

DISK 1B TECHNICAL MANUAL

HIGH - PERFORMANCE FLOPPY DISK CONTROLLER
FOR $\mathbf{8}^{\boldsymbol{n}}$ AND 5.25" DRIVES
00

00

Preface

This manual describes the features and functions of the DISK $1 B^{\mathrm{tm}}$ board. It also contains information on how to program the DISK 1B. This is a reference manual for programmers, hardware engineers, and anyone else who needs to understand how the DISK IB functions in a CompuPro ${ }^{\mathrm{m}}$ computer system. It is not a troubleshooting guide or a repair manual.

This manual begins with an overall description of the board and a detailed account of the switch settings. For those secking more details on the DISK 1B, a functional description follows the switch setting section. Programming considerations, specifications, and schematics are also included.

For those who are interested in getting "up and running" in a hurry, please refer to the software installation guide provided with your operating system.

Contents

DISK 1B TECHNICAL MANUAL
Copyright 1986 Viasyn Corporation Hayward, CA 94545

Part No. 8261-0101A
Filename: DISK1B.MAN
Board No: 236 Rev. A

DISCLAIMER - Viasyn Corporation makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, VIASYN reserves the right to revise this publication and to make any changes from time to time in the content hereof without obligation of VIASYN to notify any person of such revision or changes.

Registered Trademarks: CompuPro; Viasyn Corporation. IBM; International Business Machines, Inc.

Compound Trademarks: Concurrent DOS 8-16; Digital Research Inc. and Viasyn Corporation.

Trademarks: The CompuPro logo, DISK 1B, System Support 1, System Support 2; Viasyn Corporation.

All rights reserved. No part of this publication may be reproduced or transmitted in any form, or by any means, without the written permission of VIASYN. Printed and assembled in the United States of America.

Overall Description
Installing the DISK 1B Board 2

Switch Settiags

Ss	4
Switch Summary	5
Switch Description	5

Jumper Settiags

Jumper Summary	7
Jumper Description	10

Functional Descriptloa

Disk Interface Port Map	13
Data Rate Select	16

Floppy Disk Controller Reset
Disk Controller Reset16
py Di
Wait State Enable 17

Arbiter and Priority Selection 17
Motor Control Enable 18
Boot EPROM 18
Programming Considerations

Minifloppy Drives
20
Programming Example 22
Appendix A Specifications 28
Appendix B Manufacturers Reference 29
Appeadix C Disk Drive Jumper Settings 30
Appendix D Schematic Diagram 31
Appendix E Component Layout 37

Tables

Table 1:	Switch S1 Functions	4
Table 2:	EPROM Addresses Selected by Switch SW1	5
Table 3:	SW1 Settings for EPROMs and Block Sizes	5
Table 4:	Summary of Jumpers	7
Table 5:	READY to FDC on DRIVE SELECT	11
Table 6:	Jumper J13 I/O Port Addressing	12
Table 7:	I/O Port Overview	13
Table 8:	Drive Select Register Description (Port 0)	14
Table 9:	Drive Status Register Description (Port 2)	15
Table 10:	Motor Control Register Description (Port 3)	15
Table 11:	Data Rate Select	16
Table 12:	DISK 1B Connector Pinouts	19

Overall Description

The DISK 1B provides an interface between the IEEE 696/S-100 bus and up to four $8^{\prime \prime}$ or $5.25^{\prime \prime}$ floppy disk drives. Connectors on the DISK 1B supply all the signals necessary to control these drives. Designed for full electrical and mechanical compatibility with the IEEE $696 / \mathrm{S}-100$ bus standard, this board boasts several innovative features including:

- 24-bit DMA data transfers with the ability to cross 64 K boundaries.
- Priority arbitration for the on-board DMA circuitry that will allow up to 16 temporary bus masters to operate without conflict.
- I/O mapped control for uninterrupted memory space.
- An advanced, third generation Floppy Disk Controller (765A or 8272A).
- An advanced digital data separator for reliable data transfers that eliminates adjustments.
- Provision for running both $5.25^{\prime \prime}$ and $8^{\prime \prime}$ floppy drives at the same time.
- On-board boot EPROM with the capability of supporting many different processor and peripheral boot routines.
- Software selectable floppy data rates to allow support of many drives.

Installing the DISK 1B Board

Basic Installation

Step 1. Unpack the Board.

Along with the board, you will find two card extractors in the plastic bag.

CARD EXTRACTOR

Step 2. Install the Card Extractors.

1. Hold the board so the component side is toward you. (See diagram below.)
2. Insert the peg on the card extractor into the hole in the right corner of the board. Fold the extractor over the board's edge until the extractor's hole snaps over the peg.

Step 3. Check Switch and Jumper Settings

For standard switch settings for a CompuPro operating system check the operating system Installation Guide. Otherwise, refer to the Switch Settings and Jumper Settings sections in this manual. The locations of the switch and jumpers on the board are shown in the diagram on the preceding page.

Step 4. How to Install Jumper Shunt Connectors
Jumper Shunts
A jumper shunt is a small plastic part used to connect two pins on the jumper connector. Jumper shunts should be installed notch side up.

IF: The board is not correctly jumpered.

THEN: Use a pair of needle nose pliers to gently remove, and carefully replace the jumper shunt in its proper location.

