- pimay

REAL-TIME EXECUTIVE
RTX4
. USER’S MANUAL

93410-90

FEBRUARY 1979

- |
|

|

@\ ComputerAutomation .

i Engineering Reference Number NAKED MlNla DiViSion

. 90-93410-00CO HERTFORD HOUSE

DENHAM WAY, MAPLE CROSS
RICKMANSWORTH. HERTFORDSHIRE WD3 2XD

Telephone Rickmansworth 71211 Telex 9226564

© 1978 Computer Automation, Inc
" PrintedinU.S &

--<§:27Q5 ComputerAutomation =

REVISION HISTORY

Revision Issue Date Comments
A0 May 1977 Original Issue
Al ’ August 1977 Miscellaneous revisions to manual
A2 October 1977 Miscellaneous revisions to manual
A3 October 1977 Revisions to demonstration program
appendix

i',} BO

January 1978 Additions to system services;
changes to system tables

B1 April 1978 Production release !

B2 October 1978 Clock option added, other minor
revisions; manual reformatted and
reorganized.

B3 December 1978 MDBUG4 and XDBUG4 options added;

minor documentation errors corrected.
Additions to rescheduling.

co February 1979 Production release; incorporating
all previous changes.

Sl s

PREFACE

This manual describes Computer Automation's Real-Time Executive
(RTX4), a package of software modules designed to provide the
overhead functions and scheduling services associated with

a real-time, multi-tasking environment.

This manual is intended to serve both as a learning tool for
programmers, new to RTX4, and as a reference source for
experienced users. Section 1 provides an introduction to

RTX4 and its use. System initialization, the first operation
performed by the program, is discussed in Section 2. The
fundamental concepts of tasks, activities, environment, and
semaphores are elaborated in Sections 3-6. Special facilities
provided to RTX4 users -- system clocks and the mailbox -- are
described in Sections 7 and 8. The appendices provide a glo:sary,
descriptions of the RTX4 tables, detailed information on the
RTX4 services, M4D12 addressing format, RTX4 exceptions,
configuration options, and a demonstration program.

The following Computer Automation Incorporated documents pruov:de
information related to the use of RTX4:

e 0S4 System User's Manual (93460-90)

® NAKED MINI 4 Assembler User's Manual (93500-80)

e Input/Output Subsystem I0S4 User's Manual (93430-90)

® NAKED MINI 4 Debugging Monitor Reference Manual (93015-90)

® LSI 4/10, 4/30, or 4/90 Computer Reference Manual (20990-91,
20991-91, or 20945-91, respectively)

Contact your CAI representative for copies of these documents or any
other CAI documents.

SECTION 1
1.1
1.2
1.3
1.4

SECTION 2 RTX4

2.1

2.2

2.3

2.4

SECTION 3 TASKS

3.1
- 3.2

3.3

3.4

O e

INTRODUCTION . . .

RTX4 SYSTEM SOFTWARE

2.

BASIC CONCEPTS OF REAL-TIME SYSTEMS

2.1

CONTENTS

.....
.....
...............
..........
..........
..............

..........

.....

System Software Diskettes : : : :

2.2.2 System Software Paper Tapes . .

RTX4 MACROS
2.

3.1

2.3.

RT
2.
2.
2.
2.
2.
2.

TASK RESQURCES
3.
3.2.2 Stack

3.
SE
3.
3.
3.
T
3.
3.

2.
R
3.
3.
3.
S
4.
4,

3.2
X4/1
4.1
4.2
4.3
4.4
4.5
4.6

2.1
3

A
1
2
3

ASK DESCRIPTOR BLOCK

1
2

TAL/REENTRANT TASKS

Table-Generating Macros .
Service Macros
0S4 PROGRAM DEVELOPMENT
Designing the Program
Coding the Program
Assembling the Program
Linking the Program .

. . -

. . . -

v . 0

Loading and Executing the Program .

Debugging the Program . .

. - . . . &

..............

Initial Register Context

. . . B

Y-Scratchpad

..........

.........

Serial Tasks
Reentrant Tasks
Memory Requirement Guide

.........

TDB:A Macro .
Examples

..........

............

....

.....

S I SV IS Y ¥
L T |
R R R |

oW
NN RIS

A.)C:) Lik
0~

SECTION 4

~ECTION 5

SECTION 6

ACTIVITIES
4.1 INTRODUCTION
4.2 ACTIVITY OPERATION

4.3 ACTIVITY CONTROL L.
4.3.1 R:BGIN Service
4.3.2 R:END Service e e
4.3.3 R:GPRI and R:SPRI Services
4.3.4 R:CINT Service

4.4 ACTIVITY CONTEXT o o
SYSTEM INITIALIZATION AND ENVIRONMENT DEFINITION
5.1 INTRODUCTION

5.2 INITIALIZATION BLOCK
5.2.1 INIT:A Macro e e e
5.2.2 Example,

5.3 SYSTEM FREEPOOL Coe
5.3.1 Freepool Size
5.3.2 The Freepool and Debugg1ng
5.4 [ENVIRONMENT CONTROL BLOCK

5.4.17 ECB:AMacro

5.4.2 Example R
5.4.3 EDXVT:AMacro

5.5 ENVIRONMENT MEMORY POOL

5.6 BUFFER ALLOCATION e e e
5.6.1 R:ABUF Service
5.6.2 R:RBUF Service

SEMAPHORES o ...
6.1 INTRODUCTION

6.2 ALTERNATIVE APPROACHES TO INTERTASK COOPERATION
6.2.1 Producer-Consumer Cooperation . . .
6.2.2 Resource Sharing

6.3 SEMAPHORE SOLUTIONS TO INTERTASK CUOPERATIOM
PROBLEMS v o o oo
6.3.1 Producer-Consumer Problems
6.3.2 Resource Sharing

6.4 SEMAPHORE DEFINITION BLOCK
6.4.1 SDB:A Macro . . . e e
6.4.2 Example .

(SRS 8] ($2]
] i [T |]
[\ Y p—l —

G G
]
Trwe N

i

U"Ui'lU'lU"
g OO

1
~

--<§:27§8 ComputerAutomation >

SECTION 7

SECTION 8

6.5

SEMAPHORE OPERATION
6.5.1 R:SIG Service
6.5.2 R:WAIT Service
6.5.3 Example

SYSTEM CLOCKS

7.1
7.2
7.3

8.1
8.2

8.3

8.4

INTRODUCTION
TICK CLOCK OPERATION

TICK CLOCK TIMERS
7.3.1 R:ITIC Service
7.3.2 R:MTIC Service
7.3.3 R:CTIC Service
OUND ROBIN SCHEDULING
4.1 R:PAUS Service
4.2 E

R
7
7 xample

. .
. .

WALL CLOCK OPERATION

WALL CLOCK VALUE DEFINITION/ACCESS .

7.6.1 R:STOD and R:GTOD Services
7.6.2 R:SATD and R:GATD Services

WALL CLOCK TIMERS
7.1 R:AWAL Service
7.2 R:IWAL Service
7.3 R:

7.
7.
7. CWAL Service

MAILBOX DEFINITION
8.2.1 MDB:A Macro
8.2.2 Mailbox Storage

MAILBOX OPERATION
8.3.1 R:SEND Service
8.3.2 R:RECV Service

SAMPLE SEQUENCE

........

........

........

.........

........

. . - .

........

........

......

. ° s

.....

........

......

........

. . .

......

........

.....

......

........

. . . .

.........

.....

ooooo

www

Q?CDQ“) (oo o
& pww

|
;;' i
!

g ot

i-(Z:ZVQS ComputerAutomation =

APPENDIXES

A GLOSSARYo
B RTX4 TABLES e

B.3 ENVIRONMENT CONTROL BLOCK
B.4 MAILBOX DEFINITION BLOCK
B.5 ACTIVITY CONTROL BLOCK
B.6 CLOCK CONTROL BLOCK
B.7 SEMAPHORE DEFINITION BLOCK
B.8 INITIALIZATION BLOCK
B.9 RTX4 SERVICE PARAMETER BLOCKS
C RTX4 EXCEPTIONS A
D CONFIGURATION OPTIONS
D.1 INTRODUCTION
D.2 NONSTANDARD LINE FREQUENCIES
: D.3 PROGRAM RESTARTS WITHOUT RELOADING
D.4 DEBUGGING FACILITIES
D0.4.1 The DEBUG4 Option
D.4.2 The MDBUG4 Option
D.4.3 The XDBUG4 Option
D.5 WALL CLOCK OMISSION

E RTX4/10S4 APPLICATION DEVELOPMENT SYSTEM GENERATION
USING 0S4

E.1 INTRODUCTION e, .
E.2 RECOMMENDED PROCEDURE ST
E.3 SAMPLE APPLICATION PROGRAM
F RTX4 DEMONSTRATION PROGRAM
G RTX4 MACRO SUMMARY
H KTX4 MACRO FTLE CONTENTS h

s

J— m ComputerAutomation =

~ Figure

—_—
]
W —

PR
SHwnpn —

[
Hown —

]]
—

Oy O w -?-h WWwWww
N

mm o ~
] i 1 1
D= = s W —

'TI-"I
N —

Table

7-1
C-1

. Real-Time Interrupt Processing Concepts .

FIGURES

Analogy of a Real-Time System
Example Processes . .

RTX4 Organization
Dividing an Application into Tasks
User Program Structure

Map of A1l Memory . .

Stacko oo Lo
Y-Scratchpad Allocation and Access

Serial Approach : : : ﬁ .

Reentrant Approach

.............

Task with One Activity
Task with Multiple Activities

Functional Organization of System FreepooT
Producer-Consumer Problem Non-Semaphore Solution
Flow of Semaphore Operations
Formats of Semaphore Word
RTX4 Clocks
Processing Messages in the Mailbox
RTX4/10S4 Example Application Program . . .

Memory Map of L1nked RFX4/IOS4 Example Apn]1cat1on‘
Program

- RTX4 Demonstration Program Co.
Memory Map of Linked RTX4 Demonstration Program

TABLES

Freepool Blocks for RTX4 System Services

Real-Time Clock and Tick Clock Parameters . .

RTX4 Exceptions

Error Code Indicators

. . . .

............

...............

.......

.................

N o

SECTION 1

BASIC CONCEPTS OF REAL-TIME SYSTEMS

1.1 INTRODUCTION

Computer Automation's Real-Time Executive (RTX4) provides a real-time, multi-
tasking environment for user-written applications.

This introductory section discusses some of the concepts that are fundamental
to real-time systems in general. Subsequent sections of this manual describe
the use of RTX4 in particular.

1.2 AN ANALOGY

The following analogy of an auto repair garage and its activities, illustratea
in Figure 1-1, introduces the basic cnncepts of a real-time system and ti .
functioning of its component parts.

AL'S RENTALS

K12
Wrench

TASK
Replace a
Transmission

TASK
Replace a
Transmission

ACTIVITY

JOE’S GARAGE

ACTIVITY
ANDY'S GARAGE

Figure 1-1. Apalogy of a Real-Time Systein

% --(Z:Z?QS'00mnpuuuﬁwmonuukmn®

g

s |

Assume that all mechanics change transmissions in all cars the same way. We may
think of "replacing a transmission" as a task. It consists of a series of e
well-defined steps using a certain set of tools. At many garages there is a

fixed price for this task, and many mechanics know how to do it. The task of

"changing a transmission" is independent of whether anyone is doing it; that is,

if no one anywhere is replacing a transmission, there is still a well~-defined

task called "replacing a transmission."

There may be a place known as "Joe's Garage." It is an "environment" in which

many mechanical tasks are performed. Joe tells his workers to perform mechanical

tasks. In fact, he orders his task requests in a particular manner, probably

one which maximizes his profits. Although he is in complete control of his own

garage, he has no authority in Andy's Garage, across the street. He cannot tell

Andy's mechanics what to do, even though he may know as well as Andy what needs
‘E’csbe done. There is no wall or other physical restraint between their shops,

but the law forbids Joe to exercise authority in Andy's garage. His interaction

with Andy's Garage is limited: he may exchange messages with Andy or his mechanics,

or even have his own car fixed there.

If Joe tells one of his mechanics to replace a transmission, he has started an
"activity," or an instance of the task "replacing a transmission." He may tell
two mechanics to change two different transmissions at the same time. Then

there would be two such activities being performed. In fact, Andy may request
ore of his mechanics to replace one at the same time, so the same task is being
performed in two separate environments. Each instance of the task is an activity.
Since all three mechanics can work concurrently, this situation describes 2 .
concurrently reentrant task. -

Suppose that replacing a transmission requires a K12 wrench. The only K12

wrench in town is at Al's Rentals and must be reserved ahead of time. Then only

one activity of "replacing a transmission" can be performed at one time. The

multiple activities which Joe and Andy requested must be performed serially.
‘gghis may slow down their shops' throughput, but if K12 wrenches are very expensive

(as they appear to be, since neither Joe nor Andy has one), then this might be

the most effective way to solve the problem.

Three terms are introducted in this analogy:

® A task is a set of rules, instructions and resources. It is generally
created once, perhaps occasionally updated. It can be concurrently or
serially reusable. A task which is concurrently reusable is said to be
reentrant. A task's reentrancy is determined by its creator (and updater),
since he knows what resources are required by it.

e An activity is a specific instance of performing a task. It uses three
resources: CPU time, a task, and a context. A1l are allocated to the task
when it begins. There may be many activities being performed at the same
time, of the same or different tasks.

e An environment is a set of resources. A task may be performed in several
environments, but each instance or activity can use only the resources that
exist in the environment in which it is started. Thus, environment is a
method of resource allocation.

A glossary of these and other terms used in this manual appears in Appendix A,

i

--G;Z?QS(hunpuhuﬁuﬁnnaﬁong

1.3 INTERRUPT PROCESSING

A real-time system must respond to external events that occur asynchronously

to processes within the computer. In this usage, "asynchronously™ means
essentially the same thing as "randomly," but the events are not truly random
because various aspects of them are predictable (maximum intervail, time window,
relative sequence, etc.). However, their exact timings are not known, so
real-time programs cannot afford to wait for them by looping. The accepted

method for relating the outside world to a computer is through hardware interrupts.
The computer can perform other functions until the interrupt occurs. Interrupte
allow the effective and efficient utilization of a computer in a real-tine
environment.

However, current computer architecture and programming conventions are
sequentially oriented, and interrupts make it impossible for an entire applica-
tion to be seen as a single sequential process. Every time an”interrupt
occurs the order of execution of comput«r instructions i: changed., if only
temporarily.

Figure 1-2 illustrates how conceptual execution transfers when interrupts
occur. In this example, two types of interrupts (perhaps from diffarent
devices) occur at two different times during the processing of the mainline
program. Each time, execution is shifted from the mainline, to the interrupt,
to the routine to process that particular type of interrupt, then back t:s the
mainline program.

MAINLINE ' INTERRUPT
PROGRAM PROCESSING RTNE A

4

Ml

Figure 1-2. Real-Time interrupt Processing Concepts

- ‘1,< -

;

é: --(g:Z?QS100mnpuuudunnnnaﬁon®

i

The problem can be simplified by viewing the system as two or more sequential
processes that execute concurrently. This ideal can be met by providing the
programmer with two or more separate computers that can communicate with each
other through status flags. Currently, this approach is economically unfeasible.

A real-time executive can simulate the existence of multiple processors,
allowing the programmer to treat his application as a collection of sequential
processes, yet requiring only one CPU. Some CPU time and some memory are
occupied with the overhead of this simulation, but the incremental costs of
additional CPU time and memory in a single computer are relatively small.

1.4 PROGRAMMING BY FUNCTIONS

One way to optimize the use of a real-time executive is by subdividing a
program into its component functions. Each function can process when it is
required and when the necessary hardware and other environmental factors are
available.

For example, consider a small program that reads from cards and prints their
contents on a line printer using two buffers so that the reading ana printing
operations can overlap in time. The asynchronous outside events in this case
are the completion of reading a card and the completion of printing a line.
They are asynchronous not only because of small variations in the mechanical
devices, but because of human factors such as reloading the card hoprer,
emptying the card stacker, changing printer paper, etc.

It is possible to solve this problem using standard sequential programming
techniques or primitive interrupt responses. A simple alternative solutisn is
shown in Figure 1-3. This solution involves two processes: Process A reads
cards into the buffers, and Process B prints the contents of the buffers.

Each process consists of seven steps. The first six steps are standard RTX4

b system service requests consisting of two words of memory each. Step 7 is a

jump to the start of the process so the process is repeated. Most importantly,
the flow of processing can be followed easily; there are no conditional tests, |
no branching.

Four system services are requested. '"Read" and "print" are calls to the
Input/Output Subsystem! that return only when the operation is complete.
"Signal" and "wait" are complementary synchronization services: a process
that waits for a condition resumes as soon as it is signalled. This service ‘.
is known as a semaphore. Semaphores are discussed in a later section.?

AT e A

No combination of external events can result in a card not being printed or
being printed twice. Note how easy it is to verify that fact. Also, Process
A and Process B could just as well be in separate computers with sume shared
memory. That is the advantage of a real-time executive: it provides concurrent ¢
processing without the hardware cost of multiple processors. Whenever the

card reader is empty or both processes are waiting, other processes can use

~the CPU time.

Input/OQutput Subsystem I0S4 User's Manual
2Section 6

¥
ol

--@Ezﬁﬂh conuuneuynnhummun°

PROCESS A
READER

1 v

PROCESS B
PRINTER

WAIT FOR
BUFFER #1
EMPTY

2 y

READ INTO
BUFFER #1

3 v

SIGNAL
BUFFER #1
FULL

R
WAIT FOR

BUFFER #2
EMPTY

5 v

READ INTO
BUFFER #2

1l

WAIT FOR
BUFFER #1
FULL

2 /

PRINT
BUFFER #1

SIGNAL
BUFFER #1
EMPTY

WAIT FOR
BUFFER #2
FULL

5 ¥

PRINT
BUFFER #2

:]
—~—
6 T .

6
SIGNAL SIGNAL
-—— BUFFER #2 el BUFFER #2
FULL ERPTY
Figure 1-3. Example Processes

i —_— @ ComputerAutomation =

SECTION 2
RTX4 USAGE

2.1 INTRODUCTION

RTX4 is a package of software modules designed to provide the overhead functions

m and scheduling services associated with a real-time, multi-tasking environment.
I0S4! is a subsystem of RTX4 which provides the user with a deviie-independent
method of I/0 device management and support.

The general organization of RTX4 and I0S4 is shown in Figure 2-1. RTX4 controis
all aspects of priority scheduling, timing, interrupt servicing, I/0 control,
inter-task communication, and all necessary queuing functions. Modular ~nonstruc-
tion allows the user to select only those portions of RTX4 required for iis
particular application.

10S4
¢ Device-Independent 1/O
¢ Directory Management

3

c B

RTX4

Scheduling

Services

Interrupt Processing

Task Interfacing :
Inter-Task Communication

User Iser User
Task Task o000 Task

@ Figure 2-1. RTX4 Organization
4

% 1Input/Output Subsystem 1054 User's Manual

--(g:?ﬁQS ComputerAutomation &

Some of the particular features of RTX4 are:

e Allows the application program to be designed as a number of interrelated
or subordinate tasks.

® Allows the application program to schedule CPYU usage by dynamically
defining and redefining the priority and seniority levels of several
activities in the application using RTX4 service routines.

e Allows real-time response to external events by providing the interrupt
instructions which transfer control to the interrupt service routines.

e Allows the various tasks in the application to communicate between them-

w selves (or with RTX4) through RTX4 communication routines.

® Provides clock services for obtaining time-of-day information and/or for
controlling the timing of activities.

e Allows dynamic memory management.

2.2 RTX4 SYSTEM SOFTWARE

The RTX4/10S4 system software is available on floppy diskettes or on paper
tapes. The floppy diskettes are intended for use with the 054 program develop-
ment system.! The paper tapes are provided for users of the OMEGA4 prograu
development system.?

The contents of the product diskettes and paper tapes are discussed below.

The procedures for using each medium in its corresponding program development
system are outlined later in this section.3

2.2.1 System Software Diskettes

When RTX4 ic to be used with 0S4, it is delivered as five floppy diskettes, as
follows: .

® RTX4 Product Diskette Diskette ID Number: F41001
CAI Part Number: - 93410-01

This diskette contains the RTX4 library file (RTX.LIB), the RTX4 demon-
stration program source, object, and binary files, and a JCL file for
assembling the demonstration program. (A listing of the demonstiration
program appears in an appendix? to this manual.) A Help file dpscr1bes
the diskette's contents.

1054 System User's Manual
2Q0MEGA4 System User's Manual
3Subsection 2.4

4Appendix E

c

3

:i |

'--(g:za§'Cbnunngdhnonunku1®

F42501
93425-01

Diskette ID Numbér:
CAI Part Number:

® RTX4 Macros Diskette

This diskette contains the user and development macro files. These files

are described in Appendix H.

® 10S4 Product Diskette Diskette ID Number: F43001
CAI Part Number: 93430-01
This diskette contains the 1054 library file (I0S.LIB).
® SFM Product Diskette Diskette ID Number: F44001
CAI Part Number: 93440-01

This diskette contains the SFM library file (SFM.LIB), the SFM demonstra-
tion program source, object, and binary files, and a JCL file for assembling
the demonstration program source file.

F44101
93441-01

Diskette ID Number:
CAI Part Number:

® Standalone LABEL Diskette

This diskette contains the standalone 0S4 disk labeling program. This
program can be used to label disks in SFM format. Its use is described
in the I0S4 User's Manual.!

2.2.2 System Software Paper Tapes

When RTX4 is to be used with OMEGA4, it is delivered as a set of paper tapes.
These tapes contain the same items as the floppy diskettes described above
(minus Help and JCL files and the standalone labeling program) except that
each file is provided on a separate paper tape. Each paper tape has its own
CAI part number, as follows:

CAI Model Number File

93410-20 RTXDEMO. ASM
93410-30 RTXDEMO. 0BJ
93410-40 RTXDEMO.BIN
93410-51 RTX.LIB
93420-60 GEN.MAC
93420-61 RTX.MAC
93420-62 RTXD.MAC
93420-63 I0S.MAC
93420-64 I0SD.MAC
93420-65 SFM.MAC
93420-66 SFMD.MAC
93430-51 10S.LIB
93440-20 SFMDEMO. ASM
93440-30 SFMDEMO. 0BJ
93440-40 SFMDEMO. BIN
93440-50 SFM.LIB

1Input/Output Subsystem I0S4 User's Manual

—m ComputerAutomation

i
4
E

2.3 RTX4 MACROS e§>
RTX4 provides three types of macros: macros for generating internai tables,

macros for requesting system services, and macros which generate service
- request parameter lists.

