
1001.
REVISID 11/78

PRELIMINARY

OPERATOR'S
MANUAL
CG SERIES

COLOR GRAPHics COMPUTERS

MODELS
1398 1598 1998
1399 1599 1999

Chromatics, Inc. I 3923 Oakcliff Industrial Court I Atlanta, Georgia 30340 I Telephone 404/447·8797

WARNING

Before connecting any external cables to your CG terminal, check

the I/O connector pin assignments found in Appendix D of your

Operator's Manual. Note that the undefined pins of the RS-232
,,!'t"" . ',i"" .;r~,,~.~

connec tors ,!~s ,; ,~0\~:~r~~25t have
Connection to any external s

compatible will result in

not be covered by the standard warranty.

"unknown" RS-232 cable to these ports,

the

pins which are not

to your unit and will

When connecting an

-~

TABLE OF CONTENTS

1. INTRODUCTION

1.1 General System Description

1.2 Initial Checkout and Start-up

1.2.1 The POWER Key

1.3 Introduction to the Keyboard

1.3.1 Key Groups

1.3.2 ASCII

1.4 Terminology and Conventions

2. SYSTEM ORGANIZATION

1-1

1-3

1-3

1-4

1-4

1-6

1-9

2.1 Physical Organization 2-1

2.2 Logical Organization 2-4

2.3 Escape Code Processing 2-4

2.4 System Control Functions 2-6

2.4.1 Cathode Ray Terminal Operating System (CRTOS) 2-6

2.4.2 Central Processing Unit Operating System (CPUOS) 2-7

2.4.3 BASIC Interpreter 2-7

2.4.4 Disk Operating System (DOS) 2-7

2.4.5 Text Editor 2-8

2.4.6 z-80 Assembler 2-8

2.4.7 PROM Programmer 2-8

2.4.8 Jump to User Function 2-8

3. CATHODE RAY ruBE OPERATING SYSTEM (CRTOS)

3.1 Entry into CRTOS

3.1.1 BOOT

3.1. 2 CRTOS

3.2 Entry into Other Programs

3-1

3-1

3-2

3-2

TABLE OF CONTENTS - continued

3.3 Other Escape Functions

3.3.1 Set Communications Mode

3.3.2 Set Communications Rate

3.3.3 Set Parity and Stop Bits

3.3.4 Transmit Cursor Position

3.3.5 The BREAK Key

3.3.6 Send ESC

3.3.7 Logical Device Assignment

3.4 The CRT Display Screen

3.5 Coordinate Entry

3.5.1 Decimal Coordinate MOde

3.5.2 Binary Coordinate Mode

3.6 Cursor Control

3.6.1 Cursor Display Control

3.6.2 Character Related Cursor Movements

3.6.3 Point Related Cursor Movements

3.7 Character Mode

3.7.1 Alternate Character Set

3.7.2 Set Character Size

3.7.3 Character Input Movement

3.7.4 Selecting Character Color and Blinking

3.7.5 Additional Display Functions

3.8 Multiple Windows

3.8.1 Set Window Size

3.8.2 Addressing MUltiple Windows

3.8.3 Overlapping Windows

3.8.4 Exceeding Window Boundaries

3.9 Graphics Functions

3.9.1 Entering Plot Mode

3.9.2 Returning to Character Mode

3.9.3 Coordinates in Plot Mode

3.9.4 Dot Distances

3.9.5 Plot Submodes

3-3

3-3
3-3

3-5

3-6

3-7

3-7

3-8

3-9

3-9

3-1~

3-11

3-11

3-12

3-15

3-17

3-17

3-18

3-19

3-20

3-22

3-23

3-23

3-23

3-25

3-25

3-26

3-26

3-27

3-27

3-27

3-27

TABLE OF CONTENTS - continued

3.10 Summary of Standard Functions

3.10.1 Control Functions

3.10.2 Escape Functions

3.10.3 Mode Functions

3.10.4 Plot Submode Functions

4. EXTENDED DISPLAY FUNCTIONS

4.1 Alphanumeric Mode Extension (Option 72)

4.1.1 Roll On

4.1. 2 Roll Off (of Return to Page Mode)

4.1.3 Overstrike Character

4.1.4 Latch Overstrike

4.1. 5 Unlatch Overstrike

4.1. 6 Select Overlay Planes

4.1. 7 Delay

4.1.8 Complex Fill

4.1. 9 Complex Reverse Fill

4.1.10 Insert Line

4.1.11 Delete Line

4.1.12 Insert Character

4.1.13 Delete Character

4.2 Graphic Mode Extension (Option 71)

4.2.1 Fill On

4.2.2 Fill Off

4.2.3 Arc Submode

4.2.4 Circle Submode

4.2.5 Rectangle Submode

4.3 Create and Zoom Processors

4.3.1 Create Buffer

4.3.2 View Subbuffer

4.3.3 Kill Subbuffer

4.3.4 Append to Buffer

4.3.5 Transmit Buffer

4.3.6 Redraw Buffer

3-38

3-38

3-38

3-40

3-41

4-1

4-1

4-2

4-2

4-2

4-3

4-3

4-4

4-4

4-5

4-5

4-5

4-5

4-6

4-6

4-6

4-6

4-6

4-6

4-6

4-10

4-10

4-11

4-11

4-11

4-12

4-12

TABLE OF CONTENTS - continued

4.3.7 Zoom

4.3.8 An Example

5. CENTRAL PROCESSING UNIT OPERATING SYSTEM (CPUOS) (Option 61)

5.1 CPUOS Operation

5.2 Command Formats

5.3 CPUOS Commands

5.3.1 Display Memory

5.3.2 End of File

5.3.3 Fill Memory

5.3.4 Execute Program (Go)

5.3.5 Compute Hex

5.3.6 Compare

5.3.7 Load

5.3.8 Move

5.3.9 Sends Nulls

5.3.10 Dump Memory (Punch)

5.3.11 Search (Query)

5.3.12 Read from Disk

5.3.13 Substitute

5.3.14 Write to Disk

5.3.15 Display Registers

5.4 Errors Conditions, Escape Codes and Mode Codes

5.5 Using CPUOS

5.5.1 Memory Organization

5.5.2 Changing Fixed Logical Device Assignments

5.5.3 Modifying the Character Set

6. ADDITIONAL PROCESSORS

6.1 Disk Operating System (noS) (Option 41)

6.2 Text Editor (Option 62)

6.3 Z-80 Disk Assembler (Option 63)

6.4 PROM Programmer (Option 52)

6.5 BASIC Language Interpreter (Option 64)

4-12

4-13

5-1

5-1

5-3

5-3

5-3

5-3

5-3

5-4

5-4

5-5

5-5

5-5

5-6

5-6

5-6

5-7

5-7

5-7

5-8

5-8

5-9

5-9

5-12

6-1

6-3

6-3

6-4

6-4

1. INTRODUCTION

This operator's manual gives detailed information on the use of the

Chromatics CG series of intelligent color display terminals. All

standard and optional features are covered, but the details of certain

optional processors, (DOS, Text Editor, Z-80 Assembler, the PROM Pro-

grammer and BASIC), are omitted, since these appear in separate manuals.

This chapter covers general information about the CG terminals and

introduces terminology used in the rest of the manual. Chapter 2

explains the system orgin1zation - the basic configuration. The

third chapter is a tho~gh guide to the standard system software,

while ranaining chapters are devoted to the various optional features.

1.1 General System Deseript,ion

The Chromatics CG series of terminals are complete,

tit~;;=h18h~~~~~t1o,;j~:,;!~~~rterminals with integral Z-BO
F : ,,' 'If,,(<!,<<;,,",~,,,,

microprocessor. memory and input/output (I/O). " ",';h'doi1 on the 512 by
~'\'"",,~':~,.,.." c

256 (CG l39B, 1598. 199B) or 512 by 512 (CG 1399, 1599. 1999) screen

,~;'~;·'1~:i;~~~aii;{;~t~~· .. ;~~~~f,~~h~[~~~Ni and may be set to blink

at 1.9 Hz. The extremely flexible high resolution display capabilities

of these terminals makes them suitable for alphamumeric as well as

graphics applications. The built-in microprocessor provides computing

power for stand-alone operation as well as intelligent terminal use.

':)

F\ URE \.\

1-3

Each terminal is contained in a single package, attractively styled

for stand-alone operation or integration into existing equipment, (see

Figure 1.1).
'l!'

rPower suppliefJ to be mounted or hidden in equipment racks. All components
I" ""._'''''',¥,,, .. 'i

are easily accessible to allow fast and efficient servicing.

1.2 Initial Checkout and Start-up

Before beginning operation, the terminal should be situated on a level

surface of convenient height, such as a table or desk. Note that the

detachable keyboard allows flexible placement for ease of use. The

terminal should, of course, be placed so that it is improbable that

it will be subject to external damage or spills. The keyboard should

be attached to the terminal by connecting its flat cable to the socket

marked J8 on the back of the terminal. The terminal may now be plugged

into any standard three-prong wall outlet, (105-125 volts, 60 Hz,

600 watts). (The terminal may be configured for 205-250 volt opera-

tion - Option 11,

1.2.1 The POWER Key

The illuminated POWER key is located below and to the right of the

screen on the screen cabinet, (see Figure 1.1). The POWER key is

used to turn the terminal on and off, and remains lit at all times

when the terminal is on. When the terminal is turned on, all compo-

nents are brought to full power and a function equivalent to the

BOOT key, (see section 2.4.1), is executed.

1-4

1.3 Introduction to the Keyboard

The keyboard is the primary input device for the terminal. Each

key, (except the RESET key - see section 2.4.1), generates a coded

eight bit byte when struck. 'If the keY'":~;":~(Jjfor about 3/4-ths

of a second, ~theb;~';~~~;;p'~'ifalat the rate of 20 Hz. The eight

bit codes from the keyboard are interpret~d by a special keyboard
'~ .

handler routine and converted into a sequence of one or more seven

bit ASCII codes to be used by the operating program. (The BREAK

key is an exception to this rule - see section 3.3.5). The meaning

of these ASCII codes is the subject of much of the rest of this

manual.

1.3.1 Key Groups

There are four groups of keys on the l28-key keyboard. The upper

three rows are the special function keys. These are used for functions

which are especially defined for the Chromatics CG series. Certain

keys will not be operational unless the corresponding options have

been purchased. The numeric 'keypad is the block of keys on the lower

right. This block is arrange~ in standard adding machine format to

allow easy entry of numeric information and equations. The group of

five keys to the left of the numeric keypad is the cursor control.

The cursor control is used to allow easy positioning of the cursor

anywhere on the screen. The final group of keys is the basic keyboard,

which is the typewriter-like block of keys on the lower left. !!ll1th'l

, ,," "''''i;t~"''P'''""" ',' '" , ' ,,", ~,
"'........... functiolls on the keyboard"

bya combination of one or more
<' ,<, ,V'~" ~,';,,::,:,,t*: W "

key:lng' ()i'fr,equen t1y~

o<fii;l~

RES&~i\l
i~'

CPU
OS

DISK
OS

TUT

' e~~r'
lOS F

BACK
BUNK ••• GROUND

TEXT
EDIT

If;." ,
~RUTE.l

FLl •

NOTE: • INDICATES ILLUMINATED KEY.

ASMII
PROM
PGMR

100M REDRAW

BASIC COpy FI

XIilIT WINOOW pi

FIGURE

.. ~

F2 FS

(;~;~'31 "'';'~1
Il:"'~ ~······1

1.2

ERASE
PAGE

F4

X BAR

'c.=-F~,

Y BAR 1 ··· ... '. ''''''.!l lYECTOft .. ~ t

......
E

7

4 ~,.c
,c • .;, '-:- ~-' :

l-~"" -tf

I

0

'l'
-ill

"EeJ ··ti
-,1)1

A (

* /

8 9

5 6

2 3

.

CI"CLE

)

" E
T
U

" N

,

-
+
-

i

-I
01

1-6

1.3.2 ASCII

The seven bit codes ultimately generated from keyboard input are

standard ANSI ASCII codes, but some of the control codes have been

defined for special purposes for the CG terminal series. The

correspondence between the basic keyboard keys and the codes

generated is shown in Figure 1.3. Notice that the CTRL and SHIFT

keys are used in combination with other keys to generate some of

the codes. CTRL and SHIFT do not generate codes by themselves,

but rather serve as modifiers for other keys. The CTRL and SHlFT
,!'j-"-"

keys must be held down while the key to be modified is struck.

This action will be indicated in this manual by the name of the
< ,.,.' •

modifier(s) followed by the name of the key modified. For example,

SHIFT A will generate the code for a lower case A. (This usage is
;\"~.':..r

convenient for most terminal appiications, although it is the

reverse of typew1:iter""-eonvention. If desired, the meaning of SHIFT

can be switched for ~~phabetic characters).

<!>.

The white keys in Figure 1·.4 will be called primary keys. These
~,,,,,

47 keys can, in cembmation with the CTRL and SHIFT keys, generate
"'r.~~

any of the 128 ASCII .codes. The meaning of shifting the non-alphabetic
-''';

keys is indicated on the top halt'of each key. For example, SHIFT 4
.{II,

is equivalent to $'. The symbols' on the upper half of the alphabetic
........

keys indicate the corre.s,ponding~contro1 function. For example,

CTBL G is equivalent to BELL. (.BELL causes an audible tone to be

generated when sent). Most control functions which are labelled

on the primary keys can be keyed using special function keys. The
"':\"" w.,;,· ...

following functions can only be keyed using the CTRL key:

HEX AS

0 0

1 0

2 0

3 0

4 0

5 0

6 0

1 0

8 I

9 I

A 1

B I

C I

0 I

E I

F I

HEx 0 I 2
A1 0 0 0
AI 0 0 0
A, 0 0 I
A4 0 I 0

A2 AI AO C~'fTrtOl CONTROL SHIFT
TO 0 P TO_ • TO I

0 0 0 IUU. c >< ' .. ACI.

0 0 1 .-00. I e><: I

" 0 I 0 rx >< · 34

0 I I r><: >< • l!I
-I 0 0 ex: >< · -

sa
I 0 I ONE DOT MOOt

... " UP 5 CANClLZI

I I 0 Ot:LET:;
tHA"ACT

ONE DOT
OOWNu

• II
I I I INUIIT'" ,

IrLL , NAucn" 51

0 0 0 •• • D< I 40

0 0 I TAl 9
0111 DOT

, 41 LlFTZ!

0 I 0 l' 10 C><
• 4Z

0 I I VT " Eli: 21 • 43

I 0 0 .1A1l
PAIl! 12 MOltr 2. o 44

1 0 I CII 15
CUtIOll -"'IMT,. 45

I I 0 AP
o. 14 10' S~ ••

I I 1 AP ONE DOT
0" 15 "'GHT 31 I .1

X INDICATE
UNUSED .ANSI ASCII CODES.

