
fe, n'r""'si£'r"! art "''tf'Xt'''thW(q,;,'it't'J " " 1"'1'&7"' iJ'r:vez"".t't' "'tJff *,'.'$,#""j It "wn7t:'tttM"Nf Etrt'+'nr'ttWo'tttriM'!,,- ,tr"',WiMrt'M'Y1t,,",,:,w,,w,r.rnWt','f"\

!o ut
NAKED MINI~Division

18651 Von Karman, Irvine, California 92715
Telephone: (714) 833·8830 TWX: 910-595-1767

FORTRAN IV REFERENCE MANUAL

90-96510-00BO April 1976

PRINTED IN THE U.S.A.

e$72 i1tMttl fFf t #M"I t !!

Revision

AO

Al-A6

BO

{h'Wtt W "1 j'" t "tI ..

REVISION HISTORY

Description

Original issue

Various minor updates

New printing. Reflects capability of
running Fortran on LSI-3/05

L

./ .

Date -

April 1976

•

" X itt ',.e11'" me. tm b '" tn err itt t" : to r*We j (" "$: ttl tt"W tet t tt. * ·Wtt"httit"9'

• •

COMPUTER AUTOMATION. INC. ~

TABLE OF CONTENTS

Chapter PlIg<'

INTRODUCTION x

Chapter 1. PROGRAMS

KINDS OF PROGRAMS 1. 1

CODING FORM. 1.1

COMMENTS . 1.3

CONDITIONAL COMPILATION

CHARACTER SET .

SAMPLE PROGRAM.

Chapter 2. ELEMENTS OF EXPRESSIONS

NAMES ...

DATA TYPES
Integer .
Real
Double Precision
Complex .. .
LOgical .. .
Hexadecimal .
Hollerith
Alphanumeric String.
Boolean

"

AUTOMATIC DOUBLE PRECISION.

VA~IABLES
Arrays
Array Elements
Subscripts

FUNCTIONS ..

iii

, .

1.3

1.4

1.4

2.1

2.2
2.2
2.3
2.3
2.4
2.4
2.5
2.6
2.7
2.7

2.8

2.8
2.8
2.8
2.9

2.9

, t

fltfl"tv . Hd' t N .. t' fit 1'1 vunlt .' ; i 1 Jt' '5' j' t" t t' to II .~ , tnrt' #t&1 "%"'J
, '$

N"

COMPUTER AUTOMATION, INC. ~

TABLE OF CONTENTS (Cont'd)

Chapter Puge

Chapter 3. EXPRESSIONS AND ASSIGNMENTS

ARITHMETIC EXPRESSIONS. . 3.1
Evaluation Hierarchy. . . 3.1
Mixed Mode Expressions . 3.2
Arithmetic Overflow . . 3 . 6

RELATIONAL EXPRESSIONS 3.6

LOGICAL EXPRESSIONS . 3.7
Evaluation Hierarchy. 3.9

ASSIGNMENT STATEMENT ,-

Chapter 4, CONTROL STATEMENTS

STATEMENT LABELS,

GO TO STATEMENTS
Unconditional GO TO Statement.
Computed GO TO Statement
Assigned GO TO Statement.

ASSIGN STATEMENT,

IF STATEMENTS. . ,
Logical IF Statement
Arithmetic IF Statement

._ _ DO STATEMENT, . ,
DO Loop Ranges

CONTINUE STATEMENT

CALL STATEMENT. ,

RETURN STATEMENT

PAUSE STATEMENT

STOP STATEMENT.

END STATEMENT ,

.-

. '-

iv

3.10

4.1

4.1
4.1
4.2
4.2

4.3

4.4
" 4.4

4.5

4.6
4.8

4.10

4.11

4.12

4.12

4.13

4.13

• •

. Wh

--'

... ,
,
,

__ 'e!tttttt!tlMN .*trW.,tl, Wnw") "iLl''f'H b '1:'1 H-' ,*W,' "WS'" 'S' f' we ¢rti st'tt 'm' 5tH wr'f"x"'- 'b' HJb"@i*' "" '0"1 t't . p"trO'ft'Mi' f Me ffi",,'M¥7tirH .' tfi ""(H"1!2$1'!:' Nir't:""'&' ,.

• .
COMPUTER AUTOMATION. INC. . ~

TABLE OF CONTENTS (Cont'd)

Chapter Page

Chapter 5. INPUT /OUTPU'l'

INPUT /OUTPUT LISTS . 5. 1
Simple Lists. 5.1
DO Controlled Lists 5.2

FREE FORM INPUT/OUTPUT 5.3
OUTPUT Statement. 5.4
INPUT Statement. 5.6

UNIT ASSIGNMENTS . 5.8

FORMATTED (ASCII) READ AND WRITE STATEMENTS.

UNFORMATTED (BINARY) READ AND WRITE STATEMENTS

END= AND ERR= OPTIONS . . .

INTERNAL DATA CONVERSION .
DECODE Statement .
ENCODE Statement

AUXILIARY INPUT/OUTPUT STATEMENTS.
REWIND Statement . . .
BACKSPACE Statement .
END FILE Statement

FORMAT STATEMENT .
I Format (Integer) .
F Format (Fixed Decimal Point)
E Format (Floating Point with E Exponent)
D Format (Floating Point with D Exponent) .
G Format (General)
P Specification (Scale Factor or Power of 10).
$ Specification (Preceding Dollar Sign).
* Specification (Asterisk Fill)
Numeric Input Fields
Comma Field Termination
Z Format (Hexadecimal) .
L Format (Logical)
A Format (Alphanumeric)
H Format (Hollerith).
, Format (Hollerith) .
X Specification (Skip)
T Specification (Tab)
/ Specification (New Record)

v

. .

..

5.9

5.11

5.11

5.12
5.14
5.14

5.15
5.15
5.15
5.16

5.16
5.18
5.19
5.21
5.22
5.22
5.24
5.26
5.27
5.28
5.30
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.38

'we"". $' t' t 't '.*2100'*,,&;** i'ifST#"'Hf#"WittiitrfO ' t "''<i.'ln'"tlM'"'' t g" t'~ in#' 'YoM' +itS" # H t tr 'N t' 'I ,,'tt&"

COMPUTER AUTOMATION. INC ~

TABLE OF CONTENTS (Cont'd)

Chapter

Parenthesized Format Groups.
FORMAT and List Interfacing.
FORMATs Stores In Arrays

CARRIAGE CONTROL FOR PRINTING

Chapter 6. DECLARATION STATEMENTS

CLASSIFICATION OF NAMES
Explicit Declarations. .
Implicit Declarations. .
Conflicting and Redundant Declarations.

DIMENSION STATEMENT
Array Storage .

TYPE STATEMENTS

ALLOCATION OF VARIABLES.

COMMON STATEMENT
Blank COMMON .
Labeled COMMON

EQUIVALENCE STATEMENT. , .

INTERACTIONS OF COMMON AND EQUIVALENCE

EXTERNAL STATEMENT

DATA STATEMENT ...
DATA Variable List
DATA Constant List

Chapter 7. PROGRAMS AND SUBPROGRAMS

MAIN PROGRAMS

TASKS

SUBPROGRAMS
FUNCTION Subprograms
SUBROUTINE Subprograms.
Statement Functions

vi

Page

5.39
5.40
5.41

5.43

6.1
6.1
6.2
6.2

6.3
6.4

6.5

6.6

6.6
6.6
6.8

6.10

6.12

6.13

6.14
6.16
6.16

7.1

7.1

7.2
7.3
7.4
7.4

,
• 1

---'

o

, .
m' ... t t'r'!!?! b'iNd" &'tf"'j""l" $" t '''j' rHt''' "1$ t j f' ..

COMPUTER AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

Chapter

BLOCK DATA Subprograms

ARGUMENTS AND DUMMIES
Correspondence . . .
Dummy Arrays
Adjustable Dimensions
Dummy Subprograms

LIBRARY FUNCTIONS ..
Intrinsic and Basic External Functions
Table of Library Functions.
Boolean Operations.

Chapter 8. IN-LINE ASSEMBLY LANGUAGE

LINE FORMAT

LABEL 'FIELD

OP-CODE FIELD

KINDS OF OPERANDS

OP-CODE CLASSES
Class 1. Memory Reference
Class 2. Double Word Memory Reference
Class 3. Immediate. '.
Class 4. Conditional Jump
Class 5. Shift .
Class 6. Register Change and Control.
Class 7. SCM and SCMB
Class 8. BAO. BXO. AND SIN.
Class 9. DATA, BAC
Class 10. RES
Class 11. TEXT
Class 12. SET
Class 13. 1FT •. IFF

FLOATING POINT INTERPRETER

CONDITIONAL ASSEMBLY

MISCELLANEOUS

vii

Page

7.5

7.6
7.6
7.8
7.10
7.11

.7.11
7.11
7.13
7.13

8.1

8.2

8.3

8.3

8.5
8.6
8.6
8.6
8.7
8.7
8.7
8.8
8.8
8.8
8.8
8.9
8.9
8.9

8.11

8.13

8.14

mWt'¢±" '@t '" ." t' 'f j,' H nd rOrt'WI" oN »'" N'fteH.ftt'dfWftk'f *NY 0', f 'tie "N d'l:lf' 0 ff

TABLE OF CONTENTS (Cont'd)

Chapter Pllge

SUMMARY
ELIST Option
LOB.J Option.
NBINARY Option
XON Option
ADP Option
RSP Option
NSP Option
RTX Option
TRACE Option.
ANSI Option. .

Chapter 9. COMPILER O'PTIONS

.'

AUTOMATIC DOUBLE PRECISION

REAL TIME ...

RUN TIME TRACE

Appendix A. STATEMENT ORDERING AND SIZE RESTRICTIONS

STATEMENT ORDERING

OBJECT PROGRAM SIZE RESTRICTIONS

Appendix B. COMPILER LISTINGS AND DIAGNOSTICS

C\ CO:'llPILER LISTINGS. . .

9.1
9.1
9.1
9.1
9.1
9.1
9.1
9.2
9.2
9.2
9.2

9.3

9.5

9.5

A .1

A .3

B .1

COMPILER DIAGNOSTICS. B .1

Appendix C. INTERNAL DATA FORMATS AND ASCII CODES

Appendix D. ANSI COMPATIBILITY

ADDITIONAL FEATURES . D.1
General Features D .1
Data and Expressions D . 1
Statements. D .3
Syntax Relaxations. .. D .4

, .

viii Revised March 197~

-,'

** . "",

',,-

o

o

",

'h N trW)

Figure

1-1
B-1
B-2

Table

3-1
7-1
7-'2
8-1
8-2
A-I
C-l

r","t "'tfft't!tf'"W" t! - t" g" it W tfh "ria $' tnH 'j m "t rt t t \ t set "

COMPUTER AUTOMATION. INC, ~

TABLE OF CONTENTS (Cont'd)

List of Illustrntions

San:tple Program
Sample Compiler Listing .
Sample Diagnostic Listing

.'

List of Tables

Permissible types in mixed assignments. . . .
Permissible A~gument/Dummy Correspondence
Library Functions
Permissible Operands for each Op-code Class.
Floating Point Interpreter Op-codes
Statements and Ordering.
ASCII Character Codes

ix

1.2
B.2
B.7

Page

3.12
7.7'
7.14
8.10
8.12
A.2
C.3

""1 ."

"ii' t' '1ft ifF 'I'd t te t "&i7t¥ttet¥ "'n .'W '''7 fWt' r'b" , 7 tr "m,- 'hid' * ht "n *

COMPUTER AurOMATION. INC. ~

INTRODU CTION

FORTRAN is an algebraic language designed primarily for l;se in scientific and
mathematical applications. The name stands for FORmula TRANslation. because
many of the statements are represented as formulas. For example. the formula

x = 8.1 + Y - a·y2/Beta

can be written in FORTRAN as

x = 8.1 + Y - A *Y**2/BETA

I) The first FORTRAN was developed in the middle 1950's. It was soon followed by
a version called FORTRAN II. in which several new features were added (notably
user subroutines and common storage). FORTRAN IV appeared in the early 1960' s.
incorporating more new features. such as logical expressions. type declarations.
double precision and complex data. data initialization. and labeled COMMON. As
various manufacturers and universities continued to add other new features. a
committee of the American Standards Association (now called the American National

"-

Standards Institute. ANSI) was formed to document "standard" FORTRAN. They _
documented two: Basic FORTRAN, which was similar to FORTRAN II; and FORTRAN,
which was essentially FORTRAN IV .

This standard was intended to function. and has functioned, as a minimum· acceptable
standard. Virtually every FORTRAN IV in existence includes additional features
beyond the standard.

Computer Automation FORTRAN IV contains ANSI FORTRAN as a subset. Some of the
additional features are:

• In-line assembly language (particularly for real time)
• Simplified input/output (no FORMAT statement needed)
• Generalized subscripts (any ipteger expression)
• Alphanumeric strings
• Memory-:-to-memory data conversion (ENCODE/DECODE)
• End-of-file processing (END= option)
• Automatic double precision

A more complete list of extensions to ANSI FORTRAN may be found in appendix D.

x

.,b b i '6 tic'"' " iI" rl" trl

.
•

' .. 'W",mmw'twiitWfY'tl'b·'·O"'t/ i1tH")$.'!" t'e' it ttr·t'tt'tiH'····j'#l:::tt'", u t't,,, .~t 't

The FORTRAN compiler accepts programs written in the FORTRAN IV language (culled
. source programs) and translates them into machine language programs (called object

"- programs). meanwhile producing a simulated assembly language listing of the object
program (called an object listing) and diagnostics for any errors detected in the URe

o

o

of the FORTRAN IV language. The diagnostics and object listing in Computer Automntion
FORTRAN IV are designed to be readable and understandllble. to UHRist in understanding
what the compiler has done.

The Computer Automation FORTRAN IV compiler runs on Ii large LSI muehine opernting
with a Computer Automation Operating System. but is optimized to produce small object
programs that can run on small machines with RTX (the Computer Automation Real Time
Executive). There is also a library of subroutines to provide support operations. such
as input/output and floating point computations, as well as mathematical functions. such
as logarithm and square root. The library is as modular as possible. so that only those
portions actually needed will be loaded with the object program.

This reference manual describes the Computer Automation FORTRAN IV language and
makes it possible to write FORTRAN programs. Further information on the use of the
compiler, the run time library, linking, and system generation may be found in the
FORTRAN IV Operations Manual (96510-01).

xi

I

o

.
r

rom' '$'Pm '$' 'f 't

COMPUTER AUTOMATION. INC. f§]1J

CHAPTER 1

PROGRAMS

KINDS OF PROGRAMS

A FORTRAN program may be one of three things: a main program, a subprogram,
or a task. When loaded into memory for execution, there must be one and only one
main program. Execution begins at the first statement of the main program or task.
There may be any number (including none) of subprograms. A subprogram, which
may be either a SUBROUTINE or FUNCTION, always has -a name with which it is
called by other programs. A task also has a name, but it is not called in the usual
way; it is connected to a real time interrupt. Subprograms and tasks are described
in subsequent chapters. All programs end with an END line.

CODING FORM

Lines of FORTRAN source language are prepared in SO-character, "card image"
form. Each line has four fields:

Columns 1-5

Column 6

Columns 7-72

Columns 73-80

•

Label. A statement may have a label in order to be
referenced by other statements. A label is a decimal
integer in which all blanks and leading zeros are
ignored. Chapter 4 describes the use 9f labels.

Continuation mark. Normally this column contains a
blank (or zero). If a statement needs to be continued
on more than one line, the succeeding lines must have
some character other than bla-nk or zero in this position.
Digits appearing in columns 1-5 of a continuation line
are ignored. Any number of continuation lines may be
used.

Statement. The FORTRAN statement may begin anywhere
in this field and may have blanks interspersed for reada
bility (except within alphanumeric fields; see chapter 2) .

Identification. These columns are ignored by the compiler
and may be used for program/subprogram names and/or
sequence numbers.-

h' wo rtrt •

If the source lines are prepared on a medium other than cards, it is not necessary that
all 80 columns appear. The line may be terminated at any point by a carriage return.

Figure 1-1 illustrates the use of these fields in preparing source language input.

1.1

,,------

..

1m
~

B
~
I

)

:~ COW\11U AlITOUMIOIC 11K.
"",,,,"'iA~ti'l"""'I'~

I -
! 'S4SI tb'o-(t,-~ w-oe. (.":)I,l ~2~

t.- ,.", eJJ a.810 'WI 9Il WS:ilIeJ
FORTRAN CODING FORM

PROGRAM {;)O A i'\ QAT 1(!' 5::.t9L UT I t9 ~ I GRAPHIC I ~ I 0 I tZJ I , l::r I 1. I PAGE f OF (

PROGRAMMER,~rs. PO T TG J;. I PUNCH IOH I 01/ lie:~ EY'"I,"YG'"IOfJ~ DATE q -7 t.(,-c FOR COMME~T

- FORTRAN STATEMENT ~N!"'C'l'O' sTArEMEl
~.AeEl

t 511110 15 20 25 3a 15 40 45 50 55 6U 6~ 10 12173 15 aD

1c I II IG. f.\l.t;,rJ. CAE:E, f: Ie I iAl-)-r's' At). l?:) 6:, .. I J _ .' , 1,._ .. I I J •. I • I ..J.. I

fn &. IX 'tJ QU A. bAtt I.e . " I . . I, I I " "

++-__I~ ... IIiIo...t_~:a.... .. l._""&U..uIWJ_ ... ;i ,e,. .=, '" ... +. I " _I-. ~ --_ _ -t-_

~~~~~~~~~~L-~~~~~~~ ____ ~ ____ ~~ ____ ~~ __ ~~~. __ ~~~ ..... _____ •. I " I ~~I .-L~+-__ .~ __ ~~~ 

~~~~a.~~~~~_~ __ ~~ ____ ~ __ '~~~-.~ __ ~_.~ __ ee4-~ ~j 

" A r
I.E {,\l!L >t ril, 4tO. ,TO. Il . I , I ·.-LL _. lC"l

• CoM' I •
MIO b!i~ ,'S,oOTS) _ I ~ + • .1. • j..-j

')1 'tAL I .. , .-......1....1... -+'.,....., "'-

~~~~~.L~~~~ ____ ~~_.~~A-~~~~~_.~._L~~~A-I~·~~ .. ~_~ .-l~~~~~~~~~h-~~~~~~ ..... ~ 
I . . . • . . , 

~~~~~ .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __ ~~~~~~~~~ ..... ~~~~AW~~~~~~L-+-+ ..... ~L-~ 

....... -........ --~-...
fo:II _~~~~ ... __ ... __ ___Ae.. _e-'-' __ , __ _..a._ .. ~........... _ I ~~.....J..eO.c .. ,

...... ..M __ Ileel. ~ ~_.-.;-..'-yl.-lo~~-::a... __ L---.....J --..... • L • L _ L L

f-... _..zJ~~IJ-o I..oiIdlCL IIl.UitllU.J.IIL..J.~"-~U..c:D""'_~.lIS.n.J ~&.J.....J~'-~ I..J..~ •; • ' __ 1 ! I ••

__ 01&.1 __ __ _J __ ~. .. I '-_. _, -J-.... ..• ..

~ IaIe...::_.-...... ...,,_ _.-.L. .. I '!.... "_ I I ... • •L.eI ___ l--... 1 __ ~--

•. I . ,J--.. .J , •• ; ---J,._ L........ I.. • I. .. l

•• 't.-..I-&.J 1.. • J. I "_' 1 L-...., I ••. _

I II 11.. L. . • . L· t ,-
I· • _ I _ ... , __ I __ I __ . I __ _

Figure 1-1 Sample Program
,.C~~~I/T~TIOfL

,. :~ ~~Wjii'-~,~~:;-~·+-:F~-.;;:;:--f;- .. ""-,'P:-,~-- .-- -".;.' ,~;c.r'- ~"';~,_~;,~,_~.,~

t SNX' t t 'crr '1' t, t u tt tt #'1 t t t ,., . (t" 'hd ' . t , t! ttt t ttl ttrt Ptt $

Q

o

COMPUTER AUTOMATION, INC, ~

COMMENTS

Any line with a C in column 1 is a comment line and hns no effect on the program,
The remaining columns are'ignored and may contain anything in any position. We
recommend liberal use of comments to document the operation of progrnms. Comment
lines may appear anywhere except within a continued statement (i. e. preceding
continuation lines).

CONDITIONAL COMPILATION

For debugging purposes. a statement may be written on a line with an X in column 1.
How the statement is treated then depends on an option specified at the time the
program is compiled (see chapter 9). If the XON option is specified. the X is ignored
and the statement is processed normally. If the XON option is Not specified. the X is'
interpreted as if it were a C; that is, the line becomes a comment line,

During checkout, additional debugging lines can be included (for example, interme
diate output) with an X in column 1. While the XON option is in force, these lines
will take effect, When checkout is complete, the program can be recompiled without
the XON option and these additional lines will become comments. As such, they both
document the debugging that was used and can be reinstated quickly if needed.

A statement beginning on an X line may be continued only on an X line. A normal
statement, however, may have a continuation line that either has an X or does not.
For example:

-C FOR COMME T·

FORTRAN STATEMENT

30 35 40 45 50

.

1.3

r 1''1 'WM' f'utkw,**iMY"fj' t I'. ttttM'" #'#btlwnt 1 t t Itt: ;WWUN'M" H 'f.W" U N" Hide» ,,' ft' S' tt··

.~. ~ ·-:---l
COMPUT£R AUTOMATION. INC. l:::1!:::t

CHARACTER SET

ComputeT' Automation FORTRAN IV liccepts source program~ (Hnd datu) in the ASCII
(Americnn Standard Code for. Information Interchange) standard chHructcl' set. The
chtlracters normally found in source programs arc the 26 letters. the 1 () deeimnl
digits. Hnd the follow ing special charactnrs:

+ - '" / = < > () . , : ' # $ @ t blank

Other special characters may appear, for example in alphanumeric strings. but only
the following are printable on all Computer Automation supported devices:

? % & " -
The ASCII character set is shown in appendix C.

In some examples in this manual, the character blank is represented by b, so that
it is possible to see exactly how many there are.

SAMPLE PROGRAM

Figure 1-1 shows a sample FORTRAN program prepared on a typical FORTRAN
coding form. The lines with a C in column 1 are comments, Labels appear anywhere
in columns 1-5. Their value does not imply any q.rdering of statements. It is
simply an identification. The state~ents appear within columns 7-72. One of them
has a continuation line. marked in column 6.

This program computes the roots of a quadratic equation. according to the formula

-b +Vb2 -4ac
X= -

2a

o First it reads in the three coefficients, in a free form, separated by commas (or on
separate lines). If the discriminant is negative, indicating no real roots, a message,
is printed to that effect. Otherwise the two roots are evaluated and printed. The
program then waits for a signal from the computer operator to return to the beginning
and read in another set of coefficients.

This program is a main program. because it does not begin with a SUBROUTINE.
FUNCTION, or TASK statement. Therefore, when executed, processing automatically
begins at the first statement, which is the INPUT statement with the label 10.

1.4

-

k'" ¥ f

.... -..

o

o

"I

\."t h 'ff"'¥t±tt .. t'ap ftf'''iwti:Hwir" f", hat' #&"*':.'1 o '1.&'# e' t'N'U'tiS'tbti'thffl'''we# 't"'ff"W' ,

COMPUTER AUTOMATION. INC. ~

CHAPTER 2

ELEMENTS OF EXPRESSIONS

At the heart of the FORTRAN language is the computation of formulllR. This is
done with the assignment statement I which computes a value and assigns it to a
variable. For example I

x = 4.5 + SIN (ALPHA)

The value to be computed is represented, on the right side of the equal sign, by an
expression. The elements of an expression are connected by various operators.
described in the next chapter. These elements may be one of three things: a
constant, a variable, or a function reference. In the above example. 4.5 is a
constant. It is referenced by value and never changes. There are various types
of constants, as described below. X and ALPHA are variables. They are like
"unknowns" in a formula. Their value can change. either by being input or by
being assigned a value, as with X above. SIN (ALPHA) is a function reference. calling
the function SIN with the one argument ALPHA.

NAMES

Variables and functions are identified by name (as are subroutines and COMMON
blocks. described in subsequent chapters). A FORTRAN name must begin with a
letter and may contain letters and digits. A name may be of any length. but only the
first six characters are significant. Names longer than six characters may be used
to improve readability. but care must be taken that no two of them have the same first
six characters.

Examples:

X A R234 NUMBER MASSACHUSETTS

In the last case. only the first six characters. MASSAC are recognized. so a name
such as MASS ACTION would be considered identical. Note that within names (as in
most places in FORTRAN). blanks are ignored, so MASS ACTION is the same as
MASSACTION.

Computer Automation FORTRAN IV has no reserved names that are unavailable to the
user. However. to avoid ambiguity we recommend that you avoid names that are the
same as FORTRAN commands (e. g. READ. DO, IF) .

2.1

.. '

i if '.,d-.' #H.rl 'f rt ¥: r it "ri1HTOOIKww.'ttftf#ifI'B'WW' t p'Fffi"fe¥'" rAW '& Hi"
ttMb'd tt'""d'rih1"PNY 'ti· tt nt'ft"W$t'me''ji 'tr'O''H.'"WU

(OMPUTfR AUTOMATION. INC, ~

DATA TYPES

. ,

Computations in FORTRAN may be done in various modes. For each mode there is II

corresponding data type. In some cases types may be intermixed and in some they may
not. This is discussed in the next chapter. The most important distinction to keep in
mind is that between integer and floating point arithmetic,

Integer arithmetic deals only with integers (whole numbers) in a restricted range,
and is used mainly for counting and subscripting, It is the fastest form of arithmetic.
Floating point arithmetic handles the continuum of real numbers (including frRctional
values) over a wide range. However. the values are binary approximations to
decimal numbers, which mayor may not be exact. (There lire two degrees of preci
sion available, as described below,) Floating point computations are significantly
slower than integer computations.

Computer Automation FORTRAN IV includes these six data types, as described below:

Integer

Integer
Real
Double Precision

Complex
Logical
Alphanumeric String

Integer values must lie in the range -32768 to +32767; that is, -2 15 S n s +2 1b -1.
(The value +32768 cannot be represented on a 16-bit 2' s complement machine.
Therefore, be careful to use the negative value -32768 only when it stands alone,
such as on the right of an equal sign.) Examples of integer constants are:

1 27 -4197 o 30000

Normally, variables and functions whose names begin with I, J, K, L, M, or N are of
integer type. (This is called the IJKLMN rule.) It is possible, however, to explicitly
declare certain names to have a different type (see chapter €). In the absence of such
declarations, the following names would be integer:

NAKED MINI LSI2 I J KISMET

Integer constants may also be written in hexadecimal form or in Hollerith (alphanumeric)
form. These are described below.

Integer values occupy one word (16 bits) of machine storage.t

t
However, see Chapter 9 for the ANSI allocation option .

2.2

1

Vb ¢& 'WM'HH"t#' %'1' I"'.,{' M1 itt¥±" (1 t" ttH" ti'i''t"zq ... H'tW'WfiWrw ntf'#bi' 'Nwti"Wt'o/iW

COMPUTER AUTOMATION. INC. f:§:gJ
Real

Real arithmetic is the single Rrecision form of floating point arithmetic. Real values
must be in the range 1. 7 x 1038to 1. 47 x 10 - 39 • that is. 2127 to 2 -129,

or be zero. They may be positive or negative within this range. They huve a precision
of somewhat more than 7 significant digits, and they occupy two words (32 bits) of
storage.

Real constants may be written in any of several ways. To be recognized as floating
point. they must have either a decimal point or an exponent included. An exponent
is a power of ten by which the value is to be multiplied. It follows the numeric value
and consists of the letter E and a signed or unsigned integer. For example:

3874.73
6.601E15

12.
9.E-7

. 0099

.37E 31
O .
93E+6

In the case of 93E+6. this represents 93 x 106 • or 93.000.000. and could equally well
be written as 93000000. or . 93E8. Note that the plus sign preceding the exponent o value is optional. and that the decimal point is not required if there is an exponent.

o

Real constants may be written with any number of digits. but only the first seven
significant ones will be processed. It is permissible. however. to write real constants
such as:

123456000000.0 or .0000054321

Unless declared otherwise, variables and functions whose names begin with anything
other than I, J, K. L. M. or N are of real type. For example:

ALPHA HEIGHT OHMS z SNEWO FROG

Double Precision

Double precision arithmetic is the same as real arithmetic. except that it carries about
17 digits of precision. A double precision value must lie in the same range as a
real value. It occupies four words (64 bits) of storage.

A double precision constant must have a special exponent to identify it as double
precision. This exponent is the same as for real except that a D is used instead of an
E. Since the exponent is always present. a decimal point need not be. The following
are double precision constants:

2.718281828459046DO l.D 19 .3D-10 7148838830D-7

2.3

, '=.'t m w t·, w; "r " tttt't taw t t Ott S'

COMPUTER AUTOMATION. INC. ~

H •• tNt&sttttd * t 'mw

, .

Note in the first case that an exponent of zero is used, since there must be an exponent.
The mere presence of more than seven digits does not make R constant double precision.
However, if a floating point constant appears in a double precision expression, it will
automatically become a double precision constant, regardless of how many digits were
written or whether a "D" exponent was used (see "Mixed Mode Expressions" in the
next chapter). There is also an Automatic Double Precision option that will force all
floating point constants into double precision (see below)

. Since the IJKLMN rule classifies all names as either integer or real, a variable or
'function can only be double precision if it is explicitly declared to be so ,t as
described in chapter 6. In this case, it makes no difference what letter the name
begins with, although "D" is mnemonically pleasing.

Complex

Complex numbers consist of a real and imaginary part, in that order. Each part is
itself a single precision (real) value, with the precision and range of a real value.
Complex quantities occupy four words (64 bits) of storage. The first two words are
the real part, the second two are the imaginary part.

Complex constants are written with the real and imaginary parts separated by a comma
and enclosed in parentheses. For example,

(3.37,2.0)

represents the complex number 3. 37+2i, where i = "-1. Other complex constants:

(.OOl,lE-7) (-4.,+7.5) (1. ,0.) (0. ,1.)

Note that the latter two examples, although represented in complex form, have values
that are purely real ane purely imaginary, respectively ..

As with double precision, a variable or function can only be complex if its name is
. explicitly declared so (except for a few library functions). "C il is often used as the
first letter of such names.

Logical

This is the last of the unique types. The others are variations of one sort or another.
Logical is a very special type that is not numeric at all. It is used for the testing of

t Certain library functions, such as DSQRT, are automatically recognized to be double
precision. See chapter 7.

2.4

I,
r.i
~i
-~

il ',-
I::!
'j

o

. .
etttbttVRtttin I:W·,tht"S It t·

COMPUTER AUTOMATION. INC. ~

conditions and has only the values "true" and "false". A logical quantity occupie~
one word (16 bits) of storage. However. only the first bit (the sign bit) is significant.
It is 1 when the value is "true". 0 when it is "false".

To a large extent. logical type is used mainly for testing th£: result of relational
expressions that compare numeric values ~ For example. the statement

IF (X+Y >3.5) STOP

contains no variables or constants of logical type. but the relational expression
(X+Y > 3.5) has a logical value of "true i, or "false". Howev~r. elements of logical type
may be used.

A logical constant may be either

.TRUE. or .FALSE.

. written exactly as shown with the periods at either end. Variables and functions are
logical only if their names are explicitly declared so. Logical quantities are combined
by means of a different set of operators than those used with numeric quantities. The
following chapter will describe logical expressions. .

Logical operations should not be confused with Boolean operations. in which a whole
. string of l' sand 0' s are ANDed or ORed together (see below. l!nder "Boolean
Operations") .

HexadeCimal

Integer constants may also be written in hexadecimal form. This is mainly useful
where the value is not numeric but is a bit pattern of some sort. e. g. for testing or
masking. or to represent an unusual alphanumeric charactel' that has no graphic o representation. A hexadecimal constant may be written in either of two forms:

I

.1

where: x
n

:xxxx or nZxxxx

is a hexadecimal digit. i. e. one of 0 1 2 3 4 5 6 7 8 9 ABC D E F
is the number of digits. between one and four

The : xxxx form is unique to Computer Automation and conforms with the representa
tion of hexadecimal constants in our other software. Note that no count of the digits
is required.

The nZxxxx form is used by some other FORTRAN systems, and is provided for
consistency with those. -

2.5

\Md

,

"""1

. "'TI''dttbtife "1" "g"&,'P '9"'" w'

COMPUTER AUTOMATION. INC. ~

A hexadecimal constant, since it is a form of integer constant, occupies one word
(16 bits) of storage. Thus there may be from one to four hexndecimal digits. If ther(~
are fewer than four, they are right justified. For example, : A8 is the same as 3Z0A 8

or : 00A8.

Chapter 6 explains the use of hexadecimal constants in DATA Statements. which is a
little different. There, such constants are not necessarily assumed to be integer nor
restricted to four digits.

Hollerith

, ,

As with hexadecimal, Hollerith constants are usually a special form of integer constant.
(There are two exceptions, described below.) Integer quantities are usually used for
representing alphanumeric characters. since there is no "alphanumeric" type of data.
A Hollerith constant occupies one word (16 bits) of storage, and therefore can hold two
alphanumeric characters of 8 bits each. Longer strings of characters can be written.
These are called alphanumeric strings, but cannot be used as elements of expressions.
(See the following section.)

A Hollerith constant is written:

nHaa

where: a is an alphanumeric character (see table C-l)

n indicates the number of characters, and must be 1 or 2

Note that the character blank is permissible in a Hollerith constant. -Therefore, this
is one of the few places where blanks are significant and cannot be introduced just
for readability. -

Note also that the alphanumeric character "0" is not the same as the binary value zero.
so for example, 2HOO is not the same as : 0000.

If a Hollerith constant has only one character, it is left-justified with a trailing blank.
Examples of some Hollerith constants and their hexadecimal equivalents:

2HXY = :D8D9
IH$ = :A4AO
2HOO = :BOBO
IH = :AOAO

The two places where a Hollerith constant is not treated as an integer constant are
standing alone on the right side of an equal sign (see chapter 3) I and in a DATA
statement (see chapter 6). In both of these cases, it is treated as an alphanumeric string.

2.6

-

--

r
\

0

o

r .
'tWS'rlt"#'flWtM'W'HV "ft .. eitt't.&ettH*t"$.. WtWYiWcU "'ttt'%tt'·"tr?rtlJ'Z rtf T b ;'£'="&d*

COMPUTtR AUTOMATION. INC, ~

Alphanumeric String

An alphanumeric string may be written in either of two WHYS:

where:

nHs or 's'

s is a string of alphanumeric characters, of length :s 255,
n is the number of characters

An alphanumeric string is not considered to have a data type and cannot be used in
the ordinary way as an element of an expression, It is simply a string of characters,

which occupies consecutive words in memory at two characters per word, It can
be used in the following situations, all of which are described in later chapters:

1. Standing alone on the right side of an equal sign (see chapter 3)

2 . In a DATA statement (see chapter 6)

3. As an argument to a subroutine or function (see chapter 7)

4. In the list of an OUTPUT statement, 's' form only (see chapter 5)

Within a string of the form's' , the quote character (') can be represented by two
consecutive quotes, For example, the characters 'it's done' can be written

"'IT"S DONE'"

As with Hollerith constants. blanks are significant within alphanumeric strings.

Examples:

'MISCELLANEOUS CHARACTERS'
, (A+B)/C:
22HACCORDING TO HIS NEED
5HAZAM!
lH?

Note that the last example could be used as either an alphanumeric string or a
Hollerith constant.

