

stdin II. Portable C Runtime Library

NAME
stdin - the standard input control buffer

SYNOPSIS
FIO stdin;

FUNCTION
stdin is an FlO control buffer initialized for input from STDIN.

EXAMPLE
To count lines:

for (nl = 0; getl(&stdin, buf, BUFSIZE); ++nl)

SEE ALSO
stdout

stdin

II - 105

I

stdout II. Portable C Runtime Library stdout

NAME
stdout - the standard output control buffer

SYNOPSIS
FIO stdout;

FUNCTION
stdout is an FIO control buffer initialized for output to STDOUT.

EXAMPLE
putl(&stdout, outbuf, outsiz);

SEE ALSO
finlt, stdin

BUGS
stdout should not be used for non-text output unless initialized before
use by

finit(&stdout, STDOUT, BWRIT!);

II - 106

stob II. Portable C Runtime Library stob

NAME
stob - convert short to text in buffer

SYNOPSIS
BYTES stob(s, i, base)

TEXT *s;
COUNT i;
COUNT base;

FUNCTION
stob converts the short i to a text representation in the buffer starting
at s. The number is represented in the base specified, using lower case
letters beginning with 'a' to specify digits from 10 on. If (0 < base)
the number i is taken as unsigned; otherwise if (base < 0) negative
numbers have a leading minus sign and are converted to -base; if (base --
0) it is taken as -10. Only magnitudes of base between 2 and 36 are gen­
erally meaningful, but no check is made for reasonableness.

RETURNS
The value returned is the number of characters used to represent the
short, which in hexadecimal can be up to four digits plus sign.

EXAMPLE
To output i in decimal:

write(STDOUT, buf, stob(buf, i, 10»;

SEE ALSO

BUGS

btoi, btol, btos, itob, Itob

The length of the buffer is not specifiable. If (lbase: == 1) the program
can bomb; if (36 < lbase:> funny characters can be inserted in the buffer.

II - 107

~uobuf II. Portable C Runtime Library

NAME
subbuf - find occurrence of substring in buffer

SYNOPSIS
BYTES·subbuf(s, ns, p, np)

T.EXT *s, *p;
BYTES ns, np:

FUNCTION

subbuf

subbuf scans the buffer starting at s of size ns, and looks for the first
occurrence of the substring at p of size np.

RETURNS
The value returned is the· index in s of the leftmost character in the sub­
string if subbuf is successful; otherwise, ns is returned.

EXAMPLE
for(p = buf, i = size; (j = subbufCp, i, "\r\n", 2» < i;

p =+ j + 2, i =- j + 2)

SEE ALSO·

{
write(fd, p, j);
write(fd, "\a" , 1);
}

amatch, inbuf, instr, match, notbuf,. notstr, scnbuf, scnstr, substr

II - 108

substr II. Portable C Runtime Library

NAME
substr - find occurrence of substring

SYNOPSIS
BYTES substr(s, p)

TEXT *s" *p;

FUNCTION

substr

substr scans the string starting at s, and looks for the first occurrence
of the substring at p.

RETURNS
The value returned is the index in s of the leftmost character in the sub­
string if substr is successful; otherwise, the index of the terminating
NUL is returned.

EXAMPLE
if (line[substr(line, nPagen)])

putrmt(n~s: ~\nn, Ino / 66 + 1, line);

SEE ALSO
amatch, inbuf, instr, match, notbuf, notstr, scnbuf, scnstr, subbuf

II - 109

tolower II. Portable C Runtime Library

N~E
tolower - convert character to lowercase if necessary

SYNOPSIS
tolower(c)

FUNCTION

tolower

tolower converts an uppercase letter to its lowercase equivalent, leaving
all other characters unscathed.

RETURNS
tolower is a numerical rvalue guaranteed not t~ be an uppercase character.

EXAMPLE
To accumulate a hexadecimal digit:

if ('a' <= c && c <= 'f' II 'A' <= c && c <= 'Ff)
sum = sum • 10 + tolower(c) + (10 - fa');

SEE ALSO

BUGS

isalpha, isdigit, islower, isupper. iswhite, toupper

Because it is a macro, tolower cannot be called from non-C programs, nor
can its address ·be taken. Arguments with side effects may be evaluated
other than just once.

II - 110

toupper II. Portable C Runtime Library

NAME
toupper - convert character to uppercase if necessary

SYNOPSIS
toupper(c)

FUNCTION

toupper

toupper converts a lowercase letter to its uppercase equivalent, leaving
all other characters unscathed.

RETURNS
toupper is a numerical rvalue guaranteed not to be a lowercase character.

