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INTRODU CTION 

FORTRAN is an algebraic language designed primarily for l;se in scientific and 
mathematical applications. The name stands for FORmula TRANslation. because 
many of the statements are represented as formulas. For example. the formula 

x = 8.1 + Y - a·y2/Beta 

can be written in FORTRAN as 

x = 8.1 + Y - A *Y**2/BETA 

I) The first FORTRAN was developed in the middle 1950's. It was soon followed by 
a version called FORTRAN II. in which several new features were added (notably 
user subroutines and common storage). FORTRAN IV appeared in the early 1960' s. 
incorporating more new features. such as logical expressions. type declarations. 
double precision and complex data. data initialization. and labeled COMMON. As 
various manufacturers and universities continued to add other new features. a 
committee of the American Standards Association (now called the American National 

"-

Standards Institute. ANSI) was formed to document "standard" FORTRAN. They _ 
documented two: Basic FORTRAN, which was similar to FORTRAN II; and FORTRAN, 
which was essentially FORTRAN IV . 

This standard was intended to function. and has functioned, as a minimum· acceptable 
standard. Virtually every FORTRAN IV in existence includes additional features 
beyond the standard. 

Computer Automation FORTRAN IV contains ANSI FORTRAN as a subset. Some of the 
additional features are: 

• In-line assembly language (particularly for real time) 
• Simplified input/output (no FORMAT statement needed) 
• Generalized subscripts (any ipteger expression) 
• Alphanumeric strings 
• Memory-:-to-memory data conversion (ENCODE/DECODE) 
• End-of-file processing (END= option) 
• Automatic double precision 

A more complete list of extensions to ANSI FORTRAN may be found in appendix D. 

x 
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The FORTRAN compiler accepts programs written in the FORTRAN IV language (culled 
. source programs) and translates them into machine language programs (called object 

"- programs). meanwhile producing a simulated assembly language listing of the object 
program (called an object listing) and diagnostics for any errors detected in the URe 

o 

o 

of the FORTRAN IV language. The diagnostics and object listing in Computer Automntion 
FORTRAN IV are designed to be readable and understandllble. to UHRist in understanding 
what the compiler has done. 

The Computer Automation FORTRAN IV compiler runs on Ii large LSI muehine opernting 
with a Computer Automation Operating System. but is optimized to produce small object 
programs that can run on small machines with RTX (the Computer Automation Real Time 
Executive). There is also a library of subroutines to provide support operations. such 
as input/output and floating point computations, as well as mathematical functions. such 
as logarithm and square root. The library is as modular as possible. so that only those 
portions actually needed will be loaded with the object program. 

This reference manual describes the Computer Automation FORTRAN IV language and 
makes it possible to write FORTRAN programs. Further information on the use of the 
compiler, the run time library, linking, and system generation may be found in the 
FORTRAN IV Operations Manual (96510-01). 

xi 
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CHAPTER 1 

PROGRAMS 

KINDS OF PROGRAMS 

A FORTRAN program may be one of three things: a main program, a subprogram, 
or a task. When loaded into memory for execution, there must be one and only one 
main program. Execution begins at the first statement of the main program or task. 
There may be any number (including none) of subprograms. A subprogram, which 
may be either a SUBROUTINE or FUNCTION, always has -a name with which it is 
called by other programs. A task also has a name, but it is not called in the usual 
way; it is connected to a real time interrupt. Subprograms and tasks are described 
in subsequent chapters. All programs end with an END line. 

CODING FORM 

Lines of FORTRAN source language are prepared in SO-character, "card image" 
form. Each line has four fields: 

Columns 1-5 

Column 6 

Columns 7-72 

Columns 73-80 

• 

Label. A statement may have a label in order to be 
referenced by other statements. A label is a decimal 
integer in which all blanks and leading zeros are 
ignored. Chapter 4 describes the use 9f labels. 

Continuation mark. Normally this column contains a 
blank (or zero). If a statement needs to be continued 
on more than one line, the succeeding lines must have 
some character other than bla-nk or zero in this position. 
Digits appearing in columns 1-5 of a continuation line 
are ignored. Any number of continuation lines may be 
used. 

Statement. The FORTRAN statement may begin anywhere 
in this field and may have blanks interspersed for reada
bility (except within alphanumeric fields; see chapter 2) . 

Identification. These columns are ignored by the compiler 
and may be used for program/subprogram names and/or 
sequence numbers.-

h' wo rtrt • 

If the source lines are prepared on a medium other than cards, it is not necessary that 
all 80 columns appear. The line may be terminated at any point by a carriage return. 

Figure 1-1 illustrates the use of these fields in preparing source language input. 

1.1 
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COMMENTS 

Any line with a C in column 1 is a comment line and hns no effect on the program, 
The remaining columns are'ignored and may contain anything in any position. We 
recommend liberal use of comments to document the operation of progrnms. Comment 
lines may appear anywhere except within a continued statement (i. e. preceding 
continuation lines). 

CONDITIONAL COMPILATION 

For debugging purposes. a statement may be written on a line with an X in column 1. 
How the statement is treated then depends on an option specified at the time the 
program is compiled (see chapter 9). If the XON option is specified. the X is ignored 
and the statement is processed normally. If the XON option is Not specified. the X is' 
interpreted as if it were a C; that is, the line becomes a comment line, 

During checkout, additional debugging lines can be included (for example, interme
diate output) with an X in column 1. While the XON option is in force, these lines 
will take effect, When checkout is complete, the program can be recompiled without 
the XON option and these additional lines will become comments. As such, they both 
document the debugging that was used and can be reinstated quickly if needed. 

A statement beginning on an X line may be continued only on an X line. A normal 
statement, however, may have a continuation line that either has an X or does not. 
For example: 

-C FOR COMME T· 

FORTRAN STATEMENT 

30 35 40 45 50 

. 

1.3 
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CHARACTER SET 

ComputeT' Automation FORTRAN IV liccepts source program~ (Hnd datu) in the ASCII 
(Americnn Standard Code for. Information Interchange) standard chHructcl' set. The 
chtlracters normally found in source programs arc the 26 letters. the 1 () deeimnl 
digits. Hnd the follow ing special charactnrs: 

+ - '" / = < > ( ) . , : ' # $ @ t blank 

Other special characters may appear, for example in alphanumeric strings. but only 
the following are printable on all Computer Automation supported devices: 

? % & " -
The ASCII character set is shown in appendix C. 

In some examples in this manual, the character blank is represented by b, so that 
it is possible to see exactly how many there are. 

SAMPLE PROGRAM 

Figure 1-1 shows a sample FORTRAN program prepared on a typical FORTRAN 
coding form. The lines with a C in column 1 are comments, Labels appear anywhere 
in columns 1-5. Their value does not imply any q.rdering of statements. It is 
simply an identification. The state~ents appear within columns 7-72. One of them 
has a continuation line. marked in column 6. 

This program computes the roots of a quadratic equation. according to the formula 

-b +Vb2 -4ac 
X= -

2a 

o First it reads in the three coefficients, in a free form, separated by commas (or on 
separate lines). If the discriminant is negative, indicating no real roots, a message, 
is printed to that effect. Otherwise the two roots are evaluated and printed. The 
program then waits for a signal from the computer operator to return to the beginning 
and read in another set of coefficients. 

This program is a main program. because it does not begin with a SUBROUTINE. 
FUNCTION, or TASK statement. Therefore, when executed, processing automatically 
begins at the first statement, which is the INPUT statement with the label 10. 

1.4 
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CHAPTER 2 

ELEMENTS OF EXPRESSIONS 

At the heart of the FORTRAN language is the computation of formulllR. This is 
done with the assignment statement I which computes a value and assigns it to a 
variable. For example I 

x = 4.5 + SIN (ALPHA) 

The value to be computed is represented, on the right side of the equal sign, by an 
expression. The elements of an expression are connected by various operators. 
described in the next chapter. These elements may be one of three things: a 
constant, a variable, or a function reference. In the above example. 4.5 is a 
constant. It is referenced by value and never changes. There are various types 
of constants, as described below. X and ALPHA are variables. They are like 
"unknowns" in a formula. Their value can change. either by being input or by 
being assigned a value, as with X above. SIN (ALPHA) is a function reference. calling 
the function SIN with the one argument ALPHA. 

NAMES 

Variables and functions are identified by name (as are subroutines and COMMON 
blocks. described in subsequent chapters). A FORTRAN name must begin with a 
letter and may contain letters and digits. A name may be of any length. but only the 
first six characters are significant. Names longer than six characters may be used 
to improve readability. but care must be taken that no two of them have the same first 
six characters. 

Examples: 

X A R234 NUMBER MASSACHUSETTS 

In the last case. only the first six characters. MASSAC are recognized. so a name 
such as MASS ACTION would be considered identical. Note that within names (as in 
most places in FORTRAN). blanks are ignored, so MASS ACTION is the same as 
MASSACTION. 

Computer Automation FORTRAN IV has no reserved names that are unavailable to the 
user. However. to avoid ambiguity we recommend that you avoid names that are the 
same as FORTRAN commands (e. g. READ. DO, IF) . 

2.1 
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DATA TYPES 

. , 

Computations in FORTRAN may be done in various modes. For each mode there is II 

corresponding data type. In some cases types may be intermixed and in some they may 
not. This is discussed in the next chapter. The most important distinction to keep in 
mind is that between integer and floating point arithmetic, 

Integer arithmetic deals only with integers (whole numbers) in a restricted range, 
and is used mainly for counting and subscripting, It is the fastest form of arithmetic. 
Floating point arithmetic handles the continuum of real numbers (including frRctional 
values) over a wide range. However. the values are binary approximations to 
decimal numbers, which mayor may not be exact. (There lire two degrees of preci
sion available, as described below,) Floating point computations are significantly 
slower than integer computations. 

Computer Automation FORTRAN IV includes these six data types, as described below: 

Integer 

Integer 
Real 
Double Precision 

Complex 
Logical 
Alphanumeric String 

Integer values must lie in the range -32768 to +32767; that is, -2 15 S n s +2 1b -1. 
(The value +32768 cannot be represented on a 16-bit 2' s complement machine. 
Therefore, be careful to use the negative value -32768 only when it stands alone, 
such as on the right of an equal sign.) Examples of integer constants are: 

1 27 -4197 o 30000 

Normally, variables and functions whose names begin with I, J, K, L, M, or N are of 
integer type. (This is called the IJKLMN rule.) It is possible, however, to explicitly 
declare certain names to have a different type (see chapter €). In the absence of such 
declarations, the following names would be integer: 

NAKED MINI LSI2 I J KISMET 

Integer constants may also be written in hexadecimal form or in Hollerith (alphanumeric) 
form. These are described below. 

Integer values occupy one word (16 bits) of machine storage.t 

t 
However, see Chapter 9 for the ANSI allocation option . 
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Real 

Real arithmetic is the single Rrecision form of floating point arithmetic. Real values 
must be in the range 1. 7 x 1038to 1. 47 x 10 - 39 • that is. 2127 to 2 -129, 

or be zero. They may be positive or negative within this range. They huve a precision 
of somewhat more than 7 significant digits, and they occupy two words (32 bits) of 
storage. 

Real constants may be written in any of several ways. To be recognized as floating 
point. they must have either a decimal point or an exponent included. An exponent 
is a power of ten by which the value is to be multiplied. It follows the numeric value 
and consists of the letter E and a signed or unsigned integer. For example: 

3874.73 
6.601E15 

12. 
9.E-7 

. 0099 

.37E 31 
O . 
93E+6 

In the case of 93E+6. this represents 93 x 106 • or 93.000.000. and could equally well 
be written as 93000000. or . 93E8. Note that the plus sign preceding the exponent o value is optional. and that the decimal point is not required if there is an exponent. 

o 

Real constants may be written with any number of digits. but only the first seven 
significant ones will be processed. It is permissible. however. to write real constants 
such as: 

123456000000.0 or .0000054321 

Unless declared otherwise, variables and functions whose names begin with anything 
other than I, J, K. L. M. or N are of real type. For example: 

ALPHA HEIGHT OHMS z SNEWO FROG 

Double Precision 

Double precision arithmetic is the same as real arithmetic. except that it carries about 
17 digits of precision. A double precision value must lie in the same range as a 
real value. It occupies four words (64 bits) of storage. 

A double precision constant must have a special exponent to identify it as double 
precision. This exponent is the same as for real except that a D is used instead of an 
E. Since the exponent is always present. a decimal point need not be. The following 
are double precision constants: 

2.718281828459046DO l.D 19 .3D-10 7148838830D-7 
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Note in the first case that an exponent of zero is used, since there must be an exponent. 
The mere presence of more than seven digits does not make R constant double precision. 
However, if a floating point constant appears in a double precision expression, it will 
automatically become a double precision constant, regardless of how many digits were 
written or whether a "D" exponent was used (see "Mixed Mode Expressions" in the 
next chapter). There is also an Automatic Double Precision option that will force all 
floating point constants into double precision (see below) 

. Since the IJKLMN rule classifies all names as either integer or real, a variable or 
'function can only be double precision if it is explicitly declared to be so ,t as 
described in chapter 6. In this case, it makes no difference what letter the name 
begins with, although "D" is mnemonically pleasing. 

Complex 

Complex numbers consist of a real and imaginary part, in that order. Each part is 
itself a single precision (real) value, with the precision and range of a real value. 
Complex quantities occupy four words (64 bits) of storage. The first two words are 
the real part, the second two are the imaginary part. 

Complex constants are written with the real and imaginary parts separated by a comma 
and enclosed in parentheses. For example, 

(3.37,2.0) 

represents the complex number 3. 37+2i, where i = "-1. Other complex constants: 

(.OOl,lE-7) (-4.,+7.5) (1. ,0. ) (0. ,1. ) 

Note that the latter two examples, although represented in complex form, have values 
that are purely real ane purely imaginary, respectively .. 

As with double precision, a variable or function can only be complex if its name is 
. explicitly declared so (except for a few library functions). "C il is often used as the 
first letter of such names. 

Logical 

This is the last of the unique types. The others are variations of one sort or another. 
Logical is a very special type that is not numeric at all. It is used for the testing of 

t Certain library functions, such as DSQRT, are automatically recognized to be double 
precision. See chapter 7. 

2.4 



I, 
r.i 
~i 
-~ 

il ',-
I::! 
'j 

o 

. . 
etttbttVRtttin I:W·,tht"S It t· 

COMPUTER AUTOMATION. INC. ~ 

conditions and has only the values "true" and "false". A logical quantity occupie~ 
one word (16 bits) of storage. However. only the first bit (the sign bit) is significant. 
It is 1 when the value is "true". 0 when it is "false". 

To a large extent. logical type is used mainly for testing th£: result of relational 
expressions that compare numeric values ~ For example. the statement 

IF (X+Y >3.5) STOP 

contains no variables or constants of logical type. but the relational expression 
(X+Y > 3.5) has a logical value of "true i, or "false". Howev~r. elements of logical type 
may be used. 

A logical constant may be either 

.TRUE. or .FALSE. 

. written exactly as shown with the periods at either end. Variables and functions are 
logical only if their names are explicitly declared so. Logical quantities are combined 
by means of a different set of operators than those used with numeric quantities. The 
following chapter will describe logical expressions. . 

Logical operations should not be confused with Boolean operations. in which a whole 
. string of l' sand 0' s are ANDed or ORed together (see below. l!nder "Boolean 
Operations") . 

HexadeCimal 

Integer constants may also be written in hexadecimal form. This is mainly useful 
where the value is not numeric but is a bit pattern of some sort. e. g. for testing or 
masking. or to represent an unusual alphanumeric charactel' that has no graphic o representation. A hexadecimal constant may be written in either of two forms: 

I 

.1 

where: x 
n 

:xxxx or nZxxxx 

is a hexadecimal digit. i. e. one of 0 1 2 3 4 5 6 7 8 9 ABC D E F 
is the number of digits. between one and four 

The : xxxx form is unique to Computer Automation and conforms with the representa
tion of hexadecimal constants in our other software. Note that no count of the digits 
is required. 

The nZxxxx form is used by some other FORTRAN systems, and is provided for 
consistency with those. -

2.5 
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A hexadecimal constant, since it is a form of integer constant, occupies one word 
(16 bits) of storage. Thus there may be from one to four hexndecimal digits. If ther(~ 
are fewer than four, they are right justified. For example, : A8 is the same as 3Z0A 8 

or : 00A8. 

Chapter 6 explains the use of hexadecimal constants in DATA Statements. which is a 
little different. There, such constants are not necessarily assumed to be integer nor 
restricted to four digits. 

Hollerith 

, , 

As with hexadecimal, Hollerith constants are usually a special form of integer constant. 
(There are two exceptions, described below.) Integer quantities are usually used for 
representing alphanumeric characters. since there is no "alphanumeric" type of data. 
A Hollerith constant occupies one word (16 bits) of storage, and therefore can hold two 
alphanumeric characters of 8 bits each. Longer strings of characters can be written. 
These are called alphanumeric strings, but cannot be used as elements of expressions. 
(See the following section.) 

A Hollerith constant is written: 

nHaa 

where: a is an alphanumeric character (see table C-l) 

n indicates the number of characters, and must be 1 or 2 

Note that the character blank is permissible in a Hollerith constant. -Therefore, this 
is one of the few places where blanks are significant and cannot be introduced just 
for readability. -

Note also that the alphanumeric character "0" is not the same as the binary value zero. 
so for example, 2HOO is not the same as : 0000. 

If a Hollerith constant has only one character, it is left-justified with a trailing blank. 
Examples of some Hollerith constants and their hexadecimal equivalents: 

2HXY = :D8D9 
IH$ = :A4AO 
2HOO = :BOBO 
IH = :AOAO 

The two places where a Hollerith constant is not treated as an integer constant are 
standing alone on the right side of an equal sign (see chapter 3) I and in a DATA 
statement (see chapter 6). In both of these cases, it is treated as an alphanumeric string. 
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Alphanumeric String 

An alphanumeric string may be written in either of two WHYS: 

where: 

nHs or 's' 

s is a string of alphanumeric characters, of length :s 255, 
n is the number of characters 

An alphanumeric string is not considered to have a data type and cannot be used in 
the ordinary way as an element of an expression, It is simply a string of characters, 

which occupies consecutive words in memory at two characters per word, It can 
be used in the following situations, all of which are described in later chapters: 

1. Standing alone on the right side of an equal sign (see chapter 3) 

2 . In a DATA statement (see chapter 6) 

3. As an argument to a subroutine or function (see chapter 7) 

4. In the list of an OUTPUT statement, 's' form only (see chapter 5) 

Within a string of the form's' , the quote character (') can be represented by two 
consecutive quotes, For example, the characters 'it's done' can be written 

"'IT"S DONE'" 

As with Hollerith constants. blanks are significant within alphanumeric strings. 

Examples: 

'MISCELLANEOUS CHARACTERS' 
, (A+B)/C: 
22HACCORDING TO HIS NEED 
5HAZAM! 
lH? 

Note that the last example could be used as either an alphanumeric string or a 
Hollerith constant. 

Boolean 

Boolean operations are those in which logical operations (AND, OR, etc.) are performed 
on a whole word full of l' sand 0' s. This is not a standard mode in FORTRAN, but can be 
accomplished using hexadecimal data to set up the bits and the Boolean functions 
(described in chapter 7) to perform the operations. I 
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AUTOMATIC DOUBLE PRECISION 

A compiler option is available to automatically convert all real (single precision) 
quantities and operations to double precision. so that constants, variables, and 
functions do not have to be changed in the source program in order to obtain more than 
7 digits accuracy. The ADP option is described in chapter 9. 

VARIABLES 

Variables are identified by name and can change value during the program. A 
variable always has one of the five types, integer, real, double precision. complex, 
or logical, and can' only assume values within the range specified for that data type. 
(Any type of variable may contain an alphanumeric string, though integer variables 
are recommended.) Unless declared otherwise by a type statement (see chapter 6) • 

a variable is integer if it begins with I, J, K, L, M, or N, and real otherwise. 

There are two kinds of variables, simple variables (also called scalar variables) 
and arrays. A simple variable is a single value and is referenced by its name, as 
illustrated in previous examples. E. g. N, ROOT, DHO, VOLUME, CAPACITY. 

Arrays 

An array is a set of values. It has a name and a type. just like a simple variable. 
Each value is identified by its position within the array. For example, the weights 
of ten items might be contained in an array called WEIGHT with ten positions. The 
first value would then be WEIGHT (1), the second WEIGHT (2), and so on to WEIGHT (10). 

An array may have more than one dimension. A matrix is a two-dimensional array, 
and its values are identified by two positions, the first within the column and the 
second within the row. For example, the temperatures at twelve points on a 3x4 grid 
could be assigned to a 3x4 array called T. Its elements would then be: 

T(1,I) 
T (2 ,I) 
T(3,1) 

T (1,2) 
T (2,2) 
T(3,2) 

T (1. 3) 

T (2 ,3) 
T(3,3) 

T(1.4) 
T (2,4) 
T(3,4) 

In Computer Automation FORTRAN IVan array may have any number of dimensions. 
Chapter 6 discusses the declaration of array dimensions, including lower and upper 
bounds and how arrays are stored in memory. . 

Array Elements 

An individual element of an array is called an array element. It is identified by the name 
of the array followed by subscripts enclosed in parentheses and separated by commas. 
There must be the same number of subscripts as the array has dimensions. 
Thus an array element looks like: 
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n is the numb~r of dimensions declared for the array 

In most cases where a simple variable can appear, such as on the left side of an 
equal sign, an array element is equivalent. 

Subscripts 

A subscript may be any integer expression. (Many FORTRANs restrict subscripts 
to a limited form of expression.) In particular. a subscript may itself be subscripted. 
This allows an entry in one array to identify the position of an entry in another array, 
and so on. Examples of array elements. with subscripts: 

A(3) MM(J) TEMP (3 ,l+K-2*LAST) 
COORD(! ,J ,K,L) THREAD (LIST (MM (J)-K)+2) LIMIT (-1) 

Negative or zero subscripting. as shown in the last example, requires special 
dimensioning with a lower bound less than 1 (see chapter 6) . 

FUNCTIONS 

Functions are subprograms that can be referenced as elements of an expression. A 
function acts on one or more quantities, called its arguments, and produces a single 
quantity, called the function value. For example, ATAN2 is the name of a library 
function that computes an arctangent. given the ordinate and abscissa. AT AN2 (Y • 1. 0) 
is a function reference representing a specific value. namely the arctangent of Y and 
1. O. 

A function reference. then I consists of the function name followed by the arguments o enclosed in parentheses: 

where: 

f (a 1 • a 2 • .•• • an) 

f is the name of the function 
n is the number of arguments 
a is an argument. 

Arguments may be constants, variables, expressions. or the names of arrays or 
subprograms (see chapter 7) • 

Except for certain library functions, the IJKLMN rule applies to the type of function 
names. For convenience. the double precision and complex library functions (e. g . 
DA T AN2) are automatically recognized as having a special type. The type of a function 
indicates the type of its resultant value. 
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In addition to library functions, the user can define his own functions, either in 
FORTRAN (with the FUNCTION statement or the statement function definition, described
in chapter 7) or in assembly language (as most library functions arc written). If 
they are to have a type other than integer or real, they will have to be explicitly 
declared in a type statement. 

Examples of function references: 

F(X) SQRT(7*A+BETA) DISTANCE (RATE ,TIME) 
MAX 0 (N+5 ,J **2,1000) F (F (X» 
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CHAPTER 3 

EXPRESSIONS AND ASSIGNMENTS 

There are three quite different kinds of expressions: arithmetic, relational, and 
logical. Each is made up of operands separated by operators. The operands may be 
constants, variables, or function references, or they may be sub~xpressions. 
A subexpression is an expression enclosed in parentheses. In some cases, an operator 
can be unary and act on only one operand, rather than separating two operands (for 
example, "_" to indicate a negative value) . 

ARITHMETIC EXPRESSIONS 

An arithmetic expression is made up of integer, real, double precision, and/or 
complex operands, combined by arithmetic operators, which are: 

Operator 

+ 

* 
/ 

** or 

Meaning 

Addition or Positive 
Subtraction or Negative 
Multiplication 
Division 

+ Exponentiation t 

Two operators may not appear in a row. To express Y*-3, you must write Y*(-3) 
or -3*Y. ** is not considered two operators, but one. 

Expressions can range from a single operand to long formulas of any complexity. 
Some examples: 

F(X) 
3.1417 
X+Y 
(A+B) * (A-B) 
RATE (J-1)+(GAMMA+1/RATE (J)-S. 72*(P+SQRT (R**2+T**2» )/OIST 

Evaluation Hierarchy 

Does the expression X+Y/Z mean (X+Y)/Z or X+(Y/Z)? In FORTRAN it means X+(Y/Z) 
and this is determined by the hierarchy of operators, which is: 

1. / ** (highest) 
2. * and / 
3. + and - (lowest) 

t Complex exponentiation is only permitted to an integer power. See "Mixed Mode 
Expressions" . 
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,I T - «U * *V) * W) 

Parentheses take precedence over all operators. Any sUbexpressions enclosed in 
:1' parentheses are evaluated first and then treated as single operands. 
::1 

~I Successive operators of the same precedence are evaluated left to right. so that 
i J /K/M*L means «J /K) /M) *L. This includes **. the exponentiation operator. For 

,;1 example. 
1;'1 
~. ! 

2 ** 3 ** 2 

is interpreted as 

(2 ** 3) ** 2 

which is the same as 

2 ** (3 * 2) 

and has the value 64. whereas 

2 ** (3 ** 2) 

would have the value 512. This is not consistent among FORTRANs. so we recommend 
the use of parentheses to show exactly what you mean. 

Note that when the results are equivalent. the compiler may reorder operations to obtain 
more efficient object code. For example. E+F+G/H might be evaluated as G/H+E+F. To 

-preserve desired groupings. use parentheses. 

Mixed Mode Expressions 

The type of an expression depends on the type of the operands in it. If it contains 
only operands of one type. then it has that type. If it contains operands of more than 
one type. it is called a mixed mode expression. Most mixed expressions are allowed. 
but some are not. Some are allowed but not recommended. because of the varying 
ways in which other FORTRANs treat them. 
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There is a precedence of types that determines the type of a mixed mode expression. 
It is: 

1. Complex (highest) 

2. Double precision 

3. Real 

4. Integer (l°iest~ 
I • 

With one exception, the type of an expressIon if the same as the highest type appenring 
in it. The exception is that function argument~ are independent of the expression in 
which the function reference appears. Th~y have no effect on the mode of the outer 
expression. 

Within a mixed mode expression, each operation is done in the higher mode of its two 
operands. In general this means that the lower type operand is converted to the higher 
type before being used. (In integer exponentiation, however, this is not necessary. 
See below.) The order in which the operands are selected depends on the precedence 
of the operators connecting them. (The order of evaluation is not affected by the 
precedence of the ~ of the operands.) Higher precedence operations ar~' always 
done first. For example, in: 

x + J/K 

the division is done first, in integer, with the fractional part truncated. Thpn the 
~esult is converted to real and added to X. The same would be true if the expression 
had been written: 

J/K + X 

When there is a succession of operands connected by operators of equal precedence, 
they are grouped from the left, regardless of type. For example, in: 

J+K+X 

J is added to K in integer, then this is floated and added to X. All these operations 
can be done "on the fly", without having to store intermediate results in temps. On 
the other hand, if the expression had been written: 

X+J+K 

3.3 
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the .J would be floated and added to X, and this result would be stored away so thAt K 
could be floated and then added to it. This can affect not only the speed but the results. 
so keep it in mind when writing mixed mode expressions. U sunBy it is a ~ood idea to 
start with the lowest type operands·~n the left Ilnd proceed to the highest type on the 
right. 

Parentheses have the highest precedence and can be used to control the modes in which 
operations get done. For example: 

X + (J+K) 

causes the J +K to be done in integer. 

U suaUy each mixed mode operation requires the lower type operand to be converted 
first. Exponentiation to an integer power is an exception. For ex~mple: 

X ** K 

is done by repeated mUltiplication of X by itself K times, rather than by using 
logarithm and exponential, which would be required by: 

X ** FLOAT (K) 

The ordinary numeric types, integer, real, and double precision, may be mixed in 
any way, using all of the operators. Complex quantities may be mixed with the other 
three when using add, subract, multiply, or divide, but the only complex 
exp~nentiation allowed is complex to an integer power. Assuming CPX is complex: 

i 

3*CPX**(J+K) 

CPX**2. () I 
A**(1.0,l.()) 
CPX**CPX 

is legnl 

are not legal 

The latter is the only case where two operands of the same type may not be combined. 

Logical quantities may not appear as operands in arithmetic expressions, since they 
have no numeric value. 

Here are some guidelines about using mixed mode expressions: 

1 . Integer operations are the fastest, so to take advantage of this, all 
operands in an expression should be integer. 

2. For maximum efficiency w hen operands are of various types, group the 
lower types together, either left to right or with parentheses. For 
example: 
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33*N/X*CPX 

is more efficient than: 

CPX*33*N/X 

On the other hand I if 33*N is liable to overflow maximum integer si~e, 
it may be preferable to sacrifice s~eed and do the multiplication in 
floating point by writing: 

N/X*33*CPX 

3. Constants that need to be converted to a higher type will be converted 
at compile time I rather than during execution. For example: 

4. 

5. 

6. 

3/X+l0 is interpreted as 3.0/X+l0. 

This also means that constants that need to be double precision will 
automatically be double precision I even though they do not have a D 
exponent. For example, if DP is double precision: 

.3 + DP is equivalent to .3DO+DP 

and the .3 will have the full 16 digits of accuracy. 

When variables or function references of a lower type are used, they 
will have to be converted during execution, at some cost in space and 
time. 

If complex and double precision quantities are mixed. the double 
precision ones will be converted to complex. thus losing their extra 
precision. 

Be aware that other FORTRAN systems may handle mixed mode arithmetic 
differently. particularly in cases such as: 

J/K + X 

Other FORTRANs may do all operations in the highest type in the whole 
expression. rather than in the higher type of their two operands . Thus 
in the above case the division would be done in real mode. not integer. 
We think it best to avoid situations of this sort. 
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Arithmetic Overflow 

Chapter 2 discussed the runges of values for numeric quantities. If fi value exceeds 
the proper range, one of the following actions is taken, depending on the type and the 
context: 

1. In source pl'ogrums, cOnstuntH thnt urc too lllr~c or too Hlllall al'(~ 
diugnosed fiS errors during compilation. 

2. Input values read in at run time are also diagnosed if out of range. 

3. 

4. 

Integer overflow resulting from calculu~ions [It run time is ignored. 
The computer automatically returns thellower 16 bits. Therefore, 
if you use large integer values. test th~m where necessary to avoid 

I overflow. ! 

Floating overflow at run time, either from arithmetic op(~rntions (add. 
multiply. etc.) or from mathematical functions (e. V.. exponential). 
produces 11 diagnostic. In addition. the mllximum possible value 
(of the appropriate sign) is substituteci. lind execution continues. 

5. Floating underflow at run time (magnitude too small) results in Ii 

zero value and no error message. 

RELATIONAL EXPRESSIONS 

A relational expression compares two arithmetic expressions and produces a 
logical result. i. e. true or false. according to whether the values have the rela
tionship specified. The relational operators are: 

i 

Operator Meaning 

.LT. or < Less than 

.GT. or > 

.LE. 

.GE. 

.EQ. 

.NE. 

Grenter than 
Less than or equlli 
Greater than or equal 
Equal 
Not equal 

The relational expression has the form: 

e 1 r e 2 

where: eland e 2 

r 
are integer. real, double precision, or complex expressions 
is one of the relational operators shown above 
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For example: 

J .EQ. KEY 
RADIUS**2 ::-- 1 
X+Y .LE. X*y 
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In the first example, if J equals KEY the relational expression is true. otherwise it 
is false. 

If the two arithmetic expressions have different tvpes, each one is evaluated in its 
own type and then the one with the lower type is iconverted to the higher type for 
the comparison. If the value is a constant, the c<jmversion is done at compile time; 
otherwise it must be done at run time. Thus: I 

23 .GT. X is equivalent to 23. .GT. X 

while 
I/J .GE. SQRT(G) 

causes the division to be performed in integer and the result converted to real in 
order to compare with SQRT (G). 

A complex value may only be compared for equal or not equal, since the others 
are not meaningful. It may be compared with a non-complex value, in which case, 
the latter acquires an imaginary part of zero. 

Be careful about comparing floating point values for equality. Most values are binary 
approximations, so during computations inaccuracy will creep into the low order 
b~ts. This will make values that are essentially equal appear unequal. We can 
guarantee. however, that constants that have an exact binary representation w ill be 
etactly translated. 

It is not permissible to concatenate relational operations, such as in 
(A . LT. B . LT. C). 

Relational expressions are a subset of logical expressions. They most often appear 
in logical IF statements, such as 

IF (N < 0) GO TO 5 

as described in the next chapter. 

LOGICAL EXPRESSIONS 

Logical expressions are made up of logical operands and the three logical operators: 
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Operator 

.AND. 

.OR. 

. NOT. 
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Meaning 

True if both opcrnndsllre true 
True if either or both operands arc true 
True if single operand is false, false if operand is true . 

The first two are binary operators ,-while the third is n unary operator. 

Each element of a logical expression has the value true or false, and ench logical 
operation produces one of those values. An element of H logical expression may be: 

1. 
2. 
3. 
4. 
5. 

A relational expression 
A logical variable or function referenc~ 
A logical constant . i 
Another logical expression enclosed in :parentheses 
Any of the above, preceded by . NOT .. 

