
ttC"UI'! ""'$'('",''' iJ"W"#"I'ribr.- ' "{fgr'Wf¥" W'f'W .. '!:tu-,·*ts,,!:t!:tt'K *t"S' tv et!lftw'f!N'*'&& _u.9!r+#;"./tl't»tWMrbN

e
'~.,­~'

. ComputerAutomation
NAKED MINI. Division

18651 Von Karman, Irvine, California 92713 Tel 7148338830 TWX 910 5951767

CAl limited
Hertford House, DenhamWay, Rickmansworth, Herts WD3 2XD

TEL RICKMANSWORTH 71211 • TELEX 922654

OPERATING SYSTEM

USER'S MANUAL

96530-00D5 April 1976

PRINTED IN THE U,S.A.

I
I I

"tt't' t # .n

o

t &t" iT t ' t t t t '$ '(tt it' , t . ed" 1 p". j ! r"' b d f't,e! l'

Paragraph

1.1

2.1

2.2

2.3

2.4

2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11
2.5.12
2.5.13
2.5.14
2.5.15

2.6

2.7

2.8

TABLE OF CON'lTNTS

Section 1. THE CAT OPERATING SYSTEM

STRUCTURE OF THE SYSTEM .

Section 2. OPERATOR/SYSTEM COMMUNTCA'fION

INTRODUCTION

THE OPERA'fOR CONSOLE

ALTERNATE SYSTEM COMMUNICATION

CONSOLE INTERRUPT

SYSTEH COMMANDS .
/ASsign
/BAtch.
/BEgin. •
/CAnce1 .
/CCXnment.
/DAte ..
/EXecute.
/JOb.
/LIst
/LOad
/NJob
/REsume
/S'l'atus .
/TIme
/'l'Ype

PROCESSOR STOPS WITHIN OS

OS ERROR MESSAGES

COMMAND EXAMPLES

iii

. . . . 1-1

· 2-1

2-1

2-).

· 2-2

2-2
2-3

• 2-5
2-6
2-7

• 2-7
• 2-7

2-8
2-9
2-10
2-10
2-11
2-11
2-12
2-D

· 2-14

• 2-14

2-15

· 2-18

t1 trW ' 'f '1T'f::i -p

o
I
I

I
o
I
I
I

Paragraph

3.]

3.2

3.3

3.4

3.5

. 1.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

ComputerAutomation ~

TABLE OF CONTENTS (Cont'd)

I'c.igc

Section 3. SYSTEM TJTf]'I'fY PROCR/\M:,

INTRODUCTION L 1-1

THE OPERATlN(; SYSTEM ASSEMBLERS 1.2-1

OS:LDR - LOADER , .. 1.3-1

OS:LNK - LINK EDITOR UTILITY 3.4-1

OS:LBL - FILE LABEL UTILITY . 1.5-1

OS :VEW - FILE VIEv] UTILITY

OS:CPY - F'ILE COPY UTILITY. l.7-1

OS:SFF. - SOURCE FILE EDITOR 3.R-l

OS:CNC - ASSEMBLER SOURCE STATEMENT CONCORDANCE -j. ()-]

OS:DBG - DEBUG UTILITY L 10-]

OS:DMP - PROGRAM DUMP UTILITY .1.U-]

OS: ILD - INDEPENDENT LOADER . 3.12-1

OS :HDR - PAPER TAPE HEADER UTILITY. 3.13-]

OS:EDT - TEXT EDITOR -~.14-]

e

IV

o

o

P' t 11 t' rl')jf·'ti"o·d"fft'·tfMtiCi"p ru,·, "HWtn'W'eadWt'tm',''tt',lttt'&:t:fttdtfttbi'M'WeMwer

Paragraph

4.1

4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

4.3
4.3.1
<1.3.2
4.3.3
4.3.4

4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.1.3
4.4.1.4
4.4.1.5
4.4.1.6
4.4.1.7
4.4.1.8
4.4.2
4.4.2.1
4.4.2.2
4.4.2.3
4.4.2.4
4.4.2.5

4.5
4.5.1
4.5.2
4.5.3
4.5.4

4.6

TABLE OF CONTENTS (Cont'd)

Section 4. PROGRAM/SYSTEM COMMUNICATION

INTRODUCTION

REQUES'!'S FOR INPUT/OUTPUT CONTROL SERVICES
OPEN: . • . • .
CLOSE:
10: .
WAI'l':
TEST:

REQUESTS FOR EXECUTIVE SERVICES
SUPV:
MSG:
SPND:
TERM:

IOCS CONTROL BLOCKS
The File Control Block (FCB)

ECB - Event Control Block
LUN - Logical Unit Name.
STATUS Word
File Name . .
Block Size. .
Block Address
Record Si:>:e .
Record Number

. .'

The Input/Output Control Block (IOB)
OPR - Operation Code
Fcn Address . .
Record Length .
Record Address
Transfer Count

DEVICE DEPENDENT CONSIDERATIONS
End-of-File (EOF) Indicilton~

CheckslllnS •
Carriage Control of Prirlted Output
Recording Medium Preparation

PROGRAMMINC EXAMPLE: IOCS AND EXECUTIVE REQUESTS

v

Page

4-1

4-1
4-~~

4-/'

4-3
4-1
4-1

4-4
. 4-4

4-7
4-7
4-7

. . 4-8
4-8
4-9

. 4-10
4-10
4-11
4-11
4-11
4-1 ;>
1\-12
4-1 :~
4-12
4-13
4-13
4-13
4-1~

4-13
4-13
4-14
4-14
4-14

4-15

0

0

8'1'1*1"'35'",&','-" .. 4,. g wwe6'''· ·n' ,"*'*
I "h'W , t ."1 ~ 'f ¥# ''''1 "H 1 e' '::! :! '",tinnbr)'

TABIE OF CONTENTS (Cont'd)

Paragraph Page

5.1

5.2

5.3
5.3.1
5.3.2

6.1

6.2
6.2.1
6.2.2

6.3

6.4
6.4.1
6.4.2
6.4.3
6.4.4

6.5
6.5.1
6.5.2
6.5.3
6.:'.4

Section 5. FIrE MANAGEMENT SERVICES

INTRODUCTION

FIrE ORGANIZATION

FILE ACCESS METHODS
Sequential Access
Random Access . .

Section 6. SYSTEM GENERATION

INTRODUC'!'ION

HARDWARE CONFIGURATIONS
Minimum Hardware Requirements .
Additional Hardware Supported.

DELIVERED SOFTWARE

SYSTEM GENERATION PROCEDURES
Configuration of the Operating System
System Construction • . . .
Operation of OS:GEN.
Labelling of System Residence Volume

ADDING SYSTEM UTILITY PROGRAMS
General Considerations
Copying OS:CPY ..•.
Copying Other Utilities
Linking Utilities

vi

5-1

5-1

5-1
5-2
5-2

6-1

6-1
6-1
6-1

6-2

6-3
6-3
6-4
6-5
6-6

G-7
6-7
6-7
6-7
(,-8

i.· "± .'lt W

be, d* #'e'''i*tf#'''f''iHW'"W$"T 'MCw''''Wed 'M li!Wlt:1!r"tHtIS"H'iRMMt""'.· 1i"'t'! rt t

'fABLE .OF CONTENTS (Cant I d)

Appendix A OS COMMAND SUMMARY

Appendix B INPUT/OUTPUT AND EXECUTIVE SERVICES SUMMARY

Appendix C OS PHYSICAL DEVICE NAMES

Appendix D OS LOGICAL UNIT NAMES AND STANDARD FUNCTIONS

Appendix E OS STANDARD INTERRUPT BLOCKS AND DEVICE ADDRESSES

Appendix F PERIPHERAL DEVICES SUPPORTED UNDER OS

Appendix G BOOTSTRAP FOR DOS WITHOUT AUTOLOAD

Appendix H BOOTSTRAP FOR MTOS WITHOUT AUTOLOAD

Appendix I BOOTSTRAP FOR COS WITHOUT AUTOLOAD

o

vii

o

rW !t # .. ft) t HeM%' t t k dt t rttt· . d*1 irt .. O t't we .' rt I

(OMPUT£R AUTOMATION. INC. §EJ

Scetioll 1

TilE CAl OPERATING SYSTEM

1.1 STRUCTURE OF THE SYSTEM

The CAl Operating System provides the tools requir(~d fol' efficient program develop-
- ment and execution, in both batch and on-line modes. The minimum eonfiR-uration

for OS is one ALPHA/LSI (or ALPHA-16) processor with 10K words of memory. one
ASR-33 Teletype. and one magnetic peripheral device. The device selected for loadill~

OS itself determines whether the software environmpnt is termed Disk Operating System
(DOS), Magnetic Tape Operating System (M1'OS). 01' Cassette Operating System (COS)_
User programs may reside on any of these devices, or all of them, and 011 papm'
tape as well_

As loaded into memory, OS consists of the Executive (EXEC). thru which the user'
controls the entire system with a command language. thf' Input/Output Control Syst('1Il
(lOCS) , which "drives" the peripherals. and the File Manager (FM), which pl'ovic\t·s
access by name to files on magnetic recording media, During the execution of eertai n
System Utility Programs, a small portion of high memory. called the Transient Area.
will temporarily be reserved _ The remainder of memory (including high memory
if the Transient Area is not actually in use) is called the User Area.

: 0000

I SCRATCH PAD
: 0100

I

I

I L -- ':':IS -- I

I ------------------------\

EXEC

USER

AREA

TRANSIENT AREA
:nFFF

OS Memory lIsagt'

1 1

•

o

o

It .btlt.M.'tr1tt, uswe··'

COMPUTER AUTOMATION. INC. ~~;i L:::1.::i

Section 2

OPERATOR/SYSTEM COMMUNICATION

2.1 INTRODUCTION

The operator console (a teletype or other interactive device) is the basic communication
medium between the user and the operating system. Through this console, the user
communicates with the system executive routines, user programs operating under the
system, and system utilities.

This is not, however, the only such interface. Other deviees. such as a card rpader
or line printer may alternatively be assigned as the system eommand input (CI) and
command output (CO) devices. Such dcvice W';signments allow unattemkd ~ystem oppl'a­
tion in a batch modc.

2.2 THE OPERATOR CONSOLE

Thc operator console i3 the standard command input (Cl) and command output (CO)
dcvice fot, the operating' system. Although other command I/O assignments may be
made, the system will revert to these initial assignments between jobs (/JOb dil'l'ctive)
and when a console interrupt is processed.

The console may also serve as a normal system input or output device under OS, and
in this mode it can be considered likO any other assignable serial device.

When performing input (for either the system or uS<'I' program) cel'tain keys on the
console keyboard have special functions.

1. RET!JRN .. The RETURN key indicates the end of a lin(' of illPut Ilnd eliust's a e:ll"l"iag.·
return and line feed to hc generatcd.

2. !3ACKARROW (-). The backarrow causes the previous character input to be
replaced by the next character typed. Multiplc characters maybe replaced by
typing the appropriate number of backarrows followed by the eOl'l'cetion characters.

3. BACKARROW (-) /RETURN. A baekarrow followed imm<,diately by RETllR:.J
causes the entire current line to be ig-nored and rcpJaced hy the next line inpllt .
The RETURN cnus('s a carriage returll and line f('('u to be ~cn(~rated.

Tlw system indicate'S to the USCI' that a line of input is l'cquired by issuing- ope of two
query characters. The greatcr than (:» charadeI' is printed whcn the system requir(>s
a system command. whereas the question mark en chat'ader i:-; pl'int.:d when till! syst('m
or IIser pl'og-ram l'equil'(~s parameter or data input. Ir necessary. thl' op<'rator' mAy
IlllSWC1' "'!" with a sys(('m ('ommand. AflCl' as has J)J'oc('ss('d till' ('ommand. ;tnot 11<,1'
"'!" will come up. lwcallse the odginal IIl'l~d for un appt'opr'iate 1'('SpOnse still exi-;Is.

2· 1

o

o

ComputerAutomation ~

2.3 ALTERNATE SYSTEM COMMUNICATION

A device oth8r than the console may be used for command input (CI) and/or command
output (CO) devices. This can be accomplished by use of t.he /ASsign or /BAtch commands
dnd will stay in effect until another re-assignment, the stal-t of the 11l'xt jop, or
the recognition of a console interrupt.

When the command input (CI) device is assigned to an alternate, all system commands
will be echoed (printed) on the command output (CO) device to provide the user with a
documented history of the operations performed. Neither of the query chdracters
(> or ?) are printed during this mode of operation.

2.4 CONSOLE INTERRUPT

The system, or any user program operating under it, may be interrupted by use of the
console interrupt feature. This interrupt is caused by momentary operation of the
INT switch on the computer (AUTO on an ALPHA-l6) when in RUN mode.

This interrupt causes the currently executing program (user or system) to be halted
at its current position in a resumable manner. The program's current status is
saved, the command input and output devices are automatically reassigned (as required)
to the operator console and the system requests further action from the operator.

The interrupt does not take place immediately, but allows a small period of time for
outstanding I/O to complete. Should this time be exceeded, the system will take
control under the assumption that the I/O cannot be complet.ed normally, and a/CAncel
function will be simulated.

The status of the executing program at the time of thl' interrupt may be rlispLlyed by
use of the /STatus command, and the program may be cont.inued with a /REsume command.

If a /REsume is not given a /CAncel or /JOb should be given to assure proper file
management table status.

2.5 SYSTEM COMMANDS

The system commands are the means by which the user communi.cates with the operating
system and controls its actions and operations. Thus, the operator can load programs
into memory, start and stop them, dump them to a storage medium, and perform all
other required operations.

A system command is distinguished by a slash (/) character in its first character
position, immediately followed by the command keyword and zero or more operands. A
system command consists of a single logical record (line) en the command input (eI)
device; no continuation is allowed.

A keyword is a sequence of letters having special significar.ce to the sy"tem. All
letters after the first two are optional and may be includ8d or omitted at the user's
di~;cret ion.

2-2

o

(OMPUTER AUTOMATION. IN<, Bg

Tlw optional operand fi(,ld is separpt('d from the command nam(' by 011(' or IlHH'p blanks
and ('ontains zero OJ' mOI'(' comm:ITlCl HI'g'uIIH'nts. sl?p:ll'ated by commas, without imbcdd('d
blanks, The format and number of such arguments al'(' wllolly dependt'llt on the inrlividu;li
comm:lIld, Aft(,!, [It le:lst one space, user comments may he lIdcl(~d ,

The commands aceeptnl>le to the operating system ure d('scribed in dd;til ill the l'('llltIinc\PI'

of this section. The following conventions apply:

1. Commnnd keywords arc shown beginning with a slash (/) Chal'act01', followed by
the first two letters of the keyword in capitals. The rest of the word is in lower
case, signifying that these chnrncters arc optional.

2, Square hrackets [J ('nelose operands or paraml'tC'l's which ill'C optiol\;}l .. lid Tllay
be included or omitted at the user's discrf'tioJ1,

3, A right square bracket followed by an ellipsis (J.,.), indicates that thl' enclosed
element may he omitted or repeated un arbitrary number of times,

4. Brac0s (} indicat(~ that 11 choice must be made from the ~ncloscd elements,

5. System output is underlined to distinguish it from user input.

System commnnds can be rejected for a variety of reasons. Any such ,'ejection will
cause the system to reassign the commund input (CI) :md command output (CO) units
to the opcrntor console, The system will then print the appropriate error message
and pause for remedial operator action.

A general cause of command rejection will be invalid 01' i!leg-al command formats or
parameters, This type of el'l'or will cause th(' llH'Ssag'(, "*CMND REJECT" to 1)(' displ,ly,'d
and the system to requ('st a new command,

Assignment of the command input or output unit to an inoppl'able device muy cause
a processor stop. Refer to Section 2.6 for details,

o 2,5,1 The / ASsign~~I1![llId

't {unit } unl =
device

['t_{unit }] ,unl - .
deVIce ...

/ ASsign

The / ASsign command assigns 11 logical unit to 11 physi('al device, or to another logical
unit, l,t CHn be given ilt IIny time 1111(1 sup(~rscdes any priOI' assignment of thC' log-ieal
IIllil.

A Illlil isclditH'd liS ;IIIY or tlll~ two- e1l/1l'lId(~I' SYIllIl()li\~ 10~~1<.'1I1 unit IWlll('S d('scribed
ill APP<'IHiix D, :lnd (IPnotes n mode of I/O oppratioll.

2-3

M ri'twtWi¥#s* iHt t#dttt ' fS tH&" t @ ,'I' '1 t HW*th'g'tt'>' rtf "MM'!!". t I:' • 'f'. 'j! * " 'tht1'1WtWrfHW'tW TWhrtt, *M tt"'Wt tMM"

c

(OMPUTER AUTOMATION.IN(. ~

A device is defincd as any of the two-character symbO,lic physical device names shown
in Appendix C find supported at this installation, and denotcs the physical device on
which the logical operation is to be performed. Examples of various uses of the I ASSIGN
command are discus~ed below.

(1) I ASSIGN SI=CR

In the first example. the command tells the system that henedorth nil pl'ogl'ams and
operations which reqllire symbolic input will J'cceive that input from ttw (~ar'd 1'(~:H1('r.
Note that allY previow.; Hssi~"nm('nts of Sf :IT'(' now lost, but pl'eviou~ assig·IIIJl(·tlt s 10

en arc! still valid. It is tlttlS possiblt! to sh;II'(' a physical (lI-vil'\' ;1I1l0f1g' S('v('I'al lo~-ical
_units. as.shown in exampl(' (~).

(2) / ASSIGN CIcCI{. SI~CR

In som(' cases, the physical device asSigned support!'> multipl,! files, by Il:tme. This
is the case for mngndic tnpes. C[lssdtes. and disks, For the~;(~ devices, thl' system
I'C 4 uir l'S that the file 'name' be available at the time the file' is 'OPENed' for rcadinl';
01' wl'itin~". On(! lIle:tIlS of supplying this name is throtlV:h tlw / ASsig"n command by
npPPlldillg it to tlw pllysieal device symboJie name. sepHI':ttt'd I»' a period. This is
shown ill t'xample (3).

(3) /ASSIGN BO=M1.TESTl

Such an explicit file nallle assignment ulways supersedes :lI1y pl'cvious OJ' subsequent
file name definition stored ill the program's filr {'ontrol I,lock (FeB). I\. nip name may
be assigned to II non-bulk device, but has no df(!d Oil OS OI>Pl'lltion.

(4) ! AS::iIGN SI=CILSA=SI

Example (4) demonstratns assignment of' n logical UIlit to flII0UH'I' logical unit. Thi,.;
command causes hoth SI and SA to tw assigned to the ("IT'd 1'1':ldl'r (el{). A subsequent
assig-nllh'llt ()f

IASSleN SI-PR

('(I\lSCS SI to 1l(~ I'(!as~igned to ttl<' high speed p:lPf'I' l:lp(' I'l,:tdm' (PH). while !('nvilig"
SA still assigned to the card reader.

(5) I ASSIGN SI=CD
*CD NOT FOUND

As described above. the unit and device fidds of th(' /I\.Ssig"n l'Ommand al'(!)'cquired
to be one of sevcrn} stHllti;II'd symbolic llaml'S. Should till' opel'ator ('ntpr a Illlme which
is not amollg this g-roup. Ol' is not supported at this install:lt ion, tlll' ~ystem will r<'jeet
thl' command as in (''{amplf' (5),

2 4

(

o

C·" ~,y

'-..-

(OMPUT£R AUTOMATION. INC ~

(6) 1 ASSIGN BI=PR, SI-:CD. BO=PP
*CD NOT FOUND

Note that an error on an assignment command with multiple entries will cause all entries
after the erroneous one to be ignored. As in example (6). the "BI" llnit was assigncd
to the "PR" device. but because "CD" was invalid. 'the "BO" assignment was not made.

Other assignment errors. such as failure to assign a valid logical or physical unit.
or to providc a file name when required. are diagnosed when the file is OPENed. These
conditions will cause error messages to be produced and the system will pause to allow
remedial action by the operator.

(7) *S2 UNASSIGNED
?./ ASSIGN S2=DO. TEST
>/RESUME

Assume in example (7), the operator failed to assign the "S2" unit (and a default system
assignment does not exist). This would cause the error message shown when an attempt
to 'OPEN' the device was made. and a system query for remedial action. The operator can
then provide the requircd assignment and RESUME operation.

(8) *SI FILE NAME?
"I ASSIGN SI=Ml. TEST
>/RESUME

Likewise. example (8) indicates that a file-oriented 'OPEN' was attempted and the file name
was not specified. either in the user's file control block (FCB) or at the initial assignment.
Again the operator can correct the situation and continue operation.

2.5.2 The IBAtch Command

IBAtch device

The IBAtch command is a shorthand method of reassigning the command input (Cl)
logical unit to a new physicnl device. It performs the same function as an explicit
assignment of the command input unit to the device specified using the / ASsign command.

As in the 1 ASsign command. the device may be any of the two character physical device
symbolic names shown in Appcndix C.

(1) /BATCH CR

In l'x;llnpl(' (1) ab()v(~. the command tells the system that hellceforth. all commands will
be ('xpectl'd to conw 1'\'m11 tlw cllnl 1'('U(\l't'.

(~) /HATCH MO.AI'ROCS

Should til(' batch devicl' be fiIt, ori('ntcd, the fik rHlI1H~ CDn be nppended in the ~lImc manner'
as the 1 ASsig-n command. This is illustrated in example (2).

2- 5

&1&' 1" ME ,: n',,:!ffi'j llrtotft19N":Itr ttl'
*1" eft *' ts t

COMPUTER AUTOMATION. IN<. ~

(3) /BATCH CD
*CD NOT FOUND

As in the / ASsign command, the device is required to be one of the several standard physi
cal device names. Should the name entered not be among- this group, the command will
be rejected as in example (3),

(4) /BATCH MO
*NOT FOUND
>/BATCH MO. APROCS

Failure to provide a filc name when required will cause :In errol' me:.;sage and a system
request for remedial action, as in example (4),

• 2.5.3 The / BEgin Command

/BEgin [address] [parameters] ...

The /BEgin command allows the user to start (or restart) a prvgram already in memory.
Thc program must be in an operational state: loaded or terminated, but not cancelled
01' suspended.

(1) /BEGIN

The command may be given without a starting address, as in example (1). In this case.
the starting address given at load time is used, If no addres3 was available Ilt lond time,
the command will be rejected.

(2) /BEUIN 14AO

As shown in example (2), the command may also be given with a hexadecimal starting f
address. This address must be higher in memory than thc area reserved for OS itself,
or the command is rejected. It has precedence over any load time start address. It is.
however, a one-time address and does not replace the load time address.

(3) /BEGIN 14AO, YES

(4) /BEGIN ,YES

It is possible to pass parameters to the program being started. just as in the /EXecute
command (see Section 2,5,7), If parameters are given. the ata!'t address or a leading
comma (,) is requll'('d. as illustrated in examples (3) and (4).

2-6

o

COMPUTfR AUTOMATION. INC. ~

2.5.4 The /CAncel Command

/CAnccl

This command terminates execution of the current program. It does not save any program
registers and does not leave the program in a restartable state.

A / CAncel command is normally given when the operator determines a program is nut
executing properly and must be terminated. /CAncel causes all I/O to terminate immedia­
tely. and I/O operations will not come to their logical conclusion. Any output file not '.
already closed with the "keep" option will be unsuitable for future use.

A /CAncel will also be performed, under certain circumstances, when the console interrup1
switch is activated (see Console Interrupt description). Also, a /JOb command always
performs a / CAncel.

2.5.5 The /COmment Command

/COmment [text]

This command is commentary only and causes no system activity. The remainder of the
line after the command field is available for whatever comments the user desires, and
will be printed on the command output (CO) device.

2.5.6 The /DAt.e COf!.lmand

/DAte [aa/bb/cc]

This command allows the USCI' to display and/or set the system date, which is then availabl.
to system and user programs and is displayed by certain system commands.; The date
is not automatically advanced at 24: 00 and must be reset daily.

(1) /DATE
*07/04/72

~ The command may be given lNithout a parameter, DS in example (1). In this case, the
user is asking that the current system date be displnycd.

(2) /UATE 9/15/72
l()!1/15/'12
---.-.--~ .. -...

The command may also be given with a parameter. and the system will reset its date to
this vah.ll'. The systC'Tll w ill again display the date to indicate acceptance, as in example (2)

The paranH.!tl'r shown liS "cc" must be exactly 2 alphanumeric characters. In contrast,
"aa" and "bb" may (!:lch be 1 or 2 characters; the system will supply a leading zero if
only one charnctel' is cntpl'cd. The following would be perfectly valid:

.(3) /DATE 1/JA/7G
*Ol/JA/7G

2-7

I
I

I
I

!

COMPUTER AUTOMATION. INC. ~

2.5.7 The IEXecute Command

/EXecute program [. parameter] [,parameter]' ..

This command causes the loading and execution of a program from the System file (SF)
unit. The program must be in absolute or relocatable format. and the proposed load must
not overlap the area reserved for the Operating System itself. .

If a program file contains Loader Type Codes equivalent to any of the assembler (or . .

compiler) facilities listed here. it can not be brought into memory with /F.XEC .. It must
be processed into acceptable format with as: LDR or OS: LNK.

·--Directives which create external references (EXTR. SEXT, REF. SREF. LOAD)
-- - Directives which create named entry points (NAM. SNAM)
--Directives which contribute to a load-time structure (CtlAN)
--Directives which allocate relocatable scratchpad (SREL)
-- References. explicit or implicit, to literal values in scratchpad

(1) / ASSIGN SF=MO
/EXEC TESTl

The program to be loaded is specified in the first field followin~ the /EXecute command.
and becomes the index to the system file (SF) directories. In example (1) magnetic tape
unit 0 is assigned as the system file unit and the system is requested to load and execute
a program located on it called TESTl.

(2) / ASSI GN SF=PR
/EXEC DUMMY

If. however. the system file unit is assigned to a non-direeioriLd device (such as paper
tape) the next program found on that device is loaded. regarclless of its name. Example
(2) indicates that condition. I
With the exception of those as utilities which reside in the transient an'a (as: LDR.
os: DMP. as: DBG), a program loaded with the /EXecute command will overlay (and
destroy) any previous programs resident in memory.

2-8

e

(3) / ASSIGN SF=MO
/EXEC TESTl.4,6

COMPUTER AUTOMATION. INC. ~

The optional parameter field allows any number of arguments to he passed to the program
aft or eXClcution has begun (line length cannot exceed 80 characterB). These Ill'gumonts
W'l' saved by the system and made available to the executing Pl'.ogram by usc of the
SUPV: call. Their order and format will b(~ strictly a function of the executing progTam.

(4) / ASSIGN SF~MO

)EXEC TEST.WEEKLY,3
*TEST NOT FOUND

Should the system be unable to locate the program specified on the "SF" device, the
command will be rejected as shown in example (4) above.

e Should an error occur while attempting to load the requested program, loading will
((,l'minate with one of the following messages:

o

c

ivlEM FULL

BAD TC

I/O ERR

The system has determined there is insufficic;}t memory (scratchpad
or main) available to complete the load.

Invalid code for /EXEC or /LOAD processillg.

An unrecoverable I/O error occurred.

2.5.8 The /JOb Command

/JOb comments

TIlis command indicates to the system that a new sequence of operntions is to begin.
possibly by a new user, and that all system variables are to be restored to their initial
VIti lIes . This command is availablP to simplify the system reassignment after a previolls
step Or us('r. The remaind(~J' of the command line is available for commrntary.

System reassignment includes the reassignment of all logical I/O units to their initial
physical devices (as defined at system generation) and the reEetting of all scratchpad
and main memory core variables to their initial (minimum/maximum) values. This
makes available the maximum system resources to the next job step. In addition, a
/JOb command causes a /CAncel function to be performed. Thl's complption of a/JOb
function may cause a delay of up to three seconds.

Under DOS. the I,JOb command must he g'iven whenever the operator londs a different
rl'lllllvabl(' disk platteI', in order to rcsd the disk directory information mnintained
in memory by the disk file manager.

2-9

0

o

IJOB
*09/14/72
*10: 15:07

(OMPUTtR AUTOMATION. INC. ~

The systom rosponds to the IJOb command with the current date and time on the command
output (CO) device. The current time is also saved for latcr display by the INJoo command
(see Section 2.5.11).

2.5.9 The I LIst Command

ILlst [logical unit name]

This command displays on the command output device (CO) the current assignments
of logical units to physical devices.

0) ILlS'!'
*CI TK
*CO TY
*SI CR
*LO LP
*BI PR --
*BO D1.NAME
*S3
*S4 -----

For each unit, or for one specificd unit. thc first column contllil1s the logical unit name,
and the second contains the name of the physical device to which it is currpntly assigned
and the nssociated file name (if any) .

:2 . 5. J 0 The I LOad Commund

ILOad program

The ILOad command is similar to the IEXecute Command, and has the same T'f~strictions.
After loading. control returns to the system instead of to the lo&ded program. Once
loaded. the program may be entered for execution by using the IBEgin command with
any parameters required by the program.

The ILOad command provides a convenient method of (}(!I>ugging a program with OS: DB(i.
For example, suppose that a user's program, named TEST 1 . resides on di sk unit I .
and requires a eorrcdion 01' "pntch" bdore it can be run. Suppose fut'ther that TESTl
l'(!quires two parameters (PRAMl and PRAM2):

2 10

e
,"--

o

--

/ AS SF=D1
/LO TEST1
lAS SF=DO as: DBG IS ON DO
/EX OS:DBG

COMPUTER AUTOMATION. INC. ~

At this point, TEST 1 has been loaded. and OS: DBG has been entered. Relocation register
o in OS: DBG (RO) is automatically set to the first location of TEST1. Thc correction can
now be made through register RO, after which the following commands mny be entered:

T (to terminate OS: DBG)
/BE ,PRAM1,PRAM2 (to begin TEST!)

Possible load error messages described in the /EXecute command also apply to I LOad.

The LOad command should not be used to load those utility programs whieh re~ide in
the Transient area of memory (OS: LDR, as: DMP, OS: DBG). If this is attempted, the
utility will be loaded, 1mt a subsequent /BEgin command will not be accepted by the
system.

2.5.11 The /NJob Command

/NJob comments

This command is largely documentary and indicates to the system that a logical sequence
of operations has been completed since the previous /JOb or /NJob command. This com­
mand is available to delimit and document steps within the use!"s job stream. The remain­
der of the line is available for commentary.

IJOB
*09/14/72 10: 15: 07
/EXEC TEST
/NJ013
*10: 15:07 10:20:35
/BEGIN
/NJOB
*10:20:35 10:25:07

The system responds to the /NJob command with the last I.JOb or IN.Job time and the
current time on the command output (CO) device.

2.5.12 The IREsume Command -------

IREsume [parameters] ...

The IH.Esumc command allows the operntor to continue (~x('cuti()n of n eOl'e-r(~sident prograin
whieh su::;p(md('d itself or wns su:-;pcnd(!u by the system in response to :1 ('ollsale interrupt.
A pl'ogrnm which WIlS c;lncdkd 01' has tc~rmilllltcd its(!lf is not l'''sumabk.

2 - II

o

e ... bb±!('·Mwi' 't _' ts'!!t!ti.!r!' '$ "wN WW+WH& t 7 \'._ H+' im"f ,'. 4'teiIeiMe'ne/,'Mdtj*'" ¥j iib t bift"jtb,-"¥:'" wimW'i'rt_."'¥\!" &,'1&'i 'w It' t('t'ttttWtf"tW¢·I'1't'W' ''''tt

(OMPUTtR AUTOMATION. INC ~

When a program suspends itself. or a console interrupt occurs, the system r(~stores the
command input (CI) and command output (CO) devices to their initial assignments (gener
ally the operator console). allowing whtltever operator action is required to tak(' pl3ce.
Execution of the /REsume command restores these ass~gnment" to their previous values.

The system responds to the /REsume command by printing thc curt'cnt time.

(1) /RESUME
*14:07: 15

Example (1) illustrates the general casp where a suspended or interrupted pt'ogr:llll is
resumed. Execution will continue at the next log-knl instruction with all prugram registl'l's
and status restored.

(2) /RESUME YES
*14:07: 15

It is possible to pass parameters to the program being resumed, just as in th(~ /EXecute
command. This is illustrated in example (2) and would geneJ'ally apply to a prolr,ram
whieh suspended (SPND:) itself for operator action and/or response.

Note that a /REsume comm;~nd allows the re-entry of parameters that were lost due to
an unexpected request for operator action:

(3) >/EXEC PROGA.1,2
*SI NOT READY
> /RESUME 1,2
*14: 07: 15

Under certain circumstances, a program may not be J'csumablc following suspensioll hy
console interrupt. \lOl'mal OS action upon a consol(' interrupt is to delRY npproxinllltely
three seconds to allow completion of any current I/O. Then the interrupted 10cati<)11 is
examined to see if it is within OS' own nrea of memory. If so. this indicates a malfunctioll
(I/O "hang-up" . etc.), and the program is automatically cancelled. Subscquf'nt ('ntry
of a /REsume command will be rl~jccted with a "CMND RI,:,JECT" messngc. When thh,
happens, a/STatus commalld would show that the prog'l':lIn has been cancelled.

/STatus

This command displays on the command output (CO) device the current program status.
This allows the user to query the system regarding the current program. its status and
limits.

(1) /STATUS
*'1' EST 1 , C 1 - F B • 1400- 1 700 . T . 12: 14: 00

2 ·12

o

o

As shown in example (1), the syst.em responds with the program's name, it.s scratchpacl
and its main memory requirements, its status, and the current time.

(2) /STATUS
*TESTl,Cl-FB,1400-1700,S,l2:14:00
*P=1512,A=0000,X=147C,S=0007

Under some conditions, such as when a program has suspended itself or was interruptud
with the console interrupt, the display will include additional vrogram information.
This display is illustrated in example (2) and shows the contents of tht' program's P,
A, and X registers, and the contents of the Status Word.

The status flag (preceding the time) may be one of the following characters:

C Cancelled
E

L

N

Executing SUPV: Request 5, Get Parameter
Loaded but nut yet executed
No program loaded (e.g., following a /JOB command)
Suspended

T Terminated

2.5.14 The /TIme Command

/Tlme
hh:nun:ss
hh:nun
hh

This command allows the user to display and/or set the sys~em clock, which is then
available to system and user programs and displayed by some system commands. The
system clock operates on a 24 hour day and the time is automatically reset at 24:00
hours (midnight).

(l) /TIME
*13:15:36

The command may be given without a time parameter, as in eXilmrle (1). In this case,
the user is asking that the current time be displilyed.

(2) /TlME 3:19:47
*03:19:47

The command may also
clock to this value.
as in example (2).

be given with a time parameter and the system will reSf"t its
The system will again display the time to indicate acceptance,

The time parameter fj <,Ids may each be supplied as one or two dig i ts, indicati ng 0 to
23 hours, 0 to 59 minutes, and 0 to 59 seconds. Zeroes will be assumed for omitted
minutes or seconds.

2-13

f& t t t '" r1:1 t' nna .. Uf'» "'s g ttt' 1'd$'td'cb"tt#W" '!:if 1'" , rr C $ "ti:#'t tttwettwmtlet'utl#teew,w'ettW'tQ' "5ggtwt 3th'

2.5.15 The /TYpe Command

/TYpe conun~llt.s

The /'l'YTd~ cotl\illilud rf"!store~ the assignment of th0. Command Input un i. t leT) too i tEl
f;taoQard physical devi.;t.', fl:; defined during syst'pm gnnerat ;on. It if; thl' cqu i v llmt.
of an explicit assignmpnt command -- /A..SSIGN CI=xx -- but, provides moY,- r]~xibj lity
because the user need not know what the standard dcvict' for CI happen!; t.· be.

2.6 PROCESSOR STOPS WITHIN as

Certain serious hardware problems will generate proce~;sor 3tops, or "coded hal ts,"
within as. Display of the P Register will show an address too low to fall into the
User Area for the generated system. Display of the I Register will show a value of
:08 for the high-order byte, and one of the following values in the lOW-order byte.

:01 -- CI Unit Open Failure

The system attempted to open the physical device designate~ for Command Input, but
was unsuccessful. Check the device in question, and re-Ioad as.

:02 -- co Unit Open Failure

The Command output Unit could not be opened. Refer to stop :01.

:03 -- Real-Time Clock Inoperable

The Real-Time Clock is either not installed, or not operating correctly. It is not
possible to run as without a clock. This message can occur only when OS is first
loaded.

:04 -- Disk Controller Permanent Error

o The continued operation of the disk controller is uIll'2pendable. Notify Computer
Automation.

:05 -- Disk Controller Permanent Error

Refer to Stop :04.

:12 -- Memory Parity Error

Notify Computer Automation.

