
------------------------------------~.--~

3/23/82

UNIX™
for the

68000

VOLUME I
The User's Manual

.!::"~.;~,. ~.'A-.::r.; . .L.a-.N
2405 FCIU~ sW!e~,.;aen;~i!v, CA947,O

Copyright 1981, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX(tm) software license are permitted to copy
this document, or any portion of it, as necessary for
licensed use of the software, provided this copyright notice
and statement of permission are included.

PREFACE

12~ UniSoft Edition

While updating this documentation for use with UniSoft's
UNIX for the 68000, we added examples to the Commands in
Volume I, Section I, and clarified descriptive material
where necessary. We are indebted to the many writers who
have built up the UNIX documentation over the years, and our
intent has been to enhance, rather than to replace, their
work. Particular thanks are due to Jef f Schriebman and Asa
Romberger, who showed great flexibility in switching from
porting to proofreading on short notice, and without whose
advice and assistance this rev ision would not have been pos
sible.

PREFACE

UniSoft Corporation
February 25, 1982

12 the Upiversity Rf California Edition

This edition of the manual, while heavily based on the ori
ginal from Bell Labs, incorporates documentation reflecting
the version of UNIX currently running on the Berkeley campus
of the University of California. I would like to give spe
cial thanks to Vance Vaughan, Roberta Allaman, Dick Peters,
Kirk Thege, Jeff Schriebman, and Bill Joy for their help in
preparing this edition.

E.M. Gould

PREFACE

~ the Seventh Edition

Although this Seventh Edition no longer bears their byline,
Ken Thompson and Dennis Ritchie remain the fathers and pre
ceptors of the UNIX time-sharing system. Many of the
improvements here described bear their mark. Among many,
many other people who have contributed to the further
flowering of UNIX, we wish especially to acknowledge the
contributions of A. V. Abo, S. R. Bourne, L. L. Cherry, G.
L. Chesson, S. I. Feldman, C. B. Haley, R. C. Haight, S. c.
Johnson, M. E. Lesk, T. L. Lyon, L. E. McMahon, R. Morris,
R. Muha, D. A. Rowitz, L. Wehr, and P. J. Weinberger. We
appreciate also the effective advice and criticism of T. A.
Dolotta, A. G. Fraser, J. F. Maranzano, and J. R. Mashey;
and we remember the important work of the late Joseph F.
Ossanna.

B. W. Kernighan
M. D. McIlroy

Introduct ion II UpiSoft Jm!! ..2ll .1.h.!. 68000

UpiSoft Company Profile

UniSoft Corporation was formed in 1981 to provide the
UNIX'*' operating .yst em to OEM' a (original equipment manufac
turers) of comput en. who would in turn supply UNIX to eDd
users.

11HIX is • general purpose interactive operating 'system
originally developed for use on Digital Equipment Corpora
tion (DEC) minicomputers. UniSoft has modified UNIX to run
on state of tbe art microcomputen auch aa the Motorola
68000. UNIX provides systems programming development and
text processing facilities which substantially augment the
computing power and flexibility of theae computers. UniSoft
believes tbat 11HIX will become the standard operating system
for all 16 bit and 32 bit computers.

UNIX for the 68000 was chosen as UniSoft'. initial pro
duct after a market survey and a careful study of the techn
ical problems. The 68000 is a cbip with 32 bit internal and
16 bit external addresaing which ia being uaed for many of
the newer microcomputer systems becauae of its speed, power,
and flexibility.

Bistory st . .lZm

The UNIX operating syatem has finally emerged fram its
sheltered academic enviroument and become available commer
cially at an affordable price. SiDce it has been lovingly
groomed by researchers, professors, and students in hundreds
of educational institutions (not to mention Bell Labs, one
of tbe world's largest research facilities) UNIX represents
a large, complex, and fairly stable set of programs.

UNIX was originally developed at Bell Labs in 1969 on
what was then considered a rather "small" computer, the DEC
PDP-7. Two progranmers in the Computing Science Research
Group, Ken Thompson abd Dennis Ritchie, wrote UNIX because
the operating systems that were available at that time did
not provide the type of programming enviroument that they
wanted.

Unlike many other operating systems overloaded with
unnecessary features and fraught with hazards for the
unwary, UNIX provides a simple, minimal set of tools (and
tools to make tools) for software development and document
preparation.

'*'UNIX is a Trademark of Bell Laboratories.

- 2 -

In a short period of time. UNIX became very popular
with Bell programmers and computer science researchers. and
is now the standard operating system on hundreds of comput
ers throughout the Bell network.

UNIX has also been installed on thousands of other sys
tems. particularly those in colleges and universities.
Because of the merits of UNIX as a multi-user programming
enviroument and because Bell made it widely available to
educational institutions. UNIX has become one of the .major
computer science teaching syst ems. By 1981. there were more
than 1700 installations of UNIX in colleges and universi
ties. Jean Yates. co-author (with Rebecca Thomas) of A User
Guide II ill UNIX System. estimates that over 90% of com
puter science departments in universities use UNIX systems.

Over the years. UNIX has gone through several rev i
sions. Until recently. the latest version of UNIX available
from Bell was Version 7. However. some regional variations
also existed. A group within Bell had developed a set of
tools called Programmers Workbench (PWB). and the University
of California at Berkeley had made several subs tantial
enhancements (referred to collectively as "Berkeley UNIX")
to the "standard" UNIX system.

A new UNIX release was announced in November. 1981. in
order to provide a more comprehensive and ,fully standard
version of UNIX and to consolidate computer-related goods
and services under A.T.&T. This release. System III.
integrates all the different versions. eliminates a few pro
grams. and makes available from Bell most of the PWB and the
UC Berkeley enhancements. Thus. although System IV and Sys
tem V are already looming in the realm of rumor. System III
currently represents the minimum standard UNIX system.

Even more significantly. Bell's licensing fee structure
has also changed. so that for the firs t time illnx can be
licensed at a price that makes it commercially viable on
microcomputers. This now puts the UNIX programming and text
processing tools in the hands of small businesses and
private users for the first time.

Although UNIX has been thoroughly shaken down over the
years of its use in a research euvironment. it is not now
and has never been a system designed primarily for use by
non-technical people. That is. UNIX is somewhat less
"user-friendly" than a system developed specifically for use
by businesses or at home. However. thousands of non
technical people have learned t'o know and enjoy UNIX. and
computer terminals in. for example. university offices are
in continuous use by non-academic personnel.

The real value of UNIX lies in it s hundreds of utility
programs. No other operating system has such a la~~e and

- 3 -

powerful set of program development and tezt processing
tools. UNIX provides tools or a means of making tools for
almost any application, once you know where to look and what
to do when you get there.

In the past, most UNIX users have learned the system by
oral tradition. In a university, this i. no problem -
there's always someone to ask. However, if you don't have
an ezperienced UNIX user at your elbow, learning by trial
and error can be frustrating.

Therefore, this "Introduction to the Introduction" is
designed as a brief guide to the most useful commands for
maneuvering in UNIX, and as a guide to the UNIX documenta
tion. The three volumes may seem uuwieldy, but even at this
size they have been distilled from the four volumes that
come in, for example, the U.C. Berkeley distribution.

About the l!!!ll Manuals

UniSoft's edition of the UNIX documentation attempts
not only to remove documents which are outdated or which do
not apply to UniSoft UNIX for the 68000, but also to present
the documentation in a logical sequence.

The first volume is The User's Manual, Volume I. This
volume contains brief descriptions of each of the major com
mands, subroutines, system calls, etc., that can be used or
accessed by the average user.

Section 1 of The User's Manual, "Commands", represents
a set of programs that can be directly used by all users. As
such, Section 1 is the section people use most.

Volumes II and III divide the UNIX world into program
ming (Volume II) and tezt processing functions (Volume III).
In each volume, there is a progression from non-technical or
tutorial documents to more technical and abstract articles
about more complez facilities.

Getting Started

The beginning user should start with Volume III. This
volume contains "An Int roduction to UNIX" and other entry
level documents. Volume III also concentrates on tezt pro
cessing, which is a good way to get practice on UNIX and to
learn its features. This Introduction plus the Introduction
to Volume I, should give you enough information to get
started. Then the tutorial sand ezercises at the beginning
of Volume III will give you more details.

- 4 -

~ Processing

In addition to introducing the UNIX operating system in
a tutorial way, Volume III also contains essays and tutori
als on text processing and document preparation programs.

UNIX provides leveral editors, but the line editor ~
and its .creen-oriented verlion :d.. are the IDOlt cCll1111:)nly
used. Document formatting capability is provided by nroff
and troff, which produces typeset for printing. The format
ting programs are simplified by "macro" packages such as the
ml macros, which provide a standard set of commands for
standard formatting operations.

Documents can be rev ised .J.!l!Y!.!.!., with programs such
as the stream editor sed or the transliteration program lX.
Finally, textual analysis programs such as awk and lex per
mit editing "scripts" to be written to perform a series of
operations on documents.

Program Development

Volume II contains documents on the C programming
language {in which UNIX is written} and other program
development tools. UNIX is particularly rich in systems pro
gramming tools.

In addition to the C language interface, which is obvi
ously well developed, UNIX supports other progr-amming
languages.+ The program development tools (which can often
be used on t~(t files as well as files of code) enable mass
revision of files, close tracking of revUl.ons, archiving,
and other resource management functions.

Sandy Emerson
UniSoft Corporation

February 25. 1982

+ UniSoft provides interfaces to FORTRAN, Pascal, and
other languages through cross-licensing agreements.
The languages and manuals for them may be obtained from
the manufacturer of your UniSoft UNIX system.

- 5 -

The All-Purpose Rudimentary Users' ~ II UNIX

The following should give you. in very concise form.
enough information to begin to find your way around in UNIX.
The chart form is designed to supplement the clouds of fine
print that have gathered around UNIX operations over the
yearsi however. many details are omitted. You will need the
User' 8 Manual and the appropr iate supplementary documenta
tion in order to move up frcm Sunday driver to UNIX speed
ster.

ROW TO

LOG IN

CREATE A FILE

MAKE A DIRECTORY

CHANGE DIRECTORY

COMMANDS

Boot system up and type Control-D
to the single-user "(#)" prcmpt.
then respond to
login:
with your user name and a carriage
return. (Commands are always sent
to the system with a carriage
return) •

ex <filename>
create a file by editing. Give
the file a name and add text to it
by typing 'a' to the colon (:)
prompt.
Many commands also open a new file
automatically. when a new name is
given for the new file. For exam
ple. "copy":
cp oldname newname
will create newname automatically
and copy oldname into it.

mkdir <directory name>
give the directory a name. To use
this directory and add files to
it, use:
cd <directory name>
to "change directory" to the new
one. Directories exist in a tree
structure. Directories have
parents and children. starting
with the single "root" directory
which is the parent of all the
other directories.

cd
to the directory <name>. To go up
one level, use:
cd ••
" "is the parent of the direc
tory you are in. In this way you

- 6 -

can climb up and down directory
"trees" to examine the contents of
the system without hav ing to know
specific directory names in
advance.

LIST DIRECTORY CONTENTS ls

FIND WHERE YOU ARE

EDIT TEXT OR PROGRAMS

FORMAT TEXT

to see the names of files and
directories. To see the permis
sions on various files, type:
ls -1
(That's "1" as in "long", not the
number "1"). "Read, write. exe
cute" (rwx) permissions go (from
left to right). owner: group: pub
lic. If you are not the owner of a
file then you must have at least
"read" permission as a member of
"group" or "public" in order to
access andlor move the file. "d"
at the beginning of the permission
string indicates a directory. :

pwd
prints working directory. Start
ing from the root (I) directory,
pwd lists the genealogy of the
current direct"ory. ending with the
current directory's name. This
whole construct is called the
pathname. When in doubt. specify
a file or directory by using its
entire pathname.

ex or vi <filename>.
If you are intimida ted by all of
the ex options~ use its subset.
~. II is the screen-oriented
vers ion of y.

Droff -ms <filenames>
The nroff program with the "ms"
macro commands is the easiest way
to format text neatly and uni
formly. Other macro packages are
available. and straight nroff can
be used for "special effects". You
can also def ine your own macro
formatting commands.

VIEW OUTPUT ON SCREEN

- 7 -

more <fil ename>
Alternatively, use the commands
'cat' or 'nroff' and pipe the out
put through the ~ program, as
in:
nroff filename I more
This will put the output OD your
CRT one screenful at a time. Hit
the .pace bar to get the next
screenful. and Shift/Delete, to
exit.

SIRING COMMANDS TOGElHER You can pipe the output of one
command to the input of another
with the pipe "I" sign. as for the
"mare" prograD above. Commands
can also be performed sequentially
if they are separated by semi
colons ";". It is usually best to
confine a string of commands to
one line on the screen or printer.
Finish all commands with a car
riage return.

EXIT To stop a program and exit to your
shell (prompt) press the "Delete"
key~
To log out, type Control-D.
To stop a running program
abruptly, type Control-I. This
"quit" signa 1 creates a core image
of the program that you inter
rupted, which may be used for
diagnosis.

Common Errors and How .1.2. Fix .Ihgm

1. !!. or other terminal output is bunched up (seems to be
miBBing tabB)

Cure: Type Utl,.

2. The terminal is not echoing or leems to be dead.

Cure: Type ''Linefeed'' - Control- j
linefeed rather than "Return".
~ and Linefeed.

on terminal B without a
If you get a prompt, type

3. ProgramB that are likely to access r8ll devices, such as
read, write, and lseek, should al~ys be given parameters in
512-byte multiples, since in raw 1/0 read and write truncate
file offsets to 512-byte block boundaries. Write, in par
ticular, scribbles on the tail of incomplete blocks.

February 25, 1982

User Documentation Update for UNISOFT Pascal and FORTRAN

1. The close procedure from Pascal is always "lock" (the file
remains after the close) regardless of whether "lock" or "purge"
is specified. Similarly, from FORTRAN, all files are closed
"keep" even if the "delete" option is specified.

2. The following calls are not implemented under the ONISOFT
version of SVS Pascal: unitread, unitwrite, unitclear,
unitstatus, and memavail.

3. Pascal programs must be in files whose names end in ".pas"
FORTRAN programs must be in files whose names end in ".for".

4. Call "C" externals like the following example:

Provide an external definition in Pascal program:
(assume the pchar is declared Achar)

function write(count: 10ngint7
- bufaddr: pchar7

fd: longint): 10ngint7 external 7

Note: arguments are in reverse order from "C" call and all
arguments must be declared in Pascal to push 4 bytes onto the
stack for the call.

A ·wrapper" must be provided in assembler language. The
external reference passed to the UNISOFT linker will be in upper
case (WRITE). The wrapper must call the corresponding lower
case routine and get the return value out of DO and onto the
stack where Pascal expects it. An example of a proper wrapper
for write is as follows: -

.globl
movl
jsr
addl
movl
jmp

WRITE
sp@+,a3

write
112,sp
dO,sp@
a3@

Save return address
Call "C· style routine
Remove 12 bytes of arguments
Place return value on stack
Return to caller

Assemble the wrapper into a .0 file using the UNISOFT assembler
and provide it to the UNISOFT linker (cc in the sample shell
command file) next to wraplib.o.

5. Calling ·C" externals from FORTRAN is accomplished by simply
calling them as a function. A wrapper (as above) must be provided
Parameters are passed by FORTRAN by reference so the wrapper (or
called routine) should expect pointers to the arguments to be
passed. For example, calling ICFUNCT:

INTEGER ICFUNCT,I,M,N,O
I • ICFUNCT(M,N,O)

will generate an external reference for the UNISOFT linker if it i
not resolved by ulinker to another Pascal or FORTRAN routine.

6. A Pascal program may call halt(O) to generate an UNISOFT error
return and haltel) to generate a normal UNISOFT termination if the
program is used in scripts which test the UNISOFT error flag.

· .

INTRODUCTION TO VOLUME 1

This volume describes the user-accessible facilities of
the UNIX* operating system.

Volume One is the User's Manual. This volume includes
short descriptions of commands. subroutines. system calls.
and other useful information.

Volumes Two and Three contain tutorials and reference
articles for other UNIX functions such as systems program
ming and document preparation.

Volume Three. in particular. contains a good introduc
tory document. "The UNU Time-Sharing System" by Dennis
Ritchie and Ken Thompson. A beginners' UNU tutorial is
found in ''UNIX for Beginners" by Brian Kernighan.

Within the area it surveys. this User's Manual (Volume
One) attempts to be timely. complete and concise. The sup
plementary documents in the other volumes will often clarify
fine points of syutu: or usage that the short descriptions
omit. for the sake of brel7ity. However. the short descrip
tions with their examples should be sufficient to show the
common usage of most commands and other facilities. It is
intended that each program be described as it is. not as it
should be.

Volume One is divided into eight sections:

1. Commands
2 • System calls
3. Subroutines
4. Special files
5. File formats and conventions
6. Games
7. Macro packages and language conventions
8. Maintenance commands and procedures

Commands are programs intended to be invoked directly by the
user. in contrast to subroutines. which are intended to be
called by the user's programs. Commands generally reside in
directory Ibin (for binary programs). Some programs also
reside in lusr/bin. to save space in Ibin. These direc
tories are searched automatically by the command inter
preters. Ah and csh. Each user has the option of using
either the Bourne shell. (sh) or the C-Shell (SAh) as the
usual command interpreter.

System calls are entries into the UNIX supervisor. The
system call interface is identical to a C language program

*UNIX is a Trademark of Bell Laboratories.

- 2 -

calli notes on system calls are found in Section 2.

An assortment of subroutines is availablei they are
described in section 3. The pr imary libraries in which they
are kept are described in ~(l). Subroutines, like sys
tem calls, are described in terms of the C programming
language.

The .pecial files section 4 discusses the characteris
tic. of system "files" which are symbol ic repr esentations of
physical I/O devices, .uch as terminals (see ~(!)).'

Section 5, concerning file formats and couventions,
details the structure and characteristics of system files
used for diagnostics or as automatic holding files for the
output of the loader or the assembler.

Games have been relegated to section 6 to keep them
from contaminating the more staid information of section 1.

Section 7 is a miscellaneous collection of information
necessary to writing in various special ized languages: char
acter codes, macro packages for typesetting. etc.

Section 8, on maintenance, discusses commands and pro
cedures u.ed for system maintenance and/or diagnosis. These
maintenance features are usually used in "super-user" mode
or by a system administrator. Maintenance commands and
files are almost all kept in the directory /~.,

Each of the sections of Volume ODe, consists of a
number of independent entries of a page or so each. The
name of the entry is in the upper corners of its pages,
together with the section number. Ent ries with~ each sec
tion are alphabetized. The page numbers of each entry start
at 1; to aid in adding upda tes or rev ision, each entry has
been numbered separately.

All entries are based on a common forma~, not all of
whose subsections will always appear.

The llilU. subsection lists the exact names of the
commands and subroutines covered under the entry and
gives a very short description of their purpose.

The snopsis summarizes the use of the program
being described. A few coaventions are used, particu
larly in the Commands 'section, Section 1:

Boldface words are considered literals, and are
typed just as they appear.

cate
Square brackets [] around an argument indi
that the argument is optional. When an

- 3 -

argument is given as "name", it always refers to a
file name.

Ellipses ' ••• ' are used to show that the pre
vious argument-prototype may be repeated.

A final convention is used by the commands
themselves. An argument beginning with a minus
sign '-' is often taken to mean lome sort of
option-specifying argument even if it appears in a
position where a file name could appear. "There
fore, it is unwise to have files whose names begin
with '-'.

The description subsection discusses in detail the sub
ject at hand.

The example subsection gives one or more sample
uses of the command or program.

The .f..i.m subsection gives the names of files
which are built into the program.

A ~ also subsection gives pointers to related
information.

A diagnostics subsection discusses ~he diagnostic
indications which may be produced. Messages which are
intended to be self~explanatory are not listed.

The bugs subsection gives known bugs and sometimes
deficiencies. Occasionally also the suggested fix is
described.

At the beginning of the volume is a table of contents,
organized by section and alphabetically within each section.
There is also a permuted index derived from the table of
contents. Within each index entry, the title of the wr iteup
to which it refers is followed by the appropr iate section
number in parentheses. This fact is important because there
is considerable name duplication among the sections, arising
principally from commands which exist only to exercise a
particular system call.

BOW TO GET STARTED

This section sketches the basic information you need to
get started on UNIX: how to log in and log out, how to com
municate through your terminal, and how to run a program.
See "UNIX for Beginners" in Volume 2 for a more complete
introduction to the system.

- 4 -

Logging .ill.

After the system has booted up and you are running the
shell program with a login: prompt, type your login name.
If you have a password, the system asks for it and turns off
the printer on the terminal so the password will not appear.
After you have logged in, the "return", "new line", or
"linefeed" keys will give exactly the same results, namely a
carriage return + a line feed. Always type your login name
in lower-case if possible. If you type it in in upper-case
letters, UNIX will assume that your terminal cannot generate I

lower-case letters and will translate all subsequent lower
case letters to upper case.

The evidence that you have successfully logged in is
that a shell program will type the C-shell prompt ('%') to
you. The shells are described below under '~ow to run a
Program" and in csh(l) and .!.h(l) in Section 1.

For information on setting up terminals,
tset(l) , and AllI(l) , which tell how to adjust
behavior. Getty{~) discusses the login sequence
detail, and ~(!), discusses terminal I/O.

Logging ..Ql!.t.

There are two way s to log out,:

consult
terminal
in more

By typing an end-of-file indication (EOT character,
control-d) to the Shell. The Shell will terminate and
the "login: " message will appear again.

Or, another user can log in directly after you by giv
ing a .lQ&.in.(1) command.

How ~ communicate through your terminal.

When you type characters to UNIX, the system stores all
the incoming characters in a buffer until a carriage return
is hit. The characters will not be given to a program until
you type a return (or newline), as described above in Log
Ai..a& in.

UNIX terminal I/O is full-duplex. It has full read
ahead, which means that you can type at any time, even while
a program is typing at you. Of course, if you type dur ing
output, the printed output will have the input characters
interspersed. However, whatever you type will be saved up
and interpreted in correct sequence. There is a limit to
the amount of read-ahead, but it is generous and not likely
to be exceeded unless the system is in trouble. When the
read-ahead limit is exceeded, the system throws away all the
saved characters (or beeps, if your prompt was a X).

- 5 -

The character II@II in typed input kills all the preced
ing characters in the line, so typing mis take s can be
repaired on a single line. Also, the character 11#" erases
the last character typed. (Most users prefer to use a back
space rather than 11#", and many prefer control-U instead of
"@"; tset{l) or .u.u(l) can be used to arrange thia.) Suc
cessive uses of "I" erase characters back to, but not
beyond, the beginning of the line. "@" and "I" can be
transmitted to a program by preceding them with "\". (So,
to erase "\", you need two "#"s).

The 'break' or 'interrupt' key causes an interrupt ~
.ill, as does the ASCII' delete" (or 'rubout") charact er,
which is not passed to programs. This signal generally
causes whatever program you are running to terminate. It is
typically used to stop a long printout that you don"t want.
However, programs can arrange either to ignore this signal
altogether, or to be notified when it happens (instead of
being terminated). The editor, for example, catches inter
rupts and stops what it is doing, instead of terminating, so
that an interrupt can be used to halt an editor printout
without los ing the file be ing edit ed. Many users change
this interrupt character to be AC (control-C) using ~(l).

It is also possible to suspend output temporarily using
AS (control-s) and later resume output with AQ.

The quit or "abor t" signal is generated by typing the
ASCII FS character. (FS appears many places on different
terminals, most commonly as control-\ or control-I.) It not
only causes a running program to terminate abruptly, but
also generates a file with the core image of the terminated
process. ~ is therefore useful for debugging (see also
core(l»·

Besid~s adapting to the speed of the terminal, UNIX
tries to be intelligent about whether you have a terminal
with the newline function or whether it must be simulated
with carriage-return and line-feed. In the latter case, all
input carriage returns are turned to new line charact ers (the
standard line delimiter) and both a carriage return and a
line fee~ are echoed to the terminal. If you get into the
wrong mode, ~(l) or ~(l) can be used to reset your
terminal.

Tab characters are used freely in UNIX source programs.
If your terminal does not have the tab function, you can
arrange to have them turned into spaces during output, and
echoed as spaces during input. The syst em assumes that tabs
are set every eight columns. Again, the tset(l) or ~(l)
command will set or reset this mode. Tset(l) can be used to
set the tab stops automatically when necessary.

- 6 -

How II Run A Program: ~ Shells.

When you have successfully logged in. a program called
a shell is listening to your terminal. The shell reads
typed-in lines. splits them up into a command name and argu
ments. and executes the command. A. command is simply an
executable progran. The Shell looks in several systan
directories to find the command. You can allo place com
mands in your own directory and have the Ihell find than
there. There is nothing special about Iystan-provided com
mands except that they are kept in a directory where the
shell can find than.

The command name is always the firlt word on an input
line; it and its arguments are leparated from one another by
spaces, one space between each leparate element.

When a program terminates, the shell will ordinarily
regain control and type a prompt at you to indicate that it
is ready for another command.

The shells have many other capabilities, which are
described in detail in sections Ah(l) and ~(l). See also
the reference articles on the Bourne shell and the C-shell.

The current directory.

UNIX has a file system arranged in a hierarchy of
directories. Initially, you have one login directory which
has the same name as your login name. When you log in, any
file name you type is by default entered in this directory.
Since you are the owner of this directory, you have full
permission to read, write, alter, or destroy its contents.
Permissions to have your will with other directories and
files will have been granted or denied to you by their own
ers. As a matter of observed fact, few UNIX users protect
their files from perusal by other users. See also chmod(l).

To change the current directory (but not the set of
permissions you were endowed with at login) use siCl).

To refer to files not in the current directory, you
must use a path name. Full path names begin with "/", the
name of the root 'directory of the whole file system. After
the slash comes the name of each directory containing the
next sub-directory (followed by a "/") until finally the
file bame is reached. For e%ample, /unisoft/lem/filex
refers to the file ~ in the directory J&m; J&m is itself
a subdirectory of unisoft; unisoft springs directly from the
root directory, /.

If your current directory has subdirectories, the path

,

- 7 -

names of files therein begin with the name of the subdirec
tory with no pref ixed "/".

A path name may be used anywhere a file name is
required.

Important commands which modify the contents of files
are a(l) , m,(l), and n(l) , which respectively copy, move
(i.e. rename) and remove files. To find out the status of
files or directories, use lL(l). See mkdir(l) for making
directories and rm4ir (inn(l) for destroying them.

For a fuller discussion of the file system, see "The
UNIX Time-Sharing System," by Ken Thompson and Dennis
Ritchie. It may also be useful to glance through section 2
of this manual, which discusses system calls, even if you
don't intend to deal with the system at that level. The
Introduction to Section 2 also contains a list of error mes
sages.

Writing A program.

To enter the text of a source program into a UNIX file,
use the editor ~(l) or its display editing alias 1i(1).
(The old standard editor rl(l) is also available.> The prin
cipal languages in UNIX are provided by the C compiler
s£(l) , the Fortran compiler, and the Pascal compiler. After
the program text has been entered through the editor and
written on a file, you can give the file to the appropriate
language processor as an argument. The output of the
language processor will be left on a file in the current
directory named 'a.out'. (If the output is precious, use.E!
to change the name from A.out to something else, since A.out
is subject to being written over at the next compiler call).

When you have finally gone through this entire process
without provoking any diagnostics, the resulting program can
be run by giving its name to the shell in response to the
shell ('%') prompt.

Your programs can receive arguments fran the command
line just as system programs do: see exec(2).

Text processing.

Almost all text is entered through the editor ll(l)
(often entered via vi(l». The commands most often used to
output text on a terminal or printer are: ~, ~,~ and
nroff, all in section 1.

The..£.!! command simply dumps ASCII text on the termi
nal, with no processing at all. The ~ command paginates
the text, supplies headings, and has a facility for multi
column output. Nroff is an elaborate text formatting

- 8 -

program. Used naked, it requires careful forethought, but
for ordinary documents it can be used through a macro pack
age such as ~ or ms, which are described in section 7.

Troff prepares documents for a Graphics SysteMS photo-
typesetter or a Versatec Plotter; it is very similar to
nroff, and often works from exactly the same source text.

~(~) is useful for viewing a long text on a CRT
screen one page at a time. It helps prt!Yent the output of a
command from zipping off the top of your screen. It is also
well suited to perusing files. The output from any set of
commands can be piped through ~ in order to be viewed on
a CRT screen; see "Pipes and Filters" inW(~).

Status inquiries.

Various commands exist to provide you with useful
information. For example, ~(~) prints the current time
and date. ~(~) will list the files in your directory or
give summary information about particular files.

Surprises.

Certain commands prov ide inter-user commumca tion.
Even if you do not plan to use them, it would be well to
learn something about them, because someone else may aim
them at you.

To communicate with another user currently logged in,
~(~) is used; mAil(~) will leave a message whose pres
ence will be announced to another user when he next logs in.
The write-ups in the manual also suggest how to respond to
the two commands if you are a target.

PEIlKUTED INDEX

chgrp: change group
chown: change owner

ident - login banner

rmcobol(l)

diakfonut
lpd

ident
nice: run a co_nd at low priority .ap nohup

egrep
letlan

dilktuna
device. eltterr

help: I.k for help

aba: iDteger
faba, floor, ceil:

phya: allow a proceaa to
accea.: determine

acct: eltecution
acct: turn

• in, co., tan, .. in,
aact: print current sees file editiDi

fortune: print a random, hopefully intere.tinl.

pbya: allow a procea. to acce •• pbY'ical

adain: create and

baaeDAme: atr ip f il eDalae

unalia.: raove
aliena: The

brk, abrk, break: chlDge core
malloc, free, realloc, calloc: main memory

limit:
elae:

leI:: leaerator of ledcal
VOrla.:

rain:
bed: convert to

number: co avert
bc:

tp: manipulate tape
ar:
ar:

tar: tape
Ilob: fileDalae ezpand

.bift: manipulate
echo: ecbo
echo; ecbo

espr: evaluate
be: arbitrary-preci.ion

@:

ezpr: evaluate argumentt

tra: copy out a file
gmti_, aactime, ti_zoaa: convert date aDd ti_ to

aacH: .. p of
downloading.. hex: tran.late. object fUe. into

OniSoft Corporation

atof, atoi, atoll convert
cti .. , localti .. , ;.ti ...

@: arithmetic OD abel 1 variablea. • ••••••••••••••••
COBOL compiler by Ryan-HcFarl.nd ••••••••••••••••
COBOL rUDtime interpreter. • •••••••••••••••••••••
format a diak •••••••••••••••••••••••••••••••••••
liDe printer dae.on, .••••••••••••••••••••••.••••
logiD banner •••••••••••••••••••••••••••••••••••
run a command imaune to haaaup. (.b only).
.earch a file for a pattern. • •••••••••••••••••••
let uaer mellOry li.it to value. • ••.••.•••.••••••
tune tbe floppy dilk aettliDg ti",par_ter ••
turn on/off tbe exteaded error. in tbe apacified

abort: lenerlte a fault. • •.••••••••••..••...••.•.•
about sees probleal •••••••••••••••••••••••••••••••
abl: iDteler ab.olute value. • •••••••••••••••••••••
ablolute value. • ••••••••••••••••••••••••••••••••••
ab.olute value. floor. ceiling functiona. • ••••••••
acce •• : determine acce.aibility of file. • •••••••••
acce •• phYlical addre •• el.•..•..............
accel.ibilit7 of file. • •••••••••••••••••••••••••••
accauatiul file. • •••••••••••••••••••••••••••••••••
accoUDtiDI 00 or off. . •...•.••••••..•.••...•.••...
acc.t: execut ion ac.couDtina file. • •••••••••••••••••
acct: turD accountiaa OD or off. • •••••••••••••••••
aco •• atan. ataa2: triaonc:aetric function ••
acti.it1· •••
ada,e. • •••
.db: d.buller. • •••••••••••••••••••••••••••••••••••
addre..... • •••••••••••••••••••••••••••••••••••••••
adaiD: create ad adaini. ter SCC:Z file.. • •••••••••
admiDilter sees file.. • •••••••••••••••••••••••••••
adveDture: au exploration • ••••••••••••••••••
af f is.l.
alarm: achedule .ignal "after apacified ti .. .
alia.: Ihell .. ero..•..•.•......•... .li..... i •••••••••••••••••••••••
alien iavadera attack the eartb. • •••••••••••••••••
alien.: Th. alien iavadera attack tbe eartb.
allocatioa ••
allocator. • •••••••••..••.••••••••••••••••••.••••••
alter per-proce •• reaource lillitation.. • ••••••••••
alternative ca.maadl ••••••••••••••••••••••••••••••
aDalyai. proar
ani_t. vo~ 011 a di.play tenainal. • •••••••••••••
ani .. ted raindrop' di.p18,. • ••••••••••••••••••••••
antique .edi..•.....•....•....................
a.out: a'lembler and link editor output. • •••••••••
ar: archive aDd library •• iDtainer. • ••••••••••••••
ar: arcbive (library> file format. • •••••••••••••••
Arabic ua.eral. to Zaali.h. • ••••••••••••••••••••••
arbitrary-preciaion aritluletic lallluage. • •••••••••
archive •••
arcbi ... e and libr&rJ •• iDtaiDer. • ••••••••••••••••••
archive (library) file foraat. • •••••••••••••••••••
archiver. • ••
arcu-eat lLit •••••••••••••••••••••••••••••••••••••
arguaent liet .•••..•.••.•••••••.••••••••••.••••..•
arsu-eat8. • •••••••••••••••••••••••••••••••••••..••
arsu-eatl. • •..•.•••.....•••••••.••••••.•..•.••.•••
argument •• 1 aD expre •• iOD. • ••••••••••••••••••••••
arithmetic laaauale •••••••••••••••••••••••••••••••
arithmetic OD Iball variable ••••••••••••••••••••••
arith .. tic: provide drill in nlllber fact.. • •••••••
•• aD ezpre •• iOD. • ••••••••••••••••••••••••••••••••
a.: •• ae.bler. • •••..••.•••.•.•.••.••.••.••••••..••
•• it ,row..
ASCII. cti ... localti
ASCII cbarlCter •• t. . •••••..•••.•••••••...•••....•
ASCII form.ata luitable for Motorola S-record
a.cii: .. p of ASCII cbaracter .et. • •••••••••••••••
ASCII to nuaberl. • ••••••••••••••••••••••••••••••••
a.cti_. ti .. zone: cowert date and ti. to ASCII.

chgrp(lH)
chown(lH)
idend8)
cahU)
cobal(l)
rmcobo I(1)
dilkformatCl)
Ipd(lH)
idend8)
uiceO)
egrep(l)
Ie £melll(1)
d iakt ulle(1)
e&terr(l)
abard3)
help(l)
ab. (3)
aba(3)
floor(3H}
acce8l(2)
pby.(2)
accell(2)
acct< 5)
acct(2)
accd5)
accd2)
ain(3K}
.actel)
for tuue(6}
adb(l)
phyaU)
admin(l)
adminU)
.dve ntur e(6)
buename(l}
alarm(2)
c.h(l)
clh(1)
alien.(6)
al ieaa(6)
brk(2)
malloc(3)
caMU
clh(l)
leltU)
vor .. (6)
rain(6)
bcd(6)
a.oud 5)
ar(l)
ar(S}
UUlllbe r(6)
bc(l)
tp(l)
adO
are 5)
tarO}
c.h(l}
cab< 1)
c.hU)
echoU)
ezpr(l)
bc(l)
c.hO)
arithmetic
ezprO)
aa(1)
tnO)
ctime(3)
a.cii(7)
hez(l)
a.cii(7)
atof(3}
ctillle(3)

Auguat 1982

Permuted Inc!ex

• in, Cal, tan,
help:

a. :
a.out:

letbuf:
at: execute command.

to h.ngup. (ah only). nice: run a command
ain, CO" tan, a.ln, .CO',

lin, Cal, tan, •• in, .eo., .tan,

• tof,
at of, atoi,

alien.: The alien inv.der.
w.it:

bg: pl.ce job in
w.it: wait for

badblk: progra to set or update
information.

ident - login
b.nner: print l.rge

termcap: terminal c.p.bility d.t.
ttytype: d.ta

vi: .creen oriented (vi.ual) di.pl.y editor

cb: C progra
jO, jl, jn, yO, yl, yn:

bdiff:
find the printable .tring. in an object, or other

fre.d, fwrite: buffered
Itrip: r_ove '}'1IIboh .nd reloc·.tion

• ync: upd.te the .uper
update: periodically upd.te tbe auper
b.dblk: progra to let or update b.d

• u.: .~ and count

switcb: .ulti-w.y commend
brit, .brlt,

10gin,I .b, for, Cale, if, while, :, .,

fg:

fread, fvrite:
.tdio: .tand.rd
.etbuf: .aaign

1IIIuIocl :
checklist: lilt of file IYlt •• proeelled

mk.tr: create an error .e ... ge file
ttytype: data b ... of termin.l typea

rmc:obol(l) - COBOL compiler
• w.b: .w.p

cc:
ctaga: maint.in • t.ga file for.

cb:
lint: a

xatr: extract atringl from
mkatr: create .n error .el •• ge file by ••••• ging

bypot,

de: de.1t
c.l: print

CUI

malloe, free, realloe,
intro, errno: introduction to .y.t.

termc.p: terminal
cd, ev.l, exec, exit, export, 10gin,I Ih, for,

text editor (vari.nt of tbe ex editor for new or

Augult 1982

aain, leal, atan, atan2: trigonClDetric function ••
a.k for help about sces problem... • •••••••••••••••
al lembl er. • ••••••••••.••••••••••••••••••••••••••••
a.tembler and link editor output ••••••••••••••••••
."ign buffering to • atre... • ••••.•••••••••••••••
at • later titDe. • •••••••••••••••••••••••••••••••••
at: execute command. at • later time ••••••••••••••
at low pr lority .Ip nohup - run a command imDIne
.tan, ataul: trigonCllletric functiona,
ataD2: tri&ODCIIletric functions. • ••••••••••••••••••
atof, .toi, atoll convert ASCII to nl8bers.
atoi, .tol: cODl/ert ASCII to nl8ber.. •
.tol: CODYert ASCII to ulillberi. • ••••••••••••••••••
attack the earth ••••••••••••••••••••••••••••••••••
await completion of pToce •••••••••••••••••••••••••
avk: pattern acanuing .nd proee.aiug l.nguage.
backgammon: the ,ame ••••••••••••••••••••••••••••••
background. • ••••••••••••••••••••••••••••••••••••••
background proce la.a to comple teo
bad block informatioa. • •••••••••••••••••••••••••••
badblk: ?rogr .. to .et or update bad block ••••••••
banDe r. • •••
banner on pr iD ter. •
banner: print large banner on printer. • •••••••••••
bale ••
b •• e of terminal type. by port. •
baaed aD ex. • ••• II •••••••• 0 •••••••••••••• 0 •••• 4" ••••

b •• ename: .trip filename .ffixea.
be: .rbitr.ry-precision .rithlllatic lailluage.
beel: convert to antique aedie. • •••••• 0 ••••••••••••

bdiff: big diff. • •••••••••••••••••••••••••••••••••
beautifier ••
bea.el function •••••••••••••••••••••••••••••••••••
bg: place job in background. • •••••••••••••••••••••
big diff. • ••••••••••••••••••••• 0 ••••••••••••••••••

binary file •• trings: ••••••••••••••••••••••••••••
biury input !output. • •• II o. G e" •••••••••••••••••••••
bit •••
block. • •••
block. .. ••
block information. • •••••••••••••••••••••••••••••••
bloet. ia • file ••••• 0 ••••••••••••••••••••••••••••

boot: atartup procedur... • •••••••••••••••••• 0 •••••

brmch. • ••••••••••••••••••••••• 0 ••••••••••••••••••

break: cbage core alloca tion.
br ealr. , continue, cd, eval, exec, exit, export,
break: exit while/fore.ch loop. • ••••••••••••••••••
breaklw: exit fro. Iwitcb. • •••••••••••••••••••••••
brine job iDto forl8rouDd •••••••••••••••••••••••••
brk, .brlt, bre.lt: chlll,_ core alloca tio n. • ••••••••
buffered biDary input/output. • ••••••••••••••••••••
buffered iuput/output package.
buffering to •• tr.... • •••••••••••••••••••••••••••
build lpecial file ••••••••••••••••••••••••••••••••
by f. cit. ••
by giDI C louree •••••••••••••••••••••••••••••
by port. • •••
by ly.a-M~F.rl.Dd. • •••••••••••••••••••••••••••••••
bytu. • •••
C co.piler. • ••••••••••••••••••••••••••••••••••••••
C pr og,r _. • •••••••••••••••••••••••••••••••••••••••
C progr .. be.utifier ••••••••••••••••••••••••••••••
C prolr .. verifier. • •••••••••• 00 ••••••••••••••••••

C progr_ to illPleaent .bared .tringa.
C lource. • •••••••••••••••••• 0000 ••••••••••••••••••

cab.: !uclide.o di.tance ••• ~ ••• o ••••••••••••••••••

cal: print caleadar. • •••••••••••••••••••••••••••••
calculator ••
calendar. • ••••••••••••••• 0000.00.0000 •••••••••••••

call UR1%. • •••••••••••••••••••••••••••••••••••••••
c.lloc: .. in a_ry .llocator. •
call. aad error Duaber.. • •••••••••••••••••••••••••
capability data b •••••••••••••••••••••••••••••••••
c •• e, if, while, :, ., br ealr. , continue,
c •• e: .elector in twitch. • ••••••••••••••••••••••••
celual ulera). edit: •••••••••••••••••••••••••••••

aloOM)
helpO)
aI(1)
a.oudS)
aetbuf(JS)
adt)
at(l)
niceO)
.ioOM)
uoOM)
at of (3)
atoH3)
at of{ 3)
al iena(6)
waidl)
awkO)
bac kgallUll) n(
csh(l)
cahO)
badblk(lM)
badblk(HO
ide ut(8)
bannerl6)
banner(6)
te rar.:.n (5)
ttytype(5)
vi(l)
baa e nallle (1:
be(l)
bcd(6)
bd iff 0)
cb(l)
jO(3M)
clbU)
bdiff(l)
Itringa(l)
freaH3S)
.tripO)
ayne(1 M)
upda te(lM)
b.dblk(lM)
aUla(l)
bood8)
cah(l)
brk(2)
IbU)
clhO)
clh(l)
cah(l)
brk(2)
fread(3S)
.tdioO)
letbufOSl
mIm ocH 1M)
cbeckl is t~
ustrO)
ttytype (5:
cobolO)
.wabO)
ccO)
ctag.O)
cll(1)

lind!)
xatr(l)
mkstr(l)
hypod3K)
c.10)
dc(l)
c.l(1)
cu(lC)
_llocO)
intro(2)
te I"IIICI P (!
shO)
cahU)
edit (1)

UniSoft Corporation

signal:
default:

c.t:

Ic •• e, if, wbile, " ., bre.It, continue,

fa b., fl 001' ,

fab., floor, ceil: abaolute value, floor,
brit, .brlt, bre.lt:

cbdir:
cd:

chdir:
chgrp:

p.uwd:
ch1llOd:
ch1llOd:
umallt:
cbown:
chown:

cdc:
delt.: .. lte • delta

aet:
cd:

pipe: create an interproCII"
ungetc: pUlh

ilapace, ilpunct, ilprint, ilcntrl, iaalcii:
e~nchar: .pecial
fre~: report on

getc, getchar, fgetc, getw: get
putc, putcb.r, fputc, putw: put

.Icii: .. p of ASCII
tr: trazulate

au.cir: lua and count

dcheclt: file .yats directory conailtency
icbeclt: file ayats atorage conli.tency

flck: file ayat .. conaiatency
eqn, ne~n,

iapunct, ilprint, iacntrl, iI.acii: character
def.ult: catcb.ll

clri:
clear:

feof, ferror,
clb: • ahell (command interpreter) with

cron:
clo.:

rlIIeobolU)

cOllb:
filea.

exec: o.erl.y abell with .pecified
tille: tille

.yat .. : iuue • ahell
teat: coadition

tille: ti_ a
Ummune to haugupi (ah only). nice: run.

switch: aulti-w.y
uuz: unix to unix

UniSoft Corpor.tion

Pet!IU t ed l!!!1a

cat: catenate and print. • ••••••••••••••••••••••••• cat(l)
catch or ignore signall. • •••••••••••••••••••••••••• ignal(2)
c.tchall clauae in Iwitch ••••••••••••••••••••••••• cah(l)
catenate and print •••••••••••••••••••••••••••••••• cat(l)
cb: C progr.m beautifier •••••••••••••••••••••••••• cb(l)
cc: C compiler •••••••••••••••••••••••••••••••••••• ce(l)·
cd: change directory •••••••••••••••••••••••••••••• cah(l)
cd: change vorkin, directory, ••••••••••••••••••••• cd(l)
cd, ev.l, exec, exit, ,export, login, nevgrp, rewi,l abO)
cdc: change the delta cOlll_nury of an se~ delta. cdc(l)
ceil: abaolut e value, floor, ceil ina functiona. floor(JM)
ceiling fUDction •••••••••••••••••••••••••••••••••• floor(3K)
cbmge core alloea tiOD. ••••••••••••••••••••••••••• brk(2)
change current vorlting directory •••••••••••••••••• chdir(2)
chanle directory •••••••••••••••••••••••••••••••••• clh(l)
change directory •••••••••••••••••••••••••••••••••• clh(l)
cbange group ••••••••••••••••••••••••••••••••••••• chgrp(lH)
change login pa ... ord ••••••••••••••••••••••••••••• paasvd(l)
cbange mode ••••••••••••••••••••••••••••••••••••••• chmod(l)
cbange mode of file ••••••••••••••••••••••••••••••• cbmod(2)
change or display file cr .. tion lIaak. cabO)
cbanle owner. • ••••••••••••••••••••••••••••••••••• chovo(lH)
change owner .ad group of • file. chovn(2)
change the delta co.llenury of .n SeQl delt.. - cdcO)
(cbange) to .n sees file. • •••••••••••••••••••••••• delta(l)
chmge v.lue of Ihell v.riable. 0. clb(l)
cblDge working directory •••••••••••••••••••••••••• cd(l)
CbaDDel. • •••••••••••• : •••••••••••••••••••••••••••• pipe(2)
cbar.cter b.ck into input Itreaza. • •••••••••••••••• ungetc(lS)
character cla .. ifi.cation. liadigit, iaalnlA, ctype(3)
ch.racter def iDitiona for eqn. e~ncb.r(7)
ch.racter frequenciea in a file. freq(l)
character or word fra. Itre... • ••••••••••••••••••• getc{lS)
cb.racter or word on • Itre... •••••••••••••••••••• putc(3S)
character •• t. •••••••••••••••••••••••••••••••••••• ..cii(7)
charactera. •• ••••••••••••••• •.••••••••••••••••••••• tr(l)
ch.ractera in tbe fU .. in the given directories. aumdirO)
cbdir: cbmge curret worldna directory. chdir(2)
cbdir: chama_ directory. • ••••••••••••••••••••••••• clb(l)
check. •• dcheck(lM)
check. •• icheck(lM)
checlt .nd interactiw repair. faclt(lM)
checkeq: typeaet •• thea.tica. ••••••••••••••••••••• eqn{l)
checkliat: list of file ayat ... proce .. ed by tack. checltlilt(5)
chIrp: cblDge group. • •••••••••••••••••••••••••••• chgrp(lH)
c~d: cbaage mode. ••••••••••••••••••••••••••••••• chmod(l)
chaod: cbmge mode of file. • •••••••••••••••••••••• chmod(2)
CbOVD: chaDge o~r. • •••••••••••••••••••••••••••• chovu(lM)
chown: chmge owner md aroup of a f ne. chown{ 2)
cla .. ifi.c.tion. liadiait, ia.lnua, i .. pece, ctype(3)
claule in Ivitch •••••••••••••••••••••••••••••••••• cah(l)
cle.r: clear te~inal acreen. ••••••••••••••••••••• clear{l)
clear i-node. ••••••••••••••••••••••••••••••••••••• clri(lM)
cl.ar teraiDal .creeD. •••••••••••••••••••••••••••• clear(l)
cle.rerr, fileno: atre .. It.tua inquiriea. •••••••• ferror(3S)
C-like .,ntax. • ••••••••••••••••••••••••••••••••••• cab(l)
clock d ... oo. ••••••••••••••••••••••••••••••••••••• croa(lM)
cla ... file. ••••••••••••••••••••••••••••••••••••• clole(2)
ela .. : clo ... file. • ••••••••••••••••••••••••••••• clo.e(2)
cla .. or flulb a .tr.... •••••••••••••••••••••••••• felo.e(3S)
clri: clear i-node. • •••••••••••••••••••••••••••••• clri(lK)
cmp: compare tvo fil... • •.••••••••••.••••.•••••••• cap(l)
COBOL co_piler by ly.u-McFarland. • •••••••••••••••• cobol(l)
COBOL runti .. interpreter. • ••••••••••••••••••••••• r,acobol(l)
col: filter rl'l1erae liDe feeda. col{l)
coab: co.bine sees delt... • ••••••••••••••••••••••• coab{l)
eo.biue sees delta •••••••••••••••••••••••••••••••• comb(l)
co_: &elect or reject liD .. CalKIn to tvo aorted co...{l)
co ... od. • ••• c.h(l)
comaand. •• elh(l)
coa .. od. • •• Yltea(3)
comaaod. • ••• teat(l)
coamaud. • ••• time(l)
command .t low priority .ap nohup - run • cOllmaad niceO)
com .. Dd branch •••••••••••••••••••••••••••••••••••• cah(l)
coa .. ad execution. •••••••••••••••••••••••••••••••• uux(lC)

Auguat 1982

rehalh: recolllput e
unhaah: di.card
huhstat: pr int

nohup: run
nohup: run a

run a cOlllmand at low priority •• p nohup - run a
c.b: a shell

readonly, let, shift, timel, trIp, uma.k, wait:
repeat: esecute

re:
onintr: procel' interrupt. ill

goto:
ell.: al terua tive

intro: introduction to
at: esecute

while: repeat
source: read

cdc: chenge the delta
comm: .elect or reject line.

diff: differentlal file
CIIIP:

• cc.diff:
cc: C

f77: FOKl'RAH
pc: Palcal

racobol(l) - COBOL
yacc: yet anotber

wait: wait for background proce •••• co
wait: await

bangJUll:
te.t:

endif: terminate
if:

while: repeat comllllnd.
dcheck: file .y.t .. directory

icbeck: file .y.t ... torage
£Ick: file .y.t ..

1IIIrl. :
deroff: remove uroff, troff, thl and eqn

h:liat
.b, for, ca.e, if, wbile, :, ., break,

vc: version
ioctl, .tty, gtty:
ioctl, .tty, gtty:

init: procell
terminal.:

ecvt, feve, gcvt: output
printf. fprintf, Iprintf: fOrlllatted output

.canf, flcanf, I.canf: fo~tted input
unit. :

dd:
nUlllber:

atof, atoi, atoll
ct illle , localtiae, gIIItime, a.ctiae, timezone:

bcd:
cp:

uucp, uulog, uuuame: unix to unix
dd: convert &lid

tra:
brk, Ibrk, break: cbaDse

Augu.t 1982

core: fOrlUt of
function.. .iu,

• iob.
we:: word

lum: lUll and
directoriel. luadir: lUll and

creat:
.utr:

pipe:
aain:

uma.k: cbenge or di.play file
uma.k: •• t file

commAnd haah table ••••••••••••••••••••••••••••••••
command h •• h table. •
cOllmaDd h •• hing Itatistic.. • ••••••••••••••••••••••
commaad ilZlllllDe to hl~up.. •
command immune to hangupa. • •••••••••••••••••••••••
comlll&n4 illlll3llne to haagupl (sh only). nice:
(co_nd icterpreter) ",ith C-like Iynta. • ••••••••
cOlIIlII&nd laaguege. /export. login, nevgrp, read,
command repeatedly ••••••••••••••••••••••••••••••••
cOIIIIIBnd .cript for .yats houlekeepin,. • ••••••••••
command I cr ip t I. • •••••••••••••••••••••••••••••••••

com .. nd transfer. • ••••••••••••••••••••••••••••••••
cOlllmand ••
command a. • ••
co.~nd. at a later time ••••••••••••••••••••••••••
c01lUl&Dd. c:oaditionally. • ••••••••••••••••••••••••••
eo ... nd. fraa file ••••••••••••••••••••••••••••••••
commentary of aD sees delta •••••••••••••••••••••••
common to tvo .orted file •••••••••••••••••••••••••
compa ra tor. •
compare tvo file.. • •••••••••••••••••••••••••••••••
compare tvo ver.ionl of an sees file. • ••••••••••••
compiler ••
coapiler. • •••••••••••••••••••••••••••••••••••••• ~
compiler ••
compiler by Ryan-McFarland. • ••••••••••••••••••••••
compiler-co.piler •••••••••••••••••••••••••••••••••
co.plete. • ••
coapletioD of procea.. • •••••••••••••••••••••••••••
COIIputer venicn of tbe ga_ hang1ll&n. • ••••••••••••
condition coa .. Dd. • •••••••••••••••••••••••••••••••
conditional •••••••••••••••••••••••••••••••••••••••
coDditional .tateaent. • •••••••••••••••••••••••••••
coDditiooally. • •••••••••••••••••••••••••••••••••••
cou.i.teDcy cheek •••••••••••••••••••••••••••••••••
con.i.teDc1 check. ••••••••••••••••••••••••••••••••
con.i. tenc,. cbeclt and interac.ti". repa ir. • ••••••••
COD.cruct a file 'ylt _~ ••••••••••••••••••••••••••
COD.ltNctl .. .

content. of directory. • •••••••••••••••••••••••••••
continue, cd. eval, exec. ellit, export. login./
continue: eycle in loop. • •••••••••••••••••••••••••
control •••
control device. • ••••••••••••••••••••••••••••••••••
control dev ice. • ••••••••••••••••••••••••••••••••••
control iDitial is.tioD..
cODventional namel. • ••••••••••••••••••••••••••••••
eOlNenion.
coavenion.
eo ave r.iou. • ••••••••••• ,
conver.ion progr... • ••••••••••••••••••••••••••••••
convert and copy a file. • •••••••••••••••••••••••••
convert Arabic nlllerall to !ngli.b. • ••••••••••••••
couvert ASCII to uuaberl ••••••••••••••••••••••••••
couvert date aDd ti.e to ASCII ••••••••••••••••••••
convert to antique .edi •••••••••••••••••••••••••••
copy. • ••
copy. • ••
cop, a file •••••••••••••••••••••••••••••••••••••••
copy out • file al it growl. • •••••••••••••••••••••
cor e alloca tioD. • •••••••••••••••••• oO ••••••••••••••

core: foraat of core i~e file •••••••••••••••••••
eore i file. • •••••••••••••••••••••••••••••••••
Cal. t.n. aain. aeol. atan. atan%: tri&onCJlletrie
co.b, tanh: byperbolic function •••••••••••••••••••
COUDt. • •••
count blockl iD • file. •
count ebar8Cten in tbe filea ill tbe given ••••••••
cp: copy. • ••
creat: create a De. fil.. • ••••••••••••••••••••••••
cr.ate a new file •••••••••••••••••••••••••••••• ~ ••
create an error III '. file br ,in& C lource •
create AD iuterproce •• chauDel ••••••••••••••••••••
create and adaiDiater sees filea. • ••••••••••••••••
creation .a.k.
creation DOde 1IIa11t.

clbO)
c.h(l)
c.b(l)
c.h(l)
nohup(l)
niceO)
c.h(l)
Ib(l)
c.b(1)
rc;(8)
c.b(1)
c.h(l)
c.b(l)
intro(l)
at(l)
c.b(l)
clhO)
cdc(l)
comm< 1)
diffO)
clllp(l)
.ccldiff(1)
cc(t)
f17 (l)
pc(l)
cobol(l)
yaccO)
e.hO)
waitO)
hang1ll&n(6)
tutO)
c.bO)
cabO)
clbO)
dcb ec itO M)
iebec ItOM)
fackOM)
mlr.flOM)
derof f(1)
11(1)
.bO)
cabO)
vc(l)
ioett(2)
.t ty(2)
initClM)
term(7)
ecvt(3)
pr in tf (3 S)
.caaf(3S)
unitlO)
dd(l)
nUllber(6)
at of (3)
ctime(3)
bcd(6)
cpU)
uucpOC)
dd(l)
tuO)
brlt(2)
coree S)
core(S)
lin(3M)
.inb(3K)
wcCO
IUIII(l)
• WIld i r< 1)
cpO)
creat(2)
creatCn

1IIkst rO)
pipe(2)
aciminCl)
clb(l)
ulII&.k(2)

UniSoft Corporation

more: fUe peru .. l filter for

.yntax.

convert date and time to ASCII.

job.: print
IICt: print

whoami: print effective
chdir: chlDse

motion.
cur.e.: .creen functioa. with "optimal"

coatiaue:
cron: clock

lpd - line printer
eval: re-evaluate .hell

prof: display profUe
tty.: te~iD&l initialization
te~cap: te~iaal capability

ttytype :
aull:

types: prillitive .y.ts
join: relatiollal

date: priat and .et the
time, ftime: set

localtime, gmt ime , a.ctime, timezoue: couvert
touch: update

dump,
adb:
tp:

eqnchar: lpecial charlcter
u'il:

cdc: chlllse the delta c01lllllentary of aa sces
delta: .. Ita •

cdc: chlllse the
~d.l: rsove a

comb: combine secs
me.s: pe~it or

con.truct ••
crypt, letkey, encrypt:

dup. dup2: duplicate an open file
dc:

acceal:
file:

turn on/off the esteaded error. in the .pecified
ioctl, atty, stty: control
ioctl, Itty, stty: control

Wiff: bil

diffdir:

diff:

diffdir: diff
dir: format of

m and count characterl ia the file. in the liven
cd: chlllle workinl

chdir: chlllse current workins
cd: chlllse

chdir: chlllle
1.: lilt conteatl of

IIIr.dir: .. ke a
radir: reaove .n empty

dcheck: file .Ylts
unliak: rsove

IIIr.lo.t+found: .. ke a lOlt+fouad
pvd: workil1l

Soft Corporation

Permuted l.n!lu.

croa: clock daEllon. . ••.•......•••.....•.•....•....
crt viwin,. •
crypt: eacode/decode ••••••••••••••••••••••••••••••
crypt, letkey, encrypt: DES eacryption. • ••••••••••
clh: a Ihell (comaaad interpreter) with C-likil
ctaS': .. intain • tas. file for a C progr ...
cdme, localtime, gmt illll , alctime, timezol1l:
cu: call UNIX. • •••••••••••••••••••••••••••••••••••
current job lilt. • ••••••••••••••••••••••••••••••••
current sces file editil1l activity ••••••••••••••••
current uaer ide ••••••••••••••••••••••••••••••••••
current vorkinl directory. • •••••••••••••••••••••••
cUrie.: Icreen function. with "optilNl" curlor
cur.or action. • •••••••••••••••••••••••••••••••••••
cJcte in loop. • •••••••••••••••••••••••••••••••••••
da .. on. • ••

........•.............•....................
......•........................•.............

d.ta.
data. • ••
data b....
data bale of terminal type. by port. • •••••••••••••
data link. • •••••••••••••••••••••••••••••••••••••••
data typel. • •••••••••••••••••••••••••••••••••••• .r

dat.b ••• operator. • •••••••••••••••••••••••••••••••
date. • ••
date aDd ti... • •••••••••••••••••••••••••••••••••••
date aad ti .. to ASCII. ctime. • ••••••••••••••••••
date lalt modified of a file. • ••••••••••••••••••••
date: print and .et tbe date. • ••••••••••••••••••••
dc: de.k calculator. • •••••••••••••••••••••••••••••
dcheck: fUe IYlt. directory conlhtency check..
dd: convert aDd COP,J • file. • •••••••••••••••••••••
ddate: incr .. eutal duap format. • ••••••••••••••••••
de buller. • ••
DBC/ ... tape fo~at.. • ••••••••••••••••••••••••••••
def.ult: catchall claull in switch. • ••••••••••••••
definitioD' for eqD. • •••••••••••••••••••••••••••••
deliver the lalt part of a file. • •••••••••••••••••
delta. • •••
delta (chIDse) to an sees file. • ••••••••••••••••••
delta __ ntary of an sees delta. • •••••••••••••••
delta f~a. an sees file. • •••••••••••••••••••••••••
delta: .. Ita a delta (chIDle) to .D sees file.
deIt... • ••
deDJ ",1&,...
deraff: r~ve nrof f. trof f. tbl aad eqn ••••••••••
DES eDC%1ptioa. • ••••••••••••••••••••••••••••••••••
de.criptor. • ••••••••••••••••••••••••••••••••••••••
deak calculator. • •••••••••••••••••••••••••••••••••
deteraine acee.aibility of file. • •••••••••••••••••
dete~iD. file type. • •••••••••••••••••••••••••••••
deytc.. eaterT •••••••••••••••••••••••••••••••••••
d .. ice. • ••
device. • ••
df: dilk free. • •••••••••••••••••••••••••••••••••••
diff. • ••
diff: differential file coapar.tor. • ••••••••••••••
diff directoriel. • ••••••••••••••••••••••••••••••••
diffdir: diff directariea. • •••••••••••••••••••••••
differential file coaparator. • ••••••••••••••••••••
dir: for.at of directori... • ••••••••••••••••••••••
directoriel. • •••••••••••••••••••••••••••••••••••••
directori.l. • •••••••••••••••••••••••••••••••••••••
directorial. .gadir: •••••••••••••••••••••••••••••
directoZ7. • •••••••••••••••••••••••••••••••••••••••
directoty. • •••••••••••••••••••••••••••••••••••••••
directory. • •••••••••••••••••••••••••••••••••••••••
director, •••
directory. • •••••••••••••••••••••••••••••••••••••••
directory. • •••••••••••••••••••••••••••••••••••••••
directory. • •••••••••••••••••••••••••••••••••••••••
directory cOD.i.t.Dey check. ••••••••••••••••••••••
directory eatry. • •••••••••••••••••••••••••••••••••
directory for flck. •••••••••••••••••••••••••••••••
directory aaae. • ••••••••••••••••••••••••••••••••••

croaOH)
mou(1)
crypt(l)
crypt(3)
c.hO)
ctast (l)
ctime(3)
cuOC)
clhO)
.act(l)
whoami(1)
chdir(2)
cUrlu(3)
CUrlu(J)
Clb(1)
croaOH)
lpd(lM)
clhU)
prof(l)
ttYI(5)
te 1'1IIC&p (5)
ttytype(5)
nu11(4)
type.(5)
joinO)
date(l)
time(2)
ctime(3)
touchCl)
date(l)
dc(l)
dcheck(lH)
dd(1)
dump(S)
adb(l)
tp(S)
clhO)
eqnchar(7)
tail(l)
cdcO)
deltaO)
cdc(l)
~del(l)
delt.O)
c01llb(1)
me l s(1)
deroff(l)
crypd3)
dupe 2)
dc(l)
acce .. (2)
file(O
exterr(l)
ioctH2)
ttty(2)
df(l)
bdiff(l)
diff(l)
diffdir(l)
diffdir(l)
diff(l)
dire 5)
diffdir(l)
dir(5)
.umdir(l)
cd(1)
chdir(2)
Clb(l)
clh(t)
11(1)
IIIr.dirCl)
~dir(1)
dcheck(lH)
unl iIllt(2)
1IIr.10.t+fDl!(1H)
pvd(l)

Aqult 1982

Pe!"llluted .lam

IIkn od: 1IUI ke a
popel: pop Ihell

pUlbd: pUlh ahell
unha.b:

un •• t:
di.kformat - format a

dumpdir: priDt the DaIIIe. of file. OD a dump tape or
df:

di.ktuDe tuae the floppy
du: a_riEe

pareeter ••
DIOUD t, UIIIOun t: 1I0UD t aad
IIIOUU t, WIIOun t: 1I0un t aud
raiD: animated raiDdrop'

vi: acreeD orieated (vi.ual)
uma.k: chauge or

prof:
worm.: aDimate worm. aD a

bypot, cab.: Euclideau
iota ASCII format •• uitable for Kotorola 5-record

aritbaetic: provide

dump: iDcrllllental fUe .y.t.
od: octal

dUIlP, ddate: iucrlllleDtal

dumpdir: priut the uallle. of file. on a
dilk.

dup,
dup, dup2:

alien.: The alien iavade1'l attack the
echo:
ecbo:

eDd. etest.
es.

or ca.ual u .. r.>.
aact: priDt current secs file

ed: test
ea. edit: test

.ed: .tre.
vi: Icreen orieuted (visual) display
edit: teat editor (variaDt of the es

a.out: a bler and liDk
u.er.>. edit: test

wo .. i: priDt

1'IIIdir: rllllove aD

crypt :
crypt. .e tkey.

crypt, .etkey, encrypt: DIS
.. kekey: generate

1010ut:

getgreat, letgrgid, getlra etlreat.

getpwent, getpwuid, letpvuaa, .etpvent,

number: convert Arabic nuaeral. to
Dlilt: let

getgrnam, aetgreat, endgreut: get Iroup file
Ie tpwnalll , .etpveut, endpvent: ,et paa.vord file

unlink: rllllove directory
execv, execle, execve, eaeclp, eaecvp. exec, eaec.,

August 1982

.eteDV: let variable in
eDvirou: u .. r

printenv: print out the

directory or a lpecial file. mknocJ(2)
directory .tack. • ••••••••••••••••••••••••••••••••• cab(l)
directory Itack. •• •••••••••••••••••••••••••••••••• cah(l)
diacard com1lUlnd haab table •••••••••••••••••••••••• cab(l)
di.c.rd ahell variable •••••••••••••••••••••••••••• cah(l)
disk. • •• diakformat(l)
diak •• dumpdir(lH)
di.k free. • ••••••••••••••••••••••••••••••••••••••• df(l)
diak aettl iag time par_ten. dilktuue(l)
disk u.age •• duel)
dilkformat - format a di.k. ••••••••••••••••••••••• di.kformat(l)
disktune - tune the floppy disk uttlial ti_ diaktuDe(l)
dil.aUDt file 1,ltea. • •••••••••••••••••••••••••••• mount(l)
di..oUDt file _,.tma. • •••••••••••••••••••••••••••• uaouat(l)
di.play. • ••• rain(6)
di.play editor ba.ed OD es. • •••••••••••••••••••••• vi(l)
di.play file creatioD aa.k. • •••••••••••••••••••••• c.h(l)
di.play profile data. • •••••••••••••••••••••••••••• prof(l)
diaplay terminal. • •••••••••••••••••••••••••••••••• worma(6)
dietanee. • •• hypot(3H)
dOWDloadiDg.. bex: tuualate. object file. heaU)
drill in D\Bber ract I. •••• ••••••••••••••••• ••••••• arith_tic(6)
du: lu.aati&e disk u.a.e. ••••••••••••••••••••••••• du(l)
du.p. • •• ~ dump(lH)
du.p. • •• odell
du.p, ddate: increaeutal dump format •••••••••••••• dump(S)
duap foraat. • ••••••••••••••••••••••••••••••••••••• dump(S)
dump: iucreaental file .y.t .. dUllp. • •••••••••••••• dump(lK)
duap tape or di.k. •••••••••••••••••••••••••••••••• dumpd1r(lM)
clu.pdir: priat the u ... of filea Oil a duap tape or dumpdir(l!f)
dup, dup2: duplicate an Opell file deacriptor. dup(2)
dupl: duplicate an opeu file de.cr iptor. dup(2)
duplicate aD Opell file de.cr iptor. dupe 2)
•• rtb. • ••• alienl(6)
ecbo .T~at.. ••••••••••••••••••••••••••••••••••• clh(l)
.cbo .rewaeat ••••••••••••••••••••••••••••••••••••• echo(l)
lebo: echo arsumectl. • •••••••••••••••••••••••••••• clh(l)
ecbo: echo arSU •• Dca. • •••••••••••••••••••••••••••• echo(l)
ecvt, fcvt, ,cvt: output coaver.iowa. •••••••••••••• ecvt(3)
eel: text .editor. ••• ••••••••••••••••••••••••••••••• ed(l)
edata: laat locatiou. in proar... endO)
edit: teEt editor. •••••••••••••••••••••••••••••••• exCI)
edit: tezt editor (variant of tbe ez editor for uew edit(l)
editiDI activity. ••••••••••••••••••••••••••••••••• ..ct(l)
editor. • •• adel)
editor. • •• ex(l)
editor •• led(l)
editor b •• ed OD eKe ••••••••••••••••••••••••••••••• vi(l)
editor for Dew or ca.ual u.erl). •••••••••••••••••• edit(l)
editor output ••••••••••••••••••••••••••••••••••••• a.out(S)
editor (variaut of the es editor for Dew or ca.ual editel)
effectift curreut uaer ide wo .. Hl)
elrep - .. arch a file for a pattern. •••••••••••••• elrep(l)
el •• : alteraativ. co ... adl. • •••••••••••••••••••••• clb(l)
"pt, director,. • ••••••••••••••••••••••••••••••••• r.dir(l)
eDeode/decode. •••••••••••••••••••••••••••••••••••• crypt(l)
encrypt: DIS encryption. •••••••••••••••••••••••••• crypt(3)
eDcf1PtioD. ••••••••••••••••••••••••••••••••••••••• cfypt(3)
eDcryptioD kef. • •••••••••••••••••••••••••••••••••• makekey(l)
encl, auzt, edata: la.t loeatioa. ill proar... eudO)
ead •••• iOD. • ••••••••••••••••••••••••••••••••••••• c.b(l)
aD4: te~iaat. loop. •••••••••••••••••••••••••••••• cah(l)
eDdareut: get group file entry. getgreDtO)
eDdif: ter.iaate conditional. • •••••••••••••••••••• c.h(l)
andpwent: let pa • .vord file eatry. getpweDt(J)
eDdlv: t.~iDat ••• itch. • ••••••••••••••••••••••••• clh(l)
laali.b. •• number(6)
eDtriel fro. c ... liat •••••••••••••••••••••••••••• ali.t(3)
eutry. ,etar'Dt. letargid, ••••••••••••••••••••••• getgreDt(3)
eatry. ,lItpwent, letpwuici, getpweDt(3)
aatry. • ••• ualiDk(2)
IIlviron: ell:lcute a file. ezecl, •••••••••••••••••• exec(2)
eDviroa: u .. ~ envirouaent. •••••••••••••••••••••••• eaviroo(5)
eav iro.eDt. •• •••••••••••••• ••••• ••••••••••• • ••••• c.h(1)
eD9irODDeat ••••••••••••••••••••••••••••••••••••••• eoviron(S)
eavirOQReDt ••••••••••••••••••••••••••••••••••••••• pTiDteuw(l)

UlliSoft Corporatiou

getenv: value for
unae tenv: rsove

eqncbar: special character definitiona for
deroff: rsove nroff, troff, tbl and

numberl. intra,
mkatr: create an

perror, IYI_errli It, Iyl_nerr: ay Item
intra, ermo: introduction to .y.t s call. and

.pell, Ipellin, Ipellout: find Ipelling
ext err - turn onloff the extended

end,
hypot, eabl:

lif, while, " ., break, continue, cd,

expr:
hi.tory: print history

acreen oriented (visual) diaplay editor ba.ed on

edit: text editor (variant of the
loclting: provide

exeel, execv, exeele, exeeve, exeelp, execvp,
Iwhil e, :, ., break, eo DU.nue , ed, nal,

exeel, execv, exec Ie, exeeve, exeelp, exeevp, exec,
exeee, environ: execute a file.

environ: exeeut e a file. exeel, ezecv,
file. execl, execv, execle, ezecve,

execve, eseelp, execvp. ezec, ezeee, enviroD:
repeat:

at:
uuz: uuis to uniz COWUlL&lId

acet:
deep: .uapend
deep: .uapend

lIOutor: prepare
prof il :

enviroD: e:lecute a file •. execl.
execute a file. esecl, execv. esecle,
execl, exeev, execle. execve. ezeclp.

I:, ., break, continue, cd, eval, ezec,
brealulf:

brealt:
power, .quare root.

alob: f ileneae
adventure: aD

frezp, ldezp, modf: split into manti ... and
ezp, log, 10glO, POlf, .qrt:

I., break, continue, cd, eval, ezec, ezit.

ezpr: evaluate argullentl .. an
ezterr - turn on/off the

greek: graphiea for
.pecified device.

.triual. zatr:

functioDa.
arithmetic: provide drill in nuaber

pltat: print Iyata.
true.
true.

• bort: s.nerat. a
esport, login,l .b. for, ea.e, if, while, :,

exit, ezport, lagiD,1 .h, for, c •••• if, while,

UniSoft Corporation

eevt,
fopen, freopeD,

col: filter revene !iDe
inquiriea.

feof,
he.d: give fir.t

felole,

Permuted ~

envirocmeat name. • ••••••••••••••••••••••••••••••••
envirocment variable ••••••••••••••••••••••••••••••
eq n. • •••
eqn con.tn! ct I. • ••••••••••••••••••••••••••••••••••

eqn, neqD, checlteq: typeaet mathematic.. • •••••••••
eqnchar: lpeeial character def inition. for eqn.
erma: introduction to system calli and error
error melaage file by masaaging C .ource ••••••••••
error measage ••
error nuabe r ••
error •••
error. in the Ipecified device. • ••••••••••••••••••
etest, edau: la.t location. in prosra.
Euclidem diltaace. • ••••••••••••••••••••••••••••••
eval, ezec, esit, esport, login, nevgrp, read,1
eval: re-evaluate ahell data ••••••••••••••••••••••
ev.luate argueenta a •• n espre •• ion. • •••••••••••••
eveat lilt. • ••••.•••••••••••••••••••••••••••••••••
ex. vi: ••
ex. edit: text editor. • •••••••••••••••••••••••••••
ex editor for D8W or ea.ual uler.) ••••••••••••••••
ezelu.ive file region. for reading or vritiua.
exec. eseee, en iron: ezecute a file. • ••••••••••••
ezec, exit, export, login, Delfgrp, read, readonl,l.1
ezec: o~erlay .hell with .peeified eaa .. nd.
exece. eaviroD: execute a file ••••••••••••••••••••
execl, esecv, execle. execve, execlp, esecvp, esec,
execle. ezec~e, execlp, esecvp, ezec, esece,
ezeelp, exeevp, exec, ezece, environ: ezeeute a
execute a file. ezeel, esee~. execle,
execute eoamaDd repeatedly. • ••••••••••••••••••••••
execute co __ ad. at • later ti_. • ••••••••••••••••
ezeeutioD. ••
ezecutioa accouDtiDI file •••••••••••••••••••••••••
execution for .D interwal •••••••••••••••••••••••••
execution for interval ••••••••••••••••••••••••••••
exec ut io a pr ci. ile. • •••••••••••••••••••••••••••••••
execut ioa ti. prof ila. • ••••••••••••••••••••••••••
esecv, execle, ezec~e, ezeelp. execvp, esec, exece,
ezeev., .xeclp, esecvp. exec. ezeee, .nviron:
esecvp, ezee, ezece, environ: execute a file.
ezit, ezport, login, DI!1Igrp, read. readonly, .et,1
ezit fro. .witch. • ••••••••••••••••••••••••••••••••
exit: 1e ... abell. • •••••••••••••••••••••••••••••••
exit: teraiDate procel.. • •••••••••••••••••••••••••
exit while/foreach loop. • •••••••••••••••••••••••••
ezp, loa. 10110, POlf, .qrt: ezponential, logaritha,
expand arruaent liat ••••••••••••••••••••••••••••••
exploration s....
exponent. • ••
ezp0Dential, logaritba, pover, Iquare root.
ezport. loain, Delfgrp, read, readonly, .. t, .hift,1
espr: .. eluate argument. a. an .zpre •• iou. ••••••••
esprea.ion. •••••••••••••••••••••••••••••••••••••••
extended .rrora in the .pecif ied de~ ice.
extended TTY-37 type-box ••••••••••••••••••••••••••
ezterr - tDrn on/off the est ended error. iD the
extract .tring. fraa C prosr_ to illpleeeDt .hared
f77: POIr.lAB compiler. • •••••••••••••••••••••••••••
fib., £1oCll', ceil: abaolute ~a1ue, floor, e.iling
facti. • •••
facta. • •••
falle: provide truth value ••••••••••••••••••••••••
fal •• : pro .. ide t rut b "'a1 ue I. • •••••••••••••••••••••

fault. • •••
•• break. continue, ed. eval, exec. exit. •
: ••• bl'eak. continUl. cd. eval. auc. • •••••••••••
fclole. fflu.h: clole or fluab a .tre... •
fc:vt. gevt: output coaveraion. • •••••••••••••••••••
fdopeQ: opea a .tre
feed.. • •••
feof, ferror, eleererr. fileno: .tre ... tatu.
ferror, cl.arerr, fileDo: .tre ... tatul iDquirie ••
few liD... • ••••••••••.•••••••••••••••••••••••••••••
fflu.b: ela. or flulb •• tre... • •••• ' •••••••••••••
fi: brin& job into foreground. • •••••••••••••••••••

ge tellY(3)
c.hO)
eqnchar(7)
deraf fO)
eqnO)
eqnchar(7)
iDtro(2)
mila trO)
perror())
intro(2)
.pellO)
ext err(l)
end(3)
hypot()K)
.hO)
clhO)
esprU)
c.hO)
viCl)
es(l)
edid!)
locking (2)
ezec(2)
ahO)

c.hO)
esed2)
esecO)

exed2)
ezec(2)
esed2)
cahO)
.t(l)
uux(lC)
acct(S)
lleepO)
.leep()
lIOutor()
prof il(2)
exed2)

ezed2)
ezed2)
.hO)
cah(l)
c.hO)
ezid2)
cabO)

exp(3K)
c.hO)
adve ntur e(6)
frexp(3)
espOM)
sbO)

ezpr(l)
ezprO)
ext err(l)
greek(7)
ext errO)
&atrO)

£77(1)
floor()K)
arithmetid6)
pltadlM)
faleeO)
true(l)
abortO)
.hO)
.hO)
fclo.e(3S)
ecvtC3)
£open(3S)
col< 1)
ferror(3S)
ferrorC3S)
headO)
fcloee(3S)
cahO)

Augu.t 1982

Permuted Index

getc, getchar,
geta,

acce.l: determine acce •• ibility of
acct: execution accounting

chmod: change mode of
chovn: change owner Ind group of a

elate: elate a
core: format of core image

creat: create a DeW
• ource: read commandl frca

dd: convert and copy a
delta: make a delta (change) to an sees

execlp, execvp, exec, exece, environ: execute a
freq: report on character frequencie. in a

get: get a ver.ion of an sees
group: group

link: link to a
mknod: build 'peeial

mknod: make a directory or a .pecial
pa •• vd: pallword

pr: print
pra: print an sees

read: read frca
rev: reverie linea of a

rmdel: remove I delta fro. an sees
accadiff: ccaparl two vera ion. of an sees

accafUI: format of sees
aize: lise of an object

the prineable .triaa. in an object, or other binary
• ua: ._ and count blocka in a

tail: deliver the laat pa rt of a
touch: update date laat aodified of a
unget: undo a preYioua get of aa sees

uniq: report repeated linea ia a
val: validate sees
write: write oa a

tra: copy out a
mkatr: create aa error aea .. ge

diff: differential
uaaak: change or diaplay

uaa.k: aet
dup, dup2: duplicate aa open

• act: print current sees
getgrgid, getgraam, .etgreat, endgreat: get group

getpvna., .etpvent, endpveat: glt pI.lVord
ctag.: maintain a ta"

egrep - .. arch a
fgrep: .. arch a
grep: aearch a

ar: archive (library>
tak.: take. a

ICe: .ee what a
• plit: .plit a

mkt_p: make a unique
put: puc. a

ear.:
lockiaa: provide eaclu.ive

• tat, f.tat: get
1IIr.f.: cOllatruct a

moUDt, lIIIOuat: aount aad di_ouat
moUDt. UIIOUDt: 1IIOuat or rt!llQVe a

moUDt, uaouat: aOUDt aad di_ouat
repair. tack:

dcheclt:
duep: iacr_ental

re.tor: iacremental
icheclr.:

• tab: !!oullted
filaya. flbllr.. ina: format of

checkliat: liat of
uti.: .et

file: determine
b .. eDllle: .trip

glob:

Augult 1982

fgetc,
fget. :
fgrep:
file.
file.
file.
file.
fUe.
f ne.
fil ••
file •
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
fUe.
file.

getv: get character or vord fram .trea ••
get. atriDg fraa a .tre... • •••••••••••••••
le.reb a file for a pattern ••••••••••••••••
..
..
..
.•..••......................•...•••.•..•...••
...•••..•...•••........•..•..••...•.•.....•..
.•...•...•.•....•.••.......••••........••.••.
•.•.....•..•.••.....•........•••••••.•.•.••••
execl, execv, execle, execve,
.....••...•.......••..•.......•••••..•••••...
...•....•••••......•...•....••...••••••.•••••
....................•........•.........•.....
...
...................... ,•...............
••.........•.......•.......•••••...••........
.•.•.•..•.•.••.......•......•...••..•.....•..•........•..•.•............•....•...•...
..

file. • ••
file. • ••
file ••
file. • ••
file ••
file ••
file •• tr~l: fiDd ••••••••••••••••••••••••••••••
file ••
file ••
file. • ••
file. • ••
file. • ••
file ••••••••••••••••••••••• ~ ••••••••••••••••••••••
file ••
file a. it I~OV'. • ••••••••••••••••••••••••••••••••
file b, 'ina C .ouree. • ••••••••••••••••••••••
file ca.parator. • •••••••••••••••••••••••••••••••••
file eX' .etioD ••• k. • ••••••••••••••••••••••••••••••
file creatioD .ode ••• k. • •••••••••••••••••••••••••
file d •• criptor. • •••••••••••••••••••••••••••••••••
file: deter.ine file type. • •••••••••••••••••••••••
file editina activity. • •••••••••••••••••••••••••••
file entry. ,etlreat. • •••••••••••••••••••••••••••
file entry. getpweet. getpwuid. • •••••••••••••••••
file for a C proar... • ••••••••••••••••••••••••••••
file fOT • pattera. • ••••••••••••••••••••••••••••••
file for a pattera. • ••••••••••••••••••••••••••••••
file for a pattera. • ••••••••••••••••••••••••••••••
file for.at. • •••••••••••••••••••••••••••••••••••••
fUe frca a r.ate aachine.. • •••••••••••••••••••••
file ha. in it. • •••.•••••.••••••••••••••••••••••••
file into piec... • ••••••••••••••••••••••••••••••••
file aa.e. • •••••••••••••••••••••••••••••••••••••••
file oato a rtllDte .achiDe.. • •••••••••••••••••••••
fU. peruaal filter for crt vi_iDg. • •••••••••••••
file reaioll' for raadiaa or writiaa. •
file .tatul. • •••••••••••••••••••••••••••••••••••••
file 'Yleea. • •••••••••••••••••••••••••••••••••••••
file ',It...
file -7at... • •••••••••••••••••••••••••••••••••••••
file IYlt... • •••••••••••••••••••••••••••••••••••••
file 'ylt_ coe.iltency check alld interactive
fUe .y.ta directory coaai.tellcl check. ••••••••••
file ',It .. duap. • ••••••••••••••••••••••••••••• ~ ••
file .,Ita. re.tore. • •••••••••••••••••••••••••••••
fUe ayat. ator .. e coaai.teney check. ••••••••••••
file .,.atM table e ••••••••••••••••••••••••••••••••

file .yet .. voluae. • ••••••••••••••••••••••••••••••
file .y.t_ proce.aed by flck. •••••••••••••••••••
file ti.... • ••••••••••••••••••••••••••••••••••••••
file type. • •••••••••••••••••••••••••••••••••••••••
fileaa.e affizel. • ••••••••••••••••••••••••••••••••
f ileaaae expaDel ars-.eat 1 i.a t. • •••••••••••••••••••

getcOS)
geuOS)
fgrep{l)
accellO)
.ccd 5)
chmoct(2)
ehown(2)
elose(2)
eore(5)
creat(2)
clh(l)
dd(l)
deltaO)
exec(2)
freq(I)
ge to)
group(5)
Hek(2)
mknod{U!)
mknod(2)
pa .. vd(5)
prO)
pnO)
reld(2)
rev{l)
mdel (l)
.cc.diff(1)
.c c.f ila (5)
.ize(l)
.t riDgl (1)
a_{l)
tail{ 1)
touch (1)
uDge to)
uniqO)
vatO)
wriu(2)
traCt)
.utrCl}
diff(l)
c.h{l)
umalk(2)
dupe 2)
fi leO)
.act{l)
getgreet(3)
getpwent(J)
ctag.(l)
egrep(l)
fgrep(1)
grep(l)
are 5)
take (1)
.. aU)
aplitU)
mitt 1!!IIIp(3)
put(l)
moreO)
lockiaa(2)
ltat;(2)
mkfl{lK)
mount{l)
mouDtO)
ulllountCl)
flck(lK)
dcheck(lK)
dUlllpOK)
rutor{lM)
icheck(lM)
mtabe 5)
filay.(5)
checklilt(5J
uti ... (2)
file(l)
baaenameCl)
cah(l)

DaiSoft Carper atioll

feof, ferror, clearerr,
Admin: create and adminiater sces

cmp: compare two
~: aelect or reject linel common to two lorted

find: find
intro: introduction to lpecial

my: move or rename
rm: reaove (unlink)
lort: lort or merge

verlion: reportl veri ion number of
what: identify sces

updater: update
aumdir: sum Ind count characterl in the

S-record downloading.. hex: trenllatal object
dumpdir: print tbe namel of

IIIOTe: file peru .. l
col:

find:

look:
ilatty:

ttyname, ttYllot:
apell, Ipellin, apellouc:

binary file. Itringl:
bead: give

filb: play "Go

tee: pipe
fUlYI,

functionl. fabl,
fabl, floor, ceil: ab.olute v.lue,

di.ktune - tune tbe
fclo .. , ffluah: clo .. or

Itinue, cd, ev.l, exec, exit, eJqIort, login,/ ah,

fg: bring job ,into

.r: archive (library) file
dump, ddate, increaenc.l dump

dilkformat -
core:
dir:

fillYl, f1blk, ino:
• ccafile:

tbl:
tp: DEC/mag tape

hex: tranll.tea object file. iDto ASCII
ac.uf, f.eanf, •• c.nf:

printf, fpr int!, .printf:
troff, Droff: text
troff. Droff: text

a.: _croa for
_: ucrol for

f71 :
• d.ge.

eltit, export.1 lb. for. c if. wbile. :
printf.

putc. putch.r.
puta.

df: di.t
mallac.

fopen.

freq: report on ch.r.cter
expoDllnt.

• c.nf.
checklilt: lilt of file .Yltem. proce.led by

mk10.t.found: make • loat.found directory for
repair.

loiSoft Corporation

atat.
faeet,
tiM.

Permuted .w.a
fileno:
fil .. .
fil .. .
f ilea.
filea.
fU ...
file ••
filea.

.tream .tatu. ioquirie •• ·
·
·

file ••
file ••
fila ••
file. between two .&chiDe.. • ••••••••••••••••••••••
file. io the gi"en directorie.. • ••••••••••••••••••
file. iato ASCII foraat. luit.ble for Motorola
file. 00 • duap tape or diak. • ••••••••••••••••••••
fillY'. flblk, ino: foraat of file .y.tea volu.e.
filter for ert viewing. • ••••••••••••••••••••••••••
filter re"lerle line feed I. • •••••••••••••••••••••••
f ind '1 file.. • ••••••••••••••••••••••••••••••••••••••
find: f iDd file.. • ••••••••••••••••••••••••••••••••
f iDd 1 iDe' in • lOtted 1 i. t. • •••••••••••••••••••••
f iDd uae of • terminal. • •••••••••••••••••••••••••
f iDd name of • terminal. • •••••••••••••••••••••••••
f iDd • pe 11 in, e rroE" • • ••••••••••••••••••••••••••••
find tb. printable atringa in an object, or otber
firlt few liDe.. • •••••••••••••••••••••••••••••••••
Fiab'-. • ••
filh: pla7 "Go riah" ••••••••••••••••••••••••••••
fittiul. • •••
flblk. ino: format of file .Yltm voluae.
floor. ceil: abaolute .alue. floor. ceiling
floor. ceiliDa function.. • ••••••••••••••••••••••••
floppy di.k .ettling time p.r_terl. •
flulh • Itre... • ••••••••••••••••••••••••••••••••••
fopen. freopen. fdopen: open a Itre_. •
for. ca.e, if. wbile. :, ., break, ••••••••••••••••

foreach: loop over li.t of name.. • ••••••••••••••••
foregrouud. • ••••••••••••••••••••••••••••••••••••••
fork: 'plva. new procel.. • •••••••••••••••••••••••••
format. • ••
forut.
foraat
format
format
format
forma t
format

.•.•...••.........•.••....•.•..•...
a di.k. • •••••••••••••••••••••••••••••••••••
of core i~e file. • •••••••••••••••••••••••
of directorie.. • •••••••••••••••••••••••••••
of file Iy.tea volu.e. • ••••••••••••••••••••
of sees file. • •••••••••••••••••••••••••••••
tablea for lU'af f or traf f. •

format.. • •••
for .. ta auitable for Motorola 8-record/ •••••••••••
formatted input coaveraion. • ••••••••••••••••••••••
formatted output eo_enion. ••••••••••••••••••••••
foraattiua and type •• ttiCI. • ••••••••••••••••••••••
foraattiDI and typelettina. • ••••••••••••••••••••••
fo~ttiDi •• au.cript.. • ••••••••••••••••••••••••••
formattiDI paperl •••••••••••••••••••••••••••••••••
FOIrlAH coapiler ••••••••••••••••••••••••••••••••••
fortune: print a ra~. bopefully intereltiDi •
, ., break, contiDI.e. cd, eva1, eEec ••••••••••••••
fprintf. aprintf: for_tted output cOlNeonion.
fputc. put,,: put cbaracter or word on a Itre ...
fputl: put •• triac OD •• tre... • •••••••••••••••••
fread. fwrite: buffered binary input/output.
ETee. • ••
free. real10c. calloc:: .. in .emory allocator.
freopel1, fclope1l: open a atre... • ••••••••••••••••••
freq: report on character frequenciea in a file.
frequeneie. iu • file. • •••••••••••••••••••••••••••
frexp. ldexp. modf: Iplit into m.nti ... and
flcanf ... canf: for .. ttc input cOlNenion •
flck. • ••
flek. •••
flc:k: file aylt. conailt.ncy cback .Dd interactive
faeek. ftell. re"ind: repolitiou. Itre... • •••••••
f.tat: get file It.tU.. • ••••••••••••••••••••••••••
ftell. revind: reposition a .tr.am. •
fti .. : let date aDd ti... . •.•••••••.••••.•••••••••

ferrorOS)
adminO)
Clllp(1)
COlllmC 1)
fiadO)
iatro{4)
mv(I')
ra(1)
lor to)
veraioa(l)
vbatO)
upda ter(1)
alDlldi r(l)
hu(l }
dUlllpdi rOK)
filaYI(S)
IIIOre(l)
col(1)
find(l)
£indO)
look 0)
ia. ttyO)
ttyname(J}
lpallO)
It ringl (1)
heacl(1)
£i,h(6}
fiah(6)
teeO)
fi laYI(5}
£1oorO")
£1oorO")
di.ktune(l)
fc10Ie(3S)
fopel10S}
abU)

cah(1)
cahO)
fork(2)
are 5) ,

dUlllp(S)
d ilkfo rma to)
core(S)
dir(S)
fibYI(S)
IccafiIe(S)
tblO)
tp(S)
hex(l)
ac.n£Os)
pr in tf OS)
nrof fO)
troffO)
mlO)
me(7)
f77 (1)
fortune(6)
IhO)
pr intf OS)
putc(3S}
putaOS)
fread(3S)
dfO)
.&110c(3)
fopenOS)
freq(1)
freq(l)
frexpO)
Ican£OS)
chec kUa d 5)
u10 It. fad (lK)

flck(1M)
faesOS)
Itad2)
faeelt(3S)
ti_(2)

Augu.t 1982

..
Pet"llluted .!!!!ts&

fabl. floor. ceil: ablolut e val ue. floor, cei ling
intra: introductioa to library
jO, jl, jn, yO, y1, ya: bellel

Cal, taa, Ilia, ICO., ataa, at&ll2: trigonemetric
aiah, cOlh, taab: byperbolic

cur.ea: .creen
.Ip nohup - rua a command immune to haagup.

fread,
adventure: In exploratioa

backgelllOn: tbe
trek: trelr.kie

WOt"lll: PIIY the growiag worm
bangJllla: Comput er vera ioa of the

WIIlp: the
life: p lay the

eevt, fcvt,
abort:

makekey:
acheck:

rand, .rand: r.ndom number
lea:

from Itre ••
uree. getc,

getuid. getgid, geteuid,

getuid, getgid,
identity. getuid,

get group fUe eatry.
file entry. g.tgrlDt,

get,rlDe, ,etgraid.

get pauword fUe eatry.
eatry. getpveat, ,etpvuid,

pa .. word fUe entry. ,etp~eat,

group identity.
,etc, ,etchar, f,etc,

head:
.um lad COUDt characterl ia the filel ia the

ASCII. cti .. , localti .. ,
filh: play

.etjmp, loagjap: non-local

,reelt:

uvarp: 10, in to a uv
chgrp: chea,e

,roup:
getgrgid, getgrn .. , letgramt, end,ramt: let

.etuid, .et,id: aet UHr and
,etuid, getgid, ,eteuid, ,et.,id: let UHr aad

chova: cheage owner &Ild
.. It.: maiataia prolr.

vora: Play the
tra: copy out a fUe al it

ioct 1, It ty.
ioct1, Itty.

nop:
hangJllla: Co-put er vereion of the ga ..

IIOhup: rUll co_nd i_lID. to
IIObup: rua a co ... ad immuae to

lov priority •• p nohup - fUll a coamaad ia.uae to
I.e: •• e vhat a file

reha.b: recompute cQlglnd
UDh .. h: dilcard command
ba.h.tae: priat co ... ad

help: lilt for

Augult 1982

fUDct ioal.
fUDct io a ••
functioa ••

..
function.. .in, ••••••••.••••••••••••••••••.••••••
fUDct 10D.. • •••••••••••••••••••••••••••••••••••••••
functioa. with "optimal" curlor IIIOtioa. • ••••••••••
(.b only). /run a cc:amand at low priority
fvrite: buffered binary iaput/output. • ••••••••••••
, .. e •
g_e •

...........•.....•..•..........•.•••...•..•..