Logical expressions most often contain relational expressions and are used in logical 
IF statements, such as the one shown in the preGeding section. A more complicated 
one, using some logical operators, would be: 

IF (A> B .AND. (J .EQ. KEY .OR. J .EQ. NEWKEY)) GO TO 23 

This logical expression has the value true if A is greater than B and .J equals either 
KEY or NEWKEY. This double test on J cannot. be performed by writing: 

J .EQ. (KEY .OR. NEWKEY) 

becBl.-lse, first of all, KEY and NEW KEY are not logical values and so cannot be 
cotm~eted by .OR. , and secondly, if they were logical values the sUbexpression 
(KEY! .OR. NEWKEY) would have a logical value, not the integer value required 
by the . EQ. operator. 

The only time two logical operators may appear next to each other is w hen the second 
is . NOT.. For example, assuming L is a logical variable: 

N .EQ. 3 .AND .. NOT. L 

Although less common than their use in IF statements, logical expressions may also 
have their values assigned to logical variables (with the assignment statement, 
described below), and these variables, as well as the constants . TRUE. and 
. FALSE., may then be used in logical e:xpressions. 
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Evaluation Hierarchy 

As with arithmetic expressions t there is a hierarchy that determines in which order 
logical operations will be performed. For example. the expression 

.NOT. L1 .OR. L2--:AND. L3 

might be interpreted as: 

.NOT. (L1 .OR. (L2 .AND. L3» I 

or: (,NOT. (L1 .OR. L2» .AND. L3 

or various other ways. Actually it means 

(.NOT. Ll) .OR. (L2 .AND. L3) 

because the precedence of logical operators is: 

1. 
2. 
3. 

.NOT. 

.AND. 

.OR. 

(highest) 

(lowest) 

Parentheses may of course be used to define how operands are to be grouped. Also. 
logical expressions may contain relational expressions t which are evaluated first. 

The relational expressions may contain arithmetic expressions which. in turn. 
must be evaluated first. Thus the overall hierarchy of all operations can be 
expressed as: 

1. Parenthesized arithmetic subexpressions. from innermost out. 
2. ** 
3. * and / 
4. + and -

The relational operators. 5. 
6. 
7. 

Parenthesized logical subexpressions. from innermost out. 
.NOT. 

8. .AND. 
9. .OR. 

Let us apply this hierarchy to an example containing all of the above operations. 
Here L, P, Q, and R are logical: 

L.OR .. NOT.P .AND. (Q.OR .R) .OR .A>B+C/D**(E-F) 

At the final step t this is the OR of three operands. as shown below: 

L .OR. «.NOT.P).AND.(Q.OR.R» .OR. (A>(B+(C/(D**(E-F»») 
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ASSIGNMENT STATEMENT 

The Ilssignment statement is the most importont stntcmcnt in FORTRAN. It sppeifit'S 
most of thc computations that are to be pcrformed by 11 pl'ogr'nJll. It is writt('t1: 

where: 

v=c 

v is a variable (simple or subseJ'ipted) 
e is an exprcssion 

, 

This computes the value of e and assigns it to v. It h not exactly an equntion, 
since it does not declare that v is equal to e; it .setsl v equal to e. Thus a statement 

- !~ 

, I 
such as: 

K = K - 3 

is not a contradiction; it simply decreases the Gurrent value of K by 3. 

Some examples: 

x=y 
N = 3*MAX 0 O,J) 
MM(I) = Ml\HI-l) + K*2 
FLAG = . TRUE. 
TIME (LIME) = GOODOLD*GONEBY 

E = M * C**2 

Usually the expression has the same type as the variable. If it does not, then it is 
computed independently of the variable (i. e. in its own mode) and converted to the 
variable's type before assigning. This is called a mixed mode assignment and, as 
with ;mixed mode expressions, some cases are allowed and others are not. In 
particular, a logical expression can be assigned only to a logical variable. A 
com~lex value cannot be assigned to a lower numeric type (such as real) , because 
this tnvol ves the loss of its imaginary part and, since this might happen inadvertently. 
n warning diagnostic is more useful here. There is a library function provided for 
doing complex to real conversions. 

If the entire expression on the right of an equal sign consists of a single constant 
(of a different type), then the constant will be converted at compile time. Otherwise 
the conversion must be done at run time. For example: 

x=o is equivalent to x = 0.0 

A special case is made for alphanumeric string constants that appear alone to the 
right of an equal sign. These are considered to have no type and are simply stored 
into the variable regardless of its type. The string constant must not be longer than 
can be contained in the variable. Since character strings have two characters per 
word, this means the maximum size is two characters for integer and logical variables, 
four characters for real, and eight for double precision and complex. If the string is 
shorter than the maximum length, it is stored beginning at the left (first word, first 
byte) of the variable, and the rest of the variable is filled out with blanks. 
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We recommend integer variables (or arrays) for working with alphanumeric chnracters! 
for several reasons: 

1. It is hard to work with the individual words of a multi -word flouting 
point variable. 

2. The arithmetic operations. such as addition and multiplication. are not 
meaningful in floating point. since part of the word is a mantissa and 
part an expone~t. 

3. The Boolean functions. which can bJ u~ed for masking out certain 
characters. operate only on integer ~uantities. 

Note that in this situation. a Hollerith constant is' consideted a string constant, so 
the statement: 

x = 2HAB 

is quite different from the two statements: 

J = 2HAB 
X=J 

since in the second case J will be converted to floating point. destroying any 
resemblance to alphanumeric characters. 

T~ble 3-1 shows the permissible mixtures of type in an assignment statement. 
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Tuble 3-1 Perrr.issible tyP(~S in mixed assignments 
-

'~'-~~ Expression Type 

Variable 
Type 

integer real double <j!omplex logical string 
I 

precision 
! 

! , 
integer D T T I ---

I 
--- D 

real F D P --- --- D 

double , 

precision F P D --- --- D 
~-

complex F,R R P,R D - -- D 

logiclli -. -- --- -- --- D D 

, 
Abbreviations: 

D Direct assignment, no conversion. 
F The integer is converted to floating point of the appropriate 

precision. 
T The flouting point vulue is truncated to integer. Any fractional 

part is thrown away. which always results in a truncation 
towards zero. In other words, 33.6 is truncated to 33. and 
-98.999 is truncated to -98. not to -99. If the floating point 
value is too large to be expressed in integer. then it is truncated 
at the left end as well, with meaningless results. As in other 
cases of Integ'er overflow. no error diagnostic is generated. 

P Increase or decrease the precision. Conversion from double 
precision to real is not rounded, but truncated. 

R The value of the expression becomes the real part; the imaginary 
part is zero. 

---~ 
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CHAPTER 4 

CONTROL STATEMENTS 

FORTRAN statements are nerma:nyexecuted in the order written, one lifter another. 
Control statements nre used to change this order by transferring control to some 
point other than the following statement. 

STA TEMENT LABELS ' 
i 

Statement labels (also called statement numtiers~ are used to identify statements so that 
control can be transferred to them from elsewhete. A label is a decimal integer of up 
to five digits (i. e. from 1 to 99999). As shown In chapter 1, the label appears in the 
first five columns of the source line, which:is called the label field, As with integer 
constants, blanks and leading zeros are ignored. 

Although a statement label is a number, its value has no significance and implies no 
ordering. It is simply an identifying label. Two statements may not have the same label. 

Most of the control statements reference labels to identify a transfer point. READ and 
WRITE statements ulso reference the labels of FORMAT statements, although this doc~ not 
involve any actual transfer. 

GO TO STATEMENTS 

9nconditional GO TO Statement 
I 

~he GO TO statement transfers control to another statement. It has the form: 

where: 

For example: 

GO TO k 

k is a statement label 

GO TO 51 
17 N = -N 
51 OUTPUT N 

The statement labeled 17 would be skipped. 
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computed GO TO Statement 

The computed GO TO tl'nnsfcrs control to one of severnl plnces depcndinR' 011 tlw 
value of n variable, It is written: 

GO TO (k 1 • k 2 • . ..• -k~ ). v 

where: k· I is a statement label 
v is a simple (unsubscripted) integer variable whose value is 

between 1 and n. 

i 

The comma before v is optional and may be omitted. ! 

If the value of v is j. then the GO TO transfers to laJel k j 
greater than n. this is diagnosed as an error at run time. 

Example: 

GO TO (14,3,999,80), KEY 

If jis less than 1 or 

If KEY=1, the tranSfer is to statement number 14, if KEY=2 to statement number 3. and 
so on. 

Assigned GO TO Statement 

The assigned GO TO also enables transfer to various labels. but without having to know 
what those labels mny be. Instead of specifying any statement numbers. this statement 
specifies n variable. which is expected to contain the location of some stntement label. 

I 

ElseWjherc in the program. an ASSIGN statement (see below) is used to assign the 
desir¢d label to the variable. The assigned GO TO has the form: 

I . 

I 

where: 

GO TO v 

v is a simple integer variable that has previously been assigned a label 
using the ASSIGN statement. 

This feature can be used to make subroutines out of sections of the program. rather 
than making each section a separate program and using CALL and RETURN (which are 
described below). A section could end with the statement 

GO TO JUMP BACK 

Before transferring to this section, then, the desired return point would be assigned 
to the variable JUMP BACK. 

4.2 



f· 

COMPUTER AUTOMATION. INC. ~ 

Other FORTRANs, including the ANSI standord. require that 011 of the possible 
destination labels be listed in the assigned GO TO stntement, as shown below. 

'- . Computer Automation FORTRAN IV accepts this form. but does not require it. Example: 

GO TO M. (23.9.2) 

Here 23. 9. and 2 are the only labels that may legally have been assigned to M. The 
comma following the variable is optional. While a diagnostic will be generated at 
compile time if an illegal label is specified. no testing will be performed on the value 
assigned to M at run-time. I 

ASSIGN STATEMENT 
-- -j 

The ASSIGN statement is used to assign a statement label to a variable. and has the o form: 

o 

ASSIGN k TO v 

where: k is a statement label 
v is a simple integer variable 

For example. the "subroutine" described in the previous section ended with an 
assigned GO TO via the variable JUMP BACK. Before transferring there. you would 
use an ASSIGN. such as: 

ASSIGN 47 TO JUMP BACK 

Tfhe assigned GO TO would then transfer to statement label 47. 
I 

The label that is assigned must lie in the same program as the assigned GO TO. It is 
not permissible. for example. to assign a variable in one program. allocate the 
variable in COMMON storage. and then transfer to it from another program. 

Also keep in mind that assigning a label is quite different from assigning a value 
with an assignment statement. The statement 

NUEVE = 9 

is not equivalent to 

ASSIGN 9 TO NUEVE 

since the 9 in the former case is not a label but a value. Attempting an assigned GO TO 
on such a variable would be meaningless and disastrous. 
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Conversely, it is also not meaningful to do arithmetic on H vuriable that hus been 
assigned by an ASSIGN statement. For example, the stnh?mcnts: 

ASSIGN 8691 TO NMR 
NMR = NMR + 4 

would cause the value of NMR to be unpredictable. 

IF STATEMENTS 

Logical IF Statement 

The logical IF statement tests the truth of a logic;al expression to determine whether 
or not to execute another statement. If that other statement is a GO TO, this acts as 
a conditional transfer. The logical IF is written: 

IF (e) s 

where: e is a logical expression. 
s is any executable statement other than n DO or another logical IF . 

If e is true, the statement s is executed; otherwise it is skipped. In either case, 
the next statement executed is the one following the IF, unless statement s causes 
a transfer elsewhere. Often the expression e is a relational expression or several 
relational expressions combined by .AND. and . OR.. Logical variables, constants. 
and f~nction references may appear too. 

I 
Examres: 

IF (A:--B) OUTPUT 'A TOO LARGE: ' ,A 

If A is greater than B (i. e. the relationnl expression A' B is true), the program 
outputs a message and the value of A; otherwise it does not. In the following example, 
ERROR is a logical variable: 

IF (ERROR .OR. N .EQ. 10) GO TO 31 

If ERROR was previously set true or if N equals 10, the GO TO statement is executed 
and control does not fall through to the succeeding statement. 

A logical IF cannot control more than one statement. To achieve this effect, you have 
to reverse the test and jump around the several statements. as shown here: 
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Arithmetic IF Statement 

An arithmetic IF statement always transfers control to one of three labels, depending on 
whether the value of an arithmetic expression i~ negative, zero, or positive. It has 
the form: I 

where: 

IF (e) k k k neg' zero' pos 
. I 

e 
kneg 
k zero 
kpos 

is an integer, real, or'double precision expression. 
is the statement label transferred to if e is negative. 
is the label transferred to if e is zero. 
is the label transferred to if e is positive. 

For example: 

IF (N) 99,2,7 
IF (SIN (THETA) *VEL) 1000,2000,3000 
IF (ALPHA) 6,10,6 

In the last case, the negative and positive labels are the same, so this statement is 
equivalent to: 

IF (ALPHA .EQ. 0) GO TO 10 
GO TO 6 

1.'here are several points to keep in mind when deciding whether to use an arithmetic 
IF or a logical IF. The arithmetic IF provides a three-way test. However, if only a 
two-way test is needed, the logical IF is probably more readable. If you need to 
compare two integer quantities, there is another consideration . ' You could write: 

or: 

IF (J<K) GO TO 5 

IF (J-K) 5,6,6 
6 next statement 
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In the lotter CRse. however. if J is very large positiVI"' and K is very lllr~(' negotive. 
the difference (J-K) may be too large to represent ond will overflow lind ellUHe on 
incorrect test. The relational operator ( < ) Illways gives the correct nnSWt')'. but 
generates slightly more object code, 

The section on relational expression-s· in the previous chapter caution(~d against 
testing for equality of floating point values. The same thing Applies to the zero test 
in an arithmetic IF statement. especially if the expression involves 11 subtraction. 

! 
DO STATEMENT 

I 
The DO statement is used to control repetitive e'xecJtion of a group of statements. 
For example. if you wanted to set to zero all elemenb of an array of size 50. you couJd 
write: 

J = 1 
4 A(J) =- 0 

J ::: J + 1 
IF (J . LE. 50) GO TO 4 

The same thing can be done in two statements using DO: 

DO 2 .J = 1 • 50 
2 A (J) = 0 

This says. "Do the following statements, up to and including statement number 2, 
first with J equal to 1, then with J equal to 2, then 3, and so on up to J=-50". 

The general form of the DO statement is either of the following: 
I 
I DO k v=-m 1 , m2 

DO k v=m"m2,m 3 

where: k is the label of the statement that is to end the loop. 
v is a simple integer variable. 
m" m 2' and m3 are the DO parameters and must each be either a 

simple integer variable or an integer constant (signed or unsigned) . 

A comma may optionally be used to separate k and v. 

This statement causes the following actions: 
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Set the vllrinble v equnl to In l' V is culled the ))0 control vurinble 
or the 00 index. m1 is culled the tnitiul value. 

Execute the statements following the DO. up to and including tho atntcrncnt 
with label k. The.~~._statements constitute the range of n DO loop 
(see also below) . ' 

Increment v by m3 . m3 is called the increment and must be greater 
than zero. If it is not specified. iti automatically has the value 1. 

Test whether v is now greater tha~ m2 • which is called the limit. . 
If it is. the DO loop is finished. Proceed to the statement following; 

, I 

statement k. If v is still less than pr equal to m2 • go bl1ck to the 
statement immediately following the DO statement and execute the 
loop again. . 

You can see that a DO loop will always be executed at least once. even though the 
initial value is greater than the limit. For example, the DO loop: 

DO 44 NR = 10,5 

will be executed exactly once. It is a good idea to avoid writing DO statements like 
this because some FORTRANs choose to execute intitially satisfied loops no times 
instead of one time. . 

DO loops are not allowed to run downwards instead of upwards; that is, the increment, 
m3 ' may not be negative. 

~ote that it is not necessary for the control variable to hit the limit exactly. It can 
jlump over the limit and the loop will terminate as soon as it does so. For example, 
tlhe loop: 
! 

DO 3, NAMA = -20.0, 6 

will execute four times. with NAMA equal to -20, -14, -8, and --2. When NAMA 
reaches +4, the loop will not be executed again. 

In order to produce more efficient object code, there is one restriction on the para
meters of a DO. In step 4 above, the control variable is compared with the limit 
using a subtract operation, which means that they must not differ by more than 
32767. To put it another way: 
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DO Loop Ranges 

The stutements executed ns part of a no loop (up to and including the termillal 
statement) nre called the range of the DO loop. There ar(~ Rome ruleH l'nglll'ding 
what you may and may not do withil'!_.!..h.:is range. 

The terminal stutement (the one with label k) may be any executable statement exceptl 

GO TO (of any form) 
Arithmetic IF 
DO 
RETURN 
STOP 

If the terminal statement were a transfer, then control could never reach the loop 
testing code. If it were a DO, then two loops wduld be incorrectly nested (see below) . 
However, u DO loop may end on a logical IF, even when it contains any of the above 
(except 00). because then there is a way to reach the loop testing code. 

If it works out that the last statement in a DO loop needs to be a transfer that is not 
allowed, there is a dummy statement called CONTINUE that can be used .instead as 
the actual termination. For example: 

Instead of You can write 

~O 5 I = O,N DO 5 I = O,N . 
5 IF (VECT (I)) 4, 6 ,6 IF (VECT (I» 4,5,5 

5 CONTINUE 
j 

l'his provides an avenue for control to get to the loop testing code. The same thing 
could be accomplished by writing: 

DO 5 I = O,N . . 
5 IF (VECT(1)<O) GO TO 4 

Within the range of a DO loop, you must not alter the value of the control variable 
(v) or any of the parameters (m 1 • m 2 ,m 3)' The DO statement needs to have complete 
control over these; otherwise unpredictable actions may occur. On the other hand, 
it is perfectly acceptable to use these values, as long as they are not changed. The 
DO control variable is particularly useful, either as a subscript (to step through various 
elements of an array) or as a counter. For example, you could set each element of a one 
hundred position array equal to the value of its position using the following loop: 

DO 13 I = 1 , 100 
13 MM (1) = I 
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It is also not permissible to jump into the range of a DO loop. The DO statement does 
some special set-up for the loop that cannot be skipped over. On the other hnnd. it is 
permissible to jump out of a DO loop before it has completed. For example. if n Hp(~ci/ll 
situation occurs during a DO loop that makes it unnecessnry to do the rest of the loop. 
you can transfer out instead of falling through the bottom of the loop. In this CHRO. 

the DO control variable will have-"the proper value, namely the one it had at tho time 
the transfer was made. This is not true on normal completion of a DO loop. If the 
loop terminates normally. the value of the control variable becomes undefined and 
should not be depended on. For example. in th~ loop: 

DO 4 N=1.10 · 
· IF. (A(N)< 0) GO TO 20 

· 4 A(N) =A(N) + MAX/3 

10 OUTPUT N · · 20 OUTPUT N 

the value of N at statement 20 would be somewhere between 1 and 10. The value of 
N at statement 10 is unpredictable. 

There is one exception to the rule that you cannot jump into a DO loop. If you first 
jump out. and you make no changes to the DO index or parameters. you can jump back 
in again and continue on with the loop. The part outside the loop is called the 
extended range of the loop and is allowed by ANSI standard FORTRAN, but we do not 
particularly recommend it. In most cases, the extended range can as easily be 
included within the loop instead of outside. This is usually less confusing and may 
produce more efficient object code. 

I:t is permissible (and useful) for one DO Loop to lie within the range of another. These , 
are called nested loops. Nesting may extend to any level (like a group of smaller and 
smaller boxes each inside the previous one) as long as each loop lies entirely within 
the next outer one. That is. the ranges may not overlap. The following loops are 
illegally nested: 

DO 1 DO~ DO 5 
DO 2 3 DO 4 DO 6 

1 CONTINUE 4 CONTINUE DO 7 
2 CONTINUE 6 CONTINUE 

7 CONTINUE 
5 CONTINUE 

In the third example, loops 6 and 7 correctly lie within loop 5. but loop 7 does not 
lie within loop 6. 

The following loops are correctly nested: 
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DO 1 
D02-~ 

2 CO N..!.lli.!lliJ 
1 CONTINUE 

no 4 
no 5.-----

D06~ 
G C () N'!:.lli!!1.LJ 

5 CONT=I=N=U=I'==~ =~ 
DO 4 I 

4 CONT:::I::::N=U::::E====--l 
The second and third examples illustrate that two or more nested loops may terminate 
on the same statement. When that happens, the compiler generates the various sets 
of loop testing code in the proper order (inversely t? the order that the DOs appeared) . 

I 

The rules about jumping into and out of DO loopran~es 'apply in the same way when t,he 
loops are nested. You cannot jump from an outer loop into an inner loop. If more thnn 
one loop ends on the same statement, only the i~ner bne can jump to that statement. 

I 

The following example shows nested DOs used to multiply a 3x8 matrix -(A) by an 
8x5 matrix (B), producing a 3x5 matrix (C). (The DIMENSION statement will be 
described in chapter 6.) 

DIMENSION A(3,8) , B(8,5) , C(3,5) 
DO 2 J = 1 , ;) 
DO 2 I = 1 , 3 
C (I,J) = 0 
DO 2 K = 1 , 8 

2 C(I,J) = C(I,J) + A(I,K) * B(K,.J) 

CONTINUE STATEMENT 
-- I 

This ~s a "do nothing" statement that only serves as a place to put a statement label for 
the termination of a DO, when the DO would 'otherwise end on a transfer. The statement 
is written: 

CONTINUE 

The discussion of DO ranges in the previous section contains an example of the use of 
CONTINUE. 
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CALL STATEMENT 

This statement transfers control to a subroutine. The subroutine is a separate 
program that may either be written in FORTRAN (see the SUBROUTINE statemont 
in chapter 7) or in assembly language. The CALL mayor may not pass arguments 
to the subroutine, depending on the form used: 

or: 

where: 

CALL sub 

CALL sub (a, , a2' ... , an) 

sub 
a. 

I 

I 
I 

is the name of the subroutine. . . 

is an argument, which may be a constant, variable, expression, 
or the name of an array or another subprogram. Arguments 
are discussed in greater :detail in chapter 7. 

I 

A subroutine differs from a function in two ways. First, it may be called with no 
arguments, while a function may not. Second, it does not return a value through 
its name and so may not be used in an expression. In fact, a subroutine has no 
data type associated with it. It is simply the name of a block of instructions to be 
executed. 

A subroutine can return values in a sense by storing them in its arguments. 
Arguments to a subroutine may be either input arguments or output arguments (or 
both), depending on what the subroutine does with them. For example, a subroutine 
to, compute the roots of a quadratic equation might be called with: 

I 
i 
I 
I 
! 

CALL QUAD(A,B,C,Rl,R2) 

w~1ere A. B, and C are set up before the CALL. The subroutine, QUAD. uses these 
arguments to compute Rl and R2. and the calling program can then use Rl and R2. 
Arguments should be modified in this way only if they are variables or arrays. An 
example of an argument used for both input and output might be: 

CALL ROUND (X,4) 

which could round X to four digits and store the new value back into X. 
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Examples of CALL statements: 

CALL AVERAGE (X-Y ,A (I) *"'2 ,13. 7) 
CALL ERROR 
CALL OUTPUT (ALPHA , N, GE ,0) 
CALL IIOME (GR4- 6633, 'I PI MOD E') 

The last example shows the use of a long alphanumqric string as an argument. This 
is described further in chapter 7 , I 

RETURN STATEMENT , 

i 
CALL is used to transfer to a subroutine. RETURN is used to get back. It can "get 
back" from either a subroutine or a function written in FORTRAN. When it returns 
from a subroutine to a CALL, it goes to the statement immediately following the CALL. 
When it returns from a function to a function reference, it goes back to the point of 
reference in an expression and supplies the function value', so that the rest of the 
expression can be evaluated. RETURN is written as simply: 

RETURN 

In any FORTRAN subprogram (SUBROUTINE or FUNCTION), a RETURN statement 
must be the last statement executed, It does not have to be physically the last 
statement in the program. There may be several RETURNs in a program, each 
having the same effect. 

, 
i 

PAUSE STATEMENT 
j 

PAU~E is used to temporarily suspend execution. usually to allow the computer 
operator to perform some specified action (such as mounting a tape or deciding 
whether to continue). The operator can then signal the program to continue execution. 
beginning with the statement immediately after the PAUSE. 

A PAUSE statement types out "PAUSE" to the computer operator and will also display 
a number to him: 

where: 

PAUSE 
PAUSE n 

(equivalent to PAUSE 0) 

n is an unsigned decimal integer. 

PAUSE may not be a meaningful operation in a real time environment. especially if 
there is no computer operator and/or no display device. 
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STOP STATEMENT 

STOP is written in the same two formats as PAUSE. namely: 

STOP 
STOP n 

(equiv...alent to STOP 0) 

where: n is an unsigned decimal integer. 

I 

STOP terminates execution of a program and cau:ses control to be returned to OS or RTX. 
It is usually the last statement executed in a maih program. If it appears in a subprogram 
control is not returned to the calling program. jrhe integer value will be output (if 

possible) before termination. . 

END STATEMENT 

END must be the physically last statement in each program. It is not an executable 
statement (such as STOP), but simply terminates compilation. However, if no 
STOP or RETURN has been encountered, END will have the same effect as STOP in 
a main program or RETURN in a subprogram. An END may be labeled. 

The END statement introduces one restriction on the use of continuation lines. 
Ordinarily statements may be broken at any point and continued on the next line. 
However. once the compiler has found "END". it will not read another line to look 
for continuation. Thus the statement: 

END = 1.0 

I 
Will properly be recognized as an assignrnent statement, while: 

will not. 

END 
2 = 1.0 
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CHAPTER 5 

INPUT /OUTPUT 

INPUT /OUTPUT LISTS 

There are several forms of input/output statements. All of them make usc of an 
input/output list to specify the items to be proc~ssed. In an output statement these 
items have their values output. while in an inp~t statement these items have new 
values read into them. ' I ' 

I 
Simple Lists 

A simple list is composed of scalar variable~. array elements. and array names. 
separated by commas. Parentheses may als.o be used to enclose groups of items 
if you desire; this has no effect. (On DO-implied lists, below. parentheses are 
mandatory.) The OUTPUT statement. described in the ,next section. also permits 
constants to appear in the list. ' 

Examples of input/output lists: 

X 
J. MAX. MATRIX (3, 1..2) 
ALPHA, B (J) • MATRIX • (RATE. TIME) 
Z(1). Z(2), Z(3) 

\1lhen an unsubscripted array name appears. it represents all of the elements in the 
~rrny, one after another. The elements are taken in the same order that they are 
stored in memory. (This is discussed in chapter 6. ) Suppose that MATRIX is a 
:]x2x2 array. Its elements would be processed in the following order: 
! 

MATRIX 0.1.1) 
MATRIX (2 .1,1) 
MATRIX (3 ,1.1) 
MATRIX (I, 2.1) 
MATRIX (2,2,1) 
MATRIX (3,2.1) 
MATRIX (1.1. 2) 
MATRIX (2,1,2) 
MATRIX (3,1,2) 
MATRIX (1,2.2) 
MATRIX (2,2,2) 
MATRIX (3,2,2) 

Note that it starts with the lowest value for each subscript and ends with the highest 
value for each subscript. In between, the first subscript varies most rapidly and 
the last subscript varies least rapidly. This is sometimes called "columnwise" 
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ordering. because in a two-dimensional array, the element§ are taken by columns 
rather than by rows. For example: 

To process array elements in a different order. or to process only purt of the urray . 
you hnve to specify the various elements I either in<iJ.ividuaUy or using DO control. ns 
described below. 

DO Controlled Lists 

A DO controlled list is a simple list followed by, a comma and then by a DO control I 
with all of this enclosed in parentheses. An I/O list DO control looks exactly like the 
part of n DO stntement that follows "DO kIt I namely: 

where: v is H simple integer variable. 
m 1 • m 2 1m3 are the DO parameters I each either a simple integer 

variable or an integer constant. 

The "range" of an I/O DO control consists of the items in the simple list preceding 
the no control. The meaning i,s then essentially the same as in the DO statement: 
"Process these items over and over I first with v equal to m1 and then incrementing 
v bym3 until it exceeds m 2 ." If m3 is not present I it is automatically 1. 

I 

For ~xample, the first five elements of the array X could be specified by writing: 

II, (X (I). 1=1. 5 ) 

o This htis exactly the same effect as writing: 

x (1) ,X (2) ,X (3) ,X (4) ,X (5) 

A DO controlled list, enclosed in parentheses. becomes a simple list item and can be 
intermixed with other items as if it were a variable or array name. In particular. 
this means that one DO controlled list can contain another one (as one of its simple 
list items) . and this nesting can be continued to any level. This makes it possible 
to step individually through each subscript range of a multi -dimensional array. 
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For example. in the preceding section we showed how the 3x3 array A was proc(~ssed 
columnwise when it appeared unsubscripted. You could do the samp thing by writing: 

((A(J,K). J=1.3). K=1,3) 

The inner loop is on J. causing the first subscript to vary most rapidly. Conversely. 
if you wanted to print out the array by rows. you could write: 

«A(J ,K), K=1,3). J=l ,3) 

The DO control variable (as well as the other parameters) are available (materialized) 
within the list and may be used as list items, bui only on output. Inputting into them 
would change their values within a loop, which fS not allowed. For example, the 
following list could print out the values in two l~O-position arrays, with each two 
values preceded by the posit~on count: 

(J, X(J). Y(J), J=l,lOO) 

The DO index might even appear only as a list item. Suppose you wanted to print the 
odd numbers from 1 to 25 as headings to a table. You could do this by writing: 

(N, N = 1 .25 , 2) 

This assumes, of course, the use of a WRITE statement and the proper formatting, 
which will be described in subsequent sections. 

On input, every list item assumes its new value as soon as it has been processed, so it 
can be used right away such as for 11 subscript. For example: 

J, ALPHA(J), K, BETA(J,K), MI, M2, (X(I) , I=MI,M2l 

F~um FORM INPUT/OUTPUT 

The standard form of input/output in FORTRAN involves the use of the READ and WRITE 
statements and the FORMAT statement. The FORMAT statement is very ingenious and 
can perform a lot of fancy editing, such as numbers in certain columns, decimal points 
in certain positions, headings that line up, preceding dollar signs, etc. On the other 
hand . its features, and the way they interface with the I/O list, are rather complicated 
to learn, even in simple cases. 

Many programs need only to get some values in and some answers out. in an under
standable way. The free form input/output statements in Computer Automation 
FORTRAN IV serve this purpose. The OUTPUT statement prints out values of any 
type in an appropriate fot'mat. It also prints character strings for identification. 
The INPUT statement likewise can read in all types of data, in essentially the same, 
variety of forms as can be used for constants in a source program. 

5.3 



COMPUTER AUTOMATION. INC. ~ 

OUTPUT Statement 

The OUTPUT statement is written: 

OUTPUT list 

The list is as described in the previous section. In, addition, constants mlly nppeal' in 
the list (see below) . 

i 
Integer values and real values are printed with ~ decimal point and six 
significant digits (also an exponent if larger th~n 999999. or smaller than . 1) . 

. Double precision is the same except with 16 signifidant digits, which also means 
that an exponent is not needed until the value reaches 10 17 . Complex is output as 
two reals. Logical produces either a T or an F.. Values are separated by commas, 
not only for readability but also for symmetry with the INPUT statement (below), 

0: which requires a comma separator. 

! *". j VI 

Values are printed across a line until there is not room for the next value. Then a 
new line is begun. Line 'Nidth is dependant upon the listing device. 

For example, the statement: 

OUTPUT K, X (K) , ALPHA, AVOGADROS NUMBER 

might produce the line: 

12. 23.7141, .427000, 

Herci is another exnmple, assuming the types shown: 
I 
I 

LOGICAL L 
DOUBLE PRECISION D 
COMPLEX C 
OUTPUT L, D, C 

This might produce: 

T, 40000000.00018375, 0.00000, 

.602470E 24 

1.00000 

As described in the previous sections, an array name appearing without subscripts 
represents all the elements of the array in storage order. DO control may also be 
used on OUTPUT lists. For example: 

OUTPUT (K, A (K) , K=3, 30,3) 

In either case, array elements are output simply as a sequence of values (with as 
many on each line as will fit), regardless of the array's dimensions. 
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You may also use a constant in the list of an OUTPUT statement. This is provided 
mainly to allow for alphanumeric string constants. although other kinds of constants 
are acceptable too (except for a signed complex constant) .t 

The string constant enables yout&"print messages indicating what is going on or 
identifying other numeric values. For example: 

OUTPUT 'ANALYSIS DONE', 'AVERAGE =',AV,'COEFS =',A,B.C 
I 

i 
I 

Each alphanumeric constant always begins on a new line. 
following lines: ! 

ANALYSIS DONE 
AVERAGE = 4.53700 
COEFS = 2.00000. 

I 

0.00000 

so this might produce the 

Blank lines can be introduced by using strings consisting only of blanks: 

OUTPUT 'BEGIN TABLE OF RATES'. ' " ' '. RATEI, RATE2 

Note that the second blank string was needed to begin output on a different line from 
the first blank string. 

All output begins in column 2 of the output line. in order to avoid any vertical 
carriage control. (See "Carriage Control for Printing" • later in this chapter. ) 

The OUTPUT statement always produces its output on the "standard output" device, 
which is arbitrarily assigned the unit number 6. (See "Unit Assignments" • below.) 
Ordinarily you need not be concerned about this. Each installation will have the 
s~andard input and output units assigned to some particular devices. such as a 
card reader and printer or both to a typewriter. If you want your output on some 
other device. however. you have to reassign unit 6 at run time. 

