Relocatable Range -- that is, relative to the SREL operand. . ' ..

The required operand is an expression with predefined terms. The Load Attribute of
the evaluated expression must be either Absolute or Scratchpad Relocatable. The value
of an Absolute expression must be no lower than : 00, and no higher than the end of machine
Scratchpad.

A Word Reference instruction may address a Scratchpad Relocatable location either directly
or indirectly. It is quite possible that accumulated SREL code will force the link-edited
location beyond the end of Scratchpad. In that case, for a Word Reference instruction,
the link editor provides one more level of Indirect Addressing, and creates a Scratchpad
Literal which points at the SREL location. For a Byte Reference instruction, another
level of indirection is not possible. The assembler therefore does not accept a Byte
Reference instruction with Explicit Indirect Addressing of a Scratchpad Relocatable location .

An SREL range is usually coded because certain words of storage must be available some­
where in Scratchpad, but the precise locations need not be fixed until link-edit time.
In the following example, PARTA and PARTB communicate with each other thru Direct
Addressing of COMM, no matter how large the main program grows.

* COMMUNICATIONS REGION
SREL 0

COMM RES 4,0

*
* . MAIN PROGRAM

REL 0
PARTA EQU $

* *
STA COMM+1

* *
* *
PARTB EQU $

LDA· COMM+1

* *
END

6-4

•

o

o

Ib H±" .. ,,' ,,, t, maN tfr:t • ttf 'n!tW H ,." ·"ri~r=·r 'cm 7C1tZ7

CornputerAutomation ~

Origin of Object Code (ORG)

ORG Operand

This directive sets the Location Counter to the value of the operand. It does not alter
the current Load Attribute. The result is a segment of code which is link-edited to begin
at a location discontinuous from the previous segment. but with the same bias applied.

The Location column on the assembly listing reflects the discontinuity in nominal location
caused by an ORG.

The required operand is an expression with predefined terms. In particular. no term
may be a forward reference -- this error often occurs when pieces of a Source Program
are rearranged. The Load Attribute of the expression must be consistent with the ABS,
REL. or SREL range into which the ORG itself falls.

A forward ORG is equivalent to a RES with no second operand -- no specification of a
value to be filled in. This sequence reserves two card input buffers:

CARDSZ EQU 80
BUFF1 EQU $

ORG BUFF1+CARDSZ
BUFF2 EQU $

ORG BUFF2+CARDSZ
REST EQU $

A backward ORG is used to overlay. at link-edit time. an area previously defined. The
same location may be ORG'd back to as many times as needed. The last value assembled
will be the last one inserted by the link-editor.

o The following sequence generates 256 consecutive words containing the values 0 thru
255; then ORGs back to the 64th word and clears it; then ORGs forward past the end of
the table, so unrelated data can follow.

TABLE REPT 256
DATA $-TABLE
ORG TABLE+63

TABZRO DATA 0
ORG TABLE+256

MORE DATA 2.4.8,16

A common coding error, and a difficult error to detect. is a backward ORG without a
later forward ORG, or without enough code-generating statements to bring the Location
Counter forward as far as intended. If the last ORG were omitted in the preceding example.
all of TABLE beyond TABZRO would be destroyed at link-edit time by the data starting
at MORE.

6-5

o

•

•

I
I

$]"2''1'"''

~
~ 0 i,1
l'

~ ~;,

~I
I

i

I
I

i

<I
I

, !

!

0

o

.< " rt' "± f t'i' liL dr' t ' t' X'IV t t ·WM!'wt¥",,!:erillfM(' f 'f

S~ction 7

OBJECT PROGRAM LINKAGE

The directives in this section are used to establish communication between separate
Object Programs. They generate records on the Binary OUtput File which contain
distinctive Loader Type Codes meaningful to the link editor.

The Binary OUtput File of the assembler ordinarily is used as the Binary Input File
or Library Input File for the link editor. Without exception, every Loader Type Code
which appears in the assembler's output is acceptable as input to the link editor.

It is possible to use the assembler to generate an Object Program which is acceptable
directly by the various CA-supplied loaders, or by the Autoload program. It is,
however, more convenient to simply run the assemble.r's output thru the link editor,
and produce an Absolute or Relocatable program as needed. Thi<s is the recommended
technique, and it is assumed in this section that the program which is used to pro­
cess the assembled Object Program is, in fact, the link editor.

7-1

Entry Declaration (NAM/SNAM)

NAM Name [, Name] •••

SNAM Name I, Name] •••

These directives are used to declare that certain names are to be made available to
the link editor for possible matching against unresolved Externals in other programs.
Each name must be defined somewhere within the assembly, either as a relocatable or
as an absolute symbol. The name may be defined with an EQU statement, but it must
not be a SET variable.

NAM declares each name to be a Primary Entry. A Primary Entry which matches an
unresolved Primary External will force selection of the program which contains the
Primary Entry. A Primary Entry may also be resolved against a matching Secondary
External, once both programs have already been selected.

SNAM declares each name to be a Secondary Entry. A Secondary Entry will never force
selection, but it will be available for matching against an unresolved Primary or
Secondary Externai, once both programs have already been selected.

All entry declarations in an Object Program must be presented to the link editor
before the Object Program is processed. Therefore, the assembler imposes a restr~c­
tion upon the placement of NAM and SNAM statements in a Source Program -- they must
appear before any machine instruction, and before any directive which generates
object code or other Binary Output records. The recommended placement for NAM and
SNAM statements is immediately after the Source Program's TITL and Macro Definitions •

Revised 5/77 7-2

'0

•

•

I.

i

.1
~.I
tI

o

o

.. r'·

t' t S· We

External Declaration (EXTR/SEXT)

EXTR Name [,Name] .. .

SEXT Name [.Name] .. .

These directives are used to declare that certain names may eventually appear as Entries
in other programs selected during link editor processing. Each name must be acceptable
as a label. but must not be defined anywhere in the assembly.

EXTR declares each name to be a Primary External. An unresolved Primary External
which matches a Primary Entry will force selection of the program which contains the
Primary Entry. An unresolved Primary External may also be resolved against a matching
Secondary Entry. once the program containing the Secondary Entry has already been
selected.

SEXT declares each name to be a Secondary External. An unresolved Secondary External
will never force selection, but will be resolved against a matching Primary or Secondary
Entry. once both programs have already been selected.

The mere appearance of a name in an EXTR or SEXT statement is not sufficient to create
an unresolved External. The name must actually be referenced somewhere in the assembly
before it is considered unresolved .

7-3

~

~
I

'\
;1
I

~i

I
I
i

i
!

ComputerAutomation ~

Demand Load (LOAD)

LOAD Name [.Name J ...
This directive is used to create unresolved Primary Externals. Typically. each name
is resolved against a matching Primary or Secondary Entry at link-edit time.

A name declared in an EXTR is a Primary External. but is not considered unresolved
unless the name is actually referenced some\Vhere in the assembly. No such reference
is needed for a LOAD name.

o

A name declared in a REF is an unresolved Primary External. but each REF allocates •
a word of storage. and a name cannot appear in more than one REF in an assembly. No
storage is consumed by a LOAD, and a name can appear in any number of LOAD statements.

Suppose these two subprograms are placed on an Obj ect Program Library:

*

XA
XC

*
*

*
XB

*
*

SUB
NAM
SNAM
EQU
EQU

*
*
END

SUB
NAM
EQU

*
*
END

AC
XA
XC
$
$

B
XB
$

7-4

•

MN '"

~o
~
~I

o

This main program is assembled, and supmitted to the link editor:

*

*
*

MAIN
SEXT
LOAD

*
*
DATA
END

XA,XB,XC
XL

XA,XB,XC

One, and only one, of these two segments is submitted to the link editor after MAIN, and
before AC and B:

* XL VERSION A * XL VERSION B
NAM XL NAM XL

XL RES 0 XL RES 0
LOAD XA LOAD XB
END END

If XL Version A is used, MAIN is linked with Subprogram AC. References to both XA
and XC are resolved. References to XB are left unresolved.

If XL Version B is used, MAIN is linked with Subprogram B. References to XBare resolved.
References to both XA and XC are left unresolved.

Two points are of particular interest here:

1. MAIN has no use for XL itself. Except for the LOAD, no statement in MAIN even
references XL. What MAIN wants is some combination of XA, XB, and XC .

o 2. XL occupies no storage at all. It is not really a subprogram, but a technique for
controlling the link-edit process.

7-5

Reserve Chain Link (CHAN)

[Label] CHAN [*] Identifier

This directive facilitates the creation of a type of data structure known as a "chain" or
"linked list" or "threaded list." An example of chain structure and usage follows this
description.

For each use of the CHAN directive, the assembler reserves one word of storage. The
optional label is the location of this word. and may be used in any context as if it were
the label of a RES directive.

o

The required operand. called the Identifier. consists of 1 to 6 alphanumeric characters, •
the first of which must be alphabetic. Embedded colons are permitted by the assembler,
but should be reserved for CA-supplied software.

All CHAN directives having precisely the ~ame Identifier contribute storage to one specific
chain structure at link-edit time, regardless of whether the directives appeared in one
assembly or in several programs linked together.

The use of a particular alphanumeric string as an Identifier does not constitute a definition
of a symbol. The Identifier. as such, cannot appear in any statement other than a CHAN .
In theory. the same string could be used as the label of a statement. and references to
that label would be valid. In practice, using the same string both as a chain Identifier
and as an ordinary label is confusing and inadvisable.

An optional asterisk may be prefixed to the Identifier. At link-edit time, a high-order
"1" bit will be set in the word reserved by the CHAN directive. The meaning attached
to this bit is defined by the user's own chain-processing routine.

The words which belong to a specific chain -- its links -- are filled in at link-edit time.
It must be understood that the mere appearance on the BI or LI file of a chain Identifier
is not sufficient reason for a given program to be selected by the link editor; which
programs are selected. and which are not. is governed solely by resolution of External
references. to which the CHAN directive contributes nothing.

When a word reserved by the CHAN directive is encountered, its high-order bit is set
according to the user's specification. and the remaining 15 bits are made a direct storage
address. For a particular chain, the very first link processed is set to : 0000 or : 8000.
This zeroed link is called the tail of the chain .

. The second link in each chain contains the storage address of the tail; the third link contains
the address of the second link; and so on, until no links remain in the program. It is
the responsibility of the program to know where the last link. or head of the chain, is
located. This implies careful control over the order in which object programs. and the
CHAN directives within them. are presented to the link editor.

•

·r

~ ,
~
~'1
'.j

~ I
·1
1

i ,.
~

I
I

I

I

I

,I

!

0

0

'W J "$ • & d' b ' t "btr'tbe tit'»')' t t • Me W"'u'ti»"ri'etteiri" -"" ,"., , "T"'"-gnrms=rWM

Example of Chain Structure and Usage

This chain is created by the CHAN and DATA directives shown:

HEADW

Cle=]

C2e=]

* PROGRAM
CHAN

Al DATA
A2 DATA

A
W
0
0

B lll-I ___ ---J
BOle=]

B02e=]

* PROGRAM B *
CHAN W

BOl DATA 0 Cl
B02 DATA 0 C2
* STORAGE
* UNRELATED
* TO CHAIN W

CHAN *W
Bll DATA 0

AlII

A2c==J

PROGRAM C
CHAN W
DATA 0
DATA 0

o The chain is processed by this program. which must be link-edited last:

AHDW DATA HEADW
HEADW CHAN W HEAD OF CHAIN W
*

LDX AHDW INITIALIZE POINTER
LOOPW LDX @O X NOW CONTAINS A LINK

LLX 1 ELIMINATE POSSIBLE
LRX 1 FLAG FROM LINK WORD
ixz ENDW IF LINK = O. NO MORE PROCESSING

*
* PROCESS DATA AT @l AND @2 HERE
* FLAG MAY BE CHECKED BY REFERENCE TO @O
*

JMP LOOPW
ENDW EQU $

7-7

r·.

--------- ----------------~----

ComputerAutomation ~

External Reference Constant (REF /SREF)

Name REF Comments

Name SREF Comments

These directives are used to declare that certain names are to be considered both internal
and external ;references, so that explicit linkage to another program may be used.

Within the assembly, the name is recognized as the label of a single word of storage,
which is reserved just as if the statement had used RES 1 rather than REF or SREF.
The name, therefore, must not appear in the label field of any other statement in the
assembly.

Simultaneously, the name is presented to the link editor as if it were the operand of ~an
EXTR or SEXT statement. The link editor fills the reserved word with the direct address
of the resolved Entry in another program.

The statement sequence shown here involves an implicit indirect link thru a word in a
Literal Pool or -- if no such word is available within addressing range -- a word in Scratch­
pad:

EXTR
JST

SUBR
SUBR

The following sequence allows the programmer to control explicitly the storage allocation
for the link, or even to build a table of External pointers:

SUBR REF
JST *SUBR

A REF statement creates an unresolved Primary External. An SREF statement creates
an unresolved Secondary External. Further details may be found in the description of
EXTR/SEXT.

7-8

o

•

o

o

o

.. '

'I « "j rt K BMt fAa ...

Section 8

LITERALS

A Literal is a word of storage, allocated for the operand of a Word Reference or Byte
Reference machine instruction. Unlike a word allocated by a DATA statement, the exact
location of a Literal is chosen not by the programmer, but by the assembler itself. In
certain cases, the fact that a Literal was required is unknown to the programmer until
the assembly listing is available for inspection.

A collection of Literals, grouped together in one area of memory, is called a Literal Pool.
The programmer can exercise some control over the location and size of a Literal Pool,
but again the assembler makes some of the decisions by itself.

Two coding techniques always generate Literals. One is an Explicit Literal operand --that
is, the source statement operand expression is prefixed by an = sign. Rather than writing:

ADD K1000

ano. remembering several pages later to include:

K1000 DATA 1000

the programmer writes:

ADD =1000

and lets the assembler allocate the storage, fill in the value, and adjust the machine instruc­
tion address.

The other technique which predictably needs a Literal is a reference to a name already
declared External, and thus beyond any possible Direct Relative Addressing Range.
Typically, a subroutine call is involved:

EXTR SUBR

* *
JST SUBR

The assembler makes the machine instruction indirect, and allocates a word in a Literal
Pool for the subroutine address. The result is the same as if the programmer had written
something like:

*
XSUBR

JST

*
EXTR
DATA

*XSUBR

SUBR
SUBR

A related coding technique mayor may not generate a Literal. In this case, backward
reference is made to a location which has already been defined. If the assembler calculates
that the location falls too far back for Direct Relative Addressing, the machine instruction
is made indirect, and an intermediate link is created in a Literal Pool.