2.3.1 Table-Generating Macros

RTX4 involves a number of internal tables. RTX4 generates some of these
tables automatically; others are generated in response to macros defined by
the user in his program. These macros and the tables they generate are listed

below.
‘3% Macro Table Generated Purpose of Table

TDB: A Task Descriptor Block Describes the needs and attributes of
a task.

INIT:A Initialization Block Provides some information about the
environment and supplies the address
of the first task to be executed.

ECB:A Environment Control Defines user-occupied space to RTX4

Block and unit assignment to I0S4.
SDB:A Semaphore Definition Defines a semaphore for controlling fr)
. synchronization of Block tasks. e
MDB: A Mailbox Definition Defines a mailbox facility for com-

Block munication between activities.
‘na These macros are described in detail in subsequent sections of this manual.

The structures of all RTX4 internal tables, including those listed above, are
presented in an appendix.!

2.3.2 Service Macros

RTX4 provides a number of services which greatly simplify programming for a
real-time environment. To invoke one of these services, the program executes
the corresponding service request macros as listed below.

Macro Service Invoked

R:BGIN Initiates an execution instance of a task; i.e., creates an
activity.

R: END Comp]etes'an execution instance of a task; i.e., terminates an
activity. ’ .

i lAppendix B

4
i
w
)

ek

--(SE!]VS<00nnpunenAumonnaﬁon°

Macro Service Invoked

R:GPRI Reads an activity's priority.

R: SPRI Changes an activity's priority.

R:SATD Given the ASCII time and date will set in binary.

R:GATD Reads, in binary, the time and date and converts to ASCII.
R:CINT Causes the current activity to return on a console intérrupt.
R: ABUF Allocates a buffer.

R: RBUF Releases a buffer.

R:SIG Signals a semaphore.

R:WAIT Waits on a semaphore.

R:ITIC Initiates a timer to cause a semaphore to be signalled after a
specified number of Real-Time Clock ticks.

R:MTIC Modifiés a previously-initiated tick clock timer request.
R:CTIC Cancels a previously-initiated tick clock timer request.
R: PAUS Drops the seniority of an activity.

R: AWAL Initiates a timer to cause a semaphore to be signalled at an
absolute time.

R: IWAL Initiates a timer to cause a semaphore to be signailed after a
specified time interval has elapsed.

R: CWAL Cancels a previously-initiated wall clock timer request.

R: STOD Sets the binary time of day.

R:GTOD Reads the binary time of day.

R: SEND Sends a message from one task to another.

R:RECV Receives a message sent by another task.
These macros are described in detail in subsequent sections of this manual.
The arguments to system requests are sometimes defined as va]ues and sometimes
defined as 901nter to lists of values. For instance, in the R:BGIN request,
the argument is a po1nter to a list of parameters needed for the R:BGIN Jerv1c&

One of those parameters is a priority descriptor which can be expressed as
16-bit integer.

i
=
&
¥
z

#

o

— m ComputerAutomation =

Compare this to the R:SPRI request whose argument is a priority descr1ptor -
rather than a pointer to one. The pr‘1or1ty descriptor may be placed in the
second word of the service request, or in the X reg1ster when the service .
request is made. If the descriptor is to be placed in some other memory

Tocation, it must be referenced indirectly.

When arguments to a service request macro must be specified in a list rather
than directly in the macro, the programmer can call the appropriate list-
generating macro. These macros are:

BGIN:A generates an argument list for a BGIN:A request.
MAIL:A generates an argument list for an R:SEND or R:RECV request.

TICK:A generates an argument list for an R:ITIC, R:MTIC, or R:CTIC
request.

WALL:A generates an argument list for an R:AWAL, R:TWAL, or R:CWAL
request.

These macros are described with the corresponding request macros in subsequent
sections of this manual.

A1l service request arguments, whether specified directly in the reguest or in
a list, are expressed in M4D12 format, i.e.:

[*IMem(X,Y) .
where: |
[*] denotes an optional asterisk immediately preceding the memory
address to indicate indirect addressing.
Mem is a memory address in the range 0-65535 inciusive or external.
(X,Y) denotes indexing, which is always optional and may specify

either X or Y or both, in either order, separated by a comma,
and the whole enclosed in parentheses.

This format permits a wide range of addressing modes. In simple systems, the
direct and indirect modes may satisfy all programming needs. In more complex
systems, a programmer may wish to place his argument pointer or value in &
register or in his Y-scratchpad. These last two options are especially useful
in writing reentrant tasks. The allowed addressing modes are:

®Direct addressing to anywhere in memory
®Indirect addressing to anywhere in memory

eP-relative address1ng to within + 4096 words of the current P register
value :

ePre- or post-indexing with an offset of * 4096

oA combination of the abave

;

i
4
i
%‘
gl
¥

G ai

e

--(Z;Z?‘S ComputerAutomation =

The following are addressing mode examples:

ABLE direct reference to a label

*BAKER indirect reference through a label
CHARLY(X) post-indexed reference

DELTA(Y) pre-indexed reference

ECHO(X,Y) pre- and post-indexed reference
XEXTRT(X,Y) indexed indirect reference:

See the assembler manuall for more information on M4D12 format.

Macros are the preferred form for making service requests. Alternatively they
can be made using a system trap (STRAP) instruction. The STRAP iastruction in
the first word of a service request traps to location :A4 where RTX4 proceeds
to process the request. The first word also specifies the service beiny
requested and the meaning of the second word. The second word can contain a
value, an address, an indirect pointer, or a complex M4D12 pointer, depending
on the service request and the contents of the first word. Together, these

two words provide a simple, yet flexible, means of requasting services and
providing argument values and lists.

2.4 RTX4/10S4 PROGRAM DEVELOPMENT

The general procedures for developing an RTX4/10S4 application program are

like the procedures for developing any other type of user program: the pro-

- grammer designs his program, creates the appropriate symbolic text, translates
that symbolic text to an object module or modules via an assembier or compiler,
links the object module(s) with any required library programs, icads and
executes the linked program, and performs any necessary debugging.

The RTX4/10S4 programmer can perform these processes in either the 0S4 systenm
or the OMEGA4 system. The 0S4 and OMEGA4 user's manuals? provide details on
how program development procedures are performed in those systems. This
subsection presents some guidelines that apply to developing ar RTX4/I(054
application program in particular.

The 0S4 user's manual outlines a suggested procedure for creating an RTX4/10S4
application development system. For the reader's convenience, this diccussion
is repeated in an appendix® to this manual.

INAKED MINI 4 Assembler User's Manual
2054 System User's Manual and OMEGA4 System User's Manual
3Appendix E

- DT«

@
i
¥
Al
i
&
Wil

c

| O e

2.4.1 Designing the Program

The first step in designing an RTX4/10S4 application program is to divide the :
problem into a suitable number of tasks. A task, as introduced in the auto

repair shop analogy presented earlier,! is a set of instructions for performing

a particular function. For example, the two processes shown in Figure 1-32

are tasks to perform the functions of reading and printing cards.

An application system can consist of one or more tasks. There is sometimes a
"best" way of dividing a system into tasks, but there is seldom an "only" way.
The decision to break the card reading/printing problem into the two separate
tasks simplified the programming problem. Solving it as a single task would
have been unnecessarily difficult; solving it as three or more tasks would be
unnecessary. Figure 2-2 presents another example.

MONITORING A
TEMPERATURE GAUGE

TASK 1

READ TEMP
EVERY SECOND

TASK 2

CHECK TEMP
FOR EXTREMES

TASK 3

WRITE “ALL’'S WELL”
AND EMERGENCY
MESSAGES

Figure 2-2. Dividing an Application into Tasks

1Subsection 1,2
2Subsection 1.3

'

1
)

d

C

--(Z:Z?Q& Cnnnpuumdumknnaﬁon®

The rules for dividing an application into tasks cannot be spelled out, unfor-
tunately. As a guideline, whenever synchron1zat1on with another process
(internal or external) requires excessive conditional testing, create a new task_
which performs only the synchronization. This guideline may result in a
hierarchical structure of tasks, which in many situations is an excellent
solution. Another way of viewing this guideline is to think of functions whici,
if performed in another computer, would simplify the problem in the main
computer. Such functions should be performed in another task.

After dividing the problem into tasks, design the operation of each task.

2.4.2 Coding the Program

The elements of an RTX4/I10S4 can be coded in any order, but the program must
include at least the following elements:

e Initialization Block!

This table should be the first element of the program, as it providss
information required by RTX4 when execution begins. It directs RTX4 to i
first task to be executed and to the Environment Control Block (ECB). As
described below, the ECB describes the environment in which the program
will run. The Initialization Block also determines the size of the System
Freepool. As described later,2 the Freepool is a region of ucmory that
RTX4 uses for its internal tables and control blocks. To generate the
Initialization Block, the programmer codes an INIT:& macro.

e Task Descriptor Block(s)3

For each task defined in the program, the programmer generates a Task
Descriptor Block (TDB) by coding a TDB:A macro. In general, the macro call
should be near the code of the task it describes. While not required by
RTX4, this approach minimizes the number of external refercnces required.

® Environment Control Block?
The Environment Control Block (ECB) describes the program's resources to

RTX4 and unit assignment to I0S4. The ECB also contains the heads of
several lists generated by the program.

. If the user wishes to use a nonstandard Unit Assignment Table, he must include

the appropriate UAT:AA, UAT:EE, and UAT:ZZ macros.®

1Subsection 5.2
2Subsection 5.3
3Subsection 3.4
4Subsection 5.4
5Input/Output Subsystem I10S4 User's Manual

e

i --(g:zak ComputerAutomation =

-
3

The programmer can code his program as a single module or as multiple modules.
A convenient modular structure for large application programs is to code each ﬁ
task, including its Task Descriptor Block (TDB:A macro), as a separate module.

Only one module must include the Initialization Block (INT:A macro) and the |
Jast module to be loaded must include the Environmental Control Block. (ECB:A i
macro) at the end of that module.

The programmer normally includes the directive:
LOAD DEBUGA
when coding a new RTX4/10S4 application program. This directive causes the

DEBUG4 system® to be loaded with the program, providing facilities for debugging
0 t1e program. This directive can appear in any program module.

Figure 2-3 illustrates the typical structure of an RTX4/10S4 application program.

Initialization Block (INIT:A)

Task #1 Descriptor Block (TDB:A)

Task #1 Code and Data m

" Task #2 Descriptor Block (TDB:A)

m Task #2 Code and Data

R

Task #n Descriptor Block (TDB:A)

Task #n Code and Data

Environment Control Block (ECB:A)

Figure 2-3. User Program Structure : @

Cde

‘N{\KE_I) MINI 4 Debuqging Monitor Reference Manual

IR D A

--(g:pws(ﬁnnpuhuﬂkﬂonuﬂkth

2.4.3 Assembling the Program

RTX4/1054 application program modules can be assembled in any order. The files
GEN.MAC, RTX.MAC, I0S.MAC, and SFM.MAC must be specified as the macro definition
file for each assembly.

2.4.4 Linking the Program

The next step is to link all of the user-coded modules with the necessary library
files. '

NOTE

’

The module containing the Environment Control Block (ECB) must be the
last program module linked because it must contain the heads of soveral
lists generated by the program.

Following the user-coded modules, library files should be linked in th+ following
order:

SFM.LIB Provided on the SFM product diskette or paper tape; required only
if the program uses Standard File Manager capabilities.

I0S.LIB Provided on the I0S4 product diskette or paper tape; required
only if the program invokes I0S4 services.

RTX.LIB Provided on the RTX4 product diskette or paper tape; reauired for
all RTX4/10S4 application programs.

The program may be linked absolute or relocatable and may reside in memory at
address :100, if two DIO boards are used :200, or greater.

2.4.5 Loading and Executing the Program

Once all of the program modulés have been linked, the programmer can load and
execute his program.

"When a linked RTX4/10S4 application program is loaded, it appears in memory as

diagrammed in Figure 2.4. The area between the end of the program and the end
of memory is called the Environment Memory Pooll. This space is used for scratch-
pad and stack space requested by the program. :

If DEBUG4 is loaded with RTX4, DEBUG4 receives initial control when the user’'s
program is executed. The user can start the program by using DEBUG4 to transfer
to location :80. If an exception? ocrurs, control returns automatically to
DEBUGA. The user can access DEBUG4 at any tiwe by transferring to location :/E.

1Sybsection 5.5
2pppendix C

--<§:ZZQ§Cknnpunenmuuunaﬁons

i
Wl
I
b
i
P

:0
Scratchpad
Reserved 140
for use
of RTX4 : 80
Fixed trap and interrupt locations
:CO
Standard DIO interrupt locations
‘ :100
m User Application Program
SFM (if used)
5 1054 (if used;
|
| Environrent !
’ Waro e,
:nFFF
‘%ﬁ Figure 2-4. Map of A1l Memory

-

2.4.6 Debugging the Program

RTX4 contains many blocks of information on a variety of lists. The programmer
can examine these lists using the Z command. The heads of these lists and the
meaning of the contents of the blocks are presented on the fsllowing page.

.
:
¥
*

--<§:27Q5|00mnpnnemAuMonuﬂku1@

%;’ Label Location Contents
? R:ECBH :20 Head of the Environment Control Block list.

R: RDY :22 List of Activity Control Blocks currently ready for
activity execution. R:ACT usually points to the
first ACB on this list.

| R:ACT :21 Activity Control Block for the current activity.
ﬁ R: INTQ 123 List of Activity Control Blocks of activities wiich
: have been readied for execution and are awaiting
| merger into the R:RDY list the next time through the
‘ 0 dispatcher.

R:FPH :25 Head of the Freepool list of available blocks.

R:FPT : 26 Tail of the Freepool list of available blocks.

R:CCBH :2B Head of Tick Clock Control Block 1ist.

b R:WCBH :2C Head of Wall Clock Control Block list.

R:TODU :30 Time of day upper 16 bits.

R: TODL :31 Time of day lower 16 bits.

;a The user can also examine the system trap locations which can identify the

user's last system request.

HL;M e g

SECTION 3

TASKS

3.1 INTRODUCTION

; A task is an ordered collection of machine instructions that perform a particuiar
f w function.

3.2 TASK RESQURCES

Several resources are associated with a task, including the initial register
context, Y-scratchpad, and the user's stack.

3.2.1 Initial Register Context

The contents of the A, Q, X, and possibly Y registers of the task which b=gins

another task form the initial register context of the new task. The initial
aib register context provides communication between the original task and the task
4 to be started. It can determine the function to be periormed, the location

of data areas and.buffers, etc. If the required information does not fit into

the registers, the registers can point to memory locations which contain the

information.

3.2.2 Stack

Each execution instance of a task must have its own stack. The stack is used
by RTX4 for several purposes, and may be used by the programmer for subroutine
- linkages using the JSK and RSK instructions.!

The amount of stack space required for a task is the sum of the spaces required
for program use and system use. The amount used by the program depends on the

. maximum depth of subroutine nesting (not the total number of subroutines).
The amount used by the system depends on what system services are requested.
If no services are requested, the system requires 14 words for handling inter-
rupts (only 7 if a significantly higher maximum interrupt latency is acceptable).
If any system services are requested, 8 more words are required. .Additional
stack locations are required for many services. The number of additional
stack locations are listed as a part of the documentation of each service.
Also, the usz of JSK and PUSH requires 7 words of stack space.

1NAKED MINI 4 Assembler User's Manual

C e -

4
&
B

e

— m ComputerAutomation =

As illustrated in Figure 3-1, the K register points to the top of the stack
area currently being addressed and the L register points to the lower limit of

the stack.

K Register

Assumes Many

Values as
Program
Executes

141 Initial K Register

L Register

Low Memory

RSK and POP
instructions

JEK and PUSH
Instructions

High Memory

Figure 3-1. Stack

3.2.3 Y-Scratchpad

Each invocation of a task can have its own scratchpad area of any length.
This area is called the Y-scratchpad because it is reached via the Y register.

The size of the Y-scratchpad area is user-defined.

Although NAKED MINI 4 Family computers have a 64-word scratchpad (the first 64
words of memory), these words cannot be used by application programs in the
RTX4 system. They are used by RTX4 for critical program sequences, list

heads, and other uses that increase throughput and reduce overhead.

u.‘g-.?m

“—-<§:27Q5 ComputerAutomation =

Any normal scratchpad use can be performed in Y-scratchpad, including indexed
indirect references and direct references from any memory location. The
Y-scratchpad is allocated to a task when it begins execution. The address is
placed in the task's Y-register as part of the initial register context The
program refers to locations in Y-scratchpad by including the pre-indexing
symbol (Y) on operands which are to fall into Y-scratchpad.

Two options are available for allocating Y-scratchpad space. The task may use
the Y-scratchpad space of the task which began it; in this case, the Y register
value is simply passed as part of the initial register context along with the
A, Q, and X registers. Or, the programmer may request that the Y-scratchpad
space be allocated dynamically when the task is begun.

In either case, the programmer is free to load the Y register with the address
of his own Y-scratchpad region. '

It is the user's responsibility to avoid referencing locations which fall
outside the allocated Y-scratchpad; RTX4 cannot perform any limit checking.
The greatest volume of Y-scratchpad is required for reentrant or recursive
programming where data areas must be allocated for each execution instance.
A1l memory reference instructions can refer to Y-scratchpad, inciuding single-
word memory reference instructions (64-word range), system request parzseters
(4096-word range), and double-word memory reference instructions {55,536-word
range).

Figure 3-2 illustrates Y-scratchpad allocation and how it is accessed ard used
in a task.

Y REGISTER

PROGRAM Y-SCRATCHPAD

4

BUFFERS BUFFERS FOR
FOR /O BLOCKS PROCESSING

Figure 3-2. Y-Scratchpad Allpcatign and Access

IR i

--<§:ZZQ§Ckunpuuuiunonnaﬁon@

3.3 SERIAL/REENTRANT TASKS

A task may be serial or reentrant in its use.

If a task is serial,

(execution) of the task must be completed before the next activity can begin.
A reentrant task can support several activities executing concurrently.

A reentrant program significantly reduces memory size for some applications.
For example, consider a data entry system consisting of four CRT terminals

connected to one computer and a disk.
entering data from questionnaire forms into the computer.

An operator sits at each terminal

One approach to building this system would be to create four copies of the

data entry program, as illustrated in Figure 3-3.

m develcpment time and speeds execution time.

Such a solution reduces

one activity

PROCEDURE PROCEDURE PROCEDURE PROCEDURE
& DATA & DATA & DATA & DATA
STATION #1 STATION #2 STATION #3 STATION #4
,.»"’”/
RTX4/N10S4
\\\>//
CRT#1 CRT #2 ' CRT #3 [CRT #4 |

Figure 3-3. Serial Approach.

The reentrant approach, illustrated in Figure 3-4, requires a slightiy longer
deve]opment time and may run slightly slower, but the resu1t1ng system uses
much less memory and is easier to maintain and expand.

£
Tl
i

Ay
i
#.4
£l

PROCEDURE
DATA DATA DATA DATA
STATION #1 STATION #2 STATION #3 STAT!ON #4

—

N

RTX4/10S4
\\\\\\\x«\\\\«\x\\\\\N%

PRSP S——

CRT#1 CRT #2 CRT #3 ‘ ﬁﬁ:;:wﬂw]

Figure 3-4. Reentrant Approach

3.3.1 Serial Tasks

In a serial task, resource allocation is simple, but several options are
available. The simplest method, with the lowest CPU overhead, is to allocate
space for the stack along with the task and tell the system where it is RTX4
then faces no dynamic allocation problems. This method also protects that

memory space from being available for other uses when the task is inactive.
Alternatively, the programmer may ask RTX4 to allocate the stack and Y-:cratchpad
space dynamically when the task begins. He must supply the lengths of each,

but RTX4 determines their locations. In either case, when the task begins,

the Y, K, and L registers are set to peint to the Y-scratchpad and stack.

3.3.2 Reentrant Tasks

The terms "procedure" and "data" are fundamental to reentrant programming.
Essentially, the procedure is the unchanging part of the reentrant task and
the data is the variable portion.

A procedure includes all portions of a program which do not change during program
execution. It includes all items sucit as machine instructions, literal:, 6 data
constants, and fixed address pointers which determine the process to be porfoimes

e Vaf -

S——

gf'l.
|
I
i
i
H
i

--6@29§5(&mnpuunAuuunaﬁonQ

Data in the reentrant task refers to all items such as variables, temporary
cells, stacks, and buffers which may change during program execution. It 1H%
includes all program memory locations which do not qualify as procedure.
These terms are the basis of the following concepts of reentrant programming:
® Procedure and data are treated separately.

e Each activity of the reentrant task has its own allocated region for
data.

® A11 activities of the reentrant task share the same procedure.
Suppose that the example data entry system presented earlier! requires 10K |

words of procedure and 4K words of data for each data entry station (CRT).
The serial approach requires 61K words of memory:

5K* RTX4/10S4 ,
40K Procedures (4*10K)
16K Data (4*4K)

The reentrant approach requires only 33K words of memory:

5K* RTX4/1054 ‘
10K Procedure
16K Data
*Approximate figure o
Y
Such savings are common when reentrant programming is appropriate.
Initial resource allocation for a reentrant task has few options. The stack
must be allocated dynamically by RTX4. Y-scratchpad also must be aliocated
dynamically if it is required. Additionally, the following rules for writing
the task must be followed to ensure reentrancy:
® The Y-scratchpad address (the initial contents of the Y register) must be
kept in a register at all times. ' :
® A11 references to variables and temporary cells must be relative to a
register, usually the Y register. '
. ®All subroutine linkages must be made using JSK and RSK. Variable parameter
- passing must be through the registers.
A11 of the above factors concerning the task must be considered in wiiting the
code. After writing the task, the programmer summarizes his decisions for
RTX4 by creating a Task Descriptor Block, described in the following subsection.?
*Subsection 3.3 ‘ @ |

2Subsection 3.4

e

--6@29‘5¢hmnpuuuﬁuhnnaﬁon®

3.3.3 Memory Requirement Guide

Typiecal memory sizes to accommodate component parts are listed below:

I0S 3K
SFM 3.2K
RTX 2.3K

3.4 TASK DESCRIPTOR BLOCK

A Task Descriptor Block (TDB) is used to describe the needs and attributes of
task to RTX4. If the Y-scratchpad and stack areas are to be allocated by
RTX4, they are identified in the TDB. Each Task Descriptor Block is generated
by the TDB:A macro.

