UNIX™
for the

68000

VOLUME I
The User’s Manual

T DR BB N

) Q . e -
8/23/82 2405 Fourth Streer, ® Berkeidy. CA-94710

Copyright 1981, Bell Telephone Laboratories, Incorporated.
Holders of & UNIX(tm) software license are permitted to copy
this document, or any portion of it, as necessary for

licensed use of the software, provided this copyright notice
and statement of permission are included.

PREFACE

Lo the UniSoft Edition

While updating this documentation for use with UniSoft”s
UNIX for the 68000, we added examples to the Commands in
Volume I, Section 1, and clarified descriptive material
vhere necessary. We are indebted to the many writers who
have built up the UNIX documentation over the years, and our
intent has been to enhance, rather than to replace, their
work. Particular thanks are due to Jeff Schriebman and Asa
Romberger, who showed great flexibility in switching from
porting to proofreading on short notice, and without whose
advice and assistance this revigsion would not have been pos-
sible.

UniSoft Corporation
February 25, 1982

PREFACE
to the University of Caljifornja Edition

This edition of the manual, while heavily based on the ori-
ginal from Bell Labs, incorporates documentation ref lecting
the version of UNIX currently running on the Berkeley campus
of the University of Califormia. I would like to give spe-
cial thanks to Vance Vaughan, Roberta Allsman, Dick Peters,
Kirk Thege, Jeff Schriebman, and Bill Joy for their help in
preparing this edition.

E.M. Gould

PREFACE

to the Seventh Edition

Although this Seventh Edition no longer bears their byline,
Ken Thompson and Dennis Ritchie remain the fathers and pre-
ceptors of the UNIX time-sharing system. Many of the
improvements here described bear their mark. Among many,
many other people who have contributed to the further
flowering of UNIX, we wish especially to acknowledge the
contributions of A. V. Aho, S. R. Bourne, L. L. Cherry, G.
L. Chesson, S. I. Feldman, C. B. Haley, R. C. Haight, S. C.
Johnson, M. E. Lesk, T. L. Lyon, L. E. McMahon, R. Morris,
R. Muha, D. A. Nowitz, L. Wehr, and P. J. Weinberger. We
appreciate also the effective advice and criticism of T. A.
Dolotta, A. G. Fraser, J. F. Maranzano, and J. R. Mashey;
and we remember the important work of the late Joseph F.
Ossanna.

B. W. Kernighan
M. D. Mcllroy

Introduction to UniSoft UNIX on the 68000

UniSoft Company Profile

UniSoft Corporation was formed in 1981 to provide the
UNIX* operating system to OEM"s (original equipment manufac-
turers) of computers, who would in turn supply UNIX to end
users.

UNIX is a general purpose interactive operating 'system
originally developed for use on Digital Equipment Corpora~
tion (DEC) minicomputers. UniSoft has modified UNIX to runm
on state of the art microcomputers such as the Motorola
68000. UNIX provides systems programming development and
text processing facilities which substantial ly augment the
computing power and flexibility of these computers. UniSoft
believes that UNIX will become the standard operating system
for all 16 bit and 32 bit computers.

UNIX for the 68000 was chosen as UniSoft“s initial pro-
duct after a market survey and a careful study of the techn-
ical problems. The 68000 is a chip with 32 bit intermal and
16 bit external addressing which is being used for many of
the newer microcomputer systems because of its speed, power,
and flexibility.

Bistory of UNIX

The UNIX operating system has finally emerged fram its
sheltered academic enviromment and become available commer-
cially at an affordable price. Since it has been 1lovingly
groomed by researchers, professors, and students in hundreds
of educational institutions (nmot to mention Bell Labs, one
of the world”s largest research facilities) UNIX represents
a large, complex, and fairly stable set of programs.

UNIX was originally developed at Bell Labs in 1969 om
wvhat was then considered a rather "small" computer, the DEC
PDP-7., Two programmers in the Computing Science Research
Group, Ken Thompson ahd Dennis Ritchie, wrote UNIX because
the operating systems that were available at that time did
not provide the type of programming enviromment that they
wanted.

Unlike many other operating systems overloaded with
unnecessary features and fraught with hazards £for the
vowary, UNIX provides a simple, minimal set of tools (and
tools to make tools) for software development and document
preparation.

*UNIX is a Trademark of Bell Laboratories.

-2 -

In a short period of time, UNIX became very popular
with Bell programmers and computer science researchers, and
is now the standard operating system on hundreds of comput-
ers throughout the Bell network.

UNIX has also been installed on thousands of other sys-
tems, particularly those in colleges and universities.
Because of the merits of UNIX as a multi-user programming
enviromment and because Bell made it widely available to
educational institutions, UNIX has become one of the .major
computer science teaching systems. By 1981, there were more
than 1700 installations of UNIX in colleges and universi-
ties. Jean Yates, co-author (with Rebecca Thomas) of A User
Guide to the UNIX System, estimates that over 90% of com-
puter science departments in universities use UNIX systems.

Over the years, UNIX has gone through several revi-
sions. Until recently, the latest version of UNIX available
from Bell was Version 7. However, some regional variations
also existed. A group within Bell had developed a set of
tools called Programmers Workbench (PWB), and the University
of California at Berkeley had made several substantial
enhancements (referred to collectively as "Berkeley UNIX")
to the "standard" UNIX system.

A new UNIX release was announced in November, 1981, in
order to provide a more comprehensive and fully standard
version of UNIX and to consolidate computer-related goods
and services under A.T.&T. This release, System III,
integrates all the different versions, eliminates a few pro-
grams, and makes available from Bell most of the PWB and the
UC Berkeley enhancements. Thus, although System IV and Sys-
tem V are already looming in the realm of rumor, System III
currently represents the minimum standard UNIX system.

Even more significantly, Bell”s licensing fee structure
has also changed, so that for the first time UNIX can be
licensed at a price that makes it commercially viable onmn
microcomputers. This now puts the UNIX programming and text
processing tools in the hands of small businesses and
private users for the first time.

Although UNIX has been thoroughly shaken down over the
years of its wuse in a research enviromment, it is not now
and has never been a system designed primarily for use by
non-technical people. That 1is, UNIX is somewhat less
"user-friendly" than a system developed specifically for use
by businesses or at home. BHowever, thousands of non-
technical people have learned to know and enjoy UNIX, and
computer terminals in, for example, university offices are
in continuous use by non-academic personnel.

The real value of UNIX lies in its hundreds of wutility
programs. No other operating system has such a larze and

-3 -

poverful set of program development and text processing
tools. UNIX provides tools or a means of making tools for
almost any application, once you know where to look and what
to do when you get there.

In the past, most UNIX users have learned the system by
oral tradition. In a university, this is no problem --
there“s always someone to ask. However, if you don“t have
an experienced UNIX wuser at your elbow, learning by trial
and error can be frustrating.

Therefore, this "Introduction to the Introduction" 1is
designed as a brief guide to the most useful commands for
maneuvering in UNIX, and as a guide to the UNIX documenta-
tion. The three volumes may seem unwieldy, but even at this
size they have been distilled from the four volumes that
come in, for example, the U.C. Berkeley distribution.

About the UNIX Manuals

UniSoft“s edition of the UNIX documentation attempts
not only to remove documents which are outdated or which do
not apply to UniSoft UNIX for the 68000, but also to present
the documentation in a logical sequence.

The first volume is The User”“s Manual, Volume I. This
volume contains brief descriptions of each of the major com-
mands, subroutines, system calls, etc., that can be used or
accessed by the average user.

Section 1 of The User”s Manual, "Commands'", represents
a set of programs that can be directly used by all users. As
such, Section 1 is the section people use most.

Volumes II and III divide the UNIX world into program
ming (Volume II) and text processing functions (Volume III).
In each volume, there is a progression from non-technical or
tutorial documents to more technical and abstract articles
about more complex facilities.

Getting Started

The beginning user should start with Volume III. This
volume contains "An Introductiom to UNIX" and other entry-
level documents. Volume III also concentrates on text pro-
cessing, which is a good way to get practice on UNIX and to
learn its features. This Introduction plus the Introduction
to Volume I, should give you enough information to get
started. Then the tutorials and exercises at the beginning
of Volume III will give you more details.

Text Processing

In addition to introducing the UNIX operating system in
a tutorial way, Volume III also contains essays and tutori-
als on text processing and document preparation programs.

UNIX provides several editors, but the line editor ex
and its screenoriented version yi are the most commonly
used. Document formatting capability is provided by nroff
and troff, which produces typeset for printing. The format-
ting programs are simplified by "macro" packages such as the
ms macros, which provide a standard set of commands for
standard formatting operations.

Documents can be revised en masse, with programs such
as the stream editor sed or the tramsliteration program tr.
Finally, textual analysis programs such as awk and lex per-
mit editing "scripts" to be written to perform a series of
operations on documents.

Program Dev ent

: Volume II contains documents on the C programming
language (in which UNIX is written) and other program
development tools. UNIX is particularly rich in systems pro-
gramming tools.

In addition to the C language interface, which is obvi-
ously well developed, UNIX supports other programming
languages.+ The program development tools (which can often
be used on text files as well as files of code) emable mass
revision of files, close tracking of revisions, archiving,
and other resource management functions.

Sandy Emerson
UniSoft Corporation

February 25, 1982

+ UniSoft provides interfaces to FORTRAN, Pascal, and
other languages through cross-licensing agreements.
The languages and manuals for them may be obtained from
the manufacturer of your UniSoft UNIX system.

-5-

The All-Purpose Rudimentary Users” Guide to UNIX

The following should give you, in very concise form,
enough information to begin to find your way around in UNIX.
The chart form is designed to supplement the clouds of fine
print that have gathered around UNIX operations over the
years; however, many details are omitted. You will need the
User’s Manual and the appropriate supplementary documenta—
tion in order to move up from Sunday driver to UNIX speed-
ster.

HOW TO COMMANDS

LOG IN Boot system up and type Control-D
to the single-user "(#)" prampt,
then respond to
login:
with your user name and a carriage
return. (Commands are always sent
to the system with a carriage
return).

CREATE A FILE ex <filename>
create a file by editing. Give
the file a name and add text to it
by typing “a” to the colon (:)
prompt. .
Many commands also open a new file
automatically, when a new name is
given for the new file. For exam-
ple, "copy":
¢p oldname newname
will create newname autamatically
and copy oldname into it.

MAKE A DIRECTORY mkdir <directory name>
give the directory a name. To use
this directory and add files to
it, use:
cd <directory name>
to "change directory” to the new
one. Directories exist in a tree
structure. Directories have
parents and children, starting
with the single "root" directory
which is the parent of all the
other directories.

CHANGE DIRECTORY cd
to the directory <mame>. To go up
one level, use:
cd ..
".." is the parent of the direc-

tory you are in. In this way you

LIST DIRECTORY CONTENTS

FIND WHERE YOU ARE

EDIT TEXT OR PROGRAMS

FORMAT TEXT

-6 -

can climb up and down directory
"trees" to examine the contents of
the system without having to know
specific directory mnames _in
advance.

1s

to see the names of files and
directories. To see the permis-
sions on various files, type:

1ls -1 ‘
(That”s "1" as in "long", not the
number "1"). "Read, vwrite, exe-
cute" (rwx) permissions go (from
left to right), owner: group: pub-
lic. If you are not the owner of a
file then you must have at least
"read" permission as a member of
"group" or "public" in order to
access and/or move the file. "d"
at the beginning of the permission
string indicates a directory. .

pwd

prints working directory. Start-
ing from the root (/) directory,
pwd lists the genealogy of the
current directory, ending with the
current directory”s name. This
whole construct 1is called the
pathname. When in doubt, specify
a file or directory by using its
entire pathname.

ex or vi <filename>.

If you are intimidated by all of
the ex options, use its subset,
edit. yi is the screen-oriented
version of ex.

nroff -ms <filenames>

The nroff program with the '"ms
macro commands is the easiest way
to format text neatly and uni-
formly. Other macro packages are
available, and straight nroff can
be used for "special effects". You
can also define your own macro
formatting commands.

<

VIEW OUTPUT ON SCREEN

STRING COMMANDS TOGETHER

EXIT

-7 -

more <filename>

Alternatively, use the commands
“cat” or “nroff” and pipe the out-
put through the more program, as
in:

nroff filename | more

This will put the output om your .
CRT one screenful at a time. Hit
the space bar to get the next
screenful, and Shift/Delete, to
exit.

You can pipe the output of one
command to the input of anmother
with the pipe "|" sign, as for the
"more" program above. Commands
can also be performed sequentially
if they are separated by semi-
colons ";". It is usually best to
confine & string of commands to
one line on the screem or printer.
Finish all commands with a car—

riage return.

To stop a program and exit to your
shell (prompt) press the "Delete"
key.

To log out, type Comtrol-D.

To stop a running program
abruptly, type Control-|/. This
"quit" signal creates a core image
of the program that you inter-
rupted, which may be used for
diagnosis.

Common Errors and How to Fix Them

1. Ls or other terminal output is bunched up (seems to be
missing tabs)

Cure: Type tset.
2. The terminal is not echoing or seems to be dead.

Cure: Type "Linefeed" - Control-j on terminals without a
linefeed rather than "Return". If you get a prompt, type
tset and Linefeed.

3. Programs that are likely to access raw devices, such as
ead, write, and lseek, should always be given parameters in
512-byte multiples, since in raw I/0 read and write truncate
file offsets to 512-byte block boundaries. Write, in par—
ticular, scribbles on the tail of incomplete blocks.

February 25, 1982

User Documentation Update for UNISOFT Pascal and FORTRAN

l. The close procedure from Pascal is always "lock" (the file
remains after the close) regardless of whether "lock" or "purge"
is specified. Similarly, from FORTRAN, all files are closed
"keep" even if the "delete" option is specified.

2. The following calls are not implemented under the UNISOFT
version of SVS Pascal: unitread, unitwrite, unitclear,
unitstatus, and memavail.

3. Pascal programs must be in files whose names end in ".pas"
FORTRAN programs must be in files whose names end in ".for"

4. Call "C" externals like the following example:

Provide an external definition in Pascal program:
(assume the pchar is declared “char)

function _yrite(cohnt: longint;
bufaddr: pchar;
fd: longint): longint; external;

Note: arguments are in reverse order from "C" call and all
arguments must be declared in Pascal to push 4 bytes onto the
stack for the call.

A "wrapper" must be provided in assembler language. The
external reference passed to the UNISOFT linker will be in upper
case (_WRITE). The wrapper must call the corresponding lower
case routine and get the return value out of DO and onto the
stack where Pascal expects it. An example of a proper wrapper
for _write is as follows:

.globl WRITE

_WRITE: movl sp@+,a3 Save return address
jsr write Call "C" style routine
addl ¥12,sp Remove 12 bytes of arguments
movl d0, sp@ Place return value on stack
jmp a3e Return to caller

Assemble the wrapper into a .o file using the UNISOFT assembler
and provide it to the UNISOFT linker (cc in the sample shell
command file) next to wraplib.o.

5. Calling "C" externals from FORTRAN is accomplished by simply
calling them as a function. A wrapper (as above) must be provided
Parameters are passed by FORTRAN by reference so the wrapper (or
called routine) should expect pointers to the arguments to be
passed. For example, calling ICFUNCT:

INTEGER ICFUNCT,I,M,N,O

I = ICFUNCT(M,N,O)
will generate an external reference for the UNISOFT linker if it i
not resolved by ulinker to another Pascal or FORTRAN routine.

6. A Pascal program may call halt(0) to generate an UNISOFT error
return and halt(l) to generate a normal UNISOFT termination if the
program is used in scripts which test the UNISOFT error flag.

INTRODUCTION TO VOLUME 1

This volume describes the user—accessible facilities of
the UNIX* operating system.

Volume One is the User“s Manual. This volume includes
short descriptions of commands, subroutines, system calls,
and other useful information.

Volumes Two and Three contain tutorials and reference
articles for other UNIX functions such as systems program
ming and document preparation.

Volume Three, in particular, contains a good introduc-
tory document, "The UNIX Time-Sharing System” by Dennis
Ritchie and Ken Thompson. A beginners” UNIX tutorial is
found in "UNIX for Beginners" by Brian Kernighan.

Within the area it surveys, this User”s Manual (Volume
One) attempts to be timely, complete and concise. The sup-
plementary documents in the other volumes will often clarify
fine points of syntax or usage that the short descriptions
omit, for the sake of brevity. However, the short descrip-
tions with their examples should be sufficient to show the
common usage of most commands and other facilities. It 1is
intended that each program be described as it is, not as it
should be.

Volume One is divided into eight sections:

1, Commands

2. System calls

3. Subroutines

4, Special files

5. File formats and comventions

6. Games

7. Macro packages and language conventions
8. Maintenance commands and procedures

Commands are programs intended to be invoked directly by the
user, in contrast to subroutines, which are intended to be
called by the user”s programs. Commands generally reside in
directory /bin (for binary programs). Some programs also
reside in /usr/bin, to save space in /bin. These direc-
tories are searched autamatically by the command inter-
preters, sh and csh. Each user has the option of using
either the Bournme shell, (sh) or the C-Shell (csh) as the
usual command interpreter.

System calls are entries into the UNIX supervisor. The
system call interface is identical to a C language program

*UNIX is a Trademark of Bell Laboratories.

-2 -

call; notes on system calls are found in Section 2.

An assortment of subroutines is available; they are
described in section 3. The primary libraries in which they
are kept are described in intro(3). Subroutines, like sys-
tem calls, are described in terms of the C programming
language.

The special files section 4 discusses the characteris-
tics of system "files" which are symbolic representations of
physical 1/0 devices, such as terminals (see gty(4)).

Section 5, concerning file formats and conventions,
details the structure and characteristics of system files
used for diagnostics or as autamatic holding files for the
output of the loader or the assembler.

Games have been relegated to section 6 to keep them
from contaminating the more staid information of section l.

Section 7 is a miscellaneous collection of information
necessary to writing in various specialized languages: char—
acter codes, macro packages for typesetting, etc.

Section 8, on maintenance, discusses commands and pro-
cedures used for system maintenance and/or diagnosis. These
maintenance features are usually used in '"super-user" mode
or by a system administrator. Maintenance commands and
files are almost all kept in the directory /etc..

Each of the sections of Volume One, consists of a
number of independent entries of a page or so each. The
name of the entry is in the upper cormers of its pages,
together with the section number. Entries within each sec-
tion are alphabetized. The page numbers of each entry start
at l; to aid in adding updates or revision, each entry has
been numbered separately.

All entries are based on a common format, not all of
whose subsections will always appear.

The name subsection lists the exact names of the
commands and subroutines covered under the entry and
gives a very short description of their purpose.

The synopsis summarizes the use of the program
being described. A few conventions are used, particu-
larly in the Commands section, Section 1:

Boldface words are considered 1literals, and are
typed just as they appear.

Square brackets [] around an argument indi-
cate that the argument is optional. When an

-3 -

argument is given as "name"”, it always refers to a
file name.

Ellipses “...” are used to show that the pre-
vious argument-prototype may be repeated.

A final convention is used by the commands
themselves. An argument beginning with a minus
sign “=“ is often taken to mean some sort of
option-specifying argument even if it appears in a
position where a file name could appear. There-
fore, it is unwise to have files whose names begin
Vith ‘=’ .

The description subsection discusses in detail the sub-
ject at hand. .

The example subsection gives ome or more sample
uses of the command or program.

The files subsection gives the names of £files
which are built into the program.

A see also subsection gives pointers to related
information. :

A diagnostics subsection discusses the diagnostic
indications which may be produced. Messages which are
intended to be self-explanatory are not listed.

The bugs subsection gives known bugs and sometimes
deficiencies. Occasionally also the suggested fix is
described.

At the beginning of the volume is a table of contents,
organized by section and alphabetically within each section.
There is also a permuted index derived from the table of
contents. Within each index entry, the title of the writeup
to which it refers is followed by the appropriate section
number in parentheses. This fact is important because there
is considerable name duplication among the sections, arising
principally from commands which exist only to exercise a
particular system call.

HOW TO GET STARTED

This section sketches the basic information you need to
get started on UNIX: how to log in and log out, how to com-
municate through your terminal, and how to run a program.
See "UNIX for Beginners" in Volume 2 for a more complete
introduction to the system.

logging inm.

After the system has booted up and you are running the
shell program with a login : prompt, type your login name.
If you have a password, the system asks for it and turns off
the printer on the terminal so the password will not appear.
After you have logged in, the "return", '"pew line"”, or
"linefeed" keys will give exactly the same results, namely a
carriage return + a line feed. Always type your login name
in lower-case if possible. If you type it in in upper-case
letters, UNIX will assume that your terminal cannot generate
lower-case letters and will tramnslate all subsequent lower-
case letters to upper case.

The evidence that you have successfully logged in is
that a shell program will type the C-shell prampt (“27) to
you. The shells are described below under "How to run a
Program" and in csh(l) and sh(l) in Section 1.

For information on setting up terminals, consult
tset(l), and sttv(l), which tell how to adjust terminal
behavior. Getty(8) discusses the login sequence in more
detail, and tty(4), discusses terminal 1/0.

Logging out.
There are two ways to log out:

By typing an end-of-file indication (EOT character,
control-d) to the Shell. The Shell will terminate and
the "login: " message will appear again.

Or, another user can log in directly after you by giv-
ing a login(l) command.

How to communicate through your terminal.

When you type characters to UNIX, the system stores all
the incoming characters in a buffer until a carriage return
is hit. The characters will not be given to a program until
you type a return (or newline), as described above in Log-

UNIX terminal I/0 is full-duplex. It has full read-
ahead, which means that you can type at any time, even while
a program is typing at you. Of course, if you type during
output, the printed output will have the input characters
interspersed. However, whatever you type will be saved up
and interpreted in correct sequence. There is a limit to
the amount of read-ahead, but it is generous and not likely
to be exceeded unless the system is in trouble. When the
read-ahead limit is exceeded, the system throws away all the
saved characters (or beeps, if your prompt was a Z).

-5~

The character "@" in typed input kills all the preced-
ing characters in the line, 8o typing mistakes can be
repaired on a single line. Also, the character "#" erases
the last character typed. (Most users prefer to use a back-
space rather than "#", and many prefer control=-U instead of
"@"; tset(l) or stty(l) can be used to arrange this.) Suc-
cessive uses of "#" erase characters back to, but not
beyond, the beginning of the 1line. "@" and "#" can be
transmitted to a program by preceding them with "\". (So,
to erase "\", you need two "#"s).

The “break” or “interrupt” key causes an jinterrupt sig—

l, as does the ASCII “delete” (or “rubout”’) character,
wvhich is not passed to programs. This signal generally
causes whatever program you are running to terminate. It is
typically used to stop a lomg printout that you don”t want.
However, programs can arrange either to ignore this signal
altogether, or to be notified when it happens (instead of
being terminated). The editor, for example, catches inter—
rupts and stops what it is doing, instead of terminating, so
that an interrupt can be used to halt an editor printout
without losing the file being edited. Many users change
this interrupt character to be “C (control-C) using stty(1l).

It is also possible to suspend output temporarily using
“S (control-s) and later resume output with “Q.

The quit or "abort" signal is generated by typing the
ASCII FS character. (FS appears many places on different
terminals, most commonly as control-\ or control-|.) It not
only causes a running program to terminate abruptly, but
also generates a file with the core image of the terminated
process. Quit is therefore useful for debugging (see also
core(5)).

Besides adapting to the speed of the terminal, UNIX
tries to be intelligent about whether you have a terminal
with the newline function or whether it must be simulated
with carriage-return and line-feed. In the latter case, all
input carriage returns are turned to newline characters (the
standard line delimiter) and both a carriage return and a
line feed are echoed to the terminal. If you get into the
wrong mode, stty(l) or tset(l) can be used to reset your
terminal.

Tab characters are used freely in UNIX source programs.
If your terminal does not have the tab function, you can
arrange to have them turned into spaces during output, and
echoed as spaces during input. The system assumes that tabs
are set every eight columns. Again, the tset(l) or stty(l)
command will set or reset this mode. TIset(l) can be used to
set the tab stops automatically when necessary.

-6 -

How to Run a Program: the Shells.

When you have successfully logged in, a program called
a shell is 1listening to your terminal. The shell reads
typed-in lines, splits them up into a command name and argu-
ments, and executes the command. A command is simply an
executable program. The Shell 1looks in several system
directories to find the command. You can also place com-
mands in your own directory and have the shell f£find them
there. There is nothing special about system-provided com-
mands except that they are kept in a directory where the
shell can find them.

The command name is always the first word on an input
line; it and its arguments are separated from ome another by
spaces, one space between each separate element.

When a program terminates, the shell will ordinarily
regain control and type a prompt at you to indicate that it
is ready for another command.

The shells have many other capabilities, which are
described 1in detail in sections sh(l) and ¢sh(l). See also
the reference articles on the Bourne shell and the C-shell.

The current directory.

UNIX has a file system arranged in a hierarchy of
directories. Initially, you have ome login directory which
has the same name as your login name. When you log in, any
file name you type is by default entered in this directory.
Since you are the owner of this directory, you have full
permission to read, write, alter, or destroy its contents.
Permissions to have your will with other directories and
files will have been granted or denied to you by their own-
ers. As a matter of observed fact, few UNIX users protect
their files from perusal by other users. See also chmod(1l).

To change the current directory (but not the set of
permissions you were endowed with at login) use cd(l).

Path names.

To refer to files not in the current directory, you
must use a path name. Full path names begin with "/", the
name of the root directory of the whole file system. After
the slash comes the name of each directory containing the
next sub-directory (followed by a "/") wuntil finally the
file hame is reached. For example, /unisoft/lem/filex
refers to the file filex in the directory lem; lem is itself
a subdirectory of unisoft; unisoft springs directly from the
root directory, /.

If your current directory has subdirectories, the path

-7 -

names of files therein begin with the name of the subdlrec-
tory with no prefixed "/".

A path name may be used anywhere a file name is
required.

Important commands which modify the contents of files
are ¢p(l), my(l), and rm(l), which respectively copy, move
(i.e. rename) and remove files. To find out the status of
files or directories, use 1s(l). See mkdir(l) for making
directories and rmdjr (in rm(l) for destroying them.

For a fuller discussion of the file system, see "The
UNIX Time-Sharing System," by Ken Thompson and Dennis
Ritchie. It may also be useful to glance through section 2
of this manual, which discusses system calls, even if you
don”t intend to deal with the system at that 1level. The
Introduction to Section 2 also contains a list of error mes-
sages.

Writing a program.

To enter the text of a source program into a UNIX file,
use the editor ex(l) or its display editing alias yi(l).
(The old standard editor ed(l) is also available.) The prin-
cipal languages in UNIX are provided by the C compiler
cc(l), the Fortran compiler, and the Pascal compiler. After
the program text has been entered through the editor and
written on a file, you can give the file to the appropriate
language processor as an argument. The output of the
language processor will be left on a file in the current
directory named “a.out”. (If the output is precious, use mv
to change the name from a.out to samething else, since a.out
is subject to being written over at the next compiler call).

When you have finally gone through this entire process
without provoking any diagnostics, the resulting program can
be run by giving its name to the shell in response to the
shell (“2”) prompt.

Your programs can receive arguments from the command
line just as system programs do: see exec(2).

Text processing.

Almost all text is entered through the editor ex(l)
(often entered via vi(l)). The commands most often used to
output text om a terminal or printer are: cat, pr, more and
nroff, all in section 1.

The cat command simply dumps ASCII text on the termi-
nal, with no processing at all. The pr command paginates
the text, supplies headings, and has a facility for multi-
column output. Nroff is an elaborate text formatting

-8 -

program. Used naked, it requires careful forethought, but
for ordinary documents it can be used through a macro pack-
age such as me or ms, which are described in section 7.

Troff prepares documents for a Graphics Systems photo—
typesetter or a Versatec Plotter; it is very similar to
nroff, and often works from exactly the same source text.

More(l) is useful for viewing a long text on a CRT
screen one page at a time. It helps prevent the output of a
command from zipping of f the top of your screen. It is also
well suited to perusing files. The output from any set of
commands can be piped through more in order to be viewed on
a CRT screen; see "Pipes and Filters" in g¢sh(l).

Various commands exist to provide you with useful
information. For example, date(l) prints the current time
and date. 1s(l) will list the files in your directory or
give summary information about particular files.

Surprises.

Certain commands provide inter-user communication.
Even if you do not planm to use them, it would be well to
learn something about them, because someone else may aim
them at you.

To communicate with another user currently logged in,
write(l) is wused; mail(l) will leave a message whose pres-
ence will be announced to another user when he next logs in.
The write-ups 1in the manual also suggest how to respond to
the two commands if you are a target.

PERMUTED INDEX

chgrp: change group
chown: change owuer
ident - login banner

rmcobol(l)

diskformat

lpd

ident

nice: run & command at low priority .sp nohup
egrep

setmem

disktune

device. exterr

help: ask for help

abs: integer
fabs, floor, ceil:

phys: allow a process to
sccess: determine

acct: execution

acct: turm

sin, cos, tan, asin,
ssct: print current SCCS file editing
fortune: print a random, hopefully interesting,

phys: allow a process to access physical
admin: create and

basename: strip filename

unalias: remove
aliens: The

brk, sbrk, break: chamge core

malloc, free, realloc, calloc: main memory
limit:

else:

lex: generator of lexical

vorms:

rain:

bed: convert to

number: coavert

be:

tp: manipulate tape
ar:

ar:

tar: tape

glob: filename expand
shift: manipulate
echo: echo

echo: echo

expr: evaluate

bc: arbitrary-precision

expr: evaluate arguments

tra: copy out a file
gntime, asctime, timezone: convert date and time to
ascii: map of

downloading.. hex: translates object files into

atof, atoi, atol: coavert
ctime, localtime, gmtime,

UniSoft Corporation

: arithmetic on shell variables.

COBOL compiler by RyamMcFarland.
COBOL runtime interpreter.
format 8 diBK. cececcescscescscsscocscocssescsncs
- line printer dAEmMOD. .eccccccscscscoscccccsccscss
= 10gBin DANNET . .ecccercscsnccscrccncsscnsonscssns
- run a command immune to hangups (sh only).
~ search & file for 8 patlerlNe ceoececccccscscscccocs
- set user memory limit to VAlUB., <ceccececcccscecs
- tune the floppy disk settling time parameters. ..
- turn on/off the extended errors in the specified

abort: generate a fault,
about SCCS problems.. .ccecceccscescscscccccscscsccse
abs: integer absolute value.
absolute Value., c.cecerccccecsessaceccrasccccacnacas
absoluce value, floor, ceiling fuactious.
access: determine accessibility of file,
access physical addresses.
accessibility of file.
accounting file. .eececcececascecsssrccesoscccncenns
accounting on OF Off. ceeiecccecvaccosacccosacnncee
acct: execution accounting file.
acct: turn accounting om OF Offe cecevccsccccccccee
acos, atan, atan2: trigonmmetric functiouns.
activity.
adage.
adb: debugger.
8dAresses8. ccccccsevsccccccsccasncncsscssesccssnssnose
admin: create and administer SCCS files.
administer SCCB fileS. .cosvecccvsccccccccccsonccns
adventure: an exploration game.
BffiX@B. cevetcccctttrcncsccetectccecnsstscnsracnns
alarm: schedule signal after specified time.
alias: shell macros.
8li88E@B. cieiirctcetccctccecessscsescsscescacctanes
alien invaders attack the earth. .cceeccccccccecces
aliens: The alien invaders attack the earth.
allocation.
8l110CBLOT: coeccsccscscccssccoaccsccocsocssoscscncne
alter per-process resource limitations.
alternative commands.
ANAlYSiS PrOGTAmMB. sccvceccccsccsasccccscacsscassccse
snimste worms on a display terminal.
animsted raindrops display.
antique medi&. .c.coececscccescscnccsscsessconcnscae
s.out: assembler and link editor output.
ar: archive and library maintainer,
ar: archive (library) file format.
Arabic numerels to English. .ceccocccccccccssccccss
arbitrary-precision arithmetic language.
8TChive, sciccrecrecncrnrcsevscsccevsocstsscsccancs
srchive and library maintainer.
archive (library) file format.
8TChIVEr: cccceccscoscasossocassraccsccssoccsccance
argument list,
argument list.
arguments.
srguments.
arguments as an expression.
srithmetic lADGUARE. secccccccccsccsaccscsascsncons
arithmetic on shell variables. ..ceccecceccccccccse
arithmetic: provide drill in number facts.
as an expression.
as: assembler.
88 it BrOVWB. ceccecscccescscasssccnscnacascsanacnass
ASCII, ctime, localtime,
ASCII character set. .cccecscecccccscccccscsocsccns
ASCII formats suitable for Motorola S~record
ascii: map of ASCII character set.
ASCII to numbers. ..ccececcecescecccocscsccsosoacccns
asctime, timezone: comnvert date and time to ASCII,

®eccssessccscosoe

I 1D o o

@0 ceescccccccons

sevescecsscscssccsccne

eescee

e secseeseccscssccccscnos

s 000sseccsccssccsccce

eeeveceae
60 0cssccece
e eacevrecscscscsrcsneven

Greccevcsrseccscscesvecscsnce

69 ecsccscccccsssen

seeccoce
R R YRR RY N
L R N N N N N Y Y RN R N NN NN

L R N Y Y Y NN
e cecsesce
s cecseesccccscvoee

secese

e eecevesscrsscerccseccncscccce

secces

L N N Y R R R N R R R XN]

e cccssccce

e cecsessevrscsecscssereanen

e cccccccccsoe

0essccscsccsssccccnvene

seeccescce
eevecsecsscvecoe

eecseveccsscsnce

s esvccces

eeeescsccscsccssccccnn

s00cescsccscscssesce

R R R R R RN NN
L N Y R R N R R RN N RN NN
0000000008000 0000000cc000s000c0s00eR e
L N N R N RN N RN R AR RN

eeesssesesceccccccssccce

sececcce
LR Y N N RN

L N N Y Y RN
e cceeensecccsscsncsvccccs

eescee

chgrp(1M)
chown(1M)
ident(8)
csh(l)

.cobal(l)

rmcobol(1l)
diskformat(l)
1pd(1M)
ident(8)
nice(l)
egrep(l)
setmem(1)
disktune(l)
exterr(l)
abort(3)
help(1)
abs(3)
abs(3)
floor(3M)
access(2)
phys(2)
access(2)
acct(5)
acct(2)
acct(5)
acct(2)
sin(3M)
sact(l)
fortune(6)
adb(l1)
phys(2)
admin(1l)
admin(1l)
adventure(6)
basename(l)
alarm(2)
csh(1)
csh(l)
aliens(6)
aliens(6)
brk(2)
malloc(3)
csh(l)
esh(l)
lex(1)
worms (6)
rain(6)
bcd(6)
a.out(5)
ar(l)
ar(5)
number(6)
be(1)
tp(l)
ar(1)
ar(5)
tar(l)
csh(1l)
csh(l)
csh(l)
echo(1)
expr(1)
be(l)
csh(l)
srithmetic
expr(l)
as(l)
era(l)
ctime(3)
ascii(7)
hex(1)
ascii(7)
atof(3)
ctime(3)

August 1982

Permuted Index

sin, cos, tan,

help:

as:

a.out:

setbuf:

at: execute commands

to hangups (sh only). nice: run a command
sin, cos, tan, asin, &cos,
sin, cos, tan, asin, acos, atan,

atof,

atof, atoi,

aliens: The alien invaders
vait:

bg: place job in

wait: wait for

badblk: program to set or update
information,

ident - login

banner: print large

termcap: terminal capability data
ttytype: data
vi: screen oriented (visual) display editor

cb: C program
jo, i1, jm, y0, yl, ya:

bdiff:

find the printable strings in an object, or other
fread, fwrite: buffered

strip: remove symbols and relocation

sync: update the super

update: periodically update the super

badblk: program to set or update bad

sum: sum and count

switch: multi-way command
brk, sbrk,

login,/ sh, for, case, if, while, :, .,

fg:

fread, fwrite:

stdio: standard

setbuf: assign

mknod :

checklist: list of file systems processed
mkstr: create an error message file
ttytype: data base of terminal types
rmcobol(l) - COBGL compiler

svab: svap

ce:

ctags: maintain a tags file for a

cb:

lint: a

xstr: extract strings from

mkstr: create an error message file by massaging

hypot,

dc: desk

cal: print

cu:

malloc, free, realloc,

intro, errmo: introduction to system

termcap: terminal

cd, eval, exec, exit, export, login,/ sh, for,

text editor (variant of the ex editor for new or

August 1982

asin, acos, atan, atan: trigonmmetric functions. .
ask for help about SCCS problems..
a88embler. ..ccsccsccccecsccccrccncrrsssssssocssoce
assembler and link editor output.
assign buffering to a stream.
At & later time. s.cecccccvscconceccoscsscnsnassane
at: execute commands at & later time. ..ccecsccscss
at low priority .sp nohup - run & commsnd immune ,.
atan, atan2: trigonametric functioas,
atan2: trigonametric functionNd. .c.eessvsvcscccccse
atof, atoi, atol: convert ASCII to numbers.
atoi, atol: comvert ASCII to numbers.
atol: convert ASCII to oumbers.
attack the earth. cecccecscccoccccscscsrsacacsscnnce
avait completion Of Process. .cccecevercccenccscces
awk: pattern scanning and processing language.

backgammon: the game. .
background. cececececccvrccsseseccrsscncsccscocncons
background processes to complete.
bad block informatioN. .sececccscvescccssssssnconcas
badblk: program to set or update bad block
DANDET . ciceccccecvscnesscscscscesscccscnsscnsanse
banner 0N PrifLer. ceccceccscecsccescecscccsccssscams
banner: print large banner on printer.
DABE. ..cccccccccaccccccccessscscncssssancsasananns
base of terminal types by port.
based 0D @X: cecscccccseescscscccssassscccsancdoses
basename: strip filename affixes. .ccccececccccanse
bc: arbitrary-precision arithmetic language.
bed: coanvert to antique media.
bdiff: big diff.
beautifier. .ccececccccsccsccecceassoscosnncersscnns
bessel functioNS. <cececccccsccsccesscsscscscsccansas
bg: place job in background.
big diffe ceeccecrccceccccccscscoscasescssrsssacans
binary file. strings:
binary input/output.

bits.
block.
DloCKe enccecsecccsccascscscscssoscssccscssssnsnnne
block information.
blocks io & fil@. ceccccecccscscssccsscscnccscvsons
boot: startup procedures.
branche ..ceceseccscccocscesovaccasenssccoascsssnes
break: change core allocationN. <ccecesscsccccccccas
break, continue, cd, eval, exec, exit, export,
break: exit while/foreach loop.
breaksw: exit from swvitch.
bring job into foreground. ...cceececscsccscscccacs
brk, sbrk, break: change core allocation.
buffered binary input/output.
bufferad input/output package.
buffering to a stream.
build special file,
by focke .ocecccccescocscccsccsasccccssccascsccsncces
by massaging C source.
DY POTte .cceescccccecsscecssnccsosscosacsnancancsne
by Ryao-McFarland.
byt‘.- €0 0000000000000 0900000000000000 0000000000000
C compiler.
C PrORTEM. cccecocsccsccccecsconcsccnssccancssccnse
C progrmm besutifier.
C program verifier. cecceccesscsccecesceccccssocnane
C programs to implement shared strings.
C SBOUFC@: cccecocscccessessscccocsssescessscssscoss
cabs: Euclidean distance.
cal: print calendar.
calculator.
calendar.

call URIX. csecevececcoccscscscoccnsnoscnccccanncnsces
calloc: main memory allocator.
calls and error aumbers.
capability data base.
case, if, while, :, ., break, continue,
case: selector in switch.
casual users), edit:

0 0cevccvceccnce

tecececscsccccsccccce

@0 cecrevsecsccccsonse

eevecee

v 0sescvec0e0ccscsoce

sevsevecssscccvscnse

eeccccse

®e000ecscceccscvene

e esec000s000ssnccess

e s cseeccvresscsrecacetessecsron

e e e~ecccecessscesssccsccsne

@scccc0ecc0cesboseececen0scace e

900000000000 0000000000000000000090C0000OCICRIROTOT

€0 0000000000000 000000000c000000Vs 0000000 RTS

®e0ceecevcssecccrrssacsesersene

scceeco0ecsessssascccsscse

eeeseccsccccssssvscnoce

eesecsesce

0 ceevcvcsccsvsnccsse

e cocseevscscccccere

e cecsecsereesrrccscccrrccose

e cscvesseccoeesernscssscece

R N N Y YRR

R Y Y Y PR R RN R

e 00evsceccecsccescccrecce

LR R Ry Y YRR

RN R R R YN Y R E R RNy

e 0eeeectocccsocccnc0cc00088sesssencte e

e secevssrecvcccoecse

eveccscccosscsscscrennene

L R R N N N Y]

tececsscoccve

e cveecccrvscsssccssceccosne

R R RN XY

sin(3M)
help(1l)
as(l)
a.out(5)
setbuf(3S)
at(l)
at(l)
nice(l)
sin(3M)
s1n(3M)
atof (3)
atof(3)
atof(3)
aliens(6)
wait(1)
awk(1)
backgammo n(
csh(1)
csh(l)
badblk(1M)
badblk(1M)
ideunt(8)
banner(6)
banner(6)
termcan(5)
teycype(5)
vi(l)
basename(l’
be(l)
bed(6)
bdiff(1)
cb(1)
J0(3M)
csh(l)
bdiff(1)
strings(l)
fread(3S)
strip(l)
sync(1M)
update(lM)
badblk(1M)
sum(1l)
boot(8)
csh(l)
brk(2)
sh(l)
csh(l)
csh(l)
csh(l)
brk(2)
fread(3s)
stdio(3)
setbuf(3S)
mkn od (1M)
checklist!(
mkstr(l)
ttytype (S,
cobol(l)
svab(3)
ce(l)
ctags(l)
cb(l)
line(1)
xstr(l)
mkstr(l)
hypot(3M)
cal(l)
de(1)
cal(l)
cu(lc)
malloc(3)
intro(2)
termcap(!
sh(1)
csh(l)
edit(1)

UniSoft Corporation

signal:
default:
cat:

/case, if, while, :, ., break, continue,

fabs, floor,

fabs, floor, ceil: absolute value, floor,
brk, sbrk, break:

chdir:

ed:

chdir:

chgrp:

passwd:

chmod:

chmod:

umask:

chown:

chown:

cde:

delta: make a delta

set:

cd:

pipe: create an interprocass
ungetc: push

isspace, ispunct, isprint, iscntrl, isascii:
eqnchar: special

freq: report on

getc, getchar, fgetc, getw: get
putc, putchar, fputc, putw: put
ascii: map of ASCII

tr: translate

sumndir: sum and count

dcheck: file system directory comsistency
icheck: file system storage consistency
fack: file system consistency

eqn, neqn,

ispunct, isprint, iscntrl, isascii: character
default: catchall

clri:

clear:

feof, ferror,

csh: a shell (commsnd interpreter) with
cronm:

close:

fclose, fflush:

rmcobol(l) -

comb:

file.-

exec: overlay shell vith specified

time: time

system: issue s shell

test: condition

time: time a

immune to hangups (sh only). nice: rum a
swvitch: multi-way

uux: unix to unix

UniSoft Corporation

Perputed Index

cat: catenate and print.

catch or ignore signals.

catchall clause in switch,
catenate and print.
cb: C program beautifier.
cc: C compiler,
ed: change directory.
cd: change working dir€ctorys ccescecescesscccccses
cd, eval, exec, exit, export, login, newgrp, read,/
cdc: change the delta commentary of an SCCS delta.

ceil: absolute value, floor, ceiling functions.
ceiling functionBe seececcacccsccacccocossccccances
change core 8110catiofe .ccceccsccsccscscscccscaccne
change current working directory.
change directory.
change directory.
change group .
change login password.
change mMOde. <c.ccsecessesscecsccsesecsssscscccnccne
change mode of file. c.cecececceccescccccconccacane
change or display file creation mask.
change owner .
change owner and group of a file: cecececscccsccens
change the delta commentary of an SCCS delta.
(change) to an SCCS file.,
change value of shell variable.
change vorking directory.
chinnel. .o.qc.ocotco-:o--o--o;.oouoo--co.onac--.-c
character back into input Stream. cccceccecosccccae
character classification, /isdigit, isalnum,
character def initions for equ.

character frequencies in a file.
character or vord from stream.

character or vord on a stream,

character set.
ChBraCterSe ccccccescooccccccacccnccsssscaccscancas
characters in the files in the given directories. .
chdir: change current vorking directory.
chdir: change directory.
check,
check, coscssccceccccnscsscccncccoscsscsccssccnnsas
check and interactive repair.
checkeq: typeset mathematic8. .ecccccecccccccssccces
checklist: list of file systems processed by fsck.

chgrp: change group .
chmod: change mode. cecccceccscccescccccccacasnscns
chmod: change mode of file.
chown: change OWRer . ccccecevccccsccnccaccccccnsns
chown: change owner and group of a file.
classification, /isdigit, isalowm, isspsce,
clause in sWitChe .cccececccccccccccesccnccscocccocs
clear: clear terminal screen.,
clear i=nod@. cecccccsccscccsccssossscccccccncaccne
clear terminal screen,
clearerr, fileno: stream status inquiries.
C-like syntax.
clock daemon,
close a file. 0000000000000 ccsests0csccc0otsersssss
close: close & file@., ccsceccccccscccccacecscaccccs
close or flush a stream.
clri: clesr i-node.
cmp: compare two fil@S. ..ccececccccccccccscsccccne
COBOL compiler by RyanMcFarland.
COBOL runtime interprefer. ccccccecsccscocccscscsas
col: filter reverse line feeds.
comb: combine SCCS deltas.
combine SCC8S deltas. .esescecsccssscccsscccscssccns
comm: select or reject lines common to two sorted .
command.