EXAMPLE
To convert a character string to upppercase letters:

for (i = 0; i < size; ++i)
buf[i] = toupper(buf[i]);

SEE ALSO

BUGS

isalpha, isdigit, islower, isupper, iswhite, tolower

Because it is a macro, toupper cannot be called from non-C programs, nor
can- its address be taken. Arguments with side effects may be eval-uated
other than just once.

II - ,,-,

usage II. Portable C Runtime Library

NAME.
usage - output standard usage information

SYNOPSIS
COUNT usage(msg)

TEXT *msg;

FUNCTION

usage

usage outputs to STDERR the string "usage: <pname)", followed by the
string pointed to by msg, where <pname) is the name by which the current
program was invoked. If msg is terminated with a newline, usage immedi­
ately takes an error exit.

RETURNS
If usage returns to the caller, its value is the number of characters out­
put to STDERR.

EXAMPLE
if (1 < aflag + bflag + nflag)
usage("-(a b n] <f1les)\n");

SEE ALSO
-pname(III), getflags

II .. '12

Cint
main
_pname
close
create
exit
lseek
mkexec
onexit
onintr
open
read
remove
sbreak
uname
write

III. C System Interface Library

TABLE OF CONTENTS

C interface to operating system
enter a C program
program name
close a file
open an empty instance of a file
terminate program execution
set file read/write pointer
make file executable
call function on program exit
capture interrupts
open a file
read characters from a file
remove a file
set system break
create a unique file name
write characters to a file

III - i

Cint III. C System Interface Library Cint

NAME
Cint - C interface to operating system

FUNCTION
C programs operating in user mode under any operating system may assume
the existence of several functions which implement program entry/exit and
low-level I/O. This section documents these functions, plus several crit­
ical presumptions that can be made about the environment supplied, in the
most portable of terms. Details of actual implementations may be found in
the variousC Interface Manuals; but these are best ignored if portability
is considered a virtue.

Each C program must provide a function maine), detailed on a separate
manual page, that has access to the command line used to invoke the pro­
gram. Returning from main, or calling exit(), terminates program execu­
tion and reports at most one bit of status, success or failure, to the in­
voker.

C programs may assume the existence of three open text files: STDIN (file
descriptor 0)., STDOUT (file descriptor 1), and STDERR (file descriptor 2).
The first may be used with read() and close(); the latter two may be used
with write() and close().

The."standard input" STDIN and "standard output" STDOUT may be redirected
on the command line (transparently to the program); the "standard error"
file STDERR is a reliable destination for error messages. The following
conventions apply to I/O:

A filename - is a string, hence a NUL terminated array of characters,
hence a pointer to char when used as an argument. For maximum porta­
bility, a filename should consist of letters, of one case only, and
digits. The first character should be a letter and there should be
no more than six characters, optionally followed by a '.' and no more
than two more letters.

A file descriptor - is a short integer (type FILE in the standard header
std.h) that is guaranteed to be non-negative. Its value should be
otherwise assumed to be magic.

A mode - is a short integer that specifies reading (mode -- 0), writing
(mode == 1), or updating (mode == 2). No other values are defined.

A binary file - looks to a C program like a sequence of characters,
period. There is no record structure and all character codes are al­
lowed. Trailing NULs may be provided, free of charge, by some
operating systems.

A text file - is much like a binary file, except it is assumed to contain
printable text that may be mapped between internal and external
forms. Most programs deal with such files of printable text, where a
line structure is imposed (internally) by the presence of a newline
(ASCII linefeed) character at the end of each line. Lines can be as­
SlJIlleti never to be longer than 512 characters, counting the terminat­
ing ne.wl ine, nor should a text file ever be produced whose last 1 ine

III - 1

Cint - 2 - 'Cint

has no newline at the end.

Space is reserved for each program to grow a stack, or LIFO list of func­
tion call argument lists and automatic storage frames, and a heap, or un­
structured data area. Heap is purchased in (not necessarily contiguous)
chunks by calls on sbreak(), and is never given back during program execu­
tion. Stack and heap often must contend for the same (limited) space, so
an otherwise correct C program may terminate early, or (sadly) misbehave,
because insufficient space was allotted.

Note that all objects in C are presumed to have non-NULL addresses; the
system is obliged never to bind an external identifier to the value zero.
The system interface ensures that address zero never occurs on the stack
or heap, as well. In fact, the addresses -, and +' are also discouraged,
since some functions treat these values as codes for discred i ted pointers,
much like NULL (0).

