
1---------------------------------
'~" 

J 

Engineering Reference Number 
9O-93410-00CO 

REAL·TIME EXECUTIVE 

RTX4 

USER'S MANUAL 

93410·90 

FEBRUARY 1979 

C.~mputerAutomation, 

NAKED MINI. Division 
HERTFORD HOUSE 

DENHAM WAY, MAPLE CROSS 
RICKMANSWORTH, HERTFORDSHIRE WD3 2XD 

Telephone Rickmansworth 71211 Telex 922654 

© 1978 Computer Automation. Inc 
, Prinh~d In U.s ,\ 

eo 



--~ CompuUw~~~--------------____________________________ __ 

o 

Revision 

AO 

Al 

A2 

A3 

80 

81 

82 

83 

co 

REVISION HISTORY 

Issue Date 

May 1977 

August 1977 

October 1977 

October 1977 

January 1978 

April 1978 

October 1978 

December 1978 

February 1979 

- i 1 

Comments 

Original Issue 

Miscellaneous revisions to manual 

Miscellaneous revisions to manual 

Revisions to demonstration program 
appendix 

Additions to system services; 
changes to system tables 

Production release 
I 

Clock option added, other mino~ 
revisions; manual reformatted and 
reorganized. 

MDBUG4 and XDBUG4 options added; 
minor documentation errors corrected. 
Additions to rescheduling. 

Production release; incorporating 
all previous changes. 



t.·.'i. 

f 
~. ,. 

,. 
1 
f: 
.! 

~ i 
I 

i-
., 
i 

o 

.. 

iie 

~ 

--~~~~~~-------------------------------------------

PREFACE 

This manual describes Computer Automation's Real-Time Executive 
(RTX4), a package of software modules designed to provide the 
overhead functions and scheduling services associated with 
a real-timet multi-tasking environment. 

This manual is intended to serve both as a learning tool for 
programmers, new to RTX4, and as a reference source for 
experienced users. Section 1 provides an introduction to 
RTX4 and its use. System initialization, the first operation 
performed by the program, is discussed in Section 2. The 
fundamental concepts of tasks, activities, environment, and 
semaphores are elaborated in Sections 3-6. Special facilities 
provided to RTX4 users -- system clocks and the mailbox -- are 
described in Sections 7 and 8, The appendices prov·ide a glo:.sary, 
descriptions of. the RTX4 tables, detailed information on the 
RTX4 services, M4D12 addressing format, RTX4 exceptions, 
configuration options, and a demonstration program. 

The following Computer Automation Incorporated documents prov'de 
information related to the use of RTX4: 

• OS4 System User's Manual (93460-90) 

• NAKED MINI 4 Assembler User's Manual (93500-80) 

• Input/Output Subsystem 1054 User's Manual (93430-90) 

• NAKED MINI 4 ~ebugging Monitor Reference Manual (93015-90) 

• LSI 4/10, 4/30, or 4/90 Computer Reference Manual (20990-91, 
20991-91, or 20945-91, respectively) 

Contact your CAL representative for copies of these documents or any 
other CAl documents. 



o 

.. 

--~CQm~~~~------------------------------.-------

SECTION 1 

SECTION 2 

SECTION 3 

CONTENTS 

BASIC CONCEPTS OF REAL-TIME SYSTEMS 

1.1 INTRODUCTION 

1.2 AN ANALOGY. 

1.3 INTERRUPT PROCESSING 

1.4 PROGRAMMING BY FUNCTIONS 

RTX4 USAGE . . . .. 

2. 1 INTRODUCTION 

.',. . 

2.2 RTX4 SYSTEM SOFTWARE ..... . 
2.2.1 System Software Diskettes 
2.2.2 System Software Paper Tapes 

2.3 RTX4 MACROS ........ . 
2.3.1 Table-Generating Macros 
2.3.2 Service Macros .... 

2.4 RTX4/IOS4 PROGRAM DEVELOPMENT 
2.4.1 Designing the Program 
2.4.2 Coding the Program .. 
2.4.3 Assembling the Program 
2.4. 4Li nki ng the Program . . . 
2.4.5 Loading and Executing the Program 
2.4.6 Debugging the Program 

TASKS ... 

3. 1 INTRODUCTION. 

3.2 TASK RESOURCES . . . . " . . . 
3.2.1 Initial Register Context 
3.2.2 Stack. . . . . 
3.2.3 Y-Scratchpad .. 

3.3 SERIAL/REENTRANT TASKS. 
3.3.1 Serial Tasks . 
3.3.2 Reentrant Tasks .... 
3.3.3 Memory Requirement.Guide 

3.4 TASK DESCRIPTOR BLOCK 
3.4.1 TDB:A Macro .. 
3.4.2 Examples ... 

'. 

1~ 1 

1-1 

1··1 

2-1 

2-1 

2-2 
2-' 
2-3 

2: I 
2-8 
2' 'J 
2-11 
2~ 11 
2-11 
2"12 

3-1 

3-1 
3- '1 
3-1 
3-2 

1"4 
3··5 
3-5 
3.-7 

3-7 
3-7 
3'-8 



·~i _ tPta eom ...... -Automation ~ I: ~~ .... -, ----------------
" 

SECTION 4 

o -;ECTION 5 

SECTION 6 

ACTIVITIES . 

4. 1 INTRODUCTION. 

4.2 ACTIVITY OPERATION 

4.3 ACTIVITY CONTROL . . 
4.3.1 R:BGIN Service 
4.3.2 R:END Service. 
4.3.3 R:GPRI and R:SPRI 
4.3.4 R:CINT Service 

4.4 ACTIVITY CONTEXT ... 

. . . . 
Services 

SYSTEM INITIALIZATION AND ENVIRONMENT DEFINITION 

5. 1 INTRODUCTION. . 

5.2 INITIALIZATION BLOCK 
5.2.1 INIT:A Macro 
5.2.2 Example. . 

5.3 SYSTEM FREEPOOL .. 
5.3.1 Freepool Size. . ... 
5.3.2 The Freepool and Debugging 

5.4 ENVIRONMENT CONTROL BLOCK 
5.4.1 ECB:A Macro ... 
5.4.2 Example. . 
5.4.3 EDXVT:A Macro. 

5.5 ENVIRONMENT MEMORY POOL 

5.6 BUFFER ALLOCATION . 
5.6.1 R:ABUF Service 
5.6.2 R:RBUF Service 

SEMAPHORES 

4-1 

4-1 

4,-2 

4-3 
4-4 
4-4 
4-5 
4-5 

4-6 

'I 

5-1 

5-1 
5-1 
5-2 

5-2 
5-3 
5-5 

5-6 
5-6 
5-6 
5-6 

5-7 

5-7 
5-8 
5-8 

6-1 

6.1 INTRODUCTION. 6-1 

6.2 ALTERNATIVE APPROACHES TO INTERTASK COOPERATION 6-1 
6.2.1 Producer-Consumer Cooperation. . 6-1 
6.2.2 Resource Sharing ........ 6-3 

6.3 SEMAPHORE SOLUTIONS TO INTERTASK COOPERATIO~ 
PROBLEMS. . . ... .. 6-3 

6.3.1 Producer-Consumer Problems 6-4 
6.3.2 Resource Sharing 6-4 

6.4 SEMAPHORE DEFINITION BLOCK. 
6.4.1 SDB:A Macro 
6.4.2 Example 

6-5 
6-5 
6-5 



. , , 
.. 

" . 

I 

~' _tPlA\ ComputerAutomation<P);;;. ____________________ _ 

f' ~\l 
~ 
~ I 

SECTION 7 

o 

SECTION 8 
o 

' .. 

6.5 SEMAPHORE OPERATION . 
6.5. 1 R: SIG Servi ce . 
6.5.2 R:WAIT Service 
6.5.3 Example. 

SYSTEM CLOCKS . . 

7.1 INTRODUCTION 

7.2 TICK CLOCK OPERATION 

7.3 TICK CLOCK TIMERS .. 
7.3.1 R:ITIC Service 
7.3.2 R:MTIC Service 
7.3.3 R:CTIC Service 

7.4 ROUND ROBIN SCHEDULING 
7.4.1 R:PAUS Service 
7.4.2 Example ... 

7.5 WALL CLOCK OPERATION. 

7.6 WALL CLOCK VALUE DEFINITION/ACCESS 
7.6.1 R:STOD and R:GTOD Services 
7.6.2 R:SATD and R:GATD Services 

7.7 WALL CLOCK TIMERS .. 
7.7.1 R:AWAL Service 
7.7.2 ,R:IWAL Service 
7.7.3 R:CWAL Service 

MAILBOX .. 

8. 1 INTRODUCTION 

8.2 MAILBOX DEFINITION. 
8.2.1 MDB:A Macro .. 
8.2.2 'Mailbox Storage. 

8.3 MAILBOX OPERATION .. 
8.3.1 R:SEND Service 
8.3.2 R:RECV Service 

8.4 SAMPLE SEQUENCE ... 

6-5 
6-7 

. . 6-7 
6-8 

7" I 

7··1 

7··2 

/-3 
7-3 
7-3 
," 4 

! " !) 

7-5 
" 

,5 

6 

"1-7 
/-8 
7-8 

7-8 
i -9 
7-9 
/' 10 

j~l 

B-1 

8-3 
:.;, 3 
8-3 

8-3 
8-3 
8-4 

8"4 



~ . 
• 
i' 

ij --~ ComputerAutomation~=----------------------
'1 

o 

iO 

APPENDIXES 

A GLOSSARY.. 

B RTX4 TABLES 

B. 1 INTRODUCTION 

B.2 TASK DESCRIPTOR BLOCK . 

B.3 ENVIRONMENT CONTROL BLOCK . 

B.4 MAILBOX DEFINITION BLOCK 

B.5 ACTIVITY CONTROL BLOCK 

B.6 CLOCK CONTROL BLOCK . . 

B.7 SEMAPHORE DEFINITION BLOCK 

B.8 INITIALIZATION BLOCK ... 
B.9 RTX4 SERVICE PARAMETER BLOCKS .. 

C RTX4 EXCEPTIONS . . . 

o CONFIGURATION OPTIONS 

D~l INTRODUCTION .. 

0.2 NONSTANDARD LINE FREQUENCIES . 

0.3 PROGRAM RESTARTS WITHOUT RELOADING 

0.4 DEBUGGING FACILITIES .. 
0.4.1 The DEBUG4 Option 
0.4.2 The MDBUG4 Option 
0.4.3 The XDBUG4 Option 

0.5 WALL CLOCK OMISSION ... 

E RTX4/IOS4 APPLICATION DEVELOPMENT SYSTEM GENERATION 

F 

G 

H 

USING OS4 . . . . 

E. 1 INTRODUCTION . . . . . 

E.2 RECOMMENDED PROCEDURE. 

E.3 SAMPLE APPLICATION PROGRAM 

RTX4 DEMONSTRATION PROGRAM . 

RTX4 MACRO SUMMARY . . . . 

RTX4 MACRO FILE CONTfNTS . 

A-l 

1.1-1 

B-1 

B-2 

8-4 

8-6 

B-7 

8-8 

8-9 

8-10 

8-11 

C-l 

D-1 

D-1 

0-1 

0-1 

0-2 
0-2 
0-2 
0-2 

0-3 

E-l 

E-1 

,E-1 

E-3 

. F-l 

G-j 

4·'1 

,.f!"'>'\ 

\c1 



;i 
:t-! 
!.i 

.J 

!~ 

o 

o 

--~CGmpuhw~m~~~--------------------------------------____ __ 

Figure 

1-1 
1-2 
1-3 

2-1 
2-2 
2-3 
2-4 

3-1 
3-2 
3-3 
3-4 

4-1 
4-2 

5-1 

6-1 
6-2 
6-3 

7-1 

8-1 

E-1 
E-2 

F-l 
F-2 

Table 

5-1 

7-1 

C-l 

C-2 

FIGURES 

Analogy of a Real-Time System ..... 
Real-Time Interrupt Processing Concepts. 
Example Processes . . . . . . . . . 

RTX40rganization ... 
Dividing an Application 
User Program Structure 
Map of A 11 Memory . . . 

Stack . . . . . . . . . 
Y-Scratchpad Allocation 
Serial Approach .... 
Reentrant Approach . . 

Task with One Activity 

into Tasks 

and Access 

Task with Multiple Activities 

Functional Organization of System Freepool 

Producer-Consumer Problem Non-Semaphore Solution 
Flow of Semaphore Operations 
Formats of Semaphore Word . 

RTX4 Clocks .... 

Processing Messages in the Mailbox 

RTX4/IOS4 Example Application Program ..... . 
Memory Map of Linked RTX4/IOS4 Example Application 

Program . . : . . . . . . . . . . . . . . . . 

RTX4 Demonstration Program ......... . 
Memory Map of Linked RTX4 Demonstration Program 

TABLES 

Freepool Blocks for RTX4 System Services 

Real-Time Clock and Tick Clock Parameters 

RTX4 Exceptions . . ;. 

Error Code Indicators 

Page 

1-1 
1-3 
1-5 

2-1 
2-8 
2-10 
2-12 

3-·2 
3-:~ 

3- " 
3-5 

4-1 
4-1 

5-~ 

6-2 
6 j 

6-7 

7-1 

8-2 

E-4 

E-ll 

F-2 
F-15 

7-2 

C-l 

C-3 



--~Com~~~~---------------------------------------

I~ 

SECTION 1 

BASIC CONCEPTS OF REAL-TIME SYSTEMS 

1.1 INTRODUCTION 

Computer Automation's Real-Time Executive (RTX4) provides a real-time, multi-
~ tasking environment for user-written applications. 

o 

This introductory section discusses some of the concepts that are fundawentdl 
to real-time systems in general. Subsequent sections of this manuJl describe 
the use of RTX4 in particular. 

1. 2 AN ANALOGY 

The following analogy of an auto repair garage and its activities, i11ustratea 
in Figure 1-1 t introduces the basic concepts of a real-time system and tl 
functioning of its component parts. 

TASK 
Replace a 

Transmission 

\~ 
~ACTIVITY 

~ 
ACTIVITY 

JOE'S GARAGE 

--1 
,"---~-j 

AL'S RENTALS 

K12 
Wrench 

ACTIVITY 
ANDY'S GARAGE 

---------------------_ .. _. -,-----~~" "--,,,',.-.-

Figure 1-1. Analogy of a Real-Time System 



i: _tPlM. ComputerAutomation(!)-----------------------t ~~ 
~i 

;'1 

Assume that all mechanics change transmissions in all cars the same way. We may _ 
think of IIreplacing a transmission ll as a task. It consists of a series of • 
well-defined steps using a certain set of tools. At many garages there is a 
fixed price for this task, and many mechanics know ,how to do it. The task of 
IIchanging a transmission ll is independent of whether anyone is doing it; that is, 
if no one anywhere is replacing a transmission, there is still a wel"l--defined 
task called IIreplacing a transmission. II 

There may be a place known as IIJoe's Garage. 1I It is an "environment ll in which 
many mechanical tasks are performed. Joe tells his workers to perform mechanical 
tasks. In fact, he orders his task requests in a particular manner, probably 
one which maximizes his profits. Although he is in complete control of his own 
garage, he has no authority in Andy's Garage, across the street. He cannot tell 

~ndy's mechanics what to do, even though he may know as well as Andy what needs 
U(l be done. There is no wall or other physical restraint between their shops, 

but the law forbids Joe to exercise authority in Andy's garage. His interaction 
with Andy I s Garage is 1 imited: he may exchange messages with Andy or hi s mf'chani u" 
or even have his own car fixed there. 

If Joe tells one of his mechanics to replace a transmission, he has started an 
lIactivity,1I or- an instance of the task IIreplacing a transmission." He may tell 
two mechanics to change two different transmissions at the same time, Then 
there would be two such activities being performed. In fact, Andy may request 
one of his mechanics to replace one at the same time, so the same task is heing 
performed in two separate environments. Each instance of the task is an activity. 
Since all three mechanics can work concurrently, this situation describes a 
concurrently reentrant task. 

Suppose that replacing a transmission requires a K12 wrench. The only K12 
wrench in town is at Al's Rentals and must be reserved ahead of time. Then only 
one activity of "replacing a transmission ll can be performed at one time. The 
multiple activities which Joe and Andy requested must be performed serially. 

O-hi s may slow down thei r shops I throughput, but if K12 wrenches are very expens i ve 
(as they appear to be, since neither Joe nor Andy has one), then this might be 
the most effective way to solve the problem. 

Three terms are introducted in this analogy: 

• A task is a set of rules, instructions and resources. It is generally 
created once, perhaps occasionally updated. It can be concurrently or 
serially reusable. A task which is concurrently reusable is said to be 
reentrant. A task's reentrancy is determined by its creator (and updater), 
since he knows what resources are required by it . 

• An activity is a specific instance of performing a task. It uses three 
resources: CPU time, a task, and a context. All are allocated to the task 
when it begins. There may be many activities being performed at the same 
time, of the same or different tasks. 

• An envi ronment is a set of resources. A task may be performed in several 
environments, but each instance or activity can use only the resources that 
exist in the environment in which it is started. Thus, environment is a 
method of ~esource allocation_ 

A gJossary of these and other ter",s used ;n this manual appears in Appendix 1\, 

I 
\. 



.. 

~I 

~ 

o 

• ., 

o 

-~~~~~.---------------------------

1.3 INTERRUPT PROCESSING 

A real-time system must respond to external events that occur asynchronously 
to processes within the computer. In this usage, "asynchronously" means 
essentially the same thing as "randomly," but the events are not truly random 
because various aspects of them are predictable (maximum interval I time window, 
relative sequence, etc.). However, their exact timings are not known, so 
real-time programs cannot afford to wait for them by looping. The accepted 
method for relating the outside world to a computer is through hardware interrupts. 
The computer can perform other functions until the interrupt occurs. Interrupt~ 
allow the effective and efficient utilization of a computer in a real-tin.~ 
environment. 

However, current computer architecture and programming conventions are 
sequentially 6riented, and interrupts make it impossible for an entire applica­
tion to be seen as a single sequential process. Every time an' interrupt 
occurs the order of execution of computer instructions is changed, if only 
temporarily. 

Figure 1-2 illustrates how conceptual execution transfers when interrupts 
occur. In this example, two types of interrupts (perhaps from diffl'!rent 
devices) occur at two different times during the processing of thfl rnainl ine 
program. Each time, execution is shift~d from the mainline, to the interrupt, 
to the routine to process that particular type of interrupt, then back to the 
mainline program . 

---------------------------,----,._----

MAINLINE 
PROGRAM 

==,....-----

INTERRUPT 
PROCESSING 'HNE A 

a ~~ -~ -

-- ........... -
return -----

--~-- ... ---.----- .... 

Figure 1-2. Real-Time Interrupt Processing Concepts 

-----------------------



-~ ComputerAutomation~---------------------------

The problem can be simplified by viewing the system as two or more sequential 
processes that execute concurrently. This ideal can be met by providing the 
programmer with two or more separate computers that can communicate with each 
other through status flags. Currently, this approach is economically unfeasible. 

A real-time executive can simulate the existence of multiple processors, 
allowing the programmer to treat his application as a collection of sequential 
processes, yet requiring only one CPU. Some CPU time and some memory are 
occupied with the overhead of this simulation, but the incremental costs of 
additional CPU time and memory in a single computer are relatively small. 

1.4 PROGRAMMING BY FUNCTIONS 

~ One waj to optimize the use of a real-time executive is by subdividing a 
program into its component functions. Each function can process \'Itler. it is 
requi red and when the necessary hardware and otht~r envi ronmenta 1 factors ar'e 
available. 

o 

For example, consider a small program that reads from cards and prints their 
contents on a line printer using two buffers so that the reading a~n printlng 
operations can overlap in time. The asynchronous outside events in this ~Jse 
are the completion of· reading a card and the completion of printing a line. 
They are asynchronous not only because of small variations in the mechanicll 
devices, but because of human factors such as reloading the card hopner, 
emptying the card stacker, changing printer paper, etc. 

It is possible to solve this problem using standard sequential programming 
techniques or primitive interrupt responses. A simple alternative soluti 0 n is 
shown in Figure 1-3. This solution involves two processes: Process A reads 
cards into the buffers, and Process 8 prints the contents of the buffers. 
Each process consists of seven steps. The first six steps are standard RTX4 
system service requests consisting of two words of memory each. Step 7 is a 
jump to the start of the process so the process is repeated. Most importantly, 
the flow of processing can be followed easily; there are no conditional tests, 
no branching. 

Four system services are requested. "Read" and IIprint" are calls to the 
Input/Output Subsystem! that return only when the operation is complete. 
IISignal" and "wait" are complementary synchronization services: a process 
that waits for a condition resumes as soon as it is signalled. This service 
is known as a semaphore. Semaphores are discussed in a later section. 2 

No combination of external events can result in a card not being printed or 
being printed twice. Note how easy it is to verify that fact. A"lso, Process 
A and Process B could just as well be in separate computers with some shared 
memory. That is the advantage of a real-time executive: it provides concurrent 
processing without the hardware cost of multiple processors. Whenever the 
card reader is empty or both processes are waiting, other processes can use 

. the CPU time. . 

lInput/Output Subsystem IOS4 User1s Manual 
2Section 6 



--. ~~ ~--~~_& .. ~ '-~ ~~-------------------------------------I, ~\l - . ..,.. ..... -------

t 
';t' 
.~ I 

ti• 
.~~:. 

o 

j ...... . 
" 

;~' 

,0 

.. 

7 

1 

2 

PROCESS A 
READER 

WAIT FOR 
BUFFER '1 

EMPTY 

BUFFER '1 ~~DIN~y 

3 

SIGNAL 
BUFFER '1 

FULL 

4 

WAIT FOR 
BUFFER 1#2 

EMPTY 

5 

BUFFER 1#2 ~~DIN~y 

6 

SIGNAL 
BUFFER 1#2 

FULL 

Figure 1-3. Example Processes, 

- 1-1:, -

7 

1 

2 

"-

3 

4 

5 

PROCESSB 
PRINTER 

l 
WAIT FOR 
BUFFER 1#1 

FULL 

PRINT 
BUFFER 1#1 

SiGNAL 
BUFFER 1#1 

EMPTY 

WAIT FOR 
BtlFFER ##2 

FULL 

~INT . B~FFER #2 

6 

SIGNAL J BUFFER #2 
EMPTY 

l....--_,., ___ ~~ 



~: _!PIA ComputerAutomation:'~-----------------------~ ~\l 
~: ., 

o 

o 

2. 1 INTRODUCTION 

SECTION 2 

RTX4 USAGE 

RTX4 is a package of software modules designed to provide the overhead functions 
and scheduling services associated with a real-time, multi-tasking environment. 

, 10541 is a subsystem of RTX4 which provides the user with a devi~e-independenl 
method of lID device management and support. 

The general organization of RTX4 and 1054 is shown in Figure 2-1. RTX4 controlS 
all aspects of priority scheduling, timing, interrupt servicing, lID control, 
inter-task communication, and all necessary queuing functions. Modular "nnstrUi':':" 
tion allows the user to select only those portions of RTX4 required for Ilis 
particular application. 

IOS4 
• D,evice·lndependent 110 
• Directory Management 

~ 

--
RTX4 
• Scheduling 
• Services 
• Intermpt Processing 
• Task Interfacing 
• Inter·Task Communication 

,,-

N·,c~ 

User User User 
Task Task •••• Task 

Figure 2-1. RTX4 Organization 

lInput/Output Subsystem 1054 Userls ~~~~al 



11 -~ ComputerAutomation~;:;...----------------------
~! 

Some of the particular features of RTX4 are: 

• Allows the application program to be designed as a number of interrelated 
or subordinate tasks. 

• Allows the a~plication program to schedule CPU usage by dynamically 
defining and redefining the priority and seniority levels of several 
activities in the application using RTX4 service routines. 

• Allows real-time response to external events by providing the interrupt 
instructions which transfer control to the interrupt service routines. 

• Allows the various tasks in the application to communicate between th~m­o selves (or with RTX4) through RTX4 communication routines. 

o 

• Provides clock services for obtaining time-of-day information and/or for 
controlling the timing of activities. 

• Allows dynamic memory management. 

2.2 RTX4 SYSTEM SOFTWARE 

The RTX4!IOS4 system software is availabl~ on floppy diskettes or on paper 
tapes. The floppy diskettes are intended for use with the OS4 program develop­
ment system. 1 The paper tapes are provi ded for users of the OMEGA4 progr;:;lii 
development system. 2 

The contents of the product diskettes and paper tapes are discussed below. 
The procedures for using each medium in its corresponding program development 
system are outlined later in this s~ction.3 

2.2. 1 System Software Diskettes 

When RTX4 is to be used with OS4, it is delivered as five floppy diskettes, as 
follows: 

• RTX4 Product Diskette Diskette 10 Number: 
CAl Part Number: 

F41001 
93410-01 

This diskette contains the RTX4 library file (RTX.LIB), the RTX4 demon­
strat i on program source. object, and binary fi 1 es, and a JCL fil e for 
assembling the demonstratlon program. (A listing of the demonstration 
program appears in an appendix4 to this manual.) A Help file dpscribes 
the diskette's contents. 

10S4 System User's Manual 
20MEGA4System User's Manual 
3Subsection 2.4 
"Appendix E 

,"" .. ",. 



,
."", 

, ' 

\1 , 

t _!PIA. Compute,rAutomation(!)~----------------------~ ~\l 
~, 

o 

o 

"., 

.:., 

~ 

• RTX4 Macros Diskette Diskette ID Number: F42501 
CAl Part Number: 93425-01 

This diskette contains the user and development macro files. These files 
are described in Appendix H. 

• 1054 Product Diskette Diskette ID Number: F43001 
CAl Part Number: 93430-01 

This diskette contains the 1054 library file (105. LIB). 

• SFM Product Diskette DiskettelD Number: F44001 
CAl Part Number': 93440-01 

This diskette contains the SFM library file (SFM.LIB), the SFM demonstra' 
tion program source, object, and binary files, and a JCL f"ile for assembling 
the demonstration program source file. 

• Standalone LABEL Diskette Diskette 10 Number: F44101 
CAl Part Number: 93441-01 

This diskette contains the standalone 054 disk labeling progr'am. This 
program can be used to label disks in SFM format. Its use is des.cribed 
in the IOS4 User's Manual. l 

2.2.2 System Software Paper Tapes 

When RTX4 ;s to be used with OMEGA4, it is delivered as a set of paper tapes. 
These tapes contain the same it~ms as the floppy diskettes described above 
(~inus Help and JCL files and the standalone labeling program) except that 
each fi 1 e is provi ded on a separate paper tape. Eac-h paper tape has 'its own 
CAl part number, as follows: 

CAl Model Number 

93410-20 
93410-30 
93410-40 
93410-51 
93420-60 
93420-61 
93420-62 
93420-63 
93420-64 
93420-65 
93420-66 
93430-51 
93440-20 
93440-30 
93440-40 
93440-50 

File 

RTXDEMO.ASM 
RTXDEMO.OBJ 
RTXDEMO.BIN 
RTX. LIB 
GEN. MAC 
RTX.MAC 
RTXD.MAC 
IOS.MAC 
10SD.MAC 
SFM.MAC 
SFMD.MAC 
105. LIB 
SFMOEMO.ASM 
SFMOEMO.OBJ 
SFMOEMO.BIN 
SFM. LIB 

llnput/Output Subsystem 1054 User's Manual 



I 

.. 

~I 

~ 

_.{g\\. ComputerAutomation~---------------

o. 

o 

2.3 RTX4 MACROS 

RTX4 provides three types of macros: macros for generating internal tables, 
macros for requesting system services, and macros which generate service 

. request parameter 1 i sts. 

