
445

PRELDUNARY OPERATING

MANUAL

<:,.-

:.~'.

..,'

'. ~

>~~':~~.. :..~
,".

OPERATING MANUAL

FOR THE

COMPUCORP 445 STATISTICIAN

----.-y <:~

,
..,'\~

j~~t~i.~i

..... '

,,;,~~~;/
... ~

~, ' •• ~ l

• f ~ ..

. '-,.. :t; ~ .

TABLE OF CONTENTS

Introduction

Chapter 1 - - The Grana:ries of Isis

A general introduction to keyboard operations

Chapter 2 -- More About Keys And Things

A detailed tour of the keyboard

Chapter 3 -- Greek Ships And Other Phenomena

An introduction to programming

Chapter 4 -- More About Programming

A sophisticated look at the programmable 445

Chapter 5 -- Examples And Problems

Examples and problems

Chapter 6 - - Magnetic Cards And Other Important Things

Magnetic cards; recording and entering programs

and data; accuracy of the 445; peripheral equipment

Key Function Glossary

What things do

Appendix

Functions and codes

Index

Where things are

-i-

..- -._----- - --.-----..

i

1

14

91A

12SA

162

208

215

217

222

INTRODUCTION

Congratulations. You've just bought an extremely versatile piece

of calculating equipment. N~w all you have to do is learn how to

use it. But -- as you're about to find out -- using the Compucorp

445 Statistician isn't much more ~ifficult than using your pencil.

(In some cases, it's easier. ') . Anq it's certainly a whole lot faster.

The reason itt s so easy to use is simply because it was designed

from the ground up to do thingsy:our way - - rather than the other

way around. So if you understand. a particular problem, you can

probably do it on the 445 without much fooling around with mechanical

intricacies. Just enter the information, tell the machine what to do

with it and read the answer. Of course, there's a right way to go

about doing this. And there are a few.little tricks that save a lot of

time and eliminate several steps on certain operations. So even

though the 445 is set up to follow your normal sequences, it's still a

good idea to read this manual first so you can get the most out of your

machine.

And getting the most out of your machine means more than just getting

fast answers. Because once you've mastered the technique qf cornm-

_ unicating with the 445 you'll discover another interesting aspect of

our little machine. Besides being a lavishly powerful little bag of .

wires, it's a heck of a lot of fun!

-ii-

, I,

"~

.: ., ;.'.- ."

l: '';'''0 :...
~. ~4.

. \

,,0,:

CHAPTER ON~'

THE GRANARIES OF ISIS

-1-

i'i

CHAPTER 1 -2-

Back in the ancient land of Egypt, the Pharaohs had great granaries

built to store surplus wh~at during the good years so that they might
~

feed their peopl'e. during fthe lean years. One day, the Pharaoh

called upon the Keeper of the Granaries and asked him. how things

were going. He also ·wanted to know how much wheat was produced

during the year, and how much vyould have to be stored. And he

asked him a new question. One' that llad never occurred to a Pharaoh

to ask before. IIHow much wheat do we usually get, and can we tell

beforehand how much wheat we'll have to store so we can build

enough grain houses in time to hold it? II

To the first question, the Keeper of the Granaries was able to give a

relatively fast answer. He happened to have with him records of

grain production for the previous seven years, so he simply took a

mathematical average. He did it like this:

t
l

'1
I

·~i·
";1:-

.....

While the Keeper of the Granaries was occupied with these calculations; .

another idea occurred to the Pharaoh. "I notice, 0 Keeper of the ...
:~. .-.

~', ,

,:~~:i
~. .~

",' ...~
,J '

CHAPTER 1 -3-

Granaries, that there is often quite some difference between one

year and the next~ .Is the.re not some way we can tell how much faith

to put in our answer?" The Keeper of the Granaries looked at the

Pharaoh with injured ei~s, but nonetheless promised to give the
~

Pharaoh an objective measure of the accuracy of his answer. Accord-

ingly, the Keeper of the Granaries then calculated the standard devia-

tion. He did it like this:

On the 445, you'd do it like this:

YEAR (now = 0) AMOUNT OF GRAIN

year -1 962, 300 hekats

year -2 1, 127, 000 hekats

year -3 627, 000 hekats

year -4 805, 300 hekats

year -5 719, 700 hekats

year -6 1, 072, 500 hekats

year -7 984, 300 hekats

"~

CHAPTER 1 -4-

fSETI~
~~

tells the machine where to
store the informatiol1".

!

clears the areas where in-
formatioru.'is to be "stored.

0.00 CL

L 1

L 1

L -I

L 1

L 1

2: I

L. 1

984,300.00

719,700.00

627,000.00

805,300.00

962,300.00

1,072,500.00

1,127,000.00

the
sigma

" key
enters

. 'i surnmatio
. '.', 'data

~0~DG~~

~00GJGJ~GJ~~zl

GJ~GJ~~~!nfxzr:· ·

G~[uDITJITJ Ir£czl

GJ[2JGJGJITJ0\n1czl

Q~GJ00ITJITJ I~xzl

G0G[2JITJITJ I~zl

ISDl does what it says (prints SD)
~

186,314.11 SDn-l 1

IZND IFUNC prints mean 899,728.57 2

On the basis of this information, and considering that the populace con-

surned around 700,000 hekats of grain each year, the Pharaoh then

ordered that 200,000 hekats of grain be stored each year to accommo-

date the general yearly need.

When he got home, the Keeper of the Granaries began thinking of all

CHAPTER 1 -5-

the grain the Pharaoh expected him to store. And he decided that

there had to be ·a better way to calculate the a:mount of grain needed

~ ','
in any particular-year. "'There :must be a way, " he thought, "to

know how :much -grain ~ill ~e produced each year. II So he sat down

I'

and studied the records that he had been keeping during all the twenty-

three years he had been the Keeper of the Granaries. And he also

studied the records his father had kept before hi:m. And he discovered

an interesting thing. Every yea: that the Nile rose very high, there

was a lot of grain. And every year that the Nile didn't rise high,

there wasn't :much grain. The Keeper of the Granaries now had

enough infor:mation to give the Pharaoh (and hi:mself) a far better way

of keeping track of the grain they would need. He wrote down the

height of the Nile during each of the preVious seven years, and next

to each of those nu:mbers he wrote down the am.ount of grain produced.

Then he correlated those nu:mbers. He did it like this:

On the 445, you I d do it like this:

\"

CHAPTER 1 -6-

HEIGHT OF NILE HEKATS OF GRAIN

4.8 cubits 962,300
~

.5. 5 cubits 1,127,000

3. 6 cubits 627,000

4.0 cubits 805,300

3.5 cubits 719,700

5.9 cubits 1,072,500

4.6 cubits 984,300

clears areas where data
will be stored.

IADVI separates CL from data (on tape)

0.00 , CL

GD0§] 4.80 X
~

G000GGG 962,300.00 y
The XY key
enters de-
pendent data.

0D0~
The indepen-
dent variable 5.50 X
goes in with

GJGJ0~G00G
the XY key;
then the de- 1,127,000•.00 Y
pendent var-
iable goes in
with the

0DG~
equals key.
The tape 3.60 X
skips a spac

00~GGGGJ
after each
pair. 627,000.00 Y

CHAPTER 1 -7- .---------------------

4.00

805,300.00

x

y

CHAPTER 1 -8-

Therefore, the equation for estimating the amount of grain that could

be expected each year wquld ~e

- I :1

Hekats of Grain = 190,219. 91x(ht. of Nile) + 33,315.83

With that inform.ation, he w~nt to see the Pharaoh once again. 110

great Pharaoh, It he said, IIwhat durn~ies we were. There is a great

deal m.or e to knowing how much grain to s tor e than we thought. Let

me tell you what I have discovered. II And the Keeper of the Granaries

then explained to the Pharaoh how whenever the Nile floods a lot

they get a lot of grain, and whenever it floods just a little, they get

just a little grain. And he showed him. the table of num.bers which

would predict the am.ount of grain that will be produced for each height

the Nile might reach.

"0 Keeper of the Granaries, " the Pharaoh said, after studying the

tables for a very long tim.e, "what a dummy you are. Nowhere in

your great table of numbers do you account for the Omens of Isis.

How are we to value your table of num.bers if you leave out Isis? ".

The Keeper of the Granaries, knowing of the great power of the Priest

of Isis, prom.ised that he would undertake to consider the Omens of

Isis and bring the Pharaoh a new table by which to judge the produc-

tion of grain. So, grumbling somewhat under his breath, .the Keeper

of the Granaries gathered up his table and went back to his horne. And

he sent for the Priest of Isis.

CHAPTER 1 -9-

The Keeper obtained from. the Priest of Isis a record of the Omens

of Isis for the past seven years, and sent him. away. Then he tried

to correlate these with the data he had already collected. He did it

like this:
€> .$ ~
l!ill.
~

~

~ ~~
~ ~

::' ~ J), ~
:

§1
-':.1

~
CXDQ /~~-.,
-'C$(I(C!) (,. ,

On the 445, you do it like this:

OMENS* HEIGHT OF NILE (cubits) GRAIN (hekats)

+4 4.8 962,300

+2 5.5 1,127,000

+7 3.6 627,000 '. .

-3 4.0 805,300 0

+1 3.5 719,700

+4 5.9 1,072,500

+3 4.6 984,300

(*Good agricultural om.ens m.inus bad agricultural om.ens for the six

m.onth period preceding the harvesting of the crop.)

CHAPTER 1 -10-

clears areas where data
will be stored.

0.00 CL

IADvl separates CL from data

z

y

x

z

Y

Y

x

962,300.00

4.80

3.60

4.00

..Three
variable
dependent
data are en
tered the
same way as
two-variable,
using the XY 2.00
key for the
independent
variables and 5. 50
the equals ke
for the de-

pendent 1,127,000.00
variable. As
before, the
tape skips a
space after
each group 7.00
of data.

0D0~

0GJ~[i]000c:::J

0~

rnG~

[2]0~GJGJGG

627,000.00 z

CHAPTER 1 -11- -

1~~~1*0IXYI -3.00 X

0~ 4.00 Y

00GJ[}]~~D 805,300.00 z

GJ~ 1.00 X

0D0~ 3.50 Y

GJGJ[i]I2J~GGJ dependent 719,700.00 Z
data
(continued)

GJ~ .4.00 X

0DG~ 5.90 y

~G000GGQ 1,072,500.00
:t..

Z

3.00 X

GJD00~

~0GJ0~~Q

4.60

984,300.00 z

(*Since entry on the 445 is algebraic, the ll1inus sign indicates subtraction

rather than a negative value. To ll1ake a number negative, you have

to use CHANGE SIGN.)

CHAPTER 1 -12-

·,

correlates Nile and
Grain, as before.

correlat,es Omens
and Grain.

0.94

-0.04

LR

LR

2

3

L- .----------.....-- -J.

Noticing absolutely no ,correlation whatever between the Omens of Isis

and the production of grain,' the Keeper simply drew a symbol of the. ,

benevolence of Isis on his 'table and presented it again to the Pharaoh,

saying, "0 great Pharaoh, I have considered the Omens of Isis, and

the table before you does not in any way contradict their portent. II

The Pharaoh was very pleased, and ordered that just such an amount

of grain as was predicted by the Keeper1s table be stored each year

according to the height to which the Nile rose, and with the grace o{

Isis.

After three years, when the Pharaoh noticed that the Keeper's table

was, indeed, marvellously accurate, he sent for this Keeper of the

Granaries and made him. Wizard of the Nile. And so he remained

until the end of his days.

H the Keeper of the Granaries had had a 445 (and the same data was

in his machine as is presently in ours) he could have predicted the

grain production for each year like this:

.'

=.

-,

...

.r.(
.\."j.

'f.
~.:~:

~

':-i'
~'"

~ 1,

~ • &.~ .1

".-'
~ ;: -~.

~lo': ~

:~. ~<}.i
~' . :.~.

CHAPTER I -13-

fSETI I4l indicates three-variable data
~L.J

0lln\ ~. first independent variable

~DI1l ITnl f9l second ~d~pen-
~ L...:::.J L2J dent var1able

dependent variable automatically supplied
because of l!Eol G above.

4.00

5.10

990,630.65

x

y

·4

With a machine like this, who knows, maybe he would have become

the new Pharaoh.

. , "..

..
"

f'

CHAPTER TWO

MORE ABOUT KEYS AND THINGS

-14-

",

.'11.:
~

"~""..
~ .

.. . :,

~
•.;~ .

.'

"

-.,

.'

' ..

Oil

CHAPTER 2 -15-

As you may suspect, there's much more to the 445 than you can im-

mediately see on the keyboard. In addition to all the normal arith-

metic operations, there's a whole bunch of statistical operations

built right in. You can do simultaneous summations for three dis-

tinct groups of data. You ~an enter data into these three groups

either singly or in "grouped" form, or as two- or three-variable

dependent data. And you can delete data items from each of the

three groups. Using the data in each group,' you can calculate the.'

mean, standard deviation (either n or n-l method), standard error

of the mean, z-statistic and normal probability associated with the

z -statistic. Also, you can calculate in~ependentand dependent t-

statistics between any two of the groups. And you can do either two-

variable or three-variable linear regression with the ability to "exteBd"
•

the regression to calculate dependent variables from the independe~ts.

And in addition to all this, you can do chi-square goodness-of-fit and

.permutation/ combination calculations.

Besides the capacities of the machine, there are many ways in which

operation of the machine can be made much more sophisticated than
....

the techniques we've been using. So before we get into programming

which in itself is a very powerful story - - let's go over the keyboard

in an organized kind of way and consider all the little nooks and crannies

in our 445' s storehouse of tricks.

.... .'1~ 1

..
. l

.,

CHAPTER 2 -16-

SETTING IT UP

Assuming you've plugged the machine into a power source, the first

thing you have to face is the ON-STANDBY -OFF switch at the very

left of the top row of buttons. In the ON position, the 445 will be com

pletely operative. All keys will operate, and all programming func

tions will function. On STANDBY, no keys or programming functions

will operate, but the machine will retain in memory any program in

structions or data that have been fed into it while it was ON. When

you switch the machine from STANDBY to ON, RESET is automatic

ally executed - - which clears all signals which may have been lurking

in any of the operation circuits or in the entry register. Then you can

just continue using whatever data or pr'ogram instructions you left in

the machine before putting it on 5 TANDBY •

When you put the machine on OFF, all power is cut off and whatever

information may have been stored in any of the memory circuits is

completely lost. When you switch the machine from OFF to ON, sev

eral significant things happen. All registers are cleared (weill talk

about registers a little later). All program memory is filled with

NOOP codes. This means that there is nothing --.absolutely nothing

in program memory. (You'll find out why this is important when we

get to programming.) The decimal point is set to two places. There

fore, all numbers will be printed (when they're printed) with two digits

to the right of the decimal point. Group I is set (more about Set Groups

later). And RESET is executed.

CHAPTER 2 -17-

(Besides clearing the operation circuits and the entry register, RESET will

also clear an ERROR or OVERFLOW condition. If you press IRESETI in

the middle of a multiple-key sequence, the machine will abandon the opera-

tion in progress and clear it all out so you can start over from the beginning.

Weill talk more about ERROR and OVERFLOW later on.)

Now we have to consider the rest" of that top row of switches. For keyboard

operation you can ignore most of them. But there are three that have to be

checked first. The fourth one from the very right-hand side, the RUN-STEP-

LOAD switch, should always be on RUN when youlre doing keyboard oper~tions

. '

which do not involve programming. And if your machine has a DEGREE/GRAD

switch, you have to decide which setting you want. With this switch in the

DEGREE position, all trigonometric functions are calculated on a base of the

3600 circle. With the switch in the GRAD position, these trigonometric func-

tions are calculated on a base of the 400-grad circle -- with 100 minutes per

grad, and 100 seconds per minute. Also, there are several choices to make

and things to know about printing.

PRINTING

The 445 printer will print the mantissa of numbers with up to ten digits of sig-

nificance, the two-digit exponent (when required), minus sign for both exponent

o

and mantissa (when negative) and print symbols indicating the operation performed.

Print Format

When you plugged the machine in, the decimal point was set with two places to

its right. From then on, youlre on your own. To establish the position of the

•

, followed by a

CHAPTER 2 -18-

ISETIdecim.al point, all you have to do is push
D. P.

single digit (0-9). Digits 0-8 indicate the number of digits to the

right of the decim.al point. Digit 9 tells the machine to print every-

thing exponentially.

Regardles s of how you set the decimal point, however, the 445 will do

a few convenient things all by itself. Fractional numbers are always

printed with at least one digit of significance. H necessary, the dec-

imal point will be shifted to the left automatically until this is achieved.

If the decimal point has to be shifted beyond the tenth position in the

mantissa to find a digit of significance, then printing will automatically

shift to exponential. In exponential mode, the 445 will print the ten

most significant mantissa digits, the two exponent digits and a sign

for both mantis sa and exponent (if negative). Also, if the number is

too large to fit to the left of the decim.al point as it is set, then the

point will be shifted to the right until there are enough places to pr~~

the number. If the decim.al point must be moved beyond the right-hand

margin, then printing will automatically shift to exponential.

Co:m:mas will be printed where they belong to the left of the decimal

point. And the minus sign of negative numbers will appear next to

the left-most digit.

Print Control

With the RUN-STEP-LOAD switch in RUN position, printing is controlled
~ .

CHAPTER Z -19-

primarily by the position of the PRINT switch. It can be liON" or

"OFF". With the PRINT switch ON, most keyboard operations will

print, providing an audit trail of what you did and how you did it.

There are, however, a few keyboard operations which will not print

even with the PRINT switch ON. These are:

- CLEAR ENTRY

-SET UF?

-FLAG*

-HALT*

-BRANCH*

-JUMP*

-RESUME*

With the PRINT switch OFF, no keyboard operations will print except

a few functions which print in all cases. These "print always" func-

tions are:

-PRINT ENTRY

-PRINT ANSWER

-IDENTIFIERt.c

-DOT PRINT*

-OVERFLOW

-ERROR

*These are programming operations, and will be covered in a later
chapter.

'.

CHAPTER 2 -20-

PRINT ENTRY is simply a key that tells the machine to print what-

ever is in the entry register. It can be used to record selected

, then the 445 will print the

entries with the PRINT switch OFF. Or, if you haven't entered a

PRINT
ENTRYnew number before pushing

last number it has seen -- either the last number entered or the re

sult of the last operation performed. IPRINTI does the same thing,
ANS

except that whereas PRINT ENTRY will print the value with the num.-

ber of place s indicated by the decimal point setting without rounding

off the final digit, PRINT ANSWER will print the value rounded off to

. . .. IPRINTIthe number of places mdlcated by the declmal s ettlng. And ANS

will leave the rounded number in the entry register, whereas

PRINT will leave the full, unaltered original value in the entry reg-
ENTRY

ister even though it may have caused a shorter version to be printed. ,'0

CLEAR ENTRY is a key that you use when you make a mistake while

entering a number. Let's say you want to enter 345. 67, and by mis- .'
'.

take you hit 345. 77. H you catch the mistake before it's printed, just

ENTRY can also be used to clear an ERROR or OVERFLOW condition.

enter the number all over again. CLEAR ENTRY clears only the num.-

ERROR condition results from an attempt to engage the 445 in an illegal

operation. When that happens, "ERROR" will be printed, regardless of

r:
".~,,::
'.~ ';
";...

~:

"~
,:'~~

. :; :~...•':' .

.~.:"
• ""f:4

• II:" ~
." :....:.1,:, J.•..

".:~~-'

The entry register will be cleared, and you canCLEAR
ENTRY

push

ber being entered, it will not affect an operation in progress. CLEAR

CHAPTER 2 -21-

the PRINT switch p~sition. The calculator operation will halt. The

keyboard will becoll1e inoperative. And the IDLE light will flash.

(The IDLE light is that rectangular little light on the upper right-hand

side.) Either RESET or CLEAR ENTRY will clear the ERROR con-

dition. These are the illegal operations which cause ERROR:

-Divide by zero

-1 Ix of zero

- -V-of a negative nUll1ber

-Log of zero or negative nUll'lber

-Entry of ll10re than thirteen digits (or a decill1al point

followed by ll10re than twelve digits)

-Calculating O-x with the Ia~1 -key

- Calculating 00 with the Iax'l- key

- Calculating standard deviatio~ (n-1) with n ~ 1

- Calculating standard deviatio'it (n) with n ~ 0

- Factorial of num.bers les s than zero

-Factorial of non-integer nUll1bers

-Pressing two or ll10re keys sill1ultaneously

-Exceeding the two-level key buffer*

-Calculating linear regression with n = 1

- Calculating z with n~ 1

*See ENTERING NUMBERS, below.

, .:. ...

-,

will advance

CHAPTER 2 -22-

OVERFLOW condition is caused by attempting to operate with num-

bers outside the range of the calculator. (The range of the 445 is

10-98 to 10+98.) When this happens, "OVERFLOW" is printed, re-

gardless of the PRINT switch position. Calculator operation halts.

The keyboard becomes inoperative. And the IDLE light flashes.

RESET or CLEAR ENTRY will clear the OVERFLOW condition.

(The IDLE light will remain off while the machine is calculating. In

most cases, you don't have to pay much attention to it, unless it's

flashing. When it flashes, this means the machine has gone into

either ERROR or OVERFLOW mode, and you have to clear it before

you can do anything else.)

Paper Advance

If you want to advance the paper without printing, just touch the AD

VANCE key next to the paper bail. Pressing IADvl

the paper one space. Holding the key down will cause repeat spac~g

until you let up.

OK. So we've plugged the machine in, turned it on and set PRINT to

ON. Now what?

ENTERING NUMBERS

Entering numbers on the 445 is a simple matter of using the 0-9 num-

eral keys in the middle of the keyboard and the decimal point (plus the

.: '

./ ':.~..
•.. \<.

~~, l: r ,.

CHAPTER 2 -23-

CHANGE SIGN and EXPONENT keys, as explained below}. All num-

unless you hit D
The D is a deci-

bers entered are assumed to be whole numbers

which you'll find between fQl and ICHGI
~ SIGN

mal point, which you have to use to enter fractional numbers. CHANGE

SIGN, as you might have guessed, changes the sign. It may be

pressed any time during entry of the mantissa (also directly before or

after it) to make the mantissa negative. If there is a negative number

ICH~in the entry register and you press SIG ' it will change this num-

ICHGIber to positive. If the entry register is positive, SIGN will make

it negative. The CHANGE SIGN key may also be pressed during entry L- ~
.;

of an exponent to make the exponent negative.

You can enter a number exponentially by using the EXPONENT key near

the bottom of the block of keys just left of the numeral keys. Simply

enter the mantissa (with the decimal point in any position), press

IExpl ' and then enter the exponent (it can be either one or two digits).

If you don't enter a mantissa, but just hit IExpl and enter an ex-

ponent, the 445 will assume a mantissa of 1. You can make the ex

ponent negative by pressing ICHGI after pressing IEX~
SIGN

Keyboard Buffering

Most keys are electrically interlocked to prevent multiple, simultan-

eous depression. That's why the 445 goes into ERROR mode when two

or Illore of theIll are pres s ed at once. However, thes e keys are als 0

.
~ •

c

'~

.,J

CHAPTER 2 -24-

buffered to two levels. This means that during calculation initiated

by a key, two more keys may be pressed without loss of operation

continuity. As long as no two of the keys are pressed at the same

time, the 445 will hold the three keys sequentially and perform the

operations they indicate in the order in which the keys were pressed.