ASCII CODE ASSIGNMENT

3 .. 5 6 .,
0 I 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 0

0 I I I I 0 0 0 0 I I I I

1 0 0 I I 0 0 I I 0 0 I' I

1 0 I 0 I 0 I 0 I 0 I 0 I

S1'fT dHlft SHIFT -:ONTROL CONTROL
• 0 \ TO 0 P TO_ (OlTO 0 P TO _

' 48
ce I. .. 110

,
, lit SPACE 32 r 48 +. 4 "'" '1 .. 1 III "

IU A U o II • 9 , III ill -.J •. ..La! , .) .t T III

t 50 • II II at
• t8

')14 !S4 I", T .. . ,. (Ii -I"
S C;.17

• 13 · .! • '15 t *' LSI ~ ., • ~M ~"I Sa .'
4 o II T ..

• 10C
I ~ !II r A, r .. .,. -II'M +". • 1111

S (I! II ., ~~, ~'I Ill.! ~ +11. Si • '0' • "1 ' 51 ::(' JOI

-I
~

• 54
' rg v .. I 10:1 • til ~ .. L I- 1r -\\. , ". S4 8

t)' -' T 11 ~'OI ~ t -"
• 71 • I' • 10'

• III III! " - ..
• 56

H 12 • II
• 104 • 110

.... 4C J II .L 7: ~ II .j 1Il0l { .u

I 1fT I 7, Y " I ;O! ' .tl 41
--; - .' I •. '\ .O! }- 1'1

I .1 -=Ie I 1'4 j.. .t
7-

) III I .. J ,. I .0 , .06 • 112 lOt

c " ' 101 « '2 -; 51 • 1!
4! L. I .. ~ • ~ 101 ~ IU

I reI H 16
"\ ,.

c 10 L 7& ' .l I 101 I It. 4 .1 101 I~

• II
.. 17 1 .,

• lot) laS L 1 II D, IS ~ lOt -t II!

'" III r II 4 -l"o >-- .
»> &2 • 7' A ... • 110 •• 11 14 121

,. IJ o 7' - 15 • '" • 111
, I -., L .. ." J I. + III Vm

/ / , , •
SAM£ AS 0 T"AU !I

FIGURE 1.3

KEYBOARD LAYOUT
PRIMARY KEYS

MI.lr"I~.II_llil4'il;I;ll:;liJf~I*.;ra'111l\"."ai;I~!"t'\~~r]

-
"1-1$1% 234 5 0

I * = I~I ~ Im,1 1/11<>1 ··1 I I i$. ·· •. <>1 .. · .!. Q)

w I E I R T Y U

BEll

SIDIFIG H

A1 ?
Z I X I C I V I BIN /

NOTE: • INDICATES ILLUMINATED KEY.

FIGURE 1.4

1-9

CTRL A c End of File (EOF)

CTRL W "" Insert Character

CTRL F "" Delete Character

There are also two codes which can only be keyed by using both

the CTRL and SHIFT keys in combination with the key indicated:

SHIFT CTRL I - (underl ine)

SHIFT CTRL 0 = DEL (the delete symbol)
(Note: DEL is a non-printing symbol)

Finally, there are four functions which use the SHIFT key in com-

bination with the cursor control keys:

SHIFT ~ "" Move cursor one dot right

SHIFT '" "" Move cursor one dot down

SHIFT + "" Move cursor one dot left

SHIFT t • Move cursor one dot up

1.4 Terminology and Conventions

Throughout this manual, key sequences will be discussed. In order

to indicate clearly and precisely the manner in which the keys are to

be struck, the following conventions will be used.

I} Each key will be identified by the name used in Figure 1.2.
Since some keys have alphabetic names, the individual alpha­
betic characters will be separated from adjacent key names
with spaces. Blank characters to be generated by the space
bar will always be explicitly indicated by "SPACE".

2) The key modifiers, CTRL and SHIFT, will immediately precede
the single key which they are to modify.

3) Keys are to be struck in order from left to right. Several
lines may be used to give a key sequence if necessary, but
all returns and line feeds will be given explicitly by RETURN
and LF, respectively.

1-10

4) All zeroes will be slashed (0) and alphabetic O's will
be cnslashed.

5) Underlined» lower case words will be used to name one
of a set of keys or key sequences. Thi.s will be useful
for brevity. For example, color can be defined to be
anyone of the color keys by

color ::= RED I GREEN I BLUE I YELLOW I CYAN I NAGE~TA I
WHITE BLACK

The symbol ": :=" should be read as "is defined by"» and
the vertical bar8 indicate a selection of one of the list.

Referring again to Figure 1.3, notice that the hexadecimal (base 16)

and binary (base 2) representations of the Chromatics character set

are indicated above and to the left of the main body of the table •.

These codings may be very important in communicating with another

computer. For convenience, the hexadecimal coding of each function

will be given at the point at which the function is discussed.

Hexadecimal codes are given as two hex digits followed by an H. The

first hex digit is given in the top row of Figure 1.3, and the second

is given in the leftmost column. For example, the hexadecimal code

for the letter Z is 5AH. ~~en multiple characters are required for

a function, the hexadecimal codes will be separated by commas» since

there is no danger of confusion with the key named ",". Note that

the hexadecimal codings given for the key sequences are not an alter-

nate method of keying the information, but are an aid in generating

key sequence codes from other computers.

I-II

FIG. 2.05
ORGANIZATION OF THE REFRESH MEMORY

511.255 *
r-=-:::-::::-:: _________ .J.::::511.51 I} SCREEN COORDINATES
8000 807F

807F

16K

I
000'0001~~~0--- - ---- ---- --~{f~ __ '

16K
I

I

~FFC0 FFFF
{ 000.000)'---J,..-,,--------.:.....:..;:.....:..J

FFFF

807F

807F

1---

~r_r_---___ --~F~F~FF~ I

FFFFI

-

I

* IN THE 512x256 UNITS
THE MEMORY STOPS AT BFFF

ALL 4 MEMORY PLANES
HAVE THE SAME ADDRESSES
AND ARE WRITTEN INTO
SIMULTANEOUSLY IF ENABLED

10 0 0 0 a a alai
a R G a
L E R L
IDE U
NEE

ENABLE BYTE FOR REFRESH PLANES

B = I enabled
a = 0 disabled

K N

2. SYSTEM ORGANIZATION

The Chromatics CG Series of terminals are complete, stand-alone micro

computers. The minimum system consists of a Z-80 microprocessor,

a high-speed memory, and input/output (I/O) facilities using the key­

board and the CRT screen. This chapter will explain how this system is

organized and the basics of its operation.

2.1 Physical Organization

Figure 2.1 illustrates the physical relationships between the major

components of the system. The Z-80 microprocessor is the central com­

ponent, controlling all the other components. All data flow passes

through the Z-80. (Exception: the DMA - direct memory access - control­

ler, Option 34, provides direct, high-speed data transfers at a rate up

to 416,000 bytes per second).

There are two types of memory on the system: PROM and RAM. PROM, (pro­

grammable read only memory), is used to hold permanently loaded system

software and tables. PROM cannot be overwritten and so provides protec­

tion against programming errors which might destroy the system software.

All PROM provided by Chromatics is erasable by UV radiation; it can be

erased and rewritten with the aid of the PROM Programmer - Option 52.

RAM is random access memory. It may be freely written by the software.

~~ is used to store information which is variable during execution and

may also be used to store programs. A large block of RAM is used as re­

fresh memory for the CRT screen. Each dot on the screen corresponds to

a location in the refresh memory which indicates its color.

2-2

Z-80 CPU REFRESH MRY.

CONTROLLER

r

-'t PGM. a DATA REFRESH • CRT
MEMORY - - - MEMORY -

~ •

S TANDARD DEVICES OPTIONAL DEVICES

KEYBOARD - SIO-I - -

SIO- 0
..

P10-0 a I -

....
IEEE- 488 - ..

-- DMA

- FLOPPY DISK -

BUS

FIGURE 2. J PHYSICAL ORGANIZATION

2-3

KEYBOARD

SI0 .. 0 1-- INPUT DEVICE

-- ASSIGNMENT TABLE

~
c

SIO I AI BI CI 01 EI
,r ,. ,. ,. ~r

• EXECUTING

• PROGRAM

•
AO BO CO DO EO

. '. ,t 'l J' ,r

~
KEYBOARD

,.

OUTPUT DEVICE

ASSIGNMENT TABLE ~ SIO 0

WINDOW 0

•
•
•

FI GU RE 2.2 LOGICAL SYSTEM ORGANIZATION

2~

2.2 Logical Organization

The logical organization of the system is represented in Figure 2.2

The device assignment tables connect the physical devices to the logical

device names used by the main program. Each logical device name may

have two physical devices attached to it. One of these is variable and

can be easily modified using CRTOS, (see section 3.3.4). The other is

fixed and is preset when the system is initialized. Fixed assignments

can be changed using CPUOS, (see ChapterS). The initial fixed assign­

ment attaches the keyboard to logical input device AI and to logical

output device AO; the remaining logical devices do not have a fixed

assignment. (Note: the keyboard is an output device so that the illumi­

nated keys can be controlled). The device assignment tables allow maxi­

mum flexibility in the use of the system.

2.3 Escape Code Processing

Escape codes are sequences of characters beginning with the ESC character.

These codes are used for high-level control functions in the CG terminal

series. Escape code processing may be done on any input line; system

software generally processes all user generated input, but user programs

may optionally omit escape code processing, (see the assembler manual

for further details). The logic of escape code processing is shown in

Figure 2.3. The following discussion assumes that escape code proces­

sing is being done.

Whenever as ESC character is sensed on the input line being processed,

the escape mode is set to active. The ESC character and all succ.eeding

characters on the input line are processed by the escape code handler

2-5

INPUT LINE

I NPUT CHARACTERS - I OF 128 SEVEN BIT CODES

YES

NO

NO

NO

CHARACTER CONTINUES

I F NOT TRAPPED

MAIN
PROGRAM

PROCESS
ESCAPE
FUNCTION

SET
ESCAPE
MODE TO
ACTIVE

FIG. 2.3 ESCAPE CODE PROCESSING

2-6

as long as the escape mode is active. These characters are not proces­

sed by the main program. The number of characters diverted to the escape

code handler depends on the escape function, which is determined by the

first character following the ESC. The escape functions are discussed at

appropriate places throughout the manual and are summarized in Appendix A.

The last character of an escape code causes the escape mode to be reset

to inactive so that normal processing can resume.

2.4 System Control Functions

The following escape code functions are used to transfer control between

the various available main programs. This is done at the escape code

level to allow easy "breaking out" of one program to go to another. If

the corresponding optional features have not been purchased, these codes

will result in no action. The operation of these functions is discussed

more thoroughly in the sections devoted to the particular programs.

2.4.1 Cathode Ray Terminal Operating System (CRTOS)

The CRTOS is the basic operating program supplied with the standard

system. There are three methods of entering CRTOS:

BOOT ESC G IBH, 4YH

The BOOT Function causes all I/O devices and processor tables to be

initialized to default conditions and the CRTOS main program to be

executed. Depending on the state of the processor, a reset preceding

the BOOT may he necessary for proper operation.

RESET

The RESET key is different from all other keys on the keyboard. It

does not send an eight bit code to the kejboard handler, but instead

2-7

generates a hard-wired, master clear signal. Unlike BOOT,

RESET does not reset I/O device and processor memory tables, but it

does gain control, clear interrupts and execute CRTOS. RESET may be

useful in recapturing control from a program in an infinite loop without

losing information that may be helpful in debugging.

CRTOS ESC T 1BH, 54H

The CRTOS function causes the CRTOS main program to be executed with

default device assignments, but does not initialize processor tables.

For further details about these three commands, see Chapter 3.

2.4.2 Central Processing Unit Operating System (CPUOS) (Option 61)

CPUOS ESC Z lBH, 5AH

The CPUOS function causes the CPU Operating System main program to

begin execution with the current device assignments, (see Chapter 5).

2.4.3 BASIC Interpreter (Option 64)

BASIC ESC B IBH, 42H

The BASIC function causes the BASIC Interpreter, (which is resident in

PROM), to be initialized and to begin execution with current device

assignments.

ESC E IBH, 45H

This function causes the BASIC Interpreter to be re-entered without

initialization. See Chapter 6 for more detail.

2.4.4 Disk Operating System (DOS) (Option 41)

DISK OS ESC D lBH, 44H

The DISK OS function causes the Disk Operating System (DOS) main program

to begin execution with the current device assignments, (see Chapter 6).

2.4.5 Text Editor

TEXT EDIT

2-B

ESC X

(Option 62)

IBH, 5BH .

The TEXT EDIT function causes the text editor program to be brought in

from the disk and to be executed with the current device assignments, .

(see Chapter 6).

2.4.6 Z-BO Assembler (Option 63)

ASMB ESC A IBG, 4lH

The ASMB function causes the Z-80 assembler to be brought in from the

disk and to be executed using the current device assignments, (see

Chapter 6).

2.4.7 PRml Programmer

PROM PGMR ESC P

(Option 52)

IBH, 50H

The PROM PGMR function causes the PROM Programmer main program to be

loaded and executed with the current device assignments, (see Chapter 6).

2.4.8 Jump to User Function

FI F2 F3 F4 F5 F6 F7 F8

ESC J digit7 IBH, 4AH, hexdigit7

where
digit7 ::= 0 I I I 2 I 3 I 4 I 5 I 6 ! 7

hexdigit7 ::- 30H I 3lH I 32H I 33H ! 34H I 35H I 36H I 37H

This command causes control to be given to the user defined function

loaded at the address specified in a RAM jump table. Note that the

function FI is equivalent to ESC J 0.. The jump table may be set up

using CPUOS, and the user functions may be defined with the aid of the

Z-BO assembler or BASIC. This group of commands will not be discussed

further in this manual.

3. CATHODE RAY TERMINAL OPERATING SYSTEM (CRTOS)

The CRTOS operating program is the standard software provided with the

basic system. It enables the Chromatics CG terminals to act as normal

intelligent terminals, but with full color, high-resolution graphics.

CRTOS is also used to enter the other (optional) operating programs.

The logical device assignment tables for these other programs are nor­

mally established with CRTOS.

Throughout this chapter, illustrative key sequences will be given to

demonstrate the various features using the conventions of section 1.4.

Comments may be shown, (usually in lower case), to the right of the

key sequence. Remember that a key sequence may be spread over several

lines for convenience and readability, but carriage returns and line

feeds will always be explicitly indicated by RETU~~ and LF, respectively.