Step 5. Insert the DISK 1 B into the S-100 Bus.
The power to the system must be off. Place the board into a slot towards the back of the enclosure. The edge connector is offset, so the board fits only one way. Push down Gently until the board is firmly installed.

Switch Settings

Switch Summary

The DISK 1B has a single 10 -position dip-switch, SW1, which controls three functions:

- The block size and addressing of the on-board EPROM (positions 1-8).
- Whether the EPROM is used to boot the system after a system reset (position 9).
- The polarity of a software readable switch (position 10).

SW1 Position	Function
1	EPROM Address 114
2	EPROM Address 113
3	EPROM Address $\mathrm{Al2}$
4	EPROM Address All
5	Block Size select MSB
6	EPROM Address A10
7	Block Size select LSB
8	EPRON Addrese 49
9	EPRON BOOT ENABLE (ON enables boot from EPRON).
10	READABLE SWITCH (ON reads 0)

Note that when a paddle is OFF, the corresponding address bit is high, and when a paddle is ON, the bit is low.

Switch Description

The on-board EPROM can be either a 2764 (8 K by 8), 27128 16 K by 8), or 27256 (32 K by 8) for total space from 8 K bytes to 32 K bytes. On power-up or reset, the main processor looks to this memory space for instructions, using the EPROM as a "boot EPROM" The block size of the EPROM that is visible to the processor can be $512,1 \mathrm{~K}$, or 2 K bytes. The total number of different routines available is equal to the EPROM size divided by the block size. For example, 16 different 512 byte routines are available using a 2764 EPROM, or 32 different IK byte routines are available using a 27256 EPROM

The address bits and corresponding switch positions are given in Table 2. The switch settings required for different block sizes are given in Table 3 for the different EPROMs allowed.

Table 2-EPROM Addresses Selected by Switch SW1

SW1 Position		Address on EPROM	
1	A14	(not used in 2764, 27128)	
2	A13	(not used in 2764)	
3	A12		
4	A11		
6	A10		
8	A9		

Table 3 - SW1 Settings for Different EPROMS and Block Sizes

$\begin{aligned} & \text { Block } \\ & \text { Size } \\ & \hline \end{aligned}$	EPROM Size		
	2764	27128	27256
512	Pos 3,4,6,8 addr	Pos 2-4,6,8 addr	Pos 1-4,6,8 addr
	Pos 5,7 OFF	Pos 5,7 OFF	Pos 5,7 OFF
	Pos 1,2 not used	Pos 1 not used	
1K	Pos 3,4,6 addr	Pos 2-4,6 addr	Pos 1-4,6 addr
	Pos 5,8 0FF	Pos 5,8 OFF	Pos 5,8 OFF
	Pos 7 On	Pos 7 On	Pos 7 ON
	Pos 1,2 not used	Pos 1 not used	
2K	Pos 3,4 addr	Pos 2-4 addr	Pos 1-4 addr
	Pos 6,8 OFF	Pos 6,8 OFF	Pos 6.8 OFF
	Pos 5,7 On	Pos 5,7 ON	Pos 5.7 ON
	Pos 1,2 not used	Pos 1 not used	

The boot EPROM on the DISK 1B contains software routines required to load the initial sectors of the disk operating system into memory for system startup ("boot up"). System RAM must be present from Oh to 7FFh for proper operation of the boot EPROM. The different routines in the EPROM allow different processor types $(8086,68 \mathrm{~K}$, etc.) to load the disk operating system from different devices (floppy disks, hard disks, etc.). As new processors and new boot devices are added by CompuPro, the version of the boot EPROM installed on the DISK 1B may need to be changed. Please refer to the Software Installation Guide for the system to determine the appropriate switch settings for the particular boot EPROM on the DISK 1B.

SW1 position 9 controls whether the boot EPROM is enabled after a system reset. The boot EPROM may be enabled by putting position 9 of SWI in the ON position, and disabled by placing it in the OFF position.

Remember, the boot hardware on the DISK IB board requires that memory respond to PHANTOM* at the host processor's reset address. If the memory residing at this address does not respond to PHANTOM* and the boot EPROM is enabled, a bus conflict will occur and possible damage could result.

SW1 position 10 can be read by the host CPU. When the host CPU reads this bit (bit 2 in relative $1 / O$ port 2), it will read a 0 when position 10 is ON , and a 1 when position 10 is OFF. This feature can be useful in systems to allow the software to determine what hardware is in the system. For example, in the Compupro Concurrent DOS 8-16 Version 5.0 operating system, when this position is $O N$, the software expects a SYSTEM SUPPORT 1 in the system, and when this position is OFF, the software expects a SYSTEM SUPPORT 2. The installation guide for the operating system on a particular computer will explain the function of this switch when used with that operating system.

This completes the section on switches.

Jumper Settings

Jumper Summary

The DISK 1B has 13 jumpers that allow considerable flexibility. Jumpers $\mathrm{J} 0-3$ and J 8 are the only ones on the board that have pins and tandem shunts installed. The remaining jumpers (J4-7, J9-13) are set with small traces on the board to the configuration that most users will want.