Boolean

Boolean operations are those in which logical operations (AND, OR, etc.) are performed
on a whole word full of l' sand 0' s. This is not a standard mode in FORTRAN, but can be
accomplished using hexadecimal data to set up the bits and the Boolean functions
(described in chapter 7) to perform the operations. I

2.7

I

, I

!

I

'#*te,eNtdlH rw'H tM:oit1t "Mr'i'ffi 'I 'en "1' k t W*Wdt't p'" 1 'M ',,' t' ¥ "t deM ,. t t '! =.!:hrttt WeffflWMd' -;#$ fa' g .-'.- ,-

COMPUT£R AUTOMATION. INC. .§]}
AUTOMATIC DOUBLE PRECISION

A compiler option is available to automatically convert all real (single precision)
quantities and operations to double precision. so that constants, variables, and
functions do not have to be changed in the source program in order to obtain more than
7 digits accuracy. The ADP option is described in chapter 9.

VARIABLES

Variables are identified by name and can change value during the program. A
variable always has one of the five types, integer, real, double precision. complex,
or logical, and can' only assume values within the range specified for that data type.
(Any type of variable may contain an alphanumeric string, though integer variables
are recommended.) Unless declared otherwise by a type statement (see chapter 6) •

a variable is integer if it begins with I, J, K, L, M, or N, and real otherwise.

There are two kinds of variables, simple variables (also called scalar variables)
and arrays. A simple variable is a single value and is referenced by its name, as
illustrated in previous examples. E. g. N, ROOT, DHO, VOLUME, CAPACITY.

Arrays

An array is a set of values. It has a name and a type. just like a simple variable.
Each value is identified by its position within the array. For example, the weights
of ten items might be contained in an array called WEIGHT with ten positions. The
first value would then be WEIGHT (1), the second WEIGHT (2), and so on to WEIGHT (10).

An array may have more than one dimension. A matrix is a two-dimensional array,
and its values are identified by two positions, the first within the column and the
second within the row. For example, the temperatures at twelve points on a 3x4 grid
could be assigned to a 3x4 array called T. Its elements would then be:

T(1,I)
T (2 ,I)
T(3,1)

T (1,2)
T (2,2)
T(3,2)

T (1. 3)

T (2 ,3)
T(3,3)

T(1.4)
T (2,4)
T(3,4)

In Computer Automation FORTRAN IVan array may have any number of dimensions.
Chapter 6 discusses the declaration of array dimensions, including lower and upper
bounds and how arrays are stored in memory. .

Array Elements

An individual element of an array is called an array element. It is identified by the name
of the array followed by subscripts enclosed in parentheses and separated by commas.
There must be the same number of subscripts as the array has dimensions.
Thus an array element looks like:

2.8

;1
J i

-.

o

where

v (8 1 ' s 2' ... , 8 n) I

V IS the name of the array
s i8 a subscript expression

COMPUTER AUTOMATION. INC. ~

n is the numb~r of dimensions declared for the array

In most cases where a simple variable can appear, such as on the left side of an
equal sign, an array element is equivalent.

Subscripts

A subscript may be any integer expression. (Many FORTRANs restrict subscripts
to a limited form of expression.) In particular. a subscript may itself be subscripted.
This allows an entry in one array to identify the position of an entry in another array,
and so on. Examples of array elements. with subscripts:

A(3) MM(J) TEMP (3 ,l+K-2*LAST)
COORD(! ,J ,K,L) THREAD (LIST (MM (J)-K)+2) LIMIT (-1)

Negative or zero subscripting. as shown in the last example, requires special
dimensioning with a lower bound less than 1 (see chapter 6) .

FUNCTIONS

Functions are subprograms that can be referenced as elements of an expression. A
function acts on one or more quantities, called its arguments, and produces a single
quantity, called the function value. For example, ATAN2 is the name of a library
function that computes an arctangent. given the ordinate and abscissa. AT AN2 (Y • 1. 0)
is a function reference representing a specific value. namely the arctangent of Y and
1. O.

A function reference. then I consists of the function name followed by the arguments o enclosed in parentheses:

where:

f (a 1 • a 2 • .•• • an)

f is the name of the function
n is the number of arguments
a is an argument.

Arguments may be constants, variables, expressions. or the names of arrays or
subprograms (see chapter 7) •

Except for certain library functions, the IJKLMN rule applies to the type of function
names. For convenience. the double precision and complex library functions (e. g .
DA T AN2) are automatically recognized as having a special type. The type of a function
indicates the type of its resultant value.

2.9

"

COMPUTER AUTOMATION. INC. §]1

In addition to library functions, the user can define his own functions, either in
FORTRAN (with the FUNCTION statement or the statement function definition, described
in chapter 7) or in assembly language (as most library functions arc written). If
they are to have a type other than integer or real, they will have to be explicitly
declared in a type statement.

Examples of function references:

F(X) SQRT(7*A+BETA) DISTANCE (RATE ,TIME)
MAX 0 (N+5 ,J **2,1000) F (F (X»

2.10

o

--

0 ,
"

i

.
' .. ',·.··,I

i r
\1

W trtt't'ttdt fib" ±t#df ,.' r I,' ert b '#ter tt t • t't r t 'toe 'gtet .

COMPUTER AUTOMATION. INC. ~ '----.

CHAPTER 3

EXPRESSIONS AND ASSIGNMENTS

There are three quite different kinds of expressions: arithmetic, relational, and
logical. Each is made up of operands separated by operators. The operands may be
constants, variables, or function references, or they may be sub~xpressions.
A subexpression is an expression enclosed in parentheses. In some cases, an operator
can be unary and act on only one operand, rather than separating two operands (for
example, "_" to indicate a negative value) .

ARITHMETIC EXPRESSIONS

An arithmetic expression is made up of integer, real, double precision, and/or
complex operands, combined by arithmetic operators, which are:

Operator

+

*
/

** or

Meaning

Addition or Positive
Subtraction or Negative
Multiplication
Division

+ Exponentiation t

Two operators may not appear in a row. To express Y*-3, you must write Y*(-3)
or -3*Y. ** is not considered two operators, but one.

Expressions can range from a single operand to long formulas of any complexity.
Some examples:

F(X)
3.1417
X+Y
(A+B) * (A-B)
RATE (J-1)+(GAMMA+1/RATE (J)-S. 72*(P+SQRT (R**2+T**2»)/OIST

Evaluation Hierarchy

Does the expression X+Y/Z mean (X+Y)/Z or X+(Y/Z)? In FORTRAN it means X+(Y/Z)
and this is determined by the hierarchy of operators, which is:

1. / ** (highest)
2. * and /
3. + and - (lowest)

t Complex exponentiation is only permitted to an integer power. See "Mixed Mode
Expressions" .

3.1

.i

1

'I

This means that the expression

T-U ** V * W

is interpreted as

tt

COMPUTER AUYOMATlON.INC. ~

,I T - «U * *V) * W)

Parentheses take precedence over all operators. Any sUbexpressions enclosed in
:1' parentheses are evaluated first and then treated as single operands.
::1

~I Successive operators of the same precedence are evaluated left to right. so that
i J /K/M*L means «J /K) /M) *L. This includes **. the exponentiation operator. For

,;1 example.
1;'1
~. !

2 ** 3 ** 2

is interpreted as

(2 ** 3) ** 2

which is the same as

2 ** (3 * 2)

and has the value 64. whereas

2 ** (3 ** 2)

would have the value 512. This is not consistent among FORTRANs. so we recommend
the use of parentheses to show exactly what you mean.

Note that when the results are equivalent. the compiler may reorder operations to obtain
more efficient object code. For example. E+F+G/H might be evaluated as G/H+E+F. To

-preserve desired groupings. use parentheses.

Mixed Mode Expressions

The type of an expression depends on the type of the operands in it. If it contains
only operands of one type. then it has that type. If it contains operands of more than
one type. it is called a mixed mode expression. Most mixed expressions are allowed.
but some are not. Some are allowed but not recommended. because of the varying
ways in which other FORTRANs treat them.

3.2

-

l'

o

o

ttM,¢!tt"tt5''$'tttt , .. ,.put'X"· 1"," : 'tiN' t" d t' W

COMPUTeR AUTOMATION. INC. ~

There is a precedence of types that determines the type of a mixed mode expression.
It is:

1. Complex (highest)

2. Double precision

3. Real

4. Integer (l°iest~
I •

With one exception, the type of an expressIon if the same as the highest type appenring
in it. The exception is that function argument~ are independent of the expression in
which the function reference appears. Th~y have no effect on the mode of the outer
expression.

Within a mixed mode expression, each operation is done in the higher mode of its two
operands. In general this means that the lower type operand is converted to the higher
type before being used. (In integer exponentiation, however, this is not necessary.
See below.) The order in which the operands are selected depends on the precedence
of the operators connecting them. (The order of evaluation is not affected by the
precedence of the ~ of the operands.) Higher precedence operations ar~' always
done first. For example, in:

x + J/K

the division is done first, in integer, with the fractional part truncated. Thpn the
~esult is converted to real and added to X. The same would be true if the expression
had been written:

J/K + X

When there is a succession of operands connected by operators of equal precedence,
they are grouped from the left, regardless of type. For example, in:

J+K+X

J is added to K in integer, then this is floated and added to X. All these operations
can be done "on the fly", without having to store intermediate results in temps. On
the other hand, if the expression had been written:

X+J+K

3.3

-- .. -----

COMPUTER AUTOMATION, INC. ~

the .J would be floated and added to X, and this result would be stored away so thAt K
could be floated and then added to it. This can affect not only the speed but the results.
so keep it in mind when writing mixed mode expressions. U sunBy it is a ~ood idea to
start with the lowest type operands·~n the left Ilnd proceed to the highest type on the
right.

Parentheses have the highest precedence and can be used to control the modes in which
operations get done. For example:

X + (J+K)

causes the J +K to be done in integer.

U suaUy each mixed mode operation requires the lower type operand to be converted
first. Exponentiation to an integer power is an exception. For ex~mple:

X ** K

is done by repeated mUltiplication of X by itself K times, rather than by using
logarithm and exponential, which would be required by:

X ** FLOAT (K)

The ordinary numeric types, integer, real, and double precision, may be mixed in
any way, using all of the operators. Complex quantities may be mixed with the other
three when using add, subract, multiply, or divide, but the only complex
exp~nentiation allowed is complex to an integer power. Assuming CPX is complex:

i

3*CPX**(J+K)

CPX**2. () I
A**(1.0,l.())
CPX**CPX

is legnl

are not legal

The latter is the only case where two operands of the same type may not be combined.

Logical quantities may not appear as operands in arithmetic expressions, since they
have no numeric value.

Here are some guidelines about using mixed mode expressions:

1 . Integer operations are the fastest, so to take advantage of this, all
operands in an expression should be integer.

2. For maximum efficiency w hen operands are of various types, group the
lower types together, either left to right or with parentheses. For
example:

3.4

o

-I

Me.Wet t M 't'WItf!'h"" :ltti±Wt tiWO -.

COMPUTER AUTOMATION. INC ~

33*N/X*CPX

is more efficient than:

CPX*33*N/X

On the other hand I if 33*N is liable to overflow maximum integer si~e,
it may be preferable to sacrifice s~eed and do the multiplication in
floating point by writing:

N/X*33*CPX

3. Constants that need to be converted to a higher type will be converted
at compile time I rather than during execution. For example:

4.

5.

6.

3/X+l0 is interpreted as 3.0/X+l0.

This also means that constants that need to be double precision will
automatically be double precision I even though they do not have a D
exponent. For example, if DP is double precision:

.3 + DP is equivalent to .3DO+DP

and the .3 will have the full 16 digits of accuracy.

When variables or function references of a lower type are used, they
will have to be converted during execution, at some cost in space and
time.

If complex and double precision quantities are mixed. the double
precision ones will be converted to complex. thus losing their extra
precision.

Be aware that other FORTRAN systems may handle mixed mode arithmetic
differently. particularly in cases such as:

J/K + X

Other FORTRANs may do all operations in the highest type in the whole
expression. rather than in the higher type of their two operands . Thus
in the above case the division would be done in real mode. not integer.
We think it best to avoid situations of this sort.

3.5

I

I
,'·1

I

«)

"I

(OMPUTER AUTOMATION. INC. ~

Arithmetic Overflow

Chapter 2 discussed the runges of values for numeric quantities. If fi value exceeds
the proper range, one of the following actions is taken, depending on the type and the
context:

1. In source pl'ogrums, cOnstuntH thnt urc too lllr~c or too Hlllall al'(~
diugnosed fiS errors during compilation.

2. Input values read in at run time are also diagnosed if out of range.

3.

4.

Integer overflow resulting from calculu~ions [It run time is ignored.
The computer automatically returns thellower 16 bits. Therefore,
if you use large integer values. test th~m where necessary to avoid

I overflow. !

Floating overflow at run time, either from arithmetic op(~rntions (add.
multiply. etc.) or from mathematical functions (e. V.. exponential).
produces 11 diagnostic. In addition. the mllximum possible value
(of the appropriate sign) is substituteci. lind execution continues.

5. Floating underflow at run time (magnitude too small) results in Ii

zero value and no error message.

RELATIONAL EXPRESSIONS

A relational expression compares two arithmetic expressions and produces a
logical result. i. e. true or false. according to whether the values have the rela
tionship specified. The relational operators are:

i

Operator Meaning

.LT. or < Less than

.GT. or >

.LE.

.GE.

.EQ.

.NE.

Grenter than
Less than or equlli
Greater than or equal
Equal
Not equal

The relational expression has the form:

e 1 r e 2

where: eland e 2

r
are integer. real, double precision, or complex expressions
is one of the relational operators shown above

3.6

f

0,

For example:

J .EQ. KEY
RADIUS**2 ::-- 1
X+Y .LE. X*y

COMPUTER AUTOMATION. INC. ~

In the first example, if J equals KEY the relational expression is true. otherwise it
is false.

If the two arithmetic expressions have different tvpes, each one is evaluated in its
own type and then the one with the lower type is iconverted to the higher type for
the comparison. If the value is a constant, the c<jmversion is done at compile time;
otherwise it must be done at run time. Thus: I

23 .GT. X is equivalent to 23. .GT. X

while
I/J .GE. SQRT(G)

causes the division to be performed in integer and the result converted to real in
order to compare with SQRT (G).

A complex value may only be compared for equal or not equal, since the others
are not meaningful. It may be compared with a non-complex value, in which case,
the latter acquires an imaginary part of zero.

Be careful about comparing floating point values for equality. Most values are binary
approximations, so during computations inaccuracy will creep into the low order
b~ts. This will make values that are essentially equal appear unequal. We can
guarantee. however, that constants that have an exact binary representation w ill be
etactly translated.

It is not permissible to concatenate relational operations, such as in
(A . LT. B . LT. C).

Relational expressions are a subset of logical expressions. They most often appear
in logical IF statements, such as

IF (N < 0) GO TO 5

as described in the next chapter.

LOGICAL EXPRESSIONS

Logical expressions are made up of logical operands and the three logical operators:

3.7

o

-I

Operator

.AND.

.OR.

. NOT.

COMPUTER AUTOMATION. INC ~

Meaning

True if both opcrnndsllre true
True if either or both operands arc true
True if single operand is false, false if operand is true .

The first two are binary operators ,-while the third is n unary operator.

Each element of a logical expression has the value true or false, and ench logical
operation produces one of those values. An element of H logical expression may be:

1.
2.
3.
4.
5.

A relational expression
A logical variable or function referenc~
A logical constant . i
Another logical expression enclosed in :parentheses
Any of the above, preceded by . NOT ..

Logical expressions most often contain relational expressions and are used in logical
IF statements, such as the one shown in the preGeding section. A more complicated
one, using some logical operators, would be:

IF (A> B .AND. (J .EQ. KEY .OR. J .EQ. NEWKEY)) GO TO 23

This logical expression has the value true if A is greater than B and .J equals either
KEY or NEWKEY. This double test on J cannot. be performed by writing:

J .EQ. (KEY .OR. NEWKEY)

becBl.-lse, first of all, KEY and NEW KEY are not logical values and so cannot be
cotm~eted by .OR. , and secondly, if they were logical values the sUbexpression
(KEY! .OR. NEWKEY) would have a logical value, not the integer value required
by the . EQ. operator.

The only time two logical operators may appear next to each other is w hen the second
is . NOT.. For example, assuming L is a logical variable:

N .EQ. 3 .AND .. NOT. L

Although less common than their use in IF statements, logical expressions may also
have their values assigned to logical variables (with the assignment statement,
described below), and these variables, as well as the constants . TRUE. and
. FALSE., may then be used in logical e:xpressions.

3.8

,I
I

c

COMPUTER AUTOMATION. INC. ~

Evaluation Hierarchy

As with arithmetic expressions t there is a hierarchy that determines in which order
logical operations will be performed. For example. the expression

.NOT. L1 .OR. L2--:AND. L3

might be interpreted as:

.NOT. (L1 .OR. (L2 .AND. L3» I

or: (,NOT. (L1 .OR. L2» .AND. L3

or various other ways. Actually it means

(.NOT. Ll) .OR. (L2 .AND. L3)

because the precedence of logical operators is:

1.
2.
3.

.NOT.

.AND.

.OR.

(highest)

(lowest)

Parentheses may of course be used to define how operands are to be grouped. Also.
logical expressions may contain relational expressions t which are evaluated first.

The relational expressions may contain arithmetic expressions which. in turn.
must be evaluated first. Thus the overall hierarchy of all operations can be
expressed as:

1. Parenthesized arithmetic subexpressions. from innermost out.
2. **
3. * and /
4. + and -

The relational operators. 5.
6.
7.

Parenthesized logical subexpressions. from innermost out.
.NOT.

8. .AND.
9. .OR.

Let us apply this hierarchy to an example containing all of the above operations.
Here L, P, Q, and R are logical:

L.OR .. NOT.P .AND. (Q.OR .R) .OR .A>B+C/D**(E-F)

At the final step t this is the OR of three operands. as shown below:

L .OR. «.NOT.P).AND.(Q.OR.R» .OR. (A>(B+(C/(D**(E-F»»)

3.9

"!

0,
i

COMPUTtR AUTOMATlON,INC. ~

ASSIGNMENT STATEMENT

The Ilssignment statement is the most importont stntcmcnt in FORTRAN. It sppeifit'S
most of thc computations that are to be pcrformed by 11 pl'ogr'nJll. It is writt('t1:

where:

v=c

v is a variable (simple or subseJ'ipted)
e is an exprcssion

,

This computes the value of e and assigns it to v. It h not exactly an equntion,
since it does not declare that v is equal to e; it .setsl v equal to e. Thus a statement

- !~

, I
such as:

K = K - 3

is not a contradiction; it simply decreases the Gurrent value of K by 3.

Some examples:

x=y
N = 3*MAX 0 O,J)
MM(I) = Ml\HI-l) + K*2
FLAG = . TRUE.
TIME (LIME) = GOODOLD*GONEBY

E = M * C**2

Usually the expression has the same type as the variable. If it does not, then it is
computed independently of the variable (i. e. in its own mode) and converted to the
variable's type before assigning. This is called a mixed mode assignment and, as
with ;mixed mode expressions, some cases are allowed and others are not. In
particular, a logical expression can be assigned only to a logical variable. A
com~lex value cannot be assigned to a lower numeric type (such as real) , because
this tnvol ves the loss of its imaginary part and, since this might happen inadvertently.
n warning diagnostic is more useful here. There is a library function provided for
doing complex to real conversions.

If the entire expression on the right of an equal sign consists of a single constant
(of a different type), then the constant will be converted at compile time. Otherwise
the conversion must be done at run time. For example:

x=o is equivalent to x = 0.0

A special case is made for alphanumeric string constants that appear alone to the
right of an equal sign. These are considered to have no type and are simply stored
into the variable regardless of its type. The string constant must not be longer than
can be contained in the variable. Since character strings have two characters per
word, this means the maximum size is two characters for integer and logical variables,
four characters for real, and eight for double precision and complex. If the string is
shorter than the maximum length, it is stored beginning at the left (first word, first
byte) of the variable, and the rest of the variable is filled out with blanks.

3.10

I

I

~I
!

o

o

COMPUT£R AUTOMATION. IN<. ~

We recommend integer variables (or arrays) for working with alphanumeric chnracters!
for several reasons:

1. It is hard to work with the individual words of a multi -word flouting
point variable.

2. The arithmetic operations. such as addition and multiplication. are not
meaningful in floating point. since part of the word is a mantissa and
part an expone~t.

3. The Boolean functions. which can bJ u~ed for masking out certain
characters. operate only on integer ~uantities.

Note that in this situation. a Hollerith constant is' consideted a string constant, so
the statement:

x = 2HAB

is quite different from the two statements:

J = 2HAB
X=J

since in the second case J will be converted to floating point. destroying any
resemblance to alphanumeric characters.

T~ble 3-1 shows the permissible mixtures of type in an assignment statement.

3.11

0\
I

COMPUTER AUTOMATION. INC. ~

Tuble 3-1 Perrr.issible tyP(~S in mixed assignments
-

'~'-~~ Expression Type

Variable
Type

integer real double <j!omplex logical string
I

precision
!

! ,
integer D T T I ---

I
--- D

real F D P --- --- D

double ,

precision F P D --- --- D
~-

complex F,R R P,R D - -- D

logiclli -. -- --- -- --- D D

,
Abbreviations:

D Direct assignment, no conversion.
F The integer is converted to floating point of the appropriate

precision.
T The flouting point vulue is truncated to integer. Any fractional

part is thrown away. which always results in a truncation
towards zero. In other words, 33.6 is truncated to 33. and
-98.999 is truncated to -98. not to -99. If the floating point
value is too large to be expressed in integer. then it is truncated
at the left end as well, with meaningless results. As in other
cases of Integ'er overflow. no error diagnostic is generated.

P Increase or decrease the precision. Conversion from double
precision to real is not rounded, but truncated.

R The value of the expression becomes the real part; the imaginary
part is zero.

---~

3.12

l.·.·11
,~'

o

o

COMPUTER AUTOMATION. INC. ~

CHAPTER 4

CONTROL STATEMENTS

FORTRAN statements are nerma:nyexecuted in the order written, one lifter another.
Control statements nre used to change this order by transferring control to some
point other than the following statement.

STA TEMENT LABELS '
i

Statement labels (also called statement numtiers~ are used to identify statements so that
control can be transferred to them from elsewhete. A label is a decimal integer of up
to five digits (i. e. from 1 to 99999). As shown In chapter 1, the label appears in the
first five columns of the source line, which:is called the label field, As with integer
constants, blanks and leading zeros are ignored.

Although a statement label is a number, its value has no significance and implies no
ordering. It is simply an identifying label. Two statements may not have the same label.

Most of the control statements reference labels to identify a transfer point. READ and
WRITE statements ulso reference the labels of FORMAT statements, although this doc~ not
involve any actual transfer.

GO TO STATEMENTS

9nconditional GO TO Statement
I

~he GO TO statement transfers control to another statement. It has the form:

where:

For example:

GO TO k

k is a statement label

GO TO 51
17 N = -N
51 OUTPUT N

The statement labeled 17 would be skipped.

4.1

,I
,,'

o

I
o

COMPUTER AUTOMATION. INC. ~

computed GO TO Statement

The computed GO TO tl'nnsfcrs control to one of severnl plnces depcndinR' 011 tlw
value of n variable, It is written:

GO TO (k 1 • k 2 • . ..• -k~). v

where: k· I is a statement label
v is a simple (unsubscripted) integer variable whose value is

between 1 and n.

i

The comma before v is optional and may be omitted. !

If the value of v is j. then the GO TO transfers to laJel k j
greater than n. this is diagnosed as an error at run time.

Example:

GO TO (14,3,999,80), KEY

If jis less than 1 or

If KEY=1, the tranSfer is to statement number 14, if KEY=2 to statement number 3. and
so on.

Assigned GO TO Statement

The assigned GO TO also enables transfer to various labels. but without having to know
what those labels mny be. Instead of specifying any statement numbers. this statement
specifies n variable. which is expected to contain the location of some stntement label.

I

ElseWjherc in the program. an ASSIGN statement (see below) is used to assign the
desir¢d label to the variable. The assigned GO TO has the form:

I .

I

where:

GO TO v

v is a simple integer variable that has previously been assigned a label
using the ASSIGN statement.

This feature can be used to make subroutines out of sections of the program. rather
than making each section a separate program and using CALL and RETURN (which are
described below). A section could end with the statement

GO TO JUMP BACK

Before transferring to this section, then, the desired return point would be assigned
to the variable JUMP BACK.

4.2

f·

COMPUTER AUTOMATION. INC. ~

Other FORTRANs, including the ANSI standord. require that 011 of the possible
destination labels be listed in the assigned GO TO stntement, as shown below.

'- . Computer Automation FORTRAN IV accepts this form. but does not require it. Example:

GO TO M. (23.9.2)

Here 23. 9. and 2 are the only labels that may legally have been assigned to M. The
comma following the variable is optional. While a diagnostic will be generated at
compile time if an illegal label is specified. no testing will be performed on the value
assigned to M at run-time. I

ASSIGN STATEMENT
-- -j

The ASSIGN statement is used to assign a statement label to a variable. and has the o form:

o

ASSIGN k TO v

where: k is a statement label
v is a simple integer variable

For example. the "subroutine" described in the previous section ended with an
assigned GO TO via the variable JUMP BACK. Before transferring there. you would
use an ASSIGN. such as:

ASSIGN 47 TO JUMP BACK

Tfhe assigned GO TO would then transfer to statement label 47.
I

The label that is assigned must lie in the same program as the assigned GO TO. It is
not permissible. for example. to assign a variable in one program. allocate the
variable in COMMON storage. and then transfer to it from another program.

Also keep in mind that assigning a label is quite different from assigning a value
with an assignment statement. The statement

NUEVE = 9

is not equivalent to

ASSIGN 9 TO NUEVE

since the 9 in the former case is not a label but a value. Attempting an assigned GO TO
on such a variable would be meaningless and disastrous.

4.3

I
I
I

I ,

o
I

(OMPUT£R AUTOMATION. INC, ~

Conversely, it is also not meaningful to do arithmetic on H vuriable that hus been
assigned by an ASSIGN statement. For example, the stnh?mcnts:

ASSIGN 8691 TO NMR
NMR = NMR + 4

would cause the value of NMR to be unpredictable.

IF STATEMENTS

Logical IF Statement

The logical IF statement tests the truth of a logic;al expression to determine whether
or not to execute another statement. If that other statement is a GO TO, this acts as
a conditional transfer. The logical IF is written:

IF (e) s

where: e is a logical expression.
s is any executable statement other than n DO or another logical IF .

If e is true, the statement s is executed; otherwise it is skipped. In either case,
the next statement executed is the one following the IF, unless statement s causes
a transfer elsewhere. Often the expression e is a relational expression or several
relational expressions combined by .AND. and . OR.. Logical variables, constants.
and f~nction references may appear too.

I
Examres:

IF (A:--B) OUTPUT 'A TOO LARGE: ' ,A

If A is greater than B (i. e. the relationnl expression A' B is true), the program
outputs a message and the value of A; otherwise it does not. In the following example,
ERROR is a logical variable:

IF (ERROR .OR. N .EQ. 10) GO TO 31

If ERROR was previously set true or if N equals 10, the GO TO statement is executed
and control does not fall through to the succeeding statement.

A logical IF cannot control more than one statement. To achieve this effect, you have
to reverse the test and jump around the several statements. as shown here:

4.4

o

c

IF (TEMP .LE. 99) GO TO 7
FEVER = . TRUE.
OUTPUT TEMP I NAME

7 CG = .55555* (TEMP"-32)

COMPUTER AUTOMATION. INC. ~

Arithmetic IF Statement

An arithmetic IF statement always transfers control to one of three labels, depending on
whether the value of an arithmetic expression i~ negative, zero, or positive. It has
the form: I

where:

IF (e) k k k neg' zero' pos
. I

e
kneg
k zero
kpos

is an integer, real, or'double precision expression.
is the statement label transferred to if e is negative.
is the label transferred to if e is zero.
is the label transferred to if e is positive.

For example:

IF (N) 99,2,7
IF (SIN (THETA) *VEL) 1000,2000,3000
IF (ALPHA) 6,10,6

In the last case, the negative and positive labels are the same, so this statement is
equivalent to:

IF (ALPHA .EQ. 0) GO TO 10
GO TO 6

1.'here are several points to keep in mind when deciding whether to use an arithmetic
IF or a logical IF. The arithmetic IF provides a three-way test. However, if only a
two-way test is needed, the logical IF is probably more readable. If you need to
compare two integer quantities, there is another consideration . ' You could write:

or:

IF (J<K) GO TO 5

IF (J-K) 5,6,6
6 next statement

4.5

I
I

"I
I

o

COMPUTER AUTOMATION. INC. ~

In the lotter CRse. however. if J is very large positiVI"' and K is very lllr~(' negotive.
the difference (J-K) may be too large to represent ond will overflow lind ellUHe on
incorrect test. The relational operator (<) Illways gives the correct nnSWt')'. but
generates slightly more object code,

The section on relational expression-s· in the previous chapter caution(~d against
testing for equality of floating point values. The same thing Applies to the zero test
in an arithmetic IF statement. especially if the expression involves 11 subtraction.

!
DO STATEMENT

I
The DO statement is used to control repetitive e'xecJtion of a group of statements.
For example. if you wanted to set to zero all elemenb of an array of size 50. you couJd
write:

J = 1
4 A(J) =- 0

J ::: J + 1
IF (J . LE. 50) GO TO 4

The same thing can be done in two statements using DO:

DO 2 .J = 1 • 50
2 A (J) = 0

This says. "Do the following statements, up to and including statement number 2,
first with J equal to 1, then with J equal to 2, then 3, and so on up to J=-50".

The general form of the DO statement is either of the following:
I
I DO k v=-m 1 , m2

DO k v=m"m2,m 3

where: k is the label of the statement that is to end the loop.
v is a simple integer variable.
m" m 2' and m3 are the DO parameters and must each be either a

simple integer variable or an integer constant (signed or unsigned) .

A comma may optionally be used to separate k and v.

This statement causes the following actions:

4.6

,
,

.:

o

o

1.

2.

3.

4.

COMPUTER AUTOMATION. INC. ~

Set the vllrinble v equnl to In l' V is culled the))0 control vurinble
or the 00 index. m1 is culled the tnitiul value.

Execute the statements following the DO. up to and including tho atntcrncnt
with label k. The.~~._statements constitute the range of n DO loop
(see also below) . '

Increment v by m3 . m3 is called the increment and must be greater
than zero. If it is not specified. iti automatically has the value 1.

Test whether v is now greater tha~ m2 • which is called the limit. .
If it is. the DO loop is finished. Proceed to the statement following;

, I

statement k. If v is still less than pr equal to m2 • go bl1ck to the
statement immediately following the DO statement and execute the
loop again. .

You can see that a DO loop will always be executed at least once. even though the
initial value is greater than the limit. For example, the DO loop:

DO 44 NR = 10,5

will be executed exactly once. It is a good idea to avoid writing DO statements like
this because some FORTRANs choose to execute intitially satisfied loops no times
instead of one time. .

DO loops are not allowed to run downwards instead of upwards; that is, the increment,
m3 ' may not be negative.

~ote that it is not necessary for the control variable to hit the limit exactly. It can
jlump over the limit and the loop will terminate as soon as it does so. For example,
tlhe loop:
!

DO 3, NAMA = -20.0, 6

will execute four times. with NAMA equal to -20, -14, -8, and --2. When NAMA
reaches +4, the loop will not be executed again.

In order to produce more efficient object code, there is one restriction on the para
meters of a DO. In step 4 above, the control variable is compared with the limit
using a subtract operation, which means that they must not differ by more than
32767. To put it another way:

4.7

j

o

!
o

COMPUTER AUTOMATION. INC. f3]1
DO Loop Ranges

The stutements executed ns part of a no loop (up to and including the termillal
statement) nre called the range of the DO loop. There ar(~ Rome ruleH l'nglll'ding
what you may and may not do withil'!_.!..h.:is range.

The terminal stutement (the one with label k) may be any executable statement exceptl

GO TO (of any form)
Arithmetic IF
DO
RETURN
STOP

If the terminal statement were a transfer, then control could never reach the loop
testing code. If it were a DO, then two loops wduld be incorrectly nested (see below) .
However, u DO loop may end on a logical IF, even when it contains any of the above
(except 00). because then there is a way to reach the loop testing code.

If it works out that the last statement in a DO loop needs to be a transfer that is not
allowed, there is a dummy statement called CONTINUE that can be used .instead as
the actual termination. For example:

Instead of You can write

~O 5 I = O,N DO 5 I = O,N .
5 IF (VECT (I)) 4, 6 ,6 IF (VECT (I» 4,5,5

5 CONTINUE
j

l'his provides an avenue for control to get to the loop testing code. The same thing
could be accomplished by writing:

DO 5 I = O,N . .
5 IF (VECT(1)<O) GO TO 4

Within the range of a DO loop, you must not alter the value of the control variable
(v) or any of the parameters (m 1 • m 2 ,m 3)' The DO statement needs to have complete
control over these; otherwise unpredictable actions may occur. On the other hand,
it is perfectly acceptable to use these values, as long as they are not changed. The
DO control variable is particularly useful, either as a subscript (to step through various
elements of an array) or as a counter. For example, you could set each element of a one
hundred position array equal to the value of its position using the following loop:

DO 13 I = 1 , 100
13 MM (1) = I

4.8

o

0 ,,' .,

COMPUTER AUTOMATION. INC. ~

It is also not permissible to jump into the range of a DO loop. The DO statement does
some special set-up for the loop that cannot be skipped over. On the other hnnd. it is
permissible to jump out of a DO loop before it has completed. For example. if n Hp(~ci/ll
situation occurs during a DO loop that makes it unnecessnry to do the rest of the loop.
you can transfer out instead of falling through the bottom of the loop. In this CHRO.

the DO control variable will have-"the proper value, namely the one it had at tho time
the transfer was made. This is not true on normal completion of a DO loop. If the
loop terminates normally. the value of the control variable becomes undefined and
should not be depended on. For example. in th~ loop:

DO 4 N=1.10 ·
· IF. (A(N)< 0) GO TO 20

· 4 A(N) =A(N) + MAX/3

10 OUTPUT N · · 20 OUTPUT N

the value of N at statement 20 would be somewhere between 1 and 10. The value of
N at statement 10 is unpredictable.

There is one exception to the rule that you cannot jump into a DO loop. If you first
jump out. and you make no changes to the DO index or parameters. you can jump back
in again and continue on with the loop. The part outside the loop is called the
extended range of the loop and is allowed by ANSI standard FORTRAN, but we do not
particularly recommend it. In most cases, the extended range can as easily be
included within the loop instead of outside. This is usually less confusing and may
produce more efficient object code.

I:t is permissible (and useful) for one DO Loop to lie within the range of another. These ,
are called nested loops. Nesting may extend to any level (like a group of smaller and
smaller boxes each inside the previous one) as long as each loop lies entirely within
the next outer one. That is. the ranges may not overlap. The following loops are
illegally nested:

DO 1 DO~ DO 5
DO 2 3 DO 4 DO 6

1 CONTINUE 4 CONTINUE DO 7
2 CONTINUE 6 CONTINUE

7 CONTINUE
5 CONTINUE

In the third example, loops 6 and 7 correctly lie within loop 5. but loop 7 does not
lie within loop 6.