The reader will benefit by trying out each key sequence as it occurs.

3.1 Entry into CRTOS

There are two escape code functions for entering CRTOS, (CRTOS may also

be entered using the RESET key, see section 2.4.1). The action of these

functions is disucssed in detail below.

3.1.1 BOOT

BOOT ESC G lBH, 47H

The BOOT function is used to clear the system and restart with a known

state. The BOOT function initializes memory, (with the exception of the

3-2

buffer memory, Option 73), executes an erase page and finally executes

the CRTOS function described below. Part of the memory initialized

sets up the four windows. Each window has the following initial con-

ditions:

- window size: full screen
- colors: foreground= white, background= black
- cursor: white, blind, in home position
- character mode, horizontal, character size I by 1
- decimal coordinate input
- A7 off, BLINK off, ROLL off, PLOT off, FILL off, BACKGROUND off
- OVERSTRIKE off

except that Window #0 has a visible cursor. Striking the BOOT key should

result in a black screen with two blinking white lines, (the cursor),

in the upper left hand corner.

3.1.2 CRTOS

CRTOS ESC T IBH, 54H

The CRTOS function causes the CRTOS operating program to begin execution;

device assignments unchanged.

3.2 Entry into Other Programs

CRTOS is the standard entry point into the rest of the system. All

of the escape codes mentioned in section 2.4 may be used to enter

directly into any of the other system software.

3-3

3.3 Other Escape Functions

The following functions properly belong to the escape code processing

section, however they are presented here since they primarily affect

the CRTOS operating program.

3.3.1 Set Communications Mode

When operating as a terminal, the system may be in one of three modes:

Local, Half duplex or Full duplex. The mode is set by one of the three

following key sequences:

ESC L

ESC H

ESC F

lBH, 4CH

IBH, 48H

lBH, 46H

Local mode

Half duplex. mode

Full duplex mode

In Local mode (Figure 3.1) characters are passed directly from logical

input device AI to logical output device AO. This is normally used to

send characters from the keyboard to a window, (CRT screen). Half 'duplex

(Figure 3.2) and Full duplex (Figure 3.3) are designed for typical ter­

minal communication with a remote computer. Characters are routed from

AI to BO and BI to AO. In Half duplex mode, characters from AI are

also sent to AO. Half duplex should be used if the host computer does not

"echo" each character sent, otherwise, Full duplex should be used.

3.3.2 Set Communications Rate

ESC R sio ratecode

where

sio ::- 0 1

lBH, 52H, hsio, hratecode

ratecode ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I A I B I C I DIE I F

3-4

AI 81

CR TOS IN LOCAL
, .

AO

AI----

AO------'

80
FIGURE 3.1

-----81

CRTOS IN HALF

DUPLEX MODE

'-----80
FIGURE 3.2

AI---- ----BO

AO---~

'CRTOS IN FULL

DUPLEX MOOE

~---80

FIGURE 3.3

3-5

hsio ::= 30H 31H

hratecode ::= 30H 31H 32H 45H 46H

The hexadecimal codes correspond left to right with the key codes in

meaning. The value of sio indicates which Serial I/O port is having

its communications rate set, (sio=0 references SIO #0). The correspon­

dence between the ratecode and BAUD rate set is given in the table:

Table 3.1

ratecode BAUD rate ratecode BAUD rate

0 50 8 1800

1 75 9 24~0

2 110 A 3600

3 150 B 4800

4 300 C 9600

5 600 D 12500

6 900 E 25000

7 1200 F 31250

Note: when BOOT is executed, SIO #0 is pre-assigned to 9600 BAUD and

SIO #1 1s pre-assigned to 11~ BAUD.

3.3.3 Set Parity and Stop Bits

ESC S sio pscode 1BH, 53H, hsio, hpscode

where

sio : :- 0 1

Escode : : = 0 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8

hsio : :- 30H 31H

hEscode : : = 30H 31H I ... I 38H

3-6

This command sets the parity (none, odd or even) and the number of

stop bits (1. 1.5 or 2) used for asynchronous input and output on the

indicated SIO port. The default values are no parity and one stop bit.

The value of pscode to use to get the various other combinations can

be determined from the following table:

Parity: none odd even

1 Stop Bit 3 6

1.5 Stop Bits 1 4 7

2 Stop Bits 2 5 8

3.3.4 Transmit Cursor Position

ESC Y window IBH, 59H, hwindow

where

window ::= 0 I 1 I 2 I 3

hwindow:: a 30H I 3lH I 32H I 33H

The X and Y coordinates (see section 3.5) are transmitted to logical

device BO, (normally assigned to an I/O port but could be assigned to

another window).

3.3.5 The BREAK Key

BREAK

The BREAK key is special in that the keyboard handler does not generate

a seven bit ASCII code for it. Instead, it is passed on in its original

form of 80H. This code is treated as a NULL and no action is taken for

all system components except the SIO ports. When the BREAK code reaches

an output SIO Port, a 200 msec. break is created on the output line.

This momentary line drop is used for special purposes on many communica-

tion systems.

1-7

3.3.6 Send ESC

ESC ESC

The Chromatics escape code processor traps all ESC characters for use

in Chromatics escape codes. The above function causes an ESC to be

sent to the host computer when operating in full or half duplex.

Specifically, this function sends a single ESC character to logical

device AO in Local mode, BO in Full duplex and AO and BO in Half Duplex.

(Note that the second ESC deactivates internal Escape code processing.

See Fig. 2. 3 •)

3.3.7 Logical Device Assignment

ESC io logical physical IBH, hio, hIog, hphys

where

io : :- I 0

losical : : = A B C D E

ph~sical .. - 0 I 2 3 4 I 5 I 6 I 7 I 8 I 9

hio : := 49H I 4FH

hlog : := 41H I
.

42H 43H 44H 45H

hph~s : :- 30H 31H 32H 38H 39H

The value of io determines whether a logical input (I) or output (0)

device is to be assigned. For example, ESC I A 0 assigns logical input

device AI to physical device 0, while ESC 0 D 6 assigns logical output

device DO to physical device 6. The physical devices are coded as follows:

Table 3.2

physical device

o Window 110

1 Window III

2 Window #2

3-8

physical device

3 Window 113

4 Serial I/O port 110 (SIO 110)

5 Serial I/O port til (SIO til) (Option 31)

6 Parallel I/O port tl0 (PIO 110) (Option 33)

7 Parallel I/O port 111 (PIO Ill) (Option 33)

8 IEEE-48B (GPIB) (Option 35)

9 Keyboard

A-F Unassigned (dummy)
Note: Each logical device may have two physical devices assigned to it.

One of these is fixed, (see section 2.2). The above command
changes the variably assigned physical devices.

3.4 The CRT Display Screen

The remainder of this chapter is concerned with generating displays on

the CRT screen. Local mode is used throughout. Information is sent

to the refresh memory, (and thereby displayed on the CRT screen), by

sending it to a logical output device which is assigned to one of the

four windows. For simplicity, only Window 110, (which is initially

assigned to logical device AO), will be used until section 3.8, which

will discuss the use of multiple windows.

A window is logically a rectangular subset of the points displayed on

the CRT screen. Up until section 3.8, a window will be used at its

default size, equal to the full screen. For clarity, the screen size

will be assumed to be 512 x 256, (models CG 1398, 1598 and 1998).

Appropriate comments relating to the 512 x 512 screen, (models CG 1399,

1599 and 1999), will be given in square brackets: [J

3-9

3.5 Coordinate Entry

Each point on the CRT screen is individually addressable by a pair

of integers called coordinates. The first element of the pair is the

X coordinate, and the second is the Y coordinate. The origin, (point

(0,0)), is located at the bottom left hand corner of the screen.

The X coordinate gives the horizontal displacement in points to the

right of the origin, and the Y coordinate gives the vertical displacement

up from the origin. The value of X ranges from 0 to 511. The value of

Y ranges from 0 to ymax where ymax = 255 [or 5llJ.

3.5.1 Deci~l Coordinate Mode

When working from the keyboard, coordinates are most conveniently entered

in decimal mode. to be discussed in this subsection. The window is placed

in decimal mode when BOOT is executed, but it may be re-entered with the

following command:

MODE E 0lH, 45H

While in decimal mode, numbers (used in various functions) are entered

as defined below:

number

digit

::= digit digit digit

digit ,

digit digit ,

::- 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

That is, a number is either a string of three decimal digits, or

one or two digits followed by a comma. In the hexadecimal coding of

functions, numbers are represented as direct encodings of the above:

hnumber ::= hdigit hdigit hdigit hdigit hdigit 2CH

hdigit 2CH

hdigit ::= 30H I 3lH I 32H I ... I 39H

3-10

If an error is made in keying a number, a minus sign (-) may be

used for correction. The minus sign effectively erases the partially

entered number and allows it to be re-entered.

Screen coordinates. (the locations of particular points), are entered

as pairs of numbers. It is sometimes convenient to use the cursor to

specify coordinates, rather than entering them numerically. The cursor

must be moved to the desired location on the screen, (see section 3.6),

and the period (.) character entered. The coordinates of the cursor

are then used as if they had been entered as a pair of numbers. Note:

if a coordinate has been partially entered when the period is entered,

the cursor coordinate supplants the partially entered numerical values.

In the rest of the chapter, coordinates will be indicated by coord and

hcoord:

coord .. = number number

hcoord ::= hnumber hnumber 2EH

3.5.2 Binary Coordinate Mode

MODE B 0lH, 42H

The above command causes entry into binary coordinate mode. Decimal

coordinate mode may be re-entered as shown in 3.5.1. In binary mode,

each number is entered as two bytes with the following formats:

First byte

Second byte

7

X

X

6

1

I

Bit Positions

5 4 3 2 I

AS A4 A3 A2 Al A0

X X X A8 A7 A6

3-11

The value of the number is interpreted as a binary quantity with bits:

A8 A7 A6 AS A4 A3 A2 A1 A0. Binary mode is intended for use in sending

numbers for the various functions from another computer; only two char-

acters rather than three need to be sent, and it is unnecessary to con­

vert from internal binary form to decimal. However, binary form is

very inconvenient to use from the keyboard and will not be discussed

further in this manual.

3.6 Cursor Control

The cursor is a movable reference point within the window. In character

mode, it is represented by two horizontal blinking lines one standard

character width (6 or 8 dots) long displayed on the screen one above the

other. The vertical displacement of the lines depends on the currently

defined height of a character. The top line coincides with the top row

of dots of the current character position, while the bottom line coincides

with the bottom row of dots. The coordinate location of the character

mode cursor is defined to be in the location of the leftmost dot of the

top line.

The plot mode cursor is represented by a single dot followed by a

horizontal line, both of which are blinking. The total width of the

dot and line is equal to the width of a standard character. The co­

ordinate location of the plot mode cursor corresponds to that of the

dot.

3.6.1 Cursor Display Control

Occasionally, it is useful to make the cursor invisible on the screen.

The visibility of the cursor and its color are controlled by the fol­

lowing commands.

3-12

3.6.1.1 Visible Cursor

MODE J 01H, 4AH

The cursor is made visible and blinking on the CRT screen.

3.6.1.2 Blind Cursor

~10DE K 01H, 4BH

The cursor is made invisible on the CRT screen; however, it still

exists and will be moved by the appropriate commands.

3.6.1.3 Change Cursor Color

MODE Q colnum 01H, SlH, hcolnum

where

colnum ::- 0 I 1 I 2 I 3 1 4,1 S I 6 I 7

hcolnum ::- 30H 31H I 32H I 33H I 34H I 35H I 36H I 37H

The cursor color is changed to that indicated by the following table:

Table 3.3

colnum color colnum color

0 BLACK 4 RED

1 BLUE S MAGENTA

2 GREEN 6 YELLOW

3 CYAN 7 WHITE

3.6.2 Character Related Cursor Movements

The following commands move the cursor integral numbers of character

positions without altering the information displayed on the CRT screen.

(see section 3.7 for information on the dimensions of a character position).

These commands work for both character and plot modes. An important

feature of the movements is that they will never take the cursor outside

of the window.

3-13

Characters may start at any dot position within a window. For each

possihle character position, there is a "next" character position for each

of four directions: left, right, up and down. This position is normally

the adjacent character-sized rectangle of dots in the indicated direction;

however, if" th'_s movement would carry the cursor outside the window, the

softvmre moves the cursor to the position indicated in sections 3.6.2.1 -

3.6.2.7.

A horizontal row of characters is called a "line". The cursor position

defines the current line. The "first character position" of a line

always coincides with the leftmost edge of the window. The "last

character position" of a line is the last position of the line which

is an integral number of positions from the first character position

and is still within the window. Note that there may be excess points

between the last character position and the edge of the window, (since

windows are not necessarily even multiples of characters in size).

The " top line" and "bottom line" of a window are defined analogously

to the first and last characters of a line. With these definitions,

the character related cursor movements can now be defined.

3.6.2.1 Home

HOME CTRL lCH

The cursor is moved to the first character position of the top line.

3.6.2.2 Carriage Return

RETURN CTRL M 0DH

The cursor is moved to the first character position of the current

line. Note that, unlike a typewriter, the RETURN function does not

cause indexing to the next line.

3-14

3.6.2.3 Tabulation

TAB CTRL I 09H

The cursor is moved to the next character position on the current line

which has a number divisible by eight, where the numbers are assigned

left to right beginning with the first character position. If this

action would move the cursor outside the window, the cursor is moved

to the first character position on the next line; if the next line would

be outside the window, the cursor is moved to the Home position.

3.6.2.4 Line Feed

LF CTRL J ~AH

The cursor is moved to the position immediately below the current one.

If this would cause the cursor to go outside the window, the cursor is

moved to the corresponding location on the top line.

3.6.2.5 Backspace

CTRL H 08H

The cursor is moved to the position immediately to the left of the

current position. If this goes outside the window, then the cursor

is moved to the last position of the previous line; if the previous

line would be outside the window, then the cursor is moved to the last

position on the bottom line.

3.6.2.6 Vertical- Tabulation

t CTRL K 0BH

The cursor is moved to the position immediately above the current

position. If this is outside the window, then the cursor is moved

to the corresponding position on the bottom line.

3-15

3.6.2.7 Cursor Right

CTRL] lDH

The cursor is moved to the uext character position to the right of the

current position. If this position is outside the window, the cursor

is moved to the first character position of the next line; if the next

line would be outside the window, the cursor is moved to the Home

position.

3.6.2.8 Set Interline Spacing

MODE A number 0lH. 4lH, hnumber

Normally, each line of characters is directly adjacent to the line

of characters above it. This corresponds to the default value of

zero for interline spacing. The above command sets the number of points

between lines of characters to number, (range 0 to 255). Note that the

line of pOints between character lines are not written, (set to fore­

ground or background color), when characters are sent with non-zero inter-

line spacing. An erase page command, however, will always set all

window lines to background color.