7-14

l,:
~

f
" ;

f
i

,'t " t : : Wi jUteM em '·WtMrO'Wn,W' tft'wn II Ie em> erer t 7 '" 0"1 ! t ,. t itt t Ht tat'j:f tun ... 1 'f't

(OMPUTfR AUTOMATION. IN<. ~

2.7 OS ERROR MESSAGES

When the Operating System detects certain errors, the operator is notified with a short
dcscriptivl' message. The Command Input (Cn and Command Output (CO) units arc tcml>O­
rm'il~ I'c-ussigncd to the opcrntor console. If a user progl'am is mcot!uting, it iii ~U8pcnd('d
and its h~u'dwal'c registers and status arc saved.

After the operator has taken the required corrective action. no!'mal system operation
may be continued with the approprintc commands. If a user p-rogram was suspendC'd.
and it is possible to continue with its execution, a / RESUME (!omm3nd may be used.

The messages described here arc issued by the resident Operating System itself. MesAages
peculiar to each System Utility Program are described in the individual program write-ups.
Each messagc is shown as it appears on the CO unit, with its cam~e and possible corrective
action.

CMND REJECT

CAUSE: OS command statement just entered on CI is not valid. Either the command is
not recognizable, or the operands are wrong, or the command cannot be processed in
the present context.
ACTION: Correct the statement and re-enter it.

xx NOT READY

-.....--- CAUSE: A program is attempting to access physical device xx, but the device is not
ready for operation. For example, a device is off-line, or a disk. tape. or cassettc does
not have an OS volume label.

'-

ACTION: Correct the problem and /RESUME.

xx NOT .FOUND

CAUSE: Physical device xx or logical device xx is being referenced, but does not exist.
ACTION: If the reference is within a /BATCH or / ASSIGN statement, handle as a
CMND REJECT message. If the reference is internal to a program -- for example, an
improperly initialized FCB -- /CANCEL the program.

xx UNASSIGNED

CAUSE: Logical unit xx is being referenced, but has not been assigned.
ACTION: Enter an appropriate / ASSIGN, then /RESUME.

flname NOT FOUND

CAUSE: A fik-orientcd OPEN was attempted for the file with the name shown. but it
could not be found. The file name was supplied either in an / ASSIGN command, or in
tIlt' program's FCB.
ACTION: Either correct the / ASSI(~N stntemcnt and r(~-cnter it. then /HESUME; or /CANCEI
the program.

2-15

j?"WrW t,fttit'tl' '-ht""W.'I\'tdtje ,"Mf'a*""'t' "WI' "WH') tttIHMtnf ' .. !!tt"'HWkt'

0.

COMPUTER AUTOMATION. INC. §;

xx ILLEGAL OPEN

CAUSE: A program has made a request for an illegal operation on physical device xx
during an OPEN. (An illegal operation in an 10: request does not cause the message,
but takes an Ell'l'Q.l' return within the program.)
ACTION: ICANCEL the program.

flnameDUPLICATE FILE

CAUSE: A program is attempting to OPEN for WRITE a file wHh the name shown. but
this name is already in use for an existing file on the same device.
ACTION: Either use OS: CPY to delete the existing file, and re-run the program; or change
the I ASSI,GN command or FCB which supplied the duplicate name.

xx MULT WRITE ERROR •
CAUSE: A program is attempting to OPEN multiple output files on the single devic;e xx,
which does not allow this technique. The deVice is probably a tape assigned where a
disk was intended by the programmer.
ACTION: ICANCEL the program. Rc-run with different assignments, or with the pro­
gramming technique changed.

xx WRITE PROTECT

CAUSE: xx is a disk, and no space remains for a WRITE operation requested by a program .
. ACTION: ICANCEL the program.

CAUSE: xx is a cassette drive, and the address track on the cassette is still write-enabled.
ACTION: Remove Tab A. and ./RESUME.
CAUSE: xx is a tape with no write-enable ring, or a disk with the protect light on. or,
a cassette with no Tab B.
ACTION: Correct the problem, and IRESUME.

xx DATA ERROR

CAUSE: During data transfer. a hardware error occurred on physical device xx which
could not be corrected by normal OS retry procedures.
ACTION: Run a device diagnostic program if necessary to correct the problem.

xx HDWR ERROR

CAUSE: During a non-transfer operation, a hardware error occurred on device xx which
could not be corrected by normal OS retry procedures.
ACTION: Run a device diagnostic program, if necessary. to correct the problem.

1/0 ERR

CAUSE: An unrecoverable 1/0 error occurred during system operation. probably on
SF, CI, or CO. This message will generally follow another error message.
ACTION: Correct the problem, as described for the message accompanying this one.

2-16

I

',:

i

o

o

yip,,,!

COMPUTER AUTOMATION. INC. ~

LOAD ERR

CAUSE: A /LOAD or /EXEC command requested a load of a program from SF which would
have exceeded memory. or violated the areas of memory reserved for the system.
ACTION: Cneok program being requested.

BAD TC

CAUSE: A /LOAD or /EXECcommand requested a load of a r,rogram from SF. but a Type
Code in the program file is not valid for processing by the resident loader.
ACTION: Check the program file. The program probably needs to be processed thru
as: LNK.

POWER-FAIL

CAUSE: Execution has passed thru location: 0000, probably because of a Power Fail/
Restart sequence. A SPND: call is automatically simulated by the system.
ACTION: /CANCEL the program and re-run it.

2 --17

o

o

, 11If' 'ri1nHfWtr t'M 't.'WtmwbfW ..

COWUTtR AUTOMAT1OH.INC. ~

2.8 COMMAND EXAMPLES

These examples will illustrate a typical sequence of commands and responses. from
system load to job completion. Console messages from OS to the user are underlined.

1. Once the resident components of OS are loaded into memory, and execution begins.
the system displays its name and release number, a dummy time, and a dummy
date. The operator may enter the actual time and date. or immediately supply the
first job.

ALPHA/LSI as (DO)
*00:00:00
*MM/DD/YY
>/TI 9: 30: 00
*09:30:00
>/DA 9/24/72
*09/24/72

2. Request an assembly of a program with source on cards, listing on the line printer,
and a file device for intermediate storage.

>/JOB ASSEMBLY LOAD AND EXEC
*09:31:00,09/24/72
>/ ASSIGN SI=CR, LO=LP ,BO=PP ,SS=M1
'/EXEC OS: ASM ,NCORE

3. Request the system to load the program punched above, using the library on unit
MO, and execute it.

>/ ASSIGN Br=PR, LI=MO. LIBRY
> / EXE C as: LD R , LL , TE
>/BEGIN ,DAILY. 3

4. After the job has completed, log the total job time for this user.

">/NJOB
*09:31:00
>

09: 47: 12

2 I H

I

..

o

o

t

COMPUT£R AUTOMATION. INC. E3..EJ

Section 3

SYSTEM UTILITY PROGRAMS

3.1 INTRODUCTION

The Operating System requires a minimum of dedicated core storage. Many useful
functions are performed by geparate System Utility Programs. which arc invoked by
a normal jEXEC command as the user requires them.

Most utilities operate in the same way as user programs. They run in the User Area.
starting just above the Operating System itself. and extending up to the beginning of the
Transient Area in high core. Each program requires certain assignments and parameters.
During execution. the entire resources of the system arc dedicated to the program .

One System Utility Program. OS: LDR. is executed in the Transient Area to load a user
program into the User Area. Its execution is terminated before the user program receives
control of the system.

Two special debugging tools, OS: DBG and OS: DMP. are executed in the Transient
Area while a user program is resident in the User Area. This allows them to access
the user program without overlaying any of the user's own core storage.

3.1-1

__ . ComputerAutomation ~

o

.."

'"

3.2 THE OPERATING SYSTEM ASSf'MBLERS

Three assemblers are available unqer as. They accept a uniform Source Language;
the specifications are published separately in as Assembler Languagc Reference Manual
(96552-00).

~ACR02 generates objcct code which is intended for an LSI-2, LSI-l, or ALPHA-16.
To handle a useful number of symbols and Macro Definitions, more than 16K of memory
is ordinarily required.

as: ASM is a simplified version of MACR02, intended for as configurations with a memory
size of 16K or less. The most substantial difference between as: ASM and MACR02 is
the former program's lack of a Macro Facility. Other limitations are described in the
Language Reference Manual.

MACR03 is a variant of MACR02. The only machine instructions recognized are those
meaningful on an LSI-3/05. The generated object code is usable only on an LSI-3/05,
usually after processing by the OS Link Editor.

3.2.1 Logical Unit Requirements

SI (Source Input)

Required. Typically a card reader, or a disk file maintained with as: SFE or as: EDT.
Contains any number of separate Source Programs, each of which must terminate with
its own END statement. The Source Input File as u whole must terminate with an End­
of-File -- for example, with /* on a card reader.

La (List Output)

Required unless all listing has been suppressed with an as parameter. Must be Ii printer;
a magnetic dcvice is not acceptable .

BO (Binary Output)

Required unless all object code output has been suppressed with an as parameter.
Typically a magnetic device, so the file can be turned around to the link editor. If assigned
to a paper tape punch. the placement orEnd-of-File records may be controlled with an
as parameter ..

~U~ystem Scratch)

Required for MACR02 andMACR03. Not required by as: ASM unless as parameter NC
-..- is used. Must be a magnetic device, typically n disk. A normal termination of MACR02

01' MACR03 will closo and delete the file.

3.2-1

"'I

- K "t'n VMi $' eM t ,ttnt., '1' "@ iI:It" 'tin uK' 'ts MI,-X' bM ft • t· d t MtU'tiWt.zwww _'M",

o

o

-.....e
SA (Source Alternate)

Not used by OS: ASM. Required for MACR02 or MACR03 only if Definition File processing
has been requestod with an OS parameter. If SA is assigned to the same card reader
or paper tapo reuaer as SI, the records for SA must come first. and must have their own·
End-of- File.

3.2.2 Parameters Available Only for MACR02 or MACR03
I

LL

Load and List the Definition File assigned to SA. The format and device requirements
of the file are identical to those of a Source Input File. SA is opened. the entire contents
are assembled. and SA is closed and kept. No Binary Output is ever generated. Every

• definition. symbol, and value established during the SA processing is saved by the
assembler. and is considered to be predefined during the processing of the Source Input
File.

If this parameter is used at all. it must be the first parameter.

LN

Load with No List. Same effect as LL, except that no listing is produced during SA pro­
cessing. If this parameter is used at all, it must be the first parameter.

FR

Flag Range Literals. Each Roure(' statement which requires an indirect link thru Scratehpad ,.
has a Warning Flag "W" on the assembly listing. This parameter is only ne!'ded if the ..
LPOOL directive is never used in a Source Program. The presence of at lea~t on~ LPOOL
automatically flags all statements which still need Scratchpad Literals.

3.2.3 Parameters Available Only for as: ASM

NC

Not Core Only. Forces the assembler to copy each Source Program to the SS file before
processing it. even though enough memory may be available to save the whole program
without using S8. The result is that S8 contains a copy of SI when the assembler runs
to normal termination, if these conditions are met:

1.
?
oJ •

Slis 110t a named file on a magnetic device.
SS is assigned to a named file on u magnetic device.

'I'll!' point of the NC 1->:lI·III1Wtl'I> is that the SOUl'CO Progralll need not he put thru a ~eparat('
'·'111 of os: CPYto c,·pati' ;1 PCl'llllllwnl 1I:IIlll'd fill-.

J.~-2

o

,!

P2

Pass 2 Again. This parameter is acceptable only if thc assembler has run to normal termina­
tion, and a /BEGIN command has been used to restart it. The P2 pa.rameter may be followed
by the parameters NL, EL, and NB as needed, on the IBEGIN statement.

The result of repeating Pass 2 is that 'another copy is produced of the asscmbly listing,
the object code, or both, corresponding to the last Source Program assembled. This
is somewhat faster than re-running the entire assembly from SI.

FR

Flag Range Literals. Each soUrce statement which requires an indirect link thru Scratchpad
has an Error Flag "A" on the assembly listing. The object code for the statement is still
corrcct.

3.2.4 Parameters Available for All OS Assemblers

NL

No List Output. Pt:events the assembler from opening or using LO. The assembler language
has a directive called LIST to suppress various types of printed output more selectively.

EL

Error List Only. Nothing is printed except a list of each Source Program's Errors and
Warning's.

NB

No Binary Output. Prevents the assembler from opening or using BO.

LI

Library Format on Binary Output. This parameter is superfluous if BO is assigned to
a magnetic device. If BO is assigned to a paper tape punch, the assembler ordinarily
separates each Object Program from the next with an End-of-File. The LI parameter forces
the paper tape into the same Library Format used for BO on a magnetic device -- no EOF
betwl'cn Objcct Programs. one EOF after the very last Object Program.

3.2-3

f
~ I

" f~
,."
'~

W" 'it '_dtittt a "j t b f ""b' "rietW"'""t'"$W' ,"j"tt t "'t'j"tt1!tt t"ktt t 'm#"#" Nt pr

3.2.5 Messages on Command Output Unit

name (rr)

CAUSE: Assembly has started. Revision level of the program is rr.
ACTION: None.

INVALID CMND

CAUSE: An incorrect parameter has been supplied.

wMe

ACTION: Enter a IRESUME command, supplying all of the correct parameters.

PAUSE

CAUSE: Input ended with an Up-Arrow (t). rather than an EOF.
ACTION: Ready next segment of the Source Program, and enter /RESUME.

NO END

CAUSE: Software EOF before final END statement.
ACTION: Supply an END statement and another EOF.~ then /RESUME.
CAUSE: Software EOF after MACRO, but before ENDM was found.
ACTION: Supply an ENDM and another EOF, then /RESUME.

MEM OVERFLOW

CAUSE: The memory shared by symbols. definitions, and literals is exhausted. No
more LPOOL entries are made. Out-of-range references generate Seratehpad links and (:
"W,,· flags. Normal assembly continues.
ACTION: None, unless the programmer chooses to /CANCEL tr.e assembly.

FEED ME

CAUSE: OS: ASM needs the current Source Program for a second pass. The NC parameter
WlIS not used. The current Source Program is not available for a second pass on SS.
it is too large- to have been saved in memory. and the assembler cannot simply re-read
it from SI because of the device type involved.
ACTION: Reposition the SI file to the start of the last Source Program read. then /RESUME.

3.2-4

6"""

.,

t M#ffl'WMMn'b±WJt¥!M'ttHW r '. WMMt_

COMPUTER AUTOMATION. INC. ~

3.3 as: LDR - THE OPERATING SYSTEM LOADER

The OS Loader Utility (OS: LDR) lo~ds and links together one or more object programs
into a single memory-resident program. The resultant program may then be executed.
or output using the OS Dump Utility (OS: DMP).

The as: LDR utility will accept all object programs generated by. the BETA assemblers.
and all object programs generated by the as assembler whieh do not contain references
to external labels with an offset.

OS: LDR provides the capability of dynamic peripheral device assignment through the oper­
ating system. Depending on the options requested. the loader will require the availability
and assignment of the following logical units prior to initiation of the loading process.

1. The SF (system file) unit is required by the system. It is here that the system
expects to find the loader program itself.

2. The CIo (command input) unit is required for input of loader option requests.

o 3. The CO (command output) unit is required for printing loader comments and error
messages.

0'--0

NOTE

The SF. CI and CO units were required prior to this step
and generally will not require re-assignment Ht this time.

4. The LO (listing output) unit is required for printing the loader listing. The LO dcvice
must not be bulk storage.

5. The BI (binary input) unit is required for input of the main (first) object file.

6. The LI (library input) unit is required for input of library files requested during
the load process. This unit is not required if library files are not to be processed.

The as: LDR utility resides on the System File (SF) and is invoked with the form:

/EX OS: LDR [.option J ...
NOTE

The OS: LDR utility is object relocatable and should be added
to the System File via the OS: CPY utility. It must be named
OS: LDR on the System File directory; no other name is acceptable.

When loaded from the System File, as: LDR resides in the transient areu (high memory)
and assumes availability of all memory and scratchpad for load and link processes.
Any references to as subroutine entrics (e.go .. SUPV: , OPEN: • 10:) are automatically
linked to the resident OS. Rclocntnble input is offs('t and stored eonsecutively directly
behind as (main mcmory and/or scratchpad relocatable). The defAult store location
(biascs to REL 0 progt'ams) are:

3.3-1

• Main Memory (MM)

• Scratchpad Literals (SP)

• Scratchpad Relocatable (SR)

o

I--

:FB

i

High Memory

"'b' " .I' "{" t' 'M' wH' . 'illli"'"' 'k

(OWUTER AUTOMATION. IN<. ~

Flrst available location in main memory following
aS. continuing toward high memory.

Location: FB, continuing toward ; 00.

First available location in low .scratchpad
continuing toward : FB .

OS Interrupt Locations

Scratchpad ReI.

Literals

as

Loaded/Linked Program

Loader Symbol Table

---- --------

as: LDR

I

Scratchpad

as

User Area
Main l\1emory

Transient Area

-_._--- - ------

3. :3-2

,!
I

I
!

~I
I

•

o

o

COMPUTER AUTOMATION. INC. ~

OPTIONS

1'h0 user may request that the loader pcrform certain additional or non-stnndard opcrations
during the loading process. These "options" are entercd AH parllmeterR on the /EXEC
command line or in response to a query from OS: LDR. in the order rcquo~tBd und ~oparf\tcd
by commas. Each parameter is a single word of two or more characters; tha'MM I SP Ilod
SR options must be followed by an equal (=) sign and a hexadecimal number. with no
imbedded blanks.

After as: LDR is loaded, it processes the command options. as entered. from left to right.
The MM, NList, SP, List and SR options are processed as they are encountered. The
first EXecute. TErminate. ULoad or LLoad option encountcred on the /EXEC command
line first causes loading of the BI file to commence and then processing of the command.
If none of these options are encountered, loading of the BI file begins when the end of
the /EXEC command line is encountered.

After a command line has been processed, if a TErminate or EXecute option has not been
encountered, OS: LDR will query the operator for more options.

When an invalid option is detected as: LDR will print the message 'INVALID CMND' and
suspend operation. The operator should issue the proper option and any following options
on the command line u5ing the /REsume command.

The options available are:

MM = XXXX

SP = XX

SR = XX

LLoad

ULoad

NList

Defines the next available main memory bias to be used as hex
address XXXX. The command may be entered to load programs
in areas other than sequentially directly behind as .

Defines the next available scratchpad location to be used for literals.
The SP option may only be entered befGre loading of the Bl file begins.

Defines the. next available relocatable scratchpad location to be used.
as: LDR will assign a value if this is not entered. The default reloca­
table scratch pad location is acquired from the system (location LOBP
in OS ROOT) and is dependent upon the iower base page require­
ments of the system.

Causes library (relative) loading of next LI file. This can be over­
ridden for a single file at a time by use of the ULoad option.

Unconditionally loads from the' LI' (Library Input) file until an end­
of-file is encountered, then resumes the library load mode.

Suppresses listing loader information. This command will stay
in effect until an LI option is entered, but will be temporarily over­
ridden by a MAp command.

3.3-3

LIst

MAp

TErminate

EXecute

MEMORY MAP

COMPUTER AUTOMAT1OH. IN<. ~

List loader information on LO (List Output device) whenever an
end-of-file is detected on input from BI or LI. This option overrides
the N L option.

Causes the generation of a full load map on LO device.

Terminates loading and returns control to the system. The command
may be entered any time but will not take effect until after thc BI
file has been loaded.

Executes the loaded program (s) if there was a transfer address ~
otherwise. the option is rejected. The command may be entered
at any time. but will not bc processed until after the HI file has
been loaded.

A full or partial memory map is generated on the LO device under the following conditions:

1. A list of unresolved primary symbols is generated along with memory usage whenever
an end-of-file is encountered from the BI or LI file.

2. A list of defined primary symbols and thcir definition addresses/values are generated
along with memory usage whenever an end-of-Jile is encountered on BI or LI and
there are no unresolved primary references.

3. The MAp option causes the listing of all defined symbols (see 2 above) :md undefined
symbols.

4. A termination error will cause the generation of a full memory map (sce 3 above) .

Conditions 1 and 2 can be suppressed by the NList optiun.

The memory usage list consists of: main memory (MM) used. scratchpad literal memory
(SP) used. scratchpad relocatable memory (SR) used and the last execution address
(EX) processed (all memory usco addresses are inclusive). If the specified memory
(MM. SP. SR) or execution address (EX) was not used. the applicable information is
nut listed. Below is an example of a memory usage map.

Ml\I
SR
sr
EX

le9B
0060
OOFS
lCA3

lCA7
006E
OOFB

(inclusive main memory le9B to lCA7 used)
(inclusive relocntable scratchpad 60 to GE used)
(inclusive literal area FB to FB used)
(last effective execution address)

3.3-4

% '@tbebe' '"II

o

COMPUTER AUTOMATION,INC, ~

TERMINATION

as: LDR terminates the load-link proceos when an EXecute or TErminatl~ option is encoun­
tered or a termination error occurs. The termination procedure for EXecute nnd TErminnte
is to close the LO device, transfer pertinent loader informntion to OS (sne /STATl1S com'
mnnd for OS) and transfer control to OS (TErminate option) 01' tho Cl'('ilt'~d prc)grnm
(EXecute option) .

A termination error is processed ~is a TErminate command.

TERMINATION ERROR

During the loading process, conditions may occur which will cause the loader to abort,
These conditions will cause the program to issue an error message, print a full memory
map and terminate.

The termination error message is listed on the CO ~evice in the form' *LDR ER n' , where
n is the applicable error number listed below,

The list of possible errors and possible solutions includes:

Error Number

1

2

3

4

5

Error

Literal scratchpad overflow.

Invalid loader type code detected.

1(0 error

A program has attempted to store
into OS or a relocatable program
in scratchpad has run into OS
scratchpad usage,

The OS: LDR (symbol tablc) and
the loading program have collided.

EXAMPLES OF OS: LDR OPERATION

Possible Solution

Review use of literals.

Use OS: LNK to process all
type codes.

Retry operation

fleview use of memory

Use OS: LNK to create linked
programs.

Example (1) is a typical device assignment to load one program from the BI file and termi­
nate the load process.

(1) '/ASSIGN BI=PR,LO=LP
"lEX as: LDH. TE

:L 3-5

Example (2) illustrates: (a) the loading of the main program, (b) the loading of a library
;r" file, and (c) the execution of the loaded program. i. '

o

(2) >/ ASSIGN BI=DO. TEST ,LI=DO .MATH ,LO=LP
>/EX OS: LDR. LL, TE

Example (3) illustrates the loading of a main program and three library files. The default
memory options have also been overridden.

(3) >/ASSIGN BI=DO.MAIN,LI=DO.LlBl
>/EX' OS: LDR ,NL ,MM=3000 ,SP=FO ,SR=EO ,LL
? / ASSIGN LI=DO. LIB 2
? LL
? / ASSIGN LI=DO. LIB 3
? LL,MA,TE
>

:l . :l- (i

I

~'. ,

o

o

ComputerAutomation ~

3.4 OS:LNK - THE OPERATING SYSTEM I1INK EDITOR UTILITY

The OS Link Editor Utility (OS:LNK) links together one or more object programs into
a single module. The resultant module is generated to an output file, in an object
format. This file may then be loaded into memory for execution, JJsj.ng as, tn,f;l

:r..AMl'lDA loade:r, BLD, or AutoLoad.

The OS:LNK utility will accept as input all object programs generated by the F
FORTRAN IV Compiler or any of the ALPHA series assemblers.

OS:LNK can link object programs whose memory requirements differ from those of the
host computer, both in total memory size and in specific memory allocations.

OS:LNK allows selective linking of one or more library files, linking only those
programs or subprograms requested by previous programs.

OS:LNK normally generates an absolute object program which, when loaded with the
as/EX command, will reside directly behind os.

OS:LNK will optionally offset the relocatable input by a requested bias (positive or
negative) and produce offset absolute or relocatable binary output. Note, however,
that absolute input always yields non-offset absolute output.

as:LNK provides the capability of dynamic peripheral device assignment through the
operating system. Depending on the options requested, the link editor will require
the availability and assignment of the following logical units prior to initiation
of the process.

1. The SF (system file) unit is required by the system. It is here that the
system expects to find as:LNK itself.

2. The CI (command input) unit is required for input of OS:LNK option requests.

3. The CO (command output) unit is required for printing OS:LNK comments and error
messages.

4.

5.

6.

NOTE

The SF, CI and CO units were required prior to this step and gen­
erally will not require re-assignment at this time.

The LO (listing output) unit is the device on which the Link Map and/or link
errors are published. Assignment is required unless the NL option is speci­
fied.

The BI (binary input) file contains the main lJrogram (and subprograms) which
are to be linked, and must be assigned prior to execution of OS:LNK.

The LI (library input) file contains any library subprograms which may be
referenced by the programs previously linked from BI or LI. Assignment is
required whenever BI is not self-contained and/or more linking is to take
place.

3.4-1

7. The BO (binary output) file is required by OS:LNK; it contains the binary

module created by the OS:LNK process and must ~ assigned prior to execution of
OS:LNK, unless the NB option is specified.

The OS:LNK utility resides on the system file (SF) apd is invoked with a call pf thft
form:

?lEX OS: LNK [, options] •••

OS:LNK assumes operation will be in the host OS compllter and assumes available
scratchpad and main memory limits based upon this. Any references to OS subroutine
entries (i.e., OPEN:, 10:, SUPV:, etc.) are automatically linked to the host OS.
Relocatable input is offset and converted to absolute so that it will load directly
behind OS.

The user may request that the link editor perform certain additional functions, or I
that non-standard values be used. These options are of two types. One type may be

-issued only when invoking OS:LNK and one type may be issued when invoking OS:LNK or
in response to a query from OS:LNK. The options are entered as parameters and are
separated by commas. Each parameter is a single word of tWo or more characters of
which only the first two characters are required. Imbedded blanks are not allowed.

If the operator enters an invalid option when invoking the OS:LNK utility or in
response to a query, the message "INVALID CMND XX" (where XX is the option) will be
listed on the CO device and OS:LNK will suspend operation. The operator may reissue
the correct option by entering "/RE option (,option) ••• ". Note that the option
listed in the message and all that followed it must be re-entered.

The following optional parameters may be appended only when invoking the OS:LNK
utflity. If any are entered in response to a query they are rejected as invalid
conmands.

NH
No host The NH option indicates that the generated program is

not to operate under OS in the host computer. Therefore, OS:LNK
does not generate linkages to the host OS and assumes available
limits of :FD towards :00 for scratchpad literals, a bias of :00
and a high limit of :FD for relocatable scratchpad, main memory
limits of :00 to :7FFF; and a bias of :0000 for relocatable
programs. If the starting location for scratchpad literals
(:FD) or relocation (:00) is not desired, the SP or SR options
shou1d be invoked. If a main memory bias of other than :0000
and/or conversion to absolute is desired, the RL or AB options
should.be invoked.

If the NH option is entered it must come before the options SP,
SR, RL, and AB. If NH is entered after these options the mes­
sage "NH OUT OF ORDER" will be listed on the CO device and
OS:LNK will suspend. The operator should re-enter all the
options in the correct order by entering "/RE option (,option); •. ".
Any options not re-entered are set to their normal default
conditions.

3.4-2

:trl"" &jim ("fH"" 1M¥!!!t4Ij' #' f' "'tf it#"";i:'''t''H:tI'M'.t'Mw* "'r1Nged" w"m ' = WW1!t:'W'

e,...-----------
'--'

0" "

T3
Type LSI-3/05
Program This parameter indicates that all of the Object Programs being

processed are intended for execution only on an LSI-3/05. The
TJ parameter is similar to the NH option, and on!y one of tne
two may be used during a single link-edit run. The default
memory allocations are:

Scratchpad Literals
Scratchpad Indexing
Scratchpad Relocatable
Main Memory
Relocatable

:00 thru:7E
:00 thru : 3F
Bias:OO, Limit:7E
: 00 thru: 7FFF
Bia5:0000

If any of these allocations are unacceptable, the parameters SP, SR, SX, AB, or RL
may be used to override the default values. None of the parameters just mentioned
may be entered before the TJ parameter itself, otherwise OS:LNK will suspend with
the message "TJ OUT OF ORDER." The operator must then re-enter all of the parameters
in the proper order, using the OS command /RESUME. Any parameters not re-entered
are set to their default values.

SP == xx
Scratchpad

NB
No binary

The link editor will normally start assigning scratchpad literal
locations as needed, starting at location :FB for the host OS
and :FD for non-host, and progressing towards location zero.
The user may override the default location by entering the
desired location as a two-digit positive hexadecimal value. The
value also then becomes the high limit for scratchpad programs.

This option suppresses the binary output for the entire link
edit process.

The following optional parameters may be appended when invoking the OS:LNK utility
or may be entered in response to a query from OS:LNK:

AB == xxxx
Absolute offset

RL .= xxxx
Relocatable offset

SR == xx
Scratchpad Re­
locatable offset

This option causes the generated program to be in absolute
binary format, and all relocatable input is offset by the bias
specified (where xxxx may be any positive or negative hexa­
decimal value).

This option causes the relocatable input to be offset by the
bias specified (xxxx) and then output in relocatable format
(xxxx may be any positive or negative hexadecimal value).

This option causes the scratchpad relocatable input to be offset
by the bias specified (where xx is a positive or negative hexa­
decimal number). This does not alter the low limit for scratch­
pad literals.

3.4-3

1
·-1

r. 'Cr'Mi

SX = xx
Scratchpad
Indexing

XA = xxxx
Absolute transfer
Address

XR = xxxx
~locatable trans­
fer address

XS = xxx x
Relocatable
Scratchpad trans­
fer address

NL
No list

LI
List

OMA
Memory Map

LL
Library link

This option assigns scratchpad indexing locations for LSI~3/05
programs which require indirect indexing pointers. '~is option
must be used in conjunction with T3. Default starting addres~
is :00. The allocated scratchpad locations progress toward
location t3F. The user may override the defau1t by entering the
desired starting address as a two-digit positive hexadecimal
value. This value then becomes the low limit for scratchpad
index pointers.

This option overrides the normal transfer address and instead
uses the absolute transfer address specified (xxxx).

This option is the same as XA except the specified address is
offset by the current relocation bias.

This is the same as XR except the current scratchpad relocation
bias is used. If the transfer address specified is negative
(after any offset is applied) then no transfer address is gen­
erated.

This option suppresses listing of memory map information (e.g.,
program and CQnBnOn addresses, unresolved references, etc.),
except error messages, for the remainder of the link edit pro­
cess, or until LI is entered.

This option re-enables the normal listing function, but does not
produce a listing at this time (see MA).

Generate memory map. Present link information is listed on the
W device. This option allows the user to review link informa­
tion before link process is completed. The MA option temporar­
ily overrides the NL option.

Begin or resume library link operation with selective linking of
currently assigned Library (LI) file. This command is required
when Library programs are required to complete the link process,
and is generally preceded by an assignment of an LI file.

3.4-4

I

fi

o

o

'·1

I
i

hI e".¥ Wet 'rtWri "' wi Ir€f lit t "nU t" ,@,w.,m"W we me t • It'f °CM

UL
Unconditional
link This option causes all programs located on the currently assigned

Library (LI) file to be unconditionally linked. The selective
link mode may be resumed after readin<] of the curJ'ently A •• tCined
LI file is completed.

TE
Terminate Terminates operation of the OS:LNK utility. Causes output files

to be completed and closed, a memory map to be listed and control
to be returned to OS. TE must be entered last.

After OS:LNK has been loaded, it will:

1. Process any optional parameters appended to the /EX OS:LNK command up to but
not including the first LL, UL, or TE parameter (if they were entered).

2.

3.

Unconditionally link all programs located on the Binary Input (BI) file.

Any outstanding parameters are then processed. If UL or LL is encountered,
programs on the Library Input (LI) device ace unconditionally linked (UL) or
conditionally linked (LL) as required.

'4. At end-of-file on 'BI' or 'LI' if unresolved primary external references exist
and no LL, UL or TE parameter is encountered, primary external references are
listed on the 'LO' device (unless suppressed by NL) and a request for more
parameters is made. 'LI' may then be assigned and/or the next parameter
entered.

5. This process continues from step 3 until a TE option is entered.

6. When the TE parameter is encountered all references to Blank Common are re­
solved and output. Blank. Common is defined (if referenced) with the largest
size referenced, as the next available higher locations. The Scratchpad Literal
Pool is then output and the 'BO' device closed. A memory map is listed on the
'LO' device (unless suppressed). All files are closed and control is returned
to OS.

Secondary Reference Processing

If, after each program or subprogram is processed, unresolved secondary references
exist, a primary reference is created by OS:LNK to a user-supplied error routine
named SRF:ER. If no unresolved secondary references remain, the created reference
to SRF:ER (if any) is deleted. Thus SRF:ER mayor may not appear on each memory map
(under MISSING) as the need for SRF:ER changes.

Since the need for SRF:ER may not be known until the last library program
SRF:ER should be the last program on the last'LI' file to be processed.
will not be needed if no secondary references exist in the programs being

is linked,
SRF:ER
linked.

When the TE parameter is encountered, if a program entry point named SRF:ER is
defined, all unresolved secondary references are linked to it. All executable ref­
erences (i.e., LDA X but not DATA X) to SRF:ER are converted to JST SRF:ER instruc­
tions.

3.4-5

'/
d
·~·I ,
I

, I
~ I

Error Handling/Recovery

Termination errors cause an error message to be written on the 'LO' and 'CO' devices,
a memory map to be generated, and control returned to os. The messages and their
meanings are as follows:

MESSAGE

*BAO TYPE CODE

*TABLES FULL

*LINK ERROR n

ERROR CONDITION

Invalid type code detected. The user should restart
the link-edit process and/or regenerate the object
programs in which the bad type code was detected.

Link edit table overflow. Start over with more memory
or do less segmenting of subprograms.

System error has occurred. The user should inform
Computer Automation of the error with as detailed
information of the circumstances as possible, in­
cluding the error number n.

*INVALID CMND XX Legal parameter limits violated. Reissue correct
option by entering /RE option (,option) .•.

I/O Errors

*1/0 ERR

*INPUT CK

The operating system has detected an irrecoverable I/O
error. OS:LNK will terminate operation.

An input failure (e.g., high speed reader not ready)
has been detected. The operator should ready the
input device and enter /RESUME to continue the opera­
tion, or cancel (/CA) OS:LNK.

Errors in Input Programs

The following error messages are listed on the 'LO' device as the error occurs. The
messages are for information only. OS:LNK continues normal operation after the
errors are listed.

*COMMON SIZE CONFLICT, IGNORED, Program Name, Common Name, Size as first defined,
size as re-defined

A labeled common with an incompatible size has been detected.
The common area is allocated with the size as first defined and
if re-defined with a smaller size, no problems should occur. If
re-defined with a larger size, references to that common past
the end of the allocated area will produce invalid results.

*SCRATCHPAD LITERAL OVERFLOW, IGNORED. Program Name

The Scratchpad literal pool has reached location :00. Additional
literals will not be assigned, and reference·s to them will
reference location :00.

3.4-6

,:1
'I

'\·"1

,1:"-
;: ,

[I ~,"
'" ~ i
,I'

; , N ,,: 15 '" ,! .1 ttt

o

o

t UtUtS'" "t:'enutr;'· 1'*t' nty' 'O'&"'oom ''Pt ettwttrt'# tid sen,ttt.tywettt,wS'.m NhDi b'eu'

*SCRATCHPAD USAGE CONFLICT, IGNORED. Program Name, Scratchpad Location

Input data has been encountered that would be placed in a
Scratchpad location that is already occupied by a literal or
other input data. If a literal has been assigned to this loca­
tion the literal has priority; otherwise the last data input
will be placed in the location. Literals will never be assigned
to an occupied location but will instead be assigned to the next
lower unused location, so literal assignment will never cause
this message to be listed.

*SCRATCHPAD PROGRAM OVERFLOW, IGNORED. Program Name

A program in Scratchpad has passed the high limit of scratchpad
(:FB normally, :FD for NH or xx if SP=XX was entered).

*SCRATCHPAD PROGRAM/LITERAL OVERLAP, IGNORED. Program Name, Scratchpad Location

The scratchpad literal pool, working down from the high limit of
scratchpad, and a program, working up from the bottom of scratch­
pad, have passed each other at the location listed.

*MEMORY OVERFLOW, IGNORED. Program Name

The program has gone past the end of memory (:7FFF) and wrapped
around to location :0000.

NOT LSI n OBJECT Program Name

Operation Examples

An Object Program on BI or LI is not compatible with the machine
for which the output Program File is intended. Either an LSI-
3/05 Object PrOgram was found, and the T3 parameter is not in
control, or T3 is being used, but the Object Program is not
acceptable for an LSI-3/05. In either case, the first Primary
Entry Name in the Object Program is given, the input is skipped,
and processing continues.

(1) ~AS BI=PR,BO=DO.OS:ASM
~EX OS :LNK,TE

Example (1) illustrates using OS:LNK to put the us assembler on the system file (DO)
instead of doing it with 05:LDR and OS:DMP.