Another thing that you need not be concerned about, but which may be of some interest. 
is the formats used by the OUTPUT statement. These are shown below and will be 
described in detail in a subsequent section ("FORMAT Statement") . 

Integer 
Real 
Double Precision 
Complex 
Logical 

GI6.S.'.' 
GI6.S.'.' 
G33.I6.'.' 
2(GI6.S.' ,') 
LI6.' " 

t Parentheses are always assumed to ehclose a sub-list of items. A complex constant 
will thus be correctly processed as two real constants, but a sign before the left 
parenthesis is not allowed: ," 
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The following comma is output on all but the last value on n line. Thcs(' formnts nre 
all multiples of seven columns in width, so that numbers will tend to line up. 

INPUT Statement 

The INPUT statement has essentially the same form as the OUTPUT statement, 

INPUT list 

except that the list may not contain constants. :(It Joes not make sense to read in 
a new value for a constant.) l 
The INPUT statement reads as many values as there are items in the list. There 
may be any number of input values on a line, separated by commas. If there is no 
value on 11 line (i.e. it is blank), this is assumed to be a value of zero. 

The processing of input values by the INPUT statement is more like that of constants 
in a source program than it is like that of other formatted input (i. e. the READ 
statement). For one thing, there is no fixed width for the values. They may be as 
long as desired, terminating on comma or end-of-line. Also, blanks are not 
significant; they are ignored. In other formatted input, embedded and trailing 
blanks are usually treated as zeros. To avoid confusion, however, we recommend 
that you avoid embedding blanks in input values. The line 

2 3 4 

may look like three values, but it is only one. Preferably, this one value should be 
• I 

wrlttf3n : 

234 

while three values should be written: 

2, 3, 4 

As an example, the statement: 

INPUT A, B, L, M, X(L,M), R(5) 

might read just the following line: 

714.6, -31, 4,6, 0, 3E-7 

or it might read these four lines with the same effect: 
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4, 6.0 

Note that the third line is blank, which indicates a value of zero. In g'Hnernl, II 

new field begins at the start of each new line and at each comma. If no value is 
found between there and the next comma or end-of-line, a zero value is assumed. 
Thus the values above could also be representedl as: 

or as: 

714.6, -31.0, 4 
.6, , 3E-7 

714.600, -31, 4. , 6 , 
.0000003 

, 

This latter example illustrates the fact that you should not write a comma after the 
last value on a line unless you intend a value of zero to follow it. 

You can also see from the above examples that numeric values can be expressed in 
a varie'ty of ways. Regardless of the type of the variable being input into, the 

'-' input value can be an integer or have a decimal point or an exponent (either E or D) . 

o 

If necessary, the resulting value will be converted to the type of the variable. For 
example, if a number with a decimal point is read into an integer variable, the 
fr~ctional part will be thrown away. 

! 
C<pmplex values must be read in as two real values. Logical values may be any 
stHng containing a T or F. The string is terminated by a comma or end-of-line. 
If[neither a T or F has been found, F (false) is assumed. Thus the first three values 
below are true, the remaining four false: 

T, TRUE, . TRUE. , F, , FALSE, .FALSE. 

Unsubscripted arrays may be used. There must then be enough values read in to 
fill the array. Similarly DO controlled lists are also acceptable. For exampJe, if 
V and Ware both ten-element arrays, the statement: 

INPUT V, (W (J), J=l,5) 
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would expect to find ten values for V and five for W (1) through W (5) . 

If both the standard input and output are assigned to a typewriter console. thclI the 
following statements could be used!~ .. a conversatioTwl manner to input vnltws lind 
output results: 

3 OUTPUT 'ENTER BASE AND EXPONENT' 
INPUT X. N 
Y = X ** N 
OUTPUT 'X ** N = , Y " , , 
GO TO 3 

This might result in the following: 

(typed out) 
(typed in) 
(typed out) 
(typed out) 
(typed out) 
(typed in) 
(typed out) 

etc. 

ENTER BASE AND EXPONENT 
4.7, 2 
X ** N = 22.0900 

ENTER BASE AND EXPONENT 
62, 8 

x ** N = .218340£ 15 

The INPUT statement always reads from the standard input device, which is unit 
number 5. Like the standard output unit (6), this is associated at each installation 
with H particular device, but can be reassigned at run time. 

UNl'r: ASSIGNMENTS 
! 

Whed you want to perform an input/output operation, it is necessary to specify 
whnt dev ice the operation is to be performed on. With the free form I/O statements 
just described. this is handled. automatically. INPUT always reads from unit 5, 
OUTPUT al ways wr'ites OIl unit 6. For all other I/O stAtements, you must specify 11 

unit number, which is an integer value from 1 to 99. Then, when your program is 
loaded, the unit numbers you have used must be assigned to particular devices. Of 
course, you can use units 5 and 6 (on READ and WRITE statements, for example) and 
these are automatically assigned to the standard input and output devices respectively. 
Each installation can deterrdne which devices are to be designated as the standard (or 
default) input and output units. 

In any input/output statement (READ, WRITE ,REWIND ,BACKSPACE, or END FILE) the 
unit number is specified by either an integer constant or a simple integer variable. 
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FORMATTED (ASCII) READ AND WRITE STATEMENTS 

The formatted READ and WRITE statements deal with ASCII records (ns opposed to binary 
records). They always operate in conjunction with a FORMAT statement, which controls 
the editing applied to the input or output. This editing may include decimal or hexa
decimal conversion, selecting certain columns for the data to appear in, positioning of 
decimal points. processing of alphanumeric strings, and determining exactly how mnny 
records will be read or written. This allows. but also requires, a degree of control 
over external formats that the INPUT and OUTPqT statements do not have. 

I 
The READ and WRITE statements have the fOllowfng form:t 

READ (u. f) list and WrrrE (u, f) list 

where: u is a unit number, represented byl either an integer constant or a 
simple integer variable '. 

f is a FORMAT reference. Usually it is the label of a FORMAT statement. 
It may also be the name of an' array in which a FORMAT is stored (see 
"FORMATs stored in Arrays", later in this chapter) . 

list is an input/output list, as described in the previous section, "Input/ 
Output Lists" . 

A READ always causes at least one record to be read from the specified unit. The data 
read is converted into values which are stored in the items in the list, in order. The 
conversion is controlled by the FORMAT statement, which is described in subsequent 
sections. Here is a simple example: 

READ (1 ,7) Y, K 

I 
7 FORMAT ( F12.3 / 16 ) 

~ is the first variable to be read and F12. 3 is the first format specification. This 
specification says that the value to be read lies in the first 12 columns, with a default 
decimal point 3 columns from the right end (i.e. between columns 9 and 10). The / 
means read a new record, ignore the rest of what is on the current record. K is 
then the next list item and 16 is the next format. This says that the value occupies 
six columns. If the two records had the following data' on them: 

bbbb-6789012 
bb34567 

Y would be set to -6789.012 and K would become 3456 (since only the first six columns 
are considered) . 

t See also "END= and ERR= Options". later in this chapter. 
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A WRITE always writes at least one record on the specified unit. It takes the vnlues in 
the list and converts them into charact~r strings to be written out. under control of 
the FORMAT. For example: 

WIUTE(6.23) Y. K 
23 FORMAT (4X , Fa.l • ··!-¥OLTS ON TEST NR'. 15) 

The first format specification is 4X. which says to skip the first four columns. The 
next is F8 .1. which is used with the value Y. It SB'fS that the value must lie in the 
next 8 columns and have 1 digit after the decimal paint. The next format is an alpha
numeric string. which operates without any list iterh, as the 4X did. It causes those 
characters to be printed in the succeeding columns Then the 15 causes K to be output 
in a 5 column field. right-justified. Suppose that Y and K had the values read into i 

them above (-6789.012 and 3456). This WRITE .and FORMAT combination would produce 
I 

the following record: 

bbbbb--6789 _ ObVOLTSbONbTESTbNRb3456 

The sections on the FORMAT statement describe the variou~ things it can do and how 
it intcrfaces with the 1/0 list iIi more complicated examples. 

The FORl\lAT statement determines the number of records processed, except that it 
cannot suppress the processing of at least one record. In particular, you cannot 
read the same record twice or use two WRITE statements to produce information on 
one record. However, the same effect can be obtained using the DECODE and ENCODE 
statements. described later in this chapter. 

An ASCII record has a maximum size of 132 characters. On some media (cards for 
eXlllT\ple) the size is smaller. Keep this in mind because the READ and WRITE 
state~ents do not automatically begin a new record when the old one is full. They 
only lbegin a new record when the FORMAT tells them to. If you try to write too many 
charflcters on a record. the excess ones will be lost. If you try to read too many 
. charflCters from a record. the extra ones will be assumed blank. 

o On some devices a zero-character record is meaningful. For example, an input line 
from a typewriter might consist only of a carriage return (which is treated as an end
of-line. not as part of the record). This would be equivalent to a whole line of blanks. 

Since some format specifications operate without list items. it is possible to have a READ 
or WRITE statement without a list of variables. For example, the following statements 
would print four blank lines and then one saying "END": 

WRITE (3,9) 
9 FORMAT (/ III' END') 

When records arc output to a print device, column 1 is reserved for carriage control 
and will not be printed. -See "Carriage Control for Printing" • later in this chapter. 
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UNFORMATTED (BINARY) READ AND WRITE STATEMENTS 

The unformatted READ and WRITE statements are not used by a program for communi
cation with the outside world. They are used only to provide intermediate storage on 
external devices, particularly magnetic tapes. They have the form: 

where: 

READ (u) list and WRITE (u) list 

u is a unit number. 
list is an input/output list. 

i 
I 

i 
These statements process the list items in binary!, using as many bits as the type, of each 
variable requires (16 bits for integer ,32 for rea., etc.). Each READ or WRITE statement 
processes exactly one "logical" record. That is,1 the entire string of bits is considered 
a discrete entity, called a logical record, even though, in fact, it may have to be broken 
up into a number of physical records on the external medium. Each logical record 
includes a count indicating its size. The size is determined by the WRITE statement that 
produces it. A READ statement may subsequently read less data from a record than it 
contains, but not more; this is an error. If less than the full record is read, there is no 
way to get at the remainder. Thus there is a one-to-one relationship between binary 
READs and WRITEs. This is particularly true because the control words and record 
format are unique to a particular FORTRAN system. These statements are not intended 
to create information for, or deal with information from, other computer sy stems. 

Normally there should be a list specified on a binary READ/WRITE. A READ with no list 
would just skip a record. A WRITE with no list is not very meaningful. A null record 
would be produced, which could only be re-read by a READ statement without a list. 
Examples of unformatted READ and WRITE statements: 

READ (7) (X(J), J=l, 200) 
WRITE (ND) MATRIX 
WRITE (3) AA, BB, (CC (J ,3), J=200, 500) 
READ (K) GRID, COEFFICIENTS 

END= AND ERR= OPTIONS 

These options are available on both the formatted and binary READ/WRITE statements 
to allow you to process multiple files (on READ) and to deal with I/O transmission errors 
(on both READ and WRITE). They have the following forms: 

where: 

END=k, and 

k is the label of a statement to transfer control to if an end-of-file 
or error is encountered, respectively. 
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Eithcl' or both of these options eanappenr in n HEAD/WHITE stlltement, in t'ithm' m'der', 
in the position shown below: 

Examples: 

READ (unit, format ,options) list 
READ (unit ,options) Ust 

READ (5,77 ,END=3) X, Y, Z 

If this READ statement encounters an end-of-file, c~ntrol is transferred immediately 
to statement number 3, without proeessing the rest bf the input list. 

WRITE (6, EHR=99) MATRIX 

rf an unrecoverable hardware error oecurs while trying to write out the contents of 
MATRIX. processing of the list stops and control is transfe~red to statement number 99, 
There is no way of telling how far through the list the statement got before the error. 

READ(1,100,END=20,ERR=30) L, M, N 

An end-of -file transfers control to statement 20, an error to statement 30. It is not 
possible for both to oecur at the same time, becuuse an error will be noticed before 
an end--of -file clln be recognized. 

If no lEN 1)-, is sl>ccificct. and an end-of-file is nonetheless read, an error message will 
be p~intcd and the progl'Hm will terminate. 

I 
INTEkNAL DATA CONVERSION 

Sometimes it is useful to be ~.ble to perform the data conversions that the FORMAT 
statement does. without actually reading or writing any records. For example, suppose 
you want to have input cards on which the first value determines how the rest of the 
card should be processed. It might specify whether the remaining fields should be 
read as alphanumeric or numeric, such as in the following: 

1 ABCD 
2 462 17 
1 WXYZ 

Here a card beginning" 1" h.as two 2-character alphanumeric fields, while a card 
beginning "2" has two integer fields, each four columns in width. It is not possible 
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to read and distinguish both kinds of records using the normal READ statement, since 
the FORMAT statement has to be specified in advance and cannot be changed partway 
through the record. Nor is it possible to read the same record twice (unless it is on 
something like magnetic tape and yo~ backspace and read again). 

The DECODE statement handleS this kind of operation. It does the FORMAT conversion 
without the READ. In fact, a formatted READ can be thought of as a two part operation, 
the input of a record into a buffer and a DECODE on the buffer. Likewise, a formatted 
WRITE is basically an ENCODE into a buffer and ~he writing out of the buffer. (This 
writing out is not the same as an unformatted WRlTE.) With a DECODE or ENCODE 
statement, the buffer is spectfieQ by the user. I~ is ,usually an array or part of an array. 
Conversions then take place into and out of that ~uffer area. These statements have the 
following forms: • I 

where: 

, ! 

DECODE (c ,f ,s ,n) list 
or 

ENCODE (c ,f ,s ,n) list 
or 

DECODE (c ,f, s) list ENCODE (c ,f ,s) list 

c defines the number of characters per iinternal record (in the 
buffer area). It is either an integer constant or a simple 
integer variable. 

f specifies a FORMAT statement. It is either a statement number 
or is the name of an array in which a FORMAT has been stored. 

s indicates the start of the internal buffer. It may be an array 
name, an array element, or a simple variable. If it is a simple 
variable, it is usually equivalenced to pa,rt of an array to 
provide room for the buffer (see EQUIVALENCE statement in 
chapter 6). 

n is a simple integer variable into wh:ich will be stored, on 
completion bf the operation, the number of characters actually 
processed (scanned or generated) . 

list is an input/output lisL. 

In a READ/WRITE operation, the size of external records is predetermined; for example, 
cards are eighty characters long. In a DECODE/ENCODE operation, there are no physical 
considerations to determine this, so you can specify records of whatever length you like, 
though we recommend a multiple of two characters. The "records" are simply consecu
tive areas of memory within the buffer area. Each one begins right after the preceding 
one ends. For example, if you specify lO-character records, the first five words of the 
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buffer constitute the first record. the next five words the second record, nnd so on. 
As with READ/WRITE operntions, the FORMAT statement determines when to sturt A 

new record; over-flow from the previous record does not. 
I 

The charncters in the buffer area ar~J?rocessed at two per word, without r:egnrd to 
the type of the variable or array used to define the start of the buffer. 

DECODE Statement 
! 

The DECODE statement causes the character string b~gi~ning at s to be decoded, 
according to the FORMAT specified by f, and stored jnto the items in the I/O list. i 

When the FORMAT specifies a new record, the r~st ot the current record (of length c) 
is skipped. If you try to read more than c characters from a record, the extra ones 
will be blanks. 

As an example, consider the case described above of the two kinds of records indicated 
by a 1 OJ' U 2 in the first column. These could be processed by the following statements: 

i 

DIMENSION KARD (39) 
READ (5,9) KEY, KARD 

9 FORMAT (11, 1X, 39A2) 
GO TO (1,2) KEY 

1 DECODE(78,10,KARD) NAME1, NAME2 
10 F9RMAT (2A2) 

2 DECODE(78,20,KARD) NUM1, NUM2 
20 FORMAT (214) . 

The l{f:AD statement converts the value of KEY from column 1, skips column 2, and 
storeslthenext 78 columns in KARD (1) through KARD (39) at two characters per word. 
(The 39A2 format does this.) Then if KEY is 1, the first DECODE is performed: It 
processes two alphanumeric strings, each of length 2 characters (as specified by the 
2A2) and stores them in NAME 1 and NAME2. Otherwise, if KEY equals 2, the second 
DECODE is done. It scans two 4-character integer fields (214), does the required 
decimal to binary conversion, and stores them in NUM1 and NUM2. 

DECODE essentially provides the capability of "rereading" an input record. 

ENCODE Statement 

An ENCODE statement converts list items into ASCII character strings, according to 
the format f, and places them in the buffer beginning at location s, If it tries to create 
more thun c characters in a record, the extra ones are lost. They do not flow over 

. r' u .• 
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into the next record. When it writes fewcr than c charnctcrs. the remllinder nre blunks . 
In fact. like the formatted WRITE. the first thing ENCODE does with each record is to 
set it to all blanks. This fact means that you cannot "rewrite" a record with two CH' 

more ENCODE statements in quite the way that you can "reread" one with sevarul· DECODE 
statements. since each ENCODE operation will blank out the prevous information .. (How
ever, the same effect can often be obtained by using small record lengths and only 
encoding certain sections with each statement.) 

For example, the statements: 

DIMENSION JBUF (12) 
X = 4.67 
N = -33 
ENCODE(18,3,JBUF(3» X, N 

3 FORMAT ('VALUES:' , F5.l , 14) 

would produce an l8-character string occupying JBUF (3) through JBUF (11), and this 
string would consist of: ' 

VALUES: bb4. 7b-33bb 

Since the FORMAT statement never specified a new record. JBUF(12) would not be 
affected. 

AUXILIARY INPUT jOUTPUT STATEMENTS 

Tn-ese three statements are used for manipulating magnetic tapes and equivalent 
s~quential files on disk. 

i 
! 

I 
REWIND Statement 

REWIND u 

where: u is the unit number, an integer constant or simple variable. 

This rewinds tape unit u to its starting point. If end-of-files have been written, it 
rewinds past all of them. 

BACKSPACE Statement 

BACKSPACE u 
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u is the unit number, as de:,;cl'ibed IIbov('. , 

Tape unit u is backspaced over one logiclll record. lJsulIlly this means one physical 
,record. However, if the datil was written by un unformatted (binary) WRITE stlltem(mt, 
then one logical record may consist of a number of physicul reeords. In other words', 
in binary, the BACKSPACE 3tatement'always backspaces over all of the information 
written out by a single binary WRITE statement. This is made possible by the special 
control words that the binary WRITE statement attaches to its records. 

If a tape is positioned at its starting point, a BACKSPACE or REWIND has no effect. 

I 

END FILE Statement 

END FILE u 

where: u is the unit number. 

This writes an end-of-file mark on tape unit u. If a tape is being simulated by a 
sequential disk file, the END FILE statement writes a specia~ indicator that can be 
recognized as an end-of-file by the END= option, discussed above. 

FORMAT STATEMENT 

The FORMAT statement operates in conjunction with a formatted READ or WRITE, DECODE, 
or ENCODE statement. It controls how the characters in each input record arc to be 
interpreted in assigning values to the list items, and how output list items are to he 
conv~r·ted to character strings and where these strings are plnced in output records. 
Gene~'ally the conversion performed on output by Hny specification is the reverse of 
that performed on input. 

The FORMAT statement has this basic structure: 

k FORMAT (specifications) 

The label, k, is shown here because this is one statement that should always have 
a label. Otherwise it cannot be used. 

There are a large number of different kinds of specifications, which are individually 
described below. Usually they are separated by commas. Instead of a comma, one or 
more slashes (/) may act as a separator. The slash is itself a specification (for new 
record), but syntactically it acts as a separator rather than as one of the items to be 
separa\(~d. In certain cases, the separator may be omitted entirely. This is permitted 
following any H,! , or X specification. 
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Most fOJ'mat specifications operate on one of the I/O list items, (In tlw elHW of II eOlTlplex 
item, two specifications nrc requircd. one for the rClll purt and one 1'01' t1w imllginlll'Y 
purl.) Other speeiEcatiolls opernte by t1wmselvcH lind do Hot involve llli:.;l it<~III. 

FOHMAT Ilnd list interfacing is des·cribcd in detoit in II Illter Hcetioll, hut bm;iclIlly it 
works us follows, The FORMAT is proccssed from left to right. If u specificlltion is 
one that operates by itself, then its operation is performed and the next specification 
is examined. If the specification is one that oper1ates on a list item, then the next list 
item is obtained and the appropriate conversion ~s performed. If, however, there were 

, no more list items at that point, then the I/O openation is finished, and processing of 
the FORMAT is terminated, even if it has not all ~een used. If the end of the FORMAT 
is reached, and there are still more list items, t~en the FORMAT is rescanned-- if 
no more list items, processing is finished. Note [that the I/O list is nlways used completely 
and only once, while the FORMAT may not be finished or mny be processcd more than -
once. Groups of specifications may also be enclosed in parentheses (up to eight levels 
of nesting). This affects how the FORMAT is rescanned when it reaches the end, and 
will be explained later. 

Computer Automation FORTRAN IV includes sixteen format specifications, which 
fall into five categories: 

Decimal Non-decimal Alphanumeric Record 
Conversion Modifier Conversion String Position 

rIw nP rZw nBs nX 
rFw.d $ rLw 's' Tw 
rEw.d * rAw / 
rDw.d 
rGw.d 

The capital letters and $, *, " and / are specifications. The small letters (except for s) 
represent integer constants, which are counts with the following mcanings: 

I' is a repeat count that causes the specification to be repeated I' 

times (r > tl). If r is not present, it is 1. Thus 415 means 
15,15,15,15. 

w specifics the total width of a field (w > 0) . 
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usually specifics tht! numbel' of (li~its to the l'ight of tI)(' 
d('cil1llll l-'oint (except on tl fOl'mnt output) (d2!O). 

n is u count of char7icters or of dncirnnl RCllling, 

s is a string of alphanumeric charucters. 

These parameters are all discussed further in the s1ctions on the approprillte speci-
fications. below. I 

I Format (Integer) 
i' 

Form: 
where: 

rlw 
r is an optional repeat count. 
w is the total field width that will be created or scanned. 

I format is intended primarily for integers, but it can also handle variables as well as 
input fields that are floating point. In all cases, however, fractional parts will be lost. 

Output. The integer value of the list item is converted to decimal and right-justified 
in a field of width w characters. If negative, it is preceded by a minus sign. All of 
this is preceded by blanks to fill out the field. If w is not specified large enough to 
hold all of the digits or the minus sign, this is an error -- no value is output. Instead, 
the whole field is filled with question marks to signal the overflow. A width of 6 is 
alwars large enough to avoid overflow. 

I 

Here are some exnmples of output using an 14 format: 

Value Output Field 

7 bbb7 
-12 b-12 

0 bbbO 
+9999.73 9999 
-1000 ???? 
32767 ???? 

Input. A field of w characters is scanned for a decimal value, with or without a plus 
or minus sign. Leading blanks are ignored. Embedded or trailing blanks arc treated 
as zeros. For this reason, you should be careful to right-justify input values in their 
field. Otherwise each trailing blank will increase the value by a power of ten. 
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If there is a decimal point and/or an exponent present in the field (i. (). /l floating point 
,_ number). the fractional part of the resulting value will be lost. Spo "Numoric Input 

Fields". later in this chapter. for more information on llcccptl1ble wnys to write num~1rie 
values for input. 

For example. suppose the following input field were read into five variables using 11 

514 format specification: 

bbb1b-2348S937.9b3bb ! 

the resultingvnlues would be 1, - 23, 4869. 3~, aid 300. Note that, unlike free-form 
input with the INPUT statement I no separators nr~l required between fields. The format 
determines where one value ends and the nex,t begins. Therefore I be careful in preparing 
formatted input. If the values are off by even one column, the results will usually be 
different. 

o For added readability and safety. 1 format fieids (and all other numeric input fields) may 
also be terminated with commas I as described in a subsequent section I "Comma Field 
Termination" . 

o 

F Format (Fixed Decimal Point) 

Form: 

where: 

rFw.d 

r is the repeat count. 

w is the field width. 

d is the number of digits to the right of the decimal point (default value 
if no decimal point is input) . 

In standard FORTRAN. F Format is used only with real type data. (or the parts of 
complex data). In Computer Automation FORTRAN IV. it and the other numeric 
formats (I ,E .n. G) can be used with integer and double precision datn. as well. 
Integers will simply be converted to floating point, and will always have a 
fractional part of zero. 

On input IF, E, D I and G formats operate exactly the same. On output I F produces no 
exponent (e. g. 375.4), E uses an E exponent (e. g .. 3754E 03), D uses a D exponent 
(.3754D 03), and G uses either theF or E form, depending on the size of the number. 

Output. The floating point value of the list item is converted to decimal, with d digits 
after the decimal point. It is rounded at the last digit and then right-justified in a field 
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of width w. As with integers. it is preceded by u minus sign if necessary. and then by 
blllnks to fill out the field to the left. If w is not large enough to Hccomoonto all the 
digits 01' the minus sign. an error is signaled by filling the entire fi€tld with (1lwstion 
marks. 

The following examples al'e for output with an F8. 3 format: 

Value 

2.75 
-31.4886 

.000477 
8127 
-900.0007 
-999.9998 

22650.0 

Output Field 

bbb2.750 
b-31. 489 
bbbO.OOO 
8127.000 
-900.001 
????????, 
•••••• 10 1 

???????? 

To be sure that w is large enough. you have to have some idE-a how big the numbers 
will get. since they require more space as they get bigger .If n is the number of digits 
to the left of the decimal point and d is the number of digits to the right of the decimal 
point. then to allow for these digits and the decimal point and minus sign, w must be 
this large: 

w::-d+2+n 

, m3m 

Input. The next w characters in the input field nrc scanned for a decimlll value, which 
mlly or may not hnve a leading plus or minus sign, 1.1 decimnl point. or a trailing exponent. 
Since tiler£' are 1.1 large variety of forms in which the number may appear (it is even 
possi~ic to omit the E or D in the exponent), please refer to "Numeric Input Fields", later 
in this, chapter for complete details. . 

I 

As with I format, leading blanks are ignored. while embedded Hnd trailing blanks are 
treated as zeros. This will not be so harmful if a decimal point has appeared. since the 
trailing zeros will have no effect, but keep it in mind. 

If there is no decimal point in the input field, then by default one is assumed d positions 
from the right. This usually means d positions from the end of the field. but if there is 
an exponent it means d positions from the beginning of the exponent. Also, d positions 
mean actual character positions. regardless of whether they have blanks or digits in 
them. 

For example, an F8. 3 format would produce the following conversions: 
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Input Field Resulting Value 

bbbb1234 1. 234 
bbb1234b 12.34 
bbl. 234b 1. 234 
-.756bE4 -7560. 
bb3. Eblb 3.EtO 
-b3bEbbl -.3, 
bbbbbbbb O. 

E Format (Floating Point with E Exponent) 

Form: rEw.d 

where: r, w, and d are the same as for F format. 

o E format is similar to F format, except that on output it always attaches an exponent 
to the valu(~. This means that it can represent numbers of any size without needing 
extra width. 

o 

'-

Output. The floating point value is converted to decimal in the form of a fractional part 
less than 1 followed by an exponent. The fractional part consists of a decimal point 
and exactly d digits. It is round at the d'th digit. The exponent consists of E followed 
by a space or a minus sign followed by a two digit decimal exponent. If the value is 
negative, it is preceded by a minus sign. Then it is right-justified in a field of width 
wand preceded by blanks. If w is not large enough. this is an error and the whole 
fie~d will be filled with question marks. To accommodate d digits. the exponent. the 
de¢imal point. and a possible minus sign, this relationship should be observed: 

! 
i 
I wo"d+6 

These are some examples of output using an EI0. 4 format: 

Value Output Field 

.76 O.7600EbOO 
12.537 o . 1254Eb02 
-0.000632 -.6320E-03 

-99999. " - .1000Eb06 
O. O.OOOOEbOO 

The P scale factor (desC!ribed later) can be used to make the fractional part larger 
or smaller than its normal range of from .1 to less than 1. 
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Input. Originally E formnt may have been intended to rend numbers with ex ponents , 
while F foemnt was for numbers without exponents. Now, however, they operate 
identically on input, so the examples shown for F input /llso npply to E input. Se(\ 
also the section on "Numeric Input Fields" , later in this chapter. 

i 

Form: rDw . d I 
I 
! 

where r, w, and d 31'e the same as for E and F !format . 

D format is exactly the same 9S E format, except that ithe exponent on output values 
contains a D instead of an E, to signal double pr~cision. In ANSI standard FORTRAN, 
D format may only be used with double precision: list items, while E and F formats may 
only be used with real ones. but in Computer Automation FORTRAN IV they may all o bc uscd interchangeably. This means that D forinat is typically not used very much. 

o 

As an example of D output, D10.4 would convert~ 

12.537 to b .1254Db02 

Input under D format is exactly the same as for E and F formats. See also the section on 
"Numeric Input Fields", later in this chapter. 

QJ:ormat. (General) 

Form:! rGw.d 

wherd: }" is the repeat count (optionnl). 

w is the total field width. 

d on input, is the default position of the decimal point (as with E and 
F). On output, however, it is the total number of significant digits 
to be produced. 

G format is a combination of F and E formats. On output, it acts like either F or E, 
depending on which makes more sense for the size of number involved. It can be 
used with integer, real, double precision, or either part of complex data. Integers 
are converted to floating point first. 
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Output. G format attempts to express numbers in the most natural way. which is in 
F format unless they are too large or too small, in which case in E form!)t. Tho d 
(ubove) specifies the number of significnnt digits to be output. and thit-. is exuotly ttw 
number of digits thot will be produced. If the magnitude of the number is such thnt it 
can be expressed by placing the decimal point unywherc within or Ilt either end of 
those d digits, then that will be done and no exponent will be needed. However, 
if preceding or trailing zeros would be required to express the value correctly (i. e. 
more than d digits total), then E format will be u~ed instead; the number will be 
normalized and output with an exponent. . 

To express this algebraically, let M be the m;.agn~·itud'e of the value to be output 
to d significant digits). Then select an integ:er p such that: . 

I 

(rounded 

lQP-l <" M < lOP (if M=O:, then p=O) 

o If the format is Gw. d, let j=w-4 and k=d-p. 'rhen if 0 < p <: d, the format used is: 

0 

Fj .k,4X 

On the other hand, if p is less than 0 or greater than d, the format is: 

EW.d 

This had best be illustrated by some examples. The first column contains the values. 
The next two columns are the output fields produced by the formats shown. 

Value G8.3 G8.2 

.07283 .728E-Ol 0.73E-Ol 

.7283 .728bbbb O.73bbbb 
7.283 7.28bbbb b7.3bbbb 

72 .83 72.8bbbb b73.bbbb 
728.3 728.bbbb O.73Eb03 

7283. .728Eb04 O.73Eb04 

When the F form is used, and there is no exponent. those four positions are blank. 
This causes the numbers to line up underneath each other better. 

The size of w does not affect the choice of format; this is determined only by the size 
of d and the size of the value. If w is not large enough, the field is filled with question 
marks. To avoid this, the same rule applies as for E format: 

w ~ d + 6 
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The P scale factor, described below, has a peculiarity in its effect on G formnt. It 
applies only when the E form is used, not the F form. This has two implications. 
First, all numbers output in G format appear as their actual value, never off by f\ 

power of ten. Second, values output in F form with a non-zero P scnle fuctor cnnnot 
subsequently be input using the same format and obtain the snmC' vAlue. Ttl<' !:)cule 
factor will take effect during input but"not during output. This is one of the fow 
exceptions to the rule that what is output by a particular formnt can be input by the 
same format. 

NOTE i 

The "d" field of a G format must always ~e included, as a 
positive non-zero value. For example. ithe value "123.456" 
output in a format of "G 10.0" yields" i . E 03" . 

Input. G format input is eXActly the same as F ,E. and D input. See also "Numeric 
Input Fields" . 

P Specification (Scale Factor or Power of 10) 

Form: nP 

where: n is a positive or negative integer (or zero) that specifies the power 
of ten to be used as a scale factor. 

The P scale factor is a modifier that can be applied to any F. E. D. or G format to 
change the position of the decimal point. i. e. to multiply or divide the value by a 
power of 10. It is not separated from the format specification by a comma; it precedes 
it imm~diately. If the format has a repeat count (or a $ or * modifier, described below) , 
the seide factor precedes that too. For example: 

3PFI0.2 
-lP3E14.6 
OPG9.3 
-2P5*$FI2.2 

At the beginning of a FO~MAT statement, no scale factor is in effect. This is equivalent 

. . 

to a scale factor of zero. Whenever a non-zero P is used, it continues to apply to all 
floating point formats thereafter until changed again. It is not reset to zero if the FORMAT 
is rescanned due to additional list items. To reset it to zero, you must specify a OP. 
Thus the following statements: 

WRITE (6 ,1) A. B, C. D. E 
1 FORMAT ( FI0.2 , EI2.4. 2PF7.3) 

Process the list items with the following effective formats: 
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Variable Formnt 

A FIO.2 
B E12.4 
C 2PF7 .3 
D 2PF10.2 
E 2PE12.4 

Output. The internal value is multiplied by 10n ~efore output. In other words, the 
decimal point is moved right n places. (Of coursle, ~f n is negative, the decimal , 
point is moved left.) On F format, this caus~s th~ number to appear larger or srnfiller 
than it really is. However, on E and D formats, Ithe exponent is decreased or in
creased to compensate for the change in mantissa l, so the actual value remains the same. 
The only effect is to change the form of the number by introducing digits to the left of 
the decimal point or zercs to the right of the decimal point. This is illustrated in the 
following examples: ' 

P Value =7.3629 Value=9.9 
Scale F6.2 E9.2 F7.3 E10.3 

2 736.29 73.63E-01 990.000 99.000E-01 
1 73.63 7.36EOO 99.000 9.900E 00 
0 7.36 .74E 01 9.900 .990E 01 

-1 .74 .07E 02 .990 .099E 02 
-2 .07 .OOE 04 .099 .001E 04 
-3 .01 .OOE 05 .010 .OODE 05 
-4 .00 .OOE 06 .001 .OOOE 06 

, Sdaling on D format js exactly the same as for E. G format is a little strange. When it 
cliooses the E form, the scale factor works in the usual way, increasing the mantissa 
and decreasing the exponent. This leaves the actual value the same. In order to be 
consistent and say that G format always outputs the correct actual value, when it 
chooses F form the scale factor (if any) does not take effect; it is ignored. Note, 
however, that this introduces the inconsistency that if you output a number in G format 
with a P scale factor, yO\! may not be able to read it in again with the same format and 
get the same value. since the P will apply during input (see below) . 