If you press more than two more keys while the machine is working

on something for you already" it'll print "ERROR" and stop every-

thing.

A few keys operate independently of the interlocking and buffering.

These are:

-RESET

-CLEAR ENTRY

-PAPER ADVANCE

-LIST PROGRAM

BASIC KEYBOARD ARITHMETIC

Arithm.etic operations on the 445 are performed algebraically. You

enter values and operations pretty much as you would write them in

an equation. For example" suppose you wanted to add 4 and 6. You'd

sinlply press ~ then G then IT] and G · The 445 will

print both of the numbers entered and the result of the operation. The

procedure is the same for subtraction, multiplication and division,

with the substitution, of course, of D ' 0 or I: I for the G
.'

o

CHAPTER 2 -25-

in our exam.ple. Multiplication and division are rounded in the thir-

teenth digit.

Another key which operates like the basic arithm.etic keys is IaX I
which you'll find just to the right of them. IaX I raises a number to

a power. You do it like this:

Enter num.ber (a).

Press IaXI
Enter power (x).

Press G ·
That's all there is to it. Both(a)and(x)may be positive or negative,

integer or fraction. Except that a negative (a) with a noninteger(x)will

cause ERROR. And there are also the following little facts to keep in

mind:

a? = 1

a l =a

IX = I

ox = 0

o-X = ERROR

0 0 =ERROR

Just to the right of IaX I is I~ I . This is the INVERT (or RECIP

ROCAL) key. It simply takes the reciprocal of the number in the entry

register, prints it and leaves it in the entry register. All you do is

•

or- \" ~ •.'

CHAPTER 2 -26-

press I~ I and the nUInber in the entry register gets the reciprocal

treatment.

To the right of I ~ I is1"-1 ' which - - not surprisingly - - takes the

square root of the number in the entry register. All you have to do

is press l-.rl and the nwnber in the entry register will be printed

again and then the square root of that number will be printed and left

in the entry register.

SCRATCH PAD REGISTERS

In the left-most block of keys, along with PRINT ENTRY, PRINT

ANSWER, RESET, etc., there are two keys stacked vertically that

get you into the ten scratch pad registers accessible from the key-

board. These keys are ISTnl and IRCLnj That is, STORE n

and RECALL n, where n stands for the name of the register indicated.

The scratch pad registers are named 0, 1, 2, 3, etc., up to 9. They

are not affected by any keyboard operations except sum-square, XY

entry, delete, chi-square and register arithmetic (all of which will

come up again later on). To store a number in one of these ten reg-

isters, all you have to do is enter the number into the entry register,

push ISTnl ,followed by a single digit to identify the register in

which you'd like this number stored. At any later time, you can re-

call this number from the scratch pad register, into the entry register

(and therefore onto the tape, if PRINT is ON) simply by pushing 8

, .:'

CHAPTER 2 -27-

and the name of the register you put the number into before. It's im

portant to reIIleIIlber that when you use ISTnl to put a nUIIlber into

a scratch pad register, the new number will replace anything that was

there before. If, for instance, register 6 has 123.456 in it and you

enter 32.45, press ISTnl and G ' register 6 will now have 32. 45

in it. The 123. 456 that was there before is completely lost.

EXAMPLE:

000[2]0 5l [J

IRC~0

G][!J0GJ0~ 0
IRCL~ 0

45678.000

45678.000

12345.000

12345.000

t

3

3

3

,~....

3 .'

Notice that the 445 prints the number of the register you use as well

as a symbol indicating the operation performed. J. means STORE'

and t means RECALL.

It's also possible to add to a number stored in a scratch pad register.

And you can multiply it, divide it and subtract from it. That's the

subj ect of our next section.

CHAPTER 2 -28-

(To be perfectly honest, there aren't really ten scratch pad registers.

There are eleven. The decimal point also names a register which

has another use we'll find out about later on. But when it's not being

used that way, you can use it exactly like any of the other ten scratch

pad registers. Just press D instead of a numeral key in conjunc

tion with the access keys described above and it's at your service.)

Register Arithmetic

You can perform all the basic arithmetic operations on the values

stored in the scratch pad registers by using ISTnl in conjunction

with the specific arithmetic function key. Fox example, suppose you

wanted to store 4442 in register 0 and then do things to it. You'd

press:

Now, if you wanted to add 2 to this number, all you have to do is press:

·'f
" .

which is the value you're adding

which tells the machine you1re going to send it to a
scratch pad register

which tells the machine what to do when it gets there

which tells the machine which register to do it in.

You now have 4444 in register O. Let's divide it in half. Just go through

CHAPTER 2 -29-

the same steps as above, substituting I:I for 0 . (This will

cause the number in register 0 to be divided ~ the number in the

entry register.) Now register 0 has 2222 in it. Shall we multiply it

times four? OK. Do the same thing again, this time starting off by

entering 4 into the entry register, then going through the same se

quence, only substituting 0 for 0 · Now press B
and IT] · You should have 8888 in the entry register and on the

tape. It's iInportant to note that in every case ISThl was pressed

before the arithmetic function key. And the name of the register

after the arithmetic function. This is the only way it will work.

Here's the tape which shows all the aritlunetic we just did:

0000~0 4442.000 -!t 0

0§;]QIT] 2.000 + -l.- 0
t·

IRCL~ IT] 4444.000 t 0

0~EJITJ 2.000 .
~ 0

IRCLn!IT] 2222.000 . l' 0

GJ~0IT] 4.000 X i- 0

BIT] 8888.000 t 0

CHAPTER 2 -30-

We just recalled 8888 froIll register 0 into the entry register. Do it

again. You'll notice that you get 8888 again. Recalling a nUIllber

froIll a register doesn't disturb the register.

We can use nUIllbers stored in registers in another way. We just

used a number in the entry register to add to, subtract froIll, divide

or Illultiply a nUIllber in a scratch pad register. We can also do the

saIlle thing in reverse - - we can use a nUIllber in a scratch pad reg-

ister to add to, subtract froIll, divide or multiply a nUIllber in the

entry register. The procedure is the saIlle, except that this tiIlle we

start with IRCLnl ,then indicate the function, followed by the name

of the scratch pad register. (In this case, IRCLnll: Iwill cause

the nUIllber in the entry register to be divided~ the number in the

scratch pad register you recall.)

EXAMPLES:

We want to store 2 in register 7, and 4 in register 8.

So we do this:

~B[2]

G§10
Now we can use the nUIllbers stored in these

registers to operate on nUIllbers in the entry

register.

2.000

4.000

~7

~ 8

. .

CHAPTER 2 -31-

00~0 IRC~I[±] 0
~0GJ

IRCLn\ DGJ
- -

--
2222.000

4444.000

4442.000

t 8

x l' 7

t 7

Note the printed symbols on the right-hand side of the tape which tell you

exactly what you did.

One Final Note About Register Arithmetic

When doing arithmetic operations into a scratch pad register, the re

sults will be stored in that register. The entry register is unchanged

and any algebraic operation in progress is unaffected. If the register

being operated on overflows, its contents will be meaningless, and

the machine will go into OVERFLOW condition. When doing arithmetic

operations out of a register, the results will be stored in the entry reg

ister and may be used in an algebraic sequence. The scratch pad reg

ister is unchanged. If the entry register overflows, its contents will

be meaningless, and the machine will go into OVERFLOW condition.

(Remember that the 445 overflows when it tries to work with numbers

outside the range of 10- 98 to 10+98.)

MAIN DATA REGISTERS

In addition to the ten scratch pad registers we've been talking about,

there are up to 512 main data storage registers (depending upon your

specific machine) which are also directly accessible from the keyboard.
Co

CHAPTER 2 -32-

Each of these registers can be used in exactly the SaIne way as a

scratch pad register. But there are some differences in the pro-

cedure. Primarily because there are more main data registers to

name individually. Each of the registers has a numeric name, from

00 through 511. And these numeric names are used to access each

Thes e work just like the

register separately. To the left of the top row of keys, there are

k 1 d ISnnTI and I~two eys cal e

STORE and RECALL keys we used for the scratch pad registers,

cept you'll notice that instead of lin", each of these keys has "nn".

ex-

This is because main data storage registers are accessible only by

two-digit numeric code names, instead of the single-digit names of

the scratch pad registers. Main data registers 00 through 99 are

accessible by pressing either of these two keys (depending upon

whether you're storing or recalling) and the two-digit name of the

register. But when you get to register 100, there aren't enough

places to accommodate the third digit. So we have to use a hundreds

code for registers 100 through 199. For this we use the DECIMAL

POINT. So if we want to store a number in a register between 100

and 199, we press I~: I then D and then the las t two digits of

the numeric name. Similarly, for registers 200 through 299, we use

~H~ to stand for two hundreds. And we press the CHANGE SIGN
IG

key directly after the STORE or RECALL key. For registers 300

through 399, we use IEXpl to indicate three hundreds. Registers

CHAPTER 2 -33-

400 through 499 use l"f I as the four hundreds code. Registers 500

through 511 are not directly accessible. That1s really all there is to

it. Full register aritlunetic is available in each of the main data reg-

isters, and it is performed exactly the same as with the scratch pad

registers. You just have to remember that the access keys require

And you have to remember to use the D
§xpl for three hun-

two-digit numeric codes.

ICHGIfor hundreds, SIGN for two hundreds,

dreds and I~ I for four hundreds. For example, if you wanted to

store 25 in register 362 and then multiply it by 30, you1d do this:

25.000 t 62

30.000
.

X ~ 62

750.000 t 62

Notice that the 445 prints the number of the register you lve used. That

is, it prints a two-digit numeral code. If the register number has

three digits, only the last two digits will appear on the tape.

Constant Multipliers and Dividends

The first number entered in a multiplication or division operation can

be used as a constant multiplier or dividend, respectively. Lett s say

you wanted to multiply 2 by a series of numbers. You'd just do this:

CHAPTER 2 -34-
--

2.000

3.000 =

x

6.000 *

Gc:J 4.000 =

8.000 *

0c:J 5.000 =

10.000 *
- ".

Or, if you wanted to divide 2 by a series of numbers (constant dividend),

you'd do this:

0B 2.000 .-.

[2]8
;.:?

3.000 =
0 ~

.666 *
.?:

GJQ 4.000 =

. 500 *

GJ[;] 5.000 =

.400 *

CHAPTER 2 -35-

The trick is that when you enter a number and hit c::J ' the machine

goes back and performs the previously entered operation - - using

the new number as the second value. You can also get a constant

divisor simply by using Ii I (reciprocal). You do it like this:

3.000 I/x

· 333 *

• 333 x

2.000 =

• 666 *

GJQ 3.000 =

1.000 w.,.

GJQ
I

/J •

4.000 = ill

1. 333 *

As you can see, this just takes the reciprocal and sets it up as a con-

stant multiplier. Simple - - but effective.

To the right of the block of numeral keys we've been playing with, along

with GD etc., are two more keys that corne in very handy. These
,. ..

CHAPTER 2 -36-

are IJ:J and [I] · Parentheses on the 445 can be used very much

like those you would write in a formula. You can even have one set

of parentheses inside another. When using parentheses on the key-

board, however, there are a few logical rules to keep in mind.

-H you close parentheses W without opening

them, the machine goes into ERROR mode.

-Close parentheses [JJ acts as Q with

regard to the operation inside the parentheses.

- Two-level nesting is allowed [i. e. , (() >J.
But if you try to open a third set of parentheses

without closing the second, the machine goes

into ERROR mode.

Algebraic Chaining

One of the major conveniences on the 445 is algebraic chaining. Any

algebraic key may be used instead of equals to terminate a previous

algebraic operation and begin a new one. In the course of lengthy op-

erations, this eliminates quite a few steps. For example,

2

5

+ 3

4

=

=

5

1.25

1.25 x 6 = 7.50

can become:

CHAPTER 2 -37-

2 + 3 + 4 X 6 = 7.50

You can also combine algebraic chaining with parentheses. Here are

a few examples to illustrate some typical situations involving these

techniques.

4 0C±J
(6 + 7)

4.000

4.000

6.000

7.000
13.000

13.000
0.307

.••

+

*
=

*

4+5 GEl 4.000 +
(6 + 7)

G0 5.000 .!...

Q] 9.000

GEl 6.000 +

[2]ITJ 7.000
13.000 ~.....

G 13.000 =
0.692 *

~.)

CHAPTER 2 -38-
- -

~+ ((4 + 5») III r+l
(6 + 7) L:J L:-J 1.000 +

1.000

1.000

5.000
9.000 *
9.000 ..

9.000

6.000 + •

7.000 }

13.000 *
13.000)
0.692 *
0.692
1.692 ...,

~"'r

--- "f)-
;> $.

+4.000

Repeated Equals and Repeated Aritlunetic

Repeated equals eliminates the necessity to re-enter values. If you

depres s [;] again after terminating an aritlunetic operation, the

445 will repeat the operation, using the first- entered value as a

constant and operating on the value then in the entry register. For

example,

CHAPTER 2 -39-

3 X = 9 Notice that here we didn't have to
ente r the 3 again, since it was
already in the entry register.

3 X = = 27 When we hit [J the second ti.m.e,
9 was in the entry register. So
the machine just multiplied it by
3, the first-entered value.

3 X = = = 81 Here, by pushing [J again, we
caused the machine to multiply the
27 that was in the entry register
after the last operation again by 3,
the first-entered value.

3 + 2 = 5

3 + 2 = = 8 As above the second time we
pushed ~ the machine went
back and s time added the first-
entered value to what was in the
entry register.

-. 3 + 2 = = = 11 Obviously, we did the same thing
again, only this time the entry
register had our 8 in it.

3 X 2 = 6

3 X 2 = = 18 Tricky. Even though we entered
an intermittent value, 2, the
machine stillw~back when we
hit the second = and multiplied
what was in the entry register by
the first-entered value.

3 X 2 = = = 54 The saIne as above, except that
now the entry register had 18 in it
instead of 6.

As you can see by the very first example, entering a number followed

by 0 and G is a fast way to get the square of the number. Re

peated equals only works for multiplication and addition. It has no

.il

CHAPTER 2 -40-

value after subtract and divide. (If you want to find out why, just try

doing it.)

An operation similar to repeated equals is repeated arithmetic. In

this case, we repeat aritlnnetic keys instead of Q . Here's how

it works:

3 X = 9 (Look familiar?) This is equivalent to 32 •

3 X X = 81 This is equivalent to 34 •

3 X X X = 6561 This is equivalent to 38 •

What's happening is this -- the first time (3 X = 9), the single digit

followed by 0 and Q gives the first-entered value an exponent

of 2. Each additional ~ doubles the exponent. Thus two Gl s

equal 34 • three 0 I S equal 38• etc. That I s with multiplication. With

addition, rather than doubling the exponent, each additional [!]
doubles the answer. Like this:

3 + = 6

3 + + = 12

3 + + + = 24

(= 3 X 21)

(= 3 X 22)

(= 3 X 2 3)

Another way to look at this is simply to recognize that each time you

hit ~ the number in the entry register is added to itself. Re-

peated subtraction and division yield 0 and l, respectively, and there-

fore have no value. Try it.

CHAPTER 2 -41-

MULTIPLE FUNCTIONS

Second Function and Double-Function Keys

Many of the function keys on the 445 keyboard calculate two quantities.

When you pres s a key that calculates two functions, one is printed

and left in the entry register; the other is stored in a separate reg-

ister. To get at the second function, you press I2ND I The
FUNC

SECOND FUNCTION key exchanges the contents of these two registers

1

2ND

Iand prints the number now in the entry register. If you press FUNC

again, the two registers will again be switched, and the quantities will

be back in their original places. When you press a double-function

key, the first function will go to the entry register, and the second

function will wait in the second function storage register.

A good eXanlple of a double-function key is I~ I ,which you'll find

second from the top in the vertical row of keys just to the left of the

numeral keys. Pressing this key puts 1fT' (13 digits) into the entry

register and puts e (13 digits) into the second function register. If

you want to print 1\ , push
PRINT
ENTRY

I2ND I
FUNC

• And if you want e, push

I2ND IThen if you want 'IT' back again, just push FUNC again.

On the far-right side of the keyboard is a very useful pair of double

function keys -- !LnJ and m ~ calculates both the
LO ~ ~

base-e and base-ten logarithms of the number in the entry register.

The nurn.ber and the loge will be printed. The loglO will go into the

.' 'i

CHAPTER 2 -42-

calculates the antilogarithm base-e and base-ten

second function register and may be recalled by pressing

SiInilarly , 11 ~: I

I 2ND I
FUNC

of the number in the entry register. The number and the base-e

antilogaritlun will print. The base -ten antilogaritlun will go into the

I2ND Isecond function register, and may be recalled by pressing FUNC

Third Function

In addition to functions which calculate two quantities, there are also

functions which calculate three quantities. In this case, one is printed

and left in the entry register; the second is stored in the second func-

I2ND Ition register and may be recalled by pres sing FUNC ; and the

third quantity is stored in the third function register from which it may

be recalled by ~ [2] ·

When you press l:ce" I [2] , the contents of the entry register will

be exchanged with the contents of the third function register, and the

new value in the entry register will be printed. If you press the two

keys again, the entry register and the third function register w"illagain

exchange, the new contents of the entry register will be printed and the

two numbers will be back where they were before. Note that the con-

tents of the second function register are not affected by the operation
';.,

, the second functionlates three quantities and then pres s

of THIRD FUNCTION. However, if you initiate a function that calcu-

I2ND I
FUNC

value will be in the entry register, and the first function value (which

..

CHAPTER 2 -43-

was in the entry register) will be in the second function register. Now

if you press II'll 0 . the contents of the entry register (which

is the second function value) will be exchanged with the contents of the

third function register. The result of all this will be that the first

function value will be in the second function register, the second func-

tion value will be in the third function register and the third function

value will be in the entry register. All of the values may, of course,

be returned to their respective registers by reversing the procedure.

ADDITIONAL FUNCTIONS

Besides the functions available with individual keys, there are ten ad

ditional functions available from the keyboard by means of I£"o I
Each of these additional functions has a single-digit numeral name,

and is initiated by pressing II 11 1 and then the nUIlleral na.m.e of the

function you want (as we did for THIRD FUNCTION, above). You'll

find a complete list of these additional functions and their numeral

names in the strip just below the top row of keys. Each individual

function will be described in detail as we get to the area of calculation

where it is used.

Except for INTEGER/FRACTION, which we'll describe right here

since there's no other logical place to do it. Pres sing

will separate the number in the entry register into its integer and

fraction portions. The integer portion will be printed and left in the

CHAPTER 2 -44-

ters simultaneously.

entry register. The fraction will be put in the second function regis-

ter and may be recalled with f2NDI Both the integer and the
~

fraction will retain the sign of the original number.

STATISTICAL FUNCTIONS

Now we get to the statistical keys and the remaining Additional Func-

tions - - which perform specialized statistical calculations faster than

a speeding bullet. The statistical functions on the 445 are interre-

lated in many ways, and are used together to produce results tailored

to specific needs.

Set Group and Data Storage

Data entered with the keyboard data summation keys are stored in

the ten scratch pad registers we discussed earlier. Summation data

for three independent or dependent groups may be kept in these regis

IS'ETl is used to tell the machine which
~

Group or Groups of independent data to use - either for accumulating

data or calculating functions. Dependent data are always accumulated

in the same registers regardless of the Group set.

A Group is set with /SETl followed by ~ '21 or [i] ·
~J ~L:J

When a Group is set, you can accumulate and delete data (n-count,

LX, LX2) and calculate standard deviation, mean, standard error of

the mean and z -statistic -- all with respect to that Group. Setting

CHAPTER 2 -45-

Group 1, 2 or 3 also determines which two Groups are used in the t-statistic

and two-variable linear regression and line calculations.

ISETl~ followed by the digit 4 causes linear regression and Line functions

to operate on a three-variable basis rather than the normal two-variable

basis. Other group-dependent functions initiated while Group 4 is set will

autoll1atically use the Group that was in operation just before Group 4 was

set. Setting Group 1, 2 or 3 will rell10ve the Group 4 setting and return linear

regression and Line calculations to the norll1al two-variable basis.

We 111 keep track of what data are in which register of which Group as we

get to particular functions which use these Groups.

A NOTE TO BENNY:

Since Set Group data are accumulated in the ten scratch pad registers, you

can enter sUll1ll1ed data directly into their appropriate registers just as well

as accUll1ulating thell1 with the keyboard sUll1ll1ation keys. The function keys

donlt care how the data got there, just so long as theylre in the right places.

Then you can perforll1 all the calculations you like on that data - - just as

though they had been accUll1ulated by the ll1achine. (Except for three-variable

data, where there I s a little trick you have to us e if you enter sUll1Il1ed data.

See the note following Three- Variable Linear Regression.)

When you do accull1ulate data with the keyboard sUll1ll1ation keys, itl s a

good idea to ll1ake sure the scratch pad registers are clear before

CHAPTER 2 -46-

you begin. This is done easily with

pad registers 0-9 all at once.

Swn-Sguare

lIn I0 which clears scratch

Using the number in the entry register as X, this key accumulates n,

LX and :rX2 • Depending upon which Group you've got set, In~21
puts the data in these registers:

Register Usage
Group

n LX LX2

1 1 2 3
2 4 5 6
3 7 8 9

Like this:
-

ISET] f2l
D.P L.:J

fSETlGl
~~

Thes e operations
do not print.

Clear s scratch pad
registers 0-9

0.00 CL

B Separates CL from data

GJDw~

rn~~

GJDEJ~

2.10

2.50

3.10

L 1

:?: 1

Z 1

-

CHAPTER 2 -47-

Note the print symbols on the right-hand side of the tape. SET UE

and SET GROUP do not print. CL means we've cleared the scratch

pad registers. The 'Z' means that a summation was performed on the

entered value. The 1 next to the ~ means that the summation went

into Set Group 1. Therefore, our sums should be in registers 1, 2

and 3, according to the chart. Let's see if they are.

IRCLn \ ~ number of itenls (n) 3. 00

7.70

20.27

l' 1

2

3

As you can see, our summations are in their proper places. Now let's

do another group of summations, this time into Set Group 2.

fSETlf2l
~L::J

[2]~

GJD[i]~

GJDGJ~

7.00

8.10

9.90

z: 2

Z 2

And, just to keep the machine honest, let's recall the registers of Set

Group 2 and see what's in them.

CHAPTER 2 -48- --
IRCLnl ~ number of items (n)

IRCLnlG Zx

IRCLnl 0 'Z:x2

3.00

25.00

212.62

t 4

l' 5

t 6

Everything is where it's supposed to be. Now let's do one final SUIllma-

tion into Set Group 3.

rsETI~
~l2J

~0~

0~~

GJ[JD0~

GJEJOGJ~

13. 00

11.00

13.50

14. 10

L: 3

~3

1:" 3 .

And, just for consistency's sake, let's see what's in the Set Group 3

registers.

IRCLnl G nwnber of items (n)

IRCLIJ 0 Ix

~ GJ 2:X2

4.00

51.60

671.06

7

8

9

CHAPTER 2 -49-

"Grouped" Data

If you've got a whole group of identical items to enter, you don't have

to enter them individually.

You can enter a group of data with this sequence:

enter X

press

enter fr equency (f) of X

press Q

If f = 20, and the Set Group is 1, 20 will be added to register 1; 20X

will be added to register 2; and 20X2 will be added to register 3.

Let's enter a group.

rsETlrzl
~L:J

Clears scratch pad
registers 0-9

Separates CL from data

5.4 is entered
8 tiInes

- -

-

0.00

5.40

8.00

-

n

CL

-

CHAPTER Z -50-

As you can see, the tape sytnbo1 for the frequency of X is n (i. e. ,

the number of times X is entered). Let's see what got put in the Set

.Group 2 registers.