(2) ~AS BI=PR,LI=PR,BO=PP,LO=LP
?lEX OS:LNK,NH,AB=lOO
OS:LNK (AO)
lLL,TE
OS:LNK END

Example (2) is a normal series of commands to link a relocatable main program (on
paper tape) to one or more library subprograms (also on paper tape). The output
generated is an absolute program starting at location :100 and is not to operate
under OS. When invoked OS:LNK processes the main program (from BI), lists the
unresolved external references on the line printer, outputs the (?) character and
waits for more commands. At this time, the library tape is readied in the reader
and LL,TE is entered causing the process to be completed.

3.4-7

(3) 2!AS BI=DO.MAIN,LI=Dl.LIBl,BO=DO.TEST,LO=fwP
~EX OS:LNK,NL,LL
OS: LNK (AO)
VAS LI=DO.LIB2
lLL,LI,TE
OS:LNK END

Example (3) shows the linking of a main program to two library files. Note that LI
is reassigned after the main program file (BI) and the first library file are pro­
cessed. Also note that listing is disabled to suppress printing of unresolved
references and then re-enabled to allow printing of the final memory map.

(4) 2/AS BO=DO.OBJPRG
,;y'EX MACR03
,;y'AS BI=BO,LI=DO,LIB3,BO=PP
,;y'EX OS:LNK,T3,AB=IOO,LL,TE

~xample (4) illustrates how the output of MACRO 3 may be turned around to OS:LNK.
The result is a paper tape ready for loading into an LSI-3/0S.

o Memory Map Key

CREATED FILE
File Name

. MISSING
Name

PRCX:;RAM

This is the 'BO' file name if any •

Under "MISSING" are listed all unresolved primary external references
(i.e., names on REF or EXTR directives).

Name Address
Under "PRCX:;RAM" are listed the names and addresses of all defined· external
program entry points (i.e., names on NAM and SNAM directives) ~

COMMON
Size Address

This is the allocated size and starting address of the FORTRAN IV blank
cornmon area.

IABELED COMMON
Name Size Address

Under "LABELED COMMON" are listed the names, sizes, and starting addresses
of all FORTRAN IV labeled common areas.

All addresses listed above are absolute unless followed by the letter 'R'
in which case they are relocatable. All addresses and sizes are in hexa­
decimal.

3.4-8

o

o

MEMORY USAGE
SCRATCHPAD LITERAL low - high
SCRATCH PAD PROGRAM low - high
MAIN MEMORY PROGRAM low - high
RELOCA'l'AB.t..E PROGRAM low - high
EXEC ADDRESS

*EXCEEDS LIMITS BY nnnn

*EXCEEDS LIMITS

Under "MEMORY USAGE" is a summary of the memory areas to be used by the
linked program. The lowest and highest location used in each area is
listed. The "EXEC ADDRESS" is the transfer address of the last subprogram
encountered that contained a transfer address. If relocatable, the execu­
tion address is followed by the letter "R". The "EXCEEDS LIMITS" message
is listed if the program or literal pool overflow their allocated areas.

SCRATCHPAD USAGE TABLE

Under "SCRATCHPAD USAGE TABLE" is a picture of the scratchpad usage. The
legend at the right of the table identifies the contents of each scratch­
pad word.

3.4-9

~ ..

~
~i
'I PHGE 1 83/29/76 12:49,18 OS, LHK (Bl) "E"ORY "AP

CREATED FILE O"EGA

PROGRA"
CORL" 8892 LI NES: 8884 CHARS. 8985 LOWP 8886 TYPSI 888E
TFF 8813 N)(SY" 8815 SCIX e816 LO 9117 SI 8819
BO 881A LOW,. 8838 T T LFLC 1941 LOC e851 REL 8852
SOURCE 8858 SAVPTR USC SDt 88A4 O"ECAZ 8188 START 8188
TTLBUF InF BIN un COMYI 18A3 CLPA 1 114 SAVE 13IE
RETRY 1338 PUNCH 134F PNCH 1378 FRA"E 1 JA8 80 IN IT 13119
WEOF 138D CNTRI UCE BODEY 1414 PICCA 1435 OKCA 145E
EJECT 1498 PNO 14CC LISTl 14D1 LIST 14DC CNTR 1513

e LSF 1515 DOCR 1518 PI CTTY 1546 RPUR 1562 ICH 1583
TTUN 15A6 TTKOT 1628 CRDI U8D ENDALL 1686 "E"5 IZ 1687

"UORY USAGE
SCRATCH-PAD PROGRAM 88 .. -un

0
"AIN "'"DRY PROGRA" IU8-uce
EXEC ItDDRESS 8111

SCRATCH'U USAGE TA8LE.
AlIR I 1 2 3 4 5 6 7 8 , A B C I E F LECEND I

8888 , P , , , , P P , , , , , P , , A-ABSOLUTE LITERAL
8818' P , , P P P , , , P , , p p , a-BYTE RELDCATABLE LI TERAL
8828 P , , p , , P , , P , P , P , , '-ABSOLUTE 'ROGRA"
8838 '-WORD RELOCATABLE LI TERAL
8848 , , p , P P , P P , , , , , , a-UEL ,Roeau
8858 , , P P P P P P P P P P , P P , W-WORI RELOCATABLE IHDEX POINTER
8868 , , p p P P P P P , P P P P P , X-ABSOLUTE INDEX POINTER
8878 P P P P P P P P P P P P , , P , Y-BYTE RELOCATABLE I N DE)(POINTER
8888 P P P P P P P P P P P P P , P P
8899 P P P P P P P , P P , P P , P P
88A9 P P P P P P P P P P P P P P P P
8888 P P
00C8 P P P P P P P P P P P P
eeD9 P p P P P P P P P P P P P P P P
89E8 P P P P P P P P P P P P P P P P

88'8 P P P P P P P P

PROCESSED LSI 2 OBJECT

0 NO ERRORS

Sample Generated by:

NH, A8=100, SpcFE

3.4-10

I~.:··.···'· .. ; ~

I
I

-+:r f"

t
I
~i

~'i

(OMPUTtR AUTOMATION. INC. ~

,3.5 as: LBL - THE OPERATING SYSTEM FILE LABEL UTILITY

The operating system requires that all file-type devices (magnetic tape. eURsctte and
disk) be labeled prior to use. This involves the creation of "directories" on each individ­
uul unit to allow later file processing by name. Do not confuse fflabelling" Wit/1 "furmlltting"
of disk packs and cassettes, which must be done with stand-alo~e programs before label­
ling. Refer to Section 4.5.4, Recording Medium Preparation.

as: LBL operates under the system, and requires user response during the labeling
process. The label program requires the availability and assignment of the following
logical units prior to program initiation.

1. The SF (system file) unit is required by the system. It is here that the system expects
to find the label program itself.

2. The CO (command output) unit is required for printing the label queries and error
messages.

o 3. The CI (command input) unit is required for operator responses.

When executed, the label program will query the user for its variable information.

NAME
?

''-'" The user should respond with a Volume Identification. It must consist of 1 to 6 alphanu­
meric characters, the first of which must be alphabetic. The 10 is terminated with a
Carriage Return.

o

TYPE AND UNIT
?

The response is the two-character physical device mnemonic (appendix C) of the device
which is to be labeled. The response is terminated with a carriage return.

DOES XX CONTAIN OS
?

If the device to be labeled (XX) contains a copy of the Operating System, the user responds
with 'Y' and a carriage return. Otherwise, the user's response is IN' followed by a
carriage return; the next query is suppressed.

SAVE OS
"

If a system exists on the unit, and is to be saved. the user responds with 'V' and a carriage
return; otherwise 'N' and a carriage return.

3.5-1

.:"·1
,
,

'".!

,,-t·'t"t)U"'1tW'iH''')Whw:J! f' lt ' ""rW',,'M'.W 't. e,t' 1 'tt"it'fttte.

(OMPUTtR AUTOMATION. IN<. f3]1
If the device to be labeled is a disk, the operator is then asked:

NUMBER OF PARTITIONS 0.2,4.8)
?

The us~r now selects the n~mber of partitions into which the disk i~ to be divided,
and enters that value (1, 2, 4 or 8), followed by a carriage return. The number of
partitions selected is the limit to the number of files which may be simultaneously open
for write operations. For example. the OS assembler requires a minimum of two partitions:
one to save the source (SS=DO) and one for binary output (BO=OO).

If os: LBL determines that the selected number of partitions makes each partition too
small, the operator will be notified. This normally occurs only when a partition must
be large enough to contain the file directories and OS itself.

PARTITIONS TOO SMALL
SAVE OS
?

If the operator responds 'N' the space required by OS will be given to partition number O.
If he responds 'Y' the query

NUMBER OF PARTITIONS (l,2,4 ,8)
?

will be repeated and the user can request fewer partitions. Each reduction in partitions
(e. g., 8 to 4) will double the size of each partition.

NOTE

It is recommended that systems be configured with 4 or 8 partitions,
to ensure the capability of multiple files open for writing.

The labeling' process then begins. When completed, the user will be offered the option
of labeling another device, or termination.

LABEL MORE
.~

If another unit is to be labeled (see note below) the response should be 'V'; otherwise
respond 'N'. Terminate the response with a carriage return.

NOTE

For efficient use of as, the user should have 11 labeled file on
all storage devices and one back-up file. For example, an Opera­
ting System with 3 cassette drives should have 4 labeled cassettes.
Note that at least Olle of the cassettes contains the Operating
System as produced by OS: GEN.

3.5-2

('ifflW t"ttffiO#'in:t itt' 'nr*'W '

•

I e I

0

\".',1 re f '1"\'% ti""+1ii£'W""'Mt:l1bW '''('"'' e1* Od""tfla

(OMPUTfR AUTOMATION. INC. ~

3.6 OS:VEW - THE OPERATING SYSTEM FILE VIEW UTILITY

The OS: VEW utility allows the user to display the contents of all file-type devices operatin
under the system. At the user's qiscretion, this "viewing" may be as simple as displayinl
the volume ID, or as detailed as displaying the entire eontents of a iiven {Ue.

The view utility operates under OS control, and allows dynamic peripheral device assign­
ment through it. The utility requires the availability and assignment of the following
logical units prior to program initiation.

1. The SF (system file) unit is required by the system. It i3 here the system expects
to find the view utility itself.

2.

3.

4.

The CI (command input) unit is required for input of the utility option requests.

The CO (command output) unit is required for printing of utility error messages.

The Sl (system input) unit is required for reading of the file (s) to be viewed.
(The SI unit may also be assigned via a parameter input--·sce below.)

5. The LO (listing output) unit is required for printing of the contents of the "viewed"
file.

(1) >/ ASSIGN SI=Ml,LO=LP
>/EXEC OS: YEW

Example (1) is a typical device assignment sequence prior to execution ~ The assignment
of SF. CI and CO are not shown. since these units were requi!'ed prior to execution
of this step. The example shows that magnetic tape unit 1 is the device to bc examined.
and that the contents will be printed on the line printer.

Requests are entered as parameters on the /EXEC commMd line or in response to a
console query, separated by commas. and terminated with a carriage return. Functions
m'(~ performed in the order requested.

1. V

2. N

3. D

4. n. NAME

5. F .NAME

displays the volume name. creation date and directory limits.
This function is automatically performed prior to the first
function requested for a given SI device.

displays the names of all files on the device.

displays thc name and directory information for all files on
the device.

displays the rlircctory information of the specific file requested.
NAME must be a one to six charactcr file name.

displays the directory information and thc contents of the
specified file. NAME must be included, and must be a one to
six character filc name.

3.6-1

''' ... ,t!Iflt&'HM" t'ttl W?' 'ftn*lttM ffltH,%, _ mmdWf'Wt"W"iW'iW"UNM

COMPUTER AUTOMATION. IN<. ~

6. Tor TE terminates the view utility and returns to the system.

7. Dx or Mx or Cx causes re-assignment of the SI device for all subsequent
view functions. "D", "M" and "e" refcr to disk, magnetic
tape or cassette respectively; "x" represents the unit number.
Inclusion of a file name is not permitted.

(2) ?./ ASSIGN SI=Ml,LO=LP
>/EXEC OS:VEW,D,F.TESTl,T

Example (2) is a request to view the magnetic tape located on unit l. OS: YEW will
print the volume ID, all directory entries (D), and the contents of a specific file
(F. TESTl). The program will then terminate (T).

(3) >/EXEC OS: YEW ,DO ,N ,Dl ,N, TE

Example (3) shows how the user might list the names of all active files (N) on two units
(DO) and (Dl), then terminate (TE).

A "D" function involving a disk file resident in more than one partition will necessitate
reading and counting every record and sector in that file. This operation may produce
a brief, but noticeable, delay during the printing of the file's directory information.

Certain conditions may cause an error message on CO, and program suspension:

"SI ASSIGN ERROR"

"INVALID REQUEST"

"XXXX NOT FOUND"

"INSUFFICIENT MEMORY"

"I/O ERROR"

The ASSIGNed SI unit was found to be a non-file­
type device, or was ASSIGNed with a file name.

The user should re-ASSIGN SI to a file type device
without a specific file name, and enter /RESUME,
re-specifying the desired parameters.

An illegal parameter was requested. The user should
enter /RESUME, specifying the correct parameters.

File XXXX was not f01lnd on the specified SI device.
The user should enter /RESUME, specifying the correct
parameters.

The record (or block) length of the requested file
is too large to fit in available memory. The user
may / CANCEL the program or /RESUME, specifying
parameters for another file.

An I/O error status was returned following a request
for I/O. The user mfty enter /RESUME to retry the
I/O function.

3.6-2

FILf VlrW MM/OD/YY, 00:04:45

III or:
[I<[AHI)

FILtti 4LI..OCATfO:
fJLFS AVAlLABLE:

SECTO~S AVAILABLE:
PA~lITION #i 125
PAR1ltION It? 8
PA~TITION #~ 717
PARTI1ION #4 114tj

rJ A Mf :

L'<'FIITFJ:

~YSIDO ,
12/30114

77
243

OS ON lINJl

_ A I TRIBUTES:

VTOCRD
12130114, 10:11:38

SEQ/HLOCKED
- ~ t r n R D :)1 7 E (A Y T E S) :

tiLlJCK SIH (SYTFS):
32

512
PARTITION DIMENSIONS:

PAR1ITION 1:
STARTINr, SECTOR NO.: o
RtCO~DS:

SECTORS:
TOTALS:

RECORDS:
SECTORS:

41
322

21

322
21

---I"JA Mf ! OS:VfW
12/30/74, 10:1?:27

SEQ/UNRLOCI<ED
510

0,·"
!

CREATEO:
ATTRIBUtES:
RECORD SIZE lBYTES):
HLOCK SIZE (BYTES): o
PA~1ITION DIMENSIONS:

PAR1ITION 1:
STARTING SECTOR NO.: fit>

q RECOROS:
SFCTORS:

TOTALS:
RECORDS:
SECTORS:

I\JAMl;.:
CREATEO:
ATTRIAU1ES:
RfCOHO SIZE (BYTES):
tH UCK SIZE (BYTES):
PART!l ION DIMFNSIONS:

pl un I T ION 1:

q

q
q

nS:OBG
12130/74, 10:1?:28

SEQ/UNRLOCKEO
510

o

STARTING SECTOR NO.1
RECflROS:

11.
t 1
t 7 SfC10RS:

rOTALS:
RfCOROS: 1 7

Sample Generated by: lEX OS:VEW,DO,D

3.6-3

W''¥ri::I1'W'J t «rm' t rtf'crt.

Sample Generated by: lEX OS:VEW,DO,F.MACR02

3.6-4

,,-I
I

'riM' If rUw:iIb "tNtet'! UrHC,. ,

0 ,
"

COMPUT£R AUTOMATION. INC. ~

3.7 OS: CPY - OPERATING SYSTEM FILE COpy UTILITY

The OS: CPY utility program allows the user to copy symbolic (source) and object (binary)
files between physical devices, delete files from mass storage devices (cassette, mag
tape, or disk) • pack disks, merge two or more files, or list a SOurce file ,on £l print
devioe. A lime" is any sequence of records terminated with an End-of-FiJe indiclltor.
as defined in Section 4.5.1.

The OS: CPY utility program operates under the operating system, and allows dynamic
peripheral assignment. The utility requires the availability and assignment of the
following logical units prior to program initiation.

1. The SF (System File) unit is required to load OS: CPY into memory.
2. The CI (Command Input) unit is required by OS: CPY for input of utility commands.
3. The CO (Command Output) unit is required for listing utility messages.

OS: CPY performs its operation using the logical devices S 1 for input and S2 for output.
The user should perform an / ASSIGN or /JOB operation, as desired, after the use of
OS: CPY to reset the S 1 and S2 assignments.

The general command format for OS: CPY is

CMND ,PID .RSIZE ,POD .RSIZE [
.NAME] [.NAME 1

Where:

CMND

,PID

,POD

. NAME

.RSIZE

. BSIZE

. RCOUNT

.NAME .RSIZE .NAME .RSIZE .BSIZE
.NAME .RCOUNT .PARTITION

One of the valid commands shown below.

Two-character physical device mnemonic shown in Appendix C,
on which the input file is to be read.

Two-character physical device mnemonic shown in Appendix C,
on which the output file is to be created.

Name of the file to be read or created .

Numbers of characters (bytes) per logical record. The default
value for RSIZE for input is 80 characters for symbolic and 510
bytes for binary records. The default for output is the input
record size.

Number of characters (bytes) per physical record when blocked .
Valid only for symbolic records on bulk devices .

Maximum number of records the random file being created may
contain. Applicahle to disk devices only.

3.7--1

e"hn -i:rW±uiW'ri ntrft'HW"'-!""H'Wti""ree,': 'iff h''iH'"W''Ut''' j"r"t"Htree •

. PARTITION

COMPUTER AUTOMATION. INC. ~

Disk partition in which the random file is to be created. Applicable
to disk devices only.

NOTE

In all cascs, the input file is read until an end-of-filc is
encountered, which (except for MB and MS) causes a corre
sponding end-of-file to be created on the output file.

The commands available with OS: CPY are:

[
.NAME] [.NAME]

CB ,PID .RSIZE ,POD .RSIZE
.NAME .RSIZE .NAME .RSIZE

Copy a binary file from the PID device to the POD device. RSIZE default is 510 characters
and blocking is not allowed.

C)--~

CS ,PID [:~~~~] ,POD [:~~~~ 1
.NAME.RSIZE .NAME.RSIZE

.NAME .RSIZE .BSIZE

Copy a symbolic file from PID to POD. Input RSIZE default is 80 characters and input
BSIZE is not specified: OS will supply it.

as maintains its internal symbolic files (OS: ASM SS, etc.) blocked 12 logical records
pCI' physical record (80/960 bytes) for increased bulk storage efficiency.

~-- -----------------------------~

CO,PID,POD

Copy all active (non-deleted) files from the PID bulk device to the POD bulk device.
The output device must be labeled and any files located on it will be unaltered.

o A file on the PID device must not already exist on the POD device by the same name.

DE ,PID. NAME

Delete the file specified (.NAME) from the PID bulk device. Deleted files may be physi­
cally removed from a disk with the DE and PK commands. A deleted file name may be
re-used without errors.

[
.NAME J

MB ,PID .RSIZE .POD
. NAME. RSIZE

[
.NAME]
. RSIZE

.. NAME. RSIZE

Merge two or more binary input files into n single binary output file. RSIZE default
is 510 bytes. Blocking is not allowed.

3.7-2

I
'I

t') ,
trlaw 2 t*'*" tnl"'· tiM ed'''' toM! • H#"· "*",'! 'i t wert ffl'WWlIIt1ttrttc! ffl

When an end-of-file is encountereq from the input (PID) file, as: CPY issucs the message
"READY NEXT FILE" and suspends operation to allow a new file to be readied. The USCI'

continues the operation with the command:

PIO [.NAME J
or terminates the operation with an MT command.

t------------------------- -------------------

[
.NAME]

MS ,PID .RSIZE ,POD
. NAME .RSIZE [

.NAME J .RSIZE

.NAME .RSIZE

.NAME .RSIZE .BSIZE

Merge two or more symbolic input files into a single symbolic output file. RSIZE input
default is 80 characters and BSIZE is not specified.

OS maintains its internal symbolic files (OS: ASM SS, etc.) blocked 12 logical records
pCI' physical record (80/960 bytes) for increased bulk storage efficiency.

When an end-of-file is encountered from the input (PID) file. OS: CPY prints the message
"READY NEXT FILE" and suspends operation to allow a new file to be readied. The user
continues the operation with the command:

. PID [NAME]

or terminates the operation with an MT command.
----_._---------------------

PK ,PID

Pack PID (disk only) to physically remove all deleted files. This command allows the
USCI' to recover all lost disk space due to deleted files. From 5 to 120 seconds may elapse
before another command will be accepted, depending upon the amount of undeleted data
to be moved.

Do not attempt to pack a disk to which CI is currently assigned, unless the next OS comma
is already available from stored parameters without reading CI again:

/EXEC OS:CPY,PK,Dn,/JOB

If an I/O error occurs while packing a disc, thc operator can recover most of the files
as follows:

1. Execute OS: YEW to determine the remaining file names (N).

2. Execute as: CPY and copy thc files to a temporary device (another disc, paper tape,
etc.). If while copying a file an INPUT CK or I/O ERROR takes place. cancel as: CPY
and exccute it again with the next file to be copi(~d.

3. Executc as: LBL and rel:tLwl the dise.

4. Copy all the saved files back to the }:lbeled disc.

3.7-3

~ f

~I

.1

t tn # INTend It t # M' •• t t rtf d 'I
f t Mit ."t It' k Nd'Ta:rfl "iritifGnc'BMrli'fl··rWf·i t, 1)'1,. i' 'FN+N'" (. _tl""»wa Hi

COMPUTER AUTOMATION. INC, ~

[
.NAME]

RB ,PID . RSIZE ,POD. NAME. RCOUNT [. PARTITION]
.NAME.RSIZE

Create a random binary file on POD (disk only). The maximum number of records
(RCOUNT) must be entered, and an optional partition number (1-8) may bn entered.
If the optional partition number is not entered, OS will assign the first available partition
containing sufficient room.

Random files are restricted to one record per disk sector (510 bytes) and blocking
is not allowed.

I---- .---------.------- -- --.---- -.. -.--. --- ----------.-

RS ,PID .RSIZE ,POD.NAME.RCOUNT [.PARTITION] [
.NAME]

. NAME. RSIZE

Create a random symbolic file on POD (disk only). The maximum number of records
(RCOUNT) must be entered and an optional partition number (1-8) may be entered.

• If the optional partition number is not entered, OS will assign the first available.

Random files are restricted to one record per disk sector (510 bytes) and blocking
is not allowed.

[
.NAME]

LI ,PID . RSIZE ,POD [. RSIZE]
.NAME.RSIZE

List a symbolic file from PID to POD (POD should be a listing device). Input RSIZE
default is 80 characters and output RSIZE default is 80.

.-_.:----._--- -_._--_ .. -

[
.NAME]

LN,PID .RSIZE .POD [.RSIZE]
.NAME .RSIZE

List with sequential decimal numbers a symbolic file from PID to POD (POD should be
a listing device). Input RSIZE <:cfault is 80 characters :md output RSIZE default is
80 (75 characters from PID. and 5 spaces for line number) .

TE

Terminate OS: CPY and return control to as.

A I J OB or / AS SI GN command should be executed to restore the default S 1 and S 2 assign­
ments after OS: CPY has tel'minated as these units are used internally by the utility.

3.7-4

c

o

't H '"wi'n",, " '''d'''\l'''Hdw''''?''t,lj''''m'Mf'','t • ¢''f!rli"ene,'!o!t"'tt1W

COMPUTER AUTOMATION. INC. ~

The following examples illustrate \.lsag'e of OS: CPY under a variety of circumstances:

(1) "//EXEC OS: CPY ,CS ,CR,M1.TEST .SO.960,TE
>

Example (1) illustrates a normal copy operation, from the card reader to mag tape (unit 1)

and return of control to OS (TE). No~ that the output file is to'be named TEST
(M1. TEST) and the records are to be written in blocked format SO byte record into
a 960 byte block on MI.

(2) >/EXEC OS:CPY,CS,CR.72,PP
lLN ,PR,LP
?TE
>

Example (2) illustrates cards being copied (first 72 columns) from the card reader
to the high speed paper tape punch. The source records are then listed (up to SO charac­
ters) with sequential line numbers.

(3) >/EXEC as: CPY ,DE ,DO. TEST
'?PK ,DO ,TE
>

Example (3) illustrates the deletion of a file (TEST) from disk drive 0, and then the
packing of disk O. Note that a pack operation need not take place after every delete
operation but should take place periodically based on free disk space required.

(4) >/EXEC as: CPY
?CS ,MI. TEST ,DO.TEST
?TE
>

Example (4) illustrates the copying of a file from one mass storage device (M 1) to another
mass storage device (DO). TEST's attributes (blocked/unblocked and blocking factor)
are maintained during the copy process; thus DO. TEST will have the same attributes
as M1.TEST.

(5) ~/EXEC as: CPY ,MB ,PR,MI.LIBRY
*READY NEXT FILE
?PR
*READY NEXT FILE
?MO.MATH
?MT ,TE

Example (5) illustrates the mcrging of 3 input files (PR ,PR ,MO. MATH) onto an output
file (M 1. L1BRY). as: CPY will suspend operation after each file has been copied, to
allow the user to ready the next file. Operation is continued by issuing the physical
unit required. The MT command terminates the merge process.

3.7-5

tdNHt,r "r H1tfi"?t1'. *w.cert t '& t ! t 't 1'1' 1ft" ':, "Hs't t stt' t : j ttN no: 2 MM't

COMPUTER AUTOMATION. INC. ~ -e
(6) >/EXEC OS: CPY ,CS ,CR,Ml.SRCE

?TE
>

Example (6) illustrates the copying of a cord file to mng tape (without blocking). It
is highly recommended that symbolic files be maintained blocked on bulk storogc dcvices.
(see example 1) thus making more efficient use of bulk storage media.

(7) >/EXEC OS: CPY
?CO ,MO,Ml, TE

i .11 Example (7) illustrates the manner in which the user may request all non-deleted files
on a bulk storage device (MO) to be merged onto another bulk storage device (M I) .

(8) >/EXEC OS: CPY
?RS ,CR,DO.RANDOM.500.4
?TE

Example (8) illustrates the manner in which the user may creote n random file of 500
records (sectors) in partition 4.

The file created (RANDOM) will have a fixed length of 500 records. However, it is
not necessary to completely fill the file during creation.

3.7-6

,

I e
' I

0

()

Ml' Wt' !l!!"'m tWM!' •• wee

COMPUTER AUTOMATION. INC. ~

During the copy process, conditions may occur which will cause as: CPY to suspend
the current operation. The operator may continue the operation with the following
options:

1. Correct hardware problem and enter /RESUME.
2. Enter /RESUME with new OS: CPY command.

The list of possible errors include:

1. INSUFFICIENT MEMORY HHHH

2. I/O ERR

3. INPUT CK

4. INV ALID CMND

5. ILLEGAL OPERATION

6. END OF MEDIA

The combined record (and block) lengths required
for the operation is greater than available memory.
HHHH is the hexadecimal value indicating the
additional memory that is needed. The user
may correct this condition by requesting smaller
records (or blocks) for output files.

The operating system has detected an irrecoverable
1/0 error. To try the operation again, the user
must re-issue the command.

An input failure (e. g. card reader pick fail ,
high speed reader not ready) has been detected.
The operator should ready the input device and
enter /RESUME to continue the operation.

An invalid command, operation, or parameter
has been detected in the last command. The
operator must re-issue a correct command.

An illegal operation has been detected by the
operating system. For example. a request to
output binary to line printer, or write to a card
reader. The operator must re-issue a correct
command to recover from this error condition.

In the process of writing to a bulk storage device,
as determiI,cd the physical end of the device
had been encountered. To correct this condition,
the operator should supply another bulk storage
media (new cassette cartridge or disk pack)
and restart the operation.

3.7-7

«f &'" "tbM'tk if Wiiwt'e'HMrV' 'I Wi?,"? :If !1tW' tNrM,'M '&1@## "$-UM ritl "¥: »tm

e

0

o

COMPUTER AUTOMATION. INC ~

3.8 as: SFE - THE OPERATING SYSTEM SOURCE FILE EDITOR

The as Source File Editor utility allows for the maintenance (update) of source files
supported by the operating system as either hard copy (paper tape) Qr J:m Plllk storage
devices. The resultant files may then be assembled. concol'ded, saved or' rotrlcvQd
at the user's discretion.

as: SFE allows corrections (located in the SA unit) to be merged with the initial source
(SI unit), creating a resultant source file (SO unit) .

The utility will require the availability and assignment of the following logical units .
prior to operation.

1.

2.

3.

4.

The SF (system file) unit is required by the system. It is here the system expects
to find the utility itself.

The CI (command input) unit is required for input of the option requests.

The CO (command output) unit is required for printing of as: SFE comments and
error messages.

NOTE

Units SF, CI and CO will have been used in prior steps
and do not generally require assignment at this time.

I

The SI (system aut;~b unit contains the original source file, against which the
corrections will be made. The SI file is not altered during the update process.
It may be either a file-type (blocked or unblocked) or non-file-type device.

5. The SA (alternate system) unit contains the commands and source record corrections.
These corrections must be presented in the sequence in which they are to be merged
with the SI file. This file is not altered during execution of OS: SFE. It may be
either a file-type (blocked or unblockcd) or nC:1-filc-type device.

6. The SO (source output) file is created by the merger of the SA with the Sl file,
and must not currently exist. The dimensions of the file are determined as follows:

If SO is a file-type device:

a. If the SI unit is not a file-type device, the SO file will be blocked 80: 960.

b. If the SI unit is a file-type device, the dimensions of the SI device will be the
dimensions of the SO file.

3.8-1

"
~ !

:1

"1

:1

19ft! ! itf • .'t1't#f'M.t'%.dWh',tS;t«N?t!ttt""W'

COMPUTER AUTOMATION. INC. ~

If SO is not a file-type device:

a. If the SI unit is not a file-type device, the SO file will l)(~ dimcr,sioncd for 80
charaeter records.

b. If the SI unit is a file-type device, the SO file will be dimen~ioned to the same
record length as the SI file.

NOTE

Since in some cases the SO record length will be dimcn­
sioned to match the SI record length. OS: SFE may truncate
the SA records when they are merged into the SO file.
if the SA record length is greater than the Sl record
length.

7. The La (list output) unit is required if the user elects to have the SO file listed
as it is generatcd.

(l) >/ ASSIGN SI=MO. TEST .SA=CR ,SO=Ml. TESTI ,LO=LP
>/EXEC as: SFE

Example (1) is a representative device assignment sequence prior to program loading.
The example shows that the user wishes to update the program located on MO (TEST)
with the corrections located in the card reader and to save the resultant file on Ml (TEST 1) .

The user may request additional operations to be performed during the edit process.
These options are entered as parameters on the /EXEC command line. The parameters
may be entered in any order, separated by commas (,). The options available are:

LI List the SO records on the LO device (72 chm'acters per record. in standard
assembler format, with line numbers. unless superseded by any of the
other options) .

NN Output to LO, but suppress decimal line numbers.

NF Suppress formatting of LO output into OS: ASM columns.

n Restrict La output to n decimal characters per line. 1 thru 132. If not
specified, n = 72 is assumed.

The "NV' option (no listing) used by previous versions of as: SFE will be accepted
but ignored; listing only occurs when explicitly requested.

(2) ~/ ASSIGN SI=MO. TEST ,SO=Ml. TESTl .SA=CR
'-/EXEC OS: SFE ,NN ,50

Examplc (2) is similar to ttl(' previous example, except that the resultant SO file will
be listed without line numbers (NN), and the line will be restricted to 50 characters.

3.8-2

I

o

c
I

""I

'~'

COMPUTER AUTOMATION. INC ~

The two valid formats of the sourcp file editor commands arc:

;AAA n
;AAA n,m

where the semicolon (j) must be the first character in the record and distinguishes
this line as an as: SFE command. The" AAA" must be the second, third and fourth
characters in the record, and one of the allowable commands (sec below), and must
be followed by at least one space. The "n" and "m" parameters reprcsent the decimal
line numbers of the original SI file and must always be greater than the "n" nnd "m"
parameters in the previous command. Where "n" and "m" nre both required. "m n must
not be less than "n", and no imbedded spaces are permitted between them. "n" and
"m" may be any value from 1 to 32767.

The source file editor accepts the following commands from the SA file for the addition,
deletion and replacement of source text records:

;ADD n

Add record (s) - all source records in SA following this command, and delimited by
the next command, are inserted in the SO file after line "n" of the SI file. (Note: If
; ADD n ,m is input, "m" is ignored.) If the; ADD command is followed by another
command with no intervening source records, the; ADD command is ignored.

;DEL n JDEL n,m

Delete record (s) - the source record "n" (or records "n" through "m" inclusivc) of
the SI file will not be copied to the output file. Any sourcc records occurring between
aj DEL command and the next command will be ignored. To delete all the records followin~
source line "n-l" the command ;DEL n,32767 may be given. OS:SFE will eventually
suspend itself with the message "SA GREATER THAN SI" as described below. but r('sumin~
execution will produce the desired result.

j REP n : REP n ,m

Replace record (s) - source record "n" (or records "n" through "m" inclusive) of the
SI file will be replaced by the record(s) in SA following this command. and delimited
by the next command, in the resultant SO file. If the; REP command is followed by
another command with no intervening source records, the ; REP command is treated
as if it were a ; DEL command.

;END

END indicates the termination of the correction (SA) file. The remainder of the SI
file (if any) will be copied to the SO file without modification. Any parameters (n or
m) appended to this command will be ignored. and ally SA record (s) subsequcnt to
the: END command will not be processed. Note: An end-of -file encountered on the
SA file will serve exactly the same purpose as an "; END" command.

3.8-3

tit' 'ij#'"t"'tt'P'*:,fWtt'1l fS%1t ''''1d'f.!"I''W""WJ'fl'''iKllli4'('t/'d ""f '''"i:nblr1MN''#td1C' ·., 'wttHW5It:!t+ e

(OWUT£R AUTOMATION. INC. ~

The source and correction files may contain any symbolic source records. Note, however,
that each record output to LO, unless formatting is suppressed, will be formatted as a
standard OS: ASM source line. The SI line numbers. against which the corrections are
made, can be obtained from an assembler (OS: ASM). copy (OS : CPY), concordance
(OS: eNC) or previous source file edit (OS: SFE) listing.

Special care must be taken in determining the desired line number for very large files.
Listings for OS: ASM, OS: Cpy , OS: CNC. and OS: SFE display only the low -order four
digits of the line number -- that is. 0000 thru 9999. For lines in the range 10000 thru
32767, the user must decide on the correct high-order digit, and supply a full 5-place
line number to OS: SFE.

If a "PAUSE" assembler directive (the first source character of a record is an up-arrow)
is encountered, the following action is taken by OS: SFE:

1. If an up-arrow record is read from the SI device:

O· . a. If the SI device is a file-type device (disk, mag tape or cassette) , the record ,
is treated like any other SI record (no pause occurs) .

b. If the SI device is not a file-type device, a SUSPEND call is made with the message
"SI PAUSE"; upon RESUME, the record is processed like any other SI record
(deleted if it follows a "; DEL" command, passed to SO otherwise) .

2. If an up-arrow record is read from the SA device, it is treated as a normal record·
and no pause occurs.

3. If an up-arrow record is output to the SO device, it is written to the device first,
then:

8.. If the SO device is a file-type device, no other action is taken.

b. If the SO device is not a file-type device.

(1) A CLOSE call is made for that device (if a paper tap€ punch, this will cause
blank trailer to be punched);

(2) A /SUSPEND call is made with the message "SO PAUSE";

(3) Upon /RESUME, an OPEN call is made on the device.

If an lip nrrow record iH output to the LO device. it is printcd unformatted, as if it were
il comment card.

".

i(. I
.'

i
I e·

o

'I'd 't1,"&;'",%:9 'k' Nt' '''it ,tt b'tM:JtfttW'

COMPUTER AUTOMATION. IN<. ~

During the edit process. error conditions may occur which require operator intervention.
In all cases. the program will print an error message on the CO device. and issue 8

/SUSPEND call to the system. The operator may /RESUME or /CANCEL the edit procedure
at this time.

1. INVALID COMMAND - as: SFE has encountered a semicolon .(;) followed by an unrecog­
nized command, or the first record input from SA did not begin with a semicolon.
or line number "m" was not greater than "n". The offending line will be printcd
directly below the error message and OS: SFE will SUSPEND. If the user RESUMEs.
any current as: SFE command will be terminated, and the SA file will bc read until
a ";" control character is input. whereupon the editing process will continue.

2. SEQUENCE ERROR - An as: SFE command was input wherein the line number "n"
was not greater than that of the previous as: SFE command. The offending line will
be printed directly below the error message and as: SFE will SUSPEND. If the user
RESUMEs. any current as: SFE command will be terminated. and the SA file will
be read until a "; " control character is input, whereupon the editing process will
continue.

