S it S

ComputerAutomation
NAKED MINI.Division

18651 Von Karman, Irvine, California 92713 Tel 714 833 8830 TWX 910595 1767

CAIl Limited
Hertford House, Denham Way, Rickmansworth, Herts WD3 2XD
TEL RICKMANSWORTH 71211 ¢ TELEX 922654

OPERATING SYSTEM

USER'S MANUAL

96530-00D5 April 1976

PRINTED IN THE U.S.A.

Paragraph

NN O
s e e s
. .

o

.
.

[

oo = O OOV D W N

[\

w

8] N NN NN NN N

. . . e e e

(o)} LuUuuonnuuuuouoooo v oum
[S2 I~

N
.
~

2.8

TABLE OF CONTLNTS

Section 1. THE CAT OPERATING SYSTEM

STRUCTURE OF THE SYSTEM . .

Section 2

INTRODUCTION

.

.

OPERATOR/SYSTEM COMMUNTCATION

THE OPERATOR CONSOLE .

ALTERNATE SYSTEM COMMUNICATION

CONSOLE INTERRUPT

SYSTEM COMMANDS

/ASsign .
/BAtch. .
/BEgin. .
/CAncel .
/COmment.
/DAte . .
/EXecute.
/J0b.
/List
/Load . .
/NJob . .
/REsume
/STatus .
/TIme . .
/TYpe .

.

-

PROCESSOR STOPS

WITHIN OS

OS5 ERROR MESSAGES

COMMAND EXAMPLES

iii

- -
. - - . .
.
. . . - -
- - . -
. - . .
- - . . . - - .
. . . - - .
. . - - . . .
. -
-
. . . . -
.
. -
. . - .
. .
. . - . .
. - - . . .
. . . . -
. . .
.

.

-

Page

| I I I |

tot

RN NN NN NN
1
H o= O 0NNV W

I
(@]

NN
.
—
N = O

2-13
2-14

Paragraph

Section 3.

ComputerAutomaﬁonm S

TABLE OF CONTENTS (Cont'd)

INTRODUCTION

THE OPERATING SYSTEM ASSEMRLERS

0S : LDK

OS : LNK

OS:LBL

OS : VEW

0S:CPY

OS :SFE

0S :CNC

OS : DBG

OS : DMP

0OS:ILD

OS : HDR

OS:EDT

[}

LOADER

LINK EDITOR UTILITY

FILE LABEL UTILITY.

T"ILE VIEW UTTLITY

FILE COPY UTITLITY.

SOURCE FTLE EDITOR .

ASSEMBLER SOURCE STATEMENT
DEBUG UTILITY .

PROGRAM DUMP UTILITY

INDEPENDENT LOADER .

.

PAPER TAPE HEADER UTILITY.

TEXT EDITOR.

SYSTEM UTILITY PROGRAM,

CONCORDANCE

lrage

3.1-1

3.2-1

ey P AR

ComputerAutomation (T

TABLE OF CONTENTS (Cont'd)

Paragraph Page

Section 4. PROGRAM/SYSTEM COMMUNICATION

4.1 INTRODUCTION © « = v v e e e e e e e e e e e e s L8
4.2 REQUESTS FOR INPUT/OUTPUT CONTROL SERVICES 4-1
4.2.1 OPEN: « v o e v e e e e e e e e e e e e e e e a2
4.2.2 CLOSE: « v v e e e e e e e e e e a2
4.2.3 TO: o e e e e e e e e e e e e e
4.2.4 WAIT: « o o v e e e e e e e e e 4-3
4.2.5 TEST: + 2 v v e e e e e e e e e e e e e e 4-3

REQUESTS FOR EXECUTIVE SERVICES 4-4
SUPV: . . & v e i i e e e e e e e e e e e e e .. 44
L

4-7
4-7

.
—

.

e A
w wwww
o

ey

.
[99]

SPND: . . & ¢ i i e e e e e e e e e e e e e e e e
TERM: . ¢ 4 6 ¢ 6 v e & e e s e e e e e e e

IOCS CONTROL BLOCKS . . . « v ¢ ¢« « v« v o o « o« « . « . 4
The File Control Block (FCB) 4
ECB - Event Control Block 4-9
LUN - Logical Unit Name. 4
STATUS Word . . . « = & o &« « &« « « o o« « - . . 4-10
File Name « « « « « « o« o« o o « + « . . 4-11
Block Size. . . . & v v i i e v e e e v e oo .41
Block Address . . - +« « « « 4 4« e « « « . . . 4-11
Record Size . . . « « . 4 4 4 i e e e e e o .. 412
Record Number e e
The Input/Output Control Block (IOB) 4-12
.1 OPR - Operation Code « 4-12
2 FCB AdAress . v w v e e e e e e e e e e e e e 413
3 Record Length 4-13
.4 Record Address « .+ < + + o 4-13
5 Transfer Count « . « .+ . . 4-13

. . .
.

.
0
.

. .
.
.

. PR
N - S T S I S S SN S SN ST S SNt S

S
[.
© DOV W N

.
.

S R T - T S S SNt S S S R e T
.

.
NN
PR

.

DEVICE DEPENDENT CONSIDERATIONS +« 4-13
End-of-File (LOF) Indicators 4-13
CheCKSUMS « &« « v &« v v o o « = o o« « o« o « o« « + . 4-14
Carriage Control of Printed Output . e+ .+ . < . 4-14
Recording Medium Preparation 4-14

.
.

BB b D
(SN0, BE G BRI}

.
.
S w N

o
[e)}

PROGRAMMING EXAMPLE: I0OCS AND EXECUTIVE REQUESTS . . . 4-15

P o re—

TABLE OF CONTENTS (Cont'd)

Paragraph Page

Section 5. FILE MANAGEMENT SERVICES

5.1 INTRODUCTION . . & & & o & o o o o o o o o o « 2 « « « 5=-1
5.2 FILE ORGANIZATION ¢ o ¢ & 4 « o « o o « « « « 5-1
5.3 FILE ACCESS METHODS ¢« v + ¢ ¢ ¢ o « o o« « « « <« 5-1
5.3.1 Sequential ACCeESS ¢ ¢ 4. 4 e e e e+ e o . . 5-2
5.3.2 Random ACCESS « o + v o« o o ¢ o « o 4 o o o o . . 5-2
Section 6. SYSTEM GENERATION ‘
6.1 INTRODUCTION . . . ¢ ¢ &« & v v « o o« o o o« o o o « « . 6b-1
6.2 HARDWARE CONFIGURATIONS & ¢ « ¢ v &« o « +« . 6-1
6.2.1 ‘ Minimum Hardware Requirements 6-1
6.2.2 Additional Hardware Supported. 6-1
6.3 DELIVERED SOFTWARE ¢ ¢ ¢ ¢ ¢« & ¢ ¢ ¢« o o « « « 6=2
6.4 SYSTEM GENERATION PROCEDURES « . . 6-3
6.4.1 Configuration of the Operating System 6-3
6.4.2 System Construction 6-4
6.4.3 Operation of OS:GEN. <« +. +« « ¢« + . « 6-5
6.4.4 Labelling of System Residence Volume 6-6
6.5 ADDING SYSTEM UTILITY PROGRAMS « « . . . G=7
6.5.1 General Considerations b=7
6.5.2 Copying OS:CPY ¢ ¢ ¢ ¢« ¢« « v « « o o« o« . b=7
6.5.3 Copying Other Utilities 6=7 e:
6.5.4 Linking Utilities + . « « ©6-8

vi

i Fapesracps

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

TABLE OF CONTENTS (Cont'd)
OS COMMAND SUMMARY
INPUT/OUTPUT AND EXECUTIVE SERVICES SUMMABY
OS PHYSICAL DEVICE NAMES
OS LOGICAL UNIT NAMES AND STANDARD FUNCTIONS
OS STANDARD INTERRU?T BLOCKS AND DEVICE ADDRESSES
PERIPHERAL DEVICES SUPPORTED UNDER OS
BOOTSTRAP FOR DOS WITHOUT AUTOLOAD
BOOTSTRAP FOR MTOS WITHOUT AUTOLOAD

BOOTSTRAP FOR COS WITHOUT AUTOLOAD

vii

PR et e TR

COMPUTER AUTOMATION, INC. ég —_—

Sccetion 1

THE CAI OPERATING SYSTEM

1.1 STRUCTURE OF THE SYSTEM

The CAl Operating System provides the tools required for cfficient program develop:

“ment and execution, in both batch and on-line modes. The minimum configuration

for OS is one ALPHA/LSI (or ALPHA-16) processor with 16K words of memory, onc
ASR-33 Teletype, and one magnetic peripheral device. The device sclected for loading
0S itself determines whether the software environment is termed Disk Operating System
(DOS), Magnetic Tape Operating System (MTOS). or Cassette Operating System (COS).
User programs may reside on any of these devices, or all of them, and on paper

tape as well.

As loaded into memory, OS consists of the Executive (EXEC), thru which the user
controls the entire system with a command language. the Input/Output Control System
(I0CS), which "drives" the peripherals, and the File Manager (FM). which provides
access by name to files on magnetic recording media. During the exccution of certain
System Utility Programs, a small portion of high memory, called the Transicnt Area.
will temporarily be reserved. The remainder of memory (including high memory

if the Transient Area is not actually in use) is called the User Area.

10000 -~ —]
SCRATCHPAD
0100 oo e e —

USER

AREA

— - - — - . s - J

TRANSIENT AREA
:nFFE - o

OS Memory Usage

1-1

44 A g

S PR

COMPUTER AUTOMATION, INC. é_g —

Section 2

OPERATOR/SYSTEM COMMUNICATION

2.1 INTRODUCTION . N

The operator console (a teletype or other interactive device) is the basic communication
medium between the user and the operating system. Through this console, the user
communicates with the system executive routines, user prograins operating under the
system, and system utilities.

This is not, however, the only such interface. Other devices. such as u card rcader

or line printer may altcrnatively be assigned as the system command input (CI) and
command output (CO) devices. Such device assignments allow unattended system opera-
tion in a batch modec.

2.2 THE OPERATOR CONSOLE

The operator console is the standard command input (CI) and command output (CO)
device for the operating system. Although other command I/0 assignments may be
made, the system will revert to these initial assignments between jobs (/JOb directive)
and when a console interrupt is processed.

The console may also scrve as a normal system input or output device under OS, and
in this mode it can be considered like any other assignable serial device.

When performing input (for either the system or user program) certain keys on the
console keyboard have special functions.

1. RETURN. The RETURN key indicates the end of a linc of input and causcs a carviage
return and line feed to be generated.

2. BACKARROW (+—). The backarrow causes the previous character input to be
replaced by the next character typed. Multiple characters may be replaced by
typing the appropriate number of backarrows followed by the correction characters.

3. BACKARROW (-—) /RETURN. A backarrow followed immediately by RETURN
causes the entire current line to be ignored and replaced by the next line input.
The RETURN causes a carriage return and line feed to be generated.

The system indicates to the user that a line of input is required by issuing one of two
query characters. The greater than (>) character is printed when the system requires
a system command, whereas the question mark (?) character is printed when the system
or user program requires parameter or data input. If necessary. the operator may
answer "7 with a system command. After OS has processed the command . another

" will come up, beeause the original need for an appropriate response still exists.

e ST

wl

-3 ALTERNATE SYSTEM COMMUNICATION

A device other than the console may be used for command input (CI) and/or command
output (CO) devices. This can be accomplished by use of the /ASsign or /BAtch commands
and will stay in effect until another re-assignment, the start of the next job, or

the recognition of a console interrupt.

When the command input (CI) device is assigned to an alternate, all system commands
will be echoed (printed) on the command output (CO) device to provide the user with a
documented history of the operations performed. Neither of the query characters

(> or ?) are printed during this mode of operation.

2.4 CONSOLE INTERRUPT

The system, or any user program operating under it, may be interrupted by use of the
console interrupt feature. This interrupt is caused by momentary operation of the
INT switch on the computer (AUTO on an ALPHA-16) when in RUN mode.

This interrupt causes the currently executing program (user or system) to be halted
at its current position in a resumable manner. The program's current status is

saved, the command input and output devices are automatically reassigned (as required)
to the operator console and the system requests further action from the operator.

The interrupt does not take place immediately, but allows a small period of time for
outstanding I/O to complete. Should this time be exceeded, the system will take
control under the assumption that the I/0 cannot be completed normally, and a /CAncel
function will be simulated.

The status of the executing program at the time of the interrupt may be displayed by
use of the /STatus command, and the program may be continued with a /REsume command.

If a /REsume is not given a /CAncel or /JOb should be given to assurec proper file
management table status.

2.5 SYSTEM COMMANDS

The system commands are the means by which the user communicates with the operating
system and controls its actions and operations. Thus, the operator can load programs
into memory, start and stop them, dump them to a storage medlum, and perform all
other required operations.

A system command is distinguished by a slash (/) character in its first character
position, immediately followed by the command keyword and zero or more operands. A
system command consists of a single logical record (line) cn the command input (CI)
device; no continuation is allowed.

A keyword is a sequence of letters having special significance to the system. All
letters after the first two are optional and may be included or omitted at the user's
discretion.

2-2

e

B e e S

COMPUTER AUTOMATION, INC. Eg —_—

The optional operand ficld is separpted from the command name by one or more blanks

and contains zero or more command arguments., separated by commas., without imboedded
blanks. The format and number of such arguments are wholly dependent on the individua!
command. After at least one space, user comments may be added.

The commands acceptable to the operating system arce described in detail in the pemainder
of this section. The following conventions apply:

1. Command keywords are shown beginning with a slash (/) character, followed by
the first two letters of the keyword in capitals. The rcst of the word is in lower
case, signifying that these characters are optional.

2. Squarc brackets [] cnclose operands or parameters which are optional and may
be included or omitted at the user's discretion, :

3. A right square bracket followed by an ellipsis (|...). indicates that the enclosed
element may be omitted or repeated an arbitrary number of times.

4. Bracos{ } indicate that a choice must be made from the enclosed clcnxerxts.
5. System output is underlined to distinguish it from user input.

System commands can be rejected for a variety of reasons. Any such rejection will
cause the system to reassign the command input (CI) and command output (CO) units
to the operator console. The system will then print the appropriate error message
and pause for remedial operator action.

A general cause of command rejection will be invalid or illegal command formats or
parameters. This typce of error will cause the message "*CMND REJECT" to be displayed
and the system to request a new command.

Assignment of the command input or output unit to an inoperable device may cause
a processor stop. Refer to Scction 2.6 for details.

©2.5.1 The /ASsign Command

‘ unit . unit
3 s nit = : Junit = i
/ASsign u { device } [uni { device }] e

The /ASsign command assigns a logical unit to a physical device. or to another logical
unit. It can be given at any time and supersedes any prior assignment of the logical
unit .

A unitis-delined as any of the two- churacter symbolic logrieal unit names described
m Appendix D, and denotes a mode of 1/0 operation .

2-3

S g T AR L

‘units, as shown in example (2).

IA
COMPUTER AUTOMATION. INC. :— -—————-, ‘

A device is defined as any of the two-character symbolic physical device names shown
in Appendix C and supported at this installation, and denotes the physical device on
which the logical operation is to be performed. Examples of various uses of the /ASSIGN
command are discusscd below .

(1) /ASSIGN SI=CR

In the first example. the command tells the system that henceforth all programs and
operations which require symbolic input will receive that input from the card reader.
Note that any previous assignments of ST are now lost, but previous assignments to
CR are still valid. It is thus possible to share a physical device mmong several logical

(2) /ASSIGN CI-CR,SI=CR

In somce cases, the physical device assigned supports multiple files, by name. This .
is the case for magnetic tapes. cassettes. and disks. For these devices, the system
requires that the file "'name' be available at the time the file is "OPENed’ for reading
or writing. Onc menns of supplying this name is through the /ASsign command by
appending it to the physieal device symbolic nume, separated by a period. This is
shown in example (3).

(3) /ASSIGN BO=M1.TESTI1

Such an explicit file name assignment always supersedes any previous or subsequent
file name definition stored in the program's file control block (FCB). A file name may
be assigned to a non-bulk device, but has no effect on OS operation.

(4) /ASSIGN SI=CR.SA=SI

Example (4) demonstrates assignment of a logical unit to another logical unit. This
commaund causces both SI and SA to be assigned to the card reader (CR)Y . A subsequent (
assignment of

/ASSIGN SI-PR

causes SI to he reassigned to the high speed paper tape reader (PR) . while Teaving
SA still assigned to the card recader.

(5) /ASSIGN SI=CD
*CD NOT FOUND

As described above. the unit and device fields of the /ASsign command are required

to be onc of several standard symbolic names. Should the operator enter a name which
is not among this group. or is not supported at this installation, the system will reject
the command as in example (5).

2-4

e e TR s

COMPUTER AUTOMATION, INC.

(6) /ASSIGN BI=PR,SI=CD.BQ=PP
*CD NOT FOUND

Note that an error on an assignment command with multiple entries will cause all entrics
after the erroneous one to be ignored. As in example (6), the "BI" unit was assigned
to the "PR" device, but because "CD" was invalid, the "BO" assignment was not made.

Other assignment errors, such as failure to assign a valid logical or physical unit,

or to provide a file name when required, are diagnosed when the file is OPENed. These
conditions will cause crror messages to be produced and the system will pause to allow
remedial action by the operator.

(7) *S2 UNASSIGNED
>/ASSIGN S2=D0.TEST
>/RESUME

Assume in example (7), the operator failed to assign the "S2" unit (and a default system
assignment does not exist). This would cause the error message shown when an attempt
to 'OPEN' the device was made, and a system query for remedial action. The operator can
then provide the required assignment and RESUME operation.

(8) *SI FILE NAME?
~/ASSIGN SI=M1.TEST
>/RESUME

Likewise, example (8) indicates that a file-oriented 'OPEN' was attempted and the file name
was not specified, either in the user's file control block (FCB) or at the initial assignment.
Again the operator can correct the situation and continue operation.

2.5.2 The /BAtch Command

/BAtch device

The /BAtch command is a shorthand method of reassigning the command input (Cl)
logical unit to a new physical device. It performs the same function as an explicit
assignment of the command input unit to the device specified using the /ASsign command.

As in the /ASsign command, the device may be any of the two character physical device
symbolic names shown in Appendix C.

(1) /BATCH CR

In example (1) above, the command tells the system that henceforth, all commands will
be expected to come from the card reader. '

(2) /BATCH MO.APROCS

Should the bateh device be file oriented. the file name can be appended in the same manner
as the /ASsign command. This is illustrated in example (2).

2-5

COMPUTER AUTOMATION, INC. -—-——T

(3) /BATCH CD
*CD NOT FOUND

As in the /ASsign command, the device is required to be one of the several standard physi
cal device names. Should the name entered not be among this group, the command will
be rejected as in example (3).

(4) /BATCH MO
*NOT FOUND
>/BATCH MO0.APROCS

‘

Failure to provide a file name when required will cause an error message and a system
request for remedial action, as in example (4).

2.5.3 The /BEgin Command

/BEgin [address] [,parameters] e

The /BEgin command allows the user to start (or restart) a program already in memory.
The program must be in an operational state: loaded or terminated, but not cancelled
or suspended.

(1) /BEGIN

The command may be given without a starting address, as in example (1). In this case,
the starting address given at load time is used. If no address was available at load time,
the command will be rejected.

(2) /BEGIN 14A0

As shown in example (2), the command may also be given with a hexadecimal starting
address. This address must be higher in memory than thec area reserved for OS itself,
or the command is rejected. It has precedence over any load time start address. It is,
however, a one-time address and does not replace the load time address.

(3) /BEGIN 14A0,YES
(4) /BEGIN ,YES
It is possible to pass parameters to the program being started. just as in the /EXecute

command (sce Section 2.5.7). If parameters are given, the start address or a leading
comma (,) is required. as illustrated in examples (3) and (4).

2-6

S g T

g e

‘@

COMPUTER AUTOMATION, INC. =!.\. —_—

2.5.4 The /CAncel Command
/CAncel

This command terminates execution of the current program. It does not save any program
registers and does not leave the program in a restartable state.

A /CAncel command is normally given when the operator determines a program is not
executing properly and must be terminated. /CAncel causes all 1/0 to terminate immedia-
tely . and 1/0 operations will not come to their logical conclusion. Any output file not '
already closed with the "keep" option will be unsuitable for future use.

A /CAncel will also be performed, under certain circumstances, when the console interrupt

switch is activated (see Console Interrupt description). Also, a /JOb command always
performs a /CAncel.

2.5.5 The /COmment Command ,

/COmment [text]

This command is commentary only and causes no system activity. The remainder of the
line after the command field is available for whatever. comments the user desires, and
will be printed on the command output (CO) device.

2.5.6 The /DAte Command

/DAte [aa/bb/ec]

This command allows the user to display and/or set the system date, which is then availabl
to system and user programs and is displayed by certain system commands.:. The date
is not automatically advanced at 24: 00 and must be reset daily.

(1) /DATE
*07/04/72

The command may be given without a parameter, as in example (1). In this case, the
user is asking that the current system date be displayced.

' (2) /DATE 9/15/72
109/15/ 72

The command may also be given with a parameter, and the system will reset its date to
this value. The system will again display the date to indicate acceptance, as in example (2)

The parameter shown as "ce" must be exactly 2 alphanumeric characters. In contrast,
"aa" and "bb" may cach be 1 or 2 characters; the system will supply a leading zero if
only one character is entered. The following would be perfectly valid:

(3) /DATE 1/JA/76
*01/JA/ 76

2-1

e S

&

S

COMPUTER AUTOMATION. INC. ' ——-———b
[

2.5.7 The /EXécute Command

/LEXecute program [,parameter] [,parameter]. ..

This command causes the loading and execution of a program from the System File (8F)
unit. ‘The program must be in absolute or relocatable format, and the proposed load must
not overlap the area reserved for the Operating System itself. '

If a program file contains Loader Type Codes equivalent to any of the assembler (or
compiler) facilities listed here, it can not be brought into memory with /EXEC. It must
be processed into acceptable format with OS: LDR or OS: LNK.

--Directives which create external references (EXTR, SEXT, REF, SREF, LOAD)
--Directives which create named entry points (NAM. SNAM)

--Directives which contribute to a load-time structure (CHAN)

--Directives which allocate relocatable scratchpad (SREL)

--References, explicit or implicit, to literal values in scratchpad

(1) /ASSIGN SF=M0
/EXEC TESTI

The program to be loaded is specified in the first field following the /EXecute command,
and becomes the index to the system file (SF) directories. In example (1) magnetic tape
unit 0 is assigned as the system file unit and the system is requested to load and execute
a program located on it called TEST1.

(2) /ASSIGN SF=PR
/EXEC DUMMY

If, however, the system file unit is assigned to a non-dircctoricd device (such as paper
tape) the next program found on that device is loaded. regardless of its name. Example
(2) indicates that condition.

With the cxception of those OS utilities which reside in the transient arca (OS: LDR,

0OS: DMP. OS: DBG), a program loaded with the /EXecute comimmand will overlay (and
destroy) any previous programs resident in memory.

2-8

A e T

e Tt

A ‘

COMPUTER AUTOMATION. INC. : s ‘

(3) /ASSIGN SF=M0
/EXEC TEST1.4,6

The optional parameter field allows any number of arguments to be passed to the program
after execution has begun (line length cannot exceed 80 characters). These arguments
arc saved by the system and made available to the exccuting program by usc of the
SUPV: call. Their order and format will be strictly a function of the exccuting program.

(4) /ASSIGN SF=M0
/EXEC TEST.WEEKLY,3
*TEST NOT FOUND

Should the system be unable to locate the program specified on the "SF" device, the
command will be rejected as shown in example (4) above.

Should an error occur-while attempting to load the requested program, loading will
terminate with one of the following messages:

MEM FULL The system has determined there is insufficient memory (scratchpad
or main) available to complete the load.

BAD TC Invalid code for /EXEC or /LOAD processing.

1/0 ERR An unrecoverable I/0O error occurred.

2.5.8 The /JOb Command

/JOb comments

This command indicates to the system that a new sequence of operations is to begin.
possibly by a new user, and that all system variables are to be restored to their initial
values. This command is available to simplify the system reassignment after a previous
step or user. The remainder of the command line is available for commentary .

System reassignment includes the reassignment of all logical /0 units to their initial
physical devices (as defined at system generation) and the resetting of all scratchpad
and main memory core variables to their initial (minimum/maximum) values. This
makes available the maximum system recsources to the next job step. In addition, a
/dJOb command causes a /CAncel function to be performed. Thus completion of a /JOb
function may cause a delay of up to three scconds.

Under DOS, the /JOb command must be given whenever the operator loads a different

removable disk platter, in order to reset the disk directory information maintained
in memory by the disk file manager.

2-9

requires two parameters (PRAMI1 and PRAM2):

A
COMPUTER AUTOMATION, INC. —————].
|

/JOB
*09/14/72
*10: 15: 07

The system responds to the /JOb command with the current date and time on the command
output (CO) device. The current time is also saved for later display by the /NJob command
(see Section 2.5.11).

2.5.9 The /LIst Command

/Llst [logical unit name]

This command displays on the command output device (CO) the current assignments
of logical units to physical devices.

(1) /LIST

*CI__TK
*CO__TY
*SI __CR
*LO__LP
*BI PR
*BO__D1.NAME
*S3 -
*S4 - -

For cach unit, or for one specified unit, the first column contains the logical unit name,
and the second contains the name of the physical device to which it is currently assigned
and the associated file name (if any).

2.5.10 The /LOad Command

/LOad program

The /LOad command is similar to the /EXecute Command, and has the same restrictions.
After loading, control returns to the system instead of to the loaded program. Once
loaded, the program may be entered for execution by using the /BEgin command with
any parameters required by the program.

The /LOad command provides a convenient method of debugging a program with OS: DBG.
For example, supposc that a user's program. named TEST1, resides on disk unit 1.
and requires a correction or "patch" before it can be run. Supposc further that TEST]

2 10

s

®

.
COMPUTER AUTOMATION, INC. @ —_—

/AS SF=D1

/LO TESTI1

/AS SF=D0 OS:DBG IS ON DO
/EX OS:DBG

At this point, TEST1 has been loaded, and OS:DBG has becn entered. Relocation register
0 in OS:DBG (R0) is automatically set to the first location of TEST1. The correction can
now be made through register R0, after which the following commands may be entered:

T (to terminate OS: DBG)
/BE ,PRAMI1,PRAM2 (to begin TEST1)

Possible load error messages described in the /EXecute command also apply to /LOad.
The LOad command should not be used to load those utility programs which reside in
the Transient area of memory (OS:LDR, OS:DMP, OS:DBG). If this is attempted, the

utility will be loaded, but a subsequent /BEgin command will not be accepted by the
system. ‘ -

2.5.11 The /NJob Command

/NJob comments

This command is largely documentary and indicates to the system that a logical sequence
of operations has been completed since the previous /JOb or /NJob command. This com-
mand is available to delimit and document steps within the user's job stream. The remain-
der of the line is available for commentary .

/$0B

*09/14/72 10: 15: 07
JEXEC TEST

/NJOB

*10: 15: 07 10:20: 35
/BEGIN

/NJOB

*10: 20: 35 10: 25: 07

The system responds to the /NJob command with the last /JOb or /NJob time and the
current time on the command output (CO) device.

2.5.12 The /REsume Command

/REsume [parameters] ...
The /REsume command allows the operator to continue exccution of a core-resident prograin

which suspended itself or was suspended by the system in response to o console interrupt.
A program which was canccelled or has terminated itself is not resumable.

2-11

2 sa

ek e

COMPUTER AUTOMATION. INC. —-———-]

When a program suspends itself, or a console interrupt occurs, the system restores the
command input (CI) and command output (CO) devices to their initial assignments (gencrv-
ally the opcrator console), allowing whatever operator action is required to take place.
Execution of the /REsume command restores these assignments to their previous values.

The system responds to the /REsume command by printing the current time.

(1) /RESUME
*14:07: 15

Example (1) illustrates the general case where a suspended or interrupted program is
resumed. Execution will continue at the next logical instruction with all program registers
and status restored.

(2) /RESUME YES
*14:07: 15

It is possible to pass parameters to the program being resumed, just as in the /EXecute
command. This is illustrated in example (2) and would generally apply to a program
which suspended (SPND:) itself for operator action and/or response.

Note that a /REsume command allows the re-entry of parameters that were lost due to
an unexpected request for operator action:

(3) >/EXEC PROGA,1,2
*SI NOT READY
>/RESUME 1,2
*14: 07: 15

Under certain circumstances, a program may not be resumable following suspension by
console interrupt. Normal OS action upon a console interrupt is to delay approximately
three seconds to allow completion of any current I/O. Then the interrupted location is
cxamined to see if it is within OS' own arca of memory. If so, this indicates a malfunction
(I/0 "hang-up", etc.). and the program is automatically cancelled. Subsequent entry

of a /REsume command will be rejected with a "CMND REJECT" message. When this
happens, a /STatus command would show that the program has been cancelled.

2.5.13 The /STatus Command

/STatus

This command displays on the command output (CO) device the current program status.
This allows the user to query the system regarding the current program, its status and
limits.

(1) /STATUS
*LESTL,C1-FB. 14001700, T, 12: 14: 00

R e it

s SRR

As shown in example (1), the system responds with the program's name, its scratchpad
and its main memory requirements, its status, and the current time.

(2) /STATUS
*TEST1,C1-FB,1400-1700,S,12:14:00
*p=1512,A=0000,X=147C,S=0007

Under some conditions, such as when a program has Suspcnded'itself or was interruptced
with the console interrupt, the display will include additional program information.
This display is illustrated in example (2) and shows the contents of the program's P,
A, and X registers, and the contents of the Status Word.

The status flag (preceding the time) may be one of the following characters:

Cc Cancelled

E Executing SUPV: Request 5, Get Parameter

L Loaded but not yet executed

N No program loaded (e.g., following a /JOB command)
< Suspended

T Terminated

2.5.14 The /TIme Command

. hh:mm:ss
/TIme hh:mm
hh

This command allows the user to display and/or set the system clock, which is then
available to system and user programs and displayed by some system commands. The
system clock operates on a 24 hour day and the time is automatically reset at 24:00
hours (midnight).

(1) /TIME
*13:15:36
The command may be given without a time parameter, as in example (1). 1In this case,

the user is asking that the current time be displayed.

(2) /TIME 3:19:47
*03:19:47

The command may also be given with a time parameter and the system will reset its
clock to this value. The system will again display the time to indicate acceptance,
as in example (2).

The time paramecter fields may each be supplied as one or two digits, indicating O to
23 hours, 0 to 59 minutes, and 0 to 59 seconds. Zeroes will be assumed for omitted
minutes or seconds.

o ot Y S SO T 1

2.5.15 The /TYpe Command

/TYpe comments

The /TYps: command restores the assignment of the Command Input unit (CT) to its
standard physical device, as defined during system generation. Tt is the cquivalent
of an explicit assignment command -- /ASSIGN CI=xx -- but provides mor. flexibility
because the user need not know what the standard device for CI happens to be.

2.6 PROCESSOR STOPS WITHIN OS

Certain serious hardware problems will generate processor stops, or "coded halts,”

within 0S. Display of the P Register will show an address too low to fall into the
User Area for the generated system. Display of the I Register will show a value of
:08 for the high-order byte, and one of the following values in the low-order byte.

:01 -- CI Unit Open Failure

The system attempted to open the physical device designated for Command Input, but
was unsuccessful. Check the device in question, and re-load OS.

:02 -- CO Unit Open Failure

The Command Output Unit could not be opened. Refer to Stop :01.

:03 -- Real-Time Clock Inoperable

The Real-Time Clock is either not installed, or not operating correctly. It is not
possible to run OS without a clock. This message can occur only when OS is first
loaded.

:04 -- Disk Controller Permanent Error

The continued operation of the disk controller is und2pendable. Notify Computer
Automation. '

:05 -- Disk Controllcer Permanent Error

Refer to Stop :04.

5

:12 -- Memory Parity Error

Notify Computer Automation.

N

-14

PR e

COMPUTER AUTOMATION. INC. ég —_—

2.7 OS ERROR MESSAGLS

When the Operating System detects certain errors, the operator is notified with a short
descriptive message. The Command Input (CI) and Command Output (CO) units are tempo-
rarily re-assigned to the operator console. If a user program is cxeeuting, it is suspended
and its hardware registers and status are saved.

After the operator has taken the required corrective action, normal system opceration
may be continued with the appropriate commands. If a user program was suspended,
and it is possible to continue with its execution, a /RESUME command may be usecd.

The messages described here arc issued by the resident Operating System itself. Messages
peculiar to each System Utility Program are described in the individual program write-ups.
Each messagec is shown as it appears on the CO unit, with its cause and possible corrective
action.

CMND REJECT

CAUSE: OS command statement just entered on CI is not valid. Either the command is
not recognizable, or the operands are wrong, or the command cannot be processed in
the present context.

ACTION: Correct the statement and re-enter it.

xx NOT READY

CAUSE: A program is attempting to access physical device xx, but the device is not
ready for operation. For example, a device is off-line, or a disk, tape, or cassette does
not have an OS volume label.

ACTION: Correct the problem and /RESUME.

xx NOT FOUND

CAUSE: Physical device xx or logical device xx is being referenced, but does not exist.
ACTION: If the reference is within a /BATCH or /ASSIGN statement, handle as a

CMND REJECT message. If the reference is internal to a program -- for example, an
improperly initialized FCB -- /CANCEL the program.

xx UNASSIGNED

CAUSE: Logical unit xx is being referenced, but has not been assigned.
ACTION: Enter an appropriate /ASSIGN, then /RESUME.

Iname NOT FOUND

CAUSE: A file-oriented OPEN was attempted for the file with the name shown, but it

could not be found. The file name was supplied either in an /ASSIGN command, or in

the program's FCB.

ACTION: Either correct the /ASSIGN statement and re-cnter it, then /RESUME; or /CANCEI
the program.

COMPUTER AUTOMATION, INC.

xx ILLEGAL OPEN

CAUSE: A program has made a request for an illegal operation on physical device xx
during an OPEN. (An illegal operation in an I0: request does not cause the message,
but takes an error return within the program.)

ACTION: /CANCEL the program.

flname DUPLICATE FILE

CAUSE: A program is attempting to OPEN for WRITE a filc with the name shown, but

this name is already in use for an existing file on the same device.