8-1

PARTA

*
*
PARTB

*
*
CYCLE

EQU

*
*
EQU

*
*
JMP

ComputerAutamation fA
$

$

PARTA

If the code in PARTA and PARTB is still under development, the distance between CYCLE
and PART A may fluctuate in and out of JMP range with each re-assembly. This fact is
ordinarily of no concern to the programmer, because the assembler will decide for itself
which Addressing Mode is needed.

The need for each Literal arises within a segment of executable instructions. This is
exactly where the assembler can not allocate storage for the Literal, which is a word
of data. Instead, Literals accumulate until the programmer designates an appropriate
location for them with an LPOOL directive.

This process leads to the fourth, and final, coding sequence which can generate a Literal.
Again, the assembler's helpfulness in the calculation of Relative Addressing Ranges is
involved.

LOOP

*

*
FLDA
FLDB

*
*

LDA
LDX

*
JMP

*
LPOOL
DATA
DATA

*
*

FLDB
=1000

LOOP

0,2,4,6,8,10
o

When the assembler first processes the source statement labelled LOOP, the reference
to FLDB is still undefined. It is not an External, but it is a forward reference, and may
or may not prove to be out of range. The assembler provisionally decides that a Literal
would guarantee access to FLDB, makes the LDA indirect. and adds the Literal to the;
current accumulation. The Explicit Literal in the LDX also joins the accumulation. I

!
" The programmer finishes writing executable code, and begins some DATA statements.

But first, to. provide for the Explicit Literals in the last piece of code, and perhaps some
other accumulated Literals, LPOOL is inserted. Among the words immediately allocated
under the LPOOL, the assembler includes one for the reference to FLDB, another for
=1000.

Now the assembler finds out where FLDB is, in relation to LOOP. If FLDB is out of range,
the Literal Pool entry really was needed, and the indirection already set in the LDA is
the only way to access FLDB ~

8-2

I~
.-- I>

'I

i:

1\

,1: I·
':
I

o

o

o

Suppose. however. that FLDB turns out to be within range of the LDA. The instruction
is made direct to save execution time. The Literal Pool word. which would have been
a pointer to FLDB. is left unfilled.

The allocated storage remains in the program. Removing the allocation would involve
reassembly of the entire Source Program.

Literals take up storage. Techniques which generate Literals may use the storage
efficiently. and they may not. Only the programmer, not the assembler. can make that
decision.

To summarize. these techniques may generate Literals for Word Reference or Byte
Reference instructions:

1. Prefixing an operand with an = sign.
2 . Reference to a location known to be External.
3. Backward reference to a location beyond Direct Relative Backward Addressing Range.
4. Forward reference to a location not defined before the next LPOOL statement.

8-3

Allocate Literal Pool (LPOOL)

[Label] LPOOL [Operand [comments]]

i 1 This directive informs the assembler that it may allocate storage for whatever Literals
have been accumulated. The optional label is the location of the first allocated word.

No words are allocated if no Literals have been accumulated. Even the use of an Explicit
Literal between one LPOOL and the next does not always require a new Literal Pool entry.

A LOA =1000
* *
B LOA =500*2
* *
Ll LPOOL
* * ~ ~'o,;

* *
C LOA =4*250
* *
L2 LPOOL

The Literal for =1000 in Literal Pool Ll. originally created for instruction A. is shared
with instruction B -- the assembler can see that the same value is involved. even if the
source expression looks different. Furthermore. when C is processed. the assembler
checks for a matching value in all the Pools within backward range before it assumes
that a new value will be needed in a forward Pool. This can result in very efficient sharing
of Literal Pool allocations. if the programmer places LPOOL statements judiciously.

For C to share the Literal created for A, the starting location of the Pool at Ll must be
within the Relative Backward Addressing Range of C. It is not sufficient that the word
allocated for the =1000 be within range; the entire Pool must be close enough.

If Ll is not within range of C, a new Literal also containing =4*250 (that is. =1000) becomes
part of the forward Pool at L2. The new value is available for sharing with instructions
beyond L2 but within range of it.

The optional operand of an LPOOL statement is an absolute expression with predefined
terms and a value greater than zero. It specifies the maximum number of words allowed
in this Literal Pool, regardless of how many Literals have been accumulated. If more
words are needed • the leftover Literals will be held for the next available Literal Pool.

The programmer"should observe that no Comments may be used in an LPOOL statement
which has no operand.

If an assembly contains at least one LPOOL statement, than all the Literals still accumulated
when the END statement is reached are allocated just as if the ENO were immediately pre­
ceded by an LPOOL. A dummy statement of LPOOL 1 at the start of the assembly is sufficient
to activate this provision for leftover Literals.

If an assembly contains no LPOOL statements at all, then no Literal Pools are ever generated.
Instead, every instruction which would have used Relative Addressing into a nearby
Literal Pool is set for Indirect Scratchpad Addressing. All of the Literals are converted
into Scratchpad Literals. which are described in the next section of this manual.

8-4

o

e

o

o

o

... 1

I

I
i

!'en C" bMW" f'ri it " ±r#H"'"j% , t t·'" <on) 1"71 hHt '.

Section 9

SCRATCHPAD LITERALS

A Scratchpad Literal is a word of storage allocated by the link editor (or the loader) •
and available to a Word Reference or Byte Reference instruction thru Scratchpad Addressing
Mode. The need for a Scratchpad Literal is determined during the assembly process.
and communicated from the assembler to the link editor thru a distinctive Loader Type
Code in the generated Object Program.

Two coding techniques result in Scratchpad Literals. The more common situation is that
a Literal Pool Reference, either explicit or implicit. was used, as described in Section 8,
Literals. but that no Literal Pool space was available within range of the instruction which
involved the reference. This includes the extreme case of a Source Program which never
uses an LPOOL at all. such as a program originally coded for CA-supplied assemblers
lacking such a directive.

If at least one LPOOL statement appears in a Source Program. every instruction which
would have used a Literal Pool word, had one been available, but which used instead
a Scratchpad Literal. will be listed with a Warning Flag. on the assumption that the pro­
grammer intends the LPOOL statements to eliminate any requirement for storage in machine
Scratchpad.

Certain ways of using Word Reference or Byte Reference instructions always need Scratch­
pad Literals. SpeCifically, if the operand expression is prefixed with the character @ -­

which indicates Indexed Addressing -- then a Scratchpad Literal will be needed as an
indirect link if the operand value is either:

1. Relocatable. or

2. Absolute, but higher than the machine limit for Direct Indexed Addressing (: 3F for
the 3/05, : FF for the other machines) .

. Even a combiilation of Literal Pool entries and Scratchpad Literals cannot provide a Byte
Reference instruction with access to every location in memory. The assembler rejects
a.Byte Reference instruction with Explicit Indirect Addressing if its operand (presumably
the location of a Byte Address Constant) is not within Direct Addressing Range. Neither
a Scratchpad link nor a Literal Pool word can· be used to access the BAC, and thru it
the actual data, because only one level of Indirect Addressing is available when the machine
is in Byte Mode.

9-1

------------------------~.~~~~--~--~-------------------------------------

Scratchpad Literal Only (SPAn)

SPAn Name [,Name] ...

. This directive declares that certain names are to be excluded from ordinary Literal Pool
allocation. If at least one term of the operand expression of a Word Reference or Byte
Reference instruction is an SPAn name, and the assembler finds that a Literal is needed,
then the Literal will go into the Scratchpad Literal Pool.

Each name may be local to the assembly, or it may be declared External, or it may never
appear at all. An SPAn name may appear in a number of different SPAn statements.
An SPAn statement only affects other statements after it, not before.

o

An SPAn name is usually declared because the programmer is using LPOOL directives, 0
but anticipates that frequent references to a certain name would generate a consid.erable
number of unshared words in many different Literal Pools. In this situation, a Scratchpad
Literal is more conservative of storage, because the link editor eliminates duplicate values
before allocating the Scratchpad Literal Pool.

9-2

o

~
~
:1

1

'i

:1
9

I

I
. !

.. I

I
,\

il
j

t'. r X"

o
n'! d . n 'S . H .. " _ . * .. t

ComputerAutomation <rA

Section 10

CONDITIONAL ASSEMBLY

The directives in this section constitute a small but powerful language, which can be
used to control the way the assembler processes a Source Program.

As in most languages, the programmer can define names and calculate values (with SET), o make conditional or unconditional jumps (with 1FT and IFF), and specify repetition
controlled by a variable count (with REPT) .

~ .,;

Although the Conditional Assembly directives are often used in combination with the Macro
Facility, the programmer should observe that they are also available in open code --
that is, in a sequence of source statements which are not part of a Macro Definition.

10-1

Conditional Assembly Control (1FT/IFF /ENDC)

1FT
IFF

. ENDC

Operand
Operand
Comments

ComputerAutomation <\A

These directives specify whether a group of source statements is to be processed or
discarded. Conditional assembly begins each time an 1FT or IFF statement is encountered.
and ends when the corresponding ENDC is found.

The required operand of an IF statement is an absolute expression with predefined terms.
The operand is always analyzed for its Truth Value:

o means False
1 means True
Any other value means True

As explained in another section, a logical expression has a value of 0 or 1 consistent
with the requirements of an IF statement.

1FT means Assemble If True. All the statements bounded by an 1FT and its corresponding
ENDC are assembled if the operand of the 1FT is True, and skipped otherwise.

IFF means Assemble If False. All the statements bounded by an IFF and its corresponding
ENDC are assembled if the operand of the IFF is False, and skipped otherwise.

If the value of V is True, the LDA/LDX statements in the following example will be
assembled, and the STA/STX statements will be discarded without being processed at
all.

1FT
LDA
LDX
ENDC

* *
IFF
STA
STX
ENDC

V
FLDA
FLDX

V
FLDA
FLDX

Conversely. if the value of V is False, the LDAjLDX statements will be skipped, and the
STA/STX statements will be assembled.

The LIST directive may be used to force listing of any statements skipped during conditional
assembly.

10-2

o

o

t
~

~ I
Ii
!

I
!

~

i
. i

I

"'1

-I
I

!

I
l .. 1 i

1b"'B'StV'","$'""""[f',,'=W

o

Natt t" *#"' , ";'"'tt5& ,"to'e t" t-W' ,)"'Y'Mi!!t!iwfitMg!h ,"

An IF statement. the series of following statements intended for conditional assembly.
and the corresponding ENDC statement are called collectively the range of the IF. Unlimited
nesting of ranges is permitted -- that is, a range may fall completely within another range.
as shown here.

1FT IFF

* *
[IFF 1FT

;NDC
*

[IFF
*

;NDC [lIT
;NDC

*
ENDC

* *
ENDC ENDC

Every IF must have a corresponding ENDC somewhere below it. An 1FT True or an IFF
False with a missing ENDC will not affect the assembly. but will be flagged. An 1FT False
or an IFF True with no ENDC, however, will skip all the way to the END statement.

The assembler has no way of detecting an unintentional overlap of ranges. A complex
series of IF statements may produce a situation in which the programmer expects this
structure:

*
ENDC

The assembler has a Range Counter which goes up for each IF and down for each ENDC.
It handles the structure like this, which is not what the programmer intended:

1FT

*
[IFF

·;NDC

*
ENDC

A comment on each ENDC statement, as to which IF range it terminates, may be helpful
in coding complex range structures. An example is given in the sectit>n on Macro
Parameter Address Mode Stripping.

10-3

------_._----------

Set Variable Value (SET)

Name SET Operand

This directive is used to define or to redefine the value of a symbol. SET statements
may be used anywhere in the Source Program, but they are particularly useful in the
control of conditional assembly.

The name of the symbol, or SET Variable, to be affected is specified in the required Label
Field. A SET Variable name is unusual in this respect: it may be used in the Label Field
of more than one source statement without being rejected as a multiple definition. On
the contrary, a SET Variable has exactly one definition at any given point in the Source

o

Program, but that definition is replaced completely by another SET for the same variable, 0
even if the new SET has an invalid operand.

The name of a SET Variable must not appear in the Label Field of any type of statement
except a SET statement; such an appearance would constitute multiple definition.

The SET statement requires exactly one operand. The operand may be any absolute or
relocatable expression. except that reference to an External is not allowed. Forward
references .are acceptable, but a directive which requires predefined operands (such
as an ORG or an IF) cannot use a symbolic term defined by a SET with forward references.

If a SET statement appears within a Macro Expansion. the definition and value of the SET
Variable are not lost at the end of the expansion. A SET Variable is a Global Variable,
as opposed to a Macro Parameter reference, which is a Local Variable within one expansion.

In the following examples it is assumed that the symbols A.B.C, and D have previously
defined values. A simple assignment of a value to a SET Variable named V would be coded:

V SET A+B-C-D

Assignment of a logical value of 0 or 1 for later use in a conditional assembly:

V SET A+B=C

Reversing the logical value -- making 0 into 1, or 1 into 0 -- is accomplished here:

V SET ~, V-l/-1

Further examples of using SET Variables may be found in the description of the Macro
Facility.

10-4

•

.~ .. I

I

-
o

c

"t «- .. ,. I • t 'n , W' b IT' niri I . t .. j \I 'I • slj' tsit-riiwetlnt* '

ComputerAutomation <rA
Repeat Next Source Statement (REPT)

REPT Operand

When this directive is used, the immediately following source statement is assembled
as if it were repeated a number of times in the Source Program. The required operand

7'= 3m·

must be an absolute expression with predefined terms. The value of the operand determines
the total number of times the next statement will be assembled.

If the statement being repeated is not a Macro Call, it appears only once on the listing,
regardless of how many times it is assembled. The object code shown on the listing
corresponds to the final repetition. If a Macro Call is being repeated, each call line appears
on the listing.

A specification of less than 2 occurrences results in the next statement being assembled
exactly once, just as if the REPT had not been used.

The optional label has the current value of the Location Counter. The statement to be
repeated should not have a label, else multiple occurrences will generate erroneous multiple
definitions of the label.

Suppose the following 4 statements appear on the source file (and the assembly listing):

* BEFORE EXAMPLE
TABLE REPT

DATA
* AFTER EXAMPLE

3
$-TABLE*50

The object code generated will be the same as if the sequence had been:

* BEFORE EXAMPLE
TABLE EQU

DATA
DATA
DATA

* AFTER EXAMPLE

$
$-TABLE*50
$-TABLE*50
$-TABLE*50

The Location Counter reference is one word higher for each DATA statement, so the final
result is equivalent to:

TABLE DATA 0,50,100

10-5

o

o

•

,~l
~
~I
I
I

I

I
I

I

, I t fit' db '$O&..!6'" 'I' hI, " '-r "nt 'j hdr'l·e 'iW" . t • !"". f',,"" - _. tEP'" J

ComputerAutomation (\A

Section 11

MACRO FACILITY

A Macro is a named group of source statements, presented to the assembler in a way which
makes each use of the name equivalent to reproducing the whole group. The term "Macro"
is informally used to denote three related aspects of the assembly language: the Macro
Definition, the Macro Call, and the Macro Expansion.