2.3.1 Table-Generating Macros 

RTX4 involves a number of internal tables. 
tables automatically; others are generated 
the user in his program. These macros and 
below. 

RTX4 generates some of these 
in response to macros defined by 
the tables they generate are listed 

~~acro 

TDB:A 

INIT:A 

ECB:A 

SDB:A 

MDB:A 

Table Generated 

Task Descriptor Block 

Initialization Block 

Environment Control 
Block 

Semaphore Definition 

Mailbox Definition 
Block 

Purpose of Table 

Describes the needs and attributes of 
a task. 

Provides some information about the 
environment and supplies the address 
of the first task to be executed. 

Defines user-occupied space to RTX4 
and unit assignment to 10S4. 

Defines a semaphore for controlling 
synchronization of Block tasks. 

Defines a mailbox facility for com­
munication between·activities. 

These macrQS are described in detail in subsequent sections of this manual. 
The structures of all RTX4 internal tables, including those listed above, are 
presented in an appendix.! 

2.3.2 Service Macros 

RTX4 provides a number of services which greatly simplify programming for a 
real-time environment. To invoke one of these services, the program executes 
the corresponding service request macros as listed below. 

Macro 

R:BGIN 

R:END 

!Appendix B 

Servi ce' Invoked 

Initiates an execution instance of a task; i.e., creates an 
activity. 

Completes an execution instance of a task; i.e., terminates an 
activity. 



,,·1 

J .•....•... r; -I 

o 

- ~ ComputerAutomation \!) 

Ma'cro 

R:GPRI 

R:SPRI 

R:SATD 

R:GATD 

R:CINT 

R:ABUF 

R:RBUF 

R:SIG 

R: WAIT 

R: ITIC 

R: MTIC 

R: cnc 

R:PAUS 

R:AWAL 

R: IWAL 

R:CWAL 

R:STOD 

R:GTOD 

R:SEND 

R:RECV 

Service Invoked 

Reads an activity's priority. 

Changes an activity's priority. 

Given the ASCII time and date will set in binary. 

Reads, in binary, the time and date and converts to ASCII. 

Causes the current activity to return on a console'interr'upt. 

Allocates a buffer. 

Releases a buffer. 

Signals a semaphore. 

Waits on a semaphore. 

Initiates a timer to cause a semaphore to be signalled dfter a 
specified number of Real-Time Clock ticks. 

Modifies a previously-initiated tick clock timer requp.st. 

Cancels a previously-initiated tick clock timer request. 

Drops the seniority of an activity. 

Initiates a timer to cause a semaphore to be 5ig~alled at an 
absolute time. 

Initiates a timer to cause a semaphore to be signalled after a 
specified time interval has elapsed. 

Cancels a previously-initiated wall clock timer request. 

Sets the binary time of day. 

Reads the binary time of day. 

Sends a message from one task to another. 

Receives a message sent by another task. 

These macros are described in detail in subsequent sections of t is manual. 

The arguments to system requests are sometimes defined as values and sometimes 
defined as Rointers to lists of values. For instance, in the R:BGIN request, 
the argument is a pointer to a list of parameters needed for the R:BGIN service. 
One of those parameters is a priority descriptor which can be expr'essed as a 
l6-bit integer. 

~. ?-5 .. 



il -@i. Com ..... _A·_-ation(!J~ ____________________ _ 
~i ............. MIH1 -

t 

0 

Compare this to the R:SPRI request, whose argument is apriority descriptor 
rather than a pointer to one. The priority descriptor may be placed in the 
second word of the service request, or in the X register when the service 
request is made. If the descriptor is to be placed in some other memory 
location, it must be referenced indirectly. 

When arguments to a service request macro must be specified in a list rather 
than directly in the macro, the programmer can call the appropriate list­
generating macro. These macros are: 

BGIN:A generates an argument list for a BGIN:A request. 

MAIL:A generates an argument list for an R:SEND or R:RECV request, 

TICK: A generates an argument list for an R: ITIC, R: ~lTIC, or R: CTIC 
request. 

WALL:A generates an argument list for an R: AWAL, R: TWAL, or R:CWAL 
request. 

These macros are described with the corresponding request macros 
sections of this manual. 

in subsequent 

All service request arguments, whether specified directly in the request or in 
a list, are expressed in M4D12 format, i.e.: 

[*]Mem(X,V) 

., where: 

o 
[*] denotes an optional asterisk immediately preceding the memory 

address to indicate indirect addressing. 

Mem 

(X,V) 

is a memory address in the range 0-65535 inclusive or external, 

denotes indexing, which is always optional and may specify 
either X or Y or both, in either order, separated by a comma, 
and the whole enclosed in parentheses. 

This format permits a wide range of addressing modes. In simple systems, the 
direct and indirect modes may satisfy all programming needs. In morp. complex 
systems, a programmer may wish to place his argument pointer or value in a 
register or in his V-scratchpad. These last two options are especially useful 
in wri t i ng reentrant tas ks. The a 11 owed addres sing modes are: . 

-Direct addressing to anywhere in memory 

-Indirect addressing to anywhere in memory 

-P-relative addressing to within ±4096 words of the current P register 
value 

-Pre- or post-indexing with an offset of ± 4096 

-A combination of the above 



--~Com~_AUDma~~----------------------------------------

The following are addressing mode examples: 

ABLE 

*BAKER 

CHARLY(X) 

DELTA(Y) 

ECHO(X,Y) 

*FXTRT(X, Y) 

direct reference to a label 

indirect reference through a label 

post-indexed reference 

pre-indexed reference 

pre- and post-indexed reference 

indexed indirect reference 

~ See the assembler manual 1 for more information on M4D12 format. 

Macros are the preferred form for making service requests. Alternatively they 
can be made using a system trap (STRAP) instruction. The STRAP instruction in 
the first word of a service request traps to location :A4 where RTX4 proceeds 
to process the request. The first word also specifies tne service being 
requested and the meaning of the second word. The second word can contain a 
value, an address, an indirect pointer, or a complex M4D12 pointer. depending 
on the service request and the contents of the first word. Together, these 
two words provide a simple, yet flexible, means of requesting services and 
providing argument values and lists. 

~ 2.4 RTX4/IOS4 PROGRAM DEVELOPMENT 

o 

The general procedures for developing an RTX4/IOS4 application program are 
like the procedures for developing any other type of user program: the pro­
grammer designs his program, creates the appropriate symbolic text, translates 
that symbolic text· to an object module or modules via an assembler or compilei~ 
links the object module(s) with any required library programs, loads and 
executes the linked program, and performs any necessary debugging. 

The RTX4/IOS4 programmer can perform these processes in either the OS4 system 
or the OMEGA4 system. The OS4 and OMEGA4 user's manuals 2 provide details on 
how program development procedures are performed in those systems. This 
subsection presents some guidelines that apply to developing an RTX4/IOS4 
application program in particular. 

The OS4 user's manual outlines a suggested procedure for creating an RTX4/IOS4 
application development system. For the reader's convenience, this disrussion 
is repeated in an appendix3 to this manual . 

.
..•. ). 
\-: 

lNAKED MINI 4 Assembler User's Manual 
20S4 System User1s Manual and OMEGA4 System User's Manual 
3Appendix E 

~: 



, 
~: _/PIA ComputerAutomation<!) ... ______________________ _ 
fi ~\\ 11 
~ I 

o 

o 

2.4.1 Designing the Program 

The first step in designing an RTX4/IOS4 application program is to divide the 
problem into a suitable number of tasks. A task, as introduced in the auto 
repair shop analogy presented earlier,! is a set of instructions for performing 
a particular function. For example, the two processes shown in Figure 1-32 

are tasks to perform the functions of reading and printing cards. 

An application system can consist of one or more tasks. There is sometimes a 
IIbest" way of dividing a system into tasks, but there is seldom an "only"way. 
The decision to break the card reading/printing problem into the two separate 
tasks 5implified the programming problem. Solving it as a single task would 
have been unnecessarily difficult; solving it as three or more tasks would be 
unnec~ssary. Figure 2-2 presents another example. 

MONITORING A 
TEMPERATURE GAUGE 

TASK 1 

READ TEMP - EVERY SECOND 

TASK 2 

f-- CHECK TEMP 
FOR EXTREMES 

TASK 3 

WRITE "ALL'S WELL" - AND EMERGENCY 
MESSAGES 

Figure 2-2. Dividing an Application into Tasks 

~Subsection 1.2 
2Subsection l..3 

! 

\.....' 



o 

o 

--~CGm~~~-----------------------------------------

The rules for dividing an application into tasks cannot be spelled out, unfor­
tunately. As a guideline, whenever synchronization with another process 
(internal or external) requires excessive conditional testing, create a new task. 
which performs only the synchronization. This guideline may result in a 
hierarchical structure of tasks, which in many situations is an excellent 
solution. Another way of viewing this guideline is to think of functions which, 
if performed in another computer, would simplify the problem in the main 
computer. Such functions should be performed in another task. 

After dividing the problem into tasks, design the operation of each task. 

2.4.2 Coding the Program 

The elements of an RTX4/IOS4 can be coded in any· order, but the program must 
include at least the following elements: 

• Initialization Blockl 

This table should be the first element of the program, as it provides 
information required b~ RTX4 when execution begins. It directs RTX4 to l!'~ 
first task to be executed and to the Environment Control Block (ECB). As 
described below, the ECB describes the environment in which the progY'am 
will run. The Initialization Block also determines the size of the System 
Freepool. As described later,2 the Freepool is a r'egion of i;,{~mory that 
RTX4 uses for its internal tables and control blocks. To generate the 
Initialization Block, the programmer codes an INIT:A macro. 

• Task Descriptor Block(s)3 

For each task defined in the program, the programmer generates a Task 
Descriptor Block (TDB) by coding a TDB:A macro. In general. the macro call 
should be near the code of the task it describes. While not required by 
RTX4, this approach minimizes the number of external referC:l'lces required. 

• Envi ronment Control Block4 

The Environment Control Block (ECB) describes the program's resources to 
RTX4 and unit assignment to 1054. The ECB also contains the heads of 
several lists generated by the program. 

If the user wishes to use a nonstandard Unit Assignment Table, he must include. 
the appropriate UAT:AA, UAT:EE, and UAT:ZZ macros.5 

lSubsection 5.2 
2S ubsection 5.3 
3Subsection 3.4 
4Subsection 5.4 
5Input/Output Subsystem 1054 User's Manual --

.\ -



--~ CGmpderAUDmation$-----------------------------------------------

The programmer can code his program as a single module or as multiple modules. ~ 
A convenient modular structure for large application programs is to code each ~ 
task, including its Task Descriptor Block (TDB:A macro), as a separate module. 
Only one module must include the Initialization Block (INT:A macro) and the 
last module to be loaded must include the Environmental Control Block. (ECB:A 
macro) at the end of that module. 

The programmer normally includes the directive: 

LOAD DEBUG4 

when coding a new RTX4/IOS4 application program. This directive caus~s the 
DEBUG4 system1 to be loaded with the program, providing facilities for debugging o t'le program. This directive can appear in any program modLJle. 

Fi gure 2-3 i 11 ustrates the typi cal structure of an RTX4IIOS4 app 1 i cat; on program. 

Initialization Block (INIT:A) 

Task #1 Descriptor Block (TDB:A) 

Task #1 Code and Data 

Task #2 Descriptor Block (TDB:A) 

o Task #2 Code and Data 

Task #n Descriptor Block (TDB:A) 

Task #n Code and Data 

Environment Control Block (ECB:A) 

Figure 2-3. User Program StructUT'e 

r 
-'" 



o 

o. 

., 

fl; 
{I. 
:11 
.'. j f-j 

J .. il , 

. 
I 

__ ~CGmpuhw~~~S ________________________________________ ___ 

2.4.3 Assembling the Program 

RTX4/IOS4 app 1 i cat i on program modul es can be assembled in any order. The fil es 
GEN. MAC, RTX.MAC, IOS.MAC, and SFM.MAC must be specified as the macro definition 
file fo~ each assembly. 

2.4.4 Linking the Program 

The next step is to link all of the user-coded modules with the necessary library 
files. 

, 
The module containing the Environment Control Block (ECB) must be the 
last program module linked because it must contain the heads of sl!~eral 
lists generated by the program. 

Following the user-coded modules, library files should be linked in thr following 
order: 

SFM.LIB Provided on the SFM product diskette or paper tape; required only 
if the program uses Standard File Manager capabilities. 

IDS. LIB Provided on the IOS4 product diskette or paper tape; required 
only if the program invokes IOS4 services. 

RTX.LIB Provided on the RTX4 product diske~te or paper tape; required for 
all RTX4/IOS4 application programs. 

The program may be linked absolute or relocatable and may reside in memory at 
address :100, if two 010 boards are used :200, or greater. 

2.4.5 Loading and Executing the Program 

Once all of the program modules have been linked, the programmer can load and 
execute his program. 

'When a linked RTX4/IOS4 application program is loaded, it appears in memory as 
diagrammed in Figure 2.4. The area between the end of ~he program and the end 
of memory is called the Environment Memory PoOll. This space is used for scratch­
pad and stack space requested by the program. 

If OEBUG4 is loaded with RTX4, OEBUG4receives initial control when the user's 
program is executed. The user can start the program by using DEBUG4 to transfer 
to location :80. If an exception2 0ccurs, control returns automatically to 
DEBUG4. The user can access DEBUG4 at any time by transferring to location :lE. 

lSubsection 5.5 
2Appendix C 

1; 



--~CGm~~~--------------------____________________ _ 

o 

o 

Reserved 
for use 
of RTX4 

Scratchpad 

Fixed trap and interrupt locations 

Standard DID interrupt locations 

User Application Program 

SFM (if 

c-

-- , , ,-

used) 

,. 

Em'; ron:-:ent 

Figure 2-4. Map of All Memory 

2.4.6 Debugging the Program 

: 0 

:40 

:80 

:co 
: 100 

:nFFF 

RTX4 contains many blocks of information on a variety of lists. The programmer 
can examine these lists using the Z command. The heads of these lists and rhf"' 
meaning of the contents of the blocks are presented on the following page. 

,.", 
C'C 
< 



I r ., 

J : 

) 

o 

) 

o 

.. , 

--~Com~~~~-------------------------------------
Label Location 

R:ECBH :20 

R:RDY 

R:ACT 

R:INTQ 

R:FPH 

R:FPT 

R:CCBH 

R:WCBH 

R:TODU 

R:TODL 

:22 

: 21 

: 23 

:25 

:26 

:2B 

:2C 

:30 

: 31 

Contents 

Head of the Environment Control Block list. 

List of Activity Control Blocks currently ready for 
activity execution. R:ACT usually points to the 
first ACB on this list. 

Activity Control Block for the current activity, 

List of Activity Control Blocks of activities ""ilich 
have been readied for execution and are awaiting 
merger into the R:RDY list the next time through the 
dispatcher. 

Head of the Freepool list of available blocks. 

Tail of the Freepool list of available blocks. 

Head of Tick Clock Control Block list. 

Head of Wall Clock Control Block 1 i st. 

Time of day upper 16 bits. 

Time of day lower 16 bits. 

The user can also examine the system trap locations which can identify the 
user's last system request. 

- "'Co" ~ _ 



~; -~ eomputerAutomation-:.(!)----...... -----------------

f: 

.~ .. i.~ ,. 
i 

;, I ~' 

o 

o 

j., 

:i:I 

jl~ 

~ .......... ~I , 

3. 1 INTRODUCTION 

SECTION 3 

TASKS 

A task is an ordered collection of machine instructions that perform a particular 
function. 

3.2 TASK RESOURCES 

Several resources are associated with a task, including the initial register 
context, Y-scratchpad, and the user's stack. 

3.2.1 Initial Register Context 

The contents of the A, Q, X, and possibly Y registers of the task which hegins 
another task form the initial register context of the new task. The initial 
register context provides communication between the original task and the task 
to be started. It can determine the function to be performed, the location 
of data areas and. buffers, etc. If the required information does not fit into 
the registers, the registers can· point to memory locations which contain the 
information. 

3.2.2 Stack 

Each execution instance of a task must have its own stack. The stack is used 
by RTX4 for several purposes, and may be used by the programmer for subroutinE' 
linkages using the JSK and RSK instructions. l 

The amount of stack space required for a task is the sum of the spaces required 
for program use and system use. The amount used by the program depends on the 
maximum depth of subroutine nesting (not the total humber of subroutines). 
The amount used by the system depends on what system services are requesLed. 
If no services are requested, the system requires 14 words for handling inter­
rupts (only 7 if a significantly higher maximum interrupt latency is acceptable). 
If any system services are requested, 8 more words are required .. Additional 
stack.locations are required for many services. The number of additional 
stack locations are listed as a part of the documentation of each service. 
Also, the use of JSK and PUSH requires 7 words of stack space. 

lNAKED MINI 4 Assembler User's Manual 



--~ CompuhwAUro~~-----------------------------------------------

() 

o 

As illustrated in Figure 3-1) the K register points to the top of the stack 
area currently being addressed and the L register points to the lower limit of _ 
the stack. 

L Register ____________ _ 

K Register 
Assumes Many 
Values as 
Program 
Executes 

---... ::::.:-:: :::~: 

----...------------------------

----...-~--------------------

-~-------- ---

- ...... -----------­
~ --------- ---

14·' Initial K Register ~---'------ -

Figure 3-1. Stack 

3.2.3 V-Scratchpad 

Low Memory 

1 RSKand pOP 
Instructions 

1 JSK and PUSH 
Instructions 

High Memory 

Each invocation of a task can have its own scratchpad area of any length. 
This area is called the Y-scratchpad because it is reached via the Y·egister. 
The size of the Y-scratchpad area is user-defined. 

A lthough NAKED MINI 4 Family computers have a 64-word scratchpad (the fi rst 64 
words of memory), these words ~annot be used by application programs in the 
RTX4 system. They are used by RTX4 for critical program sequences, list 
heads, and other uses that increase throughput and reduce overhead 



~, '. ill' 
,~I 
~i I 

--~Com~~----------------------------____________ _ 
Any normal scratchpad use can be performed in Y-scratchpad, including indexed 
indirect-references and direct references from any memory location. The 
Y-scratchpad is allocated to a task when it begins execution. The address is 
placed in the task's V-register as part of the initial register context The 
program refers to locations in V-scratchpad by including the pre-indexing 
symbol (V) on operands which are to fall into V-scratchpad. 

Two options are available for al.1ocating Y-scratchpad space. The task m~y use 
the V-scratchpad space of the task which began it; in this case, the Y register 
value is simply passed as part of the initial register context along with the 
A, Q, and X registers. Or, the programmer may request that the V-scratchpad 
space be allocated dynamically when the task is begun. 

~ In either case, the programmer is free to load the V register with the address 
of his own V-scratchpad region. 

o 

It is the user's responsibility to avoid referencing locations which fall 
outs i de the a 11 ocated Y-scratchpad; RTX4 cannot perform any 1 i mi t checking_. 
The greatest volume of V-scratchpad is required for reentrant or recursive 
programming where data areas must be allocated for each execution instanr.e. 
All memory reference instructions can refer to V-scratchpad, including single­
word memory reference ; nstructi ons (64-word range), system request paru_,1Ieters 
(4096-word range), and double-word memory reference instructions t65,536-word 
r-ange) . 

Figure 3-1 illustrates V-scratchpad allocation and how it is acc~5sed ?rd used 
in a task. 

I YREGISTER 
PROGRAM -~----------------~~ __ ~~ ____ ~ 

BUFFERS 
FOR I/O alOCKS 

Figure 3-2. Y~Scratchpad Allocation and Access 

BUFFERS FOR 
PROCESSING 



i -~ ComputerAutomation~;;:;.-------------------
t! 
t 
l 3.3 SERIAL/REENTRANT TASKS 

., 
" 

.J .... , ..... ;j , 

o 

o 

A task may be serial or reentrant in its use. If a task is serial, one activity 
(execution) of the task must be completed before the next activity can begin. 
A reentrant task can support several activities executing concurrently. 

A reentrant program significantly reduces memory size for some applications. 
For example, cons i der a data entry syste'm cons i st i ng of four CRT termi na 1 s 
connected to one computer and a disk. An operator sits at each terminal 
entering data from questionnaire forms into the computer. 

One approach to buil di ng thi s system woul d be to create four copi es of the 
data entry program, as illustrated in Figure 3-3. Such a solution reduces 
development time and speeds execution time. 

PROCEDURE 
& DATA 

STATION #1 

CRT #1 

PROCEDURE 
& DATA 

STATION #2 

CRT #2 

Figure 3-3. Serial Approach, 

PROCEDURE 
& DATA 

STATION #3 

CRT#3 

PROCEDURE 
& DATA 

STATION #4 

The reentrant approach, illustrated in Figure 3-4, requires a slightly longer 
development time and may run slightly slower, but the resulting system uses 
much 1ess memory and is easier to maintain and expand . 



t _ ~ ComputerAutomation ~;::;... _______________________ _ 

~ 

o 

o 

DATA 
STATION #1 

CRT#1 

DATA 
STATION #2 

CRT #2 

PROCEDURE 

RTX4110S4 

Figure 3·4. Reentrant Approach 

3.3. 1 Seri a 1 Tasks 

DATA 
STATION #3 

CRTH3 

In a serial task, resource allocation is simple, but several options a e 
available. The simplest method, with the lowest CPU overhead, is to allocatp 
space for the stack along with the task and tell the system where it is RTX4 
then faces no dynamic allocation prob'lems. This method also pr'otl~cts that 
memory space from being available for other uses when the task ;s inactive. 
Alternatively, the programmer may ask RTX4 to allocate the stack and Y"c:cratchpad 
space dynamically when the task begins. He must supply the lengths of each, 
but RTX4 determines their locations. In either case, when the task begins, 
the Y, K, and L registers are set to point to the Y-scratchpad and stack. 

3.3.2 Reentrant Tasks 

The terms "orocedure" and "data" are fundamental to reentrant programming. 
Essentially. the procedure is the unchanging part of the reentrant task and 
the data is the variable portion. 

A procedure includes all porti~ns of a program which do not change during program 
execution. It includes all items sucil as machine instructions, literal data 
constants, and fixed address pointers which determine the process to be mel' 



.. ' 

--~CGm~~~~~------------------__ --------------------

o 

o 

Data in the reentrant task refers to all items such as variables, temporary 
cells, stacks, and buffers which may change during program execution. It 
includes all program memory locations which do not qualify as procedure. 

These terms are the basis of the following con,cepts of reentrant programming: 

• Procedure and data are treated separately . 

• Each activity of the reentrant task has its own allocated region for 
data. 

• All activities of the reentrant task share the same procedure. 

Suppose that the example data entry system presented earlier l requires 10K 
words of procedure and 4K words of data for each data entry station (CRT). 
The serial approach requires 61K words of memory: 

SK* RTX4/IOS4 
40K Procedures (4*lOK) 
16K Data (4*4K) 

The reentrant approacry requires only 33K words of memory: 

SK* RTX4/IOS4 
10K Procedure 
16K Data 
*Approximate figure 

Such savings are common when reentrant programming is appropriate. 

Initial resource allocation for a reentrant task has few options. 
must be allocated dynamically by RTX4. Y-scratchpada1so must be 
dynamically if it is required. Additionally, the following rules 
the task must be followed to ensure reentrancy: . 

The stack 
allocated 
for writing 

• The Y-scratchpad address (the initial contents of the Y register) must be 
kept in a register at all times . 

• All references to variables and temporary cells must be relative to a 
register, usually the Y register . 

• All subroutine linkages must be made using JSK and RSK. Variable parameter 
passing must be through the registers. 

All of the above factors concerning the task must be considered in writing the 
code. After writing the task, the programmer summarizes his decisions for 
RTX4 by creating a Task Descriptor Block, described in the following sUbsection. 2 

ISubsection 3.3 
2Subsection 3.4 

- 3-6 

I , 
j 

I 
I 
I P" { . ',. 



, 
'.',,'.' ..• '.'.'.'~ i., ~ 
,',I 

:il 

3.3.3 Memory Requirement Guide 

Typiecal memory sizes to accommodate component parts are listed below: 

IDS 
SFM 
RTX 

3K 
3.2K 
2.3K 

3.4 TASK DESCRIPTOR BLOCK 

A Task Descriptor Block (TDB) is used to describe the needs and attributes of 
task to RTX4. If the Y-scratchpad and stack areas are to be allocated by 
RTX4, they are identified in the TDB. Each Task Descriptor Block is g~nerated o by the TDB:A macro. 

o 

!,I 

~ 

3.4.1 TDB:A Macro 

The TDB:A macro can occur anywhere in the task, but is usually placed at the 
beginning. TDB:A has five required parameters: label of the TOB, starting 
address of the task, address of stack space, and amount of stack space. The 
macro also has two optional parameters: flags and concurrent usage. The 
formats of the TDB:A macro are: 

TDB:A 
TDB:A 
TDB:A 

where: 

1 abe 1 , start ,yscratch ,~tackad, stackamt 
lab~,start,yscratch,stackad,stackamt,f1ags 
labe 1 , start ,yscratch, stackad, stackamt, f1 ag~. ,~sage 

label 

start 

Label to be assigned to start of lOB. 

Starting address of task. 

yscratch Amount of Y-scratchpad to be used by the task. 
If zero, the Y register of the calling task is 
used. Must be zero (or omitted) for a serial task. 

stackad Address of preallocated stack. If zero: stack 
space is allocated by RTX4. Must be zer0 (or 
omitted) for a reentrant task. 

stackamt Amount of stack space used by the task, 

flags None currently defined. 

Maximum number of concurrent activities of this task. 
DEFAULT = 1 

To omit a parameter, enter two consecutive commas (,,). , 

In RTX4, each activity must have a stack for storing return addresses fot' a 
JSK. The stack is also used by the system to save the context of an act'ivity 
that is making a system request or is interrupted. Also, some s~rvice routine~ 
use this area for storage of return adJresses. 

• 3-



~I -(g\ ComputerAutomation(!) .. --------------...... -----
~ 
'I ~i 
j;i 
," 

0 

The user must specify the amount of stack space required. He can allocate the 
stack space himself in his program and he can supply the address in the TDB:A 
stackad parameter. As an alternative, the user may allow RTX4 to allocate the 
stack dynamically by specifying zero in the stackad parameter. In either' 
case, he must specify the amount of stack space required through the TDB:A 
~tackamt parameter. However the stack space is allocated, llihen the activity 
begins, the K register marks the top of the stack area currently being addressed 
and the L register marks the lower limit of the stack. 

The amount of stack space needed depends on the use of the stack by both the 
user1s program and the system. Space is calculated as follows: 

7 words To save the context of an activity when an interrupt occurs. 

8 words To save the context of an activity when a system service 
request is made, and call the appropriate service routine. 

n words The maximum used by any called system service routine (amount 
given in the description of each service). 

7 words To prevent a hardware stack exception trap after a PUSH or JSK. 

n words For the user program (e.g., subroutine calls). 

System service routines are executed as part of the activity requesting the 
service, and they use the stack of the requesting activity. Therefore, if ~n 
interrupt occurs during the execution of a service routine, 15 words of context 
are on the stack. 

A stack exception trap occurs when,' after a puSK or JSK has been executed, 
less than seven words of stack space remain. This situation can occur when a 
system service routine is interrupted, because both the current context and 

O the user1s context at the time of the request would be on the activity stack. 
, fhe stack exception trap processing checks for this special case and resumes 
processing if it is found. This extra processing can cause excess 'interrupt 
latency. An additional seven words of stack space prevents this problem. 

3.4.2 Examples 

The following TDB:A macro creates a Task Descriptor Block for a serial task: 

TDB:A SBLOCK,START"TSTACK,70 

A 70-word stack, starting at location TSTACK, is allocated for the task. 
Y-scratchpad space is determi ned by the calli ng tas k. 