ACTION: Either use OS: CPY to delete the existing file, and re-run the program; or change
the /ASSIGN command or FCB which supplied the duplicate name.

xx MULT WRITE ERROR '

CAUSE: A program is attempting to OPEN multiple output files on the single devige xx,
which does not allow this technique. The device is probably a tape assigned where a
disk was intended by the programmer.

ACTION: /CANCEL the program. Re-run with different assignments, or with the pro-
gramming technique changed.

xx WRITE PROTECT

CAUSE: xx is a disk, and no space remains for a WRITE operation requested by a program.
~ACTION: /CANCEL the program.

CAUSE: xx is a cassette drive, and the address track on the cassette is still write-enabled.
ACTION: Remove Tab A, and /RESUME.

CAUSE: xx is a tape with no write-enable ring, or a disk with the protect light on, or

a cassette with no Tab B.

ACTION: Correct the problem, and /RESUME.

[X

xx DATA ERROR

CAUSE: During data transfer, a hardware error occurred on physical device xx which
could not be corrected by normal OS retry procedures.
ACTION: Run a device diagnostic program if necessary to correct the problem.

xx HDWR ERROR

CAUSE: During a non-transfer operation, a hardware error occurred on device xx which
could not be corrected by normal OS retry procedures.
ACTION: Run a device diagnostic program, if necessary, to correct the problem.

1/0 ERR

CAUSE: An unrecoverable I/0 error occurred during system operation, probably on
SF, Cl, or CO. This message will generally follow another error message.
ACTION: Correct the problem, as described for the message accompanying this one.

2-16

@

e

A

- CAUSE:

COMPUTER AUTOMATION, INC. L=

LOAD ERR

CAUSE: A /LOAD or /EXEC command requested a load of a program from SF which would
have exceeded memory, or violated the areas of memory reserved for the system.
ACTION: Check program being requested.

BAD TC

CAUSE: A /LOAD or /EXEC command requested a load of a program from SF, but a Typce
Code in the program file is not valid for processing by the resident loader.

ACTION: Check the program file. The program probably needs to be processed thru
OS:LNK.

POWER-FAIL
Execution has passed thru location : 0000, probably because of a Power Fail/

Restart sequence. A SPND: call is automatically simulated by the system.
ACTION: /CANCEL the program and re-run it.

2.8 COMMAND EXAMPLES

These examples will illustrate a typical sequence of commands and responses, from
system load to job completion. Console messages from OS to the user are underlined.

1.

Once the resident components of OS are loaded into memory, and execution begins,

- the system displays its name and release number, a dummy time, and a dummy

date. The operator may enter the actual time and date, or immediately supply the
first job. :

ALPHA/LSI OS (D0)

*00: 00: 00

*MM/DD/YY

>/TI 9:30: 00

*09: 30: 00

>/DA 9/24/72 -
*09/24/72

Request an assembly of a program with source on cards, listing on the line printer,
and a file device for intermediate storage.

>/JOB ASSEMBLY LOAD AND EXEC
*09: 31: 00,09/24/72

>/ASSIGN SI=CR,LO=LP,BO=PP,SS=M1
>/EXEC OS:ASM,NCORE

Request the system to load the program punched above, using the library on unit
MO0, and execute it.

>/ASSIGN BI=PR,LI=M0.LIBRY
>/EXEC OS:LDR,LL,TE
>/BEGIN ,DAILY,3

After the job has completed, log the total job time for this user.

>/NJOB
*09:31:00 09:47: 12

>

-

o
x

COMPUTER AUTOMATION, INC. _———P

|

w

COMPUTER AUTOMATION, INC. Eg S

Section 3

SYSTEM UTILITY PROGRAMS

3.1 INTRODUCTION

The Operating System requires a minimum of dedicated core storage. Many useful
functions are performed by deparate System Utility Programs, which arec invoked by
a normal /EXEC command as the user requires them.

Most utilities operate in the same way as user programs. They run in the User Area,
starting just above the Operating System itself, and extending up to the beginning of the
Transient Area in high core. Each program requires certain assignments and parameters.
During execution, the entire resources of the system are dedicated to the program.

One System Utility Program, OS:LDR, is executed in the Transient Area to load a user
program into the User Area. Its execution is terminated before the user program receives
control of the system.

Two special debugging tools, OS:DBG and OS: DMP, are executed in the Transient
Area while a user program is resident in the User Area. This allows them to access
the user program without overlaying any of the user's own core storage.

3.1-1

3.2 THE OPERATING SYSTEM ASSEMBLERS

Three assemblers are available under OS. They accept a uniform Source Language;
the specifications are published separately in OS Assembler Language Reference Mianual
(96552-00) .

MACRO2 generates object code which is intended for an LSI-2, LSI-1 , or ALPHA-16.
To handlec a useful number of symbols and Macro Definitions, more than 16K of memory
is ordinarily required.

OS: ASM is a simplified version of MACRO2, intended for OS configurations with a memory
size of 16K or less. The most substantial difference between 0S: ASM and MACRO2? is

the former program's lack of a Macro Facility. Other limitations are described in the
Language Reference Manual.

MACROS3 is a variant of MACRO2. The only machine instructions recognized are those

meaningful on an LSI-3/05. The generated object code is usable only on an LSI-3/05,
usually after processing by the OS Link Editor.

3.2.1 Logical Unit Requirements

SI (Source Input)

Required. Typically a card reader, or a disk file maintained with OS: SFE or OS: EDT.
Contains any number of separate Source Programs, each of which must terminate with
its own END statement. The Source Input File as a whole must terminate with an End-
of-File -- for example, with /* on a card rcader.

LO (List Output)

Required unless all listing has beern suppressed with an OS parameter. Must be a printer;
a magnetic device is not acceptable.

BO (Binary Output)

Required unless all object code output has been suppressed with an OS parameter.
Typically a magnetic device, so the file can be turned around to the link editor. If assigned
to a paper tape punch, the placement of End-of-File records may be controlled with an

OS parameter..

SS (System Scratch)

Required for MACRO2 and MACRO3. Not required by OS: ASM unless OS paramecter NC
is used. Must be a magnetic device, typically a disk. A normal termination of MACRO2
or MACRO3 will closc and delete the file.

3.2-1

A R

SA (Source Alternate)

Not used by 0S: ASM. Required for MACRO2 or MACRO3 only if Definition File processing
has been requested with an OS parameter. If SA is assigned to the same card reader

or paper tape reader as Sl, the records for SA must come first, and must have their own
End-of-File.

3.2.2 Parameters Available Only for MACRO2 or MACRO3

LL

Load and List the Definition File assigned to SA. The format and device requirements

of the file are identical to those of a Source Input File. SA is opcned, the entire contents

are assembled. and SA is closed and kept. No Binary Output is e¢ver generated. Every
definition, symbol, and valuc established during the SA processing is saved by the

assembler, and is considered to be predefined during the processing of the Source Input

File.

If this parameter is used at all, it must be the first paramecter.

LN :

Load with No List. Same effect as LL, except that no listing is produced during SA pro-
cessing. If this paramecter is used at all, it must be the first parameter.

FR
Flag Range Literals. Each source statement which requires an indirect link thru Scratchpad
has a Warning Flag "W" on the assembly listing. This parameter is only necded if the
LPOOL directive is never used in a Source Program. The presence of at least one LPOOL
automatically flags all statements which still need Scratchpad Literals.

3.2.3 Parameters Available Only for OS: ASM

NC

Not Core Only. Forces the assembler to copy each Source Program to the SS file before
processing it, even though enough memory may be available to save the whole program
without using §S. The result is that SS contains a copy of SI when the assembler runs
to normal termination, if these conditions are met:

1. Slis not a named file on a magnetic device.
2. 5SS is assigned to a named file on a magnetic device.

The pomnt of the NC parameter is th.nt the Source Program need not be put lhx u a separate
run of OS: CPY to create a permanent named file.

3.2-2

.

R

iotse aeson %

(

P2

Pass 2 Again. This parameter is acceptable only if thc assembler has run to normal termina-

tion, and a /BEGIN command has been used to restart it. The P2 parameter may be followed
by the parameters NL, EL, and NB as needed, on the /BEGIN statement .

The result of repeating Pass 2 is that another copy is produced of the asscmbly listing,
the object code, or both, corresponding to the last Sourcc Program assembled. This
is somewhat faster than re-running the entire assembly from SI.

FR

Flag Range Literals. Each source statement which requires an indirect link thru Scratchpad
has an Error Flag "A" on the assembly listing. The object code for the statement is still
correct.

3.2.4 Parameters Available for All OS Assemblers

NL

No List Output. Prevents the assembler from opening or using LO. The assembler languagc
has a directive called LIST to suppress various types of printed output more selectively.

EL
Error List Only. Nothing is prmted except a list of ecach Source Program's Errors and
Warnings.

NB

No Binary Output. Prevents the assembler from opening or using BO.

LI
Library Format on Binary Output. This parameter is superfluous if BO is assigned to

a magnetic device. If BO is assigned to a paper tape punch, the assembler ordinarily
separates each Object Program from the next with an End-of-File. The LI parameter forces
the paper tape into the same Library Format used for BO on a magnetic device -- no FOF
between Object Programs, one EOF after the very last Object Program.

3.2-3

]

3.2.5 Messages on Command Output Unit

name (rr)

CAUSE: Assembly has started. Revision level of the program is rr.
ACTION: None.

INVALID CMND

CAUSE: An incorrect parameter has been supplied.

ACTION: Enter a /RESUME command, supplying all of the correct parameters.
PAUSE

CAUSE: Input ended with an Up-Arrow (1) , rather than an EOF.

ACTION: Ready next segment of the Source Program, and enter /RESUME.

NO END

CAUSE: Software EOF before final END statement.

ACTION: Supply an END statement and another EOF, then /RESUME.

CAUSE: Software EOF after MACRO, but before ENDM was found.
ACTION: Supply an ENDM and another EOF, then /RESUME.

MEM OVERFLOW

CAUSE: The memory shared by symbols, definitions, and literals is exhausted. No
more LPOOL entries are made. Out-of-range references generate Scratchpad links and
"W" flags. Normal assembly continues.

ACTION: None, unless the programmer chooses to /CANCEL the assembly.

FEED ME

CAUSE: 0S:ASM needs the current Source Program for a second pass. The NC parameter
was not used. The current Source Program is not available for a second pass on SS,

it is too large to have been saved in memory, and the assembler cannot simply re-rcad

it from SI because of the device type involved.

ACTION: Reposition the Sl file to the start of the last Source Program read, then /RESUME.

3.2-4

S e o L e R e

COMPUTER AUTOMATION, INC.

3.3 OS:LDR - THE OPERATING SYSTEM LOADER

The OS Loader Utility (OS: LDR) loads and links together one or more object programs
into a single memory-resident program. The resultant program may then be cxecuted,
or output using the OS Dump Utility (OS:DMP).

The OS: LDR utility will accept all object programs generated by.-the BETA assemblers,
and all object programs gencrated by the OS assembler which do not contain references ;
to external labels with an offset.

OS: LDR provides the capability of dynamic peripheral device assignment through the oper-
ating system. Depending on the options requested, the loader will require the availability
and assignment of the following logical units prior to initiation of the loading process.

1. The SF (system file) unit is required by the system. It is here that the system
cxpects to find the loader program itself.

2. The CI (command input) unit is required for input of loader option requests.

3. The CO (command output) unit is required for printing loader comments and error
messages.

NOTE

The SF, CI and CO units were required prior to this step
and generally will not require re-assignment at this time.

4. The LO (listing output) unit is required for printing the loader listing. The LO device |
must not be bulk storage. ’

5. The BI (binary input) unit is required for input of the main (first) objcct file.

6. The LI (library input) unit is required for input of library files requested during
the load process. This unit is not required if library files are not to be processed.

The OS: LDR utility resides on the System File (SF) and is invoked with the form:
/EX 0S:LDR [.option ...

NOTE

The OS: LDR utility is object relocatable and should be added
to the System File via the OS: CPY utility. It must be named
OS: LDR on the System File directory; no other name is acceptable.

When loaded from the System File, OS: LDR resides in the transient area (high memory)
and assumes availability of all memory and scratchpad for load and link processes.

Any references to OS subroutine entrics (e.g.. SUPV:, OPEN:, 10:) arc automatically
linked to the resident OS. Rclocatable input is offset and stored consecutively directly
behind OS (main memory and/or scratchpad rclocatable). The default store location
(biasces to REL 0 programs) are:

3.3-1

Sordpg

S

¢ Main Memory (MM)

e Scratchpad Literals (SP)

* Scratchpad Relocatable (SR)

:FB

High Memory

COMPUTER AUTOMATION. INC. —

First available location in main memory following
OB, continuing toward high memory.

Location : FB, continuing toward : 00.

First available location in low scratchpad
continuing toward : FB.

OS Interrupt locations

)

Scratchpad Rel. Scratchpad
T Literals
0OS (01

A

Loaded/Linked Program

User Area
Main Memory

lLoader Symbol Table

OS: LDR Transient Area

ket s

RN~

COMPUTER AUTOMATION. INC. E@ —_—

OPTIONS

The user may request that the loader perform certain additional or non-standard operations
during the loading process. These "options" are entercd as parameters on the /EXEC
command line or in response to a query from OS: LDR, in the order requcsted and scparated
by commas. Each parameter is a single word of two or morc characters; the-MM, SP and
SR options must be followed by an equal (=) sign and a hexadecimal number, with no
imbedded blanks.

After OS: LDR is loaded, it processes the command options, as entered, from left to right.
The MM, NList, SP, LIst and SR options are processed as they are encountered. The
first EXecute, TErminate, ULoad or LLoad option encountered on the /EXEC command
line first causes loading of the BI file to commence and then processing of the command.
If none of these options are encountered, loading of the BI file begins when the end of
the /EXEC command line is encountered.

After a command line has been processed, if a TErminate or EXecute option has not been
encountered, OS: LDR will query the operator for more options.

When an invalid option is detected OS: LDR will print the message 'INVALID CMND' and
suspend operation. The opcrator should issue the proper option and any following options
on the command line using the /REsume command.

The options available are:

MM = XXXX Defines the next available main memory bias to be used as hex
address XXXX. The command may be entered to load programs
in areas other than sequentially directly behind OS.

SP = XX Defines the next available scratchpad location to be used for literals.
The SP option may only be entered before loading of the BI file begins.

SR = XX Defines the next available relocatable scratchpad location to be used.
OS: LDR will assign a value if this is not entered. The default reloca-
table scratchpad location is acquired from the system (location LOBP
in OS ROOT) and is dependent upon the iower base page require-
ments of the system.

LLoad Causes library (relative) loading of next LI file. This can be over-
ridden for a single file at a time by use of the ULoad option.

ULoad Unconditionally loads from the 'LI' (Library Input) file until an end-
of-file is encountered, then resumes the library load mode.

NList Suppresses listing loader information. This command will stay

in effect until an LI option is entered, but will be temporarily over-
ridden by a MAp command. '

3.3-3

e

g

-l

List

MAp

TErminate

EXecute

MEMORY MAP

COMPUTER AUTOMATION. INC. —

List loader information on LO (List Output device) whenever an
end-of-file is detected on input from BI or LI. This option overrides
the NL option.

Causes the generation of a full load map onLO device.

Terminates loading and returns control to the system. The command
may be entered any time but will not take effect until after the BI
file has been loaded.

Executes the loaded program(s) if there was a transfer address:
otherwise, the option is rejected. The command may be entered
at any time, but will not be processed until after the BI file has
been loaded.

A full or partial memory map is generated on the LO device under the following conditions:

1. A list of unresolved primary symbols is generated along with memory usage whenever
an end-of-file is encountered from the BI or LI file.

2. A list of defined primary symbols and their definition addresses/values are generated
along with memory usage whenever an end-of-file is encountered on BI or LI and
there are no unresolved primary references.

3. The MAp option causes the listing of all defined symbols (sce 2 above) and undefined

symbols .

4. A termination error will cause the generation of a full memory map (sce 3 above).

Conditions 1 and 2 can be suppressed by the NList optiun.

The memory usage list consists of: main memory (MM) used, scratchpad literal memory
(SP) used, scratchpad relocatable memory (SR) used and the last execution address
(EX) processed (all memory used addresses are inclusive). If the specified memory
(MM, SP, SR) or execution address (EX) was not used, the applicable information is
not listed. Below is an example of a memory usage map.

MM 1C9B
SR 0060
sP 00F8
EX 1CA3

1CA7 (inclusive main memory 1CY9B to 1CA7 used)
006K (inclusive relocatable scratchpad 60 to 6k used)
00FB (inclusive literal area F8 to FB used)

(last cffective execution address)

3.3-4

COMPUTER AUTOMATION, INC. gg em—

TERMINATION

0OS: LDR terminates the load-link process when an EXccute or TErminate option is encoun-
tercd or a termination error occurs. The termination proccdure for EXccute and TErminate
is to close the LO device, transfer pertinent loader information to 08 (sce /STATUS com:
mand for OS) and transfer control to OS (TErminate option) or the created program
(EXecute option).

A termination error is processed as a TErminate command .

TERMINATION ERROR | |

During the loading process, conditions may occur which will cause the loader to abort.
These conditions will cause the program to issue an crror message, print a full memory ,
map and terminate. |

The termination error message is listed on the CO device in the form '*LDR ER n', where
n is the applicable error number listed below.

The list of possible errors and'possible solutions includes:

Error Nﬁmber Error Possible Solution
1 Literal scratchpad overflow. Review use of literals.
2 Invalid loader type code detected. Use OS:LNK to process all
type codes.
3 I/0O error Retry operation
4 - A program has attempted to store Review use of memory

into OS or a relocatable program
in scratchpad has run into OS
scratchpad usage.

5 The OS: LDR (symbol table) and Use OS: LNK to create linked
the loading program have collided. programs.

EXAMPLES OF OS:LDR OPERATION

Example (1) is a typical device assignment to load one program from the BI file and termi-
nate the load process.

(1) >/ASSIGN BI=PR,LO=LP
~/EX OS:LDR,TE

~

3.3-

(]

g S A R S e

COMPUTER AUTOMATION, INC.

Example (2) illustrates: (a) the loading of the main program, (b) the loading of a library
file, and (c) the execution of the loaded program. '

2)

>/ASSIGN BI=D0.TEST,LI=D0.MATH ,LO=LP
>/EX OS:LDR,LL,TE

.
‘1

Example (3) illustrates the loading of a main program and threc library files. The default
memory options have also been overridden.

)

>/ASSIGN BI=D0.MAIN,LI=D0.LIB1
>/EX " 0S: LDR,NL,MM=3000,SP=F0,SR=E0, LL
?/ASSIGN LI=D0.LIB2

? LL

?/ASSIGN LI=D0.LIB3

LL,MA,TE

?
>

3.3-6

i e

e

3.4 OS:LNK - THE OPERATING SYSTEM LINK EDITOR UTILITY

The 0OS Link Editor Utility (OS:LNK) links together one or more object programs into
a single module. The resultant module is generated to an output file, in an object
format. This file may then be loaded into memory for execution, using 0S, the

LAMRDA loadex, BLD, or AutoLoad.

The OS:LNK utility will accept as input all object programs geﬁerated by the F
FORTRAN IV Compiler or any of the ALPHA series assemblers.

OS:LNK can link object programs whose memory requirements differ from those of the
host computer, both in total memory size and in specific memory allocations.

OS:LNK allows selective linking of one or more library files, linking only those
programs or subprograms requested by previous programs.

OS:LNK normally generates an absolute object program which, when loaded with the
0S/EX command, will reside directly behind OS.

OS:LNK will optionally offset the relocatable input by a requested bias (positive or
negative) and produce offset absolute or relocatable binary output. Note, however,
that absolute input always yields non-offset absolute output.

OS:LNK provides the capability of dynamic peripheral device assignment through the

operating system. Depending on the options requested, the link editor will require
the availability and assignment of the following logical units prior to initiation

of the process.

1. The SF (system file) unit is required by the system. It is here that the
system expects to find OS:LNK itself.

2. The CI (command input) unit is required for input of OS:LNK option requests.
3. The CO (command output) unit is required for printing OS:LNK comments and error
messages. :
/
NOTE

The SF, CI and CO units were required prior to this step and gen-
erally will not require re-assignment at this time.

4. The LO (listing output) unit is the device on which the Link Map and/or link
errors are published. Assignment is required unless the NL option is speci-
fied.

5. The BI (binary input) file contains the main program (and subprbgrams) which

are to be linked, and must be assigned prior to execution of 0S:LNK.

6. The LI (library input) file contains any library subprograms which may be
referenced by the programs previously linked from BI or LI. Assignment is
required whenever BI is not self-contained and/or more linking is to take
place.

3.4-1

g e e S AR

fomp

el Rt

|

7. The BO (binary output) file is required by OS:LNK; it contains the binary
module created by the OS:LNK process and must be assigned prior to execution of
OS:1INK, unless the NB option is specified.

The OS:LNK utility resides on the system file (SF) and is invoked with a call of the
form:

>/EX OS:INK [,options] ...

OS:LNK assumes operation will be in the host 0S computer and assumes available
scratchpad and main memory limits based upon this. Any references to OS subroutine
entries (i.e., OPEN:, I0:, SUPV:, etc.) are automatically linked to the host OS.
Relocatable input is offset and converted to absolute so that it will load directly
behind OS. .

The user may request that the link editor perform certain additional functions, or -
that non-standard values be used. These options are of two types. One type may be
issued only when invoking OS:LNK and one type may be issued when invoking OS:LNK or
in response to a query from OS:LNK. The options are entered as parameters and are
separated by commas. Each parameter is a single word of two or more characters of
which only the first two characters are required. Imbedded blanks are not allowed.

If the operator enters an invalid option when invoking the OS:INK utility or in
response to a query, the message "INVALID CMND XX" (where XX is the option) will be
listed on the CO device and OS:LNK will suspend operation. The operator may reissue
the correct option by entering "/RE option (,option)...". ©Note that the option

‘listed in the message and all that followed it must be re-entered.

The following optional parameters may be appended only when invoking the OS:LNK
ut}lity. If any are entered in response to a query they are rejected as invalid
commands .

NH

No host The NH option indicates that the generated program is
not to operate under OS in the host computer. Therefore, OS:LNK
does not generate linkages to the host 0S and assumes available

. limits of :FD towards :00 for scratchpad literals, a bias of :00

T ; and a high limit of :FD for relocatable scratchpad, main memory
limits of :00 to :7FFF, and a bias of :0000 for relocatable
programs. If the starting location for scratchpad literals
(:FD) or relocation (:00) is not desired, the SP or SR options
should be invoked. If a main memory bias of other than :0000
and/or conversion to absolute is desired, the RL or AB options
should be invoked.

If the NH option is entered it must come before the options SP,
SR, RL, and AB. If NH is entered after these options the mes-
sage "NH OUT OF ORDER" will be listed on the CO device and
OS:LNK will suspend. The operator should re-enter all the

options in the correct order by entering "/RE option (,option)...".

Any options not re-entered are set to their normal default
conditions.

3.4-2

iy

T3
Type LSI-3/05
Program

Computerautomation (O ——

This parameter indicates that all of the Object Programs being
processed are intended for execution only on an LSI-3/05. The
T3 parameter is similar to the NH option, and only one of the
two may be used during a single link-edit run. The default
memory allocations are: .

Scratchpad Literals :00 thru:7E
Scratchpad Indexing :00 thru :3F
Scratchpad Relocatable Bias:00, Limit:7E
Main Memory :00 thru:7FFF
Relocatable Bias:0000

If any of these allocations are unacceptable, the parameters SP, SR, SX, AB, or RL

may be used to override the default values.

None of the parameters just mentioned

may be entered before the T3 parameter itself, otherwise OS:LNK will suspend with

the message "T3 OUT OF ORDER."

The operator must then re-enter all of the parameters

in the proper order, using the OS command /RESUME. Any parameters not re-entered
are set to their default values.

SP = xx
Scratchpad

NB
No binary

The link editor will normally start assigning scratchpad literal
locations as needed, starting at location :FB for the host 0S
and :FD for non-host, and progressing towards location zero.

The user may override the default location by entering the
desired location as a two-digit positive hexadecimal value. The
value also then becomes the high limit for scratchpad programs.

This option suppresses the binary output for the entire link
edit process.

The following optional parameters may be appended when invoking the OS:INK utility
or may be entered in response to a query from OS:LNK:

AB = xxxx
Absolute offset

RL = xxxx
Relocatable offset

SR = xx
Scratchpad Re-
locatable offset

This option causes the generated program to be in absolute
binary format, and all relocatable input is offset by the bias
specified (where xxxx may be any positive or negative hexa-
decimal value).

This option causes the relocatable input to be offset by the
bias specified (xxxx) and then output in relocatable format
(xxxx may be any positive or negative hexadecimal value).

This option causes the scratchpad relocatable input to be offset
by the bias specified (where xx is a positive or negative hexa-
decimal number). This does not alter the low limit for scratch-
pad literals.

3.4-3

s

B

©

SX = xx
Scratchpad
Indexing

XA = XXXX
Absolute transfer
Address

XR = XXXX
Relocatable trans-
fer address

XS = xxxXX
Relocatable
Scratchpad trans-
fer address

NL
No list

LI
List

©C

Memory Map

LL
Library link

ComputerAutomation (T —_—

This option assigns scratchpad indexing locations for ISI-3/05
programs which require indirect indexing pointers. This option
must be used in conjunction with T3. Default starting address
is :00. The allocated scratchpad locations progress toward
location ¢3F. The user may override the default by entering the
desired starting address as a two-digit positive hexadecimal
value. This value then becomes the low limit for scratchpad
index pointers.

This option overrides the normal transfer address and instead
uses the absolute transfer address specified (xxxx).

This option is the same as XA except the specified address is
offset by the current relocation bias.

This is the same as XR except the current scratchpad relocation
bias is used. If the transfer address specified is negative
(after any offset is applied) then no transfer address is gen-
erated.

This option suppresses listing of memory map information (e.qg.,
program and common addresses, unresolved references, etc.),
except error messages, for the remainder of the link edit pro-
cess, or until LI is entered.

This option re-enables the normal listing function, but does not
produce a listing at this time (see MA).

Generate memory map. Present link information is listed on the
LO device. This option allows the user to review link informa-
tion before link process is completed. The MA option temporar-
ily overrides the NL option.

Begin or resume library link operation with selective linking of
currently assigned Library (LI) file. This command is required
when Library programs are required to complete the link process,
and is generally preceded by an assignment of an LI file.

3.4-4

UL

Unconditional

link This option causes all programs located on the currently assigned

' Library (LI) file to be unconditionally linked. The selective

link mode may be resumed after reading of the currently assigned
LI file is completed.

TE

Terminate Terminates operation of the OS:LNK utility. Causes output files

to be completed and closed, a memory map to be listed and control
to be returned to 0OS. TE must be entered last.

After OS:LNK has been loaded, it will:

1. Process any optional parameters appended to the /EX OS:LNK command up to but
not including the first LL, UL, or TE parameter (if they were entered).

2. Unconditionally link a11>programs located on the Binary Input (BI) file.
3. Any outstanding parameters are then processed. If UL or LL is encountered,

programs on the Library Input (LI) device are unconditionally linked (UL) or
conditionally linked (LL) as required.

4. At end-of-file on 'BI' or 'LI' if unresolved primary external references exist

and no LL, UL or TE parameter is encountered, primary external references are
listed on the 'LO' device (unless suppressed by NL) and a request for more
parameters is made. 'LI' may then be assigned and/or the next parameter
entered.

5. This process continues from step 3 until a TE option is entered.

6. When the TE parameter is encountered all references to Blank Common are re-
solved and output. Blank Common is defined (if referenced) with the largest
size referenced, as the next available higher locations. The Scratchpad Literal
Pool is then output and the 'BO' device closed. A memory map is listed on the

'LO' device (unless suppressed). All files are closed and control is returned
to OS.

Secondary Reference Processing

If, after each program or subprogram is processed, unresolved secondary references
exist, a primary reference is created by OS:INK to a user-supplied error routine
named SRF:ER. If no unresolved secondary references remain, the created reference
to SRF:ER (if any) is deleted. Thus SRF:ER may or may not appear on each memory map
(under MISSING) as the need for SRF:ER changes.

Since the need for SRF:ER may not be known until the last library program is linked,
SRF:ER should be the last program on the last 'LI' file to be processed. SRF:ER
will not be needed if no secondary references exist in the programs being linked.

When the TE parameter is encountered, if a program entry point named SRF:ER is
defined, all unresolved secondary references are linked to it. All executable ref-

erences (i.e., LDA X but not DATA X) to SRF:ER are converted to JST SRF:ER instruc-
tions.

ComputerAutomation <§:ZR§ —

S

e

Error Handling/Recovery

Termination errors cause an error message to be written on the 'LO' and 'CO' devices,
a memory map to be generated, and control returned to OS. The messages and their
meanings are as follows:

MESSAGE : ERROR CONDITION

*BAD TYPE CODE Invalid type code detected. The user should restart
the link-edit process and/or regenerate the object
programs in which the bad type code was detected.

*TABLES FULL Link edit table overflow. Start over with more memory
or do less segmenting of subprograms.

*LINK ERROR n System error has occurred. The user should inform
Computer Automation of the error with as detailed
information of the circumstances as possible, in-
cluding the error number n.

*INVALID CMND XX Legal parameter limits violated. Reissue correct
option by entering /RE option (,option)...

I1/0 Errors
*I/0 ERR The operating system has detected an irrecoverable I/0
error. OS:INK will terminate operation.
*INPUT CK An input failure (e.g., high speed reader not ready)

has been detected. The operator should ready the
input device and enter /RESUME to continue the opera-
tion, or cancel (/CA) 0S:LNK.

Exrors in Input Programs

The following error messages are listed on the 'LO' device as the error occurs. The
messages are for information only. OS:LNK continues normal operation after the
errors are listed.

*COMMON SIZE CONFLICT, IGNORED, Program Name, Common Name, Size as first defined, -

size as re-defined

A labeled common with an incompatible size has been detected.
The common area is allocated with the size as first defined and
if re-defined with a smaller size, no problems should occur. If
re-defined with a larger size, references to that common past
the end of the allocated area will produce invalid results.

*SCRATCHPAD LITERAL OVERFLOW, IGNORED. Program Name

The Scratchpad literal pool has reached location :00. Additional
literals will not be assigned, and references to them will
reference location :00.

3.4-6

e St i

@

ComputerAutomation (g:??‘& —
*SCRATCHPAD USAGE CONFLICT, IGNORED. = Program Name, Scratchpad Location

Input data has been encountered that would be placed in a
Scratchpad location that is already occupied by a literal or
other input data. If a literal has been assigned to this loca-
tion the literal has priority; otherwise the last data input
will be placed in the location. Literals will never be assigned
to an occupied location but will instead be assigned to the next
lower unused location, so literal assignment will never cause
this message to be listed.

*SCRATCHPAD PROGRAM OVERFLOW, IGNORED. Program Name

A program in Scratchpad has passed the high limit of scratchpad
(:FB normally, :FD for NH or XX if SP=XX was entered).

*SCRATCHPAD PROGRAM/LITERAL OVERLAP, IGNORED. Program Name, Scratchpad Location

The scratchpad literal pool, working down from the high limit of
scratchpad, and a program, working up from the bottom of scratch-
pad, have passed each other at the location listed.

*MEMORY OVERFLOW, IGNORED. Program Name

The program has gone past the end of memory (:7FFF) and wrapped
around to location :0000.

NOT LSI n OBJECT Program Name

An Object Program on BI or LI is not compatible with the machine
for which the output Program File is intended. Either an LSI-
3/05 Object Program was found, and the T3 parameter is not in
control, or T3 is being used, but the Object Program is not
acceptable for an LSI-3/05. In either case, the first Primary
Entry Name in the Object Program is given, the input is skipped,
and processing continues.

Operation Examples

(1) >/AS BI=PR,BO=D0.0S:ASM
>/EX O0S:LNK,TE

Example (1) illustrates using OS:LNK to put the OS assembler on the system file (DO)
instead of doing it with OS:LDR and OS:DMP.

(2) >/AS BI=PR,LI=PR,BO=PP,LO=LP
>/EX 0S:LNK,NH,AB=100
0S:LNK (A0)
?LL, TE
0S:LNK END

Example (2) is a normal series of commands to link a relocatable main program (on
paper tape) to one or more library subprograms (also on paper tape). The output
generated is an absolute program starting at location :100 and is not to operate
under OS. When invoked OS:LNK processes the main program (from BI), lists the
unresolved external references on the line printer, outputs the (?) character and
waits for more commands. At this time, the library tape is readied in the reader
and LL,TE is entered causing the process to be completed.

3.4-7

©

.MISSING
Name
Under "MISSING" are listed all unresolved prlmary external references
(i.e., names on REF or EXTR directives).
PROGRAM

ComputerAutomation <§:y§s —

(3) >/AS BI=DO.MAIN,LI=D1.LIB1,BO=DO.TEST,LO=LP
>/EX OS:LNK,NL,LL
OS:LNK (A0)
?/AS LI=DO.LIB2
?LL,LI,TE
0S:LNK_END

Example (3) shows the linking of a main program to two library files. Note that LI
is reassigned after the main program file (BI) and the first library file are pro-
cessed. Also note that listing is disabled to suppress printing of unresolved
references and then re-enabled to allow printing of the final memory map.

(4) >/AS BO=D0.OBJPRG
>/EX MACRO3
>/AS BI=BO,LI=DO,LIB3,BO=PP
>/EX OS:LNK,T3,AB=100, LL, TE

Example (4) illustrates how the output of MACRO3 may be turned around to OS:LNK.
The result is a paper tape ready for loading into an LSI-3/05.

Memory Map Key

CREATED FILE
File Name
This is the 'BO' file name if any.

Name Address

Under "PROGRAM" are listed the names and addresses of all defined external
program entry points (i.e., names on NAM and SNAM directives)

COMMON
Size Address

This is the allocated size and starting address of the FORTRAN IV blank
common area.

LABELED COMMON
Name Size Address

Under "LABELED COMMON" are listed the names, sizes, and starting addresses
of all FORTRAN IV labeled common areas.

All addresses listed above are absolute unless followed by the letter 'R'

in which case they are relocatable. All addresses and sizes are in hexa-
decimal.