40 sccesscceccscccsccnsccee

®seecssscsssccssssencssvcece

e 0ccectcssccrscssvcrensccecccroe

R R R R R RN XN

®essessetescsssereccsecssescsscevncce

R R Y R RN

e seccssveessscscssesscsscsennose

@0 erc0esceesscccsesseecccscrscoe

R R Y R R RN NN

L Y N N N NN NN

e s0sccesccesccevcncccsvoe

G0 sccccssccncccoscce

v cecceecrcccccce

e csc0cscsccccsccne

8 ececsccscosccsccvne

R R R R RN YY)

eevessccee

e evccscseccnscecsscsccscne

€0 0000000000000 00000000000000c00000000000000

s escceccccsccscvvces

e eecvscccercccecnccoscssssece

®eesscccccccccscsseccce

eeeesccces

I Y YY)

0000t ovececcectrcscsecssnscccssssree

e ececcecesecscscecccsnccsee

®eeereccsscssecccsccssscscccoe

e cesevscccccccee

@0 sseccccecssccccce

e cscsssccccscccsnrcccnore

8000000000000 0000000c00vc0000000000 0000000

command. 00 000000000000 e0e0000000000000000000000000
COMMANAe ccceccscscoccssosccsaccescssscccccscccnses
COMMANA. coccecscsccscccccaccococcsacsacsasssscccce
CORMADA: coceccaccssecssscscssessacscccccncssscssos

command at low priority .sp nohup - run & command .
command branch: cccececeeccccscccccccossssssccsccne
command execution,

LR R R N R Y R R R XN

cat(l)
signal(2)
csh(l)
cat(l)
cb(l)
cc(l) -
csh(l)
cd(1)
sh(1)
cdc(l)
floor(3M)
floor(3M)
brk(2)
chdir(2)
csh(l)
csh(1l)
chgrp(1M)
passwd(l)
chmod(1)
chmod(2)
csh(l)
chown(1M)
chown(2)
ede(l)
delta(l)
csh(l)
cd(1)
pipe(2)
ungetc(3S)
ctype(3)
eqnchar(7)
freq(l)
getc(3S)
putc(3S)
ascii(7)
tr(l)
sumdir(l)
chdir(2)
csh(l)
dcheck(1M)
icheck(1M)
fack(1M)
eqn(l)
checklist(5)
chgrp(1M)
chmod (1)
chmod(2)
chown(1M)
chown(2)
ctype(3)
csh(l)
clear(l)
clri(1M)
clear(l)
ferror(3s)
csh(l)
cron(1M)
close(2)
close(2)
fclose(3S)
clri(1M)
cap(l)
cobol(1)
racobol(l)
col(1)
comb(1)
comb(1)
conm(1)
csh(l)
csh(1)
systea(3)
test(l)
time(l)
nice(l)
csh(1)
uvux(1C)

August 1982

Pernuted Index

rehash: recompute

unhash: discard

hashstat: print

nohup: run

nohup: run a

run a command at low priority .sp nohup - run a
csh: a shell

readonly, set, shift, times, trap, umask, wait:
repeat: execute

re:

onintr: process interrupts in

goto:

else: alternative

intro: istroduction to

at: execute

vhile: repeat

source: read

cdc: change the delta

comm: select or reject lines

diff: differential file

cmp:

sccsdiff:

cc: C

£77: FORTRAN

pc: Pascal

rmcobol(l) - COBOL

yacc: yet another

wait: wait for background processes to
vait: await

hangman:

test:

endif: temminate

if:

vhile: repeat commands

dcheck: file system directory

icheck: file system storage

fock: file system

miefs:

deroff: remove nroff, troff, tbl and eqn
ls: list

sh, for, case, if, while, :, ., break,

ve: version

ioctl, stty, gtey:

ioctl, stty, gtty:

init: process

terminals:

ecvt, fcvt, gevt: output

printf, fprintf, sprintf: formatted output
scanf, fscanf, sscanf: formatted input
units:

dd:

number:

atof, atoi, atol:

ctime, localtime, gmtime, asctime, timezone:
bed:

. cp:

uucp, uulog, uuname: unix to unix

dd: convert and

tra:

brk, sbrk, break: change

core: format of
functions. sin,
sinh,
ve: word
sum and
sum and

sum:

directories. sumdir:

creat:

nkstr:

pipe:

admin:

umask: change or display file
umask: set file

Auguast 1982

‘count characters in the files in the given

command hash table.
command hash table.ceoecccccccscasscscscnscne
command hashing statistics.
command immune to hangups.
command iomuine to hangups. .seecececscccscssssccsces
command immune to hangups (sh only). nice:
(command interpreter) with C-like syntax,

command language. /export, login, newgrp, resd, ..
command repeatedly. .c..cocccccccctccsccsoscscrccane
command script for system housekeeping.
command scripts,
commsand transfer,
commands.
COMMANA®s sesccceoccccncoscssccsccsconssenscocsccsns
commands at a8 later time,
commands conditional ly.

commands from fileés .ceceecececccrsccsctcsacecescncas
commentary of an SCCS delta.
common to two sorted files.
COMPATALOT: coccecscrccsccacecsssssscsssosssncscses
compare tWwo fileBe cescoccsaccscecasscnsscccsncnane
compare tvo versions of an SCCS file.

R R N RN R

e ccsencsccscsccccsccee

secececcsenececsnsevsecc e

sccccce

seeccscce

eevsecccene
L N Y R YN RN
®0escececscesrsccscsecsevscsssencee

P R R N R N Y R NN N RN

s 0cvscececsssevesssnscece

L R N R R XN

Sevecescecssvscscvccsce

e cescsscscrscsccvnvas

eeececcccccee

COMPLlere cecccesccsccccescersoacrccscsosscncsscsane
COMPLI@r: covecccccsccrsncsscsscscsscsscssssccnces s
COMPLLET. cececescanscecssrccccescscesoscscssoncaas

compiler by RyanmMcFarland.
compiler-compiler.
COmMPlete. covecccssocsecscssoveccccsorscssscccasasse
completion of Process. cccecceccsccsconcecccsccanea
Computer version of the game hangman.
condition command,
conditionBle ecececeescescrsccccsccncssacssascsccnns
conditionsl statement.
conditionally.

@ecvcccrcsrsscssscssnes

e ccsecsscssessecresesncstsvaccce

ecsco0cecscccce

R R Y R R Y R RN Y

Sec0ecsseccsscseseccscnccvee

0000 r0e0e0ve0c0000000c00000000cRe0e

consistency checke cececoscceccocsccsccsccssnscccse
consistency checke .c.cccceceesscccecceccccasesccccs
consistency check and interactive repaizf. esecceceecs

construct a8 file system.
CODBEIUCEB:e ccccsoccccvscssescssocvocsscsccsvscnccs
contents Of diTeCLOTY. .cccccecccccccoccssccscoscscs
continue, cd, eval, exec, exit, export, login,/
continue: cycle in loop.
CONLTOle ccecccoscecctccctcccosccsscosscessccccacns
control device.
control device. .sceccccsccccscrcsscscecscesscncccnse
control initial ization.
conventional names.

©oceeeveeecvsecsecccccece

eoe

6sesssssccccrccccssnscccen

000 ccsssevsescsersnceraensrssecone

R R Y RN RN

@eecscseccecscecrsssescseeccocs

CONVETBLOMN. cccceccesscesenccoccasocscssssasssesscs
COMVETISiONe esccsssccscsescccscoscscoscosssscnansesne
conversion.

conversion program. Ceeesescentesecesssenenanoannoe
convert and copy 8 file. cccccecacocescscscscscnces
convert Arabic numerals to English.
couvert ASCII to numbers. .cccccccccccocsccsasccasne
convert date and time to ASCII,
convert to antique media.
copy.
copy.
cOPY 8 fil@: cccecrccccsccscccncccccsccsscssccascnne
copy out a file as it grows.
core 8l 1ocation: cesececscscsccsvcccscccscrcccsnane
core: format of core image file.
core image file,
cos, tan, asin, acos, atan, atan2: trigonmetric ..
cosh, tanh: hyperbolic functious.
COUBL: eococnccecncscacecscscsassesssocoonsscsasess

count blocks in a file.

s ecceccssccsce

eessescvsccevccesee
v eccccccsccccvecssscsves
@000 00cc00c00000000000000000000 000000000 c0c0s

LR R N R R Y R RN RPN
Cececscssscrcscscscscs

e ve0eccccercvsace

P R Y R R R R Y RN RN TN
0 ecc0cceccsevecce

cp: cOpy.
creat: create 8 new file.
create 8 D& file. .ceccsccevrccccccccccccccscassccos
creste an error message file by massaging C source.

create an interprocess channel.

create and administer SCCS files.
creation mask,
creation mode mask,

L N Y R Y RN

e csecccssevecsesessserae

eesecessccescscvone
esccsesecccscsccce
®e0evcseerecescesereevessvrsssrecssee

eeecsvscscsscsseneresscssessencse

csh(l)
csh(l)
csh(1)
csh(l)
nohup(l)
nice(l)
csh(1)
sh(1)
csh(l)
rc(8)
csh(l)
csh(l)
csh(l)
intro(l)
at(l)
csh(l)
csh(l)
ede(l)
comm(1)
dif£(l)
cmp(l)
sccadiff(1)
ce(l)
£77(1)
pe(l)
cobol(l)
yacc(l)
csh(l)
vait(l)
haogman(6)
test(l)
csh(l)
csh(l)
csh(l)
dcheck(1M)
icheck(1M)
fack(1M)
mkfs(1M)
derof £(1)
1s(1)
sh(l)
csh(l)
ve(l)
ioct1(2)
stey(2)
init(1M)
term(7)
ecve(3)
printf(3S)
scaof(38)
units(l)
dd(1)
numbe r(6)
atof (3)
ctime(3)
bcd(6)
ep(l)
uucp(1C)
dd(1)
tra(l)
brk(2)
core(5)
core(5)
sin(3N)
sinh(3M)
we(l)
sum(l)
sumdir(1)
ep(l)
creat(2)
creat(2)
nkstr(l)
pipe(2)
admin(1)
csh(l)
umask(2)

UniSoft Corporation

more: file perusal filter for

syntax.,
convert date and time to ASCII.

jobs: prinmt

sact: print

whoami: print effective
chdir: change

motion.

curses: screen functions with "optimal”
continue:

cron: clock

lpd - line printer

eval: re-evaluate shell

prof: display profile

ttys: terminal initialization
termcap: terminal capability
ttytype:

oull:

types: primitive system

join: relational

date: print and set the

time, ftime: get

localtime, gmtime, asctime, timezone: comvert
touch: update

dump,
adb:
tp:

eqnchar: special character
tail:

cdc: change the delta commentary of am SCCS

delts: make &
cde: change the
radel: remove a

comb: combine SCCS

mesg: permit or

constructs.

crypt, setkey, encrypt:

dup, dup2: duplicate an open file
de:

access:

file:

turn on/off the extended errors in the specified
ioctl, stty, gtty: coamtrol

ioctl, stty, gtty: coatrol

bdiff: big
diffdir:
diff:

diffdir: diff

dir: format of

m and count characters in the files in the given
cd: change working

chdir: change current working
cd: change

chdir: change

18: list contents of

mkdir: make a

radir: remove an empty

dcheck: file system

unlink: remove

mklost+found: make a lost+found
pvd: working

Soft Corporation

Permuted Index

cron: clock daemon.
crt viewing.

®e0vecssesecscccecccnsorvesroan

P N N N N R R R RN RN N

crypt: encode/decode. ceseeescrccssccccsrcsacansons
crypt, setkey, encrypt: DES encryptiofe seccecccecsse
csh: a shell (command interpreter) with C-like
ctags: maintain a tags file for a C program. .ece..

ctime, localtime, gmtime, asctime, timezone:
cu: call UNIX, .coceceevesccscocsscccssscncnsncnaas
current job liBt. cecececcccctosscsccncssascanccnne
current SCCS file editing activity.
current USEr ide ceecccsscccrsasscscsccccccscorvane
current working directory. .cecccecccccccosscscscnse
curses: screen functions with "optimal® cursor
cursor motioan.
cycle in loop.
daemon.
daemon,
data.

data.

data. €0 0601000000000 0a0000rs0sn0e00000sccccccsocnse
data base. cecceccrcrsteceactcoscscosscsnnscssesnes
data base of terminal types by port.
data sink.
data types.
database operator.
date.
date and time, R R R R R R RImnmm™
date and time to ASCII, ctime,
date last modified of a file.

date: print and set the date.

de: desk calculator. cceecescoccsrsescccsccsasesccse
dcheck: file system directory consistency check. ..
dd: convert and copy 8 file. .cceccecccaccccnccscns
ddate: incremental dump format.
debDUBBETr. sccssccccascccsncscscnssscnccasssssasasee
DEC/mag tape fOTMALS. sececcccccescesssssccssansans
default: catchall clause in swvitch.
definitions fOr €qN. ceccccccsaccarssccccscsancccns
deliver the last part of a file.
delt.. 0 00000000000 0000000000000000000000COCOOCIOITLES
delta (change) to an SCCS fil@e ceveecocscscscccces
delta commentary of an SC(S delta.
delta fram a0 SCCS fil@e ceveeccscccssscacssasanans
delta: make a delta (change) to an SCCS file.
delt @8, seccscsccescvcscssccsvsesccrscssstoscscrasas
deny messages.
deroff: remove nrof £, trof £, tbl and eqn
DES encryption,
delcriptor. R R R R ERRrEImrInInImnmnon
desk calculator. 80 0000ccecsecscevcsrecsssenssesess
determine accessibility of file,
determine file type.

ecs e

tevsccsssscrnoe

seece
L N Y N N N NN X
G0 000c0ccscs00c000000000000000 0000000
000000000000 e0000000000000000000ORRCIOOCIORTCTS
9000000000000 0000000000000c0000000R0PCORCITOTE
90 0000000000000 00000c0000000000000000000000c0s

0000000000000 00008c0000000000 0000000000000

00 e0ccscccverse
R R N Y R R RN R NN NN
€9 0000800000000 000000000200000000 00000
AR R N R RN R R RN Y]

0 €0 0000000 eerrr00c0ccensseseresee0tcsectteT

s 0scceevcscsonccce

@eeeosescscsccccccssone

0 ecccscsccscrssssccen

Sscescecccvcccccroe

secseccnccccnce

60 s0c0cccscsccroce

eesssecsccvcccse

es e

L N N Y N Y X X NN

6eceeccccs

N R P R R N NN N

evecscccscssccvesocs

@0 evcscccscccessesosccssssnces

device, EXLEXT .cvscccescccvrsscssscnccsscscscncans
deviCee cececsecccsccaccsscscrecsoscsscsnssacnssnas
device. teeceesscrstrststacttticceccccroccccconrans

df: disk free.
diff. 90 000 00000000000 PRPRNCRIGRORPNRITROICSROIARONOSOEDNOIEOEEOOITOENE
diff: differential file comparator.
diff dir‘ctori..o 90000000 ccssscsccevesevsscssvssece
diffdit: diff ditQCtori". 0 cecscecccccscscvssvosee
differential file comparator.
dir: format of directories.

0000 e00000000000000c00 00000000

eecscscccscscnce

S0 00cccceevocevccssvoce

directories. 00 00000c0c0csc0rcescrcscstsrccnsensone
directoriess .cccececccccosceccccevsctsrscccecsvens
directories. suBRdir: .cceeccsscsccccccacecsccccons
directo!’. R R R R R R R P P P YRRy
ditectoty. $8000000c0000cr0000000000s00en000000s 000
diTECLOTYe cccccecocsccvcccasssscnscssrsnnsccsscnsoa
ditcc:ory. L N R Y XX X XX E Y
ditﬁctofyo $0000c00000000000000000s0000c00cst0cccce
directorye cecsscccccocssncscocccoccascaccosscccane

directory. sececvececcsccrccccccssccssssscasscscccne
directory comnsistency check.
directory entry.
directory for fsck.
directory name,

®seecvccsscccvccscvese

®ev00sscevessvervencantessscorssose

®ecvsessesevssecescsscsvsccscccnse

L N N R Y R RN R

cron(1M)
more(l)
crype(l)
crype(3)
csh(l)
ctags(l)
ctime(3)
cu(lc)
csh(1)
sact(l)
whoami(l)
chdir(2)
curses(3)
curses(3)
csh(l)
cron(1M)
1pd(1M)
csh(l)
prof (1)
teys(5)
termcap(5)
ttytype(5)
null(4)
types(5)
join(1)
date(l)
time(2)
ctime(3)
touch(1)
date(l)
de(1)
dcheck(1M)
dd (1)
dump(5)
adb(l)
tp(5)
csh(l)
eqnchar(7)
tail(1l)
ede(l)
delta(l)
cde(l)
rmdel (1)
delta(l)
comb(1)
mesg(l)
derof £(1)
crypt(3)
dup(2)
de(l)
access(2)
file(l)
exterr(l)
ioct1(2)
stty(2)
df(l)
bdiff(l)
diff(l)
diffdir(l)
diffdir(l)
diff(1)
dir(5)
diffdir(l)
dir(5)
sumdir(l)
cd(1)
chdir(2)
csh(l)
csh(l)
1s(1)
mkdir(1)
radir(l)
dcheck(1M)
unlink(2)
wklost+fnd(1M)
pwd(l)

August 1982

Permuted Index

mknod: make a

popd: pop shell

pushd: push shell

unhash:

unset:

diskformat - format a

dumpdir: print the names of files on a dump uped:t
disktune - tune the floppy

du: summarize

parameters,

mount, umount: mount and
mount, umount: mount aad
rain: animated raindrops

vi: screen oriented (visusl)
umask: change or

prof:

vorme: animste worms on &
bypot, cabs: Euclidean

into ASCII formats suitable for Motorola S-record
arithmetic: provide

dump: incremental file system
od: octal

dump, ddate: incremental

dumpdir: print the names of files on a
disk.

dup,

dup, dup2:

The alien invaders attack the
echo:

echo:

aliens:

end, etext,

ex,

or casual users).

sact: print current SCCS file

ed: text

ex, edit: text

sed: stream

vi: screen oriented (visual) display
edit: text editor (variant of the ex
s.out: assembler and link

users). edit: text

vhoami: print

rmdir: remove an

crypr:

crypt, setkey,

crypt, setkey, encrypt: DES
makekey: generate

logout:
getgrent, getgrgid, getgrnam, setgreant,
getpvent, getpwuid, getpvnam, setpwent,

number: counvert Arabic numerals to

nlist: get

getgrnam, setgrent, endgrent: get group file
getpwnam, setpvent, endpwent: get password file
unliok: remove directory

execv, execle, execve, execlp, execvp, exec, execes,

setenv: set variable in
eaviron: user
printenv: print out the

August 1982

directory or a special file:. ..ceeccecsscccscssesss mknod(2)
directory BtACK. ssceceesceccsssscsssassssscssassese coh(l)
directory Stacke sececsesecsccocscsassacsccaassscas C8h(l)
discard command hash table. .cecececcececcsssssssss csh(l)
discard shell variables, ccecceccecccssecccssssesse c8h(1)
diBKe secceevcssccssscscrcssasscccscscssssccccssess diskformat(l)
disk. © 0 000900000000 000e0e0ocnsessecsecsctccscccnonse dumpdir(lh)
disk fre€: cocvescccacssnsascscccscssenscscsacacsss df(1l)

disk settling time parameters. .coceeseevecsesesess disktune(l)
disk USBEE: +ecvvecscacsccsasccssscaccsccscsssscess dul(l)
diskformat - format 8 diske ceccecescecccocecsscess diskformat(l)
disktune - tune the floppy disk settling time disktuae(l)
dismount file 8ystemM. cccoecceccccccssaseccascreess mount(l)
dismount file system. ...cceescscccsccasscscvssssss umount(l)
disPlBYe <veccescesccscosssecssscsscancensecsscsess rain(b)
display editor based 0D €X. sieecccccccsscccssssees Vi(l)
display file creation masK. .ecccvecccecccvcccccces csh(l)
display profile dat@. ceceeccecsscesacccscessecsses Pprof(l)
display terminale cieceecececcrccccccesccnnsncassssss wWoOrms(6)
diBLANCE: cecevecesscccsascessssencsccsasccssassees hypot(3IM)
downloading.. hex: translates object files hex(l)
drill in oumber facts: ceeecesssecesveccssscossases Arithmetic(6)
du: summarize disk USREE. cccvececsvecrccccacscscass du(l)
dunp. I I dunp(lH)
AUIMP. <cecscccascasssvesscscsssocccssacascenscassse 0d(l)
dump, ddate: incremencal dump format. e.ceeccesssc. dump(S)
dump fOTMAL. cecesescocvcsccccscccccasccccosecasses dump(5)
dump: incremental file system dump. ceccoccscececss dump(lM)
dump tape OF diske coccvecoccscccesrasssenccssasees dumpdir(lM)
dumpdir: print the names of files on a dump tape or dumpdir(1N)
dup, dup2: duplicate an open file descriptor. dup(2)
dup2: duplicate an open file descriptor. seeeeesece. dup(2)
duplicate an open file descriptor. .ececeecssvecses dup(2)
earth. e 00 v 0000000000000 000000000000000000C0O0CO0COCS .lieﬂ‘(e)
echo .fs“-ent.o 800000 e0csc0sennsecccttsPsccesee C.h(l)

echo arguments. tet0cssecctsccsssnsccssrveccscccroe Gcho(l)
echo: echo STGUMENLS. cecesecscsccsassosvsessccsess C8h(l)
echo: echo argumentse ecscecocscessvsccccssscssasasss echo(l) *
ecvt, fcvt, ZCVE: OULPUL CONVEISiOND: cecesscccvecss ecvt(3)
ed: text editor. .ueecessccsvscccccrcascacscsscsass ed(l)
edata: last locations in Progra®e .ececccecccescesss end(3)
edit: text €ditOf. cecccecvccsccescsncsscanscscscss ex(l)

edit: text editor (variant of the ex editor for new edit (1)
editing 8Ctivitye cececceccccccsssccescranssasccaas Bact(l)
@ditOr: cccescescascesccsncosscescssssancscsasscces @d{l)
Gditafo R R R xxrInmmmmmnx Q!(l)
€ditOre seseecevccsscescasscosscscccssansscsceasscae sSed(l)
editor based OD €X. <eccseccsscceccsseccscascssasces Vi(l)
editor for new or casual users). .c.eccecccccccccasss edit(l)
@ditOor OULPUL. cececocasesccsrcssensassescoacssccees 8s0ut(S5)
editor (variant of the ex editor for new or casual edit(l)
effective current user ide ccecoceccccscesscscescss Whoami(l)
egrep - search a file for a pattern. cccceesecscsso egrep(l)
else: alternative commends. ..cevcceccccscceassanss csh(l)
empLy dirECtoryo e 0ccecceccesvnevcsstesseecstnv e r‘dir(l)
encode/decode. ...ssececescecsssssccascscasssscasss Crypt(l)
encrypt: DES encryptiofa seccccoccscccsccsssssscess crypt(3)
@NCTYPLiONe secescssccsccncoccscosssssnnsvssonceacs CIYpt(3)
eNCTYPLion KeYe cesscecevcaccscccssesscncscncassass makekey(l)
end, etext, edata: last locations in program. end(3)

end 8e68i0N. cecsvecsvesocccccssssscscnscsscssacccce CON(1)
end: termingate lOOP. ceeecscscacesscoscccssccssssss c8h(1l)
endgrent: get group file eDLIY: ceccecavecsccccsesss getgrent(d)
endif: terminate conditional. ...ceceeecccsccecsass csh(l)
endpwent: get password file entry. cecececescceasses getpwent(3)
endev: terminate SwWitch.: ccceeccesecscescscacncesss csh(l)
!u(lilh. R R RRRrxrxxyrxmmmmm> nuﬂbef(6)
entries from name 1iSt. eocecececccsecssansssecsssss Dlist(3)
entry. getgrent, getgrgid, .ccsccccscscccscesccsse getgrent(3)
entry. getpwent, getpwuid, .ceesecccccccsssscassss getpwent(3)
entty. 0 0000000000000 0C0rssccsctccncsecsotenccsrene unll.nk(Z)
environ: execute a file, execl, .cecccccssccsceces. exec(2)
enViron: user enviroment. ..e.cseccccsccscssscessss emviron(5)
@NViromNeNL. scececcecsecsossscsscsavssscncecsscsse C8h(l)

enviromment.
enviromment.

00 0000000000000 c00seeec0cssveseccnnne

R N Y R Y Y RN

env iron(5)
printenv(l)

UniSoft Corporation

getenv: value for

unsetenv: reamove

eqnchar: special character definitions for
deroff: remove nroff, troff, tbl and

numbers. intro,

mkstr: create an

perror, sys_errlist, sys_nerr: system

intro, errmo: introduction to system calls and
spell, spellin, spellout: find spelling
exterr - turn on/off the extended

end,

hypot, cabs:

/if, while, :, ., break, continue, cd,

expr:
history: print history
screen oriented (visual) display editor based on

edit: text editor (variant of the

locking: provide

execl, execv, execle, execve, execlp, execvp,
/while, :, ., break, contioue, cd, eval,

execl, execv, execle, execve, execlp, execvp, exec,
exece, environ: execute a file,
environ: execute a file, execl, execv,

file. execl, execv, execle, execve,
execve, execlp, execvp, exec, exece, emviron:
repeat:

at:

uux: unix to unix command

acet:

sleep: suspend

sleep: suspend

monitor: prepare

profil:

environ: execute a file, .execl,
execute a file. execl, execv, execle,
execl, execv, execle, execve, execlp,

/:, ., break, continue, cd, eval, exec,
breaksw:

break:

pover, square root.

glob: filename

adventure: an

frexp, ldexp, modf: split into mantissa and
exp, log, logl0, pow, sqrt:

/., break, continue, cd, eval, exec, exit,

expr: evaluate arguments &s an
exterr - turn on/off the
greek: graphics for

specified device.

strings. xstr:

functions.

arithmetic: provide drill in anumber

pstat: print system

true,

true,

abort: generate a

export, login,/ sh, for, case, if, while, :,
exit, export, login,/ sh, for, case, if, while,

ecvt,

fopen, freopen,

col: filter reverse line
inquiries.

feof,

head: give first

fcloee,

UniSoft Corporation

Permuged Index

enviromnent O8BE. cccecesescscrsscsscsscscsscsscccns
enviromnent variables.
eqn.
QD CONBLIUCES: ccessceccscsscsssnsasessasssssanccs
eqn, neqn, checkeq: typeset mathematics.
eqnchar: special character definitions for eqn.
errno: introduction to system calls and error
error message file by massaging C source.
error messages.
error numbers,
errors, €0 0000080000800 00000000000000000000000000000
errors in the specified device. .ceecececerccccecccss
etext, edata: last locations in program.
Euclidesn diSta80CB. covcveccecccocvsscccncossnccnan
eval, exec, exit, export, login, newgrp, read,/
eval: re-evaluate shell data. .e.cceececsccscecases
evaluste arguments as an expression.
event listc.
@X. VLI cesesescccccascccssancacacsosesssssccsenas
ex, edit: text editOfe cesscsccessceassacccsoscscnae
ex editor for new Or casusl USBErS). sececsccccscces
exclusive file regions for reading or writing.
exec, exece, environ: execute a fileé, cececevcecsccee
exec, exit, export, login, newgrp, read, readonl}h/
exec: overlay shell with specified command.
exece, environ: execute 8 fil€. .ccecccscccscacscse
execl, execv, execle, execve, execlp, execvp, exec,
execle, execve, execlp, execvp, exec, exece, ececeo.
execlp, execvp, exec, exece, environ: execute a
execute a file. execl, execv, execle,
execute command repeatedly. ccccecccccccocessccncee
execute commands at a later time,
@XECULION. ccecscoccoccsssoccsscnscsccscacsccnsocsns
execution accounting file.
execution for an interval.
execution for interval.
execution Pprof il€. ceeeccccccesccrccasccsacecccaccse
execution time Prof ilé€s ececcecccccccccccccccscaccsas
execv, execle, execve, execlp, execvp, exec, exece,
execve, execlp, execvp, exec, exece, emnviromn:
execvp, exec, exece, environ: execute a file,
exit, export, login, newgrp, read, readonly, set,/
exit from switch,
exit: leave shell., eescccsccsececcsccncsnsestonsssoee
exit: terminate process,
exit while/foreach 100pP. .cccsecscecccccscccscccnas
exp, log, logl0, pow, sqrt: expouential, logarithm,
expand argument lisc,
exploration game.
exponent. Ceseesecseccsccescsscsectostescscsessosven
exponential, logarithm, power, square root.
export, login, newgrp, read, readonly, set, shift,/
expr: evaluste arguments as an expression.
expression.
extended errors in the specified device,
extended TTY=37 type=bOX. cccecececscscsvcccccscces
exterr - turn on/off the extended errors in the ...
extract strings fram C programs to implement shared
£77: FPORTRAN compiler.
fabs, floor, ceil: absolute value, floor, ceiling .
facts.
facts. e 0800000000000 000000000000000000000000000 e
false: provide truth values.
false: provide truth values.
fault,
s break, continue, cd, eval, exec, exit,
iy o, break, continue, cd, eval, exec,
fclose, fflush: close or flush a stream.
fcvt, gevt: output counversion,
fdopen: open a stream.
feeds. 9000000000000 0000000ccsec0tssvccsssscncstessnce
feof, ferror, clearerr, fileno: stream status
ferror, clearerr, fileno: stream status inquiries.
few lin@B. iececccceccesscssacocsscssssscancesnscne
fflush: close or flush a stresm.
fg: bring job into foreground.

e ccscesvvsesceevevsevsoscencsne

96 00000000000 ces0c00sc00000erBVNOOOIOOIOIOIOIROEOTOETS

esccesccse

e
secse
eecscccse
e escscssscecarecscsrsscsnetecsssocne

@0 cevsvesecsccccssrecserecscsneccccnn

s000ccecscsccse

L R N N R RN NN

eecveccccvcos

Geveccecessssccscsvence
G0 veccsccccccscssccsne

v cecscscccvcccsocccscssvccee

cecee

S0c0ecccececcstcssccncsscscncsvsee

0 cseccesscsserterosccscsvne

ecseccee

secsccce
R N N NN RN

6ecscccnce

000000000t e0ceencetcectcocsatsecesenso0R 0

eecscesecscscccsccccccse
@0 ces0csscccccvscscvoe
0000000000000 c000000000 0080000000000 sc00cOL
‘Tescsscece
eeeccccccces

esessevoce
€0 e0scesccscssccccccoe

e seecsecssececsccvccercncsne

.
60 0c0eseccccccccoe

e vcesvesccscccncnose

getemv(3)
csh(1)
eqnchar(7)
deraf £(1)
eqn(1)
eqnchar(7)
intro(2)
mkstr(l)
perror(3)
intro(2)
spel 1(1)
exterr(l)
end(3)
hypo t(3M)
sh(l)
csh(l)
expr(l)
csh(l)
vi(l)
ex(1)
edit(l)
locking(2)
exec(2)
sh(l)
csh(l)
exec(2)
exec(2)
exec(2)
exec(2)
exec(2)
csh(1)
at (1)
uux(1C)
acct(5)
sleep(l)
sleep(3)
monitor(3)
prof i1(2)
exec(2)
exec(2)
exec(2)
sh(1)
csh(l)
csh(l)
exit(2)
csh(l)
exp(3M)
csh(l)
adventur e(6)
frexp(3)
exp (3M)
sh(1)
expr(1)
expr(l)
exterr(l)
greek(7)
exterr(l)
xstr(l)
£77(1)
floor(3M)
arithmetic(6)
pstat(1M)
false(l)
true(l)
abort(3)
sh(1)
sh(l)
fclose(3S)
ecvt(3)
fopen(3S)
col(l)
ferror(3S)
ferror(38)
head(l)
fclose(3S)
csh(l)

August 1982

Permuted Index

getc, getchar,
gets,

access: determine accessibility of

acct: execution accounting

chmod: change mode of

chown: change owner and group of a

close: close a

core: format of core image

creat: create a new

source: read commands from

dd: convert and copy &

delta: make a delta (change) to am SCCS
execlp, execvp, exec, exece, environ: execute a
freq: report on character frequeancies in a
get: get a version of an SCCS

group: group

ligk: link to a

mknod: build special

mknod: make @ directory or a special
passwd: password

pr: print
prs: priot an SCCS
tead: read from

rev: reverse lines of a

rmdel: remove a delta from an SCCS
sccediff: compare two versions of an SCCS
sccsfile: format of SCCS

size: size of an object

the printable strings in am object, or other binary
sum: sum and count blocks in a

tail: deliver the last part of a

touch: update date last modified of a
unget: undo a previous get of am SCCS
uniq: report repeated lines in s

vel: validate SCCS

write: write on a

tra: copy out a

mkstr: create an error message

diff: differential

umask: change or display

umask: set

dup, dup2: duplicate an open

sact: print current SCCS
getgrgid, getgronam, setgrent, endgrent: get group
getpwvnam, setpwvent, endpwent: get password
ctags: maintain & tags

egrep - search a

fgrep: search a

grep: search a

ar: archive (library)

take: takes a

see: see vhat a

split: split a

mktemp: make a unique

put: puts a

wore:

locking: provide exclusive

stat, fstat: get

mkfs: construct a

mount, umount: mount and dismount
mount, umount: mount Or remove &
mount, umount: mount and dismount
repair. fsck:

dcheck:

dump: incremental

restor: incremental

icheck:

mtab: mounted

filsys, flblk, ino: format of
checklist: list of

utiome: set

file: determine

basename: strip

glob:

August 1982

fgetc,
fgets:
fgrep:
file.
file,
file.
file.
fileo
fileo

getw: get character or word fram stream.
get a string fram a stream,
search a file for a patterm,

es e
tecssescescscace
ssececosscccene
0000000000000 000000000cr00000c0csssssssoRE0Ee
R R R R Y RN IR W AP W WA)
R R R R R R N N N N R R Y R RN R I
LR R N R PR R R RN R R R R ER R
0 0000000000000 000000000000 0000CINPNOIROCSRR0OCD0TS

$0 0006000000000 0000000000000000000000800000008

0
file, R R R R Y P R PR TR RPN
fil@: ceecoccscecscccscsesesccococassssscsscnsesccnse

file.
file,
file.
file.
file,
file,
file.
file.
file.
filCc
fileo
file,
file.
file'
file.
file.
filﬁ.
file.
file.
file,
file,
file.
file.
fil.'
file. €0 00 0000000000000C0000000000000000000000000080
file a8 it BTOWS., cevcsccerccocscccascnasscovensace
file by massaging C source.
file COMPATALOT. occcoseceveccoccccrsvescccacsscscse
file creation maske ceccsscsccsccsccsccssnsvcsssnne
file creation mode mask,
file deSCripPtOT. ceoccccccccceccecscsrcsccsncscsacas
file: determine file type.
file editing activity.
file entry. geLErent, .ccecccsccccscrcsscasscnsnse
file entry. getpwent, getpwuid,
file for a C program.
file for a pattern.

file for a pattern.

file for a pattern.

file format, 9 0000000000000 0c00000000CIIOGIOINRERTVROEOTS
file fromn a remote machine,.
file has in it.

file into pieces.
file NaME. coececccccscococtsrccsccscscccacscnsasce
file onto a remote machine.. .cecececvsccscscscsccs
file perusal filter for crt viewing.
file regions for reading or writing.
file status.
file system.
file system.
file system,
file SYSLEM. +eccoccossescavsesoscscescnscssscnscns
file system consistency check and interactive
file system directory comsistency check.
file systema dulp. secceccccecsssccee0ccc0eseesesobose
file system FeSLOrE., .ccccececocccsccscccssacscances
file system storage consistency check.
file system table,
file system VOlUM@., .cccecevccocsccccsvssccssnsnnce
file systems processed by fsck.
file times.
file type.
filename affixe@8. coceecoscsccsssccnccscccavescanne
filename expand argument list.

seeccesstasesevecseressesnsrncassessesasenoens
execl, execv, execle, execve, .ccceccceccccs
0 900 0RCP P PC0 VRN 0CLEN PPN DPEEROIOCECERONORORNROEEOCD
@9 000200000 IERNEOLLIIINOIOOIOPINECERITAROINOQCROEOCERABIROIORRTOTYN
(AR R RN R R XA EE R A N N N NN N N RN N RN NN
ceevsesecsestcsessssesarsssentasastacentennne
eevesesscseersesesrsnngersscssrroscscsssentann
8 0 ¢ 0 00800 PPN R0 RSP0 R00CSNPRCOROIRNSIOROIOGEOOEARRES
(I EEEERENEERENENENEREENENNENRNEENENNENENTNNENERREENRENNWN

0 000000000000 000000 0000000 c000c0bsO0000SCOSIEOEO

9 0 0000V OPPEP0O P 0RO 0ROV OREPOROISRLIORNIOEOTOSS
80 009 0000000000000 000 RLTRRLNERNOOIOIRERIOEOETBROIOGETOIOES
00 0000 000000 000NPRIRIOEREOEILIOOOOIEPLOTOISIOIBNRIOCOROES
eosesssssosesessesscsccessccccssensansrssanes
90 000000000000 00000000P00000RSICTOIOSGOINONOSIBROPOETPOTOIOITOTTES
90 0000 00N0R00000PPGN0CEIOPOOCORODSOESIOEEOROOEQREOIECEROOEOOTS
strings: find

00 0000000000000 00000000000C000COBOOCIOOECOCTIATVTC

©0000c000ace0000000000COEOIOICOIOS

€ 0000000000000 0000000000000000000000s00O0OGOIGES
€0 0000000 00000000000000000c0000000000RCCOIPIITOTS
€0 000000000 P0000000000000000C0ORROOPOCIORCEEROIRREETDS
@0 0ececsssesercercscestonrseerReeReRePteoen e

€8 000009000000 00000000c000s0e0caneTePORCOOCOIOTS

S0 esevcesccssscocsencree

®0eccccsevsrcsvncsncsscsoee

e®o0eevscsnsecccsncccsecse

@ceescossenscesceccncsecvenss

sec0seeneccesssceca

Gseescco0scesnancoccencccennes
©ec0ceeecccsccosseesncocsceces e
et cescsecvsacssecrsnsececscveseoe

®eccccarsesveesevasssersretseen

e cvceeccsosecccsccsece
N RN Y N

Ry R R R R R RN RN R RN

®ecsecsescssnce
s o0cessevcecee
L N Y N R Y R W RN Y
0 0000000000000 00OCPCOIOICOIOIRIGEROIOQIEOPCEOIOIEOIOOTDS
P N N Y Y YRR

©90 0000000000000 00000000000c000000C000S

cceoce

cvsccecsene

e seesccseves

cecccococceescsssscsnncecsscssece

®se0ecveccsvcccnncee

LR N Y Y R Y R RN

e s 000000 cesrevcscrsrtcovssscvessscssnce

®ececcccrcccscccvene

PR N Y Y YRR TR R RN P

getc(3S)
gets(38)
fgrep(l)
access(2)
acct(5)
chmod(2)
chown(2)
close(2)
core(5)
creat(2)
csh(l)
dd(1)
delta(l)
exec(2)
freq(l)
get(l)
group(5)
1ink(2)
mknod (1M)
mknod(2)
passwd(5)
pr(l)
prs(l)
read(2)
rev(l)
medel(l)
sccsdiff(1)
sccsf ile(5)
size(l)
strings(1)
sum(1)
tail(l)
touch(1)
unget(l)
uniq(1)
val(l)
write(2)
tra(l)
mkstr(l)
diff(l)
csh(l)
umask(2)
dup(2)
file(l)
sact(l)
getgrent(3)
getpwent(3)
ctags(l)
egrep(l)
fgrep(l)
grep(l)
ar(5)
take(1)
see(l)
split(l)
mkt emp(3)
put(l)
more(l)
locking (2)
stat(2)
mkfs(1M)
mount(l)
mount(2)
umount(l)
fack(lM)
dcheck(1M)
dump(1M)
restor(1M)
icheck(1M)
wtab(5)
filsys(5)
checklist(5)
utime(2)
file(1)
basename(l)
csh(l)

UniSoft Corporation

feof, ferror, clearerr,

admin: create and administer SCCS

cmp: compare two

select or reject lines common to two sorted
find: find

intro: imtroduction to special

m™v: move Or rensme

m: remove (unlink)

sort: sort or merge

version: reports version number of

what: identify SCC8

updater: update

sumdir: sum and count characters in the
S-record downloading.. hex: translates object
dumpdir: print the names of

more: file perusal
col:
find:

look:

isatty:

ttyname, ttyslot:

spell, spellin, spellout:
binary file. strings:
head: give

fish: play " Go

tee: pipe

filsys,

functions. fabs,

fabs, floor, ceil: absolute value,
disktune - tune the

fclose, f£flush: close or

itinue, cd, eval, exec, exit, export, login,/ sh,

fg: bring job into

ar: archive (library) file

dump, ddste: incremental dump
diskformat -

core:

dir:

filsys, £1blk, ino:

scesfile:

tbhl:

tp: DEC/mag tape

hex: translates object files into ASCII
scanf, fscanf, sscanf:
printf, fprintf, eprintf:
troff, aroff: text

troff, aroff: text

ms: macros for

me: macros for

£77:

adage.

sh, for, case, if, while, :
printf,

putc, putchar,

puts,

exit, export,/

df: disk
malloc,
fopen,

freq: report on character

exponent.

scanf,

checklist: list of file systems processed by
mklost+found: make s lost+found directory for
repair.

stat,
fseek,
time,

JniSoft Corporation

Permuted Index

fileno: eeceevssssccscccens

stream status inquiries.

filess cececeecccessscstcatesasossasecncsscrccccnan
files. €0 0000000000000 00000000000000000000000 000000
fileBs cceceecaccscrscrcatcncccsccrccscsccccsrcsnns
files. +eeeceevecsssttcctcscccsccesconsacsccenscsnne
file@B. seecccescntctscoasrecceacccocssssscscscccncns
files. €0 0000000000000 000000000v000000000C0ROOCROIOCTOTTS
fileS: <etoecsescestrcectecstossencencsssoccccnncce
files. 90 0000000000000090000000000000000000000000000
files. n.!0uo.oc.ut}oc'cno":oltvcolooocotuotootoot
£il@B. cevecscscesvscsessesscesessvstesesesosscsccnns

files between two machines. <cccceccccsccsccscoccscse
files in the given directories.
files into ASCII formats suitable for Motorola
files on a dump tape OF disKe ccceccovoccassscccsscs
filsys, flblk, ino: format of file system volume. .
filter for crt viewing.
filter reverse line feeds.
find fileBe cecceccccccrnsoscscscscsscncncscscscnne
find: find files.
£ind
find
find

eececscevcscccccnce

X R X}

00 00ecscesccsccsscecsvccvcese

eeeececcsccevcsesvesscvee

linpes in a sorted list.
name of a terminal,
name of a terminal.
find spelling @rTOrS. .ccccececccccccccscsccnsccnss
find the printable strings in an object, or other .
first few lines.
Fish"%. ceeececveccscccsnccasscsscaccssaccsscccscces
fish: play ““Go Pish’”,
fittinge cecescccsscscssoscocscsccesccscsscsccocncse
flblk, ino: format of file system volume.
floor, ceil: absolute value, floor, ceiling
floor, ceiling functions.
floppy disk settling time parameters.
flush 8 SLXE&M: cecccocssceccccoccasacscracoscoscasn
fopen, freopen, fdopen: open a stream.
for, case, if, wvhile, :, ., break,
foreach: loop over list of nimes.
foreground,
fork: spawn new process.
format.
format.
format
format
format
format

e cecescssccecccovoceve
e cecseveccesscssccscscccce

e scencccsccccscscscsccone

0090000 csccccencecssersvrsenncee
e vcescccsccccsecnccvccccce

secesccese
IR RER Y]
e tse0cecssececcseceecccoe

a disk. seesecessessssvsscsssesssesssescss s
of core image file.
of directoriese .ccccecccscocsccsccccccscnne
of file system volume,
format of SCC8 filee cececcccccvscccescanccscccosas
format tables for nrof £ or troff.
fOrMALB. cecsesvcccccoccsccccrscesscsscosnsavsencccose
formats suitable for Motorola S-record/
formatted input comversion.

formatted output comversion.
formatting and typesetting.

formatting and typesetting.

formatting manuscripts.
formatting papers.
FORTRAN COMPil@r. cccccecaceccccasocceccccccsonccas
fortune: print a random, hopefully interesting,
s ey bDreak, continue, cd, eval, €XeC, ccecccevcccea
fprintf, sprintf: formatted output comversion.

fputc, putw: put character or word on a stream.
fputs: put a string On & SLTEAM. cccccccccccrscscce
fread, fwrite: buffered binary input/output.
ftee. 00 000000000000 0000000000000000000000000C0CCLTY
free, reslloc, calloc: main memory allocator.
freopen, fdopen: open &8 SLTEAM: <eccecovscscccsscce
freq: report on character frequencies in a file.
frequencies in & fil8: .eecercssccccccccccsccccaccs
frexp, ldexp, modf: split into mantissa and
fecanf, sscanf: formatted input comversion.
fack.
fack. €0 0000000000000 0c00cseccccccronsnccsscsosnss e
fock: file system consistency check and interactive

feeek, ftell, rewind: reposition a stream.
fatat: get file BLACUS, .cuccececcscacocccsscccocns
ftell, rewind: reposition a stream.
ftime: get date and tima,

®eevsseesvesccsesvssnccs
e eccevcesccccvscsene
0 cececcecccscccce
0 00ccccvse
0 cececvsccncscscccocee
®ececcsescoenscsacense
. - -
e ceevcscsccssccccssccee
0 c0s0ceccrcscecccnccce
e 0cecvecscrscscsencrscscccne
R N R R RN NN

e e

XX
sesesece
sevese
oo
esecece
secevece
90 0000000000000 00000000000c00000cOPR0POIORORROIOTT®

evsceccose

9eccccccsvcccoe

S0 ccccsrcvcrcecccccvsccns

ferror(3S)
admin(l)
cap(l)
comm(1)
find(1)
intro(4)
mv(l)
ro(l)
sort(l)
version(l)
what(1)
updater(l)
sumdir(l)
hex(1)
dumpdir(1M)
filsys(5)
more(l)
col(l)
find(1)
find(1)
look(1)
isatty(3)
ttyoame(3)
spell(l)
strings(l)
head(1)
fish(6)
£ish(6)
tee(l)
filsys(5)
floor(3M)
floor(3M)
disktune(l)
fclose(3S)
fopen(3S)
sh(1l)
csh(l)
csh(l)
fork(2)
ar(5) ’
dump(5)
diskformat(l)
core(S)
dir(5)
filsys(5)
sccsf ile(5)
tbl(1)
tp(5)
hex(1)
scanf(3S)
printf(3S)
nraof £(1)
trof £f(1)
ms(7)
me(7)
£77(1)
fortune(6)
sh(1)
printf(38)
putc(38)
put s(38)
fread(38)
daf(1)
malloc(3)
fopen(3S)
freq(l)
freq(l)
frexp(3)
scanf(3S)
checklist(5)
mklost+fod (1M)
fack(1lM)
fseek(38)
stat(2)
fseek(38)
time(2)

August 1982

Permu Index
fabs, floor, ceil: absolute value, floor, ceiling
intro: introduction to library
j0, jl, jm, yO, yl, yo: bessel
cos, tan, asin, acos, atan, atan2: trigonametric
sinh, cosh, tanh: hyperbolic

curses: screen
.sp nohup = run a command immune to hangups
fread,

adventure: an exploration
backgammon: the

trek: trekkie

worm: Play the growing worm
hangman: Computer version of the
wump: the

life: play the

ecvt, fevt,

abort:

makekey:

ncheck:

rand, srand: random number
lex:

from stremm.

stremm. getc,

getuid, getgid, geteuid,

getuid, getgid,
identity. getuid,

get group file entry.
file entry. getgreat,
getgrent, getgrgid,

get passvord file entry.
entry. getpvent, getpwuid,
passvord file entry. getpwent,

group idemtity.

getc, getchar, fgetc,

head:

sum and count characters in the files in the
ASCII. ctime, localtime,

fish: play
setjmp, longjmp: nomlocal

greek:

newgrp: log in to a new

chgrp: change

group:

getgrgid, getgronam, setgrent, endgrent: get

setuid, setgid: set user and

getuid, getgid, geteuid, getegid: get user and
chovn: change owner and

make: maintain progrmm

/ wvorm: Play the
tra: copy out a file as it

ioctl, stty,

ioctl, stty,

stop:

hangman: Computer version of the game

nohup: run command immune to

nohup: run a command immune to

low priority .sp nohup - run s commsand immune to
see: see vhat a file

rehash: recompute command

unhash: discard command

hashstat: print command

help: ask for

Auguset 1982

" hangman: Computer version of the game hangman.

fUNCLIOMB: ccecevoncensecsnscasscenssssccssossscnss
functionB: cecetscccessarstrsoarrccnssaescssosossnns
fuNCLiOoNB. cecevccvoccrcrssccssosscacsesascsssncane
functions, BiD, ccececcsssceccscscascsnssoscsssans
fUNCEL10N8, cccececrsscresscsacccsssecssssesscrosnes

functions with "optimal” cursor motiof. eececcscses
(sh only). /run & command at low priority
fwrite: buffered binary input/output.

secsccee

seceescsscese

game., R N R Y TRy YY)
BEM@. cicevscsoccrcarscncncsssccesraccecsanscasecsronae
game. seccssescssrseccrcsesecorsnsccessocsoscecrenasoe
BEMEC: ceeevesssesssevcceesrvecscsscnesecscscencasnes

game haDEMAD. ccccvccccceccscsenscacacnsacnsessacens
game of hunt-the-wumpus.
game of life. .cescecsrccccccrcaccscccccctscecsnnes
gcvt: output comversion.
generate 8 fault, ..cceececscccncsavessccscnsccccce
generate encryption KeY. cecescsccecesccccscocescce
generate names fram i-numbers,
BEDETBLOT: cevsevscacoccscccssoanscoscssssscsosasne
generator of lexical anslysis Programs. .ccecceecee
getc, getchar, fgetc, getw: get character or word .
getchar, fgetc, getw: get character or word fram “..
getegid: get user and group identity.
getenv: value for emwiromment NADE. ceceecsvrccoanss
geteuid, getegid: get user and group identity.
getgid, geteuid, getegid: get user and Eroup
getgrent, getgrgid, getgrnam, setgrent, endgrent: .
getgrgid, getgrnam, setgrent, endgrenc: get group .
getgrnam, setgrent, endgrent: get group file entry.

getlogin: get login name.
getpass: read a password.
getpid: get process identification.
getpw: get name from Uid. .cecceccsevesrccarcscises
getpwent, getpwuid, getpwnam, setpwent, endpwent: .
getpwnam, setpwent, endpwent: get password file
getpwuid, getpwnam, setpwent, endpwent: get
gets, fgets: get a string fram & stream.
getty: set terminal mode. ccceeccccsccsecsccrconvne
getuid, getgid, geteuid, getegid: get user and
getw: get character or wvord from stream.
give first few 1ines., cecceccccccsrsscrsccncncocscs
given directories. Sumdir: ..cecveccececcesocssccas
glob: filename expand argument liSt. .ecessoccceccse
gatime, asctime, timezone: comvert date and time to

~*Go Fish””,
BOLO: cocesscscccosscccasssscscsscssscsesecsscoscce
goto: command tTANSf@T: ccccsvtcssccccccsecsececsns
graphics for extended TTY-17 type-boX. .eccsccceses
greek: graphics for extended TTY-37 type-box.
grep: search a file for a pattern.
group.
BTOUP ¢« sccocsccoscccsscsccsccccscssscansnscsnscss
group file,
group file entry.

group: group file,
8TOUP ID: cececcececrccecavecescarsnssscsescscccnes
group identity,

group of a file,
BIOUPSB. cescecccccccvvecesccscscoesscsccvscsacencres
groving vorm game,
BTOWS. cocoeccccsccccssscsssscsocssosssesnssnscscccas
gtty: control device.

gtty: control device.

halt a job or process.
hangman.