3. SA GREATER THAN SI - The as: SFE command was followed by a number "n" (or
"m") which was greater than the highest line number in the SI file. The current
operation is continued until SI is exhausted. and as: SFE will SUSPEND. If the user
RESUMEs. the editing process terminates as if an ; END command has been encountered

4. I/O ERROR - An OPEN or I/O call was not completed correctly. as: SFE will SUSPEND.
'---...- If the user RESUMEs. the I/O call will be retried.

5. ILLEGAL PARAMETER - A parameter following /EXEC as: SFE was found to be other
than "LI", "NL", "NN" • "NF" or (1 < LO record length <. 132). OS: SFE will SUSPEND.
If the user RESUMEs, he must include the correct parameters in the RESUME command.

6. MEM OVERFLOW - Insufficient space exists in memory for the I/O buffers and blocking
areas required by as: SFE. as: SFE will CLOSE each file and SUSPEND. A RESUME
command will cause as: SFE to restart; thus. any options should be re-input behind
the RESUME command.

3.8-5

,,· ww

"

I

o

o

3.9 OS:CNC - OPERATING SYSTEljt ASSEMBLER SOURCE STATEMENT CONCORDANCE

The OS:CNC utility program analyzes an assembler language source program. It produces
an alphabetized list of symbols, with corresponding definitions .n4 ~~terence. identi­
fied by line number within the source program. The listing, or P(X)J)cord.llnce," ~i

intended as a supplement to the listing produced by the assembler itself.

The OS:CNC utility is executed under the control of the Operating System. Availability
and assignment of the following logical units will be required prior to program
initiation:

1. The SF (System File) unit is required to load OS:CNC into memory.

2.

3.

4.

5.

The CI (Command Input) unit is required by OS:CNC for input of utility commands.
t

The CO (Command Output) unit is required for prihting comments and error messages.
Q

The SI (Source Input) unit 'is required to supply the source program to be analyzed.
1

The LO (List Output) unit is required for printing the concordance. LO must not
be assigned to a file-type device.

(1) 2!ASSIGN LO=LP,SI=Dl.PROG45
.?/EXEC OS : CNC

Example (1) shows a typical command sequence prior to execution. The concordance will
be written to the line printer, and the statements are a specific disk file -- probably
the output of a previous execution of OS:CPY or OS:SFE.

The default operation of OS:CNC is the analysis of a single assembler source program,
terminating with the END statement. certain optional capabi14ties may be requested by
parameters on the /EXEC statement, as with other OS utilities. The parameters may be
entered in any order, separated with commas. Only the first two characters or each
parameter are required.

3.9-1

~.

I

I

"'. W¥tWffl'tf:wtbbHWMte#'ltu'M" 11,1 Aft 'ttl! '0/11 t orr 11 't' t$rl'tltU'iW*»WV"Hwte $14' zh'U"W' B' ... b¥'''e±IUtt .. +'itfi'fM.F lt:I!tt"Uis. d'i'i,,! 'g', t'tn:! 1" "'1''fW' ''9,'" "Id!l'ltirlMtrtiHI'" tdKtM¥WMt::f:!!'st Mt

o

o

BATCH

Analyze the next source program on the SI unit, and generate a concordance for it.
When an END statement is reached, do not terminate execution of SC:CNC. Instead,
continue with a new program and a new concordance, with its own page and line numPe~a.
Repeat this process for each source program on S1 until an actual end-of-file i~
reached.

LIST

Before generating a concordance, list every line of the source program being analyzed.

A8

The source program to be analyzed is intended for the ALPHA-8 instruction set only.

Concordance Flags and Messages

The following flags may appear to the left of a symbol definition:

M

N

R
U

X

Multiple definitions of this symbol were detected
NAM directive used this symbol
REF directive used this symbol
This symbol was undefined and not external
EXTR directive used this symbol

For each label in the Source Input file, 05:CNC will list the line number where tbe
label is defined, followed by the label itself and the line number(s) of every other
source statement that references the label. Some of the referencing source statements
will access the label's memory location without modifying it, other referencing source
statements will access the label's memory location and perhaps modify it. For example,
LDA TAG will load the A Register from TAG, but will not modify it. conversely, STA TAG
will modify TAG during the store operation, but 5TA *TAG will not (because the re­
ference is indirect). To aid the programmer in debugging, the line number of each
source statement which can (but mayor may not) modify the label's memory location is 4It
flagged with an asterisk.

An up-arrow (t) appearing in col~n 1 of a source statement will cause the same action
in 05:CNC as in 05:ASM -- th~ program will pause until the operator reloads the 51 unit
and enters the command /RESUME.

If a single source program contains more symbols that 05:CNC can table in available
memory, t.he message "MEMORY FULL" is printed, a partial concordance is generated
(showing all symbol.s defined and referenced to that point), and processing continues.

Any partial concordances generated will cumulatively analyze the entire program.

3.9-2 Revised 11/76

~" ,

t

i

I

..)

'ei!!&t'&!,!'i1#'UM'\"¥3'l'i' H,t.! M'Nt klliWi'H'.fl Hee, ..

41---------------------- (OMPUTfR AUTOMATION. IN<. f3]J

e

0

c

3.10 as: DBG - THE OPERATING SYSTEM DEBUG UTILITY

3.10.1 Introduction

The as: DBG Utility is functionally similar to the ALPHA-16 DEBUG (program 96004).
as: DBG resides in the System Transient Area of memory above the User Area. Depending
on the options requested, as: DBG may require the assignment of the following logical
units prior to the initiation of the debug process:

1. SF (system file) is required by the system; it is where the sy!:>tem expects to find
as: DBG.

2.

3.

4.

CI (command input) is required for as: DBG command input.

CO (command output) is required for printing as: DBG messages.

La (listing output) is needed for use of the "LIST" command of as: DBG, and may
not be a file-type device.

NOTE

The SF, Cl and CO units have been assigned prior to loading
as: DBG and generally need not be reassigned at this time.
Note, however, that since as: DBG is a conversational utility,
CI and CO should, for convenience, be assigned to the same
device, nominally the console teletype.

The user program and as: DBG are both in core during a debugging session. as: DBG
alters, executes, and monitors the user program, working interactively with the program­
mer at the console. First the user program is loaded, but not begun, then as: DBG
is loaded and entered:

(1) >/ ASSIGN LO=LP ,BI=PR
>/EXEC as: LDR
>/EXEC as: DBG
OS:DBG 7BF7
?

In example (1) the binary input device for the loader was the high speed paper tape
rcader. The line printcr was selected for the loader listing and use of the as: DBG LIST
command. The user program was loaded by as: LDR, and as: DBG was then loaded
into the system transient area and entered.

3.10-1

, 1 "wftituSWter'tri we
1rtt'r0 " 'm* q t"*#'HIl!"ttmtW ,

COWUltR AUTOMATION. INC. ~

r 3.10.2 Communication with the Program
~ :

When first entered, as: DBG will display its name and rc-stnrt location. It will then
display a question mark to request a command from the operator. Each command. and
each response to a ,equest for a parameter value. will cause some .p~ific :~.ctj(;m to occur
immediately; OS: DBG will then request another command.

A command line consists of a unique single-character function identifier, followed by
one or more parameters separated by spaces or commas and terminated by a carriage
return. For the convenience of users accustomed to the stand-alone DEBUG program,
which expects a period at the end of each command, as: DBG will also accept thc sequence
period/carriage return as a command termination. In either case, any number of spaces
mny immediately precede the carriage return character. If an illegal command is entered.
as: DBG will reject the command with the message "ER" and request a new command.

I
,I 3.10.2.1 Address and Data Parameters

"1

Any address or data parameter value may be entered as an unsigned. positive. or negative
haxadecimal value. Leading zeroes are optional.

7FFF OE08 +50 -4000 0

Sixteen offset constants. termed "relocation registers." and described later, are available.
In any context where a hex number would be valid, a relocation register reference (the
letter "R" followed by a hex digit from 0 to F) is also valid. The reference may be preceded
with another hex number as an additional value.

R4 600R3 -4RA -2222R 7R4R3

A parameter may be entered as the sum or difference of exactly two terms, for convenience.

5555+4 -345-2C 4000R7-C700 R4R4+033

as: DBG will recognize that an address parameter -- but not a data value parameter -­
with a high-order" 1" bit is inte:lded to be used indirectly.

A004 2004+8000 8000R6 488R 7+8000

I An incorrect value may be replaced by entering a slash followed by the proper value.

1111 2222 3333 5555/4444 5555 G666

3.10-2

",i
I

I " 'tttht "'Sf? hettY hrtt'N'hW'¥ . ee . "I " ¥I'I 'rl tV I'l' '''#1'"ifi -'gMt !"'""1iOt · H')iji"Mihl\e"W""", ., Mt'Nthti'1'#W 'llt t4W= 'Ft

e~-------------------- COMPUT£R AUTOMATION. INC . . ~

" --~.

e
o

o

3.10.2.2 a (Status Word) Regi~ter

A location in as: DBG, accessible to the user and referred to as the a Register, simulates
the contents and functions of the hardware Status Word. For the user's cOnVI"nl(lmlQ.
the Status Word is charted here.

BIT SETTING

15--8 0
7--4

3 1/0
2 1/0
1 1/0
0 1/0

MEANING

Unused
Contents of ALPHA- LSI Console Sense Register
Set/Reset of ALPHA- LSI Sense Switch
Enable/Disable Interrupts
Byte/Word Mode
Set/Reset of Overflow Indicator

On an ALPHA-16,bits 7--4 and bit 3 are unused. OS:DBG will not alter the actual
setting of bit 2, regardless of the user's manipulation .of the a register.

3.10.2.3 as: DBG Commands

Each command line starts with a specific command, entered as a single character.
Immediately following the command is a set of parameters. Each parameter is separated
from the next by exactly one space or one comma. as appropriate for the particular
command. The line is terminated with a carriage return, optionally preceded by any
number of spaces.

Certain conventions are adopted in this program description to simUlate console I/O:

Program Description Console I/O

CR

small letters
underline
(hhhh)

Carriage Return (shown in certain examples for clarity; every
input line must terminate with a carriage return)
Hexadecimal Parameter
Output from as: DBG
Display of current contents of location hhhh
Display similar in meaning to a previous display

A detailed description of each command. with appropriate examples. follows. A summary
chart suitable for use at the console is includcd as section 3.10.4.

3.10-3

!

',I

I

, i

II

W% H dt# k' a'b'I' ,tP 'It h't'wI 1 I' "+6 Nti~ d "rt 'k!
to W ,,'HH'b7Ib¥!" "ifirlllt"W I if!> '&'"'$ 11 htl iW' ! MW$!I:!" '$!WW 9"' n . , "'k' " .'"t! If I .j "*I'M tiI'l 'n" t:i!:)*...-' IMWr:rt

a

o

COMPUTER AUTOMATION. INC. ~

Display / Change Relocation Registers. External subroutines are normally assembled
at relative location: 0000. When loaded by as: LDR thcy are offset, creating a relocation
bias which must be added to the location values on the subroutine listing in order to detcr -
mine the true location in mcmory of the subroutine. In order to allcviatc this problcm,
sixteen relocation registers are provided (dcsignated RO thru RF). which owy pa sot
to the relocation bias of up to sixteen subroutines. When parameters are suHi}Cod by
a relocation register ID (RO thru RF), the designated bias is added to the value of the
parameter. Hence, in order to refer to location 12C of a subroutine loadcd at CD8 the
user may set Rl to CD8 (the relocation bias). and enter 12CRl as the paramcter. The
R command allows the user to set, display, and chang~ the values of the relocation
registers. as: DBG will initialize RO to the starting location of user-available core.

?Rnaaaa
?

Set relocation register n to the value aaaa (n = 0 thru F) .

?Rn
vvvv?'
?

Display the value (vvvv) of relocation register n.

?Rn
vvvv ?aaaa
?

Display the value or relocation register n and then change it to the value aaaa.

Copy Memory. The C function copies one area of memory to another.

?Caaaa bbbb ccce

Copy locations aaaa thru bbbb (inclusive) to locations starting at cccc. Location aaaa
must be lower than bbbb, and location cccc must bc outside the area being moved.

Fill Memory. The F function fills a given area of memory with a specified constant,
enabling the user to initialize tables and buffer areas.

?Faaaa bbbb vvvv
?

Store the value vvvv in memory locations aaaa through bbbb inclusive.

3.10-4

o

o

COMPUTER AUTOMATION. INC. ~

Modify Memory. The M function allows the user to enter alterations into memory consecu­
tively starting at a given address.

?Maaaa . vvvv
?

Store the value vvvv at location aaaa.

?Maaaa.vvvv wwww yyyy zzzz
?

Store the values vvvv through zzzz in memory consecutively, starting at location
aaaa.

NOTE

If the beginning address is not protected, but protected
memory is entered later in the operation, the modification
will be effective up to, but not including, the protected
area.

3.10-5

-I

i

"·'·1
• ,

II '
:1

Ii

itt 7T) " j 1, 1 tit' ': d traWl) ,m ,. tV j t ,) $' f'U'MftP '",'We W HUt Nt Mae =1" t a

COMPUltR AUTOMATION. tNC. ~

Inspect/Change Memory. The I function is used to inspect specific memory locations and
to make changes to their contents. The locations may be stepped thru quite conveniently.
either forwards or backwards. The user enters a starting address. and OS: DBG responds
with that same address and its current contents:

?Iaaaa
aaaa (aaaa) ?

At this point. OS: DBG is waiting for the user to enter a special line tcrminator, optionally
preceded by a new value for the contents of location aaaa. The valid terminators and
their meanings are:

;CR
.CR
CR

Continue inspection at aaaa+ 1
Continue inspection at aaaa-l
Terminate inspection function and accept a new command

The I function will not accept a step which attempts to wrap around the low or high limit
of memory. The user must enter a new I command with a new starting address.

The stand-alone DEBUG program accepted a space/CR sequence to indicate a stcp forward
to aaaa-l. This sequence is not accepted by OS: DBG. which ignores spaces immediately
preceding a carriage return.

?I3000
3000 OOOO?; CR
3001 1111?BBBB.CR
~------:-

3000 OOOO? • CR
2~F~F_F ____ D_D~D~D_?EEEE.CR

2FFE 4444?OCR
?

Inspect location 3000.
Do not alter contents of 3000. Inspect 3000+1.
Alter contents of 3001 to BBBB. Inspect 3001-1.
Do not alter contents of 3000. Inspect 3000-1.
Alter contents of 2FFF to EEEE. Inspect 2FFF-l.
Alter contents of 2FFE to O. Terminate inspection.
Ready for a new command.

If the location to be inspected is supplied with a high-order "1" bit (for example. as laaan+ C
8000) , multi-level indirect address pointers will be followed down to a direct address
word. Only the final directly addressed location and its contents will be displayed.
Stepping the same inspection with; CR or ,CR will then increment or decrement from the
final direct address.

3.10-6

, emf

o

COMPUTER AUTOMATION. IN<. ~

Display /Change Pseudo Registers. In debugging the user's program it is often necessary
to preset the hardware registers with initial values; upon reaching a breakpoint it
may be necessary to inspect and alter the registers. Three pseudo registers. A. X
and 0 (corresponding to the Accumulator, Index, and Status Word registers). lirc
provided. An exit from OS: DBG to the user program causes the hardware J'{'giHtors
to be loaded from the pseudo registers; a return to OS: DBG causes t~e hordwllre registers
to be stored in the pseudo registers.

? Aaaaa
?Xxxxx
?OO
?

Set the pseudo Accumulator to the value aaaa. Set the pseudo Index to the
value xxxx. Set the pseudo Status Word to the value O.

?A
aaaa ?CR
?X
xxxx ?CR
?O
0000 ?CR
?

Displny the contents of pseudo registers A, X and O.

?A
aaaa ?vvvvCR

Display the contents of pseudo register A. Change it to the value vvvv.

3.10- 8

.~

~ .' , .,'
-FI
:,,1

i

.. I
1

I
I

i

e7 NY', t !' t tWtmn '" , " t " tt ,:I 'Itt""" tttrm waW'M •

o

COMPUTER AUTOMATION. INC. ~

.....
Search Memory/Search with Mask. The S function will seRrch a given range of
memory locations. listing the addresses and contents which match a specified bit or
word pattern.

?Saaaa bbbb vvvv mmmm
cccc (cccc)
dddd (dddd)
eeee (eeee)
?

Search memory from location aaaa through location bbbb for the vulue vvvv Rnd
compare only those bits which have a corresponding" 1" bit in the mask word
mmmm. In this example, the desired value was found at cccc, dddd. and eeee.
Omitting the mask is equivalent to specifying FFFF, resulting in a word-level
search:

?Saaaa bbbb vvvv
cccc vvvv
dddd vvvv
?

Search memory from location aaaa through bbbb inclusive for value vvvv and
list the location (s) where it is found. In this examplp. the value vvvv was found
in locations ecce and dddd.

Print Memory. The P function allows the user to print an area of memory on the CO unit.
Up to eight locations together with the address of the first location are printed on each
line.

?Paaaa bbbb
aaaa (aaaa) (aaaa+l) (aaaa+7)
aaaa+8 (aaaa+8) (aaaa+9) (bbbb-l) (bbbb)
?

Print the contents of memory locations aaaa through bbbb inclusive.

List Memory. The L function is identical to the P function just described, except that
the output is directed to the LO device. rather than CO.

3.10--7

j' . H

o

',--'

it ' w"!"tti"'t'e ·w. te .!. ,_. t :' t *W'H itt' IWt'ftMWt'Htt#!M' M

COMPU1lR AUTOMATION. INC. ~

Set Breakpoint arid Transfer· ~ontrol. The B function allows the user to establish one
or two breakpoints, then transfer control to his program. When his program reaelle'S
either breakpoint as: DBG will remove both breakpoints, and pI'int the address of the
breakpoint and the contents of the regi.sters as of the last instruction cx:ccl,Jtml bofortl
the breakpoint. As larger program modules are tested and eorl'octnd. bJ.'onkpointfi may
be set at longer intervals, until the entire program is debugged. '

?Bvvvv eeec,dddd
ecce aaaa xxxx 0000
?

Set a breakpoint at cccc and dddd. Save the user instructions and store a jump
to as: DBG at these locations. Set the hardware registers from the corresponding
pseudo registers and ~ransfer control to the user's program at location vvvv.
When either breakpoint is reached. save the hardware registers in the pseudo
registers, remove both breakpoints, print the address of the breakpoint rtlached
and values of the pseudo registers A, X and O. In the case illustrated above
the breakpoint at location cccc was reached.

?Bbbbb ,ecce

Set two new breakpoints. Transfer control to the user program at the location
of the last breakpoint reached.

?Bbbbb ecce
cccc aaaa 0000
?

Set one breakpoint at location cccc. Transfer control to the user program at
location bbbb.

If an error is made in a "B" command, OS: DBG will respond by simulating the
occurrence of a breakpoint. This will remind the user that all breakpoints havtl
been removed, and that no new ones have yet been established.

I ,

as: DBG uses absolute location: FFin scratchpad for brcakpoint processing.
Programs which use high scratchpad should provide for this.

3. ,10-9

.Jit«W t 'W'* k i"·'· 1,'QY#W,*"IM"'Owd'W ,

COMPUTER AUTOMATION. IN<. §g
Transfer Control. The J function allows the user to preset the hardware registers
from the pseudo registers and transfer control to his program without breakpoints.

?Jaaaa

Set the hardware registers from the pseudo registers and j~mp to location aaan.

Enable Modification of Protected Memory. During the normal operation of as: DEG
only the user's area of memory is available for modification. The OS area (including
the Executive. lacs and File Manager) and the transient area in high core (including
as: DBG itself) is protected against modification by as: DBG commands. For example.

\1 the sequence
I

'I

I

"I
!

?Iaaaa
aaaa (aaaa) ?

where aaaa is a location outside the user area. will cause OS: DBG to display the contents
of aaaa; but if the next input is a modification of aaaa. the message "ER" will appear.
and aaaa will remain unchanged.

This "memory protect" feature may be overridden by the E (Enable Modification) command.
Once modification has been enabled. it will remain so until a T (terminate) command
is used, or as: DBG is re-executed. The E command may be input at any time while
in as: DBG.

Trap Function. The as console interrupt feature (Section 2.3) may be altered so that
depressing the switch will cause a return to as: DBG rather than to the as executive.
This is done by entering. at any time while in as: DBG. a D command. A terminate
(T) command, or re-execution of as: DBG, will reset the feature to trap to the as executive

If used. this altered trap condition must be reset by a terminate (T) command before
returning to the as Executive. Otherwise t the interrupt location will continue to point C
to the as: DBG entry point.

Terminate as: DBG. The T function allows the user to exit from as: DBG and return
to as. This command will cause the console interrupt feature to be reset to trap to
th(~ as executive if the (D) command has been issued t and will also reset the Modify
Protected Memory (E) feature if it has been issued.

3.10-10

'i

'-

t 1" 4M \ r\ r:' 'ott \ z: "t OCW t 'tW1I"trtfC{".' m btett' pt'! PSI '1 '"j"C""u\!:*·"wn.,

COMPUTER AUTOMATION. INC. ~

3.10.2.4 Error Handling

The message "ER" is output when the following errors occur:

1 . An invalid command is entered . . ,

2. An address or data parameter contains a non-hexadecimal character (other than
+. -. or R).

3. Parameters are entered out of sequence. For example, a Fill. List, Copy, Print.
or Search .command is requested. and the second parameter is less than the first.

4. A command is entered which will modify a protected area of memory. and the E
command has not been prevjously entered.

5. An illegal separator appears between parameters. where a space. comma, period,
etc. is required.

o 6. An operation is requested on non-existent memory.

3.10.3 Handling Terminations

Terminations are handled as follows: , ,

1. When debugging a pr05'ram using as: DBG breakpoints, a TERM: call to the executive
should always be made from as: DBG rather than from the user program, if possible.

2. If termination must be made from the user's program and it is desired to continue
debugging the same program. enter a /BEGINcommand for as: DBG so it can clear
any breakpoint previously set up in the user program.

3. If termination is made from the user program rather than from as: DBG. and a ~
user program is loaded for debugging. use /EXEC as: DBG, rather than /BEGIN.

3.10-11

:' !

C

,~I

(OMPUT£R AUTOMATION. INC. ~

3.10.4 OS:DBG Command Summary

A

Av

Ba

Ba,b

Be a

Be a,b

Cn b c

D

E

Fa b v

(a

Ja

La b

i\Ia. v w

0

Ov

Pa b

Rn

Rnv

Sa b v

Sa b v

T

X

Xv

x

m

Display pseudo A register.

Set pseudo A register to value v.

Set breakpoint at location a; resume at previous breakpoint.

Set breakpoints at ,locations a and b; resume at previous breakpoint.

Set breakpoint at location a; resume at location c.

Set breakpoints at locations a and b; resume nt location c.

Copy locations a thru b to c and following.

Alter console interrupt to trap to OS: DUG.

Enable modification of protected core.

Fill locations a thru b with value v.

Inspect memory location a.

Jump to location a.

List contents of locations a thru b on LO device.

Modify memory starting at location a.

Display pseudo 0 register.

Set pseudo 0 register to val ue v.

Print contents of locations a thru b on CO device.

Display relocation register Rn.

Set relocation register Rn to value v.

Search locations a thru b for value v.

Search for value v using mask word m.

Terminate as: DBG and return to as.

Display pseudo X register.

Sd pseudo X register to value v.

3.10-12

·W"ftlt"''''bUZ!! &""iip""r"riW"fdd'" W·'Hi"ri if,'" \i.'w" "Ht'W. '11m eM'

e---------------------- COMPUTER AUTOMATION. INC. §!

,-..

. ~.

3.11 OS: DMP - THE OPERATING SYSTEM PROGRAM DUMP UTILITY

\

The OS dump utility outputs the user's program (or other specified area of core memory)
in binary format to the device specified. At a later time the user may than reload his
"dumped" program using the /EXecute command or the system loader (OS: LDTl).

OS: DMP provides the user with the capability of dynamic peripheral device assignment
through the operating system. The program will require the availability and assignment
of the following logical units prior to initiation of the dump process.

1. The SF (system file) unit is required by the system. It is here the system expects
to find the dump program itself.

2. The CI (command input) unit is required for input of the dump option requests.

3.

4.

The CO (command output)' unit is required for printing as: DMP error messages.

NOTE

Units SF, CI and CO will have been used in prior steps and
do not generally require re-assignment at this time.

The BO (binary output) unit is required for output of the binary program generated
by OS:DMP .

(1) >/ ASSIGN BO=PP
>/EXEC OS: DMP

Example (1) is a typical device assignment sequence prior to program loading. The
example shows that the user wishes to dump the current core resident program onto
paper tape through the high speed paper tape punch.

Should the user desire to save his program on the system for later use, he may dump
it to a file device, as in example (2).

(2) >/ ASSIGN BO=MO. TEST4
>/EXEC OS: DMP

The dump utility assumes certain standard conditions at each request for program dumping
A "normal" dump is one in which the current core resident program, both in scratchpad
and main memory, is to be dumped as an absolute binary program. If a "start" address
was available when the user's program was loaded. it will become the start address
of the dumped program.

The user may request. however. thnt the dump utility program dump alternate areas
of core 01' an alternate stnrt address. These alternate values lire enterf'd itS pnrameters
on the /EXEC command line. in any order. nnd separukd by commm;. Each parameter
iH II single wOl'd or two ehurncters. followed by on equal (.) sign and one or two hexlldccl
mnl numbers. The options available are:

3.11-1

~:
'.j

"> .. '1': H r t titt'ti,**tt sttt 1 "rift· it "r t'" t" II n"" os "bfWtMmZM

o

1. SP=XX-yy

2. MM=XXXX-'YYYY

3. ST=XXXX

4. MD=A

5. MD=R

6. CO

COMPUTER AUTOMATION,INC. ~

Outputs the coqtents of the scratchpad from location XX to
and including location YY.

-e

Outputs the contents of the muin memory area from location
XXXX to and including location YYYY.

Includes a start location of XXXX in the dumped program.
If no start location is desired. the hexadecimal value "FFFF"
should be entered,

Outputs the program as an absolute binary file. The program
dumped will reload at the SlIme location. regardless of core
limit variations.

Outputs the program in a binary relocatable format. The e
dumped program may be reloaded at any available core locatioll .
This mode is not available for pl'ograms which require scratchpad
loader linkage. Thus the "SP=" and "MD=R" options are initially
exclusive.

Tells the dump utility that a second dump is desired and causes
OS: DMP to request further input from the CI device after
the current dump request is completed.

(3) >/ ASSIGN BO=PP
:::/EXEC OS: DMP ,SP=AO-FB ,MM=1400-2000 ,ST=FFFF

(4) >-/ASSIGN nO=MO.TEST3
jEXEC OS: DMP ,ST=FFFF ,CO
? / ASSIGN BO=PP
?CR

Example (3) is a dump of core from: AO thru : FB and: 1400 thru : 2000, with no start
address. Example (4) shows how a core resident program could be dumped to magnetic
tape unit 0 and to paper tape. In that example, CR indicntes a carriage return.

An invalid option request will cause the line to be rejected and the dump utility program
to suspend itself. The user can continue by using the /RESUME command. followed
by the corrected options. This is shown in example (5).

(5) >/EXEC OS: DMP ,SP=AO-120
*INV ALID CMND
>/RESUME SP=AO-FB

Should an I/O error occur while dumping, OS: DMP will suspend itself. The user may
then /CANCEL or /RESUME the operntion as he requires. See example (6).

(6) /EXEC OS: DMP
*1/0 ERROR ------
...... /CANCEL

3.11-2

mtt

o

I)

!"herth» , ebf j' j t 'hUt 'H9't"t'nwS" i-d-"tllit' "$ '$ r [,·· .. "*$t1 U rt reewottn " [* '! ,. rI '
r 'to

ComputerAutomation .~

9(j530-00D2

3.12 as: ILD - THE OPERATING SYSTEM INDEPENDENT LOADER

The OS Independent Loader utility will load a user program into memory without attempting
to protect the OS system area. A memory-resident bootstrap routine which may be entered
by the user program will cause reloading of the Opernting System. Thus OS: ILO provideR
a convenient method of loading and executing a non-OS program "from nn OS-labelled
bulk device.

as: ILD is unique as an as utility in that it begins execution under control of OS. then
relocates itself to high memory and continues as a 'free-standing louder. which allows
OS to be destroyed. if necessary. during the loading of the user's program.

NOTE

Because of the special nature of DMA data transfer to high memory
locations, correct loading from a disk file requires certain hat;dware
revision levels (applicable to ALPHA/LSI-2 Processors only) .
These revision levels are listed at the end of this section. If the
user's system is of a lower level than shown. an unrecoverable
error may occur during loading (Halt =: 0887. X register =: 0001;
see Error Handling below) .

OS: ILD requires the availability and assignment of the following logical units prior to
its execution.

1. The SF (system file) unit is required by the system. The system expects to find
OS: ILD here.

2 . The CI (command input) unit is required for input of the /EXECUTE command and
utility option requests.

3. The CO (command output) unit is required for the publication of utility errol' messages.

4. The BI (binary input) unit is required for input of the file to be loaded. (The Bl
unit may also be assigned via parameter input--see below.)

The following limitations apply with respect to the user program that is to be loaded.

1. It must reside on a file-type device (OS-labelled disk, magnetic tape, or cassette) .
Input from paper tape or o.ther non-bulk device is not supported.

2. It must be a binary or object program containing only the following type codes:

Hex Code

: 1
: 2
:4
: 6
:8
:18

~
Begin program
END absolute
aRC absolute
DATA absolute
RES and store constant
LSI-3/05 Begin program (only if "1'3" parameter requested)

This means thut a program containing external references and/or REL org-'ed data must
first be passed through as: LNK in ABS mode (AB=option) before being loaded by as: ILD.

3.12-1

l.!
t,1

I

I

'I

.. ,'

'Adj$ '9',.,1 reltft'HW'r 'MttMwttt,» "twv' iwt' ert't H't' 'd'f"'tfN t 'POO"ert@'tt:ot'mWfWtI!M'rM!!!!"MW"WfutC., ·tt t r rtt

ComputarAutomation ~ --e
96530-00D2

3. A program containing more than one EN D type code - - for example. one produced
by the Binary Dump program (BDP) -- may not simply be copied to a file-type device
using as: CPY, because as: ILD will terminate any subsequent load upon encountering
the first END type code. Avoidance of this problem is guaranteed if the prolfrnm is
written to the file-type device using as: LNK, rather than OS: CPY .

Calling Sequence

as: ILD is invoked by one of the following command sequences:

/ ASSIGN BI=PID .NAME
/EXECUTE as: ILD[.NX, 1'3]

or
/EXECU1'E OS:ILD,PID.NAME[.NX,T3]

where PID is the as physical device (Dn. Mn, Fn or Cn) containing the user's program
• to be loaded (N AME) .

NX (no execution) is an optional parameter. signifying that the loaded program is not
to be executed; a coded halt will be executed upon completion of loading. If NX is not
specified, loading will automatically be followed by execution of the user's program.

"T3" (LSI-3/05 program) is an optional parameter signifying that the program to be loaded
is in LSI-3/05 binary format. While such a program would not normally be executed (since
as does not currently run in an LSI-3/05), a non-executing load can be useful in some
instances as a tool for verifying loadability, making patches, and/or transferring the
loaded memory module into an LSI - 3/ 05 processor.

Program Operation

The /EXECUTE as: ILD command causes as: ILD to be loadpd by as into the normal user
area above the operating system area. as: ILD then processes the parameter options, if any,
and internally constructs a short bootstrap routine which can reload as. The Operating
System, for the bootstrap's purposes, is assumed to reside on the device which is default­
assigned to the SF unit (that device assigned to SF when a/JOB command is executed).

Absolute location
: 0000

:nFFF

Scr:,tchpad
•

Operating System Area

as: ILD (as originally loaded (Area A)

Loader and input buffer (Area B)

BI device driver (Area C)

OS Bootstrap routine (Area D)

3.12-2

zen

,.

ComputerAutomation ~ -
96530-00DO

The BI-assigned device is then OPt:Ned. and the first record of the user's file is read,
via IOCS , into an input buffer within OS: ILD .

The essential portions of OS: ILD are then re-located into the highest possible memory
locations. and control is then transferred to that area for completion of the load process.

At the point when execution is commenced in high memory (after portions of Area A arc
moved to Areas B, C and D), all interrupts are disabled and coded halt instructions are
stored into the power-up and power-down locations. Each record of the user's program
is input by means of a short, sense-driven I/O sequence rather than the standard OS
input routines. Since at this time the original OS: ILD (Area A) and the Operating System
itself are no longer needed, the user has the major portion of memory (from location: 0000
up to Area B) available for the loading and execution of this program. The size of Area
B is fixed at approximately 404 decimal words in length. Areas C and D vary in size, e depending on the BI and SF device assignments:

o

o

Area C approximate word length (decimal):

If BI assigned to disk - 83 words

If BI assigned to floppy disk - 91 words

If BI assigned to magnetic tape - 64 words

If BI assigned to cassette - 192 words

Area D approximate word length (decimal):

If SF default - assigned to disk - 19 words

If SF default - assigned to floppy disk - 22 words

If SF default - assigned to magnetic tape - 28 words

If SF default - assigned to cassette - 28 words

Thus in the worst case, where BI and SF are assigned to a cassette unit, all but the last
624 words of memory are available to the user's program.

Recalling OS

Upon completion of loading, the user's program is entered (unless the NX option was
specified) with the X register containing the address of the bootstrap routine (Area D) .
This address is also stored in the last (highest) location of memory. Thus if the uscr
wishes to recall the Operating System after his program has executed, his program should
either save the contents of the X register upon entry, or include an address pointer within
his program which points to the last memory location. Any subsequent entry into the
bootstrap routine will cause immediate loading and execution of OS.

3.12-3

1

,I

I

I

NnW"" . 'S" i# rt t' '. t l , '''tt,·tWi t *)M·'tn·· U'S.?:,' ttrthrl,udrtrU¥ 't bt.ie-H ''b #i'I'!fl'«Hi!e!vHlrriMtl .. PIt't' "f W"·'Wi"H

.

ComputerAutomation ~ -~I-
96!130-00D2

Error Handling

During the preliminary operation of OS: I LD in low memory. while under OS eontrol.
the standard OS error handling procedures are in effect. The following error mesmlioH
will be output to the CO device upon occurrence of the described error:

ILLEGAL PARAMETER

An illegal parameter was input. The only acceptable parameters are the bulk device
and user program name. and/or "NX" signifying no execution. and/or "T3" signifying
an LSI-3/05 program. Enter a /RESUME command. followed by the correct parameters.

ILLEGAL BI DEVICE

The BI logical unit is' not assigned to a disk. magnetic tape or cassette device.
/ ASSIGN the BI unit to the proper device and /RESUME .

I/O ERROR

An I/O Error has occurred on the first record of the user program. input under
control of 10CS, /RESUME to retry the I/O operation.

Once as: ILD has been relocated to high memory and is no longer under as control.
error indications are output by means of the following coded halt instructions.
These halts (except : 880 and : 881) are also displayed on the LSI console register:

Halt Description/Recovery

: 880 Location: 0000 was executed during the load process. indicating a power
failure may have occurred. as must be reloaded through the console. and
as: ILD re-executed.

: 881

: 882

: 883

: 884

: 885

Location: OOIC (the power-down interrupt location) was executed during
the load process. indicating a power failure may have occurred, as must
be reloaded through the console. and as: ILD re-executed.

The first type code of the user's file was not a "Begin Program" type code.
.. indicating that the file is not in correct binary format; n source file. for

example. will cause this condition. The X register contains the incorrect
type code in bits 0-7. Depress RUN to reload as.

The two input characters following the "Begin Program" type code are not
zei'O. indicating that the file is not in correct binary format. The X register
contains the two erroneous characters. Depress RUN to reload as.

An illegal type code (not: 2. : 4, : 6 or : 8) was encountered. The X register
contains the illegal type code in bits 0-7. Depress RUN to reload as.

This halt will occur in the bootstrap routine to reload as. if the SF default­
assigned device was not disk. magnetic tape or cassette upon entry to as: ILD.
as must be reloaded vin the console.

3.12-4

;1

:1

1

'HNri!fttl::n= 'r It 1M' tit 'f' •• 4 tiWtrtWff&' "rW" 3 ! b j 11' Hit *'r' ifrU 'l'bbri'bieH , d :1"±Wttt'bW'tm'tw en' t W H n itt t h tWU'W,'"H "',ijt''a'Ir'.ttW

e
~ I

o

ComputerAutomation ~
965:W-OODO

: 886 Memory overflow. An absolute load address in the user's program is not
less than the start of as: ILD in Area B. or it is a negative value. The A
register contains the start address of Area B. and tho X regifoih.w ('nntnill~
the illegal load address. Depress HUN to reload as.