The following loops are correctly nested:

4.9

il
~
';1

-i
I

*1

!.-]
h
~ I

o

o

I
i

1

i

COMPUTER AUTOMATION. INC ~

DO 1
D02-~

2 CO N..!.lli.!lliJ
1 CONTINUE

no 4
no 5.-----

D06~
G C () N'!:.lli!!1.LJ

5 CONT=I=N=U=I'==~ =~
DO 4 I

4 CONT:::I::::N=U::::E====--l
The second and third examples illustrate that two or more nested loops may terminate
on the same statement. When that happens, the compiler generates the various sets
of loop testing code in the proper order (inversely t? the order that the DOs appeared) .

I

The rules about jumping into and out of DO loopran~es 'apply in the same way when t,he
loops are nested. You cannot jump from an outer loop into an inner loop. If more thnn
one loop ends on the same statement, only the i~ner bne can jump to that statement.

I

The following example shows nested DOs used to multiply a 3x8 matrix -(A) by an
8x5 matrix (B), producing a 3x5 matrix (C). (The DIMENSION statement will be
described in chapter 6.)

DIMENSION A(3,8) , B(8,5) , C(3,5)
DO 2 J = 1 , ;)
DO 2 I = 1 , 3
C (I,J) = 0
DO 2 K = 1 , 8

2 C(I,J) = C(I,J) + A(I,K) * B(K,.J)

CONTINUE STATEMENT
-- I

This ~s a "do nothing" statement that only serves as a place to put a statement label for
the termination of a DO, when the DO would 'otherwise end on a transfer. The statement
is written:

CONTINUE

The discussion of DO ranges in the previous section contains an example of the use of
CONTINUE.

4 .10

o

o

I

··1

.1"
., .. , ,

COMPUTtIT AUTOMATION. INC.

CALL STATEMENT

This statement transfers control to a subroutine. The subroutine is a separate
program that may either be written in FORTRAN (see the SUBROUTINE statemont
in chapter 7) or in assembly language. The CALL mayor may not pass arguments
to the subroutine, depending on the form used:

or:

where:

CALL sub

CALL sub (a, , a2' ... , an)

sub
a.

I

I
I

is the name of the subroutine. . .

is an argument, which may be a constant, variable, expression,
or the name of an array or another subprogram. Arguments
are discussed in greater :detail in chapter 7.

I

A subroutine differs from a function in two ways. First, it may be called with no
arguments, while a function may not. Second, it does not return a value through
its name and so may not be used in an expression. In fact, a subroutine has no
data type associated with it. It is simply the name of a block of instructions to be
executed.

A subroutine can return values in a sense by storing them in its arguments.
Arguments to a subroutine may be either input arguments or output arguments (or
both), depending on what the subroutine does with them. For example, a subroutine
to, compute the roots of a quadratic equation might be called with:

I
i
I
I
!

CALL QUAD(A,B,C,Rl,R2)

w~1ere A. B, and C are set up before the CALL. The subroutine, QUAD. uses these
arguments to compute Rl and R2. and the calling program can then use Rl and R2.
Arguments should be modified in this way only if they are variables or arrays. An
example of an argument used for both input and output might be:

CALL ROUND (X,4)

which could round X to four digits and store the new value back into X.

4.11

'I Q

COMPUTER AUTOMATION, INC. ~

Examples of CALL statements:

CALL AVERAGE (X-Y ,A (I) *"'2 ,13. 7)
CALL ERROR
CALL OUTPUT (ALPHA , N, GE ,0)
CALL IIOME (GR4- 6633, 'I PI MOD E')

The last example shows the use of a long alphanumqric string as an argument. This
is described further in chapter 7 , I

RETURN STATEMENT ,

i
CALL is used to transfer to a subroutine. RETURN is used to get back. It can "get
back" from either a subroutine or a function written in FORTRAN. When it returns
from a subroutine to a CALL, it goes to the statement immediately following the CALL.
When it returns from a function to a function reference, it goes back to the point of
reference in an expression and supplies the function value', so that the rest of the
expression can be evaluated. RETURN is written as simply:

RETURN

In any FORTRAN subprogram (SUBROUTINE or FUNCTION), a RETURN statement
must be the last statement executed, It does not have to be physically the last
statement in the program. There may be several RETURNs in a program, each
having the same effect.

,
i

PAUSE STATEMENT
j

PAU~E is used to temporarily suspend execution. usually to allow the computer
operator to perform some specified action (such as mounting a tape or deciding
whether to continue). The operator can then signal the program to continue execution.
beginning with the statement immediately after the PAUSE.

A PAUSE statement types out "PAUSE" to the computer operator and will also display
a number to him:

where:

PAUSE
PAUSE n

(equivalent to PAUSE 0)

n is an unsigned decimal integer.

PAUSE may not be a meaningful operation in a real time environment. especially if
there is no computer operator and/or no display device.

4.12

o

I

I

o

COMPUTER AUTOMATION. INC. f3]1

STOP STATEMENT

STOP is written in the same two formats as PAUSE. namely:

STOP
STOP n

(equiv...alent to STOP 0)

where: n is an unsigned decimal integer.

I

STOP terminates execution of a program and cau:ses control to be returned to OS or RTX.
It is usually the last statement executed in a maih program. If it appears in a subprogram
control is not returned to the calling program. jrhe integer value will be output (if

possible) before termination. .

END STATEMENT

END must be the physically last statement in each program. It is not an executable
statement (such as STOP), but simply terminates compilation. However, if no
STOP or RETURN has been encountered, END will have the same effect as STOP in
a main program or RETURN in a subprogram. An END may be labeled.

The END statement introduces one restriction on the use of continuation lines.
Ordinarily statements may be broken at any point and continued on the next line.
However. once the compiler has found "END". it will not read another line to look
for continuation. Thus the statement:

END = 1.0

I
Will properly be recognized as an assignrnent statement, while:

will not.

END
2 = 1.0

4.13

'.

o

o

COMPUTER AUTOMATION. INC, f3]}

CHAPTER 5

INPUT /OUTPUT

INPUT /OUTPUT LISTS

There are several forms of input/output statements. All of them make usc of an
input/output list to specify the items to be proc~ssed. In an output statement these
items have their values output. while in an inp~t statement these items have new
values read into them. ' I '

I
Simple Lists

A simple list is composed of scalar variable~. array elements. and array names.
separated by commas. Parentheses may als.o be used to enclose groups of items
if you desire; this has no effect. (On DO-implied lists, below. parentheses are
mandatory.) The OUTPUT statement. described in the ,next section. also permits
constants to appear in the list. '

Examples of input/output lists:

X
J. MAX. MATRIX (3, 1..2)
ALPHA, B (J) • MATRIX • (RATE. TIME)
Z(1). Z(2), Z(3)

\1lhen an unsubscripted array name appears. it represents all of the elements in the
~rrny, one after another. The elements are taken in the same order that they are
stored in memory. (This is discussed in chapter 6.) Suppose that MATRIX is a
:]x2x2 array. Its elements would be processed in the following order:
!

MATRIX 0.1.1)
MATRIX (2 .1,1)
MATRIX (3 ,1.1)
MATRIX (I, 2.1)
MATRIX (2,2,1)
MATRIX (3,2.1)
MATRIX (1.1. 2)
MATRIX (2,1,2)
MATRIX (3,1,2)
MATRIX (1,2.2)
MATRIX (2,2,2)
MATRIX (3,2,2)

Note that it starts with the lowest value for each subscript and ends with the highest
value for each subscript. In between, the first subscript varies most rapidly and
the last subscript varies least rapidly. This is sometimes called "columnwise"

5.1

',' ! o

COMPUTER AUTOMATION. INC. §]1

ordering. because in a two-dimensional array, the element§ are taken by columns
rather than by rows. For example:

To process array elements in a different order. or to process only purt of the urray .
you hnve to specify the various elements I either in<iJ.ividuaUy or using DO control. ns
described below.

DO Controlled Lists

A DO controlled list is a simple list followed by, a comma and then by a DO control I
with all of this enclosed in parentheses. An I/O list DO control looks exactly like the
part of n DO stntement that follows "DO kIt I namely:

where: v is H simple integer variable.
m 1 • m 2 1m3 are the DO parameters I each either a simple integer

variable or an integer constant.

The "range" of an I/O DO control consists of the items in the simple list preceding
the no control. The meaning i,s then essentially the same as in the DO statement:
"Process these items over and over I first with v equal to m1 and then incrementing
v bym3 until it exceeds m 2 ." If m3 is not present I it is automatically 1.

I

For ~xample, the first five elements of the array X could be specified by writing:

II, (X (I). 1=1. 5)

o This htis exactly the same effect as writing:

x (1) ,X (2) ,X (3) ,X (4) ,X (5)

A DO controlled list, enclosed in parentheses. becomes a simple list item and can be
intermixed with other items as if it were a variable or array name. In particular.
this means that one DO controlled list can contain another one (as one of its simple
list items) . and this nesting can be continued to any level. This makes it possible
to step individually through each subscript range of a multi -dimensional array.

5.2

o

COMPUTER AUTOMATION. INC ~

For example. in the preceding section we showed how the 3x3 array A was proc(~ssed
columnwise when it appeared unsubscripted. You could do the samp thing by writing:

((A(J,K). J=1.3). K=1,3)

The inner loop is on J. causing the first subscript to vary most rapidly. Conversely.
if you wanted to print out the array by rows. you could write:

«A(J ,K), K=1,3). J=l ,3)

The DO control variable (as well as the other parameters) are available (materialized)
within the list and may be used as list items, bui only on output. Inputting into them
would change their values within a loop, which fS not allowed. For example, the
following list could print out the values in two l~O-position arrays, with each two
values preceded by the posit~on count:

(J, X(J). Y(J), J=l,lOO)

The DO index might even appear only as a list item. Suppose you wanted to print the
odd numbers from 1 to 25 as headings to a table. You could do this by writing:

(N, N = 1 .25 , 2)

This assumes, of course, the use of a WRITE statement and the proper formatting,
which will be described in subsequent sections.

On input, every list item assumes its new value as soon as it has been processed, so it
can be used right away such as for 11 subscript. For example:

J, ALPHA(J), K, BETA(J,K), MI, M2, (X(I) , I=MI,M2l

F~um FORM INPUT/OUTPUT

The standard form of input/output in FORTRAN involves the use of the READ and WRITE
statements and the FORMAT statement. The FORMAT statement is very ingenious and
can perform a lot of fancy editing, such as numbers in certain columns, decimal points
in certain positions, headings that line up, preceding dollar signs, etc. On the other
hand . its features, and the way they interface with the I/O list, are rather complicated
to learn, even in simple cases.

Many programs need only to get some values in and some answers out. in an under
standable way. The free form input/output statements in Computer Automation
FORTRAN IV serve this purpose. The OUTPUT statement prints out values of any
type in an appropriate fot'mat. It also prints character strings for identification.
The INPUT statement likewise can read in all types of data, in essentially the same,
variety of forms as can be used for constants in a source program.

5.3

COMPUTER AUTOMATION. INC. ~

OUTPUT Statement

The OUTPUT statement is written:

OUTPUT list

The list is as described in the previous section. In, addition, constants mlly nppeal' in
the list (see below) .

i
Integer values and real values are printed with ~ decimal point and six
significant digits (also an exponent if larger th~n 999999. or smaller than . 1) .

. Double precision is the same except with 16 signifidant digits, which also means
that an exponent is not needed until the value reaches 10 17 . Complex is output as
two reals. Logical produces either a T or an F.. Values are separated by commas,
not only for readability but also for symmetry with the INPUT statement (below),

0: which requires a comma separator.

! *". j VI

Values are printed across a line until there is not room for the next value. Then a
new line is begun. Line 'Nidth is dependant upon the listing device.

For example, the statement:

OUTPUT K, X (K) , ALPHA, AVOGADROS NUMBER

might produce the line:

12. 23.7141, .427000,

Herci is another exnmple, assuming the types shown:
I
I

LOGICAL L
DOUBLE PRECISION D
COMPLEX C
OUTPUT L, D, C

This might produce:

T, 40000000.00018375, 0.00000,

.602470E 24

1.00000

As described in the previous sections, an array name appearing without subscripts
represents all the elements of the array in storage order. DO control may also be
used on OUTPUT lists. For example:

OUTPUT (K, A (K) , K=3, 30,3)

In either case, array elements are output simply as a sequence of values (with as
many on each line as will fit), regardless of the array's dimensions.

Revised March 1975

!O

o

r_*g we

(OMPUT£R AUTOMATION. INC, ~

You may also use a constant in the list of an OUTPUT statement. This is provided
mainly to allow for alphanumeric string constants. although other kinds of constants
are acceptable too (except for a signed complex constant) .t

The string constant enables yout&"print messages indicating what is going on or
identifying other numeric values. For example:

OUTPUT 'ANALYSIS DONE', 'AVERAGE =',AV,'COEFS =',A,B.C
I

i
I

Each alphanumeric constant always begins on a new line.
following lines: !

ANALYSIS DONE
AVERAGE = 4.53700
COEFS = 2.00000.

I

0.00000

so this might produce the

Blank lines can be introduced by using strings consisting only of blanks:

OUTPUT 'BEGIN TABLE OF RATES'. ' " ' '. RATEI, RATE2

Note that the second blank string was needed to begin output on a different line from
the first blank string.

All output begins in column 2 of the output line. in order to avoid any vertical
carriage control. (See "Carriage Control for Printing" • later in this chapter.)

The OUTPUT statement always produces its output on the "standard output" device,
which is arbitrarily assigned the unit number 6. (See "Unit Assignments" • below.)
Ordinarily you need not be concerned about this. Each installation will have the
s~andard input and output units assigned to some particular devices. such as a
card reader and printer or both to a typewriter. If you want your output on some
other device. however. you have to reassign unit 6 at run time.

Another thing that you need not be concerned about, but which may be of some interest.
is the formats used by the OUTPUT statement. These are shown below and will be
described in detail in a subsequent section ("FORMAT Statement") .

Integer
Real
Double Precision
Complex
Logical

GI6.S.'.'
GI6.S.'.'
G33.I6.'.'
2(GI6.S.' ,')
LI6.' "

t Parentheses are always assumed to ehclose a sub-list of items. A complex constant
will thus be correctly processed as two real constants, but a sign before the left
parenthesis is not allowed: ,"

5.5

+1
!

tntte

o·

tt 1I ... »tW=':##' tttt't'#MtlrWtttil

COMPUTER AUTOMATION. INC. f3]l

The following comma is output on all but the last value on n line. Thcs(' formnts nre
all multiples of seven columns in width, so that numbers will tend to line up.

INPUT Statement

The INPUT statement has essentially the same form as the OUTPUT statement,

INPUT list

except that the list may not contain constants. :(It Joes not make sense to read in
a new value for a constant.) l
The INPUT statement reads as many values as there are items in the list. There
may be any number of input values on a line, separated by commas. If there is no
value on 11 line (i.e. it is blank), this is assumed to be a value of zero.

The processing of input values by the INPUT statement is more like that of constants
in a source program than it is like that of other formatted input (i. e. the READ
statement). For one thing, there is no fixed width for the values. They may be as
long as desired, terminating on comma or end-of-line. Also, blanks are not
significant; they are ignored. In other formatted input, embedded and trailing
blanks are usually treated as zeros. To avoid confusion, however, we recommend
that you avoid embedding blanks in input values. The line

2 3 4

may look like three values, but it is only one. Preferably, this one value should be
• I

wrlttf3n :

234

while three values should be written:

2, 3, 4

As an example, the statement:

INPUT A, B, L, M, X(L,M), R(5)

might read just the following line:

714.6, -31, 4,6, 0, 3E-7

or it might read these four lines with the same effect:

5 6

i
i

"'i

. 7146E3
-31. 0000,

[blank]

.0000003

COMPUTER AUTOMATION. INC, f3]1

4, 6.0

Note that the third line is blank, which indicates a value of zero. In g'Hnernl, II

new field begins at the start of each new line and at each comma. If no value is
found between there and the next comma or end-of-line, a zero value is assumed.
Thus the values above could also be representedl as:

or as:

714.6, -31.0, 4
.6, , 3E-7

714.600, -31, 4. , 6 ,
.0000003

,

This latter example illustrates the fact that you should not write a comma after the
last value on a line unless you intend a value of zero to follow it.

You can also see from the above examples that numeric values can be expressed in
a varie'ty of ways. Regardless of the type of the variable being input into, the

'-' input value can be an integer or have a decimal point or an exponent (either E or D) .

o

If necessary, the resulting value will be converted to the type of the variable. For
example, if a number with a decimal point is read into an integer variable, the
fr~ctional part will be thrown away.

!
C<pmplex values must be read in as two real values. Logical values may be any
stHng containing a T or F. The string is terminated by a comma or end-of-line.
If[neither a T or F has been found, F (false) is assumed. Thus the first three values
below are true, the remaining four false:

T, TRUE, . TRUE. , F, , FALSE, .FALSE.

Unsubscripted arrays may be used. There must then be enough values read in to
fill the array. Similarly DO controlled lists are also acceptable. For exampJe, if
V and Ware both ten-element arrays, the statement:

INPUT V, (W (J), J=l,5)

5.7

I
0'

o

(OMPUTER AUTOMATION. INC ~

would expect to find ten values for V and five for W (1) through W (5) .

If both the standard input and output are assigned to a typewriter console. thclI the
following statements could be used!~ .. a conversatioTwl manner to input vnltws lind
output results:

3 OUTPUT 'ENTER BASE AND EXPONENT'
INPUT X. N
Y = X ** N
OUTPUT 'X ** N = , Y " , ,
GO TO 3

This might result in the following:

(typed out)
(typed in)
(typed out)
(typed out)
(typed out)
(typed in)
(typed out)

etc.

ENTER BASE AND EXPONENT
4.7, 2
X ** N = 22.0900

ENTER BASE AND EXPONENT
62, 8

x ** N = .218340£ 15

The INPUT statement always reads from the standard input device, which is unit
number 5. Like the standard output unit (6), this is associated at each installation
with H particular device, but can be reassigned at run time.

UNl'r: ASSIGNMENTS
!

Whed you want to perform an input/output operation, it is necessary to specify
whnt dev ice the operation is to be performed on. With the free form I/O statements
just described. this is handled. automatically. INPUT always reads from unit 5,
OUTPUT al ways wr'ites OIl unit 6. For all other I/O stAtements, you must specify 11

unit number, which is an integer value from 1 to 99. Then, when your program is
loaded, the unit numbers you have used must be assigned to particular devices. Of
course, you can use units 5 and 6 (on READ and WRITE statements, for example) and
these are automatically assigned to the standard input and output devices respectively.
Each installation can deterrdne which devices are to be designated as the standard (or
default) input and output units.

In any input/output statement (READ, WRITE ,REWIND ,BACKSPACE, or END FILE) the
unit number is specified by either an integer constant or a simple integer variable.

5.8

~
"
~.

o

,

;;1 '-

I
'I

!

'"

o

eWH he M' t *=,Ip HWI" " t #fWb '

COMPUT£R AUTOMATION. INC. ~

FORMATTED (ASCII) READ AND WRITE STATEMENTS

The formatted READ and WRITE statements deal with ASCII records (ns opposed to binary
records). They always operate in conjunction with a FORMAT statement, which controls
the editing applied to the input or output. This editing may include decimal or hexa
decimal conversion, selecting certain columns for the data to appear in, positioning of
decimal points. processing of alphanumeric strings, and determining exactly how mnny
records will be read or written. This allows. but also requires, a degree of control
over external formats that the INPUT and OUTPqT statements do not have.

I
The READ and WRITE statements have the fOllowfng form:t

READ (u. f) list and WrrrE (u, f) list

where: u is a unit number, represented byl either an integer constant or a
simple integer variable '.

f is a FORMAT reference. Usually it is the label of a FORMAT statement.
It may also be the name of an' array in which a FORMAT is stored (see
"FORMATs stored in Arrays", later in this chapter) .

list is an input/output list, as described in the previous section, "Input/
Output Lists" .

A READ always causes at least one record to be read from the specified unit. The data
read is converted into values which are stored in the items in the list, in order. The
conversion is controlled by the FORMAT statement, which is described in subsequent
sections. Here is a simple example:

READ (1 ,7) Y, K

I
7 FORMAT (F12.3 / 16)

~ is the first variable to be read and F12. 3 is the first format specification. This
specification says that the value to be read lies in the first 12 columns, with a default
decimal point 3 columns from the right end (i.e. between columns 9 and 10). The /
means read a new record, ignore the rest of what is on the current record. K is
then the next list item and 16 is the next format. This says that the value occupies
six columns. If the two records had the following data' on them:

bbbb-6789012
bb34567

Y would be set to -6789.012 and K would become 3456 (since only the first six columns
are considered) .

t See also "END= and ERR= Options". later in this chapter.

5.9

,,' ::

(OMPuTtR AUTOMATION. INC, ~

A WRITE always writes at least one record on the specified unit. It takes the vnlues in
the list and converts them into charact~r strings to be written out. under control of
the FORMAT. For example:

WIUTE(6.23) Y. K
23 FORMAT (4X , Fa.l • ··!-¥OLTS ON TEST NR'. 15)

The first format specification is 4X. which says to skip the first four columns. The
next is F8 .1. which is used with the value Y. It SB'fS that the value must lie in the
next 8 columns and have 1 digit after the decimal paint. The next format is an alpha
numeric string. which operates without any list iterh, as the 4X did. It causes those
characters to be printed in the succeeding columns Then the 15 causes K to be output
in a 5 column field. right-justified. Suppose that Y and K had the values read into i

them above (-6789.012 and 3456). This WRITE .and FORMAT combination would produce
I

the following record:

bbbbb--6789 _ ObVOLTSbONbTESTbNRb3456

The sections on the FORMAT statement describe the variou~ things it can do and how
it intcrfaces with the 1/0 list iIi more complicated examples.

The FORl\lAT statement determines the number of records processed, except that it
cannot suppress the processing of at least one record. In particular, you cannot
read the same record twice or use two WRITE statements to produce information on
one record. However, the same effect can be obtained using the DECODE and ENCODE
statements. described later in this chapter.

An ASCII record has a maximum size of 132 characters. On some media (cards for
eXlllT\ple) the size is smaller. Keep this in mind because the READ and WRITE
state~ents do not automatically begin a new record when the old one is full. They
only lbegin a new record when the FORMAT tells them to. If you try to write too many
charflcters on a record. the excess ones will be lost. If you try to read too many
. charflCters from a record. the extra ones will be assumed blank.

o On some devices a zero-character record is meaningful. For example, an input line
from a typewriter might consist only of a carriage return (which is treated as an end
of-line. not as part of the record). This would be equivalent to a whole line of blanks.

Since some format specifications operate without list items. it is possible to have a READ
or WRITE statement without a list of variables. For example, the following statements
would print four blank lines and then one saying "END":

WRITE (3,9)
9 FORMAT (/ III' END')

When records arc output to a print device, column 1 is reserved for carriage control
and will not be printed. -See "Carriage Control for Printing" • later in this chapter.

5.10

. .

. .

~"

o

o

COMPUTER AUTOMATION. INC. f:3]1

UNFORMATTED (BINARY) READ AND WRITE STATEMENTS

The unformatted READ and WRITE statements are not used by a program for communi
cation with the outside world. They are used only to provide intermediate storage on
external devices, particularly magnetic tapes. They have the form:

where:

READ (u) list and WRITE (u) list

u is a unit number.
list is an input/output list.

i
I

i
These statements process the list items in binary!, using as many bits as the type, of each
variable requires (16 bits for integer ,32 for rea., etc.). Each READ or WRITE statement
processes exactly one "logical" record. That is,1 the entire string of bits is considered
a discrete entity, called a logical record, even though, in fact, it may have to be broken
up into a number of physical records on the external medium. Each logical record
includes a count indicating its size. The size is determined by the WRITE statement that
produces it. A READ statement may subsequently read less data from a record than it
contains, but not more; this is an error. If less than the full record is read, there is no
way to get at the remainder. Thus there is a one-to-one relationship between binary
READs and WRITEs. This is particularly true because the control words and record
format are unique to a particular FORTRAN system. These statements are not intended
to create information for, or deal with information from, other computer sy stems.

Normally there should be a list specified on a binary READ/WRITE. A READ with no list
would just skip a record. A WRITE with no list is not very meaningful. A null record
would be produced, which could only be re-read by a READ statement without a list.
Examples of unformatted READ and WRITE statements:

READ (7) (X(J), J=l, 200)
WRITE (ND) MATRIX
WRITE (3) AA, BB, (CC (J ,3), J=200, 500)
READ (K) GRID, COEFFICIENTS

END= AND ERR= OPTIONS

These options are available on both the formatted and binary READ/WRITE statements
to allow you to process multiple files (on READ) and to deal with I/O transmission errors
(on both READ and WRITE). They have the following forms:

where:

END=k, and

k is the label of a statement to transfer control to if an end-of-file
or error is encountered, respectively.

5.11

!
I
~

COMPUTER AUTOMATlON,INC. ~

Eithcl' or both of these options eanappenr in n HEAD/WHITE stlltement, in t'ithm' m'der',
in the position shown below:

Examples:

READ (unit, format ,options) list
READ (unit ,options) Ust

READ (5,77 ,END=3) X, Y, Z

If this READ statement encounters an end-of-file, c~ntrol is transferred immediately
to statement number 3, without proeessing the rest bf the input list.

WRITE (6, EHR=99) MATRIX

rf an unrecoverable hardware error oecurs while trying to write out the contents of
MATRIX. processing of the list stops and control is transfe~red to statement number 99,
There is no way of telling how far through the list the statement got before the error.

READ(1,100,END=20,ERR=30) L, M, N

An end-of -file transfers control to statement 20, an error to statement 30. It is not
possible for both to oecur at the same time, becuuse an error will be noticed before
an end--of -file clln be recognized.

If no lEN 1)-, is sl>ccificct. and an end-of-file is nonetheless read, an error message will
be p~intcd and the progl'Hm will terminate.

I
INTEkNAL DATA CONVERSION

Sometimes it is useful to be ~.ble to perform the data conversions that the FORMAT
statement does. without actually reading or writing any records. For example, suppose
you want to have input cards on which the first value determines how the rest of the
card should be processed. It might specify whether the remaining fields should be
read as alphanumeric or numeric, such as in the following:

1 ABCD
2 462 17
1 WXYZ

Here a card beginning" 1" h.as two 2-character alphanumeric fields, while a card
beginning "2" has two integer fields, each four columns in width. It is not possible

5.12

o

o

• 1 tr

COMPUlO AUTOMATKlN.IN<. ~ 'I
to read and distinguish both kinds of records using the normal READ statement, since
the FORMAT statement has to be specified in advance and cannot be changed partway
through the record. Nor is it possible to read the same record twice (unless it is on
something like magnetic tape and yo~ backspace and read again).

The DECODE statement handleS this kind of operation. It does the FORMAT conversion
without the READ. In fact, a formatted READ can be thought of as a two part operation,
the input of a record into a buffer and a DECODE on the buffer. Likewise, a formatted
WRITE is basically an ENCODE into a buffer and ~he writing out of the buffer. (This
writing out is not the same as an unformatted WRlTE.) With a DECODE or ENCODE
statement, the buffer is spectfieQ by the user. I~ is ,usually an array or part of an array.
Conversions then take place into and out of that ~uffer area. These statements have the
following forms: • I

where:

, !

DECODE (c ,f ,s ,n) list
or

ENCODE (c ,f ,s ,n) list
or

DECODE (c ,f, s) list ENCODE (c ,f ,s) list

c defines the number of characters per iinternal record (in the
buffer area). It is either an integer constant or a simple
integer variable.

f specifies a FORMAT statement. It is either a statement number
or is the name of an array in which a FORMAT has been stored.

s indicates the start of the internal buffer. It may be an array
name, an array element, or a simple variable. If it is a simple
variable, it is usually equivalenced to pa,rt of an array to
provide room for the buffer (see EQUIVALENCE statement in
chapter 6).

n is a simple integer variable into wh:ich will be stored, on
completion bf the operation, the number of characters actually
processed (scanned or generated) .

list is an input/output lisL.

In a READ/WRITE operation, the size of external records is predetermined; for example,
cards are eighty characters long. In a DECODE/ENCODE operation, there are no physical
considerations to determine this, so you can specify records of whatever length you like,
though we recommend a multiple of two characters. The "records" are simply consecu
tive areas of memory within the buffer area. Each one begins right after the preceding
one ends. For example, if you specify lO-character records, the first five words of the

5.13

1ft
! V.

COMPUTER AUTOMATION,INC. ~

buffer constitute the first record. the next five words the second record, nnd so on.
As with READ/WRITE operntions, the FORMAT statement determines when to sturt A

new record; over-flow from the previous record does not.
I

The charncters in the buffer area ar~J?rocessed at two per word, without r:egnrd to
the type of the variable or array used to define the start of the buffer.

DECODE Statement
!

The DECODE statement causes the character string b~gi~ning at s to be decoded,
according to the FORMAT specified by f, and stored jnto the items in the I/O list. i

When the FORMAT specifies a new record, the r~st ot the current record (of length c)
is skipped. If you try to read more than c characters from a record, the extra ones
will be blanks.

As an example, consider the case described above of the two kinds of records indicated
by a 1 OJ' U 2 in the first column. These could be processed by the following statements:

i

DIMENSION KARD (39)
READ (5,9) KEY, KARD

9 FORMAT (11, 1X, 39A2)
GO TO (1,2) KEY

1 DECODE(78,10,KARD) NAME1, NAME2
10 F9RMAT (2A2)

2 DECODE(78,20,KARD) NUM1, NUM2
20 FORMAT (214) .

The l{f:AD statement converts the value of KEY from column 1, skips column 2, and
storeslthenext 78 columns in KARD (1) through KARD (39) at two characters per word.
(The 39A2 format does this.) Then if KEY is 1, the first DECODE is performed: It
processes two alphanumeric strings, each of length 2 characters (as specified by the
2A2) and stores them in NAME 1 and NAME2. Otherwise, if KEY equals 2, the second
DECODE is done. It scans two 4-character integer fields (214), does the required
decimal to binary conversion, and stores them in NUM1 and NUM2.

DECODE essentially provides the capability of "rereading" an input record.

ENCODE Statement

An ENCODE statement converts list items into ASCII character strings, according to
the format f, and places them in the buffer beginning at location s, If it tries to create
more thun c characters in a record, the extra ones are lost. They do not flow over

. r' u .•

5.14 ~~ ... ~

•

" . . . i:

t \",......

fi

o

i
I
I

o

COMPUT£R AUTOMATION. INC. ~.

into the next record. When it writes fewcr than c charnctcrs. the remllinder nre blunks .
In fact. like the formatted WRITE. the first thing ENCODE does with each record is to
set it to all blanks. This fact means that you cannot "rewrite" a record with two CH'

more ENCODE statements in quite the way that you can "reread" one with sevarul· DECODE
statements. since each ENCODE operation will blank out the prevous information .. (How
ever, the same effect can often be obtained by using small record lengths and only
encoding certain sections with each statement.)

For example, the statements:

DIMENSION JBUF (12)
X = 4.67
N = -33
ENCODE(18,3,JBUF(3» X, N

3 FORMAT ('VALUES:' , F5.l , 14)

would produce an l8-character string occupying JBUF (3) through JBUF (11), and this
string would consist of: '

VALUES: bb4. 7b-33bb

Since the FORMAT statement never specified a new record. JBUF(12) would not be
affected.

AUXILIARY INPUT jOUTPUT STATEMENTS

Tn-ese three statements are used for manipulating magnetic tapes and equivalent
s~quential files on disk.

i
!

I
REWIND Statement

REWIND u

where: u is the unit number, an integer constant or simple variable.

This rewinds tape unit u to its starting point. If end-of-files have been written, it
rewinds past all of them.

BACKSPACE Statement

BACKSPACE u

5.15

1

COMPUTER AUTOMATION. INC. ~

u is the unit number, as de:,;cl'ibed IIbov('. ,

Tape unit u is backspaced over one logiclll record. lJsulIlly this means one physical
,record. However, if the datil was written by un unformatted (binary) WRITE stlltem(mt,
then one logical record may consist of a number of physicul reeords. In other words',
in binary, the BACKSPACE 3tatement'always backspaces over all of the information
written out by a single binary WRITE statement. This is made possible by the special
control words that the binary WRITE statement attaches to its records.

If a tape is positioned at its starting point, a BACKSPACE or REWIND has no effect.

I

END FILE Statement

END FILE u

where: u is the unit number.

This writes an end-of-file mark on tape unit u. If a tape is being simulated by a
sequential disk file, the END FILE statement writes a specia~ indicator that can be
recognized as an end-of-file by the END= option, discussed above.

FORMAT STATEMENT

The FORMAT statement operates in conjunction with a formatted READ or WRITE, DECODE,
or ENCODE statement. It controls how the characters in each input record arc to be
interpreted in assigning values to the list items, and how output list items are to he
conv~r·ted to character strings and where these strings are plnced in output records.
Gene~'ally the conversion performed on output by Hny specification is the reverse of
that performed on input.

The FORMAT statement has this basic structure:

k FORMAT (specifications)

The label, k, is shown here because this is one statement that should always have
a label. Otherwise it cannot be used.

There are a large number of different kinds of specifications, which are individually
described below. Usually they are separated by commas. Instead of a comma, one or
more slashes (/) may act as a separator. The slash is itself a specification (for new
record), but syntactically it acts as a separator rather than as one of the items to be
separa\(~d. In certain cases, the separator may be omitted entirely. This is permitted
following any H,! , or X specification.

5.16

'" .
~'

:i
I

-- -- ---

c

............

o

COMPUTER. AUTOMATION. INC. ~.

Most fOJ'mat specifications operate on one of the I/O list items, (In tlw elHW of II eOlTlplex
item, two specifications nrc requircd. one for the rClll purt and one 1'01' t1w imllginlll'Y
purl.) Other speeiEcatiolls opernte by t1wmselvcH lind do Hot involve llli:.;l it<~III.

FOHMAT Ilnd list interfacing is des·cribcd in detoit in II Illter Hcetioll, hut bm;iclIlly it
works us follows, The FORMAT is proccssed from left to right. If u specificlltion is
one that operates by itself, then its operation is performed and the next specification
is examined. If the specification is one that oper1ates on a list item, then the next list
item is obtained and the appropriate conversion ~s performed. If, however, there were

, no more list items at that point, then the I/O openation is finished, and processing of
the FORMAT is terminated, even if it has not all ~een used. If the end of the FORMAT
is reached, and there are still more list items, t~en the FORMAT is rescanned-- if
no more list items, processing is finished. Note [that the I/O list is nlways used completely
and only once, while the FORMAT may not be finished or mny be processcd more than -
once. Groups of specifications may also be enclosed in parentheses (up to eight levels
of nesting). This affects how the FORMAT is rescanned when it reaches the end, and
will be explained later.

Computer Automation FORTRAN IV includes sixteen format specifications, which
fall into five categories:

Decimal Non-decimal Alphanumeric Record
Conversion Modifier Conversion String Position

rIw nP rZw nBs nX
rFw.d $ rLw 's' Tw
rEw.d * rAw /
rDw.d
rGw.d

The capital letters and $, *, " and / are specifications. The small letters (except for s)
represent integer constants, which are counts with the following mcanings:

I' is a repeat count that causes the specification to be repeated I'

times (r > tl). If r is not present, it is 1. Thus 415 means
15,15,15,15.

w specifics the total width of a field (w > 0) .

5.17

,..,
-1;1

0

I
~1

d

COMPUTtR AUTOMATION. IN.C. ~

usually specifics tht! numbel' of (li~its to the l'ight of tI)('
d('cil1llll l-'oint (except on tl fOl'mnt output) (d2!O).

n is u count of char7icters or of dncirnnl RCllling,

s is a string of alphanumeric charucters.