........•.................•...•.•....••...•.•
I·e. ! •••••• ,_e.
a.me haaamaa. • ••••••••••••••••••••••••••••••••••••
gaDe of hunt-tbe-vuapua •••••••••••••••••••••••••••
g ... of life. • ••••••••••••••••••••••••••••••••••• ~
Icvt: output (oareraioa. • •••••••••••••••••••••••••
leDerate a fault. • ••••••••••••••••••••••••••••••••
leaerate encryption key. • •••••••••••••••••••••••••
leDerate n frQl i-numbera. • •••••••••••••••••••
geaerator. • •••••••••••••••••••••••••••••••••••••••
generator of leaica1 anal Ylia prOlr...
getc, getchar, fgetc, getv: get cbaucter or word •
,etchar, fgetc, ,.tv: get character or word frca -:.
,etelid: get uler and group identity.
,etenv: 9alue for ewirollllent Da..
,eteuid, ,etelid: get uler and aroup ideatlty.
getgid, leteuid, letegid: get uI.r and Iroup
let,rent. letlrlid, letgrn .. , letarent, eadarent:
letgrgid, ,etgra .. , letgrent, endarent: let ,roup •
letgrD .. , letlreat, endarent: get Iroup file eatry.
,etloliD: let lOKiD naae. • ••••••••••••••••••••••••
aetp ••• : read a pa • .vord. • ••••••••••••••••••••••••
getpid: let procell ideatification.
letpv: aet o.a. from uid ••••••••••••••••••••••••••
g.tpweat, ,etpvuid, ,etpvnaa, •• tpwent, endpwent:
getpvna_, .etpw.at, endpweDt: aet palnord file
getpvuid. ,etpvn", letpweat, eadpwent: aet •••••••
letl, fleta: let a .triDl f~CII a .tr
letty: I.' ter.iDal ~Ge. .0 •••••••••••••••••••••••

getuid, let,id, geteuid, aetelid: ,.t uler and
g.ty: get charKter or word frem Itre...
live firlt few liD... • •.••..•.....••••••.•.....•..
liveD directoriel. .uadi~: •••••••••••••••••••••••
glob: file_e e:&paad arglllleat lilt.
pti .. , alcti., ti.zoae: CODgert elat. aad ti_ to
~'Go Fiah" •••••••••••••••••••••••••••••••••••••••
lotO. • ••
lotO: co ... ad trao.fer. • ••••••••••••••••••••••••••
graphici for eateoded TTf-37 type-bo&. • •••••••••••
greek: Iraphica for eateoded TTf-37 type-bo&.
Irep: learch a file for a pattern.
aroup. • •••
Iroup. • •••.
Iroup file. • ••••••••••••••••••••••••••••••••••••••
Iroup f il. elltrr.. Ie tlr ellt,
Iroup: ,roup file. •
aroup lD. • ••
,roup identity. • ••••••••••••••••••••••••••••••••••
,roup of • file. • •••••••••••••••••••••••••••••••••
,roup.. • ••••.••••••••••••••••••••••••••••••••..••.
IroviDI vor. I--e. • •••••••••••••••••••••••••••••••
Irovi. • •••
Itt,! control dewice. • ••••••••••••••••••••••••••••
Itt,: control d .. ice. • ••••••••••••••••••••••••••••
halt. job or proce.l. • •••••••••••••••••••••••••••
haagmaa. • •••
haapaa: Co-put.r yenion of the aa. balli_a.
h.DluP·. • •••
baaaupa. • •••
banaupi <Ib only). nice: run a co-aaDd at ••••••••
b •• iD it. • ••.•••......•.............•..•.........
h .. h table ••
ha.b table. • ••••••••••••••••••••••••••••••.•••.•.•
h •• biDS Itatiltic.. • ••••••••••••••••••••••••••••••
halbltat: print co ... nd halhinl .tatiatica.
help about sees prObleal.. • •••••••••••••••••••••••

floor< 3M)
iDtro(3)
joe 3M)
.ia(3M)
.iah(3M)
curauO)
aiceO)
fread (3S)
adve atur e(6
backga~a(
trek(6)
vorm(6)
hi agma a(6)
VUIIIp(6)
life(6)
ecyt(3)
abort(3)
makelteye 1)
ncheck(lM)
rand(3)
lez(1)
gete(3S)
getc(3S)
getuid(2)
ge tew(3)
getuid(2)
letuid(l)
getgreat(3)
ge t lreDt(3)

getgreat(3
aetlolin(3)
getpall(3)
getpid(2)
getpw(3)
getpwent(3)
letpweatO)
getpweat(3)
let.OS)
gett,,(1")
getuid(2)
getc(3S)
head (1)
IUllldi r(l)
cah(l)

ct ime(3)
fiah(6)
letjmp(3)
clhU)
Ireek(7)
greelr.(7)
Irep(1)
aftgrp(l)
chlrp(l")
group(S)
getareat(3)
group(S)
.etuid(2)
ge tuid(2)
chovn(2)
malteO)
vorm(6)
traO)
ioctH2)
It ty(l)
clh(l)
halllmaa(6)
balllllla(6)
Clb(I)
00 hu pCl)
Dice{l)
an(l)
cahO)
c.bO)
c.hO)
c.h(l)
help(l)

UniSoft Corporation

suitable for Motorola S-record downloading ••
Wtlllp: ulM!r login

hiltor)': print

fortune: print a random,
rc: command .cript for .Yltell

vump: the game of
• inh, co.h, tanh:

letuid, letgid: aet u.er and group
whoami: print effective current u.er

• u: .ub.titute ulM!r

getpid: get procell
what:

getgid, geteuid, getegid: get u.er and group

eval, esec, esit, esport, login,/ Ib, for, cale,
lignal: catch or

core: format of core
notif),: reque.t

nobup: rua co ... ad
nohup: run a command

c01lllll8nd at low priority •• p nobup - ruD a Ca.lllllnd
s.tr: estract .tringl fra. C progr ... to

duap. ddatel
duap:

re.tor :
getnulII. tgetflag. tget.tr. tgoto. tput.: t eraiDal

pts: pemuted
Itrncat •• trc:ap, ItrnclIIP. nrcpy •• trncpy •• trlen.

lalt:
badblk.: progrllll to .et or update bad block

init: proce •• con~rol
ttYI: terminal
papen, pc 10.:
fillYI, flblk..

clri: clear
Icanf, flclnf, Ilcaaf: formatted
uagetc: puab cbaracter back into

fread, fvrite: buffered binarY
• td10: .tandard buffered

feof, ferroI', clearerI', fileao: .tream Itatu.
f.ck: file '),Item coali.teacy cbeck. and

fortuae: print a randolll, hopefully
tty: general terminal

- COBOL runtill8
c.b: a .bell (command

pipe: create an
onintr: procell

aleep: .ulpend esecut ioa for an
• leep: .Ulpend esecution for

error number ••
intra:
intra:
intra:

intro. ermo:
ncbeck: geaerate namel fral

alienI: The alien
papen, pclo.: initiate

ila.cii:/ i.alpha, i.upper. illover. ildiait.
illpace, i,pUllct. ilprint. i.cntrl, i"lcH:/
i.alnua. i •• pace. ilpUllct. ilpriat. ilcntrl.

/ildiait, ilalaua. il.pace.
ilcntrl. ilalcii:/ i.alpba.
iapriat. ilcntrl. iI.lcH:/

illower. ildiait, ilalaua.
li.upper, i.lover, ildigit,
ilalpba. i.upper, illover,

'niSoft Corporatioa

iapunct.
ilupper,
iaalpba,
i.lpace,
ilalnUli.
ildigit,

iap: iDt.
ialower.
ilupper.
iapunct,
i.lpace,
iaaln_,
1)'lteD:

Perauted .!wiD.

help: a.k. for help about sces probleml.. .. ••••••••
hes: tranalatea object file. into ASCII formatl
b i. tory. • •••
history eveDt lilt. • ••••••••••••••••••••••••••••••
history: print history event lilt.
hopefully intereltiDI. adage, •••••••••••••••••••••
hou.ekeeping. • ••••••••••••••••••••••••••••••••••••
huat-the-vumpu.. • •••••••••••••••••••••••••••••••••
hyperbolic fUDctioD.. • ••••••••••••••••••••••••••••
hypat, cabl: Euclidean diltance. • •••••••••••••••••
icbeck: file ly.teD .torage conlhuacy check.
lD. • ••
ide •••
id temporarily ••••••••••••••••••••••••••••••••••••
ideut - lo,in banDer. • •••••••••••••••••••••••••••
identifL:atioa. • ••••••••••••••••••••••••••••••••••
identify sees file.. • •••••••••••••••••••••••••••••
identity. aetuid, ••••••••••••••••••••••••••••••••
if: coaditioaal .tateaeat. • •••••••••••••••••••••••
if. wbile, : •• , break, .coDtinue, cd. • ••••••••••••
igDore .igoall ••••••••••••••••••••••••••••••••••••
imale file. ' •••••••••••••••••••••••••••••••••••••••
i ... diate aotificatioD •••••••••••••••••••••••••• ~.
i..uDe to haDlup, •••••••••••••••••••••••••••••••••
immune to haaaUp8. • •••••••••••••••••••••••••••••••
i~ae to baQlupI (.h oaly). aice: rna a •••••••••
impleDeDt Ibared ItriDal. • ••••••••••••••••••••••••
iuera-ental du.p for.at. • •••••••••••••••••••••••••
incr .. ental file 1,lt .. du.p. • ••••••••••••••••••••
iacr .. ent.l file IYlt .. re.tore. • •••••••••••••••••
independeat operatioa routinel. taetent.
iades. • •••
indes. riades: .trina operation.. .treat.
indicate lalt loginl of ulera aDd teletypel.
iDfo~tioD. • •••••••••••••••••••••••••••••••••••••
init: pl'ocell coatrol iaitilll. iz.tion.
initial i&atioD. • ••••••••••••••••••••••••••••••••••
iDitiali&atioD data. • •••••••••••••••••••••••••••••
initiate I/O to/fro. a procell. • ••••••••••••••••••
iao: foratt of file .y.t .. volUDe. • •••••••••••••••
~-'Dod..e. • ••• : •••••••••••••••••••••••••••••••••••••• ,
lDpUt couver.l0D. • ••••••••••••••••••••••••••••••••
input .tre... • ••••••••••••••••••••••••••••••••••••
input/output. • ••••••••••••••••••••••••••••••••••••
input/output packa,e. • ••••••••••••••••••••••••••••
inquirie.. • •••••••••••••••••••••••••••••••••••••••
iuter8Cti.e repair. • ••••••••••••••••••••••••••••••
intere.tiDl. adale. • ••••••••••••••••••••••••••••••
interface. • •••••••••••••••••••••••••••••••••••••••
iuterpreter. • •••••••••••••••••••••••••••••• ~ ••••••
interpreter) with C-like Iyntaz. • •••••••••••••••••
interproce •• chaunel. • ••••••••••••••••••••••••••••
iDter1:Upta ill ca .. ad .cript.. • •••••••••••••••••••
iDterval. • ••
interval. • ••
iatro. ermo: iatrocluctioll to IYlt .. calli and
introduction to caa .. Dd..
introduction to 1 ibr.rY functionl. • •••••••••••••••
introductioD to I,.cial file.. • •••••••••••••••••••
intl'oductioll to IYlt. calli and error nlabeo.
i-uu.berl. • •••••••••••••••••••••••••••••••••••••••
iavader. att.ck the .artb. • •••••••••••••••••••••••
I/O to/f~oa • proc.... • •••••••••••••••••••••••••••
ioctl. Itty. Itty: control device. • •••••••••••••••
ioct 1. Itty. Itty: contl'ol dev ice.
ilalnla, ia.pace. iapunct, iap:iDt. iacntrl.
iaalpba, iaupper. ialower. iadigit. ia.lala.
ilalcH: character c1.uificatioD. /iadilit.
i.att,: f inel u.. of • terminal. • •••••••••••••••••
iacntrl, iaalcii: character clauific.tioD.
iadilit. ia.ln_. iupace. iapuact. iaPl'iDt,
illower, i.dilit. ilalala, i •• pace, ilpuact,
iapriDt. iacatl'l. iaa.cii: cbaracter/ Ii.upper,
iapuact, iap:iat. iacntrl. iaalcii: character/
ia_pace. iapuact. iap: iDt. iacntrl, il •• ci i: /
i bell ca .. ad. • •••••••••••••••••••••••••••

bel pO)
hex(l)
Wtllp(5)
clh(l)
c.hO)
fortune(6)
rc(S)
vump(6)
liahOM)
hypot{3M)
icheckOM)
letuid(2)
whoUliO)
.u(l)
ident(S)
aetpid(2)
vbatO)
getuid(2)
clM I)
Ib(l)
.ignalC 2)
core(5)
clhU)
clb(l)
110bup(1)
niceO)
ZIt 1'0)
dUllp(S)
dUllp(lM)
rutor(lM)
terw:ap(3)
ptsO)
Itring(3)
laltO)
badblkUM)
ini t(lM)
init(lM)
ttYI(S)
popen(3S)
fHlYI(S)
clri(lM)
IcanfOS)
uagetc(3S)
fre.t(JS)
Itdio(J)
ferror(3S)
flck(lM)
fortune(6)
tty(4)
rmcobol(l)
clhU)
pipe(2)
clbO)
lleepO)
Ileep(3)
intro(2)
introO)
iatroO)
intro(4)
iatro(2)
ncheckClM)
alienl(6)
po pea(3 S)
ioctlC 2)
.tty(2)
ctype(3)
ctype(3)
ct),pe(3)
iaatty(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
ctype(J)
ctype(3)
·Yltem(J)

Aqult 1982

Pet'l!lutE:d ~

iapunct, i.print, iscntrl, is&8cii:/ isalpha,
see: see "'hat a file haa in

tra: copy out a file aa
auapend: suspend a abell, resl.llling

jO,
jO, jl,

bg: place
fg: bring

joba: print current
atop: hal t a

kill: kill

makekey: generate encryption
kill:

IIII!III,

a",lt: pattern scanning and processing
bc: arbitrary-precision arithmetic

aet, ahift, times, trap, umaak, wait: co-mand

August 1982

frezp,
ellit:

les: generator of
ar: archive

intro: introduction to
ar: archive .nd

life: pl.y tbe g .. e of

letll_ - aet u .. r II_Dry
limit: alter per-proceaa reaource

cinlillit: resove reaource
col: filter reverae

. lpcl -
Ipr:

he.d: give firat few
nua: number

co_: lelect or reject
uniq: report repe.ted

look: find
rev: rever.e

•• out: a •• eabler and

link:
In: IllAke

glob: filenalle esp.nd argument
bi.tory: print bi.tory event

job.: print current job
Ibift: IllAnipulate argument

look: find line. in •• orted
nli8t: get entriea frOll a&IIe

_: print DUle
le:

cbecklilt:
fora.cb: loop over

Id:
and time to ASCtI. etime,

"hereis:
end, etest, ed.t.: l •• t

lock:

or writing.
newgrp:

pover, aquare root. esp.
.quare root. esp, log.

esp. log. 10glO. PO". aqrt: espoaenti.l.
ident -

vtlDp: u .. r

isupper, ialower, i.digit. iaaln_. iaapace,
it. • •••.••••••.•••••••••••••••••••••••••••••••••••
it growl ••
it. superior. • ••••••••••••••••••••••••••••••••••••
jO, jl, jn. yO, yl, yn: benel functioDl. • ••••••••
jl, jn. yO, y1, yn: be.ael function •••••••••••••••
jn, yO, yl, yn: bea.el functiona. • ••••••••••••••••
job in background. • ••••• 0 •••••••••••••••••••••••••

job into foreground. • •••••••••••••••••••••••••••••
job lilt, •••
job or procel.. • ••••••••••••••••••••••••••••••••••
job. and procellel. • ••••••••••••••••••••••••••••••
job.: print current job liat ••••••••••••••••••••••
join: relational d.t.b.ae oper.tor.
key •••.••
kill job. and procel.el. • •••••••••••••••••••••••••
kill: kill job. aDd procell.l •••••••••••••••••••••
kill: .end lignal to a procell. • ••••••••••••••••••
kill: terminate. proce .. with estrse prejudice.
kml!lD: IDol in mmory. • •••••••••••••••••••••••••••••••
language. • ••
language. • ••••••••••••••••••••••••••••••••••• " ••••
l.nguage. 'esport. login, nevgrp, raad. readonly,
Id: loader. • ••••••••.•••••••••••••••••••••••• ., ••••
ldexp, modf: aplit into lIantia •• and esponent.
leae Ibell. • •••••.•••••••••••••••••••••••••••••••
les: generator of lesical anal yaia progr_.
lexical anal Ylil prosr_. "0 ••••••••••••••••••••••
(library) file fOrmAt. • •••••••••••••••••••••••••••
library functioDI. • •••••••••••••••••••••••••••••••
library •• intainer •••••••••••••••••••••••••• g •••••

life ••
life: play tbe , .. e of life. • •••••••••••••••••••••
limit: alter per-proee .. relource 1 imit.tiona.
li.it to value. • ••••••••••••••••••••••••••••••••••
li.it.tiona •••••••••••••••••••••••••••••••••••••••
liaitiationl. • ••••••••••••••••••••••••••••••••••••
liDe feed. I. • ••••••••••••••••••••••••••••••••••••••
liDe printer daa.oD. • •••••••••••••••••••••••••••••
liDe printer Ipooler. • ••••••••••••••••••••••••••••
linea. • •••
linel. • •••
linea cca8ln to two lorted file.. • ••••••••••••••••
line. in • file. • •••••••••••••••••••••••••••••••••
lin •• in • lorted lilt. • ••••••••••••••••••••••••••
line. of • file. • •••••••••••••••••••••••••••••••••
link editor output. • ••••• , ••••••••••••••••••••••••
link: link to • file •••••••••••••••••••••••• 0 •••••

link to • file ••••••••••••••••••••••••••••••••••••
link.. • ••• ., ••••• t .0 ••• II 11 ••••••••• 0 lit •••••••••••••• .,

lint: a C prolr .. verifier ••••••••••••••••••••••••
liat.
lilt.
lilt.
Uat.
Uat.
lilt ••
lilt. • ••
lilt cODtemt. of directory. • ••••••••••••••••••••••
liat of file ayat ... proce .. ed by bck. •
lilt of namel. • •••••••••••••••••••••••••••••••••••
111: .. ke 1 ink.. • ••••••••••••••••••••••.•••••••••••
loader. • ••
loc.lti gatime •• adtime. timezone: CODVert date
locate .ourcefbiaary/manual for procrma. • •••••••••
locationl in prosraao •••••••••• 11 ••• " ••••••••••••••

lock. proce aa in pI' wry lIemory. .0
lock: lock. proee .. in pI' wry _ry. •
locking: prov ide excluaive file region. for reading
101 in to • Dew Iroup •••••••••••••••••••••••••••••
log, 10,10. POW. aqrt: esponential. log.ritb..
10,10. PO". aqrt: esponential. lo,.ritb.. power,
lo,aritba. power •• quare root. • •••••••••••••••••••
IOlin banDer •••••••••••••••••••••••••••••••••••••
login hi.tory. • •••••••••••••••••••••••••••••••••••
lOBin: lOlin DeW uler. • •••••••••••••••••••••••••••

c.type (3)
.eeO)
traO)
cah(l)
jO(3M)
jO(3M)
jOtlM)
cah(l)
cahO)
cahO)
c.hO)
cahU)
cahO)
joinO)
makekeyO)
cah(1)
c.h(l)
killO)
kUIU)
mem(4)
avkO)
bc(l)
ahO)
ld(l)
fr eJ:P (3)
cahU)
Inn)
lu(l)
.r< 5)
intro())
uCl)
life(6)
life(6)
cabO)
aetmem(1)
cabO)
cab(l)
colO)
IpcHlM)
Ipd 1)
bead (l)
llUIIIO)
COlllII(1)
uniq 0)
lookO)
rev 0)
•• oudS)
lillk(2)
lini. (2)
InU)
lindl)
cahO)
cahu)
cahO)
clhO)
lockO)
nlietO)
om(1)
laO)
checkliat l

cabO)
InU)
ldU)
ctille(3)
whereitO
endO)
loei.(2)
lock(2)

locking (
nevgrp(l)
expO")
np (3M)
expOM)
ident< 8)
vtmp(5)
cahO)

UniSoft Corporation

getlogin: get
login:

/break, continue. cd, eval. exec, exit. export,
pallwd: chlDge

utmp. wtmp:

1.lt: indicate lalt

• etjmp,

break: exit while/foreach
continue: cycle in

end: terminate
foreach:

ul,o.t+found: illite a

put: p lit. a file ooto a I' 8111) te
t.ke: takea • file from. rl!llOte

updateI': upd.te file. between tvo
.li •• : .bell .. :,

me:
man:

mail: .end or receive

-,~:
mallac, free, re.lloc, c.llac:

ct.,. :
uke:

ar: arcbive and library
delta:
mkdir:
mluaocl :

IIklolt+fo1lod:
IIktap:

10;

•• p:

allacatot.

• bilt:
tp:

frexp, ldexp, _odf: .plit into
mao: print .action. of tbia

man: IIIcro. to type.et
III: macro. for foruttin,

uu.k: chlll,e 01' di.pl.y file creation
uu.k: .et f ill creation IIOde

ultr: cre.te .a error 'e file by
eqn, aeqn, cbeckeq: type.et

bcd: couvert to antique

lock: lock. procell in primary _, me.: main

malloc, free, realloc, c.llac: main
lea-em - .et u.er

• ort: lort or

.&atr: cre.te .a errol'
mel,: penit or deny

perroI', .y._errli.t, IY'_Derr: .y.ta. error

liSoft Corpor.tion

.ource.

cb.od: chaale
aetty: .et teninal

Pepputed lJ!.U!.

logiu OSIDe. • ••••••••••••••••••••••••••••••••••••••

laliD new uler. • ••••••••••••••••••••••••••••••••••
logia, nevgrp, read, readonly, .et, .bitt, ti_.,1
login p •• evord. • ••••••••••••••••••••••••••••••••••
login recorda. • •••••••••••••••••••••••••••••••••••
login: .isn 00 ••••••••••••••••••••••••••••••••••••

10g10, of ulera and teletype.. • •••••••••••••••••••
logout: eDd le'lioa, ••••••••••••••••••••••••••••••
loagjap: Doa-local goto, ••••••••••••••••••••••••••
look: find line. in •• orted li.t. • •••••••••••••••
loop ••
loop. • •••••••••••••••••• p •••••••••••••••••••••••••

loop. • ••
loop over liat of namel •••••••••••••••••••••••••••
lo.t+fouod di rect ory for f. ck. •
Ipd - liDe priDter dae.ou •••••••••••••••••••••••••
Ipr: line printer .pooler •••••••••••••••••••••••••
1.: li.t eootent. of directory ••••••••••••••••••••
l.eek, tell: IIOve re.d/write paiD tel'. • ••••••••••••
lIUIeh iD e.. • ••
mach iDe ••
mach iD •••

•.......................•........•...•...
.. era.. • ••
.. cro. for fOl'1llttial manu.er ipt.. • •••••••••••••••
.. erol for for.attiul paper.. • ••••••••••••••••••••
.. cro. to type.et aanual. • ••••••••••••••••••••••••
.. il A8DUI u •• r.. • ••••••••••••••••••••••••••••••••
mail: .endorreceivem.ilalDOQgu.er.. • ••••••••••
main ... ory •••••••••••••••••••••••••••••••••••••••
.. in .~rr alloca tor. • •••••••••••••.••••••••••••••
.. iat.in a til' file for. C prosr.. • ••••••••••••
.. iDt.in prolr .. afOUp'. • •••••••••••••••••••••••••
.. incaiDer. • ••••••••••••••••••••••••••••••••••••••
.. ke • delta (cblll,e) to .n SCaI file. •
aake a direetol7 ••••••••••••••••••••••••••••••••••
.. Ite • directory or •• pecial file. •
make. lo.t+found directory for f.ck. •••••••••••••
make. UDique file n....
make liat.. • ••••••••••••••••••••••••••••••••••••••
make: .. iDt.iu prolr .. ,roupl. • •••••••••••••••••••
aake output ainal. 'plced. • •••••••••••••••••••••••
.. kekey: leDer.te encryption key. • ••••••••••••••••
mallne, free, realloc, celloc: .. iD _.-ry ••••••••
maD: .. ero. to type.et •• nual •••••••••••••••••••••
man: priDt •• ction. of thia •• Dual. • ••••••••••••••
manipulate argument lilt. • ••••••••••••••••••••••••
maaipul.te t.pe archive. • •••••••••••••••••••••••••
maDti ... aad e~oDeDt. • •••••••••••••••••••••••••••
.. nlal.
maDual. • ••
maaulcript.. • •••••••••••••••••••••••••••••••••••••
... k. • ••
... k. • ••
...... ina C .auree. • ••••••••••••••••••••••••••••••
.. the •• tie ••
.. : .. crol for fo~.ttiDi paper.. • ••••••••••••••••
.. dia. • •••
.... t.e.: .. in aemory ••••••••••••••••••••••••••••
--'01"7. • ••
_.ory. .' ••••••• " ••••••••••••••••••••••••••••••••••
... or, allocator. • ••••••••••••••••••••••••••••••••
... ory 1 wit to va1_. • •••••••••••••••••••••••••••
.erie file.. • ••••••••••••••••••••••••••••••••••••• .1,: perait or de1lJ ,... • •••••••••••••••••••
..... 'e file by ••••• 'ina C .ouree. • ••••••••••••••
.. • .. Ie.. • ••
..... ge.. • ••
.tdir: .ate • director,. • •••••••••••••••••••••••••
lilt!.: coa.truct a file .,..t ea. • •••••••••••••••••••
aklo.t+foUDd: .. Ite • 101t+foUlld directory for fack.
8kDod: build lpicial file. • •••••••••••••••••••••••
lIkDocl: .. ke • directory or a .pedal file. •
akatr: cre.te .n error .e ... ge file by 'ina C
mkt .. p: .ate a uaique file Dame. • •••••••••••••••••
IIOde. • ••
1IOcle.

getlogin(3)
cahO)
.hO)
p ... wd(l)
utmp(5)
10ginO)
14lt(1)
cabO)
.etjmp(3)
100kO)
c.hO)
c.hO)
c.h(l)
cahO)
mit 1 0 st+fnd (1K)
Ipd(lN)
IprO)
laO)
laeek(2)
putO)
take (1)
upda terO)
c.hO)
m.O)
me(7)
man(7)
lIIiHI)
.. WI)
_m(4)
malloe(3)
ct ... O)
make 0)
.1'(1)
delt.O)
mkdir(l)
mluaocl(2)
mltlo.t+fnd (tK)
mktemp(3)
laO)
make (l)
IIp(l)
makekey(1)
ma110c(3)
1110(7)
man(1)
clh(l)
tp(l)
fr exp (3)
maaO)
manO)
m.O)
c.bO)
uu.k(2)
1IIka trO)
eqnO)
.. (7)
bcd(6)
me_(4)
10ck(2)
.._(4)
malloc(3)
.etma(l)
.ort(l)
_11(1)
akatrO)
.. lg(1)
perror(3)
mkdir(l)
mkhON)

mk10.t+fod(tM)
mIua ocl (1 N)
111m oel(2)
mkatr{l)
mktemp(3)
cblllOd (1)
gettyON)

Aqu.t 1982

Permuted Iodex

wuak: set file creatioo
chmod: chaoge

t.et: aet terminal
frexp, Idexp,

touch: update date laat

cursea: acreen functiona with "optimal" cur1lor
object file. iota ASCII format. IUltsble for

IDOUDt, umount:
lDOunt, umount:
IDOUDt, l.IIIIOUDt:

mtab:
lIN :

heek, tell:

• witch:

getenv: value for enviroaaent
getlogin: get login

mlttl!lllP: lIIalte a unique file
pwd: vorking directory

tty: get tElt.inal
getpw: get

oli.t: get entriel from
ma: print

i.&1:ty: find
ttyaaae, ttYllot: find

foreach: loop over lilt of
termwla: conventional

ncheclt: generate
dumpdir: print the

-eqn,
creat: create a

newgrp: log in to a
edit: text editor (variant of the ex editor for

fork: apawn
login: login

Icootlnue, cd, eval, exec, exit, export, login,
ruo a commaod immune to haogupi (Ih ooly).

ooly). oice: run a c_od at low priority •• p

letjmp, longjmp:
notify: requeat i_diate

tbl: format tablel for
troff,
troff,

deroff: r_ove

arithmetic: provide drill in
rand, .r8lld: r8lldOlll

nua:
verlioo: report •• erlion

atof. atoi, atol: convert ASCII to
ermo: introduction to IYlt .. calli and error

number: coavert Arabic
• be: .ize of U

Kotorola S-record downloading.. hex: trullate.
Itringl: find the printabla Itringl in an

od:

acct: turn accounting on or

Augu8t 1982

mode ma.k.
mode of file ••••••••••••••••••••••••••••••••••••••
lDOde 8.. It

modf: 8plit ioto m"ntie la and expooent. • ••••••••••
modified of a file. • ••••••••••••••••••••••••••••••
monitor: prepare execution prof ile. 'I ••••••• 'I ••••••

more: file peru .. l filter for crt vi_iDg. • •••••••
motion.
Kotorola S-record downloadiog.. bex: trandatea
mount and dismount file lYle... • ••••••••••••••••••
mount aad dllmount file .Ylt..
m.ount or remove a f ile 'Ylt _.
mount, UIIIOunt: mount aDd di_ount file aYltem.
mount, l.IIIIOUDt: mouot and di_ount file Iyatem.
mount, l.IIIIount: mount or r_e a file .y.tem.
mounted file .y.e .. table. • •••••••••••••••••••••••
Dove or rename file.. • ••••••••••••••••••••••••••••
move read/write pointer. • •••••••••••••••••••••••••
ma: _crol for fomatting manuacriptl. • •••••••••••
mtab: 1II0unted file 'Yltem table. • •••••••••••••••••
mUlti-way com .. nd brlnch ••••••••••••••••••••••••••
1IV: move or rea.a:ae file.. •
name. • ••
naae ••
name ••
name..
name. • ••
name fraa uid. • ••••••• 0 •••••••••••••••••••••••••••

Daile lilt. • •••••••••••••••••••••••••••••••••••••••
DalIe 1 i. t. • ••••••••••••••••••••.••••••••••••.•••••
name of • teraiDal. • ••••••••••••••••••••••••••••••
name of • terainal. • ••••••••••••••••••••••••••••••

name. fra. i-uuaber.. • ••••••••••••••••••••••••••••
name. of filel OD a dlap tape or di.a. • •••••••••••
ncheck: generate Damea frca i-nUlllbera. • •••••••••••
oeqn, checkeq: typelet .ath .. atic.. • ••••••••••••••
new file. • ••
Dew group. • •••••••••••••••••••••••••••••••••••••••
new or caaual uler.). • ••••••••••••••••••••••••••••
Dew procell. • •••••••••••••••••••••••••••••••••••••
Dev utero •••
nevgrp: log in to a new ,roup. • •••••••••••••••••••
newgrp, read, readonly, .et, ehitt, ti.I, trap,l
nice: run a cea_nd a t low pr iority .Ip oohup -
nice: run low priority procel.. • ••••••••••••••••••
nice: let pro&r .. priority. • ••••••••• 0 ••••••••••••

nlilt: let eDtriel frca D_ lilt. • •••••••••••••••
am: priut DaBe li.t •••••••••••••••••.•••••••••••••
nobup - run a ceaund i.alne to baagup. (.h
uobup: run a coa.and i-.uDe to baDlupe ••••••••••••
nobup: run cO_Dd i_ne to baogupa. • ••••••••••••
Doa-local KotO. • ••••••••••••••••••••••••••••••••••
Dotificatiom. •••••••••••••••••••••••••••••••••••••
notify: reque.t ~cliate Dotifi.ca tioll. • ••••••••••
Droff or trail. • ••••••••••••••••••••••••••••••••••
uroff: tut formattinl and, type.etting. • ••••••••••
nroff: text formattiq and type letting. • ••••••••••
urof f, trat f, tbl aDd eqn con.truct I. • ••••••••••••
null: data linK •••••••••••••••••••••••••••••••••••
uu.: nuaber liDe'~ ••••••••••••••••••••••••••••••••
number: coavert Arabic Dumerall to !ugli.h.
nuaber fact.. • •••••••••• ooe •••••••••••••••••••••••

number lenerator. • ••••••••••••••••••••••••••••••••
Duaber liDe.. • ••••••••••••••••••••••••••••••••••••
nuaber of file ••••••••••••••••••••••••••••••••••••
nUllbere •
nu.ber8. iDtro, ••••••••••••••••••••••••••••••••••
Du.erall to laali.b. • •••••••••••••••••••••••••••••
object file. • •••••••••••••••••••••••••••••••••••••
object filea into ASCII foraat •• uitable for
object, or other biuary file. • ••••••••••••••••••••
octal d\lap. • ••••••••••••••••••••••••••••••••••••••
od: octal dlap. • ••••••••••••••••••••••••••••••••••
off •••

u_.k(2)
chlllDd (2)
tut(1)
frexp(3)
touch(1)
moni tor< 3)
IIOre(1)
cunelO)
bu(I)
mound 1)
umouot(l)
mount(2)
mound!)
umount(1)
lDOuDtC 2)
IIItab(5)
lIN (l)
lIeek(2)
mlO)
mtab(5)
cshO)
_(0
geteIN(3)
ge tlogin 0)
mitt empO)
pvd(l)
ttyCl)
ge tpv(3)
olilt(J)
1lIIIe I)
ila tty(3)
ttynameO)
cabO)
term(n
ncbeek(lK)
dumpdirOK)
ncbeelt(lK)
eqo(l)
creat(2)
nevgrp(l)
edit Cl)
forlt(2)
clhO)
oevgrp(l)
.h(1)
oice (1)
clhO)
nice(2)
n1ist(3)
II1II(1)
nieeO)
oobupO)
cah(l)
letjmpO)
clbO)
clbU)
tblCl)
nrof f(1)
troff(l)
derof f(1)
null(4)
nUIII(I)
numbe r(6)
ar ithJDetie(1
raDd(3)
nUII(1)
veraion(l)
atof(3)
intro(2)
oumbe rC 6)
lue(1)
hexO)
It ringl 0)
odO)
ode 1)
acct(2)

VniSoft Corporltion

login: I ign

nohup - run a command immune to hangupa (ah
ext err - turn

put: puta a file
fopen, freopen, fdopen:
dup, dup2: duplicate an

open:

tgetatr, tgoto, tput.: terminal indepeodent
Itrcpy, Itrncpy, atrlen, index, rindex: atring

join: relational databale
curIel: .creen functiona with

Itty: let terminal
vi: Icreen

a.out: aaaembler and link editar
ecvt, fcvt, gcvt:

printf, fprintf, Iprintf: formatted
.. p: make

foreach: loop
exec:

chown: chllDge
chown: chllDge

etdio: standard buffered input/output
me: macrol for formatting

disktune - tune tbe floppy dilk settling'time
pc:

getpa .. : read a
paasvd: chllDse login

pa .. vd:
getpvuid, getpwnam, I.tpwent, endpwent: get

egrep - aearcb a file for a
fgrep: learcb a file for a
8rep: Ie arch a file for a

awk:

popen,
melS:

ptx:
limit: al ter

meelagel.
lDOre: file

phYI: allow a procell to aceela
Iplit: Iplit a file into

tee:
bl:

fiah:
life:
WOJ:1a:

lleek. tell: move read/write
popel:

ttytype: data baae of terainal typel by
root. expo 108. 10810,

!XP, log, 10g10. pow, Iqrt: exponential, logarith_,

kill: terminate a procell with extreae
_nitor :

unget: undo a
lock: lock a procell in

typel:
cat: catenate Ind

fortune:
prl:

date:
cal:

haahltat:
jobl:
lact:

whoai:

JniSoft Corporation

Permuted .!asI.u

00. • ••

onintr: pr.:lcesa interruptI in command Icr iptl.
only). nice: run a command at low pr writy .Ip
on/off the extended errors in tbe lpecified dev i.ee.
onto. rl!!!lDOte machine.. a ••••••••••••••••••••••••••

open a .treall. • •••••••••••••••••••••••••••••••••••
ope D file de I cr ip t or • • ••••••••••••••••••••••••••••
OpeD for reading or writing. II, ••••••••••••••••••••

open: open for reading or writing. • •••••••••••••••
operation routinea. tgetent. tgetnlS, tgetflaa,
ope rltio nl. It rca t. It mea t, It rcmp, .t rnaap,
operator ••
"opti~" curlor motioo. • •••••••••••••••••••••••••
optioal •••
oriented (~ilual) dilplay editor baled on ex.
output. • ••
output coaver.ion •••••••••••••••••••••••••••••••••
output coaverlion •••••••••••••••••••••••••••••••••
output aingle lpaced. • ••••••••••••••••••••••••••••
over 118 t of DalleS. • ••••••••••••••••••••••••••••••
overlay Ihell with lpecified command ••••••••••••••
owner. • ••
owner and group of • file. • •••••••••••••••••••••••
pac kage. • •••
papen. • ••
parllDl!ten. • ••••••••••••••••••••••••••••••••••••••
Paleal compiler •••••••••••••••••••••••••••••••••••
pa •• vd: cbsaae IOlin pa • .vord. • •••••••••••••••••••
pal.vd: pallword file. • •••••••••••••••••••••••••••
pal.orel. • •• : •••••••••••••••••••••••••••••••••••••
p.ISVOrd. • ••
pal.word file. • •••••••••••••••••••••••••••••••••••
pa • .,ord file eDtry. getpwent. • ••••••••••••••••••
pa t terD. • •••
pattern. • •••
pattern •••
pattern Icanning and procelling laQguase. • ••••••••
paale: Itop until lienal. • ••••••••••••••••••••••••
pc: Pa.eal eompiler. • •••••••••••••••••••••••••••••
pelo .. : initiate I/O to/frow. a proceal.
pe X'1D it or de r:tJ lie ... ge I. • •••••••••••••••••••••••••

per.uted indez ••••••••••••••••••••••••••••••••••••
per-procel. re.ource 1 imitatioDs. • ••••••••••••••••
perror, Iyl_errlilt. Iyl_nerr: ayltem error
perusal filter for crt viewing.
pbYI: allow a proce .. to acee .. pbylic:al adc!re .. ea.
pbYlieal addr •••• I. • ••••••••••••••••••••••••••••••

piece.. • ••
pipe: create aD iDterprocel1 channel.
pipe fittina_ •••••••••••••••••••••••••••••••••••••
place job in backrrouDd. • •••••••••••••••••••••••••
play "Go ,i.b" ••••••••••••••••••••••••••••••••••
pl., tbe I .. e of life. • •••••••••••••••••••••••••••
Play the graving vor. , .. e. • ••••••••••••••••••••••
pointer. • •••
pop ahell directory .tack. ••••••••••••••••••••••••
popd: pop Ihell directory Itack. • •••••••••••••••••
popeD. pelo .. : initiate I/O to/fraa a procell.
port. • ••
pow. Iqrt: exponential, logaritha, power, Iquare
power, .quare root. • ••••••••••••••••••••••••••••••
pr: print file. • ••••••••••••••••••••••••••••••••••
prejudice. • •••••••••••••••••••••••••••••••••••••••
prepare executioll prof ile. • •••••••••••••••••••••••
prft i.o u. Ie t of aD sees f il.. • •.••••••••••••••.••.
priuTY 1aeIDOr"J. • ••••••••••••••••••••••••••••••••••
pr imit ive Iy.t _ d. ta type a. • •••••••••••••••••••••
pr in t. • •••
print a random, hopefully intereltina. adage.
print aD sees file. • ••••••••••••••••••••••••••••••
priDt aDd I.t the data. • ••••••••••••••••••••••••••
priDt calendar. • ••••••••••••••••••••••••••••••••••
print coau.nd ba.bing .tatiitici. • ••••••••••••••••
print current job lilt. • ••••••••••••••••••••••••••
print current sees file editing activity.
print effective current uler ide ••••••••••••••••••

10giD(1)
clhU)
niceU)
exterrO)

put(l)
fopen(JS)
dupe 2)
open(2)
open(2)
te 1"1IICa p (J)
Itring(3)
joinO)
curselO)
It ty(l)
viCl)
a.out< 5)
ecvt<3)
pr inti OS)
.. p(l)
clhO)
cahO)
chownOK)
chown(2}
Itdio(3)
_0)
diaktune(l)
pc(l)
pa .. wd(l)
pauwd(S)
getpa .. (3)
pa .. wd(l)
pa .. wd(5)
&etpvent(3)
egrepO)
fgrepO)
&repO)
awkO)
paule(2)
pc(l)
popenOS)
_lgO)
ptx(l)
clhO)
perrorO)
IIIOreO)

phYI(2)
pbya(2)
Iplit(l)
pipe(2)
teeO)
clh(l)
filb(6)
life(6)
worm(6)
lIeek(2)
clh(ll
clhO)
popen(3S)
ttytype(5)
exp(3K)
exp(3M)
prO)
ki11(1)
IIIOni t or(3)
unget(1)
lock(2)
typel(5)
cat{l)
fortune(6)
pra(1)
date(l)
cal(1)
clh(1)
cahO)
lact (1)
who_iCI)

Auguat'1982

Pennuted Index

pr:
history:
banner:

II1II:
printenv:

man:
pltl t:

dUlllpdir:
file. stringl: find the

blnner: print large blnaer on
lpd - line
Ipr: line

coover.ion.
nice: let progr ..

nice: rUll low
bangup. (Ihl nice: run I co_nd I t low

help: I.k for help about sees
boot: startup

nice: run low priority
.top: halt I job or

exit: tel'1llilllte
fork: .pavn DeW

kill: .end lignal to a
popen, peloee: initilte 1/0 to/frCfa a

vait: Ivait coapletion of
init:

getpid: let
lock: lock a

onintr:
p. :

ti.l: get
phYI: allow a

vait: vait for
ptrace:

kill: teminate a
checklilt: li.t of file IYlt_

kill: kill jobl and
vait: vait for background
awk: pattern .canning and

Augult 1982

monitor: prepare execution
prof il: execut ion tiM

prof: diaplay
cta,l: lII.intain a tagl file for a e

end, etext, edata: la.t location. in
unitl: converlion

vhereil: locate 80urcefbilllry/manual for
cb: e

make: maintain
nice: let

badblk:
lint: a C

lex: generator of lexical analYlil
xltr: extract Itringl frCfa e

arith.tic:
writing. locking:

true, falee:
true, fala.,

ungetc:
pushd,:

putl, fputa:
putc, putchar, fputc, putw:

on a Itr •••
Itr... putc,

put:

putc, putchar, fputc,

print
prlnt
print
print
pI.' int
print

file. • ... II

hlltory event lilt. • ••••••••••••••••••••••••
1 a rge ba nner on pI.' in tel.'. • •••••••••••••••••••
tlaJDe 1 i. t.. •
out the eDY irotIDent.
lection. of thi. IIIlnual.

priDt Iy.tea fact •••••••••••••••••••••••••••••••••
print the names of file. on I d\Dp tap. or dilk.
printable .tringl in an object, or other binary
priDtenv: print out the eav iroaaent. •
printer •••
printer daemon. • ••••••••••••••••••••••••••••••••••
printer spooler. • •••••••••••••••••••••••••••••••••
printf, fpr intf , .printf: formatted output ••••••••
priority ••
priority procell ••••••••••••••••••••••••••••••••••
priority .Ip nobup - run a coamand i..une to
prob lema. • • •••••••••••••••••••••••••••••••••••••••
proeed ur el. • ••••••••••••••••••••••••••••••••••••••
pro ce. I. •

prOc.el,. • •••
procel ••
pro ce I..
proce... • •••
proc:e I I. • •••

prace ••• • .. .
proce •• control initial ization. • ••••••••••••••••••
procell identification. • ••••••••••••••••••••••••••
procell in primary me.or, •••••••••••••••••••••••••
proce •• interrupt. in cea_ad acr ipt.. • •••••••••••
pracel. It.tU •••••••••••••••••••••••••••••••••••••
proce •• ti.... • •••.••••..••• 0 •••••••••••••••••••••

proceal to acee •• phy.ical .dtk...... • ••••••••••••
procel' to te~iDate. • ••••••••••••••••••••••••••••
proce •• trICe •••••••••••••••••••••••••••••••••••••
procell with eztr •• prejuclice. • ••••••••••••••••••
procel.ed by flck. •••••••• ~ •••••••••••••••••••••••
procel,... • •••••••••••••••••••••••••••••••••••••••
proce •• ea to co.plete •••••••••••••••••••••••••••••
procel.ing laaauale •••••••••••••••••••••••••••••••
prof: di'pla, profile d.ata. • ••••••••••••••••••••••
prof il: execut 100 ti .. prof il.. • ••••.••••.••••••.•
prof ile. • •••
prof ile. • •••
prof U e c1a ta. • ••••••••••••••••••••••••••••••••••••
progr _. • •••
progr _. • •••
progr D. • III

progr _. •
progr .. beautifier. • ••••••••••••••••••••••••••••••
pro&r .. aroup.. • ••••••••••••••••••••••••••••••••••
progr .. priority. • ••••••••••••••••••••••••••••••••
progra to aet or update bad block in.fol"lll8tion.
proar .. verifier. • ••••••••••••••••••••••••••••••••
pro&r _. • .. .
progr_ to illpleaent .hared .tringl. • ••••••••••••
provide drill in luaber facti. • •••••••••••••••••••
prov ide exclulive file region. for reedina or
provide truth •• 1uel. • ••••••••••••••••••••••••••••
provide truth 9alu... • ••••••••••••••••••••••••••••
pr.: print aD sces file. • •••••••••••••••••••••••••
Pi: procel' .tatu.. • •.•••••••••••••••••••••••••••.
pltat: priDt IJlt .. facel. • •••••••••••••••••••••••
ptr.c.: proc ••• trace. • ••••• , •••••••••••••••••••••
ptz: perauted iDdez •••••••••••••••••••••••••••••••
pu.h charect.r b.ck into input atTe
pUlh .h.ll direct ory Itac k.. •••••••••••••••••••••••
pu.hd: puh Ihell diTectOry .tack. • •••••••••••••••
put •• trina OD • Itre... • ••••••••••••••••••••••••
put cbara:t eT or word OD •• tre_. • •••••••••••••••
put: puta a file onto a r~te .&Chin... • •••••••••
pate. putchar, fputc, putv: put char&cter or vord
putchaT, fputc, pur:w: put character or word on a
put. a file onto .. re.lte lIIachine.. • ••••••••••••••
put., fput.: put ... trina on a .trem. • •••••••••••
putv: put charecter or vord on a .tr.... • •••••••••

pr(l)
cabO)
banner(6)
nm(I)
printellY(l)
map-O)
p.tatOM)
dump di rO M)
It l' ingl (1)
printellYO)
banner(6)
IpdOM)
Ipr(l)
pI.' in tf (35)
nice (2)
c.hO)
nice 0)
hel pO)
boot(8)
c.hO)
c.hO)
exie(2)
forkO)
kil H 2)
popenOS)
vaitO)
init(lM)
getpid(2)
laclt(2)
c.hO)
p.(l)
timel(2)
pbys(2)
vaid2)
ptrace(2)
kill(l)
checltlbt(!
c.hU)
c.hO)
avltO)
prof 0)
prof il(2)
moDi t 01'(3)
pTof il(2)
prof 0)
ctq_O)
end(3)
unit.O)
vhereil 0)
eb(l)
make (l)
niee(2)
badbllt(1M)
lind 0

, lexO)
ntrO)
ar ithmetic
lac king (2)
falle(l)
true 0)
PrlO)
pIU)
pltatOM)
ptrKe(2)
ptxO)
unge tc(3S)
eahO)
cahO)
put .(35)
putd3S)
putO)
putc(3S)
putd3S)
put 0)
put.OS)
pute(3S)

UniSoft Corpor.tion

q.ort:

rain: animated

fortune: print a
rand, nand:

getpa .. :
aource:

read:

'ait:/ lcd, eval, exec, exit. e%port, login, nevgrp.
locking: provide exclu.ive file region. for

open: open for
'cd, eval, exec, exit, export, login, oevgrp, read,

l.eek, tell: move
malloc. free,
mail: lend or

rehllh:
utmp, vcap: login

eval:
locking: provide exclu.ive fUe

co_: .elect or
join:

• trip: reBove .yaOol. and
put: put. a file onto a

take: take. a file fro. a
nadal:

lIIOunt, uaOUllt: mount or
unali .. :

nadir:
unlink:

unMten .. :
deroff:

Ulllilllit:
• trip:

rm:
1119: move or

flck: file a,steB con.ilteney check and interactive
while:

uniq: report
repeat: execut e co_nd

freq:
uniq:

venion:
f.eek, ftell, revind:

no tify:

re.et:
limit: alter per-proce ••

unlilllit: reBove

re.tor: incrsaental file .y.tea
,u'peDd: .upend a .hell,

col: fil ter
rev:

fleek, ftell,
atrclllp, .trnclllp, .trcpy •• trncpy •• trlen, index,

pow, Iqrt: expoDential, logarithlll, pover, Iquare
tgoto, tput.: terminal independent operation
ca..and i .. une to hangup. (.b only). nice:

oohup:
nice: run a co_nd at low pr iority •• p nohup -

nohup:
nice:

- COB<1
rIIIcobol(l) - COBOL compiler by

UniSoft Corporation

Penputed .lw!a

pvd: vorking directory name. •
qlort: quic.ker Bort. •
quicker lor t. •
rain: In i .. ted raindrop. dia play. • ••••••••••••••••
raindrop. di.play •••••••••••••••••••••••••••••••••
rand, srand: randolll number generator. • ••••••••••••
random, hopefully interesting, adage ••••••••••••••
rcadoa Dumber generator. • •••••••••••••••••••••••••
rc: command Icript for ',Item hou.ekeeping.
read a p •• lWord •••••••••••••••••••••••••••••••••••
read command, fraa file •••••••••••••••••••••••••••
read fro. file.•.........•.......
read: read from file ••••••••••••••••••••••••••••••

read, reidonly, .et, Ihift, ti •• , trap, Ulll&lk,
readinl or writing. • •••••.••••••••••••••••••••••••
reading or ¥Titing ••••••••••••••••••••••••••••••••
readonly, .et, Ihift, timel, trap, UIII&.k, wait: I
read/VTite pointer •••••••.••••••••••••••••••••••••
realloe, calloc: lIIIin lIlelllDty allocator ••••••••••••
receive •• i1 among Ulerl ••••••••••••••••••••••••••
recompute command b •• h table ••••••••••••••••••••••
reeor d..
re-evaluate .bell data ••••••••••••••••••••••••••••
region. for reeding or VTiting. • ••••••••••••••••••
reha.h: reeo.pute co_nd halh table. • ••••••••••••
reject 1 inel COIIlIIDn to tva sorted f He.. • •••••••••
relatioaal daeaba.e operator ••••••••••••••••••••••
relocation bit.. . •..........•......•.••........•..
remote •• chiDe.. • •••••••••••••••••••••••••••••••••
reacte machine.. • •••••••••••••••••••••••••••••••••
raaove a delta frat an sees file. • ••••••••••••••••
reaove a file IJ.tea. • ••.••.••••••••••.••••••••.••
reaove .li&le •••......•..•••••.•..•••.••.•.•.•••..
raaove an empty directory. • •••••••••••••••••••••••
reaoye directory entry. • ••••••••••••••••••••••••••
reaov. euviroaaeat variable.. • •••••.••••••••••••••
raaove or of f. trof f. tbl and eqn con.truet I.
remove re.ouree li.itiatioD'. • ••••••••••••••••••••
reaove 'YlllOoll and relocation bit.. • ••••••••••••••
reaove (unlink) file.. • •••••••••••••••••••••••••••
reo.a.ae file.. • ••••••••••••••••••••••••••••••••••••
repair. • ••
repeat OOBaand. conditionally. • •••••••••••••••••••
repeat: execute co_nd repeatedly. • ••••••••••••••
repeated liDe. ia • file. • ••••••••••••••••••••••••
repeatedly. • ••••••••••••••••••••••••••••••••••••••
report on character frequenc:iet in a file. • •••••••
report repeated liDe. in • file. • •••••••••••••••••
report. verlioD alaber of filel. • •••••••••••••••••
repoaitioQ a .tre
requelt illlllediate notification. • ••••••••••••••••••
re.et: relet the teletype bit. to a len.ible Itate.
retet the teletype bit. to a .en.ible .tate.
relouree limitationa. • ••••••••••••••••••••••••••••
re.OUl'ce 1 imitiatio1ll. • ..•••.•.•.•.•.•••..•.•.••••
r.ltor: incraaental file .y.t_ rei tore. • •••••••••
re.tore. • •••
rel"'ma it. luperiDr. • •••••••••••••••••••••.•••••
rev: rever •• line. of • file. . •..••..•..........•.
reverie line feed.. • ••••••••••••••••••••••••••••••
revet •• line. of • file. . •....•...................
rewind: repolition •• tre
rindelt: .tring operationl. Itrea t, Itrna t,
ra: r .. ove (unlink) fil... • •••••••••••••••••••••••
tlllcobol(l) - COBOL co.piler by Iyan-Kefarland.
rIIIdel: reaov. a delta fraa an sees file •••••••••••
radir: remove an eapty directory. • ••••••••••••••••
root. eap. loa. 10110, ••.•••••.••.•••••••••••••••
routinet. tgeunt, tgetnlll, tgedIag, tgetltr,
rUli a caaund at 1O'W pr iority •• p nobup - run a
run a coa .. Dd i.-uDe to blQgUpl. • •••••••••••••••••
run a comund imaune to bangup. (.h only) •••••••••
run eo..-Dd im.uae to haagup ••••••••••••••••••••••
rUD low priority procell. • ••••••••••••••••••••••••
runtime interpreter •••••••••••••••••••••••••••••••
lyan-McFarland. • ••••••••••••••••••••••••••••••••••

pwdO)
qlort(3)
qlort(3)
rain(6)
rain(6)
rand(3)
fortune(6)
rand(3)
rc(S)
getpallO)
clhO)
read(2)
read (2)

IhO)
lac king (2)
opell(2)
IhO)
laeeld2)
_lloc(3)
mail< 1)
c.hU)
utmp(S)
e.b(l)
10cking(2)
clhO)
cOlllm(l)
joinO)
.trip(l)
putO)
ukeU)
rIIIdel(1)
Il1O Ullt{ 2)
e.b(l)
rIIIdi rO)
unlink(2)
clbU)
deroff(1)
cabO)
Itrip(l)
ra(1)
1119 (1)
hckOK)
clbO)
cabO}
uniqO)
clb(1)
freqO)
uniq (1)
veniollU)
faeekOS)
c.b(l)
rued!)

reaedO
c.h(l)
csbO)
reator(lK)
restod 1K)
e.h(l)
rev (1)
col(1)
rev(l)
fleelt(3S)
.tring(3)
rIII(I)
eoOolO)
rmdel (l)
rIIIdi rO)
e&p(3K)
termcap(J)
niceU)
nobup(l)
niceU)
clbO)
c.h(l)
rIIIcobo 1 (1)
coOol(l)

Augu.t 1982

Permuted Index

brit,

avlt: pattern
cdc: change the delta commentary of an

comb: combine
delta: make a delta (change) to an

get: get a veri ion of an
prl: pr int an

rmdel: reaove a delta froID an
,ccldiff: compare tva ver.ioal of an

• cclfile: format of
unget: undo a pr~iou. get of an

val: validate
sact: priat current

adIDia: create aad .dminilter
vhat: identify

help: ult for belp about

a lUll :
clear: clear terminal

twinkle: tv~akle .tar. oa tbe
curle. :

es. vi:
rc: co_nd

oniatr: proce.1 interrupt. ia command
egrep -

fgrep:
grep:

mall: print

lee:
co_:
ca.e:
mail:
iill:

relet: reaet tbe teletype bitl to a
logout: ead

a.cii: alp of ASCII character

_Ik:
uti_:

badblk: program to
Dice:

lexec, exit, export, login, nevgrp, read, readoaly,
letty:
Uet:
• tty:

date: print and
ati.:

.etuid. Htgicl:
• etll. -

• etllDv:

• etuicl.
getgreat. letgrgicl. getlm ...

cr,.pt •

getpvellt, getpvuicl. getpVllall.
di.lttUDe - tuae tbe floppy di.k

coatinue, cd. eval. exec. ezit. esport. 10gill.1
xltr: extract .triaga fro. C progr ... to implement

esit: le .. e
.y.t_: illue •

cab: a
av.l: rrev.luata

popd: pop
pu.hd: pu.b

ali •• :
,ulpead: lu.pend •

.. t: cbange value of

Augult 1982

lact: print curreat sces file editial activity.
.brlt, brealt: cbange core allocation. • •••••••••••••
Icanf, f.canf, Slcanf: formatted iaput cOl1Yeraioa.
Icanning and procel.ina laaauaae. • ••••••••••••••••
sec:s delta. • ••••••••••••••••••••••••••••••••••••••
sees delta ••
SCC:S file. • •••••••••••••••••••••••••••••••••••••••
SC<:S file. • •••••••••••••••••••••••••••••••••••••••
SCC:S file. • •••••••••••••••••••••••••••••••••••••••
sees file. • •••••••••••••••••••••••••••••••••••••••
sees f il.. • •.•••••••••••.•••••••••••••••••••••••••
SCC:S file. • •••••••••••••••••••••••••••••••••••••••
sees file. • •••••••••••••••••••••••••••••••••••••••
sees file. • •••••••••••••••••••••••••••••••••••••••
sees file editing activity. • ••••••••••••••••••••••
sees file •••
sees file.. • ••••••••••••••••••••••••••••••••••••••
sees pr ob 1m... • ••••••••••••••••••••••••••••••••••
acc.diff: cOllpare tva verlionl of all sces file.
Icc.file: format of sca; file. • •••••••••••••••••••
.chedu1e .igaal after lpacified ti... • ••••••••••••
.creeD ••
.cr eeD. • ••
acreen fUDct ion. vitb "opti1Ul." cur.or motioa.
acreen oriented (vilua1) dilpla,. edieor b.aed oa
Icript for Iy.tea houlekeeplDl ••••••••••••••••••••
Icript.. • •••
le.reb a file for a pa ttem. • •••••••••••••••••••••
•• artb a file for a pattera. • ••• 0 •••••••••••••••••

a.areh a file for a gattera. • •••••••••••••••••••••
I.etioas of tbil •• DUll. • •••••••••••••••••••••••••
aed: acre .. editor. • ••••••••••••••••••••••••••••••
lee: lee vbat • file h .. ia it. • ••••••••••••••••••
aee wbat • file ba. ia it. • •••••••••••••••••••••••
.elect 01' reject lilla. co..,11 to two aorced filea.
lelector ia twitch ••••••• , ••••••••••••••••••••••••
lead or receive •• il __ • u.en. • ••••••••••••••••
.ead .ilDal to • prOcell. • ••••••••••••••••••••••••
lealibl •• tate. • ••••••••••••••••••••••••••••••••••
.e •• ioll.
let •••
.et: cbange v.lue of .hell variable. • •••••••••••••
Ie t file cr .atio D &lOde ••• k. • •••••••••••••••••••••
.et file ti.... • ••••••••••.•••••••••••••••••••.•••
.et or upcla te bad block informatioll. • •••••••••••••
.et progr .. priority. • ••••••••••••••••••• 0 ••••••••

Mt •• hift. ti trap. _.It. v.it: co._ndl
let te~iDal mode. • •••••••••••••••••••••••••••••••
Ie t t era in al mode I. • ••••••••••••••••••••••••••••••
let te~in.l optiQDI. • ••••••••••••••••••••••••••••
aet the date ••••••••••••••••••••••••••••••••••••••
.et ti ~ •••••••••••••••••••••••••••••••••••
let u.er aad group ID. • •••••••••••••••••••••••••••
.et u.er .e.or, l~it to .alue. • ••••••••••••••••••
let variable ia eawiroaaeat. • •••••••••••••••••••••
aetbuf: aa.ira bufferilll to • • tre
•• tell'9: .et variable iD .ariro •• Dt. • •••••••••••••
.etlid: let aler aDd ,roup ID. • •••••••••••••••••••
•• tgrent, eadgrellt: let group file elltry ••••••••••
a.t;'p. 10Illj.P: Iloa-local Iota. • •••••••••••••••••
letltey. ellcrypt: DIS eDCI'yptioll. • •••••••••••••••••
.etll. - Mt uaer __ ry lwit to v.lue. • •••••••••
.etpwent, eadpveat: let Pllnord file eatry.
I.ttl iDa ti .. par_ter.. • ••••• 0 ••••••••••••••••••

letaid ••• tgid: let u.er aad Iroup ID. • •••••••••••
.b. for. c.... if. vb ile. :. •• break. • •••••••••••
abared .triaa.. • ••••••••••••••••••••••••••••••••••
abell. • •••
Ibell ea. .. Dd. • •••••••••••••••••••••••••••••••••••
• hell (co ... nd iaterpreter) vitb C-lika .,.ntaa.
.bell dat.. • ••••••••••••••••••••••••••••••••••••••
.bell directory .tack. • •••••••••••••••••••••••••••
.hell directory .tack. • •••••••••••••••••••••••••••
.bell _erol. • ••••••••••••••••••••••••••••••••••••
ahell. re._iDa it. luperior. • ••••••••••••••••••••
Ibell vari"le. • ••••••••••••••••••••••••••••••••••

sactO)
brk(2)
IcantOS)
avlt(!)
cdcO)
cOIDb(l)
deltaO)
gUO)
pnO)
l'IDclel (1)
.cc.diffO
.ccaf ile(S
uage t(1)
valO)
sactO)
admin(l)
vb.tO)
hel pO)
IccldiffO
acclf ile(5
alarm(2)
dead!)
tvinkle(6)
CUTsel(3)
viO)
rc(8)
clhO)
egrep(l)
fgrep(l)
grepO)
manO)
lidO)
lIe(1)
lIeO)
co_(l)
c.bO)
mailO)
kilU2)
ruetO)
c.bO)
a.cHO)
c.bO)
UIDA.k(2)
utillll!(2)
badbllt(lM)
nice(2)
.b(l)
gettyOM)
taetO)
.ttyU)
dateO)
It illll!(2)
.etuid(2)
Ie tml!lll(1)
clbO)
aetbuf(3S)
Clb(1)
aetuid(2)
getgreatO
letjmp(3)
cryptC3)
Ie tIIIl!III(1)
getpwent(3
diaktuae(l
.etuid(2)
.bO)
satr(l)
cIM!)
lyat.(3)
c.b(1)
cab(l)
Clb(1)
c.h(!)
clhO)
c.h(l)
c.b(l)

UniSoft Corpor ation

@: arithmetic OD
unset: discsrd
u;ec: overlay

lexit, ezport, 10giD, Devgrp, read, readoDly, Ie t,
logiD:

paule: ItOP until
alam: achedule

!till: leDd
sigDal: catch or igDore

tr igoac.etr ic functioDa.
liP: aake output

Dull: data
aile:

q.ort: quicker
lort:

coma: select or reject 1iDe' CO-aDn to tvo
look: find linea in a

Batr: creste an error lllea .. ge f He by .aa .. ging C

vberei I: loca te
(sb/ Dic.: run a co_nd a t low pr iority

up: _ka output lingle
fork:

exec: overlay Ihell vith
ext err - turn on/off the extended errorl in the

a1am: achedule lignal after

~pel1.
Ipell, IpelliD. Ipellout: find

Ipell •• pellin.
Iplit:

frazp, Idezp •• odf:

Ipr: line printer
pr intf. f priatf •

exp, log. 10g10. pov,
10g10, pov. Iqrt: expoDeatial, logaritha. poyer,

rand,
filea into ASCII formatl luitable for Motorola

acaaf. flcaDf,

popd: pop Ibell directory
pUlhd: puah .he11 directory

Itdio:
tvinkle: tvinkle

boot:

reset: reset the teletype bits to a I.nlible
if: conditional

ba.hltat: priat cO'-Dd huhiq
Pi: proceaa

Itat, fltat: get fUe
feof, ferror. clearerr. fil.ao: atr ...

pause :
icbeck: file ayat.

atrleD. iDdex. rind.x: .triDg operatioaa.
rindez: ItriDg operatioal. Itrcat. atroeat,

operationa. .treat •• trncat, Itre.p. atrocap.
fc10 .. , ff1uah: c10 .. or fluab a

fopen. freopen, fdopen: opea a
f.eek, fte11. revind: repolition a

getchar, fgetc, getv: get cbaracter or vord fro.
geU. fge ta: get a atr ing fra. a

putchar. fputc, putv: put cbaracter or vord oa a
puta, fputa: put a atring OD a
aetbuf: aaliln bufferiDg to a

~iSoft Corporation

P emu t ed .!.D9.a

ahell variable ••••••••••••••••••••••••••••••••••••
abe11 variable.. • •••••••••••••••••••••••••••••••••
ahell with lpecified command. • ••••••••••••••••••••
shift: maDipul.te argument 1iat •••••••••••••••••••
.hift. ti trip, umslk, vait: caDmaad 1aDluage.
,igD ODe ••
ligul. • •..••.•.•.•.•.........••..•••..•..•••.•••.
.ianal after .pecified time. • •••••••••••••••••••••
lignal: catch or ignore aignal.. •
ailDal to. procell •••••••••••••••••••••••••••••••
.ianall •••
.in. coa, taa. a.iD. aco •• at an. ataal: •••••••••••
liDale 'paced. • •••••••••••••••••••••••••••••••••••
.iDb. co.h. taDb: hyperbolic fuactiona. •
link. • ••
liz. of aD object file. • ••••••••••••••••••••••••••
.ile: .ize of aD object file. • ••••••••••••••••••••
.leap: .uapeDd eucut iOD for aD iDt.rval.
.1eep: auapend eucutioD for iDtenal.
lort. • ••
lort or .erae file ••••••••••••••••••••••••••••••••
lort: lart or .. rae filel. • •••••••••••••••••••••••
.orted filel. • ••••••••••••••••••••••••••••••••••••
.orted lilt. • •••••••••••••••••••••••••••••••••••••
.ouree. • ••••••••••••••••••.•••••••••....•..••.•.••
lource: read co ... udl fraa file. . •.•..•..•.•.....•
lourc./binary/IIIDual for pr08r... •
.ap nobup - ruD a co-maDd i_ne to baDiupa
_paced. • ••
lpawn Dev proc.... • •••••••••••••••••••••••••••••••
lpacified caamaad. • •••••••••••••••••••••••••••••••
lpacified dev~e. • ••••••••••••••••••••••••••••••••
lpecified tiDe. • ••••••••••••••••••••••••••••••••••
apell. Ip.1liD, .pellout: find .pelling errorl.
.pellin •• p.llout: f iDd apelling error..
lpel"lin, error.. • •••••••• ~ ••••••••••••••••••••••••
ape110ut: f ind • pe11 inl error.. •
.plit • file iDtO piece.. • ••••••••••••••••••••••••
'plit into .aDtia" aDd .xpoD.nt. • ••••••••••••••••
aplit: .p1it a file iato piece.. •
lpooler. • •••••••••••••••••.•••••••••••••••••••••••
.pr iDtf: for_tted output cOllirenioDo
aqrt: .xponential, logarithm, pover, aquare root.
Iquare root. esp, 1°1_ •••••••••••••••••••••••••••
.rlad: rlDdoa Du.ber ,eDerator. • ••••••••••••••••••
S-record dova10adiaa.. hex: traaalat •• object
aacanf: forlllttad input cOllirer.ion. •
.ap: IIIke output .iDlle .paced. • ••••••••••••••••••
.tack. •••••••••.•••••••••••••••••••••••••••.••••••
.tack. ••
.tanclard buffered input/output package.
atara OD the acreeD. • •••••••••••••••••••••••••••••
Itartup procedurel. • ••••••••••••••••••••••••••••••
.tat, fatat: .et file .tatul. • ••••••••••••••••••••
.tate. • ••••••••.•••••••.••.••••••••••••••••.••••••
.tat.eat.
atatil tica.

.•..••.•.............•
.................•..•..................

It.tUI. • ••
.e.tul.•...•.•.....••.••••.......•...........
It.tU. iDquiri... • ••••••••••••••••••••••••••••••••
atdio: atandard buffereel iDput/output package.
Iti .. : •• t ti...
Itop: halt. job or proc.... • •••••••••••••••••••••
.top UDtil lilDal. • •••••••••••••••••••••••••••••••
_tor ... coa.ilteDc, check. ••••••••••••••••••••••••
.trcat. atrucat •• tre.PI .trucap, atrcpy, .trncpy.
.trcap, at rocap, .trepy, .t rocpy. Itdea. index,
atrcpy. atrocpy, .td.a, indell:. rinclex: .triq
.tr.... • ••
.tr.... • ••
acre... • •••••••.•.••••.••....•.•••••..•.••••••..••
.tr.... getc.•.....•..•................
.trem.•...........•.•.....•........
• tr putc • . .••..•...•.....••••.•..••.•.•.....•
.tr
.tram. . •...•...................•.................

c.hU)
cab(l)
c.bo)
cabU)
abU)
10gin(1)
pauaeU)
alarm(2)
aigDaLC 2)
ki1H 2)
.igDal(2)
ain(3H)
..p(l)
.iDh(3H)
null(4)
ainU)
sinU)
aleepO)
aleep(3)
qlort(3)
aort(l)
sort(l)
COIla(1)
look(1)
mkatr{l)
cahU)
vberei.(!)
niceU)
•• pO)
fork(2)
c.bU)
uterr(1)
alarm(2)
.pell(!)
'pe1Hl)
spelH 1)
.pel1(l)
.plitCl)
frezp(3)
Ip1itU)
1pr(1)
priDtfC3S)
expOH)
ezp(3H)
rand(3)
baxU)
.caof(3S)
aspU)
cabU)
e.b(l)
.tdio(3)
tviDk1e(6)
boot(S)
.tat(2)
reaet(l)
c.b(1)
clhU)
paU)
ltat(2)
ferrorC3S)
.tdio(3)
"i_(2)
cabU)
paule(2)
icheck{lH)
.tring(3)
.triDg(3)
.tring(3)
felole(3S)
fopen(3S)
fleek(3S)
getc(3S)
get.OS)
putc(3S)
putsOS)
aetbuf(3S)

Auguat 1982

Permuted lnW.

ungetc: push character back into input
• ed:

feof. ferror. clearerr. fileno:
geta, fgeu: get a
pun, f put I: put a

atrncmp, 'trcpy, 'trncpy, Itrlen, index, rindex:
extract atringa from C program. to implement shared

or other binary file.
Itringa. xBtr: extract

atrinl': find the printable
ba.ename:

atrcat, Itrncat, Itrcmp, .trncmp, .trcpy, It racpy ,
index, rindex: Itring operation.. .trclt,

Itring operationa. nrcat, .traClt, .tremp,
• trca t, at rncat, .tr cmp, Itrncmp, atrcpy,

ioctl,
ioctl,

• u:
hex: translate. object filel into ASCII forut.

lUll:
directoriel. .umdir:

the given director is ••
du:

Iync: update the
update: periodically update the

• ync: update
8UI pend: .uapend a 8hell, re8laing it I

aUlpend:
11eep:
aleep:

I"ab:
breaka,,: exit frca
cale: aelector in

default: catchall clau .. in
enda,,: terminate

cab: a ahell (command interpreter) "ith C-like
perror,

perror, Iya_errliat,
1IIkfa: coaatruct a file

GIOun t, UlDOun t: moUD t and d illllO unt file
GIOunt, UlDOunt: mount or r_ave a file

GIOun t, UIDOUD t: moun t and d illllO unt f ite
who: "ho ia oa the

checkliat: liat of file
rebaah: recOlipute com.nd huh

unbaah: dilcard ca.mBnd huh
mtab: mounted file Iyat.

tbl: format
cta.a: .. intain a

take:
functionl. lin, COl,

liah, cOlh,
tp: .. aiputaee

tar:
tp: DEC/ .. ,

dumpdir: print the namea of filea on a duap

Augu.t 1982

deroff: r.ove nroff, troff.

relet: reaet the
laBt: indicate laat login. of uaera aad

lIeek,
au: .ubatitute uaer id

at ream. • ••
.treaa editor •••••••••••••••••••••••••••••••••••••
.tre~ Itatu. inquirie.. • •••••••••••••••••••••••••
string fraa a Itream. • ••••••••••••••••••••••••••••
string OD •• tre
.tr ing operationa. atrca t, at raCl t, atrcmp,
atring •• &Itr: •••••••••••••••••••••••••••••••••••
.tringa: find the printable .triD,a ia an object,
Itringa fre. C progr ... to iaplemeat .hared
atrin,1 in an object, or other binary file.
strip filename affize.. • ••••••••••••••••••••••••••
atrip: r_ove Iymbola and relocation bita. • •••••••
Itrlen, index, rindex: I tring operationa. • ••••••••
atrnCl t, at rcmp, at raClllp, at rc py. at racP)'. at de n.
ItrnClllp, atrcpy, Itracpy, Itdea, index. rudex:
.trncpy, Itden, index, rindex: atriDg operationl •
at ty. It tJ: c011trol deY ice. • ••••••••••••••••••••••
It ty, It ty: c011trol dev ice. • ••••••••••••••••••••••
.tty: let termiaal optioa.. • ••••••••••••••••••••••
IU: lubltitute uler id ttlllporarily. • ••••••••••••••
lubltitute uaer id teaporarily. • ••••••••••••••••••
luitable for Motorola S-record dovaloadin, ••
IU. and count blocka in a file. • ••••••••••••••••••
lua aad count charactera in the fil.1 ill the given
aum: lua and count blocka in a file. • •••••••••••••
IUlldir: lua aDd count cbaract era in the f itea in
lumaarize di.k u •• le. • ••••••••••••••••••••••••••••
luper block. ••••••••••••••••••••••••••••••••••••••
.~per block. ••••••••••••••••••••••••••••••••••••••
luper-block •••••••••••••••••••••••• 0.$ ••••••••••••

.uperior ••
IUlpend I ahell, re.uaiDg ita auperior. • ••••••••••
auapend ezecution for an intenal. • •••••••••••••••
aUlpend execution for iatenal. • ••••••••••••••••••
aUlpend: IUpend a abell. reauaiD, ita auperior.
Iwab: Ivap byt... • ••••••••••••••••••••••••••••••••
Ivap b,tee. • ••••••••••••••••••••••••••••••••••••••
awitch. • ••
I.itch ••
Iwitch. • ••
.witch. • ••
a"itcb: multi-vay co ... nd breach. • •••••••••••••••• .,..ba 1a aad r eloca ti01l bit I. • •••••••••••••••••••••
'JDC: update luper-block. • ••••••••••••••••••••••••
.YDC: update tbe IUpeE block. •••••••••••••••••••••
Iyutaz. • ••
Iya_errlilt, Iyl_nerrl Iyat .. error mel .. ,ea.
lyl_Derr: .ylt _ error •••• ale.. • ••••••••••••••••• .,.tea.
IYltea. • ••
.,'tea.
.,Itea. • ••
·7·t~. • ••••••••.•••••.•.••••••••••••••••••••••..•
a,.t .. proe bJ fleL ••••••••••••••••••••••••
table. • •••
table. • •••
table. • •••
table. for Broff or troff. • •••••••••••••••••••••••
ta,1 file for a C prosr... • •••••••••••••••••••••••
tail: deliver tb. laat part of a file. • •••••••••••
take: takea a fU. frca I r~t •• achiDe.. • •••••••
taltea a file frca a r~te mach iDe.. • •••••••••••••
tan, aain, acol. ata., atan2: triaoae.etric
tanh: hyperbolic fUDctioD.. .0 •••••••••••••••••••••
tape archive. • ••••••••••••••••••••••••••••••••••••
tape archiver. • •••••••••••••••••••••••••••••••••••
tap. foraatl. • ••••••••••••••••••••••••••••••••••••
tape or diak. • ••••••••••••••••••••••••••••••••••••
tar: tape archiger. • ••••••••••••••••••••••••••••••
tbl aDd eqn coa.truce.. • ••••••••••••••••••••••••••
tbl: foraat tablel for nroff or traff. • •••••••••••
te.: pipe fittinae ••••••••••••••••••••••••••••••••
teletype bitl to a lenaible Itat.. • •••••••••••••••
teletype.. • •••••••••••••••••••••••••••••••••••••••
te 11: .ove r.84/vr it e pOiD ter. • •••••••••••••••••••
taaporarily. • •••••••••••••••••••••••••••••••••••••

ungeteC3S)
.edO)
ferror(3S)
getaOS)
putsOS)
atriDg(3)
xltrU)
atringl 0)
ntrO)
ItringlCl)
b .. enameO
It dpCl)
ItriDg(3)
Itr ing (3)
Itrin,O)
Itr ing(3)
ioctl(2)
atty(2)
It ty(1)
IU(l)
.uO)
hex(l)
lum(l)
1II1Id i rO)
lum(l)
IUllldi rO)
du(l)
lyncUM)
updateUKl
Iync(2)
c8bO)
clbO)
aleepO)
aleepO)
clhO)
1".b(3)
Ivab(3)
clbC!)
cabO)
clbO)
clbU)
cahO)
atrip(l)
aync(2)
lyneC lK)
cab(l)
perrod3)
perror(J)
IIIItfl(un
lIOunt(1)
GIOunt(2)
umount(l)
wbo(1)
checltli.1
cah(l)
clbO)
mtab(S)
tblU)
ct aga (1)
uilCl)
tabU)
tabO)
I in(3K)
linh(JK)
tpO)
tarO)
tp(S)
dumpdir(
tarO)
derof f(1
tblCl)
teeO)
reaetOl
lutU)
lae eke 2:
.uO)

UniSoft Corporation

iaatty: find name of a
ttyname, tty.lot: find name of a

worm.: animate worm. on a diaplay
termcap:

getent, tgetnum, tgetflag, tget.tr, tgoto, tput.:
tty.:

tty: general
getty: let
tut: ut
tty: get

• tty: .et
clear: clear

ttytype: data ba.e of

wait: wait for proce •• to
kill:

I:ndif:
end:

e:dt:
eneilv:

ed:
n:, edit:

ca.ual uler.). edit:
troff, nroff:
troff. nroff:

terminal independent operation routine ••
independent operation routine.. tgetent, tgetn_,

independent operation routine.. tgetent,
operation rO\ltine.. tgetent. tgetn_, tgetflag,
routine.. tgetent. tgetnum, tgetflag, tget.tr,

ala~: 8chedule .ignal after .pecified
at: execute comBand. at a later

.ti_: .. t
time, fti_: get date aDd

ti .. :
time:

diaktune - tune the floppy di.k .ettlin,
profil: e&eel4ion

gmtime. a.etime, ti_zone: couvert date aDd
ti ... : get proce ••

\lti_: let file

erport. login, nevgrp, read, readonly, .et, .h ift ,
cti_, local time. gmtime, a.cti_,

popen, pelole: initiate I/O

tgetent, tgetnulII, tgetflag, tget.tr, tgota,

ptrace: prace ..
gato: co_nel

tr:
for Motorola S-record davaloaeling.. bax:

login. newgrp, reael, readonly, .et, .hift, ti

trek:
.in, ca., tan, a.in, aco., atan, ataal:

tbl: format table. for Droff 01'

UniSoft Corporation

deroff: r_ove nraff.

true. fal.e: provide
true. fal .. : provide

greek: graphic. for exteaded

Pemuted .!llll.a

termeap: terminal capability data baae. • ••••••••••
ter1llinal. • •..•••••••••••.•••••••••••••••••••••••••
t ermin.l. • ••••••••••••••.....•••••••••.••••••••.••
terminal ••••..••••••••••••••••••••••••••••••••••••
terminal capability data b •• e. • •••••••••••••••••••
terminal independent operation routine.. • •••••••••
teraiual initial iaatioQ data. • ••••••••••••••••••••
terminal iDterface ••••••••••••••••••••••••••••••••
terminal mode. .: ••••••••••••••••••••••••••••••••••
tar.inal mod... • ••••••••••••••••••••••••••••••••••
terminal name. • •••••••••••••••••••••••••••••••••••
terminal optionl. • ••••••••••••••••••••••••••••••••
teraiDal .creen. ••••••••••••••••••••••••••••••••••
terminal type. by port. • ••••••••••••••••••••••••••
terainal.: cODVeDtioaal na.el. • •••••••••••••••••••
terminate •••
terminate a procell with extrme prejudice.
te~inate conditional. • •••••••••••••••••••••••••••
terminate loop. • ••••••••••••••••••••••••••••••••••
terminate procell. • •••••••••••••••••••••••••••••••
terminate .vitcb. • ••••••••••••••••••••••••••••••••
teat: coaditioD co ... ud. • •••••••••••••••••••••••••
test editor. • •••••••••••••••••••••••••••••••••••••
test editor. • •••••••••••••••••••••••••••••••••••••
text editor (variant of the ex editor for new or
text formatting aDd type.etting. • •••••••••••••••••
text formatting aDd type.etting •••••••••••••••••••
tgetent. tgetn_. tgetflag. tget.tr, tgoto. tput.:
tgetflag. tget.tr, tgoto, tputl: temiDal •••••••••
tgetn_. t~etfla,. tget.tr, .tgot«;" tput.: temiDal
taetltr, tgoto, tput.: temUlal lnupendent •••••••
tgoto, tput.: temiDal independent operation
tia •••

time. • ••
time. coaaaDd. • ••••••••••••••••••••••••••••••••••
ti .. ea.a.Dd. • ••••••••••••••••••••••••••••••••••••
ti ... ftiae: get date aDd ti...
time parameter.. • •••••••••••••••••••••••••••••••••
time profile ••••••••••••••••••••••••••••••••••••••
time: time a ca..8nd. • ••••••••••••••••••••••••••••
ti .. : ti.e cO"'Dd. • ••••••••••••••••••••••••••••••
tia. to ASCII. cti ... localti .. , •••••••••••••••••
tiae ••
time.. • •••
time.: get procell ti....
tillle'. trap. UIIIII". vait: C0lll1ll&ad lallluage. lexit.
tiaezane: cODl/ert date aDd ti_ to ASCII. • ••••••••
to/fro. • procell. • •••••••••••••••••••••••••••••••
to\lch: update date la.t .edified of a file.
tp: D!C/ ... tape foraat.. • ••••••••••••••.•••••••.•
tp: .. uipulaee tape archive. • •••••••••••••••••••••
tput.: teminal independent operatioa routinu.
tr: trlD.late character.. • ••••••••••••••••••••••••
tra: copy aut a file a. it growe. • ••••••••••••••••
trace. • •••
traDlfer. • ••
tramllate charactera. • ••••••••••••••••••••••••••••
traa.latea abject fil .. into ASCII fomatl .uitable
trap. uaa.k, vait: eaa .. ad laIllUAg.. lexit, export.
trek: trekkie ,.... • ••••••••••••••••••••••••••••••
trekkie ... e. • •.••••••••••••••••••.••••••••••.••••
trilOnc..tric fUDction.. • •••••••••••••••••••••••••
troff. • •••
troff, nraff: teEt forma tting aad type .etting.
troff, nraff: text foraattiug aDd typelttting.
traff, tbl aDd eqa con.truete. • •••••••••••••••••••
true, fal •• 1 provide truth value.. • •••••••••••••••
true. falle: provide truth value.. • •••••••••••••••
truth value.. • ••••••••••••••••••••••••••••••••••••
truth value.. • ••••••••••••••••••••••••••••••••••••
t.et: I.t te~iual .ade •••••••••••••••••••••••••••
tty: laDera! t.~iDal iDterface. • •••••••••••••••••
tty: let teraiDal n.... • ••••••••••••••••••••••••••
TTT-37 type-box. • •••••••••••••••••••••••••••••••••

termcap(S)
isa tty(3)
ttyname(3)
wor .. (6)
termcap(S)
termcap(3)
tty.(S)
tty(4)
gettyOH)
tutU)
tty(l)
.t ty(l)
elear(l)
ttytype (5)
temO)
wait(2)
kill(l)
cahU)
c.bO)
edt(2)
eeh(l)
teltO)
edO)
exO)
editO)
nrot fO)
traf f(l)
termcap(3)
temeap(3)
termcap(3)
temeap(3)
temeap(3)
alam(2)
at(l)
.t imeeZ)
time(2)
time(1)
c.h(l)
ti_(2)
d iakt uneO)
prof H(2)
time(l)
e.hO)
ctime(3)
time.(2)
utime(2)
time.eZ)
.hO)

ctime{3)
popenOS)
toucb(l)
tp(5)
tpO)
temeap(3)
trO)
traO)
ptrlee(2)
e.hO)
tr(l)
hex(l)
.h(l)

trek(6)
tr ek(6)
.in(3H)
tblCl)
nraf f(l)
traf f(1)
deraf fO)
fataeO)
true(l)
falle(1)
true (1)
tloet(1)
tty(4)
tty(1)
greu(7)

Aug\l.t 1982

Permuted Index

ttyname,

dis1<tune -
twinkle:

file: determine ti)e
greek: graphic. for exteaded.TTY-37

typel: primitive Iyatem data
ttytype: data bue of terminal

man: _cro. to
eqn, aeqn, checkeq:

troff, aroff: tellt formattiag aad
troff, Moff: text formatting aad

getpw: get aaae from

nevgrp, read, readonly, tet, ahift, times, trap,
lIIOUU t,
lIIOUUt,
1IIQUU t,

uucp, uulOl,

uucp,

u1: do
unget:

1IIk.t .. p: make a

CUI call
uux: unix to

uUnaJle: unix to
uux:

uulog, uUG .. e:

m: remove

badb1k: progr~ to let or
touch:

updater:

• ync:
• yue:

update: periodically

du: ._ril. diak
login: 10lin nev

write: writ. to another
te tuid, •• tgid: I.t

getuid, getgid, g.teuid, letelid: let
en'firon:

vhoami: print effective current
• u: lublt itute

vtap:
• etlll .. - Mt

editor (variant of the ex editor for new or ca.ual
mail: sendorreeeivelllaila .. ag

vall: vrite to all
1a.t: indicate la.t login. of

Augu.t 1982

uucp,
uucp, uu10i,

val:
ab.: integer abaolute

Ie ta_ - Ie t use r lIIemory 1 isit to
fab., flo~, ceil: ab.olute

ttyname, ttYllot: find name of a teminal. • •••••••
tty.: terminal initialil.ation data.
tty.lot: find name of • terminal. • ••••••••••••••••
ttytype: data bue of terminal typel by port.
tune the floppy dilk aettl ing time par_tera.
twinkle Itara on the IcreeD. • •••••••••••••••••••••
tvinkle: tVlnkle .tarl on the acreen.
type.. "
type-boz.
ty-pel.
type. by port •••••••••••••••••••••••••••••••••••••
type.: primitive Iyate. data types.
typelet manual. • ••••••••••••••••••••••••••••••••••
typelet .. theaatiel. • •••••••••••••••••••••••••••••
typesetting. • •••••••••••••••••••••••••••••••••••••
typelettiag. • •••••••••••••••••••••••••••••••••••••
uid •••
ul: do UDderllDing. • ••••••••••••••••••••••••••••••
uma.k: chmge or di.play file creation ... k.
uma.k: let file creatioD mode ma.k. • ••••••••••••••
umalk, vait: COllI_ad language. lexport, 10Kin,
umount: lDOUUt and dillllount file .yat... • ••••••••••
UIDOUUt: .ount aDd dil1llount file syatem.
umount: mount or remove a file .y.tea. • •••••••••••
un.ii •• : reaove ali •• el •••••••••••••••••••••••••••
uuderliniDI. • •••••••••••••••••••••••••••••••••••••
undo a prl!V iou. get of aD sees file.
unget: undo a previoul get of an sces file.
ungete: pUlb character back into input Itream.
unha.b: di.card eoamand ha.b table. • ••••••••••••••
uuiq: report repeated 1inel in a file. •
unique file a&ae. • ••••••••••••••••••••••••••••••••
unitl: coaver.loD procr", ••••••••••••••••••••••••
DlI IX. • ••
unix ea.aaad execution. •••••••••••••••••••••••••••
unix CO'fl'!. • ••••••••••••••••.•••••••••••••••••••••••

unix to unix coamaDd execution ••••••••••••••••••••
ucia to unix c0V,f. • •••••••••••••••••••••••••••••••
uuli.it: re.O'fe ruource 1 i.itiationl. • •••••••••••
(unlink) file.. • ••••••••••••••••••••••••••••••••••
unlink: r .. ave directory entry. • ••••••• , ••••••••••
unlet: dilcarcl Ibell variable.. • ••••••••••••••••••
uuletenv: r_crve enviroaaent variabl.l. •
upda te bad block inform.atioD. •••••••••••••••••••••
update date la.t .edified of a file. • •••••••••••••
update filel between tva lIIachinel.
update: periodically update tbe .uper block.
update luper-block ••••••••••••••••••••••••••••••••
update the super block. •••••••••••••••••••••••••••
update the super block. • ••••••••••••••••••••••••••
updater: update files between tvo machin.l.
u'&,e. • •••
u .. r. • ••
uler. • ••
u .. r aDd group lD. • •••••••••••••••••••••••••••••••
uaer aDd group identity •••••••••••••••••••••••••••
uaer eawiroaaeat ••••••••••••••••••••••••••••••••••
uler ida ••
u.er id teaporarily. • •••••••••••••••••••••••••••••
u .. r lalin history. • ••••••••••••••••••••••••••••••
UN r ry 1 i.it t 0 ~ .1... • • ••••••••••••••••••••••
ulera). edit: teat •••••••••••••••••••••••••••••••
Ulerl. • •••
uler.. • •••
u •• ra aDd teletype.. • •••••••••••••••••••••••••••••
uti .. : •• t file ti.... ~
utap, VbDp: lOlia recorda. • •••••••••••••••••••••••
uucp. uuiOI. uuna.e: uuiz to uDis COPra •••••••••••
uulOI. uuaa.e: unix to unix eoP1. • ••••••••••••••••
uuname: uaiz to unix copy. • •••••••••••••••••••••••
uux: uniz to unix ea. .. Dd esecutiou. ••••••••••••••
val: validate sees file. • •••••••••••••••••••••••••
validate sees file. • ••••••••••••••••••••••••••••••
value •
vallie. • •••
value, floor, c.eilina fUDc:tion.. • •••••••••••••••••

ttyname(3)
ttYI(S)
tt ynallle (3)
ttytype(S)
d iakt uneO)
tvinkle(6)
tvinltle(6)
fi leO)
greekO)
types(S)
ttytype(S)
type.(S)
man(7)
eqnO)
nrof fO)
troff<t)
ge tpv(J)
u1(1)
cahO)
ulI .. k(2)
ahO)
mount< 1)
umoundU
lIOunt(2)
clhU)
ul (1)
unget(l)
unge to)
unge td3S)
clh(l)
uniq (l)
mit t eIIp (3)
unit80)
cuOC)
uux(le)
uuep<1C)
uux(lC)
uucp(lC)
clbU)
rmO)
unlink(2)
c.h(l)
c.bO)
badblkOH)
toucb(l)
updater(l)
upda teOK)
.yad2)
lyndlK)
updateOH)
upda terO:
duO)
clbO)
vriceO)
"tuid(2)
KetuidO)
euviron(S
vbolllli(l)
IU(1)
vtmp(S)
aetam(l)
edidO
uiH1)
val HI)
lut(l)
utime(2)
ut.p(S)
uuepOC)
uucpOC)
uucpOC)
uux(lC)
valO)
valO)
ablO)
.e tmem(1:
floor()H:

UniSoft Corporation

getenv:
let: change

true, false: provide truth
true, false: provide truth
set: change value of shell

aetenv: let
@: arithme tic on shell

unlet: diacard Ihell
unletenv: remove envirotDent

edit: text editor

lint: a C progr ..
vc:

ver.ion: report.
get: get a

hangaan: Comput er

Iccadiff: compare two
on ex.

more: file peru .. l filter for crt
vi: .creen oriented

fillY', flblk, ino: format of file Iyatea

read, readonly, .et, .hift, timel, trap, IIIIIIlk,
vait:
walt:

• ee: aee

exec, exit, export, 10gin,1 .h, for, ea.e, if,

brealt: exit
wbo:

we:
getc, getchar, fgetc, getv: get character or
pute, putehar, fputc, putv: put charlCter or

cd: chll1ge
cbdir: ebange current

pvd:
worm: Play tbe growing

worm.: anitate
write:
wall:

write:

provide exclu.ive file region. for reading or
open: open for reading or

utmp,

.bared atr ing ••
jOt jlt jn,

jO, jl, jn, yO,

jO, jl, jn, yO, yl,

P e rmu t ed .lrulJ:J.

value for eaviroaaent na.e. • ••••••••••••••••••••••
value of ahell variable. • •••••••••••••••••••••••••
value ••
value ••
var iab le.
variable in env irolJllent.
var iab Ie a.
var iable ••
variable ••
(variant of the ex editor for new or ea.ual u.er.).
vc: veraioD control •••••••••••••••••••••••••••••••
verifier ••
version control •••••••••••••••••••••••••••••••••••
version nu.ber of file.. • •••••••••••••••••••••••••
ver.ioD of an sees file. • •••••••••••••••••••••••••
ver.ioD of the game haagman. • •••••••••••••••••••••
venion: reporta verlion nl&ber of filea. •
ver.ion. of an sees file. • ••••••••••••••••••••••••
vi: .creen oriented (vi.ual) dilplay editor bated
viewing. • •••
(vi.ual) di.play editor ba.ed on eKe ••••••••••••••
vol u::aae. • ••
vait: await eoapletioQ of proce.l. • •••••••••••••••
wait: command language. 'export, login, nevgrp,
wait for background proeellee to complete.
va it for procell to terminate. • •••••••••••••••••••
wait: wait for backaround proce •• e. to eoaplete.
vait: vait for proc~. to terminate. • •••••••••••••
vall: write to all Ulerl ••••••••••••••••••••••••••
we: word count. • ••••••••••••••••••••••••••••••••••
what. fil. b .. in it. • •••••••••••••••••••.•••.•••
what: identify sees filel. • •••••••••••••••••••••••
wherei.: locate .ourcelbinary/unual for progrllll.
while, :, ., break, continue, ed, eval
while: repeat co __ nd. conditionall,.. •
while/foreach loop. • ••• ~ ••••••••••••••••••••••••••
who i. OD the IYltea. • ••••••••••••••••••••••••••••
who: who il OD the .Yltaa. • •••••••••••••••••••••••
who .. i: print effective current uaer ide ••••••••••
word count ••
word fro. .tre... • ••••••••••••••••••••••••••••••••
word on a .tre... • ••••••••••••••••••••••••••••••••
working directory. • •••••••••••••••••••••••••••••••
vorkinl directory •••••••••••••••••••••••••••••••••
working directory D&8e ••••••••••••••••••••••••••••
worm game. • •••••••••••••••••••••••••••••••••••••••
worm: Play the grevina worm game ••••••••••••••••••
WOt, .. : ani.te voral on a di.play terminal.
vera. on a di.play terminal. • •••••••••••••••••••••
write on a file. • •••••••••••••••••••••••••••••••••
write to all u •• ~ ••••••••••••••••••••••••••••••••
write to another uler •••••••••••••••••••••••••••••
VTite: write on. file. • ••••••••••••••••••••••••••
¥Tite: VTite to another uler. • ••••••••••••••••••••
writing. locking: •••••••••••••••••••••••• -••••••••
VTiting. • •••
wtmp: lOBin record ••••••••••••••••••••••••••••••••
vtmp: u .. r login hi.tory. • ••••••••••••••••••••••••
vump: the g .. e of buot-the-vuapua. • •••••••••••••••
:utr: extract .tring. frOID C progr_ to impleaent
,0, 11, yn: be ••• l function.. • ••••••••••••••••••••
11, ,n: b •••• 1 function.. • ••••••••••••••••••••••••
,.ICC: ,et another ea.piler-eollpiler.
yo: be •• el function.. • ••••••••••••••••••••••••••••

ge tenv(3)
cahO)
falteO)
true (l)
csbO)
c.h(l)
c.bO)
c.h<l)
cahO)
edidl)

vc(l)
lintO)
vc(l)
vereionO)
get{l)
haagman(6)
vereionO)
Iccsdi ffO)
vi<l)
more(1)
viO)
filsYI(S)
waidl)
Ih(1)
c.hO)
waid'l)
c8h(1)
vait(2)
wal L(1)
veCl)
leeO)
whatO)
wbereia(l)
abO)
cabO)
cabO)
vbo(1)
whoO)
whoamiC I)
vc(l)
getc(3S)
putc(3S)
cd(l)
chdir(2)
pvd(l)
vorm(6)
worm(6)
worIml (6)
worIml (6)
write(2)
vallO)
wr ite(l)
write(2)
vriteO)
loenng(2)
open(2)
utmp(5)
vtmp(S)
vump(6)
xatrO)
jO(3M)
jO(3M)
yacc(1)
jO(3M)

INTRo(1) UNIX Programmer's Manual INTRO(l)

NAME
intro - introduction to commands

DESCRIPTION
Section 1 of the Programmers Manual contains short descriptions and
examples of commands used directly at the user interface level. The
commands appear in alphabetic order.

SEE ALSO
Section (6) for computer games.

How!Q~ started, in the Introduction.

DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied
by the system g1v1ng the cause for termination, and (in the case of
'normal' terminat10n) one supplied by the program, see waite!) and
exit(2). The former byte is 0 for normal termination, the latter is
customarily 0 for successful execution, nonzero to indicate troubles
such as erroneous parameters, bad or inaccessible data, or other inabil
ity to cope with the task at hand. It is called variously "exit code",
"exit status" or "return code", and is described only where special con
ventions are involved.

Printed 7/8/82 2/4/82 1

ADB(I) UNIX Programmer's Manual ADB(l)

NAME
adb - debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DES CRIPI ION
Adb is a general purpose debugging program. It may be used to examine
files and to prov ide a controlled env irotment for the execution of UNIX
prograns.

Ob jfB is normally an executable program file, preferably containing a
symbol table; if not then the symbolic features of adb cannot be used
although the f.le can still be examined. The default for objfil is
a.out. Corfil is assumed to be a core image file produced after execut
ing objfil; the default for corfil is core.

Requests to adb are read from the standard input and responses are to
the standard output. If the -w flag is present then both objfil and
corfil are created if necessary and opened for reading and writing so
that fil es can be modified using adb. Adb ignores QUIT; INTERRUPT
causes return to the next adb command.

To EXIT adb: use $q or $Q or Control-d.

In general requests to ~ are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set
to O. For most commands count specifies how many times the command.will
be executed. The default count is 1. Address and count are expres
sions.

The interpretation of an address depends on the context it is used in.
If a subprocess is being debugged then addresses are interpreted in the
usual way in the address space of the subprocess. If the operating sys
tem is being debugged either post-mortem or using the special file
/dev/kmem to interactive examine and/or modify memory the maps are set
to map the kernel virtual addresses. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decr emented by the current increment.

" The last address typed.

integer

Printed 7/28/82 2/4/82 1

ADB(l) UNIX Programmer'.s Manual ADB(!)

A number. The prefix 0 (zero) forces interpretation in octal
radix; the pref ixes Od and OD force interpr etation in decimal
radix; the prefixes Ox and OX force interpretation in hexadecimal
radix. Thus 020 = Od16 = OxlO = sixteen. If no prefix appears,
then the default radix is used; see the $d command. The default
radix is initially hexadecimal. The hexadecimal digits are
0123456789abcdefABCDEF with the obvious values. Note that a hex
adecimal number whose most significant digit would otherwise be
an alphabe tic charact er must have a Ox (or OX) pref ix (or a lead
ing zero if the default radix is hexadecimal).

integer. fraction
A 32 bit floating point number.