RN R Y R RN RN

e c0ccercsesevavssersencse

e cecsvscsecsocvssce

eeoesecscosce

e csecvvcvevrvecencscrconse
e ccccescccvccccsccncscse

®seccsncscsccvee

se e
decccece

seccescoce

L N Y RN

secee
Seccecncscccncone

R N Y R R RN R R Y R RN E RN Y RY

0 0 000900000 RR0 00 0PPEORNPSTROEOEOTIRNDROLOTNTTN
getgrent,

08 00ecsnsescecsecrscsccrcvessre e

eecescscsccccccccaccas

LR Y Y N R N NN

L Y NN R R X
Ry R R NN RN NN N

hangups.
hangups.
hangups (sh only).
has in it.

hash table.
hash table.
hashing SCACisCiC®: .cccceecceveevcocccccncaccnceone
hashstat: print commsnd hashing statistics. .
help about SCCS problems..

[EE N EN EEE NN NEENEENENNEENENENN NN NN N NN NN NN ENYRRE]
[EENENNEEERNFENNEEEEEEEE NN NN NN NN ERENNENENNEEN)
nice: run a command at

R Y Y R R R R R RN Y NNy

sevecvovse

0 8000000000200 00 000000000 OOITPSIRISOETIOITTS

0000000000000 0000cc0000c0re00OVOOIRITIIOTS

secsvoe

secsecssscccccccscvssocve

floor(3M)
intro(3)
30(3m)
sin(3M)
sioh(3M)
curses(3)
nice(l)
fread(3S)
adventur e(6
backgammo n(
trek(6)
worm(6)
hangman(6)
wump(6)
life(6)
ecvt(3)
abort(3)
makekey(1l)
ncheck(1M)
rand(3)
lex(1)
getc(3S)
getc(38)
getuid(2)
getew(3)
getuid(2)
getuid(2)
getgrent(3)
getgrent(3)
getgrent(3
getlogin(3)
getpass(3)
getpid(2)
getpw(3)
getpwent(3)
getpwent(3)
getpwent(3)
gets(3S)
getty(1M)
getuid(2)
getc(3s)
head(1)
sumdir(l)
csh(l)
ctime(3)
fish(6)
setjmp(3)
csh(l)
greek(7)
greek(7)
grep(l)
newgrp(l)
chgrp(1M)
group(5)
getgrent(3)
group(5)
setuid(2)
getuid(2)
chown(2)
make (1)
worm(6)
tra(l)
ioct1(2)
stty(2)
csh(l)
hangman(6)
hangman(6)
csh(l)
nohup(l)
nice(l)
see(l)
csh(1)
csh(l)
csh(i)
csh(l)
help(l)

UniSoft Corporation

suitable for Motorola S-record downloading..
vtmp: user login
history: prinmt

fortune: print a random,

rc: command script for system
wump: the game of

sinh, cosh, tasoh:

setuid, setgid: set user and group
whoami: print effective current user
su: substitute user

getpid: get process
what:
getgid, geteuid, getegid: get user and group

sh, for, case,
signal: catch or
core: format of core

notify: request

nohup: run command

nohup: run a command

command at low priority .sp nohup - run a command
xstr: extract strings from C programs to

dump, ddate:

dump:

restor:

getnum, tgetflag, tgetstr, tgoto, tputs: terminal
ptx: permuted

itrncat, strcmp, straocmp, Strcpy, stracpy, strlen,
last:

badblk: program to set or update bad block

eval, exec, exit, export, login,/

init: process control

ttys: terminal

popen, pclose:

filsys, flblk,

clri: clear

scanf, fscanf, sscanf: formatted
ungetc: push character back into
fread, fwrite: buffered binary
stdio: standard buffered

feof, ferror, clearerr, fileno: stream status
fsck: file system consistency check and
fortune: print s random, hopefully
tty: general terminal

- COBOL runtime

csh: a shell (command

pipe: create an

onintr: process

sleep: suspend execution for an
sleep: suspend execution for

error numbers.

intro:

intro:

intro:

intro, errmno:

ncheck: generate names fram
aliens: The alien

popen, pclose: initiate

isascii:/ isalpha, isupper, islower, isdigit,
isspace, ispunct, isprint, iscntrl, isascii:/
isslonum, isspace, ispunct, isprint, iscatrl,

/isdigit, isaloum, isspace,
iscntrl, isascii:/ isalpha,
isprint, iscntrl, isascii:/

islowver, isdigit, isaloum,

/isupper, islower, isdigit,

isalpha, isupper, islower,

ispunct,
isupper,
isalpha,
isspace,
isalnum,
isdigit,

isprint,
islover,
isupper,
ispunct,
isspace,
isalnum,

system:

lniSoft Corporation

RPermuted Index

help: ask for help about SCCS problems..
hex: translates object files into ASCII formats
history.
history event list.
history: print history event list.
hopefully interesting, adage.
housekeeping.
hunt-the-wumpus.
hyperbolic functions., eecececcccccescacescascoscancs
h’pot. cabs: Buclidesn distance. .cecevceccocscccas
icheck: file system storage consistency check.
ID.
id.
id temporarily.
ident - login banner .
identific.tion. R R R EImImmmn—m§s™
identify SCCS files.
identity. getuid, ceececescecscececscucocscssccoce
if: conditional statement.cceccccccccccscccnns
if, while, :, ., break, continue, cd,
ignore signals.
image file.
imsediate notification.
immune to hangups.
immine to hADGUPB.e ceececccccsscnacescsoscoccsccsnsns
imoune to hangups (sh only). nice: rum a
implement shared Strings. .ccccccccsesccccccccencss
incremental dump fOrmMEt., scccccccsccscecccccssocnan
increnental file system dump. ccceccvccceccocssccece
incremental file system restore.
independent operation routines.
index. €@ 0000000 c0cs0000c0c0ss000oRROOOOOOCORRcn0
index, rindex: string operations. strcat,

indicate last logins of users and teletypes.
information. 00 cs0ececeenssscesrecsentcstsncnntatoe
init: process control initial ization.
initial iL&ti0Ne ceceocccccscccvccescoscsscoscccacne
initialization datl. ceeccccocescsccccecceccscasnes
initiate I/0 to/from & Process. .eccecoveccccscccces
ino: format of file system volume,
i-node.
input comversion.
input stream.
inPUL /OULPUL. cecececsccrssccccnccccaccscossssnscnns
input /output package.
inquUiriede cececcccvcsccsscccscsccocacsaccsrcancscs
interactive repair.
interesting, adage.
interface.

interpreter.
interpreter) with C-like syntax,
interprocess channel. .cccceccccccccccaccsncccscase
interrupts in command scripts.
interval.
INLErVAl. .ecccccecsccsccsscasvaccsccscsccssvancsas
intro, errmo: introductiom to system calls and
introduction to commands. cceccecccecccccccacccscoe
introduction to 1ibrary functions.
introduction to opecial files: <cecececccaccssccnces
introduction to system calls and error numbers.
i‘nu'bet.. €0 0000000000000 0srs0cccvsccncsssccsscccnse
invaders attack the earth.
1/0 to/from a process.
ioctl, stty, gtty: control device.
ioctl, stty, gtty: control device.
isalnwm, isspace, ispunct, isprint, iscatrl,
isalpha, isupper, islower, isdigit, isaloum,
isascii: character classification. /isdigit,
isatty: find name of a terminal.
iscntrl, isascii:
isdigit, isalomm,
islower, isdigit,
isprint, isecatrl,

secescccee
cesn
@0 evce0cr00c0scesevvecsrestoerscnccsceen e
D R R N R R RN RN TR N XY
e sesccccccscccee
e esevereccecccccncen
R N Y R N RN R RN RN RN Y]

G0 cseesvecsrevrseseesccessnsreevoe

ecee
€0 00000000000 000000000000c000c000000000000000NS
€0 0000000000000 000000000cncsccsserROLOc00O0OOOOS
000000000 ccvsccensecsseccccsseccee

e 00 acssesccssssecsvcsscvcne

G0 cecesccesvesrecencercercncoe

evcccscccccce
R Y N R R RN RN NN
L R N N Y R Y R NN

-
R Y R Y RN R NN R

900 seseccccncesrssreccccrvvsncoe

esseccone

e v 0ecsscccccscnce

tgetent,

escsccene

LR RN E NN

evececsscccen

®eceessseveccnsee

R N N R R R NN N

LR N Y PN RN NN N R
e eesceccsncevvssccrecesvoce
R Y Y R N NN NN

@0 ceecsccscsecrcccncncstecvcvecccn

@0 000000 c00000es000csc000cs0c0est0c0bee

L N R P RN RN R N NN

@evceecsccccccccce

te0ess0scccssccccn e

0000000000000 0000000000000000000000 00O
cecee
e 0cccsccscsccoce
ee e

00990 OOGCaONROS Y
character classification,
isspace, ispunct, isprint,
isaloum, isspace, ispunct,
isascii: character/ /isupper, ..
ispunct, isprint, iscontrl, isascii: character/
isspace, ispunct, isprint, iscntrl, isascii:/
issue & shell command. .ovccccecscccccncoosnascnces

R REEN]

eeccoe

eecee

©0 0000000000000 00000000000000000000000 00000

help(l)
hex(1)
wemp(5)
csh(l)
csh(l)
fortune(6)
rc(8)
wump(6)
sinh(3M)
hypot(3M)
icheck{1M)
setuid(2)
whoami(l)
su(l)
ident(8)
getpid(2)
what(1)
getuid(2)
csh(1)
sh(l)
signal(2)
core(5)
csh(l)
csh(1)
nohup(l)
nice(l)
xstr(l)
dump(5)
dump (1M)
restor(1M)
termcap(3)
pex(l)
string(3)
last(l)
badblk(1M)
init(1M)
init(1M)
teys(5)
popen(3S)
filsys(5)
clri(1M)
scanf (3S)
ungetc(3S)
fread(3S)
stdio(3)
ferror(3S)
fack(1M)
fortune(6)
tty(4)
mmcobol(1)
ecsh(l)
pipe(2)
csh(l)
sleep(l)
sleep(3)
intro(2)
intro(l)
intro(3)
intro(4)
intro(2)
ncheck(1M)
aliens(6)
popen(3S)
ioctl(2)
stty(2)
ctype(3)
ctype(3)
ctype(3)
isatty(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
system(3)

August 1982

Permuted Index

ispunct, isprint, iscntrl, isascii:/ isalpha,
see: see vhat a file has in

tra: copy out a file as

suspend: suspend a shell, resuming

jo,

jo, jl,

bg: place

fg: bring

jobs: primt current
stop: halt a

kill: kill

makekey: generate encryption
kill:

mem,
awk: patteru scamning and processing

bc: arbitrary-precision arithmetic

set, shift, times, trap, umask, vait: command

frexp,
exit:

lex: generator of

ar: archive

intro: introduction to
ar: archive and

life: play the game of

setmen - set user memory

limit: alter per—process resource
unlimit: remove resource

col: filter reverse

1pd -

lpr:
head: give first few
oum: number

comm: select or reject
uniq: report repeated
look: find

rev: reverse

a.out: assembler and
link:

ln: make

glob: filename expand argument
history: print history event
jobs: print curremt job

shift: msnipulate argument
look: find lines in a sorted
nlist: get entries from name
om: print name

. ls:

checklist:

foreach: loop over

1d:

and time to ASCII. ctime,
wvhereis:

end, etext, edata: last
lock:

or writing.

newgrp:

pover, square root. exp,
square root. exp, log,

exp, log, logl0, pow, sqrt: exponential,
ident -
vtmp: user

August 1982

isupper, islower, isdigit, isaloum, isspace,
LLe cocvccocescccescssesaccecrcssscsscsccssosncccccns
it grows.
I8 BUPETIOT. .ceeesccesccncscscoscacrscassnscsancce
j0, jl, jm, y0, yl, yn: bessel functiouns.
jl, jo, y0, yl, yn: bessel functions.
jn, y0, yl, yn: bessel functious.
job in background.

job into foreground.
JOb list. ceveecsccccsccscosccscsncsssosecnsscsscne
job or process.
jobs

escene
L R R Ry R RN RN

secesccce
IERREE R RN
eevecescevcscccce
#eeeeccvsessevesseccsssssnsssece

e eevsevsseseesecsrecccssscce

900000 er0000ss0ec000000000000000000

and processes.

R Y Y R XN N

jobs: print current job liSf. .cecsecccccccccoccacss
join: relational database OpPerator. cccccceccsccces
K@Ye coceccscsscesccserscecsascesscssscasccsccssvcns

kill jobs and Processes. .ccceecccescccvsscccccscns
kill: kill jobs and processes.
kill: send signal tO 8 ProCeBS. cececcccccesscccccs
kill: terminate a process with extreme prejudice. .
kmem: main memory.

Y Y R RN

@0 esscccscccevenesscncssscsvoss o

laNBUABC: sceesecsscscscscccncsnsaccscsncnscscsscne
LlADBUAGE. coccscesvaccscncoscccccsscosnscsscancsase
language. /export, login, newgrp, read, readonly,

1d: loader. <.ceececccccccasoccscccccccasocccsccane
ldexp, modf: split into mantissa and exponent.
leave shell. .cccccccecsscccccrocccncccsccvoncccans
lex: generator of lexical anal ysis programs.
lexical analysis programs.
(library) file format.
library fuanctions.
library maintainer.
1if@. ccveesvccccessocrscasccsesaceccsansesccasscccse
life: play the game of life: .ccceccvecccncccceccsns
limit: alter per—-process resource limitations.
limit to value.

0veeseeevesccsccrscscesce

00 0ccscscseccrrecvecsoooven e

e ececcecc0reveeseccnenssscess e

®ec000ecescescese0reeeesasnccec

R R N Y Y R RN RN RY

limitationNBe ceccoccssscssescscccosccscscsscccncans
limitiations. secesececcccsscccevecccsseccsccscnccs
line feeds. ..ccceccccccrccensctcscccnssacsccssncas

line printer daemon.
line printer spooler.
lines.
1lin@B. ccvceccevsccccccccscrcsscsencoscsacssccscscona
lines common to two sorted files.
lines in 8 file: ccceeccccccccccscsracasacccascncce
lines in a sorted list.
lines of 8 file., .ccceccceccocccccccosaccscccascnaae
link editor oustput,

link: link to a file,
link to a file.
1ink8: eccccecocciocesscoossssescscocsacccascsccannae

lint: a C progrm verifier.

S0 o00eccectcceccecscccecseccnce

e0eevececcsccsscsncesvecsocee

0 0000000000000 0000000000e00000C0000CCROIOIOOTOTTE

e vecccecccrcoevecceccsccnc

e cceecscc0cescscccecnscscncc000

e veccesceereceecscsccsccocsnns

P R R NN

0 0seceveesccscccccscse

1i8Ce ceeccesccceccccscceoccocennscascccsoesssncncce
1i88e cecvecccvcccsccccesescoascnsosccaccsscsccascse
li.to €0 00600 000000000000000000000000000000000OIROGIOE
li.to 20 0000000000000 0000000000000000000c00000CCSOGITSTES
list, R R R E Y R TR TR R W N A SN PSPPIy
1i8C. cececcccvscsacecvesscccscscasosacscnsoscccncss
D

list contents of dire6CtOrye eccesscescsccccccccccnse
list of file systems processed by fsck.
list of names.
ln: make links.
loRder, csccecsceccvecsccsscrecsscscsscenscsccccnnnae
localtime, gmtime, asctime, timezone: comvert date

locate source/binary/manual for program.
locations in Program. .eccccccccececscscccsassccscne
lock & process in Primary DMEMOTYe cocecccescsccscone
lock: lock a process in primary memOZy. ecececccacse
locking: provide exclusive file regions for reading
10g in tO 8 DEW ZTOUP: cccscococcscssscscncscasacse
log, logl0, pow, sqrt: exponential, logarithm,
logl0, pow, sqrt: exponential, logarithm, power, ..
logarithm, pover, square root.
login banner .
login NiSLOTY: cececccceccctosctcccscnsccceoscssnns
login: login new user.

secseccecvne
Seesccccsvccccerssecrrsecteccssennoce

R P Y PR RN R R RRRY

S0 c0c0csccrecrscssonse

@ 00000000t stecssccessseresresvecene

s6ccesceccecsssccscesscccscae

ctype(3)
see(l)
tra(l)
csh(l)
j0(3M)
0(34)
30(3M)
csh(l)
csh(l)
csh(l)
csh(l)
csh(l)
csh(l)
join(1)
makekey(1)
csh(l)
csh(l)
kill(2)
kil1(l)
mem(4)
awk(1)
be (1)
sh(l)
1d(1)
frexp(3)
csh(l)
lex(1)
lex(1l)
ar(5)
intro(3)
ar(1)
life(6)
life(6)
csh(l)
setmem(l)
csh(l)
csh(l)
col(l)
1pd(1M)
lpr(l)
head(1)
num(1)
comm(1)
uniq(1)
look(1)
rev(l)
a.out(5)
link(2)
link(2)
1n(l)
lint(1)
csh(1l)
csh(l)
csh(1)
csh(1)
look (1)
nlist(3)
m(l)
18(1)
checklist
csh(l)
1n(1)
1d(1)
ctime(3)
vhereis(l
end(3)
lock(2)
lock(2)
locking (
newgrp(l)
exp(3H)
exp (3M)
exp(3M)
ident(8)
wtmp(5)
csh(l)

UniSoft Corporation

getlogin: get
login:

/break, continue, cd, eval, exec, exit, export,

passwd: change
utmp, wvtmp:

last: indicate last

set jmp,

break: exit while/foreach

continue: cycle in

end: terminate
foreach:

mklost+found: make a

put: puts a file oato a remote
take: takes a file from a remote
updater: update files between two

alias: shell
me:,
me:
man:

msil: send or receive

nem, kmem:

malloc, free, realloc, calloc:

ctags:
make:

ar: archive and library

delta:

mkdir:

mknod :
mklost+found:
mkteamp:

1n:

sep:

allocator.

shife:
tp:

frexp, ldexp, modf: split into

man: print sections of this

man: macros to typeset

ms: macros for formatting

umask: change or display file creation
umask: set file creation mode

mkstr: create an error message file by
eqn, neqn, checkeq: typeset

bed: coovert to antique

lock: lock a process in primary

mem, kmem: main

malloc, free, realloc, calloc: main

setmem -~ set user

sort: sort or

mkstr: create an error

perror, lyl;ptrli‘t, sy

iSoft Corporation

mesg: permit or deny
s_Derr: system error

source.

chmod: change

getty: set terminal

longjmp: nom-local goto.

Perguted Index

108in NBME. cecereccccoccrssosccsscssncscoscscosnssce
login new user.
login, newgrp, read, readonly, set, shift, times,/
login password.
login records.
login: 8igN O0: ceovcececcscssonsccsacosscccssccnnse
logins of users and teletypes.
logout: end session.

D R N Y XY

P R N RN N RN NN

L R R R R RN NN RE RN RN

e v0s0cssecncsccsncccnce
seccccecscscccsscscdecccccacnce

e ecveccsscccnssccssecsccnce

look: find lines in a sorted list.
loop.
loop.
loop.
loop over list of DAMES. .ceccecevcccacccscccasccnne
lost+found directory for fsck.
lpd - line printer daemon.
lpr: line printer SPOOLlET. +ccsvcccsccccccscscscccs
1s: list contents of directory. cecececcececonceces
lseek, tell: move read/write pointer.

esceecsvsccrvccoe
€0 0000 000e000000 00000 cccccnsscsscrecsccenno
00000000000 0000000050000000000000000 000000000

90 0000000000000 e0r 0000000000000 0000CE0OCOSOIONROILIEETS

secceccccsccscsccccce

O Y R RN R R RN NN

sesevevsccccse

machine.. ceccecevecaceccecscscsscrcscaccncccscsnne
machine.. R R N P R R R TR R
machines. R R P R Y PR R PP PR R RN
BACTros. €0 0000000000000 srversessecsessccccscssncnss

macros for formatting MANUSCT IPtB: cececocscocccocs
macros for formatting papers.
macros to typeset manual.
mail among users.
mail: send or receive mail among users.
main memory.
main memory alloC8tOr. sececccccscccccoccvcscnccnnn
maintain a tags file for a C program.
maintain program groups.

e ceesscesccccssccoce

@0 sessescescvccrsccvrecnse

e ceecsecscsvccsserorcsocosencsone

R R R N Y R TN

e csccocncene

s eccccccvecsccseccscccvcoe

BRAINCAINE@r. ceccesccacccescescescscssessconcosscene
make a delta (change) to an SCCS file: cceccacccces
make & directOTy. ccecececcccecscsevoscasccsscanace

make a lost+found directory for fsck.
make a8 unique file name,
make link.. ©0 00000000000 000000000000000OCYOIROETOITIOTOEO
make: maintain program groups.
make output single speced. ..cccecevvcccecccccccccons
makekey: generate encryption Keye .sececcccscccccccs
malloc, free, realloc, calloc: main memory
man: macros to typeset manual.
man: print sections of this manual.
manipulate argument list.
manipulate tape archive,
mantissas and exponent.

manual.
MANUBL. cocecececrcrccscecescecnocccsscscsccncccncas
manuscripts,
nask.
mask. 96 0000000000000 000000000000000000000000000000
massaging C source.
Bathematic8e secceccccesccoscccossscsoscscasvassons
me: macros for formatting papers.
media. 0900000000000 00000000000000000000000ccsannss
nem, kmem: main memory.
memory.
WEROTYe ocecsseveqroccccccnseccccdsscssooscccccccsscos
Demory 8110CALOT: cccescccecsccscaccanssssascccasce
memory limit to value.
merge f£ileBe cecvsececancecscscasssccsccsscssccsese
mesg: permit or deny messages.
message file by massaging C source.
messages.
BESBAZCHE. ccccevecsccscscesecesssevescssccvcvscsccnce
okdir: make & directory. cccececcsccceccccscoscansce
mkfs: construct & file system. ..ccccccccscccceccce
mklost+found: make a lost+found directory for fack.

mknod: build special file. .ccccccccceccrcaccconcee
mknod: make a directory or a special file.
mkstr: create an error message file by massaging C
mkteap: make a unique file name.
mode.
mode.

eseeccvsccccs

a

make & directory or a special file.
a
a teceescasescccsessssscsens

e cecsssccesccscccoe

eecsscee
0 cecsvcvccccscccccs
6evccecssscscce
@9 vecscscecncccssvssnnocae
e ecesccsccccecccccccccnce
e ceccecsccscvsscssssccrccacse

€0 0000000000000 0ec0cscr0cccctcsrcc0sOcnntOT

L R N N N NN R R R NN NN

©0 0000000000000 0¢000000000000000000000000c0000
se0ceeeccecsrsecscscecccsssvsncvsne
eeesccccsessccsocs
e cceeeenveesccccssrscsccces
I Y N Y AR R R RN
R Y R RN RN RN
e cevseccscsscscveccoe

eececccscsccvsce

80 e0000c00000000000000s00000CECCCCOOORIOIOTO

eeveccce

e ceccseccscssccvee
R R R N N N N R XN

R R R R R Y R R RN R N

getlogin(3)
csh(l)
sh(1l)
pasawd(l)
utmp(5)
login(l)
last(l)
csh(l)
setjmp(3)
look(1)
csh(1)
csh(l)
csh(1)
csh(l)
mklost+fod(1M)
1pd(1M)
lpr(1l)
1s(1)
lseek(2)
put(l)
take(1)
updater(l)
csh(1)
ms(7)
me(7)
man(7)
mail(l)
mail(l)
mem(4)
mal loc(3)
ctags(l)
make (1)
ar(l)
delta(l)
mkdir(l)
mknod(2)
mklost+fnd (1M)
mkt emp (3)
1a(l)
make(1)
ssp(l)
makekey(1)
mal loc(3)
man(7)
man(l)
csh(l)
tp(1)
frexp(3)
man(l)
man(7)
ms(7)
csh(l)
umask(2)
mks tr(l)
eqn(l)
me(7)
bed(6)
mem(4)
lock(2)
mem(4)
mal loc(3)
setmem(1l)
sort(l)
nmesg(l)
mkstr(l)
mesg (1)
perror(3)
mkdir(l)
mkfs(1M)
mklost+fnd (1M)
mknod (1)
mknod(2)
mkstr(l)
mkt emp(3)
chmod (1)
getty(1M)

August 1982

Permuted Index

set file creation
chmod: change
set terminal
frexp, ldexp,
touch: update date last

umask :

tset:

curses: screen functions with "optimal" cursor
object files into ASCII formats suitable for
mount, umount:

mount, umount:

mount, umount:

mtab:
‘mv:
lseek, tell:

switch:

getenv: value for enviromment
getlogin: get login
mktemp: make a8 unique file
pwd: vorking directory
tty: get terminal

getpv: get

nlist: get entries from
om: prinot

isatty: find

ttyoame, ttyslot: find
foreach: loop over list of
terminals: conventional
ncheck: generate

dumpdir: print the

eqn,
creat: create a

nevgrp: log in to a

edit: text editor (variant of the ex editor for
fork: spawvn

login: login

/continue, cd, eval, exec, exit, export, loginm,
run & command immune to hangups (sh omly).

only). nice: run a command at low priority .sp

set jmp, longjmp:
notify: request immediate

tbl: format tables for
troff,

troff,

deroff: remove

arithmetic: provide drill in

rand, srand: random

oum:

version: reports version

atof, atoi, atol: coavert ASCII to

errno: introduction to system calls and error
number: coavert Arabic

size: size of an

Motorola S-record downloading.. hex: translates
strings: find the printable strings in an

' od:

acct: turn accounting om or

August 1982

mode mBBK. ccccceccccccocccrsaserssocsrsccncssosanee
mode of file.
MOdE@B: ccccccceccsccescscstcsssscssscnnossscsscsccssoe
modf: split into mantissa and exponent.
modified of 8 filee <evececcvccccncccssncccccacnses
monitor: prepare execution profile. .eceecccscccsces
more: file perusal filter for crt viewing.
MOLLIOMDs cececossscvssresccncsscosccssscsossscscsscasss
Motorola S-record downloading.. bhex: translates ..
mount and dismount file syst@m. ..ccccecccccsccccse
mount and dismount file system,
mount Or remove & file system.ccccccccccccces
mount, umount: mount and dismount file system.

D R R Y EN]

seevsoveese

seeccsee

e 0ccsscsvccscccsvece

mount, umount: mount and dismount file system.
mount, umount: mount Oor remove & file system.,

mounted file system table.
move or rename fileB. .occcesceecrtccssnsecsesssens
move read/vwrite POINCEr. .cceesecccccccccccscascnns
ms: macros for formatting manuscripts.
mtab: mounted file system table.
multi-way commsnd branch,
wv: move or repame files.
name.
name.,
name.
name,
name,
name
name
name

e scesssesecssecscccccese

from uid.
list,
1i8t. cccecceccscsccvscssccncascsnsssccccnccsne
name of a terminal.
name of a terminal.
names.,
DAMESB: ccccoccsscscsscsvscssssssesssscssccsscsacsvssss
names from i-oumbers. c.cccecccecccccesccscccosanan
names of files on 8 dump tape or disk.
ncheck: generate names from i-numbers.
neqn, checkeq: typeset mathematics.
nev file,
DeW BIOUPe sesccesesecscsscsscssonsscosnsescsccscrea
nev or casual users).
new process.
DEV UBET: <ccecccsesccsscscsosesscscscsscssscacanses
newgrp: log in tO & DEW ZrOUPe ccceccccsccccccccsne
newgrp, read, readonly, set, shift, times, trap,/ .
nice: run a command at low priority .sp nohup -
nice: run low priority process.
nice: set Progr&e Priority. cecccecsecscscoscccccsccss
nlist: get entries from name list.
om: print name list. ccecoecccorcrccscscessesccscocne
nchup - run a command ismune to hangups (sh
nobup: run a commsnd immune to hangups.
nohup: run command immune to hangups.

non-local goto.
NOtifiCB8CiOMe ceececcccecccsvcscnccscsccscassnsoses
notify: request immediate nmotification.
nroff or troff. ceceecrccscccsccescscctccscosscnans
nroff: text formatting and typesetting.
nroff: text formatting and typesetting.
aroff, traf £, tbl and eqn constructs.

null: data sink.
num: number lines. ...cccececccccorccscsccccncccacs
number: convert Arabic numerals to English,
number fACL 8. cecccecscocccosscsecsccncesccscscacnse
oumber generator.
oumber lineB. .ceecccccccccccccsnccrcarcrvocccenens
number of files.
nUMbeIS. cciccccccccccsssccrcrcoscccessrscecccsanne
oumbers. 1DLFO, ccovseseccecscascsacsccassscsccocs
numerals to English.
object fil@. ceeecacccvcccccccccctcscrrccscascrencne
object files into ASCII formats suitable for
object, or other binary file.
Octal dUMPe ccccscesccrsccccccvcssssccsvnscscssancae
od: octal dump.
off.

D N Y RN R RN XY

e sseccetecc00000esseccct0O0C0c0cesscr0co e

@0 esccscesccccsecccscreseccscsvcon
®eeosescvcccsoecsstecccsnsssvece

@0 ceevecesreseccscccrcccrsssessenovsessecse

essecccscccee
eecsccccscccee
eseceessvscvese

€0 000000000000 00000c00000000000ccccs000e

e0ecsecseccvccscccsvscessevsae

I R Y R Y R YR N

e9seeccoosessevecas
®eseccscccccccoe
s csecene
eevevsecece
eececccccccse
L R R RN
tevescsccce
eeesccccsee
tecccccssee
®esecsecscsce
90600000000 resc0s 00000000 ccsacss
secevee

@0 0scscccscvvececvseesstvccssssnce

L R N R R R RN NN

e sececccccscsvssescvreccsncaven

vsecene

L R R Y]

(R R R R RN RN R

R R N R P R R R

umask(2)
chmod(2)
tset(l)
frexp(3)
touch(1)
monitor(3)
more(l)
curses(3)
hex(1)
mount(l)
umount(1)
mount(2)
mount(l)
umount(1)
mount(2)
metab(5)
wv(l)
lseek(2)
ws(7)
meab(5)
csh(1)
mv(l)
getenv(3)
getlogin(3)
wkt emp(3)
pwd(l
tty(l)
getpw(3)
nlist(3)
om(l)
isatty(3)
ttyname(3)
csh(l)
term(7)
ncheck(1M)
dumpdir(1M)
ncheck(1M)
eqn(l)
creat(2)
nevwgrp(l)
edit (1)
fork(2)
csh(1)
newgrp(l)
sh(l)
nice(l)
csh(l)
nice(2)
nlist(3)
om(1)
nice(l)
nohup(l)
csh(1l)
setjmp(3)
csh(1l)
csh(1)
tbl(1)
arof £(1)
trof £(1)
derof £(1)
null(4)
num(1)
number(6)
arithmetic (¢
rand(3)
num(1)
version(l)
atof(3)
intro(2)
ounber(6)
size(l)
bex(1)
strings(1)
od(1)
0d(1)
acct(2)

UniSoft Corporation

login: sign

nohup = run & command immune to hangups (sh
exterr - turn

put: puts a file

fopen, freopen, fdopen:

dup, dup2: duplicate an

open:

tgetstr, tgoto, tputs: terminal independent
strcpy, strocpy, strlem, index, rindex: string
join: relational database

curses: screen functions with

stty: set terminal

vi: screen

a.out: assembler and link editor

ecvt, fcvt, gevt:

printf, fprintf, sprintf: formatted

ssp: make

foreach: loop

exec:

chown: change

chown: change

stdio: standard buffered input/output

me: macros for formatting

disktune - tune the floppy disk settling 'time
pe:

getpass: read a

passwd: change login

passvd:

getpwuid, getpwnam, setpwent, endpvent: get
egrep - search a file for a

fgrep: search a file for a

grep: search a file for a

awk:

popen,

mesg:

ptx:

limit: alter
messages,
more: file

phys: allow a process to access
split: split a file into

tee:

bg:

fish:

life:

vorm:

lseek, tell: move read/vrite

popd:

ttytype: data base of terminal types by
root. exp, log, logl0,
'xp, log, loglQ, pow, sqrt: exponential, logarithm,

kill: terminate a process with extreme
monitor:

unget: undo a

lock: lock a process in
types:

cat: catenate and
fortune:

prs:

date:

cal:

hashstat:

jobs:

sact:

vhoami:

IniSoft Corporation

Pegmuced Index

on.
onintr: process interrupts in command scripts.

only). nice: run a command at low priority .sp
on/off the extended errors in the specified device.
onto a remote machine..
open a stream.
open file descriptor.
open for reading or writing.
open: open for reading or writing.
operation routines, tgetent, tgetoum, tgetflag, ..
operations., strcat, strncat, strcmp, atrnamp,
operator.
"optimal" cursor motion.
options.
oriented (visual) display editor based on ex.
OULPUL: sececocscescacsccscsccscscscceonsososoncscs
output comversion.
OULPUL COMVETBLON. covevcccccscsesssosnsccscnsessos
output single spaced.
over list of NamES. .i..ccceeveccrcvcccsccsascoacnn
overlay shell with specified command.
OWDET ¢ cccececoscsscscscasesnsenssncscasssscsnssans
owner and group of a file.
package.
papers,

parameters.
Pascal compiler. cevcceecvecvessccccccacscccscnasas
passwd: change login password.
passwd: passvord file.
passvord. .
passvord.
password file.
passvord file entry.

P R N N N R R R X RN
eac oo

e cecsescssescccsvcsscsacea
e eevccsccssscrcscsensecccesecssscnnsee
e0ecsecsscscesvcenecssceccsrvon
beveccscesccscscccocosce

ecoe
B X R R R R R R R R PR Py P R R)
“essesessesescsssssscscsncss
©8000ce0000000000000s00ssvreevseevanctcnses

secse
@0 ecccsescesccessescsccccvstesroe
LR R N N R N R
cececccccccee

000 cccsccccsscrsccscccn
0 0000000000000 0000000ce00s000000c0c00000 0
L N Y Y R NN

P R R N N XN

e eecescocsccscocses
@0 cscsssecscecscnstccnscsrnnnoe
e 000 vescsscsevececscccessesns0stveccsovne
0000000000000 000000000000000c000s00 00000
eeevecs0sc0cs0csvecvcssevrecsccscance

getpwent,

e eececsceccvcccace

PALLEID. cccccccceccsccsssacssosccnsossassancscanse
PALLEINe <coeccessscncccsssnceaccsscscsncancanscnases
PALLEID. <cccosssccceccocrasasasssescscacancassassce

pattern scanning and processing language.
pause; stop until signal.
pc: Pascal compiler.
pclose: initiate 1/0 to/from a process,
permit or deoy messages.
permuted index.
per-process resouwrce limitations.
perror, sys_errlist, sys_nerr: system error
perusal filter for crt viewing. .ecceseeccccacccccae
phys: allow a process to access physical addresses.

physical addresses.
PLlECEB. cececccsscsocscscoscscssasssssccesccsncsane
pipe: create an interprocess channel.
pipe fittiDge cevecvsvcncscccscosscccssccncansccnas
place job in background.
Play “"Go Fish™ . .iceeececsccecsccscccscvssocsccse
play the gmme of life. ..c..ceevcccscccccccccccanans
Play the growing vorm game.
POLDLEr. cccsccoscesocascasccossscsccssaccssscscacas
pop shell directory stack. .cccccccccccacccscccacas
popd: pop shell directory stack. .eocececceccsccancas
popen, pclose: initiate I/0 to/from a process.
port.
pov, sqrt: expouential, logarithm, power, square ..
pover, square root.
pr: print file.
Prejudic®. cocecececescsscscsscsscsssasrascscascasne
prepare execution profile. ...ccceecceccecccccceces
previous get of an SCCS file.
PrimMATY MEMOTY. cccccecccccnscsscacsscanssscsscccnacs
primitive system data types.
print.
print

print

print

print

print

print

print

print

ecsssscscse
esescsssecssvessccccccscn
teccsccscecsssssccccccsccaccnses
ceeesccescs
Secscsccscevscsccccscnsecncce
R R R R R R
secsesccccsssscsnce

®0ec0csc00eccsccsscsecvccssonsan
eecesccccccce

tec0ceecsccnccsovocescreoe

e csccccsccsceccccccsoe

0 0000000000000 0e800000000000000000cc0cscs0soe

®eceeccescesneccrenccscsnccese

000000t ecesrsevtreccrnsentceccovnne

a random, hopefully interesting, adage.
an SCCS file. ccccccesvoascascesosscsacconane
and set the date.
calend&T. cececececsscsccvcccscccccnvanconaas
command hashing statistics.
current job liSt. .c.ceeccccccccscscccccsanee
current SCCS file editing activity.
ef fective current user id.

eecece

@0 cesccrccrerecsscsrcccccoe

e cersoeescccorcee

teccsccce

e eeccscccccsccce

login(l)
csh(l)
nice(l)
exterr(l)
put(l)
fopen(3S)
dup(2)
open(2)
open(2)
termcap(3)
string(3)
join(1)
curses(3)
stey(l)
vi(l)
s.out(5)
ecvt(3)
printf(38)
sep(l)
csh(l)
csh(l)
chown(1M)
chown(2)
stdio(3)
we(7)
disktune(l)
pe(l)
passwd(l)
passwd(5)
getpass(3)
passwd(l)
passwd(S5)
getpvent(3)
egrep(l)
fgrep(l)
grep(l)
avk(1)
pause(2)
pe(l)
popen(3S)
mesg(l)
ptx(1l)
csh(1l)
perror(3)
more(l)
phys(2)
phys(2)
split(l)
pipe(2)
tee(l)
csh(1)
fish(6)
life(6)
worm(6)
lseek(2)
csh(l)
csh(1)
popen(3s)
ttytype(5)
exp(3M)
exp(3M)
pr(l)
kill(l)
monitor(3)
unget(1)
lock(2)
types(5)
cat(l)
fortune(6)
prs(1)
date(l)
cal(l)
csh(1)
csh(1)
sact (1)
whoami(l)

August 1982

Permuted Index

pr:
history:

banner:

om:

printenv:

man:

pstat:

dumpdir:

file., strings: find the
banner: print large banoner on

lpd - line

lpr: line

conversion.

nice: set programa

nice: run low

haogups (sh/ nice: run a command at low
help: ask for help about SCCS

boot: startup

nice: run low priority

stop: halt a job or

exit: terminate

fork: spawn new

kill: send signal to a

popen, pclose: initiate 1/0 to/from a
wait: avait completion of

init:

getpid: get

lock: lock a

onintr:

ps:

times: get

phys: allow s

wvait: wvait for

ptrace:

kill: terminate a

checklist: list of file systens

kill: kill jobs and
wait for background
pattern scanning and

wait:
awk:

monitor: prepare execution

profil: execution time

prof: display

ctags: maintain a tags file for a C
end, etext, edata: last locations in
units: coaversion

vhereis: locate source/binary/manual for
cb: C

make: maintain

nice: set

badblk:

lint: a C

lex: generator of lexical analysis
xstr: extract strings from C
arithmetic:

writing. locking:

true, false:

true, false:

ungetc:
pushd:

puts, fputs:
putc, putchar, fputc, putw:

on & stremm.

stream. putc,

put:

putc, putchar, fpute,

August 1982

Print file. civieeevecereosnscecaceoscosccscsscnnss
print hiscory event liSC. .eeiveececsccacocscsnsanas
print large banner on printer.
print name list.
print
print

99 00000 0v00cevostesessreersRERTol
out the emviromment. ...eeecieecccscecccscans
sections of this manual.
pPrint system fBCLO. ceeceoverencrccsssaccccscscnses
print the names of files on & dump tape or disk. ..
printable strings in an object, or other binary
printenv: print out the eoviroment.
PriNCET. cccecccsccccsacsrsncsasassasssssscscsenscss
printer daemon.
printer BPOOlere sececsccceccscccnsososccncrsncccas
priatf, fprintf, sprintf: formatted output
PTIOTILY: cececscercececcccscecsococsonsssacsancanse
Priorily PrOCEBB. cevceccececesnconvesvssncscscncce
priority .sp nobup - run s command immune to
problems..

se e

secsevesccscce

L Y R R P RN NE N

seecescs

9000000000000 0000000000000000000sc000acE

Procedured. .ccecscececvecsccscncessscacascosscasens
PrOCEBB. cccecsvsvesscacorcosccssesssocssacssasasse
PTOCESB. coicccccvcocaacosveccnasssanssscansccccens
PrOCESBB. covcsvcovsavsoccssescscncccssncsscssocossnse
PTOCESB. ceccercacoseasnsrcsascsscsscosscscssosansas
PTOCEBB. cvcsevecccccaccocsscccascccascensssccacanse
PTOCESS. ccceececcvesascasstscssccssscccsssccccnsas
PTOCEBB. coccoccscsscoscssscsvccsostesssancacsonnce
process cootrol initial izatiofD. .c.ceccceccceccacces

identificatioN. .ecececesccscecsosccsccsnee
in Pprimary MemMOTY. .ccoevcscvrcecrcccccsacans
interrupts in command scripts.
status.

process
process
process
process
Process CiMBB. coceccccccccsccscecacasssesvnscancnae
process to access physical addresses.
process to terminate.
PTOCESS LTBCE. scosecsscscrscensssccososcnsoncncscs
process vith extreme prejudice.
processed by fsck.
PTOCEBSEB. .occensecsossvvsscsscsassecssccascsacscnns
processes to complete.
processing languBgE. c.cccccccvoccccssscsscnsccccns
prof: display profile dat@, cccevceccceccccscccncas
profil: execution time profile.

eecesceccone

000000000000 000000e00es0e00C0cR0RTE

escscecsccccs

@0 s0ssssvscecscccnsscorccnson

e 00000 ccse00csvce

LN R R N RN NN R RN

secescscnsseacsscssesscccrscee

@6 0ceccsccccsecccne

Profilee cececececccnccsccessecsscccssncancscrosasse
Profile. cececcccscececscctcccccsnsssscsenssncsocnce
profile dat8: secccccvacscscscascossocccsoscccccance
PTORTEM. vecsoscecscsoscoscavaccsnesascascasssosacse
PrOZT&Me ceccescssccescsccccsecnsacesascascccescssse
PrOGTAMe ccoesecsscsveoscecsssscocascssocscsancsscnse

PTOETEM. cecscocsvcscscssccsscccsccavscccscsasnonans
program beautifier.
program groups.
Progrem Priority. .ceecececesccsscccscssccascscacsce
program to set or update bad block information.
program verifier,
programs. 0000000000000 00000000s0rr0csR ROt OOETRORS
programs to implement shared strings.
provide drill io number facts. .c.cccceccccccccccse
provide exclusive file regions for reeding or
provide truth values.
provide truth valu@s., .ccceccscccccccscscesssncscns
prs: print an 8CCS file.
PS: Process SLALUB. .cccccccvcocvcscacvccccscacaces
pstat: print system facts.
ptrace: process trace.
ptx: permuted indeX. ...cccccescececcsccaccscascans
push character back into input stream.
push shell directory 6t&acKk. ..c.ceccoscescosvaccacss
pushd: push shell directory stack.
Put & String OD 8 SLTEEM. .eccvcsccocscacscsccsncaa
put character or vord OD & SLTEEM. cccccevecccscces
put: puts a file onto a remote machines. .c.cecacss
putc, putchar, fputc, putw: put character or word .
putchar, fputc, putw: put character or vord on s ..
puts & file onto a remote machine.. cevceccecececss
puts, fputs: put s string on a stream.

putwv: put character or word on a stresm.