: 887 Disk I/O error. unrecoverable after ten retries. The X regil:;tcl' ('ontains
the error status, represented by one or more" 1" bits, corresponding to
the following statuses:

: 888

: 889

Bit 0 = 1
Bit 1 = 1
Bit 2 ::: 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit 6 = 1
Bit 7 = 1
Bit 8 ::: 1
Bit 9 -= 1
Bit 10 ::: 1
Bits 11 - 15

Continuously busy
Disk address 10 miscompare
ID eRC error
Data CRC error
End of cylinder error
Head address error
Rate error '(transmission error)
Timeout error (incomplete operation)
Drive not on-line
Drive unsafe (write eheek)
Seek error
Unused ~lways zcro)

Depress RUN to reload as.

Magnetic tape I/O error, unrecoverable after ten retri.es. The X register
contains the error status. as follows:

XR ::: : 0000
XR = : 0001

Tape unit off-line
Parity error

Depress RUN to reload as .

Cassette I/O error. unrecoverable after ten retries. The X register contuins
the error status. represented by one or more n 1" bits, corresponding to the
following statuses:

Bit 0
Bit 1 = 1
Bit 2
Bit 3 = 1
Bit 4 ::: 1
Bits 5 - 6
Bit 7 = 1
Bits 8 - 15

Unused (zero)
Cassette unit off-line
Unused (zero)
End of tape (runaway)
Parity error
Unused (zero)
Track A address error
Unused (zero)

3.12-5

'I
I

C', 't*it '¥'''It''il''Mittlrw'''*'r "It 'NH't tHe, w1,," 1 .. '. . ' , iT' tEO 'i'W'ifhw 0eN "ti,!,!t '!:!i &\t':i:! %!!h:ffrt'tteebt"'\"

: 88A

~96~D~·
Floppy disk I/O error, unrecoverable after ten retries. Thc X registcr con­
tains the error status, represented by one or more" 1" bits, corresponding
to the following statuses:

Unit not ready
DMA rate error
End of cylinder word count not equal to zero
Attempt to write on write protected unit
Disk ID miscompare
ID CRC error
Data eRe error
Sync error
Non-deleted data encountered
Deleted data encountered
Operation Complete
Cylinder zero sensed
Reserved
Unit write protected

: 8FO The user's program was loaded successfully, but not executed because no
start address was present on the file. The X register contains the as bootstrap
address. The user must start the program via the console.

: 8FF The user's program was loaded successfully, but not executed because the
"NX" option was specified. The X register contains the as bootstrap location.
The A register, if positive, contains the user program start address. If
negative, no start address w as found on the file. (At this point, the A register
contents may be altered to reflect any desired start address). Depress RUN
to enter the program at the address contained in the A register. The processor
conditions upon entry to the user's program are:

Word Mode
Overflow Reset (off)
Interrupts disabled

as: ILD Required Hardware Revision Levels

73-53500 LSI Motherboard

If level "e" board, revision C6 or higher is required.
If level "B" board, revision B6 or higher is required.
No level "A" board may be used.

73-53506 LSI-2 Processor Full Card

All level"D" boards are acceptable.
If level" C" board, revision C24 or higher is required.
If level "B" board, revision B19 or higher is required.
If level" A" board; revision A24 or higher is required.

3.12-6

It,
~.

liM t 't' -r" !"'rs -b 'j j'";wtrihv¢'t' i'ifu 'fft'br,',# '''''* W,'&t'fftwttMtt'ty

o

o

73-53507 LSI-2 Processor Half Carel

If level "B" board, revision Bll or higher is required.
If level" A" board, revision A9 or higher is required.

73-53531 LSI Disk Controller

If level "B" board, revision B7 or higher is required.
If level" A" board, revision A6 or higher is required.

73-53566 LSI Floppy Disk Controller

If level" D" board, revision D2 or higher is required.
If level" C" board, revision C5 or higher is required.
If level "B" board, revision B5 or higher is required.

3.12-7

965:W-OOD1

o

e~----------------------

3.13 OS:HDR - THE OPERATING SYSTEM PAPER TAPE HEADER UTILITY

OS:HDR uses the High Speed Paper Tape Punch to generate Eyeball Headers and other
information, based upon literal and symbolic parameters. Ordinarily, OS:HDR is
executed just before some other program which punches a data file, such as OS;~N~ or
OS:CPY, but it may be used to synthesize a complete, usable segment ot tape -- fQ{

example, a special Bootstrap.

An Eyeball Header is a length of paper tape containing binary configurations, meaning-i
le!?s as data, but arranged so the holes form readable characters. Here is an example: i

II~ . ~. : : ' ~'~." .-~~ ~. =~~':".~' ~.~~' ... -.................... :I
••• •• •• ••••• •••• •••• ••• ~o \' (..0. · · e.... <t ~_.-!.<t.:._::. __ J

Any paper tape record read thru CA-supplied software is ignored until a Rubout (:FF)
is reached. The 5 by 5 matrix used for each character in an Eyeball Header can never
be mistaken for a Rubout, which punches all the channels in one frame of tape.

OS:HDR requires no assignment for its punched output -- it bypasses IOCS and writes
directly to Device Address :06, which is assumed to be a High Speed Paper Tape
Punch. All commands are entered thru the standard OS parameter mechanism -- appended
to the commands /EXEC, /BEGIN, or/RESUME, or supplied in response to a console query.

Commands for OS:HDR fall into 4 categories:

Control -- NL, TE, Logical Unit
Symbolic -- DA, TI, VN, FN, CD, CT
Text Literal
Hex Literal

The rules for punctuating a command are consistent for all categories. A Back Arrow
cancels the immediately preceding character, allowing error correction. A Carriage
Return terminates the current record on the Command Input device. A Back Arrow
irnnlediately before a Carriage Return cancels an entire record. All Line Feed char­
acters are ignored. These rules are standard for OS parameter entry to all programs.

A Comma must be used to separate each command from the next.

If it is necessary to continue across several CI records, OS:HDR requires a Semicolon
as a continuation mark, immediately following the last command in a record.

2!EXEC OS:HDR,NL,DA;

?'DIAGNOSTIC 210';

2,.TI,TE

3.13-1

,

M"" t'tH '±ie t
" ti' "iHHff]« it 1" n,ev* . f H "2

CONTROL COMMANDS

NL

No Leader. Ordinarily, OS: HDR runs out 6 inches of empty tape before' anything is
punched. If this command precedes all non-Control conunands, no leader- will. PC!
punched. If NL is entered after punching has started, it is ignC?red.

TE

Terminate OS:HDR. This command must be entered eventually, else OS:HDR will continue
to demand more records from CI. No empty trailer is punched, but it may be generated
explicitly thru a series of blanks in a Text Literal.

Logical Unit

This command consists of any standard 2-character OS Logical Unit Name, such as 51, e
UO, Db, and so on. Before executing OS:HDR, the Logical Unit is assigned to whatever

• file is to be referenced when the commands VN, FN, CD, or cr are used.

o SYMBOLIC COMMANDS

Each of these 2-character commands will cause the immediate punching, in Eyeball
format, of some useful information. The segment of tape punched by each Symbolic
command is preceded by a few empty frames, to ensure clarity.

DA

Punch the current System Date, in the OS /DATE format, aa/bb/cc.

TI

Punch the current System Time, in the OS /TIME format, hh:mm:ss.

VN

Punch the Volume Name of the magnetic medium to which the previously specified
Logical Unit is assigned.

FN

Punch the File Name to which the Logical unit is assigncd.

CD

Punch the Creation Date of the file to which the Logical Unit is assigned.

CT

Punch the Creation Time of the file to which the logical Unit is assigned.

I f thl~ Loq ical Unit is not a magnctic device, the command~; VN, FN, CD, and C'l' are
jgl1ored.

3.13-2

e

I
I

'!

.. :

w'e y' tttbY

o

o

," t Ut"&R'ti'itttttWt';·dU H'¥' kW*, '1 t It l 'bin WiY't'). "I 1 *' "l!'Umi'ft WM'!!'

TEXT LITERAL COMMANDS

Each character in a Text Literal is punched in Eyeball format. The Text Literal is
delimited by a preceding and a following Single Quote character. If a Single Quote
in Eyeball format is needed, it is represented within a Text Literal by the usual
convention of using 2 Single Quotes successivelY.

OS:HDR can translate any printable character in a Text Literal into Eyeball format,
including letters, numerals, punctuation marks, and blanks. A Hex Literal can be
used to generate any pattern of holes, including readable patterns, which might be
useful for special applications.

HEX LITERAL COMMANDS

A Hex Literal supplies characters to be punched in normal binary representation, not
in Eyeball format. The paper tape is not spaced out before or after the segment
punched for a Hex Literal.

A Hex Literal has a leading Colon, just as in the Assembler Language, and is termi­
nated with a Comma or Semicolon like any other command. The Colon must be followed
by an even number of hexadecimal digits. These commands are all valid:

:01
:0000
:123456ABCDEF0033l0

I Frame
2 Frames
9 frames

An odd number of hexadecimal digits, even 1 or 3, is not acceptable, because OS:HDR
is punching tape frames, not values, and expects 2 digits per frame.

EXAMPLES

1. An existing file on DO, named XYZ, will be punched onto paper tape by OS:CPY. We
use OS:HDR to generate an Eyeball Header first, so anyone handling the tape will
know what's on it. OS Logical Unit Sl is arbitrarily selected as the connection
between the /ASSIGN and the request that the Eyeball Header include the File Name
and creation Date. There is no need to run out any tape after the header, because
OS:CPY -- and any other normal program -- will feed some empty tape before the
actual data is punched.

2.

IJOB
IASSIGN Sl=DO.XYZ
/EX OS:HDR,NL,Sl,FN,CD,TE
/EX OS:CPY,CS,DO.XYZ,PP,TE
INJOB

A series of Object Programs will be processed thru OS:I.NK to create a new Binary
Output. We cannot ask as :HDR to ,v-:cess the File Name and Creation Date, because
th'ey don't. l!xist Yl't, but we ('an supply the name in a Text Literal, and use the
current ~ystem Date.

IJOB
/ASSIGN BO=PP
lEX OS:HDR,'PCTEST' ,DA,TE
lEX OS:LNK

3.13-3

o

Mirrtir1tmetrtfUMt# rtt' 'tt: '1 e: Wt d'" t'W1ri!Wttttt tr rd t): tt" 1 Nit WeiW Pl" ' ! S" d"f &I' r M ' . f 't

Messages on Command Output Unit

OS:HDR (nn)
Program execution has started. Version number is nne

OS:HDR END
Program execution has ended, after the processing of a TE c~mmand.

After each of the following messages, OS:HDR will be in a Suspended status. Check
the paper t~pe already punched, and the last command successfully processed. Either
enter /RESUME with all the commands still unprocessed, or /CANCEL.

FILE NOT FOUND IN VTOC
The Logical Unit is assigned to a non-existent file.

INVALID CONTINUATION CHARACTER
A command line ends with something other than a Semicolon or a TE command.

INVALID HEX DIGIT
All of the preceding valid frames in the Hex Literal have been punched, but the
invalid hex digit pair, and all command information following, must be supplied
on the /RESUME.

INVALID LOGICAL UNIT
A command was not a Literal or Symbolic parameter, and does not appear as a valid
Logical Unit Name in the OS now running.

INVALID TERMINATOR
A command ends with something other than a Comma or a Semicolon.

I/O ERROR
OS has detected an error condition during I/O processing.

NO CONTINUATION
All commands have been processed, and the last command is not TE.

ODD NUMBER OF HEX DIGITS
The last character of a Hex Literal was not usable. The first command on the
/RESUME line should probably be another Hex Literal to specify the intended
frame.

UNACCEPTABLE CHARACTER IN TEXT LITERAL
No Eyeball conversion was available for this character. The Text Literal, and
all command information following, have been abandoned at this point.

VTOC NOT FOUND
The Logical Unit is assigned to a magnetic device, but no VTOC could be found.

3.13-4

~"'

o

- • !erM'NW .'ft.*" ct M •

41-------------------------

Paragraph

3.14.1

3.14.2

3.14.3

3.14.4
3.14.4.1
3.14.4.2
3.14.4.3
3.14.4.4
3.14.4.5
3.14.4.6
3.14.4.7
3.14.4.8

3.14.5
3.14~5.1

3.14.5.2
3.14.5.3
3.14.5.4
3.14.5.5
3.14.5.6
3.14.5.7

3.14.6
3.14.6.1
3.14.6.2
3.14.6.3

3.14.7
3.14.7.1
3.14.7.2
3.14.7.3

3.14.8
3.14'.8.1
3.14.8.2
3.14.8.3
3.14.8.4
3.14.8.5

3.14.9
3.14.9.1
3.14.9.2
3.14.9.3

I.]1\. 10

3.14 OS:EDT- OPEpATING SYSTEM TEXT EDITOR

SECTION TABLE OF CONTENTS

INTRODUCTION

USING THE TEXT EDITOR -- A SHORT COURSE

LOGICAL UNIT REQUIREMENTS •

THE EDITING PROCESS
Command Lines •
The Text Region and the Cursor •••• ' •••..
The Save Region and the Command Region
Reference Points

Page

• 3.14-1

• 3.14-2

3.14-5

· 3.14-6
• 3.14-6
• 3.14-7
• 3.14-7
· 3.14-8
• 3.14-9 Context Scanning

Moving the Cursor •
Checking the Cursor Position
Supplying New Text in Command Lines •

... 3.14-10
3.14-12

RECORD GROUPS
Record Group Parameters . •
Replacing a Record Group
Deleting a Record Group •
Record Group Output • . .

• 3.14-13

• 3.14-15
• 3.14-15
• 3.14-16

· • 3.14-17
· • 3.14-18

Formatting of List Output for Assembler Language. 3.14-18
3.14-19 Record Group Input

Next Record Group •

RECORD LOCATIONS
Record Location Parameters
Inserting 'Records . • . • • • •
Using the Save Region .

· • 3.14-19

3.14-20
· • 3.14-20
• • 3.14-21
• • 3.14-22

CHARACTER EDITING. • . • . • • • • . • 3.14-23
Character Group Parameters. . • 3.14-23
Character Modifications Controlled by Position ••• 3.14-24
Character Modifications Controlled by Context. • 3.14-26

SPECIAL FACILITIES
Command Loops ..•.••••..••••••
File Handling -- Opening Blocked Files • • • •
File Handling -- Saving and Releasing Files •
Suspending the Editor •
Terminating the Editor .•

MESSAGES
Message Detail
Error Mesages •
Warning Messages

• • 3.14-27
· • 3.14-27
• • 3.14-29
• • 3.14-30

3.14-31
· • 3.14-32

• • 3.14-33
· • 3.14-33

3.14-34
3.14-35

'{'EX'l' l-:DT'l'OR COMMAND SUMMARY • . • • • 3.14-36

3.14-1

.HW t t'otd WttMrt'etre'MW·MNI"fflt1#lrfmett jets f '$ fNtR t ttY WNW 't It #$":1 t 'ti #h t"Met, (;'t""!I±tttreettUtrHW@mUWne .. grgtttW"'tttblt''t'M,.ra"j t1$'1," MIotHhr'Wf lIM'M

41-------------------------
......

o

o

..
3.14.1 INTRODUCTION

OS:EDT is a conversational utility for the creation and rnaintendnce of files. Any OS
sequential file can be processed thru OS:EDT if it meets these conditions:

Eaoh record contains no more than 128 bytes.

The file is "Symbolic" rather than "Binary"
Object Code or unformatted FORTRAN output.

it contains printable data, not

Some features of the Text Editor are specially provided for files containing Assembler
Language or FORTRAN Source Programs, but the Editor can be used to generate documents,
test data, OS command files, or other text separated into distinct records.

Contiguous groups of records can be transferred on command between 2 input files, 2
output files, a printer, and the operator's Teletype. Records can also be 'segregated
into 2 dynamically bounded regions of computer memory.

Any record in memory can be located explicitly or by a character-scanning mechanism.
Any sequence of characters in any record can be modified, or whole groups of records
can be inserted, changed, and deleted by random access.

3.14-1

" rtfn &' til 'if 'W ttl f'ttrttgIt"M#II.n.nffflW t

3.14.2 USING THE TEXT EDITOR -- A SHORT COURSE
ri

11 The next few pages will present a Short Course on the Text Editor -- a stripped-down
~! version of the facilities used to work with an old file and its listincl.
II
l'

o

The Text I~Qito{ has 3 features which distinguish it from mostfilc-pl"oceSIl~n9 VJ'o­
grams.

First, records are not read, processed, and written one at a time. In.st(-Md, memory
is filled with as much input as possible, records are edited in an arbitrary order,
and the whole result is written out at once. This cycle is then repeated until tht'
cumulative output file is satisfactory.

Second, a record in memory is identified not by where it is, but by what it looks
like -- that is, not by a number, but by any distinctive sequence of characters con­
tained in the record.

Third, once the Editor has been pointed to a record, replacements, deletions, and
insertions can be made either to the whole record (and those following it), or to
characters within the record.

The Editor's functions are controlled by command lines from the Teletype keyboard
some letters and symbols, ending with Carriage R&turns. A few rules for command
lines must be covered first.

A conunand consists of a single letter, optionally followed by some spaces for easy
reading. These commands will appear in the Short Course:

N v p o I c L T

When a command needs some additional information -- a parameter
is used after the command letter:

$ # 'SOMETHING'

one of these forms

The first three parameters each identify a record previously read into memory:

$ First Record now in memory
Last Record now in memory

Current Record being pointed at

The form 'SOMETHING' represents any sequence of characters, and must be supplied to
the Editor with a preceding and a following Single Quote. If a character in the
sequence is itself a Single Quute, it must be represnnted by two successive Single
Quotes: .

'DOG'
'DOG AND CAT'
'AND THAT" S THE TRUTH '

A typing error can always be corrected with a Back Arrow, which cancels the preceding
character:

ABCQ-DE is the same as ABCDE
JKLM98--NO is the same as JKLMNO

A Back Arrow at the end of a line (just before the Carriage Return) cancels the whole
line.

3.14-2

"MbW¥'W¥flft(j]·in +Wa,w'r6ffli .. MfW""Pe·!Ht'MM ... ih'i'ihM·'Y w 'r-r't1tl".« Hi'" W"' '6t'r*hhl''+'n''Mh'" '>w,l "I"!t/'IIYirl'i')," 1 \ I-b"k' t" ~ ;"I,':trl"#II±Wi#t1i:lb'¥'N'± "

e~-----------------------
Now we're ready to edit an ex.isting file, working from an old listing.

1. Make these assignments:

sr Source Input -- the existing f~le
SO Source OUtput -- the new file for the edited result
LO List OUtput -- the Line Printer

2. Execute the Text Editor. Each new command line will be requested with a Question
Mark.

3. Read in a piece of Source Input, and verify the First Record and the Last Record:

N V$ V#

If enough memory was available to hold the entire Source Input file, the informa­
tive message END OF SI FILE will appear before the First Record is displayed.

4. Point forward to the next record to be modified, poir.t at the start of that
record, and verify it:

P 'SOMETHING' P. V.

5. To delete a sequence of existing characters, and close up the gap:

6.

D 'SEQUENCE'

To delete the entire Current Record:

D.

To delete the Current Record and (for example) 3 more records following it:

D.+3

Any number from 1 to 32767 can be used.

To insert some characters after a sequence of existing characters:

I 'OLD SEQUENCE'

To insert some records after the Current Record:

r.

The Text Editor will ask for the new characters or records with a T? type-out.
Use Carriage Returns to separate new records. The rules for Single Quotes, dnd
for Back Arrows, still apply. Terminate the new characters or records with a
Single Quote and a Carriage Return:

T?NEW RECORD 1
T?AND THAT"S NEW RECORD 2
T?'

3.14-3

1''' i 1&(",' 'W'w ... MMj"" g' t' "f "", i, «"'IP",.. "tff '¥ \oj??\, ill y'" 'j '''k''H4'bW ,r'4M'''! wt'W!11 i:!lMw*IIf!!W Ii Wi'

---e
7. To change a sequence of existing characters:

C 'OLD SEQUENCE'

To change the entire Current Record:

C.

To change the Current Record and (for example) 3 more records following it:

C.+3

Enter the replacement characters or records as described for I commands in Step G.

8. To continue working forward thru the records in memory, go to Step 4.

9. To list all the records in memory, as a check on the current results:

L$#

10. If some corrections have been passed by, point at the start of the First Record
in memory again:

p$

Now go back to Step 4.

11. When all the records in memory are correct, go back to Step 3, which will write
the records to the Source OUtput file and make room for more input.

12. When all processing is completed, returning to Step 3 will result in the message
TEXT REGION EMPTY. Close all files and terminate the Editor with this command:

T

This concludes the Short Course. A detailed formal description of the Text Editor ~
follows.

3.14-4

i
1

· ... s'" ., tI&1'1 '.' #""XU" »'t'htHlttm:rwt' * notWt! Wrlct'

'---..

•

o

o

3.14.3 LOGICAL UNIT REQUIREMENTS

CI (Command Input)

Required for Editor commands. Ordinarily the Teletype keyboard, but any non-magnetic
input file can be used.

CO (Command OUtput)

Required for Error and Warning messages. Ordinarily the Teletype printer, but a line
printer can be used. A magnetic device is not acceptable.

LO (List OUtput)

Required only if the L command is used for listing of text records. Must be a
printer; a magnetic device is not acceptable.

SI and SA

Primary and Alternate Inputs. Required only if the commands for each file are used
-- Rand N for Primary Input from SI, A for Alternate Input from SA. Any input device
can be used for either file, or for both. Each file can be blocked or unblocked; the
maximum record size allowed is 128 bytes.

SO and 51

Primary and Alternate Outputs. Required only if the commands for each file are
used -- Wand N for Primary output to SO, 0 for Alternate OUtput to Sl. Any output
device can be used, including a printer or a punch. The maximum size for an unblocked
output record is 128 bytes. Magnetic device output files are automatically blocked
in the standard Source File format -- 80 bytes per record, 960 bytes per block.

3.14-5

)1

o

111 • w . , ,_"tte kg • •

-e
3.14.4 THE EOITING PROCESS

3.14.4.1 Command Lines

Communication with the Text Editor is thru command line~ -- complete lOfJical reco:rqt.;
on the device assigned to CI. If CI is the Teletype keyboard, each new comm4nd line
will be requested with a Question Mark on CO, which is ordinarily the Teletype
printer. CI can be assigned to any unblocked file; only the first 72 characters of
each record are used.

If the command lines are being supplied thru the Teletype keyboard, the usual as rules
for punctuation apply. A Back Arrow cancels the immediately preceding character,
allowing error correction. A Carriage Return terminates the current command line. A
Back Arrow immediately before a Carriage Return cancels the entire line.

Each command line can contain any number of commands, and typically has 2 or 3 related
commands. Each command is a single character, which mayor may not ~? followed by a

• parameter. Most commands are alphabetic, and no parameter can ever start or end with
an alphabetic character. As p. result, commands and parameters can be spaced out for
easy reading, or squeezed together for faster typing. These examples -- all of
which are equivalent -- demonstrate some of the possibilities for a command line:

R o + 3 P 'ABC' x + 4 o

RD+3P'ABC'X+40

R D+3 P'ABC' X+4 0

The last line shows the style used in this publication for most examples -- parameters
close to their commands, commands separated by one or two blanks. Examples will
always have output from the Editor underlined, to distinguish it from command input.
In certain cases, the letters "cr" will be used to emphasize that a Carriage Return
(or some other way of ending a record onCI) is a significant part of the example.
Explanations for each command will always appear to the right of a command line:

?R F'GO' I cr Read some Primary Input.
Find the label GO.
Insertion will be supplied on next command line.

Once the Text Editor has obtained acornmand line, each command is validated and
processed successively. This means that a line with G commands -- 2 good, 1 bad, 3
good -- will cause 2 complete Editor actions, followed by a diagnostic message and
the cancelling of all the rest of the line.

If an error occurs somewhere beyond the first command on a line, the Editor will ~og
out the already processed commands, with a Question Mark where the line was abandoned.
In this example, the non-existent command "z" is used after some valid commands and
parameters:

? R D+3 P-l Z V W cr
ElO INVALID COMMANO
R D+3 P-l ?
?

Command line entered.
Diagnostic message.
Commands already processed, and rejection.
Editor is ready for a new command line.

Diagnostic messages from the Text Editor are numbered and charted for ready reference
at the end of this program description.

3.14-6

..

i

-I

ComputerAulomation ~

3.14.4.2 The Text Region and the Cursor

The highest memory available to the Editor is used for an area called the Text Region.
Most Editor conunands -- for input, record or character modification, and output -­
rofer to some point within the Text Region.

Input is not performed on a record-by-record basis. Instead,' a large pic~e of the
input is transferred by one command -- enough to fill the Text Region. Then each
command to change a record or a character can arbitrarily access any datd in the
entire Text Region; there is no requirement that a relative order be observed.
OUtput conunands can specify any group of records in the Text Region, skipping back
and forth as needed. The editing process is repeated on each successive piece of the
input until a complete cumulative output file has been created.

Associated with the Text Region is a variable location pointer, called the Cursor.
As various conunands affect the Text Region, some specific character, somewhere in the
Text Region, always has the Cursor "under" it. The Cursor can be at the start of any
record:

RECORD C RECORD D RECORD E

The Cursor can be under a character in the middle of a record:

RECORD C RECORD D RECORD E

The Cursor can be attached to a record, but under a pOSition just beyond the last
character:

RECORD C RECORD D RECORD E

As the Cursor slides under a record, or jumps from one record to another, the position
over it is called the Current Character. Several Editor conunands refer to the Current
Character, and assume that previous conunands have already moved the Cursor to the
right place. Similarly, the record in which the Current Character is embedded is
called the Current Record, and several commands expect the identity of the Current
Record to be established by previous conunands.

(l: 3.14.4.3 The Save Region and the Conunand Region

To move a group of records from one point to anot-her within the Text Region, and for
other special purposes, the Editor provides a dynamically allocated area called the
Save Region. The memory involved is immediately under the Text Region, so the more
the Text Region expands, the more the Save Region contracts, and vice versa.

No input, output, or editing can be done on records in the Save Reqion, which is
affected only by the two commands Sand U -- that is, Save and Unsave. For further
detail, refer to section 3.14.6.3, Using the Save Region.

The fixed part of the Text Editor includes an 72-byte area called the Conunand Region.
l\ :;pccial conunand -- F. -- informs the Editor that the next record on the CI fil(' is
t" be copied into the Conunand H('qion and held for future use. Later, another ('onunand
-- X -- can use the eJltin' Command Region dl;; if it were a su.broutine of the Editor.
I'\'r fnrflwr detail, refer 1.0 secti.on 3.14.8.1, Conun<.llld Loops.

3.14-7

;1
\,
;,

r
t
:~

~I

~I
II
"

k"trr,t=ttNZ #'; "eew*1' t t :".rn.*w#' .. ,rnuwtutt" *rtW'Mr _==,n.,,1.

o

- e
3.14.4.4 Reference Points

A Text Region record can be identified in terms of its location relative to a
Reference Point. There are three Reference Points, and each has a special character
to symbolize it in all command parameters:

$ First Record

Current Record

Last Record

There are no records before the First Record, and no records after the Last Record.
The identities of these records can change at any time, however, as insertions and
deletions are applied to either end of the Text Region.

Here are 5 Text Region records, and all the symbolic parameters by which they can be
• identified. Which Reference Point is used in a command is really a matter of style

to the Editor, they're all equivalent.

Text Region Relative to
Data First Record

AlAI $

B2B2 $+1

C3C3 $+2

D4D4 $+3

E5E5 $+4

Relative to
Current Record

.-2

.-1

.+1

.+2

3.14-8

Relative to
Last Record

#-4

#-3

#-2

#-1

, I

i I)

c

'#1*1 trW IH·W' i!t1ti'Mtffl,'fflMh'tttr WilttW!t!!t!ejjg#tIW ,' F meOh"'ti2lr'WIiMbtt?tN !rime oj 'ttffl'wnttt" »_t, s*,w"'#' ti''"*.ww. ww ,ew t Mlm.' ri:tr. 1'* _ "'1

ComputerAutomation ~

3.14.4.5 Context Scanning

A Text Region record or character location can be identified by its context. rulY
distinctive sequence of characters, called a Context String, can be used as the
parameter of most Editor commands. The Editor will scan from the current Cursor
position, right thru to the end of the Text Region if necessary, unl il an exact match
is found for the Context String.

A Context String is delimited by a preceding and a following Single Quote. Within
the string, a Single Quote is represented, as usual, by two successive Single Quotes.
The rules for error correction with a Back Arrow still apply. A Context String
cannot be spread over several command lines; it is limited to the same li.ne as the
command for which it is the parameter.

For a sequence of Text Region characters to match the Context String, they must all
appear within a single record. A sequence which is split across record boundaries
will never satisfy a context scan.

Suppose the first 5 records in the Text Region look like this:

ABC45678
90l23ABC
45ABC678
90l234AB
C567890l

If the Cursor has been positioned at the very start of the Text Region, then a scan
for the Context String 'ABC' will be satisfied immediately. If the Cursor is past
the first 'A' in the first record, the next match will be the last 3 characters in
the second record, and the next after that will be in the middle of the third record.
The 'AB' and the 'c' split across the fourth and fifth records cannot match the
Context String 'ABC' regardless of the command involved.

If is often convenient to specify that a position within a Context String can match
against any character. A Question Mark is used in each "Don't Care" position.

ABCDEFG
AB.DE:G
AB DE G

For an occurrence of anyone of these sequences, the appropriate Context String would
be:

'AB?DE?G'

Context Strings with Question Marks are usually part of Command Loops, as described
in section 3.14.8.1.

3.14-9

3.14.4.6 Moving the Cursor

The Position command -- P -- moves the Cursor to any record or character location in
the Text Region. The Find Label command -- F -- moves the Cursor to a record with it

specified Assembler Language or FORTRAN Label Field.

If the Cursor is already somewhere in the right record, specify a· new position wit.h a
character count forward or backward:

P+3
P-20

Move Cursor forward 3 posi tion~;.
Move Cursor backward 20 positions.

The count can be any number from 1 to 32767. The Cursor slides from one rccnrd to
the next in either direction. The Editor rejects any attempt to cross the Jawor
high boundaries of the Text Region.

If a P command has. no parameter at all, the Cursor moves after the end of the Current
• Record, but does not slide into another record. Backing up one position will then

put the Cursor under the last character actually in the record:

P
P P-2

Move Cursor after end of Current Record.
Move Cursor after end, then back 2, so it's under the next­
to-last character.

There are two ways to jump the Cursor to another record and make it the new Current
Record. If it's convenient to count off the new record location relative to a Refer­
ence Point, use this technique:

P $ Move Cursor to start of First Record.
p # Start of Last Record.
p Start of Current Record.
p $+32 Start of 32nd record after First Record.
p .-3 3rd before Current Record.
p . +5 5th after Current Record .
p #-7 7th before Last Record.

Alternatively, let the Editor scan for a context match. The Cursor will be just
after the matching characters, and its exact character position in the record can be
re-adjusted as needed:

P 'LDA REC' P. Move Cursor after first matcH against string.
Move Cursor to start of Current Record.

If the match is against the very last characters in a record, the Cursor will be
after the end of the record, as described for a P command with no parameter.

A context scan starts at the Current Cursor Position, and runs forward to the end of
the Text Region. Make sure the Cursor is located where a forward scan will find the
match:

P $+40 P 'XY' P.+l Move Cursor to Start of First Record plus 40 more.
Move Cursor after first match against string.
Move Cursor to 1st record after (new) Current Record.

3.14-10

TI

o

c

"I

rt *"14 "'ti:t:!:ltW'!Itt t ttWHtt:tt 'W 'n I Hltrb'ti!'lMi!', wt'. " 'Ui"J!l!!,,@"OO"11 !"'I\'ttji '6' "d\lrH *' Mm! p "e.ltw%'Y't " i 'it' 'J!t!:1W!t¥ir! w Mebt«m'., • It' pi \ 9ft" M'M r' It'br C't ¥ t: ""1t'E

4I~ ______________ ~ ______ _
'- --

The Find Label command always tries to match against the leftmost
record, and its parameter is limited to 1 thru 6 characters. The
the Current Record, even if the Cursor is beyond the label arca.
to the start of the first matching record:

positions of a
search begins with
The Cursor is moved

F 'MAIN' Move Cursor to the start of the first record with 'MAlN'
starting in position 1.

This command is typically used for an Assembler Language program, but neither the
context string nor the text need resemble that language:

F 'lAS SI'
F '

Find the first record with 'lAS SI' in positions 1 thru n.
Find the first record with 2 blanks in positions 1 and 2.

For historical reasons, a FORTRAN statement is allowed to have its label an
unsigned decimal value -- floating anywhere between positions 1 and 5, and to have
blanks arbitrarily inserted between the digits of the statement number. Special
provision has been made in the Editor for scanning FORTRAN labels -- an F command
with a decimal parameter without quote marks will scan for a match according to
FORTRAN rules:

F 12 Find any of these labels anywhere in positions 1 thro 5:
12

012
1 2

etc.

3.14-11

o

()

3.14.4.7 Checking the Cursor position

The Q command displays the Current Record up to the Cursor, which is represented on
the type-out by a Back Arrow:

Q
ABC­

P+3 Q

ABCDEF­
P $ Q

-

Display Cursor.
(Current Record up to Cursor)
Move Cursor forward 3 positions.
Display Cursor.
(Current Record up to Cursor)
Move Cursor to start of First Record.
Display Cursor.
(Current Record up to Cursor)

The last display is not very helpful, so the Q command accepts an optional parameter
-- a Plus Sign indicates that the entire Current Record must ~ displayed, with a
Back Arrow for the Cursor overlaying the Current Character:

Q+
-23456789
P P-3 Q+

.123456-89

Display Cursor.
(Current Record)
Move Cursor after end of Current Record.
Move Cursor backward 3 positions.
Display Cursor.
(Current Record)

If a Q+ command results in a full record with no Back Arrow, the CUrsor must be in
the special position between the end of the Current Record and the start of the next
record:

P '9' Q+

123456789

Move Cursor after first match.
Display Cursor.
(Current Record)

3.14-12

irtttNb.!le ,,'1' tm .. • ttt t V"dtt.h0t'¢ j'M"'tte1!t'ttrttttZM WPM!! "I ''tHUM''. n '4"#N# l'tllilwwMt 'l'n t ¢it" "'M" t 'qbP"Y "1hI,M"'t 't qWdW1itttttt'tHH'e l tH"@th" « hr'

4t~----------------------

3.14.4.8 Supplying New Text in Command Lines

Data can be copied directly from the Command Input device. into the 'I'ext Region with
these commands:

Insert Record Group
Change Record Group
Insert Characters
Change Characters

The function of each command is described elsewhere in this publication. This section
deals with the 3. ways of supplying New Text to be used for insertion or change.

Nt.'w Text always ends with .1 Single Quote. As will be seen, it mayor may not start
with a Single Quote, depending on how the New Text is entered. Within a New Text
string, a Single Quote is represented, as usual, by two successive Single Quotes.

~ The rules for error correction with a Back Arrow still apply.

o

. -,,'

o

If a New Text string will fit on the same command line as the associated I or C
command, it can be entered in this immediate format:

First, a Comma
Second, a Single Quote
Third, the actual New Text
Fourth, . another Single Quote

Once the terminating Single Quote has been entered, the command is satisfied, and the
Editor expects either another command, or a Carriage Return:

I $, ' ••• ' V$+2

C#-l, I END'

C+2, '0 '

Insert after the First Record, a new record consisting of 3
asterisks. View the first 3 records now in the Text Region.
Replace the last 2 records in the Text Region with 1 record,
an END statement.
Replace 3 characters -- the Current Character and 2 more
following -- with a single zero.

If it seems more convenient to enter the New Text in a line separate from the command,
the line-by-line format is available:

First, a Carriage Return
Second, one or more lines of New Text, each ending with a Carriage Return
Last, a terminating Single Quote and Carriage Return, either attached to lhe
last line of New Text, or on a separate empty line

When the Editor recognizes this format, by finding a Carriage Return where it expectel.l
a Comma, each New Text line will be requested with a T? type-out:

? I $ cr
T?NEWcr
T?ANOTHERcr
T?'cr
? C#-l cr
T?XXXcr
T?YYYcr
'r?ZZZ' cr
? C+5cr
T?Olcr
T?23cr
T?4567'cr

Insert after the First Record in the Text Region.
Editor asks for New Text. One record entered.
Editor asks for more New Text. Another record entered.
Record entry terminated by Single Quote and Carriage Return.
Replace the last 2 records in the Text Region.
One record entered.
One record entered.
One record entered, and record entry terminated.
Replace the Current Character and 5 more following.
One se~nent of replacement characters entered.
Another segment of replacement characters entered.
Last segment of replacement characters entered.

3.14-13

.!

;1
I

,I

I

tt' "$ t1 r' I ,. lie "WWt n ,\ t! "tt fjf rl: ! It Hz f eta t '. fa .1 .e,

In the last case just shown, observe that all three New Text lines are concatenated
into a single replacement string, because the command specified a character replace­
ment -- 6 characters were replaced by "01234567" within the Current Record.