'~' The ASCII value of up to 4 characters. \ may be used to escape a ,

< ~ The value of ~, which is either a variable name or a register
name. Adb maintains a number of variables (see VARIABLES) named
by single letters or digits. If ~ is a register name then the
value of the register is obtained from the system header in ~
file The register names are those printed by the $r command.

symbol A symbol is a sequence of upper or lower case
scores or digits, not starting with a digit.
symbol is taken from the symbol table in objfil.
- will be prepended to symbol if needed.

symbol

letters, unde r
The value of the

An initial or

In C, the 'true name' of an external symbol begins
may be necessary to utter this name to distinguish
na1 or hidden variables of a program.

with It
it from inter-

routine.~
The address of the variable ~ in the specified C routine.
Both routine and ~ are symbols. If ~ is omitted the value
is the address of the most recently activated C stack frame
corresponding to routine.

(exp) The value of the expression expo

Monadic operators

*exp The contents of the loca tion addressed by exp in corfil.

@exp The contents of the loca tion addressed by exp in ob ifil.

-exp Integer nega tion.

-exp Bitwise complement.

#exp Logical negation.

Printed 7/28/82 2/4/82 2

ADB(l) UNIX Programmer's Manual ADB(l)

Dyadic operators are left associative and are less binding than monadic
operators.

.,gl+e2 Integer addition •

.,gl-e2 Integer subtraction.

el*e2 -- Integer multiplica tion.

el%e2 Integer division.

.,gl&e2 Bitwise conjunction.

.,gll e2 Bitwise disjunction.

el#e2 n rounded up to the next mUltiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modif
iers. The following verbs are available. (The commands '1' and '/' may
be followed by '*'; see ADrRESSES for further details.)

?.i Locations starting at address in ob;fil are printed according to
the format .i. dot is incr emented by the sum of the incr ements for
each format letter (q.v.).

/i.. Locations starting at address in corfil are printed according to
the format .i and dot is incremented as for'1'.

=i.. The value of address itself is printed in the styles indicated by
the format .i. (For i format '1' is printed for the parts of the
instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal integer
that is a repeat count for the format character. While stepping through
a format dot is incremented by the amount given for each format letter.
If no format is given then the last format is used. The format letters
available are as follows.

i n
o 2

o 4
q 2
Q 4
d 2
D 4
x 2
X 4
u 2
U 4

Printed 7/28/82

Disassemble the addr essed instruction.
Print 2 bytes in octal. Al1 octal nmbers output by adb are
preceded by O.
Print 4 bytes in oct al.
Print in signed oct ale
Print long signed octal.
Print in decimal.
Print long decimal.
Print 2 bytes in hexadecimal.
Print 4 bytes in hexadecimal.
Print as an unsigned decimal number.
Print long unsigned decimal.

2/4/82 3

ADB(1)

f 4
F 8
b 1
c 1
C 1

SA

SA

Y 4
a 0

/
?
=

p 4

t 0

r 0
n 0

UNIX Programmer's Manual

Print the 32 bit value as a floating point number.
Print double floating point.
Print the addressed byte in octal.
Print the addressed character.

ADB(1)

Print the addressed character using the standard escape con
vention where control characters are printed as AX and the
delete character is printed as A?
Print the addressed characters until a zero character is
reached.
Print a string using the AX escape convention .(see C above).
.l1 is the length of the string including its zero terminator.
Print 4 bytes in date format (see ctime(3».
Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropr iate type as
indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

Print the addressed value in symbolic form using the same
rules for symbol lookup as a.
When preceded by an integer tabs to the next appropriate tab
stop. For example, 8t moves to the next 8-space tab stop.
Print a space.
Print a neWline.

" ••• " 0
Print the enclosed string.

A Dot is decr emented by the current increment. Nothing is
printed.

+ Dot is incr emented by 1. Nothing is printed.
Dot is decr emented by 1. Nothing is printed.

newline
Repeat the previous command with a count of 1.

[1111 value mask
Words starting at dot are masked with ~ and compared with value
until a match is found. If L is used then the match is for 4
bytes at a time instead of 2. If no match is found then dot is
unchanged; otherwise dot is set to the matched loca tion. If mask
is omitted then -1 is used.

[111w value
Write the 2-byte value into the addressed location. If the com
mand is W, write 4 bytes. Odd addresses are not allowed when
writing to the subprocess address space.

[111m bi ~!!.[1 11
New values for (bI, eI, !!.) are recorded. If less than three
expressions are given then the remaining map parameters are left
unchanged. If the '1' or 'I' is followed by '*' then the second

Printed 7/28/82 2/4/82 4

ADB(l) UNIX Programmer's Manual ADB(l)

segment (b2,e2,~) of the mapping is changed. If the list is ter
minated by'?' or 'I' then the file (objfil or corfil respec
tively) is used for subsequent requests. (So that, for example,
'1m?' will cause 'I' to refer to objfil.)

>name Dot is assigned to the variable or register named.

A shell is called to read the rest of the line following '1'.

$modifier
Miscellaneous commands. The available modifiers are:

<L Read commands from the file L. If this command is executed
in a file, further commands in the file are not seen. If L
is omitted, the current input stream is terminated. If a
count is given, and is zero, the command will be ignored.
The value of the count will be placed in variable ~ before
the first command in L is executed.

«f Similar to < except it can be used in a file of commands
without causing the file to be closed. Variable ~ is saved
during the execution of this command, and restored when it
completes. There is a (small) finite limit to the number of
« files that can be open at once.

>L Append output to the file L, which is created if it does not
exist. If L is omitted, output is returned to the terminal.

? Print process id, the signal which caused stoppage or termi
nation, as well as the registers as Sr. This is the default
if modifier is omitted.

r Print the general registers and the instruction addressed by
pc. Dot is set to pc.

b Print all breakpoints and their associated counts and com
mands.

c C stack backtrace. If address is given then it is taken as
the address of the current frame (instead of a7). If C is
used then the names and (16 bit) values of all automatic and
static variables are printed for each active function. If
count is given then only the first count frames are printed.

d Set the default radix to address and report the new value.
Note that address is interpreted in the (old) current radix.
Thus 10$d never changes the default radix. To make decimal
the default radix, use Ot10$d.

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
d Reset integer input as described in EXPRESSIONS.
q Exit from adb.
v Print all non zero variables in octal.
m Print the address map.

:modifier
Manage a subprocess. Available modifiers are:

Printed 7/28/82 2/4182 5

ADB(l)

..
UNIX Programmer's Manual ADBU)

b~ Set breakpoint at address. The breakpoint is executed
count-l times before causing a stop. Each time the break
point is encountered the command ~ is executed. If this
command is omitted or sets dot to zero then the breakpoint
causes a stop.

d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given explicitly
then the program is entered at this point;' othen1ise the
program is entered at its standard entry point. count
specifies how many breakpoints are to be ignored before
stopping. Arguments to the subprocess may be supplied on
the same line as the command. An argument starting with <
or > causes the standard input or output to be established
for the command. All signals are turned on on entry to the
subprocess.

c.!. The subprocess is continued with signal .!. c .!., see sig
A!l(2). If address is given then the subprocess is contin
ued at this address. If no signal is specified then the
signal that caused the subprocess to stop is sent. Break
point skipping is the same as for r.

sA As for c except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run
as a subprocess as for r. In this case. no s1gnal can be
sent; the remainder of the line is treated as arguments to
the subprocess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially
by adb but are not used subsequently. Numbered variables a·re reserved
for communication as follows.

o The last value printed.
1 The last of fset part of an instruction source.
2 The preY'ious value of variable 1.
9 The count on the last $< or $« command.

On entry the following are set from the system header in the corfil. If
corfil does not appear to be a core file then these values are set from
objfil.

b The base address of the da ta segment.
d The data segment size.
e The entry point.
m The 'magic' number (0407, 0410) •
s The stack segment size.
t The text segment size.

Printed 7/28/82 2/4/82 6

ADB(l) UNIX Programmer's Manual ADB(l)

ADDRESSES

FILES

The address in a file associated with a written address is determined by
a mapping associated with that file. Each mapping is represented by two
triples (bI, eI, ill and (b2, e2, ill and the file address corresponding
to a written address is calculated as follows.

bI<address<eI => file address=address+fl-bI, otherwise,

b2<address<e2 => file address-address+f2-b2,

otherwise, the
prograns with
overlap. If a
used.

requested address is not legal. In some cases (e.g. for
separated I and D space) the two segments for a file may

? or / is followed by an * then only the second triple is

The initial setting of both mappings is suitable for normal a.out and
core files. If either file is not of the kind expected then, for that
file, bi is set to 0, .!!. is set to the maximum file size and 1!. is set
to 0; in this way the whole file can be examined with no addr ess trans
lation.

So that ASh may be used on large files all appropriate values are kept
as signed 32 bit integers.

a.out
core

SEE ALSO
a.out(S), core(S)

DIAGNOSTICS

BUGS

"Adb" when there is no current command or format. Comments about inac
cessible files, syntax errors, abnormal termination of commands, etc.
Exit status is 0, unless last command failed or returned nonzero status.

Use of I for the unary logical negation operator is peculiar.

There doesn't seen to be any way to clear all breakpoints.

Printed 7/28/82 2/4/82 7

ADMIN(l) UNIX Programmer's Manual ADMIN(1)

NAME
admin - create and administer sees files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]]
[-fflag[flag-val]] [-dflag[flag-val]]
[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files

DES eRIPr ION
Admin is used to create new sees files and change parameters of existing
ones. Arguments to admin, which may appear in any order, consist of
keyletter arguments, which begin with -, and named files (note that sees
file names must begin with the characters s.). If a named file doesn't
exist, it is created, and its parameters are initialized according to
the specified keyletter arguments. Parameters not initial ized by a
keyletter argument are assigned a default value. If a named file does
exist, parameters corresponding to specified keyletter arguments are
changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the direc
tory were specified as a named file, except that non-sees files (last
component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is
read; each line of the standard input is taken to be the name of an sees
file to be proc~ssed. Again, non-sees files and unreadable files are
silently ignored.

The keyletter arguments are as follows. Each is explained as though
only one named file is to be processed since the effects of the argu
ments apply independently to each named file.

-n

Printed 6/30/82

This key le tter indica tes that a new sees file is to
be created.

The name of a file fran which the text for a new
sees file is to be taken. The text constitutes the
first delta of the file (see -r keyletter for delta
numbering scheme). If the i keyletter is used, but
the file name is omitted, the text is obtained by
reading the standard input until an end-of-file is
encountered. If this keyletter is omitted, then the
sees file is created empty. Only one sees file may
be created by an admin command on which the i
keyletter is supplied. Using a single admin to
create two or more sees files require that they be
created empty (no -i keyletter). Note that the -i
keyletter implies the -n keyletter.

The release into which the initial delta is
inserted. This keyletter may be used only if the -i
keyletter is also used. If the -r keyletter is not
used, the initial delta is inserted into release 1.

1

ADMIN(I)

-fflag

Printed 6/30/82

UNIX Programmer's Manual ADMIN(I)

The level of the initial delta is always 1 (by
default initial deltas are named 1.1).

The ~ of a file fran which descriptive text for
the sees file is to be taken. If the -t key letter
is used and admin is creating a new sees file (the
-n and/or -i keyletters also used), the de scr iptive
text file name must also be supplied. In the case
of existing sees files: (1) a -t key letter without a
file name causes removal of descriptive text (if
any) currently in the sees file, and (2) a -t
keyletter with a file name causes text (if any) in
the named file to replace the descr iptive text (if
any) currently in the sees file.

This key1etter specifies a flag, and, possibly, a
value for the flag, to be placed in the sees file.
Several f keyletters may be supplied on a single
admin command line. The allowable flags and their
values are:

b Allows use of the -b keyletter on a ~(l) command
to create branch deltas.

cceil The highest release (that is, "ceiling"), a number
less than or equal to 9999, which may be retrieved
by a ~(l) command for editing. The default value
for an unspecified c flag is 9999.

ffloor The lowest release (that is, "floor"), a number
greater than 0 but less than 9999, which may be
retrieved by a get(l) command for editing. The
default value for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a
~(I) command.

i Causes the "No id keywords (ge6)" message issued by
~(l) or" delta(l) to be treated as a fatal error.
In the absence of this flag, the message is only a
warning. The message is issued if no sees identifi
cation keywords (see .w,(l» are found in the text
retrieved or stored in the sees file.

j Allows concurrent .w,(l) commands for editing on the
same SID of an sees file. This allows mUltiple con
current updates to the same version of the sees
file.

llist A list of releases to which deltas can no longer be
made (get -e against one of these "locked" rele ases
fails). The list has the following syntax:

2

ADMINO) UNIX Programmer's Manual

<list> ::= <range> I <list> • <range>
<range> ::- RELEASE NUMBER I a

ADMINO)

The character a in the list is equivalent to speci
fying all releases for the named sees file.

n Causes del taO) to create a "null" delta in each of
those releases (if any) being skipped when a delta
is made in a ~ release (e.g., in making delta 5.1
after delta 2.7, releases 3 and 4.are skipped).
These null deltas serve as "anchor points" so that
branch deltas may later be created from them. The
absence of this flag causes skipped releases to be
non-existent in the sees file preventing branch del
tas from being created from them in the future.

qtext User def mabIe text subs tituted for all occurrences
of the %Q% keyword in sees file text retrieved by
.&!tt.(I) •

DUIlod Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by.&!tt.(l). If the m flag is not speci
fied. the value assigned is the name of the sees
file with the leading s. removed ...

t~ ~ of module in the secs file substituted for all
occurrences of %Y% keyword in sees file text
retrieved by .&!tt.(I).

v [Rim] Causes delta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR
number validity checking program (see delta(l».
(If this flag is set when creating an sees file, the
m keyletter must also be used even if its value is
null).

-dflag Causes removal (deletion) of the specified flag from
an secs file. The -d key letter may be specified
only when processing existing sees files. Several
-d keyletters may be supplied on a single admin com
mand. See the -f key letter for allowable flag
names.

-alogin

llist A list of releases to be "unlocked". See the -f
keyletter for a descr iption of the 1 flag and the
syntax of a list.

A login name, or numerical UNIX group ID, to be
added to the list of users which may make delta~
(changes) to the secs file. A group ID is

Printed 6/30/82 3

ADMIN(!)

-elogin

-y[comment]

-m[mrliftl ,

-h

-z

Printed 6/30/82

UNIX Programmer's Manual ADMIN(1)

equivalent to specifying all login names common to
that group ID. Several a key le tters may be used on
a single admin command line. As many logins, or
numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then
anyone may add deltas.

A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the sees file. Specifying a group ID
is equivalent to specifying all login names common
to that group ID. Several e key1etters may be used
on a single admin command line.

The comment text is inserted into the sees file as a
comment for the initial delta in a manner identical
to that of delta(1). Omission of the -y keyletter
results in a default comment line being inserted in
the form:
date and time created n/lm/DD HH:MM:SS by login
The -y keyletter is valid only if the -i and/or -n
keyletters are specified (that is, a new sees file
is being created).

The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason for creat
ing the initial delta in a manner identical to
delta(1). The v flag must be set and the MR numbers
are validated if the v flag has a value (the name of
an MR number val ida tion program). Diagnostics will
occur if the v flag is not set or MR validation
fails.

Causes admin to check the structure of the sees file
(see sccsfile(S», and to compare a newly computed
check-sum (the slum of all the charact ers in the sees
file except those in the first line) with the
check-sum that is stored in the first line of the
sees file. Appropriate error diagnostics are pro
duced.

This keyletter inhibits writing on the file, so that
it nullifies the effect of any other keyletters sup
plied, and is, therefore, only meaningful when pro
cessing existing files.

The sees file check-sum is recomputed and stored in
the first line of the sees file (see -h, above).

Note that use of this key letter on a truly corrupted
file may prevent future detection of the corruption.

4

ADMIN(l) UNIX Programmer's Manual ADMIN(1)

FILES
The last component of all sees file names must be of the form s.file
~. New sees files are given mode 444 (see chmod(l». Write permis
sion in the pertinent directory is, of course, required to create a
file. All writing done by admin is to a temporary x-file, called
x.file-~, (see ~(l», created with mode 444 if the admin command is
creating a new secs file, or with the same mode as the sces file if it
exists. After successful execution of admin, the sces file is removed
(if it exists), and the x-file is renamed with the name of the sces
file. This ensures that changes are made to the sces file' only if no
errors occurred.

It is recommended that directories containing secs files be mode 755 and
that SCCS files themselves be mode 444. The mode of the directories
allows only the owner to modify sees files contained in the directories.
The mode of the SCCS files prevents any modification at all except by
SCCS commands.

If it should be necessary to patch an sees file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(1). Care JID!ll be
taken! The edited file should always be processed by an admin -h to
check for corruption followed by an admin -z to generate a proper
check-sum. Another admin -h is recommended to ensure the sees file is
valid.

Admin also makes use of a transient lock file (called z.file-~),
which is used to prevent simultaneous updates to the sces file by dif
ferent users. See ~(l) for further information.

SEE ALSO
delta(l), ed(l), get(l), help(l), prs(l), what(l), sccsfile(5).
Source Code Control System User'~ Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS
Use help(l) for explanations.

Printed 6/30/82 5

AR(l) UNIX Programmer's Manual AR(I)

NAME
ar - archive and library maintainer

SYNOPSIS
ar [uvbaill [mrxtdpq] [posname] archivename filename(s) •••

DESCRIPrION
The archive command ~ maintains groups of files combined into a single
archive file. Its main use is to create and update library files as
used by the loader. However, ~ can be used for any similar archiving
purpose. Archives often consist of unlinked program modules.

Key is ~ character from the set mrxtdpq, optionally concatenated
one or more of uvnbail. Archivename is the archive file.
filename(.!) are constituent files in or destined for the archive
The meanings of the key characters are:

with
The

file.

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional
character u is used with r, then only those files with modified
dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the posname
argument must be present and specifies that new files are to be
placed after (a) or before (b or i) posname. Otherwise new files
are placed at the end.

q Quickly append the named files to the end of the archive file.

t

Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. Use
ful only to avoid quadratic behavior when creating a large archive
piece-by-piece.

Print a table of contents of the archive file.
given, all files in the archive are tabled.
only those files are tabled.

If no names are
If names are given,

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

x

v

Extract the named files.
archive are extracted.
file.

If no names are given, all files in the
In neither case does x alter the archive

Verbose. Under the verbose option, AI. gives a file-by-file
description of the making of a new archive file from the old
archive and the constituent files. When used with t, it gives a
long listing of all information about the files. When used with
p, it precedes each file with a name.

Printed 7/21/82 1/5/82 1

AR(l) UNIX Programmer's Manual AR(1)

c Create. Normally ~ will create afile when it needs to. The
create option suppresses the normal message that is produced when
afile is created.

I Local.
/tmp.
tory.

Normally ~ places its temporary files in the directory
This option causes them to be placed in the local direc-

EXAMPLE

FILES

ar rv libar.a text.o

places file text.o in archive libar.a.

ar bm file! archivename file2

changes the location of a file inside an archive. File2 is the file to
be moved. File2 is moved to a new position before file!.

/tmp temporaries

SEE ALSO

BUGS

ld (1), arC 5)

If the same file is mentioned twice in an argument list, it may be put
in the archive twice.
Sufficient disk space must be present to make an entire copy of the
archive or the ~ command will fail.

Printed 7/21/82 !/5/82 2

AS(1) UNIX Programmer's Manual AS(l)

NAME
as - assembler

SYNOPSIS
as [-0 objfile] [-1] [name •••]

DESCRIPl' ION
As assembles the named files, or the standard input if no file name is
specified.

All undefined symbols in the assembly are treated as global.

The relocatable output of the assembly is left on the file obifile; if
that is omitted, A.~ is used.

The -.1 option produces an assembly listing on file objf ile.lst. If the
-.1 option is specified and no -~ parameter is specified, the assembly
listing is placed on A.lst.

EXAMPLE
as -0 file.o filea fileb filec

would assemble the three named files and put the output of the assembly
into file • .Q..

FILES
/tmp/as*
a.out
a.lst

SEE ALSO

default temporary file
default resultant object file
default assembly listing file

ld(l), nm(l), adb(l), a.out(5)

Printed 6/30/82 1

ASM(l) UNIX Programmer's Manual ASM(l)

NAME
asm - motorola format assembler

SYNOPSIS
asm -0 objfile] [-1] [name •••]

DESCRIPTION
AI. asse~bles the named files.

All undefined symbols in the assembly are treated as global.

The relocatable output of the assembly is left on the file ob;file; if
that is omitted, A.~ is used.

The -.1. option produces an assembly listing on file A.lst.

EXAMPLE
as -0 file.o filea fileb filec

would assemble the three named files and put the output of the assembly
into file • .Q..

FILES
.tmp*
a.out
a.1st

SEE ALSO

default temporary file
default resultant object file
default assembly listing file

ld(l), nm(l), adb(l), a.out(S)

Printed 8/16/82 1/8/82 1

ASMCVT(l) UNIX Programmer's Manual . ASMCVT(l)

NAME
asmcvt - assembler format converter (MIT to Motorola)

SYNOPSIS
asmcvt fromfile tofile

DESCRIPrION
Asmcvt copys fromfile to ~ofile converting anyth~g it belives to be in
MIT 68000 assembler format to Motorola assembler format.

The file tofile will be overwritten if it exists.

EXAMPLE
asmcvt file.s file.m

would convert file.s to Motorola format and leave the result in file.m.

SEE ALSO
as (1), asm(1)

BUGS
Not all constructs are recognized, but most of the compiler output
should convert with no trouble.

The location counter symbol
, ,

is not converted.

Printed 8/11/82 1/8/82 1

AT(l) UNIX Programmer's Manual AT(l)

NAME
at - execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION

FILES

At squirrels away a copy of the named file (standard input default> to
be used as input to sh(l) at a specified later time. A cd(l) command to
the current directory is inserted at the beginning, followed by assign
ments to all env iroment variables. When the scr ipt is run, it uses the
user and group ID of'the creator of the copy file.

The time is 1 to 4 digits, with an optional following "A", "p", "N" or
''M'' for AM, PM, noon or midnight. One and two digit nllllbers are taken
to be hours, three and four digits to be hours and minutes. If no
letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day nllllber, or
(2) a day of the week; if the word ''week'' follows invocation is moved
seven days further off. Names of months and days may be recognizably
truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At prograns are executed by
/usr/lib/atrun fran' ~(IM).
often atrun is executed.

periodic execution of the command
The granularity of ~ depends upon how

Standard output or error output is lost unless redirected.

/usr/spool/at/yy.ddd.hhhh.uu

/usr/spool/at/lasttimedone
/usr/spool/at/past
/usr/lib/atrun

/usr /lib/crontab

activity to be performed at hour hhhh of
day ddd of year n. .l!.Y. is a unique
number.
contains hhhh for last hour of activity.
directory of activities now in progress.
program that executes activities that are
due.
cron table entry for running a trun.

SEE ALSO
calendar(l), cron(lM)

DIAGNOSTICS

BUGS

Complains about various syntax errors and times out of range.

Due to the granularity of the execution of /usr/lib/atrun, there may be
bugs in scheduling things almost exactly 24 hours into the future.

Printed 7/28/82 1

AWK(l) UNIX Programmer's Manual AWK(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk -FS] [pattern { action}] [file] •••

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns
specified in the pattern { action } program. With each pattern in pat
~ { action } there can be an associated action that will be performed
when a line of a file matches the pattern. If no action is specified,
the lines that qualify will be printed on the standard output.

Patterns may be specified on the command line, or they may be taken from
an awk command file used with the -f file option.

Files to be examined are read in order; if there are no files named, the
standard input is read. The option '-' means to use the standard input.

Each line from the files is matched against the pattern portion of every
pattern-action statement; the associated action is performed for each
matched pattern.

An input line is made up of fields separated by
default can be changed by using FS, vide infra.)
$1, $2, •••• In contrast to some other programs
first field, in ~ $0 refers to the entire line.

A pattern-action statement has the form

pattern { action }

white space. (This
The fields are denoted
in which "0" is- the

The "pattern" should be enclosed in double quotation marks if it is a
string, and 0 should also be added to the "pattern" to force it to be
explicitly treated as a number.

A missing { action} means print the line; a missing pattern always
matches.

Patterns may be arbitrary Boolean combinations (I, II, &&, and
parentheses) of regular expressions and relational expressions.

Regular expressions must be surrounded by slashes, and the syntax and
metacharacters (as well as the need to escape the metacharacters) fol
lows the same general syntax as does egrep.

If the shell complains, also enclose the expressions in double quotation
marks.

Isolated regular expressions in a pattern apply to the entire line.

Printed 7/8/82 2/2/82 1

AWK(1)
..

UNIX Programmer's Manual AWK(1)

A pattern may also consist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the
first pattern and the next occurrence of the second. The action is per
formed recursively for all such Istart/, /stop/ pairs in the file.

Regular expressions may also be used in relational expressions.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C,
is either - (for contains) or ,- (for does not contain).
is an arithmetic expression, a relational expression, or a
binat10n of these.

and a matchop
A conditional
Boolean com-

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the
first pattern, END the last.

A single character S may be used to separate the fields by starting the
program with

BEGIN { FS = "c" }

or by using the -FS option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current
record; FILENAME, the name of the current input file; OFS, the output
field separator (default blank); ORS, the output record separator
(default newline); and OFMT, the output format for numbers (default
"%. 6g ") •

An action is a sequence of statements. The statements should be con
nected with a backslash before each newline, if they occupy more than
one command line.

A statement can be one of the following:

if (conditional) statement [else statement
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] ••• }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression
next # skip remaining patterns on this input line
exit # skip the rest of the input

Printed 7/8/82 2/2/82 2

AWK(l) UNIX Programmer's Manual AWK(l)

Action statements are terminated by semicolons, new lines or right
braces. Be sure to escape the newline with a backslash immediately
preceding it. Beginning and ending curly braces should be escaped with
single quotation marks, one before the opening brace and one immediately
after the closing brace. (see EXAMPLES, below). That is, enclose the
entire action statement in single quotation marks '{ action }' in order
not to be trapped by the shell.

An empty expression-list stands for the whole line. Expressions take on
string or numeric values as appropriate, and are built using the opera
tors +, -, *, /, %, and concatenation (indicated by a blank). The C
operators ++, --, +=, -=. *=, /=, and %= are also available in expres
sions. Variables may be scalars, array elements (denoted x[i]) or
fields. Variables are initialized to the null string. Array subscripts
may be any string, not necessarily numeric; this allows for a form of
associative memory. Str ing constants must be quoted " ••• ".

The print statement prints its arguments on the standard output (or on a
file if >file is present), separated by the current output field separa
tor, and terminated by the output record separator. The printf state
ment formats its expression list according to the format (see
printf(3)) •

The built-in function length returns the length of its argument taken as
a string, or of the whole line if no argument. There are also built-in
functions exp, 12&, sgrt, and into The last truncates its argument to
an integer. substr(~, m, ~) returns the ~-character substring of ~ that
begins at position~. The function sprintf (fmt, expr, expr, •••)
(Reg.)formats the expressions according to the printf(3) format given by
fmt and returns the resulting string.

EXAMPLES

awk "length> 72" filea

would print lines longer than 72 characters on the standard output.

awk '{ print $2, $1 }' filea

would print the first two fields of each line in opposite order.

awk '{ s += $1 } END {print "sum is", s, "average is", s/NR }' filea

would add up the first column and print the sum and average.

awk '{ for (i = NF; i > 0; --i) print $1 }' filea

would print all the fields of each line in reverse order. The output
prints one field per line, beginning at the end of the file, unless

Printed 7/8/82 2/2/82 3

AWK(l)

FILES

UNIX Programmer's Manual AWK(1)

otherwise directed.

awk "/start/, /stop/" filea

would print all lines between start/stop pattern pairs, for every such
pair in the file.

/usr /lib/awklist error log for awk scripts

SEE ALSO

BUGS

egrep(l), lexCl) , sed(l)
A. V. Aho, B. W. Kernighan~ P. J. Weinberger, Awk - A pattern scanning
and processing language

There are no explicit conversions between numbers and strings. To force
an expression to be treated as a number add 0 to it; to force it to be
treated as a string conca tenate "" to it.

Printed 7/28/82 2/2/82 4

BADBLK(lM) UNIX Programmer's Manual BADBLK(lM)

badblk - program to set or update bad block information

SYNOPSIS
badblk [-w 1 [-m Nl /dev/rXYZ [#s 1

DES CRIPr ION
Badblk sets or updates bad block information.

If invoked with the -x option, write/verify is performed t.O determine if
there is a bad block; otherwise only read is done.

If invoked with the -mN option, the number of alternate blocks will be
set to N. Badblk panics if N > NICALT (currently 70).

/dev/rXYZ is the dev ice name.

#S is one or more block numbers separated by blanks.

If invoked with no specific block numbers and no bad block verification
has been done before, then each block on the disk is checked (either
read or write/verify) and bad block information in block 0 is set up
from scratch.

If invoked with no specific block numbers,. but block 0 already contains
bad block information set up earl ier, then a verifica tion on the whole
disk is performed; any new bad blocks not already on the block 0 table
will be added.

If invoked with the device name plus block numbers, then only the indi
cated blocks are updated in block O.

After alternate blocks are assigned, block 0 is updated and the updated
blocks are verified to make sure alternate blocks are good. If alter
nate blocks are not good, new alternate block numbers are assigned.

The raw device that accesses the entire disk and allows for writing
block zero should be specified.

EXAMPLE
badblk -w /dev/rwlbwO

do a full write/verify on winchester I and upda te the header block. The
rwlbwO specifies raw (r) winchester 1 (wI), the full disk (h), with the
capability of writing block 0 (wO).

badblk /dev/rw1bwO 3754 8123

add blocks 3754 and 8123 to the badblock list.

Printed 7/28/82 1/5/82 1

BASENAME (1) UNIX Programmer's Manual BASENAME (1)

NAME
basename - strip filename affixes

SYNOPSIS
basename string [suffix]

DESCRIPTION
Basename deletes any prefix ending in 'I' and the suffix, if present in
string, from string, and prints the result on the standard output. It
is normally used inside substitution marks' , ~n sh~ll procedures.

EXAMPLE
This shell procedure invoked with the argument lusr/~/cmd/cat.£ com
piles the named file and moves the output to ~ in the current direc
tory:

SEE ALSO
sh(l)

Printed 6/30/82

cc $1
mv a.out 'basename $1

1/5182

,
.c

1

BCO) UNIX Programmer's Manual BC(l)

NAME
be - arbitrary-precision/arithmetic language

SYNOPSIS
bc [-c] [-1] [file •••]

DESCRIPI' ION
Be is an interactive processor for a language that resembles C but pro
vides unlimited preC1Slon arithmetic. It takes input from any files
given, then reads the standard input. The -1 argument st.ands for the
name of an arbitrary precision math library. The syntax for bc programs
is as follows; L means letter a-z, E means expression, S means state
ment.

Comments

Names

are enclosed in /* and */.

simple variables: L
array elements: L [E]
The words "ibase", "abase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E, ••• ,E)

Operators
+ - * / % " (% is remainder; " is power)
++ (pref ix and postf ix; apply to names)
- <= >= != < >
= =+ =- =* =/ =% ="

Statements
E
is; ;S}
if'(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ••• , L) {

auto L, ••• , L

}

Printed 7/28/82

S; ••• S
return (E)

1

BC(l) UNIX Programmer's Manual

Functions in -1 math library
sex) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

BC(l)

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or new-lines may
separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of dc(l).
Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple vari
able simultaneously. All variables are global to the program. "Auto"
variables are pushed down during function calls. When using arrays as
function arguments or defining them as automatic variables empty square
brackets must follow the array name.

Bc is actually a preprocessor for deC!), which it invokes automatically,
unless the -c (compile only) option is present. In this case the~
input is sent to the standard output instead.

EXAMPLE
scale = 20
define e(x){

}

auto a, b, c, i, s
a = 1
b = 1
s = 1
for(i=l; 1==1; i++){

}

a = a*x
b = b*i
c = alb
if(c == 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential
function and

forCi=I; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten
integers.

Printed 7/28/82 2

Bc(1) UNIX Programmer's Manual

FILES
/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper

SEE ALSO
dc(l) •

BUGS

BC - An Arbitrary Precision Desk-Calculator Language
by L. L. Cherry and R. Morris.

No &&, II yet.
For statement must have all three E's •
.52.Yit is interpreted when read, not when executed.

Printed 7/28/82

Bc(1)

3

BDIFF(l) UNIX Programmer's Manual BDIFF(l)

NAME
bdiff - big diff

SYNOPSIS
bdiff fil el file2 [n] [-s]

DESCRIPl'ION

FILES

Bdiff is used in a manner analogous to diff(l) to find which lines must
be changed in two files to bring them into agreement. Its purpose is to
allow processing of files which are too large for diff. Bdiff ignores
lines common to th e beginning of both files, splits the remainder of
each file into A-line segments, and invokes diff upon corresponding seg
ments. The value of A is 3500 by default. If the optional third argu
ment is given, and it is numeric, it is used as the alue for A. This is
useful in those cases in which 3500-line segments are too large for
diff, causing it to fail. If filel (file2) is -, the standard input is
read. The optional -s (silent) argument specifies that no diagnostics
are to be printed by bdiff (note, however, that this does not suppress
possible exclamations by diff. If both optional arguments are speci
fied, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted
to account for the segmenting of the files (that is, to make it look as
if the files had been processed whole). Note that because of the seg
menting of the files, bdiff does not necessarily find a smallest suffi
cient set of file differences.

/tmp/bd 11111

SEE ALSO
diff(l) •

DIAGNOSTICS
Use help(l) for explanations.

Printed 6/30/82 1

"

CAL(l) UNIX Programmer's Manual CAL(1)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also speci
fied, a calendar just for that month is printed. Year can be between 1
and 9999. The month is a number between 1 and 12. The calendar pro
duced is that for England and her colonies.

EXAMPLE

BUGS

cal 9 1752

produces a calendar for September 1752.

The year is always considered to start in January even though this is
historically naive.
Beware that 'cal 82' refers to the early Christian era, not the 20th
century.

Printed 6/30/82 1/5/82 1

CALENDAR(l) UNIX Programmer's Manual CALENDAR(l)

NAME
calendar - reminder serv ice

SYNOPSIS
calendar [-]

DES CRIPr ION

FILES

Calendar consults the file calendar in the current directory and prints
out lines that contain today's or tomorrow's date anywhere in the line.
Most reasonable month-day dates such as "Dec. 7," "december 7,"
"12/7," etc., are recognized, but not "7 December' or "7/12". On
weekends "tomorrow" extends through Monday.

When an
has a
results
control

argument is present, calendar does its job for every user who
file calendar in his login directory and sends him any positive
by mai1(1). Normally this is done daily in the wee hours under
of .£I.Q1l(1M).

calendar
/usr/1ib/ca1prog
/etc/passwd
/tmp/ca1*
/usr/lib/crontab

to figure out today's and tomorrow's dates

SEE ALSO

BUGS

cron(lM), mai1(1).

Your calendar must be public information for you to get reminder ser
vice.
Ca1endar'~ extended idea of "tomorrow" does not account for holidays.

Printed 8/16/82 1

CATCl) UNIX Programmer's Manual CAT(l)

NAME
cat - catenate and print

SYNOPSIS
cat [-u] [-n] [-s] [-v] [-e] [-t] file ...

DESCRIPIION
Cat reads each file in sequence and writes it on the standard output.
Thus

cat file

prints the file, and

cat filel file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument '-' is encountered, cat
reads from the standard input file. Output is buffered in 512-byte
blocks unless the standard output is a terminal, in which case it is
line buffered. The -u option causes the output to be completely unbuf
fered, i.e.: one character at a time.

The option -n causes the output lines to be numbered sequentially from
1. Giving -b with -n causes numbers to be omitted from blank lines.

The option -s causes the output to be single spaced by crushing out mul
tiple adjacent empty lines.

The option -v causes non-printing characters to be printed in a visible
way. Control characters print like AX for control-x; the delete charac
ter (octal 0177) prints as A? Non-ascii characters (with the high bit
set) are printed as M- (for meta) followed by the character of the low 7
bits. A -e option may be given with -v and causes the ends of lines to
be followed by the character '$'; the -t option with -v causes tabs to
be printed as AI.

EXAMPLE
cat -n filea fileb » filec

numbers the lines of filea and fileb and puts the output in filec.

SEE ALSO
cp(l), ex(l), more(l), pr(l), tail(l)

BUGS
Beware of 'cat a b >a' and 'cat a b >b', which destroy the input files
before reading them.

Printed 7/21/82 1/6/82 1

CB(1) UNIX Progrrummer's Manual CB(l)

NAME
cb - C program beautifier

SYNOPSIS
cb [file

DESCRIPl' ION
Cb places a copy of the C program fran the named file, or standard input
if no file name is specified, to the standard output with spacing and
indentation that displays the structure of the program.

EXAMPLE

BUGS

If there is a C program called ~.£ which looks like this:
" #def ine COMING 1

#define GOING 0

main ()
{
/* This is a test of the C Beautifier */
if (COMING)
printf (IIHello, world\n");
else
printf (IIGoodbye, world\n");
}

Then using the cb command as shown below produces the output shown:
cb test. c
#define COMING 1
#define GOING 0

main ()
{

/* This is a test of the C Beautifier */
if (COMING)

printf ("Hello, world\n");
else

printf ("Goodbye, world\n");
}

Beware of 'cb test.c >test.c' which will destroy the input file before
reading it.

Printed 7/21/82 2/24/79 1

ccO) UNIX Programmer's Manual CC(l)

NAME
cc - C compiler

SYNOPSIS
cc [option J ••• file •••

DES CRIPI ION

...

S£ is the UNIX C compiler.

S£ accepts several types of arguments:

Arguments whose names end with '.c' are taken to be C source programs;
they are compiled, and each object program i$ left on the file whose
name is that of the source with '.0' substituted for' .c'. The' .0'
file is normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with '.s' are taken to be
assembly source programs and are assembled, producing a '.0' file.

The following'options are interpreted by S£. See jA(l) for load-time
options.

-c Suppress the loading phase of the compilation, and force an
object ,file to be produced even if only one program is com
piled.

-n Passed on to H to make the text of the resulting program
shared.

-p

-O(KPS)

Arrange for the compiler to produce. code which counts the
number of times each routine is called; also, if loading takes
place, replace the standard startup routine by one which
automatically calls monitor(3) at the start and arranges to
write out a ~.out file at normal termination of execution of
the object program. An execution prof ile can then be gen
erated by use of prof(l).

Invoke an object-code improver (optimizer). If K is speci
fied, certain UNIX kernel optimizer functions are not pe~
formed. If P is specified, stack probe instructions are
removed. (NOTE: P should only be used for the operating sys
tem source.) If S is specified, stack frame optimization is
performed and the debugger, ADB(l), might indicate too few
subroutine parameters on stack trace back.

-R (addr) Passed on to ld, making the resulting object module origin'ed
at addr(hex).

-S Compile the named C programs, and leave the assembler-language
output on corresponding files suffixed '.s'.

Printed 7/28/82 1/5/82 1

ccO)

-P

UNIX Programmer's Manual CC(l)

Run only the macro preprocessor on the named C programs, and
send the result to the corresponding files suffixed. ' .i'

-C prevent the macro preprocessor fran eliding (leaving out) com
ments.

-0 output Name the final executable output file output. If this option
is used the file 'a.out' will be left undisturbed.

-Dnameam
-D~ Define the ~ to the preprocessor, as if by "#define". If

-Uname

-Idir

-v

no definition is given, the name is defined as "1".

Remove any initial def inition of ~.

""include" files whose names do not begin with'/' are always
sought first in the directory of the file argument, then in
directories named in -I options, then in the directory
/usr/include.

print the name of each subprocess as it is executing.

Other arguments are taken to be either loader option arguments, or C
compatible object prograns, typically produced by an earl ier ~ run, or
perhaps libraries of C-compatible routines. These programs, togetper
with the results of any compilations specified, are loaded via LD(I) (in
the order given) to produce an executable program with name a.out.

EXAMPLE

FILES

cc -0 output progI.c prog2.c prog3.c

would compile code in the three named C programs and put the compiled
code into the file output.

file.c
file.o
a.out
/tmp/ctm?
/lib/cpp
/lib/cO
/lib/cl
/lib/c2
/lib/crtO .0

/lib/mcrtO.o
/lib/libc. a
/usr /include
/lib/libm. a

input file
object file
loaded out put
temporary
preprocessor
compiler passl
compiler pass2
optional optimizer invoked with "-0"
runtime st artof f
runtime startof f for prof iling
standard library, see section 3
standard directory for '#include' files
math library

SEE ALSO
monitor(3), prof(l), adb(l), Id(I), lintel) B. W. Kernighan and D. M.
Ritchie, The ~ Programming Language, Prentice-Hall, 1978

Printed 7/28/82 1/5/82 2

ccO) UNIX Programmer's Manual

B. W. Kernighan, Programming in C-A tutorial
D. M. Ritchie, Q Reference Manual

ccO)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self
explanatory. Occasional messages may be produced by the assembler or
loader. Confusing syntax may cause the "c" compiler to indica"te an
error on the line following the actual error.

Printed 7/28/82 117/82 3

CD(l) UNIX Programmer's Manual CD(1)

NAME
cd - change working directory

SYNOPSIS
cd directory

DESCRIPIION
Directory becomes the new working directory. The process must have exe
cute (search) permission in directory. If you are not the owner of a
directory and search permission is denied to others, you cannot change
to that directory, and the message "Permission denied" will result.

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command. It is therefore
recognized and executed by the shells. In csh(l) you may specify a list
of directories in which directory is to be sought as a subdirectory if
it is not a subdirectory of the current directory; see the description
of the cdpath variable in csh(l).

EXAMPLE
cd /unisoft/usr/games

would relocate you to the directory "/unisoft /usr /games" if this direc
tory is executable (searchable) by you.

SEE ALSO.
csh(l), sh(l), pwd(l), chdir(2)

Printed 6/30/82 1/5/82 1

CDC(1) UNIX Programmer's Manual eDc(1)

NAME
cdc - change the delta commentary of an sces delta

SYNOPSIS
cdc -rSID [-mhDrlist]] [-y[comment]] files

DES CRIPr IPN
Cdc changes the delta commentary, for the SID specified by the -r
keyletter, of each named sces file.

Delta commentary is defined to be the Modification Request (MR) and com
ment information normally specified via the delta(!) command (-m and -y
keyletters).

If a directory is named, ~ behayes as though each file in the direc
tory were specified as a named file, except that non-SCeS files (last
component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is
read (see WARNINGS); each line of the standard input is taken to be the
name of an sces file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter
arguments, and file names.

All the described keyletter arguments apply independently to each named
file:

-rSID

-m[mrlist]

Printed 6/30/82

Used to specify the .§.CCS J.Rentification (SID) string
of a delta for which the delta com~ntary is to be
changed.

If the SCCS file has the v flag set (see admin(l»
then a list of MR numbers to be added and/or deleted
in the delta commentary of the SID specified by the
-r keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta(l). In order to delete an
MR, precede the MR number with the character I (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a
"comment" line. A list of all deleted MRs is placed
in the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

If -m is not used and the standard input is a termi~
nal, the prompt MRs? is issued on the standard out
put before the standard input is read; if the stan
dard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments? prompt

1

CDC (1)

-y[comment]

UNIX Programmer's Manual

(see -y keyletter).

MRs in a list are separated
characters. An unescaped
minates the MR. lis t.

CDC(1)

by blanks and/or tab
new-line character ter-

Note that if the v flag has a value (see admin(1»,
it is taken to be the name of a program (or shell
procedure) which validates the correctness of the MR
numbers. If a non-zero exit status is 'returned fram
the MR number validation program, cdc terminates and
the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s)
already existing for the delta specified by the -r
keyletter. The prey ious comments are kept and pre
ceded by a comment line stating that they were
changed. A null comment has no effect.

If -y is not specified and the standard input is a
terminal, the pranpt comments? is issued on the
standard output before the standard input is read;
if the standard input is not a terminal, no prompt
is issued. An unescaped new-line character ter
minates the comment text.

The exact permissions necessary to modify the sces file are docu
mented in the Source Code Control System User'~ Guide. Simply
stated, they are either (1) if you made the delta, you can change
its delta commentary; or (2) if you own the file and directory you
can modify the delta commentary.

EXAMPLES
cdc -r1.6 -m"bl78-12345 !b177-54321 b179-00001" -ytrouble s.file

adds bl78-12345 and bl79-00001 to the MR list, removes bl77-54321 fran
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc -r1.6 s. file
MRs? !bl77-54321 bl78-12345 bl79-00001
comments? trouble

does the same thing.

WARNINGS

FILES

If SCCS file names are supplied to the cdc command via the standard
input (- on the command line), then the -m and -y keyletters must also
be used.

x-file
z-file

(see delta{l»
(see delta(1»

Printed 6/30/82 2

..
CDC(l) UNIX Programmer's Manual CDc(l)

SEE ALSO
admin(l), delta(l), get(l), help(l), prs(l), sccsfile(S).
Source Code Control System User'~ Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS
Use help(l) for explanations.

Printed 6/30/82 3

CHGRP(IM) UNIX Programmer's Manual CHGRP(1M)

NAME
chgrp - change group

SYNOPSIS
chgrp group file •••

DESCRIPrION
Chgrp changes the group-ID of the files to group. The group may be
either a decimal GID or a group name found in the group-ID file.

Only the super-user can change group.

However, you can often work on a copy of a file by copying it to one of
your own directories. See cp(l).

EXAMPLE
chgrp unisoft filea fileb filec

would put the three files in the "unisoft" group.

FILES
/etc/passwd
/etc/group

SEE ALSO
chown(2), passwd(S), group(S)

Printed 7/21/82 1/6/82 1

CHMODO) UNIX Programmer's Manual CHMOD(l)

NAME
chmod - change mode

SYNOPSIS
chmod mode file •••

DESCRIPTION
The mode of each named file is changed according to mode, which may be
absolute or symbolic.

An absolute mode is an octal number constructed from the OR-ing (in
effect, adding up) of the numbers of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic ~ has the form:

[who] ~ permission [~ permission] ...
The ~ part is a combination of the letters u (for user's permissions),
g (group) and 0 (other). The letter a stands for all of the letters
"ugo". If who is omitted, the default is .!. but the setting of the file
creation mask is taken into account.

~ can be + to add permission to the file's mode, - to take away permis
sion and = to assign permission absolutely (all other bits will be
;e;;t) •

Permission is any combination of the letters r (read), w (write), x
(execute), s (set owner or group id) and t (save text - sticky).
Letters u, g or 0 indicate that permission is to be taken from the
current. mode. Omitting permission is only useful with = to take away
all permissions.

EXAMPLES
chmod 755 filename

changes the mode of a
(400+200+100) by owner
execute (4+1) for others.

file you own to: read, write, execute
and read, execute (40+10) for group and read,

An ~ -~ of filename shows [-rwxr-xr-x filename] that the requested mode
is in effect.

chmod '" filename

Printed 7/8/82 1/5/82 1

ClU-lOD(l) UNIX Programmer's Manual CHMOD(l)

will take away all permissions from filename, including yours.

chmod o-w f i1 e

denies write permission to others.

chmod +x file

makes a file executable.

Multiple symbolic modes separated by commas may be given. Operations
are performed in the order specified. The letter s is only useful with
u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
18(1), chmod(2), stat(2), umask(2), chown(lM)

Printed 7/8/82 1/5/82 2

CHOWN(lM) UNIX Programmer's Manual CHOWN(lM)

NAME
chown - change owner

SYNOPSIS
chown owner file •••

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either
a decimal user ID or a login name found in the password file. The pass
word file is /etc/passwd.

Only the super-user can change owner.

However, you can often work on a copy of a file by copying it to one of
your own directories. See cp(l).

EXAMPLE
chown unisoft filea fileb filec

would make "unisoft" the owner of the three files.

FILES
/etc/passwd
/etc/group

SEE ALSO
chown(2), passwd(S), group(S)

Printed 7/21/82 2/4/82 1

CLEAR(1) UNIX Programmer's Manual

NAME
clear - clear terminal screen

SYNOPSIS
clear

DESCRIPTION

CLEAR(1)

Clear clears your screen if this is possible. It looks in the environ
ment for the terminal type and then in /etc/termcap to fi~re out how to
clear the screen.

EXAMPLE
clear

clears the screen.

FILES
/etcltermcap terminal capability data base

Printed 6/30/82 1/8/82 1

CLRI(lM) UNIX Programmer's Manual CLRI(lM)

clri - clear i-node

SYNOPSIS
clri filesystem i-number 000

DESCRIPTION
N.B.: Clri is made obsolete for normal file system repair work by
fsck(lM).

Clri writes zeros on the i-nodes with the decimal i-numbers on the
filesystem. After clri, any blocks in the affected file will show up as
'missing' in an ~(l) of the filesystem.

Read and write permission is required on the specified file system dev
ice. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some
reason appears in no directory. If it is used to zap an i-node which
does appear in a directory, care should be taken to track down the entry
and remove it. Otherwise, when the i-node is reallocated to some new
file, the old entry will still point to that file. At that point remov
ing the old entry will destroy the new file. The new entry will again
point to an unallocated i-node, so the whole cycle is likely to be
repeated again and again.

SEE ALSO
fsck(lM)

BUGS
If the file is open, ~ is likely to be ineffective.

Printed 7/8/82 1

COL(l) UNIX Programmer's Manual COL(l)

NAME
col - filter reverse line feeds

SYNOPSIS
col [-bfx]

DES CRIPr ION
Col is used for preparing multicolumn output on printers using the nroff
text formatting package. Col enables proper creation of columns by
keeping the printer on the same line until all column parts have been
printed. It performs the line overlays implied by reverse line feeds
(ESC-7 in ASCII) and by forward and reverse half line feeds (ESC-9 and
ESC-8). Col is particularly useful for filtering multicolumn output
made with the' .rt' command of nroff and output resulting from use of
the tbl(l) preprocessor.

Although col accepts half line motions in its input, it normally does
not emit them on output. Instead, text that would appear between lines
is moved to the next lower full line boundary. This treatment can be
suppressed by the -f (fine) option; in this case the output from col may
contain forward half line feeds (ESC-9), but will still never contain
either kind of reverse line motion.

If the -b option is given, col as sumes that the output dev ice in use is
not capable of backspacing. In this case, if several characters are to
appear in the same place, only the last one read will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to
start and end text in an alternate character set. The character set
(primary or alternate) associated with each printing character read is
remembered; on output, SO and SI characters are generated where neces
sary to maintain the correct treatment of each character.

Col normally converts white space to tabs to shorten printing time. If
the -x option is given, this conversion is suppressed.

All control characters are removed from the input except space, back
space, tab, return, newline, ESC (033) followed by one of 7, 8, 9, SI,
SO, and VT (013). This last character is an alternate form of full
reverse line feed, for compatibility with some other hardware conven
tions. All other non-printing characters are i'gnored.

EXAMPLE

nroff -ms filealcol

pipes multicolumn nroff output through the col filter to enable proper
creation of columns.

SEE ALSO
trof f(1), tbl (1)

Printed 6/30/82 1/8/82 1

COLO)

BUGS

UNIX Programmer's Manual COLO)

~ can't back up more than 128 lines. There must not be more than 800
characters, including backspaces, on a line.

Printed 6/30/82 1/6/82 2

eOMB(l) UNIX Programmer's Manual eOMB(1)

comb - combine sees deltas

SYNOPSIS
comb [-0] [-s] [-psid] [-clist] files

DESCRIPTION
Comb generates a shell procedure (see Ah(1» which, when run, will
reconstruct the given sees files. The reconstruct ed files will, hope
fully, be smaller than the original files. The arguments may be speci
fied in any order, but all keyletter arguments apply to all named sees
files. If a directory is named, comb behaves as though each file in the
directory were specified as a named file, except that non-sees files
(last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input
is read; each line of the standard input is taken to be the name of an
sees file to be processed; non-sees files and unreadable files are
silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though
only one named file is to be processed, but the effects of any keyletter
argument apply independently to each named file.

-p'SID The ACes IDenti~ication string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed
file.

-clist A list (see .&!tt(l) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get -e generated, this argument causes the recon
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed at
the most recent ancestor. Use of the -0 key1etter may decrease
the size of the reconstructed sees file. It may also alter the
shape of the delta tree of the original file.

-s This argument causes SQJJ!h. to generate a shell procedure which,
when run, will produce a report giving, for each file: the file
name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original - combined) / original
It is recommended that before any sees files are actually com
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf
deltas and the minimal number of ancestors needed to preserve the tree.

Printed 6/30/82 1

COMBO) UNIX Programmer's Manual COMB(l)

FILES
s.COMB
comb?????

The name of the reconstruct ed sces file.
Temporary •

SEE ALSO
adminO), deltaO), getO), help(l), prsO), sccsfile(S).
Source Code Control System ~'~ Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be
larger than the original.

Printed 6/30/82 2

COMM(l) UNIX Programmer's Manual COMM(l)

comm - select or reject lines COUlmn to two sorted files

SYNOPSIS
comm - [123]] filel file2

DESCRIPT ION
~ reads filel and file2, which should be ordered in ASCII collating
sequence, and produces a three column output: lines only in filel; lines
only in file2; and lines in both files. The filename ' ... ' means the
standard input for file 1 (or file 2).

Flags 1, 2, or 3 suppress printing of the corresponding column.

EXAMPLES
comm -12 filea fileb

prints only the lines COUlmn to filea and fileb.

comm -23 filea fileb

prints only lines in the first file but not in the second.

comm -123 filea fileb

is not an option, as it suppresses all output.

comm -3 filea fileb

prints only the lines that differ in the two files.

SEE ALSO
cmp(l), diff(l)

Printed 6/30/82 1/8/82 1

cpO) UNIX Programmer's Manual CpO)

cp - copy

SYNOPSIS
cp filel file2

cp file ••• directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 'are preserved
if it already existed; the mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with
their original file-names.

~ refuses to copy a file onto itself.

EXAMPLE
cp alpha beta gamma /unisoft/barbara

places copies of the three files in the directory barbara.

SEE ALSO
cat(l), pr(l), mv(l)

Printed 7/8/82 1

CRON(lM) UNIX Programmer's Manual CRON(lM)

cron - clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION

FILES

~ executes commands at specified dates and times according to the
instructions in the file /usr/lib/crontab. Since ~ never exits, it
should only be executed once. This is best done by running ~ from
the initialization process through the file /etc/rc; see init(lM).

Crontab consists of lines of six fields each. The fields are separated
by spaces or tabs. The first five are integer patterns to specify the
minute (0-59), hour (0-23), day of the month (1-31), month of the year
(1-12), and day of the week (1-7 with l=monday).

Each of these patterns may contain a number in the range above; two
numbers separated by a minus meaning a range inclusive; a list of
numbers separated by commas meaning any of the numbers; or an asterisk
meaning all legal values. The sixth field is a string that is executed
by the Shell at the specified times. A percent character in this field
is translated to a new-line character. Only the first line (up to a %
or end of line) of the command field is executed by the Shell. The
other lines are made available to the command as standard input.

Crontab is examined by ~ every minute.

/usr/lib/crontab

Printed 7/21/82 1/25/82 1

CRYPT(l) UNIX Programmer's Manual CRYPT(l)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output.
The password is a key that selects a particular transformation. If no
password is given, crypt demands a key from the terminal and turns off
printing while the key is being typed in. Crypt encrypts and decrypts
with the same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those trea~ed by the editor
ed in encryption mode.

The security of encrypted files depends on three factors: the fundamen
tal method must be hard to solve; direct search of the key space must be
infeasible; 'sneak paths' by which keys or cleartext can become visible
must be minimized.

Crypt implements a one-rotor machine designed along the lines of the
German Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work required
is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e. to take a substantial frac
tion of a second to compute. However, if keys are restricted to (say)
three lower-case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of mach ine time.

Since the key is an argument to the crypt command, it is potentially
visible to users executing U(l) or a derivative. To minimize this pos
sibility, crypt takes care to destroy any record of the key immediately
upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

/devltty
/lib/makekey

for . typed key
to generate a key

SEE ALSO
ed(l), crypt(3), makekey(l)

BUGS
There is no warranty of merchantability nor any warranty of fitness for

Printed 7/28/82 1

CRYPT(l) UNIX Programmer's Manual CRYPT(l)

a particular purpose nor any other warranty, either express or implied,
as to the accuracy of the enclosed materials or as to their suitability
for any particular purpose. Accordingly, neither Bell Telephone Labor~
tories nor UNISOFT Corporation (Berkeley) assumes any responsibility for
their use by the recipient. Further, neither Bell Laboratories nor
UNISOFT Corporation (Berkeley) assumes any obligation to furnish any
assistance of any kind whatsoever, or to furnish any additional informa
tion or documentation.

Printed 7/28/82 2

CSH(l) UNIX Programmer's Manual CSH(l)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
csh -cef instvVxX] [arg •••

DESCRIPrION
Csh is a command language interpreter incorporating a history mechanism
(see History Substitutions) and a C-like syntax.

An instance of csh begins by executing commands from the file ' .cshrc'
in the ~ directory of the invoker. If this is a login shell then it
also executes commands from the file ".login" there. It is typical for

'c users on crt's to put the command "stty crt" in their .login file, and
to also invoke ~(l) there.

In the normal case, the shell will then begin reading commands from the
terminal, prompting with'%'. Processing of arguments and the use of
the shell to process files containing command scripts will be described
later.

The shell then repeatedly performs the following actions: a line of com
mand input is read and broken into words. This sequence of words is
placed on the command history list and then parsed. Finally each com
mand in the current line is executed.

When a login shell terminates, it executes commands from the file
'.logout' in the user's home directory.

LEXICAL STRUCTURE
The shell splits input lines into words at blanks "and tabs with the fol
lowing exceptions. The characters "&" "I" ";" "<" ">" "(" ")" form
separate words. If doubled in '&&', '11', '«' or '»' these pairs form
single words. These parser metacharacters may be made part of other
words, or their special meaning may be prevented, by preceding them with
a backs lash, "\". A newline preceded by a ' \' is equivalent to a blank.
It is usually necessary to use the backslash to "escape" the parser
metacharacters when you want to use them literally rather than as meta
characters.

Strings enclosed in matched pairs of quotation marks, either single or
double quotation marks, "'", 11'11 or '''''', form parts of a word. Metachar
acters in these strings, including blanks and tabs, do not form separate
words. Such quotations have semantics to be described subsequently.

Within pairs of single or double quotation marks a newline (carriage
return) preceded by a '\' gives a true newline character. This is used

, to set up a file of strings separated by n~lines, as for fgrep(l).

When the shell's input is not a terminal, the character "ffo" introduces a
comment which continues to the end of the input line. It is prevented
from having this special meaning when preceded by '\' or if bracketed by

Printed 7/8/82 1/13/82 1

eSH(l) UNIX Programmer's Manual eSH(l)

a pair of single or double quotation marks.

eOMMANDS
A simple command is a sequence of words, the first of which specifies
the command to be executed.

A simple command or a sequence of simple commands separated by '1' char
acters forms a pipeline. The output of each command in a pipeline is
connected to the input of the next.

Sequences of pipelines may be separated by';', and are then executed
sequent1ally. A sequence of pipelines may be executed without immedi
ately waiting for it to terminate by following it with an "&", which
means "run it in background".

Parentheses "(" and ")" around a pipel ine or sequence of pipel ines cause
the whole series to be treated as a simple command, which may in turn be
a component of a pipeline, etc. It is also possible to separate pipe
lines with '11' or '&&' indicating, as in the e language, that the
second is to be executed only if the first fails or succeeds respec
tively. (See Expressions.)

PROCESS I.D. NUMBERS
When a process is run in background with '&', the shell prints a line
which looks like:

1234

indicating that the process which was started asynchronously was number
1234.

STATUS REPORTING
This shell learns immediately whenever a process changes state. It nor
mally informs you whenever a job becomes blocked so that no further pro
gress is possible, but only just before it prints a prompt. This is
done so that it does not otherwise disturb your work.

To check on the status of a process, use the ~ (process status) com
mand.

SUBSTITUTIONS
We now describe the various transformations the shell performs on the
input in the order in which they occur.

History substitutions

History substitutions place words from previous command input as por
tions of new commands, making it easy to repeat commands, repeat argu
ments of a previous command in the current command, or fix spelling mis
takes in the previous command with little typing and a high degree of
confidence.

Printed 7/8/82 1/13/82 2

CSR(I) UNIX Programmer's Manual CSH(I)

History substitutions begin with the character '(' and may begin any
where in the input stream (with the proviso that they do not nest.)

This '1' may be preceded by an '\' to turn off its special meaning; for
convenience, a '1' is also passed unchanged when it is followed by a
blank, tab, newline, '=' or '('.

Therefore, do ~ put a space after the '1' and the command reference
when you are invoking the shell's history mechanism. (History substitu
tions also occur when an input line begins with '1' •. This special
abbreviation will be described later.)

An input line which invokes history substitution is echoed on the termi
nal before it is executed, as it would look if typed out in full.

The she1l's history list, which may be seen by typing the "history" com
mand, contains all commands input from the terminal which consist of one
or more words. History substitutions reintroduce sequences of words
from these saved commands into the input stream. The history variable
controls the size of the input stream. The previous command is always
retained, regardless of its value. Commands are numbered sequentially
from 1.

Consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *WTite.c

The commands are shown with their event numbers. It is not
necessary to use event numbers, but the current event number can
part of the prompt by placing an '1' in the prompt string. This
by SETting Prompt = I and the prompt character of your choice.

usually
be made
is done

For example, if the current event is number 13, we can call up the com
mand recorded as event 11 in several ways: as !-2 [i.e., 13-2];

by the first letter of one of its command words, such as !c referring to
the ' c' in,W,;

or Iwri for event 9, or by a string contained in a word in the command
as in '11mic1' also referring to event 9.

These forms, without further modification, simply reintroduce the words
of the specified events, each separated by a single blank. As a special
case '!!' refers to the previous command; thus '!!' alone is essentially
a~.

Words are selected from a command event and acted upon according to the
following formula:

Printed 7/8/82 1/13/82 3

CSH(I) UNIX Programmer's Manual CSH(l)

event:position:action

The "event" is the command you wish to retrieve. As mentioned above" i:
may be summoned up by event number and in several other ways. All that
the "event" notation does is to tell the shell which command you have in
mind.

"Position" picks out the words from the command event on which you want
the "action" to take place. The "position" notation can do anything
from altering the command completely to making same very minor substitu
tion, depending on which words from the command event you specify with
the "position" notation.

'To select words from a command event, follow the event specification
with a ':' and a designator (by position) for the desired words.

The words of a command event are picked out by their position in the
input line. Positions are numbered from 0, the first word (usually com
mand) being position 0, the second word having position 1, and so forth.
If you designate a word fram the command event by stating its position,
that means you want to include it in your revised command. All the
words that you want to include in a revised command must be designated
by position notation in order to be included.

The basic position designators are:

° first (command) word
n ~'th argument
t first argument, i.e. '1'
$ last argument
% matches the word of an 1s1 search which immediately

precedes it; used to strip one word out of a command
event for use in another command.
Example: ! 1four1:%:p prints "four".

Printed 7/8/82 1/13/82 4

eSH(l) UNIX Programmer's Manual

~-~ range of words (e.g. 1-3 means 'from position
1 to position 3').

-~ abbreviates 'O-~
* stands for '1-$', or indicates position 1 if only one

word in event.
~* abbreviates '~-$' where x is a position number.
~- like '~*' but omitting last word '$'

eSH(l)

The ':' separating the event specification fram the word designator can
be omitted if the argument selector begins with a '1', ":$', ' *' "_" or
"%".

Modifiers, each preceded by a ':', may be used to act on the designated
words in the specified command event. The following modifiers are
defined:
h Remove a trailing pathname component, leaving the head.
r Remove a trailing '.xxx' component, leaving the root name.
e Remove all but the extension' .xxx' part.
s/old/new/ Substitute ~ for old
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change globally, prefixing the above, e.g. 'g&'.
p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a 'g' the modification is applied only to the first
modifiable word. With substitutions, it is an error for no word to be
applicable.

The left hand side of substitutions are not regular expressions in the
sense of the editors, but rather strings. Any character may be used as
the delimiter in place of 'I'; a '\' quotes the delimiter into the ~ and
~ strings. The character '&' in the right hand side is replaced by the
text from the left. A '\' quotes '&' also. A null 1 uses the previous
string either fram a ~ or fram a contextual scan string ~ in '11~1'.
The trailing delimiter in the substitution may be omitted if (but only
if) a newline follows immediately as may the trailing '1' in a contex
tual scan.

A history reference may be given without an event specification, e.g.
, 1$'. In this case the reference is to the previous command. If a pre
vious history reference occurred on the same line, this form repeats the
previous reference. Thus '11fo011 1$' gives the first and last argu
ments from the command matching '1fo01'.

You can quickly make substitutions to the previous command line by using
the '1' character as the first non-blank character of an input line,
This is equivalent to 'l:s1' providing a convenient shorthand for sub
stitutions on the text of the previous line. Thus '1lb1lib' fixes the
spelling of "lib" in the previous command. Finally, a history substitu
tion may be surrounded with '{' and '}' if necessary to insulate it from

Printed 7/8/82 1/13/82 5

CSH(l) UNIX Programmer's Manual CSH(l)

the characters which follow. Thus, after 'Is -ld -paul' we might do
, I {l}a' to do ' 1s -ld -paula', while ' !la' would look for a com!l:.an.~
starting'la'.

Quotations with ' and II

The quotation of strings by'" and 'II' can be used to prevent all or
some of the remaining substitutions which would otherwise take place if
these characters were interpreted as ''metacharacters'' or "wild card
matching characters". Strings enclosed in single quotes, ", are
prevented any further interpretation or expansion. Strings enclosed in
'II' may still be variable and command expanded as described below.

In both cases the resulting text becomes (all or part of) a single word;
only in one special case (see Command Substitution below) does a 'II"
quoted string yield parts of more than one word; "'II quoted strings
never do.

Alias substitution

The shell maintains a list of aliases which can be establi~hed
displayed and modified by the alias and unalias commands. After a com'
mand line is scanned, it is parsed into distinct commands and the firs '-_
word of each command, 1eft-to-right, is checked to see if it has 81

alias. If it does, then the text which is the alias for that command i::
reread with the history mechanism available as though that command wer::
the previous input line. The resulting words replace the command ~nct
argument list. If no reference is made to the history list, then the
argument list is left unchanged.

Thus if the alias for 'ls' is 'ls -1' the command 'ls lusr' would map to
"ls -1 lusr", the argument list here being undisturbed. Similarly if
the alias for 'lookup' was 'grep It letclpasswd' then "lookup bill"
would map to "grep bill letc/passwd".

If an alias is found, the word transformation of the input text is per
formed and the aliasing process begins again on the reformed input line.
Looping is prevented if the first word of the new text is the same as
the old by flagging it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax.
Thus we can 'alias print 'pr \ 1* I 1pr'''' to make a command which X'.§.
its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a
list of zero or more words. Some of these variables are set by the
shell or referred to by it. For instance, the argv variable is an image
of the shell's argument list, and words of this variable's value are
referred to in special ways.

Printed 7/8/82 1/13/82 6

CSH(l) UNIX Programmer's Manual

The values of variables may be displayed and changed by using
and unset commands. Of the variables referred to by the shell
are toggles; the shell does not care what their value is, only
they are set or not. For instance, the verbose variable is
which causes command input to be echoed. The setting of this
results from the -v command line option.

CSH(l)

the .ill.
a number
whether

a toggle
variable

Other operations treat variables numerically.
numeric calculations to be performed and the
able. Variable values are, however, always
more) strings. For the purposes of numeric
is considered to be zero, and the second and
word values are ignored.

The '@' command permits
result assigned to a vari
represented" as (zero or

operations, the null string
subsequent words of mu1ti-

After the input line is a1iased and parsed, and before each command is
executed, variable substitution is performed keyed by '$' characters.
This expansion can be prevented by preceding the '$' with a '\' except
within ''''s where it always occurs, and within "'s where it never
occurs. Strings quoted by'" are interpreted later (see Command ~
stitution below) so '$' substitution does not occur there until later,
if at all. A '$' is passed unchanged if followed by a blank, tab, or
end-of-line.

Input/output redirections are recognized before variable expansion, and
are variable expanded separately. Otherwise, the command name and
entire argument list are expanded together. It is thus possible for the
first (command) word to this point to generate more than one word, the
first of which becomes the command name, and the rest of which become
arguments.

Unless enclosed in 'II' or given the' :q' modifier the results of vari
able substitution may eventually be command and filename substituted.
Within ,,,, a variable whose value consists of multiple words expands to
a (portion of) a single word, with the words of the variables value
separated by blanks. When the ':q' modifier is applied to a substitu
tion the variable will expand to mUltiple words with each word separated
by a blank and quoted to prevent later command or filename substitution.

Metasequences for variable substitution

The following metasequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a
variable which is not set.

$name
${name}

Are replaced by the words of the value of variable ~, each
separated by a blank. Braces insulate ~ from following charac
ters which would otherwise be part of it. Shell variables have
names consisting of up to 20 letters and digits starting with a
letter. The underscore character is considered a letter.
If ~ is not a shell variable, but is set in the environment,

Printed 7/8/82 1/13/82 7

eSR(1) UNIX Programmer's Manual eSR(l)

then that value is returned (but : modifiers and the other .tU:':i'\".-3

given below are not available in this case).

$name [selector]
${name[selector]}

May be used to select only some of the words from the value co:
~. The selector is subjected to '$' substitution and may cons~G~
of a single number or two numbers separated by a '-' The first
word of a variables value is numbered '1'. If the first number of
a range is omitted it defaults to '1'. If the last" member of ~
range is omitted it defaults to '$#name'. The selector '*' selects
all words. It is not an error for a range to be empty if th.=
second argument is omitted or in range.

$#name
${#name}

$0

Gives the number of words in the variable.
later use in a '[selector]'.

This is useful f~""
.1..1':'

Substitutes the name of the file from which command input is bein~_
read. An error occurs if the name is not known.

$number
${number}

Equivalent to '$argv{number]'.

Equivalent to '$argv[*]'.

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied to the sub
stitutions above as may ':gh', ':gt' and ':gr'. If braces '{' '}'
appear in the command form then the modifiers must appear within the
braces. The current implementation allows only one ':' modifier on each
, $' expansion.

The following substitutions may not be modified with ':' modifiers.

$?name
${?name}

$10

$$

$<

Substitutes the string '1' if name is set, '0' if it is not.

Substitutes '1' if the current input filename is know, '0' if it is
not.

Substitute the (decimal) process number of the (parent) shell.

Substitutes a
interpretation

line from
thereafter.

the standard
It can be

input,
used

with no
to read

further
from the

Printed 7/8/82 1/13/82 8

CSH(l) UNIX Programmer's" Manual CSH(l)

keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are
applied selectively to the arguments of builtin commands. This means
that portions of expressions which are not evalua ted are not subjected
to these expansions. For commands which are not internal to the shell,
the command name is substituted separately fran the argument list. This
occurs very late, after input-output redirection is performed, and in a
chi! d of the main sh ell. .

Command substitution

Command substitution is indicated by a command enclosed in ", The
output from such a command is normally broken into separate words at
blanks, tabs and newlines, with null words being discarded, this text
then replacing the original string. Within '"'s, only newlines force
new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note
that it is thus possible for a command substitution to yield only part
of a word, even if the command outputs a complete line.

Filename substitution

If a word contains any of the characters '*', '1', '[' or '{' or begins
with the character '-', then that word is a candidate for filename sub
stitution, also known as 'globbing'. This word is then regarded as a
pattern, and replaced with an alphabetically sorted list of file names
which match the pattern. In a list of words specifying filename substi
tution it is an error for no pattern to match an existing file name, but
it is not required for each pattern to match. Only the metacharacters
'*', '1' and '[' imply pattern matching, the characters ,-, and '{'
being more akin to abbrev iations.

In matching filenames, the character'.' at the beginning of a filename
or immediately following a '1', as well as the character '1' must be
matched explicitly. The character '*' matches any string of characters,
including the null string. The character '1' matches any single charac
ter. The sequence '[•••)' matches anyone of the characters enclosed.
Within '[•••]', a pair of characters separated by '-' matches any char
acter lexically between the two.

The character ,-, at the beginning of a filename is used to refer to
home directories. Standing alone, i.e. ,-, it expands to the invokers
home directory as reflected in the value of the variable home. When fol
lowed by a name consisting of letters, digits and '-' characters the
shell searches for a user with that name and substitutes their home
directory; thus '-ken' might expand to 'Iusrlken' and '-ken/chmach' to
'/usr/ken/chmach'. If the character ,-, is followed by a character
other than a letter or '1' or appears not at the beginning of a word, it

Printed 7/21182 1/13182 9

CSH(I) UNIX Programmer's Manual CSH(1)

is left undisturbed.

The metanotation 'a{b,c,d}e' is a shorthand for 'abe ace ade'. Left to
right order is preserved, with results of matches being sorted
separately at a low level to preserve this order. This construct may be
nested. Thus '-source/sl/{oldls,ls}.c' expands to
"/usr /source/sl/oldls. c /usr /source/sl/ls. c" whether or not these files
exist without any chance of error if the home directory for 'source' is
'/usr/source'. Similarly ' •• /{memo,*box}' might expand to ' •• /memo
•• /box •• /mbox'. (Note that 'memo' was not sorted with the results of
matching '*box'.) As a special case '{', '}' and '{}' are 'passed undis
turbed.

Input /output

The standard input and standard output of a command may be redirected
with the following syntax:

< name
Open file ~ (which is first variable, command and filename
expanded) as the standard input.

« word
Read the shell input up to aline which is identical to word. Word
is not subjected to variable, filename or command substitution, and
each input line is compared to word before any substitutions are
done on this input line. Unless a quoting '\', '''', ", or ",
appears in word variable and command substitution is performed on
the intervening lines, allowing '\' to quote '$', '\' and "'.
Commands which are substituted have all blanks, tabs, and new lines
preserved, except for the final newline which is dropped. The
resultant text is placed in an anonymous temporary file which is
given to the command as standard input.

> name
>! name
>& name
>&1 name

The file ~ is used as standard output. If
exist then it is created; if the file exists,
previous contents being lost.

the file does not
it is truncated, its

If the variable noclobber is set, then the file must not exist or
be a character special file (e.g. a terminal or '/dev/null') or an
error results. This helps prevent accidental destruction of files.
In this case the '1' forms can be used and suppress this check.

The forms involving '&' route the diagnostic output into the speci
fied file as well as the standard output. Name is expanded in the
same way as '<' input filenames are.

Printed 7/21/82 1/13/82 10

CSH(l)

» name
»& name
»1 name
»&1 name

UNIX Programmer's Manual CSH(l)

Uses file ~ as standard output like '>' but places output at the
end of the file. If the variable noclobber is set, then it is an
error for the file not to exist unless one of the '!' forms is
given. Otherwise similar to '>' •

A command receives the env iroment in which the shell wa.s invoked as
modified by the input-output parameters and the presence of the command
in a pipeline. Thus, unlike some prey ious shells, commands run from a
file of shell commands have no access to the text of the commands by
default; rather they receive the original standard input of the shell.
The '«' mechanism should be used to present inline data. This permits
shell command scripts to function as components of pipelines and allows
the shell to block read its input.

Diagnostic output may be directed through a pipe with the standard out
put. Simply use the form '1&' rather than just '1'.

Expres sions

A number of the builtin commands (to be described subsequently) take
expressions, in which the operators are similar to those of C, with the
same precedence. These expressions appear in the @, exit, if, and while
commands. The following operators are available:

%
II &&

()
t & =. != ... - !- <= >. < > « » + * /

Here the precedence increases to the right, "_" "!=" "=-" and "!-",
"<=,, ">_" n<" and ">", "«" and "»", "+" and "_", "*" "/" and "%"
being, in groups, at the same level. The "_" n!=" " ... -" and "I-II opera
tors compare their arguments as strings; all others operate on numbers.
The operators '.-' and '1-' are like '1=' and '=.' except that the right
hand side is a pattern (containing, e.g. '*'s, '1's and instances of
'[•••]') against which the left hand operand is matched. This reduces
the need for use of the switch statement in shell scripts when all that
is really needed is pattern matching.

Strings which begin with '0' are considered octal numbers. Null or
missing arguments are considered '0'. The result of all expressions are
strings, which represent decimal numbers. It is important to note that
no two components of an expression can appear in the same word; except
when adjacent to components of expressions which are syntactically sig
nificant to the parser ('&' '1' '<' '>' '(' ')') they should be sur
rounded by spaces.

Also available in expressions as primitive operands are command execu
tions enclosed in '{' and '}' and file enquiries of the form '-~ name'
where ~ is one of:

Printed 7/21/82 1/13/82 11

CSR{l) UNIX Programmer's Manual CSR(l)

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and t~en tested to
see if it has the specified relationship to the real user. If the file
does not exist or is inaccessible, then all enquiries return false, i.e.
'0'. Command executions succeed, returning true, i.e. '1', if the com
mand exits with status 0, otherwise they fail, returning false, i.e.
'0'. If more detailed status information is required then the command
should be executed outside of an expression and the variable status
examined.

CONTROL FLOW
The shell contains a number of commands which can be used to regulate
the flow of control in command files (shell scripts) and (in limited but
useful ways) from terminal input. These commands all operate by forcing
the shell to reread or skip in its input and, due to the implementation,
restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else
form of the if statement require that the major keywords appear in a
single simple command on an input line as shown below.

If the shell's input is not seekable, the shell buffers up input when
ever a loop is being read and performs seeks in this internal buffer to
accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto's will succeed on non-seekable inputs.)

BUILTIN COMMANDS
Builtin commands are executed within the shell. If a builtin command
occurs as any component of a pipeline except the last then it is exe
cuted in a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the
alias for name. The final form assigns the specified wordlist as
the alias of ~; wordlist is command and filename substituted.
~ is not allowed to be alias or unalias.

break
Causes execution to resume after the end of the nearest enclosing
foreach or while. The remaining commands on the current line are
executed. Multi-level breaks are thus possible by writing them all
on one line.

Printed 7/21/82 1/13/82 12

CSR(l) UNIX Programmer's Manual CSR(l)

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shells working directory to directory~. If no argu
ment is given then change to the home directory of the user.
If ~ is not found as a subdirectory of the current directory
(and does not begin with 'I', ' ./' or ' •• /'), then each component
of the variable cdpath is checked to see if it has a subdirectory
~. Finally, if all else fails but ~ is a shell variable whose
value begins with '/', then this is tried to see if it is a direc
tory.

continue
Continue execution of the nearest enclosing while or foreach. The
rest of the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should
come after all ~ labels.

echo wordlist
echo -n wordlist

The specified words are written to the shells standard output,
separated by spaces, and terminated with a newline unless the -n
option is specified.

else
end
endif
endsw

See the description of the foreach, if, switch, and while state
ments below.

exec command
The specified command is executed in place of the current shell.

exit
exit (expr)

The shell exits either with the value of the status variable (first
form) or with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable ~ is successively set to each member of wordlist

Printed 7/21/82 1/13/82 13

CSH(l) UNIX Programmer's Manual CSH(l)

and the sequence of commands between this command and the matching
end are executed. (Both foreach and end must appear alone cn
separate lines.)

The builtin command continue may be used to continue the loop
prematurely and the builtin command break to terminate it prema
turely. When this command is read from the terminal, the loop is
read up once prompting with '1' before any statements in the loop
are executed. If you make a mistake typing in a loop at the termi
nal you can rub it out.

glob wordlist
Like echo but no '\' escapes are recognized and words are delimited
by null characters ~ the output. Useful for programs which wish
to use the shell to filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a
string of the form 'label'. The shell rewinds its input as much as
possible and searches for a line of the form 'label:' possibly pre
ceded by blanks or tabs. Execution continues after the specified
line.

history
Displays the history event list.

if (expr) command
If the specified expression evaluates true, then the single command
with arguments is executed. Variable substitution on command hap
pens early, at the same time it does for the rest of the if com
mand. Command must be a simple command, not a pipeline, a command
list, or a parenthesized command list. Input/output redirection
occurs even if expr is false, when command is not executed (this is
a bug).

if (expr) then ...
else if (expr2) then

else

endif
If the specified expr is true then the commands to the first else
are executed; else if expr2 is true then the commands to the second
else are executed, etc. Any number of else-if pairs are possible;
only one endif is needed. The else part is likewise optional.
(The words else and endif must appear at the beginning of input
lines; the if must appear alone on its input line or after an
else.)

kill pid

Printed 7/21/82 1/13/82 14

CSH(l) UNIX Programmer's Manual CSH(l)

kill -sig pid •••
kill -1

Sends either the TERM (terminate) signal or the specified signal to
the specified processes. Signals are either given by number or by
names (as given in /usr/include/signal. h, stripped of 'the pref ix
"SIG"). The signal names are listed by "kill -1". There is no
default, saying just 'kill' does not send a signal to the current
process. If the signal being sent is TERM (terminate) or HUP
(hangup), then the job or process will be sent a CONT (continue)
signal as well.

login
Terminate a login shell, replacing it with an instance of
/bin/login. This is one way to log off, included for compatibility
with shO) •••

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice
nice +number
nice command
nice +number command

The first form sets the nice for this shell to 4. The second form
sets the nice to the given number. The final two forms run command
at priority 4 and number respectively. The super-user may specify
negative niceness by using 'nice -number ••• '. Command 1s always
executed in a sub-shell, and the restrictions place on commands in
simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts
ignored for the remainder of the script.
the specified command to be run with
processes detached with '&' are effectively

onintr
onintr
onintr label

to cause hangups to be
The second form causes

hangups ignored. All
nohup'ed.

Control the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command input
level. The second form 'onintr -' causes all interrupts to be
ignored. The final form causes the shell to execute a 'goto label'
when an interrupt is received or a child process terminates because
it was interrupted.

In any case, if the shell is running detached and interrupts are
being ignored, all forms of onintr have no meaning and interrupts
continue to be ignored by the shell and all invoked commands.

Printed 7/21/82 1/13/82 15

CSR(l) UNIX Programmer's ,Manual CSH(l)

rehash
Causes the internal hash table of the contents of the directories
in the path variable to be recomputed. This is needed if new com
mands are added to directories in the path while you are logged in.
This should only be necessary if you add commands to one of your
own directories, or if a systems programmer changes the contents of
one of the system directories.

repeat count command

set

The specified command which is subject to the same restrictions as
the command in the one line if statement above, is executed count
times. I/O redirections occur exactly once, even if count is O.

set name
set name=word
set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all shell vari
ables. Variables which have other than a single word as value
print as a parenthesized word list. The second form sets ~ to
the null string. The third form sets ~ to the single word. The
fourth form sets the index'1h component of name to word; this com
ponent must already exist. The final form sets ~ to the list of
words in wordlist. In all cases the value is command and filename
expanded.

These arguments may be repeated to set mUltiple values in a single
set command. Note however, that variable expansion happens for all
arguments before any setting occurs.

setenv name value
Sets the value
string. The
exported from
for these.

shift
shift variable

of environment variable name to be value, a single
variable PATH is automatically imported to and

the csh variable path; there is no need to use setenv

The members of argv are shifted to the left, discarding ~(1]. It
is an error for argv not to be set or to have less than one word as
value. The second form performs the same function on the specified
variable.

source name
The shell reads commands from~. Source commands may be nested;
if they are nested too deeply the shell may run out of file
descriptors. An error in a source at any level terminates all
nested source commands. Input during source commands is never
placed on the history list.

Printed 7/21/82 1/13/82 16

CSH(1) UNIX Programmer's Manual CSH(1)

switch (string)
case str1: ...

breaksw

default:

breaksw
endsw

time

Each case label is successively matched against ·the specified
string which is first command and filename expanded. The file
metacharacters '*', '1' and '[•••]' may be used in the case labels,
which are variable expanded. If none of the labels match before a
'default' label is found, then the execution begins after the
default label. Each case label and the default label must appear
at the beginning of a line. The command breaksw causes execution
to continue after the endsw. Otherwise control may fall through
case labels and default labels as in C. If no label matches. and
there is no default, execution continues after the endsw.

time command
With no argument, a summary of time used by this shell and its
children is printed. If arguments are given the specified simple
command is timed and a time summary as descr ibed under the time
variable is printed. If necessary, an extra shell is created to
print the time statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the
specified value (second form). The mask is given in octal. Common
values for the mask are 002 giving all access to the group and read
and execute access to others or 022 giving all access except no
write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded.
Thus all aliases are removed by 'unalias *'. It is not an error
for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed pro
grams is disabled.

unset pattern
All variables whose names match the specified pattern are removed.
Thus all variables are removed by 'unset *'j this has noticeably
distasteful side-effects. It is not an error for nothing to be
unset.

Printed 7/21/82 1/13/82 17

CSH(1)

wait

UNIX Programmer's Manual CSH(1)

All background jobs are. waited for. If the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and job numbers of all jobs known to be outstanding.

while (expr)

end

@

While the specified expression evaluates non-zero, the commands
between the while and the matching end are evaluated. Break and
continue may be used to terminate or continue the loop prematurely.
(The while and end must appear alone on their input lines.) Prompt
ing occurs here the first time through the loop as for the foreach
statement if the input is a terminal.

@ name = expr
@ name[index] = expr

The first form prints the values of all the shell variables. The
second form sets the specified ~ to the value of expr. If the
expression contains '(', '>', '&' or '1' then at least this part of
the expression must be placed within'(' ')'. The third form
assigns the value of expr to the index'th argument of ~. Both
~ and its index'th component must already exist.

The operators '*=', '+=', etc are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are, however, mandatory in separating components of expr
which would otherwise be single words.

Special postfix '++' and '--' operators increment and decrement
~ respectively, i.e.'@ i++'.

PRE-DEFINED AND ENVIRONMENT VARIABLES
The following variables have special meaning to the shell. Of these,
argv, home, path, prompt, shell and status are always set by the shell.
Except for status this setting occurs only at initialization; these
variables will not then be modified unless this is done explicitly by
the user.

This shell copies the environment variable USER into the variable ~,
TERM into ~, and HOME into home, and copies these back into the
environment whenever the normal shell variables are reset. The environ
ment variable PATH is likewise handled; it is not necessary to worry
about its setting other than in the file .cshrc as inferior csh
processes will import the definition of path from the environment, and
re-export it if you then change it.

argv

Printed 7/21/82

Set to the arguments to the shell, it is from this vari
able that positional parameters are substituted, i.e.
'$1' is replaced by n$argv[l]n, etc.

1/13/82 18

CSH(l)

cdpath

echo

history

home

ignoreeof

mail

noclobber

noglob

nonomatch

Printed 7/21/82

UNIX Programmer's Manual CSH(l)

Gives a list of alternate directories searched to find
subdirectories in chdir commands.

Set when the -x command line option is given. Causes
each command and its arguments to be echoed just before
it is executed. For non-builtin commands all .expansions
occur before echoing. Builtin commands are echoed before
command and filename substitution, since these substitu
tions are then done selectively.

Can be given a
history list.
this many events
of history may
executed command

numeric value to control the size of the
Any command which has been referenced in
will not be discarded. Too large values

run the shell out of memory. The last
is always saved on the history list.

The home directory of the invoker, initial ized from the
environment. The filename expansion of ,-, refers to
this variable.

If set the shell ignores end-of-file from input dev ices
which are terminals. This prevents shells from acciden
tally being killed by control-D's.

The files where the shell checks for mail. This is done
af-ter each command completion which will result in a
prompt, if a specified interval has elapsed. The shell
says 'You have new mail.' if the file exists with an
access time not greater than its modify time.

If the first word of the value of mail is numeric it
specifies a different mail checking interval, in seconds,
than the default, which is 10 minutes.

If mUltiple mail files are specified, then the shell says
"New mail in name' when there is mail in the f ile ~.

As described in the section on Input/output, restrictions
are placed on output redirection to insure that files are
not accidentally destroyed, and that '»' redirections
refer to existing files.

If set, filename expansion
useful in shell scr ipts
filenames, or after a list
and further expansions are

is inhibited.
which are not

of filenames has
not desirable.

This is most
deal ing with

be en obt ained

If set, it is not an error for a filename expansion to
not match any existing files; rather the primitive pat
tern is returned. It is still an error for the primitive
pattern to be malformed, Le. "echo [" still gives an

1/13/82 19

eSR(I)

prompt

shell

status

time

verbose

UNIX Programmer's Manual eSR(I)

error.

Each word of the path variable specifies a directory in
which commands are to be sought for execution. A null
word specifies the current directory. If there is no
path variable then only full path names will execute.
The usual search path is ' .'. 'Ibin' and 'Iusrlbin', but
this may vary from system to system. For the super-user
the default search path is 'Ietc', 'Ibin' and '/usr/bin'.
A shell which is given neither the -c nor. the -t option
will normally hash the contents of the directories in the
path variable after reading .cshrc, and each time the
path variable is reset. If new commands are added to
these directories while the shell is active, it may be
necessary to give the rehash or the commands may not be
found.

The string which is printed before each command is read
from an interactive terminal input. If a '!' appears in
the string it will be replaced by the current event
number unless a preceding '\' is given. Default is '% '
or '# ' for the super-user.

The file in which the shell resides. This is used in
forking shells to interpret files which have execute bits
set, but which are not executable by the system. (See
the description of Non-builtin Command .Execution below.)
Initialized to the (system-dependent) home of the shell.

The status returned by the last command. If it ter
minated abnormally, then 0200 is added to the status.
Builtin commands which fail return exit status '1', all
other builtin commands set status '0'.

Controls automatic timing of commands. If set, then any
command which takes more than this many cpu seconds will
cause a line g1Vlng user, system, and real times and a
utilization percentage which is the ratio of user plus
system times to real time to be printed when it ter
minates.

Set by the -v command line option, causes the words of
each command to be printed after history substitution.

NON-BUILTIN COMMAND EXECUTION
When a command to be executed is found not to be a builtin command the
shell attempts to execute the command via exec(2). Each word in the
variable path names a directory from which the shell will attempt to
execute the command. If it is given neither a -c nor a -t option, the
shell will hash the names in these directories into an internal table so
that it will only try an~ in a directory if there is a possibility
that the command resides there. This greatly speeds command location

Printed 7/21/82 1/13/82 20

CSR(l)
..

UNIX Programmer's Manual CSR(l)

when a large number of directories are present in the search path. If
this mechanism has been turned off (via unhash), or if the shell was
given a -c or -t argument, and in any case for each directory component
of path which does not begin with a 'I', the shell concatenates with the
given command name to form a path name of a file which it then attempts
to execute.

Parenthesized commands are always executed in a subshell. Thus "(cd
pwd) ; pwd" prints the home directory; leaving you where you were
(printing this after the home directory), while "cd ; pwd" leaves you in
the home directory. Parenthesized commands are most often used to
prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to
the system, then it is assumed to be a file containing shell commands an
a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be
prepended to the argument list to form the shell command. The first
word of the alias should be the full path name of the shell (e.g.
"$shell"). Note that this is a special, late occurring, case of alias
substitution, and only allows words to be prepended to the argument list
without modification.

ARGUMENT LIST PROCESSING
If argument 0 to the shell is '-' then this is a login shell. The· flag
arguments are interpreted as follo~s:

-c Commands are read from the (single) following argument which must
be present. Any remaining arguments are placed in ~.

-e The shell exits if any invoked command terminates abnormally or
yields a non-zero exit status.

-f The shell will start faster, because it will neither search for nor
execute commands from the file ".cshrc" in the invokers home direc
tory.

-i The shell is interactive and prompts for its top-level input, even
if it appears to not be a terminal. Shells are interactive without
this option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This may aid in syntactic
checking of shell scr ipts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A '\' may be used to
escape the newline at the end of this line and continue onto
another line.

-v Causes the verbose variable to be set, with the effect that command

Printed 7/21/82 1/13/82 21

CSR(I) UNIX Programmer's Manual CSR(I)

input is.echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-v Causes the verbose variable to be set even before '.cshrc' is exe
cuted.

-X Is to -x as -V is to -v.

After processing of flag arguments, if arguments remain but none of the
-c, -i, -s, or -t options was given, the first argument is taken as the
name of a file of commands to be executed. The shell opens this file,
and saves its name for possible resubstitution by '$0'. Remaining argu
ments initialize the variable argv.

SIGNAL BANDL ING
The shell normally ignores quit signals. Processes running in back
ground (by '&') are immune to signals generated from the keyboard,
including hangups. Other signals have the values which the shell inher
ited from its parent. The shells handling of interrupts and terminate
signals in shell scripts can be controlled by onintr. Login shells catch
the terminate signal; otherwise this signal is passed on to children
from the state in the shell's parent. In no case are interrupts allowed
when a login shell is reading the file ".logout".

AUTHOR

FILES

William Joy.

- I .cshrc
-I.login
-I.logout
Ibin/sh

with
Itmp/sh*
letc/passwd

Read at beginning of execution by each shell.
Read by login shell, after' .cshrc' at login.
Read by login shell, at logout.
Standard shell, for shell scripts not starting

a '#'.
Temporary file for '«'.
Source of home directories for '-name' •

LIMITATIONS
Words can be no longer than 1024 characters. The system limits argument
lists to 5120 characters. The number of arguments to a command which
involves filename expansion is limited to 1/6'th the number of charac·
ters allowed in an argument list. Command substitutions may substitute
no more characters than are allowed in an argument list. To detect
looping, the shell restricts the number of alias substitutions on a sin
gle line to 20.

SEE ALSO
sh(l), access(2), exec(2), fork(2),
wait(2), tty(4), a.out(S), environ(S),
and especially, "An introduction to the

Printed 7/21/82 1/13/82

pipe(2), signal(2), umask(2),

C shell" by William Joy.

22

CSH(l)

BUGS

UNIX Programmer's Manual CSH(1)

It suffices to place the sequence of commands in ()'s to force it to a
subshell, i.e. '(a ; b ; c)'.

Control over tty output after processes are started is primitive;
perhaps this will inspire someone to work on a good virtual terminal
interface. In a virtual terminal interface much more interesting things
could be done with output control.

Alias substitution is most often used to clumsily simulate shell pro
cedures; shell procedures should be provided rather than aliases.

Commands within loops, prompted for by '1', are not placed in the ~
tory list. Control structure should be parsed rather than being recog
nized as built-in commands. This would allow control commands to be
placed anywhere, to be combined with '1', and to be used with '&' and
';' metasyntax.

It should be possible to use the ':' modifiers on the output of command
substitutions. All and more than one ':' modifier should be allowed on
'$' substitutions.

Printed 7/21/82 1/13/82 23

CTAGS(l) UNIX Programmer's Manual CTAGs(1)

NAME
ctags - maintain a tags file for a C program

SYNOPSIS
ctags [-a] [-u] [-w] [-x] name •••

DESCRIPTION
Ctags makes a tags file for ~(l) and vi(l) from the specified C, For
tran, and Pascal sources.

A tags file gives the locations of specified objects (in this case func
tions) in a group of files. Each line of the tags file contains the
function name, the file in which it is defined, and a scanning pattern
used to find the function definition. These are given in separate
fields on the line, separated by blanks or tabs. Using the tags file,
~ can quickly find these function definitions.

OPTIONS
The -A option causes the output to be appended to the tags file instead
of rewriting it.

The -~ option causes the specified files to be updated in tags, that is,
all references to them are deleted, and the new values are appended to
the file. This option implies the -A option. (Beware: this option is
implemented in a way which is rather slow; it is usually faster to si~
ply rebuild the tags file.)

The -x option suppresses warning diagnostics.

If the -x flag is given, ctags produces a list of function names, the
line number and file name on which each is defined, as well as the text
of that line and prints this on the standard output.

Files whose name ends in .c or .h are assumed to be C source files and
are searched for C routine and macro definitions.

The tag main is treated specially in C programs. The tag formed is
created by prepending M to the name of the file, with a trailing .c
removed, if any, and leading pathname components also removed. This
makes use of ctags practical in directories with more than one program.

EXAMPLE
ctags *.c *.h

puts the tags from all the ".c" and ".h" files into the tagsfile tags.

FILES
tags output tags file

SEE ALSO
ex (1), vi(1)

Printed 7/8/82 1/27/82 1

CTAGSO) UNIX Programmer's Manual CTAGS(1)

AUTHOR
Ken Arnold

Printed 7/8/82 1/8/82 2

cuClc) UNIX Programmer's Manual cuClc)

NAME
cu - call UNIX

SYNOPSIS
cu tel no [- t] [-n. [- s s pe ed] [- a ac u] [-1 1 in e] [- b]

DESCRIF'l'ION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX sys
tem. It manages an interactive conversation with possible transfers of
text files. Telno is the telephone number, with minus signs at
appropriate places for delays. The -t flag is used to dial out to a
terminal. Speed gives the transmission speed (110, 134, 150, 300,
1200); 300 is the default value.