When a scale factor is in effect, numbers. are rounded after the scaling has been performed 
This can have an interesting affect on E format. In order to get the proper number of 
digits left of the decimal point (or zeros right of it), an extra shift may be required. 
This explains the discontinuous way that the exponents change in the above examples. 
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The value zero is not affected by a scale factor. 

Input. In general, the effect of a P scale factor on input is to reverse what it would 
have done on output. (The only exception is the one above concerning G format.) 
This means the external value is divfded by 10", or the decimAl point is moved left 
n places. However, remember that in E form output, the exponent was changed to 
compensate for the moved decimal point, leaving the actual value unchanged. There-. 
fore, on input, if a number has an exponent specified, it is assumed correct and no 
shifting is done. In other words, a P scale factor afftcts an input field only if it 
does not have an exponent. For example: : I ' 

External Resulting value as . t 

Field function of P scale 

OP lP -2P 
0.68 .68 .068 68. 
0.68EO .68 .68 .68 

This is true for all of the floating point formats, F, E, D, and G, since they all work 
identically on input. 

Although there seem to be a lot of exceptions about the effect of P scale factors, these 
two rules are always true, on both input and output: 

1. If the number in the external field has an exponent, then it is 
equal to the internal value, regardless of any P scale factor. 

If it does not have an exponent, then: 

external value = internal value x IOn 

$ Specification (Preceding Dollar Sign) 

Form: $ 

A special Computer Automation feature. the $ modifier enables you to print amounts 
of money with a dollar sign immediately preceding. even with values of various sizes. 
It applies to either F or I format and should be written immediately ahead of the F or I 
(i.e. after a repeat count or any other modifier). For example: 

$15 3$FlO.2 -2P2*$F20.2 
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Outpu..!. After the value is right-justified in its field. 11 dollar sign will be placed 
immediately ahead of the first character. which is usually II digit but may be a dceimal 
point or minus sign. The actual position of the dollar sign will depend on thc !ii;,w 
of the number. If the field width (w) is not large enough to allow for the QQUaJ' sign 
ahead of the number. this is an error and the overflow will be signalled by filling the 
entire field with que~tion marks .'·lfis a good idea. therefore. to allow plenty of width 
on the format specification. 

For example. here is how the value 46.35 would be printed using various formats with 
the $ modifier: i 

Formal Output Fi1lld 

$FS.2 
$14 
$F4.0 
$F5.2 

f 

bb$46.35 1 

b$46 
$46. 
????? 

The value -0.98 printed with a $F9.2 format would yield: 

bbbb$-.98 

Input. $ is intended primarily for output. However. to be consistent. what it does 
on input is to allow and ignore a dollar sign preceding a number. Thus these two 
fields would be treated as the same: 

bbb$4000.00 and bbbb4000.00 

T~e dollar sign must precede a minus sign if there is one. If the $ modifier does 
no~ appear on the format specification. then a dollar sign may not appear in the field. 
If one does, it will be detected as an error. 

*Specification (Asterisk Fill) 

Form: * 

This is another special Computer Automation feature. It is often used in conjunction with 
$ for printing checks. It causes the left part of the field to be filled with asterisks instead 
of blanks. Like $, the * is a modifier that appears ahead of an I or F, but after any repeat 
count. If both * and $ are used, the * should come first. (This is easy to remember. 
because that is the way they will appear in the output field, with the asterisks first.) For 
example: 
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*F10.4 3*120 *$F12.2 

Output. All of the positions that would normally contain preceding blanks. to fiU out 
the field to the left. are changed to' asterisks. The snme is true if both * and $ are 
used Elt the snme time; the dollar sign is inserted first and then the remaining positions 
nre filled with asterisks. It is not a error if there are no preceding positions to put 
asterisks into. The asterisk is simply a substitute for blank. used if necessary to fill 
out the field. Everything else must still fit in the fiel~. including a dollar sign if 
specified. I 

Here are some examples of the use of '. some In qomfnaiion with $: 

: I 

Value Format I Output Field 

91. 27 *F9.2 ****91.27 
-4062.948 *F9.2 *-4062.95 

3000 -2P*$F6.2 $30.00 
27 *$110 *******$27 
0 *16 *****0 

Input. Like $. the * feature is intended mainly for output. but does something consistent 
on input. It allows and ignores any number of preceding asterisks. up until it finds 
something that is not an asterisk. For example. all of the above output fields could 
be read as input fields using the same formats. If the * modifier does not appear in the 
format specification. then the asterisk may not appear in the field. If one does. it will 
be detfcted as. an error. 

I 
I 

Nume+c Input Fields 

There are a variety of ways that you can express a numeric value for input. and they 
are all equally permissible under any of the numeric formats. namely I. F. E. D. and G. 
Any field that can be read using one of these formats can be read using any of the others. 
The resulting value will be the same. too. except for the truncation performed by 1 
format. This means that numbers input by I format need not be integers (though they 
usually are). numbers input by F format can have exponents. etc.. Free form input 
(by the INPUT statement) is the same too, except for two things: blanks are ignored and 
and there is no fixed field width (see below) . 

A numeric input field can be thought of as having two parts, a mantissa and an exponent. 
If either part is missing. U is assumed zero. (Of course it is sort of pointless fo have an 
exponent on a zero mantissa. but it is legal.) The mantissa may take any of these forms: 

nnn nnn. .nnn nnn.nnn 

(where nnn is a string of decimal digits). It may be preceded·by a plus or minus sign . . 
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The exponen't is normally written in one of these ways: 

Eee E+ee E-ee 

where ee is n one or two digit power of 10 to multiply the mantissa by. If tho pluR 
or minus sign is present. it is also permissible to leave out the F.. We do not pnrti
culllrly recommend this form. siiicc" it is less readable and less lik(! the form of Rouree 
program constants. but it is a traditional feuture in FORTRAN and is thus allowed. In 
this cuse. the field has the form: 

mantissa+ee or i mantissa-ee 
I 

I , 
A D may be used instead of E in the exponent, with no change in meaning. It is not 
necessary to signal that an input value is double ~recision, either by using a D 
exponent or by using D format. If the variable inian input list is double precision, 
then its input field will be processed in doubl~ precision regardless of the format or 
exponent used. And if the variable is single precision, a D exponent on the data will 
not make it double. 

The rest of this discussion applies only to formatted input, not to free form input by 
the INPUT statement. ' 

When the mantissa contains no decimal point. the decimal point is as'sumed to be d 
positions from the right end. (On I format d is automatically zero.) This means the 
right end of the whole field unless there is an exponent. If there is an exponent, it 
means d positions from th~ beginning of the exponent (which may begin with E, D, 
+. or -). In other words, from wherever the mantissa ends, you count back d 
positions (including blanks) to place the decimal point. 

'Whfn using formatted input, remember that blanks will usually be treated as zeros and 
ca~ change the value of either the mantissa or the exponent. Leading blnnks (OIl either 
thei mantissa or exponent) do not have any effect, except that they are counted as part 
of tlhc field width. However, once a digit or decimal point has been found, any embed
ded or trailing blanks that follow are interpreted ns zeros. Following are some 

,examples of permissible numeric input fields and how they are interpreted. Notice 
that F. E, D. andG are interchangeable on input ,and that when a decimal point appears 
in the field, it makes no difference what the value of d is in the format. 

Input Field Format Resulting Value 

b23.b F5.2 23. 
b2b.b E5.1 20. 
b2bbb D5.1 200. 
-b.b7 G5.0 -.07 
b5bEbb3 E7.2 .5E 3 
b5bEb3b E7.2 .5E30 
4.60E+l F7.0 46. 
4.600+1 F7.0 46. 
b-blb-blb G9.0 -10.E':"10 
b+-b D4.2 O. 
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Some of the above are pretty strange and misleading representations, and we do not 
particulnrly recommend them. but they illustrate how formatted pr0cesHing works, 
To keep things simple nnri Hvoid mistakes. we recommend thes(~ convent ions: 

1 , Do not embed blanks in stringH of digits, 

2. Make sure Tlllml)CrS nre right- justified in theil' ri(~ldR, HO tlwl'" will 
not be trailing blanks, Or use 11 comma t('rminlltor, described hdow . 

:~ • LJ He the E to introduce nn exponent, 
i 

4. LJ se a decimal point when needed, 
val ue (d) in the format, 

rather ithan relying on the default 

I 
I 

5. Use a value of zero for d (on input). so that the default decimal point 
will be at the end of the number, where it naturally belongs, 

Comma Field Termination 

One of the problems with using- formatted input, particularly, say, if you are typing 
in numbers nt a typewriter, is that you have to know the exact field width specified 
in the formnt and then you have to count carefully to make sure you right-justify the 
number in the field, This kind of input was really designed for cards, where columns 
are clearly marked, and even there it is not always convenient, 

Comput(~r Automation FORTRAN IV provides a way of avoiding this problem. Any 
fipld being processed by an I. F. E, D, G, Z. or L format may be terminated early 
by 11 cdmma. When the comma is encountered, the field is treated as ending on the 
previo11s character. even though the field width (w) has not been used up. Thus 
you cnn :lVoid trailing blanks, even when you do not know what the field width is. 
For ex.111nple. to read two values using a 216 format, instead of having to use: 

bbbb13bbbbb4 

you can use: 

13.4, 

After a fidd is terminat(~d by a comma. the next field begins immedintely after the commn, 
rather than where it would have begun if the full width had been used. The above example 
illustl'at()S one difference between this and free form input (by the INPUT statement) . 
There had to be a comma after the 4, even though it was the last value on the liIle, becaus(~ 
otherwise the field would have had its declared width of 6. including· five trailing blanks 
that would he i nterprcted as zeros, 

However. Plld-or-line is also treated as a terminator, in exactly the same way as comma. 
This is sig-nificnnt mainly on typewriter input, where a carriage return indicates end
of--line. Thus when typing in values, it is not necessary to follow the last one on a line 
by a comma to terminate it. The carriage return will have the same effect. The above 
example could therefore be typ~d in as: 

13,4(CR) 
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A comma terminator has another significant effect. It not only overridr.s the value of 
w specified in the format, it also overrides the value of d. A default decimal point 
mnkes some sense when fields end irt a specific column. but when they <Jlln end 
anywhere before that. it becomes more difficult to remember where the decimnl point 
is going to end up. So we havelJl~~e the rule that. when numeric fields cnd on H 

comma they should look like what they really are. If they have no decimal point, 
they are an integer value. (In other words, the decimal point is assumed at the comma 
or, if there is an expommt, at the beginning of the exponent.) For example, the four 
values produced by a 4F20. 3 format in reading tle line: 

bb12345. 62bbb, b504E-3. bbb2 .• 

would be: I 
, 

12345. , 62000. , .504 , 2. 

Notice that we used a very large field width on the F format. yet the input fields 
need be only as long as required to express the numbers. It is a good idea to use 
large widths in this case. especially in situations where 'the input values are being 
prepared by someone who did not write the program . This will make sure that there 
is plenty of room for the number and the comma. If the field is too sh0rt and the comma 
falls beyond it, then it is too late to terminate the field. For example. if you used an 
13 format to read the line: 

483. 

the first field was already terminated at the third digit. so the comma falls in the 
following field and terminates it. 

I 

A iblank or empty field always means zero • so you can use consecutive commas to 
r~present a group of zero values. For example: 

1,,2, •• 3, 

represents: 

1,0,2,0,0,3 
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Z Format (Hexadecimal) 

.Form: 
where: 

rZw 
r is the repeat count. 
w is the field wi.dth. 

Z format operates on internal values at the rate of four bits per hexadecimal digit 
(four digits per word), regardless of the type of the value, Thus an integer contains' 
four hexadecimal digits. a real value eight, etc, The ihexadecimal digits are: 

i 

012345G789ABCDEF 

I 

Output. If w is exactly the right size for the data type (e. g. 4 for integer) , then the 
entire value is output in hexadecimal, including leading zeros. If w is larger than 
this, the hexadecimal numbe!' is right-justified ini the field and preceded by blanks 
(as with the other numeric f.)rmats) . 

If w is smaller than needed, only the w rightmost digits will be output :..- the ones on 
the left will be skipped. This is not considered an overflow error, so no question 
mm'ks win be printed. Z format is specifically designed to be able to print just part 
of a number. 

The modifiers p, *, and $ do not apply to Z format. 

Examples: 

Integer 
Logical 

Real 
Real 

Vabe 

: C102 
: 0000 
: 47DOOA80 
: FF1234EB 

Format 

Z4 
Z6 
Z5 

Z9 

Output Field 

CI02 
bbOOOO 
OOA80 
hFF12:l4EH 

!nput. When w is exactly the right size, the list item is completely filled with the 
hexadecimal digits in the field. If w is smaller, then the number is treated as a 
hexadecimal integer; i. e. , it is right-justified with preceding zeros in the list item. 
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Ifw is too large, the left-hand characters are skipped, and the required digits nrc 
taken from the right end of the field. In all these cases, the operation on input is the 
reverse of that on output. 

Hexadecimal input fields may al~Q.J)e terminated early with a comma. In that ease 
the same rules apply, but w is counted as being the number of characters that 
appeared before the comma. As in other numeric formats, blanks are treated IIA 

zeros. 

Examples: 

Input Field Format 

3A22 Z4 
ABCD Z2 
CID2E3 Z5 
bb5CCbbb7b Z9 
A800, Z8 
123, Z2 

L Format (Logical) 

Form: rLw 

where: r is the repeat count. 
w is the field width. 

i 

List Ite Type 

Inte~er 

" 
" 

~eal 

" 
Integer 

Resulting Value. 

: 3A22. 
: OOAB 
:1D2E 

: 05CC0007 
: 0000A800 

: 0012 

L iformat operates only on list items of logical type and the values true and false. 
I 
! 
I 

Otltput. The logical vabe is converted to either T or F and right-justified in the field 
with preceding blanks. For example, a value that is true, when output with an L5 
format, becomes: ' 

bbbbT 

InEut. Within the field of width w, the first T or F determines the value. If neither a T 
nor F is found, the value is false. Characters appearing between the T or F and the 
end of the field are ignored, except for comma, which terminates the field. The 
following examples are illput with an L6 format: 
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Input Field 

bbbbbT 
AFTERb 
X=Y+37 
.TRUE. 
X,TRUE 

Resulting Value 

True 
False 
False 
True 
False 

A Format (Alphanumeric) 

Form: 

where: 

rAw 

r is the repeR.t count. 
w is the field width. 

COMPUTER AUTOMATION. INC. ~ 

A format converts internal v9.lues to ASCII character strings (and vice versa) I1t the 
rate of eight bits per character (two characters per word), regnrdless of the type 
of the value. Thus an integer contains two characters, a dOQble precision value 
eight, etc. The ASCII characters and their hexadecimal equivalents are shown in 
appendix C. 

Output. If w is exactly the right size for the data type (e. g. 4 for real), then the 
entire value is output as a character string. If w is larger, the character string is 
right-justified in the field and preceded by blanks (as with other formats) . 

If w is smaller than needec, only the first w characters will be output -- the ones 
to the right of this will not. This is the opposite of Z format (where information is 
lost at f{hC left). In both caSf!S, this is not an overflow error. Both A and Z format 
are de 'i gned to be able to process part of an item· -- A format the front part, and Z 
format it he back part. 

! 

Examples: 

Li st Item Type Value Format Ou tpu t Field 

Integer :DAB3 A2 Z3 
" :DAB3 A5 bbbZ3 

Real :C3CIC9BF A5 bCAI? 

" :C3CIC9BF A3 CAl 

Not all of the 256 combinSltions of eight bits correspond to printable ASCII characters. 
(In fact, most of them do not.) Therefore you should not use A formnt to output 
miscellaneous numeric values and expect to read what comes out. The variables 
should already contain alphanumeric information, either previously read in by 
another A format, or set up by a Hollerith or string constant. or even numerically 
constructed. 
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Although integer variables only hold two chllracters. in many applications it is 1\ 

good idea to use them for working with alphanumeric informntion. Tlwy can be 
\ ... _ operated on (e. g. masking I shifting) more eusily. You Cfin usc integel' arrnys to 

hold as many character3 as you need. 

c 

""'-'" 

For printing headings and other 'messages • H format (below) is generally more 
convenient than A form:Jt. since it does not require /lIly variables to hnve been set 
up. 

Input. When w is exactly the right size I the listi item is completely filled with the 
ASCII characters in the field. If w is larger, thi: characters are taken from the 
right end of the field. The left-hand characters are skipped. 

, I 

If w is smaller than need.ed, then the characters I in the field are left-justified in the 
list item and followed by blanks to fill out the rest of it (as with Hollerith constants) . 
This is the opposite or Z format (and numeric formats in general) , which locate short 
input fields at the right end of the value. A general rule for alphanumeric data 
is that internal values are left-justified, While external fields are right-justified. 

Blanks have no significance in an A format input field as they are just another 
character. The same is true of comma, which will not terminate an alphanumeric 
field. 

Examples: 

Input Field Format List Item Type Resulting Value 

H Format 

Form: 

where: 

UP 
DOWN 
TRUE 
b3,b 

(Hollerith) 

nHs 

A2 
A4 
Al 
A4 

Integer 

" 
Real 

f1 

:D5DO 
:D7CE 

:D4AOAOAO 
: AOB3ACAO 

s is a string of alphanumeric characters of any length. 

(2HUP) 
(2HWN) 
(4HTbbb) 
(4Hb3, b) 

n is the positive integer count of the number of characters 
in the string, including blanks. 

H format is one of the formats that operates without a list item. It transfers 
character strings directly from the FORMAT statement into the external field or 
(less often) vice versa. Note that the form of a Hollerith format is just like that of 
a Hollerith or string constant. 
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Output, The n characters following the II arc transmitted to thp. next n positions 
in the output field. For example, if R equals 12.75, the statements: 

WRITE(6,1() n. 
10 FORMAT(l1EbINTERESTb;";F6,2,8H~';MONTH!) 

would print the following line: 

INTEREST = 12. 75%/MONTH! 
I 

Note that the blank after the equal sign came not from the 'H format, but from the 
F format (a leading blank) . I 

Count the characters very carefully in an H string. If your count is too high. it 
may extend over into some other format specifications; if it is too low, part of the 
alphanumeric string will be interpreted as formats. Better yet. if t.he string 
is very long. use the' format (below). which does not require a count. 

Input. H format is primarily designed for output. but there are occasions when 
it can be useful on input. What it does is to take the next n characters from the 
input field and insert them into the FORMAT statement. replacing the characters 
that were there before. The original characters are then lost. This might be 
used to change a title printed to identify each set of output values. For example. 
if the stntements: 

READ (5.7) 
7 FORMAT (351I 

read Hili input line containing: 
! 

KOHOUTEI< ORBITAL COEFFICIENTS 

the FORMAT statement would be changed to: 

7 FORMAT (35H KOHOUTEK ORBITAL COEFFICIENTS ) 

which could then be printed with a WRITE statement. 

, Format (Hollerith) 

Form: IS' 

where: s is an alphanumeric string of any length. 
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This is an alternate form of the H format, with the character string enclosed 
in quotes rather them being counted, For that reason, it is probubly casier to 
use, especially on long strings, 

Output" The characters betweEfirthe quote marks are transmitted to the output 
field, which will have the same length, To include the single! quote ehul'llcter 
itself in the string I it should be written as two single quotes. For exnmplc: 

is equivalent to: 

IlHJOE'S PLACE 

In this case, the quotes must be truly consecutive. If there is even one blank 
between them, they will be interpreted as the end of one string and the beginning 
of unother (since no comma separator is reqilired). This is the only situation in 
FORTRAN where R blauk is significant in a statement without being contained in 
an alphanumeric string, 

Input, As many characters are taken from the input field as are needed to fill 
f'l1e'Positions between the quote marks, As with H format, this feature is less 
often used. There should not be any quote characters in the input field. If 
there are, they will be changed to blanks. Otherwise, they could have disastrous 
effects on the FORMAT statement, 

x Specification (Skip) 
I 

F~rm: nX 

! 
wlhere: n is the positive integer count of how many positions 

to skip over, 

NOTE 

An X with no"n" value preceding it will be ignored; it 
is not equivalent to lX. 

X format skips over the next n characters in the external field. It transmits no 
data. 

Output, Normally you CAn think of X as creating n blank spaces in the output 
field, For example: 

FORMAT(l5, 5X, 'SAMPLE') 

might produce this line: 

bbb32bbbbbSAMPLE 
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Ilow('vcr, the l' format (below) can be used to back up in H line, Using 1111 X 
then would not blank out what had previously been written. The only I'QhKOJl it 
seems to do so normally is that all outp~t lines are Rct to hlanks initially, 

Input. The next n character positions in the input field are ignored, The next 
format will pick up processing at the n+lst position, 

T Specification (Tab) 

Form: Tw 

where: w is the character position to tab to:, 

T is much like X I in that it transmits no data but merely changes the character 
position, Instead of skipping forward n fixed amount, it skips to a particular 
column. It works like the tab key on a typewriter I except that it can tab 
backwards us well as forwards, This means I on output, that previously written 
charucters can be written over, and on input, fields can be read more than once, 
(This is only occasionally useful.) 

One useful thing that l' does that X cannot is to get you to a particular input 
column following a field that has been terminated early with a comma, Since you 
do not know where the comma is going to be, you cannot skip forward with an 
X to a fixed place, For example, you might have agents preparing cards with a 
number somewhere in the first 20 columns and a name beginning jn column 21, 
If they ,use a comma to terminate their values (which is It good idea), the 
followihg FORMAT would hc.ndle this: 

1 

I 
FORMAT(F20.0, 1'21, 10A2) 

If u card did not have a comma terminator, then the l' would have no affect, 

The first position on a lhe is I, You cannot tab to the left of that, 

Form: / 

Syntactically the slash acts &S a separator (i. e, like a comma) in a FORMAT 
stat('ment, Any number of 31ashes may appear between two specifications or at 
the beginning or end of the list of specifications, A comma should not be used 
before or after a slash, For example: 

FORI\1AT (/F1 0.2, 5X, 4A2/20I4/ /8Z10 I 'FINAL' / / /) 
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Wlwtwver u slash is en(~ountered. the l'ul'r'tmt record is t.ermin/lt(~d IIlId II now t'o(!or'd 
is b(~g'un, On output this mellmH·hut the old record is written out IIl1d PI'()(!(~HHillg' stlll'lH 

ut column 1 of thc nnw r(~cord, On input it meuns thllt IIny clntll t'Olllllinillg' 011 tlw old 
record is not processed. The next record is reud tmd HCUlming starts at column 1. 

If a slash is followed immediately by another sla~h (or the end of the FORMAT) , 
then the record just begun is terminated With" OUtjl any processing, On output 
this means a blank racord is written. On input t means that one record is 
skipped. : 

In some FORTRANs. a slash preceding the final right parenthesis of a FORMAT 
does not take effect on output (no blank record is produced). In Computer Automation 
FORTRAN IV it does, so input and output ar~ consistent, 

As an example, if the FORMAT shown above were used ~ith an I/O list with the 
proper number of items (namely 33) , it would write (or read) eight records, 
with the 1st, 4th, 6th, 7th, and 8th being blank (or ignored) . 

Parenthesized Format Groups 

A group of format specifications may be repeated by enclosing them in parentheses 
',-, and putting a repeat cOI.mt in front. 

o 

For example: 

! FORMAT(l3 , 2(3A4,2X) , F10.2 , 3(5HRAH! » 
I 

i$ equivalent to: 

FORMAT(l3,3A4,2X,3A4,2X,F10.2,15HRAH! RAH! RAH! ) 

except for the way that l-escan takes place (see below), Note that a Hollerith 
format cannot have a repeat count, so the only way to repeat it is within parentheses. 

Parenthesized groups may be nested within each other, to a depth of eight ~ 

If the end of the FORMAT comes and there are still more list items, the FORMAT 
is rescanned. However, if there are any parenthesized groups, the rescan 
begins at the last such group, rather than at the beginning of the FORMAT. 
Therefore, in the first example above, it would rescan only the 3 (5HRAH! ). This 
would not do much good, since that part contains no formats that can transmit 
any data. In this case, ~o get the whole FORMAT rescanned, you could write: 

FORMAT «13, 2(3A4, 2X) ,FlO. 2,3(5HRAH! ») 
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so thut the lust parenthesized group (determim~d by where it pnds) is the \/Il'ge orlO 
surrounding all of the specificutions, The following section gives n Illort' eompll'tt' 
description of how this wor1 .. s, 

FOHMAT and List Interfacing 

Formatted input/output Gperations are controlled morei by the FORMAT statement than 
by the I/O list, When a ~EAD or WRITE (or DECODE 1r E~CODE) statement is exe
cuted, the FORMAT pro(;essor takes control, It p,roc eds by the following steps: 

, 
. I ' 

1, Each time one of these statements is begun, 'a new input record is read, 

2. 

or construction of a n~w output record commences, Thus each statement 
must process at least one record. ' 

A record is terminated ( i. e, no longer scanned, on input, or written out, on 
output) when anyone of these three things happens: 

a. ' A slash is found in the FORMAT, 

b, The final right parenthesis is reached and there are still more list 
items, so the FORMAT has to be rescanned. A rescan never processes 
the same record. 

c. There are no more list items. This can happen either at the final right 
parenthesis or a! a format specification that would require another list 
item (e, g, F format) . 

3. Ai new record is begun on either condition a or b above, Condition c is the 
ehd of the statement, so no new record is begun. 

4. Any specification that does not require a list item (i, e, H, " X, T, or /) is 
always processed when it is encountered, regardless of whether there are 
any more list item s , 

5. A specification that do~s require a list item (i. e. I, F, E, D, G, Z, L, or A) 
causes the FORMAT IJrOcessor to look and see if there are any remaining. 
If there is one, it performs the appropriate conversion and proceeds (unless 
there is a type conflict between the format and the variable, which is detected 
as an error) . 'On the other hand, if there are no more list items. the current 
record is terminated (written out if output) • the input/output statement is 
finished. and the next statement is executed. 

6. When the final right parenthesis is reached. the FORMAT processor again 
looks to see if there are any more list items. If not, the operation is terminated. 
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as described above. However I if there ~ more list items I the current 
record is terminated I a new record is begun I and the FORMAT is rcscanncrl. 
The rescan takes place as follows: 

• If there are no parenthesized groups of specifications in the FORMAT 
statement I the whole FORMAT is rescanned . 

• If there ~ any parenthesized gr~~ps, the rcscan starts ot the group 
whose right parenthesis was the l+st one found before the final right 
parenthesis of the FORMAT statem~nt. To put it another wny, the . 
outer parentheses are called levellzero. Nested groups within ore ~ 
then referred to as level one I leve~ two. etc. I according to their 
depth of nesting. The rescangoes back to the most recent level one 
group I if there is one I otherw,ise level zero. If the level one group 
has a repeat count I it is included in the res can . This is illustrated 
in the following example: ,--: __________ --, 

r.:-:-:1 I . I , . "I 
FORMAT (15.2 {/3A4) ,Z8/3 (F5. 2 t 2(2X, (3Al, 'ABC'» ,13) ,E12. 3 IGI3. 6) 

Rescan starts here. t Last internal t Final riJht 
closing parenthesis. parenthesis. 

• If the part to be rescanned contains no format specifications capable of 
transmitting data (i.e. no I, F, E, D, G , Z, L, or A), but there are 
still list items that need to be transmitted, this is an error and will be 
diagnosed. The same is true if the whole FORMAT statement contains 
no data formats and there are any list items. 

Each list item requires one format specification (or one repetition of a repeated 
format), except for complex variables, which require two ,one for the real 
part and one for the imaginary part. 

Whenever a new record is read I or an old reoord written out I and an error 
occurs or an end-of-file is found, and the ERR= or END= option has been 
specified on the READ /WRITE statement, processing terminates immediately 
and control is transferred to the specified statement. 

FORMATs Stored In Arrays 

This feature makes it possible to use a variety of FORMATs without having to include 
all of them in the program as FORMAT statements, each one of which is referenced by 
a different, but identical, READ or WRITE statement. Instead of referencing the label 
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of a FORMAT statement, any READ, WRITE, DECODE, or ENCODE statement can 
reference the name of an array: The FORMAT can then be stored in the urray, IlS 

nn ASCII character string, 

The first character in the array shoufd be the opening left parenthesis. The rest of 
the format specifications follow, and then the closing right parenthesis, The 
letters "FORMAT" do not appear. 

The FORMAT can be constructed in the array, using!Hollerith constants, DATA 
statements j etc. However, more often it is read in at run time, using "A" format. 
(In fact, this feature is sometim,es called "FORM~Ts t run time" ,) For example, 
these statements could appear fIrst: ~ I 

DIMENSION MM (10) 
READ (5 ,I) MM 

I FORMAT (10A2) 

and read in the line: 

(2FIO,3,17) 

The array MM would then contain the following values: 

MM(1) MM(2) MM(3) MM(4) MM(5) MM(6) MM(7) MM(8) MM(9) MM(10) 

, (2' 'FI' '0, ' '3, , '17' ')b' 'bb' 'bb' 'bb' 'bb' 

Now MM clln be referenced as u FORMAT; for example: 

READ(5,MM) X, Y, K 

The FORMAT processor will go to the first element of the array to begin, instead 
of to a FORMAT statement, 

You want to be careful to fill up all character positions of each of the array elements 
that will be scanned; that is, two character per element if integer, eight if double 
precision, etc, Otherwise there will be gaps between the FORMAT characters, This 
can be disastrous, especially on the Hollerith formats, which will include these gaps 
as part of character strings, This problem can also occur when using the ANSI 
allocation option (see chapter 9). 
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CARRIAGE CONTROL FOR PRINTING 

NOI'IlI1l11y printed c;lltPlIt is sing.le. spuc(!d; encl! l'(wOI'd nppenrs on the noxt lirw, TIW1'(! 
:II'(! pl'ovisiorls rOl' double spncing, nnd ejecting to the top of u new pllg'n, IInci you should 
IH! awar'(! of them so thot you will not activate them lIecidentully or los(! informution, 

I 

The first character position in any line that is ~eing output to a print device is 
reserved for a vertical carriage control charac~~r, There are two such control 
characters, and they cltuse the following acti0lljs to be taken: 

Character 

o 
1 

, I 

Action I 

Upspace two lines before printing (double space) , 
Skip to top of page before printing (page eject) , 

Any other character causes a normal single upspace before printing, (Overprinting 
(+ in column l) is not supported.) In any case, column 1 is never printed. It serves 
only to control carriage action. The actual line is considered to begin in column 2, so 
column 2 will be printed in column 1 on the paper (i. e. the whole line is shifted left one 
position) , 

Carriage control is usu~lly specified with a lHx format at the beginning of the FORMAT 
statement (lHb provides normal spacing). However. information in column 1 could 
result from almost eny format specification (e.g. F or A). in which case it would be 
lost and might also produce an unexpected printer action. Therefore, if you are not 
looking for carriage control, be careful that your formats will not produce anything 
~n column 1. The free form OUTPUT statement always begins its output in column 2 
~o that no carriage corttrol action will occur. 
i 

Note that if a record is output to some other device. such as a magnetic tape. column 1 
will be included. If the tape is later listed. the same carriage control action will take 
place as if it had been printed directly. 
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CHAPTEIl 6 

DECLARATION STATEMENTS 

CLASSIFICATION OF NAMES 

Every name in a FORTRAN Program is classified as one of the following: 

1. Scalar (simple variable) 
2. Array 
3. Subprogram 
4. COMMON block 

If it is a scalar or array, it must have a type. Subprograms have 8. type if they 
are functions. but Poot if they are subroutines. Some of these classifications require 
explicit declaration) using a declaration statement. Others result from implicit 
declaration; that iE, the contexts in which the nllme is used. 

Explicit Declarations 

Explicit declarations include the following: 

1. Arrays. In order to be used as an array ,a name must first have been dimen
sioned. This can be done with a DIMENSION or type statement, or in a COMMON 
statement. 

2 Type. The IJKLMN rule (see below) determines the type of a name, unless 

3. 

it is explicitly declared first, using an 'INTEGER. REAL. DOUBLE PRECISION, 
COMPLEX. or LOGICAL statement. 