Table 4 - Summary of Jumpers

1	J	Position	Function
	0	A-C	Select 5.25" for DRIVE 0
		B-C	Select 8- for DRIVE 0
,	1	A-C	Select 5.25" for DRIVE 1
		B-C	Select 8" for drive 1
	2	A-C	Select 5.25" for DRIVE 2
		B-C	Select 8" for DRIVE 2
	3	A-C	Select 5.25" for drive 3
		B-C	Select $8^{\prime \prime}$ for DRIVE 3
			(pins and shunts are installed in J0-J3)
	4	A-C	WD 92C32 or SMC 9236 Data Separator in $\mathbf{U 4 2}$
		B-C	9216B Data Separator in U42
			(trace normally connects B-C on board)
.	5		Installed allows HDLDt (pin 4) on 5.25" cable to be driven. Removed floats HDLD* dis-asserted. (normally not connected)
	6		Installed allows RURITE* (pin 2) on 5.25" cable to be drive. Removed floats RWRITE* dis-asserted. (trace normally connects)
1	7		Installed allows PHANTOM* (pin 67) to be driven on the S-100 bus during accesses to boot EPROM. Removed disables PHANTOM* assertion. (trace normally connects)

Table 4-Summary of Jumpers (Continued)

J	Position	Punction
8	A	Installed returns RRADY to FDC on DRIVE SEIBCT 0
	B	Installed returns READY to FDC on DRIVE SEIECT 1
	c	Installed returns READY to FDC on DRIVE SELBCT 2
	D	Installed returns READY to FDC on DRIVE SELBCT 3 (pins and shunts are installed)
9		Installed places 3 wait states in DNA, boot EPROM, and I/O cycles to the DISK 18 (for up to 12.5 NHz bus speeds). Removed places 4 vait states in all of above. (trace normally connects on board)
10,11	A-C	Eliminates write precompensation on the drives
	B-C	Uses write precompensation on the drives (traces nornally connect B-C)
12	0	Interrupt from FDC goes to VIO* (pin 4) on S-100
	1	Interrupt from FDC goes to VI1* (pin 5) on S-100
	2	Interrupt from FDC goes to v12* (pin 6) on S-100
	3	Interrupt frow FDC goes to vI3* (pin 7) on $\mathrm{S}-100$
	4	Interrupt frow FDC goes to V14* (pin 8) on S-100
	5	Interrupt from FDC goes to VI5* (pin 9) on S-100
	6	Interrupt from FDC goes to V16* (pin 10) on S-100
	7	Interrupt from FDC goes to VI7* (pin 11) on S-100 (trace normally connects VI4*)

Table 4 - Summary of Jumpers (Continued)

Function
I/O port address A2
(normally connected)
I/O port address A3
(normally connected)
1/O port address A4
(normally connected)
I/O port address AS
(normally connected)
I/O port address A6 (normally open)
I/O port address A7 (normally open)
(default I/O ports are COh to C3h)

Note that when an address jumper is open, the corresponding address bit is high, and when an address jumper is connected, the bit is low.

Jumper Description

Jumpers JO through J3 select which drives are $5.25^{\prime \prime}$ and which are $8^{\prime \prime}$. Each drive connected to the DISK 1B must be jumpered (on the drive) for a different drive select. J0 through J3 then must be set on the DISK 1B to correspond to which drives are $8^{\prime \prime}$ and which drives are $5.25^{\prime \prime}$. A shunt across A-C selects $5.25^{\prime \prime}$; a shunt across B-C selects $8^{\prime \prime}$.

For example, if an $8^{\prime \prime}$ drive was jumpered as drive 0 , and a $5.25^{\prime \prime}$ drive was jumpered as drive 2 , J 0 must be set to $\mathrm{B}-\mathrm{C}$, and J2 must be set to A-C. JO through J3 have pins and shunts installed at the factory. These must be set to the configuration of the target system.

Jumper J 4 selects different clock rates for the digitg! data separator in U42. If a shunt is placed across B-C, a 9216 B from either SMC (Standard Microsystems Corp.) or WD (Western Digital) must be in U42. The 9216B is the standard performance part, and can be used with good quality drives that have low jitter in their read data stream. The higher performance WD 92 C 32 or SMC 9236 requires J 4 to be set to AC. Some drives with more jitter in their read data stream may require this higher performance part for reliable operation. J4 normally has no pins installed and has a trace across $B-C$. This can be cut and pins installed to change the setting.

Jumper J5 allows the DISK 1B to assert HDLD* (Head Load, pin 4) on the 34 pin $5.25^{\prime \prime}$ cable. With $J 5$ removed (as shipped), the DISK 1B will never assert HDLD*. Most 5.25^{*} drives automatically load the head when MTR ON ${ }^{*}$ (Motor On, pin 16) and DRIVE SELECT* (DRSO-3*, pins 6, 10, 12, or 14) are asserted. Please refer to the drive specification for information on how a particular drive works. If a drive does need HDLD* to be asserted, 55 should then be installed. Setting bit D2 in relative port Oh low then asserts HDLD** On reset, when J5 is installed, HDLD* is asserted.

Jumper J6 allows the DISK 1B to assert RWRITE* (Reduced Write, pin 2) on the 34 pin $5.25^{\prime \prime}$ cable. This jumper is normally connected with a trace on the solder side of the board. When writing certain types of diskettes on certain types of drives, asserting this line is necessary for error free writing. Most drives don't care about this line, and some drives use this line for different functions. The drive manual must be consulted on use of this signal. Setting bit D4 in relative port Oh low asserts RWRITE*. On reset, when J6 is installed, RWRITE* is asserted.