The -a and -1 values may be used to specify pathnames for the ACU and
communications line dev ices. They can be used to override the following
built-in choices:

-a /dev/cuaO -1 /dev/culO

The -n. option, where ~ is a single digit, changes the last character of
the ACU and comm.mica tions line to~. It is an abbrE!ll iation for -a
/dev/cuan -1 /dev/culn. • . -
After making the connection, £.Y. runs as two processes: the send process
reads the standard input and passes most of it to the remote system; the
receive process reads fran the remote system and passes most data to the
standard output. Lines beginning with ,-, have special meanings.

The send process interprets the following:

-"'Z

-Jcmd

-$cmd

terminate the conversation.
terminate the conversation

send the contents of file to the remo te syst em, as
though typed at the terminal.

suspend the cu proce SSe Not e that the control-Z must
be followed by a newline.

sends a br eak.

invoke an interactive shell on the local system.

run the command on the local system (via sh -c).

run the command locally and send its output to the
remote system.

-%take from [to] copy file 'from' (on the remote system) to file 'to'
on the local system. If 'to' is omitted, the 'bom'
name is used both place s.

Printed 7/28/82 4/1/81 1

cu(lC)

FILES

-%put from [to]

. . .

UNIX Programmer's Manual cu(lC)

copy file 'from' (on local system) to file 'to' on
remote system. If 'to' is omitted, the 'from' name is
used both places.

during an output diversion, this toggles whether the
operation of £Y will be silent, i.e., whether informa
tion received from the foreign system will be written
to the standard output. This allows a "progress
report" during long transfers.

send the line , ' •

Both the send and receive processes handles output diversions of the
following form:

->[>]I:]file
zero or more 1 ines to be wr it ten to file
... >

In any case, output is diverted (or appended, if '»' used) to the file.
If ':' is used, the diversion is silent, i.e., it is written only to the
file. If ':' is omitted, output is written both to the file and to the
standard output. The trailing ''''>' terminates the diversion.

The use of -%put requires stty and ~ on the remote
requires that the current erase and kill characters on
be identical to the current ones on the local system.
inserted at appropriate places.

side. It also
the remote system
Backslashes are

The use of "'%take requires the existence of echo and tee on the remote
system. Also, stty tabs mode is required on the remote system if tabs
are to be copied without expansion.

Finally, the -b flag specifies that nulls are to be turned into breaks.
This allows the break key (and also contro1-shift-@) to send a break.

/dev /cuaO
/dev/culO
/dev/null
/usr/spool/uucp/LCK •• cu[allIO-7]

SEE ALSO
rv(4), tty(4)

DIAGNOSTICS
Exit code is zero for normal exit, nonzero (various values) otherwise.

BUGS
Only mail(l) uses syntax anything like the syntax of £Y.

Printed 7/28/82 2

DATE (1) UNIX Programmer's Manual DATE (1)

NAME
date - print and set the date

SYNOPSIS
date [yy[mm[dd[hh[mm[.ss]]]]]]

DESCRIPTION
If no argument is given, the current date and time are printed. If an
argument is given, the current date is set. ~ is the last two digits
of the year; the first .mm is the month nt.mber; dd is the day number ~n
the month; hh is the hour number (24 hour system); the second ~ is the
minute number; .~ is optional and is the seconds.

EXAMPLE

FILES

date 10080045

sets the date to Oct 8, 12:45 AM.
ted, the current value s be ing the
(Greenwich Mean Time). Date takes
local standard and daylight time.

The year, month and day may be omit
defaults. The system operates in GMT
care of the conversion to and from

/usr/adm/wtmp to record time-setting

DIAGNOSTICS
"No permission" if you aren't the super-user and you try to change the
date; "bad conversion" if you are the super-user but the da te set is
syntactically incorrect.

Printed 7/21/82 1/6/82 1

DCO) UNIX Programmer's Manual DCO)

NAME
dc - desk calculator

SYNOPSIS
dc [file

DESCRIPTION
Dc is an arbitrary preClSlon arithmetic package. Ordinarily it operates
on decimal integers, but one may specify an input base numbering system
such as base 8 or base 16, an output base, and a number of fractional
digits to be maintained. The overall structure of ~ is a stacking
(reverse Polish) calculator. If an argument is given, input is taken
from that file until its end, then from the standard input. The follow
ing constructions are recognized:

number
The value of the number is pushed on the stack. A number lS an
unbroken string of the digits 0-9. Negative numbers for input are
indica ted by being immediatel y pr eceded by an unders core
Numbers may contain decimal points.

+ / * %
The top two values on the stack are added (+), subtracted (-),
multiplied (*), divided (n, remaindered (%), or exponentiated
(...). The two entries are popped off the stack; the result is
pushed on the stack in their place. Any fractional part of an
exponent is ignored.

s~ The top of the stack is popped and stored into a register named ~,
where ~ may be any character. If the s is capitalized, ~ is
treated as a stack and the value is push ed on it.

l~ The value in register ~ is pushed on the stack. The register x lS
not altered. All registers start with zero value. If the 1 is
capitalized, register ~ is treated as a stack and its top value is
popped onto the main stack.

d The top value on the stack is duplica ted.

p The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ascii string,
removes it, and prints it.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level 1.S

popped by two. If q is capitalized, the top value on the stack 1.S

popped and the string execution level is popped by that value.

x treats the top element of the stack as a character string and exe
cutes it as a string of dc commands.

Printed 6/30/82 1/8/82 1

DCU) UNIX Programmer's Manual DCCl)

X replaces the number on the top of the stack with its scale factor.

puts the bracke ted asci i string onto the top of the stack.

<~ >x ~
The top two elements of the stack are popped and compared. Regis-
ter ~ is executed if they obey the stated relation.

v replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account,
but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix
for further input. I pushes the input base on the top of the
stack.

o The top value on the stack is popped and used as the number radix
for further output.

o pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non
negative scale factor: the appropriate number of places are
printed on output, and maintained during multiplication, division,
and exponentiation. The interaction of scale factor, input base,
and output base will be reasonable if all are changed together.

z The stack level is pushed onto the stack.

Z replaces the number on the top of the stack with its length.

? A line of input is taken fran the input source (usually the termi
nal) and executed.

EXAMPLES

dc
24.2 56.2 + p

adds the two numbers and prints the result (top value in the stack).

To exit from dc, hit control-d (EOF).

DIAGNOSTICS
"x is unimplemented" where x is an octal number.
"stack empty" for not enough elements on the stack to do what was asked.
"Out of space" when the free list is exhausted (too many digits).

Printed 6/30/82 1/8/82 2

DC(l) UNIX Programmer's Manual

"Out of headers" for too many numbers being kept around.
"Out of pushdown" for too many items on the stack.
"Nesting Depth" for too many levels of nested execution.

Printed 6/30/82 1/7/82

DC(l)

3

DCHECK(lM) UNIX Programmer's Manual DCHECK(lM)

NAME
dcheck - file syst em direct ory consis tency chec k

SYNOPSIS
dcheck -i numbers] [filesystem]

DESCRIPTION
N.B.: Dcheck has been made obsolete for normal consistency checking by
fsck(lM) •

Dcheck reads the directories in a file system and compares the
count in each i-node with the number of directory entries by which
referenced. If the file system is not specified, a set of default
systems is checked.

link
it is
file

The -i flag is followed by a list of i-numbers; when one of those i
numbers turns up in a directory, the number, the i-number of the direc
tory, and the name of the entry are reported.

The progran is fastest if the raw version of the special file is used,
since the i-list is read in large chunks.

EXAMPLE
dcheck /dev/rdiskl

checks the consistency of the dev ice rdiskl.

FILES
Default file systems vary with installation.

SEE ALSO
fsck(lM), icheck(lM), fjlsys(S), clri(lM), ncheck(lM)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of direc
tory entries disagree, the relevant facts are reported. Allocated files
which have 0 link-count and no entries are also listed. The only
dangerous situation oc curs when there are more entries than 1 inks; if
entries are removed, so the link-count drops to 0, the remaining entries
point to thin air. They should be removed. When there are more links
than entries, or there is an allocated file with neither links nor
entries, some disk space may be lost but the situation will not degen
erate.

Since dcheck is inherently two-pass in nature, extraneous diagnostics
may be produced if applied to active file systems.

Dcheck has been superseded by fack and remains for historical reasons.

Printed 6/30/82 1/20/82 1

DD(l) UNIX Programmer's Manual DD(l)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=value]

DESCRIPTION
~ copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The
input and output block size may be specified to take advantage of raw
physical I/O.

option
if=
of=
ibs=.n.
obs=.n.
bs=.n.

cbs=.n.
skip=.n.
files=!l
seek=.n.

count=A
conv=ascii

ebcdic
ibm
block
unblock
lcase
ucase
swab
noerror
sync . .. , ...

values
input file name; standard input is default
output file name; standard output is default
input block size A bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and
.Qja; also, if no conversion is specified, it is particu
larly efficient since no copy need be done
conversion buffer size
skip !l input records before starting copy
skip !l input files before starting copy
seek!l records from beginning of output file before copy
ing
copy onl y !l input records
convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASCII to EBCDIC
convert variable length records to fixed length
convert fixed length records to variable length
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes
do not stop processing on an error
pad every input record to ibs
several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may
end with k, b or w to specify multiplication by 1024, 512, or 2 respec
tively; a pair of numbers may be separated by x to indicate a product.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is
specified. In the first two cases, ~ characters are placed into the
conversion buffer, any specified character mapping is done, trailing
blanks trimmed and new-line added before sending the line to the output.
In the latter three cases, characters are read into the conversion
buffer, and blanks added to make up an output record of size cbs.

After completion, ~ reports the number of whole and partial input and
output blocks.

Printed 6/30/82 1/7/82 1

DD(1) UNIX Programmer's Manual nn(l)

EXAMPLES

dd if=filename conv=ucase

changes the alphabetics in the input file file to upper case and writes
to the standard output.

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,lcase

reads an EBCDIC tape blocked ten 80-byte card images per record into the
ASCII file z. Note the use of raw magtape. Dd is especially suited to
I/O on the raw physical devices because it allows reading and writing in
arbitrary record sizes.

SEE ALSO
cp(1), tr(1)

DIAGNOSTICS

BUGS

f+p records in(out): numbers of full and partial records (blocks)
read/written

The ASCII/EBCDIC conversion tables are taken from the 256 character
standard in the CACM Nov, 1968. The 'ibm' conversion, while less
blessed as a standard, corresponds better to certain IBM print train
conventions. There is no universal solution.

Printed 6/30/82 1/27/82 2

..

DELTA(l) UNIX Progr ammer' s Manual DELTA(1)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-s] [-nJ [-glistJ [-m[mrlistJ] [-y[commentJJ [-p] files

DESCRIPTION
Delta is used to permanently introduce into the named sees file changes
that were made to the file retrieved by ~(l) (called the A-file, or
generated file).

Delta makes a delta to each named sees file. If a directory is named,
delta behaves as though each file in the directory were specified as a
named file, except that non-SeeS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see WARNINGS); each line
of the standard input is taken to be the name of an sees file to be pro
cessed.

Delta may issue prompts on the standard output depending upon certain
keyletters specified and flags (see admin(l» that may be present in the
sees file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID

-s

-n

-glist

-m[mrlist]

Printed 6/30/82

Uniquely identifies which delta is to be made to the
sees file. The use of this keyletter is neces.sary
only if two or more outstanding ~s for editing
(get -e) on the same sees file were done by the same
person (login name). The SID value specified with
the -r keyletter can be either the SID specified on
the ~ command line or the SID to be made as
reported by the ~ command (see .w,(l». A diag
nostic results if the specified SID is ambiguous,
or, if necessary and omitted on the command line.

Suppresses the issue, on the standard output, of the
created delta's SID, as well as the number of lines
inserted, deleted and unchanged in the sees file.

Specifies retention of the edited A-file (normally
removed at completion of delta processing).

Specifies a list (see.w,U) for the def in it ion of
list) of deltas which are to be ignored when the
file is accessed at the change level (SID) created
by this delta.

If the sees file has the v flag set (see admin(l»
then a Modification Request (MR) number must be sup
plied as the reason for creating the new delta.

I

DELTA(1) UNIX Programmer's Manual DELTA(I)

FILES

-y[c01lDllentJ

-p

If -m is not used and the standard input is a termi
nal, the prompt MRs? is issued on the standard out
put before the standa rd input is read; if the st an
dard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments? prompt
(see -y keyletter).

MRs in a list are separated
characters. An unescaped
minates the MR list.

by blanks and/or tab
new-line character ter-

Note that if the v flag has a value (see admin(l»,
it is taken to be the name of a program (or shell
procedure) 'which will validate the correctness of
the MR numbers. If a non-zero exit status is
returned from MR number validation program, delta
terminates (it is assumed that the MR numbers were
not all valid).

Arbitrary text used to describe the reason for mak
ing the delta. A null string is considered a val id
c01lDllent.

If -y is not specified and the standard input ~s a
terminal, the prompt comments? 'is issued on the
standard output before the standard input is read;
if the standard input is not a terminal, no prompt
is issued. An unescaped new-line character ter
minates the comment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied in a diff(l) format.

All files of the form ?-file are explained in the Source Code Control
System User'.!. Guide. The naming convention for these file s is als a
described there.

g-file Existed before the execution of delta; removed after
completion of delta.

p-file Existed before the execution of delta; may exist after
completion of delta.

q-file Created dur ing the execution of delta; removed aft er
completion of delta.

x-file Created during the execution of delta; renamed to sees
file af~er completion of delta.

z-file Created dur ing the execution of dilta ; removed dur ing
the execution of delta.

d-file Created during the execution of delta; removed after
completion of delta.

/usr /bin/bdiff Program to compute d if fe rence s between the "gotten"

Printed 6/30/82 2

DELTA(l) UNIX Programmer's Manual DELTA(l)

file and the A-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be
placed in the sces file unless the SOH is escaped. This character has
special meaning to sces (see sccsfi1e(S» and will cause an error.

A ~ of many sces files, followed by a delta of those files, should be
avoided when the ~ generates a large amount of data. Instead, multi
ple ~/de1ta sequences should be used.

If the standard input (-) is specified on the delta command line, the-m
(if necessary) and -y key1etters ~ also be present. Omission of
these keyletters cause~an error to occur.

SEE ALSO
admin(l), bdiff(l), get(l), he1p(l), prs(l), sccsfile{S).
Source Code Control System User'~ Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS
Use he1p(l) for explanations.

Printed 6/30/82 3

DEROFF(l) UNIX Programmer's Manual DEROFF(l)

NAME
deroff - remove nrof f, trof f, tb1 and eqn construct s

SYNOPSIS
deroff [-w] file •••

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff com
mand lines, backs1ash constructions, macro definitions, ~ constructs
(between' .EQ' and ' .EN' lines or between delimiters), and table
descriptions and writes the remainder on the standard output.

Deroff follows chains of included files (' .so' and' .nx' commands); if a
file has already been included, a' .so 1S ignored and a ' .nx' ter-·
minates execution. If no input file is given, deroff reads from the
standard input file.

If the -w flag is given, the output is a word 1 is t, one 'word' (str ing
of letters, digits, and apostrophes, beginning with a letter; apos
trophes are removed) per line, and all other characters ignored. Other
wise, the output follows the original, with the deletions mentioned
above.

EXAMPLE
deroff textfi1e

Removes all nroff, troff, and macro definitions from textfile.

SEE ALSO

BUGS

troff(l), eqn(l), tbl(l)

Deroff is not a complete troff interpreter, so it can be confused by
subtle constructs. Most errors result in too much rather than too lit
tle output.

Printed 6/30/82 1/7/82 1

DF(l) UNIX Programmer's Manual DF(l)

NAME
df - disk free

SYNOPSIS
df [filesystem •••] [file •••]

DESCRIPTION
Df prints out the number of free blocks available on the specified
filesvstem, e.g. "/dev/rwOa". If no file system is specified, the free
space on all of the mounted file systems plus the systems listed in
/etc/checklist are printed.

The reported numbers are in file system block units.
block is 512 bytes long.

Each filesystem

EXAMPLE

df /dev /rwOa

would report the number of free disk blocks [512 bytes each] on
/dev/rwOa.

FILES
/etc/mtab
/etc/checklist

SEE ALSO
icheck(lM)

Printed 7/21/82

list of currently mounted filesystems
list of norma~ly mounted filesystems

1/29/82 1

DIFF(l) UNIX Programmer's Manual DIFF(1)

NAME
diff - differential file comparator

SYNOPSIS
diff -efb] filel file2

DESCRIPrION
Diff tells what lines must be changed in two files to bring them into
agreement. If either one of the files is represented by '-', the stan
dard input is used.

Moreover, one of the file names could be that of a directory: ~n this
case the comparison is between two files of the same name. Either the
file or the directory can be named first for the diff, but the directory
must be a sub-directory of file'~ directory (i.e. below it in the tree
structure) •

The output from a diff produces lines of these forms:

These lines resemble ed commands to convert file1 into file2. The
numbers after the letters pertain to file2. In fact, by exchanging 'a'
for 'd' and reading backward one may ascertain equally how to convert
file2 into file1. As in ed, identical pairs where n1 = n2 or n3 = n4
are abbreviated as a single number.

Following each of these lines come all the lines that are affected in
the first file flagged by '<', then all the lines that are affected 1n

the second file flagged by'>'.

The -b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of A, £ and 1 commands for the editor
~, which will recreate file2 from filel. The -f option produces a
similar script, not useful with ed, in the opposite order. In connec
tion with -e, the following shell program may help maintain multiple
versions of a file. Only an ancestral file ($1) and a chain of
version-to-version ~ scripts ($2,$3, •••) made by diff need be on hand.
A 'latest version' appears on the standard output.

(shift; cat $*; echo 'l,$p') I ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of
file differences. .

EXAMPLE
diff -e file1 file2

Printed 7/28/82 1/8/82 1

DIFF(l) UNIX Programmer's Manual DIFF(l)

FILES

where filel and file2 are two versions of the manual text for the .£.R.
command, produces:

35,4ld
27c
In the second form, one or more

l8,25c
existed; the mode of the source file
is used otherwise.

15c
The mode and owner of

IOc
file ••• directory

7c
filel file2

l,3c
• TB CP 1
.SH NAME

Following this ed script would transform filel into file2, line for line
and character for charact ere

/usr /lib/diffh to campa re big file s

SEE ALSO
cmp(l), comm(l), ed(l)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS
Editing scripts produced under the -e
creating lines consisting of a single

Printed 7/28/82 1/8/82

or , , . . -f option are naive about

2

DIFFDIR(1) UNIX Programmer's Manual DIFFDIR(1)

NAME
diffdir - diff directories

SYNOPSIS
diffdir [-h] [-s] dirl dir2

DESCRIPl' ION
Diffdir does diffs on directories recursively by sorting the contents of
the director ies by name and then running diffs on text file s wh ich are
different. Object files which differ and files which appear in only one
directory are also listed.

The -h option causes diffdir to paginate its output, and to summarize
binary differences and files in only one place at the end of the diff.
Each individual diff is run through an appropr iate .p.!..

The -s option causes files which are the same to be reported; normally
they are omit ted.

EXAMPLES

diffdir dirl dir2

compares all the files in two directories and reports differences, by
line number, for similar files. Unique files are simply listed.

FILES
/usr /bin/cmp

SEE ALSO
diff(l)

AUTHOR
Bill Joy

BUGS

compare two file s

Program should pass flags through to diff.

Printed 7/28/82 1/7/82 1

DISKFORMAT(l) UNIX Programmer's Manual DISKFORMAT(1)

NAME
diskformat - format a disk

SYNOPSIS
diskformat [-size 1FJ [-dens 1ft] [-cyl f[-t]] [-sec f[-t]] [-i] 1tl device

DESCRIPTION
Diskformat initializes a hard disk or floppy disk and formats it accord
ing to your specifications.

The following parameters may be specified ("device" is required):

device
device to be formatted (must be raw dev ice)

-size 1ft
specify sector size in bytes

-dens 1ft
specify density

-cyl 11[-#]
format cylinders 1. to ~ (default 1.). A specifica tion such as 1ft-
means "until the end".

-head fF[-#]
Format heads 1. to ~ (default 1.).
means "until the end".

-sec #[-#]

A specification such as 11-

. Format sectors 1. to ~ (default .f). A specification such as #
means "until the end".

-il # Interleave factor for the disk.

EXAMPLE

diskformat /dev/rfdcO -dens 1 -size 128 -il 3

will format the floppy disk on drive 0, single density, 128 bytes per
sector with an interleave factor of 3. This format is the only truly
portable floppy format.

Printed 6/30/82 2/21/82 1

DISKTUNE (1) UNIX Programmer's Manual DISKTUNE(l)

NAME
disktune - tune the floppy disk settl ing time parameters

SYNOPSIS
disktune [-srt #] [-hIt #] [-hut #] device

DESCRIPTION
Disktune tunes the floppy disk settling time parameters. These include
the motor stepping rate and the rate at which the head loads and
unloads. Disktune thus enables you to obtain the most efficient opera
tion from your floppy disk.

If no settable parameters are given, disktune will report the current
settings on device. Disktune retains the current settings on parameters
which are not specified.

The settable parameters are:

-srt #
seek motor stepping rate time in ms

-hIt 41
head loading time in ms

-hut 41
head unload time l.n ms

EXAMPLE
disktune -srt 3 /dev/rfdcO

will set the step rate time on the floppy controller to 3 ms per step.

Printed 6/30/82 2/21/82 1

DU(l) UNIX Programmer's Manual DU(l)

NAME
du - summarize disk usage

SYNOPSIS
du [-s] [-a] [name •••]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively)
directories within each specified directory or file~. If ~ is
missing, "." the current directory is used.

The optional argument -s causes only the grand total to be given. The
optional argument -a causes an entry to be generated for each file.
Absence of either causes an entry to be generated for each directory
only.

A file which has two links to it is only counted once.

EXAMPLE

du dirl dir2

produces a count of the number of blocks in each of the directories.

In order to see how many blocks are in each file, the -a option must be
used.

SEE ALSO
df(l)

BUGS
Non-directories given as arguments (not under -a option) are not listed.
If there are too many distinct linked files, du counts the excess files
more than once.

Printed 7/8/82 1/8/82 1

DUMP(lM) UNIX Progrrunmer's Manual DUMP(lM)

dump - incremental file system dump

SYNOPSIS
dump key [argument •.•] fi1esystem 1

DESCRIPTION
Dump copies to tape or disk all files changed after a certain date in
the fi1esystem. The key specifies the date and other options about the
dump. Key consists of characters from the set 0123456789bfusdn.

0-9 This number is the 'dump level'. All files modified since the last
date stored in the file /~/ddate for the same filesystem at
lesser levels will be dumped. If no date is determined by the
level, the beginning of time is assumed; thus the option 0 causes
the entire fi1esystem to be dumped.

f Place the dump on the next argument file or dump device [such as a
floppy or hard disk] instead of the default tape.

b Specifies the number of blocks on the dump device. Used to specify
the number of blocks floppy disks will hold, so that the dump will
pause while disks are changed.

u If the dump completes successfully, write the date of the beginning
of the dump on file /etc/ddate. This file records a separate date
for each filesystem and each dump level.

s The size of a dump tape is specified in feet. The number of feet
is taken from the next argument. When the specified size is
reached, dump will wait for reels to be changed. The default tape
size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next
argument. This is used in calculating the amount of tape used per
reel. The default is 1600.

If no arguments are given, the key is assumed to be 9u and a default
file system is dumped to the default tape.

Dump requires operator intervention on these conditions: end of disk or
tape, end of dump, disk write error, disk or tape open error or read
error.

Dump interacts with the operator on dump'~ control
when dump can no longer proceed, or if something is
questions dump poses must be answered by typing yes
ately.

terminal at times
grossly wrong. All
or no, appropri-

Now a short suggestion on how to perform dumps. Start with a full level
o dump

Printed 7/21/82 1/20/82 1

DUMP(1M) UNIX Programmer's Manual DUMP(1M)

dump Ou

Next, dumps of active file systems are taken on a daily basis, using a
modified Tower of Hanoi algorithm, with this sequence of dump levels:

3 2 547 6 9 8 9 9 •••

For the daily dumps, a set of 10 sets of disks or tapes per dumped file
system is used on a cyclical basis. Each week, a level 1 dump is taken,
and the daily Hanoi sequence repeats with 3. For weekly dumps, a set of
S sets of disks or tapes per dumped file system is used, also on a cycl
ical basis. Each month, a level 0 dump is taken on a set of fresh disks
or tapes that is saved forever.

EXAMPLE

FILES

dump Obf 2310 /dev/rfdcO /dev/rmscOa

would perform a level "0" dump to the floppy disk dev ice rfdcO, which
has 2310 blocks. The filesystem to be dumped is /dev/rmscOa. Note'that
all the parameters in the key are grouped first in the command line,
followed by the dump device (if other than tape), size etc. The last
argument should be the pathname of the file system being dumped.

/dev/rmt1
/dev /rrp3
/etc/ddate

default tape unit to dump to
default disk unit to dump from
dump date record

SEE ALSO
restor(lM), dump(S), dumpdir(IM)

DIAGNOSTICS

BUGS

Many, and verbose.

Sizes are based on 1600 BPI blocked tape; the raw magtape dev ice has to
be used to approach these densities.

It would be nice if dump knew about the dump sequence, kept track of the
tapes scribbled on, told the operator which tape to mount when, and pro
vided more assistance for the operator running restor.

Printed 7/28/82 1/20/82 2

DUMPDIR(lM) UNIX Programmer's Manual DUMPDIR(lM)

NAME
dumpdir - print the names of files on a dump tape or disk

SYNOPSIS
/etc/dumpdir [f filename]

DESCRIPTION

FILES

Dumpdir is used to read magtapes or disks dumped with the dump command
Dumpdir lists the names and inode numbers of all the files and direc
tories on the backup tape or disk.

The f option causes filename as the name of the dump device, whether
tape or disk.

default backup unit varies with installa tion
rst*

SEE ALSO
dump(lM), restor(lM)

DIAGNOSTICS
If the dump extends over more than one tape or disk, it will ask you to
change tapes or disks. Reply with a new-line after the next one has
been mounted.

Printed 6/30/82 1/13/82 1

ECHO(1) UNIX Progrmnmer's Manual ECHO(l)

NAME
echo - echo arguments

SYNOPSIS
echo -n] [arg] •••

DESCRIPTION
Echo writes its arguments (separated by blanks and terminated by a new
line) on the standard output. If the flag -n is used, no newline is
added to the output.

Echo is useful for producing diagnostics in shell programs and for writ
ing constant data on pipes.

To send diagnostics to the standard error file, do

echo ••• 1 >& 2

in she

EXAMPLE
~ curmudgeon

simply responds

curmudgeon

on the standard output.

Printed 7/8/82 1

ED(l) UNIX Programmer's Manual ED(1)

NAME
ed - text editor

SYNOPSIS
ed [-] [-p [prompt]] [-u] [-x] [name]

DESCRIPTION
Ed is the standard text editor.

If a ~ argument is given, ed simulates an ~ command (see below) on
the named file; that is to say, the file is read into ed'A. buffer so
that it can be edited. If -p is present, ed prompts for commands with
'* ' (or prompt if given.) If -u is present, all lower case text in the
buffer is converted to upper case. If -x is present, an A command is
simulated first to handle an encrypted file. The optional - suppresses
the printing of explanatory output and should be used when the standard
input is an editor script.

Ed operates on a copy of any file it is editing; changes made in the
copy have no effect on the file until a X (write) command is given. The
copy of the text being edited resides in a temporary file called the
buffer.

Commands to ed have a simple and regular structure: zero or more
addresses followed by a single character command, possibly followed by
parameters to the command. These addresses specify one or more lines in
the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands
allow the .addition of text to the buffer. While ed is accepting text,
it is said to be in input mode. In this mode, no commands are recog
nized; all input is merely collected. Input mode is left by typing a
period '.' alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular
expression specifies a set of strings of characters. A member of this
set of strings is said to be matched by the regular expression. In the
following specification for regular expressions the word 'character'
means any character but newline.

1. Any character except a special character matches itself. Special
characters are the regular expression delimiter plus \[. and
sometunes "'*$.

2. A • matches any character.

3. A \ followed by any character except a digit or () matches that
character.

4. A nonempty string.!. bracketed [s] (or [""s]) matches any character
in (or not in) .!.. In.!., \ has-no special meaning, and] may only
appear as the first letter. A substring A-.h., with A and J2. in

Printed 7/8/82 9/14/79 1

ED(l) UNIX Programmer's Manual ED (1)

ascending ASCII order, stands for the inclusive range of ASCII
characters.

5. A regular expression of form 1-4 followed by * matches a sequence
of 0 or more matches of the regular expression.

6. A regular expression, ~, of form 1-8, bracketed \(~\) matches what
~ matches.

7. A \ followed by a digit A matches a copy of the string that the
bracketed regular expression beginning with the Ath \(matched.

8. A regular expression of form 1-8, ~, followed by a regular expr~s
sion of form 1-7, ~ matches a match for ~ followed by a match for
~, with the ~ match being as long as possible while still permit
ting a ~ match.

9. A regular expression of form 1-8 preceded by ~ (or followed by $),
is constrained to matches that begin at the left (or end at the
right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the
leftmost matches in a line.

11. An empty regular expression stands for a copy of the last regular
expression encountered.

Regular expressions are used in addresses to specify lines and ~n one
command (see ~ below) to specify a portion of a line which is to be
replaced. If it is desired to use one of the regular expression meta
characters as an ordinary character, that character may be preceded by
'\'. This also applies to the character bounding the regular expression
(often 'I') and to '\' itself.

To understand addressing in ~ it is necessary to know that at any time
there is a current line. Generally speaking, the current line is the
last line affected by a command; however, the exact effect on the
current line is discussed under the description of the command.
Addresses are constructed as follows.

1. The character
, ,

addresses the current line.

2. The character '$' addresses the last line of the buffer.

3. A decimal nllllber A addresses the A-th line of the buffer.

4. "'~" addresses the line marked with the name .!o, which must be a
lower-case letter. Lines are marked with the A command described
below.

5. A regular expression enclosed in slashes 'I' addresses the line
found by searching forward from the current line and stopping at

Printed 7/8/82 9/14/79 2

ED(l) UNIX Programmer's Manual ED(l)

the first line containing a string that matches the regular
expression. If necessary the search wraps around to the beginning
of the buf fer.

6. A regular expression enclosed in queries '?' addresses the line
found by searching backward from the current line and stopping at
the first line containing a string that matches the regular
expression. If necessary the search wraps around to the end of
the buffer.

7. An address
lowed by
minus) the
ted.

followed by a plus sign '+' or a minus sign " fol
a decimal number specifies that address plus (resp.
indicated number of lines. The plus sign may be om it-

8. If an address begins with '+' or '-' the addition or subtraction
is taken with respect to the current line; e.g. '-5' is understood
to mean ' .-5' •

9. If an address ends with '+' or '-', then 1 is added (resp. sub
tracted). As a consequence of this rule and rule 8, the address
'-' refers to the line before the current line. Moreover, trail
ing "+" and "_" characters have cumulative effect, so '--' refers
to the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the
character 'A' in addresses is equivalent to '-'.

Commands may require zero, one, or two addresses. Commands which
require no addresses regard the presence of an address as an error.
Commands which accept one or two addresses assume default addresses when
insufficient are given. If more addresses are given than such a command
requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ",". They
may also be separated by a semicolon ";". In this case the current 1 ine
'.' is set to the previous address before the next address is inter
preted. This feature can be used to determine the starting line for
forward and backward searches ('/', '1'). The second address of any
two-address sequence must correspond to a line following the line
corresponding to the first address.

In the following list qf ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address, but are used
to show that the given addresses are the default.

As mentioned, it is generally illegal for more than one command to
appear on a line. However, most commands may be suffixed by 'p' or by
'1', in which case the current line is either printed or listed respec
tively in the way discussed below. Commands may also be suffixed by
'n', meaning the output of the command is to be line numbered. These
suffixes may be combined in any order.

Printed 7/8/82 9/14/79 3

ED(1) UNIX Programmer's Manual ED(1)

(.)a
<text>

The append command reads the given text and appends it after the
addres sed line. "." is left on the last 1 ine input, if there were
any, otherwise at the addressed line. Address '0' is legal for
this command; text is placed at the beginning of the buffer.

<., .)c
<text>

The change command deletes the addressed lines, then accepts input
text which replaces these lines. "." is left at the last line
input; if there were none, it is left at the line preceding the
deleted lines.

<., .)d
The delete command deletes the addressed lines from the buffer.
The line originally after the last line deleted becomes the current
line; if the lines deleted were originally at the end, the new last
line becomes the current line.

e filename
The edit command causes the entire contents of the buffer
deleted, and then the named file to be read in. "." is set
last line of the buffer. The number of'characters read is
"filename" is remembered for possible use as a default file
a subsequent L or X command. If 'filename' is missing, the
bered name is used.

to be
to the
typed.

name in
remem-

E filename
This command is the same as ~, except that no diagnostic
when no ~ has been given since the last buffer alteration.

resul t s

f filename
The filename command prints the currently remembered file name. If
'filename' is given, the currently remembered file name is changed
to' f il ename' •

(l,$)g/regular expression/command list

(.)i

In the global command, the first step is to mark every line which
matches the given regular expression. Then for every such line,
the given command list is executed with '.' initially set to that
line. A single command or the first of multiple commands appears
on the same line with the global command. All lines of a multi
line list except the last line must be ended with '\'. A, i, and.£.
commands and associated input are permitted; the '.' terminating
input mode may be omitted if it would be on the last line of the
command list. The commands A and X are not permitted in the com
mand list.

Printed 7/8/82 9/14/79 4

ED(l) UNIX Programmer's Manual ED(l)

<text>

This command inserts the given text before the addressed line. ""
is left at the last line input, or, if there were none, at the line
before the addressed line. This command differs from the ~ command
only in the placement of the text.

(., .+1)j
This command joins
mediate new lines
line.

the addressed lines into a single line; inter
simply disappear. "" is left at the resulting

(•)k.!.
The mark command marks the addressed line with name.!., which must
be a lower-case letter. The address form ".!.' then addresses this
line.

(., .)1
The list command prints the addressed lines in an unambiguous
non-graphic characters are printed in two-digit octal, and
lines are folded. The ~ command may be placed on the same
after any non-i/o command.

(., •)m~

way:
long
line

The move command repositions the addressed lines after the line
addressed by A. The last of the moved lines becomes the current
line.

(., .)n
The number command prints the addressed lines with line numbers and
a tab at the left.

(., .)p
addr essed lines. " " is left at the The print command prints the

last line printed. The ~
after any non-i/o command.

command may be placed on the same line

(., .)p
This command is a synonym for ~.

q The quit command causes ed to exit. No automatic write of a file
is done.

Q This command is the same as S, except that no diagnostic results
when no ~ has been given since the last buffer alteration.

($)r filename
The read command reads in the given file after the addressed line.
If no file name is given, the remembered file name, if any, is used
(see ~ and ~ commands). The file name is remembered if there was
no remembered file name already. Address '0' is legal for I and
causes the file to be read at the beginning of the buffer. If the

Printed 7/8/82 9/14/79 5

ED(1) UNIX Programmer's Manual ED(1)

read is successful, the number of charact ers read is typed. .." is
left at the last line read in from the file.

(., .)s/regular expression/replacement/ or,
(., .)s/regular expression/replacement/g

The substitute command searches each addressed line for an
occurrence of the specified regular expression. On each line in
which a match is found, all matched strings are replaced by the
replacement specified, if the global replacement indicator 'g'
appears after the command. If the global indicator does not
appear, only the first occurrence of the matched string is
replaced. It is an error for the substitution to fail on all
addressed lines. Any punctuation character may be used instead of
, /' to delimit the regular expression and the replacement. .." is
left at the last line substituted.

An ampersand '&' appearing in the replacement is replaced by the
string matching the regular expression. The special meaning of '&'
in this context may be suppressed by preceding it by '\'. The
characters '~' where ~ is a digit, are replaced by the text
matched by the A-th regular subexpression enclosed between '\(' and
'\)' • When nested, parenthesized subexpressions are present, 'n is
determined by counting occurrences of '\(' starting from the left.

Lines may be split by substituting new-line characters into them.
The new-line in the replacement string must be escaped by preceding
it by '\'.

One or two trailing delimiters may be omitted, Unplying the 'p'
suffix. The special form's' followed by ~ delimiters repeats the
most recent substitute command on the addressed lines. The's' may
be followed by the letters r (use the most recent regular expres
sion for the left hand side, instead of the most recent left hand
side of a substitute command), p (complement the setting of the ~
suffix from the previous substitution), or g (complement the set
ting of the A suffix). These letters may be combined in any order.

(., .}ta
This command acts just like the m command, except that a copy of
the addressed lines is placed after address A (which may be 0).
"." is left on the last line of the copy.

(1, $)v/regular expression/command list
This command is the same as the global command A except that the
command list is executed A with'.' initially set to every line
except those match ing the regular expression.

(1, $)w filename
The write command writes the addressed lines onto the given file.
If the file does not exist, it is created. The file name is remem
bered if there was no remembered file name already. If no file
name is given, the remembered file name, if any, is used (see £ and

Printed 7/8/82 9/14/79 6

ED(l)

FILES

UNIX Programmer's Manual ED(l)

1. commands). "." is unchanged. If the command is succe ssful, the
number of characters written is printed.

(l; $)W filename
This command is the same as ~, except that the addressed lines are
appended to the file.

x A key string is demanded from the standard input. Later~, ~ and ~
commands will encrypt and decrypt the text with this key by the
algorithm of crypt(1). An explicitly empty key turns off encryp
tion.

($)= The line number of the addressed line is typed.
by this command.

I<shell command>

" " is unchanged

The remainder of the line after the '1' is sent to .§.h(l) to be
interpreted as a command. "is unchanged.

(.+1,.+1)<new1ine>
An address alone on a line causes the addressed line to be printed.
A blank line alone is equivalent to ' .+1p'; it is useful for step
ping through text. If two addresses are present with no interven
ing semicolon, ed prints the range of lines. If they are separated
by a semicolon, the second line is printed.

If an interrupt signal (ASCII DEL) is sent, ed prints '?interrupted' and
returns to its command level.

Some size limitations: 512 characters per line, 256 characters per glo
bal command list, 64 characters per file name, and, on mini computers,
128K characters in the temporary file. The limit on the number of lines
depends on the amount of core: each line takes 2 words.

When reading a file, ed discards ASCII NUL characters and all characters
after the last newline. It refuses to read files containing non-ASCII
characters.

/tmp/e*
edhup: work is saved here if terminal hangs up
/lib/makekey generate encryption key

SEE ALSO
sed(l)
B. W. Kernighan, A Tutorial Introduction ~ the ED Text Editor
B. W. Kernighan, Advanced editing ~ UNIX

DIAGNOSTICS
"?name" for inacce ssible file; "? sel f-explanatory message" for other
errors.

Printed 7/28/82 9/14/79 7

ED(l)

BUGS

UNIX Progr~er's Manual ED(l)

To protect against throwing away valuable work, a S or ~ command is con
sidered to be in error, unless a X has occurred since the last buffer
change. A second S or ~ will be obeyed regardless.

The ~ command mishandles DEL.
The undo command causes marks to be lost on affected lines.

Printed 7/28/82 9/14/79 8

EDIT{l) UNIX Programmer's Manual EDIT(1)

NAME
edit - text editor (variant of the ex editor for new or casual users)

SYNOPSIS
edit -r] name •••

DESCRIPTION
Edit is a variant of the text editor ex recommended for new or casual
users who wish to use a command oriented editor. The following brief
introduction should help you get started with edit. A more complete
basic introduction is provided by Edit: A tutorial. The Ex/edit command
summary (version 1.Q) is also very useful. See ~(l) for other useful
documents; in particular, if you are using a CRT terminal you will want
to learn about the display editor vi.

BRIEF INTRODUCTION
To edit the contents of an existing file you begin with the command
"edit name" to the shell. Edit make s a copy of the file which you can
then edit, and tells you how many lines and characters are in the file.
To create a new file, just make up a name for the file and try to run
edit on it; you will cause an error diagnostic, but don't worry.

Edit prompts for commands with the character ':', which you should see
after starting the editor. If you are editing an existing file, then
you will have some lines in edit'~ buffer (its name for the copy of the
file you are editing). Most commands to edit use its "current line" if
you don't tell them which line to use. Thus if you say print (which can
be abbreviated p) and hit carriage return (as you should after all edit
commands) this current line will be printed. If you delete (d) the
current line, edit will print the new current line. When you start
editing, edit makes the last line of the file the current line. If you
delete this last line, then the new last line becomes the current one.
In general, after a delete, the next line in .the file becomes the
current line. (Deleting the last line is a special case.)

If you start with an empty file, or wish to add some new lines, then the
append (a) command can be used. After you give this command (typing a
carriage return after the word append) edit will read lines from your
terminal until you give a line consisting of just a ".", placing these
lines after the current line. The last line you type then becomes the
current line. The command insert (i) is like append but places the
lines you give before, rather than after, the current line.

Edit numbers the lines in the buffer, with the first line having number
1. If you give the command "1" then edit will type this firs t 1 ine. If
you then give the command delete edit will delete the first line, and
line 2 will become line ,1, and edit will print the current line (the new
line 1) so you can see where you are. In general, the current line will
always be the last line affected by a command.

You can make a change to some text within the current line by using the
substitute (8) command. You say "s/old/new/" where old is replaced by

Printed 6/30/82 1 /8/82 1

EDIT(l) UNIX Programmer's Manual· EDIT(!)

the old characters you want to get rid of and ~ is the new characters
you want to replace it with.

The command file (f) will tell you how many lines there are in the
buffer you are editing and will say "[Modified]" if you have changed it.
After modifying a file you can put the buffer text back to replace the
file by giving a write (w) command. You can then leave the editor by
issuing a quit (q) command. If you run edit on a file, but don't change
it, it is not necessary (but does no harm) to write the file back. If
you try to quit from edit after modifying the buffer without writing it
out, you will be warned that there has been "No write since last change"
and edit will await another command. If you wish not to write the
buffer out then you can issue another quit . command. The buffer is then
irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line numbers to see
lines in the file you can make any changes you desire. You should learn
at least a few more things, however, if you are to use edit more than a
few times.

The change (c) command will change the current line to a sequence of
lines you supply (as in append you give lines up to a line consisting of
only a ". "). You can tell change to change more than one line by giv ing
the line numbers of the lines you want to change, Le. "3,5change". You
can print lines this way too. Thus "l,23p" prints the first 23 lines of
the file.

The undo (u) command will r~erse the effect of the last command you
gave which changed the buffer. Thus if give a substitute command which
doesn't do what you want, you can say undo and the old contents of the
line will be restored. You can also undo an undo command so that you
can continue to change your mind. Edit will give you a warning me_ssage
when commands you do affect more than one line of the buffer. If the
amount of change seems unreasonable, you should consider doing an undo
and looking to see what happened. If you decide that the change is ok,
then you can ..Yl!.!!Q. aga in to ge tit bac k. Not e th at command s such as
write and quit cannot be undone.

To look at the next line in the buffer you can just. hit carriage return.
To look at a number of lines hit ~D (control key and, while it 1S held
down D key, then let up both) rather than carriage return. This will
show you a half screen of lines on a CRT or 12 lines on a hardcopy ter
minal. You can look at the text around where you are by giving the com
mand "Z.". The current line will then be the last line printed; you can
get back to the line where you were before the liZ." command by saying II'

The z command can also be given other following characters liZ_" prints a
screen of text (or 24 lines) ending where you are; "Z+" pr in ts the next
screenful. If you want less than a screenful of lines do, e.g., "z.12"
to get 12 lines total. This method of giving counts works in general;
thus you can delete 5 lines starting with the current line with the com
mand "delete 5".

Printed 6/30/82 1/8/82 2

EDIT(l) UNIX Programmer's Manual EDIT(1)

To find things in the file you can use line numbers if you happen to
know them; since the line numbers change when you insert and delete
lines this is somewhat unreliable. You can search backwards and for
wards in the file for strings by giving commands of the form /text/ to
search forward for ~ or ?text? to search backward for ~. If a
search reaches the end of the file without finding the text it wraps,
end around, and continues to search back to the line where you are. A
useful feature here is a search of the form /~text/ which searches for
~ at the beginning of a line. Similarly /text$/ searches for text at
the end of a line. You can leave off the trailing / or ? in these com
mands.

The current line has a symbolic name "."; this is most useful in a range
of lines as in ".,$print" which prints the rest of the lines in the
file. To get to the last 1 ine in the file you can refer to it by it s
symbolic name "$". Thus the command "$ delete" or "$d" deletes the last
line in the file, no matter which line was the current line before.
Arithmetic with line references is also possible. Thus the 1 ine "$-5"
is the fifth before the last, and ".+20" is 20 lines after the present.

You can find out which line you are at by doing " ". This is useful if
you wish to move or copy a section of text within a file or between
files. Find out the first and last line numbers you wish to copy or
move (say 10 to 20). For a move you can then say "10,2Omove "a" which
deletes these lines from the file and places them in a buffer named ~.
Edit has 26 such buffers namea ~ through A. You can later get these
lines back by doing ''''a move ." to put the contents of buffer A after
the current line. If you want to move or copy these lines between files
you can give an edit (e) command after copying the lines, following it
with the name of the other file you wish to edit, i.e. "edit chapter2".
By changing ~ to £QRY above you can get a pattern for copying lines.
If the text you wish to move or copy is all within one file then you can
just say "10,2Omove $" for example. It is not nece ssary to use named
buffers in this case (but you can if you wish).

SEE ALSO
ex(l), vi(l), "Edit: A tutorial", by Ricki Blau and James Joyce

AUTHOR
William Joy

BUGS

Printed 6/30/82 1/7/82 3

EGREP(1) UNIX Programmer's Manual EGREP(1)

NAME
egrep - search a file for a pattern

SYNOPSIS
egrep [option] ••• expression] [file 1 •••

DESCRIPrION
Commands of the ~ family search the input files (standard input
default) for lines matching a pattern. Normally, each line found is
copied to the standard output. Egrep patterns are full regular expres
sions; it uses a fast deterministic algorithm that sometimes needs
exponential space. The following options are recogniz ed.

-v All lines but those matching are printed.

-c Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated
by newlines.

-n Each line is preceded by its relative line num1:)er in the file.

-b Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk block numbers by con
text.

-s Silent mode. Nothing is printed (except error messages). This ~s
useful for checking the error status.

-e expression
Same as a simple expression argument, but useful when the expres
sion begins with a -

-f file
The regular expression is taken from the named file which contains
a list of regular expressions to be matched. Each regular expres
sion should appear on a separate line.

The file names are shown in the output if more than one file was
searched.

Care should be taken when using the characters $ * [~ I () and \ ~n
the expression as they are also meaningful to the Shell. It is safest
to enclose the entire expression argument in single or double quotes.

Egrep accepts regular expressions and it also can accept patterns with
'uetacharacters ". The metacharact er matching protocol is as follows:
(note that newline is not considered to be a 'character').

A \ followed by a single character other than newline matches that
character.

Printed 1/8/82 1/1/82 1

EGREP(l) UNIX Programmer's Manual EGREP(l)

The character A ($) matches the beginning (end) of a line.

A • matches any character.

A single character not otherwise endowed with special meaning
matches that character.

A string enclosed in brackets [] matches any single character from
the string. Ranges of ASCII character codes may be abbreviated as
in 'a-zO-9'. A] may occur only as the first character of the
string. A literal - must be placed where it can't be mistaken as
a range indicator.

A regular expression followed by * (+, ?) matches a sequence of 0
or more (1 or more, 0 or 1) matches of the regular expression.

Two regular expressions concatenated match a match of the first
followed by a match of the second.

Two regular expressions separated by or newline match either a
match for the first or a match for the second.

A regular expression enclosed in parentheses matches a match for
the regular expression.

The order of precedence of operators at the same parenthesis level is []
then *+? then concatenation then I and newline.

EXAMPLE

egrep 'AThis I match* I regular I expressionS' filel file2 file3

will cause all the lines in the three files to be printed that match any
of the patterns:

1. a line beginning with 'This'
2. a line containing 'mate' followed by any number of h's
3. a line containing 'regular'
4. a line ending with 'expression'

SEE ALSO
ex(l), fgrep(l), grep(l), sed(l), sh(1)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files.

Ideally there should be only one~, but we don't know a single algo
rithm that spans a wide enough range of space-time tradeoffs.

Printed 7/8/82 1/7/82 2

EGREP(l) UNIX Programmer's Manual EGREP(l)

Lines are limited to 256 characters; longer lines are truncated.

Printed 7/8/82 1/7/82 3

EQN (J) 5/3/77 EQN (I)

eqn - typeset mathematics

SP'OPSIS
l'qn [file 1 ...

DESCRIPTIO~

Eql1 is a troff (l) preprocessor for typesetting mathematics on the Graphics Systems photo
typesetter. Usage is almost always

eqn file ... i troff

If no files are specified. eqn reads from the standard input. A line beginning with ".EQ" marks
the start of an equation; the end of an equation is marked by a line beginning with ".E~".
~either of these lines is altered or defined by eqn. so you can define them yourself to get
centering. numbering. etc. All other lines are treated as comments. and passed through un
touched.

Spaces. tabs. newlines. braces, double quotes, tilde and circumflex are the only delimiters.
Braces "()" are used for grouping. Use tildes .. -.. to get extra spaces in an equation.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub I makes
x. a sub I sup 2 produces a2 • and e sup Ix sup 2 + y sup]J gives e \ =-. =. FractIOns are made

~ith O,'l'r. a over b is ab and I o~'er sqrtlax Slip] +bx+c) is oj ,1 , sqrt makes square
ax-+bx-rc

roots,

The keywords from and to introduce lower and upper Iiml:-s on arbitrary things: lim!:.x is
"-"" 0

made with 11m from (n-> mJl sum from 0 to n x sub i. Left and right brackets. braces. etc .. of
the right height are made with left and right: left [x sup 2 + y sup 2 over alpha right] - =- J

produces 1-,,+:: 1- l. The right clause is optional.

Vertical piles of things are made with pile. Ipile. cpile, and rpile: pile la above b above c] pro
a

duces b. There can be an arbitrary number of elements in a pile. Ipile left-justifies, pill' and
c

cpill' center, with different vertical spacing. and rpile right justifies.

Diacritical marks are made with dot. dotdot. hat. bar: x dot j(t) bar is .~= j(r). Default sizes
and fonts can be changed with size n and various of roman, italic, and bold.

Keywords like sum (I) inr (f) inj(oc) and shorthands like >- (~) -> (-). != (~). are
recognized. Spell out Greek letters in the desired case, as in alpha. GAMMA. Mathematical
words like sin, cos, log are made Roman automatically. Troff (I) four-character escapes like
\(rh ...) can be used anywhere. Strings enclosed in double quotes " ... " are passed through un
touched.

SEE .USO

Bl'GS

A System for Typesetting Mathematics (Computer Science Technical Report # 17, Bell Labora
tories, 1974.)
NROFF /TROFF User's Manual
troff (1)

undoubtedly. Watch out for small or large point sizes - it's tuned too well for size 10. Be
cautious if inserting horizontal or vertical motions, and of backslashes in general.

- 1 -

EX(l) UNIX Programmer's Manual . EXO)

NAME
ex, edit - text editor

SYNOPSIS
ex [-] [-v] [-t tag] [-r] [+command] name •••
edit ex options]

DESCRIPTION
Ex is the root of a family of editors: edit, ~ and vi. Ex is a superset
of edit, with the most notable extension being a display editing facil
ity. Display based editing is the focus of vi.

If you have not used ed, or are a casual user, you will find th at th e
editor edit is convenient for you. It avoids some of the complexities
of ~ used mostly by systems programmers and persons very familiar with
ed.

If you have a CRT terminal, you may wish to use a display based editor;
in this case see viO), which is a command which focuses on the display
editing portion of ~.

The following options are recognized:

suppresses all interactive-user feedback, as when processing edi
tor scripts in command files.

-v Equivalent to using vi rather than ~.

-t Equivalent to an initial !A& command, editing the file containing
the!.!&. and positioning the editor at its definition.

-r Used in recovering after an editor or system crash, retriev ing the
last saved version of the named file. If no file is specified, a
list of saved files will be reported.

+ command
Indicates that the editor should begin by executing the specified
command. If command is omitted, then it defaults to $, POSltlOn
ing the editor at the last line of the first file initially.
Other useful commands here are scanning patterns of the form /pat
or line numbers, e.g. +100 to start at line 100.

Name arguments indicate files to be edited.

DOCUMENTATION
The document ~: A tutorial provides a comprehensive introduction to
edit assuming no previous knowledge of computers or the UNIX system.

The Ex Reference Manual - Version 1.i/~.!l is a comprehensive and com
plete manual for the command mode features of ~, but you cannot learn
to use the editor by reading it. For an introduction to more advanced
forms of editing using the command mode of ~ see the editing documents

Printed 7/28/82 1/11/82 1

EX(l)

FILES

UNIX Programmer's Manual EX(l)

written by Brian Kernighan for the editor ed; the material in the intro
ductory and advanced doclIDents works also with .!!..

An Introduction !2 Display Editing with Vi introduces the display editor
vi and provides reference material on vi. All of these documents can be
found in volume 2c of the Programmer's Manual. In addition, the Vi
Quick Reference card summarizes the commands of vi in a useful, func
tional way, and is useful with the Introduction.

/usr/lib/ex3.6strings
/usr/lib/ex3.6recover
/usr/lib/ex3.6preserve
/etc /termcap
-/.exrc

/tmp/EXnnnnn
Itmp/Rxnnnnn
/usr /preserve
/usr /lib/tags

error messages
recover command
preserve command
describes capabilities of terminals
editor startup command file, user
created in home directory
editor temporary
named buffer temporary
preservation directory
standard editor tag file

SEE ALSO
awk(l), ed(l), edit(l), grep(l), sed(l), vi(l)

AUTHOR

BUGS

Originally written by William ~oy
Mark Borton has maintained the editor since version 2.7, adding macros,
support for many unusual terminals, and other features such as word
abbreviation mode.

The undo command causes all marks to be lost on 1 ines changed and then
restored if the marked lines were changed •

..Y.aS.Q. never clears the buf fer modified condition.

The .l. command prints a number of logical rather than physical lines.
More than a screen full of output may result if long lines are present.

File input/output errors don't print a name if the command line '-'
option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used
before exiting the editor.

Null characters are disCarded in input files, and cannot appear in
resultant files.

Printed 7/28/82 1/11/82 2

EXPR(l) UNIX Progr ammer' s Manual EXPR(l)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arg

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result
is written on the standard output. Each token of the expression is a
separate argument.

The operators and keywords are listed below. The list is in order of
increasing precedence, with equal precedence operators grouped.

expr I nIU:
yields the firs t expr if it is neither null nor "'0', othendse
yields the se cond expr.

expr & expr
yields the firs t expr if neither expr is null or "'0' , otherwise
yields '0'.

expr re10p expr
where relop is ~ of < <= = 1= >= >, yields "'1' if the indicated
comparison is true, "'0' if false. The comparison is numeric if
both expr are integers, otherwise lexicographic.

expr + expr
expr - expr
addition or subtraction of the arguments.

expr * expr
expr / expr
expr % expr
multiplication, division, or remainder of the arguments.

nIU: : expr
The matching operator compares the string first argument with the
regular expression second argument; regular expression syntax is
the same as that of ed(1). The \(••• \) pattern symbols can be
used to select a portion of the first argument. Otherwise, the
matching operator yields the n\lllber of charact ers matched ("'0' on
failure) •

(expr)
parentheses for grouping.

EXAMPLES
To add 1 to the Shell variable A:

a expr $a + 1'"

Printed 6/30/82 1

EXPRO) UNIX Progr ammer' s Manual EXPR(1)

To find the filename part (least significant part) of the pathname
stored in variable ~, which mayor may not contain" I':

Note the quoted Shell metacharacters.

SEE ALSO
ed(1), sh(1), testO)

DIAGNOSTICS
Expr returns the following exit codes:

o if the expr ession is neither null nor "0',
1 if the expression is null or "0',
2 for inval id expressions.

Printed 6/30/82 2/23/82 2

EXT ERR (I) UNIX Programmer's Manual EXT ERR (I)

NAME
exterr - turn on/off the extended errors in the specified dev ice

SYNOPSIS
exterr /dev/device~me [yn]

DESCRIPT ION
Exterr turns on [or off] the reporting of extended errors on the speci
fied device.

If reporting of errors is turned "off" with the argument 11" only fatal
errors are reported.

The default condition is "yes", in which case soft as well as hard
errors are repor ted on the specified dev ice. The dev ice name must be the
"raw" one to access the ioctl.

Printed 6/30/82 1

F77(1) UNIX Programmer's Manual F77(1)

NAME
f77 - FORTRAN compiler

SYNOPSIS
f77 [-0 ofile] [-i] [-c] [-u] [-v] file. o.

DES CRIPl' ION
f77, the FORTRAN compiler, accepts a list of FORTRAN source files and
various intermediate texts contained in the list of files specified by
file and puts the resulting executable object module in A.out (but see
the -0 option, described below).

In order to understand the use of f77, the reader must first understand
the steps which the compiler goes through in order to turn a FORTRAN
source program into an executable object file.

The FORTRAN compiler generates several intermediate files on the way to
generating the final executable file. The first phase of the compiler
generates an intermediate file, of the same name as· the source file, but
with a.i suffix. This intermediate file is destined for processing by
the code generator.

The code generator is the second phase of the process. The output of
the code generator is a file with the same name as the source file, but
with a suffix of oobj. The *.obj file is the input to the next phase,
called ulinker.

The ulinker phase of the compilation process converts the .obj file into
a UNIX-style object file with a .0 suffix. This file can then be pro
cessed by the UNIX loader utility, ld.

Finally, the ld utility produces the final executable code file.

When using f77, any combination of FORTRAN source files (each having a
.for suffix) can be combined with FORTRAN or Pascal intermediate files
(each having a .i suffix), FORTRAN or Pascal object code files (each
having a .obj suffix), and UNIX object files (each having a .0 suffix).
When the compilation completes successfully, the result of the combina
tion of all those files is placed in the file A.~ or in the file
specified by the -0 option.

The -0 option, if given, specifies that the file ofile <runnable file)
whose name follows the option is the file to receive the final execut
able code. If the -0 option is not specified, the resultant executable
file is placed in the file A.out.

If the -i option is giv~n, the FORTRAN intermediate code <the result of
running /lib/fortran) is placed in a file of the same name as the source
file, but with a suffix of .i appended. The compilation then ter
minates.

Printed 7/8/82 1

F77(1) UNIX Programmer's Manual F77(1)

If the -c option is given, the FORTRAN unlinked object code (the result
of running /lib/code) is placed in a file of the same name as the source
file, but with a suffix of .obj appended. The compilation then ter
minates.

If the -u option is given, the linked object code (the result of running
/lib/ulinker) is placed in a file of the same name as the source file,
but with a suffix of .0 appended. The compilation then terminates.

The -v (for verbose) option makes f77 display a running progress report
as it compiles.

If only one file argument is supplied on the command line, then all the
intermediate files (.i, .obj, .0) are removed at the end of the compila
tion. If mUltiple file arguments are typed on the command line, any
existing intermediate files are not removed.

EXAMPLES

FILES

. f77 prog!. for

compiles progl.~ and puts the resulting object module in A.~.

f77 -0 frammis prog2.for prog3.obj

compiles the FORTRAN program called prog2ofor and links the result with
the object file prog3.obj. The result of the compilation is placed in
the output file called frammis.

*.for FORTRAN source
*.i Intermediate code
*.obj Compiled unlinked f77 object
*.0 Compiled unlinked UNIX object
/lib/ftnlib.obj
/lib/paslib.obj
/lib/fortran
/lib/code
/lib/ulinker
/lib/ftncterrs
/lib/ftnrterrs
/bin/ld linking loader
/lib/crtO.o startup routine

SEE ALSO
''User Documentation Upda te for UniSoft Pas cal and FORTRAN".

Printed 7/28/82 2

FALSE (1) UNIX Programmer's Manual

NAME
true, false - provide truth values

SYNOPSIS
true

false

DES CRIPI ION
True and false are usually used in a Bourne shell script.
the appropriate status "true" or "false".

EXAMPLE

SEE ALSO

while false
do

command list
done

cah(l), sh(l), true(l)

DIAGNOSTICS
False has exit status nonzero.

Printed 7/8/82 1/11/82

FA:LSE(l)

They return

1

FGREP(1) UNIX Programmer's Manual FGREP(1)

NAME
fgrep - search a file for a pattern

SYNOPSIS
fgrep option] ••• strings] [file]

DESCRIPTION
Commands of the ~ family search the input files (standard input
default) for lines matching a pattern. Normally, each line found is
copied to the standard output. Fgrep patterns are fixed strings; it is
fast and compact. The following options are recognized.

-v A11 lines but those matching are printed.

-x (Exact) only lines matched in their entirety are printed.

-c Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated
by new lines •

-n Each line is preceded by its relative line m.mber in the file.

-b Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk block numbers by con
text.

-s Silent mode. Nothing is printed (except error messages). This is
useful for checking the error status.

-e expression
Same as a simple expression argument, but useful when the expres
sion begins with a -

-f file
The string list (fgrep) is taken fran the file.

In all cases the file name is shown if there is more than one input
file. Care should be taken when using the characters $ * [... I () and
\ in the expression as they are also meaningful to the Shell. It is
safest to enclose the entire expression argument in single quotes' '.

Fgrep searches for lines that contain one of the (newline-separated)
strings.

Regular expressions given to fgrep must be enclosed in single quotes and
a backslash (\) must immediately precede the newline between strings.
The newline or carriage return itself is not considered to be a charac
ter. Fgrep searches only for fixed strings that match exactly and will
not accept metacharacter matching, as will egrep (q.v.).

Printed 6/30/82 1/9/82 1

FGREP(l) UNIX Programmer's Manual FGREP(l)

The order of precedence of operators at the same parenthesis level is []
then *+? then concatenation then I and newline.

EXAMPLE

fgrep -n ' stringl\
string2\
string3\ ' fi1el fi1e2 fi1e3

reports the lines and line numbers fran each of the three files that
contain the specified strings. Note that the string list is enclosed in
both single quotes and blanks. Do not put a space between the backs1ash
and the newline (carriage return).

SEE ALSO
egrep(l), ex(l), grep(l), sed(l), sh(l)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files.

Ideally there should be only one~, but we don't know a single algo
rithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.

Printed 6/30/82 1/7/82 2

FILE(1) UNIX Programmer's Manual FILE(l)

NAME
file - determine file type

SYNOPSIS
file file

DESCRIPrION
File performs a series of tests on each argument in an attempt to clas
sify the file(s) by type. If an argument appears to be ascii, file
examines the first 512 bytes and tries to guess its language.

EXAMPLE
file textf il e programfile direct ory

reports the file names and directory name, and whether the files are
English text, nroff input, a C program, or whatever.

DIAGNOSTICS

BUGS

If file cannot decipher a filetype, it reports "cannot stat".

It often makes mistakes. In particular it often suggests that command
files are C programs.

Printed 6/30/82 2/4/82 1

FIND(1) UNIX Programmer's Manual FIND(l)

NAME
find - find files

SYNOPSIS
find pathname-list predicate-list expression

DESCRIPrION
Find recursively descends the directory hierarchy one directory at a
time, for each pathname in the pathname-list (i.e., one or more path
names) using the first pathname in the list as the starting point.

You can use find to locate files for which you can remember the name but
not the location, or to locate files that fulfill certain criteria.

Find seeks files that match conditions set forth in the predicate-list,
and performs actions specified in the expression.

In the predicate-list, the number argument A is used to mean a decimal
integer where +A means more than A, -A means less than A and A means
exactly A.

The following predicate descriptors are available:

-name filename
True if the filename argument matches the current file name.
Normal Shell argument syntax may be used if escaped (watch out
for n[n, n? nand n*n).

-perm onum
True if the file permission flags exactly match the octal
number ~ (see chmod(1». If ~ is prefixed by a minus
sign, more flag bits (017777, see ~(2» become significant
and the flags are compared: (flags&onum)-=~.

-type c True if the type of the file is ~, where ~ is b, c, d or f for
block special file, character special file, directory or plain
file.

-links n True if the file has A I inks.

-user uname
True if the file belongs to the user uname (login name or
numeric user ID).

-group gname

-size n

-inum n

Printed 7/8/82

True if the file belongs to group gname (group name or numeric
group ID).

True if the file is A blocks long (512 bytes per block).

True if the file has inode number A.

2/4/82 1

FIND (I) UNIX Programmer's Manual FIND(l)

-atime n True if the file has been accessed in ~ days.

-mtime n True if the file has been modified in ~ days.

-exec command
True if the executed command returns a zero value as exit
status. The end of the -exec and command sequence must con
sist of a pair of curly braces and an escaped semicolon. With
-exec the command argument '{}' is necessary to store the
current pathname.

-ok command

-print

Like -exec in its syntax, except that the generated command is
written on the standard output, then the standard input is
read and the command executed only upon response "yes", or y.

Always true; causes the current pathname to be printed. Do
not terminate this command with curly braces or a semicolon.

-newer file
True if the current file has been modified more recently than
the argument file.

The primaries or predicate operators may be combined using the following
operators (in order of decreasing precedence):

1) A parenthesized group of primaries and operators (parentheses are
special to the Shell and must be escaped).

2) The negation of a primary ('1' is the unary ~ operator).

3) Concatenation of primaries (the and operation is implied by the jux
taposition of two primaries).

4) Alternation of primaries ('-0' is the.Q.!. operator).

EXAMPLES

find / -perm 755 -exec 1s no" n;"

will find all files, starting with the root directory, on which the per
mission levels have been set to 755 (see chmod(l)).

With -exec and a command such as lA, it is often necessary to escape the
n{}n that stores the current pathname under investigation by putting it
in double quotes. It is always necessary to escape the semicolon at the
end of an -exec sequence.

Note again that it is also necessary to escape parentheses
n \(nand n \) n used for grouping primaries, by means of a backslash.

Printed 7/8/82 2/4/82 2

FIND(l)

FILES
/etc/passwd
/ etc/gr.oup

SEE ALSO
sh(l)

BUGS

UNIX Programmer's Manual

The syntax is painful.

Printed 7/8/82 2/4/82

FIND(l)

3

FREQ(l) UNIX Programmer's Manual FREQ(l)

NAME
freq - report on character frequencies in a file

SYNOPSIS
freq [file •••]

DESCRIPTION
Freg counts occurrences of characters in the list of files specified on
the command line. If no files are specified, the standard input is
read.

EXAMPLE
The
for

example below shows freg used to
this manual page:

freq /usr/man/manl/freq.l
Inul Olsoh Olstx
leot Olenq Olack
Ibs Olht Ollf
Iff Olcr Olso
Idle Oldel 0ldc2
Idc4 Olnak Olsyn
Ican Olem Olsub
Ifs Olgs Olrs
I 193 I ! 0 I"
1$ 01% 01&
I(31) 31*
I , 41- 13 I •
10 011 412
14 015 016
18 219 01:
1< 01= 01>
I@ OIA 31B
ID liE 51F
IH 511 121J
IL 11M liN
Ip 10lQ 11R
IT 10lu 11v
Ix OIY liz
1\ Ill] 51A
I' Ola 60lb
Id 391e 1251f
Ih 331i 621j
11 231m 151n
Ip 311q 41r
It 80lu 321v
Ix Oly 61z
I I Ol} 01-

Printed 6/30/82 1/9/82

count characters in the source text

Oletx 01
Olbel 01

611vt 0 I
Olsi 01
0ldc3 01
Oletb 01
Olesc 01
Olus 01
21i'F 0 I
01' 01
01+ 21

3911 0 I
013 01
017 0 I
11; 21
Ol? 01

13IC 11
21G 01
OIK 01
410 31
71s 101
Olw 01
01 [51
01 01

13 I c 331
291g 121
41k 31

6910 571
591s 541
llw 41
Ol{ 01
0lde1 01

1

FSCK(1M) UNIX Programmer's Manual FSCK(1M)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
fsck -y J [-n J [-sX J [-SX] [-t filename] [filesystem] •••

DESCRIPIION
fsck audits and interactively repairs inconsistent conditions for file
systems. If the file system is inconsistent the operator is prompted for
concurrence before each correction is attempted. It should be noted
that a number of the corrective actions will result in some loss of
data. The amount and severity of data lost may be determined from the
diagnostic output. The default action for each consistency correction
is to wait for the operator to respond yes or no. If the operator does
not have write permission fsck will default to a -n action.

Fsck has more consistency checks than its predecessors check, dcheck,
. fcheck, and icheck combined.

The following flags are interpreted by fsck.

-y Assume a yes response to all questions asked by fsck; this should
be used with great caution as this is a free license to continue
after essentially unlimited trouble has been encountered.

-n Assume a no response to all questions asked by fsck; do not open
the file system for writing.

-s.! Ignore the actual free list and (unconditionally) reconstruct a
new one by rewriting the super-block of the file system. The file
system should be unmounted while this is done; if this is not pos
sible, care should be taken that the system is quiescent and that
it is rebooted immediately afterwards. This precaution is neces
sary so that the old, bad, in-core copy of the superblock will not
continue to be used, or written on the file system.

The -sX option allows for creating an optimal free-list organiza
tion. The following forms of ~ are supported for the following
devices:

-s3 (RP03)
-s4 (RP04, RPOS, RP06)
-sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the filesystem was created
are used. If these values were not specified, then the value
400:~ is used. .

-s~ Conditionally reconstruct the free list. This option is like -s.!
above except that the free list is rebuilt only if there were no
discrepancies discovered in the file system. Using -S will force a
no response to all questions asked by ~. This option is useful

Printed 7/8/82 1/13/82 1

FSCK(1M) UNIX Programmer's Manual FSCK(lM)

for forcing free list reorganization on uncontaminated file sys
tems.

-t If fsck cannot obtain enough memory to keep its tables, it uses a
scratch file. If the -t option is specified, the file named in the
next argument is used as the scratch file, if needed. Without the
-t flag, fsck will prompt the operator for the name of the scratch
file. The file chosen should not be on the filesystem being
checked, and if it is not a special file or did not already exist,
it is removed when fsck completes.

If no filesystems are given to fsck then a default list of file systems
is read from the file /etc/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range of

the file system.
3. Incorrect link counts.
4. Size checks:

Directory size not l6-byte aligned.
5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
Inode number out of range.

8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file system.

9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with
the operator's concurrence, reconnected by placing them in the
lost+found directory. The name assigned is the inode number. The only
restriction is that the directory lost+found must preexist in the root
of the filesystem being checked and must have empty slots in which
entries can be made. Thi~ is accomplished by making lost+found, copying
a number of files to the directory, and then removing them (before fsck
is executed).

Checking the raw device is almost always faster.

EXAMPLE
fsck /dev/rdiskO

checks the consistency of device rdiskO.

FILES
/etc/checklist contains default list of file systems to check.

Printed 7/8/82 1/13/82 2

FSCK(1M) UNIX Programmer's Manual FSCK(1M)

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self-explanatory.

SEE ALSO

BUGS

dcheck(1M), icheck(1M)

Inode numbers for. and.. in each directory should be checked for
validity.

-g and -b options from check should be available in fsck.

Printed 7/8/82 1/13/82 3

GET(l) UNIX Programmer's Manual
GET(l)

NAME
get - get a version of an SCCS file

SYNOPSIS
get [-rSID] [-ccutoffJ [-ilistJ [-xlistJ [-aseq-no.J [-k] [-e] [-1.[R,JJ
[-p] [-mJ [-nJ [-s] [-b] [-g] [-tJ file •••

DESCRIPTION
~ generates an ASCII text file from each named sees file according to
the specifications given by its key letter arguments, which begin with -
The arguments may be specified in any order, but all keyletter arguments
apply to all named sees files. If a directory is named, ~ behaves as
though each file in the directory were specified as a named file, except
that non-sees files (last component of the path name does not begin with
s.) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to
be the name of an sees file to be processed. Again, non-sees files and
unreadable files are silently ignored.

The generated text is normally written into a file called the a-file
whose name is derived fran the sces file name by simply remov ing the
leading s.; (see also FILES, beloW).

Each of the keyletter arguments is explained below as though only one
sees file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

-ccutoff

-e

Printed 7/28/82

The .§.ees IDentification string (SID) of the version (delta)
of an sees file to be retrieved. Table 1 below shows, for
the most useful cases, what version of an sees file is
retrieved (as well as the SID of the version to be eventually
created by delta(l) if the -e keyletter is also used), as a
function of the SID specified.

Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file which were created after
the specified cutoff date-time are included in the generated
ASCII text file. Units omitted fran the date-time default to
their maximum possible values; that is, -c7502 is equivalent
to -c750228235959. Any number of non-numeric characters may
separate the various 2 digit pieces of the cutoff date-time.
This feature allows one to specify a cutoff date in the form:
"-c77/2/2 9:22:25". Note that this implies that one may use
the %E% and %U% identification keywords (see below) for
nested ~ within, say the input to a ~(le) command:

-fget tI-c%E% %U%" Se file

Indicates that the ~ is for the purpose of editing or

1

GET(1)

-b

-ilist

UNIX Progr amme r' s Manua 1 GET(l)

making a change (delta) to the sees file via a subsequent use
of delta(l). The -e keyletter used in a ~ for a particular
version (SID) of the sees file prevents further ~s for
editing on the same SID until delta is executed or the j
(joint edit) flag is set in the sees file (see admin(l».
Concurrent use of get -e for different SIDs is always
allowed.

If the A-file generated by ~ with an -e keyletter is
accidentally ruined in the process of editing it, it may be
regenerated by reo-executing the ~ command with the -k
keyletter in place of the -e key letter.

sees file protection specified via the ceiling, floor, and
authorized user list stored in the sees file (see admin(l»
are enforced when the -e key letter is used.

Used with the -e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
keyletter is ignored if the b flag is not present in the file
(see admin(I» or if the retrieved delta is not a leaf delta.
(A leaf delta is one that has no succe ssors 'on the sees file
tree.)
Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following
syntax:

<list> ::~ <range> I <list> , <range>
<range> ::= SID I SID - SID

SID, the sees Identification of a delta, may be in any form
shown in the "SID Specified" column of Table 1. Partial SIDs
are interpreted as shown in the "SID Retrieved" column of
Table 1.

-xlist A list of deltas to be excluded (forced not to be applied) in
the creation of the generated file. See the -i keyletter for
the list format.

-k Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The -k key letter is
implied by the -e keyletter.

-l[p] Causes a delta summary to be written into an .l-file. If -lp
is used then an .l-file is not created; the delta summary is
written on the standard output instead. See FILES for the
format of the .l-file.

-p Causes the text retrieved from the sees file to be written on

Printed 7/28/82 2

GETO) UNIX Programmer's Manual GETO)

the standard output. No g-file is created. All output which
normally goes to the standard output goes to file descr iptor
2 instead, unless the -s keyletter is used, in which case it
disappears.

-s Suppresses all output normally written on the standard out
put. However, fatal error messages ·(which always go to file
descriptor 2) remain unaffected.

-m Causes each text line retrieved fran the sces file to be pre
ceded by the SID of the delta that inserted the text line in
the sces file. The format is: SID, followed by a horizontal
tab, followed by the text line.

-n Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text
line. When both the -m and -n key letters are used, the for
mat is: %M% value, followed by a horizontal tab, followed by
the -m key letter generated format.

-g Suppresses the actual retrieval of text from the sees file.
It is primarily used to generate an l.-file, or to verify the
existence of a particular SID.

-t Used to access the most recently created (ntop ") delta in a
given release (e.g., -rl), or release and level (e.g.,
-r1.2) •

-a~-~. The delta sequence number of the sces file delta (version) to
be retrieved (see sccsfile(S». This keyletter is used by
the combO) command; it is not a generally useful key Ie tter,
and users should not use it. If both the -r and-a
keyletters are specified, the -a key letter is used. eare
should be taken when using the -a key letter in conjunction
with the -e keyletter, as the SID of the delta to be created
may not be what one expects. The -r keyletter can be used
with the -a and -e key letters to control the naming of the
SID of the delta to be created. I

For each file processed, ~ responds (on the standard output) with the
SID being accessed and with the number of lines retrieved fran the sees
file.

If the -e keyletter is used, the SID of the delta to be made appears
after the SID accessed and before the number of lines generated. If
there is more than one named file or if a directory or standard input is
named, each file name is printed (preceded by a new-line) before it is
processed. If the -i key letter is used included deltas are listed fol
lowing the notation "Included"; if the -x key letter is used, excluded

Printed 7/28/82 3

GET(l) UNIX Programmer's Manual GET(l)

deltas are listed following the notation "Excluded".

TABLE 1. Determination of sces Identification Str ing

SID* -b Keyletter Other SID SID of Delta
Specified Used+ Conditions Retrieved to be Created

none" no R default s to mR mR.mL mR. (m.L+ 1)

none" yes R defaults to mR mR.mL mR. mL. (mB+ 1) .1

R no R > mR mR.mL R.l***

R no R = mR mR.mL mR. (m.L+l)

R yes R > mR mR.mL mR.mL. (mB+l) .1

R yes R = mR mR.mL mR.mL.(mB+1) .1

R < mR and
R R does not exist hR.mL** hR. mL. (mB+ 1) .1

Trunk suee. if
R in release> R R.mL R.mL. (mB+1) .1

and R exists

R.L no No trunk suee. R.L R. (L+1)

R.L yes No trunk succ. R.L R. L. (mB+ 1) • 1

Trunk suce.
R.L in release ~ R R.L R.L.(mB+l) .1

R.L.B no No branch suec. R.L.B.mS R.L.B.(mS+l)

R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1) .1

R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+l)

R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1

R.L.B.S Branch succ. R.L.B.S R.L.(mB+1) .1

* "R", ''1'', "B", and "s" ar e the "rele ase", "level", "br anch" , and
"sequence" components of the SID, respectivel y; "m" means "max
imum". Thus, for example, "R.mL" means "the maximum level number
within release R"; "R.L.(mB+1) .1" means "the first sequence number
on the ~ branch (that is, maximum branch number plus one) of
level L within release R". Note that if the SID specified is of
the form "R.L", "R.L.B", or "R.L.B.S", each of the specified com
ponents .!!ll!.!.!. exist.

Printed 7/28/82 4

GET(1) UNIX Programmer's Manual GET(l)

** "hR" is the highest existing release that is lower than the speci
fied, nonexistent, release R.

*** This is used to force creation of the first delta in a ~
release.

41 Successor.
+ The -b keyletter is effective only if the b flag (see admin(l» is

present in the file. An entry of - means "irrelevant".
+ This case applies if the d (default SID) flag is ~ present in

the file. If the d flag is present in the file, then the SID
obtained from the d flag is interpreted as if it had been speci
fied on the command line. Thus, one of the other cases in this
table applies.

IDENTIFICATION KEYWORDS

FILES

Identifying information is inserted into the text retrieved from the
secs file by replacing identification keywords with their value wherever
they occur. The following keywords may be used in the text stored in an
SCCS file:

Keyword
%M%

%1%

Value
Module name: either
admin{l», or if
leading s. removed.
SCCS identifica tion
text.

%R% Release.
%L% Level.
%B% Branch.
%S% Sequence.

the value of the m flag in the file (see
absent, the name of the sees file with the

(SID) (%R%.%L%.%B%.%S%) of the retrieved

%D% Current date (YY/MM/DD).
%H% Current date (MM/DD/YY).
%T% Current time (HH:MM:SS).
%E% Date newest applied delta was created (YY/MM/DD).
%G% Date newest applied delta was created (MM/DD/YY).
%U% Time newest applied delta was created (HH:MM:SS).
%Y% Module type: value of the t flag in the sces file (see

admin(1» •
%F% secs file name.
%P% Fully qualified sces file name.
%Q% The value of the q flag in the file (see admin(l».
%C% Current line number. This keyword is intended for identifying

messages output by the program such as "this shouldn't have
happened" type errors. It is l!.Q.t intended to be used on every
line to provide sequence numbers.

%Z% The 4-character string @(#) recognizable by what(l).
%W% A shorthand notation for constructing ~(l) strings for UNIX

program files. %W% = %Z%%M%<horizontal-tab>%I%
%A% Another shorthand notation for constructing what(l) strings

for non-UNIX program files. %A%· %Z%%Y% %M% %I%%Z%

Several auxil iary files may be created by~, These files are known

Printed 7/28/82 5

GET(1) UNIX Programmer's Manual GET(1)

generically as the z-file, l-file, ~-file, and ~-file. The letter
before the hyphen is called the tag. An auxiliary file name is formed
from the sees file name: the last component of all sees file names must
be of the form s.module-~, the auxiliary files are named by replacing
the leading s with the tag. The A-file is an exception to this s chane:
the A-file is named by removing the s. prefix. For example, s.xyz.c,
the auxiliary file names would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c,
respectively.

The A-file, which contains the generated text, is created in the current
directory (unless the -p keyletter is used). A A-file is created in all
cases, whether or not any 1 ines of text were generated by the All. It
is owned by the real user. If the -k keyletter is used or implied its
mode is 644; otherwise its mode is 444. Only the real user need have
write permission in the current directory.

The ~-file contains a table showing which deltas were applied in gen
erating the retrieved text. The ~-file is created in the current direc
tory if the -1 keyletter is used; its mode is 444 and it is owned by the
real user. Only the real user need have wr ite permis sion in the current
directory.

Lines in the l-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or wasn't applied
and ignor ed;
* if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the delta was or
was not applied:

"I": Included.
''X": Excluded.
"e": eut off (by a -c key1etter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of' creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one
horizontal tab character. A blank line terminates each entry.

The ~-fi1e is used to pass information resulting fram a All with an -e
key1etter along to delta. Its contents are also used to prevent a sub
sequent execution of ~ with an -e key letter for the same SID until
delta is executed or the joint edit flag, j, (see admin(l» is set in
the sees file. The ~-file is created in the directory containing the
sees file and the ef fective user must have wr ite permis sion in that
directory. Its mode is 644 and it is owned by the effective user. The
format of the ~-fi1e is: the gotten SID, followed by a blank, followed

Printed 7/28/82 6

GET(I) UNIX Programmer's Manual GET(I)

by the SIn that the new delta will have when it is made, followed by a
blank, followed by the login name of the real user, followed by a blank,
followed by the date-time the ~ was executed, followed by a blank and
the -i keyletter argument if it was present, followed by a blank and the
-x key letter argument if it was present, followed by a new-line. There
can be an arbitrary number of lines in the ~-file at any time; no two
lines can have the same new delta SID.

The ~-file serves as a lock-~ mechanism against simultaneous updates.
Its contents are the binary (2 bytes) process ID of the command (that
is, ~) that created it. The ~-file is created in the directory con
taining the SCCS file for the duration of~. The same protection res
trictions as those for the ~-file apply for the ~-file. The ~-file is
created mode 444.

SEE ALSO
admin(l), delta(l), help(l), prs(l), what(l), sccsfile(S).
Source Code Control System User'~ Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

If the effective user has write permission (either explicitly or impli
citly) in the directory containing the sces files, but the real user
doesn't, then only one file may be named when the -e key letter is used.

Printed 7/28/82 7

GETTY(1M) UNIX Progrrunmer's Manual GETTY(lM)

NAME
getty - set terminal mode

SYNOPSIS
/etc/getty [char]

DESCRIPTION
Getty is invoked by init(lM) immediately after a terminal is opened,
following the making of a connection. While reading the name getty
attempts to adapt the system to the speed and type of terminal being
used.

Init calls getty with an argument specified by the ~ file entry for
the terminal line. (see ttys(S». Normally, it sets the speed of the
interface, specifies that raw mode is to be used (break on every charac
ter), that echo is to be suppressed, and either parity allowed. It
types a banner identifying the system (from /etc/ident) and the 'login:'
message. Then the user's name is read, a character at a time.

If a null or break character is received and the parameter to getty
specifies a multiple speed line, getty will step to the next baud rate
and start again.

The user's name is terminated by a new-line or carriage-return charac
ter. The latter results in the system being set to treat carriage
returns appropriately (see stty(2».

The user's name is scanned to see if it contains any lower-case alpha
betic characters; if not, and if the name is nonempty, the system is
told to map any future upper-case characters into the corresponding
lower-case characters.

Finally, login is called with the user's name as argument.

SEE ALSO
init(1M), login(l), stty(2), ttys(S)

Printed 7/21/82 1

GREP(l) UNIX Programmer's Manual GREP(I)

NAME
grep - search a file for a pattern

SYNOPSIS
grep option]... expression [file] •••

DESCRIPTION
Commands of the ~ family search the input files (standard input
default) for lines matching a pattern. Normally, each line found is
copied to the standard output. Grep patterns are limited regular
expressions in the style of ~(l); it uses a compact nondeterministic
algorithm.

The following options are recognized.

-v All lines but those matching are printed.

-c Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated
by new lines •

-0 Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk block numbers by con
text.

-s Silent mode. Nothing is printed (except error messages). This is
useful for checking the error status.

-e express ion
Same as a simple expression argument, but useful when the expres
sion begins with a -.

In all cases the file name is shown if there is more than one input
file. Care should be taken when using the characters $ * [~ I () and
\ in the expression as they are also meaningful to the Shell. It is
safest to enclose the entire expression argument in single quotes' '.

Grep accepts metacharacter matching characters as well as fixed regular
expressions. The metacharacter matching protocol is as follows: (note
that newline is not considered to be a 'character').

A \ followed by a single character other than newline matches that
character.

The character ~ ($) matches the beginning (end) of a line.

A • matches any character.

A single character not otherwise endowed with special meaning

Printed 7/21/82 1/9/82 1

GREP(l) UNIX Programmer's Manual GREP(l)

matches that character.

A string enclosed in brackets [] matches any single character from
the string. Ranges of ASCII character codes may be abbreviated as
in 'a-zO-9'. A] may occur only as the first character of the
string. A literal - must be placed where it can't be mistaken as
a range indicator.

A regular expression followed by * (+, ?) matches a sequence of 0
or more (lor more, 0 or 1) matches of the regular expression.

Two regular expressions concatenated match a match of the first
followed by a match of the second.

Two regular expressions separated by or newline match either a
match for the first or a match for the second.

A regular expression enclosed in parentheses matches a match for
the regular expression.

The order of precedence of operators at the same parenthesis level is []
then *+? then concatenation then I and newline.

EXAMPLE
grep -v -c 'regular' grep.l

reports a count of the number of lines that do ~ contain the word reg
ular in the file ~.l.

SEE ALSO
egrep(l), ex(l), fgrep(l), sed(l), sh(l)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files.

Ideally there should be only one~, but we don't know a single algo
rithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.

Printed 6/30/82 1/18/82 2

HEAD (1) UNIX Programmer's Manual HEAD (1)

NAME
head - give firs t few lines

SYNOPSIS
head -count] [file •••]

DESCRIPTION
This filter gives the first count lines of each of the specified files,
or of the standard input. If count is omitted it defaults to 10.

EXAMPLE
head -6 filea fileb filec

will print out the first six lines of the three specified files. The
filename will appear before each new set of head lines listed, if more
than one file has been specified.

SEE ALSO
tail (1)

Printed 6/30/82 1/18/82 1

HELP (I) UNIX Programmer's Manual HELP(I)

NAME
help - ask for help about sces problems.

SYNOPSIS
help [args]

DESCRIPTION

FILES

Help finds information to explain a message fran a command or explain
the use of a command. Zero or more arguments may be supplied. If no
arguments are given, help will pranpt for one.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the follow
ing type s :

type 1

type 2

type 3

Begins with non-numerics, ends 1n numerics. The
non-numeric prefix is usually an abbreviation for
the progran or set of routines wh ich prod uced th e
message (e.g., ge6, for message 6 from the ~ com
mand) •

Does not contain numerics (as a command, such as
get)

Is all nuneric (e.g. J 212)

The response of the program will be the explanatory information rela ted
to the argument, if there is any.

When all else fails, try "help stuck".

/usr /lib/be lp direct ory containing file s of message text.

DIAGNOSTICS
Use help(1) for explanations.

Printed 6/30/82 1

REXO)

NAME

UNIX Programmer's Manual HEX(l)

hex - translates object files into ASCII formats suitable for Motorola
S-record downloading.

SYN9PSIS
hex [-1] [-n#] [-sO] [-s2] [-ns8] [+saddr] ifile

DESCRIPTION

AUTHOR

hex translates object files into ASCII formats suitable for Motorola S
record downloading. The following options determine locations:

1 Output 'Loading at' message.

n#

sO

s2

nsS

saddr

ifile

Number of characters to output per record.
number.

Output a leading sO record.

S2 records only (no s1 records are produced).

Do not output a trailing s8 (s9) record.

Starting load address (in hex).

is a decimal

File to be downloaded. The file's starting address is used if
saddr is not present.

Jeff Schriebman, August 1981

Printed 8/5/82 1/29/82 1

ICHECK(lM) UNIX Programmer's Manual ICHECK(1M)

NAME
icheck - file system storage consistency check

SYNOPSIS
icheck [-s] [-b numbe rs] [file syst em]

DESCRIPTION
N.B.: Icheck has been made obsolete for normal consistency checking by
fsck(IM) •

Icheck examines a file system, builds a bit map of used blocks, and com
pares this bit map against the free list maintained on the file system.
If the file system is not specified, a set of default file systems is
checked. The normal output of icheck includes a report of:

The total number of files and the numbers of regular, directory,
block special and character special files.

The total number of blocks in use and the numbers of single-,
doub1e-, and triple-indirect blocks and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free
list.

The -s option causes icheck to ignore the actual free list and recon
struct a new one by rewriting the super-block of the file system. The
file system should be dismounted while this is done; if this is not pos
sible (for example if the root file syst em has to be sal vaged) care
should be taken that the system is quiescent and that it is rebooted
immediately afterwards so that the old, bad in-core copy of the super
block will not continue to be used. Notice also that the words in the
super-block which indicate the size of the free list and of the i-list
are believed. If the super-block has been curdled these words will have
to be patched. The -s option causes the normal output reports to be
suppres sed.

Following the -b option is a list of block numbers; whenever any of the
named blocks turns up in a file, a diagnostic is produced.

Icheck is faster if the raw version of the special file is used, since
it reads the i-list many blocks at a time.

EXAMPLE
icheck /dev/rdiskO

checks the consistency of the file syst em storage on dev ice rdiskO.

FILES
/etc/checklist

Printed 6/30/82 1/13/82 1

ICHECX(1M) UNIX Programmer's Manual ICHECK(1M)

SEE ALSO
clri(lM), dcheck(lM), fsck(lM), ncheck(lM)

DIAGNOSTICS

BUGS

For duplicate blocks and bad blocks (which lie outside the file system)
icheck announces the difficulty, the i-number, and the kind of block
involved. If a read error is encountered, the block number of the bad
block is printed and icheck considers it to contain o. "Bad freeblock"
means that a block number outside the available space was encountered in
the free list.
"n. dups in free" means that.n blocks were found in the free list which
duplicate blocks either in some file or in the earlier part of the free
list.

Since icheck is inherentl y two-pass in na tur e, extraneous diagnostic s
may be produced if applied to active file systems.

It believes even preposterous super-blocks and consequently can get core
images.

The system should be fixed so that the reboot after fixing the root file
system is not necessary.

Printed 6/30/82 5/10/81 2

INIT(lM) UNIX Programmer's Manual INIT(IM)

NAME
init - process control initialization

SYNOPSIS
init

DESCRIPTION
Init is invoked inside the system as the last step in the boot pro
cedure. Init commence s single user operation by giv ing the super-user a
shell on the console.

When such single user operation is terminated by killing the single-user
shell (i.e. by hitting Control-d), init runs /etc/~. This command file
performs housekeeping operations such as removing temporary files,
mounting file systems, starting daemons, and the /etc/update process.

In multi-user operation, init'~ role is to create a process for each
terminal port on which a user may log in. To begin such operations, it
reads the file /etc/ttys and forks several times to create a process for
each terminal specified in the file. Each of these processes opens the
appropriate terminal for reading and writing. These channels thus
receive file descriptors 0, 1 and 2, the standard input and output and
the diagnostic output.

If a terminal exists but an error occurs when trying to open the termi
nal init complains by writing a message to the system console. After an
open succeeds, /~/getty is called with argument as specified by the
second character of the ~ file line. Getty reads the user's name and
invokes login to log in the user and execute the Shell. Usually, users
will begin by running the C shell, but this can be changed by editing
the password file (see passwd(l)).

Ultimately the Shell will terminate because of an end-of-file (Control
d) either typed explicitly or generated as a result of hanging up. The
main path of init, which has been waiting for such an event, wakes up
and removes the appropriate entry from the file utmp, which records
current users, and makes an entry in /usr/adm/wtmp, which maintains a
history of logins and logouts. Then the appropriate terminal is reo
pened and getty is reinvoked.

Init catches the hangup signal (signal SIGHUP) and interprets it to mean
that the file /etc/ttys should be read again. The Shell process on each
line which used to be active in ttys but is no longer there is ter
minated; a new process is created for each added line; lines unchanged
in the file are undisturbed. Thus it is possible to drop or add lines
without rebooting the system by changing the ~ file and sending a
hang up signal to the init process: use 'kill -1 l' or 'kill -HUP 1.'

Init will terminate multi-user operations and resume single-user mode if
sent a terminate (TERM) signal, i.e. "kill -TERM 1". If there are
processes outstanding which are deadlocked (due to hardware or software
failure), init will not wait for them all to die (which might take

Printed 7/21/82 2/19/82 1

INIT(lM) UNIX Programmer's Manual INIT(lM)

forever), but will time out after 30 seconds and print a warning mes
sage.

If, at bootstrap time, the init process cannot be located, the system
will loop in user mode.

DIAGNOSTICS

FILES

"init: ll:l,: cannot open." A terminal which is turned on in the.!£ file
cannot be opened, likely because the requisite lines are either not con
figured into the system or. the associated dev ice was not attached dur ing
boot-time system configuration.

WARNING: Something is hung (won't die); 'ps axl' advised. A process is
hung and could not be killed when the system was shutting down. This is
usually caused by a process which is stuck in a device driver due to a
persistent device error condition.

/dev/console
/devltty?
/etc/utmp
/usr/adm/wtmp
/etc/ttys
ietcirc
/etc/update
/etc/getty

periodically upda te the super block
to set up terminal

SEE ALSO
login(l), kill(l), sh(l), ttys(S), getty(lM)

Printed 7/28/82 2/19/82 2

JOIN(l) UNIX Programmer's Manual JOIN(l)

join - relational database operator

SYNOPSIS
join options] filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations speci
fied by the lines of filel and file2. If file! is '-', the standard
input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on
the fields on which they are to be joined. If not otherwise stated,
join normally joins 00 the first field in each line.

There is one line in the output for each line in file! and file2 that
have identical J01n fields. The output line normally consists of the
common field, then the rest of the line from filel, theo the rest of the
line from file2, but the order of output of the fields can be changed
with the -0 option, described below.

Fields are normally separated by blank, tab or newline. In this case,
multiple separators count as one, and leading separators are discarded.
The field separators can be changed if desired.

These options are recognized:

-a~ In addition to the normal output, produce a line for each unpair
able line in file ~, where ~ is ! or 2.

-e ~ Replace empty output fields by string ~.

-~~ Join on the ~th field of file~. If ~ is missing, use the mth
field in each file.

-0 list
Each output line comprises the fields specifed in list, each ele
ment of which has the form~.~, where ~ is a file number and m is
a field number.

-ts Use character £ as a separator (tab character). Every appearance
of S in a line is significant.

EXAMPLE
Consider that we have two files called people and work, which contain a
list of peoples' name and their workplaces. The people file contains;

Printed 6/30/82 !

JOIN(l) UNIX Programmer's Manual JOIN(l)

Austen
Bailey
Clark
Daniels
Davidson
Dawson
Morgan
Parker
Smith
Williams

and the ~ file contains:

Jack Austen Anchor Brewery
Maryann Clark Shoeshop
Steve Daniels McGuiness Distillery
Sylvia Dawson Laphroaig
Henry Morgan Downtown Theatre
Sally Smith Talcum Powdery
Bill Williams Computer Software

The example below shows the effects of the join program:

join -j1 1 -j2 2 -0 2.1 2.2 2.3 2.4 2.5 people work
Jack Austen Anchor Brewery
Maryann Clark Shoeshop
Steve Daniels McGuiness Distillery
Sylvia Dawson Laphroaig
Henry Morgan Downtown Theatre
Sally Smith Talcum Powdery
Bill Williams Computer Software

The join was done between the first field of the people file, and the
second field of the work file. The -0 option is used to get the output
lines in first name - last name order.

For every first field in people which matches the second field in work,
the output consists of the peoples names followed by their place of
work. If the -0 option was not used, the peoples' names would appear
last name first.

SEE ALSO

BUGS

sort(l), comm(1), awk(l)

With default field separation, the collating sequence is that of
sort -A; with -t, the sequence is that of a plain sort.

The conventions of join, ~, samm, unig, ~ and awk(l) are wildly
incongruous.