III - 2

main III. C System Interface Library main

NAME
main - enter a C program

SYNOPSIS
BOOL main(ac, av)

BYTES ac;
TEXT **av;

FUNCTION
main is the function called to initiate a C program; hence every user pro­
gram must contain a function called main. Its arguments are a sequence of
NUL terminated strings, pointed at by the first ac elements of the array
av, obtained from the command line used to invoke the programs. By con­
vention, ac is always at least one, av[O] is the name by which the program
has been invoked, and av(1], if present, is the first argument string,
etc. Program execution is terminated by returning from main, or by an ex­
plicit call to exit. In either case, one bit of status is returned to the
invoker_ to signify whether the program ran successfully.

RETURNS
main returns YES (or non-zero) if successful, otherwise NO (zero).

EXAMPLE
1* ECHO ARGUMENTS TO STDOUT

* copyright (c) 1980 by Whitesmiths, Ltd.
*/

'include <std.h>

BOOL main(ac, av)
BYTES ac;
TEXT **av;
{
if (1 < ac)

{
putstr(STDOUT, *++av, NULL);
for (--ac, ++av; --ac; ++av)

putstr(STDOUT, " ", *av, NULL);
write(STDOUT. "\n" , 1);
}

return (YES);
}

III - 3

III. C System Interface Library oname -'

NA"~E
pname - program name

SYNOPSIS
rEX! _pname;

FUNCTION
pname is the (NUL terminated) name by which the program was invoked, if

that can be determined from the command line'~ or the name provided by the
C programmer. if present, or the name "error", delivered up by a waiting
library module. The library definition i~ used only if no definition of

pname is provided by the C program and/or the compile time name i~ not
overridden at runtime.

It is used primarily for labelling diagnostic printouts.

SEE: ALSO
error(II)

III - 4

close III. C System Interface Library

NAME
close - close a file

SYNOPSIS
FILE close (fd)

FILE fd;

FUNCTION

close

close closes the file associated with the file descriptor fd, making the
fd available for future open or create calls.

RETURNS
close returns the now useless file descriptor, if successful, or a nega­
tive number.

EXAMPLE
To copy an arbitrary number of files:

while (fd = getfiles(&ac, &av, STDIN, -1»
{

SEE ALSO

while (0 < (n = read(fd, buf, BUFSIZE»}
write(STDOUT, buf, n);

close(fd);
}

create, open, remove, uname

III - 5

create III. C System Interface Library create

N~E
create - open an empty instance of a file

SYNOPSIS
FILE create(fname, mode, rsize)

TEXT ·fname;
COUNT mode;
BYTES rsize;

FUNCTION
create makes a new file fname, if it did not previously exist, or trun­
cates the existing file to zero length. If (mode == 0) the file is opened.
for reading, else if (mode == 1) it is opened for writing, else (mode --
2) of necessity and the file is opened for updating (reading and writing).

If the file is to contain arbitrary binary data, as opposed to printable
ASCII text, the record size rsize should be non-zero. Not all systems
behave well if a textfile is created for updating.

RETURNS
create returns a file descriptor for the created file or a negative
number.

EXAMPLE
if «fd = create("xeq", WRITE, 1» < 0)

write (STDERR, "~an't create xeq\n", 17);

SEE ALSO
close, open, remove, uname

III - 6

exit III. C System Interface Library

NAME
exit - terminate program execution

SYNOPSIS
VOID exit(success)

BOOL success;

FUNCTION

exit

exit calls all functions registered with onexit, closes all files, and
terminates program execution. exit is called with a non-zero (YES) to in­
dicate success, or a zero (NO) to indicate unsuccessful termination; not
all systems provide a recipient for this information.

RETURNS
exit will never return to its caller.

EXAMPLE
if «fd = open("file", READ, 0» < 0)

{

SEE ALSO
onexit

write (STDERR, "can't open file\n", 16);
exitCNO);
}

III - 7

lseek III. C System Interface Library lseek

NAME
lseek - set fiie read/write pointer

SYNOPSIS
COUNT lseek(fd, offset, sense)

FILE fd;
LONG offset;
COUNT sense;

FUNCTION
lseek uses the long offset provided to modify the read/write pointer for
the binary file fd, under control of sense •. If (sense == 0) the pointer.
is set to the byte offset, which should be positive. If (sense == 1) the
byte offset is algebraically added to the current pointer. Other values
of sense are extremely system dependent.

The call lseek(fd, OL, 1) is guaranteed to leave the file pointer unmodi­
fied and, more important, to succeed only if lseek calls are both accept­
able and meaningful for the fd specified. Other lseek calls may appear to
succeed, but without effect, as when rewinding a terminal.

RETURNS
lseek returns the file descriptor if successful, or a negative number.