Jumper J7 allows PHANTOM* (pin 67) on the S-100 bus to be asserted when the host CPU is reading the boot EPROM. J7 is normally connected with a trace on the solder side of the board. If the standard boot EPROM on the DISK 1B is used, this jumper must be connected. If it is ever necessary to disconnect PHANTOM ${ }^{*}$, this jumper can be cut.

Jumper J 8 is a four position jumper that allows READY to be asserted to the 765A or 8272A floppy disk controller (FDC) automatically whenever a particular drive is selected. This is necessary as some floppy drives do not assert READY in the manner that the floppy disk controller needs it. Install a jumper according to the following table depending on which drives need READY to be driven automatically. Jumpers should not be installed if a drive returns READY normally.

Table 5-READY to FDC on DRIVE SELECT

J8	Function	
	Installed returns READY to FDC on DRIVE SELECT 0	
A	Installed returns READY to FDC on DRIVE SELECT 1	
C	Installed returns READY to FDC on DRIVE SELECT 2	
D	Installed returns READY to FDC on DRIVE SELECT 3	

Jumper 39 selects between three and four wait states inserted on DISK 1B DMA cycles, I/O cycles to the DISK 1B, and memory reads from the boot EPROM. In systems up to 12.5 $\mathrm{MHz}, 3$ wait states are adequate for all the above type of cycles. Thus, J9 is connected by a small trace on the solder side of the board. If it is ever necessary to move to 4 wait states, cut the small trace connecting J 9 on the solder side of the board.

Jumper J10 and J1I control whether write precompensation is used when writing the floppy disks. Both jumpers must be set the same way. Most drives accept 250 ns of write precompensation, and thus J10 and J11 are connected on the component side of the board across B-C. If it ever necessary to eliminate write precompensation for all the drives, the traces across B-C on J10 and JII should be cut, and jumpers should be installed across A-C of J10 and J11.

Jumper J 12 is an eight position jumper that selects which S100 vectored interrupt (VI) is asserted when the floppy disk controller asserts an interrupt. Any VI from V10* (position 0) to V17* (position 7) can be asserted by placing a jumper across the proper position. As CompuPro systems use V14* for the DISK 1B, there is a small trace on the solder side of the board connecting position 4. If it is necessary to use another interrupt for the DISK 1B, cut the small trace and install a jumper in the proper position.

Jumper J 13 is a six position jumper that selects what base I/O port the DISK 1B's 4 I/O ports are located at. The DISK 1B uses 8 bit address decoding. An installed jumper selects a 0 for the address bit, and a removed jumper selects a 1. The following table shows which position of J13 (A-F) stands for which bit of address.

Table 6 - Jumper J13 I/O Port Addressing
$\mathrm{Jl3}$

Address Bit
I/O port address A2 (normally connected)
I/O port address A3 (noraally connected)
I/O port address A4 (normally connected)
I/O port address AS (normally connected)
I/O port address A6 (normally open)
I/O port address A7 (normally open)

As the standard CompuPro address for the DISK $1 B$ is $0 \mathrm{C} 0 \mathrm{~h}-0 \mathrm{C} 3 \mathrm{~h}$, traces on the component side of the board normally connect position A through D to select this address. If it is ever necessary to change this address, the small traces can be cut and jumpers installed.

This completes the section on jumpers.

Functional Description

Disk Interface Port Map

The DISK 1 B interface uses a block of four port addresses for communication between it and the host processor, After boot, DISK 1B occupies no memory space of the host processor and performs all data transfers via DMA. The address of the first port is jumper settable to any $1 / O$ address which is a multiple of four. The ports will be referred to as relative ports 0 - 3. See the section on jumper settings for how to set the I/O port address.

Table 7-I/O Port Overview

	elative Port	Function
0	Read	FDC Main Status Register
0	Write	Drive Select Register
1	Read	FDC Data Register
1	Write	FDC Data Register
2	Read	Drive Status Register
2	Write	DHA Address Register
3	Read	(not used)
3	Write	Motor Control Register

FDC Main Status Register (read only)

This is the main status register of the FDC chip. It may be read to obtain the status of the drives and the controller chip. Please refer to the 8272A/765A data sheet for a description of the bits in this register. See appendix 2 for information on obtaining the 8272A data sheet.

Drive Select Register (write only)

The Drive Select Register controls a number of different functions on the DISK 1B. Bit 7 allows the DISK 1B to force a hard reset to the FDC. Bits 6 and 5 allow the selection of four different floppy disk data rates. Bit 4 allows the DISK 1B to assert reduced write (RWRITE*, pin 2) to 5.25° drives. Bit 3 allows the assertion of TS (two-sided) to the FDC when using $5.25^{\prime \prime}$ drives. Finally, bit 2 allows the DISK B to assert head load (HDLD*, pin 4) to 5.25° drives. Bits 1 and 0 are not used and should be set 0 . The bit positions and function are shown in the following table.