®

S—

MEMORY USAGE

SCRATCHPAD LITERAL 1low - high *EXCEEDS LIMITS BY nnnn
SCRATCH PAD PROGRAM low - high
MAIN MEMORY PROGRAM low - high *EXCEEDS LIMITS

RELOCATABLE PROGRAM low
EXEC ADDRESS

high

Under "MEMORY USAGE" is a summary of the memory areas to be used by the
linked program. The lowest and highest location used in each area is
listed. The "EXEC ADDRESS" is the transfer address of the last subprogram
encountered that contained a transfer address. If relocatable, the execu-
tion address is followed by the letter "R". The "EXCEEDS LIMITS" message
is listed if the program or literal pool overflow their allocated areas.

SCRATCHPAD USAGE TABLE

Under "SCRATCHPAD USAGE TABLE" is a picture of the scratchpad usage. The
legend at the right of the table identifies the contents of each scratch-
pad word. ’

3.4-9

s Son

| ~—
PHGE 1 83,2976 12:49.18 0S.LNK (B1) MEMORY MAP
CREATED FILE OMEGR
PROGRAN
CORLM 9882 LINES. 0004 CHARS: 0005 LOWP 8086 TYPSI @@8E
TFF 2013 NXSYR 0015 SCIX 0016 Lo 0017 S1 0019
80 0014 LOWA 8030 TYLFLG @941 Loc eest REL 0852
SOURCE 0058 SAVPTR 805C $D1 00A4¢ OMEGA2 9100 START 0100
YTLBUF OF7F BIN 10898 CONV1 1843 cCLPA 1114 SAVE 130E
RETRY 1338 PUNCH 134F PNCH 1378 FRANE 13A0 BOINIT 13A9
VEOF 13BD CNTR1 13CE BODEY 1414 PKCA 1435 OKCA 14SE
| EJECT 1490 PNO 14cC LIST! 14Dt ~ LIST 14DC CNTR 1513
;l LSF 1515 DOCR 1518 PICTTY 1546 RPTAR 1562 ICH 1583
1 . TTKIN 1546 TTKOT 1628 CRDI 168D ENDALL 16B6 MEMSIZ 16B7
lf MEMORY USAGE
: SCRATCH-PAD PROGRAM 8000-00F 7
‘ MAIN BEMORY PROGRAM 0100-16CC
| O EXEC ADDRESS 9100
| SCRATCHPAD USAGE TABLE.
ADDR @ 1 2 3 4 56 7?7 8 9 ABCDESF LEGEND.
; @080 P P P PP PP P PP PPPPPP A=ABSOLUTE LITERAL
| @810e P PP PP PPPPPPPPPPEP B=BYTE RELOCATABLE LITERAL
g @820 PP P PP PPPPPPPPPPEP P=ABSOLUTE PROGRAM
| 8838 R=WORD RELOCATABLE LITERAL
gee8 . PP PP PP P PPPPPPEPEP §=SREL PROGRAM
| — @@5@ P PP PP PPPPPPPPPPEP ¥=WORD RELOCATABLE INDEX POINTER
i @e68 P PP PP PPPPPPPPPEPEP X=ABSOLUTE IMBEX POINTER
‘ @786 P PP PP PPPPPPPPPPEP Y=BYTE RELOCATABLE INDEX POINTER
@@8e P P P PP PP P PPPPPPPP
; @896 P P P PP P PP PPPPPPPEP
| ' @8R8 P PP PP PP PPPPPPPPP
i 8680 P P o
| eece PP PPPPPPPPPP
, pepe P P P PP PP P PP PP P PP P
| . GeE@ P PP PP PP P PPPPPPPEP
1 0F8 P P P P P P P P

1 PROCESSED LSI 2 OBJECT

ﬂ NO ERRORS

| Sample Generated by:

NH, AB=100, SP=FE

3.4-10

'@

COMPUTER AUTOMATION. INC. ' ' —

3.5 0S:LBL - THE OPERATING SYSTEM FILE LABEL UTILITY

The operating system requires that all file-type devices (magnetic tape, cassette and

disk) be labeled prior to use. This involves the creation of "directories" on each individ-
ual unit to allow later file processing by name. Do not confuse "labelling" with "formatting"
of disk packs and cassettes, which must be done with stand-alone programs before label-
ling. Refer to Section 4.5.4, Recording Medium Preparation.

OS: LBL operates under the system, and requires user response during the labeling
process. The label program requires the availability and assignment of the following
logical units prior to program initiation.

1. The SF (system filc) unit is required by the system. It is here that the system expects
to find the label program itself. ‘

2. The CO (command output) unit is required for printing the label queries and error
messages.

3. The CI (command input) unit is required for operator responses.
When executed, the label program will query the user for its variable information.

NAME

?

The user should respond with a Volume Identification. It must consist of 1 to 6 alphanu-
meric characters, the first of which must be alphabetic. The ID is terminated with a
Carriage Return.

TYPE AND UNIT
?

The response is the two-character physical device mnemonic (appendix C) of the device
which is to be labeled. The response is terminated with a carriage return.

DOES XX CONTAIN OS
f)

If the device to be labeled (XX) contains a copy of the Operating System, the user responds
with 'Y'" and a carriage return. Otherwise, the user's response is 'N' followed by a
carriage return; the next query is suppressed.

SAVE OS
)

If a system exists on the unit, and is to be saved, the user responds with 'Y' and a carriage
return; otherwise 'N' and a carriage return.

3.5-1

R, ST

e

s |

|

If the device to be labeled is a disk, the opcrator is then asked:

NUMBER OF PARTITIONS (1.2,4,8)

?

The user now selects the number of partitions into which the disk is to be divided,
and enters that value (1, 2, 4 or 8), followed by a carriage return. The number of
partitions selected is the limit to the number of files which may be simultancously open

for write operations. For example, the OS assembler requires a minimum of two partitions:

one to save the source (SS=D0) and one for binary output (BO=D0).

If OS: LBL determines that the selected number of partitions makes each partition too
small, the operator will be notified. This normally occurs only when a partition must
be large enough to contain the file directories and OS itself.

PARTITIONS TOO SMALL
SAVE OS

0

If the operator responds 'N' the space required by OS will be given to partition number 0.
If he rcsponds 'Y' the query

NUMBER OF PARTITIONS (1,2,4,8)
9

will be repeated and the user can request fewer partitions. Each reduction in partitions
(e.g., 8 to 4) will double the size of cach partition.

NOTE

It is recommended that systems be configurced with 4 or 8 partitions,
to ensure the capability of multiple files open for writing.

The labeling process then begins. When completed, the user will be offercd the option
of labeling another device, or termination.

LABEL MORE
4
If another unit is to be labeled (see note below) the response should be 'Y'; otherwise
respond 'N'. Terminate the response with a carriage return.

NOTE
IFor efficient use of OS, the usecr should have a labeled file on
all storage devices and onc back-up file. For example, an Opecra-
ting System with 3 cassette drives should have 4 labeled cassettes.
Note that at least one of the cassettes contains the Operating
System as produced by OS: GEN.

3.5-2

COMPUTER AUTOMATION, INC. ' —-——-—-’

R TR e

e

A

®

COMPUTER AUTOMATION, INC. Eg —

3.6 OS:VEW - THE OPERATING SYSTEM FILE VIEW UTILITY

The OS: VEW utility allows the user to display the contents of all file-type devices operatin
under the system. At the user's discretion, this "viewing" may be as simple as displayin;
the volume ID, or as detailed as displaying the entire econtents of a given file.

The view utility operates under OS control, and sllows dynamic peripheral device assign-
ment through it. The utility requires the availability and assignment of the following

logical units prior to program initiation.

1. The SF (system file) unit is required by the system. It is here the system expects
to find the view utility itself.

2. The CI (command input) unit is required for input of the utility option requests.
3. The CO (command output) unit is required for printing of utility error messages.

4. The SI (system input) unit is required for reading of the file(s) to be viewed.
(The SI unit may also be assigned via a parameter input--sec below.)

The LO (listing output) unit is required for printing of the contents of the "viewed"
file.

13

(1) >/ASSIGN SI=M1,LO=LP
>/EXEC OS:VEW

Example (1) is a typical device assignment sequence prior to execution. The assignment
of SF, CI and CO are not shown, since these units were required prior to execcution

of this step. The example shows that magnetic tape unit 1 is the device to be examined.
and that the contents will be printed on the line printer. '

Requests are entered as parameters on the /EXEC command line or in response to a
console query, separated by commas, and terminated with a carriage return. Functions
arc performed in the order requested.

1. Vv displays the volume name, creation date and directory limits.
This function is automatically performed prior to the first
function requested for a given SI device.

2. N displays the names of all files on the device.

3. D displays the name and dircctory information for all files on
the device.

4. D.NAME displays the directory information of the specific file requested.
NAME must be a one to six character filc name.

5. F.NAME displays the directory information and the contents of the

specified file. NAME must be included, and must be a onc to
six character file name.

3.6-1

e o TR

COMPUTER AUTOMATION, INC. ———

6. TorTE terminates the view utility -and returns to the system.

7. Dx or Mx or Cx causes re-assignment of the SI device for all subsequent
view functions. "D", "M" and "C" refcr to disk, magnetic
tape or cassette respectively; "x" represents the unit numbaer.
Inclusion of a file name is not permitted.

(2) >/ASSIGN SI=M1,LO=LP
>/EXEC OS:VEW,D,F.TEST1,T

Example (2) is a request to view the magnetic tape located on unit 1. OS:VEW will
print the volume ID, all directory entries (D), and the contents of a specific file
(F.TEST1). The program will then terminate (T).

(3) >/EXEC OS:VEW,DO,N,D1,N,TE

Example (3) shows how the user might list the names of all active files (N) on two units
(D0) and (D1), then terminate (TE).

A "D" function involving a disk file resident in more than one partition will necessitate
reading and counting every record and sector in that file. This operation may produce
a brief, but noticeable, delay during the printing of the file's directory information.

Certain conditions may cause an error message on CO, and program suspension:

"SI ASSIGN ERROR" The ASSIGNed SI unit was found to be a non-file-
type device, or was ASSIGNed with a file name.

The user should re—ASSIGN SI to a file type device
without a specific file name, and enter /RESUME,
re-specifying the desired parameters.

"INVALID REQUEST" An illegal parameter was requested. The user should
enter /RESUME, specifying the correct parameters.

"XXXX NOT FOUND" ‘ File XXXX was not found on the specified SI device.
The user should enter /RESUME, specifying the correct
parameters. '

"INSUFFICIENT MEMORY" The record (or block) length of the requested file
' is too large to fit in available memory. The user
may /CANCEL the program or /RESUME, specifying
parameters for another file.

"1I/O ERROR" An 1/0 crror status was returned following a request

for I/O. The user may enter /RESUME to retry the
[/0 function.

3.6-2

FILE VIEW

i MM/DD/YY, 00:04:45
1
{ T vioc: SYS1D0 NS ON UNTT
g CREATFD 12/30/74
: FILES ALLOCATFD: 77
FILES AVAILABLE: 243
SECTORS AVAILABLE:
PARTITION #Hi 129
PART1IION #? 8
PARTITION #3 717
PARTITION #4 1149
i NAME VIOCROD
! (REATFO: 12/30/74, 10:11238
‘ AITRIBUTES: SEQ/BLOCKED
; RECORD STZE (BYTES): 3°
! " BLUCK SIZE (BYTES): 512
: PARTITION DIMENSIONS:
"D PARTITION 13
STARTING SECTOR NO.: 41
RECORDS: 322
SECTORS: 21
| TOTALS: '
1 RECORDS: 322
‘ SECTORS: 21
STNAME @ 0S:VEW
CREATED: 12730774, 10:12:27
ATTRIBUIES: SEQ/UNRLOCKED
RECORD SIZE (BYTES): 510
BLOCK SI1ZF (BYTES): 0
PARTITION DIMENSIONS:
~ PARTITION 1:
‘ STARTING SECTOR NO.: 6e
RECORDS: 9
SFCTORS: 9
TOTALS:
‘}1 RECORDS: 9
‘ SECTORS: 9
NAME 2 NS:DBG
CREATED: 12/30/74, 10:12:28
- ATTRIRUTES: SEQ/UNBLOCKED
RECORD SIZE (BYTES): 510
BLOCK SIZF (BYTES): 0
PARTITION DIMENSIONS:
PARTITION 1:
STARTING SECTOR NO.: 71
RECORDS: 17
SECIORS: 17
frovaLs:
N RECORDS: 17

Sample Generated by: /EX 0S:VEW,DO,D

3.6-3

0199

Sample Generated by: /EX OS:VEW,DO,F.MACRO2

FILE VIEW MM/DD/YY, U0:ul:?2S
v10C: SYS10b0 0S ON UNTT
CREATED 12/30/74
FILES ALLOCATED: 77
FILES AVAILABLE: 243
SECTORS AVAILABLE:
PARTITION #1 125
PARTITION #2 8
PARTITION #3 717
PARTITION #4 1149
NAME ¢ MACROZ
"CREATED: 01725775, 10:34:01
ATTRIBUTES: SEQ/UNBLOCKED
RECORD SI7ZE (BYTES): 510
3L0CK SIZt (BYTES): 0
PARTLITION DIMENSIONS:
, PARTITION 3:
STARTING SECTOR NO,: 2426
RECORDS: 28
SECTORS: 28
TOTALS: ‘
RECORDS: ’8
SECTORS: , °8
RECORD NO. 1
0100 0004 1D74 0600 6AB2 6F9B
E9C6 019A H4R1 FB31 17FB A41D
F49B F49B FUFB 9E32 46E6 01C6
01F2 S201 SO013 D003 1088 E998
FBOO 48B2 589C O01DA 4AFB 8C1D
H8E2 B87R2 479C 0382 4413 280E
D79C O030F 00C6 0199 FA99 F999
F799 F699 FS9B 3AB2 3A9B 3BCH
7110 DEB2 2E31 01F2 370E 00B3
27A3 P260F 0092 SC31 0209 Fe6Fe
02D9 FSF6 1292 S631 0299 F8F6
5892 5231 0299 F9F6 1C92 4F31
2092 4CP1 6292 4B21 0392 4A3l
F8B2 O0E9B OEF2 1008 0133 FDOFé
0600 8028 O0OFF FFOD A028 ©SFD3
E932 AAAQ0 AQE2 0BC6 509C 0982
0E9C O00B6 089C 049C 05S9C 06F8B
F4Ba 03135 C0c2 O03FB 2526 01F9
7948 D86S BEB1 F921 03FB 1C32
0786 1F9C 049C 059C 06B1 F821
NSF9 F4CT O06FA 6667 B26S5 CAF?2
FDOY1 F900 0100 O9F8 O06FB EFNA
R4FF FFFF FFO03 CUeB D23 CLP4
039E 4RFF 091D DNER6 4LE6 0D9C
08R6 S10E 0018 289C 0E13 D79C
109A 36C6 FAD1 1099 F399

3.6-4

01FB
NEB2
FF84
S800
DEBZ?
009C
F8o01
059A
°913
0E9?
1692
02b8
0599
6504
c9D3
349C
eR2S
Fac?
A3F9
04FB
11CS
0B00
AlcY
0SHe6
0DOF

FeJ9

6C33

618A
0231
D099
4898
0u13
1099
2FFR
S70A
5931
5321
16F6
F999
1DEe
c125S
07R6
E8F9
06F A
F4fF2
1233
CCo06
0232
98BC6
4eac
0001
F199

OO.'.O...E'C.Q..
OF...l..'.s‘T?.Q
-ooocoooop'F.ov.
ooocoopooooooopg

o..?.'.?...ot?..

...2...20..‘.‘..
WeeeoFoeoseeeneon
.....'QE..'FOO..@
eellecececealdnel
.“-O.....Y."Q..
.Y.'..Q.O.....'.
‘.00.”0.....(00

® © 8 000 9000 % oo o

.a¢oocoooo.otooo

ececovvsoe .oS]SA.
e X ..F...E..oh
eeebeccccoccccns
elec@eeneseeashe,
-ox0>loooo~o”o-o
ebBecoceealeccene
UeeGooooelPadoFL.
Qeoesodo MoLLLF
o.-oo.'hoo'.060o
ob-.-nooo.wocoo.

.-oF.Q....O.o..’

Frast e A

-
‘COMPUTER AUTOMATION, INC. é@ s

3.7 OS:CPY - OPERATING SYSTEM FILE COPY UTILITY

The OS: CPY utility program allows the user to copy symbolic (source) and object (binary)
files between physical devices, delete files from mass storage devices (cassette, mag

tape, or disk), pack disks, merge two or more files, or list a source file on a print
device. A "file" is any sequence of records terminated with an End-of-File indicator,

as defined in Section 4.5.1. :

The OS: CPY utility program operates under the operating system, and allows dynamic
peripheral assignment. The utility requires the availability and assignment of the
following logical units prior to program initiation.

1. The SF (System File) unit is required to load OS: CPY into memory .
2. The CI (Command Input) unit is required by 0OS: CPY for input of utility commands.
3. The CO (Command Output) unit is required for listing utility messages.

OS: CPY performs its operation using the logical devices S1 for input and S2 for output.
The user should perform an /ASSIGN or /JOB operation, as desired, after the use of
OS: CPY to reset the S1 and S2 assignments.

The general command format for OS: CPY is

.NAME .NAME
CMND,PID | .RSIZE ,POD| .RSIZE
.NAME .RSIZE .NAME .RSIZE .BSIZE

.NAME .RCOUNT .FARTITION

Where:

CMND One of the valid commands shown below.

,PID Two-character physical device mnemonic shown in Appendix C,
on which the input file is to be read.

,POD Two-character physical device mnemonic shown in Appendix C,
on which the output file is to be created.

.NAME Name of the file to be read or created.

.RSIZE Numbers of characters (bytes) per logical record. The default

* value for RSIZE for input is 80 characters for symbolic and 510

bytes for binary records. The default for output is the input
record size.

.BSIZE Number of characters (bytes) per physical record when blocked.
Valid only for symbolic records on bulk devices.

.RCOUNT Maximum number of records the random file being created may

contain. Applicable to disk devices only.

3.7-1

e s e

COMPUTER AUTOMATION, INC. ———-]

.PARTITION Disk partition in which the random file is to be created. Applicable
to disk devices only. ‘

NOTE
In all cases, the input file is read until an end-of-file is

encountered, which (except for MB and MS) causes a corre-
sponding end-of-file to be created on the output file.

The commands available with OS: CPY are:

.NAME .NAME
CB,PID | .RSIZE ,POD | .RSIZE
.NAME .RSIZE .NAME .RSIZE

Copy a binary file from the PID device to the POD device. RSIZE default is 510 characters
and blocking is not allowed.

.NAME .NAME
CS,PID | .RSIZE ,POD | .RSIZE

.NAME .RSIZE .NAME .RSIZE
‘ .NAME .RSIZE .BSIZE

Copy a symbolic file from PID to POD. Input RSIZE default is 80 characters and input
BSIZE is not specified; OS will supply it.

OS maintains its internal symbolic files (0OS: ASM SS, etc.) blocked 12 logical records
per physical record (80/960 bytes) for increased bulk storage efficiency.

CO,PID,POD

Copy all active (non-deleted) files from the PID bulk device to the POD bulk device.
The output device must be labeled and any files located on it will be unaltercd.

A file on the PID device must not already exist on the POD device by the same name.

DE,PID .NAME

Delete the file specified (.NAME) from the PID bulk device. Deleted files may be physi-
cally removed from a disk with the DE and PK commands. A deleted file name may be
re-used without errors.

.NAME .NAME
MB,PID .RSIZE ,POD | .RSIZE
.NAME . RSIZE .NAME .RSIZE

Merge two or more binary input files into a single binary output file. RSIZE default
is 510 bytes. Blocking is not allowed.

3.7-2

®

"

When an end-of-file is encountered from the input (PID) file, OS: CPY issucs the message
"READY NEXT FILE" and suspends operation to allow a new file to be readied. The uscr
continues the operation with the cammand:

PID [.NAME}

or terminates the operation with an MT command.

.NAME .NAME
MS,PID .RSIZE ,POD | .RSIZE
.NAME .RSIZE .NAME .RSIZE

.NAME .RSIZE .BSIZE

Merge two or more symbolic input files into a single symbohc output file. RSIZE input
default is 80 characters and BSIZE is not specified.

OS maintains its internal symbolic files (OS: ASM SS, etc.) blocked 12 logical records
per physical record (80/960 bytes) for increased bulk storage efficiency.

When an end-of-file is encountered from the input (PID) file. OS: CPY prints the message
"READY NEXT FILE" and suspends operation to allow a new file to be readied. The user
continues the operation with the command:

PID [NAME]

or terminates the operation with an MT command.

PK,PID

Pack PID (disk only) to physically remove all deleted files. This command allows the
user to recover all lost disk space due to deleted files. From 5 to 120 seconds may clapse
before another command will be accepted, depending upon the amount of undeleted data
to be moved.

Do not attempt to pack a disk to which CI is currently assigned, unless the next OS comma
is already available from stored parameters without reading CI again:

/EXEC O0S:CPY,PK,Dn,/JOB

If an I/0 error occurs while packing a disc, the operator can recover most of the files
as follows:

1. Execute OS: VEW to determine the remaining file names (N}.

2. Execute OS: CPY and copy the files to a temporary device (another disc, paper tape,
etc.). If while copying a file an INPUT CK or I/0 ERROR takes place, cancel OS: CPY
and cxccute it again with the next file to be copicd.

3. Execute OS: LBL and relabel the disc.

4. Copy all the saved [iles back to the labeled disc.

3.7-3

gy

COMPUTER AUTOMATION, INC. —n

.NAME
RB,PID| .RSIZE ,POD.NAME .RCOUNT [.PART[TION]
.NAME .RSIZE

Create a random binary file on POD (disk only). The maximum number of records
(RCOUNT) must be entered, and an optional partition number (1-8) may be enterecd.

If the optional partition number is not entered, OS will assign the first available partition
containing sufficient room.

Random files are restricted to one record per disk sector (510 bytes) and blocking
is not allowed.

.NAME
RS ,PID | .RSIZE ,POD.NAME.RCOUNT [.PARTITION]
.NAME .RSIZE :

Create a random symbolic file on POD (disk only). The maximum number of records
(RCOUNT) must be entered and an optional partition number (1-8) may be entered.
If the optional partition number is not entered, OS will assign the first available.

Random files are restricted to one record per disk sector (510 bytes) and blocking
is not allowed.

NAME
LI,PID | .RSIZE .POD [.RSIZE |
.NAME . RSIZE

List a symbblic file from PID to POD (POD should be a listing device). Input RSIZE
default is 80 characters and output RSIZE default is 80.

.NAME
LN,PID | .RSIZE ,POD [.RSIZE]
.NAME .RSIZE

list with sequential decimal numbers a symbolic file from PID to POD (POD should be
a listing device). Input RSIZE cefault is 80 characters and output RSIZE default is
80 (75 characters from PID, and 5 spaces for line number).

TE
Terminate OS: CPY and return control to OS .‘

A /JOB or /ASSIGN command should be executed to restorc the default S1 and S2 assign-
ments after OS: CPY has terminated as these units are used internally by the utility .

3.7-4

b o

('.

COMPUTER AUTOMATION, INC.

The following examples illustrate ysage of OS: CPY under a variety of circumstances:

(1) »/EXEC OS:CPY,CS,CR,M1.TEST.80.960,TE
> .
Example (1) illustrates a normal copy operation, from the card reader to mag tape (unit 1)
and return of control to OS (TE). Note that the output file is to be named TEST
(M1.TEST) and the records are to be written in blocked format 80 byte record into
a 960 byte block on M1.

(2) >/EXEC 0S:CPY,CS,CR.72,PP
?LN,PR,LP
?TE
>

Example (2) illustrates cards being copied (first 72 columns) from the card reader
to the high speed paper tape punch. The source records are then listed (up to 80 charac-

- ters) with sequential line numbers.

(3) >/EXEC OS:CPY,DE,D0.TEST
-?PK,D0,TE

Example (3) illustrates the deletion of a file (TEST) from disk drive 0, and then the
packing of disk 0. Note that a pack operation need not take place after every delete
operation but should take place periodically based on free disk space required.

(4) >/EXEC OS:CPY

?CS,M1.TEST,D0.TEST

?TE

>
Example (4) illustrates the copying of a file from one mass storage device (M1) to another
mass storage device (D0). TEST's attributes (blocked/unblocked and blocking factor)
are maintained during the copy process; thus DO.TEST will have the same attributes
as M1.TEST.

(5) >/EXEC 0S:CPY,MB,PR,MI1.LIBRY
*READY NEXT FILE
?PR
*READY NEXT FILE
7M0.MATH
?MT,TE

Example (5) illustrates the merging of 3 input files (PR,PR,M0.MATH) onto an output
file (M1.LIBRY). OS:CPY will suspend operation after each file has been copied, to
allow the user to ready the next file. Operation is continued by issuing the physical
unit required. The MT command terminates the merge process.

3.7-5

- Example (8) illustrates the manncr in which the user may create a random file of 500

COMPUTER AUTOMATION, INC. i

(6) >/EXEC OS:CPY,CS,CR,M1.SRCE
?TE
>
Example (6) illustrates the copying of a card file to mag tape (without bloeking). It
is highly recommended that symbolic files be maintained blocked on bulk storage devices.
(see example 1) thus making more efficient use of bulk storage media.

(7) >/EXEC 0S:CPY
2C0O,M0,M1,TE

Example (7) illustrates the manner in which the user may reqﬁest all non-dcleted files
on a bulk storage device (M0) to be merged onto another bulk storage device (M1).

(8) >/EXEC 0S:CPY
?RS,CR,D0.RANDOM.500. 4
>TE

>

records (sectors) in partition 4.

The file created (RANDOM) will have a fixed length of 500 records. However, it is
not necessary to completely fill the file during creation.

3.7-6

ST AE e e e e

C

COMPUTER AUTOMATION, INC.

During the copy process, conditions may occur which will cause OS: CPY to suspend

the current operation. The operator may continuc the operation with the following
options:

1.
2.

Correct hardware problem and enter /RESUME.
Enter /RESUME with new OS: CPY command.

The list of possible errors include:

1.

4.

5.

INSUFFICIENT MEMORY HHHH

I/0 ERR

INPUT CK

INVALID CMND

ILLEGAL OPERATION

END OF MEDIA

The combined record (and block) lengths required
for the operation is greater than available memory .
HHHH is the hexadecimal value indicating the
additional memory that is needed. The user

may correct this condition by requesting smaller
records (or blocks) for output files.

The operating system has detected an irrecoverable
I/O error. To try the operation again, the user
must re-issue the command.

An input failure (e.g. card reader pick fail,
high speed reader not ready) has been detected.
The operator should ready the input device and
enter /RESUME to continue the operation.

An invalid command, operation, or parameter
has been detected in the last command. The
operator must re-issue a correct command.

An illegal operation has been detected by the
operating system. For example, a request to
output binary to linc printer, or write to a card
reader. The operator must re-issue a correct
command to recover from this error condition.

In the process of writing to a bulk storage device,
OS determined the physical end of the device

had been encountered. To correct this condition,
the operator should supply another bulk storage
media (new cassette cartridge or disk pack)

and restart the operation.

3.7-7

R o

@

(

COMPUTER AUTOMATION. INC. —

3.8 OS:SFE - THE OPERATING SYSTEM SOURCE FILE EDITOR

The OS Source File Editor utility allows for the maintenance (update) of source files
supported by the operating system as either hard copy (paper tape) or on buylk storage
devices. The resultant files may then be assembled, concorded, saved or retrioved

at the user's discretion. '

0S: SFE allows corrections (located in the SA unit) to be merged with the initial source
(SI unit), creating a resultant source file (SO unit). :

The utility will require the availability and assignment of the following logical units
prior to operation.

1. The SF (system file) unit is required by the system. It is here the system expects
to find the utility itself.

2. The CI (command input) unit is required for input of the option requests.

3. The CO (command output) unit is required for printing of OS: SFE comments and
error messages. ‘

NOTE

Units SF, CI and CO will have been used in prior steps
and do not generally require assignment at this time.

/
’ Lot fut ¥
4. The SI (system e&tgm) unit contains the original source file, against which the
corrections will be made. The SI file is not altered during the update process.
It may be either a file-type (blocked or unblocked) or non-file-type device.

The SA (alternate system) unit contains the commands and source record corrections.
These corrections must be presented in the sequence in which they are to be merged
with the SI file. This file is not altered during execution of OS: SFE. It may be
either a file-type (blocked or unblocked) or ncn-file-type device.

w

6. The SO (source output) file is created by the merger of the SA with the Sl file,
and must not currently exist. The dimensions of the file are determined as follows:

If SO is a file-type device:
a. If the SI unit is not a file-type device, the SO file will be blocked 80: 960.

b. If the SI unit is a file-type device, the ‘dimensions of the SI device will be the
dimensions of the SO file.

3.8-1

e S

 fiogs - T

A

COMPUTER AUTOMATION, INC. = - —————-D

If SO is not a file-type device:

a. If the SI unit is not a file-type device, the SO file will be dimensioned for 80
character records.

b. If the SI unit is a file-type device, the SO file will be dimensioned to the same
record length as the SI file.

NOTE

Since in some cases the SO record length will be dimen-
sioned to match the SI record length, OS: SFE may truncate
the SA records when they are merged into the SO file,

if the SA reccord length is greater than the SI record
length.

7. The LO (list output) unit is required if the user elects to have the SO file listed
as it is generated.

(1) >/ASSIGN S1=M0.TEST ,SA=CR,SO=M1.TEST1,LO=LP
>/EXEC OS: SFE

Example (1) is a representative device assignment sequence prior to program loading.
The example shows that the user wishes to update the program located on M0 (TEST)
with the corrections located in the card reader and to save the resultant file on M1 (TEST1).

The user may request additional operations to be performed during the edit process.
These options are entered as parameters on the /EXEC command line. The parameters
may be entered in any order, separated by commas (,). The options available are:

LI List the SO records on the LO device (72 characters per record. in standard
assembler format, with line numbers, unless superseded by any of the e
other options).

NN Output to LO, but suppress decimal line numbers.
NF Suppress formatting of LO output into OS: ASM columns.
n Restrict LO output to n decimal characters per line, 1 thru 132. If not

specified, n = 72 is assumed.

The "NL" option (no listing) used by previous versions of OS: SFE will be accepted
but ignored; listing only occurs when explicitly requested.

(2) ~/ASSIGN SI=M0.TEST,SO=M1.TEST1.SA=CR
~/EXEC 08S:SFE,NN,50

Example (2) is similar to the previous examplc, except that the resultant SO file will
be listed without line numbers (NN), and the line will be restricted to 50 characters.

3.8-2

e

R e il s b L CoRL i B s

f

COMPUTER AUTOMATION. INC. :4\. _—

The two valid formats of the source file editor commands are:

;AAA n
;AAA n,m

where the semicolon (;) must be the first character in the record and distinguishes
this line as an OS: SFE command. The "AAA" must be the second, third and fourth
characters in the record, and one of the allowable commands (see¢ below), and must

be followed by at least one space. The "n" and "m" parameters represent the decimal
line numbers of the original SI file and must always be grecater than the "n" and "m"
parameters in the previous command. Where "n" and "m" are both required. "m" must
not be less than "n", and no imbedded spaces are permitted between them. "n" and
"m" may be any value from 1 to 32767.

The source file editor accepts the following commands from the SA file for the addition,
deletion and replacement of source text records:

; ADD n

Add record(s) - all source records in SA following this command, and delimited by
the next command, are inserted in the SO file after line "n" of the SI file. (Note: If
; ADD n,m is input, "m" is ignored.) If the ; ADD command is followed by another
command with no intervening source records, the ; ADD command is ignored.

; DEL n ;DEL n,m

Delete record (s) - the source record "n" (or records "n" through "m" inclusive) of

the SI file will not be copied to the output file. Any sourcc records occurring between

a ; DEL command and the next command will be ignored. To delete all the records following
source line "n-1" the command ; DEL n,32767 may be given. OS:SFE will eventually
suspend itself with the message "SA GREATER THAN SI" as described below, but resuming
exccution will produce the desired result.

; REP n :REP n,m

Replace record(s) - source record "n" (or records "n" through "m" inclusive) of the
SI file will be replaced by the record(s) in SA following this command, and declimited
by the next command, in the resultant SO file. If the ; REP command is followed by
another command with no intervening source records, the ; REP command is treated
as if it were a ; DEL command.

;END

END indicates the termination of the correction (SA) file. The remainder of the SI
file (if any) will be copied to the SO file without modification. Any parameters (n or
m) appended to this command will be ignored, and any SA record (s) subsequent to
the : END command will not be processed. Note: An end-of-file encountered on the
SA file will serve exactly the same purpose as an "; END" command .

3.8—3

S e RS

St S

C

COMPUTER AUTOMATION. INC.

The source and correction files may contain any symbolic source records. Note, however,
that each record output to LO, unless formatting is suppressed, will be formatted as a
standard OS: ASM source line. The SI line numbers, against which the corrections are
made, can be obtained from an assembler (OS:ASM), copy (OS:CPY). concordance

(0S: CNC) or previous source file edit (OS:SFE) listing.

Special care must be taken in determining the desired line number for very large files.
Listings for 0OS: ASM, OS: CPY, OS:CNC, and OS:SFE display only the low-order four
digits of the line number -- that is, 0000 thru 9999. For lines in the range 10000 thru
32767, the user must decide on the correct high-order digit, and supply a full 5-place
line number to OS:SFE.

If a "PAUSE" assembler directive (the first source character of a record is an up- arrow)
is encountered, the following action is taken by OS:SFE:

1. If an up-arrow record is read from the SI device:

a. If the SI device is a file-type device (disk, mag tape or cassette), the record
is treated like any other SI record (no pause occurs).

b. If the SI device is not a file-type device, a SUSPEND call is made with the message
"SI PAUSE"; upon RESUME, the record is processed like any other SI record
(deleted if it follows a "; DEL" command, passed to SO otherwise).

2. If an up-arrow record is read from the SA device, it is treated as a normal record
and no pause occurs.

3. If an up-arrow record is output to the SO device, it is written to the dev1ce first,
then:

a. If the SO device is a file-type device, no other action is taken.

b. If the SO device is not a file-type device,

(1) A CLOSE call is made for that device (if a paper tape punch, this will cause
blank trailer to be punched);

(2) A /SUSPEND call is made with the message "SO PAUSE";

(3) Upon /RESUME, an OPEN call is made on the device.

It an up- arrow record is output to the L.O device, it is printed unformatted, as if it were
a comment card.

3.8 4

e

g

-

COMPUTER AUTOMATION, INC. —e

During the edit process, error conditions may occur which require operator intervention.
In all cases, the program will print an error message on the CO device, and issue a
/SUSPEND call to the system. The operator may /RESUME or /CANCEL the edit procedur

at this time.