Seeceecsccccc00sncceecscscscece

®eecsserscsecncccvsseescstacccsOe

L RNy Y R Y RN AR NN

eesecceccssoe

cevee

G6cccscsccnsevsscseccscscssce

9ec0svecsesesscscscsocnven

@0 es0seccsccecvccssscnee

®9cscepececcsccssacscsansee

Ceccecvccccccescen

seceesescccs

sevccccnce

pr(l)
csh(l)
banner(6)
(1)
printemnv(l)
mag(l)
pstat(1M)
dumpdir(1M)
strings(1l)
printemv(l)
banner(6)
1pd(1M)
lpr(1l)
printf(35)
nice(2)
csh(l)
nice(l)
help(l)
boot(8)
csh(l)
csh(})
exit(2)
fork(2)
kil1(2)
popen(3S)
wait(l)
init(1lM)
getpid(2)
lock(2)
csh(l)
pe(l)
times(2)
phys(2)
wait(2)
ptrace(2)
kill(1l)
checklist(!
csh(l)
csh(l)
awk(1)
prof(1)
prof i1(2)
moni tor(3)
prof i1(2)
prof(l)
ctags(l)
end(3)
units(l)
vhereis(l)
cb(1)

make (1)
nice(2)
badblk(1M)
lint(l)

“lex(1)

xstr(l)
arithmetic
locking(2)
false(l)
true(l)
prs(l)
ps(l)
pstat(1M)
ptrace(2)
ptx(1)
ungetc(3S)
csh(1l)
csh(1)
puts(3S)
putc(3S)
put(l)
putc(38)
putc(3S)
put(l)
puts(3s)
putc(3S)

UniSoft Corporstion

qeort:

rain: animated
fortune: print a
rand, srand:

getpass:
source:
read:

/ed, eval, exec, exit, export, login, newvgrp,
locking: provide exclusive file regions for
open: open for
'ed, eval, exec, exit, export, login, newgrp, read,
lseek, tell: move
malloc, free,
mail: send or
rehash:
utmp, vtmp: login
eval:
locking: provide exclusive file

ait:/

comm: select or

join:

strip: remove symbols and
put: puts a file onto s
take: takes a file from a
radel:

umount: mount oOr
unalias:

madir:

unlinok:
unsetenv:
deroff:

unlimit:

strip:

™

mv: move or
fsck: file system consistency check and interactive
vhile:

mount,

uniq: report

repeat: execute command
freq:

uniq:

version:

faeek, ftell, rewind:
notify:

reset:
limit: alter per—process
unlimit: remove

restor: incremental file
suspend: suspend a

system
shell,
col: filter

rev:
ftell,
index,

fseek,
strcmp, stracmp, strcpy, strucpy, strlem,

pow, sqrt: exponential, logarithm, power, square
tgoto, tputs: terminal independent operation
command immune to hangups (sh only). nice:
nohup:

nice: run a command at low priority .sp nohup -
nohup:

nice:

- COBGL

rmcobol(l) - COBGL compiler by

UniSoft Corporation

Permuted Index

pwd: working directory name.
qsort: quicker sort.
QULCKETr BOTT: <civctcevcesrorsoasccsnsasostssancene
rain: animated raindrops display.
raindrops display. .ceeeccicecerccocscnctccrcscacnns
rand, srand: random number generator.
random, hopefully interesting, adage.
random number BENETrALOT: ccccccscssccscccscosssccnes
rc: command script for system housekeeping.
read a passwvord.
read commands from file.
read from file.
read: read from file. .ciccievccccccscescecesccacse
read, resdonly, set, shift, times, trap, umask, .
reading or writinmg.
reading or writing.
readonly, set, shift, times, trap, umask, wait:/
read/write pointer.
realloc, calloc: main memory allocator.
receive mail amONG UBEIB. .eccccccccssccrncaccccnes
recompute command hash table.
records.
re-evaluate shell data. .cc.ceceeccccccccccacnacces
regions for resding or Writing. eecceocecscececcqecss
rehash: recompute command hash table. .cccceccesene
reject lines commoun to two sorted files.
relational database operator.
relocation bits.
remote machine,.
remote machin@.s cceececcscccccccccoccssosccnccccns
remove a delta from an SCCS file.
remove & file system.
TEmOVe 8l1i88€B. .icscccccrcceccsosctccccccccsasncen
remove an empty directory.
remove directory entry.
remove enviromment variablés. c..cceccccccccscsccns
remove nrof f, trof £, tbl and eqn constructs.
remove resource limitiations. cceececccccccscccccacns
remove symbols and relocation bits.
remove (unliok) files.
rename files.
TEPBITe cecvecercocccecascececsoscscsccosccsccssnans
repeat commands conditionallye cccecescevccccccscae
repeat: execute command repeatedly.
repeated lines in a file.
repeatedly. cccceccccccccctcctcccncessacescncesancan
report on character frequencies in a file.
report repeated lines in a file.
reports version number of files.
Teposition 8 BLTEAM. cccecccecccsesscscccscscssncas
Tequest immediate notificatioD. .eceecccecceccccccs
reset: reset the teletype bits to a sensible state.
reset the teletype bits to a sensible state.
resource limitations.
resource limitiations. .ccecesceccscecccecccscccane
restor: incremental file system restore.
TEBLOTE@. cccoscoccscacacscseasossssassncacscsanancns
resuning its BUPETIOT. cecccsccsesccsnconcnsacscnaa
rev: reverse lines of a file.
reverse line feeds: ..cccecceccccaccsccccccscccccas
reverse lines of & filee cecccvecccrcccccsaccscncne
revind: reposition a stresa.
rindex: string operations. strcat, stroncat,
mm: remove (unlink) fileS. cceccecsccsccocccccncncs
mcobol(l) - COBOL compiler by Ryan—McFarland.
rmdel: remove a delta from an SCCS file.
rmdir: remove an empty directory.
root. exp, log, loglo,
routines. tgetent, tgetonum, tgetflag, tgetstr,
run 8 command at low priority .sp nobup - run a
run 8 command immune tO hangUPS. cccocecssccccccncs
run a command immune to hangups (sh omly).
run command immune to hangups.
run low priority process.
runtime interpreter.
Ryan-McFarland.

PR R R R R X RN

e seccseescscesvesesescencscccne

s ceesccccccnsove

sssescecsccccce

s esesccscccccscsseccesstcscccrencne

40 eseesesrsccccsscnccssscsccane
R N R R R T RN
.o
Sevessssecssssscssessscsaccssee

e 00000 cc00c000c000000c00s000 0000000000

S0 ceccvcne
e seccecccccvncscccne
@0 ccsccsssesscrcsccrccecnttosccnon

e ceccscscsnccssces

@ececcscscscccccccccencee

DR

6ccecsesccescces
S0 ccecerccssterccscvccccscac

R R Y P NN R R RN R

0 0ecencrccccsccsvscccons

eevecsee
eeccccesesenscsecccoe

teccsccsccnccccvcnse

@0 csecsseccessscsvccsccevossse

e ercscevessecsccncce

0 ceccsccsssncecsscsscae

e
00 cccsccese
eeseecccevevsvcee
e ccscesvesecrreevrncccscscce
eee

escecsse
veccsscesscccccvecces
Peceesscescececcrncvacene
e cecesccecscecscsscasncssecoe

e eecseccsececnoresccsoccsctecocvvvoe

pwd(l)
qsort(3)
qeort(3)
rain(6)
rain(6)
rand(3)
fortune(6)
rand(3)
rc(8)
getpass(3)
csh(l)
read(2)
resad(2)
sh(1l)
locking(2)
open(2)
sh(l)
lseek(2)
mal loc(3)
mail(l)
csh(l)
utmp(5)
csh(l)
locking(2)
csh(1l)
comm(1)
join(1)
strip(l)
put(l)
take(l)
mdel(l)
mount(2)
csh(l)
rmdir(l)
unlink(2)
csh(l)
derof £(1)
csh(l)
strip(l)
m(1)
wv(l)
fack(1M)
csh(l)
esh(l)
uniq(1l)
csh(1)
freq(l)
uniq(1l)
version(1l)
faeek(3S)
csh(l)
reset(l)
reset(l)
csh(l)
csh(l)
restor(1M)
restor(1M)
csh(l)
rev(l)
col(l)
rev(l)
faeek(3S)
string(3)
m(l)
cobol(1)
radel (1)
mdir(l)
exp(3X)
termcap(3)
nice(l)
nohup(l)
nice(l)
csh(l)
csh(l)
mcobol(1)
cobol(l)

August 1982

Permuted Index

brk,

awk: pattern

change the delta commentary of an
comb: combine

delta: make a delta (change) to an
get: get a version of an

prs: print en

rmdel: remove s delta from an
sccsdiff: compare two versions of an
sccafile: format of

unget: undo 8 previous get of an
val: validate

sact: prinmt curreant

admin: create and administer

what: identify

help: ask for belp about

cde:

alarm:

clear: clear terminal
twinkle: twinkle stars on the
curses:

ex. vi:

rc: command

onintr: process interrupts in command
egrep -

fgrep:

grep:

man: print

see:
comm:

case:

mail:

kill:

reset: reset the teletype bits to a
logout: end

ascii: map of ASCII character

umask:

utime:

badblk: program to
nice:

/exec, exit, export, login, newgrp, read, readonly,
getty:

tset:

stty:

date: print and
stime:

setuid, setgid:
setmem -

setenv:

setuid,
getgrent, getgrgid, getgrnam,

crype,

getpvent, getpwuid, getpwnam,
disktune - tune the floppy disk

continue, cd, eval, exec, exit, export, login,/
xstr: extract strings from C programs to implement
exit: leave

system: issue a

csh: a

eval: re-evaluate

popd: pop

pushd: push

alias:

suspend: suspend a

set: change value of

August 1982

sact: print current SCCS file editing activity. ...
sbrk, break: change core allocation.
scanf, fscanf, sscanf: formatted input comversion.

scanning and processing language.

essoescssssccce

esseescscocccanse

SCCS delta. .esecccecsscccsecsncsanccccssvassoncnans
SCCS delLaB., ..cccoecceavccsccacscrsooccscsssacsnnee
SCCS file. seeeceesssescocscssnsesascnssossscasncacs
SCCS fil@e +eeesessvcccssesoccscssscassascascnsccse
SCCS file@s, .ecceccvessscocecssnsccsccscosescscosnnns
SCCS filﬁo seseeesees s eseres0ssc0R00CsEePsCOOOETS
SCCs file. e csecesesvsesseseenesesEBCea000C0OPTOOE
SCCS filee cocesecscccsccsscccscnsesacoccsssscsnnns
SCCS file., .eceseccccescecsccccssncsccanscnscsscnne
SCCS file., .ueicecececcsvsccacocsccsscsassscssssnace
SCCS file editing 8cLiVitye ccecocccsccccscsccrcacse
SCCS fil@®. .cceeevccssvcvccoccscsavassssscascacsans
SCCS fil@8: ceveeccoeescccocscsnascacsasnascsoosncse
SCCS problems.. ceceececcesccacsoccossccacocccssnsnse

sccsdiff: compare two versions of an SCCS file.
sccsfile: format of SCCS file.
schedule signal after specified time.
screen.
BCTEEO. cocesvevcccsssesscocescsnssncecccscscsocsnsas
screen functions with "optimal" cursor motion.
screen oriented (visual) display editor based on ..
script for system housekeeping.
scripts,
search a file for a pattern.
search s file for s pattern.
search a file for a patterm.
sections of this manual.
sed: stream edifOf. ceccccsccecscsccesccescosssacce
see: see vhat a file has in it.
see vhat a file bas in it.
select or reject lines common to two sorted files.

selector in switch., ..cecepeccccccccccaccccsccsacns
send or receive mail among users.
send signal to a process.
sensible state.
session.
BEL. co.ocscaccvsvccssevscssencscstsescsesssaossses
set: change value of shell varisble.
set file creation mode mask,
set file Lim@B., .cccececccecccnsccsscacccccncssncns
set or update bad block informatioan.
set program priority.
set, shift, times, trap, umask, wait: command/
set terminal mode.
set terminal modes.
set terminal options.
set the date.
set time.
set user and Group ID. .ecccccocsccccercnccccccnsan
set user memory limit to value.
set variable in enviroment. .ccecveccsccccccsccncs
setbuf: assign buffering to a stremm.
setenv: set variable in emviroment.
setgid: set user and group ID. .ccececccccarceccaces
setgrent, endgrent: get group file entry.
set jmp, longjmp: nom-local goto.
setkey, encrypt: DES encryptiofe cccceccscccccscesns
setmem - set user memory limit to value. .cccececes
setpvent, endpvent: get password file entry.
settling time PATEMELErS. .ccccecccscccsccscscaccas
setuid, setgid: set user and group 1D,
sh, for, case, if, while, :, ., break,
shared strings.
shell, co.cccoccensccssnccccsccacosccssccasncasnnne
shell commADRde cccesceccvcsceccocssacsnssscsscesncann
shell (command interpreter) with C-like syntax.
shell deta. ccicoccscccecscccconccccsscssascscscans
shell directory stack,
shell directory stack.
shell MBCTOB: ceeuciessccssoscttsctccsccncsscasnnna
shell, resuming its superior.
shell variable.

see
ee0esecescveccccsscse
esvecssccccnscs

L R R R N R R NN NN

eecsececccscmcccsccce
L N N N R AN NN
0 ec0neceencceevecnsecse
ecesccoesevocenccvsccne
0 cesseccccecscsvrvnie

@0 ccocsecccrsescecensncans

®ecescsssceccccsene

eeeecsesescseseerencecs

e ececsccscccocse
e cecceesevoscssessccccos
S0 ecrecscessssesecrevcccsncrnccnnce

e ceececssesercacecncsccccsecccncvessncns e

eeceeeeccsncne

se0cvcsssscsscccccvsce

@0 es0svessscee
tecsenvevseecescveoacecscccccoesns
sece
e devesecnsececcssecsssnccccccccs
Pescsescsseccccsessesesntccsne

e vesesvscscssecsescsrsacscene
D N N R N R R NN

secreeesceverrstiesesesssscacstsetsosanie

secsecsscnscsccsccee

®esescccccsece

6 c00cessevcne

esesecoecse

e 0evcvscssccssccacs

eccesne

®evecnercesecscsvcescosscnecaccsssnee

@0 secescsecoceesrecscsacsvcas

@0 eencesesseccsassecscscscnsane

@ecseccescsvcsesscsssos

LR R R N N R Y R R RN

sact(l)
brk(2)
scanf(3S)
awk(l)
cde(l)
comb(1)
delta(l)
get(l)
pra(l)
rmdel (1)
sccadiff(l
sccsf ile(5
unget(l)
val(l)
sact (1)
admin(1)
what(1l)
help(l)
sccedif£(1
sccsf ile(5
alarm(2)
clear(l)
twinkle(6)
curses(3)
vi(l)
rc(8)
csh(1)
egrep(l)
fgrep(l)
grep(l)
man(l)
sed(1)
see(l)
see(l)
comm(1)
csh(l)
mail(l)
kill(2)
reset(l)
csh(l)
ascii(7)
csh(l)
umask(2)
utime(2)
badblk(1M)
nice(2)
sh(1)
getty(1M)
tset(l)
stty(l)
date(l)
stime(2)
setuid(2)
setmen(1)
csh(l)
setbuf(38)
csh(l)
setuid(2)
getgrent(3
setjmp(3)
crypt (3)
setmenm(1)
getpwent(3
disktune(l
setuid(2)
sh(l)
xstr(l)
csh(l)
system(3)
csh(l)
csh(l)
cah(1)
csh(l)
csh(l)
csh(l)
csh(l)

UniSoft Corporation

@: arithmetic on
unset: discard
exec: overlay

fexit, export, login, newgrp, read, readounly, set,
login:

pause: stop until

alam: schedule

kill: send

signal: catch or ignore
trigonometric functions.
ssp: make output

null: data
size:

qsort: quicker
sort:

comm: select or reject lines common to two
. look: find lines in a
nkstr: create an error message file by massaging C

vhereis: locate

(sh/ nice: run s command at low priority

ssp: make output single

fork:

exec: overlay shell with

exterr - turn on/off the extended errors in the
alarm: schedule signal after

spell,

spell, spellin, spellout: find
spell, spellin,

split:

frexp, ldexp, modf:

lpr: line printer

printf, fprintf,

exp, log, logl0, pow,

logl0, pow, sqrt: exponential, logarithm, power,
rand,

files into ASCII formats suitable for Motorola
scanf, fscanf,

popd: pop shell directory
pushd: push shell directory
stdio:

twinkle: twinkle

boot:

reset: reset the teletype bits to a sensible
if: conditionsl

hashstat: print command hashing

ps: process

stat, fstat: get file

feof, ferror, clearerr, fileno: stream

pause:
icheck: file system

strlen, index, rindex: string operations,
rindex: string operations. strcat, strncat,
operations. strcat, strncat, strcap, strucmp,
fclose, fflush: close or flush a

fopen, freopen, fdopen: open s

fseek, ftell, rewind: reposition a

getchar, fgetc, getw: get character or word from
gets, fgets: get a string fram a

putchar, fputc, putw: put character or word on a
puts, fputs: put a string on a

setbuf: assign buffering to a

aiSoft Corporationm

Permuted Index

shell variables. <cccceeveecacccccscsancscsssossssasss csh(l)
shell variables. ceeecescscesscasesssscavcssssnssss c8h(1)
shell with specified command., cececcescosccescecses csh(l)
shift: manipulate argument 1ist. cccesecssccocccasss c8h(l)
shift, times, trap, umask, wait: command laoguage. sh(1)
lisﬂ Ofle cecvecvcecsseccveccscccocccscccsoncsscosncscacoe losin(l)
.isn‘lo R R R R Y N R R R R R TN paule(l)
signal after specified time. ..ececccececccccscscces alarm(2)
signal: catch or ignore 8ignals. eecccecccecsseccss 8ignal(2)
.ianll O 8 PrOCEBS8: cccveccsccccnvccscscsscsssscsce kill(2)
SigNAlB. cecessaicsccssccscscssssasccsascsecscsssee 6ignal(2)
sin, cos, tan, asin, acos, atan, atan2: ..cecceccss 8in(3N)
.inxl‘ lplced. €0 9008000000000 000000000000000000000 llp(l)
sinh, cosh, tanh: hyperbolic functions. .cececcessee. 8inh(3M)
sink. 60 0000000000000 0080000000000000000060000000000 null(“)
size of an object fil€e sceeccccsccsccccssacseveccss size(l)
size: size of an object file. .ecescesccssssscccsss size(l)
sleep: suspend execution for an interval. .c..ee... sleep(l)
sleep: suspend execution for interval, eececcsceses sleep(3)
sort. 09 000000000000 0000nessscccvacsssccsrcccsscsosse qlort(3)
sort or merge file®e <eeccsevecvscccsscscsocsscsaes BoOrt(l)
sort: sart or merge file®. ceccccccccccccsccsscecses sort(l)
sorted files. R R conn(l)
sorted li.to @8 000 Qe0cc0evsc0rsssssseccssecane0Pee e 10*(1)
BOUFCE. ocecosscacscccccaccnssncosnacsasncssascasncas mkatr(l)
source: read commands fram file. eecescecssccecsceasss csh(l)
source /binary/manual for Programe eeececececsscececes whereis(l)
.sp nohup - run a command immune to hangups ..e..... nice(l)
.”Ced. 00 00000 Er 000000000 ccc000ct00ss000cs00cs00eS ..P(l)
spawvn new process. e e0s0sccscectcsscccsssecvevsovoe fotk(l)
lpcifid cOMMADNde cesccscsccscsncesesescscccscsnas C8h(1)
.wcifid device. 0eesc0scccesecsesrsncnsosnsocnsos utetr(l)
.ncifid Cite sescsscoavssocceccsccscsccesssceses alarm(2)
spell, spellin, spellout: find spelling errors. ... spell(l)
spellin, spellout: find spelling errors. «cecccseceecs spell(l)
.nl.lins @rrors. ‘...00.0.;Oo-...o...c..oo‘oocn.o.c .Pell(l)
spellout: find spelling €rrors. ecececocccccsccccss spell(l)
split & file into piecess .cccsecccscccsscccsscessees 8plit(l)
split into mantisss and exponent. ecceccecceccccseee frexp(3)
split: split & file into pieces.: .cecceccccceccccees split(l)
lpooler. 0000000060000 0000000080000000000000COOOGEOSIGGTS lpr(l)
sprintf: formatted OULPUt COMVErSiOMe eeosecssesssss printf(3s)
sqrt: exponential, logarithm, power, square root. . exp(3M)
square root. exp, log, cecceccccecccccccccccccaccees exp(3M)
srand: random number geNErator. .ccecscscccccccsses rand(3)
S-record downloading.. hex: translates object hex(l)
sscanf: formatted input COOVErsioD., eecescoscccssos scanf(3S)
ssp: make output single spaced. eoccecccsccccccssss 88p(1)
stack. 0000000000000 0000000000000000000000CCOCOGIIOIOIGITS Clh(l)
stack., 00 000000000000 000000000000000000000000000000 C.b(l)
standard buffered input /output package. ecesscecesss stdio(3)
stars On the 8CTEON. .cccecccscecccscsscscccscccssss twinkle(6)
SLATLUP ProcedUre8. .cecsccscvessecccssscsesassasss boot(8)
stat, fstat: get file SLALUS. cceccccccccocccssacee stat(2)
state. €0 000000000000 0000000000000000000000000600000 rQ.et(l)
statement, 00 0000000000000 00e000000000000000COCROLOIGIEO C‘h(l)
BLAListiCle cccescceccscecscansescssoscrccssnsssesss C8h(1l)
BLBLUB: ccvcccccccccccsscccssnscsccosscsssscsscsses P.(l)
.t.‘u.‘ 98 00 0000000000000 0CQCERCCROCOOOTOROIORIEOIEOSOEEOORPONOITDRDS .t.t(z)
status inquiricn. 00 0000000008 000000000000000000000 fe:ror(3$)
stdio: standard buffered input/output package. stdio(3)
stime: set time. teecce0scecessssvsscssescssesssvee .tim(z)
stop: halt & job Or pProcess. ceececcecccscccssscsss csh(l)
stop until 8ignal. scecccccccsccccctcsccscacccscses pause(2)
storage consistency checke cecccecececcssvccsscssces icheck(lM)
strcat, strncat, strcmp, strucmp, strcpy, strncpy, string(3)
strcap, strncmp, strcpy, strncpy, strlen, index, .. string(3)
strcpy, strncpy, strlen, index, rindex: string string(3)
SLTERM. cocececccsccccascvcacssassassssssscssssasces fclose(3S)
stream, 0000000000800 0000000000000000000000008090000 fopen(3$)
stream, 60000000 c000000000c0v00et000R VOO0 ONOIOROOLITOE f.e*(Js)
stream. BQ:C. R R RRRIrrrrx:rImmmmmnn getc(3S)
stream. €0 0600000000000 00000enoseneesssoccscscsoscsnsone getl(3$)
SLTEMM. PULC, ccovcscccscaccscscscscccccssscscsses putc(is)
[15 4 7 - PO R R EIIIIIIIm putl(35)
streanm. 0000000000000 0000s0e00000000000000000 00O lecbuf(JS)
August 1982

Permut Index
ungetc: push character back into input
sed:
feof, ferror, clearerr, fileno:
gets, fgets: get a
puts, fputs: put a
strncmp, etrcpy, strncpy, strlem, index, rindex:
extract strings frow C programs to implement shared
or other binary file.

strings. Xstr: extract
strings: find the printable
basename:

strcat, strocat, strcmp, stracmp, strcpy, strncpy,
index, rindex: string operations. strcat,

string operations. strcat, strncat, strcmp,
strcat, strncat, strcmp, strancmp, Strcpy,

ioctl,

ioctl,

su:
hex: translates object files into ASCII formats
sum:

directories. sumdir:

the given directories.

du:

sync: update the

update: periodically update the

sync: update

suspend: suspend a shell, resuming its
suspend:

sleep:

sleep:

swab:

breaksv: exit from

case: selector in

default: catchall clause in
endsv: terminate

strip: remove

csh: a shell (command interprecer) vith C-like
perror,

perror, sys_errlist,

mkfs: construct a file

mount, umount: mount and dismount file
mount, umount: mount or remove & file
mount, umount: mount and dismount file
vho: who is on the

checklist: list of file

rehash: recompute commend hash

unhash: discard command hash

mtab: mounted file system

tbl: format

ctags: maintain &

take:

sin, cos,
sinh, cosh,
tp: manipulate

tar:

tp: DEC/mag

dumpdir: print the names of files on a dump

functions.

deroff: remove nroff, troff,

reset: reset the

last: indicate last logins of users and
lseek,

su: substitute user id

August 1982

stream,
stream editor.
stream status inquiries,
string fram a stream.
string on a stream.
string operations.
strings. xstr:
strings: find the printable strings in an object, .
strings fram C programs to implement shared
strings in an object, or other binary file.
'tfip filename affixeBe .ccececscecscsoscsccccscncas
strip: remove symbols and relocation bits.
strlen, index, rindex: string operatiofs. .ceccscee
strncat, strcmp, strncmp, strcpy, strmcpy, strlen,

strocmp, strcpy, strancpy, strlem, index, rindex: ..
strncpy, strlen, index, rindex: string operations.

stty, gtty: control device,
stty, gtty: comtrol device.
scty: set terminal OptioDS. ceecscvcscsccncccccsscs
su: substitute user id temporarily.
substitute user id temporarily. ececcsccccscccscccce
suitable for Motorola S-record downloading..
sum and count blocks in a fileo se0eecsecevecevecoe
sum and count characters in the files in the given

sum: sum and count blocks in &8 file: occcccccccccscs
sumdir: sum and count characters in the files in ..

eeessescesessssesectssetescesessssscesoenee
99 00000000000 CRNRIOOROEINROIOIEPRPNIOROIEOIECOTIBDOETDN
cececescccscsavsssseassens

9 000NN POORLOIROEOLIOIORILIPNOIOEOTTOIQRTOEIDN
tesecessessssssscacscrsscsrsoes
strcat, strncat, strcmp,

R R R N R N R R RN RN X

escccne

eececsne

00 000cc00ccecscccccroe

e evec0csecscntssscsnce

esececccsscvecee

summarize disk USBEE: cocesveeccsccecacccscsssccane
super block. 0000000000000 0000000000000s00000000 000
super blocke ccceessccccecessecsscssscscscsscsscoce

super—-block.
superior.
suspend a shell, resuming its superior.
suspend execution for an interval.
suspend execution for interval. ceecceccscccssscace
suspend: suspend a shell, resuming its superior. ..
swvab: swvap bytes.

€0 00 0000C0000000000000000C0000CCCCCITCGOTSTS

€0 0000000000000 e00COPROOPIOOICOIOOOROGIOTOROROOLITOLS

evve0vecctcccene

000000 s0000000cPOOPONIOOOIOIERNOIOCOODS

svap byte‘. 0000000000000 0000000000 0000 000OCIIOGRIOIOITTTS
switch. 28 0000000000000 00000000000000000000ROOIGIETTS
switch. 0 000 0000000000000000000000000000cC00c0OCTSOGOITS

switch.
svitch. €0 00000000 0000000000000 00000000 0000000000
switch: multi-vay command bramch.
symbols and relocation bits.
sync: update super—blocke cecececcessssccccssccnsce
sync: update the super block.
.yntlx. 00 0 000000000000000000000000C00000C0O0OGCRIOISITETTELEQ
sys_errlist, sys_nerr: system error messages.
SyS_Derr: systam error messages.

90 0000000000000 0000000000000000000C0s00ROOCE

®ecevecscsseccece

X Y X R YRy NN

LR RN

eeceoescecccencose

SYSLEMy cocevrccecccccncecscssvornssonscccsossccsenane
systenm, €6 00000 e0000000s00000000 00000000 s00 00Ot ERT S
BYSLEM. covesscscassssccccossaanssassssessnscanssos
SYSLEM, cccccvcveccccccvccsnnsscsssccscsccsevotsncan
system. €0 0000000000000 00000000000 000000000 ssr0rscr
systems processed by fsck. ccccscecsccccccscocccens
tableé. ceccsccesccccccsscesescocscnsrcccscsescccccsne
table, R R R F R TR
tables cececcevccesccrccrccccrocncsssssnsscsccracee

tables for nrof f or troff.
tags file for 8 C Programe .eccceccecsccccscsscsscoe
tail: deliver the last part of a file.
take: takes a file from a remote machine..
takes a file fram & remote machine.e cccccocecrcacs
tan, asin, acos, atan, atan2: trigonametric
tanh: hyperbolic functions.
tape archive,
tape archiver.
tape formats.
tape or diske cceccecscccecccscasccscrrcccccesessnos
tar: t‘pﬁ erhﬁvet. e eencessesressvscsncePRRRccns e
tbl and eqn constructs.
tbl: format tables for nroff or trof f.
tee: pipe fitting.
teletype bits to a sensible state.
teletypes.
tell: move read/write pointer.
temporarily.

Se0vesceeveccccscccrsoce

seecccccsree

seccscee

XX R RRX XY
6cec0eeec0c00ee0cevecee
0000000000000 000000000000CCOIOORIOPCPROITE
0 0P 0000000000000 00QOOGOOCIOCIOICOCIOCOIOIOIOIOITOIT®

[Y Y Y R R N NN

seceorsecscerensROROsEves e
00 c0ccccccce
R R R Y Y R RN
R R RER Y TR RN YN
9000000000000 000000000000000c0R0sRRGROLOTE
o0 e0eceveccscnccsvence

00 000 0000000000000 PePROCsRRROROOOOS

ungetc(3S)
sed(l)
ferror(3s)
gets(3s)
puts(3S)
string(3)
xstr(l)
strings(l)
xstr(l)
strings(l)
basename(l
strip(l)
string(3)
string(3)
string(3)
string(3)
ioct1(2)
stty(2)
stty(l)
su(l)
su(l)
hex(1)
sum(1)
sumdir(l)
sum(l)
sundir(l)
du(l)
sync(1M)
update(lM)
sync(2)
csh(l)
csh(l)
sleep(l)
sleep(3)
csh(l)
swab(3)
swab(3)
csh(1)
csh(l)
csh(l)
csh(l)
csh(l)
strip(l)
sync(2)
sync(1M)
csh(l)
perror(3)
perror(3)
mkfs(1M)
mount(1)
mount(2)
umount(l)
who(l)
checklist
csh(l)
csh(l)
mtab(5)
tb1(1)
ctags(l)
tail(l)
take(l)
take(l)
8in(3M)
sinh(3M)
tp(l)
tar(l)
tp(5)
dumpdi r{
tar(l)
deraof £(1
tbl(1)
tee(l)
reset(l)
last(l)
lseek (2]
su(l)

UniSoft Corporation

isatty: find name of a

ttyname, ttyslot: find name of a
vorms: animste worme on a display
termcap:

getent, tgetnum, tgetflag, tgetstr, tgoto, tputs:
teys:

tty: general

getty: set

tset: set

tty: get

stty: set

clear: clear

ttytype: data base of

wait: wait for process to
kill:

endif:

end:

exit:

endsv:

ed:

ex, edit:

casusl users). edit:

troff, nroff:

troff, oroff:

terminal independent operation routines,
independent operation routines. tgetent, tgetnum,
independent operation routines. tgetent,
operation routines. tgetent, tgetnum, tgetf lag,
routines., tgetent, tgetnum, tgetflag, tgetstr,
alam: schedule signal after specified

at: execute commands at a later

stime: set

time, ftime: get date and

L time:

time:

disktune - tune the floppy disk settling
profil: execution

gmtime, asctime, timezone: couvert date and
times: get process
utime: set file

export, login, newgrp, read, readonly, set, shift,
ctime, localtime, gmtime, asctime,
popen, pclose: initiate 1/0

cgetent, tgetnum, tgetflag, tgetstr, tgoto,

ptrace: process

goto: command

tre:

for Motorola S-record downloading.. hex:

login, newgrp, read, readonly, set, shift, timas,

trek:

sin, cos, tsn, asin, acos, stan, atan2:
tbl: format tables for nroff or

deroff: remove nroff,

true, false: provide
true, false: provide

greek: graphics for extended

UniSoft Corporation

Permuted Index

termcap: terminal capability dats base.

seccscccses

terminal. R N P P R Y Y T TR PR R
terminal., $5 0000000000000 000000000000000000000000TTS
terminal, ccccsccscccscceccsctsrccosscscsccsccncces
terminal capability data base. .cecccccccccsccccces

independent operation routines,
initial ization data.
interface.
mode.
wmode s,
nane.
options.

terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal screen.
terminal types by port.
terminals: couventionsl names,
terminate.
terminate a process with extreme prejudice.
terminate conditional.
terminate loop.
terminate process.
terminate switch,
test: condition command.
text editor.
text editor.
text editor (variant of the ex editor for new or ..
text formatting and typesetting.
text formatting and typesetting.
tgetent, tgetoum, tgetflag, tgetstr, tgoto, tputs:
tgetf lag, tgetstr, tgoto, tputs: terminal
tgetoum, t;etfllg. tgetstr, tgoto, tputs: terminal
tgetstr, tgoto, tputs: terminal independent

e cccscsccscssevrrscccsssscnssoe

R N RN NN RN

9000900000000 000c0000000000C00CCCOTOTS

0 0ececscescsevcsovncessssteee

I N Y R N R RN NN

e ccsccccroescovsecsscvcoe

90 secccoccvcccscssns

90000000 c0s000er000000000 0000000 0COOOIVIOIS

@0 o0creccsevoccecscvcsvesscce

00 e0ecccovccvesvscevsvsee

9000000000 0000000000000000000CORROOIOIOTOTO

#0cescccvcccccocne

tgoto, tputs: terminal independent operatiof eecess
ti-e. 00 000 0000000000000 0000000000 0RCIRNIOSIBTOIRNIRIOORPOTISIPOITOES
tiu. [E R ENENNEENEENNENNEENNENENENENNENENNERNERYNRNENRENLNENNNHN]
tiu. 00 000 0000000000000 CPPPORRNROROIRIRIOPNOIONRNORCTE
time. 00 0000000000000006000000000000000000000000000s

time a command.
time command. 000000000 etrcccrnoesvestsccvrevoccece
time, ftime: get date and tims.
time parameters.
time profile.
time: time a command.
time: time command.

time to ASCII,
times.
times.

0 0000000000000 0000000c0 00000000 TS

[IE R X ER XN NN N NNENENXNNNN]
(AN ER AR ENNENNNENNENENEEEEEN ENNE NN ENENNNN]
90 0 900000 000000000000 00000900000000s00

0 00 000000000 CCOIOSIOTIRNIIRPOIOIOTIORIIOIDS
00 0000 000090000000 0000000000
ctime, localtime,

00 0000000000000 00000000000000000 000000000

times: get Process LimMeB. cccceccccccssccsscssssnns
times, trep, umask, vait: command language. /exit,

timezone: comvert date and time to ASCII. ceccceces
to/from a process.
touch: update date last modified of a file,
tp: DEC/mag tape formats.
tp: manipulate tape archive.
tputs: terminal independent operatiom routines.
tr: translate characters. @0 ececcsccccccscccscncnee
tra: copy out & file as it grows.
trace. 00 00000000000000000080000000000000COCROCOIOCIOCOIGOGOIES
transfer. €0 00000000000 00000000000000000C00c00000OE
translate characters.
translates object files into ASCII formats suitadble

trap, umask, vait: command language. /exit, export,
trek: ttekkie game. 60 00000 cccocccocsecvssoscncves
trekkie gmme,
trigonometric functions.
trof f.
troff, nroff: text formatting and typesetting.
troff, nroff: text formatting and typesetting.
ttoff, tbl and equ constructs. *0cceccvcscrcccsccone
true, false: provide truth values.
true, false: provide truth values.
truth values,
truth values. 8000000000000 vece0000000PROCIOCEOROIOIOITYITEO
tset: set tﬂrlinll modes. 0 eescevcccvecccsevcccnse
tty: general terminal interface.
tty: get terminal name.
TIY-37 type-box.

0 00ccsccscccerteseccccrcccnorece
sscccce
e e00cevevecccccsscvncoce
0 eccvcecccsccccnscsoe

LX)

I Y RN R RN Y NN RN

00 e00cse0ce0cv000ROEPcVOTRVPOOEOIOIOIROIOTTS
e ve0cscsccsecceessorscnce
00 00000000000000000000000000000 0000000000000
(RN

e ovsssccsecscce
0 ceocvcccceccnce

IR R Y Y R R RN R RN NY

€0 eesccesccccccens
e c0ccccersvsvvcensevcsccce

@0 evesecsecncncrrrrsrerscnesscsre

termcap(5)
isatey(3)
ttyname(3)
worms(6)
termcap(5)
termcap(3)
ttys(5)
tey(4)
getty(1M)
teet(l)
tey(l)
stty(l)
clear(l)
teytype(S)
term(7)
vait(2)
kill(l)
csh(1)
csh(l)
exit(2)
csh(l)
test(l)
ed(1)
ex(l)
edit(1)
orof £(1)
trof £(1)
termcap(3)
termcap(3)
termcap(3)
termcap(3)
termcap(3)
alarm(2)
at(l)
stime(2)
time(2)
time(l)
csh(l)
time(2)
disktune(l)
prof i1(2)
time(l)
csh(l)
ctime(3)
times(2)
utime(2)
times(2)
sh(l)
ctime(3)
popen(3S)
touch(l)
tp(5)
tp(l)
termcap(3)
tr(l)
tra(l)
ptrace(2)
csh(l)
tr(l)
hex(1)
sh(1)
trek(6)
trek(6)
sin(3M)
tb1(1)
orof £(1)
trof £(1)
dercof £(1)
false(l)
true(l)
false(l)
true(l)
teet(l)
tey(4)
tey(l)
greek(7)

August 1982

Permuted Index

ttyname,

disktune -
twinkle:

file: determine Pike

greek: graphics for extended.TTY-37
types: primitive system data
ttytype: data base of terminal

man: macros to
neqn, checkeq:
formatting and
formatting and
get name from

eqn,

troff, nroff: text
troff, nroff: text
getpw:

newgrp, read, readonly, set, shift, times, trap,
mount,
mount,
mount,

ul: do
unget:

mktemp: make a
cu: call

uux: unix to

uucp, uulog, uuname: unix to
uux?

uucp, uulog, uuaame:

rm: remove

badblk: program to set or
touch:
updater:

sync:
sync:
update: periodically

du: summsrize disk

login: login new

write: write to another

setuid, setgid: set

getuid, getgid, geteuid, getegid: get
environ:

whoami: print effective curremt

su: substitute

vtap:

setmen - set

editor (variant of the ex editor for new or casual
mail: send or receive mail among
vall: write to all

last: indicate last logins of

uucp,
uucp, uulog,

val:

abs: integer absolute

setmem - set user memory limit to
fabs, floor, ceil: absolute

August 1982

ttyname, ttyslot: find name of a terminal.
ttys: terminal initialization data.
ttyslot: find name of & terminal. scceecescsccccese
ttytype: data base of terminal types by port.
tune the floppy disk settling time parameters.
twinkle stars on the screen,
twinkle:
type.
type-box.
types.
types by port.
types: primitive system data types.
typeset maoual.
typeset mathematics,
typesetting.
typesetting.
uid.

ul: do
unask:

eeccecee

eeeccsessecvoce

twvinkle stars on the screen: ccsesccscccee
underlining.
change or display file creation mask.
umask: set file creation mode MABKe .escceccscacces
umssk, wait: command language. /export, logim,
umount: mount and dismount file system.
umount : mount and dismount file system.
umount: mount or remove a file system.
unslias: remove aliases.
underlininog.
undo a previous get of an SCCS files cecesccccccace
unget: undo & previous get of an SCCS file. .cecevee
ungetc: push character back into input streanm.
unhash: discard command hash table. .ecvccececcccee
uniq: report repeated lines in a file.
unique file DAME, cccceccsvsccoscrcvcacescssccacasne
units: comversion program.
u“lx. [FEEEENEENNEEN NN NN NENNENNNENNNENNENRNXNENNENNENNNNY
unix command execution.
unix copy.
unix to unix command execution.
UNLiX £O UMIX COPYo eecsscccccsscrescscsscosssssccccee
unlimit: remove resource limitiatioas.
(unlink) files.
unlink: remove directory entry.
unset: discard shell variables. .cceccoecsccscaccnce
unsetenv: remove enviromsent variables.
update bad block information. .ccecceccccccecccccns
update dateq last modified of a file,
update files between two machines. .eccceccscccccccee
update: periodically update the super block,
update super-block.
update the super block.
update the super block.
updater: update files between tvo machines.

s esveseseveenccneersenessvssce

se e
e cccsscccce
seecccccnse

e esccccscne

0 ss0csecceecececcrsereron

P00 00P 00000 cc0acs 0Nttt RT e

cececcsscece

seccscecncsecrvsecccscrene

e ccecsccavescsncscceresoce
0 0c0cs0000000cccte0000000000R0000CERICSITOTSE

e 0c0e0eccececcence

seccessaseee
R Y Y Y RN

eeseccecpecssevecone

eecvee
e c00se0sab0000000s 00RO
e css000csececveccrccrcsvrnce
RNy Y R E Y RN

easecce

UBBEE. ccsececcscccscsscssscssscnssacscsssssscsenss
user. 0000000000000 0000000008000000000000CCCIOIOROIOE
UBECT, occcvcccteesecsccteeceascosceccoeceoservvoccsocscoccce

user and group ID,
user and group identity.
user emviromment.
user id.
user id temporarily,
user login history.
user memory limit to value.
users). edit: text
users, 00000008060 00000000000000ccccs0sncsccscsonscose
users,
users and teletypes.

utime: set file times.
utmp, wtmp: login records.
uucp, uulog, uuname: unix to unix copy.
uulog, uuname: unix to unix copy.
uuname: UNiX TO URLX COPYe oscccsscsscccssscscscsase
uux: unix to unix command execution.
val: validate 8CCS file.
validate SCCS file.
value,
value.
value, floor, ceiling functions.