Table 8 - Drive Select Register Description (Port 0)

Bit	Punction
0	not used
1	not used
2	5.25" HDLD* (assert HDLD* -0 , dis-assert
	HDLD* - 1)
3	Force Two Sided (Normal - 0. Force - 1)
4	5.25 " RWRITE* (assert RURITE* -0 , dis-assert RWRITE* - 1)
5	
6	HI/LO data rate select (normal - 0, special - 1)
7	Floppy Disk Controller Reset (run - 0, reset - 1)

FDC Data Register (read/write)
The FDC Main Data Register is the main communication path between the host system and the FDC chip. All command and result status pass through this register.

Drive Status Register (read only)

The Drive Status Register allows software to poll a drive's READY* status, view the drive's INDEX* pulse, check the FDC interrupt status, and read the readable switch. The bit positions are shown in the following table.

Bit	Function	
0	Drive Ready Status	(READY - 1)
1	Drive Index Pulse	(PULSE - 1)
2	Readable Switch Sul	-10 (ON - 0, OFF - 1)
3-6	(not used)	
7	FDC Interrupt Status	(INTERRUPT ACTIVE - 1)

The DMA address register is actually a push-down stack of three l-byte registers. To use this register to load an address, load a 3-byte DMA address most significant byte first.

Motor Register (write only)

The Motor Register allows: 1)software setting of the motor control lines for drives that respond to these lines and, 2)disabling of the boot EPROM. A system reset (not a floppy disk controller reset) is required to re-enable the boot EPROM. The Control Bits are described in the following table.

Table 10 - Motor Control Register Description (Port 3)

Bit	Function
0	Boot EPROM Disable (Disable $=0$, System Reset to Re-enable)
1-3	(not used)
7	Floppy Motor Control (Hotors $\mathrm{ON}=1$, Motors OFF - 0)
$\begin{gathered} \text { NOTE } \\ 5 . \end{gathered}$	Bit 7 controls both $8^{\prime \prime}$ floppy and " floppy motors.

Data Rate Select

Two bits are provided in the drive select register to choose the data rate for the floppy disk controller (FDC). In addition, The FDC senses whether the floppy disk inserted in the drive is formatted as double density (MFM encoded), or single density (FM encoded). The single density (FM) data rate is half the double density (MFM) data rate.

Four different double density (MFM) data rates are selectable with the two bits in the data select register. They are: 500 K bits/sec for $8^{\prime \prime}$ drives and $5.25^{\prime \prime}$ IBM ${ }^{\circ}$ AT style high-capacity drives; 250 K bits/sec for $5.25^{\prime \prime}$ drives such as the Mitsubishi M4853; 300K bits/sec for IBM AT style high-capacity drives reading IBM PC style disks; and 150 K bits/sec. If the floppy disk in the drive is single density (FM), the FDC will sense it and automatically cut the data rate in half.

Choose the rate depending on the drive type and disk format being used. The following table gives the data rate as a function of the drive select register bits 5 and 6.

Table 11 - Data Rate Select

Drive Select Register		MRM Data	FH Data
Bit 6	Bit 5	Rate Chosen	Rate Chosen
0	0	500\% bits/sec	250k bits/sec
0	1	250K bits/sec	125K bits/sec
1	0	300K bits/sec	150K bits/sec
1	1	150K bits/sec	75K bits/sec

Floppy Disk Controller Reset

In addition to being asserted when a system reset is driven (RESET, pin 75 on the S-100 bus), the floppy disk controller (FDC) reset pin is asserted when bit 7 in the drive select register is set high. The FDC can get into an illegal state that requires a hardware reset to the chip to clear. The DISK 1B provides such a reset under software control.

To assert reset to the FDC, set bit 7 of the drive select register high. To release reset, set this bit low. Make sure that an adequate width reset pulse (at least 7 microseconds) is given to the floppy disk controller. Also make sure to delay for about the same length of time after reset is released before sending new commands to the FDC.

Interrupts

The DISK 1B is capable of running in either a polled mode or an interrupt-driven mode that is particularly suited for multi-user environments. The DRIVE STATUS port (relative port 2) allows software to sample the interrupt output of the floppy disk controller on data bit 7. To run in an interrupt driven mode, the interrupt output of the floppy disk controller is driven onto one of the vectored interrupt lines (VIO* thru VI7*) of the $\mathrm{S}-100$ bus. This is accomplished by installing a jumper shunt or \#30 wrap wire across the posts (if installed) at jumper location JI2, positions 0-7. Jumpers 0 thru 7 correspond directly to V10* thru VI7*. All CompuPro software uses VI4* for the floppy disk interrupt.

Walt State Enable

The DISK 1B inserts wait states into the boot EPROM read as well as the I/O and DMA read and write cycles when fast processors are being used. In systems with system clock speeds up to 12.5 MHz , jumper J 9 should be installed to select three wait states. $\mathbf{J 9}$ can be removed if four wait states are needed.

Arbiter and Priority Selection

The DISK IB controller allows multiple DMA devices to be active on the $\mathrm{S}-100$ bus at one time. As long as a DMA board (temporary bus master) conforms to the IEEE 696/S-100 specifications concerning DMA arbitration and prioritization, up to 16 different bus masters may gain use of the bus in order of their assigned priority. Remember, there should never be more than one temporary bus master at a given priority level.

The priority of the DISK 1B board is fixed at OFh, the highest possible value. Make sure that no other DMA device in the system is set to 0 Fh .