3.4.1 TDB:A Macro

The TDB:A macro can occur anywhere in the task, but is usually placed at the
beginning. TDB:A has five required parameters: 1label of the TDR, starting
address of the task, address of stack space, and amount of stack space. The
macro also has two optional parameters: flags and concurrent usage. The
formats of the TDB:A macro are:

TDB: A label,start,yscratch,stackad,stackamt

TDB:A label,start,yscratch,stackad,stackamt, flags
TDB:A label,start,yscratch,stackad,stackamt, flags,usage
where: label Label to be assigned to start of TDB.
start Starting address of task.

yscratch Amount of Y-scratchpad to be used by the task.
If zero, the Y register of the calling task is
used. Must be zero (or omitted) for a serial task.

stackad Address of preallocated stack. If zero. stack
space is allocated by RTX4. Must be zern (or
omitted) for a reentrant task.

stackamt Amount of stack space used by the task.

flags None currently defined.

usage Maximum number of concurrent activities of this task.
DEFAULT = 1

To omit a parameter, enter two consecutive commas (,,).
In RTX4, each activity must have a stack for storing return addresses for a
JSK. The stack is also used by the system to save the context of an activity

that is making a system request or is interrupted. Also, some service routinec
use this area for storage of return ad.resses.

- 3-7 -

-:ig

-~(;_/N§ ComputerAutomation 2

The user must specify the amount of stack space required. He can allocate the
stack space himself in his program and he can supply the address in the TDB:A
stackad parameter. As an alternative, the user may allow RTX4 to allocate the
stack dynamically by specifying zero in the stackad parameter. In either

case, he must specify the amount of stack space required through the TDB:A
stackamt parameter. However the stack space is allocated, w~hen the activity
begins, the K register marks the top of the stack area currently being addressed
and the L register marks the lower 1imit of the stack.

The amount of stack space needed depends on the use of the stack by both the
user's program and the system. Space is calculated as follows:

7 words To save the context of an activity when an interrupt occurs.

8 words To save the context of an activity when a system service
request is made, and call the appropriate service routine.

n words The maximum used by any called system service routine (amount
given in the description of each service).

7 words To prevent a hardware stack exception trap after a PUSH or JSK.
n words For the user program (e.g., subroutine calls).

System service routines are executed as part of the activity requesting the
service, and they use the stack of the requesting activity. Therefore, if an
1nterrupt occurs during the execution of a service rout1ne, 15 words af context
are on the stack.

A stack exception trap occurs when, after a PUSH or JSK has been executed,
lass than seven words of stack space remain. This situation can occur when a
system serv1ce routine is interrupted, because both the current context and
the user's context at the time of the request would be on the activity stack.
" The stack except1on trap processing checks for this special case and resumes
processing if it is found. This extra processing can cause excess interrupt
latency. An additional seven words of stack space prevents this prcbiem.

3.4.2 Examples

The following TDB:A macro creates a Task Descriptor Block for a serial task:
TDB:A SBLOCK,START,,TSTACK,70

A 70-word stack, start1ng at location TSTACK, is allocated for the task.
Y-scratchpad space is determined by the calling task.

A reentrant example:
TDB:A RBLOCK,RBEG,100,,90,,3
This macro generates a TDB for a reentrant task which may have up to three

concurrent activities. Each is ailowed 100 words of Y-scratchpad space,
allocated by R™¥4. A 90-word stack is allocated for each activity.

_3-8m

c

--(g:;&%iCknnpmmemhuuunaﬁon@

SECTION 4
ACTIVITIES

4.1 INTRODUCTION

An activity is an execution instance of a task. Each time a task begins , a
new activity is created. When RTX4 is viewed as simulating multiple processors,
each activity is equivalent to a separate CPU. The activity is the unit to
which the real CPU's time is allocated. Only one activity can exist at a time
for a serial task, as illustrated in Figure 4-1.

OPERATOR
COMMUNICATIONS ACTIVITY —
TASK #1 o

e

Figure 4-1. Task with One Activity

A reentrant task can have several concurrent activities, as illustrated in
Figure 4-2.

B
ACTIVITY | TERMINAL #1 |
.
m /w)
EDITOR ACTIVITY |« »| TERMINAL #2

TASK #2

ACTIVITY

3 » TERMINAL #3

Figure 4-2. Task with Multiple Activities

. Al .

!

e

#
|
1
|

-—-(g:Z?QS400mnpunemhuunnaﬁon§

4.2 ACTIVITY OPERATION

RTX4 creates an Activity Control Block when an activity is begun. The infor-
mation derived from the Task Descriptor Block is placed in an available block
obtained from the System Freepool.!

An Activity Control Block is always in a list, except for very short times

while moving from one list to another. The nature of each list determines the
state of activities that are in it. An activity must be in the sysiem ready-to-run
list (R:RDY) before it can execute. When an activity is waiting for an event

to occur, it is usually in a semaphore wait list.2

The order in which activities are dispatched from the ready-to-run list |
{R:RDY) is determined by priority.

Priority is a means of assigning relative importance to activities. An activity
of higher priority is always granted a reqtested resource before a lower
priority activity. In RTX4 the priority of the first task is assigned by the
INIT:A macro.® For other tasks, priority is established when the activity is
begun. ' :

Among activities of different priorities, the highest priority activity is

always dispatched. If more than one activity is at the h1ghest priority in
the ready-to-run 1ist, the first one inserted in the list is a]wax‘ dispatched.
This dispatching algor1thm is called "pure pr1or1ty scheduling.” It has some
important ramifications in writing systems using RTX4.

It is possible to write systems in which some activities never receive CPU

time. A simple example of this is.a system consisting of two tasks: one task
is executed at high priority and consists of one instruction, a jump to itself.
The second task is executed at low priority and is intended to accomplish some
useful function. 1In RTX4, after the first task begins, the second ‘ask never
receives any CPU time. A second example is two activities that have the same
priority. The first one to enter the ready-to-run list always executas first,
and the second one only receives CPU time if the first makes a system call which
suspends its activity.

RTX4 provides means for changing the task priority during activity execution,*
so that other tasks may then supersede the first task in priority. It alsc
provides a means for round-robin scheduling.®

1Subsection 5.3

2Section 6 @
3Topic 5.2.1

4Topic 4.3.3

SSubsection 7.4

@;i' Activities may be rescheduled when the following system services are called:

R:BGIN Begin task (one extra block temporarily)
R: END End task

R: SPRI Set priority

R:SIG Signal semaphbre

R:WAIT Wait on semaphore

W LENn hond message

@ R:RECV

R:ITIC Signal semaphore at a given time interval (for duration
of time interval)

Receive message
’

R:MTIC Modify tick clock timer request

R:CTIC Cancel tick clock timer request

R: AWAL Signal semaphore at an absolute wall clock time

R: IWAL Signal semaphore after a given time interval has elapsed
R: CWAL Cancel wall clock timer request

R:ABUF Allocate buffer

R: RBUF Release buffer

R: CINT Return to calling activity when console interrupt is
pushed

R: PAUS Drop seniority of the first activity of a given priority

4.3 ACTIVITY CONTROL

The programmer uses the R:BGIN macro to start task processing (i.e., to create
an activity), the R:END macro to end a task, the R:GPRI and R:SPRI macrus to
get and set priorities during task processing. ‘

B
i
12
%
H
¥

-?-<g;27Qs100mnpuhu¢unonunku1®

4.3.1 R:BGIN Service

An activity is created by the system service R:BGIN. R:BGIN allocates stack

space as specified in the Task Descriptor Block and creates an Activity Control
Block for the activity which is then placed in the ready-tc-run list. The register
contents of the task that issues the request- are the initial register contents of
the activity created. This service requires 12 words of stack space. The format
of the R:BGIN macro is:

R:BGIN arg
where: arg M4D12 pointer to the argument list.
‘m)The argument list can be generated via the BGIN:A macro, which has the format:
BGIN: A arg, tdb,prdesc

where: ‘ arg Must match the R:BGIN argument.
tdb Label of the Task Descriptor Block as

specified in the TDB:A macro.
prdesc Priority descriptor defining the task's priority.

The priority descriptor is the effective address (not the contents of the effec-
tive address) of any valid M4D12 expression. The high-order bit of the priority B
descriptor determines whether the value is an absolute (bit 15=0) or a relative é
(bit 15=1) priority. If it is relative bit 14 determines whether tn increase ‘ ‘
(bit 14=0) or decrease (bit 14=1) using the remaining value.

Only positive pribrities are allowed in RTX4. A relative offset that results in

a negative priority causes undefined results. RTX4 allows user priorities from !
‘c@ to :3FFF Higher priorities are reserved for system use.

4.3.2 R:END Service

When an activity completes its processing, resources are returned to the system
by the R:END service routine. This routine terminates the activity by returning
the Activity Control Block space to the System Freepool and any RTX4 allocated
stack area to the Environment Memory Pool. This is the last request of any
activity. The R:END macro has no parameters. This service requires 9 words of
stack space.

R b .]

"'<§:%N§ ComputerAutomation =

4.3.3 R:GPRI and R:SPRI Services

The R:GPRI macro returns the activity's priority in the A Register. The macro
has no parameters. Three (3) words of stack space are required for this service.

The R:SPRI request allows an activity to alter its priority. The new priority
can be absolute or it can be set relative to the current priority. This
service requires 10 words of stack space. The request format is:

R: SPRI prdesc

where: prdesc Priority descriptor expression; an M4D12 expression
whose effective address is the priority descriptor.

The following is an example of using the priority service macros:

R:SPRI 100 Set priority to 100
R:SPRI 100 + :8000 Increase priority by 100
R:SPRT -100 Decrease priority by 100
(negat tve value . always relstive)
a4 R VHM wrvice

o A

The activity making the R:CINT request returns when the consglg interrupt is
pressed. If the console interrupt is never pressed, the activity never returns.
Only one activity at a time can invoke this service. If this service is not
requested, a console interrupt is ignored.

This service requires 5 words of stack space. The macro has no parameters.

Wy

--(g:Z?Q& ComputerAutomation

ik e Bl

TR

4.4 ACTIVITY CONTEXT %
A context is associated with each activity. The activity context is a set of

task resources that is saved each time the execution of the task (the activity)

must be suspended. The context is restored to the saved state when the task

is resumed. The context of an activity includes the following items:

e An Activity Control Block (ACB) that contains pointers to the rest of the
context. .

e A priority that determines how real CPU time is allocated to activities.

e The task of which the activity is an execution instance.

e The environment! from which the activity's non-CPU resources are to be
drawn.

e The stack allocated te the activity when the task was begun.
e The Y-scratchpad allocated to the activity when the task was begun.

e When the activity is executing, the contents of the registers are con-
sidered part of its context. When the activity is not executing, the
register contents reside on the activity's stack.

The context of an activity provides the information necessary to simulate a
dedicated CPU. Whenever an activity is dispatched (i.e., allowed to execute),
RTX4 must be sure that:the activity's environment is intact, then restore its
register contents, including the P register, so that execution can continuc.
Whenever an interrupt occurs, RTX4 must save the activity's register contents
on its stack so that they are not lost by further processing.

g

1Section 5

h“‘““éﬁAéélfP

--(g:ZFQS400nnpuumdunnmnaﬁone

SECTION 5
SYSTEM INITIALIZATION AND ENVIRONMENT DEFINITION

5.1 INTRODUCTION

RTX4 execution starts at location :80, from which RTX4 goes to its initializa-
tion routine. The initialization routine needs certain information which is
provided in the Initialization Block.

5.2 INITIALIZATION BLOCK

The Initialization Block is generated by the INIT:A macro. When system initia-
lization is complete, the user task specified in the call is started. Only wic
activity can be initiated by the INIT-A routine. R:INIT must be declarad as an
entry point (NAM) by the user's program.

5.2.1 INIT:A Macro

The format of the INIT:A macro is:

INIT:A | a,q,x,y,ecb,tdb,pri,amtfree,adrfree,topmem

where: a,q9,Xx,Y Initial values of the A, Q, X, and Y registers for

initial user's task

ech Label of the Environment Control Block

tdb Label of the Task Descriptor Block for initial
user's task '

pri Activity priority for initial user's task

amtfree Amount of System Freepool (words) (opticnal)

adrfree | Address of the freepool (optional)

topmem Upper limit of mehory ayailab]e to RTX4 (optionai)

Any addresses (adrfree, ecb, tdb, topmem) which are defined outside the moduie
containing the INIT:A must be declared external.

When an optional parameter is omitted, a comma must be inserted to hold the
position of later parameters.

If the upper limit of memory available (topmem parameter) is omitted, RTX4
searches for the enrd of memory and uses all that is available. This pavamet:-
is useful primarily for checkout; in *his case, its use is necessary to prevent

--<§:WQS(kunpuhuﬁuunnaﬁong

RTX4 from allocating space for the Environment Memory Pool from the entire
available memory. At checkout, other programs may be in upper memory. The
parameter may be used also to check out an application on a computer that has
more memory than the computer on which the program is to run for production.

| 5.2.2 Example

NAM R: INIT INITIALIZATION BLOCK NAME
EXTR ECBNAME ENVIRONMENT CONTROL BLOCK NAME
EXTR TDBNAME TASK CONTROL BLOCK NAME

INIT:A 0,0,0,0,ECBNAME, TDBNAME,700,100,0

o

END
In this example:

eThe A, Q, X, and Y registers are initially set to zero.

eThe ECB and TDB names are in another module and are declared external.
e The activity priority is 700.

® The Freepool of 100 words is to be allocated by RTX4.

o RTX can use all available memory.

5.3 SYSTEM FREEPOOL

The System Freepool is a user-specified area that provides small buffers for
RTX4 functions. The Freepool contains dynamically allocated areas such as
Activity Control Blocks as well as areas used as temporary storage cells. It
is organized as a linked list that can be dumped by DEBUG4! to provide a

w history of system execution.

1 The System Freepool consists of a region of memory provided to RTX4 at assem-
3 bly time. The user must specify the amount of Freepool space he is allocating
and may either allocate it himself or let the INIT:A macro allocate it.

During initialization, RTX4 breaks up the Freepool region into many fixed-
length Freepool blocks. These blocks are used by RTX4 services to contain
dynamically allocated blocks such as Activity Control and Clock Control blocks.
Blocks are also used for short periods of time to contain temporary cells and
for longer periods of time to contain information which controls a svstem
resource.

.
: <
! The System Freepool is organized as a linked list to speed system processing b
f and debugging. RTX4 keeps track of both the head and tail of the Tist. @

Blocks for RTX4 services are removed from the head of the 1ist and are returned ~

] to either the head or tail of the list. Short-lived temporary cell biocks are N

. returned to the head of the Tist to be recycled immediately. Blocks used for =

ﬁ control information, such as Activity Control Blocks, are returned to the tail

‘ to provide a history of system and application program activity to aid in £

debugging. Freepool organization is illustrated in Figure 5-1. Now

INAKED MINI 4 Debugging Moniter Reference Manual

1 --<§:;QS ComputerAutomation ~

Table 5-1. Freepool Blocks for RTX4 System Services C

Blocks Allocated (+)

Service ‘ or Deallocated (-)
R:BGIN Begin task (one extra block temporarily) +1(+2)
R:END End task -1
| R:GPRI Get priority _ 0
OR:SPRI Set priority | 0
| R:SIG Signal semaphore 0
R:WAIT Wait on semaphore 0
R:SEND Send message 0
R:RECV Receive message - 0
R:ITIC Signal semaphore at a given time interval +1]

(for duration of time interval)

R:MTIC Modify tick clock timer request 0
. -1 (success)
R:CTIC Cancel tick clock timer request 0 (fail)
R: AWAL Signal semaphore at an absolute wall clock time +1]
w R: IWAL Signal semaphore after a given time - +]
interval has elapsed
: -1 (success;)
- R: CWAL Cancel wall clock timer request 0 (fail)
R: ABUF Allocate buffer 0
R:RBUF Release buffer -0
R:CINT Return to calling activity when console -0
interrupt is pushed
R: PAUS Drop seniority of the first acitivity of 0
- a given priority
R: SATD Set ASCII time and date ‘ 0
R:GATD Read ASCII time and date 0
R:STOD Set time of day 0

R:GTOD Read time of day 0

—-(g:zas ComputerAutomation =

|
¥
B
§i
7
ﬁﬂ
g
»5 |
i

FREEPOOL REQUEST
LIST HEAD FOR BLOCK

9 ~ (RETURNED .| FREEPOOL
" | BLOCK T LISTTALL

‘m)

Figure 5-1. Functional Organization of System Freepool

5.3.1 Freepool Size

The Freepool is grouped into blocks of twelve words each. At least two of
these blocks must be reserved.

The space needed for the System Freepool must be determined by the user.
Freepool size is determined primarily by the amount required by each RTX4
system service request used in the application program. During debugging, a
larger area may be desirable for system history.

Table 5-1 lists the number of contiguous blocks required for each of the
system requests. This number provides a rough guide to selectirg an initial
4 Freepool size. Then, determine how much additional space is required for a
i complete history during debugging. RTX4 keeps track of the maximum number of ,
i blocks used during an execution in location FPMAX:. This number helps determine
jﬂgb final Freepool size. While asynchronous events and random chance may require
4 more Freepool blocks for any one execution, the programmer can get a good
; estimate from several runs and compensate for possible increases by providing
a somewhat Targer Freepool area.

- £a3 -

—_— ' ComputerAutomation =
@)\

5.3.2 The Freepool and Debugging

If the user provides a much larger Freepool during debugging than he expects
to use during production, a dump of the Freepool list can provide a significant
history of what has happened in the system. The last item in the list is the
most recently returned block, excluding those needed by the tick clock service.
Preceding blocks mark historical events until the first one or two blocks are
reached; at this point the history is lost. The head of the Freepool list is
at location R:FPH; location R:FPT points to the last block on the list.

Computer Automation recommends that the initial development of an RTX4 applica-
tion be performed on a computer system with more memory than the final program
is expected to use. This procedure allows the programmer to ignore memory
allocation problems such as Freepool while getting his application to work.
Further, the history provided by the Freepool list is longer and more helpful
for debugging.

Thus, the Freepool size may vary from debugging through running with test data
to production runs. The original estimate based on Table 5-1 can be doubled
for debugging to provide a complete history. Then, when the debugged program
is run with test data several times, actual Freepool usage can be determined
by examining location FPMAX:, keeping in mind that usage may vary from one run
to the next. For production runs, the actual usage should be augmented by
several words to provide a safety factor.
To summarize, the steps to determine Freepool size are:

1) Estimate size using Table 5-1.

2) Double or triple the estimate for debugging.

3) Exercise checked out program with test data.

4) Check actual Freepool usage by examining FPMAX: after running the
program.

5) Add a safety factor to actual usage for production usage.

- 5m5-

o

<§:ZRB Comnpuhuﬁuhunaﬁong

5.4 ENVIRONMENT CONTROL BLOCK

The Environment Control Block helps define user-occupied space to RTX4 and unit
assignment to I0S4. The Environment Control Block is generated by the ECB:A
macro. The only value that the user must provide is a pointer to the Unit
Assignment Table; RTX4 automatically supplies all other required values to the
ECB.

5.4.1 ECB:A Macro

The ECB:A macro call must be placed at the end of the last user module. The
format of the ECB:A macro is:

ECB: A label,uat

where: label Label to be assigned to start of ECB;
referenced in the intialization call to
RTX4 (INIT:A).

uat Address of the Unit Assignment Table.

The Unit Assignment Table (UAT) must be constructed by the user.! If the INIT:A
macro is not in the same module as the ECB:A macro, the user must declare "13abel"
an entry point (NAM). If the Unit Assignment Table is not in the same module as
the ECB:A macro, the user must declare "uat" to be external (EXTR). If the I/0
subsystem is not required, the UAT address is zero. ‘

5.4.2 Example

NAM ECB]
@ B UAT
ECB:A ECB1,UAT

END

This sequence generates an Environment Control Block starting at location ECBI.
This ECB contains a pointer to the Unit Assignment Table located at UAT.

5.4.3 EDXVT:A Macro

The EDXVT:A macro is used to specify user written exceptions processor. A user
may specify an exception processor for any exception needed for one ard al!
exceptions. The user must make a call to the EDXVT:A macro for each exception
to be processed. A1l calls to the EDXVT:A macro must follow the call to ECB A
macro.

Refer to Appendix C for a list of RTX4 Exceptions.

1Input/Output Subsystem (10S4) User's Manual

SEDEREN

ISV

--ngyks(kunpuunAuhunaﬁonQ

EDXVT: A label, vector, address
where: label Label to be assigned at start of ECB
vector Name of exception vector, (refer to Appendix C).

address The address of the user's exception processor.

When control is received at the user's exception processor, the RTX4 has already

executed a JSK and a PUSH giving the user registers and the return address, after
the instruction which caused the trap. The two exceptions to this rule are licted

below:

A. The first occurs if it was an unimplemented instruction trap, then
RTX4 will transfer control to the emulator, if the user has previously
linked the emulator with his application. .

B. If it was a stack exception, then the JSK and PUSH instructions are
not performed. Instead the user may specify a four word block where
the A, Q, X, and Y registers can be saved. The block may be specifind
by calling the EDXVT:A macro using the XV:STKSV vector.

5.5 ENVIRONMENT MEMORY POOL

The Environment Memory Pool is the space used for Y-scratchpads and stacks and
user-requested buffers. This space is whatever remains between the end of the
user's program and the end of memory. The user is responsible for ensuring
that the Environment Memory Pool is large enough provide for all allocations
required of it. Aillocation is performed by a standard first-fit algorithm, so
some fragmentation may result, increasing the size requirement.

RTX4 does not use any space in the Environment Memory Pool for its own tables
or control blocks. Space for these items is obtained from the System Freepool.

5.6 BUFFER ALLOCATION

RTX4 provides the R:ABUF and R:RBUF services for allocating and then reieasing
buffer space.

- £E.7 -

--(g:zat ComputerAutomation =

5.6.1 R:ABUF Service

The R:ABUF macro allocates a buffer for use by the program. The argument to
this macro specifies the number of words to be allocated. This service requires
10 words of stack space. The format is:

R: ABUF amount
where: amount Number of words to be allocated.
The number of words which can be allocated via R:ABUF is limited only by the

amount of contiguous space available in the Environment Memory Pool at the
time the request is made.

" The system returns the address of the allocated buffer in the X register.

For example:
R: ABUF 256

This request allocates a 256-word buffer. The buffer address is returned in
register X.