0000900000000 000000000 0000000000
0 0se0ec0renssccssscvcnse e
000000000000 0000000000c0000000 0
0 0000000000000 00000000cvO000POOOOOICOROIOIOICTE
R R Y Y P R R R N R RN)
IR LY Y R R Y R N NN RN N
e cevevecrnorcscccscnce

R N Y N R P RN NN AR XN]

00000000000 00000000000000000000000000008c000
e ceecescsseceevesconesssOORRee

'l..-l.l..':.tﬂl.t'lltol....
e ceecerrevepesscsscecce
eesecccscee

@8 ecccscvcccccsce

8 e0ccccccccnn
e csscctccsscrsrsenssstcs e
€0 evccccsncscsccscsssonseccene
€0 000000000 0s0eesscvssvsevccennosrcscosnooce
R R R Y Y Y Y PR R YRR R RY

ttyname(3)
teys(5)
ttyname(3)
teytype(5)
disktune(l)
twinkle(6)
twinkle(6)
file(l)
greek(7)
types(5)
teytype(5)
types(5)
man(7)
eqn(l)
arof £(1)
trof £(1)
getpw(3)
ul(l)
csh(l)
umask(2)
sh(1l)
mount(l)
umount(l)
mount(2)
csh(l)
ul(l)
unget(1)
unget(l)
ungetc(3S)
csh(l)
uniq(l)
mkt emp(3)
units(l)
cu(1c)
vux(1C)
uucp(1C)
wux(1C)
uucp(lC)
csh(l)
m(l)

unl ink(2)
csh(1)
csh(l)
badblk(1M)
touch(1l)
updater(l)
upda te(1M)
sync(2)
sync(1M)
update(1M)
updater(l;
du(l)
csh(1)
write(l)
setuid(2)
getuid(2)
environ($
vhoami(l)
su(l)
wemp(5)
setmenm(1)
edit(1)
oail(l)
wvall(1)
last(l)
utime(2)
utmp(5)
uucp(1C)
uucp(1C)
wucp(lC)
uux(1C)
val(l)
val(l)
abs(3)
setmenm(1;
floor(3N,

UniSoft Corporation

getenv:

set: change

true, false: provide truth
true, false: provide truth
set: change value of shell
setenv: set

@: arithmetic on shell
unset: discard shell
unsetenv: remove enviromment
edit: text editor

lint: a C program
ve:

version: reports
get: get a
hangman: Computer

sccadiff: compare two

on ex.

more: file perusal filter for crt

vi: screen oriented

filsys, flblk, ino: format of file system

read, readonly, set, shift, times, trap, umask,
wait:
wait:

exec, exit, export, login,/ sh, for, case, if,
break: exit
wvho:

we:

getc, getchar, fgetc, getw: get character or
putc, putchar, fputc, putw: put character or
cd: change

chdir: change current

pwd:

vorm: Play the growing

vorms: animate
vrite:
vall:
write:

provide exclusive file regions for reading or
open: open for reading or
utmp,

shared strings.
10, jl, im,
jo, i1, jm, yO0,

jo, j1, jm, yo, yl,

Permuted Index

value for enviromeant name,
value of shell variable.

eeeccvccecccrccncscacee

e s 0scccescceccrcccecscose

VAlUBB: ceccsccccvccsncccccovsacssncccersssssssoane
VAlUBB: cescscrcccccescccsssoscsncsscsssssscoccscses
variable. .socecesccccesssccrasccccsssscssssscsssonse
variable in enviromnent. .seceeccceccscesccrssscncos
variables. 0 e0ee000s00ecsecsestetesstvs0Oct R
VariableB: cccesccccerecnscscccsssncsscsscsccocccnne
variabled: cccccesccecscrsccrsnssssrencccvcscncssne

(variant of the ex editor for new or casual users).
vc: version control.
Verifiel. eccecsscaccsscccccscscssocscccccsssacsocs
Version cCONtrOle ccccceccccvcoccccscsscsccccscacccss
version number of files.
version of an SCCS file.
version of the game hangman.
version: reports version number of files.
versions of an SCCS fil€: caceccecccsccccscccccccnse
vi: screen oriented (visual) display editor based .
viewing.
(visusl) display editor based on ex.
volume.
vait: avait completion of process.
wait: command langusge. /export, logim, newgrp, ..
wvait for background processes to complete.
vait for process to terminate,
wvait: wvait for background processes to complete. ..
vait: wvait for process to terminate.
vall: write to all users.
WC: WOrd COUNte <cocccvecccovccsccncsocnscocccsannss
vhat a file has in ite .ccccececccccsccecscccncoccas
what: identify SCCS file#e cocccecsccsccacccccrccee
vhereis: locate source/binary/manual for program. .
vhile, :, ., break, continue, cd, eval,
vhile: repeat commands conditionally.

while/foreach loop.
who is on the system. .ccecccccsccsscocceccccnsccne
wvho: who is on the syst@m. ...cccecvrceccccccccccnsce
whoami: print effective current user id,
word count. R R R RN RmOoOmmnm s
vord fram stream.
vord on 8 stream,
wvorking directory.
working directory.
vorking directory name.
vorm game.
vorm: Play the growing worm game.
vorms: animate vorms on a display terminal.
vorms on a display terminal.
vrite on & files ccecececccccenctsstccntssssccacans
write to all users.
write to another user.
vwrite: write on 8 file. .ccccccscccccsccccscoscsene
write: write to another user.
writing. locking:
vriting.
wtmp: 10gin recordBe cececccrccrecsccsccsessccccsane
wtmp: user login history.
wump: the game of hunt-the-wumpusS. .ccceccccscccsce
xstr: extract strings fram C programs to implement

y0, yl, yn: bessel functioans.
yl, yn: bessel functioDse <cecccccoscccccscssccacee
yacc: yet another compiler-compiler.
yn: bessel functions,

@0 cecsecrecrrescccsonsnccsscos

Ge0svccscccssccsccsscccne
60 0csecvcscccscssencccscce
e ceecvecccsvscsvecvoe

esccccsce

00 0009000000000 000000000000000000000000000
e ccccescccces
0000000000000 00000000000000000000000000 000

00 ececsccessoscce

eeesccce

secesscsecceccsccoce

s 0cccccsccece

s ecccccssscecrccrrsccoce

€0 eevece0vececnsocsrecrcnvsccns

®e0ccse0cse00cceservesco0eccscrre
Y Y R R Y R R R R RN Y FRRY

@0 cccceccccssosecncscscecncccccae

@6 e0ceccccerscsecvesrcsccccecscse
e sccsccscccscsssesvenesene
R Ry Y PR R R R YRR NN
sesescceccsevccces
se s

tecesevececseccocccces

R R N RN R

@60 esccssrsccscscscscstaccne

e covescoscccscccssecs

[R N RN R NN NN

R N Y Y Y R YRR R RN F R

R Y R R R NN R RN RN

68 cceceescececcccscoce

esececscsccoce

R Y Y Y R RN R Y RN

getenv(3)
csh(l)
false(l)
true(l)
csh(1l)
csh(l)
csh(1)
csh(1)
csh(1)
edit(1)
ve(l)
lint(1)
ve(l)
version(l)
get(l)
hangman(6)
version(l)
sccadiff(l)
vi(l)
more(l)
vi(l)
filsys(5)
wait(l)
sh(1)
csh(l)
wvait(2)
csh(l)
vait(2)
wal 1(1)
wec(l)
see(l)
what(l)
whereis(1)
sh(1)
csh(l)
csh(l)
who(l)
who(l)
whoami(1)
we(l)
getc(3s)
putc(3S)
cd(l)
chdir(2)
pwd(1l)
worm(6)
worm(6)
worms (6)
vorms (6)
write(2)
wal 1(1)
write(l)
write(2)
write(l)
locking(2)
open(2)
uemp(5)
wemp(5)
wump(6)
xstr(l)
jo(3M)
j0(3M)
yace(l)
jo(3m)

INTRO(1) UNIX Programmer’s Manual INTRO(1)

NAME
intro - introduction to commands

DESCRIPTION
Section 1 of the Programmers Manual contains short descriptions and
examples of commands used directly at the user interface level. The
commands appear in alphabetic order.

SEE ALSO
Section (6) for computer games.
How to get started, in the Introduction.

DIAGNOSTICS »

Upon termination each command returns two bytes of status, one supplied
by the system giving the cause for termination, and (in the case of
‘normal” termination) one supplied by the program, see wait(l) and
exit(2). The former byte is 0 for normal termination, the latter is
customarily 0 for successful execution, nonzero to indicate troubles
such as erroneous parameters, bad or inaccessible data, or other inabil-
ity to cope with the task at hand. It is called variously "exit code",
"exit status" or "return code", and is described only where special con-
ventions are involved.

Printed 7/8/82 2/4/82 1

ADB(1)

UNIX Programmer”s Manual ADB(1)

NAME
adb - debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPT ION
Adb is a general purpose debugging program. It may be used to examine
files and to provide a controlled emnviromment for the execution of UNIX
programs.
Objfil is normally an executable program file, preferably containing a
symbol table; if not then the symbolic features of adb cannot be used
although the file can still be examined. The default for obijfil is
a.out. Corfil is assumed to be a core image file produced after execut-
ing objfil; the default for corfil is core.
Requests to adb are read from the standard input and responses are to
the standard output. If the -w flag is present then both objfil and
corfil are created if necessary and opened for reading and writing so
that files can be modified using adb. Adb ignores QUIT; INTERRUPT
causes return to the next adb command.
To EXIT adb: use $q or $Q or Control-d.
In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set
to 0. For most commands count specifies how many times the command .will
be executed. The default count is 1. Address and count are expres-
sions.
The interpretation of an address depends on the context it is wused in.
If a subprocess is being debugged then addresses are interpreted in the
usual way in the address space of the subprocess. If the operating sys-
tem is being debugged either post-mortem or using the special file
/dev/kmem to interactive examine and/or modify memory the maps are set
to map the kernel virtual addresses. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
. The value of dot.
+ The value of dot incremented by the current increment.

~

The value of dot decremented by the current increment.

The last address typed.

integer

Printed 7/28/82 2/4/82 1

ADB(1) UNIX Programmer”’s Manual ADB(1)

A number. The prefix O (zero) forces interpretation in octal
radix; the prefixes O0d and 0D force interpretation in decimal
radix; the prefixes Ox and OX force interpretation in hexadecimal
radix. Thus 020 = 0d16 = 0x10 = sixteen. If no prefix appears,
then the default radix is used; see the $d command. The default
radix 1is 1initially hexadecimal. The hexadecimal digits are
0123456789abcdefABCDEF with the obvious values. Note that a hex-
adecimal number whose most significant digit would otherwise be
an alphabetic character must have a 0x (or 0X) prefix (or a lead-
ing zero if the default radix is hexadecimal).

integer.fraction
A 32 bit floating point number.

' d L4

cccc” The ASCII value of up to 4 characters. \ may be used to escape a

< name The value of name, which is either a variable name or a register
name. Adb maintains a number of variables (see VARIABLES) named
by single letters or digits. If name is a register name then the
value of the register is obtained from the system header in cor-
fil. The register names are those printed by the $r command.

symbol A symbol is a sequence of upper or lower case letters, under-
scores or digits, not starting with a digit. The value of the
symbol is taken from the symbol table in objfil. An initial _ or
~ will be prepended to symbol if needed.

_ symbol
In C, the “true name” of an external symbol begins with _. It
may be necessary to utter this name to distinguish it from inter—
nal or hidden variables of a program.

routine.name
The address of the variable name in the specified C routine.
Both routine and name are symbols. If name is omitted the value
is the address of the most recently activated C stack frame
corresponding to routinme.

(exp) The value of the expression exp.

Monadic operators

*exp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in obijfil.
-exp Integer negation.

“exp Bitwise complement.

#fexp Logical negation.

Printed 7/28/82 2/4/82 2

ADB(1) UNIX Programmer”s Manual ADB(1)

Dyadic operators are left associative and are less binding than monadic
operators.

el+e2 Integer addition.
l-e2 Integer subtraction.
elxe2 Integer multiplication.
17e2 1Integer division.
14e2 Bitwise conjunction.
1le2 Bitwise disjunction.
el#e2 El rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modif-
iers. The following verbs are available. (The commands “?° and “/° may
be followed by “%x“; see ADIRESSES for further details.)

f Locations starting at address in objfil are printed according to
the format f. dot is incremented by the sum of the increments for
each format letter (q.v.).

/£ Locations starting at address in corfil are printed according to
the format £ and dot is incremented as for “?7.

The value of address itself is printed in the styles indicated by
the format f. (For i format “?” is printed for the parts of the
instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of
printing. Each format character may be preceded by a decimal integer
that is a repeat count for the format character. While stepping through
a format dot is incremented by the amount given for each format letter.
If no format is given then the last format is used. The format 1letters
available are as follows.

i n Disassemble the addressed instruction.

o 2 Print 2 bytes in octal. All octal numbers output by adb are
preceded by 0.

0 4 Print 4 bytes in octal.

q 2 Print in signed octal.

Q 4 Print long signed octal.

d 2 Print in decimal.

D 4 Print long decimal.

X 2 Print 2 bytes in hexadecimal.

X 4 Print 4 bytes in hexadecimal.

u 2 Print as an unsigned decimal number.

U4 Print long unsigned decimal.

Printed 7/28[82 2/4/82 3

ADB(1)

UNIX Programmer”s Manual ADB(1)

Print the 32 bit value as a floating point number.
Print double floating point.
Print the addressed byte in octal.
Print the addressed character.
Print the addressed character using the standard escape con
vention where control characters are printed as “X and the
delete character is printed as “?.
s n Print the addressed characters until a zero character is
reached.
Print a string using the “X escape convention (see C above).
n is the length of the string including its zero terminator.
Y 4 Print 4 bytes in date format (see ctime(3)).

0 Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type as
indicated below.

QO U I Hh
- b - 00

[,]
=

local or global data symbol
local or global text symbol
= local or global absolute symbol

-~ S~

P 4 Print the addressed value in symbolic form using the same
rules for symbol lookup as a.
t 0 When preceded by an integer tabs to the next appropriate tab
stop. For example, 8t moves to the next 8-space tab stop.
r 0 Print a space.
n 0 Print a newline.
"..'ll 0
Print the enclosed string.
Dot is decremented by the current increment. Nothing 1is

printed.
+ Dot is incremented by 1. Nothing is printed.
- Dot is decremented by 1. Nothing is printed.

newline

[?2/11

[2/]w

[?2/1m

Repeat the previous command with a count of 1.

value mask

Words starting at dot are masked with mask and compared with value
until a match 1is found. If L is used then the match is for 4
bytes at a time instead of 2. If no match i1s found then dot is
unchanged; otherwise dot is set to the matched location. If mask
is omitted then -1 is used.

vaiue e e e

Write the 2-byte value into the addressed location. If the com-
mand is W, write 4 bytes. O0dd addresses are not allowed when
writing to the subprocess address space.

bl el £1[?/]

New values for (bl, el, fl) are recorded. If less than three
expressions are given then the remaining map parameters are left
unchanged. If the “?” or “/” is followed by “%“ then the second

Printed 7/28/82 2/4/82 4

ADB(1)

UNIX Programmer”s Manual ADB(1)

segment (b2,e2,f2) of the mapping is changed. If the list is ter—
minated by “?” or “/° then the file (objfil or corfil respec-
tively) is wused for subsequent requests. (So that, for example,
“/m?” will cause “/” to refer to obijfil.)

>name Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line following “!”.

Smodifier

Miscellaneous commands. The available modifiers are:

<f

«<f

B<0 Ao @ g0

cmodifier

Read commands fram the file £. If this command is executed
in a file, further commands in the file are not seen. If f
is omitted, the current input stream is terminated. If a
count 1is given, and is zero, the command will be ignored.
The value of the count will be placed in variable 9 before
the first command in £ is executed.

Similar to < except it can be used in a file of commands
without causing the file to be closed. Variable 9 is saved
during the execution of this command, and restored when it
completes. There is a (small) finite limit to the number of
<< files that can be open at once.

Append output to the file £, which is created if it does not
exist. If f£f is omitted, output is returned to the terminal.
Print process id, the signal which caused stoppage or termi-
nation, as well as the registers as $r. This is the default
if modifier is omitted.

Print the general registers and the instruction addressed by
pc. Dot is set to pc.

Print all breakpoints and their associated counts and com-
mands.

C stack backtrace. If address is given then it is taken as
the address of the current frame (instead of a7). If C is
used then the names and (16 bit) values of all automatic and
static variables are printed for each active function. If
count is given then only the first count frames are printed.
Set the default radix to address and report the new value.
Note that address is interpreted in the (0ld) current radix.
Thus 10Sd never changes the default radix. To make decimal
the default radix, use 0t108d.

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).
All integers input are regarded as octal.

Reset integer input as described in EXPRESSIONS.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

Manage a subprocess. Available modifiers are:

Printed 7/28/82

2/4/82 5

ADB(1)

VARTABLES

UNIX Programmer’s Manual ADB(1)

Set breakpoint at address. The breakpoint is executed
count-1 times before causing a stop. Each time the break-
point is encountered the command ¢ is executed. If this
command is omitted or sets dot to zero then the breakpoint
causes a stop.

Delete breakpoint at address.

Run obijfil as a subprocess. If address is given explicitly
then the program is entered at this point; otherwise the
program is entered at its standard entry point. count
specifies how many breakpoints are to be ignored before
stopping. Arguments to the subprocess may be supplied on
the same line as the command. An argument starting with <
or > causes the standard input or output to be established
for the command. All signals are turned on on entry to the
subprocess. '

The subprocess is continued with signal s c¢ s, see sig-
nal(2). If address is given then the subprocess is contin-
ued at this address. If no signal 1is specified then the
signal that caused the subprocess to stop is sent. Break-
point skipping is the same as for r.

As for c except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run
as a subprocess as for r. In this case no signal can be
sent; the remainder of the line is treated as arguments to
the subprocess.

The current subprocess, if any, is terminated.

Adb provides a number of variables. Named variables are set initially
by adb but are not used subsequently. Numbered variables are reserved
for communication as follows.

The
The
The
The

O N=O

last value printed.

last of fset part of an instruction source.
previous value of variable 1.

count on the last $< or $<< command.

On entry the following are set from the system header in the corfil. If
corfil does not appear to be a core file then these values are set from

objfil.

The
The
The
The
The
The

o B oo

Printed 7/28/82

base address of the data segment.
data segment size.

entry point.

‘magic” number (0407, 0410).
stack segment size.

text segment size.

2/4/82 6

ADB(1)

UNIX Programmer”s Manual ADB(1)

ADDRES SES

FILES

The address in a file associated with a written address is determined by
a mapping associated with that file. Each mapping is represented by two
triples (bl, el, f1) and (b2, e2, £2) and the file address corresponding
to a written address is calculated as fol lows.

otherwise, the requested address is not legal. In some cases (e.g. for
programs with separated I and D space) the two segments for a file may
overlap. If a ? or / is followed by an % then only the second triple is
used.

The initial setting of both mappings is suitable for normal a.out and
core files. If either file is not of the kind expected then, for that
file, bl is set to 0, el is set to the maximum file size and £1 1is set
to O0; in this way the whole file can be examined with no address trans-
lation.

So that adb may be used on large files all appropriate values are kept

as signed 32 bit integers.

a.out
core

SEE ALSO

a.out(5), core(5)

DIAGNOSTICS

BUGS

"Adb" when there is no current command or format. Comments about inac-
cessible files, syntax errors, abnormal termination of commands, etc.
Exit status is 0, unless last command failed or returned nonzero status.

Use of # for the unary logical negation operator is peculiar.

There doesn”t seem to be any way to clear all breakpoints.

Printed 7/28/82 2/4/82 7

ADMIN(1) UNIX Programmer”s Manual ADMIN(1)

NAME

admin - create and administer SCCS files
SYNOPSIS

admin [-n] [-il[namel]] [-rrel] [-t[namell

[-fflag[flag-vall] [-dflag[flag-valll

[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files
DESCRIPTION

Admin is used to create new SCCS files and change parameters of existing
ones. Arguments to admin, which may appear in any order, consist of
keyletter arguments, which begin with -, and named files (note that SCCS
file names must begin with the characters s.). If a named file doesn’t
exist, it is created, and its parameters are initialized according to
the specified keyletter arguments. Parameters not initialized by a
keyletter argument are assigned a default value. If a named file does
exist, parameters corresponding to specified keyletter arguments are
changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the direc-
tory were specified as a named file, except that nom-SCCS files (last
component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is
read; each line of the standard input is taken to be the name of an SCCS
file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The keyletter arguments are as follows. Each 1is explained as though
only one named file is to be processed since the effects of the argu-
ments apply independently to each named file.

-n This keyletter indicates that a new SCCS file is to
be created.

~i[name] The name of a file from which the text for a new
SCCs file is to be taken. The text constitutes the
first delta of the file (see -r keyletter for delta
numbering scheme). If the i keyletter is used, but
the file name is omitted, the text is obtained by
reading the standard input until an end-of-file is
encountered. If this keyletter is omitted, then the
SCCS file is created empty. Only one SCCS file may
be created by an admin command on which the 1
keyletter is supplied. Using a single admin to
create two or more SCCS files require that they be
created empty (no -i keyletter). Note that the -i
keyletter implies the -n keyletter.

[}
3]
a]
(v
—

The release into which the initial delta is
inserted. This keyletter may be used only if the -i
keyletter is also used. If the -r keyletter is not
used, the initial delta is inserted into release 1.

Printed 6/30/82 1

ADMIN(1)

-t[name]

-fflag

Printed 6/30/82

ffloor

a.
t
4
o

UNIX Programmer”s Manual ADMIN(1)

The level of the initial delta is always 1 (by
default initial deltas are named 1.1).

The name of a file from which descriptive text for
the SCCS file is to be taken. If the -t keyletter
is used and admin is creating a new SCCS file (the
-n and/or -i keyletters also used), the descriptive
text file name must also be supplied. In the case
of existing SCCS files: (1) a -t keyletter without a
file name causes removal of descriptive text (if
any) currently in the SCCS file, and (2) a -t
keyletter with a file name causes text (if any) in
the named file to replace the descriptive text (if
any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a
value for the flag, to be placed in the SCCS file.
Several f keyletters may be supplied on a single
admin command line. The allowable flags and their
values are:

Allows use of the -=b keyletter on a get(l) command
to create branch deltas.

The highest release (that is, "ceiling"), a number
less than or equal to 9999, which may be retrieved
by a get(l) command for editing. The default value
for an unspecified ¢ flag is 9999.

The lowest release (that is, "floor"), a number
greater than 0 but less than 9999, which may be
retrieved by a get(l) command for editing. The
default value for an unspecified f flag is 1.

The default delta number (SID) to be used by a
get(1l) command.

Causes the "No id keywords (ge6)" message issued by
get(l) or delta(l) to be treated as a fatal error.
In the absence of this flag, the message is only a
warning. The message is issued if no SCCS identifi-
cation keywords (see get(l)) are found in the text
retrieved or stored in the SCCS file.

Allows concurrent get(l) commands for editing on the
same SID of an SCCS file. This allows multiple con-
current updates to the same version of the SCCS
file.

A list of releases to which deltas can no longer be
made (get —e against one of these "locked" releases
fails). The list has the following syntax:

ADMIN(1)

-dflag

-alogin

Printed 6/30/82

UNIX Programmer”s Manual ADMIN(1)

<list> ::= <range> | <list> , <range>
<range> ::= RELEASE NUMBER | a

The character a in the list is equivalent to speci-
fying all releases for the named SCCS file.

Causes delta(l) to create a "null" delta in each of
those releases (if any) being skipped when a delta
is made in a new release (e.g., in making delta 5.1

" after delta 2.7, releases 3 and 4.are skipped).

qtext

ttype

v[pgm]

These null deltas serve as "anchor points" 8o that
branch deltas may later be created from them. The
absence of this flag causes skipped releases to be
non-existent in the SCCS file preventing branch del-
tas from being created from them in the future.

User def inable text substituted for all occurrences
of the 7%Q%Z keyword in SCCS file text retrieved by
get(l).

Module name of the SCCS file substituted for all
occurrences of the 7M7Z keyword in SCCS file text
retrieved by get(l). If them flag is not speci-
fied, the value assigned 1is the name of the SCCS
file with the leading s. removed. -

Type of module in the SCCS file substituted for all
occurrences of ZYZ keyword in SCCS file text
retrieved by get(l).

Causes delta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR
number validity checking program (see delta(l)).
(1f this flag is set when creating an SCCS file, the
m keyletter must also be used even if its value is
null).

Causes removal (deletion) of the specified flag fram
an SCCS file. The =-d keyletter may be specified
only when processing existing SCCS files. Several
-d keyletters may be supplied on a single admin com-
mand. See the -f keyletter for allowable flag
names.

A list of releases to be '"unlocked". See the -f
keyletter for a description of the 1 flag and the
syntax of a list.

A login name, or numerical UNIX group ID, to be
added to the 1list of users which may make deltas
(changes) to the SCCS file. A group ID is

ADMIN(1)

-elogin

-y[comment]

-m[mrlist]

-2

Printed 6/30/82

UNIX Programmer”s Manual ADMIN(1)

equivalent to specifying all login names common to
that group ID. Several a keyletters may be used on
a single admin command line. As many logins, or
numerical group IDs, as desired may be on the list
simultaneously. If the list of users is empty, then
anyone may add deltas.

A login name, or numerical group ID, to be erased
from the 1list of wusers allowed to make deltas
(changes) to the SCCS file. Specifying a group ID
is equivalent to specifying all login names common
to that group ID. Several e keyletters may be used
on a single admin command line.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical
to that of delta(l). Omission of the -y keyletter
results in a default comment line being inserted in
the form:

The -y keyletter is valid only if the =i and/or =-n
keyletters are specified (that is, a new SCCS file
is being created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creat-
ing the initial delta in a manner identical to
delta(l). The v flag must be set and the MR numbers
are validated if the v flag has a value (the name of
an MR number validation program). Diagnostics will
occur if the v flag is not set or MR validation
fails.

Causes admin to check the structure of the SCCS file
(see sccsfile(5)), and to compare a newly computed
check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the
check-sum that is stored in the first 1line of the
SCCS file. Appropriate error diagnostics are pro-
duced.

This keyletter inhibits writing on the file, so that
it nullifies the effect of any other keyletters sup-
plied, and is, therefore, only meaningful when pro-
cessing existing files.

The SCCS file check-sum is recomputed and stored in
the first line of the SCCS file (see -h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

ADMIN(1) UNIX Programmer”s Manual ADMIN(1)

FILES

The last component of all SCCS file names must be of the form s.file-
name. New SCCS files are given mode 444 (see chmod(l)). Write permis-—
sion in the pertinent directory is, of course, required to create a
file. All writing done by admin is to a temporary x-file, called
x.file-name, (see get(l)), created with mode 444 if the admin command is
creating a mnew SCCS file, or with the same mode as the SCCS file if it
exists. After successful execution of admin, the SCCS file 1is removed
(if it exists), and the x-file is renamed with the name of the SCCS
file. This ensures that changes are made to the SCCS file only if no
errors occurred.

It is recommended that directories containing SCCS files be mode 755 and
that SCCS files themselves be mode 444. The mode of the directories
allows only the owner to modify SCCS files contained in the directories.
The mode of the SCCS files prevents any modification at all except by
SCCS commands.

If it should be necessary to patch an SCCS file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(l). Care must be
taken! The edited file should always be processed by an admin =-h to
check for corruption followed by an admin -z to generate a proper
check-sum. Another admin -h is recommended to ensure the SCCS file 1is
valid.

Admin also makes use of a transient lock file (called z.file-name),

which 1s used to prevent simultaneous updates to the SCCS file by dif-

ferent users. See get(l) for further information.

SEE ALSO

delta(l), ed(l), get(l), help(l), prs(l), what(l), sccsfile(5).
Source Code Control System User”’s Guide by L. E. Bonanni and C. A,
Salemi.

DIAGNOSTICS

Use help(l) for explanations.

Printed 6/30/82 ' 5

AR(1) UNIX Programmer”s Manual AR(1)

NAME

ar - archive and library maintainer
SYNOPSIS

ar [uvbail] [mrxtdpq] [posname] archivename filename(s) ...
DESCRIPT ICON

The archive command ar maintains groups of files combined into a single
archive file. Its main use is to create and update library files as
used by the loader. However, ar can be used for any similar archiving
purpose. Archives often consist of unlinked program modules.

Key is one character from the set mrxtdpq, optionally concatenated with
one or more of wuvnbail. Archivename is the archive file. The
filename(s) are constituent files in or destined for the archive file.
The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional
character u is used with r, then only those files with modified
dates later than the archive files are replaced. If an optional
positioning character from the set abi is used, then the posname
argument must be present and specifies that new files are to be
placed after (a) or before (b or i) posname. Otherwise new files
are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive. Use-
ful only to avoid quadratic behavior when creating a large archive
piece-by-piece.

t Print a table of contents of the archive file. If no names are
given, all files in the archive are tabled. If names are given,
only those files are tabled.

P Print the named files in the archive.
m Move the named files to the end of the archive. If a positioning

character 1is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

x Extract the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive
file,

v Verbose. Under the verbose option, ar gives a file-by-file

description of the making of a new archive file from the old
archive and the constituent files. When used with t, it gives a
long listing of all information about the files. When used with
P, it precedes each file with a name.

Printed 7/21/82 ‘ 1/5/82 1

AR(1) UNIX Programmer”s Manual AR(1)

c Create. Normally ar will create afile when it needs to. The

create option suppresses the normal message that is produced when
afile is created. '

1 Local. Normally ar places its temporary files in the directory
/tmp. This option causes them to be placed in the local direc-
tory.
EXAMPLE

ar rv libar.a text.o
places file text.o in archive libar.a.
ar bm filel archivename file2

changes the location of a file inside an archive. File2 is the file to
be moved. File2 is moved to a new position before filel.

FILES
/tmp temporaries

SEE ALSO
1d(1), ar(5)

BUGS

If the same file is mentioned twice in an argument list, it may be put
in the archive twice. '

Sufficient disk space must be present to make an entire copy of the
archive or the ar command will fail.

Printed 7/21/82 1/5/82 2

As(1) UNIX Programmer’s Manual AS(1)

NAME
as - assembler
SYNOPSIS
as [-o objfile] [-1] [name ...]
DESCRIPTION
As assembles the named files, or the standard input if no file name is
specified.

All undefined symbols in the assembly are treated as global.

The relocatable output of the assembly is left on the file obijfile; 1if
that is omitted, a.out is used.

The -1 option produces an assembly listing on file objfile.lst. If the

-1 option is specified and no -9 parameter is specified, the assembly
listing is placed on a.lst.

EXAMPLE
as -0 file.o filea fileb filec

would assemble the three named files and put the output of the assembly
into file.o.

FILES
/tmp/as* default temporary file
a.out default resultant object file
a.lst default assembly listing file
SEE ALSO

1d(1), om(1), adb(l), a.out(5)

Printed 6/30/82 1

ASM(1) UNIX Programmer”s Manual . ASM(1)

NAME
asm - motorola format assembler

SYNOPSIS
asm [-o objfile] [-1] [name ...]

DESCRIPTION
As assembles the named files.

All undefined symbols in the assembly are treated as global.

The relocatable output of the assembly is left on the file objfile; 1if
that is omitted, a.out is used.

The -1 option produces an assembly listing on file a.lst.

EXAMPLE
as -0 file.o filea fileb filec

would assemble the three named files and put the output of the assembly
into file.o.

FILES

. tmp¥ default temporary file
a.out default resultant object file
a.lst default assembly listing file

SEE ALSO
1d(1), nm(l)’ adb(l), a.Out(s)

Printed 8/16/82 1/8/82 1

ASMCVT(1) UNIX Programmer”s Manual - ASMCVT(1)

NAME
asmcvt - assembler format comverter (MIT to Motorola)
SYNOPSIS
asmevt fromfile tofile
DESCRIPTION
Asmcvt copys fromfile to tofile converting anything it belives to be in
MIT 68000 assembler format to Motorola assembler format.
The file tofile will be overwritten if it exists.
EXAMPLE
asmevt file.s file.m
would convert file.s to Motorola format and leave the result in file.m.
SEE ALSO
as(1), asm(l)
BUGS

Not all comstructs are recognized, but most of the compiler output
should convert with no trouble.

The location counter symbol “.” is not converted.

Printed 8/11/82 1/8/82 1

AT(1)

UNIX Programmer”s Manual AT(1)

NAME

at — execute commands at a later time
SYNOPSIS

at time [day] [file]
DESCRIPTION

FILES

At squirrels away a copy of the named file (standard input default) to
be used as input to sh(l) at a specified later time. A c¢d(l) command to
the current directory is inserted at the beginning, followed by assign-
ments to all enviromment variables. When the script is rum, it uses the
user and group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following "A", "P", "N" or
"M" for AM, PM, noon or midnight. One and two digit numbers are taken
to be hours, three and four digits to be hours and minutes. If no
letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or
(2) a day of the week; if the word "week" follows invocation is moved
seven days further of f. Names of months and days may be recognizably
truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command
/usr/lib/atrun from cron(1M). The granularity of at depends upon how
often atrun is executed.

Standard output or error output is lost unless redirected.

/usr/spool/at /yy.ddd.hhhh.uu activity to be performed at hour hhhh of
day ddd of year yy. uu is a unique

number.
/usr /spool/at/lasttimedone contains hhhh for last hour of activity.
/ust /spool/at /past directory of activities now in progress.
/usr/lib/atrun program that executes activities that are
due.
/usr/lib/crontab cron table entry for runming atrun.

SEE ALSO

calendar(l), cron(1M)

DIAGNOSTICS

BUGS

Complains about various syntax errors and times out of range.

Due to the granularity of the execution of /usr/lib/atrun, there may be
bugs in scheduling things almost exactly 24 hours into the future.

Printed 7/28/82 1

AWK(1)

NAME

UNIX Programmer”s Manual AWK(1)

awk - pattern scanning and processing language

SYNOPSIS

awk [-Fc] [pattern { action } 1 [file] ...

DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns
specified in the pattern { action } program. With each pattern in pat-
tern { action } there can be an associated action that will be performed
when a line of a file matches the pattern. If no action is specified,
the lines that qualify will be printed on the standard output.

Patterns may be specified on the command line, or they may be taken from
an awk command file used with the -f file option.

Files to be examined are read in order; if there are no files named, the
standard input is read. The option “-” means to use the standard input.

Each line from the files is matched against the pattern portion of every
pattern—action statement; the associated action is performed for each
matched pattern.

An input line is made up of fields separated by white space. (This
default can be changed by using FS, vide infra.) The fields are denoted
$1, $2, In contrast to some other programs in which "0" is- the
first field, in awk $0 refers to the entire lime.

A pattern-action statement has the form

pattern { action }
The "pattern" should be enclosed in double quotation marks if it is a
string, and 0 should also be added to the "pattern" to force it to be

explicitly treated as a number.

A missing { action } means print the 1line; a missing pattern always
matches.

Patterns may be arbitrary Boolean combinations (!, ||, &&, and
parentheses) of regular expressions and relational expressions.

Regular expressjons must be surrounded by slashes, and the syntax and
metacharacters (as well as the need to escape the metacharacters) fol-
lows the same general syntax as does egrep.

If the shell complains, also enclose the expressions in double quotation
marks.

Isolated regular expressions in a pattern apply to the entire line.

Printed 7/8/82 2/2/82 1

~

AWK(1) UNIX Programmer”s Manual AWK (1)

A pattern may also comsist of two patterns separated by a comma; in this
case, the action is performed for all lines between an occurrence of the
first pattern and the next occurrence of the second. The action is per—
formed recursively for all such /start/, /stop/ pairs in the file.

Regular expressions may also be used in relational expressions.
A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop
is either ~ (for contains) or !~ (for does not contain). A conditional
is an arithmetic expression, a relational expression, or a Boolean com-
bination of these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the
first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the
program with

BEGIN { FS = "c" }
or by using the -Fc option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current
record; FILENAME, the name of the current input file; OFS, the output
field separator (default blank); ORS, the output record separator
(defau%t newline); and OFMT, the output format for numbers (default
"Z.6g").

An action is a sequence of statements. The statements should be con-
nected with a backslash before each newline, if they occupy more than
one command line.

A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement

for (expression ; conditiomal ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Printed 7/8/82 2/2/82 2

@

AWK(1) UNIX Programmer”s Manual AWK(1)

Action statements are terminated by semicolons, mnewlines or right
braces. Be sure to escape the newline with a backslash immediately
preceding it. Beginning and ending curly braces should be escaped with
single quotation marks, one before the opening brace and one immediately
after the closing brace. (see EXAMPLES, below). That is, enclose the
entire action statement in single quotation marks “{ action }” in order
not to be trapped by the shell.

An empty expression-list stands for the whole line. Expressions take on
string or numeric values as appropriate, and are built using the opera-
tors +, =, %, /, Z, and concatenation (indicated by a blank). The C
operators ++, ==, +=, ==, =, [= and %= are also available in expres-
sions. Variables may be scalars, array elements (denoted x[i]) or
fields. Variables are initialized to the null string. Array subscripts
may be any string, not necessarily numeric; this allows for a form of
associative memory. String constants must be quoted "...".

The print statement prints its arguments on the standard output (or on a
file if >file is present), separated by the current output field separa-
tor, and terminated by the output record separator. The printf state-
ment formats its expression 1list according to the format (see

printf(3)).

The built-in function length returns the length of its argument taken as
a string, or of the whole line if no argument. There are also built-in
functions exp, log, sqrt, and int. The last truncates its argument to
an integer. substr(s, m, n) returns the n-character substring of s that
begins at position m. The function sprintf (fmt, expr, expr, ...)
(Reg.)formats the expressions according to the printf(3) format given by
fmt and returns the resulting string.
EXAMPLES
awk "length > 72" filea

would print lines longer than 72 characters on the standard output.

awk “{ print $2, $1 }’ filea

would print the first two fields of each line in opposite order.

awk “{ s += $1 } END {print "sum is", s, "average is", s/NR }° filea

would add up the first column and print the sum and average.
awk “{ for (i = NF; i > 0; --i) print $1 }“ filea

wauld print all the fields of each line in reverse order. The output
prints one field per 1line, beginning at the end of the file, unless

Printed 7/8/82 2/2/82 3

AWK(1) UNIX Programmer” s Manual AWK(1)

otherwise directed.

awk "/start/, /stop/" filea

would print all lines between start/stop pattern pairs, for every such
pair in the file.

FILES
/usr/lib/awklist error log for awk scripts

SEE ALSO
egrep(l), lex(l), sed(l)

A. V. Aho, B. W, Kernighan, P. J. Weinberger; Awvk - a pattern scanning
and processing language

BUGS
There are no explicit comversions between numbers and strings. To force
an expression to be treated as a number add 0 to it; to force it to be
treated as a string concatenate "" to it.
Printed 7/28/82 2/2/82

BADBLK(1M) UNIX Programmer”s Manual BADBLK(1M)

NAME
badblk - program to set or update bad block information

SYNOPSIS
badblk [-w] [-m N] /dev/rXYZ [#s]

DESCRIPTION
Badblk sets or updates bad block information.
If invoked with the -w option, write/verify is performed to determine if
there is a bad block; otherwise only read is done.
If invoked with the -mN option, the number of alternate blocks will be
set to N. Badblk panics if N > NICALT (currently 70).
/dev/rXYZ is the device name.
#s is one or more block numbers separated by blanks.
If invoked with no specific block numbers and no bad block verification
has been done before, then each block on the disk is checked (either
read or write/verify) and bad block information in block 0 is set up
from scratch.
If invoked with no specific block numbers,, but block 0 already contains
bad block information set up earlier, then a verification on the whole
disk is performed; any new bad blocks not already on the block 0 table
will be added.
If invoked with the device name plus block numbers, then only the indi-
cated blocks are updated in block 0.
After alternate blocks are assigned, block 0 is updated and the updated
blocks are verified to make sure alternate blocks are good. If alter—
nate blocks are not good, new alternate block numbers are assigned.
The raw device that accesses the entire disk and allows for writing
block zero should be specified.

EXAMPLE

badblk -w /dev/rwlhw0
do a full write/verify on winchester 1 and update the header block. The
rwlhwO specifies raw (r) winchester 1 (wl), the full disk (h), with the
capability of writing block 0 (w0).

badblk /dev/rwlhwO 3754 8123

add blocks 3754 and 8123 to the badblock list.

Printed 7/28/82 1/5/82 1

BASENAME (1) UNIX Programmer”s Manual BASENAME(1)

NAME
basename - strip filename affixes
SYNOPSIS
basename string [suffix]
DESCRIPTION
Basename deletes any prefix ending in “/” and the suffix, if present in
string, from string, and prints the result on the standard output. It
is normally used inside substitution marks - ~ in shell procedures.
EXAMPLE
This shell procedure invoked with the argument /usr/src/cmd/cat.c com-
piles the named file and moves the output to cat in the current direc-
tory:
ce $§1
mv a.out “basename $1 .c°
SEE ALSO
sh(1)

Printed 6/30/82 1/5/82 1

BC(1)

NAME

UNIX Programmer s Manual BC(1)

bc - arbitrary-precision,arithmetic language

SYNOPSIS

bec [=c] [-1] [file ...]

DESCRIPTION

Bc is an interactive processor for a language that resembles C but pro-
vides unlimited precision arithmetic. It takes input fram any files
given, then reads the standard input. The -1 argument stands for the
name of an arbitrary precision math library. The syntax for bc programs
is as follows; L means letter a-z, E means expression, S means state-
ment.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E]
The words ~“ibase””, ““obase”

4 4

, and ““scale

Other operands
?rbigrarily long numbers with optional sign and decimal point.
E
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E, ... , E)

Operators
+ =% [%" (% is remainder; " is power)
++ - (prefix and postfix; apply to names)

= <= >= |= < >

= =4 =e =% =/ =% ="

Statements
E
{s; ... 38}
if (E) s

while (E) S

for (E; E ; E) S
null statement
break

quit

Function definitions
define L (L ,..., L) {
auto L, ... , L
S; «es S
return (E)

Printed 7/28/82 1

BC(1) UNIX Programmer”s Manual BC(1l)

Functions in -1 math library
s(x) sine
c(x) cosine
e(x) exponential

1(x) 1log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or new-lines may
separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of dec(1l).
Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple vari-
able simultaneously. All variables are global to the program. “~“Auto””
variables are pushed down during function calls. When using arrays as
function arguments or def ining them as automatic variables empty square
brackets must follow the array name.

Bc is actually a preprocessor for dec(l), which it invokes autamatically,
unless the =c (compile only) option is present. In this case the dc
input is sent to the standard output instead.

EXAMPLE
scale = 20
define e(x){
auto a, b, ¢, i, s

a=1
b=1
s =1
for(i=1; 1==1; i++){
a = a*x
b = b*i
c =a/b
if(c == 0) return(s)
8 = s+c
}

}

defines a function to compute an approximate value of the exponential
function and

for(i=1; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten
integers.

Printed 7/28/82 2

BC(1) UNIX Programmer”s Manual BC(1)

FILES
/usr/1ib/1lib.b mathematical library
/ust/bin/dc desk calculator proper

SEE ALSO
de(1).
BC - An Arbitrary Precision Desk-Calculator Language
by L. L. Cherry and R. Morris.

BUGS
No &&, || yet,
For statement must have all three E’s,
Quit is interpreted when read, not when executed.

Printed 7/28/82 3

BDIFF(1) UNIX Programmer”s Manual BDIFF(1)

NAME
bdiff - big diff

SYNOPSIS
bdiff filel file2 [n] [-s]

DESCRIPTION
Bdiff is used in a manner analogous to diff(l) to find which lines must
be changed in two files to bring them into agreement. Its purpose is to
allow processing of files which are too large for diff. Bdiff ignores
lines common to the beginning of both files, splits the remainder of
each file into n—-line segments, and invokes diff upon corresponding seg-
ments. The value of n is 3500 by default. If the optional third argu-
ment is given, and it is numeric, it is used as the alue for mn. This is
useful in those cases in which 3500-1line segments are too large for
diff, causing it to fail. If filel (file2) is -, the standard input is
read. The optional -s (silent) argument specifies that no diagnostics
are to be printed by bdiff (note, however, that this does not suppress
possible exclamations by diff. If both optional arguments are speci-
fied, they must appear in the order indicated above.
The output of bdiff is exactly that of diff, with line numbers adjusted
to account for the segmenting of the files (that is, to make it look as
if the files had been processed whole). Note that because of the seg-
menting of the files, bdiff does not necessarily find a smal lest suffi-
cient set of file differences.

FILES
/tmp/bd 227722

SEE ALSO
diff(1).

DIAGNOSTICS

Use help(l) for explanations.

Printed 6/30/82 1

CAL(1)

NAME

UNIX Programmer”s Manual CAL(1)

cal - print calendar

SYNOPSIS

cal [month] year

DESCRIPTION

Cal prints a calendar for the specified year. If a month is also speci-
fied, a calendar just for that month is printed. Year can be between 1
and 9999. The month is a number between 1 and 12. The calendar pro-
duced is that for England and her colonies.

EXAMPLE

BUGS

cal 9 1752

produces a calendar for September 1752.