1.

INVALID COMMAND - OS: SFE has encountered a semicolon (;) followed by an unrecog-
nized command, or the first record input from SA did not begin with a semicolon,

or line number "m" was not greater than "n". The offending line will be printed
directly below the error message and OS:SFE will SUSPEND. If the user RESUMEs,
any current OS: SFE command will be terminated, and the SA file will be read until
a";" control character is input, whereupon the editing process will continue.

SEQUENCE ERROR - An OS:SFE command was input wherein the line number "n"
was not greater than that of the previous OS: SFE command. The offending line will
be printed directly below the error message and OS:SFE will SUSPEND. If the user
RESUMESs, any current OS: SFE command will be terminated, and the SA file will

be read until a ";" control character is input, whereupon the editing process will
continue.

SA GREATER THAN SI - The OS: SFE command was followed by a number "n" (or

"m") which was greater than the highest line number in the SI file. The current
operation is continued until SI is exhausted, and OS: SFE will SUSPEND. If the user
RESUMESs, the editing process terminates as if an ; END command has been encountered

I/0 ERROR - An OPEN or /0 call was not completed correctly. OS:SFE will SUSPEND.
If the user RESUMEs, the 1/0 call will be retried.

ILLEGAL PARAMETER - A parameter following /EXEC OS: SFE was found to be other
than "LI", "NL", "NN", "NF" or (1 < LO record length < 132). OS:SFE will SUSPEND.
If the user RESUMEs, he must include the correct parameters in the RESUME command.

MEM OVERFLOW - Insufficient space exists in memory for the I/0 buffers and blocking
areas required by OS:SFE. OS:SFE will CLOSE each file and SUSPEND. A RESUME
command will cause OS: SFE to restart; thus, any options should be re-input behind
the RESUME command.

3.8-5

.

i

¥

'@

Computerautomation (O ——

3.9 O0S:CNC - OPERATING SYSTEM ASSEMBLER SOURCE STATEMENT CONCORDANCE

The OS:CNC utility program analyzes an assembler language source program. It produces
an alphabetized list of symbols, with corresponding definitions and references identi-
fied by line number within the source program. The listing, or "concordance," is
intended as a supplement to the listing produced by the assembler itself.

The OS:CNC utility is executed under the control of the Operating System. Availability
and assignment of the following logical units will be reduired prior to program
initiation:

|

1. The SF (System File) unit is required to load 0S:CNC into memory.

2. The CI (Command Input) unit is required by 0S:CNC for input of utility commands.

3. The CO (Command Output) unit is required for prihténg comments and erfor messages.
4. The SI (Source Input) unit 'is required to supply the bo:rce program to be analyzedw
5. The LO (List Output) unit is required for printing the concordance. LO must not

be assigned to a file-type device.
(1) Z/ASSIGN LO=LP,SI=D1.PROG45 ¢
>/EXEC 0S:CNC '
Example (1) shows a typical command sequence prior to execution. The concordance will
be written to the line printer, and the statements are a specific disk file -- probably
the output of a previous execution of 0S:CPY or OS:SFE.

The default operation of OS:CNC is the analysis of a single assembler source program,
terminating with the END statement. Certain optional capabilities may be requested by
parameters on the /EXEC statement, as with other OS utilities. The parameters may be
entered in any order, separated with commas. Only the first two characters of' each
parameter are required.

3.9-1

i e

L

BATCH
Analyze the next source program on the SI unit, and generate a concordance for it.
wWhen an END statement is reached, do not terminate execution of SC:CNC. 1Instead,
continue with a new program and a new concordance, with its own page and line numbers.
Repeat this process for each source program on SI until an actual end-of-file is
reached.

LIST
Before generating a concordance, list every line of the source program being analyzed.

A8

The source program to be analyzed is intended for the ALPHA-8 instruction set only.

Concordance Flags and Messages

The following flags may appear to the left of a symbol definition:

Multiple definitions of this symbol were detected
NAM directive used this symbol

REF directive used this symbol

This symbol was undefined and not external

EXTR directive used this symbol

X CcwzZzR

For each label in the Source Input file, OS:CNC will list the line number where the
label is defined, followed by the label itself and the line number (s) of every other
source statement that references the label. Some of the referencing source statements
will access the label's memory location without modifying it, other referencing source
statements will access the label's memory location and perhaps modify it. For example,

.LDA TAG will load the A Register from TAG, but will not modify it. Conversely, STA TAG

will modify TAG during the store operation, but STA *TAG will not (because the re-
ference is indirect). To aid the programmer in debugging, the line number of each
source statement which can (but may or may not) modify the label's memory location is
flagged with an asterisk.

An up-arrow (1) appearing in column.l of a source statement will cause the same action
in OS:CNC as in OS:ASM -- the program will pause until the operator reloads the SI unit
and enters the command /RESUME.

If a single source program contains more symbols that OS:CNC can table in available
memory, the message "MEMORY FULL" is printed, a partial concordance is generated
(showing all symbols defined and referenced to that point), and processing continues.
Any partial concordances generated will cumulatively analyze the entire program.

3.9-2 Revised 11/76

et

(

COMPUTER AUTOMATION, INC. ——

3.10 OS:DBG - THE OPERATING SYSTEM DEBUG UTILITY

3.10.1 Introduction

The OS:DBG Utility is functionally similar to the ALPHA-16 DEBUG (program 96004) .
0S: DBG resides in the System Transient Area of memory above the User Area. Depending

. on the options requested, OS: DBG may require the assignment of the following logical

units prior to the initiation of the debug process:

1. SF (system file) is required by the system; it is where the system expects to find
0S: DBG.

2. CI (command input) is required for OS:DBG command input.
3. CO (command output) is required for printing OS:DBG messages.

4. LO (listing output) is needed for use of the "LIST" command of OS: DBG, and may
not be a file-type device.

NOTE

The SF, Cl and CO units have been assigned prior to loading
0S: DBG and generally need not be reassigned at this time.
Note, however, that since OS: DBG is a conversational utility,
CI and CO should, for convenience, be assigned to the same
device, nominally the console teletype.

The user program and OS: DBG are both in core during a debugging session. 0S:DBG
alters, executes, and monitors the user program, working interactively with the program-
mer at the console. First the user program is loaded, but not begun, then OS:DBG

is loaded and entered: '

(1) >/ASSIGN LO=LP,BI=PR
>/EXEC OS:LDR
>/EXEC 0S:DBG
0S:DBG _7TBF7

?

In example (1) the binary input device for the loader was the high speed paper tape
rcader. The line printer was selected for the loader listing and use of the OS: DBG LIST
command. The user program was loaded by OS: LDR, and OS: DBG was then loaded

into the system transient area and entered.

3.10-1

pepensi

COMPUTER AUTOMATION. INC. —

3.10.2 Communication with the Program

When first entered, OS: DBG will display its name and re-start location. It will then
display a question mark to request a command from the operator. Fach command, and
each response to a request for a parameter value, will cause some specific action to occur
immediately; OS8: DBG will then request another command.

A command line consists of a unique single-character function identifier, followed by

one or more parameters separated by spaces or commas and terminated by a carriage
return. For the convenience of users accustomed to the stand-alone DEBUG program,
which expects a period at the end of each command, OS: DBG will also accept the sequence
period/carriage return as a command termination. In either case, any number of spaces
may immediately precede the carriage return character. If an illegal command is entered,
OS:DBG will reject the command with the message "ER" and request a new command.

3.10.2.1 Address and Data Parameters

Any address or data parameter value may be entered as an vnsigned, positive, or negative
haxadecimal value. Leading zeroes are optional.

7FFF 0E08 +50 -4000 O
Sixteen offset constants, termed "relocation registers," and described later, are available.

In any context where a hex number would be valid, a relocation register reference (the
letter "R" followed by a hex digit from 0 to F) is also valid. The reference may be preceded

‘with another hex number as an additional value.

R4 600R3 -4RA -2222R7R4R3
A parameter may be entered as the sum or difference of exactly two terms, for convenience.
5555+4 -345-2C 4000R7-C700 R4R4+033

OS:DBG will recognize that an address parameter -- but not a data value parameter --
with a high-order "1" bit is inte:ided to be used indirectly.

A004 2004+8000 8000R6 488R7+8000
An incorrect value may be replaced by entering a slash followed by the proper value.

1111 2222 3333 5555/4444 5555 (666

3.10-2

COMPUTER AUTOMATION, INC. —_——

3.10.2.2 O (Status Word) Register

A location in OS:DBG, accessible to the user and referred to as the O 'Register , simulates
the contents and functions of the hardware Status Word. For the user's convenience.

the Status Word is charted here.

BIT SETTING

\

MEANING

15--8 0
T--4
3 1/0
2 1/0
1 1/0
0 1/0

Unused ‘

Contents of ALPHA-LSI Console Sense Register
Set/Reset of ALPHA-LSI Sense Switch
Enable/Disable Interrupts

Byte/Word Mode

Set/Reset of Overflow Indicator

On an ALPHA-16, bits 7--4 and bit 3 are unused. OS:DBG will not alter the actual
setting of bit 2, regardless of the user's manipulation of the O register.

3.10.2.3 OS:DBG Commands

Each command line starts with a specific command, entered as a single character.
Immediately following the command is a set of paramecters. Each parameter is separated
from the next by exactly one space or one comma, as appropriate for the particular
command. The line is terminated with a carriage return, optionally preceded by any

number of spaces.

Certain conventions are adopted in this program description to simulate console [/0:

Program Description Console 1/0

CR

small letters
underline
(hhhh)

Carriage Return (shown in certain examples for clarity; every
input line must terminate with a carriage return)

Hexadecimal Parameter

Output from OS: DBG

Display of current contents of location hhhh

Display similar in meaning to a previous display

A detailed description of each command, with appropriate examples, follows. A summary
chart suitable for use at the console is included as section 3.10.4.

3.10-3

A R SRS ¢

T e

COMPUTER AUTOMATION, INC. ey

Display/Change Relocation Registers. External subroutines are normally assembled

at relative location : 0000. When loaded by OS: LDR they are offset, creating a relocation
bias which must be added to the location values on the subroutine listing in order to deter -
mine the true location in memory of the subroutine. In order to alleviate this problem,
sixteen relocation registers are provided (designated RO thru RF), which may be set

to the relocation bias of up to sixteen subroutines. When parameters are suffixed by

a relocation register ID (RO thru RF), the designated bias is added to the value of the
parameter. Hence, in order to refer to location 12C of a subroutine loaded at CD8 the
user may set R1 to CD8 (the relocation bias), and enter 12CR1 as the paramcter. The

R command allows the user to set, display, and change the values of the relocation
registers. OS:DBG will initialize R0 to the starting location of user-available core.

?Rnaaaa
‘7 .

Set relocation register n to the value aaaa (n = 0 thru F).

?Rn
vvvv ?°
?

Display the value (vvvv) of rclocation register n.

?Rn
vvvv ?aaaa
l’,

Display the value or relocation register n and then change it to the value aaaa.

Copy Memory. The C function copies one area-of memory to another.

?Caaaa bbbb cccc | ﬁ

Copy locations aaaa thru bbbb (inclusive) to locations starting at cccc. Location aaaa
must be lower than bbbb, and location ccce must be outside the area being moved.

Fill Memory. The F function fills a given areca of memory with a specified constant,
enabling the user to initialize tables and buffer areas.

?Faaaa bbbb vvvv
2

Store the value vvvv in memory locations aaaa through bbbb inclusive.

3.10-4

e AT g

Tt Gt

-l

COMPUTER AUTOMATION, INC. --—-—-‘

Modify Memory. The M function allows the user to enter alterations into memory consecu-

tively starting at a given address. [

?Maaaa.vvvv
(’

Store the value vvvv at location aaaa.

?Maaaa.vvvv WWWW YYyy 222z

f)

Store the values vvvv through zzzz in memory consecutively, starting at location
aaaa.

NOTE

If the beginning address is not protected, but protected
memory is entered later in the operation, the modification
will be effective up to, but not including, the protected
area.

3.10-5

S e S AR R 1

- COMPUTER AUTOMATION. INC. - ———-‘

Inspect/Change Memory. The I function is used to inspect specific memory locations and
to make changes to their contents. The locations may be stepped thru quite conveniently,
either forwards or backwards. The user enters a starting address, and OS: DBG responds
with that same address and its current contents:

?laaaa
aaaa (aaaa) ?

At this point, OS: DBG is waiting for the user to enter a special line terminator, optionally
preceded by a new value for the contents of location aaaa. The valid terminators and
their meanings are: ' '

; CR Continue inspection at aaaa+1
.CR Continue inspection at aaaa-1
CR Terminate inspection function and accept a new command

The I function will not accept a step which attempts to wrap around the low or high limit
of memory. The user must enter a new I command with a new starting address.

The stand-alone DEBUG program accepted a space/CR sequence to indicate a step forward
to aaaa-1. This sequence is not accepted by OS: DBG, which ignores spaces immediately
preceding a carriage return.

213000 Inspect location 3000. .

3000 0000?; CR Do not alter contents of 3000. Inspect 3000+1.
3001 1111?BBBB,CR Alter contents of 3001 to BBBB. Inspect 3001-1.
3000 0000?,CR Do not alter contents of 3000. Inspect 3000-1.
2FFF DDDD?EEEE,CR Alter contents of 2FFF to EEEE. Inspect 2FFF-1.
2FFE 444470CR Alter contents of 2FFE to 0. Terminate inspection.
? Ready for a new command.

If the location to be inspected is supplied with a high-order "1" bit (for example, as laaaa+
8000) , multi-level indirect address pointers will be followed down to a direct address
word. Only the final directly addressed location and its contents will be displayed.
Stepping the same inspection with ; CR or ,CR will then increment or decrement from the
final direct address.

3.10-6

b

COMPUTER AUTOMATION, INC. e

Display/Change Pseudo Registers. In debugging the user's program it is often necessary
to preset the hardware registers with initial values; upon reaching a breakpoint it

may be necessary to inspect and alter the registers. Three pscudo registers, A, X

and O (corresponding to the Accumulator, Index, and Status Word registers), are
provided. An exit from OS:DBG to the user program causes the hardware registers

to be loaded from the pseudo registers; a return to OS: DBG causes the hardware registers
to be stored in the pseudo registers. '

?Aaaaa

7XXXXX

200

?

Set the pseudo Accumulator to the value aaaa. Sct the pseudo Index to the
value xxxx. Set the pseudo Status Word to the value 0.

7A
aaaa ?CR
?7X
xxxx ?CR
20
oooo ?CR

?

Display the contents of pseudo registers A, X and O.

7A
aaaa ?vvvvCR

Display the contents of pseudo register A. Change it to the value vvvv.

3.10-8

COMPUTER AUTOMATION. NG " —9

-
Search Memory/Search with Mask. The S function will search a given range of
memory locations, listing the addresses and contents which match a specified bit or
word pattern.

?8aaaa bbbb vvvv mmmm
cccee (cece)
dddd (dddd)

eeee (eeee)
()

Search memory from location aaaa through location bbbb for the value vvvv and
compare only those bits which have a corresponding "1" bit in the mask word
mmmm. In this example, the desired value was found at cccc, dddd, and eece.
Omitting the mask is equivalent to specifying FFFF, resulting in a word-level
search:

?Saaaa bbbb vvvv
ccee vvvy

dddd vvvv
07

Search memory from location aaaa through bbbb inclusive for value vvvv and

list the location (s) where it is found. In this example the value vvvv was found
in locations cccc and dddd.

- Print Memory. The P function allows the user to print an area of memory on the CO unit.
Up to eight locations together with the address of the first location are printed on each
line.

?Paaaa bbbb
aaaa (aaaa) (aaaa+l)....(aaaa+7)
aaaa+8 (aaaa+8) (aaaa+9)....(bbbb-1) (bbbb)

?

D

Print the contents of memory locations aaaa through bbbb inclusive.

List Memory. The L function is identical to the P function just described, except that
the output is directed to the LO device, rather than CO.

3.10-7

Ty e

'@

COMPUTER AUTOMATION. INC. —

Set Breakpoint and Transfer thtrol. The B function allows thc user to establish one

or two breakpoints, then transfer control to his program. When his program recaches
either breakpoint OS: DBG will remove both breakpoints, and print the address of the
breakpoint and the contents of the registers as of the last instruction exceyted hefore
the breakpoint. As larger program modules are tested and corrected, breakpoints may
be set at longer intervals, until the entire program is debugged. '

‘

?Bvvvv ccce,dddd .

CCCC aaaa XXXX 0000
(’

Set a breakpoint at cccc and dddd. Save the user instructions and store a jump
to OS: DBG at these locations. Set the hardware registers from the corresponding
pseudo registers and transfer control to the user's program at location vvvv.
When either breakpoint is reached, save the hardware registers in the pseudo
registers, remove both breakpoints, print the address of the breakpoint reached
and values of the pseudo registers A, X and O. In the case illustrated above

the breakpoint at location ccce was reached.

ZBbbbb ,cccee

Set two new breakpoints. Transfer control to the user program at the location
of the last breakpoint reached.

ZBbbbb cecee

cccCc aaaa 0000
o

Set one breakpoint at location cccc. Transfer control to the user program at
location bbbb.

If an error is made in a "B" command, OS: DBG will respond by simulating the
occurrence of a breakpoint. This will remind the user that all breakpoints have

been removed, and that no new ones have yect been established.

OS: DBG uses absolute location : FF in scratchpad for breakpoint processing.
Programs which use high scratchpad should provide for this.

3.10-9

S T SRR

g

et

COMPUTER AUTOMATION, INC. ————“

Transfer Control. The J function allows the user to preset the hardware registers
from the pseudo registers and transfer control to his program without breakpoints.

?Jaaaa
Set the hardware registers from the pseudo registers and jump to location aaaa.

Enable Modification of Protected Memory. During the normal operation of OS: DBG
only the user's area of memory is available for modification. The OS area (including
the Executive, I0CS and File Manager) and the transient area in high core (including
0S:DBG itself) is protected against modification by OS: DBG commands. For cxample,
the sequence :

?laaaa
aaaa (aaaa) ?

where aaaa is a location outside the user area, will cause OS:DBG to display the contents
of aaaa; but if the next input is a modification of aaaa, the message "ER" will appear,
and aaaa will remain unchanged.

This "memory protect" feature may be overridden by the E (Enable Modification) command.
Once modification has been enabled, it will remain so until a T (terminate) command

is used, or OS:DBG is re-executed. The E command may be input at any time while

in OS:DBG.

Trap Function. The OS console interrupt feature (Section 2.3) may be altered so that
depressing the switch will cause a return to OS: DBG rather than to the OS executive.

This is done by entering, at any time while in OS: DBG, a D command. A terminate

(T) command, or re-execution of OS:DBG, will reset the feature to trap to the OS executive.

If used. this altered trap condition must be reset by a terminate (T) command before
returning to the OS Executive. Otherwise, the interrupt location will continue to point
to the OS: DBG entry point.

Terminate OS:DBG. The T function allows the user to exit from OS: DBG and return
to OS. This command will causc the console interrupt feature to be reset to trap to
the OS executive if the (D) command has been issued, and will also reset the Modify
Protected Memory (E) feature if it has been issued.

3.10-10

3.10.2.4 Error Handling

The message "ER" is output when the following errors occur:

1.

3.10.3 Handling Terminations
Terminations are handled as follows:

1.

Parameters are entered out of sequence. For example, a Fill, List, Copy, Print,

COMPUTER AUTOMATION. INC. —_——

An invalid command is cntered.

An address or data parameter contains a non-hexadecimal character (other than
+,-,or R),

or Search command is requested, and the second parameter is less than the first.

A command is entered which will modify a protected area of memory, and the E
command has not been previously entered.

An illegal separator appears between parameters, where a space, comma, period,
etc. is required.

An operation is requested on non-existent memory.

When debugging a program using OS:DBG breakpoints, a TERM: call to the executive
should always be made from OS: DBG rather than from the user program, if possible.

If termination must be made from the user's program and it is desired to continue
debugging the same program, enter a /BEGIN command for OS:DBG so it can clear
any breakpoint previously set up in the user program.

If termination is made from the user program rather than from OS: DBG, and a new
user program is loaded for debugging, use /EXEC OS:DBG, rather than /BEGIN.

3.10-11

SRS

3.10.4 OS:DBG Command Summary

COMPUTER AUTOMATION. INC. " | e

A

Av

Ba

Ba,b

Be a

Bec a,b

Cabec

Fabv

la

Ja

La b

Ma.v w x

O

Ov

Pa b

Rn

Rnv

Sa b v

Sabvm

Xv

Display pseudo A register.

Set pseudo A register to value v.

Set breakpoint at location a; resume at previous breakpoint.
Set breakpoints at locations a and b; resurﬁe at previous breakpoint.
Set breakpoint at location a; resume at location c.

Set breakpoints at locations a and b; resume at location c.
Copy locations a thru b to ¢ and following.

Alter console interrupt to trap to OS:DBG.

Enable modification of protected core.

Fill locations a thru b with value v.

Inspect memory location a.

Jump to location a.

List contents of locations a thru b on LO device.

Modify memory starting at location a.

Display pseudo O register.

Set pseudo O register to value v.

Print contents of locations a thru b on CO device.

Display relocation register Rn.

Set relocation register Rn to value v.

Search locations a thru b for value v.

Search for value v using mask word m.

Terminate OS: DBG and return to OS.

Display psecudo X register.

Sct pscudo X register to value v.

3.10-12

Cotes ke i L

.

COMPUTER AUTOMATION. INC. —

3.11 OS:DMP - THE OPERATING SYSTEM PROGRAM DUMP UTILITY

\

The OS dump utility outputs the user's program (or other specified area of core memory)
in binary format to the device specified. At a later time the user may then reload his
"dumped" program using the /EXecute command or the system loader (O8:LDR).

OS: DMP provides the user with the capability of dynamic peripheral device assignment
through the operating system. The program will require the availability and assignment
of the following logical units prior to initiation of the dump process.

1. The SF (system file) unit is required by the system. It is here the system cxpects
to find the dump program itself.

2. The CI (command input) unit is required for input of the rdubmp option requests.
3. The CO (command output) unit is required for printing OS: DMP error messages.
NOTE

Units SF, CI and CO will have been used in prior steps and
do not generally require re-assignment at this time.

4. The BO (binary output) unit is required for output of the binary program generated
by OS:DMP.

(1) >/ASSIGN BO=PP
>/EXEC 0S:DMP

Example (1) is a typical device assignment sequence prior to program loading. The
example shows that the user wishes to dump the current core resident program onto
paper tape through the high speed paper tape punch.

Should the user desire to save his program on the system for later use, he may dump
it to a file device, as in example (2).

(2) >/ASSIGN BO=M0.TEST4
>/EXEC OS:DMP

The dump utility assumes certain standard conditions at each request for program dumping
A "normal" dump is one in which the current core resident program, both in scratchpad
and main memory, is to be dumped as an absolute binary program. If a "start" address
was available when the user's program was loaded, it will become the start address

of the dumped program.

The user may request, however, that the dump utility program dump alternate areas

of core or an alternate start address. These alternate values arc entercd as parameters
on the /EXEC command line, in any order, and separated by commas. Each paramcter

is n single word of two characters, followed by an equal (-) sngn and one or two hexadcci
mal numbers. The options available are:

3.11-1

BERE i SRR e e S

COMPUTER AUTOMATION. INC. et

1. SP=XX-YY Outputs the contents of the seratchpad from location XX to
and including location YY .

2. MM=XXXX-YYYY Outputs the contents of the main memory arca from location
XXXX to and including location YYYY .

3. ST=XXXX Includes a start location of XXXX in the dumped program.
If no start location is desired, the hexadecimal value "FFFF"
should be entered.

4. MD=A Outputs the program as an absolute binary file. The program
dumped will reload at the same location, regardless of core
limit variations.

5. MD=R Outputs the program in a binary relocatable format. The
dumped program may be reloaded at any available core location.
This mode is not available for programs which require scratchpad
loader linkage. Thus the "SP=" and "MD=R" options are initially
exclusive.

6. CO Tells the dump utility that a second dump is desired and causes
OS: DMP to request further input from the CI device after
the current dump request is completed.

(3) >/ASSIGN BO=PP
>/EXEC OS:DMP,SP=A0-FB,MM=1400-2000,ST=FFFF

(4) >/ASSIGN BO=M0.TEST3
>/EXEC OS:DMP ,ST=FFFF,CO
?/ASSIGN BO=PP ,

?CR

Example (3) is a dump of core from : A0 thru : FB and : 1400 thru : 2000, with no start
address. Example (4) shows how a core resident program could be dumped to magnetic
tape unit 0 and to paper tape. In that example, CR indicates a carriage return.

An invalid option request will cause the line to be rejected and the dump utility program
to suspend itself. The user can continue by using the /RESUME command, followed
by the corrected options. This is shown in example (5).

~ (5) >/EXEC OS:DMP,SP=A0-120
*INVALID CMND
>/RESUME SP=A0-FB /

Should an I/0 error occur while dumping, OS: DMP will suspend itself. The user may
then /CANCEL or /RESUME the operation as he requires. See example (6).

(6) :/EXEC OS: DMP
*1/0_ERROR

~/CANCEL

3.11-2

cosre aop

e

R A e AR RSt

ComputerAutomation m —
96530-00D2

3.12 OS:ILD - THE OPERATING SYSTEM INDEPENDENT LOADER

The OS Independent Loader utility will load a user program into memory without attempting
to protect the OS system area. A memory-resident bootstrap routine which may be entered
by the user program will cause reloading of the Operating System. Thus OS:1LD provides
a convenient method of loading and executing a non-0S program from an OS-labelled

bulk device.

OS:ILD is unique as an OS utility in that it begins execution under control of OS, then
relocates itself to high memory and continues as a free-standing loader, which allows
OS to be destroyed, if necessary, during the loading of the user's program.

NOTE

Because of the special naturc of DMA data transfer to high memory
locations, correct loading from a disk file requires certain hardware
revision levels (applicable to ALPHA/LSI-2 Processors only) .

These revision levels are listed at the end of this section. If the
user's system is of a lower level than shown, an unrecoverable
error may occur during loading (Halt =: 0887, X register =: 0001;

see Error Handling below).

OS:ILD requires the availability and assignment of the following logical units prior to
its execution. ' ’

1. The SF (system file) unit is required by the system. The system expects to find
OS:ILD here.

2. The CI (command input) unit is required for input of the /EXECUTE command and
utility option requests.

3. The CO (command output) unit is required for the publication of utility error messages.

4. The BI (binary input) unit is required for input of the file to be loaded. (The BI
unit may also be assigned via parameter input--see below.)

The following limitations apply with respect to the user program that is to be loaded.

1. It must reside on a file-type device (OS-labelled disk, magnetic tape, or cassette).
Input from paper tape or other non-bulk device is not supported.

2. It must be a binary or object program containing only the following type codes:

Hex Code Type

Begin program

END absolute

ORG absolute

DATA absolute

RES and store constant

8 LSI-3/05 Begin program (only if "T3" parameter requested)

00 C) > DD

This means that a program containing external refercnces and/or REL org'ed data must
first be passed through OS: LNK in ABS mode (AB=option) before being loaded by OS:ILD.

3.12-1

T B

awe|

Qa

96530-00D2

3. A program containing more than one END type code -- for example. one produced
by the Binary Dump program (BDP) -- may not simply be copied to a file-type device
using OS: CPY, because OS:ILD will terminate any subsequent load upon encountering
the first END type code. Avoidance of this problem is guaranteed if the program is
written to the file-type device using OS: LNK, rather than OS: CPY.

Calling Sequence

OS:ILD is invoked by one of the following command sequences:

/ ASSIGN BI=PID .NAME
/EXECUTE 0S:ILD[,NX, T3]

or
/EXECUTE OS:ILD,PID.NAME[,NX, T3]

where PID is the OS physical device (Dn, Mn, Fn or Cn) containing the user's program
to be loaded (NAME).

NX (no execution) is an optional parameter, signifying that the loaded program is not
to be executed; a coded halt will be executed upon completion of loading. If NX is not
specified, loading will automatically be followed by execution of the user's program.

"T3" (LSI-3/05 program) is an optional parameter signifying that the program to be loaded
is in LSI-3/05 binary format. While such a program would not normally be executed (since
OS does not currently run in an LSI-3/05), a non-executing load can be useful in some
instances as a tool for verifying loadability, making patches, and/or transferring the
loaded memory module into an LSI-3/05 processor.

Program Operation

The /EXECUTE OS:ILD command causes OS:ILD to be loaded by OS into the normal user
area above the operating system area. OS:ILD then processes the parameter options, if any,
and internally constructs a short bootstrap routine which can reload OS. The Operating
System, for the bootstrap's purposes, is assumed to reside on the device which is default-
assigned to the SF unit (that device assigned to SF when a /JOB command is executed).

Absolute location
: 0000

Scretchpad

Operating System Area

OS:ILD (as originally loaded (Arca A)

» loader and input buffer (Area B)

> BI device driver (Area C)

> OS Bootstrap routine (Area D)

nlFr

3.12-2

‘:;

e e

R s

/

ComputerAutomation m —
96530-00D0

The Bl-assigned device is then OPENed, and the first record of the user's file is read,
via IOCS, into an input buffer within OS:ILD.

The essential portions of OS:ILD are then re-located into the highest possible memory
locations, and control is then transferred to that area for completion of the load process.

At the point when execution is commenced in high memory (after portions of Area A arc
moved to Areas B, C and D), all interrupts are disabled and coded halt instructions are
stored into the power-up and power-down locations. Each record of the user's program
is input by means of a short, sense-driven I/O sequence rather than the standard OS
input routines. Since at this time the original OS:ILD (Area A) and the Operating System
itself are no longer needed, the user has the major portion of memory (from location : 0000
up to Area B) available for the loading and execution of this program. The size of Area

B is fixed at approximately 404 decimal words in length. Areas C and D vary in size,
depending on the BI and SF device assignments:

Area C approximate word length (decimal):

If BI assigned to disk - 83 words

If BI assigned to floppy disk - 91 words
If BI assigned to magnetic tapé - 64 words
If BI assigned to cassette - 192 words

Area D approximate word length (decimal):

If SF default - assigned to disk - 19 words
If SF default - assigned to floppy disk - 22 words
If SF default - assigned to magnetic tape - 28 words

If SF default - assigned to cassette - 28 words

Thus in the worst case, where Bl and SF are assigned to a cassette unit, all but the last
624 words of memory are available to the user's program.

Recalling OS

Upon completion of loading, the user's program is entered (unless the NX option was
specified) with the X register containing the address of the bootstrap routine (Area D).
This address is also stored in the last (highest) location of memory. Thus if the user
wishes to recall the Operating System after his program has executed, his program should
either save the contents of the X register upon entry, or include an address pointer within
his program which points to the last memory location. Any subsequent entry into the
bootstrap routine will cause immediate loading and execution of OS.

3.12-3

g Ry

|

‘

96530-00D2

Error Handling

During the preliminary operation of OS:1LD in low memory, while under OS control,
the standard OS error handling procedures are in effect. The following error messagos
will be output to the CO device upon occurrence of the described error:

ILLEGAL PARAMETER

An illegal parameter was input. The only acceptable parameters are the bulk device
and user program name, and/or "NX" signifying no execution, and/or "T3" signifying

an LSI-3/05 program. Enter a /RESUME command, followed by the correct parameters.

ILLEGAL BI DEVICE

The BI logical unit is” not assigned to a disk, magnetic tape or cassette device.
/ASSIGN the BI unit to the proper device and /RESUME.

I/0 ERROR -

An I/0 Error has occurred on the first record of the user program, input under
control of IOCS. /RESUME to retry the I/O operation.

Once OS:ILD has been relocated to high memory and is no longer under OS control,
error indications are output by means of the following coded halt instructions.
These halts (except :880 and :881) are also displayed on the LSI console register:

Halt

: 880

: 881

: 882

: 883

: 884

: 885

Description/Recovery

Location : 0000 was executed during the load process, indicating a power
failure may have occurred. OS must be reloaded through the console, and
OS:ILD re-executed.

Location : 001C (the power-down interrupt location) was executed during
the load process, indicating a power failure may have occurred. OS must
be reloaded through the console, and OS:ILD re-executed.

The first type code of the user's file was not a "Begin Program" type code,
indicating that the file is not in correct binary format; a source file, for
example, will cause this condition. The X register contains the incorrecct
type code in bits 0-7. Depress RUN to reload OS.

The two input characters following the "Begin Program" type code are not
zeio, indicating that the file is not in correct binary format. The X register
contains the two erroneous characters. Depress RUN to reload OS.

An illegal type code (not : 2, :4, :6 or : 8) was encountered. The X register
contains the illegal type code in bits 0-7. Depress RUN to reload OS.

This halt will occur in the bootstrap routine to reload OS, if the SF default-

assigned device was not disk, magnetic tape or cassectte upon entry to OS:ILD.
OS must be reloaded via the console.

3.12-4

s

: 886

:887

: 888

: 889

96530-00D0

Memory overflow. An absolute load address in the user's program is not
less than the start of OS:ILD in Area B, or itis a negatlvc value. The A

register contains the start address of Arca B, and the X register contains
the illegal load address. Depress RUN to reload OS.

Disk I/0 error, unrecoverable after ten retries. The X register contains
the error status, represented by one or more "1" bits, correspondmg to
the following statuses:

Bit0=1 Continuously busy
Bitl1=1 Disk address ID miscompare
Bit2 =1 ID CRC error
Bit 3 =1 Data CRC error
Blt 4=1 End of cylinder error
Bit5=1 Head address error
Bit6=1 Rate error ‘(transmission error)
B1t 7=1 ‘Timeout error (incomplete operation)
Bit 8 =1 Drive not on-line
Bit 9 = 1 Drive unsafe (write check)
Bit 10 =1 Seek error
Bits 11 - 15 Unused (always zcro)

Depress RUN to reload OS.

Magnetic tape I/O error, unrecoverable after ten retries. The X register
contains the error status, as follows:

XR =:0000 Tape unit off-line
XR =:0001 Parity error

Depress RUN to reload OS.

Cassette 1/0 error, unrecoverable after ten retries. The X register contains
the error status, represented by one or more "1" bits, corresponding to the
following statuses:

Bit 0 Unused (zero)
Bitl1=1 Cassette unit off-line
Bit 2 Unused (zero)
Bit3=1 . End of tape (runaway)
Bit4=1 Parity error
Bits 5 - 6 Unused (zero)
Bit7=1 Track A address error
Bits 8 - 15 Unused (zero)

3.12-5

SRR

: 88A

Depress RUN to reload OS.