Subprograms. Suoprograms can be defined or referenced within a program 
(sometimes both). You define a subprogram with a FUNCTION or SUBROUTINE 
statement, or by a statement function definition. These are described in the 
next chapter. Most subprograms that are only referenced are classified 
implicitly (see below). However, the EXTERNAL statement is used in certain 
cases. 

4. Storage Allocation. Normally the compiler chooses where to allocate 
scalars and arrays. If you need to have them in a certain order, or overlapping, 
or you want to share storage with other programs, you can use the COMMON and 
EQUIVALENCE stat3ments. 
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Data Initialization. 'FORTRAN does not guarantee the initial contents of 
variables upon loading, so you should not use a variable until it has he en 
assigned a value. The DATA statement assigns initial values upon loading, 
so that you do not have to take the time and space to do it with assignment 
stlltements at run time. 

In general, declaration statements must appear at the beginning of the progrAm. 
EXT E RN A Land DATA are exceptions. See appendix A . 

Implicit Declarations 

When you have not explicitly declared a name. it ",iII ~e ~laSSified implicitly. 
usually at its first appearance in the program. This takes place according to the 
following rules: 

1. 

2. 

3. 

A name that begins with I I J t K t L t M t or N is integer type. Any other name 
is real. Certain library functions are exceptions. See paragraph 6, below. 

i 

A name that is called vrith a CALL statement is a subprogram. 

A name that appears in an expression, followed by an argument list enclosed 
in parentheses t is a function t i.e. a subprogram. Of course t if the name has 
previously been dimensioned t neither this nor the following rule would apply 
to it. 

4. A name that appears to the left of an equal sign, followed by a dummy list 
~nclosed in parentheses, is a statement function t i. e. a subprogram. These 
~re described in the next chapter. 

c) . J 11 name first appears in any other context (than the above or a declaration 
dtatement) t it is automatically classified as a scalar (simple) variable. 

6. The complex and double precision functions in the library automatically have 
a known type, as long as they are used in the proper way as functions. Their 
type does not have to be declared. 

Conflicting and Redundant Declarations 

Conflicting and redundant doadarations (either explicit or implicit) are not allowed. 
For example t once a name has appeared in a type statement t it should not appear in 
another one. A name may not be placed in COMMON twice, nor dimensioned twice. 
Once it has been dimensioned t it may not be used without subscripts (except where 
specifically allowed, such as in an I/O list or argument list). If a name has been 
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implicitly classified as a scalar, it may not be declared EXTERNAL. Errors such as 
these will be diagnosed by the compiler. 

DIMENSION STATEMENT ----

The DIMENSION statement declares the dimensions of an array. It is written: 

DIMENSION AI' A2, A3, ... I 

where A is an array declaration. Array declaratl~ons 
type and COMMON statp.ments) have the form; 

(which may also appear in 

where: 

i 

v is the name of the array. 

n is thQ number of dimensions for the array. In Computer Automation 
FORTRAN IV, arrays may have any number of dimensions. 

r defines the subscript range of each dimensions. 

Usually the subscript range is specified by a single, unsigned integer representing 
the upper bound of that subscript. For example, a 3x10 array would be declared: 

DIMENSION ALPHA(3,10) 

This means that the first subscript runs from 1 to 3, the second from 1 to 10. 

Iry Computer Automation FORTRAN IV, subscripts may have a lower bound other than 1. 
IJ~ this case. both the lower bound find the upper bound must be shown, separated by 
[l icolon. Thus the 5ubscript range (r) can have either of the forms: 

or 

The lower bound is assumed 1 in the first case. When both bounds are specified I they 
may be positive I negative I or zero I as long as the upper bound is greater than the 
lower bound. For example: 

DIMENSION STEP (0: 10) 

gives STEP a size of cleven elements I but the first is STEP (0) instead of STEP (1) • 

DIMENSION TIME (- 60: +60) 

declares TIME to have 121 elements I the first being TIME (- 60), and the last being 
TIME (60) . 
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Whenever an array element is referenced in the program it must have the same 
number of subscripts as dimensions, and each subscript must lie in the range 
declared for it, 

In n subprogram, when v is a dummy'_~_rray, the subscript limits, S I and Su . mny 
b(~ unsigned dummy scatars instead of integers, This is ctiscussect in the IH~xt 
ehapter, under "Adjustuhl~ Dimensions". 

AdditionHI examples of DlM2NSION statements: 

DIMENSION PRICE (1900: 1980,12) , ND(0:1100) 
DIMENSION MGO (24) , LTO (22) , BB (36, ~2, 3'4) 
DIMENSION KLDOT(6,6,10,20), NCENT(t273: -100) 
DIMENSION MA'fRIX(10,10) '! 

Array Stora~ 

An array cannot actually be represented in memory as a multiple dimensioned entity, 
It cun only be strung out in C.'rder as a one-dimensional entity. Sometimes it is 
important to know the order in which multi-dimensional arrays will be stored, Two 
examples are: (1) when an array appears without subscripts in an input/output 
list, it is transmitted in storage order and (2) when an array is used to hold alpha
numeric strings (e, g. read h. A format or set up by the DATA statement) , these 
strings will be placed intCl consecutive array elements, 

Arruys are stored starting at a lower mcmory address and moving to a highcr memory 
'lddr('sf' The array elements are in order such that the first subscript varies most 
rapidly, t he last subscript least rapidly, On a two--dimensional array, this is called 
"colump wise", since the columns are stored consecutively, but the rows are not. 
This n)le applies whether thE; upper and lower bounds are positive or negative. For 
(~xllmpJ!(', here are two arrays listed in storage order, showing the element count for 
cHeh sllbscript combination: 

DIMENSION X (2,3,2) DIMENSION Y(-2: 1,3) 

I' X (1,1,1) 1 Y(-2,l) 
2 X(2,l,l) 2 Y (--1,1) 
3 XO,2,1) 3 Y( 0,1) 
4 X(2,2,l) 4 Y( 1,1) 
5 XO,3,l) 5 Y(-Z,2) 
6 X(2,3,l) 6 Y(-1,2) 
7 X(1,1,2) 7 Y ( 0,2) 
8 X(2,l,2) 8 Y ( 1,2) 
9 X 0, 2,2) 9 Y(-2,3) 

10 X(2,2,2) 10 Y(-l,3) 
11' XO,3,2) 11 Y ( 0,3) 
12 X(2,3,2) 12 Y ( 1,3) 
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TYPE STATEMENTS 

There are five type statements. used to explicitly declare the type of 11 scnlln', tH'rny. 
or function. Since the IJKLMN rule implicitly classifies all namr.s OK ('lthor inh'K(lf 
or real. you will need a type statement for all doublr. precision. complex. or logical 
names (except certain library til-ri"ctions) • plus whenever you want to override the 
IJKLMN rule. The type statements have the form: 

INTEGER 
REAL 
DOUBLE PRECISION 
COMPL3X 
LOGICAL 

N 1.N 2.NI3',"· 

I 

where N is either the nkme of a scalar. array, or function, or it is an array declaration. 
i. e. the name of an array followed by dimerisions enclosed in parentheses (as described 
in the previous section). Whenever an array declaration appears. the statement is 
acting as both a type statement and a DIMENSION statement. so no DIMENSION statement 
is needed. For exemple, the statements: . 

COMPLEX C 1. Z 
REAL ALPHA(8,10). MM, R 

declare C1 and Z to be complex (it may not be known yet whether they are scalars, 
arrays. or functions) j declare ALPHA to be a real 8x10 array; and declare MM and 
R to be real. R would be real anyway, by the IJKLMN rule, but can be declared if 
desired. Declaring the type of a name does not affect unrelated attributes. such as 
whether it is a scalar. array, or function. For example. the name MM in the above 
~xample could also appear, either before or after the REAL statement. in a DIMENSION 
~tatement or an EXTERNAL statement. . 
I 

'there are a number of library functions that have a special type that is known to the 
compiler (e. g. ABS is real). If you should declare a type for one of these names. it 
will no longer be recognized as a special name. 

Other examples of type ~tatements: 

INTEGER COUNT, P, DAY OF MONTH 
REAL GEORGE(19, 65), THING (12) , ESTATE(50,135). MC COY 
DOUBLE PRECISION X, DRATE. DTIME 
LOGICAL Ll, L2, TRUTH (0: 10) 

If you need to convert a whole program from single precision to double precision, 
you may not need a whole string of DOUBLE PRECISION statements. The ADP 
(Automatic Double Precision) option, described in chapter 9, is designed to do that 
for you. 
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~, ALLOCATION OF VARIABLES 
~ 

r Normally the compiler choos~s where to allocate variables. It allocatt.'s the Ill'ruys 
first. then the scalars. These come at the beginning of thc program. ah~ad of tho 
object program instructions {see appendix B). Two methods of controlling the 
allocation of variables are a,'ailable to you. You can move some of the variables 

o 

"I 

out of the local area into a COMMON area that is shared with other programs. using 
the COMMON statement. Or, within either the local or COMMON area, you can ovcr-
lap some variables on top of others or cause them tOb;e in a certain order. using 
the EQUIVALENCE statemp.nt. I 

To take advantage of these features, you may have tOfnow the amount of storage 
occupied by each type of variable . In the case of arr ys. this is the size of each 
element of the array. If the ANSI allocation option is pecified (see chapter 9) • the 
size of integer and logical variables is different. as shown. 

Integer 
Real 
Double Precision 
Complex 
Logical 

COMMON STATEMENT 

, 

Size in Wo~ds 

1 (2 if ANSI) 
2 
4 
4 
1 (2 if ANSI) 

The C9MMON statement assigns variables to a special storage area that can be shared 
by m01e than one program. In earlier FORTRANs. there was only one COMMON area. 
Later t1he capability was added of defining additional COMMON areas and giving them 
numes These are called labeled COMMON areas. so the original COMMON is called 
blank~OMMON. since it has no name. Blank COMMON remains the more often used, 
hut both have some advantages. 

Blunk COMMON 

Variables are usually declared in blank COMMON with a statement of the form: 

COMMON vl • v2 • v3 •... 

where v is the name of a variable (scalar or array) or is an array declaration (array 
nume folloWE'd by dimensions). When an array declaration appears. it need not appear 
in u DlMENSION statement. 
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This causes the variables named to be allocated in blank COMMON. in thc order 
listed. i. e. VI first. then v 2 • etc. If there is more than one blank COMMON 
stat(~ment. the variable lists are strung tognther as if they had all been dcc)nr~d 
in one statement. In other words. each COMMON statement picks up whcre tho 
previous one left off. . 

Blank COMMON begins at the same place for all programs that are loaded togethor. 
so if two or more programs w~nt to use the same variables. they should declare them 
in COMMON in the same order. For example. if; both programs have the statement: 

I 
COMMON CAUSE,. LAW. GHIA(70) i 

. I 
then they can pass information back and forth i~ the variables CAUSE and LAW and 
the array GHIA. The variables must be in the slame order. however. since it is the 
location within COMMON that is important. not the names of the variables. In fact. 
it is not necessary for the names to be the s'ame. except that it makes it easier to 
remember what corresponds to what. For example. another program could have 
the statement: 

COMMON SENSE. MARKET, THIEF (50) 

causing SENSE to correspond to CAUSE. MARKET to LAW. and THIEF to the first 50 
elements of GHIA. This points out two things. One is that the size.s of blank COMMON 
do not have to be the same. Whatever corresponds, corresponds; whatever is left 
over, does not. For example, the last 20 elements of GHIA in the upper program do 
not correspond to anything in the lower program. The other point is that you have to 
be very careful about the sizes of various types of variables. so that they really do 
l"\'latch up. If you make a real variable correspond to an integer one. two things will 
~appen. They will not be able to pass i~form.atio~ back and forth in any straig~tforward 
'tay. because the v'alues are expressed In qUite dIfferent formats. And the varIables 
t~at follow in COMMON will not line up. because the real variable occupies two words. 
J:hile the integer occupies only one word. The only cross-type correspondence that 
is really recommended is complex to two reals. 

There is an exception to this rule about making types agree. Sometimes COMMON is 
used. not to pass information back and forth. but simply to conserve memory by using 
the same locations for two sets of variables. If the variables are used only temporarily 
by each program. so that it does not matter if other programs destroy them. then 
several programs can use the same COMMON area for their variables. without regard 
to whether they match up or not. This is a less frequent use of COMMON. 

As an example to show how COMMON is arranged in memory. the following shows how 
two COMMON statements (in two different programs) would arrange the variables. 
beginning at relative location zero in blank COMMON: 
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COMMON X, Y, Z,N COMMON A (:l) , .1 

0000 X 0000 A (l) 

0001 0001 
0002 Y 0002 A (2) 
0003 0003 
0004 Z 0004 A(3) 
0005 0005 
0006 N 0006 J 

There j, one restrietion on variables in blank COI\lMol,. ·They cannot be initialized 
with the DATA statement (described later in this ~hap~~r). 

Blank COMMON can also be declared using a sped.al form of the labeled COMMON 
onclaration. with the name blank, as shown below, 

Labeled COMMON 

Labeled COMMON makes it possible to have more than one COMMON area. For example. 
program A might have some data that it shares with program B but not with program C, 
and some other data that it shares with C but not with B, Programs D Ilnd E, then, 

" 

might share some data with each other but not with A, B, or C. The usual technique, 
when using only blank COMMON. is to put all the data'in blank COMMON, Rnd then each 
progrHITI has to keep track of where the data it needs is. Generally this is done by "gang 
punchi~gll the same set of COMMON statements and putting them at the head of each 
prograpl. Using labeled COMMON can cut down on the amount of superfluous data 
that ha~ to be declared in each program. Also. labeled COMMON variables can be 
initiHli~ed with the DATA statement, whereas blank COMMON variables cannot. 

NOTE 

Labeled COMMON block names may also be used within the 
same program as names of variables, without conflict . Any 
usage of the label other than in a COMMON declaration will 
be assumed by the compiler to refer to a variable, and not 
the COMMON block. 

Labeled COMMON is declared in much the same way as blank COMMON, except that eaeh 
group of variables is preceded by the name of the labeled COMMON block, enclosed in 
slashes. That is: 

COMMON Iblock namelv 1 ,v 2 ' ... /block namelv 1 ,v 2' . " etc. 

For example, the situation described above , with the five programs A, B. C, 0, and E. 
might be handled with three labeled COMMON blocks. as shown here: 
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Program A: 
Program B: 
Program C: 
Program D: 
Program E: 

COMMON / AB/DICK ,HIVE / AC/DC ,LU ,GULL 
COMMON /AB/DICK ,HIVE 
COMMON /AC/DC ,LU ,GULL 
COMMON /DE/W90ML ,K 
COMMO!:'LLDE/W90ML ,K 

Each program needs to define only the data that it wants to share with any other programs. 
A block of COMMON may be used by any number of programs. As with hlank COMMON, if 
the same block is declared more than once in the ~ame program, the variables are strung 
out into a single list, in the order they appeared. 1 In ,other words, each reference to the 
same block picks up where the previous one lrft Off (in a single program). Thus the 
statements: ' 

COMMON /BLOCKl/P,Q,R /BLOCK2/S ,T 
COMMON /BLOCK2/U, V, W /BLOCKl/X, Y , Z 

are equivalent to the single statement: 

COMMON /BLOCKl/P,Q,R,X,Y,Z /BLOCK2/S,T,U,V,W 

The size of a labeled COMMON block must be the same in all programs that use it. 
(This is different from blank COMMON.) It is a particularly good idea, therefore, 
to use exactly the same COMMON statements, with all the variables having the same 

''-..- names. This is not necessary, but it makes it easier to assure the same size. 

Laheled COMMON blocks are named with the same kind of names as variables. functions. 
etc! .. i, e. beginning with a letter, containing letters and digits, and the first six char
actFl's significant. A COMMON block must not have the same name as a subprogram 
or !my other COMMON block, in order to avoid conflicts during loading. 

Blank COMMON can be specified using the same form as for labeled COMMON, but with 
the name (between the slashes) blank. This means that blank and labeled COMMON may 
be intermixed in the same statement. If the blank COMMON declaration comes first, 
the slashes may be omitted too, so that it looks just like the form shown above for 
blank COMMON.' For example, the statements: 

COMMON /ALPHA/ A, B / / C, D 
COMMON / / E, F / ALPHA/ G 

are equivalent to: 

COMMON C ,D,E ,F / ALPHA/ A ,B ,G 
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Euch lnbeled COMMON block is arranged in the same way as blank COMMON t with 
the variables following one another in thc order listcd, start ing at a low memory 
address and moving to a higher memor.y· address. 

InRom(~ FORTRANs. variables in labelcd COMMON may only be illitiuli~('d (with tho 
DATA statement) in a spedal program t callcd a BLOCK DATA subprogram, This is 
not IWCeSSHl'Y in Computer Automation FORTRAN IV. ~ny program may initialize 
Illbeled COMMON. The BLOCK DATA subprogram is aFcepted for compatibility, 
however (see chapter 7) . I 

EQUIVALENCE STATEMENT 
.. 1

1 

The EQUIVALENCE statement is used to make two or more variables occupy the same 
lo-.!ution or set of locations. It is written: 

EQUIVALENCE set l ' set2 ' set3 ' ... 

where sct is an equivalencp set of the form: 

This says that the variables VI through Vn are to occupy (or begin at) the same 
location. Each variable (v) may be one of the following: 

1. The name of a scalar variable or an array. When an array name appears, it 
Ttwans that the first element of the array will occupy that location. The other 
11ements will follow. For example: 

2. 

I 
DIMENSION MATRIX (11,11) 
EQUIVALENCE (X,Y) , (Ml,MATRIX) 

determines that X and Y will lie in the same location, and that M1 will coincide 
with the first element of MATRIX, i. e. MATRIX (1,1). An array must be 
dimensioned before appearing in an EQUIVALENCE statement. 

An array element, where the subscripts are signed or unsigned integers. For 
example, the statements: 

DIMENSION MCOL7 (11), MATRIX (11 ,11) 
EQUIVALENCE (MID,MATRIX(5,5» • (MCOL7,MATRIX(1,7» 

would allocate the scalar MID in the middle of the array MATRIX, 
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coinciding with MATRIX (5,5), and would 9ause the array MCOL7 to ovcrlay 
the seventh column of MATRIX, by defining its starting location to be the 
same as MATRIX (I, 7). 

A scalar or array name followed by a position count encloscd in pnrcntheses. 
This has the same meaning as if the variable were I.i one-dimensionAl nrray 
with a normal lower bound of 1. In other words. X (1) mc~ms the snme us 
X. X (2) is the element position immediat~ly after X, X (3) is thc next. and so on. 
Thus it is not a count of how many positi?ns away from the variable; it is one 
less than that. X (3) means 2 positions after X. By element positions. we do 
not necessarily mean words. We mean s~eps of the number of words occupied 

I 

by the variable. depending on its type. lIn other words, for intcger variables 
the position count is in one-word increm~nts. For real. the increment is two 
words, for double precision four, etc. This is consistent with the statement 
above that the variable is treated as ~f it were a one-dimensional array. For 
example: 

EQUIVALENCE (Z. Y (2) .X (3» 

allocates X. y, and Z one after the other in that order. even though they each 
require two words. 

For arrays. there is a potential conflict between a position count and a subscript. 
If the array ALPHA has more than one dimension, then ALPHA (5) is clearly a 
position count. But what if ALPHA has only one dimension? Is the 5 a sub
script or a position count? The answer is thnt it is a subscript, if it makes 
any difference. Usually it docs not. If ALPHA has a normal lower bound of 
1, then ALPHA (5) means the same thing either way. (That is why it was 
defined that way.) However, if ALPHA has 11 different lower bound, for 
example: 

DIMENSION ALPHA(-3: 12) 

then ALPHA (5) means the same as it would in an expression, namely the ninth 
element of ALPHA, not the fifth (which would be ALPHA (1» . 

You should be very careful in equivalencing variables of different types to each other. 
For one thing, the sizes may be different. More importantly, if you intend to pass 
information back and forth, you have to know what you are doing. EQUIVALENCE is 
not the same as an assignment statement -- types will not be converted. If you were 
to write: 

EQUIVALENCE (K,X) 
X = 4.38 
OUTPUT K 
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the vulue of K would be whatever was in the first word of the two-word flouting point 
vlIIue, nnd this depends on the particulnf computor's format for flOlltill\{ point ntlllliH'l's. 

This is not, in general, n very safe kind of thing to do. 

INTERACTIONS OF COMMON AND EQUIVALENCE· 

An allocation statement must not cause conflicts with any previous allocation statements. 
This means, for instance, that you can not put the sam;e variable into COMMON twice, 
nor eq ui valence two variables that are both already in I COMMON. 

i 
You may, however, equivalence an unallocated variabte to something in COMMON, 
thus causing that variable to be allocated in COM~ON 00. For example: 

COMMON A, B, C, D 
EQUIVALENCE (C, Y ,X (2» 

I 

puts Y into blank COMMON coinciding with C. and X (2) i. e .• X (1) coincides with B. 
This could be written more clearly as: 

EQUIVALENCE (C,Y) ,(B,X) 

An EQUIVALENCE never changes the order of variables already in COMMON. Those 
are fixed by the COMMON statement. EQUIVALENCEs may simply overlay these 
variables with others. 

Equivrqencing an array into COMMON (or using a position count) may increase the 
size of ~hat COMMON area. This is permissible if it extends COMMON at the end, 
i . e. beyond the last position currently included. It is not Ipermissible to extend 
COMM1N backwards, i. e. ahead of the first position in COMMON. For example, given 
the sta~ernents: 

COMMON /BLK/ I, J, K 
DIMENSION L (4) 

this. EQLJ IVALENCE causes n legitimate extension of the COMMON block, as shown: 

EQUIVALENCE (l,L(1» 

L(1) 
L (2) 

L(3) 

0000 
0001 J 
0002 K 
0003 L (4) Legal extension. 

6.12 
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However, the following EQUIVALENCE tries to extend the block in thl' other rllrnction: 

EQUIVALENCE (K,L(4» 

0000 
0001 J 
0002 K 

L (1 )----lllegni Extension 
L(2) 

L(3) 
L(4) . 

This same rule applies to both blank and labeled iCOMMON. Note that if a labeled 
COMMON block is extended by EQUIVALENCE, th~ resulting size must be the same as 
the size declared in all other programs. 

EXTERNAL STATEMENT 

Form: EXTERNAL s 1 • s 2' s 3' ... 

where: s is the name of an external subprogram., 

The EXTERNAL statement declares that the names listed are closed, external sub
programs. It is not a statement that is needed very often. because most subprogram~ 
can be recognized as such by their usage in the program. For example, in: 

AB = F(X) 
CALL FROG (Y) 

Ole names F and FROG are automatically classified as subprograms. The EXTERNAL 
st(utement has two special uses: 

i 
1J The name of one subprogram can be passed as an argument to another. For 

example: 

CALL TEST (F ,FROG) 

If F and FROG had already appeared in statements such as the two shown above, 
and were known to be subprogram names, there would be no problem. However. 
if this was the first appearance of F or FROG. there would be no way to know that 
they were supposed to be subprogram names: -- the compiler would implicitly 
classify them as scalar variables. So the EXTERNAL statement would be needed 
here to declare those two names. For safety, it is not a bad idea to always use an 
EXTERNAL declaration in such cases. Some FORTRANs require this. 

NOTE 

The EXTERNAL statement is not required for references to 
known subprograms (basic external functions) such as SQRT 
(e.g., X = SQRT (Y»; however, it is required when a known 
subprogram is used as an argument, if not previously referenced 

as a subprogram. 6.13 
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There are library functions whose names are specially recognized by the 
compiler. For example, it knows that ABS is real and has one argump.nt , 
and t.hat CMPLX is complex and has two arguments. Some of thes(! functions 
the compiler generates "in-line"; it does not cnll lin ('xtcrnlll routine. [f 
you want to use one of these "intrinsic" names fOl' :til (~xternlll \'Olllirw of' your own " 
choosing, you have to first declare it in an EXTERNAL stntement. This 
mllkes the compjler forget what it knows about the name and trent it like 
any other external subprogram. For example: 

EXTERNAL FLOAT 
RA TE = FLOAT (BOND) / 100 

This is not, in general, something that we 'recJmmend. It may make your 
program confusing to understand. I 

DATA STATEMENT 

A DATA statement gives initial values to variables. Normally FORTRAN does not 
guarantcc the contents of variables upon loading, so you should not use a variable 
until it has been assigned a value. If the variable is not going to change, then 
instead of assigning it with an assignment statement (which takes time and space 
at run time), you can assign it with a OAT A statement. so it will be loaded with a 
particulllr value. The DATA statement has the form: 

whet'c:, 
i 

v is a list of variables, separated by commas. This may include 
scalars, arrays. and arrllY elements. 

C is a list of constants, separated by commas. A constant may be 
repeated several times by preceding it with a count and an 
asterisk: 

n*c 

where n is a positive integer and c is a constant. 

Missing commas between V /C/ groups will cause 3 warning' dingnostic to 
bc output. 

Thcrp must be the same number of constants as variables in eaeh group, so that 
they e:lIl be assigned on [l one--to-one basis. For example: 

DATA A •• J ,H(3)/4.(),-12,O.O/ , TITLE/'ABe})'/ 

6.14 
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A = 4.6 
J = -12 
B(3)=0.0 
TITLE = 'ABCD' \ 
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except that the assignment is done during loading. not during execution. 
I 

We do not recommend that you use the DATA sta~ement to initialize variables that 
are later going to change value. because this m~kes initialization dependent on ' 
loading. and therefore you can not restart the p~ogram without reloading it. It is 
better to use assignment statements for values t~at are going to change. and the 
DAT A statement for values that are not. This means that the values become. 
essentially. constants with names. This is ;useful in several places. 

For example. instead of writing out the speed of light as 2. 997925E10 at every 
reference. you can use the statement: 

DATA C/2.997925EIO/ 

and then refer to the value as C. This also simplifies updating the program. in 
case the speed of light should change. 

Of course. you could get the same effect using an assignment statement. with 
only a small loss in time and space. There are other situations where the loss is 
more significant. Suppose you want to write an ARCTAN function. You will want 
tq have a table of constants. But how do you build a table of constants? You can
n~t use subscripts on constants. so you would have to execute a group of assignment 
statements at the beginning of each calculation. such as: 

i 

V(O) = 0.0 
V (1) = .1243550 
V (2) = .2449787 
etc. 

which would slow the program down quite a lot. This is an ideal application for the 
DAT A statement. since it takes no space or time during execution. and the values are 
not going to change. 
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The variable list consists of scalars, arrays, and array elements, separated by 
commas. When an unsubscripted array name appears, it rl~pre8ents all the l'lcm('ntH 
bf the array in storage order (the same as in an input/output list). Th(~rH nHIHt he 
enough constants to fill up the whole array . It is not possible to initiali7.H part of 11Il 

array. To do that, you have to write out the individual array elements. (Or you 
can EQUIVALENCE a smaller array to the part you want to initialize, and use the 
smaller array in the DATA statement.) 

The subscripts used in an array element may OnlY. be liinteger constants. (A variable 
subscript would not have a value at compile time.) , 

With one exception, each variable must be initialized by a constant of the same type. 
The type conversions performed by the assignment statement are not done by the 
DAT A statement. For example, you must write: 

DATA X/3./ and not DATA X/3/ 

The one exception is that any type of variable may be initialized by a hexadecimal or 
alphanumeric string conste.nt, using as many digits or characters as required. This 
is described below. 

In the DATA statement, a complex variable is treated as a singled entity. This differs 
from the input/output list, where a complex variable is treated as two real parts. Thus 
a complex v~riable should be initialized by a complex constant (i. e. two reals enclosed 
in parentheses) or by a single hexadecimal or alphanumeric constant. You cannot, for 
('xample, initialize the real part in hexadecimal and the imaginary part in floating point. 

i 
Dummy variables may not be initialized (since they have no real existence at compile 
time) , Inor may variables in blank COMMON (since that area is preempted by the loader). 
Howev~r, you may initialize labeled COMMON, and you may do so in any program. It 
is not necessary to use a BLOCK DATA subprogram, but you may if you prefer. 

C If H variable appears in more than one DATA statement in a program, the latest one 
overrides the previous ones. Similarly, if more than one program initializes a variable 
in laheled COMMON, the last one loaded will take precedence. We do not recommend this. 

DAT A Constant List 

The constant list may contain constants of any type, including integer, real, double 
precision, complex, logical. hexadecimal, or alphanumeric string. Numeric constants 
may be signed or unsigned. Any constant may be repeated n times. using the form n *c, 
where n is greater than zero. For example: 

DATA A,B,C,D,E /2*-3E7,3*'CDE'/ 
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The total number of constants (including repetitions) must be the saml' as the totnl number 
of vnriables· (including all the elements of unsubscripted arrays). (~xcept in the caRe 
of alphanumeric strings. One string constllut clln IICt us several coot.;tunt:;, IIH dOM('l'ihf'd 
lwlow. Howevor. two Htring constnnts ellllllot /Ict liS 0110. 

These are the rules for using the various types of constants: 

1. 

2. 

3. 

An integer, real, double precision, compl~x, or logical constant must correspond 
to a variable of the same type. Note that }'jou must write the "D" exponent on a 
constant that initializes a double precisi01 va~iable . 

A hexadecimal constant may initialize :a variable of any type. It does so in a 
manner similar to Z format input. The coqstant may have as many digits as are 
required by the variable type (i. e. four for integer, eight for real, etc.) . 
It may not have more. If it has fewer'i they are right-justified in the variable. 
Since a complex variable is handled a~ one value, it may accept up to sixteen 
hexadecimal digits. If it finds fewer than nine digits, the -real part will ,be zero. 
Here is an example using hexadecimal constants: 

COMPLEX CPX 
DATA J ,CPX /3ZA80,: 4E832FBOCE805EE7/ 

Alphanumeric strings may also initialize any type of variable, but they differ 
in several ways from the other constants. For one thing, blanks are signifi
cant within the strings. Also. when there are fewer characters than needed to 
fill a variable, they are left-justified and followed by blanks to fill out the whole 
variable. The most important difference, however, is that a string constant can 
initialize more than one variable. If it contains more characters than needed by 
the first variable, it goes on to the next. and keeps going until it runs out of 
characters. If there are not enough characters to completely fill the last 
variable, it is filled out with blanks. U suaIly this feature is used to initialize 
arrays. as in: 

INTEGER LC (20) 
DATA LC/'THE WEED OF CRIME BEARS BITTER FRUIT. '/ 

(Note that some extra spaces were needed at the end of the string to provide 
for all the elements of the array.) It is not necessary to use an array. however. 
In fact, the string could fill up a variety of variables of different types, if such 
a thing were needed. For example: 

COMPLEX Cl 
DATA X,M.Cl/9HABCDEFGHI/ 

is equivalent to: 

DATA X/4HAI;lCD/, M/2HEF/. Cl/8HGHIbbbbb/ 
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On the other hand, one variable may not be initialized by more than one string constnnt . 
If the first constant is not long enough, the rest of the variable is filled out with blanks. 
Thus: 

DATA X /4HABAB/ 

is not the same as either: 

DATA X /2HAB.2HAB/ -or-. DAtTA X /2*2HAB/ 
i 
! 

In the first casc, X is assigned the four characters' A$AH'. The lattcr two cases both 
m;sign I AH I to X and have' AB' left over (which is a~ error) . 

. ! ' 
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CHAPTER 7 

PROGRAMS AND SUBPROGRAMS 

When a FORTRAN program is loaded and executed, it may consist of several different 
kinds of units, There must be one, and only one. main program, There may he 
subroutines. functions I and tasks written in FORTRAN, There will be system 
routines and functions provided from the library', There may also be other 
subprograms or tasks that you write in assembly language, 

MAIN PROGRAMS 

; I 

A main program is any program that does not begin (except for comment lines) with 
one of the following statements: 

FUNCTION 
SUBROUTINE 
TASK 
BLOCK DATA 

Since those statements always have to come first I a main program may not contain any 
of them. nor may it contain a RETURN statement, 

The starting location of a main program is defined as F: MAIN I and execution always 
begins there, Thus if there were two main programs I there would be a double 
definition of F: MAIN, You can write a main program in assembly language, by defining 
tIte first location as F: MAIN and using that as the transfer address (operand of the END 
line) , 

I 
I 

TfSKS 

A task is a program that you connect to a real time interrupt, The first statement must 
C be a TASK statement, which is written: 

TASK name 

where name is a standard FORTRAN name I just like a subprogram, 

A task is not the same as a subprogram, because it is not called in the usual way. and 
because it exits with a STOP statement I rather than a RETURN, It also has no arguments, 
On the other hand. it differs from a main program in that there may be several tasks 
with various names. and they do not specify a transfer address to begin execution, 
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A task may have its own local storage and may also use varlflhles in COMMON to 
communicate with other programs. Since a task is not A subprogram, hOW('Vel' I the 
local storage is not protected if the task is re-entered. Since tasks Ill'e w-lUully mwclltt'd 
under RTX, they should be compiled with the RTX option. For further illfol'll1ution I 

sec chapter 9. 