A bit is provided in the Motor Control Register to control the four designated motor control lines for the $8^{\prime \prime}$ floppy drives, and one motor control line for $5.25^{\prime \prime}$ minifloppies. Some drives may not respond to these lines. By controlling the contents of this bit, the drives may have their motors turned "ON" or "OFF". In addition, this register has an automatic timeout feature that turns all the motors "OFF" approximately 15 seconds after the last access to the controller. Any access of the board resets this timer and the 15 seconds starts again.

Boot EPROM

The boot EPROM contains the software routines required to load the initial sectors of the disk operating system into memory for system startup. A complete description of the functions and capabilities of the boot EPROM addressing as well as how to set SWI to use it is given in the Switch Settings section of this manual.

On power-up, when SW1 position 9 is ON, the boot EPROM will appear as memory at the host CPU's reset address and, in fact, at all memory addresses. The DISK 1 B will assert PHANTOM* and provide data to the host CPU on every memory read cycle. The DISK 1B will not assert PHANTOM* during memory write or $1 / O$ cycles from the host CPU. This is so the host CPU can write to system RAM and command the DISK IB during boot up. The host CPU will continue to read from the boot EPROM until a " 1 " is written to the motor control register bit 7. This will turn the boot EPROM off until the system is reset, regardless of what is written to this bit after the " 1 " is.

	$\begin{gathered} \text { DISK 1B } \\ \text { CONN } 2 \text { Pin } \end{gathered}$	8" Drive Sjgnal	$\begin{aligned} & \text { DISK 1B } \\ & \text { CONN } 1 \text { Pin } \end{aligned}$	$\begin{gathered} 5.25^{\prime \prime} \text { Drive } \\ \text { Signal } \end{gathered}$
	2	Low Current		
	4	Motor OFF 1		
	6	Motor OFF 2		
	8	Motor OFF 3		
	10	Tvo Sided		
	12	NC		
!	14	Side Select		
	16	NC		
	18	Head Load	2	Reduced Write
	20	Index ($\mathbf{8 N}^{\text { }}$)	4	Head Load
1	22	READY	6	Drive Select 4
	24	Motor OFF 4	8	Index (5')
	26	Drive Select 1	10	Drive Select 1
	28	Drive Select 2	12	Drive Select 2
	30	Drive Select 3	14	Drive Select 3
	32	Drive Select 4	16	Motor ON
	34	Direction Select	- 18	Direction Select
	36	Step	20	Step
	38	Write Data	22	Write Data
	40	Write Gate	24	Write Gate
	42	Track 00	26	Track 00
	44	Write Protect	28	Write Protect
	46	Read Data	30	Read Data
	48	NC	32	Side Select
	50	NC	34	READY
	All odd	pins ground on bo	th cables.	

Minifloppy Drives
Several things must be considered when using minifloppy drives with the DISK 1B, and these are listed below.

- Most minifloppy drives use data rates that are different from that of $8^{\prime \prime}$ drives, therefore, the clock frequency of the FDC and other circuitry must be changed. This is accomplished by setting bits 5 and 6 in the Drive Select Register. After this is done, at least 5 microseconds must elapse before sending anything to the FDC to let it settle down, and then new specify instructions must be sent to the FDC. Since the clock to the FDC is now different, the specify values must be modified accordingly (refer to the FDC data sheet).
- Since almost all minifloppy drives have a Motor Control Line, there is a time lapse of about 0.5 second between turning the drive motor ON and when it comes up to speed. The motor must be up to speed before attempting to read or write to the drive. The MOTOR REGISTER will automatically time out and shut off the drives after approximately 15 seconds when there is no activity on the drive.
- Some minifloppies have a READY line and some do not. If the drive docs, leave the corresponding jumper on 18 disconnected. If the drive does not generate READY, the corresponding position on $\mathrm{J8}$ will need to be jumpered so that the READY line of the FDC is driven when the drive is selected. This will make the FDC think that the drive is ready whenever the drive is selected. Other means (such as polling) must be employed to see when the drive is really ready.
- Since minifloppy drives do not have a signal that tells the FDC that a floppy is single or double sided, this must be handled with external logic. This is accomplished by setting the Force Two Sided line (F2S) when a double sided floppy is used. The reason for this is that the FDC will not access the second side of a diskette when it thinks the diskette is single sided.

Not all floppy disk controllers generate true IBM compatible 3740 and System 34 formats even though they claim to. Therefore, it is strongly recommended that the DISK 1B not be used to copy data onto a diskette that has been formatted by another controller! The proper procedure is to format diskettes using the DISK 1B, and copy the contents of other diskettes onto the newly formatted diskettes.

If the other controller generates a true IBM type format, or the diskettes were formatted by IBM, they will not have to be formatted before using them with the DISK IB.

Specifications for $\mathbf{8 " ~}^{\boldsymbol{n}}$ Floppy Disk Drives

For the disk drives, the 50 -pin cable connecting CONN 2 of the DISK 1B to $8^{\prime \prime}$ floppy drives is standard except that the stepper motors must be enabled at all times (not tied to drive select or head load). This causes the steppers to be powered at all times (they will get warm), and allows stepping without the lamp on the front of the drive being "ON" (so be careful). In addition, do not tie the head load signal to drive select since the 765A/8272A is always scanning the drives (this would result in a buzz). Use standard 50 -pin ribbon cable to connect the drives to the controller, and terminate the last drive in the line as specified in the drive manual.