EXAMPLE'
To read a 512-byte block:

III - 8

BOOt getblock(buf, blkno)
TEXT ·buf;
BYTES blkno;
{

lseek(STDIN, (LONG)blkno « 9, 0);
return (read(STDIN, buf, BUFSIZE) 1= BUFSIZE);
}

mkexec III. C System Interface Library mkexec

NAME
mkexec - make file executable

SYNOPSIS
BOOL mkexec(fname)

TEXT ffname;

FUNCTION
mkexec converts the file fname to executable form. This may entail renam­
ing the file by adding or replacing a system dependent suffix (or "ex­
tent") to fname; or it may simply involve altering access attributes. It
is used by program constructors (loaders, linkers, task builders) to bless
a successful product.

RETURNS
mkexec returns true if successful, otherwise false.

EXAMPLE
if (load'() && load2(»

return (mkexec(xfile»;

III - 9

onexit III. C System Interface Library

NAME
onexlt - call function on program exit

SYNOPSIS
VOID (*onexitC»(pfn)

VOID (*(*pfn)(»();

FUNCTION

onexit

onexit registers the function pointed at by pfn, to be called on program
exit. The function at pfn i~ obliged to return the pointer returned by
the onexit call, so that any previously registered functions can also be
called •

RETURNS
onexit returns a pointer to another function; it is guaranteed to be non­
NULL.

EXAMPLE
To register the function thi~guy:

GLOBAL VOID (*(*nextguy)(»(), (*thi~guy(»();

if (!nextguy)

SEE ALSO
exit

BUGS

nextguy = onexit(&thisguy);

The type declarations defy description, and are still wrong.

III - 10

onintr III. C System Interface Library onintr

NAME
onintr - capture interrupts

SYNOPSIS
VOID onintr (pfn)

VOID (*pfn) ();

FUNCTION
onintr ensures that the function at pfn is called on the occurrence of an
interrupt generated from the keyboard of a controlling terminal. (Typing
a delete DEL, or sometimes a ctl-C ETX, performs this service on many sys­
tems.) Any earlier call to onintr is overriden~

The function is called with one integer argument, whose value is always
zero, and must not return; if it does, a message is output to STDERR and
an immediate error exit is taken.

If (pfn is NULL) then the interrupt is disabled (turned off), assuming
that the system supports such an operation. A disabled interrupt is not,
however, turned on by a subsequent call with pfn not NULL~ Systems that
support nothing resembling a keyboard interrupt behave as if the interrupt
were disabled at program startup, i.e., the function at pfn 1s never
called.

RETURNS
Nothing.

EXAMPLE
A common use of onintr is to ensure a graceful exit on early termination:

VOID rmtemp()
{

remove(uname(» ;
}

onexit(&rmtemp) ;
onintr(&exit)~

Still another use is to provide a way of terminating long printouts,
as with an interactive editor:

while (!enter(docmd, NULL»
putstr(STDOUT, "7\n", NULL);

VOID docmd()
{
onintr(&leave);

SEE ALSO
enter(II), leave(II), onexit

III - 11

open III. C System Interface Library open

NAME
open - open a file

SYNOPSIS
FILE open(fname, mode, rsize)

TEXT *fname;
COUNT mode;
BYTES rsize;

FUNCTION
open opens a file·fname and assigns a file descriptor to it. If (mode --
0) the file is opened for reading. else if (mode -- 1) it is opened for
writing, else (mode == 2) of necessity and the file is opened for updating
(reading and writing).

If the file is to contain arbitrary binary data, as opposed to printable
ASCII text, the record size rsize should be non-zero. Not all systems
behave well if a text file is opened for updating.

RETURNS
open returns a file descriptor for the opened file, or a negative number,
if unsuccessful.

EXAMPLE
--1-f'--+<f'd-- = -open-(--"-xeq"-,---WRIT-E,- -- -l-l-) --{ 0>

write(STDERR, "can't open xeq\n", 16);

SEE ALSO
close, create

III - 12

read' III. C System Interface Library

NAME
read - read characters from a file

SYNOPSIS
COUNT read(fd, buf, size)

FILE fd;
TEXT *buf;
BYTES size;

FUNCTION

read

read reads up to size characters from the file specified by fd into the
buffer starting at buf.

RETURNS
If an error occurs, read returns a negative number; if end of file is en­
countered, read returns zero; otherwise the value returned is between 1
and size, inclusive, which is the number of characters actually read into
buf. .