SUBPROGRAMS 

Subprograms are programs that may be called by other programs. A sUbprogram is 
eithcr H function or a subroutine . Functions arc refer!enCed as elements of an 
expression, and return a value. Subroutines are 'referenced with the CALL statement I 

Imd do not return a value (except possible indirectly):. These two classes can be 
broken down further, as follows: 

, , 

Functions 

1. FUNCTION subprograms 
2. Statement functions 
3. Intrinsic functions 
4. Basic external functions 
5. Assembly language functions 

Subroutines 

1. SUBROUTINE subprograms 
2. Assembly language subroutines 

FUNCTIONS and SUBROUTINEs are complete programs, wrHte!l in FORTRAN. Statement 
funetio1s are defined in a single statement. and may be included within flny FORTRAN 
jJrogrnjll. A basic external function is an assembly language function (usually). in the 
library. whose name and attributes are known to the compiler. An intrinsic function is 
alsoa library function known to the compiler I but it is not a closed external routine. 
It is generated in--line by the compiler. (I. e. it is like an assembly language "macro" . ) 
The library functions are listed and described later in this chapter. Except for intrinsic 
functions, all of these are called with a standard calling sequence. In many cases, it is 
not necessary for the compiler to know what kind of subprogram is actually going to 
satisfy a reference. For example I in: 

A = F (X) 

the function F might be a FUNCTION subprogram I a statement function I or an assembly 
language function; it does not affect the way the statement is generated. 
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FUNCTION Subprograms 

A FUNCTION is a subprogram whose primary purpose is to compute u value and return 
it to the calling program. It must begin with a FUNCTION statemlmt. which cnn be 
written in either of the following-ways: 

where: 

. FUNCTION f(d l,d 2 ' •.. ,d n ) 

type FUNCTION f(d l,d 2 ,·· . ,dn ) I 

f is the name of the function I 

d is the name of a dummy 'Whi~h corresponds to o~e of the arguments 
in the calling reference. : Se~ "Arguments and Dummies" , beldw. 

type is one of the type specificatio~s, namely INTEGER. REAL. DOUBLE 
PRECISION. COMPLEX, or LOGICAL. 

.C 
I 

The type of the function name determines the type of the result that is returned. If no 
type is specified. the IJKLMN rule will apply. 

A dummy is named with a regular FORTRAN name. Within the subprogram, it is 
classified as a scalar: array, or subprogram name, and should correspond to a 
similar entity in the calling program. Most dummies are simple scalar variables. 

I 

Other programs reference the name f as a function. Within the function itself, however. 
the name f is treated as a scalar variable. This is the variable whose value is returned 
as the result of the function. Therefore you should always assign it a value before 
executing the RETURN statement. For example: 

FUNCTION SQ (X) 
SQ =X ** 2 
IF (X<O) SQ = -SQ 
RETURN 
END 

C, A FUNCTION must always have at least one dummy. Normally, function dummies are 
"input" values. and are not changed witl:lin the program. However, if the corresponding 
argument is a variable (and not an expression, constant, or subprogram name) , it is 
permissible for a function to store values back into it by assigning values to the dummy. 

If dummies are to have other than implicit type (IJKLMN rule) , they must be declared 
in a type statement. The type modifier attached to the FUNCTION statement does not 
apply to the dummies, only to the FUNCTION name. For example: 

DOUBLE PRECISION FUNCTION POLY (RAD ,N) 
DOUBLE PRECISION RAD, PI 
DATA PI/3.l4159265358979324/ 
IF (N<3 .OR. RAD .LE. 0) STOP 100 
POLY = 2 * N * RAD * DSIN (PI/N) , 
RETURN 
END 
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SUBROUTINE Subprograms 

A SUBROUTINE is a subprogram whose primary purpose is not to compute and return n 
single value. Usually it performs more complicated operations. Ruch at; input/olltput I 

matrix manipulation. or other blocks of computation. When u large program is hroknn 
into modular units, the units are mostly SUBROUTINEs. A subroutinH is referenced hy 
the CALL statement, rather than in an expression. It must begin with n StJRHOtJTINE 
stutement. of the form: 

SUBROUTINE sub(d1 ,d2 , ... ,dn ) 

or: 

SUBROUTINE sub 

where: sub is the name of the subroutine .• 
d is the name of a dummy. 

Note that H SUBROUTINE is permitted to have no dummies, while a FUNCTION must have 
Ilt leust one. The rules for dummies of SUBROUTINEs and FUNCTIONs are exactly the 
same, and are described in the section "Arguments and Dummies", later in this chapter. 

The last statement executed in a SUBROUTINE should be a RETURN statement. This 
simply returns control to the statement following the CALL -- it does not return a 
vulue. However. SUBROUTINEs often return values indirectly by storing them either 
in COMMON or in the dummies. When a dummy is assigned a value, the corresponding 
argument must be a variable (scalar, array, or array element) . 

Examp]e of a SUBROUTINE: 
i 

I SUBROUTINE PRINT (VOLTS ,NR) 

! OUTPUT 'VOLTAGE = ' , VOLTS. 'TEST NUMBER:' • NR 
NR = NR + 1 
RETURN 
END 

Statement Functions 

A statement function is similar to a FUNCTION subprogram, in that it computes and 
returns a value. However, instead of being a separate program, it is defined in a 
sing:le statement. called a statement function definition. and \Jan be included within 
any other program. whether main program or subprogram. It is written: 
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f(d l ,d2 , ... ,dn ) = exp 

where: f is the name Of the statement function. 
d is the name of a dummy scalar variable. 
exp is the expression that defines the value of the function. 

The type of the function is determined by theIJKLMN rule unless f has appeared in 
a type statement. The expression must have a type that can legally be assigned to the 

I 

type of the function. The rules for this are the ~ame as for assignment statement~ (see 
table 3-1). The expression should contain at le~!st one reference to each of the dummies. 
It may also reference other variables, arrays, a d functions in the program, including 
other statement functions that have been defi:ned previously. A statp-ment fundiorl may 
not reference itself. , 

': I 

A statement function must have at least one dummy. FORT;RAN allows these dummies to 
have the same name as any other quantity in'the program, 'except for the other dummies 
of that statement function. However, less confusion results from using distinct names 
for the dummies. 

Statement functions must precede all the executable statements in a program, and must 
follow most of the declaration statements. See appendix A. 

Examples of statement functions: 

I 
I 
I 
I 

RSQ(A,B) = SQRT(A**2+B**2) 
F (X) = 1/X - 3/X**3 + BASE 
INC(K) = MATRIX (K+1) - MATRIX(K) 

BLOCK DATA Subprograms 
I 
I 

AIBLOCK DATA subprogram is a special program unit that may be used to initialize 
variables in labeled COMMON. It has no name and generates no object code. It begins 

C with the statement: 

BLOCK DATA 

and may contain only declaration statements and an END\ statement. In particular it 
should contain COMMON and DATA statements to perform the initialization. 

Some other FORTRANs require a BLOCK DATA subprogram to initialize labeled 
COMMON. Computer Automation's FORTRAN does not -- labeled COMMON may be 
initialized in any program. However, BLOCK DATA is provided for compatibility. 

Be careful to declare each COMMON block completely '(listing all the variables, not just 
those that are going to be initialized), so that the variables will be in the right position 
to correspond with the declarations in other programs. and so that the size of the block 
will also correspond. 
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BLOCK DATA 
COMPLEX C1, C2 
REAL MAT (35) 
COMMON/BETA/Cl,C2.VAlr,KNUM,ARRAY (10, to) .MAT 
DATA VAL/.57721/(O. ,1.),(0 .• -1.)/ 
END 

Since II H LOCK DATA subprogram has no name, it mus~ either be compiled :1101114" with 
tlw mnill program in batch mode (so that it is Ilutomaticp.lly induded during linking) . 
or the module which includes it must be linked uncondt~ti0l1allY; otherw isp it will be left I 

out of the I inking process, since no other module will rrlVe referenced it as an external . 
module. • I 

ARGUMENTS AND DUMMIES 

. . 

The quantities passf~d to a function or subroutine when it is referenced are called arguments 
'1'1](' sllbprogram must provide the same number of names by which to identify the arguments. 
Thes(~ nr(> called dummies. They are formal parameters Ilnd have no real existence of their 
ow t1. /\ rd('I'cnce to a dummy is actually a !'cference to the corresponding argument. Th(~ 
dllmmy I ist in a subprogram indicates the number, order, and type of the arguments. 

An :trg'ulIwnt may be any of the following: 

1. 
') 
'--' . 
:L 
4. 
5. 
6. 

A scalar variable 
An array element 
An array name (unsubscripted) 
An expression 
An alphanumeric string constant 
A subprogram name (with no arguments) 

'J( lit' that II :.;ingle clement, such as a constant or a function reference. is ('onsidered 
,Ill ':-':p,','ssioTl. On HIP otlH~r hand. although II scalar 01' Ill'l':ty clement is also a simple (·x 
P'·(':-.;-;ioll. tlICS(, must b(~ ('onsidercd separately. This is lH'cause :l subpt'Og"t':lI11 can stOT'e 
V:t!lWS ha('k into a scuI:II' or' :1l'l'Hy element, but it may not store into a constant or function 
l'd('I'('tH'(' or other expressioll. An unsuLJ'?5~ript.9d __ a_!,I'I.0"._!.1..'..~11~_i~_!.tl~: sallle a~ __ ~h<? fJEs_t 
(~I (~lllt'll f_ ()~· __ ~t~~.QEr Hl.. 

The adelt'css passed for an alphanumeric string is that of the first word (i. e. first two 
chal'act~'l's). The word pr('ceding this always contains the character count. identifying 
how mllny l'haracters are in the string. 

A dummy is always specified as a name. It may be classified, withi l1 the subprogram. as 
any of the following: 
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1. 
2. 
3. 

A scalar variaple 
An array 
A subprogram 

This classification takes place using the same rules for implicit and explicit declorotions 
as apply to other names (see chapter 6). In general. the type of a dummy must be the 
same as the type of the corresponding argument. For example. the following is 
incorrect, because the types do not match: . 

I 

COMPLEX Z SUBROUtiNE SUB (M ,IMP) . 
. CALL SUB (Z ,J) COMPLE I~P 

If either of the arguments or the dummies w'ere eversed, the types would match '!properIY . , 

There is one case where the types do not have to match. An alphanumeric string 
argument has no type and may correspond to a dummy of any type (though integer is 
recommended). A SUBROUTINE name also has no type, but should correspond to another 
SUBROUTINE name. 

Table 7-1 below shows the permissible kinds of correspondence between an argument 
and a dummy: 

Table 7-1. Permissible Argument/Dummy Correspondence 

--- .-._--

Dummy 
f---- -

Argument stored 
scalar array into subprogram 

------- -._- -
scalar or array element yes (yes) .yes no 
array name (yes) yes yes no 
alphanumeric string (yes) yes no no 
expression yes no no no 
subprogram name no no no yes 

The correspondences marked" (yes)" are permitted, but mayor may not be particularly 
useful. This will be discussed further below, under "Dummy Arrays" . 

When a dummy corresponds to a variable (scalar or array) in the argument list. every 
reference to the dummy is actually a reference to the argument variable. Thus not 
only will the dummy initially have the value of the argument variable. but if the dummy 
is changed. the argument variable is changed too. This is a way for both functions 
and subroutines (mostly subroutines) to return results through the argument list. 
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For example: 

CALL TRIG (A ,SINA, COSA ,SINHA) 

• 
• 
• 

COMPUTER AUTOMATION. INC. §]1 

SUBROUTINE THIG(X,SX,CX,SHX) 
SX = SIN (X) 
CX = COS (X) 
SHX = TANH (X) 
SHX = SHX / SQRT (1-SHX**2) 
RETURN 
END 

I 

I 

On the other hand, when a dummy corresponds to anrxpression (or constant) , the 
latter acts only as an "input" value for the dummy. l]he dummy must not be changed. 
For example, if X is n scalar variable and F is a func~ion: 

I 

CALL GRUNCH(X,2.5,F(X) ,F) S0BROUTINE GRUNCH(A,B,C,D) 

then A may be stored into, the others may not. A, B, and C should be dummy scalars, 
while D should be a dummy subprogram. 

Storing into improper dummies is not detected as an error, 
due to the large overhead it would require at run time. 
Therefore, be aware of this possibility, since it can cause 
strange things to happen to your program (like changing 
the value of constants that n~ed to be used subsequently) . 

Since [I dummy has no real existence on its own, it may not be allocatpd or initialized. 
That ii it may not appear in a COMMON, EQUIVALENCE, or DATA statement. 

i 

I 
Dum~_ Arrays 

A dummy is an array if it is dimensioned in the subprogram. Normally the calling 
argument is also an array, or else an alphanumeric string. As with all dummies, 
a dummy array does not actually occupy any memory -- it just identifies an area in 
the calling program. The subprogram assumes that the argument passed to it is the 
address of the first element of an array, and it calculates subscripts from there. Of 
course it has no way of knowing what the dimensions of the argument array are, so 
you have to be sure to give the dummy array appropriate dimensions. Usually this 
means the same dimensions as the argument array, but occasionally it can be useful 
to use different dimensions. For example: 
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DIMENSION EDGAR (10 ,10) 
CALL SUB (EDGAR) 

SUBROUTINE SUB (SNERD) 
DIMENSION SNERD(5.4) 

Here the dummy. SNERD, is much smaller than the argument. EDGAR. This will 
cause the subroutine to treat the .. '!J~8t two columns of EDGAR IlS if they were fl 

5x4 array. If the CALL had said: 

CALL SUB (EDGAR (1 .8) ) 

then SNERD would represent the eighth and ninth columns of EDGAR, instead of the 
first Ilnd second. ' 

It is also possible for the calling program to tell the 'SUbPrOgram what dimensions 
to use on a dummy array. This is described in the following section. 

When an alphanumeric string is passed as an argument, it is usually received by a 
dummy array. For example, in this situation: 

CALL FOR (' PHILIP MORRIS') 

The first seven elements of JY correspond as follows: 

JY (1) = 'PH' 
JY (3) = 'IP' 
JY (5) = 'OR' 
JY (7) = 'Sb' 

JY (2) = 'IL' 
JY (4) = 'bM' 
JY (6) = 'RI' 

SUBROUTINE FOR (JY) 
INTEGER JY (8) 

N6te that the character string has an extra blank, if necessary, to fill up the last word. 
The positions beyond this, however. are undefined. so JY (8) should not be used. Also, 
silnce an alphanumeric string (when used as an argument) is filled out only to the nearest 
whrd boundary. if the dummy array is any type but integer. there may be elements that 
are only partly defined. For example. if JY were double precision. the first element 
would contain a full eight characters. but the second element would contain only six. 
The last two characters would be unpredictable. This makes it a good idea to use 
integer arrays for alphanumeric strings. 

An alphanumeric string is stored in memory as a string of characters. preceded by an 
integer count of those characters. The address passed as the argument, however. is 
that of the first two characters. The count is primarily intended to be used by assembly 
language subprograms. but it can be accessed in a FORTRAN program, if you use an 
out-of-range subscript (i. e. one less than the lower bound of the array). In the above 
example. JY (0) would contain the character count. The compiler will let you do this. 
The dummy array must be integer to access the character count. 
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Table 7-1 showed some argument/dummy correspondences marked "(yes)", whieh Iwed 
some clarification. If a dummy array corresponds to Ii scaliu'. that means t hI' fi l'st delllent 
of the array corresponds to the scalar. The other el(~ments will correspolld to w I lilt ('v ('I' 
follow s the scalar. This will be unpredictablc. unless you use EQUIV A LEN CE Oil tlw 
scalllr to make sure something meaningful follows it. 

On the othcr hand. if the argument is an aI't'ay (or an alphunumerie string). lind Uw dummy 
is a sealnr. then you will only be able to aCCCRS the first element of the aT'l'lly (01' tlw fi nit 
few characters in the string). since dummies cannot be cquivalenced. In this case it would 
be bettcr to specify thc first clement of the array (or Ii shorter string), to make it clcarer 
w hat you Hre doing. ! 

I 

Adjustable Dimensions --, -... - ----- . . I 

A dummy array occupies no actual storagc. Its dimcnl~;ionR arc used only to locate itR 
elemcntR. not to allocate storage for them. Therefore. it is not necessary for the sub
program to know what the dimensions are at compile time. The dimensions Inny also bc 
IJHssed :t1nng" as arguments. This means that any 'of tlw dimenRions of a dummy array 
may be spncified by oth(~r ~ummies that are integer sealtu's" Thus the calling programs 
can change the dimensions for each call. For example, you might call a matrix rnultipli
cation SubT'outine with the following arguments: 

DIMENSION A(5,8) • B(8.10) • C(S.IO) 
CALL MATMPY (A.B ,5,8.10 .C) 

and the subroutine could be written like this: 

SUBROUTINE MATMPY (A ,B ,Jl,.J2Kl. K2, C) 
DIMENSION A(Jl,J2Kl). ,B(J2Kl.K2) • C(Jl,K2) 
DO 2 K = I,K2 
DO 2 .1 ::: I,.J 1 
C (J .K) = 0 
Do 2 J K = 1 .. J 2 K 1 
2 C(.J.K)::.: C(.J,K) +A(.l,.JK)*B(JK.K) 
RETURN 
END 

Cpmpare this with the example shown at the end of "DO Loop Ranges", in chapter 4. 

Of coursp-, whe.n we say that a calling program can change the dimensions for each call. 
we mean only that the subroutine can be made to handle separate arrays of differing 
dimensions. This does not mean that the same array should be described with different 
dimensions in subsequent eaLls. If this is done, then the row /column relationship of 
the dummy array won't match that of the actual array" 

If It dummy array has both lower and upper bounds specified. either or both may be 
adj listable. For example: 

FUNCTION GAMMA (MM ,J ,N) 
DIMENSION MM (0: N ,J: N) 
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The dummies used as adjustable dimensions may be referenced elsewhere in the 
subprogram, but they may not be changed. The dimensions must be determined 
once and for all at the beginning of the subprogram. However, ~8ch cull clln Hupply 
different dimensions. 

Dummy Subprograms 

A dummy subprogram may only correspond to an argument that is a subprogram 
name, and it is the only kind of dummy that maYI do so. A call on the dummy sub
program is actually a call on the argument SUbP~ogram. 

For example, the function COMPARE, below, COJld ~e used to compare the single~ 
and double precision versions of other functionsl and return the difference: 

EXTERNAL ALOa ,DLOa ,EXP ,DEXP 
DOUBLE PRECISION DLOa ,DEXP 
A = COMPARE (ALOa ,DLOa ,X) 
B = COMPARE (EXP ,DEXP ,Y) 

I 

FUNCTION COMPARE (F ,DF ,RV) 
DOUBLE PRECISION DF ,DV 
DV =RV 
COMPARE = DABS(DF(DV)-F(RV» 

I 

Note that the library routines had to be declared EXTERNAL in order to pass them as 
arguments. This caused them to lose their special type, so the double precision 
ones had to have their type declared too. The real ones did not have to, because 
the IJKLMN rule gave them the correct type. 

LIBRARY FUNCTIONS 

FPRTRAN includes a number of library functions, which perform calculations Ruch 
a~ square root, arc tangent, absolute value, maximum value, inclusive OR. type 
c~nversion, etc. These are listed in a table 7-2. When you use one of these in 
YEur program I it will automatically be provided I either as a closed routine at load 
time or as in-line object code at compile time. The names of all of these functions 
are recognized by the compiler as either basic external. functions or intrinsic functions. 

Intrinsic and Basic External Functions 

Intrinsic and basic external functions are distinguished by the fact that their names 
are known and recognized by the compiler. There are three reasons for doing this: 

1. All library functions return a certain type of result, and this may not be the 
type that the name would acquire by the IJKLMN rule (e. g. all the double 
precision and complex functions). Instead of requiring you to declare these 
if you want to use them I the compiler knows what type each should be. 
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All library functions also accept 8 certain type and number of arguments, 
By knowing this information. the compiler can produce an errol' llH'ssug<' 
for any usage with too many. too few, or wrong type' arguments, 

Some of the functiuns' operations nrC' so sho),t thut it is lIIort' ~ffkil'lIt ttl 

gen<~rate the necessary instruotions to du thorn thun to call un oul~·dd(' l'oUtirW. 

. . 

The thing that differentiates intrinsic and busic external functions is thut intl'insic 
fUllctioIlR are generated in-line, while basic external functions nre called in from the 
library, In other words, steps 1 and 2 above are petformed on both kind~of functions, 
step 3 only on intrinsic functions, I 

Most uf t hn time, you need not be concerned about allY of this, It is all handled automati
cully. There are only two rare situations where;it becomes important: when you want to 
p~'ss the lIame of a library function as an argument to another subprogram; or when you 
wont to write your own function with a name tha~ is the same as a library function. 

Suppos(' you want to write your own square root routin(' and' usc it instead of the standard 
SQHT, You can do this. since SQRT is a basic external function and will be called. 
However. if you tried to write your own lABS function (integer absolute value), it 
would never be called, because lABS is intrinsic and generated in-line. Also, if you 
wlInted to write some completely unrelatod function called SQR.T(e.g. Sam's Quick Roster 
'i'nl)IJlntion, an integer function with three arguments), you would conflict with the com
piler's knowledge that SQRT is real with one argument. Both of these pl'oblfmls can be 
solv('d hy declaring lABS or SQRT in an EXTERNAL statement. When that is done, the 
\~ornpiler forgets everything it knows about the function, 

I 

Ther~ ure other ways besides being declared EXTERNAL that an intrinsic or basic 
exter+ul name can lose its special recognition. If it is used in some other context than 
as a function reference, it may become a scalar, an array, a dummy, etc. Appearing 
in a type statement (e. g. INTEGER) also cancels special knowledge of a library function. 

A FORTRAN library could consist of any combination of intrinsic, basic external, and 
ordinary functions. Ordinary functions would work properly (some small FORTRANs' 
only have these), but they just would not be as efficient or give diagnostics on improper 
arguments. In Computer Automation FORTRAN IV. all of the standard library functions 
are either basic external or intrinsic, as shown in the table below. You could add othel' 
functions to your system library, and those would be-ordinary functions. 
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Table of Library Functions 

'ruble 7-2 lists 1111 of the stnndul'<i lilH'III'Y functiolls, 'I'll(' first column g-iv()s thl' fUllction 
nume, The X in one of the next two columns indicates whother the f'ulll'tioll it-! illtr-illsk 
or basic external. The next two-(.'Oiumns eontuill the type of the fune! ion (i. 1'. th(! tyP(' 
of the result) nnd the type of the arguments. The following ubbrevilltionH 1lI'(! used 
here: 

Integer 
R Real 
D Double precision 
C Complex 

(There are no library functions with logical type arguments or results.) 

The sixth column indicates how many arguments the function expects. The indication 
N . 2 means any number of arguments, but at least two. 

The last column explains what the function does. When a formula is shown, it is not 
necessarily used in evaluating the function but merely serves to help define the 
operation. 

Boolean Operations 

Computer Automation FORTRAN IV provides the capability to do some Boolean oper
ations (e. g. masking. merging) on all the bits in a word. You cannot do this with 
the logical operators (e. g .. AND., .OR.) , because they deal only with the values 
t~ue and false. There are four library functions that perform the corresponding 
operations on all sixteen bits. The functions lAND. lOR. and IEOR accept any number or integer arguments and perform AND. inclusive OR, or exclusive OR on them. 
rbspectively. The function INOT takes one integer argument and returns the l' s 
complement of it. 

There is no "Boolean" type, so these operations are done in integer. Bit patterns can 
be established using hexadecimal constants, which are also generally integer. 

For example: 

MASK = IOR(KEY,: F) 
IF (lAND (NAME, 4ZFFOO) .EQ. 4ZCIOO) GO TO 73 
M = IAND( IOR(L,: 3AOO) ,IEOR(Ml,M2) ,LAST) 

These functions are intrinsic, i. e. generated in-line, so the cbj ect code for them is as 
good as if they were special operators in the language. However, remember that not 

only do the Boolean operations depend on a particular computer's word format, but 
there is very little consistency among FORTRANs about how (or whether) such 

',-, operations may be specified. 
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Table 7-2. Library Functions . 
. --.-.. ---------.-.--... - ........ -.--.-

Drfinition of Function 

Absolute Value 
lABS X I I 1 Integer ~ 
ABS X R R 1 Real. 
DABS X D D 1 Double precision. 
CABS X R C 1 Comple~ (modulus). This is a real value, 

0 namely: 

CABS (x+iy) = ~ XL +y2 

MaximumLMinimum Value 
MAXO X I N>.2 Integer maximum value of integer arguments. 
MAXI X R N"2 Integer maxirimm value of real arguments. 
MINO X I N,'2 Integer minimum value of integer arguments. 

'I MJNI X I R N:?2 Integer minimum value of real arguments. ~ 
I AMAXI X R R 'N :2 Real maximum value of real arguments. 
i 

AMAXO X R I N~2 Real maximum value of integer arguments. 
AMINi X R R N>2, Real minimum value of real arguments. 
AiVUNO X R N '2 Real minimum value of integer arguments. 
DM1Xi X D D N:,>2 Double precision maximum value of double 

precision arguments. 
DMAxo X D I N:?2 Double precision maximum value of integer 

C 
arguments. 

DMINI X D D N~2 Double precision minimum value of double 
precision arguments. 

DMINO X D I N2:2 Double precision minimum value of integer 
arguments. 

"I Modulus (remaindering) 
Arg1 (mod arg2)' with the sign same as arg1 
Undefined if arg2 is zero. 

MOD X I I 2 Integer. MOD(j ,k) = j - k*U/k ] 
where the brackets indicate integer part. 

AMOD X R R 2 Real. AMOD (x ,y) = x - y*AINT (x/y) . 
DMOD X D D 2 Double precision. Same as AMOD. --_ ... 
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Table 7-2. Library Functions. (Cont'd.) 

r---------~r-------_r--~--,_--.--~----------------------. 

Definition of Function 

Boolean 
lAND X I I N?2 AND ( i. e. extract) . 
lOR X I I N:::2 Inclusive OR (i. e. merge) . 
lEaR X I I N::>:2 Exclusive OR. 
INOT X I I 1 NOT (i. e. l' s complement) . 

Type Conversion 
FI,oAT X R I 1 Convert integer to real. 
INT X I R 1 Convert real to integer. 
IFIX X I R 1 Same as INT. 
DFLOAT X D 1 Convert integer to double precision. 
IDINT X I D 1 Convert double precision to integer. 
DELE X D R 1 Convert real to double precision. 
SNGL X R D 1 Convert double precision to real. 
dlVIPLX X C R 2 Convert two real values to complex. 

ClVIPLX (x, y) = x + iy 
RIEAL X R C 1 Real part of complex value. 
AlllVIAG X R C 1 Imaginary part of complex value. 

Truncation (integer Eart) 
AINT X R R 1 Truncate to integer and back to real. 
DINT X D D 1 Truncate to integer and back to double. 

Sign transfer 
Magnitude of argl with sign of arg2 . 
Positive i~ arg2 is zero. 

ISIGN X I I 2 Integer. 
SIGN X R R 2 Real. 
DSIGN X D D 2 Double precision. 
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Table 7-2. Library Functions. (Cont'd ) 

I 

r-.ial11l' Definition of Function 
I 

I 
"I lositive difference 
,I 'dimkx,y) = x - min(x,y) 

mrM X I 2 Integer. ' 
DIM X R R 2 Real. 
DDJM X D D 2 Double precision. 

i () ComQlex conj ugate 
CONJG X C C 1 CONJG (x+iy) = x - iy 

Square Root 
SQRT X R R 1 Real. 
DSQRT X D D 1 Double precision. 
CSQRT X C C 1 Complex. CSQRT(Z) = u+iv = e (log Z)/2 

allocated so that u " O. 

Logarithm 
ALOG X R R 1. Real natural logarithm (base e) . 
J\LOct 1 0 X R R 1 Rea] common logarithm (base 10) . 
DLO~~ X D D 1 Double precision natural logarithm. 
DLOQ10 X D D 1 Double precision common logarithm. 
CLoCi~ X C C 1 Complex natural logarithm. 

CLOG (Z) = CLOG (x+iy) = u + iv = 
0 ' logizi + iATAN2(y,x) 

allocated so that -- Tr< v <'Tr. 

EXEonential (ex) 
EXP X R H 1 Real. 

·'1 DEXP X D D 1 Double Precision. 
CEXP X C C 1 Complex. 

CEXP(x+iy) = EXP(x)*(COS(y)+i SIN(y» 
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Table 7-2. Library Functions. (Cont'd) 
,.-------7-----r----,.----r--,---r---- ... --

SIN 
DSIN 
eSIN 

COS 
Deos 
eeos 

TAN 
DTAN 

I 
ATAN 
ArAN2 
DATAN 
DATAN2 

SINH 

COSH 

TANH 

DTANH 

i Definition of Function 

. ..,..--f---.-,,..--+----f .. ---- -.-stn-eTorangIeTilraruans-=)--
, I 

X R R 
X D D 
X e c 

X R R 
X D D 
X e e 

X R R 
X D D 

X R R 
X R R 
X D D 
X D D 

X R I R 

X R R 

X R R 

X D D 

1 
1 
1 

1 
1 
1 

1 
1 

1 
2 
1 
2 

1 

1 

1 

1 

Real. ' ! 

Double pr~cision. . . 
Complex.CSIN(Z) = (ell - e-1Z )/(2i) 

Cosine (of angle in radians) 
Real. : 
Double precision. i 
Complex. CeOS(Z) = (e il + e:...· il)/2 

Tangent (of angle in radians) 
Real. 
Double precision. 

Arctangent (in radians) 
When two arguments. argl = ordinate (y). arg2 =
abscissa (x). Result (R) is the arctangent of y/x, 
quadrant allocated in the range - Tr < A '-_ Tr. If 
both arguments are zero. the result is zero. 
Real. one argument. 
Real, two arguments (coordinates). 
Double precision. one argument. 
Double precision, two arguments. 

Hyperbolic Functions 

sinh (x) = (ex-c-X )/2 
Real. 

cosh (x) = (ex+c-x )/2 
Real. 

tanh (x) = -i tan (ix) = (ex-c-x )/ (ex+e- X ) 

Real. 

Double Precision. 
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CHAPTER 8 

IN-LINE ASSEMBLY LANGUAGE 

Computer AU1 0mation FORTRAN IV allows assembly 
FORTRAN procram. This does not include all of 
bIer (not a.'l of the machine instructions or di 
not think 0:' it as taking the place of the ass 
write FORTRi.N programs in FORTRAN and remove rna 
subprograms that can be assembled by the as~emb 
This is esptcially true, of course, if you want 
FORTRAN pro,:rams from one machine to anotheI!'. 

'anguage instructions to be used in a 
he features of a full-fledged assem
ectives are accepted) and you should 
bIer. In general, it is better to 
hine language sections to separate 
er and called by the FORTRAN program. 
to maintain compatibility of the 

C) There are t\·'o situations that inline assembly language is primarily intended for: 

c 

1. When t;:.ming is critical and you want to perform selme special short operation 
that tl.e FORTRAN language does not include. For example, a rotate shift. 

2. When mr .mory space or timing is cr i tical, and you want to shorten a program 
by han( .coding some of the statements. For example, knowing exactly what 
subscr: .pts are used in a DO loop, you might rewrite the loop control and the 
subscr: .pting more efficiently. This requires considerable familiarity with 
the ob:ect code and addressing techniques, and is kind of a desperation move. 

LINt FORMAT 
I 

A s~ction o::~ inline assembly language begins following the appearance of the special 
FORtRAN sta··:ement: 

It ends whe;:l the assembly directive: 

F()RTRAN 

is encounte:'7ed. 

Within an a:isembly language section, the instructions may be written in free-form; 
column 7 is no longer significant. However, it is probably a good idea to line up 
your opcode') and operands for better readability. Note that the statement ASSEMBLER 
is processei in FORTRAN and may not begin before column 7, while the directive 
FORTRAN is )rocessed in assembly language and so may begin anywhere from column 2 
on. Howeve,~, the FORTRAN directive is a special case; it does not have either an 
operand field or a comment field. Additionally, the first in-line assembly language 
statement m,lst not contain a character in column 6; if it does, it will be considered 
~ continuatLon of the ASSEMBLER stat~ment. 
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If an assembly line has a label, it must begin in column 1 t unless there is an X in 
column 1 (con' litional compilation) , in which case the label must begin in column 2. 
At least one bl mk must separate the label from the op-code. If there is no label. 
the op-code m,lY begin in column 2 or later (column 3 or later if there is an X in 
column 1). 

Similarly I the:'e must be at least one··blank between the op-code and the opernnd I 
and between t:'le operand and a comment, if any. Since blank is a separator, there 
may not be an: . blanks embedded in the label, op-code t or operand fields (unless 
they are part cf an alphanumeric operand). Some op-codes do not use an operand. 
so the field following the op-code is automatically tr~ated as a comment. There are 
no op-codes U at can be used either with or without fn operand. If an op-code 
r.equ~res an orerand, it does not matter how many banks must be skipped over to 
fmd It.: 

Here is a samI-le section of assembly language: 

• 
• 
• 
KEY == J + MASK 

ASSEMBLER 

#12 LDA KEY 

RRA 7 

STA KEY THIS IS A COMMENT. 

FORTRAN 

CALL FIND (KEY) 
• 
• 
• 

LABEL FIELD 

The labels uS'Jd on assembly lines are ordinary FORTRAN statement numbers, except 
that they are''lritten with a preceding number sign, e. g .#45. The reason for the # 
is that when E, uch a label is used as an operand, it must be possible to distinguish it 
from a decimel value. This problem does not occur in FORTRAN statements, because 
labels and values can never appear in the same place. The # should be in column 1 
(or column 2 :,f there is an X in column 1). 
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You can use the full range of statement numbers. from #1 to #99999. and these are 
tabulated right along with the labels on FORTRAN statements. A FORTRAN statement 
may reference an assembly label and vice versa. Thero may not be any duplicato 
labels. Note that a FORTRAN statement would reference an assembly lnhol without 
the preceding #. 