5.6.2 R:RBUF Service

When the program has completed its work with a buffer allocated via a previous
R: ABUF request, it can return that space to the system by executing an R:RBUF
macro. This service requires 10 words of stack space. The format is:

R: RBUF address

} {n@ where: address Address of the buffer to be returned.

The argument to this macro is the address of the buffer. Since this address
is not known until execution, the argument typically specifies register-
relative addressing mode.
For example:

R: RBUF 0(X)

This request releases previously-allocated buffer space. It assumes that the
buffer address is still in register X.

-

SECTION 6

SEMAPHORES

6.1 INTRODUCTION

RTX4 provides system services that allow the efficient programming of inter-
task cooperation to synchronize the execution of tasks so that they occur in a
specific time relationship to one another. The facilities that are provided

are based on a concept called the "semaphore." Sempahores were first formalized
in 1965 by E. W. Dijkstra.l

This section introduces semaphores by first discussing some alternative methods
of intertask cooperation. For further information on the subject of semaphores,
a book by Brinch-Hansen is recommended. 2

6.2 ALTERNATIVE APPROACHES TO INTERTASK COOPERATION

Intertask cooperation may be used for passing data (intertask communication)
or may be used simply because one task must be accomplished befors another
(intertask coordination). Intertask coordination includes "producer-consumer"
problems and "resource sharing" problems.

6.2.1 Producer-Consumer Cooperation

Figure 6-1 illustrates an example of a producer-consumer problem: task A
fills a buffer and task B wants to know when it is full. One soiution is to
designate a location (call it CELL) as a flag. Task A sets the flag to a one
when the buffer is full. Task B tests the flag and knows that the buffer is
full when the value of the flag becomes a one. The operation for task A is
straightforward: fill the buffer, then set CELL to a one. Task E can process
the buffer when CELL is found to be a one, but has no function wiile CELL is

.zero. One choice would be to test the CELL again immediately. This approach
" results in a very tight loop which has several bad side effects. [f the task

dispatching scheme is pure priority, task B uses all available CPU time so

that task A never is able to change the value of CELL. In a time-slicing

system, task B uses unnecessary amounts of time, perhaps keeping task A from
filling the buffer as fast as it might. In terms of reasonable system throughput,
the solution is unacceptable in either case.

1E. W. Dijkstra, "Cooperating Sequential Processes" (1965)
2Per Brinch-Hansen, Operating System Principles (Prentice-Hall 1973)

bl

TASK A TASKB

1

INTO =
BUFFER = %NE n TIME
YES OR
Y
SET “CELL” EXECUTE EXECUTE
TO ONE TASK - TASK

L

Figure 6-1. Producer-Consumer Problem Non-Semaphore Solution

An improvement would be’ for task B to suspend itself for a while, using the
system clock, between each time it tests CELL. This solution reduces the load
on the system and allows task A to complete filling the buffer in a finite
time. Its main disadvantage is that task B may not find out that the buffer
1s full as soon as it should. There is a definite tradeoff: the less load
task B places on the CPU (the longer the wait) the longer task B may be unin-
formed that the buffer is full.

This problem may be reduced if task A can cancel task B's wait on the clock,
but there are several timing bugs associated with this operation. Suppose
task A cancels the wait while task B is not waiting, for instance. Also, the
system overhead and complexity is high (several waits on the clock and one
cancel request). In some systems, task A sends a message to task B through a
system message facility. Other systems require task A to "create" task B each
time the buffer becomes full. Both solutions require more overhead than is
needed to solve this problem.

The semaphore provides a simple solution to the producer-consumer prohlem.?!

Topic 6.3.1

‘EE

--<§:Z?Qs1Conuunmmhuhunmﬁon®

6.2.2 Resource Sharing

The other general problem of concurrent task execution is resource sharing.
Suppose several tasks wish to use a single resource, such as a disk. A]thouqh
RTX4 can make it appear that several tasks are execut1ng asynchronously in the
computer, the disk must be used entirely sequentially, so a method must be
devised to share the disk.

A location such as CELL may be used as in the previous example, but the same

.problems arise. The value of CELL may initially be one, meaning the resource

is available. The first task that arrives examines the value of CELL. Since
it is one, the task stores a zero in CELL and proceeds to use the resource.
Since a zero value in CELL means that the resource is not available, tasks
that come later can tell whether they may use it. Ignore for the moment their
problems with doing anything reasonable when they find the resource unavailable.
When the first task finishes using the disk, it must store a one in CELL,
indicating the resource is now available. If only one task is waiting to use
the resource, it may proceed. If more than one task is waiting, a new problem
arises: which gets the resource next? If the waiting tasks are suspending
themselves on the system clock, the choice of next task is made randomly: the
task that completes a wait next (or a new task which arrives after all the
rest) will get the resource. This is not fair. More fair would be first in,
first out order. More preferable might be priority order.

Again, this problem is solved simply and with low system overhead using
semaphores.?!

6.3 SEMAPHORE‘SOLUfIONS TO INTERTASK COOPERATION PROBLEMS

Semaphore operation is described in a later subsection.? Briefly, a semaphore

has two operations, signal and wait. The effect of the two operations depends
on the current state of the semaphore, which is determined by its initial

~condition and previously performed operations.

The wait operation of a semaphore consists of determining whether the sema-
phore has been signalled. If it has been, the waiting activity proceeds
without delay and the signal is cancelled. If the semaphore has not been
signalled, the waiting activity is removed from the ready-to-run list and
entered into a wait list associated with the semaphore. The signal operation
first determines whether any activities are in the wait list associated with
the semaphore. If so, one activity is removed from the 1ist and placed in the
ready-to-run list. If not, the state of the semaphore changes to indicate
that the semaphore has been 519na]]ed ‘

Semaphores provide efficient solutions to the "producer-consumer" and "resource
sharing" problems described previously.? :

1Topic 6.3.2
2Subsection 6.5)
3Subsection 6.2

.

: --<§:Z?Q&<00mnpuuu¢uNnnnaﬁon°

o s

6.3.1 Producer-Consumer Problems

In the producer-consumer problem, the initial value of the semaphore is zero,
which indicates that it has not been signalled and that no activity is waiting
on it. The solution is simple: the consumer "waits" on the semaphore when he
wishes to know when the buffer is full; the producer "signals" the semaphore
when the buffer is full. The coding is simple: each task requests a single
system service, then continues processing. It does not matter which activity
makes its system request first; synchronization occurs in any case.

The objections to the previous solutions do not apply to the semaphore solution.

‘ Each activity executes asynchronously. If the consumer waits for the buffer

| before it is available, it does not waste CPU time; it is simply removed from

} the ready-to-run list. Yet once the buffer is full and the producer signals
the semaphore, the consumer becomes ready to run immediately. There is no -
delay, and the system overhead of using a semaphore is minimal.

6.3.2 Resource Sharing Problems

The resource sharing problem is solved similarly. The initial value of the

semaphore is one, indicating that the resource is initially available. Each

activity must wait on the semaphore before using the resource and signal the

semaphore after using it. The first activity to wait on the semaphore proceeds

to execute immediately because the resource is available. Any activities that

request the resource later find the semaphore "unsignalled" and are removed .
from the ready-to-run 1ist. When the first activity finishes using the resource, ‘ﬁé
it signals the semaphore, allowing one and only one activity to use fthe resource

next. :

Again, using the semaphore has overcome the objections to the previously
described solution. It has the same advantages as in the producer-consumer
i o;)roblem, plus an additional benefit: all of the waiting activities are in a
i single 1list, allowing great flexibility in choosing which one executes next.
| In most cases priority determines which waiting activity executes next. In
some cases other criteria may be used. For instance, shortest seek time might
be used if the semaphore is controlling a disk.

A further advantage of the semaphore is that if more than one of a particular
type of resource is available (such as a limited set of buffers), the initial
value of the semaphore can be changed to handle more than one. For instance,
if two buffers are available, the initial value of the semaphore is two. The
first two activities which request a buffer get them; all later requesting
activities are suspended until one of the first two activities signals the
semaphore.

]

--<§:27QS ComputerAutomation =

6.4 SEMAPHORE DEFINITION BLOCK

A Semaphore Definition Block can be provided by the user to control the synchro-
nization of tasks. This block is generated using the SDB:A macro.

6.4.1 SDB:A Macro

The SDB:A macro establishes the location and initial value of a semaphore in a
user's program. The macro's format is:

SDB:A label,value
where: label Address label of the semaphore.

value Initial value of the semaphore.

6.4.2 Examg]e‘

The following macro call generates a Semaphore Definition Block:
SDB: A SEMA1,0

The address label of the semaphore is defined as SEMA1 and the initial ‘alue
of the semaphore is defined as 0.

6.5 SEMAPHORE OPERATION

In RTX4 a semaphore consists of only one word. That word is used for a counter
and a wait list head. The state of the semaphore is determined entire!y by
the value of this word.

In its initial condition, the wait list is always empty, and the counter may
be either zero or positive, depending on the use of the semaphore (zero for
producer-consumer problems, positive for resource sharing problems). The
effects of the two operations on a semaphore are:

WAIT: If the counter is greater than zero, the counter is decremented

and the waiting activity is re-scheduled according to priority. 1f the
counter is zero, the waiting activity is removed from the ready-to-run

list and placed in the semaphore wait list.

SIGNAL: If any activities are in the semaphore wait list, one of them is
removed and placed in the ready-to-run list. If no activitres are waiting,
the counter is incremented. '

Figure 6-2 illustrates the flow of these operations.

SIGNAL

Task

AS; No Increment l
Waiting - ‘
?

Semaphore
Counter

Semaphore \\,Non-Zero

Value
?

C

! v | Yes
Insert current Remove task at
activity in g:lﬁ;e':g?; top of semaphore
semaphore lp wait list and insert
wait list value in ready list

Continue Dispatch highest\ _
Processing priority task j hl

Figure 6-2. Flow of Semaphore Operations

» e length of the wait list is the number of unsignalled wait requests, and
the counter indicates the number of unwaited signal requests. Thus, the
counter is never negative.

RTX4 contains a special form of semaphore. The main feature of an RTX4 sema-

phore is that an exception occurs if the counter reaches 127. An RTX4 semaphore
- consists of one word only that is used for both the counter and wait list

head. If the value of the word lies in the range 0 through 255, then it is

the semaphore counter value. If the value is larger than 255, it is the head

of the list of Activity Control Blocks that are waiting on the semaphore.

Thus, the state of an RTX4 semaphore is determined entirely by the value of

its one word. The format of the semaphore word is shown in Figure o-3.

--(g:ﬁwsthnnpuunnuuunaﬁonQ

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

COUNTER |0 0 0 0 0 O 0 O O O
L1] 11

| [l 1 1 |
e ! .

(.

Counter (range 0-255)
All zeroes
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WAIT :

LIST RS TS TN YR (N RS NN VAN NANNS S SN SN NN

HEAD N ! ; '

I Non-zero, therefore

whole word is Wait

List Head

Figure 6-3. Formats of Semaphore Word

L P

6.5.1 R:SIG Service

A sempahore is signalled by the R:SIG system request. This service causes the
waiting activity that has the highest priority to be placed on the ready list.
If no activity is waiting, the semaphore value is incremented. A semaphore
can be signalled only 127 times without a wait. The amcunt of stack space
required for this service is nine words. The format is:

R:SIG semad

l where: semad Label of the Semaphore Descriptor Block to be

signalled.

6.5.2 R:WAIT Service

An activity waits for a semaphore by using an R:WAIT system request. If the
value of the semaphore is between 1 and 127, R:WAIT places the requesting
activity on the ready list and decrements the semaphore. If ths value is zero
or greater than 127, the activity is inserted according to priority into the
semaphore wait 1ist. The amount of stack space required for this service is

9 words. The format is:

R:WAIT sema4d

l where: sema4 Label of the Semaphore Descriptor Block to wait on.

| “:;
i
]

/

: 6.5.3 Example
R: SIG X1
RAWAIT X2
SDB: A X1,0
SDB: A X2.0

|

— @ ComputerAutomation >

FILL BUFFER

SIGNAL BUFFER FULL
WAIT FOR BUFFER EMPTY

BUFFER FULL SEMA4
BUFFER EMPTY SEMA4

e

Py

£

e MR L b e e

SECTION 7

SYSTEM CLOCKS

7.1 INTRODUCTION

RTX4 supports a high-resolution tick clock and a medium-resolution wall clock
to simplify timekeeping functions for user applications. The time base for
the two clocks is provided by the processor's Real-Time Clock (RTC).

The tick clock provides a high-resolution clock for measuring or determining
relatively short time intervals. It simulates the existence of multiple
hardware RTCs. The wall clock provides a medium-resolution clock that can
cover all but the shortest time intervals. It provides a time-of-day and date
facility. Figure 7-1 illustrates the interrelationships of the clocks.

USER
TASK
N WALL CLOCK
USER
TASK
,’/ (Qﬂ
™~
USER TICK CLOCK HARDWARE
TASK REAL-TIME
CLOCK

Figure 7-1. RTX4 Clocks

d

é —m ComputerAutomation -

7.2 TICK CLOCK OPERATION .

RTX4 supports a tick clock to provide measurement of very short time intervals.
The rate of the tick clock is based on the rate of the processor's Real-Time
Clock.

The resolution of the tick clock is dependent on the interval of the Real-Time
Clock. The Real-Time Clock can be internally based on the AC line frequency
of the computer. This frequency is almost exact and has excellent accuracy
over longer time intervals. It is sufficient for most applications. When a
shorter interval or greater precision is required, the clock can operate from
an external source provided by the user. An external clock rate alsc allows
clocks to be synchronized with other equipment. The user of the tick clock
must be aware of its rate since programs may operate differently when the
clock rate changes.

If the required time interval is large enough and the required accuracy is
small enough, the wall clock should be used rather than the tick clock because
the wall clock places a significantly smaller burden on CPU resources. If the
application requires the tick clock, however, the additional overhead is well
worth it.

The precision and maximum interval of the tick clock service are presented in
Table 7-1.

Table 7'13 Real-Time Clock and Tick Clock Parameters @

_Frequency Source

Internal External

Line Frequency 60 Hz 50 Hz
Clock Frequency 120 Hz 100 Hz f
Interrupt Period 8.333 ms 10.000 ms t = %

("Tick") '
Tick Clock Service

Precision +8.333 ms +10 ms +t
Maximum Interval 273 seconds 327 seconds t X 213

--(g:;&& ComputerAutomation =

7.3 TICK CLOCK TIMERS

RTX4 provides clock services (R:ITIC, R:MTIC, and R:CTIC) which enable
the user to utilize the tick clock as if it_were an alarm clock.

7.3.1 R:ITIC Service

The R:ITIC macro initiates a timer to cause a semaphore to be signalled after
a specified number of ticks of the Real-Time Clock. This service requires 11
words of stack space.
The macro format is:

R:ITIC arg
where: arg M4D12 pointer to the argument 1ist.

The argument list can be generated via the TICK:A macro, which has the format:

TICK:A gﬁg,ig,sema4;count

where: arg Must match the R:ITIC argument.
id 16-bit integer used to identify this timer.
semad Address of the sempahore to be signalled.
. ggggﬁ Number of ticks that must elapse before the

sempahore is signalled.

The timer identifier is a 16-hit integer. To allow for possible modification

or cancellation of tick clock timer requests, all identifiers in concurrent
requests within a common environment must be unique, with one exception. The
programmer can specify any number of requests having identifiers with the

value 0. This exception eliminates the need to create unique identifiers.
However, a tick clock request with a 0 identifier cannot be modified or cancelled.

In using the R:ITIC macro, the programmer must recognize the possibility that
the first tick may occur immediately after the request is made. A one-tick
request may, therefore, result in the semaphore being signalled in much less
time than a one-tick interval. For this reason, requests that demark a small
time interval should be made for one more tick than the calculated number.

7.3.2 R:MTIC Service

If the programmer wishes to modify a previously-initiated tick clock timer
request, he can use the R:MTIC request. However, the timer to be modified
must have a unique (i.e., non-zero) identifier; R:MTIC cannot operate on a
request having a 0 identifier. This service requires 15 words of stack space.

&
3
¥
&

e

— ComputerAutomation =

The format of the request macro is:

R:MTIC arg
where: arg M4D12 pointer to the argument list.

The argument 1ist can be generated via the TICK:A macro, which has the
format: ‘

TICK:A arg,id,sema4,count

where: arg Must match the R:MTIC argument.
(¢] id Identifier of the timer to be modified;
must be non-zetP.
semad Address of the semaphore to be signalled.
count Number of ticks that must elapse before the

semaphore is signalled.

Register A receives the return status of the R:MTIC requests. A -1 in register
A indicates either that the specified timer identifier does not exist or that
the timer has expired, i.e., the semaphore has been signalled. A 0O in register
A indicates that the timer request has been successfully modified.

.
o

7.3.3 R:CTIC Service

The R:CTIC macro allows the programmer to cancel a tick clock timer request.
This service requires 15 words of stack space.

0 The macro format is:
R:CTIC arg
- »whefe: arg M4D12 pointer to the argument list.
The argument list can be generated via the TICK:A macro, which has the format:

TICK:A arg,id,dmy,dmy

where: arg Must match the R:CTIC argument.
id Identifier of the timer to be cancelled: must be
non-zero.

dmy,dmy Dummy arguments; may have any defined value.

The success/fail status of an R:CTIC macrc is returned in register A. A -1 in
register A indicates either that the specified timer identifier does not exist
or that the timer has expired, i.e., the semaphore has been signalled. A C in
register A indicates that the reauest has been successfullv cancelled.

3

‘3;

C

-—-(g:zaxbCknnpuuﬂﬁuuunaﬁonQ

7.4 ROUND ROBIN SCHEDULING

If several activities at a given priority level are sharing all available
processor time, no activity at a lower priority is able to execute. However,
any time that all activities at the higher level are inactive, round robining
at a lower priority level may take place.

To support round robin scheduling, the user writes a task which alternately
waits on the clock and invokes the R:PAUS service. One activity of this task
must be started for each level of round robining. The activity for each level
of the round robining must be of a higher priority than the round robin it is
controlling. '

7.4.1 R:PAUS Service

A call to the R:PAUS macro causes the removal of the first activity of a gives
priority from the ready list and the reentry of that activity into the ready
list. This has the effect of dropping the seniority of the activity so that
another activity at the same priority is allowed to execute. The service does
'not change the priority scheduling rules of RTX4; it only changes the senioritv
rules.

. This service requires one word of stack space. The format of the macro is:

R: PAUS prdesc

where: prdesc Priority descriptor.

e

-“(SgaNb ComputerAutomation =

7.4.2 R:PAUS Example

In this example R:PAUS is used to cause two activities of the same task and
priority to share processing time. Each activity gives up control every 12

ticks.
STACKS - EQU 74847411 STACK SPACE FOR ROBIN
PRIORITY EQU £300 PRIORITY OF ROUND ROBIN LEVEL
INTERVAL EQU 12 ROUND ROBIN INTERVAL IN TICKS
X
XINITIALIZATION
x
R:BGIN ABC FIRST LEVEL
C R:BGIN ABC SECOND LEVEL
BGIN:A ABC,ROBIN,PRIORITY
R: END
X

*TASK ROBIN
*

TDB:A ROBIN,START,0,0,STACKS
START R:ITIC TIMER

R:WAIT SEMA4

R: PAUS PRIORITY

JMP START

TICK:A TIMER,O0,SEMA4,INTERVAL

SDB: A SEMA4,0

Refer to Section 3.4.1.

7.5 WALL CLOCK OPERATION

RTX4 supports a wall clock to provide time-of-day and date for user programs.
The wall clock uses the tick clock to keep its time. It handles both relative
and absolute time intervals.

The wall clock provides the following characteristics:

" ® The interval of the wall clock is an absolute interval (.25 seconds)
rather than a function of the Real-Time Clock.

® The interval of the wall clock is sufficiently small for many numan
‘oriented operations. ‘

® The wall clock provides unique times and dates for a period of over 17
years.

® The processing overhead of wall clock services is much less than that of
tick clock requests.

- 7_6 e

;% "'<§ZZR§ Ckwnpuhn%hﬂnnuﬂknrQ

o The wall clock keeps the time and date as a double-precision integer which
3 counts the number of quarter seconds which have elapsed since 1 March 1976.
The double-precision integer format allows the time and date to be kept until
1 March 1993, which should be sufficient for most applications.

The wall clock uses the tick clock to keep its time, so it is as accurate as

the hardware Real-Time Clock frequency source allows it to be. RTX4 is delivered
with a parameter which relates the wall clock period (.25 seconds) to the

60 Hz TTLF (Twice The Line Frequency) source. This parameter must be modified

if some other frequency source is used.!

The wall clock can be used to handle relative time intervals as well as absolute
times. For instance, it may be useful to perform some functions on a daily
‘35 basis. The programmer may add the correct number to the current wall clock
‘ value and request that RTX4 notify him when that absolute time is reached; or
he may request that RTX4 notify him when a certain interval has elapsed.
Double-precision integer values for common time intervals are:

Interval Decimal Hexadecimal
Quarter Second 1 1
Second 4 14
Minute ‘ 240 :FO
Hour 14400 :384C
Day 345600 : 54600
28 Day Month 9676800 : 93A800
@ 29 Day Month 10022400 : 98EEQO
30 Day Month - 10368000 :9E3400
31 Day Month : 10713600 :A37A00
Year 126144000 : 784CEQD
Leap Year 126489600 : 78A1400
'ﬂﬁ If the user has no need for the wall clock, he can omit it from his configura-

tion to reduce memory space and CPU usage.

7.6 WALL CLOCK VALUE DEFINITION/ACCESS

-When an RTX4 application program begins -- i.e., when it is AutolLoaded -~ the
wall clock has an initial value of 0. That is, the wall clock starts at time
00:00:00 of March 1, 1976.

The program R:STOD and R:GTOD services allow the program to modify the wall
clock value and to access that value, respectively. If the programmer prefers
to deal with the wall clock value in ASCII, he can use the R:SATD and R:GATD
services. ’

‘Appendix D

.
E
i

o

--(g:zas ComputerAutomation =

~7.6.1 R:STOD and R:GTOD Services

The R:STOD macro sets the time of day to the value specified in the AQ register
pair. (The Q register contains the least significant bits.) The value repre-
sents the number of quarter seconds that have elapsed since March 1, 1976.

The macro takes no parameters. This service requires one word of stack space.

The R:GTOD macro allows the program to obtain the time of day at a particular
moment during execution. The time of day (i.e., the number of quarter seconds
that have elapsed since March 1, 1976) is returned in the AQ register pair
with the Q register containing the least significant bits. The macro takes no
parameters. This service requires one word of stack space.