3.6.3 Point Related Cursor Movements

It is sometimes useful, (especially in plot mode), to be able to

position the cursor to particular points within the window. The first

four commands below allow the cursor to be moved one dot position at

a time. With these commands, the coordinates of the cursor, (the upper

left hand corner of the cursor position), will be kept within the window,

but part of the current character position may extend beyond the window.

This could lead to unexpected or undesired results if not used carefully.

3-16

Note that dot-by-dot movement vf [he cursor can position it at points

which are not an integral number of character positions from the edges

of the window. This is the reason that the movements in subsection

3.6.2 were defined in terms of the current character position rather

than absolute character positions.

3.6.3.1 Cursor One Dot Up

SHIFT t CTRL E 0SH

The cursor is moved one dot position up. If this would be outside the

window, the cursor is positioned to the bottom point within the window

directly below the current position.

3.6.3.2 Cursor One Dot Down

SHIFT i- CTRL V l6H

The cursor is moved one dot position down from the current position.

If this would move outside the window, the cursor is positioned to the top

point within the window directly above the current cursor position.

(See 3.6.2.4)

3.6.3.3 Cursor One Dot Left

SHIFT +- CTRL Y 19H

The cursor is moved one dot position to the left. If this would be out­

side the window, the cursor is positioned at the rightmost point of the

line of points one point above the current position.

3.6.3.4 Cursor One Dot Right

SHIFT -+- CTRL lFH

The cursor is moved one dot position to the right. If this is outside

the window, then the cursor is positioned to the leftmost point on the

line of points immediately below the current position.

3-17

3.6.3.5 Cursor to Coordinate

CURSOR X-Y MODE U coord 01H, 55H, hcoord

The cursor is moved directly to the coordinates indicated. This

command ignores window boundaries and should be used with care. (See

subsection 3.S.1 for an explanation of coord and hcoord).

3.7 Character Mode

The terminal is automatically placed in character mode when CRTOS is

entered. Any of the non-control ASCII characters will be displayed

on the screen in the current character position when the appropriate

key or keys are struck. In the default character size, (1 x 1), a

character position is a 6 dot wide by 10 dot high matrix. (An 8 dot

by 10 dot character position is available with Option 27). Graphics

characters use all 60 dots, but normal alphanumeric characters use

only 5 by 7 dots. The remaining dots give intercharacter and inter-

line spacing. The following example illustrates character mode use

of the terminal, (the results should be similar to the comment area):

BOOT C H ROM A TIC S SPACE C G RETURN LF
LF
SHIFT 4 SHIFT A

3.7.1 Alternate Character Sets

CHROMATICS CG

$a

Any of four display character sets of 96 characters each can easily be

displayed on the terminal. The alternate character sets can be reached

using the A7 bit, which is set using the following commands.

3.7.1.1 A7 On

CTRL N 0EH

3-18

This command turns on the A7 bit. All characters are taken from the

alternate character set, (normally the set defined in Figure 1.3),

while this bit is on.

3.7.1.2 A7 Off

CTRL a 0FH

The command turns the A7 bit off. (the normal condition), and causes

all characters to be taken from the standard ASCII set.

3.7.1.3 Select Upper Character Set Mode

MODE S cset 0lH, 53H, hcset

where

cset ::= 0 I 1 I 2 I 3

hcset ::= 30H I 3lH I 32H I 33H

This command selects which character set is to be used when the A7

bit is on. If cset = 0, (the default condition), then the upper

character set corresponds to the graphics set defined in Figure 1.3.

If Option 21 is purchased, then ~ = 1 or 2 refers to user defined

special characters in PROM. A value of 3 for cset causes the upper

character set to be taken from RAM, (see section 5.5.3).

3.7.2 Set Character Size

The normal character position is 6 horizontal points by 10 vertical

points. (With Option 27, a character position is 8 by 10. A size of

6 by 10 is assumed throughout this manual). The character size can be

expanded an integer number of times in either the horizontal or vertical

directions using the following commands. The characters displayed are

automatically expanded to fit the new character positions.

3-19

3.7.2.1 Set Character Height

MODE Y number 01H, 59H, hnumber

The vertical dimension of a character is set to number times the

standard character size. The maximum value of number is 25 [51].

See subsection 3.5.1 for a description of number.

3.7.2.2 Set Character Width

MODE X number 0lH, 58H, hnumber

The horizontal dimension of a character is set to number times the

standard character width. The maximum value of number is 85.

Example key sequence:

BOOT ABC RETURN LF LF
MODE Y 3, ABC RETURN LF LF
MODE X 3, ABC

When keyed correctly, this sequence should produce three lines with

"ABC" displayed, the first line normal sized, the second tall and

narrow and the third, normal characters three times larger, (in both

dimensions.)

3.7.3 Character Input Movement

Normally, when a character is input it is placed at the current cursor

location and the cursor is moved as if a cursor right command had been

given, so that characters are displayed horizontally. Occasionally it

may be convenient to display the characters vertically down the page.

This is controlled by the following pair of commands.

3-20

3.7.3.1 Write Horizontal Mode

MODE H 0lH. 48H

Successive characters are written horizontally across the window

from left to right. This is the default mode.

3.7.3.2 Write Vertical Mode

MODE V 0lH. 58H

Successive characters are written vertically down the window from top

to bottom. This is identical to writing the character in the current

cursor position and moving the cursor with a line feed, (3.6.2.4),

rather than a cursor right. Note: All cursor movements work exactly

as in horizontal mode.

Example key sequence: Should result in:

BOOT ABC MODE V ABC ABC

3.7.4 Selecting Character Color and Blinking

The mode of the window may be set to a foreground color, a background

color and foreground and/or background blinking. The form in which

characters are displayed depends on the mode of the window at the time

the characters are entered. The character is set to the foreground

color. while the remaining points within its character position are set

to the background color. If foreground blink is on, the character will

blink at 1.9 Hz. If background blink is o~ the background color will

blink at a 1.9 Hz rate. The colors and blinking are controlled by the

following commands.

3-21

3.7.4.1 Select Color

BLACK I BLUE GREEN I CYAN I RED I MAGENTA I YELLOW I WHITE I
MODE C digit7 0lH, 43H, hdigit7

This command sets either the foreground or the background color depend­

ing on whether background mode is on or off. (Note: digit7 and hdigit7

are defined in subsection 2.4.8 MODE C 0 corresponds to BLACK and

~ODE C 7 corresponds to WHITE.)

3.7.4.2 Set Background On

BACKGROUND MODE M 0lH, 4DH

This command sets background mode on so that future color commands

will affect the background color. The BACKGROUND key is lighted.

3.7.4.3 Set Background Off

BACKGROUND* MODE N 0lH, 4EH

This command sets background mode off, (the default condition), so

that future color commands will affect the foreground color. The

BACKGROUND key light is turned off. (Note: the first form of this

command indicates that the BACKGROUND key must be lit for this key

to cause the desired action).

3.7.4.4 Blink On

BLINK MODE 1 0lH, 3lH

This command sets the window mode to either foreground blink or

background blink. Which is set depends on whether the background off

or background on command has been most recently given. See the example

after 3.7.4.5. (Note: If the blink key is lit when BACKGROUND'or

BACKGROUND* is entered, then a blink on is automatically generated;

similarly if the blink key is not lit, a blink off is generated).

3-22

J.7.4.5 Blink Off

BLINK* HODE 2 ~lH, 32H

This command sets the window mode to either foreground or background

non-blink, depending on whether background mode is off or on. The

following example should be helpful:

BOOT MODE X 5, MODE Y 5, BACKGROUND BLUE ERASE PAGE
CYAN BACKGROUND* RED ~ + i- i-
F BLINK + F BACKGROUND ~ F BACKGROUND* BLINK* + F

When entered correctly, all four possibilities for blinking should be

displayed.

3.7.5 Additional Display Functions

The following three commands complete the character related display

functions for the terminals. Of these, the first is by far the most

used.

3.7.5.1 Erase Page

ERASE PAGE CTRL L 0CH

This command causes the entire window to be cleared to the current

background color and the cursor to be positioned to the home position.

This command is sometimes also called a form feed.

3.7.5.2 Erase Line

MODE @ 0lH, 40H

This command causes the current line to be cleared to the background

color. The cursor is not moved.

1.7.5.3 Test

TIST char MODE T char 01H, hchar

where

3-23

char .. = any displayable character

he ha r : : = 20H I 21 HI' .. I 7 FH

This command causes an erase page followed by the filling of the window

with the indicated character. (which cannot be a control character).

3.7.5.4 Erase to End of Line

MODE 3 0lH. 33H

This command causes the remainder of the current line from the cursor to

the right hand edge of the window to be erased to background color. The

cursor remains at its original location.

3.8 Multiple Windows

In the preceding sections, only a single window, (Window 110), has been

used. The system actually supports four windows, (Windows 110. fIl, #2

and 113). All ~f the functions presented in section 3.5, 3.6 and 3.7

can be individually sent to each window. The sizes of the windows can

be set with the following command.

3.8.1 Set Window Size

\-HNDOW coord coord MODEW coord coord

01H, 57H, hcoord, hcoord

The pair of coordinates in the command define a rectangular subset

of the CRT screen to be the points of the window. See section 3.5

for information on coord and hcoord. The following key sequence

defines Window #0 to be the upper left quadrant of the screen and

fills the window with Q's:

BOOT WINDOW 0, 255 255 127 TEST Q
(BOOT WINDOW 0, 511 255 255 TEST QJ

3-24

3.8.2 Aadressing Multiple Windows

So far, only Window #0 has been used because it is the window assigned

to output AO by default. In order to affect the other windows, they

must be assigned to the appropriate logical output devices. This is

normally d0ne by reassigning logical output device AO. It should be
noted that assigning a window does not affect the status of the lights

in the illuminated keys; therefore, the lights on the keys do not in-

dicate the mode of the window, but instead reflect the meaning of the

key. An example should help to clarify the situation.

Example:

BOOT \.JINDOW 0, 255 255 127
BACKGROUND GREEN ERASE PAGE
ESC 0 A I
WINDOW 256 255 511 127
MODE J
RED ABC

window '0 = upper left quad.
make window visible
assign AO to window *1
window #1 = upper right quad.
make cursor visible

Note that although the BACKGROUND key is illuminated, the final line

does not set the background color to red, but rather the foreground color.

Striking the BACKGROUND key will realign it with the mode of the window.

To change the background color of Window Ill, the BACKGROUND key must be

struck twic~ Alternately, the direct command of MODE M may be given

as in the continuation of the above example.

Continued example:

MODE M RED D E F ERASE PAGE background of w #1 = red

The background color of Window 'I has now been set to red, as desired.

(Note tha t red--on-red charac ters are not terribly legible).

Continued example:

BACKGROUND* BLACK
MODE X 3, MODE Y 3,
ABC

foreground of w #1
char. size 3 x 3

black

\hndow III has now been set up wid-i- enti£ely dffferent characteristics

from Window '0. Window H0 retains its identity as shown by the continu-

ation of the example:

Continued example:

ESC 0 A 0
ABC

3-25

assign AO to window #0
continue at last point

Difficulties with the window status compared with the illuminated keys

can be avoided by using the following command whenever a new window

is assigned to AO.

3.8.2.1 Keyboard sync

MODE ~ 0lH, 30H

This command causes the status of the addressed window to be sent to

the keyboard illuminated keys. After a keyboard sync command, the

window status will be accurately reflected by the illuminated keys.

3.8.3 Overlapping Windows

Since windows are simply defined as subsets of the CRT screen, there

is nothing to prevent them from overlapping. In fact, under initial

conditions, all of the windows coincide. When two windows share the

same point on the screen, whichever window writes the point last is

the one that affects that point. Consider the continuation of the pre-

vious example.

Continued example:

ESC 0 A 2
BACKGROUND MAGENTA ERASE PAGE
ESC 0 A 1
ERASE PAGE

3.R.4 Exceeding Window Boundaries

assign AO to window #2
clear to magenta
back to w #1

In subsection 3.6.3, the possibility of exceeding the window bound-

aries was mentioned. This will now be illustrated along with coord-

inate input using the cursor.

3-26

Example:

BOOT WINDOW • ~. ~ ~ ~ ~ ~ •
BACKGROUND BLUE ERASE PAGE
LF ~ SHIFT ~ SHIFT ~ SHIFT ~ SHIFT ~

ABC D E F G H I
ERASE PAGE

define w #0 with cursor
make window visible

The window defined above is 25 points wide by 21 points high because the

cursor coordinate is located at the upper left hand point within the

character position. Note that the information written outside of the

window is not cleared by the ERASE PAGE.

Window boundaries can also be exceeded if the window is too small to con-

tain a single character. Continuing the above example:

MODE X 3, MODE Y 7, ABC

3.9 Graphic Functions

The Chromatics terminals provide fast, built-in functions for generating

graphics figures. These functions are enabled when the window is in

plot mode. While in plot mode, some of the escape, control and mode

functions defined previously do not affect graphics generation. (for

example. background color); however, all of these functions are allowed

and do affect the window status. Also, display character codes which

do not have a special meaning in plot mode are ignored.

3.9.1 Entering Plot Mode

PLOT MODE G 01H. 47H

Plot mode is entered, (initially in the DOT submode - see 3.9.5), and

all functions described in this section become active. The cursor is

displayed as a blinking dot followed by a line.

3-27

3.9.2 Returning to Character Hode

PLOT* CTRL U ISH

Character mode is entered. This command is also treated as a "MODE

Cancel"; any partially entered MODE command is ignored.

3.9.3 Coordinates in Plot Mode

Coordinates are entered in the manner described in section 3.5 Recall

that, while using a window with a size less than the full screen, numeric

coordinates may select points outside the window. This can result in

graphic figures which extend beyond the window boundaries.

3.9.4 Dot Distances

Because the width and height of the CRT screen display area are not in

the same ratio as the number of X dots and Y dots, the distance between

a pair of X dots is not the same as the distance between a pair of Y

dots. On the 512 by 512 screens, (CG 1399, 1599. 1999), the X dot dis­

tance is equal to the square root of two times the Y dot distance, (or.

5 X dots approximately equals 7 Y dots). On the 512 by 256 screens,

(CG 139B. 1598, 1998), the X dot distance is equal to the inverse of

the square root of two times the Y dot distance, (or, 7 X dots approx­

imately equals .5 Y dots). To get dots per inch for a particular screen,

divide the dimensions of the actual displayed area by the number of dots

in the X and Y directions, respectively. (The actual displayed area

may be made apparent by: BOOT BACKGROUND BLUE ERASE PAGE).