IRCLnl El number of items (n) 8.00 l' 4

IRCLnl GJ LX (5. 4 x 8) 43.Z0 l' 5

IRCLnI GJ TXZ (5. 4 Z x 8) 233.28 t 6

Let's add another group on top of that one.

QDGJ~ 5. 6 is entered 5.60 2:2
3 times

[J[;] 3.00 n

Now let's see what's in those registers.

~.

IRCLnI GJ number of items (8 + 3) 11.00 4

IRCLnl0 Z:-X ~5. 4x8) + (5. 6X3») 60.00 l' 5

IRCLnIGJ "LX2 ~5. 4 2x8) + (5. 62x 3V 327.36 6

- -
Our second group of data was tidily added to the first group.

Deleting Data

Also, you can remove data from a summation by using the DELETE key.

Just enter the item you want removed from the summation along with

CHAPTER 2 -51-

DELETE, and the n, X and X 2 will be removed from their respective

registers. You can press IDELETEI before or after entering X,

just so long as you've pressed [DELETE I before you press 1~21
To remove a group of identical data, use the same sequence as you

would use for entering the data, but press IDELETE] before you

get to G
Here's an example of a Sum-Square sequence using the keys we've

been talking about:

JSETlI:l
~L2J

separates CL from data

0.00 CL

GJDG~

~D0~

QD[JGJ~

GJG

GJO[I]~

GJDGJ~

2. 34 is entered
4 times

2.10

2.30

2.34

4.00

2.60

8.60

n

~ 3

~ 3

~3

L3

2:.3

CHAPTER 2 -52-

~D~~~

~0c:J

2. 25 is entered
17 times

2.25

17.00 n

11 of the 2.25's
we entered before
are removed
here.

wD [iJIDELETE I I~zl

~D~~~
GJ GJ IDELETEIGJ

8. 6 is removed
from summation

8.60

2.25

11.00 n

~-3

L 3

Note the print symbols for summation and deletion. When you use

I~zl to add data. the print sy=bol is 2::. When you use ~ELETEI
the print symbol is L -. Also, the tape will advance a space auto-

matically when you enter or delete a group of data.

Now let's take a look into these Set Group 3 registers.

~[i] number of items (n) 14.00 7

!RCLn!~ LX 32.29 l' 8

IRCLnl GJ L"X2 74.64 9

H you add up the items we entered, and remove the ones we removed,

you'll discover that our little machine is keeping it all quite orderly.

CHAPTER 2 -53-

Standard Deviation, Mean and Standard Error Of The Mean (n-l version)

The SD/MEAN key calculates the standard deviation, mean and stan-

dard error of the mean for the Set Group which is active. This func-

tion uses the following formulas:

SD =
n

n - I

(Note that the denominator under the radical is n-l, not n, so this key

calculates the estimate of the standard deviation for this Group.)

LXx =
n

Standard error = SD

recalled with

The standard deviation is printed; the mean is put into the second {unc-

I 2ND Ition register and may be recalled with ; and the standard
FUNC

error of the mean is put in the third function register and may be

I!J [U · No data is destroyed while perforlning

these calculations.

Here's an example:

ISETJ 0
D.P

fSETlr)l
~~

CHAPTER 2 -54- -

~ [?J 0.000 CL

0~D~~ 14.500 "L3

Q~D0~~ 14.720 L3

WGJDGJGJ~ 15.010 ~3

GJ0D~0~ 14.440 ~3

GJ GJD [iJ1iJ IDELETd I~~ 14.720 L: - 3

QGJD~~~ 14.820 z3

~

~ takes standard deviation (estimate) 0.269 SDn-1 3
MEAN

...

/2ND ~ gives us the mean 14.692 F 2
FUNC

[J Q gives us the standard error 0.134 F 3
of the mean

-
Note the print syIllbol (SDn-1) that indicates

which standard deviation you I ve taken.

Standard Deviation, Mean and Standard Error Of The Mean (n version)

Pressing 1:£11 I Q will get you the standard deviation, mean and

standard error of the mean, just like I~EANI ' above, except that

here the formula for standard deviation is:

CHAPTER 2 -55-

SD=~ 'D{2 - _---:.---.;=--_...:...._-

n

n

(Since the denominator under the radical is n

(not n-l) this function is calculating the

sample standard deviation.)

Using the data we've already entered in the example above, let's

take the sample standard deviation, mean and standard error:

(2ND I
FUNC

takes standard deviation
(of sample)

gives us the mean

gives us the standard
error of the mean

0.233

14.692

o. 116

SDn 3

F 2

F 3

The function

Note the print syIllbol (SDn) that indicates

which standard deviation you've taken.

z -Statistic

Ifn I [2] calculates the z-statistic of the current Set

Group. Using the number in the entry register as X, here's the formula:

.!J ..

.;

z = x-x
SD

Each time you press the SD and X are calculated all

over again for the above formula. Here, the sample SD (not the estimate)

CHAPTER 2 -56-

II nI GJ calcu-is us ed. You needn't have done a rsn--l or
~

lation beforehand. But you do have to be sure that the Group on which

you're taking a z-statistic has data in it.

The sequence you use to take a z-statistic is as follows:

enter X

press

That's all there is to it. Both X and z are printed; z is left in the

entry register and may be used directly as input to the nonnal dis-

tribution function.

Since we've already got the right kind of data in our Group 3, and our

machine is already set to that group, to get a z, all we have to do is

this:
- .-.

Let I S do it again with a new X:

our X
our z

our X
our z

14.980
1.231

14.900
0.889

X
Z

x
z

3

3

-
Normal Distribution

[:J ~ calculates the area under the normal distribution curve.

U sing the number in the entry register as z, the total area from -OC>

~ .

CHAPTER 2 -57-

to z (one-tailed probability) is printed and kept in the entry register.

The area from -z to +z (two-tailed probability) is put into the second

I 2ND Ifunction register and may be recalled with FUNC The formula

used for normal probability is

y= 1

If z < 0, the area from -z to +z is negative. The area in all cases

is calculated to six fractional digits -- remaining digits are zeroed.

Again using the data we entered into Set Group 3 in the eXaInple under

Standard Deviation (n-l) above, let's take a z and calculate the normal

probability.

GJGJDEJ~ [2]

[!;]~

14.900
0.889

0.889
0.813

p

*

x
z 3

z

Here, we used the z which I~ I'll 0 put into the entry register as

our entry for the normal probability calculation. But you don't have

to do a z calculation first. You can get all the normal curve informa-

tion with the entry of any z you like. Like this:

12ND IFUNC

You automatically get one-tailed
pr 0 bability

Now you get two-tailed probability

2.000

o. 977 *

0.954

p

F Z

z

CHAPTER 2 -58-

Multiple Variable Data Entry

The XY key is used to accumulate both two-variable and three-variable

data.

TWO- VARIABLE

For two-variable data, the sequence is as follows:

enter X

press

enter Y

press G
With this sequence, data is

Register

0

1

2

3

4

5

,
0

accumulated in these scratch pad registers:

Data

Z::XY

n

~

rx (;;

rx2

n

'LY •

L"y2

Note that X data is stored in registers 1, 2 and 3 and Y data is stored

in registers 4, 5 and 6. Two-variable data entry with IXYI always

puts the first variable in Group 1 and the second variable in Group 2.

So you can do standard deviation, z-statistic, etc. with either the X

CHAPTER 2 -59-

or the Y data accumulated this way. (That1s why n is stored in both

register 1 and register 4.) Let's do a two-variable summation:
-- -

0.000

Separates CL from data

2.000

3.000

4.000

5.000

x

Y

x

Y

CL

GJ~ 4.000 X

t·

08 6.000 Y

- - -- - ...

Note the X and Y print symbols which identify each data item entered.

Also notice that the tape skips a space after each XY group. Now

letl s take a look at what's in thos e registers:

\

CHAPTER 2 -60-

IRCLnl~ LXY 50.000 l' 0

IRCLnlG n 3.000 1

IRCLnl0 LX 10.000 2

IRCLnl0 LX2 36.000 3

IRCLnl 0 n 3.000 4

IRCLnl 0 'LY 14.000 5

70.000 6

The DELETE key is used to remove data from an IXYI summation

just like it was used before to remove data from a 1~21 summation.

Let's try removing some data from this summation:

GJ~

o IDELETEI c:J
4.000

6.000

X

Y -

(Note the - after Y on the tape, indicating that these data have been

deleted.)

And let's look at the registers again:

CHAPTER 2 -61-

IRCLnI ~2:XY 26.000 t 0

IRC~10 n 2.000 1

IRCLnl 0 Z:X 6.000 t 2

IRCLnl0 Z:X2 20.000 3

IRCLnl0 n 2.000 t 4

IRCLnIG '£Y 8.000 5

[RCLn] 0 ZyZ 34.000 t 6

The bad data are gone, and the good

data live on•.

THREE- VARIABLE

For three-variable data accumulation, the sequence is as follows:

enter X

press IXyl

..
i

..
...

enter Y

press IXyl again

enter Z

press [:]

With this sequence, data are accumulated in this format:

•

•

CHAPTER 2 -62-

Register Data

0 ~XY

1 n

2 ~X

3 ~X2

4 z: YZ

5 ~y

6 ~yZ

7 ZXZ

8 z.z

9 ~Z2

Here's an example of three-variable data entry:

IInI ~ clears scratch pad registers
0-9

0.000 CL

Separates CL from data

2.000

3.000

4.000

x

y

z

CHAPTER 2 -63-

0§1 7.000 X

0~ 8.000 y

GG 9.000 z

0~

0§]
[2][:]

1.000

4.000

7.000

X

y

z

Note that the tape skips a space after each group of three data items,

just as it skips a space after each set of two items with the two-var

iable data sequence. And now the machine prints an X, a Y and a Z

on the tape to make it easy to identify each of the data items individually.

Now to take a peek at those registers:

IRCLnl0 ~XY 66.000 l'

IRCLnl Q] n 3.000 t

IRCLnl 0 LX 10.000 t

o

1

2

IRCLnl [2] "LX2

IRCLnl G z.y z

54.000

112.000

3

4

CHAPTER 2 - 64-

IRCLnl G 2:Y

jRCLnl G z:yZ

IRCLnI [2] 2:XZ

~C~10 <Z

IRCLnI 0 L: Z2

15.000

89.000

78.000

20.000

146.000

t

t

t

5

6

7

8

9

We can, of course, remove a group of data from our summation,

like this:

GJ~

GJ~

[2] IDELETEl GJ
And now the registers will look like this:

1.000

4.000

7.000

62.000

x

y

z -

t o

[§0 n

~Cl.n10 ZX

IRC~10~xz

/RCLnI ~ L.YZ

2.000

9.000

53.000

84.000

t

t

t

1

2

3

4 .

CHAPTER 2 -65-

11.000

73.000

71.000

13.000

97.000

t

l'

t

5

6

7

8

9

Note that when you accumulate data for three dependent variables,

n is stored only in register 1 (rather than register 1 for Group 1,

register 4 for Group 2 and register 7 for Group 3). For this reason,

accumulation of data by the three-variable sequence sets an internal

flag which tells the machine to get n from register 1 when doing SD,

z and linear regression no matter which Group is set. So you can

safely calculate SD and z for each of the 3 variables, even though you

put the data in with the XY key and n is not in registers 4 and 7 for

Set Groups 2 and 3. This flag is reset by entering data in the two-

variable sequence described above, by turning the machine off, or.by

Linear Regres sion

ILIN I performs both two-variable and three-variable linear regression.
REG

Setting the Group to 1, 2 or 3 indicates two-variable linear regression.
' ..

CHAPTER 2 -66-

Setting Group 4 indicates three -variable regres sion. Data for two

variable linear regression are entered as described above, using IxyI
and the two-variable data sequence. Data for three-variable linear

regression are entered as described above, too, using I.Xyl and

the three-variable data sequence. Since I~zl does not accumulate

cross-products (ZXY, ~ YZ, etc.) linear regression cannot be calculated

for data entered with this key.

TWO- VARIABLE

Two-variable linear regression may be performed between any two 'of

the three summation groups. The Group set may be 1, 2 or 3. ·Here's.

a chart that defines which two groups are used with each setting and

where the data come from. (DonIt forget that when you enter two-

variable data with the XY key, X goes into Set Group 1 and Y goes into

Set Group 2 automatically, no matter what Set Group is current. So

when you do a regression on that data, Group 1 must be set.)

SET GROUPS USED REGISTER USAGE
GROUP Indep. Dep.

Var. (X) Var. (Y] ~XY N zX 'LX2 "y z: y 2

1 1 2 0 I 2 3 5 6

2 2 3 4 1 5 6 8 9

3 3 1 7 1 8 9 2 3

CHAPTER 2 -67-

When JLINl is pressed, the coefficients r, m, and i are calculated --
~

where Y = mX + i is the least-square regression equation of Y on X;

r is the correlation coefficient; m is the slope; and i is the intercept

on the Y axis. These coefficients are calculated as follows:

r =

m=

i =

ZXz:y
'Z:XY - n

ZX~Y
2:XY - n

n

i:x - m"ZX
n

\

When you set the Group to 1. 2 or 3 and pres s I~~I .the coefficient

is printed and left in the entry register. The slope is put in the second

fZNDlfunction register and may be recalled with ~ And the inter-

cept is put in the third function register and may be recalled with

Here's an example:

0.000

separates CL from data

CL

CHAPTER 2 -68-

data

1.000

3.000

1.000

4.000

2.000

5.000

1.500

6.000

x

y

x

y

x

y

x

y

~0
this guarantees that com-

GROUP 1 putation will use Set
Groups 1 & 2

~
calculates correlation

0.674 LRREG coefficient 1

j2ND I gives us the slope 1. 818 F 2FUNC

[J 0 gives us the intercept 2.000 F 3

CHAPTER 2 -69-

THREE - VARIABLE

Three-variable linear regression is performed by setting Group 4 and

ILIN Ithen pressing REG Assuming, of course, that you've entered

data in the three-variable sequence, as described under Multiple Var-

iable Data Entry, above. The coefficients i, m l and m2 are calculated

where Z =i l +ml X+m2Y is the least-square regression equation of Z

on X and Y. Here, i, ml and InZ are determined by simultaneous

solution of the following equations:

LZ =in + mlLX + m2ZY

'Z: ZX =iDe + ml Z'X2 + mZ~ XY

2: ZY = i!:Y + ml ~ XY + m2 "Zy2

After these calculations are performed, i is printed and left in the

entry register; ml is put into the second function register and may be

1
2ND

jrecalled with FUNC ; and In2 is put into the third function register,

from which it may be recalled with

Let's do a three-variable linear regression to illustrate these tricks.

0.000

separates CL from data

CL

CHAPTER 2 -70-

GJ§] 1.000 X

~§] 2.000 y

08 3.000 z

y

z

X

5.000

1.000

9.000

[2]~ 7.000 X

0§] 8.000 y

GEJ 9.000 Z

data

G]§] 1.000 X

GJ~ 4.000 Y

GGJ 7.000 z

fSETI~
~~

indicates 3 -variable
situation

CHAPTER 2 -71- -

~ i prints 0.000 LR 4
REG

1

2ND

I m1 prints Z=i+ml X+m2 Y -1.000 F 2
FUNC

~[2] m 2 prints 2.000 F 3

-
We can also get the correlation coefficient, slope and intercept be-

tween any two of the three variables for which we've collected data.

Like this:

-

~0GROUP

ILIN I r xy prints
(r between Groups

0.866 LR 1
REG 1 and 2)

1
2NDd m prints 0.722
FUN Y=mX+i F 2

[!J [2] 2.944 F 3

IAD~

~ 0GROUP

~ r prints (r between Groups 0.848 LR 2
REG yz 2 and 3)

1

2ND

I
m prints Z = mY + i 0.960 F 2

FUNC

[!;] CD i prints 2.440 F 3

--

CHAPTER 2

rsETlr;l
~L:J

-72- -

F 2

LR 3I~~GI r zx prints

1

2ND

I
m prints

FUNC

I~ l) ICiJ i prints

(r between Groups
3 and 1)

x =mZ + i

0.471

0.500

-1.000 F 3

equation. With Group 1, 2 or 3 set,

(r =correlation coefficient)

ANOTHER NOTE TO BENNY:

As you may recall, the three-variable data entry sequence sets an in-

ternal flag to tell standard deviation, z and linear regression where to

get n. If, however, you I ve stored the swnmed data directly into their

respective registers, this flag never got set. Therefore the machine

doesn't know where to get n for these calculations. So you have to set

the flag yourself by setting Group 4 before you set the actual Group

you want set for calculating.

LINE

Using the data collected for Linear Regres sion, this function calculates

the dependent variable of either the two- or three-variable regression

[~n1[2] will calculate and

CHAPTER 2 -73-

print Y est where Y est = mXfi. This assumes that X is in the entry

register; m and i are as described under Linear Regression, above.

You don't have to use I~~GI before using ~ G because

the Line function automatically does a linear regression to determine

m and i.

-
Here's an example:

0.000 CL

separates CL from data

Y

X

3.000

1.000

Q~ 1.000 X

G][J 4.000 Y

data

[!]§] 2.000 X

~~ 5.000 Y

1.500 x

6.000 Y

CHAPTER 2 -74-

rSETlf}l
~L..J

You give it X
It gives you Y tes

1.000
3.818

1.500
4.727

2.500
6.545

X
Y

X
Y

X
Y

1

1

1

With Group 4 set, the LINE function will do a three-variable Line ca1-

cu1ation where Zest =m 1X + m2 Y + i. Here, m1' m2 and i are the

same as described under three-variable Linear Regression, above.

X and Yare entered like this:

enter X

press

enter Y

press

Zest is calculated, printed and left in the entry register.

Like this:

CHAPTER 2 -75-

[J ~ 0.000 CL

IAD~ separates CL from data

[!J~ 1. 000 X

0~ 2.000 y

[]~ 3.000 Z

[2]~ 7.000 X

~~ 8.000 y

GEJ data 9.·000 Z

[TID0~ 1.500 X

~D0~ 8. 600 y

GDCUQ 3.100 z

GDGJ~

0[J~~

0D~EJ

7.500

4.600

1.800

X

y

z

CHAPTER 2 -76-

~G
indicates 3-variable

GROUP situation

~ ~G X 1.000 X

0 ~G y 2.000 y

z·) 1. 645 Z 4

GJ [!JGJ X 7.000 Z

0 ~GJ y 8.000 y

Z ') 5.938 Z 4

~ ~GJ X 2.000 X

GJ [!J~ Y 4.000 Y

Z) 2.823 Z 4

Independent and Dependent t

This key calculates the dependent t-statistic and the independent t-

statistic according to the following formulas:

X-y

CHAPTER 2 -77-

tind = X-Y

tnx-ll SDX
2 + (ny-I)

SDYj [:x + n~JnX + ny - 2

Where

= :LX
X

nX

-y= 'Ly

SDX = standard deviation of X (n-I)

SDy = standard deviation of Y (n-I)

r = coefficient (see Linear Regression, above.)

Dependent variables should be entered with IXyl . Independent var-

isables should be entered with 1~21 The Set Group and register

usage format looks like this:

SET GROUPS REGISTER USAGE
GROUP USED n X LX Z:X2 n y 'LY 2:y 2 n

1 1 & 2 1 2 3 4 5 6 1

2 2 & 3 4 5 6 7 8 9 1

3 3 & 1 7 8 9 1 2 3 1

CHAPTER 2 -78-

As you can see, the sutntnations and n's used are dependent upon the

Group set.

With the data stored, when you press IfdepI the dependent t-statistic
tind

is printed and left in the entry register; and the independent t-statistic

is put into the second function register and may be recalled with

f2NDl
~

Let's do a dependent t-statistic:

separates CL from data

0.000 CL

paired data
entry

1.000

3.000

1. 000

4.000

2.000

5.000

x

y

x

y

x

y

CHAPTER 2 -79-

fSETI~
~~

f2NDl
~

to be sure we calculate
the right data

dependent t-statistic
printed

gives you independent t-stat
istic - - may be of same value

1.500

6.000

-6.063

-4.539

x

y

1 t

F 2

As you can see, we've entered the data with IXyl becaus e the data

are dependent. Note the delightful little t on the tape which identifies

the dependent t-statistic. The digit before the little t indicates the

Groups compared. Now let's do an independent t:

0D[D~

GJD0~

~D~0~

GD~[k]

GJDGJ~~

have to set the
Group where you
want data to go

independent
data into
Group 1

0.000

2.100

2.200

2.250

2.600

2.420

CL .

~1

Z"1

Zl

Z:1

21

CHAPTER 2 -80-

IsETI GlIADvl
~LJ

0D0~

GD~~

0D[!][Q~

GD[i]GJ~

GDGJ~

GDGJ~

GDQ~~

rsETI f7l IADVI
~L:J

set new Group, ad
vance tape for clarity

independent
data into
Group 2

must set the first of-- --
the two groups

4.500

4.800

4.910

4.190

4.400

5.200

5.120

"2:2

"2:2.

L'2

:L2

Z:2

rZNDl
~

meaningless here, since we've
entered independent data

here's our independent
t- statistic

-0.963

-12.929

1 t

F 2

This tiIne. we've entered the data with I~ instead of IXyl be
nxx2

cause we have independent data. And we have to set Group 1 because

our independent data are in Groups I and 2, and the machine will

CHAPTER 2 -81-

autom.atica11y use the data in the Group set and the next group. We

could have put the data in Groups 2 and 3 just as well. Like this:

........-.......-_-......_------ -- --------.
0.000 CL

0DGJ~

0D0~

0D~0~

0D0~

QD0~~

fSETI f3lIADVI
~L.:J

0D0~

0D[!]~

0DWGJ~

GD~[I]~

0DGJ~

0D[i]~

0DGJ0~

data
into
Group 2

data
into
Group 3

-

2.100

2.200

2.250

2.600

2.420

4.500

4.800

4.910

4.190

4.400

5.200

5.120

-

"2:3

2:"3

2:3

~3

2:3

"L.3

--

CHAPTER 2 -82-

[SETIr::I
~L:J

1.000 1

[tdep Itind meaningless here -0.434 2 t

[2'Ni)l this is our independent t
~

-12.929 F 2

(*We must put a dummy number in register 1, since Itt:sl always

calculates both quantities and in this case register 1, where the dep-

pendent t gets its n, will be empty unless we put something in it. If

you look at the formula for tdep (page 76) you III see that n = 0 would

cause the machine to go into ERROR mode.)

You can do an independent t between Groups 3 and l, too. Like this:
-

I~nl GJ I~~~upl D 0.000 CL

0D[i]~ 2.100 ~3

~

0D0~ 2.200 L3

GJD~0~
data
into 2.250 ~3

Group 3

~DGJ~ 2.600 '2:3 ..