: 8F0

: 8FF

OS:ILD Required Hardwarc Revision Levels .

96530-00D1

Floppy disk 1/0 error, unrecoverable after ten retries. The X register con-
tains the error status, represented by one or more "1" bits, corresponding
to the following statuses:

Bit 0 =1 Unit not ready

Bitl=1 DMA rate error

Bit2=1 End of cylinder word count not equal to zero

Bit 3=1 Attempt to write on write protected unit
" Bit4=1 Disk ID miscompare

Bit5=1 ID CRC error

Bit 6 = 1 Data CRC error

Bit7=1 Sync error

Bitg8=1 Non-deleted data encountered

Bit9=1 Deleted data encountered

Bit10=1 Operation Complete

Bit 11 =1 Cylinder zero sensed

Bit 12 - 14 Reserved

Bit 15=1 Unit write protected

The user's program was loaded successfully, but not executed because no
start address was present on the file. The X register contains the OS bootstrap
address. The user must start the program via the console.

The user's program was loaded successfully, but not executed because the
"NX" option was specified. The X register contains the OS bootstrap location.
The A register, if positive, contains the user program start address. If
negative, no start address was found on the file. (At this point, the A register
contents may be altered to reflect any desired start address). Depress RUN

to enter the program at the address contained in the A register. The processor
conditions upon entry to the user's program are:

Word Mode
Overflow Reset (off)
Interrupts disabled

73-53500 LSI Motherboard
If level "C" board, revision C6 or higher is required.
If level "B" board, revision B6 or higher is required.
No level "A" board may be used.

73-53506 LSI-2 Processor Full Card

All level "D" boards are acceptable.

If level "C" board, revision C24 or higher is required.
If level "B" board, revision B19 or higher is requirced.
If level "A" board, revision A24 or higher is required.

3.12-6

e G e e T

|

CompuhrAuhmaﬁonm-—-—

96530-00D1

73-53507 LSI-2 Processor Half Card

If level "B" board, revision B11 or higher is required.
If level "A" board, revision A9 or higher is required.

73-53531 LSI Disk Controller

If level "B" board, revision B7 or higher is required.
If level "A" board, revision A6 or higher is required.

73-53566 LSI Floppy Disk Controller
If level "D" board, revision D2 or higher is required.

If level "C" board, revision C5 or higher is required.
If level "B" board, revision B5 or higher is required.

3.12-7

S Ry

3.13 OS:HDR - THE OPERATING SYSTEM PAPER TAPE HEADER UTILITY

OS:HDR uses the High Speed Paper Tape Punch to generate Eyeball Headers and other
information, based upon literal and symbolic parameters. Ordinarily, OS:HDR is
executed just before some other program which punches a data file, such as 0S:LNK or
0S:CPY, but it may be used to synthesize a complete, usable segment of tape -- for
example, a special Bootstrap.

An Eyeball Header is a length of paper tape containing binary configurations, meaning-
less as data, but arranged so the holes form readable characters. Here is an example:

e M S . i SO BAD o B B8 01 wdms i s eI B 4 st oy e e

(X 2 J L X] (X (XXX] (X] [X] (X X X] L X X J o i
e ® ® ® (] ° [J [] [4 [4 [4 L] (] » §
(XX (4 [] e (] [J (X 2 J o0® L X X J [] (] [4 ‘
o o©] e ® [J ® ® [] [] L] [] [[]
[] [] [X J (X J o e ([X J L XX L XX J >9®

T bk d & TP UR WL “FN 0 NPV

Any paper tape record read thru CA-supplied software is ignored until a Rubout (:FF)
is reached. The 5 by 5 matrix used for each character in an Eyeball Header can never
be mistaken for a Rubout, which punches all the channels in one frame of tape.

OS:HDR requires no assignment for its punched output -- it bypasses IOCS and writes
directly to Device Address :06, which is assumed to be a High Speed Paper Tape
~Punch. All commands are entered thru the standard OS parameter mechanism —-- appended

to the commands /EXEC, /BEGIN, or/RESUME, or supplied in response to a console query.
Commands for OS:HDR fall into 4 categories:

Control -- NL, TE, Logical Unit

Symbolic -- DA, TI, VN, FN, CD, CT

Text Literal

Hex Literal
The rules for punctuating a command are consistent for all categories. A Back Arrow
cancels the immediately preceding character, allowing error correction. A Carriage
Return terminates the current record on the Command Input device. A Back Arrow
immediately before a Carriage Return cancels an entire record. All Line Feed char-
acters are ignored. These rules are standard for OS parameter entry to all programs.

A Comma must be used to scparate each command from the next.

If it is necessary to continue across several CI records, OS:HDR requires a Semicolon
as a continuation mark, immediately following the last command in a record.

>/EXEC OS:HDR,NL,DA;
?'DIAGNOSTIC 210°';

?TI,TE

3.13-1

oS e T

2y

CONTROL COMMANDS

NL

No Leader. Ordinarily, OS:HDR runs out 6 inches of empty tape beforc anything is
punched. 1If this command precedes all non-Control commands, no leader will bhe
punched. If NL is entered after punching has started, it is ignored.

TE

Terminate OS:HDR. This command must be entered eventually, else OS:HDR will continue
to demand more records from CI. No empty trailer is punched, but it may be generated
explicitly thru a series of blanks in a Text Literal.

Logical Unit

This command consists of any standard 2-character OS Logical Unit Name, such as SI,
BO, 06, and so on. Before executing OS:HDR, the Logical Unit is assigned to whatever
file is to be referenced when the commands VN, FN, CD, or CT are used.

.

SYMBOLIC COMMANDS

Each of these 2-character commands will cause the immediate punching, in Eyeball
format, of some useful information. The segment of tape punched by each Symbolic
command is preceded by a few empty frames, to ensure clarity.

DA

Punch the current System Date, in the OS /DATE format, aa/bb/cc.
L
Puﬁch the current System Time, in the OS /TIME format, hh:mm:ss.
VN

Punch the Volume Name of the magnetic medium to which the previously specified
Logical Unit is assigned.

FN
Punch the File Name to which the Logical Unit is assigned.

¢b

Punch the Creation Date of the file to which the Logical Unit is assigned.
cT

Punch the Creation Time of the file to which the logical Unit is assigned.

If the Logical Unit is not a magnetic device, the commands VN, FN, CD, and CT are
ignored.

3.13-2

SR e

O

TEXT LITERAL COMMANDS

Each character in a Text Literal is punched in Eyeball format. The Text Literal is
delimited by a preceding and a following Single Quote character. If a Single Quote
in Eyeball format is needed, it is represented within a Text Literal by the usual
convention of using 2 Single Quotes successively.

OS:HDR can translate any printable character in a Text Literal into Eyeball format,
including letters, numerals, punctuation marks, and blanks. A Hex Literal can be
used to generate any pattern of holes, including readable patterns, which might be
useful for special applications. .

HEX LITERAL COMMANDS

A Hex Literal supplies characters to be punched in normal binary representation, not
in Eyeball format. The paper tape is not spaced out before or after the segment
punched for a Hex Literal.

A Hex Literal has a leading Colon, just as in the Assembler Language, and is termi-
nated with a Comma or Semicolon like any other command. The Colon must be followed
by an even number of hexadecimal digits. These commands are all valid:

:01 1 Frame
: 0000 2 Frames
:123456ABCDEF003310 9 frames

An odd number of hexadecimal digits, even 1 or 3, is not acceptable, because OS:HDR
is punching tape frames, not values, and expects 2 digits per frame.

EXAMPLES

1. An existing file on DO, named XYZ, will be punched onto paper tape by 0S:CPY. We
use OS:HDR to generate an Eyeball Header first, so anyone handling the tape will
know what's on it. O0S Logical Unit S1 is arbitrarily selected as the connection
between the /ASSIGN and the request that the Eyeball Header include the File Name
and Creation Date. There is no need to run out any tape after the header, because
0S:CPY =-- and any other normal program -- will feed some empty tape before the
actual data is punched.

/JOB

/ASSIGN S1=DO0.XYZ

/EX OS:HDR,NL,S1,FN,CD,TE
/EX 0S:CPY,CS,D0.XYZ,PP,TE
/NJOB

2. A series of Object Programs will be processed thru OS:ILNK to create a new Binary
Output. We cannot ask OS:HDR to access the File Name and Creation Date, because
they don't exist yet, but we can supply the name in a Text Literal, and use the
currcent System Date.

/JOB

/ASSIGN BO=PP

/EX OS:HDR, 'PCTEST',DA,TE
/EX 0S:LNK

3.13-3

Messages on Command Output Unit

OS:HDR (nn)
Program execution has started. Version number is nn.

OS :HDR END
Program execution has ended, after the processing of a TE command.

After edch of the following messages, OS:HDR will be in a Suspended status. Check
the paper tape already punched, and the last command successfully processed. Either
enter /RESUME with all the commands still unprocessed, or /CANCEL.

FILE NOT FOUND IN VTOC
The Logical Unit is assigned to a non-existent file.

INVALID CONTINUATION CHARACTER o
A command line ends with something other than a Semicolon or a TE command.

INVALID HEX DIGIT :
All of the preceding valid frames in the Hex Literal have been punched, but the
invalid hex digit pair, and all command information following, must be supplied
on the /RESUME.

INVALID LOGICAL UNIT
A command was not a Literal or Symbolic parameter, and does not appear as a valid
Logical Unit Name in the OS now running.

INVALID TERMINATOR
A command ends with something other than a Comma or a Semicolon.

I/0 ERROR
0S has detected an error condition during I/0 processing.

NO CONTINUATION
All commands have been processed, and the last command is not TE.

ODD NUMBER OF HEX DIGITS
The last character of a Hex Literal was not usable. The first command on the
/RESUME line should probably be another Hex Literal to specify the intended
frame.

UNACCEPTABLE CHARACTER IN TEXT LITERAL

No Eyeball conversion was available for this character. The Text Literal, and
all command information following, have been abandoned at this point.

VTOC NOT FOUND
The Logical Unit is assigned to a magnetic device, but no VTOC could be found.

3.13-4

B P A R

i g e

3.14 OS:EDT - OPERATING SYSTEM TEXT EDITOR

SECTION TABLE OF CONTENTS
Paragraph
3.14.1 INTRODUCTION . . ¢ &+ & ¢ ¢ o o o o o o o o « «
3.14.2 USING THE TEXT EDITOR -- A SHORT COURSE

3.14.3 LOGICAL UNIT REQUIREMENTS « « « .

3.14.4 THE EDITING PROCESS ¢ & ¢ 4« ¢ « o« o « &
3.14.4.1 Command Lines . . . « v « ¢ '« o + o o « o « « .
3.14.4.2 The Text Region and the Cursor
3.14.4.3 The Save Region and the Command Region . . .
3.14.4.4 Reference Points
3.14.4.5 Context Scanning« . .+
3.14.4.6 Moving the Cursor«
3.14.4.7 Checking the Cursor Position
3.14.4.8 Supplying New Text in Command Lines . . .

RECORD GROUPS &+ ¢ & o o o o o o o o o« « o o =
Record Group Parameters
Replacing a Record Group . . « + +« o o« « « « « &
Deleting a Record Group . . « « « « « o « « « .
Record Group Output + . .
Formatting of List Output for Assembler Language.
Record Group Input ¢« ¢« ¢« ¢« o« . .
Next Record Group « «¢ ¢ ¢« o « « o « &

. .
= b

Wwwwwwwww
.
.-.l
o>
« e .
nununnuunnunnuenonm
.

oD
. . .
. .

.

L~ <Y
N OV bS wN =

e

3.14.6 RECORD LOCATIONS« . . ¢« . « ¢ o o« o « « &
3.14.6.1 Record Location Parameters
3.14.6.2 Inserting Records o « o & ¢ o« o « o o o« .
3.14.6.3 Using the Save Region

3.14.7 CHARACTER EDITING . . . v ¢ o« o ¢ o o o o o o o o o =
3.14.7.1 Character Group Parameters.
3.14.7.2 Character Modifications Controlled by Position. .
3.14.7.3 Character Modifications Controlled by Context . .
3.14.8 SPECIAL FACILITIES . . . ¢ ¢ o« « o o o« o o o o « o« @
3.14.8.1 Command LOOPS « « « « « o o 4 o « « o o o o o o
3.14.8.2 File Handling -- Opening Blocked Files
3.14.8.3 File Handling -- Saving and Releasing Files . . .
3.14.8.4 _ Suspending the Editor
3.14.8.5 Terminating the Editor.
3.14.9 MESSAGES . . ¢ & ¢ ¢ & ¢« ¢ o o & o o o o o « o o +
3.14.9.1 Message Detail « . . . < ¢ « ¢ . .

3.14.9.2 Error Mesages+« ¢« ¢ o o o o o o« o o o «

3.14.9.3 Warning Messages 4 « &+ « e @ 4 4 0 o « .

1.14.10 TEXT EDTTOR COMMAND SUMMARY

3.14-1

ComputerAutomation <§:ﬁ§s ———

Page

3.14-1
3.14-2
3.14-5

3.14-6
3.14-6
3.14-7
3.14-7
3.14-8
3.14-9
3.14-10
3.14-12
3.14-13

3.14-15
3.14-15
3.14-16
3.14-17
3.14-18
3.14-18
3.14-19
3.14-19

3.14-20
3.14-20
3.14-21
3.14-22

3.14-23
3.14-23
3.14-24
3.14-26

3.14-27
3.14-27
3.14-29
3.14-30
3.14-31
3.14-32

3.14-33
3.14-33
3.14-34
3.14-35

3.14-36

o R

oy

R

3.14.1 INTRODUCTION

OS:EDT is a conversational utility for the creation and maintenance of files. Any OS |
sequential file can be processed thru OS:EDT if it meets these conditions: i

Each record contains no more than 128 bytes. {

The file is "Symbolic" rather than "Binary" -- it contains printable data, not
Object Code or unformatted FORTRAN output.

Some features of the Text Editor are specially provided for files containing Assembler
Language or FORTRAN Source Programs, but the Editor can be used to generate documents,
test data, OS command files, or other text separated into distinct records.

Contiguous groups of records can be transferred on command between 2 input files, 2
output files, a printer, and the operator's Teletype. Records can also be ‘segregated
into 2 dynamically bounded regions of computer memory. ' ‘ :

Any record in memory can be located explicitly or by a character-scanning mechanism.
Any sequence of characters in any record can be modified, or whole groups of records
can be inserted, changed, and deleted by random access.

3.14-1

3.14.2 USING THE TEXT EDITOR -- A SHORT COURSE -

The next few pages will present a Short Course on the Text Editor -- a stripped-down
version of the facilities used to work with an old file and its listing.

The Text Hditox has 3 features which distinguish it from most file-processing pro-
grams.

First, records are not read, processed, and written one at a time. Instead, memory
is filled with as much input as possible, records are edited in an arbitrary order,
and the whole result is written out at once. This cycle is then repeated until the
cumulative output file is satisfactory.

Second, a record in memory is identified not by where it is, but by what it looks
like -- that is, not by a number,»but by any distinctive sequence of characters con-
tained in the record.

Third, once the Editor has been pointed to a record, replacements, deletions, and
insertions can be made either to the whole record (and those following it), or to
characters within the record. .

The Editor's functions are controlled by command lines from the Teletype keyboard --
some letters and symbols, ending with Carriage Returns. A few rules for command
lines must be covered first.

A command consists of a single letter, optionally followed by some spaces for easy
reading. These commands will appear in the Short Course:

N V P D I C L T ,

When a command needs some additional information -- a parameter -- one of these forms
is used after the command letter:

$ # . 'SOMETHING'
The first three parameters each identify a record previously read into memory:

$ First Record now in memory
Last Record now in memory
Current Record being pointed at

The form 'SOMETHING' represents any sequence of characters, and must be supplied to
the Editor with a preceding and a following Single Quote. If a character in the
sequence is itself a Single Quote, it must be repres~nted by two successive Single
Quotes:

'DOG‘
'DOG AND CAT' .
'AND THAT''S THE TRUTH'

A typing error can always be corrected with a Back Arrow, which cancels the preceding
character: '

ABCQ-DE is the same as ABCDE
JKIMI98-=NO is the same as JKLMNO

A Back Arrow at the end of a line (just before the Carriage Return) cancels the whole
line. ‘

3.14-2

RS s

o g s

ComputerAutomation (O ——

Now we're ready to edit an existing file, working from an old listing.
1. Make these assignments:

ST Source Input -- the existing file

SO Source Output -- the new file for the edited result

LO List Output -- the Line Printer

2. Execute the Text Editor. Each new command line will be requested with a Question
Mark.

3. Read in a piece of Source Input, and verify the First Record and the Last Record:
N V§ V#

If enough memory was available to hold the entire Source Input file, the informa-
tive message END OF SI FILE will appear before the First Record is displayed.

4. Point forward to the next record to be modified, point at the start of that
record, and verify it:

P 'SOMETHING' P. V.
5. To delete a sequence of existing characters, and close up the gap:
D 'SEQUENCE'
To delete the entire Current Record:
D.
To delete the Current Record and (for example) 3 more records following it:
D.+3
Any number from 1 to 32767 can be used.
6. To insert some characters after a sequence of existing characters:
I 'OLD SEQUENCE'
To insert some records after the Current Record:
I.
The Text Editor will ask for the new characters or records with a T? type-out.
Use Carriage Returns to separate new records. The rules for Single Quotes, and
for Back Arrows, still apply. Terminate the new characters or records with a
Single Quote and a Carriage Return:
T?NEW RECORD 1

T?AND THAT''S NEW RECORD 2 !
T?"

3.14-3

aquszers

CEEATEST

10.

11.

12.

To change a sequence of existing characters:
C 'OLD SEQUENCE'
To change the entire Current Record:
C.
To change the Current Record and (for example) 3 more records following it:
C.+3
Enter the replacement characters or records as described for I commands in Step 6.
To continue working forward thru the records in memory, go to Step 4.
To list all the records in memory, as a check on the current results:
L$#

If some corrections have been passed by, point at the start of the First Record
in memory again:

P$
Now go back to Step 4.

When all the records in memory are correct, go back to Step 3, which will write
the records to the Source Output file and make room for more input.

When all processing is completed, returning to Step 3 will result in the message
TEXT REGION EMPTY. Close all files and terminate the Editor with this command:

T

This concludes the Short Course. A detailed formal description of the Text Editor
follows.

3.14-4

o

I M P S e T

s

3.14.3 LOGICAL UNIT REQUIREMENTS

CI (Command Input)

Required for Editor commands. Ordinarily the Teletype keyboard, but any non-magnetic
input file can be used.

CO (Command Output)

Required for Error and Warning messages. Ordinarily the Teletype printer, but a line
printer can be used. A magnetic device is not acceptable.

LO (List Output)

‘Required only if the L command is used for listing of text records. Must be a

printer; a magnetic device is not acceptable.

SI and SA

Primary and Alternate Inputs. Required only if the commands for each file are used

-- R and N for Primary Input from SI, A for Alternate Input from SA. Any input device
can be used for either file, or for both. Each file can be blocked or unblocked; the
maximum record size allowed is 128 bytes.

SO and Sl

Primary and Alternate Outputs. Required only if the commands for each file are

used -- W and N for Primary Output to SO, O for Alternate Output to S1. Any output
device can be used, including a printer or a punch. The maximum size for an unblocked
output record is 128 bytes. Magnetic device output files are automatically blocked

in the standard Source File format -- 80 bytes per record, 960 bytes per block.

3.14-5

rh s

PR G el

3.14.4 THE EDITING PROCESS

3.14.4.1 Command Lines

Communication with the Text Editor is thru command lines -- complete loyical records
on the device assigned to CI. If CI is the Teletype keyboard, each new command line
will be requested with a Question Mark on CO, which is ordinarily the Teletype
printer. CI can be assigned to any unblocked file; only the first 72 characters of
each record are used.

If the command lines are being supplied thru the Teletype keyboard, the usual OS rules
for punctuation apply. A Back Arrow cancels the immediately preceding character,
allowing error correction. A Carriage Return terminates the current command line. A
Back Arrow immediately before a Carriage Return canccls the entire line.

Each command line can contain any number of commands, and typically has 2 or 3 related
commands. Each command is a single character, which may or may not be followed by a
parameter. Most commands are alphabetic, and no parameter can ever start or end with
an alphabetic character. As a result, commands and parameters can be spaced out for
easy reading, or squeezed together for faster typing. These examples -- all of

which are equivalent -- demonstrate some of the possibilities for a command line:

R D + 3 P 'ABC' X + 4 D
RD+3P'ABC'X+4D
R D+3 P'ABC' X+4 D

The last line shows the style used in this publication for most examples -- parameters
close to their commands, commands separated by one or two blanks. Examples will
always have output from the Editor underlined, to distinguish it from command input.
In certain cases, the letters "cr" will be used to emphasize that a Carriage Return
(or some other way of ending a record on CI) is a significant part of the example.
Explanations for each command will always appear to the right of a command line:

?R F'GO' I cr Read some Primary Input.
Find the label GO.
Insertion will be supplied on next command line.

Once the Text Editor has obtained a command line, each command is validated and
processed successively. This means that a line with 6 commands -- 2 good, 1 bad, 3
good -- will cause 2 complete Editor actions, followed by a diagnostic message and
the cancelling of all the rest of the line.

If an error occurs somewhere beyond the first command on a line, the Editor will log
out the already processed commands, with a Question Mark where the line was abandoned.
In this example, the non-existent command "2Z" is used after some valid commands and
parameters:

? RD+3 P-1 Z VWer Command line entered.

E10 INVALID COMMAND Diagnostic message.

R D+3 P-1 2?2 Commands already processed, and rejection.
? Editor is ready for a new command line.

Diagnostic messages from the Text Editor are numbered and charted for ready reference
at the end of this program description.

3.14-6

e ire

U R e T R

3.14.4.2 The Text Region and the Cursor

The highest memory available to the Editor is used for an area called the Text Region.
Most Editor commands -- for input, record or character modification, and output --
refer to some point within the Text Region.

Input is not performed on a record-by-record basis. Instead, a large piece of the.
input is transferred by one command -- enough to fill the Text Region. Then each
command to change a record or a character can arbitrarily access any data in the
entire Text Region; there is no requirement that a relative order be observed.

Output commands can specify any group of records in the Text Region, skipping back
and forth as needed. The editing process is repeated on each successive piece of the
input until a complete cumulative output file has been created.

Associated with the Text Region is a variable location pointer, called the Cursor.

As various commands affect the Text Region, some specific character, somewhere in the
Text Region, always has the Cursor "under" it. The Cursor can be at the start of any
record:

RECORD C RECORD D . RECORD E
The Cursor can be under a character in the middle of a record:
RECORD C RECORD D RECORD E

The Cursor can be attached to a record, but under a position just beyond the last
character:

RECORD C RECORD D _ - RECORD E

As the Cursor slides under a record, or jumps from one record to another, the position
over it is called the Current Character. Several Editor commands refer to the Current
Character, and assume that previous commands have already moved the Cursor to the
right place. Similarly, the record in which the Current Character is embedded is
called the Current Record, and several commands expect the identity of the Current
Record to be established by previous commands.

3.14.4.3 The Save Region and the Command Region

To move a group of records from one point to another within the Text Region, and for
other special purposes, the Editor provides a dynamically allocated area called the

Save Region. The memory involved is immediately under the Text Region, so the more

the Text Region expands, the more the Save Region contracts, and vice versa.

No input, output, or editing can be done on records in the Save Region, which is
affected only by the two commands S and U -- that is, Save and Unsave. For further
detail, refer to section 3.14.6.3, Using the Save Region.

The fixed part of the Text Editor includes an 72-byte area called the Command Region.

A special command -- FE -- informs the Editor that the next record on the CI file is
to be copied into the Command Region and held for future use. Latcer, another command
-- X -- can use the entire Command Region as if it were a subroutine of the Editor.

I'or further detail, refer to section 3.14.8.1, Commund Loops.

3.14-7

P s e -

B S e SRS Lo

B S

¢

ComputerAutomation <§§’Q& ——

3.14.4.4 Reference Points

A Text Region record can be identified in terms of its location relative to a
Reference Point. There are three Reference Points, and each has a special character

to symbolize it in all command parameters:
$ First Record
. Current Record

Last Record

There are no records before the First Record, and no records after the Last Record.
The identities of these records can change at any time, however, as insertions and
deletions are applied to either end of the Text Region.

Here are 5 Text Region records, and all the symbolic parameterslby which they can be
identified. Which Reference Point is used in a command is really a matter of style
-- to the Editor, they're all equivalent.

Text Region Relative to Relative to Relative to
Data First Record Current Record Last Record
AlAal $ =2 #-4
B2B2 S+1 =1 ' #-3
C3C3 $+2 ‘ . : #-2
D4D4 $+3 .+l #-1
ESES $+4 : L2 #

3.14-8

b

i

3.14.4.5 Context Scanning

A Text Region record or character location can be identified by its context. BAny
distinctive sequence of characters, called a Context String, can be used as the
parameter of most Editor commands. The Editor will scan from the current Cursor
position, right thru to the end of the Text Region if necessary, until an exact match
is found for the Context String.

A Context String is delimited by a preceding and a following Single Quote. Within
the string, a Single Quote is represented, as usual, by two successive Single Quotes.
The rules for error correction with a Back Arrow still apply. A Context String
cannot be spread over several command lines; it is limited to the same linc as the
command for which it is the parameter.

For a sequence of Text Region characters to match the Context String, they must all
appear within a single record. A sequence which is split across record boundaries
will never satisfy a context scan.

Suppose the first 5 records in the Text Region look like this:

ABC45678
90123ABC
45ABC678
901234AB
C5678901

If the Cursor has been positioned at the very start of the Text Region, then a scan
for the Context String 'ABC' will be satisfied immediately. If the Cursor is past
the first 'A' in the first record, the next match will be the last 3 characters in
the second record, and the next after that will be in the middle of the third record.
The 'AB' and the 'C' split across the fourth and fifth records cannot match the
Context String 'ABC' regardless of the command involved.

If is often convenient to specify that a position within a Context String can match
against any character. A Question Mark is used in each "Don't Care" position.

ABCDEFG
AB.DE:G
AB DE G

For an occurrence of any one of these sequences, the appropriate Context String would
be:

'AB?DE?G"

Context Strings with Question Marks are usually part of Command Loops, as described
in section 3.14.8.1. ;

3.14-9

canmmmmm————-

e s EEEE

3.14.4.6 Moving the Cursor

The Position command -- P -- moves the Cursor to any record or character location in
the Text Region. The Find Label command -- F -- moves the Cursor to a record with a
specified Assembler Language or FORTRAN Label Field.

If the Cursor is already somewhere in the right record, specify a- new position with a
character count forward or backward:

P+3 Move Cursor forward 3 positions.
P-20 Move Cursor backward 20 positions.

The count can be any number from 1 to 32767. The Cursor slides from once record to
the next in either direction. The Editor rejects any attempt to cross the low or
high boundaries of the Text Region.

If a P command has. no parameter at all, the Cursor moves after the end of the Current
Record, but does not slide into another record. Backing up one position will then
‘put the Cursor under the last character actually in the record:

P Move Cursor after end of Current Record.
P pP-2 Move Cursor after end, then back 2, so it's under the next-
to-last character.

There are two ways to jump the Cursor to another record and make it the new Current
Record. If it's convenient to count off the new record location relative to a Refer-

ence Point, use this technique:

P S Move Cursor to start of First Record.
P #) Start of Last Record. .
P . Start of Current Record.
P $+32 Start of 32nd record after First Record.
P .-3 3rd before Current Record.
P .+5 5th after Current Record.
P #-7 7th before Last Record.

Alternatively, let the Editor scan for a context match. The Cursor will be just
after the matching characters, and its exact character position in the record can be

re-adjusted as needed:

P 'LDA REC' P. Move Cursor after first matcn against string.
Move Cursor to start of Current Record.

If the match is against the very last characters in a record, the Cursor will be
after the end of the record, as described for a P command with no parameter.

A context scan starts at the Current Cursor Position, and runs forward to the end of
the Text Region Make sure the Cursor is located where a forward scan will find the

match: .

P $+40 P 'XY' P.+1 Move Cursor to Start of First Record plus 40 more.
Move Cursor after first match against string.
Move Cursor to lst record after (new) Current Record.

3.14-10

g S

T STV B e S o AP B

s

SR i e

The Find Label command always tries to match against the leftmost positions of a
record, and its parameter is limited to 1 thru 6 characters. The search begins with
the Current Record, even if the Cursor is beyond the label area. The Cursor is moved

to the start of the first matching record:

F 'MAIN' Move Cursor to the start of the first record with 'MAIN'
starting in position 1.)

This command is typically used for an Assembler Language program, but neither the
context string nor the text need resemble that language:

F '/AS ST' Find the first record with '/AS SI' in positions 1 thru 6.
F' Find the first record with 2 blanks in positions 1 and 2.

For historical reasons, a FORTRAN statement is allowed to have its label -- an
unsigned decimal value -- floating anywhere between positions 1 and 5, and to have
blanks arbitrarily inserted between the digits of the statement number. ‘Special
provision has been made in the Editor for scanning FORTRAN labels -- an F command
with a decimal parameter without quote marks will scan for a match according to

FORTRAN rules:

F 12 Find any of these labels anywhere in positions 1 thra 5:
12
012
12
etc.

3.14-11

bl it

o e

i oA N R T

T

'—- a Plus Sign indicates that the entire Current Record must be displayed, with a

]

3.14.4.7 Checking the Cursor Position

The Q command displays the Current Record up to the Cursor, which is represented on
the type-out by a Back Arrow:

0 Display Cursor.

ABC=- (Current Record up to Cursor)

P+3 Q Move Cursor forward 3 positions.
Display Cursor.

ABCDEF = (Current Record up to Cursor)

P S Q Move Cursor to start of First Record.
Display Cursor.

-~ (Current Record up to Cursor)

The last display is not very helpful, so the Q command accepts an optional parameter

Back Arrow for the Cursor overlaying the Current Character:

o+ Display Cursor.
-23456789 (Current Record)
P P-3 0O+ Move Cursor after end of Current Record.

Move Cursor backward 3 positions.
Display Cursor.
123456+89 (Current Record)

If a Q+ command results in a full record with no Back Arrow, the Cursor must be in
the special position between the end of the Current Record and the start of the next

record:

P '9' O+ Move Cursor after first match.
Display Cursor.
123456789 (Current Record)

3.14-12

|
i

ser,

e

3.14.4.8 sSupplying New Text in Command Lines

Data can be copied directly from the Command Input device into the Text Region with
these commands:

Insert Record Group
Change Record Group
Insert Characters
Change Characters

The function of each command is described elsewhere in this publication. This section
deals with the 3 ways of supplying New Text to be used for insertion or change.

New Text always ends with a Single Quote. As will be seen, it may or may not start
with a Single Quote, depending on how the New Text is entered. Within a New Text
string, a Single Quote is represented, as usual, by two successive Single Quotes.

The rules for error correction with a Back Arrow still apply.

If a New Text string will fit on the same command line as the associated I or C
command, it can be entered in this immediate format:

First, a Comma

Second, a Single Quote
Third, the actual New Text
Fourth, another Single Quote

Once the terminating Single Quote has been entered, the command is satisfied, and the
Editor expects either another command, or a Carriage Return:

I S, "R*RY ySH2 Insert after the First Record, a new record consisting of 3
asterisks. View the first 3 records now in the Text Region.

C#-1,' END' Replace the last 2 records in the Text Region with 1 record,
an END statement.

c+2, '0' Replace 3 characters -- the Current Character and 2 more
following -- with a single zero.

If it seems more convenient to enter the New Text in a line separate from the command,
the line-by-line format is available:

First, a Carriage Return

Second, one or more lines of New Text, each ending with a Carriage Return
Last, a terminating Single Quote and Carriage Return, either attached to the
last line of New Text, or on a separate empty line

When the Editor recognizes this format, by finding a Carriage Return where it expected
a Comma, each New Text line will be requested with a T? type-out:

?2IScr ~ Insert after the First Record in the Text Region.
T?NEWcr Editor asks for New Text. One record entered.

T ?ANOTHERCY Editor asks for more New Text. Another record entered.
T?'cr Record entry terminated by Single Quote and Carriage Return.
2 C#-1 cr Replace the last 2 records in the Text Region.

T?XXXcr One record entered.

T?YYYcr One record entered.

T?222'cr ' One record entered, and record entry terminated.

2 Ctber Replace the Current Character and 5 more following.
T?0lcr One segment of replacement characters entered.

T?23cr Another segment of replacement characters entered.
T?4567"'cr . Last segment of replacement characters entered.

3.14-13

|

Computechutomation (O ——@

In the last case just shown, observe that all three New Text lines are concatenated
into a single replacement string, because the command specified a character replacc-
ment -- 6 characters were replaced by "01234567" within the Current Record.

The third way to enter New Text is the mixed format. The command sypplies the first
segment of the New Text in the immediate format, but without a terminating Single
Quote before the Carriage Return, then continues in' the line-by-line format:

C +1, 'ABCDEcr Replace Current Character and 1 more following.
T?FGHIcr
T?2JKIMN'cr

The result here is the replacement of 2 characters with 14 characters within the
Current Record. An open-ended command like the first line in this example can be
useful in a Command lLoop, as described in section 3.14.8.1.

3.14-14.

R A S B R AR T

Computerautomation (O ——

3.14.5 RECORD GROUPS

3.14.5.1 Record Group Parameters

A number of Editor commands access a whole group of Text Region records at once:

Change Records
Delete Records
LO Output

S1 Output

Save Records
CO Output

SO Output

T<nworuoun

" For these commands, an acceptable parameter has one of these formats:

S First Record only

$+n First Record and n more following
.-n Current Record and n more preceding
. Current Record only

.+n Current Record and n more following
#-n Last Record and n more preceding

Last Record only

S. First Record thru Current Record

CH# Current Record thru Last Record

S# First Record thru Last Record

-- that is, the entire Text Region

Here are some examples of Record Groups:

L $+29 List first 30 records.
D #-6 Delete last 7 records.
V. Display Current Record.
SS$# DS# 'Copy Text Region to Save Region.

Clear Text Region.

3.14-15

e ol

3.14.5.2 Replacing a Record Group

A Change command -- C with a Record Group parameter -- replaces a series of contiguous
records with new records from CI. The new group need not have the same number of
records as the old group.

After a Change Record Group command, the Cursor is moved to the start ot the final
replacement record.