3.9.5 Plot Submodes

While in plot mode, the window is also in one of several submodes

described below. The commands in this subsection are only available

· 3-28
X BAR GRAPH

(0,511) ---------------.. (511,511)

XI Xo
I I

- -+-t ---+-1 - YO
I 1

Xo XI
I 1

YO - -1-: -----+-: -
(0,0) _______________ __' (511,0)

FIGURE 3.4

Y BAR GRAPH

(0,511) ---------------...., (511,511)

Xo
I

YO -1-
YI - -

I

I
Y - -I

(0,0) ... ----___________ (511,0)

FIGURE 3.5

3-29

while in Plot mode. Each of these submodes causes subsequent number

and/or coord input to be interpreted according to that submode. Only

the initial entry is indicated in the command formats. Subsequent

entries are indicated in the text. (Note: all examples in this section

are assumed to follow the key sequence: BOOT PLOT).

3.9.5.1 X Bar Submode

where

X BAR coord xcoord

xcoord ::= number

xhcoord ::= hnumber

21H, hcoord, xhcoord

This command places the window in the horizontal bar plot submode.

The first and each subsequent coord xcoord pair causes a line to be

drawn from coord horizontally to the point with X coordinate xcoord.

If the cursor is used to enter the xcoord value, only the X co­

ordinate of the cursor is used. The following example corresponds to

Figure 3.4

X Bar 85, 45, 225

[X BAR 85, 90, 225

190

380

310

3l0j

3-30 .

3.9.5~2 Y Bar Submode

YBAR coord ycoord 22H, hcoord, ycoord

where

ycoord ::= number

yhcoord .. : hnumber ,
This command places the window in vertical bar plot submode. The

first and each subsequent coord ycoord pair causes a line to be drawn

from coord vertically to the point with the Y coordinate ycoord. If

the cursor is used to input ycoord, only the Y coordinate of the

cur~or is used. The following example corresponds to Figure 3.5.

Y BAR l4~ 170 127

Y BAR 140 340 255

200

4~0

3.9.5.3 Incremental X Bar Submode

coord xcoord 23H, hcoord, xhcoord

This command places the window in incremental horizontal plot submode.

The first coord xcoord pair works the same as for X Bar. Subsequently,

only xcoord values are entered. Bars are drawn as for X Bar where the

coord value is taken as the previous coord value plus one in the Y

direction. If the generated value of coord would be outside the win­

dow, the Y value is taken as that of the bottom of the window. The

following example corresponds to Figure 3.6.

3-31

INCREMENTAL X BAR

(0.511) -------------. (511.511)

(0,0) __________ (511.0)

FIGURE 3.6

INCREMENTAL Y BAR

(0,511) -----------.. (511,511)

y.-
I

(0,0) --------___ -' (511.0)

FIGURE 3.7

U 175

[U 175

170 85,

340 85,

115

115

3-32

145 205 265 235

145 205 265 235

175 085

175 085]

3.9.5.4 Incremental Y Bar Submode

$ coord ycoord 24H, hcoord, yhcoord

This command places the window in incremental vertical plot submode.

The first coord ycoord pair works the same as for Y Bar. Subsequently,

only ycoord values are entered. Bars are drawn as for Y Bar where the

coord value is taken as the previous coord value plus one in the X

direction. If the generated value of coord would be outside the window,

the X value 1s taken as that of the left edge of the window. The

following example corresponds to Figure 3.7.

$

[$

285 085 127 20,

285 170 255 040

85, 85, 150 105 40, 60,

170 170 300 210 080 120

3.9.5.5 Dot Submode

DOT coord 25H, hcoord

127

255]

This command places the window in the display dot plot submode. (This

is the default submode when plot mode is entered). The first and

each subsequent coord causes a dot to be displayed at the indicated

point. The following example corresponds to Figure 3.8 (Note: the

color change is made to make the display more visible).

WHITE BACKGROUND BLUE ERASE PAGE

[WHITE BACKGROUND BLUE ERASE PAGE

DOT 400 170 115 210 230 085

DOT 400 340 115 420 230 170]

3.9.5.6 Incremental Dot Submode

& coord xydelta 26H, hcoord, hxydelta

3-33

X-y DOT

(0.511) (511,511)

I
Yo-+­

I
Xo

(0.0) ... ___ ________________ .. (511,0)

FIGURE 3.8

INCREMENTAL X-Y DOT
(243,263) ... ____________ ---------.(267,263)

.....
..... ~ .(X'Y)I = 3.2

..... ,
Xo.......... \

Yo-¥' +.(X.Y)2=1.-2
(251,255)

.....
.....

-¥'.(X.Y),= -3.-2
I

+. (X.Y).= 0.-1

(243,247) .. --__________________ ~ (267,247)

FIGURE 3.9

3-34

This command places the window in the incremental display dot plot

submode. The coord indicates the placement of the first dot. The first

and subsequent xydelta values indicate displacements of up to three dots

in the X and/or Y directions. The displacement is added to the previous

dot's coordinates, (taking window boundaries into account), to give the

coordinates of the next dot to be written. Each xydelta byte is in-

terpreted as follows, (independently of whether the window is in

decimal or binary mode):

BIT POSITIONS

7 6 5 4

xydelta code: 1

3

X· ~

2 1

The binary values of Xl X0 and Yl Y0 indicate the displacement magnitude.

A value of 0 for Xs or Ys indicates a direction of right or up, respec­

tively, and a value of 1 for X or Y indicates a direction of left or
s s

down, respectively. The possible movements are summarized in Table 3.4

Also see Appendix A.5.

3-35

. Table 3.4

Summary of Incremental Dot Movements from @

Dots L~ft Dots Right

3 2 1 1 2 3

D 3 ~ s k C K S [
0

t
s 2 z r j B J F. Z

U

P 1 y q i A I Q y

x P h [D H P X

D 1 } u m E M U]
c
t
s 2 '\, v n F N V A

D
0 3 DEL w 0 G 0 W
w
n

3-36

The following example corresponds to Figure 3.9. (The color change

is made to make the diplay more visible.)

WHITE BACKGROUND BLUE ERASE PAGE & 255 127 Z N ~ E

[WHITE BACKGROUND BLUE ERASE PAGE & 255 255 Z N ~ EJ

3.9.5.7 Vector Submode

VECTOR coord coord 27H, hcoor~ hc~

This command places the window in the vector plot submode. The

first and each subsequent pair of coords cause a line to be drawn

between the two deSignated points. The following example corresponds

to Figure 3.l~.

VECTOR 50, 15~ 145 225 115 085 215 085

[VECTOR 50, 30~ 145 45~ lIS 170 215 170

3.9.5.8 Concatenated Vector Submode

345 210 430 065

345 420 430 130]

(coord coord 28H, hcoord, hcoord

This command places the window in the concatenated vector plot submode.

The first pair of coords causes a line to be drawn as in vector mode. Each

subsequent coord causes a line to be drawn from the end of the previous

vector to the indicated point. The following example corresponds to

Figure 3.11.

(

[(

065 065

065 130

145 1~5

145 210

200 165 375 065

200 330 375 130

345 150 460 175

345 300 460 350

460 225

460 450]

3-37

RANDOM VECTORS
(0.511) ...------------... (511.511)

(0.0) ___________ ... (511.0)

FIGURE 3.10

CONCATENATED VECTORS
(0.511) ___________ (511.511)

(0,0) -----------.... (511.0)

FIGURE 3.11

3-38

3.10 Summary of Standard Functions

This section summarizes the functions which are available in the

standard system. For a complete summary of all functions, see Appen­

dix A. The relationships between the various code types is shown in

Figure 3.12.

3.10.1 Control Functions

Control functions are specified by single, non-printing ASCII char­

acters. Most control functions cause movements of the cursor. Two

control functions, (CTRL [and CTRL A), indicate that following char­

acters are to be treated as modifiers for extended functions. These are

discussed in subsequent subsections.

Function Name

CTRL A MODE

CTRL H

CTRL I

CTRL J

CTRL K

CTRL L

CTRL M

CTRL N

CTRL 0

backspace

tab

line feed

vert. tab

erase pg.

return

A7 on

A7 off

3.10.2 Escape Functions

Section Function

3.10.3 CTRL U

3.6.2.5 CTRL [

3.6.2.3 CTRL \

3.6.2.4 CTRL]

3.6.2.6 CTRL .f\

3.7.S.1 CTRL E

3.6.2.2 CTRL V

3.7.1.1 CTRL Y

3.7.2.2 CTRL

Name Section

mode cancel 3.9.2

ESC 3.10.2

home 3.6.2.1

curs • rt. 3.6.2.7

end file 1.3

dot down 3.6.3.1

dot left 3.6.3.2

dot up 3.6.3.3

dot right 3.6.3.4

Escape functions are specified by the ESC character, (CTRL [), followed

by a sequence of one or more characters. The first character after the

ESC indicates the type of function. Only those escape functions which

apply to the standard system are listed here. For more information on

I OF 4
SPECIAL
GRAPHIC

YES

CHAR 5E TS

3-39

CODE FLOW-INPUT TO WINDOW

NO

STANDARD .6
CHARACTER SET

CHARACTER
GENERATOR

NO

NO

YES

YES

YES

FIGURE

YES

10F 64
MODE FUNCTIONS

I OF 32
CONTROL

CODES

GRAPHIC
GENERATOR

3.12

YES

YES

YES

YES

YES

I OF 32
ESCAPE

FUNCTIONS

SET ESCAPE
MODE ACTIVE

SET MODE
ACTIVE

I OF 16
GRAPHIC

SUBIIODES

COORDINATE
CONVERTER

3-40

escape functions, see section 2.3.

Function Name Section Function Name Section

ESC F full dup1. 3.3.1 ESC R baud rate 3.3.2

ESC H half dup1. 3.3.1 ESC I asg. input 3.3.7

ESC L local 3.3.1 ESC 0 asg. output 3.3.7

ESC G boot 3.1.1 ESC Y trans. cur. 3.3.4

ESC T CTROS 3.1.2 ESC 'ESC send ESC 3.3.6

3.10.3 Mode FUnctions

The mode functions are used to establish the operating mode of a

window. Subsequent commands sent to the window are affected by

the mode. For example, the current color mode of the window defines

the color with which characters will be written in that window.

Function Name Section
MODE @ erase line 3.7.5.2

MODE A interline 3.6.2.8

MODE B binary co. 3.5.2

MODE C color 3.7.4.1

MODE E decimal 3.5.1

MODE G plot on 3.9.1

MODE H horizontal 3.7.3.1

MODE J visible cur. 3.6.1.1

MODE K blind cur. 3.6.1.2

MODE M back. on

MODE N back. off

3.7.4.2

3.7.4.3

MODE Q cur. color 3.6.1.3

Function Name Section

MODE S sel. upper 3.7.1.3

MODE T test 3.7.5.3

MODE U CURSOR X-Y 3.6.3.5

MODE V vertical 3.7.3.2

MODE W window 3.8.1

MODE X X magnitude 3.7.2.2

MODE Y Y magnitude 3.7.2.1

MODE"

MODE 1 blink on 3.7.4.4

3.7.4.5 MODE 2 blink off

MODE 3 era. to EOL 3.7.5.4

3-41

3.l~.4 Plot Submodes

When the window is in the plot mode, any of the plot submodes Hsted

here can be entered.

Submode Submode Code

X Bar X BAR

Y Bar YBAR I "
Incremental X Bar II

Incremental Y Bar $

Dot DOT I %

Incremental Dot &

Vector VECTOR I
Concatenated Vector (

.

Section

3.9.5.1

3.9.5.2

3.9.5.3

3.9.5.4

3.9.5.5

3.9.5.6

3.9.5.7

3.9.5.8

4. EXTENDED DISPLAY FUNCTIONS

This chapter explains three optional features which may be added to

the standard system, (in any combination), to further extend the

already versatile alphanumeric and graphic capabilities.

4.1 Alphanumeric Mode Extension (Option 72)

This option provides the features described in this section for:

scrolling, overstriking and inserting/deleting lines and characters.

4.1.1 Roll On

ROLL MODE R 0lH, 52H

This function places the window in ~oll mode. When in roll mode,

the information in the window is automatically scro~led up and

down as the cursor moves past the edge of the window at the bottom

and top, respectively. MOre precisely, if the cursor is moved so

that it would exceed the bottom boundary of the window, the entire

contents of the window is shifted up by the X magnitude of one

character, (or one raster line if the cursor dot moves are used) and

an erase line is done on the bottom line of the window. The contents

of the topmost line of the window are lost. Complementary actions take

place if the cursor is moved beyond the top boundary of the window.

(Note: when the window happens to be equal in size to the full screen,

a very fast hardware roll is used and XY dot addresses will change position.

If the window is less than full screen size, rolling is performed by some­

what slower software routines and the XY dot addresses remain stationary.

The full screen hardware roll is particularly useful for high speed alpha­

numeric text applications.)

4-2

4.1.2 Roll Off (or Return to Page Mode)

ROLL* MODE P 0IH, 5~H

The window is returned to the normal (page) mode.

4.1.3 Overstrike Character

MODE 0 0lH, 47H

The window is placed in overstrike mode for the next display char­

acter. When in overstrike mode, only the foreground dots of the

character are written to the refresh memory - the background remains

unchanged. This allows multiple characters to be overlapped in the

same location. Consider the example:

BOOT MODE X 3, MODE Y 3, '" -t -t BACKGROUND BLUE

8" SPACE I +:. MODE 0 \ SPACE 10"

4.1.4 Latch Overstrike

MODE] 01H, 5DH

The window is placed in overstrike mode, (see 4.1.3) for all sub­

sequent characters until overstrike mode is turned off. This

function is useful in underlining as well as special applications.

Consider the example:

BOOT MODE X 3, MODE Y 3, -t .j, .j, BACKGROUND BLUE BACKGROUND*

C H ROM A TIC S RETURN"

RED MODE] SHIFT CTRL I SHIFT CTRL I SHIFT CTRL I

SHIFT CTRL I SHIFT CTRL / SHIFT CTRL I SHIFT CTRL /

SHIFT CTRL I SHIFT CTRL I SHIFT CTRL I MODE [

4-3

4.1.5 Unlatch Overstrike

MODE [01H, 5BH

The window is placed in normal (not overstrike), mode.

4.1.6 Select Overlay Planes

MODE hnum

This command allows specific planes to be enabled, thus providing the user

with limited overlay capability. (See Fig. 2.05)

The individual bits of hnum cause the individual planes to be enabled or

disabled.

hnum R I B I BIB] B = I enabled

B R G B B = 0 = disabled
1 e r 1
i d e u
n e e
k n

After this command is executed ONLY the enabled planes can be modified by

the CRTOS software; this includes erase page, roll, ZOOM, fill, graphics,

and characters, foreground and background.