A reentrant example: 

TOB:A RBLOCK,RBEG,lOO,,90,,3 

This macro generates a TOB for a reentrant task which may have up to three 
concurrent activities. Each is ailowed 100 words of Y-scratchpad space, 
allocated by RTX4. A 90-word stack is allocated for each activity. 

- 3-8 -

, 



:,li,'). 
" 

,', 

o 

o 

. .., 

",; 
) 

--~CGm~~~-----------------------------------------

4. 1 INTRODUCTION 

SECTION 4 

ACTIVITIES 

An activity ;s an execution instance of a task. Each time' a task begins , a 
new activity is created. When RTX4 is viewed as simulating multiple processors, 
each activity is equivalent to a separate CPU. The activity is the unit to 
which the real CPU's time is allocated. Only one activi~y can exist at a time 
for a serial task, as illustrated in Figure 4-1. 

OPERATOR 
COMMUNICATIONS I------t 

TASK 

OPER~T~~ll 
CONSOtE . 

'----- -' 

--....;...--.------------------------_. __ . ---.-.~-.-
Figure 4-1. Task with One ·Activity 

A reentrant task can have several concurrent activities, as illustrated in 
Figure 4-2. 

EDITOR 
TASK 

FiguY'e 4-2. Task with Multiple Activities 

-, , 
TERMINAL #1 I 

'--____ .• -1 

TERMINAL #2 

TERMINAL #3 

, .. __ ...... ,,---



~, 

il _trIM. ComputerAutomation-;;:'~---------------------; ~\l 
J" 

.. 

4.2 ACTIVITY OPERATION 

RTX4 creates an Activity Control Block when an activity is begun. The infor­
mation derived from the Task Descriptor Block is placed in an available block 
obtained from the System Freepool.l 

An Activity Control Block is always in a list, except for very short times 
while moving from one list to another. The nature of each list determines the 
state of activities that are in it. An activity must be in the SYSLem ready-to-run 
list (R:RDY) before it can execute. When an activity is waiting for an event 
to occur, it is usually in a semaphore wait list. 2 

The order in which activities are dispatched from the ready-to-run list 
~ (R:RDY) is determined by priority. 

o 

Priodty is a means of assigning relative importance to activities. An activity 
of higher priority is always granted a reqqested resource before a lower 
priority activity. In RTX4 the priority of the first task is assigned by the 
INIT:A macro. 3 For other tasks, priority is established when the activity is 
begun. 

Among activities of different priorities, the highest priority activity is 
always dispatched. If more than one activity is at the highest prior·ity in 
the ready-to-run li st, the fi rst one inserted in the 1 i st is ~wm di spatched. 
This dispatching algorithm is called "pure priority scheduling. TT It has s:)me 
important ramifications in writing systems using RTX4. 

It is possible to write systems in which some activities never receive CPU 
time. A simple example of this is.a system consisting of-two tasks: one task 
is executed at high priority and consists of one instruction, a jump to itself. 
The second task is executed at low priority and is intended to accomplish some 
useful function. In RTX4, after the first task begins, the second task never 
receives any CPU time. A second example is two activities that have the same 
priority. The first one to enter the ready-to-run list always executes first, 
and the second one only receives CPU time if the first makes a system call which 
suspends its activity . 

RTX4 provides means for changing the task priority during activity execution,4 
so that other tasks may then supersede the first task in priority. It also 
provides a means for round-robin scheduling. s , 

ISubsection 5.3 
2Section 6 
3Topic 5.2.1 
4Topic 4.3.3 
5Subsection 7.4 



I, 
,1 

r 

o 

o 

'. 

--~~~-~-~--------------------------------------------
Activities may be rescheduled when the following system services are called: 

R:BGIN 

R:END 

R:SPRI 

R:SIG 

R:WAIT 

R:RECV 

R: ITIC 

R: MTIC 

R: CTIC 

R:AWAL 

R: IWAL 

R: CWAL 

R:ABUF 

R:RBUF 

R:CINT 

R:PAUS 

Begin task (one extra block temporarily) 

End task 

Set priority 

Signal semaphore 

Wait on semaphore 

Receive message , 
Signal semaphore at a given time interval (for duratibn 
of time interval) 

Modify tick clock timer request 

Cancel tick clock timer request 

Signal semaphore at an absolute wall clock time 

Signal semaphore after a given time interval has elapsed 

Cancel wall clock timer request 

Allocate buffer 

Release buffer 

Return to calling activity when console interrupt is 
pushed 

Drop seniority of the first activity of a given priority 

4.3 ACTIVITY CONTROL 

The programmer uses the R:BGIN macro to start task processing (i.e" to create 
an activity), the R:END macro to end a task, the R:GPRI and R:SPRI macros to 
get and set priorities during task processing. 



1 •. ' ... . . 

1 
i 

~. 
,'. 

~ -~ ComputerAutomation~;;;....--------............ -----------

Wi 

o 

4.3.1R:BGIN Service 

An activity is created by the system service R:BGIN. R:BGIN allocates stack 
space as specified in the Task Descriptor Block and creates an Activity Control 
Block for the activity which is then placed in the ready-to-run list. The register 
contents of the task that issues the request· are the initial register contents of 
the activity created. This service requires 12 words of stack space. The format 
of the R:BGIN macro is: 

R:BGIN arg 

where: M4D12 pointer to the argument list. 

The argument list can be generated via the BGIN:A macro, which has the format: 

BGIN:A 

where: 

arg,tdb,prdesc 

tdb 

prdesc 

Must match the R:BGIN argument. 

Label of the Task Descriptor Block as 
specified in the TDB:A macro. 

Priority descriptor defining the task's priority. 

The priority descriptor is the effective address (not the contents of the effec-
tive address) of any valid M4D12 expression. The high-order bit of the priority 
descriptor determines whether the value is an absolute (bit 15=0) or a relative I (.~. 
(bit 15=1) priority. IJ it is relative bit 14 determines whether to increase 
(bit 14=0) or decrease (bit 14=1) u.sing the remaining value. 

Only positive priorities are allowed in RTX4. A relative off~et that results in 
a negative priority causes undefined results. RTX4 allows user prior'ities from 1 

4C) to :3FFF Higher priorities are reserved for system use. 

4.3.2 R:END Service 

When an activity completes its processing, resources are returned to the system 
by the R:END service routine. This routine terminates the activity by returning 
the Activity Control Block space to the System Freepool and any RTX4 allocated 
stack area to the Environment Memory Pool. This is the last request of any 
activity. The R:END macro has no parameters. This service require~ 9 words of 
stack space. 



r -~ COmpulerAutomation(!);,;:.------------------------
t 
~:,i , 

... :1 

o 

c 

i! 
.~ I 

=i 

4.3.3 R:GPRI and R:SPRI Services 

The R:GPRI macro returns the activity's priority in the A Register. The macro 
has no parameters. Three (3) words of stack space are required for this service. 

The R:SPRI request allows an activity to alter its priority. The new Pl~;Oy·ity 
can be absolute or it can be set relative to the current priority. This 
service requires 10 words of stack space. The request format is: 

R:SPRI 

where: 

prdesc 

prdesc Priority descriptor expression; an M4D12 expression 
whose effective address is the priority descriptor. 

The following is an example of using the priority service macros: 

R:SPRI 
R:SPRI 
R:SPRT 

100 
100 + :8000 

-jOO 

.\ \.\ U \ \r~ 1 .. r_~~ 

Set priority to 100 
Increase priority by 100 
Oecrease priority by 100 
(iit:q.d IIJ.· V.IIII(>. always lf~htive) 

rh. act'vfty making the R~CINT requ~st returns when the cons~l~ interrupt is 
pressed. If the console 1nterrupt 1S never pressed, the actlvlty never returns. 
Only one activity at a time can invoke this service. If this s\~rvice 'is not 
requested, a console interrupt is ignored. 

This service ~equires 5 words of stack space. The macro has no paramet~rs. 



~J _ ,..-.. --:Automation~------------------------" ~ 
~ _IIIftoIRn, -

.~: I 

,: 
" 

i-i 
fl 

~ 

o 

I 

·0 
I 
! 

4.4 ACTIVITY CONTEXT 

A context is associated with each activity. The activity context is a set of 
task resources that is saved each time the execution of the task (the activity) 
must be suspended. The context is restored to the saved state when the task 
is resumed. The context of an activity includes the following items: 

• An Activity Control Block (ACB) that contains pointers to the rest of the 
context. 

• A priority that determines how real CPU time is allocated to activities. 

• The task of which the activity is an execution instance. 

• The environment l from which the activity's non-CPU resources are to be 
drawn. 

• The stack allocated to the activity when the task was begun. 

• The Y-scratchpad allocated to the activity when the task was begun. 

• When the activity is executing t the contents of the registers are con­
sidered part of its context. When the activity is not executing, the 
register contents reside on the activity's stack. 

The context of an activity provides the information necessary to simulate a 
dedicated CPU. Whenever an activity is dispatched (i.e. t allowed to execute), 
RTX4 must be sure that; the activity's environment is intact, then restore its 
register content~t including the P register t so that execution can continuu. 
Whenever an interrupt occurs t RTX4 must save the activity's register contents 
on its stack so that they are not lost by further processing. 

lSection 5 



, 
, 
,: 

.. !.'.'. a l ... 

o 

-~ ComputerAutomation~----------------------

SECTION 5 

SYSTEM INITIALIZATION AND ENVIRONMENT DEFINITION 

5. 1 INTRODUCTION 

RTX4 execution starts at lacation :80, fram which RTX4 goes to its initializa­
tion routine. The initialization routine needs certain information which is 
provided in the Initialization Block. 

5.2 INITIALIZATION BLOCK 

The Initialization Black is generated by the INIT:A macro. When system initia­
lization is complete, the user task specified in the call is started. Only Oi'':; 

activity, can be initiated by the INIT'A routine. R:INIT must bedeclar~d as an 
entry paint (NAM) by the user1s program. 

5.2.1 INIT:AMacro 

e The farmat of the INIT: A macro is: 

.' 

::j' 
11. 

o 

~:, 

rlI:.r:: 

'~".""''''''' .. ' ' .' .' 
~ 

INIT:A .\ ~,g'~,:i,ecb,tdb,pri ,amtfree,adrfree,topmem 

where: 

ecb 

tdb 

amtfree 

adrfree 

tapmem 

Initial values of the A, Q, X, and Y registers for 
initial user1s task 

Label of the Enviranment Cantrol Block 

Label .of the Task Descriptar Bloc~ for initial 
user1s task 

Activity priarity far initial user's task 

Amaunt of System Freepoal (wards) (.optional) 

Address of the freepool (aptianal) 

Upper limit of memary available ta RTX4 (.optianal) 

Any addresses (adrfree, ecb, tdb, tapmem) which are defined .outside the madule 
containing the INIT:A must be declared external. 

When an optianal paramete.r is .omitted, a camma must be inserted ta hold the 
position .of later parameters. 

If the upper limit .of memory available (tepmem parameter) is emitted, RTX4 
searches far the end .of memory and uses all that is available. This p~ramet{::' 
is useful primarily far checkaut; in this case. its use is necessary to prevent 



-~ CompulerAutomationl!);;;.------------------------

o 

RTX4 from allocating space for the Environment Memory Pool from the entire 
available memory. At checkout, other programs may be in upper memory. The 
parameter may be used also to check out an application on a computer that has 
more memory than the computer on which the program is to run for production. 

5.2.2 Example 

NAM 
EXTR 
EXTR 

INIT: A 

END 

In this example: 

R: INIT 
ECBNAME 
TDBNAME 

INITIALIZATION BLOCK NAME 
ENVIRONMENT CONTROL BLOCK NAME 
TASK CONTROL BLOCK NAME 

0,O,0,0,ECBNAME,TDBNAME,700,100,O 

eThe A, Q, X, and Y registers are initially set to zero. 
eThe ECB and TDB names are in another module and are declared external. 
eThe activity priority is 700. 
eThe Freepool of 100 words is to be allocated by RTX4 . 
• RTX can use all available memory. 

5.3 SYSTEM FREEPOOL 

The System Freepool is ~ user-specified area that provides small buffers for 
RTX4 functions. The Freepool contains dynamically allocated areas such as 
Act i vity Control Blocks as we 11 as areas used as temporary storage ce 11 s. It 
is organized as a linked list that can be dumped by DEBUG4 1 to provide a o history of system execution. 

The System Freepool consists of a region of memory provided to RTX4 at assem­
bly time. The user must specify the amount of Freepool space he is allocating 
and may either allocate it himself or let the INIT:A macro allocate it. 

During initialization, RTX4 breaks up the Freepool region into many fixed­
length Freepool blocks. These blocks are used by RTX4 services to contain 
dynamically allocated blocks such as Activity Control and Clock Control blocks. 
Blocks are also used for short periods of time to contain temporary cells and 
for longer periods of time to contain information which controls a system 
resource. 

The System Freepool is organized as a linked list to speed system processing 
and debugging. RTX4 keeps track of both the head and tail of the list. 
Blocks for RTX4 services are removed from the head of the list and are returned 
to .either the head or tail of the 1 i st. Short-l i ved temporary cellO locks are 
returned to the head of the list to be recycled immediately. Blocks used for 
control information, such as Activity Control Blocks, are returned to the tail 
to provide a hi~tory of system and application program activity to aid in 
debugging. Freepool organlzation is illustrated in Figure 5-1. 



f 
~-~~. 

Table 5-1. Freepool Blocks for RTX4 System Services 

.. 

11 

R:BGIN 

R:END 

R:GPRI 

OR: SPRI 

R:SIG 

R: WAIT 

R:SEND 

R:RECV 

R:ITIC 

R:MTIC 

R: CTIC 

R: AWAL 

OR: IWAL 

R:CWAL 

R:ABUF 

R:"RBUF 

R:CINT 

R:PAUS 

R:SATD 

R:GATD 

R:STOD 

R:GTOD 

Service 

Begin task (one extra block temporarily) 

End task 

Get priority 

Set priority 

Signal semaphore 

Wait on semaphore 

Send message 

Receive message 

Signal semaphore at a given time interval 
(for duration of time interval) 

Modify tick clock timer request 

Cancel tick clock timer request 

Signal semaphore at an absolute wall clock time 

Signal semaphore after a given time 
interval has elapsed 

Cancel wall clock timer request 

Alloca.te buffer 

Release buffer 

Return to calling activity when console 
interrupt is pushed 

Drop seniority of the first acitivity of 
a given priority 

Set ASCII time and date 

Read ASCII time and date 

Set time of day 

Read time of day 

Blocks Allocated (+) 
or Deallocated (_-~)_ 

+1(+2) 

-1 

o 

o 

o 

o 

o 

o 

+1 

o 

-1 (5uccess) 
o (fail) 

+1 

+1 

-1 (success) 
o (fa;l) 

o 

o 

o 

o 

o 

o 

o 

o 

C··'\ 
-t,. 



~ " 

:.i .. _ ( 

" 

o 

o 

"" 

:::! 
·.1 

d ... _.~)i 
~ .. , 1 

-~ ComputerAutomation~~-------------------

FREEPOOL REQUEST 
LIST HEAD FOR BLOCK 

- ~ - ----...... 
\ 
) 

/ , .. -- ---------..." 
I 
\ 

" ------ - I"-

._---
RETURNED FREEPOOL 

BLOCK LIST TAIL 
'. 

Figure 5-1. Functional Organization of System Freapool 

5.3.1 Freepool Size 

The Freepoo1 is grouped into blocks of twelve words each. At least two of 
these blocks must be reserved. 

The space needed for the System Freepool must be determined by the user, 
Freepool size is determined primarily by the amount required by each RTX4 
system service request used in the application program. During debugging, a 
larger area may be desirable for system history. 

Table 5-1 lists the number of contiguous blocks required for each of the 
system requests. This number provides a rough guide to select;pg an initial 
Freepool size. Then, determine how much additional space is required for a 
complete history during debugging.' RTX4 keeps track of the maximum number of 
blocks used during an execution in location FPMAX:. This number helps determine 
final Freepool size, While asynchronous events and random chance may require 
more Freepoo1 blocks for anyone execution, the programmer can get a good 
estimate from several runs and compensate fpr possible increase~ by providing 
a somewhat larger FreE'pool area. 

- 5-3 -



:.i~._ .. 
I, 

~ ; 

" 

o 

,0 

--~Com~~~----------------------------------------

5.3.2 The Freepoo1 and Debugging 

If the user provides a much larger Freepool during debugging than he expects 
to use during production t a dump of the Freepoo1 list can provide a significant 
history of what has happened in the system. The last item in the list is the 
most recently returned block, excluding those needed by the tick clock service. 
Preceding blocks mark historical events until the first one or two blocks are 
reached; at this point the history is lost. The head of the Freepool list ;s 
at location R:FPH; location R:FPT points to the last block on the list. 

Computer Automation recommends that the initial development of an RTX4 applica­
tion be performed on a computer system with more memory than the final program 
is expected to use. This procedure allows the programmer to ignore memory 
al.location problems such as Freepoo1 while getting his application to work. 
Further, the history provided by the Freepoo1 list is longer and more helpful 
for debugging. 

Thus, the Freepoo1 size may vary from debugging through running with test data 
to production runs. The original estimate based on Table 5-1 can be doubled 
for debugging to provide a complete history. Then, when the debugged program 
is run with test data several times t actual Freepoo1 usage can be determined 
by examining location FPMAX: t keeping in mind that usage may vary from one run 
to the next. For production runs, the actual usage should be augmented by 
several words to provide a safety factor. 

To summarize, the steps to determine Freepool size are: 

1) Estimate size using Table 5-1. 

2) Double or triple the estimate for debugging. 

3) Exercise checked out program with test data. 

4) Check actual Freepoo1 usage by examining FPMAX: after running the 
program. 

5) Add a safety factor to actual usage for production usagr,. 



o 

The Environment Control Block helps define user-occupied space to RTX4 and unit 
assignment to 1054. The Environment Control Block is generated by the ECB:A 
macro. The only value that the user must provide is a pointer to the Unit 
Assignment Table; RTX4 automatically supplies all other required values to the 
ECB. 

5.4.1 ECB:A Macro 

The ECB:A macro call must be placed at the end of the last user module. The 
format of the ECB:A macro is: 

ECB:A label.uat 

. where: label Label to be assigned to start of ECB; 
referenced in the intialization call to 
RTX4 (INIT: A). 

uat Address of the Unit Assignment Table. 

The Unit Assignment Table (UAT) must be constructed by the user. 1 If the INIT:A 
macro is not in the same module as the ECB:A macro. the user must declare 1I1iibel il 

an entry point (NAM). If the Unit Assignment Table is not in the same module as 
the ECB:A macro, the user must declare lIuatll to be external (EXTR). If the I/O 
subsystem is not required. the UAT address is zero. 

5.4.2 ExamEle '\ 

NAM ECBl 

0 EXTR UAT 
ECB:A ECB1,UAT 
END 

This sequence generates an Environment Control Block starting at location ECB1 . 
. ~ This ECB contains a pointer to the Unit Assignment Table located at UAT. 

5.4~3 EDXVT:A Macro 

The EDXVT:A macro is used to specify user written exceptions processor. A user 
may specify an exception processor for any exception needed for one and al1 
exceptions. The user must make a call to the EDXVT:A macro for each exception 
to be processed. All calls to the EDXVT:A macro must follow the can to ECB'A 
macro. 

Refer to Appendix C for a list of RTX4 Exceptions. 

IlnEut/OutEut Subsystem (1054) User's Manual 

-. t;-f; -

-:.,.', 
(1: 
C 



i" _ trJlM. Computer Automation (!J~ ______________________ _ 

! ~\) 
I' s,: 

o 

: 0 

0,.·.·.1. 
~i. 

~I 

EDXVT:A label, vector, address 

where: label Label to be assigned at start of EeB 

vector Name of exception vector, (refer to Appendix C). 

address The address of the user1s exception processor. 

When control is received at the user1s exception processor, the RTX4 has already 
executed a JSK and a PUSH giving the user registers and the return address, after 
the instruction which caused the trap. The two exceptions to this rule are lh,ted 
below: 

A. The first occurs if it was an unimplemented instruction trap, then 
RTX4 will transfer control to the emulator, if the user has previously 
linked the emulator with his application. ' 

B. If it was a stack exception, then the JSK and PUSH instructions are 
not performed. Instead the user may specify a four word block where 
the A, Q, X, and Y registers can be saved. The block may be specifipd 
by calling the EDXVT:A macro using the XV:STKSV vector. 

5.5 ENVIRONMENT MEMORY POOL 

The Environment Memory Pool is the space used for Y-scratchpads and stacks and 
user-requested buffers. This space is whatever remains between the end of the 
user1s program and the end of memory. The user is responsible fat' ensuring 
that the Environment Memory Pool is large enough provide for all allocations 
required of it. Allocation is performed by a standard first-fit algorithm, so 
some fragmentation may result, increasing the size requirement. 

RTX4 does not use any space in the Environment Memory Pool for its own tables 
or control blocks. Space for these items is obtained from the System Freepool. 

5.6 BUFFER ALLOCATION 

RTX4 provides the R:ABUF and R:RBUF services for allocating and then releasing 
buffer space. 

- 5-7 -



--~~puhw~~~~------------------------------------------

5.6.1 R:ABUF Service 

The R:ABUF macro allocates a buffer for use by the program. The argument to 
thi s macro speci fi es the number of words to be allocated. Thi s servi ce requi res 
10 words of stack space. The format is: 

R:ABUF amount 

where: amount Number of words to be allocated. 

The number of words which can be allocated via R:ABUF is limited only by the 
amount of contiguous space available in the Environment Memory Pool at the 
time the request is made. 

~ The system returns the address of the allocated buffer in the X register. 

For example: 

R:ABUF 256 

This request allocates a 256-word buffer. The buffer address is returned in 
register X. 

5.6.2 R:RBUF Service 

When the program has completed its work with a buffer allocated via a previous 
R:ABUF request, it can return that space to the system by executing an R:RBUF 
macro. This service requires 10 words of stack space. The format is. 

R:RBUF address 

o '''here: address Address of the buffer to be returned. 

The argument to this macro is the address of the buffer. Since this address 
is not known until execution, the argument typically specifies register-' 
relative addressing mode. 

For example: 

R:RBUF O(X) 

This request releases previously-allocated buffer space. It assumes that the 
buffer address is still in register X. 

I.·.' .. · V 



' .. ,. 

f' 
~: 

t 

o 

o 

--~.Cmn~~----------------------------------------

6. 1 INTRODUCTION 

SECTION 6 

SEMAPHORES 

RTX4 provides system services that allow the efficient programming of inter­
task cooperation to synchronize the execution of tasks so that they occur in a 
specific time relationship to one another. The facilities that are provided 
are based on a concept called the "semaphore." Sempahores were first formalized 
in 1965 by E. W. Dijkstra. 1 

This section introduces semaphores by first discussing some alternative methods 
of intertask cooperation. For further information on the subject of semaphores) 
a book by Brinch-Hansen is recommended. 2 

6.2 ALTERNATIVE APPROACHES TO INTERTASK COOPERATION 

Intertask cooperation may be used for passing data (intertask communication) 
or may be used simply because one task must be accomplished befote anothf\Y' 
(intertask coordination). Intertask coordination includes "producer-consumer li 

problems and IIresource sharingll problems. 

6.2.1 Producer-Consumer Cooperation 

Figure 6-1 illustrates an example of a producer-consumer problem: task A 
fills a buffer and task B wants to know when it is full. One solution is to 
designate a location (call it CELL) as a flag. Task A sets the flag to a one 
when the buffer is full. Task B tests the flag and knows that the buffer is 
full when the value of the flag becomes a one. The operation for task A is 
strai ghtforward: fi 11 the buffer, then set CELL to a one. Task B can pf'ocess 
the buffer when CELL is found to be a one, but has no function while CELL is 
zero. One choice would be to test the CELL again immediately. This approach 
results in a very tight loop which has several bad side effects. If the task 
dispatching scheme is pure priority, task B uses all available CPU time so 
that task A ~ is able to change the value of CELL. In a time-~licing 
system, task Buses unnecessary amounts of time, perhaps keeping tC'lsk A from 
fi 11 i ng the buffer as fast as it mi ght. In terms of reasonable s.y~tem throughput, 
the solution is unacceptable in either case . 

. '.:.i.~ :1,;; 

i! lEo W. Dijkstra, "Cooperating Sequential Processes" (1965) 
;1 2Per Brinch-Hansen, Operating System Principles (Prentice-Hall 1973) 



~; -'0}' ComputerAutomationl!l ... ------------------~ ~'l 
ti 
;, 

' .. i 
1 i 
:':.i 

d .... , ... ~1 
~l 

o 

TASK A 

SET "CELL" 
TOONE 

YES 

EXECUTE 
TASK 

NO 

OR 

TASKB 

YES 

EXECUTE 
TASK 

NO 

Figure 6-1. Producer-Consumer Problem Non-Semaphore Solution 

'. 

WAIT 
n TIME 

An improvement would be' for task B to suspend itself for a while, using the 
system clock, between each time it tests CELL. This solution reduces the load 
on the system and allows task A to complete filling the buffer in a finite 
time. Its main disadvantage is that task B may not find out that the buffer 

~ is full as soon as it should. There is a definite tradeoff: the less load 
tas~ B places on the CPU (the longer the wait) the longer task B may be unin­
formed that the buffer is full. 

This problem may be reduced if task A can cancel task 81 s wait on the clock, 
but there are several timing bugs associated with this operation. Suppose 
task A cancels t~e wait while task B is not waiting, for instance. Also) the 
system overhead and complexity is high (several waits on the clock and one 
cancel request). In some systems, task A sends a message to task B through a 
system message facility. Other systems require task A to IIcreate" task Beach 
time the buffer becomes full. Both solutions require more overhead than is 
needed to solve this problem. 

The semaphore provides a simple solution to the producer-consumer proh1em. 1 

lTopic 6.3.1 



i~.··' , 
" 

'.' , 

11_ 

o 

o 

--~CGm~~~------------------------------------------

6.2.2 Resource Sharing 

The other general problem of concurrent task execution is resource sharing. 
Suppose several tasks wish to use.a- single resource, such as a disk. Although 
RTX4 can make. it appear that several tasks are executing asynchronously in the 
computer, the disk must be used entirely sequentially, so a method must be 
devised to share the di~k. 

A location such as CELL may be used as in the previous example, but the same 
_problems arise. The value of CELL may initially be one, meaning the resource 
is available. The first task that arrives examines the value of CELL. Since 
it is one, the task stores a zero in CELL and proceeds to use the resource. 
Since a zero value in CELL means that the resource is not available, tasks 
that come later can tell whether they may use it. Ignore for the moment their 
problems with doing anything reasonable when they find the resource unavailable, 
When the first task finishes using the disk, it must store a one in CELL, 
indicating the resource is now available. If only one task is waiting to use 
the resource, it may proceed. If more than one task is waiting, a new problem 
arises: which gets the resource next? If the waiting tasks are suspending 
themselves on the system clock, the choice of next task is made randomly: the 
task that completes ~ wait next (or a new task which arrives after all the 
rest) will get the resource. This is not fair. More fair would be first in, 
first out order. More preferable might be priority order. 

Again, this problem is solved simply and with low system overhead using 
semaphores. l 

!, 
; 

6.3 SEMAPHORE SOLUTIONS TO INTERTASK COOPERATION PROBLEMS 

Semaphore operation is described in a later sUbsection. 2 Briefly, a semaphore 
has two operations, signal and wait. The effect of the two operations depends 
on the current state of the semaphore,which is determined by its initial 
condition and previously performed operations. 