The Editor accepts the replacement records in any of the New Text formats described
in section 3.14.4.8. The line-by-line format is used in these examples:

C. cr Change Current Record only.
T2 REPLACEMENT cr Editor asks for New Text. One record entered.
T? 'cr Editor asks for New Text. Record entry is terminated.
C #-5 cr Change Last Record and 5 more preceding.
T? XXX cr One new record.
T? YYY cr One new record.
T? ‘'cr Record entry terminated.
' 6 records have been replaced by 2 records.
Q+ Check Cursor.
-YY (Current Record)

PS P' END ' C. cr Position the Cursor at the start of the Text Region.
Scan for the next record with a matching string.
Change that record.

T? TAG END XFR cr Editor asks for New Text. One record entered.

T? 'cr Record entry terminated.

3.14-16

et ar o,

3.14.5.3 Deleting a Record Group

A Delete command -- D with a Record Group parameter -- permanently eliminates a series
of contiguous records from the Text Region, and compresses the remaining records. The
Cursor is moved to the start of the first record after the deletions:

D .
D S+1
D $#
D #-3

Delete the Current Record only.

Delete the First Record and 1 more following.
Clear the entire Text Region.

Delete the last 4 records in the Text Region.

In cases like the last example, where no records follow the deleted group, the Cursor
is moved to the start of the Last Record.

A Delete command is often guided by a preceding context scan with a P or an F

command :
P '/TEST/' D.+1

‘*' 0. D.

|

= <

—

= 0
I

w
w
w

-
[
[

wn
w
wn

o]
0

+1 F '111' D. Q+

4 PI&
w w
0
¥

|

Move Cursor to next record with matching string.
Delete the record and 1 more following.

Find the next record with an Asterisk in Column 1.
Log the record on the Sl file.

Delete it from the Text Region.

View the entire Text Region.

(Editor types out all the records)

Find and Delete the second 'lll' record. Check Cursor.
(Current Record) '

Delete Current Record. Check Cursor again.

(Current Record)

3.14-17

s P e

e TR

o s

3.14.5.4 Record Group Output

Four commands will copy a group of Text Region records to the Editor's output files.
Each command corresponds to a different file, but the parameter requirement is the

same -- a Record Group specification, shown here as rgrp:
W rgrp Write Primary Output to SO
O rgrp Output Alternate to Sl
L rgrp List on LO.
V rgrp View on CO

The various ways of specifying a Record Group are described in section 3.14.5.1. For
convenience, especially when using the V command, the Editor will accept any of thesc
commands with no parameter at all. The result is the same as if a Period had been

entered -- that is, the output will be the Current Record only.
W S# Entire Text Region to SO.
O #-3 ' Last 4 records to Sl.
L .423 Current Record and 23 more to LO.
v Current Record only to CO.
P'33'VP'77'V Move Cursor after next match on '33' and display record.

Move Cursor after next '77' and display record.

Record Group output commands have no effect upon the contents of the Text Region.
Section 3.14.8 describes how the Editor's output files are opened and closed, and how
dynamic buffer allocation interacts with Text Region and Save Region allocation.

If the Text Region is completely empty when one of these commands is entered, the
command will fail, and the Editor will type out TEXT REGION EMPTY.

3.14.5.5 Formatting of List Output for Assembler Language

An L command -- List Record Group on LO -- ordinarily generates the same kind of
records as any other command for output, except that the Operating System automati-
cally inserts page breaks. If the text being listed is an Assembler Language source
program, created free-form with the Text Editor, then an exact printed recproduction
can be rather difficult to read. The Editor, like the Assembler itself, can be
requested to spread the source statement fields into uniform columns.

Assembler Language formatting for LO is established when an L command is suffixed
with a Plus Sign, becfore the Record Group parameter is entered. Formatting remains
in effect until it is cancelled by an L command suffixed with a Minus Sign:

L+ $+2 Set LO for Assembler Language formatting.
List the first 3 records in the Text Region.

L #-2 List the last 3 records, still formatted.

L- $# Restore unformatted output on LO.

List the entire Text Region.

3.14-18

N canmmmm@\-—-—-—

3.14.5.6 Record Group Input

Two commands will read the Editor's input files, adding as many. records as possible
to the end of the Text Region. No parameters are involved:

R Read Primary Input from SI.
A Alternate Input from SA.

Either of these commands will automatically append enough new records to fill the
available free space after the existing Text Region records. Reading will, of course,
stop when an End-of-File is encountered; the Editor will type out END OF xx FILE.

il After an R or A command, the Cursor will be under the first position of the first new
record.

R V.42 V#-2 Read more Primary Input.
View the first 3 new records.
~View the last 3 new records.
DS# A V Delete from the First Record thru the Last Record -- that is,
clear the Text Region.
Fill the empty Text Region from SA.
View the new First Record, which is also the new Current
Record.

Section 3.14.8 describes how the Editor's input files are opened and closed, and how
dynamic buffer allocation interacts with Text Region and Save Region allocation.

~ 3.14.5.7 Next Record Group
i / If the Primary Input on SI contains more records than the Text Region can hold, the
| usual technique is to read a piece of SI, edit the Text Region, write all the edited
1 records to SO, clear the Text Region, and start again:
. (editing commands)
(editing commands)
W S# Write the entire Text Region to SO.
D $# Clear the, Text Region. ,
'E% R " Read enough of SI to refill the Text Region.
(editing commands)
(etc.)
J This pattern is so common that a special Editor command -- N -- has been provided to
| "roll over" the Text Region. These two command lines are equivalent:
N
Ws# DS# R
| The N command can be used even when the Text Region is empty -- for example, just
} v after the Editor has started execution. The effect will be the same as a simple R
command.
vAfﬁer an N command, the Cursor will be under the first position of the First Record.
N’

3.14-19

e

BHEVEN L s

o

- ComputerAutomation m S

3.14.6 RECORD LOCATIONS

3.14.6.1 Record location Parameters

Some commands accept a parameter which specifies a single record location:
I Insert After Record
P Position Cursor at Start of Record

8] Unsave After Record

For these commands, an acceptable parameter has one of these formats:

$ First Record

. . Current Record

Last Record

S$S+n n records after First Record
.=h n records before Current Record
.+n n records after Current Record
#-n n records before Last Record
$-1 Before First Record

(Not acceptable for a P command)

Here are some examples of Record Locations:

I # Insert after the Last Record.

U s$-1 Copy Save Region to Text Region before First Record.
P S Move Cursor to beginning of Text Region.

P $+43 Move Cursor to 3rd record after First Record.

| o— ' comaarsamain, G\ ——

~
3.14.6.2 Inserting Records
] An Insert command -- I with a Record Location parameter -- copies new records from CI
gi ~ to any specified point in the Text Region. Adjustments are made to the identities of
| the First Record and the Last Record as needed.
After an Insert Records ccrmand, the Cursor is moved to the start of the final new
record. v T
? The Editor accepts the new records in any of the New Text formats described in section
1 3.14.4.8. The line-by-line format is used in these examples:
§ I. cr Insert after Current Record.
; T? NEW RECORD cr Editor asks for New Text. One record entered.
] T? ANOTHER cr Editor asks for New Text. Second new record entered.
; T2 'cr Record entry terminated.
* . ‘ vV $+1 View First Record and 1 more following.
§ * AlAlAl (Editor types out records)
H B2B2B2 _
4 I $-1 cr Insert before all existing records in Text Region.
‘1 @ T? ZYXW 987 cr One record entered.
j T? 'cr Record entry terminated.
1 Q+ Check Cursor.
g <YXW 987 (Current Record)
} vV S$+2 View (new) First Record and 2 more following.
5 ZYXW 987 (Editor types out records)
AlAlAl
: B2B2B2
| ~
|
|
\
|
C
|
-
\
|
7
| :
| i
|
| f
|
3.14-21

s

©

3.14.6.3 Using the Save Region

Two commands are used to copy records back and forth from the Text Region to the Save
Region. The Save command -- S -- needs a Record Group parameter for the contiguous
records to be copied into the Save Region:

S. Save the Current Record only.

S $+1 Save the First Record and 1 more following.

S #-3 Save the last 4 records in the Text Region.

S S$# Copy the entire Text Region into the Save Region.

The S command does not affect the Cursor or the contents of the Text Region. Saved
records are not cumulative -- each S command clears the Save Region before copying a
new group from the Text Region.

If an S command has no parameter at all, the Save Region is cleared, but no new
records are copied into it.

.The Unsave command -- U -- copies all of the records in the Save Region back into the
Text Region, just after any specified Record Location:

U . Unsave after the Current Record.

U $+4 Unsave after the 5th record in the Text Region.

U # Unsave after the Last Record.

U s Unsave after the First Record in the Text Region.
U $-1 Unsave before the First Record.

The U command does not affect the contents of the Save Region, which are still avail-
able for subsequent Unsaves.

After a U command, the Cursor will be under the first position of the last record
just copied back to the Text Region.

Here is an example of how the Save Region can be used to move a group of records from
one place to another in the Text Region:

vV s# Display the entire Text Region.

AAAAAAA (Editor types out all the records)

BBBBBBB ’ .

CCCcccece

DDDDDDD

EEEEEEE

P $+1 V Move the Cursor to the 'B' record and check it.
BBBBBBB (Current Record)

S.+1 D.+1 VS# Save the Current Record and 1 more following.

Delete the Current Record and 1 more following.
Display the Text Region.

AAAAAAA (Editor types out all the records)

DDDDDDD

EEEEEEE
U #-1 Unsave after Last -1 (the 'D' record).

o+ Check new Cursor position.

-CCCCCC (Current Record)

vV S# Check final result.

AAAAAAA (Editor types out all the record:)
bHDDDDD

BBBBBBB

cccecececce

3.14-22

PR A

s e

st

4

3.14.7 CHARACTER EDITING

3.14.7.1 Character Group Parameters

Three commands need a parameter which identifies a cdntiguous group of characters:

Cc Change Characters
D Delete Characters
I Insert Characters

For these commands, an acceptable parameter has one of these formats:

+n Current Character and n more following

-n Current Character and n more preceding

null Current Character only

‘context' First match against string, starting at Current Character

Null means that the. command has no parameter at all. Here are some examples of
Character Groups:

D +4 Delete the Current Character and 4 more following it.
C +3,'**! Replace 4 characters with 2 characters.
', ., v After the next occurrence of a Period, insert one Blank.
P. D Move the Cursor to the start of the Current Record.
Delete the (new) Current Character.
D 'as!' Delete the next occurrence of 2 consecutive Ampersands.
3.14-23

Commmmmm —

R

S

3.14.7.2 Character Modifications Controlled by Position

The current position of the Cursor can be used to control these commands:

C , "new text'
C +n , 'new text'

C -n , 'new text'

Change Current Character only
Change Current Character and n more following
Change Current Character and n more preceding

D Delete Current Character only :

D +n Delete Current Character and n more following
D -n Delete Current Character and n more preceding
I , 'new text' Insert before Cursor Position

I +n , 'new text’ Insert before Cursor Position + n positions

I -n , 'new text' Insert before Cursor Position - n positions

Valid formats for the New Text needed by the C and I commands are described in
section 3.14.4.8. The C command will replace the character group with the New Text,
which need not be the same length. The I command will insert the New Text at the
location specified. A previous P command with no parameter can position the Cursor
just after the last character in the Current Record, which allows insertion at the

e e T

end of the record:

PS P Q+ Pousition Cursor to start of First Record.
Position Cursor after end of Current Record.
Check Cursor.

ABCDE (Current Record -- Cursor after end of record)

I ,'012!' Insert 3 characters just before Cursor Position.

\Y/ View Current Record.

ABCDEO12 (Current Record) -

P. C+4,'XY' Vv

Position Cursor to start of Current Record.
Change 5 characters into 2.
View Current Record.

XYO1lZ Current Record.

P P-1 DV Position Cursor after end of Current Record.
Move Cursor back 1 position, under last character.
Delete Current Character only.
View Current Record.:

XYO1 (Current Record)

P. D+2 V Position Cursor at start of Current Record.
Delete Current Character and 2 more following.
View Current Record.

1 (Current. Record)

3.14-24

SRR

g o e

R e e

(

Computerautomation (CO\ ——

After a C or I command, the Cursor will be under the first position to the right of
the newly changed or inserted characters. If the last character in the record was
affected, the Cursor will be after the end of the record, just as for a P command
with no parameters.

D$# I, 'ABCDEF'’ Clear the Text Region. 1Insert 6 characters.
P. I,'XY' V QO+ Position Cursor at start of Current’ Record.
' Insert 2 characters before Cursor.
View Current Record.
Check Cursor.

XYABCDEF - (Current Record)

XY-<-BCDEF (Current Record, showing Cursor)

C+5,'0123" Change Current Character and 5 more following into 4.
o+ : Check Cursor.

'XY0123 (Current Record -- Cursor after end of record)

A D command eliminates the specified number of characters, and closes up the rest

of the record. The Cursor is moved just to the right of the affected area. As with
a D command controlled by context, deleting the last character in a record will leave
the Cursor under the rightmost remaining character, and eliminating the entire record
will jump the Cursor backward to the start of the preceding record.

vV #-1 View last 2 records in Text Region.
DEFGH (Editor types out records)
IJKLMNO
P# P+1 Position Cursor to start of Last Record.

Move Cursor forward 1 position, under the J.
D+1 V Q+ Delete Current Character and 1 more following.
ILMNO
I+MNO
D-1 V Q+ Delete Current Character and 1 more preceding.
MNO
-NO
D+1 o+ Delete the Current Character and 2 more following.
<EFGH (Current Record)

3.14-25

|

et o

EERgls tokhiavs

T ST P

The next occurrence within the Text Region of a specific character group can be used

ComputerAutomation (O ——

3.14.7.3 Character Modifications Controlled by Context

to control these commands:

C 'context' , 'new text' Change
I 'context' , 'new text' Insert After
D 'context' Delete

vValid formats for the New Text needed by the C and I commands are described in section
3.14.4.8. The C command will replace the first matching character group with the New
Text, which need not be the same length as the Context String. The I command will
insert the New Text immediately after the match against the Context String.

After a C or I command, the Cursor will be under the first position to the right of
the newly changed or inserted characters. If the last character in the record was
affected, the Cursor will be after the end of the record, just as for a P command
with no parameters.

C 'LDA' , 'LDX' QO+ Change the next occurrence of LDA into LDX.
Check Cursor.

PART3 LDX ADDR (Current Record)

I 'ADDR' , ' COMMENT' Insert After next match.

o+ Check Cursor.

PART3 LDX ADDR COMMENT '(Current Record -- Cursor after end of record)

A D command is equivalent to a C command with New Text of zero length. The remaining
characters in the record are closed up over the deleted area. Again, the Cursor will
be just to the right of the affected area. However, if the last character in the
record is among those deleted, the Cursor will be under the new last character, not
hanging after the end as with a C or I command.

P, D'RT3' QO+ Position Cursor to start of Current Record.
Delete first occurrence of RT3.
Check Cursor.

PA<-LDX ADDR COMMENT (Current Record)

D 'MENT' V Q+ Delete first occurrence of MENT.
View Current Record. Check Cursor.
PA LDX ADDR COM (Current Record)
PA LDX ADDR CO=+ (Current Record, showing Cursor position)

A special situation arises when a deletion leaves no record at all. In this case,
the Cursor is moved under the first character of the preceding record. :

P $+4 V. Make the 5th record in the Text Region the new Current Record,
and View it.

KLMN (Current Record)

vV .-2 View Current Record and 2 more preceding.

CDEF (Editor types out records)

GHIJ

KLMN

L "KL' QO+ Delete KL and check Cursor.

<N (Current Record)

D 'MN' O+ Delete MN and check Cursor.

<HIJ , (Current Record)

3.14-26

cmnmmmﬂonm S

3.14.8 SPECIAL FACILITIES

3.14.8.1 Command Loops

It is often useful to loop thru an Editor command, or a whole line of commands,
making systematic access to the Text Region. An X Plus command -- the lctter X
followed by a Plus Sign, followed by a decimal number -- will repeat the single
immediately following command until the count is exhausted.

X+20 C'DOG', 'CAT' Execute the next command 20 times.
Change an occurrence of DOG into CAT.
X+4 I.,'* *! Execute the next command 4 times.
Insert new record after the Current Record.

The command being repeated -- called the object of the X Plus -- is usually a Change,
Insert, or Delete which automatically moves the Cursor for each repetition. The
Editor rejects an attempt to use, as the object of an X Plus, either another X Plus
command, or the X Minus command described next. '

An X Minus command -- the letter X followed by a Minus Sign, followed by a decimal
number -- will repeat the entire line currently in the Command Region. To enter a
new line into the Command Region, an E command is used:

? E Enter line into Command Region.
E? P' JST ' L P.+1 Editor requests entry. Command Region set...
Position Cursor after next JST op code.
'~ List Current Record.
Position Cursor to start of next record.
?2 P$ X-100 Position Cursor to start of Text Region.

Execute Command Region 100 times.

An E command must be the last on its line. The cntered line complctely replaces the
previous contents of the 72-character Command Region. Two commands are not acceptablt
within the Command Region -- an X Minus and an E. There is no restriction on the use
of an X Plus within the Command Region.

3.14-27

e o L

g

canpuumuonm———

Here is a more elaborate example of using the X and E commands. Suppose that we have
an Assembler Language Source Program on punched cards or paper tape. The program was
written in a hurry, and the statements lack any comments. We can take advantage of
the fact that 0S will transfer each card or paper tape record truncated after the
rightmost non-blank character. That is, the position at which we want a Comments
Field is after the end of each record, just where a P command with no parameter will
put the Cursor. .

For Source Programs maintained with the Text Editor, it is very convenient if each
Comments Field starts with a Period, giving us a hook for a context scan. While we're
appending comments to the records, we will make them look like this:

LABEL MNEMONIC OPERANDS .COMMENTS FIELD
We want a Command Region which will do all this:

. Position the Cursor to the next record.

Position the Cursor after the end of the existing characters.

Type out the record, so we can decide what comments, if any, to append.
Automaticallzrappend'one Blank and one Period, to start the Comments Field.
Accept New Text for the rest of the Comments Field.

. Repeat the whole process.

AU b W N

E cr Enter line into Command Region.

2 P41 PV I,' .cr Editor requests entry. Command Region set...
Position Cursor to start of next record.
Position Cursor after end of Current Record.
View Current Record.
Insert Before Cursor, 2 characters of New Text.
New Text still open.

KN

Notice that the I command uses New Text in the open-ended mixed format. This forces
us to put the I command at the end of the Command Region, and the P.+1 command at the
beginning. The result is that the very first record in the Text Region will not
participate in the command loop processing =-- but it's probably a TITL statement

anyway.

Now we read the Source Program, which has 117 records in it. The R command leaves
the Cursor at the start of theé program, and we loop thru the Command Region 116
times.

?R Ccr ' Read Primary Input from SI.

W38 END OF SI FILE (Editor message)

2 X-116 cr Execute Command Region 116 times.

GO STX OSRIN (Second record in Text Region)

T?SOME COMMENTS'cr New Text requested, entered, and terminated.
SPACE 1 (Command loop continues)

T?'cr No Comments Field supplied for this record.

ETC (Command loop continues)

At the end of the loop, we can check the second record:

2P $+1V Position Cursor at start of Statement 2; view it.
GO STX OSRTN .SOME COMMENTS (Current Record)

3.14-28

("

e | S

T ST =

3.14.8.2 File Handling -- Opening Blocked Files

The Text Editor accesses each of its 7 files thru standard IOCS techniques. Each
file is automatically opened the first time it is needed, and not before. By defer-
ring the allocation of blocking and deblocking buffers until they are actually
required, a significant amount of extra space is usually available for the expansion
of the Text Region and the Save Region. ‘

However, the deferred opening of a blocked file does create one complication. If the
Text Region and the Save Region are occupying all of the memory above the fixed part
of the Editor, then no space is available for the dynamic allocation of new blocking
or deblocking buffers, and no more blocked files can be opened. The Editor will
issue the message INSUFFICIENT SPACE, and reject any command which would involve 1/0
for unopened blocked files.

To recover from this situation, some memory must be freed.” If the Save Region is not
empty, it must be cleared by an S command with no parameter. If it turns out that
even more memory is needed, then some of the records in the Text Region must be
deleted, perhaps after they are written out to an unblocked file, or to a blocked
file which is already open. ’ '

This whole problem can be avoided very simply. If it's at all practical, tell the
Editor explicitly to Open all blocked files before anything else is done. The command
is a Colon -- to signify a special file-handling command -- followed by the letter O,
followed by a Comma and a list of the lLogical Unit Names to be forced open immedi-
ately:

:0,S1 Open the SI (Primary Input) file.
:0,84,580,51 Open the files on SA, SO, and Sl.

An Open command can be entered for an unblocked file as well, but the record area for
such a file is allocated in the fixed part of the Editor, and has no connection with
the free memory problem just described.

If the :0 command is entered for a file which is currently open, an 0S Close/Save
request will be issued for the file, followed by an OS Open request.

3.14-29

st ottt

o S R

3.14.8.3 File Handling -- Saving and Releasing Files

A normal termination of the Text Editor, thru the T command described in another
section, will automatically issue a Close/Save for every input and output file. This
means that each old input file, and each newly-created output file, is avajilaple for
input to subsequent programs.

In special situations, it may be necessary to force a file closed without terminating
the Editor. For example, an output file assigned to a paper tape punch could be
given an intermediate EOF record; the next output command will automatically re-open
the file. To explicitly close a file, and to allow its future use if it's on a
magnetic device, a Close/Save command is used:

:S,S0 Close/Save the SO (Primary Output) file.
:S$,SA,S0,S1 Close/Save the files on SA, SO, and Sl.
:$,S0 :0,S0 Close and re-Open SO.

Another use for the :S command is shown in section 3.14.8.4, Suspending the Text
Editor. i i .

To explicitly close a file, and to delete a magnetic device file, a Close/Release
command is used:

:R,SI Close/Release the SI (Primary Input) file.
:R,SI,SA,S1 Close/Release the files on SI, SA, and Sl.

A Close/Release of a magnetic device file has the same effect as a DE command for
0S:CPY, and makes it unnecessary to execute 0S:CPY to delete obsolete input or
secondary files. For a file assigned to a non-magnetic device, either a :R or a :S
command can be used; the effect is the same.

Closing a blocked file does not make its buffer space available for other uses.

However, another Open of the same ILogical Unit, with a block size no greater than
before, will re-use the old buffer rather than force allocation of still another one.

3.14-30

B e

B

Computerautomation (Of\ ——

3.14.8.4 Suspending the Editor

It is possible to escape temporarily from the Text Editor, and return control to the
Operating System for re-assignments, time log-outs, and other special services. The
Editor command is simply a Slash as the last entry on a line:

/ Escape to 0S.

Ws# :5,80 / Write entire Text Region to SO file.
Close/Save SO file.
Escape to OS.

The Editor issues a standard SPND: request. The next type-out on CO is from the
Operating System, rather than from the Editor. After the necessary 0S commands are
entered, control is returned to the Editor with a /RESUME, and the Editor is ready
for more processing:

2:R,SI :5,S0 / Close/Release SI.
: Close/Save SO.
Escape to OS.

>/ASSIGN SI=SO Use Primary Output just created as the new Primary Input.
- >/ASSIGN SO=D0.SRCFL Assign new Primary Output.

>/RESUME Back to Text Editor.

? Editor ready for new command.

Observe that OS never allows a file to be open for creation, and open for reading, at
the same time. The only way an SO or S1 file can ever be turned around for input to
the Editor, or to any other program, is to be processed thru a Close/Save before it
is used for an explicit Open (with a :0 command) or an implicit Open (with an R, A,
or N command).

3.14-31

R A R T

s ES T e

it

canmhmmm —_—

3.14.8.5 Terminating the Editor

A normal Terminate command -- T -- simulates a loop of N commands until EOF is
reached on SI, then simulates a Close/Save on all files. 1In detail, the sequence of
events for a T command is:

S# 1. Write the entire Text Region to SO. .
S# 2. Clear the Text Region.
3. Read enough of SI to refill the Text Region.
4. Repeat from Step 1 until End-of-File on SI.
+$,81,s0,SA,81,L0O 5. Close/Save all files.
6. Issue standard termination request to Operating System.

™ O =

If Step 1 conflicts with your requirements -- if, for example, you have already
entered a W command, and don't want another copy of the Text Region written to SO,
simply clear the Text Region before entering the T command:

D$# T Clear Text Region and Terminate.

To suppress the .whole SI-to-SO copy loop, and begin the termination procedures at
Step 5, follow the T with a Plus Sign parameter:

T+ Close/Save all files, and exit to Operating System.

Here is an OS job which generates a formatted listing of an Assembler Language Source
Program. It takes advantage of the fact that SO can be assigned to a line printer.

" The initial I command is needed to insert a dummy blank record in the Text Region.

Otherwise, the L+ command would fail because of an empty Text Region, and the T
command would not be processed.

/JOB
/ASSIGN LO=LP,SO=LP,SI=D0.SOURCE
/EXEC 0OS:EDT

I.,'"! L+. T

3.14-32

spressEn

e St B A A

et

TR

3.14.9 MESSAGES

3.14.9.1 Message Detail

Error Messages and Warning Messages from the Editor look like this;

E10 INVALID COMMAND
E13 INSUFFICIENT SPACE
W33 TEXT NOT LOCATED
W38 END OF SI FILE

When the message numbers become so familiar that the text is superfluous, a special
command is available to drop the text from all Editor messages.
followed by a Plus Sign, and remains in effect until cancelled by an M command with

no parameter: ‘

J

E10 INVALID COMMAND

M+ J
E1l0
MJ

E10 INVALID COMMAND

Another Editor command -- M followed by a Minus Sign -- will suppress Warning

Messages entirely.

Execute Command Region -- is based on a rough estimate, and a number of superfluous
messages might be generated once the loop has run past the end of the Text Region.

M- X-200 M

In M- mode, Error Messages are cut down to the message number alone, just as in M+

mode. Similarly, an

This can be useful when the count parameter of an X Minus --

Suppress Warning Messages.
Execute Command Region 200 times.
Restore full message mode.

M (or M+) command cancels the effect of an M- command.

3.14-33

The command is an M

ComputerAutomation @\ S—

e e

e

3.14.9.2 Error Messages

El0

Ell

El2

El3

El4

E1l5

Elé6

E1l7

E1l8

El9

E20

E21

Invalid Command
A new command was expected, but the next non-blank was not a command.

Invalid Argument
The parameter following a command was not in any recognizable format.

Illegal Argument
The parameter was in a valid format, but cannot be used for this particular

command.

Insufficient Space
Not enough memory is available for the Text Region and the I/O buffers.

Numeric Range Error
The value of n in a parameter exceeds the limit of 32767.

Missing Closing Quote
Command line terminated in the middle of a Context String parameter.

New Text Missing '
Insert or Change command had a Comma not followed by a Single Quote or a Carriage

Return.

Illegal E Usage
E command in the Command Region, or E command was not last in a command line.

Illegal X Usage
X- command in the Command Region, or just after an X+ command.

No Entered Line
X- command, but Command Region is empty.

Illegal Record Range
Attempted access to records beyond current limits of Text Region.

Invalid Unit Name
Open or Close with parameter other than SI, SO, SA, S1, or LO.

3.14-34

B AR A e g

Computsrhutomation () ——

3.14.9.3 Warning Messages

W30 Text Region Empty
Command referred to records which do not exist.

f
i
I
{
{
f
;
|
|
i

W31 Text Region Full 5
No room for more input to be appended.

W32 Save Region Empty
U command, but no records exist to unsave.

E33 Text Not Located
Context String parameter found no match. Cursor remains where it was before.

W34 Outside Text Region
Attempted access to records or characters beyond current limits of Text Region.

W35 Outside Current Record
Attempted character manipulation would have affected two records at once.

W36 Insufficient Space
Text Region or Save Region could not be expanded to the size needed.

W37 Record Too Large
Attempted output had too many bytes for device. Record was truncated and written.

W38 End of SI File
Primary Input has reached EOF.

W39 End of SA File
Alternate Input has reached EOF.

W40 String Too Large :
New Text record exceeded limit of 80 bytes.

3.14.9.4 Information Messages

OS:EDT (nn)
Text Editor has started execution. Program version number is nn. ==

I/0 CHECK ‘
The Operating System has detected an error condition during I/O processing.

To continue execution of the Editor, enter /RESUME, else enter /CANCEL

OS:EDT END ‘
Text Editor has ended execution after a T or T+ command.

3.14-35

¥
%l 3.14.10 TEXT EDITOR COMMAND SUMMARY
i
B
I
4 CURSOR
P Position Cursor.
F Find matching label.
0 Display Current Record up to Cursor.
o+ Display entire Current Record with Cursor.
EDITING
rj C Change.
E D Delete.
: I Insert.
;;4 L]
!
§ INPUT AND OUTPUT
0 R Read Primary Input from SI.
A Alternate Input from SA.
\ N Next -- Text Region to SO, SI to Text Region.
\ W Write Primary Output to SO.
o] Output Alternate to Sl.
L List on LO.
v View on CO.
CONTROL
j :0, oOpen file.
} R, Close/Release file.
1 a, Close/Save file.
E Enter into Command Region. @
" X-n Execute Command Region n times.
X+n Execute next command n times.

a M M+ M- Messages full length. Messages by number only. Messages for Errors only.

| S Save records.
! U Unsave records.
=l
|
i / Fscape to Operating System.
! T Terminate, after copying Text Region and SI to SO.
1 T+ Terminate, without copying.

o 3.14-36

B e

T

e

Section 4

PROGRAM/SYSTEM COMMUNICATION

4.1 INTRODUCTION

User programs communicate with the Operating System through a4 series of instruction
scequences known as supervisor calls. These calls cause the system to perform TInput/
Output or other executive services for the program.

The general form of a supervisor call is:

LABEL - JST External Name
DATA Address of Parameter List
* Busy or Error Return
* Normal Return

4.2 REQUESTS FOR INPUT/OUTPUT CONTROL SERVICES

All requests for I/0 services are initiated by a call to an IOCS entry point. These
entry points are declared external to the user program (using the EXTR or REF direc-
tives) and are resolved when the program is processed by 0S:LDR or OS:LNK.

IOCS requires that each request be accompanied by the address of a parameter list,
known as a control block, which describes the activity required. These control
blocks (and any record, buffer or working areas required by them) are located in the
user's program area. ‘

All requests preserve the calling program's hardware state and registers, with the
exception of the A register. 1IOCS returns, in the A register, the status and results
of the program's request. The format and content of this register is identical to
that of the "status" word of the file control block (FCB). The file control block is
described in section 4.4.1.

In the discussion of I/0 requests which follows it is generally assumed that the .
system will return control to the calling program after the requested operation has
been completed. This is the normal method, and is known as the Auto/Wait mode of
operation.

However, it is possible for the calling program to regain control after the operation
has been initiated, perform other unrelated functions, and not wait for completion
until such completion is actually required. Such a mode of operation is obtained by
selecting the non-Auto/Wait attribute in the appropriate FCB and requires use of the
WAIT: or TEST: requests. ‘

L

T

SR e e s e R

4.2.1 The OPEN: Request

LABEL JST OPEN:
DATA FCB
* Busy/Error Return
* Normal Return

This request is required prior to the execution of any other operation on the file, and
allows IOCS to perform initialization and linkage generation between the system and the
user's file control block (FCB).

When IOCS receives the OPEN: request, it verifies (1) that the required assignment of

the physical device has been made, (2) that any file names required are present, and

(3) that the device is ready for data transmission. Any error causes the system to
reassign itself to the operator console, issue an appropriate message, and then suspend
itself to allow remedial action. After the operator has corrected the problem, he may
enter a /RESUME command. IOCS will automatically re-issuc the OPEN: request. A suc-
cessful Auto/Wait OPEN: will always take the "normal" return; an "error" return probably
indicates a wrongly coded FCB.

If an OPEN: request is issued for a non-Auto/Wait file, and a previous OPEN: is still
pending for the same physical device (for example, for another file on the same disk),

the "busy/error" return will be taken. The user should go thru a WAIT: before re-trying
the OPEN: of the file.

If the /ASSIGN command for a file-oriented device included a specific file name (for
example, /ASSIGN S1=D1.XYZ), then this name will be inserted into the user's FCB
(words 4 thru 6) by the OPEN: process, destroying any name previously stored there.
The user must not alter the file name in an open FCB.

When an existing file is opened, IOCS will verify that the FCB does not conflict with the
attributes of the file. If the FCB has allowed for a larger block size or record size than

an input file really needs, the more accurate smaller values will be inserted into the FCB.

4.2.2 The CLOSE: Request

LABEL - JST CLOSE:
DATA FCB
* Busy/Error Return
* Normal Return

This request is required after all I/O operations have been completed, so 10CS may
terminate processing the file. Failure to issue a CLOSE: request can causec user data
to be lost.

When IOCS receives the CLOSE: request, it performs any 1/0 operations still required
(last block output, ctc.) and severs the system-to-FCB linkage.

10CS will return to the user through the "normal” exit if the request was successful.
If it was not possible to CLOSE: the devicc, the "busy/error" return will be taken. If
this condition goes uncorrected, data may be lost and the system may be unable to use
the file at a future time.

4-2

COMPUTER AUTOMATION, INC. ' ——-—-—,

e

WM@m

4.2.3 The IO: Request

LABEL JST I0:
DATA I0B
* Busy/Error Return
* Normal Return

The I0: request allows the program to perform data transmission (READ and WRITE) and
special processing such as REWIND, BACKSPACE, and EOF. The user indicates to TOCS
the operation requested, and any record addresses or character counts required, in
the Input/Output Control Block (IOB). (See section 4.4.2 for the formal of an I10B.)
IOCS returns the result of that request as information in the related File Control
Block (FCB).

When IOCS receives an I0: request, it verifies that the file has been successfully
opened, that the device is physically available, and that the request is valid for
that device. Any error will cause an operator message and an error return.

The request is then passed on to the appropriate driver, which performs the actual
operation and returns to I0CS any errors encountered. Finally, IOCS prints any error
messages required and returns to the calling program through the applicable return. i
In all cases, the current status will be returned in the A register and the FCB.

4.2.4 The WAIT: Request

LABEL JST WAIT:
DATA FCB
* Busy/Error Return
* Normal Return

The WAIT: request is used when the non-Auto/Wait I/0 mode of operation is selected.
It allows the calling program to issue an IO: request, regain control, and test for
I/0 completion at a later time. A WAIT: request suspends execution of the calling
program until the I/O operation has completed, and returns the status of that opera-
tion in the A register and the FCB.