0D0~~ 2.420 ~3

...... -

CHAPTER 2 -83-

\SETl flllADvl
~~

0D0~

GD0~

GD~[!] [Ii]

GD00~

GD0~

GD0~

GDGJ0~

data into
Group 1

4.500

4.800

4.910

4.190

4.400

5.200

5.120

2:"1

2:"1

~1

"2:1

L"1

~1

L1

fSETl·f31 1ADvl
~L:J

don't need a dummy
number since register
1 has something in it

I::sI again nleaningless here

f2Ni)l that's our number

~

-1. 194

-12.929

3 t

F 2

If you've entered three-variable dependent data, you can take t-stat-

istics between any two of the variables. Here's how:

0.000 CL

0D0§J 1.500 X

~DGJ~ 8.600 Y

GJDGJGJ 3.100 z

CHAPTER 2 -84-

GJ~ 1.000 X

~~ 2.000 Y

Q[;] 3.000 Z

GJ~ 7.000 X

0~ 8.000 y

G[;] 9.000 z
data

GJD0~ 7.500 X

8JD[D§] 4.600 Y

GJD0GJ 1.800 z

Chi-Square

The chi-square statistic is calculated with

II: nI GJ · The s equenc e is as follows:

enter observed frequency (fo >

press

enter expected frequency (fe >

press Q

CHAPTER 2 -86-

Observed and expected values are printed; the expected value remains

in the entry register. The chi-square statistic,

is accumulated in register 9 and the number of pairs is kept in register

7. (The machine also uses register 8 during calculation of the formula,

so don't rely on scratch pad register 8 while you're using the chi-square

function.)

Here's an example of chi-square:

0.000

2.000

4.000

3.000

7.000

o

e

o

e

CL

CHAPTER 2 -87-

00 [!;J 0
00GJ

GJGJ r!J [i]

~~ IDELETE\GJ

oops! this should
be 6, not 66

so we delete
that item

and put it in
correctly

4.000

8.000

5.000

12.000

66.000

13.000

66.000

13.000

6.000

13.000

o

e

o

e

o

e

o

e -

o

e

Note that the tape skips a space after each set of observed and expec-

ted data. And the print symbols 0 and e make it pretty easy to see

which is which.

CHAPTER 2 -88-

Now let's see what's in those registers:

n-count

chi-square statistic

5.000

13.138

t

t

7

9

Permutations and Combinations

11.'11 [2] calculates the nwnber of permutations and combinations of

n items taken r at a ti.m.e. The sequence is:

enter n

press

enter r

press Q

The values n, r and the number of permutations are printed. The nwn-

ber of combinations is put into the second function register and may

be recalled WlOth /2ND I Th b f ° (P) dFUNC e num er 0 permutatlons an the

number of combinations (C) are calculated according to the following

formulas:

n!p=
(n- r)

C=
n!

r! (n-r)

CHAPTER 2 -89-

Let's do some:

~ [!;] GJ 8 items 8.000 n

0~ 1 at a tiIne 1.000 r

permutations 8.000 P

~ combinations 8.000 F 2FUNC

IADVf

0 [!J 0 8 items 8.000 n

~~ 2 at a tiIne 2.000 r

permutations 56.000 P

~ combinations 28.000 F 2
FUNC

IADV I

~ [!;] 0 8 items 8.000 n

0~ 5 at a tiIne 5.000 r

eo

permutations 6,720.000 p

~ combinations 56.000 F 2
FUNC

CHAPTER 2 -90-

B
0 ~ GJ 8 items 8.000 n

0[;] 8 at a time 8.000 r

\ZND I
FUNC

permutations

combinations

40,320.000

1. 000

-

p

F 2

FACTORIAL

One last Additional Function is ~ o 'which calculates the

factorial (!) of the number in the entry register. Both the number and

its factorial will print. If the number is non-integer or negative,

ERROR will occur. Factorials of num.bers greater than 69 are beyond

the capacity of the machine (l098), and you'll get OVERFLOW if you

attempt one. The factorial of zero will come up as 1.

OPTIONAL KEYS

The 445 keyboard is fitted with spaces for three optional keys. If you

like, you can have them. installed on your keyboard with appropriate

labels.

The purpose of these keys is to provide direct keyboard access to

$pecific locations in program memory. Then if you store a program

CHAPTER 2 -91-

to perform a certain operation at one of thes e locations you can us e

it as part of your keyboard capability. These optional keys will be

explained thoroughly in Chapter 4.

CHAPTER THREE

GREEK SHIPS AND OTHER PHENOMENA

-91A-

CHAPTER 3 -92-

One day a Phoenician admiral and part-time statistician was gazing

out over the horizon watching his ships disappear on their way to

war exercises in the Mediterranean when suddenly a staggering thought

struck him. He had been speculating on how long it took for the ships

to drop below the horizon and dis appear. And then this thoughts wan

dered to the curvature of the earth, which, although well known to

people who depended upon their knowledge of the sea, was still a

matter of almost total ignorance to the land-bound populace. In any

case, he was ruminating on the possibility that there might be a conn

ection between the curvature of the earth and the length of time it took

ships to disappear, when another possibility captured his imagination.

Perhaps there was a relationship between the distance from the ship

to the observer when the ship disappears over the horizon and the cur

vature of the earth! And, indeed, there was. Since the radius would

be the same where the ship was as it is where you are, if you knew the

height of the ship you could calculate the distance from. the tip of the

mast to the center of the earth. Therefore, you know two sides of a

triangle with a right angle in it. Now, didn't that Pythagoras fellow

say if you knew all that you could find the length of the rem.aining side

of the triangle? Yes, he did. So the admiral drew this drawing:

CHAPTER 3 -93-

I
I

/
/

/
I

/

/

/1-(
I,

I
~et.po,
I
I

lrt
I
I
I /.
I /
I ~

/
I /
VI

and then he did this figuring:

1\2. + d:z.. =(l\ +1)).t.

q~ + J~ ":::: i\~ + ~ ~~ of ~ '-

d?.. = A. ~~ +ry'J.

d = -V~ 1\1) +~ "

)?r: ?=3 s: 1. C 1t\; t f

a"J 11 = 13.cr 5' ""rr) £, ac.u.'b ; 1-.r,

CHAPTER 3 -94-

And, after two nights and three days of hand calculation, our ship-

cormnanding friend finally arrived at the distance of 31. 34 kilocubits.

By this time, of course, the ships in question had already conquered

their imaginary enemy and were on their way back to port.

If our admiral had had a 445, he could have solved the problem like

this:

~ =./z x 13.95 x 106 x 35.2 + (35. 2)~

ISET] 0
D~

00
GJ0D~0IEXpIGJ0

GJ0D0GJ
IT]

GJ~[J00

c:J
W
Q

0.00

2.00

13,950,000.00

35.20

<182,080,000.0

35.20

35.20
1,239.04

1,239.04

1,239.04
982,081,239.0

/\

x

x

+

x

=
*

=
*

)

982,081,239.0
31, 338. 17

v
*

CHAPTER 3 -95-

Now, the admiral has a fleet of ships with a whole bunch of different

mast heights. And he wants to know how fast they're going on the way

to battle. He knows when each one disappears by looking at his watch.

And he can calculate the distances as above. But the statistician in

him craves to know the average speed of all the ships in the fleet and

the standard deviation of that speed. With a pencil and paper, this will

take the admiral some time. But you can do it quite easily on the 445.

You don't really want to calculate each ship separately from beginning

to end. After all, you've got a workable formula for the distance, the

speed is simply the distance divided by the time and you know what the

mast heights and times are. There has to be an easier way to deal

with this information. And there is. You can organize your solution

into a logical sequence of steps and program the 445 to do all the cal-

culation for you. All you have to give the machine for each ship's cal-

culation is the height of the ship from the water line to the tip of the

mast, and the time it took to disappear over the horizon (we'll use Zi

hours). Such a series might look like this:

2
X
I
3

9
5
EXP
6

Now, if you followed this list of steps sequen-

tially on the keyboard, you'd wind up with the

right answer (12, 535.26 cubits per hour).

But to get the machine to do it all without any

help, you have to put in a few more steps, and

CHAPTER 3

X
3
5

2

+
(
3
5

2
X

=

=

...
2

5

=
~nxx2

-96-

a little more information about what to do

with certain pieces of data as it goes along.

Don't forget that the programmable part of

the 445 is exactly like a computer. (In fact

it is a computer.) And computers can't

think for themselves. You have to tell them

exactly what to do at every step of the way.

80, now let's go back and organize our se-

quence into a series of steps for programming

the 445.

It's good to write down our program steps in the order in which we want

to load them into the machine. The height of the mast will be in the

entry register when the program starts (because we will have put it

there), so the first thing we want the machine to do is print that num-

ber. Therefore, the fir st instruction is PRINT ENTRY • Now, the

program doesn't really need this number at this point, so we'll store

it away in a register where it will be available later. Therefore, the

next two instructions will be 8 Tn and O. This will put the number in

register O. Now we have to enter the time. So we program a HALT where

we can enter it. Then PRINT ENTRY to print the time. And STn and 1

CHAPTER 3 -97-

to store the time away for later use, as we did with the mast height.

From here on, the program steps are the same as our sequential list,

except that instead of 35.2 (the ship height in our example) we want

whatever number we've got stored away in register 0, and for time

weIll use the contents of register 1. The whole list of program steps,

so far, looks like this:

PRINT ENTRY

STn

o

HALT

PRINT ENTRY

STn

1

2

X

I

3

9

5

EXP

6

CHAPTER 3 -98-

x

RCLn

o

+

o

x

=

)

=

RCLn

1

=

At this point in the program, our answer will be in the entry register.

So now we want the answer printed. Our next instruction, then, is

PRINT ANSWER. Then we're finished with that operation. But we

know that we're going to be doing a whole series of these calculations.

CHAPTER 3 -99-

We've got a HALT to enter the tiIne. But when do we enter the next

ship's height? Right now. Our next instruction, then, is HALT --

which simply tells the machine to stop and let us put something in or

do something else before it goes on to the next instruction. So when

we're running the program later, we'll put the next ship's height in

there and it will be recorded in the entry register. But wait - - our

first instruction is PRINT ENTRY. This means that if we run off a

whole string of ships' heights, the heights and answers will be printed

one after another on the tape without any spaces between them. That

could be difficult to read. So let's put in a paper advance instruction

and then a HALT instruction. Then we have to tell the machine what

to do next. What we want to do is go back to the beginning of our pro-

gram so we can do the calculation starting with the new number that

will be in the entry register. To get there, we have to know the address

where the program begins. Actually, we can start loading the program

anywhere. But unless there's a reason to do it differently, programs

are usually started at the beginning of program memory. So let's put

ours there. The first address in program memory is 0000. To tell

the machine we want to go to this addres s we us e one of the two keys

IJUM1 or IBRANCHIon the left side of the upper row, the keys,
nn no

followed by 00 · (The difference between BRANCH and JUMP

will be explored thoroughly in Chapter 4.) Where we put our program

is called the program address - - since the program literally lives there.

CHAPTER 3 -100-

We know our program will start at 0000, so we can end our program

by s ending the machine back there. Our last three instructions, then,

will be JUMPnn, 0 and O.

Now let1s load our program and see if it actually works. First we

have to get to the address where werre going to load it. So press

IJU~pIGG · Then we have to tell the machine to load what we

give it. So put the RUN-STEP-LOAD switch on LOAD. With this

switch in LOAD position, everything you enter will be loaded into pro-

gram memory in sequential order starting at the address where you

start (in this case, 00). Let l s put in our program.

PRINT 0000 060
ENTRY

ISTn I 0001 110

0 0002 000 0

IHALT I 0003 056

PRINT 0004 060
.ENTRY

ISTn I 0005 110

0 0006 001 1

CHAPTER 3 -101-

0 0007 002 2

0 0008 023 X

0 0009 001 1

0 0010 003 3

D 0011 012

GJ 0012 011 9

GJ 0013 005 5

IEXpl 0014 014

0 0015 006 6

0 0016 023 X

I RCLn! 0017 III

0 0018 000 0

G 0019 021 +

[U 0020 026

IRCLn I 0021 111

CHAPTER 3 -102-

0 0022 000 0

0 0023 023 X

Q 0024 020 =

W 0025 027

Q 0026 020 =

0 0027 055

B 0028 024 ..

IRCLnl 0029 III

GJ 0030 001 1

GJ 0031 020 =

1l:21 0032 047

I PRINT I "
ANS 0033 061 A

IADV I 0034 065

I HALT I 0035 056

IJU~P I 0036 126 Ju

CHAPTER 3 -103-

0037

0038

000

000

o

o

Now put the RUN-STEP-LOAD

switch back on RUN.

As you probably noticed, the 445 printed out a symbol in the right

hand column for just about everything you progra:m:med into it. In the

:middle column are the nu:meric codes of each key you us ed. And the

left-hand colu:mn contains the STEP nu:mber of each instruction in your

progra:m. So you can look at the tape and review your progra:m to see

if you put everything in that you wanted to. Just co:mpare the tape

to your progra:m list. Everything in your progra:m except PRINT

ENTRY, EXP, ADV and HALT will have a symbol in the very right

hand colu:mn to identify it. If everything is the SaIne, you're ready to

run the progra:m. But first you have to put the PRINT switch on OFF.

Otherwise, the 445 will print everything it does while it's working on

the program. And we really aren't interested in all of that. We just

want to know what nu:mbers we put in and what the final answer is.

We've already put the RUN-STEP-LOAD switch on RUN so we don't have

to worry about that. (Re:me:mber, everything you do while the RUN

STEP-LOAD switch is on LOAD is recorded in progra:m :me:mory.)

Let's enter our old ship's height with a ti:me of zt hours, and see if we

CHAPTER 3 -104-

get the SaIne answer we got before. Enter 35.2. Press IRESUME I
Enter 2. 5. Then all you have to do to initiate your pro-

graIn is press IRESUMEI again.

00D0~SUMEI

~D0IRESUMEI

35.20

2.50

12,535.26 A

After printing out the answer, ittll stop. That's because we put a

HALT there. Now we can enter the next shipl s height -- say, 43. 7

cubits. Then press IRESUME] and enter the tim.e. say 3 hours.

Now press !RESUME! again and the 445 will take off and do every

thing you1ve programmed it to do allover again. This time we get

11, 639. 16 cubits per hour. And you can keep on entering numbers and

pressing IRESUME I until you run out of ships or your forefinger

falls off.

Now let's suppose you had a more difficult problem. Let's say you

want to calculate the expansion,

sin X= X- + + •••

Let's also say that all we need is the result of the first three terms in

the expansion.

CHAPTER 3 -105-

Here's how you do it.

First, of course, we have to tell the 445 where to put our program.

So we hit IJUMP I~~ · Now we put the RUN-STEP-LOAD
nn

switch on LOAD and begin entering our program.

PRINT Print X 0000 060ENTRY

ISTnl 0001 110

Store X

~ 0002 000 0

ISTnl Start collecting 0003 110
values for final

~
answer

0004 001 1

~ 0005 025 aX

0 0006 003 3

G 0007 024 ..
X3

GJ
3!

0008 003 3

~ 0009 116

0 0010 006 6

Q 0011 020 =

CHAPTER 3 -106-

I5 Tn! 0012 110

D X 3
Subtract 3! 0013 022

from answer

0 0014 001 1

IRCLnl 0015 111

~ 0016 000 0

~ 0017 025 aX

0 0018 005 5

X5

[i] 5!
0019 024 .

•

0 0020 005 5

~ 0021 116

0 0022 006 6

~ 0023 020 =

ISTnl 0024 110

GJ
Add X5 to answer

5! 0025 021 +

0 0026 001 1

CHAPTER 3 -107-

IRCLn I 0027 III

Recall answer

~ 0028 001 1

PRINT Print answer
ENTRY (not rounded) 0029 060

IADvl Advance tape 0030 065

[HALTI Wait for new X 0031 056

!JUMP! 0032 126 Ju
Go back to beginning

0
to start calculation
with new X 0033 000 0

0 0034 000 0

Now move the switch from LOAD

back to RUN.

We put in PRINT ENTRY instead of PRINT ANSWER at the end because

with the kind of numbers we're calculating, we really don't want a

rounded answer. For the same reason, we'd better set the decimal

point for five places before we do any calculating. Let's put in • 1, • 2

and.3 as our values for X (in radians) and see how our program works.

00 \RESUME I

0.10000
0.09983

CHAPTER 3 -108-

D0 \RESUME I

D01RESUME I

0.20000
0.19866

0.30000
0.29552

You can see if your program is working by calculating the values

on the keyboard according to the formula.

Now, let's add a bit of complexity to the program. Let's suppose that

you want to continue calculating terms in the expansion for n term.s.

Therefore, you have to have a way of entering n, and of testing for n.

A good way to start putting together a program. with this degree of

interdependence is to chart the flow of operations the machine will

have to perform. This allows you to figure out and see clearly exactly

how each element in the program relates to the other elements, and

in what order they have to take place. This technique is called flow-

charting, and the chart itself is called a programming flowchart. There

are all kinds of different symbols that computer program.mers use to

indicate every little detail of their system, but for our little m.achine

we only need two flowcharting symbols. One is a simple rectangle, in

which you put operations. The other is a diamond shape, in which you

put decisions. That's all you need for a flowchart. Let's make one.

CHAPTER 3

51 f\R1
I

-109-

CD
Flowcharts generally run from

top to bottom, left to right.

As you can see, we've set up

two arbitrary values, m and k,

which we use to increment X and

to alternate the sign of each newl®......------~IVV"\=.'
term. We've also set up a

place where we store n. After

c.a. \c (,,\, Io-.f.e.

)("'" k
m l X

•
QV\~ ctdd +0 Cl\ll\.f~e..,.

ment n and then test it to see if

it's zero. If it is, then we've

done all the terms we wanted to,

lQ.dd t +0 ~ lCV
and we can print the answer. If

not, we just go back and calculate

I

another term, decrement nand

test again.

Each block in the flowchart here

I~e.c.Cllt V\ 1 @

-.~@_~_s c~n >01 ">-_......;N~O~l

I

l\e~l.s~-t' U~e C"'-Clr i

\)Q." ..~b' (I Rt'~i.r+Q {'
q~h..-i' (s':-I() c=t

X' ,.

stead of doing them sequentially.

has a number. You can see how

we carry out each of these elements

in the actual. program by studying

@
the steps next to the corresponding

number. Note that we're now using

@ a loop to calculate the terms in-

,
V" e...c.q, U C\ ~ t c...., ~ V"

Q.V\~ P ;\"'+

1,
~k

CHAPTER 3 -110-

OK. We've got a flowchart. Now let's take a look at the actual pro-

IJUMP Igram as we load it into the machine. (Don't forget to hit
nn

and to put the machine in LOAD mode.)

,

PRINT
ENTRY

PRINT
ENTRY

Here, the zeroes
which RESET puts in
the entry register are
stored in register 9.
The answer will be
accumulated
here.

HALT to enter
X, then print it
and store it
away.

HALT to enter
n, then print it
and store it away.

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

062

110

011

056

060

110

010

056

060

110

007

9

8

7

CHAPTER 3 -111-

0 0011 001 1

ISTnl ®establish m = 1 0012 110

~ 0013 006 6

ISTnl ~ establish k =1 0014 110

0 0015 005 5

rrn
This establishes
the symbolic ad-

NM dress II -V- II 0016 066

DB (Q fa r this point in
the program.

0 0017 055

0018 III

0 0019 010 8

B' 0020 025 aX

[RCLn]
Calculate

(]) 0021 111

Xm X k

0 m!
0060022 6

[±] 0023 024 .-•

IRCLn I 0024 111

0 0025 006 6

CHAPTER 3 -112-

lLl 0026 116

[I] 0027 006 6

0
Calculate

0028 023 X
Xm
-- xk

IRC~I
m!

(continued) 0029 III l'

~ 0030 005 5

[:] 0031 020 =

[3] 0032 110

[!J (i)
add it

0033 021 +to answer

~ 0034 011 9

'0 0035 002 2

ISTn I ®
increment 0036 110 J,
m by 2

0 0037 021 +

~ 0038 006 6

-----_.---....

- ---

CHAPTER 3 -113-

0039 013

[] Multiply k by 0040 001 1
-1. (Note that

ISTnl
crJ -1 remains in

the entry reg- 0041 110
ister.)

0 0042 023 X

0 0043 005 5

ISTn I 0044 110
Decrement n

0
by adding the

@ -1 in the entry 0045 021 +
register to it.

GJ 0046 007 7

IRC~I 0047 III l'

®
Recall n

[i]
for testing.

0048 007 7

IJUMP I JUMP 0049 126 Junn

GJ if positive 0050 021 +

[ill to symbolic ®
NM 0051 067

DB
address

0 \\ -V- II
0052 055

Otherwise,

CHAPTER 3 -114-

IRC~I 0053 111 t

~ @ Recall answer,
print it and 0054 011 9
advance paper.

PRINT
0055 060

ENTRY

IADV I 0056 065

Go back
to "START. It

0057

0058

0059

126

000

000

Ju

o

o

(Don't forget to put your machine

back in RUN now.)

There's a new trick here. We used I~ ~ I to address a location in

D M
B

a program by means of a symbolic addres s instead of a numeric code

address. We'll go into that in greater detail in Chapter 4. But now

let's run our program.

First push IRESUMEI to get to the first HALT. Here's where you

enter X. We'll use O. 3 for X. Now push !RESUMEI again to get to

the second HALT instruction. Here's where you put in n. We'll use

1 for n in the first eXaIIlple. Now press IRESUME I again. The 445
~ .

CHAPTER 3 -115-

will run the program with these values and print the result. Here's

a sample tape of this program. using the values indicated:

- - -

x =.3
n = 1

x = .3
n = 3

x =.2
n=4

0.30000
1.00000
0.30000

0.30000
3.00000
0.29552

0.20000
4.00000
0.19866

Now let's go on and get into a further level of complexity. Here we

shall set up a program that does the same calculation, but allows us

to test for two different conditions, either of which will serve as a

signal to stop calculating additional terms. Weill tell the machine to

stop when either a) it has calculated n terms or b) the last term cal-

culated divided by the answer falls below a certain value. And we will

make both n and the value of

Here's the flowchart:

Term
Answer

variable.

CHAPTER 3 -116-

StAR,

@)
NO YeS

t\ea's+e" Usa.ilt. C\I\ClLlfi

\J O-f""~ bl e ~.~\~"'~.r
QW\$Wel' (.I 1W\ lC) 00

o-dd 'L -\-0 ~ @)(o ,
T/A

c.."'Q.V\3 ~ .st~'" o-t K @ O~

t"'\ 03
d e.c:. .r e. W\ e. ~-l " @ ~ 04

k OS"@
@

~yrnboli~~Gd teSS "e.y,o'"NO YES

re<:.Q. n ell "'0 P .. ,.~+ Q. \'\ I "-It. ~ @ .

~o bQ,c.K +0 START @

CHAPTER 3 -117-

And here's the program as it would be entered:

IRESET I 0000 062 /\
The zeroes which

~
RESET puts in the

0001 120nn entry register are

CD stored in register

0 00. This is where
the answer will be 0002 000 0

accumulated.

0 0003 000 0

IHALTI 0004 056

PRINT
0005 060ENTRY

@Enter, print

~
and store x.

0006 120nn

0 0007 000 0

[2] 0008 001 1

0009 056

PRINT
0010 060ENTRY

Enter, print and

[:J store limit.
0011 120

0 0012 000 0

0 0013 002 2

CHAPTER 3 -118-

0014 056

PRINT
0015 060ENTRY

Enter, print

r:J
and store n.

0016 120nn

0 0017 000 0

0 0018 003 3

~ 0019 001 1

[:J 0020 120
(J) establishes m = 1

0 0021 000 0

0 0022 004 4

0023 120 i

~ © establishes k = 1 0024 000 0

0 0025 005 5

[ill Establishes symbolic 0026 066NM (j) address "Ln/ LOG"
DB for this point in the

program.