The wait operation of a semaphore consists of determining whether the sema­
phore has been signalled. If it has been, the waiting activity proceeds 
without delay and the signal is cancelled. If the semaphore has not been 
signalled, the waiting activity is removed from the ready-to-run list and 
entered into a wait list associated with the semaphore. The sign~l oee~ation 
first determines whether any activities are in the wait list associated with 
the semaphore. If so, one activity is removed from the list and placed in the 
ready-to-run list. If not, the state of the semaphore changes to indicate 
that the semaphore has been signalled. 

Semaphores provide efficient solutions to the "produce-r-consumer"' and "resource 
sharing" problems described previously.3 

lTopic 6.3.2 
2Subsection 6.5 
3Subsection 6.2 



ti _/'Pia ComputerAutomation e__. _____________________ _ 
i ~\\ 
,I 

:cI 
< 
11 

~ 

6.3.1 Producer-Consumer Problems 

In the producer~consumer problem~ the initial value of the semaphore is zero, 
which indicates that it has not been signalled and that no activity is waiting 
on it. The solution is simple: the consumer IIwaits" on the semaphore when he 
wishes to know when the buffer is full; the producer "signals" the semaphore 
when the buffer is ful1. The coding is simple: each task requests a single 
system service, then continues processing. It does not matter which activity 
makes its system request first; synchronization occurs in any case. 

The objections to the previous solutions do not apply to the semaphore solution. 
Each activity executes asynchronously. If the consumer waits for the buffer 
before it is available, it does not waste CPU time; it is simply removed from 

Othe ready-to-run list. Yet once the buffer is full and the producer signals 
t~e semaphore, the consumer becomes ready to run immediately. There is no . 
delay, and the system overhead of using a semaphore is minimal. 

6.3.2 Resource Sharing Problems 

The resource sharing problem is solved similarly. The initial value of the 
semaphore is one, indicating that the resource is initially available. Each 
activity must wait on the semaphore before using the resource and signal the 
semaphore after using it. The first activity to wait on the semaphore proceeds 
to execute immediately because the resource is available. Any activities t~ilt 
request the resource 1 ater fi nd the semaphore II uns i gna 11 ed" and are removed .... ' 
from. the ready-to-run list. When the first activity finishes using the resource, .. 
it signals the semaphore, allowing one and only one activity to use the resource 
next. 

". 

Again, using the semaphore has overcome the objections to the previously 
described solution. It has the same advantages as in the producer-consumer 

Oproblem, plus an additional benefit: all of the waiting activities are in a 
single list, allowing great flexibility in choosing which one executes next. 
In most cases priority determines which waiting activity executes next. In 
some cases other criteria may be used. For instance, shortest seek time might 
be used if the semaphore is controlling a disk. 

A further advantage of the semaphore is that if more than one of a particular 
type of resource is available (such as a limited set of buffers), the initial 
value of the semaphore can be changed to handle more than one. For instance, 
if' two buffers are available, the initial value of the semaphore is two. The 
first two activities which request a buffer get them; all later requesting 
activities are suspended until one of the first two activities signals the 
semaphore. 



,. 

""'1'·· 

o 

:8 

o 

, 

I j 

,-.. 
I 

~ 

-~ ComputerAutomation~~--------------------

\. 

6.4 SEMAPHORE DEFINITION BLOCK 

A Semaphore Definition Block can be provided by the user to control the synchro­
nization of tasks. This block is generated using the SOB:A macro. 

6.4.1 SDB:A Macro 

The SDB:A macro establishes the location and initial value of a semaphore in a 
user's program. The macro's format is: 

SDB:A label ,value 

where: label Address label of the semaphore. 

value Initial value of the semaphore. 

6.4.2 Example 

The following macro call generates a Semaphore Definition Block: 

SDB:A SEMA1,0 

The address label of the semaphore is defined as SEMAl and the initial '11ue 
of the semaphore is defined as O. 

6.5 SEMAPHORE OPERATION 

In RTX4 a semaphore consists of only one word. That word is used for a counter 
and a wait list head. The state of the semaphore is determined entirely by 
the value of this word. 

In its init1al condition, the wait list is always empty) and the counter' may 
be either zero or positive, depending on the use of the semaphore (zero for 
producer-consumer probl~ms, positive for resource sharing problems). The 
effects of the two operations on a semaphore are: 

WAIT: If the counter is greater than zero, the counter is decrempnted 
and the waiting activity is re-scheduled according to priority. It the 
counter is zero, the waiting activity is removed from the ready-to-run 
list and placed in the semaphore wait list. 

SIGNAL: If any activities are in the semaphore wait list, one of them is 
removed and placed in the ready-to-run list. If no activities are waiting, 
the counter is incremented. 

Figure 6-2 illustrates the flow of these operations. 

--..;.-----



-(g\ ComputerAutomation(!)~-------------

Zero 

o 
Insert current 

activity in 
semaphore 

wait list 

WAIT 

Continue 
Processing 

Non·Zero 

Decrement 
semaphore 

value 

Figure 6-2. Flow of Semaphore Operations 
... 

SIGNAL 

Yes 

Remove task at 
top of semaphore 
wait list and insert 

in ready list 

No Increment 1 
Semaphore .•.. \ Counter . 

1 0 The length of the wait list is the number of unsignalled wait requests, and 
the counter indicates the number of unwaited signal requests. Thus, the 
counter is never negative . 

.. 

~:i 

. RTX4 contains a special form of semaphore. The main feature of an RTX4 sema­
phore ;s that an exception occurs if the counter reaches 127. An RTX4 semaphore 
consists of one word only that is used for both the counter and wait list 
head. If the value of the word lies in the range 0 through 255, then it is 
the semaphore counter value. If the value is larger than 255, it is the head 
o~ the list of Activity Control Blocks that are waiting on the semaphore. 
Thus, the state of an RTX4 semaphore is determined entirely by the vallie of 
its one word. The format of the semaphore word is shown in Figure 6-3. 

- 6-6 -~ ,or ____________ _ 

., 
W' 



, 
r 

"0 
aJ 

o 

o 

.~ '. '::t:: 
~ I ;:;,! 

i,j 

--~CQm~~~~--------------------------------------

15 14 13 12 11 10 9 8 7 6 5 4 32 1 0 

COUNTER 
10 1 

0 0 0 0 0 0 0 O. 0 

I I 
\. 

'Y' 
, 

t 
I I 

----------~--------~~. 

t ... ______ Counter (range 0.255) 

-----------------. All zeroes 

15 14 13 12 11 to 9 8 7 6 5 4 3 2 1 0 
WAIT 
LIST 

HEAD \ I 

i""' ____ -----________ Non·zero, therefrnE: 
whole word is Wait 
List Head 

.... ~.---.•.. --
Figure 6-3. Formats of Semaphore Word 

.... - .. ,-- .'._ ...... " 

6.5.1 R:SIG Service 

A sempahore is signalled by the R:SIG system request. This service causes the 
waiting activity that has the highest priority to be placed on the ready list. 
If no activity is waiting, the semaphore value is incremented. A semaphore 
can be signalled only 127 times without a wait. The amount of stack space 
required for this service ;s nine words. The format is: 

R:SIG sema4 

where: sema4 

6.5.2 R:WAIT Service 

Label of the Semaphore Descriptor Block to be 
signalled. 

An activity waits for a semaphore by using an R:WAIT system request. If the 
va 1 ue of the semaphore is between 1 and 127, R: WAIT p.l aces the requesting 
activity on the ready list and decrements the semaphore. If the \Jalue is zero 
or greater than 127, the activity is inserted according to priority into the 
semaphore wait list. The amount of stack space required for th-is service is 
9 words. The format is: 

R:WAIT sema4 

where: sema4 Label of the Semaphore Descriptor Block to wait on. 



I:. : ! 

tt 

I-@i~·;;....--------------

o 

o 

6.5.3 Example 

. 
R:SIG 
R:WAIT 

. 
SDB:A 
SDB:A 

Xl 
X2 

Xl,O 
X2,O 

FILL BUFFER 

SIGNAL BUFFER FULL 
WAIT FOR BUFFER EMPTY 

BUFFER FULL SEMA4 
BUFFER EMPTY SEMA4 

:::0 
C1) 

< ..... 

_ ....... 
N ........ 



o 

o 

I. 
~i. 

~ .. ~ ... l , 

--~CGmpuhw~~~--------------------------------------------

7.1 INTRODUCTION 

SECTION·7 

SYSTEM CLOCKS 

RTX4 supports a high-resolution tick clock and a medium-resolution wall clock 
to simplify timekeeping functions for user applications. The time base fol' 
the two clocks is provided by the processor's Real-Time Clock (RTC). 

The tick clock provides a high-resolution clock for measuring or determining 
relatively short time intervals. It simulates the existence of multiple 
hardware RTCs. The wall clock provides a medium-resolution clock that can 
cover all but the shortest time intervals. It provides a time-of-day a.nd date 
facility. Figure 7-1 illustrates the interrelationships of the clocks. 

USER 
TASK 

USER 
TASK 

USER 
TASK 

\ 

Figure 7-1. RTX4Clocks 

TICK CLOCK HARDWARE 
REAL·TIME 

CLOCK 



11 -~ ComputerAutomation~-------------------------
r: 

7.2 TICK CLOCK OPERATION 

RTX4 supports a tick clock to provide measurement of very short time intervals. 
The rate of the tick clock is based on the rate of the processor1s Real-Time 
Clock. 

The resolution of the tick clock is dependent on the interval of the Real-lime 
Clock. The Real-Time Clock can be internally based on the AC line frequency 
of the computer. This frequency is almost exact and has excellent accuracy 
over longer time intervals. It is sufficient for most applications. When a 
shorter interval or greater precision is required, the clock can operate from 
an external source provided by the user. An external clock rate also allows 
clocks to be synchronized with other equipment. The user of the tick clock o ;r;ust be aware of its rate since programs may operate differently when the 
clock rate changes. 

o 

If the required time interval is large enough and the required accuracy is 
small enough, the wall clock should be used rather than the tick clOCk because 
the wall clock places a significantly smaller burden on CPU resources. If the 
application requires the tick clock, however, the additional overhead is well 
worth it. 

The precision and maximum interval of the tick clock service are presented in 
Table 7-1. 

Table 7-1. Real-Time Clock and Tick Clock Parameters 

Li ne Frequency 

Clock Frequency 

Interrupt Period 
(IITi ckll) 

Tick Clock Service 

60 Hz 

120 Hz 

8.333 ms 

Precision +8.333 ms 

Frequenc;:! 

Internal 

50 Hz 

100 Hz 

10.000 ms 

+10 ms 

Maximum Interval 273 seconds 327 seconds 

Source 

External --_.-

f 

t = ! 
t' 

+t 

t X 215 



Or _IPR.\. ComputerAutomation(!) _______________________ _ 

~ ~\\ 
,t 
I;' 

a 
~ .• 

o 

o 

7.3 TICK CLOCK TIMERS 

RTX4 provides clock services' (R:ITIC, R:MTIC, and R:CTIC) which enable 
the user to utilize the tick clock as if it were an alarm clock. 

7.3. I R:ITIC Service 

The R:ITIC macro initiates a timer to cause a semaphore to be signalled after 
a specified number of ticks of the Real-Time Clock. This service requires 11 
words of stack space. 

The macro format is: 

R: ITIC arg 

where: M4D12 pointer to the argument list. 

The argument list can be generated via the TrCK:A macro, which has the format: 

TICK: A arg,id,sema4,count 

where: arg Must match the R:ITIC argument. 

id 16-bit integer used to identify this timer. 

sema4 Address of the sempahore to be signalled. 

count Number of ticks that must elapse before the -- sempahore is signalled. . 

The timer identifier is a 16-bit integer. To allow for possible modification 
or cancellation of tick clock timer requests, all identifiers in concurrent 
requests within a common environment must be unique, with one exception. The 
programmer can speci fy any number of requests havi ng i dent Hiers ,,..,ith the 
value O. This exception eliminates the need to create unique identifiers. 
However, a tick clock request with a 0 identifier cannot be modified or cancelled. 

In using the R:ITIC macro, the programmer must recognize the possibility that 
the first tick may occur immediately after the request is made. A one-tick 
request may, therefore, result in the semaphore being signalled in much less 
time than a one-tick interval. For this reason, requests that demark a small 
time interval should be made for one more tick than the calculated number. 

7.3.2 R:MTIC Service 

If the programmer wishes to modify a previously-initiated tick c'lock timer 
request, he can use the R:MTIC request. However, the timer to be modified 
must have a unique (Le., non-zero) identifier; R:MTIC cannot operate on a 
request having a 0 identifier. This r.ervice requires 15 words of stack space. 



-~ ComputerAutomation(!)~------------------------

o 

The format of the request macro is: 

R: MTIC arg 

where: M4D12 pointer to the argument list. 

The argument list can be generated via the TICK:A macro, which has the 
format: 

TICK: A arg,id,sema4,count 

where: arg 

id 

sema4 

count 

Must match the R:MTIC argument. 

Identifier of the timer to be modified; 
must be non-zero. , 
Address of the semaphore to be siqnalled. 

Number of ticks that must elapse before the 
semaphore is signalled. 

Register A receives the return status of the R:MTIC requests. A -1 in register' 
A indicates either that the specified timer identifier does not exist or that 
the timer has expired, i.e., the semaphol'e has been signalled. A 0 in register 
A indicates that the timer request has been successfully modified. 

7.3.3 R:CTIC Service 

The R:CTIC macro allows the programmer to cancel a tick clock timer request. 
This service requires 15 words of stack space. 

~ The macro format is: 

R: CTIC arg 

where: M4D12 pointer to the argument list. 

The argument list can be generated via the TICK:A macro, which has the format: 

TICK: A 

where: Must match the R:CTIC argument. 

id Identifier of the timer to be cancelled: must be 
non-zero. 

dmy,dmy Dummy arguments; may have any defined value, 

The success/fail status of an R:CTIC macro is returned in register A., A -1 in 
register A indicates e~ther that the specified timer identifier does not exist 
or that the timer has expired, i.e., the semaphore has been signalled. A C in 
register A indicates that the request has been sl!ccessfully cancelled. 



o 

o 

-(~ CompulerAutornation(!)-----------------------

7.4 ROUND ROBIN SCHEDULING 

If several activities at a given priority level are sharing an available 
processor time, no activity at a lower priority is able to execute, However, 
any time that all activities at the higher level are inactive, round robining 
at a lower priority level may take place. 

To support round robin scheduling, the user writes 
waits on the clock and invokes the R:PAUS service. 
must be started for each level of round robining. 
of the round robining must be of a higher priority 
controlling. 

7.4.1 R:PAUS Service 

a task which alternately 
One activity of this task 

The activity "for each 1 eve 1 
than the round robin it is 

A call to the R:PAUS macro causes the removal of the first activity of a give;~ 
priority from the ready list and the reentry of that activity into the ready 
list. This has the effect of dropping the seniority of the activity so that 
another activity at the same priority is allowed to execute. The ser'd::::e does 

'not change the priority scheduling rules of RTX4; it only changes the seniori"t.v 
rules . 

. This service requires one word of stack space. The format of the macro is: 

R:PAUS 

where: 

grdesc 

prdesc Priority descriptor. 