Printed 6/30/82 1/18/82 2

KILL(!) UNIX Programmer's Manual KILL(l)

NAME
kill - terminate a process with extreme prejudice

SYNOPSIS
kill -sig] processid •••

DESCRIPTION
Kill sends the TERM (terminate, 15) signal to the specified processes.
If a signal name or number preceded by '-' is given as first argument,
that signal is sent instead of terminate (see also signal(2». The list
of signal names and numbers is stored in /usr/include/signal.~. Signals
are often referred to by their names, stripped of the comoon SIG pref ix.

Here is a list of the signal names and numbers. Signal numbers are not
often used directly. The most comoon usage of the kill command is si~
ply "kill" plus the process ID number (see ~(1).

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction (not reset when caught)
SIGTRAP 5* trace trap (not reset when caught)
SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPlPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal

16 unassigned
N.A.: The starred (*) signals generate a core image if not caught or
ignored.

The terminate signal will kill processes that do not catch the signal;
"kill -9 ••• " is a sure kill. as the KILL (9) signal cannot be caught.
By convention. if process number 0 is specified. all members in the pro
cess group (i.e. processes resulting from the current login) are sig
naled (but beware: this works only if you use sh(l); not if you use
S4h(1).) In order to be killed. a process must belong to you unless you
are the super-user.

The process number of an asynchronous process started with '&' is
reported by the shell. Process numbers can also be found by using kill
as a built-in to cah(1); See cah(1) for details.

EXAMPLE
kill 24068

Printed 7/8/82 1/18/82 1

KILL(l) UNIX Programmer's Manual KILL(1)

stops the process with the I.D. number 24068.

SEE ALSO
csh(I), ps(I), kil1(2), signaI(2)

BUGS
An option to kill process groups ala killpg(2) should be provided; a
replacement for "kill 0" for csh(l) users.

Printed 7/8/82 1/18/82 2

LAST(l) UNIX Programmer's Manual LAST(l)

NAME
last - indicate last logins of users and teletypes

SYNOPSIS
last name •••] [tty •••

DESCRIPl' ION
Last will look back in the wtmp file which records all logins and
logouts for information about a user, a teletype [terminal] or any group
of users and teletypes. Arguments specify names of users or teletypes
of interest. Names of teletypes may be given fully or abbreviated. For
example 'last 0' is the same as 'last ttyO'. If multiple arguments are
given, the information which applies to any of the arguments is printed.
For example' last root console' would list all of "root's" sessions as
well as all sessions on the console terminal.

Last reports the sessions of the specified users and teletypes, most
recent first, indicating start times, duration, and teletype for each.
If the session is still continuing or was cut short by a reboot, last so
indicates.

EXAMPLE

FILES

last reboot

will give an indication of mean time between reboots of the system.

Last with no arguments prints a record of all logins and 10gouts, in
reverse order. Since last can generate a great deal of output, piping
it through the ~ program for screen viewing is advised.

If last is interrupted with a "break", it indica tes how far the search
has progressed in wtmp. If interrupted with a quit signal (generated by
a control-\) ~ exits and dumps core.

Contro1-d (EOF) signal does nothing. Therefore exit gracefully from
last with a "break" or "shift/delete" signal.

/usr/adm/wtmp login data base

SEE ALSO
wtmp(S)

AUTHOR
Howard Katseff

Printed 7/8/82 1/18/82 1

LD(l) UNIX Programmer's Manual LD(l)

NAME
ld - loader

SYNOPSIS
ld [option] file •••

DESCRIPTION
Ld combines several object programs into one, resolves external refer
ences, and searches libraries. In the simplest case several object
files are given, and ~ combines them, producing an object module which
can be either executed or become the input for a further 1S run. (In
the latter case, the -r option must be given to preserve the reloca tion
bits.) The output of ~ is left on a.out. This file is made executable
only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The
entry point of the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point
it is encountered in the argument list. Only those routines defining an
unresolved external reference are loaded. If a routine from a library
references another routine in the library, the referenced routine must
appear after the referencing routine in the 1 ibrary. Thus the order of
programs within libraries may be important.

The symbols '_etext', '~edata' and '_end' ('etext', 'edata' and 'end' in
C) are reserved, and if referred to, are set to the first location above
the progran, the first location above initialized data, and the first
location above all data respectively. It is erroneous to define these
symbols.

Ld understands several options.
before the file names.

Except for -1, they should appear

-s 'Strip' the output, that is, remove the symbol table and reloca
tion bits to save space (but impair the usefulness of the
debugger). This information can also be removed by strip(l).

-u Take the following argument as a symbol and enter it as undefined
in the symbol table. This is useful for loading wholly from a
library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first
routine.

-lA This option is an abbreviation for the library name '/lib/libx.a',
where A is a string. If that does not exist, 1& tries
'/usr/lib/libA.a'. A library is searched when its name is encoun
tered, so the placement of a -1 is significant.

-x Do not preserve local (non-.globl) symbols in the output symbol
table; only enter external symbols. This option saves some space
in the output file.

Printed 6/30/82 2/5/82 1

LD(l) UNIX Programmer's Manual LD(l)

-X Save local symbols except for those whose names begin with 'L'.
This opt ion is used by £.£.(1) to dis ca rd internally generated
labels while retaining symbols local to routines.

-r Generate reloca tion bit s in the output file so that it can be the
subject of another M run. This f lag also prE!lJ'ents final def ini
tions from being given to common symbols, and suppresses the
'undefined symbol' diagnostics.

-R.!. Set starting reloca tion address of program to .!. (x is in hex).

-d Force definition of common storage even if the -r flag is present.

-n Arrange that when the output file is executed, the text portion
will be read-only and shared amoDg all users executing the file.
This involves moving the data areas up to the first possible pro
tection boundary following the end of the text.

-N.!. Set the da ta reloca tion bounda ry to .!. for shared text progr ams.
The value.!. may be followed by a k or K to indicate multiplication
by 1024.

-0 The ~ argument after -0 is used as the name of the M output
file, instead of a.out.

-e The following argument is taken to be the name of the entry point
of the loaded program; location 0 is the default.

-F.!. Add offset.!. to all data references (x is in hex).

EXAMPLE
ld -s /lib/crtO.o filea.o fileb.o -lc

will load subroutines f ilea with fileb for execution and remove its sym
bol table.

FILES
llib/lib •• a
/usr /lib/lib •• a
a.out
/lib/crtO.o

SEE ALSO

libraries
more libraries
default output file
"e" start up routine

as (1), ad 1), cc (1)

Printed 6/30/82 2/5/82 2

LEX(l) UNIX Programmer's Manual LEX(1)

NAME
lex - generator of lexical analysis programs

SYNOPSIS
lex [-tvfn] [file]

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text.
The input files (standard input default) contain regular expressions to
be searched for, and actions written in C to be executed when expres
sions are found.

A C source program, 'lex.yy.c' is generated, to be compiled thus:

c c 1 ex. yy • c -11

This program, when run, copies unrecognized portions of the input to the
output, and executes the associated C action for each regular expression
that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file
"lex. yy. c".

-v Print a one-line summary of statistics of the generated analyzer.

-n Opposite of -v; -n is default.

-f ''Faster'' compilation: don't bother to pack the resulting tables;
limited to small programs.

EXAMPLE

FILES

lex lexcommands

would draw lex instructions from the file lexcommands, and place the
output in lex.noS

%%
[A-Z] putchar(yytext[O]+'a'-'A');
[]+$
[]+ putchar(' ');

is an example of a lex program that would be put into a lex command
file. This program converts upper case to lower, removes blanks at the
end of lines, and replaces multiple blanks by single blanks.

/usr/lib/lex/ncform lex "e" interface

Printed 7/28/82 1

LEX(l) UNIX Programmer's Manual LEX(l)

SEE ALSO
yacc(l), sed(l)
M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator

Printed 7/28/82 2

LINT(l) UNIX Programmer's Manual

lint - a C program verifier

SYNOPSIS
lint

DESCRIPTION

-abchnpuvx] file •••

LINT(l)

Lint attempts to detect features of the C program files which are likely
to be bugs, or non-portable, or wasteful. It also checks the type usage
of the program more strictly than the compilers.

Among the things which are currently found are unreachable statements,
loops not entered at the top, automatic variables declared and not used,
and logical expressions whose value is constant. Moreover, the usage of
functions is checked to find functions which return values in some
places and not in others, functions called with varying numbers of argu
ments, and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together;
they are checked for mutual compatibility. Function definitions for
certain libraries are available to lint; these libraries are referred to
by a conventional name, such as '-1m', in the style of ~(1).

Any number of the options in the following list may be used. The -D,
-U, and -I options of SS(I) are also recognized as separate arguments.

p Attempt to check portability to the IBM and ~ dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs,
improve style, and reduce waste.

b Report break statements that cannot be reached. (This is not the
default because, unfortunately, most lex and many yacc outputs
produce dozens of such comments.)

v Suppress complaints about unused arguments in functions.

x Report variables referred to by extern declarations, but never
used.

a Report assignments of long values to int variables.

c Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not
defined, or defined and not used (this is suitable for running
lint on a subset of files out of a larger program).

n Do not check compatibility against the standard library.

Exit(2) and other functions which do not return are not understood; this
causes various lies.

Printed 7/8/82 1

LINT(1) UNIX Programmer's Manual LINT(1)

Certain conventional comments in the C source will change the behavior
of lint:

/ *NOTREACHED* 1
at appropriate points stops comments about unreachable code.

1 *V ARARG SA* 1
suppresses the usual checking for variable numbers of arguments in
the following function declaration. The data types of the first ~
arguments are checked; a missing ~ is taken to be O.

1 *NOSTRI CT* 1
shuts off strict type checking in the next expression.

I*ARGSUSFJJ*I
turns on the -v option for the next function.

I*LINTLIBRARY*I
at the beginning of a file shuts off complaints about unused func
tions in this f il e.

EXAMPLE

FILES

The following lint call:

lint -b myfile.c

checks the consistency of the file 'myfile.c'. The -b option indicates
that unreachable break statements are not to be checked. This option
might well be used on files that lex(1) generates.

Ilib/lint[12] programs
/lib/llib-Ic declarations for standard functions
Ilib/llib-port declarations for portable functions

SEE ALSO
cc(l)
S. C. Johnson, Lint, A~ Program Checker

BUGS
There are some things you just can't get lint to shut up about.

Printed 7/8/82 2

LN(l) UNIX Programmer's Manual LN(l)

NAME
In - make links

SYNOPSIS
In namel [name2]
In name ••• directory

DESCRIPTION
A link is a directory entry referring to a file; the same file (together
with its size, all its protection information, etc.) may have several
links to it. You can use link to put a file in several directories; or
to put a file in another directory under another name. A link is not a
copy. Any changes made to the file in one directory will be seen when
ever that file is accessed through one of its other links. There is no
way to distinguish a link to a file from its original directory entry;
any changes in the file are effective independently of the name by which
the file is known.

Given one or two arguments, In creates a link to an existing file namel.
If name2 is given, the link has that name; name2 may also be a directory
in which to place the link; otherwise it is placed in the current direc
tory. If only the directory is specified, the link will be made with
its name the same as the last component of namel.

Given more than two arguments, In makes links to all the named files in
the named directory. The links made will have the same name as the
files being linked to.

It is forbidden to link a whole directory or to link across file sys
tems.

EXAMPLE
In filea /unisoft/fileb

links filea to the name "fileb" in the /unisoft directory.

In filea fileb filec /unisoft

will link filea to /unisoft/filea, fileb to /unisoft/fileb, and filec to
/unisoft /fHec.

SEE ALSO
rmel), cp(1), mv(l)

Printed 7/14/82 1/19/82 1

LOGIN(1) UNIX Programmer's Manual LOGIN(l)

NAME
login - sign on

SYNOPSIS
login [username]

DESCRIPTION
The login command is used when a user initially signs on, or it may be
used at any time to change fran one user to another. The login script
begins to run when a Contro1-d is given to the single-user (#) prompt
after booting the system. For further details on initial login, see
"How to Get Started" in the Introduction to this volume.

If login is invoked without an argument, it responds with the
login:
prompt, and it expects a valid user name, and, if appropriate, a pass
word. It will not ask for a password unless passwords exists for the
user.

Echoing is turned off during the typing of the password, so that the
password will remain secure.

After a successful login, accounting files are upda ted, the user ~s
informed of the existence of mail, and the message of the day (motd) and
the time of last login are printed.

Login initializes the user and group IDs and the working directory, then
executes a command interpreter (default is sh(l» according to specifi
cations found in a password file. Argument 0 of the command interpreter
is -sh, the name of the command interpreter with a leading dash (-)
attached.

Login also initializes the environment enyiron(S) with information
specifying home directory, command interpreter, terminal type (if avail
able) and user name.

Login is recognized by ~(1) and csh(1) and executed directly (without
forks).

EXAMPLE
login

causes the system to give the prompt,
login:
to which a user name is the appropriate response.

Printed 7/28/82 1/19/82 1

LOGIN(1)

FILES
/etc/utmp
/usr / adm/wtmp
/usr/spool/mail/*
/etc/motd
/etc/passwd
/etclttys
/etclttytype

SEE ALSO

UNIX Programmer's Manual

accounting
accounting
mail
message-of-the-day
password file
terminal initialization data
data base of terminal type by port

environ(S), getty(lM), init(lM), mail(I), passwd(l), passwd(S),

DIAGNOSTICS
Login incorrect, if the name or the password is bad.

LOGIN (1)

No Shell, if the shell specified for that user cannot be executed.
No Directory, if the home directory specified for that user does not
exist or is protect ed.

Printed 7/28/82 1/19/82 2

LOOK(l) UNIX Programmer's Manual LOOK(1)

NAME
look - find lines in a sorted list

SYNOPSIS
look [-df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string.
The shell is usually happier if you put double quotation marks around
string.

The options d and f affect comparisons as in ~(l):

d "Dictionary" order: only letters, digits, tabs and blanks partici
pate in comparisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified, /~/dict/words is assumed with collating
sequence -df. You can use this to discover whether a given word is
included in the on-line dictionary.

EXAMPLE
look -f "This" filea

prints all the lines that begin with the word "This", 1n upper or lower
case.

FILES
/usr /dict /words

SEE ALSO
sort(l), grep(1)

Printed 6/30/82 1/19/82 1

LPD(lM) UNIX Programmer's Manual

NAME
lpd - line printer daemon

SYNOPSIS
Ipd

DESCRIPrION

LPD{lX)

Lpd is the line printer daemon which is run when the command ~ (~) is
typed. Only one daemon will be run at a time to prevent two or more
items from being printed simultaneously. Lpd prints a header, followed
by a job.

FILES
/usr/spool/lpd/* Spool area for line printer

SEE ALSO
lpr(1)

Printed 8/11/82 1

LPR(l) UNIX Programmer's Manual

NAME
lpr - line printer spooler

SYNOPSIS
lpr

DESCRIPIION

name •••]

LPR(l)

Lpr causes the named files to be queued for printing. If no files are
named, the standard input is read.

FILES
lusr Ispool/lpd 1*
lusr/lib/lpd

SEE ALSO
pr(l)

Printed 8/11/82

spool area
printer daemon

1

LS(l) UNIX Programmer's Manual LSO)

NAME
Is - list contents of directory

SYNOPSIS
Is [-lACFRabcdfgilmnqrstux] name •••

DESCRIPTION
For each directory argument. 1e lists the contents of the directory; for
each file argument. 1e repeats the file name(s) and any other informa
tion requested with the 1e options. The output is sorted alphabetically
by default. When no argument is given, the current directory is listed.
When several arguments are given. the arguments are first sorted
appropriately, but file arguments appear before directories and their
contents.

There are three major listing formats. The format chosen depends on
whether the output is going to a teletype. and may also be controlled by
option flags. The default format for a teletype is to list the contents
of directories in multi-column format, with the entries sorted down the
columns. (Files which are not the contents of a directory being inter
preted are always sorted across the page rather than down the page in
columns. This is because the individual file names may be arbitrarily
long.) Files are listed first, and each directory being listed is
labeled with its pathname, when two or more directory listings are
requested. If the standard output is not a teletype. the default format
is to list one entry per line. Finally. there is a stream output format
in which files are listed across the page. separated by , , characters.
The -m flag enables this format.

There are numerous options:

-1 List in long format, giving mode, number of links, owner, size in
bytes, and time of last modification for each file. (See below.)
If the file is a special file the size field will instead contain
the major and minor device numbers.

-t Sort by time modified (latest first) instead of by name, as is
normal.

-a List all entries; usually'.' and' •• ' (standing for the current
directory and its immediate parent, respectively) are suppressed.

-s Give size in blocks, including indirect blocks, for each entry.

-d If argument is a directory, list only its name, not its contents
(mostly used with -1 to get status on directory).

-r Reverse the order of sort to get reverse alphabetic or oldest
first as appropriate.

-u Use time of last access instead of last modification for sorting
(-t) or printing (-1).

Printed 7/14/82 1/19/82 1

LS(l) UNIX Programmer's Manual LS(l)

-c Use time of file creation for sorting (-t) or printing (-1).

-i Print i-number in first column of the report for each file listed.

-f Force each argument to be interpreted as
name found in each slot. This option
-r, and turns on -a; the order is the
appear in the directory.

a directory and list the
turns off -1, -t, -s, and
order in which entries

-g Give group ID instead of owner ID in long listing.

-m force stream output format.

-1 force one entry per line output format, e.g. to a teletype.

-c force multi-column output, e.g. to a file or a pipe.

-q force printing of non-graphic characters in file names as the
character '1'; this normally happens only if the output device is
a teletype.

-b force printing of non-graphic characters to be in the \ddd nota
tion, in octal.

-x force columnar printing to be sorted across rather than down the
page; this is the default if the last character of the name the
program is invoked with is an 'x' (for exaple, by linking /bin/ls
to /bin/lx). .

-F cause directories to be marked with a trailing 'I' and executable
files to be marked with a trailing '.'; this is the default if the
last character of the name the program is invoked,with is a 'f'
(for example, by linking /bin/ls to /bin/lf).

-R recursively list subdirectories encountered.

Printed 7/14/82 1/19/82 2

LS(l)

FILES

BUGS

UNIX Programmer's Manual LS(l)

The mode printed under the -1 (long) option contains 11 characters which
are interpreted as follows: (see also (chmod(~)).
The first character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a charact er-type sped al file;
m if the entry is a multiplexor-type character special file;

if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each.
The first set refers to owner permissions; the next to permissions to
others in the same user-group; and the last to all others. Within each
set the three characters indicate permission respectively to read, to
write, or to execute the file as a program. For a directory, 'execute'
permission is interpreted to mean permission to search the directory for
a specified file. The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indica ted permis sion is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise the· user-execute permission character is
given as s if the file has set-user-ID mode.

The last character of the mode (normally 'x' or '-') is t if the 1000
bit of the mode is on. See chmod(l) for the meaning of this mode.

When the sizes of the files in a directory are listed. a total count of
blocks. including indirect blocks is printed.

/etc/passwd to get user and group ID's given in "ls -1".

Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

Column widths choices are poor for terminals which can tab.

Printed 7/14/82 1/25/82 3

MAIL 0) UNIX Programmer's Manual MAILO)

NAME
mail send or receive mail among users

SYNOPSIS
mail person
mail [-r] [-q] [-p] [-f file]

DESCRIPl' ION
Mail with no argument prints a user's mail, message-by-message, in
last-in, first-out order; the optional argument -r causes first-in,
first-out order. If the -p flag is given, the mail is printed with no
questions asked; otherwise, for each message, mail reads a line from the
standard input to direct disposition of the message.

newline
Go on to next message.

d Delete message and go on to the next.

p Print message again.

Go back to previous message.

s [file J
Save the message in the named files ('mbox' default).

w [file]
Save the message, without a header, in the named files ('mbox'
default).

m [person J •••
Mail the message to the named persons (yourself is default).

EaT (control-D)
Put unexamined mail back in the mailbox and stop.

q Same as EaT.

X Exit, without changing the mailbox file.

!command
Escape to the Shell to do command.

? Print a command summary.

An interrupt stops the printing of the current letter. The optional
argument -q causes mail to exit after interrupts without changing the
mailbox.

When persons are named, mail takes the standard input up to an end-of
file (or a line with just '.') and adds it to each person'.!!. ''mail'' file.
The message is preceded by the sender's name and a postmark. Lines that

Printed 7/14/82 1/25/82 1

MAIL(I) UNIX Progrrummer's Manual MAIL(I)

look like postmarks are prepended with '>'. A person is usually a user
name recognized by login(l). To denote a recipient on a remote system,
prefix person by the system name and exclamation mark.

The -f option causes the named file, e.g. 'mbox', to be printed as if it
were the mail file.

Each user owns his own mailbox, which is by default generally readable
but not writeable. The command does not delete an empty mailbox nor
change its mode, so a user may make it unreadable if desired.

When a user logs in he is informed of the presence of mail.

EXAMPLE

FILES

mail karen

accepts whatever message is typed up to an EOF. Karen will be notified
that she has mail when she next logs in.

If you want to read mail that has been sent to you, simply type

mail

!usr!spool!mail!* mailboxes
/etc/passwd to identify sender and locate persons
mbox saved mail
/tmp/ma* temp file
dead. letter unmailable text

SEE ALSO
write(l)

BUGS
There is a locking mechanism intended to prevent two senders from
accessing the same mailbox, but it is not perfect and races are possi
ble.

Printed 7/14/82 1/25/82 2

MAKE(1) UNIX Programmer's Manual MAKE(1)

NAME
make - maintain program groups

SYNOPSIS
make -f makef ile] [option] ••• file •••

DESCRIPTION
Make executes commands in makefile to update one or more target names.
~ is typically a program. If no -f option is present, "makef ile" and
"Makefile" are tried in order. If makefile is "-", the standard input
is taken. More than one -f option may appear

~ updates a target if it depends on prerequisite files that have been
modified since the target was last modified, or if the target does not
exist.

Makefile contains a sequence of entries that specify dependencies. The
first line of an entry is a blank-separated list of targets, then a
colon, then a list of prerequisite files. Text following a semicolon,
and all following lines that begin with a tab, are shell commands to be
executed to update the target. If a name appears on the left of more
than one "co Ion" line, then it depends on all of the names on the 'r ight
of the colon on those lines, but only one command sequence may be speci
fied for it. If a name appears on a line with a double colon :: then
the command sequence following that line is performed only if the name
is out of date with respect to the names to the right of the double
colon, and is not affected by other double colon lines on which that
name may appe ar.

Two special forms of a name are recognized. A name like A(~) means the
file named ~ stored in the archive named A. A name like A«~)) means the
file stored in archive A containing the entry point ~.

Sharp and newline surround comments.

The following makef He says that "pgm" depends on two files "a.o" and
"b.o", and that they in turn depend on ". cIt files and a common file
"incl".

pgm.: a.o b.o
cc a.o b.o -1m -0 pgm.

a.o: incl a.c
cc -c a.c

b.o: incl b.c
cc -c b.c

Makefile entries of the .form

stringl - string2

are macro definitions. Subsequent appearances of $(stringl) are
replaced by string2. If stringl is a single character, the parentheses

Printed 6/30/82 1/25/82 1

MAKE(l) UNIX Programmer's Manual MAKE(!)

are opt iona 1.

Make infers prerequisites for files for which makefile gives no con
struction commands. For example, a ".c" file may be inferred as prere
quisite for a ".0" file and be compiled to produce the ".0" file. Thus
the preceding example can be done more briefly:

pgm: a.o b.o
cc a.o b.o -1m -0 pgm

a.o b.o: incl

Prerequisites are inferred according to selected suffixes listed as the
"prerequisites" for the special name ".SUFFIXES"; multiple lists accumu
late; an empty list clears what came before. Order is significant; the
first possible name for which both a file and a rule as described in the
next paragraph exist is inferred. The default list is

• SUFFIXES: .out .0 .c .e .r .f .y .1 .s .p

The rule to create a file with suffix Ai that depends on a similarly
named file with suffix .!!. is specified as an entry for the "target"
sls2. In such an entry, the special macro $* stands for the target name
with suffix deleted, $@ for the full target name, $< for the complete
list of prerequisites, and $1 for the lis t of prerequisites that are ,out
of date. For example, a rule for making optimized ".0" files fran ".c"
files is

.c.o: ; cc -c -0 -0 $@ $*.c

Certain macros are used by the default inference rules to communicate
optional arguments to any resulting compilations. In particular,
"CFLAGS" is used for ss(l) options, and "LFLAGS" and ''YFLAGS'' for lex
and yacc(l) options.

Command lines are executed one at a time, each by its own shell. A line
is printed when it is executed unless the special target". SILENT" is in
makefile, or the first character of the command is "@".

Commands returning nonzero status (see intro(I» cause make to terminate
unless the special target ".IGNORE" is in makefile or the command begins
with <tab><hyphen>.

Interrupt and quit cause the target to be deleted unless the target
depends on the special name ".PRECIOUS".

Other opt ions:

-i Equivalent to the special entry ".IGNORE:".

-k When a command returns nonzero status, abandon work on the current
entry, but continue on branches that do not depend on the current
entry.

Printed 6/30/82 1/25/82 2

MAKE(l) UNIX Programmer's Manual MAKE(l)

FILES

-n Trace and print, but do not execute the commands needed to update
the targets.

-t Touch, i.e. update the modified date of targets, without executing
any commands.

-r Equivalent to an initial special entry ".SUFFIXES:" with no list.

-s Equivalent to the special entry ". SILENT:".

makef ile
Makef il e

default input commnds to make
default alternate input commands to make

SEE ALSO

BUGS

sh(l), touch(l)
S. I. Feldman Make - A Program for Maintaining Computer Programs

Some commands return nonzero status inappropr iatel y. Use -i to overcome
the difficulty.
Commands that are directly executed by the shell, notably cd(l), are
ineffectual across newlines in make.

Printed 7/28/82 1/25/82 3

MAKEKEY(l) UNIX Programmer's Manual MAKEKEY(l)

NAME
makekey - generate encryption key

SYNOPSIS
lusr/lib/makekey

DESCRIptION
Makekey improves the usefulness of encryption schemes depending on a key
by increasing the amount of time required to search the key space. It
reads 10 bytes from its standard input, and writes 13 bytes on its stan
dard output. The output depends on the input in a way intended to be
difficult to compute (i.e. to require a substantial fraction of a
second) •

The first eight input bytes (the input key) can be arbitrary ASCII char
acters. The last two (the salt) are best chosen from the set of digits,
upper- and lower-case letters, '.' and 'I'. The salt characters are
repeated as the first two characters of the output. The remaining 11
output characters are chosen from the same set as the salt and consti
tute the output key.

The transformation performed is essentially the following: the salt is
used to select one of 4096 cryptographic machines all based on the
National Bureau of Standards DES algorithm, but modified in 4096 dif
ferent ways. Using the input key as key, a constant string is fed into
the machine and recirculated a number of times. The 64 bits that come
out are distributed into the 66 useful key bits in the result.

Makekey is intended for programs that perform encryption (e.g.
and crypt(I». Usually its input and output will be pipes.

SEE ALSO
crypt (1), edO)

Printed 7/21/82 1

MAN (1) UNIX Programmer's Manual MAN(l)

NAME
man - print sections of this manual

SYNOPSIS
man option •••] [chapters] title •••

DESCRIPTION
Man locates and prints the section of this manual named title in the
specified chapters. (In this context, the word 'page' is often used as
a synonym for 'section'.) The title is entered in lower case. The
chapter numbers do not need a letter suffix. If no chapters are speci
fied, the whole manual is searched for title and the first occurrence of
it is printed.

From the CRT, a call to ~ with a title or topic name prints out the
specified manual section in nroff'ed form on the CRT, automatically pip
ing it through ~.

Manual sections may be preprocessed by nroff and put in SAl files, as in
/usr/man/cat?/*
If necessary, specific options may be added to print out manual sections
in the desired form on the desired medium.

Options and their meanings are:

-t Phototypeset the section using troff(l).

-n Print the section on the standard output using nroff(l).

-k Display the output on a Tektronix 4014 terminal u'sing troff(1) and
~(1).

-e Appended or prefixed to any of the above causes the manual section
to be preprocessed by negn or egn(l); -e alone means -teo

-w Print the path names of the manual sections, but do not print the
sections themselves.

-m Pipe the manual sections through more.

-u Pipe the manual sections through ul.

-s Remove extra blank lines as if the sections were being piped
through .All.

-d If ODe only has an nroff'able copy then use deroff instead of
nroff.

-f stop after the first file is found.

-p Look for the files in the current directory.

Printed 7/14/82 1/25/82 1

MANU) UNIX Programmer's Manual MAN(':')

A single - will reset all options.

(default)
Copy an already formatted manual section to the terminal, or, if
none is available, act as -no It may be necessary to use a filter
to adapt the output to the particular terminal's charact eris tic s.

If the output device is a terminal then the f, s, m and u options will
be set unless turned of f by the - option.

Options and chapters may be changed before each title.

EXAMPLE

FILES

For example:

man getc

would print out the manual page on "getc " fran Section 3.

man 2 chmod

would print out the section 2 chapter on chmod, which comes from
/usr/man/man2/chmod.2.
If the "2" had not been sped fied in the reque st, the sect ion 1 chapter
on chmod would have been retrieved, since that would have been the first
chapter on chmod that ~ found.

Ius r /man /man? /*
/usr /man / ca t? /*
/bin/cast
/bin/ul
/bin/ssp

for nrof f manual sect ions
for preprocessed manual sections
concatenate and print
convert under! ine for terminals
remove extra blank line

SEE ALSO

BUGS

nroff{l), eqn(l), tc(l), man(7)

The manual is supposed to be reproducible either on a phototypesetter or
on a terminal. However, on a terminal some information is necessarily
lost.

Some of the fancy options have not been fully tested or debugged.

Printed 7/28/82 1/25/82 2

MESG(I) UNIX Programmer's Manual MESG(1)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n] [y]

DES CRIPr ION
Mesg with argument n forbids messages via write(l) by revoking non-user
write permission on the user's terminal. Mesg with argument y rein
states permission. All by itself, mesg reports the current state
without changing it.

EXAMPLE
mesg y

changes the permission to "yes", and the system reports:
Is Yes; Was No
or whatever the current and former state of your message permission ~s
in fact.

FILES
/dev /tty*

SEE ALSO
writeO)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

Printed 6/30/82 1/25/82 1

MKDIR(l) UNIX Programmer's Manual MKDIR(l)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname •••

DESCRIPTION
Mkdir creates specified directories in mode 777. (see chmod(~)). Stan
dard entries, '.' J for the directory itself, and' .• ' for its parent,
are made automatically. These and other directories beginning with
are not visible in 1 istings unless you use the -a option to lJ!..

Mkdir requires wr ite permis sion in the parent directory.

Mkdir runs as a "setuid" root program.

EXAMPLE
mkdir dirjohn

creates a directory of that name as a subdirectory of the directory you
are in at the time you employ the command.

SEE ALSO
rm(I), rmdir(1)

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were succeSSfully made.
Otherwise it prints a diagnostic and returns nonzero.

Printed 6/30/82 2/7/82 1

MKFS(lM) UNIX Programmer's Manual MKFS(lM)

NAME
mkfs - construct a file system

SYNOPSIS
mkfs special size m n]
mkfs special proto

DESCRIPrION
Mkfs constructs a file system by WTiting on the special file special. In
the first form of the command a numeric size is given and mkfs builds a
file system with a single empty directory on it. The number of i-nodes
is calculated as a function of the filesystem size. m is an interleave
factor for building the freelist and ~ is a modulo for m. See the exam
ple for usage.

N.B.: All filesystems should have a lost+found directory for fsck(lM);
this should be created for each file system by running mklost+found(lM)
in the root directory of a newly created file system, after the file
system is first mounted.

In bootstrapping, the second form of ~ is sometimes used. In this
form, the file system is constructed according to the directions found
in the prototype file proto. The prototype file contains tokens
separated by spaces or new lines. The first token is the name of a file
to be copied onto sect or zero as the bootstrap program. The second
token is a number specifying the size of the created file system. Typi
cally it will be the number of blocks on the device, perhaps diminished
by space for swapping. The next token is the number of i-nodes in the
i-list. The next set of tokens compr ise the specification for the root
file. File specifications consist of tokens giving the mode, the user
id, the group id, and the initial contents of the file. The syntax of
the contents field depends on the mode. '

The mode token for a file is a 6 character string. The first character
specifies the type of the file. (The characters -bcd specify regular,
block special, character special and directory files respectively.) The
second character of the type is either u or - to specify set-user-id
mode or not. The third is g or - for the set-group-id mode. The rest
of the mode is a three digit octal number giving the owner, group, and
other read, write, execute permissions, see chmod(l).

Two decimal number tokens come after the mode; they specify the user and
group ID's of the owner of the file.

If the file is a regular file, the next token is a pa thname whence the
contents and size are copied.

If the file is a block or character special file, two decimal number
tokens follow which give the major and minor device nmbers.

If the file is a directory, mkfs makes the entries. and and then
reads a list of names and (recursively) file specifications for the

Printed 8/16/82 5/10/81 1

MKFS(1M) UNIX Programmer's Manual MKFSOM)

entries in the directory. The scan is terminated with the token $.

A sample prototype specifica tion follows:

/usr/mdec/uboot
4872 55
d-777 3 1
usr d-777 3 1

sh --755 3 1 /bin/sh
ken d-755 6 1

$
bO b--644 3 1 0 0
cO c-644 3 1 0 0
$

$

EXAMPLE
mkfs /dev/fdO 2000 7 50

makes a file system in which 2000 is the total size of the file system
to be put on /dev/fdOj 7 is a sector interleave number which is used to
stagger the disk blocks for more rapid reading, every 7 blocks, and 50
is a modulo operator that forces the sector interlace number first to
allocate all blocks in the first 50 sectors, then the next 50, etc.

NOTE: The proper selection of the m and ~ parameters can improve disk
efficiency. Disks which have full or partial track buf fering should
specify a m and ~ of 1 and 1. m and ~ for other disks must be determined
by trial and error as the disk latency is related to rotational latency
and cpu speed.

SEE ALSO

BUGS

filsys(5), dir(5), fsck(IM), mklost+found(IM)

The default is 3500, which is probably not useful on any disk.
There should be some way to specify links.
There should be some way to specify bad blocks.
Should make lost+found automatically.

Printed 8/16/82 5/10/81 2

MKLOST+FOUND(1M) UNIX Programmer's Manual MKLOST+FOUND(1M)

NAME
mk1ost+found - make a lost+found directory for fsck

SYNOPSIS
mklost+found

DESCRIFTION
A directory lost+found is created in the current directory and a number
of empty files are created therein and then removed so that there will
be empty slots for fsck(1M). This command should be run immediately
after first mounting and changing directory to a newly created file sys
tem. For small file systems, it is sufficient (and much faster) to sim
ply make a lost+found directory. Up to 30 files can be recovered in it.

SEE ALSO
fsck(lM), mkfs(1M)

BUGS
Should be done automatically by mkfs.

Printed 7/14/82 1/7/82 1

MKNOD(lM) UNIX Programmer's Manual MKNOD(lM)

mknod - build special file

SYNOPSIS
mknod name [c] [b] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the ~ of the
entry. The second is b if the special file is block-type (disks, tape)
or c if it is character-type (other devices). The last two arguments
are numbers specifying the major device type and the minor device (e.g.
unit, drive, or line number).

The assignment of major device numbers is specific to each system. They
have to be dug out of the system source file ~.S.

EXAMPLE
mknod /dev/tty4 c 3 4

would create file /dev/tty4 as a character special device with major
number 3 and minor number 4.

SEE ALSO
mknod(2)

Printed 7/21/82 2/19/82 1

MKSTR(l) UNIX Programmer's Manual MKSTR(1)

NAME
mkstr - create an error message file by massaging C source

SYNOPSIS
mkstr [-] messagefile prefix file •••

DESCRIPTION
Mkstr is used to create files of error messages. Its use can make pro
grams with large numbers of error diagnostics much smaller, and reduce
system overhead in running the program as the error messages do not have
to be constantly swapped in and out.

Mkstr will process each of the specified files, placing a massaged ver
sion of the input file in a file whose name consists of the specified
prefix and the original name. A typical usage of mkstr would be

mkstr pistrings xx *.c

This command would cause all the error messages from the C source files
in the current directory to be placed in the file pistrings and pro
cessed copies of the source for these files to be placed in files whose
names are prefixed with ~.

To process the error messages in the source to the message file mkstr
keys on the string 'errod'" in the input stream. Each time it occurs,
the C string starting a t the ' is placed in the message file followed
by a new-line character and a null character; the null character ter
minates the message so it can be easily used when retrieved, the new
line character makes it possible to sensibly ~ the error message file
to see its contents. The massaged copy of the input file then contains
a lseek pointer into the file which can be used to retrieve the message,
i. e. :

char
int

ef i1 name [] =
ef i1 • -1;

.. /usr /lib/pi_strings ";

error(a1, a2, a3, a4)
{

oops:

Printed 7/14/82

char buf [256] ;

if (ef il < 0) {

}

efil • open(efilname, 0);
if (ef il < 0) {

}

perror(efilname);
. exit(I);

if (lseek(efil, (long) aI, 0) II read(efil, buf, 256) <= 0)
goto oops;

printf(buf, a2, a3, a4);

217/82 1

MKSTR(l) UNIX Programmer's Manual MKSTR(l)

}

The optional - causes the error messages to be placed at the end of the
specified message file for recompiling part of a large mkstred program.

SEE ALSO
Iseek(2), xstr(l)

AUTHORS
Bill Joy and Charles Haley

BUGS
All the arguments except the name of the file to be processed are
unnecessary.

Printed 7/14/82 1/25/82 2

MORE(l) UNIX Programmer's Manual MORE(l)

NAME
more - file perusal filter for crt viewing

SYNOPSIS
more -dflA] [+linenumber I +/pattern] [name •••

DESCRIPTION
~ is a filter which allows examination of a continuous text one
screenful at a time on a CRT terminal. It normally pauses after each
screenful, printing --More-- at the bottom of the screen.

If the user then types a carriage return, one more line is displayed.
If the user hits a space, another screenful is displayed. If a space is
preceded by an integer, that number of lines is printed. If the user
hits d or control-D, 11 more lines are displayed (a 'scroll').

~ looks in the file /etc/termcap to determine terminal characteris
tics, and to determine the default window size. On a terminal capable
of displaying 24 lines, the default window size is 22 lines.

If ~ is reading from a file. rather than a pipe, then a percentage is
displayed along with the --More-- prompt. This gives the fraction of
the file (in characters. not lines) that has been read so far.

The following options are available:

-n is an integer which is the size (in lines) of the window which
~ will use instead of the default.

-d causes .l!!Q.I.g, to prompt the user with the message ''Hit space to con
tinue, Rubout to abort" at the end of each screenful.

-1 causes .l!!Q.I.g, not to treat AL (form feed) specially. If this option
is not given, more will pause after any line that contains a AL,
as if the end of a screenful had been reached. Also, if a file
begins with a form feed, the screen will be cleared before the
file is printed.

+linenumber
option causes ~ to start up at linenumber

+/pattern
causes more to start up two lines before the line containing the
regular expression pattern.

Once inside~. other sequence s may be typed when ~ pauses. The
sequences and their effects are as follows (i is an optional integer
argument. defaulting to 1) :

iz same as typing a space except that i. if present, becomes the new
window s iz e.

Printed 7/14/82 1/25/82 1

MORE(l) UNIX Programmer's Manual MOREU)

is skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

in skip to the i-th next file given in the command line (skips to
last file if n doesn't make sense)

ill skip to the i-th prev ious file given in the command line. If this
command is given in the middle of printing out a file, then ~
goes back to the beginning of the file. If i doesn't make sense,
~ skips back to the first file. If ~ is not reading from a
file, the bell is rung and nothing else happens.

q Exit from more.

i/expr

,

search for the i-th occurrence of the regular expression expr. If
there are less than i occurrences of expr, and the input is a file
(rather than a pipe):- then the position in the file remains
unchanged. Otherwise, a screenful is displayed, starting two
lines before the place where the expression was found. The user's
erase and kill. characters may be used to edit the regular expres
sion. Erasing back past the first column cancels the search com
mand.

(single quote) Go to the point from which the last search started.
If no search has been performed in the current file, this command
goes back to the beginning of the file.

!command
invoke a shell with command.

The commands take effect immediately, i.e., it is not necessary to type
a carriage return. Up to the time when the command character itself is
given, the user may hit the line kill character to cancel the numerical
argument being formed. In addition, the user may hit the erase charac
ter to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the user can hit
the quit key (normally control-\). More will stop sending output, and
will display the usual --More-~ prompt. The user may then enter one of
the above commands in the normal manner. Unfortunately, some output is
lost when this is done, due to the fact that any characters waiting in
the terminal's output queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output
can be continuous. What you type will thus not show on your terminal,
except for the / and! commands.

If the standard output is not a teletype, then~ acts just like £Al,
except that a header is printed before each file (if there is more than
one) •

Printed 7/14/82 1/25/82 2

MORECl) UNIX Programmer's Manual

EXAMPLE
A sample usage of ~ in previewing nroff output would be

AUTHOR

FILES

BUGS

nroff -ms +2 doc.n I more

Eric Shienbrood

/ et c /termcap
/usr/lib/more.he1p

Terminal data base
Help file

MORE(l)

The function of ~ should be done optionally by the teletype driver in
the system, akin to the "more" feature of the ITS systems at MIT.

Printed 7/14/82 1/26/82 3 '

MOUNT (1) UNIX Programmer's Manual MOUNT(l)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
mount [special name [-r]]

umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on
the device special. The file ~ must exist already; it must be a
directory (unless the root of the mounted file system is not a direc
tory). It becomes the name of the newly mounted root. The optional
argument -r indicates that the file system is to be mounted read-only.

Umount announces to the system that the removable file system prell iously
mounted on device special is to be removed.

These commands maintain a table of mounted dev ice s in /~/mtab. This
table is only a reflection of what the mount and umount commands think
is mounted, not what is actually mounted. If invoked without an argu
ment, mount prints the table.

Physically write-protected and magnetic tape file systems must be
mounted read-only or errors will occur when access times are updated,
whether or not any explicit write is attempted.

/etc/mtsb mount table

SEE ALSO
mount(2)

BUGS
Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes same apparently good
pathnames invalid.

Printed 6/30/82 1/25/82 1

HV(l) UNIX Programmer's Manual

NAME
mv - move or rename files

SYNOPSIS
mv filel file2

mv file ••• directory

DESCRIPl'ION
Mv moves (changes the name of) file1 to file2.

You can only mY files that you own or for which you have
write permission. (see chmod(l)).

If file2 already exists, it is removed before file1 is
moved. If file2 exists and has a mode which forbids writ
ing, .!!!y prints the mode (see chmod(2» and looks for a "yfl
from the standard input, which says "yes" to the move. This
could be a "y" entered interactively or one at the beginning
of the next line seen by the command interpreter. If no "y:I
is found, .!!!y exits.

if file2 does not exist, it is created for the move.

In the second form, one or more files are moved to the named
directory with their original file-names.

Mv refuses to move a file onto itsel~.

EXAMPLE

mv /a/unisoft/bin/filel /b/clara/file2

removes file1 from the first directory and stores it as
file2 in the second directory.

FILES
/bin/cp to do copy

SEE ALSO

BUGS

cpO), lnO)

If file1 and file2 lie on different file systems, l!!'ll. must
copy the file and dele te the original. In this case the
owner name becomes that of the copying process and any link
ing relationship with other files is lost.

Printed 7/28/82 1

NCHECK(lM) UNIX Programmer's Manual NCHECK(1M)

NAME
ncheck generate names from i-numbers

SYNOPSIS
ncheck -i nunbers] [-a] [-8] [file system]

DESCRIPrION
N.B.: For most normal file system maintenance, the function of ncheck is
subsumed by fsck(lM).

Ncheck with no argument generates a pathname vs. i-number list of all
files on a set of default file systems. Names of directory files are
followed by '1.'. The -i option reduces the report to only those files
whose i-numbers follow. The -a option allows printing of the names'.'
and' •• ', which are ordinarily suppressed. The -s option reduces the
report to special files and files with set-user-ID mode; it is intended
to discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

EXAMPLE
ncheck Idev/rdisk1

will report the pathnames and i-numbers of files on the specified dev
ice.

SEE ALSO
sort(l), dcheck(lM), fsck(lM), icheck(lM)

DIAGNOSTICS
When the filesystem structure is improper, "??" denotes the 'parent' of
a parentless file and a pathname beginning with' , denotes a loop.

Printed 7/14/82 1

NEWGRP(l) UNIX Programmer's Manual NEWGRP(l)

newgrp - log in to a new group

SYNOPSIS
newgrp group

DESCRIPI'ION

FILES

Newgrp changes the group identification of its caller, analogously to
login(l). The same person remains logged in, and the current directory
is unchanged, but calculations of access permissions to files are per
formed with respect to the new group ID.

A password is demanded if the group has a password and the user himself
does not.

Newgrp is known to the shell, which executes it directly without a fork.

/etc/group, /etc/p8sswd

SEE ALSO
login(l), group(S)

Printed 7/14/82 1/21/82 1

NICE (1) UNIX Programmer's Manual NICE(l)

NAME
nice - run a command at low priority

nohup - run a command immune to hangups (sh only)

SYNOPSIS
nice [-number] command [arguments

nohup command [arguments 1

DESCRIPTION
Nice executes command with low scheduling priority. In both sh and csh,
priority numbers go from 0 (the highest priority) to 120 (the lowest
priority). The normal priority number for a process without nice is 20.
The default with nice is 24.

However, the method of setting or changing a priority is quite different
between sh and csh.

In csh, you set or change priorities by adding (+n) or if you are the
super-user, subtracting (-n) numbers to lower or raise the priority,
respectively.

In sh, on the other hand, the number argument (-n) is always taken as a
parameter to be added to the default priority, which lowers it. The
number (-n) argument increases the priority number from 20 to 20 + n
and lowers the priority accordingly. The total may not exceed 120.

Only the super-user may run commands with priority higher than normal by
subtracting from the default priority, ~ • .&.., "-10" in the Bourne shell
(-sh), or "-lO" in £.§.h.

Nohup executes command immune to terminate (EOT, Control-D) signal from
the controlling terminal. With nohup, the priority is automatically
incremented by S. Nohup should be used with processes running in back
ground (with '&') in order to prevent it from responding to interrupts
or stealing the input from the next person who logs in on the same ter
minal. In csh, processes run in background are automatically immune to
hangups.

EXAMPLE
nice -S nroff -ms filea fileb filec&

formats the three named files in the background with priority 2S (in sh
) ,
OR
in csh, at pr iority IS •.

Printed 7/14/82 1/21/82 1

NICE(l)

FILES
nohup.out

SEE ALSO
cshO), nice(2)

DIAGNOSTICS

UNIX Programmer's Manual

standard output and standard error file
under nohup in sh(l).

Nice returns the exit status of the subject command.

NICE(l)

To find out what the "nice" status of particular processes is, do a
n axl, and look in the "NICE" column. Stay aware of the shell you're
in.

Printed 7/14/82 2

NM(l) UNIX Programmer's Manual NM(l)

NAME
am - print name list

SYNOPSIS
am [-gnopru] [file •••]

DESCRIPTION
Nm prints the name list (symbol table) of each object file
in the argument list. If an argument is an archive, a list
ing for each object file in the archive will be produced.
If no file is given, the symbols in "a.out" are listed.

Each symbol name is preceded by its value (blanks if unde
fined) and one of the letters U (undefined), A (absolute), T
(text segment symbol), D (data segment symbol), B (bss seg
ment symbol), C (common symbol), f file name. If the symbol
is local (non-external) the type letter is 1n lower case.
The output is sorted alphabe tically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output
1 ine rather than onl yonce.

-p Don't sort; print in symbol-table order.

-r Sort in rel7erse order.

-u Print only undef ined symbols.

EXAMPLE
nm

prints the symbol list of A • .2.!:!l, the default output file for
the C compil er.

FILES
/bin/sort to sort or merge files

SEE ALSO
ar(1), ar(S), a.out(S), stab(S)

Printed 1/28/82 1/22/82 1

NOHUP(l) UNIX Programmer's Manual NOHUP(l)

nohup - run a command immune to hangups

SYNOPSIS
nohup command [arguments]

DESCRIPTION
nohup executes command with hangups, quits, and interrupts all ignored.
If the user does not specifically direct the output from a command, the
output is directed to the file nohup.out in the current directory. If
the current directory is not writeable, the output is redirected to
$HOME/nohup.out.

EXAMPLE
The following nohup call:

nohup nroff -ms docsfi1e I lpr

runs the nroff command shown, immune to bangups, quits, and interrupts.

SEE ALSO
nice(l), signa1(1)

Printed 6/30/82 1/26/82 1

NROFF(l) UNIX Programmer's Manual NROFF(l)

NAME
troff, nroff - text formatting and typesetting

SYNOPSIS
nroff [option] ••• [file] •••

DESCRIPIION
Nroff formats text in the named files for typewriter-like devices. See
also troff(~). The full capabilities of nroff and troff are described in
the Nroff/Troff User'~ Manual.

If no file argument is present, the standard input is read. An argument
consisting of a single minus (-) is taken to be a file name correspond
ing to the standard input.

The options, which may appear in any order so long as they appear before
the files, are:

-olist Print only pages whose page numbers appear in the comma-separated
list of numbers and ranges. A range N-M means pages l! through 11;
an initial -l! means from the beginning to page N; and a final l!
means from l! to the end.

-nl! Number first generated page l!.

-sl! Stop every N pages. Nroff will halt prior to every l! pages
(default l!==l) to allow paper loading or changing, and will resume
upon receipt of a newline.

-m~ Prepend the macro file lusr/lib/tmac/tmac.~ to the input
files.

-raN Set register A (one-character) to N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

-Tname Prepare output for specified terminal. Known names are 37 for
the (default) Teletype Corporation Model 37 terminal. tn300 for
the GE TermiNet 300 (or any terminal without half-line capabil
ity). 300S for the DASI-300S. 300 for the DASI-300, and 450 for
the DASI-450 (Diablo By term).

-e Produce equally-spaced words in adjusted lines, using full termi
nal resolution.

-h Use output tabs dur ing horizontal spacing to speed output and
reduce output character count. Tab settings are assumed to be
every 8 nominal charact er widths.

Printed 6/30/82 1 /26 /82 1

NROFF(1) UNIX Programmer's Manual NROFF(1)

EXAMPLE

nroff -s4 -me filea

will nroff the named file using the -me macro package, stopping every 4
pages.

FILES
lusr llib/suftab
Itmp/ta*
lusr/lib/tmac/tmac.*
lusr /lib/term/*

suffix hyphenation tables
tem por ary file
standard macro files
terminal driving tables for nroff

SEE ALSO
J. F. Ossanna, Nroff/Troff ~'~ manual
B. W. Kernighan, A TROFF Tutorial
troff(1), eqn(l), tbl(1), ms(7), me(7), man(7), col(l)

Printed 6/30/82 1/27/82 2

NUHO) UNIX Programmer's Hanual NUHO)

num - number lines

SYNOPSIS
num file ••• J

DESCRIPl' ION
The lines in the specified files, or the standard input, are copied to
the standard output preceded by line numbers. Tabs remain aligned in
the output as the lines are printed preceded by the number blank padded
to six digits and then 2 spaces.

EXAMPLE
num filea > fileb

will number the lines of filea and send the output to fileb.

SEE ALSO
ca t{ 1), pr (1)

Printed 7/14/82 4/5/82 1

OD(1) UNIX Programmer's Manual OD(1)

NAME
od - octal dump

SYNOPSIS
od [- a bc do xDOXw] [f i 1 e] [[+] 0 ff sed •] [b]]

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument.
If the first argument is missing, -0 is default. The meanings of the
format argument characters are:

b Interpret bytes in octal.

c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\O, backspace=\b, formfeed=\f, newline=\n, return=\r,
tab=\ t; others appear as 3-digit oct al numbers.

d Interpret shorts (16 bit words) in decimal.

0 Interpret shorts (16 bit words) in octal.

w Produce wide (132 column) output.

x Interpret shorts (16 bit words) in hex.

D Interpret longs (32 bit words) in decimal.

0 Interpret longs (32 bit words) in octal.

X Interpret longs (32 bit words) in hex.

The file argument specifies which f He is to be dumped. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If'.'
is appended, the offset is interpreted in decimal. If 'b' is appended,
the offset is interpreted in blocks of 512 bytes. If the file argument
is omitted, the offset argument must be preceded '+'.

Dumping contiues until and end-of-file is received.

EXAMPLE

od -D filea +2

produces an octal dump of filea divided up into 32-bit words expressed
in decimal equivalents; with the dump starting point offset by 2 octal
bytes.

SEE ALSO
adb(1)

Printed 6/30/82 1/22/82 1

PASSWD(l) UNIX Programmer's Manual PASSWD(l)

NAME
passwd - change login password

SYNOPSIS
pa sswd [name]

DESCRIPIION
This command changes (or installs) a password associated
with the user.!l!!!!!. (your own name by default).

The program prompts for the old password and then for the
new one. The caller must supply both. The new password
must be typed twice, to forestall mistakes.

It is suggested that new passwords be at least four charac
ters long if they use a sufficiently rich alphabet and at
least six characters long if monocase.

Only the owner of the name or the super-user may change a
password; the owner must prove he knows the old password.

EXAMPLE
passwd

responds "Changing password for <username>, then asks for
your password (once) and for the new password (twice).

FILES
letc/passwd
letc/utmp
/etc/ttys

SEE ALSO

to ensure that user is logged in
to ensure that user is logged in

login(1), passwd(5)

Printed 7/28/82 1/22/82 1

pcU) UNIX Programmer's Manual PCCI)

NAME
pc - Pascal compiler

SYNOPSIS
pc [-0 of He] [-i] [-c] [-u] [-v] file •••

DESCRIPl' ION
pc, the PASCAL compiler, accepts a list of Pascal source files and vari
ous intermediate texts contained in the list of files specified by file
and puts the resulting executable object module in A.~ (but see the -0
option, described below).

In order to understand the use of pc, the reader must first understand
the steps which the compiler goes through in order to turn a Pascal
source program into an executable object file.

The Pascal compiler generates several intermediate files on the way to
generating the final executable file. The first phase of the compiler
generates an intermediate file, of the same name as the source file, but
with a.i suffix. This intermediate file is destined for processing by
the code generator.

The code generator is the second phase of the process. The output of
the code generator is a file with the same name as the source file, but
with a suffix of .obj. The *.obj file is the input to the next phase,
called ulinker.

The ulinker phase of the compilation process converts the .obj file into
a UNIX-style object file with a .0 suffix. This file can then be pre
cessed by the UNIX loader utility, ld.

Finally, the ld utility produces the final executable code file.

When using pc, any combination of Pascal source files (each having a
.for suffix) can be combined with Pascal or FORTRAN intermediate files
(each having a .i suffix), Pascal or FORTRAN object code files (each
having a. obj suffix), and UNIX object files (each hav ing a .0 suf fix).
When the compilation completes successfully, the result of the combina
tion of all those files is placed in the file A.~ or in the file
specified by the -0 option.

The -0 option, if given, specifies that the file ofile (runnable file)
whose name follows the option is the file to rece ive the final execut
able code. If the -0 option is not specified, the resultant executable
file is placed in the file A.~.

If the -i option is given, the Pascal intermediate code (the result of
running /lib/pascal) is placed in a file of the same name as the source
file, but with a suffix of .i appended. The compilation then ter
minates.

Printed 7/14/82 4/5/82 1

pc(l) UNIX Programmer's Manual PC(l)

If the -c option is given, the Pascal unlinked object code (the result
of running /lib/~) is placed in a file of the same name as the source
file, but with a suffix of .obj appended. The compilation then ter
minates.

If the -u option is given, the linked object code (the result of running
/lib/ulinker) is placed in a file of the same name as the source file,
but with a suffix of .0 appended. The compilation then terminates.

The -v (for verbose) option makes pc display a running progress report
as it compiles.

If only one file argument is supplied on the command line, then all the
intermediate files (.i, .obj, .0) are removed at the end of the compila
tion. If multiple file arguments are typed on the command line, any
existing intermediate files are not removed.

EXAMPLES

FILES

pc progl.pas

compiles progl'RA! and puts the resulting object module in A.~.

pc -0 frammis prog2.pas prog3.obj

compiles the Pascal program called prog2.R&! and links the result with
the object file prog3.obj. The result of the compilation is placed in
the output file called frammis.

*.pas Pascal source
*.i Intermediate code
*.obj Compiled unlinked pc object
*.0 Compiled unlinked UNIX object
/lib/paslib.obj
/lib/pascal
/lib/code
/lib/ulinker
/lib/pascterrs

SEE ALSO
''User Documentation Update for UniSoft Pascal and FORTRAN".

Printed 7/14/82 1/19/82 2

PR(l) UNIX Programmer's Manual PRO)

NAME
pr - pr in t f He

SYNOPSIS
pr [option] ••• [file] •••

DESCRIPTION
Pr produces a printed listing of
separated into pages headed by a
fied header, and the page number.
prints its standard input.

one or more files. The output is
date, the name of the file or a speci
If there are no file arguments, ~

Options apply to all following files but may be reset between files:

-n Produce ~-column output.

+n Begin printing with page ~.

-h Take the next argument as a page header.

-~ For purposes of multi-column output, take the width of the page to
be ~ characters instead of the default 72.

-f Use formfeeds instead of newlines to separate pages. A formfeed
is assumed to use up two blank lines at the top of a page. (Thus
this option does not affect the effective page length.)

-In Take the length of the page to be n lines instead of the default
66.

-t Do not print the 5-line header or the 5-line trailer normally sup
plied for each page.

-s£ Separate columns by the single character £ instead of by the
appropriate amount of white space. A missing £ is taken to be a
tab.

-m Print all files simultaneously, each in one column,

Inter-terminal messages via writeO) are forbidden during a ~.

EXAMPLE

FILES

pr -t -m filea fileb filec

will print out the three files simultaneously, each in one column,
without headers.

/dev/tty? to suspend messages.

Printed 6/30/82 1/26/82 1

PR(1)

SEE ALSO
cat(!)

DIAGNOSTICS

UNIX Programmer's Manual

There are no diagnostics when X is printing on a terminal.

Printed 6/30/82 1/26/82

PRO)

2

PRINTENV(l) UNIX Programmer's Manual

NAME
printenv - print out the enviroment

SYNOPSIS
printenv

DESCRIPTION

PRINTENV(l)

Printenv prints out the values of the variables in the environment.

The environment variable names are:

HOME path name of home directory.

PATH search path for binary programs

TERM type of terminal used

SHELL the shell present at login.

EXAMPLE
printenv

prints the defined variables in the environment.

SEE ALSO
csh(l), sh(l), environ(S)

Printed 7/14/82 1/26/82 1

PROF(l) UNIX Programmer's Manual PROF(l)

NAME
prof - display profile data

SYNOPSIS
prof [-a] [-1] [-z] [-low [-high]]] [a.out [mon.out •••]]

DESCRIPTION

FILES

h2i interprets the file produced by the monitor subroutine. Under
default modes, the symbol table in the named object file (A.~ default)
is read and correlated with the profile file (mon.out default>. For
each external symbol, the percentage of time spent executing between
that symbol and the next is printed (in decreasing order), together with
the number of times that routine was called and the number of mil
liseconds per call. If more than one prof ile file is specified, the
output represents the sum of the prof iles.

In order for the number of calls to a routine to be tallied,
option of ss. must have been given when the file containing the
was compiled. This option also arranges for the profile file to
duced automatically.

Options are:

-a all symbols are reported rather than just external symbols.

-1 the output is sorted by symbol value •.

the -p
routine
be pro-

-z routines which have zero usage (as indicated by call counts and
accumulated time) are nevertheless printed in the output.

mon.out for prof ile
a. out for namel is t
mono sum for summary prof ile

SEE ALSO
-ccO), monitor(3), prof i1(2)

BUGS
Beware of quantization errors.

Printed 6/30/82 1/19/82 1

PRS(l) UNIX Programmer's Manual PRS(l)

NAME
prs - print an sees file

SYNOPSIS
prs [-d[dataspecJ] [-rfSID]] [-e] [-11 [-a] files

DESCRIPTION
Prs prints, on the standard output, parts or all of an sees file (see
sccsfile(S» in a user supplied format. If a directory is named, ~
behaves as though each file in the directory were specified as a named
file, except that non-seCS files (last component of the path name does
not begin with s.), and unreadable file s are silentl y ignored. If a
name of - is given, the standard input is read; each line of the stan
dard input is taken to be the name of an sces file or directory to be
processed; non-SCeS files and unreadable files are silently ignored.

Arguments to~, which may appear in any order, consist of keyletter
arguments, and file names.

All the described keyletter arguments apply independently to each named
file:

-d[dataspec]

-r[SID]

-e

-1

-a

DATA KEYWORDS

Used to specify the output data specification.
dataspec is a string consis ting of sces file
keywords (see DATA KEYWORDS) interspersed
optional user supplied text.

The
data
with

Used to specify the ..§.ces IDentification (SID) string
of a delta for which information is desired. If no
SID is specified, the SID of the most recently
created delta is assumed.

Requests information for all deltas created earlier
than and including the delta designated via the -r
keyletter.

Requests information for all deltas created later
than and including the delta designated via the -r
keyletter.

Requests printing of information for both removed,
that is, delta type • R, (see rmdel(l» and exist
ing, that is, delta type .. D, delt as. If the -e>.
keyletter is not specified, information for existing
deltas only is prov ided.

Data keywords specify whiCh parts of an sees file are to be retrieved
and output. All parts of an sees file (see sccsfile(S» have an associ
ated data keyword. There is no limit on the number of times a data key
word may appear in a dataspec.

Printed 7/28/82 1

PRS(1) UNIX Programmer's Manual PRS(1)

The information printed by ~ consists of: (1) the user supplied text;
and (2) appropriate values (extracted from the sees file) substituted
for the recognized data keywords in the order of appearance in the
dataspec. The format of a data keyword value is either Simple (S), in
which keyword substitution is direct, or Multi-line (M), in which key
word substitution is followed by a carriage return.

User supplied text is any text other than recognized data keywords. A
tab is specified by \t and carriage return/new-line is specified by \n.

Printed 7/28/82 2

PRS(l) UNIX Programmer's Manual

TABLE 1. SCCS Files Data Keywords
KeywordData l!gm

:Dt: Delta information
:DL:
:Li:
:Ld:
:Lu:
:DT:

: I:
: R:
:L:
: B:
: s:
:D:

:Dy:
:Dm:
:Dd:

:T:
:Th:
:Tm:
:Ts:
:P:

:DS:
:DP:
:DI:
:Dn:
:Dx:
:Dg:
:MR.:

:C:
:UN:
:FL:
:Y:

:M:F :
:MP :
:KF:
:BF:

:J:
:LK:

:Q:
:M:

:FB:
:CB:
:Ds:
:ND:
:FD:
:BD:
:GB:

:W:
:A:
:Z:
:F:

Delta line statistics
Lines inserted by Delta
Lines deleted by Delta
Lines unchanged by Delta
Delta type
SCCS ID string (SID)
Release number
Level number
Branch number
Sequence number
Date Delta created
Year Delta created
Month Delta created
Day Delta created
Time Delta created
Hour Delta created
Minutes Delta created
Seconds Delta created
Programmer who created Delta
Delta sequence number
Predecessor Delta seq-no.
Seq-no. of deltas incl., excl.,
Deltas-included (seq #)
Deltas excluded (seq #)
Deltas ignored (seq #)
MR numbers for delta
Comments for delta
User names
Flag list
Module type flag
MR validation flag
MR validation pgm name
Keyword error/warning flag
Branch flag
Joint edit flag
Locked releases
User defined keyword
Module name
Floor boundary
Ceiling boundary
Default SID
Null delta flag
File descriptive text
Body
Gotten body
A form of what(l) string
A form of whatO) string
what(l) string delimiter
'S'C'CS' file name

Printed 7/28/82

ignored

File Section
Delta Table

"
"
"
"
" ..
"
" ..
" ..
" ..
..
" ..
"
"
" ..
" ..
"

User Names
Flags

"
"
"
"
"
"
"
"
"
"
"

Comments
Body
"

N/A
N/A
N/A
N/A

PRS(l)

Value Format
See below* S

:Li:/:Ld:/:Lu: S
nnnnn S
nnnnn S
nnnnn S

Jl or R S
:R:.:L:.:B:.:S: S

nnnn S
nnnn S
nnnn S
nnnn S

:Dy:/:Dm:/:Dd: S
nn S
nn S
nn S

:Th:::Tm:::Ts: a
nn S
nn S
nn S

logname S
nnnn S
nnnn S

:Dn: / :Dx: / :Dg: S
:DS: :DS:... S
:DS: :DS:... S
:DS: : DS: •• • S

text M
text M
text M
text M
text S
~ or llQ. S

text S
~ or llQ. S
~ or llQ. S
~ or llQ. S

:R: • • • S
text S
text S

:R: S
:R: S
: I: S

~ or llQ. S
text M
text M
text M

:Z::M:\t:I: S
:Z::Y: :M: :I::Z: S

@(#) S
text S

3

PRS(l) UNIX Programmer's Manual PRS(l)

:PN: sees file path name N/A text S
* : Dt: - : DT : : I : : D : : T : : P : : DS : : DP :

Printed 7/28/82 4

PRS(l) UNIX Programmer's Manual PRS(I)

EXAMPLES

FILES

prs -d'~sers and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special ~:

prs s. file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
b179-S4321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the "D" type. The only keyletter argument
allowed to be used with the special ~ is the -a key letter.

Itmp/pr???? ?
/etc/mtab mounted file system table

SEE ALSO
admin(1), delta(1), get(l), help(1), sccsfile(S).
Source ~ Control System User'A Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS
Use help(l) for explanations.

Printed 7/28/82 5

PS(l) UNIX Programmer's Manual PS(l)

NAME
ps - process status

SYNOPSIS
ps [acgklrtuwx~ [namelist]]

DESCRIPTION
X! prints information about active processes. To get a complete prin
tout on the console or lpr, use "ps axlw" For a quick snapshot of system
activity, "ps au" is recommended. A hyphen may precede options with no
effect. The following options may be specified.

a asks for information about all processes with terminals (ordi
narily only one's own processes are displayed).

c causes only the ~ field to be displayed instead of the argu
ments. (The comm field is the tail of the path name of the file
the process last exec'ed.) This option speeds up ~ somewhat and
reduces the amount of output. It is also more reliable since the
process can't scribble on top of it.

g Asks for all processes. Without this option, ~ only prints
"interesting" processes. Proce sses are deemed to be uninteresting
if they are process group leaders, or if their arguments begin
with a '-' This normally eliminates shells and getty processes.

k causes the file /usr/~/core is used in place of /dev/kmem and
/dev/mgm. This is used for postmortem system debugging.

1 asks for a long listing. The short listing contains the user
name, process ID, tty, the cumulative execution time of the pro
cess and an approximation to the command line.

r asks for "raw output". A non-human readable sequence of struc
tures is output on the standard output. There is one structure
for each process, the format is defined by <psout.h>

tttyname
restricts output to processes whose controlling tty is the speci
fied ttyname (which should be specified as printed by~, includ
ing~? for processes with no tty). This option must be the last
one given.

u A user oriented output is produced. This includes the name of the
owner of the process, process id, nice value, size, tty, cpu time
used, and the command.

w tells R! you are on a wide terminal (132 columns).
assumes you are on an 80 column terminal. This
used to decide how much of long commands to print.
may be repeated, e.g. ww, and the entire command,
acters, will be printed without regard to terminal

Printed 7/14/82 1/19/82

Ps normally
information is
The w option

up to 128 char
width.

1

PS(l) UNIX Programmer's Manual PS(l)

x asks even about processes with no terminal.

A process number may be given, (indicated here by I), in which
case the output is restricted to that process. This option must
also be last.

A second argument tells ~ where to look for ~ if the k option is
given, instead of /usr/sys/core. A third argument is the name of a swap
file to use instead of the default /dev/swap. If a fourth argument is
given, it is taken to be the file containing the system's namelist.
Otherwise, "/unix" is used.

The output is sorted by tty, then by process ID.

The long listing is columnar and contains

F Flags associated with the process. The flags are defined ~n

/usr/include/sys/proc.h, and include:

SLOAn 000001 in core
SSYS 000002 swapper process
SLOCK 000004 process being swapped out
SSWAP 000008 save area flag
SIRC 000010 process is being traced

S The state of the process. 0: nonexistent; S: sleeping; W: wait
ing; R: running; I: iptermediate; Z: terminated.

UID The user id of the process owner.

PID The process ID of the process.

PPID The process ID of the parent process.

CPU Processor utilization for scheduling.

PRI The priority of the process; high numbers mean low priority.

NICE Used in priority computation.

AnDR The memory address of the process if resident, otherwise the disk
address.

SZ The size in blocks of the memory image of the process.

WCHAN The event for which the process is waiting or sleeping; if blank,
the process is running.

TTY The controlling tty for the process.

Printed 7/14/82 1/19/82 2

PS(l)

FILES

UNIX Programmer's Manual ps(1)

TIME The cumulative execution time for the process.

COMMAND
The command and its arguments.

A process that has exited and has a parent, but has not yet been waited
for by the parent is marked <defunct>. Z! makes an educated guess as to
the file name and arguments given when the process was created by exa
mining memory or the swap area. The method is inherently somewhat
unreliable and in any event a process is entitled to destroy this infor
mation, so the names cannot be counted on too much.

/unix
/dev/kmem
/dev/swap
/core
/dev
/dev/mem
/usr/sys/core

syst E!I1 namel is t
kernel memory
swap dev ice
core file
searched to find swap device and tty names
physical memory
for postmortem system debugging

SEE ALSO
killO)

BUGS
Things can change while U. is running; the picture it gives is only a
close approximation to reality.

Some processes, typically those in the background, are printed with null
or garbaged arguments, even though the process has not swapped. (Some
times ps even loses on its own arguments!) In these cases, the name of
the command is printed in parentheses.

Printed 7/28/82 1/19/82 3

PSTAT(lM) UNIX Programmer's Manual PSTATClM)

NAME
pstat - print system fact s

SYNOPSIS
pstat [-aixptuf] [suboptions] [file]

DESCRIPl' ION
Pstat interprets the contents of certain system tables. If file is
given, the tables are sought there, otherwise in /dev/~. The required
namelist is taken from /unix. Options are

-a Under -p, describe all process slots rather than just active ones.

-i Print the inode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L locked
U update time filsys(5» must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected

CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in which this inode

resides.
INO I-number within the dev ice.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID User 1D of owner.
SIZ/DEV

Number of bytes in an ordinary file, or major and minor device of
special file.

-x

LOC
FLAGS

Print the text table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:
T ptrace(2) in effect
W text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)

DAD DR Disk address in swap, measured in mUltiples of 512 bytes.

CAnDR Core address, measured in mUltiples of core clicks (machine depen
dent) •

SIZE Size of text segment, measured in mUltiples of core clicks
(machine dependent).

Printed 7/14/82 1

PSTATClM) UNIX Programmer's Manual PSTATOM)

IPTR Core location of corresponding inode.

CN! Number of processes using this text segment.

CCNT Number of processes in core using this text segment.

-p Print process table for active processes with these headings:

LOC The core location of this table entry.
S Run state encoded thus:

o no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace

F Miscellaneous state variables, or-ed together:
01 loaded
02 the scheduler process
04 locked
010 swapped out
020 traced
040 used in tracing
0100 locked in by lock(2).

PRI Scheduling priority, see nice(2).
SIGNAL

Signals received (signals 1-16 coded in bits 0-15),
Real user ID.
Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.
Nice level, see nice(2).

UID
TIM
CPU
NI
PGRP Process number of root of process group (the opener of the con

trolling terminal).
PID
PPID
ADDR

SIZE
WCHAN
LINK
TEXTP
CLKT

The process ID number.
The process ID of parent process.
If in core, the physical address of the "u-area" of the process
measured in multiples of 64 bytes. If swapped out, the position
in the swap area measured in mUltiples of 512 bytes.
Size of process image in multiples of 64 bytes.
Wait channel number of a waiting process.
Link pointer in list of runnable processes.
If text is pure, pointer to location of text table entry.
Countdown for alarm(2) measured in seconds.

-t Print table for terminals (only DR11 and DL11 handled) with these
headings:

RAW
CAN
OUT
MODE
AD DR

Number of characters in raw input queue.
Number of characters in canonicalized input queue.
Number of characters in put put queue.
See !..U.(4).
Physical device address.

Printed 7/14/82 2

PSTAT(lM) UNIX Programmer's Manual PSTAT(lM)

FILES

DEL
COL
STATE

PGRP

-u

-f

LaC
FLG

CNT
INa
OFFS

Number of delimit ers (newlines) in canonical ized input queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:
W waiting for open to complete
a open
S has special (output) start routine
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
H hangup on close
Process group for which this is controlling terminal.

print information about a user process; the next argument is its
address as given by ~(l). The process must be in main memory, or
the file used can be a core image and the address O.

Print the open file table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:
R open for reading
W open for writing
P pipe
Number of processes that know this open file.
The location of the inode table entry for this file.
The file offset, see lseek(2).

/unix
/dev/mem

namel is t
default source of tables

SEE ALSO
ps(1), stat(2), filsys(S)
K. Thompson, UNIX Implementation

Printed 7/14/82 1/26/82 3

PTX(I) UNIX Programmer's Manual PTX(1)

NAME
ptx - permuted index

SYNOPSIS
ptx opt ion] ••• [input [out put]]

DESCRIPTION
Ptx generates a permuted index to file input on file output (standard
input and output default). It has three phases: the first does the per
mutation, generating one line for each key~rd in an input line. The
keyword is rotated to the front. The permuted file is then sorted.
Finally, the sorted lines are rotated so the key~rd comes at the middle
of the page. Ptx produces output in the form:

.xx "tail" "before keyword" "key~rd and after" "head"

where .xx may be an nroff or troff(1) macro for user-defined formatting.
The before keyword and keyword and after fields incorporate as much of
the line as will fit around the keyword when it is printed at the middle
of the page. Tail and head, at least one of which is an empty string
"", ar e wr appe d-a round piece s small enough to f it in t he unused s pace at
the opposite end of the line. When original text must be discarded, "/"
marks the spo t.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter; the default line
length is 100 characters.

-w ~ Use the next argument, ~, as the width of the output line. The
default line length is 72 characters.

-g ~ Use the next argument, A, as the number of characters to allow for
each gap among the four parts of the line as finally printed. The
default gap is 3 characters.

-0 only
Use as key~rds only the words given in the only file.

-i ignore
Do not use as keywords any words given in the ignore file. If the
-1 and -~ options are missing, use /usr/lib/eign as the ignore
file.

-b break
Use the characters in the break file to separate words. In any
case, tab, newline, and space characters are always used as break
characters.

-r Take any leading nonblank charact ers of each input line to be a

Printed 6/30/82 1

PTX(l)

FILES

BUGS

UNIX Programmer's Manual PTX(1)

reference identifier (as to a page or chapter) separate from the
text of the line. Attach that identifier as a 5th field on each
output line.

The index for this manual was generated using ptx.

Ibin/sort
lusr/lib/eign

Line length counts do not account for overstriking or proportional spac
ing.

Printed 6/30/82 1/26/82 2

PUT(I) UNIX Programmer's Manual PUT(I)

put - puts a file onto a remote machine.

SYNOPSIS
put [-p port] [-s[SYSID]] fromfile [tofile]

DESCRIPTION

NOTES

~ puts a file from a local machine onto a remote machine. The default
port is /dev/ttyO; the -~ port option can be used to specify an alter
nate output port. The default system id is read from /etc/sys_id,
specifying generic locations for the remote machine to look for the
source; the -~[SYSID] option specifies an alternate system ide

fromfile

tofile

The local file name.

The remote file name; if tofile is null, tofile is
defaulted to fromfile.

This program requires the existence of the program putll on the remote
machine.

The -~ option requires the existence of the file /lib/MAKE.sys on the
remote machine; the option is only useful to UniSoft Systems.

SEE ALSO
take(1)

AUTHOR
UniSoft Corporation of Berkeley.

Printed 8/5/82 1/22/82 I

PWD(1) UNIX Programmer's Manual

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the pathname of the working (current) directory.

EXAMPLE
pwd

PWD(l)

produces a pathname, such as /unisoft/sandy, indicating what directory
you are currently in. By displaying the pathname of the directory you
are currently in, pwd may show you that you are not where you thought
you were. Being in an unexpected directory could bring on a sudden rash
of error messages.

SEE ALSO
cd(1), csh(1)

Printed 8/11 /82 1/26/82 1

RESET(l) UNIX Programmer's Manual RESET(l)

NAME
reset - reset the teletype bits to a sensible state

SYNOPSIS
reset

DESCRIPTION
Reset sets the terminal to cooked mode, turns off cbreak and raw modes,
turns on nl, and restores special characters that are undefined to their
default values.

This is most useful after a program dies leaving a terminal in a funny
state; you have to type "<LF>reset<LF>" to get it to work then to the
shell, as <CR> often doesn't work; often none of this will echo.

It isn't a bad idea to follow reset with ~(l)

SEE ALSO

BUGS

stty(I), tset(l)

Doesn't set tabs properly; it can't intuit personal choices for inter
rupt and line kill characters, so it leaves these the old UNIX standards
A? (delete) for interrupt and @ for line kill.

It could well be argued that the shell should be responsible for insur
ing that the terminal remains in a sane state; this would eliminate the
need for this program.

Printed 8/11/82 1

RESTOR(Hl) UNIX Programmer's Manual RESTOR(lM)

NAME
restor - incremental file system restore

SYNOPSIS
restor key [argument •••]

DESCRIPl'ION
Restor is used to read files from tape or disk that were dumped with the
dump command. The key specifies what is to be done. Key is one of the
characters rxt and f.

f The first argument after the "key" set of letters is the name of
the dump device, whether tape or disk.

r The tape or disk is read and loaded into the file system specified
in argument. This should not be done lightly (see below).

x Each file on the tape or disk named by an argument is extracted.
The file extracted is placed in a file with a numeric name sup
plied by restor (actually the inode number). In order to keep the
amount of tape or disk read to a minimum, the following procedure
is recommended:

Mount volume I of the set of dump tapes or disks.

Type the restor command.

Restor will announce whether or not it found the files, if given
the number it will name the file, and rewind the tape or disk.

It then asks you to 'mount the desired tape or disk volume'. Type
the number of the volume you choose. On a multivolume dump the
recommended procedure is to mount the last through the first
volume in that order. Restor checks to see if any of the files
requested are on the mounted tape or disk (or a later tape or
disk, thus the reverse order).

If you are working with a single volume dump or the number of files
being restored is large, respond to the query with '1' and restor will
read the tape or disks in sequential order.

If you have a hierarchy to restore you can use dumpdir(lM) to pro
duce the list of names and a shell script to move the resulting
files to their homes.

t Print the date the tape or disk was written and the date the
filesystem was dumped from.

The r option should only be used to restore a complete dump tape or disk
onto a clear file system or to restore an incremental dump tape or disk
onto this.

Printed 8/11/82 1/26/82 1

RESTOR(lM) UNIX Programmer's Manual RESTOR(lM)

EXAMPLE

FILES

/etc/mkfs /dev/rrpOg 145673
restor rf /dev/rfdcl /dev/rrpOg

is a typical sequence to restore a complete dump.

Another restor can be done to get an incremental dump in on top of this.

A dump followed by a mkfs and a restor is used to change the size of a
file system.

default tape or disk unit varies with installation
rst*

SEE ALSO
dump(lM), mkfs(lM), dumpdir(lM)

DIAGNOSTICS

BUGS

There are various diagnostics involved with read~ng the tape or disk and
wr1t1ng the disk. There are also diagnostics if the i-list or the free
list of the file system is not large enough to hold the dump.

If the dump extends over more than one tape or disk, it may ask you to
change tape or disks. Reply with a new-line when the next tape or disk
has been mounted.

There is redundant information on the tape or disk that could be used in
case of tape or disk reading problems. Unfortunately, restor doesn't
use it.

Printed 8/11/82 2

REV (1) UNIX Programmer's Manual REV (1)

NAME
rev - reverse lines of a file

SYNOPSIS
rev file] •••

DESCRIPTION
Rev copies the named files to the standard output, reversing the order
of characters in every line. If no file is specified, the standard
input is copied.

EXAMPLE
rev fil ea

reverses the characters in each line of filea and sends them to standard
output.

Printed 6/30/82 2/5/82 1

RM(l) UNIX Programmer's Manual RMO)

NAME
rm - remove (unlink) files

SYNOPSIS
rm [-f] [-i] [-r] [-] file •••

DESCRIPTION
1m removes the entries for one or more files from a directory. If an
entry was the last (or only) link to the file, the file is destroyed.
Removal of a file requires write permission in its directory, but nei
ther read nor write permission on the file itself is required. Paradox
ically, you can remove "a file with ~ even though you do not have per
mission to read or edit it.

If a file has no write permission and the standard input is a terminal,
its permissions are printed and a line is read fran the standard input.
If that line begins with 'y' the file is deleted, othenrise the file
remains.

No questions are asked and no errors are reported when the -f (force)
option is given.

The -i option stands for interactive mode. The user is prompted by the
name of the file. A response starting with y causes the file to be
removed. Any other response is considered a no.

If a designated file is a directory, an error comment· is printed unless
the optional argument -r has been used. In that case, ~ recursively
deletes the entire contents of the specified directory, and the direc
tory itself, quickly and efficiently.

The null option - indicates that all the arguments following it are to
be treated as file names. This allows the specification of file names
starting with a minus.

EXAMPLE

FILES

rm -r dirname

will remove the entire contents of the named directory and all subdirec
tories, and finally the directory itself, with no questions asked.

/bin/rmdir to remove directory

SEE ALSO
rmdir(l), unlink(2)

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file " "
merely to avoid the antisocial consequences of inadvertently doing some
th ing like fIrm -r • *" .

Printed 7/28/82 2/5/82 1

RMCOBOL(l) UNIX Programmer's Manual RMCOBOL(l)

NAME
rmcobo1
runcobol

- COBOL compiler
- COBOL runtime interpreter

SYNOPSIS
rmcobo1 file [-d] [-c nn] [-1] [-n] [-0 objfile] [-p nn] [-x]
runcobo1 fi1 e [-a] [-d] [-6 nn •• n]

DESCRIPTION
rmcobo1 is a single-pass compiler that generates intermediate code to be
interpreted by the COBOL runtime interpr eter "runcobo1". When no
options are specified, the compiler will put its output on the file
named "cb1.out" in the current directory. The following options are
accepted by the compiler:

-d

-c nn

Compile COBOL "Debug" source lines identified by liD" in
column 7.

Set the maximum output line length for the listing file to
nn. (The default is 80 characters.)

-e Generate 'Error Only' listing inotead of full listing.

-1 Output the listing to standard output.

-n Compile without generating an object file.

-0 objfile Define an alternate output file "objfile".

-p nn Set the page size to nn number of lines.

-x Generate cross-reference listing; option valid only if the
-e or -1 option is specified.

runcobo1 is the COBOL runtime interpreter; it executes a compiled COBOL
object program generated by rmcobol(l). The following runtime options
are accepted by the interpreter:

-a

-d

-s nn •• n

Set automatic line-feed flag on.

Invoke the RMCOBOL Interactive Debug package.

Sets or resets value of SWITCHES in the COBOL program; where
each "n" is a switch value, 0 for off, 1 for on, numbered 1
to 8, left to right.

For more detailed information, see RM/COBOL User's Guide.

EXAMPLES
rmcobol payroll -1 -x

Printed 8/5/82 1

RMCOBOL(I) UNIX Programmer's Manual RMCOBOL(l)

FILES

compiles the source program "payroll" in the current working directory,
producing an object file "cbl.out"; a listing with cross references is
written to the standard output file.

runcobol cbl.out -s 1011

loads and executes the COBOL object program cbl.out and sets the value
of SWITCHES 1, 3, and 4 to "on", all others to "off".

/lib/rmcbl013
/Hb/rmcbll13
/ lib/rmcb1213
/lib/rmcb1313
/lib/rmcb1413

Cobol compile time modules

Printed 8/5/82
2

RMDEL(l) UNIX Programmer's Manual RMDEL(l)

NAME
rmdel - remove a delta from an sces file

SYNOPSIS
rmdel -rSID files

DESCRIPrION

FILES

Rmdel removes the delta specified by the m from each named sces file.
The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named sces file. In addition, the SID
specified must ~ be that of a version being edited for the purpose of
making a delta (that is, if a l!,-file (see ,llt,(l» exists for the named
SCCS file, the SID specified must.B.Q.t. appear in any entry of the l!,

file) •

If a directory is named, rmdel behaves as though each file in the direc
tory were specified as a named file, except that non-SCCS files (last
component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is
read; each line of the standard input is taken to be the name of an sees
file to be processed; non-SCCS files and unreadable files are silently
ignored.

The exact permissions necessary to remove a delta are documented in the
Source ~ Control System ~'~ Guide. S~ply stated, they are either
(1) if you make a delta you can remove it; or (2) if you own the file
and directory you can remove a delta.

x-file
z-file

(see del taO»
(see del taO»

SEE ALSO
delta(l), get(l), help(l), prs(l), sccsfile(S).
Source Code Control System User'~ Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS
Use helpO) for explanations.

Printed 6/30/82 1

RMDIR(l) UNIX Programmer's Manual RMDIR(l)

NAME
rmdir - remove an empty directory

SYNOPSIS
rmdir directory •••

DESCRIPIION
Rmdir removes an empty directory.

Once the directory has been removed, it is destroyed. Removal of a
directory requires write permission in the parent directory.

Rmdir removes the named directories, which must be empty.
otherwise report that the named directory is not empty.

Rmdir runs as a "setuid" root program.

EXAMPLE
rmdir dirname

removes the empty directory.

SEE ALSO
rm(I), anlink(2)

Printed 7/14/82 1/26/82

Rmdir will

1

SACT(l) UNIX Programmer's Manual SACT(1)

NAME
sact - print current sces file editing activity

SYNOPSIS
sact files

DESCRIPTION
~ informs the user of any impending deltas to a named SCCS file.
This situation occurs when Atl.(l) with the -e option has been prey iously
executed without a subsequent execution of delta(l). If a directory is
named on the co~mand line, ~ behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of - is given, the
standard input is read with each line being taken as the name of an sces
file to be processed. The output for each named file consists of five
fields separated by spaces.

Field 1

Field 2

Field 3

Field 4

Field 5

SEE ALSO

specifies the SID of a delta that currently exists ~n
the SCCS file to which changes will be made to make the
new delta.

specifies the SID for the new del t a to be cr eated.

contains the logname of the user who will make the
delta (i.e. executed a Atl. for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

delta(l), get(l), unget(l).

DIAGNOSTICS
Use help(l) for explanations.

Printed 6/30/82 1

SCCSDIFF(I) UNIX Programmer's Manual SCCSDIFF(I)

NAME
sccsdiff - compare two versions of an sces file

SYNOPSIS
sccsdiff -rSIDI -rSID2 [-pl [-sn] files

DESCRIPIION

FILES

Sccsdiff compares two versions of an sces file and generates the differ
ences between the two versions. Any number of sces files may be speci
fied, but arguments apply to all files.

-p

-sl1

SIDI and SID2 specify the deltas of an sces file that
are to be compared. Versions are passed to bdiff(l) in
the order given.

pipe output for each file through nO).

11 is the file segment size that bdiff will pas s to
diff(l). This is useful when diff fails due to a high
system load.

/tmp/get????? Temporary files

SEE ALSO
bdiff(l), get(l), help(l), pr(l).
Source Code Control System User'~ Guideby L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS
file :Nodifferences If the two versions are the same.

Use help(l) for explanations.

Printed 6/30/82 I

SED(l) UNIX Programmer's Manual

NAME
sed - stream editor

SYNOPSIS
sed [-n] [-e script] [-f sedfile] [file] •••

DESCRIPTION
Sed copies the named files (standard input default) to the standard 01J1:

put, edited according to a script of commands. The -f option cau~es the
script to be taken fran file sedfile; these options accumula teo If
there is just one -e option and no -f's, the flag -e may be omitted.
The -n option suppresses the default output.

A sedfile script consists of editing commands, one per line, of the fol
lowing form:

[address [, address]] function [arguments)

In normal operation sed cyclically copies a line of input into a pattej:"
space (unless there is something left aft er a "D" command), app1 ies in
sequence all commands whose addresses select that pattern space l and at
the end of the script copies the pattern space to the standard oU:'?t::
(except under -n) and deletes the pattern space.

An address is either a line number, a decimal number that counts in?!::
lines cumulatively across files, or a "$" that addresses the last ILL.:
of input, as in ed.

Address may also be a context address, using a "/regular expression/",
~n the style of ed(l)

In the notes below "pattern space" refers to those lines that match the
line numbers or qualify because they contain the pattern specified in
the context address.

Addresses may be modified in the following ways:

The escape sequence '\n' matches a newline embedded in the pattern
space.

A command line with no addresses selects every pattern space.

A command line with one addr ess select s each pattern space that ma tches
the addres s.

A command line with two addresses selects the inclusive range from th~

first pattern space that matches the first address through the next pat
tern space that matches the second. (That is, an address of "1,10" would
mean that the commands should be performed on lines 1 th~ough 10
inclusive). If the second address is a number less than or equal to the
line number first selected, only one line is selected. Thereafter the
process is repeated, looking again for the first address.

Printed 6/30/82 2/6/82 1

SED(l) UNIX Programmer's Manual SED(l)

Editing commands can be applied only to non-selected pattern spaces by
use of the negation function '1' (below).

An argument denoted text consists of one or more lines, all but the last
of which end with '\' to hide the newline. Backslashes in text are
treated like backslashes in the replacement string of an's' command,
and may be used to protect initial blanks and tabs against the stripping
that is done on every scr ipt 1 ine.

An argument meaning the file to edit, or rfile, and/or the file to be
written to, wfile must terminate the command line and must be preceded
by exactly one blank. Each wfile that does not already exist is created
before processing begins. There can be at most 10 distinct wfile argu
ments.

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses.

(l)a \
text

Append. Place ~ on the output before reading the next input
line.

(2)b label
Branch to the ':' command bearing the label. If label is empty,
branch to the end of the script.

, (2)c \

.ill.t.
Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, place .ill.t. on the output. Start the
next cycle.

(2)d Delete the pattern space. Start the next cycle.

(2)D Delete the initial segment of the pattern space through the first
newline. Start the next cycle.

(2)g Replace the contents of the pattern space by the contents of the
hold space.

(2)G Append the contents of the hold space to the pattern space.

(2)h Replace the contents of the hold space by the contents of the pat
tern space.

(2)H Append the content,s of the pa ttern space to the hold space.

(l)i\
text

Insert. Place ~ on the standard output.

Printed 6/30/82 2/6/82 2

SED(l) UNIX Progrrunmer's Manual SED(l)

(2)n Copy the pattern space to the standard output. Replace the pat
tern space with the next 1 me of input.

(2)N Append the next line of input to the pattern space with an embed
ded newline. (The current line number changes.)

(2)p Print. Copy the pattern space to the standard output.

(2)P Copy the initial segment of the pattern space through the first
newline to the standard output.

(l)q Quit. Branch to the end of the script. Do not start a new cycle.

(2)r rfile
Read the contents of rfile. Place them on the output before read
ing the next input line.

(2)s/regular expression/replacement/flags
Substitute the replacement string for instances of
expression in the pattern space. Any character
instead of ' /'. For a fuller de scr iption see ed(l).
any) may be the following:

the regular
may be used

Flags (if

g Global. Substitute for all nonOV'erlapping instances of the
regular expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfile

(2}t label

Write. Append the pattern space to wfile if a replacement
was made.

Test. Branch to the ':' command bearing the label if any substi
tutions have been made since the most recent reading of an input
line or execution of a 't'. If label is empty, branch to the end
of the script.

(2)w wfile
Write. Append the pattern space to wfile.

(2)x Exchange the contents of the pattern and hold spaces.

(2)y/stringl/string2/
Transform. Replace all occurrences of characters in stringl with
the corresponding character in string2. The lengths of stringl and
8tring2 must be equal.

(2)! function
Don't. Apply the function (or group, if function is '{') only to
lines ~ selected by the addressees).

Printed 6/30/82 2/6/82 3

SED(l) UNIX Programmer's Manual SED(l)

(0): label
This command does nothing; it bears a label for 'b' and 't' com
mands to branch to.

(1)- Place the current line number on the standard output as a line.

(2){ Execute the following commands through a matching '}' only when
the pattern space is selected.

(0) An empty command is ignored.

EXAMPLE
sed -f sedfile inputfile >filea

will process the inputfile according to the sedfile script, and place
the results in filea.

The sedfile script
4 a\
~

would insert a row of X's after line 4.

SEE ALSO
awk(l), ed(I), grep(l)~ lex(l)
McMahon, Lee E. : SED - A non-Interactive Text Editor.

Printed 6/30/82 2/24/79 4

SEE (1) UNIX Programmer's Manual SEE(l)

NAME
see - see what a file has in it

SYNOPSIS
se e -] [name •••]

DES CR I PI' ION
See prints a file which contains non-printing characters in a readable
format. Control characters print like AI for tab. Delete prints as "'1.
Ends of lines are marked with '$' unless the '-' option is given

EXAMPLE
see myfile

displays the file myfile in a form like this:

See prints non-printing characters in a readable format.$
Control characters print like "'I for tab.$
Delete prints as "'1.$
Ends of lines are marked with '$' unless the '-' option is givenS

where the text in the above example is a fragment of this manual page
run through the ~ command.

SEE ALSO
cat(l), ex(l)

AUTHOR
Bill Joy

Printed 6/30/82 2/23/82 1

SETMEM(l) UNIX Programmer's Manual SETMEM(l)

NAME
setmem - set user memory limit to value

SYNOPSIS
se tmem [va lue]

DESCRIPTION
Setmem sets user memory limit to value if value is given. The current
value is then reported. A value larger than the memory available will
set the memory limit to the largest possible value.

This call is valid only on systems without memory management.

EXAMPLE
setmem

prints out the current user memory limit.

Printed 7/14/82 2/23/82 1

SHU)

NAME

UNIX Progrrummer's Manual SHU)

sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit,
export, login, newgrp, read, readonly, set, shift, times, trap, umask,
wait - command language

SYNOPSIS
sh [-ceiknrstuvx] [arg] •••

DESCRIPl'ION
Sh is a command programming language that executes commands read from a
terminal or a file. See invocation for the meaning of arguments to the
shell.

Commands.
A simple-command is a sequence of non blank words separated by blanks (a
blank is a tab or a space). The first word specifies the name of the
command to be executed. Except as specified below the rema~n~ng words
are passed as arguments to the invoked command. The command name is
passed as argument 0 (see ~(2». The value of a simple-command is
its exit status if it terminates normally or 200+status if it terminates
abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I. The
standard output of each command but the last is connected by a ~(2)
to the standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by;, &, && or
II and optionally terminated by ; or &. ; and & have equal precedence

which is lower than that of && and II; && and II also have equal pre
cedence. A semicolon causes sequential execution; an ampersand causes
the preceding pipeline to be executed without waiting for it to finish.
The symbol && (I I) causes the list following to be executed only if the
preceding pipeline returns a zero (non zero) value. Newlines may appear
in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. The value
returned by a command is that of the last simple-command executed in the
command.

for ~ [in word •••] do list done
Each time a for command is executed ~ is set to the next word
in the for word list If in word ••• is omitted then in "$@" is
assumed. Execution ends when there are no more words in the list.

case word in [pattern [I pattern] •••) list ;;] ••• esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that
used for file name generation.

if list then list [elif list then list] [else list] fi
The list following if is executed and if it returns zero the list

Printed 7/14/82 1

SH(l) UNIX Programmer's Manual SH(l)

following then is executed. Otherwise, the list following elif is
executed and if its value is zero the list following then is exe
cuted. Failing that the else list is executed.

while list [do listl done
A while command repeatedly executes the while list and if its
value is zero executes the do list; otherwise the loop terminates.
The value returned by a while command is that of the last executed
command in the do list. until may be used in place of while to
negate the loop termination test.

(list)
Execute list in a subshell.

{ list }
list is simply executed.

The following words are only recognized as the first word of a command
and when not quoted.

if then else elif fi case in esac for while until do done { }

Command substitution.
The standard output from a command enclosed in a pair of back quotes
('''') may be used as part or all of a word; trailing newlines are
removed.

Parameter substitution.
The character $ is used to introduce substitutable
tional parameters may be assigned values by set.
by writing

~·value ~-value] •••

${parameter}

parameters. Posi
Var iables may be set

A parameter is a sequence of letters, digits or underscores (a
~), a digit, or any of the characters * @ # ? - $!. The
value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. If
parameter is a digit then it is a positional parameter. If param
eter is * or @ then all the positional parameters, starting with
$1, are substituted separated by spaces. $0 is set from argument
zero when the shell is invoked.

${parameter-word}
If parameter is set then substitute its value; otherwise substi
tute word.

$ {parameter-word}
If parameter is not set then set it to word; the value of the
parameter is then substituted. Positional parameters may not be

Printed 6/30/82 2

SH(1) UNIX Programmer's Manual SH(1)

assigned to in this way.