These parameters are all discussed further in the s1ctions on the approprillte speci-
fications. below. I

I Format (Integer)
i'

Form:
where:

rlw
r is an optional repeat count.
w is the total field width that will be created or scanned.

I format is intended primarily for integers, but it can also handle variables as well as
input fields that are floating point. In all cases, however, fractional parts will be lost.

Output. The integer value of the list item is converted to decimal and right-justified
in a field of width w characters. If negative, it is preceded by a minus sign. All of
this is preceded by blanks to fill out the field. If w is not specified large enough to
hold all of the digits or the minus sign, this is an error -- no value is output. Instead,
the whole field is filled with question marks to signal the overflow. A width of 6 is
alwars large enough to avoid overflow.

I

Here are some exnmples of output using an 14 format:

Value Output Field

7 bbb7
-12 b-12

0 bbbO
+9999.73 9999
-1000 ????
32767 ????

Input. A field of w characters is scanned for a decimal value, with or without a plus
or minus sign. Leading blanks are ignored. Embedded or trailing blanks arc treated
as zeros. For this reason, you should be careful to right-justify input values in their
field. Otherwise each trailing blank will increase the value by a power of ten.

5.18

. .

I

-I
I
!

':i

;1

,

COMPUTER AUTOMATION. INC. ~

If there is a decimal point and/or an exponent present in the field (i. (). /l floating point
,_ number). the fractional part of the resulting value will be lost. Spo "Numoric Input

Fields". later in this chapter. for more information on llcccptl1ble wnys to write num~1rie
values for input.

For example. suppose the following input field were read into five variables using 11

514 format specification:

bbb1b-2348S937.9b3bb !

the resultingvnlues would be 1, - 23, 4869. 3~, aid 300. Note that, unlike free-form
input with the INPUT statement I no separators nr~l required between fields. The format
determines where one value ends and the nex,t begins. Therefore I be careful in preparing
formatted input. If the values are off by even one column, the results will usually be
different.

o For added readability and safety. 1 format fieids (and all other numeric input fields) may
also be terminated with commas I as described in a subsequent section I "Comma Field
Termination" .

o

F Format (Fixed Decimal Point)

Form:

where:

rFw.d

r is the repeat count.

w is the field width.

d is the number of digits to the right of the decimal point (default value
if no decimal point is input) .

In standard FORTRAN. F Format is used only with real type data. (or the parts of
complex data). In Computer Automation FORTRAN IV. it and the other numeric
formats (I ,E .n. G) can be used with integer and double precision datn. as well.
Integers will simply be converted to floating point, and will always have a
fractional part of zero.

On input IF, E, D I and G formats operate exactly the same. On output I F produces no
exponent (e. g. 375.4), E uses an E exponent (e. g .. 3754E 03), D uses a D exponent
(.3754D 03), and G uses either theF or E form, depending on the size of the number.

Output. The floating point value of the list item is converted to decimal, with d digits
after the decimal point. It is rounded at the last digit and then right-justified in a field

5.19

1
'j

I
i

I

o

(OMPUTtR AUTOMATION. INC. ~

of width w. As with integers. it is preceded by u minus sign if necessary. and then by
blllnks to fill out the field to the left. If w is not large enough to Hccomoonto all the
digits 01' the minus sign. an error is signaled by filling the entire fi€tld with (1lwstion
marks.

The following examples al'e for output with an F8. 3 format:

Value

2.75
-31.4886

.000477
8127
-900.0007
-999.9998

22650.0

Output Field

bbb2.750
b-31. 489
bbbO.OOO
8127.000
-900.001
????????,
•••••• 10 1

????????

To be sure that w is large enough. you have to have some idE-a how big the numbers
will get. since they require more space as they get bigger .If n is the number of digits
to the left of the decimal point and d is the number of digits to the right of the decimal
point. then to allow for these digits and the decimal point and minus sign, w must be
this large:

w::-d+2+n

, m3m

Input. The next w characters in the input field nrc scanned for a decimlll value, which
mlly or may not hnve a leading plus or minus sign, 1.1 decimnl point. or a trailing exponent.
Since tiler£' are 1.1 large variety of forms in which the number may appear (it is even
possi~ic to omit the E or D in the exponent), please refer to "Numeric Input Fields", later
in this, chapter for complete details. .

I

As with I format, leading blanks are ignored. while embedded Hnd trailing blanks are
treated as zeros. This will not be so harmful if a decimal point has appeared. since the
trailing zeros will have no effect, but keep it in mind.

If there is no decimal point in the input field, then by default one is assumed d positions
from the right. This usually means d positions from the end of the field. but if there is
an exponent it means d positions from the beginning of the exponent. Also, d positions
mean actual character positions. regardless of whether they have blanks or digits in
them.

For example, an F8. 3 format would produce the following conversions:

5.20

,,!

COMPUTER AUTOMATION. INC. §]}

Input Field Resulting Value

bbbb1234 1. 234
bbb1234b 12.34
bbl. 234b 1. 234
-.756bE4 -7560.
bb3. Eblb 3.EtO
-b3bEbbl -.3,
bbbbbbbb O.

E Format (Floating Point with E Exponent)

Form: rEw.d

where: r, w, and d are the same as for F format.

o E format is similar to F format, except that on output it always attaches an exponent
to the valu(~. This means that it can represent numbers of any size without needing
extra width.

o

'-

Output. The floating point value is converted to decimal in the form of a fractional part
less than 1 followed by an exponent. The fractional part consists of a decimal point
and exactly d digits. It is round at the d'th digit. The exponent consists of E followed
by a space or a minus sign followed by a two digit decimal exponent. If the value is
negative, it is preceded by a minus sign. Then it is right-justified in a field of width
wand preceded by blanks. If w is not large enough. this is an error and the whole
fie~d will be filled with question marks. To accommodate d digits. the exponent. the
de¢imal point. and a possible minus sign, this relationship should be observed:

!
i
I wo"d+6

These are some examples of output using an EI0. 4 format:

Value Output Field

.76 O.7600EbOO
12.537 o . 1254Eb02
-0.000632 -.6320E-03

-99999. " - .1000Eb06
O. O.OOOOEbOO

The P scale factor (desC!ribed later) can be used to make the fractional part larger
or smaller than its normal range of from .1 to less than 1.

5.21

COMPUTER AUTOMATION. INC. ~

Input. Originally E formnt may have been intended to rend numbers with ex ponents ,
while F foemnt was for numbers without exponents. Now, however, they operate
identically on input, so the examples shown for F input /llso npply to E input. Se(\
also the section on "Numeric Input Fields" , later in this chapter.

i

Form: rDw . d I
I
!

where r, w, and d 31'e the same as for E and F !format .

D format is exactly the same 9S E format, except that ithe exponent on output values
contains a D instead of an E, to signal double pr~cision. In ANSI standard FORTRAN,
D format may only be used with double precision: list items, while E and F formats may
only be used with real ones. but in Computer Automation FORTRAN IV they may all o bc uscd interchangeably. This means that D forinat is typically not used very much.

o

As an example of D output, D10.4 would convert~

12.537 to b .1254Db02

Input under D format is exactly the same as for E and F formats. See also the section on
"Numeric Input Fields", later in this chapter.

QJ:ormat. (General)

Form:! rGw.d

wherd: }" is the repeat count (optionnl).

w is the total field width.

d on input, is the default position of the decimal point (as with E and
F). On output, however, it is the total number of significant digits
to be produced.

G format is a combination of F and E formats. On output, it acts like either F or E,
depending on which makes more sense for the size of number involved. It can be
used with integer, real, double precision, or either part of complex data. Integers
are converted to floating point first.

5.22

. .

(OMPUT£R AUTOMATION. INC. f::3]1

Output. G format attempts to express numbers in the most natural way. which is in
F format unless they are too large or too small, in which case in E form!)t. Tho d
(ubove) specifies the number of significnnt digits to be output. and thit-. is exuotly ttw
number of digits thot will be produced. If the magnitude of the number is such thnt it
can be expressed by placing the decimal point unywherc within or Ilt either end of
those d digits, then that will be done and no exponent will be needed. However,
if preceding or trailing zeros would be required to express the value correctly (i. e.
more than d digits total), then E format will be u~ed instead; the number will be
normalized and output with an exponent. .

To express this algebraically, let M be the m;.agn~·itud'e of the value to be output
to d significant digits). Then select an integ:er p such that: .

I

(rounded

lQP-l <" M < lOP (if M=O:, then p=O)

o If the format is Gw. d, let j=w-4 and k=d-p. 'rhen if 0 < p <: d, the format used is:

0

Fj .k,4X

On the other hand, if p is less than 0 or greater than d, the format is:

EW.d

This had best be illustrated by some examples. The first column contains the values.
The next two columns are the output fields produced by the formats shown.

Value G8.3 G8.2

.07283 .728E-Ol 0.73E-Ol

.7283 .728bbbb O.73bbbb
7.283 7.28bbbb b7.3bbbb

72 .83 72.8bbbb b73.bbbb
728.3 728.bbbb O.73Eb03

7283. .728Eb04 O.73Eb04

When the F form is used, and there is no exponent. those four positions are blank.
This causes the numbers to line up underneath each other better.

The size of w does not affect the choice of format; this is determined only by the size
of d and the size of the value. If w is not large enough, the field is filled with question
marks. To avoid this, the same rule applies as for E format:

w ~ d + 6

5.23

o

0 1

The P scale factor, described below, has a peculiarity in its effect on G formnt. It
applies only when the E form is used, not the F form. This has two implications.
First, all numbers output in G format appear as their actual value, never off by f\

power of ten. Second, values output in F form with a non-zero P scnle fuctor cnnnot
subsequently be input using the same format and obtain the snmC' vAlue. Ttl<' !:)cule
factor will take effect during input but"not during output. This is one of the fow
exceptions to the rule that what is output by a particular formnt can be input by the
same format.

NOTE i

The "d" field of a G format must always ~e included, as a
positive non-zero value. For example. ithe value "123.456"
output in a format of "G 10.0" yields" i . E 03" .

Input. G format input is eXActly the same as F ,E. and D input. See also "Numeric
Input Fields" .

P Specification (Scale Factor or Power of 10)

Form: nP

where: n is a positive or negative integer (or zero) that specifies the power
of ten to be used as a scale factor.

The P scale factor is a modifier that can be applied to any F. E. D. or G format to
change the position of the decimal point. i. e. to multiply or divide the value by a
power of 10. It is not separated from the format specification by a comma; it precedes
it imm~diately. If the format has a repeat count (or a $ or * modifier, described below) ,
the seide factor precedes that too. For example:

3PFI0.2
-lP3E14.6
OPG9.3
-2P5*$FI2.2

At the beginning of a FO~MAT statement, no scale factor is in effect. This is equivalent

. .

to a scale factor of zero. Whenever a non-zero P is used, it continues to apply to all
floating point formats thereafter until changed again. It is not reset to zero if the FORMAT
is rescanned due to additional list items. To reset it to zero, you must specify a OP.
Thus the following statements:

WRITE (6 ,1) A. B, C. D. E
1 FORMAT (FI0.2 , EI2.4. 2PF7.3)

Process the list items with the following effective formats:

5.24 Revised March 1975

,~i

t
1: t,

~
I
1-:

I
,I

I

tl
f!
\i

•

'-"

o

o

(OMPUT£RAUTOMATION. INC. ~

Variable Formnt

A FIO.2
B E12.4
C 2PF7 .3
D 2PF10.2
E 2PE12.4

Output. The internal value is multiplied by 10n ~efore output. In other words, the
decimal point is moved right n places. (Of coursle, ~f n is negative, the decimal ,
point is moved left.) On F format, this caus~s th~ number to appear larger or srnfiller
than it really is. However, on E and D formats, Ithe exponent is decreased or in
creased to compensate for the change in mantissa l, so the actual value remains the same.
The only effect is to change the form of the number by introducing digits to the left of
the decimal point or zercs to the right of the decimal point. This is illustrated in the
following examples: '

P Value =7.3629 Value=9.9
Scale F6.2 E9.2 F7.3 E10.3

2 736.29 73.63E-01 990.000 99.000E-01
1 73.63 7.36EOO 99.000 9.900E 00
0 7.36 .74E 01 9.900 .990E 01

-1 .74 .07E 02 .990 .099E 02
-2 .07 .OOE 04 .099 .001E 04
-3 .01 .OOE 05 .010 .OODE 05
-4 .00 .OOE 06 .001 .OOOE 06

, Sdaling on D format js exactly the same as for E. G format is a little strange. When it
cliooses the E form, the scale factor works in the usual way, increasing the mantissa
and decreasing the exponent. This leaves the actual value the same. In order to be
consistent and say that G format always outputs the correct actual value, when it
chooses F form the scale factor (if any) does not take effect; it is ignored. Note,
however, that this introduces the inconsistency that if you output a number in G format
with a P scale factor, yO\! may not be able to read it in again with the same format and
get the same value. since the P will apply during input (see below) .

When a scale factor is in effect, numbers. are rounded after the scaling has been performed
This can have an interesting affect on E format. In order to get the proper number of
digits left of the decimal point (or zeros right of it), an extra shift may be required.
This explains the discontinuous way that the exponents change in the above examples.

5.25

o

o

COMPUTER AUTOMATION. INC. f3]1

The value zero is not affected by a scale factor.

Input. In general, the effect of a P scale factor on input is to reverse what it would
have done on output. (The only exception is the one above concerning G format.)
This means the external value is divfded by 10", or the decimAl point is moved left
n places. However, remember that in E form output, the exponent was changed to
compensate for the moved decimal point, leaving the actual value unchanged. There-.
fore, on input, if a number has an exponent specified, it is assumed correct and no
shifting is done. In other words, a P scale factor afftcts an input field only if it
does not have an exponent. For example: : I '

External Resulting value as . t

Field function of P scale

OP lP -2P
0.68 .68 .068 68.
0.68EO .68 .68 .68

This is true for all of the floating point formats, F, E, D, and G, since they all work
identically on input.

Although there seem to be a lot of exceptions about the effect of P scale factors, these
two rules are always true, on both input and output:

1. If the number in the external field has an exponent, then it is
equal to the internal value, regardless of any P scale factor.

If it does not have an exponent, then:

external value = internal value x IOn

$ Specification (Preceding Dollar Sign)

Form: $

A special Computer Automation feature. the $ modifier enables you to print amounts
of money with a dollar sign immediately preceding. even with values of various sizes.
It applies to either F or I format and should be written immediately ahead of the F or I
(i.e. after a repeat count or any other modifier). For example:

$15 3$FlO.2 -2P2*$F20.2

5.26

. . .

o

Outpu..!. After the value is right-justified in its field. 11 dollar sign will be placed
immediately ahead of the first character. which is usually II digit but may be a dceimal
point or minus sign. The actual position of the dollar sign will depend on thc !ii;,w
of the number. If the field width (w) is not large enough to allow for the QQUaJ' sign
ahead of the number. this is an error and the overflow will be signalled by filling the
entire field with que~tion marks .'·lfis a good idea. therefore. to allow plenty of width
on the format specification.

For example. here is how the value 46.35 would be printed using various formats with
the $ modifier: i

Formal Output Fi1lld

$FS.2
$14
$F4.0
$F5.2

f

bb$46.35 1

b$46
$46.
?????

The value -0.98 printed with a $F9.2 format would yield:

bbbb$-.98

Input. $ is intended primarily for output. However. to be consistent. what it does
on input is to allow and ignore a dollar sign preceding a number. Thus these two
fields would be treated as the same:

bbb$4000.00 and bbbb4000.00

T~e dollar sign must precede a minus sign if there is one. If the $ modifier does
no~ appear on the format specification. then a dollar sign may not appear in the field.
If one does, it will be detected as an error.

*Specification (Asterisk Fill)

Form: *

This is another special Computer Automation feature. It is often used in conjunction with
$ for printing checks. It causes the left part of the field to be filled with asterisks instead
of blanks. Like $, the * is a modifier that appears ahead of an I or F, but after any repeat
count. If both * and $ are used, the * should come first. (This is easy to remember.
because that is the way they will appear in the output field, with the asterisks first.) For
example:

5.27

o

COMPUT£R AUTOMATION. INC. ~

*F10.4 3*120 *$F12.2

Output. All of the positions that would normally contain preceding blanks. to fiU out
the field to the left. are changed to' asterisks. The snme is true if both * and $ are
used Elt the snme time; the dollar sign is inserted first and then the remaining positions
nre filled with asterisks. It is not a error if there are no preceding positions to put
asterisks into. The asterisk is simply a substitute for blank. used if necessary to fill
out the field. Everything else must still fit in the fiel~. including a dollar sign if
specified. I

Here are some examples of the use of '. some In qomfnaiion with $:

: I

Value Format I Output Field

91. 27 *F9.2 ****91.27
-4062.948 *F9.2 *-4062.95

3000 -2P*$F6.2 $30.00
27 *$110 *******$27
0 *16 *****0

Input. Like $. the * feature is intended mainly for output. but does something consistent
on input. It allows and ignores any number of preceding asterisks. up until it finds
something that is not an asterisk. For example. all of the above output fields could
be read as input fields using the same formats. If the * modifier does not appear in the
format specification. then the asterisk may not appear in the field. If one does. it will
be detfcted as. an error.

I
I

Nume+c Input Fields

There are a variety of ways that you can express a numeric value for input. and they
are all equally permissible under any of the numeric formats. namely I. F. E. D. and G.
Any field that can be read using one of these formats can be read using any of the others.
The resulting value will be the same. too. except for the truncation performed by 1
format. This means that numbers input by I format need not be integers (though they
usually are). numbers input by F format can have exponents. etc.. Free form input
(by the INPUT statement) is the same too, except for two things: blanks are ignored and
and there is no fixed field width (see below) .

A numeric input field can be thought of as having two parts, a mantissa and an exponent.
If either part is missing. U is assumed zero. (Of course it is sort of pointless fo have an
exponent on a zero mantissa. but it is legal.) The mantissa may take any of these forms:

nnn nnn. .nnn nnn.nnn

(where nnn is a string of decimal digits). It may be preceded·by a plus or minus sign . .
5.28

. .

'I o

o

'-'

COMPUTER AUTOMATION. INC. §]1
The exponen't is normally written in one of these ways:

Eee E+ee E-ee

where ee is n one or two digit power of 10 to multiply the mantissa by. If tho pluR
or minus sign is present. it is also permissible to leave out the F.. We do not pnrti
culllrly recommend this form. siiicc" it is less readable and less lik(! the form of Rouree
program constants. but it is a traditional feuture in FORTRAN and is thus allowed. In
this cuse. the field has the form:

mantissa+ee or i mantissa-ee
I

I ,
A D may be used instead of E in the exponent, with no change in meaning. It is not
necessary to signal that an input value is double ~recision, either by using a D
exponent or by using D format. If the variable inian input list is double precision,
then its input field will be processed in doubl~ precision regardless of the format or
exponent used. And if the variable is single precision, a D exponent on the data will
not make it double.

The rest of this discussion applies only to formatted input, not to free form input by
the INPUT statement. '

When the mantissa contains no decimal point. the decimal point is as'sumed to be d
positions from the right end. (On I format d is automatically zero.) This means the
right end of the whole field unless there is an exponent. If there is an exponent, it
means d positions from th~ beginning of the exponent (which may begin with E, D,
+. or -). In other words, from wherever the mantissa ends, you count back d
positions (including blanks) to place the decimal point.

'Whfn using formatted input, remember that blanks will usually be treated as zeros and
ca~ change the value of either the mantissa or the exponent. Leading blnnks (OIl either
thei mantissa or exponent) do not have any effect, except that they are counted as part
of tlhc field width. However, once a digit or decimal point has been found, any embed
ded or trailing blanks that follow are interpreted ns zeros. Following are some

,examples of permissible numeric input fields and how they are interpreted. Notice
that F. E, D. andG are interchangeable on input ,and that when a decimal point appears
in the field, it makes no difference what the value of d is in the format.

Input Field Format Resulting Value

b23.b F5.2 23.
b2b.b E5.1 20.
b2bbb D5.1 200.
-b.b7 G5.0 -.07
b5bEbb3 E7.2 .5E 3
b5bEb3b E7.2 .5E30
4.60E+l F7.0 46.
4.600+1 F7.0 46.
b-blb-blb G9.0 -10.E':"10
b+-b D4.2 O.

5.29

o

o
I

COMPUTER AUTOMATION, INC §]1
Some of the above are pretty strange and misleading representations, and we do not
particulnrly recommend them. but they illustrate how formatted pr0cesHing works,
To keep things simple nnri Hvoid mistakes. we recommend thes(~ convent ions:

1 , Do not embed blanks in stringH of digits,

2. Make sure Tlllml)CrS nre right- justified in theil' ri(~ldR, HO tlwl'" will
not be trailing blanks, Or use 11 comma t('rminlltor, described hdow .

:~ • LJ He the E to introduce nn exponent,
i

4. LJ se a decimal point when needed,
val ue (d) in the format,

rather ithan relying on the default

I
I

5. Use a value of zero for d (on input). so that the default decimal point
will be at the end of the number, where it naturally belongs,

Comma Field Termination

One of the problems with using- formatted input, particularly, say, if you are typing
in numbers nt a typewriter, is that you have to know the exact field width specified
in the formnt and then you have to count carefully to make sure you right-justify the
number in the field, This kind of input was really designed for cards, where columns
are clearly marked, and even there it is not always convenient,

Comput(~r Automation FORTRAN IV provides a way of avoiding this problem. Any
fipld being processed by an I. F. E, D, G, Z. or L format may be terminated early
by 11 cdmma. When the comma is encountered, the field is treated as ending on the
previo11s character. even though the field width (w) has not been used up. Thus
you cnn :lVoid trailing blanks, even when you do not know what the field width is.
For ex.111nple. to read two values using a 216 format, instead of having to use:

bbbb13bbbbb4

you can use:

13.4,

After a fidd is terminat(~d by a comma. the next field begins immedintely after the commn,
rather than where it would have begun if the full width had been used. The above example
illustl'at()S one difference between this and free form input (by the INPUT statement) .
There had to be a comma after the 4, even though it was the last value on the liIle, becaus(~
otherwise the field would have had its declared width of 6. including· five trailing blanks
that would he i nterprcted as zeros,

However. Plld-or-line is also treated as a terminator, in exactly the same way as comma.
This is sig-nificnnt mainly on typewriter input, where a carriage return indicates end
of--line. Thus when typing in values, it is not necessary to follow the last one on a line
by a comma to terminate it. The carriage return will have the same effect. The above
example could therefore be typ~d in as:

13,4(CR)

5.30

. .

o

o

COMPUTER AUTOMATION. INC. ~

A comma terminator has another significant effect. It not only overridr.s the value of
w specified in the format, it also overrides the value of d. A default decimal point
mnkes some sense when fields end irt a specific column. but when they <Jlln end
anywhere before that. it becomes more difficult to remember where the decimnl point
is going to end up. So we havelJl~~e the rule that. when numeric fields cnd on H

comma they should look like what they really are. If they have no decimal point,
they are an integer value. (In other words, the decimal point is assumed at the comma
or, if there is an expommt, at the beginning of the exponent.) For example, the four
values produced by a 4F20. 3 format in reading tle line:

bb12345. 62bbb, b504E-3. bbb2 .•

would be: I
,

12345. , 62000. , .504 , 2.

Notice that we used a very large field width on the F format. yet the input fields
need be only as long as required to express the numbers. It is a good idea to use
large widths in this case. especially in situations where 'the input values are being
prepared by someone who did not write the program . This will make sure that there
is plenty of room for the number and the comma. If the field is too sh0rt and the comma
falls beyond it, then it is too late to terminate the field. For example. if you used an
13 format to read the line:

483.

the first field was already terminated at the third digit. so the comma falls in the
following field and terminates it.

I

A iblank or empty field always means zero • so you can use consecutive commas to
r~present a group of zero values. For example:

1,,2, •• 3,

represents:

1,0,2,0,0,3

5.31

o
,

I

o

COMPUTER AUTOMATION, INC, ~

Z Format (Hexadecimal)

.Form:
where:

rZw
r is the repeat count.
w is the field wi.dth.

Z format operates on internal values at the rate of four bits per hexadecimal digit
(four digits per word), regardless of the type of the value, Thus an integer contains'
four hexadecimal digits. a real value eight, etc, The ihexadecimal digits are:

i

012345G789ABCDEF

I

Output. If w is exactly the right size for the data type (e. g. 4 for integer) , then the
entire value is output in hexadecimal, including leading zeros. If w is larger than
this, the hexadecimal numbe!' is right-justified ini the field and preceded by blanks
(as with the other numeric f.)rmats) .

If w is smaller than needed, only the w rightmost digits will be output :..- the ones on
the left will be skipped. This is not considered an overflow error, so no question
mm'ks win be printed. Z format is specifically designed to be able to print just part
of a number.

The modifiers p, *, and $ do not apply to Z format.

Examples:

Integer
Logical

Real
Real

Vabe

: C102
: 0000
: 47DOOA80
: FF1234EB

Format

Z4
Z6
Z5

Z9

Output Field

CI02
bbOOOO
OOA80
hFF12:l4EH

!nput. When w is exactly the right size, the list item is completely filled with the
hexadecimal digits in the field. If w is smaller, then the number is treated as a
hexadecimal integer; i. e. , it is right-justified with preceding zeros in the list item.

5.32

• •

-

0

o

""

~ !

(OMPUTERAUTOMATION. INC. f3]1

Ifw is too large, the left-hand characters are skipped, and the required digits nrc
taken from the right end of the field. In all these cases, the operation on input is the
reverse of that on output.

Hexadecimal input fields may al~Q.J)e terminated early with a comma. In that ease
the same rules apply, but w is counted as being the number of characters that
appeared before the comma. As in other numeric formats, blanks are treated IIA

zeros.

Examples:

Input Field Format

3A22 Z4
ABCD Z2
CID2E3 Z5
bb5CCbbb7b Z9
A800, Z8
123, Z2

L Format (Logical)

Form: rLw

where: r is the repeat count.
w is the field width.

i

List Ite Type

Inte~er

"
"

~eal

"
Integer

Resulting Value.

: 3A22.
: OOAB
:1D2E

: 05CC0007
: 0000A800

: 0012

L iformat operates only on list items of logical type and the values true and false.
I
!
I

Otltput. The logical vabe is converted to either T or F and right-justified in the field
with preceding blanks. For example, a value that is true, when output with an L5
format, becomes: '

bbbbT

InEut. Within the field of width w, the first T or F determines the value. If neither a T
nor F is found, the value is false. Characters appearing between the T or F and the
end of the field are ignored, except for comma, which terminates the field. The
following examples are illput with an L6 format:

5.33

. h"tttMM'

.'.j

o

i 0

Input Field

bbbbbT
AFTERb
X=Y+37
.TRUE.
X,TRUE

Resulting Value

True
False
False
True
False

A Format (Alphanumeric)

Form:

where:

rAw

r is the repeR.t count.
w is the field width.

COMPUTER AUTOMATION. INC. ~

A format converts internal v9.lues to ASCII character strings (and vice versa) I1t the
rate of eight bits per character (two characters per word), regnrdless of the type
of the value. Thus an integer contains two characters, a dOQble precision value
eight, etc. The ASCII characters and their hexadecimal equivalents are shown in
appendix C.

Output. If w is exactly the right size for the data type (e. g. 4 for real), then the
entire value is output as a character string. If w is larger, the character string is
right-justified in the field and preceded by blanks (as with other formats) .

If w is smaller than needec, only the first w characters will be output -- the ones
to the right of this will not. This is the opposite of Z format (where information is
lost at f{hC left). In both caSf!S, this is not an overflow error. Both A and Z format
are de 'i gned to be able to process part of an item· -- A format the front part, and Z
format it he back part.

!

Examples:

Li st Item Type Value Format Ou tpu t Field

Integer :DAB3 A2 Z3
" :DAB3 A5 bbbZ3

Real :C3CIC9BF A5 bCAI?

" :C3CIC9BF A3 CAl

Not all of the 256 combinSltions of eight bits correspond to printable ASCII characters.
(In fact, most of them do not.) Therefore you should not use A formnt to output
miscellaneous numeric values and expect to read what comes out. The variables
should already contain alphanumeric information, either previously read in by
another A format, or set up by a Hollerith or string constant. or even numerically
constructed.

5.34

. .

v'\!f:t;"'i,j'"Y''#d""W&rli'''f',t'rl'M±dlttf "neWeM'M 't wm

COMPUTER AUTOMATION. INC §]}
Although integer variables only hold two chllracters. in many applications it is 1\

good idea to use them for working with alphanumeric informntion. Tlwy can be
\ ... _ operated on (e. g. masking I shifting) more eusily. You Cfin usc integel' arrnys to

hold as many character3 as you need.

c

""'-'"

For printing headings and other 'messages • H format (below) is generally more
convenient than A form:Jt. since it does not require /lIly variables to hnve been set
up.

Input. When w is exactly the right size I the listi item is completely filled with the
ASCII characters in the field. If w is larger, thi: characters are taken from the
right end of the field. The left-hand characters are skipped.

, I

If w is smaller than need.ed, then the characters I in the field are left-justified in the
list item and followed by blanks to fill out the rest of it (as with Hollerith constants) .
This is the opposite or Z format (and numeric formats in general) , which locate short
input fields at the right end of the value. A general rule for alphanumeric data
is that internal values are left-justified, While external fields are right-justified.

Blanks have no significance in an A format input field as they are just another
character. The same is true of comma, which will not terminate an alphanumeric
field.

Examples:

Input Field Format List Item Type Resulting Value

H Format

Form:

where:

UP
DOWN
TRUE
b3,b

(Hollerith)

nHs

A2
A4
Al
A4

Integer

"
Real

f1

:D5DO
:D7CE

:D4AOAOAO
: AOB3ACAO

s is a string of alphanumeric characters of any length.

(2HUP)
(2HWN)
(4HTbbb)
(4Hb3, b)

n is the positive integer count of the number of characters
in the string, including blanks.

H format is one of the formats that operates without a list item. It transfers
character strings directly from the FORMAT statement into the external field or
(less often) vice versa. Note that the form of a Hollerith format is just like that of
a Hollerith or string constant.

5.35

·· •• 1

10

o

COMPUTER AUTOMATION. INC, ~

Output, The n characters following the II arc transmitted to thp. next n positions
in the output field. For example, if R equals 12.75, the statements:

WRITE(6,1() n.
10 FORMAT(l1EbINTERESTb;";F6,2,8H~';MONTH!)

would print the following line:

INTEREST = 12. 75%/MONTH!
I

Note that the blank after the equal sign came not from the 'H format, but from the
F format (a leading blank) . I

Count the characters very carefully in an H string. If your count is too high. it
may extend over into some other format specifications; if it is too low, part of the
alphanumeric string will be interpreted as formats. Better yet. if t.he string
is very long. use the' format (below). which does not require a count.

Input. H format is primarily designed for output. but there are occasions when
it can be useful on input. What it does is to take the next n characters from the
input field and insert them into the FORMAT statement. replacing the characters
that were there before. The original characters are then lost. This might be
used to change a title printed to identify each set of output values. For example.
if the stntements:

READ (5.7)
7 FORMAT (351I

read Hili input line containing:
!

KOHOUTEI< ORBITAL COEFFICIENTS

the FORMAT statement would be changed to:

7 FORMAT (35H KOHOUTEK ORBITAL COEFFICIENTS)

which could then be printed with a WRITE statement.

, Format (Hollerith)

Form: IS'

where: s is an alphanumeric string of any length.

5.36

. .

tiM

.'

.0

1
0

I

*

COMPUTER AUTOMATION. INC. ~

This is an alternate form of the H format, with the character string enclosed
in quotes rather them being counted, For that reason, it is probubly casier to
use, especially on long strings,

Output" The characters betweEfirthe quote marks are transmitted to the output
field, which will have the same length, To include the single! quote ehul'llcter
itself in the string I it should be written as two single quotes. For exnmplc:

is equivalent to:

IlHJOE'S PLACE

In this case, the quotes must be truly consecutive. If there is even one blank
between them, they will be interpreted as the end of one string and the beginning
of unother (since no comma separator is reqilired). This is the only situation in
FORTRAN where R blauk is significant in a statement without being contained in
an alphanumeric string,

Input, As many characters are taken from the input field as are needed to fill
f'l1e'Positions between the quote marks, As with H format, this feature is less
often used. There should not be any quote characters in the input field. If
there are, they will be changed to blanks. Otherwise, they could have disastrous
effects on the FORMAT statement,

x Specification (Skip)
I

F~rm: nX

!
wlhere: n is the positive integer count of how many positions

to skip over,

NOTE

An X with no"n" value preceding it will be ignored; it
is not equivalent to lX.

X format skips over the next n characters in the external field. It transmits no
data.

Output, Normally you CAn think of X as creating n blank spaces in the output
field, For example:

FORMAT(l5, 5X, 'SAMPLE')

might produce this line:

bbb32bbbbbSAMPLE

5.37

I

.1

I

,I
.1

o

o

COMPUTER AUTOMATION, INC. ~

Ilow('vcr, the l' format (below) can be used to back up in H line, Using 1111 X
then would not blank out what had previously been written. The only I'QhKOJl it
seems to do so normally is that all outp~t lines are Rct to hlanks initially,

Input. The next n character positions in the input field are ignored, The next
format will pick up processing at the n+lst position,

T Specification (Tab)

Form: Tw

where: w is the character position to tab to:,

T is much like X I in that it transmits no data but merely changes the character
position, Instead of skipping forward n fixed amount, it skips to a particular
column. It works like the tab key on a typewriter I except that it can tab
backwards us well as forwards, This means I on output, that previously written
charucters can be written over, and on input, fields can be read more than once,
(This is only occasionally useful.)

One useful thing that l' does that X cannot is to get you to a particular input
column following a field that has been terminated early with a comma, Since you
do not know where the comma is going to be, you cannot skip forward with an
X to a fixed place, For example, you might have agents preparing cards with a
number somewhere in the first 20 columns and a name beginning jn column 21,
If they ,use a comma to terminate their values (which is It good idea), the
followihg FORMAT would hc.ndle this:

1

I
FORMAT(F20.0, 1'21, 10A2)

If u card did not have a comma terminator, then the l' would have no affect,

The first position on a lhe is I, You cannot tab to the left of that,

Form: /

Syntactically the slash acts &S a separator (i. e, like a comma) in a FORMAT
stat('ment, Any number of 31ashes may appear between two specifications or at
the beginning or end of the list of specifications, A comma should not be used
before or after a slash, For example:

FORI\1AT (/F1 0.2, 5X, 4A2/20I4/ /8Z10 I 'FINAL' / / /)

5.38

-j

!

,

I

I

I

'''en u,!"ti¥'"*th'ny""."ttttttttn 55 tt#'Mtt ¥teu.

'--'

o

COMPUTER AUTOMATION, INC. §]J

Wlwtwver u slash is en(~ountered. the l'ul'r'tmt record is t.ermin/lt(~d IIlId II now t'o(!or'd
is b(~g'un, On output this mellmH·hut the old record is written out IIl1d PI'()(!(~HHillg' stlll'lH

ut column 1 of thc nnw r(~cord, On input it meuns thllt IIny clntll t'Olllllinillg' 011 tlw old
record is not processed. The next record is reud tmd HCUlming starts at column 1.

If a slash is followed immediately by another sla~h (or the end of the FORMAT) ,
then the record just begun is terminated With" OUtjl any processing, On output
this means a blank racord is written. On input t means that one record is
skipped. :

In some FORTRANs. a slash preceding the final right parenthesis of a FORMAT
does not take effect on output (no blank record is produced). In Computer Automation
FORTRAN IV it does, so input and output ar~ consistent,

As an example, if the FORMAT shown above were used ~ith an I/O list with the
proper number of items (namely 33) , it would write (or read) eight records,
with the 1st, 4th, 6th, 7th, and 8th being blank (or ignored) .