~ 0027 050 Ig
LOG

CHAPTER 3 -119-

0028 121 l'

0 0029 000 0

Q] 0030 001 1

~ 0031 025 aX

IRCLI 0032 121 tnn

0 0033 000 0

0 0034 004 4

EJ 0035 024 ...!...
Calculate

\:L! Xm 0036 121
- xk
m!

0 0037 000 0

0 0038 004 4

[!J 0039 116

~ 0040 006 6

~ 0041 023 X

I~CLI 0042 121

CHAPTER 3 -120-

fSTl
l!!!J

IRCL I
nn

®

®

Calculate

XIn
-xk
In!

(continued)

add above terIn
to answer (note
that this value will
reInain in the entry
register.)

0043

0044

0045

0046

0047

0048

0049

0050

0051

000

005

020

120

021

000

000

024

121

=

+

o

5

o

o

I
terIn I
answer

ENTER

CODE 000 *
nnn

[J

0052

0053

0054

0055

0056

000

000

020

045

022

=

o

o

IXI

*These steps (ENTER CODE nnn and 045) enter directly the nUIneric code
of a prograInIning function not accessible froIn the keyboard. This func
tion is absolute value, and is used here to avoid the necessity of dealing
with the sign of the nwnber.

CHAPTER 3 -121-

0057 121

0 0058 000 0

G> Iterm I - limit

~
answer

(continued) 0059 002 2

[:] 0060 020 =

I:MP! JUMP 0061 126 Ju

[J if negative 0062 022

[ill to symbolic (@)
NM address 0063 067
DB

~
"ex /10xlY 0064 051 19-1

lOX
Otherwise,

0 0065 002 2

[:J 0066 120

GJ @ increment
m by 2 0067 021 +

0 0068 000 0

0 0069 004 4

, CHAPTER 3 -122-

0070 013

~ 0071 001 1

[:J 0072 120

0 ® change sign
of k 0073 023 X

0 0074 000 0

0 0075 005 5

[:J 0076 120

GJ
decrement n
by 1 (-1 was left 0077 . 021 +

@ in the entry register

0
by the previous op-
eration) 0078 000 0

0 0079 003 3

0080 121 l'

0 @ recall n 0081 000 0

0 0082 003 3

CHAPTER 3 -123-

IJUMP I JUMP 0083 126 Junn

[:] if zero 0084 020 =

~ ®NY to symbolic 0085 067
D

M address
B

~
f1 ex/10xfl 0086 051 19-1

lOX
Otherwise,

IJUMPI JUMP 0087 126 Ju
nn

~
to symbolic @ 0088 067N M address

DB

~
"Ln/LOG" 0089 050 19

LOG

~ 0090 066NM
DB @ define

ending
point

19-1~ 0091 051
lOx

I~CL I print 0092 121 l'
@ answer

and advance

0 tape 0093 000 0

CHAPTER 3 -124-

0 0094 000 0
print
answer

PRINT @ and advance
0095 060

ENTRY tape
(continued)

IADV I 0096 065

IJUMP I 0097 126 Junn

®
go back

0 to
"START" 0098 000 0

0 0099 000 0

Let's do a couple of computations on our program to see if it works.

First, let's compute:

x = 1

limit = 1 X 10.20

n =3

ISET If9lD. P. l2J

IRESUME I
[2] IRESUME

(to get to the
first HALT)

1.000000000 00

[J IRESUME I
1.000000000 -20

3.000000000 00

8.416666666 ·01

CHAPTER 3 -125-

This time, the computation stopped because of the n test. Now let's

do this one:

X=l

limit =I X 10-3

n =10

01RESUME I

IExplD01RESUME I

CD01RESUME I

1.000000000 00

1.000000000 -03

1.000000000 01

8.414682539 -01

This time, the computation stopped because of the term/answer limit.

If you lived through this last example, you should begin to get a feeling

for how the 445 works. And you should begin to wonder about some of

the curious tricks and subtleties of which the machine is capable. And

if you really followed the last example, you should be ready to explore

the further reaches of programming technique. In any case, the next

chapter covers the intricate and the obvious with regard to programming

the 445.

CHAPTER FOUR

MORE ABOUT PROGRAMMING

-125A-

CHAPTER 4 -126-

Programming is nothing more than automatic key pushing. It is not a

mysterious branch of magic which allows some people with inside in

formation to hold exclusive domain over inanimate objects. There

fore, if you know how to tell a computer (or computer-like machine)

how to do something, it'll do it. No questions asked. The 445, as

we've discovered, is a little computer. Therefore, if you know how

to tell it, it'll do anything for you that it's capable of doing. And

there are quite a number of things it can do. You can program it to

do anything for you that you can do on the keyboard. And, equally

important, you can tell it by programming to do some very powerful

things that you can't do on the keyboard. And that's really where this

chapter comes in very handy. We are now going to go through the

programming part of the 445 in very much the same kind of way as we

went through the keyboard in Chapter 2. The first thing we have to do

is find out where things get put when we tell the 445 what to do.

MEMORY

There are three separate memories on the 445 that you can get to

directly. There are the ten scratch pad registers, which is one kind

of quick-access memory. And there are up to 512 main data registers

which you can also access directly and use exactly like the scratch

pad registers. And also, completely separate from the scratch pad

CHAPTER 4 -127-

and main data registers, there is program memory. And that's what

we'll be talking about in this chapter. Let's take a look at a map of

the 445's memory setup.

Page 0

Program
Memory

(4096 steps)

Page 2

Page 1

Data Storage

llegisters

(512 registers)

Page 3

The Machine's
Private Playground

I
As you can see from the memory map, the 445's memory is divided

into four separate sections, called "pages". Page 1 is where you

store your numbers when you use the 512 main data registers you

can get to from the keyboard. Pages 2 and 3 make up the area where

the 445 has its operational memory and where it does its own figuring.

That's also where the scratch pad registers are. Page 0, as it says

on the map, is for program storage. The 445 stores each program in-

struction as a three-digit numeric code. (Later we'll discuss how you

can enter these codes directly if you want to.) Program memory con-

tains up to 4096 instruction locations. Each of these locations can hold

CHAPTER 4 -128-

one instruction. Therefore, you could conceivably write a program

with up to 4096 instructions and load it into your 445. As in the

other memories, each data location has an address. These addresses

are numbered 0000 through 4095, and are acces sible in a number of

ways. OK. That' s ~emory. Now let's talk about how we get there.

DIREC T ADDRESSING

Program instruction addresses (also called program steps) are num

bered decimally from 0000 through 4095. There are two ways to get

to these steps. One way is SYMBOLIC ADDRESSING, which we'll

get to later on. The other way, which we'll talk about here, is

DIRECT (ABSOLUTE) ADDRESSING. Every tenth program step (i. e.

step 0000, 0010, 0020, 0030, etc.) is a branch point, and may be ad

dressed directly with a BRANCH or JUMP instruction. Program

steps between branch points may not be addressed directly with BRANCH

and JUMP alone. Since this is true, the numeric codes of branch

points are shortened for access by removing the last digit - - which is

always zero anyway. In ,addition, the first digit of these program in

struction addresses is dropped if its a lowly zero, and replaced with

a non-numeric code if it's 1, 2 or 3. What's left is a two-digit num

eric code, which we do use for addressing. So program. step 0000,

which is the first branch point, becomes branch point 00. Program

step 0050, which is the sixth branch point, is branch point 05. And

CHAPTER 4 -129-

so on. Each BRANCH or JUMP instruction for direct addressing,

then, must be followed by a two-digit address for branch points 000

through 099, and a non-numeric code plus a two-digit address for

all other branch points. U sing a non-numeric code after the BRANCH

or JUMP instruction to indicate hundreds, two-hundreds and three

hundreds before entering a two-digit numeric code for the rest of the

address is the same sneaky method we used for the 512 main data

registers. In fact, we use the same sneaky non-numeric codes. For

hundreds (branch points 100 to 199) we use the DECIMAL POINT. For

two-hundreds (branch points 200 to 299) we use CHANGE SIGN. For

three-hundreds (branch points 300 to 399) we use EXPONENT. Branch

points beyond 399 may not be addressed by means of BRANCH and

JUMP.

(Don1t be confused by the numbering of branch points and program

steps. Just remember that branch point numbers are program step

nUIIlbers from which we have mercilessly removed the final zero and

non-numericked the first digit.)

BRANCHING AND JUMPING

BRANCH and JUMP can be used interchangeably in many situations.

But there is one major difference which must be considered. BRANCH

will take you to where you designate and store in its own private place

the address where you were when you branched. Then, if there l s a

CHAPTER 4 -130-

RESUME after the machine has done whatever you told it to do where

you branched, it will return to the program step immediately foll-

owing the BRANCH instruction. Therefore, BRANCH is us ed to

enter subroutines, since you can come out of the subroutine and re-

turn directly to where you came from. JUMP, however, merely takes

you to the address you indicate and drops you like a hot potato. It

couldn't care less what you want to do next. If you keep this difference

in mind, you shouldn't get into any trouble with BRANCH and JUMP.

(There's more about subroutines later on.)

Here's a diagram of how BRANCH and JUMP work:

PROGRAM
(0000)

GR,,..,
Z
7----- -

BR",~ _-
;Z ---- -
1----'
=~-..---.--

SuB ROUT USE
(Ol. -=10)

CHAPTER 4

PRINTING

-131-

The 445 will print everything you enter while it's in LOAD Illode.

(And this printed record is a Illarvelous way of debugging and checking

your progralll before running it.) So it doesnIt Illatter how the PRINT

switch is set while you're loading in a progralll. But generally you

don't want the Illachine to print out all the interIllediate steps while

it1 s running a progralll. And if you have the PRINT switch ON while

running your progralll, the Illachine will print out every little thing

it does. So reIllelllber to include in your progralll PRINT ENTRY and

PRINT ANSWER instructions when you want to have a nUIllber printed

so you can leave the PRINT switch on OFF while running your progralll.

As you Illay reIllelllber frolll Chapter 3, PRINT ENTRY will print

whatever is in the entry register, without rounding off, while PRINT

ANSWER will round off what's in the entry register. This becollles

extreIllely important when you're dealing with very BIllal1 values, where

you Illight want to use PRINT ENTRY to print the final answer rather

than PRINT ANSWER to preserve Illaximulll accuracy out to the last

digit printed.

LOADING THE PROGRAM

As you know, to load in a progralll, you put the Illachine in LOAD

Illode. That is, you put the RUN-S';rEP-LOAD switch on LOAD. When

you do this, the Illachine will store consecutively in progralll IneIllory

CHAPTER 4 -132-

every key pushed. And it'll print out a record of the program you've

entered. Let's take a look at that printed record and find out just

exactly what all those numbers mean. To do that, let's load in a

simple program and then see how the tape corresponds with what

IBRANCHI~r;:;l .we've done. So push nn ~~ to get to the fIrst branch

point and put the machine on LOAD. Now enter this program:

PRINT 0000 060
ENTRY

0 0001 023 X

[!] 0002 003 3

tJ 0003 020 =

IPRINTI 0004 060ANS

IHALT I 0005 056

IJUMP I 0006 126 Junn

0 0007 000 0

0 0008 000 0

CHAPTER 4 -133-

Now take your machine off LOAD and put it on RUN. (It's a good idea

to get into the habit of ending every program entry by taking the

machine out of LOAD. That way you avoid inadvertently doing horrible

things to your program while looking at the tape or talking to your

secretary. You can always put it back if you need to.)

Now let's take a look at that tape. The left-hand column of numbers,

the four-digit ones, is your program step number list. Each step in

the program has an identifying number, starting with 0000. (This

comes in handy when you're interrupted while loading a 396-step pro

gram and you forget where you were.) The next column, in the

middle, contains the numeric codes of each step in the program.

Every operation the 445 can perform has a three-digit C9de name.

The code name of the numeral 2, for instance, is 002. The code name

of = is 020. The last column, on the right-hand side, contains the

symbol for every operation in your program that has a symbol. PRINT

ENTRY and HALT, you'll notice, have no symbols. But JUMP, X

and the numerals do. Most computational keys have symbols, and

most purely clerical keys don't. There's a complete list in the Appen

dix. Now let's consider an other way of getting to individual program

addresses, this time using the syInbols we've been talking about.

SYMBOLIC ADDRESSING

You can n~me any step in your program with a symbolic name. And

CHAPTER 4 -134-

then you can JUMP or BRANCH directly to that location from any

other location by means of the symbolic address. It makes no diff-

erence whether the numeric address of that program step is at a

branch point or not. Symbolic addressing is entirely independent

of branch points. You name the step by using the INDIRECT/SYMBOL

key and anyone of 95 symbols available. You can us e as a symbol

any function represented by octal code numbers 000 through 137, with

the exception of 066, which is a stick-in-the-mud. (In case you've

forgotten, octal numbers have no 8' s or 9' s.) Many of these numbers

represent key codes, and may be put into your program just by

pressing the key. Those which do not represent keys are entered by

means of their code nuxnbers and the ENTER CODE key. Let's say you

want to give a place in your program the symbolic addres s It -V- It.

You do it by loading into the program I~ ; Iand then I-v-I
D M

B

The point in the program which is defined by this symbol is the step

immediately following the

all you have to do is load in

~~and Let's do one.

To make the program go there,

0r ~)then

CHAPTER 4 -135-

[[]NY
0000 066n M this gives the next

B instruction the name
II -V II

LiJ 0001 055

PRINT
0002 060

ENTRY

~ 0003 023 X

0 0004 003 3

Q 0005 020 =

IPRINTI 0006 061ANS A

IHALT I 0007 056

IJUMPI 0008 126 Junn

lrn
this says "go to the
place called I V' "

NM 0009 067
DB

[jj 0010 055

Here, we used the symbol to define the beginning of the program, and

jumped back there at the end.

CHAPTER 4 -136-

SYMBOLIC ADDRESS TABLE

The machine uses a table to keep track of the locations of symbols in

program memory. When you name an address in program memory

with a symbol, the machine puts the address of the symbol next to

the symbol slot in its little table. And when you BRANCH or JUMP

to that symbolic address, the machine doesn't have to look allover

program memory to find it. It just takes a qlil.i-ek glance at its little

table and goes directly to the addres s in program memory that it

finds next to the symbol in the table. Therefore, your programs will

work just as fast no matter where you put them in program memory

.(since the machine doesn't have to keep running through all of program

memory to find things). Also, when you INSERT, the machine auto-

matically up-dates the table. And when you read in a magnetic card

(see Chapter 6), any symbols in the program(s) there are also recorded

in the table -- so you can load in a symbolically addressed program

anyplace in program memory.

ENTER CODE

If you want to name a place in your program symbolically with a code

for which there is no key (and there are many) or if you want to load

into your program a function for which there is no key on the keyboard

(see numeric code list in the Appendix), you have to use the ENTER

CODE key. To enter a code, all you have to do is press
ENTER
CODE

nnn

and then the numeral keys for the code. (We've already done this

CHAPTER 4 -137-

once. Take a look at the program on page 120.)
ENTER
CODE is the

nnn

only key on the keyboard which calls for a three-digit numeric entry.

That makes it easy to remember that it's for three-digit numeric

codes only.

H you had wanted to use nwneric code IZZ instead of I-v-I (num

eric code 055, as you can see on your tape) for your symbolic address

in the example on page 135, you could have done it like this:

~
;