C

7.6.2 R:SATD and R:GATD Services

The R:SATD (set time and date in ASCII) and the R:GATD (get time and date in
ASCII) macros enable the time and date to be passed in ASCII either way between
a task and RTX4. These services each require one word of stack space.’

The R:SATD request format is:
R:SATD arg
where: arg M4D12 pointer to the argument list.

The argument 1ist is a seven-word block containing the date and time value: to {
be set in the order: year, month, day, hour, minute, second, and hundredths
of a second. (The time resolution is to a quarter second.) Any illagal
values entered are converted to zeros. The base date is March 1, 1976; any
earlier date is invalid.

'E@{f R:GATD is called before the time and date are set, the values received are

meaningless. The request format is:

R:GATD arg

where: arg M4D12 pointer to a seven-word block to receive the
date and time values.

7.7 WALL CLOCK TIMERS

RTX4 prov%des three services (R:AWAL, R:IWAL, and R:CWAL) which enabie the
programmer to use the wall clock in activity control functions.

--(g:;&k ComputerAutomation =

7.7.1 R:AWAL Service

The R:AWAL macro initiates a timer to cause a semaphore to be signalled at an
absolute wall clock time. Normally, the programmer specifies a time in the
future; a time in the past causes the semaphore to be signalled immediately.
This service requires 11 words of stack space.
The format is:

R: AWAL arg
where: arg M4D12 pointer to the argument list.

The argument list can be generated via the WALL:A macro, which has the farmat:

WALL:A arg,id,sema4,upper, lower

where: arg Must match the R:AWAL argument.
id 16-bit integer used to identify this timer.
semad Address of the semaphore to be signalled.
upper Upper word (most significant bits) of the 32-bit

integer specifying the absolute wall clock time,
represented as the number of 1/4 seconds that nave
elapsed since March 1, 1976, at which the semaphore
is to be signalled.

* Tower Lower Word (least significant bits) of the 32-bit
/ integer specifying the absolute wall clock time at
which the semaphore is to be signalled.

The time is specified as a 32-bit integer representing the number of quarter
seconds that have elapsed since March 1, 1976. The identifier is a 16-bit
integer. To allow for possible subsequent cancellation of wall clock timer
requests, all identifiers in concurrent requests within a common environment
must be unique, with one exception. The programmer can specify any number of
requests having identifiers with the value 0. This exception eliminatas the
need to create unique identifiers. However, a wall clock request with a 0
identifier cannot be cancelled as can a request with a unique identifier.

7.7.2 R:IWAL Service

The R:IWAL macro initiates a timer to cause a semaphore to be signalled after
a specified time interval has elapsed. This service requires 11 words of
stack space. ‘

e o

it et

--(g:zyws'Comnpuhmdunnnnaﬁon®

O

The format is:
R: IWAL arg
where: arg M4D12 pointer to the argument list.
The argument 1list can be generated via the WALL:A macro, which has the format:

WALL:A arg,id,sema4,upper, lower

where: arg Must match the R:IWAL argument.
id 16-bit integer used to identify this timer.
sema4 Address of the semaphore to be signalled.
upper Upper word (most significant bits) of the 32-bit

integer specifying the number of wall clock intervals
(1/4 second) that must elapse before the semaphore is
signalled.

lower Lower word (least significant bits) of the 32-bit
integer specifying the number of wall clock intervals
- that must elapse before the semaphore is signalled.

~7.7.3 R:CWAL Service

C

The R:CWAL macro allows the programmer to cancel a wall clock timer request.
R:CWAL cannot cancel a timer having a 0 identifier. This service reqguires 15
words of stack space. The format is:

R:CWAL arg
where: arg MAD12 pointer to the argument list.

The argument 1ist can be generated via the WALL:A macro, which has the format:

WALL: A arg,id,dmy, dmy, dmy

where: arg Must match the R:CTIC argument.
id Identifier of the timer to be cancelled; must be
non-zero.

dmy , dmy , dmy
Dummy arguments; may have any defined values.

The success/fail status of a R:CWAL request is returned in register A. A -1
in register A indicates either that the specified identifier does not exist or
that the timer has already expired, i.e., the semaphore has already been

signalled. A 0 in register A indicates that the request has been successfully
cancelled.

- 7-10

=
4
P
T
(o

3

il
ki
4

3

SECTION 8

MAILBOX

8.1 INTRODUCTION

The mailbox is a facility for communicating between activities in RTX4. It
enables 32-bit messages to be passed from one activity to another. A program
can have any number of mailboxes. :

A mailbox is created with the MDB:A macro. RTX4 provides two mailbox services
(R:SEND and R:RECV) for communicating 32-bit messages from cne task to another
through the Q and A registers.

Figure 8-1 shows the general flow of processing messages. Only one message
can be held in a mailbox at a time, but messages cannot be lost. The first
activity to send a message deposits its message immediately and continues
execution. A subsequent sender is suspended until the first message is
received. The second sender then resumes execution, deposits its message, and
continues processing.

Each message can be.received only once. If all previous messages have been
received and an activity tries to receive a message, the activity is suspended
until the next message is sent. Thus, no messages are received twice.

Messages are sent and received in priority order. If several activities are
waiting to receive a message, the highest priority activity receives the next
message. Alternatively, if no activities are waiting, or if all activities
are of the same priority, messages are processed on a first-come, first-served
basis.

The mailbox transmits an unformatted 32-bit message consisting of two computer
words of the programmer's choice. Typically, the mailbox contains a 16-bit
address and a 16-bit word describing what the address contains.

- Mailboxes and semaphores have some similarities. Semaphores should be used
where only synchronization is necessary. Mailboxes can be used where data
must be transferred between the synchronizing tasks. In such usage, a mailbox
may replace the use of two or more semaphores and aid in simplifying the
problem. However, a mailbox takes more space and consumes more CPU time.

RECEIVE

PREV MSG YES YES
| ACKNOWLEDGED | e
| ?
WAIT UNTIL WAIT UNTIL
MSG IS PREV. MSG.IS
RECEIVED ACKNOWLEDGED
V‘ <
v
TASK
WAITING YES P
FOR MSG PICK UP L
? MSG -
NO
i Y
| : ' y
C GIVE MSG TO
WAITING TASK
ACKNOWLEDGE
MSG
v
DEPOSIT MSG
IN MAILBOX [

‘ DONE)
. ,Q; ‘

‘ DONE >

‘| Figure 8-1. Processing Messages in»the Mailbox

” ey

TR o

Ll

--<§:29§S ComputerAutomation

8.2 MAILBOX DEFINITION

To define a mailbox facility, the programmer calls the MDB:A macro. In addition,
he provides two words of storage for the mailbox. The user can define any
number of mailboxes in his program.

8.2.1 MDB:A Macro

The MDB:A macro defines a mailbox facility. A Mailbox Definition Block is

provided by the user program via an MDB:A macro call. The format of the macro
is:

MDB: A mail

where: mail Two character identifier to be assigned to
the mailbox.

8.3 MAILBOX OPERATION

RTX4 provides the R:SEND and R:RECV services for communicating messages from
one task to another via a maiibox.

8.3.1 R:SEND Service

This request causes a message to be sent from one task %o another. The message
is contained in the Q and A registers. This service requires 15 words of
stack space.
The format of the R:SEND macro is:
R: SEND arg
where: arg ~ M4D12 pointer to the argument list.

The argument 1list can be generated via the MAIL:A macro, which has the format:

MAIL:A arg,mail

. where: arg Must match the R:SEND argument.
mail Two character identifier of the appropriate mailbox

as defined in the MDB:A macro.

e §.'.|r }‘ -

f ———

C

<§:27Qs1:anuunemAuuunaﬁon®

8.3.2 R:RECV Servjce

The R:RECV system request is used by one task to receive a message sent by
another. The message is received into the Q and A registers. This service
requires 15 words of stack space.
The format is:

R:RECV arg
where: arg M4D12 pointer to the argument list.
The argument list can be generated via the MAIL:A macro as in the R:SEND
service above.

8.4 SAMPLE SEQUENCE

In the following sequence, the user defines a mailbox named 'B1' and sends a
message to that mailbox.

MDB: A 'B1!

MAIL:A LABEL1, 'B1'

R:SEND LAREL |

APPENDIX A

GLOSSARY

activity An execution instance of a task. Every time i task 1s
begun, a new activity is created.

activity context The activity resources that are maintained throughout the
life of the activity. Context includes the L and K
registers, priority, task identification, and environment

environment The set of all the physical resources required by the
activity, except CPU time. This includes memory, 1/0
devices, and hardware exception traps.

environment

memory pool The area between the end of the user's program and the end
of memory that is used by RTX4 to ailocate Y-scratchpads
and stacks for tasks as they are begun.

interrupt latency The time that passes from when the highest priority
interrupt is asserted by the hardware to the time it is
acknowledged by the CPU. It is usually caused by in-
terrupt lockouts within RTX4 which are necessary for the

w internal operation of RTX4.
list An ordered or unordered collection of blocks.

mailbox A facility for communicating 32-bit messages from cne
: task to another.

priority

descriptor A word whose high-order bit indicates whether the priority
is absolute (bit 15=0) or relative (bit 15=1) to the
calling task. If the word is an M4D12 expression, the
effective address is the priority.

reentrant Used to describe a task that can have two or more activi-

ties executing concurrently.

¥ register context The contents of registers of an activity. While the

! ‘ activity is executing, the register context is defined by
:| the hardware register contents. While an activity is

R inactive, the register context is stored on the stack in
the order P Y X Q A'S L, and the pointer to the register
context is stored in the Activity Control Block.

L} .

i
§
1
o
j&‘
f“

"'<§:27QS ComputerAutomation =

round robin

semaphore

serial

C

system
freepool

task

tick

Insuring that two or more activities share CPU time
rather than using it on a pure priority or seniority

basis. The user of RTX4 can implement round robin schedul-.

ing at a single priority level using the R:PAUS and clock
services.

A common data mechanism for transmitting timing signals
between concurrently executing tasks. A semaphore has two
operations: signal and wait. In RTX4, semaphores provide
the primary mechanism for resource control and timing
conflict resolution.

Used to describe a task in which the execution of one
activity must be completed before another activity in that
task can start.

A user-specified area that provides small buffers for RTX4
functions such as Activity Control Blocks and Clock
Control Blocks.

An ordered collection of machine instructions that perform
a particular function within the real-time application.

The real-time clock increment, typically 8.33 ms for 60 Hz

line frequency.

2

K

C

--6@27%5(kunpuuuﬁuunnaﬁong

APPENDIX B
RTX4 TABLES

B.1 INTRODUCTION

This appendix describes the following tables and the macros which generate
them:

e Task Descriptor Block (TDB:A)

e Environment Control Block (ECB:A)
e Mailbox Definition Block (MDB:A)
e Activity Control Block

e Clock Control Block

e Semaphore Definition Block (SDB:A)
e Initialization Block (INIT:A)

e Parameter Blocks (BGIN:A, R:SATD, R:GATD, TICK:A, WALL:A, MATL:A)

- 2.1 -

—m ComputerAutomaﬁon@

B.2 TASK DESCRIPTOR BLOCK

The Task Descriptor Block is provided by the user to describe the attributes
of a task to RTX4. This table can be generated using the TDB:A macro. The
address of a Task Descriptor Block is the task ID.

TDB: A label,start,yscratch,stackad,stackamt,flags,usage
where: label Label to be assigned to start of TDB.
start Starting address of task.

! ' yscratch Amount of Y-scratchpad used by task (for reentrant
| program only); if zero, the register value of the
: 0) calling task is used.

stackad Address of preallocated stack (for serial program
only); if zero, stack space is allocated by RTX4.

flags None currently defined.

usage Number of concurrent activities of this task (optional).

TD: PER
TD: FLG
TD:USA
TD: NOX
TD:Y
TD:AD
TD: AMT
TD: P
TD: CSA

0

—— O Ww O N Ot AN~ O

o > W O N O U P W N~ O

—r

TD: CKW

- B-Z e

%
£
i

Field Word
TD: PER 0
TD: FLG 1
TD: USA 2
. TD:NOX 3
TD:Y 4
TD:AD 5
TD: AMT 6
TD:P 7
TD:CSA 8

9-10
TD: CKW 11

-_-<g:2?§5 CkunpmnemAuMonnaﬁonG

Description

Link pointer to the list of other Task Descriptor
Blocks, the head of which is in ECBTLH (word 16)
of the Environment Control Block. This 1list is
linked as part of the loading process.

TDB flags; none currently defined.

Either: controls the number of concurrent
executions of a reentrant task, or queues
requests for execution of a serially reusable
task.

Maximum permitted number of concurrent executions
of a reentrant task.

Length ot the Y-scratchpad to be dyiramically
allocated to each executicn of this task. If
the length is zero, the Y value of the tas. tnat
called this task for execution is retained.
Either: the address of the area to be useu as
the stack for each execution of this task or 0,
if the stack is to be dynamically allccated.

Either end 1imit address of the stack if [0:AD
0; or if TD:AD = 0, it is then the stack length.

Address of the start of task execution.
Concurrency semaphore.
ReserVed.

TDB checkword; contains :FO1E.

- B-1 -

-?-<§:ZR§ ComputerAutomation S

B.3 ENVIRONMENT CONTROL BLOCK @
The Environment Control Block is created by the user to describe resources to

RTX4. The address of the ECB is its ID. This block can be generated using

the ECB:A macro. :

ECB:A label,uat

where: label Label to be assigned to start of ECB;
referenced in INIT:A.
uat Address of the Unit Assignment Table.!
C 0 EC: PER | 0 Peer link.
1 EC:FLG i1 ECB flags - none defined.
2 EC: EDB :2 Environmental descriptor block pointer.
3 EC: LUS 3 Logical unit semaphore.
4 4)
5 5 Reserved
6 EC:CNT 16 Number of task activities.
7 EC:ALH 17 ACB list head.
8 EC:SUB :8 Subordinate 1ist head. o
9 EC:MST :9 Master environment. ~
10 EC: NEC :A Necessary environment.
11 EC: CKW) :B ECB checkword; contains :FO&F.
12 ED: EVC :C Exception vector offset (=16).
C ED:MRO :D Map register offset (=48).
14 E ‘
15 F } Reserved
- 3
16 ED: EVT 110
> Exception Vector Table
31 - ED:EVT D1F

(table continues on next page)

1Input/Output Subsystem I0S4 User's Manual {90-93430~-00)

- B=-4 ~

el

--6@29Q5<00nnpuuu¢unnnunku1@

(continued from previous page)

32) ED: UAT
33 ED: LMA
34 ED:MPA
35 ED:HMA
36 ED: EUS
37 ED: PRI
38 ED:TLH
39 ED: SLH
40 ED:MLH
41

42

43

44 Undefined
45 Undefined
46 Undefined
47 Undefined
48 Undefined

: 20
:21
122
123
124
+25
126
127
:28
:29
1 2A
:2B
:2C
:2D
:2E
: 2F
: 30

Unit Assignment Table address
Low memory address
Environment pool address

High memory address -
Environmental usage semaphore
Maximum priority

Task 1ist head

Semaphore list head

Mailbox list head

Reserved

Number of task activity

TDB of initial task

Priority of initial activity
ID of initial activity

Map register table

AF-(g:Z?QS ComputerAutomation >

e

B.4 MAILBOX DEFINITION BLOCK

A Mailbox Definition Block is provided by the user to provide a mechanism
for communication between activities. An MDB can be generated via the MDR:A
macro:

MDB: A mail .
where: mail Identifier to be assigned to the mailbox.

Two words of staorage must be provided for the mailbox.

[

b

0 MD: PER 0 Peer 1link
‘}} 1 MD:FLG 1 MDB flags

2 MD: MBX 2 Mailbox usage semaphore (initially = 1)

3 MD: MSG :3 Message signalling semaphore (initially = 0)
4 MD:A 14 A register of message

5 MD:Q :5 Q register of message

6 :6

7 27 Reserved

8 :8

9 MD:ECB :9 Master environment {;
10 MD: ID A ID
11 MO : CKW :B MDB checkword; contains :FO7E

r 8-6 s

...(g:ZZhi(uunpuunﬂuuunaﬁon@ :

B.5 ACTIVITY CONTROL BLOCK

RTX4 creates the Activity Control Block when an activity is begun.

—d —

AC: PER

AC: FLG

AC: PRI

AC: K

AC:Y

AC: L

AC: LST

AC: TDB

AC: ECB

AC: 1D

— O W W N OO AW NN~ O

AC: CKW

C > W O N O G B W MNND - O

Peer Tlink

ACB flags

Priority

K register

Y register initial value

L register initial value
Reserved ’
Environment activity peer iink
Master TDB

Master ECB

ACB identifier

ACB checkword; contains :F02F

|
i
¢
A
i
’»i
i

e

B.6 CLOCK CONTROL BLOCK

..;QE:”QB ComputerAutomation =

The Clock Control Block is created by RTX4.

RS S — '
- O W M ~NO UV HA WN = O

CC:PER

CC:FLG

CC:TIC

CC:STS

CC:ECB

CC:ID

CC: CKW

W > W 0 N O U P W NN~ O

Peer 1ink

CCB flags

Tick clock expiration

Not applicable to tick clock
Semaphore or address of semaphore

Reserved
Master environment

CCB identifier
CCB checkword; contains :FO4E

-.<Z:29§5 ComputerAutomation =

B.7 SEMAPHORE DEFINITION BLOCK

The semaphore definition block is provided by the user to control the synchro-
nization of tasks. This table can be generated using the SDB:A macro.

SDB: A label,value

where: | label Address label of the semaphore.
value Initial value of the semaphore.
0 SD: PER Peer link
1 SD: FLG SDB fjags; none defined (bits 8-15)
Semaphore initial value (bits 0-7)
2 SD: SEM Semaphore word for waiting task
3 SD: CKW SDB checkword; contains :FO3k.

o

C

B.8 INITIALIZATION BLOCK

The Initialization Block is generated by the INIT:A macro and provides the
information needed to initialize the entry point.
the user must declare the label R:INIT as an external in his program (NAM R:INIT).

This macro must preceed any other code in the program.

INIT:A
INIT:A
INIT:A
INIT:A
INIT:A
INIT:A

where:

When an optional parameter is omitted, a comma must be inserted to hoid

a,g,X,y,ecb,tdb,pri
a,q,x,y,ecb,tdb,pri,amtfree
a,q,Xx,y,ecb,tdb,pri,amtfree,adrfree

a,q,X,y,ecb,tdb,pri,amtfree,adrfree, topmem

a,q,x,y,ecb,tdb,pri,,,topmem

a,q,X,y,ecb,tdb,pri,amtfree,,topmem

H4,%Y

ecb
tdb
pri
amtfree

adrfree

topmem

Initial values of the A, Q, X, and Y registers

Address of the Environment Control

In order to use this macro,

Block

Address of the Task Descriptor Block

Activity priority
Amount of freepool space (optional)
Address of the freepool (optional)

Upper limit of memory available to
(optional)

the position of later parameters.

- W 0 N O O AW NN - O

IN:

Initial contents of A

IN:

Initial contents of

IN:

Initial contents of X

IN:

< |x< |O |>

Initial contents of Y

IN:

ECB

IN:

TDB

IN:

PRI

IN:

1D

Block identifier

IN:

FPL

Freepoel length (words

IN:

FPA

Freepool address

IN:

EOM

e

End-of-Memory address

> W O N OY B W NN~ O

- B~19 -~

RTX4

register
register
register
register

Address of Environment Control Block
Address of Task Descriptor Block
Initial activity priority

)

|

<\

—-6§29QS(kunpuﬂuﬂuﬁunaﬁonQ

; B.9 RTX4 SERVICE PARAMETER BLOCKS

The BGIN:A, R:SATD, R:GATD, TICK:A, WALL:A, and MAIL:A macros involve parameter

blocks, as follows.

BGIN:A

— O

Address of TDB
Priority

A ASCII Time of Day Block (R:SATD,R:GATD)

aaUpHwnN —O

TICK:

>

whhh—=O

WALL:A

PSP —-O

MAIL:A

—

Year
Month
Day
Hours
Minutes
Seconds

100ths of second (only‘on R:GATD, resolution is

Reserved

16-bit identifier

Address of semaphore to signal
Number of ticks

Reserved _

16-bit identifier

Address of semaphore to signa’
High order 16 bits of time
Low order 16 bits of time

Address of Mailbox Definition Block

Reserved

1
7.1

sec.)

When an ervor is discavered duving the execulion of RTXT, an exception condi
Refer Lo tCHIA Macro Lo sce how Lo 1ink in a dser exceptions
The names of the form XV:xxxxx, listed in the table below are used

Clon ta yenerated.

processor.

APPENDIX C

RTX4 EXCEPTIONS

to define exception vectors for processing exceptions.

Table C-1.

RTX4 Exceptions

EXCEPTION
TYPE

| —

CTe e
instructicn
trap

Memory
exception
trap

Character/
mnemonic
exception
trap

User
trap

Arithmetic
exception
trap

Stacy
ayraptin
LIRS

o

L »< v

o X >
o "W n

O x>

O > >

A
X
Q

Ko
14

If' exception processor
specified JMP to routine
specified in EDB.

SN
Note 2.
0 = XV:UINTP

Note 3.
Note 4.
1 = XV:MEMTP

Note 1.
Note 2.
2 = XV:CNMTP

Note 1.
Note 2.
3 = XV:USRTP

Note 1.
Note 2.
4 = XV:AERTP

Hr,? g0
Ve, b

VO x4

VO X P

oo X > TO X >
oo

O X >

[
/

LN

wononu

(1O L I |

If no exeption, proce:sor
CPU HALTS, with following
register contents,

NGE& 5.
0000
80

208
Undefined
0001

80

208
Note 6.
0002
80

208
Note 6.
0003
80

208
Note 6.
0004
a0

| O s

Table C-1. RTX4 Exceptions (Continued)

Address where exception occurred +1.

EXCEPTION If exception processor If no exeption, processor
TYPE specified JMP to routine CPU HALTS, with following
specified in EDB. register contents.
Unimplemented A = Undefined A = 208
system X = Contents of Strap trap | X = Address where exception
service location (next P) occurred
Q = 8 = XV:USTEX Q = 0008
P =80
Strap 0 A = Undefined A = Undefined
X = Undefined X = Undefined
Q = 9 = XV:STOEX Q = 000A
' P =80
RTX door A = Negative error code A = Error code on door exit
service X = Undefined (positive value), see
exception Q = :A = XV:DOREX Table C-2
X = Undefined
Q = 000A
P =80
RTX At= Negative error code A = Error code (positive
system X = Location where error value)
error occurred +1. X = Location where excep-
Q = :B = XV:RTXEX tion occurred +1, see
‘ Table C-2 '
Q = 000B
P =80
NOTES:
1. Contents of trap location +1 (instructions causing trap).
2. Contents of trap location (next P).
3. Contents of trap location +1 (undefined).
4. Contents of trap location (undefined).
5. Contents of trap location +1.
6.