There is one other kind of label that is used only on the SET directive for conditional 
assembly. It is a number preceded by #X and is described in the section on "Condi-

I 

tional Assembly". later in this chapter. I 
1 

OF-CODE FIELD 

The op-code must be separated by at least one blank from the previous field, which 
may be any of the mnemonics shown in the section flOp-code Classes", below. This 
includes most of the standard machine instructions, except for input/output, which 
is not generally safe to do in the middle of a FORTRAN program. It also includes th(~ 
assembler directives DATA, BAC, TEXT, RES, ENT. STOP, SET, 1FT. IFF, EN DC , lind 

I 

LPOOL. as well [IS the special FORTRAN mnemonic "FOHTRAN ," and the floating point 
interpretive op-codes which are described in the section, "Floating Point Interpreter" , 
below. 

KINDS OF OPERANDS 

'-- A variety of different kinds of operands may be used. depending on the op-code. No 
one op-code accepts all of them. Before listing these operands. let us set down some 
of the ground rules that were established about what kinds of things may and may not 
be referenced. 

o 

You can reference FORTRAN variables and subprograms. (However. see 
paragraph 6 below. concerning addressing.) You cannot define them. That 
is. you cannot use a FORTRAN name in the label field to simulate a SUBROUTINE 
or FUNCTION statement. or to allocate a variable. 

2. You can reference FORTRAN statement labels. by preceding them with #. 

3. You can reference external system routines (e. g. floating arithmetic. input/ 
output). All such routines have names that contain a colon (: ) • so any name 
with a colon is assumed to be an external system routine. (The name cannot 
begin with a colon. because that indicates a hexadecimal constant.) These are 
special names that may be used only on assembly lines, and only via base page 
pointers (e.g., JST *BP (DELAY:) is correct, but JST DELAY: isn't.) 

4. You cannot reference the temps (#'1') generated by the compiler, since there is 
no way of knowing how many the compiler will create. If you wnnt n temp, 
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you should either use a variable instead. or else define a temp with RES Ilnd 
reference it via a statement label (#n). 

You also cannot reference FORTRAN. constants , including compilcr geJHwntOQ 
indirect addresses. To use a constant. you should dcfille it with DATA und 
rcfl'rfmce it with a regular statement label. 

1\ general rule is that in-line assembly operands always reflect what is 
actually going on in the addressing. The compiler. unlike the assembler. 
will not generate something different from. or in addition to. what you write. 
This gives you complete control over the outputl. but requires you to do some 
extra work to get it. For example. if the stand1rd ,assembler encounters: 

LDA M : 

and M is not within range. it will change the initruetion to an indirect refer
ence through base page and create a word in base page pointing to M. This 
is not necessarily the way the compiler would address M. so it leaves the 
<lceision to you. If something is out of range. you can create an indircet 
address pointer (using DATA) and reference it with a statnment label. or you 
may insert an LPOOL directive. LPOOL usage is dnscribcd in the Operating 
Syst~~m Asscmbler Lang'uage Reference Munual (96552). 

1\ third alternative is to use a bose page pointer (using BP. described below) . 
However. this method has one important limitation: you may not use BP to 
create a pointer to a forward label (that is. one which occurs further along 
in the coding sequence), but only to a label which has already been processed 
by the compiler. 

Cn·ating indirect pohlters will sometimes be necessary when referencing-a 
FORTRAN variable or statement label, and usually when referencing an external 
fubprogram or system routine. For variables and labels. this will probably 
~'equire some trial and error. since you may not be abl(~ to determine in advance 
~hether a given variable or statement number will be in runge -- it depends 
~)J1 w hat the compiler generates for other statements. If you try to refel'enee 
~onwthing that is out of range. this will be diagnosed :IS an error, :md you clln 

then change it. 

~ormally the compiler decides what things it will allocate base page pointers 
for; and it tries not to use too many .. You can specifically request a base page 
pointer to be created by using BP (x), where x is the operand. Be careful about 
creating so many base page words that there is not room for them. Use this mai.nly 
on operands that nrc referenced frequently. Note that what the compiler does 
withBP is essentially the same as what the assembler does with a preceding = 

The {"ollowing, then. are the things that may appear in an operand field (given the 
proper op-code): 

1 . Indexing, indicated by a preceding @. The operand, in this case, must 
be an absolute value in the range: 0-: FF. 

2. Indirect addressing. indicated by a preceding *. If both @and * arc used, 
they may be in either order. 
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I\. d, dmal integer vuluo. In certain cases (e. go. DATA) it l'nay be signed. 
The permissible size of a value depends on the op-code. as shown in the, 
folle wing section. 

4. A hc;xadecimal value. preceded by : . 

5. An Idphanumeric value. enclosed in quotes. 

6. B1r:ll ,k (no opera.nd field). 

'1 • 

B. 

, , 

Cur 'ent location counter ($). optionally fOllowed by a plus Or' minus sign and 
an c. ::idend. which iE: a decimal or hexadocilwl yalue. 

A 3t lternent lebel Ut-n). optionally fOllO\~:Cd ~y an addr;,md, as above. Dc r.:'Jt I 

use an add.end en a st!;ltem~nt label unless :)ou :'lbsolutelj" have to. It i:~ 'Detter 
pro; :re.mming practice to put another lapel on the word 8.ctually being fHidi"essed. 
An I ,ddend on the lab,;;,! of a FORTRAN s:tatement is particularly qu{;s~iom:ble. 
sine a there is no guarantee what the object code will be around that s'~at0r.l(mt. 

I 

!) • A PI >RTRAN name. optionally followed by an nddend. This may be the name of 
a se :lIar, array. e:;d(~rnal subpro1;ram. or statement function. It may also be 
the lame of a COMMON block if there is no vllriable in the prograr.t with the 
sam: name. Note that you cannot reference the entry point of n FUNCTION 
fror.. within it. because that name is used for the result variable. 

10. An I :xternal system name, as a base page referencf~ only. Any name with 
a: ; n it is automatically assumed to be a system name f and must be provided 
at kad time. either from the library or in a prog-ram that you supply. 

11 ' A b lse page ref(~rence, BP (x), where x is a FORTRAN name, a system niime, a 
pre'liously defined statement label, the cur:cent location counter, or a v£.lue of any 
typll allowed by DATA except an alphanumeric value (see below). Vlher.:: appli
cab e. this may indi.!de an addend (ns part of x), except f01~ system nam[~s, 
or (ther external references. Note that BP of It value puts that vulue (not a pointer 
to Lw value) into the base page. 

12. A cunditional assembly label (#Xn) , described in a later section. 

The following section describes which operunds may be used with which op-~odcs. 

The op-cc jes clin be divided into thirteen clf1.sses. ba~e(:l on the kinds of operands 
they perrr: tt. For each cia!Ss, we will list the OP-COd(!8 it includes and the permissible 
operands, Any operand that is allowed to have an addend may have one. This is not 

8.5 



f 
l 
f, I' 
", r: 

r: 

C' 

I 

specifically mertioned in each class. 

Note that the cJasses shown below do not correspond exactly to the instruction 
classes describEd in the CAl BETA Assembler or Macro Assembler manuals; in par
ticular, I/O In~tructions are not supported in FORTRAN Assembly language. 

Those opcodes bElow which are marked"with an asterisk will be executed by emulation 
on the LSI-3/05 processor (see T3 option, Chapter 9), since they are not valid 
LSI-3/05 instructions. 

Class 1. Memor~' References 
I 

L~R Op-codes: ADD AND LDA JMP 
ADDB ANDB LDAB JST L~. 
SUB IOR LDX DiS L. 
SUBB I ORB LDXB CMS MPM 

XOR STA CMSB DVM 
XORB STAB ADX 

STX 
STXB 
EMA 
EMAB 

The last column contains some of the special mnemonics for use with the floating 
point interpretEr. The rest are in class 6. These are all described in the fol
lowing section. 

Operand: Index:ng (@). 
Indirtct (*). 
Decimi.l or hexadecimal value in the range (0,255). 
Currert location ($). Relative addressing on this or the next two 

kincs of operands must be in the range (-255,256). 
staterent label (#n). 
FORTRl·N name, if in relative addressing range. 
Base Iage (BP). 

o Class 2. Double Word Memory Reference 

Op-codes: DVD* MPY* NRM* 

These instructic·ns generate a two-word item. 

Operand: Sarne i.S for DATA (Class 9), except that alphanumeric strings are not 
allowed. 
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Operand: Decimal or hexadecimal value in thc range (0,255). 
Single alphanumeric character (' a') . 
Base page (BP). 

Clnss 4. Conditional Jump 

Op-codes: JAG JAL 
JAM 
JXZ 
JXN 

Operand: 

.JAP 
JAZ 
JAN 

Current location ($). 

Stutemcnt label (#n). 

JSS 
JSR 
.)OS 
JOR 

Note that only relative addressing is ullowed ~ and it must be in the range (-63,64). 
The mnemonic JOC is not supported. 

Class 5. Shift 

Op-codes: ARA LRA RRA LLL 
ARX LRX RRX LLR 
ALA LLA RLA LRL 
ALX LLX RLX LRR 

I 
I 

II 

I 

I 
The first three columns are single shifts, the last column contains double shifts. I 
Opprand: Decimal or hexadecimal value in the rangc 0,8) for singlc shift, or I 

i (1,16) for double shift. I 
I 

Note that the value is reduced by one when the instruetion is generated. In other words, III 
a shift of one looks like H shift of zero in the generated hexadecimal word. 

Class 6. Register Change and Control 

Op-codes: ZAR TAX NAX lCA NOP NEG 
CAR TXA NXA lCX ENT ABS 
NAR EAX lAX SBM ENDC DIM 
CXR ANA IXA SWM LPOOL SGN 
NXR ANX IPX SIA FORTRAN ADJ 
SOV CAX DAX SOA REI. 
COV CXA, DXA ElN DBL 
ROV DIN CPX 

INT 
XIT 
XNL 

ENDC, LPOOL, and FORTRAN are special ,directives . The last column contains floating 
point interpretive mnemonics, described in the following section. ' 
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0PCI'lllld: BIHnk (no op(~rand allow{~d) , 

Cl/lSS 7. SCM Ilnd SCMB 

Op COdl!S: SCM SCMB 

Operllnd: Must not include indirect or indexing (* or @), Either a hase pnge 
reference (BP) or a decimal or hexadecimal value in the rang(~ (0.255) 

I 

Class 8. BAO,. BXO, AND SIN 

OP-COdl'S: 

Op(' \':111(1: 

BAO BXO SIN 

Decimnl or hexadecimal value in the range (0.15) for BAO and BXO, and 
(l,7) for SIN. 

Class ~). DATA, BAC 

Op-codes: DATA BAC 

Operand: 

Class 10. 

Op-eodes: 

Indirect (*) on DATA, but not on BAC, 
Decimal or lwxadecimal value of full word range. Decimal values may 
be signed. 
One or two alphanumeric chul'acters, enclosed in quotes. A single churact!'r' 
will be right justified and preceded by hinary zeros, 

Current location ($), There ar(~ no restrictions on relative addressing 
range. 
Statement label (#n). 

FORTRAN name, 
External system name, 
Base page (BP), 

RES. 

RES 

Tlwre may be either one operand or two separated by a comma. When a second operand 
is lIsed, RES aets like a multiple word DATA. When the first operand is zero. it acts 
like EQU $. and there must not be a second operand. 

1st operand (worn count): Unsigned decimal or hexadecimal value. 

2nd operand (fill val ue): S~me as for DATA, in Class 9, 
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Class 11. TEXT 

Op··codes: TEXT 

Opel'lInd: Any number of' IIlphllnUI1l('l'it~ ('IUu'l1elel'H, (~l\cloHl!(l ill qllotf'H. A HinKIl' 
quote iH representedl:iy two quotes, If tilt' 1l1lllll)Or of ('hlll'lH't(!t's Iii odd, 
the Inst one is left-justified in the word Ilud followNi by 11 hlunk. 

Class 12. SET 

Op-codes: SET 

I 
This and the following class are conditional asserllbly mnemonics, described below. 
A SET directive must have a label in the labei field, of the form #Xn. 

Operand: The decimal value zero or one. 

Cluss 13. 1FT, IFF 

Op-codcs: 1FT IFF 

Operand: Conditional assembly label (#Xn). 
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FLOATING POINT INTERPRETER 

Flonting point operations at run time llrc done intcrpretively, rather tllIIn Ilsinl{ II scparlltt' 
subroutinc call for cHch. The first thillg geneI'lIt('d is 1\ cull to tilt' illll-l'Pl'd('I·. follow I'd 
by II sequence of pseudo op--codc.8 .• Th('~w op 'COd(,H hllv,~ the HIIIIW instl'ul'lioll fur'llIl11 

IlS reg"ulaI' machine instruction!=!. llnd ill filet. somo or them III": ('x/wIly tilt, S:lIIH' 1Il1l('IIlt/nit" 
lind generated vulut's as some of the muchirw instructions" All of tlll'SI' op eodl's 111'(' 

included in the in-line assembly feuture. so thut you clln make u.s(' of till'lIl to do f1()utin~ 
point operations" i 

It is not necessary to exit and reenter the interp~ete,r to change mode, c" ~" from· relll 
to double precision" It is only necessary to do alload of the proper type (e" g" LDR or 
LDD) or a type conversion command (e" g. REL oIr DBL)" The interpreter then keeps 
track of what mode it is operating in. and all of tlhe arithmetic operations (e. go. ADD. 
MPM, ST A) automatically operate in that mode. 

The floating point equivalent of the A register is the floating point accumulator. which 
is maintained in base puge for efficient operation. During a sequence of floating point 
operations, the value in the accumulator is kept in an unpacked format that is easier to 
work with" It is only packed up into the usual floating point format when it has to be 
stored into a variable or temp" On normal exit from the interpreter (XIT) , the contents 
of the floating accumulator are not guaranteed. If XNL is used, however, the accumulator 
is preserved (e. g. when returning from a function) . 

The actual machine A register is always set up when exiting from the interpreter. so 
that tests can be made on it (e. g. in relation expressions or arithmetic IFs). It is set 
to a value that is negative. positive, or zero, according to the last value in the floating 
accumulator. (This is [lccomplished by merging the sign bit of the floating value with 
the first 15 bits of the true mantissa. which includes the normalized" 1" bit" For complex. 
hqth the real and imaginary parts are merged. In this case the sign is meaningless; 
o~ly zero/non-zero can be tested for.) Thus it is possible to exit from the interpreter 
arid do a JAZ or JAP or .JAM etc. 

The normal entry into the interpreter is by calling F: RINT. The first op-code should 
then be one that determines a mode to operate in. i. e. a load or a conversion" (If it is 
a conversion, it would convert from the integer v&lue in the A register.) For example: 

JST 
LDD 

*BP (F: RINT) 
DX -01'-

LDA 
JST 
REL 

K 
*BP (F: RINT) 

If there is already a value in the floatj ng accumulator (e. g. after returning from a function 
call), then there are three alternate entries to the interpreter. which automatically set 
the mode to real. double precision, or complex. These are F: RREL. F: RDBL. and 
F: RCPX. respectively. For example: 

JST 
STA 
XIT 

*BP (F: RREL) 
X 
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Table 8-2 lists all of the op-codes recognized by the floating pa'int interpreter, and whut 
they do. This includes the mnemonics that are the same as for machine instructions: 
these nre marked with an asterisk. 

Op-code 

LlJR 

LDD 

LDC 

REI, 

DI3L 

CPX 

ADD* 

SLJI3* 

MPM 

DVM 

NEG 

AilS 

DIM 

SGN 

STA* 

LDX* 

Table 8-2. Floating"Point Intcrpreter Op-codes 

Description 

Load real. Load the two-word quantity ~ddressed, and unpack it into the 
floating accumulator. Set mode to real. i 

Load double. Load four-word quantity, ~et 'mode to doUble precision. 
I 

Load complex. Load four-word quantity, unpack into two real values in 
the floating accumulator. Set mode t,o complex. 

Convert to real, from whatever mode is currently set. If none has been set, 
this means assume integer in the A register. Set mode to real. 

Convert to double precision, and set mode to same. 

Convert to complex. This always involves adding an imaginary part of zero. 
Set mode to complex. 

Add by mode (i. e. in whatever mode is currently set) . 

Subtract by mode. 

Multiply by mode. 

Divide by mode. 

Negate by mo(h~. 

Absolute value by mode. Docs not apply to complex. 

Positive difference by mode. (See DIM and DDIM in Table 7-2.) Assumes 
(argl-arg2) in floating accumulator. Does not apply to complex. 

Sign transfer by mode. (See SIGN and DSIGN in Table 7-2.) Assumes arg 1 
in floating accumulator, first word (with sign bit) of arg2 in X register. 
Does not apply to complex. 

Store accumulator by mode. Pack up floating accumulator into standard 
format and store as two- or four-word quantity. 

Load index. Same as machine instruction. 
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Op-Code Description 

LXP* Load index immediate positive. Same as machine instruction. 

LXM* Load index immediate negative. Same as machine instruction. 

ADX Add to index. Add contents of addressed location to "X" . 

AXI * Add to index immediate. Same as m~chine instruction. 

SXI* 

ADJ 

STX* 

XIT 

I 

Subtract from index immediate .•. sate ~s machine instruction. 

Adjust index by mode. Multiply "x,l, by two for real, or by four for double 
precision and complex, to adju~t fo~ the number of words per element. 

Store index. (Needed in case a; subscript is to be used later. ) 

Exit from interpreter. Floating accumulator not guaranteed. A register 
reflects negative, positive, or zero value of last floating value. 

XN L Exit with no unlock. Meaningful only under RTX. Same as XIT but 
guarantees contents of floating accumulator. 

INT Convert to integer and exit. Once the floating accumulator has been con
verted to integer, you have to exit to make use of it (in the A register) . 

CONUITIONAL ASSEMBLY 
, , , 

S~ctions of in-line assembly code can be conditionally assembled, based on the value of 
s~ecinl parameters that you set up. These parameters are called conditional assembly 
It~bels, and they have the. form #Xn, where n is a decimal integer. The value of each 
parameter is established by a SET directive, whose operand is either one or zero. For 
example: 

#Xl 
#X73 

SET 
SET 

o 
1 

The SET op-code must have a #Xn label and an operand of zero or one. Any other 
usage is incorrect. 

The conditional assembly label should then appear as the operand of an 1FT (If True) 
or IFF (If False) directtve. The value zero is considered false. The value one is consi
dered true (unlike FORTRAN logical operations, where negative values are true). The 
section of assembly code follows the 1FT or IFF and is terminated by an ENDC directive, 
which has no operand or label. The section is processed if the appropriate condition 
is met; otherwise 'it is ignored. For example: 

lFT #X3 
JMP #475 
ENDC 
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The JMP would be assembled if #X3 is one. but not if it is zero. 

The lines following an unsuccessful 1FT or IFF are not processed at all, l'Xl'l'pt to sec 
if they beg-in "ENDCb". If not. they nre completely ignor'ed. This has tllt' illt(ll'o~til\i~ 
err(~ct that conditiollul assembly can be used to process 01' s\\'ip over FOHTHAN HtllkllH'l\\H 

as well ns assembly lines. Suppose that. in the section following an 1FT, t tWl'p is II 

FORTRAN di.rective, some FORTRAN statements, an ASSEMBLER statement. alld finally 
an EN DC . When the 1FT is true, all of these will be processed as written. When it 
is false, everything will be skipped until the ENDC appears. The compiler will not 
know that some of the lines are in FORTRAN instead o~ assembly language. but it does 

I 

not matter. as long as it eventually finds an ENDC lin 1· . The only thing to be careful 
about is that a FORTRAN statement such as: 

ENDC = 0 I 

would be interpreted as an ENDC line (if there is ~l blan\\. after the C) . 

Note t hat the existence of the conditional assembly feature docs not invalidate the usc 
of X in column 1 -- it extends it. Either or both features may be used on assembly 

I 

lirws. 

MISCELLANEOUS 

Here are some additional pieces of information about the use of inline assembly language: 

I . Compiler optimization and tracing features are suspended during sections of 
assembly language. Furthermore. the compiler will try not to dump out literal 
Ip00ls in the middle of assembly language. since it does not know where it would 
~)e safe to do so. If a section of assembly language is long enough. or eomes 
:ilt such 1\ place that the compiler nt'eds to dump out literals, it will produce a 
I 
tvat'ning diagnostic. and then dump out the literals preceded by a jump around 
t1\(~rn. Most of the time this will wor\\. properly, but not. for example, in the 
middle of 11 eMS test or a group of floating point mnemonics or a table of DATA 
v:dtws. To get around this problem (or to get rid of the diagnostic), you should 
insert an LPOOL directive somewhere no later than the point at which the literals 
were dumped. The jump around is not generated by the LPOOL directive, since 
it sometimes is not needed. If you need one. you should write it. Note that 
assemhly lnnguage itself does not generate anything that requires literals. They 
can only arise from preceding FORTRAN statements. 

2. If you reference a FORTRAN name that has not previously been classified, it 
w ill be implicHly classified as a scalar. 

3. You may not reference the name of an intrinsic function. since it has no location. 
If you declare it EXTERNAL. however, you can reference the corresponding 
external library routine. 

4. Continuation lines are not allowed, since column six has no special significanee. 
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Note tI at a decimal or hexadecimal value operand is not the same a~ a constant. 
That lot: 

U,A 5 

does net load the value 5 but the contents of location 5. To provide for 
constar ts would require theu'S-e of literal pools or extra base page words, and 
this i: not done. To reference il constant, you must define it with DATA. If 
you nerd a floating point constant, you must express it in hexadecimal, using 
two or more DATA lines. 

i 
The "FC RTRAN" directive, which causes yo .. u ti' exit from in-line 
back irto FORTRAN, does not have either.an pe~and field nor a 

, , , 
I 

, . 

8.15 

assembly language 
comment field. 
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CHAPTER 9 

COMPILER OPTIONS 

SUMMARY 

Certain as;)ects of the compiler's operation can be controlled by a number of options. 
These opti Jns are specified on the control command that calls forth the compiler. There 
are defaul: conditions for all of them, so that the ~ompiler does something reasonable 
when no o:)tions al'e specified. The options are ljsted below. Three of them are 
described in more detail in the following sect~ons. ' ; 

, I 

ELIST Opt ton I 

Error listi:J.g only. Normally the compiler pr:oduces a listing of all the source lines. When 
ELIST is s;;>ecified, only source lines with errors are listed, along with their diagnostics. . 

LOBJ 0ptiJn 

List Object code. An object listing can be rather long, and is often not needed J so the 
default is ~o not produce one. The object listing is printed separately from the source 
listing. blot the source lines are interspersed at the appropriate places. Thus an 
Object list:.ng includes a source listing. 

NrINARY " Option 
! 

Nt binary output. 

XON Optim 

Default is to produce a binary module. 

Compile conditional lines (with an X in column 1). Without this option I they are 
treated as comments. See "Conditional Compilation" I in chapter 1. 

ADP Option 

Automatic double precision. All single precision quantities are converted to double 
precision. This is described below. . 

RS P Optic!:_ 

'-" Reduce sC'ratchpad. If your program overflows the scratchpad when linked (which 
requires (:normous usagc, unless thcre are other, assembly language routines using 
large amo:mts), there are two stages of reduction you can ,request in the compiler's use I 
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of base page re:erences. Normally the compiler uses base page to reference sub
programs (inclucing library), arrays, and variables in COMMON. The RSP option 
causes the comp: ler to call subprograms without using base page (i.e. by using a 
literal pool adcress pointer instead). This may reduce scratchpad usage by 20-50 
words, meanwhil( increasing the size of the program by somewhat more th4n that 
(depending on: h( ,w many references there are to each subprogram and how spread out 
they are) . 

NSF option 
I 

No scratchpad. If RSP doesn't do the job, you may rave to resort to the NSP option, 
which eliminate, all base page usage from the gener ted code (except those speci
fically request!:d by in-line assembly language), at the expense of significantly 
increasing the :!ize of the program. This is mostly because subscripting without 
base page is qu;~te clumsy. , 

RTX Option 

Real time. Thi:. option must be specified when the object programs are to be executed 
under RTX. It .:auses slightly different calling and receiving sequences to be 
generated for p:'oper interface in real time. Without this option, execution under 
Os is assumed. See below for more information. 

T3 Option 

Type 3/0S execu::ion. This option causes the compiler to generate LSI-3/0S object 
code rather thaI LSI-2. It also assumes that the RTX option is wanted, even if you 
don't specify R~X. Since OS doesn't run on the LSI-3/0S, RTX is obviously required. 
Note that when '::3 is requested, the compiler will generate an external reference to 
the LSI-3/0S inltruction emulator and software console routine (F3EMUL), because 
certaini inline 'lssembly instructions (those flagged with an asterisk in Section 8) 
don't erist on:he LSI-3/0S and must be emUlated. 

! 

Run time trace. This causes the compiler to generate extra object code for tracing 
execution at rU·l time. See below. 

ANSI Option 

ANSI compatible allocation. ANSI standard FORTRAN specifies that integer, real, and 
logical quantit Les occupy t.he same amount of storage. (Double precision and complex 
occupy twice thit amount.) In most cases this does not matter, and it is more 
efficient on a l6-bit co~puter to allocate one word for integers and logicals, and 
two words for raals. If your program requires ANSI allocation (because of C~~ON or 
EQUIVALENCE ali3'nment), the' ANSI option will allocate two words for integer and 
logical variabl~s. Only the first word wi]] be used in computation; the other will 
be ignored. It3 only purpose is to separate the values so that the required amount 
of storage is t~ken. 
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There is one exception to the statement that the second word is never used. In any 
operation thlt simply steps through memory word by word, without regard to the type 
of variable, all words will be processed, including those that may be only separators 
between inge:.er values in ANSI mode. This will almost always cause such operations 
to work inca :rectly. '!'herefore you should not request ANSI allocation on any rr~lral'C\ 
that uses E~::ODE or DECODE on an integer or logical type buffer, or that Uqes .), 
FORMAT storei in an integer or log-:ical array. 
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In general. if a progrnm is compiled in ANSI mode. Ilny programs with which it 
interfaces should also be compiled in ANSI mode. If there arc not integ-l'r or logicnl 
variables in COMMON, or arrays being passed as arguments, this mny not 1)(' 
necessary. 

AUTOMATIC DOUBLE PRECISION 

If you have programs doing computation in floating point, and you find that the single 
precision accuracy of about seven digits is p.ot ~uff~cient, you can use the ADP option 
to convert the program to double precision. i Wi~hout the ADP option, this conversion 
would not be as simple as it may sound. It ?OUl? involve: 

l. 

I 

Declaring every real variable, array, and non-library subprogram in a 
DOUBLE PRECISION statement. 

2. Changing each appearance of a real constant to h~ve 11 D exponent. (Actually, 
in Computer Automation FORTRAN IV, those constants that appeared in 

3. 

4. 

expressions would become double precision anyway, but not those that stand alone. 

Changing each appearance of a real library function reference to the corresponding 
double precision version, if one exists. 

Changing F, E. and G format specifications to D. (This would be necessary in 
ANSI standard FORTRAN, which does not permit those formats to be used with 

, double precision data. Computer Automation FORTRAN IV does permit this. ) 

I 
'l~hercfore , when the ADP option is requested, the compiler proceeds csscntially as if 
thcre were no such thing as single precision floating point. This means that it takes 
thc following actions: 

1. Any name that would ordinarily be typed real (either explicitly or implicitly) 
is typed double precision . 

2. All floating point constants are automatically double precision. 

3. Every reference to an intrinsic or basic external library function of real type is 
changed to reference the double preciSion equivalent, as shown below. Note 
that in some cases, this requires a double call, while in other cases it means 
removing the function call entirely. 
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Change To Change To 

ABS DABS COS DCOS 
AIMAG DFLOAT (AIMAG) DilLE Rnmoved 
AINT DINT DIM J))(M 

ALOG DLOG EXP DEXP 
ALOGIO DLOGlO FLOAT l)FLOAT 
AMAXO DMAXO REAL DFLOAT (REAL) 
AMAXl DMAXl SIGN DSIGN 
AMINO DMINO SIN DSIN 
AMINl DMINl SNGL Removed 
AMOD DMOD SQR,! DSQRT 
ATAN DATAN TAN, DTAN 
ATAN2 DATAN2 TANlI DTANH 

I 

As with the ANSI option. when one program is compiled in automatic double precision. 
the other programs with which it interfaces should also be compiled in this mode. so 
that arguments will be of the same type and COMMON will be corre.ctly aligned. 

i 

Caution 

If you know in advance that a program needs to be in double precision. it is better to 
write it that way in the first pl~ce • rather than using the ADP option. because the 
option is not entirely foolprcof. There are several areas where you must exercise 
caution in its use. These are: 

1. 

2. 

3. 

f;)ince there is no double precision complex type. ADP does not work on complex 
fperations. 
i 
~f you declare a library function EXTERNAL. the compiler will no longer recog-
I 

ttize it and change it. What will happen is that the name (e. g. ALOG) will be 
classified as double precision (like any other ordinary name) and then called. 
However. the routine by that name in the library cannot know that it is supposed 
to be double precision. It will neither accept a double precision argument nor 
return a double precision result. You would have to provide a version that did. 

If you use a real library function (e. g. ABS) • but also use the name of the double 
precision version (e. g. DABS) to identify something unrelated (like a scalar 
or statement function) • you may get diagnostics or strange results when the 
compiler tries to substitute that name. For example. if this program were 
compiled in ADP mode: 

COMMON DCOS 
DABS (X) = X/3 
A = COS (B) 
C = ABS(D) 
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cos woo lId get an error diagnostic, while ABS would call the statement function 
DABS. Using the names of library routines for other purposes is not a very 
good i, lea in any case. 

ADP dOds not affect inline assembly code. The operands will change to double 
precis .. on, but the opcodes will not work properly. 

REAL TIME 

Any FORTRAN programs that are to be executed under RTX must be compiled with the RTX 
option. (T;.e T3 option includes the RTX option !within it). This changes the calling 
and receivil,g sequences somewhat, in order t.o c9mPly with the RTX conventions that 
arl~ used to handle real time usage of subprogr'1s. ' If you want to run the same 
program undt:r both R'fX and OS, you should nqrma1jly compile it twice. Note that if 
YOIl have a : ingle task (beginning with a TAS.K s~atement), it May be compiled without 
the RTX opt .. on and executed under OS, for debugging purposes. The execution address 
will then be. the name of the task, rather than F :MAIN. (When the same task is 
compiled wi1.h the RTX option, no execution address is generated; it is assurned that 
F:MAIN, the RTX Mainline sequence, has been :assembled separately, and will be linked 
with the ta:k prior to execution; thus the execution address is F:MAIN.) 

In SUBROUTILEs and FUNCTIONs, the local storage (variables and temps) is protected 
in real tim'··. COMMON storage is not, nor is the local storage of main programs or 
TASKs. Thi: means that it is difficult to connect a OFRTRAN TASK to more than one 
interrupt. If this is done, the TASK must have no local storage, which means it 
cannot do m\~ch. About all it can do is to call a SUBROUTINE which does the useful 
work. 

Note that a TASK is essentially a main program with a name, but there must be exactly 
one true ma:n program. There may be any number of TASKs. 

RUN rIME TRJ.CE 

whenl the TRl.CE oPt.ion is specified, the compiler generates extra run time calls in 
the bompilec program that cause it to print out trace information (on unit 6) in 
three placet: 

1. Whenev(r a labeled statement is reached, the message: 

x>xxxx LINE dddddd 

is prirted before the statement is executed, where: 

X)XXXX 

dc.ddd 

is the name of the program (F:MAIN if main program). If the 
name is the same as that on the previous trace line, it is not 
printed. In other words, the name will be printed once when the 
program is entered, and not again until a new program is entered 
(or returned to). 

is the source line number of the statement about to be executed. 
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When a t UBROUTINE or FUNCTION is entered. the message: 

x~.xxxx ENTRY 

is print( d immediately after entry. Again xxxxxx is the subprogram name. which 
will alwl.ys be printed. Note tl:!.~.t the tracing is done upon entry. not upon call. 
Therefol e only subprograms that are compiled in TRACE mode will be traced. 

When a l:ETURN statement is reached (whether or not labeled) • the message: 
! 

X~ xxxx RETURN LINE ddddd I 

is printE d before executing the RETURN. i l ' 
This informati( n is sufficient to follow the flow of, the rogram. since it will trace all 
jumps (the transfer point will be labeled) and all. calls. except to library routines (which 
are assumed to operate correctly) and to subprograms not compiled in TRACE mode 
(which are a1sl1 assumed to operate correctly). It is not necessary that all of the programs 
loaded be com{: iled in TRACE mode. As soon as certain parts are checked out. they 
can be compile- 1 normally. so only the remaining parts are tr~ced. Note that assembly 
language subp:'ograms are not traced. nor are sections of in-line assembly language. 

9.6 
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Appendix A 

STATEMENT-ORDERING AND SIZE RESTRICTIONS 

STATEMENT ORDERING - . . I 

There are a few rules about the order in WhiCh~tatements may appear in a FORTRAN 
program. Some of these are inherent in th~ Ian uage (e. g. END must come last)', 
while others improve readability and compiler fflclency (e. g. most declaratlOns 
must come at the beginning). Table A -1 divides the statements into six groups, 
labeled 1 through 5 and X. Groups 1 through 5 must appear in that order, with no 
overlapping. For example, all the statements in group 2 must follow group 1 and 
precede group 3. Any of the groups except group 5 may be empty. Within a 
group. the statements may appear in any order. Note qlat there can be at most one 
statement in group 1. 