EXAMPLE
To copy a file: .

while (0 < (n = read(STDIN, buf, BUFSIZE»)
write (STDOUT, buf, n);

SEE ALSO
write

/
III - 13

remove III. C System Interface Library

NAME
remove - remove a file

SYNOPSIS
FILE remove(fname)

TEXT -fname;

FUNCTION

remove

remove removes the file fname; on most systems, this is an irreversible
act.

RETURNS
remove returns zero, if successful, or a negative number.

EXAMPLE
if (remove(uname()) < 0)

putstr(STDERR, "can't remove temp file\n", NULL);

III - 14

sbreak . III. C System Interface Library sbreak

NAME
sbreak - set system break

SYNOPSIS
TEXT *sbreak(size)

ARGINT size;

FUNCTION
sbreak moves the system break, at the top of the data area, algebraically
up by size bytes, rounded up as necessary to placate memory management
hardware. There is no guarantee that successive calls to sbreak will
deliver contiguous areas of memory, nor can all systems safely accept a
call with negative size.

RETURNS
If successful, sbreak returns a pointer to the start of the added data
area; otherwise the value returned is NULL.

EXAMPLE
if (!(p = sbreak(nsyms * sizeof (symbol»»

{ .

putstr(STDERR, "not enough room!\n", NULL);
exit(NO);
}

III - 15

uname III. C System Interface Library uname

NAME
uname - create a unique file name

SYNOPSIS
TEXT *uname()

FUNCTION
uname returns a pointer to the start of a NUL terminated name which is
likely not to conflict with normal user filenames. The name may be modi­
fied by a letter suffix (but not in place!), so that a family of process­
unique files may be dealt with. The name may be used as the first argu­
ment to a create, or subsequent open, call, so long as any such files
created are removed before program termination. It is considered bad
manners to leave scratch files lying about.

RETURNS
uname returns the same pointer on every call during a given program invo­
cation. The pointer will never be NULL.

EXAMPLE
.if·{(fd = create(uname(), WRITE, 1» < 0)

putstr(STDERR, "can't create sort temp\n", NULL);

SEE ALSO
close, create, open, remove

III - 16

write III. C System Interface Library

NAME
write - write characters to a file

SYNOPSIS
COUNT write(fd, buf, size)

FILE fd; .
TEXT -buf;
COUNT size;

FUNCTION

write

write writes size characters starting at buf to the file specified by fd.

RETURNS
If an error occurs, writes either returns a negative number or a number
other than size; otherwise size is returned.

EXAMPLE
To copy a file:

while (0 < (n = read(STDIN, buf, BUFSIZE»)

SEE ALSO
read

if (write (STDOUT, buf, n) != n)
{
putstr(STDERR, "write error\n", NULL);
exit(NO) ;
}

III - 17

Conventions
addexp

-domain
domerr
dtens

::dzero
fcan

-frac
:huge
_norm

ntens
:poly

raise
ranerr - .

_range
round

:tiny
_unpack

when

IV. C System Interface Library

TABLE OF CONTENTS

of the C machine interface library
scale double exponent
report domain error
domain error condition
powers of ten
double zero
canonicalize floating point datum
extract integer from fraction part
largest double number
convert double to normalized text string
number of powers of ten
compute polynomial
raise an exception
range error condition
report range error
round off a fraction string
smallest double number
extract fraction from exponent part
handle exceptions

IV - i

Conventions IV. C System Interface Library Conventions

NAME
Conventions - of the C machine interface library

FUNCTION
The functions and variables documented in this section are usable just
like any of those in Section II or Section III, but need not be known to
the typical C programmer. Rather, they are called upon by higher .level
functions to perform machine dependent operations, to provide machine
dependent information, or merely to provide an important service with ef­
ficiency and/or extra precision.

They are isolated in a separate section a) to avoid cluttering an already
extensive collection of useful functions with arcana, and b) to show pros­
pective implementors what is required in the way of low level support for
a new machine. Note that Section III serves much the same purpose for im­
plementors of new operating system interfaces.

IV - 1

_addexp IV. C System Interface Library

NAME
_addexp - scale double exponent

SYNOPSIS
DOUBLE _addexp(d, n, msg)

DOUBLE d;
COUNT n;
TEXT *tasg;

FUNCTION

_addexp

addexp effectively multiplies the double d by two raised to the power n,
although it endeavors to do so by some speedy ruse. If the double result
is too large in magnitude to be represented by the machine, _range is
called with msg.

RETURNS
_addexp returns the double result d • (1 « n), or any value returned by
_range.