Table C-2. Error Code Indicators

CODE EXCEPTION DEFINITION
201 EX: SEM SEMAPHORE EXCEPTION
202 EX:STP STRAP OUT OF RANGE
203 EX: STK INSUFFICIENT STACK SPECIFICATION
w} | 204 EX: EMP UNABLE TO FILL E.M.P. REQUEST
205 EX: SEP UNABLE TO FILL SYSTEM FREEPOOL
206 EX: PRI NEGATIVE ACTIVITY PRIORITY
207 EX: CCB CCB EXCEPTION, TICK CLOCK
208 EX: TRP HARDWARE TRAP EXCEPTION
(X register contains address of hardware *‘rap)
209 EX:TBL DEBUG VERSION, TABLE ID CHECK FAILURE
20A EX:SYS DEBUG VERSION, SYSTEM ACTIVITY VIQLATION
208 EX:WBC CCB EXCEPTION, WALL CLOCK
20C EX:MBC MAILBOX ID CHECK (INVALID ID)

-

APPENDIX D

CONFIGURATION OPTIONS

D.1 TINTRODUCTION

Configuration options allow the user to tailor his system to meet his needs.

D.2 NONSTANDARD LINE FREQUENCIES

The RTX4 wall clock provides accurate time to +.25 second precision. RT1X4 is
delivered with a parameter which relates the wall clock period to the 60 Hz

TTLF (Twice the Line Frequency) source. If some other frequency source is

used, the programmer must set the contents of location TTLF4: to half the

value of the Line Frequency of the Real-Time Ciock used. (The absolute location
of TTLF4: can be found in the load map.) The default TTLF4: value, for 60 Hz,
is 30 (:1E).

The RTX4 source module CLK50: is provided for setting TTLF4: to the corract
value for a European system with a Real-Time Clock using 50 Hz Line Frequency.
A user on this typevof system needs only include the statement:

LOAD CLKSO:

in his program to set TTLF4: to the appropriate value, 25 (:19).

D.3 PROGRAM RESTARTS WITHOUT RELOADING

Normally, the programmer must load a fresh copy of his program in order to
restart. Many variables and pointers are initialized during loading, reducing
the size of RTX4 initialization code. Reloading is simple when disk steorage
is used. However, in paper tape development and some other circumstances, the
programmer must be able to restart an RTX4 program without reloading.

" In these cases, the programmer can invoke the REINI: option via a LOAD directive

in any user module:
LOAD REINI:

By invoking the REINI: option, the user assures that all RTX4 variables and
po1nters are reinitialized whenever RT¥4 is restarted.

&
w

|~ O e

‘E@

D.4 DEBUGGING FACILITIES

The Debugging Monitor allows debugging of RTX4 applications. One of the options
described below can be included to start execution in DEBUG rather than in

RTX4. The programmer can then start RTX4 by jumping or breakpointing to loca-
tion :80, the normal start location. If an unresolved error condition occurs,

a pseudo-breakpoint occurs at location :7E rather than a halt at :7F.

See the NAKED MINI 4 Debugging Monitor Reference Manual for complete informa-
tion on the Debugging Monitor.

D.4.1 The DEBUG4 Option

This option includes the standard version of the Debugging Monitor. This
version provides the following commands:

Assign list output device.

Re-enter user program or set temporary breakpoints.
Set temporary breakpoints or re-enter user program.
Display or change user program registers.

Display or change general register. ‘

Inspect memory.

List memory.

Fill memory.

Search memory.

Print chain.

Dump memory.

Verify memory.

Load hinary tape.

E<ONONTIrAOOTOWGT

This option is invoked via the following LOAD directive in any module:

LOAD DEBUG4

D.4.2 The MDBUG4 Option

This option causes the MDBUG4 version of the Debugging Monitor to be included.
MDBUG4 provides all of the DEBUG4 commands except:

Print chain.

Load binary tape.

Dump memory.

Verify memory.

Assign list output device.

D<OEN

This option invoked via the following LOAD directive in any module:

LOAD MDBUG4

o

:

o

--(g:;&& ConuunnnAuunnaﬁon@

D.4.3 The XDBUG4 Option

This option causes the XDBUG4 version of the Debugging Monitor to be included.
XDBUG4 provides all of the DEBUG4 commands plus:

M Monitor computer bus.
T Intercept traps.

This option is invoked via the following LOAD directive in any module:

LOAD XDBUG4

D.5 WALL CLOCK OMISSION

The NOWAL: option allows the programmer to omit the wall clock from his config-
ration. If the programmer has no need for the wall clock services, he can sawe
the time and space normally used for these services by invoking this option via
a LOAD directive in any user module:

LOAD NOWAL:

!

]

]

3
§

%‘:

¥

LomE

o --(g;iVQS ComputerAutomation =
R

APPENDIX E
RTX4/1054 APPLICATION DEVELOPMENT SYSTEM GENERATION USING 0S4

E.1 INTRODUCTIGCN

. This appendix‘out1ines a suggested procedure for creating a system for ieveloping

RTX4/10S4 application programs using the 054 system. This discussion provides
specific, step-by-step instructions for generating such a system on a floppy
diskette. The user can modify this procedure as necessary to suit his particular
needs.

A sample RTX4/10S4 application appears at the end of the appendix.

E.2 RECOMMENDED PROCEDURE

To generate an RTX4/10S4 application development system on a floppy diskette,
the programmer can take the following steps:

1. AutoLoad the 0S4 system diskette. (The AutoLoad procedure is described
in the 0S4 System User's Manual and the NAKED MINI 4 Autoload manua!.

2. Install a new, formatted diskette in Unit 1.

3. Label the new diskette as described in the 0S4 user's manual or in
the I0S4 user's manual.

4. Remove the 0S4 system diskette from Unit 0; install the RTX4 product
diskette (F41001).

5. Enter the command:
/COPY DF1=DF.RTX.LIB!

6. Remove the RTX4 product diskette; install the RTX4 macros diskette
(F42501).

7. Enter the command:

/COPY DF1=DF.GEN.MAC
/COPY DF1=DF.RTX.MAC
/COPY DF1=DF.I0S.MAC
/COPY DF1=DF.SFM.MAC'

1If any problem arises during this step, the user must re-instal]l and Autoload
the 0S4 system diskette and then retrv this step.

"'<§:27§§ Ckunpunemhuunnauon

Remove the RTX4 macros diskette; install the I0S4 product diskette
(F43001).

$ e SR

9. Enter the command:
/COPY DF1=DF.I0S.LIB

10. Remove the I0S4 product diskette; install the SFM product diskette
(F44001).

11. Enter the command:
/COPY DF1=DF.SFM. LIB!
| ‘EE 12. Remove the SFM product diskette; install the 0S4 system diskette.
| | 13. Enter the command:
/COPY DF1.PROGRAM. ASM=CI
and respond to the > prompt by entering the symbolic text of thé
application program; enter a /* command to signal the end of the
text.
14. Build a JCL file by entering the command:
/COPY DF1.PROGRAM. JCL=CI

and respond to the > prompt with the lines:

/MACRO PROGRAM(DEF INITTON=GEN+RTX+I0S+SFM) _é
/LINK PROGRAM(AB=100)+SFM+I0S+RTX z

% 'n® Enter a /* command to signal the end of the text.
15. Enter the command:
/DO PROGRAM
to execute the JCL file, which assembles and links the program.
16. Enter the command:
/AUTOLOAD DF1.PROGRAM.BIN
to execute the program.

17. Debug the program (assuming DEBUG4 was loaded with the program).

3 11f any problem arises during this step, the user must re-install and Autoload
: the 0S4 system diskette and then retry this step.

K
L
LI
¢
&'
|
i
)
B
£

“'<§:29§5 ComputerAutomation =

18. If corrections to the symbolic version of the program are required,
take the following steps:
a. AutolLoad the system diskette.
b. Edit the file PROGRAM.ASM by entering the command:
/EDIT PROGRAM
Perform steps 15, 16, and 17.
If necessary, perform step 18.

o0

19. If the completed application is to reside on the development diskette,
rename PROGRAM.BIN or copy it to another file. (To preserve the
source code of the program, copy PROGRAM.ASM to another file. To
preserve the object version, either rename PROGRAM.OBJ or copy it to
another file.) Alternatively, copy PROGRAM.BIN (and optionally
PROGRAM.ASM and PROGRAM.0BJ) to another medium (e.g., paper tape or
another disk).

This procedure produces a binary file which can be loaded into any NAKED

MINI 4® Family computer. If the file resides on a disk, it can be loaded via
the /AUTOLOAD command. If the file has been copied to paper tape, it can be
loaded via the hardware Autoload procedure. The system diskettes are left
intact and can be stored in a safe place for backup. The following files are
created on the development diskette:

RTX.LIB

GEN.MAC

RTX.MAC

10S.MAC

SFM.MAC

I0S.LIB

SFM.LIB .

PROGRAM. ASM

PROGRAM. JCL

PROGRAM.0BJ (unless renamed in step 19)
PROGRAM.BAK (created when PROGRAM.ASM is edited in step 18)
PROGRAM.BIN (unless renamed in step 18)

and any files created by copying PROGRAM.ASM, PROGRAM.O0BJ, and/or PROGRAM.BIN
in step 19.

To develop another application, the user needs only edit the PROGKRAM.ASM file
to contain the new source text and then perform steps 15-19 outlined above.

NOTE

This procedure assumes the standard 0S4 configuration, in which the

UF logical unit is assigned to the DFO1 physical unit. If UF has some
other assignment in the user's configuration, the user must include the
device specification in the file identifiers specified in steps 14 and 15.

E.3 SAMPLE APPLICATION PROGRAM

The following pages present the assembly listing, link map, and diskette view
of a sample RTX4/1054 application program.

-
= PAGE 0001 MACRO (C1) RIX4/1054 EXAMPLE APPLICATIUN PROGRAM

o 1979/01/18 20:41321,25 INITIALIZATION

o ,

L 0000 0003 O NAM ReINTT INITIAL TZATIUN BLOCK AHE
) 0oo4 EXTR ECH ENVIRUNMENT CONTRUL HLUCGK
P 0009 EXTK 1D TASK UFSCRIPTOK BLUCK

E 00000000 0006 AR EQU 0 INITIAL A REGISTER,

~ 00000000 0007 OR EQu .0 3 REGISTEN,

S 00000000 0008 XK FUU 0 X REGISTER,

R 00000000 0009 VYR EQU 0 AND Y KEGISTER

i 0000000A 0010 PKRIUKLTY EGU 10 ACTIVITY PRIORITY

& 00000100 0011 FREEPDOL EWU 2100 FREEPOOL SIZE

3 G000 0000 0012 INITSA AR, UK, XR,YR,ECl, TOB,PRIORITY,FKRFEFUUL
Py 0001 0000 :

> 0002 0000 .
s 0003 0000 ' '

o 0064 00063

o 0005 0002

< 0006 00VA

S 0007 FOOE 0012+

- oG8 0100 0012+

3 0009 0008 0012+

% 000A 0000 00l1es

3 0008 8080 0012+

* 0013 END

>

ES 0000 ERRORS (0000)

— 0000 WARNINGS (0000)

o _

~3

75.
N
Q
mu
£
©
| S
o
(o]
<.
[=19
-
(NOO0) SANINMYM 0000 L
(o) SMOMNY 0000 =
=y
(=9
N3 0200 o
77:1vil 6100 LOONDODO =
_ +8100 0000 9000 E
~ NDALSHY g M, 331 9N 100 9o G G000 25
+LT100 0000 2000 <
® +12100 1000 toon Q
. Lvn yvelvn 21n0 3604 0000 =
b JWYN T8IV Ly Wyt 9100 1000 <
o VI.
(o
A0y L INAIWMDOTSSY LINND G2°els b2 cﬁxﬁcsta_
WYHIOMA NOLIVITddY 37dbvx 4 #SOL/nXtA (13) 0¥Ivw 2000 39Vd -
m n
[+¥]
}
3
§ 5
-

*1-3 @Jnbi4

[JU € obed ‘weudboug uoLjesiiddy o|dwex3y $SOI/pXLlY

PAGE

0000
0001
0002
0063
0004
0009
V006
0ao07
0008
vgou9
0008

00oc
0000
GOOE

000F

0010
oot
0012
0013
0014
0018
9916

0017
0018
0019
HOlA

0003

0000

00000000
00000050
vu000000
00000001

0040
0008
0001
0000
0000
0050
oovoc
0001
00009
FUlE

a000voocC
3A07
0017
0EQD
000000 0F

3A07

001F
OE OV
3408
00O2F
3A02
0035
9E78 00OO0F

5456
0000
0000
003%0

MACRO

0023
ooed
0025
0026
0oe7
oues
0029
0029+
d029+
0029+
0029+
0029+
0029+
0029+
0029+
0029+
0029+
0030
0031
0032
VOS¢
0033
6034
0035
0035+
0036
0087
0037+
0038
0038+
0039
0940
0041
0041+
0GGY+
0041 #

(C1) KIX4/710S4 EXAMPLE APPLICATIUN
1979/701/18 20:41:26,00 THE

I ASK

* TASK DESCRIPTOK BLUCK

FrUOLGRAM

Thid NAME

HAVE kIX ALLUCATE SI1ACK
S1ACK SIZE

NO FLAGS

Ot CUNCURKENT ACTIVITY

DB, START,0,5TACKAD , STACKAM,FLAGS, USALL

NAM TR
STACKAD EBQU 1]
STACKAM EuWiy +90
FL AGS EQU 0
HSAGE EGQuU. 1
Tod <A
* THE ACTIVIlY
START FWU b
Islvu CrTIUR
HLT
LOUP EQU $
I:10 MSGIUB
HLT
R:ITIC TIMER
RTAAIT St Ad
JMP nm
* 1/0 gLOCK T OPEN CRT
[0t

START ADDRESS
OPEN THE CKT

AbiNURMAL RETURN
WHITE MESSAGE TO CRI

ABNDORMAL RETUKHN
START TIMEWR
WwART FUR TIME TU BEXPIRE

Gl DISPLAY MESSALE AGAlN

CRTITQI, *TV',FUS,UP:,0,0,0

PAGE 0004 MACRU (C1) wTXd/1084 EXAMPLE APPLICATION PROGKAM
19797017186 20:41:28,50 IHE TASK :
é; 0018 0000 0041+
g 001C 0000 Ovdl+
® 001D 0000 0041+
' VOLE 0000 Doal+
4 D042 % [/0 BLOCK .TU vRITE 10 CKRT
: 001F 5456 K TUuB:A MOGTUB, "IV, 4k, FAS,COUNT,BUFFER, U
e 0020 0000 004 s+
g 0021 0000 0045+
= 00e2 001 0043+
8 00235 0010 0043+
B 0024 00627 0043+
= 0025 0000 D0u3+
[y 0026 VLOO 0043+
3 0044 x MESSAGE Texl BUFFER
Y 0U00000D 0045 CR ©Fud tub ASCI1 CARKIAGE it TUK
» 00000004 vous LF EQU $0A ASCIT LINE FEED
o, 0027 204D Vud7 BUFFER BYTE ' MFSSAGE TexT ',CR,LF
= 0028 4593
= 0029 5341
= 002A 4745
= 0028 2054
o 002C 4558
8 0021 5420
3 002E 0DOA
3 00000010 0048 COUNT EUU $=BUFFER%2 BYTE COUNT
. ' 0ud9 x TiMER CONTWRUL BLUCK
w GUOOU0eF 0056 I E Ul » UWTHUE 16 BID Tidtn 10
® 0000298 0USt TICKS B 1205 Tivk = 9 SECONDS
. 002F LOVo vise T1CK3A TIMER, TU,SEMAG, L ICKS
o G663y DueF Gihe=)
o 3031 004s JNSe+
~ 00352 0258 QUSe+
GU9% & SEMAPHORE DESCRIPIUKR BLOCK
GJUOYLan G054 vabLitlk e L IwiTIAL VALUE
0083 UuhY Sunia SEMAG, VAL UF
0034 6000 0055+

-

"1-3 24nbi4

. 40 G abed ‘weaboud uorjeotjddy s(dwex3y $SGI/yXL1Y

V0635 0000
0036 FOSE

0000 ERRORS
0000 WARNINGS

PAGE 0005 MACRO (C1) KTX4/1084 EXAMFLE
1979701718 20:41330.00 THE TASK

0uSS+
0055+
Ouse ENp

(0000)
(0000)

i e Lt

=)

APPLICATIUN PRUOGRAM

GD|m;wmo;ﬂv.lemamo:) w—

40 9 abed ‘weubodd uotjedy|ddy ajdwex3 pSOI/pXLY °L-3 4nbl4

l{'

PAGE

0000
0001
0002
0vo03
0004
0C06
0007
0008
0009
Q00A
0008
000C
0000
000E
0010
0020
uoet
ggz2e
0ues

0024

0025
0026
0027
0028

0629

00006
400

o

e

G006 MACRO (C1) RIX4/10S4 EXAMPLE APPLICATIUON FRUGKAM
1979701718 20:41:243,00 ENVIRKONMENMT CONTRUL BLUCK

0000

0000
0000
0001
0000
0000
0000
0000
0000
0000
FO6E.
0010
0030
0000
G000
G000
0000
00uo
QG000
0000
TFFF

4000

ERRURS
WARNINGS

0099 NAM Fes
0060 EXTR UAT
0061 ECHSA FCH,UAT
0061+

0061+

0061+

0061+

Q061+

Vo611t

0061+

0061+

0061+

0061+

0061+

0061+

0061+

0061+

0061+

0061+

001+

0061+

GUbl+

0061+

V061 +

0061+

0061+

U061+

0062 END

(G000
Lugue}

ENVIRUNMENT CONTKRUL bLUCK NAME
UNIT ASSIGNMENT T1ABLE

--(g:%&h ComputerAutomation =

G

VIS

(0000) SININMY¥ 0000
(0000) SHOHNHT 0000

¥rxx GAVIOL=(NVYO »¥xx

Gl sssine0e gl/10/6L061
(13) 0d3vYW LOOD 39vd

Ll

e

/

Page 7 of 7

Program,

ion

icat

mple Appli

Fxa

0S4

i

RTX4/

E-1.

[}
1 5
b=}
o
o
L

7 40 | @bed ‘weuabouq

uoLrest(ddy @ldwexd §SOI/pXLd payul] 40 dey Adowsy

-n
—

«Q
<
3
[¢*]
m

1

N
.

™

STATUS

LOAD OFFSET
TRANSFER ADDRESS
MAIN MEMORY LIMITS

(ABSGLUTE SYMBULS)
0066,44.RICNTR
006D, ., RIPFK
0071.,..K2BTCI
007TE.s4eRFATL

(REL. AREA 1)
V000 ,ea o RIINIT
017A....1310
0238,.,.IRET
027C... I5WALI
02B9,..,01:0DT
0307 ..aaT13WDAC
0335,...1T3ERSE
0335,...1:D0¢ER
036Cecs e TYTUFS
057TS,seeiPiWRr]
(*4AF.-9=TY2RU
06DB.., .FBK:
0800,...1:210
OSBE. eaogg{:UMP
{)85}:00.:{:&”?3
0884,.,.,.1:0PCL

BLANK

PAGE 1 19701718 20:42:95
S50 FILE = PKOGKAM
SI FILE = PRUOGKAM
SA FILE(S) = I0S8

RTX

RELOCATABLE

1]

L INK (AgQ)

HIN
08 Jd
LI
LIv

WITHIN MEMORY LIMITS

UNRESOLVED
0000

0080
0000-FFFF

" un

DU0bB,.ee RSCNSM
UOHE 4 e e e MISREG
U072, ., .RIMPM]
OQ0TFREFATH

(0ou0=10UeR
V10C... AT
017A,...R3LOW
0242440 13S5TUF
0e8d,,..IFINI
02EE, .. 12DOGY
03158, (M)TSINTET
03354, .eel3EKS83
03%6,,..02TV00
038hF e TYELTS
03579, aaelYinrt
UAR03 . e TYIFUN
07Ted,,..FBw:
0Bl ,....125DT0
BB32,ce.1:5TAT
08634, .. 12ECTH
0899, ... K IDUK

SECUNDARILIES

DUBA, e e e KIWLKS
DUOBF, s e e KESINEW
0073,.,.RIMPM2
VOBU, e e e KT XS

RAM)
vl1lcd....108
01FY,,..135LU
024D e e 0el eS5THO
UCAU.eee it
UCFO, e IoLwDT
05211, .0 lsbERTH
0339,,..1 00OV
#39%2,...C:T7Y0
VD471, eeaiYBUFS
U875, e PP I
V6038, .. LPSFUN
WTEG,cealt TRLL
0808, . 1291V
Ushl ... IoxS1
BT e eeslb VU]
UBE S, ,.citslivilk

006C,, . . K:PFLUL
OUTUeee e RSCORE
O078e.e e RIRICT

0149, ...ECB
021C, ... 13D0UIC
U2HB e l3STUK
oaACQQQQ]:P(JV‘K
0300, ISKWDT
0332,...12ERS1
U339, e I sABKT
U36A, ... TYEUL S
0574,,..CHEAD
O4AF , .0 PRIRD
U603, ., PPIFUN
0TFU,ceelsIrTB
UB82Y94e¢se LIRPFE
()54§..oe£:t?’3tih
UBT7.eeo120PEN
DREB, . e RSSERB

"Z-3 aunbly

40 dep Auowsy

2 40 ¢ vbed ‘weuaboud

0906, .0 RSSEKL
09FUeeaeRSPRID
O0A1C, ceoeRSTINWAL
0A9D, .4 RETICI
OAbY, .. .R:TKAC
OB66 4 ee e REWLAC
O0B3CA, 0 e RIAWAL
0C68, 4,4 RIGPKRI
OC9E .+ e « RSCNSL
OCFB,460 RIIRCV
0095, .4 RERBUF
ODAB, ... RIDA

OE12....REILSTK
OE7F ..e o RIPWRF
OFBE ..o R:PAUS
OEEC e ee e RIUMTH
OF1D.ee e RSSETH
OF4B, ., .R:XPTE
OF7C.. . .RIRINT
OF81,..,.R3PATC