N M
DB

~~~R 000
nnn

0000

0001

066

. 122

-

PRINT 0002 060
ENTRY

~ 0003 023 X

~ 0004 003 3

[;] 0005 020 =

IPRINT I 0006 061 AANS

IHALTI 0007 056



CHAPTER 4 -138-

IJUMP I 0008 126 Ju
nn

[ill 0009 067N M
D B

ENTER

000CODE 0010 122
nnn

As you can see from the tapes, the machine doesn't care whether you

press a key or enter the numeric code. Either way, the octal code of

the function you've entered will be stored in program. memory.

You can BRANCH or JUMP from the keyboard to any symbolic address

in a program for which there is a key on the keyboard. You do this by

pressing IBRANCHI or IJUMP I then [rnS and the key which
nn nn NY

D M
B

ENTER
names the address. But you cannot use CODE to get from the

nnn

keyboard to a symbolic address in a program for which there is no key.

ENTER
CODE

nnn
only loads numeric codes into a program -- it does not give

you keyboard access to locations in program memory. Only your pro-

gram can access symbolic addresses for which there are no keys on

the keyboard. Similarly, you cannot use ENTER
CODE

nnn

to activate a



CHAPTER 4 -139-

function from the keyboard. You can only tell your program to activ-

ate this function by means of
ENTER
CODE

To put it simply, ENTER
CODE

nnn nnn

is in no way a keyboard operation key. It is strictly a programming

key.

BACK SPACE

A convenient key to know about while loading your program is
BACK
SPACE

Every time you press the key, you move back a space. The key is

operative only in LOAD mode, and is remarkably appropriate when

you make an entry mistake in the middle of your program. All you do

is back up and put in the correct instruction over the incorrect one.

It replaces it. If your mistake consisted of leaving out a step, then

you have to use INSERT. That's next. But first, letrs have a small

mistake to illustrate BACK SPACE. Suppose we made a mistake while

entering the program on page 135.

[ill;N M
DB

PRINT
ENTRY

0000

0001

0002

066

055

060



CHAPTER 4 -140-

0 0003 023 X

EJ (OoopS! ) 0004 004 4

BACK 0003 023 X
SPACE

0 0004 003 3

GJ 0005 020 =

IPRINT I 0006 061 A
ANS

IHALTI 0007 056

I JUMP I 0008 126 Ju
nn

[1] 067NM 0009

D B

0 0010 055 --r
- -

Yes, it works just like BACK SPACE on your typewriter. Except our

BACK SPACE leaves a record of what it did.

INSERT

I:Iere's where you get to put in a program step (or steps) that you left
."



CHAPTER 4 -141-

out the first time. Use BRANCH, JUMP, BACK SPACE or whatever

to get to the instruction just before the location where the insertion

is to take place. Then press IINSERT I . The address, code and

print symbol of the instruction before the insert location (the one you

just got to) will be printed out, and the 445 will automatically move

every subsequent instruction in program memory down one address

until it gets to an empty space (a NOOP code), which it fills. Then it

stops moving instructions. Check the address on the tape to be sure

you I re in the right place and then load in your new instruction. The

IDLE light will stay off while the machine is rearranging addresses,

and you may have to wait a second for it to come back on (if it has to

move a lot of instructions) before you can insert another instruction.

You have to press !INSERT I before each instruction you insert. If

you have more than one instruction to add, load them in the same order

you want thezn to appear in the prograzn, pressing IINSERT I before

loading in each one. Symbolic addressing is not affected by insertion

because of the nifty little symbolic address table the machine keeps.

When you insert, the machine up-dates the table. But it's a good idea

to load several NOOP codes at the end of every program to keep the

programs separated by neutral steps. This will prevent any inaccuracy

in the symbolic address table due to insertion and consequent shifting

of program addresses. A NOOP code (it rn.eans "no operation") just

creates a very empty space. The code is 377, and you load it by pushing



CHAPTER 4 -142-

ENTER
CODE

nnn
and 000 ·

SUBROUTINES

A subroutine is simply a small program within another program. Sub-

routines allow you to avoid repeating an identical series of steps many

times in the same program. If, for example, you have a set of in-

structions that perform a calculation which will take place with many

items, or many times, you can set up those instructions as a sub-

routine -- and branch to the subroutine when you need it. This is

where symbolic addressing becomes really handy, because with sym-

bolic addresses you can load a series of subroutines one after another

right after your main program. You can have subroutines within sub-

routines within subroutines •.• -- up to six levels. And remember, you

BRANCH to subroutines, and BRANCH remembers where you were

when you branched. RESUME gets you back there at the end of the

subroutine. Let's have an example. Suppose you wanted to solve this

formula:

Y =-,j 1 + LnA

-VI + LnB -JI + LnC

Note that -,/1 + LnA, -,/1 + LnB and -{I + LnC all have the same

format. Therefore, we can set up a subroutine to calculate all of them

rather than calculating each one separately.



CHAPTER 4 -143-

Here's the program for solving this formula:

(A is in register 0

B is in register 1

C is in register 2)

0660000establishes beginning
of program as symbol
"SECOND FUNCTION"

0001 052 F

IRCLn i 0002 III t

A

0 0003 000 a

IB~NCH 0004 127 Br

[ill calculates

N M -VI + LnA
0005 067

DB

B 0006 025 aX

EJ 0007 024 •.

IRCLn! 0008 III t
B

[2] 0009 001 1



CHAPTER 4 -144-

BRANCH 0010 127 Br
nn

[ill calculates
N M .-';1 + LnB

0011 067

DB

B 0012 025 aX

B 0013 024
..

IRC~I 0014 III

C

0 0015 002 2

IBR~CH 0016 127 Br

[ill 067NM calculates 0017

DB -VI + LnC

0 0018 025 aX

~ calculates Y 0019 020 =

IPRINT I prints answer 0020 061 A
ANS

IHALTI here, we could enter new 0021 056
values for A, Band C into
registers 0, 1 and 2

-



CHAPTER 4 -145-

IB~:CH 0022 127 Br

[ill goes back to beginning
NM of program 0023 067
DB

~ 0024 052 F
FUNC

[ill 0025 066N M subroutine starts
DB here

[;3 0026 025 aX

[U 0027 026

0028 050 19

GJ
calculates

-VI + LnX
0029 021 +

[2] 0030 001 1

CO 0031 027

0 0032 055

IRESUME
s ends machine back
where it came from 0033 057



CHAPTER 4 -146-

You can have as many subroutines as you have room for in program

meInory, as long as there is an individual address for each one. If

you have several subroutines, symbolic addressing will really save

you trouble - - and program Inemory space. You can just line theIn up

after your prograIn like dominoes.

CONDITIONALS

Conditionals are tests that you can build into your program. You can

set up a test and have the program go one way if you get one answer,

and another way if you get another answer. Each test (or condition)

has two possibilities. You set it up to either BRANCH or JUMP if a

condition is met. H the condition is not met, the program will just

continue as if there were no test. (It's called "falling through. ")

When the condition is met, the program will BRANCH (or JUMP) to

wherever the instruction tells it to. Here are the pos sible conditions

on the 445 and how to set them up:

(BRANCH is used in these examples for convenience. But remember

that JUMP can also be used in each case. )

BRANCH to branch point nn if the entry register is positive.

BRANCH to branch point nn if the entry register is negative.



CHAPTER 4 -147-

BRANCH to branch point nn if the entry register is zero.

BRANCH to branch point nn if Flag I is set. (This is the FLAG on the
keyboard. )

BRANCH to branch point nn if the OPTION switch is down.

In each case, symbolic addressing can be used in place of [;][;] •

So, the exaznple

could als 0 be

Also, remember that if RESUME is programmed at the end of the sub-

routine you branch to, the machine will return to the instruction di-

rectly following the second 0 (or the symbol).

INDIRECT ADDRESSING

You may remember we said earlier that there was another use for the

pointer register other than as an extra scratch pad register. This is

it. Register 0 can also be used to hold the address of a main data

register. (It can't be used for scratch pad registers.) You just enter



CHAPTER 4 -148-

the register number you want held directly into the pointer register,

say main data register 52, by

52.0000

"I

Now anytime you want to access register 52, you can do so indirectly

by means of the pointer register. Let's say you want to store 123.45

into register 52. Just go

123.4500

[rn;N M
D B

after main data STORE, RECALL or EXCHANGE instructions
automatically looks into the pointer register for an indirect
address.

So 123.45 is now in register 52. To prove it, you can recall register

52 directly and see what's in it:

IRCLnn IGJGJ 123.4500 t 52

You can also recall or exchange the value in register 52 indirectly by

RECALLnn

INDIRECT / SYMBOL

or
EXCHANGEnn

INDIRECT/ SYMBOL

Of course, you can still do all the normal arithmetic operations in and

out of the pointer register. This may chan'ge the number there, and



CHAPTER 4 -149-

thus the indirect address. Therefore, incrementing and decrementing

the address in the pointer register is extremely simple. You can ac-

cess a series of registers in increasing or decreasing numerical se-

quence just by incrementing or decrementing the pointer and addres sing

indirectly.

All of the operations that can be performed in a register by means of

direct addressing can also be performed in that register by means of

indirect addres sing. H, for example, you wanted to add 46 to register

52, you just go

46.0000 +

Here's an example which shows the print symbols for arithmetic oper-

ations using indirect addressing.

IRCLnn lOG]

39.0000

400.0000

105.0000

505.0000

~ I

~ I 1

t 39



CHAPTER 4 -150-

298.0000 ~ I 2

IRCLnn IGJ~

GJD0[TI~

207.0000

1.2600

39

~ I 3.

IRC~I [2]GJ

00~[±]

260.8200

21.0000

12.4200

39

-!r I 4

39

Note that the print sytnbo1s are coded for aritlunetic operations with in-

direct addressing: + is 1, - is 2, X is 3 and -7- is 4.

SOME MECHANICAL NICETIES

Stepping Through Your Program.

Bet you were wondering when we were going to get to that m.ysterious

STEP on the RUN-STEP-LOAD switch. This is the place. With the

switch on STEP, you can go through your program. one step at a time.

Each tiIne you press IRESUME I ' the address, code and print syznbol

for the next step are printed and the step is executed. If execution of



CHAPTER 4 -151-

that step normally causes printing, then it prints. H the switch is re

turned to RUN, IRESUME I will cause the program to begin at the

next step.

Listing Your Program

This doesn't execute anything, it just lists the address, code and print

symbol for each step in your program. You can do it either one-step

at-a-tirne or continuously. With the switch on LOAD, press I~:~G I
and release it immediately. This will print the address, code and

symbol of the current location and stop. Press it again, and it'll do

the same thing at the next location, and so on. H you hold I LIST I
PROG

down until the first line is printed, the entire program will be listed

continuously. In fact, the entire program memory will be listed, so

unless you just like to see it list, put it in ItUN when you've seen

That'll just stop the listing. You can start it up again where

I;:~G I again.

process by pressing IHALT'

enough.

it left off by putting it back in LOAD and pres sing

(You can also stop the I~:~G I
But be sure to remember you're still in LOAD mode. )

Where Am 1?

H you ever wonder where you are when there's no program running,

there's a way to find out. Any time the 445 is halted (IDLE light on

and not flashing) the current program addres s can be determined by



CHAPTER 4 -152-

putting the switch on either STEP or RUN and pushing ILIST I
PROG

The address, code and print symbol of the current location will print.

1£ you press ILIST I again, the exact saIne line will print out again.
PROG

And again. And again. The entry register is not changed, and no

Inatter how Inany tiInes you press ILIST I ,you'll stay in the saIne
PROG

place. So now you know where you are. If the switch is on RUN and

IRESUME I is now pressed, execution of the prograIn will begin froIn

the address printed.

Setting Flag 1

The IFLAGI key, which you'll find alInost directly in the center of

that top row, is a simple, direct way to set up a condition which your

program can test. A program may test the flag, and conditionally

BRANCH or JUMP depending on its setting. This keyboard flag is

called Flag I, and is changed only by the IFLAG I key and RESET

Flag I instruction.

THE WONDERFUL WORLD OF ENTER CODE

We've already seen some of the things ENTER
CODE

nnn

lets us do. Ther e' s

more. If you press
ENTER
CODE

nnn

and then enter the code of the following

functions, your program will do the marvelous things described below.



CHAPTER 4 -153-

These programming functions and ENTER CODE work very much like

the Additional Functions and 11:.,1 on the keyboard. Let's take them

one at a time.

List-Mode Arithmetic

List-mode arithmetic uses a separate accumulator register. This ac-

cumulator is altered only by the list-mode add, subtract and total

functions. It is reset to zero by RESET.

List-Mode Add- code 041

This function adds the contents of the entry register to the list-mode

accumulator. The entry register is not changed. The number in the

entry register is printed.

List-Mode Subtract - code 042

This function subtracts the contents of the entry register from the list-

mode accumulator. The entry register is not changed. The number

in the entry register is printed.

List-Mode Subtotal- code 043

This function copies the accumulator into the entry register and prints

it. The accumulator is not altered.

List-Mode Total- code 040

This function totals the accumulator, copies the total into the entry reg-

ister and prints that number. The accumulator is reset to zero.



CHAPTER 4 -154-

Increment Entry- code 151

This instruction increments the entry register by one.

Decrement Entry-code 152

As you might expect, this instruction decrements the entry register

by one.

Absolute Value - code 045

We've seen this one before. This instruction makes the sign of the

entry register positive.

Square - code 053

This function calculates the square of the number in the entry register.

Both the number and its square are printed.

Flag 2 - code 017

This instruction sets program Flag 2. A program may interrogate

(test) this Flag and use its setting as a condition to branch or not

branch. This works just like Flag 1, which you can set from the key-

board. A program for testing Flag 2 looks like this:

BRANCH
FLAG 2

n

n

JlENTER

Uc~~: 0~0

This translates as "BRANCH, if Flag 2 is set, to program address nne "

You can use Flag 2 the same way with JUMP.



CHAPTER 4 -155-

Exchange Main Data - code 122

This function exchanges data between the entry register and a rnain

data register using the same procedure that fSTl uses for storage.
~

Dot Print - code 176

This instruction causes a line of dots to be printed, regardless of the

PRINT switch position.

Equals-Surn-Zero-code 037

Equals-Surn-Zero does two things. First, it acts exactly like equals,

and will produce the same result with respect to any operation you

have going as would be produced by a plain G . But in addition,

this function adds the resulting value of the entry register to scratch

pad register O. At any time, you can recall register 0 and put the

accumulated total into the entry register. You can alternate between

regular equals and Equals-Sum-Zero in your prograrn all you like,

keeping a running total of the values you want accurnulated in one place.

Remember, though, that each additional value will be added to what's

already in register 0, it will not replace it. When you intend to use

Equals-Sum-Zero in your program, it's a good idea to make sure reg-

ister 0 is clear when you begin. There are several ways to do this,

as you probably remernber, including the direct procedure of storing

zeroes in register 0 to begin with. The procedure you adopt in each

case will depend upon what other registers you're using in your program,

and whether you want to clear a series of registers or just one.



CHAPTER 4 -156-

OPEN CHANNEL REGISTER ACCESS

This is another form of indirect addres sing. It allows you to STORE,

RECALL and EXCHANGE with a main data register by means of a fast,

open channel to that register. Whenever you us e the main data STORE,

RECALL or EXCHANGE functions, the address of the register you've

accessed is automatically kept in a separate hidden place. As long

as you don't use main data STORE, RECALL or EXCHANGE instruc

tions again, (or increment or decrement the address, see below) the

address in that special place will remain the same. And there are

codes for storing into the register with which this channel is open,

recalling from it, and exchanging its contents with the entry register.

Register aritlunetic is not available with this method -- just storing,

recalling and exchanging. But you can increment and decrement the

address stored in that special place, and therefore access a whole

series of data locations by means of the open channel method. The

advantage of doing it this way is that the open channel is actually

"machine level" access, and is much faster than the normal addressing

procedure. The codes for using the open channel method are as follows:

Code 331 - Store the contents of the entry register into the register

by the open channel pointer (the special place).

Code 332 - Recall contents of the open channel register.



CHAPTER 4 -157-

Code 333 - Exchange the contents of the open channel register with the

contents of the entry register.

Code 335 - Increment the addres s stored in the special place by 1.

Code 337 - Decrement the address stored in the special place by 1.

IDENTIFIER - Code I 77

This code will cause the contents of the entry register to be printed on

the very left-hand side of the tape as an identifier. Fractional digits

will be included, with the decimal point in the correct position - - but

trailing zeroes will be suppressed. In order to be used as an ident

ifier, a number must have an absolute value of I or more.

There is a way of using the identifier code which allows an identifier

to be printed while still saving the value of the entry register. If your

program enters a number to be printed out as an identifier before ex

ecuting code I 77, that number will be printed and the former value of

the entry register will be restored. If your program doesn't enter a

~number before invoking code 177, the contents of the entry register

will be printed as a very fine identifier, but you can't be sure of what

will be left in the entry register. Only a numeral entry is considered

a new number. Recalling a value from a register is not nwneral entry.

Here's part of a program using 2 as an identifier:



CHAPTER 4 -158-

INSTRUCTION CODE

err 015

x 023

= 020

2 002

IDENT 177

PRINT 060
ENTRY

EXPLANATION

'1r.2 now in entry register

numeral entry

causes 2 to be printed as an identifier

prints 1Y;I, , which has been restored
to entry register.

With this sequence in your program, the number 2 (or any other number

you us e) will be printed on the left-hand side of the tape as an identifier

and then abandoned. The value of the entry register just prior to your

2 (or other number) will be restored.

PRINT ENABLE - PRINT DISABLE

PRINT DISABLE (code 154) is an internal, programmable print switch.

It tells the 445 not to print anything your program does except the

"Print Always" functions (see Print Control, Chapter 3). PRINT DIS-

ABLE does not affect keyboard printing. It merely overrides the key-

board PRINT switch with respect to the program. Therefore, you can

leave the keyboard PRINT switch ON, execute code 154 in your program,

and have complete keyboard printing while your program has only

"Print Always" printing capability.

PRINT ENABLE (code 155) reverses PRINT DISABLE and returns



CHAPTER 4 -159-

printing control of the program as well as the keyboard to the keyboard

PRINT switch.

NOTE: If you find that your program won't print, and you don't know

why, it may be that someone has left the machine in PRINT DISABLE

mode. To remove it, just load the instructions

155

HALT

and then execute thes e instructions. This will return the machine to

normal PRINT control.

RECALL OR - code 157

This is another convenient device for the programming aspect of the

445. When you execute SET U:E, either from the keyboard or from a

program, the previous decimal point setting is automatically saved.

Then, when you execute RECALL UE (code 157) from your program,

the decimal point setting is returned back to the previous setting.

Where this is particularly useful is when the same machine is us ed

for both programmed and keyboard operation. The programmer can

set a decimal point that gives him the degree of accuracy he wants in

his program (usually many more places than you'd want from the key

board), and by entering code 157 at the end of his program, he returns

the machine to whatever setting it had before his program began.



CHAPTER 4 -160-

ADD TO REGISTER

You can add the contents of the entry register directly into any main

. data register simply by entering code 123 and then the address of the

main data register to which you'd like the value added.

You can also add the contents of the entry register directly into any

scratch pad register by entering code 113 and the numeral name of

the scratch pad register.

KEYBOARD PROGRAM ACCESS

In Chapter 2, under OPTIONAL KEYS, we mentioned that there were

three keys you can have added to your keyboard which provide direct

keyboard access to specific locations in program memory. Since

these would be your keys, you can call them whatever you like. For

convenience in discussing them, though, let's call them F l' F Z and F 3.

Pressing I F 1 1 would take the machine to program memory step 495.

If there was an instruction there, the machine would immediately begin

executing instructions. IFzl would take you to program memory step

500. And IF31 would take you to program memory step 505. The

purpose of these keys is to allow you to get from the keyboard directly

to a program which performs some operation you don't want to do on

the keyboard. With three keys, you can access three separate opera-

. tions in this way. And, of course, you can change these operations any



CHAPTER 4 -161-

time you want to. Since there are only five program steps at each of

these locations in program memory, the logical thing to do is to use

these five steps to BRANCH to some other location in program memory

where you have the real program salted away.

Be sure there's a RESUME at the end of this program, so that you

can return to the access area after the operation is completed. Since

you got there with BRANCH, the RESUME will take you back where

you came from. To return the machine to keyboard operation, there

has to be a HALT instruction immediately following the BRANCH n n

instructions in the access area.

If you want to use that same operation program as a subroutine in

another program, just BRANCH to it from your main program. The

RESUME at the end of the operation program will take you back where

you branched from.



CHAPTER FIVE

EXAMPLES AND PROBLEMS

-16Z-
..

. . j



CHAPTER 5 -163-

As the farmer said while he s at back and watched his wild new

stallion chase his city cousin around the corral, "Showin's better'n

tellin'. II On that principle, this chapter consists of practical examples

of how you'd go about solving certain kinds of problems on the 445.

There are some pretty nifty techniques here, and it's not a bad idea

to run through the examples on your own machine so you can really

see how some of the subtler relationships are structured. By com-

paring your tape with our tape, you can also see what you did wrong

if you decide to try a few out by yourself.

EXAMPLES

CD00QJE]
000008

OR

000
00B
[I)

25x32
1.21xI5.07

-

25.000

32.000

1.210

15.070
43.872

25.000

32.000

800.000

-
x

··
·•

=
*

x

-----~



CHAPTER 5 -164-

QD0GJ0 1.210 X

[!]0D~0GJ 15.070 )
18.234 *

8 18.234 =
43.872 *

(l +.07)15

00
D~00

GJ08

1.000

0.070

15.000
2.759 *

+

=

1- (1 + .07)15

GJ[J 1. 000

IT] 1.000

08 1.000 +

0008 0.070 aX

000 15.000
2.759 *

2.759
-1.759 *

=



CHAPTER 5 -165-

1 - (1 + •07) 15
1 - .07

0D 1.000

[TI 1.000

08 1.000 +

D00B 0.070 aX

GJ0UJ 15.000 )
2.759 *

EJ 2.750 •
•

IT] -1.759

CUD 1.000

D00[l] 0.070 )
0.930 *

[;] o. 930 =
-1. 891 *

1/3+ 1
17.3

0EJ
[U[2]00 [I]

3. 000

17.300
o. 057

l/x

*

+



CHAPTER 5 -166-

~ 0.057 =
3.057 *

0 3.057 1/
1.748 *

log (3 + e 1 • 2)

[2]0 3.000 +

~D0~ 1.200 19-1
3.320 *

~ 3. 320 =
6.320 *

~ 6.320 19LOG
1.843 *

~ 0.800 F 2
FUNC

Solve:

Q = 2 b -f2i, H 3 / 7
3

g =32.2

H =16.27

~EJ

GJ~

IR~LID~0

2/3b

2.000

3.000

12.500

.
•

x

t 07



CHAPTER 5 -167-

0 12.500 X

CO 8. 333

GJ0D0GJ -,j2x32.22x32.2 32.200 +

GJ 32.200 =
64.400 *

0 64.400 -V
8.024 *

OJ 8.024

0 8.024 X

IT] 66.874

~GJD0[i]~ 16.270 aX

IT] 16.273/ 7 16.270

GJGJ 3.000 .
•

G][U 7.000 )
0.428 *

W 0.428 )
3.304 *

[:] 3.304 =
221.018 *



CHAPTER 5

PROBLEMS

Problem 1

-168-

Given the following group of scores:

21.7

28.5

31.2

24.6

27.0

38.1

23.2

A. Compute the standard deviation, mean and standard error of the

mean for the group.

rsETlQ
~~

ISETlIll
~L:J

~0

0GJD 01~';21

~GJD~~

GJGJD0~

00D~~

I
I
I

. - '-

0.000

21.700

28.500

31.200

24. 600

L. 1

L. 1

z: 1

2: 1

I
I
!

CL



CHAPTER 5 -169-

0GJD01~zl 27.000 2:" 1

0~DGJ~ 38.100 1

00D0~ 23.200 1

~ 5.588 SDn-1 1
MEAN

~ 27.757 F2
FUNC

[!;]~ 3.223 F3

B. Compute the Z - statistic and normal probability as sociated with

each score.

0CQ00 [J 0
~0

~~DGJ [!;] [2]

~0

21.700
-1.170

-1.170
0.120

28.500
O. 143

o. 143
0.557

31.200
0.665

0.665
0.747

x
Z 1

p z

*

x
Z 1

p z

*

x
Z 1

p z

*



CHAPTER 5 -170-

~00GJ [!;] GJ
[!;]~

00DGJ [!;] GJ

~~

~CJD0 [!;] GJ
[!]0

24.600
-0.610

-0.610
0.270

27.000
-0.146

-0.146
0.441

38.100
1.999

1.999
0.977

23.200
-0.880

-0.880
0.189

x
Z 1

p z

*

x
Z 1

p z

*

x
Z 1

p

*

x
Z 1

p z

*

c. Delete the 38. 1 and add seven 26.1' s to the group.

0000 IDELETE II~I

000[2]~

[?]~

38.100

26.100

7.000

z: -1

z: 1

n



CHAPTER 5 -171-

D. Com.pute the new standard deviation, m.ean and standard error of

the m.ean for the revis ed group.

fSDl
~

I2NDl
~

2.283

26.069

0.633

SDn-l 1

F 2

F 3

E. Com.pute the z-statistic and norm.al probability associated with each

score in the new group.

0GJD0 [!;] 0
~0

~~D0~ [D

[!;]0

GJ~D0[!;]~

[!;]0

21.700
-1.991

-1.991
0.023

28.500
1.107

1.107
0.866

31.200
2.338

2.338
0.990

x
Z 1

p z

*

x
Z 1

p z

*

x
Z 1

p z

*



CHAPTER 5 -17Z-

~0D(D~~

~~

Z4.600
-0.669

-0.669
0.251

x
Z 1

P z

*

0[2] ~ [!] 27.000 X
0.424 Z 1

[!;]0 0.424 P z
0.664 *

00D0l!;J 0 23.200 X
-1.307 Z 1

~0 -1.307 P z
0.095 *

~0D[2]~ Q
[!;]~

Proble:m 2

26.100
0.014

0.014
0.505

X
Z 1

P z

*

Here's an exa:mple of linear regression using transfor:med data. A

two-variable regression is used in the exa:mple, but three-variable

:may be done the sa:me way.

A. Do a linear regression using these raw data:



CHAPTER 5 -173-

x y

1.0 1.5

3.5 3. 5

5.5 4.0

6.0 6. 5

6.5 9.0

5.5 11.0

7.0 11.5

-- - -
ISET 10D. P.

[!;]0 0.000 CL

[!J~ 1.000 X

0D~~ 1.500 Y

0D0~ 3.500 X

GJ00[] 3.500 Y

0D0§] 5.500 X

G8 4.000 Y

-



CHAPTER 5 -174-

6.000

6.500

X

y

lTID0 §] 6.500 X

00 9.000 y

0D0§] 5.500 X

~~8 11.000 y

rsETI~
~~

fLiNl
~

rzNDl
~

Therefore, r = . 80S and Yest = 1. 509X - 0.833.

7.000

11.500

0.805

1.509

-0.833

X

y

LR 1

F2

F3



CHAPTER 5 -175-

B. Now let's do a regression on these data using Ln{Y) in place of Y.

Q~

[2]D01~~GI

0.000

1.000

1.500
0.405

0.405

x

Ig

*
y

CL

GJDGJ~ 3.500 X

GJD01~~G I 3.500 19
1.252 *

GJ 1.252 Y

[uD[u~ 5.500 X

01~~GI 4.000 Ig
1.386 *

c:J 1.386 Y

0§] 6.000 X

0D[DI~~GI 6.500 Ig
1.871 *

c:J 1.871 Y

-



CHAPTER 5 -176-

[I]D0~ 6.500 X

01~GI 9.000 Ig
2.197 *

GJ 2.197 Y

~D0~ 5.500 X

Q0Iz~GI 11.000 Ig
2.397 *

[;J 2.397 y

0~ 7.000 X

~QD01~~GI 11.500 Ig
2.442 *

8 2.442 Y

~0GROUP

~ 0.913 LR 1REG

~ 0.324 F2FUNC

[!;]GJ 0.083 F3



CHAPTER 5 -177-

Here, r = • 913 and LnYest = • 324X + • 083.

Yest = exp (. 324X + •083)

You can us e the norm.al functions on the 445 to transform. any variable

during XY data entry. If you want to use an algebraic expression to

transform. a variable, enclose the expression in parentheses, like this:

enter X, IXyl

enter Y

enter Z, GJ
This series of steps has entered X, Y + 5.5

3
and Z.

C. You can also do a quadratic regression, such as

Z =i + m.l X + m.ZXl

You do it like this:

enter X, IXyl

GJ00§]
enter Z, c:J



CHAPTER 5 -178-

Problem -- perform a quadratic regression on these data:

-1L- z

2.0 3.1

3.1 4.9

3.8 6.2

3. 6 5.6

~0 0.000 CL

0~ 2.000 X

[TI 2.000

0 2.000 X

[JJ 2.000
4.000 *

IXyl 4.000 y

0D[Qc:J 3.100 z

0D~§] 3.100 X

[TI 3.100

0 3.100 X



CHAPTER 5 -179-

[J 3.100
9.610 *

~ 9.610 y

0008 4.900 z

D00§] 3.800 X

GJ 3.800

0 3.800 X

IT] 3.800
14.440 *

.j Xyl 14.440 y

GJD0Q 6.200 z

000§] 3.600 X

GJ 3.600

~ 3.600 X

[IJ 3.600
12.960 *

IXyl 12.960 y

0008 5.600 z



CHAPTER 5

rsETlr:I
~~

-180- - - -- '----------

L------------- _

ruNl
~

fZNDl
~

0.762

0.909

0.131

LR 4

F 2

F 3

Therefore, the regression equation for these data is

Zest =•762 + • 909X + .131X2 •

Problem 3

Here we'll be concerned with multiple and partial correlation coeffic-

ients for three-variable linear regression. From the three two-

variable correlation coefficients that can be calculated between the

pairs XY, XZ and YZ, both the multiple and partial correlation co-

efficients can be calculated. For simplicity, in this example we define

X as Group I, Y as Group 2 and Z as Group 3. Thus, the correlation

coefficients calculated by the two-variable linear regression are r12,

First, let's put in some three-variable data.



CHAPTER 5

X

1

7

1.5

7.5

-181-

y

2

8

8.6

4.6

Z

3

9

3.1

1.8

[J0 0.000 CL

0§] 1.000 X

~§] 2.000 y

08 3.000 z

[?]~ 7.000 X

0§] 8.000 y

G8 9.000 z

0D0§] 1.500 X

~D0~ 8.600 y

GJD~c:J 3.100 z



CHAPTER 5 -I8Z-

000§] 7.500 X

GJD0~ 4.600 Y

0008 1.800 z

A. Calculate the multiple correlation coefficient of X on Y and Z as

given by

riZ
Z + r31

Z
- ZrlZrZ3r31

1 - rZ3Z

Here r S one good way to do it:

IRESET

ISETl r:I fLINl
~~~

0.000

0.000

0.Z11

O.ZII

O.ZII
0.044

0.044

1\

LR

-

*

X

+

1

)

-

CHAPTER 5 -183-

[Q 0.044

~[JILIN I 0.365 LR 3GROUP REG

0 0.365 X

[] 0.365)
0.133 *

D 0.133

IT] 0.177

00 2.000 X

~GJILIN I 0.211 LR 1GROUP REG

0 0.211 X

~0ILINI 0.497 LR 2GROUP REG

~ 0.497 X

~[JILINI 0.365 LR 3GROUP REG

IT] 0.365)
0.076 *

[±] 0.076 •.