I 

:,1 

-=i 
I 

• ! 

~~~_~m~~----------------------------------------

7.4.2 R:PAUS Example 

In this example R:PAUS is used to cause two activities of the same task and 
priority to share processing time. Each activity gives up control ~v~ry 12 
ticks. 

STACKS 
PRIORITY 
INTERVAL 
'* 
'*INITIALIZATION 
'* 

'* 
'*TASK ROBIN 
;I( 

START 

EQU 
EQU 
EQU 

R:BGIN 

R:BGIN 

BGIN:A 

R:ENO 

TDB:A 
R: ITIC 
R: WAIT 
R:PAUS 
JMP 
TICK: A 
SDB:A 

Refer to Section 3.4.1. 

7.5 WALL CLOCK OPERATION 

7+8+7+11 
:300 
12 

ABC 

ABC 

STACK SPACE FOR ROBIN 
PRIORITY OF ROUND ROBIN LEVEL 
ROUND ROBIN INTERVAL IN TICKS 

FIRST LEVEL 

SECOND LEVEL 

ABC,ROBIN,PRIORITY 

ROBIN,START,O,O,STACKS 
TIMER 
SEMA4 
PRIORITY 
START 
TIMER,O,SEMA4,INTERVAL 
SEMA4,O 

RTX4 supports a wall clock to provide time-of-day and date for user programs. 
The wall clock uses the tick clock to keep its time. It handles both relative 
and absolute time intervals. 

The wall clock provides the following characteristics: 

• The interval of the wall clock is an absolute interval (.25 seconds) 
rather than a function of the Real-Time Clock. 

• The interval of the wall clock is sufficiently small for many numan 
. oriented operations. . 

• The wall clock provides unique times and dates for a peY'iod of :nler 17 
years. 

• The processing overhead of wall clock services is much less than that of 
tick clock requests. 

- 7-6 " 



1.· ... ·.11 •. t , 
~ 

c 

o 

,., 

-

--~Cmn~~~-----------------------------------------

The wall clock keeps the time and date as a double-precision integer which 
counts the number of quarter seconds which have elapsed since 1 March 1976. 
The double-precision integer format allows the time and date to be kept until 
1 March 1993, which should be sufficient for most applications. 

The wall clock uses the tick clock to keep its time, so it is as accurate as 
the hardware Real-Time Clock frequency source allows it to be. RTX4 is delivered 
with a parameter which relates the wall clock period (.25 seconds) to the 
60 Hz TILF (Twi ce The Li ne Frequency) source. Thi s parameter mllst be modi fi·ed 
if some other frequency source is used. 1 

The wall clock can be used to handle relative time intervals as well as absolute 
times. For instance, it may be useful to perform some functions on a daily 
basis. The programmer may add the correct number to the current wall clock 
value and request that RTX4 notify him when that absolute time is reached; or 
he may request that RTX4 notify him when a certain interva-' has elapsed. 
Double-precision integer values for common time intervals are: 

Interval 

Quarter Second 
Second 
Minute 
Hour 
Day 
28 Day Month 
29 Day Month 
30 Day Month 
31 Day Month 
Year 
Leap Year 

Decimal 

1 
4 

240 
14400 

345600 
9676800 

10022400 
10368000 
10713600 

126144000 
126489600 

Hexadecimal 

: 1 
:4 

:FO 
: 384C 

:54600 
: 93A800 
: 98EEOO 
:9E3400 
:A37AOO 

: 784CEOO 
: 78A1400 

If the user has no need for the wall clock J he can omit it from his configura~ 
tion to reduce memory space and CPU usage. 

7.6 WALL CLOCK VALUE DEFINITION/ACCESS 

When an RTX4 application program begins i.e., when it is AutoLoaded-- the 
wall clock has an initial value of O. That iS J the wall clock starts at time 
00:00:00 of March 1 t 1976. 

The program R:STOD and R:GTOD services allow the program to modify the wall 
clock value and to access that value, respectively. If the programmer prefers 
to deal with the wall clock value in ASCII, he can use the R:SATD and R:GATD 
services. 

fi - IAppend;x 0 

~ 



t -~ CompulerAutomation(!J-------_-----------
,I 
I', 

o 

7.6.1 R:STOD and R:GTOD Services 

The R:STOD macro sets the time of day to the value specified in the AQ register 
pair. (The Q register contains the least significant bits.) The value repre­
sents the number of quarter seconds that have elapsed since March 1, 1976. 
The macro takes no parameters. This service requires one word of stack space. 

The R:GTOD macro allows the program to obtain the time of day at a particular 
moment during execution. The time of day (i.e .• the number of quartet' seconds' 
that have elapsed since March 1, 1976) is returned in the AQ register pair 
with the Q register containing the least significant bits. The macro takes no 
parameters .. This service requires one word of stack space. 

7.6.2 R:SATD and R:GATD Services 

The R:SATD (set time and date in ASCII) and the R:GATD (get time and date in 
ASCII) macros enable the time and date to be passed in ASCII either way between 
a task and RTX4. These services each require one word of stack space. 

The R:SATD request format is: 

R:SATD arg 

where: M4D12 pointer to the argument list. 

lhe argument list is a seven-word block conta~ning the date and time values to 
be set in the order: y~ar, month, day, hour, minute, second, and hundredths 
of a second. (The time resolution is to a quarter second.) Any illegal 
values entered are' converted to zeros. The base date is March 1, 1976; any 
ear1.ier date is invalid. 

OTt R:GATD is called before the time and date are set, the values received are 
meaningless. The request format is: 

R:GATD arg 

where: 

7.7 WALL CLOCK TIMERS 

M4D12 pointer to a seven-word block to receive the 
date and time values. 

RTX4 provides three services (R:AWAL, R:IWAL, and R:CWAL) which enabie the 
programmer to use the wall clock in activity control functions. 



t - /'PIA\. ComputerAutomation<!) -------------------------t ~\\ 
~~ 
" 7.7.1 R:AWAL Service 

The R:AWAL macro initiates a timer to cause a semaphore to be signalled at an 
absolute wall clock time. Normally, the programmer specifies a time in the 
future; a time in the past causes the semaphore to be signalled ·immediately. 
This service requires 11 words of stack space. 

The format is: 

R:AWAL arg 

where: M4D12 pointer to the argument list. 

~ The argument list can be generated via the WALL:A macro, which has the f0rmat: 

o 

WALL:A 

where: arg 

id 

sema4 

, lower 

Must match the R:AWAL argument. 

l6-bit integer used to identify this timer. 

Address of the semaphore to be signalled. 

Upper word (most significant bits) of the 32-bit 
integer specifying the absolute wall clock tim~. 
represented as the number of 1/4 seconds that nave 
elapsed since March 1, 1976, at which the semaphore 
is to be signalled. 

Lower word (least significant bits) of the 32-bit 
integer specifying the absolute wall clock time at 
which the semaphore is to be signalled. 

The time is specified as a 32-bit integer representing the numbey' of quarter 
seconds that have elapsed since March " 1976. The identifier ;s a ·16-bit 
integer. To allow for possible subsequent cancellation of wall clock timer 
requests, all iden~ifiers in concurrent requests within a common environment 
must be unique, with one exception. The programmer can specify any number of 
requests having identifiers with the value O. This exception eliminates the 
need to create unique identifiers. However, a wall clock request with a 0 
identifier cannot be cancelled as can a request with a unique identifier. 

7.7.2 R:IWAL Service 

The R:IWAL macro initiates a timer to cause a semaphore to be signalled after 
a specified time interval has elapsed. This service requires II words of 
stack space. 



--~ Compuhw~~tion~~--------------------------------------------

o 

The format is: 

R:IWAL arg 

where: M40l2 pointer to the argument list. 

The argument list can be generated via the WALL:A macro, which has the format: 

WALL:A 

where: Must match the R:IWAL argument. 

id 16-bit integer used to identify this timer. 

sema4 

lower 

Address of the semaphore to be signalled. 

Upper word (most significant bits) of the 32-bit 
integer specifying the number of wall clock intervals 
(1/4 second) that must elapse before the semaphore is 
signalled. 

Lower word (least significant bits) of the 32-bit 
integer specifying the number of wall clock intervr,ls 
that must elapse before the semaphore is signalled. 

7.7.3 R:CWAL Service 

The R:CWAL macro allows the programmer to cancel a wall clock timer request 
R:CWAL cannot cancel a timer having a 0 identifier. This service req.Jiresl5 
words of stack space. The format is: 

R:CWAL 

where: M40l2 pointer to the argument list. 

The argument list can be generated via the WALL:A macro, which has the formdt: 

WALL:A 

where: Must match the R:CTIC argument. 

id Identifier of the timer to be cancelled; must be 
non-zero. 

dmY,dmY,dmy 
Dummy arguments; may have any defined values. 

The success/fail status of a R: CWAL request is returned in reg; ster A.. A-1 
in register A indicates either that the specified identifier does not exist or 
that the timer has already expired, i.e., the semaphore has already been 
signalled. A 0 in register A indicates that the request has been successfully 
cancelled. 

. 7-lfl 



o 

-'. 
o 

--~CGmpuhw~tion~~-------------------------------------------

SECTION 8 

MAILBOX 

8. 1 INTRODUCTION 

ThemailboxisafacilityforcommunicatingbetweenactivitiesinRTX4.It 
enables 32-bit messages to be passed from one activity to another. A program 
can have any number of mailboxes. 

A mailbox is created with the MDB:A macro. RTX4 provides two mailbox services 
(R;SEND and R:RECV) for communicating 32-bit messages from one task to another 
through the Q and A registers. 

Figure 8-1 shows the general flow of processing messages. Only one message 
can be held in a mailbox at a time, but messages cannot be lost. The first 
activity to send a message deposits its message immediately and continues 
execution. A subsequent sender is suspended until the first message is 
received. The second sender then resumes execution, deposits its message. and 
continues processing. 

Each message can be~received only once. If all previous messages have been 
received and an activity tries to receive a message, the activity is suspended 
until the nex~ message is sent. Thus t no messages are received twice. 

Messages are sent and received in priority order. If several activities are 
waiting to receive a message, the highest priority activity receives the next 
message. Alternatively, if no activities are waiting, or if all activities 
are of the same priority, messages are processed on a first-come, first-served 
basis. 

The mailbox transmits an unformatted 32-bit message consisting of two computer 
words of the programmer's choice. Typically, the mailbox contains a l6-bit 
address and a 16-bit word describing what the address contains. 

Mailboxes and semaphores have some similarities. Semaphores should be used 
where only synchron i zat ion is necessary. Ma il boxes can be used whe.re data 
must be transferred between the synchronizing tasks. In such usage, a ma'ilbox 
may replace the use of two or more semaphores and aid in simplifying the 
problem. However, a mailbox takes more space and consumes more CPU time. 



f 
~ - ~ ComputerAutomalion· 

'\~ 
) 

10 

SEND 

WAIT UNTIL 
MSG IS 

RECEIVED 

NO 

DEPOSITMSG 
IN MAILBOX 

DONE 

YES 

YES 

GIVEMSGTO 
WAITING TASK 

RECEIVE 

YES 

NO 

WAIT UNTil 'J~ PREVo MSG·IS 
ACKNOWLEDGED 

PICK UP ] 
MSG 

ACKNOWLEDGE 
MSG 

DONE 

------------------~-----------------------------------,-----

~ i 
,I 

~ 
Figure 8-1. Processing Messages in the Mailbox 



) 

o 
i 

o 

--~ Com~rAmomation~--------------------------------------------------

8.2 MAILBOX DEFINITION 

To define a mailbox facility, the programmer calls the MDB:A macro. In addition, 
he provides two words of storage for the mailbox. The user can define any 
number of mailboxes in his program. 

8.2.1 MDB:A Macro 

The MDB:A macro defines a mailbox facility. A Mailbox Definition Block is 
provided by the user program via an MDB:A macro call. The format of the macro 
is: 

MDB:A mail 

where: mail 

8.3 MAILBOX OPERATION 

Two character identifier to be assigned to 
the mailbox. 

RTX4 provides the R:SEND and R:RECV services for communicating m~ssages from 
one task to another via a maiibox. 

8.3.1 R:SEND Service 

This request causes a message to be sent from one task to another. The message 
is contained in the Q and A registers. This s~rvice requires 15 words of 
stack space. \ 

The format of the R:SEND macro is: 

R:SEND 

where: M4D12 pointer to the argument list. 

~ The argument list can be generated via the MAIL:A macro, which has the format: 

MAIL:A 

where: Must match theR:SEND argument. 

mail Two character identifier of the appropriate mailbox 
as defined in the MDB:A macro . 

. ~ -



, 
r 

t, -~ CornputerAutomation.::.\!>-----------------------
I 

8.3.2 R:RECV Service 

The R:RECV system request is used by one task to receive a message sent by 
another. The message is received into the Q and A register~. This service 
requires 15 words of stack space. 

The format is: 

R:RECV arg 

where: M4D12 pointer to the argument list. 

The argument list can be generated via the MAIL:A macro as in the R:SEND o .. servi ce above. 

o 

8.4 SAMPLE SEQUENCE 

In the following sequence, the user defines a mailbox named IBll and sends a 
message to that mailbox. 

MDB:A I B11 

MAIL: A LABEL1,IBl l 

R:SEND LABEL 

"~ -.!! ," 



o 

o 

"" 

--~CQm~~~------------------------------------------

activity 

activity context 

environment 

environment 
memory pool 

interrupt latency 

list 

mailbox 

priority 
descriptor 

reentrant 

APPENDIX A 

GLOSSARY 

An execution instance of a task. Every time ~ task is 
begun, a new activity is cr.eated. 

The activity resources that are maintained throughout the 
life of the activity. Context includes the Land K 
registers, priority, task identification, and environment 

The set of all the physical resources required by the 
activity, except CPU time. This includes memory, I/O 
devices, and hardware exception traps. 

The area between the end of the user's program and the end 
of memory that is used by RTX4 to allocate Y-scratchpads 
and stacks for tasks as they are begun. 

;The time that passes from when the highest priority 
interrupt is asserted by the hardware to the time it is 
acknowledged by the CPU. It is usually caused by in­
terrupt lockouts within RTX4 which are necessary for the 
internal operation of RTX4. 

An ordered or unordered collection of blocks. 

A facility for communicating 32-bit messages from one 
task to another. 

A word whose high-order bit indicates whether' the priority 
is absolute (bit 15=0) or relative (bit 15=1) to the 
calling task. If the word ;s anM4012 expression, the 
effective address is the priority. 

Used to describe a task that can have two or more activi­
ties executing concurrently. 

register context The contents of registers of an activity. While the 
activity is executing, the register context is defined by 
the hardware register contents. While an activity is 
inactive, the register context is stored on the stack in 
the order PYX Q AS L, and the pointer to the register 
context is stored in the Activity Control Block . 

• 



t: -~ CompulerAutomation(!);;...---------------------, 
t, 
[.1 

~ "'-1 
, ..... 1 

round robin 

semaphore 

o 

system 
freepool 

task 

tick 

Insuring that two or more activities share CPU time 
rather than using it on a pure priority or seniority 
basis. The user of RTX4 can implement round robin schedul­
ing at a single priority level using the R: PAUS and c-Ioek 
services. 

A common data mechanism for transmitting timing signals 
between concurrently executing tasks. A semaphore has two 
operations: signal and wait. In RTX4, semaphores provide 
the primary mechanism for resource control and timing 
conflict resolution. 

Used to describe a task in which the execution of one 
activity must be completed before another activity in that 
task can start. 

A user-specified area that provides small buffers for RTX4 
functions such as Activity Control Blocks and Clock 
Control Blocks. 

An ordered collection of machine instructions that perform 
a particular function within the real-time application. 

The real-time clock increment, typically 8.33 ms for 60 Hz 
line frequency. 



) 

o 

o 

: ... 1 .• :1, 

--~CQm~~~~----------------------------------------

B. 1 INTRODUCTION 

APPENDIX B 

RTX4 TABLES 

This appendix describes the following tables and the macros which generate 
them: 

• Task Descriptor Block (TDB:A) 

• Environment Control Block (ECB:A) 

• Mailbox Definition Block (MDB:A) 

• Activity Control Block 

• Clock Control Block 

• Semaphore Definition Block (SDB:A) 

• Initialization ~lock (INIT:A) 

• Parameter. Blocks (BGIN:A, R~SATD, R:GATD, TICK:A, WALL:A, MAIL:A) 



, 
.1 ;: 
,i 

-(g/\\ ComputerAutomation-:..(!) -----~-----------

o 

0 

B.2 TASK DESCRIPTOR BLOCK 

The Task Descriptor Block is provided by the user to describe the attributes 
of a task to RTX4. This table can be generated using the TDB:A macro. The 
address of a Task Descriptor Block is the task ID. 

TDB:A 

where: 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

label,start,yscratch,stackad,stackamt,flags,usage 

label 

start 

Label to be assigned to start of TOB. 

Starting address of task. 

yscratch Amount of Y-scratchpad used by task (for reentrant 
program only); if zero, the register value of the 
calling task is used. 

stackad Address of preallocated stack (for serial program 
only); if zero, stack space is allocated by RTX4. 

flags None currently defined. 

usage Number of concurrent activities of this task (optional). 

TD:PER :0 

TD:FLG : 1 

TD:USA :2 

TD:NOX : 3 

TD:Y :4 

TD:AD : 5 

TD:AMT : 6 

TD:P :7 

TD:CSA :8 

:9 

:A 
TD:CKW : B 

- B-2 -

<,. J 



--~CGm~~~~--------------------------------------

Field 

TD:PER 

TD:FLG 

TD:USA 

o . TD:NOX 

_I 

o 

TD:Y 

TD:AD 

TD:AMT 

TD:P 

TD:CSA 

TD: CKW 

Word 

o 

2 

3 

4 

5 

6 

7 

8 

9-10 

11 

Bits 

0-15 

0-15 

0-15 

0-15 

0-15 

0-15 

0-15 

0-15 

0-15 

0-15 

Description 

Link pointer to the list of other Task Descriptor 
B10cks t the head of which is in ECBTLH (word 16) 
of the Environment Control Block. This list is 
linked as part of the loading process. 

TDB flags; none currently defined. 

Either: controls the number of concurrent 
executions of a reentrant task t or queues 
requests for execution of a serially reusable 
task. 

Maximum permitted number of concurrent executions 
of a ree~trant task. 

Length ot the Y-scratchpad to be dYlldmically 
allocated to each executicn of this task. If 
the length is zero t the Y vallie of the tas, tnat 
called this task for execution is r~tained. 

Either: the address of the area to be use~ dS 
the stack for each execution of this task or 0, 
if the stack is to be dynamically allocated. 

Either end limit address of the st~ckifrD:AD 
¢ 0; or if TD:AD = 0, it is then the stack length. 

Address of the start of task execution. 

Concurrency semaphore. 

Reserved. 

TDB checkword; contains :F01E. 



.. , 

0 

0 

B.3 ENVIRONMENT CONTROL BLOCK 

The Environment Control Block is created by the user to describe resources to 
RTX4. The address of the ECB is its 10. This block can be generated using 
the ECB:A macro. 

ECB:A labeltuat 

where: label 

uat 

0 EC:PER 
1 EC:FLG 
2 EC:EDB 
.3 EC:LUS 
4 

5 

6 EC:CNT 
" 7 EC:ALH 

8 EC:5UB 
9 EC:MST 

10 EC:NEC 
11 EC:CKW 
12 ED: EVa 
13 EO:MRO 
14 

15 

16 EO:EVT 

31 . ED: EVT 

Label to be assigned to start of ECB; 
referenced in INIT:A. 
Address of the Unit Assignment Tab1e. 1 

, 
0 

: 1 

:2 

: 3 

:4 } 
: 5 

: 6 

:7 

:8 

: 9 

:A 
:B 
:C 
:0 

: E } : F 

:10 

:IF 

Peer 1 ink. 

EeB flags - none defined. 

Environmental descriptor block pointer. 
Logical unit semaphore. 

Reserved 

Number of task activities. 
ACB list head. 

Subordinate list head. 
Master environment. 
Necessary environment. 

ECBcheckword; contains :F06E. 
Exception vector offset (=16). 

Map register offset (=48). 

Reserved 

Exception Vector Table 

(table continues on next page) 

lInput/Output Subsystem 1054 User's Manual (90-93430-00) 

- 8-4 • 



, 

I 
i 

C' 

e 

0 

1il 

~"-~,' 

--~Com~~~~---------------------------------------

(continued from previous page) 

32 EO:UAT 
33 EO:LMA 
34 EO:MPA 
35 EO:HMA 
36 EO:EUS 
37 EO:PRI 
38 EO:TLH 
39 ED: SLH 
40 ED:MLH 
41 
42 
43 
44 Undefined 
45 Undefined 
46 Undefinep 
47 Undefined 
48 Undefined 

:20 Unit Assignment Table address 
:21 Low memory address 
:22 Environment pool address 

:23 High memory address 
:24 Environmental usage semaphore 
:25 Maximum priority 
:26 Task list head 
:27 
:28 

:29} 
:2A 
:28 
:2C 
:20 
:2E 
:2F 
:30 

Semaphore list head 
Mailbox list head 

Reserved 

Number of task activity 
TOB of initial task 
Priority of initial activity 
ID of initial activity 
Map register table 



,I 
t • I 

t 

I 
'! 

~~Cmn~~~---------______________________________ _ 

0 

0 

B.4 MAILBOX DEFINITION BLOCK 

A Mailbox Definition Block is provided by the user to provide a mechanism 
for communication between activities. An MOB can be generated via the MDB:A 
macro: 

MDB:A mail • 

where: mail Identifier to be assign~d to the mailbox. 

Two words of staorage must be provided for the mailbox . 
.. ", :'-r- ...... 

0 MD:PER :0 Peer link 
1 MD:FLG :1 MOB flags 
2 MD:MBX :2 Mailbox usage semaphore (initially = 1) 
3 MD:MSG :3 Message signalling semaphore (initially .- 0) 
4 MD:A :4 A register of message 
5 MD:Q :5 Q register of message 
6 

7 

8 

:6 } 
:7 Reserved 
:8 

9 MD:ECB :9 Master environment 
10 MD: ID :A ID 
11 MD:CKW :8 MOB ch~ckword; contains :F07E 

'. B-€ -



I 
f 
~. 
I~' 

C 

,-

.. , 

i;.i 
4·1 
~ I 

~ ... --..•. ~! 
--~ 

-~ ComputerAutomation~::"";"--------------------

B.5 ACTIVITY CONTROL BLOCK 

RTX4 creates the Activity Control Block when an activity is begun. 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

;, , 

AC:PER 
AC:FLG 

AC:PRI 
AC:K 
AC:Y 
AC:L 

AC:LST 
AC:TOB 
AC:ECB 
AC:IO 
AC:CKW 

: a Peer 1 ink 
:1 ACB flags 
: 2 Priority 
: 3 K regi ster 
:4 Y register initial value 
:5 L register initial value 
:6 Reserved 
:7 Environment activity peer !ink 

:8 Master TOB 
:9 Master ECB 
:A ACB identifier 
:8 ACB checkword; contains :F02F 



,,',: ' ,:! , , j -@\ eom....-.--· 
>.: 

Ii B.6 CLOCK CONTROL BLOCK 

The Clock Control Block is created by RTX4. 

I 
-I 

:'1 

fi 
~ ! 
if.:.1 

~ 

0 

o 

a 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

CC:PER 
CC:FlG 
CC: TIC 

CC:STS 

CC:ECB 
CC: ID 

CC:CKW 

:0 Peer link 

: 1 eCB flags 

:2 Tick clock expiration 

:3 Not applicable to tick clock 

:4 Semaphore or address of semaphore 

:5 
: 6 Reserved 

: 7 

:8 

:9 Master environment 

:A CCB identifier' 

:B CCB checkword; contains : F04E 

e 



! 0 

o 

--~CGm~~~~-----------------------------------------

B.7 . SEMAPHORE DEFINITION BLOCK 

The semaphore definition block is provided by the user to control the synchro­
nization of tasks. This table can be generated using the SDB:A macro. 

SDB:A label ,value 

where: label Address label of the semaphore. 

v.al ue Initial value of the semaphore. 

0 SD:PER :0 Peer link 

SD:FLG : 1 SDB flags; none defined (bits 8-15) 
Semaphore i ni t; a 1 value (bits 0-7) 

2 SD:SEM : 2 Semaphore word for waiting task 

3 SD:CKW : 3 SDB checkword; contains : F03'=. 

.. !j . 



'" 

,'; .' 
1:,' 

~ ~ 

B.8 INITIALIZATION BLOCK 

The Initialization Block is generated by the INIT:A macro and provides the 
information needed to initialize the entry point. In order to use this macro, 
the user must declare the label R:INIT as an external in his program (NAM R:INIT). 
This macro must preceed any other code in the program. 

INIT: A 
INIT:A 
INIT: A 
INIT: A 
INIT:A 
INIT: A 

~,g'~,l,ecb,tdb,pri 
~,g'~'l,ecb,tdb,pri,amtfree 
~,g,~,l,ecb,tdb.E!i,amtfree,adrfree 
~,g,~'l,ecb,tdb,E!i.amtfree,adrfree,topmem 
~,g'~'l,ecb,tdb,prit,ttopmem 
~,g'~'l,ecb,tdb,pri,amtfre!"topmem 

o where: Initial values of the A, Q, X, and Y registers 

o 

ecb 

tdb 

amtfree 

adrfree 

topmem 

Address of the Environment Control Block 

Address of the Task Descriptor Block 

Activity priority 

Amount of freepool space (optional) 

Address of the freepool (optional) 

Upper limit of memory available to RTX4 
(optional) 

When an optional parameter is omitted, a comma must be inserted to hold 
the position of later parameters. 

0 IN:A :0 Initial contents of A register 

1 IN:Q : 1 Initial contents of Q regist.er 

2 IN:X :2 Initial contents of X register 

3 IN:Y :3 Initial ,contents of Y register 

4 IN:ECB :4 Address of Environment Control Block 

5 IN:TDB :5 Address of Task Descriptor Block 

6 IN: PRI :6 Init,ial activity priority 

7 IN: ID :7 Block identifier 

8 IN:FPL :8 Freepool length (words) 

9 IN:FPA :9 Freepool address 

10 IN:EOM :A End-of-Memory address 

e 
I 

n:; 
«: 

" 

c 

" e;' 



o 

o 

-~ ComputerAutomation~------------------------

B.9 RTX4 SERVICE PARAMETER BLOCKS 

The BGIN:A, R:SATD, R:GATD, TICK:A, WALL:A, and MAIL:A macros involve parameter. 
blocks, as follows. 

BGIN:A 

~II-_. ------ Address of TDB 
Priority 

ASCII Time of Day Block (R:SATD,R:GATD) 

a 
1 
2 
3 
4 
5 
6 

TICK: A 

a 
1 
2 
3 

WALL: A 

a 
1 
2 
3 
4 

MAIL:A 

o 
1 

Year 
Month 
Day 
Hours 
Minutes 
Seconds 
lOOths of second (only on R:GATD, resolution is ~ sec.) 

Reserved 
l6-bit identifier 
Address of semaphore to signal 
Number of ticks 

Reserved 
l6-bit identifier 
Address of semaphore to signal 
High order 16 bits of time 
Low order 16 bits of time 

Address of Mailbox Definition Block 
Reserved 



·,. -. 
o 

• 

--~ Cmn~erAmomation~------------------------------------------------

APPENDIX C 

RTX4 EXCEPTIONS 

\.Jhptl riP Pt't'PI' ic; dic;cnVPt'pd dlll'illu j!tp tll(IWIII,Oll of rrT\,I,.1Il "",',lIi'lil ,,!lIdi 
[1.111 I:. UCI1Cld{cd. I~crcl' III LclLA ~'''Ll'll tu :>t!t! how to I illk III d 116t~I' t'\Ct'pll\ 

processor. The names of the form XV:xxxxx, listed in the table below are used 
to define exception vectors for processing exceptions. 

Table C-l. RTX4 Exceptions 

~------------~-------------------------r--------------------------, 

EXCEPTION 
TYPE 

\ ...... -'1\' t'i ...... " \ f . 

instruct-len 
trap 

Memory 
exception 
trap 

Character/ 
mnemonic 
exception 
trap 

User 
trap 

Arithmetic 
except ion 
trap 

StacY 

, I dl 

I~exception processor 
specified JMP to routine 
specified in EDB. 

x :. Note 2. 
Q = a = XV:UINTP 

A = Note 3. 
X = Note 4. 
Q = 1 = XV:MEMTP 

A = Note 1. 
X = Note 2. 
Q = 2 = XV:CNMTP 

A = Note 1. 
X = Note 2. 
Q = 3 = XV:USRTP 

A = Note 1. 
X = Note 2. 
Q = 4 = XV:AERTP 

A U,;' ~, 

I 'I, I. ' 

'I ,! ' 

If no exeption, proceSior 
CPU HALTS, with following 
register content'., 

x = Nott: o. 
Q = 0000 
P = 80 

A = 208 
X = Undefined 
Q = 0001 
P = 80 

A = 208 
X = Note 6. 
Q = 0002 
P = 80 

A = 208 
X = Note 6. 
Q = 0003 
P = 80 

A = 208 
X = Note 6. 
Q = 0004 
P = no 
l- I 

I II 
-i jli, 

i 
I 
I 
I 
I 

I 

I 



--~CGmpuhw~~~---------------------------------------------

I 
I 

,0 

'0 

"'1 

71 
,ii 

Ii 
,I 

EXCEPTION 
TYPE 

Unimplemented 
system 
service 

Strap 0 

RTX door 
service 
exception 

RTX 
system 
error 

NOTES: 

1. 

2. 
3. 

4. 
5. 

Contents 
Contents 
Contents 
Contents 
Contents 

Table C-l. RTX4 Exceptions (Continued) 

If exception processor 
specified JMP to routine 
specified in EDB. 

A = Undefined 
X = Contents of Strap trap 

location (next P) 
Q = 8 = XV:USTEX 

A = Undefined 
X = Undefined 
Q = 9 = XV:STOEX 

A = Negative error code 
X = Undefined 
Q = :A = XV:DOREX 

:. 

A '= Negative error code 
X = Location where error 

occurred + 1 . 
Q = :B = XV:RTXEX 

If no exeption, processor 
CPU HALTS, with following 
register contents. 

A = 208 
X = Address where exception 

occurred 
Q = 0008 
P = 80 

A = Undefined 
X = Undefined 
Q = OOOA 
p = 80 

A = Error code on door exit 
(positive value), see 
Table C-2 

X = Undefined 
Q = OOOA 
P = 80 

A = Error code (positive 
value) 

X = Location wher€ excep­
tion occurred +1, see 
Table C-2 

Q = OOOB 
P = 80 

of trap location +1 (instructions causing trap) . 
of trap location (next Pl. 
of trap location +1 (undefi ned). 
of trap location (undefined). 
of trap location +1. 

6. Address where exception occurred +1. 

- C"2 '"' 

1'.'''''. 
~ 



-~ ComputerAutomation(!)-----------------------
Table C-2. Error Code Indicators 

-~ 

CODE EXCEPTION DEFINITION 

201 EX:SEM SEMAPHORE EXCEPTION 
202 EX:STP STRAP OUT OF RANGE 
203 EX:STK INSUFFICIENT STACK SPECIFICATION 

o 204 EX:EMP UNABLE TO FILL E.M.P. REQUEST 
205 EX:SEP UNABLE TO FILL SYSTEM FREEPOOL 
206 EX:PRI NEGATIVE ACTIVITY PRIORITY 
207 EX:CCB CCB EXCEPTION, TICK CLOCK 
208 EX:TRP HARDWARE TRAP EXCEPTION 

(X register contains address of hardware l-rap) 

209 EX:TBL DEBUG VERSION, TABLE 10 CHECK FAILURE 
20A EX:SYS DEBUG VERSION, SYSTEM ACTIVITY VIOLATION 
20B EX:WBC CCB EXCEPTION, WALL CLOCK 
20C EX:MBC MAILBOX 10 CHECK (INVALID 10) 

o 

.. , 



I ,.' 
"", 

o 

:8 

o 

'.' 
~I 

'~J 

~.'i 

tl~ 

--~CGm~~~~----------------------------------------

D. 1 INTRODUCTION 

APPENDIX 0 

CONFIGURATION OPTIONS 

Configuration options allow the user to tailor his system to meet his needs. 

0.2 NONSTANDARD LINE FREQUENCIES 

The RTX4 wall clock provides accurate time to +~25 second preclslon. RTX4 is 
.de1ivered with a parameter which relates the wall clock period to the 60 Hz 
TTLF (Twice the Line Frequency) source. If some other frequency source is 
used, the programmer must set the contents of location TTLF4: to half th(: 
value of the Line Frequency of the Real-Time Clock used. (The absolute location 
of TTLF4: can be found in the load map.) The default TILF4: value, for 1)0 Hz, 
is 30 (:lE). 

The RTX4 source module CLK50: is provided for setting TTLF4: to the correct 
value for a European system with a Real-Time Clock using 50 Hz Line Frequency. 
A user on this type of system needs only include the statement: 

~ 

LOAD . C LK50: 

in his program to set TTLF4: to the appropr"iate value, 25 (: 19). 

0.3 PROGRAM RESTARTS WITHOUT RELOADING 

Normally, the programmer must load a fre~h copy of his program in order to 
restart. Many variables and pointers are initialized during loading, reducing 
the size of RTX4 initialization code. Reloading is simple when disk storage 
is used. However, in paper tape development and some other circumstances~ the 
programmer must be able to restart an RTX4 program without reloading. 

In these cases, the programmer can invoke the REIN!: optipn via a LOAD directive 
in any user module: 

LOAD REINI: 

By invoking the REINI: option, the user assures that all RTX4 variables and 
pointers are reinitialized whenever RTX4 is restarted. 

~~~~! ____ r>'>'1_' __ 



" 

I 
I 
I 

--~CGmpuhw~~~---------------------------------------------

D.4 DEBUGGING FACILITIES 

The Debugging Monitor allows debugging of RTX4 applications. One of the options 
described below can be included to start execution in DEBUG rather than in 
RTX4. The programmer can then start RTX4 by jumping or breakpointing to loca­
tion :80, the normal start location'. If an unresolved error condition occurs, 
a pseudo-breakpoint occurs at location :7E rather than a halt at :7F. 

See the NAKED MINI 4 Debugging Monitor Reference Manual for complete informa­
tion on the Debugging Monitor. 

D.4.1 The DEBUG4 Option 

4C) This option includes the standard version of the Debugging Monitor. This 
version provides the following commands: 

o 

A 
J 
B 
R 
G 
I 
L 
F 
S 
Z 
D 
V 
W 

Assign list output device. 
Re-enter user program or set temporary breakpoints. 
Set temporary breakpoints or re-enter user program. 
Display or change user program registers. 
Display or change general register. ' 
Inspect memory. 
Li st memory. 
Fi 11 memory. 
Search memory. 
Print chain. 
Dump memory. 
Verify memory. 
Load binary tape. 

This option is invoked via the following LOAD directive in any module: 

LOAD DEBUG4 

D.4.2 The MDBUG4 Option 

This option causes the MDBUG4 version of the Debugging Monitor to be included. 
MDBUG4 provides all of the DEBUG4 commands except: 

Z Print chain. 
W Load binary tap~. 
D Dump memory. 
V Verify memory. 
A Assign list output device. 

This option invoked via the following LOAD directive in any module: 

LOAD MDBUG4 

- D-2 -

~i .-
I 



j --~ ComputerAutomation ~ 

'I ¥i 
\1,1 D. 4. 3 The XDBUG4 Option 

o 

o 

This option ~auses the XDBUG4 version of the Debugging Monitor to be included. 
XDBUG4 provides all of the DEBUG4 commands plus: 

M Monitor computer bus. 
T Intercept traps. 

This option is invoked via the following LOAD directive in any module: 

LOAD XOBUG4' 

0.5 WALL CLOCK OMISSION 

The NOWAL: option allows the programmer to omit the wall clock from his config­
ration. If the programmer has no need for the wall clock services, he can saW0 
the time and space normally used for these servi~es by invoking this opt;on via 
a LOAD directive in any user module: 

LOAD NOWAL: 



c 

-~ COmputerAutomation(!);;;...----------------------

APPENDIX E 

RTX4/IOS4 APPLICATION DEVELOPMENT SYSTEM GENERATION USING OS4 

E. 1 INTRODUCTION 

This appendix outlines a suggested procedure for creating a system for Jeveloping 
RTX4/IOS4 application programs using the OS4 system. This discussion provides 
specifi c, step-by-step instruct i OilS for generating such a system on a fl oppy 
diskette. The user can modify this procedure as necessary to suit his particular 
needs. 

A sample RTX4/IOS4 application appears at the end of the appendix. 

E.2 RECOMMENDED PROCEDURE 

To generate an RTX4/IOS4 application development system on a floppy diskette, 
the programmer can take the following steps: 

1. AutoLoad the OS4 system diskette. (The AutoLoad procedure is descr bed 
in the OS4 System User's Manual and the NAKED MINI 4 1~.~!:9.LoaQ manua 

2. Install a new, formatted diskette in Unit 1. 

3. Label the new diskette as described in the 054 user's manual or ;n 
the 1054 user's manual. 

4. Remove the OS4 system diskette from Unit 0; install the RTX4 product 
diskette (F41001). 

5. Enter the command: 

/COpy DF1=DF.RTX~LIB1 

6. Remove the RTX4 product diskette; install the RTX4 macros diskette 
(F42501) . 

7. Enter the command:' 

/COPY DF1=DF.GEN.MAC 
/COpy DF1=DF.RTX.MAC 
/COPY DF1=DF.IOS.MAC 
/COPY DF1=DF.SFM.MAC 1 

1If any problem arises during this step, the user must re-insta1l and AutoLoa~ 
the 054 system diskette and then retry this step. 



--~ Compuhw~mation~-----------------------------------------------
8. Remove the RTX4 macros diskette; install the 1054 product diskette 

(F4300l) . 

9. Enter the command: 

/COPY DF1=DF.I05.LIB 

10. Remove the 1054 product diskette; install the SFM product diskette 
(F4400l). 

11. Enter the command: 

/COpy DF1=DF.5FM.LIBI 

iO 
12. Remove the 5FM product diskette; install the 054 system diskette. 

;1 

i 
",i 

"~I 

13. Enter the command: 

/COPY DF1.PROGRAM.A5M=CI 

and respond to the> prompt by entering the symbolic text of the 
application program; enter a /* command to signal the end of the 
text. 

14. Build a JCL file by entering the command: 

/COpy DF1.PROGRAM.JCL=CI 

and respond to the> prompt with the lines: 

/MACRO PROGRAM(DEFINITION=GEN+RTX+I05+5FM) 
/LINK PROGRAM(AB=100)+5FM+I05+RTX 

~ Enter a /* command to signal the end of the text. 

15. Enter the command: 

/00 PROGRAM 

to execute the JCL file, which assembles and links the program. 

16. Enter the command: 

/AUTOLOAD DF1.PROGRAM.BIN 

to execute the program. 

17. Debug the program (assuming DEBUG4 was loaded with the program). 

IIf any problem arises during this step, the user must re-in5tall and AutoLoad 
the 054 system diskette and then retry this step. 

( 
" ,f 

::t 
ro 
<' 



~ -@i ComputerAutomation(!)~-------~--------------­
¥I 

o 

:A • 

o 

18. If corrections to the symbolic version of the program are required, 
take the following" steps: 

a. AutoLoad the system diskette. 
b. Edit the file PROGRAM.ASM by entering the command: 

/EOIT PROGRAM 
c. Perform steps 15, 16, and 17. 
d. If necessary, perform step 18. 

19. If the completed application is to reside on the development diskette, 
rename PROGRAM. BIN or copy it to another file. (To preserve the 
source code of the program, copy PROGRAM.ASM to another file. To 
preserve the object version, either rename PROGRAM.OBJ or copy it to 
another file.) Alternatively, copy PROGRAM.BIN (and optionally 
PROGRAM.ASM and PROGRAM.OBJ) to another medium (e.g., paper tape or 
another disk). 