Parenthesized Format Groups

A group of format specifications may be repeated by enclosing them in parentheses
',-, and putting a repeat cOI.mt in front.

o

For example:

! FORMAT(l3 , 2(3A4,2X) , F10.2 , 3(5HRAH! »
I

i$ equivalent to:

FORMAT(l3,3A4,2X,3A4,2X,F10.2,15HRAH! RAH! RAH!)

except for the way that l-escan takes place (see below), Note that a Hollerith
format cannot have a repeat count, so the only way to repeat it is within parentheses.

Parenthesized groups may be nested within each other, to a depth of eight ~

If the end of the FORMAT comes and there are still more list items, the FORMAT
is rescanned. However, if there are any parenthesized groups, the rescan
begins at the last such group, rather than at the beginning of the FORMAT.
Therefore, in the first example above, it would rescan only the 3 (5HRAH!). This
would not do much good, since that part contains no formats that can transmit
any data. In this case, ~o get the whole FORMAT rescanned, you could write:

FORMAT «13, 2(3A4, 2X) ,FlO. 2,3(5HRAH! »)

5.39

o

o

COMPUTER AUTOMATION, INC. ~

so thut the lust parenthesized group (determim~d by where it pnds) is the \/Il'ge orlO
surrounding all of the specificutions, The following section gives n Illort' eompll'tt'
description of how this wor1 .. s,

FOHMAT and List Interfacing

Formatted input/output Gperations are controlled morei by the FORMAT statement than
by the I/O list, When a ~EAD or WRITE (or DECODE 1r E~CODE) statement is exe
cuted, the FORMAT pro(;essor takes control, It p,roc eds by the following steps:

,
. I '

1, Each time one of these statements is begun, 'a new input record is read,

2.

or construction of a n~w output record commences, Thus each statement
must process at least one record. '

A record is terminated (i. e, no longer scanned, on input, or written out, on
output) when anyone of these three things happens:

a. ' A slash is found in the FORMAT,

b, The final right parenthesis is reached and there are still more list
items, so the FORMAT has to be rescanned. A rescan never processes
the same record.

c. There are no more list items. This can happen either at the final right
parenthesis or a! a format specification that would require another list
item (e, g, F format) .

3. Ai new record is begun on either condition a or b above, Condition c is the
ehd of the statement, so no new record is begun.

4. Any specification that does not require a list item (i, e, H, " X, T, or /) is
always processed when it is encountered, regardless of whether there are
any more list item s ,

5. A specification that do~s require a list item (i. e. I, F, E, D, G, Z, L, or A)
causes the FORMAT IJrOcessor to look and see if there are any remaining.
If there is one, it performs the appropriate conversion and proceeds (unless
there is a type conflict between the format and the variable, which is detected
as an error) . 'On the other hand, if there are no more list items. the current
record is terminated (written out if output) • the input/output statement is
finished. and the next statement is executed.

6. When the final right parenthesis is reached. the FORMAT processor again
looks to see if there are any more list items. If not, the operation is terminated.

15.40

• I

"lt4+dir i' toP'r 'J' 'Mbtt«'tWk eme tt'We

10

~i
,

o

-

8.

COMPUTER AUTOMATION. IN(. ~

as described above. However I if there ~ more list items I the current
record is terminated I a new record is begun I and the FORMAT is rcscanncrl.
The rescan takes place as follows:

• If there are no parenthesized groups of specifications in the FORMAT
statement I the whole FORMAT is rescanned .

• If there ~ any parenthesized gr~~ps, the rcscan starts ot the group
whose right parenthesis was the l+st one found before the final right
parenthesis of the FORMAT statem~nt. To put it another wny, the .
outer parentheses are called levellzero. Nested groups within ore ~
then referred to as level one I leve~ two. etc. I according to their
depth of nesting. The rescangoes back to the most recent level one
group I if there is one I otherw,ise level zero. If the level one group
has a repeat count I it is included in the res can . This is illustrated
in the following example: ,--: __________ --,

r.:-:-:1 I . I , . "I
FORMAT (15.2 {/3A4) ,Z8/3 (F5. 2 t 2(2X, (3Al, 'ABC'» ,13) ,E12. 3 IGI3. 6)

Rescan starts here. t Last internal t Final riJht
closing parenthesis. parenthesis.

• If the part to be rescanned contains no format specifications capable of
transmitting data (i.e. no I, F, E, D, G , Z, L, or A), but there are
still list items that need to be transmitted, this is an error and will be
diagnosed. The same is true if the whole FORMAT statement contains
no data formats and there are any list items.

Each list item requires one format specification (or one repetition of a repeated
format), except for complex variables, which require two ,one for the real
part and one for the imaginary part.

Whenever a new record is read I or an old reoord written out I and an error
occurs or an end-of-file is found, and the ERR= or END= option has been
specified on the READ /WRITE statement, processing terminates immediately
and control is transferred to the specified statement.

FORMATs Stored In Arrays

This feature makes it possible to use a variety of FORMATs without having to include
all of them in the program as FORMAT statements, each one of which is referenced by
a different, but identical, READ or WRITE statement. Instead of referencing the label

5.41

.1

,."'=t!1 ... bW'W'5t It

o
I

COMPUTER AUTOMATION. INC. ~

of a FORMAT statement, any READ, WRITE, DECODE, or ENCODE statement can
reference the name of an array: The FORMAT can then be stored in the urray, IlS

nn ASCII character string,

The first character in the array shoufd be the opening left parenthesis. The rest of
the format specifications follow, and then the closing right parenthesis, The
letters "FORMAT" do not appear.

The FORMAT can be constructed in the array, using!Hollerith constants, DATA
statements j etc. However, more often it is read in at run time, using "A" format.
(In fact, this feature is sometim,es called "FORM~Ts t run time" ,) For example,
these statements could appear fIrst: ~ I

DIMENSION MM (10)
READ (5 ,I) MM

I FORMAT (10A2)

and read in the line:

(2FIO,3,17)

The array MM would then contain the following values:

MM(1) MM(2) MM(3) MM(4) MM(5) MM(6) MM(7) MM(8) MM(9) MM(10)

, (2' 'FI' '0, ' '3, , '17' ')b' 'bb' 'bb' 'bb' 'bb'

Now MM clln be referenced as u FORMAT; for example:

READ(5,MM) X, Y, K

The FORMAT processor will go to the first element of the array to begin, instead
of to a FORMAT statement,

You want to be careful to fill up all character positions of each of the array elements
that will be scanned; that is, two character per element if integer, eight if double
precision, etc, Otherwise there will be gaps between the FORMAT characters, This
can be disastrous, especially on the Hollerith formats, which will include these gaps
as part of character strings, This problem can also occur when using the ANSI
allocation option (see chapter 9).

5.42

, &' ''#1'#1' Mffltru e 1 It

o

o

COMPUTER AUTOMATION. INC, ~

CARRIAGE CONTROL FOR PRINTING

NOI'IlI1l11y printed c;lltPlIt is sing.le. spuc(!d; encl! l'(wOI'd nppenrs on the noxt lirw, TIW1'(!
:II'(! pl'ovisiorls rOl' double spncing, nnd ejecting to the top of u new pllg'n, IInci you should
IH! awar'(! of them so thot you will not activate them lIecidentully or los(! informution,

I

The first character position in any line that is ~eing output to a print device is
reserved for a vertical carriage control charac~~r, There are two such control
characters, and they cltuse the following acti0lljs to be taken:

Character

o
1

, I

Action I

Upspace two lines before printing (double space) ,
Skip to top of page before printing (page eject) ,

Any other character causes a normal single upspace before printing, (Overprinting
(+ in column l) is not supported.) In any case, column 1 is never printed. It serves
only to control carriage action. The actual line is considered to begin in column 2, so
column 2 will be printed in column 1 on the paper (i. e. the whole line is shifted left one
position) ,

Carriage control is usu~lly specified with a lHx format at the beginning of the FORMAT
statement (lHb provides normal spacing). However. information in column 1 could
result from almost eny format specification (e.g. F or A). in which case it would be
lost and might also produce an unexpected printer action. Therefore, if you are not
looking for carriage control, be careful that your formats will not produce anything
~n column 1. The free form OUTPUT statement always begins its output in column 2
~o that no carriage corttrol action will occur.
i

Note that if a record is output to some other device. such as a magnetic tape. column 1
will be included. If the tape is later listed. the same carriage control action will take
place as if it had been printed directly.

5.43

o

'0

(OMPUTfR AUTOMATION. INC. f3]1

CHAPTEIl 6

DECLARATION STATEMENTS

CLASSIFICATION OF NAMES

Every name in a FORTRAN Program is classified as one of the following:

1. Scalar (simple variable)
2. Array
3. Subprogram
4. COMMON block

If it is a scalar or array, it must have a type. Subprograms have 8. type if they
are functions. but Poot if they are subroutines. Some of these classifications require
explicit declaration) using a declaration statement. Others result from implicit
declaration; that iE, the contexts in which the nllme is used.

Explicit Declarations

Explicit declarations include the following:

1. Arrays. In order to be used as an array ,a name must first have been dimen
sioned. This can be done with a DIMENSION or type statement, or in a COMMON
statement.

2 Type. The IJKLMN rule (see below) determines the type of a name, unless

3.

it is explicitly declared first, using an 'INTEGER. REAL. DOUBLE PRECISION,
COMPLEX. or LOGICAL statement.

Subprograms. Suoprograms can be defined or referenced within a program
(sometimes both). You define a subprogram with a FUNCTION or SUBROUTINE
statement, or by a statement function definition. These are described in the
next chapter. Most subprograms that are only referenced are classified
implicitly (see below). However, the EXTERNAL statement is used in certain
cases.

4. Storage Allocation. Normally the compiler chooses where to allocate
scalars and arrays. If you need to have them in a certain order, or overlapping,
or you want to share storage with other programs, you can use the COMMON and
EQUIVALENCE stat3ments.

6.1

0

c

5.

COMPUTER AUTOMATION. INC. §]1

Data Initialization. 'FORTRAN does not guarantee the initial contents of
variables upon loading, so you should not use a variable until it has he en
assigned a value. The DATA statement assigns initial values upon loading,
so that you do not have to take the time and space to do it with assignment
stlltements at run time.

In general, declaration statements must appear at the beginning of the progrAm.
EXT E RN A Land DATA are exceptions. See appendix A .

Implicit Declarations

When you have not explicitly declared a name. it ",iII ~e ~laSSified implicitly.
usually at its first appearance in the program. This takes place according to the
following rules:

1.

2.

3.

A name that begins with I I J t K t L t M t or N is integer type. Any other name
is real. Certain library functions are exceptions. See paragraph 6, below.

i

A name that is called vrith a CALL statement is a subprogram.

A name that appears in an expression, followed by an argument list enclosed
in parentheses t is a function t i.e. a subprogram. Of course t if the name has
previously been dimensioned t neither this nor the following rule would apply
to it.

4. A name that appears to the left of an equal sign, followed by a dummy list
~nclosed in parentheses, is a statement function t i. e. a subprogram. These
~re described in the next chapter.

c) . J 11 name first appears in any other context (than the above or a declaration
dtatement) t it is automatically classified as a scalar (simple) variable.

6. The complex and double precision functions in the library automatically have
a known type, as long as they are used in the proper way as functions. Their
type does not have to be declared.

Conflicting and Redundant Declarations

Conflicting and redundant doadarations (either explicit or implicit) are not allowed.
For example t once a name has appeared in a type statement t it should not appear in
another one. A name may not be placed in COMMON twice, nor dimensioned twice.
Once it has been dimensioned t it may not be used without subscripts (except where
specifically allowed, such as in an I/O list or argument list). If a name has been

6.2

-

t

! 0

(OMPUTERAUTOMATlON.INC. ~

implicitly classified as a scalar, it may not be declared EXTERNAL. Errors such as
these will be diagnosed by the compiler.

DIMENSION STATEMENT ----

The DIMENSION statement declares the dimensions of an array. It is written:

DIMENSION AI' A2, A3, ... I

where A is an array declaration. Array declaratl~ons
type and COMMON statp.ments) have the form;

(which may also appear in

where:

i

v is the name of the array.

n is thQ number of dimensions for the array. In Computer Automation
FORTRAN IV, arrays may have any number of dimensions.

r defines the subscript range of each dimensions.

Usually the subscript range is specified by a single, unsigned integer representing
the upper bound of that subscript. For example, a 3x10 array would be declared:

DIMENSION ALPHA(3,10)

This means that the first subscript runs from 1 to 3, the second from 1 to 10.

Iry Computer Automation FORTRAN IV, subscripts may have a lower bound other than 1.
IJ~ this case. both the lower bound find the upper bound must be shown, separated by
[l icolon. Thus the 5ubscript range (r) can have either of the forms:

or

The lower bound is assumed 1 in the first case. When both bounds are specified I they
may be positive I negative I or zero I as long as the upper bound is greater than the
lower bound. For example:

DIMENSION STEP (0: 10)

gives STEP a size of cleven elements I but the first is STEP (0) instead of STEP (1) •

DIMENSION TIME (- 60: +60)

declares TIME to have 121 elements I the first being TIME (- 60), and the last being
TIME (60) .

6.3

o

C

COMPUTER AUTOMATION, INC. ~

Whenever an array element is referenced in the program it must have the same
number of subscripts as dimensions, and each subscript must lie in the range
declared for it,

In n subprogram, when v is a dummy'_~_rray, the subscript limits, S I and Su . mny
b(~ unsigned dummy scatars instead of integers, This is ctiscussect in the IH~xt
ehapter, under "Adjustuhl~ Dimensions".

AdditionHI examples of DlM2NSION statements:

DIMENSION PRICE (1900: 1980,12) , ND(0:1100)
DIMENSION MGO (24) , LTO (22) , BB (36, ~2, 3'4)
DIMENSION KLDOT(6,6,10,20), NCENT(t273: -100)
DIMENSION MA'fRIX(10,10) '!

Array Stora~

An array cannot actually be represented in memory as a multiple dimensioned entity,
It cun only be strung out in C.'rder as a one-dimensional entity. Sometimes it is
important to know the order in which multi-dimensional arrays will be stored, Two
examples are: (1) when an array appears without subscripts in an input/output
list, it is transmitted in storage order and (2) when an array is used to hold alpha
numeric strings (e, g. read h. A format or set up by the DATA statement) , these
strings will be placed intCl consecutive array elements,

Arruys are stored starting at a lower mcmory address and moving to a highcr memory
'lddr('sf' The array elements are in order such that the first subscript varies most
rapidly, t he last subscript least rapidly, On a two--dimensional array, this is called
"colump wise", since the columns are stored consecutively, but the rows are not.
This n)le applies whether thE; upper and lower bounds are positive or negative. For
(~xllmpJ!(', here are two arrays listed in storage order, showing the element count for
cHeh sllbscript combination:

DIMENSION X (2,3,2) DIMENSION Y(-2: 1,3)

I' X (1,1,1) 1 Y(-2,l)
2 X(2,l,l) 2 Y (--1,1)
3 XO,2,1) 3 Y(0,1)
4 X(2,2,l) 4 Y(1,1)
5 XO,3,l) 5 Y(-Z,2)
6 X(2,3,l) 6 Y(-1,2)
7 X(1,1,2) 7 Y (0,2)
8 X(2,l,2) 8 Y (1,2)
9 X 0, 2,2) 9 Y(-2,3)

10 X(2,2,2) 10 Y(-l,3)
11' XO,3,2) 11 Y (0,3)
12 X(2,3,2) 12 Y (1,3)

6.4

. .

"

"jl

;1

.··10

o

COMPUTER AUTOMATION. INC, ~.

TYPE STATEMENTS

There are five type statements. used to explicitly declare the type of 11 scnlln', tH'rny.
or function. Since the IJKLMN rule implicitly classifies all namr.s OK ('lthor inh'K(lf
or real. you will need a type statement for all doublr. precision. complex. or logical
names (except certain library til-ri"ctions) • plus whenever you want to override the
IJKLMN rule. The type statements have the form:

INTEGER
REAL
DOUBLE PRECISION
COMPL3X
LOGICAL

N 1.N 2.NI3',"·

I

where N is either the nkme of a scalar. array, or function, or it is an array declaration.
i. e. the name of an array followed by dimerisions enclosed in parentheses (as described
in the previous section). Whenever an array declaration appears. the statement is
acting as both a type statement and a DIMENSION statement. so no DIMENSION statement
is needed. For exemple, the statements: .

COMPLEX C 1. Z
REAL ALPHA(8,10). MM, R

declare C1 and Z to be complex (it may not be known yet whether they are scalars,
arrays. or functions) j declare ALPHA to be a real 8x10 array; and declare MM and
R to be real. R would be real anyway, by the IJKLMN rule, but can be declared if
desired. Declaring the type of a name does not affect unrelated attributes. such as
whether it is a scalar. array, or function. For example. the name MM in the above
~xample could also appear, either before or after the REAL statement. in a DIMENSION
~tatement or an EXTERNAL statement. .
I

'there are a number of library functions that have a special type that is known to the
compiler (e. g. ABS is real). If you should declare a type for one of these names. it
will no longer be recognized as a special name.

Other examples of type ~tatements:

INTEGER COUNT, P, DAY OF MONTH
REAL GEORGE(19, 65), THING (12) , ESTATE(50,135). MC COY
DOUBLE PRECISION X, DRATE. DTIME
LOGICAL Ll, L2, TRUTH (0: 10)

If you need to convert a whole program from single precision to double precision,
you may not need a whole string of DOUBLE PRECISION statements. The ADP
(Automatic Double Precision) option, described in chapter 9, is designed to do that
for you.

6.5

COMPUTER AUTOMATION. INC. ~

~, ALLOCATION OF VARIABLES
~

r Normally the compiler choos~s where to allocate variables. It allocatt.'s the Ill'ruys
first. then the scalars. These come at the beginning of thc program. ah~ad of tho
object program instructions {see appendix B). Two methods of controlling the
allocation of variables are a,'ailable to you. You can move some of the variables

o

"I

out of the local area into a COMMON area that is shared with other programs. using
the COMMON statement. Or, within either the local or COMMON area, you can ovcr-
lap some variables on top of others or cause them tOb;e in a certain order. using
the EQUIVALENCE statemp.nt. I

To take advantage of these features, you may have tOfnow the amount of storage
occupied by each type of variable . In the case of arr ys. this is the size of each
element of the array. If the ANSI allocation option is pecified (see chapter 9) • the
size of integer and logical variables is different. as shown.

Integer
Real
Double Precision
Complex
Logical

COMMON STATEMENT

,

Size in Wo~ds

1 (2 if ANSI)
2
4
4
1 (2 if ANSI)

The C9MMON statement assigns variables to a special storage area that can be shared
by m01e than one program. In earlier FORTRANs. there was only one COMMON area.
Later t1he capability was added of defining additional COMMON areas and giving them
numes These are called labeled COMMON areas. so the original COMMON is called
blank~OMMON. since it has no name. Blank COMMON remains the more often used,
hut both have some advantages.

Blunk COMMON

Variables are usually declared in blank COMMON with a statement of the form:

COMMON vl • v2 • v3 •...

where v is the name of a variable (scalar or array) or is an array declaration (array
nume folloWE'd by dimensions). When an array declaration appears. it need not appear
in u DlMENSION statement.

6.6

"
• I

"

o

i 0

COMPUTER AUTOMATION. INC. f3]1

This causes the variables named to be allocated in blank COMMON. in thc order
listed. i. e. VI first. then v 2 • etc. If there is more than one blank COMMON
stat(~ment. the variable lists are strung tognther as if they had all been dcc)nr~d
in one statement. In other words. each COMMON statement picks up whcre tho
previous one left off. .

Blank COMMON begins at the same place for all programs that are loaded togethor.
so if two or more programs w~nt to use the same variables. they should declare them
in COMMON in the same order. For example. if; both programs have the statement:

I
COMMON CAUSE,. LAW. GHIA(70) i

. I
then they can pass information back and forth i~ the variables CAUSE and LAW and
the array GHIA. The variables must be in the slame order. however. since it is the
location within COMMON that is important. not the names of the variables. In fact.
it is not necessary for the names to be the s'ame. except that it makes it easier to
remember what corresponds to what. For example. another program could have
the statement:

COMMON SENSE. MARKET, THIEF (50)

causing SENSE to correspond to CAUSE. MARKET to LAW. and THIEF to the first 50
elements of GHIA. This points out two things. One is that the size.s of blank COMMON
do not have to be the same. Whatever corresponds, corresponds; whatever is left
over, does not. For example, the last 20 elements of GHIA in the upper program do
not correspond to anything in the lower program. The other point is that you have to
be very careful about the sizes of various types of variables. so that they really do
l"\'latch up. If you make a real variable correspond to an integer one. two things will
~appen. They will not be able to pass i~form.atio~ back and forth in any straig~tforward
'tay. because the v'alues are expressed In qUite dIfferent formats. And the varIables
t~at follow in COMMON will not line up. because the real variable occupies two words.
J:hile the integer occupies only one word. The only cross-type correspondence that
is really recommended is complex to two reals.

There is an exception to this rule about making types agree. Sometimes COMMON is
used. not to pass information back and forth. but simply to conserve memory by using
the same locations for two sets of variables. If the variables are used only temporarily
by each program. so that it does not matter if other programs destroy them. then
several programs can use the same COMMON area for their variables. without regard
to whether they match up or not. This is a less frequent use of COMMON.

As an example to show how COMMON is arranged in memory. the following shows how
two COMMON statements (in two different programs) would arrange the variables.
beginning at relative location zero in blank COMMON:

6.7

o

c

COMPUTER AUTOMATION, INC. ~

COMMON X, Y, Z,N COMMON A (:l) , .1

0000 X 0000 A (l)

0001 0001
0002 Y 0002 A (2)
0003 0003
0004 Z 0004 A(3)
0005 0005
0006 N 0006 J

There j, one restrietion on variables in blank COI\lMol,. ·They cannot be initialized
with the DATA statement (described later in this ~hap~~r).

Blank COMMON can also be declared using a sped.al form of the labeled COMMON
onclaration. with the name blank, as shown below,

Labeled COMMON

Labeled COMMON makes it possible to have more than one COMMON area. For example.
program A might have some data that it shares with program B but not with program C,
and some other data that it shares with C but not with B, Programs D Ilnd E, then,

"

might share some data with each other but not with A, B, or C. The usual technique,
when using only blank COMMON. is to put all the data'in blank COMMON, Rnd then each
progrHITI has to keep track of where the data it needs is. Generally this is done by "gang
punchi~gll the same set of COMMON statements and putting them at the head of each
prograpl. Using labeled COMMON can cut down on the amount of superfluous data
that ha~ to be declared in each program. Also. labeled COMMON variables can be
initiHli~ed with the DATA statement, whereas blank COMMON variables cannot.

NOTE

Labeled COMMON block names may also be used within the
same program as names of variables, without conflict . Any
usage of the label other than in a COMMON declaration will
be assumed by the compiler to refer to a variable, and not
the COMMON block.

Labeled COMMON is declared in much the same way as blank COMMON, except that eaeh
group of variables is preceded by the name of the labeled COMMON block, enclosed in
slashes. That is:

COMMON Iblock namelv 1 ,v 2 ' ... /block namelv 1 ,v 2' . " etc.

For example, the situation described above , with the five programs A, B. C, 0, and E.
might be handled with three labeled COMMON blocks. as shown here:

6.8 Revised March 1975

. '

-

,...-----------------'- COMPUTER AUTOMATION. INC. ~

Program A:
Program B:
Program C:
Program D:
Program E:

COMMON / AB/DICK ,HIVE / AC/DC ,LU ,GULL
COMMON /AB/DICK ,HIVE
COMMON /AC/DC ,LU ,GULL
COMMON /DE/W90ML ,K
COMMO!:'LLDE/W90ML ,K

Each program needs to define only the data that it wants to share with any other programs.
A block of COMMON may be used by any number of programs. As with hlank COMMON, if
the same block is declared more than once in the ~ame program, the variables are strung
out into a single list, in the order they appeared. 1 In ,other words, each reference to the
same block picks up where the previous one lrft Off (in a single program). Thus the
statements: '

COMMON /BLOCKl/P,Q,R /BLOCK2/S ,T
COMMON /BLOCK2/U, V, W /BLOCKl/X, Y , Z

are equivalent to the single statement:

COMMON /BLOCKl/P,Q,R,X,Y,Z /BLOCK2/S,T,U,V,W

The size of a labeled COMMON block must be the same in all programs that use it.
(This is different from blank COMMON.) It is a particularly good idea, therefore,
to use exactly the same COMMON statements, with all the variables having the same

''-..- names. This is not necessary, but it makes it easier to assure the same size.

Laheled COMMON blocks are named with the same kind of names as variables. functions.
etc! .. i, e. beginning with a letter, containing letters and digits, and the first six char
actFl's significant. A COMMON block must not have the same name as a subprogram
or !my other COMMON block, in order to avoid conflicts during loading.

Blank COMMON can be specified using the same form as for labeled COMMON, but with
the name (between the slashes) blank. This means that blank and labeled COMMON may
be intermixed in the same statement. If the blank COMMON declaration comes first,
the slashes may be omitted too, so that it looks just like the form shown above for
blank COMMON.' For example, the statements:

COMMON /ALPHA/ A, B / / C, D
COMMON / / E, F / ALPHA/ G

are equivalent to:

COMMON C ,D,E ,F / ALPHA/ A ,B ,G

6.9

o

o

(OMPUT£R AUTOMATION. INC. ~

Euch lnbeled COMMON block is arranged in the same way as blank COMMON t with
the variables following one another in thc order listcd, start ing at a low memory
address and moving to a higher memor.y· address.

InRom(~ FORTRANs. variables in labelcd COMMON may only be illitiuli~('d (with tho
DATA statement) in a spedal program t callcd a BLOCK DATA subprogram, This is
not IWCeSSHl'Y in Computer Automation FORTRAN IV. ~ny program may initialize
Illbeled COMMON. The BLOCK DATA subprogram is aFcepted for compatibility,
however (see chapter 7) . I

EQUIVALENCE STATEMENT
.. 1

1

The EQUIVALENCE statement is used to make two or more variables occupy the same
lo-.!ution or set of locations. It is written:

EQUIVALENCE set l ' set2 ' set3 ' ...

where sct is an equivalencp set of the form:

This says that the variables VI through Vn are to occupy (or begin at) the same
location. Each variable (v) may be one of the following:

1. The name of a scalar variable or an array. When an array name appears, it
Ttwans that the first element of the array will occupy that location. The other
11ements will follow. For example:

2.

I
DIMENSION MATRIX (11,11)
EQUIVALENCE (X,Y) , (Ml,MATRIX)

determines that X and Y will lie in the same location, and that M1 will coincide
with the first element of MATRIX, i. e. MATRIX (1,1). An array must be
dimensioned before appearing in an EQUIVALENCE statement.

An array element, where the subscripts are signed or unsigned integers. For
example, the statements:

DIMENSION MCOL7 (11), MATRIX (11 ,11)
EQUIVALENCE (MID,MATRIX(5,5» • (MCOL7,MATRIX(1,7»

would allocate the scalar MID in the middle of the array MATRIX,

6 10

)' . .

--

. .

I

o

10

3.

COMPUTER AUTOMATION. INC. ~

coinciding with MATRIX (5,5), and would 9ause the array MCOL7 to ovcrlay
the seventh column of MATRIX, by defining its starting location to be the
same as MATRIX (I, 7).

A scalar or array name followed by a position count encloscd in pnrcntheses.
This has the same meaning as if the variable were I.i one-dimensionAl nrray
with a normal lower bound of 1. In other words. X (1) mc~ms the snme us
X. X (2) is the element position immediat~ly after X, X (3) is thc next. and so on.
Thus it is not a count of how many positi?ns away from the variable; it is one
less than that. X (3) means 2 positions after X. By element positions. we do
not necessarily mean words. We mean s~eps of the number of words occupied

I

by the variable. depending on its type. lIn other words, for intcger variables
the position count is in one-word increm~nts. For real. the increment is two
words, for double precision four, etc. This is consistent with the statement
above that the variable is treated as ~f it were a one-dimensional array. For
example:

EQUIVALENCE (Z. Y (2) .X (3»

allocates X. y, and Z one after the other in that order. even though they each
require two words.

For arrays. there is a potential conflict between a position count and a subscript.
If the array ALPHA has more than one dimension, then ALPHA (5) is clearly a
position count. But what if ALPHA has only one dimension? Is the 5 a sub
script or a position count? The answer is thnt it is a subscript, if it makes
any difference. Usually it docs not. If ALPHA has a normal lower bound of
1, then ALPHA (5) means the same thing either way. (That is why it was
defined that way.) However, if ALPHA has 11 different lower bound, for
example:

DIMENSION ALPHA(-3: 12)

then ALPHA (5) means the same as it would in an expression, namely the ninth
element of ALPHA, not the fifth (which would be ALPHA (1» .

You should be very careful in equivalencing variables of different types to each other.
For one thing, the sizes may be different. More importantly, if you intend to pass
information back and forth, you have to know what you are doing. EQUIVALENCE is
not the same as an assignment statement -- types will not be converted. If you were
to write:

EQUIVALENCE (K,X)
X = 4.38
OUTPUT K

6.11

o

COMPUTER AUTOMATION. INC. ~

the vulue of K would be whatever was in the first word of the two-word flouting point
vlIIue, nnd this depends on the particulnf computor's format for flOlltill\{ point ntlllliH'l's.

This is not, in general, n very safe kind of thing to do.

INTERACTIONS OF COMMON AND EQUIVALENCE·

An allocation statement must not cause conflicts with any previous allocation statements.
This means, for instance, that you can not put the sam;e variable into COMMON twice,
nor eq ui valence two variables that are both already in I COMMON.

i
You may, however, equivalence an unallocated variabte to something in COMMON,
thus causing that variable to be allocated in COM~ON 00. For example:

COMMON A, B, C, D
EQUIVALENCE (C, Y ,X (2»

I

puts Y into blank COMMON coinciding with C. and X (2) i. e .• X (1) coincides with B.
This could be written more clearly as:

EQUIVALENCE (C,Y) ,(B,X)

An EQUIVALENCE never changes the order of variables already in COMMON. Those
are fixed by the COMMON statement. EQUIVALENCEs may simply overlay these
variables with others.

Equivrqencing an array into COMMON (or using a position count) may increase the
size of ~hat COMMON area. This is permissible if it extends COMMON at the end,
i . e. beyond the last position currently included. It is not Ipermissible to extend
COMM1N backwards, i. e. ahead of the first position in COMMON. For example, given
the sta~ernents:

COMMON /BLK/ I, J, K
DIMENSION L (4)

this. EQLJ IVALENCE causes n legitimate extension of the COMMON block, as shown:

EQUIVALENCE (l,L(1»

L(1)
L (2)

L(3)

0000
0001 J
0002 K
0003 L (4) Legal extension.

6.12

i . .

.. . .

o

--

o

COMPUTER AUTOMATION. INC. ~

However, the following EQUIVALENCE tries to extend the block in thl' other rllrnction:

EQUIVALENCE (K,L(4»

0000
0001 J
0002 K

L (1)----lllegni Extension
L(2)

L(3)
L(4) .

This same rule applies to both blank and labeled iCOMMON. Note that if a labeled
COMMON block is extended by EQUIVALENCE, th~ resulting size must be the same as
the size declared in all other programs.

EXTERNAL STATEMENT

Form: EXTERNAL s 1 • s 2' s 3' ...

where: s is the name of an external subprogram.,

The EXTERNAL statement declares that the names listed are closed, external sub
programs. It is not a statement that is needed very often. because most subprogram~
can be recognized as such by their usage in the program. For example, in:

AB = F(X)
CALL FROG (Y)

Ole names F and FROG are automatically classified as subprograms. The EXTERNAL
st(utement has two special uses:

i
1J The name of one subprogram can be passed as an argument to another. For

example:

CALL TEST (F ,FROG)

If F and FROG had already appeared in statements such as the two shown above,
and were known to be subprogram names, there would be no problem. However.
if this was the first appearance of F or FROG. there would be no way to know that
they were supposed to be subprogram names: -- the compiler would implicitly
classify them as scalar variables. So the EXTERNAL statement would be needed
here to declare those two names. For safety, it is not a bad idea to always use an
EXTERNAL declaration in such cases. Some FORTRANs require this.

NOTE

The EXTERNAL statement is not required for references to
known subprograms (basic external functions) such as SQRT
(e.g., X = SQRT (Y»; however, it is required when a known
subprogram is used as an argument, if not previously referenced

as a subprogram. 6.13
Revised March 1975

"

o
I
I
I.
i ,
I
<

2.

COMPUTER AUTOMATION. INC. f3]1

There are library functions whose names are specially recognized by the
compiler. For example, it knows that ABS is real and has one argump.nt ,
and t.hat CMPLX is complex and has two arguments. Some of thes(! functions
the compiler generates "in-line"; it does not cnll lin ('xtcrnlll routine. [f
you want to use one of these "intrinsic" names fOl' :til (~xternlll \'Olllirw of' your own "
choosing, you have to first declare it in an EXTERNAL stntement. This
mllkes the compjler forget what it knows about the name and trent it like
any other external subprogram. For example:

EXTERNAL FLOAT
RA TE = FLOAT (BOND) / 100

This is not, in general, something that we 'recJmmend. It may make your
program confusing to understand. I

DATA STATEMENT

A DATA statement gives initial values to variables. Normally FORTRAN does not
guarantcc the contents of variables upon loading, so you should not use a variable
until it has been assigned a value. If the variable is not going to change, then
instead of assigning it with an assignment statement (which takes time and space
at run time), you can assign it with a OAT A statement. so it will be loaded with a
particulllr value. The DATA statement has the form:

whet'c:,
i

v is a list of variables, separated by commas. This may include
scalars, arrays. and arrllY elements.

C is a list of constants, separated by commas. A constant may be
repeated several times by preceding it with a count and an
asterisk:

n*c

where n is a positive integer and c is a constant.

Missing commas between V /C/ groups will cause 3 warning' dingnostic to
bc output.

Thcrp must be the same number of constants as variables in eaeh group, so that
they e:lIl be assigned on [l one--to-one basis. For example:

DATA A •• J ,H(3)/4.(),-12,O.O/ , TITLE/'ABe})'/

6.14
Revised March 1975

. .

..

o

o

hos the same effect as:

A = 4.6
J = -12
B(3)=0.0
TITLE = 'ABCD' \

COMPUTER AUTOMATION. INC. ~

except that the assignment is done during loading. not during execution.
I

We do not recommend that you use the DATA sta~ement to initialize variables that
are later going to change value. because this m~kes initialization dependent on '
loading. and therefore you can not restart the p~ogram without reloading it. It is
better to use assignment statements for values t~at are going to change. and the
DAT A statement for values that are not. This means that the values become.
essentially. constants with names. This is ;useful in several places.

For example. instead of writing out the speed of light as 2. 997925E10 at every
reference. you can use the statement:

DATA C/2.997925EIO/

and then refer to the value as C. This also simplifies updating the program. in
case the speed of light should change.

Of course. you could get the same effect using an assignment statement. with
only a small loss in time and space. There are other situations where the loss is
more significant. Suppose you want to write an ARCTAN function. You will want
tq have a table of constants. But how do you build a table of constants? You can
n~t use subscripts on constants. so you would have to execute a group of assignment
statements at the beginning of each calculation. such as:

i

V(O) = 0.0
V (1) = .1243550
V (2) = .2449787
etc.

which would slow the program down quite a lot. This is an ideal application for the
DAT A statement. since it takes no space or time during execution. and the values are
not going to change.