${parameter?word}
If parameter is set then substitute its value; otherwise, print
word and exit from the shell. If word is omitted then a standard
message is printed.

${parameter+word}
If parameter is set then substitute word; otherwise substitute
nothing.

In the above word is not evaluated unless it is to be used as the sub
stituted string. (So that, for example, echo ${d-pwd} will only execute
pwd if ~ is unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.
Options supplied to the shell on invocation or by set.

? The value returned by the last executed command in decimal.
$ The process number of this shell.
! The process number of the last background command invoked.

The following parameters are used but not set by the shell.

ROME The default argument (home directory) for the cd command.
PATH The search path for commands (see execution).
MAIL If this variable is set to the name of a mail file then the

shell informs the user of the arrival of mail in the speci
fied file.

PSI Primary prompt string, by default '$ '.
PS2 Secondary prompt string, by default '> '.
IFS Internal field separators, normally space, tab, and newline.

Blank interpretation.
After parameter and command substitution, any results of substitution
are scanned for internal field separator characters (those found in
$IFS) and split into distinct arguments where such characters are found.
Explicit null arguments ("" or ") are retained. Implicit null argu
ments (those resulting from parameters that have no values) are removed.

File name generation.
Following substitution, each command word is scanned for the characters
*, ? and [. If one of these characters appears then the word is regarded
as a pattern. The word is replaced with alphabetically sorted file
names that match the pattern. If no file name is found that matches the
pattern then the word is left unchanged. The character • at the start
of a file name or immediately following a /, and the character /, must
be matched explicitly.

* Matches any string, including the null string.
? Matches any single character.

hinted 7/14/82 3

SHU) UNIX Programmer's Manual SHU)

l. ..] Matches anyone of the characters enclosed. A pair of characters
separated by - matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause
termination of a word unless quoted.

& () < > newline space tab

A character may be quoted by preceding it with a \. \new1ine is
ignored. All characters enclosed between a pair of quote marks ("),
except a single quote, are quoted. Inside double quotes ("n) parameter
and command substitution occurs and \ quotes the charact ers \ ' nand $.

n$*n is equivalent to "$1 $2 ••• " whereas
n$@" is equivalent to "$1" "$2n ••••

Prompting.
When used interactive1 y, the shell pranpts with the value of PS1 before
reading a command. If at any time a newline is typed and further input
is needed to complete a command then the secondary pranpt ($PS2) is
issued.

Input output.
Before a command is executed its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a command
and are not passed on to the invoked command. Substitution occurs
before word or digit is used.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file
does not exist then it is created; othel'Wise it is trunca ted to
zero length.

»word

«word

Use file word as standard output. If the file exists then output
is appended (by seeking to the end); othel'Wise the file is
created.

The shell input is read up to a line the same as word, or end of
file. The resulting document becomes the standard input. If any
character of word is quoted then no interpretation is placed upon
the characters of the document; othel'Wise, parameter and command
substitution occurs, \newline is ignored, and \ is used to quote
the characters \ $, and the first character of word.

<&digit
The standard input is duplicated fran file descriptor digit; see
dup(2). Similarly for the standard output using >.

Printed 6/30/82 4

SH(I) UNIX Programmer's Manual SHeI)

<&- The standard input is closed. Similarly for the standard output
using >.

If one of the above is preceded by a digit then the file descriptor
created is that specified by the digit (instead of the default 0 or 1).
For example,

••• 2>&1

creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard
command is the empty file (/dev/null). Otherwise, the
the execution of a command contains the file descriptors
shell as modified by input output specifications.

Environment.

input for the
eIl\1 iroment for
of the invoking

The environment is a list of name-value pairs that is passed to an exe
cuted program in the same way as a normal argument list; see ~(2) and
environ(S). The shell interacts with the environment in several ways.
On invocation, the shell scans the environment and creates a parameter
for each name found, giving it the corresponding value. Executed com
mands inherit the same environment. If the user modifies the values of
these parameters or creates new ones, none of these affects the environ
ment unless the export command is used to bind the shell's parameter to
the environment. The environment seen by any executed command is thus
composed of any unmodified name-value pairs originally inherited by the
shell, plus any modifications or additions, all of which must be noted
in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus these two lines are
equivalent

TERM=4S0 cmd args
(export TERM; TERM=4S0j cmd args)

If the -k flag is set, all keyword arguments are placed in the environ
ment, even if they occur after the command name. The following prints
'a"b c' and 'c':
echo a-b c
set -k
echo a=b c

Signals.
The INTERRDPT and QUIT signals for an invoked command are ignored if the
command is followed by ,&; otherwise signals have the values inherited by
the shell from its parent. (nut see also trap.)

Execution.
Each time a command is executed the above substitutions are carried out.
Except for the 'special commands' listed below a new process is created

Printed 7/14/82 S

SHU) UNIX Programmer's Manual SHU)

and an attempt is made to execute the command via an ~(2).

The shell parameter $PATH defines the search path for the directory con
taining the command. Each alternative directory name is separated by a
colon (:). The default path is :/bin:/usr/bin. If the command name
contains a 1 then the search path is not used. Otherwise, each direc
tory in the path is searched for an executable file. If the file has
execute permission but is not an A.~ file, it is assumed to be a file
containing shell commands. A subshell (i.e., a separate process) is
spawned to read it. A parenthesized command is also executed in a sub
shell.

Special commands.
The following commands are executed in the shell process and except
where specified no input output redirection is permitted for such com
mands.

No effect; the command does nothing.
file

Read and execute commands from file and return. The search path
$PATH is used to find the direct ory containing file.

break [.n]
Exit from the enclosing for or while loop, if any. If.!!. is speci
fied then break.!!. levels.

continue tn]
Resume the next iteration of the enclosing for or while loop.
.n is specified then reStDe at the .n-th enclosing loop.

cd [arg]

If

Change the current directory to argo The shell parameter $HOME LS
.the default argo

eval [.!.!.& •••]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg •••]
The command specified by the arguments is executed in place of
this shell without creating a new process. Input output arguments
may appear and if no other arguments are given cause the shell
input output to be modified.

exit [.n]
Causes a non
fied by .n.
last command
shell.)

export [~ •••]

interactive shell to exit with the exit status speci
If .n is omitted then the exit status is that of the

executed. (An end of file will also exit from the

The given names are marked for automatic export to the environment
of subsequently-executed commands. If no arguments are given then
a list of exportable names is printed.

login [arg •••]
Equivalent to 'exec login arg

newgrp [.!.!.& •••]

,

Equivalent to 'exec newgrp arg ••• '.
read~

Printed 6/30/82 6

SH(l) UNIX Programmer's Manual SHU)

One line is read from the standard input; successive words of the
input are assigned to the variables ~ in order, with leftover
words to the last variable. The return code is 0 unless the end
of-file is encountered.

readonly [~ •••]
The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no argu
ments are given then a list. of all readonly names is printed.

set [-eknptuvx [~ •••]]
-e If non interactive then exit immediately if a command fails.
-k All keyword arguments are placed in the eov ironnent for a com-

mand, not just those that precede the command name.
-n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Turn off the -x and -v options.

These flags can also be used upon invoca tion of the shell. The
current set of flags may be found in $-.

Remaining arguments are positional parameters and are assigned, in
order, to $1, $2, etc. If no arguments are given then the values
of all names are printed.

shift The positional parameters from $2... are renamed $1 •••

times Print the accumulated user and system times for processes run from
the shell.

tr ap [arg] [.n] •••
Arg is a command to be read and executed when the shell receives
signal(s) .n. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) Trap commands are executed in
order of signal number. If arg is absent then all trap(s) .!!. are
reset to their original values. If ~ is the null string then
this signal is ignored by the shell and by invoked commands. If.!!.
is 0 then the command .AI.&. is executed on exit fran the shell, oth
erwise upon receipt of signal.!!. as numbered in signa1(2). Trap
with no arguments prints a list of commands associated with each
signal number.

umask [.Bru!]
The user file cr eation mask is set to the octal value .rum (see
umask(2». If.mm is omitted, the current value of the mask is
printed.

wait [.n]
Wait for the specified process and report its termination status.
If .n is not given then all currently active child processes are
waited for. The return code fran this command is that of the

Printed 6/30/82 7

SHU)

FILES

UNIX Programmer's Manual SHO)

process waited for.

Invocation.
If the first character of argument zero is -, commands are read from
$HOME/.profile, if such a file exists. Commands are then read as
described below. The following flags are interpreted by the shell when
it is invoked.
-c string If the -c flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then com-

mands are read from the standard input. Shell output is
written to file descriptor 2.

-i If the -i flag is present or if the shell input and output
are attached to a terminal (as told by ~) then this shell
is interactive. In this case the terminate signal SIGTERM
(see signal(2» is ignored (so that 'kill 0' does not kill an
interactive shell) and the interrupt signal SIGINT is caught
and ignored (so that wait is interruptable). In all cases
SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

$HOME/ .profile
/tmp/sh*
/dev/null

SEE ALSO
csh(l),'test(l), exec(2),

DIAGNOSTICS
Errors
return
tively
shell
exit) •

BUGS

detected by the shell, such as syntax errors cause the shell to
a non zero exit status. If the shell is being used non interac

then execution of the shell file is abandoned. OtheIWise, the
returns the exit status of the last command executed (see also

IF « is used to prov ide standard input to an asynchronous proce ss
invoked by &, the shell gets mixed up about naming the input doctIllent.
A garbage file /tmp/sh* is created, and the shell complains about not
being able to find the file by another name.

Printed 6/30/82 1/27/82 8

SIZEO) UNIX Programmer's Manual SIZEO)

NAME
size - size of an object file

SYNOPSIS
size [-x] [obj ect •••]

DESCRIPTION
Size prints the decimal number of bytes required by the text, data, and
bss portions, and their sum in decimal, of each object-file argument.
If no file is specified, a.out is used.

The -x option causes size to be reported in hex.

EXAMPLE
size

prints the number of bytes for the various portions of the A.~ file,
and their sum in decimal.

SEE ALSO
a. out{ 5)

Printed 6/30/82 1

SLEEP(l) UNIX Programmer's Manual SLEEP(l)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to execute a com
mand after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often.

EXAMPLE

label:
command» x
command» x
date» x
sleep 10
goto label

would execute the two commands and append the results to file A. then
sleep for 10 seconds, and repeat the process.

SEE ALSO

BUGS

alarm(2). sleep(3)

Time must be >0 and less than 4,294,967,295 (2**32-1) seconds, or 136
years.

Printed 6/30/82 1/27/82 1

SORT 0) UNIX Progr ammer' s Manual SORTO)

NAME
sort - sort or merge files

SYNOPSIS
sort [-mubdfinrtx] [+pos1
tory] [name] •••

-pos2]] ••• [-0 name] [-T direc-

DESCRIPTION
Sort sorts lines of all the named files together and writes the
on the standard output. The name '-' means the standard input.
input files are named, the standard input is sorted.

result
If no

The default sort key is an entire line. Default ordering is lexico
graphic by bytes in machine colla ting sequence.

The ordering is af fect ed giobally by the following options, one or more
of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d "Dictionary" order: only letters, digits and blanks are significant
in comparisons.

f Fold upper case letters onto lower case.

i Ignore characters cutside the ASCII range 040-0176 in nonnumeric
comparisons.

n An initial numeric string, consisting of optional blanks, optional
minus sign, and zero or more digits with optional decimal point, is
sorted by arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

t~ "Tab character" separating fields is ~.

The notation +pos1 -pos2 restricts a sort key to a field beginning at
pos1 and ending just before pos2. Fields are numbered ~tarting fram O.
Pos! and pos2 each have the form m.n, optionally followed by one or more
of the flags bdfinr, where:

m tells a number of fields to skip from the beginning of the line and ~
tells a number of characters to skip further. If any flags are present
they override all the global orde ring options for this key.

If the b option is in effect ~ is counted fram the first nonblank in the
field; b is attached independently to pos2. A missing .~ means the
first field, .0; a missing -pos2 means the end of the line.

Under the -t~ option, fields are strings separated by~; otherwise (by
default) fields are nonempty nonblank strings separated by blanks.

Printed 6/30/82 1/27/82 1

SORT(l) UNIX Programmer's Manual SORT(l)

When there are multiple sort keys, later keys are compared only after
all earlier keys compare equal. That is, if you were sorting a file
whose first two fields are LastName, FirstName, the only FirstNames to
be sorted (alphabetized) would be those for which the LastName was
identical. Lines that otherwise. compare equal are ordered with all
bytes significant. '

These option arguments are also understood:

c Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

m Merge only, the ~nput files are already sorted.

o The next argument is the name of an output file to use instead of
the standard output. This file may be the same as one of the
inputs.

T The next argument is the name of a directory in which temporary
files should be made.

u Unique. Suppress all but one in each set of equal lines. Ignored
bytes and bytes outside keys do not participate in this comparison.

EXAMPLES

FILES

sort -d +0 -1 +1 -2 addresslist

would sort a file of the form LastName, FirstName alphabetic~lly by last
name and by first name for last name~ that are identical. Two address
lists that had been first sorted in this manner could then be merged
with the -m option.

sort -t: +2n /etc/passwd

would print the password file (passwd(S» sorted by user id number (the
third, colon-separated, field).

first and second tries for temporary files

SEE ALSO
comm(l), revel),

DIAGNOSTICS

BUGS

Comments and exits with nonzero status for various trouble conditions
and for disorder discovered under option -c.

Very long lines'are silently truncated.

Printed 6/30/82 1/29/82 2

SPELL(!) UNIX Programmer's Manual SPELL(l)

NAME
spell, spellin, spellout - find spelling errors

SYNOPSIS
spell [option [file] •••

spellin [list

spellout [-d] list

DESCRIPTION
Spelt collects words from the named documents, and looks them up in a
spelling list. Words that do not occur in the list by fact or by
derivation (by applying certain inf lections, pref ixes or suf fice s) are
printed on the standard output. If no files are named, words are col
lected from the standard input.

Spell ignores most troff, tbl and egn(I) constructions.

Under the -v option, all words not literally in the spelling list are
printed, and plausible derivations from spelling list words are indi
cated.

Under the -b option, British spelling is checked. Besides preferring
centre, colour, speciality, travelled, etc., this option insists upon -
ise in words like standardise, (despite what Fowler and the OED prefer).

Under the -x option, every plausible stem is printed .with 'm' for each
word.

The spelling list is based on many· sources, and while more haphazard
than an ordinary dictionary, is also more effective in respect to proper
names and popular technical words. Coverage of the special ized vocabu
laries of biology, medicine and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated
below with their default settings. Copies of all output are accumulated
in the history file. The stop list filters out misspellings (e.g.
thiercthy-y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell. Both expect a
list of words, one per line, from the standard input. Spellin adds the
words on the standard input to the preexisting list and places a new
list on the standard output. If no list is specified, the new list is
created from scratch. Spellout looks up each word in the standard input
and prints on the standard output those that are mis sing from (or
present on, with option -d) the hash list.

EXAMPLE
spell filea fileb filec > misteaks

Printed 6/30/82 1/29/82 1

SPELL(l) UNIX Programmer's Manual SPELL(l)

would put a list of the words in the three files that were not part of
the on-line dictionary into another file, where they could be examined
at leisure. The on-line dictionary rejects technical terms and proper
names it does not know and treats them as equivalent to mis spellings.

SEE ALSO

FILES

i BUGS

deroff (1), sed(l), sort(l), tee(l)

D=/usr/dict/hlist[abl: hashed spelling lists, American & British
S=/usr/dict/hstop: hashed stop list
H-/usr/dict/spellhist: history file
/usr /lib/spell

The spelling list's coverage is uneven; new installations will probably
wish to monitor the output for several months to gather local additions.
British spelling was done by an American.

Printed 6/30/82 1/29/82 2

SPLIT(l) UNIX Programmer's Manual SPLIT(1)

NAME
split - split a file into pieces

SYNOPSIS
split -~] [file [name]]

DESCRIPTION
Split reads file and writes it in ~-line pieces (default 1000), as many
as necessary, onto a set of output files. The name of the first output
file is ~ with aa appended, and so on lexicographically. If no out
put name is given, x is default.

If no input file is given, or if - is given in its stead, then the stan
dard input file is used.

EXAMPLE
split -100 filea newfile

would split filea into 100-line pieces and put them 1n "newfileaa",
"newfilebb", and so forth until the end of filea.

Printed 6/30/82 1/27/82 1

ssp(l) UNIX Programmer's Manual ssP(1)

NAME
ssp - make output single spaced

SYNOPSIS
ssp name •••]

DESCRIPTION
~ removes extra blank lines and causes all output to be single spaced.
It can be used directly, or as a filter after nroff or other text for
matting operations.

EXAMPLE
nroff -ms filea fileb I ssp » filec

would prepare the files with the -ms macro package, then single space
the output and direct it to filec.

Printed 7/14/82 1/26/82 1

STRINGS(l) UNIX Programmer's Manual STRINGS(l)

NAME
strings - find the printable strings in an object, or other binary file

SYNOPSIS
strings [-] [-0] [-number] file •••

DESCRIPTION
Strings looks for ascii strings in a binary file. A string is any
sequence of 4 or more printing characters ending with a newline or a
null. Unless the - flag is given, strings only looks in the initialized
data space of object files. If the -0 flag is given, then each string
is preceded by its offset in the file (in octal). If the -number flag
is given then number is used as the minimum string length rather than 4.

Strings is useful for identifying random object files and many other
things.

EXAMPLE
strings obj1

will locate the ASCII-character strings in the object file ob;l.

SEE ALSO
od(l)

BUGS
The algorithm for identifying strings is extremely primitive.

Printed 6/30/82 1/29/82 1

STRIP(l) UNIX Programmer's Manual STRIP(l)

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name •••

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached
to the output of the assembler and loader. This is useful to save space
after a program has been debugged.

The effect of strip is the same as use of the -s option of ld.

EXAMPLE
strip a.out

removes the symbol table and relocation bits from A.~.

FILES
/tmp/stm?

SEE ALSO
ld(l)

Printed 6/30/82

temporary file

1/21/82 1

STTY(l) UNIX Programmer's Manual

stty - set terminal options

SYNOPSIS
stty option •••]

DESCRIPTION
Stty sets certain I/O options on the current output terminal.
argument, it reports the current settings of the options.
strings are selected from the following set:

even
-even
odd
-odd

allow even parity
disallow even parity
allow odd parity
disallow odd parity

STTY(l)

With no
The option

raw raw mode input (no erase, kill, interrupt, quit, EOT; parity bit
passed back)
negate raw mode , ,
same as -raw

-raw
cooked
cbreak make each character available to read(2) as received; no erase

and kill
-cbreak make characters available to read only when newline is received
-nl allow carriage return for new-line, and output CR-LF for car-

riage return or new-line
nl accept only new-line to end lines
echo echo back every character typed
-echo do not echo characters
lease map upper case to lower case
-lease do not map case
-tabs replace tabs by spaces when printing
tabs preserve tabs
ek reset erase and kill characters back to normal # and @
erase £ set erase character to c (default control H.)
kill £ set kill character to c-{default '@'.)
intr £ set interrupt character to £ (default DEL.)
quit £ set quit character to £ (default control \.)
start £ set start character to £ (default control Q.)
stop £ set stop character to £ (default control S.)
eof £ set end of file character to c (default control D.)
brk £ set break character to £ (def;ult undefined.) This character is

an extra wakeup causing character.
crO crl cr2 cr3

select style of delay for carriage return (see ioctl(2»
nlO nIl nl2 nl3

select style of delay for linefeed
tabO tabl tab2 tab3

select style of delay for tab
ffO ffl select style of delay for form feed

EXAMPLE
stty

Printed 7/21/82 1/21/82 1

STTY(1) UNIX Programmer's Manual

produces a list of the terminal settings currently in use.
setting, type in the command and the desired option.
option can be requested on one command line.

stty 300

STTY(I)

To change a
More than one

sets your terminal to operate at 300 baud (hardware permitting).

stty >/devlttyl

reports the terminal characteristics of /dev/tty1.

SEE ALSO
ioctl(2), tset(l), stty(2)

Printed 7/21/82 1/5/82 2

suO) UNIX Programmer's Manual suO)

NAME
su - substitute user id temporarily

SYNOPSIS
su [userid

DESCRIPl' ION
~ demands the password of the specified userid, and if it is given,
changes to that userid and invoke s the Shell shU) or S!.h(l), without
changing the current directory.

The user environment is unchanged except for HOME and SHELL, which are
taken from the password file for the user being substituted (see
environ(S». The new user ID stays in force until the Shell exits. or
another ~ is received.

If no' userid is
user who has
identities. To
substitutes 'I'

EXAMPLE
su unisoft

specified, 'root' is assumed. Usually it is the super
access to other passwords and can therefore assume other
remind the super-user of his responsibil ities, the Shell
for its usual prompt.

would cause the system to ask for UniSoft's password; if the password is
typed in correctly, UniSoft's identity is substituted for yours, so far
as the system is concerned.

SEE ALSO
csh(l), shU)

Printed 6/30/82 1/22/82 1

SUM(l) UNIX Programmer's Manual SUMU)

NAME
sum - sum and count blocks in a file

SYNOPSIS
sum file

DESCRIPl' ION
~ calculates and prints a 16-bit checksum for the named file, and also
prints the number of blocks in the file, to the nearest whole block. It
is typically used to look for bad spots, or to validate a file communi
cated over some transmission line.

EXAMPLE

sum sum.1

produces the checksum and the block count of this manual sectiona

namely:

SEE ALSO
wc(l)

21009 1

Printed 7/21/82 1/21/82 1

SUMDIR(I) UNIX Programmer's Manual SUMDIR(1)

NAME
sumdir - sum and count characters in the files in the given directories

SYNOPSIS
sumdir [directories]

DESCRIPTION
Sumdir calculates and prints a !6-bit checksum for the named file, and
also prints the number of characters in the file. It is typically used
to look for bad spots on the file system, or to validate a file
transmitted over some transmission line. The output from this program
differs from the output from the sum(!) program in that sumdir prints
the number of characters rather than the number of blocks in the file.

sumdir prov ides a recursive checksltll of all files in the specified
directory.

EXAMPLE

sumdir man!

produces the checksum and the character count of the files in the direc
tory "man!".

SEE ALSO
sum(1)

Printed 8/5/82 1/29/82 1

SYNC(lM) UNIX Programmer's Manual

NAME
sync - update the super block

SYNOPSIS
sync

DES CRI Pr ION

SYNC(1M)

Sync executes the sync system primitive. Sync can be called to insure
all disk writes have been completed before the processor is halted.

See sync(2) for details on the system primitive.

EXAMPLE
sync

should be typed to flush all internal disk buffers, before bringing down
the system.

SEE ALSO
sync(2), update(1M)

Printed 7/21/82 1/22/82 1

TAIL(l) UNIX Programmer's Manual TAIL(l)

tail - deliver the last part of a file

SYNOPSIS
tail ±count[lbc][r] [file]

DESCRIPTION
Tail lists the last count units of the specified file to the standard
output. Unlike head, tail only operates on one file at a time. If no
file is named, the standard input is used.

The tail listing can be specified to begin either + count units from the
beginning of the file, or - count units from the end of the file. Count
may be counted in units of lines, blocks or characters, according to the
appended option 1, b or c. When no units are specified, counting is by
lines. The defail number of lines for tail is 10.

Specifying r causes tail to print lines from the end of the file in
reverse order. The r option prints only lines starting at the specified
place, and can not be combined with the [lbcl options. The default for
r is to print the entire file in reverse.

EXAMPLES
tail +14b alpha

causes blocks 14 and following to be listed from the file alpha.

tail alpha

causes the last 10 lines to be listed from the file alpha.

SEE ALSO

BUGS

dd(I), head(l)

Tails selected as relative to the end of tae file make use of a fixed
length buffer, and thus are limited in length.

Various kinds of anomalous behavior may happen with character special
files.

Printed 7/21/82 1/29/82 1

TAKE(l) UNIX Programmer's Manual IAKE(l)

take - takes a file from a remote machine.

SYNOPSIS
take -p port] [-s[SYSID]] fromfile [tofile]

DESCRIPTION

NOTES

Take takes a file onto a local machine from a remote machine. The
default port is /dev/ttyO; the -~ port option can be used to specify an
alternate output port. The default system id is read from /etc/sys_id,
specifying generic locations for the remote machine to look for the
source; the -L[SYSID] option specifies an alternate system ide

fromfile

tofile

The remote file name.

The local file name; if tofile is null, tofile is
defaulted to fromfile. If tofile is ., tofile is the
last component of fromfile.

This program requires the existence of the program take1l on the remote
machine.

The -L option requires the existence of the file /lib/MAKE.sys on the
remote machine; the option is only useful to UniSoft Systems.

SEE ALSO
put(l)

AUTHOR
UniSoft Corporation of Berkeley.

Printed 8/5/82 1/22/82 1

TARO) UNIX Programmer's Manual

NAME
tar - tape archiver

SYNOPSIS
tar key] [name •••]

DESCRIPTION
Tar saves and restores files. Tar may be used to transfer files between
systems, or to save a collection of files into another file on the same
system.

Tar's actions are controlled by the key argument. The key is a string
of characters containing at most one function letter and possibly one or
more function modifiers. Other arguments to the command are file or
directory names specifying which files are to be dumped or restored. In
all cases, appearance of a directory name refers to the files and
(recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following
letters:

r The named files are written on the end of the tape. The c func
tion implies this.

x The named files are extracted from the tape. If the named file
matches a directory whose contents had been written onto the
tape, this directory is (recursively) extracted. The owner,
modification time, and mode are restored (if possible). If no
file argument is given, the entire content of the tape is
extracted. Note that if mUltiple entries specifying the same
file are on the tape, the last one overwr ites all earl ier.

t The names of the specified files are listed each time they oCCur
on the tape. If no file argument is given, all of the names on
the tape are listed.

u The named files are added to the tape if either they are not
already there or have been modified since last put on the tape.

c Create a new tape; writing begins on the beginning of the tape
instead of after the last file. This command implies r.

The following characters may be used in addition to the letter which
selects the function desired.

0, ••• ,7

v

Printed 6/30/82

This modifier selects an alternate drive on which the tape is
mounted. (The default is drive 0 at 1600 bpi, which is nor
mally /dev/rmt8.)

Normally !AI. does its work silently. The v (verbose) option
causes it to type the name of each file it treats preceded by
the function letter. With the t function, v gives more

1/29/82 1

TAR(l)

w

f

b

1

m

UNIX Programmer's Manual TAR(l)

information about the tape entries than just the name.

causes ~ to print the action to be taken followed by file
name, then wait for user confirmation. If a word beginning
with 'y' is given, the action is performed. Any other input
means don't do it.

causes tar to use the next argument as the name of the archive
instead of /dev/rmt? If the name of the file is '-', tar
writes to standard output or reads from standard input, which
ever is appropriate. Thus, ~ can be used as the head or tail
of a filter chain. ~ can also be used to move hierarchies
(see EXAMPLE).

causes tar to use the next argument as the blocking factor for
tape records. The default is 20, the maximum is 40. This
option can be used to specify record length on raw magnetic
tape archives or to cause more efficient data transfer on raw
floppy disk archives. If not specified, the block size is
determined automatically when reading.

tells ~ to complain if it cannot resolve all of the links to
the files dumped. If this is not specified, no error messages
are printed.

tells ~ to not restore the modification times. The mod time
will be the time of extraction.

Previous restrictions dealing with tar's inability to properly handle
blocked archives have been lifted.

EXAMPLE

FILES

cd fromdir; tar cf - • I (cd todir; tar xf -)

will copy directories from one directory tree to another.

/dev/rmt?
/tmp/tar*
/bin/mkdir
/bin/pwd

build directories during recovery
get working directory name

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the s-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The current limit on file name length is 100 characters.

Printed 7/28/82 1/29/82 2

TBL(l) UNIX Programmer's Manual TBL(1)

NAME
tbl - format tables for nrof f or trof f

SYNOPSIS
tbl files] •••

DESCRIPl' ION
1h1 is a preprocessor for formatting tables for nroff or troff(l). The
input files are copied to the standard output, except for lines between
.TS and .TE command lines, which are assumed to describe tables and are
reformatted. Details are given in the tbl(l) reference manual.

EXAMPLE
As an example, letting \t represent a tab (which should be typed as a
genuine tab) the input

yields

• TS
c s s
c c s
c c c
1 n n.
Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3.74
Bernardsville\t2018\t3.30
Bound Brook\t3425\t3.04
Branchburg\t1644\t3.49
Bridgewater\t7897\t3.81
Far Hills\t240\t3.19
.TE

Household
Town

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Branchburg
Bridgewater
Far Hills

Population
Households

Number Size
789 3.26

3087 3.74
2018 3.30
3425 3.04
1644 3.49
7897 3.81

240 3.19

If no arguments are given, .ill reads the standard input, so it may be
used as a filter. When tbl is used with egn or neon the ill command
should be first, to minimize the volume of data passed through pipes.

Printed 8/11/82 1

TBL(l)

FILES
lusr/lib/tmac/tmac.s
lusr/lib/tmac/tmac.m

SEE ALSO
troff(1), eqn(1)
M. E. Lesk, TBL.

Printed 8/11/82

UNIX Programmer's Manual

for -ms option
for -mm option

TBL(1)

2

TEECl) UNIX Programmer's Manual TEE(I)

NAME
tee - pipe fitting

SYNOPSIS
tee -i] [-a] [file] •••

DESCRIPTION
Tee transcribes the standard input to the standard output and makes
copies in the files. Option -i ignores interrupts; option -a causes the
output to be appended to the files rather than overwriting them, if the
standard input is from the keyboard (not a file).

EXAMPLE

make I tee x

will cause the output of the make program to be recorded on file ~ as
well as printed on standard output.

Printed 6/30/82 1/29/82 1

TEST(l) UNIX Programmer's Manual TEST(l)

NAME
test - condition command

SYNOPSIS
test expr

DESCRIPTION
test evaluates the expression expr, and if its value is true then
returns zero exit status; otherwise, a non zero exit status is returned.
test returns a non zero exit if there are no arguments.

The following primitives are used to construct expr.

-r file true if the file exists and is readable.

-w file true if the file exists and is wr itable.

-f file true if the file exists and is not a direct ory.

-d file true if the file exists exists and is a directory.

-8 file true if the file exists and has a size greater than zero.

-t fildes 1
true if the open file whose file descr iptor number is fildes (1
by default) is associated with a terminal device.

-z s1 true if the length of string A! is zero.

-n s1 true if the length of the string A! is nonzero.

sl - s2 true if the strings A! and .!l ar e equal ~

s! r- s2 true if the strings A! and .!l are not equal.

s! true if A! is not the null string.

n1 -eq n2
true if the integers n1 and n2 are algebraically equal. Any of
the comparisons -ne, -gt, -ge, -It, or -Ie may be used in place
of -eq.

These primaries may be combined with the following operators:

unary nega tion operator

-a binary and operator

-0 binary .2.£ operator

(expr)
parentheses for grouping.

Printed 7/28/82 1

TEST (1) UNIX Programmer's Manual TEST (1)

-a has higher precedence than -0. Notice that all the operators and
flags are separate arguments to test. Notice also that parentheses are
meaningful to the Shell and must be escaped.

SEE ALSO
she!), !indO)

Printed 7/28/82 2

TIME(l) UNIX Programmer's Manual TIME(l)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPl' ION
The given command is executed; after it is complete, time prints the
elapsed (real) time during the command, the time spent in the system,
and the time spent in execution of the command.

Times are reported in seconds. The times are printed on the diagnostic
output stream.

Time is also built in to csh(l), but it uses a different output format.

EXAMPLE

BUGS

time nroff man filea

will, in sh, perform the formatting and report the time at the end of
the file, e.g.:

real 22.0
user 8.6
sys 6.4

In S!h, on the other "hand, the time report might be:

8.9u 7.0s 0:29 54%
which reports the user time, system time, real time, and percentage of
real time that the CPU was active, which is the sum of the user and sys
tem times divided by real elapsed time.

Elapsed time is accurate to the second, while the CPU times are measured
to your clock resolution. Thus the sum of the CPU times can be up to a
second larger than the elapsed time.

Printed 7/21/82 1

TOUCH (1) UNIX Programmer's Manual TOUCH(1)

NAME
touch - update date last modified of a file

SYNOPSIS
touch [-c] file •••

DESCRIPTION
Touch attempts to set the modified date of each file. This is done by
reading a character from the file and writing it back.

If a file does not exist, an attempt will be made to create it unless
the -c option is specified.

EXAMPLE
touch filea fileb

sets the "date last modified" of the two files to the current date.

SEE ALSO
utime(2)

Printed 6/30/82 1

TPU) UNIX Programmer's Manual TP(l)

tp - manipulate tape archive

SYNOPSIS
tp [key] [name •••]

DESCRIPTION
h saves and restores file s on DECtape or magt ape. Its act ions are con
trolled by the key argument. The key is a string of characters contain
ing at most one function letter and possibly one or more function modif
iers. Other arguments to the command are file or directory names speci
fying which files are to be dllDped, restored, or lis ted. In all cases,
appearance of a directory name refers to the files and (recursively)
subdirectories of that directory.

The function portion of the key is specified by one of the following
letters:

f name take the file "name" as the tape file name.

r The named files are written on the tape. If files with the same
names already exist, they are replaced. "Same" is determined by
string comparison, so "./abc" can never be the same as
"/usr/dmr/abc" even if "/usr/dmr" is the current directory. If
no file argument is given, "." is the default.

u updates the tape. u is like r, but a file is replaced
its modification date is later than the date stored on
that is to say, if it has cbanged since it was dllDped.
default command if none is given.

only if
the tape;
u is the

d deletes the named files from the tape. At least one name argu
ment must be given. This function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The
owner and mode are restored. If no file argument is given, the
entire contents of the tape are extract ed.

t lists the names of the specified files. If no file argument is
given, the entire contents of the tape is listed.

The following characters may be used in addition to the letter which
selects the function desired.

m Specifies magtape as opposed to DECtape.

0 ••••• 7 This modifier selects the drive on which the tape is mounted.
For DECtape, x is default (Jdev/tap?); for magtape "0" is the
default (/dev/mt?).

v Normally n does its work silently. The v (verbose) option
causes it to type the name of each file it treats preceded by

Printed 6/30/82 1

TP(l)

FILES

c

i

f

w

/dev /tap?
/dev/mt?

UNIX Programmer's Manual TPO)

the function letter. With the t function, v gives more infor
mation about the tape entries than just the name.

means a fresh dump is being created; the tape directory is
cleared before beginning. Usable only with rand u. This
option is assumed with magtape since it is impossible to
selectively overwrite magtape.

Errors reading and writing the tape are noted, but no action
is taken. Normally, errors cause a return to the command
level.

Use the first named file, rather than a tape, as the archive.
This option is known to work only with x.

causes ~ to pause before treating each file, type the indica
tive letter and the file name (as with v) 'and await the user"s
response. Response y means "yes", so the file is treated.
Null response means "no", and the file does not take part in
whatever is being done. Response x means "exit"; the ~ com
mand terminates immediately. In the x function, files prev i
ously asked about have been extracted already. With r, u, and
d no change has been made to the tape.

SEE ALSO
ar(1) , tarO)

DIAGNOSTICS

BUGS

Several; the non-obvious one is "Phase error", which means the file
changed after it was selected for dumping but before it was dumped.

A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by ~ dif
ficult to carry to other machines; tar(l) avoids the problem.

Printed 6/30/82 2

UNIX Programmer's Manual TR(l)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string! [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in string1 are
mapped into the corresponding characters of string2. When string2 is
short it is padded to the length of string1 by duplicating its last
character.

Any combination of the options -cds may be used:
-c complements the set of characters in string1 with respect to the
universe of characters whose ASCII codes are 01 through 0377 octal;
-d deletes all input characters in stringl;
-s squeezes all strings of repeated output characters that are in
string2 to single characters.

In either string the notation A-~ means a range of characters from A to
~ in increasing ASCII order. The character n\ n followed by 1, 2 or 3
octal digits stands for the character whose ASCII code is given by those
digits. A n\" followed by any other charact er stands for that charac
ter.

EXAMPLE
The following example creates a list of all the words in 'filel' one per
line in 'file2', where a word is taken to be a maximal string of alpha
betics. The second string is quoted to protect '\' from the Shell. 012
is the ASCII code for newline.

tr -cs A-Za-z '\012' <filel >file2

In this case, II has substituted the "newline" character for all the
alphabetics in filel, reconstituted the alphabetics with the -.£, option,
squeezed the newlines to one per occurrence, with the -~ option, and
directed the output to file2.

SEE ALSO

BUGS

ed(1), ascii(7)

Won't handle ASCII NUL in string! or string2; always deletes NUL from
input.

Printed 6/30/82 2/24/79 1

TRA(l) UNIX Programmer's Manual TRA(l)

NAME
tra - copy out a file as it grows

SYNOPSIS
tra [-] [-interval] [+limit] file

DESCRIPTION
Tra functions similar to £A!(l) but ~ does not stop when it reaches
the end of the file. Instead, ~ waits for a specified interval, and
if there is more information in the file, the copying process is
resumed.

~ alternately copies out the new material in the file and sleeps for
interval seconds, where the default interval is 15 seconds. Limit can
be given to limit the total running time of the ~, the default is
effectively infinite.

Tra normally copies out all the text currently in the file before begin
ning to watch for new text. The - option alone causes only new material -
to be given.

Tra is particularly useful for alternately watching the output file
being written by a long shell s cr ipt or a long-running program and doing
real work.

AUTHOR
Bill Joy

Printed 6/30/82 1

!ROFF(l) UNIX Programmer's Manual TROFF(l)

NAME
troff, nroff - text formatting and typesetting

SYNOPSIS
troff option file

nroff option ... file

DESCRIPTION
Troff
CIAIT
Their

formats text in the named files for printing on a Graphic Systems
phototypesetter; nroff is used for for typewriter-like devices.

capabilities are described in the NrofflTroff user'A manual.

If no file argument is present, the standard input is read. An argument
consisting of a single minus (-) is taken to be a file name correspond
ing to the standard input. The options, which may appear in any order
so long as they appear before the files, are:

-olist Print only pages whose page numbers appear in the comma-separated
list of numbers and range s. A range N-,H means page s .N through M;
an initial -N means from the beginning to page N; and a final N
means from N to the end.

-n.N Number first generated page .N.

-s.N Stop every .N pages. Nroff will halt prior to every N pages
(default .N-l) to allow paper loading or changing, and will resume
upon receipt of a newline. Troff will stop the phototypesetter
every .N pages, produce a trailer to allow changing cassettes, and
resume when the typesetter's start button is pressed.

-m~ Prepend the macro file lusr/lib/tmac/tmac.~ to the input
files.

-raN Set register A (one-character) to .N.

-i Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

Troff only

-t Direct output to the standard output instead of the photo
typesetter.

-f Refrain from feeding out paper and stopping phototypesetter at
the end of the run.

-w Wait until phototypesetter is available, if currently busy.

-b Report whether the phototypesetter is busy or available. No text
processing is done.

Printed 6/30/82 1

TROFFO) UNIX Programmer's Manual TROFFO)

FILES

-a Send a printable ASCII approximation of the results to the stan
dard output.

-pN Print all characters
prescribed spacings
e1asped time.

in
and

point size N while
motions, to reduce

retaining all
phototype setter

-g Prepare output for a GCOS phototypesetter and direct it to the
standard output (see gcat(l».

If the file /usr/adm/tracct is writable, troff keeps phototypesetter
accounting records there. The integrity of that file may be secured by
making troff a 'set user-id' program.

/usr /lib/suftab
Itmp/ta*
/usr/lib/tmac/tmac.*
/usr lliblterm/*
/usr /lib/font /*
Idev/cat
/usr/adm/tracct

suffix hyphenation tables
tempor ary f He
standa rd macro f He s
terminal driving tables for nroff
font width tables for troff
phototype setter
accounting statistics for Idev/cat

SEE ALSO
J. F. Ossanna, Nroff/Troff ~'~ manual
B. W. Kernighan, A TROFF Tutorial
eqn(l), tbl(l), ms(7), me(7), man(7)
colO) (nroff only)

Printed 6/30/82 2

TRUE (1) UNIX Programmer's Manual

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE (1)

~ and false are usually used in a Bourne shell script. They return
the appropriate status "true" or "false" for running (or failing to run)
a list of commands.

EXAMPLE

SEE ALSO

while true
do

command list
done

csh(1), sh(1), false(1)

DIAGNOSTICS
True has exit status zero.

Printed 7/21/82 1/11/82 1

TSET(l) UNIX Programmer's Manual TSET(l)

NAME
tset - set terminal modes

SYNOPSIS
tset options]

DES CRI PI' ION
Tset causes terminal dependent processing such as setting erase and kill
characters, setting or resetting delays, and the like. It first deter
mines the ~ of terminal involved, names for which are specified by
the /etc/termcap da ta base, and then does nece ssary initial izations and
mode settings. In the case where no argument types are specified, ~
simply reads the terminal type out of the env iroment variable TER}! and
re-initializes the terminal. The rest of this manual concerns itself
with type initialization, done typically once at login, and options used
at initialization time to determine the terminal type and set up termi
nal modes.

When used in a startup script .profile (for sh(l) users) or .login (for
csh(l) users) it is desirable to give information about the types of
terminal usually used, for terminals which are connected to the computer
through a modem. These ports are initially identified as being dialup
or plugboard or arpanet etc. To specify what terminal type is usually
used on these ports -m is followed by the appropriate port type identif
ier, an optional baud-rate specification, and the terminal type to be
used if the mapping conditions are satisfied. If more than one mapping
is specified, the first applicable mapping prevails. A missing type
identifier matches all identifiers.

Baud rates are specified as with stty(l), and are compared with the
speed of the diagnostic output (which is almost always the control ter
minal). The baud rate test may be any combination of: >, =, <, @, and
!; @ is a synonym for = and! inverts the sense of the test. To avoid
problems with metacharacters, it is best to place the entire argument to
-m within" characters; users of cshO) must also put a "\" before any
"!" used here.

Thus

tset -m ' dialup>300:adm3a' dialup:dw2 -m
"'plugboard: ?adm3a'

causes the terminal type to be set to an adm3a if the port in use is a
dialup at a speed greater than 300 baud; to a dw2 if the port is (other
wise) a dialup (i.e. at 300 baud or less). If the ~ above begins
with a question mark, the user is asked if s/he really wants that type.
A null response means to use that type; otherwise, another type can be
entered which will be used instead. Thus, in this case, the user will
be queried on a plugboard port as to whether they are using an adm3a.
For other ports the port type will be taken from the /etc/ttytype file
or a final, default ~ option may be given on the command line not
preceded by a -me

Printed 7/21/82 1/21/82 1

TSET(l) UNIX Programmer's Manual TSET(l)

It is often desirable to return the terminal type, as specified by the
-m options, and information about the terminal to a shell's environment.
This can be done using the -s option; using the Bourne shell, sh{l):

eval 'tset -s options ••• '

or using the C shell, SAh(l):

tset -s options ••• > tset$$
source tset$$
rm tset$$

These commands cause ~ to generate as output a sequence of shell com
mands which place the variables TERM and TERMCAP in the env ironment; see
environ{S).

Once the terminal type is known, tset engages in terminal mode setting.
This normally involves sending an initial ization sequence to the termi
nal and setting the single character erase {and optionally the line-kill
(full line erase» characters.

On terminals that can backspace but not overstrike (such as a CRT), and
when the erase character is the default erase character ('#' on standard
systems), the erase character is changed to a Control-B (backspace).

Other options are:

-e set the erase character to be the named character c on all termi
nals, the default being the backspace character on the terminal,
usually ""B.

-k is similar to -e but for the line kill character rather
erase character; S defaults to ""X (for purely historical
""U is the preferred setting. No kill processing is done
not specified.

-1 supresses outputting terminal initial ization strings.

than the
reasons) ;
if -k is

-Q supresses printing the "Erase set to" and ''Kill set to" messages.

-8 Outputs the strings to be assigned to TERM and TERMCAP in the
environment rather than commands for a shell.

EXAMPLE
A typical csh .login file using tset would be:

set noglob
set term • ('tset -e -8 -r -d?h19')
setenv TERM "$term[l]"
setenv TERMCAP "$term[2]"
unset term noglob

Printed 7/21/82 1/21/82 2

TSET(1) UNIX Programmer's Manual TSET(l)

FILES

This .login sets the environment variables TERM and TERM CAP for the
user's current terminal according to the file /etc/ttytype. If the ter
minal line is a dialup line, the user is pranpted for the proper teruli
nal type.

/etclttytype
/etcltermcap

terminal id to type map da tabase
terminal capability database

SEE ALSO
cshO), setenvO), shO), stty(1), environ(S), ttytype(S), termcap(S)

AUTHOR

BUGS

NOTES

Eric Allman

Should be merged with A!iY(1).

For compatibility with earlier versions of ~ a number of flags are
accepted whose use is discouraged:

-d type equivalent to -m dialup:type

-p type equivalent to -m plugboard: type

-a type equivalent to -m arpanet:type

-E c Sets the erase character to £ only if the terminal can back
space.

prints the terminal type on the standard output

-r prints the terminal type on the diagnostic output.

Printed 7/21/82 1/11/82 3

'.

TTY (1) UNIX Programmer's Manual

NAME
tty - get terminal name

SYNOPSIS
tty

DESCRIPTION
Tty prints the pathname of the user's terminal.

EXAMPLE
tty

produces "/dev/tty7" if user is on tty7.

DIAGNOSTICS
"Not a tty" if the standard input file is not a terminal.

Printed 6/30/82 9/23/79

TTY (1)

1

, UL(1) UNIX Progrmnmer's Manual UL(l)

NAME
ul - do underlining

SYNOPSIS
ul [-t terminal] [~

DESCRIPTION

FILES

]l reads the named files (or standard input if none are given) and
translates occurences of underscores to the sequence which indicates
underlining. If -t is present, terminal is used as the terminal kind.
Otherwise, the environment is looked in and /etc/termcap read to deter
mine the appropriate sequences for underlining. If none of the fields
us, ue, or uc is present, and if so and se are present, standout mode is
used to indicate underlining. If the terminal can overstrike, or han
dles underlining automatically, ul behaves like ~(1). If the terminal
cannot underline, underlining is ignored.

/bin/cat
/etc/termcap

concatenate and print
terminal capability data base

SEE ALSO
manO), nroff(1)

AUTHOR

BUGS

Mark Horton

Nroff usually outputs a series of backspaces and underlines intermixed
with the text to indicate underlining. No attempt is made to optimize
the backward motion.

Printed 7/28/82 2/5/82 1

UMOUNT(l) UNIX Programmer's Manual UMOUNT(I)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
mount [special name [-r]]

umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on
the device special. The file ~ must exist already; it must be a
directory (unless the root of the mounted file system is not a direc
tory). It becomes the name of the new ly mounted root. The optional
argument -r indicates that the file system is to be mounted read-only.

Umount announces to the system. that the removable file system. prev iously
mounted on device special is to be removed.

These commands maintain a table of mounted devices in /etc/mtab. This
table is only a reflection of what the mount and umount commands think
is mounted, not what is actually mounted. If invoked without an argu
ment, mount prints the table.

Physically write-protected disks and magnetic tape file syst ems must be
mounted read-only or errors will occur when access times are updated,
whether or not any explicit write is attempted.

/etc/mtab mount table

SEE ALSO

BUGS

mount(2), mtab(S)

Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes same apparently good
pathnames invalid.

Printed 6/30/82 1

UNGET(l) UNIX Programmer's Manual UNGET(1)

NAME
unget - undo a previous get of an sees file

SYNOPSIS
unget [-rSID] [-s] [-n] files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the intended
new delta. If a directory is named, unget behaves as though each file
in the directory were specified as a named file, except that non-SCCS
files and unreadable files are silently ignored. If a name of - is
given, the standard input is read with each line being taken as the name
of an SCCS file to be processed. Keyletter arguments apply indepen
dently to each named file.

-rSID

-s

-n

SEE ALSO

Uniquely identifies which delta is no longer intended.
(This would have been specified by ~ as the "new
delta"). The use of this key letter is necessary only
if two or more outstanding ~s for editing on the same
SCCS file were done by the same person (login name). A
diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the
intended delta's SID.

Causes the retention of the gotten file which would
normally be removed from the current directory.

delta(l), get(l), sact(l).

DIAGNOSTICS
Use help(l) for explanations.

Printed 6/30/82 1

UNIQ(l) UNIX Programmer's Manual UNIQ(l)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq -udc [+n] [-n]] [input [output]]

DESCRIPTION
Unig reads the input file comparing adjacent lines. In the normal case,
the second and succeeding copies of repeated lines are removed; the
remainder is written on the output file. Note that repeated lines must
be adjacent in order to be found; see sort(l). If the -u flag is used,
just the lines that are not repeated in the original, file are output.
The -d option spec~_fies that one copy of just the repeated lines is to
be written. The normal mode output is the union of the -u and -d mode
outputs.

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of
times it occurred.

The A arguments specify skipping an initial portion of each line in the
comparison:

-A The first A fields together with any blanks before each are
ignored. A field is defined as a string of non-space, non-tab
characters separated by tabs and 6paces from its neighbors.

+A The first A characters are ignored. Fields are skipped before
characters.

SEE ALSO
sort< 1), comm(1)

Printed 6/30/82 1

UNITS(l) UNIX Programmer's Manual UNITS (1)

NAME
units - conversion program

SYNOPSIS
units

DES CRIFT ION

FILES

BUGS

Units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You~: cm

* 2.54000e+OO
1 3.93701e-01

A quantity is specified as a multiplicative combination of units option
ally preceded by a numeric multiplier. Powers are indicated by suffixed
positive integers, division by the usual sign:

You have: 15 pounds force /in2
You~: atm

* 1.0206ge+OO
1 :2:. 79730e-Ol

Units only does multiplicative scale changes. Thus it can convert Kel
vin to Rankine, but not Centigrade to Fahrenheit. Most familiar units,
abbreviations, and metric pref ixes are recognized, together with a gen
erous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
g acceleration of grav ity
force same as g
mole Avogadro

,
s number

water pressure head per unit height of water
au astronomical unit

"Pound" is a unit of mass. Compound names are run together, e.g. "ligh
tyear". British units that differ from their US counterparts are pre
fixed thus: "brgallon". Currency is denoted "belgiumfranc", "britain
pound", •••

For a complete list of units, "cat lusr/lib/unittab".

lusr/lib/unittab complete list of units

Don't base your financial plans on the currency cOIll7ersions.

Printed 7/28/82 9/23/79 1

:

UPDATE(1M) UNIX Programmer's Manual UPDATE(lM)

NAME
update - periodically update the super block

SYNOPSIS
update [interval 1.

DES CRI Pl' ION
Update is a program that executes the sync(2) primitive every 30
seconds. This insures that the file system is fairly up to date in case
of a crash.

If the parameter interval is given. it is used instead of 30 for the
timing interval. This command should not be executed directly, but
should be executed out of the initialization shell command file • .!.£. (~).

SEE ALSO
sync(2), sync(l). init(lM)

Printed 7/21/82 9/23/79 1

UPDATER(l) UNIX Progrmnmer's Manual UPDATER(l)

NAME
updater - update files between two machines

SYNOPSIS
updater [key] local remote •••

DESCRIPTION
updater updates files between two machines.

One of the following key letters must be included:

t
Take files from the remote machine, updating the local machine.

p
Put files from the local machine onto the remote machine, updating

the remote machine.

d
List the difference between files on the local and remote machines.

The following key letters are optional:

u
of °t ° ts on both machines·, this is the Update a file only ~ ~ ex~s

default condition.

r Replace a file if it did not exist on the destination machine.

local refers to the local directory name.

remote refers to the remote directory names. Only one remote name can
be specified if the ~ (put) key is specified.

ALGORITHM
Open Idev/ttyO to the remote machine.

Stty the local port and send a stty command to the remote machine to
condition both ends of the connection.

Send a "cd remote ; s\llldir • I sort +2 > Itmp/rxx.XXX" to remote machine
for each remote system; "cd local ; s\llldir • I sort> Itmp/lXXXXX" for
local machine.

Wait for remote to complete.

Take Itmp/rxx.XXX.

Do a comparison between the local and the union of the remotes:
exists on remote only:

If both the ~ and ~ keys are specified, take the file; other
wise list the file.

exists on local only:
If both ~ and ~ keys are specified, put the file; otherwise
list the file.

exist on both but different:

Printed 8/5/82 1/29/82 1

UPDATER(l)

NOTES,

UNIX Programmer's Manual

If !. key is specified, take the file.
If £ key is specified, put the file.
If S key is specified, list the file.

same:
nothing

This program is useful only to Unisoft.

AUTHOR
UniSoft Corporation of Berkeley.

Printed 8/5/82 1/29/82

UPDATER(l)

2

uucP(1c) UNIX Progr amme r' s Man ua 1 UUCP(1c)

NAME
uucp, uulog, uuname - unix to unix copy

SYNOPSIS
uucp option]... source-file... destination-file

uulog [opt ion] •••

uuname

DESCRIPTION
Uucp copies files named by
destination-file argument. A
machine, or may have the form

the
file

source-file
name may

arguments to the
be a path name on your

system-name !pathname

where 'system-name' is taken fran a list of system names which uucp
knows about. Shell metacharact ers 1*[] appearing in the pa thname part
will be expanded on the appropr iate system.

Pathnames may be one of

(1) a full pathname;

(2) a pathname preceded by -~; where ~ is a userid on the speci:
fied system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system the copy
will fail. If the destination-file is a directory, the last part of the
source-file name is used.

Uucp preserves execute permissions across the transmission and gives
0666 read and write permissions (see chmod(2».

The uucp command interprets the following options:

-c Use the source file when copying out rather than copying the file
to the spool direct ory.

-d Make all necessary directories for the file copy.
normal action.

This is the

-e,!I!. Send the uucp command to the system designated by .!U. to be exe
cuted there. Note that this will only be successful if the remote
system allows the uucp command !Q be executed there.

-m Send mail to the requester when the copy is complete.

-rn indicates the role which uucp is to play. If n is 1, uucp acts as

Printed 7/28/82 1

uucP(lc) UNIX Programmer's Manual lJUCP(lc)

a master in the transaction. If A is 0, uucp acts as a slave.

-sdir indicates that uucp is to.YoU the directory dir as the spool
directory for the transfer.

EXAMPLE
uucp pascal.doc texas!-steve/pascal.doc

The uucp command above sends the file pascal.doc to the user whose name
is steve, on the system called texas.

Uulog maintains a summary log of uucp and ~(l) transactions.

The options cause uulog to pr mt logging information:

-s.§.I.!. Print information about work invol vmg syst em .§.I.!..

-u~

Print information about work done for the specified~. .

Printed 7/28/82 2

UUCP(lC) UNIX Programmer's Manual uucP(lC)

FILES

The uuname utility lists the uucp names of known systems.
option returns the local system name.

/usr / spool/uucp - spool direct ory
/usr/lib/uucp/L.sys - List of system names and when to call them.
/usr/lib/uucp/L-dialcodes - List of 'phone numbers in L.sys.
/usr/lib/uucp/SYSTEMNAME - Name of this system.
/usr/lib/uucp/L-devices - List of device codes and speeds.

The -1

/usr /lib/uucp/USERFILE - List of users and required pa thname pref ixes.
/usr/lib/uucp/CMDLIST - List of commands for uuxgt to execute.
/usr/lib/uucp/uucico - copy in, copy out program; called by uucp
/usr/lib/uucp/uuxqt - command execution program; called by uucp
/usr/lib/uucp/uuclean - spool directory cleanup program; called by uucp

SEE ALSO
uux(I) , mail (1)
D. A. Nowitz, Uucp Implementation Description

WARNING

BUGS

The domain of remotely accessible files can (and for obvious secur ity
reasons, usually should) be severel y restrict ed. You will very like 1 y
not be able to fetch files by pathname; ask a responsible person on the
remote system to send them to you. For the same reasons you will prob
ably not be able to send files to arbitrary pa thnames.

All files received by uucp will be owned by uucp.
The -m option will only work sending files or recelvlIlg a single file.
(Receiving mUltiple files specified by special shell characters 7*[]
will not activate the -m option.)

Printed 7/28/82 3

uux(1c) UNIX Programmer's Manual uux(lc)

NAME
uux - unix to unix command execution

SYNOPSIS
uux [-] command-string

DESCRIPTION

FILES

~ will gather 0 or more files from various systems, execute a command
on a specified system and send standard output to a file on a specified
system.

The command-string is made up of one or more arguments that look like a
shell command line, except that the command and file names may be pre
fixed by system-name!. A null system-name is interpreted as the local
system.

File names may be one of

(1) a full pathname;

(2) a pathname preceded by -~; where ~ is a userid on the
specified system and is replaced by that user's login directory;

(3) anything else is pref ixed by the current directory.

The '-' option will cause the standard input to the ~ command to be
the standard input to the command-string.

For example, the command

uux "Idiff usgl/usr/dan/fl pwbal/a4/dan/fl > Ifi-diff"

will get the fl files from the usg and pwba machines, execute a diff
command and put the results in fl.diff in the local directory.

Any special shell characters such as <>;1 should be quoted either by
quoting the entire command-string, or quoting the special characters as
individual arguments.

/usr/spool/uucp - spool directory
/usr/lib/uucp/L.sys - List of system names and when to call them.
/usr/lib/uucp/L-dialcodes - List of 'phone numbers in L.sys.
/usr/lib/uucp/SYSTEMNAJ.E - Name of this system.
/usr/lib/uucp/L-devices - List of device codes and speeds.
/usr/lib/uucp/USERFILE - List of users and required pathname prefixes.
/usr/lib/uucp/CMDLIST - List of commands for uuxqt to execute.
/usr/lib/uucp/uucico - copy in, copy out program; called by uucp
/usr/lib/uucp/uuxqt - command execution program; called by uucp
/usr/lib/uucp/uuclean - spool directory cleanup program; called by uucp

Printed 7/28/82 1

uux(lc) UNIX Programmer's Manual uux(lc)

SEE ALSO
uucpCl)
D. A. Nowitz, Uucp implementation description

WARNING

BUGS

An installation may, and for security reasons generally will, limit the
list of commands executable on behalf of an incoming request fran ~.
Typically, a restricted site will permit little other than the receipt
of mail via ~.

Only the firs t command of a sh ell pipel ine may have a syst em-name! • All
other commands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want
it to do.
The shell tokens « and » are not implemented.
There is no notification of denial of execution on the remote machine.

Printed 7/28/82 2

VAL(l) UNIX Programmer's Manual VAL(l)

NAME
val - validate sees file

SYNOPSIS
val -
val [-s] [-rSID] [-mname] [-ytype] files

DESCRIPTION
Val determines if the specified file is an sees file meeting the charac
teristics specified by the optional argument list. Arguments to ~ may
appear in any order. The arguments consist of keyletter arguments,
which begin with a -, and named files.

Val has a special. argument, -, which causes reading of the standard
input until an end-of-file condition is detected. Each line read is
independently processed as if it were a command line argument list.

!!l generates diagnostic messages on the standard output for each com
mand line and file processed and also returns a single 8-bit code upon
exit as described below.

The keyletter arguments are def ined as follows. The ef fect s of any
keyletter argument apply independently to each named file on the command
line.

-s

-rSID

-y~

The presence of this argument silence s the diagnos
tic message normally generated on the standard out
put for any error that is detected while processing
each named file on a given command line.

The a rgume nt val ue .§.m (se es IDen ti fica tio n S tr ing)
is an sees delta number. A check is made to deter
mine if the SID is ambiguous (e. g., rl is ambiguous
because it physically does not exist but implies
1.1, 1.2, etc. which may exist) or invalid (for
example, rl.O or rl.l.0 are invalid because neither
case can exist as a valid delta nmber). If the SID
is valid and not ambiguous, a check is made to
determine if it actually exists.

The argument value name is compared with the sees
%M% keyword in file.

The argument value ~ is compared with the sees
%Y% keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors,
i. e., can be interpreted as a bit string where (moving from left to
right) set bits are interpreted as follows:

bit 0 - missing file argument;
bit 1 = unknown or duplicate key1etter argument;

Printed 6/30/82 1

VAL (1) UNIX Programmer's Manual

bit 2 = corrupted SCCS file;
bit 3 = can't open f He or f He not sces;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

VALU)

Note that val can process two or more files on a given command line and
in turn can process mUltiple command lines (when reading the standard
input). In these cases an aggregate code is returned - a logical OR of
the codes generated for each command line and file processed.

SEE ALSO
admin(l), delta(l), get(l), prs(l).

DIAGNOSTICS

BUGS

Use help(l) for explanations.

Val can process up to 50 files on a single command line.
above 50 will produce a core dump.

Printed 6/30/82

Any number

2

vc(1) UNIX Programmer's Manual vc(1)

NAME
vc - version control

SYNOPSIS
vc [-a] [-t] [-cchar] [-s] [keyword=value ••• keyword=valueJ

DESCRIPTION
The ~ command copies lines from the standard input to the standard out
put under control of its arguments and control statements encountered in
the standard input. In the process of performing the copy operation,
user declared keywords may be replaced by their string value when they
appear in plain text and/or control statements.

The copying of lines from the standard input to the standard output is
conditional, based on tests (in control statements) of keyword values
specified in control statements or as ~ command arguments.

A control statement is a single line beginning with a control character,
except as modified by the -t keyletter (see below). The default control
character is colon (:), except as modified by the -c keyletter (see
below). Input lines beginning with a backslash (\) followed by a con
trol character are not control lines and are copied to the standard out
put with the backslash removed. Lines beginning with a backs lash fol
lowed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be
alphabetic. A value is any ASCII string that can be created with ed(1);
a numeric value is an unsigned string of digits. Keyword values may not
contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded
by control characters is encountered on a version control statement.
The -a keyletter (see below) forces replacement of keywords in all lines
of text. An uninterpreted control character may be included in a value
by preceding it with \. If a literal \ is desired, then it too must be
preceded by \.

Keyletter arguments

-a

-t

-cchar

Printed 6/30/82

Forces replacement of keywords surrounded by control
characters with their assigned value in all text
lines and not just in ~ statements.

All characters from the beginning of a line up to
and including the first tab character are ignored
for the purpose of detecting a control statement.
If one is found, all characters up to and including
the tab are discarded.

Specifies a control character to be used in place of . . .

1

vc(1)

-s

UNIX Programmer's Manual vc(1)

Silences warning messages (not error) that are nor
mally printed on the diagnostic output.

Version Control Statements

:dcl keyword[, ••• ~ keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the ~ command line and
all previous asg's for that keyword. Keywords declared, but not
assigned values have null values.

: if condition

:end
Used to skip lines of the standard input. If the condition is true
all lines between the if statement and the matching ~ statement
are copied to the standard output. If the condition is false, all
intervening lines are discarded, including control statements.
Note that intervening if statements and matching m statements are
recognized solely for the purpose of maintaining the proper if-end
matching.
The syntax of a condition is:

<cond> : : a: ["not"] <or>
<or> : :- <and> I <and> "I" <or>
<and> : : = <exp> I <exp> "&" <and>
<exp> : :- "(" <or> ")" I <value> <op> <value>
<op> : :-= "." I "I-" I " <" I ">"
<value> : : = <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

... equal
I- not equal
& and
I or
> greater than
< less than
() used for logical groupings
not may only occur immediately after the if, and

when present, inverts the value of the
entire condition

The> and < operate only on unsigned integer values (e. g.: 012 >
12 is false). All other operators take strings as arguments (e.
g.: 012 I" 12 is true). The precedence of the operators (from
highest to lowest) is:

Printed 6/30/82 2

VC(1)

.. != > <
&
I

UNIX Programmer's Manual

all of equal precedence

Parentheses may be used to alter the order of precedence.

vc(l)

Values must be separated from operators or parentheses by at least
one blank or tab.

:: text

:on

:off

Used for keyword replacement on lines that are copied to the stan
dard output. The two leading control characters are removed, and
keywords surrounded by control characters in text are replaced by
their value before the line is copied to the output file. This
action is independent of the -a keyletter.

Turn on or of f keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on 1 ine ••• (915)
on the diagnostic output. IS halts execution, and returns an exit
code of 1.

DIAGNOSTICS
Use help(l) for explanations.

EXIT CODES
o - normal
1 - any error

Printed 6/30/82 3

VERSION(l) UNIX Programmer's Manual VERSION (I)

NAME
version - reports version number of files

SYNOPSIS
vers ion name •••

DESCRIPIION
Version takes a list of files and reports the version number. If the
file is not a binary, it reports: "not a binary". If no version number
is associated with the file, it reports: "pre history". Version is
useful for determining which version of the current program you are run
ning.

EXAMPLE
version Ibin/version

prints the version number of the version program.

Printed 7/21/82 1

vr(1) UNIX Progrrunmer's Manual VIO)

NAME
vi - screen oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag] [-r] [+command] [-~] name •••

DESCRIPTION
Vi (visual) is a display oriented text editor based on ~(l). Ex and vi
run the same code; it is possible to get to the command mode of ~ from
within vi and vice-versa.

Vi puts up a screenful of text at a time (unless a smaller window is
specified) and allows rapid and fluid cursor motion to the place where
you want to begin adding, changing, or deleting text. With vi, editing
can be done on characters, words, lines, or sections at a time. When
multi-character changes are made, it is necessary to hit the ESCAPE key
to return to cursor motion mode.

Using ~ commands and calling up the Shell by typing (!) are done with a
colon (:) and the appropriate command sequence, such as that to find a
string or write the file.

The ''V i Command Summary" (below), the Vi Quick Reference card and the
Introduction ~ Display Editing with Vi provide full details on using
rio

The following options are recognized:

-t Equivalent to an initial !!& command, editing the file containing
the !A& and positioning the editor at its definition.

-r Used in recovering after an editor or system crash, retrieving the
last saved version of the named file. If no file is specified, a
list of saved files will be reported.

+command
indicates that the editor should begin by executing the specified
command. If command is omitted, then it defaults to "$", posi
tioning the editor at the last line of the first file initially.
Other useful commands here are scanning patterns of the form
"/pat" or line numbers, e.g. "+100" to start at line 100.

-~ sets the default window size to A, and is useful 1n dialups, to
start in small windows.

Name arguments indicate files to be edited.

Printed 7/21/82 2/2/82 1

VI(1) UNIX Programmer's Manual

VI COMMAND SUMMARY
Cursor Motion:

letter
word right-limit
word left-limit
sentence
paragraph
section/function
line: same/limit

1st charac
same column
specified

1/2 screenful
screenful

Undoing Errors

Forward

(space)
E,e
W,w
)
}
])
$
+,<ret>
"'n,LF
<line#>G
"'d
.... f

Back

.... H, h

B,b
(
{
[[
o

"'p
<line#>G
" u
"b

(see also: change, insert, delete)

u
U

undo last change
restore current line
retrieve Nth last delete

VI(l)

"Np
<esc>
: q!

abandon incomplete command (without
drastic! abandon without sav ing.

completing it)

Insert Change Delete

i before cursor cw<newword> word x charact er
I before 1st non-blank C substitute line X •••• before cursor
a after cursor s substitute charac. dw word
A at end-of-line S subst. lines de •••• but leave punctua tion
o open line below rx replace 1 charac dd line
o open line above R replace characs (I)dd number of lines
<esc> terminates insert xp transpose charac D rest of line

<esc> terminates change

Delete during Insert

last charac AH
last word AW
all input this line <@>

FILES
See ~(I).

Printed 7/21/82 2/2/82 2

VI(1) UNIX Programmer's Manual VI(1)

SEE ALSO
ex (1), edit (1), ''Vi Quick Reference" card, "An Introduction to Display
Editing with Vi".

AUTHOR

BUGS

William Joy
Mark Horton added macros to visual mode and is maintaining version 3

Software tabs using AT work only immediately after the autoindent.

Left and right shifts on intelligent terminals don't make use of insert
and delete character operations in the terminal.

The wrapmargin option can be fooled since it looks at output columns
when blanks are typed. If a long word passes through the margin and
onto the next line without a break, then the line won't be broken.

Insert/delete within a line can be slow if tabs are present on intelli
gent terminals, since the terminals need help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no
way to use the : append, : change, and :insert commands, since it is not
possible to give more than one line of input to a escape. To use
these on a :global you must Q to ~ command mode, execute them, and then
reenter the screen editor with ~ or ~.

Printed 7/21/82 3

..

WAIT(l) UNIX Programmer's Manual

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPIION

WAIT 0)

Wait until all processes started with & have completed, and report on
abnormal terminations.

Because the wait(2) system call must be executed in the parent process,
the Shell itself executes wait, without creating a new process.

EXAMPLE
wait

waits for all child processes to terminate.

SEE ALSO
shO)

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the
Shell, and thus can't be waited for. (This bug does not apply to
csh(1).)

Printed 6/30/82 1/27/82 1

WALL(l) UNIX Programmer's Manual

NAME
wall - write to all users

SYNOPSIS
wall

DESCRIPIION

WALL(l)

Wall reads its standard input until an end-of-file. It then sends the
message, preceded by "Broadcast Message ••• ", to all logged in users.

Only the super-user can override any protections against receiving mes
sages that users may have invoked. The message is also labeled with the
sender's name and terminal number and the time the message was sent.

EXAMPLE
wall

will broadcast the standard input to all users who are not protected
against receiving messages by the ~ command.

FILES
/dev/tty?
/etc/utmp

SEE ALSO
mesgCl), write(1)

DIAGNOSTICS
"Cannot send to ••• " when the open on a user's tty file fails.

Printed 6/30/82 1/22/82 1

WC(l) UNIX Programmer's Manual wc(1)

NAME
wc - word count

SYNOPSIS
wc [-1 wc] [name •••]

DESCRIPTION
Wc counts lines, words and characters in the named files, or in the
standard input if no name appears. A word is a maximal string of char
acters delimited by spaces, tabs or newlines.

If an argument beginning with one of "lwc" is present, the specified
counts (lines, words, or characters) are selected by the letters 1, w,
or c. Note that the default options are: -lwc.

EXAMPLE

wc filea fileb filec

reports the number of lines, words, and characters in each of the files.

Printed 6/30/82 2/24/79 1

WHAT(l) UNIX Programmer's Manual WHAT(l)

NAME
what - identi-fy SCCS file s

SYNOPSIS
what files

DESCRIPTION
What searches the given files for all occur rences of the pa ttern that
..&ll(l) substitutes for %Z% (this is @UF) at this printing) and prints
out what follows until the first ", >, new-line, \, or null character.
For example, if the C program in file f.c contains

char idendl = "@(#)identification information";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the sces command ~(1),
which automatically inserts identifying information, but it can also be
used where the information is inserted manually.

SEE ALSO
get(l), help(l).

DIAGNOSTICS

BUGS

Use help(l) for explanations.

It's possible that an unintended occurrence of the pattern @(#) could be
found just by chance, but this causes no harm in nearly all cases.

Printed 6/30/82 1

WHEREIS(l) UNIX Programmer's Manual WHEREIS(1)

whereis - locate source/binary/manual for program

SYNOPSIS
whereis [-sbmu] [-SBM dir ••• [-f]] name •••

DESCRIPTION
Whereis locates source, binary and manual sections for specified files.
The supplied names are first stripped of leading pathname components and
any (single) trailing extension of the form If.extlf, e.g. If.C". Prefixes
of, "S.1f resulting fran use of source code control are also dealt with.
Whereis then attempts to locate the desired program in a list of stan
dard places. If any of the -b, -s or -m flags are given then whereis
searches only for binaries, sources or manual sections (or any two
thereof) •

The -u flag may be used to search for unusual entries. A file is said
to be unusual if it does not have one entry of each requested type.
Thus ''whereis -m -u *" asks for those files in the current directory
which have no documentation.

Finally, the -B -M and -S flags may be used to change the places where
whereis searches to the specified directories only. The -f file flags
may be used to terminate the last such directory list and signal the
start of file names.

EXAMPLE
The following finds all the files in lusr/ucb which are not documented
in /usr/man/mann with source in /usr/ucb/src/ucb:

cd lusr/ucb
whereis -u -M lusr/man/mann -S lusr/ucb/src/ucb -f *

FILES

AUTHOR

/usr/src/*
/usr/man/*
Ibin
letc
lusr/bin
lusr/games
I lib
lusr/lib

Bill Joy

DIAGNOSTICS
None.

BUGS
This program makes it too easy to find out what needs to be done.

Printed 7/28/82 2/24/79 1

WHEREIS(l) UNIX Programmer's Manual WHEREIS(l)

Since the program uses chdir(l) to run faster, pathnames given with the
-M -S and -B flags should start at the root or they will not work.

Printed 7/28/82 2

WHOO) UNIX Programmer's Manual WHOO)

NAME
who - who is on the system

SYNOPSIS
who [who-file] [am I]

DES CR I PI' ION
Who, without an argument, lists the login name, terminal name, and login
time for each current UNIX user.

Without an argument, who examines the /etc/utmp file to obtain its
information. If a file is given, that file is examined. Typically the
given file will be /usr/adm/wtmp, which contains a record of all the
logins since it was created. Then who lis ts logins, logout s, and
crashes since the creation of the wtmp file. Each login is listed with
user name, terminal name (with '/dev/' suppressed), and date and time.
When an argument is given, logouts produce a similar line without a user
name. Reboots produce a line with 'x' in the place of the dev ice name,
and a fossil time indicative of when the system went down.

With two arguments, as in 'who am I' (and also 'who are you'), who tells
who you are logged in as;

EXAMPLE

FILES

who am i

reports the name under which you are currently logged in. This could be
a name other than the original name under which you logged in, if the ~
command has been used.

/etc/utmp

SEE ALSO
getuid(2), su(1), utmp(S)

Printed 6/30/82 1/27/82 1

WHOAMI(l) UNIX Programmer's Manual

NAME
whoami - print effective current user id

SYNOPSIS
whoami

DESCRIPl' ION

WHOAMI(l)

Whoami prints who you are, the name you logged in under originally. It
works even if you are using a substitute ID with AY, while 'who am i'
does not, since it uses letc/utmp.

EXAMPLE

FILES

whoami

might reply:

unisoft

letc/passwd
letc/utmp

SEE ALSO
who (1)

Printed 7/28/82

User da ta base
login records

1/27182 1

WRITE(l) UNIX Programmer's Manual WRITE (1)

write - write to another user

SYNOPSIS
write use r [ttyname]

DES CRIPl' ION
Write copies lines from your terminal to that of another user.
first called, it sends the message

Message from yourname yourttyname •••

When

The recipient of the message should write back at this point. Communi
cation continues until an end of file (Control-d) is read from the ter
minal or an interrupt is sent. At that point write writes 'EOT' on the
other terminal and exits.

If you want to write to a user who is logged in more than once, the
ttyname argument may be used to indicate the appropriate terminal name.

Permission to write may be denied or granted by use of the mesg command.
At the outset writing is allowed. Certain commands, in particular nroff
and ~(1) disallow messages in order to prevent messy output.

If the character '1' is found at the beginning of a line, write calls
the shell to execute the rest of the line as a command.

The following protocol is suggested for using write: when you first
write to another user, wait for him to write back before starting to
send. Each party should end each message with a distinctive signal: (0)
for 'over' is conventional. This signals the other for a reply. (00)
for 'over and out' is suggested when conversation is about to be ter
minated with a Control-d.

EXAMPLE
write unisoft tty7

writes unisoft on terminal 7, unless messages have been refused with
mesg(!.) •

FILES
/etc/utmp
/bin/sh

SEE ALSO

to find user
to execute'!'

mail(l), mesg(l), who(l)

Printed 7/21/82 1

XSTR(1) UNIX Programmer's Manual XSTR(1)

NAME
xstr - extract strings from C programs to implement shared strings

SYNOPSIS
xstr -c] [-] [file]

DESCRIPTION
Xstr maintains a file strings into which strings in component parts of a
large progran are hashed. The strings in the programs modules are
replaced with pointers to this common area. This serves to implement
shared constant strings, most useful if they are also read-only.

The command

xstr -c name

will extract the strings from the C source in the file ~, replacing
string references by expressions of the form (&xstr[number]) for some
number. An appropriate declaration of ~ is prepended to the file.

The resulting C text is placed in the file ~.s, after which it can be
compiled. The strings from this file are placed in the strings data
base if they are not there already_ Repeated strings and strings which
are suffixes of existing strings do not cause changes to the data base.

After all components of a large program have been compiled a file ~.s
declaring the common ~ space can be created by a command of the form

xstr

This ~.s file should then be compiled and loaded with the rest of the
program. If possible, the array can be made read-only (shared) sav ing
space and swap overhead.

~ can also be used on a single file. A command

xstr name

creates files x.c and n.s as before, without using or affecting any
other strings or C text file in the same directory.

It may be useful to run ~ after the C preprocessor if any macro
definitions yield strings or if there is conditional code which cont,ins
strings which may not, in fact, be needed. Xstr reads from its standard
input when the argument '-' is given. An appropr iate command sequence
for running ~ after the C preprocessor is:

cc -E name.c I xstr -c -
cc -c x.c
mv x. 0 name. 0

Printed 6/30/82 2/7/82 1

XSTR(!) UNIX Programmer's Manual XSTR(l)

Xstr does not touch the file strings unless new items are added, thus
make can avoid remaking ~.Q unless truly necessary.

FILES
strings
x.c
xs.c
/tmp/xs*

SEE ALSO
mkstr(!)

AUTHOR
Bill Joy

BUGS

Data base of strings
Massaged C source
C source for def ini tion of array "xstr'
Temp file when "xstr name' doesn't touch strings

If a string is a suffix of another string in the data base, but the
shorter string is seen first by ~ both strings will be placed in the
data base, when just placing the longer one there will do.

Printed 6/30/82 1/27/82 2

YACC(1) UNIX Programmer's Manual YACC(l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc -vd] grammar

DESCRIPTION

FILES

~ converts a context-free grammar into a set of tables for a simple
automaton which executes an LR(l) parsing algorithm. The grammar may be
ambiguous; specified precedence rules are used to break ambiguities.

The output file, ~.tab.s, must be compiled by the C compiler to produce
a program yyparse. This program must be loaded with the lexical
analyzer program, yylex, as well as main and yyerror, an error handling
routine. These routines must be supplied by the user; Lex(l) is useful
for creating lexical analyzers usable by yacc.

If the -v flag is given, the file ~.output is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the -d flag is used, the file ~.tab.h is generated with the define
statements that associate the ~-assigned 'token codes' with the
user-declared 'token names'. This allows source files other than
~.tab.s to access the token codes.

y.output
y.tab.c
y.tab.h defines for token names
yacc. tmp, yacc. acts temporary files
/usr/lib/yaccpar parser prototype for C programs

SEE ALSO
lex(1)
1! Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June,
1974.
YACC - Yet Another Compiler Compiler by S. C. Johnson.

DI,AGNOSTICS

BUGS

The number of reduce-reduce and sh ift-reduce com lict s is reported on
the standard output; a more detailed report is found in the~.output
file. SUnilarly, if some rules are not reachable from the start symbol,
this is also reported.

Because file names are fixed, at most one.DS£ process can be active in
a given directory at a time.

Printed 6/30/82 1/27/82 1

INTRO(2) UNIX Programmer's Manual INTRO(2)

NAME
intro, errno - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPrION
Section 2 of this manual describes all the entries into the system.
Distinctions as to the status of the entries are made in the headings:

(2) System call entries which are standard in Version 7 UNIX systems.

An error condition is indicated by an otherwise impossible returned
value. Almost always this is -1; the individual sections specify the
details. An error number is also made available in the external vari
able errno. Errno is not cleared on successful calls, so it should be
tested only after an error has occurred.

There is a table of messages associated with each error, and a routine
for printing the message; See perror(3). The possible error numbers are
not recited with each writeup in section 2, since many errors are possi
ble for most of the calls. Here is a list of the error numbers, their
names as defined in <errno.h>, and the messages available using per
ror(3).

o Error 0
Unused.

1 EPERM Not owner

2

Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed only
to the super-user.

ENOENT No such file or directory
This error occurs when a file name is
should exist but doesn't, or when one of
name does not exist.

specified and the file
the directories in a path

3 ESRCH No such process
The process whose number was given to signal and ptrace does not
exist, or is already dead.

4 EINTR Interrupted syst.E!Il call
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a systE!ll call. If execution
is resumed after processing the signal, it will appear as if the
interrupted systE!ll call returned this error condition.

5 EIO I/O error
Some physical I/O error occurred dur ing a read or write. This
error may in some cases occur on a call following the one to which

Printed 6/23/82 1/18/82 1

INTRO(2) UNIX Programmer's Manual INTRO(2)

it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist,
or beyond the limits of the device. It may also occur when, for
example, a tape drive is not dialed in or no disk pack is loaded
on a drive.

7 E2BIG Arg list too long
An argument list longer than 5120 bytes is present~ to~.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number,
see A.~(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp.
write) request is made to a file which is open only for writing
(resp. reading).

10 ECHILD No children
Wait and the process has no living or uuwaited-for children.

11 EAGAIN No more processes
In a fork, the system's process table is full or the user is not
allowed to create any more processes. This error may also occur
when there is not enough swap space to hold a process.

12 ENOMEM Not enough core
During an ~ or break, a program asks for more core than the
system is able to supply. This is not a temporary condition; the
maximum core size is a system parameter. The error may also occur
if the arrangement of text, data, and stack segments requires too
many segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the
protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access
the arguments of a system call.

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g.
in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active
file directory. (open file, current directory, mounted-on file,

Printed 6/23/82 1/18/82 2

INTRO(2) UNIX Programmer's Manual INTRO(2)

active text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.
link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such dev ice
An attempt was made to apply an inappropriate system call to a
device; e.g. read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a path name or as an argument to chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted device, mention
ing an unknown signal in signal, reading or writing a file for
which ~ has generated a negative pointer. Also set by math
functions, see intro(3).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more
opens can be accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

25 ENOTTY Not a typewriter
The file mentioned in stty or ~ is not a terminal or one of the
other devices to which these calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure shared text program which
is currently open for writing (or reading!). Also an attempt to
open for writing a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum (about 1.OE9 bytes).

28 ENOSPC No space left on dev ice
During a write to an ordinary file, there is no free space left on
the device.

29 ESPIPE Illegal seek
An lseek was issued to a pipe. This error should also be issued
for other non-seekab1e devices.

Printed 6/23/82 1/18/82 3

INTRO(2) UNIX Programmer's Manual INTRO(2)

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 links to a file.

32 EPlPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned
if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the
domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresent
able within machine precision.

35 EDEADLOCK Locking deadlock
Returned by locking(2) system call if deadlock would occur or when
locktable overflows.

SEE ALSO
intro(3)

BUGS
The message Mount device busy is reported when a terminal is inaccessi
ble because the exclusive use bit is set; this is confusing.

Printed 6/23/82 4

ACCESS(2) UNIX Programmer's Manual ACCESS(2)

NAME
access - determine accessibility of file

SYNOPSIS
access(name, mode)
char *name;
int mode;

DESCRIPI' ION
Access checks the given file ~ for accessibility acco~ding to .!l!Q..Sig"
which is 4 (read), 2 (write) or 1 (execute) or a combination thereof.
Specifying mode 0 tests whether the directories leading to the file can
be searched and the file exists.

An appropriate error indication is returned if name cannot
if any of the desired access modes would not be granted.
accesses -1 ia returned and the error code is in errno. 0
from successful tests.

be found or
On disallowed
is returned

The user and group IDs with respect to which permission is checked are
the real UID and GID of the process, so this call is useful to set-UID
programs.

Notice that it is only access bits that are checked. A directory may be
announced as writable by access, but an attempt to open it for writing
will fail because it is not allowed to write into the directory struc
ture itself, although files may be created there. A file may look exe
cutable, but ~ will fail unless it is in proper format.

SEE ALSO
stat(2) .

ASSEMBLER
movl #33,DO
mov 1 Iname, AO
movl mode,Dl
trap #0

Carry bit cleared on success.

Printed 6/23/82 2/8/82 1

ACCT(2) UNIX Programmer's Manual ACCT(2)

NAME
acct - turn accounting on or off

SYNOPSIS
acct(file)
char *file;

DES CRIPr ION
The system is prepared to write a record in an accounting file for each
process as it terminates. This call, with a null-terminated string na~
ing an existing file as argument, turns on accounting; records for each
terminating process are appended to file. An argument of 0 causes
accounting to be turned off.

The accounting file format is given in A.S..S!.(5).

SEE ALSO
acct(5)

DIAGNOSTICS

BUGS

On error -1 is returned. The file must exist and the call may be exer
cised only by the super-user. It is erroneous to try to turn on
accounting when it is already on.

No accounting is produced for programs running when a crash occurs. In
particular, nonterminating programs are never accounted for.

ASSEMBLER
movl #51,DO
movl #file,AO
trap #0

Carry bit cleared on success.

Printed 6/23/82 1

ALARM(2) UNIX Programmer's Manual

alaDD - schedule signal after specified time

SYNOPSIS
alarm(seconds)
unsigned seconds;

DESCRIPrION

ALARM(2)

Alarm causes signal SIGALRM, see signal(2), to be sent to the invoking
process in a number of seconds given by the argument. Unless caught or
ignored, the signal terminates the process.

AlaDD requests are not stacked; successive calls reset the alarm clock.
If the argument is 0, any alarm request is canceled. Because the clock
has a I-second resolution, the signal may occur up to one second early;
because of scheduling delays, resumption of execution of when the signal
is caught may be delayed an arbitrary amount. The longest specifiable
delay time is 4,294,967,295 (2**32-1) seconds, or 136 years.

The return value is the amount of time prev iously remaining in the alarm
clock.

SEE ALSO
pause(2), signal(2), sleep(3)

ASSEMBLER
movll27,DO
movl seconds,AO
trap 10

DO will contain the amount of time prev iously remaining in the alarm
clock.

Printed 6/23/82 1

BRK(2) UNIX Programmer's Manual BRK(2)

NAME
brk, sbrk, break - change core allocation

SYNOPSIS
char *brk(addr)
char *addrj

char *sbrk(incr)
int incr;

DESCRIPrION
Brk sets the system's idea of the lowest location not used by the pro
gram (called the break) to ~ rounded up to the next memory segment
multiple. Locations not less than ~ and below the stack pointer are
not in the address space and will thus cause a memory violation if
accessed.

In systems without memory management l!.Ils. will fail if there are not at
least 8192 bytes between the top of the permanent data space and the
bottom of the current stack pointer.

In the altemate function.!lu:ls., incr more bytes are added to the
program's data space and a pointer to the start of the new area is
returned.

When a program begins execution via exec, the break is set at the
highest location defined by the program and data storage areas. Ordi
narily, therefore, only programs with growing data areas need to us"e
break.

SEE ALSO
exec(2), malloc(3), end(3)

DIAGNOSTICS
On success brk and .!lu:ls. return pointers to the beginning of the new
area; -1 is returned if the program requests more memory than the system
limit or, on memory management CPUs, if too many segmentation registers
would be required to implement the break. Sbrk returns -1 if the break
could not be set.

ASSEMBLER
movl #17,DO
movl #addr,AO
trap 10

Carry bit cleared if the brk could be set; brk fails if the program.
requests more memory than the system limit or, on memory management
CPUs, if too many segmentation registers would be required to implement
the break.

Printed 6/23/82 1

CHDIR(2) UNIX Programmer's Manual

NAME
chdir - change current working directory

SYNOPSIS
chdir(dirname)
char *dirname;

DESCRIPrION

CHDIR(2)

Dirname is the address of tbe pathname of a directory, terminated by a
null byte. Chdir causes this directory to become the. current working
directory.

SEE ALSO
cd(l)

DIAGNOSTICS
Zero is returned if the directory is changed; -1 is returned if the
given name is not that of a directory or is not searchable by the user.

ASSEMBLER
movl #12,DO
movl #dirname,AO
trap #0

Carry bit cleared on success.

Printed 6/23/82 1/6/82 1

CHMOD(2) UNIX Programmer's Manual

chmod - change mode of file

SYNOPSIS
chmod(name, mode)
char *name;
int mode;

D!;SCRIPIION

CHMOD(2)

The file whose name is given as the null-terminated string pointed to by
name has its mode changed to mode. Modes are constructed by .Ql:,ing
together some combination of the following:

04000 set user ID on execution

02000 set group ID on execution

01000 save text image after execution (for shareable files)

00400 read by owner

00200 write by owner

00100 execute (search on directory) by owner

00070 read, write, execute (search) by group

00007 read, write, execute (search) by others

If an executable file is set up for sharing (see the.£S. -n option), then
mode 1000 prevents the system from abandoning the swap-space image of
the program-text portion of the file when its last user terminates.
Ability to set this bit is restricted to the super-user since swap space
is consumed by the images.

Only the owner of a file (or the super-user) may change the mode. Only
the super-user can set the 1000 mode.

Changing the owner of a file turns of f the set-user- id bit. This make s
the system somewhat more secure by protecting set-user-id files from
remaining set-user-id if they are modified, at the expense of a degree
of compatibility.

SEE ALSO
chmod(1)

DIAGNOSTIC
Zero is returned if the mode is changed; -1 is returned if name cannot
be found or if the current user is neither the owner of the file nor the
super-user.

Printed 6/23/82 1/6/82 1

CHMOD(2)

ASSEMBLER
movi IIS,DO
mov I #name, AO
movl mode,DI
trap 10

UNIX Programmer's Manual

Carry bit cleared on success.

Printed 6/23/82 1/6/82

CHMOD(2)

2

CHOWN(2) UNIX Programmer's Manual

NAME
chown - change owner and group of a file

SYNOPSIS
chown(name, owner, group)
char *name;
int owner;
int group;

DESCRIPTION
The file whose name is given by the null-terminated
~ has its owner and group changed as specified.
may execute this call.

CHOWN(2)

string pointed to by
Only the super-user

Chown clears the set-user-id bit on the file to prevent accidental crea
tion of set-user-id programs owned by the super-user.

SEE ALSO
chown(l), passwd(S)

DIAGNOSTICS
Zero is returned if the owner is changed; -1 is returned on illegal
owner changes.

ASSEMBLER
movl #l6,DO
movl #name,AO
movl owner,DI
movl group,Al
trap #0

Carry bit cleared on success.

Printed 7/14/82 1

CLOSE(2) UNIX Programmer's Manual CLOSE(2)

NAME
close - close a file

SYNOPSIS
close (fildes)
int fildes;

DESCRIPrION
Given a file descr iptor such as returned fran an open, creat, dup or
~(2) call, close closes the associated file. A close of all files is
automatic on exit, but since there is a 20 open file limit on the number
of open files per process, close is necessary for programs which deal
with many files.

Files are closed upon termination of a process, and certain high
numbered file descriptors are closed by ~(2), and it is possible to
arrange for others to be closed (see FIOCLEX in ioctl(2»).

SEE ALSO
creat(2), open(2), pipe(2), exec(2), ioctl(2)

DIAGNOSTICS
Zero is returned if a file is closed; -1 is returned for an unknown.fi1e
descriptor.

ASSEMBLER
movl #6,DO
movl fildes,AO
trap #0

Carry bit cleared on success.

Printed 6/23/82 1

CREAT(2) UNIX Programmer's Manual CREAT(2J

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
char *name;
int mode;

DESCRIPI' ION
Creat creates a new file or prepares to rewrite an existing file cal lee
name, given as the address of a null-terminated string •. If the file dij
not exist, it is given mode mode. as modified by the process"'s mode mas]
(see umask(2». Also see chmod(2) for the construction of the modi
argument.

If the file did exist, its mode and owner rElllain unchanged but it i:
truncated to 0 length.

The file is opened for writing only ~not reading), and its file descr ip·
tor is returned.

The ~ given is arbitrary; it need not allow writing. This feature i:
used by programs which deal with temporary files of fixed names. Th,
creation is done with a mode that forbids writing. Then if a secon,
instance of the program attempts a creat, an error is returned and th
program knows that the name is unusable for the moment.

The system scheduling algorithm does not make this a true uninterrupti'
ble operation, and a race condition may develop if creat is done at pre
cisely the same time by two different processes.

SEE ALSO
write(2), close(2), chmod(2), umask (2)

DIAGNOSTICS
The value -1 is returned if: a needed directory is not
file does not exist and the directory in which it is
not writable; the file does exist and is unwritahle;
directory; there are already too many files open.

ASSEMBLER
movl "8,DO
mov 1 #name, AO
movl mode,D1
trap 10

Carry bit cleared on success.

The file descriptor is returned in DO.

Printed 6/23/82

searchable; th
to be created i
the file is

DUP(2) UNIX Programmer's Manual DUP(2)

dup, dup2 - duplicate an open file descriptor

SYNOPSIS
dupe fildes)
int f ildes;

dup2(fildes, fildes2)
int fildes;
int fildes2;

DESCRIPTION
Given a file descriptor returned from an open, ~, or creat call, dup
allocates another file descriptor synonymous with the original. The new
file descriptor is returned.

In the second form of the call, fildes is a file descriptor referring to
an open file, and fildes2 is a non-negative integer less than the max
imum value allowed for file descriptors (approximately 19). Dup2 causes
fildes2 to refer to the same file as fildes. If fildes2 already referred
to an open file, it is closed first.

SEE ALSO
creat(2), open(2), close(2), pipe(2)

DIAGNOSTICS
The value -1 is returned if: the given file descriptor is invalid; there
are already too many open files.

ASSEMBLER
movl :fF41,DO
movl fildes,AO
trap #0

Carry bit cleared on success.

The dup2 entry is implemented by adding 0100 to fildes.

Printed 7/14/82 4/1/81 1

EXEC(2) UNIX Programmer's Manual EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp, exec, exece, environ -
execute a file

SYNOPSIS
execl(name, argO, argl, ••• , argn, 0)
char *name, *argO, *arg1, ••• , *argn;

execv(name, argv)
char *name, *argv[];

execle(name, argO, argl, ••• J argn, 0, envp)
char *name, *argO, *arg1, ••• , *argn, *envp[];

execve(name, argv, envp)
char *name, *argv[], *envp[];

extern char **environ;

DESCRIPrION
Exec in all its forms overlays the calling process with the named file,
then transfers to the entry point of the core image of the file. There
can be no return from a successful exec; the calling core image. is lost.

Files remain open across ~ unless explicit arrangement has been made;
see ioctl(2). Ignored/held signals remain ignored/held across these
calls, but signals that are caught (see signal(2)) are reset to their
default values.

Each user has a real user ID and group ID and an effective user ID and
group ID. The real ID identifies the person using the system; the
effective ID determines his access privileges. Exec changes the effec
tive user and group ID to the owner of the executed file if the file has
the 'set-user-ID' or 'set-group-ID' modes. The real user ID is not
affected.

The ~ argument is a pointer to the name of the file to be executed.
The pointers arg£.QJ, arg[!.] ••• address null-terminated strings. Con
ventionally arg[~] is the name of the file.

From C, two interfaces are available. execl is useful when a known file
with known arguments is being called; the arguments to execl are the
character strings constituting the file and the arguments; the first
argument is conventionally the same as the file name (or its last com
ponent). A 0 argument must end the argument list.

The execv version is useful when the number of arguments is unknown in
advance; the arguments to execv are the name of the file to be executed
and a vector of strings containing the arguments. The last argument
string must be followed by a 0 pointer.

Printed 7/14/82 4/1/81 1

EXEC(2) UNIX Programmer's Manual EXEC(2)

FILES

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is convention
ally at least one and the first member of the array points to a string
containing the name of the file.

Argv is directly usable in another execv because argv[argc] is O.

Envp is a pointer to an array of strings that constitute the environment
of the process. Each string consists of a name, an ., and a null
terminated value. The array of pointers is terminated by a null
pointer. The shell sh(!) passes an env ironnent entry for each global
shell variable defined when the program is called. See environ(S) for
some conventionally used names. The C run-time start-off routine places
a copy of envp in the global cell environ, which is used by
execv and execl to pass the environnent to any subprograms executed by
the current program. The ~ routines use lower-level routines as fol
lows to pass an environment explicitly:

execve(file, argv, environ);
execle(file, argO, argl, ••• , argn, 0, environ);

Execlp and execvp are called with the same arguments as execl and execv,
but duplicate the shell's actions in searching for an executable file in
a list of directories. The directory list is obtained from the environ
ment.

/bin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
fork(2), environ(S), csh(l)

. DIAGNOSTICS

BUGS

If the file cannot be found, if it is not executable, if it does not
start with a valid magic number (see A.~(S», if maximum memory is
exceeded, or if the arguments require too much space, a return consti
tutes the diagnostic; the return value is -1. Even for the super-user,
at least one of the execute-permission bits must be set for a file to be
executed.

If execvp is called to execute a file that turns out to be a shell com
mand file, and if it is impossible to execute the shell, the values of
argv[~] and argv[-1] will be modified before return.

ASSEMBLER
movl Ill,DO I sys exec

Printed 7/14/82 4/1/81 2

EXEC(2) UNIX Programmer's Manual EXEC(2)

movl lname,AO
movl #argv,Dl
trap #0

movl #59 I sys exece
movl #name,AO
movl #argv,Dl
movl #envp,Al
trap 10

Plain ~ is obsoleted by exece, but remains for historical reasons.