When IOCS receives a WAIT: request, it retains control until the device indicates
that it has completed its operation or an error has occurred. An error will cause an
operator message, and the calling program's error return will be taken. Successful
completion will result in a normal return to the calling program.

‘4.2.5 The TEST: Request

LABEL JST TEST:
DATA FCB
* Busy/Error Return
* Normal Return

The TEST: request allows the program to interrogate the status of a file or device at
any time and continue processing accordingly. The user may thus query the system for
I/0 completion, as with the WAIT: command, but rcceive control back regardless of
status. ‘

When IOCS receives a TEST: request, the current status of the unit is immediately
returned to the calling program in the A register and the FCB. The unit's status
will determine the return taken and error messages will be output to the operator as

required.

ospReati e

o

4.3 REQUESTS FOR EXECUTIVE SERVICES

All requests for executive services are initiated by a call to a system entry point.
These entry points are declared external to the user program (using EXTR or REF
directives) and are resolved when the program is processed by OS:LDR or QS:LNK.
Executive requests require a parameter list or messagce located in the user's progran
area. All executive requests restore the calling program's previous hardware state
and registers on return, unless otherwise specified in a request description.

4.3.1 The SUPV: Request

LABEL JST SUPV:
DATA SRB
* Return
*
SRB DATA Request Code ' .

DATA As Required

The SUPV: request provides a variety of executive services. A System Request Block
(SRB) of four or more words in the calling program is used as an interface. The low-
order byte of word O of the SRB -- the Operation Code (OPR) -- determines the specific
request, and is never altered by the system. The high-order byte of word 0 -- the
Event Control Byte (ECB) -- is set to zero each time the system receives a SUPV:
request, and is altered only to indicate an unsuccessful request. For example, an
invalid value for OPR will return with OPR unchanged, and the ECB set to :80. The
content of the remainder of the SRB before and after the request is determined by the
value of OPR, as described in the following sections.

1 -- Request Free Memory Limits

The system returns, in the SRB, the boundaries of currently unused scratchpad and
main memory. All locations between, and including, these boundaries are not occupied
by OS nor by the user program itself, and may be used for building tables or code as
needed. The SRB will contain: ’

Word 1 Low boundary of free main memory
Word 2 High boundary of free main memory
Word 3, Byte O Low limit of free scratchpad

Word 3, Byte 1 High boundary of free scratchpad

2 -- Request Current Date

The system returns, in the SRB, the exact six ASCII characters which were entered
between slashes in the most recent /DATE command. The user is reminded that these
are not necessarily numeric characters; nor is it true that the first two characters
(for example) do, or do not, represent the current month. Each installation sets its
own standards for /DATE commands. The six characters are returned contiguously in
SRB words 1, 2, and 3.

T

P

‘@

COMPUTER AUTOMATION, INC. (Y e

3 -- Request Current Time in ASCII

The system returns, in the SRB, the current real time, converted to ASCII numerals.
Words 1, 2, and 3 contain the hours, minutes, and seconds, respectively. The accuracy
of this information is wholly dependent upon the accuracy of the most rccent /TIME
command . "

4 -- Request Current Time in Binary

The system returns, in the SRB, the current real time, converted to thrce separate 16-bit
binary values. Words 1, 2, and 3 contain the hours, minutes, and scconds, respectively .
The accuracy of this information is wholly dependent upon the accuracy of the most recent
/TIME command. l‘

5 -- Request the Next Parameter

The system returns, in the SRB, the byte address and the length of the next available
program parameter, exactly as entered on an /EXEC, /BEGIN, or /RESUME command.
Each individual parameter is defined as all the characters bounded by, but not including,
a following comma or line terminator. Each of these examples has threc paramecters:

/EXEC PROGX,MM=5000,NL, TERM
/BEGIN ,MM=5000,NL,TERM
/RESUME MM=5000,NL,TERM

The parameters in each example have lengths of 7, 2, and 4, respectively. Each successiv:
request for the next parameter would return the byte address and length of just one of
these.

Word 1 of the SRB will contain a byte address, and word 2 a byte count. When a request
is made for the next parameter, but none exists, the system will return a byte count

of zero. If the program still is not satisfied, and makes another request, the system will
request more parameters from the command input (CI) unit. If CI is assigned to the opera-
tor console, "?" will be displayed on the command output (CO) unit to indicate that a
response is required. The program may continue to request parameters from the system,
and CI may be used to supply them, as often as required.

6 -- Request Operator Communication

The system requests a response from the operator, optionally preceded by a message
from the progryam. The message, if one is supplied, is displayed on the Command Output
(CO) unit. If the CI unit is a console, the system will always display "?" on the CO unit,
to indicate that a response is required. The operator responds on the Command Input
(CI) unit.

The program must supply . in word 3 of the SRR, cither the word address of the message
desirved. or a value of zero, indicating that no message is involved. The message must
be in the format deseribed in the scetion on the MSG: Request. Words 1 and 2 of the SRB
will contain the bytc address and byte count of the response.

4-5

e e

.low-order byte of word 2 will contain the maximum characters for an ASCII record. If

7 -- Request Physical Device Informatian

The system returns, in the SRB, certain information about the physical device currently
assigned to a given logical unit. This information is used by programs which determine
I/0 techniques at execution time, based upon the Unit Control Block (UCRB) for cach

physical device.

The program must insert into word 1 of the SRB a pair of ASCII characters representing

a valid logical unit name -- for example, LO or S2. Upon return to the program, a request
for a non-existent or unassigned logical unit will be indicated by setting word 0 of the
SRB to a value of : 8007. For a valid request, word 0 still will be : 0007. Word 3 of the
SRB will contain the maximum bytes for a binary record on the physical device. The

the device is appropriate for page control, the high-order byte of word 2 will contain
the maximum lines per page; otherwise, zero.

8 -- Request Loading of a Program Ovecrlay

The system loads into memory a program dcsignated by name. The program must be
suitable for /LOAD commana processing, and require the resolution of no external
references at all.

This request needs a five-word SRB, rather than the usual four words. Thc user must
set word 0 of the SRB to a value of : 0008, and words 2, 3. and, 4 to the ASCII name of
the program (with trailing spaces as nceded). The exact same name must appear in the
directory of the device currently assigned as the System File (SF) unit.

If the program is relocatable, word 1 of the SRB must contain the relocation bias. If
it is absolute, word 1 is ignored. The requested load must fall completely within the
User Areca of memory, and must not overlay the request coding sequence itself, not its
reclated SRB.

Control is never passed by the svstem to the newly loaded program, but remains in the
original calling program. On rcturn, both the A register and word 0 of the SRB indicate
the success of the load request. This indication is a value of : nn08, in which "nn" is
the new value of the ECB (and the high-order byte of the A register) as follows:

: 00 Successful load

1 81 I/0 error on SF

1 82 Load crror, including violation of me¢mory boundaries
183 [llegal type code

4-6

Py .

i

COMPUTER AUTOMATION, INC. ——

4.3.2 The MSG: Request

LABEL JST MSG:
DATA Message Address
* Return

The MSG request permits the calling program to print a message on the command output
~device (CO) and continue normal processing. No operator response is expected or
allowed. '

The message to be printed resides in the calling program, and its word address is passced
in the calling sequence. The message can be up to 254 characters long: all valid ASCII
characters arc allowed. The first character position (byte 0) must contain the message
length, in bytes. Any required line terminator, such as carriage return/line feced, will
be added by the system and should not be included.

Message Format:

] nl Mcssage Text]
byte 0123---== -~ =0 ===~~~ n

| Message Address (word)

4.3.3 The SPND: Request

LABEL JST SPND:
DATA Message Address
* Return

This request allows the calling program to print a message for the operator, and then
suspend itself for operator action.

The SPND: request causes the system to reassign the command input (Cl) and command
~output (CO) devices to the operator console, after which the message is printed on CO.
The message passed must be in the format described for the MSG: request. -

- The operator may return control to the program with the /RESUME command. This will

cause restoration of the original CI and CO assignments and all program status.

4.3.4 The TERM: Request

LABEL JST TERM:

The TERM: recquest is the last instruction executed in the user's program. It returns
control to the system, allowing program termination in an orderly manncr. The programme
may use cither a JST or a JMP instruction for this request.

4-1

e i

e T

COMPUTER AUTOMATION, INC. ———-].

4.4 10CS CONTROL BLOCKS

4.4.1 The File Control Block (FCB)

i/

FCB Word
ECB 7] 0 T
LUN 1 COMMON
- 2 SEGMENT
STATUS 3 SR
- FILE] 4 X
i NAME] 5 ‘
or ZEROS 6
BLOCK SIZE 7
BLOCK ADDRESS 8
RECORD SIZE 9
RECORD NUMBER 10 FILE-
- 11 ORIENTED
- 12 DEVICES
13
14
15
16
17
18
19

The file control block (FCB) is a 4 or 20 word list supplied by the user program. An

FCB is required for every file which the program references, and describes to the system
the attributes of that file. The common segment (words 0-3) is required for all files;

the extended segment (words 4-19) is required for those on file-oriented devices (magnetic
tape, disc, cassette). It is recommended that the extended form generally be used. to
facilitate future file-oriented device operation without program modification .

The user is required to initialize or examine the entries of the FCB labelled in the illustra-
tion. The unlabeled entries are required by the system. They should be initialized to
binary zeros and left undisturbed.

4-8

Ry

‘®

S g At

COMPUTER AUTOMATION. INC. =.’.\. _—

4.4.1.1 ECB - Event Control Block

The ECB describes the attributes of the file, the type of processing required, and its
final disposition. This entry must be initialized by the user and should not be altered
after the file is opened. Each bit off (0) is the default condition.

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 7

0

Auto/Wait. IOCS returns control after an IO: request has been completed.

Non-Auto/Wait. IOCS returns immediately after an 10: request has begun.

Used with WAIT: or TEST: request.

Sequential IO processing. Standard on all devices.
Random IO processing. Available on disc only.

Physical record 1/0. Causes a record to be rcad/written cach 1/0 request.
Standard on all devices.

Blocked record I/0. Causes the physical records to be blocked (combined
into larger groups) for each data transfer to allow greater device utilization.
Available on all file-oriented devices.
Keep the file after CLOSE.

Delete (do not keep) the file after CLOSE.

Must be off if either bits 10 or 9 are on.

File OPEN for READ. If a file-oriented device, the file must currently exist.
WRITE is not allowed.

Must be off if either bits 11 or 9 are on.

File OPEN for WRITE (creation). If a file-type device. the file must not
currently exist. READ after WRITE is allowed.

Must be off if either bits 11 or 10 are on.

File OPEN for UPDATE (modification) by physical record number. Applies
to RANDOM files and is available on disc only.

Automatic page control. See Note below .

Automatic page control suppressed. User is responsible for maintaining
line counts and page separations.

Automatic top-of-form when a list file is open or closced. Sce Note below.

No automatic top-of-form when a list file is open or closed .

4-9

Bl e it S 5 i

F e SRR B e A v T B

=

E

Bits 6--0 Current line number for a list file. Should be initialized to zero.
See Note below.

NOTE: List Files

List files -- that is, files assigned to a teletype or line printer -- require special
handling by IOCS because the user generally wants output divided into pages. The
number of lines on a page is determined by word 5 of the Unit Control Block for each
pkysical device, which ordinarily contains a value of 66, but may be altered during
system generation.

If bit 8 is off, IOCS will update the line number in bits 6 through O of the ECB
each time a line is output to a list file. A line number within 12 lines of the
bottom of the page will force a top-of-form, and the line number will be reset to
one.

If bit 8 is on, suppressing automatic page control the line number will always be 1.

Top-of-form is also forced once when a list file is opened, and once when it is
closed, unless the user sets on bit 7 of the ECB. Normal programming practice for a
list file is thus to zero bits 8 thru O of the ECB before the file is opened, and
allow IOCS to handle all details of page control.

4.4.1.2 LUN - Logical Unit Name

The LUN contains the logical unit name of this file: two ASCII characters, taken
from the available list as described in appendix D. Use of the /ASSIGN command will
relate this name to the physical device required.

4.4.1.3 STATUS Word

This word contains the current unit and device status of the file referenced. It is e
updated after every call to request I/O and related services. This word must be
zeroed prior to a file OPEN: request and must not be altered thereafter by the user.

Each 'on' bit of the status word indicates either general file information (the file
is OPEN, etc.) or error information (data error, etc.)!. All ecrror information is
reset (bit set 'off') by the system at every call; the¢ user need not clear these
bits.

Bit Meaning »

15 Error occurred; specified in bits 14 thru 4. .
14 Missing or invalid file name in FCB.

13 Unuged bit position.

12 Device is not ready, or a file-oriented device is unlabeled.

11 Device is busy.

sy

B R

N

COMPUTER AUTOMATION, INC.

Ei_t_ Meaning

10 Device error has occured.

9 Data error has occurred; data transferred has doubtful validity.
8 Hlegal operation requested.

7 Duplicate file name found on OPEN.

6 Multiple concurrent WRITE not supported on this device.
5 File not found on OPEN.

4 Write-protect violation occurred.

3 End of medium was found.

2 End of file was found.

1 Successful OPEN occurred.

0 File-oriented dcvice.

4.4.1.4 File Name

When operating with file-oricnted devices (magnetic tape, cassette, disc), a file name
must be made available to the system at OPEN time. This name can be placed in the FCB,
or entered as an optional argument on the /ASSIGN command. The name consists of one
to six alphanumeric characters and colons, the first of which must be alphabetic, with
trailing spaces as required.

If a name is not placed in the FCB, the bytes must contain ‘binary zeros. If a name exists
in the FCB and one is entered on the /ASSIGN command, the ASSIGN name replaces the
original name when the FCB is opened. If a name is not entered in either way, the system
will request one.

4.4.1.5 Block Size

If blocking is requested (sec ECB) . this word must contain the total block length in bytes,
computed as the product of the record size and the number of records per block. If un-
blocked, the word should contain binary zeros.

4.4.1.6 Block Address

If blocking is requested (see ECB), this word mnust contain the starting word address
of a block buffer located in the user's area. The buffer neced not be initialized. This
word should be cleared to binary zerocs if unused.

4-11

TR e g I

A

COMPUTER AUTOMATION. INC. : o

4.4.1.7 Record Size

This word is required for all file-oriented devices and must contain the logical record
length in bytes. This is the "defined" record length only; the actual count required is
placed in the IOB at [/O request time and may be less. It may not be greater.

4.4.1.8 Record Number

If random access processing is requested, this word contains the logical record number
of the record being processed. It is the responsibility of the calling program to maintain
this word during I/0 operations. The system will not update it in any way.

4.4.2 The Input/Output Control Block (I0B)

10B Word

OPR 0

FCB ADDRESS 1

RECORD LENGTH 2
(bytes)

RECORD ADDRESS 3

TRANSFER COUNT 4
(bytes)

The Input/Output control block (IOB) is a 5-word argument list supplied by the user's
program. An IOB is required each time an IO: request is made. Normally a single IOB
per file is sufficient.

The user must initialize words 0 thru 3 prior to an 10: request. The system will return
the actual transfer count in word 4, but will not modify any of the other words.

4.4.2.1 OPR - Operation Code

The OPR field describes to the s, stem the type of operation required. The following codes
are valid:
1 Read symbolic (ASCII)
Read binary

Write symbolic (ASCII)

3
4 Write binary
5 Rewind the file

6 Backspace once record
7 Verify after write (file-oriented devices only)
8 Write EOF (Sce scction 4.5.1)

4-12

S e i

°

e o g

COMPUTER AUTOMATION, INC. '""l S

4.4.2.2 FCB Address

This word contains the address of the FCB associated with this file.

4.4.2.3 Record Length

This word contains the length of the logical record in bytes. During a WRITE operation,

it determines the length of the record to be output. During a READ operation, it determincs
the maximum number of bytes to be input. READing a record of greater length will cause
all surplus bytes to be discarded.

4.4.2.4 Record Address

This word contains the starting word address of the record buffer located in the user's
arca, into which the record will be read, or from which it will be written.

4.4.2.5 Transfer Count

After completion of an 1/0 operation, this word will contain the byte count of the number

of characters actually transferred. This number may not correspond to the Record Length
contents, but can never be greater. If the transfer count is less than the requested amount .
no fill characters are appended by the system.

4.5 DEVICE DEPENDENT CONSIDERATIONS

Although the Operating System supports all devices in a "device independent" manncr,
the user should be cognizant of certain hardware differences (such as various end-of-
file indicators), as described in the remainder of this scetion.

4.5.1 End-of-File (EOF) Indicators

The system recognizes or generates various EOF indicators dependent upon the devices
involved:

1. Teletype and HSPT devices: A separate record containing : FF0000 (rubout-null-
null) in frames 1, 2, and 3. To gcnerate EOF through the teletype keyboard, depress
the rubout key once. then the SHIFT-CTRL-P keys twicc. The sequence slash-asterisk
(/*) is not recognized as EOF. ‘

2. Card Reader: A card containing the two characters /* in column 1 and 2.

3. Magnetic Tape: A special record recognizable only to the hardware interface.

4. Cassette: A two-byte record containing : 0000. This is a software end-of-file, and
user programs should not generate such a record.

5. Disk: An internal software end-of-file recognizable only to OS.
4-13

S

i iiasak

it R AR -

R

4.5.2 Checksums

The system checks the accuracy of all binary paper tape records by the use of a
checksum, as described in the Software Manual. Checksum calculations are not per-
formed on symbolic paper tape records, nor on any other system devices.

4.5.3 Carriage Control of Printed Output

When writing to a "print" type device, such as the Teletype or line printer, the user
controls page formatting through the use of control characters. A carriage control
character is placed in the first byte position of the record to be printed and is
included in the count of characters in that record. The control character is required
by the driver and is not printed.

The valid control characters are described below; any other character will be treated
as a "blank" and cause single spacing.

blank Blank (or space) character. Single space before printing.
+ Plus character. No line spacing. Allows overprinting of the previous
line.
1 Numeric One character. Advance to top-of-form before printing the
line.
0 Numeric Zero character. Double space before printing.
NOTE

For the Teletype the top-of-form option in the Root may be used
to cause 3 Linefeeds to be output in place of a top-of-form.

4.5.4 Recording Medium Preparation

Cassette cartridges and disk packs must be initialized before use under OS.

All cassette tapes used by 0OS must be formatted by the Cassette Address Formatter
(Program 96066). After the cassette has been formatted, the write-enable tab for the
address track (track A) must be removed. OS will not perform I/0 on a cassette which
still has its address track enabled for writing.

All disk packs used by OS must be formatted by one of the following programs:

Moving Head Disk Formatter Program (ID 96080)
Moving Head Disk Diagnostic Program (ID 96075)

L4

L e

A

4.6 PROGRAMMING EXAMPLE: IOCS AND EXECUTIVE REQUESTS

The assembly listing reproduced on the following pages will demonstrate a typical
approach to coding IOCS and Executive requests. The program is a simple "80/80
list," with input on SI and output on LO.

Certain points about the program coding will be discussed here, not because the
techniques are sophisticated, but because they are so typical of almost any program
intended to run under OS.

All of the named entries within OS to which control will be transferred are declared
as external references before the executable code. The object code for each JST
shows that these references are unresolved at assembly time; the program will have to
be processed thru OS:LNK or OS:LDR to fill in the correct indirect links thru scratch-
pad. Individual REF directives for each external name could have been used as an
alternative technique.

Each OPEN: and IO: request is followed by a provision for an error condition. The
IO0: request for input also needs a test for End of File. Each CLOSE: request has a
NOP for an error condition during closing, because the nature of the files being
processed does not require anything more elaborate.

Each IOB and FCB is established with a single DATA statement. The Record Length
field of the output IOB is not fixed at assembly time; instead, the program tries to
minimize peripheral transfer time by writing only the number of bytes actually read
in.

The input and output buffers occupy the same area of memory, except that the output
buffer must allow for a carriage control character, plus one more space to fill out

.the first word.

The data referenced in the MSG: request begins at ERRMSG, but is coded in two state-
ments. If the message were altered during program execution, the TEXT statement
would probably be given a separate label.

% ety B g SR eI e g e

PAGE

MACRO? (A1) SI= OSUSER

0002

0004
0005
0006
0007
0008
0009
0010

0012
0013
0014
0015
- 0016
0017
0018

©o:s

0020

0022
0023
0024
0025

0027
0028
0029
0030
0031
00322
0033
0034

0036
0037
0038
0039

0001

0000
0001
0oo02
0003
0004
0005

0006
0007
DRVELE.}
0009
000A
ooo08
000C
000D
000E

000F
0010
0011
0012

0013
0014
0015
0016
0017
0018
0019

001A
0018
001C

MM/DD/YY

0000
FQ00
001E
Fe17
F900
0027
Fetd

F900
ooee
2091
8213
3108
B21A
0150
0150
9A1E

F900
0028
F208
F60QC

0013
F900
001E
0000
Fa00
0027
0000
F100

001A
F900
0059
F609

0000

001A
0000

001A

0000

001A

0010

0013

0026

002V

0000

001A

0006

0000

0000

00vo

0000

0013

01:30:05 10CS AND EXEC REWUFST DEMONSTRATION

‘BO=
EXTR

START ENU
JST
DATA
JMP
JST
DATA
JMP

READ JST
DATA
JAM
AND
JAN
LDA
IAR
IAR
STA

WRITF JST
DATA
JMP
JMP

END EQU
JsT
DATA
NOP
JST
DATA
NOP
JMP

tkROR ERQU
JST
DATA
JMP

OPEN:,FLOSF:.In:.TFRM:.MSG:

$

OPEN:

RDFCH OPEN SI
ERROR

OPEN: OPEN LO
WTFCR

ERROR

10¢ RFAD 1 RECORD

RDIOB

ERROR

EOFMSK ISOLATE EOF B1T

END ENF?

RDIOB+4 TRANSFER BYTE COUNT
AND 1 FOR CARRIAGE CONTROL
ADD 1 FOR LFADING RLANK

WTIOR+2 SET OQUTPUT RECORD SIZF

10: WRITE 1 RECORD
wT108

ERROR

READ END MAIN LOOP
$ EOF PATH
CLOSE: CLOSE SI

RDFCH

ERRVUR IN CLOSE
CLOSE: CI.OSE LN

WTFCR

ERROR IN CLOSE
TERM: KFQUEST TERMINATION
%
MSG 2 LSSUE MFSSAGE ON €O
ERRMSG
END

Programming Example: IOCS and Exccutive Requests

Part 1 of 3

DU Sy WRGE S S RS R o s e e,

PAGE 0002 MM/DD/YY 01:30:05 1I0CS AND EXEC REAUEST DEMONSTRATION
MACRO2 (A1) SI=

0041

0043

0044

0046

0047

0049
0050

0052
0054
0055
0056
0058

0000
0000

001D

001E
001F
0020
0021
0022
0023
0024
0025
0026

0027

0028

0029
0024
0028
002cC
0020
002E
002F

0030
0031

0059
N05A

0ooua

0800
03C9
0000
0000
0001
001E
0050
0031
0000

0400
CCCF
0000
0000
0003
0027
0000
0030
0000

AQAO
0000

0008
19A0
Csobe
0066

0000

ERRORS
WARNING

80=
EOFMSK

ROFCH

RDIOB

WTFCB

WT108

WTBUFF
RDBUFF

ERRMSG

ERREND

DATA

DATA

DATA

DATA

DATA

DATA
RES

LIST
DATA
TEXT
EQU

END

t0004 EOF RIT IN FCB

t0800,'SI1',0,0

1,RDFCR,R0,RNBUFF,0

t0400,'L0',0,0

3,WTFCB,0,WTBUFF,O0

tAQAQ CONTROL PLUS 1 BLANK
40,0

08 SHORT TEXT
ERREND-$*x2-1%8+" '

YERROR == RUN TERMINATED '

$

START

Programming Example: IOCS and Executive Requests.

part 2 of 3

g IR s

B e S SRS

SO, S

PAGE 1 MM/DD/YY
PROGRAM
MSG: 049B TERM

CLOSE: 0B41
MEMOKY USAGE
SCRATCH=PAD LITERAL
MAIN MEMORY PROGRAM
EXEC ADDRESS
PROCESSED LSI 2 OBJECT

NO ERRORS

01:45:34 O0S:LNK (BO) MEMORY MAP

: 0684 - OPEN?

00F7-00F8B
1074-100D9
1074

Programming Example:

UAOS 10: 0814

IOCS and Executive Requests

Part 3 of 3

4-18

et e T e

Section 5

FILE MANAGEMENT SERVICES

5.1 INTRODUCTION

The File Management module of the Operating System provides directory maintenance
facilities for the file-oriented devices (magnetic tape, disk, cassette). The user
is able to access program and data files by name, without regard to the physical
characteristics of the device.

All requests to file-oriented devices are made through IOCS, in a manner identical to
other devices. It is, however, necessary that the user supply some additional infor-
mation in the File Control Block (FCB) prior to file OPENing.

5.2 FILE ORGANIZATION

Every file-oriented device under 0OS contains a directory which describes, by name,
all data and program files resident upon it. This directory is created by the 0S:LBL
utility program and maintained as required by the File Management routines.

The directory is contained in the first few records of the physical volume (reel of
magnetic tape, disk pack, cassette cartridge) on the device. The exception to this
is the system-residence unit, on which the directory follows immediately after the

system file.

The directory starts with an entry describing the volume, called the Volume Table of
Contents (VTOC). This entry contains pertinent information for 0OS, as well as user
information such as creation date and name. The Volume Table of contents contains
enough room for 320 disk file entries, 64 floppy file entries, or 160 mag tape files.

The remainder of the directory is segmented into File Description entries, one for
each file on that volume. An entry contains the file name, creation date and time,
and system information such as record and block size, and total file length.

The VTOC, the File Description entries, and the contents of any file can be displayed
with the OS:VEW utility.

5.3 FILE ACCESS METHODS

IFile Management provides both sequential and random access capabilities to the user
proqram. The scquential access method is the standard mode of data transfer; random
access must be explicitly requested through the File Control Block (FCB) at OPEN
time.

1

RS i ot

e .

Sk g e

sy s

I3

¢

5.3.1 Sequential Access

Sequential file processing is available to the user on all file-oriented devices.
Sequential files are accessed by logical record and automatic blocking/deblocking ot

records is available.

Sequential files are uniquely ordered: given record n, the next READ request will
always return record n+l. It is possible to access previous records with the BACK-
SPACE operation, and to return to the first record of the file with the REWIND

operation.

A READ or WRITE request automatically advances the file to the next logical record.
Thus, to access record n-1 after READ or WRITE record n, the user must issue 2 BACK-

SPACE operations.

File Management provides automatic blocking and deblocking of logical records under
sequential access I/0. BAll I/O requests access a single logical record. Its relative
position in the physical records contained within the file is controlled by the File
.Management routines. ’

The user provides a record buffer and a block buffer in his program area, and the
size and address of each in the appropriate FCB and IOB. The block buffer should be
a multiple of the record size. A buffer whose length is not a multiple will waste
the surplus area.

5.3.2 Random Access

Random access file processing is available only for disk devices. Random files are
accessed by physical record; automatic blocking/deblocking is not provided.

Each record of a random file occupies exactly one sector of the disk. The first
record within a specific file is Relative Record 1, the next is Relative Record 2,
and so on. The user must set the Record Number field of the FCB to indicate which
Relative Record is to be accessed on the next IO: request. Except during file
creation, the FCB must always indicate OPEN for UPDATE.

The number of data bytes contained in each record is fixed at two bytes (or one word)
less than the physical capacity of a sector. For a WRITE, the user sets the byte
count in the Record Length field of the IOB. When the same record is accessed with a
. READ, the Transfer Count field of the IOB will conta‘n the same byte count.

A random file must be created in a special way, so it can be defined to have a certain

maximum Relative Record Number. The FCB must be set to indicate OPEN for WRITE, as
opposed to OPEN for UPDATE. The proposed maximum Relative Record Number must be
placed in Word 9 of the FCB. This word ordinarily contains the Record Size of a
sequential access file. Word 10 of the FCB, Record Number, is not used during
creation of the file.

The program attempts to OPEN the FCB. If enough space is available on the disk for
the requested number of sectors, a normal return is taken, and the program issues a
CLOSE. Subsequent use of the file will require an FCB set for UPDATE, as previously
described. TIf enough space is not available, the End of Medium flag will be set in
the Status Word of the FCB (Word 3, Bit 3), and an error return will be taken. The
program must then decide whether to abort processing or make a smaller request for

disk space.

2-2

L

Scction 6

SYSTEM GENERATION

6.1 INTRODUCTION

The Operating System is delivered as a configured system on paper tape, including a
"Root" module which may be altered by the user to meet changing requirements. The
system supports a wide range of hardware options, and will meet the software environment
needs of most ALPHA-LSI users.

6.2 HARDWARE CONFIGURATIONS

6.2.1 Minimum Hardware Requircments

An ALPHA-LSI computer with 16K of memory and the following processor-mounted options:
Teletype interface for ASR-33
Power Fail/Restart

Real Time Clock

One ASR-33 Teletype, or its equivalent

6.2.2 Additional Hardware Supported

High Specd Paper Tapce Readers
High Speed Papcer Tape Punches
Card Readcrs

Line Printers

Disks

Cassettes

Magnetic Tapes

An Appendix to this publication lists the makes and models of peripheral devices currently
supported under OS.

6-1

COMPUTER AUTOMATION. INC. —

e g

s St e g S R

6.3 DELIVERED SOFTWARE

The Operating System is delivered as a collection of paper tape modules, as shown

here.

ID Number

96530-41
96530-21
96530-31
9653X-3X

96540-30
96541-30
96542-30
96544-30
96545-30
96546-30
96547-30
96548-30
96549-30
96550-30
96551-30
96554-30

96543-30
96552-30
96553-30

The following documentation is also included:

96530-00
96530-10
96530-51

Description

DOS Complete System f{(abgolute binary)
0S Root (source)

0S Root (object)

0S Nucleus (library object)

System Utility Programs Copy to SF Link to SF
Label Files OS :LBL X

Copy Files 0S :CPY X

Loader 0OS : LDR X

Dump : 0S : DMP X

View Files OS :VEW X

Debug OS :DBG X

Source File Editor 0S :SFE X

Concordance 0S :CNC X

Link Editor 0OS : LNK X

Text Editor OS:EDT X

Independent Loader 0S:ILD X

Paper Tape Header OS : HDR X

Assemblers

No Macro Facility 0OS :ASM X
With Macro Facility MACRO2 X
1LSI-3 Programming MACRO3 X

0S User's Reference Manual
DOS Root assembly listing
DOS Root load map

e e e S

SRR T i e e

-

6.4 SYSTEM GENERATION PROCEDURES

6.4.1 Configuration of the Operating System

The contents of the OS Root Program (ID 96530) determines the nature of a specific
system. The inclusion of the required device drivers, interrupt locations, logical
unit default assignments, and other system parameters, are all.provided for by assem-
bling OS Root.

The standard 0S Root for LSI-2/10 (DOS10 and DOSIOE) provides for the following periph-
erals and default assignments:

Device : Physical Unit . Default Logical Unit i
+
Teletype Keyboard TK C1,s8A,05
Teletype Printer TY Cco,Lo0,06
Teletype Paper Tape Reader TR None
Teletype Paper Tape Punch TP None
Centronics Line Printer LP 10O (DOS10E)
Floppy Disk FO SF
Floppy Disk F1 ss,s1,BI,BO,LI,SO

The standard OS Root for LSI-2/20 or LSI-2/60 (DOS20) provides for the following
peripherals and default assignments: '

Device Physical Unit Default Logical Unit
Teletype Keyboard TK C1,sA,05
Teletype Printer TY 0,06
Teletype Paper Tape Reader TR - None
Teletype Paper Tape Punch TP None
Centronics Line Printer LP LO
Floppy Disk Unit O FO SI1,BI,LI
Floppy Disk Unit 1 F1 BO,SO
43-Series Disk, Fixed Platter DO SF
43-Series Disk, Removable Platter D1. SS

If either configuration is'acceptable, simply load (or autoload) and execute the de-
livered tape containing the DOS Complete System (ID 96530-41), which already includes
the standard OS Root. Continue system generation procedures with Operation of OS:GEN.

The standard OS Root may not be acceptable because support is needed for more, or
different, peripherals -- for example, a Data Products printer, magnetic tapes, cas-
settes, more 43-Series disks, or Double Density disks.

The OS Root routine also supports Distributed Input/Output (DIO) for some peripheral
devices, via a standard I/0 Distributor or a DMA I/O Distributor. The "Device Selec-
tion Table" shows which peripherals are supported by DIO; they include HSPT Reader DIO
(PTRD) , HSPT Punch DIO (PTPD), Line Printer (LPCED or LPDPD), Card Reader (CRDD), and
CRT (CRTD) .

Find the page headed "Device Selection Table" in the delivered source listing for 0S
Root. Determine what "SET YES" statements should be inserted, and perform the modifi-
cations, using OMEGA (or load a previous OS and use OS:SFE). Assemble a new version
of 0OS Root. Continue system generation procedures with System Construction.

6-3 Revised 9/76 i

e

o =

i e

| ‘l’
4

i
E
§

If 25 IPS magnetic tape drives are to be used with 0S, a special modification must be
made to OS Root, in addition to insertion of a "SET YES" for each tape unit. Either
delete the statement which reads:

_MACH SET 0
or insert after it a statement which reads:

MACH SET 1
Some changes may be required to the default logical unit assignments -- that is, the
assignments of logical units to physical devices automatically established for each new

/JOB unless overridden by /ASSIGN commands. This may mean modification and re-assembly
of OS Root.

The Logical Unit Assignment Table (LUT) source statements contain a DATA statement for
each logical unit. For example, the default assignment of SI=PR is fixed by the third

| operand of the statement:

SI DATA ‘s1',PR,PR

The second operand is a dummy representing a temporary assignment within one /JOB. To
make a default assignment of SI=CR, which ‘is the usual practice for an installation
with a card reader, change the statement to:

SI DATA 's1',CR,CR

If the only modifications needed to the standard OS Root are changes to the Logical
Unit Assignment Table, the table may be patched in memory (using DEBUG loaded no lower
than :2000, or the processor console) before executing OS:GEN. Load (or autoload) the
DOS Complete System Tape, but do not execute it. Do the patches, then begin execution
at the location labelled OS:GEN on the delivered OS Root load map. Proceed with Opera-
tion of OS:GEN.