The year is always comnsidered to start in January even though this is
historically naive.

Beware that “cal 82° refers to the early Christian era, not the 20th
century.

Printed 6/30/82 1/5/82 1

CALENDAR(1) UNIX Programmer”s Manual CALENDAR(1)

NAME
calendar - reminder service

SYNOPSIS
calendar [- 1]

DESCRIPTION
Calendar consults the file calendar in the current directory and prints
out lines that contain today’s or tomorrow”s date anywhere in the line.
Most reasonable month-day dates such as “~“Dec. 7,°” ““december 7,77
**12/7,° etc., are recognized, but not “ 7 December” or ““7/12°°. On
weekends ““tomorrow”” extends through Monday.
When an argument is present, calendar does its job for every user who
has a file calendar in his login directory and sends him any positive
results by mail(l). Normally this is done daily in the wee hours under
control of cron(1M).

FILES
calendar :
/usr/1lib/calprog to figure out today”s and tomorrow’s dates
/etc/passwd
/tmp/cal*
/usr/lib/crontab

SEE ALSO
cron(1M), mail(l).

BUGS

Your calendar must be public information for you to get reminder ser—
vice.
Calendar”s extended idea of “~“tomorrow”” does not account for holidays.

Printed 8/16/82 | 1

CAT(1) UNIX Programmer”s Manual CAT(1)

NAME

cat - catenate and print
SYNOPSIS

cat [=u]l [-n] [=-s][=v]I[=el]ll-t] file ...
DESCRIPTION

Cat reads each file in sequence and writes it on the standard output.
Thus

cat file
prints the file, and
cat filel file2 >file3

concatenates the first two files and places the result omn the third.

If no input file is given, or if the argument “~° is encountered, cat
reads from the standard input file. Output is buffered in 512-byte
blocks unless the standard output is a terminal, in which case it is
line buffered. The -u option causes the output to be completely unbuf-
fered, i.e.: one character at a time.

The option -n causes the output lines to be numbered sequentially from
l. Giving -b with -n causes numbers to be omitted from blank lines.

The option —s causes the output to be single spaced by crushing out mul-
tiple adjacent empty lines.

The option -v causes non—printing characters to be printed in a visible
way. Control characters print like "X for control-x; the delete charac-
ter (octal 0177) prints as “?. Non-ascii characters (with the high bit
set) are printed as M- (for meta) followed by the character of the low 7
bits. A -e option may be given with -v and causes the ends of lines to
be followed by the character “$“; the -t option with =-v causes tabs to
be printed as “I.

EXAMPLE

cat -n filea fileb >> filec

numbers the lines of filea and fileb and puts the output in filec.

SEE ALSO

BUGS

cp(l), ex(1), more(l), pr(1l), tail(l)

Beware of “cat a b >a” and “cat a b >b“, which destroy the input files
before reading them.

Printed 7/21/82 1/6/82 1

CB(1) UNIX Programmer”s Manual CB(1)

NAME
cb - C program beautifier
SYNOPSIS
cb [file]
DESCRIPTION
Cb places a copy of the C program from the named file, or standard input
if no file name is specified, to the standard output with spacing and
indentation that displays the structure of the program.
EXAMPLE
If there is a C program called test.c which looks like this:
" f#def ine COMING 1
f#def ine GOING 0
main ()
{
/% This is a test of the C Beautifier =/
if (COMING)
printf ("Hello, world\n");
else
grintf ("Goodbye, world\n");
Then using the cb command as shown below produces the output shown:
cb test.c
f#def ine COMING 1
#def ine GOING 0
main ()
{ ,
/% This is a test of the C Beautifier =/
if (COMING)
printf ("Hello, world\n");
else ‘
) printf ("Goodbye, world\n");
BUGS

Beware of “cb test.c >test.c” which will destroy the input file before
reading it.

Printed 7/21/82 2/24/79 1

cc(1) UNIX Programmer”s Manual cc(l)

NAME
cc - C compiler

SYNOPSIS
cc [option] ... file ...

DESCRIPTION
cc is the UNIX C compiler.

cc accepts several types of arguments:

Arguments whose names end with “.c” are taken to be ¢ source programs;
they are compiled, and each object program is left on the file whose

« name is that of the source with “.0” substituted for “.c. The “.0”
file is normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with “.s” are taken to be
assembly source programs and are assembled, producing a “.0” file.

The following options are interpreted by cc. See 1d(1) for 1load-time

options.

-c Suppress the loading phase of the compilation, and force an
object ,file to be produced even if only one program is com-
piled. :

-n Passed on to 1d to make the text of the resulting program
shared.

-p Arrange for the compiler to produce . code which counts the

number of times each routine is called; also, if loading takes
place, replace the standard startup routine by one which
automatically calls monitor(3) at the start and arranges to
write out a mon.out file at normal termination of execution of
the object program. An execution profile can then be gen
erated by use of prof(l).

-0(KPS) Invoke an object-code improver (optimizer). If K is speci-
fied, certain UNIX Lkernel optimizer functions are not per—
formed. If P is specified, stack probe instructions are
removed. (NOTE: P should only be used for the operating sys-
tem source.) If S is specified, stack frame optimization is
performed and the debugger, ADB(l), might indicate too few
subroutine parameters om stack trace back.

-R (addr) Passed on to ld, making the resulting object module origin”ed
at addr(hex).

-S Compile the named C programs, and leave the assembler-language
output on corresponding files suffixed “.s”.

" Printed 7/28/82 1/5/82 1

cc(l) ‘ UNIX Programmer’s Manual cc(l)

-P Run only the macro preprocessor on the named C programs, and
send the result to the corresponding files suf fixed. “.i”
-C prevent the macro preprocessor fraom eliding (leaving out) com=-

ments.

-0 output Name the final executable output file output. If this option
is used the file “a.out” will be left undisturbed.

=Dname=def

-Dname Define the name to the preprocessor, as if by "#define". If
no definition is given, the name is defined as "1".

-Uname Remove any initial definition of name.
-Idir "#include" files whose names do not begin with 7/ are always

sought first in the directory of the file argument, then in
_directories named in -I options, then in the directory
/usr/include.

-v print the name of each subprocess as it is executing.

Other arguments are taken to be either loader option arguments, or C-
compatible object programs, typically produced by an earlier cc run, or
perhaps libraries of C-compatible routines. These programs, together
with the results of any compilations specified, are loaded via LD(1) (in
the order given) to produce an executable program with name a.out.

EXAMPLE
cc -0 output progl.c prog2.c prog3.c

would compile code in the three named C programs and put the compiled
code into the file output.

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/1ib/cpp preprocessor
/1ib/c0 compiler passl
/1ib/cl compiler pass2
/1ib/c2 optional optimizer invoked with "-Q"

/lib/crt0.0 runtime startoff

/lib/mcrt0.0 runtime startof f for profiling
/lib/libc.a standard library, see section 3
/usr/include standard directory for “#include” files
/lib/libm.a math library

SEE ALSO
monitor(3), prof(l), adb(l), 1d(l), lint(l) B. W. Kernighan and D. M.
Ritchie, The C Programming Language, Prentice-Hall, 1978

Printed 7/28/82 1/5/82 2

cc(l) UNIX Programmer”s Manual cc(1)

B. W. Kernighan, Programming in C-a tutorial
D. M. Ritchie, C Reference Manual

DIAGNOSTICS

The diagnostics produced by C itself are intended to be self-
explanatory. Occasional messages may be produced by the assembler or
loader. Confusing syntax may cause the "C" compiler to indicate an
error on the line following the actual error.

Printed 7/28/82 1/7/82

cp(l) UNIX Programmer”s Manual cp(1)

NAME
cd - change working directory

SYNOPSIS
cd directory

DESCRIPTION

Directory becomes the new working directory. The process must have exe-
cute (search) permission in directory. If you are not the owner of a
directory and search permission is denied to others, you c¢annot change
to that directory, and the message "Permission denied" will result.

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command. It is therefore
recognized and executed by the shells. In ¢sh(l) you may specify a list
of directories in which directory is to be sought as a subdirectory if
it is not a subdirectory of the current directory; see the description
of the cdpath variable in csh(l).

EXAMPLE
cd /unisoft/usr/games

would relocate you to the directory "/unisoft/usr/games" if this direc-
tory is executable (searchable) by you.

SEE ALSO.
csh(1), sh(1l), pwd(1l), chdir(2)

Printed 6/30/82 1/5/82 1

cpc(l)

UNIX Programmer”s Manual cpc(l)

NAME

cdc - change the delta commentary of an SCCS delta
SYNOPSIS

cdc -rSID [-m[mrlist]] [-ylcomment]] files
DESCRIPTION

Cdc changes the delta commentary, for the SID specified by the -r
keyletter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and com-
ment information normally specified via the delta(l) command (-m and -y
keyletters).

If a directory is named, cdc behaves as though each file in the direc-
tory were specified as a named file, except that non-SCCS files (last
component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is
read (see WARNINGS); each line of the standard input is taken to be the
name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter
arguments, and file names.

All the described keyletter arguments apply independently to each named
file:

-rSID Used to specify the SCCS IDentification (SID) string
of a delta for which the delta commentary is to be
changed.

-m[mrlist] If the SCCS file has the v flag set (see admin(1))

then a list of MR numbers to be added and/or deleted
in the delta commentary of the SID specified by the
-r keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta(l). In order to delete an
MR, precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a
"comment"” line. A list of all deleted MRs is placed
in the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

If -m is not used and the standard input is a termi-
nal, the prompt MRs? is issued on the standard out-
put before the standard input is read; if the stam
dard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments? prompt

Printed 6/30/82 1

cpe(l)

EXAMPLES

adds

UNIX Programmer’s Manual cpc(l)

(see -y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped new-line character ter—
minates the MR list.

Note that if the v flag has a value (see admin(1)),
it is taken to be the name of a program (or shell
procedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates and
the delta commentary remains unchanged.

~ylcomment] Arbitrary text used to replace the comment(s)
already existing for the delta specified by the -r
keyletter. The previous comments are kept and pre-
ceded by a comment 1line stating that they were
changed. A null comment has no ef fect.

If -y is not specified and the standard input 1is a
terminal, the prompt comments? is issued on the
standard output before the standard input is read;
if the standard input is not a terminal, no prompt
is issued. An unescaped new-line character ter-
minates the comment text.

The exact permissions necessary to modify the SCCS file are docu-
mented in the Source Code Control System User”s Guide. Simply
stated, they are either (1) if you made the delta, you can change
its delta commentary; or (2) if you own the file and directory you
can modify the delta commentary.

cdc -rl.6 -m"bl78-12345 !b177-54321 b179-00001" -ytrouble s.file

b178-12345 and bl179-00001 to the MR list, removes b177-54321 from

the MR list, and adds the comment trouble to delta 1.6 of s.file.

does

WARNINGS
If SCCS file names are supplied to the cdc command via the standard

FILES

input

cdec -rl.6 s.file
MRs? !bl77-54321 b178-12345 b179-00001
comments? trouble

the same thing.

(- on the command line), then the -m and -y keyletters must also

be used.

x~-file (see delta(l))

z-file (see delta(l))

Printed 6/30/82 2

cpc(l) UNIX Programmer”s Manual cpc(l)

SEE ALSO
admin(1), delta(l), get(l), help(l), prs(l), sccsfile(5).
Source Code Control System User”s Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS
Use help(l) for explanations.

Printed 6/30/82 3

CHGRP(1M) UNIX Programmer”s Manual CHGRP(1M)

NAME
chgrp - change group
SYNOPSIS
chgrp group file ...
DESCRIPT ION
Chgrp changes the group-ID of the files to group. The group may be
either a decimal GID or a group name found in the group-ID file.
Only the super—user can change group.
However, you can often work on a copy of a file by copying it to one of
your own directories. See cp(l).
EXAMPLE
chgrp unisoft filea fileb filec
would put the three files in the "unisoft" group.
FILES
/etc/passwd
/etc/group
SEE ALSO

chown(2), passwd(5), group(5)

Printed 7/21/82 1/6/82 1

CHMOD(1) UNIX Programmer”s Manual CHMOD(1)

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

DESCRIPTION
The mode of each named file is changed according to mode, which may be
absolute or symbolic.
An absolute mode is an octal number constructed from the OR-ing (in
effect, adding up) of the numbers of the following modes:
4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by ewner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others
A symbolic mode has the form:

[who] op permission [op permission] ...

The who part is a combination of the letters u (for user’s permissions),
g (group) and o (other). The letter a stands for all of the letters
"ugo". If who is omitted, the default is a but the setting of the file
creation mask is taken into account.
Op can be + to add permission to the file”s mode, - to take away permis-
sion and = to assign permission absolutely (all other bits will be
reset).
Permission is any combination of the letters r (read), w (write), x
(execute), s (set owner or group id) and t (save text - sticky).
Letters u, g or o indicate that permission is to be taken from the
current mode. Omitting permission is only useful with = to take away
all permissions.

EXAMPLES

chmod 755 filename
changes the mode of a file you own to: read, write, execute
(400+200+100) by owner and read, execute (40+10) for group and read,
execute (4+1) for others.

An 1ls -1 of filename shows [-rwxr-xr-x filename] that the requested mode
is in effect.

chmod = filename

Printed 7/8/82 1/5/82 1

CHMOD(1) UNIX Programmer”s Manual CHMOD(1)

will take away all permissions from filename, including yours.
chmod o-w file

denies write permission to others.
chmod +x file

makes a file executable.

Multiple symbolic modes separated by commas
are performed in the order specified.
u or g.

may be given. Operations
The letter s is only useful with

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO
1s(1), chmod(2), stat(2), umask(2), chown(1lM)

Printed 7/8/82 1/5/82

CHOWN(1M) UNIX Programmer’s Manual CHOWN(1M)

NAME
chown - change owner

SYNOPSIS
chown owner file ...

DESCRIPT ION
Chown changes the owner of the files to owner. The owner may be either
a decimal user ID or a login name found in the password file. The pass-
word file is /etc/passwd.

Only the super—user can change owner.

However, you can often work on a copy of a file by copying it to one of
your own directories. See cp(l).

EXAMPLE
chown unisoft filea fileb filec

would make "unisoft" the owner of the three files.
FILES

/etc/passwd

/etc/group

SEE ALSO
chown(2), passwd(5), group(5)

Printed 7/21/82 2/4/82 1

CLEAR(1) UNIX Programmer”s Manual CLEAR(1)

NAME
clear = clear terminal screen

SYNOPSIS
clear

DESCRIPTION
Clear clears your screen if this is possible. It looks in the envirom
ment for the terminal type and then in /etc/termcap to figure out how to
clear the screen. ’

EXAMPLE
clear

clears the screen.

FILES
/etc/termcap terminal capability data base

Printed 6/30/82 1/8/82 1

CLRI(1M) UNIX Programmer”s Manual CLRI(1M)

NAME
c¢lri - clear i-node

SYNOPS1IS
clri filesystem i-number ...

DESCRIPTION
N.B.: Clri is made obsolete for mnormal file system repair work by
£sck(1M).
Clri writes zeros on the i-nodes with the decimal ji-numbers on the
filesystem. After clri, any blocks in the affected file will show up as
‘missing” in an fsck(l) of the filesystem.
Read and write permission is required on the specified file system dev-
ice. The i-node becomes allocatable.
The primary purpose of this routine is to remove a file which for some
reason appears in mno directory. If it is used to zap an i-node which
does appear in a directory, care should be taken to track down the entry
and remove it. Otherwise, when the i-node is reallocated to some new
file, the old entry will still point to that file. At that point remov-
ing the old entry will destroy the new file. The new entry will again
point to an unallocated i-node, so the whole cycle is 1likely to be
repeated again and again.

SEE ALSO
fsck(1M)

BUGS

If the file is open, clri is likely to be ineffective.

Printed 7/8/82 1

con(1)

NAME

UNIX Programmer’s Manual COL(1)

col - filter reverse line feeds

SYNOPSIS

col [~bfx]

DESCRIPTION

Col is used for preparing multicolumn output on printers using the nroff
text formatting package. Col enables proper creation of columns by
keeping the printer on the same line until all column parts have been
printed. It performs the line overlays implied by reverse line feeds
(ESC-7 in ASCII) and by forward and reverse half line feeds (ESC-9 and
ESC-8). Col 1is particularly useful for filtering multicolummn output
made with the “.rt” command of nroff and output resulting from use of
the tbl(1l) preprocessor.

Although col accepts half line motions in its input, it normally does
not emit them on output. Instead, text that would appear between lines
is moved to the next lower full line boundary. This treatment can be
suppressed by the —f (fine) option; in this case the output from col may
contain forward half line feeds (ESC-9), but will still never contain
either kind of reverse line motion.

If the -b option is given, col assumes that the output device in use is
not capable of backspacing. In this case, if several characters are to
appear in the same place, only the last one read will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to
start and end text in an alternate character set. The character set
(primary or alternate) associated with each printing character read is
remembered; on output, SO and SI characters are generated where neces-
sary to maintain the correct treatment of each character.

Col normally comverts white space to tabs to shorten printing time. If
the -x option is given, this conversion is suppressed.

All control characters are removed from the input except space, back-
space, tab, return, newline, ESC (033) followed by one of 7, 8, 9, SI,
S0, and VT (013). This last character is an alternate form of full
reverse line feed, for compatibility with some other hardware conven
tions. All other nonprinting characters are ignored.

EXAMPLE

nroff -ms filealcol

pipes multicolumn nroff output through the col filter to enable proper
creation of columms.

SEE ALSO

trof£(1), tbl(l)

Printed 6/30/82 1/8/82 1

coL(1l) UNIX Programmer’s Manual COL(1)

BUGS
Col can”t back up more than 128 lines. There must not be more than 800
characters, including backspaces, on a line.

Printed 6/30/82 1/6/82 2

COMB(1) UNIX Programmer”s Manual CoMB(1)

NAME

comb - combine SCCS deltas
SYNOPSIS

comb [-0] [-s] [-psid] [-clist] files
DESCRIPTION

Comb generates a shell procedure (see sh(l)) which, when run, will
reconstruct the given SCCS files. The reconstructed files will, hope-
fully, be smaller than the original files. The arguments may be speci-
fied in any order, but all keyletter arguments apply to all named SCCS
files. If a directory is named, comb behaves as though each file in the
directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input
is read; each line of the standard input is taken to be the name of an
SCCS file to be processed; nomSCCS files and unreadable files are
silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each 1is explained as though
only one named file is to be processed, but the effects of any keyletter
argument apply independently to each named file.

-pSID The SCCS IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed
file.

-clist A list (see get(l) for the syntax of a list) of deltas to be
preserved. All other deltas are discarded.

-0 For each get -e generated, this argument causes the reconm
structed file to be accessed at the release of the delta to be
created, otherwise the reconstructed file would be accessed at
the most recent ancestor. Use of the -o keyletter may decrease
the size of the reconstructed SCCS file. It may also alter the
shape of the delta tree of the original file.

-8 This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file
name, size (in blocks) after combining, original size (also in
blocks), and percentage change computed by:

100 * (original - combined) / original
It is recommended that before any SCCS files are actually com-
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf
deltas and the minimal number of ancestors needed to preserve the tree.

Printed 6/30/82 1

COMB(1) UNIX Programmer”s Manual COMB(1)

FILES
s.COMB ‘The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO

admin(l), delta(l), get(l), help(l), prs(l), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A.
Salemi.

DIAGNOSTICS
Use help(l) for explanations.

BUGS
Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be
larger than the original.

Printed 6/30/82 2

coMM(1) UNIX Programmer”s Manual COMM(1)

NAME
comm — select or reject lines common to two sorted files
SYNOPSIS
comm [- [123]] filel file2
DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating
sequence, and produces a three column output: lines only in filel; lines
only in file2; and lines in both files. The filename “~“ means the
standard input for file 1 (or file 2).
Flags 1, 2, or 3 suppress printing of the corresponding column.
EXAMPLES
comm -12 filea fileb
prints only the lines common to filea and fileb.
comm -23 filea fileb
prints only lines in the first file but not in the second.
comm -123 filea fileb
is not an option, as it suppresses all output.
comm -3 filea fileb
prints only the lines that differ in the two files.
SEE ALSO

cmp(l), diff(l)

Printed 6/30/82 1/8/82 1

cP(1) UNIX Programmer’s Manual cr(1)

NAME
cp - copy
SYNOPS1IS
cp filel file2
cp file ... directory
DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 'are preserved
if it already existed; the mode of the source file is used otherwise.
In the second form, one or more files are copied into the directory with
their original file—names.
Cp refuses to copy a file onto itself.
EXAMPLE
cp alpha beta gamma /unisoft/barbara
Places copies of the three files in the directory barbara.
SEE ALSO

cat(l), pr(l), mv(l)

Printed 7/8/82 1

CRON(1M) UNIX Programmer”s Manual CRON(1M)

NAME
cron - clock daemon

SYNOPSIS
letc/cron

DESCRIPT ION
Cron executes commands at specified dates and times according to the
instructions in the file /usr/lib/crontab. Since cron never exits, it
should only be executed once. This is best done by running cron from
the initialization process through the file /etc/rc; see init(1M).
Crontab consists of lines of six fields each. The fields are separated
by spaces or tabs. The first five are integer patterns to specify the
minute (0-59), hour (G-23), day of the month (1-31), month of the year
(1-12), and day of the week (1-7 with l=monday).
Each of these patterns may contain a number in the range above; two
numbers separated by a minus meaning a range inclusive; a list of
numbers separated by commas meaning any of the numbers; or an asterisk
meaning all legal values. The sixth field is a string that is executed
by the Shell at the specified times. A percent character in this field
is translated to a new-line character. Only the first line (up to a %
or end of line) of the command field is executed by the Shell. The
other lines are made available to the command as standard input.
Crontab is examined by cron every minute.

FILES

/usr/lib/crontab

Printed 7/21/82 1/25/82 1

CRYPT(1) UNIX Programmer” s Manual CRYPT(1)

NAME

crypt - encode/decode
SYNOPSIS

crypt [password]
DESCRIPTION

Crypt reads from the standard input and writes on the standard output.
The password 1is a key that selects a particular transformation. If no
password is given, crypt demands a key from the terminal and turns off

printing while the key is being typed in. Crypt encrypts and decrypts
with the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor
ed in encryption mode.

The security of encrypted files depends on three factors: the fundamen-
tal method must be hard to solve; direct search of the key space must be
infeasible; “sneak paths” by which keys or cleartext can become visible
must be minimized.

Crypt implements a one-rotor machine designed along the lines of the
German Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work required
is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e. to take a substantial frac-
tion of a second to compute. However, if keys are restricted to (say)
three lower—case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it 1is potentially
visible to users executing ps(l) or a derivative. To minimize this pos-
sibility, crypt takes care to destroy any record of the key immediately
upon entry. No doubt the choice of keys and key secur ity are the most
vulnerable aspect of crypt.

FILES
/dev/tty for typed key
/1ib/makekey to generate a key
SEE ALSO

BUGS

ed(1), crypt(3), makekey(l)

There is no warranty of merchantability nor any warranty of fitness for

Printed 7/28/82 1

CRYPT(1) UNIX Programmer”s Manual CRYPT (1)

a particular purpose nor any other warranty, either express or implied,
as to the accuracy of the enclosed materials or as to their suitability
for any particular purpose. Accordingly, neither Bell Telephone Labora-
tories nor UNISOFT Corporation (Berkeley) assumes any responsibility for
their use by the recipient. Further, neither Bell Laboratories nor
UNISOFT Corporation (Berkeley) assumes any obligation to furnish any
assistance of any kind whatsoever, or to furnish any additional informa-
tion or documentation.

%

Printed 7/28/82)

CSH(1)

NAME

UNIX Programmer”s Manual CsH(1)

csh = a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [-cefinstvvxX] [arg ... |

DESCRIPTION

”5

Csh is a command language interpreter incorporating a history mechanism
(see History Substitutions) and a C-like syntax.

An instance of csh begins by executing commands from the file “.cshrc”
in the home directory of the invoker. If this is a login shell then it
also executes commands from the file ".login" there. It is typical for
users on crt’s to put the command "stty crt" in their .login file, and
to also invoke tset(l) there.

In the normal case, the shell will then begin reading commands from the
terminal, prompting with “%Z “. Processing of arguments and the use of
the shell to process files containing command scripts will be described
later.

The shell then repeatedly performs the following actions: a line of com-—
mand input is read and broken into words. This sequence of words is
placed on the command history list and then parsed. Finally each com—
mand in the current line is executed.

When a login shell terminates, it executes commands from the file
“.logout” in the user”s home directory.

LEXICAL STRUCTURE

The shell splits input lines into words at blanks and tabs with the fol-
lowing exceptions. The characters "M&" ' " M ngn onnnow(n N form
separate words. If doubled in “&&", “||”°, “<<” or “>> these pairs form
single words. These parser metacharacters may be made part of other
words, or their special meaning may be prevented, by preceding them with
a backslash, "\". A newline preceded by a “\” is equivalent to a blank.
It is usually necessary to use the backslash to "escape" the parser
metacharacters when you want to use them literally rather than as meta-
characters.

Strings enclosed in matched pairs of quotation marks, either single or
double quotation marks, "“", "“" or """, form parts of a word. Metachar-
acters in these strings, including blanks and tabs, do not form separate
words. Such quotations have semantics to be described subsequently.

Within pairs of single or double quotation marks a newline (carriage
return) preceded by a “\” gives a true newline character. This is used

‘to set up a file of strings separated by newlines, as for fgrep(l).

When the shell”s input is not a terminal, the character "#" introduces a
comment which continues to the end of the input line. It is prevented
from having this special meaning when preceded by “\” or if bracketed by

Printed 7/8/82 1/13/82 1

CcsH(1) UNIX Programmer”s Manual CSH(1)

a pair of single or double quotation marks.

COMMANDS

A simple command is a sequence of words, the first of which specifies

the command to be executed.

A simple command or a sequence of simple commands separated by “|° char—
acters forms a pipeline. The output of each command in a pipeline is
connected to the input of the next.

Sequences of pipelines may be separated by “;”, and are then executed
sequentially. A sequence of pipelines may be executed without immedi-
ately waiting for it to terminate by following it with an "&", which
means "run it in background".

Parentheses "(" and ")" around a pipeline or sequence of pipelines cause
the whole series to be treated as a simple command, which may in turn be
a component of a pipeline, etc. It is also possible to separate pipe-
lines with “||” or “&&" indicating, as in the C language, that the
second is to be executed only if the first fails or succeeds respec—
tively. (See Expressions.)

PROCESS I.D. NUMBERS
When a process is rum in background with “&”, the shell prints a 1line
which looks like:

1234

indicating that the process which was started asynchronously was number
1234,

STATUS REPORTING
This shell learns immediately whenever a process changes state. It nor—
mally informs you whenever a job becomes blocked so that no further pro-
gress is possible, but only just before it prints a prompt. This 1is
done so that it does not otherwise disturb your work.

To check on the status of a process, use the ps (process status) com-
mand.

SUBSTITUTIONS
We now describe the various transformations the shell performs on the
input in the order in which they occur.

History substitutions

History substitutions place words from previous command input as por-
tions of new commands, making it easy to repeat commands, repeat argu-
ments of a previous command in the current command, or fix spelling mis-—
takes in the previous command with little typing and a high degree of
conf idence.

Printed 7/8/82 1/13/82 2

CSH(1) UNIX Programmer”s Manual CSH(1)

History substitutions begin with the character “!“ and may begin any-
where in the input stream (with the proviso that they do not nest.)

This “!” may be preceded by an “\” to turn off its special meaning; for
convenience, a “~!° 1is also passed unchanged when it is followed by a
blank, tab, newline, =" or “(”.

Therefore, do not put a space after the “!° and the command reference
when you are invoking the shell”s history mechanism. (History substitu-
tions also occur when an input 1line begins with “1“. - This special
abbreviation will be described later.)

An input line which invokes history substitution is echoed on the termi-
nal before it is executed, as it would look if typed out in full.

The shell”s history list, which may be seen by typing the "history" com-
mand, contains all commands input from the terminal which consist of one
or more words. History substitutions reintroduce sequences of words
from these saved commands into the input stream. The history variable
controls the size of the input stream. The previous command is always

retained, regardless of its value. Commands are numbered sequentially
from 1.

Consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 4diff swrite.c

The commands are shown with their event numbers. It is mnot wusually
necessary to use event numbers, but the current event number can be made
part of the prompt by placing anmn “!° in the prompt string. This is done
by SETting Prompt = | and the prompt character of your choice.

For example, if the current event is number 13, we can call up the com-
mand recorded as event 11 in several ways: as !-2 [i.e., 13-2];

by the first letter of one of its command words, such as !c referring to
the “¢” in cat;

or lwri for event 9, or by a string contained in a word in the command
as in “!7mic?” also referring to event 9.

These forms, without further modification, simply reintroduce the words
of the specified events, each separated by a single blank. As a special
case “!11” refers to the previous command; thus “!!“ alone is essentially
a redo.

Words are selected from a command event and acted upon according to the
following formula:

Printed 7/8/82 1/13/82 3

CSH(1) UNIX Programmer”’s Manual CsH(1)

event:position:action

The "event" is the command you wish to retrieve. As mentioned above, i*
may be summoned up by event number and in several other ways. All that
the "event" notation does is to tell the shell which command you have in
mind.

"Position" picks out the words from the command event on which you want
the "action" to take place. The "position" notation can do anything
from altering the command completely to making some very minor substitu-
tion, depending on which words from the command event you specify with
the "position" notation.

‘To select words from a command event, follow the event specification
LA 4

with a “:” and a designator (by position) for the desired words.

The words of a command event are picked out by their position in the
input line. Positions are numbered from 0, the first word (usually com-
mand) being position 0, the second word having position 1, and so forth.
If you designate a word from the command event by stating its position,
that means you want to include it in your revised command. All the
words that you want to include in a revised command must be designated
by position notation in order to be included.

The basic position designators are:

first (command) word

n“th argument

first argument, i.e. ‘17

last argument

matches the word of an ?s? search which immediately
precedes it; used to strip one word out of a command
event for use in another command.

Example: !?four?:%Z:p prints "four".

Mm—-E o

Printed 7/8/82 1/13/82 &

CSH(1) UNIX Programmer’s Manual CSH(1)

x-y range of words (e.g. 1-3 means “from position
1 to position 37).

-y abbreviates “0-y”

* stands for “1-$7, or indicates position 1 if only one
word in event.

X* abbreviates “x-$° where x is a position number.

x- like “x%” but omitting last word “$~

The “:” separating the event specification from the word designator can
be omitted if the argument selector begins with a ‘17, “$7, “%” "-" or
"z" o

Modifiers, each preceded by a “:“, may be used to act on the designated
words in the specified command event. The following modifiers are

def ined:

h Remove a trailing pathname component, leaving the head.

r Remove a trailing “.xxx” component, leaving the root name.
e Remove all but the extension “.xxx” part.

s/old/new/ Substitute new for old

t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.

g Apply the change globally, prefixing the above, e.g. “gé&” .
P Print the new command but do not execute it.

q Quote the substituted words, preventing further substitutions.
X Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a “g” the modification is applied only to the first
modifiable word. With substitutions, it is an error for no word to be
applicable.

The left hand side of substitutions are not regular expressions in the
sense of the editors, but rather strings. Any character may be used as
the delimiter in place of “/”; a “\” quotes the delimiter into the 1 and
r strings. The character “&” in the right hand side is replaced by the
text from the left. A “\” quotes “&” also. A null 1 uses the previous
string either from a 1 or from a contextual scan string s in “175?”.
The trailing delimiter in the substitution may be omitted if (but only
if) a newline follows immediately as may the trailing “?° in a contex-
tual scan.

A history reference may be given without an event specification, e.g.
“1$°. 1In this case the reference is to the previous command. If a pre-
vious history reference occurred on the same line, this form repeats the
previous reference. Thus “!1?7foo?1 !$” gives the first and last argu-
ments from the command matching “?foo0?”.

You can quickly make substitutions to the previous command line by using
the “1° character as the first non-blank character of an input line,
This is equivalent to “!:81” providing a convenient shorthand for sub-
stitutions on the text of the previous line. Thus “T1bTlib” fixes the
spelling of "1ib" in the previous command. Finally, a history substitu-
tion may be surrounded with “{” and “}” if necessary to insulate it from

Printed 7/8/82 1/13/82 5

CSH(1) UNIX Programmer”s Manual CSH(1)

the characters which follow. Thus, after “1s -=1d ~paul® we might dc
“1{1}a” to do “ls =1d “~paula”, while “!1a” would look for a comzan:
starting “la”.

Quotations with “ and "

The quotation of strings by ““” and “"“ can be used to prevent all cx
some of the remaining substitutions which would otherwise take place if
these characters were interpreted as '"metacharacters" or '"wild card
matching characters". Strings enclosed in single quotes, ‘7 are
prevented any further interpretation or expansion. Strings enclosed iu

"’ may still be variable and command expanded as described below.

In both cases the resulting text becomes (all or part of) a single word:
only in one special case (see Command Substitution below) does a “"~
quoted string yield parts of more than one word; "“" quoted strings
never do.

Alias substitution

The shell maintains a 1list of aliases which can be establiched
displayed and modified by the alias and unalias commands., After a com:
mand line is scanned, it is parsed into distinct commands and the firs-
word of each command, left-to-right, is checked to see if it has a:
alias. If it does, then the text which is the alias for that command i-:
reread with the history mechanism available as though that command wer:
the previous input line. The resulting words replace the command and
argument list. If no reference is made to the history list, then the
argument list is left unchanged.

Thus if the alias for “1s8” is “1s -1” the command “1s /usr” would map to
"ls =1 /usr", the argument list here being undisturbed. Similarly if
the alias for “lookup” was “grep ! /etc/passwd” then "lookup bill"
would map to "grep bill /etc/passwd".

If an alias is found, the word transformation of the input text is per—
formed and the aliasing process begins again on the reformed input line.
Looping is prevented if the first word of the new text is the same as
the old by flagging it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax.
Thus we can “alias print “pr \!% | 1pr°” to make a command which pr’s
its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a
list of zero or more words. Some of these variables are set by the
shell or referred to by it. For instance, the argv variable is an image
of the shell”s argument 1list, and words of this variable”s value are
referred to in special ways.

Printed 7/8/82 1/13/82 6

CSH(1) UNIX Programmer”s Manual CSH(1)

The values of variables may be displayed and changed by using the set
and unset commands. Of the variables referred to by the shell a number
are toggles; the shell does not care what their value is, only whether
they are set or not. For instance, the yverbose variable is a toggle
which causes command input to be echoed. The setting of this wvariable
results from the -v command line option.

Other operations treat variables numerically. The “@° command permits
numeric calculations to be performed and the result assigned to a vari-
able. Variable values are, however, always represented as (zero or
more) strings. For the purposes of numeric operatiomns, the null string
is considered to be zero, and the second and subsequent words of multi-
word values are ignored.

After the input line is aliased and parsed, and before each command is
executed, variable substitution is performed keyed by “$° characters.
This expansion can be prevented by preceding the “$” with a “\” except
within “"“s where it always occurs, and within “““s where it never
occurs. Strings quoted by ““° are interpreted later (see Command sub-
stitution below) so “$” substitution does not occur there until later,
if at all. A “$° is passed unchanged if followed by a blank, tab, or
end-of-line.

Input /output redirections are recognized before variable expansion, and
are variable expanded separately. Otherwise, the command name and
entire argument list are expanded together. It is thus possible for the
first (command) word to this point to generate more than one word, the
first of which becomes the command name, and the rest of which become
arguments.

Unless enclosed in “"” or given the “:q” modifier the results of vari-
able substitution may eventually be command and filename substituted.
Within “"“ a variable whose value consists of multiple words expands to
a (portion of) a single word, with the words of the variables value
separated by blanks. When the “:q” modifier is applied to a substjtu-
tion the variable will expand to multiple words with each word separated
by a blank and quoted to prevent later command or filename substitution.

Metasequences for variable substitution

The following metasequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a
variable which is not set.

$name

${name}
Are replaced by the words of the value of variable name, each
separated by a blank., Braces insulate name from following charac-
ters which would otherwise be part of it. Shell variables have
names consisting of up to 20 letters and digits starting with a
letter. The underscore character is considered a letter.
If name is not a shell variable, but is set in the enviromment,

Printed 7/8/82 1/13/82 7

CSH(1) UNIX Programmer”s Manual CSu(1)

then that value is returned (but : modifiers and the other furis
given below are not available in this case).

$name[selector]

${name[selector]}
May be used to select only some of the words from the value !
pame. The selector is subjected to “$“ substitution and may consis:
of a single number or two numbers separated by a “-=". The first
word of a variables value is numbered “1°. If the first number of
a range is omitted it defaults to “1°. If the 1last member of a
range is omitted it defaults to “$#name”. The selector “%” selects
all words. It is not an error for a range to be empty if the

second argument is omitted or in range.

$#name

${#name}
Gives the number of words in the variable. This is wuseful o
later use in a “[selector]”’.

$0
Substitutes the name of the file from which command input is bein
read. An error occurs if the name is not known.

$number
${number}
' Equivalent to “$argv[number]”.

$x
Equivalent to “Sargvl«]”.

The modifiers “:h”, “:t”, “:r”, “:q” and “:x” may be applied to the sub-
stitutions above as may “:gh”, “:gt” and “:gr”. 1If braces “{~ "}~
appear in the command form then the modifiers must appear within the

braces. The current implementation allows only one “:” modifier on each
“$’ expansion.

The following substitutions may not be modified with “:” modifiers.
$7name

${?name}
Substitutes the string “1° if name is set, “0” if it is not.

$70 ~ :
Substitutes “1” if the current input filename is know, 07 if it is
not.

$$
Substitute the (decimal) process number of the (parent) shell.

$<

Substitutes a line from the standard input, with no further
interpretation thereafter. It can be wused to read from the

Printed 7/8/82 1/13/82 : 8

CsH(1) UNIX Programmer”s Manual CSH(1)

keyboard in a shell script.
Command and filename substitution

The remaining substitutions, command and filename substitution, are
applied selectively to the arguments of builtin commands. This means
that portions of expressions which are not evaluated are not subjected
to these expansions. For commands which are not internal to the shell,
the command name is substituted separately from the argument list. This
occurs very late, after input-output redirection is performed, and in a
child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in “~“. The
output from such a command is normally broken into separate words at
blanks, tabs and newlines, with null words being discarded, this text
then replacing the original string. Within “"“s, only newlines force
new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note
that it 1is thus possible for a command substitution to yield only part
of a word, even if the command outputs a complete line.

Filename substitution

If a word contains any of the characters “%x”, “?7, “[“ or “{” or begins
with the character “~°, then that word is a candidate for filename sub-
stitution, also known as “globbing”. This word is then regarded as a
pattern, and replaced with an alphabetically sorted list of file names
which match the pattern. In a list of words specifying filename substi-
tution it is an error for no pattern to match an existing file name, but
it is not required for each pattern to match. Only the metacharacters
‘%« “?° and ‘[” imply pattern matching, the characters "~ and “{”
being more akin to abbreviations.

In matching filenames, the character “.” at the beginning of a filename
or immediately following a “/”, as well as the character “/” must be
matched explicitly. The character “%” matches any string of characters,
including the null string. The character “?° matches any single charac-
ter. The sequence “[...]” matches any one of the characters enclosed.
Within “[...]", a pair of characters separated by “-=" matches any char-
acter lexically between the two.

The character “~° at the beginning of a filename is wused to refer to
home directories. Standing alone, i.e. =7 it expands to the invokers
home directory as reflected in the value of the variable home. When fol-
lowed by a name consisting of letters, digits and “=“ characters the
shell searches for a user with that name and substitutes their home
directory; thus ““ken” might expand to “/usr/ken” and “~“ken/chmach” to
“/usr/ken/chmach”. If the character “~° is followed by a character
other than a letter or “/” or appears not at the beginning of a word, it

Printed 7/21/82 1/13/82 9

CSH(1) UNIX Programmer”s Manual CsH(1)

igs left undisturbed.

The metanotation “a{b,c,d}e” is a shorthand for “abe ace ade”. Left tu
right order is preserved, with results of matches being sorted
separately at a low level to preserve this order. This construct may be
nested. Thus “~source/sl/{oldls,1s}.c” expands to
"/usr/source/sl/oldls.c /usr/source/sl/ls.c" whether or not these files
exist without any chance of error if the home directory for “source” is
“/usr/source”. Similarly “../{memo,#box}” might expand to “../memo
«./box ../mbox”. (Note that “memo” was not sorted with the results of
matching “«box”.) As a special case “{°, “}” and “{}” are passed undis-
turbed.

Input /output

The standard input and standard output of a command may be redirected
with the following syntax:

< name
Open file name (which is first variable, command and filename
expanded) as the standard input.

<< word

Read the shell input up to a line which is identical to word. Word
is not subjected to variable, filename or command substitution, and
each input line is compared to word before any substitutions are
done on this input line. Unless a quoting “\", """, "7 or °°°
appears in word variable and command substitution is performed on
the intervening lines, allowing “\” to quote “$°, “\” and "7".
Commands which are substituted have all blanks, tabs, and newlines
preserved, except for the final newline which is dropped. The
resultant text is placed in an anonymous temporary file which 1is
given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not
exist then it is created; if the file exists, it is truncated, its
previous contents being lost.

If the variable noclobber is set, then the file must not exist or
be a character special file (e.g. a terminal or “/dev/null”) or an
error results. This helps prevent accidental destruction of files.
In this case the “!” forms can be used and suppress this check.

The forms involving “&” route the diagnostic output into the speci-

fied file as well as the standard output. Name is expanded in the
same way as “<” input filenames are.

Printed 7/21/82 1/13/82 10

CsH(1) UNIX Programmer”s Manual CSH(1)

>> name

>>& name

>>! name

>>&! name
Uses file name as standard output like “> but places output at the
end of the file. If the variable noclobber is set, then it is an
error for the file not to exist unless one of the “!° forms is
given. Otherwise similar to “>7.

.

A command receives the enviromment in which the shell was invoked as
modified by the input-output parameters and the presence of the command
in a pipeline. Thus, unlike some previous shells, commands run from a
file of shell commands have no access to the text of the commands by
default; rather they receive the original standard input of the shell.
The “<<” mechanism should be used to present inline data. This permits
shell command scripts to function as components of pipelines and allows
the shell to block read its input.

Diagnostic output may be directed through a pipe with the standard out-
put. Simply use the form “|&” rather than just “|°

Expressions

A number of the builtin commands (to be described subsequently) take
expressions, in which the operators are similar to those of C, with the
same precedence. These expressions appear in the @, exit, if, and wh11e
commands. The following operators are available:

Il & | 1 & == (= =~ 17 <= > < > K > + = % [
z = C)

Here the precedence increases to the right, "==" "l=" "="" ggnq4 "1™V,
"<=" ">=" "<" and “>", ll<<" and ">>“ "+" and n_ "’ "*" "/" and llz"
being, in groups, at the same level. The et "i=t "="" and "1~" opera-
tors compare their arguments as strings; all others operate on numbers.
The operators “=~" and “!™” are like “!=" and “==" except that the right
hand side is a pattern (containing, e.g. “%”s, “?”s and instances of
“[...]1") against which the left hand operand is matched. This reduces
the need for use of the switch statement in shell scripts when all that
is really needed is pattern matching.

Strings which begin with “0” are considered octal numbers. Null or
missing arguments are considered “0°. The result of all expressions are
strings, which represent decimal numbers. It is important to note that
no two components of an expression can appear in the same word; except
when adjacent to components of expressions which are syntactically sig-
nificant to the parser (& 7|7 “<” 7> “(“ 7)) they should be sur-
rounded by spaces.

Alsoc available in expreesions as primitive operands are command eXecu-
tions enclosed in “{” and “}” and file enquiries of the form -1 name”
where 1 is one of:

Printed 7/21/82 1/13/82 11

CSH(1)

UNIX Programmer”s Manual CSH(1)

read access
write access
execute access
existence
ownership

zero size
plain file
directory

ArhN O D X € H

The specified name is command and filename expanded and then tested to
see if it has the specified relationship to the real user. If the file
does not exist or is inaccessible, then all enquiries return false, i.e.
‘0°. Command executions succeed, returning true, i.e. “1°, if the com-
mand exits with status 0, otherwise they fail, returning false, 1i.e.
“0°. If more detailed status information is required then the command
should be executed outside of an expression and the variable status
examined.

CONTROL FLOW

The shell contains a number of commands which can be used to regulate
the flow of control in command files (shell scripts) and (in limited but
useful ways) from terminal input. These commands all operate by forcing
the shell to reread or skip in its input and, due to the implementation,
restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else
form of the if statement require that the major keywords appear in a
single simple command on an input line as shown below.

If the shell”s input is not seekable, the shell buffers up input when—
ever a loop is being read and performs seeks in this internal buffer to
accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto”s will succeed on nonseekable inputs.)

BUILTIN COMMANDS

Builtin commands are executed within the shell. If a builtin command
occurs as any component of a pipeline except the last then it is exe—
cuted in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the
alias for name. The final form assigns the specified wordlist as
the alias of name; wordlist is command and filename substituted.
Name is not allowed to be alias or unalias.

break
Causes execution to resume after the end of the nearest enclosing
foreach or while. The remaining commands on the current line are
executed. Multi-level breaks are thus possible by writing them all
on one line.