6.15

f
* i
1<
r
\

--

"
COMPUTtR AUTOMATION. INC. ~

. .

1
ji DATA Variable List

o
I

I ,

The variable list consists of scalars, arrays, and array elements, separated by
commas. When an unsubscripted array name appears, it rl~pre8ents all the l'lcm('ntH
bf the array in storage order (the same as in an input/output list). Th(~rH nHIHt he
enough constants to fill up the whole array . It is not possible to initiali7.H part of 11Il

array. To do that, you have to write out the individual array elements. (Or you
can EQUIVALENCE a smaller array to the part you want to initialize, and use the
smaller array in the DATA statement.)

The subscripts used in an array element may OnlY. be liinteger constants. (A variable
subscript would not have a value at compile time.) ,

With one exception, each variable must be initialized by a constant of the same type.
The type conversions performed by the assignment statement are not done by the
DAT A statement. For example, you must write:

DATA X/3./ and not DATA X/3/

The one exception is that any type of variable may be initialized by a hexadecimal or
alphanumeric string conste.nt, using as many digits or characters as required. This
is described below.

In the DATA statement, a complex variable is treated as a singled entity. This differs
from the input/output list, where a complex variable is treated as two real parts. Thus
a complex v~riable should be initialized by a complex constant (i. e. two reals enclosed
in parentheses) or by a single hexadecimal or alphanumeric constant. You cannot, for
('xample, initialize the real part in hexadecimal and the imaginary part in floating point.

i
Dummy variables may not be initialized (since they have no real existence at compile
time) , Inor may variables in blank COMMON (since that area is preempted by the loader).
Howev~r, you may initialize labeled COMMON, and you may do so in any program. It
is not necessary to use a BLOCK DATA subprogram, but you may if you prefer.

C If H variable appears in more than one DATA statement in a program, the latest one
overrides the previous ones. Similarly, if more than one program initializes a variable
in laheled COMMON, the last one loaded will take precedence. We do not recommend this.

DAT A Constant List

The constant list may contain constants of any type, including integer, real, double
precision, complex, logical. hexadecimal, or alphanumeric string. Numeric constants
may be signed or unsigned. Any constant may be repeated n times. using the form n *c,
where n is greater than zero. For example:

DATA A,B,C,D,E /2*-3E7,3*'CDE'/

6.16

.. ,-,

o

o

COMPUTER AUTOMATION. INC. ~

The total number of constants (including repetitions) must be the saml' as the totnl number
of vnriables· (including all the elements of unsubscripted arrays). (~xcept in the caRe
of alphanumeric strings. One string constllut clln IICt us several coot.;tunt:;, IIH dOM('l'ihf'd
lwlow. Howevor. two Htring constnnts ellllllot /Ict liS 0110.

These are the rules for using the various types of constants:

1.

2.

3.

An integer, real, double precision, compl~x, or logical constant must correspond
to a variable of the same type. Note that }'jou must write the "D" exponent on a
constant that initializes a double precisi01 va~iable .

A hexadecimal constant may initialize :a variable of any type. It does so in a
manner similar to Z format input. The coqstant may have as many digits as are
required by the variable type (i. e. four for integer, eight for real, etc.) .
It may not have more. If it has fewer'i they are right-justified in the variable.
Since a complex variable is handled a~ one value, it may accept up to sixteen
hexadecimal digits. If it finds fewer than nine digits, the -real part will ,be zero.
Here is an example using hexadecimal constants:

COMPLEX CPX
DATA J ,CPX /3ZA80,: 4E832FBOCE805EE7/

Alphanumeric strings may also initialize any type of variable, but they differ
in several ways from the other constants. For one thing, blanks are signifi
cant within the strings. Also. when there are fewer characters than needed to
fill a variable, they are left-justified and followed by blanks to fill out the whole
variable. The most important difference, however, is that a string constant can
initialize more than one variable. If it contains more characters than needed by
the first variable, it goes on to the next. and keeps going until it runs out of
characters. If there are not enough characters to completely fill the last
variable, it is filled out with blanks. U suaIly this feature is used to initialize
arrays. as in:

INTEGER LC (20)
DATA LC/'THE WEED OF CRIME BEARS BITTER FRUIT. '/

(Note that some extra spaces were needed at the end of the string to provide
for all the elements of the array.) It is not necessary to use an array. however.
In fact, the string could fill up a variety of variables of different types, if such
a thing were needed. For example:

COMPLEX Cl
DATA X,M.Cl/9HABCDEFGHI/

is equivalent to:

DATA X/4HAI;lCD/, M/2HEF/. Cl/8HGHIbbbbb/

6.17

o

c

COMPUTER AUTOMATION. INC. ~

On the other hand, one variable may not be initialized by more than one string constnnt .
If the first constant is not long enough, the rest of the variable is filled out with blanks.
Thus:

DATA X /4HABAB/

is not the same as either:

DATA X /2HAB.2HAB/ -or-. DAtTA X /2*2HAB/
i
!

In the first casc, X is assigned the four characters' A$AH'. The lattcr two cases both
m;sign I AH I to X and have' AB' left over (which is a~ error) .

. ! '

6 .. 18

. .

-

,
. COMPUTER AU'(OMATlON, INC, ~. -----

CHAPTER 7

PROGRAMS AND SUBPROGRAMS

When a FORTRAN program is loaded and executed, it may consist of several different
kinds of units, There must be one, and only one. main program, There may he
subroutines. functions I and tasks written in FORTRAN, There will be system
routines and functions provided from the library', There may also be other
subprograms or tasks that you write in assembly language,

MAIN PROGRAMS

; I

A main program is any program that does not begin (except for comment lines) with
one of the following statements:

FUNCTION
SUBROUTINE
TASK
BLOCK DATA

Since those statements always have to come first I a main program may not contain any
of them. nor may it contain a RETURN statement,

The starting location of a main program is defined as F: MAIN I and execution always
begins there, Thus if there were two main programs I there would be a double
definition of F: MAIN, You can write a main program in assembly language, by defining
tIte first location as F: MAIN and using that as the transfer address (operand of the END
line) ,

I
I

TfSKS

A task is a program that you connect to a real time interrupt, The first statement must
C be a TASK statement, which is written:

TASK name

where name is a standard FORTRAN name I just like a subprogram,

A task is not the same as a subprogram, because it is not called in the usual way. and
because it exits with a STOP statement I rather than a RETURN, It also has no arguments,
On the other hand. it differs from a main program in that there may be several tasks
with various names. and they do not specify a transfer address to begin execution,

7.1

,,',
~

c

c
I

!
I

COMPUTER AUTOMATION. INC §]1

A task may have its own local storage and may also use varlflhles in COMMON to
communicate with other programs. Since a task is not A subprogram, hOW('Vel' I the
local storage is not protected if the task is re-entered. Since tasks Ill'e w-lUully mwclltt'd
under RTX, they should be compiled with the RTX option. For further illfol'll1ution I

sec chapter 9.

SUBPROGRAMS

Subprograms are programs that may be called by other programs. A sUbprogram is
eithcr H function or a subroutine . Functions arc refer!enCed as elements of an
expression, and return a value. Subroutines are 'referenced with the CALL statement I

Imd do not return a value (except possible indirectly):. These two classes can be
broken down further, as follows:

, ,

Functions

1. FUNCTION subprograms
2. Statement functions
3. Intrinsic functions
4. Basic external functions
5. Assembly language functions

Subroutines

1. SUBROUTINE subprograms
2. Assembly language subroutines

FUNCTIONS and SUBROUTINEs are complete programs, wrHte!l in FORTRAN. Statement
funetio1s are defined in a single statement. and may be included within flny FORTRAN
jJrogrnjll. A basic external function is an assembly language function (usually). in the
library. whose name and attributes are known to the compiler. An intrinsic function is
alsoa library function known to the compiler I but it is not a closed external routine.
It is generated in--line by the compiler. (I. e. it is like an assembly language "macro" .)
The library functions are listed and described later in this chapter. Except for intrinsic
functions, all of these are called with a standard calling sequence. In many cases, it is
not necessary for the compiler to know what kind of subprogram is actually going to
satisfy a reference. For example I in:

A = F (X)

the function F might be a FUNCTION subprogram I a statement function I or an assembly
language function; it does not affect the way the statement is generated.

7.2

. .

..
COMPUTER AUTOMATION. INC. f3]1

FUNCTION Subprograms

A FUNCTION is a subprogram whose primary purpose is to compute u value and return
it to the calling program. It must begin with a FUNCTION statemlmt. which cnn be
written in either of the following-ways:

where:

. FUNCTION f(d l,d 2 ' •.. ,d n)

type FUNCTION f(d l,d 2 ,·· . ,dn) I

f is the name of the function I

d is the name of a dummy 'Whi~h corresponds to o~e of the arguments
in the calling reference. : Se~ "Arguments and Dummies" , beldw.

type is one of the type specificatio~s, namely INTEGER. REAL. DOUBLE
PRECISION. COMPLEX, or LOGICAL.

.C
I

The type of the function name determines the type of the result that is returned. If no
type is specified. the IJKLMN rule will apply.

A dummy is named with a regular FORTRAN name. Within the subprogram, it is
classified as a scalar: array, or subprogram name, and should correspond to a
similar entity in the calling program. Most dummies are simple scalar variables.

I

Other programs reference the name f as a function. Within the function itself, however.
the name f is treated as a scalar variable. This is the variable whose value is returned
as the result of the function. Therefore you should always assign it a value before
executing the RETURN statement. For example:

FUNCTION SQ (X)
SQ =X ** 2
IF (X<O) SQ = -SQ
RETURN
END

C, A FUNCTION must always have at least one dummy. Normally, function dummies are
"input" values. and are not changed witl:lin the program. However, if the corresponding
argument is a variable (and not an expression, constant, or subprogram name) , it is
permissible for a function to store values back into it by assigning values to the dummy.

If dummies are to have other than implicit type (IJKLMN rule) , they must be declared
in a type statement. The type modifier attached to the FUNCTION statement does not
apply to the dummies, only to the FUNCTION name. For example:

DOUBLE PRECISION FUNCTION POLY (RAD ,N)
DOUBLE PRECISION RAD, PI
DATA PI/3.l4159265358979324/
IF (N<3 .OR. RAD .LE. 0) STOP 100
POLY = 2 * N * RAD * DSIN (PI/N) ,
RETURN
END

7.3

jl'
~:'

o

c

COMPUTER AUTOMATION. INC. ~

SUBROUTINE Subprograms

A SUBROUTINE is a subprogram whose primary purpose is not to compute and return n
single value. Usually it performs more complicated operations. Ruch at; input/olltput I

matrix manipulation. or other blocks of computation. When u large program is hroknn
into modular units, the units are mostly SUBROUTINEs. A subroutinH is referenced hy
the CALL statement, rather than in an expression. It must begin with n StJRHOtJTINE
stutement. of the form:

SUBROUTINE sub(d1 ,d2 , ... ,dn)

or:

SUBROUTINE sub

where: sub is the name of the subroutine .•
d is the name of a dummy.

Note that H SUBROUTINE is permitted to have no dummies, while a FUNCTION must have
Ilt leust one. The rules for dummies of SUBROUTINEs and FUNCTIONs are exactly the
same, and are described in the section "Arguments and Dummies", later in this chapter.

The last statement executed in a SUBROUTINE should be a RETURN statement. This
simply returns control to the statement following the CALL -- it does not return a
vulue. However. SUBROUTINEs often return values indirectly by storing them either
in COMMON or in the dummies. When a dummy is assigned a value, the corresponding
argument must be a variable (scalar, array, or array element) .

Examp]e of a SUBROUTINE:
i

I SUBROUTINE PRINT (VOLTS ,NR)

! OUTPUT 'VOLTAGE = ' , VOLTS. 'TEST NUMBER:' • NR
NR = NR + 1
RETURN
END

Statement Functions

A statement function is similar to a FUNCTION subprogram, in that it computes and
returns a value. However, instead of being a separate program, it is defined in a
sing:le statement. called a statement function definition. and \Jan be included within
any other program. whether main program or subprogram. It is written:

7.4

. .

-.

()

COMPUTER AUTOMATION. INC, ~

f(d l ,d2 , ... ,dn) = exp

where: f is the name Of the statement function.
d is the name of a dummy scalar variable.
exp is the expression that defines the value of the function.

The type of the function is determined by theIJKLMN rule unless f has appeared in
a type statement. The expression must have a type that can legally be assigned to the

I

type of the function. The rules for this are the ~ame as for assignment statement~ (see
table 3-1). The expression should contain at le~!st one reference to each of the dummies.
It may also reference other variables, arrays, a d functions in the program, including
other statement functions that have been defi:ned previously. A statp-ment fundiorl may
not reference itself. ,

': I

A statement function must have at least one dummy. FORT;RAN allows these dummies to
have the same name as any other quantity in'the program, 'except for the other dummies
of that statement function. However, less confusion results from using distinct names
for the dummies.

Statement functions must precede all the executable statements in a program, and must
follow most of the declaration statements. See appendix A.

Examples of statement functions:

I
I
I
I

RSQ(A,B) = SQRT(A**2+B**2)
F (X) = 1/X - 3/X**3 + BASE
INC(K) = MATRIX (K+1) - MATRIX(K)

BLOCK DATA Subprograms
I
I

AIBLOCK DATA subprogram is a special program unit that may be used to initialize
variables in labeled COMMON. It has no name and generates no object code. It begins

C with the statement:

BLOCK DATA

and may contain only declaration statements and an END\ statement. In particular it
should contain COMMON and DATA statements to perform the initialization.

Some other FORTRANs require a BLOCK DATA subprogram to initialize labeled
COMMON. Computer Automation's FORTRAN does not -- labeled COMMON may be
initialized in any program. However, BLOCK DATA is provided for compatibility.

Be careful to declare each COMMON block completely '(listing all the variables, not just
those that are going to be initialized), so that the variables will be in the right position
to correspond with the declarations in other programs. and so that the size of the block
will also correspond.

7.5

o ,

c

For exnmple:

ComputerAutomation ~

BLOCK DATA
COMPLEX C1, C2
REAL MAT (35)
COMMON/BETA/Cl,C2.VAlr,KNUM,ARRAY (10, to) .MAT
DATA VAL/.57721/(O. ,1.),(0 .• -1.)/
END

Since II H LOCK DATA subprogram has no name, it mus~ either be compiled :1101114" with
tlw mnill program in batch mode (so that it is Ilutomaticp.lly induded during linking) .
or the module which includes it must be linked uncondt~ti0l1allY; otherw isp it will be left I

out of the I inking process, since no other module will rrlVe referenced it as an external .
module. • I

ARGUMENTS AND DUMMIES

. .

The quantities passf~d to a function or subroutine when it is referenced are called arguments
'1'1](' sllbprogram must provide the same number of names by which to identify the arguments.
Thes(~ nr(> called dummies. They are formal parameters Ilnd have no real existence of their
ow t1. /\ rd('I'cnce to a dummy is actually a !'cference to the corresponding argument. Th(~
dllmmy I ist in a subprogram indicates the number, order, and type of the arguments.

An :trg'ulIwnt may be any of the following:

1.
')
'--' .
:L
4.
5.
6.

A scalar variable
An array element
An array name (unsubscripted)
An expression
An alphanumeric string constant
A subprogram name (with no arguments)

'J(lit' that II :.;ingle clement, such as a constant or a function reference. is ('onsidered
,Ill ':-':p,','ssioTl. On HIP otlH~r hand. although II scalar 01' Ill'l':ty clement is also a simple (·x
P'·(':-.;-;ioll. tlICS(, must b(~ ('onsidercd separately. This is lH'cause :l subpt'Og"t':lI11 can stOT'e
V:t!lWS ha('k into a scuI:II' or' :1l'l'Hy element, but it may not store into a constant or function
l'd('I'('tH'(' or other expressioll. An unsuLJ'?5~ript.9d __ a_!,I'I.0"._!.1..'..~11~_i~_!.tl~: sallle a~ __ ~h<? fJEs_t
(~I (~lllt'll f_ ()~· __ ~t~~.QEr Hl..

The adelt'css passed for an alphanumeric string is that of the first word (i. e. first two
chal'act~'l's). The word pr('ceding this always contains the character count. identifying
how mllny l'haracters are in the string.

A dummy is always specified as a name. It may be classified, withi l1 the subprogram. as
any of the following:

7-6

\

o

o

COMPUTER AUTOMATION. INC. ~

1.
2.
3.

A scalar variaple
An array
A subprogram

This classification takes place using the same rules for implicit and explicit declorotions
as apply to other names (see chapter 6). In general. the type of a dummy must be the
same as the type of the corresponding argument. For example. the following is
incorrect, because the types do not match: .

I

COMPLEX Z SUBROUtiNE SUB (M ,IMP) .
. CALL SUB (Z ,J) COMPLE I~P

If either of the arguments or the dummies w'ere eversed, the types would match '!properIY . ,

There is one case where the types do not have to match. An alphanumeric string
argument has no type and may correspond to a dummy of any type (though integer is
recommended). A SUBROUTINE name also has no type, but should correspond to another
SUBROUTINE name.

Table 7-1 below shows the permissible kinds of correspondence between an argument
and a dummy:

Table 7-1. Permissible Argument/Dummy Correspondence

--- .-._--

Dummy
f---- -

Argument stored
scalar array into subprogram

------- -._- -
scalar or array element yes (yes) .yes no
array name (yes) yes yes no
alphanumeric string (yes) yes no no
expression yes no no no
subprogram name no no no yes

The correspondences marked" (yes)" are permitted, but mayor may not be particularly
useful. This will be discussed further below, under "Dummy Arrays" .

When a dummy corresponds to a variable (scalar or array) in the argument list. every
reference to the dummy is actually a reference to the argument variable. Thus not
only will the dummy initially have the value of the argument variable. but if the dummy
is changed. the argument variable is changed too. This is a way for both functions
and subroutines (mostly subroutines) to return results through the argument list.

7.7

,
t!

'0

I

I c

For example:

CALL TRIG (A ,SINA, COSA ,SINHA)

•
•
•

COMPUTER AUTOMATION. INC. §]1

SUBROUTINE THIG(X,SX,CX,SHX)
SX = SIN (X)
CX = COS (X)
SHX = TANH (X)
SHX = SHX / SQRT (1-SHX**2)
RETURN
END

I

I

On the other hand, when a dummy corresponds to anrxpression (or constant) , the
latter acts only as an "input" value for the dummy. l]he dummy must not be changed.
For example, if X is n scalar variable and F is a func~ion:

I

CALL GRUNCH(X,2.5,F(X) ,F) S0BROUTINE GRUNCH(A,B,C,D)

then A may be stored into, the others may not. A, B, and C should be dummy scalars,
while D should be a dummy subprogram.

Storing into improper dummies is not detected as an error,
due to the large overhead it would require at run time.
Therefore, be aware of this possibility, since it can cause
strange things to happen to your program (like changing
the value of constants that n~ed to be used subsequently) .

Since [I dummy has no real existence on its own, it may not be allocatpd or initialized.
That ii it may not appear in a COMMON, EQUIVALENCE, or DATA statement.

i

I
Dum~_ Arrays

A dummy is an array if it is dimensioned in the subprogram. Normally the calling
argument is also an array, or else an alphanumeric string. As with all dummies,
a dummy array does not actually occupy any memory -- it just identifies an area in
the calling program. The subprogram assumes that the argument passed to it is the
address of the first element of an array, and it calculates subscripts from there. Of
course it has no way of knowing what the dimensions of the argument array are, so
you have to be sure to give the dummy array appropriate dimensions. Usually this
means the same dimensions as the argument array, but occasionally it can be useful
to use different dimensions. For example:

7.8

I . ,

.' ~:'

o

. •
COMPUTER AUTOMATION. INC. §])

DIMENSION EDGAR (10 ,10)
CALL SUB (EDGAR)

SUBROUTINE SUB (SNERD)
DIMENSION SNERD(5.4)

Here the dummy. SNERD, is much smaller than the argument. EDGAR. This will
cause the subroutine to treat the .. '!J~8t two columns of EDGAR IlS if they were fl

5x4 array. If the CALL had said:

CALL SUB (EDGAR (1 .8))

then SNERD would represent the eighth and ninth columns of EDGAR, instead of the
first Ilnd second. '

It is also possible for the calling program to tell the 'SUbPrOgram what dimensions
to use on a dummy array. This is described in the following section.

When an alphanumeric string is passed as an argument, it is usually received by a
dummy array. For example, in this situation:

CALL FOR (' PHILIP MORRIS')

The first seven elements of JY correspond as follows:

JY (1) = 'PH'
JY (3) = 'IP'
JY (5) = 'OR'
JY (7) = 'Sb'

JY (2) = 'IL'
JY (4) = 'bM'
JY (6) = 'RI'

SUBROUTINE FOR (JY)
INTEGER JY (8)

N6te that the character string has an extra blank, if necessary, to fill up the last word.
The positions beyond this, however. are undefined. so JY (8) should not be used. Also,
silnce an alphanumeric string (when used as an argument) is filled out only to the nearest
whrd boundary. if the dummy array is any type but integer. there may be elements that
are only partly defined. For example. if JY were double precision. the first element
would contain a full eight characters. but the second element would contain only six.
The last two characters would be unpredictable. This makes it a good idea to use
integer arrays for alphanumeric strings.

An alphanumeric string is stored in memory as a string of characters. preceded by an
integer count of those characters. The address passed as the argument, however. is
that of the first two characters. The count is primarily intended to be used by assembly
language subprograms. but it can be accessed in a FORTRAN program, if you use an
out-of-range subscript (i. e. one less than the lower bound of the array). In the above
example. JY (0) would contain the character count. The compiler will let you do this.
The dummy array must be integer to access the character count.

7.9

o

o

ComputerAutomation ~

. .

Table 7-1 showed some argument/dummy correspondences marked "(yes)", whieh Iwed
some clarification. If a dummy array corresponds to Ii scaliu'. that means t hI' fi l'st delllent
of the array corresponds to the scalar. The other el(~ments will correspolld to w I lilt ('v ('I'
follow s the scalar. This will be unpredictablc. unless you use EQUIV A LEN CE Oil tlw
scalllr to make sure something meaningful follows it.

On the othcr hand. if the argument is an aI't'ay (or an alphunumerie string). lind Uw dummy
is a sealnr. then you will only be able to aCCCRS the first element of the aT'l'lly (01' tlw fi nit
few characters in the string). since dummies cannot be cquivalenced. In this case it would
be bettcr to specify thc first clement of the array (or Ii shorter string), to make it clcarer
w hat you Hre doing. !

I

Adjustable Dimensions --, -... - ----- . . I

A dummy array occupies no actual storagc. Its dimcnl~;ionR arc used only to locate itR
elemcntR. not to allocate storage for them. Therefore. it is not necessary for the sub
program to know what the dimensions are at compile time. The dimensions Inny also bc
IJHssed :t1nng" as arguments. This means that any 'of tlw dimenRions of a dummy array
may be spncified by oth(~r ~ummies that are integer sealtu's" Thus the calling programs
can change the dimensions for each call. For example, you might call a matrix rnultipli
cation SubT'outine with the following arguments:

DIMENSION A(5,8) • B(8.10) • C(S.IO)
CALL MATMPY (A.B ,5,8.10 .C)

and the subroutine could be written like this:

SUBROUTINE MATMPY (A ,B ,Jl,.J2Kl. K2, C)
DIMENSION A(Jl,J2Kl). ,B(J2Kl.K2) • C(Jl,K2)
DO 2 K = I,K2
DO 2 .1 ::: I,.J 1
C (J .K) = 0
Do 2 J K = 1 .. J 2 K 1
2 C(.J.K)::.: C(.J,K) +A(.l,.JK)*B(JK.K)
RETURN
END

Cpmpare this with the example shown at the end of "DO Loop Ranges", in chapter 4.

Of coursp-, whe.n we say that a calling program can change the dimensions for each call.
we mean only that the subroutine can be made to handle separate arrays of differing
dimensions. This does not mean that the same array should be described with different
dimensions in subsequent eaLls. If this is done, then the row /column relationship of
the dummy array won't match that of the actual array"

If It dummy array has both lower and upper bounds specified. either or both may be
adj listable. For example:

FUNCTION GAMMA (MM ,J ,N)
DIMENSION MM (0: N ,J: N)

7-10

. .

o

o

. ,
COMPUTER AUTOMATION. INC. ~

The dummies used as adjustable dimensions may be referenced elsewhere in the
subprogram, but they may not be changed. The dimensions must be determined
once and for all at the beginning of the subprogram. However, ~8ch cull clln Hupply
different dimensions.

Dummy Subprograms

A dummy subprogram may only correspond to an argument that is a subprogram
name, and it is the only kind of dummy that maYI do so. A call on the dummy sub
program is actually a call on the argument SUbP~ogram.

For example, the function COMPARE, below, COJld ~e used to compare the single~
and double precision versions of other functionsl and return the difference:

EXTERNAL ALOa ,DLOa ,EXP ,DEXP
DOUBLE PRECISION DLOa ,DEXP
A = COMPARE (ALOa ,DLOa ,X)
B = COMPARE (EXP ,DEXP ,Y)

I

FUNCTION COMPARE (F ,DF ,RV)
DOUBLE PRECISION DF ,DV
DV =RV
COMPARE = DABS(DF(DV)-F(RV»

I

Note that the library routines had to be declared EXTERNAL in order to pass them as
arguments. This caused them to lose their special type, so the double precision
ones had to have their type declared too. The real ones did not have to, because
the IJKLMN rule gave them the correct type.

LIBRARY FUNCTIONS

FPRTRAN includes a number of library functions, which perform calculations Ruch
a~ square root, arc tangent, absolute value, maximum value, inclusive OR. type
c~nversion, etc. These are listed in a table 7-2. When you use one of these in
YEur program I it will automatically be provided I either as a closed routine at load
time or as in-line object code at compile time. The names of all of these functions
are recognized by the compiler as either basic external. functions or intrinsic functions.

Intrinsic and Basic External Functions

Intrinsic and basic external functions are distinguished by the fact that their names
are known and recognized by the compiler. There are three reasons for doing this:

1. All library functions return a certain type of result, and this may not be the
type that the name would acquire by the IJKLMN rule (e. g. all the double
precision and complex functions). Instead of requiring you to declare these
if you want to use them I the compiler knows what type each should be.

7.11

l~·i,. ' I~

t,

o

2,

:1 ,

All library functions also accept 8 certain type and number of arguments,
By knowing this information. the compiler can produce an errol' llH'ssug<'
for any usage with too many. too few, or wrong type' arguments,

Some of the functiuns' operations nrC' so sho),t thut it is lIIort' ~ffkil'lIt ttl

gen<~rate the necessary instruotions to du thorn thun to call un oul~·dd(' l'oUtirW.

. .

The thing that differentiates intrinsic and busic external functions is thut intl'insic
fUllctioIlR are generated in-line, while basic external functions nre called in from the
library, In other words, steps 1 and 2 above are petformed on both kind~of functions,
step 3 only on intrinsic functions, I

Most uf t hn time, you need not be concerned about allY of this, It is all handled automati
cully. There are only two rare situations where;it becomes important: when you want to
p~'ss the lIame of a library function as an argument to another subprogram; or when you
wont to write your own function with a name tha~ is the same as a library function.

Suppos(' you want to write your own square root routin(' and' usc it instead of the standard
SQHT, You can do this. since SQRT is a basic external function and will be called.
However. if you tried to write your own lABS function (integer absolute value), it
would never be called, because lABS is intrinsic and generated in-line. Also, if you
wlInted to write some completely unrelatod function called SQR.T(e.g. Sam's Quick Roster
'i'nl)IJlntion, an integer function with three arguments), you would conflict with the com
piler's knowledge that SQRT is real with one argument. Both of these pl'oblfmls can be
solv('d hy declaring lABS or SQRT in an EXTERNAL statement. When that is done, the
\~ornpiler forgets everything it knows about the function,

I

Ther~ ure other ways besides being declared EXTERNAL that an intrinsic or basic
exter+ul name can lose its special recognition. If it is used in some other context than
as a function reference, it may become a scalar, an array, a dummy, etc. Appearing
in a type statement (e. g. INTEGER) also cancels special knowledge of a library function.

A FORTRAN library could consist of any combination of intrinsic, basic external, and
ordinary functions. Ordinary functions would work properly (some small FORTRANs'
only have these), but they just would not be as efficient or give diagnostics on improper
arguments. In Computer Automation FORTRAN IV. all of the standard library functions
are either basic external or intrinsic, as shown in the table below. You could add othel'
functions to your system library, and those would be-ordinary functions.

7.12 Revised March 1975

. .

" · .

.",-.

COMPUTER AUTOMATION, INC. ~

Table of Library Functions

'ruble 7-2 lists 1111 of the stnndul'<i lilH'III'Y functiolls, 'I'll(' first column g-iv()s thl' fUllction
nume, The X in one of the next two columns indicates whother the f'ulll'tioll it-! illtr-illsk
or basic external. The next two-(.'Oiumns eontuill the type of the fune! ion (i. 1'. th(! tyP('
of the result) nnd the type of the arguments. The following ubbrevilltionH 1lI'(! used
here:

Integer
R Real
D Double precision
C Complex

(There are no library functions with logical type arguments or results.)

The sixth column indicates how many arguments the function expects. The indication
N . 2 means any number of arguments, but at least two.

The last column explains what the function does. When a formula is shown, it is not
necessarily used in evaluating the function but merely serves to help define the
operation.

Boolean Operations

Computer Automation FORTRAN IV provides the capability to do some Boolean oper
ations (e. g. masking. merging) on all the bits in a word. You cannot do this with
the logical operators (e. g .. AND., .OR.) , because they deal only with the values
t~ue and false. There are four library functions that perform the corresponding
operations on all sixteen bits. The functions lAND. lOR. and IEOR accept any number or integer arguments and perform AND. inclusive OR, or exclusive OR on them.
rbspectively. The function INOT takes one integer argument and returns the l' s
complement of it.

There is no "Boolean" type, so these operations are done in integer. Bit patterns can
be established using hexadecimal constants, which are also generally integer.

For example:

MASK = IOR(KEY,: F)
IF (lAND (NAME, 4ZFFOO) .EQ. 4ZCIOO) GO TO 73
M = IAND(IOR(L,: 3AOO) ,IEOR(Ml,M2) ,LAST)

These functions are intrinsic, i. e. generated in-line, so the cbj ect code for them is as
good as if they were special operators in the language. However, remember that not

only do the Boolean operations depend on a particular computer's word format, but
there is very little consistency among FORTRANs about how (or whether) such

',-, operations may be specified.

7.13

" . .
COMPUTER AUTOMATION. INC. ~

Table 7-2. Library Functions .
. --.-.. ---------.-.--... - -.--.-

Drfinition of Function

Absolute Value
lABS X I I 1 Integer ~
ABS X R R 1 Real.
DABS X D D 1 Double precision.
CABS X R C 1 Comple~ (modulus). This is a real value,

0 namely:

CABS (x+iy) = ~ XL +y2

MaximumLMinimum Value
MAXO X I N>.2 Integer maximum value of integer arguments.
MAXI X R N"2 Integer maxirimm value of real arguments.
MINO X I N,'2 Integer minimum value of integer arguments.

'I MJNI X I R N:?2 Integer minimum value of real arguments. ~
I AMAXI X R R 'N :2 Real maximum value of real arguments.
i

AMAXO X R I N~2 Real maximum value of integer arguments.
AMINi X R R N>2, Real minimum value of real arguments.
AiVUNO X R N '2 Real minimum value of integer arguments.
DM1Xi X D D N:,>2 Double precision maximum value of double

precision arguments.
DMAxo X D I N:?2 Double precision maximum value of integer

C
arguments.

DMINI X D D N~2 Double precision minimum value of double
precision arguments.

DMINO X D I N2:2 Double precision minimum value of integer
arguments.

"I Modulus (remaindering)
Arg1 (mod arg2)' with the sign same as arg1
Undefined if arg2 is zero.

MOD X I I 2 Integer. MOD(j ,k) = j - k*U/k]
where the brackets indicate integer part.

AMOD X R R 2 Real. AMOD (x ,y) = x - y*AINT (x/y) .
DMOD X D D 2 Double precision. Same as AMOD. --_ ...

7.14

0;

C

. •
COMPUTER AUTOMATION. INC. ~

Table 7-2. Library Functions. (Cont'd.)

r---------~r-------_r--~--,_--.--~----------------------.

Definition of Function

Boolean
lAND X I I N?2 AND (i. e. extract) .
lOR X I I N:::2 Inclusive OR (i. e. merge) .
lEaR X I I N::>:2 Exclusive OR.
INOT X I I 1 NOT (i. e. l' s complement) .

Type Conversion
FI,oAT X R I 1 Convert integer to real.
INT X I R 1 Convert real to integer.
IFIX X I R 1 Same as INT.
DFLOAT X D 1 Convert integer to double precision.
IDINT X I D 1 Convert double precision to integer.
DELE X D R 1 Convert real to double precision.
SNGL X R D 1 Convert double precision to real.
dlVIPLX X C R 2 Convert two real values to complex.

ClVIPLX (x, y) = x + iy
RIEAL X R C 1 Real part of complex value.
AlllVIAG X R C 1 Imaginary part of complex value.

Truncation (integer Eart)
AINT X R R 1 Truncate to integer and back to real.
DINT X D D 1 Truncate to integer and back to double.

Sign transfer
Magnitude of argl with sign of arg2 .
Positive i~ arg2 is zero.

ISIGN X I I 2 Integer.
SIGN X R R 2 Real.
DSIGN X D D 2 Double precision.

7.15

~.

COMPUTER AUTOMATION. INC. ~

Table 7-2. Library Functions. (Cont'd)

I

r-.ial11l' Definition of Function
I

I
"I lositive difference
,I 'dimkx,y) = x - min(x,y)

mrM X I 2 Integer. '
DIM X R R 2 Real.
DDJM X D D 2 Double precision.

i () ComQlex conj ugate
CONJG X C C 1 CONJG (x+iy) = x - iy

Square Root
SQRT X R R 1 Real.
DSQRT X D D 1 Double precision.
CSQRT X C C 1 Complex. CSQRT(Z) = u+iv = e (log Z)/2

allocated so that u " O.

Logarithm
ALOG X R R 1. Real natural logarithm (base e) .
J\LOct 1 0 X R R 1 Rea] common logarithm (base 10) .
DLO~~ X D D 1 Double precision natural logarithm.
DLOQ10 X D D 1 Double precision common logarithm.
CLoCi~ X C C 1 Complex natural logarithm.

CLOG (Z) = CLOG (x+iy) = u + iv =
0 ' logizi + iATAN2(y,x)

allocated so that -- Tr< v <'Tr.

EXEonential (ex)
EXP X R H 1 Real.

·'1 DEXP X D D 1 Double Precision.
CEXP X C C 1 Complex.

CEXP(x+iy) = EXP(x)*(COS(y)+i SIN(y»

7.16

· .

-

COMPUTtR AUTOMATION. INC. ~

Table 7-2. Library Functions. (Cont'd)
,.-------7-----r----,.----r--,---r---- ... --

SIN
DSIN
eSIN

COS
Deos
eeos

TAN
DTAN

I
ATAN
ArAN2
DATAN
DATAN2

SINH

COSH

TANH

DTANH

i Definition of Function

. ..,..--f---.-,,..--+----f .. ---- -.-stn-eTorangIeTilraruans-=)--
, I

X R R
X D D
X e c

X R R
X D D
X e e

X R R
X D D

X R R
X R R
X D D
X D D

X R I R

X R R

X R R

X D D

1
1
1

1
1
1

1
1

1
2
1
2

1

1

1

1

Real. ' !