CHAPTER 5 -184-

0.101

1.000

1.000

rsETl~ rLiNl
~~~

0.497

0.497

0.497
0.247

0.247
0.752

0.752
0.134

0.134
0.366

0.366

LR 2

x

*

*
=

*
-V

....
"t'

B. Calculate the multiple correlation coefficient of Y on X and Z as

given by

R =2.13
rI22 + rZ32 - 2rI2 r 23 r 31

21 - r 3I

This expression can be evaluated in this way:



CHAPTER 5 -185-

then ~ 1"-1 · The result is R Z• 13 = • 498. Here's a tape which

shows one way of doing it.

0.000 A

0.000

0.211 LR 1

0.211 X

0.211 )

0.044 *
0.044 +

0.044

0.497 LR 2

0.497 X

0.497 )

0.247 *
0.247

0.292

2.000 X

0.211 LR 1

0.211 X

0.497 LR 2

0.497 X

0.365 LR 3

0.365



CHAPTER 5 -186-

0.076 *
0.076 .

•

0.215

1.000

1.000

0.365 LR 3

0.365 X

0.365 )

0.133 *
0.133

0.866 *
0.866 =
0.248 *
0.248 ~

0.498 *
0.498

C. Now calculate the multiple correlation coefficient of Z on X and Y

as given by

r3l 2 + r232 - 2r12r23r3l

1 - r122

This expression can be evaluated in this way:



CHAPTER 5 -187-

then GJ 1,,-I · The result is R 3• 12 = • 564.

D. Calculate the partial correlation coefficient between X and Y as

given by

Here's one way of doing it:

IRESET

rsETI GIlLIN I
~L:-J REG

0.0000

0.0000

1. 0000

1.0000

0.3650

0.3650

0.3650
0.1332

0.1332
0.8667

0.8667

0.8667

LR

*

*

X

x

3.

)

)



CHAPTER 5 -188-

[!][] 1.0000

OJ 1.0000

~0~ 0.4978 LR 2GROUP REG

0 0.4978 X

GJ 0.4978 )
0.2478 *

GJ 0.2478
0.7521 *

~ 0.7521 =
0.6519 *

0 0.6519 -r
0.8074 *

IT] 0.8074 l/x
1.. 2385 *

0 1.2385 X

W 1.2385

~GJ [;] 0.2113 LR 1GROUP REG

[] 0.2113

IT] 0.2113



CHAPTER 5 -189-

~0ILINI 0.3650 LR 3
GROUP REG

~ 0.3650 'X

[:k]0ILIN I 0.4978 LR 2
GROUP REG

IT] 0.4978 )
0.1817 *

IT] 0.1817
0.0296 *

G 0.0296 =
0.0366 *
0.0366

As you can see on the tape, r 12• 3 = .0366.

E. Calculate the partial correlation coefficient between Y and Z as

given by

This expres sion can be evaluated in this way:



CHAPTER 5 -190-

The result is r23. 1 = • 4623. Here's a tape which shows one way to

do it:

0.0000 ""-
0.0000

1.0000

1.0000

O. 2113 LR 1

O. 2113 X

0.2113

0.0446 *
0.0446

0.9553 *
0.9553 X

0.9553

1.0000

1.0000

0.3650 LR 3

0.3650 X

0.3650 )

0.1332 *
0.1332

0.8667 *
0.8667 =



CHAPTER 5 -191-

0.8280 *
0.8280 -V

0.9099 *
0.9099 l/x

1.0989 *
1.0989 X

1. 0989

0.4978 LR 2

0.4978

0.4978

0.2113 LR 1

0.2113 X

0.3650 LR 3

0.3650 )

0.0771 *
0.0771 )

0.4207 *
0.4207 =

0.4623 *
0.4623

F. Calculate the partial correlation coefficient between Z and X as

given by



CHAPTER 5 -19Z-

The result is r 31. Z =•3065.

Problem 4

Fisher's exact test gives a probability statement for a ZXZ matrix,

p =

A B n
1

C D n2,

n a nb N

nl !nZ Ina !nb !

N!A!B!C!D!

n 1 =A + B

nZ = C + D

n a =A + C

nb =B + D
N =A+B+C+D

Calculate p for the following matrix:

2, 5 7

7 4 11

9 9 18

Here, p = 7!11!9!9!

18!Z!5!7!4!

Here's how you do it on the m.achine:



CHAPTER 5 -193-

GJ[!;] 0 7.000
5,040.000 *

0 5,040.000 X

[2][2] [i;J IT] 11.000
39, 916, 800. 00 *

0 39,916,800.00 X

[TI[!JIT] 9.000
362,880.000 *

Q 362,880.000 X

0fiJE] 9.000
362,880.000 *

[±] 362,880.000 •
•

[JJ 2.649185200 22

Q0~0 18.000
6.402373705 15 *

0 6.402373705 15 X

0[!J0 2.000
2.000 *

~ 2.000 X

0~0 5.000
120.000 *

0 120.000 X



CHAPTER 5 -194-

[2]~ITJ 7.000
5,040.000 *

0 5,040.000 X

0~ITJ 4.000
24.000 *

[>] 24.000
1.858634696 23 *

8 1.858634696 23 =
0.142 *

Problem 5

Here, we shall take several different kinds of means for the following

data:

21.7

28.5

31.2

24.6

27.0

23.2

(7x) 26. 1

A. Calculate the Harmonic Mean for the above data.

Harmonic Mean = N



CHAPTER 5 -195-

~0~0 0.000 CLGROUP

0[!]D0[I] 21.700 l/x
0.046 w.....

~ 0.046 1:. 2

00D0[] 28.500 l/x
0.035 *

1~21 0.035 z:. 2

[]GJD0[] 31.200 l/x
0.032 *

1~21 0.032 1:.. 2

00DGW 24.600 l/x
0.040 *

1~21 0.040 E 2

00[] 27.000 l/x
0.037 *

1~21 0.037 E 2

00D0W 23.200 l/x
0.043 *

~ 0.043 L 2

00D[!]G] 26.100 l/x
0.038 w.....



IRCLnlGJ 13.000 t 4

G 13.000 •
•

IRC~10 0.502 5

c:J 0.502 =
25.885 *

CHAPTER 5 -196-

0.038

7.000

'2: 2

n

The Harmonic Mean is 25. 885.

B. Take the Root Mean Square for the same data as above.

~0D[2]~

[u~D0~

0[!JD0~

0.000

21.700

28.500

31.200

L: 3

2: 3

L 3

CL



CHAPTER 5 -197-

0GJD01~21 24.600 2: 3

001~21 27.000 :2:" 3

00D0~ 23.200 ~ 3

0~D[!]~ 26.100 'L3

GJ~ 7.000 n

IRCLnl GJ 8,897.450 9

[±] 8,897.450 .-.

IRCLnlGJ 13.000 7

~ 13.000 =
684.419 *

~ 684.419 -V
26.161 *

The Root Mean Square is 26.161.

C. Now let ' s take a GeoInetric Mean for these data.



CHAPTER 5 -198- - --- --

IRESETI 0.000 !\

0GJ000 21.700 X

Q~000 28.500 X

0GJ000 31.200 X

00000 24.600 X

000 27.000 X

00000 23.200 X

GJ 297,335,006.8

0[DD~~ 26.100 aX

GJ[l] 7.000 )
8, 250, 562, 363. *

~ 8, 250, 562, 363. aX

GJ~[] 13.000 l/x
0.076 *

GJ 0.076 =
25.977 *

The Geometric Mean is 25.977. -



CHAPTER 5 -199-

PROGRAMMING EXAMPLES

Try Stirling's Formula for log (n !). Here, n is in register 4 and has

the value 1728. (Before you start, put 1728 into register 4. )

Ln (n !) ~ (n+!) Ln(n) - n + Ln --f21T

~
~

[J

1,728.000

1,728.000

(n+!)log n
0.500

1,728.000

1,728.000
7.454

7.454

1,728.000

19

*

+

x

4

4

4

doubles '1"( log -V2~

1,728.000

11,157.483

3.141

3. 141
6.283 *

+

+

=



CHAPTER 5 -200-

[fJ 6.283 -V-
2.506 *

aQ 2.506 19
.LOG. 0.918 *

[U
log -J 2t1Y
(continued) 0.918 )

GJ 0.918 =
11,158.402 *

Let's prograIll Stirling's Formula. We'll put it at location 0030, give

it the symbolic name"FLAGqand assume n is in register 4.

Do the following:

just a precaution - not usually necessary

IBRANCHI (or could benn
IJUMPI

nn

put switch on LOAD

Now you're loading a program - the program will be the same sequence

of keys as before, but with a SYMBOL in the front and PRINT and

HALT instructions at the end.

0.000

[illIN Y 0030 066

D M
B

IFLAGI 0031 016



CHAPTER 5 -201-

IRCLn I 0032 III l'

GJ 0033 004 4

EJ 0034 021 +

D 0035 012

0 0036 005 5

~ 0037 023 X

IRCLn I 0038 III

0 0039 004 4

I~GI 0040 050 19

[J 0041 022

IRC~I 0042 III

CD 0043 004 4

8 0044 021 +

OJ 0045 026

[] 0046 015



CHAPTER 5

fLill
L.1&gJ

IPRINTI
ANS

-202 -

0047

0048

0049

0050

0051

0052

0053

0054

021

020

055

050

027

020

061

056

19

A

+

=

=

)

---

[ill;N M
DB

0055

0056

0057

126

067

016

Ju

Now take the switch off LOAD and put it on RUN, before you forget it's

in LOAD and accidentally load in another step.

Put 1728 in register 4 (I728 ISTnI0) and push IRESUMEI



CHAPTER 5 -203-

If you didn't turn off the PRINT switch, all the steps will print out

so turn it off. The answer will print, and the program will stop.

Now you can store another nwnber in register 4, press IRESUMEI

and the 445 will do it allover again.

Now try a progranl with some logic in it. The quadratic is a good one.

x=
2a

where ax2 + bx + c =0

Now we'll use identifiers and dot lines to indicate what's going on. We

want the tape to print identifiers 1, 2 and 3 to indicate a, b, and c; and

identifiers 4 and 5 to indicate whether the roots are real or imaginary.

So a sample tape might look like this for a = 17, b = 18, c = 19:

1 •
17.00

2.
18.00

3.
19.00....................

5.
o. 91

-0.52

Here's a flow chart for the program:



CHAPTER 5 -204..

START

Register
o
1
2

3

c

Variable
a
b

Register Usage Chart

~l Symbolic address ItO"
ENTER, PRINT, STORE a 1

I
blENTER, PRINT, STORE

I
c IENTER, PRINT, STORE

I
I dot line I

1

I calculate b2 -4ac 1
·real~ complex

Sy=bolic~
address "llt~ ?

l ident 4 I I ident 5 I

calc & print calc & print

-b+-Jb2 -4ac -I4ac-b2

2a 2a
(imaginary part)

calc & print calc & print

-b--Jb2 -4ac -b/2a
2a (real part)

I
I

Here's the program. Since it's written with symbolic addressing, it

can go anywhere in memory. It happens to start at step 0140.

SYMB }- Sym.bolic address "0"
0140 066

0 0141 000
1 0142 001
IDENT identifier 1 0143 177

HALT ]-
0144 056

PRINT ENTRY enter, print &
0145 060

STn 0146 110
0

store a
0147 000

2 0148 002

o
1

a
2



CHAPTER 5 -205-

IDENT identifier 2 0149 177

HALT J- 0150 056
PRINT ENTRY

enter, print &:
0151 060

STn 0152 110 ~
1 store b

0153 001 1
3 0154 003 3
IDENT identifier 3 0155 177

HALT :J- 0156 056
PRINT ENTRY enter, print &: 0157 060
STn store c 0158 110 ~
2 0159 002 2
DOT PRINT dot line 0160 176
RC~ 0161 III t
1 0162 001 1
X 0163 023 X

0164 022
( 0165 026
4 0166 004 4
X 0167 023 X
RCLn b2-4ac 0168 III t
0 0169 000 0
X 0170 023 X
RCLn 0171 III 1-
2 0172 002 2
) 0173 ·027 )
= 0174 020 =
JUnn Jump 0175 126 Ju
+ if positive 0176 021 +
SYMB to syrn.bolic 0177 067
1 address "I" 0178 001 1
5 otherwise, 0179 005 5
IDENT ident 5, - com.plex roots 0180 177
CHG SIGN 4ac-b2 in entry register 0181 013
.v 0182 055 -y-
· 0183 024 ·· •
2 0184 002 2· --v4ac-b2 0185 024 •· ·RCLn 2a 0186 III t
0 0187 000 0
= 0188 020 =
PRINT ENTRY Print im.ag. term. 0189 060



CHAPTER 5 -206-

RCLn 0190 III t
1 0191 001 1
CHG SIGN 0192 013· 0193 024 ·· ·2 -b/2a 0194 002 2· 0195 024 •· •RCLn 0196 III +
0 0197 000 0
= 0198 020 =
PRINT ENTRY Print real term 0199 060
ADV 0200 065
JUnn 0201 126 Ju
SYMB 0202 067
0 Return to start 0203 000 0
SYMB 0204 066
1 Begin real root routine 0205 001 1
4 0206 004 4
IDENT Ident 4 - real roots 0207 177
-V 0208 055 -if"-
STn Store -/b2 -4ac for 0209 110 ~
3 later use 0210 003 3

0211 022
RCLn 0212 111 l'
1

- b +-v'b2 -4ac
0213 001 1· 0214 024 •· •

2 2a 0215 002 2
...!- 0216 024 ·• ·RCLn 0217 111 t
0 0218 000 0
= 0219 020 =
PRINT ENTRY 1 st real root 0220 060
RCLn 0221 III t
3 0222 003 3
CHG SIGN Calculate 0223 013

0224 022
RCLn -b --v'b2 -4ac 0225 III l'
1 2a 0226 001 1• 0227 024 •• •
2 0228 002 2-- 0229 024 ·· ·RCLn 0230 III 't
0 0231 000 0
= 0232 020 =
PRINT ENTRY 2nd real root 0233 060
ADV 0234 065
JUnn 0235 126 Ju
SYMB 0236 067
0 Back to START 0237 000 0



CHAPTER 5 -207-

After you I ve entered the program, put the switch back to RUN and

push IRESUMEI to get the first identifier printed out. Then enter

the sample problem (a=l7, b=l8, c=l9). Your tape should look like

the sample above.



CHAPTER SIX

MAGNETIC CARDS AND OTHER IMPORTANT THINGS

-208- 1
j
I

-I
I
I

I
!

. i



CHAPTER 6 -209-

MAGNETIC CARDS

That little slot above the keyboard is for mag (magnetic) cards. You

can record either a program or data on these cards and store them

for ever and ever. Then, whenever you need that program or data again,

just stick in the card and it's in the machine. Automatically. Each

card has two edges, and each edge can hold up to 256 program steps

or 32 data registers. So each card can hold up to 512 program steps

or 64 data registers. The ends (with the oblong holes) are the ones

you stick into the machine, and you can write with a felt-tip pen on a

half-inch strip lengthwise down the middle of the light side of the card

to identify what' s on each edge and which end to stick in first. You

can protect the contents of a card permanently by cutting off the thin

strip of card material on the outer edge alongside the oblong hole.

Then the oblong hole becomes somewhat of a rectangle along the leading

edge of the card. Once you've done that, you can never record any

thing else on that card again - not even by mistake. But the informa

tion on the card can be read just the same.

Recording A Program

Access the first instruction to be written with JUMP, BRANCH or

symbolic addressing, put the mag card switch on RECORD and stick

the mag card into the slot - - firmly, but gently - - with the dark side



CHAPTER 6 -210-

down. The card reader /writer unit will grab the card, pull it in, fill

it with 256 program steps and then push it out again. If you want to

record more or less than 256 steps, use the keyboard numeral keys

to enter the total number of steps you're going to record just before

you start sticking in cards (and after you've branched, jumped or sym

bolically addressed to the first location. ) Then stick in a card and wait

for it to come out. If you've asked for less than 256 steps, that's it.

If you've asked for more, turn the card around, stick it in again,

stick in a second card, etc. When you stick in the first card, the IDLE

light will go off. And it will stay off until you've stuck in enough cards

to record the number of steps you've asked for.

If the program instructions you want to record don 't start at a branch

point or symbolically addressed location, you have to use a very spec

ific series of steps to record them on mag cards. And you have to do

it in this order:

1) Put the mag card switch on RECORD.

2) JUMP or BRANCH to a nearby branch point.

3) If you will be recording more or less than 256 steps, enter the num

ber of steps now.

4) Put the switch on LOAD.

5) LIST or BACK SPACE to the instruction before the first step you

want recorded on the card.



CHAPTER 6 -211-

6) Stick in the required number of cards.

7) Don't forget to take the machine out of LOAD.

Recording Data

The procedure for recording data (registers) on mag cards is essen-

tially the same as recording a program, with the following exceptions:

I) Access the first register (the beginning of your data series) with

ISTl orLmU IRnnCLI instead of JUMP, BRANCH, etc.

2) The number of information units that can be recorded on each edge

is 32 registers (instead of 256 steps). H you're going to record more

or less than 32 registers, enter the number of registers you need just

before sticking in the first card.

Entering A Program

Access the address in program. memory where you wish the program

to begin. Then put the mag card switch on ENTER. Now just start

sticking in cards (in their proper order, of course). The machine will

load all program steps, up to the capacity of program memory, in se-

quential order as they are read, no matter how many cards have to be

fed in. If your card only contains 25 steps, however, the machine will

enter only the 25 steps and then spit the card out.

Entering Data

Acces s the register where you want the data to begin. Put the mag



CHAPTER 6 -212-

switch on ENTER. Then start sticking in cards until all the data are

entered. The machine will load data sequentially into consecutive

registers until there is no more information being fed in. If there are

less than 32 registers on your card, however, the machine will enter

what' s there and then spit the card out.

Verification Of Card Information

Each time information is recorded on a mag card, a special number 

consisting of the sum of all the numbers contained on the card- is also

recorded. Then, whenever the card is entered, the machine adds up

this sum again and compares it with the number recorded on the card.

If they're not the same the machine goes into ERROR mode.

Care Of Magnetic Cards

Mag cards are pretty durable. But they still require proper care.

Write on them only with a felt-tip pen. And write in the half-inch strip

running lengthwise down the middle of the light side. The dark side is

the magnetic side, and should be kept from contamination (coffee, glue,

tears, etc.). Don't store mag cards with their magnetic surfaces

against each other. Use the envelopes provided. And try not to bend

them too much. If you take care of them, these cards can last virtually

forever.



CHAPTER 6 -213-

ACCURACY OF THE 445

As we've mentioned, the 44S holds a 13-digit signed mantissa with a

2-digit signed exponent for all numbers. This is true of the data reg-

isters as well as the entry register. In addition there are some spec-

ific levels of accuracy to consider. And these are them:

Function
Add
Subtract
Multiply
Divide

aX
I

Invert (x)
Square root
Logarithm
Antilogarithm
Standard deviation
Normal probability
z -statistic
X2 statistic
Linear regression

PERIPHERAL EQUIPMENT

Accuracy
13 digits
13 digits
1 3 digits, rounded to the 13th digit
13 digits, rounded to the 13th digit
(i. e., 27- 3=0. 6666666666667)
±l in the 11 th digit
Same as divide
±3 in t~e 13th digit
±1 in the 11 th digit
i1 in the 11 th digit
is in the 13th digit
to 6 fractional digits
is in the 13th digit
is in the 13th digit
±S in the 13th digit

In addition to all the things the 445 will do by itself, there are some

specialized things it can do with the addition of peripheral equipment.

Listed below are the peripheral devices designed for use with the 44S

Statistician.

Model 490 - Mark Sense/Punch" Card Reader

This device will read program steps and data from punched paper cards

or mark sense cards and store the information directly into the 44S

memory.



CHAPTER 6 -214-

Model 492 - Magnetic Tape Cassette Unit

Reads and writes data or program steps (or a combination of both) on

standard digital cassettes. You can store up to 100,000 program steps

or 12, 500 data registers on a single cassette.

Model 493 - X Y Plotter

This unit transforms computational results into graphic form. It plots

functions, makes graphs, draws axes and does alphanumeric labelling.

Model 494 - Typewriter

There are two versions of the typewriter:

1) Output Only Typewriter - Does automatic form preparation.

It can, for instance, prepare formatted, tabular docu

ments with alphanumeric headings and complete tab

facilities.

2) Input/Output Typewriter - Has the same output capability

as above, with the additional capacity to accept alpha

numeric input from the typewriter keyboard.



KEY FUNCTION GLOSSARY

-215-

"I

. I
J

',t



I 2

B lII1IJ,a-D

3 5 6 7 8 9 10 11 12 14 15 16 17 18
I

r1~
I I

OH ,.",. ..
gi ST RCL

~Ii
JUMP JIW«H lNTEIt

AALT LIST Mc~ 0:0 DOFLA4 CoPt! INr\n ,.., nn nn nn'l PRCGt ~AC.

45 46

20.PRINT ANSWER caus es the con
tents of the entry register to be
rounded off to the number of
places indicated by the decimal
point setting, and the rounded
answer to be printed.

21. RESET clears the entry register,
the List-Mode Accumulator and an
ERROR or OVERFLOW condition.
When pushed during a multiple-key
sequence, it will interrupt the
operation in progress and reset
everything back to zero.

22. SET DECIMAL POINT allows you
to control the number of decimal
places that will print. Numerals
0-8 entered after this key will
determine the number of places
to the right of the decimal point.
Numeral 9 indicates exponential
mode.

19. PRINT ENTRY causes the con
tents of the entry register to be
printed with the number of
places indicated by the decimal
point setting, but without rounding.
Digits beyond the number of
places called for will simply be
ignored.

51. This key computes both the base-e
and base-lO logarithms of the num
ber in the entry register. The loge
will print and remain in the entry
register. Log} 0 will be put in the
second function regis ter and may be
recalled with the SECOND FUNCTIOl'
key.

52.SQUARE ROOT, as one may ex
pect, takes the square root of the
value in the entry register. The
contents of the entry register will
print. Then the square root will
print and remain in the entry
register.

49.SECONDFUNCTIONexchanges the
contents of the second function reg
ister with the contents of the entry
register. Pressing the key a second
time will return the values to their
original registers.

50'-This key computes the antilogarithm
base-e and base-IO of the nwnber
i~ the entry register. The base-e
antilogarithm will print and remain
in the entry register. The base-lO
antilogarithm will be put in the
second function register and may be
recalled with the SECOND FUNCTIOl'
key.

48. This key calculates the standard
deviation, mean and standa rd error
of the mean (using the n-l method)
for whatever Group is set. The
standard deviation is printed and left
in the entry register; the mean is
put into the second function register
and may be recalled with the SECOND
FUNCTION key; and the standard
error of the mean is put into the
third function register and may be
recalled with the THIRD FUNCTION
operation.

41. This key enables you to rais e a
number to a power. Enter the
number (a). Then press this kev
and enter the power (x). Then
press equals and the result will
be printed.

45.INVERT (or RECIPROCAL) takes
the reciprocal of the number in
the entry register, prints it, and
leaves the reciprocal in the entry
,register.

46. This key computes the linear re
gression for two- and three
variable independent data. When
you press the key, the correlation
coefficient is printed and left in the
entry register; the slope is put into
the second function register and
may be recalled with the SECOND
FUNCTION key; and the intercept
of X on the Y axis is put into the
third function register and may be
recalled with the THIRD FUNCTION
operation.

44. The sigma key is used for doing
two- and three-variable indepen
dent data sum.m.ations.

42.The XY key is used for doing two
and three -variable dependent data
summations.

47. This key calculates the dependent
and the independent t- statistics.
The dependent t is printed and
left in the entry register and the
independent t is p,ut into the second
function register from which it may
be recalled with the SECOND
FUNC TION key.

43. The DELETE key is used for re
moving data from sum.m.ations.

33. CHANGE SIGN changes the sign
of the value in the entry register.
It may be pres sed any time during,
before or after a numeral entry to
change its sign. Or it may be
pressed without numeral entry to
change the sign of the value already
in the entry register.

38. The times key indicates multiplica
tion and, as with all arithmetic
functions, is entered in its normal