Printed 7/21/82 1/13/82 12

CSH(1)

UNIX Programmer”s Manual CsH(1)

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd

cd name

chdir

chdir name .
Change the shells working directory to directory name. If no argu-
ment is given then change to the home directory of the user.
If name is not found as a subdirectory of the current directory
(and does not begin with “/“, “./” or “../”), then each component
of the variable cdpath is checked to see if it has a subdirectory
name. Finally, if all else fails but name is a shell variable whose
value begins with “/“, then this is tried to see if it is a direc-
tory.

continue
Continue execution of the nearest enclosing while or foreach. The
rest of the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should
come after all case labels.

echo wordlist

echo -n wordlist
The specified words are written to the shells standard output,
separated by spaces, and terminated with a newline unless the -n
option is specified.

else

end

endif

endsw
See the description of the foreach, if, switch, and while state-
ments below.

exec command
The specified command is executed in place of the current shell.

exit

exit (expr)
The shell exits either with the value of the status variable (first
form) or with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist

Printed 7/21/82 1/13/82 13

CSH(1) UNIX Programmer”s Manual CSH(1)

and the sequence of commands between this command and the matching
end are executed. (Both foreach and end must appear alone cn
separate lines.)

The builtin command continue may be wused to continue the loop
prematurely and the builtin command break to terminate it prema-
turely. When this command is read from the terminal, the 1loop 1is
read up once prompting with “?° before any statements in the loop
are executed. If you make a mistake typing in a loop at the termi-
nal you can rub it out.

glob wordlist
Like echo but no “\“ escapes are recognized and words are delimited
by mnull characters in the output. Useful for programs which wish
to use the shell to filename expand a list of words.

goto word
The specified word is filename and command expanded to yield a
string of the form “label”. The shell rewinds its input as much as
possible and searches for a line of the form “label:” possibly pre-
ceded by blanks or tabs. Execution continues after the specified
line.

history
Displays the history event list.

if (expr) command .

If the specified expression evaluates true, then the single command
with arguments is executed. Variable substitution on command hap-
pens early, at the same time it does for the rest of the if com-
mand. Command must be a simple command, not a pipeline, a command
list, or a parenthesized command list. Input /output redirection
occurs even if expr is false, when command is not executed (this is
a bug).

if (expr) then
else if (expr2) then

else

endif
If the specified expr is true then the commands to the first else
are executed; else if expr2 is true then the commands to the second
else are executed, etc. Any number of else-if pairs are possible;
only one endif is needed. The else part is likewise optional.
(The words else and endif must appear at the beginning of input
lines; the if must appear alone on its input line or after an
else.)

kill pid

Printed 7/21/82 1/13/82 14

CSH(1)

UNIX Programmer”s Manual CsH(1)

kill -sig pid ...

kill -1
Sends either the TERM (terminate) signal or the specified signal to
the specified processes. Signals are either given by number or by
names (as given in /usr/include/signal.h, stripped of the prefix
"SIG"). The signal names are listed by "kill -1". There is no
default, saying just “kill” does not send a signal to the current
process. If the signal being sent is TERM (terminate) or HUP
(hangup), then the job or process will be sent a CONT (continue)
signal as well.

login
Terminate a login shell, replacing it with an instance of
/bin/login. This is one way to log off, included for compatibility
with sh(1). **

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. The second form
sets the nice to the given number. The final two forms run command
at priority 4 and number respectively. The super—user may specify
negative mniceness by using “nice -number ...”°. Command is always
executed in a sub-shell, and the restrictions place on commands in
simple if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be
ignored for the remainder of the script. The second form causes
the specified command to be run with hangups ignored. All
processes detached with “&” are effectively nohup”ed.

onintr

onintr -

onintr label
Control the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command input
level. The second form “onintr =" causes all interrupts to be
ignored. The final form causes the shell to execute a “goto label”
when an interrupt is received or a child process terminates because
it was interrupted.

In any case, if the shell is running detached and interrupts are
being ignored, all forms of gnintr have no meaning and interrupts
continue to be ignored by the shell and all invoked commands.

Printed 7/21/82 1/13/82 15

CSH(1) UNIX Programmer”s Manual CSH(1)

rehash
Causes the internal hash table of the contents of the directories
in the path variable to be recomputed. This is needed if new com-—
mands are added to directories in the path while you are logged in.
This should only be necessary if you add commands to one of your
own directories, or if a systems programmer changes the contents of
one of the system directories.

repeat count command
The specified command which is subject to the same restrictions as
the command in the one line if statement above, is executed count
times. I/0 redirections occur exactly once, even if count is O.

set

set name

set name=word

set name[index]=word

set name=(wordlist)
The first form of the command shows the value of all shell vari-
ables. Variables which have other than a single word as value
print as a parenthesized word list. The second form sets name to
the null string. The third form sets name to the single word. The
fourth form sets the index“th component of name to word; this com—
ponent must already exist. The final form sets name to the list of
words in wordlist. In all cases the value is command and filename
expanded.

These arguments may be repeated to set multiple values in a single
set command. Note however, that variable expansion happens for all
arguments before any setting occurs.

setenv name value
Sets the value of enviromment variable name to be yalue, a single
string. The variable PATH 1is automatically imported to and
exported from the csh variable path; there is no need to use setenv
for these.

shift

shift variable
The members of argv are shifted to the left, discarding argv[l]. It
is an error for argv not to be set or to have less than one word as
value. The second form performs the same function on the specified
variable.

source name
The shell reads commands from name. Source commands may be nested;
if they are nested too deeply the shell may run out of file
descriptors. An error in a source at any level terminates all
nested source commands. Input during source commands is never
placed on the history list.

Printed 7/21/82 1/13/82 16

CSH(1) UNIX Programmer”s Manual CSH(1)

switch (string)
case strl:

breaksw

default:
breaksw

endsw
Each case label 1is successively matched against the specified
string which is first command and filename expanded. The file
metacharacters “%“, “?° and “[...]” may be used in the case labels,
which are variable expanded. If none of the labels match before a
“default” label is found, then the execution begins after the
default 1label. Each case label and the default label must appear
at the beginning of a line. The command breaksw causes execution
to continue after the endsw. Otherwise control may fall through
case labels and default labels as in C. If no 1label matches and
there is no default, execution continues after the endsw.

time

time command
With no argument, a summary of time used by this shell and its
children is printed. If arguments are given the specified simple
command is timed and a time summary as described under the time
variable is printed. If necessary, an extra shell is created to
print the time statistic when the command completes.

umask

umask value
The file creation mask is displayed (first form) or set to the
specified value (second form). The mask is given in octal. Common
values for the mask are 002 giving all access to the group and read
and execute access to others or 022 giving all access except no
write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded.
Thus all aliases are removed by “unalias %”. It is not an error
for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed pro—
grams is disabled.

unset pattern
All variables whose names match the specified pattern are removed.
Thus all variables are removed by “unset %“; this has noticeably
distasteful side-~effects. It is not an error for nothing to be
unset.

Printed 7/21/82 1/13/82 . 17

CSH(1) UNIX Programmer”s Manual CSH(1)

wait
All background jobs are.waited for. If the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and job numbers of all jobs known to be outstanding.

while (expr)

end
While the specified expression evaluates nonzero, the commands
between the while and the matching end are evaluated. Break and
continue may be used to terminate or continue the loop prematurely.
(The while and end must appear alone on their input lines.) Prompt-
ing occurs here the first time through the loop as for the foreach
statement if the input is a terminal.

@

@ name = expr

@ name[index] = expr
The first form prints the values of all the shell variables. The
second form sets the specified name to the value of expr. If the
expression contains <7, “>“, “&” or “|” then at least this part of
the expression must be placed within “(° “)°. The third form
assigns the value of expr to the index“th argument of name. Both
name and its index“th component must already exist.

The operators “#=", “#+=", etc are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are, however, mandatory in separating components of expr
which would otherwise be single words.

Special postfix “++” and “=-" operators increment and decrement

name respectively, i.e. “@ i++”,

PRE-DEFINED AND ENVIRONMENT VARIABLES
The following variables have special meaning to the shell. Of these,
argv, home, path, prompt, shell and status are always set by the shell.
Except for status this setting occurs only at initialization; these
variables will not then be modified unless this is done explicitly by
the user.

This shell copies the enviromment variable USER into the variable user,
TERM into term, and HOME into home, and copies these back into the
enviromment whenever the normal shell variables are reset. The environm
ment variable PATH 1is likewise handled; it is not necessary to worry
about its setting other than in the file .cshrc as inferior csh
processes will import the definition of path from the enviromment, and
re—export it if you then change it.

argv Set to the arguments to the shell, it is from this vari-
able that positional parameters are substituted, i.e.
“$1° is replaced by "S$argv[1l]", etc.

Printed 7/21/82 1/13/82 18

CSH(1)

cdpath

echo

history

home

ignoreeof

mail

noclobber

noglob

nonomatch

Printed 7/21/82

UNIX Programmer”s Manual CsH(1)

Gives a list of alternate directories searched to find
subdirectories in chdir commands.

Set when the -x command line option 1is given. Causes
each command and its arguments to be echoed just before
it is executed. For non-builtin commands all .expansions
occur before echoing. Builtin commands are echoed before
command and filename substitution, since these substitu-
tions are then done selectively.

Can be given a numeric value to control the size of the
history 1list. Any command which has been referenced in
this many events will not be discarded. Too large values
of history may run the shell out of memory. The last
executed command is always saved on the history list.

The home directory of the invoker, initialized from the
enviromment. The filename expansion of “~° refers to
this variable.

If set the shell ignores end-of-file from input devices
which are terminals. This prevents shells from acciden
tally being killed by control-D"s.

The files where the shell checks for mail. This is done
after each command completion which will result in a
prompt, if a specified interval has elapsed. The shell
says “You have new mail.” if the file exists with an
access time not greater than its modify time.

If the first word of the value of mail is numeric it
specifies a different mail checking interval, in seconds,
than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says
"New mail in name” when there is mail in the file name.

As described in the section on Input/output, restrictions
are placed on output redirection to insure that files are
not accidentally destroyed, and that “>>° redirections
refer to existing files.

If set, filename expansion is inhibited. This is most
useful in shell scripts which are not dealing with
filenames, or after a list of filenames has been obtained
and further expansions are not desirable.

If set, it is not an error for a filename expansion to
not match any existing files; rather the primitive pat-
tern is returned. It is still an error for the primitive
pattern to be malformed, i.e. "echo [" still gives an

1/13/82 19

CsH(1) UNIX Programmer”s Manual CSH(1)

error.

path Each word of the path variable specifies a directory 1in
which commands are to be sought for execution. A null
word specifies the current directory. If there 1is no
path variable then only full path names will execute.
The usual search path is “.”, “/bin” and “/usr/bin”, but
this may vary from system to system. For the super—user
the default search path is “/etc”, “/bin” and “/usr/bin”.
A shell which is given neither the -c nor the -t option
will normally hash the contents of the directories in the
path variable after reading .cshrc, and each time the
path variable is reset. If new commands are added to
these directories while the shell is active, it may be
necessary to give the rehash or the commands may not be
found.

prompt The string which is printed before each command is read
from an interactive terminal input. If a “!” appears in
the string it will be replaced by the current event
number unless a preceding “\” is given. Default is ‘% °,
or “# “ for the super-user.

shell The file in which the shell resides. This is wused in
forking shells to interpret files which have execute bits
set, but which are not executable by the system. (See
the description of Non-builtin Command Execution below.)
Initialized to the (system-dependent) home of the shell.

status The status returned by the 1last command. If it ter—
minated abnormally, then 0200 is added to the status.
Builtin commands which fail return exit status “17, all
other builtin commands set status “0°.

time Controls automatic timing of commands. If set, them any
command which takes more than this many cpu seconds will
cause a line giving user, system, and real times and a
utilization percentage which 1is the ratio of user plus
system times to real time to be printed when it ter-
minates.

verbose Set by the -v command line option, causes the words of
each command to be printed after history substitution.

NON-BUILTIN COMMAND EXECUTION
When a command to be executed is found not to be a builtin command the
shell attempts to execute the command via exec(2). Each word in the
variable path names a directory from which the shell will attempt to
execute the command. If it is given neither a —c nor a -t option, the
shell will hash the names in these directories into an internal table so
that it will only try an exec in a directory if there is a possibility
that the command resides there. This greatly speeds command location

Printed 7/21/82 1/13/82 20

CSH(1) UNIX Programmer”s Manual CSH(1)

when a large number of directories are present in the search path. If
this mechanism has been turned off (via unhash), or if the shell was
given a -c or -t argument, and in any case for each directory component
of path which does not begin with a “/“, the shell concatenates with the
given command name to form a path name of a file which it then attempts
to execute.

Parenthesized commands are always executed in a subshell. Thus "(cd
pwd) ; pwd" prints the home directory; leaving you where you were
(printing this after the home directory), while "cd ; pwd" leaves you in
the home directory. Parenthesized commands are most often used to
prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to
the system, then it is assumed to be a file containing shell commands an
a new shell is spawned to read it.

If there is an glias for shell then the words of the alias will be
prepended to the argument 1list to form the shell command. The first
word of the alias should be the full path name of the shell (e.g.
"S$shell"). Note that this is a special, late occurring, case of alias
substitution, and only allows words to be prepended to the argument list
without modification.

ARGUMENT LIST PROCESSING

If argument O to the shell is “-” then this is a login shell. The - flag
arguments are interpreted as follows: :

-c Commands are read from the (single) following argument which must
be present. Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally or
yields a non-zero exit status.

-f The shell will start faster, because it will neither search for nor
execute commands from the file ".cshrc" in the invokers home direc-
tory.

-i The shell is interactive and prompts for its top-level input, even
if it appears to not be a terminal. Shells are interactive without
this option if their inputs and outputs are terminals.

-n Commands are parsed, but not executed. This may aid in syntactic
checking of shell scripts. |

-5 Command input is taken from the standard input.
-t A single line of input is read and executed. A “\” may be used to
escape the newline at the end of this line and continue onto

another line.

-v Causes the verbose variable to be set, with the effect that command

Printed 7/21/82 . 1/13/82 21

CSH(1) UNIX Programmer”s Manual CsH(1)

input is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set even before “.cshrc” is exe-
cuted.

=X Is to =x as =V is to =-v.

After processing of flag arguments, if arguments remain but none of the
-c, =i, -8, Oor -t options was given, the first argument is taken as the
name of a file of commands to be executed. The shell opens this file,
and saves its name for possible resubstitution by “$0°. Remaining argu-
ments initialize the variable argv.

SIGNAL HANDLING

The shell normally ignores guit signals. Processes running in back-
ground (by “&°) are immne to signals generated from the keyboard,
including hangups. Other signals have the values which the shell inher-
ited from 1its parent. The shells handling of interrupts and terminate
signals in shell scripts can be controlled by onintr. Login shells catch
the terminate signal; otherwise this signal is passed on to children
from the state in the shell’s parent. In no case are interrupts allowed
when a login shell is reading the file ".logout".

AUTHOR
William Joy.

FILES
~/.cshrc Read at beginning of execution by each shell.
~/.login Read by login shell, after “.cshrc” at login.
~/.logout Read by login shell, at logout.
/bin/sh Standard shell, for shell scripts not starting

with a “#7.

/tmp/shx Temporary file for “<<”.
letc/passwd Source of home directories for ““name”.

LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument
lists to 5120 characters. The number of arguments to a command which
involves filename expansion is limited to 1/6”°th the number of charac~
ters allowed in an argument list. Command substitutions may substitute
no more characters than are allowed in an argument 1list. To detect
looping, the shell restricts the number of alias substitutions on a sin-
gle line to 20.

SEE ALSO
sh(l1), access(2), exec(2), fork(2), pipe(2), signal(2), umask(2),
wait(2), tty(4), a.out(5), environ(5),
and especially, "An introduction to the C shell” by William Joy.

Printed 7/21/82 1/13/82 22

CSH(1)

BUGS

UNIX Programmer’s Manual CSH(1)

It suffices to place the sequence of commands in ()“s to force it to a
subshell, i.e. “(a ; b ; ¢)7.

Control over tty output after processes are started is primitive;
perhaps this will inspire someone to work on a good virtual terminal
interface. In a virtual terminal interface much more interesting things
could be done with output control.

Alias substitution is most often used to clumsily simulate shell pro-
cedures; shell procedures should be provided rather than aliases.

Commands within loops, prompted for by “?“, are not placed in the his-
tory list. Control structure should be parsed rather than being recog-
nized as built-in commands. This would allow control commands to be
placed anywhere, to be combined with “|“, and to be used with “&” and

LA 4

;7 metasyntax.
It should be possible to use the “:~
substitutions. All and more than one
“$” substitutions.

modifiers on the output of command
“:” modifier should be allowed on

Printed 7/21/82 1/13/82 23

CTAGS(1) UNIX Programmer”s Manual CTAGS(1)

NAME

ctags - maintain a tags file for a C program
SYNOPSIS

ctags [-a] [-u] [-w] [-x] name ...
DESCRIPTION

Ctags makes a tags file for ex(l) and yi(l) from the specified C, For-
tran, and Pascal sources.

A tags file gives the locations of specified objects (in this case func-
tions) in a group of files. Each line of the tags file contains the
function name, the file in which it is defined, and a scanning pattern
used to find the function definition. These are given in separate
fields on the line, separated by blanks or tabs. Using the tags file,
ex can quickly find these function definitions.

OPTIONS

The -a option causes the output to be appended to the tags file instead
of rewriting it.

The -u option causes the specified files to be updated in tags, that is,
all references to them are deleted, and the new values are appended to
the file. This option implies the —a option. (Beware: this option is
implemented in a way which is rather slow; it is usually faster to sim-
ply rebuild the tags file.)

The -w option suppresses warning diagnostics.

If the -x flag is given, ctags produces a list of function names, the
line number and file name on which each is defined, as well as the text
of that line and prints this on the standard output.

Files whose name ends in .c or .h are assumed to be C source files and
are searched for C routine and macro definitions.

The tag main is treated specially in C programs. The tag formed 1is
created by prepending M to the name of the file, with a trailing .c
removed, if any, and leading pathname components also removed. This
makes use of ctags practical in directories with more than one program.

EXAMPLE

FILES

ctags %.c %*.h

puts the tags from all the ".c" and ".h" files into the tagsfile tags.

tags output tags file

SEE ALSO

ex(1), vi(1)

Printed 7/8/82 1/27/82 1

CTAGS(1) UNIX Programmer”s Manual CTAGS(1)

AUTHOR
Ken Arnold

Printed 7/8/82 1/8/82 2

cu(lc)

UNIX Programmer”s Manual cu(ic)

NAME

cu - call UNIX
SYNOPSIS

cu telno [-t] [-n [-s speed 1 [=a acu] [-1 line] [-b]
DESCRIPTION

Cu calls up another UNIX system, a terminal, or possibly a nonUNIX sys-
tem. It manages an interactive comversation with possible transfers of
text files. Telno is the telephone number, with minus signs at
appropriate places for delays. The -t flag is used to dial out to a
terminal. Speed gives the transmission speed (110, 134, 150, 300,
1200); 300 is the default value.

The -a and -1 values may be used to specify pathnames for the ACU and
communications line devices. They can be used to override the fol lowing
built—-in choices:

-a /dev/cual -1 /dev/cul0

The -n option, where n is a single digit, changes the last character of

the ACU and communications line to n. It is an abbreviation for -a
/dev/cuan -1 /dev/culp.

After making the connection, cu runs as two processes: the send process
reads the standard input and passes most of it to the remote system; the
receive process reads from the remote system and passes most data to the
standard output. Lines beginning with *~° have special meanings.

The send process interprets the following:

terminate the conversation.

~EOT terminate the conversation
“<file send the contents of file to the remote system, as

though typed at the terminal.

=~z suspend the cu process. Note that the control-Z must
be followed by a newline.

~# sends a break.

=1 invoke an interactive shell on the local system.

“lemd ... run the command on the local system (via sh =-c).

~$emd ... run the command locally and send its output to the

remote system.

~“Ztake from [to] copy file “from” (on the remote system) to file “to”
on the 1local system. If “to” is omitted, the “from”
name is used both places.

Printed 7/28/82 4/1/81 1

cu(ic)

FILES

UNIX Programmer”s Manual cu(lc)

~%put from [to] copy file “from” (on local system) to file “to” on
remote system. If “to” is omitted, the “from” name is
used both places.

during an output diversion, this toggles whether the
operation of cu will be silent, i.e., whether informa-
tion received from the foreign system will be written
to the standard output. This allows a ~“progress
report”” during long transfers.

-~ - <o L4

e send the line cee o

Both the send and receive processes handles output diversions of the
following form:

~>[>]1[:]1file
zero or more lines to be written to file
~>

In any case, output is diverted (or appended, if “>>“ used) to the file.
If :° is used, the diversion is silent, i.e., it is writtenm only to the
file. If “:” is omitted, output is written both to the file and to the
standard output. The trailing ~7>° terminates the diversion.

The use of “Zput requires stty and cat on the remote side. It also
requires that the current erase and kill characters on the remote system
be identical to the current ones on the local system, Backslashes are
inserted at appropriate places.

The use of “%take requires the existence of echo and tee on the remote
system. Also, stty tabs mode is required on the remote system if tabs
are to be copied without expansion.

Finally, the -b flag specifies that nulls are to be turned into breaks.
This allows the break key (and also control-shift-@) to send a break.

/dev/cual
/dev/cull
/dev/null
/ust/spool/uucp/LCK..culall[0-7]

SEE ALSO

rv(4), tty(4)

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, nonzero (various values) otherwise.

Only mail(l) uses syntax anything like the syntax of cu.

Printed 7/28/82 2

DATE(1) UNIX Programmer”s Manual DATE(1)

NAME
date - print and set the date

SYNOPSIS
date [yy[mm([dd(hh[mm[.ss]]1]11]]

DESCRIPT ION
If no argument is given, the current date and time are printed. If an
argument 1is given, the current date is set. yy is the last two digits
of the year; the first mm is the month number; dd is the day number in
the month; hh is the hour number (24 hour system); the second mm is the
minute number; .ss is optional and is the seconds.

EXAMPLE
date 10080045

sets the date to Oct 8, 12:45 AM. The year, month and day may be omit~
ted, the current values being the defaults. The system operates in GMT
(Greenwich Mean Time). Date takes care of the comversion to and from
local standard and daylight time.

FILES
/ust/adm/wtmp to record time-setting

DIAGNOSTICS
"No permission” if you aren”t the super-user and you try to change the
date; "bad conversion" if you are the super—user but the date set is

syntactically incorrect.

Printed 7/21/82 1/6/82 1

DC(1) UNIX Programmer”s Manual DC(1)

NAME
dc - desk calculator

SYNOPSIS
de [file]

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but one may specify an input base numbering system
such as base 8 or base 16, an output base, and a number of fractional
digits to be maintained. The overall structure of dc is a stacking
(reverse Polish) calculator. If an argument is given, input is taken
from that file until its end, then from the standard input. The fol low-
ing constructions are recognized:

number
The value of the number is pushed on the stack. A number 1is an
unbroken string of the digits 0-9. Negative numbers for input are
indicated by being immediately preceded by an underscore _.
Numbers may contain decimal points.

+ -/ % % °
The top two values on the stack are added (+), subtracted (-),
multiplied (%), divided (/), remaindered (%), or exponentiated
("). The two entries are popped off the stack; the result is
pushed on the stack in their place. Any fractional part of an
exponent is ignored.

X The top of the stack is popped and stored into a register named X,
where x may be any character. If the s is capitalized, x is
treated as a stack and the value is pushed on it.

1x The value in register x is pushed on the stack. The register x is
not altered. All registers start with zero value. If the 1 is
capitalized, register x is treated as a stack and its top value is
popped onto the main stack.

d The top value on the stack is duplicated.

P The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ascii string,
removes it, and prints it.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

x treats the top element of the stack as a character string and exe-
cutes it as a string of dc commands.

Printed 6/30/82 1/8/82 1

DC(1)

[...

UNIX Programmer”’s Manual ' DC(1)

replaces the number on the top of the stack with its scale factor.

]

puts the bracketed ascii string onto the top of the stack.

<x >x =x

EXAMPLES

The_fop two elements of the stack are popped and compared. Regis-
ter x is executed if they obey the stated relation.

replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account,
but otherwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.

All values on the stack are popped.

The top value on the stack is popped and used as the number radix
for further input. I opushes the input base on the top of the

stack.

The top value on the stack is popped and used as the number radix
for further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non
negative scale factor: the appropriate number of places are
printed on output, and maintained during multiplication, division,
and exponentiation. The interaction of scale factor, input base,
and output base will be reasonable if all are changed together.
The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the termi-
nal) and executed.

dc
24,2 56.2 + p

adds the two numbers and prints the result (top value in the stack).

To exit from dec, hit control-d (EOF).

DIAGNOSTICS
"x is

unimplemented" where x is an octal number.

"stack empty" for not enough elements on the stack to do what was asked.
"Out of space" when the free list is exhausted (too many digits).

Printed 6/30/82 1/8/82 2

DpCc(1) UNIX Programmer”s Manual ‘ DC(1)

"Out of headers" for too many numbers being kept around.
"Out of pushdown" for too many items on the stack.
"Nesting Depth" for too many levels of nested execution.

Printed 6/30/82 1/7/82 3

DCHECK(1M) UNIX Programmer”’s Manual DCHECK(1M)

NAME
dcheck - file system directory consistency check

SYNOPSIS
dcheck [-i numbers] [filesystem]

DESCRIPTION
N.B.: Dcheck has been made obsolete for normal consistency checking by
fsck(1M).
Dcheck reads the directories in a file system and compares the link-
count in each i-node with the number of directory entries by which it is
referenced. If the file system is not specified, a set of default file
systems is checked.
The -i flag is followed by a list of i-numbers; when one of those i-
numbers turns up in a directory, the number, the i-number of the direc-
tory, and the name of the entry are reported.
The program is fastest if the raw version of the special file 1is wused,
since the i-list is read in large chunks.

EXAMPLE

dcheck /dev/rdiskl

checks the consistency of the device xdisgkl.

FILES
Default file systems vary with installation.

SEE ALSO
fsck(1M), icheck(1M), filsys(5), clri(1M), ncheck(1lM)

DIAGNOSTICS
When a file turns up for which the link-count and the number of direc-
tory entries disagree, the relevant facts are reported. Allocated files
which have 0 link-count and no entries are also listed. The only
dangerous situation occurs when there are more entries than links; if
entries are removed, so the link-count drops to 0, the remaining entries
point to thin air. They should be removed. When there are more links
than entries, or there is an allocated file with neither 1links nor
entries, some disk space may be lost but the situation will not degen—
erate.

BUGS

Since dcheck is inherently two-pass in nature, extraneous diagnostics
may be produced if applied to active file systems.

Dcheck has been superseded by fsck and remains for historical reasons.

Printed 6/30/82 1/20/82 1

DD(1) UNIX Programmer”s Manual DD(1)

NAME

dd - convert and copy a file
SYNOPSIS

dd [option=value] ...
DESCRIPTION

Dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The
input and output block size may be specified to take advantage of raw
physical I/0.

option values |

if= input file name; standard input is default

of= output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and

obs; also, if no comversion is specified, it is particu-
larly efficient since no copy need be done

cbs=n conversion buffer size
skip=n skip n input records before starting copy
files=n skip n input files before starting copy
seek=n seek n records from beginning of output file before copy-
ing
count=n copy only n input records
conv=ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
block convert variable length records to fixed length
unblock convert fixed length records to variable length
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs

s 3 ose Several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may
end with k, b or w to specify multiplication by 1024, 512, or 2 respec-
tively; a pair of numbers may be separated by x to indicate a product.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion 1is
specified. In the first two cases, cbs characters are placed into the
conversion buffer, any specified character mapping is done, trailing
blanks trimmed and new-line added before sending the line to the output.
In the latter three cases, characters are read into the comversion
buffer, and blanks added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input and
output blocks.

Printed 6/30/82 1/7/82 1

DD(1) UNIX Programmer”s Manual DD(1)

EXAMPLES
dd if=filename conv=ucase

changes the alphabetics in the input file file to upper case and writes
to the standard output.

dd if=/dev/mt0 of=x ibs=800 cbs=80 conv=ascii,lcase

reads an EBCDIC tape blocked ten 80-byte card images per record into the
ASCII file x. Note the use of raw magtape. Dd is especially suited to
I1/0 on the raw physical devices because it allows reading and writing in
arbitrary record sizes.

SEE ALSO
ep(l), tr(l)

DIAGNOSTICS

f+p records in(out): numbers of full and partial records (blocks)
read/written

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character
standard in the CACM Nov, 1968. The “ibm” conversion, while less
blessed as a standard, corresponds better to certain IBM print train
conventions. There is no universal solution.

Printed 6/30/82 1/27/82 2

a

DELTA(1) UNIX Programmer”s Manual DELTA(1)

NAME

delta - make a delta (change) to an SCCS file
SYNOPSIS

delta [-rSID] [-s] [-n] [-glist] [-mlmrlist]] [-y[comment]] [-p] files
DESCRIPTION

Delta is used to permanently introduce into the named SCCS file changes
that were made to the file retrieved by get(l) (called the g-file, or
generated file).

Delta makes a delta to each named SCCS file. If a directory 1is named,
delta behaves as though each file in the directory were specified as a
named file, except that nomSCCS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read (see WARNINGS); each line
of the standard input is taken to be the name of an SCCS file to be pro-
cessed.

Delta may issue prampts on the standard output depending wupon certain
keyletters specified and flags (see admin(l)) that may be present in the
SCCS file (see -m and -~y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary
only if two or more outstanding gets for editing
(get -e) on the same SCCS file were done by the same
person (login name). The SID value specified with
the =-r keyletter can be either the SID specified on
the get command line or the SID to be made as
reported by the get command (see get(l)). A diag-
nostic results if the specified SID is ambiguous,
or, if necessary and omitted on the command line.

-5 Suppresses the issﬁe, on the standard output, of the
created delta”s SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).

-glist Specifies a list (see get(l) for the definition of
list) of deltas which are to be ignored when the
file is accessed at the change level (SID) created
by this delta.

-wlmrlist] If the SCCS file has the v flag set (see admin(l))
then a Modification Request (MR) number must be sup-
plied as the reason for creating the new delta.

Printed 6/30/82 : 1

DELTA(1)

-y[comment]

-P

FILES

UNIX Programmer”s Manual DELTA(1)

If -m is not used and the standard input is a termi-
nal, the prompt MRs? is issued on the standard out-
put before the standard input is read; if the stan-
dard input 1is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments? prompt
(see -y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped new-line character ter-
minates the MR list.

Note that if the v flag has a value (see admin(l)),
it 1is taken to be the name of a program (or shell
procedure) which will validate the correctness of
the MR numbers. If a nomzero exit status is
returned from MR number validation program, delta
terminates (it is assumed that the MR numbers were
not all valid).

Arbitrary text used to describe the reason for mak-
ing the delta. A null string is considered a valid
comment.

If -y is not specified and the standard input 1is a
terminal, the prompt comments? ‘is 1issued on the
standard output before the standard input 1is read;
if the standard input is not a terminal, no prompt
is issued. An unescaped new-line character ter-
minates the comment text.

Causes delta to print (on the standard output) the
SCCS file differences before and after the delta is
applied in a diff(1) format.

All files of the form ?-file are explained in the Source Code (Control

System User’s
described there.

g-file
p-file
g-file
- x-file
z-file
d-file

/usr/bin/bdiff

Printed 6/30/82

Guide. The naming convention for these files is also

Existed before the execution of delta; removed after
completion of delta.

Existed before the execution of delta; may exist after
completion of delta.

Created during the execution of delta; removed after
completion of delta.

Created during the execution of delta; renamed to SCCS
file after completion of delta.

Created during the execution of delta; removed during
the execution of delta.

Created during the execution of delta; removed after
completion of delta.

Program to compute differences between the 'gotten"

DELTA(1) UNIX Programmer”s Manual DELTA(1)

file and the g-file.

WARNINGS
Lines beginning with an SOH ASCII character (binary 001) cannot be
placed in the SCCS file unless the SOH is escaped. This character has
special meaning to SCCS (see sccsfile(5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multi-
ple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m
(if necessary) and -y keyletters must also be present. Omission of
these keyletters cause$ an error to occur.

SEE ALSO
admin(l), bdiff(l), get(l), help(l), prs(l), sccsfile(5).

Source Code Control System User”s Guide by L. E. Bonanni and C. A,
Salemi.

DIAGNOSTICS
Use help(l) for explanations.

Printed 6/30/82 3

DEROFF(1) UNIX Programmer”s Manual DEROFF(1)

NAME
deroff - remove nroff, troff, tbl and eqn constructs

SYNOPSIS
deroff [-w] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and troff com-
mand lines, backslash constructions, macro definitions, egn constructs
(between “.EQ” and “.EN” lines or between delimiters), and table
descriptions and writes the remainder on the standard output.
Deroff follows chains of included files (“.s0” and “.nx” commands); if a
file has already been included, a “.so” is ignored and a “.nx” ter—
minates execution. If no input file is given, deroff reads from the
standard input file.
If the -w flag is given, the output is a word list, one “word” (string
of letters, digits, and apostrophes, beginning with a letter; apos-
trophes are removed) per line, and all other characters ignored. Other-
wise, the output follows the original, with the deletions mentioned
above.

EXAMPLE

deroff textfile

Removes all nroff, troff, and macro definitions from textfile.

SEE ALSO
trof£(1), eqn(l), tbl(l)

BUGS

Deroff is not a complete troff interpreter, so it can be confused by
subtle constructs. Most errors result in too much rather than too lit-
‘tle output.

Printed 6/30/82 1/7/82 1

DF(1) UNIX Programmer”s Manual DF(1)

NAME
df - disk free

SYNOPSIS
df [filesystem ...] [file ...]

DESCRIPTION

Df prints out the number of free blocks available on the specified
filesystem, e.g. "/dev/rw0a". 1If no file system is specified, the free
space on all of the mounted file systems plus the systems listed in
/etc/checklist are printed.

The reported numbers are in file system block units. Each filesystem
block is 512 bytes long.

EXAMPLE
df /dev/rwla

would report the number of free disk blocks [512 bytes each] on
/dev/rwla.

FILES

/etc/mtab list of currently mounted filesystems
letc/checklist list of normally mounted filesystems

SEE ALSO
icheck(1M)

Printed 7/21/82 1/29/82 1

DIFF(1) UNIX Programmer”s Manual DIFF(1)

NAME

diff - differential file comparator

SYNOPSIS

diff [-efb] filel file2

DESCRIPTION

Diff tells what lines must be changed in two files to bring them into
agreement., If either one of the files is represented by “=“, the stanm
dard input is used.

Moreover, one of the file names could be that of a directory: in this
case the comparison is between two files of the same name. Either the
file or the directory can be named first for the diff, but the directory
must be a sub-directory of file's directory (i.e. below it in the tree
structure).

The output from a diff produces lines of these forms:

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. 1In fact, by exchanging “a“
for “d” and reading backward one may ascertain equally how to comvert
file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n&4
are abbreviated as a single number.

Following each of these lines come all the lines that are affected in
the first file flagged by “<”, then all the lines that are affected in
the second file flagged by “>7.

The -b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of a, ¢ and d commands for the editor
ed, which will recreate file2 from filel. The -f option produces a
similar script, not useful with ed, in the opposite order. In connec-
tion with =-e, the following shell program may help maintain multiple
versions of a file. Only an ancestral file ($1) and a chain of
version-to-version ed scripts ($2,$3,...) made by diff need be on hand.
A “latest version” appears on the standard output.

(shift; cat $%; echo “1,8p7) | ed - $§1

Except in rare circumstances, diff finds a smallest sufficient set of
file differences. '

EXAMPLE

diff -e filel file2

Printed 7/28/82 1/8/82 1

DIFF(1) UNIX Programmer”s Manual DIFF(1)

where filel and file2 are two versions of the manual text for the cp
command, produces:

35,41d
27¢c
In the second form, one or more

18,25¢
existed; the mode of the source file
is used otherwise.

15¢
The mode and owner of
10c¢
file ... directory
Tc
filel file2
1,3¢
.TH CP 1
.SH NAME

Following this ed script would transform filel into file2, line for line
and character for character.

FILES
/usr/lib/diffh to compare big files

SEE ALSO
cmp(1l), comm(l), ed(1l)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS
Editing scripts produced under the -e or -f option are naive about

L L4

creating lines consisting of a single “.”.

Printed 7/28/82 1/8/82 2

DIFFDIR(1) UNIX Programmer”s Manual DIFFDIR(1)

NAME
diffdir - diff directories

SYNOPSIS
diffdir [=h] [-s] dirl dir2

DESCRIPTION
Diffdir does diffs on directories recursively by sorting the contents of
the directories by name and then running diffs on text files which are
different. Object files which differ and files which appear in only one
directory are also listed.
The -h option causes diffdir to paginate its output, and to summarize
binary differences and files in only one place at the end of the diff.
Each individual diff is run through an appropriate pr.
The -s option causes files which are the same to be reported; normally
they are omitted.

EXAMPLES

diffdir dirl dir2

compares all the files in two directories and reports differences, by
line number, for similar files. Unique files are simply listed.

FILES
/ust /bin/cmp compare two files

SEE ALSO
diff(1)

AUTHOR
Bill Joy

BUGS

Program should pass flags through to diff.

Printed 7/28/82 1/7/82 1

DISKFORMAT(1) UNIX Programmer”s Manual DISKFORMAT(1)

NAME
diskformat - format a disk
SYNOPSIS
diskformat [-size #] [-dens #] [-cyl fl[-t]] [-sec £l-t]] [-i] #] device
DESCRIPTION
Diskformat initializes a hard disk or floppy disk and formats it accord-
ing to your specifications.
The following parameters may be specified ("device" is required):
device
device to be formatted (must be raw device)
-size #
specify sector size in bytes
-dens #
specify density
-cyl #[-#]
format cylinders £ to t (default f). A specification such as #-
means "until the end".
-head #[-#]
Format heads f£ to t (default £). A specification such as #-
means "until the end".
-sec #[-#]
.Format sectors £ to t (default £). A specification such as #-
means "until the end".
-il # Interleave factor for the disk.
EXAMPLE

diskformat /dev/rfdc0 -dens 1 -size 128 -il 3

will format the floppy disk on drive 0, single density, 128 bytes per
sector with an interleave factor of 3. This format is the only truly
portable floppy format.

Printed 6/30/82 2/21/82 1

DISKTUNE(1) UNIX Programmer”s Manual DISKTUNE(1)

NAME

disktune - tune the floppy disk settling time parameters

SYNOPSIS

disktune [-srt #] [-hlt #] [-hut #] device

DESCRIPTION

Disktune tunes the floppy disk settling time parameters. These include

the motor stepping rate and the rate at which the head loads and
unloads. Disktune thus enables you to obtain the most efficient opera-
tion from your floppy disk.

If no settable parameters are given, disktune will report the current
settings on device. Disktune retains the current settings on parameters
which are not specified.

The settable parameters are:

-srt #
seek motor stepping rate time in ms

-hit #
head loading time in ms

-hut #
head unload time in ms

EXAMPLE

disktune -srt 3 /dev/rfdcO

will set the step rate time on the floppy controller to 3 ms per step.

Printed 6/30/82 2/21/82 1

DU(1) UNIX Programmer”s Manual pU(l)

NAME
du - summarize disk usage

SYNOPSIS
du [-s] [=a] [name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively)
directories within each specified directory or file name. If name is
missing, "." the current directory is used.
The optional argument -s causes only the grand total to be given. The
optional argument =-a causes an entry to be generated for each file.
Absence of either causes an entry to be generated for each directory
only.
A file which has two links to it is only counted once.

EXAMPLE

du dirl dir2

produces a count of the number of blocks in each of the directories.
In order to see how many blocks are in each file, the -a option must be
used. "

SEE ALSO
df(1)

BUGS

Non-directories given as arguments (not under -a option) are not listed.
If there are too many distinct linked files, du counts the excess files

more than once.

Printed 7/8/82 1/8/82 1

DUMP(1M) UNIX Programmer’s Manual DUMP(1M)

NAME

dump - incremental file system dump

SYNOPSIS

dump [key [argument ...] filesystem]

DESCRIPTION

Dump copies to tape or disk all files changed after a certain date in
the filesystem. The key specifies the date and other options about the
dump. Key consists of characters from the set 0123456789bfusdn.

0-9 This number is the “dump level”. All files modified since the last
date stored in the file /etc/ddate for the same filesystem at
lesser levels will be dumped. If no date is determined by the
level, the beginning of time is assumed; thus the option 0 causes
the entire filesystem to be dumped.

f Place the dump on the next argument file or dump device [such as a
floppy or hard disk] instead of the default tape.

b Specifies the number of blocks on the dump device. Used to specify
the number of blocks floppy disks will hold, so that the dump will
pause while disks are changed.

u If the dump completes successfully, write the date of the beginning
of the dump on file /etc/ddate. This file records a separate date
for each filesystem and each dump level.

8 The size of a dump tape is specified in feet. The number of feet
is taken from the next argument. When the specified size is
reached, dump will wait for reels to be changed. The default tape
size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next
argument. This is used in calculating the amount of tape used per
reel. The default is 1600.

If no arguments are given, the key is assumed to be 9u and a default
file system is dumped to the default tape.

Dump requires operator intervention on these conditions: end of disk or
tape, end of dump, disk write error, disk or tape open error or read
error.

Dump interacts with the operator on dump“s control terminal at times
when dump can no longer proceed, or if something is grossly wromg. All
questions dump poses must be answered by typing yes or no, appropri-
ately.

Now a short suggestion on how to perform dumps. Start with a full level
0 dump

Printed 7/21/82 1/20/82 1

DUMP(1M) UNIX Programmer”s Manual DUMP(1M)

dump Ou

Next, dumps of active file systems are taken on a daily basis, wusing a
modified Tower of Hanoi algorithm, with this sequence of dump levels:
3254769899 ...

For the daily dumps, a set of 10 sets of disks or tapes per dumped file
system is used on a cyclical basis. Each week, a level 1 dump is taken,
and the daily Hanoi sequence repeats with 3. For weekly dumps, a set of
5 sets of disks or tapes per dumped file system is used, also on a cycl-
ical basis. Each month, a level O dump is taken on a set of fresh disks
or tapes that is saved forever.

EXAMPLE
dump Obf 2310 /dev/rfdc0 /dev/mmscOa

would perform a level "0" dump to the floppy disk device rfdc0, which
has 2310 blocks. The filesystem to be dumped is /dev/rmscOa. Note that
all the parameters in the key are grouped first in the command line,
followed by the dump device (if other than tape), size etc. The last
argument should be the pathname of the file system being dumped.

FILES

' /dev/mtl default tape unit to dump to
/dev/rrp3 default disk unit to dump from
letc/ddate dump date record

SEE ALSO
restor (1M), dump(5), dumpdir(1M)

DIAGNOSTICS
Many, and verbose.

BUGS

Sizes are based on 1600 BPI blocked tape; the raw magtape device has to
be used to approach these densities.

It would be nice if dump knew about the dump sequence, kept track of the
tapes scribbled on, told the operator which tape to mount when, and pro-
vided more assistance for the operator running restor.

Printed 7/28/82 1/20/82 2

DUMPDIR(1M) UNIX Programmer”s Manual DUMPDIR(1M)

NAME
dumpdir - print the names of files on a dump tape or disk
SYNOPSIS
/etc/dumpdir [f filename]
DESCRIPTION
Dumpdir is used to read magtapes or disks dumped with the dump command
Dumpdir 1lists the names and inode numbers of all the files and direc-
tories on the backup tape or disk.
The f option causes filename as the name of the dump device, whether
tape or disk.
FILES
default backup unit varies with instal lation
rstx
SEE ALSO
dump(1M), restor(1M)
DIAGNOSTICS
If the dump extends over more than one tape or disk, it will ask you to
change tapes or disks. Reply with a new-line after the next one has
been mounted.
Printed 6/30/82 1/13/82 1

ECHO(1) UNIX Programmer”s Manual ECHO(1)

NAME
echo - echo arguments

SYNOPSIS
echo [-n] [arg] ...

DESCRIPT ION
Echo writes its arguments (separated by blanks and terminated by a new-
line) on the standard output. If the flag -n is used, no newline is
added to the output.

Echo is useful for producing diagnostics in shell programs and for writ-
ing constant data on pipes.

To send diagnostics to the standard error file, do

echo ... 1 >& 2

echo curmudgeon

simply responds
curmudgeon

on the standard output.

Printed 7/8/82 1

ED(1) UNIX Programmer”s Manual ED(1)
NAME
ed - text editor
SYNOPSIS
ed [-1 [-plprompt]] [=u] [=x] [name]
DESCRIPTION

Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on
the named file; that 1is to say, the file is read into ed”s buffer so
that it can be edited. If -p is present, ed prompts for commands with
“%# ° (or prompt if given.) If =-u is present, all lower case text in the
buffer is converted to upper case. If -x is present, an X command is
simulated first to handle an encrypted file. The optional - suppresses
the printing of explanatory output and should be used when the standard
input is an editor script.

Ed operates on a copy of any file it is editing; changes made in the
copy have no effect on the file until a w (write) command is given. The
copy of the text being edited resides in a temporary file called the
buffer.

Commands to ed have a simple and regular structure: zero or more
addresses followed by a single character command, possibly followed by
parameters to the command. These addresses specify one or more lines in
the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands
allow the addition of text to the buffer. While ed is accepting text,
it is said to be in input mode. In this mode, no commands are recog-
nized; all input is merely collected. Input mode is left by typing a

’ 4

period “.” alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular
expression specifies a set of strings of characters. A member of this
set of strings is said to be matched by the regular expression. In the
following specification for regular expressions the word “character”
means any character but newline.

1. Any character except a special character matches itself. Special
characters are the regular expression delimiter plus \[. and
sometimes “x$.