The only exception to this rule is on a full page roll where the hardware

is rolling the data. All of the planes are rolled in this case and only

the enabled planes are erased.

EXAMPLE: By writing graphics data in red and alphanumerics data in green·

the graphics data can be erased or scrolled without affecting data on the

green plane.

NOTE; Caution should be exercised when using this mode as one could

easily get into a situation where commands appear to not be working. To

return to normal, issue a:

MODE F

SincE.' the ~ursor is normally displayed in white, some residue from the

cursor may be left when processing single planes. To prevent this, ~ither

turn off the cursor or change the cursor color to the color matching the

enabled planes, or enter overstrike mode where the cursor is removed after

each character written.

4.1. 7 Delay

MODE ? number 0lH, 3FH, hnumber

A delay occurs where number equals the duration of the delay in tenths of

seconds. Any delay between a and 99.9 seconds can be obtained.

4.1.8 Complex F:tll

!-1ODE > colnum

colnum:: = 1 I 2

01H, 3EH, hcolnum

4 I 8

colnum

1

2

4

8

color to fill

Blue

Green

Red

Blink

The cursor should lie "inside" of the polygo'n to be filled and the border

should contain the color selected by colnum. Yellow would contain Red

and Green so either could be used for fill. Blue or Blink, however, could

not be used. If the area is already filled with that primary color then

nothing will happen. If the polygon is not closed or the border color is

incorrect, then the entire screen may be filled.

4.1. 9

4-5

Complex Reverse Fill

MODE < colnum 01H, 3CH, hcolnum

colnum:: ~ 1 I 2 I 4 I 8

colnum color to fill

1 Blue

2 Green

4 Red

8 Blink

This routine is the complement of the Complex Fill Routine and works

the same way except that the border must not contain the color rep­

resented by colnum and the area to be reverse filled must contain it.

This routine will then remove that primary color from that area.

4.1.10 Insert Line

MODE I I 0lH t 49H

The window is scrolled down one line beginning with the line on

which the cursor currently resides. An erase line is then done on

the line containing the cursor. The effect is to insert a blank

line at the current cursor location.

4.1.11 Delete Line

MODE D 0lH, 44R

The current line is erased and the lines below it are scrolled up

one line to replace it. A new blank line will appear at the bottom

line of the window.

4.1.12 Insert Character

CTRL w 17H

The command causes one character space of background color to appear

at the current cursor location. The former character under the cursor

and the characters to its right are shifted one character to the right.

The rightmost character of the line is lost.

4-6

4.1. 13 Delete Character

CtRL F ,,6H

This command causes the character under the current cursor location

to be deleted. Characters to the right of the cursor are shifted left

one character position. One blank character of background color is

added on the right hand end of the line.

4.2 Graphic Mode Extension (Option 71)

This option provides for the aut~matic generation of arcs, circles

and rectangles. These figures may also be drawn with all interior

dots lit.

4.2.1 Fill On

FILL MODE F 0IH, 46H

This command places the window in fill mode. While in fill mode,

arcs, circles and rectangles will be drawn with all interior dots

lit.

4.2.2 Fill Off

FILL* MODE L 0lH, 4SH

This command places the window in normal (non-fill) mode.

4.2.3 Arc Submode

where

) coord radius start-deg degrees

29H, hcoord, hradius, hstart-deg, hdegrees

radius : :- number

start-deg : :- number

degrees : :- number

hradius : :- number

hstart-deg ::- number

hc:le2rees !!II: numh",,.

4-7

ARC

(0,511) .. -----------------------------... (511,511)

(0,0)

(0,511)

(0,0)

ARC DEGREE(S)

ARC DEGREE(S)

XO,y •• iiD'

/ '\ START DEGREE(S)

X.,YO" :::. - -'R - 0'

/ START DEGREE(S)

FILL ON

FIGURE 4.1

CIRCLE

FILL ON

FIGURE 4.2

(511,0)

(511,511)

(511,0)

4-8

While in arc submode, the first and each subsequent coord radius

start-deg degrees key sequence causes an arc to be drawn with its

center at coord, a radius of radius X dot distances, beginning at

start-deg for an angle of degrees. After the figure is drawn, the

cursor will be at coord. (Note that the normal convention of 0°

being horizontally to the right of the center and degrees being

measured in the counter-clockwise is observed). If the window is

in fill mode, the arc command will draw a pie-shaped wedge.

The foU.owing key sequence corresponds to Figure 4.l.

) 345 127 04S 020 035 FILL 115 127 045 325 055

[) 345 255 045 020 035 FILL 115 255 045 325 055]

4.2.4 Circle Submode

CIRCLE coord radius 2AH, hcoord, hradius

This command places the window in circle plot submode. The first

and all subsequent coord radius pairs cause circles to be drawn with

centers of coord and with radii of radius X dots. After each pair,

the cursor is located at the center of the circle just drawn. If

the window is in fill mode, the circle is filled in. The following

example corresponds to Figure 4.2.

CIRCLE 115 127 045

[CIRCLE 115 255 ~5

4.2.5 Rectangle Submode

RECT coord coord

FILL 375 125 015

FILL 375 255 015]

This command places the window in rectangle plot submode. The first

4-9

RECTANGLE

(0,511) -------------..... (511,511)

FILL ON

(0,0) _____________ (511,0)

FIGURE 4.3

4-10

and each subsequent coord pair causes a rectangle to be drawn

with the two coordinates given as opposite corners. The cursor is

left at the location of the last coord given. If the window is in

fill mode, the interior of the rectangle is filled in. The following

example corresponds to Figure 4.3.

RECT 085 190 200 150

[RECT 085 38, 200 30~

4.3 Create and Zoom Processors

FILL 350 127 390 085

FILL 350 255 39' 170]

(Option 73)

This option makes use of the additional memory provided with the

option to do special processing. The additional memory is referred

,.,..to as the "buffer". The buffer is used primarily to store key sequences

for future use.

4.3.1 Create Buffer

CREATE ESC C

This command sets up a buffer which stores all subsequent characters as

they are entered into the terminal. All mode codes, control characters and

plot submodes can be stored in this buffer. However, any ESC code sequence

will terminate the function and write an EOF at the end of the buffer.

Also, hitting the create key when the light is on will terminate the

function.

Multiple subbuffers (up to 255) may be created by separating the data with

a CTRL X (EOR character).

4-11

4.3.2 View Subbuffer

ESC V hnum

This command is like the REDRAW command except that only the data between

EOR marks hnum and hnum + 1 are sent to AD. hnum is always entered in HEX
scr-e€""

and can be any number from 00 to FF.

4.3.3 Kill Subbuffer

ESC K hnum

This command allows the data between EOR marks hnum and hnum + 1 to be

erased and the following data to be compressed leaving additional room at

the end of the buffer.

All subbuffers following the erased subbuffer will be renumbered one

number lower than before.

4.3.4 Append to Buffer

ESC Q r 1BH, 51H

This command re-enters the create function. Subsequent chara.cters

are added to the buffer beginning at the previous EOF rather than

at the first location. The function is terminated as in 4.3.1.

4-12

4.3.5 Transmit Buffer

XMIT ESC U lBH, 55H

The contents of the buffer up to the EOF are transmitted to logical

output device BO by this command.

4.3 j) Redraw Buffer

REDRAW ESC W ·IBH, 57H

The contents of the buffer up to the EOF are transmitted to logical

output device AO by this command. (AO is normally assigned to a

winc;1ow) •

4:3.7 Zoom

ZOOM coord coord MODE Z coord coord

01H, SAH, hcoord, hcoord

The zoom command causes the contents of the rectangular area defined by the

coordinate pair to be blown up to fill the entire window area, using

suitable expansion ratios. Since the original contents of the window

are destroyed by this function, it may be useful to use create and

redraw to restore the old contents.

4.3.8 An Example

The following brief example is intended to illustrate some of the

possibilities of using the create and zoom functions.

BOOT CREATE ERASE PAGE RED

PLOT RECT • -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ '" '" "'. RETURN t t -+

PLOT* CYAN CHROMATICS

HOME CREATE* ZOOM • -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ '" '" '" •

REDRAW

5. CENTRAL PROCESSING UNIT OPERATING SYSTEM (CPUOS) (Option 61)

The CPU Operating System functions like a system monitor similar to

those in most microcomputer systems. It is a local system to aid the

operator in such elementary operations as setting and examining memory

on a byte-by-byte level. Several utility functions are provided to

aid the operator in debugging software by setting program breakpoints

and examining CPU registers.

5.1 CPUOS Operation

CPUOS ESC Z lBH, SAH

The above command causes the CPUOS program to begin execution. The

logical device assignments are unnaffected by this command; they

remain as they have been set by CRTOS, (see subsection 3.3.6).

CPUOS uses logical device AI, (normally, the keyboard), for commands

from the operator and logical device AO, (normally, one of the windows),

to display information, including the commands from the operator. Since

various colors are used in the displayed information for highlighting,

the background .color of the window used should be black. Some of the

CPUOS commands use logical devices BI and BO for communication. The

remaining logical devices are not used.

5.2 Command Formats

When CPUOS is ready to accept a new command from the operator, a green

sharp symbol (n) is displayed at the left hand edge of the window. The

characters coming in AI, which are to make up a command, are displayed

5-2

in cyan.

All commands are recognized by their first character, which is followed

by zero or more arguments. Most arguments are either machine addresses,

(addr), or bytes of information, (byte). These are defined using the

conventions of section 1.4 as follows:

hex : : .. ~ I 1 2 3 4 I 5 I 6 I 7 I 8 I 9 IA I B I
C I D E F

addr : : I: hex I addr hex

word : : I: hex I w9rd hex

which means that- addr and byte consist of one or more hexadecimal characters.

Addresses and words are automatically padded with leading zeroes, if nec­

essary, to make four characters, while bytes are padded to make two charac­

ters. If either a word or byte argument is over its expected length of

4 or 2, respectively, only the low 'order digits are used. (Note: if

multiple arguments of the same type appear in a command, they will be

distinguished by subscripts.)

When a c.o1llIIland requires more than one argument, the arguments are

separated by delUneters, usually a space or comma. A command is

usually terminated by a RETURN, but if all possible arguments have

been entered, a space or comma sometimes suffices. All del1meters

in CPUOS commands are explicitly indicated in section 5.3 by one of

the following names:

del:iJn : := SPACE I
fdelim : := RETURN I SPACE

Note that no delimeter is used between the first character of the command

and its first argument. '

5-3

5.3 CPUOS Commands

A1l CPUOS commands are explained in this section. The possible forms

of the command are given using the conventions of sections 1.4 and 5.2.

5.3.1 Display Memory

D addrl delirn addr2 fdelim

The contents of memory from locations addrl through addr 2 inclusive

are displayed on AO. If addrl is omitted, a starting address of zero

is used. An example:

D10,25 RETURN

displays hex locations l~ through 25, (that's 16 through 31 decimal).

5.3.2 End of File

E E delim addr

This command causes load module format end of file, (see subsection 5.3.7),

to be written to logical device BO. If the second format is used, addr is

stored in the EOF, (for use as a start address on an object program module).

5.3.3 Fill Memory

F addr1 delim addr2 delim byte fdelim

The contents of memory from locations addrl through addr2 inclusive are

set to the value of byte. The memory set must be RAM for this command

to have an effect.

5.1.4 Execute Program (Go)

G RETURN G addrl RETURN G _ addrl delim addrZ RETURN I

G addr1 delim. addr 2 delim addr3 fdelim

This command starts program execution at addr1 • If addr l is omitted,

then execution resumes at the previously established program counter.

5-4

When present, addrZ and addr3 cause breakpoints to be set at their

respective locations. When a breakpoint is hit in program execut:f.on.

control returns to CPUOS and the CPU registers at that point are

displayed on AO, and the program counter is set to the breakpoint

address. Note that setting breakpoints modifies the program, which

is restored when the breakpoint is executed. So if no breakpoint is

reached, the program will remain modified.

5.3.5 Compute Hex

H addr1 delim addr2 fdelim

The two hexadecimal numbers equal to addrl and addr2 are added and

subtracted from one another and displayed over AO. This command is

useful in computing the lengths of blocks in memory, relative addresses,

etc.

5.3.6 Compare

K addr1 delim addr2 delim addr3 fdelim

The block of data stored in locations addr1 through addr2 is compared,

byte for byte, with a block of the same length beginning at location

addr3 • Each byte which gives an unequal comparison, scanning from

addr1 through addrZ' causes the following information to be displayed:

location in the first block, value in the first block, value in
the second block

The operator may then type SPACE to continue scanning or RETt~ to

terminate the comparison. If no unequal comparisons are found, then

control returns to CPUOS and the prompt character (#) is displayed.

5-5

5.3.7 Load

L

This command causes data to be loaded into memory from logical device

BI until a load module format end of file is encountered. The data

from BI is also in load module format. Each record in load module

format consists of a string of ASCII characters in the following form:

:BBAAAA00DDDDDDDDSS

The colon indicates the start of a string. The Bf A, D and S char­

acters must be of the set (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). The

BB byte is the quantity of data bytes in the string. The AAAA field

is the two byte load address where the data is to be stored and the

00 is a null byte separator. The DDD ••• (variable length) field

contains the data bytes themselves, while the SS byte is the checksum

of the entire string except for the colon. A load module format end of

file 1s indicated by a zero length data field, (:00AAAA00SS).

5.3.8 Move

M addri delim addr2 delim addr3 fde1im

The data bytes in locations addr1 through addrZ are moved, (beginning

with the byte at addr1), to the locations starting at location addr3 •

5.3.9 Send Nulls

N byte

The quantity of NULL characters, (00H), given by the value of byte

are sent .to logical output device BO.

S-6

5.3.10 Dump Memory (Punch)

P addr1 delim addr2 fdelim

The. data bytes in memory locations addrl through addr2 are trans­

mitted to logical output deivce BO in load module format, (see sub-

section 5.3.7). Note that no end of file is transmitted.

5.3.11 Search (Query)

Q addr1 delim addrZ delim byte RETURN
1

Q addr1 delim addr2 delim hytel delim mask fdelim

where

mask ::= byte2

The data bytes from addr1 through addrZ are searched for data equal to

by tel' The address of each byte and its contents are listed for one

which is equal to by tel' If mask is present, only the bits which are

"turned on" in mask, (have a binary value of 1), are compared. The

absence of a mask is equivalent to a mask value of FFH, (all ones). The

process pauses after each byte. The scan continues if the operator

enters SPACE and terminates if RETURN is entered.