Macro Definition: a declaration that a specific name is to be attached to a group of
statements. The declaration is accompanied by the statements, which the assembler stores
for future reference. A Macro Definition intended for only one program is usually made
a part of the program; a definition intended for more general use is usually made available
on a Definition File.

Macro Call: a source statement which actually uses the name declared in a Macro Definition.
The name appears in the Operation Field, and the Operand Field may be completely different
for each Macro Call.

Macro Expansion: a result of the assembler's processing of a Macro Call. On the assembly
listing, the Macro Expansion resembles a series of statements which have been inserted
physically into the Source Program, immediately after the Macro Call statement. Each
Line Number is the same as for the Macrp Call line, but a Plus Sign is appended to suggest
that the Macro Expansion lines have been added to the Source Program by the assembler.

C If a Macro Call simply reproduced a fixed series of statements, it would be little more
than a convenient coding technique. The real power of the Macro Facility is that Conditional
Assembly statements may be included in the Macro Definition. The operands of the Macro
Call may be examined and validated to determine the path of the Conditional Assembly.
The operands may also be made to appear at designated points within any field of the
Macro Expansion statements, a process called substitution.

Substitution and Conditional Assembly, used separately or together in the Macro Definition,
allow the operands of each Macro Call to generate a unique Macro Expansion, just as
the operands of a directive or a machine instruction may generate unique object code.

11-1

------------ - ---

Delimit Macro Definition (MACRO/ENDM)

MACRO
ENDM

. Mnemonic
Comments

ComputarAutomation ~

These two directives delimit a group of source statements which are to be saved by the
assembler as a Macro Definition. and specify the Mnemonic to be used in the Macro Call.

The Macro Definition must appear in the Source Program before the new Mnemonic is
recognized as a Macro Call for this particular definition. The Macro Definition also must
appear before any Word Reference or Byte Reference instruction which creates a Literal
in the same Source Program, else the definition is not accepted. The usual practice is
to group all definitions ahead of the executable part of a Source Program.

The Macro Mnemonic must consist of 1 to 6 alphanumeric characters. the first of which
must be alphabetic. Embedded colons are permitted by the assembler. but are reserved
for CA-supplied software.

The new Mnemonic may replace any existing Mnemonic for a machine instruction, a New
Op Code. a New Data Format, or a previously defined Macro. The new Mnemonic cannot
replace a standard assembler directive.

Every source statement between MACRO and ENDM is considered part of the Macro Definition

o

Certain directives are not allowed within a Macro Definition:"

MACRO
ENDM
END

When the Macro Definition statements are saved by the assembler. these elements are
discarded, and will not appear in a Macro Expansion:

Comment Lines -- that is, statements with an asterisk in Column 1
The Comments Field of each statement
Superfluous blanks between the Label, Operation. and Operand Fields

The fact that the fields are separated by only one blank column is not ordinarily evident,
because the assembler spreads the Macro Expansion into columns uniform with the rest
of the listing. unless a LIST directive has specified that no reformatting be done.

The listing or suppression of Macro Definitions, or of Macro Expansions, may be controlled
separately with the LIST directive.

11-2

v

o

o

o

.. ,

" I

I

I
~ !

J

• B' 'e f 'I"

ComputerAutomation fA
Macro Call Statement

[Label] Mnemonic [Operand [,Operand] ... [Comments]]

A Macro Call is a source statement in which the Operation Field contains a Mnemonic
established in a previous Macro Definition. The syntax of a Macro Call is similar to that
of a machine instruction statement, except that the rules for the Operand Field are more
liberal.

The optional label is defined to have the Location Counter value and Load Attribute which
were current at the point of the Macro Call. This definition applies consistently to every
Macro Call, even if the first generated statement in the expansion turns out to be a directive
or another Macro Call. This labelled call:

TAG xxx PARAM

is equivalent to this sequence:

TAG EQU
XXX

$
PARAM

Each operand of a Macro Call is termed a parameter. A parameter may be an expression,
a quoted text string, or an arbitrary series of characters. Neither a comma nor a blank
may appear outside a quoted text string.

A particular Macro Call may have any number of parameters, or none at all. If the Operand
Field contains a series of parameters, the assembler recognizes that a parameter within
the series has been deliberately omitted whenever a comma is not immediately preceded
by a parameter. In this Macro Call, parameters 1, 4, 7, and 8 are omitted -- that is,
there are still 10 parameters in the context of a Parameter Reference or a Parameter Count,
as explained later.

XXX ,B ,C, ,E ,F" ,I ,J

A Macro Call may appear in any context valid for a machine instruction. In particular
it may appear within the definition of another Macro. This technique of having one Macro
generate a call for another Macro is termed nesting, and is allowed to 3 levels deeper
than the original call. A nested call may have operands involving the constructions #n,
#?, and so on (as described in following sections), to communicate values from an outer
call to the next inner call.

The assembler allows recursion -- the calling of a Macro within its own definition -­
to a limit of 4 levels. If the Macro Definition's own conditional assembly statements do
not prevent deeper recursion, the assembler will simulate an ENDM and generate an Error
Flag.

11-3

*

ComputerAutomation fA
Macro Parameter Reference (#n)

Within a Macro Expansion, the construction

#n

is recognized as a reference to a parameter of the Macro Call. It represents all of the
characters in one parameter, as delimited by commas or spaces not embedded in a quoted
text string.

The rules for this construction are:

First, the character #
Next, an unsigned decimal number

or, alternatively,

First, the character #
Then, one SET Variable or symbol name with an absolute predefined value

The value of !!. specifies which parameter of the Macro Call is being referenced; #1 is
the first parameter, #2 is the second, and so on. The reference may be concatenated
with any characters which the assembler can distinguish from the #, the decimal number,
or the name.

Each Parameter Reference will be replaced in the Macro Expansion by the actual characters
in the corresponding parameter of the Macro Call. This character replacement is called
substitution. The Label Field, Operation Field, and Operand Field of a statement may
be modified by substitution; the Comments Field will never be modified. No substitution
is performed within operand text strings.

A reference to a parameter which is omitted from the current Macro Call, or to a parameter
which is beyond the last one actually present, results in the substitution of exactly one
blank character.

11-4

o

o

Ji~ W1$'sor'rtn 'wo= fd'W"e nati<* 't'titt#"" '& !hOC" '"'' 'I" (" ri6 :'(It"

o ComputerAutomation ~

The following definition illustrates some of the possibilities for Parameter Reference.

MACRO XXX
#1 DATA #2

DATA *#1,#4+1
TEXT #5
LDA#7 #6

XXXCT SET #3-331
DATA #XXXCT
DATA #XXXCT+1
TEXT 'MESSAGE #1'
ENDM

This Macro Call has 6 parameters:

XXX TAG,$,333,FLD,'AA BB CC,DD',FLD

The result will be this Macro Expansion:

TAG DATA $
DATA *TAG,FLD+1
TEXT 'AA BB CC ,DD'
LDA FLD

XXXCT SET 333-331
DATA $
DATA $+1
TEXT 'MESSAGE #1'

o

11-5

. Macro Parameter Count (#?)

Within a Macro Expansion, the construction

#?

is available for reference and substitution. It represents the exact number of parameters
in the particular Macro Call being expanded.

A reference to #? may occur in any context appropriate for an absolute expression with
predefined terms, such as the operand of a REPT, SET, 1FT, or IFF. This makes #? a
powerful tool for the control of conditional assembly.

In the following definition, each call to XXX is validated as having between 1 and 3 param-
eters, and a NOTE is generated if the call is incorrect. "'"

XXXCT

*
*

MACRO XXX
SET
IFF
NOTE
ENDC

*
*
ENDM

O<#?<4
XXXCT
S ,'XXX CALL WITH' ... #? ... PARAMETERS

REST OF DEFINITION

11-6

o

•

e

~,

rt tWi M ". • e· .,. , r'; ! " ··r '# , '.

ComputerAutomation ~

Generated Message (NOTE)

NOTE [Flag ,] Message

The NOTE directive generates a message on the assembly listing. An Error or Warning
Flag may also be generated. This directive may appear anywhere in the Source Program,
but it is particularly useful in a Macro Definition.

The optional first operand is a single ASCII character followed by a comma. If the character
is "W" the NOTE will contribute to the count and chainback for WARNING at the end of
the assembly listing. If the character is not "W" the NOTE will contribute to the count
and chainback for ERRORS. In either case. the character will appear as a Line Flag on
the listing.

Whether a Flag is supplied or not, the NOTE statement will be reproduced on the listing,
even if it occurs within a Macro Expansion for which listing has been suppressed.

If a NOTE statement is included within a Macro Definition. the message is taken to end
with the first occurrence of a blank not embedded in a quoted text string. Substitution
is performed within the message, but not if a Parameter Reference is embedded in a quoted
text string.

MACRO
NOTE
ENDM

XXX
'THIS CALL HAS' ... #? .. 'PARAMS, STARTING WITH' ... #1

The result of a call to this macro might appear as:

XXX
NOTE

A,B,C
'THIS CALL HAS' ... 3 ... 'PARAMS, STARTING WITH' ... A

11-7

ti •

----~---.-.--"

ComputerAutomation fA
Macro Variable Label (!awx)

Within a Macro Expansion, the construction

!awx

is available for reference and substitution. It represents a character string which will
be unique for each Macro Expansion, and is therefore useful in the Label Field of a generate
statement.

The rules for this construction are:

First, the character !
Next, an alphabetic character
Optionally, one or two more alphanumeric characters

In the Macro Expansion, the assembler will drop the character ! , and suffix the remaining
one, two. or three characters with a 3-digit decimal number (000 thru 999) which is unique
for each Macro Expansion. including each level of a nested expansion.

The result, called a Macro Variable Label, may be used in any context appropriate for
a symbolic term. Ordinarily, it is used for a local memory reference within the generated
code.

MACRO
LDA
JAZ

* *
* *
!XXX EQU

ENDM

XXX
#1
!XXX

$

If the expansion of a Macro Call for XXX happens to be the 33rd time the assembler has
expanded any Macro Definition -- not merely XXX -- then the JAZ and EQU lines will
be generated as

*
*
XXX032

JAZ

*
*
EQU

XXX032

$

11-8

o

o

o

o

i Wi "j' '#"#! "I • r " ',,"~to db ''[. '- b' 'ritid f& H ',I "'Z q n'! ,! 7' e "I. PeW'" ¥? f'i, t

ComputerAutomation ~

Macro Parameter Prefix Check

Within a Macro Expansion, the construction

#n[x]

is available for substitution. It is equivalent to the numeral 1 if the specified
character appears in either the first or second position (or both) of the designated
parameter, and to the numeral 0 otherwise.

The rules for this construction are:

First, a valid Macro Parameter Reference
Second, a Left Square Bracket character
Third, an ASCII character' string
Fourth, a Right Square Bracket character

The Prefix Check may be used to validate the presence or absence of an Address Mode
Prefix before generating a machine instruction. For example, each of these operands
specifies indexing:

XXX @TAG
XXX *@TAG

The following Prefix Check will detect either usage of the @ character:

XXX
#l[@]

MACRO
1FT
NOTE
ENDC

OPERAND ILLEGALLY INDEXED' ••• #1

DATA #1
ENDM

'Note that any ASCII character string except one containing a blank is valid.

11-9

·'''d'W'1e t':! 'I.,

ComputerAutomation <rA --jO

Macro Parameter Address Mode Stripping

Within a Macro Expansion. the construction

#n[]

is available for substitution. It represents all of the characters in one parameter, except
that every occurrence of the following characters in the first or second position is dropped:

* Indir.ect Address
@ Indexed
= Literal Pool Reference

The rules for this construction are:

First, a valid Macro Parameter Reference
Second. a Left Square Bracket
Third. a Right Square Bracket

The following example shows how this construction might be used with Prefix Checks.

XXXII
XXXLT

*

*

*

!XXX

MACRO
SET
SET
1FT

*
ENDC
IFF
1FT

*
ENDC
IFF

*
ENDC
ENDC
DATA
ENDM

XXX
#1[*1[@) INDEXED INDIRECT?
#1[=1 LITERAL?
XXXII
CODE FOR *@ MODE
XXXII
XXXII SKIP REST IF *@
XXXLT
CODE FOR = MODE
XXXLT
XXXLT SKIP REST IF =
CODE FOR NEITHER *@ NOR =
XXXLT
XXXII
#I[]

11-10

,i

.. ,

,9 """t"! Urr"Tn. Nrcmmn mnu- j « "k t)!jj!

o

o

ComputerAutomation ~

Section 12

LA~GUAGE EXTENSIONS

The standard assembly language, as described in this publication, may be enhanced
by an unlimited number of Language Extensions. New Data Formats may be defined for
the allocation and filling of storage. New Op Codes may be defined for the direct generation
of machine instructions.

A statement generated by the Macro Facility still looks like any other source statement,
and still must be assembled the same way. A Language Extension, in contrast, becomes
an organic part of the assembly language. The Mnemonic is recognized, and the operands
are processed, just as for any other directive or machine instruction. The appropriate
object code is generated directly from the source statement.

Of course, New Data Formats and New Op Codes may appear within a Macro Definition.
A combination of these features may be used to define a new problem-oriented language
bearing little resemblance to the original standard language.

12-1

~----------------------------

ComputerAutomation ~ -

Define New Data Format (FORM)

FORM Mnemonic, Width , Width ...

FORM communicates to the assembler the Mnemonic to be used for a New Data directive,
and specifies the format of the obj ect data to be generated by the new directive.

The FORM must appear in the Source Program before the new Mnemonic is used. Otherwise
the previous definition of the Mnemonic, if in fact there was one at all, will govern the
generated object code. The FORM also must appear before any Word Reference or Byte
Reference instruction which creates a Literal in the same Source Program, else the definition
is not accepted. The usual practice is to group all definitions ahead of the executable
part of a Source Program.

The new Mnemonic must consist of 1 to 6 alphanumeric characters, the first of which must
be alphabetic. Embedded colons are permitted by the assembler, but are reserved for
CA-supplied software.