Double pr~cision. . .
Complex.CSIN(Z) = (ell - e-1Z)/(2i)

Cosine (of angle in radians)
Real. :
Double precision. i
Complex. CeOS(Z) = (e il + e:...· il)/2

Tangent (of angle in radians)
Real.
Double precision.

Arctangent (in radians)
When two arguments. argl = ordinate (y). arg2 =
abscissa (x). Result (R) is the arctangent of y/x,
quadrant allocated in the range - Tr < A '-_ Tr. If
both arguments are zero. the result is zero.
Real. one argument.
Real, two arguments (coordinates).
Double precision. one argument.
Double precision, two arguments.

Hyperbolic Functions

sinh (x) = (ex-c-X)/2
Real.

cosh (x) = (ex+c-x)/2
Real.

tanh (x) = -i tan (ix) = (ex-c-x)/ (ex+e- X)

Real.

Double Precision.

7.17
Revised March 1975

CHAPTER 8

IN-LINE ASSEMBLY LANGUAGE

Computer AU1 0mation FORTRAN IV allows assembly
FORTRAN procram. This does not include all of
bIer (not a.'l of the machine instructions or di
not think 0:' it as taking the place of the ass
write FORTRi.N programs in FORTRAN and remove rna
subprograms that can be assembled by the as~emb
This is esptcially true, of course, if you want
FORTRAN pro,:rams from one machine to anotheI!'.

'anguage instructions to be used in a
he features of a full-fledged assem
ectives are accepted) and you should
bIer. In general, it is better to
hine language sections to separate
er and called by the FORTRAN program.
to maintain compatibility of the

C) There are t\·'o situations that inline assembly language is primarily intended for:

c

1. When t;:.ming is critical and you want to perform selme special short operation
that tl.e FORTRAN language does not include. For example, a rotate shift.

2. When mr .mory space or timing is cr i tical, and you want to shorten a program
by han(.coding some of the statements. For example, knowing exactly what
subscr: .pts are used in a DO loop, you might rewrite the loop control and the
subscr: .pting more efficiently. This requires considerable familiarity with
the ob:ect code and addressing techniques, and is kind of a desperation move.

LINt FORMAT
I

A s~ction o::~ inline assembly language begins following the appearance of the special
FORtRAN sta··:ement:

It ends whe;:l the assembly directive:

F()RTRAN

is encounte:'7ed.

Within an a:isembly language section, the instructions may be written in free-form;
column 7 is no longer significant. However, it is probably a good idea to line up
your opcode') and operands for better readability. Note that the statement ASSEMBLER
is processei in FORTRAN and may not begin before column 7, while the directive
FORTRAN is)rocessed in assembly language and so may begin anywhere from column 2
on. Howeve,~, the FORTRAN directive is a special case; it does not have either an
operand field or a comment field. Additionally, the first in-line assembly language
statement m,lst not contain a character in column 6; if it does, it will be considered
~ continuatLon of the ASSEMBLER stat~ment.

8-1

I'··.:.
., .,

~.

1
"

o

o

(OMPUTER AUTOMATION. INC. §:§
If an assembly line has a label, it must begin in column 1 t unless there is an X in
column 1 (con' litional compilation) , in which case the label must begin in column 2.
At least one bl mk must separate the label from the op-code. If there is no label.
the op-code m,lY begin in column 2 or later (column 3 or later if there is an X in
column 1).

Similarly I the:'e must be at least one··blank between the op-code and the opernnd I
and between t:'le operand and a comment, if any. Since blank is a separator, there
may not be an: . blanks embedded in the label, op-code t or operand fields (unless
they are part cf an alphanumeric operand). Some op-codes do not use an operand.
so the field following the op-code is automatically tr~ated as a comment. There are
no op-codes U at can be used either with or without fn operand. If an op-code
r.equ~res an orerand, it does not matter how many banks must be skipped over to
fmd It.:

Here is a samI-le section of assembly language:

•
•
•
KEY == J + MASK

ASSEMBLER

#12 LDA KEY

RRA 7

STA KEY THIS IS A COMMENT.

FORTRAN

CALL FIND (KEY)
•
•
•

LABEL FIELD

The labels uS'Jd on assembly lines are ordinary FORTRAN statement numbers, except
that they are''lritten with a preceding number sign, e. g .#45. The reason for the #
is that when E, uch a label is used as an operand, it must be possible to distinguish it
from a decimel value. This problem does not occur in FORTRAN statements, because
labels and values can never appear in the same place. The # should be in column 1
(or column 2 :,f there is an X in column 1).

8.2

. ,

! C)

COMPUTER AUTOMATION. INC. ~

You can use the full range of statement numbers. from #1 to #99999. and these are
tabulated right along with the labels on FORTRAN statements. A FORTRAN statement
may reference an assembly label and vice versa. Thero may not be any duplicato
labels. Note that a FORTRAN statement would reference an assembly lnhol without
the preceding #.

There is one other kind of label that is used only on the SET directive for conditional
assembly. It is a number preceded by #X and is described in the section on "Condi-

I

tional Assembly". later in this chapter. I
1

OF-CODE FIELD

The op-code must be separated by at least one blank from the previous field, which
may be any of the mnemonics shown in the section flOp-code Classes", below. This
includes most of the standard machine instructions, except for input/output, which
is not generally safe to do in the middle of a FORTRAN program. It also includes th(~
assembler directives DATA, BAC, TEXT, RES, ENT. STOP, SET, 1FT. IFF, EN DC , lind

I

LPOOL. as well [IS the special FORTRAN mnemonic "FOHTRAN ," and the floating point
interpretive op-codes which are described in the section, "Floating Point Interpreter" ,
below.

KINDS OF OPERANDS

'-- A variety of different kinds of operands may be used. depending on the op-code. No
one op-code accepts all of them. Before listing these operands. let us set down some
of the ground rules that were established about what kinds of things may and may not
be referenced.

o

You can reference FORTRAN variables and subprograms. (However. see
paragraph 6 below. concerning addressing.) You cannot define them. That
is. you cannot use a FORTRAN name in the label field to simulate a SUBROUTINE
or FUNCTION statement. or to allocate a variable.

2. You can reference FORTRAN statement labels. by preceding them with #.

3. You can reference external system routines (e. g. floating arithmetic. input/
output). All such routines have names that contain a colon (:) • so any name
with a colon is assumed to be an external system routine. (The name cannot
begin with a colon. because that indicates a hexadecimal constant.) These are
special names that may be used only on assembly lines, and only via base page
pointers (e.g., JST *BP (DELAY:) is correct, but JST DELAY: isn't.)

4. You cannot reference the temps (#'1') generated by the compiler, since there is
no way of knowing how many the compiler will create. If you wnnt n temp,

8.3
Revised March 1975

1

o

"'I

5.

{i.

-I.

ComputerAutomation ~

you should either use a variable instead. or else define a temp with RES Ilnd
reference it via a statement label (#n).

You also cannot reference FORTRAN. constants , including compilcr geJHwntOQ
indirect addresses. To use a constant. you should dcfille it with DATA und
rcfl'rfmce it with a regular statement label.

1\ general rule is that in-line assembly operands always reflect what is
actually going on in the addressing. The compiler. unlike the assembler.
will not generate something different from. or in addition to. what you write.
This gives you complete control over the outputl. but requires you to do some
extra work to get it. For example. if the stand1rd ,assembler encounters:

LDA M :

and M is not within range. it will change the initruetion to an indirect refer
ence through base page and create a word in base page pointing to M. This
is not necessarily the way the compiler would address M. so it leaves the
<lceision to you. If something is out of range. you can create an indircet
address pointer (using DATA) and reference it with a statnment label. or you
may insert an LPOOL directive. LPOOL usage is dnscribcd in the Operating
Syst~~m Asscmbler Lang'uage Reference Munual (96552).

1\ third alternative is to use a bose page pointer (using BP. described below) .
However. this method has one important limitation: you may not use BP to
create a pointer to a forward label (that is. one which occurs further along
in the coding sequence), but only to a label which has already been processed
by the compiler.

Cn·ating indirect pohlters will sometimes be necessary when referencing-a
FORTRAN variable or statement label, and usually when referencing an external
fubprogram or system routine. For variables and labels. this will probably
~'equire some trial and error. since you may not be abl(~ to determine in advance
~hether a given variable or statement number will be in runge -- it depends
~)J1 w hat the compiler generates for other statements. If you try to refel'enee
~onwthing that is out of range. this will be diagnosed :IS an error, :md you clln

then change it.

~ormally the compiler decides what things it will allocate base page pointers
for; and it tries not to use too many .. You can specifically request a base page
pointer to be created by using BP (x), where x is the operand. Be careful about
creating so many base page words that there is not room for them. Use this mai.nly
on operands that nrc referenced frequently. Note that what the compiler does
withBP is essentially the same as what the assembler does with a preceding =

The {"ollowing, then. are the things that may appear in an operand field (given the
proper op-code):

1 . Indexing, indicated by a preceding @. The operand, in this case, must
be an absolute value in the range: 0-: FF.

2. Indirect addressing. indicated by a preceding *. If both @and * arc used,
they may be in either order.

8.4 Revised March 1975

o

c
I
i

I
!
I . \

3.

~ 1,1f'.'F.",¢";'",'.' ''of t • ~,

(,c~ .. :?un::;:: l~I..ITC:~ikAili'';:;,\)i.ICI~(. t?J'}":J~:

I\. d, dmal integer vuluo. In certain cases (e. go. DATA) it l'nay be signed.
The permissible size of a value depends on the op-code. as shown in the,
folle wing section.

4. A hc;xadecimal value. preceded by : .

5. An Idphanumeric value. enclosed in quotes.

6. B1r:ll ,k (no opera.nd field).

'1 •

B.

, ,

Cur 'ent location counter ($). optionally fOllowed by a plus Or' minus sign and
an c. ::idend. which iE: a decimal or hexadocilwl yalue.

A 3t lternent lebel Ut-n). optionally fOllO\~:Cd ~y an addr;,md, as above. Dc r.:'Jt I

use an add.end en a st!;ltem~nt label unless :)ou :'lbsolutelj" have to. It i:~ 'Detter
pro; :re.mming practice to put another lapel on the word 8.ctually being fHidi"essed.
An I ,ddend on the lab,;;,! of a FORTRAN s:tatement is particularly qu{;s~iom:ble.
sine a there is no guarantee what the object code will be around that s'~at0r.l(mt.

I

!) • A PI >RTRAN name. optionally followed by an nddend. This may be the name of
a se :lIar, array. e:;d(~rnal subpro1;ram. or statement function. It may also be
the lame of a COMMON block if there is no vllriable in the prograr.t with the
sam: name. Note that you cannot reference the entry point of n FUNCTION
fror.. within it. because that name is used for the result variable.

10. An I :xternal system name, as a base page referencf~ only. Any name with
a: ; n it is automatically assumed to be a system name f and must be provided
at kad time. either from the library or in a prog-ram that you supply.

11 ' A b lse page ref(~rence, BP (x), where x is a FORTRAN name, a system niime, a
pre'liously defined statement label, the cur:cent location counter, or a v£.lue of any
typll allowed by DATA except an alphanumeric value (see below). Vlher.:: appli
cab e. this may indi.!de an addend (ns part of x), except f01~ system nam[~s,
or (ther external references. Note that BP of It value puts that vulue (not a pointer
to Lw value) into the base page.

12. A cunditional assembly label (#Xn) , described in a later section.

The following section describes which operunds may be used with which op-~odcs.

The op-cc jes clin be divided into thirteen clf1.sses. ba~e(:l on the kinds of operands
they perrr: tt. For each cia!Ss, we will list the OP-COd(!8 it includes and the permissible
operands, Any operand that is allowed to have an addend may have one. This is not

8.5

f
l
f, I'
", r:

r:

C'

I

specifically mertioned in each class.

Note that the cJasses shown below do not correspond exactly to the instruction
classes describEd in the CAl BETA Assembler or Macro Assembler manuals; in par
ticular, I/O In~tructions are not supported in FORTRAN Assembly language.

Those opcodes bElow which are marked"with an asterisk will be executed by emulation
on the LSI-3/05 processor (see T3 option, Chapter 9), since they are not valid
LSI-3/05 instructions.

Class 1. Memor~' References
I

L~R Op-codes: ADD AND LDA JMP
ADDB ANDB LDAB JST L~.
SUB IOR LDX DiS L.
SUBB I ORB LDXB CMS MPM

XOR STA CMSB DVM
XORB STAB ADX

STX
STXB
EMA
EMAB

The last column contains some of the special mnemonics for use with the floating
point interpretEr. The rest are in class 6. These are all described in the fol
lowing section.

Operand: Index:ng (@).
Indirtct (*).
Decimi.l or hexadecimal value in the range (0,255).
Currert location ($). Relative addressing on this or the next two

kincs of operands must be in the range (-255,256).
staterent label (#n).
FORTRl·N name, if in relative addressing range.
Base Iage (BP).

o Class 2. Double Word Memory Reference

Op-codes: DVD* MPY* NRM*

These instructic·ns generate a two-word item.

Operand: Sarne i.S for DATA (Class 9), except that alphanumeric strings are not
allowed.

8.6

,,'
"

I
':1

'"

0

'"",- '

COMPUTER AUTOMATION. INC, §!':1

Operand: Decimal or hexadecimal value in thc range (0,255).
Single alphanumeric character (' a') .
Base page (BP).

Clnss 4. Conditional Jump

Op-codes: JAG JAL
JAM
JXZ
JXN

Operand:

.JAP
JAZ
JAN

Current location ($).

Stutemcnt label (#n).

JSS
JSR
.)OS
JOR

Note that only relative addressing is ullowed ~ and it must be in the range (-63,64).
The mnemonic JOC is not supported.

Class 5. Shift

Op-codes: ARA LRA RRA LLL
ARX LRX RRX LLR
ALA LLA RLA LRL
ALX LLX RLX LRR

I
I

II

I

I
The first three columns are single shifts, the last column contains double shifts. I
Opprand: Decimal or hexadecimal value in the rangc 0,8) for singlc shift, or I

i (1,16) for double shift. I
I

Note that the value is reduced by one when the instruetion is generated. In other words, III
a shift of one looks like H shift of zero in the generated hexadecimal word.

Class 6. Register Change and Control

Op-codes: ZAR TAX NAX lCA NOP NEG
CAR TXA NXA lCX ENT ABS
NAR EAX lAX SBM ENDC DIM
CXR ANA IXA SWM LPOOL SGN
NXR ANX IPX SIA FORTRAN ADJ
SOV CAX DAX SOA REI.
COV CXA, DXA ElN DBL
ROV DIN CPX

INT
XIT
XNL

ENDC, LPOOL, and FORTRAN are special ,directives . The last column contains floating
point interpretive mnemonics, described in the following section. '

8.7 Revised March 1975

I

:,?,
~

COMPUTER AUTOMATION, INC. ~

0PCI'lllld: BIHnk (no op(~rand allow{~d) ,

Cl/lSS 7. SCM Ilnd SCMB

Op COdl!S: SCM SCMB

Operllnd: Must not include indirect or indexing (* or @), Either a hase pnge
reference (BP) or a decimal or hexadecimal value in the rang(~ (0.255)

I

Class 8. BAO,. BXO, AND SIN

OP-COdl'S:

Op(' \':111(1:

BAO BXO SIN

Decimnl or hexadecimal value in the range (0.15) for BAO and BXO, and
(l,7) for SIN.

Class ~). DATA, BAC

Op-codes: DATA BAC

Operand:

Class 10.

Op-eodes:

Indirect (*) on DATA, but not on BAC,
Decimal or lwxadecimal value of full word range. Decimal values may
be signed.
One or two alphanumeric chul'acters, enclosed in quotes. A single churact!'r'
will be right justified and preceded by hinary zeros,

Current location ($), There ar(~ no restrictions on relative addressing
range.
Statement label (#n).

FORTRAN name,
External system name,
Base page (BP),

RES.

RES

Tlwre may be either one operand or two separated by a comma. When a second operand
is lIsed, RES aets like a multiple word DATA. When the first operand is zero. it acts
like EQU $. and there must not be a second operand.

1st operand (worn count): Unsigned decimal or hexadecimal value.

2nd operand (fill val ue): S~me as for DATA, in Class 9,

8,8

10
I

~.,

COMPUTER AUTOMATION. INC. f3])
Class 11. TEXT

Op··codes: TEXT

Opel'lInd: Any number of' IIlphllnUI1l('l'it~ ('IUu'l1elel'H, (~l\cloHl!(l ill qllotf'H. A HinKIl'
quote iH representedl:iy two quotes, If tilt' 1l1lllll)Or of ('hlll'lH't(!t's Iii odd,
the Inst one is left-justified in the word Ilud followNi by 11 hlunk.

Class 12. SET

Op-codes: SET

I
This and the following class are conditional asserllbly mnemonics, described below.
A SET directive must have a label in the labei field, of the form #Xn.

Operand: The decimal value zero or one.

Cluss 13. 1FT, IFF

Op-codcs: 1FT IFF

Operand: Conditional assembly label (#Xn).

8.9

COMPUTER AUTOMATION. INC ~

FLOATING POINT INTERPRETER

Flonting point operations at run time llrc done intcrpretively, rather tllIIn Ilsinl{ II scparlltt'
subroutinc call for cHch. The first thillg geneI'lIt('d is 1\ cull to tilt' illll-l'Pl'd('I·. follow I'd
by II sequence of pseudo op--codc.8 .• Th('~w op 'COd(,H hllv,~ the HIIIIW instl'ul'lioll fur'llIl11

IlS reg"ulaI' machine instruction!=!. llnd ill filet. somo or them III": ('x/wIly tilt, S:lIIH' 1Il1l('IIlt/nit"
lind generated vulut's as some of the muchirw instructions" All of tlll'SI' op eodl's 111'('

included in the in-line assembly feuture. so thut you clln make u.s(' of till'lIl to do f1()utin~
point operations" i

It is not necessary to exit and reenter the interp~ete,r to change mode, c" ~" from· relll
to double precision" It is only necessary to do alload of the proper type (e" g" LDR or
LDD) or a type conversion command (e" g. REL oIr DBL)" The interpreter then keeps
track of what mode it is operating in. and all of tlhe arithmetic operations (e. go. ADD.
MPM, ST A) automatically operate in that mode.

The floating point equivalent of the A register is the floating point accumulator. which
is maintained in base puge for efficient operation. During a sequence of floating point
operations, the value in the accumulator is kept in an unpacked format that is easier to
work with" It is only packed up into the usual floating point format when it has to be
stored into a variable or temp" On normal exit from the interpreter (XIT) , the contents
of the floating accumulator are not guaranteed. If XNL is used, however, the accumulator
is preserved (e. g. when returning from a function) .

The actual machine A register is always set up when exiting from the interpreter. so
that tests can be made on it (e. g. in relation expressions or arithmetic IFs). It is set
to a value that is negative. positive, or zero, according to the last value in the floating
accumulator. (This is [lccomplished by merging the sign bit of the floating value with
the first 15 bits of the true mantissa. which includes the normalized" 1" bit" For complex.
hqth the real and imaginary parts are merged. In this case the sign is meaningless;
o~ly zero/non-zero can be tested for.) Thus it is possible to exit from the interpreter
arid do a JAZ or JAP or .JAM etc.

The normal entry into the interpreter is by calling F: RINT. The first op-code should
then be one that determines a mode to operate in. i. e. a load or a conversion" (If it is
a conversion, it would convert from the integer v&lue in the A register.) For example:

JST
LDD

*BP (F: RINT)
DX -01'-

LDA
JST
REL

K
*BP (F: RINT)

If there is already a value in the floatj ng accumulator (e. g. after returning from a function
call), then there are three alternate entries to the interpreter. which automatically set
the mode to real. double precision, or complex. These are F: RREL. F: RDBL. and
F: RCPX. respectively. For example:

JST
STA
XIT

*BP (F: RREL)
X

8.11

o

0

COMPUTER AUTOMATION. INC. ~

Table 8-2 lists all of the op-codes recognized by the floating pa'int interpreter, and whut
they do. This includes the mnemonics that are the same as for machine instructions:
these nre marked with an asterisk.

Op-code

LlJR

LDD

LDC

REI,

DI3L

CPX

ADD*

SLJI3*

MPM

DVM

NEG

AilS

DIM

SGN

STA*

LDX*

Table 8-2. Floating"Point Intcrpreter Op-codes

Description

Load real. Load the two-word quantity ~ddressed, and unpack it into the
floating accumulator. Set mode to real. i

Load double. Load four-word quantity, ~et 'mode to doUble precision.
I

Load complex. Load four-word quantity, unpack into two real values in
the floating accumulator. Set mode t,o complex.

Convert to real, from whatever mode is currently set. If none has been set,
this means assume integer in the A register. Set mode to real.

Convert to double precision, and set mode to same.

Convert to complex. This always involves adding an imaginary part of zero.
Set mode to complex.

Add by mode (i. e. in whatever mode is currently set) .

Subtract by mode.

Multiply by mode.

Divide by mode.

Negate by mo(h~.

Absolute value by mode. Docs not apply to complex.

Positive difference by mode. (See DIM and DDIM in Table 7-2.) Assumes
(argl-arg2) in floating accumulator. Does not apply to complex.

Sign transfer by mode. (See SIGN and DSIGN in Table 7-2.) Assumes arg 1
in floating accumulator, first word (with sign bit) of arg2 in X register.
Does not apply to complex.

Store accumulator by mode. Pack up floating accumulator into standard
format and store as two- or four-word quantity.

Load index. Same as machine instruction.

8.12

o

:0
I

.. ,

COMPUTER AUTOMATION. INC. §]1.

Op-Code Description

LXP* Load index immediate positive. Same as machine instruction.

LXM* Load index immediate negative. Same as machine instruction.

ADX Add to index. Add contents of addressed location to "X" .

AXI * Add to index immediate. Same as m~chine instruction.

SXI*

ADJ

STX*

XIT

I

Subtract from index immediate .•. sate ~s machine instruction.

Adjust index by mode. Multiply "x,l, by two for real, or by four for double
precision and complex, to adju~t fo~ the number of words per element.

Store index. (Needed in case a; subscript is to be used later.)

Exit from interpreter. Floating accumulator not guaranteed. A register
reflects negative, positive, or zero value of last floating value.

XN L Exit with no unlock. Meaningful only under RTX. Same as XIT but
guarantees contents of floating accumulator.

INT Convert to integer and exit. Once the floating accumulator has been con
verted to integer, you have to exit to make use of it (in the A register) .

CONUITIONAL ASSEMBLY
, , ,

S~ctions of in-line assembly code can be conditionally assembled, based on the value of
s~ecinl parameters that you set up. These parameters are called conditional assembly
It~bels, and they have the. form #Xn, where n is a decimal integer. The value of each
parameter is established by a SET directive, whose operand is either one or zero. For
example:

#Xl
#X73

SET
SET

o
1

The SET op-code must have a #Xn label and an operand of zero or one. Any other
usage is incorrect.

The conditional assembly label should then appear as the operand of an 1FT (If True)
or IFF (If False) directtve. The value zero is considered false. The value one is consi
dered true (unlike FORTRAN logical operations, where negative values are true). The
section of assembly code follows the 1FT or IFF and is terminated by an ENDC directive,
which has no operand or label. The section is processed if the appropriate condition
is met; otherwise 'it is ignored. For example:

lFT #X3
JMP #475
ENDC

8.13

(OMPUTER AUTOMATION. INC ~

The JMP would be assembled if #X3 is one. but not if it is zero.

The lines following an unsuccessful 1FT or IFF are not processed at all, l'Xl'l'pt to sec
if they beg-in "ENDCb". If not. they nre completely ignor'ed. This has tllt' illt(ll'o~til\i~
err(~ct that conditiollul assembly can be used to process 01' s\\'ip over FOHTHAN HtllkllH'l\\H

as well ns assembly lines. Suppose that. in the section following an 1FT, t tWl'p is II

FORTRAN di.rective, some FORTRAN statements, an ASSEMBLER statement. alld finally
an EN DC . When the 1FT is true, all of these will be processed as written. When it
is false, everything will be skipped until the ENDC appears. The compiler will not
know that some of the lines are in FORTRAN instead o~ assembly language. but it does

I

not matter. as long as it eventually finds an ENDC lin 1· . The only thing to be careful
about is that a FORTRAN statement such as:

ENDC = 0 I

would be interpreted as an ENDC line (if there is ~l blan\\. after the C) .

Note t hat the existence of the conditional assembly feature docs not invalidate the usc
of X in column 1 -- it extends it. Either or both features may be used on assembly

I

lirws.

MISCELLANEOUS

Here are some additional pieces of information about the use of inline assembly language:

I . Compiler optimization and tracing features are suspended during sections of
assembly language. Furthermore. the compiler will try not to dump out literal
Ip00ls in the middle of assembly language. since it does not know where it would
~)e safe to do so. If a section of assembly language is long enough. or eomes
:ilt such 1\ place that the compiler nt'eds to dump out literals, it will produce a
I
tvat'ning diagnostic. and then dump out the literals preceded by a jump around
t1\(~rn. Most of the time this will wor\\. properly, but not. for example, in the
middle of 11 eMS test or a group of floating point mnemonics or a table of DATA
v:dtws. To get around this problem (or to get rid of the diagnostic), you should
insert an LPOOL directive somewhere no later than the point at which the literals
were dumped. The jump around is not generated by the LPOOL directive, since
it sometimes is not needed. If you need one. you should write it. Note that
assemhly lnnguage itself does not generate anything that requires literals. They
can only arise from preceding FORTRAN statements.

2. If you reference a FORTRAN name that has not previously been classified, it
w ill be implicHly classified as a scalar.

3. You may not reference the name of an intrinsic function. since it has no location.
If you declare it EXTERNAL. however, you can reference the corresponding
external library routine.

4. Continuation lines are not allowed, since column six has no special significanee.

8.14

1

i
'1

."

o

5.

6.

Note tI at a decimal or hexadecimal value operand is not the same a~ a constant.
That lot:

U,A 5

does net load the value 5 but the contents of location 5. To provide for
constar ts would require theu'S-e of literal pools or extra base page words, and
this i: not done. To reference il constant, you must define it with DATA. If
you nerd a floating point constant, you must express it in hexadecimal, using
two or more DATA lines.

i
The "FC RTRAN" directive, which causes yo .. u ti' exit from in-line
back irto FORTRAN, does not have either.an pe~and field nor a

, , ,
I

, .

8.15

assembly language
comment field.

f'

~!

o

(OMPUTt~ AUTOMATION. INC. §]}

CHAPTER 9

COMPILER OPTIONS

SUMMARY

Certain as;)ects of the compiler's operation can be controlled by a number of options.
These opti Jns are specified on the control command that calls forth the compiler. There
are defaul: conditions for all of them, so that the ~ompiler does something reasonable
when no o:)tions al'e specified. The options are ljsted below. Three of them are
described in more detail in the following sect~ons. ' ;

, I

ELIST Opt ton I

Error listi:J.g only. Normally the compiler pr:oduces a listing of all the source lines. When
ELIST is s;;>ecified, only source lines with errors are listed, along with their diagnostics. .

LOBJ 0ptiJn

List Object code. An object listing can be rather long, and is often not needed J so the
default is ~o not produce one. The object listing is printed separately from the source
listing. blot the source lines are interspersed at the appropriate places. Thus an
Object list:.ng includes a source listing.

NrINARY " Option
!

Nt binary output.

XON Optim

Default is to produce a binary module.

Compile conditional lines (with an X in column 1). Without this option I they are
treated as comments. See "Conditional Compilation" I in chapter 1.

ADP Option

Automatic double precision. All single precision quantities are converted to double
precision. This is described below. .

RS P Optic!:_

'-" Reduce sC'ratchpad. If your program overflows the scratchpad when linked (which
requires (:normous usagc, unless thcre are other, assembly language routines using
large amo:mts), there are two stages of reduction you can ,request in the compiler's use I

9.1 I

of base page re:erences. Normally the compiler uses base page to reference sub
programs (inclucing library), arrays, and variables in COMMON. The RSP option
causes the comp: ler to call subprograms without using base page (i.e. by using a
literal pool adcress pointer instead). This may reduce scratchpad usage by 20-50
words, meanwhil(increasing the size of the program by somewhat more th4n that
(depending on: h(,w many references there are to each subprogram and how spread out
they are) .

NSF option
I

No scratchpad. If RSP doesn't do the job, you may rave to resort to the NSP option,
which eliminate, all base page usage from the gener ted code (except those speci
fically request!:d by in-line assembly language), at the expense of significantly
increasing the :!ize of the program. This is mostly because subscripting without
base page is qu;~te clumsy. ,

RTX Option

Real time. Thi:. option must be specified when the object programs are to be executed
under RTX. It .:auses slightly different calling and receiving sequences to be
generated for p:'oper interface in real time. Without this option, execution under
Os is assumed. See below for more information.

T3 Option

Type 3/0S execu::ion. This option causes the compiler to generate LSI-3/0S object
code rather thaI LSI-2. It also assumes that the RTX option is wanted, even if you
don't specify R~X. Since OS doesn't run on the LSI-3/0S, RTX is obviously required.
Note that when '::3 is requested, the compiler will generate an external reference to
the LSI-3/0S inltruction emulator and software console routine (F3EMUL), because
certaini inline 'lssembly instructions (those flagged with an asterisk in Section 8)
don't erist on:he LSI-3/0S and must be emUlated.

!

Run time trace. This causes the compiler to generate extra object code for tracing
execution at rU·l time. See below.

ANSI Option

ANSI compatible allocation. ANSI standard FORTRAN specifies that integer, real, and
logical quantit Les occupy t.he same amount of storage. (Double precision and complex
occupy twice thit amount.) In most cases this does not matter, and it is more
efficient on a l6-bit co~puter to allocate one word for integers and logicals, and
two words for raals. If your program requires ANSI allocation (because of C~~ON or
EQUIVALENCE ali3'nment), the' ANSI option will allocate two words for integer and
logical variabl~s. Only the first word wi]] be used in computation; the other will
be ignored. It3 only purpose is to separate the values so that the required amount
of storage is t~ken.

9.2

o

There is one exception to the statement that the second word is never used. In any
operation thlt simply steps through memory word by word, without regard to the type
of variable, all words will be processed, including those that may be only separators
between inge:.er values in ANSI mode. This will almost always cause such operations
to work inca :rectly. '!'herefore you should not request ANSI allocation on any rr~lral'C\
that uses E~::ODE or DECODE on an integer or logical type buffer, or that Uqes .),
FORMAT storei in an integer or log-:ical array.

9.2a

o

o

. '

COMPUTER AUTOMATION. INC ~

In general. if a progrnm is compiled in ANSI mode. Ilny programs with which it
interfaces should also be compiled in ANSI mode. If there arc not integ-l'r or logicnl
variables in COMMON, or arrays being passed as arguments, this mny not 1)('
necessary.

AUTOMATIC DOUBLE PRECISION

If you have programs doing computation in floating point, and you find that the single
precision accuracy of about seven digits is p.ot ~uff~cient, you can use the ADP option
to convert the program to double precision. i Wi~hout the ADP option, this conversion
would not be as simple as it may sound. It ?OUl? involve:

l.

I

Declaring every real variable, array, and non-library subprogram in a
DOUBLE PRECISION statement.

2. Changing each appearance of a real constant to h~ve 11 D exponent. (Actually,
in Computer Automation FORTRAN IV, those constants that appeared in

3.

4.

expressions would become double precision anyway, but not those that stand alone.

Changing each appearance of a real library function reference to the corresponding
double precision version, if one exists.

Changing F, E. and G format specifications to D. (This would be necessary in
ANSI standard FORTRAN, which does not permit those formats to be used with

, double precision data. Computer Automation FORTRAN IV does permit this.)

I
'l~hercfore , when the ADP option is requested, the compiler proceeds csscntially as if
thcre were no such thing as single precision floating point. This means that it takes
thc following actions:

1. Any name that would ordinarily be typed real (either explicitly or implicitly)
is typed double precision .

2. All floating point constants are automatically double precision.

3. Every reference to an intrinsic or basic external library function of real type is
changed to reference the double preciSion equivalent, as shown below. Note
that in some cases, this requires a double call, while in other cases it means
removing the function call entirely.

9.3

I'.··! .. ···.'·'· ",.'

;

i

t II
~I
~!

"I

, em

o

* ...

COMPUTER AUTOMATION. INC. f3]1
Change To Change To

ABS DABS COS DCOS
AIMAG DFLOAT (AIMAG) DilLE Rnmoved
AINT DINT DIM J))(M

ALOG DLOG EXP DEXP
ALOGIO DLOGlO FLOAT l)FLOAT
AMAXO DMAXO REAL DFLOAT (REAL)
AMAXl DMAXl SIGN DSIGN
AMINO DMINO SIN DSIN
AMINl DMINl SNGL Removed
AMOD DMOD SQR,! DSQRT
ATAN DATAN TAN, DTAN
ATAN2 DATAN2 TANlI DTANH

I

As with the ANSI option. when one program is compiled in automatic double precision.
the other programs with which it interfaces should also be compiled in this mode. so
that arguments will be of the same type and COMMON will be corre.ctly aligned.

i

Caution

If you know in advance that a program needs to be in double precision. it is better to
write it that way in the first pl~ce • rather than using the ADP option. because the
option is not entirely foolprcof. There are several areas where you must exercise
caution in its use. These are:

1.

2.

3.

f;)ince there is no double precision complex type. ADP does not work on complex
fperations.
i
~f you declare a library function EXTERNAL. the compiler will no longer recog-
I

ttize it and change it. What will happen is that the name (e. g. ALOG) will be
classified as double precision (like any other ordinary name) and then called.
However. the routine by that name in the library cannot know that it is supposed
to be double precision. It will neither accept a double precision argument nor
return a double precision result. You would have to provide a version that did.

If you use a real library function (e. g. ABS) • but also use the name of the double
precision version (e. g. DABS) to identify something unrelated (like a scalar
or statement function) • you may get diagnostics or strange results when the
compiler tries to substitute that name. For example. if this program were
compiled in ADP mode:

COMMON DCOS
DABS (X) = X/3
A = COS (B)
C = ABS(D)

9.4

o

o

4.

cos woo lId get an error diagnostic, while ABS would call the statement function
DABS. Using the names of library routines for other purposes is not a very
good i, lea in any case.

ADP dOds not affect inline assembly code. The operands will change to double
precis .. on, but the opcodes will not work properly.

REAL TIME

Any FORTRAN programs that are to be executed under RTX must be compiled with the RTX
option. (T;.e T3 option includes the RTX option !within it). This changes the calling
and receivil,g sequences somewhat, in order t.o c9mPly with the RTX conventions that
arl~ used to handle real time usage of subprogr'1s. ' If you want to run the same
program undt:r both R'fX and OS, you should nqrma1jly compile it twice. Note that if
YOIl have a : ingle task (beginning with a TAS.K s~atement), it May be compiled without
the RTX opt .. on and executed under OS, for debugging purposes. The execution address
will then be. the name of the task, rather than F :MAIN. (When the same task is
compiled wi1.h the RTX option, no execution address is generated; it is assurned that
F:MAIN, the RTX Mainline sequence, has been :assembled separately, and will be linked
with the ta:k prior to execution; thus the execution address is F:MAIN.)

In SUBROUTILEs and FUNCTIONs, the local storage (variables and temps) is protected
in real tim'··. COMMON storage is not, nor is the local storage of main programs or
TASKs. Thi: means that it is difficult to connect a OFRTRAN TASK to more than one
interrupt. If this is done, the TASK must have no local storage, which means it
cannot do m\~ch. About all it can do is to call a SUBROUTINE which does the useful
work.