This procedure produces a binary file which can be loaded into any NAKED 
MINI 4® Family computer. If the file resides on a disk, it can be loaded via 
the /AUTOLOAD command. If the file has been copied to paper tape, it can be 
loaded via the hardware AutoLoad procp.dure. The system diskettes are left 
intact and can be stored in a safe placafor backup. The following files are 
created on the development diskette: 

RTX. LIB 
GEN. MAC 
RTX.MAC 
IOS.MAC 
SFM.MAC 
lOS. LIB 
SFM. LIB \ 
PROGRAM.ASM 
PROGRAM.JCL 
PROGRAM.OBJ (unless renamed in step 19) 
PROGRAM.BAK (created when PROGRAM.ASM is edited in step 18) 
PROGRAM. BIN (unless renamed in step 18) 

and any files created by copying PROGRAM.ASM, PROGRAM.OBJ, and/or PROGRAM. BIN 
in step 19. 

To develop another application, the user needs only edit the PROGRAM.ASM file 
to contain the new source text and then perform steps 15-19 outlined above. 

This procedure assumes the standard OS4 configuration, in which the 
UF logical unit is assigned to the OFOl physical unit. If UF has some 
other assignment in the user's configuration, the user must include the 
device specification in the file identifiers specified in steps 14 and 15. 

E.3 SAMPLE APPLICATION PROGRAM 

The following pages pres\~nt the assembly listing, link map, and di:>kette view 
of a sample RTX4/IOS4 application program. 



~*',c,,". .. , ct . 

o o 

." 
-'. 

~ PAGt: OU01 MACRO (el) I-<rx4/IOS4 EXAMPLE. APPLICAT}uf'.J I-'ROr:;HAj>J 
nl 1 9 7 9 I 0 1 I 1 8 2 (J : 4 1 : 2 1. • C ~ lI'JJ 1 1 A LIZ A 1 III f\J 
rn 
I 

:;0 

~ 

UOOO 

AN 
l~ R ~ 

........ ...... 
o 
til 
~ 

00000000 
00000000 
ooooooou 
00000000 
OOOO.OOOA 
0000010() 
o V (1.0 

0000 
0000 
0000 
0003 
0002 
OOOA 
FOOE 
u100 
00013 
0000 
flOnO 

0003 
0004 
0005 
OOOn 
0001 
OOOK 
0009 
OOIU 
0011 
OOl2 

-XI-< 

rn 
>< 
III 
:3 
u 
~ 

CD 

» 
u 
u 
~ 

n 
III 
c+ ..... 
o 
::s 
-0 
"'1 o 

<C 
"'1 
III 
:3 .. 
-0 
III 

ooou 
0001 
0002 
0003 
0004 
0005 
OOOb 
0007 
0,)08 
0009 
OOOA 
OuOH 

0012+ 
0012-t 
0012 ... 
0012 ... 
0012 ... 
OOloS 

~ 0000 tRRORS (0000) 
~ 0000 WARNINGS (0000) 
o 
~ 

" 

.,:>,~, 
l-: :' 

Yt< 
PRIUl<llY 
FtlEEPOOL 

i'JM1 

£XTt< .. 
EXTR 
Eoll 
flJU 
flW 
E(W 
fUU 
£!jlJ 
INIJ:A 

ENU 

1-<: rtn r INII JAL IlAIIOI\l HLfl(':~ ,~At.~ 

E C ~ E 1\1 V I fHJ i\I r-I E. NT C () N HW L H llJ(. '" 
TD~ TASK u~SCWIPTOH HLUC~ 
o INITIAL A HEGISTtH, 

_ . 0 IJ t< t. (, ] 5 TE.l'< , 
o X HtGI~rEH, 
o AND Y hEGISTER 
lU ACTIVITY PRIORITY 
: 1 U 0 Ff( F E P 1J(l LSI L E 
A I-< , (.J t< , X ~ , Y H , £ C b , T D fi , PHI IJ I-< I 1 Y , f- k f t:1-' ( III L 

~ 

~x::~~-tt-~:-~ __ ~ :.-''""'-"*'''::''~i!~~"~ 

I 

~ 

8 

• 

e 



-j:'1 i -~ ~:.IP> ____________________ _ 

1:! 

o 

I 
! 0 
I 

----------~--------------------------------------------------

" 

~ Z .0 

~ .l.l 
X I 
~ 

..:: 

X,... 
I-Z 

::r= 

= .. 

0-

, 

.. 

'.4J N 
i.J.J '" •• 
I- '-<l <l Z 

= :.u 

+. + 
.(;/,,-,...,....x:;:x;;cr-o 

............. ~ ........ '\J 
::::>0_--=-:;:;;'-:; 
000::::::'::::0'0 

,... 
o 
o 
o 

-:.u-o..ooo 
0",00:1'100 
::>'coc:::t.::lo 
:u.OOlrOO 

0-(\.\"'..0 
0000'::::> 
oooco 
o.,::,oc-:;) 

(I') 
'.!) 

'.1)2 
::1::-
02 
:xx 
::r~ 
w:: 

·00 
00 
00 
00 

-------------------------- ---------"~ .. , .. ,.-.".-""---.. " 

Fi gure E-l. RTX4/IOS4 Example Application Program, Page 2 .of 7 



" 

... .~~~~~Il:j~-

" ..... 
\Q 
c: 
""S 
CD 

", 
I 
-' 

:::0 

~ 
,Po 
...... 
>-4 
o 
(,I) 
~ 

", 
>c 
ill 
3 

"'0 
-' 
CD 

::r:o 
"'0 
"'0 
-' ..... 
n 
PI 
c-t-..... 
o 
~ 

'0 

a 
'.0 
""S 
PI 
3 

-0 
III 

<.Q 
CD 

W 
,;:) 

~ 

"'-J 

e 
..... , J : .; 

t: 

o o 
P A li E () 0 0 .5 MAC R l) ( C 1) 111 X 4 I I (J S 1I E x A'" joJ L tAP f-' LIe Al 1 1l1\J F' t<ll b k A 1"1 

lq7~/01/18 20:1I1:2h.OO THt: IASK 

0000 

0000 
00000000 
ooooooso 
Uuoooooo 
00U00001 

0001 0040 
0002 \l008 
0003 OOlJt 
0004 ooon 
0005 uooo 
OOOb 0050 
0001 OOOC 
0008 0(101 
u009 0001) 
00'08 FulE 

oooouooc 
OOOC 3A01 
0000 0011 
OOOE OEOt) 

(JOOOOOOF 
OOOF SA07 
0010 OOlf 
0011 OE-OU 
0012 3AOB 
0013 002F 
0014 3A02 
0015 0035 
0016 QE.78 OOuF 

0011 5456 
0018 0000 
001'1 0000 
UOIA OO~O 

0023 
0024 
UO~5 

0026 
0021 
Ou2B 
0029 
0029+ 
\) () 29 • 
()029+ 
()029. 
0029. 
002Q. 
IJ029t 
0029t 
(j02'h 
002~. 

0030 
0031 
uo .32 
OO.s2t 
0033 
O()34 
0035 
0035+ 
003& 
00:51 
n037+ 
003/j 
0038+ 
0034 
004u 
00 ill 
0041t 
0041+ 
0041t 

..- TASK DESCt<IPTOf.( liLUCK 
NAI'-1 TUJi 

STACKAD FQU U 
STACKAN 1::L.lIJ :~o 

11.IIi N HIt 
HAVE klx ALLuCATE SIAf.K 
SlACK SIZE 

flAb;; 
II ~ ,\ G t: 

f.. (JU o f\jfj FLA(;S 
t: (hi ~ 
IIJU:A 

'It THt ACTIVIlY 
~l lIn EIW 

Lflt)~ 

J : I U 

tiLT 
twLJ 
I : J U 

HLl 
R:I TIC 

l<:wAIT 

JMP 

1 llI'J t: c U /'1 C U fH< E N I A cr I v 1 1 y 

Hi i1 , S l' A In , U , ~ T A C K A I) , S 1 A C j( A "'1, F LA(, S , U ~ A I~ l: 

:S 
Ch'T}IJH 

$ 

MSGJUH 

lIt-IEf.( 

!)t-i-1All 

L tluP 

STAHT AOUHESS 
OPtN lHE CNT 

A h IHJ t< I" A L R E r U I< N 

Wk I Tf "'l£S~A(if TO Ct< I 

AHNONMAL RlTUkN 
~lA~l lIMEH 

wAIl FOR TIME IIJ tXPlt-<E 

Gil UISPLAY MESSAbl:. AI,AHI 

* III) tiLIJCI\ TIl UPt-hl Cld 
lOd:A CRTICJis, 'Tvt ,fU:,lIP:,O,O,o 

(:) 

I 

~ 
I 

8 

e 



-JL 

"'T1 ...... 
lQ 
c 
-s 
/1) 

m 
I ...... 

:;0 
-i x 
~ 
'-
1-1 
0 
(/) 
~ 

f~· ! 
x 
Q> 

3 
-0 
--' 
/1) 

::P 
-0 
0 
>~ ..... 
(') 
~ ..... ..... 
0 
::5 

-0 
-s 
0 
lQ 

-s 
~ 
3 
~ 

-u 
III 
u;:, 
Ili 

.+::-. 

0 
--. 

~ I 

------- j 

" " 
.. o 

PAGt. O(}OI~ rvtACRU (Cl) rdx/I/IO~ll EXfll.1PU: APPLICAT1(JI~ PKUf,I<Ai'-1 
\ q 1 'll H 1 I 1 h t!. (I : 4 t : C 8 • '.>1) I Ii I: T AS/{ 

0010 0000 
OOlC (1000 
OOlO 0000 
00 If. onuo 

OOlF 54,)6 
0020 o () l) 0 
0021 OUOO 
()02~ OOl/j 
0023 0010 
002'" Ou21 
002'5 ooou 
002b UllOO 

nunOOOUD 
OOOOOOOA 

0027 ('O4[) 

0028 4~,)3 

0021.1 5341 
Q02A 4745 
OO.?B 2054 
OOC?C 45~8 

0021> 5420 
0021:: n()OA 

00000010 

(JOOOU02f 
00000251:1 

U02F Ut)t)O 

003u O1l2F 
0031 OO·S:i 
OO:S2 02~8 

Duonoooo 
00:53 
0034 0000 

O1l41+ 
OU41+ 
0041+ 
01141 ... 
01/42 * I III BLUCK /lll {.K J 1£ I (J Cln 
o (/ .. 3 lLJli : A !'i ~ l;{ 1I h I I 1 V ' , ,'V t< : I FA: , C () U rH , tHl F H- I-i , lJ 

OU4.sf 
0045-t ,. " 
(I () iLS + 
OU4jt 

004~'" 
o U IJ 3 t 
0043+ 

* r"lESSAGt Ttx·r 
Ci~ FlHl 
Lf EIHI 

tluffUt 
:"ti 
:OA 

A ~ r: [I C A K k 1 AGE i< t r I J K I ~ 

A~CII LiNE fE:t::D 

0044 
0045 
iJ04b 
0041 BuFft:1-l HYlE: I ~'1ESSAbE ItxT ',CI-l,LF 

IJ048 COUIH UHJ $-tWFF 1::",*2 tlvrt. COUNl 
004Q * T irvlEk CUNT\.(lIL BLilCK 
005u IIJ ElJU j, Uld'Jili:-. 1b HII rlH-h 11) 
o lJ 5 1 TIC K ::; t: iJ lJ 1 t:' U * ~ 11M t ::; S ~ £ r: 0 I'J () :; 

U 0':; 2 l 1 £.: K : A r I r·1 t. t< , I lJ , S t 1'<; ,. q I lIe K ~ 
00')2+ 
Jfl5ci" 

OO~c+ 

U () 'l5 * ~:d:. I"i A P HUH f: I) E S r t< 1 P rut< K L 0 C " 
:) {J ~ 4 V :, 1I J t: 
ou';~ 

00':)') ... 

tOll 
~LJt1:A 

!, 

:jI-MA~,VAI.!)f 

lhiITIAL VALIJI: 

.'~~"~~~.~ ~~~~~ • I 

~ 
i 

8 



• gB ~~~~,-=:-.:-~= ~ 

" ..... 
(Q 

C 
"1 
CD 

m 
I 
~ 

;;0 
-t 
>< 
~ ...... 
~ 

o 
(,I) 
+:0-

m x 
OJ 
3 

-C 
-' 
CD 

l> 
'0 
'0 ...... ..... 
n 
.QI 
rt-..... 
o 
::s 
-0 
"1 o 

(Q 
"1 

~ .. 
"'0 
QI 
(Q 

ro 
U1 

o 
-h 

"-.1 

e o 

PAGE OOO~ MACRO (C1) kr)(4/10~4 E)(Af.lf'U: APPl.ICATllJl~ PtxO(;RAtll1 
1Q1Q/01/18 20:Ql:30.00 TrlE TASK 

0035 0000 
003b FO~E 

0000 ERRORS 
000'0 WAI-lNIIIIGS 

0'. P:,";l:\a',· 0._, ",. . . , 

Ou55+ 
00':25+ 
OUSb 

(0000) 
(0000) 

t::NU 
.' 

'~'" ~ ""; 

I 

~ 

(8 

~ 



-L" , -~ 

'.' '.'.' "" 

" -'. 
(,Q 
c: 
"'S 
Cl> 

m 
I 

~ 
-I 
>< 
+=­-..... 
t-4 
o 
(/) 

+=-
m 
>< 
01 
3 
-0 ...... 
Cl> 

::P 
"0 
-0 
-' 
~. 

(") 
01 
rt-..... 
o 
:::I 

"0 
-s o 

(,Q 

"'S 
01 
3 .. 
''t:J 
Pi 
..a 
(\) 

0'1 

o 
-+, 

'k_.1 

'! 

w o fit o w 
PAC,E (lOOb f'v,ACIW ([1) t<TX 1IIIOS4 tXAHPL.E APPLlCl\lllll\J r'KIJ(;t,M1 
1ll79/01/1b 20:41:_~S.OO I:I\jVlk'lJNi\it~lr CllNTt<uL ~LllCI\ 

0000 

0000 
0001 OO()O 
0002 (Joon 
0003 ooot 
OOOq 0000 
0006 0000 
0007 0000 
0008 0000 
OOO~ 0000 
OOOA nooo 
nOOH fObt:: 
oooe 0010 
0000 0030 
OOOE 0000 
0010 uooo 
0020 0(01) 
0021 0000 
0022 OOllO 
0023 ouoo 
002Q 0000 
0025 7fFF 
0026 
0027 
0028 
0029 0000 

0059 
OObO 
0061 
0061't 
0061+ 
OObl+ 
OObl+ 
0061+ 
00611-
()Obt+ 
0061 ... 
0061+ 
0061+ 
0061+ 
0061'" 
0061+ 
OObl~ 

0061+ 
00b1+ 
OObl+ 
OObl+ 
0061'" 
0061+ 
U061+ 
0061+ 
0061+ 
0061 ... 
0062 

000 f..t-<RORS (1.1000) 
0000 ~ARNINGS LUOOO) 

NAivj 

EXTR 
tCK:A 

END 

f[H 
UAT 
t-Crl,IIAl 

t f\! V I K LJ N 1'1!:. f\j 1 C 0 f'j T k U L b L u r 1\ I'J A r'" E 
Ilr~IT A~SIGNMENl lAdL!: 

__ --~~~~11-.. -~-c~"'--' -C-ot"~_'7.~;f:~~ 

I 

~ 
f 

~ 



--~Com~~~~--------------------------------------

c 
.... ~ « .-. ---- « ::::>0 
L: • ... 0 0 
'- "" « 0 -:::: 

"" ::: -:::: 
~. .. (/) -...J >.oJ 

a:: - -l 
U :T <t 
<t .. .... e/') 
.:L. ::::> 0 :.!l 

(\J I- m z • :t:-
r-co -. - 2-- -0 - .:Z :t: x 
:::. "- <t :r <t 
~ -- a:: ...u s: 

0 C!l 
"-

U.l :1" -Ie -:::: ::: 
(!) ,.... -Ie 0 0 
<t 0- -Ie = _. <: 
0- - -Ie :::> <0 

:1 

Fi gure E-l. RTX4IIOS4 !:'xampl e: Appl ication Program, Page 7 of / 



: E ~
. 

.. " :.,':-"'" 

" .... 
\Q 
c: 
-s 
CI) 

rTl 
I 

N 

-0:3: 
-SCI) 
03 
\Q 0 

~~ 
~3: 

I» 
"'0"0 
I» 
'.0 0 
CI)-f) .... , 

....... 
0;::3 

-f) " CI) 
NO. 

-;;0 
-f 
>< 
+=> ........ ...... 
o 
en 
.+:>0 

f'Tl 
X 
I» 
3 o .... 
Cl) 

> 
U 
"0 
-' 
-I-

n 
Cl 
.-t-.... 
0 
;::3 

j 

I 

w 

PA~E 1 

SO FILE 
SI FILt 
SA FILE(S) 

STATUS 

LOAU OFfSET 
TWANSFf~ AOOREbS 
MAIN MlMO~Y LIMITS 

(ABSOl.UTE SYMIH.lLS) 
OObb •••• R :CtHr\ 
OObU •••• R:PFK 
0011 ••• • 1-nATCl 
007E •••• R:FATL 

.! 

e w 
14/01/1.'i 20:42:':)',) LINK (A4) 

= PROGkbl HIi'll 
= PIWliRAM IlHJ 

= lOS L!Li 
~Tx L Il~ 

... 
= ~fL()CAIAHLE 

wITHIN MEMORY LIMITS 
IJNFH:. SOL VEU ~t-. C U!~O AI< IE:.::i 

= 0000 
= OOBO 
= UOOO-FFFF 

OObH •••• k:CNSM 
UObE •••• I~:SKEG 
OU7c •••• K:MPMl 
OCI1F •••• R:FATl 

UUbA •••• i<:~'vLI\.S 
I) (I h f .• • •• I< : S f\j 5 VI 

OU13 •••• 1<:MPI"12 
U(JHU •••• I< 1 X: 

(RE::L AREA 1) ULANK (DUUO-lOu2k - kAM) 
OOOO •••• R:INIT 
U17A •••• I:!O 
023ij •••• I:I<Er 
O~7C •••• I:WAll 
02B9 •••• I :v~OT 
0301 •••• I:WOAC 
on:s •••• I:ERS2 
0335 •••• I:OOt::R 
03bC •••• TYTLlI-: 
OH5 •••• LI:>:Wi-tl 
OqAF •••• Tvaw 
Ob08 •••• FHR: 
0800 •••• 1:Ulu 
082E ........ I :CUfW 
OR5F •••• I:I:Oh 
0l184 •••• I:OPCL 

vlnc •••• IIAT 
{)17A •••• k:LUv~ 
02t12 •••• I:SrUI-' 
0284 •••• I:FINI 
02t.E •••• I:I)()GY 
0313. (t-lj I: IN11 
O.L~4 •••• 1:f:.t<S:~ 
03~i6 •••• D:IVOO 
O~hF ..... 1YELI: 
05f':l ..... fy:V':t<1" 
Uh03 •••• 1Y:fUN 
07bl.l •• •• FIHn 
(1801 •••• 1:50111 
Orl3? •••• 1:STAl 
Otlh~ •••• I:ECll 
Orl9Y •••• K:IDUK 

1I112 •••• 1DH 
01F·l •••• l::JLU 
02"':> •••• 1:51110 
U ~ A 0 •••• I : !'i t. () h 
u2FO •••• I:Lm)T 
03'-'11 ...... I :E!dh 
033',) ..... 1 ;UIJ::'V 
O~',)2 •••• C:lYU 
11.511 •••• I Ylillf; 
IJH5 •••• PI-':(wr<1 
I.l f, 0 .s ..... L P : t- 1114 
117Ey •••• I:H<LL 
OHOt.! •••• I:SJV 
U t11111 .. " ... I : 1'\ SI 
() b I c. ....... 1 : V C IV 1 
IJ 0 F. .5 ...... H : [j LJ Il k 

o 

(JObC •••• I<:PFLli 
OU10 •••• i<:CDRb 
OlJ18 •••• 1<:I-<1Cl 

Oltl~ •••• ECb 
U~lC •••• I:DUI(1 
lJ~b~ •••• l:SlUi< 
o ~ A C .. • • • I : P Ilrl K 
(I 3 0 0 •••• I : K if; D T 
0332 •••• I:fRSl 
033~ •••• I:AHf<T 
(dbA •••• Tyr.IiL: 
0S74 ...... C:HE.AU 
() 4 AF ..... P R : K I) 
ObO.3 •••• PP:FlJN 
01f'u •••• l:lto<lH 
Od2Y •••• l:I<Pf­
OtS4h •••• 1: i: f\'lt: F, 

\lb7/ •••• 1:0Pt:I~ 
OnfH •••• I-<:~t:Rh 

w 
_~-_->-!-~~~~ ":t~"m~ 

I 

~ 
i 

(j 



l: .JLw 
, ." :~-~ .. =.!~~-

" .... 
\Q 
C 
-S 
I'D 

f'11 
I 

N 

-03: 
-SI'D 
03 
!.QO 
-S-S 
1lI'< 
3 
.. 3: 

III 
-0"0 
III 
u:l0 
f!)-t) 

Nr~' .... 
O::S 
-t)'" 

I'D 
No.. 

;0 
-I 
X 
.j::. 

........ -o 
(J) 
..j::. 

f'11 
X 
III 
3 
"C .... 
I'D 

» 
"0 
"0 ....... ..... 
(') 
III 
c+ ..... 
o 
::s 

-

090b •••• w:SE.Rl 
09fO •••• t-l:PIHU 
OAIC •••• fOIwAl 
OA9U •••• R:TICI 
OAt\ •••• ~:TKAC 
OB6b •••• K:WlAC 
O!~CA •••• R: AWAl 
OC68 •••• 1<: GPIH 
OC'1E •••• R:CNSL 
o C F 8 • • • • R : 1 R C V/ 
on9S •••• K:RBllf 
ODAR •••• R:OA 
OEI~ •••• I-l: UHK 
OE7F •••• w:PwRf­
OEbE •••• R:PAUS 
OEle •••• R: lH-1TH 
OFlf) •••• R:SE1H 
OF46 •••• f<:XPTE 
OF1C •••• R:RINT 
OF81 ..... IHtJAIC 

-! -

(I) 

OQ01 •••• t<:t1ulN 
OYFC •••• ~:ISIG 
()Alc •••• ~n __ AII 
OAA3 •••• r<:TICt' 
OAl:.lJ •••• ~:CllC 
o Ij H ,~ •••• T T IF ~ : 
OtiE.4 •••• k: l>"lAl 
OCoC •••• ~:G ... R 
OCAF •••• k: Sf: i\j[l 
0020 •••• I<:GETM 
OIlAl •••• 1<:R£12 
OOAC •••• R:OJSt' 
OE52 •••• t<:KtiT/\ 
Ut-AU •••• R:(,TS 
Of..IJ'~ ••• k:AETH 
OtF3 •••• I<:UITH 
OF38 ••• ~R:STI<OEX 
OF4C •••• k:TABL 
OF7C •••• I<:UINI 
Of4C •••• K:NOPF 

(wEL AREA 2) 1-1: H 1 (; tl t t-t ( 1 00 :S - 1 003 H 
lOOS •••• R:HIGHfR 

* * * * * * * * * * * * * * * * * * * 
I"tISSIN(; = F:MONT 

F: CFI'IIU 
F:OELE 

II q 2 A •••• r< : 0 f I, 1 
09FC •••• 1<:5117 
U A 2 q • • • • R : :> i~ A I 
OACA •••• I<:lTIC 
o hie •••• K : 1'41 1 C 
Otitl A •••• tot: ~)lIJL> 
UCS3 •••• H:Cv,AL 
OC70 •••• R:SPln 
VCHt ..... I<:I::,Nt) 
u 0 ~ ~ • • •• R : Ii I V 1"1 
UDAl ••• • G:L 
()DF.2 •••• W:~ACT 
UE5c •••• W:STkl 
OtAt'i •••• t(:GVST 
OI:::Df •••• I«:CNTH 
ot:f-~ •••• W;tllkTN 
Or 3A •••• R: lllJl)l-<t. X 
uf51 •••• K:~y~X 
OF7t.(S)OUWu4 
10ul. •••• t<:HIGH 

- I<AM) 

e 

(PHi t: • • • • I< : t 1\11) 

OAl)':> •••• k:SSIG 
OA4B •••• R: 1 TIC 
OAIIA •••• l-nK r Ie 
Ob37 •••• t<:l<wAL 
lJuC2 •••• W:G10ll 
tlCb7 •••• SfTu: 
UCH4 •••• R:CII'JT 
OCto •••• t-<:IHCV 
OD8A •••• R;AHUF 
() II A q • • •• H : () A l.J X 
UllEH •••• W:IACH 
OEbO •••• ~:INIl 
lItH'S •••• R:GVSh 
Otf.I) •••• R:U51t1 
OFOtl •••• I<:IJSTRt x 
Of4b •••• R:t-<fXEX 
Ofb9 •••• R:DCHt\ 
o f tS li • • • • I< : E I'i 1I L 

* * * * * * * * * * * * * 
F : (Rt A 
R: (, A 10 
F : CONI'4 

~:~AIII 

f:ut'lI'Jl 

l "\ 
, ,;' 

/7.1 !)~'\s,'a>l 

-.~~~, 

I 

~ 

8 

e 



, 0 , 

,·.'a I,. 

-~ ComputerAutomation~;;;....-------------------

APPENDIX F 

RTX4 DEMONSTRATION PROGRAM 

The RTX4 Demonstration Program is designed to exercise the system services of 
RTX4. The services exercised are: 

• R: BGIN Begin on activity 

• R: SIG Signal a semaphore 

• R: WAIT Wait on a semaphore 

• R: CINT Wait for console interrupt 

• R: ITIC Tick clock timer 

When the program is executed it transfers immediately to OEBUG4. To begin 
execution of the program, jump to location :80. From here the progtam goes 
through the initialization, then begin an activity of the Master Task. is 
activity waits for a console interrupt. At this time the syst.em 1S in tile 
dispatcher idle 100PI which is indicated by blinking the byte mode and avprflow 
indicator lights. The user should now press console intet'rupt wnich causes an 
activity of the Timer Task to be started by the Master Task. Each of the next. 
15 console interrupts causes another timer activity to stat~t until 16 timet' 
activities exist. All subsequent console interrupts are i9nored. 

Each timer activity causes a different bit of the console data register to 
blink. The location and frequency of these bits is determined by 2 table. 
The frequency is based on tick clock intervals. 

At any time a power fail may be caused and the system recovers completely when 
power is restored, provided the memories are properly powered. 

The missing external R:DBUG which shows on the link map Will <not 
affect the execution of RTX4. 



~I'" " 
. ',i: 

. . --q. ," 

" .... 
to 
C 
-S 
CD 

" I 
--' 

;c 
-i 
>< 
.r:::a 
a 

~ 
::s 
til 
M­
-s 
III ... ...... 
o 
:::s 

" -s o 
to 
-s 
il1 
3 

-0 
III 
\0 
ro 
-' 

o ..... 
-­w 

, 

" o 
PAG!:: 0001 tvlACI:<O (tl) 11'1)(4 tJtf-lll t-'''U(]~Arvl NO.1 93Q10-1(J tn 
1919/01/t7 02:59:34.25 

0000 

00000008 

0000 0000 
0001 0000 
0002 0000 
vOO 3 0-24A 
0004 030A 
000'5 020t3 
0006 01vO 
0007 FOOE 

- " <'10 ~.i ~'l! ." 