The statements in group X need not appear together; in fact, they may appear 
anywhere after group 1 and before group 5. However, a DATA statement must 
follow any declaration statements that affect the variables to be initialized. In 
practice, EXTERNAL and DATA statements usually appear in group 1, and FORMAT 
statements in group 4. 

Table A-1 also indicates whether each statement is executable or not. Occasionally 
i~ is important to know this. For example, a DO loop must end on an executable 
s~atement. 

I 

A.1 Revised March 1975 
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Table A -1, Statements and Ordering 

... ," .-,----.- --.--. ---_. - - .------. - .... - --.---"--- ,.-. .--

. <'~J'OllP Statement ' Executable Non-- eXeel.ltllhl!' 
. -' ... -_.'- - . . ... _~."- ,- -.--- -- .. '. - - ---.---- .. __ . -- . - -.". 

,---" 

BLOCK DATA X 
FUNCTION X 
SUBROUTINE X 
TASK I 

i 
X 

2 i COMMON X 
COMPLEX X 
DIMENSION X 
DOUBLE PRECISION i X 
EQUIV ALENCE X 
INTEGER I X 
LOGICAL X 
REAL X 

.-,--._--

3 Statement Function X 
- _._-- - _._--- - .. -- _. __ .. __ .. - .-----.~.-- 1--- --

4 Assignment X 
ASSEMBLER X 
ASSIGN X 
BACKSPACE X 
CALL X 
CONTINUE X 
DECODE X 
DO X 
I<.NCODE X 
l~ND FILE X 
GO TO X 
IF X 
Tn -line assembly 
INPUT X 
OUTPUT X 
PAUSE X \ 

READ X 
RETURN X 
REWIND X 
STOP X 
WRITE X 

-~-.-

5 END X 
_._-------------

X DATA X 
EXTERNAL X 
FORMAT X 
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OBJECT PROGRAM SIZE RESTRICTIONS 

Due to object program layout. the total number of subprograms. unique arrays. dummy 
arrays and unique common scalars rcferenced must be less than 248. 

Due to the structure of the compiler. there are certain other progrnm si ze restrictions. 
The number of each of the following items must be Jess than 1023: 

Scalar Rnd Array Variables 
Common Variables 
Equivalenced Variable Names . 
Statement Numbers I 
Names in Explicit Type Statements I 
Unique REAL DOUBLE PRECISION and coMpLEX Constants 

• I 

Umque INTEGER Constants 
Unique Subprograms called 
Arithmetic Statement Function Definitions 

The total leng·th of all Hollerith constants must be less than 1023; this includes character 
strings in OUTPUT statements but not in FORMAT statements. The length of 11 Hollerith 
constant is the number of words (that is. half thc number of characters) in the string. 
plus 3. 

A.3 Revised March 1975 
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APPENDIX B 

COMPILER LISTINGS AND DIAGNOSTICS 

COMPILER LISTINGS 

The full listing of a compiled program consists of foul' parts: 

1. Source listing 
2. Variable storage allocation 
3. Object listing 
4. Summary 

When no special options are requested, the object listing is not produced, but thc other 
three are. The LO (List Object) option causes the object listing to be produced. If the 
EL (Error List only) option is specified, the source listing is suppressed, except for the 
first line and any lines that have errors. . 

Figure B-1 shows a complete program listing. For further explanation, please refer to 
the FORTRAN IV Operations Manual (96510-01). 

COMPILER DIAGNOSTICS 

Figure B-2 is a sample program for illustrating the format of compiler diagnostics. 
Most errors are detected during the Scan phase and are printed on the source listing 
immediately following the statement in error. A dollar sign is printed underneath the 
poisltion at which the error was detected, followed by a brief message. If the message 
is Ifollowed by W's, it is only a warning. If it is followed by E's, it is an error and . tt+ statement has not been generated. Instead, a call to II run time error routine is I 
geinerated. Thus if any statement with an "E" type error is executed. a run time diagnos
tic w ill occur. 

If thcre is more than on€; dollar sign printed, the count at the beginning of each message 
indicates which dollar sign it refers to, counting from left to right. Note on line 0013 
that both messages refer to the same dollar sign. 

A few error conditions are not detected until the Allocate phase (or even the Generation 
phase) ,so the diagnostics for these would appear in the allocation map or in the object 
listing. For example. the UNDEFINED LABELS and ALLOCATION ERRORS messages 
in Figure B-2. 

Most of the error messages are self-explanatory, but the FORTRAN IV Operations Manual 
contains a complete list of them. along with descriptions of possible causes. The Opera
tions Manual also describes the compiler abort messages (usually caused py hardware 
failure) and the error messages produced at run time (when the program is executed) . 

Note that the last line of the summary (i. e. the last line printed in any program listing) 
indicates how many errors have been detected. 
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PA(,t "~hJI 

UlJ FILL: 
~9/2~/74 1~1~1125 
ruuT UPTIUNS: 

FORl:4 (A0) 
LO 

~,,01 

L:; ~ (1.2 

0"'~J 
0~i'4 
~lrl~ 

r~(,'u 

0"O1 
QI'J'~~ 
e~)I..; 

( U I .0 

"~A t 1 
~~cJ'~ 
;'\::I1J 
l~~ 14 
r~ II ! ~ 
\~.: . () 
(hi II 
(" U , ~~ 

G'\l 1 'J 
,'~I? U 

, .' 2 ! 
r ,. ? 2. 
(lJ)J 

\.J ',J'. <.I 

\1.;? ~ 

"~J? t.> 

" ! ) 

iH.j"'ll 
(~ ,j? rJ 

c 

L 0(HONSlRATl 08JECl L1S1lNG 
!"Tl(jr~ ~N(25), LL(10) 
DQuBL[ PRECISION OX, DY 
LOMMUN MM(10~), M /ALK/ Y 
L~JTVALENCl (L,LL) 
lSI (1'.0) • Kf)*8 

1~ i'. : (l+J~~).1"1 .. 74 
~\~q 1) : K 
1<. :. A~SO+4) 
0X = OAHS(JV/4.3) 
IF (UX ~LT. ~) GO 1~ 70 
LALL ~UH{L+3~~/7HABC~f ,Y+4} 

~ ~, ... R I T E. (t.> , j" ) '( 

~.1 h);~I~AT( 5)(,15 I' vALUE.S.' ) 
If (~ .FCaI'. M) ~n TO 117' 

"::;~l~rjl[R 
LAP :2A 
~un ~ (LOC~L VAHtARL~ IN HANGE) 
JfA *t3P(M'tSNAM) (:)PfCl~L ~nsTP' NAME) 
Jt1P *5", CFOHWARD Rf.FfHfNCE IN RANc;[) 

~~J Rl~ j2,' (10 FORCE L1TERAL POOL) 
~UR'I~AN 

I,) 0 tJ ~ I = 1, 1 ,~ 
til' I!! (1) ;: -1 

I\S~JGN 411.1 TU K 
~I ~.' ( ] ) ~ 10 

~;l .)p 
Li'J) 

Figure B-1. Sample Compiler Listing 
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PI\(,t .:H'I/J:l 1)(1/2111/74 1~:~1:~~ fORT~4 (Af') 
[P.l ra.L: Fn~T UPrtuN~: LO 

, 
~u'i 1 L [)UIOI~Sl J?/I fl. U~J[Cl Ll~IING T: 

,,", 

IhJ(12 PTll. .. £R NN(2b), LL ( h.) i;I'"l 
'i'l 

"" ,""Ur1J l10uALf P k ( L I !) I 0 ~J ox, D~ j, 

(I ,1t"'1~ lJIMI-1UN M~HIP10), M IRL.,KI .., 

0~'~'~' U~uJ "AU Nrl ll,lL) 
11l}Qc 1 ~; f (K n J : K[HtH 

100iJJd If~C'l1ll t JMP NM7 
:~IJJ9 S ~tHh" N~fj ENT 
,V'103A 2FY~~ ~ J~T tltfiP(fIRDMy) 
:~iJ=U : ~~HH ~ATA 1 i 

, 

:~uJ~ :~IUr1~ ",(1 DAfA ~ i 
: Cl • ..!JL) : R7(H LUA .",d 
:~03L Itl/l~2 ALA 3 ! 
I ~iJJf zf7~t> JMP .*Ni tl 

:~ I'J r'\ • ~tJ ... :;. U +3,)0) *M - 14 
I 01 kl4 U ~M7 E laIlJ 1~~4~ 
:OIiJ4iJ I B C! ~ yJ F "'hI LlJA .IIIIC1 :",12C 
:1'1..)41 : 8l:.1f ~un 'L 
:C'lKj42 :9AQ!0 F SJA ~T~ 
: 0·u4j :F<JP'1i:1 lj JST *8P(faRMP,() 
: OI 04·l :0~64 L: C' A fA M 
:~Jo15 :~[;4,\ SAl 74 
:C1iJ4b :9U A 5'1 A K 

().IIjt. II .... (Ii c y, 

IV'lkJ41 If-bl/l LDX I 
: i ,,;.Hl :9Dt':.1 tj SIA 'ItltRP(Mt-l -1) 

II \I (. 1 i. = L\~!.J(j"'4) 

:C1t}-1y :rlJ~k:l d 1sT *BP(F:RRF.l) 
: O\·,jll A : A ." (~kl I- LLJR ~HCl 
:r~Jo1b : b ~I" 1(1 (j 4l)D t-~P(Y ) 

:~J4C : 9/d,hl t ~IA • T 1 
J~iJ4l.J :t'!kJ·~t> ASS 
;rAoj4L :~'L20 SIA )( 

:~ d , tJ LJ)( = f)P~S(I)YiJ.j) 
: I~ U 11 f :1·61LJ LLJD D¥ 
:~IJf)~ : A~r'h:' f" 1)V~ .HC2 
:O\J51 : n vI I'l ':> <\t3S 

C "1111 
' ~L'5';:; : 9L ~\? SIA Dx 

. tf q)X .LT • ~) GO HI lVJ 
, Ii'.; 5 j : eI i("~ ~1 X1T 
:tilJ54 :?0AJI f JAM iIIM9 

'h,lt '- l "".L SU~lL.3~0,7rl~BCL)E ,Y+4) 
:~\J~~ :F90w3 ~ JST *I:jP(SUA ) 

%~k.l50 :~~03 f)ATA 3 
:~\J51 :l(IiJ~1.1 ~ DA TA' .I~ 

:~iJ~b : (" k) ~ 0 F () A r A NHCJ 
J0J~':j 10VJ~hl f' r)ATA • r 1 

Ch:J1 J :' ~J ~ fU 11:. ( tJ , j C1 ) ¥ 
:~1J5A r F ~"':'; t3 .. 2", JST t-SP(f,R\ljF ) 

:Ii'U5u :~~"'Id F DATA N,C5 
:~U5L :"'0001 DfdA N3'" 

Figure B-1. Sample Compiler Listing (Cont'd) 
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PM,L tH'I1iJ4 ~f)/2u/74 10&51:2~ t"llkl.4 CAe) 
tlll r lU':: FOuT UPTJO"lS' Lfl 

0;.;14 

~Jlv 
r'~ •. J! ; 

O~'24 

:~~5U IF9~~ ~ J~T 
:~~5L 10~0~ C DATA 
:V'J~t :F90~ Il JST 

*I:3P(FIRROL) 
Y 
*BP(F lRSIO) 

10 FORMAT( bX , 15 , , vALUES.' ) 
:~~~~ zAtl~~ N]~ TtXI 

if (K • r t,)'. ~) L;OTO 10 
,0I(J6L<J I B6J4 
~OIiU"l ,9U!1/! Il 
:~1il6~ 121013 F . 
:~~~0 _~10 

"~~l~t3L£'P 
LAP :2A 
10~6J :Cti2A 

"uD K 
I~J64 88[38 

srA *~P(MY:N~M) 
:~\J65 :99~0 t:J 

JMP ~51O 

:I7IJ6b If~0~ F 
RES 32,-

,(:I!~67 :A(oA~ 

f(j~lRAN 

~Hj L)(l blJ 1 =- 1,1('1 
'~JA7 :C4Plt 
100ItlRb IE(58 

hU MM(l) • "1 
I CiI(JfH, ,C701 
: OI~HA z 9D~0 d 

" ~ ~ J L1 "I " k; T n K 
:~OHD :(2!"'1 
:(i\~8t.: :01iJ30 
I ~0AD z0DOIA 
:OI~RL :21C6 
: 0J8f JB2~13 F 
:~.J9ifj lf2\?1J r NL 
:i?lJ91 sF2('1IJ F 
1~~92 .9[66 

,.."-1 (J) .. Ii.l 

LOA 
SUB 
JAZ 
HPJ 

LAP 

JMP 

Rt.S 

LXP 
STX 

LAM 
STA 

AXI 
TXA 
SAl 
JAL 
LDA 
JMP 
JHP 
STA 

'(5x,15,' VALUE~.')' 

I 

K 
*I:3POI 
-Mll:1 
lit.l~4~ 

) 

I 1~0~~ 
tL~CAL vARIABLE IN KANG[) 

(SPECr~L SYSTEM NAHL) 
.t3P(M"'IN~M) 

(fOHWARD RfFERENCE l~ RA"lGE) 
"-:>0 

(10 FOR~E LITERAL POOL) 
32, • 

t 
I 

110 
HMl1 
H4~ 

"-M12 
HM9 
K 

-1) 

LITEHhl. POul 

0)) IJI~D 1 ~C'I~ I UNln E *E *E .E*E.~. *E *E.E *E *E *E *E*E.[.E "E*r.r *E *f.r.E.r *f *r *E *F.. 
I~J93 zF~0~ ~ '51 *bP(f'R~R~) 
:~Jg4 :~U1A )ArA 26 
:~J95 ~0100~ f ~ATA ~HC4 :b3~6:4167 

e\.J?l 71d 5TuP 
I~J96 N7'IJ EQU ,.,096 
:li'IvJ96 : F fllflII~ ~ ~~9 JST *t3P(F:RSTO) 
:PI\J97 :0~0~ ,)"TA 0 

~j IJ;" 0 I:.Nu 
H'IJQij :012C ""Iel DATA J130 
1~~99 r418k1 "Ret ~ATA 10768 
:li'IklQA :~001l' I')ATA 0 

Figure B-l. Sample Compiler Listing (Cont'd) 
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:,) 

I 

t ;, 

~ I 

.. , 

term ' 't' ''t'' Y , '"tt t' {' tlNttr *'Xu S 

~A~l d~~5 ~9/2~/74 l~z~lt~~ fORT;4 (A~J 
110 rIll: FUUl UPTJON5: LO . 

1~IdQ~ 1418S1 
: ~09l: :9999 
IIfIkl9D .999Y 
:~KJ9l :9"19A 
J OIU9F :0ti3"1lJ 
:~IJAkJ 10l",,,,i' 

&li\,JA:C I t~"67 
~OIklA3 ,lihJ07 
: ~\,jlA 4 :C1C~ 
:~klA5 ,CJC4 
UIJA6 :C!)Aw1 
:~uAI I A ILl A [3 
:AJAI) 101d~6 
,~,JA9 :6JCti 
:~~AA :4167 

!j\.'·~r PU("~ A:1 S LALLlu 

fa . ", " 4; _ " 't' f> t A~G~ '\IAMf 

l,lt' ... RtAL DA~S 
I : ~ ... F ~u'" T 1 j-Il F n~ROL 
I.~ '( : N A 11 r? oj ,,~ 1 I t-I [ F:f{EHH 
I ;h':0u Ru"lTr,~l f,({RlL 
t : P r 7 ~~uN 1 Hll F r Hff-' 
r :r'MDy ru~1T HIE 

~,j hT(',f,\jT LAfLLS 

{ dCN lAHLL U~i... LOCN 

: Jr,<." .If .r ~~96 
:~~nl(JvJ .. J ~ ~OI,MAT : ,H:l67 
: 'J(1ijC1 iii D .~ 00 ft'4r"l :.o04~ 
• Jc;1lJfi AI 1'1 f : ~J04'" 
: \d(-\Y? 1It1'1} ; 

Or .! r k '( • : I/H1 j ti 
IlIW bRA M ~ J Z l:. r: : VI ~iA b 1'1 0 H [) ~ 
BA~L r'Ac,r 'J!:>Ell=:Oh111D ~OI\D~ 

tII~C~, DATA '6777 
DATA -2621:; 
~/dA -2621b 
DATA -26224 

fll6TI(J 'ATA 0 
-.11 ---". DATA " DATA 1\140 

DATA 7 
I\IHC0 DATA 'A~' 

DATA 'eD' 
DATA I E ~ 
I)ATA . ~ ",te5 OATA :6 

",RC4 DATA :255 ? 
DATA :167 3 

! 

IY~r ARG;S NA"tE 

DOUBLE 1 SUB 
H'JNll '4t. FIRSTO 
RUNTlh4£ FIRSTo 
~UNll~i:. F:ROBL 
RUNTI"'E F:RDMy 

I "~ll. USE LUCN 

"'10 1~~5A 
~::>et :JAb7 
"M7 III:tl1JJ9 
"Mh'l CllJAd8 

( u ~ t 'l. A I I U N r u ~1 tJ l [ r l 1 f: K R 0 R S 

TYPE 

REAL 
RUNJIME 
RUN1IME 
RUNTlMf 
RUN rIMf 

LAFH.L 

N2~ 

N40 
NM8 
tIIMl1 

Figure B-1. Sample Compiler Listing (Cont'd) 
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ft' i" ?"t' W' 'no IS' ""'H' w·tnu% t e!McM'''''!H l::'r 1 '''' 

P A (J t. ~ ~ ~ t 0912 oJ 17 4 111 4 1 : 16 FORT;4 (A0) 
un FILL:· fOUr UPTIONSz 

0lH11 L 

"'''''~~ 
0,joiJ 

ufMONSTRAT~ COMPiLLR DIAGNQSrICS 
o I M ~ :~ SID N r~ M ( 1 i6, 1 0 ) 
COHMUN X, '(, )( 

S 
OLCL~HATIUN CONf(ICl E*l*E*E.E*E*E*E.E*f*f*E.E.E.E.E*E.E*E*E*E*l*E*l.~. 

0Ul4 
0~H~ 
0k)(H,l 

~QUI~AL(NCE (X,Y) 
LOLiICAL LGL, N 
lNTrGf~ A, , C 

S 
01) EXTliA CO~HA w*w*w*w*w*w.w*w*w*w*w*~*w~w.~.w*w*w*w.w*w*w*w*w*w*w*w*w*w*w 

0unl SF(p,n) ~ P+Q/2 
0~~d X = lf~~ + ~uL 

, S 

01) CUNSTANT SIZE E*E*l.E*E*E*E*[*E*E*E*E*E*E*E*r*E*E*E*E*E*E*E*[*E*E*E*!*f I 

~~) TYPl (ONFLILT E*E*E.r.*r*r*r*E*E*E*E*E*E*E*E*r*E*E*[*E*E*E*E*E*l*E*E*r*E 

0~~~ IF (A) 2,3,2 
0u1~ 2 X = S~HT(A) + SF(Y) 

$ $ 

F~) AHGu~('jT LnNvlRIEO ~.w*w*w*w.w*~*w*~*~*w.w*~*~*w*~*w.w*w.w*w*w*w*W*~.W4 

I 
f'J 1 1 I 

I 
b ( 1'~ ) ;;: ILl 
$ 

~1' 'J~Ol~lNSIUN~O [.E*E.E*E.E*ftE*E*E.E*E.E.E*E*r*E.E*E*E*E*E*E.[*~.E*E*rtf 

liH.lU x ~ lRX+A8SCSX))/CVAL+3)l 
$ 

01) SYNJAA E.l.l*l*(.£*£*E*l.£.l.~*[.l*E.E*E*E*E.E.E*E.E.E.£*E*E.E*E.L.l.~j 

0utJ J • MMlN) , 
o 1) 'I uTI, J T L r. c::. R [ .. E • [ * f. * E • E * E • E * E * E ." E ." E *r * E * E .. E • E * E * E * E * E * E * E * E * [ * E • E • E * E • f 

",p 1 4 E "II) 

Figure B-2. Sample Diagnostic Listing 
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1 ' t 1 r' tt 1"$1'% tf"mMt wtN, . hi " 'I1#! 

PM)L ~Hh12 
lIO rIll': 

~9/2~/14 11141:16 fORT&4 (A0) 
FOur UPrION~1 

IJ N [II:. fIN I:. n t. A Ii t. l S l ... l .. L .. t:. "E .. L. ... t:. ... 1: ... t. .. t. It L ,,(. " E "E "E ... E " E. ... E * (. " Eo ... E * I:. ... l " l "E "l *t " l *1;. • t:. • 

,3 f 1 ~ :3T r~ t:.r A I L I '~E 9 

(U~'MON UI UCK/~ :tlCM~'1 ALLO(;ATIU"'I 10~04 ~ORDs 

L J ( ~~ ~ A \,.~ TYPf 

& J 1U J X t'(EAL 

A tiP \ Y AU LJCAT1U,'f 

lUI " N~*_ T VPf 

• 'J(hl\~ 0..4., PHf \;EH 

~'L It \.. fn~ A I L 0 L. A i I U N 

: .J"u 4 A 
I ~"'I 0 f) N 

(NrrG.EI'< 
LOGICAL 

WURUS 

2 

WORl)S 

1 
t 

LlICN NAML 

LOCN r-.lAM£ 

:~065 J 

r. Yr. t 
RE~l ' 

I 

TYPE 

rYPE 

INTE(;ER 

WUROS 

2 

WUROS 

t 

ALL IJ C f\ T .. UN£:' R I ~ () R S r /I f ,,[ • r: .. [ • E ... E .. E * E .. E .. E. * E .. f It E .. E .. E "E .. f '* F ... E ... E .. E * E * l * E .. E .. E .. E • E .. l._ 

'1 

o 

Figure B-2. Sample Diagnostic Listing (Cont'd) 
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t " e' klP'''f'rBs,,,,'' 'l'PltM" MUM't 

PAr-I:. I'.l~~' '19/2~/74 1tl41116 fOfH;4 (A0J 

'-

LIn r !Ll: four UPrIONSa 

r :Rt:.~R RUNTIME" 
f:RHfL RUNTIHl 

5 I AlE M [ IIj T L AFH .. L ~ 

lUCN LA~lL USi.. 

'-.J~7f3 ~~ 
I ~1'uH ~M1 

r~nkYc:JV107 

l~l~IF--'- r YPf 

S~HT KEAL 1 
FIR(')MV HIJNTIMf. 

LUCN I.A8t.l. USE 

:fFfF N3 

PRO~RA~ Sjlls:~~94 ~OKDS 

BA:)I:. PAuE Usr::i,)~1~iJ"'4 WOkDS 
(U~PI~ArIUN (UMPlLTl 12 ER~ORS 

NAME TYPE:: 

faRSTO RU~TIME 

LUCN LABEL Ust:. 

11d~76 ~H2 

Figure B-2. Sample Diagnostic Listing (Cont'd) 

B.9 



,! 

-, 

, 

I -, 

COMPUTER AUTOMATION. INC, §]} 

APPENDIX C 

INTERNAL DATA FORMATS AND ASCII CODES 

1. Integer. 1 word, unless ttre--ANSI option is requested, in which case 2 
words are allocated (for variables) but only the first is used. Bit 15 is 
the sign bit, and the remaining fifteen bits are the right justified integer 
value. The negative of a number is its twq's complement. 

15 o 
S Integer 

I 

2. Real. 2 words. The first word contains the sign bit, an eight bit exponent (or 
characteristic) of base two, which is biased by 128, and the high order seven 
bits of the normalized mantissa. The second word contains the low order sixteen e bits of the mantissa. The high order t-bit in the normalized mantissa is not 
present, but only implied. This makes room for one more bit of precision. 

,'"i 0 

It also means that there is no combination of bits that is not a legitimate normalized 
floating point vslue. And it means that even though the first word of n floating 
number is zero', the value may not be, since there may be bits in the lower order 
mantissa. 

The exponent range is 2- 128 to 2+127 . The resulting range of values is 
1. 469368E-39 to 1. 701411E38. The 23 bits of mantissa (plus implied high order 
bit) give an accuracy of somewhat more than seven decimal digits. 

This is a sign-magnitude system. The negative of a number is obtained by 
merely setting the sign bit; the mantissa and exponent do not change. 

15 14 7 6 0 

IS I Exponent I Mantissa I 
15 0 

I Low order mantissa I 
3. Double precision. 4 words. Exactly the same as real, except that there are 

two additional words (32 bits) of mantissa following the first two words. The 
exponent range is the same. The 55 bits of mantissa give an accuracy of 
about 17 decimal digits. 

15 14 7 6 o 
S Exponent I Mantissa 

Low order mantissa 

Lower order mantissa 

Lowest order mantissa 

C .1, 
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4, Complex, 4 words, Consists of two single precision (real) flolltinl{ point 
numbers, The first is the real part I the second the imaginary purt, 

5. 

6. 

Logical, 1 word I unless the A~§_~ option is requested I in which CIIH(' 2 words 
arc allocated (for variables) but only the first is used. Only the sign hit (hit 
15) is significant in logical operations, Any word that is negntive (bit 15 == 1) , 

is true I while any word that is positive or zero (bit 15 = 0) is false. Note that 
t he compiler generates . TRUE. and . FALSE. as all ones and all zeros respec
tively, but this is not necessary I since only th~ sign bit is tested in logical 
operations. I 

, I 

Alphanumeric, Hollerith constants are 1 word I(two characters). Alphanumeri,c 
string constants can be any length, always' with two characters per word. and 
are preceded by a wo,:,d containing the (right justified) integer count of the 
number of characters in the string. ' 

Each alphanumeric character is an 8-bit ASCII code I with the high order bit 
alwnys set to one. There are thus 128 legitimate ASCII' codes, but only 64 
(,r them are graphic (printable) characters, These are shown in Table C-l. 
along with their hexadecimal equivalents. We do not recommend that you 
tuke advantage of knowing these hexadecimal values (i. e. by doing numeric 
calculations with alphanumeric characters) I because the values vary widely 
on different computer systems. The table also shows the punched cord code 
for each character. 

Note that the three characters [, \ ,and ] do not print on the teletype. 
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............. . 
Table C-1. ASCII Character Codes 

, 
.. __ ..... 

Hex Hex 
Character Value Card code Character Value Cnrd code 

Blank :AO Blank @i :CO 4-8 
I :Al 11-2-8 ~ :C1 12-1 
" :A2 7-8 :C2 12-2 , 
# :A3 3-8 

~ 
:C3 12-3 

$ :A4 11-3-8 :C4 12-4 
% :A5 0-4-8 El :C5 12-5 
& :A6 12 F :C6 12-6 , :A7 5-8 G :C7 12-7 
( :A8 12-5-8 H :C8 12-8 
) :A9 1l- 5- 8 I :C9 12-9 

i 

* :AA 11-4-8 J :CA 11-1 
+ :AB 12-6-8 K :CB 11-2 
, :AC 0-3-8 L :CC 11-3 
- :AD 11 M :CD 11-4 

:AE 12-3-8 N :CE 11-5 
/ :AF 0-1 0 :CF 11-6 
0 :BO 0 P :DO 1l-7 
1 : Bl 1 Q :Dl 11-8 
2 : B2 2 R :D2 11-9 
3 :B3 3 S :D3 0-2 
4 : B4 4 T :D4 0-3 
5 : B5 5 U :D5 0-4 
6 : B6 6 V : D6 0-5 
7 : B7 7 W :D7 0-6 
8 :.B8 8 X :D8 0-7 
9 :B9 9 y : D9 0-8 

:BA 2-8 Z :DA 0-9 
; :BB 11-6-8 [t :DB 0-2-8 
<, :BC 12-4-8 \t :DC 11-7-8 
= :BD 6-8 ]t :DD 0-5-8 
;- : BE 0-6-8 t :DE 12-2-8 
? :BF 0-7-8 - :DF 12-7-8 

t Not available on teletype. 
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APPENDIX D 

ANSI COMPATIBILITY 

The Introduction stated that ANSI stundard FORTRAN is n subset of Computer Automation 
FORTRAN IV, i.e. , that any legal ANSI program will work the sume wny in Computer 
Automation FORTRAN IV. There are two minor exceptions. The first wus changed to 
produce smaller object programs. but can be ch4nged back by the ANSI allocation option. 
The other is quite obscure and rarely occurs .• at· d we have implemented it differently 
because we felt it made more sense. The two dif erences are: 

i 

1. Integer and logical variables occupy dnly ne word. while real variables 

2. 

, 

occupy two. ANSI says they should be the same. It is hard to do this 
efficiently on a 16-bit machine. so normally we do not allocate them that way. 
However. you can request this by using the ANSI option (see chapter 9). 
This difference is important only in certain cases of mixed mode alignment of 
COMMON or EQUIVALENCE. ' . 

According to ANSI. a positive scale factor of value n used with an Ew.d 
format produces n significant digits to the left of the decimal point and (d-n+l) 
to the right. That is. as digits are added on at the left. they are taken off at 
the right. beginning at n=2. The effect for n>d+1 is undefined. In actuality, 
almost all FORTRAN systems keep constant the number of digits to the right 
of the decimal point. as shown in chapter 5. under IIp Specification" . 

AfDITIONAL FEATURES 

I I 
O~l the other hand, there are a number of significant extensions to ANSI FORTRAN in- I 
cl~ded in Computer Automation FORTRAN IV. as well as some minor extensions. These I 
are listed below. 

General Features 

1. In-line assembly language. 

2. Conditional compilation (X in column 1) . 

3. Automatic Double Precision (ADP) option. 

4. Any number of continuation lines. 

D .1 
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5. Extra library functions: 

DDIM 
DFLOAT 
DINT 

DMAXO 
DMINO 
DTAN 

DTANH 
lAND 

--fEaR 

COMPUTER AUTOMATION. INC. ~ 

INOT 
lOR 
TAN 

Data and Expressions 

1. 

2. 

3. 

4. 

5. 

6. 

Lower and upper subscript bounds on arraY ••• s 'If a dummy array, both limits 
may be adjustable (specified by another dummy . ' 

, 
, 

Any number of dimensions on an array. : , 

Any integer expression may be used as a subscript. This includes subscripted 
subscripts. 

Names of any length (first six characters significant). ' 

Hexadecimal constants. 

Hollerith constants in expressions. If standing alone on the right side of an 
equal sign, they may be as long as permitted by the type of the variable on the 
left of the equal sign. Otherwise they are integer (one or two characters) . 

7. Long alphanumeric strings enclosed in quotes (in DATA statements or argument 
Usts) . 

8. J. re~l.constant in a double precision expression automatically becomes double 
clreClslOn. 
I 

9. More cases of mixed mode expressions are allowed, including: 

• 

a. Integer may be mixed with real, double precision, and complex, using 
the operators +, -, *, and / . 

b. Double precision may be mixed with complex using the same set of 
operators. (The result is complex. ) 

c. An integer may be raised to a real or double precision power. 

d. Integer may be compared with real or double precision, using any 
of the relational operators. 

e. Complex may be compared with integer, real, double precision, or 
another complex, using only the operators . EQ. or . NE .. 
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An assignment statement may have a complex variable on the left 
and an integer. real, or double precision expression on the right. 
(The latter involves a loss of precision.) 

l 
10. Boolean operations, using_~~ intrinsic functions lAND, lOR. IEOR I and INOT. 

11 . > and < may be used as relational operators, in place of . GT. and . LT .. 

12. t may be used for exponentiation, in placel of **. 

13. The sequence .NOT .. NOT. is permitted. 

Statements 

1. Free form I/O statements I OUTPUT and INPUT. 
I 

2. Internal data conversion statements I ENCODE and 'DECODE. 

3. T AS K statement, for real time programs that are connected to interrupts. 

4. END= and ERR= options on READ and WRITE. 

5. New FORMAT specifications: T (Tab), Z (Hexadecimal), I (Alphanumeric 
string), $ (Preceding dollar sign), and * (Asterisk fill) . 

6 Other features in FORMAT statements: 

a. All of the numeric formats (I, F ,E , D ,G) accept any of the numeric types 
of data (integer, real, double precision, or either part of complex) . 

b. Comma termination of numeric input fields. 

c. Deeper nesting of parenthesized groups, to eight levels. 

d. The first T or F in a logical input field determines the value, rather than 
the first character (so . TRUE. is a permissible input field) . 

e. The A format also works with double precision variables. 

7. Features in the DATA statement: 

a. An unsubscripted array represents all of its elements. 

b. A long alphanumeric string may initialize any number of variables 
(or array elements) . 
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c. Hexadecimal constants may be as long as required by the variable type. 

d. Variables in labeled COMMON may be initialized in any program. not 
just in n BLOCK DATA subprogram. 

8. DO control parameters may be negative or zero (except for the increment) . 

~). A stntement function definition may reference array elements and Hollerith 
constants. 

10. In EQUIVALENCE. a scalar may be followedby ~ position count enclosed in 
pnrentheses (in the same manner as an array n4me,) . 

I i 

11. P A U SE and STOP may be followed by a deci~al ponstant. rather than octnl . 

12. The END statement may be labeled. and simiulates a STOP or RETURN if necessary. 

Syntax Relaxations 

1. The parenthesized list of statement numbers in an assigned Go TO is optional. 

2. There may be a comma ina DO statement between the teI'minatingstatement 
number and the control variable. 

a. There need not be a comma in the following places: 

II. In a computed GO TO. after the right parenthesis. 

b. In an assigned GO TO. before the left parenthesis (if any) . 
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