Note that a TASK is essentially a main program with a name, but there must be exactly
one true ma:n program. There may be any number of TASKs.

RUN rIME TRJ.CE

whenl the TRl.CE oPt.ion is specified, the compiler generates extra run time calls in
the bompilec program that cause it to print out trace information (on unit 6) in
three placet:

1. Whenev(r a labeled statement is reached, the message:

x>xxxx LINE dddddd

is prirted before the statement is executed, where:

X)XXXX

dc.ddd

is the name of the program (F:MAIN if main program). If the
name is the same as that on the previous trace line, it is not
printed. In other words, the name will be printed once when the
program is entered, and not again until a new program is entered
(or returned to).

is the source line number of the statement about to be executed.

9.5

Q
I

2.

3.

1 W "$"'q '·S' t 'Pit" OM

COMPUTER AUTOMATION. INC. §]E]

When a t UBROUTINE or FUNCTION is entered. the message:

x~.xxxx ENTRY

is print(d immediately after entry. Again xxxxxx is the subprogram name. which
will alwl.ys be printed. Note tl:!.~.t the tracing is done upon entry. not upon call.
Therefol e only subprograms that are compiled in TRACE mode will be traced.

When a l:ETURN statement is reached (whether or not labeled) • the message:
!

X~ xxxx RETURN LINE ddddd I

is printE d before executing the RETURN. i l '
This informati(n is sufficient to follow the flow of, the rogram. since it will trace all
jumps (the transfer point will be labeled) and all. calls. except to library routines (which
are assumed to operate correctly) and to subprograms not compiled in TRACE mode
(which are a1sl1 assumed to operate correctly). It is not necessary that all of the programs
loaded be com{: iled in TRACE mode. As soon as certain parts are checked out. they
can be compile- 1 normally. so only the remaining parts are tr~ced. Note that assembly
language subp:'ograms are not traced. nor are sections of in-line assembly language.

9.6

'-

~, 1

•) 1 t. [new t .ltSeWNr

o

o

Appendix A

STATEMENT-ORDERING AND SIZE RESTRICTIONS

STATEMENT ORDERING - . . I

There are a few rules about the order in WhiCh~tatements may appear in a FORTRAN
program. Some of these are inherent in th~ Ian uage (e. g. END must come last)',
while others improve readability and compiler fflclency (e. g. most declaratlOns
must come at the beginning). Table A -1 divides the statements into six groups,
labeled 1 through 5 and X. Groups 1 through 5 must appear in that order, with no
overlapping. For example, all the statements in group 2 must follow group 1 and
precede group 3. Any of the groups except group 5 may be empty. Within a
group. the statements may appear in any order. Note qlat there can be at most one
statement in group 1.

The statements in group X need not appear together; in fact, they may appear
anywhere after group 1 and before group 5. However, a DATA statement must
follow any declaration statements that affect the variables to be initialized. In
practice, EXTERNAL and DATA statements usually appear in group 1, and FORMAT
statements in group 4.

Table A-1 also indicates whether each statement is executable or not. Occasionally
i~ is important to know this. For example, a DO loop must end on an executable
s~atement.

I

A.1 Revised March 1975

(QMPUTfR AUTOMATION, INC. §]1

Table A -1, Statements and Ordering

... ," .-,----.- --.--. ---_. - - .------. - - --.---"--- ,.-. .--

. <'~J'OllP Statement ' Executable Non-- eXeel.ltllhl!'
. -' ... -_.'- - _~."- ,- -.--- -- .. '. - - ---.---- .. __ . -- . - -.".

,---"

BLOCK DATA X
FUNCTION X
SUBROUTINE X
TASK I

i
X

2 i COMMON X
COMPLEX X
DIMENSION X
DOUBLE PRECISION i X
EQUIV ALENCE X
INTEGER I X
LOGICAL X
REAL X

.-,--._--

3 Statement Function X
- _._-- - _._--- - .. -- _. __ .. __ .. - .-----.~.-- 1--- --

4 Assignment X
ASSEMBLER X
ASSIGN X
BACKSPACE X
CALL X
CONTINUE X
DECODE X
DO X
I<.NCODE X
l~ND FILE X
GO TO X
IF X
Tn -line assembly
INPUT X
OUTPUT X
PAUSE X \

READ X
RETURN X
REWIND X
STOP X
WRITE X

-~-.-

5 END X
.-------------

X DATA X
EXTERNAL X
FORMAT X

A.2

,; t",} i ''tinY''! f"'t'llr'P"'UIo':tM'0:illt'",,*,reef-WIt'vl

o

1\.'. ~}

OBJECT PROGRAM SIZE RESTRICTIONS

Due to object program layout. the total number of subprograms. unique arrays. dummy
arrays and unique common scalars rcferenced must be less than 248.

Due to the structure of the compiler. there are certain other progrnm si ze restrictions.
The number of each of the following items must be Jess than 1023:

Scalar Rnd Array Variables
Common Variables
Equivalenced Variable Names .
Statement Numbers I
Names in Explicit Type Statements I
Unique REAL DOUBLE PRECISION and coMpLEX Constants

• I

Umque INTEGER Constants
Unique Subprograms called
Arithmetic Statement Function Definitions

The total leng·th of all Hollerith constants must be less than 1023; this includes character
strings in OUTPUT statements but not in FORMAT statements. The length of 11 Hollerith
constant is the number of words (that is. half thc number of characters) in the string.
plus 3.

A.3 Revised March 1975

\ #1'1 "j'nW"t' f'" ""i' .. 'OeP'ttrWWWf tt."M 'eW".,.

COMPUTER AUTOMATION. INC. ~

APPENDIX B

COMPILER LISTINGS AND DIAGNOSTICS

COMPILER LISTINGS

The full listing of a compiled program consists of foul' parts:

1. Source listing
2. Variable storage allocation
3. Object listing
4. Summary

When no special options are requested, the object listing is not produced, but thc other
three are. The LO (List Object) option causes the object listing to be produced. If the
EL (Error List only) option is specified, the source listing is suppressed, except for the
first line and any lines that have errors. .

Figure B-1 shows a complete program listing. For further explanation, please refer to
the FORTRAN IV Operations Manual (96510-01).

COMPILER DIAGNOSTICS

Figure B-2 is a sample program for illustrating the format of compiler diagnostics.
Most errors are detected during the Scan phase and are printed on the source listing
immediately following the statement in error. A dollar sign is printed underneath the
poisltion at which the error was detected, followed by a brief message. If the message
is Ifollowed by W's, it is only a warning. If it is followed by E's, it is an error and . tt+ statement has not been generated. Instead, a call to II run time error routine is I
geinerated. Thus if any statement with an "E" type error is executed. a run time diagnos
tic w ill occur.

If thcre is more than on€; dollar sign printed, the count at the beginning of each message
indicates which dollar sign it refers to, counting from left to right. Note on line 0013
that both messages refer to the same dollar sign.

A few error conditions are not detected until the Allocate phase (or even the Generation
phase) ,so the diagnostics for these would appear in the allocation map or in the object
listing. For example. the UNDEFINED LABELS and ALLOCATION ERRORS messages
in Figure B-2.

Most of the error messages are self-explanatory, but the FORTRAN IV Operations Manual
contains a complete list of them. along with descriptions of possible causes. The Opera
tions Manual also describes the compiler abort messages (usually caused py hardware
failure) and the error messages produced at run time (when the program is executed) .

Note that the last line of the summary (i. e. the last line printed in any program listing)
indicates how many errors have been detected.

B.I

~ ',. .
I

:r

"I

.. 'lkw'lilVr*))g1''fttt t!!tf' t ""tIteWbrffl' ·. it' flrl&"Mt' +'''«",4 HljA'i'Wi!:'W'''_,·,

PA(,t "~hJI

UlJ FILL:
~9/2~/74 1~1~1125
ruuT UPTIUNS:

FORl:4 (A0)
LO

~,,01

L:; ~ (1.2

0"'~J
0~i'4
~lrl~

r~(,'u

0"O1
QI'J'~~
e~)I..;

(U I .0

"~A t 1
~~cJ'~
;'\::I1J
l~~ 14
r~ II ! ~
\~.: . ()
(hi II
(" U , ~~

G'\l 1 'J
,'~I? U

, .' 2 !
r ,. ? 2.
(lJ)J

\.J ',J'. <.I

\1.;? ~

"~J? t.>

" !)

iH.j"'ll
(~ ,j? rJ

c

L 0(HONSlRATl 08JECl L1S1lNG
!"Tl(jr~ ~N(25), LL(10)
DQuBL[PRECISION OX, DY
LOMMUN MM(10~), M /ALK/ Y
L~JTVALENCl (L,LL)
lSI (1'.0) • Kf)*8

1~ i'. : (l+J~~).1"1 .. 74
~\~q 1) : K
1<. :. A~SO+4)
0X = OAHS(JV/4.3)
IF (UX ~LT. ~) GO 1~ 70
LALL ~UH{L+3~~/7HABC~f ,Y+4}

~ ~, ... R I T E. (t.> , j") '(

~.1 h);~I~AT(5)(,15 I' vALUE.S.')
If (~ .FCaI'. M) ~n TO 117'

"::;~l~rjl[R
LAP :2A
~un ~ (LOC~L VAHtARL~ IN HANGE)
JfA *t3P(M'tSNAM) (:)PfCl~L ~nsTP' NAME)
Jt1P *5", CFOHWARD Rf.FfHfNCE IN RANc;[)

~~J Rl~ j2,' (10 FORCE L1TERAL POOL)
~UR'I~AN

I,) 0 tJ ~ I = 1, 1 ,~
til' I!! (1) ;: -1

I\S~JGN 411.1 TU K
~I ~.' (]) ~ 10

~;l .)p
Li'J)

Figure B-1. Sample Compiler Listing

B.2

Figure B-1. Sample Compiler Listing (Cont' d)

B.3

"'mew! ""tl\! H'·'&'·':iii.!H!! 'W11e:tu·dHtiztlr"""'WMu"W!1!"W w'"t

PI\(,t .:H'I/J:l 1)(1/2111/74 1~:~1:~~ fORT~4 (Af')
[P.l ra.L: Fn~T UPrtuN~: LO

,
~u'i 1 L [)UIOI~Sl J?/I fl. U~J[Cl Ll~IING T:

,,",

IhJ(12 PTll. .. £R NN(2b), LL (h.) i;I'"l
'i'l

"" ,""Ur1J l10uALf P k (L I !) I 0 ~J ox, D~ j,

(I ,1t"'1~ lJIMI-1UN M~HIP10), M IRL.,KI ..,

0~'~'~' U~uJ "AU Nrl ll,lL)
11l}Qc 1 ~; f (K n J : K[HtH

100iJJd If~C'l1ll t JMP NM7
:~IJJ9 S ~tHh" N~fj ENT
,V'103A 2FY~~ ~ J~T tltfiP(fIRDMy)
:~iJ=U : ~~HH ~ATA 1 i

,

:~uJ~ :~IUr1~ ",(1 DAfA ~ i
: Cl • ..!JL) : R7(H LUA .",d
:~03L Itl/l~2 ALA 3 !
I ~iJJf zf7~t> JMP .*Ni tl

:~ I'J r'\ • ~tJ ... :;. U +3,)0) *M - 14
I 01 kl4 U ~M7 E laIlJ 1~~4~
:OIiJ4iJ I B C! ~ yJ F "'hI LlJA .IIIIC1 :",12C
:1'1..)41 : 8l:.1f ~un 'L
:C'lKj42 :9AQ!0 F SJA ~T~
: 0·u4j :F<JP'1i:1 lj JST *8P(faRMP,()
: OI 04·l :0~64 L: C' A fA M
:~Jo15 :~[;4,\ SAl 74
:C1iJ4b :9U A 5'1 A K

().IIjt. II (Ii c y,

IV'lkJ41 If-bl/l LDX I
: i ,,;.Hl :9Dt':.1 tj SIA 'ItltRP(Mt-l -1)

II \I (. 1 i. = L\~!.J(j"'4)

:C1t}-1y :rlJ~k:l d 1sT *BP(F:RRF.l)
: O\·,jll A : A ." (~kl I- LLJR ~HCl
:r~Jo1b : b ~I" 1(1 (j 4l)D t-~P(Y)

:~J4C : 9/d,hl t ~IA • T 1
J~iJ4l.J :t'!kJ·~t> ASS
;rAoj4L :~'L20 SIA)(

:~ d , tJ LJ)(= f)P~S(I)YiJ.j)
: I~ U 11 f :1·61LJ LLJD D¥
:~IJf)~ : A~r'h:' f" 1)V~ .HC2
:O\J51 : n vI I'l ':> <\t3S

C "1111
' ~L'5';:; : 9L ~\? SIA Dx

. tf q)X .LT • ~) GO HI lVJ
, Ii'.; 5 j : eI i("~ ~1 X1T
:tilJ54 :?0AJI f JAM iIIM9

'h,lt '- l "".L SU~lL.3~0,7rl~BCL)E ,Y+4)
:~\J~~ :F90w3 ~ JST *I:jP(SUA)

%~k.l50 :~~03 f)ATA 3
:~\J51 :l(IiJ~1.1 ~ DA TA' .I~

:~iJ~b : (" k) ~ 0 F () A r A NHCJ
J0J~':j 10VJ~hl f' r)ATA • r 1

Ch:J1 J :' ~J ~ fU 11:. (tJ , j C1) ¥
:~1J5A r F ~"':'; t3 .. 2", JST t-SP(f,R\ljF)

:Ii'U5u :~~"'Id F DATA N,C5
:~U5L :"'0001 DfdA N3'"

Figure B-1. Sample Compiler Listing (Cont'd)

B.4

Tzr w:!! H rm-. .' d btf\ ieJh¥1'iY:@Pi"""b't!'('dM.,.."

o

.........

PM,L tH'I1iJ4 ~f)/2u/74 10&51:2~ t"llkl.4 CAe)
tlll r lU':: FOuT UPTJO"lS' Lfl

0;.;14

~Jlv
r'~ •. J! ;

O~'24

:~~5U IF9~~ ~ J~T
:~~5L 10~0~ C DATA
:V'J~t :F90~ Il JST

*I:3P(FIRROL)
Y
*BP(F lRSIO)

10 FORMAT(bX , 15 , , vALUES.')
:~~~~ zAtl~~ N]~ TtXI

if (K • r t,)'. ~) L;OTO 10
,0I(J6L<J I B6J4
~OIiU"l ,9U!1/! Il
:~1il6~ 121013 F .
:~~~0 _~10

"~~l~t3L£'P
LAP :2A
10~6J :Cti2A

"uD K
I~J64 88[38

srA *~P(MY:N~M)
:~\J65 :99~0 t:J

JMP ~51O

:I7IJ6b If~0~ F
RES 32,-

,(:I!~67 :A(oA~

f(j~lRAN

~Hj L)(l blJ 1 =- 1,1('1
'~JA7 :C4Plt
100ItlRb IE(58

hU MM(l) • "1
I CiI(JfH, ,C701
: OI~HA z 9D~0 d

" ~ ~ J L1 "I " k; T n K
:~OHD :(2!"'1
:(i\~8t.: :01iJ30
I ~0AD z0DOIA
:OI~RL :21C6
: 0J8f JB2~13 F
:~.J9ifj lf2\?1J r NL
:i?lJ91 sF2('1IJ F
1~~92 .9[66

,.."-1 (J) .. Ii.l

LOA
SUB
JAZ
HPJ

LAP

JMP

Rt.S

LXP
STX

LAM
STA

AXI
TXA
SAl
JAL
LDA
JMP
JHP
STA

'(5x,15,' VALUE~.')'

I

K
*I:3POI
-Mll:1
lit.l~4~

)

I 1~0~~
tL~CAL vARIABLE IN KANG[)

(SPECr~L SYSTEM NAHL)
.t3P(M"'IN~M)

(fOHWARD RfFERENCE l~ RA"lGE)
"-:>0

(10 FOR~E LITERAL POOL)
32, •

t
I

110
HMl1
H4~

"-M12
HM9
K

-1)

LITEHhl. POul

0)) IJI~D 1 ~C'I~ I UNln E *E *E .E*E.~. *E *E.E *E *E *E *E*E.[.E "E*r.r *E *f.r.E.r *f *r *E *F..
I~J93 zF~0~ ~ '51 *bP(f'R~R~)
:~Jg4 :~U1A)ArA 26
:~J95 ~0100~ f ~ATA ~HC4 :b3~6:4167

e\.J?l 71d 5TuP
I~J96 N7'IJ EQU ,.,096
:li'IvJ96 : F fllflII~ ~ ~~9 JST *t3P(F:RSTO)
:PI\J97 :0~0~ ,)"TA 0

~j IJ;" 0 I:.Nu
H'IJQij :012C ""Iel DATA J130
1~~99 r418k1 "Ret ~ATA 10768
:li'IklQA :~001l' I')ATA 0

Figure B-l. Sample Compiler Listing (Cont'd)

B.5

.. ~' ...
:,)

I

t ;,

~ I

.. ,

term ' 't' ''t'' Y , '"tt t' {' tlNttr *'Xu S

~A~l d~~5 ~9/2~/74 l~z~lt~~ fORT;4 (A~J
110 rIll: FUUl UPTJON5: LO .

1~IdQ~ 1418S1
: ~09l: :9999
IIfIkl9D .999Y
:~KJ9l :9"19A
J OIU9F :0ti3"1lJ
:~IJAkJ 10l",,,,i'

&li\,JA:C I t~"67
~OIklA3 ,lihJ07
: ~\,jlA 4 :C1C~
:~klA5 ,CJC4
UIJA6 :C!)Aw1
:~uAI I A ILl A [3
:AJAI) 101d~6
,~,JA9 :6JCti
:~~AA :4167

!j\.'·~r PU("~ A:1 S LALLlu

fa . ", " 4; _ " 't' f> t A~G~ '\IAMf

l,lt' ... RtAL DA~S
I : ~ ... F ~u'" T 1 j-Il F n~ROL
I.~ '(: N A 11 r? oj ,,~ 1 I t-I [F:f{EHH
I ;h':0u Ru"lTr,~l f,({RlL
t : P r 7 ~~uN 1 Hll F r Hff-'
r :r'MDy ru~1T HIE

~,j hT(',f,\jT LAfLLS

{ dCN lAHLL U~i... LOCN

: Jr,<." .If .r ~~96
:~~nl(JvJ .. J ~ ~OI,MAT : ,H:l67
: 'J(1ijC1 iii D .~ 00 ft'4r"l :.o04~
• Jc;1lJfi AI 1'1 f : ~J04'"
: \d(-\Y? 1It1'1} ;

Or .! r k '(• : I/H1 j ti
IlIW bRA M ~ J Z l:. r: : VI ~iA b 1'1 0 H [) ~
BA~L r'Ac,r 'J!:>Ell=:Oh111D ~OI\D~

tII~C~, DATA '6777
DATA -2621:;
~/dA -2621b
DATA -26224

fll6TI(J 'ATA 0
-.11 ---". DATA " DATA 1\140

DATA 7
I\IHC0 DATA 'A~'

DATA 'eD'
DATA I E ~
I)ATA . ~ ",te5 OATA :6

",RC4 DATA :255 ?
DATA :167 3

!

IY~r ARG;S NA"tE

DOUBLE 1 SUB
H'JNll '4t. FIRSTO
RUNTlh4£ FIRSTo
~UNll~i:. F:ROBL
RUNTI"'E F:RDMy

I "~ll. USE LUCN

"'10 1~~5A
~::>et :JAb7
"M7 III:tl1JJ9
"Mh'l CllJAd8

(u ~ t 'l. A I I U N r u ~1 tJ l [r l 1 f: K R 0 R S

TYPE

REAL
RUNJIME
RUN1IME
RUNTlMf
RUN rIMf

LAFH.L

N2~

N40
NM8
tIIMl1

Figure B-1. Sample Compiler Listing (Cont'd)

B.6

, '

AH£.u

3

USE

UNUSED

ft' i" ?"t' W' 'no IS' ""'H' w·tnu% t e!McM'''''!H l::'r 1 ''''

P A (J t. ~ ~ ~ t 0912 oJ 17 4 111 4 1 : 16 FORT;4 (A0)
un FILL:· fOUr UPTIONSz

0lH11 L

"'''''~~
0,joiJ

ufMONSTRAT~ COMPiLLR DIAGNQSrICS
o I M ~ :~ SID N r~ M (1 i6, 1 0)
COHMUN X, '(,)(

S
OLCL~HATIUN CONf(ICl E*l*E*E.E*E*E*E.E*f*f*E.E.E.E.E*E.E*E*E*E*l*E*l.~.

0Ul4
0~H~
0k)(H,l

~QUI~AL(NCE (X,Y)
LOLiICAL LGL, N
lNTrGf~ A, , C

S
01) EXTliA CO~HA w*w*w*w*w*w.w*w*w*w*w*~*w~w.~.w*w*w*w.w*w*w*w*w*w*w*w*w*w*w

0unl SF(p,n) ~ P+Q/2
0~~d X = lf~~ + ~uL

, S

01) CUNSTANT SIZE E*E*l.E*E*E*E*[*E*E*E*E*E*E*E*r*E*E*E*E*E*E*E*[*E*E*E*!*f I

~~) TYPl (ONFLILT E*E*E.r.*r*r*r*E*E*E*E*E*E*E*E*r*E*E*[*E*E*E*E*E*l*E*E*r*E

0~~~ IF (A) 2,3,2
0u1~ 2 X = S~HT(A) + SF(Y)

$ $

F~) AHGu~('jT LnNvlRIEO ~.w*w*w*w.w*~*w*~*~*w.w*~*~*w*~*w.w*w.w*w*w*w*W*~.W4

I
f'J 1 1 I

I
b (1'~) ;;: ILl
$

~1' 'J~Ol~lNSIUN~O [.E*E.E*E.E*ftE*E*E.E*E.E.E*E*r*E.E*E*E*E*E*E.[*~.E*E*rtf

liH.lU x ~ lRX+A8SCSX))/CVAL+3)l
$

01) SYNJAA E.l.l*l*(.£*£*E*l.£.l.~*[.l*E.E*E*E*E.E.E*E.E.E.£*E*E.E*E.L.l.~j

0utJ J • MMlN) ,
o 1) 'I uTI, J T L r. c::. R [.. E • [* f. * E • E * E • E * E * E ." E ." E *r * E * E .. E • E * E * E * E * E * E * E * E * [* E • E • E * E • f

",p 1 4 E "II)

Figure B-2. Sample Diagnostic Listing

B.7

~ i

1 ' t 1 r' tt 1"$1'% tf"mMt wtN, . hi " 'I1#!

PM)L ~Hh12
lIO rIll':

~9/2~/14 11141:16 fORT&4 (A0)
FOur UPrION~1

IJ N [II:. fIN I:. n t. A Ii t. l S l ... l .. L .. t:. "E .. L. ... t:. ... 1: ... t. .. t. It L ,,(. " E "E "E ... E " E. ... E * (. " Eo ... E * I:. ... l " l "E "l *t " l *1;. • t:. •

,3 f 1 ~ :3T r~ t:.r A I L I '~E 9

(U~'MON UI UCK/~ :tlCM~'1 ALLO(;ATIU"'I 10~04 ~ORDs

L J (~~ ~ A \,.~ TYPf

& J 1U J X t'(EAL

A tiP \ Y AU LJCAT1U,'f

lUI " N~*_ T VPf

• 'J(hl\~ 0..4., PHf \;EH

~'L It \.. fn~ A I L 0 L. A i I U N

: .J"u 4 A
I ~"'I 0 f) N

(NrrG.EI'<
LOGICAL

WURUS

2

WORl)S

1
t

LlICN NAML

LOCN r-.lAM£

:~065 J

r. Yr. t
RE~l '

I

TYPE

rYPE

INTE(;ER

WUROS

2

WUROS

t

ALL IJ C f\ T .. UN£:' R I ~ () R S r /I f ,,[• r: .. [• E ... E .. E * E .. E .. E. * E .. f It E .. E .. E "E .. f '* F ... E ... E .. E * E * l * E .. E .. E .. E • E .. l._

'1

o

Figure B-2. Sample Diagnostic Listing (Cont'd)

B.8

t " e' klP'''f'rBs,,,,'' 'l'PltM" MUM't

PAr-I:. I'.l~~' '19/2~/74 1tl41116 fOfH;4 (A0J

'-

LIn r !Ll: four UPrIONSa

r :Rt:.~R RUNTIME"
f:RHfL RUNTIHl

5 I AlE M [IIj T L AFH .. L ~

lUCN LA~lL USi..

'-.J~7f3 ~~
I ~1'uH ~M1

r~nkYc:JV107

l~l~IF--'- r YPf

S~HT KEAL 1
FIR(')MV HIJNTIMf.

LUCN I.A8t.l. USE

:fFfF N3

PRO~RA~ Sjlls:~~94 ~OKDS

BA:)I:. PAuE Usr::i,)~1~iJ"'4 WOkDS
(U~PI~ArIUN (UMPlLTl 12 ER~ORS

NAME TYPE::

faRSTO RU~TIME

LUCN LABEL Ust:.

11d~76 ~H2

Figure B-2. Sample Diagnostic Listing (Cont'd)

B.9

,!

-,

,

I -,

COMPUTER AUTOMATION. INC, §]}

APPENDIX C

INTERNAL DATA FORMATS AND ASCII CODES

1. Integer. 1 word, unless ttre--ANSI option is requested, in which case 2
words are allocated (for variables) but only the first is used. Bit 15 is
the sign bit, and the remaining fifteen bits are the right justified integer
value. The negative of a number is its twq's complement.

15 o
S Integer

I

2. Real. 2 words. The first word contains the sign bit, an eight bit exponent (or
characteristic) of base two, which is biased by 128, and the high order seven
bits of the normalized mantissa. The second word contains the low order sixteen e bits of the mantissa. The high order t-bit in the normalized mantissa is not
present, but only implied. This makes room for one more bit of precision.

,'"i 0

It also means that there is no combination of bits that is not a legitimate normalized
floating point vslue. And it means that even though the first word of n floating
number is zero', the value may not be, since there may be bits in the lower order
mantissa.

The exponent range is 2- 128 to 2+127 . The resulting range of values is
1. 469368E-39 to 1. 701411E38. The 23 bits of mantissa (plus implied high order
bit) give an accuracy of somewhat more than seven decimal digits.

This is a sign-magnitude system. The negative of a number is obtained by
merely setting the sign bit; the mantissa and exponent do not change.

15 14 7 6 0

IS I Exponent I Mantissa I
15 0

I Low order mantissa I
3. Double precision. 4 words. Exactly the same as real, except that there are

two additional words (32 bits) of mantissa following the first two words. The
exponent range is the same. The 55 bits of mantissa give an accuracy of
about 17 decimal digits.

15 14 7 6 o
S Exponent I Mantissa

Low order mantissa

Lower order mantissa

Lowest order mantissa

C .1,

l

" 'f Vh n ' 0& *t' • 'tt' tNWIt'ltW:I'.1tI "He ted

COMPUTER AUTOMATION, INC. ~

4, Complex, 4 words, Consists of two single precision (real) flolltinl{ point
numbers, The first is the real part I the second the imaginary purt,

5.

6.

Logical, 1 word I unless the A~§_~ option is requested I in which CIIH(' 2 words
arc allocated (for variables) but only the first is used. Only the sign hit (hit
15) is significant in logical operations, Any word that is negntive (bit 15 == 1) ,

is true I while any word that is positive or zero (bit 15 = 0) is false. Note that
t he compiler generates . TRUE. and . FALSE. as all ones and all zeros respec
tively, but this is not necessary I since only th~ sign bit is tested in logical
operations. I

, I

Alphanumeric, Hollerith constants are 1 word I(two characters). Alphanumeri,c
string constants can be any length, always' with two characters per word. and
are preceded by a wo,:,d containing the (right justified) integer count of the
number of characters in the string. '

Each alphanumeric character is an 8-bit ASCII code I with the high order bit
alwnys set to one. There are thus 128 legitimate ASCII' codes, but only 64
(,r them are graphic (printable) characters, These are shown in Table C-l.
along with their hexadecimal equivalents. We do not recommend that you
tuke advantage of knowing these hexadecimal values (i. e. by doing numeric
calculations with alphanumeric characters) I because the values vary widely
on different computer systems. The table also shows the punched cord code
for each character.

Note that the three characters [, \ ,and] do not print on the teletype.

C.2

,'-.''''''4'','', » #it!t:tsM e '

..
COMPUTER AUTOMATION. INC. ~

............. .
Table C-1. ASCII Character Codes

,
.. __

Hex Hex
Character Value Card code Character Value Cnrd code

Blank :AO Blank @i :CO 4-8
I :Al 11-2-8 ~ :C1 12-1
" :A2 7-8 :C2 12-2 ,
:A3 3-8

~
:C3 12-3

$:A4 11-3-8 :C4 12-4
% :A5 0-4-8 El :C5 12-5
& :A6 12 F :C6 12-6 , :A7 5-8 G :C7 12-7
(:A8 12-5-8 H :C8 12-8
) :A9 1l- 5- 8 I :C9 12-9

i

* :AA 11-4-8 J :CA 11-1
+ :AB 12-6-8 K :CB 11-2
, :AC 0-3-8 L :CC 11-3
- :AD 11 M :CD 11-4

:AE 12-3-8 N :CE 11-5
/ :AF 0-1 0 :CF 11-6
0 :BO 0 P :DO 1l-7
1 : Bl 1 Q :Dl 11-8
2 : B2 2 R :D2 11-9
3 :B3 3 S :D3 0-2
4 : B4 4 T :D4 0-3
5 : B5 5 U :D5 0-4
6 : B6 6 V : D6 0-5
7 : B7 7 W :D7 0-6
8 :.B8 8 X :D8 0-7
9 :B9 9 y : D9 0-8

:BA 2-8 Z :DA 0-9
; :BB 11-6-8 [t :DB 0-2-8
<, :BC 12-4-8 \t :DC 11-7-8
= :BD 6-8]t :DD 0-5-8
;- : BE 0-6-8 t :DE 12-2-8
? :BF 0-7-8 - :DF 12-7-8

t Not available on teletype.

C.3

COMPUTER ,AUTOMATION. INC. f3]1

APPENDIX D

ANSI COMPATIBILITY

The Introduction stated that ANSI stundard FORTRAN is n subset of Computer Automation
FORTRAN IV, i.e. , that any legal ANSI program will work the sume wny in Computer
Automation FORTRAN IV. There are two minor exceptions. The first wus changed to
produce smaller object programs. but can be ch4nged back by the ANSI allocation option.
The other is quite obscure and rarely occurs .• at· d we have implemented it differently
because we felt it made more sense. The two dif erences are:

i

1. Integer and logical variables occupy dnly ne word. while real variables

2.

,

occupy two. ANSI says they should be the same. It is hard to do this
efficiently on a 16-bit machine. so normally we do not allocate them that way.
However. you can request this by using the ANSI option (see chapter 9).
This difference is important only in certain cases of mixed mode alignment of
COMMON or EQUIVALENCE. ' .

According to ANSI. a positive scale factor of value n used with an Ew.d
format produces n significant digits to the left of the decimal point and (d-n+l)
to the right. That is. as digits are added on at the left. they are taken off at
the right. beginning at n=2. The effect for n>d+1 is undefined. In actuality,
almost all FORTRAN systems keep constant the number of digits to the right
of the decimal point. as shown in chapter 5. under IIp Specification" .

AfDITIONAL FEATURES

I I
O~l the other hand, there are a number of significant extensions to ANSI FORTRAN in- I
cl~ded in Computer Automation FORTRAN IV. as well as some minor extensions. These I
are listed below.

General Features

1. In-line assembly language.

2. Conditional compilation (X in column 1) .

3. Automatic Double Precision (ADP) option.

4. Any number of continuation lines.

D .1

-

5. Extra library functions:

DDIM
DFLOAT
DINT

DMAXO
DMINO
DTAN

DTANH
lAND

--fEaR

COMPUTER AUTOMATION. INC. ~

INOT
lOR
TAN

Data and Expressions

1.

2.

3.

4.

5.

6.

Lower and upper subscript bounds on arraY ••• s 'If a dummy array, both limits
may be adjustable (specified by another dummy . '

,
,

Any number of dimensions on an array. : ,

Any integer expression may be used as a subscript. This includes subscripted
subscripts.

Names of any length (first six characters significant). '

Hexadecimal constants.

Hollerith constants in expressions. If standing alone on the right side of an
equal sign, they may be as long as permitted by the type of the variable on the
left of the equal sign. Otherwise they are integer (one or two characters) .

7. Long alphanumeric strings enclosed in quotes (in DATA statements or argument
Usts) .

8. J. re~l.constant in a double precision expression automatically becomes double
clreClslOn.
I

9. More cases of mixed mode expressions are allowed, including:

•

a. Integer may be mixed with real, double precision, and complex, using
the operators +, -, *, and / .

b. Double precision may be mixed with complex using the same set of
operators. (The result is complex.)

c. An integer may be raised to a real or double precision power.

d. Integer may be compared with real or double precision, using any
of the relational operators.

e. Complex may be compared with integer, real, double precision, or
another complex, using only the operators . EQ. or . NE ..

D.2

-

c

f.

(OWUTfR AUTOMATIOH. INC. ~

An assignment statement may have a complex variable on the left
and an integer. real, or double precision expression on the right.
(The latter involves a loss of precision.)

l
10. Boolean operations, using_~~ intrinsic functions lAND, lOR. IEOR I and INOT.

11 . > and < may be used as relational operators, in place of . GT. and . LT ..

12. t may be used for exponentiation, in placel of **.

13. The sequence .NOT .. NOT. is permitted.

Statements

1. Free form I/O statements I OUTPUT and INPUT.
I

2. Internal data conversion statements I ENCODE and 'DECODE.

3. T AS K statement, for real time programs that are connected to interrupts.

4. END= and ERR= options on READ and WRITE.

5. New FORMAT specifications: T (Tab), Z (Hexadecimal), I (Alphanumeric
string), $ (Preceding dollar sign), and * (Asterisk fill) .

6 Other features in FORMAT statements:

a. All of the numeric formats (I, F ,E , D ,G) accept any of the numeric types
of data (integer, real, double precision, or either part of complex) .

b. Comma termination of numeric input fields.

c. Deeper nesting of parenthesized groups, to eight levels.

d. The first T or F in a logical input field determines the value, rather than
the first character (so . TRUE. is a permissible input field) .

e. The A format also works with double precision variables.

7. Features in the DATA statement:

a. An unsubscripted array represents all of its elements.

b. A long alphanumeric string may initialize any number of variables
(or array elements) .

D.3

I

COMPUTER AUTOMATION. INC. §]1
c. Hexadecimal constants may be as long as required by the variable type.

d. Variables in labeled COMMON may be initialized in any program. not
just in n BLOCK DATA subprogram.

8. DO control parameters may be negative or zero (except for the increment) .

~). A stntement function definition may reference array elements and Hollerith
constants.

10. In EQUIVALENCE. a scalar may be followedby ~ position count enclosed in
pnrentheses (in the same manner as an array n4me,) .

I i

11. P A U SE and STOP may be followed by a deci~al ponstant. rather than octnl .

12. The END statement may be labeled. and simiulates a STOP or RETURN if necessary.

Syntax Relaxations

1. The parenthesized list of statement numbers in an assigned Go TO is optional.

2. There may be a comma ina DO statement between the teI'minatingstatement
number and the control variable.

a. There need not be a comma in the following places:

II. In a computed GO TO. after the right parenthesis.

b. In an assigned GO TO. before the left parenthesis (if any) .

D.4

.f