OUI)2 
0003 
OOIlLl 
0005 
OOOfJ 
OU07 
0008 
0009 
0010 
0011 
0012 
0013 
001L1 
0015 
{)01b 
ou17 
0018 
0019 
0020 
0021 
0022 
002:S 
0024 
0025 
OU26 
(1027 
0028 
0029 
0050 

0030+ 

* 
* 
* 
* 
* 
'* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
ThLSll 

* 
* 
'* 

* 
* 
It 

* 

I-JAM 
LUAU 
LUAU 

R:INIT 
HEINl: 
DEUIII;q 

T H J S t-'k tH,'~ Af-, r F S T S T H f T1 C 1\ C L II C t< S t K VI (t:::; • 

TIH· run CONS[:H~ OF T.\lJ (ASKS, HiE MASTE:k 
ANU THE TIME~. THt ~ASTtk IS THt INITIAL 
TASK.AND TitE"E IS ONLY ()Nt: ACnVIlY Of-
IT. THIS ACTlVITY HfGINS AN ACTIVITY OF 
THE 1lr-1fW TASK EACH TllVlt CONSULf'. INTE~l<lJPT 

IS PflESSE[), lJNTlL 16 ACT IVITIES Of HiE. THIt::~ 
TASK 41<E. BFGUN. FU~Hif.k C(lNSIIL.E. INTEIHWPIS 
ARE IGNUt<tO. 

THE TJMfH TASK MAKt5 A TICK CLUCK ~EQUEST 

ACCOI<UING TO THE PAIHt-lf.l tkS IN 11 S Y SCHA I CtiPAD. 
WHEN THt TIMlk EXPIHE5 IT CUMPLfMENTS A 
tHT IN Tilt' CIJNSUl.E Y'lllf(iJ fHL1S1EI< AND kEPEA1S. 

tllll 8 

BEGIN MASTt~ TASK ~11H: 

NtIMHEh: uF WORD/TAHLt fNTHY 

A=O 
{J=O 

x=o 
Y=lABLE" 

A T P In ()IH 1 Y :t u 0 w 1 J H : 2 () 0 \'J () t< iJ S lJ F F ~ E E P lJ (j L 

rNI1:A u,O,u,TABLE,fCR1,M&rHTD,:lOU,:~~p 

.. 

~-~':~~-~~~-·-_l ~ .~~=~ 

I 

~ 
i 

!8 

e 



, 

'i 

I 
.1 

I 
I 

0 

o 

~ 

1: 

= .-
= -:::: 
·VI 

C1' 

-
• ::: 

2. 

::: 

,...J'I 

-- ++++ 
W. OCCO 
'""" I./"l ..,.. ...,.. "" .VI 

!V"t OO,:::JC 
== .. 0000 
::t:C1' 
u:i'l 
« •• 
:i:(\J 

':) 

'\.1' 
0-
0 ...... 
0-

o 
...... 

UJC1' 
~,... 

-r. ~ . 
0..-

0::000 
OOO~ 
1"\1000 
CO~~ 

CO:J'<C(C 
oooc 
0000 
0000 

-----------------------------------------------_.---------------
Figure F-l. RTX4 Demonstration Program, Page 2 of 13 



: .. 1:1 I· 

.... M _i<I!';,,~~ ~:t::'E~ ___ ~ __ -.: __ ~ ___ _ _I 

" ...... 
~ 
c: 
~ 
CD 

" I 
.-' 

;0 
-i 
>< 
~ 

CJ 
CD 
3 
0 
::s 
<n 
c+ 
;( 
I» 
c+ ...... 
0 
::s 
-c 
~ 
0 
~ 
"1 
Q) 

3 .. 
-c 
QI 
-0 
CD 

w 
0 
-I) 

--' 
w 

o o 
, . f' AGE. 000 ~ MAC H IJ ( C 1) IH x q iJ f>h} P k II r. k A :vi r JI) • 1 

147Q/Ol/l1 U2:54:~5.1~ MAS1EH (ASK 
'1 .) i. 1 (J ... 1 () f i 3 

O(LS2 
0033 
003t1 
OO"'S5 
0056 
0037 
00:58 
003Q 
o II l to 
OIl'H 

n2uQ u042 
020C 0040 O()42+ 
0201) 0213 0042+ 
020E QU01 00"2+ 
020F 0000 0042'" 
0210 ooon 0042 ... 
0211 0035 0042+ 
0212 0217 0042+ 
0213 0001 UU42+ 
02140000 oOta2+ 
0216 FOIE OOIJ2+ 

OOOU1I217 00'43 
0217 4'HO nOf~4 

00000218 IlO45 
021ti 5546 021F OOtah 
U219 tAOS 0047 
0214 ouOO 0;'47+ 
(12tH lA03 00,,8 
u21C 1000 000,) 0048. 
(211) &1108 OOta9 
t21E, 9E79 0218 00':>0 

00';)1 
0OOOO21F 00,:)2 

U21F lAUS 005$ 
0220 0000 O(),:)~h 

Od21 9f7!) 021F 0054 

-t'·" "., , ''':.(".-,:" ~ ."- y ~ 

* * T HIS T ASK B f (; lilt ., T H f r T 1-, f k I A ~ K • 
* f A C H T HI t C lll~ S (, L l J I~ H. H f< 1I P I I S P ,~ E SSE 0 
* A NEW TIMER ACTIVIry IS CHEATfU. 

* 
1'-1 A 5 T t: R T A S 1\ W ILL H A V f: Y t IJli ALl u 1 A B l. f. 

* 
* 
* 
* 
* 

:35 ~'HJt([)~ OF SlACK, ~Y!lrt:i'" 4LLlJCA1t:1l 
1 P(}SSlult CUNClIf-tHtNI Exf':ClIIIl,rlS 

TIW: A MbTRTU,MASTtk,O,U,:35,U,1 

t-1A!jlE~ tLJlI $ 
COpy =16,1J 

LOOf-' EQIJ $ 

J E lJIJ IJ, NOMOHE 
H:CINT 

R:AGlf'1 TIlIi(Y) 

AnD =Tt;lSIl,Y 
Jr-IP LOOP 

A LllH'I UNL Y 1& Tltvlt~S 

IF lb TIMEHS ALHEAIJY 

blGIN lJMtk ACTIVITY 

N {J v fl A Ii L E P 1I I I'J T t 1<1 () N tnt N 1 k' Y 
I'<FPFAT 

* 16 Ilr-1ER:.> A~[ klltHil!~I;, lli~JIH<t rill-< I tifR CON5flLE< II\jTt:R~LJP 1:.-, 
I'Jlli'HIRE trw :b 

I-n C 1I1JT 

.J M to> - rll 0 t·llJ R t 

8 e 

'~""~-~~ '~~""'!~. 

I 

~ 
i 

<8 



--~~~~---------------------------------------

) 

..,.. 
1: 

C 

= -:::: 
'" 0: ~ 

.... 
• 

z 
Z 
« 
x 
'~ 

~ .oJ 
:r 
~ ~ 

\I) 0.. c - ~ .oJ -
:!: .-
J..I 
~ ::r 

'.u 
:::r -)( 'r; ..... <{ 

:::: -
,.... if' - "'-
w • if' 
-' - t.n 

"" c 
::J .. 0 
X :t' . , './'I .... 
<( .. 
Z '\J 
~ 

:::r .... 
c - -0 ....... c 
c - 0 

c 0 
....... 

IJJ a- n.! 
'-!) r- (\J 

< 0' I\J 
0.. - 0 

--____ ~ _____________ v ___ · __ '" 

Figure F-l. R-X4 Demonstration Program~ Page 4 of 1 3 



i,C':,cc"~ 
o o 

P AGE () 0 0 I) MAC ,·W ( C 1) R r )( 4 () H·1 U P R (J t:; H At·1 r,!(). 1 "T1 
-'. Q:S410-10 tU 
lC 
c: 
-s 
CD 

1979/01/17 O~:5'1::H.7S TIr-1EI-? -- DELAY r~ TTCKti " 

"T1 
I ..... 

;;0 
~ 
>< 
,f:::o 

o 
(I) 

3 o 
:;:s 
II) 

C"+ 
-s 
t» 
C"+ ..... 
o 
::a 
-0 
-s o 
<a 
-s 
t» 
3 .. 
-0 
t» 
lC 
ct; 

U1 

o 
-+l 

--

0223 
0224 OOqO 
0225 \)22R 
l122& U (11 () 
0227 0000 
0228 0000 
0229 0020 
022A 022F 
0221:\ nOlO 
022C uooo 
022E F01E 

W I 022F 
0230 
0231 
0232 

OO()0022F 
lAOti 
100e? 0002 
nC46 0006 
0000 

, 0235 
1023Q 
! 023S 

1
0236 

I 

Ff:83 0237 
1 A {)2 
S004 0004 
9E78 022 .. 

-1/71 :<;.., '-." " ::.~~, '(:I 

0057 ." 
0058 1r 

OUS9 ." 
OObO ." 
U06t •. 
0062 ." 
0063 • 
Oll64 
0064+ 
OU64+ 
0064i' 
00&4+ 
00&4+ 
0064+ 
006l£+ 
0064+ 
011&4+ 
OU64+ 
0065 
(JObo 
UO&7 
Ou68 
00&9 
0070 
0010+ 
0071 
H072 
0013 
0074 
00741-
001'3 

1r 

* 
* 
* 
T l "1E R 

" 11f\11:1-< TASt< .. 

THIER TASK WILL HAVI::: Y Uf ACIIIJ!TY (JOll~G HE:GIr~ 
: 2 U ~i () R D ~ II F s rAe K 5 PAL t, s Y ~I t 1\<1 A L li I 

1& POSSlI1Li:. CUNCURRI:.NT t:XtCLJTIlH~S 

fDH:A TMHTD,TIMER,(J,O,:20,O,lh' 

DELAYS N TIC~S THEN TUGbLES COHSI1LE ~ORD kl:.blSTE~ HIT 
B~GAN WITH Y= TA~LE fNlkY 

feW 
R:ITIC 

IMS 
NOP 
JSK 
R:WAIT 

JI"IP 

:5 
IO(Y) 

LJ£LAYS(Y) 

OUT 
'lltSI:.""ul.i)~ (YI 

TII"E~ 

--

l~lTIATE rIMER Hf~UEST 

blJMP I)ELAY C{JUNTER 

TIlGGLE Cl}NSOLE /VORl) RtGI~lfR nl T 
~AIJ FO~ lIM~~ TO EXPIRE 

REPEAl 

e 

':~!!~~~~< '. '-~~~!ft~:t. 

I 

~ 

Ii 



.1] 
....L"c. t 

o 
._-

" o 
., '---=-~::'~:--:-~ -'.. - +!!~~~..:..!!~~-"-- -! :=-"-==~~:~~~-~~ 

'"T1 
~. 

1.0 
c:: 
~ 
'j 
I ...... 

;0 
-i 

~ 
CJ 

~ o 
::s 
VI 
c+ -s 
~ 
c+ 
~. 

o 
::s 
'U 
-s 
o 

1.0 
-s 
~ 
3 

-0 
~ 

1.0 
I'D 

0\ 

o 
-t) 

~ 

w 

P A G f () () Cl h ~1 A CtW ( C 1) IH X LI () t toll I P ~ 1I r; t( A M I>; (] • 1 I.H 4 1 0 - 1 II t i.3 
1979/01/17 02:,)9:~9.50 OIJT -- UUIPLJTS TO t.;IINSOLt vJ(} t< I) h'tt;ISrf-l< 

02~7 

U~38 

0239 
02~A 

023~ 

023C 
0230 
o 23f;· 
023F 
0240 
0241 

0242 

()()OOOc.H 
C(/lH 000., 
4t: 31 
3AU2 
0244 
0104 
430A 
OOOE. 
0404 
3A01 
0244 
2309 

0243 0001 
0244 0001 
0245 F03f 

0246 
0241 
024H 
(';'>4~ 

0004 

0011 
nU7M 
0019 
0080 
OHM1 
Ou8? 
OOti3 
0083+ 
0084 
OOd':» 
OU~b 

0087 
0088 
OOd8+ 
(1089 
0090 
0091 

* 
* 
* flur 

* 
* 

llO'lc:? * 
0093 
OOq~s+ 

0093+ 
()093+ 
0094 

ClH-1PLt-r-lI:iJTj Tlit: AIl[)~E~:;t:D tIl r 
CALLED ~ITH Y= TAHLE lNlkY 

flJlJ 
COpy 
SHIFT 
R:wAIT 

IN 
XIH 

CtHT 
SELP 
r<:~llb 

h'SI<. 

$ 
lil , ( Y ) , (~ 

IJ , I. () , LI 

rDI~ 

Gt- r uIT Tu ILlGGLt 
PIlSrll()f'J Tu K4 fHLlI {JF CHI I lI\151f. 
h't I1IJfSI uSE OF C(lNSIILI: WLJi-<u lit: 1;] ~ I 

C () I'J P A : + C II R : , A I-H- A II C (II'J SOl. I::. 1,\ (J '" t) IH: GIS H k 
1.1 Ir~nEX Chlf INSTt(lIC1Illllj ,·.1It1 ull AI 
(I , A C () ,'W U:: ,., f Ii TAU IH< E. S :-1(:-_ U HIT 
A , C IH'4 U A : T CPt(; 0 1I f P tJ I I U l' H'4 SOL I:. ~\I ( ,~ U K Hd S r £ '" 
C f) K G 1 \i E lit) US F 0 F CO ,II S OL E v,1) k /) k't- G I ~ 

HfTUkt'l 

* SEl'l A PH 0 K E I 0 C iI NT R () l rON 5 (J u- .. -If) h't> r< I:. GIS T E HAC C t s:) "* 

SUH:A C j) If , 1 

LPllOl 

I 

~ 

~ 



-L'! n 
, ,', I;, """.;<, 

" ...... 
lO 
C 
-S 
(l) 

" I 
, .• ",1 

:;0 
--f 
>< 
.f.>o 

o 
ro 
;3 
o 
::s 
Vl 
c+ --s 
s::u 
,c+ ...... 
o 
::s 
'"'0 
-S 
o 
lO 
-S 
PJ 
3 .. 
'"'0 
Q! 
to 
;j) 

,..j 

o 
-ta 
--' 

w 

o o 
I-' A G f u () 0 ., MAC H U ( c 1) Id)( 4 LJ!: MOP I~ U I; R A r 1 N IJ. 1 91l110 ... 1u liS 
1979/01/11 02:')Q:41.00 TABLI:: -- TIMft-< TAS!' PAt-<AMtltk~ 

OOOOOGOO 
00000001 
00000002 
00000004 
00000005 
OOOOOOOb 
00000007 

0OOO02l1A 
024. 022.5 
02413 0100 
024C OOUO 
0240 3004 
024£ 02D8 
024F OOO't 
02?O 0000 
0251 0003 
0252 0223 
0253 0100 
0254 0000 
025:; 2003 
O?,)6 02DQ 
0257 0003 
0258 0000 
025Q 0002 
025A 022,5 
025ti 0100 
o25C OuOI) 
0250 CO!,)() 

9~:: r~a\' 

* 0096 
OOQ7 
ou96 
0099 

* T HIS r A (j LEI) t f I i\J t. s r HI: PAt< ,. M A I E ~ S f 0 t-< t A C H ArT I \I 1 1 y 
* Of THE rlMtH TA~K. 
* FO~MAT IS: 

0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
OlOt; 

* 
HHi 
PRI 
II> 
StMADR 
rICKS 
DELAY:; 
1311 

* 
0109 .. 
U110 .. 
0111 TAtILE 
0112 

0113 

01lQ 

F. lJ U 
t IJ II 

EfJlI 
ElW 
E!W 
t.UII 
E IJII 

E (J LI 
WOtW 

vJUrtU 

WOKU 

/ 
o 
1 
2 
£\ 
S 
h 
I 

$ 

TASK IlfSCf(ll-'lO~ HLlICK hiJt)td:~S 

P f-{ ItHn 1 Y 1 () (j E GIN ACT 1 V I T Y A r 
HI ra LJ:;t IN rIME'" Ht:I.LJt"!lIS 
AI)[II~t:::SS OF TICK ktlJUf..~ I SU'IAPHlq-<1 
NlIMt1tH OF TlCKS Tu ktlJUESl 
N u ~1 HER (J F I'< £ (JIJ E S 1 ~ A [J t :-l (, f- A '" II Y 
1:11 T 1 fJ r OliGLE 

T r., rt r lJ , : 1 00 , (I, : 3 {I 0 q , S t""l 3 , 4 , 0 , 3 

JM~TO,:lUO,O,:200~,SEM2,3,O,2 

HUHIJ,: 100,0, :CUOD,::'EHC, :u,o,:c 

( ( 

"-"-":-'-'"'-~~t'-'~"'~j 

I 

~ 
j 

Cit 



, [:il 
~~:~~'-~::::-~-= t "":~"" "~'l."f""''''' "'~.' .~!t"':~ 

o o 
I 

PAC:; E II I) 0 H MAC ~ u ( r J) ~ T X II I J H II I P k 0 i; k' A H r JU • J 
1979/01/11 U2:~q:42.UO fAHLE -- rIMER lASK PAhAM~'tkS 

93410-10 H3 

" ~ 
0251:: o2fC ...... 

<0 
c: u25F 0000 -s 
to 0260 0000 
"n 0201 (Joue 
I ..... 0262 0223 

0263 0100 
0115 V'JUkU Tr"'i<ll>, :tUIl,U, :bIJ07,Sf:tvlb,1,o,b 

Al 026Q 0000 ...; 
02b5 b007 >< .po 
0266 02EQ 

0 
0261 0007 to 

3 
0 0268 0000 :;:, 

(8 

til 0269 0006 
c-+ -s 026A OC>23 
I» Ollb wllkU T 1'11< 1 (), : 1 U 0, (J, : t. (I (J F , st:. ~l£ , : F , 0 , : t: 
c-+ 02bH 0100 ...... 
0 026C 0000 ;:s. 

0260 EOOF 
-0 

02bE 030Q 6 
(Q 026f OOOF -s 

0270 0000 I» 
3 

0271 OOOf .. 
-0 0272 0223 s:u 

0273 0100 to 
to 

027Q 0000 
(X) 

0275 4005 
0 

0276 02DC -it 

U117 i'HHW r Nt< T I), : 1 (I U , II , ; q II (I ~ ,SF t, 4 , ':) , 0 , 4 

..... 0277 0005 
w 

0278 0000 
0219 0004 
027" u223 Ollh I'JOk n TMRTD, :100,0, :B009,SEM8,9,O,H 
0278 0100 
027C 0000 
0270 8009 
027E 02E( 
027F OIlOI.J 
0280 oonl) 
0281 OU08 



i I' 
I, 

, ~, .. -'-J::"~_ ~.~~ ~ -- ----~-- ---- ------ ------ ------- -.-.~--

~ :-.-=---:::~ :-<:~~~~;~ - ''-~~~ffl'!''!"~ ------ ., 0 I 
PAGE 000"1 t-'!ACRO (C 1) " T X Ii J) E ,-1f) f' III G k A M i:I t) • 1 q~LllO"10 135 

~ 1979/01/1' O?:S9:42.7':l TAliU. -- T 1 1-1 t-. t( TA:iK PA/-II\IVIf. HK~ 

." 0282 0223 011Q ~"' u t< l) T r 1 H T U , : 1 () U , 0, : (J (J () 1 , Sf \1 0, : 1 , V , U ..... 
\0 0283 0100 c 
"'1 0284 OOon CD 

." 0285 OOOt 
I 0286 02CC 

0287 OOU1 
:::0 0288 0000 
-I 0289 {lOOO >< 
~ 028A 02~3 01t?O .'101-( Il . T t1 ~ Ttl, : 1 0 () , 0 , : 'l (I (I A , ~ E:. M 9 , : A , 0 , '1 
c 0281:i 0100 CD 18 3 028C oouO 0 
::s 028[) 900A III 
C'T 028E 02FO "'1 
t:» 026F OOOA C'T ..... 

Ot?90 0001) 0 
::s 0291 0009 
" 0292 022J 0121 ,~o~u T M IH (J, : 100 i u, : f III () , ~ E 1-1 F , ; 1 U , (I , ; F "'1 
0 0293 0100 \0 
"'1 0294 0000 PI 
3 , 029~ fOUl .. 
" 0296 u308 
PI 0297 0010 \0 
I'D 029A QOOO 
.0 02~q OUOF 
0 029A 0223 0122 wOI<O TMwru,:lou,O,:7UOd,S~M7,8,O,1 -+! 

--' 02911 0100 
w 029C 0000 

0290 lOUR 
029E 02E8 
029F OOOS 
02AO 0000 
02Al (lO07 
02A2 0223 (jl?~ fHHW T M.n f), : 1 0 0 , (J , : fHI 0 E , ~ E. 1'10, : I: , () , : D 
02A3 0100 
02A4 0000 
02A5 UOOI: 

.. ( 
. :! :..'7 .. '~'; , A;::l\i 



j" 
i: 

~~':'~~f' 

." ..... 
<.0 
c 
-s 
(I) 

." 
I 

-..a 

:;:c 
-I 
>< 
~ 

c ro 
3 e 
::J 
VI 
cT 
-S 
I» 
cT ...... 
e 
::J 

-c 
-s 
0 
'.0 
-s 
I» 
3 .. 
-c 
I» 

<.0 
(I) 

..... 
0 

e 
-t) 

--' 
w 

f_ 

e o 
PA(~E 0010 M"ACRIl ((1) HTx~ 1l0H) PkOi;I<Afvl NlJ. 1 'J3ql0 .. 10 ti3 
1979/()1/17 0~:59:q3.25 rA~Lf -. r[ME~ TASK PAkAME1ERS 

02Ab 0300 
02A1 OUOE 
02A8 0000 
02A9 0000 
02AA n223 lJl~4 ~'J(HW T (\.1 k 1 n, : 1 0 (I , 0, : A 0 U B , ~ E 1'\ A, : tj , 0 , : A 
02AB 0100 
02AC uooo 
02AO AOOt} 
02AE O~fq 

02AF OOOli 
O~H() 0000 
02Hl OOOA 
02H2 02?3 012':» W'J UI< l) T~wTn,:luo,U,:~UUb,stM5,6,O,S 

02H.5 n100 
026Q 0000 
0265 500b 
02H6 02EO 
0281 OUO& 
o2b8 0000 
0281.1 0005 
02lU 02~3 012b will-W T r·l k r (), : 1 0 0 , (J, : i 3 II (J C , 5 E r-1 B, : C , 0 , : d 
02BH 0100 
02HC 0000 
02BD t:WOC 
02HE 02F8 
02BF oooe 
02CO Oouo 
02Cl OOOH 
02C2 0223 0127 ;'JUkU THI"nfl,: 1 O{J, 0,: 1(102, Sf"'ll, 2, u, 1 
02C5 0100 
02r: 1I 00"0 () 
02C5 1002 
02r:6 (21)0 
02C7 0002 
02(B {JUOO 
02C9 0001 

._~~~~~. l' ",~!_-:-~~~ 

I 

~ 
I 
I 
~ 

I , 
I 

I 



! 
i ........... "'" .Jl' 

" ...... 
(Q 
c: 
-S 
(1) 

" I 
"..I 

;0 
--I 
>< 
~ 

o 
~ 
o 
::s 
Vl 
r+ 
-S 
QJ 

rt ..... 
o 
::s 
-0 
-S o 

l.Cl 
""S 
QJ 

:3 

-0 
01 
',0 
en 
--' ...... 
o 
--t) 

...... 
W 

o 
PAGE 0011 tvlACRO (el) IHX'4 UUIU Pr«Jl;kl\"-l 1'111.1 
1 q 7 9/ () 1 11 7 (J 2 :'5 'I : 44 • 0 () T Pd:.... s t f'v1 A P tI (,,.<t ~ 

02CA 
02CH 0000 
u2CC 0000 
02(1) /:-05E 
02C£ 
O.?CF (lOOO 
O.?DO uooo 
0201 F03E 
O?D2 
0203 0000 
0204 ooon 
020") F03E 
U2Db 
0207 uOOO 
() 208 () Ii 0 0 
020Q f03F. 
02114 
02011 0000 
02DC OUOO 
0201) F03E 
02DE 
02t>F 0000 
02EO 0000 
02E 1 F03E 
02E2 
02E3 0000 
02E.4 0000 
02ES FO'SE 
02Eb 
G2E7 0000 
021:8 (lono 
02~q F03E 
!letA 
02f~ 0000 
02t:C OOOf) 
02tO FIn!: 

DQ,'\;:. 

U124 
012'H 
012Q .. 
0129t 
01 50 
til ~Ot 
01Su+ 
o ISO + 
(J 1 S 1 
U 1 S1 t 

o 1 ~ 1 + 
01 Sl t 
0132 
0132+ 
0132t 
0132+ 
01.53 
() I.B+ 
015St 
01331-
0154 
013 Lh 
01 S 4 ... 
0134+ 
01 S,) 
01$5+ 
01 S5 t-
01 3':1 t-

01.Sb 
0130+ 
OiShi' 
0150i-
01.51 
01 H t 

o 1 ,~7 + 
0137+ 

SOIi:A 

SDH:A 

S{)b:.~ 

~LJH:A 

SUb:A 

SOl):A 

SDtj:A 

:iDU:A 

S[lH:A 

;, L ;.'\ 0, I) 

SEI'-11,0 

StMc,U 

SI:''4S,O 

StM4,O 

S E i..,') , (I 

SEMb,O 

51'"_1"'1. !) 

StMtl,O 

::':~L~-:~'~"~ - '-"":-=-~~:f-'f:t'f-~~ 

o I 
4 'S Ii 1 0 - 1 1I t~.5 

~ 
i 

~ 



! 

e e 
I 

." ~ 
-I. PAGF (I () 12 MACIW (C 1 ) k 1)(4 [JE.t-lO PkL)(;I1AM NIJ. I 9'i41()-tu H3 

B 
1O 
s::: 1979/01/17 02:'::>4:46.00 T H1t: k S t ~1 A P H UI~ f S 
'"1 
(1) 

." 02EE u 1 i8 SDb:A :'tM9,U 
I ..... 02E.F (1000 0138+ J" 

02FO 0000 Ul.3A ... 
;0 02Fl fUSE 013tH 
-I 
x 02F2 0139 SDH:'A Sr"" A, 0 ,p. 

a 02F3 0000 0139+ 
(1) 02f4 0000 3 0139+ .~ 

0 02f5 f03E 0134+ :::! 
1/'1 02Fb 0140 :j(IH:A Sf MH , 0 rt 
-s 02 .. 7 0000 Cil 40+ 
OJ 
rt 02F8 1)000 0140+ -'. 
0 02F9 F03E 014U+ 
:::! 

-0 
·02fA 0141 SOH:A Sf:.MC,O 

'"1 02Fd 0000 () 1 £I 1'" 0 
1O 1J2FC 0000 0\41+ 
'"1 
OJ 02FD F03E o \" 1 ... 3 .. 02FE 0142 SDb:A Stl-l{), () 
-0 02f-F 0000 Ot42+ 
OJ 

lO u300 0000 ll142+ 
(1) 

--' 
0301 F03t' U142+ 

N 0302 0143 SOH:A SEI"iE,O 
0 0.303 0000 0143+ 
-t) 

-' 
OS04 0000 0!43+ 

(,oJ U305 fuSE 01431-
0106 U 1 IPI SDh:A ::it- Mr , 0 

0307 OU\.IO I) 14tH 
0308 0000 o llHH 

309 F03E 01i~4+ 



.L.A'~' :! - ~2:~~~'~ ~ . --~~_~~~·t:"-~ ., o I 

." PAGE 0Ol:S "1ACrW ((; 1) tHX4 UF..r-IO Pt<lH;J.lM1 rJU. t ..... 
(Q 

l'H9/0tIl7 02:~y:ql.2~ fNVIHU~~E~T [ I-J f- 1I R ,01 A T IlH-l c:: 
~ j 4 1 U - 1 () I).s 

~ 
"1 
CD 

." 0146 • I 
(l1~7 • ilU- 1 NE. E 1''1 V I ~ () m·lt: N T C () N r 1< 0 L Ii l.1I r: K ..... 
014H • ,_. 