0907 4eeeRIBLIN
0YFC ., e RESISIG
DA1CewaoReWATI
0AA3, ., .R3TICP
0AEN s eeRSCTIC
0BBS, s TTLF4:
OBEY, ., K INAL
OC6C 4 0aoRibGFR

OCAF 400 kISEND

00D e oo REGETM
ODAYl,...K2RE1?2
UDAC, oo . ReDISP
OESQQQQQR:KSTK
UFEAO, 40 .R2GTS

UEDT7 ¢ ee e KSAETH
ObF3¢eeRIUTITH

0F38,...RSSTROEX

OF4C. .. RSTABL
OF7Ce e RIUINI
OF9C. e RINOPF

0920, 4 e RSDEDB]
U9FCeeeeReDIL
VA4, .0 .RIOWA]L
0ACA. .o kILTIC
UBlC.eeanrsMTIC
OBBA.eaeRSSTUD
UC53.se:CWAL
OCT0e0eoReSPRI
UCHE ¢ o 0 s R3TOND
UDSY e e e REGTIVM
UDAl..aabbid
UDE2 o0 e e RESACT
VESCeees KESTRI
UEAB e ee e REGVOT
OEDF ¢ oo e RSCMTH
UEFSeeaoRIUIKTN

UF3A .00 RIDUUKEX

UFH51eeeaK2BYOHX
GFTEL . (S)DEBULGY
1002 eeeRIHIGH

UYBE ¢ s e e RIEND
0AUD,,eeKeSSIG
0A4B....R:ITIC
OADA . s e ReKTIC
UbS7 a0 RERKWAL
UBC2 4 oo REGTOD
UCHT q0eoSTTLEZ
UCHY . g9 e RECINT
UCEDeos e RIRECY
0DBA, .o s RSABUF
OLAG, .4 e RIDALX
ODEB . .0 e REIACH
0E60..0 REINTY
UEBD e s eeRsGVSH
OEES...OR:UST"‘I
OF 08, .. KIUSTRE X
OF48 .00 RERTXEX
0Fb9,.4e e RIDCHR
OFB8UqqaeRSEMUL

tREL AKEA 2) RSHIGHER(1003=-1003K = KAM)
1005, ...RSHIGHER

X k & k k k& k k kX k * k x % k *x k kA k Kk *x x k *X k x k *x *x * * X

uoL3edL jddy aldwex3 ySOI/pXLlY paxyul

MISSING = FIMONT FiCREA RISAITD
F:CFnO ReGATD FIDMIN
FeDELE F:CONw

SV oang ey

APPENDIX F

RTX4 DEMONSTRATION PROGRAM

The RTX4 Demonstration Program is designed to exercise the system services of
RTX4. The services exercised are:

‘ © * R:BGIN Begin on activity

e R:SIG Signal a semaphore

e R:WAIT Wait on a semaphore

® R:CINT Wait for console interrupt
®R:ITIC Tick clock timer

When the program is executed it transfers immediately to DEBUG4. 7o begin
execution of the program, jump to location :80. From here the prugram goes

‘ through the initialization, then begin an activity of the Master Task. This

ygb activity waits for a console interrupt. At this time the system is in the

. dispatcher idle loop, which is indicated by blinking the byte mode and overflow
indicator lights. The user should now press console interrupt wnich causes an
activity of the Timer Task to be started by the Master Task. Each of the next
15 console interrupts causes another timer activity to start until 16 timer

‘35 activities exist. A1l subsequent console interrupts are ignored.

Each timer activity causes a different bit of the console data register to
blink. The location and frequency of these bits is determined by 2 table.
The frequency is based on tick clock intervals.

At any time a power fail may be caused and the system recovers completely when
power is restored, provided the memories are properly powered. :

NOTE

The missing external R:DBUG which shows on the link map wilt ‘not
affect the execution of RTX4.

n
-—de

«Q
c
3
(]
-

1

ot

£l 40 | 9524 ‘Weuabodd UOLIRAISUOUR] PXLY

[

PAGE 0001 MACRO (L1) WIX4 pDEMU PRUGRAM NO, |
1979701717 02:59:34,25

93410~10 BS

0000 oduoe NAM RIINIT
0003 LuAaD REINT:Z
00uy LUAD DEBIHIGY
0009 x
000k % THIS PrROGKAM TESTS THE TICK CLUCK SERVICES,
0007 * ;
0008 % THF TEST CONSISTS OF TaUu TASKS, THE MASTER
0009 = AND THE TIMEx, THE MASTEK IS THE INITIAL
0010 = TASK AND THEKE IS ONLY ONE ACTLIVITY OF
0011l * 1T, THIS ACTIVITY B8EGINS AN ACTIVITY OF
0012 = THE VIMER TASK EACH TIME CONSULE INTERRUPT
0013 =% IS PRESSED, UNTIL 16 ACTIVITIES OF THE TIMER
0014 * TASK ARE HEGUN, FURTHEK CUNSOLE INTERKUPITS
0015 =« ARE IGNOUKED,
0016 =% .
0ul7 x THE TIMER TASK MAKES A T1CK CLUCK REGQUEST
0ot18 * ACCURDING TO THE PARAMETEKS IN J1S Y SCKAICHPAD,
0019 =« WHEN THE TIMER FXPIKES 1T CUMPLFMENTS A
0020 % BIT IN THE CONSOLE wORD REGLISTER AND KEPEATS,
0021 *
00000008 goee TeLS12Z ey 8 NUMBEK OF WORD/TABLE ENTRY

0028 « '
0024 BEGIN MASTER TASK wlIlH: aA=z=0
0025 =« H=0
ouee X=0
0027 * Y=TABLE
00e8 = AT PRIORTITY $100 wiln 200 WwOoxDS UF FREEPUOL
0029 =

0000 0000 0030 INIT:A CrplpU, TABLE,ECBY,MOTRTD,3100,3200

0001 0000 '

0002 0000

003 U244

0004 030A

0005 6208

0006 0140

0007 FOOE 0030+

euognuxnnvnnnduxz>‘QJZ:D-—-

-
5
i

RTX4 Demonstration Program, Page 2 of 1:

+0500 080K 8000
+0500 0000 V000
+0500 HOO00 6000
+0500 0020 8000
G/°GE:6G220 L1/10/6L61 —
$H 0T=01H%6 1 *ON NYM90Md OW3a pxid (13) 0¥I¥W 2000 39Vd W
e
’ o
.z

-

147
|
!

i PSS < o e R S

3
il

i

|

|

|

|

|

|

|

“FAGE 0003 MACKRU (C1) RIX4 DEMJ PrRUGKAM Nu,] ‘ 9541010 113§
1979701717 02:59:3%5,79 MASTER [ASK :
-
a 0032 =« 4
5 0033 = THIS TASK BEGINMS THE TIMEK TADK,
o 0034 = FACH TIME CUNSOLE TWYERRUPI IS PRESSED
N 0035 % A NEW TIMER ACTIVITY IS CREATED,
- V036 &
0037 * e
3 0038 =« MASTER TASK WILL HAVE Y EWQUAL Tu TABLE
= G039 $35 WUKDS OF STACK, SYSTEM ALLUCATED
- vuao 1 POSSISLE CUNCURKENT EXECUTTIUNS
] o041«
S | n2un vvge TNBSA MSTRID,MASTER,0,0,2335,0,1
A1 0o20C 0040 voue+
S 1 0200 0213 0ov4e+
T 1 020E 0Uo01 0042+
S | 020F 0000 004e+
o | 0210 0000 0042+
3 1 o211 0035 ou4e+
G véte o217 Go4e+
5 | 0213 0001 Y2
v 0214 0000 V042+
S | o2te FO1E 0042+
a 0000uel7 0043 MASTER EuU $
w | 21?4910 nonuy COPY =16,0 ALLUW ONLY 16 TIMERS
o 00000218 004% LOOP EQU $
| 0218 5546 021F 0046 JEUD Ny NOMORE IF 16 TIMERS ALREADY
o | 219 1A08 0047 R:CINT
0214 00O 00d7+
0218 1A03 0048 RIBGIN T (Y) bEGIN TIMER ACTIVITY
G21C 1000 V00U 0048+
021D 6BO8 0049 COAND =TLSIZ,Y MOVE TABLE POINTEK TU NEXT ENTRY
L21E 9ET9 0218 0050 JMP LOGP KFPFAT
0091 x 16 TIMERS ARE mUNNING, TGNOKE FOKIHEK CONSOLE INTERKURIS
000002 F 0052 NUMOKE FQu %
U21F 1AL 0053 RECINT
G220 0000 00937
G2t 9E7D 021F 0054 Jmp NOMURE

® ()

3

X4 Demonstration Program, Page 4 of]

: 2220
0047 5500 1000
WSV L MILISVH GL°182hG220 L1/10/6L61 P
$9 0l-01Tnse TOSON Wyda0xd oW3a pxld (12) 0HIve »000 . 39vd e
v
[E
@
i
=
.g
(Y

SES ISR RS st e TS) - e DTS T AR o T T J‘i‘t‘l“\w!l‘(‘

H

*{~4 ®dJnbr4

1 40 g 2bed ‘meaﬁdad voLzea3suowsy X1y

s AR e

I
PAGE 0005 MACRU (C1) RTX4 DEMU PRUGKRAM rO, 1 9<44190~10 83
1979701717 02:59:37,75 TIMER == DELAY N TICKS * g
0057 x E
0088 & x TIMER TASK »
0059 «x)
0060 TIMER TASK WILL HAVES Y UF ACHIVITY DOING BEGIN
0061 * 20 wORDS OF STACK SPACE, SYSIEM ALLO
0062 * 16 POSSIbLE CUNCURRENT EXFCUTIONS
/ 0063 = v ®
0223 0064 DB A TMRTD, TIMER,0,0,320,0,16
nez24 0040 0064+
0eey ueen 0064+
4226 0010 0064+
0227 0000 0064+
0228 0000 0064+
0229 0020 0064+
022A 02°2F 0064+
228 G010 D0b4+
022c voo00 0064+
022 FOLE Que4+
00695 *
voe6 % DELAYS N TICKS THEN TOUGLLES COWNSOLE AORD REGISTER BIT
V067 x BEGAN WlTH Y= TABLE ENTRY
0068 x
0000022F 0069 TIMER EQuU $
022F t1A08 0070 R:ITIC IDCY) INITIATE TIMER KFEQUEST
0230 1002 0002 Q070+
0231 DC4e 0006 0071 IMS DELAYS(Y) BUMP DELAY COUUNTER
0232 0000 Go72 NOP
0233 FEB83 0237 0073 JSK our TUGGLE CUNSULE WORD REGISItR o1
0234 1Aug 0074 RewALY *SEMabRrR (Y]} wAIT FOR TIMER TO EXPIRE
0235 5004 0004 0074+ :
0236 9E78 022+ 0075 JmMp TIMER REPEAT

’r /71 200w ~

R 1.0 i Bt

) 4
o (-
E PAGE 0006 MNACRD (C1) RTX4 DEMU PRUGKAM KO, 1 945410=10 b3 g
g 1979701717 02:99:39,50 OUT == UQUIPUTS TO CONSOLE wORD KEGISTER
o
T o011 =* COMPLEMENTS Tk ADDRESSED 11 %
— 0078 * CALLED wITH Y= TABLE ENIKY
D079 «x ‘

ﬁ 000002 37 0080 0yl EWQu $
§ 0237 047 0007 0081 cCOory B11(Y),Q GET BIT Tu fUGGLE
- 0238 4t %1 ou8e SHIFT B0, 4 POSTTION T K4 FIELD OF CHII INSTK
g 1 0239 3A0¢2 0083 RewWwAIT cor KEQUEST USE OF CONSOLE WURU KEGISI ®
g | 023A 0244 0083+ A
ﬁ 0238 U104 0084 IN CONDAZ+CDOR:, A KEAD CONSOLE AOKD REGISTHEK
3 023C 430A 00489 XN X] INDEX ChLT INSTRUCTIUN wilTh oIl Al
o 0230 VOOE OuRe6 CHIT U,A COMPLEMENT AUDRKESSED B1T
g' 023k 0404 0087 SELP A, CONDAS+CDKRS OUTPUIT TU CUNSOLE WORD REGISTEFR
i 023F 3A01 o088 R:3I6 Chik GIVE UP USEF OF CONSOLE wUKRD KEGIS
g 0240 Oecdy4 o388+
Q uedtl 2309 0089 RSK RETUKN
w 6090 * -
? 0091 X * SEMAPHURE 10 CONTROL CONSULE w0wWD REGISTER ACCESS =
3 g0Ye « '
Q veae 0093 SUH A Cik, 1
) o 0243 0001 00945+
o 0244 0001 0093+
4 0245 FO3E 0093+
i 0004 0094 LPOUL
Y1 opeue

0247

V248

R

"{=4 |4nbi4

£1 40 [ebed ‘weabouad uoOL;eAISUOWR] HXLY

PAGE

0244
0248
p24cC
024D
G24E
024F
0250
0251
02se
0253
0254
2259
0256
0257
4298
259
H2SA
0254
025C
2250

0007 MACKRUO (C1) RTx4 DEMO PRUGRAM NU,
1979/01/17 02:59:41,00 TABLE -~
0096 *
0097 *
0v9s x OF THE TI1MER TASK,
0099 « FORMAT 1S
0100 X
00000600 0101 TOd EQu 0
00000001 0102 PRI EWU 1
00000002 0103 1D EQu 2
00000004 0104 SEMADR Euu 4
000006G0S 0105 TICKS EQU 5
00000006 0106 DELAYS E Ul 6
00000007 0107 QBIT EQu !
0108 %
0109 x .
0110« .
S 0000024A 0111 TABLE EqQu $
vees v11t1e wWORD
0100
9000
3004
02ns
0004
0000
0003
0223 0113 WURD
0100
0300
enos3
ge2hya
0003
0000
U002
0223 0114 WORD
0100
RV
cCoon

1

TIMER TASK PARAMETEKS

93410=1u B

THIS TABLE DEFINES THE PAKAMATERS FOwR EACH ACTIVITY

TASK DESCRIPTOR BLUCK ADUKESS
PRIORITY TO BEGIN ACTIVITY afl

10 10 UStE IN TIMEK KbtwUESTS
ADDRESS OF TICK KEWUEST SEMAPHUKI
NUMBER OF T1CKS Tu KELUEST
NUMBER OF REQUEST MALE SO FAR BY
BIT TO TOGGLE

IMR'[U':100'(',:3(504;SEM314,0'3

(MKTD,$100,0,3200%,5EM2,3,0,2

THRTD,, 100,06, sCo0D, 9EMC,2U,0,:C

R SE

“L-5 84nbig

£1 40 g abed ‘weuaboud uoLj3RUISUOWR] PXLY

PAGE 0008 MACRuU (C1) RTX4 DEMO PROGRAH LU,
1979701717 02359:42,00

025¢€
U25F
0260
0261
0262
0263
oeed
02e6s
0266
0267
0268
269
UcbA
0268
026C
0260
U26E
U26F
0270
0271
0272
0273
0274
0275
0276
0277
0278
06279
0274
0278
Jge7c
6270
2Tk
u2TF
ueso
0281

0eFC
000D
0000
oovuc
0223
0100
0000
6007
02E4
0007
0000
0006
0223
0100
0000
EOOF
0304
000F
0000
OVOE
0ees
0100
0000
4005
0ebc
000s
G000
0004
u2es
G100
Q000U
8009
UCEC
00049
0000
YLo8

0115

0116

ui17

0116

93410-10 13

JABLE e= TIMER VTASK PARAMETEKS

WURD

WURD

HORD

HAORD

TMR1U,:10”,()':(’7()07,3&”16,7'0'6

TMRTID, 2100, 0, 3EV0F,SEME, SF, U, st

TMRTD, 2100, u,340059,5EM4,5,0,4

TMRTD, :100,0, :8009,5EM8,9,0,8

@uogcunnnvxnnduxn)‘Q&Ej)-—-

A

-
o

la}
=
-3
(1
-

L]

€L 40 6 dbed ‘weubouad uorjeazsuowsq txXLy

PAGE

0282
0283
0284
0285
0286
0287
0288
0289
028A
028H
028c
0280
028E
028F
0290
0291
0292
0293
0294

L0295

0296
0297
02948
0299
029A
0298
029cC
0290
029E
029F
0240
02AL
VeAa2
02A3
02A4
02AS

0490

02e3
0100
0000
0001
0ecCce
00Ut
00060
0000
02es
0100
0000
900A
02F0
VOOA
0000
0009
0ees3
0100
0000
FO10
0308
0010
0000
Q00OF
vees
0100
0000
fuva
0zE8
onos
0000
QUo7
0ees
0100
6000
DOOE

®

v 9 MACRO (C1) RTIX4 DEMO PrubRAM dU, 1 95410~=10 3%
1979701717 02:59342,7% TABLL ==

0119

0120

0121

0122

U123

TIMER TASK PARAMETERDY

WURD

NORD

NORD

WORD

NURD

THRTD, 3100,0,30601,SE%0,2:1,0,0

THMRTD, 2100,0,2900A,5EMY9,24,0,9

TMRTD, $100,0,FU10,5EMF, 10,0, F

TMRID, $100,0,87008,5EM7,8,0,7

TMRTID, 3100,0, sD00ESEMD, Sk, 0, 2D

suonsemendues W) —

i

b
|
|
|

i

i

|

\

PAGE 0010 MACRO (C1) RTxd DEMD PROGKRAM NU, 1 Y3410=10 o3
1979701717 02:59:43,25 TAHLE == TIMER TASK PARAMETERS

02A7 0UOE

02A8 00U0LO

02A9 000D

02AA 0223 vl1eyd NORD TMRID, 23100G,0,2A0U0B,5eMA,:8,0,°A
U2AB 0100

02AC 0000

02AD AOUB

02AE 0¢2F4

02AF 0008

0280 0000

0281 000A

282 vees 0125 WORD TMRTD, 100, 0,:5006,9EM5,6,0,9
02835 0100 . ,
0284 0000

02BS S006

0286 02EQ

geBl oule

uess8 0000

0289 000S

0288 0100

028C 0000

0280 B0OOC

02BE 02F8

C2BF 000C

02C0 GOYOH

02Ct 0008

02Ce 0eesd 0127 © NURD THRTD,210G,0,21002,5EMY,2,0,1
62C3% 0100

G2cd4 9G00

02€5 1002

GeCe 92D

02C7 w02

g2CE 0uL0O

32C9 0001

-n
—e
(o]
[=
=)
1]
-n
i
—

02A6 0300 g
§D

€1 40 0L 9bed ‘ueubOAd UOLIRUISUOWD] PXLY

e R

(] | - |

PAGE 0011 MACRU (C1) RTIx4 urMU PROGKAM Mg,) 94410«10 5

1979701717 02:59:44,00 TImEk SEMAPHORES \
n 02CA uiey S0B:A SEM0,0
Q 02CH 0000 0129+ g
a vece 0000 0129+
- 02CDh FuSsE 0129+ » lé
L 02CE 01350 SOH A SEML1, 0
. 02CF 0000 U130+
o 02D0 V00O 01350+ :
=2 02D1 FO3E 0130+
R 02De 0141 SDBSA . SEM2,0
o 0eD3 0000 0151+ A
3 0204 0000 0131+
b 02by FO3E 0131+
< vebs 0132 SDH A SEMS, 0
ot 02D7 0000 0132+
> 02b8 0000 0132+
= 02D9 FU3E 0132+
® 020 A 0143 SvpBiA SEM4,0
g 02D8 6000 0133+
3 020C V00O D135+
3 02D FO3E 0133+
- 020DE 0134 SOBSA Sty , 0
o 02LDF w000 01%4+
) 02E0 0000 0134+
= U2El FOS3E 0134+
° 02E2 0145 SDnsA SEMB, O
4 02E3 0000 0145+
o 02E4 0000 0135+

0285 FGSE 0135+

02te6 0136 SDBSA SEMT .0

U2E7 QOOLQ 136+

0288 0000 01356+

029 FO3F 01306+

U2EA 0137 SUB A SEMB, 0

02E3 0000 0187+

02EC 0060 0157+

CURED FOSE 0137+

(

) ‘ o

Oumnsuxnnvxnnduxz)‘NZ:DP_.

= PAGE 0012 MACRU (C1) KIX4 DEMG PRUGRAM NOU, 1 9%5410-10 13
§ 1979/01/17 02:59:46,00 TIMEKR SEMAPHURES
(1]
T 0REE S u1s8 SLB A SEM9, U
- D2EF 0000 0138+ -
02F0 0000 0138+
= 02F1 FO3E U138+
™~ 0eFe 0139 SDB-A SEMA, O
o 02F3 0000 0139+
o 02F4 0000 0139+
e 02FS FU3E 01359+
@ 02F6 : 0140 S0B3A SEMH, 0
o 02F7 ¢000 G1do+
o 02F8 0000 0140+
S 02F9 FU3E 0140+
= 02F A 0141 S0B:A SEMC, 0
a V2F8 w000 G141+
Q UeFC 06000 0141+
g U2FD FOSE Ot41+
i 02FE 0142 SDis s A SEMD, 0
> 02EF 0000 ORRTES
Q 0300 0000 viae+
. 0301 FO3¢ v142+
N 0302 0143 SOB:A SEME , 0
3, 0503 0000 ' 0143+
. 0304 G000 0143+
) 030% FU3E 0143+
03506 U144 SHSA St ME, 0
0307 Q0o nid4a+
0308 G000 0144+
0309 FO3E 144+

e 3

i | ik il R AR 1 L.