When the called file starts execution, the stack pointer points to a
word containing the number of arguments. Just above this number is a
list of pointers to the argument strings, followed by a null pointer,
followed by the pointers to the environment strings and then another
null pointer. The strings themselves follow; a 0 word is left at the
very top of memory.

nargs I stack points here
argO ...
argn
0
envO ...
envm
0

argO: <argO\O> ...
envO: <envO\O>

0

Printed 7/14/82 3

EXIT(2) UNIX Programmer's Manual

NAME
exit - terminate process

SYNOPSIS
exitCstatus)
int status;

_exitCstatus)
int status;

DESCRIPTION

EXIT(2)

Exit is the normal means of terminating a process. Exit closes all the
process's files and notifies the parent process if it is executing a
wait. The low-order 8 bits of status are available to the parent pro
cess.

This call can never return.

The C function exit may cause cleanup actions before the final 'sys
exit'. The function "_exit" circumvents all cleanup, and should be used
to terminate a child process after a fork(2) to avoid flushing buffered
output twice.

SEE ALSO
fork(2), wait(2)

ASSEMBLER
movl #l,DO
movl status ,AO
trap #0

Printed 6/23/82 1

FORK(2) UNIX Programmer's Manual FORK(2)

NAME
fork - spawn new process

SYNOPSIS
fork()

DESCRIPrION
Fork is the only way a new process is created. With fork, the new
process's core image is a copy of that of the caller of fork. The only
distinction is the fact that the value returued iu the old (parent) pro
cess contains the process ID of the new (child) process,·while the value
returned in the child is O. Process ID's range from 1 to 30,000. This
process ID can be used when doing a wait(2).

Files open before the fork are shared, and have a common read-write
pointer. In particular, this is the way that standard input and output
files are passed and also how pipes are set up.

SEE ALSO
wait(2), exec(2)

D):AGNOSTICS
Returns -1 and fails to create a process if: there is inadequate swap
space, the user is not super-user and has too many processes, or the
system's process table is full.

ASSEMBLER
movl :#2,DO
trap :#0

Carry bit cleared on success.

New process return.
Old process return, new process ID in DO.

The return locations in the old and new process differ by one 16 bit
word. The C-bit is set in the old process if a new process could not be
created.

Printed 6/23/82 1

GETPID(2) UNIX Programmer's Manual

NAME
getpid - get process identification

SYNOPSIS
getpidO

DESCRIPTION

GETPID(2)

Getpid returns the process ID of the current process. Most often it is
used to generate uniquely-named temporary files.

SEE ALSO
mktemp(3)

ASSEMBLER
movl 120,DO
trap 10

Process ID is returned in DO.

Printed 6/23/82 1

GETUID(2) UNIX Programmer's Manual

NAME
getuid, getgid, geteuid, getegid - get user and group identity

SYNOPSIS
getuidO

geteuidO

getgidO

getegid()

DESCRIPTION

GE'lUID(2)

Getuid returns the real user ID of the current process, geteuid the
effective user ID. The real user ID identifies the person who is logged
in, in contrast to the effective user ID, which determines his acceSE
permission at the moment. It is thus useful to programs which operatE
using the 'set user ID' mode, to find out who invoked them.

Getgid returns the real group ID, getegid the effective group ID.

SEE ALSO
setuid(2)

ASSEMBLER
movl #24,DO
trap #0

I sys getuid

Real user ID in DO, effective user ID in Dl.

movl #47,DO
trap #0

sys getgid

Real group ID in DO, effective group ID in Dl.

Printed 6/23/82 1/18/82

IOCTL(2) UNIX Programmer's Manual IOCTL(2)

NAME
ioct I, st ty, gt ty - control dev ice

SYNOPSIS
linclude <sgtty.h>

ioctl(fildes, request, argp)
int fildes;
int request;
struct sgttyb *argp;

stty(fildes, argp)
int fildes;
struct sgttyb *argp;

gtty(fildes, argp)
int fildes;
struct sgttyb *argp;

DESCRIPTION
Iactl performs a variety of functions on character special files (dev
ices). The writeups of various devices in section 4 discuss how ioctl
applies to them.

For certain status setting and status inquiries about terminal devices,
the functions ~ and ~ are equivalent to

ioctl(fildes, TIOCSETP, argp)
ioctl(fildes, TIOCGETP, argp)

respectively; see ~(4).

The following two standard calls, however, apply to any open file:

ioctl(fildes, FIOCLEX, NULL);
ioctl(fildes, FIONCLEX, NULL);

The first causes the file to be closed automatically during a successful
~ operation; the second reverses the effect of the first.

The following call applies to any open file:

ioctl(fildes, FIONREAD, &count)

returning, in the longword count the number of characters available for
reading from fildes.

SEE ALSO
stty(l), tty(4), exec(2)

DIAGNOSTICS
Zero is returned if the call was successful; -1 if the fHe descriptor
does not refer to the kind of file for which it was intended, or if

Printed 7/14/82 1

IOCTL(2) UNIX Programmer's Manual IOCTL(2)

BUGS

request attempts to modify the state of a terminal when fildes is not
writeable.

Strictly speaking, since ioctl may be extended in different ways to dev
ices with different properties, ~ should have an open-ended declara
tion like

union { .truct sgttyb , ... } *argp;

The important thing is that the size is fixed by 'struct sgttyb'.

ASSEMBLER
movl #54,DO
movl fildes,AO
movl request,Dl
mov 1 4f:ar gp , Al
trap #0

I sys ioctl

Carry bit cleared on success.

movl #31,DO
movl fildes,AO
movl #argp,D1
trap 10

I sys stty

Carry bit cleared on success.

movl #32,DO
movl fildes ,AO
movl #argp,Dl
trap #0

I sys gtty

Carry bit cleared on success.

Printed 7/14/82 2/23/82 2

KILL(2) UNIX Programmer's Manual KILL(2)

NAME
kill - send signal to a process

SYNOPSIS
kill(pid, sig)
int pid;
int sig;

DESCRIP.rION
Kill sends the signal sig to the process specified by the process nmber

. pid. See signal(2) for a list of signal~.

The sending and receiving processes must have the same effective user
ID, otherwise this call is restricted to the super-user.

If the process nmber is 0, the signal is sent to all processes in the
sender's process group; see ~(4).

If the process number is ·-1, and the user is ·the super-user,. the signal
is broadcast universally except to processes 0, 1, the scheduler ini
tialization, and the process sending the signal.

Processes may send signals to themselves.

SEE ALSO
signal(2), kill(l), init(lM)

DIAGNOSTICS
Zero is returned if the process is killed; -1 is returned if the process
does not have the same effective user ID and the user is not super-user,
or if the process does not exist.

ASSEMBLER
movll37,DO
movl pid,AO
movl sig,D!
trap #0

Carry bit cleared on success.

Printed 7/21/82 1/20/82 1

LINK(2) UNIX Programmer's Manual LINK(2)

NAME
link - link to a file

SYNOPSIS
liukCnamel, name2)
char *Dame!, *name2;

DESCRIPrION
A link to name 1 is created; the link has the name name2. Either name
may be an arbitrary path name. The linked file is actually a pointer to
the original file. When the last link to a file is removed the file is
deleted.

SEE ALSO
lnCl), unlink(2)

DIAGNOSTICS
ZerQ is returned when a link is made; -1 is returned when name! cannot
be found; when name2 already exists; when the directory of pame2 cannot
be written; when an attempt is made to link to a directory by a user
other than the super-user; when an attempt is made to 1 ink to a file on
another file system; when a file has more than 32767 links.

On some systems the super-user may link to non-ordinary files.

ASSEMBLER
, movl '9,DO

movl #namel,AO
movl lname2,Dl
trap #0

Carry bit cleared on success.

Printed 6/23/82 2/23/82 1

LOCK(2) UNIX Progrwnmer's Manual

NAME
lock - lock a process in primary memory

SYNOPSIS
lock(flag)
int flag;

DESCRIPIION

LOCK(2)

If the flag argument is non-zero, the process executing this call will
not be swapped except if it is required to grow. If the argument is
zero, the ·process is unlocked. This call may only be ex~cuted by the
super~ser.

BUGS
Locked processes interfere with the compaction of primary memory and can
cause a system deadlock.

ASSEMBLER
movl #53 ,DO
movl flag,AO
trap #0

Printed 7/14/82 1

LOCKING(2) UNIX Programmer's Manual LOCKING(2)

NAME
locking - provide exclusive file regions for reading or writing

SYNOPSIS
locking(fildes, mode. size)
int fildes;
int mode;
int size;

DES CRIFI' ION
Locking will _llow a specified number of bytes to be accessed only by
the locking process. Other processes which attempt to lock, read, or
write the locked area will sleep until the area becomes unlocked.

Fildes is the word returned from a successful open, creat, dup, or ~
system call.

Mode is zero to unlock the area. Hode is one or two for making the area
locked. If the mode is one, and the area has some other lock on it, then
the process will sleep until the entire area is available. If the mode
is two, and the area is locked, an error will be returned.

Size is the n\lllber of contigous bytes to be locked or unlocked. The
area to be locked starts at the current offset in the file. If ~ is
zero the area to end of file is locked.

The potential for a deadlock occurs when a process controlling a locked
area is put to sleep by accessing another processes locked area. Thus
calls to locking, read, or write scan for a deadlock prior to sleeping
on a locked area. An error return is made if sleeping on the locked
area would cause a deadlock.

Lock requests may, in whole or part. contain or be contained by a previ
ously locked area for the same process. When this or adjacent areas
occur, the areas are combined into a single area. If the request
requires a new lock element with the lock table full, an error is
returned, and the area is not locked.

Unlock requests may. in whole or part, release one or more locked
regions controlled by the process. When regions are not fully released,
the remaining areas are still locked by the process. Release of the
center section of a locked area requires an additional lock element to
hold the cut off section. If the lock table is full, an error is
returned, and the requested area is not released.

While locks may be applied to special files or pipes, re~d/write opera
tions will not be blocked. Locks may not be applied to a directory.

SEE ALSO
open(2), creat(2), read(2), write(2), dup(2), close(2)

Printed 6/23/82 1

LOCKING(2) UNIX Programmer's Manual LOCKING(2)

DIAGNOSTICS
The value -1 is returned if the file does not exist, or if a deadlock
using file locks would occur. EACCES will be returned for lock requests
in which the area is already locked by another process. EDEADLOCK will
be returned by: read, write, or locking if a deadlock would occur.
EDEADLOCK will also be returned when the locktable overflows.

ASSEMBLER
movl #45,DO
movl fildes,AO
mov 1 mode, Dl
movl size,Al
trap to

Carry bit cleared on success.

Printed 6/23/82

".

2

LSEEK(2) UNIX Programmer's Manual LSEEK(2)

NAME
lseek, tell - move read/write pointer

SYNOPSIS
long lseek(fildes, offset, whence)
int fildes;
long offset;
int whence;

long tell(fildes)
int fildes;

DES CRI Pr ION
The file descriptor refers to a file open for reading or writing. The
read (resp. write) pointer for the file is set as follows:

If whence it 0, tbe pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus
offset.

If whence is 2, the pointer is set to the size of the file plus
ofhet.

The returned value is the resulting pointer location.

The function tel1(fildes) is identical to lseek(fildes·, OL, 1.>.

Seeking far beyond the end of a file, then writing, creates a gap or
'hole', which occupies no physical space and reads as zeros.

SEE ALSO
open(2), creat(2), fseek(3)

DIAGNOSTICS

BUGS

-1 is returned for an undefined file descriptor, seek on a pipe, or seek
to a position before the beginning of file. The current file offset is
returned.

Lseek is a n~op on character special files.

ASSEMBLER
movl #19,DO
1DQvl fildes,AO
movl offset,Dl
mov I whence, Al
trap 10

Carry bit cleared on success.

File offset returned in DO.

Printed 6/23/82 1

MKNOD(2) UNIX Programmer's Manual

mknod - make a directory or a special file

SYNOPSIS
mknod(name, mode, addr}
char *Dame;
int mode;
int addr;

DESCRIPIION

MKNOD(2)

Mknod creates a new file whose name is the null-terminated string
pointed to by~. The mode of the new file" (including directory and
special file bits) is initialized fram mode. (The protection part of
the mode is modified by the process's mode mask; see umask(2». The
first block pointer of the i-node is initialized fram addr. For ordi
nary files and directories addr is normally zero. In the case of a spe
cial file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO
mkdir(1), mknod(1), filsys(S)

DIAGNOSTICS.' "
Zero is. return,ed if the file has been made; -1 if the file already
exis,ts or if the user is not the super-user.

ASSEMBLER
movl 114,DO
movl lname, AO
mov 1 mode, D1
movl addr,Al
trap #0

Carry bit cleared on success •

•

Printed 6/23/82 1

MOUNT(2) UNIX Programmer's Manual MOUNT(2)

mount, umount - mount or remove a file system

SYNOPSIS
mount (special , name, rwflag)
char *epeeia1;
char *name;
int rwflag;

umount(special)
char *speciali

DESCRIptION
Mount announces to the system that a removable file system has been
mounted on the block-structured special file special; from now on,
references to file name will refer to the root file on the newly mounted
file aysteD. Special and name are pointers to null-terminated strings
containing the appropriate path names.

~ must exist already. Name must be a directory (unless the root of
the mounted file system is not a directory). Its old contents are inac
cessible while the file system is mounted.

The rwflag argument determine~ whether the file system can be written
on; if it is 0 writing is allowed, if non-zero no writing is done. Phy
sically write-protected and magnetic tape file systems must. be mounted
read-only or errors will occur when access times are updated, whether or
not any explicit write is attempted.

Umount announces to the system that the .pecial file is no longer to
contain a removable file system. The associated file reverts to its
ordinary interpretation.

SEE ALSO
mount(l), umount(1)

DIAGNOSTICS

BUGS

Mount returns 0 if the action occurred; -1 if special is inaccessible or
not an appropriate file; if name does not exist; if special is already
mounted; if ~ is in use; or if there are already too many file sys
tems mounted.

Umount returns 0 if the action occurred; -1 if if the special file is
inaccessible or does not have a mounted file system, or if there are
active files in the mounted file system.

If the file system is mounted on a directory having a mode that pre
cludes user access (see chmod(!», users may not be able to access the
mounted file system. The directory will be able to be listed and every
thing will appear fine, including the access modes, but none of its
files will be able to be accessed. Before mounting a file system on a

Printed 7/14/82 1

MOUNT(2) UNIX Programmer's Manual MOUNT(2)

directory, the super-user should check the protections on the directory
to make sure that user access is permitted to the level desired.

If a file containing holes (unallocated blocks) is read, even on a file
system mounted read-only, the system will attempt to fill in the holes
by writing on the device.

ASSDIBLER
'movl #21,DO I sys mount
movl #special,AO
movl #name,Dl
trap #0

Carry bi~ cleared on success. , .
movl #22,DO I sys umount
movl #special,AO
trap #0

Carry bit cleared on success.

Printed 7/14/82 2

NICE(2) UNIX Programmer's Manual

nice - set program priority

SYNOPSIS
uice(incr)
int incr;

DESCR.IPl' ION
The scheduling priority of the process is augmented by ~.
priorities get less service than normal.

NIQ(2)

Positive

Negative in~rements are ignored except on behalf of the super-user. The
priority is limited to the range 0 (most urgent) to 120 (least).

The priority of a process is passed to a child process by fork(2). For
a privileged process to return to normal priority from an unknown state,
~ should be called with the argument -120 to change it from lowest
priority to highest, no matter what priority it actually possessed. It
.hould then be called with the argument 20 to get to the normal default
priority.

EXAMPLE
nice(-120); nice(20);

would return you to the default priority.

SEE ALSO
fork(2). nice(l)

ASSEMBLER
movl #34,DO
JIIOvl incr,AO
trap #0

Printed 6/23/82 2/8/82

OPEN(2) UNIX Programmer's Manual

open - open for reading or writing

SYNOPSIS
open(name, mode)
char *'Dame;
int mode;

DESCRIPrION

OPEN(2)

Open opens the file.!!!!!!!. for reading (if mode is 0), wri~ing (if mode is
1) or for both reading and writing (if mode is 2). Name is the address
of a string of ASCII characters representing a path name, terminated by
a null character.

The file is positioned at the beginning (byte 0). The returned file
descriptor must be used for subsequent calls for other input-output
functions on the file.

SEE ALSO
creat(2}, read(2), write(2}, dup(2}, close(2)

DIAGNOSTICS
The value -1 is returned if the file does not exist, if one of the
necessary directories does not exist or is unreadable, if the file is
not readable (resp. writeable), or if too many files are open.

ASSEMBLER
movl #5,DO
mov 1 #name, AO
movl mode,D!
trap #0

Carry bit cleared on success.

File descriptor is returned in DO.

Printed 6/23/82 !

PAUSE(2) UNIX Programmer's Manual

NAME
pause - stop until signal

SYNOPSIS
pause 0

DESCRIPrION

PAUSE(2)

Pause never returns normally. It is used to give up control while wait
ing for a signal from kil1(2) or alarm(2). Upon termination of a signal
handler started dur ing a pause, the pause call will return.

SEE ALSO
kill(l), kill(2), ala~(2), sigual(2), setjmp(3)

ASSEMBLER
movl #29,DO
trap #0

Printed 6/23/82 PDP 11

PHYS(2) UNIX Programmer's Manual PHYS(2)

NAME
phys - allow a process to access physical addresses

SYNOPSIS
phys(physnum, virtaddr, size, physaddr)
int physnum
char *Virtaddr;
long size;
char *phy sad dr ;

DESCRIPTION
The phys(2) call maps arbitrary physical memory into a process's virtual
address space. physnum is a number (0-3) that specifies which of 4 phy
sical spaces to set up. Up to 4 phys(2) calls can be active at anyone
time. virtaddr is the process's virtual address. size is the number of
bytes to map in. physaddr is the physical address to map in.

Valid virtaddr and physaddr values are constrained by hardware and must
be at an address mUltiple of the resolution of the CPU's memory manage
ment scheme. If size is non zero, size is rounded up to the next HMO
resolution boundary. If size is zero, any previous phys(2) mapping for
that physnum segment is nullified.

For example, the call

phys(2, OxlOOOOO, 32768, 0)

will allow a process to access physical locations 0 through 32767 by
referencing virtual address OxlOOOOO through OxlOOOOO+32767.

In actuality, the CPU MMO register is loaded with physaddr shifted to
account for page resolution.

phys(2) may only be executed by the super-user.

DIAGNOSTICS

BUGS

The value zero is returned if the phys call was successful. The value
-1 is returned if not super-user, if virtaddr or physaddr is not in the
proper range, or if the specified virtaddr segment register is already
in use.

This system. call is very machine dependent.

ASSEMBLER
movl #52,DO
movl physnum,AO
movl lvirtaddr,Dl
movl size,A!
movl #physaddr,D2
trap #0

Printed 6/23/82 PDP 11 1

PHYS(2) UNIX Programmer's Manual PHYS(2)

Carry bit cleared on success.

Printed 6/23/82

PlPE(2) UNIX Programmer's Manual PlPE(2)

pipe - create an interprocess channel

SYNOPSIS
pipe(fildes)
int fildes[2];

DESCRIPTION
The ~ system call creates an I/O mechanism called a pipe. The file
descriptors returned can be used in read and write operations. When the
pipe is written using the descriptor fildes[l] up to 4096 bytes of data
are buffered before the writing process is suspended. A read using the
descriptor fildes[O] will pick up the data.

It is assumed that after the pipe has been set up, two (or more)
cooperating processes (created by subsequent fork calls) will pass data
through the pipe with read and write calls.

The Shell has a syntax to set up a linear array of processes connected
by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all
write file descriptors closed) returns an end-of-file.

SEE ALSO
sh(l), read(2), write(2), fork(2)

DIAGNOSTICS

BUGS

The function value zero is returned if the pipe was created; -1 if too
many files are already open. A signal is generated if a write on a pipe
with only one end is attempted.

Should more than 4096 bytes be necessary in any pipe among a loop of
processes, deadlock will occur.

ASSEMBLER
movl #42,DO
movl #fildes,AO
trap #0

Carry bit cleared on success.

Read file descriptor in DO.
Write file descriptor in Dl.

Printed 7/14/82 1/22/82 1

PROFIL(2) UNIX Programmer's Manual PROFIL(2)

NAME
profit - execution time prof He

SYNOPSIS
profil(buff, bufsiz, offset, scale)
char *buff;
int bufsiz;
int offset;
int scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by buf
size After this call, the user's program counter (pc) is examined each
clock tick, offset is subtracted from it, and the result multiplied by
scale. If the resulting number corresponds to a word inside byff, that
word is incremented.

The scale factor is interpreted as an unsigned, short integer: in hex,
FFFF(x) gives a 1-1 mapping of pc's to words in buff; 8000(x) maps each
pair of instruction words together. l(x) maps all instructions onto the
beginning of ~ (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of O. It is rendered ineffec
tive by giving a bufsiz of O. Profiling is turned off when an ~ is
executed" but remains on in child and parent both after a fork. Prof H
ing may be turned off if an update in buff would cause a memory fault.

SEE ALSO
monitor(3), prof(l)

ASSEMBLER
movl #44,DO
movl #buff,AO
movl bufsiz,D1
movl offset,A1
movl 6cale,D2
trap #0

Printed 7/14/82 1

PTRACE(2) UNIX Programmer's Manual PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
#include <signal.h>

ptrace(request, pid, addr, data)
int request;
int pid;
int *addr;
int data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execu
tion of a child process, and examine and change its core image. Its
primary use is for the implementation of breakpoint debugging. There
are four arguments whose interpretation depends on a request argument.
Generally, pid is the process ID of the traced process, which must be a
child (no more distant descendant) of the tracing process. A process
being traced behaves normally until it encounters some signal whether
internally generated like 'illegal instruction' or externally generated
like 'interrupt.' See signal(2) for the list. Then the traced process
enters a stopped state and its parent is notified via wait(2). When the
child is in the stopped state, its core image can be examined and modi
fied using ptrace. If desired, another ptrace request can then cause
the child either to terminate or to continue, possibly ignoring the sig
nal.

The value of the request argument determines the precise action of the
call:

o This request is the
that the process is
ments are ignored.
not expect to trace

only one used by the child process; it declares
to be traced by its parent. All the other argu
Peculiar results will ensue if the parent does
the ch~ld.

1,2 The word in the child process's address space at addr is returned.
Addr must be even. The child must be stopped. The input data is
ignored.

3 The word of the system's per-process data area corresponding to addr
is returned. Addr must be even and less than 512. This space con
tains the registers and other information about the process; its
layout corresponds to the ~ structure in the system.

4,5 The given data is written at the word in the process's address space
corresponding to addr, which must be even. No useful value is
returned. Attempts to write in pure procedure fail if another pro
cess is executing the same file.

6 The process's system data is written, as it is read with request 3.
Only a few locations can be written in this way: the general

Printed 6/23/82 1

PTRACE(2) UNIX Programmer's Manual PTRACE(2)

registers, the floating point status and registers, and certain bits
of the processor status word.

7 The ~ argument is taken as a signal number and the child's execu
tion continues at location ~ as if it h~ incurred that signal.
Normally the signal number will be either 0 to indicate that the
signal that caused the stop should be ignored. or that value fetched
out of the process's image indicating which signal caused the stop.
If addr is (int *)1 then execution continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7; however. as soon as possible
after execution of at least one instruction, execution stops again.
The signal number from the stop is SIGTRAP.

As indicated, these calls (except for request 0) can be used only when
the subject process has stopped. The wait call is used to determine
when a process stops; in such a case the 'termination' status returned
by wait has the value 0177 to indicate stoppage rather than genuine ter
mination.

To forestall possible fraud, ptrace inhibits the set-user-id facility on
subsequent ~(2) calls. If a traced process calls exec, it will stop
before executing the first instruction of the new image showing signal
SIGTRAP.

SEE ALSO
wait(2), signal(2), adb(l)

DIAGNOSTICS

BUGS

The value -1 is returned if request is invalid, pid is not a traceable
process, addr is out of bounds, or ~ specifies an illegal signal
number.

Ptrace is unique and arcane; it should be replaced with a special file
which can be opened and read and written. The control functions could
then be implemented with ioctl(2) calls on this file. This would be
simpler to understand and have much higher performance.

The request 0 call should be able to specify signals which are to be
treated normally and not cause a stop. In this way, for example, pro
grams with simulated floating point (which use 'illegal instruction',
signals at a very high rate) could be efficiently debugged.

The error indication, -1. is a legitimate function value; errno, see
intro(2), can be used to disambiguate.

It should be possible to stop a process on occurrence of a system call;
in this way a completely controlled euviroument could be provided.

Printed 6/23/82 2

PTRACE(2)

ASSEMBLER
movl #26 ,DO
movl request,AO
movl pid,Dl
movl #addr,Al
movl data,D2
trap #0

UNIX Programmer's Manual

Carry bit cleared on success.

Printed 6/23/82

PTRACE(2)

3

UNIX Programmer's Manual READ(2)

NAME
read - read from file

SYNOPSIS
read(fildes, buffer, nbytes)
int fildes;
char *buffer;
int nbytes;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, dup,
or ~ call. Buffer is the location of nbytes contiguous bytes into
which the input will be placed. It is not guaranteed that all nbytes
bytes will be read; for example if the file refers to a typewriter, at
most one line will be returned; if the file refers to a pipe, at least 1
byte and at most nbytes will be returned. In any event the number of
characters read is returned.

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open(2), creat(2), dup(2), pipe(2)

DIAGNOSTICS .
As mentioned, 0 is returned when the end of the file has been reached.
If the read was otherwise unsuccessful the return value is -1. Many
conditions can generate an error: physical I/O errors, bad buffer
address, preposterous nbytes, file descriptor not that of an input file.

ASSEMBLER
movl 13,DO
movl fildes,AO
movl Ibuffer,Dl
movl nbytes ,AI
trap #0

Carry bit cleared on success.

The number of bytes read is returned in DO.

Printed 7/14/82 1

SETUID(2) UNIX Programmer's Manual

NAME
setuid, setgid - set user and group ID

SYNOPSIS
setuid(uid)
int uid;

setgid(gid)
int gid;

DESCRIPTION

SETUID(2)

The user ID (group ID) of the current process is set to the argument.
Both the effective and the real ID are set. These calls are only per
mitted to the super-user or if the argument is the real or effective ID.

SEE ALSO
getuid(2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; -1 is returned other-
wise.

ASSEMBLER
movl #23 ,DO
movl uid,AO
trap #0

I sys setuid

Carry bit cleared on success.

movl #46 ,DO
movl gid,AO
trap #0

I sys setgid

Carry bit cleared on success.

Printed 6/23/82 1

SIGNAL(2) UNIX Programmer's Manual

signal - catch or ignore signals

SYNOPSIS
'include <signal.h>

(*signal(sig, func»()
int sig;
(*func)() ;

DES CRIPr lOB

SIGNAL(2)

A signal is generated by same abnormal event, initiated either by user
at a typewriter (quit, interrupt), by a program error (bus error, etc.).
or by request of another program (kill). Normally all signals cause
termination of the receiving process, but a signal call allows them
either to be ignored or to cause an interrupt to a specified location.
Here is the list of signals with names as in the include file.

SIGHUP I
SIGINT 2
SIGQUIT 3*
SIGILL 4*
SIGTRAP 5*
SIGIOT 6*
SIGEMT 7*
SIGFPE 8*
SIGKILL 9
SIGBUS 10*
SIGSEGV 11*
SIGSYS 12*
SIGPlPE 13
SIGALRM 14
SIGTERM 15

16

hangup
interrupt
quit ,
illegal instruction (not reset when caught)
trace trap (not reset when caught)
lOT instruction
EMT instruction
floating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe or link with no one to read it
alam clock
software termination signal
unassigned

The starred signals in the list above cause a core image if not caught
or ignored.

If func is SIG_DFL, the default action for signal sig is reinstated;
this default is termination, sometimes with a core image. If ~ is
SIG_IGB the signal is ignored. Otherwise when the signal occurs ~
will be called with the signal number as argument. A return fram th~
function will continue the process at the point it was interrupted.
Except as indicated. a signal is reset to SIG_DFL after being caught.
Thus if it is desired to catch every such signal, the catching routine
must issue another signal call.

When a caught signal occurs dur ing certain syst em calls, the call ter
minates prematurely. In particular this can occur during a read or
write(2) on a slow device (like a typewriter; but not a file); and dur
ing pause or wait(2). When such a signal occurs, the saved user status
is arranged in such a way that when return from the signal-catching

Printed 6/23/82 1

/

SIGNAL(2) UNIX Programmer's Manual SIGNAL(2)

takes place, it will appear that the system call returned an error
status. The user's program may then, if it wishes, re-execute the call.

The value of signal is the previous (or initial) value of func for the
particular signal.

After a fork(2) the child inherits all signals.
caught signals to default action.

Exec(2) resets all

SEE ALSO
kill(l), kill(2), ptrace(2), setjmp(3)

DIAGNOSTICS

BUGS

The value (int)-l is returned if the given signal is out of range.

If a repeated signal arrives before the last one can be reset, there is
no chance to catch it.

The type specification of the routine and its func argument are prob
lematical.

ASSEMBLER
movl :fF48,DO
movl sig,AO
movl Ifunc,Dl
trap #0

Carry bit cleared on success.

The old value of the signal is returned in DO.

Printed 6/23/82 2

STAT(2) UNIX Programmer's Manual STAT(2)

stat, fstat - get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

stat{name, buf)
char *name;
struct stat *buf;

fstat(fildes, buf)
int fildes;
struct stat *buf;

DES CRI PI' ION
Stat obtains detailed information about a named file. Fstat obtains the
same information about an open file known by the file descriptor fran a
successful open, creat, dup or ~(2) call.

Name points to a null-terminated string naming a file; buf is the -.---
address of a buffer into which information is placed concerning the
file. It is unnecessary to have any permissions at all with respect to
the file, but all directories leading to the file must be searchable.

The layout of the structure pointed_ to by buf as defined in <stat.h> is
given below. "St_mode" is encoded according to the '#define' -;tate
ments.

struct stat
{

dev_t
ino_t
unsigned short
short

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
stJid;
st_rdev;
st_size;
st_atime;
st_mtime ;
st_ctime ;

short
short
dev_t
off_t
time_t
timELt
time_t

};

:fIdef ine
:fIdefine
:fIdef ine
:fIdef ine
Idefine

:fIdefine
Idefine

Printed 7/21/82

S IFMT 0170000
S_IFDIR 0040000
S_IFCHR 0020000
S_IFBLK 0060000
S_IFREG 0100000

0004000
0002000

,* type of file *1
1* directory *1
1* character special *1
1* block special *1 ,* regular *1

1* set user id on execution *1
1* set group id on execution *1

1

STAT(2) UNIX Programmer's Manual STAT(2)

#define
Idef ine
Idef ine
#define

S_ISVTX
S_IREAD
S_IWRITE
S_IEXEC

0001000
0000400
0000200
0000100

/* save swapped text even after use */
/* read permission, owner */
/* write permission, owner */
/* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions
(see chmod(2». The defined types, ino_t, off_t, time_t, name various
width integer values; dev_t encode s major and minor dev ice numbers;
their exact definitions are in the include file <sys/types.h> (see
types(S).

When fildes is associated with a pipe, fstat reports an ordinary file
with restricted permissions. The size is the number of bytes queued in
the pipe.

st_atime is the file was last read. For reasons of efficiency, it is
not set when a directory is searched, although this would be more logi
cal. st_mtime is the time the file was last written or created. It is
not set by changes of owner, group, link count, or mode. st_ctime ~s
set both by writing and changing the i-node.

SEE ALSO
IsO), fil sys(S)

DIAGNOSTICS
Zero is returned if a status is available; -1 if the file cannot be
found.

ASSEMBLER
movl #18,DO
movl #name,AO
movl #buf,D1
trap #0

I sys stat

Carry bit cleared on success.

movl #28,DO
movl fildes ,AO
movl Ibuf,D1
trap #0

I sys £Stat

Carry bit cleared on success.

Printed 7/21/82 2

STlME(2)

stime - set time

SYNOPSIS
stime(tp)
long *tpi

DESCRIPrION

UNIX Programmer's Manual STIME(2)

Stime sets the system's idea of the time and date. Time, pointed to by
n" is measured in seconds fran 0000 GMT Jan 1, 1970. Only the super
user may use this call.

SEE ALSO
date(l), time(2), ctime(3)

DIAGNOSTICS
Zero is returned if the time was set; -1 if user is not the super-user.

ASSEMBLER
movl #25,DO
movl #tp,AO
trap #0

Carry bit cleared on success.

Printed 6/23/82 1/22/82 1

STTY(2) UNIX Programmer's Manual

ioctl, stty, gtty - control device

SYNOPSIS
#include <sgtty.h>

ioctl(fildes, request, argp)
int fildes;
int request;
struct sgttyb *argp;

stty(fildes, argp)
int fildes;
struct sgttyb *argp;

gtty(fildes, argp)
int fildes;
struct sgttyb *argp;

DESCRIPTION

STTY(2)

Ioctl performs a variety of functions on character special files (dev
ices). The writeups on various devices in section 4 discuss how ioctl
applies to them.

For certain status setting and status inquiries about terminal devices,
the functions stty and ~ are equivalent to

ioctl(fildes, TIOCSETP, argp)
ioctlCfildes, TIOCGETP, argp)

respectively; see !11(4).

The following two standard calls, however, apply to any open file:

ioctl(fildes, FIOCLEX, NULL);
ioctl(fildes, FIONCLEX, NULL);

The first causes the file to be closed automatically during a successful
~ operation; the second reverses the effect of the first.

The following call also applies to any open file:

ioctl(fildes, FIONREAD, &count)

returning, in the longword count the number of characters available for
reading from fildes.

SEE ALSO
stty(l), tty(4), exec(2)

DIAGNOSTICS
Zero is returned if the call was successful; -1 if the file descriptor
does not refer to the kind of file for which it was intended, or if

Printed 7/14/82 1/22/82 1

STTY(2) UNIX Programmer's Manual STTY(2)

BUGS

request attempts to modify the state of a terminal when fildes is not
writeable.

Strictly speaking» since ioctl may be extended in different ways to dev
ices with different properties, ~ should have an open-ended declara
tion like

union { struct sgttyb , } *argp;

The important thing is that the size is fixed by 'struct sgttyb'.

ASSEMBLER
See ioct1(2)

Printed 7/14/82 1/22/82 2

SYNC(2) UNIX Programmer's Manual SYNC(2)

NAME
sync - update super-block

SYNOPSIS
sync()

DES CRIPr ION
Sync causes all information in core memory that should be on disk to be
written out. This includes modified super blocks, modified i-nodes, and
delayed block I/O.

It should be used by programs which examine a file system, for example
icheck, df, fsck etc. It is mandatory before bringing down the system.

SEE ALSO

BUGS

sync(lM), update(lM)

The writing, although scheduled, is not necessarily complete upon return
from sync.

ASSEMBLER
movl 36,DO
trap :(/0

Printed 6/23/82 1

TIME(2) UNIX Programmer's Manual TIME(2)

NAME
time, ftime - get date and time

SYNOPSIS
long time(O)

long time(tloc)
long *tloCj

#include <sys/types.h>
#include <ays/timeb.h>

ftime(tp)
struct timeb *tp;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. It 1970, measured in
seconds.

If tloc is nonnull, the return value is also stored in the place to
which tloc points.

The ftime entry fills in a structure pointed to by its argument, as
defined by <~/timeb.h>.

The structure contains the time since the epoch in seconds, up to 1000
milliseconds of more-precise interval, the local time zone (measured in
minutes of time westward from Greenwich), and a flag that, if nonzero,
indicates that Daylight Sav ing time applies locally dur ing the appropr i
ate part of the year.

SEE ALSO
stime(2)

ASSEMBLER
movl #35,DO
movl #tp,AO
trap 10

movl #13,DO
movl Itloc,AO
trap #0

Printed 6/23/82

I sys ftime

I sys time

1

TIMES(2) UNIX Programmer's Manual

times - get process times

SYNOPSIS
#include <sys/types.h>
#include <sys/times.h>

times(buffer)
struct bns wbuffer;

DESCRIPTION

TIMES(2)

T~es returns time-accounting information for the current process and
for the terminated child processes of the current process. All times
are in 1/60 seconds (even in 50 Hz countries).

The children times are the sum of the children's process times and their
children's times.

SEE ALSO
time(l), time(2),

ASSEMBLER
movl #43 ,DO
movl #buffer,AO
trap 10

Printed 6/23/82 1

UMASK(2) UNIX Programmer's Manual UMASK(2)

NAME
umask - set file creation mode mask

SYNOPSIS
umask(complmode)
int complmode;

DESCRIPTION
Umask sets a mask used whenever a file is created by creat(2) or
mknod(2): the actual mode (see chmod(2) of the newly-created file is
the difference between the given mode and complmode. Only the low-order
9 bits of complmode (the protection bits) participate. In other words,
complmode shows the bits to be turned off when a new file is created.

The previous value of complmode is returned by the call. The value is
initially 022, which is an octal "mask" number representing the comple
ment of the desired mode. "022" here means that no pepnis sions are
withheld from the owner, but write permission is forbidden to group and
to others. Its complement, the mode of the file, would be 755. umask
is inherited by child processes.

SEE ALSO
creat(2), mknod(2), chmod(2)

ASSEMBLER
movl 160,DO
movl complmode,AO
trap 10

The previous value of umask is returned to DO.

Printed 7/14/82 1

UNLINK(2) UNIX Programmer's Manual UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
un I ink(name)
char *name;

DESCRIPrION
Name points to a null-terminated string. Unlink removes the entry for
the file pointed to by ~ frClll its directory. If th,is entry was the
last link to the file, the contents of the file are freed and the file
is destroyed. If, however, the file was open in any process, the actual
destruction is delayed until it is closed. Even though the directory
entry has disappeared, any programs that already have the file open can
continue to read or write it.

SEE ALSO
m(l), link(2)

DIAGNOSTICS
Zero is normally returned; -1 indicates that the file does not exist,
that its directory cannot be written, or that the file contains pure
procedure text that is currently in use. Write permission is not
required on the file itself. It is also illegal to unlink a directory
(except for the super-user).

ASSEMBLER
movl #10,DO
mov I #name, AO
trap #0

Carry bit cleared on success.

Printed 6/23/82 1

UTIME(2) UNIX Programmer's Manual

utime - set file times

SYNOPSIS
#include <sys/types.h>

utime(file, timep)
char *file;
time_t timep[2];

DESCRIPTION

UTIME(2)

The utime call uses the "accessed" and "updated" time, in that order
from the timep vector to set the corresponding recorded times for the
named !.il..!..

The caller must be the owner of the file or the super-user. The
'inode-changed' time of the file is set to the current time.

SEE ALSO
stat(2)

ASSEMBLER
movl 130,DO
movl #file,AO
movl #timep,Dl
trap #0

Printed 7/14/82 1

WAIT(2) UNIX Programmer's Manual

wait - wait for process to terminate

SYNOPSIS
waitCstatus)
int *status;

wait(O)

DESCRIPrION

WAIT(2)

Wait causes its caller to delay until a signal is received or one of its
child processes terminates. If any child has died since the last wait,
return is immediate; if there are no children, return is immediate with
the error bit set (resp. with a value of -1 returned). The normal
return yields the process ID of the terminated child. In the case of
several children several wait calls are needed to learn of all the
deaths.

If (int)status is nonzero, the next byte to the low byte of the word
pointed to receives the low byte of the argument of exit when the child
terminated. The low byte receives the termination status of the pro
cess. See signal(2) for a list of termination statuses (signals); 0
status indicates normal termination. A special status (0177) is
returned for a stopped process which has not terminated and can be res
tarted. See ptrace(2). If the 0200 bit of the termination status is
set, a core image of the process was produced by the system.

If the parent process terminates without waiting on its children, the
initialization process (process ID = 1) inherits the children.

SEE ALSO
exit(2), fork(2), signal(2)

DIAGNOSTICS
Returns -1 if there are no children not previously waited for.

ASSEMBLER
movll7,DO
movl Istatus ,AO
trap 10

Process ID in DO.
Status in Dl.

Carry flag is set if there are no children not previously waited for.

Printed 6/23/82 1

WRITE(2) UNIX Programmer's Manual WRITE(2)

write - write on a file

SYNOPSIS
write(fildes, buffer, nbytes)
int fildes;
char *buffer;
int nbytes;

DESCRIPTION
A file descriptor is a word returned from a successful open, creat, dup,
or ~(2) call.

Buffer is the address of nbytes contiguous bytes which are written on
the output file. The number of characters actual11 vritten is returned.
It should be regarded as an error if this is not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-
byte boundary in the file are more efficient than any others.

SEE ALSO
creat(2), open(2), pipe(2)

DIAGNOSTICS
Returns -Ion error: bad descriptor, buffer address, or count; physical
I/O errors.

BUGS
No write errors to the file system are returned to the user.

ASSEMBLER
movl 14,DO
movl fildes,AO
movl Ibuffer,Dl
movl nbytes ,Al
trap 10

Carry bit cleared on success.

The number of bytes written is returned in DO.

Printed 6/23/82 1

INTRO(3) UNIX Programmer's Manual INTRO(3)

NAME
intro - introduction to library functions

SYNOPSIS
#include <stdio.h>

#include <math.h>

DESCRIptION

_ FILES

This section describes functions that may be found in various libraries,
other than those functions that directly invoke UNIX system primitives,
which are described in section 2. Functions are divided into various
libraries distinguished by the section number at the top of the page:

(3) These
(3S) ,
the C
under
may be
pages.

functions, together with those of section 2 and those marked
constitute library libc, which is automatically loaded by

compiler .ss(l). The link editor ld(l) searches this library
the '-lc' option. Declarations for same of these functions
obtained from include files indicated on the appropriate

(3M) These functions constitute the math library, libm. The link editor
searches this library under the '-1m' option. Declarations for
these functions may be obtained from the include file <math.h>.

(3S) These functions constitute the ~'standard 1/0 package", see
stdio(3). These functions are in the library libc already men
tioned. Declarations for these functions may be obtained from the
include file <stdio.h>.

(3X) Various specialized libraries have not been given distinctive cap
tions. Files in which such libraries are found are named on
appropriate pages.

/lib/libc. a
/lib/libm.a, /usr/lib/libm.a (one or the other)

SEE ALSO
stdio(3), cc(l), intro(2), ld(l), nm(l)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when
the function is undefined for the given arguments or when the value is
not representable. In these cases the external variable errno (see
intro(2» is set to the value EDOM or !RANGE. The values of EDOM and
!RANGE are defined in the include file <math.h>.

Printed 6/23/82 1

ABORT(3) UNIX Programmer's Manual

NAME
abort - generate a fault

SYNOPSIS
abortO

DESCRIPTION

ABORT(3)

Abort executes an instruction which is illegal in user mode. This
causes a signal that normally terminates the process with a core dump,
which may subsequently be used for debugging.

SEE ALSO
adb(l), signal(2), exit(2)

DIAGNOSTICS
Usually "TRACE!BPT trap - Core dumped" from the shell.

Printed 7/14/82 1

ABS(3) UNIX Programmer's Manual

NAME
abs - integer absolute value

SYNOPSIS
absCi)
int i;

DESCRIPIION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3) for fabs

BUGS
You get what the hardware gives on the mnallest integer.

Printed 6/23/82

ABS(3)

1

ATOF(3) UNIX Programmer's Manual

atof, atoi, atol - convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char *Dptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *Dptr;

DESCRIPTION
These functions convert a string pointed to by nptr to
integer, and long integer representation respectively.
unrecognized character ends the string.

ATOF(3)

floating,
The first

Atof recognizes an optional string of tabs and spaces, then an optional
sign, then a string of digits optionally containing a decimal point,
then an optional 'e' or 'E' followed by an optionally signed integer.

Atoi and ~ recognize an optional string of tabs and spaces, then an
optional sign, then a string of digits.

SEE ALSO
scanf(3)

BUGS
There are no provisions for overflow.

Printed 6/23/82 1

CRYPr(3) UNIX Programmer's Manual CRYPr(3)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
char *crypt(key, salt)
char *key, *saltj

setkey(key)
char *key;

encrypt (block, edflag)
char *blockj
int edflag;

DESCRIPrION
Crvpt is the password encryption routine. It is based 'on the NBS Data
Encryption Standard, with variations intended (among other things) to
frustrate use of hardware implementations of the DES for key search.

The first argument to crypt is a user's typed password. The second is a
2-character string chosen from the set [a-zA-ZO-9./1. The salt string
is used to perturb the DES algorithm in one of 4096 different ways,
after which the password is used as the key to encrypt repeatedly a con
stant string. The returned value points to the encrypted password, in
the same alphabet as the salt. The first two characters are the salt
itself •

The other entries provide (rather primitive) access to the actual DES
algorithm. The argument of setkey is a character array of length 64
containing only the characters with numerical value 0 and 1. If this
string is divided into groups of 8, the low-order bit in each group is
ignored, leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of
length 64 containing O's and l's. The argument array is modified in
place to a similar array representing the bits of the argument after
having been subjected to the DES algorithm using the key set by setkey.
If edflag is 0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO

BUGS

passwd(I), passwd(S), login(l), getpass(3)

The return value points to static data whose content is overwritten by
each call.

Printed 6/23/82 1

CTlME(3) UNIX Programmer's Manual CTlME(3)

NAME
ctime, local time, gmtime, asctime, timezone - convert date and time to
ASCII

SYNOPSIS
char *ctime(clock)
long *c1ock;

#include <time.h>

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
s truct tm *tm;

char *timezone(zone, dst)
int zone, dst;

DESCRIPIION
Ctime converts a time pointed to by clock such as returned by time(2)
into ASCII and returns a pointer to a 26-character string in the follow
ing form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the
broken-down time. Localtime corrects for the time zone and possible
daylight savings time; gmtime converts directly to GMT, which is the
time UNIX uses. Asctime converts a broken-down time to ASCII and
returns a pointer to a 26-character string.

The structure declaration from the include file is:
struct tm { /* see ctime(3) */

int tm_sec;
int tm..,min;
int tm_hour;
int tm_mday;
int tm_mon;
int tmJear;
int tm_wday;
int tmJday;
int tm_isdst;

} ;

These quantities give the time on a 24-hour clock, day of month (1-31),
month of year (0-11), day of week (Sunday • 0), year - 1900, day of year
(0-365), and a flag that is nonzero if daylight saving time is in
effect.

Printed 6/23/82 1

CTIME(3) UNIX Programmer's Manual CTIME(3)

When local time is called for, the program consults the system to deter
mine the time zone and whether the standard U.S.A. daylight aaving time
adjustment is appropriate. The program knows about the peculiarities of
this conversion in 1974 and 1975; if necessary, a table for these years
can be extended.

Timezone returns the name of the time zone associated with its first
argument, which is measured in minutes westward from Greenwich. If the
second argument is 0, the standard name is used, otherwise the Daylight
Saving version. If the required name does not appea~ in a table built
into the routine, the difference from GMT is produced; e~g. in Afghan
istan timezone(-(60*4+30), ~) is appropriate because it is 4:30 ahead of
GMT and the string GMT+4:30 is produced.

SEE ALSO
time(2}

BUGS
The return values point to static data whose content is overwritten by
each call.

Printed 6/23/82 2

CTYPE(3) UNIX Progrmnmer's Manual CTYPE(3)

NAME
isalpha, isupper, islower. isdigit, isalnum, isspace, ispunct, isprint,
iscntrl, isascii - character classifica don

SYNOPSIS
#include <ctype.h>

isalpha(c)

. . .
DESCRIPrION

These macros classify ASCII-coded integer values by table lookup. Each
is a predicate returning nonzero for true, zero for false. Isascii is
defined on all integer values; the rest are defined only where isascii
is true and on the single non-ASCII value EOF (see stdio(3».

isalpha

isupper

islower

isdigit

isalnum

isspace

ispunct

isprint

iscntrl

isascii

SEE ALSO
asciiC7)

Printed 6/23/82

So is a letter

So is an upper case letter

So is a lower case letter

So is a digit

So is an alphanumeric character

So is a space, tab, carriage return, newline, or formfeed

So is a punctuation character (neither control
alphanumeric)

nor

So is a printing character, code 040(8) (space) through
0176 (tilde)

So is a delete character (0177) or ordinary control char
act er (les a than 040).

So is an ASCII character, code lesa than 0200

1

CURSES(3) UNIX Programmer's Manual CURSES(3)

NAME
curses - screen funct ions with "optimal" cursor motion

SYNOPSIS
cc [flags] files -lcurses -ltermcap [libraries]

DESCRIPIION
These routines give the user a method of updating screens with reason
able optimization. They keep an image of the current screen, and the
user sets up an image of a new one. Then the refresh() tells the rou
tines to make the current screen look like the new one. In order to
initialize the routines, the routine initscr() must be called before any
of the other routines that deal with windows and screens are used. The
routine endwin() should be called before exiting.

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library Package, Ken
Arnold,
stty(2), setenv(3), termcap(S)

AUTHOR
Ken Arnold (U.C. Berkeley)

FUNCTIONS
addch(ch)
adds tr(str)
box(win,vert,hor)
crmode()
clear()
clearok(scr,boolf)
clrtobotO
clrtoeol()
delchO
deletelnO
delwin(win)
echoO
endwinO
eraseO
getchO
getcap(name)
getstr(str)
gettmode()
getyx(win,y,x)
inchO
initscr()
insch(c)
insertlnO
leaveok(win,boolf)
longname(termbuf,name)
move(y,x)
mvcur(lasty, lastx, newy , newx)
newwin(lines,cols,begin-y,begin_x)

Printed 6/23/82

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for A££
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
get a char through stdscr
get terminal capability ~
get a string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name fran termbuf
move to (y,x) on stdscr
actually move cursor
create a new window

1

CURSES(3) UNIX Programmer's Manual CURSES(3)

nl() set newline mapping
nocrmode() unset cbreak mode
noecho() unset echo mode
nonl() unset newline mapping
norawO unset raw mode
overlay(winl,win2) overlay win! on win2
overwrite(win!,win2) overwrite winl on top of win2
printw(fmt,argl,arg2, •••) printf on stdscr
raw() se t raw mode
refresh() make current screen look like stdscr
resetty() reset tty flags to stored value
savetty() stored current tty flags
scanw(fmt,arg!,arg2, •••) scanf through stdscr
scroll(win) scroll win one line
scrollok(win,boolf) set scroll flag
setterm(name) set term variables for name
standend() end standout mode
standout() start standout mode
subwin(win,lines,cols,begin-y,begin_x) create a subwindow
touchwin(win) change all of win
unctrl(ch) printable version of ch
waddch(win,ch) add char to win
waddstr(win,str) add string to win
wclear(win) clear win
wclrtobot(win) clear to bottom of win
wclrtoeol(win) clear to end of line on win
wdelch(win,c) delete char from win ---
wdeleteln(win) delete line from win
werase(win) erase win ---
wgetch(win) get a char through win
wgetstr(win,str) get a string through win
winch(win) get char at current (y,x) in win
winsch(win,c) insert char into win
winsertln(win) insert line into win
wmove(win,y,x) set current (y,x)Co-ordinates on WiI
wprintw(win,fmt,argl,arg2, •••) printf on win
wrefresh(win) make screen look like win
wscanw(win,fmt,argl,arg2, •••) scanf through win
wstandend(win) end standout mode on win
wstandout(win) start standout mode on win

Printed 6/23/82 2

ECVT(3) UNIX Programmer's Manual ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII
digits and returns a pointer thereto. The position of the decimal point
relative to the beginning of the string is stored indirectly through
decpt (negative means to the left of the returned digits). If the sign
of the result is negative, the word pointed to by sign is non-zero, oth
erwise it is zero. The low-order digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been
rounded.

~ converts the value to a null-terminated ASCII string in .ID!t and
returns a pointer to buf. It attempts to produce ndigit significant
digits in E format, ready for printing. Trailing zeros may be
suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content ~s overwritten by
each call.

Printed 6/23/82 1

END(3) UNIX Programmer's Manual END(3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with
contents. The address of "etext" is the first address above
text, "edata" above the initialized data region, and "end"
uninitialized data region.

interesting
the program
above the

When execution begins, the program break coincides with "end", but it is
reset by the routines brk(2), malloc(3), standard input/output
(stdio(3», the profile (-p) option of ~(l), etc. The current value of
the program break is reliably returned by 'sbrk(O)', see brk(2).

SEE ALSO
brk(2), malloc(3)

Printed 6/23/82 1

EXP(3M) UNIX Programmer's Manual EXP(3M)

NAME
exp, log, 10glO, pow, sqrt - exponential, logarithm, power, square root

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double 10glO(x)
double x;

double pow(x, y)
double x, y;

double sqrt(x)
double x;

DES CRIPl' ION
Exp returns the exponential function of lS..

Log returns the natural logarithm of £; 10g10 returns the base 10 loga
rithm.

Pow returns x:'L, x to the y po~er.

Sgrt returns the square root of ~.

SEE ALSO
hypot(3), sinh(3), intro(2)

DIAGNOSTICS
Exp and pow return a huge value when the correct value would overflow;
errno is set to ERANGE. Pow returns 0 and sets errno to EDOM when the
second argument is negative and non-integral and when both arguments are
O.

Log returns 0 when~ is zero or negative; errno is set to EDOM.

Sgrt returns 0 when~ is negative; errno is set to EOOM.

Printed 8/16/82 1

FCLOSE(3S) UNIX Programmer's Manual FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
linclude <stdio.h>

fclose (stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the
file to be closed. Buffers allocated by the standard input/output sys
tem are freed to be used with another fopen.

Fclose is performed automatically upon calling exit(2).

Fflush causes any buffered data for the named output stream to be writ
ten to that file. The stream remains open.

SEE ALSO
close(2), fopen(3), setbuf(3)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output
file, or if buffered data cannot be transferred to that file.

Printed 8/16/82 1

FERROR(3S) UNIX Programmer's Manual FERROR(3S)

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
~include <stdio.h>

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr< stream)
FILE *stream

f ileno(stream)
FILE *stream;

DES CRIPI' ION
Feof returns non-zero when end of file is read on the named input
stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing
the named stream, otherwise zero. Unless cleared by clearerr, the error
indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.

Fileno returns the integer file descr iptor as sociated with the stream,
see open(2).

These functions are presently implemented as macros in <stdio.h>; they
cannot be redeclared.

SEE ALSO
fopen(3), open(2)

Printed 8/16/82 1

FLOOR(3M) UNIX Programmer's Manual FLOOR(3M)

NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNOPSIS
#include <math.h>

double floor<x)
double X;

double ceil(x)
double X;

double fabs{x)
double X;

DESCRIPTION
Fabs returns the absolute value I~I.

Floor returns the largest integer not greater than A'

Ceil returns the smallest integer not less than A'

SEE ALSO
abs (3)

Printed 8/16/82 1

FOPEN(3S) UNIX Programmer's Manual FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#inc1ude <stdio.h>

FILE *fopen(fi1ename, type)
char *fi1ename, *type;

FILE *freopen(fi1ename, type, stream)
char *fi1ename, *type;
FILE *stream;

FILE *fdopen(fi1des, type)
int f ildes ;
char *type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it.
Fopen returns a pointer to be used to identify the stream in subsequent
operations.

~ is a character string having one of the following values:

"r" open for reading

"w ll create for writing

"all append: open for writing at end of file, or create for writing

In addition, each ~ may be followed by a '+' to have the file opened
for reading and writing. "r+" positions the stream at the beginning of
the file, ''w+'' creates or trunca tes it, and "a+" positions it at the
end. Both reads and writes may be used on read/write streams, with the
limitation that an fseek, rewind, or reading an end-of-fi1e must be used
between a read and a write or vice-versa.

Freopen substitutes the named file in place of the open stream. It
returns the original value of stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdin,
stdout, stderr, to specified files.

Fdopen associates a stream with a file descriptor obtained fran open,
dup, creat, or ~(2). The ~ of the stream must agree with the mode
of the open file.

SEE ALSO
open(2), fc1ose(3)

DIAGNOSTICS
Fopen and freopen return the pointer NULL if filename cannot be

Printed 8/16/82 4/1/81 1

FOPEN(3S) UNIX Programmer's Manual FOPEN(3S)

BUGS

accessed.

Fdopen is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Tho$e systems without
read/write modes will probably treat the ~ as if the '+' was not
present.

Printed 8/16/82 4/1/81 2

FREAD(3S) UNIX Programmer's Manual FREAD(3S)

NAME
fread) fwrite - buffered binary input/output

SYNOPSIS
#include <stdio.h>

fread(ptr) sizeof(*ptr») nitems) stream)
int ptr;
int nitems; FILE *stream;

fwrite(ptr, sizeof(*ptr), nit ems , stream)
int ptr;
int nitems; FILE *stream;

DESCRIPIION
Fread reads) into a block beginning at~, nitems of data of the type
of *ptr from the named input stream. It returns the number of items
actually read.

If stream is stdin and the standard output is line buffered, then any
partial output line will be flushed before any call to read(2) to
satisfy the fread.

Fwrite appends at most nitems of data of the type of *R1X beginning at
~ to the named output stream. It returns the number of items actually
written.

SEE ALSO
read(2») write(2), fopen(3), getc(3), putc(3),
printf(3») scanf(3)

DIAGNOSTICS
Fread and fwrite return 0 upon end of file or error.

Printed 7/21/82

gets(3) , puts(3))

1

FREXP(3) UNIX Programmer's Manual FREXP(3)

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptrj

DESCRIPl' ION
Frexp returns the mantissa of a double value as a double quantity, lU of
magnitude less than 1 and stores an integer A such that value = x*2n
indirectly through eptr.

Ldexp returns the quantity value*Zexp.

~ returns the positive fractional part of value and stores the
integer part indirectly through iptr.

Printed 6/23/82 1

FSEEK(3S) UNIX Programmer' 5 Manual FSEEK(3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
~include <stdio.h>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;
int ptrnamej

long ftell(stream)
FILE *stream;

rewind(stream)
FILE *streamj

DESCRIPTION
Fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from
the beginning, the current position, or the end of the file, according
to whether ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(3).

Ftell returns the current value of the offset relative to the beginning
of the file associated with the named stream. It is measured in bytes
on UNIX; on some other systems it is a magic cookie, and the only fool
proof way to obtain an offset for fseek.

Rewind(stream) is equivalent to fseek(~tream, OL. ~).

SEE ALSO
Iseek(2), fopen(3)

DIAGNOSTICS
Fseek returns -1 for improper seeks.

Printed 8/16/82 1

GETC(3S) UNIX Programmer's Manual GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may
be used to save object text.

Getw returns the next word (32-bit integer on a 68000) from the named
input stream. It returns the constant EOF upon end of file or error,
but since that is a good integer value, feof and ferror(3) should be
used to check the success of getw. Getw assumes no special alignment in
the file.

SEE ALSO
fopen(3), putc(3), gets(3), scanf(3), fread(3), ungetc(3)

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end of file or upon
read error.

A stop with message, "Reading bad file", means an attempt has been made
to read from a stream that has not been opened for reading by fopen.

The end-of-file return from getchar is incompatible with that in UNIX
editions 1-6.

Because it is implemented as a macro, getc treats a stream argument with
side effects incorrectly. In particular, "getc(*f++);" doesn't work
sensibly.

Printed 8/16/82 1

GETENV(3) UNIX Programmer's Manual

NAME
getenv - value for environment name

SYNOPSIS
char *getenv(name)
char *name;

DESCRIPTION

GETENV(3)

Geteny searches the environment list (see environ(S» for a string of
the form ~=value and returns pointer to value string,in the environ
ment if such a string is present, otherwise 0 (NULL).

SEE ALSO
environ(S), exec(2)

Printed 6/23/82 1

GETGRENT (3) UNIX Programmer's Manual GETGRENT(3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
"include <grp.h>

struct group *getgrent()

struct group *getgrgid(gid)
int gid;

struct group *getgrnam(name)
char *namej

setgrentO

endgrentO

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers
the following structure containing the broken-out
the group file.

struct
char

group {
*gr_namej
*gr-pas swd j
grJidj
**gr_memj

} ;

char
int
char

The members of this structure are:

gr_name
gr-passwd
grJid
gr_mem

The name of the group.
The encrypted password of the group.
The numerical group-IDe
Null-terminated vector of pointers to the
names.

to an object with
fields of a line in

individual member

Getgrent simply reads the next line while getgrgid and getgrnam search
until a matching gid or ~ is found (or until EOF is encountered).
Each routine picks up where the others leave off so successive calls may
be used to search the entire file.

A call to setgrent ha~ the effect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file when
processing is complete.

/etc/group

SEE ALSO
getlogin(3), getpwent(3), group(S)

Printed 7/14/82 1

GETGRENT (3) UNIX Programmer's Manual GETGRENT(3)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it
is to be saved.

Printed 7/14/82 2

GETLOGIN(3) UNIX Programmer's Manual GETLOGIN(3)

getlogin - get login name

SYNOPSIS
char *getloginO

DESCRIPTION

FILES

Getlogin returns a pointer to the login name as found in letc/utmp. It
may be used in conjunction with getpwnam to locate the correct password
file entry when the same userid is shared by several logiu names.

If getlogin is called within a process that is not attached to a type
writer, it returns NULL. The correct procedure for determining the
login name is to first call getlogin land if it fails, to call getpwuid.

letc/utmp

SEE ALSO
getpwent(3), getgrent(3), utmp(S)

DIAGNOSTICS

BUGS

Null pointer (0) returned if name could not be found.

The return values point to static data whose content is overwritten by
each call.

Printed 7/14/82 1

GETPASS(3) UNIX Programmer's Manual

NAME
getpass - read a password

SYNOPSIS
char *getpass(prompt)
char *prompt;

DESCRIPl' ION

FILES

Getpassreads a password from the file /dev/~, or if that
opened, from the standard input, after prompting ~ith
terminated string prompt and disabling echoing. A pointer is
to a null-terminated string of at most 8 characters.

/dev/tty

SEE ALSO
crypt(3)

BUGS

GETPASS(3)

cannot be
the null

returned

The return value points to static data whose content is overwritten by
each call.

Printed 6/23/82 deprecated 1

GETPW(3) UNIX Programmer's Manual

NAME
getpw - get name from uid

SYNOPSIS
getpw(uid, buf)
int uid;
char *buf;

DESCRIPTION

GETPW(3)

Getpw searches the password file for the (numerical) uid, and fills in
buf with the corresponding line; it returns nOD-zero if uid could not be
found. The line is null-terminated. .

FILES
/etc/passwd

SEE ALSO
getpwent(3), passwd(S)

DIAGNOSTICS
Non-zero return on error.

Printed 6/23/82 1

GETPWENT(3) UNIX Programmer's Manual GETPWENT(3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent
entry

get password file

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent()

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

int setpwentO

int endpwentO

DES CRIPT ION

FILES

Getpwent, getpwuid and getpwnam each return a pointer to an object with
the following structure containing the broken-out fields of a line in
the password file.

struct passwd { /* see getpwent(3) *1
char *pw_name;
char *pw...,passwd;
int pw_uid;
int pw-Sid;
int pw_quota;
char *pw_comment;
char *pw-secos;
char *pw_dir;

*pw_shell; char
} ;

The fields pw quota and pw comment are unused; the others have meanings
described in passwd(S).

Getpwent reads the next line (opening the file if necessary); setpwent
rewinds the file; endpwent closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or
~ is found (or until EOF is encountered).

letc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(S)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

Printed 6/23/82 I

GETPWENT (3) UNIX Programmer's Manual GETPWENT(3)

BUGS
All information is contained in a static area so it must be copied if it
is to be saved.

Printed 6/23/82 2

GETS(3S) UNIX Programmer's Manual GE'IS (3 S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *ge ts(s)
char *s;

char *fgets(s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION
Gets reads a string into ~ from the standard input stream stdin. The
string is terminated by a newline character, which is replaced in ~ by a
null character. Gets returns its argument.

Fgets reads 11-1 characters, or up to a newline character, whichE!'ler
comes first, from the stream into the string A. The last character read
into A is followed by a null character. Fgets returns its first argu
ment.

SEE ALSO
puts(3), getc(3), scanf(3), fread(3), ferror(3)

DIAGNOSTICS

BUGS

~ and fgets return the constant pointer NULL upon end of file or
error.

Gets deletes a newline, fgets keeps it, all in the name of backward com
patibility.

Printed 8/16/82 1

HYPOT(3M) UNIX Programmer's Manual

NAME
hypot, cabs - Euclidean distance

SYNOPSIS
#include <math.h>

double hypot(x, y)
double x, y;

double cabs(z)
struct { double x, y;} Z;

DESCRIPTION
Hypot and cabs return

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

SEE ALSO
expO) for sgrt

Printed 8/16/82

HYPOT(3M)

1

ISATTY(3) UNIX Programmer's Manual ISATTY(3)

NAME
isatty - find name of a terminal

SYNOPSIS
isa tty(fil des)
int fildes;

DESCRIPTION

FILES

Isatty returns 1 if fildes is associated with a terminal device, 0 oth
erwise.

/dev/*

SEE ALSO

BUGS

ioctl(2), ttys(S)

The return value points to static data whose content is overwritten by
each call.

Printed 6/23/82 1

JO(3M) . UNIX Prog r amme r' s Manual

NAME
jO, jl, jn, yO, y1, yn - bessel functions

SYNOPSIS
#include <math.h>

double jO(x)
double X;

double jl(x)
double X;

double jn(n, x)
int n;
double X;

double yO(x)
double X;

double yl(x)
double X;

double yn(n, x)
int n;
double x;

DES CRIPr ION

JO(3M)

These functions calculate Bessel functions of the first and second kinds
for real arguments and integer orders.

DIAGNOSTICS
Negative arguments cause ~, ~, and In to return a huge negative value
and set errno to EDOM.

Printed 8/16/82 1

MALLOC(3) UNIX Programmer's Manual

malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char ~alloc(size)
unsigned size;

free(ptr)
char *ptr;

char *real10c(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, e1size;

DESCRIPTION

MALLOC(3)

Ma1loc and free provide a simple general-purpose memory allocation pack
age. Ma110c returns a pointer to a block of at least size bytes begin
ning on a word boundary.

The argument to free is a pointer to a block previously allocated by
malloc; this space is made available for further allocation, but its
contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by
mal10c is overrun or if some random number is handed to free.

Malloc allocates the first big enough contiguous reach of free space
found in a circular s~arch from the last block allocated or freed,
coalescing adjacent free blocks as it searches. It calls sbrk (see
break(2» to get more memory from the system when there is no suitable
space already free.

Rea110c changes the size of the block pointed to by ~ to size bytes
and returns a pointer to the (possibly moved) block. The contents will
be unchanged up to the lesser of the new and old sizes.

Rea110c also works if ~ points to a block freed since the last call of
malloc, rea1loc or call0c; thus sequences of free, malloc and realloc
can exploit the search strategy of ma110c to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

DIAGNOSTICS
Malloc, realloc and calloc return a null pointer (0) if there is no

Printed 6/23/82 1

MALLOC(3) UNIX Programmer's Manual MALLOC(3)

BUGS

available memory or if the arena has been detect ably corrupted by stor
ing outside the bounds of a block. Malloc may be recompiled to check
the arena very stringently on every transaction; see the source code.

When realloc returns 0, the block pointed to by ~ may be destroyed.

The current incarnation of the allocator is unsuitable for direct use in
a large virtual environment where many small blocks are to be kept,
since it keeps all allocated and freed blocks on a single circular list.
Just before more memory is allocated, all allocated and freed blocks are
referenced; this can cause a huge number of page faults.

Printed 6/23/82 2

MKTEMP(3) UNIX Programmer's Manual

NAME
mktemp - make a unique file name

SYNOPSIS
char ~ktemp(template)
char *template;

DESCRIPl'ION

MKTEMP(3)

Mktemp replaces template by a unique file name, and returns the address
of the template. The template should look like a file name with six
trailing X's, which will be replaced with the current process id and a
unique letter.

SEE ALSO
getpid(2)

Printed 6/23/82 1

MONITOR(3) UNIX Programmer's Manual MONITOR(3)

NAME
monitor - prepare execution prof He

SYNOPSIS
monitor(lowpe, highpe, buffer, bufsize, nfune)
int (*lowpe)(), (*highpc)();
short buffer[];
int bufsize;
int nfunc;

DESCRIPTION

FILES

An executable program created by "ce _pIt autanatically includes calls
for monitor with default parameters; monitor needn't be called expli
citly except to gain fine control over prof Hing.

Monitor is an interface to profil(2). Lowpc and highpc are the
addresses of two functions; buffer is the address of a (user supplied)
array of bufsize short integers. Monitor arranges to record a histogram
of periodically sampled values of the program counter, and of counts of
calls of certain functions, in the buffer. The lowest address sampled
is that of lowpc and the highest is just below highpc. At most nfunc
call counts can be kept; only calls of functions compiled with the pro
filing option -p of ££(1) are recorded. For the results to be signifi
cant, especially where there are small, heavily used routines, it is
suggested that the buffer be no more than a few times smaller than the
range of locations sampled.

To profile the entire program, it is sufficient to use

extern etextO;

monitor«int) 2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file m2n.~,
use

monitor(O) ;

then prof 0) can be used to examine the result s.

mon.out

SEE ALSO
prof(I), profil(2), cc(l)

Printed 8/16/82 1

NLIST(3) UNIX Programmer's Manual

nlist - get entries from name list

SYNOPSIS
linclude <a.out.h>

nlist(filename. nl)
char *filename;
struct nlist nl[];

DESCRIPTION

NLIST(3)

Nlist examines the name list in the given executable output file and
selectively extracts a list of values. The name list consists of an
array of structures containing names. types and values. The list is
terminated with a null name. Each name is looked up in the name list of
the file. If the name is found. the type and value of the name are
inserted in the next two fields. If the name is not found. both entries
are set to O. See A.~(S) for the structure declaration.

This subroutine is useful for examining the system name list kept in the
file /unix. In this way programs can obtain system addresses that are
up to date.

SEE ALSO
a.out(S)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is
not a valid namelist.

Printed 6/23/82 1

PERROR(3) UNIX Programmer's Manual PERROR(3)

NAME
perror, sys_errlist, sys_nerr - system error messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errl is t£ J ;

DESCRIPrION
Perror produces a short error message on the standard error file
describing the last error encountered during a call to the system from a
C program. First the argument string A is printed, then a colon, then
the message and a new-line. Most usefully, the argument string is the
name of the program which incurred the error. The error number is taken
from the external variable errno (see intro(2», which is set when
errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message
strings "sys_errlist" is provided; errno can be used as an index in this
table to get the message string without the newline. "Sys_nerr" is the
number of messages provided for in the table; it should be checked
because new error codes may be added to the system before they are added
to the table.

SEE ALSO
intro(2)

Printed 6/23/82 1

POPEN(3S) UNIX Programmer's Manual POPEN(3S)

popen, pclose - initiate I/O to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(command, type)
char *command, *type;

pclose (stream)
FILE *stream;

DESCRIPl' ION
The arguments to pop en are pointers to null-terminated strings contain
ing respectively a shell command line and an I/O mode, either "r" for
reading or ''w'' for writing. It creates a pipe between the calling pro
cess and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input
of the command or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the com
mand.

Because open files are shared, a type "r" command may be used as an
'.' input filter, and a type "w" as an output filter.

SEE ALSO
pipe(2), fopen(3), fclose(3), system(3), wait(2)

DIAGNOSTICS

BUGS

Popen returns a null pointer if files or processes cannot be created, or
the Shell cannot be accessed.

Pclose returns -1 if stream is not associated with a 'popened' command.

Buffered reading before opening an input filter may leave the standard
input of that filter mispositioned. Snnilar problems with an output
filter may be forestalled by careful buffer flushing, e.g. with fflush,
see fclose(3).

Printed 6/23/82 1

PRINTF(3S) UNIX Programmer's Manual PRINTF(3S)

printf, fprintf, sprintf - formatted output couversion

SYNOPSIS
#include <stdio.h>

printf(format [, arg] •••)
char *format;

fprintf(stream, format [, arg] •••)
FILE *stream;
char *formatj

sprintf(s, format [, arg] •••)
char *s, *formatj

DESCRIPTION
Printf places output on the standard output
places output on the named output stream.
the string A, followed by the character '\0'.

stream stdout. Fprintf
Sprintf places 'output' in

Each of these functions couverts, formats, and print, its arguments
after the first under control of the first argument. The first argument
is a character string which contains two types- of objects: plain charac
ters, which are simply copied to the output stream, and couversion
specifications, each of which causes couversion and printing of the next
successive arg printf.

Each conversion specification is introduced by the character %. Follow
ing the %, there may be

an optional minus sign '-' which specifies left adjustment of the
converted value in the indicated field;

an optional digit string specifying a field width; if the con
verted value has fewer characters than the field width it will be
blank-padded on the left (or right, if the left-adjustment indica
tor has been given) to make up the field width; if the field width
begins with a zero, zero-padding will be done instead of blank
padding;

an optional period'.' which serves to separate the field width
from the next digit string;

an optional digit string specifying a prec1s10n which specifies
the number of digits to appear after the decimal point, for e- and
f-conversion, or the maximum number of characters to be printed
from a string;

the character 1 specifying that a followins d, 0, x, or u
corresponds to a long integer argo (A capitalized couversion code
accomplishes the same thing.)

Printed 6/23/82 1

PRINTF(3S) UNIX Programmer's Manual PRINTF(3S)

a character which indicates the type of conversion to be applied.

A field width or precision may be '*' instead of a digit string. In
this case an integer arg supplies the field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal
notation respectively.

f The float or double A!& is converted to decimal notation in the
style "[-] ddd. ddd" where the number of d's aft er the decimal point
is equal to the precision specification for the argument. If the
preCl.S10n is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed.

e The float or double arg is converted in the style "[-]d.ddde+dd"
where there is one digit before the decimal point and the number
after is equal to the precision specification for the argument;
when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in
style e, whichever gives full precision in minimum space.

c The character arg is printed. Null characters are ignored.

s Arg is taken to be a string (character pointer) and characters
from the string are printed until a null character or until the
number of characters indicated by the precision specification is
reached; however if the precision is 0 or missing all characters
up to a null are printed.

u The unsigned integer arg is converted to decimal and printed (the
result will be in the range 0 to 2**32-1

% Print a '%'; no argument is converted.

In no case
a field;
the actual
putc(3) •

does a non-existent or small field width cause truncation of
padding takes place only if the specified field width exceeds
width. Characters generated by printf are printed by

Examples
To print a date and time in the form 'Sunday, July 3, 10:02', where
weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print pi to 5 decimals:

printf("pi - %.5f", 4*atan(1.0»;

Printed 6/23/82 2

PRINTF(3S) UNIX Programmer's Manual PRINTF(3S)

SEE ALSO
putc(3), scanf(3), ecvt(3)

BUGS
Very wide fields (>128 characters) fail.

Printed 6/23/82 3

PUTC(3S) UNIX Programmer's Manual PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
linclude <stdio.h>

int putc(c, stream)
char c;
FILE *stream;

putchar(c)
char c;

fputc(c, stream)
char c;
FILE *stream;

putw(w, stream)
int w;
FILE *stream;

DESCRIPrION
1Y1£ appends tbe character S to the named output stream. It returns the
character written.

Putchar(s.) is def wed as putc(.£" stdout).

Fputc behaves like putc, but is a genuine function rather than a macro.
It may be used to save on object text.

~ appends word (i.e. int of 32 bits on the 68000) "w" to the output
stream. It returns the word written. Putw neither assumes nor causes
special alignment in the file.

The standard stream stdout is normally buffered if and only if the out
put does not refer to a 'terminal; this default may be changed by ~
buf(3). The standard stream stderr is by default unbuffered uncondi
tionally, but use of freopen (see fopen(3» will cause it to become buf
fered; setbuf, again, will set the state to whatever is desired. When
an output stream is unbuffered information appears on the destination
file or terminal as soon as written; 'when it is buffered many characters
are saVed up and written as a block. Fflush (see fclose(3» may be used
to force the block out early.

SEE ALSO
fopen(3), fclose(3), getc(3), puts(3), printf(3), fread(3)

DIAGNOSTICS
These functions return the constant EOF upon error. Since this is a
good integer, ferror(3) should be used to detect putw errors.

Printed 6/23/82 1

PUTC(3S) UNIX Programmer's Manual PUTC(3S)

BUGS
Because it is implemented as a macro, putc treats a stream argument with
side effects improperly. In particular "putc(c, *f++);" doesn't work
sensibly.

Errors can occur long after the call to putc.

Printed 6/23/82

PUTS(3S) UNIX Programmer's Manual PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
linclude <stdio.h>

puts(s)
char *s;

fp1.\ts(s, stream)
. char *s;

FILE *streamj

DESCRIPTION
~ copies the null-terminated string A to the standard output stream
stdout and appends a newline character.

Fputs copies the null-terminated string A to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

BUGS

fopen(3), gets(3), putc(3), printf(3), ferror(3)
fread(3)

~ appends a newline, fputs does not, all in the name of backward com
patibility.

Printed 6/23/82 2/23/82 1

QSORT(3) UNIX Programmer's Manual QSORT(3)

NAME
qsort - quicker sort

SYNOPSIS
qsort(base, ne1, width, compar)
char *base;
int ne1;
int width;
int (*comparH);

DESCRIPrION
Osort is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the number
of elements; the third is the width of an element in bytes; the last is
the name of the comparison routine to be called with two arguments which
are pointers to the elements being compared.

The routine must return an integer less than, equal to, or greater than
o according as the first argument is to be considered less than, equal
to, or greater than the second.

EXAMPLE

struct entry {
char *Uame;

flags;
};

mainO
{

}

int

struct entry hp[lOO];

for (i = 0; i < count; i++ {
/* fill the structure with the name and flags */

}
qsort(hp, count, sizeof hp[O], entcmp);

entcmp(ep,ep2)
struct entry *ep, *ep2;
{

return (strcmp(ep->name, ep2->name»;
}

will sort a set of names with associated flags in ascii order. This
example was taken from diffdir.

SEE ALSO
sortO)

Printed 8/16/82 1

RAND(3) UNIX Programmer's Manual

NAME
rand, srand - random number generator

SYNOPSIS
srand(seed)
int seed;

randO

DESCRIPTION

RAND(3)

Rand uses a multiplicative congruential random number generator with
period 2**32 to return successive pseudo-random numbers in the range
from 0 to 2**31-1.

The generator is reinitialized by calling srand with 1 as argument. It
can be set to a random starting point by calling srand with whatever you
like as argument.

Printed 6/23/82 1

SCANF(3S) UNIX Programmer's Manual SCANFOS)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
4include <stdio.h>

scanf(format [, pointer] • ••)
char dormat;

fscanf(stream, format [, pointer] • ••)
FILE *stream;
char *format;

sscanf(s, format ,pointer]...)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string~. Each
function reads characters, interprets them according to a format, and
stores the results in its arguments. Each expects as arguments a co~~
trol string format, described below, and a set of pointer arguments ~n
dicating where the converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string
may contain:

1. Blanks, tabs or newlines, which match optional white space in the
input.

2. An ordinary character (not %) which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an option
al assignment suppressing character *, an optional numerical maximum
field width, and a conversion character.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was indicated by
*. An input field is defined as a string of non-space characters; it
extends to the next inappropriate character or until the field width, if
specified, is exhausted.

The conversion character indicates the interpretation of the input
field; the corresponding pointer argument must usually be of a restrict
ed type. The following conversion characters are legal:

% a single '%' is expected in the input at this point; no assignment
is done.

Printed 6/23/82 1

SCANF(3S.) UNIX Programmer's Manual SCANF(3S)

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

o an octal integer is expected; the corresponding argument should be a
integer pointer.

x a hexadecimal integer is expected; the corresponding argument should
be an integer pointer.

s a character string is expected; the corresponding arsument should be
a character pointer pointing to an array of characters large enough
to accept the string and a terminating '\0', which will be added.
The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over space characters is
suppressed in this case; to read the next non-space character, try
"%1 s ". If a field width is given, the corresponding argument should
refer to a character array, and the indicated number of characters
is read.

f a floating point number is expected; the next field is converted ac
cordingly and stored through the corresponding argument, which
should be a pointer to a float. The input format for floating point
numbers is an optionally signed string of digits possibly containing
a decimal point, followed by an optional exponent field consisting
of an E or e followed by an optionally signed integer.

[indicates a string not to be delimited by space characters. The
left bracket is followed by a set of characters and a right bracket;
the characters between the brackets define a set of characters mak
ing up the string. If the first character is not circumflex (A),
the input field is all characters until the first character not in
the set between the brackets; if the first character after the left
bracket is ~, the input field is all characters until the first
character which is in the remaining set of characters between the
brackets. The corresponding argument must point to a character ar
ray.

The conversion characters d, 0 and x may be capitalized or preceeded by
1 to indicate that a pointer to long rather than to int is in the argu
ment list. S~i1ar1y, the conversion characters e or f may be capital
ized or preceded by 1 to indicate a pointer to double rather than to
float. The conversion characters d, 0 and x may be preceeded by h to
indicate a pointer to short rather than to into

The scanf functions return the number of successfully matched and as
signed input items. This can be used to decide how many input items
were found. The constant EOF is returned upon end of input; note that
this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character
in the input.

Printed 6/23/82 2

SCANF(3S) UNIX Programmer's Manual SCANF(3S)

For example, the call

int i; float X; char name[50] ;
scanf("%d%f%s", &i, &X, name);

with the input line

25 54.32E-l thompson

will assign to i the value 25, .as. the value 5.432, and naI;l1e will contain
'thompson\O'. Or,

int i; float X; char name[50] ;
scanf("%2d%f%*d%[1234567890}", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to A' skip '0123', and
'56\0' in~. The next call to getchar will return

place the string , ,
a •

SEE ALSO
atof(3), getc(3), printf(3)

DIAGNOSTICS

BUGS

The scanf functions return EOF on end of input, and a short count for
missing or illegal data items.

The success of literal matches and suppressed assignments is not direct
ly determinable.

Printed 6/23/82 3

SETBUF(3S) UNIX Programmer's Manual SETBUF(3S)

setbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read or
written. It causes the character array buf to be used instead of an au
tomatically allocated buffer. If buf is the constant pointer NULL,
input/output will be completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloc(3) upon the first getc or
putc(3) on the file, except that the standard output is line buffered
when directed to a terminal. Other output streams directed to termi
nals, and the standard error stream stderr are normally not buffered.
If the standard output is line buffered, then it is flushed each time
data is read from the standard input ,by read(2).

SEE ALSO
fopen(3), getc(3), putc(3), malloc(3)

BUGS
The standard error stream should be line buffered by default.

Printed 6/23/82 1

SETJMP(3) UNIX Programmer's Manual SETJMP(::I)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
linclude <setjmp.h>

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;
int val;

DESCRIPrION
These routines are useful for dealing with errors and interrupts encoun
tered in a low-level subroutine of a program.

Setjmp saves its stack environment in ~ for later use by longjmp. It
returns value O.

Longimp restores the environment saved by the last call of set;mp. It
then returns in such a way that execution continues as if the call of
set imp had just returned the value X!! to the function that invoked
setjmp, which must not itself have returned in the interim. All acces
sible register variables and local data have values as of the time
longjmp was called.

SEE ALSO
signa1(2)

Printed 6/23/82 1

SIN(3M) UNIX Programmer's Manual SIN(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin(x)
double X;

double cos(x)
double X;

double asin(x)
double X;

double acos(x)
double X;

double atan(x)
double Xi

double atan2(x, y)
double X, y;

DESCRIPrION
Sin, ~ and ~ return trigonometric functions of radian arguments.
The magnitude of the argument should be checked by the caller to make
sure the result is meaningful.

Asin returns the arc sin in the range -pi/2 to pi/2.

Acos returns the arc cosine in the range 0 to pi.

Atan returns the arc tangent of A in the range -pi/2 to pi/2.

Atan2 returns the arc tangent of ~/~ in the range -pi to pi.

DIAGNOSTICS

BUGS

Arguments of magnitu~e greater than 1 cause asin and ~ to return
value 0; errno is set to EDOM. The value of ~ at its singular points
is a huge number, and errno is set to ERANGE.

The value of ~ for arguments greater than about 2**31 is garbage.

Printed 6/23/82 1

SINH(3M) UNIX Programmer's Manual SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)

double cosb(x)
double X;

double tanh(x)
double X;

DESCRIPrION
These functions compute the designated hyperbolic functions for real ar
guments.

DIAGNOSTICS
Sinh and cosh return a huge value of appropriate sign when the correct
value would overflow.

Printed 6/23/82 1

SLEEP(3) UNIX Programmer's Manual SLEEP(3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep(seconds)
unsigned seconds;

DESCRIPrION
The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time may be up
to 1 second less than that requested, because scheduled wakeups occur at
fixed I-second intervals, and an arbitrary amount longer because of oth
er activity in the system.

The routine ~s implemented by setting an alarm clock signal and pausing
until it occurs. The previous state of this signal is saved and re
stored. If the sleep time exceeds the time to the alarm eignal, the
process sleeps only until the signal would have occurred, and the signal
is sent 1 second later.

SEE ALSO
alarm(2), pause(2)

Printed 6/23/82 1

STDIO(3) UNIX Programmer's Manual

stdio - standard buffered input/output package

SYNOPSIS
linclude <stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION

STDIO(3)

These functions constitute an efficient user-level buffering scheme.
The in-line macros getc and putc(3) handle characters quickly. The
higher level routines gets, fgets, scanf, fscanf, fread, puts, fputs,
printf, fprintf, fwrite all use getc and putc; th~ can be freely inter
mixed.

A file with associated buffering is called a stream, and is declared to
be a pointer to a defined type FILE. Fopen(3) creates certain descrip
tive data for a stream and returns a pointer to designate the stream in
all further transactions. There are three normally open streams with
constant pointers declared in the include file and associated with the
standard open files:

stdin
stdout
stderr

standard input file
standard output file
standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by
integer functions that deal with streams.

Any routine that uses the standard input/output package must include the
header file <stdio.h> of pertinent macro definitions. The functions and
constants mentioned in Section 3 are declared in the include file and
need no further declaration. The constants, and the following 'func
tions' are implemented as macros; redeclaration of these names is peri
lous: getc, getchar, putc, put char , feof, ferror, fileno.

SEE ALSO
open(2), close(2), read(2), write(2)

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has
not been initialized with fopen, input (output) has been attempted on an
output (input) stream, or a FILE pointer designates corrupt or otherwise
unintelligible FILE data.

In cases where a large amount of computation is done after printing part
of a line on an output terminal, it is necessary to fflush(3) the stan
dard output before going off and computing so that the output will

Printed 7/14/82 1

STDIO(3) UNIX Programmer's Manual STDIO(3)

appear.

Printed 7/14/82 2

STRING(3) UNIX Programmer's Manual STRING(3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex
- string operations

SYNOPSIS
char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;
int n;

strcmp(sl, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *sl, *s2;
int n;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;
int n;

strlen(s)
char *si

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s, c;

DESCRIPrION
These functions operate on null-terminated strings. They do not check
for overflow of any receiving string.

Strcat appends a copy of string s2 to the end of
copies at most n characters. Both return a
terminated result.

string.!i. Strncat
pointer to the null-

Strcmp compares its arguments and returns an integer greater than, equal
to, or less than 0, according as .!i is lexicographically greater than,
equal to, or less than s2. Strcmp uses native character comparison,
which is signed. Strncmp makes the same comparison but looks at at most
A characters.

Strcpy copies string s2 to .!i, stopping after the null character has
been moved. Strncpy copies exactly A characters, truncating or null
padding s2; the target may not be null-terminated if the length of ~ is

Printed 6/23/82 1

STRING(3) UNIX Programmer's Manual STRING(3)

A or more. Both return ~.

Strlen returns the number of non-null characters in~.

Index (rindex) returns a pointer to the first (last) occurrence of char
acter £ in string~, or zero if £ does not occur in the string.

Printed 6/23/82 2

SWAB(3) UNIX Programmer's Manual

NAME
swab - swap bytes

SYNOPSIS
swab(from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION

SWAB(3)

~ copies nbytes bytes pointed to by from to the position pointed to
by ~, exchanging adjacent even and odd bytes. It is useful for carry
ing binary data between to other machines. Nbytes should be even.

Printed 6/23/82 1

SYSTEM(3) UNIX Programmer's Manual

NAME
system - issue a shell command

SYNOPSIS
syst em(str ing)
char *string;

DESCRIPl' ION

SYSTEM(3)

System causes the string to be given to sh(l) as input as if the string
had been typed as a command at a terminal. The curre~t process waits
until the shell has completed, then returns the exit status of the
shell.

SEE ALSO
popen(3), exec(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

BUGS
There should be a way to specify a shell other than sb(.!).

Printed 6/23/82 1

TERMCAP(3) UNIX Programmer's Manual TERMCAP(3)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - terminal independent
operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *Dame;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cm, destcol, destline)
char *cm;
int destcol;
int destline;

tputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)();

DESCRIPTION
These functions extract and use capabilities from the terminal capabili
ty data base termcap(S). These are low level routines; see curses(3)
for a higher level package.

Tgetent extract s the entry for terminal.!!.!!!!!. into the buffer at 1m. 1m
should be a character buffer of size 1024 and must be retained through
all subsequent calls to tgetnum, tgetflag, and tgetstr. Tgetent returns
-1 if it cannot open the termcap file, 0 if the terminal name given does
not have an entry, and 1 if all goes well. It will look in the environ
ment for a TERMCAP variable. If found, and the value does not begin
with a slash, and the terminal type name is the same as the environment
string TERM, the TERMCAP string is used instead of reading the termcap
file. If it does begin with a slash, the string is used as a path name
rather than /etc/termcap. This can speed up entry into programs that
call tgetent, as well as to help debug new terminal descriptions or to
make one for your terminal if you can't write the file /~/termcap.

Printed 6/23/82 1

TERMCAP(3) UNIX Programmer's Manual TERMCAP(3)

FILES

Tgetnum gets the numeric value of capability id, returning -1 if is not
given for the terminal. Tgetflag returns 1 if the specified capability
is present in the terminal's entry, 0 if it is not. Tgetstr gets the
string value of capability id, placing it in the buffer at~, advanc
ing the ~ pointer. It decodes the abbreviations for this field
described in termcap(S), except for cursor addressing and padding infor
mation.

Tgoto returns a cursor addressing string decoded from sm to go to column
destcol in line destline. It uses the external variables, UP (from the up
capability) and Be (if bc is given rather than bs) if necessary to avoid
placing \n, ~D or A@ in the returned string. (Programs which call tgotc
should be sure to turn off the XTABS bites), since tgoto may now output
a tab. Note that programs using termcap should in general turn off
XTABS anyway since some terminals use control I for other functions,
such as nondestructive space.) If a % sequence is given which is not un
derstood, then tgoto returns OOPS.

Tputs decodes the leading padding information of the string ~; affcnt
gives the number of lines affected by the operation, or 1 if this is not
applicable, outc is a routine which is called with each character in
turn. The external variable ospeed should contain the output speed of
the terminal as encoded by ~ (1). The external variable PC should
contain a pad character to be used (from the pc capability) if a null
(A@) is inappropriate.

usr/lib/libtermcap.a
/etc/termcap

termcap library
data base

SEE ALSO
ex(l), curses(3), termcap(5)

AUTHOR
William Joy

Printed 6/23/82 2

TTYNAME(3) UNIX Programmer's Manual 'ITYNAME (:J)

NAME
ttyname, ttyslot - find name of a terminal

SYNOPSIS
char *ttyname(fildes)
int f ildes;

ttyslot()

DESCRIPrION

FILES

Ttyname returns a pointer to the null-terminated path name of the termi
nal device associated with file descriptor fildes.

Ttyslot returns the number of the entry in the ttys(S) file for the con
trol terminal of the current process.

/dev/*
/etc/ttys

SEE ALSO
ioctl(2), isatty(3), ttys(S)

DIAGNOSTICS

BUGS

Ttyname returns a null pointer (0) if fildes does not describe a termi
nal device in directory '/dev'.

Ttyslot returns 0 if '/etc/ttys' is inaccessible or if it cannot deter
mine the control terminal.

The return value points to static data whose content is overwritten by
each call.

Printed 6/23/82 1

UNGETC(3S) UNIX Programmer's Manual

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

ungetc(c, stream)
char c;
FILE *stream;

DESCRIPrION
Ungetc pushes the character S back on an input stream.
will be returned by the next getc call on that stream.
s·

UNGETC(3S)

Tha t charact er
Ungetc returns

One character of pushback is guaranteed provided something has been read
from the stream and the stream is actually buffered. Attempts to push
EOF are rejected.

Fseek(3) erases all memory of pushed back characters.

SEE ALSO
getc(3), setbuf(3), fseek(3)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

Printed 6/23/82 1

INTRO(4) UNIX Programmer's Manual INTRO(4)

NAME
intro - introduction to special files

DESCRIPTION
This section describes the special files and related driver functions
available on the system.

Printed 6/23/82 1

MEM(4) UNIX Programmer's Manual MEM(4)

NAME
mem, kmem - IDS in memory

DESCRIPIION

FILES

BUGS

Mem is a special file that is an image of the main memory of the com
puter. It may be used, for example, to examine (and even to patch) the
system.

Byte addresses in ~ are interpreted as physical memory addresses.
References to non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

The file kmem is the same as ~ except that kernel virtual memory
rather than physical memory is accessed.

/dev/mem, /dev/kmem

Memory files are accessed in an inappropriate method for some device
registers.

Printed 6/23/82 1

NULL(4) UNIX Programm~r's Manual NULL~ -

null - data sink

DESCRIl'l'ION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

Printed 6/23/82 1/20/82

TTY(4) UNIX Programmer's Manual TTY(4)

NAME
tty - general terminal interface

DESCRIPr ION
This section describes both a particular special file, and the general
nature of the terminal interface.

When a terminal file is opened, it causes the process to wait until a
connection is established. In practice user's programs seldom open
these files; they are opened by init(lM) and become a user's standard
input and standard output device. The very first terminal file open in
a process becomes the control terminal for that process. The control
terminal plays a special role in handling quit or interrupt signals, as
discussed below. The control terminal is inherited by a child process
during a fork, even if the control terminal is closed. The set of
processes that thus share a control terminal is called a process group;
all members of a process group receive certain signals together, see DEL
below and kill(2).

The file /dev/~ is, in each process, a synonym for the control termi
nal associated with that process. The above-mentioned /dev/tty file is
useful for programs that wish to be sure of writing messages on the ter
minal no matter how output has been redirected. It can also be used for
programs that demand a file name for output, when typed output is
desired and it, is tiresane to find out which terminal is currently in
use. [The terminals associated with various processes can, if needed,
be discovered using ~(1)].

A terminal associated with one of these files ordinarily operates in
full-duplex mode. Characters may be typed at any time, even while out
put is occurring, and are only lost when the system's character input
buffers become completely choked, which is rare, or when the user has
accumulated the maximum allowed number of input characters that have not
yet been read by some program. Currently this limit is 256 characters.
When the input limit is reached all the saved characters are thrown away
without notice.

Normally, terminal input is processed in units of lines. This means
that a program attempting to read will be suspended until an entire line
has been typed. Also, no matter how many characters are requested in
the read call, at most one line will be returned. It is not however
necessary to read a whole line at once; any number of characters may be
requested in a read, even one, without losing information. There are
special modes, discussed below, that permit the program to read each
character as typed without waiting for a full line. Certain ASCII con
trol characters have special meaning. These characters are not passed
to a reading program except in "raw" mode where they lose their special
character. Also, it is possible to change these characters from the
default; see below.

EOT (Control-D) may be used to genera~e an end of file from a termi
nal. When an EOT is received, all the characters waiting to be

Printed 7/21/82 1/20/82 1

TTY(4) UNIX Programmer's Manual TTY(4)

read are immediately passed to the program, without waiting for a
new-line, and the EOT is discarded. Thus if there are no charac
ters waiting, which is to say the EOT occurred at the beginning of
a line, zero characters will be passed back, and this is the stan
dard end-of-file indication.

DEL (Rubout) is not passed to a program but generates an interrupt
signal which is sent to all processes with the associated control
terminal. Normally each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to receive
a trap to an agreed-upon location. See signal(2).

FS (Control-\ or control-shift-L) gener~tes the quit signal. Its
treacnent is identical to the interrupt signal except that unless
a rece1v1ng process has made other arrangements it will not only
be terminated but a core image file will be generated.

DC3 (Control-S) delays all printing on the terminal until something is
typed in.

DCI (Control-Q) restarts printing after DC3 without generating any
input to a program.

During input, erase and kill processing is normally done. By default,
the character ""'H" (control-h) erases the last character typed, except
that it will not erase beyond the beginning of a line or an EOT. By
default, the character '@' kills the entire line up to the point where
it was typed, but not beyond an EOT. Both these characters operate on a
keystroke basis independently of any backspacing or tabbing that may
have been done. Either "@" or ""'B" may be entered literally by preced
ing it by a backslash '\'; the erase or kill character remains, but the
'\' disappears. These two characters may be changed to others.