The new Mnemonic may replace any existing Mnemonic for a machine instruction, a Macro,
a New Op Code, or a previously defined New Data Format. The new Mnemonic cannot
replace a standard assembler directive.

Each Width in the FORM statement specifies the size in bits of a field in the generated
object data. Each specification must be an absolute expression with predefined terms.
The value of the expression must be in the range 1 thru 16.

The first field-width describes the high-order bit field of the generated object data.
Each successive field-width then describes the next contiguous field. Any number of
fields may be described. It is not necessary that the total width of all the fields together
exactly fill an integer number of words.

For example, the following statement defines a new directive named CaNT. Each time
a CaNT directive is used, the assembler will generate up to 25 bits of data, starting with
the high-order bit of a word-, then fill the unspecified low-order bits of the last word
with binary 0' s .

FORM CONT ,2 ,2 ,4, 3 , 7 , 1 .6

12-2

o

! .

,
'i

!
;.1

I

I '%' ''II ""'f' 'dH h1l"r:m

o

o

ComputerAutomation ~

Using a New Data Format

[Label] Mnemonic Operand [, Operand] ...

Once a New Data Format Mnemonic has been defined with a FORM, it becomes a part of
the assembly language. The rules for coding a statement which uses the new Mnemonic
are similar to the rules for a DATA statement, except for some restrictions on the operand
expressions.

Regardless of the total width of the data generated by the New Data Format, the assembler
always starts the data at the high-order bit of a new word. The optional label is the loca­
tion of this word, and may be used in any context appropriate for a symbolic term.

The Operation Field of the statement contains exactly the same Mnemonic used in the corre­
sponding FORM directive.

At least one operand is required. Each operand must be an absolute expression. Any
combination of terms may be used, except that a reference to an External is not allowed.

The first operand specifies the contents of the high-order bit field of the generated object
data. Each successive operand then specifies the contents of the next contiguous bit
field. If the statement contains less operands than were specified in the corresponding
FORM, the omitted trailing operands are taken to be zeros. It is not valid to supply ~
operands than were specified in the FORM.

If the value of an operand expression is positive, then the binary representation of the
value must fit into the width of the bit field. If the value is negative, the width of the
field must be equal to the number of bits in a full word, else the negative value is not
accepted by the assembler. An invalid operand value results in a zeroed field and an
Error Flag, but doe~ not affect the proper boundaries and contents of the other bit fields.

The following example shows the definition and. use of a New Data Format.

FORM CONT ,2,2,4,3,7 ,1,6
ON EQU 1
L EQU 3
M SET L+1
TAG CONT L, 0 ,M, 5 ,64 ,ON, 2*M-1

.<

The result will be a defined symbol, TAG, labelling the first word of this generated object
data:

11 00 0100 101 1000000 1 000111

The assembler will supply enough trailing binary 0' s to fill out the final word.

12-3

Define New Op Code ($class)

$class Mnemonic :hhhh

This directive communicates to the assembler the. Mnemonic to be used for a new machine
instruction (or a variant of an existing one), and specifies the object code to be generated
by the new Mnemonic.

The directive consists of a Currency character in Column 1 of the source statement.
This character is never used in Column 1 for any other purpose. The immediately following
1 or 2 columns contain the Class Number of a standard assembler· Syntax Class.

The detailed operand requirements for each Syntax Class are described in another section.
The machine level representations of the operands are described in the Appendix for
each machine. The Syntax Classes and their most distinctive features are summarized
in the following table.

Class Words
Number Generated

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 2

10 2

Machine
Function

Word Reference

Operands
Allowed

1

Byte Immediate 1

Conditional Jump 2

Single Register 1

Register and 0
Control

Input/Output

Double Register

Byte Reference

Double Register
Arithmetic

Stack Reference

2

1

1

1

1

Indirect Indexed Other
Mode Mode Mode

* @ =

* @

*

@ + or -

The $class directive must appear in the Source Program before the New Op Code is used.
Otherwise the previous definition of the Mnemonic, if in fact there was one at all, will
govern the generated object code.

MACR03 does not accept $ 7, $9, and $10.

12-4

o

--

o ComputerAutomation ~

The new Mnemonic consists of 1 to 6 alphanumeric characters, the first of which must
be alphabetic. Embedded colons are permitted by the assembler, but are reserved for
CA-supplied software.

The New Op Code Mnemonic may replace any existing Mnemonic for a machine instruction,
a Macro, a New Data Format, or a previously defined New Op Code. The new Mnemonic
cannot replace ,a standard assembler directive.

The required operand is a 4-digit hexadecimal number. It specifies which bits in the
first word of the generated object code are to be forced to l's by the assembler. This
bit pattern is called the Skeleton of the instruction.

The operands used with the New Op will determine the final appearance of the object
code. An Appendix to this publication describes how the contents of certain bit fields
are either calculated from the operand values, or set by various Address Mode
specifications.

As examples of defining a New Op Code, some Skeletons built into the assembler for
convenient coding of LSI-2 instructions will be reconstructed.

The following two statements are equivalent:

JMP
WAIT

$

WAIT has no operands, so it must be in Class 5. JMP $ is a Class 1 instruction, with
one operand, and generates a fixed word of code, : F600. The New Op Code is thus defined
by:

$5 WAIT : F600

The following two statements are equivalent:

JMP *NAME
RTN NAME

Both RTN and JMP require exactly one Word Reference operand; both are in Class 1.
The Skeleton for JMP, flagged Indirect, is : F 1 00. The definition of RTN, therefore, is:

$1 RTN : F100

12-5

• __ , ___ o. ~~_~ ____________ •

ComputerAutamation ~ -

Finally, consider the following sequence, which might be used to transfer control in a
uniform way to external subroutines:

JST
DATA

*$+1
SUBR

!
\

Suppose a New Op Code were desired, so the two lines could always be replaced by:

GOSUB SUBR

GOSUB has exactly one op~rand. The generated object code must be two words long,
and must contain the address of the operand in the second word. Syntax Class 9 fits
the intended source statement format.

The existing machine instructions in Class 9 are used for Double Register Arithmetic .'
functions, but the machine level functions of a New Op need not be related to the functions
of any other instruction in the same class.

The Skeleton for JST *$+1 is the fixed word: FBOO. The New Op Code definition is:

$9 GOSUB :FBOO

12-6

o

o

o

c

. , rLi j td . W'Htzri±' "1'76 "'e'!"'~' """w'n" r rHz'" ¢'\r ',t'V'"'''' (titt . 'ttit'bts2'teb"M** MY·

ComputerAutomalion ~

Section 13

SUBROUTINE STRUCTURE MNEMONICS

[Label] CALL Name

Name ENT Comments

[Label] RTN Name

These Mnemonics provide a uniform way to communicate with a closed subroutine. They
are not directives, and may be replaced by other definitions.

CALL is used as an executable operation, equivalent to the machine instruction JST.
It performs two functions:

1. Store the Return Link -- the address of the next instruction after the CALL -- at
the effective memory location of the operand.

2. . Transfer control to the first word after the stored Return Link.

The operand of a CALL may be any operand valid for a Word Reference instruction.
Ordinarily, the name of an ENT is used. If the name has been declared External, an implicit
indirect reference thru a Literal Pool or thru Scratchpad might be used. An explicit
indirect reference thru a REF is another possibility.

ENT is used as the destination of a CALL and of a RTN. The generated machine code
is not intended for inline execution; it is simply a word of storage reserved for the Return
Link by assembling a HLT instruction. The first executable instruction in the subroutine
is coded immediately following the ENT. The ENT name may be local to the program,
or declared a Primary or Secondary Entry as needed.

RTN is used to return to the calling program. It is equivalent to JMP *Name, and will
perform an unconditional transfer of control indirectly thru the Return Link. The operand
of a RTN is therefore identical to the name of the corresponding ENT .

13-1

o

o

o

- - ---------

'.'11(4 Um"'BM"WP't"1rM t "' i U ,. "7mb'&-" "rr±" * * 't£rtiz"'it'ttt

/.

F:?--'
I~ i •

: \
~

I
• I , i

I I
: I

I
J

/
!
I
I
1

:.~

.. ' "

~! .
~

C) __ ----------------------

Section 14

LINE CONTROL

These directives are used to enhance the visual quality of the assembly listing. They
have no effect upon the process of object code generation, and may appear at any point
within the Source Program.

A Line Control Directive is never active within a Macro Definition. Any directive appearing
between MACRO and ENDM is simply reproduced with the rest of the listed definition . . ~
If a Macro Expansion is being listed, a Line Control Directive within the expansion affects
the listing at the line on which the directive would have appeared.

If a Macro Expansion is not being listed, the effect of a Line Control Directive within the
expansion is determined by whether or not at least one code-generating statement occurs
in the expansion between the Macro Call and the directive.

A Line Control Directive occurring before any code-generating statements in an unlisted
Macro Expansion affects the listing before the appearance of the Macro Call itself.

A Line Control Directive occurring after the first code-generating statement functions
as if the expansion were being listed in full.

For example, if the Macro Definition contains a SPACE directive immediately after MACRO,
at least one code-generating statement, and another SPACE just before ENDM, then the
Macro Call for an unlisted expansion will be set off from the surrounding source statements
by blank lines preceding and following the call. In this context, the dummy statement
RES 0 is sufficient as a code-generating statement:

*
*

*
TAG

*

MACRO XXX
SPACE 1
RES 0

*
*
SPACE 1
ENDM

BEFORE
XXX
AFTER

PARAM

If Macro Expansion listing is suppressed, the result will be:

BEFORE

TAG XXX I?ARAM

AFTER

14-1

o

o

'fWI1"."'f"'1'PW@!1mmrrr : nnm Mtt " t mn H Itt "3 it tr , 'f

o
ComputerAutomation ~

Heading Title (TITL)

TITL Title

This directive supplies the titles which appear in the page heading of the assembler listing.
Starting exactly one blank after the last letter of TITL. the remaining characters of the
source statement are taken to be the desired title.

The very first TITL directive in an assembly determines the master title. which appears
in the first line of the heading. along with the page number. date, and assembly starting
time. The master title is initially blank. Once set, it can be cleared only by a new
assembly.

Each TITL directive after the first determines the subtitle, which appears in the second
line of the heading, along with the name and version of the assembler program itself,
and the assignments of the source and obj ect files. The subtitle is initially blank, and
each new subtitle completely replaces the previous one.

A TITL statement is never listed. At the point where it would have appeared on the listing,
the effect of a New Page directive is simulated.

If a TITL statement is included within a Macro Definition, the title is taken to end with
the first occurrence of a blank not embedded in a quoted text string. Substitution is
performed within the title, but not if a Parameter Reference is embedded in a quoted text
string.

MACRO
TITL
ENDM

XXX
'VALUE FOR #1'---#1 COMMENT IN DEFINITION

This definition, with a call of XXX PARAM, will generate this expansion:

TITL 'VALUE FOR #1'---PARAM

14-2

"¥ "SP"t

ComputerAutomation ~. -,6

Line Skip (SPACE)

SPACE Operand

This directive generates blank lines on the assembly listing. The required operand must
be an absolute expression with predefined terms. The value of the operand specifies
the number of blank lines, and may be 0 ~

If enough blank lines are generated to reach the bottom of the page, the effect of a New
Page directive is simulated, and the remaining blank lines are discarded.

The SPA,CE statement itself is not listed Qrdinarily, but a LIST directive may be used
to force a SPACE statement to appear just before its generated blank lines.

New Page (period)

. Comments

This directive causes the next line listed to appear on a new page if at least 3 lines have
appeared on the current page. It consists of a period in Column 1 of the source statement.
The statement itself is never listed, and the Comments are ignored.

Comment Line (asterisk)

*Comments

A Comment Line appears on the assembly listing, but is not otherwise processed. The
directive consists of an asterisk in Column 1 of the source statement. Any combination
of printable characters and blanks may follow.

If a previous LIST directive has suppressed the listing of other source statements, a
Comment Line is suppressed too. A Comment Line within a Macro Definition is listed
(or suppressed) with the rest of the definition. then discarded. It will never appear
in a Macro Expansion. A full line of commentary within an expansion may be generated
with NOTE.

14-3

.. ,

'MnreN°OD"mt!ZWM =2

ComputerAutomalion ~

Section 15

INTERPRETATION OF THE ASSEMBLY LISTING

This section discusses the information on the assembly listing. References are made
to the Sample Listing provided as Section 16 of this manual.

Page headings have already been discussed in Section 14, under TITL. Two kinds of o lines appear in the body of the listing, Error Lines and Statement Lines.

Error Lines

An Error Line starts with two asterisks and a blank. V ariou s Line Flags follow. each
of which represents an Error or a Warning condition in the source statement on the immedi­
ately preceding line. The specific meaning of each Line Flag is listed for ready reference
in Section 17 of this manual.

At the very end of the listing. the following message appears:

yyyy ERRORS eeee
zzzz WARNING wwww

The number yyyy is the total number of lines with Error Flags. The number zzzz is the
tot~l number of lines with Warning Flags.

The numbers eeee and wwww are chainback pointers. The last source statement which
caused an Error Flag was statement eeee on the Source Input File (or the Definition File).
The Error Line under that statement on the listing contains a chainback to the next-to­
last statement which caused an Error Flag. and so on back to the first Error Flag. which
is easily recognized by its lack of a chainback pointer. (See Page 2 on the Sample Listing.)

A separate chain back is presented for Warning Flags, running backward from the statement
numbered wwww .

Statement Lines

A Statement Line is divided into 8 uniform columns, separated by one or two blanks:

1. Line Number
2 . Location·
3. Value
4. Memory Reference

5 . Label Field
6. Operation Field
7. Operand Field
8. Comments Field

15-1

ComputerAutomation ~

Line Number

This column identifies a source statement on the Source Input File (or the Definition File).
Each line generated by a Macro Call has the same Line Number as the Macro Call, with
a Plus Sign appended to suggest that the lines were added after input.

Location

The current value of the Location Counter appears in this column. As explained in Section
6, this is a .nominal value, subj ect to change at link-edit time.

Value

The result of assembling each statement is shown here. If a machine instruction 'or a
directive generates object code, each word appears on a new line, so the Location column
can be updated. If a statement simply evaluates an expression, the final expression value
appears as a I6-bit word; its sign is not shown ..

The Value column may also contain useful information peculiar to a specific directive:

FORM Total number of bits in the New Data Format
(Sample Listing, Page 1)

LPOOL Total number of words allocated in this Literal Pool
(Pages 4, 6, and 8 -- the last is an implicit LPOOL before END)

Memory Reference

This column contains the nominal Location Counter value of the operand for the following
statement types:

Word Reference
Byte Reference
Conditional Jump
BAC (Byte Address Constant directive)

The Memory Reference column is provided because the Value column for such statements
cannot be used to find the operand value in the program.