EXAMPLE
DOUBLE sqrt (x)

DOUBLE x;
{
COUNT n;

n = _unpack(&x);
x = newton (x) ;
if (n & 1)

x =* SQRT2;
return (_addexp(x, n » 't "can't happen"»;
}

SEE ALSO
_frac, _range, _unpack

IV - 2

_domain IV. C System Interface Library domain

NAME
domain - report domain error

SYNOPSIS
VOID domain(msg)

TEXT -msg;

FUNCTION
domain is called by math functions to report a domain error, i.e., the

fact that an input value lies outside the set of values over which the
function is defined. It copies msg to domerr, then calls raise for the
condition _domerr. This exception, -if not caught, results in an error
exit that prints the NUL terminated string at msg to STDERR, followed by a
newline.

There is no way of inhibiting domain errors, though any code using when
to handle them may choose to ignore their occurrence.

RETURNS
domain never returns to its caller. It may return from an instance of

-when that is willing to handle a domain error; otherwise the program ex­
its, reporting failure.

EXAMPLE
DOUBLE sqrt(x)

DOUBLE x;
{
if (x < 0)

_domain("negative argument to sqrt");

SEE ALSO
_domerr, _raise, _range, when

IV - 3

IV. C System Interface Library domerr

NAME
domerr - domain error condition

SYNOPSIS
TEX'! *_domerr

FUNCTION
domerr is the condition raised when a domain error occurs, i.e., when a

math function discovers that an input value lies outside the set of values
over which the function is defined.

SEE ALSO
_domain, _raise, _ranerr

IV - 1$

dtens IV. C System Interface Library

NAME
dtens - powers of ten

SYNOPSIS
DOUBLE· _dtens(];

FUNCTION
dtens is an array of doubles with values 1, 10, 100, 10**4,

up to the largest such number the machine can represent.
entries in _dtens is recorded in the variable _ntens.

SEE ALSO
_ntens

dtens

10**8, etc.
The number of

IV - 5

dzero IV. C System Interface Library

NAME
_dzero - double zero

SYNOPSIS
DOUBLE _dzero;

FUNCTION
_dzero is a double zero, provided for convenience more than necessity.

SEE ALSO
_huge, _tiny

IV - 6

fcan IV. C System Interface Library fcan

NAME
fcan - canonicalize floating point datum

SYNOPSIS
COUNT fc an (pd)

TEXT fpd;

FUNCTION
fcan is a machine dependent routine required by the C code generators to

translate native double floating data to a canonical format. Each code
generator can then translate from canonical to target machine format, ir­
respective of the host environment.

The canonical form is an array of eight characters stored in place of the
double number at pd. pd[O] is zero if the number is positive. else 0200;
pd[1] is the most significant byte of the fraction. with an assumed binary
point to the left of its most significant bit; the remaining fraction
bytes are stored in descending order of significance at pd[2] through
pd[7J. If the number is nonzero, the most significant (0200) bit of pd[1]
is set, so that the fraction is in the half-open interval [1/2. 1).

It is assumed that the number at pd is normalized on entry to _fcan.

RETURNS
fcan returns the power of two by which the fraction must be multiplied to

give the proper value. The sign and fraction bytes are written in place
of the double number.

IV - 7

I

_frac IV. C System Interface Library frac

NAME
_ftac - extract integer from fraction part

SYNOPSIS
COUNT frac(pd, mul)

DOUBLE *pd, mul;

FUNCTION
frac forms the double produot of *pd and mul, then partitions it into an

integer plus a double fraotion in the interval (-1/2, 1/2], delivers the
fractional part to *pd and the low bits of the integer part as the value
of the funotion. If the integer part cannot be properly represented as a
COUNT, it is trunoated on the left without remark.

RETURNS
frao returns the low bits of the integer part of the produot C*pd * mul)

as the value of the funotion and writes the fraotional part of the produot
at *pd.

EXAMPLE
DOUBLE s 1nd (x)

DOUBLE x;
{
COUNT n;

n = _frac(&x, 1.0/90.0); ...
SEE ALSO

_addexp t _unpaok

IV - 8

IV. C System Interface Library

NAME
_huge - largest double number

SYNOPSIS
DOUBLE _huge

FUNCTION
_huge is the largest representable double number.

SEE ALSO
_dzero, _tiny

IV - 9

norm IV. C System Inter~ace Library

NAME
_norm - convert double to normalized text string

SYNOPSIS
COUNT norm(s, d, prec)

TEXT *s;
DOUBLE d;
BYTES prec;

FUNCTION

norm

_norm factors the double d into a) a double in the interval (0.1, 1) or
zero, and b) an integral power of ten. The first prec digits of the frac­
tion are written as text characters in the buffer starting at s. If the
number is negative on "entry, it is forced positive.