NOTE: Due to the steppers being enabled at all times, the disk power supply must be able to handle full load on the +24 V line all the times and the drive enclosure must have adequate cooling.

Specifications for $\mathbf{5 . 2 5}^{\mathbf{n}}$ Minifloppy Disk Drives

If the minifloppy drive has a head load line, install the appropriate jumper to bring the head load out to pin 4. Otherwise, jumper the minifloppy so the heads load on drive select. Set the drive select so READY is generated only when the drive is selected and a diskette is spinning in the drive. If possible, READY should go false when the drive door is opened.

Programming Example

Below is an example of code that might appear in the boot EPROM for the $8^{\prime \prime}$ and $5.25^{\prime \prime}$ floppy drives using an 8086 type processor. It is intended solely as an example and does not necessarily represent the best way to program the DISK 1B.

-

```
Iflust, lond mpeolfy ocmend
```

1 first, load apeolis ocinad				
00141503		nov	c,iometh spr	1 length of apecity acrisend linto countiar
00168100		HOV	C. 0	1 no atatue brtan rwaurned
0018 exs001	R	How	SI, offeat spic	, ecurce inder pointe to aprecty commed
0018 E87000	0088	Call	ExC	1 and comend
0018 Amp00		nov	CX, 240	1 Hent daling for 240 MS after apecify coumand
0021888500	0009	Call	TDOWIT	- for 2272an to stablisa
1 then rsoal ibrate drivo				
00243502		now	ci, length rackl	- length of recelibrate drive head command
00268100		10V	C., 0	I no statue bytes for this commend
0028 E 5301	R	\% 0	SI, offreet Pecal	, SII nov pointe to mealibrate commend
0078 E86000	00e8	CLL	DES	1 and conend
0028 29200	006	CaLL	warror	; mit for internupt complete bit

 i verify mocosstul completion of rocullibrate commend
 | 00315008 0033 Bch | | Hor | AL, Mrestis | 1: smederatum commend |
| :---: | :---: | :---: | :---: | :---: |
| | | ar | TrPCRC+IDCD, AL | 1 and is |
| | | | | |
| 0035190200 | | SOV | Cx,2 | (anc mos etetus bjtas |
| 0038886600 | 0001 | CALL | cops | |
| 1033 2 CzO | | sus | AL,PDC_SE | 1 manowe aekl and bit |
| 0030740 C | 0048 | 32 | M008 | : if senk and, no ocher errors -- done |
| 0038105301 | R | H0N | At, mpeser | 1 eot firat atatua byta main |
| 00422403 | | AD | AL,00000011b | t mak to drive select bita only |
| 00443002 | | OP | AL, miserive | 1 see 18 thio wes dealind drive |
| 0046 7SES | 0028 | IE | rescme | 1 aut have been reedy lina change for sons |
| | | | | 1 Othar drive, wit forsamming alse to happan |
| 0048 Esesp | 0000 | $3 \times$ | mas | i alse some meal errox, so start agaln |
| | | | | |
| | 1 emacte rad operation aequm cutput beginalire DM adrme | | | |
| | | | | |
| 004s 8 cpe | | H0N | Ax,DS | |
| 0040 H104 | | M0N | C.4 | 1 ant up for 4 bit ahift (m16) |
| 004\% 1850 | | Wa | Ax,C. | ! |
| 0051 | | N07 | Ex, AX | ismeneopy in XX for lover addree calculation |
| 00532400 | | ND | AL, OfP | I mesk off to high nybble ariy |
| 00ss 81E3pOFP | | NO | Ex, OfPros | 1 mask off hleh rebble from rest of addreas |
| 0059 a1c36401 | R | AD | EX, offeat Purpiz | 1 add in local buffer offset |
| 00501400 | | ADC | AL, 0 | 1 add ery carry to hlech ribble |
| 0057 MCC200 | | MOV | | 1 polnt to dim address port |
| 0062 EE | | ar | DX, AL | 1 and hich nybble |
| 0063 anct | | Nov | A, 明 | |
| 0065 Ex | | ar | DX,AL | 1 send middle byte |
| 0066 anch | | MON | AL, 瓦 | |
| 0068 Ex | | ar | DK, AL. | 1 sand low byte |

Appendix A
 Specifications

Timing	Meets all IEEE 696/S-100 specifications. Runs in systems exceeding 10 MHz .
Floppy Disk Controller	Third generation NEC 765A or INTEL 8272A. Innovative clock design allows four popular floppy disk data rates.
Data Separator	Digital Data Separator 9216B or 9232 .
DMA Type	```Cycle stealing (releases CPU after transfer), 24-bit address, crosses 64K boundaries.```
DMA Arbitration .	Meets all IEEE 696/S-100 specifications.
Arbitration Priority	Highest priority (0Fh).
Port Addressing	Four port locations required, jumper-selectable to any four port boundary in the lower 256 port (8 bit) space.
Boot EPROM	Asserts PHANTOM* line for operation, may contain 64 boot routines of 512 bytes each, 32 routines of 1 K each, or 16 routines of 2 K each.
Interrupt	Drives any one of eight vectored interrupt lines (VIOVI7).
Wait States	Automatically inserted.
Current Consumption	Typical 1500 mA at $+8 \mathrm{~V}(+5 \mathrm{~V}$ in regulated systems). Maximum 2100 mA . No $\pm 16 \mathrm{~V}(\pm 12 \mathrm{~V}$ in regulated systems) current.