Source Statement Fields

The remaining columns on the assembly listing contain the four fields of the original
or generated sour-ce statements.

15-2

o

t"W"S'S'f"Rtr"'Mo/"rr n'M un

o

~, A (, f:: (I n () 1 ~ 1:.1 I 0 IJ I Y Y
1\1 H IJ U :? (t, 1) ::; I =

0003
li()Otl

(,1)(1';

0006
00(17
OOOR
0009

(jO]l
O/)l~ 'f) 1 't
(1()1"

0/)1"
()017
O()lR
(J1)1q
(I/)?O

00?1
O(l2?
00i?3
o 02 l t
002,
0026
OO?7
OOCJ~

002Q
(1)30
(, 1).51
~32
T033
OO~l.I

OO~5

0036
0037
o 0 :~8
0039
004f)
OOll1
f)042
o f)ld

0044

U04b
Ol)lI7
004A
n04Q

OO~l

OOtC
0022

·t WUrtH . 5 t b tmri+ tHR ±tllt ,±"

lQ:12:l.Ii? SFCTIO~ 16 -- S~MPLe ~SSEMBLY LISTTNG
~O= ORJPr,~ OEFINJTIONS

*
* SF.CTIO~ 1~

*
* SAMPLE ASSEMRLY LISTING

*

* THI" MACRO SlIPPLIES OPERANDS FOR VARIOUS
* TYPES OF ~ACHTNE INST~UCTJONS AND DIRECTIVES

'''AeRO ()PNO
'WACF 1

!OPN qF:S (I

i'~!lH 'f)PNI) CAlL PARAMETER 15· ••• #1
IF T tt?=O
;JOTF \"1, '()PNO CIILL WITH NO PARAMETERS'
E~f)r

IFF tt?=O

'" ..,ACHINE INSTRUCTION CLASSES
!T1 ADO to 1

AnD =111 1
AAT #1 2
JAr, ttl 3
ALA ttt " ATA #1,3 6
AOOB #1. A

!<)TK ADOS # 1 , @ 10
SPACF 1 DIRECTIVES
DATA 111 ,~l+1,*f,q
9AC 111,#1+3

!F.:lJll F. IJ II ttl
!SE::T SFT 1+111%4-1
!NOF "WF tll,7,1

SPACf 1
SETVAR SFT 111

LDX =SETVAR tlNSHARED -- DIFFF.:RFNT VALUfS
!SHq SUA =#1+7-#1 LonKS DIFFERENT, HUT VALUES

SPACE" 1
ENDC
SPACE 3
ENOM

* .. ~Ew DATA FORMATS A~E nFFINfD HERE

FORM
F()~M

"IOF,16,R,4
OEtvlO,10,R,16

* ~EXT STATfM~NT IS ANOTHER TITL

16-1

SHARED

o

P~(,E 0002 r.1M/OO/'(Y tq:t?:q? SECTION 1& SAMPLE ASSEMBLY LISTING
~--", --

"1" r. ROt' (A 1) 51:: Bt)= OBJPr,M MAIN PROGRAM

0053 0004 r·1ACH :Otl LSI-2
O()",q 0010 LIST no LIST EXPANSIONS

OO'1b 0000 RFl ()

0057 0000 MAIN EQIJ $

nor,q OOO? ABS F. ()' I +2 POSITIVE A~SOLlJT E
o Of-() OPNP !\HS

00f,()+ 0000 OPNOUO RFS 0
0060+ t-.J() T F 'OPNf) CAL L PARAMETFR IS' ••• AB5
flOhO+ noon IFF J.=o , ~
OObO+ noon ~H02 OOO? Tt 000 AOf} AAS
0060+ 0001 8A34 0056 ~Dn =A~S

0060+ OOO? OH02 AAI AAS
0060+ 0003 31RO OOO? JAG ARS
"It A
01)60+ 0004 1051 ALA AAS
01)60+ 000'5 5q13 AIR AA~, :«
0()60+ 0006 ~804 0002 AOD~ fiRS
0060+ 0007 1439 STKOOO Af)OS A AS,;,)
0060+ 0008 0002

(l()60+ 0009 OOO? [)A TA ABS,AAS+3,*ABS
00£-,0+ OOOA 0005
0060+ OOO~ R002
0060+ OOOC 0004 01l0? fHe !\BS,AAS+3
0060+ 0000 0007 000"3
OObO+ ()O02 I:.rHJOOO Ellll AAS
OOnO+ 002F SFTOOO SF.T 1+.AHS~4-1

0060+ (JOOE 0002 NnFOOO NOF AA~,7,1

0.060+ OOOF 0710

0060+ 0002 SFTVAR SET AAS
OOhO+ 00]0 F.:?25 0036 lDX =Sr;TVAR
OObO+ 0011 9??S OOH SHROOO SUB =ARS+7-ABS

0060+ ENnc

0061 t?~4 AASBlr, F.!HJ : 1 ?311 ABSOLUTE BF.:YONO SCRATCHPAO
OOh? OPNO ABSRIG

0062+ 0012 OPNOO] RF.:S 0
0062+ ~JO Tf 'OPNO rALL PARAMETER IS' ••• ABSAIG
006?.+ 0000 IFF]=0
0062+ 001? 8~25 0058 11001 Ann AASBfG
0062+ 0013 8A24 OO~R AnD =AASATG
OOb2+ 0014 OAOO AAI ARStiIG

16-2

sd t '"

o
PAGE OOO~ MM/OO/YY 14:12:42 SFCTtOI'J 16 -- SAMPLF.: ASSEMBLY LISTING
r.1ACtW? (A 1) ~I= Bf)= OB.JPG~ MATN PROGRAM

*" A OOhO
(lOhe?+ 001'; ~ 1 ~O 1 ? ~ I~ JAG ARSRTG

*" A nOn?
Ol)h?+ O()16 100:;0 ALA ~BS~lG

* " A OObe?
o!)f.?+ 001 7 51.100 AIR At:l5tHr.,3
Ie" fI O()~?,

OOh2+ 00lR R~2(J OO.5g AnDR AASAIG
OOh2+ 001Q 14 ~q STt<OOl ADO') ABSRtG,@
OOh?+ 001 A 1?34

OOb2+ 00lH 1234 DATA AASBIG,ARSRIG+3,*AASBIG
006?+ 0011': 1? .~7
()Of,~+ 01)11) q?34
Oi)h?+ 001E 24hH 1?34 RAC ARSBIG,ARSRIG+3
006?+ OOIF ?46B 1 ?~5
0/)h2+ 1234 FrlUOOl E flU ARSI:3JG
OOh~+ 2:~ 4F SET001 SF:T 1+ABS~TG%4-1

** W
0062+ 0020 12 _~4 f\JOFOO1 ~mF ARSHIG,7,1
OOh2+ 00?1 0710

0062+ 1234 SETVAR SET AASAIG
0062+ 00?2 E215 OOSR LI)X =SfTVAR
OOb?+ 002~ q213 0037 SHR001 ')\ J R =ARSRIG+7-ABS~IG

OOh?+ ENoe

C063 FFFE NAHS Ff)1J -2 NE(;ATIVE ARSOLI/TE
o Oh/~ i)PND \\lAPS

OOf..4+ 0024 OPNOO? RFS 0
OOh4+ NOTf 'UPND CALL PARAMETER IS' ••• NAAS
OOh4+ 0000 IFF 1:0
OOh£l+ 002£1 8ROO FFFE '100;> AD!) /liARS

** r:: 0062
UOfo.4+ 00?'5 8A1.4 00 iA Af)O =NABS
OOf--4+ 0026 OAOO AAr NARS

** A 0064
0064+ 0027 ~lHO FFFE JAG NABS

*" A 006L1
OOf-4+ OO;>~ 1050 AL A NAHS

"" A 0064
0064+ OO?q 5400 '"'IA I\JARS,3

** A 0064
OOf,4+ OO?I\ MilO 003ti Af1!)H NARS
OOh4+ 002~ 14~9 STKOO2 ADDS N A H S, 1)

0064+ OO?C FFFE

16-3

o

·Pl\(~E 0004 f-IM I ()Q I Y Y 1q:12:42 SFCTIOr..: Ib -- ~AMPLE ASSEMBLY LISTING
fv1AC'W;:> (A 1) 5J= RO= 013.1 Pp04 MAIN PROGRAM

OOf-4+ OO?I) FFFr: /)ATA NAAS,NARS+~,*NABS
o f)t 4+ Ofl?E 0001
OOh4+ OO?F FI-F'f
OOt;LH oo~o FFFe 7FFE iJ AC NAHS,NAHS+3
(lOb4+ ij031 FFFF 7FFF
OOblH Ff-'Ff F f}IIOO? FOil NABS
(1064+ FFH SEroo? SET t+NAAS%4-1
OOh4+ O/') ~~? FFFf NOFOO? NDF NAHS,7,1
U064+ 0033 0710

OOf,4+ FFFE SETVAR SET NARS
e

Ol)f,ll+ 0034 E?05 003A LDX =SETVAR
OOf,4+ OOV; q?Ol Of) H SHt?OO? gliB =NAHS+7-NAPS ! '.~

OOh4+ F.NDC

00b5 0006 LPI LPOOL
0036 0002
0037 0007
0038 1?34
003Q 2468
0034 FFFE
003B FFF'C

OOf,f, 0002 REL t:QU MAJN+2 ~fLOCATABLE
OOb7 OPNO REL

00b7+ oo~c OPNOO3 RES 0
00b7+ WITf 'OPNf) CALL PARAMETER IS' ••• RF:L
00b7+ 0000 IFF 1=0
00b7+ 003C ~f 3A OOO? rtoo-~ AI)O REL
0061+ 0030 8t.?2 (lObO AD/) =RFL
00b7+ 003E OAOO AAI REl

** A 0064
00b7+ 003F 31FO 0002 JAG REL
OOb7+ 0040 1050 ALA r.cE'1.

** A 0067
0067+ 0041 51100 AlB ~EL,3

** A OOh7
00b7+ 0042 8H IE: 0061 AOOA REL
OIlf,7+ 0043 14 ~q STKOO3 Af)OS REL,@
II f) h 7 + 0044 nOOi>

00£-.7+ 0045 ()O02 DATA REL,REL+3,*RfL
0067+ (lOLIn oooS
00h7+ 00a7 8002
OOb7+ 0048 0004 000;> !He QF.L,REL+3
()O67+ 004Q 0001 0003
0067+ OnO? HHJOO 3 EUII REL
00h7+ 0000 SEfOO3 SFT 1+~EL1.4-1

16-4
------------_._--- -- - '-----------~-~'", ---" -.--~~. ~------ -~-----,-.. - --~~- ------------_ .. _------

en tr e-

o

.J4C,E 0005 MM/OD/YV 1q:12:42 SFCTTON In -- SAMPLE ASSEMBLY LISTING
MACR02 (AI) ST= AO= OBJPGM MAIN PROGRAM

** R 00n7
OOh7+ OOLIA 0002
** E OOn7
ClOnl+ 004'i 0710

tJ[) F 0 0 ~ ~m F

00 ... 7+ 00f)? SETVAR SFT
on~7+ 004C E?t3 OOhO LOX
OOh7+ 0040 gn1b OOH SHf<OO~ SUFi

OOf-I+ •
00':'#\
O()f,q

nOf,q+ 004E
00,.,9+
OOnq+
0069+ n04E
006q+ 004F
0069+ 0050

** E
(I0t-q ... 0051

** E
006Q+ 00')2

** A
OObCh OOC;3

** A
M6q+
~ E

00,.,9+
0069+

0054

0000
~A13
$\A12
OHOO
0067
'S180
00n9
1050
001,9
5400
00n9
8800
0069
14 ~9
onOD

OOI,?
OOn?

EXTR
()PNf)

OPNQ04 RES
NOTF
IFF

11004 ADD
AOO
A 4 J

JAG

ALA

AIR

AOOA

STK004 A()DS

0069+ 00S7 0000 DATA
0069+ 005A 0003
Oflf,9+ 0059 $\000
OOh9+ 0054 0000 0000 RAC
** F 001,9
006Q+ OO~R 0003 b001 HAC
** E Of)f,q
001,9+ 000(; fQU004 Erw

** E 0069
0069+ OOOF SET004 SET
** E 00n9
0069+ OOC;C 0000 NnF004 NOF
** E 00h9
0069+ 0050 0710

0000
OUn9

SETIi'AR SET

IotEt,7,\

wEt
=SE"TVAR
=RFL+7-REL

SlJHR
SIJfIR

o

EXTERNAL

'OPNr CALL PARA~ETER IS' ••• SUBR
1=0
SIIAR
=StlAP
SlJRR

SlIHR

SU8~

~UAR,3

~WAR, @

StJJ3R,SUBR"'3;*~UBR

SUf.H~, SUAR+ 3

SUAR,SURR+3

SUFIR

1+SURRY.4-1

SlJRR,7,\

~URR

16-5

PAGE OOO~' MM/OO/YY lQ:12:Q? SfCT}ON t6 -- SAMPLE ASSEMBLY LISTING
MACRU~ (At) 81= BO= OBJPGM MAIN PROGRAM

Oflh9+ OO!)€:
** tJ
O()hq+ OO')F
** E

0070
0060
OOhl
OOh"
O()n'3

007?
00'13

0073+ 0064
OI17.i+
0073+
oln 3+ 0061~

** W
00 n+ 006e;
** w
0073+ (J066
** A
007~+ 00£0,7
** A
007'3+ 006R
** A
0073+ OOh9
** A
007~+ 006A
** W
007 S+ OOh~

007'3+ 006C

007'3+ 0060
0073+ OOnE
007H 006F
007'3+ 0070
0073. 0071
0075.
01)73+
** R

** w
007'3+ 0072
** E
0073+ 0073

f.OO{'l
0069
9000
0069

0004
noo?
OOOtl
0000

4'5"7

0000
8QOO
0062
8800
0073
OHOO
()069
~180

0073
1050
()O73
'il!OO
0073
8900
0073
1l.J~9

4'167

4567
4~6A ."
C567
RACf
R/l01
4567
0000
0073
0073
4C;67
0073
0710

LOX =St::TVAR

SHR004 slJa

FNDC

LP? LPO('lL

~. ,~~

RELFAR EQII MAIN+:Q567 RELOCATARLE OUT OF
OPNf) RELFAR

OPNOOC; RFS 0
NOTF 'OPNn rALL PARAMETER IS' ••• RFLFAR
IFF 1=0

4567 TI005 AOI) RF.LFAR

4C;67 ADO =RELFAR

UT RELFAR

l.JC;b7 JAG RELFAW

ALA RFLFAR

AlA RElFAR,3

lPi67 AOOA RElFAR

STK005 AI)OS RFlFAR,iil

DATA RELFAR,RELFAR+3,*RELFAR

l.J567 BAC RElFAR,RELFAR+3
4,)6R

I::QIIOO5 F.~U RELFAq
SETOO5 SET 1+RELFAR%I.4-1

NnFOOC; ~Jr)F RELFAR,7,1

16-6

o

•
RANGE

.--~

-,

i ,'teedW.I!'+' IW ntlHn.He W-tt 't't .. " " 'I ' " ii'"'' ""I'Ii' '1"'fj,·.-I>""1n 1 -rr'"'X "'C"',;!W'D'? t"wrW"Q'ZrM' ~'!I"!$"!'Hm""w'Nt*om., "'&'-=& rt

o
l~GE 0007 M~/DO/YY tq:12:4? SECTI0~j 1~ SAMPLE ASSE~BLY LISTING
MArRO~ (AJ) SI: HO= OAJPGM MAIN PRO~QA~

o 0"1 ~+ 4':167 SF:TVAR SfT f.lr:LFAR
007 ~+ 0074 FOOO 4')67 Lnx =SFTVAR

** W 0073
0073+ 007C; qb 3~ oon SI-j~OOS SUR =RELFAR+7-PELFAR

1)07 ~+ FNOC

0 75 0001 1FT NO ENOC FOR THIS IF
76 *

O()77 OtlOO LIST 0 NO EXPANSIONS

007Q 007n nPNn
007Q+ NOTf '(lPNf) CAl.L PARAMETER IS' •••
007Q. f-JOTf ~,'OPNO CALL WITH NO PARAMETERS'