6.4.2 System Construction

If a new version of the OS Root object tape was genérated, it must be combined with the
delivered OS Nucleus (ID 9653X-3X) to produce a complete Operating System in low
memory.

OS:LNK may be used if a previous 0OS is available. The OS Root tape must be input from
BI before the OS Nucleus tape is input from LI. The output must be another paper tape,
which will be the equivalent of the delivered standard DOS Complete System tape, and
may be loaded (or autoloaded) and executed to enter OS:GEN. Ready the 0S Root tape and
enter:

/JOB LINK NEW OS

/ASSIGN BI=PR,LI=PR

/ASSIGN BO=PP,LO=LP

/EXEC OS:LNK,NH,AB=0

OS:LNK (nn) where (nn) indicates the version of 0S:LNK
? LL,TE

OS:LNK END

topR s

S g s

e

j—

Computecsutomation (y ——

If no previous OS is available, use the LAMBDA object loader at. :2AEO or higher. Set
A, X, and SENSE to zero. Set the Sense Register to :0 for a load map on the teletype,
or to :1 for the line printer. OS Root must be input before 0S Nucleus. If the final
load map shows no unresolved externals, hit RUN to enter OS:GEN.

6.4.3 Operation of OS:GEN

At this point, the resident Operating System has been loaded into memory. It extends

. from location :0000 to approximately :1DFF, the highest portion of which is a temporary

block of code with the entry label OS:GEN.

The system generation procedure has resulted in a transfer of cnntrol to OS:GEN. The
Operating System about to be recorded for future use will not begin execution at OS:GEN
after normal loading (unless OS is loaded from a paper tape), and the locations occu-
pied by OS:GEN will become part of the User Program Area of memory.

OS:GEN converses with the operator thru the operator console. Terminate each response
with a Carriage Return. If the message "I/O ERROR" is displayed, the program will
execute a processor halt. Hit RUN to restart generation.

The first normal display is:

* ALPHA LSI OS:GEN *
GEN 0S (Y OR N)?

A response of "N" will terminate OS:GEN, and control will be passed to 0S as if a
routine load of 0S into memory had just taken place.

A response of "Y" will result in:

VOLUME TYPE, UNIT=

0S:GEN wants the physical unit on which the Operating System is to be recorded for
future use. Typically, the response will be "DO" but any appropriate output device may |
be named. '

NOTE

when floppy disk is used as the output device "FO" should be used.
"F1" thru "F3" are valid; but, will produce a system that will not
be autoloadable.

After OS has been recorded, the program will ask:
GEN AGAIN (Y OR N)?

Another copy of 0S may now be requested. It is advisable!to generate a copy df OS on
paper tape as an ultimate back-up. When 0S is loaded from paper tape, execution will
begin with OS:GEN itself. Thus, once the required configuration of OS has been gen-
erated on paper tape, it will never be necessary to go all the way back to the original
Root and Nucleus tapes, even if the ordinary system residence file is destroyed.

T I

e

B

A response of "N" will pass control to normal OS after the display:

* (OS:GEN COMPLETED *

A dummy time and date will be displayed; the operator should supply the actual time and
date with /TIME and /DATE commands.

'6.4.4 Labelling of System Residence Volume

The Operating System has now been recorded for future use on a disk, a cassette, or a
magnetic tape. Before this recording of 0S, called the System Residence Volume, can
actually be used -- for example, before the System Utility Programs can be copied onto
it -- the volume must have an OS volume label. If any one of the following conditions
apply, OS:LBL must be run now: i

-- The volume has never been labelled for use under OS.

. -- The volume has never been used previously as a System Residence Volume.
-~ The volume is a reel of magnetic tape.

‘ To label the System Residence Volume, ready the delivered paper tape of OS:LBL, and
enter:

/ASSIGN SF=PR
/EXEC X

0S:LBL will begin execution. A typical dialog between the program and the operator
would be:

NAME

?SYSRES

TYPE AND UNIT

?D0

DOES DO CONTAIN OS
2Y

ghVE 0S ’ é%

?2Y

@ Refer to Section 3.5, 0S:LBL, for the remainder of the labelling procedure.

o spessin

S B e

ComputecAutomation (Of\ ——

6.5 ADDING SYSTEM UTILITY PROGRAMS

6.5.1 General Considerations

The delivered System Utility Programs should now be added to the same physical volume
upon which OS itself resides. First, OS:CPY is loaded and executed from paper tape,
and used to copy the same tape to the normal SF device. Then 0S:CPY may be executed
from SF to copy most of the remaining utilities, including the Link Editor. Finally,

certain programs are linked onto SF.

Some thought should be given to the order in which programs are arranged on SF,
especially if SF is a magnetic tape or cassette. The most.-heavily used programs
should be as close to the beginning of the file as possible, to minimize access time.
Each installation must decide how to approach this question, or even whether to

consider it at all.

6.5.2 Copying OS:CPY

In the examples which follow, the default assignments shown earlicr in this chapter
are presumed to be re-established at the start of each new job. Recalling that
execution of a program from paper tape ignores the program name supplied on the /EXEC
command, the following procedure may be used to transfer 0S:CPY from the delivered

paper tape to the disk containing OS itself.

/JOB COPY OS:CPY TO OS VOLUME
/COMMENT READY OS:CPY TAPE ON PR
/ASSIGN SF=PR

/EXEC X

?

0S:CPY has begun execution, and wants parameters. Ready the 0S:CPY tape on PR once
more, and respond:

CB,PR,D0.0S:CPY,TE

When the program terminates, OS:CPY is on the disk, from which it may be executed
more conveniently for the following steps.

6.5.3 Copying Other Utilities

Section 6.3 identifies the System Utility Programs which may now be copied from the
delivered paper tape onto SI'. Be careful to ready the proper tape for each "CB"
command, so each program gets the right name. In theory, the name given to each
System Utility Program on SF need not be the same name used in CAI-supplied documenta
tion. However, those utilities which are loaded into the Transient Area of memory

must use the standard names. They are:

OS :LDR
OS : DMP
0S : DBG

oy i Tt e PSR R Tt

S I R BTEERE, e then

The following example shows how OS:LDR and OS:LNK are copied. Ready the OS:LDR tape
and enter:

/JOB COPY UTILITIES
/EXEC OS:CPY
2CB,PR,D0.0S:LDR

>

Now ready the OS:LNK tape and respond:
CB,PR,D0.0OS:LNK

Each time OS:CPY finishes with a paper tape,kready anothcr one and give another
command :

CB,PR,D0.0S :xxx

until all the utilities are copied. Then terminate OS:CPY and list the program names
for future reference:

?TE
/EXEC OS:VEW,DO,N,TE

6.5.4 Linking Utilities

The Operating System Assemblers, and certain System Utilities, must be linked (rather
than copied) onto SF from the distributed paper tapes. These programs are identified
in Section 6.3, Delivered Software. No special Link Editor parameters are needed:

/JOB LINK A UTILITY
/ASSIGN BI=PR,BO=D0.XXXXXX
/EXEC 0OS:LNK,TE

This concludes all system generation procedures, and routine jobs may now be entered.

6-8

B Bk

®

COMPUTER AUTOMATION, INC.

/ASsign
/BAtch
/BEgin

/CAncel

Appendix A

OS COMMAND SUMMARY

logical unit=physical device (or) logical unit
physical device

[address] [,pnraﬁeters]

/CQOmment [text]

/DAte
/EXec
/J0b
/Lst
/LOad
/NJob
/REsume
/S Tatus
/TIme

/TYpe

[aa/bb/cc]

program [, paramoter‘s]

[logical unit]

program

[paramctors]

[hh: mm: ss]

Y

:-

®

Appendix B

INPUT/OUTPUT AND EXLECUTIVE SERVICES SUMMARY

REQUESTS FOR INPUT/OUTPUT AND RELATED SERVICES

LABEL

LABEL

LABEL

LABEL

LABEL

JST
DATA
JMP

JST
DATA
JMP

JST
DATA
JMP

JST
DATA
JMP

JST
DATA
JMP

OPEN:
FCB
BUSY/ERROR

CLOSE:
FCB
BUSY/ERROR

10:
0B
BUSY/ERROR

WAI'T:
FCB
BUSY/ERROR

TEST:
FCB
BUSY/ERROR

Open a file.

Close 4 file.

Perform 1/0.

Wait for completion of 1/0.

Obtain status of a file.

REQUEST rFOR EXECUTIVE SERVICES

LABEL

LABEL

LABEL

LABEL

JST
DATA

JST
DATA

JST
DATA

JST

SUPV:
SRB

MSG:
MEG

SPND:
MSG

"TERM:

Request executive service.

Print message on CO unit.

Suspend program execution.

Terminate program.

COMPUTER AUTOMATION, INC. —

TK
TY
TR
TP

PR
PP

LP
CR

DO
to
Dn

MO
to
Mn

CO
to
Cn

FO
to
Fn

Appendix C

Computerautomation (O ——

OS PHYSICAL DEVICE NAMES

Teletype Keyboard
Teletype Printer
-Teletype Paper Tape Reader

Teletype Paper Tape Punch

High Speed Paper Tape Reader
High Speed Paper Tape Punch

Line Printer
Card Reader

Moving Head Disk Unit O

Open Reel Magnetic Tape Unit O

Digital Cassette Unit O

Floppy Disk Unit O
to
Unit n

to
Unit n

e B i e]

e

COMPUTER AUTOMATION, INC. @ —

Appendix D

0OS LOGICAL UNIT NAMES AND STANDARD FUNCTIONS

The function shown for each Logical Unit Name indicates how it is used by CAl-supplied
software programs. A user program may use a Logical Unit Name in any FCB for any
purpose, although consistency with the standard functions is recommended, and inter-
ference with the standard use of SF, CI, and CO is particularly inadvisable.

SF

ClI

CcO

LO

BI

LI

BO

SI

SO

SS

SA

S1
to
S4

01
to
nn

System File

Command Input

Command Output

List Output

Binary Input
Library Input

Binary Output

Source Input

Source Output
Source Save

Source Alternate

| Scratch 1

Scratch 4

Data Set 01

Datn Scl nn

Any program brought into memory by a /LOAD or /EXEC
command, or by a SUPV: request, must be on the current
SF.

Each system command or additional parameter is entered
thru CI. Conversational programs read from CI.

Messages from OS are directed to CO. Certain Executive
requests from programs produce a messagec on CO. Conver-
sational programs write to CO.

Information formatted into lines and pages is written to
LO for immediate or deferred printing.

Programs which process object code, such as OS: LDR and
OS:LNK, read primary input from BI.

Programs which process object code read secondary input
from LI.

Programs which generate object code, such as language
processors and OS: LNK, write to BO.

Input to language processors and to certain file-processing
utilities, such as OS:SFE, OS: CNC. and OS:VEW, is read
from SI.

Programs which generate new source code, such as OS: SFE,
write to SO.

Language processors store information on SS for a second
pass.

Programs which process source code, such as OS: SFE,
read secondary input from SA.

General use. OS:CPY always reads from S1, and writes
to S2, after forcing assignments to those units within OS.
Thesc assignments still exist after OS: CPY termination.
s0 S2 can be used immediately .

General usc. 01 to 06 are supplied in the delivered OS,
but more may be added durving system genceration, to a

maximum of 99.

b-1

'@

o b

Appendix E

0S STANDARD INTERRUPT BLOCKS AND DEVICE ADDRESSES |

The interrupt blocks shown here are part of the 0S Root Program, as described in the
section on System Generation.

STARTING ENDING DEVICE
INTERRUPT BLOCK LOCATION LOCATION ADDRESS
pPower Up : 0000 : 0001 -
Half-Duplex Teletypg : 0002 :OOO? : 07
Moving Head Disk :000A :000B :OF
Real Time Clock : 0018 :001B : 08
Power Down :001C . : 001D -——-
Console Interrupt or TRAP :001E :001F -—-
Open Reel Magnetic Tape : 0022 : 0027 :09
HS Paper Tape Reader/Punch . :002A : 002F : 06
Line Printer : 0042 : 0047 :04
Card Reader : 004A : 004F : 05
Digital Cassette : 0052 : 0057 :10
rloppy Disk TT=-= 0 TTETT :11

-1

e A

AN
DEVICE
HSPT Reader
HSPT Punch
. Card Reader

Line Printer

Magnetic Tape

Digital Cassette

Moving Head Disk

Floppy Disk

Appendix F

MAKE and MODEL

Reméx
Digitronix

Remex
Facit

Bridge 8000

Peripheral Dynamics C301
Documation

Centronics 101

Data Products 2310

Data Products 2410

Pertec 7820

Computer Automatidn, Inc.

Diablo Model 31/33,41/43

Computer Automation, Inc.

F-1

PERTPHERAL DEVICES SUPPORTED UNDER OS

Computerutomation (O ——

INTERFACE REQUIRED

53223
53223

53223
53223
53223
53223
53223
53223
53223
53223

53224-y7
53224-21

53240-X4

53264-Y2
53263-Y0

53566

above OR
above

above.

above AND
above

PAGE

LINE
9082
2003
gfa4
"T.I'L
20086
@007
20088
90089
2019
2011
2812
2013
8914
| . 2015

8016

0817

8018
Q@ 2019

@028
9021
0822
2023
P0824

2025
806

S’

(113

LocC

2FDo

2FDD
2FD1
QFD2
2FD3
2FD4
2FD5
2FD6
2FD7”
2FD8

2FD9’

2FDA
2FDB
2FDC

2FDD
2FDE
2FDF
2FED

11/028774

INST

PROF

FAQY
poade
E641
C2@cC
6F78
5978
1354
2104
407¢C
497C
Fod1
Fed7
Foap
eeac
8290
o0@4
2109
9800
2FDy

ERRORS

ADDR

2FD1
2FD1

2FDC

2FD9
2FD4
0oon

17326305 ALPHA 16/L8I DISK LOADER

LABEL MNEM
L]
"
] .
*COPYRIGHT
*

REL
DA EQU

]

START JS87
DATA

Loc LOX
AXI

AGAIN WRX
RDA
LLA
JAZ
SEL
SEN
JIMP
JMP
JMP

DELTA EQU
DATA

END

OPERAND COMMENY

96537=A0

1974 COMPUTER AUTOMATION INC
$2FD@ BINARY RELOCATIBLE

217 DISC DEVICE ADDRESS
b1 WHERE AM 17

"

$el

DELTA POINT TO TABLE
DA, READ FROM DISC
DA,O GET STATUS

5

§¢6 0K?

DA,4 NO

DA,4 RESET AND WAITY
§~-1 ‘

AGAIN TRY AGAIN

9 GUTO BOOT w2
$=~L0C+1

0,4,256,0 DISC CONTROL WORDS

START

Appendix G

BOOTSTRAP FOR DOS WITHOUT AUTOLOAD

G-1

&

PAGE

LINE
vee2
0003
0004
"11'}.]
0806
gee7
@égos

" 989

pele
go11

012

2013
014
9915
0916
0017
8d1s
2819
ueze
o2}
o22
0023
po24

poes

08226
a2y
9028
23029
"L RT
a3t
332
8a33
pA34
2938
0836
ped7

208ve

oget
Loc

2800

2800
2891
28p2
2893
2894
2805
2806

- 2807

2808
2809
280A
2808
280C
280D
280E
<2BOF
2810
2811
2812
2813
2814
2846
2816
2817
2818
2819
281A

11/01774 923118348 ALPHA 16/L8S1 0S8 MAG TAPE LOADER

INST ADDR LABEL MNEM OPERAND COUMMENT

@009
2800
404C
404,
4948
F681
0108
4948
F601
404C
404F
5949
1357
484D
F6@C
4949
F623
7949
484D
F2es
4949
F623
9c20
0128
F620
484C
F618
4p4C
Fo@a
2802

ERRORS

28p2

2805

28¢9

2808

2817

28412
P00

2809
2800
0a09

L]
"

*
#COPYRIGHT
"
REL
MT EQU
78007 EQU
TBOOT2 SEL
SEL
SEN
JMP
ZXR
SEN
JHP
8EL
SEL
TBOOT1 RDA
LLA
SSN
JMP
SEN
JMP
RBA
88N
JMP
SEN
JMP
8STA
IXR
JHP
TBOOT3 SSN
JMP
SEL
JMP
END

96535=D0

1974 COMPUTER AUTOMATION INC

;28080 LOCATE BOOT = OR > 32200
9 MT DEVICE ADDRESS
$
MT, 4 ERROR, RE=~INITIALIZE
MT,2 REWIND TAPE
MT,3 WAIT UNTIL DONE
S=1
STARTING LOAD LOCATIO. = 2
MT,3 WAIT UNTIL YAPE READY
$=1
MT, 4 INITIALIZE VAPE
MT,7 SELECT READ MQDE
MT, 1 READ HIGH ORDER BYTE
8 MOVE IT OVER
MT,5 END OF RECORD?
TBOOT2 YES, LDST A BYTE
MT,1 BUFFER READY?
$=3 NO, KEEP TESTING
MT, 1 READ LOW URDER BYTE
MT,5 END OF RECORD?
TBOOT3 YES, DONT S10RE CRC
MT,1 BUFFER READY?
$e3 NO, KEEP TESYING
o0 YES, STQRE WORD
INCREMENT ADDRESS POILTER
TBOOT1 READ NEXT WORD
MY, 4 PARITY ERROR?
TBOOT2 YES, DO IT OVER
MT,4 NO, INITIALIZE TAPE
) BEGIN EXECUTION AT LO~ :0P002
TROO)
Appendix H

BOOTSTRAP FOR MTOS WITHOUT AUTOLOAD

o
a @
: PAGE 9001 11/01/74 22319381 ALPHA 16/.SI CASSETTE LOADER
|' __ LINE LOC INST ADDR LABEL MNEM QPERAND COMMENY
il ".I"F] "
B 0043 * 96536=D0
P04 "
pees «COPYRIGHT 1974 COMPUTER AUYOMATION IuC
2906 »
2007 2800 REL $280¢ LOCATE BOOT = OR > 32200
0008 pR10 CA EQU 16 CASSETTYE DEVICE ADDRESS
| 2029 2g0@0 CBOOT EQU & ~
o 8010 2800 49284 CBOOT3 SEL CA,4 ERROR WANDLING, INITI.LIZE
BE 9611 2821 C60A LAP A ISSUE RENWIND
0812 2802 6083 WRA CA,3
2013 2823 Bic8 ZXR STARTING LOAD LOC = g
314 2824 4084 SEL CA,4 INITIALIZE CASSETTE
' ‘ 9815 28085 6983 CBOOT& WRZ CA,3 ISSUE READ MODE FUNCTyON
29016 2806 4884 CBOOT) SSN CA,4 END OF RECORD?
o . 9017 2837 F20C 2814 JMP CBOOT2 YES
e 9018 2808 4987 SEN CA,7 BUFFER READY?
@ 8019 2829 F643 2806 JMP CBOOT! NO, KEEP CHECKING
z 8028 28pA 5987 RDOA CA,7 READ MIGM ORDER BYTE
@821 2898 1367 LLA 8 MOVE IT OVER
. 9022 28pC 4884 SSN CA,4 ENO OF RECORD?
; @823 280D F60D 2800 JMP CBOOT3 YES, LOST A BYTE
| 9024 280E 4987 SEN CA,7 BUFFER. READY?
| @025 28pF FOE3 280C JMP §~3 NO, KEEP TESTING
W @826 2810 7987 RBA CA,7 READ LOW ORDER BYTE
o 0827 2811 9cUR 0000 STA o0 & 8TORE A WORD
\ 2028 2812 9128 IXR INCREMENT ADDRESS POIWLTER
| 8029 2813 F60D 2806 JMP CBOOTY READ NEXT WORD
i 9030 2814 C610 CBOOT2 LAP 310 TEST FOR PARITY ERROR
| 9031 2815 5082 RDAM CA,2 0
| 0032 2816 3166 2800 JAN CBOOTI3 YES,PROCESS ERROR
2033 2817 4284 SEL CA,4 INITIALIZE
‘ 9034 2818 Fode 0080 JMP D EXECUTE AT LOC @
2035 2802 ENDO CBOOT

| @908 ERRORS

Appendix I

| :
*l‘ : BOOTSTRAP FOR COS WITHOUT AUTOLOAD
|

I-1

B S e s e T

Q

(e

ComputerAuicmation

18651 Von Karman, Irvine, Calif.

ENGINEERING

NOTICE

NO.

R1

L 151661 (s

DOCUMENT NO. REV.

18

(WAS

TITLE

INCORP
DATE -

A-MANDI/FUNC

96530 D7

D7

SOFT - OPERATING SYSTEM

B-NON-MAND/FUNC

C-RECORD CHG
D-DEVIATION

STOP ORDER

AEN

CLASS

HARDWARE CHG.
SOFTWARE CHG.

PUBLICATIONS CHG.

——

EFFECTIVITY:

CAPABLE CHG.

00Ro | 00DO0OR

DISPOSITION

ACTIVITY U(R

REASON FOR CHANGE:

If a disk is physically WRITE-PROTECTED
and has only one partition, OS will declare

a WRITE-PROTECT error co;’rectly. However,
if the user clears the physical WRITE-PROTEC

REANO. (24505

ONORDER__

N .

CO-ORD W|TH:

IPP -V
IPT 4

INSTOCK | J7T

FIN GOOPS

but does not

do a /JOB before the second OPEN-for-WRITE request, then
the WRITE PROTECT error will again be reported.

CUST RET

NQIIFY VEND

AFFECTED ITEMS:

SOFTWARE PROG.
PUBLICATIONS

CAP. PROGRAMS

CONFIGURATIONS

PROCEDURES

TOOLING

| TESTEQUIP.

DESCRIPTION OF GHANGE:

A. 96530-00 SOFT - OPERATING SYSTEM

Do a /JOB command after a physical WRITE-PROTECTED
disk has been cleared for writing.

r__..

APPROVALS

ENGR.

| SOFTWARE |

ac. TS

PROD. CONT.
MATERIALS

TEST ENGR.

CAP. TEST (v oRC

TECH SERV

| CUSTSERV [zAc 2
IND ENG
PUBLICATIONS

DRAWN BY: J, FINE

[
4

TR

i o A s] 8 st S

A

NOTE ON [SSUE D7 OF OS

The version of the Operating System delivered with this package is D7. (The
D6 revision level OS was a documentation change which is incorporated in
the updated User Manual sheets.)

The new OS comprises:

- OS ROOT , 96529-20D7
OS NUCLEUS 96530-30D7

Apart from correcting all outstanding errors, the main feature of the new version
is the inclusion of DIOS device drivers for the following device-types:

Line Printer (Data Products or Centronics)
High Speed Paper Tape Reader
High Speed Paper Tape Punch
Card Reader
CRT
N.B. The CRT is assumed to be on DIOS channel 2

It is intended that OS will be configured by you either for DIOS peripherals or
for non - DIOS peripherals, not a combination, and only 1 unit of each device-
type is allowed. However, if you do configure with mixed DIOS and non-DIOS
devices, take care when editing ROOT, to ensure that LOBP: (Page 20 of the
ROOT Listing) is set correctly - deleting lines 571 - 573 will be best.

If a CRT is included in your configuration, it will not replace the teletype
connected to the Option Card. Instead it will be used as device TV both for
input and output.

Finally on this new OS, please note the instructions on Page 1 of the ROOT
Listing concerning the jumpering of the DIOS to offset interrupts to: 100. This
must be done.

Included with the new OS software is an updated version of OS:HDR for use
with a DIOS - connected HSPTP. NOTE: Do not use this new OS:HDR with
an old OS. Operating instructions are still the same.

C.A.Il. Limited
EUROPEAN TECHNICAL SUPPORT GROUP December 1976

L o

e b b B e

-

Note on OS: LDR

OS: LDR 96542-C0

When a program which ‘writes to scratchpad locations is
loaded by OS: LDR, the OS user scratchpad usage

information is not correctly updated.

The following observations should be noted:-

1. Information returned after the use of the OS
Status command or executive service SUPV
Code 1 may not be accurate.

2. The loaded program should, however, be
able to correctly access the required scratchpad
locations.

3. Scratchpad violation by overlayed programs
may not be detected.

C.A.l. Limited
EUROPEAN TECHNICAL OPERATIONS March, 1977

NOTE ON OS - DELETED FILES

O.S. 96530 - D7

For those users who find themselves in the position where they need to recover
information from a file which has been accidentally or prematurely deleted, it
is possible to apply a temporary patch to the File Manager which will enable
OS:CPY to copy the "deleted" file to a new active file.

For this patch to work successfully, there must not be any other previously
deleted file (on the same disk) bearing the same name as the one you wish
to recover.

The patch is as follows:-

‘Location Old Contents New Contents
‘FM:OPN + :127 = :2081 ‘ :F83B
:003C :083C 11150
:003D :083D :13D0
:003E :083E :9C09
:003F :083F :F704

This patch may be applied to using OS:DBG, and then OS:CPY can be used
in the normal way. E.g. if a source file BASE on D1 has been deleted, then,
after patching, do: '

/EX OS:CPY,CS,D1.BASE,D1.BASE2, TE

Having accomplished the recovery, OS should be re-loaded.

CAl Limited
EUROPEAN TECHNICAL SUPPORT GROUP

EUROPEAN TECHNICAL OPERATIONS March 1977

ComputerAutomanon M “-r ——

SOFTWARE ERRATA NOTICE

PROGRAM NAME PROGRAM 1D ERRATA # DATE
-0S ROOT 96529-D7 823 12/13/176

DESCRIPTION OF PROBLEM

A Data Products Line Printer will not line-feed properly when Root is set up to assume
a Data Products printer.

EFFECTIVITY (VERSION)

Version D7 of OS Root, applicable only to OS usage with Data Products line printers,

DESCRIPTION OF CHANGE

The source file of OS Root should be edited and reassembled so that the value in LP:UCB+:t
becomes :0201, rather than :0200. In the standard supplied listing of OS Root, this change
is required at lin2 no. 892. Alternatively, OS may be patched in memory at location
LP:UCB+4 (determined from link map) as follows:

LOCATION : OLD CONTENTS NEW CONTENTS
LP:UCB+4 :0200 :0201

(LD:UCB+4 if DIO)

APPROVED BY:

L5

oot e e e R e

Note on OS Overlay Facilities

OS NUCLEUS 96530-D7

The OS Executive service call SUPV: code 8 requests the
loading of a program overlay.

In the OS Manual, attention is drawn to the fact that the
requested load must fall completely within the User Area

of Memory and must not overlay the request coding sequence
nor related SRB, The OS will trap violation of User Area of
Memory and scratchpad locations used by the request program.
It is recommended that the User ensures that an overlay
program will not overlay memory locations unprotected by

the OS.

C.A.Il. Limited
EUROPEAN TECHNICAL OPERATIONS March, 1977

e S e g S ¢

T

SOFTWARE ERRATA NOTICE

PROGRAM NAME
08 FILE MANAGER

PROGRAM 1D
96533-D1

ERRATA #
243

DATE
10/22/76

DESCRIPTION OF PROBLEM

It is possible to create two files with the same name on a disk, if the second is opened

before the first has closed.

EFFECTIVITY (VERSION)

Applies to OS Version 96530-D7 and all previous versions.

DESCRIPTION OF CHANGE

This situation can only occur if two different LUNs are assigned to the same file name on

the same physical unit in an attempt to create two new files.

situation when making file assignments.

Users should avoid this

APPROVED BY:

17 O

SOFTWARE ERRATA NOTICE

‘m«ums_—_-_-

PROGRAM NAME
OS:CNC

PROGRAM 1D
96548-A1

ERRATA #
494

DATE
9/1/76

DESCRIPTION OF PROBLEM

listings.

Batch mode causes resetting of source line numbers between each concordance. The current
line number should be saved, so that the numbers will match the corresponding assembly

EFFECTIVITY (VERSION)
Version 96548-A1

DESCRIPTION OF CHANGE

d Location

:80
:BI
:82

€ | :00s5pR0

Old Contents

After loading OS:CNC, but prior to execution, make the following patches with OS:DBG:

New Contents

:0110
:F182
:0061R0O
:F080

APPROVED BY:

FORM 78007A

by

B et

-

SOFTWARE ERRATA NOTICE

A

PROGRAM NAME
OS:CNC

PROGRAM D
96548-A1

ERRATA ¥
611

DATE
9/1/76

DESCRIPTION OF PROBLEM

OS:CNC does not list references to labels used as operands in the following instructions:

DVD
DVS

MPS
MPY
NRM

O
EFFECTIVITY (VERSION)
Version 96548-A1
DESCRIPTION OF CHANGE
After loading OS:CNC, but prior to execution, make the following patches with OS:DBG:
‘ Location Old Contents New Contents
:0525R0 | :D6C4 :CSCE
:0526R0 :C4D6 :C4C9
c :0527R0 :D3C4 :CEC4
:0543R0 :DOD3 :DOC5
:0545R0 :DSCE :C5CE
:054ERO :CDCE :C1CE

APPROVED BY:

o<

it st

A

SOFTWARE ERRATA NOTICE

PROGRAM NAME
FSAVE

PROGRAM 1D
96955-A2

ERRATA #
747

" DATE
8/25/76

DESCRIPTION OF PROBLEM

FSAVE will copy 43-type disk drives (200 cylinders), but not 44-type (400 cylinders). The
patch below wiil allow copying of any size drive up to 410 cylinders. '

EFFECTIVITY (VERSION)

Version 96955-A2

DESCRIPTICON OF CHANGE

After loading FSAVE into memory, but prior to execution, make the following patches:

LOCATION

:1DTF
:1D8F
220638
:2078

OLD CONTENTS

:12C0
:12C0
:12C0
:12C0

NEW CONTENTS

22670
22670

12670

12670

APPROVED BY:

Vi

7N

I, Gy
/ {" ',v(:._.

FO3M 78007A

a#

Note on Scratchpad Map and OS:LNK

"OS:LNK 96549 - B2

For users with a Teletype as the only listing device, it is possible to modify
OS:LNK to cause the Scratchpad Usage Table to be omitted from the listing,
thereby reducing the time taken to produce the link-load details:

Location Old Content New Content
OS:LNK + :A66 :FA92 :F22F

C.A.l. Limited
EUROPEAN TECHNICAL SUPPORT GROUP December, 1976.

"*4 e Bles it L e

K e i

mcommmmm

Preliminary Errata Notice for OS:ILD

OS:ILD 96551 - A2

Magnetic Tape users only

It is not possible to load a program from M1, M2 or M3. If it is attempted,
OS:ILD loads the first record correctly, then, after relocating itself to upper
memory, it will load the next record from Mg,

In order to allow loading from other than M@, users should modify OS:ILD
as follows:

Location Old Contents New Contents
OS:ILD + :186 :F235 :C28¢
+:108 :C603 ;9048
C :8209C :C6@3
D :9B@C :820B
E :C704 :C3CD
F :8BgA :3885
11g :C408 :1128
1 :13A8 g%10)"
2 4150 :39C2
3 :3142 :EBEC
4 :1328 :F229
5 :EBGA :9Bg4
C.A.l. Limited

EUROPEAN TECHNICAL SUPPORT GROUP ~ December, 1976.

PR

e At

o

rns

SQFTWARE ERRATA NOTICE

PROGRAM NAME PROGRAM D ERRATA 4 DATE
O8:ILD 96551-A2 634 6/22 76

DESCRIPTION OF PROBLEM

Program loading from Floppy Disk is handled incorrectly when the prog,mm to be loaded
falls across a partition boundary.

EFFECTIVITY (VERSION)

Y6551-A2

OESCRIPTION OF CHANGE

l.oad OS:ILD, then make the following patches with OS:DBG prior to execution:

I.LOCA TION OLD CONTENTS NEW CONTENTS
3FERO :E217 : :E20F
:40BRO . :0000 :0050

APPROVED BY:

e ST O
f/

e 21

Preliminary Errata Notice for OS:VEW

OS:VEW 96545 - C2

The F command, which lists the contents of a specified file, produces a
78 - character output line, This causes the last 6 characters to overprint
each other when output is directed to the.Teletype printer,

For users with a Teletype as the only listing device, the following patch will
cause only 72 characters to be printed per line, the first 6 blanks (spaces)
being omitted from the print buffer:

Location Old Contents New Contents
OS:VEW+;555 :CO4E :C648
+:55/7 :HEH/Y :C243
8 :B659 :FF7A
9 21010 :B65A
A :F63A :317A

The Patch can be done using OS:DBG and then a new file may be created

using OS:DMP,
Note: the new program file is only valid for the OS under which the

modification was made. If OS is reconfigured, OS:VEW must be
re-modified, and the old modified file must be deleted.

C.A.l. Limited

EUROPEAN TECHNICAL SUPPORT GROUP - December, 1976.

e R PR T S

e e mComputerAutonmtion——vv--—————————y

ERRATA NOTICE FOR OS:ILD FOR USE ON FLOPPY DISC

OS:ILD - 96551-A2

OS:ILD sometimes has difficulties loading files from Floppy Diskettes due
to incorrect handling of records which cross partition boundaries.

The following patch cures this fault.

In addition, a second 1-word patch ensures a correct first-time seek.

Address Old Contents New Contents
OS:ILD + :3FE :E217 :E20F
OS:ILD + :40B :0000 :0050

Patch implementation:

The following method should be used to carry out the above patching.
Note that the new file is absolute and should be re-created whenever
OS is re-configured:~ (user typing is underlined).

> /LOAD OS:ILD

> JEX 0S:DBG
OS:DBG 3BF7

? 13FERO

1BCO E217 E20F

? 140BRO

1BCD 0000 0050

?T

> /AS BO = F1.NEWILD

> /EX OS:DMP

C.A.l: Limited
EUROPEAN TECHNICAL SUPPORT GROUP July 1976.

e

SOFTWARE ERRATA NOTICE

PROGRAM NAME PROGRAM ID ERRATA # DATE
0OS:DBG 96546-A1 464 /21775)

DESCRIPTION OF PROBLEM

A i command file which calls OS:DBG (/EX OS:DBG, ete.) will not be exccuted correctly
from a file type device (disk, floppy disk, magnetic tape) since OS:DBG uses OPEN: and
CILOSE: calls to the CI unit internally, rather than using SUPV: calls. This effectivelv
causes a rewind of the CI file when it is first OPF.Ned hv OS:DRG.

EFFECTIVITY (VERSION)

Version Al

~PESCRIPTION OF CHANGE

OS:DBG may be included in /BAtch job control sequences from non-bulk devices only.

APPROVED BY:
,v//‘ P

J .