RETURNS
The value of the function on return is the power of ten to which the frac­
tion string in s must be raised to give the value of d. If d is zero, all
characters in s are 'a's and the value returned is zero.

SEE ALSO
round

IV - 10

ntens IV. C System Interface Library ntens

NAME
ntens - number of powers of ten

SYNOPSIS
COUNT _ntens;

FUNCTION
ntens is the number of elements in the array _dtens, which holds various

powers of ten as double numbers.

SEE ALSO
dtens

IV - 11

IV. C System Interface Library

N~E

_poly - compute polynomial

SYNOPSIS
DOUBLE _poly(d, tab, n)

DOUBLE d, *tab;
COUNT n;

FUNCTION
_poly computes the polyn~mial of order n in the independent variable d.
using the coefficients in the table pointed to by tab. Horner's method is
used, taking tab(O] as the coefficient of the highest power of d, so the
value computed is:

tab(n] + d * (tab(n-1J + d * (... + d * tab(O))

No precautions are taken against overflow or underflow.

RETURNS
_poly returns the double value of the polynomial of order n in d.

EXAMPLE
return (x * _poly(x • x. coeffs, 6»;

IV - 12

raise IV. C System Interface Library

NAME
raise - raise an exception

SYNOPSIS
VOID raise(ptr, cx)

TEXT **-ptr, **cx;

FUNCTION

raise

_raise signals the presence of a condition that must be handled by an ear­
lier call to when. The when/ raise mechanism is used to perform a broad
spectrum of stack manipulations normally beyond the scope of the C
language, including: Ada exception handling, Pascal nonlocal goto's, Idris
process switching, editor interrupt fielding, and math error reporting.

The ha~dler to be first considered is specified by ptr. If ptr is -1 or
NULL, the latest when call is used as the start of a search for a willing
handler; otherwise ptr must have been set by an earlier when call to
specify that call as the st'arting point of the search.

If cx is NULL or -1, then the first handler encountered returns to its
caller with the value zero; qtherwise cx must match a condition argument
of one of the registered handlers to be conSidered, or at some level it
must be handled by a NULL terminating a list of condition arguments.

The ·return from _when caused by a _raise call cleans up the stack if ei­
ther ptr or cx is NULL. Otherwise, the handler for that when call
remains on the stack and is made the latest of the chain of handlers.

RETURNS
raise never returns to its caller. It returns from the latest willing
when call with registers, stack, and handler chain restored to that lev­

el; the value returned by._when is nonnegative. The handler chain is ini­
tialized to a single catchall handler which calls error to print an error
message, and takes an error exit. If the condition can be interpreted as
the address of a pointer to a NUL terminated string, then that strlng,
followed by a newline, is used as the error message; otherwise the message
is "unchecked condition".

EXAMPLE
To exit on end of file:

TEXT *endfile {"unchecked end of file"};

VOID readrec(buf)
TEXT *buf;
{

if (freadCSTDIN,
_raise(NULL,

}

buf, 80) !: 80)
&endfile) ;

switch(when(NULL, &endfile, NULL»
{ -

case 1:
oneof() ;

IV - 13

2 -

}

SEE ALSO
_when, error(II), enter(II), leave(II)

BUGS
You are not expected to understand this.

IV - 14

ranerr IV. C System Interface Library ranerr

NAME
ranerr - range error condition

SYNOPSIS
TEXT * ranerr

FUNCTION
ranerr is the condition raised when a range error occurs, i.e., when a

math routine discovers that a return value is too large to represent. Un­
like most conditions, the range condition may be inhibited from time to
time by writing a nonzero value in ranerr.

SEE ALSO
_ domerr t _range

IV - 15

IV. C System Interface Library

NAME
_range - report range error

SYNOPSIS
DOUBLE range(msg)

TEXT-*msg;

FUNCTION
_range is ,called by math functions to report a range error, i.e., the pro­
duction of an output value that cannot be represented properly by the
machine. If ranerr is NULL; range copies msg to ranerr, then calls
_raise for the condition _ranerr. This exception, if not caught, results
in an error exit that prints the NUL terminated string atmsg to STDERR,
followed by a newline.

If _ranerr is not NULL, the condition is not raised, and _range returns to
its caller.

RETURNS
If range returns to its caller, the value returned is the largest double
that can be represented by the machine; otherwise the ranerr condition is
raised and range does not return to its caller. It may return from an
instance of _when that is willing to handle a range error; other~se the
program eXlts, repor~lng t"alJ.ure.