"L-4 3unbiy

£1 40 g1 9b2d ‘weuboud uorjeajsuowsg XLy

PAGE

03%0A
03508
030C
030D
030k
0310
04511
0312
0313

0314
0315

0316
0317
0318
0314A
032A
0328
032C
032D
032E
C32F
U330
0331
0332
)3%3%

0000
0060

013

0000
030A
0001
0000
0000
00600
00uo
Voo
0000

FObE

o010
0030
0000
0000
0000
0000
0000
0000
0000
TEFF

Bo D

ERKORS
WARNIMGS

MACKU

0146

G147

0148

0149

0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
0149+
01494+
U149+
0149+
01494+
U149+
0190

(go0y)
{000)

(C1) RIX4 UEMO PROGRAM
1979/01/717 02:59:47,25 ENVIRUNMENT

*

X ;
ECH A

tols

filieg 1

[NFURMAATIUR

* pEFINE EnVIRONMENT CONTKOL BLUCK

ECul,0

TR

M341U=10 ps

@uogcuuunvunndunx)shazzy——

e

"2-4 3anbL4

abry

40 1

2

‘UeabOAd UOLIRATSUOWR(pXIy PRYULT 2¢ del Adowsy

PAGE 1

SO F1LE
ST FILE
SA FILE(S)

STATUS

LUGAD OFFSET
TRANSFER ADURESS
MAIN MEMORY LIMITS

(ABSOLUTE SYMBOLS)
0066400 ek:CNIK
006D..,.R:PFK
0071....R:BTCI
OO07F e ReFATY

(REL AKEA 1) BLANK

0100,.0.RIINIT
O0BNY, 4, RIODOR
0C20,.,.R:BEGI
0CFR2, .. R3ISIG
0D1A, .. .R:SWATI
0bCO0....RILTIC
0EL12,..,.KRIMTIC
UFBO, .. R2STOD
OF29..,.RECHWAL
OF6h, qe e KISPRT
OFBd, ., . K:ISHND
IUL‘H....R:GIVM
1097 s.eeG2Z

1008....R:8ACT
1148, ., .R:0TKT
T1Al .o e RIGVST
1104, .. RICNTH

197017171

(=)

035:00:04

RTXDEMO
RIXDEMO
RTX

RELOCATABLE

LINK (A4)

HIN
OnJd
LIn

WITHIN MEMORY LIMIIS

UNRESOLVED

0100
0438
N000=-FFFF

u u n

0UBHB, e HSCIISM

V06t ... RISREL

0072.q.RIMPMI
0080, .0eRTXS

(U100=134FR
0100,...RILOW
OBDE ¢u e s RESERB
0CB4, .. RIEND
UCFHB,....R*SSIG
0D41 s0eeRITITIC
00DV, .. .RSKTIC
0E20s e e RERNAL
GEHB, e e e REGTOL
UFSD, .. STTLF?
OF TAgseok2CINT
UFDEC .o o KERECY
1UB0 ..o BEABUF
109A,,...R:DANX
100 ., .RS1ACH
P196..0.KSINT
I1Ab.. . REGVOH
IR, ¢ e RSEUSTH

SECONDAKILES

VUUBA, e e o REWLKS
DO0BbF g0 e eeSNSW
VOT73,,..kiMPM2

-~ KAM)

043, (MIDESUGY
UBFCeseeRISERL
0CEbh .. e RIPKRID
0D12 4 eeREINWAIL
UD93, ... RITICI
OUNY 40 e e RITKAC
OESU . e e o KIWLAC
UECUeaeeRSANAL
OF St ¢ o0 a REGPRI
Ur9d, ... RICNSL
UbFheeeeReIRCY
1UBE .0 e e RERHUF
1U9E e e e RIDA
FTUB, oo WeLSTK
1175 ceer s PWRF
1ithd, o e o KePALIS

ST
HE

. ow

00PCeeeREPFLG
UUT0eeeoe RECOHKG
OUTEeee s REFATL

OBBF « .. RIIDOK
ORFlU oo e RSBGIN
OCFCeaoRSISIG
D12 cee e REWALT

T 0DY99, .. .RIVICP

ODES..,..R:CTIC
UEAG, ... TTLFA4Z
OFDF o eeaRITNAL
0Fb2a,..RIGPR
OFAS a0 RESEND
1023, .0 KIGETM
1097,...RIRELZ
10A2,,..R3DISP
1148, ... KIKSITK
1190.4e,RIGTS
110k, cRIAETH
1169400 e RIUTTH

e L N

Qumunwmmvunnmmoa‘QgZ:D-—-

i i

- B 3 B - o e N P T T A 4 e

= 11EB.. o oRIUTKTN 11FE,...RIUSTREX 1213....R:SETH 122E ... KIS IROEX

< 1230 .0¢eREDODREX 125t 0. o RIKTXEX 1258F eeeoRSXPIE 12824, 4 e RETABL g

o 1247....R28YSX 129F oo oKREINT: 125F « (M)RIKINT 12AE,.,.R:SECH

H 1283,.,..R:NECH 1286....K3DECH 1267 00 eoRIDCHK 12CA, oo JSINTT %

N 12CA. o RIUINI 12CE . .4 o RIEMIY. 12CFeee o RIPATL 12EA ... KINOPF -
155‘)..00R:f11GH : g

= \ .

(1]

=

o

..

= t*t*tt***_****t******t*tt******** @

m N

Z f MISSING = G4 GIE FeMONT

4 Gev G:u GsL

- Gib GG 1:10

3 GeX Gsl G

° G:S FICREA G3IN

o | $SATD G:H FiCFNO

;; ; (N | Ge3 510

N i iU G:P K:GATD

o | FeOMNT GsK G:%

g GIF Gsw G20

§ GoA FIDELE ok

& 53M Gs7 GsH .

s Gy G G:C

5.' Gel G0 G:9

E F:CONN Gel

-

X

3

=

—s

[o13

3

- _

>

[T T

324

o

o

-+'

3

o PR

9
|
|

£
¥

APPENDIX G
RTX4 MACRO SUMMARY

Page
| 4-3 BGIN: A arg, tdb,prdesc
where: arg Must match the argument specified in the
‘3 R:BGIN macro.
‘ tdb Address of the Task Descriptor Block as
" specified in the TDB:A macro.
prdesc Priority descriptor defining the task's
ariority.
This macro generates an argument list for an R:BGIN macro
5-6 ECB:A label,uat
where: label
: Label to be assigned to the start of the
Environment Control Block; referenced
the INIT:A macro.
uat Address of the Unit Assignment Table.
c This macro generates the Environment Control Block. Must
] immediately precede the END statement of the last user's
program module.
5-1 INIT:A a,q,X,y,ecb,tdb,pri,amtfree,adrfree, topmem
where: a,q,x,y Initial values of the A, Q, X, and Y
registers for initial user's task.
ech Address of the Environment Control Block.
tdb Address of the Task Descriptor Block for

initial user's task.
pri Activity priority for initial user's task.

amtfree Amount of freepool space in words
' (optional).

adrfree Address of the freepool (optional).

topmem Upper 1imit of memory available to RTXZ
' ’ {(optional).

This macys aorweea*oo tha Inytiglization Blogl

EREAk S A e

? --<§:27§S 60mnpunemAuuunaﬁon®

Page M
8-4 MAIL:A arg,mail - 4 : |
where: arg Must match the argument of an R:SEND
| macro or R:RECV macro.
‘2 mail Label of the appropriate mailbox as
; defined by the MDB:A macro.
§ v This macro generates an argument list for an R:SEND macro
i or R:RECV macro.
| © 8-3 MDB: A mail ;
5 / :
where: mail Identifier to be assigned tc the '
mailbox.
This macro defines a mailbox facility.
5-7 R: ABUF amount
where: amount Number of words to be allocated.
This macro submits a request for the system butfer
allocation service. This service allocates a buffer
for the program's use. -
7-8 R:AWAL arg
where: arg M4D12 pointer to the argument list,
‘E generated via the WALL:A macro.
This macro submits a request for the system wall t]ock
absolute timer service. This service initiates a timar to
cause a semaphore to be signalled at an absolute wall clock
- time.
4-3 R:BGIN arg
where: arg M4D12 pointer to the argument list,
generated via the BGIN:A macro
This macro submits a request for the system taskmprocessing
service. This service initiates task execution; i.e., it
creates an activity.

4-4 R: CINT | |

This macro submits a request for the system console
interrupt control service. This service causes the
activity to return if the console interrupt is pressed.

i
i}
B

cal
g
¥
il

-—-@;zﬁws‘COnuunedhnnnunﬂnag

Page

4-4

7-7

R:CTIC

R: CWAL

R:END

R:GATD

R:GPRI

R.GTOD

R:ITIC

arg
where: arg M4D12 pointer to the argument list

generated by the TICK:A macro.

This macro submits a request for the system tick clock
timer request cancellation service. This service cancels
a previous R:ITIC request.

arg : ~
where: arg MAD12 pointer to the argument 1ist,

generated via the WALL:A macro.

This macro submits a request for the system wall clock
timer request cancellation service. This service cancels
a previous R:IWAL or R:AWAL request.

This macro submits a request for the system activity
termination service. This service terminates the activity
requesting the service.

This macro submits a request for the system time and date

access service. This service reads the time and date in
ASCII.

This macro submits a request for the system activity
priority access service. This service returns the calling
activity's priority in the A register.

This macro submits a request for the system %ime of day
access service. This service returns the time of day in
the AQ register pair.

arg
where: arg M4D12 pointer to the argument list,

generated via the TICK:A macro.

This macro submits a request for the system tick clock timer service.
This service initiates a timer to cause a semaphore to be signalled
after a specified number of ticks of the Real-Time Clock.

--<§:z&5 ComputerAutomation =

Page
7-8

7-3

7-5

R: IWAL

R:MTIC

R: PAUS

R:RBUF

R: RECV

arg
where: arg M4D12 pointer to the argument list,

generated via the WALL:A macro.

This macro generates a request for the system wall clock
interval timer service. This service initiates a timer to
cause a semaphore to be signalled after a specified time
interval has elapsed.

arg
where: arg M4D12 pointer to the argument Tist,

generated via the TICK:A macro.

This macro submits a request for the system tick clock timer
request modification service. This service modifies a
previous R:ITIC request.

prdesc

where: prdesc Priority descriptor.

This macro submits a request for the system round robin
scheduling service. This service removes the first sctivity
of a given priority from the ready list and reenters that
activity into the ready list.

address

where: address Address of the buffer to be releasad.
This macro submits a request for the system buffer release

service. This service releases space previously allocated
for a specified buffer. ‘

arg
where: arg MAD12 pointer to the argument list,

generated via the MAIL:A macro.

This macro submits a request for the system message receipt
service. This service receives a message from a specified
mailbox.

Rl utre

--(g:ZFQS*ComnpunemhunnmnaﬁonQ

SR Sop ik b S

3-10 R: SATD arg
| where: arg Address of argument block...a sevenword

block containing date and time values in
the order: year, month, day, hour,
minute, second, and hundredths of a
second.

This macro submits a request for the system date and time
definition service. This service sets the date and time in

ASCII.
8-4 R: SEND arg
? ‘w} where: arg M4D12 pointer to the argument list,

generated via the MAIL:A macro.
This macro submits a request for the system message *trans-
mission service. This service sends a message to a speci®ind
mailbox.
6-7 R:SIG sema4

where: semas Address of the Semaphore Definition
Block to be signalled.

This macro submits a request for the system semaphove si nal
service. This service causes a specified semaphore to b

signalled.
| I 4-4 R:SPRI prdesc
‘[: _ where: prdesc Priority descriptor. ’

This macro submits a request for the system activity priority
definition service. This service alters the calling activity's
priority according to the supplied priority descriptor.

wi

e —— .. s ——

7-7 R:STOD
This macro submits a request for the system time of day
definition service. This service sets the time of day to
the value specified in the AQ register pair. '

6-7 R:WAIT semad

where: sema4 Address of the Semaphore Descriptor
Block to wait on.

This macro submits a request for the system semaphore wait
service. This service causes the activity to wait on a
specified semaphore.

--(g:zas ComputerAutomation =

o RS A

Page
6-5 SDB: A label,value

where: label =~ Address 1ébe1 of the semaphore.
. value Initial value of the semaphore.
'3 This macro generates a Semaphore Definition Block.
% 7-3 TICK:A arg,id,sema4,count
| 7-4
|
F where: arg Must match the argument of an R:ITIC,
| 0" R:MTIC, or R:CTIC macro.
L Identifier of a tick clock timer.

semas Address of the semaphore to be signaller

1 (R:ITIC or R:MTIC), or dummy argument
! with any defined value (R:CTIC).
: count Number of ticks that must elapse befors
i the semaphore is signalled (R:ITIC or
| R:MTIC), or dummy argument with any
! defined value (R:CTIC).
i This macro generates an argument list for an R: [TIC, R:MT:C
- or R:CTIC macro.
; 3-7 TDB:A ° label,start,yscratch,stackad,stackamt,flags,usage
i .
j @“ where: label Label to be assigned to start of TDB.
% 8 start Starting address of task.

: yscratch Amount of Y-scratchpad to be used by the

. task. If zero, the Y register of the

1 calling task is used. Usually is zero ‘
(or omitted) for a serial task.

stackad Address of preallocated stuck. If zero,
stack space is allocated by RTX4. Must
be zero (or omitted) for a reentrant
task. o

stackamt Amount of stack space used by the task.

flags None currently defined. (Optional.)

usage Maximum number of concurrent activities
of this task. (Optional.)

This macro generates a Task Descriptor Block.

Stk o ke

--<§:ZR&V00mnpuunhununaﬁon®

e

|
Page
7-8 WALL:A arg,id,sema4,upper, lower
7-9 _
' where: arqg Must match the arqument specified in ar
R: AWAL, R:IWAL, R:CWAL macro.
id Identifier of a wall clock timer.
sema4 Address of the semaphore to be signallec
(R:AWAL or R:IWAL), or dummy argument
; with any defined value (R:CWAL).
|
! _ upper Upper word of the 32-bit integer
@ specifying the number of waii clock

S intervals that must elapse before the

| semaphore is signalled (R:AWAL or R:IWAL),
or dummy argument with any dafined value
(R:CWAL).

lower rower word of the 32-bit integer spacif,-
‘ ing the number of wall clownx inte-vals
| that must elapse before the semaphore -
1 signalled (R:AWAL or R:IWAL), or cummy
3 argument with any defined value (R:Cuii’

‘ This macro generates an argument list for an R:AWAL, R:IW:i
| or R:CWAL request.

i e s s v ———

. -—-Qézﬁks(kunpuuuﬁunonunkua@

APPENDIX H

MACRO FILE CONTENTS

The RTX4 user accesses macro definitions, table definitions, or other code
via certain macro files. These macro files and their contents are listed Lelow.

| @ GEN.MAC (General Macro File)
e Macro definitions:
EXCH:M
COPY:M
Fixed memory address assignments
Non-printing ASCII characters
S register bit definitions
SYMATT directive bit definitions
Hardware stack definitions
Distributed I/0 device and interrupt addresses

RTX.MAC (RTX4 User Macro File)

- e Macro definitions
{ INIT:A '
| SINGL:-
TDB:A
ECB:A
‘ \ EDXVT:A
: SDB: A
MDB: A
BGIN:A
‘ - TICK:A
- MAIL:A
WALL:A

e

s | e

ncrdl

--(2:27§5 ComputerAutomation =

.MAC (RTX4 Development Macro File)

Macro definitions

PUSH:
POP:

COPY:
EXCH:
ASTAR:
RSTAK:
CHK:

SYS:A

Table definitions
TDB - Task Descriptor Block
ACB - Activity Control Block
ECB - Environment Control Block
EDB - Environment Descriptor Block
CCB - Clock Control Block
SDB - Semaphore Descriptor Block
INIT - RTX Initialization Block
RTX exception codes
RTX block check values
RTX base page definition
Environment memory pool definition
Miscellaneous RTX system equates

I10S.MAC (I0S4 User's Macro File)

[2N]

Macro definitions
BUF:R
I0B:A
UAT: AA
UAT: EE
UAT:ZZ

Table definitions

I0B - Input/Output Block
Operation, position, and function codes
Error codes
Status codes

SRLAC

e

ve o e

i --(g:p‘t<Conuxnenhnnnunku1®

I0SD.MAC (10S4 Development Macro File)

k

L

e Macro definitions

PATCH:
I: EOB

CIB:DM
CIB:DH
DIB:DM
DIB:DH
DIB:LP
DIB:ST

® Table definitions
CIB - Controller Information Block
ﬂ DIB - Device Information Block
TIB - Temporary Information Block
e Distributed I/0 equates
e I/0 error block definitions

SFM.MAC (SFM User's Macro File)

e Macro definitions
CONN: A
DELE:A
CREA: A
MONT: A
FCB:SA

e Table definitions
FCB - File Control Block
FDB - File Descriptor Block
® Parameter list equates

'31 - SFMD.MAC (SFM Development Macro File)

® Table definitions
VCB - Volume Control Block
e F Tist entry definition
e Buffer control and flag word definitions

et T

e MR T -

6, f& Computeffiutomation.___wm..__.m;

&

NOTES ON ITEMS ISSUED WITH RTX4 (C1)

RTX User's Manual (CO)

Appendix H describes the macro files (supplied with OS4 and RTX4 and their
contents. The contents described for GEN .MAC should include all RTX4/
[OS4/SFM service call macros.

IOS4 User's Manual (CO0)

2.1 Similar comment as given in 1, except that it is Appendix G. Alse
page 8.1 refers to Appendix | instead of G und the Contents List has
omitted the Appendix altogether.

2.2 Appendix B

The Introduction B. 1 should include reference to the Volume Contin!
Block and FUST described later in the Appendix.

1054 (C1)

3.1 The IOS . HLP

This file includes description of the IOSDEMO program files. This
demo is now called SFMDEMO .

3.2 The Line Printer DIB (Standard)

This is configured for 80 characters per line and 57 lines per page.
The DIB:LP macro also defaults to these values and not 133 and 39 as _
described.

3.3 10SD.MAC

Note that this file equates the CRT DIO channel address to 2 instead
of 4 as one might expect.

(Gt ss hin

w

NOTES ON ITEMS ISSUED WITH RTX4 (C1) (Cont.)

3.4 Write Direct Stream |/O

»

There is a fault connected with this. [f a program attemps to do
Write Direct Stream to a file in order to overwrite the exact nurmber
of bytes remaining in the file, SFM ignores the request and indicates
an end of a block error (:4E). This fault may be overcome by
patching as follows:

Lacation Old anffr]_f_s New Contents

F.CEOF+:A :9E82 . :0000

The address of F:CEOF may be determined by examining the link-map
produced by linking the user program with RTX/IOS/SFM.

3.5 TV/TK/TY End-of-Input Action

Currently, when carriage-return is required to terminate an input i /O
request, 1054 responds by repeating just that character, which means
that it is possible for subsequent output to overprint the previously
typed line. (In the cose of OS4 message output, no overprinting

ozcurs because a line-feed is output first, before the message.)

To ensure that no overprinting occurs, users may modify the location
identified on link maps by the symbol TYELI:. Normally this
location contains 1, but 2 should be put in its place to ensure that
carriage -return is followed by a line-feed after every input line is
terminated.

4. RIX(CD

4.1 The fault described in connection with the previous version of RTX4
nomely R:IWAL still exists and the same patch applies. For the
penefit of those users new to RTX4, a copy of the EN issued just
before this C1 release is attached to these notes.

-2- /Cont,

@%Computed\utomaﬁon——-———-——

NOTES ON |TEMS ISSUED WITH RTX4 (C1) (Cont.)

4.2 R:PAUS

This service should allow an activity to de-schedule itself so that
it is placed at the end of the queued activities of the same prioity
as itself. However, R:PAUS de-schedules the next activity in the
queue. The following patch cures the fault: |

Location Old Contents New Contents

R:PAUS+:8 :A022 _ 12922

4.3 MAILBO X

MDB:A macro is wrong. It allocates word containing O for Mailbox
Usage Semaphore and it should contain 1. ‘

Change source line 319 from "Word 0 - Mailbox Usage Semaphore"
to "Word 1 - Mailbox Usage Semaphore”.

4.4 RTX MACROS

TICK:A, WALL:A, MAIL:A,SDB:A, MDB:A Macros contain invalid
constructions for testing n umber of parameters supplied with the call,

e.g. OGE?< 3. |

There are no simple, changes that can be made and users are advised
to ensure that they frovide the correct number of parameters since
the macro definitions do not check correctly.

|

CAl Limited
European Technical Support Group March, 1979

o

g

NO "

P IR ee-Rlasdk] ‘;"/‘

Compulcrfanicinaden® ENGINEERING , |
18651 Yon Karman, Irvine, Calit. ‘ NOTICE l l 7[’ 1(0 [9 | S l

DOCUMENT NO. REV. TITLE INCORP. . T‘(PE
IS [WAS DATE AEN
GO3410-XX B218 1| RTX4 - R:IWAL STOP ORDER
: CEVIATION

RELEASE
STANDARD

CLASS
A-MANDI/FUNC
B-NON-MAND/FUNC
C-RECORD CHG

AFFECTEDITEMS

HARDWARE CHG.
SOFTWARE CHG.

; : PUBL. CHG.

: = = CAPABLE CHG.

\ 0 =CTIVITY NOTES: DOC. GHG.
CONFIGURATIONS
PROCEDURES i
REASON FOR CHANGE: REANO. 54447 TOOLING ;
TEST EQUIP.
CO-ORC WITH: EFFECTIVITY Z;
CERTAIN COMBINATIONS OF ACTIVITY NEIER
R: TODL AND USER-SPECIFIED | NOTIFY VEND A 1]
INTERVAL VALUES PRODUCE IN STOCK A

i >

| INCORRECT SHORT TIME KITTING /

INTERVALS BECAUSE THE CODE ASSUMES e .
THAT THE ADD INSTRUCTION AFFECTS T |

THE CARRY STATUS BIT,WHICH IT DOESN'T! FIGO05S T

~CUST. RET. N
REWK (EST Red’'D ‘

CCNTINUITY

CABLE SC AN

CAPABLE

A. PATCH AS FOLLOWS: o - | Mevor

: } !
. | LOCATION OLDCONTENTS| NEW CONTENTS || o%icracan

R-’IWALHQ’Z. :C344 ~ :0EO7 RBIT 0.8 APPROVALS

TS 1C483 1471 ENGR. %
1 C FTWARE o]
+124 18843 20004y APPC THOY)- @ 1L SOFT G

+:25 :56C | :C483 COPY Q,CC: TL(X) fgﬁfglm E; — _”;
+120 1080 | 10712, MaTERAls T T
|

- e e

i RS

RDDDCI

0gr

»
o

N000000ROE
Slsis]=tal=lalulst:

@%SCRIPTION CF CHANGE:

HLOOO0oCr

~TU ; ,
+17 (184372 :()0()3)/\00{:’T V)s A | <esTench, A]

| TECH SERV -—

el

+128 :9E30 {8482 COPY ACC: TUM)= Sreeny n

- [——Nh“b C\JGR . i /"_:’;—‘
(NCTE: IJMP PCOST AT R:IWAL +:28 IS REDUNDANT PUBUb»«TW““L/ -

BECAUSE POST IS THE NEXT LOCATION.) DR.BY: A, DUTICH .7
; CHKD. BY: . EVURESTK /&

REL. BY: ,-1 Lx,{,tﬁ, RN

DATE: .4-79 -

cazgc ‘0‘ I

) ('\