** ~ 00/3

()OBO 0010 LIST : 10 LJST EXPANSIONS

0082 0076 2288 DEMO 1~R,34,6547

0077 ~f-64

0078 COOO
OO~3 007Q 2288 DEMO 138,34

U07A 8000

CiA 4
00711 0000
007C .2?RO OEMO 13~

0070 0000
007E 0000

OOt\') 007F oono DEMO 0,0,-1
0080 3FFF
()O~t COOO

00[1.7 * NfxT STATf~ENT IS NFW PAGE DIRECTIVE (.)

16-7

o

,",AGF. OOOR Mt.1/flO/YY 19:t2:4~ SFCTION If. SAMPLE ASSEMRLY LISTING
MACR02 (A 1) SJ= AO= OBJPGM MAIN PRO(~R AM

0089 OlR~ ORG $+:100 PREVFNT SHARING OF SOME LPOOLS
0090 * 00Ql OP~'I) 0

0091+ 01~~ OPN007 qES n
(1)Q1+ NOTE 'OPNf) rALL PAr~AMETFR IS' ••• 0
OOY1+ 0(\00 IFF 1=0
0091+ 018:> BMOO (1)00 It007 hI) D (\

0091+ OtR3 RAtl 019') AnD =0
OOY1+ o 1#HI OROO AAI 0 • 0091+ 0185 31RO 0000 JAG (I

** A 0073
oOQt+ ot~b 1 (I C; 0 ALA 0 ", ... '

*'" A 009'
0041+ 0187 5403 AIR 0,3
(J091+ OlRR ~RO() 0000 AOOR ()

0091+ 0189 14 "39 STK007 ADOS O,ti'
00Q1+ 0186 0000

OOCj\+ 01HA 0000 f)ATA 0,0+71,*0
0091+ 01BC 0003
0091+ OtBf> ROOO
0091+ 018E 0000 0000 AAC 0,0+3
0091+ OlAF 0003 0001
0091+ 0000 EQU007 E~IJ 0
0091+ OOOF SET007 SET '+0%4-1
0091+ 0190 0000 NOFOO7 i'-JJ1 F 0,7,1
0041+ 0191 0710

00'11+ 0000 SETVAR SFT 0
0091+ () 1 9?, E?O? 0195 L!)X =SFTVAR
0041+ 0193 9('02 0196 SHR007 SlJB =0+7-0

0091+ EflJDC

004,? 0144 019Q DATA FNOTAG WORD AFTER END OF THIS PROGRAM

0094 .. HERE COMES AN IMPLICIT LPOOl REFORE ENO
0004

0195 0000
0196 000-'
0197
01<;11\

0000 009~ fNDTAG END MAIN

** C 0091

0037 ERRORS 0095
0001 WARNING 0079

16-8

W#
, ""i!6"'" ",f''l,\"'Mmnr .. We •• t 7"

'j' t jt '1·

~o 'I
I

tl
'I

ComputerAutomation ~

Section 17

LINE FLAGS

This section specifies the cause of each Error Flag or Warning Flag which appears in
the leftmost column of the assembly listing.

A Absolute expression is not within range of acceptable values. Destination of Conditional
Jump is out of range. Absolute value req uired, but operand is not Absolute.

C ENDC not paired with an 1FT or IFF.
1FT or IFF range still open when END was reached -- ENDC missing.

D Operand reference to a symbol with multiple definitions.

E Expression could not be evaluated -- value forced to : 0000 Absolute.

L Label Field unacceptable.

M Multiple definition of a symbol.

a Operation Field unacceptable -- processed as if HLT.

P Pass 2 out of synch -- probable error in hardware or software.

C R Relocation Factor unacceptable -- value forced to : 0000 Absolute.

,I

i

S Syntax error in operand expression.

T Self-defining term too large -- value forced to : 0000 Absolute.

U Undefined symbol was referenced.

W Warning:
NOTE Flag "W"
Significant bits lost in reducing a 31-bit intermediate value to a final expression value.
Out-of-Range reference needs Scratchpad link.

Z Zero divisor in expression -- intermediate value forced to : FFFF Absolute.

OV Overflow of an intermediate value.
Macro nesting or recursion deeper than allowed.
Statement processing unsuccessful because of Symbol Table overflow.

17-1

o

o

e

ComputerAutomalion ~'--..,

Section 18

OS:ASM

The program distributed as OS: ASM accepts the same language, and produces the same
output, as MACR02. To permit its use on a much smaller system than that required for
MACR02, however, certain capabilities are omitted from OS: ASM. The most substantial
differences are that OS: ASM has no Macro Facility, and allocates Literals only in
Scratchpad.

The distinctions between OS: ASM and MACR02 are presented here in terms of the
organization of this reference manual.

Section 1. No Definition File.

Section 2. Self-defining decimal numbers are limited to 32767, rather than 65535.
Unary operators are limited to Unary Plus and Unary Minus.
Binary operators are limited to Addition and Subtraction.
Intermediate expression values are limited to 16 bits, rather than 31.
Logical Expressions are not recognized.

Section 8. LPOOL directive is not available. All Literals are made Scratchpad Literals.

Section 9 . SPAD directive is not meaningful, and is not recognized.

o Section 10. No nesting of conditional ranges is permitted.
REPT directive is not available.

Section 11. No Macro Facility, and no NOTE directive.

Section 12. FORM directive is not available.

Section 13. SPACE directive is not recognized.

18-1

~
I
I

1.1'

"
i

o

t ti U b f _

fell "t,," ,""t'{ ", 't"M'1&'m?"I!r!1W'Wan1HMe<ttJ3WM'mr" ,..,C". H 5 '" W'

o ComputarAutomalion crA

Appendix A

ASCII Character Set

Hex Hex
Graphic Value Card Code Graphic Value Card Code

Blank :AO Blank A :Cl 12-1

0 B :C2 12-2
:Al 11-2-8 C :C3 12-3

" :A2 7-8 D :C4 12-4
:A3 3-8 E :C5 12-5
$:A4 11-3-8 F :C6 12-6
9-
0 :A5 0-4-8 G :C7 12-7
& :A6 12 H :C8 12-8

:A7 5-8 I :C9 12-9
(:A8 12-5-8 J :CA 11-1
) :A9 11-5-8 K :CB 11-'2

* :AA 11-4-8 L :CC 11-3
/'

+ :AB 12-6-8 M :CD 11-4
:AC 0-3-8 N :CE 11-5
:AD 11 0 :CF 11-6
:AE 12-3-8

/ :AF 0-1 P :DO 11-7
Q :Dl 11-8

0 0 :BO 0 R :D2 11-9
1 :Bl 1 S :D3 0-2
2 :B2 2 T :D4 0-3
3 :B3 3 U :D5 0-4
4 :B4 4 V :D6 0-5
5 :B5 5 W :D7 0-6
6 :B6 6 X :D8 0-7
7 :B7 7 y :D9 0-8
8 :B8 8 Z :DA 0-9
9 :B9 9

(:DB 0-2"';8
:BA 2-8 \. :DC 11-7-8
:BB 11-6-8 J :DD 0-5-8

< :BC 12-4-8 t :DE 12-2-8
= :BD 6:-8 - :DF 12-7-8
> :BE 0-6-8
? :BF 0-7-8

@ :CO 4-8

A-I

o

~
I

i

t' ,

o

Appendix B

MACHINE INSTRUCTION SETS

Assembler Syntax Alpha LSI-1 LSI-2 LSI-3/05

Mnemonic Class 16 110, 120

0
AAI 2 X X X

ADD 1 X X X X

ADDB 8 X X X X

ADDS 10 X

AlB 6 X X X X

AIN 6 X X X X

ALA 4 X X X

ALX 4 X X X

ANA 5 X X X

AND 1 X X X X

ANDB 8 X X X X

ANDS 10 X

ANX 5 X X X

AOB 6 X X X X

AOT 6 X X X X

ARA 4 X X X

0
ARM 5 X X X

ARP 5 X X X

ARX 4 X X X

AXI 2 X X X X

AXM 5 X X X

AXP 5 X X X

BAO 4 X X

BCA 5 X

BCX 5 X

BIN 6 X X X

BOT 6 X X X

BSA 5 X

BSX 5 X

BXO 4 X X

CAl 2 X X X X

CAR 5 X X X

CAX 5 X X X

CID 5 X X X X

B-1

~ .. I
~!

~

Assembler
Mnemonic

CIE
CMS
CMSB
CMSS
COY
CXA
CXI
CXR

DAR
DAX
DIN
DVD
DVS
DXA
DXR

EAX
EIN
EIX
EMA
EMAB
EMAS

HLT
HTR

IAR
lAX
IBA
IBAM
IBX
IBXM
ICA
ICX

IMS
IMSS
INA
INAM
INX
INXM
lOR

, ,~-~~~.Q_~",'"'~--'-'-'"--'--"--

Syntax
Class

5
1
8

10
5
5
2
5

5
5
5
9
7
5
5

5
5
5
1
8

10

5
5

5
5
6
6
6

",- 6
5
5

1
10

6
6
6
6
1

,~--....\

Alpha LSI-1 LSI-2 LSI-3/05
16 /10, /20

X X X X
X X X X
X X X X

X
X X X
X X X
X X X X
X X X

X X X
X X X ' .. .,.: , ,:;"

X X X X
X X

X
X X X
X X X

X X
X X X X

X
X X X X
X X X X

X

X X X X
X

X X X
X X X
X X X
X X X
X X X
X X X

X X X
X X X

X X X X
X

I

X
,

X X X i

X X X Ii
X X X X . \ :1
X X X
X X X X i"

ij I,

B-2 I
~-.--~~~-~ --~~---.-------.----.---~---'------

.' * "tI'i'fi't'."·tdHNtd',"
t"a '. '(') t tbb"· t '±.~ ""b" '''5 'M 'S ,,', t"h l" 'W"" , ,W f "J' f'£,,,··'t!H1'rpe'Mr"'Mt1tn'w't'YtHt"MW •• • =wrrmr'_