2. A . matches any character.

3. A \ followed by any character except a digit or () matches that
character.

4, A nonempty string s bracketed [s] (or [“s]) matches any character
in (or mnot in) g. In s, \ has no special meaning, and] may only
appear as the first letter. A substring a-b, with a and b in

Printed 7/8/82 9/14/79 1

ED(1)

UNIX Programmer”s Manual ED(1)
ascending ASCII order, stands for the inclusive range of ASCII
characters.

5. A regular expression of form 1-4 followed by % matches a sequence
of 0 or more matches of the regular expression.
6. A regular expression, x, of form 1-8, bracketed \(x\) matches what

X matches.

7. A \ followed by a digit n matches a copy of the string that the
bracketed regular expression beginning with the nth \(matched.

8. A regular expression of form 1-8, x, followed by a regular expres-
sion of form 1-7, y matches a match for x followed by a match for
Y, with the x match being as long as possible while still permit-
ting a y match.

9. A regular expression of form 1-8 preceded by "~ (or followed by $),
is constrained to matches that begin at the left (or end at the
right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the
leftmost matches in a line.

1l1. An empty regular expression stands for a copy of the last regular
expression encountered.

Regular expressions are used in addresses to specify lines and in onmne
command (see & below) to specify a portion of a line which is to be
replaced. If it is desired to use one of the regular expression meta-
characters as an ordinary character, that character may be preceded by
“\“. This also applies to the character bounding the regular expression
(often “/7) and to “\” itself.

To understand addressing in ed it is necessary to know that at any time
there is a current line. Generally speaking, the current lime is the
last line affected by a command; however, the exact effect on the
current line is discussed under the description of the command.
Addresses are constructed as follows.

1. The character “.” addresses the current linme.

2. The character “$° addresses the last line of the buffer.

3. A decimal number n addresses the n~-th line of the buffer.

4, "x" addresses the line marked with the name x, which must be a
lower-case letter. Lines are marked with the k command described
below.

5. A regular expression enclosed in slashes “/° addresses the line

found by searching forward from the current line and stopping at

Printed 7/8/82 9/14/79 2

ED(1)

UNIX Programmer”s Manual . ED(1)

the first line containing a string that matches the regular
expression. If necessary the search wraps around to the beginning
of the buffer.

6. A regular expression enclosed in queries “?” addresses the 1line
found by searching backward from the current line and stopping at
the first line containing a string that matches the regular
expression. If necessary the search wraps around to the end of
the buffer.

7. An address followed by a plus sign “+° or a minus sign "= fol-
lowed by a decimal number specifies that address plus (resp.
minus) the indicated number of lines. The plus sign may be omit-
ted.

8. If an address begins with “+“ or “=” the addition or subtraction
is taken with respect to the current line; e.g. “=5° is understood
to mean ~.-57.

9. If an address ends with “+“ or “=“, then 1 is added (resp. sub-
tracted). As a consequence of this rule and rule 8, the address
‘=" refers to the line before the current line. Moreover, trail-
ing "+" and "-" characters have cumulative effect, so “==" refers
to the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the
character “*“ in addresses is equivalent to “-~.

Commands may require zero, one, or two addresses. Commands which

require no addresses regard the presence of an address as an error.

Commands which accept one or two addresses assume default addresses when

insufficient are given. If more addresses are given than such a command

requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ",". They

may also be separated by a semicolon ";". 1In this case the current line

“.” is set to the previous address before the next address is inter-
preted. This feature can be used to determine the starting line for
forward and backward searches (“/“, “?°). The second address of any
two-address sequence must correspond to a line following the line

corresponding to the first address.

In the following list of ed commands, the default addresses are shown in
parentheses. The parentheses are not part of the address, but are used
to show that the given addresses are the default.

As mentioned, it is generally illegal for more than one command to
appear on a line. However, most commands may be suffixed by “p” or by
“1”, in which case the current line is either printed or listed respec-
tively in the way discussed below. Commands may also be suffixed by
“n”, meaning the output of the command is to be 1line numbered. These
suffixes may be combined in any order.

Printed 7/8/82 9/14/79 3

ED(1)

UNIX Programmer”s Manual ED(1)

(JDa

<text>
The append command reads the given text and appends it after the
addressed line. "." is left on the last line input, if there were
any, otherwise at the addressed line. Address “0° 1is 1legal for
this command; text is placed at the beginning of the buffer.

(c’ v)c

<text>
The change command deletes the addressed lines, then accepts input
text which replaces these lines. "." is left at the last line
input; if there were none, it is left at the 1line preceding the
deleted lines.

(.,)d

The delete command deletes the addressed lines from the buffer.
The line originally after the last line deleted becomes the current
line; if the lines deleted were originally at the end, the new last
line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in. "." is set to the
last line of the buffer. The number of characters read is typed.
"filename" is remembered for possible use as a default file name in
a subsequent r or w command. If “filename” is missing, the remem-
bered name is used.

E filename
This command is the same as e, except that no diagnostic results
when no w has been given since the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If
“filename” 1is given, the currently remembered file name is changed
to “filename”.

(1,8)g/regular expression/command list

In the global command, the first step is to mark every line which
matches the given regular expression. Then for every such line,
the given command list is executed with “.” initially set to that
line. A single command or the first of multiple commands appears
on the same line with the global command. All lines of a multi-
line list except the last line must be ended with “\“., A, i, and ¢
commands and associated input are permitted; the “.” terminating
input mode may be omitted if it would be on the last line of the
command list. The commands g and v are not permitted in the com-
mand list.

()i

Printed 7/8/82 9/14/79 : 4

ED(1) UNIX Programmer”s Manual ED(1)

<text>
This command inserts the given text before the addressed line. "."
is left at the last line input, or, if there were none, at the line
before the addressed line. This command differs from the a command
only in the placement of the text.

(o o#1)j
This command joins the addressed lines into a single line; inter-
mediate newlines simply disappear. "." is left at the resulting
line.

(.)kx
The mark command marks the addressed line with name x, which must
be a lower-case letter. The address form ““x” then addresses this
line.

(o, 0)1
The list command prints the addressed lines in an unambiguous way:
non-graphic characters are printed in two-digit octal, and long
lines are folded. The 1 command may be placed on the same line
after any non-i/o command.

(ey «)ma
The move command repositions the addressed lines after the line
addressed by a. The last of the moved lines becomes the current
line. .

(e5 In
The number command prints the addressed lines with line numbers and
a tab at the left.

(., JJp
The print command prints the addressed lines. "." is left at the
last line printed. The p command may be placed on the same line
after any non-i/o command.

(o, o)P
This command is a synonym for p.

q The quit command causes ed to exit. No automatic write of a file
is domne.

Q This command is the same as g, except that no diagnostic results

when no w has been given since the last buffer alteration.

($)r filename

The read command reads in the given file after the addressed 1line.
If no file name is given, the remembered file name, if any, is used
(see e and £ commands). The file name is remembered if there was
no remembered file name already. Address "0 is legal for r and
causes the file to be read at the beginning of the buffer. If the

Printed 7/8/82 9/14/79 5

ED(1) UNIX Programmer”s Manual ED(1)

read is successful, the number of characters read is typed. "." is
left at the last line read in from the file.

(., .)s/regular expression/replacement/ or,

(., .)s/regular expression/replacement/g
The substitute command searches each addressed 1line for an
occurrence of the specified regular expression. On each line in
which a match is found, all matched strings are replaced by the
replacement specified, if the global replacement indicator “g°
appears after the command. If the global indicator does not
appear, only the first occurrence of the matched string is
replaced. It is an error for the substitution to fail on all
addressed lines. Any punctuation character may be used instead of
“/° to delimit the regular expression and the replacement. "." is
left at the last line substituted.

An ampersand “&° appearing in the replacement is replaced by the
string matching the regular expression. The special meaning of “&”
in this context may be suppressed by preceding it by “\”7. The
characters “\n” where n is a digit, are replaced by the text
matched by the n-th regular subexpression enclosed between “\(” and
“\)“. When nested, parenthesized subexpressions are present, n is

determined by counting occurrences of “\(° starting from the left.

Lines may be split by substituting new-line characters into them.

The new-1line in the replacement string must be escaped by preceding
it by “\”.

One or two trailing delimiters may be omitted, implying the “p”
suffix. The special form “8” followed by no delimiters repeats the
most recent substitute command on the addressed lines. The “s” may
be followed by the letters r (use the most recent regular expres-
sion for the left hand side, instead of the most recent left hand
side of a substitute command), p (complement the setting of the p
suffix from the previous substitution), or g (complement the set-

ting of the g suffix). These letters may be combined in any order.

(. JDta
This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0).
"." is left on the last line of the copy.

(1, $)v/regular expression/command list
This command is the same as the global command g except that the
command list is executed g with “,” initially set to every line
except those matching the regular expression.

(1, $)w filename
The write command writes the addressed lines onto the given file.
If the file does not exist, it is created. The file name is remem-
bered if there was no remembered file name already. If no file
name is given, the remembered file name, if any, is used (see e and

" Printed 7/8/82 9/14/79 6

ED(1)

UNIX Programmer”s Manual ED(1)

£ commands). "." is unchanged. If the command is successful, the
number of characters written is printed.

(1, $)W filename

This command is the same as w, except that the addressed lines are
appended to the file.

X A key string is demanded from the standard input. Later r, e and w
commands will encrypt and decrypt the text with this key by the
algorithm of crypt(l). An explicitly empty key turns off encryp-
tion.

($)= The line number of the addressed line is typed. "." is unchanged
by this command.

!<shell command>
The remainder of the line after the “!” is sent to sh(l) to be

4

interpreted as a command. “.” is unchanged.

(.+1,.+1)<newline>
An address alone on a line causes the addressed line to be printed.
A blank line alone is equivalent to “.+1p”; it is useful for step-
ping through text. If two addresses are present with no interven-
ing semicolon, ed prints the range of lines. If they are separated
by a semicolon, the second line is printed.

If an interrupt signal (ASCII DEL) is sent, ed prints “?interrupted” and
returns to its command level.

Some size limitations: 512 characters per line, 256 characters per glo-
bal command 1list, 64 characters per file name, and, on mini computers,
128K characters in the temporary file. The limit on the number of lines
depends on the amount of core: each line takes 2 words.

When reading a file, ed discards ASCII NUL characters and all characters
after the 1last newline. It refuses to read files containing nomASCII
characters.

FILES
/tmp/ex
edhup: work is saved here if terminal hangs up
/1ib/makekey generate encryption key
SEE ALSO
sed(1)

B. W. Kernighan, Advanced editing on UNIX

DIAGNOSTICS

"?name" for inaccessible file; "?self-explanatory message" for other
errors. ’

Printed 7/28/82 9/14/79 7

ED(1) UNIX Programmer’s Manual ED(1)

To protect against throwing away valuable work, a g or e command is con
sidered to be 1in error, unless a w has occurred since the last buf fer

change. A second g or e will be obeyed regardless.

BUGS
The 1 command mishandles DEL.
The undo command causes marks to be lost on affected lines.

Printed 7/28/82 9/14/79 8

EDIT(1) UNIX Programmer”s Manual EDIT(1)

NAME
edit - text editor (variant of the ex editor for new or casual users)

SYNOPSIS
edit [-r] name ...

DESCRIPTION
Edit is a variant of the text editor ex recommended for new or casual
users who wish to use a command oriented editor. The following brief
introduction should help you get started with edit. A more complete
basic introduction is provided by Edit: A tutorial . The Ex/edit command
summary (version 2.0) is also very useful. See ex(l) for other useful
documents; in particular, if you are using a CRT terminal you will want
to learn about the display editor yi.

BRIEF INTRODUCTION

To edit the contents of an existing file you begin with the command
"edit name" to the shell. Edit makes a copy of the file which you can
then edit, and tells you how many lines and characters are in the file.
To create a new file, just make up a name for the file and try to run
edit on it; you will cause an error diagnostic, but don”t worry.

Edit prompts for commands with the character “:”, which you should see
after starting the editor. If you are editing an existing file, then
you will have some lines in edit”s buffer (its name for the copy of the
file you are editing). Most commands to edit use its "current line" if
you don”t tell them which line to use. Thus if you say print (which can
be abbreviated p) and hit carriage return (as you should after all edit
commands) this current line will be printed. If you delete (d) the
current line, edit will print the new current line. When you start
editing, edit makes the last line of the file the current line. If you
delete this 1last line, then the new last line becomes the current one.
In general, after a delete, the next 1line in .the file becomes the
current line. (Deleting the last line is a special case.)

If you start with an empty file, or wish to add some new lines, then the
append (a) command can be used. After you give this command (typing a
carriage return after the word append) edit will read lines from your
terminal until you give a line consisting of just a ".", placing these
lines after the current line. The last line you type then becomes the
current line. The command insert (i) is like append but places the
lines you give before, rather than after, the current line.

Edit numbers the lines in the buffer, with the first line having number
1. If you give the command "1" then edit will type this first line. If
you then give the command delete edit will delete the first 1line, and
line 2 will become line 1, and edit will print the current line (the new
line 1) so you can see where you are. In general, the current line will
always be the last line affected by a command.

You can make a change to some text within the current line by using the
substitute (s) command. You say "s/old/new/" where old is replaced by

Printed 6/30/82 1/8/82 1

EDIT(1) UNIX Programmer”s Manual . EDIT(1)

the o0ld characters you want to get rid of and new is the new characters
you want to replace it with.

The command file (£) will tell you how many lines there are in the
buffer you are editing and will say "[Modified]" if you have changed it.
After modifying a file you can put the buffer text back to replace the
file by giving a write (w) command. You can then leave the editor by
issuing a quit (q) command. If you run edit on a file, but don’t change
it, it is not necessary (but does no harm) to write the file back. If
you try to quit from edit after modifying the buffer without writing it
out, you will be warned that there has been "No write since last change"
and edit will await another command. If you wish not to write the
buffer out then you can issue another quit command. The buffer is then
irretrievably discarded, and you return to the shell.

By using the delete and append commands, and giving line numbers to see
lines in the file you can make any changes you desire. You should learn
at least a few more things, however, if you are to use edit more than a
few times.

The change (c) command will change the current line to a sequence of"
lines you supply (as in append you give lines up to a line consisting of
only a "."). You can tell change to change more than one line by giving
the line numbers of the lines you want to change, i.e. "3,5change". You
can print lines this way too. Thus "1,23p" prints the first 23 lines of
the file.

The undo (u) command will reverse the effect of the 1last command you
gave which changed the buffer. Thus if give a substitute command which
doesn”t do what you want, you can say undo and the old contents of the
line will be restored. You can also undo an undo command so that you
can continue to change your mind. Edit will give you a warning message
when commands you do affect more than one line of the buffer. If the
amount of change seems unreasonable, you should consider doing an undc
and looking to see what happened. If you decide that the change is ok,
then you can undo again to get it back. Note that commands such as
write and quit cannot be undone.

To look at the next line in the buffer you can just. hit carriage return.
To look at a number of lines hit “D (control key and, while it is held
down D key, then let up both) rather than carriage return. This will
show you a half screen of lines on a CRT or 12 lines on a hardcopy ter-
minal. You can look at the text around where you are by giving the com-
mand "z.". The current line will then be the last line printed; you can
get back to the line where you were before the "z." command by saying "~
The z command can also be given other following characters "z-" prints a
screen of text (or 24 lines) ending where you are; "z+" prints the next
screenful. 1f you want less than a screenful of lines do, e.g., "z.12"
to get 12 lines total. This method of giving counts works in general;
thus you can delete 5 lines starting with the current line with the com-
mand "delete 5".

Printed 6/30/82 1/8/82 2

EDIT(1) UNIX Programmer”s Manual EDIT(1)

To find things in the file you can use line numbers if you happen to
know them; since the 1line numbers change when you insert and delete
lines this is somewhat unreliable. You can search backwards and for-
wards in the file for strings by giving commands of the form /text/ to
search forward for text or ?text? to search backward for text. If a
search reaches the end of the file without finding the text it wraps,
end around, and continues to search back to the line where you are. A
useful feature here is a search of the form /“text/ which searches for
text at the beginning of a line. Similarly /text$/ searches for text at
the end of a line. You can leave off the trailing / or ? in these com-
mands.

The current line has a symbolic name "."; this is most useful in a range

of 1lines as in ".,$print" which prints the rest of the lines in the
file. To get to the last line in the file you can refer to it by its
symbolic name "$". Thus the command "$ delete”" or "$d" deletes the last
line in the file, no matter which line was the current line before.
Arithmetic with 1line references is also possible. Thus the line "$-5"
is the fifth before the last, and ".+20" is 20 lines after the present.

You can find out which line you are at by doing ".=". This is useful if
you wish to move or copy a section of text within a file or between
files. Find out the first and last line numbers you wish to copy or
move (say 10 to 20). For a move you can then say "10,20move "a" which
deletes these lines from the file and places them in a buffer named a.
Edit has 26 such buffers named a through z. You can later get these
lines back by doing ""a move ." to put the contents of buffer a after
the current line. If you want to move or copy these lines between files
you can give an edit (e) command after copying the lines, following it
with the name of the other file you wish to edit, i.e. "edit chapter2".
By changing move to copy above you can get a pattern for copying lines.
If the text you wish to move or copy is all within one file then you can
just say "10,20move $" for example. It is not necessary to use mnamed
buffers in this case (but you can if you wish).

SEE ALSO

ex(1), vi(l), "Edit: A tutorial™, by Ricki Blau and James Joyce
AUTHOR

William Joy
BUGS

See ex(1l).

Printed 6/30/82 1/7/82 ' 3

EGREP(1) UNIX Programmer”s Manual EGREP(1)

NAME
egrep - search a file for a pattern
SYNOPSIS
egrep [option] ... [expression] [file] ...
DESCRIPTION
Commands of the grep family search the input files (standard input
default) for lines matching a pattern. Normally, each line found is
copied to the standard output. Egrep patterns are full regular expres-
sions; it wuses a fast deterministic algorithm that sometimes needs
exponential space. The following options are recognized.
-v All lines but those matching are printed.
-c Only a count of matching lines is printed.
-1 The names of files with matching lines are listed (once) separated
by newlines.
-n Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found.
This 1is sometimes wuseful in locating disk block numbers by conm~
text.
-8 Silent mode. Nothing is printed (except error messages). This is

useful for checking the error status.

-e expression
Same as a simple expression argument, but useful when the expres-

sion begins with a -.

-f file
The regular expression is taken from the named file which contains
a list of regular expressions to be matched. Each regular expres-
sion should appear on a separate line.

The file names are shown in the output if more than one file was
searched.

Care should be taken when using the characters $ * [~ | () and \ in
the expression as they are also meaningful to the Shell. It is safest
to enclose the entire expression argument in single or double quotes.

Egrep accepts regular expressions and it also can accept pattérns with
"metacharacters". The metacharacter matching protocol is as follows:
(note that newline is not considered to be a “character”).

A \ followed by a single character other than newline matches that
character.

Printed 7/8/82 1/7/82 1

EGREP(1)

UNIX Programmer”s Manual EGREP(1)

The character © ($) matches the beginning (end) of a line.
A . matches any character.

A single character not otherwise endowed with special meaning
matches that character.

A string enclosed in brackets [] matches any single character from
the string. Ranges of ASCII character codes may be abbreviated as
in “a-z0-9”. A] may occur only as the first character of the
string. A literal - must be placed where it can”t be mistaken as
a range indicator.

A regular expression followed by % (+, ?) matches a sequence of 0
or more (1 or more, 0 or 1) matches of the regular expression.

Two regular expressions concatenated match a match of the first
followed by a match of the second.

Two regular expressions separated by | or newline match either a
match for the first or a match for the second.

A regular expression enclosed in parentheses matches a match for
the regular expression.

The order of precedence of operators at the same parenthesis level is []
then x+? then concatenation then | and newline.

EXAMPLE

egrep ““This | matchx | regular | expression$” filel file2 file3

will cause all the lines in the three files to be printed that match any
of the patterns:

SEE ALSO

line beginning with “This”

line containing “matc” followed by any number of h’'s
line containing “regular”

line ending with “expression”

PWLN -
e e o
[I I I

ex(1l), fgrep(l), grep(l), sed(1l), sh(l)

DIAGNOSTICS

Exit status is 0 if any matches are found, 1 if nome, 2 for syntax
errors or inaccessible files.

BUGS

Ideally there should be only one grep, but we don”t know a single algo-
rithm that spans a wide enough range of space-time tradeof fs.

Printed 7/8/82 1/7/82 2

EGREP(1) UNIX Programmer”s Manual EGREP(1)

Lines are limited to 256 characters; longer lines are truncated.

Printed 7/8/82 1/7/82 3

EQN (1) 5/3/71 EQN (1)

NAME
eqn — typesel mathematics

SYNOPSIS
eqn [file] ...

DESCRIPTION .
Eqn is a troff (1) preprocessor for typesetting mathematics on the Graphics Systems photo-
typesetter. Usage is almost always

eqn file ... | troff
If no files are specified. egn reads from the standard input. A line beginning with **.EQ"" marks
the start of an equation; the end of an equation is marked by a line beginning with " EN"".
Neither of these lines is altered or defined by eqn, so you can define them yourself to get
centering. numbering. etc. All other lines are treated as comments. and passed through un-
touched.
Spaces. tabs. newlines., braces, double quotes, tilde and circumflex are the only delimiters.
Braces *{]"* are used for grouping. Use tildes **~"' 1o get extra spaces in an equation.
Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub 1 makes
x. a sub 1 sup 2 produces a°. and e sup {x sup 2 + y sup 2} gives e*"*". Fractions are made
. . a .]
with over. a over bis — and / over sqrt {ax sup 2 +bx+c} is ——==—=== . sqrt makes square
b Vax +bx+c a
roots.
The keywords frem and to introduce lower and upper limi's on arbitrary things: lim 3 x is
n-==—oc 0
made with Iim from {n-> nf} sum from 0 1o n x sub i. Left and right brackets. braces. etc.. of
the right height are made with left and right: left [x sup 2 + y sup 2 over alpha right] ~="1
produces 42| =1 The right clause is optional.
a
Vertical piles of things are made with pile, Ipile, cpile, and rpile: pile {a above b above c} pro-
a
duces b. There can be an arbitrary number of elements in a pile. lpile left-justifies. pile and
¢

cpile center, with different vertical spacing. and rpile right justifies.
Diacritical marks are made with dot, dotdot, hat, bar: x dor = f(1) baris x=/(1). Default sizes
and fonts can be changed with size n and various of roman, italic, and bold.
Keywords like sum (3) int (f) inf (o) and shorthands like >= (=) —> (=), '= (&), are
recognized. Spell out Greek letters in the desired case, as in alpha, GAMMA. Mathematical
words like sin, cos. log are made Roman automatically. Troff (I) four-character escapes like
\(rh e®) can be used anywhere. Strings enclosed in double quotes "..." are passed through un-
touched.

SEE ALSO
A System for Typesetting Mathematics (Computer Science Technical Report #17, Bell Labora-
tories. 1974.)
NROFF/TROFF User's Manual
troff (1) ‘

BUGS

Undoubtedly. Watch out for small or large point sizes — it’s tuned too well for size 10. Be
cautious if inserting horizontal or vertical motions, and of backslashes in general.

EX(1) UNIX Programmer”s Manual JEX(1)

NAME
ex, edit - text editor
SYNOPSIS
ex [-] [-v]I[-ttag]I[=-r] [+command] name ...
edit [ex options]
DESCRIPTION
Ex is the root of a family of editors: edit, ex and yi. Ex is a superset
of edit, with the most notable extension being a display editing facil-
ity. Display based editing is the focus of wvi.
If you have not used ed, or are a casual user, you will find that the
editor edit 1is comvenient for you. It avoids some of the complexities
of ex used mostly by systems programmers and persons very familiar with
e_d.
If you have a CRT terminal, you may wish to use a display based editor;
in this case see vi(l), which is a command which focuses on the display
editing portion of ex.
The following options are recognized:
- suppresses all interactive-user feedback, as when processing edi-
tor scripts in command files.
-v Equivalent to using vi rather than ex.
-t Equivalent to an initial tag command, editing the file containing
the tag and positioning the editor at its definition.
-r Used in recovering after an editor or system crash, retrieving the
last saved version of the named file. If no file is specified, a
list of saved files will be reported.
+command
Indicates that the editor should begin by executing the specified
command. If command is omitted, then it defaults to $, positiom
ing the editor at the last line of the first file initially.
Other useful commands here are scanning patterns of the form /pat
or line numbers, e.g. +100 to start at line 100.
Name arguments indicate files to be edited.
DOCUMENTATION

The document Edit: A tutorial provides a comprehenmsive introductiom to
edit assuming no previous knowledge of computers or the UNIX system.

The Ex Reference Manual - Version 3.5/2.13 is a comprehensive and com-
plete manual for the command mode features of ex, but you cannot learn
to use the editor by reading it. For an introduction to more advanced

forms of editing using the command mode of ex see the editing documents

Printed 7/28/82 1/11/82 1

EX(1)

UNIX Programmer”s Manual EX(1)

written by Brian Kernighan for the editor ed; the material in the intro-
ductory and advanced documents works also with ex.

An Introduction to Display Editing with Vi introduces the display editor
vi and provides reference material on yi. All of these documents can be
found in volume 2c¢ of the Programmer”s Manual. In addition, the Vi
Quick Reference card summarizes the commands of vi in a useful, func-
tional way, and is useful with the Introduction.

FILES
fusr/lib/ex3.6strings error messages
/usr/lib/ex3.6recover recover command
fusr/lib/ex3.6preserve preserve command
letc/termcap describes capabilities of terminals
~/.exrc editor startup command file, user-

created in home directory

/tmp /EXnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
[ust /preserve preservation directory
/usr/lib/tags standard editor tag file

SEE ALSO

awk(1l), ed(1), edit(1l), grep(l), sed(1l), vi(l)

AUTHOR

BUGS

Originally written by William Joy

Mark Horton has maintained the editor since version 2.7, adding macros,
support for many unusual terminals, and other features such as word
abbreviation mode.

The undo command causes all marks to bé lost on lines changed and then
restored if the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical 1lines.
More than a screen full of output may result if lonmg lines are present.

'd

File input /output errors don”t print a name if the command line °-
option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used
before exiting the editor.

Null characters are discarded in input files, and cannot appear in
resultant files.

Printed 7/28/82 1/11/82 2

EXPR(1) UNIX Programmer’s Manual EXPR(1)

NAME
expr - evaluate arguments as an expression
SYNOPSIS
EeXpPr arg ...
DESCRIPTION
The arguments are taken as an expression. After evaluation, the result
is written on the standard output. Each token of the expression is a
separate argument.
The operators and keywords are listed below. The list is in order of
increasing precedence, with equal precedence operators grouped.
expr | expr
yields the first expr if it is neither null nor “0°, otherwise
yields the second expr.
expr & expr
yields the first expr if neither expr is null or “0°, otherwise
yields 07,
expr relop expr
where relop is one of < <= = != >= >, yields “1° if the indicated
comparison 1is true, 07 if false. The comparison is numeric if
both expr are integers, otherwise lexicographic.
expr + expr
eXpr - expr
addition or subtraction of the arguments.
eXDPr * exXpr
expr / expr
expr % expr
multiplication, division, or remainder of the arguments.
expr : exXpr
The matching operator compares the string first argument with the
regular expression second argument; regular expression syntax is
the same as that of ed(1). The \(...\) pattern symbols can be
used to select a portion of the first argument. Otherwise, the
matching operator yields the number of characters matched (0 on
failure).
(expr)
parentheses for grouping.
EXAMPLES

To add 1 to the Shell variable a:

a="expr Sa + 1°

Printed 6/30/82 1

EXPR(1) UNIX Programmer”s Manual

To find the filename part (least significant part) of the
stored in variable a, which may or may not contain ~/”:

expr $a : “.x/\(.%\)" ‘|’ $a
Note the quoted Shell metacharacters.

SEE ALSO
ed(1), sh(1l), test(l)

DIAGNOSTICS
Expr returns the following exit codes:

0 if the expression is neither null nor 07,

1 if the expression is null or “07,
2 for invalid expressions.

Printed 6/30/82 2/23/82

EXPR(1)

pathname

EXTERR(1) UNIX Programmer”s Manual EXTERR(1)

NAME

exterr - turn on/off the extended errors in the specified device

SYNOPSIS

exterr /dev/devicename [ynl

DESCRIPTION

Printed 6/30/82

Exterr turns on [or off] the reporting of extended errors onm the speci-

fied device.

If reporting of errors is turned "off" with the argument n, only fatal
errors are reported.

The default condition is "yes", in which case soft as well as hard
errors are reported on the specified device. The devicename must be the
"raw'" one to access the ioctl.

F77(1)

NAME

UNIX Programmer”s Manual F77(1)

£f77 - FORTRAN compiler

SYNOPSIS

£77 [-o0 ofile] [-i] [-c] [=u] [-v] file ...

DESCRIPTION

£77, the FORTRAN compiler, accepts a list of FORTRAN source files and
various intermediate texts contained in the list of files specified by
file and puts the resulting executable object module in a.out (but see
the -o option, described below).

In order to understand the use of f77, the reader must first understand
the steps which the compiler goes through in order to turn a FORTRAN
source program into an executable object file.

The FORTRAN compiler generates several intermediate files on the way to
generating the final executable file. The first phase of the compiler
generates an intermediate file, of the same name as the source file, but
with a .i suffix. This intermediate file is destined for processing by
the code generator.

The code generator is the second phase of the process. The output of
the code generator is a file with the same name as the source file, but
with a suffix of .obj. The x.obj file is the input to the mnext phase,
called ulinker.

The ulinker phase of the compilation process comverts the .obj file into
a UNIX-style object file with a .o suffix. This file can then be pro-
cessed by the UNIX loader utility, 1ld.

Finally, the 1d utility produces the final executable code file.

When using £f77, any combination of FORTRAN source files (each having a
.for suffix) can be combined with FORTRAN or Pascal intermediate files
(each having a .i suffix), FORTRAN or Pascal object code files (each
having a .obj suffix), and UNIX object files (each having a .o suffix).
When the compilation completes successfully, the result of the combina-
tion of all those files is placed in the file a.out or in the file
specified by the -o option.

The -o option, if given, specifies that the file ofile (runmable file)
whose name follows the option is the file to receive the final execut-
able code. If the —o option is not specified, the resultant executable
file is placed in the file a.out.

If the -i option is given, the FORTRAN intermediate code (the result of
running /lib/fortran) is placed in a file of the same name as the source
file, but with a suffix of .i appended. The compilation then ter—
minates.

Printed 7/8/82 1

F77(1) UNIX Programmer”s Manual F77(1)

If the -c option is given, the FORTRAN unlinked object code (the result
of running /lib/code) is placed in a file of the same name as the source

file, but with a suffix of .obj appended. The compilation then ter-
minates.

If the -u option is given, the linked object code (the result of running
/lib/ulinker) is placed in a file of the same name as the source file,
but with a suffix of .o appended. The compilation then terminates.

The -v (for verbose) option makes f77 display a running progress report
as it compiles.

If only one file argument is supplied on the command line, then all the
intermediate files (.i, .obj, .0) are removed at the end of the compila-
tion. If multiple file arguments are typed on the command 1line, any
existing intermediate files are not removed.

EXAMPLES
- £77 progl.for

compiles progl.for and puts the resulting object module in a.out.
f77 -o frammis prog2.for prog3.obj
compiles the FORTRAN program called prog2.for and links the result with

the object file prog3.obj. The result of the compilation is placed in
the output file called frammis.

FILES
*, for FORTRAN source
*.1 Intermediate code
*,0bj Compiled unlinked £f77 object
*,0 Compiled unlinked UNIX object
/1ib/ftnlib.obj
/1ib/paslib.obj
/lib/fortran
/lib/code
/lib/ulinker
/lib/ftncterrs
/lib/ftnrterrs
/bin/1d linking loader

/lib/crt0.0 startup routine

SEE ALSO
"User Documentation Update for UniSoft Pascal and FORTRAN",

Printed 7/28/82 2

FALSE(1) UNIX Programmer’s Manual

NAME
true, false — provide truth values
SYNOPSIS
true
false
DESCRIPTION
True and false are usually used in a Bourne shell script.
the appropriate status "true" or "false'".
EXAMPLE
while false
do
command list
done
SEE ALSO
csh(l), sh(l), true(l)
DIAGNOSTICS

False has exit status nonzero.

Printed 7/8/82 1/11/82

They

FALSE(1)

return

FGREP(1) UNIX Programmer’s Manual ~ FGREP(1)

NAME

fgrep - search a file for a pattern
SYNOPSIS

fgrep [option] ... [strings] [file]
DESCRIPTION

Commands of the grep family search the input files (standard input
default) for 1lines matching a pattern. Normally, each line found is
copied to the standard output. Fgrep patterns are fixed strings; it is
fast and compact. The following options are recognized.

-v All lines but those matching are printed.

-x (Exact) only lines matched in their entirety are printed.

-c Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated

by newlines.

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found.
This 1is sometimes wuseful in locating disk block numbers by con-
text.

-5 Silent mode. Nothing is printed (except error messages). This is

useful for checking the error status.

-e expression
Same as a simple expression argument, but useful when the expres-
sion begins with a -.

-f file
The string list (fgrep) is taken from the file.

In all cases the file name is shown if there is more than one input
file. Care should be taken when using the characters $ «+ [~ | () and
\ in the expression as they are also meaningful to the Shell. It 1is

' 4

safest to enclose the entire expression argument in single quotes .

Fgrep searches for lines that contain one of the (newline-separated)
strings.

Regular expressions given to fgrep must be enclosed in single quotes and
a backslash (\) must immediately precede the newline between strings.
The newline or carriage return itself is not considered to be a charac-
ter. Fgrep searches only for fixed strings that match exactly and will
not accept metacharacter matching, as will egrep (q.v.).

Printed 6/30/82 1/9/82 1

FGREP(1) UNIX Programmer”s Manual FGREP(1)

The order of precedence of operators at the same parenthesis level is []
then #+? then concatenation then | and newline.

EXAMPLE

fgrep -n “ stringl\
string2\
string3\ “ filel file2 file3

reports the lines and line numbers from each of the three files that
contain the specified strings. Note that the string list is enclosed in
both single quotes and blanks. Do not put a space between the backslash
and the newline (carriage return).

SEE ALSO
egrep(l), ex(1l), grep(l), sed(l), sh(l)

DIAGNOSTICS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax
errors or inaccessible files.

BUGS
Ideally there should be only one grep, but we don”t know a single algo-
rithm that spans a wide enough range of space-time tradeof fs.

Lines are limited to 256 characters; longer lines are truncated.

Printed 6/30/82 1/7/82 2

FILE(1) UNIX Programmer”s Manual FILE(1)

NAME
file - determine file type
SYNOPSIS
file file ...
DESCRIPTION
File performs a series of tests on each argument in an attempt to clas-
sify the file(s) by type. If an argument appears to be ascii, file
examines the first 512 bytes and tries to guess its language.
EXAMPLE
file textfile programfile directory
reports the file names and directory name, and whether the files are
English text, nroff input, a C program, or whatever.
DIAGNOSTICS
If file cannot decipher a filetype, it reports "cannot stat".
BUGS

It often makes mistakes. In particular it often suggests that command
files are C programs.

Printed 6/30/82 2/4/82 1

FIND(1) UNIX Programmer”s Manual FIND(1)

NAME
find - find files

SYNOPSIS
find pathname-list predicate-list expression

DESCRIPTION
Find recursively descends the directory hierarchy one directory at a
time, for each pathname in the pathname-list (i.e., one or more path-
names) using the first pathname in the list as the starting point.

You can use find to locate files for which you can remember the name but
not the location, or to locate files that fulfill certain criteria.

Find seeks files that match conditions set forth in the predicate-list,
and performs actions specified in the expression.

In the predicate-list, the number argument n is used to mean a decimal
integer where +n means more than n, -n means less than n and n means
exactly n.

The following predicate descriptors are available:

-name filename
True if the filename argument matches the current file name.
Normal Shell argument syntax may be used if escaped (watch out
for "["’ l'?" and "*").

-perm onum
True if the file permission flags exactly match the octal
number onum (see chmod(l)). If onum is pref ixed by a minus
sign, more flag bits (017777, see stat(2)) become significant
and the flags are compared: (flags&onum)==onum.

-type ¢ True if the type of the file is ¢, where ¢ is b, ¢, d or f for
block special file, character special file, directory or plain
file.

-links n True if the file has n links.

-user uname
True if the file belongs to the user uname (login name or
numeric user ID).

-group gname
True if the file belongs to group gname (group name or numeric
group ID).

-size n True if the file is n blocks long (512 bytes per block).

-inum n True if the file has inode number n.

Printed 7/8/82 2/4/82 1

FIND(1) UNIX Programmer”s Manual FIND(1)

-atime n True if the file has been accessed in n days.
-mtime n True if the file has been modified in n days.

-exec command _
True if the executed command returns a zero value as exit
status. The end of the -exec and command sequence must con-
sist of a pair of curly braces and an escaped semicolon. With
-exec the command argument “{}” 1is necessary to store the
current pathname.

-ok command
Like —-exec in its syntax, except that the generated command is
written on the standard output, then the standard input is
read and the command executed only upon response "yes", or y.

-print Always true; causes the current pathname to be printed. Do
not terminate this command with curly braces or a semicolon.

-newver file
True if the current file has been modified more recently than
the argument file.

The primaries or predicate operators may be combined using the following
operators (in order of decreasing precedence):

1) A parenthesized group of primaries and operators (parentheses are
special to the Shell and must be escaped). '

2) The negation of a primary (“!” is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the jux-
taposition of two primaries).

4) Alternation of primaries (“-o” is the or operator).
EXAMPLES
find / -perm 755 -exec 1s "{}" ";"

will find all files, starting with the root directory, on which the per-
mission levels have been set to 755 (see chmod(l)).

With —-exec and a command such as ls, it is often necessary to escape the
"{}" that stores the current pathname under investigation by putting it
in double quotes. It is always necessary to escape the semicolon at the
end of an —-exec sequence.

Note again that it is also necessary to escape parentheses
" \(" and " \) " used for grouping primaries, by means of a backslash.

Printed 7/8/82 2/4/82 2

FIND(1) UNIX Programmer”s Manual FIND(1)

FILES
/etc/passwd
letc/group

SEE ALSO
sh(1)

BUGS
The syntax is painful.

Printed 7/8/82 2/4/82 3

FREQ(1)

NAME

freq - report on character frequencies in a file

SYNOPSIS

UNIX Programmer”s Manual

freq [file ...]

DESCRIPTION

FREQ(1)

Freqg counts occurrences of characters in the list of files specified on

the command line.

read.

EXAMPLE

If

no files are specified, the standard input is

The example below shows freq used to count characters in the source text
for this manual page:
freq /usr/man/manl/freq.l

Inul
leot
|bs
[££
ldle
ldc&
|can
Ifs
|

Printed 6/30/82

0lsoh
Olenq
0lht
Oler
0ldcl
0lnak
Olem
Olgs
193!
01%
31)
4|=-
0]1
0I5
219
0l=
0la
1|E
511
1IM
101Q
10U
0ly
111]
Ola
391e
3311
23 |m
3liq
80|u
Oly
01}

Olstx
Olack
Ol1f
Olso
0ldc2
O0lsyn
0lsub
Olrs
0]"
0l&
3%
131.
412
0l6
0l:
ol>
3B
5|F
1217
1IN
1IR
1lv
112
5]
601b
125(f
6213
15|n
4lr
32|v
6lz
0|~

1/9/82

Oletx
0lbel
61 [vt
Olsi
0ldec3
Oletb
Olesc
Olus
2|#
0l°
0+
391/
013
017
11;
01?7
13]c
2|6
0IK
410
718
0lw
01l
0l_
131¢
29|g
41k
6910
591s
llw
0l{
0ldel

0]
0l
ol
0l
0l
0l
0l
0l
0l
0l
2|
0l
0l
ol
2]
0l
1]
0l
0l
31
10|
0l
51
0l
33|
12|
3|
571
54|
4|
0l
0l

FSCK(1M) UNIX Programmer”s Manual FSCK(1M)

NAME

fsck - file system consistency check and interactive repair
SYNOPSIS

fsck [=y J [-n 1 [-sX] [=SX] [=t filename] [filesystem] ...
DESCRIPTION

fsck audits and interactively repairs inconsistent conditions for file

systems. If the file system is inconsistent the operator is prompted for
concurrence before each correction is attempted. It should be noted
that a number of the corrective actions will result in some loss of
data. The amount and severity of data lost may be determined from the
diagnostic output. The default action for each consistency correction
is to wait for the operator to respond yes or no. If the operator does
not have write permission fsck will default to a -n action.

Fsck has more consistency checks than its predecessors check, dcheck,
"fcheck, and icheck combined.

The following flags are interpreted by fsck.

-y Assume a yes response to all questions asked by fsck; this should
be used with great caution as this is a free license to continue
after essentially unlimited trouble has been encountered.

-n Assume a no response to all questions asked by fsck; not open
the file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct a
new one by rewriting the super-block of the file system. The file
system should be unmounted while this is done; if this is not pos-
sible, care should be taken that the system is quiescent and that
it is rebooted immediately afterwards. This precaution is neces-
sary so that the old, bad, in-core copy of the superblock will not
continue to be used, or written on the file system.

The -s8X option allows for creating an optimal free-list organiza-
tion. The following forms of X are supported for the following
devices:

-83 (RP03)
-s4 (RP0O4, RP0OS5, RP06)
-sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the filesystem was created
are used. If these values were not specified, then the value
400:9 is used.

-SX Conditionally reconstruct the free list. This option is 1like =-s8X
above except that the free list is rebuilt only if there were no
discrepancies discovered in the file system. Using -S will force a
no response to all questions asked by fsck. This option is useful

Printed 7/8/82 1/13/82 1

FSCK(1M) UNIX Programmer”s Manual FSCK(1M)

for forcing free list reorganization on uncontaminated file sys-—
tems.

-t If fsck cannot obtain enough memory to keep its tables, it uses a
scratch file. If the -t option is specified, the file named in the
next argument is used as the scratch file, if needed. Without the
-t flag, fsck will prompt the operator for the name of the scratch
file. The file chosen should not be on the filesystem being
checked, and if it is not a special file or did not already exist,
it is removed when fsck completes.

If no filesystems are given to fsck then a default list of file systems
is read from the file /etc/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the range of
the file system.

3. Incorrect link counts.

4, Size checks:

Directory size not l16-byte aligned.
5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:
File pointing to unallocated inode.
Inode number out of range.
8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file system.
9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with
the operator”s concurrence, reconnected by placing them in the
lost+found directory. The name assigned is the inode number. The only
restriction is that the directory lost+found must preexist in the root
of the filesystem being checked and must have empty slots in which
entries can be made. This is accomplished by making lost+found, copying
a number of files to the directory, and then removing them (before fsck
is executed).

Checking the raw device is almost always faster.

EXAMPLE

FILES

fsck /dev/rdisk0

checks the consistency of device rdisk0.

/etc/checklist contains default list of file systems to check.

Printed 7/8/82 1/13/82 2

FSCK(1M) . UNIX Programmer”s Manual FSCK(1M)

DIAGNOSTICS
The diagnostics produced by fsck are intended to be self-explanatory.

SEE ALSO
dcheck(1M), icheck(1M)

BUGS

Inode numbers for . and .. 1in each directory should be checked for
validity.

-g and -b options from check should be available in fsck.

Printed 7/8/82 1/13/82 3

GET(1)

NAME

UNIX Programmer”s Manual GET(1)

get — get a version of an SCCS file

SYNOPSIS

get [-rSID] [-ccutoff] [-ilist] [-x1i - - - - -
[p] lom] oo (o8] [-b] [ep] -7 pist) [-aseqmno.] (k] [-el [-1lp]]

DESCRIPTION

Get generates an ASCII text file from each named SCCS file according to
the specifications given by its keyletter arguments, which begin with -,
The arguments may be specified in any order, but all keyletter arguments
apply to all named SCCS files. If a directory is named, get behaves as
though each file in the directory were specified as a named file, except
that non-SCCS files (last component of the path name does not begin with
s§.) and unreadable files are silently ignored. If a name of - is given,
the standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed. Again, non-SCCS files and
unreadable files are silently ignored.

The generated text is normally written into a file called the g-file
whose name 1is derived from the SCCS file name by simply removing the
leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one
SCCS file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

-rSID The SCCS IDentification string (SID) of the version (delta)
of an SCCS file to be retrieved. Table 1 below shows, for
the most useful cases, what version of an SCCS file 1is
retrieved (as well as the SID of the version to be eventually
created by delta(l) if the -e keyletter is also used), as a
function of the SID specified.

-ccutoff Cutoff date-time, in the form:
Yy [MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the SCCS file which were created after
the specified cutoff date-time are included in the generated
ASCII text file. Units omitted from the date-time default to
their maximum possible values; that is, -c7502 is equivalent
to -c750228235959. Any number of nonnumeric characters may
separate the various 2 digit pieces of the cutoff date-time.
This feature allows one to specify a cutoff date in the form:
"-c77/2/2 9:22:25". Note that this implies that one may use
the ZE%Z and 2U% identification keywords (see below) for
nested gets within, say the input to a send(1C) command:

“lget "-cZEZ 2UZ" s.file

-e Indicates that the get is for the purpose of editing or

Printed 7/28/82 1

GET(1)

-1[p]

~Pp

Printed 7/28/82

UNIX Programmer”s Manual GET(1)

making a change (delta) to the SCCS file via a subsequent use
of delta(l). The -e keyletter used in a get for a particular
version (SID) of the SCCS file prevents further gets for
editing on the same SID until delta 1is executed or the j
(joint edit) flag 1is set in the SCCS file (see admin(l)).
Concurrent use of get =-e for different SIDs is always
allowed.

If the g-file generated by get with an =-e keyletter is
accidentally ruined in the process of editing it, it may be
regenerated by re-executing the g<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>