position in an algebraic sequence.

37.Equals terminates an algebraic
sequence and causes the result to
print.

32. This is a deciInal point. It is,
of course, used to enter the dec
imal point when you enter frac
tional value s.

34.This key opens parentheses. Quan
tities Illay be entered as parenthet
ical expressions, in algebraic se
quence. Up to two levels of paren
thetical nesting is possible on the
445.

35. The minus sign is used to indicate
subtraction. (To make a value
negative, you have to use CHANGE
SIGN.) Arithmetic functions are
entered in their normal place in an
algebraic sequence.

39. The divide key indicates division
and is entered in its normal position
in an algebraic sequence.

40. This key closes parentheses.
It also completes the operation
enclosed within the parentheses.

36. The plus sign indicates addition.
It is entered in its normal place in
an algebraic sequence.

50

52.

51

I

cl .L -r '"'"""- ~

Xy UN Lh
RIi6 L06

~...,

O5lere tclep eX
'"'"""

,~ t,nd '0"
- l:- SI' 2nd -n)Cx~ ~&NJ FVHC.

T

44 49

40

41

39

42

38

43

31. 0 -9 are the ten numeral keys.
They are used to enter numbers
and the numeral names of machine
functions and plac e s.

47 48

30."¥ n initiates ten additional func
tions available from the key
board. Each additional function
has a numeral name. (A complete
list of these functions and their
numeral names will be found in
the strip just below the top row
of keys.)

29.it/ e gives you two values. 11
(13 places) ~ill be put into the
entry register and e (13 places)
will be put into the second func
tion register. To print 1r'and
leave it in the entry register,
press the PRINT ENTRY key.
To print e and leaveiit in the
entry register, press the
SECOND FUNC TION key.

28.EXPONENT enables you to enter
values exponentially. You can
enter up to a l3-digit signed man
tis sa and a two -digit signed ex
ponent.

37

( ) --

• ~

~ - -•
~

~ + X

--
I

35

36

34

333231

1 8 q I

4 ;- 6

I 1- 3

0 • 044-
SI'H

T J I

24.SET GROUP sets one of three data
groups for summation and computa
tion of data. It also sets Group 4,
which is used for three-variable
computations.

25.RECALL n will cause the contents
of the scratch pad register indi
cated (n) to be put into the entry
register. This will not affect the
contents of the register recalled.

26. STORE n will cause the contents
of the entry register to be put into
the scratch pad register indicated
(n). The value stored will replace
whatever value may have been in
that'register before. The entry
register will not be affected.

27.RESUME has two functions. It
will cause a program to resume
execution after a halt or after it
has been loaded. And at the end
of a subroutine, it will cause the
program to return to the step
following the i~structionwhich
caused branching to that sub
routine.

23. CLEAR ENTRY clears only the
entry register and an ERROR or
OVERFLOW condition. It will not
affect an operation in progress.

27

In 1-30

1Y
~29e

WP ~28

~tlM6'

I

26

25

24

23

~ mHT
ST" I-M,."

~
PIQHT

lin" ~AIO

- ~,.,. SIT
~

4teuP
.-r a.~,- -.. M1RY~RR22

21

19

20

17. The PRINT switch can be UP or
DOWN. When it's UP the 445 will
print nearly everything it does.
When it's DOWN, it will print only
a few "print always" functions.

14. BACK SPACE acts exactly like
the back s pace on a typewriter
when the 445 is in LOAD mode,
causing the machine to back up
one space in program memory.

16. The OPTION switch is another
simple condition which your pro
gram can test. But OPTION
may be changed manually at any
time, allowing you to control
physically the results of a test
using the OPTION device.

13.lNSERT lets you add a step to
any part of your program.

18. The IDLE light indicates when the
445 is busy. It is off whenever
the machine is performing an oper
ation, and will go on again when
it's ready for more instructions.
(Two additional keys maybe
pressed even if the IDLE light
is off.) The IDLE light will flash
when the 445 is in OVERFLOW or
ERROR mode.

15. The RUN ..STEP-l;OAD switch
controls the operation mode of
the machine. In RUN, either
keyboard or program.m.ed oper
ations may be performed. In
LOAD, a program may be
entered into program memory.
In STEP, you can go through
your program one step at a time 
each time you pres s the RESUME
key, the next step in your pro
gram will be executed.

7. JUMP nn lets you jump to a specific
location in program memory.

lO.ENTER CODE nnn allows you to
ent~r .a function code directly into
your program.

6. INDIRECT/SYMBOL performs two
functions. It can be used in con
junction with BRANCH and JUMP
instructions for symbolic addres sing
of program steps. And it may be
used with the main data STORE,
RECALL and EXCHANGE in
structions for indirect addressing
of main data registers.

11. HALT enters a halt instruction into
your program, causing the program
to stop at that point for data entry
or other operation. It also causes
the ces sation of program. running
or listing.

8. BRANCH nn lets you branch di
rectly to a specific location in pro
gram memory, like the JUMP nn
key, but also records the address
from which you branched. You can
return to the address directly
following the location from which
you branched with the RESUME
instruction.

9. FLAG is a simple condition you can
use in a program. This key sets
Flag 1. Having your program test
for Flag 1 is a convenient device
for conditiop.al branching or jumping.

12. LIST PROGRAM causes the address,
code and print symbol of a location
in your program to print. It may be
used to list the entire program (in
LOAD mode), or to identify your
current location (in RUN mode).
Your program steps will be listed,
but not executed.

5.RECALL nn allows you to recall in
formation from the main data storage
registers. When used in conjunction
with the arithmetic keys, RECALL
nn also allows you to perform arith
metic operations out of those reg
isters and into the entry register.

2. The ENTER/RECORD switch con
trols the magnetic card read/write
unit. On ENTER, the unit will read
information off the card and enter
it into the machine. On RECORD,
it will write information onto the
card from the machine.

3. The ON/STANDBY /OFF switch
controls the degree of "offnes s"
of the machine. On ON, everything
works normally. On STANDBY, no
operations can be initiated, but all
data and program. information that
have been fed into the 445' s memory
will remain intact. On OFF, all op
erational capacity is shut off and all
information in all memories will be
lost. Switching the machine from
OFF to ON clears all registers,
fills program memory with NOOP
codes, sets the decim.al point to two
places, s'ets Group 1 and executes
RESET.

4. STORE nn allows you to store in
formation in the main data storage
registers. When used in conjunction
with the arithmetic keys, the STORE
nn key also allows you to perform
aritlunetic operations in those
registers.

I.ADVANCE advances the tape. If
you press it and release it, the tape
will advance one space. If you hold
it down, the tape will continue ad
vancing until you let up.



APPENDIX

. Functions and codes

-217-

---,
I



SUMMARY OF FUNCTIONS

Following is a summary of the functions available, and their numeric codes.

Page On Numeric Print
Function in text Keyboard Code Symbol

Set D. P. 17-18 Yes 117 None
Reset 17 Yes 062 /\.
Clear Entry 20 Yes 063 None
Print Entry 20 Yes 060 None
Print Answer 20 Yes 061 A
Paper Advance 22 Yes 065 None
Numerals 0-9 22 Yes 000-011 None
Decimal Point 23 Yes 012 None
Exponent 23 Yes 014 None
Change Sign 23 Yes 013 None
trr&e 41 Yes 015 None
Second Function 41 Yes 052 F2
Third Function 42 Yes 116,003 F3
Plus 24 Yes 021 +
Minus 24 Yes 022
Multiply 24 Yes 023 X
Divide 24 Yes 024 ••
Equals 24,38 Yes 020 =
List-Mode Add 153 No 041 +
List-Mode Subtract 153 No 042
List-Mode Subtotal 153 No 043 <>
List-Mode Total 153 No 040 *aX 25 Yes 025 aX
Open Parenthesis 35-36 Yes 026 (

Close Parenthesis 35-36 Yes 027 )

Invert 25 Yes 054 l/x
Square Root 26 Yes 055 -r
Logarithm 41 Yes 050 19
Antilogarithm 41 Yes 051 19-1
Integer Fraction 43 Yes 116,005 I
Absolute Value 154 No 045 X
Equals-Sum-Zero 155 No 037 Zo
Square 154 No 053 X2

Factorial 90 Yes 116,006
Increment Entry 154 No 151 None
Decrement Entry 154 No 152 None
Identifier 157 No 177 None
Dot Print 155 No 176 None
Clear Scratch Pad Registers 46 Yes 116,000 None
Set Group 44 Yes 115 None
Sum-Square 46 Yes 047 L'n

-218-



SUMMARY OF FUNCTIONS (Continued)

Page On Numeric Print
Function in text Keyboard Code Symbol

Two Variable Data
Accumulation 58 Yes 036 X,Y

Three Variable Data
Accumulation 61 Yes 036 X,Y,Z

Standard Deviation (n-1) 53 Yes 077 SDn-1
Standard Deviation (n) 54 Yes 116,004 SDn
Linear Regre'ssion 65 Yes 076 LR,n
Two Variable Linear

Regression 66 Yes 076 LR,n
Three Variable Linear

Regression 69 Yes 076 LR,4
Line 72 Yes 116,011 X,Y
Line-Two Variable 72 Yes 116,011 X,Y
Line-Three Variable 74 Yes 116,011 X,Y,Z
t-statistic 76 Yes 073 t
Chi-Square 85 Yes 116,010 X2
Delete 50 Yes 046
z -statistic 55 Yes 116, 001 Z
Permutation / Combination 88 Yes 116,007 n,r,p
Normal Distribution 56 Yes 116,002 ~z

Store Scratch Pad 26 Yes 110 ~ n
Recall Scratch Pad 26 Yes III t n
Exchange Scratch Pad No 112 ~ n
Add-to-Register (Scratch

Pad) 160 No 113 +n n
Total Scratch Pad No 114 *n
Store Main Data 31 Yes 120 i- n n
Recall Main Data 31 Yes 121 1n n
Exchange Main Data 155 No 122 ~n n
Add-to-Register (Main

Data) 160 No 123 +n n n
Branch 128-129 Yes 127 None
Jump 128-129 Yes 126 None
Halt 99 Yes 056 None
Flag 1 152 Yes 016 None
Flag 2 154 No 017 None
Reset Flag 1 152 No 166 None
Reset Flag 2 No 167 None
Resume 130 Yes 057 None
Symbol/Indirect 133,147 Yes 067 None
Print Dis able 158 No 154 None
Print Enable 158 No 155 None
Program Address Keys 90,160 Optional 105-107 None

-219-



000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
034
035
036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057

445 FUNCTION CODES IN NUMERICAL ORDER

o
1
2
3
4
5
6
7
8
9
DECIMAL POINT
CHANGE SIGN
EXPONENT
rrf/ e
Flag 1
Flag 2
= (equals)
+ (plus)
- (minus)
X (multiply)
+ (divide)
aX
( (open parenthesis)
) (close parenthesis)
Permutations / combinations
Chi-square
XY data input
Equals -Sum- Zero
List-Mode Total
List-Mode Add
List-Mode Subtract
List-Mode Sub-total
Intege r / Fraction
Absolute Value
DELETE
SUM-SQUARE
Ln/LOG
eX/lOX
SECOND FUNCTION
Square
lnve rt (1)

x
Square Root
HALT
RESUME

-220-



445 FUNCTION CODES IN NUMERICAL ORDER

060 PRINT ENTRY
061 PRINT ANSWER
062 RESET
063 CLEAR ENTRY REGISTER
065 PAPER ADVANCE
066 DEFINE SYMBOL
067 INDIRECT/SYMBOL
073 t-dependent/t-independent
075 z -statistic
076 Linear Regression
077 Standard Deviation
105 (optional)
106 (optional)
107 (optional)
110 STOREn
III RECALLn
112 EXCHANGEn
113 Add to scratch pad register n
114 Total scratch pad register n
115 SET GROUP
116 ~n
117 SET DECIMAL POINT
120 STOREnn
121 RECALLnn
122 EXCHANGEnn
123 Add to register nn
126 JUMP nn
127 BRANCH nn
151 Increment entry register (+1)
152 Decrement entry register (-1)
154 PRINT DISABLE
155 PRINT ENABLE
157 RECALL DECIMAL POINT
166 Reset Flag 1
167 Reset Flag 2
176 PRINT DOT LINE
177 IDENTIFIER

-221-



INDEX

-zzz-



INDEX

Absolute value, 120, 154

Absolute (direct) addressing, 128-129

Accuracy of the machine, 213

Add

keyboard addition, 24

list-mode, 153

to register, 160

Additional functions, description, 43

Addressing

direct (absolute), 128 -129

indirect, 147 -150

machine level (open channel), 156-157

symbolic, 133-136

Advance key, 22

Algebra

algebraic chaining, 36-38

algebraic entry on keyboard, 24-26



INDEX -2-

Alphanwneric labelling, XY plotter, 214

Antilogarithm, 41 -42

Aritlunetic

basic keyboard, 24-25

in and out of main data registers, 33

in and out of scratch pad registers, 28-31

list-mode, 153

repeated, 40

Back space, 139-140

Branch

branching and jumping, 129 -130

branch points, 128 -1 29

conditional branching, 146-147

diagram, 130

Buffering of keyboard, 23 - 24

Chaining, algebraic, 36-38

Change Sign key, 23



INDEX -3-

Changing the sign of nwnbers, 22

Chi-square, 85-88

Combinations, and permutations, 88-90

Conditionals

description, 146 -147

Constant dividend, 33-35

Constant divisor, 35

Constant multiplier, 33-35

Contents, table of, i

Correlation

ex~ples of, 6-8, 9-12

Data s ullun.ation

for sUlll-square, 46-52

register usage charts, 46, 58, 62, 66

three-variable, 61-65

two-variable, 58-61



INDEX -4-

Decimal point

automatic setting with On, 16

automatic shifting, 18

entered with numbers, 22-23

recall decimal point, 159

Set Decimal Point key, 18

Decrementing

entry register, 154

machine level (open channel) register, 157

progratn counter, 113

Degree/Grad switch, 17

Deleting data from summation, 50-52

Dependent t-statistic, 76-85

Direct (absolute) addressing, 128-129

Distance, related to earth's curvature, 92-93



INDEX -5-

Divide

constant dividend, 33-35

constant divisor, 35

keyboard division, 24-25

Dot line, 155

Dummies, 8

Enter code

description, 136-139

exar.nples, 120, 137-138

functions, 152 -160

Entering "grouped ll data into summation, 49-50

Entering numbers, 22

Entering summed data, 45, 72

Equals

equals-sum-zero, 155

repeated, 38-40

with keyboard arithmetic, 24-26



INDEX -6-

Error mode

description, 20-21

with Clear Entry, 20

with Reset, 17

Examples and problems

general examples, 163-167

problems (see separate listing)

programming examples, 199 -207

Exchange registers

indirectly, 147-150

machine level (open channel), 157

Exponent

entering numbers exponentially, 23

Exponent key, 23

exponential mode, automatic, 18

exponential mode, printing format, 18

exponential mode, with Set D. P. key, 18

raising a number to a power with aX key, 25

Factorial, 90



INDEX -7-

Flags

flag 1, 152

flag 2, 154

with conditions, 147

Flow chart

description, 108 -1 09

examples, 109, 116,204

Fractional numbers

printing format, 18

Fraction/integer separation, 43-44

Grads, 17

Degree/ Grad switch, 17

Granaries of Isis, The, 1

Greek Ships and Other Phenomena, 91A

"Grouped" data

deleting, 51-52

entering into summation, 49-50



INDEX -8-

Groups, 44-46

data storage chart, 46

description, 44-46

set automatically with On, 16

Halt, 99, 151

Identifier, 157 -158

Idle light

description, 22

Incrementing

entry register, 154

machine level (open channel) register, 157

program counter, 112

Independent t-statistic, 76-85

Indirect addressing, 147-150

machine level (open channel) 156-157



INDEX -9-

Input

keyboard, 22

magnetic cards, 209, 211-212

magnetic tape cassette, 214

mark sense/punch card reader, 213

typewriter, 214

Insert, 140-142

Integer /fraction separation, 43-44

Introduction, ii

Invert (reciprocal)

as multiple root, 198

key(:c), 25 -26

used for constant divisor, 35

Isis, 8, 9, 12

Jump

branching and jumping, 129-130

branch points, 128-129

conditional jumping, 146 -147

diagram, 130



INDEX -10-

Keyboard

a ritlunetic , 24-25

buffering, 23-24

program access, 160-161

Line, 72-76

Linear regression, 65-72

three-variable, 69-72

~o-variable, 66-68

Listing program, 151

List-mode arithmetic, 153

Load

loading a program, 131 -133

Location, current, in program memory, 151-152

Logaritlun, 41-42

Machine level (open channel) addressing, 156-157



INDEX -11-

Magnetic (mag) cards

capacity, 209

care of mag cards, 212

entering a program, 211

entering data, 211-212

read/write unit, 209

recording a program, 209-211

recording data, 211

verification of card information, 212

Magnetic tape cassette unit, 214

Main data registers

addressing, 32-33

add to registers, 160

arithmetic in and out of, 33

description, 31-33

example of use, 33

Mark sense/punch card reader, 213

Mean

example of mathematical average, 4

n version, 54-55

n-l version, 53-54



INDEX -12-

Memory

cleared with On, 16

lost in Off mode, 16

map, 127

overview, 126-128

program memory filled with NOOP codes, 16

retained with Standby, 16

Multiple functions, 41-43

Multiple variable data summation, 5-8 - 65

three-variable, 61-65

~o-variable, 58-61

. Multiply

constant multiplier, 33-35

keyboard multiplication, 24-25

Negative numbers

position of minus sign, 18

NOOP code

automatic with On, 16

with ins ert, 141 -142



INDEX -13-

Normal distribution, 56-57

Numbers

changing the sign of, 22

entering on keyboard, 22

Off mode, 16

Omens

agricultural, 9

of Isis, 8, 9, 12

On-Standby-Off switch, 16

Open channel (machine level) addressing, 156-157

Optional keys, 90-91, 160-161

Output

magnetic cards, 209-211

magnetic tape cassette, 214

tape, 17 -18

typewriter, 214

XY plotter, 214



INDEX -14-

Overflow mode

description, 22

with Clear Entry, 20

with Reset, 17

Paper advance, 22

Parentheses, 35-36

Peripheral equipment, 213-214

Permutations, and combinations, 88-90

Pi and e key, 41

Plotter, XY, 214

Print Answer

in a program, 131

key, 20

Print enable/disable, 158-159



INDEX -15-

Print Entry

in a program, 131

key, 20

Printing

control, 18 -1 9

exponential mode, 18

format, 17

fractional nwnbers, 18

limits, 17

"never print" operations, 19

"print always" operations, 19

Print Answer key, 20

print enable/ disable, 158-159

Print Entry key, 20

while loading program, 103, 131

while running program, 103, 131

Problems and examples

general examples, 163-167

problems

linear regres sion, 172 -180

means, 194-199



INDEX -16-

Problems and examples (continued)

problems (continued)

multiple and partial correlation coefficients, 180-192

probability for 2x2 matrix, 192-194

SD, mean, standard error, 168-169, 171

z-statistic, normal possibility, 169-170, 171-172

programming examples, 199-207

Program

flow charts, 109, 116, 204

intermediate example, 108 -114 .

introductory example, 100 -103

introductory reasoning, 95 -1 00

keyboard program access, 90-91, 160-161

loading, 131-133

print control, 131

print symbols, 103, 132-133

program. memory, 99

program steps, 128

Punch card/mark sense reader, 213

Pythagoras, 92



INDEX -17-

Recall decimal point, 159

Recall from register

indirectly, 147-150

machine level (open channel) 156

main data, 32

scratch pad, 26-27

Reciprocal (invert)

as multiple root, 198

key(~), 25-26

used for constant divisor, 35

Registers

add to registers, 160

cleared with On, 16

main data, 31-33 (and see separate listing)

register arithmetic, 28 -31, 33

scratch pad, 26-28 (and see separate listing)

Register usage charts

for data summation, 46, 58, 62

for Groups, 46

for linear regression, 66



INDEX -18-

Regression, linear, 65-72

three-variable, 69-72

two-variable, 66 - 68

Repeated arithmetic, 40

Repeated equals, 38-40

Reset

automatic with On, 16

other functions, 17

Resume

with a program, 104

with branch, 129-130

with step, 150-151

Run-Step-Load switch, 17

Scratch pad registers

add to register, 160

arithmetic in and out of, 28-31

decimal point as a register, 28



INDEX -19-

Scratch pad registers (continued)

description, 26-27

example of use, 27

print symbols of, 27

Second function key, 41, 42-43

Set Group, 44-46

data storage chart, 46

Setting flag 1, 152

fla~ 2, 154

Square

code, 154

with tUnes -equals, 39

Square root key, 26

Standard deviation

n version, 54-55

n-l version, 53-54



INDEX -20-

Standard error

n version, 54-55

n-l version, 53-54

Standby mode, 16

Statistical functions, 44-90

chi-square, 85-88

factorial, 90

independent, dependent t-statistic, 76-85

line, 72 -76

linear regression, 65-72

normal distribution, 56-57

permutations and combinations, 88 -90

Set Group, 44-46

standard deviation, mean, standard error (n), 54-55

standard deviation, mean, standard error (n-l), 53-54

sur.n-square, 46-52

z-statistic, 55 -56

Stepping through program, 150-151



INDEX -21-

Store in register

indirectly, 147 -150

machine level (open channel), 156

main data, 32

scratch pad, 26-27

Subroutine

description, 142 -146

entering with branch, 130

Subtotal, list-mode, 153

Subtract

keyboard subtraction, 24-25

list-mode, 153

Summed data, entering, 45, 72

Sum-square, 46-52

Symbolic addressing

description, 133-136

exar.nples, Ill, 113-114

symbolic address table, 136



INDEX -22-

Table of contents, i

Tape cas sette unit, 214

Third function, 42 -43

Three-variable data sUDunation, 61-65

Total

list-mode, 153

with equals, 24-26

Turning the machine ON/OFF, plus STANDBY, 16

T-statistic, independent and dependent, 76-85

Two-variable data summation, 58-61

Typewriter, 214

Where am. I?

current location, 151-152



XY plotter, 214

. z -statistic, 55 -56

INDEX -23-



NOTE

H the machine is turned OFF and then quickly ON again, the

IDLE light may go out and the machine become inoperative.

The same thing may happen if RESET or CLEAR is initiated

immediately after turning the machine ON, before the auto

matic clearing and resetting functions are completed. To

correct this condition, turn the machine OFF and leave it

off for a few seconds, then turn it ON again and give it a

few seconds to complete its automatic clearing and resetting

operations.

j



Compucorp
Computer Design Corporation, 12401 West Olympic Boulevard

Los Angeles, California 90064 Telephone: (213) 478-9761

Compucorp is a registered trademark of Computer Design Corporation
© 1972 Computer Design Corporation. Contents may not be reproduced

without the permission of Computer Design Corporation.