5.3.12 Read from Disk

R drv delim trk delim sct delim nms delim addr fdelim

where

drv .. = E.Y.!~

trk : : = byte

set : : = byte

nms : ! = word

This command performs a direct data read from floppy disk drive drv

starting at track trk, sector sct and continuing for 'nms sectors. The --- --- ---
data is loaded into memory starting at address addr.

5-7

5.3.13 Substitute

S addr

Starting at location addr, each memory data byte is displayed in

yellow followed by a pause. The operator can substitute a new value

for the displayed byte by entering a byte followed by a SPACE, If

no value precedes the space, then that memory location is unaltered.

This mode of operation is terminated by a RETURN.

5.3.14 Write To Disk

W drv de1:im trk de1:im sct de1:im nms de1im addr fdeUm.

This command performs a direct data write to floppy disk drive drv

starting at track ~ sector ~ and continuing for nms sectors. The

data is written from memory starting at address addr. (Note: drv, trk

and sct are byte quantities and nms is a word quantity as defined in 5.3.12).

5.3.15 Display Registers

X X reg

where
reg : :-= A' I F' B' I c' D' I E' H' I L' I

A F B C I DIE I H I L

S X Y P

If the first form of the command, the CPU registers are simply

displayed in the order in which they appear in the definition of reg.

The second form displays the registers one at a time beginning with

the register reg and allows them to be modified as in the substitute

command, (see 5.3.13). Table 5.1 identifies the registers.

5-8

Table 5.1

Eight Bit Registers

Alternate Primar;t

A'

F'

B'

e'

D'

E'

H'

L'

.. ACC A .. ACe

.. Flags F .. Flags

... Reg B B = Reg B

... Reg C e = Reg e

.. Reg D D ..

.. Reg E E ...

.. Reg H H ...

.. Reg L L ...

Sixteen Bit Registers

S .. Stack Pointer

X .. Reg IX

Y ... Reg IY

P ... Program Counter

Reg D

Reg E

Reg H

Reg L

5.4 Error Conditions. Escape Codes and Mode Codes

If an error is made during command entry which can be detected by

CPUOS. such as a non-hexadecimal character in an address argument,

the message "WHAT?" is displayed immediately. The prompt character,

CO), is then displayed on the next lin~and CPUOS is ready to accept

another command.

Escape code processing is done for all input coming from logical

device AI. Since this method assures that escape codes are invisible

to CPUOS processing, escape codes may occur anywhere, even within

CPUOS commands. This allows some functions, (such as reassigning

a logical device), to be done directly, without entering CRTOS.

Mode code and control code processing is also allowed while in CPUOS,

but these codes are not invisible to CPUOS, so another method is used.

Whenever a control character is detected, CPUOS suspends processing

of input. CPUOS resumes only when a RETURN character is detected,

which terminates the current CPUOS command being processed, if any.

This allows window size, colors, etc. to be varied without leaving

CPUOS.

5.5 Using CPUOS

CPUOS is primarily intended for use with user written programs in

assembly language and discussion of this type of use is deferred to the

assembler manual. However, it is possible to use CPUOS without access

to the assembler to modify the characters displayed. This section will

illustrate a way to do this.

5-10

5.5.1 Memory Organization

The overall structure of the memory address space is shown in Figure 5.l.

Note that much of the memory is optional; the basic system can be run

with only 6K of PROM and 1K of RAM. (The abbreviation "K" is used to

stand for 1024 bytes). The example presented in section 5.5.2 can be

done with the basic memory alone, while the example of section 5.5.3

requires either memory Option 22 or 25.

A knowledge of the memory locations used for various purposes is re­

quired in order to make effective use of CPUOS. The following list of

key address used by CRTOS is sufficient for the examples of 5.5.2 and

5.5.3. For more details see the assembler manual. All address given

here are four hexadecimal characters.

Hex address Mem. type Purpose

1800 PROM Beginning of standard character set

lBC0 PROM Beginning of standard graphics set

3800 RAM Window 110 status table

3880 RAM Window IiI status table

3900 RAM Window 112 status table

3980 RAM Window 113 status table

3A80 RAM Input Device assignment table

3A94 RAM Output Device assignment table

5.5.2 Changing Fixed Logical Device Assignments

This subsection will show by example how to change the fixed logical

device assignments which are initializes by BOOT, (see section 2.2).

These assignments are in RAM, along with the variable assignments,

5-11

Decimal Hex Memory
Address Address Type Purpose -

~ 0000

EPROM* Standard Software

6143 17FF
6144 180(1

EPROM* Standard Alpha and Graphic Char. Sets

8191 1FFF
8192 2000

EPROM Optional Software

10239 27FF
10240 2800

EPROM Optional Character Sets

12287 2FFF
12288 3000

EPROM DOS Software

14335 37FF
14336 3800

RAM* Standard Workspace

15359 3BFF
15360 3C00

RAM DOS Workspace

16383 3FFF
16384 400(1

RAM Special Char. Set (960 bytes)

17343 43BF
17344 43C'

RAM Buffer

32767 7FFF
32768 8",

RAM** Buffer Extension

49151 BFFF
49152 c00(1

EPROM** User Programs or BASIC

65535 FFFF

* - Memory available in minimal standard system

**- Additional character sets may ~ be used from

these memory areas

Figure 5.1 - Memory Layout

5-12

The input and output device assignment tables, beginning at addresses

3A8~ and 3A94 respectively, contain lists of addresses which identify

the physical devices assigned to the logical devices. Each logical

device has two addresses (of two bytes each) associated with it. The

first is the variably assigned device and the second is the fixed

device. The logical assignments are ordered alphabetically, (AI, BI,

CI, DI, EI for the input device assignment table). Thus, the fixed

assignment for AI is found at bytes 3A82 and 3A83, while the variable

assignment for BO is found at bytes 3A98 and 3A99.

In order to change a fixed assignment, the proper addresses must be

loaded into the table. The addresses for the physical input devices

begin at address lE5 , while the physical output devices begin at 205.

The addresses are two byte quantities stored in the following order

for both lists: Window 10, Window #1, Window 82, Window #3, SIO ne,
SIO HI, PIO #0, PIO #1, IEEE-488, Keyboard. Thus, the physical

input address for SIO #0 is stored at bytes lED and lEEt, and the

output address for Window #1 is stored at bytes 207 and 208.

To change the fixed assignment of BO, (stored at 3A9A), to Window #1,

{address stored at 207, the following key sequence could be used:

BOOT CPUOS
M 207 SPACE 208 . SPACE 3A9A RETURN
CRTOS

After this sequence, CRTOS can be used as a terminal in half or full

duplex and all output characters sent to the remote computer will be

displayed in Window 01.

5-13

5.5.3 Modifying the Character Set

This example requires more RAM memory than is supplied with the most

basic syste~. Since the third alternate character set is presumed to

be loaded at location 4000, this is where the new character set will

be constructed. The new character set will be identical to the standard,

except that the upper and lower case letters will be reversed, effectively

changing the meaning of the SHIFT key for alphabetic characters.

Each display character set requires 960 bytes, (3c0 hex), of memory,

10 for each character. The character formats are stored in order

according to their hex codes. To create the modified character set,

the entire standard set will first be moved from its permanent

location to 4000. Then the upper case letters will be moved to

overlay the lower case, and the lower case letters will be moved to

overlay the upper case. When the window is the set to upper char-

acter set 3 and the A7 bit is turned on, the upper and lower case

letters will be reversed.

BOOT CPUOS
M1800,lBBF,4000 RETURN
M194A,lA4E,428A RETURN
M1A8A,lB8E,4l4A RETURN
CRTOS
MODE S 3
CRTL N
SHIFT C H ROM A TIC S

6. ADDITIONAL PROCESSORS

Several additional processors are available as options with the

Chromatics series of terminals. These are thouroughly discussed in

separate n~nua1s, so only summaries of their operations appear here.

6.1 Disk Operating System (DOS) (Option 41)

The Disk Operating System (DOS) allows the user to manipulate data to

and from the floppy disk drives on a symbolic name driven, file oriented

basis. The DOS commands themselves are symbolic names of disk files.

This allows the user to add his own commands to the system at will.

The DOS main program is executed by the following command:

DISK OS ESC D lBR, 44H

The DOS main program accepts its commands from logical device AI and

displays them on logical device AO. Escape code processing is always

done on AI. The logical assignments of AI and/or AO may be changed with

CRTOS before DOS is entered, (see section 3.3.7).

DOS prompts the operator with an asterisk (*) to indicate that a disk

command is expected. Disk commands have the following form:

filename / drive , arglist filename , arglist

where
drive ::- , 1 I 2 I 3 I 4 I 5 I 6

f llename : : - name I .!!!!!!!. ~

~ ::- SYS I SRC I OBJ I DAT I BAS KIL lABS

arg1ist ::- arg I arglist, arg

and where ~ is the alphanumeric name of a disk file and arg is either

a number or an alphanumeric string. The value of drive indicates the disk

6-7

drive to be searched for filename, If driv~ = 0 then all drives will be

searched in numeric order for filename., If ~~riv.!: is omittl'o, tll(' la~;1

dr ive used will be searched, The meaning of the ~ field in tht, [..U e­

name is defined below:

SYS

SRC

OBJ

OAT

BAS

KIL

ABS

A system command file which is an object file that can

only be executed as a DOS command. These files cannot be

deleted. They are only listed, with a directory listing,

when specifically requested.

A source file consisting of ASCII codes as generated by the

Text Editor. This file type is generated by the Editor for

passing source code to the Assembler to produce an object program.

A formatted object file consisting of data bytes, load addr('G:~,

checksums and optional executioti addresses.

A data storage file used by the Chromatics BASIC Language

Interpreter.

A program source file used by the Chromatics BASIC Language

Interpreter.

Any file that has been killed, preparing it for deletion

from the disk.

An absolute unformatted binary image file.

To be legitimate, a DOS command must have a filename with ~. SYS or BAS.

(If ~ is omitted, the drive searche& either of these types). SYS

files are loaded and executed by the DOS command. BAS files are loaded

and the BASIC language processor is executed. For further. information,

see the DOS operator's manual.

6-3

6.2 Text Editor (Option 62)

The Text Editor is a developmental tool which allows the user to create

and manipulate large source files for use by other programs. The editor

is a nonresident routine which may be invoked through the disk operating

system, or directly with the following escape function:

TEXT EDIT ESC X lBH, 58R

This command causes the Text Editor to be loaded from disk and executed,

logical device assignments are not modified. The Text Editor uses

logical device AI for receiving commands and logical device AO for

displaying information to the operator. The logical device assignments

may be modified using CRTOS, (see section 3.3.7).

The co10n{:) is used as a prompt character for commands by the Text

Editor. For an explanation of the editor commands, see the Text Editor

. Manual.

6.3 Z-8~ Disk Assembler (Option 63)

The z-80 Disk Assembler is a developmental tool which allows the user

to convert assembly language source text into machine executable object

code. The assembler may be invoked through the disk operating system, or

directly with the following escape function:

ASMB ESC A IBH, 41H

This function causes the assembler to be loaded from disk and executed

with the current logical device assignments, (see section 3.3.7).

Communication with the operator is done over logical devices AI and

AO. Logical device BO is also used for some output functions. Escape

code processing is done on device AI.

6-4

The z-80 Disk Assembler is a two pass assembler which accepts free

format input. The z-80 symbolic assembly language is described in

the Z-80 CPU technical manual published by the Zilog or MOstek

Corporations. Also see the Chromatics Z-80 assembler manual for

information on using the assembler.

6.4 PROM Programmer (Option 52)

The PROM Programmer enables the user to store his own applications

firmware or special graphics character sets in PROM. The PROM

Programmer main program is executed by the following escape function:

PROM PGMR ESC P lBH, 50H

This function causes the PROM Programmer main program to be loaded

from disk and executed with the current logical device assignments.

Logical devices AI and AO are used to communicate with the operator.

Escape code processing is done on logical device AI.

The PROM Programmer can program all of the bipolar and UV· erasable

PROMs that are used in the Chromatics CG terminals. These same PROMs

are the ones most commonly used in microcomputer systems. The PROH

Programmer, together with the other option features available from

Chromatics~ gives the user the tools needed for a complete and com­

prehensive program development system. See the PROM Programmer

manual for additional details on the use of this system.

6.5 BASIC Language Interpreter (Option 64)

Chromatics BASIC is a simple user oriented, high level, symbolic

programming language. It consists of English-like statements and

simple mathematical expressions combined in a conversational style

6-5

for easy formulation of computer problems. The language is quick to

learn, easy to use and widely understood. Everything from simple

calculations to complex tasks can be efficiently expressed.

The BASIC interpreter resides in PROM and processes programs stored

in RAM. The following escape function causes BASIC to be executed:

BASIC ESC B I lBH, 42H

This function also intializes the internal memory tables used by

BASIC. To re-enter BASIC without re-intializing, the following

escape function is available:

ESC E IBH, 45H

In either case, the current device assignments are undisturbed.

BASIC primarily makes use of logical devices AI and AO for com­

munication with the operator, and escape code processing is done

on AI. However, all logical devices are available under BASIC.

The BASIC operator's manual gives complete details on the use of

BASIC in the Chromatics CG series of terminals.

A P PEN DIe E S

A. SUMMARY OF CRTOS FUNCTIONS

This appendix lists all standard and extended functions available

from the CRTOS main program. The four table provided facilitate

quick referencing.

A.l Control Codes

Table A.l lists all ASCII control codes and their meaning in the

Chromatics CG terminal series. Some codes are left unused to allow

reassignment of any codes which might cause a conflict in a particu­

lar operating environment. The table first gives the ASCII standard

name for the code, followed by the key which is modified by CTRL,

followed by the meaning assigned to the code. The section and page

on which each code is discussed is also given.

A.2 Escape Codes

Escape code processing is discussed in section 2.3. Table A.2 lists

all escape code function key sequence forms together with their

meaning and a reference to the appropriate section and page of the

manual. In many cases, the key sequence form may provide enough

information by itself to make a reference to the text unnecessary.