Disk Format and Interface
 842. Mitsubishi M2896 8* drives and M4853 5.25* drives Supports up to four drives, ngle-sided or double-sided, single-density or doubledensity, $8^{\prime \prime}$ or $5.25^{\prime \prime}$. sith sany other popular cormats when using Concurrent OS 8-16.

Encoding FM or MFM-precompensated.
Sector Size Single-density: 128 byte Double-density: 256, 512 and tracks. 75 K bits/second, software selectable.

Appendix B

Manufacturers Reference

Detailed information about the 8272A FDC can be found in the 1986 Microsystems Components Handbook (order no 230843) from Intel. The data sheet can be found in Volume 2 of that two volume sct. It can be obtained from Intel by contacting:

INTEL Literature Sales
P.O. Box 58130

Santa Clara, CA. 95052-8130
or call: (800)548-4725 for Intel Literature Sales, or, (800)538-1876 for other inquiries.

Appendix C

Disk Drive Jumper Settings

Mitsubishi M4853 5.25" Half-height Drive

INSTALL HS, MM (DS 0,1,2 or 3 as appropriate)
Leave terminator resistor pack installed on the last drive of the cable.

Qume Trak 842 8" $^{\prime \prime}$ Full-height Drive

INSTALL C, 2S, DL, (DSO, 1, 2, or 3 as appropriate)
REMOVE T40, GND, DS, D, DC, Y, HA
Cut HL and X, all others intact. Leave terminator resistor pack installed on the last drive of the cable.

Mitshubishi M2896 8" Half-height Drive

INSTALL JFG, SI, PS, 2S, M2, S2, C, I, R, IR, RFa, A, B, RS, HY, HUD, WP, Z, (DSO, 1, 2, or 3 as appropriate)

REMOVE All OTHERS
Leave terminator resistor pack installed on the last drive of the cable.

0

LIMITED WARRANTY

Viasyn Corporation warrants this computer product to be in good workung order for a period of 180 days from the date or snipment from the laciory or 90 days iromine date of retaul saie of the proouct othe onginal eno user, whichever comes lisst. Should thas proouci tad to be in good working order at ny turne ourting inis warranty period, VIASYN will, al ts option repar or reolace ine nern al no acortional charge except as set forth betow Reparr parts and replacement products will be furnushed on an exchange basis and will be ether reconditioned or new. Al replaced parts and products become he prooerty of VASYN. This immited warranty does not include service to repar damage to the prodct resuiting irom accident, disaster, mususe, abuse or unauthorized mooitication of the proouci

H you need assistance. or suspect an equipment faidure, always conract your Vaswn Resetier first \#you are not satistied by the actions taken by your Viasyn Reseher, Diease cal VIASYN at (415)
$786-0909$ to obrain a Return Materral Authorration (RMAI number, or wrte to VIASYN at 26538 Danti Court, Mayward, CA. 94545-3999, Att-RMA. Be sure to include a copy of the ryonnal bew of sale estabish a purchase date. If the product is detivered by mas or common carries, vou apree to nssure the product or assume the risk of loss or damage intrenet. to precay stwonng charges to VIASYN and to use the original shipoing container or equivalent Be sure to mark the RMa number on the out side of the shipping container or deivery may be retused. Contact your Viasym fieseier o wrte to VIASYN at the above address for further intormation

All expressed and implied warranties for this proouct. inctuong the warrart res of merchantability and ithess tor a particular purpose, are limted in ouration to the acove asteo percoos trom the date of purcnase and no warranties. entier expressed or mowea we acoly atter this pencod

This product is not in good working order as warrarzed acove. vou sore remedy snal be rebair α epiacement as provided above in no event snai vas YN oe mace io vou tor any oamages, inowing any lost proftits. lost savings or other incioental or consecuent ala dages ansing as or the use oo or nability to use such product. even it VIASYN or a Viasyn fieseier nas deen acvisec od the possibilay of such damages, or tor any clam by ary areer party
If this product is out of warrarty, please call or wrte the VASYN RMA department to obtan a quotathon tor tactory service. It this profuct was sold as a system oy haskn. it may etoudie and you may elect to Durchase on site/depot mainterance trom UNSYS. Contact your Vasyn fiesetier, or VIASYN for detals.
you have ourchased a UNISYS service and martenance agreement the foliowing two paragraphs aiso apply:

II VIASYN or its service contractor fails after repeatec aitemots to Derform ary of iss obligations set forth in this agreement. VIASYN's or its service cortractor's ern re habdity and VASYN's customer's sole and exclusive remedy for clarms retaited to or arising our of this agreement for any cause and egardiess of the form of action. whether in contract or tort. ncluding negigence and strict liabiily.

in no event shal VIASYN or its service contractor be liable for any incioental. indrect, special or consequential damages, including but not linited to loss of use. revenue or proft. even it VIASYN ors service contractor has been advised. knew or shousd nave known of the possibifity of such agreernent: or claims, demands or actions against VASYN's customer by any other party

Viasyn Corporation
26538 Dant, Court
Hayward. Ca 1415) 785
TWX 510-100-3288
0

©

Vlasyn Corporation
26538 Dantl Court, Hayward, CA 94545-3999 (415) 786-0909