~ 
030A 0149 ECU:A E CLi 1 , 1I 

>< O.HIIi ()OOO 014~+ 
~ 030C 030A U149+ 
c 0301) OOOl 0149+ CD 

6 030E OOUO 0149.-
ct 

::3 0310 0000 () 1 49 ... en 
cT 0511 OllOO 0149+ "1 
S» 0312 OOUO 0149 ... cT ..... 

0313 01100 0149+ 0 
::3 031if 0000 0149 ... 
"'tJ o SIS F06t:: 014'-H "'1 
0 031& OlllO O14Q ... (Q 
"1 0317 OH30 0149 ... S» a 0318 nooo 0149.-.. 
"'tJ 031 A ()OOO 0149+ 
p. 

032A uooo 0149+ (Q 
CD 032B 0000 0149+ ..... OS2C O(JOO 01/~(h w 
0 032U 0000 014Q+ 
-t, 032E onoo 01 l19+ 
-' 032F lfFF o 11~ 9 t w 

0330 U14Q.-
0331 0149+ 
0332 () 1 (~q + 
0333 oouo Ul ll cH 

01"50 E r'~ l) 

0000 t:RHDRS (OOon) 
0000 ~'lJARN I NGS (ilOilO) 



~~ .. , 

" ...... 
\0 
C 
-s 
(1) 

-" 
I 

N 

3 
(1) 
:3 o 
~ 
3 
S» 
~ 

<) 
-t, 

r 
-". 
::s 
A 
(!) 
0-

;0 
~ 
X 
.j:::> 

o m 
3 
o 
::s 
(/) 

rt 
-S 
S» 
rt ...... 
o 
:::i 

u 
-S 
o 
\0 .., 
OJ 
~ 

-0 
p.~ 

\0 
ro 

o 
~ 

"'-' 

PAGE 1 

SO FILE 
~I FILE 
SA FIL~ (5) 

STATUS 

LOAn OfFtit:T 
I RAN S F t R A Ill) H E S S 
MAIN MfMOHY LIMITS 

(ABSOLUfE SYMI;10LS) 
OObb •••• k:CN1K 
OObD •••• W:PFK 
0071 •••• R:BTCl 
OU7F •••• I-l:FATl 

_ i - -- - - --- -- -- -- -

e 
(9/Ot/lf o5:{JO:04 LiNK (Ali) 

= til X n E Mt I HIN 
= In XllEMlJ (J Ij J 
= i'/ IX l 111 

=: Rt:LOCA,lAHl.t: 
W(THIN MEMURY LIMIIS 
UN R t s n L v t I) SF. C () Iii II A t( 1 E S 

= 0100 
= 043ii 
= OOOO-FFFF 

o U b H ..... H : C 1~:3 M 
OObt •••• H;SHEG 
0012 •••• R:MPMl 
on80 •••• h~lX: 

OUbA •••• H:~LK5 
OObf •••• K:SNSW 
U073 •••• k:MPM~ 

O<fL AkEA 1) HLANK (OlOO-134FR ... kid"') 

0100 •••• R:INIT 
(HHl4 • • • .. R ; () U () H 
OC20 •••• R:HEGI 
OCf2 •••• H:SIG 
ODIA •••• t<:SWAl 
ODCO •••• H:LTIC 
o E 1 2 .. • .. 9 t< : "'1 I C 
OFHO •••• H:Slon 
OF2Y •••• H:CVJAL 
OFbb ..... t<:SPt<1 
o F is 4 .. .. .. .. H • I S I-J D 
1 0 £j Ii • .. .. .. H : {j 1 V r.t1 

l097 •••• G:z 
lo08 •• ".R:~ACl 
llilii ..... K:;iHn 
llA1. ••• ~:(;V5T 
l1D~ ...... 1i:CNTH 

1)100 •••• k:LOw 
OHDE •••• ~:SI:f.li1 
OCH4 •••• ~:£NO 
OCFI;1 •••• k;S~lG 
O[)41 •••• ~:IJIC 
OO!)O •••• R:KTIC 
ot20 ..... 1·nR~I\L 
OEtIH ..... f~: GJ OIJ 
OFC;Il •••• ~flLF: 
O!- ( A • • • • k : C 1 l\j r 
UFiIC ..... k":RtCV 
lUHO •••• k':At3UF 
1 0 9 A ..... k' : D A l~ X 
lODt~ ••• k:lACt1 
11':ln ..... k':1'~Il 
l1P.h •••• k:GvSH 
l1Ili-\ ••• '" ~<: liS TH 

iJ4~t;. (i>,\)DEtiUG4 

uuFL •••• k:Stk'L 
OCi::::h •••• R:PkIU 
OD12 •••• R:I'l'lAI 
UIJ4S •••• H:TICI 
UlJln ..... R: Tr<..AC 
OI::'JC ..... k:"'LAC 
(j t CU. .. .. .. k : A 'I'i A L 
ot-'.:)t-_ •••• i(:GPRl 
ill- Y4 ..... h': CNSl 
Oi-Ft" .•••• ~; [f(CV 
lv(i!) •••• k:KHUF 
locH: ..... h':DA 
k 1 IJ M ••• ~ ;.: : L ~ I t<. 

1 ! 7 ':; • " ... ,; : P '" K f 
1 1 Ii tl ...... !-( : P A U ~ 

o 

OOhC •••• H:PFLG 
uu70 •••• H:CUkG 
UulE •••• R:FATL 

OM8f •••• R:II)Ot< 
OHFl.l •••• R:HGIN 
OCf2 •••• R: lSIG 
OD12 •••• R:WAIT 
OUqq •••• R:1ICP 
OIlt:3 •••• R:CIIC 
tlEt>9 •••• ilLF-4: 
(I F I> F ..... k : 11'J A L 
OF-b2 ..... R:GPR 
OFA'j •••• ~:~t:I\!D 
1023 ..... t<:Gf Hi 
i097 ...... K:Ht12 
l(JAc! ••• e k :DISP 
114b •••• k:K~IK 
llYh •••• I<:GTS 
11CD •••• R:AETH 
I1t"1 •••• R:UlTH 

oC_'=- _~ --;;-R'f>'~~-~ 

I 

~ 
r 

~ 



, .JL" 
.•.•. " . "c, 

., 

...... 
..0 
c:: 
"'1 
(1) 

., 
I 

N . 
3: 
(1) 

3 
0 

~ 
3: 
OJ 
-0 

0 
...... 
r 
-'. 
:::3 
7<:" 
rtI 
0-

;;C 
-; 
;0<; 
~ 

0 
(l) 
3 
0 
;:, 
VI 
r+ 
-S 
OJ 
r+ ..... 
0 
;:, 

" "'1 
0 
to 
-s 
~ 

" 
I 

PJ 
to 
(l) 

N 

0 ' I 
-i) I f'V , 

1 1 E H • • • • t< : U I t< r 1\1 

1230 •••• R: DOOI·n:: x 
1241 •••• R:SYSX 
12In •••• K:NECH 
12CA •••• W:UINI 
1.550 •••• R:HIGH 

o 

IlFE: •••• K:lJSIKt.X 
12.~t •••• H:kl XEX 
12'::1F •••• HtINI: 
12Ilh •••• ~:()tCH 
12CE:. ••• • r<: f fv1lJL 

* * * * * * * * * * * * * * * * * * * 
MISSING = r,: It 

(, : V 

G:b 
b:X 
I;: S 
R:SATD 
G: 1 
t;:U 
f : IH .. 1111 r 
r;:F 
[; : A 
(,; :t·l 
(l:Y 
G:1 
F:CONN 

1215 •••• I{::)frH 
12_H •••• t<:;(I-'Il: 
125f.O'l)t<:ldNT 
12tJ7 •••• t<:OCHK 
1£:'CI- •••• t<:tlA rc 

o 

122E •••• t<::)It<OtX 
t 2/t 2 •••• t< : 1 A Ii L 
12AE •••• R:SECi1 
1 2C A •••• I : 1 N·I , 
1 2 EA •••• k : [\j 0 P F 

* * * * * * * * * * * * * 
G:E F:M{)t\,T 
G:(J G:L 
b : I; J : 1 U 
(~ :t Ga~ 

F:CREA (, : N 
G:H f:CFf'W 
G:5 G:D 
G:P k:GAlt> 
G:K G:5 
G: ~, G:O 
F:nELE (,:R 
G:7 Gat ... 
G:c G:C 
G:O G:q 
6 :., 

;,-,"~~ ~-;H-~'_~' + ,-"~~,,-,,,"'t~~~ 

I 

~ 
i 

(j 



I (J 

--~CGm~_AWom~~~------------------------------'------------

Page 

4-3 

5-6 

5-1 

BGIN:A 

ECB:A 

INIT: A 

APPENDIX G 

RTX4 MACRO SUMMARY 

arg,tdb,prdesc 

where: 

tdb 

erdesc 

Must match the argument specified in the 
R:BGIN macro. 

Address of the Task Descriptor Block as 
specified in thE rDB:A macro. 

Priority descriptor defining the task's 
pr; ority. 

This macro generates an argument list for an R:BGIN macru 

label,uat 

where: label 
Label to be assigned to the start Of:.!ll'>. 
Envi ronment Contr'o 1 Block; referencer; \.1 

the INIT:A macro. 

uat Address of the Unit Assignment Table. 

This macro generates the Environment Control Block. Must 
immediately precede the END statement of the last user's 
program module. 

~,g,~,':f.,ecb,tdb.E.!i,amtfree,adrfree,topmem 

where: 

Thi 5 mac·t• 

Initial values of the A, 0, X, and Y 
registers for initial user's task. 

ecb Address of the Environment Control Block. 

tdb Address of the Task Descriptor Block tor 
initial user's task. 

E.!i Activity priority for initial uSAr's task. 

amtfree Amount of freepool space in words 
(optional). 

adrfree Address of the freepool (optional). 

topmem Upper limit of memory ~vailable 0 RTX 4 

(optional). 

J itialization Bl0(~ 



.. , 

~.--.. -" .... --~: ---1-

---..:..----~-------------- .. ---------_ .. _--------- .. --

--~ CQm~er~~-----------------------------------------------

o 

Page 

8-4 

8-3 

5-7 

7-8 

4-3 

MAIL:A 

MDB:A 

R:ABUF 

R:AWAL 

R:BGIN 

4-4 R:CINT 

arg,mail 

where: Must match the argument of an R:SENO 
macro or R:RECV macro. 

mail Label of the appropriate mailbox as 
defined by the MOB:A macro. 

This macro generates an argument list for an R:SEND macro 
or R:RECV macro. 

mail 

where: mail Identifier to be assigned to the 
mail box. 

This macro defines a mailbox facility. 

amount 

where: amount Number of words to be allocated. 

This macro submits a request for the system buffer 
allocation service. This service allocates a buffer 
for the program's use. 

where: M4D12 pointer to the argument list, 
generated via the WALL:A macro. 

This macro submits a request for the system wall clock 
absolute timer service. This service initiates a timer to 
cause a semaphore to be signalled at an absolute wall clock 
time . 

where: M4D12 pointer to the argument list, 
generated via the BGIN:A macro 

This macro submits a request for the system task-processing 
service. This service initiates task execution; i.e., it 
creates an activity. 

This macro submits a request for the system console 
interrupt control servi~e. This service causes the 
activity to return if the console interrupt is pressed. 

I 

'--



o 

! 0 

--~ CompuhwAUromation~-------------------------------------------·-----

Page 

7-4 

7-9 

R: CTIC 

R:CWAL 

where: M4D12 pointer to the argument list 
generated by the TICK:A macro. 

This macro submits a request for the system tick clock 
timer request cancellation service. This service cancels 
a previous R:ITIC request. 

where: M4D12 pointer to the argument l~st, 
generated via the WALL:A macro. 

This macro submits a request for the system wall clock 
timer request cancellation service. This service cancels 
a previous R:IWAL or R:AWAL request. 

4-3 R:END 

This macro submits a request for the system activity 
termination service. This service terminates the activl 
requesting the service. 

7-7 R:GATD 

4-4 

7-7 

7-3 

R:GPRI 

R:GTOD 

R: ITIC 

This macro submits a request for the system time and date 
access service. This service reads the time and date in 
ASCI I. 

This macro submits a request for the system activity 
priority access service. This service returns the calling 
activity's priority in the A register. 

This macro submits a request for the system time of day 
access service. This service returns the time of day in 
the AQ register pair. 

where: M4D12 pointer to the argument list, 
generated via the TICK:A macro. 

This macro submits a request for the system tick clock timer service. 
This service initiates a timer to cause a semaphore to be signalled 
after a specified number of ticks of the Real-Time Clock. 



--~Com~~----------------------------------------

10 

10 

~ ... ---" ... :.! 
~~ 

Page 

7-8 

7-3 

7-5 

5-7 

8-4 

R: IWAL 

R:MTIC 

R:PAUS 

R:RBUF 

R:RECV 

where: M4D12 pointer to the argument list, 
generated via the WALL:A macro. 

This macro generates a request for the system wall clock 
interval timer service. This service initiates a timer to 
cause a semaphore to be signalled after a specified time 
interval has elapsed. 

where: M4D12 pointer to the argument list, 
generated via the TICK:A macro. 

This macro submits a request for the system tick clock timer 
request modification service. This service modifies a 
previous R:ITIC request. 

prdesc 

where: prdesc Priority descriptor. 

This macro submits a request for the system round robin 
scheduling service. This service removes the first activity 
of a given priority from the ready list and reenters that 
activity into-the ready list. 

address 

where: address Address of the buffer to be released. 

This macro submits a request for the system buffer release 
service. This service releases space previously allocated 
for a specified buffer. 

where: M4D12 pointer to the argument list, 
generated via the MAIL:A macro. 

This macro submits a request for the system message receipt 
service. This service receives a message from a specified 
mailbox. 



!O 

--~ ~~MAukHnation~------------------------------------------------

3-10 R:SATD 

8-4 R:SEND 

6-7 R:SIG 

4-4 R:SPRI 

7-7 R'STOD 

6-7 R:WAIT 

where: Address of argument block ... a sevenword 
block containing date and time values in 
the order: year, month, day, hour, 
minute, second, and hundredths of a 
second. 

This macro submits a request for the system date and time 
definition service. This service sets the date and time itl 

ASCII. 

where: M4D12 pointer to the argument list, 
generated via the MAIL:A macro. 

This macro submits a request for the system message trans­
~ission service. This service sends a messaqp to a speciFi~d 
mailbox. 

sema4 

where: sema4 Address of the Semaphore D~finition 
Block to be signalled. 

Thi s macro submi ts a request for the system ,:;emaphol'l, s i lEI I 
service. This service causes a specified semaphore to t 
·signalled. 

prdesc 

where: prdesc Priority descriptor. 

This macro submits a request for the system activity prior ty 
definition service. This service alters the callinG activ tv's 
priority according to the supplied priority de:jcY'iptor. 

This macro submits a request for the system time of day 
definition service. This service sets the tim(~ of day to 
the value specified in the AQ register pair. 

sema4 

where: sema4 Address of the Semaphore Descriptor 
Block to wait on. 

This macro submits a request for the system semaphore wait 
service. This service causes the activity to wait on a 
specified semaphore, 



-~ ComputerAutomation~--------------------------

c' 

Ie 

6-5 

7-3 
7-4 

3-7 

SDB:A 

TICK: A 

TDB: A ' 

where: 1 abe 1 Address label of the semaphore. 

value Initial value of the semaphore. 

This macro generates a Semaphore Definition Block. 

arg,id,sema4,count 

where: 

sema4 

count 

Must match the argument of an R:ITIC, 
R:MTIC, or R:CTIC macro. 

Identifier of a tick clocv timer. 

Address of the semaphore to be signalle~ 
(R:ITIC or R:MTIC), or dummy argument 
with any defined value (R'eTIC). 

Number of ticks that must elapse befor0 
the semaphore is signalled (R: ITle or 
R.MTIC), or dummy argument with any 
defined value (R:CTIC). 

This macro generates an argument list for an R: lTIC, R:MT1C 
or. R: CTIC macro. 

label,start,yscratch,stackad,stackamt,flags,usag~ 

where: label 

start 

Labe 1 to be ass i gned to s tcwL of TOB, 

Starting address of task. 

yscratch Amount of Y-scratchpad to be used by thp 
task. If zero, the Y register of the 
calling task is used. Usually is zero 
(or omitted) for a serial task. 

stackad Address of preallocated stdck. If zero, 
stack space is allocated by RTX4. Must 
be zero (or omitted) for a r~entrant 
task. 

stackamt I\mount of stack space used by the task. 

flags 

usage 

None currently defined. (Optional.) 

Maximum number of concurrent activities 
of this task. (Optional. 

This macro generates a Task Descriptor Block. 



e, 

~.'.! 
~ 

Page 

7-8 
7-9 

WALL:A 

where: 

id 

sema4 

upper 

lower 

Must match the argument speci fi edi n an 
R:AWAL, R:IWAL, R:CWAL macro. 

Identifier of a wall clock timer, 

Address of the semaphore to be signal lee 
(R:AWAL or R:IWAL), or dummy argument 
with any defined value (R:CWAL). 

Upper word of the 32-bit integer 
specifying the number of wall clock 
intervals that must elapse before the 
semaphore is signdlled (R:AWAL or R:IWAL), 
or dummy argument with any defined valup 
(R: CWAL). 

Lower word of the 32-bit integer speclfJ" 
ing the number of wall ClOCK intc!"Jah 
that must elapse before the semaphore i 

signalled (R:AWAL or R:IWAL), or rummy 
argument with any def; ned val ue (R: C\i\l ' 

This macro generates an argument list for an R:AWAL, R:IWtl 
or R:CWAL request. 



! 

--~ CompuhwAUro~~-----------------------------------------------

APPENDIX H 

MACRO FILE CONTENTS 

The RTX4 user accesses macro definitions, table definitions, or other code 
via certain macro files. These macro files and their contents are listed below. 

9EN.MAC (General Macro File) 

• Macro definitions: 
EXCH:M 
COPY:M 

• Fixed memory address assignments 
• Non-printing ASCII characters 
• S register bit definitions 
• SYMATT directive bit definitions 
• Hardware stack definitions 
• Distributed liD device and interrupt addresses 

RTX.MAC (RTX4 User Macro File) 

• Macro definitions 
INIT: A 
SINGL:' 
TDB:A 
ECB:A 
EDXVT:A 
SDB:A 
MDB:A 
BGIN:A 
TICK: A 
MAIL:A 
WALl:A 



1\ 
i· 

¥ 
l" ..... --------------------:;': 
\1 

-~ ComputerAutomation<!>~------------------------

o 

RTXD.MAC (RTX4 Development Macro File) 

• Macro definitions 
PUSH: 
POP: 
COPY: 
EXCH: 
ASTAR: 
RSTAK: 
CHK: 
SYS:A 

• Table definitions 
TDB - Task Descriptor Block 
ACB - Activity Control Block 
ECB - Environment Control Block 
EDB - Environment Descriptor Block 
CCB - Clock Control Block 
SDB - Semaphore Descriptor Block 
INIT - RTX Initialization Block 

• RTX exception codes 
• RTX block check values 
• RTX base page definition 
• Environment memory pool definition 
• Miscellaneous RTX system equates 

IOS.MAC (IOS4 User's Macro File) 

• Macro definitions 
BUF:R 
lOB:A 
UAT:AA 
UAT:EE 
UAT:ZZ 

• Table definitions 
lOB - Input/Output Block 

• Operation, position, and function codes 
• Error codes 
• Status codes 



-~ COmpulerAutomation(!) ..... -----------------------, 

IOSD.MAC (IOS4 Development Macro File) 

• Macro definitions 
PATCH: 
I:EOB 
CIB:DM 
CIB:DH 
DIB:DM 
DIB:DH 
DIB:LP 
DIB:ST 

• Table definitions 
CIB - Controller Information Block 
DIB - Device Information Block 
TIB - Temporary Information Block 

• Distributed I/O equates 
• I/O error block definitions 

SFM.MAC (SFM User's Macro File) 

• Macro definitions 
CONN:A 
DELE:A 
CREA:A 
MONT: A 
FCB:SA 

. 
• Table definitidns 

FCB - File Control Block 
FOB - File Descriptor Block 

• Parameter list equates 

SFMD.MAC (SFM Development Macro File) 

• Table definitions 
VCB - Volume Control Block 

• F list entry definition 
• Buffer control and flag word definitions 



, 

1 

"I 

" 

·'.'1' 1i' 
'.'."''''''''.~'"'' . 
. . 

\ 

---------------------_ ...... _-_._-----_ .. _----_. __ ........ ----.. - .. -....... ---. 

o 

-----~ComputerAUtomation-.. _--

NOTES ON ITEMS ISSUED WITH RTX4 (C 1) 
--_ ............ -.. . 

1. ~TX User's Manual (CO) 

. 
Appendix H describes the macro files (supplied with 054 and RTX4 and their 
contents. The contents described for GEN .MAC should include all RTX4/ 
IOS4/SFM service call macros. 

2. IOS4 User's Manual (CO) 

2.1 Similar comment as given in 1, except that it is Appendix G. Aisc 
page 8. 1 refers to Appendix I instead of G ~Ind the Contents List has. 
omitted the Appendix altogether. 

2.2 Appendix B 

The Introduction B. 1 shou Id include reference to the Volume Con hi) 

B lock and FUST described later in the Appendix. 

3. IOS4(C1) 

3. 1 

3.2 

The 10S.HLP 

This file includes description of the 10SDEMo program files. This 
demo is now called SFMDEMO. 

The Line Printer DIB (Standard) 

This is configured far 80 characters per line and 57 lines per page. 
The DIB:LP macro also defaults to these values and not 133 and 39 as 
described . 

. 3.3 10SD .MAC 

Note that this file equates the CRT DIO channel address to 2 instead 
of4 as one might expect. 



~" 

i 
" 

-----------,_ •• ,,,'<,,""--_.-

NOTES ON IT~.MS ISSUED WITH RTX4 (C1) _L<;:_~~.I:J 

3.4 Write Direct Stream VO 

There is a fault connected with this. If a program attemps to do 
Write Direct Stream to a file in order to overwrite the exact number 
of bytes remaining in the file, SFM ignores the request and indical"es 
an end of a block error (:4E). This fault may be overcome by 
patching as follows: 

L')cation Old Contents New Content-" 

F:CEOF+:A :9E82 :0000 

The address of F:CEOF may be determined by examining the I ink-map 
produced by linking the user program with RTX/IOS/SF,''1\' 

3.5 T'{/TK/TY End-of-Input Action 

Currently, when carriage-return is required to termihate an input Va 
request, 1054 responds by repeating just that character f which rn~:!ans 
thCJt it is possible for subsequent output to overprint the previous!) 
typed line. (In the case of OS4 message output, no overprintin\j 
occurs because a I ine-feed is output first, before the message.) 

To ensure fhat no overprinting occurs, users may modify the locfltion 
identified on link maps by the symbol TYELI:. Normally this 
location contains 1, but 2 should be put in its place to ensure that 
carri age -return is followed by a line-feed after every i npu t line is 
terminated. 

4. RTX (CP 

4.1 The fault described in connection with the previous version of RTX4 
namely R:IWAL still exists and the same patch applies. For the 
benefit of those users new to RTX4, a copy of the EN issued just 
before this (1 release is attached to these notes. 

-2- /(ont, 



NOTES ON ITEMS ISSUED WITH RTX4 (C1) (Cont.) 

4.2 R:PAUS 

This service should allow an activity to de-schedule itself so that 
it is placed at the end of the queued activities of the same prioity 
as itself. However, R:PAUS de-schedules the next activity in the 
queue. The following patch cures the fault: 

Location Old Contents New Contents 

R:PAUS+:8 :A022 :2922 

4.3 MAILBOX 

4.4 

CAl limited 

MDB:A macro is wrong. It allocates word containing 0 for Mailbox 
Usage Semaphore and it should contain 1. 

Change source line 319 from "Word 0 - Mailbox Usage Semaphore" 
to "Word 1 - Mailbox Usage Semaphore". 

RTX MACROS 

TICK:A, WALL:A, MAIL:A,SDB:A,MDB:A Macros contain invalid 
constructions for testing:n umber of parameters suppli ed with the call, 
e.g. 0<11-?< 3. 

There are no simple cha~ges that can be made and users are advised 
to ensure that they rovlde the correct number of parameters since 
the macro definitio s dq not check correctly. 

European Technical Support Group March, 1979 

l_,. __ ...... _ 
-3-



I ./;;)";~ ~ -'"1 ... .-...~,.. "I !: ~P" ........ !'\ ",....~ -.,...."""',... "..: "" :!I 

~ 18551 Von Karman, IrvIne, CallI 

ENGINEERING 
NOTICE 

._ .. -._-_._._----------
NU 

~
~.,U9 ~ ~ ......... J;o" .... _l._. /;:.:..",-. "" ....... ~6:.l Q.,. .... r.l 

---- - --- --------.-------1t-------------
DOCUMENT NO. REV. TITLE INCORP. 

is-TwAS DA TE ---------t--

i(PE. 
1-._-----_._--------- -

AEN rJ 

'X83410-XX B'L B I RTX4 - R:rWAL STOP ORDER [J 

~-------~--~~--------------~~--~I CEVIATION 0 
RELE;",SE 
STANDARD 

CLASS 

A-Mf\NDiFUNC C{ 

B·NON-MAND/FUNC 0 
C-RECORD CHG [J 

L AFFECTeD ITE;,'S 
~------~-I---1-----------------r_----~1 ~~~=_IM~_~Sf=C~ 

HARD\,\'ARE CHG. 0 0 
~·-·-------~-~-~------------+---~I SOFTWARE CHG. IX 0 

PUBL. CHG. 0 0 
CAPABLE CHG. 0 0 
DOC. CHG. 0 [J 

o -C:CTIVITY NOTES: 

CONFIGURATIONS 0 0 
PROCEDURES 0 0 

IREANO'04447 TOOLING 0 C I 
I~-====,====~=:==:====1WT.s.E~ST~E QUI P. [J CJ 

REASON FOR CHANGE: 

CERTAIN COMBINATIONS O~ 

R: TODL AND USER -SPECIFIED 

CO-ORC WITH: EFFECTiVITY . ~ 
[ ACTIViTY ---.---r-tiJ I p..T-s I P 1 

INTERVAL VALUES PRODUCE 
INCORRECT 8HORT TIME. 
INTERVALS BE-CAUSE THE CODE ASSUMES 
THAT IHE A DD I NSTRUCTION AFFECTS 
THE CAF.RY STATUS BIT, WHICH I T DOESN'T! 

flcSCRIPTION OF CHANGE: 

A. PATCH AS FOLLOWS: 

;C844 
:C453 
: 6'343 
:S0C I 

:080 I 

NOTIFY VEND . ./ITT! 
lNSTOCK .d!m 

7inING ,/' -LJ 
/,,sSE:MBLY /' _h I , I 

~U ~-tJ7. UE'" I 11...1- J_ 
IPT 1_ ! , ;11 

~U,(jOOCoS -"-'--1-'1 
~'--I -R':;'-T---- --t-rrl- j r U '=>. t:. L_L_L.J. 

RE'o'iK fEST i-1CC'D 

I CONTINUIT ( 
. CABLE SC \N 

CAPABLE 

i 
Q ! 
g i 
o I 
o 
c 