~

~ 0 ComputerAutamalion 0\
I

j
:(Assembler Syntax Alpha LSI-1 LSI-2 LSI-3/05

Mnemonic Class 16 /10. /20

IORB 8 X X X X

laRS 10 X

IPX 5 X X

ISA 6 X X X X

ISX 6 X X X X

IXA 5 X X X

IXR 5 X X X

JAG 3 X X X X

e JAL 3 X X X X

JAM 3 X X X X

JAN 3 X X X X

JAP 3 X X X X

JAZ 3 X X X X

JMP 3 X X X X

JMPS 10 X

JOC 3 X X X

JaR 3 X X X X

JOS 3 X X X X

JSR 3 X X X X

JSS 3 X X X X

JST 3 X X X X

JSTS 10 X

JXN 3 X X X X

JXZ 3 X X X X

0 LAM 2 X X X X

LAO 5 X X X

LAP 2 X X X X

LDA 1 X X X X

LDAB 8 X X X X

LDAS 10 X

LDX 1 X X X X
..,

LDXB 8 X X X X

LDXS 10 X

LLA 4 X X X X

LLL 7 X X X

LLR 7 X X X

LLX 4 X X X X

LRA 4 X X X X

LRL 7 X X X

LRR 7 X X X

LRX 4 X X X X

LXM 2 X X X X

LXO 5 X X X

LXP 2 X X X X

B-3

l.1
,

ComputerAutomation ~ o

1,1

Assembler Syntax Alpha LSI-l LSI-2 LSI-3/05

Mnemonic Class 16 /10, /20

MPS 7 X
MPY 9 X X

NAR 5 X X X X

NAX 5 X X X X

Nap 5 X X X X

NOR 4 X
NRM 9 X X

NRA 5 X X X

NRX 5 X X X

NXA 5 X X X X

NXR 5 X X X X

OCA 6 X X X

OCX 6 X X X

OTA 6 X X X X

OTX 6 X X .X X

OTZ 6 X X X

PFD 5 X X X

PFE 5 X X X

RBA 6 X X X

RBAM 6 X X X

RBX 6 X X X

RBXM 6 X X X • RDA 6 X X X

RDAM 6 X X X

RDX 6 X X X

RDXM 6 X X X

RLA 4 X X X X

RLX 4 X X X X

ROV 5 X X X X

RRA 4 X X X X

RRX 4 X X X X

RTCD 5 X

RTCE 5 X

SAl 2 X X X

SAO 5 X X X

SBM 5 X X X
SCM 1 X X X

SCMB 8 X X X

SCN 1 X
SEA 6 X X X X

B-4

-,---~ -~-------- - ---.----~~'-
- ~~~~~ ~~-~- ~ -~~~~-----~~ -------

.. "fiUT.Mtre'",. t h t' H " • , 'M' t" If 'to r it: ,

o

Assembler Syntax Alpha LSI-l LSI-2 LSI-3/05
Mnemonic Class 16 110, 120

SEL 6 X X X
SEN 6 X X X X
SEX 6 X X X X
SIA 5 X X X X
SIN 4 X X X X
SIX 5 X X X X

SLAS 10 X
SOA 5 X X X X

0 SOY 5 X X X X
SOX 5 X X X X
SSN 5 X X X
STA 1 X X X X
STAB 8 X X X X
STAS 10 X
STOP 2 X X X X
STX 1 X X X X
STXB 8 X X X X
STXS 10 X
SUB 1 X X X X
SUBB 8 X X X X
SUBS 10 X
SWM 5 X X X X
SXI 2 X X X X
SXO 5 X X X

C TAX 5 X X X X
TPX 5 X
TRP 5 X X X
TXA 5 X X X X

WAIT 5 X X X
WRA 6 X X X
WRX 6 X X X
WRZ 6 X X X

XOR 1 X X X X
XORB 8 X X X X
XORS 10 X
XRM 5 X X X
XRP 5 X X X

ZAR 5 X X X
ZAX 5 X X X
ZXR 5 X X X

B-5

!
I

o
I

ri
(I

o

•

'I
I

i

i
'I
I
[

,I
j

d t$'PrfYtd h',,'.'1 n

o

"'w'ri"'w", #.... ,~" .. "".'f',""I"t'nf"@"·'±"11SW'''' !' ... '$*''' 'wr'Sn.tmM'R'm'fWS"Z1l'

Appendix C

LSI-2 INSTRUCTIONS

This appendix contains the machine code layouts for all the instructions available on the
LSI-l, LSI-2/10, and LSI-2/20.

The instructions are grouped by standard assembler Syntax Class, and the Mnemonics
are alphabetized within each class. For the programmer's convenience, the syntax charts
from Section 3 are reproduced.

Class

1
2
3
4
5
6
7
8
9
10

Machine Functions

Word Reference
Byte Immediate
Conditional Jump
Single Register Bit Change
Register and Control
Input/Output
Double Register Bit Change
Byte Reference
Double Register Arithmetic
Stack Reference

For a detailed description of each instruction function, the programmer should refer to o the CA publication entitled Computer Handbook.

C-1

• d Itt

,
I ,

"

I

i

~I
;1
I

-i
I

CLASS 1: WORD REFERENCE

15 11 10 09 08 07

OP M I

OP Operation Code

M Addressing Mode:
00 Scratchpad: D
01 Relative Forward: P+D
10 Indexed: X+D
11 Relative Backward: P-1-D

I Indirect Address Flag

D Displacement

MNEMONIC

Skeleton Mnemonic

8800 ADD
8000 AND

Function

Add to A
AND to A

00

D

DOOO
B800

CMS
EMA

Compare A with Memory, Skip (Low, High, Equal)
Exchange Memory with A

D800 IMS
AOOO lOR
FOOO JMP
F800 JST
BOOO LDA
EOOO LDX
CDOO SCM
9800 STA
E800 STX
9000 SUB
A800 XOR

Increment Memory. Skip on Zero
Inclusive OR to A
Jump Unconditional
Jump and Store P
Load A
Load X
Scan Memory
Store A
Store X
Subtract from A
Exclusive OR to A

C-2

o

el'e ' s'elF: 'bdtM' 't 'I" "'''''i!WW''''b'il'Y ,),W"Y"~riFfi'ij\ir,''''tt nar t t'1m pt' '"":"Te"M.Wem.'S.,!!""

CLASS 2: BYTE IMMEDIATE

15 08 07 00

OP B

OP Operation Code
B Byte Immediate Value

'N

MNEMONIC OPERAND

0
Hex Mnemonic Function

OBOO AAI Add to A Immediate
C200 AXI Add to X Immediate
COOO CAl Compare to A Immediate, Skip on Not Equal

:i ClOO CXI Compare to X Immediate, Skip on Not Equal
C700 LAM Load A Minus Immediate
C600 LAP Load A Positive Immediate
C500 LXM Load X Minus Immediate
C400 LXP Load X Positive Immediate
ODOO SAl Subtract from A Immediate
C300 SXI Subtract from X Immediate

0800 STOP Stop
,:

C

"'.

C-3

CLASS 3: CONDITIONAL JUMP

15

OP

G.

C

13 12 11

OP

Operation Code

Group Test:

o OR
1 AND

Condition Bit

11 Magnitude of X
10 SENSE
09 OV
08 Magnitude of A
07 Sign of A

FB Jump Direction:

o Forward
1 Backward

D Jump Distance:

Forward
Backward

P+D
P-I-D

MNEMONIC

SPECIAL CASE ,'''''

JOC

C

G = 0

x = 0
Reset

07 06 05

IFB I

Set (Resets OV)
A=O

G = 1

X1=O
Set
Reset
A 1= 0

D

A Negative A Positive

OPERAND

GC,OPERAND

GC is an absolute expression which specifies all the bits of the G and C fields.

C-4

o

00

.. .,.:

•

0 ComputarAutamalion <\A
,- Skeleton Mnemonic Function: Jump When

3180 JAG A Greater than Zero
2180 JAL A Less than, or Equal to, Zero
2080 JAM A Minus
3100 JAN A Not Zero
3080 JAP A Positive
2100 JAZ A Zero
3200 JOR OV Reset
2200 JOS OV Set (and Force OV Reset)
2400 JSR SENSE Reset
3400 JSR SENSE Set
3800 JXN X Not Zero

0 2800 JXZ X Zero

2000 JOC Conditions

o

C-5

-;

i

CLASS 4: SINGLE REGISTER BIT CHANGE

15 03 02

OP C

OP Operation Code

C

Skeleton

1050
1028
10DO
10A8

1340
13CO
1320
13AO

1350
1328
13DO
13A8
1150
1128
11DO
11A8

6800

For most instructions, C = Operand-1
For SIN N, C = N+1
For BAO N and for BXO N:

If N is 0 thru 7, C = N
If N is 8 thru 15, C = 15-N

MNEMONIC

Mnemonic Function

ALA Arithmetic Left A
ALX Arithmetic Left X
ARA Arithmetic Right A
ARX Arithmetic Right X

OPERAND

BAO Bit of A to OV (15 thru 8)
BAO Bit of A to OV (0 thru 7)

BXO Bit of X to OV (15 thru 8)
BXO Bit of X to OV (0 thru 7)

LLA Logical Left A
LLX Logical Left X
LRA Logical Right A
LRX Logical Right X
RLA Rotate Left A
RLX Rotate Left X
RRA Rotate Right A
RRX Rotate Right X

SIN Status Inhibit

C-6

o

00

I

•

•

o ComputerAutomalion <rA
CLASS 5: REGISTER AND CONTROL

15 00

I OP

OP Operation Code

-

MNEMONIC [COMMENTS]

'0
Skeleton Mnemonic Function

0070 ANA AND of A and X to A
0068 ANX AND of A and X to X
0010 ARM Set A to -1
0350 ARP Set A to +1
0018 AXM Set A and X to -1
0358 AXP Set A and X to + 1
06CA BCA Bit Clear A
06C8 BCX Bit Clear X
068A BSA Bit Set A
0688 BSX Bit Set X
9210 CAR Complement A
0208 CAX Complement A and put in X
1600 COV Complement OV
0410 CXA Complement X and put in A

0 0408 CXR Complement X
OODO DAR Decrement A
00C8 DAX Decrement A and put in X
OOBO DXA Decrement X and put in A
00A8 DXR Decrement X
0428 EAX Exchange A with X
0218 EIX Execute Instruction poi!1ted to be X

"j

0510 IAR Increment A
0148 lAX Increment A and put in X
5804 ICA Input Console Data Register to A
5A04 ICX Input Console Data Register to X
0090 IPX Increment P and put in X
5801 ISA Input Console Sense Register to A
5AOl ISX Input Console Sense Register to X
0130 IXA Increment X and put in A
0128 IXR Increment X
13CO LAO Least significant bi t of A to OV
13AO LXO Least significant bit of X to OV
0310 NAR Negate A
0308 NAX Negate A and put in X

~
C-7

! ComputerAutornation fA 0 I

Skeleton Mnemonic Function

0610 NRA NOR of A and X to A
0608 NRX NOR of A and X to X
1510 NXA Negate X and put in A

~ 0508 NXR Negate X I
I 4404 OCA Output A to Console Data Register I

4406 OCX Output X to Console Data Register
1200 ROV Reset OV
1340 SAO Sign of A to OV
1400 SOY Set OV
1320 SXO Sign of X to OV
0048 TAX Transfer A to X
0030 TXA Transfer X to A • 0008 XRM Set X to -1
0528 XRP Set X to +1
0110 ZAR Zero A
0118 ZAX Zero A and X
0108 ZXR Zero X

4006 cm Console Interrupt Disable
4005 CIE Console Interrupt Enable
OCOO DIN Disable Interrupts
OAOO EIN Enable Interrupts
0800 HLT Halt
0000 NOP No Operation
4003 PFD Power Fail Interrupt Disable
4002 PFE Power Fail Interrupt Enable
OEOO SBM Set Byte Mode • 5800 SIA Status Input to A
5AOO SIX Status Input to X
6COO SOA Status Output from A
6EOO SOX Status Output from X
OFOO SWM Set Word Mode
4007 TRP Trap
F600 WAIT Wait for Interrupts

C-8

.,
i

.;1

I

~

"'Nir'ilSrH!!I'lc'S t' '!'Q'W'U1t •• m, rnmr
, .

o ComputerAutomation ~

CLASS 6: INPUT/OUTPUT

15

OP

DA

F

Skeleton

5400
5000
6400
6000
7100
7500
7800
7COO
7AOO
7EOO
5800
5COO
5AOO
5EOO
6COO
6EOO
6800
7900
7DOO
7BOO
7FOO
5900
5DOO
5BOO
5FOO

08 07 03 02 00

OP DA F

Operation Code

Device Address

Function Code

(This is the nominal division of bits 07 -- 00. The exact interpretation
of the bits is left to the device logic.)

MNEMONIC OPERAND[,OPERAND]

Mnemonic Function

AlB Automatic Input to Memory -- Byte
AIN Automatic Input to Memory -- Word
AOB Automatic Output from Memory -- Byte
AOT Automatic Output from Memory -- Word
BIN Block Input to Memory
BOT Block Output from Memory
IBA Input Byte to A
IBAM Input Byte to A Masked
IBX Input Byte to X
IBXM Input Byte to X Masked
INA Input Word to A
INAM Input Word to A Masked
INX Input Word to X
INXM Input Word to X Masked
OTA Output A
OTX Output X
OTZ Output Zeros
RBA Read Byte to A
RBAM Read Byte to A Masked
RBX Read Byte to X
RBXM Read Byte to X Masked
RDA Read Word to A
RDAM Read Word to A Masked
RDX Read Word to X
RDXM Read Word to X Masked

C-9

Skeleton Mnemonic

4400 SEA
4000 SEL
4900 SEN
4600 SEX
4800 SSN
6DOO WRA
6FOO WRX
6900 WRZ

Function

Select and Present A
Select
Sense and Skip on Response
Select and Present X
Sense and Skip on No Response
Write from A
Write from X
Write Zeros

C-10

o

• ~. ..,

•

m ts '* '$.,. .. , '.' ''h • Y"

~
'I 0 WI .

ComputerAutomation ~
'.1

I CLASS 7: DOUBLE REGISTER BIT CHANGE

15 04 03 00

I OP C

OP Operation Code

C Operand-1

MNEMONIC OPERAND o
Skeleton Mnemonic Function

1BOO LLL Long Logical Left
1B80 LLR Long Logical Right
1900 LRL Long Rotate Left
1980 LRR Long Rotate Right

o

C-ll

CLASS 8: BYTE REFERENCE

15 11 10 08 07 00

OP MIl D

OP Operation Code

MIl Addressing Mode and Indirect Address Flag:
000 Scratchpad Byte: D
010 Relative Forward, Byte 0 of Word: P+D
100 Indexed Byte: X+D • 110 Relative Forward, Byte 1 of Word: P+D

001 Indirect Scratchpad: *D
011 Indirect Relative Forward: * (P+D)
101 Indirect Scratchpad Post-Indexed: *D+X
111 Indirect Relative Backward: *(P-1-D)

D Displacement

MNEMONIC

Skeleton Mnemonic Function

8800 ADDB Add to A • 8000 ANDB AND to A
DOOO CMSB Compare A with Memory, Skip (Low, High, Equal)
B800 EMAB Exchange Memory with A
AOOO IORB Inclusive OR to A
BOOO LDAB Load A
EOOO LDXB Load X
CDOO SCMB Scan Memory
9800 STAB Store A
E800 STXB Store X
9000 SUBB Subtract from A
A800 XORB Exclusive OR to A

C-12

t' m ' 't t g , JIM M ' , e b tiM "'b" i rl V"" f'

~

~ 'i ComputerAutomation ~
~

~ CLASS 9: DOUBLE REGISTER ARITHMETIC
~I
'1 , 15 14 00

"i
I

'j

i

o

o

OP

I

A

Skeleton

1970
1960
1940

OP

A

Operation Code

Indirect Address Flag

Address of Operand

MNEMONIC [*]OPERAND

Mnemonic Function

Divide DVD
MPY
NRM

Multiply and Add
Normalize

C-13

-----------------~---------------""---"--"------"--

CLASS 10: STACK REFERENCE
, ------

15 02 01 00

I
OP SAM

A

OP Operation Code

A Address of Operand

SAM Stack Address Mode: e
Value Symbol Mode ~ --
00 blank Direct (Value of Pointer)
01 ,@ Indexed (Pointer + X)
10 ,+ Pop (Increment Pointer After Access)
11 Push (Decrement Pointer Before Access)

MNEMONIC OPERAN{~] ------.,

Skeleton Mnemonic Function (" SE" means "Stack Element")

1438 ADDS Add SE to A • 1418 ANDS AND SE to A
1658 CMSS Compare A with SE, Skip (Low, High, Equal)