On input, when desired, all upper-case letters are mapped into the
corresponding lower-case letter. The upper-case letter may be generated
by preceding it by '\'. In addition, the following escape sequences can
be generated on output and accepted on input:

for ,

{
}

use
\'
\1
\ ...
\(
\)

When one or more characters are sent by the system to a user, they are
actually transmitted to the terminal as soon as previously-written char
acters have finished typing. Input characters are echoed by putting
them in the output queue as they arrive. When a process produces char
acters more rapidly than they can be typed, it will be suspended when
its output queue exceeds some limit. When the queue has drained down to
some threshold the program is resumed. Even parity is usually generated

Printed 7/21/82 1/20/82 2

TTY(4) UNIX Programmer's Manual 'l'TY(4)

on output. The EOT character is not transmitted (except in raw mode) to
prevent terminals that respond to it from hanging up.

Several ioctl(2) calls apply to terminals. Most of them use the follow
ing structure, defined in <sgtty.h>:

struct sgttyb {

}i

char sLispeed i
char SLOS pe ed ;
char sLerase;
char sLki1l;
int sLflags;

The "ss-ispeed" and "ss-ospeed" fields describe the input and output
speeds of the device according to the following table, which corresponds
to the DEC DR-II interface. If other hardware is used, impossible speed
changes are ignored. Symbolic values in the table are as defined in
<sgtty.h>.

BO 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
BllO 3 110 baud
BI34 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
B19200 14 19200 baud
EXTA 14 External A
EXTB 15 External B

The "ss...erase" and "sS-kill" fields of the argument structure specify
the erase and kill characters respectively. (Defaults are Control H
(backspace)and @.)

The "ss-flags" field of the argument structure contains several bit s
that determine the system's treatment of the terminal:

ALLDELAY 0177400 Delay algorithm selection
BSDELAY 0100000 Select backspace delays (not implemented):
BSO 0
BS1 0100000
VTDELAY 0040000 Select fo~feed and vertical-tab delays:
FFO 0
FF1 0100000

Printed 7/21/82 1/20/82 3

TTY(4)

CRDELAY
CRO
CR1
CR2
CR3
TBDELAY
TABO
TAB1
TAB2
XTABS
NLDELAY
NLO
NLl
NL2
NL3
EVENP
ODDP
RAW
CRMOD
ECHO
LCASE
CBREAK
TANDEM

UNIX Programmer's Manual

0030000 Select carriage-return delays:
o
0010000
0020000
0030000
0006000 Select tab delays:
o
0001000
0004000
0006000
0001400 Select new-line delays:
o
0000400
0001000
0001400
0000200 Even parity allowed on input (most terminals)
0000100 Odd parity allowed on input

TTY(4)

0000040 Raw mode: wake up on all characters, 8-bit interface
0000020 Map CR into LF; echo LF or CR as CR-LF
0000010 Echo (full duplex)
0000004 Map upper case to lower on input
0000002 Return each character as soon as typed
0000001 Automatic flow control

The delay bits specify how long transmission stops to allow for mechani
calor other movement when certain characters are sent to the terminal.
In all cases a value of 0 indicates no delay.

Backspace delays are currently ignored but might be used for Terminet
300's.

If a form-feed/vertical tab delay is specified, it lasts for about 2
seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for
the Terminet 300. Delay type 2 lasts about .16 seconds and is suitable
for the VTOS and the TI 700. Delay type 3 is unimplemented and is o.

New-line delay type 1 is dependent on the current column and is tuned
for Teletype model 37's. Type 2 is useful for the VT05 and is about .10
seconds. Type 3 is unimplemented and is O.

Tab delay type 1 is dependent on the amount of movement and is tuned to
the Teletype model 37. Type 3, called XTABS, is not a delay at all but
causes tabs to be replaced by the appropriate number of spaces on out
put.

Characters with the wrong parity, as determined by bits 200 and 100, are
ignored.

In raw mode, every character is
without waiting until a full

passed immediatel y
line has been typed.

to the program
No erase or kill

Printed 7/21/82 1/20/82 4

TTY(4) UNIX Programmer's Manual TTY(4)

processing is done; the end-of-file indicator (EOT), the interrupt char
acter (DEL) and the quit character (FS) are not treated specially.
There are no delays and no echoing, and no replacement of one character
for another; characters are a full 8 bits for both input and output
(parity is up to the program).

Mode 020 causes input carriage returns to be turned into new-lines;
input of either CR or LF causes LF-CR both to be echoed.

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each
character as soon as typed, instead of waiting for a full line, but quit
and interrupt work, and output delays, case-translation, CRMOD, XTABS,
ECHO, and parity work normally. On the other hand there is no erase or
kill, and no special treatment of \ or EOT.

TANDEM mode causes the system to produce a stop character (default DC3)
whenever the input queue is in danger of overflowing, and a start char
acter (default DC1) when the input queue has drained sufficiently. It
is useful for flow control when the 'terminal' is actually another
machine that obeys the conventions.

Several ioctl calls have the form:

~include <sgtty.h>

ioctl{fildes, code, arg)
int fildes, code;
struct sgttyb *arg;

The applicable codes are:

TIOCGETP
Fetch the parameters associated with the terminal, and store 1n
the pointed-to structure.

TIOCSETP
Set the parameters according to the pointed-to structure. The
interface delays until output is quiescent, then throws away any
unread characters, before changing the modes.

TIOCSE'lN
Set the parameters but do not delay or flush input. Switching out
of RAW or CBREAK mode may cause some garbage input.

With the following codes the arg is ignored.

TIOCEXCL
Set "exclusive-use" mode: no further opens are permitted until the
file has been closed.

TIOCNXCL
Turn off "exclusive-use" mode.

Printed 7/21/82 1/20/82 5

TTY(4)

FILES

UNIX Programmer's Manual TrY(4)

TIOCHPCL
When the file is closed for the last time, hang up the terminal.
This is useful when the line is associated with an ACU used to
place outgoing calls.

TIOCFLUSH
All characters waiting in input or output queues are flushed.

FIONREAD
Return the number of characters in a terminal's input buffer into
the integer pointer *arg.

The following codes affect characters that are special to the terminal
interface. The argument is a pointer to the following structure,
defined in <sgtty.~>:

struct tchars {

};

char t_intrc;
char t_quitc;
char t_startc;
char t_stopc;
char t_eofc;
char t_brkc;

1* interrupt *1
1* quit *1
1* start output *1
1* stop output *1
1* end-of-file *1
1* input delimiter (like nl) *1

The default values for these characters are DEL, FS, DCl, DC3, EOT, and
-1. A character value of -1 eliminates the effect of that character.
The "t_brkc" character, by default -1, acts like a new-line in that it
terminates a 'line,' is echoed, and is passed to the program. The
'stop' and 'start' characters may be the same, to produce a toggle
effect. It is probably counterproductive to make other special charac
ters (including erase and kill) identical.

The calls are:

TIOCSETC
Set the various special characters to those given in the struc
ture.

TIOCGETC
Fetch the special character values associated with the terminal,
and store them in the pointed-to structure.

FIONREAD
Return the number of characters currently in a terminal's input
buffer into the integer pointer rg.

Idevltty
Idev/tty*
1 dev 1 conso le

Printed 7/21/82 1/20/82 6

TTY(4) UNIX Programmer's Manual TTY(4)

SEE ALSO
getty(lM), stty (1), signal(2), ioct1(2)

Printed 7/21/82 1/20/82 7

A.OUT(5) UNIX Programmer's Manual A. OUT(5)

NAME
a.out - assembler and link editor output

SYNOPSIS
#include <a.out.h>

DESCRIPl' ION
A.~ is the output file of the assembler ~(l) and the link loader
ld(1). Ld(l) makes A.out executable if there were no errors and no
unresolved external references. Layout information as given in the
include file for the 68000 is:

I.
• Layout of a.out file :
•
•
*
*
*
*
*
*
*
*
*
*
* •

header of 8 longs magic number 405, 407, 410, 411
text size)
data size) in bytes

*
*
* *1

header:
text:
data:
symbol table:
text reloca tion:
data reloca tion:

1* various parameters */
Idefine SYMLENGTH 50

bss size)
symbol table size)
text relocation size)
data relocation size)
entry point

o
32
32+textsize

32+textsize+datasize
32+textsize+datasize+symsize
32+textsize+datasize+symsize+rtextsize

1* maximum length of a symbol */

1* types of
#define
#define
#define

files *1
ARCHAGIC 0177545 1* ar files *1

1* symbol
#define
#define
#define
#define
#define
#define
#define
#define

Printed 7/14/82

FHAGIC 0407
NMAGIC 0410

types *1
EXTERN
UNDEF
ABS
TEXT
DATA
BSS
COMM
REG

040
00
01
02
03
04
05
06

1* standard executable */
I. shared text executable */

1* external *1
1* undef ined *1
1* absolute *1
1* text *1
1* data *1
1* bss *1
1* internal use only *1
1* register name */

1

A. OUT(5) UNIX Programmer's Manual A.OUT(S)

1* relocation regions *1
#define RTEXT 00
#define RDATA 01
#define RBSS 02
#define REXT 03

1* reloca tion
#def ine RBYTE
f1def ine RWORD
#define RLONG

sizes *1
00
01
02

1* macros which
#define TEXTPOS
Idefine DATAPOS
#def ine SYMPOS
#define RTEXTPOS
#define RDATAPOS
Idef ine ENDPOS

def ine various positions in
«long) sizeof(filhdr»
(TEXTPOS + filhdr.tsize)
(DATAPOS + filhdr.dsize)
(SYMPOS + f ilhdr. ss ize)
(RTEXTPOS + filhdr.rtsize)
(RDATAPOS + filhdr.rdsize)

file based on a bhdr, filhdr *1

1* header of a.out files *1
struct bhdr {

} ;

long fmagic;
long tsize;
long dsize;
long bsize;
long ssize;
long rtsize;
long rdsize;
long entry;

1* symbol management *1
struct sym {

char
char
long

stype;
sympad;
svalue;

} ;

1* relocation commands *1
struct reloc {

unsigned rsegment:2;
unsigned rsize:2;
unsigned rdisp:l;
unsigned relpadl:3;
char relpad2;
short rsymbol;
long rpos;

Printed 7/14/82

1* symbol type *1
1* pad to short align *1
1* value *1

1* R.TEXT, RDATA, RBSS, or REXTERN *1
1* OYTE. RWORD, or RLONG *1
1* 1 -> a displacement *1
1* pad 1 *1
1* pad 2 *1
1* id of the symbol of external relocations *1
1* position of relocation in segment *1

2

A.OUT(S)

struct nlist {
char

};

int
unsigned

UNIX Programmer's Manual

1* symbol table entry *1
n_name[8]; 1* symbol name *1
n_type; 1* type flag *1
n_value; 1* value *1

1* value s for type flag *1
Idef ine N_UNDF 0 1* undef ined *1
Idefine N_ABS 01 1* absolute *1
Idefine N_TEXT 02 1* text symbol *1
#define N_DATA 03 1* data symbol *1
Idefine N_BSS 04 1* bs s symbol *1
"define N_TYPE 037
"define N_REG 024 1* register name *1
Idefine N_FN 037 1* file name symbol *1
Idefine - N_EXT 040 1* external bit, or'ed
Idefine FORMAT "%060" 1* to print a value *1

A.OUT(S)

in *1

The file has four sections: a header, the program and data text, a s~
bol table, and relocation information. The last two may be empty if the
program was loaded with the '-s' option of J& or if the symbols and
relocation have been removed by strip(l).

In the header the sizes of each section are given in bytes, but are
even. The size of the header is not included in any of the other sizes.

When an A.~ file is loaded into core for execution, three logical seg
ments are set up: the text segment, the data segment (with uninitialjzed
data, which starts off as all 0, following initialjzed data), and a
stack. The text segment begins at the-user program start address in the
core image; the header is not loaded. If the magic number in the header
is FMAGIC, it indicates that the text segment is not to be write
protected and shared, so the data segment is immediately contiguous with
the text segment. If the magic number is NMAGIC, the data segment
begins at the next segment boundary following the text segment, and the
text segment is not writeable by the program; if other processes are
executing the same file, they will share the text segment.

The stack will occupy the highest possible user program locations in the
core image and will grow downwards. The stack is automatically extended
as required. The data segment is only extended as requested by ~(2).

The start of the text segment in the file is 32(10); the
data segment is 32+St (the size of the text) the start of
information is 32+St+Sd; the start of the symbol table is
the relocation information is present, 32+St+Sd if not.

start of the
the reloca tion
32+2(St+Sd) if

The layout of a symbol table entry and the principal flag values that
distinguish symbol types are given in the include file.

Printed 7/14/82 3

A.OUT(S) UNIX Programmer's Manual A.OUT(S)

If a symbol's type is undefined external, and the value field is non
zero, the symbol is interpreted by the loader 1& as the name of a common
region whose size is indicated by the value of the symbol.

The value of a word in the text or data portions which is not a refer
ence to an undefined external symbol is exactly that value which will
appear in core when the file is executed. If a word in the text or data
portion involves a reference to an undefined external symbol, as indi
cated by the relocation information for that word, then the value of the
word as stored in the file is an offset from the associated external
symbol. When the file is processed by the link editor and the external
symbol becomes defined, the value of the symbol will be added into the
word in the file.

If relocation information is present, it will appear in the form of the
structure shown above.

SEE ALSO
as(l), 1d(1), um(l)

Printed 7/14/82 4

ACCT(S) UNIX Programmer's Manual ACCT(S)

NAME
acct - execution accounting file

SYNOPSIS
#include <sys/acct.h>

DESCRIPl' ION
Acct(2) causes entries to be made into an accounting file for each pro
cess that terminates. The accounting file is a sequence of entries
whose layout, as defined by the include file is:

Accounting Structures

typedef unsigned short comp_t;
1* "floating ptll: 3 bits base 8 exp, 13 bits fraction *1

struct acct {

};

char
comp_t
comp_t
comp_t
time_t
short
short
short
comp_t
dev_t
char

ac_comm[lO] ;
ac_utime ;
ac_stime ;
ac_etime ;
ac_btime ;
ac_uid;
ac-Sid;
ac_mem;
ac_io;
ac_tty;
ac_flag;

extern struct acct
extern struct inode

#define AFORK 01
#define ASU 02

,* Accounting command name *,
1* Accounting user time *,
,. Accounting system time *1
I. Accounting elapsed time *1
1* Beginning time *1
I. Accounting user ID *1
I. Accounting group ID *1
1* average memory usage *1
1* number of disk 10 blocks *1
1* control typewriter *,
,* Accounting flag *1

acctbuf i
acctPi' inode of accounting file *1

,* has executed fork, but no exec *1
1* used super-user privileges *1

If the process does an exec(2), the first 10 characters of the filename
appear in "ac_comm". The accounting flag contains bits indicating
whether ~(2) was ever accomplished, and whether the process ever had
super-user privileges.

SEE ALSO
acct< 2), saO)

Printed 6/23/82 1/S/82 1

ARCS) UNIX Programmer's Manual AR(S)

NAME
ar - archive (library) file format

SYNOPSI~
#include <ar.h>

DESCRIPl' ION
The archive command A£ is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link-editor
ld.

A file produced by ~ has a magic number at the start, followed by the
constituent files, each preceded by a file header. The magic number and
header layout as described in the include file are:

#define ARFMAG 0177545

struct

};

ar_hdr
char
long
short
short
short
l~ng

{
ar_name[14] ;
ar_date;
ar_uid;
ar-sid;
ar_mode;
ar_size;

The "ar_fmag" field contains the 32-bit number ARFMAG to help verify the
presence of a header. The name is a blank padded string. The other
fields are left-adjusted, blank-padded numbers. They are decimal except
for Itar_mode" , which is octa1. The date is the modification date of the
file at the time of its insertion into the archive.

Each file begins on an even (0 mod 2) boundary; a new-line is inserted
between files if necessary. Nevertheless the size given reflects the
actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

SEE ALSO

BUGS

ar(l), Id(l), nm(l)

File names lose trailing blaDks. Most software dealing with archives
takes even an included blaDk as a name terminator.

Printed 6/23/82 1

CHECKLIST(5) UNIX Programmer's Manual CHECKLIST(S)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory /etc and contains a list of at most 15
special file names. Each special file name is contained on a separate
ll.ne and corresponds to a file system. Each file system will then be
automatically processed by the fsck(lM) command.

FILES
/etc/checklist

SEE ALSO
fsck(1M)

Printed 6/23/82 1

CORE(S) UNIX Programmer's Manual CORE(S)

core - format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various
errors occur. See signal(2) for the list of reasons; the most common
are memory violations, illegal instructions, bus errors, and user
generated quit signals. The core image is called 'core' and is written
in the process's working directory (provided it can be; normal access
controls apply).

The first 2048 bytes of the core image are a copy of the system's per
user data for the process, including the registers as they were at the
time of the fault. The remainder represents the actual contents of the
user's core area when the core image was written. If the text segment
is write-protected and shared, it is not dumped; otherwise the entire
address space is dumped.

In general the debugger adb(l) 1S sufficient to deal with core images.

SEE ALSO
adb(l), signal(2)

Printed 6/23/82 1

DIR(S) UNIX Programmer's Manual DIR(S)

NAME
dir - format of directories

SYNOPSIS
#include <sys/types.h>
linclude <sys/dir.h>

DESCRIPrION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indi
cated by a bit in the flag word of its i-node entry; see filsys(S). The
structure of a directory entry as given in the include file is:

lifndef DIRSIZ
Idef ine DIRSIZ 14
#endif
struct direct {

ino_t d_ino;
char d_name[DIRSIZ];

};

By convention, the first two names in each directory are the names "."
and " •• ". The first is an entry for the directory itsel f. By opening
the file "." a program can read the names of files and subdirectories in
a directory. The second name " •• " is for the parent directory. The
meaning of " •• " is modified for the root directory of the master file
system (/), where" "has the same meaning as ".".

SEE ALSO
filsys(S)

Printed 6/2.3/82. 1

DUMP(5) UNIX Programmer's Manual DUMP(S)

NAME
dump, ddate - incremental dump format

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>
#include <dumprestor.h>

DESCRIFTION
Tapes used by dump and restor(l) contain:

a header record
two groups of bit map records
a group of records describing directories
a group of records describing files

The format of the header record and of the first record of each descrip
tion as given in the include file <dumprestor.h> is:

#define NTREC 10
#define MLEN 16
#define MSIZ 4096

#define TS_TAPE 1
#define TS_INODE 2
#define TS_BITS 3
#define TS_ADDR 4
#define TS_END 5
#define TS_CLRI 6
#define MAGIC (int)600ll
#define CHECKSUM (int)84446
struct spel
{

int
time_t
time_t
int
daddr_t
ino_t
short
int
int
int
struet
int
char

} spcl;_

struct
{

char
char

Printed 6/23/82

c_type;
c_date;
c_ddate;
c_volume;
c_tapea;
c_inumber;
c_id~;I* pad to force long boundary *1
c_nrec;l* number of records per storage medium *1
c_magic;
c_checksum;
dinodec_dinode;
c_count;
c_addr[BSIZE] ;

idates

id_name [16] ;
id_incno;

1

DUMP(5) UNIX Programmer's Manual DUMP(S)

};

NTREC is the number of 512 byte records in a physical tape block. ~
is the number of bits in a bit map word. MSIZ is the number of bit map
words.

The TS entries are used in the "c_type" field to indica te what sort of
header this is. The types and their meanings are as follows:

TS_TAPE Tape volume label
TS_INODE

A file or directory follows. The "c_dinode" field is a copy of
the disk inode and contains bit stelling what sort of f He this
is.

TS_BITS A bit map follows. This bit map has a one bit for each inode
that was dumped.

TS_ADDR A subrecord of a file description. See "c_addr" below.
TS_END End of tape record.
TS_CLRI A bit map follows. This bit map contains a zero bit for all

inodes that were empty on the file system when dumped.
MAGIC All header records have this number in "c_magic".
CHECKSUM

Header records checksum to this value.

The fields of the header structure are as follows:

c_type
c_date
c_ddate
c_volume

The
The
The
The

c_tapea The
c_inumber

type of the header.
da te the dump was taken.
date the file system was dumped from.
current volume number of the dump.
current number of this (Sl2-byte) record.

The number of the inode being dumped if this is of type
TS INODE.

c_magic This contains the value MAGIC above, truncated as needed.
c_checksum

This contains whatever value is needed to make the record sum
to CHECKSUM.

c_dinode This is a copy of the inode as it appears on the file system;
see fUsys(S).

c_count The count of characters in "c_addr".
c_addr An array of characters describing the blocks of the dumped

file. A character is zero if the block associated with that
character was not present on the file system, otherwise the
character is non-zero. If the block was not present on the
file system, no block was dumped; the block will be restored as
a hole in the file. If there is not sufficient space in this
record to describe all of the blocks in a file, TS ADDR records
will be scattered through the file, each one picking up where
the last left off.

Printed 6/23/82 2

DUMP(S) UNIX Programmer's Manual DUMP(S)

FILES

Each volume except the last ends with a tapemark (read as an end of
file). The last volume ends with a TS END record and then the tapemark.

The structure idates describes an entry· of the file /etc/ddate where
dump history is kept. The fields of the structure are:

id_name The dumped filesystem is '/dev/id nam'.
id_incno The level number of the dump tape; see ~(l).
id_ddate The date of the incremental dump in system format see types(S).

/etc/ddate

SEE ALSO
dump(l), restor(l), filsys(S), types(S)

Printed 6/23/82 3

ENVIRON(5) UNIX Programmer's Manual ENVIRON(5)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
An array of strings called the 'environment' is made available by
~(2) when a process begins. By convention these strings have the
form '~=value'. The following names are used by various commands:

PAlli The sequence of directory pref ixes that sh, time, niceO), etc.,
apply in searching for a file known by an incomplete path name.
The pref ixes are separated by ':'.
LoginO) sets :
PAllI=:/bin;/usr/bin.

HOME A user's login directory, set by login(l) from the password file
passwd(S).

TERM

SHELL

The kind of
informa tion
which may
/etc/termcap

terminal for which output is to be prepared.
is used by commands, such as nroff, ~,
exploit special terminal capabilities.
or (termcap(5» for a list of terminal types.

The file name of the users login shell.

This
or vi,

See

TERMCAP The string describing the terminal in TERM, or the name of the
termcap file, see termcap(S).

EXINIT A startup list of commands read by ex(l), edit(l), and vi(l).

USER The login name of the user.

Further names may be placed in the environment by the export command and
'name-value' arguments in sh(l), or by the seteny command if you use
csh(l). Arguments may also be placed in the environment at the point of
an exec(2). It is uuwise to conflict with certain sh(l) variables that
are frequently exported by ".profile" files: MAlL, PSI, PS2, IFS.

SEE ALSO
csh(l), ex(I), 10gin(I), sh(l), exec(2), system(3), termcap(5), term(7)

Printed 6/23/82 1

FILSYS(S) UNIX Programmer's Manual FILSYS(S)

NAME
filsyst flblk t ino - format of file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/flbk.h>
#include <sys/filsys.h>
#include <sys/ino.h>

DESCRIPTION
Every file system storage volume (e.g floppy disk, hard disk, or tape)
has a common format for certain vital information. Every such volume is
divided into a certain number of S12-byte blocks. Block 0 is unused and
is available to contain a bootstrap program, pack label, or other infor
mation.

Block 1 is the super block. The layout of the super block as defined by
the include file <~/filsys.h> is:

Structure of the super-block
struct filsys {

unsigned short s_isize; /* size in blocks of i-list */
daddr_t s_fsize; 1* size in blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr_t s_free[NICFREE];/* free block list */
short s_ninode; /* number of i-nodes in s_inode */
ino_t s_inode[NICINOD];/* free i-node list */
char s_flock; /* lock during free list manipulation */
char s_ilock; /* lock during i-list manipulation */
char s_fmod; /* super block modified flag */
char s_ronly; /* mounted read-only flag */
time_t s_time; /* last super block upda te */
daddr_t s_tfree; /* total free blocks*/
ino_t s_tinode; /* total free inodes */
short s m' /* interleave factor */ - ,
short s_n; 1* " " */

};

char s_fname[6]; /* file system name */
char s_fpack[6]; /* file system pack name */

"S_isize" is the address of the first block after the i-list, which
starts just after the super-block, in block 2. Thus i-list is s_isize
-2 blocks long. "S_fsize" is the address of the first block not poten
tially available for allocation to a file. These numbers are used by
the system to check for bad block addresses; if an 'impossible' block
address is allocated from the free list or is freed, a diagnostic is
written on the on-line console. Moreover, the free array is cleared, so
as to prevent further allocation from a presumably corrupted free list.

The free l.ist for each volume is maintained as follows. The "s_free"
array contains, in "s_freeD], ••• , s_free[s_nfree-l]," up to NICFREE

Printed 6/23/82 1

FILSYS(S) UNIX Programmer's Manual

free block numbers. NICFREE is a configuration
is the block address of the head of a chain of
free list. The layout of each block of the free
include file <.§.1!./fblk • .h> is:

struct fblk {
short
daddr_t

} ;

df_nfree;
df_free[NICFREE];

FILSYS(S)

constant. "S_free[O]"
blocks constituting the
chain as def ined in the

The fields "df_nfree" and "df_free" in a free block are used exactly
like "s_nfree" and "s_free" in the super block. To allocate a block:
decrement "s_nfree," and the new block number is "s_free[s_nfree]". If
the new block address is 0, there are no blocks left, so give an error.
If "s_nfree" became 0, read the new block into "s_nfree" and "s_free".
To free a block, check if "s_nfree" is NICFREE; if so, copy "s nfree"
and the "s_free" array into it, write it out, and set "s_nfree" to 0.
In any event set "s_free"[s_nfree] to the freed block's address and
increment "s_nfree".

"S_ninode" is the number of free i-numbers in the s_inode array. To
allocate an i-node: if "s_ninode" is greater than 0, decrement it and
return s_inode[s_ninodel. If it was 0, read the i-list and place the
numbers of all free inodes (up to NICINOD) into the s_inode array, then
try again. To free an i-node, prov ided "s_ninode" is less than NICI
NODE, place its number into s_inode[s_ninodel and inct:ement Its ninode".
If "s_ninode" is already NICINODE, don't bother to enter the freed i
node into any table. This list of. i-nodes is only to speed up the allo
cation process; the information as to whether the in ode is really free
or not is maintained in the inode itself.

"S_flock" and "s_ilock" are flags maintained in the core copy of the
file system while it is mounted and their values on disk are immaterial.
The value of "s_fmod" on disk is 1 ikewise immaterial; it is used as a
flag to indicate that the super-block has changed and should be copied
to the disk during the next periodic update of file system information.
"S_ronly" is a write-protection indicator; its disk value is also imma
terial.

"S_time" is the last time the super-block of the file system was
changed. During a reboot, "s_time" of the super-block for the root file
system is used to set the system's idea of the time.

The fields "s_tfree", "s_tinode", "s_fname" and "s_fpack" are not
currently maintained.

I-numbers begin at 1, a~d the storage for i-nodes begins in block 2.
I-nodes are 64 bytes long, so 8 of them fit into a block. I-node 2 ~s
reserved for the root directory of the file system, but no other i
number has a built-in meaning. Each i-node represents one file. The
format of an i-node as given in the include file <~/ino • .h> is:

Printed 7/14/82 2

FILSYS(5) UNIX Programmer's Manual FILSYS(S)

Inode structure as it appears
struct dinode {

unsigned short di_mode;
short di_nlink;
short di_uid;
short di-&id;
of f_t d i_s iz e;
char di_addr(40);
time_t di_atime;
time_t di_mtime ;
time_t di_ctime;

on a disk block.

1* mode and type of file *1
1* number of links to file *1
1* owner's user id *1
1* owner's group id *1
1* number of bytes in file *1

1* disk block addresses *1
1* time last accessed *1
1* time last modified *1
1* time created *1

};
#define INOPB 8 1* 8 inodes per block *1
1*
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*1

"Di_mode" tells the kind of file; it is encoded identically to the
"st mode" field of stat(2). "Di nlink" is the number of directory
ent;ies (links) that refer to this i=-node. ''Di_uid'' and "di-&id" are
the owner's user and group IDs. Size is the number of bytes in the
file. ''Di atime" and "di mtime" are the times of last access and modif
ication of the file c;ntents (read, write or create) (see times(2»;
''Di_ctime'' records the time of last modifica tion to the inode or to the
file, and is used to determine whether it should be dumped.

Special files are recognized by their modes and not by i-number. A
block-type special file is one which can potentially be mounted as a
file system; a character-type special file cannot, though it is not
necessarily charact er-oriented. For special files, the "di_addr" field
is occupied by the device code (see types(S». The device codes of
block and character special files overlap.

Disk addresses of plain files and directories are kept in the array
"di_addr" packed into 3 bytes each. The first 10 addresses specify dev
ice blocks directly. The last 3 addresses are singly, doubly, and tri
ply indirect and point to blocks of 128 block pointers. Pointers in
indirect blocks have the type "daddr_t" (see types(S».

For block k in a file to exist, it is not necessary that all blocks less
than A exist. A zero block number either in the address words of the
i-node or in an indirect block indicates that the corresponding block
has never been allocated. Such a missing block reads as if it contained
all zero words.

SEE ALSO
icheck(1), dcheck(1), dir(S), mount(1), stat(2), types(S)

Printed 6/23/82 3

GROUP(S) UNIX Programmer's Manual GROUP{S)

group - group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group
is separated from the next by a new-line. If the password field is
null, no password is demanded.

This file resides in directory /etc. Because of the encrypted pass
words, it can and does have general read permission and can be used, for
example, to map numerical group ID's to names.

fete/group

SEE ALSO
newgrp(l), crypt(3). passwd(l), passwd(S)

Printed 6/23/82 1

MTAB(S) UNIX Progrwmmer's Manual MTAB(S)

NAME
mtab - mounted file system table

DESCRIPl' ION

FILES

Mtab resides in direct ory /~ and contains a table of dev ice s mounted
by the mount command. Umount removes entries.

Each entry is 64 bytes long; the first 32 bytes are the null-padded name
of the place where the special file is mounted; the second 32 bytes are
the null-padded name of the special file. The special file has all its
directories stripped away; that is, everything through the last '/' is
thrown away.

This table is present only so people can look at it. It does not matter
to mount (1) if there are duplicated entries nor to umount(l) if a name
cannot be found.

/etc/mtab

SEE ALSO
mount(2)

Printed 6/23/82 1/22/82 1

PASSWD(S) UNIX Programmer's Manual PASSWD(S)

passwd - password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID
user's real name, and other information if desired
initial working directory
program to use as Shell sh(l) or csh(l)

This is an ASCII file. Each field within each user's entry is separated
from the next by a colon. Each user is separated from the next by a
new-line. If the password field is null, no password is demanded; if
the Shell field is null, the Shell itself sh(l) is used.

This file resides in directory letc. Because of the encrypted pass
words, it can and does have general read permission and is used, for
example, by lA(l) , to map numerical user ID's to names.

letclpasswd

SEE ALSO
login(l), passwd(l)

Printed 6/23/82 5/10/80 1

seeSFILE(S) UNIX Programmer's Manual seeSFILE(5)

NAME
sccsfile - format of sces file

DESCRIPTION
An sces file is an ASCII file. It consists of six logical parts: the
checksum, the delta table <contains information about each delta), ~
names (contains login names and/or numerical group IDs of users who may
add deltas), flags (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and the
body (contains the actual text lines intermixed with control lines).

Throughout an sees file there are lines which begin with the ASCII SOH
(start of heading) character (octal 001). This character is hereafter
referred to as the control character and will be represented graphi
cally as @. Any line described below which is not depicted as beginning
with the control character is prevented from beginning with the control
character.

Entries of the form DDDDD represent a five digit string (a number
between 00000 and 99999).

Each logical part of an sces file is descr ibed in detail below.

Checksum
The checksum is the first. line of an sces file. The form of the
line is:

@hDDDDD

The value of the checksum is the sum of all characters, except
those of the first line. The @h prov ide s a magic number of
(octal) 064001.

Delta table
The delta table consists of a variable number of entries of the
form:

The

Printed 8/11/82

@s DDDDD/DDDDD/DDDDD
@d <type> <sees ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD
@x DDDDD •••
@g DDDDD •••
@m <MR number>

@c <comments>

@e

first line

...

(@s) contains the number of lines

1

seeSFILE (5) UNIX Progr ammer' s Manual seeSFILE(S)

inserted/deleted/unchanged respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:
R), the sees ID of the delta, the date and time of creation of the
delta, the login name corresponding to the real user ID at the
time the delta was created, and the serial numbers of the delta
and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the
delta.

The @e line ends the delta table entry.

~ names

Flags

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines
containing these login names and/or numerical group IDs are sur
rounded by the bracketing lines @u and @U. An empty list allows
anyone to make a delta.

Keywords used internally (see admin(l) for more information on
their use). Each flag line take s the form:

@f <flag> <optional text>

The following flags are def ined:
@f t <type of program>
@£ v <progran name>
@f i
@f b
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default-sid>
@£ n
@f j
@f I <lock-releases>
@f q <user def ined>

The t flag defines the replacement for the %Y% identification key
word. The v flag controls prompting for MR numbers in addition to
comments; if the optional text is present it defines an MR number
validity checking program. The i flag controls the warning/error
aspect of the "No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is
present, this message will cause a "fatal" error (the file will
not be gotten, or the delta will not be made). When the b flag is

Printed 8/11/82 2

SCCSFILE(S) UNIX Programmer's Manual SCCSFILE(S)

present the -b key letter may be used on the ~ command to cause a
branch in the delta tree. The m flag defines the first choice for
the replacement text of the %M% identification keyword. The f
flag def ines the ... "'floor" release; the release below which no
deltas may be added. The c flag defines the ceiling" release;
the release above which no deltas may be added. The d flag
defines the default SID to be used when none is specified on a ~
command. The n flag causes delta to insert a null" delta (a
delta that applies ~ changes) in those releases that are skipped
when a delta is made in a ~ release (e.g., when delta 5.1 is
made after delta 2.7. releases 3 and 4 are skipped). The absence
of the n flag causes skipped releases to be completely empty. The
j flag causes ~ to allow concurrent edits of the same base SID.
The 1 flag def ines a list of releases that are locked against
editing (.&!.to) with the -e keyletter). The q flag defines the
replacement for the %Q% identification keyword.

Comments

SEE ALSO

Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically will contain a descr iption of the
file's purpose.

The body consists of text lines and control lines. Text
don't begin with the control character, control lines do.
are three kinds of control lines: insert, delete. and
represented by:

@I DDDDD
@D DDDDD
@E DDDDD

lines
There

end.

respectively. The digit string is the serial number corresponding
to the delta for the control line.

admin(1), delta(l). get(1). prs(1).
Source ~ Control System ~'A Guide by L. E. Bonanni and C. A.
Salemi.

Printed 8/11/82 3

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

NAME
termcap - terminal capability data base

SYNOPSIS
/etc/termcap

DES CRI PI' ION
Termcap is a data base describing terminals, used, ~.g., by vi(l) and
curses(3). Terminals are described in termcap by g1VlDg a set of capa
bilities which they have, and by describing how operations are per
formed. Padding requirements and initialization sequences are included
in termcap.

Entries in termcap consist of a number of ':' separated fields. The
first entry for each terminal gives the names which are known for the
terminal, separated by '1' characters. The first name is always 2 char
acters long and is used by older version 6 systems which store the ter
minal type in a 16 bit word in a systemwide data base. The second name
given is the most common abbreviation for the terminal, and the last
name given should be a long name fully identifying the terminal. The
second name should contain no blanks; the last name may well contain
blanks for readability.

CAPABILITIES
(p) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected

Name
ae
a1
am
as
bc
bs
bt
bw
CC
cd
ce
ch
c1
em
co
cr
cs
cv
da
dB
db
dC
dc
dF

Type
str
str
bool
str
str
bool
str
bool
str
str
str
str
str
str
num
str
str
str
boo1
num
bool
num
str
num

Printed 6/23/82

Pad?
(p)

(P*)

(p)

(p)

(p*)
(p)
(p)
(p*)
(p)

Des cr iption
End alternate character set
Add new blank line
Terminal has automatic margins
Start alternate character set
Backspace if not AU
Terminal can backspace with AU
Back tab
Backspace wraps from column 0 to last column
Command character in prototype if terminal settable
Clear to end of display
Clear to end of line
Like em but horizontal motion only, line stays same
Clear screen
Cursor motion
Number of columns in a line
Carriage return, (default AM)
Change scrolling region (vt100), like cm
Like ch but vertical only.
Display may be retained above
Number of millisec of bs delay needed
Display may be retained below
Number of millisec of cr delay needed
Delete character
Number of millisec of ff delay needed

5/10/80 1

TERMCAP(S)

d1 str (P*)
dm str
dN num
do str
dT num
ed str
ei str
eo str
ff str (P*)
hc boo1
hd str
ho str
hu str
hz str
ic str (p)
if str
im boo1
in boo1
ip str (P*)
is str
kO-k9 str
kb str
kd str
ke str
kh str
k1 str
kn num
ko str
kr str
ks str
ku str
10-19 str
li num
11 str
ma str
mi boo1
m1 str
ms boo1
mu str
nc boo1
nd str
n1 str (P*)
ns bool
os boo1
pc str
pt bool
se str
sf str (p)
sg num
so str
sr str (p)
ta str (p)

Printed 6/23/82

UNIX Progr~er's Manual TERMCAP(S)

Delete 1 ine
Delete mode (enter)
Number of mi11isec of n1 delay needed
Down one line
Number of mi11isec of tab delay needed
End delete mode
End insert mode; give :ei=: if ic
Can erase overstrikes with a blank
Hardcopy terminal page eject (default ~L)
Hardcopy terminal
Half-line down (forward 1/2 1inefeed)
Home cursor (if no em)
Half-line up (reverse 1/2 1inefeed)
Hazeltine; can't print -'s
Insert charact er
Name of file containing is
Insert mode (enter); give :im=: if ic
Insert mode distinguishes nulls on display
Insert pad after character inserted
Terminal initial iza tion string
Sent by other function keys 0-9
Sent by backspace key
Sent by terminal down arrow key
Out of keypad transmit mode
Sent by home key
Sent by terminal left arrow key
Number of other keys
Termcap entries for other non-function keys
Sent by terminal right arrow key
Put terminal in keypad transmit mode
Sent by terminal up arrow key
Labels on other function keys
Number of lines on screen or page
Last line, first column (if no em)
Arrow key map, used by vi version 2 only
Safe to move while in insert mode
Memory lock on above cursor.
Safe to move while in standout and underline mode
Memory unlock (turn off memory lock).
No correctly working carriage return (DM2500,H2000)
Non-destructive space (cursor right)
Newline character (default \n)
Terminal is a CRT but doesn't scroll.
Terminal overstrikes
Pad character (rather than null)
Has hardware tabs (may need to beset with is)
End stand out mode
Scroll forwards
Number of blank chars left by so or se
Begin stand out mode
Scroll r~erse (backwards)
Tab (other than ~I or with padding)

S/10/80 2

TERMCAP(S)

tc str
te str
ti str
uc str
ue str
ug num
ul bool
up str
us str
vb str
ve str
vs str
xb bool
xn bool
xr ·bool
xs bool
xt bool

UNIX Programmer's Manual

Entry of similar terminal - must be last
String to end programs that use em
String to begin programs tbat use em
Underscore one char and move past it
End underscore mode
Number of blank chars left by us or ue

TERMCAP{s)

Terminal underlines even though it doesn't overstrike
Upline (cursor up)
Start underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (fl-escape, f2-ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 264?)
Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept-100, is among the more
complex entries in the termcap file as of this writing. (This particu
lar co~cept entry is outdated, and is used as an example only.)

cllclOOlconceptlOO:is-\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
. :al-3*\EA R:am:bs:cd-16*\EA C:ce=16\EA S:cl=2*AL:cm-\Ea%+ %+ :co#80:\

:dc-16\EA A:dl-3*\EA B:ei-\E\200:eo:im-\EA P:in:ip-l6*:li#24:mi:nd=\E=
:se=\Ed\Ee:so-\ED\EE:ta=8\t:ul:up-\E;:vb=\Ek\EK:xn:

Entries may continue onto mUltiple lines by giving a \ as the last char
acter of a line, and empty fields may be included for readability (here
between the last field on a line and the first field on the next).
Capabilities in termcap are of three types: Boolean capabilities which
indicate that the terminal has some particular feature, numeric capabil
ities giving the size of the terminal or the size of particular delays,
and string capabilities, which give a sequence which can be used to per
form particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the
Concept has automatic margins (i.e. an automatic return and linefeed
when the end of a line is reached) is indicated by the capability am.
Bence the description of the Concept includes am. Numeric capabilities
are followed by the character '#' and then t~e value. Thus co which
indicates the number of columns the terminal has gives the value '80'
for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an '-', and then a string
ending at the next following ':'. A delay in milliseconds may appear
after the '-' in such a capability, and padding characters are supplied

Printed 6/23/82 s/lO/SO 3

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

by the editor after the remainder of the string is sent to prov ide this
delay. The delay can be either a integer, e.g. '20', or an integer fol
lowed by an '*', i.e. '3*'. A '*' indicates that the padding required
is proportional to the number of lines affected by the operation, and
the amount given is the per-affectEd-unit padding required. When a '*'
is specified, it is sometimes useful to give a delay of the form "3.5"
to specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabili
ties for easy encoding of characters there. A \E maps to an ESCAPE
character, AX maps to a control-x for any appropriate x, and the
sequences \n \r \t \b \f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after
a \, and the characters A and \ may be given as \A and \\. If it is
necessary to place a : in a capability it must be escaped in octal as
\072. If it is necessary to place a null character in a string capabil
ity it must be encoded as \200. The routines which deal with termcap
use C strings, and strip the high bits of the output very late so that a
\200 comes out as a \000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most
effective way to prepare a terminal description is by imitating the
description of a similar terminal in termcap and to build up a descrip
tion gradually, using partial descr iptions with ~ to check that they
are correct. Be aware that a very unusual terminal may expose deficien
cies in the ability of the termcap file to describe it or bugs in~. To
easily test a new terminal descr iption you can set the env irollllent vari
able TERMCAP to a pathname of a file containing the description you are
working on and the editor will look there rather than in /~/termcap.
TERMCAP can also be set to the termcap entry itself to avoid reading the
file when starting up the editor.

Basic capabilities

The number of columns on each line for the terminal is given by the co
numeric capability. If the terminal is a CRT, then the number of lines
on the screen is given by the Ii capability. If the terminal wraps
around to the beginning of the next line when it reaches the right mar
gin, then it should have the am capability. If the terminal can clear
its screen, then this is given by the cl string capabil ity. If the ter
minal can backspace, then it should have the bs capability, unless a
backspace is accomplished by a character other than AH (ugh) in which
case you should give this character as the bc string capability. If it
overstrikes (rather than clearing a position when a character is struck
over) then it should have the os capability.

A very important point here is that the local cursor motions encoded in
termcap are undefined at the left and top edges of a CRT terminal. The
editor will never attempt to backspace around the left edge, nor will it
attempt to go up locally off the top. The editor assumes that feeding

Printed 6/23/82 5/l0/SO 4

TERMCAP(S) UNIX Programmer's Manual TERMCAP(5)

off the bottom of the screen will cause the screen to scroll up, and the
am capability tells whether the cursor sticks at the right edge of the
screen. If the terminal has switch selectable autanatic margins, the
termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and glass-tty terminals.
Thus the model 33 teletype is descr ibed as

t3133Itty33:coI72:os

while the Lear Siegler ADM-3 is described as

clladm313llsi adm3:am:bs:cl=~Z:liI24:coI80

Cursor addressing

Cursor addressing in the terminal is described by a em string capabil
ity, with printf(3s) like escapes %x in it. These substitute to encod
ings of the current line or column position, while. other characters are
passed through unchanged. If the em string is thought of as being a
function, then its arguments are the line and then the column to which
motion is desired, and the % encodings have the following meanings:

%d as in printf, 0 origin
%2 like %2d
%3 like %3d
%. like %c
%+x adds Z to value, then %.
%>xy if value> x adds y, no output.
%r reverses order of line and column, no output
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2500)
%B BCD (16*(x/10» + (x%10), no output.
%D Reverse coding (x-2*(x%16», no output. (Delta Data).

Consider the HP264S, which, to get to row 3 and column 12, needs to be
sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the
rows and columns is inverted here, and that the row and column are
printed as two digits. Thus its em capability is em=6\E&a%r%2c%2Y. The
Microterm ACT-IV needs the current row and column sent preceded by a AT,
with the row and column simply encoded in binary, cm=AT%.%.. Terminals
which use %. need to be able to backspace the cursor (bs or bc), and to
move the cursor up one line on the screen (up introduced below). This
is necessary because it is not always safe to transmit \t, \n AD and \r,
as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a
blank character, thus cm=\E=%+ %+ •

Cursor motions

Printed 7/21/82 5/10/80 5

TERMCAP(S) UNIX Programmer's Manual TERM CAP (5)

If the terminal can move the cursor one position to the right, leaving
the character at the current position unchanged, then this sequence
should be given as nd (non-destructive space). If it can move the cur
sor up a line on the screen in the same column, this should be given as
up. If the terminal has no cursor addressing capability, but can home
the cursor (to very upper left corner of screen) then this can be given
as hOi similarly a fast way of getting to the lower left hand corner can
be given as 11; this may involve going up with up from the home posi
tion, but the editor will never do this itself (unless 11 does) because
it makes no assumption about the effect of moving up from the home posi
tion.

Area clears

If the terminal can clear from the current position to the end
line, leaving the cursor where it is, this should be given as
the terminal can clear from the current position to the end
display, then this should be given as cd. The editor only uses
the first column of a line.

Insert/delete line

of the
ceo If
of the
cd from

If the terminal can open a new blank line before the line where the cur
sor is, this should be given as al; this is done only from the first
position of a line. The cursor must then appear on the newly blank
line. If the terminal can delete the line which the curs.or is on, then
this should be given as dl; this is done only from the f'irst position on
the line to be deleted. If the terminal can scroll the screen back
wards, then this can be given as sb, but just al suffices. If the ter
minal can retain display memory above then the da capability should be
given; if display memory can be retained below then db should be given.
These let the editor understand that deleting a line on the screen may
bring non-blank lines up from below or that scrolling back with sb may
bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using termcap. The most
common insert/delete character operations affect only the characters on
the current line and shift characters off the end of the line rigidly.
Other terminals, such as the Concept 100 and the Perkin Elmer Owl, make
a distinction between typed and untyped blanks on the screen, shifting
upon an insert or delete only to an untyped blank on the screen which is
either eliminated, or expanded to two untyped blanks. You can find out
which kind of terminal you have by clearing the screen and then typing
text separated by cursor motions. Type abc def using local cursor
motions (not spaces) between the abc and the def. Then position the
cursor before the abc and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and characters
to falloff the end, then your terminal does not distinguish between
blanks and untyped positions. If the abc shifts over to the def which

Printed 6/23/82 S/10/SO 6

TERMCAP(5) UNIX Programmer's Manual TERMCAP(5)

then move together around the end of the current line and onto the next
as you insert, you have the second type of terminal, and should give the
capability in, which stands for insert null. If your terminal does
something different and unusual then you may have to modify the editor
to get it to use the insert mode your terminal defines. We have seen no
terminals which have an insert mode not falling into one of these two
clas ses.

The editor can handle both terminals which have an insert mode, and ter
minals which send a simple sequence to open a blank position on the
current line. Give as im the sequence to get into insert mode, or give
it an empty value if your terminal uses a sequence to insert a blank
position. Give as ei the sequence to leave insert mode (give this, with
an empty value also if you gave im so). Now give as ic any sequence
needed to be sent just before sending the character to be inserted.
Most terminals with a true insert mode will not give ie, terminals which
send a sequence to open a screen position should give it here. (Insert
mode is preferable to the sequence to open a position on the screen if
your terminal has both.) If post insert padding is needed, give this as
a number of milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single character may also
be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g. if there is a tab after the
insertion position). If your terminal allows mo·tian while in insert
mode you can give the capability mi to speed up inserting in this case.
Omitting mi will affect only speed. Some terminals (notably
Datamedia's) must not have mi because of the way their insert mode
works.

Finally, you can specify delete mode by giving dm and ed to enter and
exit delete mode, and dc to delete a single character while in delete
mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can
be given as so and se respectively. If there are several flavors of
standout mode (such as inverse video, blinking, or underlining half
bright is not usually an acceptable standout mode unless the terminal is
in inverse video mode constantly) the preferred mode is inverse video by
itself. If the code to change into or out of standout mode leaves one
or even two blank spaces on the screen, as the TVI 912 and Teleray 1061
do, then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue
respectively. If the terminal has a code to underline the current char
acter and move the cursor one space to the right, such as the Microterm
Mime, this can be given as uc. (If the underline code does not move the
cursor to the right, give the code followed by a nondestructive space.)

Printed 7/21/82 5/10/80 7

TERMCAP(S) UNIX Programmer's Man~l

Many terminals, such as the HP 2621, automatically leave
when they move to a new line or the cursor is addressed.
standout mode should exit standout mode before moving
sending a newline.

TERMCAP(S)

standout mode
Programs using

the cursor or

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as vb; it must not
move the cursor. 1£ the terminal should be placed in a different mode
during open and visual modes of Ja, this can be given as vs and ve, sent
at the start and end of these modes respectively. These can be used to
change, e.g., from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can be
given as ti and teo This arises, for example, from terminals like the
Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the terminal
for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no spe
cial codes needed) even though it does not overstrike, then you should
give the capability ul. If overstrikes are erasable with a blank, then
this should be indicated by giving eo.

Keypad

1£ the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to

, handle terminals where the keypad only works in local (this applies, for
example, to the unshifted HP 2621 keys). 1£ the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise" the
keypad is assumed to always transmit. The codes sent by the left arrow,
right arrow, up arrow, down arrow, and home keys can be given as kl, kr,
ku, kd, and kh respectively. If there are function keys such as fO, fl,
••• , f9, the codes they send can be given as kO, k1, ••• , k9. If these
keys have labels other than the default fO through f9, the labels can be
given as 10, 11, ••• , 19. If there are other keys that transmit the
same code as the terminal expects for the corresponding function, such
as clear screen, the termcap 2 letter codes can be given in the ko capa
bility, for example, :ko-c1,ll,sf,sb:, which says that the terminal has
clear, home down, scroll down, and scroll up keys that transmit the same
thing as the cl, 11, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which have
single character arrow keys. It is obsolete but still in use in version
2 of vi, which must be run on some minicomputers due to memory limita
tions. This field is redundant with kI, kr, ku, kd, and kh. It con
sists of groups of two characters. In each group, the first character
is what an arrow key sends, the second character is the corresponding vi
command. These commands are h for kl, j for kd, k for ku, 1 for kr, and
H for kh. For example, the mime would be :ma_AKjAZkAXI: indicating

Printed 6/23/82 5/10/SO 8

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

FILES

arrow keys left (AB), down (jK), up (AZ), and right (AX). (There is no
home key on the mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a char
acter other than AI to tab, then this can be given as tao

Hazeltine terminals, which don't allow ,-, characters to be printed
should indicate hz. Datamedia terminals, which echo carriage-return
linefeed for carriage return and then ignore a following linefeed should
indicate nco Early Concept terminals, which ignore a linefeed immedi
ately after an am wrap, should indicate xn. If an erase-eol is required
to get rid of standout (instead of merely writing on top of it), xs
should be given. Teleray terminals, where tabs turn all characters
moved over to blanks, should indicate xt. Other specific terminal prob- _
lems may be corrected by adding more capabilities of the form x~.

Other capabilities include is, an initialization string for the termi
nal, and if, the name of a file containing long initialization strings.
These strings are expected to properly clear and then set the tabs on
the terminal, if the terminal has settable tabs. If both are given, is
will be printed before if. This is useful where if 1S

/Y!A/lib/tabset/std but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capabil ity tc
can be given with the name of the similar terminal. This capability
must be 1A!! and the combined length of the two entries must not exceed
1024. Since termlib routines sear~h the entry from left to right, and
since the tc capability is replaced by the corresponding entry, the
capabilities given at the left override the ones in the similar termi
nal. A capability can be cancelled with xx@ where xx is the capability.
For example, the entry

hnI2621nl:ks@:ke@:tc-262l:

defines a 2621n1 that does not have the ks or ke capabilities, and hence
does not turn on the function key labels when in visual mode. This is
useful for different modes for a terminal, or for different user prefer
ences.

letc/termcap file containing terminal descriptions

SEE ALSO
ex(l), curses(3), termcap(3), tset(l), vi(l), ul(l), more(l)

Printed 6/23/82 S/10/80 9

TERMCAP(5) UNIX Programmer's Manual

AUTHOR
William Joy
Mark Horton added underlining and keypad support

BUGS
Ex allows only 256
in termcap(l) do
length of a single
exceed 1024.

characters for string capabilities, and the
not check for overflow of this buffer.

entry (excluding only escaped new lines)

The ma, vs, and ve entries are specific to the vi program.

TERM CAP (5)

routines
The total
may not

Not all programs support all entries. There are entries that are not
supported by any program.

Printed 6/23/82 10

TP(S) UNIX Programmer's Manual TP(S)

NAME
tp - DEC/mag tape formats

DESCRIPTION
The command ~ dumps files to and extracts files from DECtape and
magtape. The formats of these tapes are the same except that magtapes
have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See
bproc(8) •

Blocks I through 24 for DECtape (1 through 62
directory of the tape. There are 192 (resp.
tory; 8 entries per block; 64 bytes per entry.
lowing forma t:

struct {
char
int
char
char
char
char
long
int
char
int

};

pathname[32] ;
mode;
uid;
gid;
unused1 ;
size [3] ;
modtime ;
tapeaddr;
unused2[16] ;
checksum;

for magtape) contain a
496) entries in the direc

Each entry has the fol-

The path name entry is the path name of the file when put on the tape.
If the pathname starts with a zero word, the entry is empty. It is at
most 32 bytes long and ends in a null byte. Mode, uid, gid, size and
time modified are the same as described under i-nodes (see file system
filsys(S». The tape address is the tape block number of the start of
the contents of the file. Every file starts on a block boundary. The
file occupies (size+S11)/S12 blocks of continuous tape. The checksum
entry has a value such that the sum of the 32 words of the directory
entry is zero.

Blocks above 2S (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
filsys(S), tp(1)

BUGS
The pathname, uid, gid, and size fields are too small.

Printed 6/23/82 1

TTYS(5) UNIX Progrrunmer's Manual TTYS(5)

NAME
ttys - terminal initialization data

DESCRIPrION
The !.ill. file is read by the init program and specifies which terminal
special files are to have a process created for them which will allow
people to log in. It contains one line per special file.

The first character of a line is either '0' or '1'; the former causes
the line to be ignored, the latter causes it to be effective.

The second character is used as an argument to getty(lM), which performs
such tasks as baud-rate recognition, reading the login name, and calling
login.

The following chart lists the characters to be used for the second char
acter:

Single Speed

1 50
2 75
3 110
4 134.5
5 150
6 200
7 300
8 600
9 1200
a 1800
b 2400
c 4800
d 9600
e Ext A and 19200
f Ext B

CONSOLES

A 110 console
B Decwriter
C Interdata

OTHERS

D-E-F-G

H-I

300/1200/150/110
for modems

1200/300
for modems

The remainder of the line is the terminal's entry in the device direc
tory, /dev.

Printed 7/21/82 1

TTYSCS)

EXAMPLE

FILES

1dconsole
IdttyO
19ttyl
19tty2
009tty3
07ttydO

/etclttys

SEE ALSO

UNIX Programmer's Manual

initC1M), getty(1M), login(l)

Printed 7/21/82 2/23/82

TTYsCS)

2

T'lYTYPE (5) UNIX Programmer's Manual TTYTYPE(S)

NAME
ttytype - data base of terminal types by port

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the
kind of terminal that is attached to it. There is one line per port,
containing the terminal kind (as a name listed in termcap (5», a space,
and the name of the tty, minus /dev/.

This information is read by ,U.gi(l) and by login(l) to initial ize the
TERM environment variable at login time.

EXAMPLE

FILES

dw console
3a ttyO
hl9 ttyl
h1.9 tty2
du ttydO

/etc/ttytype

SEE ALSO
tset(l), login(~)

Printed 7/14/82 1

TYPES (S) UNIX Progr ammer' 8 Manual TYPES(S)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system code;
some data of these types are accessible to user code:

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

long
char *
long
unsigned
long
long
short
long

daddr_t;
caddr_t;
mem to - ,

short ino_t;
time_t;
label_dB] ;
dev_t;
off_t;

1* regs d2-d7, a2-a7, pc *1

1* selectors and constructor for device code *1

Idef ine
#define
#define

major(x) (int)«(unsigned)(x»> 8»
minor (x) (in t)(x) & 03 77)
makedev(x,y) (dev_t)«x) « 81(y»

The form"daddr t is used for disk addresses except in an i-node on disk,
see fi1sys(5). Times are encoded in seconds since 00:00:00 GMT, January
1, 1970. The major and minor parts of a device code specify kind and
unit number of a device and are installation-dependent. Offsets are
measured in bytes from the beginning of a file. The label t variables
are used to save the processor state while another process is running.

SEE ALSO
fi1sys(5), time(2), 1seek(2), adb(l)

Printed 7/14/82 1

UTMP(S) UNIX Programmer's Manual UTMP(S)

NAME
utmp, wtmp - login record 5

SYNOPSIS
linclude <utmp.h>

DESCRIPl'ION

FILES

The utmp file allows one to dis cover information about who is currentl y
using the system. The file is a sequence of entries with the following
structure declared in the include file:

struct utmp
char
char
long

} ;

{
ut_line [8] ;
ut_name [8] ;
ut_time;

/* tty name */
/* user id */
/* time on */

This structure gives the name of the special file associated with the
user's terminal, the user's login name, and the time of the login in the
form of time(2).

The wtmp file records all logins and logouts. Its format is exactly
like utmp except that a null user name indicates a logout on the associ
ated terminal. Furthermore, the terminal name II-II indica tes that the
system was rebooted at the indicated time; the adjacent pair of entries
with terminal names II I II and "}" indica te the system-maintained time just
before and just after a ~ command has changed the system's idea of
the time.

Wtmp is maintained by login(l) and init(lM). Neither of these programs
creates the file, so if it is removed record-keeping is turned off.

/etc/utmp
/usr /adm/wtmp

SEE ALSO
login(l), init(lM), who(l)

Printed 7/21/82 1

WTMP(5) UNIX Programmer's Manual WTMP(S)

. NAME
wtmp - user login history

DESCRIPTION

FILES

This file records all logins and logouts. Its format is exactly like
utmp(5) except that a null user name indica tes a logout on the associ
ated typewriter. Furthermore, the typewr iter name II-II indica tes that
the system was rebooted at the indicated time; the adjacent pair of
entries with typewrit er names "I II and "}" indica te the system-maintained
time just before and just after a ~ command has changed the system"s
idea of the time.

Wtmp is maintained by 10gin(1) and init(lM). Neither of these programs
creates the file, so if it is removed record-keeping is turned off. It
is summarized by AS.(l).

lusr I adm/wtmp

SEE ALSO
utmp(S), 10gin(1), init(lM), who(l)

Printed 7/21/82 1

ADV ENTURE (6) UNIX Programmer's Manual ADVENTURE (6)

NAME
adventure - an exploration game

SYNOPSIS
/usr/games/adventure

DESCRIPTION

BUGS

The object of the game is to locate and explore Colossal Cave, find the
treasures hidden there, and bring them back to the building with you.
The program is self-describing to a point, but part of the game is to
discover its rules.

To terminate a game, type "quit"; to save a game for later resumption,
type "suspend".

Saving a game creates a large executable file instead of just the infor
mation needed to resume the game.

Printed 7/8/82 4/2/81 1

ALIENS(6) UNIX Programmer's Manual

NAME
aliens - The alien invaders attack the earth

SYNIOPSIS
/usr/games/aliens

DESCRIPTION

ALIENS(6)

This is a UNIX version of Space Invaders. The program is pretty much
self documenting.

FILES

BUGS

/usr/games/lib/aliens.log Score file

The program is a CPU hog. It needs to be re-written.
well on terminals that run slower than 9600 baud.

Printed 7/8/82

It doesn't do

1

ARITHMETIC(6) UNIX Programmer's Manual ARITHMETIC(6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+-x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer
to be typed in. If the answer is correct, it types back Right!, and a
new problem. If the answer is wrong, it replies What?, and waits for
another answer. Every twenty problems, it publishes statistics on
correctness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be gen
erated; +-x/ respectively cause addition, subtraction, multiplication,
and division problems to be generated. One or more characters can be
given; if more than one is given, the different types of problems will
be mixed in random order; default is +-

Range is a decimal number; all addends, subtrahends, differ~nces, multi
plicands, divisors, and quotients will be less than or equal to the
value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely
to appear. If the respondent makes a mistake, the numbers in the prob
lem which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct
answers, since the learner should, in principle, be able to calculate
them. Thus the program is intended to prov ide dr ill for someone just
past the first learning stage, not to teach number facts de.!!m!.Q.. For
almost all users, the relevant statistic should be time per problem, not
percent correct.

Printed 7/28/82 4/1/81 1

BACKGAMMON(6) UNIX Programmer's Manual BACKGAMMO N(6)

NAME
backgammon - the game

SYNOPSIS
/usr/games/backgammon

DESCRIPTION
This program does what you expect.
instruct ions.

Printed 7/8/82

It will ask whether you need

1

BANNER(6) UNIX Programmer's Manual BANNER(6)

NAME
banner - print large banner on printer

SYNOPSIS
/usr/games/banner [-~] message •••

DESCRIPTION

BUGS

Banner prints a large, high quality banner on the standard output. If
the message is omitted, it prompts for and reads one line of its stan
dard input. If -w is given, the output is scrunched down from a width
of 132 to ~ suitable for a narrow terminal. If A is omitted, it
defaults to 80.

The output should be printed on a hard-copy device, up to 132 columns
wide, with no breaks between the pages. The volume is enough that you
want a printer or a fast hardcopy terminal, but if you are patient, a
decwriter or other 300 ba~d terminal will do.

Several ASCII characters are not defined, notably <, >, [,], \, ,_,
{, }, I, and -. Also, the characters ", " and & are funny looking (but
in a useful way.)

The -w option is implemented by skipping same
smaller it gets,. the grainier the output.
together.

rows and columns. The
Sometimes it runs letters

AUTHOR
Mark Horton

Printed 7/8/82 1

BCD(6) UNIX Programmer's Manual BCD(6)

NAME
bed - convert to antique media

SYNOPSIS
/usr/games/bed text

DESCRIPT ION
Bcd converts the literal ~ into a form familiar to old-timers.

Printed 7/28/82 1

FISH(6) UNIX Programmer's Manual . FISH(6)

NAME
fish - play "Go Fish"

SYNOPSIS
/usr/games/fish

DESCRIPTION
Fish plays the game of Go Fish, a childrens' card game. The Object is
to accumulate 'books' of 4 cards with the same face value. The players
alternate turns; each turn begins with one player selecting a card from
his hand. and asking the other player for all cards of that face value.
If the other player has one or more cards of that face value in his
hand, he gives them to the first player, and the first player makes
another request. Eventually, the first player asks for a card which is
not in the second player's hand: he replies 'GO FISH!' The first player
then draws a card from the 'pool' of undealt cards. If this is the card
he had last requested, he draws again. When a book is made, either
through drawing or requesting, the cards are laid down and no further
action takes place with that face value.

To play the computer. simply make guesses by typing a, 2, 3, 4, 5, 6, 7,
8, 9, 10, j, q, or k when asked. Hitting return gives you information
about the size of my hand and the pool, and tells you about my books.
Saying 'p' as a first guess puts you into 'pro' level; The default is
pretty dumb.

Printed 8/11/82 1

FORTUNE(6) UNIX Programmer's Manual FORTUNE(6)

NAME
fortune - print a random, hopefully interesting, adage

SYNOPSIS
fortune [-wsl]

DESCRIPl' ION

FILES

Fortune with no arguments prints out a random adage. The flags mean:

-w Waits before termination for an amount of time calculated from the
number of characters in the message. This is useful if it is exe
cuted as part of the logout procedure to guarantee that the message
can be read before the screen is cleared.

-s Short messages only.

-1 Long messages only.

/usr/games/lib/fortunes.dat

AUTHOR
Ken Arnold

Printed 7/8/82 1

HANGMAN(6) UNIX Programmer's Manual

NAME
hangman - Computer version of the game hangman

SYNOPSIS
/usr/games/hangman

DESCRIPTION

HANGMAN(6)

In hangman, the computer picks a word from the on-line word list and you
must try to guess it. The computer keeps track of which letters have
been guessed and how many wrong guesses you have made on the screen.

FILES
/usr/dict/words On-line word list

Printed 7/8/82 1/28/82 1

LIFE(6) UNIX Programmer's Manual LIFE(6)

NAME
life - play the game of life

SYNOPSIS
life [-r]

DESCRIPIION
Life is a pattern generating game set up for interactive
terminal. The way it operates is: You use a series of
up a pattern on the screen then let it generate further
that pattern.

use on a video
commands to set
patterns from

The algorithm used is: For each square in the matrix, look at it and its
eight adjacent neighbors. If the present square is not occupied and
exactly three of its neighbor squares are occupied, then that square
will be occupied in the next pattern. If the present square-is occupied
and two or three of its neighbor squares are occupied, then that square
will be occupied in the next pattern. Otherwise, the present square
will not be occupied in the next pattern.

The edges of the screen are normally treated as an unoccupied void. If
you specify the -~ option on the command line, the screen is treated as
a sphere; that is, the top and bottom lines are considered adjacent and
the left and right columns are considered adjacent.

The pattern generation number and the number of occupied squares are
displayed in the lower left hand corner.

Below is a list of commands available to the user. A I stands for any
number. A ~ followed by a capital letter represents a control charac
ter.

1,la Add a block of elements. The first number specifies the hor
izontal width. The second number specifies the vertical
width. If a number is not specified, the default is 1.

Ic Step through the next" patterns. If no number is specified,
step forever. The operation can be aborted by typing rubout
(delete).

1,ld Delete a block of elements. The first number specifies the
horizontal width. The second number specifies the vertical
width. If a number is not specified, the default is 1.

If Generate a little flier at the present location.
(modulo 8) determines the direction.

The number

I,#g Move to absolute screen location. The first number specifies
the horizontal location. The second number specifies the
vertical location. If a number is not specified, the default
is O.

Printed 7/8/82 1/28/82 1

LIFE(6) UNIX Programmer's Manual LIFE(6)

4fth Move left # steps. If no number is specified, the default is
1.

#j

#k

#1

Move down # steps. The default is 1.

Move up # steps. The default is 1.

Move right # steps. The default is 1.

#n Step through the next # patterns. If no number is specified,
generate the next pattern. The operation can be aborted by
typing rubout (delete).

P Put the last yanked or deleted block at the present location.

q Quit.

#,4~ Yank a block of elements. The first number specifies the hor
izontal width. The second number specifies the vertical
width. If a number is not specified, the default is 1.

C Clear the pattern.

4tF

4tH

#J

#K

#L

Generate a big flier at the present location.
(modulo 8) determines the direction.

Move to the left margin.

Move to the bottom margin.

Move to the top margin.

Move to the right margin.

The number

Move left # steps. If no number is specified, the default is
1.

#AJ Move down" steps. The default is 1.

#AK Move up # steps. The default is 1.

#AL Move right" steps. The default is 1.

Redraw the screen. This is used for those occasions when the
terminal screws up.

Repeat the last add (a) or delete (d) operation.

Repeat the last move (h, j, k, 1) operation.

AUTHOR
Asa Romberger

Printed 7/8/82 1/28/82 2

LIFE(6) UNIX Programmer's Manual LIFE(6)

BUGS
The following features are planned but not implemented:

#,#S Save the selected area in a file.

R Restore from a file.

m Generate a macro command.

Shell escape.

e Edit a file.

i Input commands from a file.

Printed 7/8/82 3

NUMBER(6) UNIX Programmer's Manual

NAME
number - convert Arabic numerals to English

SYNOPSIS
/usr/games/number

DESCRIPTION

NUMBER(6)

Number copies the standard input to the standard output, changing each
decimal number to a fully spelled out version.

Printed 7/8/82 2/25/82 1

RAIN(6) UNIX Programmer's Manual

NAME
rain - animated raindrops display

SYNOPSIS
rain

DESCRIPTION

RAIN(6)

Rain's display is modeled after the VAXfVMS program of the same name.
The terminal has to be set for 9600 baud to obtain the proper effect.

As with all programs that use termcap, the TERM environment variable
must be set (and exported) to the type of the terminal being used.

FILES
/etc /termcap

AUTHOR
Eric P. Scot t

Printed 8/11 /82 2/25/82 1

TREK(6) UNIX Programmer's Manual TREK(6)

NAME
trek - trekkie game

SYNOPSIS
lusr/games/trek [[-a) file)

DESCRIPTION
II!k is a game of space glory and war. Below is a summary of commands.
For complete documentation, see II!k by Eric Allman.

If a filename is given, a log of the game is written onto that file. If
the -a flag is given before the filename, that file is appended to. not
truncated.

The game will ask you what length game you would like. Valid responses
are short, medium, and long. You may also type restart, which restarts
a previously saved game. You will then be prompted for the skill, to
which you must respond novice, fair, good, expert, commadore, or impos
sible. You should normally start out with a novice and work up.

In general, throughout the game, if you forget what is appropriate the
game will tell you what it expects if you just type in a question mark.

AUTHOR
Eric ,Allman

SEE ALSO
lusr Idoc Itrek

COMMAND SUMMARY
abandon
cloak .l!P I down
somputer request; •••
destruct
help
.!rscan
~hasers Automatic amount
~hasers ~nual amt! course! spread!
~orpedo course [~es] angle/no
~ course distance
shell
.!,rscan [.I,es/no)
.llatus
.J!ndock
xarp warp_factor

Printed 8/11/82

capture

damages
dock
~pulse course distance
move course distance

Lest time
.!hields .l!P /down

terminate .I,es/no
.,!,isual course

!

TWINKLE(6) UNIX Programmer's Manual TWINKLE(6)

NAME
twinkle - twinkle stars on the screen

SYNOPSIS
/usr/games/twinkle [-+[s save]] [density1] [density2]

DESCRIPTION
Twinkle causes a specified density of "stars" to twinkle on the screen.
The following options are available;

print out the present screen density (the percentage of the screen
that will be filled with stars) in the lower left hand corner of
the screen. This number will change as stars go on and off.

+ do not "random ize" before starting. The screen starts out com
pletely blank and stars are added, bit by bit. In this case the
density rises beyond the specified density, then falls to the
required percentage.

s save binary density on file "save", in case you want to see the
density curve that a particulr density specification produced dur
ing the life of the show.

density
If no density is specified, density is .5 (50% of the screen will
be filled with stars).
If only densityl is given, density is 1/density1
If both density1 and density2 are given, density is the resultant
of densityl/density1+density2.

EXAMPLE

AUTHOR

twinkle -+ 2 6

would start from a blank screen and twinkle stars to a final density of
2/8, or 25%. The densities would be shown in the lower left hand
corner, as a three--place decimal.

Asa Romberger

Printed 8/11/82 1/8/82 1

WORM(6) UNIX Programmer's Manual WORM(6)

NAME
worm - Play the growing worm game

SYNOPSIS
worm size

DESCRIPTION

BUGS

In J!Q.I!!l, you are a little worm, your body is the "o"'s on the screen and
your head is the "@". You move with the hjkl keys (as in the game
snake). If you don't press any keys, you continue in the direction you
last moved. The upper case HJKL keys move you as if you had pressed
several (9 for HL and 5 for JK) of the corrosponding lower case key
(unless you run into a digit, then it stops).

On the screen you will see a digit; if your worm eats the digit, it will
grow longer. The actual amount by which the worm will grow longer
depends upon which digit was eaten. The object of the game is to see
how long you can make the worm grow.

The game ends when the worm runs into either the sides of the screen, or
itself. The current score (how much the worm has grown) is kept in the
upper left corner of the screen.

The optional argument, if present, is the initial length of the worm.

If the initial length of the worm is set to less than one or more than
75, various strange things happen.

Printed 7/21/82 4/2/81 1

WORMS(6) UNIX Programmer's Manual WORMS(6)

NAME
worms animate worms on a display terminal

SYNOPSIS
worms [-field] [-length #] [-number #] [-trail 1

DESCRIPI'ION

FILES

-field makes a "field" for the worm(s) to eat; -trail causes each worm
to leave a trail behind it. You can figure out the rest by yourself.

/etcltermcap

AUTHOR
Eric P. Scott

DIAGNOSTICS

BUGS

Invalid length
Value not in range 2 <= length <= 1024

Invalid number of WOrms
Value not in range 1 <= number <= 40

TERM: parameter not set
The TERM environment variable is not defined. Do

TERM=terminal type
export TERM

Unknown terminal type
Your terminal type (as determined from the TERM environment vari

able) is not defined in /etc/termcap.

Terminal not capable of cursor motion
Your terminal is too stupid to run this program.

Out of memory
This should never happen.

The lower-right-hand character position will not be updated properly on
a terminal that wraps at the right margin.

Terminal initialization is not performed.

Printed 7/8/82 1

WUMP(6) UNIX Programmer's Manual WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wump plays the game of 'Hunt the Wumpus.' A Wumpus is a creature that
lives in a cave with several rooms connected by tunnels. You wander
among the rooms, trying to shoot the Wumpus with an arrow, meanwhile
avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop you
in some random room.

The program asks various questions which you answer one per line; it
will give a more detailed description if you want.

This program is based on one described in People'~ Computer Company, ~,
2 (November 1973).

Printed 7/8/82 1

ASCII(7) UNIX Progr ammer' s Manual ASCII(7)

NAME
ascii - map of ASCII charact er set

SYNOPSIS
cat lusr/man/man7/ascii.7

DESCRIPTION
Ascii is a map of the ASCII charact er set, to be printed as needed. It
contains:

1000 nul 1001 sohl002 stx 003 etxl004 eotl005 enql006 aekl007 bell
1010 bs 1011 ht 1012 nl 013 vt 1014 np 1015 cr /016 so 1017 si I
1020 dlel021 de11022 de2 023 dc31024 dc41025 nak 026 synl027 etbl
1030 canl031 em 1032 sub 033 ese 034 fs 1035 gs 036 rs 1037 us I
1040 sp 1041 I 1042 1/ 043 :/I 044 $ 1045 % 046 & 1047 ' I
1050 (1051) 1052 * 053 + 054 , 1055 - 056 . 1057 1 I
1060 0 1061 1 1062 2 063 3 064 4 1065 5 066 6 1067 7 I
1070 8 1071 9 1072 073 . 074 < 1075 .. 076 > 1077 ? I ,
1100 @ 1101 A 1102 B 103 C 104 D 1105 E 106 F 1107 G I
1110 H 1111 I 1112 J 113 K 114 L 1115 M 116 N 1117 0 I
1120 P 1121 Q 1122 R 123 S 124 T 1125 U 126 V 1127 W I
1130 X 1131 Y 1132 Z 133 [134 \ 1135 J 136 ... 1137 I
1140 ' 1141 a 1142 b 143 e 144 d 1145 e 146 f 1147 g I
1150 h 1151 i 1152 j 153 k 154 1 1155 m 156 n 1157 0 I
1160 p 1161 q 1162 r 1163 s 164 t 1165 u 166 v 1167 w I
1170 x 1171 y 1172 z 1173 { 174 I 1175 } 176 - 1177 dell

00 null 01 soh I 02 stx 03 etx 04 eot 05 enql 06 ackl 07 bel
08 bs I 09 ht I Oa nl Ob vt Oc np Od cr I Oe so I Of si
10 dlel 11 dell 12 de2 13 de3 14 dc4 15 oak I 16 synl 17 etb
18 eanl 19 em I 1a sub Ib esc Ie fa Id gs I Ie rs If us
20 sp I 21 I I 22 " 23 11 24 $ 25 % I 26 & 27

,

28 (I 29) I 2a * 2b + 2e , 2d - I 2e . 2f 1
30 o I 31 1 I 32 2 33 3 34 4 35 5 I 36 6 37 7
38 8 I 39 9 I 3a 3b ; 3c < 3d = I 3e > 3f ?
40 @ I 41 AI 42 B 43 C 44 D 45 E I 46 F 47 G
48 H I 49 I I 4a J 4b K 4e L 4d M I 4e N 4£ 0
50 P I 51 Q I 52 R 53 S 54 T 55 U I 56 V 57 W
58 X I 59 y 1 5a Z 5b [5c \ 5d] 1 5e 5£
60 ' I 61 a I 62 b 63 c 64 d 65 e I 66 f 67 g
68 h I 69 i I 6a j 6b k 6c I 6d m I 6e n 6£ 0

70 p I 71 q I 72 r 73 s 74 t 75 u I 76 v 77 wI
78 x I 79 y I 7a z 7b { 7c I 7d } I 7e - 7£ dell

Printed 7/28/82 1

EQNCHARO) UNIX Programmer's Manual EQNCHARO)

NAME
eqnchar - special character definitions for eqn

SYNOPSIS
eqn /usr/pub/eqnchar [files] 1 troff [options

neqn /usr/pub/eqnchar [files] 1 nroff [options]

DESCRIPl' ION
Egnchar contains troff and nroff character definitions for constructing
characters that are not available on the Graphic Systems typesetter.
These definitions are primarily intended for use with egn and negn. It
contains definitions for the following characters

"ciplus" ciplus " 1 1 " II "square" square
"citimes" citimes "langle" bngle "circle" circle
''wig'' wig "rangle" rangle "blot" blot
"-wig" -wig "hbar" hbar "bullet" bullet
">wig" >wig "ppd" ppd "prop" prop
"<wig" <wig "<->" <-> "empty" empty
"=wig" -=wig "<-=>" <=> "member" member
"star" star "1<" 1< "nomem" nom em
"bigstar" bigstar "I>" I> "cup" cup
"-dot" "dot "ang" ang "cap" cap
"orsign" orsign "rang" rang "incl" incl
"andsign" andsign "3dot" 3dot "subset" subset
"-del" -del "thf" th£ "supse t" supset
"oppA" oppA "quarter" quarter "!subset" Isubset
"oppE" oppE "3 qua rt er" 3quarter "!supset"lsupset
"angstrom" angstrom "degree" degree

FILES
/usr/pub/eqnchar

SEE ALSO
troff(1) , eqnO)

Printed 7/8/82 1

GREEK(7) UNIX Programmer's Manual GREEK(7)

NAME
greek - graphics for extended TTY-37 type-box

SYNOPSIS
cat /usr/pub/greek [I greek -Tterminal]

DESCRIPTION
Greek gives the mapping from ascii to the 'shift out' graphics in effect
between SO and SI on model 37 Teletypes with a 128-character type-box.
These are the default greek characters produced by nroff. The filters of
greek(l) attempt to print them on various other ter~inals. The file
contains:

alpha a A beta b B gamma g \
GAMMA G G delta d D DELTA D W
epsilon e S zeta z Q eta y N
THETA H T theta h 0 lambda 1 L
LAMBDA L E mu m M nu n @
xi c X pi p J PI P P
rho r K sigma s y SIGMA S R
tau t I phi f U PHI F F
psi q V PSI Q. H omega w C
OMEGA W Z nabla [not
partial] integral

SEE ALSO
greek(l)
troff(1)

Printed 7/8/82 1/25/82 1

MAN(7) UNIX Programmer's Manual MAN(7)

NAME
man - macros to typeset manual

SYNOPSIS
nroff -man file ...
troff -man fil e

DESCRIPTION
These macros are used to layout pages of this manual.

The definition of these macros may be found in
/usr/lib/tmac/tmac.an.

Some special features of this set of macros:

Any text argument ~ may be zero to six words. Quotes may be used to
include blanks in a 'word'. If ~ is empty, the special treatment 1S

applied to the next input line with text to be printed. In this way .I
may be used to italicize a whole line, or .SM followed by .B to make
small bold letters.

A prevailing indent distance is remembered between successive indented
paragraphs, and is reset to default value upon reaching a non-indented
paragraph. Default units for indents 1 are ens.

Type font and size are reset to default values before each paragraph,
and after processing font and size setting macros.

These str ings are pr edef ined by -man:

'*R troff.

,*S Change to default type size.

EXAMPLE
nroff -man man.7

to nroff this manual section.

FILES
/usr/lib/tmac/tmac.an

SEE ALSO
manU) J troff(l)

BUGS
Relative indents don't nest.

Printed 7/28/82 1/25/82 1

REQUESTS
Request

• B !.
• BI !.
• BR !.
• DT
.UP i

• I !.
• IB !.
• IP Ji i
• IR !.
• LP
.PD S
.PP
.RE

• RB !.
• RI !.
.RS i

Cause If no
Break Argument

UNIX Programmer's Manual

Explana tion

no t=n.t.I.*Text t is bold •
no ~=n.t.l. Join words of !. alternating bold and italic •
no !.=n.t.l. Join words of !. alternating bold and Roman •
no .5i Ii. •• Restore default tabs •

MANO)

yes i=p. i.* Set prevailing indent to i. Begin paragraph with

no
no
yes
no
yes
no
yes
yes

no
no
yes

hanging indent.
!.=n. t.l. Text!. is i tal ic.
!.=n. t.l.
Ji=""
t=n.t.l •

d=.4v

Join words of !. alternating italic and bold •
Same as .TP with tag Ji.
Join words of !. alternating italic and Roman.
Same as .PP •
Interparagraph distance is S.
Begin paragraph. Set prevailing indent to .Si.
End of relative indent. Set prevailing indent to
amount of starting .RS.

!.=n.t.l. Join words of !. alternating
!.=n.t.l. Join words of !. alternating

Roman and bold •
Roman and ital ic •

.!-p. i. left margin in distance
.5i for nested indents •

• SH !. yes

Start rela tive indent, move
i. Set prevailing indent to

.tan.t.l. Subhead.
• SM !. no
• TIl .!l ~ Ji yes

.TP i yes

!.=n.t.l. Text!. is small.
Begin page named A of chapter~; Ji is extra commen
tary, e.g. 'local', for page foot. Set prevailing
indent and tabs to .Si.
Set prevailing indent to i. Begin indented paragraph
with hanging tag given by next text line. If tag
doesn't fit, place it on separate line.

* n.t.l. • next text line; p.i. - prevailing indent

Printed 7/28/82 2

UNIX Programmer's Manual ME(7)

NAME
me - macros for formatting papers

SYNOPSIS
nroff -me
troff -me

options
options

file
file

DESCRIPTION

FILES

This package of nroff and troff macro definitions provides a canned for
matting facility for technical papers in various formats. When produc
ing 2-column output on a terminal, filter the output through £2l(1).

The macro requests are defined below. Many nroff and troff requests are
unsafe in conjunction with this package, however these requests may be
used with impunity after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line" spacing) n=l single, n-2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the egn, negn, refer, and tbl(l) preprocessors for equations
and tables is acceptable as input.

/usr/lib/tmac/tmac.e
/usr/lib/me/*

SEE ALSO
eqn(l)~ troff(l), refer(l), tbl(l)
-me Reference Manual, Eric P. Allman
Writing Papers with Nroff Using -me

REQUESTS
In the following list, initial ization refers to the first .pp, .lp, • ip,
.npt .sh, or .uh macro. This list is incomplete; see The -~ Reference
Manual for interesting details.

Request Initial Cause Explanation
Value Break

• (c
• (d
• (f
.(1
• (q
.(x .!.
.(z
.)c

Printed 7/8/82

yes
no
no
yes
yes
no
no
yes

Begin centered block
Begin delayed text
Begin footnote
Begin list
Begin major quote
Begin indexed item in index .!.
Begin floating keep
End centered block

1

•)d
.)f
.)1
•)q
.)x
.)z
.++ m 1!

• +c 1:

• lc
• 2c
• EN
.EQ ~ :t.

• TE
• TH
• TS .!.
.ac A li

• b A

.ba +,n

· i .!.
• ip .!. :t.

• lp
• 10

.np

.of 'x':t.'1t..'

.oh 'JS,':t.'1t..'
• pd
• pp

I
1

no

o

no
no
no
""
""
""

""

no
no

yes

1
""
""

no

Printed 7/8/82

yes
yes
yes
yes
yes
yes
no

yes

yes
yes
yes
yes

yes
yes
yes
'no

no

yes

yes
no
no
no
no
no
no
no
yes
no
yes

yes
no

yes
no
no
yes
yes

UNIX Programmer's Manual

End delayed text
End footnote
End list
End major quote
End index item
End floating keep
Define paper section. m defines the part of the
paper, and can be C (chapter), A (appendix), P
(preliminary, e.g., abstract, table of contents,
etc.), B (bibliography), RC (chapters renumbered
from page one each chapter), or RA (appendix renum
bered from page one).
Begin chapter (or appendix, etc., as set by .++) •
T is the chapter title.
One column format on a new page •
Two column format •
Space after equation produced by egn or negn •
Precede equation; break out and add space. Equa
tion number is:t.. The optional argument .!. may be £
to indent equation (default), L to left-adjust the
equation, or ~ to center the equation.
End table •
End heading section of table •
Begin table; if A is 1! table has repeated heading •
Set up for ACM style output. A is the Author's
name(s), B is the total number of pages. Must be
given before the first initial ization.
Print A in boldface; if no argument switch to bold
face.
Augments the base indent by.n. This indent is used
to set the indent on regular text (like para
graphs) •
Begin new column
Print x in bold italics (nofill only)
Print x in a box (nofill only).
Set even footer to x y z
Set even header to x y z
Set footer to x y z
Supress headers and footers on next page.
Set header to x y z
Draw a horizontal line
Italicize A; if A missing, italic text follows.
Start indented paragraph, with hanging tag .!..
Indentation is:t. ens (default 5).
Start left-blocked paragraph •
Read in a file of local macros of the form .*.!. •
Must be given before initialization.
Start numbered paragraph.
Set odd footer to x y z
Set odd header to x y z
Print delayed text •
Begin paragraph. First line indented •

2

MEO)

.r

.re

.sc

• sh .!!. Z.

.sk

.sz +B,
• th

• tp
.u Z.
• uh
.xp Z.

yes

no

no

lOp
no

no

Printed 7/8/82

no
no
no

yes

no

no
no

yes
no
yes
no

UNIX Programmer's Manual ME (7)

Roman text follows.
Reset tabs to default values.
Read in a file of special characters and diacriti
cal marks. Must be given before initialization.
Section head follows, font automatically bold. .!!.
is level of section, ~ is title of section.
Leave the next page blank. Only one page is remem
bered ahead.
Augment the point size by .!!. points.
Produce the paper in thesis format. Must be given
before initialization.
Begin title page •
Underline argument (even in troff). (Nofillonly).
Like .sh but unnumbered •
Print index ~.

1/25/82 3

MS(7) UNIX Programmer's Manual MS(7)

NAME
ms - macros for formatting manuscripts

SYNOPSIS
nroff -ms [options,] file
troff -ms [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a canned for
matting facility for technical papers in various formats. When produc
ing 2-column output on a terminal, filter the output through col(l).

EXAMPLE

FILES

nroff -ms -03- filea I col

will nroff the file starting with page 3 and produce two
where the file contains the ".2C" macro. Any of the
options may be used in conjunction with the -m!, macro
several files may be nroffed at once.

column output
nroff or troff

pac kage , and

The macro requests are defined below. Many nroff and troff requests may
not work as expected in conjunction with this macro package. However,
the following requests may be used with impunity after the first .PP:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=l single, n=2 double space

.na no alignment of right margin

Output of the egn, negn, and tbl(l) preprocessors for equations and
tables is acceptable as input.

/usr/lib/tmac/tmac.s

SEE ALSO
eqn(l), tbl(l), troff(l)
and "Typing Documents on the System" by M.E. Lesk.

REQUESTS
Request Initial

Value
.IC yes
.2C no
• AB no
• AE
• AI no
• AT no
.AU A:L no

Printed 7/8/82

Cause Explanation
Break
yes
yes
yes
yes
yes
yes
yes

One column format on a new page.
Two column format.
Begin abstract •
End abstract •
Author's institution follows. Suppressed in !M •
Print 'Attached' and turn off line filling •
Author's name follows. ~ is location and :L is exten
sion, ignored except in !M.

1/25/82 1

MS(7)

.B ~ no no

• Bl no yes
• B2 no yes
• BT date no

• BX ~ no no
• CS ~... yes

• CT no yes
• DA ~ nroff no
• DE yes
.DS ~ no yes

.EG no

• EN yes
.EQ ~ ~ yes

• FE yes
.FS no no

• HO no
• 1 Z no no
.1H no no
.IM no no

.IP ~~ no yes

.KE yes

.KF no yes

• KS no yes
• LG no no
• LP yes yes
.MF

• MH no
.MR

.ND ~ troff no

.NH ~ yes

Printed 7/8/82

UNIX Programmer's Manual MS(7)

Print ~ in boldface; if no argument switch to bold
face.
Begin text to be enclosed in a box •
End text to be boxed • print it •
Bottom title, automatically invoked at foot of page •
May be redefined.
Print ~ in a box •
Cover sheet info if TM format, suppressed otherwise •
Arguments are number of text pages, other pages, total
pages, figures, tables, references.
Print 'Copies to' and enter no-fill mode •
'Date line' at bottom of page is~. Default is today •
End displayed text. Implies .KE •
Start of displayed text, to appear verbatim line-by
line. ~=I for indented display (default), ~=L for
left-justified on the page, ~=C for centered, Z=B for
make left-justified block, then center whole block.
Implies .KS.
Print document in BTL format for 'Engineer's Notes.'
Must be first.
Space after equation produced by egn or negn •
Precede equation; break out and add space. Equation
number is~. The optional argument ~ may be ~ to
indent equation (default), b to left-adjust the equa
tion, or ,g to center the equa tion.
End footnote •
Start footnote. The note will be moved to the bottom
of the page.
'Bell Laboratories, Holmdel, New Jersey 07733' •
Italicize Zi if Z missing, ital ic text follows •
'Bell Laboratories, Naperville, Illinois 60540'
Print document in BTL format for an internal memoran
dum. Must be first.
Start indented paragraph, with hanging tag Z. Inden
tation is ~ ens (default 5).
End keep. Put kept text on next page if not enough
room.
Start floating keep. If the kept text must be moved
to the next page, float later text back to this page.
Start keeping following text •
Make letters larger •
Start left-blocked paragraph •
Print document in BTL format for 'Memorandum for
File.' Must be first.
'Bell Laboratories, Murray Hill, New Jersey 07974' •
Print document in BTL format for 'Memorandum for
Record,.' Must be first.
Use date supplied (if any) only in special BTL format
positions; omit from page footer.
Same as .SR, with section number supplied automati
cally. Numbers are multilevel, like 1.2.3, where ~
tells what level is wanted (default is 1).

1/25/82 2

• NL yes
• OK
• PP no
.PT pg #

.py
• QE
• QP
• QS
• R yes
• RE
.RP no

.RS

.SG A no

• SH
• SM no
• TA ~.. • 5 •••
• TE
• TH
• TL no
• TH l§. •••

.TR A

• TS A
• UL ~
.UX

• W

no

Printed 7/8/82

no
yes
yes

no
yes
yes
yes
no
yes

yes

yes

yes
no
no
yes
yes
yes

yes
no
no

no

UNIX Programmer's Manual MS(7)

Make letters normal size •
'Other keywords' for TM cover sheet follow •
Begin paragraph. First line indented •
Page title, automatically invoked at top of page. May
be redef ined.
'Bell Laboratories, Piscataway, New Jersey 08854'
End quoted (indented and shorter) material •
Begin single paragraph which is indented and shorter •
Begin quoted (indented and shorter) material •
Roman text follows •
End relative indent level •
Cover sheet and first page for released paper. Must
precede other requests.
Start level of relative indentation. Following .IP's
are measured from current indentation.
Insert signature(s) of author(s), ignored except in
TH. x is the reference line (initials of author and
typist).
Section head follows, font automatically bold.
Make letters smaller •
Set tabs in ens. Default is 5 10 15 •••
End table •
End heading section of table •
Tit le follows •
Print document in BTL technical memorandum format.
Arguments are TM number, (quoted list of) case
number(s), and file number. Must precede other
requests.
Print in BTL technical report format; report number is
A. Must be first •
Begin table; if A is H tab.le has repeated heading.
Underline argument (even in troff) •
'UNIX'; first time used, add footnote 'UNIX is a
trademark of Bell Laboratories.'
'Bell Laboratories, Whippany, New Jersey 07981' •

1/27/82 3

TERM(7) UNIX Programmer's Manual TERM(7)

terminals - conventional names

DESCRIPTION
These names are used by certain commands and are maintained as part of
the shell environment (see sh(l),environ(5».

a~a
2621
hp
clOO
h19

Lear Seigler Adm-3a
Hewlett-Packard HP262? series terminals
Hewlett-Packard HP264? series terminals
Human Designed Systems Concept 100
Heathkit B19

mime Microterm mime in enhanced ACT IV mode
1620 DIABLO 1620 (and others using HyType II)
300 DASI/DTC/GSI 300 (and others using HyType I)
33 TELETYPE(Reg.) Model 33
37 TELETYPE Model 37
43 TELETYPE Model 43
735 Texas Instruments TI735 (and TI725)
745 Texas Instruments TI745
dumb terminals with no special features
4014 Tektronix 4014
vt52 Digital Equipment Corp. VT52

The list goes on and on. Consult /etc/termcap (see termcap(5» for an
up-to-date and locally correct list.

Commands whose behavior may depend on the terminal either consult TERM
in the environment, or accept arguments of the form -Tterm, where term
is one of the names given above.

SEE ALSO

BUGS

stty(l), tabs(l), plot(l), sh(l), environ(5) ex(I), clear(l), more(l),
ul(I), tset(l), termcap(S), ttytype(5)
troff(l) for nroff

The programs that ought to adhere to this nomenclature do so only fit
ful~.

Printed 7/8/82 1/27/82 1

BOOT(8) UNIX Programmer's Manual BOOT(8)

NAME
boot - startup procedures

DESCRIPTION
A 68000 UNIX system is typically started by a two-stage process. The
first is a primary bootstrap which is used to read in the system itself.

The primary bootstrap, when read into memory and executed, sets up
memory management if necessary, and types a prompt message on the con
sole. Then it reads from the console a dev ice specifica tion (see below)
followed immediately by a pa thname. This program·f inds the correspond
ing file on the given dev ice, load s that file into the proper memory
location, and then transfers control of the program. Normal line editing
characters can be used.

Conventionally, the name of the current version of the system is
'/unix'. Then, the recipe is:

1) Load the boot program by fiddling with the console keys and crt as
appropriate for your hardware.

2) When the prompt is given, type [for example]
fpy(O,O)unix
or
hd(O,O)unix
depending on whether you are loading
respectively. The first 0 indicates
second indicates the block number of
file system (device) to be searched.

from floppy or hard disk,
the physical unit number; the
the beginning of the logical
(See below).

When the system is running, it types a '1' prompt. After doing any file
system checks via ~(l) and setting the date (~(1», the system can
be brought up for standard operation by typing an EOT (control-d) in
response to the '1' prompt.

Device specifications •
A device specification has the following form:

device(unit,offset)

where device is the type of the device to be searched, unit is the unit
number of the device, and offset is the block offset of the file system
on the device. Deyice specifications vary according to which 68000 UNIX
system you are using. Check manufacturers' instructions for the dev ice
specifications.

For example, the specification

hpCl,7000)

would indicate an RP03 disk, unit 1, and the file system found starting
at block 7000 (cylinder 35).

Printed 7/21/82 2/23/82 1

BOOT(S) UNIX Programmer's Manual BOOT(8)

ROM Programs •
Programs to call the primary bootstrap may be installed in read-only
memories or manually keyed into main memory. Each program is position
independent but should be placed well above location 0 so it will not be
overwritten. See manufacturer's instructions for a manually keyed-in
ROM boot program, should one become necessary.

FILES
/unix - system code

SEE ALSO
init{lM)

Printed 7/21/82 2/23/82 2

.;,

IDENT(8)

NAME
ident - login banner

SYNOPSIS
/etc/ident

DESCRIl'l'ION .,:--

... "~:.'" -, -::
UNIX Programmer's Manual IDENTCS)

' • .It' ;",~l.s ~'~'\"'/etclident contains the logi~ banner for the 68000 system that gets
printed on the user's terminal before a user enters his/her login name.
/etc/ident usually includes the company name and other pertinent infor
!:Da'tioll. - i",:

Printed 6/23/82 2/19/82 1

RC(8) UNIX Progrmnmer's Manual

NAME
rc - command script for system housekeeping

SYNOPSIS
/etc/rc

DESCRIPTION

RC(S)
.: ~

~ '" .

The /etc/rc program is called immediately after the .sy~tem i~ booted.
Its responsibility is to clear the records of what dey ices and what
users were present on the system when it was last riin~i!lS~::;-

J:', ',.

These housekeeping functions include mounting defauit (lev-ices and cal-
ling /~/update, ~, and user accounting programs.

SEE ALSO
initOM)

Printed 7/21/82 2/23/82 1