EXAMPLE'
if (lnhuge < x)

:range("exp overfiow");

SEE ALSO
_domain, _ranerr, _raise, _when

IV - 16

L

round IV. C System Interface Library

NAME
round - round off a fraction string

SYNOPSIS
COUNT round(s, n, prec)

TEXT *s;
BYTES n, prec;

FUNCTION

round

round rewrites the n character buffer starting at s as a properly rounded
string of prec digits.
'5'), no action is taken.
incremented and carries
'1000 ••• ' to prec digits.

RETURNS

If prec is outside the buffer, or if (s(prec] <
Otherwise, the next character to the left is
are propagated. All '9's is rewritten as

round returns 1 if all '9's rounded up, otherwise zero.

SEE ALSO
norm

BUGS
No check is made for non-digits in the buffer.

IV - 17

IV. C System Interface Library

NAME
_tiny - smallest double number

SYNOPSIS
DOUBLE _tiny

FUNCTION
_tiny is the smallest positive representable double number larger than
zero.

SEE ALSO
_dzero, _huge

IV - 18

_unpack IV. C System Interface Library

NAME
_unpack - extract fraction from exponent part

SYNOPSIS
COUNT unpack(pd)

DOUBLE *pd;

FUNCTION

_unpack

unpack partitions the double at .pd, which should be nonzero, into a
fraction in the interval (1/2, 1) times two raised to an integer power,
deliver·s the fraction to *pd and returns the integer power as the value of
the function.

RETURNS
_unpack returns the power of two exponent of the double at pd as the value
of the function and writes the fraction at *pd. The exponent is generally
meaningless if d is zero.

EXAMPLE
DOUBLE sqrt(x)

DOUBLE x;
{
COUNT n;

n = unpack(&x) ;
x = newton (x);
if (n & 1)

x =* SQRT2;
return (addexp(x, n » 1»;
} -

SEE ALSO
_addexp, frac

IV - 19

I

IV. C System Interface Library

NAME
when - handle exceptions

SYNOPSIS
COUNT when(ptr, c1, c2, ••• , cend)

TEXT **ptr, **c1, **02, ••• , **cend;

FUNCTION
_when registers a willingness to handle certain exceptions that may be
raised by calls to raise. The whenl raise mechanism is used to perform
a broad spectrum of stack manipulations-normally beyond the soope of the C
language, including: Ada exception handling, Pascal nonlocal goto's, Idris
process switching, editor interrupt fielding, and math error reporting.

The call to _when causes its argument list and certain non-volatile regis­
ters to be left on the stack, where they are made the latest part of a
chain of condition handlers. Should a subsequent call to raise report a
condition that is to be handled by this part of the chaTn, control flow
resumes with a return from when, indicating which condition has been
raised. Upon every return, all register variables are restored to their
values at the time of the initial call to when. 'nle raise call may
cause the stack to be cleaned up as part of-the return from when; this is
~ m~nd~~~v n~elud@ to returnin2 from any function that call~ when.

If-ptr is not NULL, it is used as the address of a pointer that should be
set to point' at the latest part ·of the handler chain; this value may be
used by subsequent raise calls to specify this particular call to when
instead of the normal top of the handler chain. ptr is also used when the
stack is cleaned up on return, as the address at which to write the condi­
tion being handled.

The conditions c1, c2, etc. each may assume any value except NULL or -1,
although there is a strong presumption that the value is a valid data
space address of a pointer to a NUL terminated string of characters. A-1
is taken as a cend that indicates no further conditions, while a NULL is
taken as a cend that will handle any condition. The leftmost condition
argument that will handle a given condition, in the latest part of the
handler chain, is chosen to handle the condition.

Since _when plays fast and loose with the stack, it should never be used
except as the lone operand in a switch statment, and all when calls must
be carefully coordinated with appropriate _raise calls to ~tay sane.

RETURNS
_when returns -1 upon return from its initial setup. It returns zero on a
cleanup return that reports no condition. Otherwise it returns the ordi­
nal position, within the argument list, of the condition it is handling; a
one indicates el, two means c2, etc. If cend is NULL, its ordinal posi­
tion will be returned for any condition not otherwise handled.

The stack is cleared, and a non-NULL ptr is used to return the second ar­
gument to raise. if a) either argument to _raise was NULL or b) if a NULL
eend is handling the condition.

IV - 20

- 2 -

EXAMPLE:
To field interrupts interactively:

VOID endup()
{
putstr(srDQur. "?\n". NULL);
rai~e(NULL, NULL);

T

FOREVER
{

SEE ALSO

onintr (&endup) ;
when (HUll, HULL);

if (edit() == EOF)
exit(YES) ;

_rai~et enter(I!), leave(II)

BUes
You are not expeeted to under~tand thi~.

when

IV - 21