14F8 EMAS Exchange A with SE
1678 IMSS Increment SE, Skip on Zero
1498 IORS Inclusive OR SE to A
16D8 JMPS Jump Unconditional to SE
16F8 JSTS Jump and Store P to SE
14D8 LDAS Load A from SE
16B8 "'LDXS Load X from SE
1618 SLAS SE Location to A
1478 STAS Store A into SE
16B8 STXS Store X into SE
1458 SUBS Subtract SE from A
14B8 XORS Exclusive OR SE to A

C-14

;·1'

~.
~. i-[

o

o

{ I

j

Sw * ,. i'w' Hi' t rt* i "t. 'ii,

ComputerAutomalion ~

Appendix D

LSI-3/05 INSTRUCTIONS

This appendix contains the machine code layouts for all the instructions available on the
LSI-3/05.

The instructions are grouped by standard assembler Syntax Class, and the Mnemonics
are alphabetized within each class.

Class

1
2
3
4
5
6
8

Machine Function

Word Reference
Byte Immediate
Conditional Jump
Single Register Bit Change
Register and Control
Input/Output
Byte Reference

For a detailed description of each instruction function, the programmer should refer to
the CA publication entitled Computer Handbook.

...

D-l

CLASS 1: WORD REFERENCE

15 10 09

OP MID

OP Operation Code

MID Addressing Mode and Displacement

09 06 00 ~ .. ,.~ , .~ .

0 0 0 D Scratchpad: D

09 07 00

1 0 D Relative: P+D-128

09 05 00

0 0 1 0 D Indexed: X+D

09 06 00

0 1 0 D Indirect Scratchpad: *D

09 07 00

1 1 D Indirect Relative: *(P+D-128)

,.
09 05 00

0 1 1 0 D
Indirect Scratchpad
Post-Indexed: *D+X

D-2

,

9 If,

~ • ~.

tl
?,j
~~ i
"

I

~I ~

~l
~I

I

I
I

I

I
I

I ,
1

l
"I ,

Prefixes:

*
@

*@
=

Skeleton

8800
9400
B800
9000
DCOO
B400
9COO
BCOO
8000
AOOO
8400
A400
8COO
9800

"("1' t "¢'t $"' » t

MNEMONIC

Indirect Address
Indexed
Indirect Post-Indexed
Literal Pool Reference

Mnemonic Function

ADD Add to A
AND AND to A

±rt .

CMS Compare A with Memory,
EMA Exchange Memory with A

., , :' ''''01' !fb' ".y 11" &S' d b±zt

Skip (Low, High, Equal)

IMS Increment Memory, Skip on Zero
lOR Inclusive OR to A
JMP Jump Unconditional
JST Jump and Store P
LDA Load A
LDX Load X
STA Store A
STX Store X
SUB Subtract from A
XOR Exclusive OR to A

D-3

CLASS 2: BYTE IMMEDIATE

15

OP

F

B

Skeleton

OBOO
2BOO
OCOO
2COO
0800
0900
2800
2900
OAOO
2AOO

3COO

09 08 07

OP

Operation Code

Flag for Operand Value
F = 1 for:

AAI/AXI
. LAP/LXP

F = 0 for:
CAI/CXI

B

F = 1 when Operand = 0, but F = 0 otherwise, for:
LAM/LXM
SAI/SXI

Byte Immediate Value
If F = 1, B = Operand
If F = 0, B = 256-0perand

MNEMONIC

Mnemonic Function

AAI Add to A Immediate
AXI Add to X Immediate

OPERAND

CAl Compare to A Immediate, Skip on Not Equal
CXI Compare to X Immediate, Skip on Not Equal
LAM Load A Minus Immediate
LAP Load A Positive Immediate
LXM Load X Minus Immediate
LXP Load X Positive Immediate
SAl Subtract from A Immediate
SXI Subtract from X Immediate

STOP Stop

D-4

__ 0

00

.. ..:;

e

, '''' 1'1" ,.,WeMwnnmMr'mW"."r, run -

CLASS 3: CONDITIONAL JUMP

15 07 06 00

OP D

OP Operation Code

D Destination: P-64+D

MNEMONIC OPERAND

0
Skeleton Mnemonic Function: Jump When

1200 JAG A Greater than Zero
1280 JAL A Less than, or Equal to, Zero
1380 JAM A Minus
1180 JAN A Not Zero
1300 JAP A Positive
1100 JAZ A Zero
3680 JOR OV Reset

, 3600 JOS OV Set (and Force OV Reset)
1680 JSR SENSE Reset
1600 JSS SENSE Set
3180 JXN X Not Zero
3100 JXZ X Zero

0

D-5

CLASS 4: SINGLE REGISTER BIT CHANGE

15 08 07 04 03 00

OPl C OP2

OPl Operation Code, Part 1

C Operand-l

OP2 Operation Code, Part 2

o
MNEMONIC OPERAND

Skeleton Mnemonic Function

OEOl LLA Logical Left A
2EOl LLX Logical Left X
OE09 LRA Logical Right A
2E09 LRX Logical Right X
OE03 RLA Rotate Left A ",

2E03 RLX Rotate Left X
OEOB RRA Rotate Right A
2EOB RRX Rotate Right X

OEOF SIN Status Inhibit

e

D-6

om.,-", MkMMWW1f!-'rr=,'n"www===_ ='M p:werr_m .. , r'Mt

~ ,
~. :1 ----------------------~ .. i

t!

CLASS 5: REGISTER AND CONTROL

I

I 15 00
I
I

OP

OP Operation Code

MNEMONIC [COMMENTS]

Skeleton Mnemonic Function
. ~

0104 ICA Input Console Data Register to A
2104 ICX Input Console Data Register to X
0101 ISA Input Console Sense Register to A
2101 ISX Input Console Sense Register to X
0001 NAR Negate A
2001 NAX Negate A and Put in X
0021 NXA Negate X and Put in A
2021 NXR Negate X
0404 OCA Output A to Console Data Register
2404 OCX Output X to Console Data Register
OE17 ROV Reset OV
OE15 SOY Set OV
2000 TAX Transfer A to X
2010 TPX Transfer P to X
0020 TXA Transfer X to A

OE47 CID Console Interrupt Disable
OE45 CIE Console Interrupt Enable
OE87 DIN Disable Interrupts

I

OE85 EIN Enable Interrupts

OEOD HLT Halt
0080 ,,- HTR Halt and Reset
0000 NOP No Operation
OE57 RTCD Real Time Clock Disable
OE55 RTCE Real Time Clock Enable
OE25 SBM Set Byte Mode
0030 SIA Status Input to A
2030 SIX Status Input to X
3000 SOA Status Output from A
3020 SOX Status Output from X
OE27 SWM Set Word Mode

"

" D-7

I

ComputerAutomation ~

CLASS 6: INPUT /OUTPUT

15

OP

DA

FC

Skeleton

4500
0500
6500
2500
0100
2100
0200
2200
0400
0600
2400

08 07 03 02 00

OP DA F

Operation Code

Device Address

Function Code

(This is the nominal division of bits 07 -- 00. The exact interpretation
of the bits is left to the device logic.)

MNEMONIC OPERAND [, OPERAND]

Mnemonic Function

AlB Automatic Input to Memory -- Byte
AIN Automatic Input to Memory -- Word
AOB Automatic Output from Memory -- Byte
AOT Automatic Output from Memory -- Word
INA Input Word to A
INX Input Word to X
OTA Output A
OTX Output X
SEA Select and Present A
SEN Sense and Skip on Response
SEX Select and Present X

D-8

o

,

! rl .
~ ...•.
tl m ,,.
'.~

.. ~~:[
, ".' ..
'I

~:: "

tj
CLASS 8: BYTE REFERENCE

15 10 09
"

I

OP

OP Operation Code

MID Addressing Mode and Displacement

09 06

0 0 0 0 D

09 07

1 0 D

09 05

I 0 0 1 0 D

09 06

0 1 0 D

0 09 07

1 1 D

09 05
•

0·1 1 o D

D-9

00

00

00

00

00

00

00

MID

Scratchpad Byte: D

Relative Byte: (2P)+D-128

Indexed Byte: X+O

Indirect Scratchpad: *D

Indirect Relative: *(P+D-128)

Indirect Scratchpad
Post-Indexed: *D+X

MNEMONIC [:] OPERAND
*@

Prefixes:
* Indirect Address
@ Indexed

*@ Indirect Post-Indexed

Skeleton Mnemonic Function

8800 ADDB Add to A 0
9400 ANDB AND to A •. , ,w,'

B800 CMSB Compare A with Memory. Skip (Low, High; Equal)
9000 EMAB Exchange Memory with A
B400 IORB Inclusive OR to A
8000 LDAB Load A
AOOO LDXB Load X
8400 STAB Store A
A400 STXB Store X
8COO SUBB Subtract from A
9800 XORB Exclusive OR to A "\

o

D-10

! .. :.'V'.. 0.'
~, . .
"11:
~~:, / ,

o

o

r---~~~~Au~x·~------~

PRELIMINARY ERRATA NOTICE FOR MACR02

MACR02 96552-A2

PROBLEM 1:

REASON:

SOLUTION:

NOTE:

Occasionally, insufficient LPOOL space is generated for the
number of literals, out-of-range addresses and externals
referenced by the code preceding the LPOOL Directive. As a
result. the addi~ional space required is allocated instead
in Scratchpad. This is not always acceptable to the
Programmer.

On Pass 1 of the Assembly process. MACR02 does not
(provisionally) allocate a Literal Pool word for Byte Mode
Memory Reference Instructions (e.g. LDAB) which access
labels currently undefined, i.e. forward referencing. On
Pass 2, when the address of the label is now known, if the
label is out-of-range of the referencing instruction,
MACR02 will attempt to store the address (doubled) in a
LPOOL location. There may be some spare words because
other forward-referenced labels for which space was
assigned are ~ow found to be within range. If no spare
LPOOL words exist, a l~cation in Scratchpad is used instead.

Due to this fault in MACR02, one can produce situations
where instructions like "LOA = 1000" are not assembled to
reference the LPOOL area because the space has been taken
up already by Byte Mode instructions accessing out-of-range
addresses for which space had not been allocated on Pass 1.

Apply the following l-word patch, using OS:DBG -

LOCATION

: 16DDRO

OLD CONTENTS

:OC58RO

NHJ CONTENTS

:0994RO

Should a Word Mode and a Byte Mode instruction reference the
same out-of-range label, only one word is allocated in the
provisional literal pool on Pass l~· This is because

/Continued .. 2 ..

o

r
I
i,

o

I
I

I,

'·1

:

I
t

f.'I.· 0 .. ~: ;-
~ , ", .

..

I
cl
I

,I

o

c

Page 2

only the label is stored away in the LPOOL table - no
indication of word/byte mode of accessing is saved with
the name. There is no possibility of patching MACR02
to overcome this situation, the probability of it occuring
being fairly small.

PROBLEM 2: The statement "LOA =*LABEL" always produ<;:es an assembly
error.

SOLUTION: Apply the following l-word patch, using OS:OBG -

LOCATION

:09B2RO

OLD CONTENTS

:81CO

NEW CONTENTS

:8100

NOTE: The RO referred to in the above solution is automatically
set to the start address of the program (e.g. MACR02)
currently loaded with OS:OBG.

Computer Automation Limited
European Product Support Group January 1979

.~ __ -========== ____ ---------------------l

tWT'S"?""

'I

II' ~
~
/}

,i

~

o

o

•

----------~---------.-""-."

\

r

I:~
I,
~
I
Ij

o

o

0

'I

tOO Nt .. !ib"fIIt' t »'t= ""'11: t T" 'I "'t 1 I' '#$" #$

.-----------------------------------~~,~~ \)"

MACR02 96652-3~A2
MACR03 96653-3~A2

PRELIMINARY ERRATA NOTICE FOR MACR02/3

s· d

...&

SNAM Statements - the current versions of the MACRO assemblers require
SNAM Statements to be placed at the beginning of programs just like
NAMs, i.e. before any code-producing statements.

However, it is sometimes necessary for SNAN Statements to be used any­
where in a program. In particular, the CORAL 66 Compiler, produced by
Hugh Pushman Associates, generates assembler code ,with sNAMs ap~earirig
just before the labels they reference. '

For users of CORAL especially, the following patch to MACR02 must be
implemented. A patch is also provided for MACR03 users in case anyone
wishes to use SNAMs in a similar way.

MACR02

Location

:0FElR0
: 1 ~06R~
: 1007R0
: 1 ~08R~
: 18E9R~
: 18FDR~

MACR03

Location

:~F81R9J
:0FA9JR~
:0FA1R~
:0FA2R~
:1881R9J
: 1895R~

Old Contents

:2102
:B1Fl
:A224
:31~B

x
x+l

Old Contents

:21~2
: Bl Fl
:A224
:310B

x
x+l

New Contents

:2902
:B1E3
:E224
:288B
x+l) Reversed
x) Address Values

New Contents

:29~2
:B1E3
:E224
:288B
x+l
x

•

I'
I
I

~
I.
I

I

,
I

'·1 .,
I

;".j

~
~

I
I

i
I
I

-='%2=

CI

m::smrr:rz==rTZ rrrs"yzrn ~ s· "7" ~T73'WTmE "P-TFE7SZ~-··"·-~ '77%""·'" ···~~iC7·"5~77t wr-"'nm--'7Sjl'~mmR""TF z-zrSirz .--," -"-'-f't" "t·~· ?'·5~rE=7 'T~"'"

PROGRAM NAME
MACR02/3

DESCRIPTION OF PROBLEM

SOFTWARE ERRATA NOTICE

PROGRAM 10
96552/3-A2

ERRATA #
462

DATE
6/24/75

Incorrect processing of TITL directive, where printer width is compared to maximum
buffer length.

EFFECTIVITY (VERSION)

Version A2 only

DESCRIPTION OF CHANGE

Make the following patch prior to execution:

LOCATION OLD CONTE NTS NE W CONTE NTS

For MACR02: MACH02.-;. :D93 :2181 :21H2

For MACR03: MACR03+:D2D :2181 :21k2

APPROVED BY:

. FORM 78007A
5

I,

,,.

..
;

!
I
1

.

PROGRAM NAME
MACR02/3

DESCRIPTION OF PROBLEM

SOFTWARE ERRATA NOTICE

PROGRAM 10

96552/3-A2

ERRATA #

613

DATE

12/30/75

A yirect reference to an out of range lahel t when used in the same sequence as RTN directive
to ~hat label, will cause only one entry in a subsequent LPOOL, rather than the tW9 entries
th: are needed (one direct pointer and one indirect pointer). A temporary fix is to use an :
in I rect JMP rather than a RTN in such a sequence.,

EFFECTIVITY (VERSION)

Version A2.

DESCRIPTION OF CHANGE

; I

t ,.

FORM 78007A

Error example

LDA TAG
RTN TAG
LPOOL . .

TAG EQU $

Temporary Fix

LDA TAG
JMP "'TAG
LPOOL . .

TAG EQU$

AP1ROVED BY:
/: /', f .. ~~>

i.' • I. \,

o
~ .

~
e I

e

\0