The third way to enter New Text is the mixed format. The comman4 s~pplie~ the ti~st
segment of the New Text in the immediate format, but without a terminating Single
Quote before the Carriage Return, then continues in the 1ine-by-line format:

C + I , 'ABCDEcr
T?FGHIcr
T?JKLMN' cr

Replace Current Character and I more following.

The result here is the replac:ement of 2 characters with 14 characters within the
Current Record, An open-ended command like the first line in this example can be
useful in a Command Loop, as described in section 3.14.8.1.

3.14-14.

!
I

o

I'ti
~

3.14.5 RECORD GROUPS

3.14.5.1 Record Group Parameters

A number of Editor commands access a whole group of Text Region records at once:

C Change Records
0 Delete Records
L LO output
0 Sl OUtput
S Save Records
V CO Output
W SO OUtput

For these commands, an acceptable parameter has one of these formats:

$ First Record only
$+n First Record and n more following
.-n Current Record and n more preceding

Current Record only
.+n CUrrent Record and n more following
#-n Last Record and n more preceding
Last Record only

$. First Record thru Current Record
.# Current Record thru Last Record
$# First Record thru Last Record

-- that is, the entire Text Region

Here are some examples of Record Groups:

L $+29
D #-6
V.
S$# 0$#

List first 30 records.
Delete last 7 records.
Display Current Record.
Copy Text Region to Save Region.
Clear Text Region.

3.14-15

'I
"

~I
"

•

'I

"'I
,

wr't em K'M

- e
3. 14. 5 . 2 ?eplacing a Record Group

A Change cf)lTUTland -- C with a Record
reeord~: with new records from CI.
~(;cord~; as the old group.

Group parameter -- repla<.:es a series of contiguous
The new group need not have the same nwnber of

After a Change Record Group command, the Cursor is moved to the start of the !}n~
replacement record.

The Editor accepts the replacement records in any of the New Text formats described
in section 3.14.4.8. The line-by-line format is used in these examples:

C. cr
T? REPLACEMENT cr
T? 'cr
C #-5 cr
T? XXX cr
T? YYY cr
T? 'cr

Q+
-YY
P$ pI END I C. cr

T? TAG END XFR cr
T? 'er

Change Current Record only.
Editor asks for New Text. One record entered.
Editor asks for New Text.. Record entry is terminated.
Change Last Record and 5 more preceding ..
One new record.
One new record.
Record entry terminated.
6 records have been replaced by 2 records.
Check Cursor.
(Current ~cord)
Position the Cursor at the start of the Text Region.
Scan for the next record with a matching string.
Change that record.
Editor asks for New Text. One record entered.
Record entry terminated.

3.14,..16

! " I!
f.'
i

o

Me wi F 7 W g "win' .. ' 'WtHr !!!I\!i!Ie!tjWI'tht'f'i ","M'tU'U" tlt"tMtltM" 'na '"t:!!1!ft!I!"fti'fW,*WVitW"4'1 if hr.n;, Iil.tHhft' f 'r tit! 't '''$ ''WNt' wwe- 't net * :!5M 'M Ptt: 'ft 'f wrio t d m "Wn'lMlt#w!t%'!

3.14.5.3 Deleting a Record Group

A Delete command -- D with a Record Group parameter -- permanently eliminates a series
of contiguous records from the Text Region, and compresses the remaining recQ~ds. The
Cursor is moved to the start of the first record after the deletions:

D

D $+1
D $#
D #-3

Delete the Current Record only.
Delete the First Record and 1 more following.
Clear the entire Text Region.
Delete the last 4 records in the Text Region.

In cases like the last example, where ~ records follow the deleted group, the Cursor
is moved to the start of the Last Record.

A Delete command is often guided by a preceding context scan with a P or an F
command:

P '/TEST/' D.+l

F '*' o. D.

v $#
111
333
111
555

Move Cursor to next record with matching string.
Delete the record and 1 more following.
Find the next record with an Asterisk in Column 1.
Log the record on the 81 file.
Delete it from the Text Region.
View the entire Text Region.
(Editor types out all the records)

P $+1 F 'Ill' D. Q+ Find and Delete the second '111' record. Check Cursor.
-55 (Current Record)
D. Q+
-33

Delete Current Record. Check Cursor again.
(Current Record)

3.14-17

" t '&''t mOt' r trW

3.14.5.4 Record Group Output

~' ri Four commands will copy a group of Text Region records to the Editor's output files.
;: Each command corresponds to a different file, but the parameter requirement is the
rfIr·

i' same -- a Record Group specification, shown here as rg~:

i

:[

i, ,

.' " ~"

,;i
I
i

-i
i

W rgrp
o rgrp
L rgrp
V rgrp

Write Primary Output to so
Output Alternate to Sl
List on LO .
View on co

The various ways of specifying a Record Group are described in section 3.14.5.1. Fnr
convenience, especially when using the V command, the Editor will accept any of these
commands with no parameter at all. The result is the same as if a Period had been
entered -- that is, the output will be the Current Record only.

W $# Entire Text Region to SO.
0 #-3 Last 4 records to S1.
L .+23 Current Record and 23 more to LO.
V Current Record only to CO.
P'33'VP'77'V Move Cursor after next match on '33' and display record.

Move Cursor after next '77' and display record.

Record Group output commands have no effect upon the contents of the Text Region.
Section 3.14.8 describes how the Editor's output files· are opened and closed, and how
dynamic buffer allocation interacts with Text Region and Save Region allocation.

If the Text Region is completely empty when one of these commands is entered, the
command will fail, and the Editor will type out TEXT REGION EMPTY.

3.14.5.5 Formatting of List Output for Assembler Language

An L command -- List Record Group on LO -- ordinarily generates the same kind of
records as any other command for output, except that the Operating System automati-
cally inserts page breaks. If the text being listed is an Assembler. Language sourcp C
program, created free-form with the Text Editor, then an exact printed reproduction
can'be rather difficult to read. The Editor, like the Assembler itself, can be
requested to spread the source statement fields into uniform columns.

Assembler Language formatting for LO is established ~hen an L command is suffixed
with a Plus Sign, before the Record Group parameter is entered. Formatting remains
in effect until it is cancelled by an L command suffixed with a Minus Sign:

L+ $+2

L #-2
L- $#

Set LO for Assembler Language formatting.
List the first 3 records in the Text Region.
List the last 3 records, still formatted.
Restore unformatted output on LO.
List the entire Text Region.

3.14-18

o

i

"I

" "--".

11
'"

;:1

3.14.5.6 Record Group Input

Two commands will read the Editor's input files, adding as many records as possible
bo the end of the Te~t Region. No parameters are involved:

R Read Primary Input from 51.
A Alternate Input from SA.

Either of these commands will automatically append enough new records to fill the'
available free space after the existing Text Region records. Reading will, of course,
stop when an End-of-File is encountered1 the Editor will type out END OF xx FILE.

After an R or A command, the Cursor will be under the first position of the first ~.
record.

R V.+2 V#-2

D$# A V

Read more Primary Input.
View the first 3 new records •

. View the last 3 new records.
Delete from the First Record thru the Last Record -- that is,

clear the Text Region.
Fill the empty Text Region from SA.
View the new First Record, which is also the new Current

Record.

section 3.14.8 describes how the Editor's input files are opened and closed, and how
dynamic buffer allocation interacts with Text Region and Save Region allocation.

3.14.5.7 Next Record Group

If the Primary Input on 51 contains more records than the Text Region can hold, the
usual technique is to read a piece of 51, edit the Text Region, write all the edited
records to SO, clear the Text Region, and start again:

(editing commands)
(editing commands)

W $#
D $#
R
(editing commands)
(etc.)

Write the entire Text Region to so.
Clear the, Text Region.
Read enough of 51 to refill the Text Region.

This pattern is so common that a special Editor command -- N -- has been provided to
"rollover" the Text Region. These two command lines are equivalent:

N
W$# D$# R

The N command can be used even when the Text Region is empty -- for example, just
after the Editor has started execution. The effect will be the same as a simple R
command.

After an N command, the Cursor will be under the first position of the First Record.

;1 3.14-19

11

I
~i
:1

i.,.'. II 1;'
>

;1 j

3.14.6 RECORD LOCATIONS

3.14.6.1 Record Location Parameters

Some cQmm~nds acc~pt a parameter which specifies a singl~ record location:

I Insert After Record
P position Cursor at Start of Record
U Unsave After Record

For these commands, an acceptable parameter has one of these formats:

$ First Record
Current Record

Last Record

$+11 n records after First Record
.-11

.+n
#-n

$-1

n records before Current Record
n records after Current Record
n records before Last Record

Before First Record
(Not acceptable for a P command)

Here are some examples of Record Locations:

I #

U $-1
P $
P $+3

Insert after the Last Record.
Copy Save Region to Text Region before First Record.
Move Cursor to beginning of Text Region.
Move Cursor to 3rd record after First Record.

3.14-20

Wttwbtttt. * • j nth.

« fMM ltd)!

-~---------------......

•

e

",--,.

3.14.6.2 Inserting Records

An Insert command -- I with a Record Location parameter copies new records from CI
to any specified point in the Text Region. Adjustments are made to the identities of
the F~~st Record and the Last Record as needed.

After an Insert P.ecords cornand, the Ct:rsor is ;:lQ\-ed to the start ..:-f tIlt.' filMl Ot.' ... •

record.

The Editor accepts the new records in any of the New Text formdts described in section
3.14.4.8. The line-by-line format is used in these examples:

I. cr
T? NEW RECORD cr
T? ANOTHER cr
T? 'cr
V$+l
AIAIAI
B2B2B2
I $-1 cr
T? ZYXW 987 cr
T? 'cr
Q+
.. YXW 987
V $+2
ZYXW 987
AIA1Al
B2B2B2

Insert after Current Record.
Editor asks for New Text. One record entered.
Editor asks for New Text. Second new record entered.
Record entry terminated.
View First Record and 1 more following .
(Editor types out records)

Insert before all existing records in Text Region.
One record entered.
Record entry terminated.
Check Cursor.
(Current Record)
View (new) First Record and 2 more following.
(Editor types out records)

3.14-21

~:
'I

#'

'vi' • "#"t1 '"

3.14.6.3 Using the Save Region

Two commands are used to copy records back and forth from the Text Region to the Save
Region. The Save command -- S -- needs a Record Group parameter for thl~ contiguous
records to be copied into the Save Region:

S. Save the Current Record only.
S $+1 Save the First Record and 1 more following.
S #-3 Save the last 4 records in the Text Region.
S $# Copy the entire Text R~ion into the Save Region.

The S command does not affect the Cursor or the contents of the Text Region. Saved
records are not cumulative -- each S command clears the Save Region before copying a
new group from the Text Region.

If an S command has no parameter at all, the Save Region is cleared, but no new
records are copied into it •

• The Unsave command -- U -- copies all of the records in the Save Region back into the tI
Text Region, just after any specified Record Location:

U . Unsave after the Current Record.
U $+4 Unsave after the 5th record in the Text Region.
U # Un save after the Last Record.
U $ Unsave after the First Record in the Text Region.
U $-1 Unsave before the First Record.

The U command does not affect the contents of the Save Region, which are still avail­
able for subsequent Unsaves.

After a U command, the Cursor will be under the first position of the last record
just copied back to the Text Region.

Here is an example of how the Save Region can be used to move a group of records from
one place to another in the Text Region:

v $#
AAAAAAA
BBBBBBB
CCCCCCC
DDDDDDD
EEEEEEE
P $+1 V
BBBBBBB
S.+l D.+l

AAAAAAA
DDDDDDD
EEEEEEE
U #-1
Q+
-CCCCCC
V $#
AA.AAAAA
DDDDDDD
BBBBBBB
CCCCCCC --
EEEEEEE -----

V$#

Display the entire Text Region.
(Editor types out all the records)

Move the Cursor to the 'B' record and check it.
(Current Record)
Save the Current Record and 1 more following.
Delete the Current Record and 1 more following.
Display the Text Region.
(Editor types out all the records)

Unsave after I~st -1 (the 'D' record).
Check new Cursor position.
(Current Record)
Check final result.
(Editor types out all the record:.;)

3.14.,..22

I

..... wMtnsmwt'?H1 dbdtBt't'Mtt'M q 'tWt, 2Mb"" e"WrtWU"t ' Wft 'M CO'S tiM' MM. '*'1,1

o

o

-~---------------

•

3.14.7 CHARACTER EDITING

3.14.7.1 Character Group Parameters

Three commands need a parameter which identifies a contiguous group of characters:

C Change Characters
D Delete Characters
I Insert Characters

For these commands, an acceptable parameter has one of these formats:

+n
-n
null
'context'

Current Character and n more following
Current Character and n more preceding
Current Character only
First match against string, starting at Current Character

Null means that the command has no parameter at all. Here are some examples of
Character Groups:

D +4
C +3,'··'
I ' ,

P. D

D '&&'

, ,
Delete the Current Character and 4 more following it.
Replace 4 characters with 2 characters.
After the next occurrence of a Period, insert one Blank.
Move the Cursor to the start of the Current Record.
Delete the (new) Current Character.
Delete the next occurrence of 2 consecutive Ampersands.

3.14-23

t",,* II,' "j W'W:!ttllt,'j 0" 'W" tftt t1SWd ''M e"St:H1t::ttt& * ti' Wttfl1w*r*tM>w t 't 3#" bNm,'. w neW. t

3.14.7.2 Character Modifications Controlled by Position

The current position of the CUrsor can be used to control these commands:

C , 'new text' Change Current Character only
C +n , 'new text' Change Current Character and n more following
C -n , 'new text' Change Current Character and n more preceding

D Delete CUrrent Character only
D +n Delete Current Character and n more following
D -n Delete Current Character and n more precedinq

I , 'new text' Insert before Cursor Position
I +n , 'new text' Insert before Cursor Position + n po~itionr;
I -n 'new text' Insert before Cursor Position - n positions

Valid formats for the New Text needed by the C and I commands are described in
section 3.14.4.8. The C command will replace the character group with the New Text,
',..,hich need not be the same length. The I command will insert the New Text at the
location specified. A previous P command with no parameter can position the Cursor
just after the last character in the Current Record, which allows insertion at the
end of the record:

P$ P Q+

ABCDE
I,'012'
V
ABCDEOl2
P. C+4,' XY' V

XY012 ---
P P-1 D V

XY01

P.D+2 V

1

position Cursor to start of First Record.
Position Cursor after end of Current Record.
Check Cursor.
(Current Record -- Cursor after cnd of record)
Insert 3 characters just before Cursor Position.
View Current Record.
(Current Record)
position Cursor to start of Current Record.
Change 5 characters into 2.
View Current Record.
Current Record.
position Cursor after end of Current Record.
Move Cursor back 1 position, under last character.
Delete Current Character only.
View Current Record.
(Current Record)

Posi tion Cursor at start of L:u,rrent Record.
Delete Current Character and 2 more following.
View Current Record.
(Current Record)

3.14-24

,10

il

-me

e~~------__ -----
After a C or I command, the CUrsor will be under the first position to the right of
the newly changed or inserted chqracters. If the last character in the record was
affected, the CUrsor will be after the end of the record, just as for a P command
with no parameters.

0$# I,'ABCDEF'
P. I,'XY' V Q+

.
XYABCDEF
XY-BCDEF
C+5,' 0123'
Q+
XY0123

Clear the Text Region. Insert 6 characters.
position Cursor at start of Current" Record.
Insert 2 characters before Cursor.
View Current Record.
Check Cursor .
(Current Record)
(Current Record, showing Cursor)
Change Current Character and 5 more following into 4.
Check Cursor.
(Current Record -- CUrsor after end of record)

A D command eliminates the specified number of characters, and closes up the rest
of the record. The Cursor is moved just to the right of the affected area. As with
a D command controlled by context, deleting the last character in a record will leave
the Cursor under the rightmost remaining character, and eliminating the entire record
will jump the Cursor backward to the start of the preceding record.

V #-1
DEFGH
IJKLMNO
P# P+l

D+l V Q+
ILMNO

I .. MNO
D-1 V Q+
MNO
+NO
D+1 Q+
-EFGH

View last 2 records in Text Region.
(Editor types out records)

position Cursor to start of Last Record.
Move CUrsor forward 1 position, under the J.
Delete CUrrent Character and 1 more following.

Delete Current Character and 1 more preceding.

Delete the Current Character and 2 more following.
(Current Record)

3.14-25

,I

:·;1· '" ,
1

(I ~
~
r

.1

si
II
il
·1,1

ti

11

- e
3.14.7.1 Character Modifications Controlled by Context

.The next occurrence within the Text Region of a specific character group can be us(·~d
to control these commands:

C 'context' ,
I 'context'

'new text'
'new text'

Change
Insert After
Delete D 'context'

Valid formats for the New Text needed by the C and I commands are described in section
3.14.4.8. The C command will replace the first matching character group with the New
Text, which need not be the same length as the Context string. The I command will
insert the New Text immediately after the match against the Context String.

After a C or I command, the Cursor will be under the first position to the right of
the newly changed or inserted characters. If the last character in the record was
affected, the Cursor will be after the end of the record, just as for a P command

• with no parameters.

C 'LDA' , 'LOX' Q+

PART3 LOX ADDR

Change the next occurrence of LDA into LOX.
Check Cursor.
(Current Record)

I 'ADDR' , 'COMMENT' Insert After next match.
Q+ Check Cursor.
PART3 LDX ADDR COMMENT (Current Record -- Cursor after end o·f record)

A D command is equivalent to a C 'command with New Text of zero length. The rema~m.ng
characters in the record are closed up over the deleted area. Again, the Cursor will
be just to the right of the affected area. However, if the last character in the
record is among those deleted, the Cursor will be under the new last character, not
hanging after the end as with a C or I command.

P. D'RT3' Q+ position Cursor to start of Current Record.
Delete first occurrence of RT3.
Check Cursor.

PA.LDX ADDR COMMENT (Current Record)
D 'MENT' V Q+

PA LOX ADDR COM
PA LOX ADDR CO·

Delete first occurrence of MENT.
View Current Record. Check Cursor.
(Current Record)
(Current Record, showing Cursor position)

A special situation arises when a deletion leaves no record at all. In this case,
the CUrsor is moved under the first character of the preceding record.

P $+4

KLMN
V .-2
CDEF
GHIJ
KLMN
U 'KL'
.. N
U'MN'
+HIJ

V.

Q+

Q+

Make the 5th record in the Text Region thp. new Current Record,
and View it.
(Current Record)

View Current Record and 2 more preceding.
(Editor types out records)

Delete KL and check Cursor.
(Current Record)
De1eteMN and check Cursor.
(Current Record)

3.14-26

'-I

il
I

o

4t~-----------------------

3.14.8 SPECIAL FACILITIES

1.14.8.1 Command Loops

It is often useful to loop thru an Editor command, or a whole line of commands,
making systematic access to the Text Region. An X Plus command -- the letter X
followed by a Plus Sign, followed by a decimal number -- wi11 repeat the single
immediately following command until the count is exhausted.

X+20 C'DOG','CAT'

X+4 1.,'* *'

Execute the next command 20 times.
Change an occurrence of DOG into CAT.
Execute the next command 4 times.
Insert new r(!cord after the Current Record.

The command being repeated -- called the object of the X Plus -- is usually a Chan\Jt~,

Insert, or Delete which automatically moves the Cursor for each repetition. Th0
Editor rejects an attempt to use, as the object of an X Plus, either another X Plus
command, or the X Minus command described next.

An X Minus command -- the letter X followed by a Minus Sign, followed by a decimal
number -- will repeat the entire line currently in the Command Region. To enter a
new line into the Command Region, an E command is used:

? E Enter line into Command Region.
E? P' JST ' L P.+l Editor requests entry. Command Region set ...

position Cursor after next JST op code.

? P$ X-IOO

List Current Record.
Position Cursor to start of next record.
position Cursor to start of Text Region.
Execute Command Region 100 times.

An E command must be the last on its line. The entered line completely replaces the
previous contents of the 72-character Command Region. Two commands are not acceptablL
within the Command Region -- an X Minus and an E. There is no restriction on the USI'

of an X Plus within the Command Region.

3.14-27

I

~ I

.

0

o

Here is a more elaborate example of using the X and E commands. Suppose that we have
an Assembler Language Source Program op punched cards or paper tape. The program w~s
written in a hurry, and the statements lack any comments. We can take advantage of
the fact that OS will transfer each card or paper tape record truncated after the
rightmost non-blank character. That is, the position at which we want a Conunents
Field is after the end of each record, just where a P command with no parameter will
put the Cursor.

For Source Programs maintained with the Text Editor, it is very convenient if each
Comments Field starts with a Period, giving us a hook for a context scan. While we're
appending comments to the records, we will make them look like this:

LABEL MNEMONIC OPERANDS .COMMENTS FIELD

We want a Command Region which will do all this:

l.
2 .
3.
4.
5.
6.

Position the Cursor to the next record.
Position the Cursor after the end of the existing characters.
Type out the record, so we can decide what comments, if any, to append.
Automatically append one Blank and one Period, to start the Comments Field.
Accept New Text for the rest of the Comments Field.
Repeat the whole process.

? E cr
E? P.+l P V I,' .cr

Enter line into Command Region.
Editor requests entry. Command Region set ...
position Cursor to start of next record.
position Cursor after end of Current Record.
View Current Record.
Insert Before Cursor, 2 characters of New Text.
New Text still open.

Notice that the I command uses New Text in the open-ended mixed format. This forces
us to put the I command at the end of the Command Region, and the P.+l command at the
beginning. The result is that the very first record in the Text Region will not
participate in the command loop processing -- but it's probably a TITL statement
anyway.

Now we read the Source Program, which has 117 records in it. The R command leaves
the Cursor at the start of th~ program, and we loop thru the Command Region 116
times.

?R cr
W38 END OF SI FILE
? X-1l6 cr
GO STX OSR'I'N
T?SOME COMMENTS'cr

SPACE 1
T?'cr
ETC

Read Primary Input from SI.
(Editor message)
Execute Command Region 116 times.
(Second record in Text Region)
New Text requested, entered, and terminated.
(Command loop continues)
No Comments Field supplied for this record.
(Command loop continues)

At the end of the loop, we can check the second record:

? P $+1 V position Cursor at start of Statement 2; view it.
GO STX OSRTN .SOME COMMENTS (Current Record)

3.14-28

I

""--,,

o

3.14.8.2 File Handling -- Opening Blocked Files

The Text Editor accesses each of its 7 files thru standard IOCS techniques. Each
file is automatically opened the first time it is needed, and nQt PatQJ:e. By defer­
ring the allocation of blocking and deblocking buffers until they .~e Ict~Qlly
required, a significant amount of extra space is usually available for the expansion
of the Text Region and the Save Region. .

However, the deferred opening of a blocked file does create one complication. If the
Text Region and the Save Region are occupying all of the memory above the fixed part
of the Editor, then no space is available for the dynamic allocation of new blocking
or deblocking buffers, and no more blocked files can be opened. The Editor will
issue the message INSUFFICIENT SPACE, and reject any command which would involve I/O
for unopened blocked files.

To recover from this situation, some memory must be freed." If the Save Region is not
empty, it must be cleared by an S command with no parameter. If it turns out that
even more memory is needed, then some of the records in the Text Region must be
deleted, perhaps after they are written out to an unblocked file, or to a blocked
file which is already open.

This whole problem can be avoided very simply. If it's at all practical, tell the
Editor explicitly to Open all blocked files before anything else is done. The command
is a Colon --to signify a special file-handling command followed by the letter 0,
followed by a Comma and a list of the Logical Unit Names to be forced open immedi­
ately:

:O,SI
:O,SA,SO,Sl

Open the SI (Primary Input) file.
Open the files on SA, SO, and Sl.

An Open command can be entered for an unblocked file as well, but the record area for
such a file is allocated in the fixed part of the Editor, and has no connection with
the free memory problem just described.

If the :0 command is entered for a file which is currently open, an OS Close/Save
request will be issued for the file, followed by an OS Open reque!;t.

3.14-2')

e

3.14.8.3 File Handling -- Saving and Releasing Files

A normal termination of the Text Editor, thru the T command described in another
section, will automatically issue a Close/Save for every input and output file,
means that each old input file, and each newly-created output file, is avatllPla
input to subsequent programs.

This
for

In special situations, it may be necessary to force a file closed without terminating
the Editor. For example, an output file assigned to a paper tape punch could be
given an intermediate EOF record; the next output command will automatically re-open
the file. To explicitly close a file, and to allow its future use if it's on a
magnetic device, a Close/Save command is used:

:5,50
:S,SA,SO,Sl
:5,50 :0,50

Close/Save the SO (Primary output) file.
Close/Save the files on SA, SO, and 51.
Close and re-Open SO.

• Another use for the :5 command is shown in section 3.14.8.4, Suspending the Text
Editor.

To explicitly close a file, and to delete a magnetic device file, a Close/Release
command is used:

: R,5I
:R,SI,SA,SI

Close/Release the 51 (Primary Input) file.
Close/Release the files on 51, SA, and 51.

A Close/Release of a magnetic device file has the same effect as a DE command for
OS:CPY, and makes it unnecessary to execute OS:CPY to delete obsolete input or
secondary files. For a file assigned to a non-magnetic device, either a :R or a :5
command can be used; the effect is the same.

Closing a blocked file does not make its buffer space available for other uses.
However, another Open of the same Logical Unit, with a block size no greater than
before, will re-use the old buffer rather than force allocation of still another one.

3.14-30

~
~ ..

Ji e f

-'
r
" ",'.

i'l
" i:

,-.

-,'

c

3.14.8.4 Suspending the Editor

It is possible to escape temporarily from the Text Editor, and return control to the
Operating System for re-assignments, time log-outs, and other special services. The
Edito{ command is simply a Slash as the last entry on a line:

/
W$# :S,SO /

Escape to OS.
Write entire Text Region to SO file.
Close/Save SO file.
Escape to OS.

The Editor issues a standard SPND: request. The next type-out on CO is from the
Operating System, rather than from the Editor. After the necessary OS commands are
entered, control is returned to the Editor with a /RESUME, and the Editor is ready
for more processing:

1.:R,SI :S,SO /

>/ASS1GN S1=SO
.>/ASS1GN SO=DO.SRCFL
~RESUME
?

Close/Release S1.
Close/Save SO.
Escape to OS.
Use Primary output just created as the new Primary Input.
Assign new Primary output.
Back to Text Editor.
Editor ready for new command.

Observe that OS never allows a file to be open for creation, and open for reading, at
the same time. The only wayan SO or Sl file can ever be turned around for input to
the Editor, or to any other program, is to be processed thru a Close/Save before it
is used for an explicit Open (with a :0 command) or an implici~ Open (with an R, A,
or N command).

3.14-31

o

II

3.14.8.5 Terminating the Editor

A normal Terminate command -- T simulates a loop of N commands until EOF is
reached on SI, then simulates a Close/Save on all files. In detail, the sequence of
events for a T command is:.

w $# l. Write the entire Text Region to so •.
D $# 2. Clear the Text Region.
R 3. Read enough of SI to refill the Text Region.

4. Repeat from Step 1 until End-of-File on SI.
:S,SI,SO,SA,SI,LO 5. Close/Save all files.

6. Issue standard termination request to Operating System.

If Step 1 conflicts with your requirements -- if, for example, you have already
entered a W command, and don't want another copy of the Text Region written to SO,
simply c·lear the Text Region before entering the T command:

D$# T Clear Text Region and Terminate.

To suppress the.whole SI-to-SO copy loop, and begin the termination procedures at
Step 5, follow the T with a Plus Sign parameter:

T+ Close/Save all files, and exit to Operating System~

Here is an OS job which generates a formatted listing of an A.ssembler Language Source
Program. It takes advantage of the fact that SO can be assigned to a line printer.
The initial I command is' needed to insert a dummy blank record in the Text Region.
Otherwise, the L+ command would fail because of an empty Text Region, and the T
command would not be processed.

/JOB

/ASSIGN LO=LP,So=~,SI=DO.SOURCE

/EXEC OS:EDT

I I I . , L+ . T

/NJOB

3.14-32

\'1 0
"1
,I

-j
i

I
;i

rl ,I
II
"

II

4t~-----------------------

3.14.9 MESSAGES

3.14.9.1 Message Detail

Error Messages and Warning Messages from the Editor look like tilts;

EIO INVALID COMMAND
E13 INSUFFICIENT SPACE
W33 TEXT NOT LOCATED
W38 END OF SI FILE

When the message numbers become so familiar that the text is superfluous, a special
command is avai.lable to drop the text from all Editor messages. The command is an M
followed by a Plus Sign, and :remains in ~ffect until cancelled by an M command with
no parameter:

J

EIO INVALID COMMAND
M+ J
EIO
M J
ElO INVALID COMMAND

Another Editor command -- M followed by a Minus Sign -- will suppress Warning
Messages entirely. This can be useful when the count parameter of an X Minus
Execute Command Region -- is based on a rough estimate, and a number of superfluous
messages might be generated once the loop has run past the end of the Text Region.

M- X-200 M Suppress Warning Messages.
Execute Command Region 200 times.
Restore full message mode.

In M- mode, Error Messages arc cut down to the message nwnber alonf', just as in M+
mode. Similarly, an M (or M+) command cancels the effect of an M- comman~.

3.14-33

3.14.9.2 Error Messages

~! ElO Invalid Command
,~ I

t A new command was expected, but the next non-blank was not a cortunand.
i,\,

~'

• ,,1

Ell Invaliq A~9ument
The parameter following a command was not in any recognizable. format.

E12 Illegal Argument
The parameter was in a valid format, but cannot be used for this particular
command.

E13 Insufficient Space
Not enough memory is available for the Text Region and the I/O buffers.

E14 Numeric Range Error
The value of n in a parameter exceeds the limit of 32767.

E15 Missing Closing Quote
Command line terminated in the middle of a Context String parameter.

E16 New Text Missing
Insert or Change command had a Comma not followed by a Single Quote or a Carriage
Return.

E17 Illegal E Usage
E command in the Command Region, or E command was not last in a command line.

E18 Illegal X Usage
X- command in the Command Region, or just after an X+ command.

E19 No Entered Line
x- command, but Command Region is empty.

E20 Illegal Record Range
Attempted access to records beyond current limits of Text Region.

E2l Invalid Unit Name
Open or Close with parameter other than SI, SO, SA, SI, or LO .

3.14-34

o

,

ii

_..___---------,- CompuWAutomation ~

W30 Text Region Empty
Command referred to records which do not exist.

W3l Text Region Full
No room for more input to be appended.

W32 Save Region Empty
U command, but no records exist to unsave.

E33 Text Not Located
Context String parameter found no match. Cursor remains where' it was before.

W34 Outside Text Region
Attempted access to records or characters beyond current limits of Text Region.

W35 Outside Current Record
Attempted character manipulation would have affec.ted two records at once.

W36 Insufficient Space
Text Region or Save Region could not be expanded to the size needed.

W37 Record Too Large
Attempted output had too many bytes for device. Record was truncated and written.

W38 End of SI File
Primary Input has reached EOF.

W39 End of SA File
Alternate Input has reached EOF.

W40 String Too Large
New Text record exceeded limit of 80 bytes.

3.]4.9.4 Information Messages

OS:EDT (nli)
Text Editor has started execution. Program version number is nn.---

I/O CHECK
The Operating System has detected an error condition during t/O processing.
To continue execution of the Editor, enter /RESUME, else enter /CANCEL

OS:EDT END
Text Editor has·ended execution after a T or T+ command.

3.14-35

I
I

0

~I

3.14.10 TEXT EDITOR COMMAND SUMMARY

CURSOR

P position Cursor.
F Find matching label.
Q Display Current Record up to Cursor.
Q+ Display entire Current Record with Cursor.

C

D

I

R

A

EDITING

Change.
Delete.
Insert.

INPUT AND OUTPUT

Read Primary Input from SI.
Alternate Input from SA.

N
W

Next -- Text Region to SO, SI to Text Region.
Write Primary output to SO.

0 OUtput Alternate to 51.
1. List on LO.
V View on CO.

CONTROL

:o, Open file.
:R, Close/Release file.
:?, Close/Save file.

E Enter into Command Region.
X-n Execute Command Region n times.
X+n Execute next command n times.

M M+ M- Messages full length. Messages by number only. Messages for Errors only.

S Save records.
U Un save records.

/ Escape to Operating System.
T Terminate, after copying Text Region and SI to SO.
T+ Terminate, without copying.

3.]4-36

,

, .
'--

o

Section 4

PROGRAM/SYSTEM COMMUNICATION

4.l INTRODUCTION

User programs conununicate with the Operating System through d series of i:nstruction
sequences known as supervisor calls. These calls cause the system to perform fnput/
~ltput or other executive services for the program.

Th(~ general form of a supervisor call is:

LABEL JST
DATA
*
*

External Name
Address of Parameter List
Busy or Error Ret.urn
Normal Return

4.2 REQUESTS FOR INPUT/OUTPUT CONTROL SERVICES

All requests for I/O services are initiated by a call td an IOCS entry point. These
entry points are declared external to the user program (using the EXTR or REF direc­
tives) and are resolved when the program is processed by OS:WR or OS:LNK.

IOCS requires that each request be accompanied by the address of a parameter list,
known as a control block, which describes the activity required. These control
blocks (and any record, buffer or working areas required by them) are located in the
user's program area. '

All requests preserve the calling program's hardware state and registers, with the
exception of the A register. IOCS returns, in the A register, th(~ status and result.s
of the program's request. The format and content of this register is identical to
that of the "status" word of the file control block (FCB). The file control block is
described in section 4.4.1.

In the discussion of I/O requests which follows it is generally assumed that the
system will return control to the calling program after the requested operation has
been completed. This is the normal method, and is known as the AutO/Wait mode of
operation.

However, it is possible for the calling program to regain control after the operation
has been initiated, perform other unrelated functions, and not wait for comple~ion
until such completion is actually required. Such a mode of operation is obtained by
selectinq the non-Auto/Wait attribute in the appropriate FCB and requires use of the
WAIT: or TEST: requL~stS.

4-1

•

o

II

4.2.1 The OPEN: Request

LABEL JST
DATA

*
*

COMPUTER AUTOMATION. INC. ~

OPEN:
FCB
Busy /Error Return
Normal Return

This request is required prior to the execution of any other operation on the file. and
allows 10CS to perform initialization and linkage generation between the system and the
user's file control block (FCB).

When 10CS receives the OPEN: request, it verifies (1) that the required Ilssignrnent of
the physical device has bcen made, (2) that any file names required arc present, and
(3) that the device is ready for data transmission. Any error causes the system to
reassign itself to the operator console, issue an appropriate message, and then suspeno
itself to allow remedial action. After the operator has corrected the problem,he may
enter a /RESUME command. 10CS will automatically re-issuc the OPEN: request. A sue­
cessful Auto/Wait OPEN: will always take the "normal" return; an "error" return probably
indicates a wrongly coded FCB .

If an OPEN: request is issued for a non-Auto/Wait file, and a previous OPEN: is still
pending for the same physical device (for example. for another file on the same disk) ,
the "busy/error" return will be taken. The user should go thru aWAIT: before re-trying
the OPEN: of the file.

If the / ASSIGN command for a file-oriented device included a specific file name (for
example, /ASSIGN S1=Dl.XYZ), then this name will be inserted into the user's FCB
(words 4 thru 6) by the OPEN: process. destroying any name previously stored there.
The user must not alter the file name in an open FCB.

When an existing file is opened, 10CS will verify that the FCB does not conflict with the
attributes of the file. If the FCB has allowed fora larger block size or record size than
an input file really needs. the more accurate smaller values will be inserted into the FCB.

4.2.2· The CLOSE: Request

LABEL JST
DATA

*
*

CLOSE:
FCB
Busy /Error Return
Normal Return

This request is required after all I/O opcrations have been completed, so IOCS may
terminate processing the file. Failure to issue a CLOSE: request can cause user data
to be lost.

When IOCS receives the CLOSE: request, it performs any I/O operations still required
(last block output. etc.) and severs the system-to-FCB linkage.

laCS will return to the user through the "normal" exit if the request was successful.
If it was not possible to CLOSE: the devicc, the "busy/error" return will bc taken. If
this condition goes uncorrected, data may be lost and the systcm may be unable to use
the file at a future time. .

4-2

-~----------------
4.2.3 The 10: Request

LABEL JST
DATA

*
*

10:
lOB
Busy/Error Return
Normal Return

The 10: request allows the program to perform data transmission (READ and WRITE) Llnd
special processing such as REWIND, BACKSPACE, and EOF. The user indicates to TOCS
the operation requested, and any record addresses or chari\ctcr count~~ required, in
the Input/Output Control Block (lOB). (See section 4.4.~! for the format of an Hm.)
loes returns the resu] t of that request as i nformatioll i 1\ the relat!!o Fi Ie ContI 01
Block (FCB).

When loeS receives an 10: request, it verifies that the file h<l:'; b('C'1l !all.:cessful.ly
opened, that the device is physically available, and that the reque~;l is valid for
that device. Any error will cause an operator message and an error return.

The request is then passed on to the appropriate driver, which performs the actual
operation and returns to IOCS any errors encountered. Finally, Ioes prints any error
messages required and returns to the calling program through the applicable return.
In all cases, the current status will be returned in the A register and the FCB.

4.2.4 The WAIT: Request

LABEL JST
DATA

*
*

WAIT:
FCB
Busy/Error Return
Normal Return

The WAIT: request is used when the non-Auto/Wait I/O mode of operation is selected.
It allows the calling program to issue an 10: request, regain control, and test for
I/O completion at a later time. A WAIT: request suspends execution of the calling
program until the I/O operation has completed, and returns the status of that opera­
tion in the A register and the FCB.

When loeS receives a WAIT: request, it retains control until the device indicates
that it has completed its operation or an error has occurred. An error will cause an
op(;rator message, and the calling program's error return will be taken. Successful
completion will resuJt in a normal return to the calling program.

4.2.5 The TEST: Request

LABEL JST
DATA

*
*

TEST:
FCB
Busy/Error Return
Normal Return

The TEST: request allows the program to interrogate the status of a file or device at
allY time and continue processing accordingly. The user may thus qm~ry the system for
lin completion, as with the WAIT: command, but roceive control back regardless of
,; (-,1 t.us •

WhclI laCS reC'l~.ivl's d TEST: request, thc·current status of the unit. is immediately
n·t urn(!d to the C.:1 U i ng program j nth!' 1\ register and the FCB. The uni t' s status
will determine the l-eturn taken and error messages will be output to the operator as
required.

4-3

o

o

4.3 REQUESTS FOR EXECUTIVE SERVICES

All requests for executive services are initiated by d call to a system entry point.
These entry points are declared external to the user program (using EXTR or REF
directives) and are resolved when the program is processed by OS:LDR Or OS:LNK.
Executive requests require a parameter list or messag<2 lo<.:uted in the u~;er:' p progrillll
area. All executive requests restore the callir,g program's preyious hardware state
and registers on return, unless otherwise specified in a request description.

4.3.1 The SUPV: Request

LABEL JST SUPV:
DATA SRB

* Return

*
SRB DATA Request Code

DATA As Required

The SUPV: request provides a variety of executive services. A System Request Block
(SRB) of four or more words in the calling program is used as an interfdce. The low­
order byte of word 0 of the SRB -- the Operation Code (OPR) -- determines the specific
request, and is never altered by the system. The high-order byte of word 0 -- the
Event Control Byte (ECB) -- is set to zero each time the system receives a SUPV:
request, and is altered only to indicate an unsuccessful request. For example, an
invalid value for OPR will return with OPR unchanged, and the ECB set to :80. The
content of the remainder of the SRB before and after the request is determined by the
value of OPR, as described in the following sections.

1 -- Request Free Memory Limits

The system returns, in the SRB, the boundaries of currently unused scratchpad and
main memory. All locations between, and including, these boundaries are not occupied
by OS nor by the user program itself, and may be used for building tables or code as
needed. The SRB will contain:

Word 1
Word 2
Word 3, Byte 0
Word 3, Byte I

Low boundary of free main memory
High boundary of free main memory
Low limit of free scratchpad
High boundary of free scratchpad

2 -- Request Current Date

The system returns, in the SRB, the exact six ASCII characters which were entered
between slashes in the most recent /DATE command. The user is reminded that these
are not necessarily numeric characters; nor is it true that the first two characters
(for example) do, or do not, represent the current month. Each installation sets its
own standards for /DATE commands. The six characters are returned contiguously in
SRB words 1, 2, and 3.

4-4

t

e.-~--------- COMPUT£R AUTOMATION. INC. ~

3 -- Request Current Time in ASCII

The system returns, in the SRB, the current real time, cOJlverted to ASCII numerals.
Words 1, 2, and 3 contain the hours. minutes, and seconds, reepcctivcly. The Qccuracy
of this information is wholly dependent upon the accuracy of the most r,ccent /TJME
command.

4 -- Request Current Time in Binarx

The system returns. in the S RB. the current real time, converted to three separate 16-bit
binary values. Words 1, 2. and 3 contain the hours, minutes. and seconds. respectively.
The accuracy of this information is wholly dependent upon the accurncy of the n:'0st r('cent
/TIME command,

e 5 -- Request the Next Parameter

ii 0 ..
i

-I

~i

il

The system returns, in the SRB. the byte address and the length of the next available
program parameter. exactly as entered on an /EXEC, /BEGlN, or /RESUME command.
Eaeh individual parameter is defined as all the characters bounded by, but not including,
a following comma or line terminator. Each of these examples has three parameters:

/EXEC
/BEGIN
/RESUME

PROGX ,MM=5000 ,NL. TERM
,MM=5000 ,NL, TERM
MM=5000 ,NL, TERM

The parameters in each example have lengths of 7, 2, and 4. respectively, Each successiv.
request for the next pnrametcr would return the byte addrcss and length of just one of
these,

Word 1 of the SRB will contain a byte address, and word 2 a byte count. When a request
is made for the next parameter. but none exists. the system will return a byte count
of zero. If the program still is not satisfied. and makes another request. the system will
request more parameters from the command input (Cl) unit. If CI is assigned to the opera­
tor console, "?" will be displayed on the command output (CO) unit to indicate that a
response is required, The program may continue to request parameters from the system.
and CI may be used to supply them, as often as required,

6 -- Request Operator Communication

The system requests a response from the operator. optionally preceded by a message
from the progr'am, The message. if one is supplied. is displayed on the Command Output
(CO) unit. If the CI unit is a console. the system will always display"?" on the CO unit.
to indicate that a response is required, The operator responds on the Command Input
(CI) unit.

Tlw pl'O~Tllm must :O;lIpply, ill Wtll'd :l or the SRB. eillwr' the word address of thc messHgt.~
desired. 01' It vallie of Zl'I'O. illdiclltill~ that no message is involved. The mes~age must
be in the format (h'Sel'ibed in the sectioll on the MS(;: Requ(~st, Words 1 and 2 of the SRB
will contain the ~)ytc t.lddl'cSS and byte count of the r('spon~e.

':1

[I 4-5

11--------------

jl
I

wrm1hed ·',,"n lt
,' ' .. NWAw r

, t "W" "M t nt '.!t@i#it*ttftt/I""" '&EtlIOOiNehbtlllnrM$!t:! fMt "bIl'tMf!:e't'i" M lti'k"t &mWIMM*I!!It"'''lt!f*M''Mft W'ti
e",frH'WtN

ComputerAutomation ~

7 --_ Request Physical Device Information

The system returns, in the SRB, certain information about the physical deviee currcntly
Assigned to a given logical unit. This information is used by programs whj.ch (}£>tnrmi!1o
I/O techniques at execution time, based upon tllC Unit Control Block WeB) for each
physical device.

The program must insert into word 1 of the SRB a pair of ASCII characters represent ing-
a valid logical unit name -- for example, LO or 82. Upon return to the program. a request
for a non-existent or unassigned logical unit will he indicated by setting word 0 or the
8RB to a value of : 8007. For a valid request, word 0 still will be : 0007. Word 3 of the
SRB will contain the maximum bytes for a binary record on the physical dev iee. The

. low-order byte of word 2 will contain the maximum characters for an ASCII record. If
the device is appropriate for page control, the high-order byte of word 2 will conta in

• the maximum lines per page; otherwise. zero.

8 h Request Loading of a Program Overl~

The system loads into memory a program designated by name. The program must be
suitable for / LOAD commana processing, and require the resolution of no external
references at all.

This request needs a five-word SRB, rather than the usual four words. The user mUf;t
set word 0 of the SRB to a value of : 0008, and words 2, 3, and.4 to the ASCII name of
the program (with trailing spaces as needed). The exact same name must appear in the
directory of the device currently assigned as the System File (SF) unit.

If the program is relocatable, word 1 of the SRB must contain the relocation bias. If
it is absolute, word 1 is ignored. The requested load must fall completely within the
User Al'(~a of memory, and must not overlay the request coding sequence itself. not its
rdated SRB.

() Control is never passed by the svstern to the newly loaded progr'am, but remains in the
original calling' program. On return, both the A register and word 0 of the Sf{B indicatt'
the success of the load request. This indication is a value of : nn08. in which "nn" is
the new value of the ECB (and the high-order byte of the A register) as follows:

: 00 Successful load
: 81 f/O error on SF
: 82 Load error, including violation of memory boundaries
: 83 Illegal type code

4-6

fl e

4.3.2 The MSG: Request

LABEL ,}ST
DATA

*

MSG:
Message Address
Return

COMPUTER AUTOMATION. INC. ~

The MSG request permits the calling program to print u mcssnge on the command output
device (CO) and continue normal processing. No operator rCHponse is expccte>d or
allowed.

The message to be printed resides in the calling program. lind its word aJdr('ss is passed
in the calling sequence. The message can be up to 254 chanlCtcrs long; all valid ASCII
characters arc allowed. The first character position (byte 0). must contain the message
length, in bytes. Any required line terminator, such as carriage return/line feed. will
be added by the system and should not be included.

Message Format:

I nl Message Text
byte 0 1 ~ 3 - n

t Message Address (word)

4.3.3 The SPND: Request

LABEL JST
DATA

*

SPND:
Message Address
Return

This request allows the calling program to print a message for the operator. and thcl1
suspend itself for operator action.

The SPND: request causes the system to renssign the command input (CI) and command
output (CO) devices to the operator console. after which thc message> is printed on CO.
Tile message passed must be in the format described for the MSG: request.

The operator may return control to the program with the /RESUME command. This will
cause restoration of the original CI and CO assignments and all program status.

4.3.4 The TERM: Request

LABEL JST TERM:

The TERM: rcquest is the last instruction executed in the user's program. It returns
control to the system. allowing program termination in an orderly manner. The programme
may lise cith(~r a ,1ST OJ' :l .JMP instJ'uetion for this r!'qut'st.

4-7

'I

'I

I

f COMI'UTER AUTOMATION. INC. ~
I'
'~'

t, 4.4 IOCS CONTROL BLOCKS
~!
,I

! 4.4.1 The File Cqntrol Block (FCB)
t

•

o

f

FCB Word

Ecn 0 --f
LUN 1 COMMON

2 SEGMENT
STATUS 3 .-----,----- . FILE - 4

I--
NAME - 5

1---
or ZEROS 6

BLOCK SIZE 7
BLOCK ADDRESS 8

RECORD SIZE 9
RECORD NUMBER 10 FILE-

11 ORIENTED
12 DEVICES
13
14
15
16
17
18
19

The file control block (FCB) is a 4 or 20 word list supplied by the user program. An
FCB is required for every file which the program references, and describes to the system
the attributes of that file. The common segment (words 0- 3) is required for all files;
the extended segment (words 4-19) is required for those on file-oriented devices (magnetic
tape. disc. cassette). It is recommended that the extended form generally he used. to
facilitate future file-oriented device operation without progrnm modification.

The user is required to initialize or examine the entries of the FCB labelled in the illustrll­
tion. The unlabeled entries are required by the system. They should be initialized to
binary zeros and left undisturbed.

4-8

C

Ii t, __ ___

e~------------------- COMPUTER AUTOMAnON.INC. ~

4.4.1. 1 ECB - Event Control Block

The ECB describes the attributes of the file, the type of processing required, and its
final disposition. This entry must be initialized by the user and shQuW not be altered
after the file is opened. Each bit off (0) is the default condition.

Bit 15 0 = Auto/Wait. IOCS returns control after an 10: request has been completed.

1 = Non-Auto/Wait. 10CS returns immediately after an 10: request has begun.
Used with WAIT: or TEST: request.

Bit 14 0 = Sequential 10 processing. Standard on all dev ices.

1 = Random 10 processing. Available on dise only.

Bit 130 = Physical record I/O. Causes a record to be read/written each I/O request.

Bit 12

Standard on all devices.

1 = Blocked record I/O. Causes the physical records to be blocked (combined
into larger groups) for each data transfer to allow greater device utilization.
Available on all file-oriented devices.

o = Keep the file after CLOSE.

1 = Delete (do not keep) the file after CLOSE.

Bit 11 0 = Must be off if either bits 10 or 9 are on.

1 = File OPEN for READ. If a file-oriented device, the file must currently ex ist.
WRITE is not allowed.

Bit 10 0 = Must be off if either bits 11 or 9 are on.

1 = File OPEN for WRITE (creation). If a file~type device. the file must not o currently exist. READ after WRITE is allowed.

---.

Bit 9 0 = Must be off if either bits 11 or 10 are on .

1 = File OPEN for UPDATE (modification) by physical record number. Applies
to RANDOM files and is available on disc only.

Bit 8 0 = Automatic page control. See Note below.

Bit 7

1 = Automatic page control suppressed. User is responsible for maintnining
line eounts and page separations.

o = Automatic top-of-form when tl list file is open or closed. See Note below.

1 . .:: No automatic top-of-form when II list fil(' is op(~n or closed.

4-9

ComputerAutomation ~

Bits 6--0 CUrrent line number for a list file.
See Note below.

NOTE: List Files

Should be initi.alized to zero.

List files -- that is, files assigned to a teletype or line printer -- requi~e spaci,ll
handling by IOCS because the user generally wants output divided into pages. The
number of lines on a page is determined by word 5 of the Unit Coritrol Block for each
physical device, which ordinarily contains a value of 66, but may be altered during
system generation.

If bit 8 is off, IOCS will update the line number in hits 6 through 0 of the ECB
each time a line is output to a list file. A line number within 12 lines of the
bottom of the page will force a top-of-form, and the line number will be reset to
one.

If bit 8 is on, suppres'sing automatic page control the line number will always be 1.

Top-of-form is also forced once when a list file is opened, and once when it is
closed, unless the user sets on bit 7 of the ECB. Normal programming practice for a
list file is thus to ?:ero bits 8 thru 0 of the ECB before the file i.s opened, and
allow IOCS to hi'tndle all details of page control.

4.4.1.2 LUN - Logical Unit Name

The LUN contains the logical unit name of this file:
from the available list as described in appendix D.
relate this name to the physical device required.

4.4.1.3 STATUS Word

two ASCII characters, taken
Use of the /ASSIGN command will

This word contains the current unit and device status of the file referenced. It is
updated after every call to request I/O and related services. This word must be
zeroed prior to a file OPEN: request and must not be altered thereafter by the user.

Each 'on' bit of the status word indicates either general fi'le informat i.on (th,' filL'
is OPEN, etc.) or error information (data error, etc.:. 1\11 error informatioll is
reset (bi t set 'off') by the system at every call; thc' llspr need not clear tht.'se
bits.

Bit Meaning

15 Error occurred; specified in bits 14 thru 4.

14 Missing or invalid file' name in FeB.

13 Unused bit position.

12 Device is not ready, or a file-oriented device is unlabeled.

11 Device is busy.

4-10

c

i
-I

I

~I
I

ii

o

o

.e

•

COMPUTER AUTOMATION. INC. 8EJ
Bit Meaning

10 Device error has occured .

9 Data error hils occurred; datil transferred has doubtful validity.

R Illegal Ol?eratioll requested.

7 Duplicat(! file name found on OPEN.

G Multiple concurrent WRITE not supported on this (kvice.

5 File not found on OPEN.

4 Write-protect v iolation occurred.

3 End of medium was found.

2 End of file was found ..

1 Successful OPEN occurred.

o File-oriented deviee.

4.4.1.4 File Name

When operating with file-oriented devices (magnetic tape. cassette. disc). a file name
must be made available to the system at OPEN time. This name can be placed in the FeB,
oj' entered as an optional argument on the / ASSIGN command . The name consists of one
to six alphanumeric characters and colons, the first of which must be alphabetic, with
trailing spaces as required.

If a name is not placed in the FeB, the bytes must contain binary zeros. If a name exists
in the FeB and one is entered on the /ASSIGN command, the ASSIGN name replaces the
original name when the FeB is opened. If a name is not entered in either way. the system
will request one.

4.4.1 .5 Block Size

If blocking is requested (see ECB) • this word must contain the total block length in bytes.
computed as the product of the record size and the number of records per block. If un­
blockcd, the word should contain binary zeros.

4.4.1 .6 Block AddresS

If blocking is requested (see ECB). this word must contain the starting word address
of a block buffer locnted in the user's area. The buffer need not be initialized. This
word should be cleared to binary zeroes if unused.

4-11

c -' - _______________________________ ~ __ _

e

el'

COMPUTER AUTOMATION. INC. ~

4" 4 . 1 . 7 Record Size

This word is required for all file-oriented devices and must contain th(, logical record
length in bytes. This is the "defined" record length only; the actual count ,'cquired is
pluced in the lOB at I/O request time and may be less. It may not bCg','cat('r.

4.4.1.8 RecOl'd Number

If random access processing is requested. this word contains the logical record number
of the record being processed. It is the responsibility of the calling prugrarll to maintain
this word during I/O operations. The system will not update it in any way.

4.4.2 The Input/Output Control Block (lOB)

lOB

I OPR

r-----------------FCB ADDRESS

RECORD LENGTH
(bytes)

RECORD ADDRESS

TRANSFER COUNT
(bytes)

Word

o

1

2

3

4

The Input/Output control block (lOB) is a 5-word argument list supplied by the user's
program. An lOB is required each time an 10: request is made. Normally a single lOB
pet' file is sufficient.

The user must initialize words 0 thru 3 prior to an 10: request. The system will rotUI'll
tlw actual transfer count in word 4, but will not modify any of the other words. e
4" 4.2.1 OPR - Operation Code

. The OPR field describes to the sJ"stem the typc of operation required. The following codes
are valid:

1

2

Read symbolic (ASCII)

Read binary

3 Write symbolic (AS CII)

4 Write binary

5 Rewind. the file

() Backspace aile)'ecord

7 Verify after write (file-oriented devices only)

8 Write EOF (See section 4.5.1)

4-12

"1
:1

'"

•

j"'k".#' 6

COMPUTER AUTOMATION. INC, ~

4.4,2,2 FCB Address

This word contains the address of the FeB associated with this file.

4,4.2.3 Record Length

This word contains the length of the logical record in bytes. DU'ring a WRITE operation,
it determines the length of the record to be output, During a READ operation. it determin<'s
the maximum number of bytes to be input, READing fl rccord of grcater length will t:ausc
all surplus bytes to be discarded,

4,4, 2,4 Record Address

This word contains the starting word address of thc record buffer located in the user's
ar(~a, into which the record will be read, or from which it will be written.

4.4.2,5 Transfer Count

After completion of an I/O operation. this word will contain the byte count of the number
of characters actually transferred. This number may not correspond to the R{~cord Length
contents. but can never be greater. If the transfer count is less than the requested amount.
no fill characters are appended by the system.

4.5 DEVICE DEPENDENT CONSIDERATIONS

Although the Operating System supports all devices in a "device independent" manner.
th<> user should be cognizant of certain hardware differences (such as various end-of­
file indicators). as described in the remainder of this section.

4.5.1 End-of-File (EOF) Indicators

The system recognizes or generates various EOF indi cators dependent upon the devices
involved:

1. Teletype and HSPT devices: A sepnrate record containing: FFOOOO (rubout-null-
null) in frames I, 2, and 3. To generate EOF through the teletype keybo:\I'd. depress
the rubout key once. then the SHIFT-CTRL-P keys twice. The sequence ::>lash-nsterisk
(/ *) is not recognized as EOF.

2. Card Reader: A card containing the two characters / * in column 1 and 2.

:1. Magnetic Tape: A special record recognizable on ly to the hardware interface.

4. Casse~te:A two-byte record containing: 0000. 'fhi::> is a software end-of-file, and
uscr programs should not generate such a record.

5. Disk: An internal software end-of-file recognizable only to OS.

4-13

o

ComputerAutomalion ~

4.5.2 Checksums

The system checks the accuracy of all binary paper tape records by the use of a
checkstun, as described in the Software Manual. Checksum calculations are not per­
formed on symbolic paper tape records, nor on any other system devices.

4.5.3 Carriage Control of Printed Output

When writing toa "print" type device, such as the Teletype or line printer, the user
controls page formatting through the use of control characters. A carriage control
character is placed in the first byte position of the record to be printed and is
included in the count of characters in that record. The control character is r~quired
by the driver and is not printed.

The valid control characters are described below; any other character will be treated
as a "blank" and cause single spacing.

blank

+

1

o

Blank (or space) character. Single space before printing.

Plus character. No line spacing. Allows overprinting of the previous
line.

Numeric One character. Advance to top-af-form before printing the
line.

Numeric Zero character. Double space before printing.

NOTE

For the Teletype the top-of-form option in the Root may be used
to cause 3 Linefeeds to be output in place of a top~of-form.

4.5.4 Recording Medium Preparation

Cassette cartridges and disk packs must be initializ~d before use under OS.

All cassette tapes used by OS must be formatted by the Cassette Address Formatter
(Program 96066). After the cassette has been formatted, the write-enable tab for the
address track (track A) must be removed. OS will not perform I/O on a cassette which
still has its address track enabled for writing.

All disk packs used by OS must be formatted by one of the following programs:

Moving Head Disk Formatter Program (10 96080)
Moving Head Disk Diagnostic Program {ID 96075)

4-14

;i
;1

:1
11
"

il

•

4.6 PROGRAMMING EXAMPLE:' loeS AND EXECUTIVE REQUESTS

The assembly listing reproduced on the following
approach to coding IOCS and Executive requests.
list," with input on SI and ()utput on LO.

pages will demonstrate a typical
The program is a simple "80/80

Certain points about the program coding will be discussed here, not because the
techniques are sophisticated, but because they are so typica'l of almost any program
intended to run under os.

All of the named entries within os to which control will be transferred are declared
as external references before the executable code. The object code for each JST
shows that these references are unresolved at assembly time; the program will have to
be processed thru OS:LNK or OS:LDR to fill in the correct indirect links Lhru scratch­
pad. Individual REF directives for each external name could have been used as an
alternative technique.

Each OPEN: and IO: request is followed by a provision for an error condition. The
IO: request for input also needs a test for End of File. Each CLOSE: request has a
NOP for an error condition during closing, because the nature of the files beinq
processed does not require anything more elaborate.

Each lOB and FCB is established with a single DATA statement. The Record Length
field of the output lOB is not fixed at assembly time; instead, the program tries to
minimize peripheral transfer time by writing only the number of bytes actually read
in.

The input and output buffers occupy the same area of memory, except that the output
buffer must allow for a carriage control character, plus one more space to fill out

> the first word.

The data referenced in the MSG: request begins at ERRMSG, but is coded in two state­
ments. If the message were altered during program execution, the TEXT statement
would probably be given a separate label.

4-1')

w',}t'" "jtH" t t. t"""WIN.S t

PAGE 0001 MM/DD/'t'Y 01: 30:0') lors AND EXEC REIJUfST DEMONSTRATION
MACR02 (Al) SI= OSUSER 'tW=

0002

0004
0005
0006
0007
0008
0001.1
0010

0012
0013
0014
001C;
0916
0017

aO° 18
l.,j019
I 0020

I 0022
0023
0024
002'5

0027
0028
0029
0030
003\
0032
0033
0034

0036
0031

00038
0039

0000
0000 F900 0000
0001 001E
0002 F217 OO\A
0003 F900 0000
0004 0027
0005 Fi?ll1 001A

0006 F900 0000
0007 0022
ou08 201.11 OOlA
0009 8213 0010
o 0 0 A 3 1 0 8 0 0 1 .~
OOOB B21A 0026
OOOC 0150
0000 0150
OOOE 9A1E 0020

OOOF F900 0000
QOI0 002B
0011 F208 001A
0012 FbOC OOOb

0013
0013 F900 0000
0014 OOIE
0015 0000
0016 F900 0000
0017 0027
0018 0000
0019 FlOO OOVO

001A
OOIA F900 0000
00113 00':)9
00lC Fb09 0013

START

READ

WRlfF

END

EXTR

Ef'lU
JST
DATA
JMP
JST
DATA
Jt.4P

JST
DATA
JAM
AND
JAN
LOA
IAR
UR
STA

JST
DATA
JMP
JMP

EQU
JST
DATA
NOP
JST
OATA
NOP
J~p

E~U

JST
DATA
JMP

OPEN:,rLOSF:,I£l:,HRM:,MSG:

$
OPEN:
ROFC~

ERROf.'
OPEN:
wTFC~

ERROR

10:
ROIOR
ERROR
EO~MSK

END
RDIOB+4

WTIOR+?

10:
WTIOB
EHROR
ReAD

~

CLOSE:
RDFCR

CLOSE:
V4TFC~

TE.RM:

$

MSr:;:
ERRMSG
END

OPEN 51

OPEN 1.0

~F AD 1 RECORD

ISOLATE EOF BIT
EnF?
lPANSFER RyTE COUNT
AnD 1 FOR CARRIAGE CONTROL
AOD \ FOR LFADING ~LANK
SET OllTPIlT RECORO SIZE

WRIT\::. 1 RECORD

END MAIN LOOP

E('IF PATH
CLOSE SI

E.RRllR I N CLOSE
CI.OSE Ln

EF<~OR IN CLn~F
kF ,wt: S T T F RM I NAT I I1N

l~SUE MFSSAGE UN ro

Programming Example: lueS and Executive Requpsts
Part 1 of 3

4-16

---.. -~-~--~----------------

t,

-e

PAGE 0002 MM/OO/YY 01:]0:05 10CS AND EXEC REI1UfST nEMONSTQATION
MACR02 (Al) 51= OSUSFR RO=

01>41 0010 0004

004l

0044

0046

0047

OOIE 0800
OOlF D3C9
0020 0000
0021 0000
0022 0001
0023 001E
0024 0050
00t'5 0031
0026 ()OOO

0027 0400
0028 ereF
0029 0000
002A 0000
002B 0003
002C 0027
0020 0000
002E 0030
002F 0000

0049 0030 AOAO
0050 0031 0000

0052 0008

0054 0059 19AO
01)55 005A C502
0056 OOb6

0058 0000

0000
0000

E~RORS

WARNING

EOFMSK DATA

Rt)FCH DATA

ROIUti DATA

wTFCB OATA

WTIOB DATA

wTl:WFF DATA
ROBLJFF RES

LIST

ERRMSG DATA
TEXT

fRR[NIl EQU

END

:OOOIJ EflF HIT IN FC~

:0600, 'SI' ,0,0

I,ROFCR,AO,WPIiIlFF,O

:0400,'LO',0,O

3,WTFCB,O,WTHUFF,0

:AOAO
40,0

:08

CONTROL PLUS 1 HLANK

SHORT TEXT

ERRENO-$*2-1Y.8+' ,
'ERROR -- RUN TERMINATfO '
$

START

Programming Example: IOCS and Executive Requests.
Part 2 of ~

4-17

•

PAGE 1 MM/DO/YY Ol:QS:34 OS:LNK (RO) ME~ORY MAP

PROGRAM
r-ISG: 0498
CLOSE: OH41

TERM: 06RQ OPE"4: OA05 OAt4

MEMORY USAGE
SCRATCH-PAD LITERAL
~Al~ MEMORY PROGRAM
EXEC ADDRESS

PROCESSED LSI ~ UAJECT

NO ERRORS

OOF7-00FB
lD74-1DDq
\074

Progranuning Example: loeS and Executive Requests
Part 3 of 3

4-18

c

Section 5

FILE MANAGEMENT SERVICES

5.1 INTRODUCTION

The File Management module of the Operating System provides directory maintenance
facilities for the file-oriented devices (magnetic tape, disk, cal'sette). The usor
is able to access program and data fill'f; by name, without regard to the phy~;i.cal
characteristics of the device.

All requests to file-oriented devices are made through loes, in a manner identical to
other devices. It is, however, necessary that the user supply some additional infor­
mation in the File Control Block (FCB) prior to file OPENing.

5.2 FILE ORGANIZATION

Every file-oriented device under OS contains a directory which describes, by name,
all data and program files resident upon it. This directory is created by the OS:LBL
utility program and maintained as required by the File Management routines.

The directory is contained in the first few records of the physical volume (reel of
magnetic tape, disk pack, cassette cartridge) on the device. The exception to this
is the system-residence unit, on which the directory follows .immediately after the
system file.

The directory starts with an entry describing the volume, called the Volume Table of
Contents (VTOC). This entry contains pertinent information for OS, as well as user
information such as creation date and name. The Volume Table of contents contains
enough room for 320 disk file entries, 64 floppy file entries, or 160 mag tape files.

The remainder of the directory is segmented into File Description entries, one for
each file on that volume. An entry contains the file name, creation date and time,
and system information such as record and block size, and total file length.

The VTOC, the File Description entries, and the contents of any file can be displayed
with the OS:VEW utility.

5.1 FII£ ACCESS METHODS

Fi le Management provides both setluentiLll and random access capabilities to the user
proqram. 'rhe sequenti al aL'cess method is the standard mode of dat.u transfer; randolll
access must be t~xplicitly requested through the File Control Block (E'CB) at OPEN
time.

5-1

i -

5.3.1 Sequential Access

Sequential file processing is available to the user on all file-oriented devices.
Sequential files are accessed by logical record and automatic blocking/deblocking of

records is available.

Sequential files are uniquely ordered: given record n, the next READ request will
always return record n+l. It is possible to access previous recor.ds with the BACK­
SPACE operation, and to return to the first record of the file with the REWIND
operation.

A READ or WRITE request automatically advances the file to the next loqical record.
Thus, to access record n-l after READ or WRITE record n, the user must issue 2 BACK­
SPACE operations.

File Management provides automatic blocking and deblocking of logical records under
sequential access I/O. All I/O requests access a single logical record. Its relative
position in the physical records contained within the file is controlled by the File

-Management routines.

The user provides a record buffer and a block buffer in his program area, and the
size and address of each in the appropriate FCB and lOB. The block buffer should be
a multiple of the record size. A buffer whose length is not a multiple will waste
the surplus area.

5.3.2 Random Access

Random access file processing is available only for disk devices. Random files are
accessed by physical record; automatic blocking/deblocking is not provided.

Each record of a random file occupies exactly one sector of the disk. The first
record within a specific file is Relative Record 1, the next is Relative Record 2,
and so on. The user must set the Record Number field of the FCB to indicate which
Relative Record is to be accessed on the next 10: request. Except during file
creation, the FeB must always indicate OPEN for UPDATE. EE:
The number of data bytes contained in each record is fixed at two bytes (or one word)
less than the physical capacity of a sector. For a WRITE, the user sets the byte
count in the Record Length field of the lOB. When the same record is accessed with a
READ, the Transfer Count field of the lOB will conta~n the same byte count.

A random file must be created in a special way, so it can be defined to have a certain
maximum Relative Record Number. The FCB must be set to indicate OPEN for WRITE, as
opposed to OPEN for UPDATE. The proposed maximum Relative Record tlumber must be
placed in Word 9 of the FeB. This word ordinarily contains the Record Size of a
sequential access file. Word 10 of the FCB, Record Number, is not used during
creation of the file.

The program attempts to OPEN the FCB. If enough space is available on the disk for
the requested number of sectors, a normal return is taken, and the program issues a
CLOSE. Subsequent use of the file will require an FeB set for UPDATE, as previously
described. If enough space is not available, the End of Medium flag will be set in
the Status Word of the FCB (Word 3, Bit 3), and an error return will be taken. ~le

program must then ded de whether to abort processing or make a smaller request for
disk space.

f!
il .. ,
~I

'--

COMPUTER AUTOMATION. INC, ~

Scetion 6

SYSTEM GENERATION

6.1 INTRODUCTION

The Operating System is delivered as n configured system on paper tape. including a
"Root" module which mny be altered by the user to mpet changing requirements. TIll'
system supports a wide range of hardware options. and will meet the software environment
needs of most ALPHA-LSI users.

6.2 HARDWARE CONFIGURATIONS

6.2.1 Minimum Hardware Requirements

e An ALPHA- LSI computer with 16K of memory alld the following processol'-mounted options:

o

Teletype interface for ASR-33
Power Fail/Restart
Real Time Clock

One ASR-33 Teletype. or its equivalent

6.2.2 Additional Hardware Supported

High Speed Paper Tape' Read(~rs
High Speed Paper Tape Punches
Card Readers
Line Printers
Disks
Cassettes
Magnetic Tapes

An Appendix to this pUblication lists the makes and models of peripheral devices currently
supported under OS .

6-·-1

·.1
I
I

I
~I
'1
il

Ii

G'

6. 3 DELIVERED SOFTWARE

The Operating system is delivered as a collection of paper tape modules, as shown
here.

1D Number DescriS2tion

96530-41 DOS Complete System '(ab~olute binary)
96530-21 OS Root (source)
96530-31 OS Root (object)
9653X-3X OS Nucleus (library object)

System Utility Programs Copy to SF Link to SF

96540-30 Label Files OS :LBL X
96541-30 Copy Files OS:cpy X
96542-30 Loader OS :LDR X
96544-30 Dump OS:DMP X
96545-30 View Files OS:VEW X
96546-30 Debug OS :DBG X
96547-30 Source File Editor OS:SFE X
96548-30 Concordance OS:CNC X
96549-30 Link Editor OS:LNK X
96550-30 Text Editor OS:EDT X
96551-30 Independent Loader OS :ILD X
96554-30 Paper Tape Header OS:HDR X

Assemblers

96543-30 No Macro Facility OS:ASM X
96552-30 with Macro Facility MACR02 X
96553-30 LS1-3 Programming MACRO 3 X

The following documentation is also included:

96530-00 OS User's Reference Manual
96530-10 DOS Root a~sembly listing
96530-51 DOS Root load map

6-2

e

,;:1

~ I

II

6.4 SYSTEM GENERATION PROCEDURES

6.4.1 Configuration of the Operating System

The contents of the OS Root Program (10 96530) determines the nature ot a ~paptfic

system. The inclusion of the required device drivers, interrupt location~, ~og!c~l
unit default assignments, and other system parameters, are all. provided for by assem­
bling OS Root.

The standard OS Root for LSI-2/10 (DOSlO and DOSIOE) provides for the following periph­
erals and default assignments:

Device

Teletype Keyboard
Teletype Printer
Teletype Paper Tape Reader
Teletype Paper Tape Punch
Centronics Line Printer
Floppy Disk
Floppy Disk

Physical

TK
TY
TR
TP
LP
FO
FI

Unit Default Logical Unit

CI,SA,OS
CO,LO',06
None
None
LO (DOSlOE)
SF
SS,SI,BI,BO,LI,SO

The standard OS Root for LSI-2/20 or LSI-2/60 (ooS20) provides for the following
peripherals and default assignments:

Device Physical Unit Default Logical unit

Teletype Keyboard TK CI,SA,OS
Teletype Printer TY CO,06
Teletype Paper Tape Read,er TR None
Teletype Paper Tape Punch TP None
centronics Line Printer LP LO
Floppy Disk unit 0 FO SI ,BI ,LI
Floppy Disk Unit 1 FI BO,SO
43-Series Disk, Fixed Platter DO SF
43-Series Disk, Removable Platter 01 SS

If either configuration is acceptable, simply load (or autoload) and execute the de­
livered tape containing the DOS Complete System (10 96530-41), which already includes
the standard OS Root. Continue system generation procedures with Operation of OS:GEN.

The standard OS Root may not be acceptable because support is needed for more, or
different, peripherals -- for example, a Data Products printer, magnetic tapes, cas­
settes, more 43-Series disks, or Double Density disks.

The OS Root routine also supports Distributed Input/Output (010) for some peripheral
devices, via a standard I/O Distributor or a DMA I/O Distributor. The "Device Selec­
tion Table" shows which peripherals are supported by 010; they include HSPT Reader 010
(PTRD) , HSPT Punch 010 (PTPD), Line Printer (LPCED or LPDPD), Card Reader (CRDD), and
CRT (CRTD).

Find the page headed "Device Selection Table" in the delivered source listing for OS
Root. Determine what "SET YES" statements should be inserted, and perform the modifi­
cations, using OMEGA (or load a previous OS and use OS:SFE). Assemble a new version
of OS Root. Continue system generation procedures with System Construction.

6-3 Revised 9/76

#.·.ii??11
~

I
!

If 25 IPS magnetic tape drives are to be used with OS, a special modification must be
made to OS Root, in addition to insertion of a "SET YES" for each tape unit. Either
delete the statement which reads:

MACH SET o

or insert after it a statement which reads:

MACH SET 1

Some changes may be required to the default logical unit assignments -- that is, the
assignments of logical units to physical devices automatically established for each new
/JOB unless overridden by /ASSIGN commands. This may mean modification and re-assembly
of OS Root.

The Logical Unit Assignment Table (LUT) source statements contain a DATA statement for
each logical unit. For example, the default assignment of SI=PR is fixed by the third t

.operand of the statement:

51 DATA '51' ,PR,PR

The second operand is a dummy representing a temporary assignment within one /JOB. To
make a default assignment of SI=CR, which is the usual practice for an installation
with a card reader, change ~he statement to:

SI DATA '51' ,CR,CR

If the only modifications needed to the standard as Root are changes to the Logical
Unit Assignment Table, the table may be patched in memory (using DEBUG loaded no lower
than :2000, or the processor console) before executing OS:GEN. Load (or autoload) the
DOS Complete System Tape, but do not execute it. Do the patches, then begin execution
at the location labelled OS:GEN on the delivered as Root load map. Proceed with Opera­
tion of OS:GEN.

6.4.2 System Construction

If a new version of the as Root object tape was generated, it must be combined with tne
delivered OS Nucleus (ID 9653X-3X) to produce a complete Operating System in low
memory.

OS:LNK may be used if a previous OS is available. The as Root tape must be input from
BI before the as Nucleus tape is input from L1. The output must be another paper tape,
which will be the equivalent of the delivered standard DOS Complete System tape, and
may be loaded (or autoloaded) and executed to enter OS:GEN. Ready the 06 Root tape and
enter:

/JOB LINK NEW as
/ASSIGN B1=PR,LI=PR
/ASSIGN BO=PP, LO=LP
/EXEC OS:LNK,NH,AB=O
OS:LNK (nn)
7 LL,TE
OS:LNK END

where (nn) indicates the version of OS:LNK

6-4

~I

If no previous OS is available, use the LAMBDA object loader at :2AEO or highe;r. set
A, X, and SENSE to zero. Set the Sense Register to :0 for a load map on the teletype,
or to :1 for the line printer. OS Root must be input before OS Nucleus. If the final
load map shows no unresolved externals, hit RUN to enter OS:GEN.

6.4.3 Operation of OS:GEN

At this point, the resident Operating System has been loaded into memory. It extends
from location :0000 to approximately :lDFF, the highest portion of which is a temporary
block of code with the entry label OS:GEN.

The system generation procedure has resulted in a transfer of c0ntrol to OS:GEN. The
Operating System about to be recorded for future use will not begin execution at OS:GEN
after normal loading (unless OS is loaded from a paper tape), and the locations occu­
pied by OS:GEN will become part of the User Program Area of memory.

OS:GEN converses with the operator thru the operator console. Terminate each response
with a Carriage Return. If the message "I/O ERROR" is displayed, the program will
execute a processor halt. Hit RUN to restart generation.

The first normal display is:

* ALPHA LSI OS:GEN *
GEN OS (Y OR N)?

A response of "N" will terminate os :GE.'N, and control will be passed to OS as if a
routine load of os into memory had just taken place.

A response of "Y" will result in:

VOLUME TYPE, UNIT=

OS:GEN wants the physical unit on which the operating System is to be recorded for
future use. Typically, the response will be "DO" but any appropriate output device mdY
be named.

NOTE

When floppy disk is used as the output device "FO" should be used.
"Fl" thru "F3" are valid; but, will produce a system that will rot
be autoloadable.

After OS has been recorded, the program will ask:

GEN AGAIN (Y OR N)?

Another copy of OS may n~ be requested. It is advisablerto generate a copy df OS on
paper tape as an ultimate back-up. When OS is loaded from paper tape, execution will
begin with OS:GEN itself. Thus, once the required configuration of OS has been gen­
erated on paper tape, it will never be necessary to go all the way back to the original
Root and Nucleus tapes, even if the ordinary system residence file is destroyed.

6-5

Ii ComputerAutomatlon ~
~
~
t
t A response of "N" will pass control to normal OS after the display:
~':
I: * OS : GEN COMPLETED * ,
r

~ ,

A dummy time and date will be displayed; the operator should supply tbe 4ctlJal ttme i\nd
date with /TIME and /DATE commands.

6.4.4 Labelling of System Residence Volume

The Operating System has now been recorded for future use on a disk, a cassette, or a
magnetic tape. Before this recording of OS, called the System Residence Volume, can
actually be used -- for e~arnple, before the System Utilitr Programs can be copied onto
it -- the volume must have an OS volume label. If anyone of the following conditions
apply, OS:LBL must be run now:

The volume has never been labelled for use under OS.
The volume has never been used previously as a System Residence Volume.
The volume is a reel of magnetic tape.

il To label the System Residence Volume, ready the delivered paper tape of OS :LBL, and
enter:

;1
II

/ASSIGN SF=PR
/EXEC X

OS:LBL will begin execution. A typical dialog between the program and the operator
would be:

NAME
?SYSRES
TYPE AND UNIT
?DO
DOES DO CONTAIN OS
?Y
SAVE OS
?Y

Refer to Section 3.5, OS:LBL, for the remainder of the labelling procedure.

6-6

c

6.5 ADDING SYSTEM UTILITY PROGRAMS

6.5.1 General Considerations

The delivered System Utility Programs should now be added to the same physical volume
upon which OS itself resides. First, OS:CPY is loaded and executed t,::om f!q}:HH" tape,
and used to copy the same tape to the normal SF device. Then OS:CPY may be executed
from SF to copy most of the remaining utilities, including the Link Editor. Finally,
certain programs are linked onto SF.

Some thought should be given to the order in which programs are arranged on SF,
especially if SF is a magnetic tape or cassette. The most. heavily used programs
should be as close to the beginning of the file as possible, to m1n1mlze access time.
Each installation must decide how to approach this question, or even whether to
consider it at all.

6.5.2 Copying OS:CPY

In the examples which follow, the default assignments shown earlier in this chapter
are presumed to be re-established at the start of each new job. Recalling that
execution of a program from paper tape ignores the program name supplied on the /EXEl
command, the following procedure may be used to transfer OS:CPY from the delivered
paper tape to the disk containing OS itself.

/JOB COPY OS:CPY TO OS VOLUME
/COMMENT READY OS :CPY TAPE ON PR
/ASSIGN SF=PR
/EXEC X
?

OS:CPY has begun execution, and wants parameters. Ready the os:cpy tape on PR once
more, and respond:

CB,PR,DO.OS:CPY,TE

When the program terminates, OS:CPY is on the disk, from which it may be executed
more conveniently for the following steps.

6.5.3 Copying Other Utilities

Section 6.3 identifies the System Utility Programs which may now be copied from the
delivered paper tape onto SF. Be careful to ready the proper tape for each "CB"
command, so each program gets the right name. In theory, the name given to each
System Utility Program on SF need not be the same name used in CAl-supplied documenta
tion. However, those utilities which are loaded into the Transient Area of memory
must use the standard names. They are:

OS:LDR
OS:DMP
OS:DDG

6-7

:.1
'.

I
;1
';1 ,.
"
'~ !
II ..

,

.1
I
J

1

'I
t:1
'I
~ i
11
'7'1
"

il

o

The following example shows how OS:LDR and OS:LNK are copied. Ready the OS:I.DR tape
and enter:

/JOB COpy UTILITIES
/EXEC OS:Cpy
lCB,PR,DO.OS:LDR
?

Now ready the OS:LNK tape and respond:

CB,PR,DO.OS:LNK

Each time OS:CPY finishes with a paper tape, ready another one and give another
command:

CB,PR,DO.OS:xxx

until all the utilities are copied. Then terminate OS:CPY and list the program names 411
for future reference:

?TE
7EXEC OS:VEW,DO,N,TE

6.5.4 Linking Utilities

The Operating System Assemblers, and certain System Utilities, must be linked (rather
than copied) onto SF from the distributed paper tapes. These programs are identified
in Section 6.3, Delivered Software. No special Link Editor parameters are needed:

/JOB LINK A UTILITY
/ASSIGN BI=PR,BO=DO.xxxxxx
/EXEC OS:LNK,TE

This concludes all system generation procedures, and routine jobs may now be entered.

(,-8

':~ ,
,

~I I

'.,
I

,

i,1 It

~I

.:.1
~i
~,

! C

(OMPUTfR AUTOMATION. INC. ~

Appendix A

OS COMMAND SUMMARY

/ASsign logical unit=physical device (or) logical unit

/BAtch physical device

IBEgin [address] [,parameters]

ICAncel

I COmment [text]

IDAte [aa/bb/cc]

IEXec program [,parameters]

IJOb

ILlst [logical unit]

ILOad program

INJob

/REsumc [paramei('!'s]

/STatus

/TImc [hh:mm:ssJ

ITYpe

A-]

COMPUTER AUTOMATION. INC, ~

Appcndix B

IN~UT/OUTPUT AND EXECUTIVE SERVICES SUMMARY

REQUESTS FOR JNPUT/OUTPUT AND RELATl':D_~"~RV!CJ'~S

, LABEL JST OPEN: Open a file.
I

DATA FCB
JMP BUSY/ERROR

LABEL JST CLOSE: Close 11 file,
DATA FCB

e JMP BUSY/ERROR

LABEL JST 10: Perform I/O,

e DATA lOB
J!\1P BUSY/ERROR

LABEL JST WAIT: Wait for completion of I/O.
DATA FCB
JMP BUSY/ERROR

LABEL JST TEST: Obtain status of a file, "-- DATA FCB
JMP BUSY/ERROR

REQUEST FOR EXECUTIVE SERVICES

e LABEL JST SUPV: Hequest cxecutive servkc,
DATA SRB

LABEL JST MSG: Print message on CO unit.
C)

.; DATA Men ... \".J

LABEL ~1ST SPND: Suspend program expcution.
I

·1 DATA MSG

LABEL JST TERM: Terminate program,

A-I

Ii __________ ~ ______________ _

8P1k#8'a""Yr ti '* ilr "nJe M 2 .. !!'M'hfl!t 'We!W ... ••

•
Appendix C

OS PHYSICAL DEVICE NAMES

TK Teletype Keyboard
TY Teletype Printer
TR . Teletype Paper Tape Reader
TP Teletype Paper Tape Punch

PR High Speed Paper Tape Reader
PP High Speed Paper Tape Punch

e LP Line Printer
I CR Card Reader

e DO Moving Head Disk Unit 0
to to
Dn Unit n

MO Open Reel Magnetic Tape Unit a
to to
Mn Unit n

CO Digital Cassette Unit 0

to to
Cn Unit n

FO Floppy Disk Unit 0

to to
Fn unit n

C-l

',!i

I ---­
"1
, 1

i.!

"
t!
~.
'~
~'

~:
r:
~'i c:
" ~
,7i

;1

il

--

"--

C)

COMPUltR AUTOMATION. INC. ~

Appendix D

OS LOGICAL UNIT NAMES AND STANDARD FUNCTIONS

The function shown for each Logical Unit Name indicates how it ts used by CAl-supplied
software programs. A user program may use a Logical Unit Name in any FCB for any
purpose, although consistency with the standard functions is recommended, and inter­
ference with the standard use of SF. CI, and CO is particularly inadvisable.

SF

CI

CO

LO

BI

LI

BO

SI

SO

SS

SA

S1
to
S4

01
to
\III

System File

Command Input

Command Output

List Output

Binary Input

Library Input

Binary Output

Source Input

Source Output

Souree Save

Source Alternate

Scratch 1

Scratch 4

Data Set 01

Dlltll ~ct 1111

Any program brought into memory by u / LOAD or /EXEC
commllnd. or by a SUPV: request. must be on the currnnt
SF.

Each system command or additional paramcter is entered
thru CI. Conversational programs read from CI."

Messages from OS are directed to CO. Certain Executive
requests from program s. produce a message on CO. Conver­
Rational programs write to CO.

Information formatted into lines and pages is written to
W for immediate or deferred printing.

Programs which process object code, such as as: LOR and
OS: LNK. read primary input from BI .

Programs which process object code read secondary input
from LI.

Programs which generate object code. such as language
processors and as: LNK. write to no.

Input to language processors and to certain file-processing
utilities, such as as: SFE. as: eNC. and as: VEW. is read
from SI.

Programs which generate new source code. such as as: SFE,
write to SO.

Language processors ~tore information on SS for a second
pass.

Programs which process souree code. such [IS OS: SFE.
read secondary input from SA.

General use. OS: CPY always reads from S 1, and writcs
to S2, after forcing assignments to those units within OS.
These assignments still exist after as: CPY termination.
so S2 can he used immpdiately.

General IHW. 01 to 06 ure suppli(~d in the delivered as,
hilt 11I0l'P may be added during systl'tn g('llprlltioll. to a
IIlllxil1l\llll or ~)!).

0-)

',,",i,.[,

"

I.

" l'

f~

'''1'

f
~,

e .-

Appendix E

OS STANDARD INTERRUPT BLOCKS AND DEVICE ADDR,ESSJi:6

The interrupt blocks shown here are part of the OS Root Program, as described in the

section on System, Generation.

I NTERRUPT BLOCK

Power Up

Half-Duplex Teletype

Moving Head Disk

Real Time Clock

Power Down

Console Interrupt or TRAP

Open Reel Magnetic Tape

HS Paper Tape Reader/Punch

Line Printer

Card Reader

Digital Cassette

Floppy Disk

STARTING
LOCATION

:0000

:0002

:OOOA

:0018

:OOlC

:OOlE

:0022

:002A

:0042

:004A

:0052

1';-1

ENDING
LOCATION

:0001

:0007

:OOOB

:OOlB

:001D

:OOlF

:0027

:002F

:0047

:004F'

:0057

DEVICE
ADDRESS

:07

:01-'

:08

:09

:06

:04

:U')

:10

:11

***'7=

e -

il

ri"t W"g ii' zr tHrtV"" t' r: 'f'e- *t terN? '$ &tt:tMH'CW"tlb'$'wt t tb .",WOWS e.H. r

Appendix F

PERIPHERAL DEVICES SUPPORTED UNDER OS

DEVICE

HSPT Reader

HSPT Punch

Card Reader

Line Printer

Magnetic Tape

Digital Cassette

Moving Head Disk

Floppy Disk

MAKE and MODEL

Remex
Digitronix

Remex
Facit

Bridge 8000
Peripheral Dynamics C301
Documation

Centronics 101
Data Products 2310
Data Products 2410

Pertec 7820

Computer Automation, Inc.

Diablo Model 31/33,41/43

Computer Automation, Inc.

F-l

INTERFACE REQUIRED

53223
53223

53223
53223

53223
53223
53223

53223
53223
53223

53224-Y7
53224-Z1

53240-X4

53264-Y2
53263-YO

53566

or above OR
or above

or above.

or above AND
or above

,
PA&E ~001 11/A5/74 17126105 ALPHA 16/LSI DISK LOADER

'----" LINE LOC INST ADDR LABEL MNEM OPERAND COMMENT
", 11"02 ,.

rUI03 ,. 96537-A0
lIaa~

,.
fUIS5 .COPYRIGHT 1974 COMPUTER AUTO~ATION INC
11106 •
IUJ07 2F00 REl ,2F00 BINARY RELOCArI6LE
""08 000F OA F.QU 017 DISC DEVICE ADOHESS
1110g ,.
"110 2f00 FA01d 2FDI START JSl ~+1 WHERE AM 11
IiJlll 2FOI 0000 DATA " 0112 2f02 E61H 2FOI LOC LOX $-1
"113 2F03 C20C AXI DELTA !JOINT TO lA~LE

0"14 2f04 6f78 AGAIN WRX 0",0 READ fROM DISC

e "tH5 2f05 5978 RDA OA,0 GET STATUS
0016 2f06 1354 LLA 5
0111 2~07 2UJ4 2FOC JAZ $+5 OK?
0118 2'08 4S7t SEL OA,4 NO

0 0119 2f09' 497C SEN 04,4 RESET AND WAIT
0029 2fOA FMH 2F09 JMP $-1
""21 2fOB F607 2F04 JMP AGAIN TRY AGAIN
II"'J22 2fOC F000 ""00 JMP 0 GOTO BOOT N2
"023 esse DELTA EQU i-LOC ••
""24 2FDD 0000 DATA 0,4,250,0 DISC CONTROL ~OROS

2FOE "S04
',,---, 2fOf' 0100

2fE0 001110
S025 2fDiri END START

"'0" ERRORS

Appendix G

BOOTSTRAP FOR DOS WITHOUT AUTOLOAD

., ~:,\

G-1

aM» f 'W'weWW'M"Mdetm'ti#M"lI# ,

f,

t e
! '-I
~

~: P4GE 0001 11/01/74 02118.48 ALPHA 16/LSI OS MAG TAP£ LDADE~
ti
rl

iNST ADDR • LINE LOC LA8EL MNEH OPERAND COMMENT 7':
*.:--

IIBra2 \, • '/1'

IBra3 • 5»Sei35-011J
ral04 • I. 'US .COPYRIGHT 15»74 COMPUTER AUTOMATION INC
""6 • "107 28/aS REL .2811 LOCATE BOOT • OR > 12~.1
"108 011B~ MT EQU ~ MT DEVICE ADDRESS

. "1"9 2a0ra T800T EQU i
ra818 28S8 4'4C T800T2 SEL HT,4 EHRDR. ME-INITIALIZE
1811 28ral 4.,4A SEL MT,2 REWIND TAPE
11812 28S2 4V48 SEN HT,3 WAIl UNTIL. DONE
1113 2803 '681 2802 JMP I-I
""14 28/a4 8108 ZXR STARTIN' L.OAD LOCATIO~ • IIJ e SI15 28/a5 4948 SEN MT,3 WAIl UNTIL tAPE READY
(1816 28/a6 F601 28i)5 JHP i-I
1117 ·2807 41 .. C 8EL HT,4 INITIALIZE 14PE

e 1118 2808 4'4F SEL MT,7 SELECT READ IIIODE
11819 2809 5V"~ T800Tt RDA MT,I READ HIGH ORDER BYTE
1d128 280A 1357 LL.A 8 MOVE IT OVER
(1121 2808 4840 SSN HT,5 END 0' ~ECORD7
ra"22 280C F61C 28el JHP T80012 YfS, LOST A ByTE
1123 2800 "94~ SEN HT,t BUFfER MEADY?
11024 280E F603 2808 JMP i .. J NO, KEEP TESTING
"125 280F 794~ RBA HT,I READ LOW URDER 8YTE
S826 2810 ~84D SSN MT,5 END Of' RECORD?

---- 1127 2811 '285 2817 JMP T80013 YES, DONT SlORE CRC
"128 2812 4949 SEN MT,1 8UFfER READV.,
11129 2813 F603 2810 JHP $-3 NO, KEEP TESTING
0130 281~ 9t"0 "808 STA ." YES, STORE WORD
0031 2815 IU28 IXR INCREMENT ADDRESS POI.,TER
IIJ"J2 2816 F68D 2819 JMP 190011 READ Nf.XT WORD

e SlaJ3 ~817 4I84C T800T3 SSN rotT,4 PARITY ERROR?
Se34 2818 F61a 28S0 JMP T800T2 YES, 00 IT OVER
1I~3S 2819 0484C SEL HT,4 NO, INITIALIZE TAPE
(113& 281A F0"0 "e,,,, JHP 0 BEGIN EXECUTION AT L.O~ a000"

WI
fUJ37 28QJS END TAOO)

'''i'''8 ERRORS

Appendix H

BOOTSTRAP FOR MTOS WITHOUT AUTOLOAD

H-l

1-1

'w'rt,tt'm"!'thtWwrt.'set'tetltt' ·W,w.s •••• " r S.

ENGINEERING
NO. -'"Ji1

~Conqnde"""""'" i
~

NOTICE 15 16 ,6 ~L~ 1_1 Von Karm , Irvine, Calif. I I

--
DOCUMENT NO. REV.

TITLE INCORP CLASS
~AS DATE

.- - -" ~-

IS
A·MAND/FUNC 18

96530 D7 D7 SOFT - OPERATING SYSTEM B·NON·MAN D/FUNC 0
C·RECORD CHG 0
D·DEVIATION 0
STOPOADER 0
AEN 0

,

HARDWARE CHG. ~ SOFTWARE CHG.
PUBLICATIONS CHG. 0

EFFECTIVITY: CAPABLE CHG. 0
"i.

DISPOSITION I

ACTIVITY U R SC/{
REASON FOR CHANGE: REA NO'02450S ON ORDER V - - .. _.

/ CO-ORD WITH: IN STOCK
V ... -.- -- t' If a disk i8 physically WRITE-PROTECTED IPP

.. _/ - .

and has only one partition, OS will declare IPT

a WRITE-PROTECT error correctly. However, FINGOOj)S
if the user clears the physical' WRITE-PROTEC but doe s not CUST..,RET L -
do a /JOB before the second OPEN-for-WRITE request, then NQ::r1FY VEND !

/ --~ the WRITE PROTECT error will again be reported. .--
AFFECTED rTEMS: _. ---- J

SOFTWARE PROa. (.......

- - --j
PUBLICATIONS
CAP. PROGRAMS 1

--
CONFIGURATIONS I ._.- :-.

PROCEDURES :

TOOLING
-_._-1-.

TEST EQUIP.

DESCRIPTION OF CHANGE:
_ .. - -----_.- -.-f--.

r---- - ----- .--- ------- 1--. ,

A. 96530-00 SOFT - OPERATING SYSTEM f--.---------- --- ... - --
-L_

Do a /JOB command after a physical WRITE-PROTECTED APPROVALS
disk has been cleared for writing.

~.:- ---_ ..
ENGR. - I
SOFTWARE I ~~ ~

.-1

O.C. ,-:::r' ' - . _ J

~!

CAP, TEST W~
PROD.CONT~ ~-~1
MATERIALS ~
~TENGR. ~"Ir

A.LJ TECH SERV ~~
;

CUSTSEAV mLtloIl~l
"0. _ ._.. ~ _"~,

·~1 IND ENG -1. ____)

PUBLICATIONS ---:-:--. !
j

DRAWN IY: J FINE
·ti"ATE: ·-4112'/77 - ..

-.j
CHKD BY;xj ~~.'-- .. _ 1

·~I
RELBY:~R~ ;

I rr! ~+ ~ ~~ If Iitli I I 1 .J:t--.II I 126 1 I 1 j JIG, I II 13&
• tr .-:;r.J __ ~ ~

..... , 1'1111 I ,! ,1 1 ''Ill'. ...' .10 DATE: 4/J 4/-r-;

I""':'. "
I

,

I
~,

~.
'Ii'
~~

* I

"

II

. t f· I ' j ','" tt' ' d" 1 'h1 t tub' pth? ts"yt'mw* 'tWttf,fttWltt's

~-------------------------~~--~~~---

e .

NOTE ON ISSUE 07 OF OS

The version of the Operating System delivered with this package is 07. (The
06 revision level OS was a documentation change which i's incorporated in
the updated User f.l.anual sheets.)

The new OS comprises:

OS ROOT
OS NUCLEUS

96529-2007
96530-3007

Apart from correcting all oUtstanding errors, the main feature of the new version
is the inclusion of 0105 device drivers for the following device-types:

Line Printer (DOte Products or Centronics)
High Spe'ed Paper Tape Reader
High Speed Paper Tape Punch
Card Reader
CRT

N. B. The CRT is assumed to be on OIOS channel 2

It is intended that OS will be configured by you either for 0105 peripherals or
for non - 0/05 peripherals, not a combination, and only 1 unit of each device­
type is allowed. However, if you do configure with mixed 0105 and non-D/OS
devi ces, take care when editing ROOT, to ensure that LOBP: (Page 20 of the
ROOT Listing) is set correctly - deleting lines 571 - 573 will be best.
If a CRT is included in your configll'ation, it will not replace the teletype
connected to the Option Card. Instead it will be used as device TV both for
input and output.

Finally on this new OS, please note the instructions on Page 1 of the ROOT
Listing concerning the jumpering of the 0105 to offset interrupts to: 100. This
mu st be done.
Included with the new OS software is an updated version of OS:HOR for use
with aDIOS - connected HSPTP. NOTE: Do not use this new OS:HOR with
an old OS. Operating instructions are still the same.

C. A. I. Limited
EUROPEAN TECHNICAL SUPPORT GROUP December 1976

" r ¥ 't e

o

dM t':t S - J
:' tt yew ',·1, "w:., r tn 1'rtU ,tt11'Mt' r 1?ttett' t N

r---------------------------------------~Com~~om~~------~

Note on OS: LDR

os: LDR 96542-CO

When a program which writes toscratchpad locations is

loaded by OS: LDR, the os user scratchpad usage

information is: not correctly updated.

The following observations should be noted:-

1. Information returned after the use of the OS
Status command or executive service SUPV
Code 1 may not be accurate.

2. The loaded program should, however, be
able to correctly access the required scratchpad
locations.

3. Scratchpad violation ~y overlayed programs
may not be detected.

C. A. I. Limited

EUROPEAN TECHNICAL OPERATIONS March, 1977 I

I

L_ ------------_._-_. . ---------_____ .. ____ J

e .
o

C)i

r----------------------~ComputarAutomation--I
I
!
!

NOTE ON OS - DELETED FILES

O.S. 96530 - D7

For those users who find themselves in the position where they need to recover
information from a file which has been accidentally or prematurely deleted, it
is possible to apply a temporary patch to the File tVonager which will enable
OS:Cpy to copy the "deleted" file to a new active file.

For this patch to work successfully, there must not be any other previously
deleted file (on the same disk) bearing the same name as the one you wish
to recover.

The patch is as follows:-

Location

FM:OPN + :127

:003C
:003D
:003E
:003F

Old Contents

:2081

:083C
:083D
:083E
:083F

New Contents

:F83B

: 1150
:13DO
:9C09
:F704

This patch may be appl ied to using OS:DBG, and then OS:CPY can be used
in the norma I way. E.g. if a source file BASE on D 1 has been deleted, then,
after patching, do:

lEX OS:CPY,CS,Dl.BASE,D1.BASE2, TE

Having accompl ished the recovery, OS should be re-loaded.

CA I Limited
EUROPEAN TECHN ICAL SUPPORT GROUP
EUROPEAN TECHN ICAL OPERATIONS tVorch 1977

I

______ J

I
I

t

• ,·*4.5\ 't' ''!''I'jrl " 'tir#Htfit6f 'Widtr' rtt't"t"!'i"rtmW ·@It"ij'tt1'fflffleMrw!t¥ !dWttt

e .

, e
I.

PROGRAM NAME

OS ROOT

DESCRIPTION OF PROBLEM

SOFTWARE ERRATA NOTICE

PROGRAM 10

9G529-D7

ERRATA #

823

DATE

12/13/7G

A Data Products Line Printer will not line-feed properly when Root is set up to assume
a Data Products printer.

EFFECTIVITY (VERSION)

Version D7 of OS Root, applicable only to OS usage with Data Products line printers.

DESCRIPTION OF CHANGE

The source file of OS Root should be edited and reassembled so that the value in LP:UCB+'~
bzcomes :0201, rather than :0200. In the standard supplied listing of OS Root, this change
is required at line no. 892. Alternatively, OS may be patched in memory at location
LP:UCB+4 (determined from link map) as follows:

LOCATION

LP:UCB-'-4
(LD:UCB+4 if DIO)

OLD CONTE~TS

:0200

;\IEW CONTENTS

:0201

A~. ROVED B. Y:

A/ ;1l/~

e
•

o

o

"I

il

"'H"fY ,,'ts "?'·wt"nWlt:t' W't

Note on as Overlay Facil ities

as NUCLEUS 96530-D7

The as Executive servi ce call SU PV: code 8 requests the

I ood i ng of a program overl ay •

In the as Manual, attention is drawn to the fact that the

requested load must fall completely within the User Area

'of Memory and must not overlay the request coding sequence

nor related SRB. The as will trap violation of User Area of

Memory and scratchpad locations used by the request program.

It is recommended that the User ensures that an overlay

program will not overlay memory locations unprotected by

the as.

C. A. I. limited

EUROPEAN TECHNICAL OPERATIONS March, 1977

o

it "'I :¥,¥'-"'W""±f:Wt"Z%t '*"7 I, rde!' B!

ComputerAutomation ~\\

PROGRAM NAME
OS FILE MANAGER

DESCRIPTION OF PROBLEM

SOFTWARE ERRATA NOTICE

PROGRAM 10
96533-D1

fRRATA #

243

DATE

10/22/76

It is possible to create two files with the same name on a disk, if the second is opened
before the first has closed.

EFFECTIVITY (VERSION)
Applies to OS Version 96530-D7 and all previous versions.

DESCRIPTION OF CHANGE

This situation can only occur if two different LUNs are assigned to the same file name on
the same physical unit in an attempt to create two new files. Users should avoid this
situation when making file assignments.

APPROVED BY:

~,

Ie t''' '.'r¥tH,Q ''''io:*Htt'N' .".1"tta"1 tit t ¥jiM" Nt Uri'§"' ',w t Me r w trw . 1

o

PROGRAM NAME
OS:CNC

DESCRIPTION OF PROBLEM

SOFTWARE tRRATA NOTICE

PROGRAM ID
96548-Al

ERRATA I
494

DATE
t}/1/76

. Batch mode causes resettmg of source line numbers between each concordance. The current
line number should be saved, so that the nwnbers will match the corresponding assembly
listings.

EFFECTIVITY (VERSION)
Version 96548-Al

DESCRIPTION OF CHANGE

After loading OS:CNC, but prior to ex~cution, make the following patche8 with OS:DBG:

Location

:80
:8I
:82

:005DRO

Old Contents

:F201

New Contents

:0110
:F182
:0061RO
:F080

APPROVED BY:

}i FORM 7800/A .f! _____; __________________________ _

I
.: I

tt "nri' #" #'I'&-I't'/ '"" U H, n' to "'I", yff:W!M "ifit#:r¢ff 'Wri'Siil'nr':"ll" dkh"{ T '11 'I: f we i'
u '1" If!- 'It t-u''',,¥ OJ *"*M'iK!!9m I' Hh' ke'",'. tett

o

C)

PROGRAM NAME
OS:CNC

DESCRIPTION OF PROBLEM

SOflVARE ERRATA NOTICE

PROGRAM I D

96548-Al

ERRATA I
611

DATE
9/1/76

OS:CNC does not list references to labels used as operands in the following instructions:

EFFECTIVITY (VERSION)

Version 96548-Al

DESCRIPTION OF CHANGE

DVD
DVS
MPS
MPY
NRM

After loading OS:CNC, but prior to execution. make the following patches with OS:DBG:

Location Old Con ten ts New Contents

:0525RO :D6C4 :C9CE
:0526RO :C4D6 :C4C9
:0527RO :D3C4 :CEC4

:0543RO :DOD3 :DOC5

:0545RO :D9CE :C5CE

:054ERO :CDCE :CICE

APPROVED BY:

/L.Oe~

I o

t ME 'g \' • t6 'HW t'H tt eo t t 11 ·'ett "tm"

-~--~~{~ '1'
..

PROGRA,~ NAME

FS,\ VE

DESCRIPTION OF PROBLEM

SOFT\JA~E ERRATA NOTICE

PROGRAM 10

96955-A2

ERRATA #

747

DATE

8/2:i/'iG

FSA \"E will copy ·1:3-type disk drh"cs (200 cylinders), but not 44-type (400 cylinders). The
patch be 10\\" will allow copying of any size drive up to 410 cylinders.

EFFECTIVITY (VERSION)

Version 96955-A2

DESCRIPTION OF CHANGE

After loading FSA VE into memory, but prior to execution, make the following patches:

LOCATIO:\'

:lD7F
:lD8F
:2068
:2078

OLD CO~TENTS

:12CO
:12CO
:12CO
:12CO

NEW CONTENTS

:2670
:2670
:2670
:2670

APpaO~D~~Y :

I I} ,';:.t-
'/! "!C .. . 'ro-

tt'fWteM'p ±' Mi ,,"eM' It, II k tJ""f'twH' I lM"'·'e'ffltHt$ttt! 'tMrl'_=twwut

•

e .

o

r--~~--------~

Note on Scratchpad Map and OS:LNK

OS:LNK 96549 - B2

For users with a Teletype as the only listing device, it is possible to modify
OS:LNK to c(J.Jse the Scratchpad Usage Table to be omitted from the listing,
thereby reducing the time taken to produce the link-load details:

Location Old Content New Content

OS:LNK + :A66 :FA92 :F22F

C.A .1. Limited '
EUROPEAN TECHNICAL SUPPORT GROUP December, 1976.

"VitIi//" 't'-@'%':'f,#'Wit:!t'zi!:jtTt'Wt Uttt'rif'\t H' OW' \' 'j 't't# . "IrtHMMt1t'ilrw MHM t:r fUr it .' rw dB

~--------------------------------------~~~---------

e

0

Preliminary Errata Notice for OS:ILD

OS:lLD 96551 - A2

Magnetic Tape users only

It is not possible to load a progrClTl from M 1, M2 or M3. If it is attempted,
OS:lLD loads the first record correctly, then, after relocating itself to upper
memory, it will load the next record from M~.

In order to allow loading from other than M" users should modify OS:ILD
as follows:

Location Old Contents New Contents

OS:ILD + : 1,0'6 :F235 :C28~

+ : l,0'B :C6,0'3 :~
C :82~C :C6,3
D :9~C :82,0B
E :C7~4 :C3CD
F :8B~A :~5

: 11.0' :C4;0'8 : 1128
1 : 116.8 :~~
2 :,0'15~ :~2
3 :3142 :EB~C
4 :1328 :F229
5 : EB,0'A :9B,0'4

C.A.I. Limited
EUROPEAN TECHNI CAL SUPPORT GROUP December, 1976.

t,
i:i

UO '"""'$ pi W',titW"'W"Wt'tM"Wtl"i,' t'H'i""Wt'S "ffltttt:iN 1" II'j M'W "#"'1' Ynw ','i\!'!N'WYiI Wrt.*'ttt'1§'!tW.tIlMtt!itR:tM

o

PROGRAM NAME
()S:ILD

DESCRIPTION OF PROBLEM

SQFTWARE ERRATA NOTICE

PROGRAM 10

96551-A2
taUT .. I

634

DATE

6/22, 711

Program loading from Floppy Disk is handled Incorrectly when the program to be loaded
falls across a partition bOWldary.

1---------------------------------
EFFECTIVITY (VERSION)

SH:i551-A2

OtSCRIPTION OF CHANGE

Load OS:!!..D. then make the following patches with OS:DBG prior to execution:

InCA'DON

:3FEHO
:40BRO

OLD CONTENTS

:E217
:0000

NEW CONTENTS

:E20F
:0050

APPROVED BY:

#=t'ttrMffitt t g

-e

0

------------~~-------

Preliminary Errata Noti ce for OS:Vf:!N

as: VEW 96545 - C2

The F command, which lists the contents of a specified file, produces a
78 - character output I ine. This cruses the last 6 characters to overprint
each other when output is directed to the, Teletype printer.

For users with a Teletype as the only listing devi ce, the following patch will
cruse only 72 characters to be printed per line, the first 6 blanks (spaces)
being omitted from the print buffer:

Location Old Contents New Contents

OS:VEW+;555 :C64E :C648

+:!.>!.>I :~'I'/Y :CL11J
8 :8659 :FF7A
9 :21,01 :B65A
A :F63A :317A

The Patch can be done using OS:DBG and then a new file may be created
using OS:DMP.
Note: the new program file is only valid for the as under which the
modification was made. If as is reconfigured, OS:VEW must be
re-modified, and the old modified file must be deleted.

C.A.I. limited
EUROPEAN TECHNICAL SUPPORT GROUP December, 1976.

~.
,,'
.;.:,

.p.11 'nt .. teru" tiHt*t ±1 @,,",W'""tfttw" g '"'!J:"!rhl!trtt*'t'

e---' .------.- .- ... - -.. ---~computerAutomabon----1

o

e

ERRA TA NOTICE FOR OS:ILD FOR USE ON FLOPPY DISC

os: ILD - 96551-A2

OS:ILD sometimes has difficulties loading files from Floppy Diskettes due
to incorrect handling of records which cross partition boundaries.
The following patch cures this fault.
In addition, a second l-word patch ensures a correct first-time seek.

Address

OS:ILD + :3FE

OS:ILD + :40B

Patch implementation:

Old Contents

:E217

:0000

New Contents

:E20F

:0050

The following method should be used to carry out the above patching.
Note that the new file is absolute and should be re-created whenever
OS is re-confi gured: - (user typing is underlined).

>- ILOAD OS:ILD

> lEX OS:DBG

OS:DBG 3BF7

? 13FERO

1BCO E217 E20F

? 140BRO

1BCD 0000 0050

? T

> lAS BO = F1 . NEWILD

> lEX OS:Dfv\P

C.A.I. Limited
EUROPEAN TECHNICAL SUPPORT GROUP July 1976.

I
-I

o

o
,""

PROGRAM NAME

OS:DBG

DESCRIPTION OF PROBLEM

SOFTWARE ERRATA NOTICE

PROGRAM 10

~G5·Hi-Al

ERRATA # DATE
4(i4 li/21 '75 ,

A Cl command file which calls OS:DBU (lEx OS:DBG, etc.) will not be executed correctly
from a file type cle"ice (disk, floppy disk, magnetic tape) since OS:DBC lIses OPEN: and
CLOSE: calls to the CI unit internally, rather than using SUPV: calls. This effective]v
eausps a rewind of the CI file when it is first OPENed hv O;':DHG.

EFFECTIVITY (VERSION)

Yersion Al

-t£SCRIPTION OF CHANGE

OS:DRC may be inel uued in IBAtch job control sequl'nces from non-bul k devices only.

APPROVED BY:
/

/1