A.3 Mode Codes

Mode code functions are used to establish the operating mode of a

window. Table A.3 gives all mode code functions along with their

meanings and references to the appropriate sections and pages of the

A-2

CONTROL CODES

Hex Decimal ASCII CTRL Chromatics Interpretation Section Page --
00 0 NUL @ NULL

01 1 SOH A MODE 3.10.3 3-40

02 2 STX 'B unused 1

03 3 ETX C unused

04 4 EOT D unused

05 5 ENQ E SHIFT t (dot up) 3.6.3.1 3-16

06 6 ACK F delete character 1.3.2 t 4.1.13 1-9,4-6

07 7 BEL G BELL 1.3.2 1-6

08 8 BS H backspace (+) 3.6.2.5 3-14

09 9 HT I tabulate 3.6.2.3 3-14

0A 10 LF J line feed (LF, i-) 3.6.2.4 3-14

0B 11 VT K t (vertical tab) 3.6.2.6 3-14

0c 12 FF erase'page.<':form ·feed J 3.7.5.1 3-22

0D 13 CR M RETURN 3.6.2.2 3-13

0E 14 SO N A7 on 3.7.1.1 3-17

0F 15 SI 0 A7 off 3.7.1.2 3-18

10 16 OLE P unused

11 17 DCl Q unused

12 18 DC2 R unused

13 19 DC3 S unused

14 20 DC4 T unused

15 21 NAK U plot off t mode cancel 3.9.2 3-27

16 22 SYN V SHIFT i- (dot down) 3.6.3.2 3-16

17 23 ETB W insert character 1.3.2,4.1.12 1-9,4-5

18 24 CAN X end of record for subbuffer 4.3.1 4-10

19 25 EM Y SHIFT + (dot left) 3.6.3.3 3-16

lA 26 SUB Z unused

IB 27 ESC [ESC 3.3.6,3.10.2 3-7,3-38

lC 28 FS \ home 3.6.2.1 3-13

ID 29 GS] (cursor right) 3.6.2.7 3-15
IE 30 RS A end file 1.3.2 t 4.3.1 1-9,4-10

IF 31 US SHIFT (dot right) 3.6.3.4 3-16

Escape Code Sequence

ESC A

ESC B

ESC C

ESC D

ESC E

ESC F

ESC G

ESC H

ESC I logical physical

ESC J digit7

ESC K

ESC L

ESC 0 logical physical

ESC P

ESC Q

ESC R sio ratecode

ESC S ~ pscode

ESC T

ESC U

ESC V

ESC W

ESC X

ESC Y

ESC Z

ESC ESC

A-3

ESCAPE CODES

Interpretation

run assembler

run BASIC

create buffer

run disk OS

warms tart

full duplex mode

boot

half duplex mode

assign logic. input

run user function
/

kill sub buffer

local mode

asg. logical output

run PROM programmer

append to buffer

set communic. rate

. Section

2.4.6,6.3

2.4.3,6.5

4.3.1

2.4.4,6.1

2.4.3,6.5

3.3.1

2.4.1,3.1.1

3.3.1

3.3.7

2.4.8

4.3.3

3.3.1

3.3.7

2.4.7,6.4

4.3.4

3.3.2

set parity & stop b. 3.3.3.

run CRTOS 2.4.1,3.1.2

transmit buffer 4.3.5

view subbuffer 4.3.2

redraw buffer 4.3.6

run editor 2.4.5,6.2

trans. cursor pOSe 3.3.4

run CPUOS 2.4.2,5.1

send ESC 3.3.6

'I'!t~ _____ A '"

2-8,6-3

2-7,6-4

4-8

2-7,6-1

2-7,6-5

3-3

2-6,3-1

3-3

3-7

2-8

4-11

3-3

3-7

2-8,6-4

4-11

3-3

3-5

2-6~3-2

4-12

4-11

4-12

2-8,6-3

3-6

2-2,5-1

3-7

A-4

manual. TIle basic form of each mode code is given as an aid to

memory.

A.4 Plot Submodes

TIle submodes under which the various built-in graphics figures can

be generated are listed in Figure A.4. Note that these submodes

can only be entered if the window is already in plot mode.

A.S XYdelta Codings

The coded movements for the incremental dot mode are summarized

in Figure A.S.

Mode code sequence

MODE @

MODE A number

MODE B

MODE C digit7

MODE D

MODE E

MODE F

IDDE G

MODE H

MODE I

MODE J

MODE K

MODE L

MODE M

MODE N

MODE 0

MODE P

MODE Q colnum

MODE R

MODE S cset

MODE T char -
MODE U coord

MODE V

MODE W coord coord

MODE X number

MODE Y number

MODE Z coord coord

MODE [

MODE]

MODE 0
MODE 1

MODE 2
MODE 3

A-5

MODE CODES

Interpretation

erase line

set interline space

binary coordinates

select color

delete line

decimal coordinates

fill on

plot on

write horizontal

insert line

vis ib1e cursor

blind cursor

fill off

background on

background off

overstrike

roll off

set cursor color

roll on

set upper char. set

test

move cursor to coord.

write vertical

set window size

set char. width

set char. heigh,t

zoom

unlatch overstrike

latch overstrike

keyboard sync

blink on

blink off
erase to eo1

Figure A.3

Section

3.7.5.2

3.6.2.8

3.5.2

3.7.4.1

4.1.11

3.5.1

4.2.1

3.9.1

3.7.3.1

4.1.10

3.6.1.1

3.6.1.2

4.2.2

3.7.4.2

3.7.4.3

4.1.3

4.1.2

3.6.1.3

4.1.1

3.7.1.3

3.7.5.3

3.6.3.5

3.7.3.2

3.8.1

3.7.2.2

3.7.2.1

4.3.7

4.1.5

4.1.4

3.8.2.1

3.7.4.4

3.7.4.5
3.7.5.4

3-22

3-15

3-10

3-21

4-5

3-9

4-4

3-26

3-20

4-5

3-12

3-12

4-6

3-21

3-21
4-2

4-2

3-12

4-1

3-18

3-22

3-17

3-20

3-23

3-19

3-19

4-12

4-3

4-2

3-25

3-21

3-22
3-23

A-6

MODE CODES

Mode code seguence Inteq~retation Section Page

MODE select overlay planes 4.1. 6 4-3

MODE ? number delay 4.1. 7 4-4

MODE > colnum complex fill 4.1.8 4-4

MODE < colnum complex reverse fill 4.1. 9 4-5

A-7

PLOT SUBMODES

Command Submode Sec tion Page

X I1AR coord xcoord X Bar 3.9.5.1 3-29 ._- ------
" y BAR coord ycoord y Bar 3.9.5.2 3-30

II car.ord xcoord incr. X Bar 3.9.5.3 3-30

$ coord ycoord incr. y Bar 3.9.5.4 3-32

% I DOT coord Dot 3.9.5.5 3-32

& coord xydelta incr. Dot 3.9.5.6 3-32

, I VECTOR coord coord vector 3.9.5.7 3-36

(coord coord concat. vector 3.9.S.S 3-36

) coord radius start-deg degree arc 4.2.3 4-6

* I CIRCLE coord radius circle 4.2.4 4-8

t RECT coord coord rectangle 4.2.5 4-S

Figure A.4

A-a

XYdelta Codjn~s

X movement Y movement x;:,::de1ta hxydelta
none none @ 40H
none 1 up A 4lH
none 2 up B 42H
none 3 up C 43H
none 1 down E 45H
none 2 down F 46H
none 3 down G 47H

1 right none H 48H
1 right 1 up I 49H
1 right 2 up J 4AH
1 right 3 up K 4BH
1 right 1 down M 4DH
1 right 2 down N 4EH
1 right 3 down 0 4FH

2 right none P 50H
2 right 1 up Q SlH
2 right 2 up R 52H
2 right 3 up S 53H
2 right 1 down U 55H
2 right 2 down V S6H
2 right 3 down W S7H

3 right none X S8H
3 right 1 up y 59H
3 right 2 up Z SAH
3 right 3 up [5BH
3 right 1 down] SDH
3 right 2 down J\ SEH
3 right 3 down 5FH

1 lEft none h 68H
1 left 1 up i 69H
1 left 2 1..I.p j 6AH
1 left 3 up k 6BH
1 left 1 down m 6DH
1 left 2 down n 6EH
1 left 3 down 0 6FH

2 left none p 70H
2 left 1 up q 71H
2 left 2 up r 72H
2 left 3 up s 73H
2 left 1 down u 75H
:? lefr 2 down v 76H
2 left 3 down w 77H

3 left none x 78H
J left 1 up y 79H
J left 2 up z 7AH
3 left 3 up { 7BH
3 left 1 down } 7DH Ie 3 left 2 down "- 7EH
3 leEt: 3 down DEL 7FH

Figure A.5

B. ELECTRICAL AND MECHANICAL SPECIFICATIONS - STANDARD SYSTEM

B.1 General

Power: 105-125 volts, 60 Hz, 600 watts.

Humidity: 0-95% noncondensing.

Package Color: Light beige (Federal Standard 26521) and brown

(Federal Standard 20140).

x Radiation: Less than 0.5 milliroentgen per hour at a distance

2 inches from all exterior surfaces.

B.2 Video Display

Screen Size and Format:
Format:

Diagonal Phosphor Area Usable Display Area Displayable and
Model Measure Inches Sq. -Inches Inches 5q. Inche.s Addressable Dots

1398 13" 8.l5x10.87 88.75 7xlO 70 5l2x256
1399 13" 8.15xlO.87 88.75 7xlO 70 512 x5l2

1598 15" 9.37x12.44 117.14 8.2SX11.25 94.87 5l2 x256
1599 15" 9.37x12.44 117.14 8.2S Xl1.2S 94.87 512 x5l2

1998 19" 11. 7x1S. 61 182.67 10.25x14.5 148.63 5l2 x2S6
1999 19" 11. 7xlS.6l 182.67 10.2SX14.S 148.63 S12 xS12

Refresh Rate: 60 times/second noninterlaced, synchronized to 60 Hz

line frequency.

Color Levels: 8 foreground and 8 background - red, green, blue, magenta,

cyan, yellow, white and black.

Convergence: 9 sector, with each sector individually converged from

front drawer accessible controls.

Controls:

Deflection:

Focus:

Blink Rate:

Cursor:

B-2

Brightness, focus, convergence, on/off.

Magnetic.

High voltage electrostatic.

1.9 Hz, cursor and dots, foreground and/or background.

4 each, 1 per window; programmable in position, color

and visibility (on or off). Expands vertically to

match character height when character Y magnification is

not equal to 1.

B.3 Processor Memory

CPU: Z-BO.

Refresh Memory: Models l39B, 1598 and 1998 - 65,536 bytes of dynamic

RAM. Models 1399, 1599 and 1999 - 131,072 bytes of

dynamic RAM.

Program Memory: 8192 bytes of EPROM and 1024 bytes of RAM for base

routines and CRT Operating System.

B.4 Peripherals

Keyboard:

B.5 Software

Processors:

Detachable; capacit::f.ve; 128 stepped keys; visual light

feedback on alternate action mode keys; 2 key rollover;

automatic repeat; cursor pad; numeric pad; special function

keys; sculptured keys in main keyboard section.

CRT Operating System with full, local and half duplex

modes as well as ESCAPE code processing and device

assignment capability.

B-3

B.6 Display Functions

Graphic Mode:

Alphanumeric
Mode:

Coordinate
Entry:

Character
Format:

Character

DOT, Incremental DOT, X Bar, Incremental X Bar,

Y Bar, Incremental Y Bar, Vector, Concatenated Vector.

ASCII and special characters available from RAM or

EPROM positioned to any dot position on screen.

Decimal digits, binary codes or cursor position.

96 ASCII upper and lower case 5x7 cot matrix characters

and 96 6xlO dot matrix characters in EPROM memory.

Magnification: Individually settable in X and/or Y to any integer

multiplier.

Cursor: Programmable in color, position and visibility (on or off).

Character
Interline
Spacing: Variable, up to 255 raster lines.

Character Write
Direction: Vertical or Horizontal.

Character
Resolution: 5l2 x256 dot resolution - 85 characters/line by 25

Control
Functions:

Windows:

lines/page. 5l2 x5l2 dot resolution - 85 characters/line

by 51 lines/page.

Cursor Up, Down, Left and Right (character and dot spacing),

Erase Page, Erase Line, Home, Tab, Carriage Return, Line

Feed and Backspace.

4 each, individually programmable in siz~ position

and all the above functions including a separate cursor

for each window. Each window is a physical output 'device

B.7 Interfaces

Serial:

and may receive data from any physical input device

or logical output device when properly assigned.

Serial I/O port - asynchronous; independently

programmable from 110 to 31250 baud, (9600 baud

highest standard rate); single stop bit, (programmable

to 1.5 or 2); TTL and RS-232C interface with busy

output lines (clear to send status line also included

in RS-232C interface).

C. ELECTRICAL AND MECHANICAL SPECIFICATIONS - OPTIONS

C.l General

Power: Option 11 - 205-250 volts.

Option 12 - 50 Hz.

C.2 Video Display

Refresh Rate:

Character
Format:

C.3 Memory

With Option 12 installed - 50 times/second, noninter-

laced, synchronized to 50 Hz line frequency.

Option 21 - 192 additional customer defined special

graphic characters programmed in EPROM memory.

Option 27 - 7x9 dot matrix ASCII character and 8xlO

dot matrix graphic character formats.

With optional additional RAM memory~ additional user

defined character sets may be loaded into memory,

(960 bytes of RAM required per set).

Program Memory: Option 22 - Memory card with 16,384 bytes of RAM;

additional space for 16,384 bytes of RAM and

16,384 bytes of LV erasable PROM.

Option 23 - 16,384 bytes of dynamic RAM, (IC's only).

Option 24 - 2048 bytes of UV PROM, (IC's only).

Option 25 - Memory card with 8192 bytes of RAM;

additional space for 8192 bytes of RAM and

16,384 bytes of UV erasable PROM.

Floppy Disk:

C-2

Option 26 - 8192 bytes of dynamic RAM. (IC's only).

Option 28 - PROM Expander card with space for 6144

bytes of PROM. (Note: this option is never

required if Option 33 or 41 is included in the

system).

Option 41 - Floppy disk controller with DOS software.

Can support up to 6 standard drives or 2

Minifloppy drives.

Option 42 - Standard floppy disk drive with 250,000

bytes of storage and 250,000 bits/second transfer

rate.

Option 43 - Dual floppy disk drive with twice the

capacity of Option 42.

Option 44 - Minifloppy disk drive with 80,000 bytes

of storage and 125,000 bits/second transfer rate.

Option 45 - Dual Minifloppy disk drive with twice

the capacity of Option 44.

PROM Programmer: Option 52 - PROM Programmer, interface and software

for programming bipolar and UV erasable PROMs.

C.4 Software

Processors: Option 61 - CPU Operating System that includes Display

Memory; Fill; Go (with breakpoints); Hex Arithmetic;

Load Hex; MOve; Write Hex; Substitute; Direct Disk

Read; Direct Disk Write; Search; Compare and Display

CPU Registers.

C-3

Option 62 - Disk Text Editor with 11 editt1ng

commands and functions including disk file

operations.

Option 63 - Z-80 Disk Assembler that includes 9

operator commands; pseudo-ops; symbolic addres-

sing and file concatenation capabilities.

Option 64 - BASIC Language Interpreter with 24 keyword

program statements; 17 editting and command state-

ments; 19 mathematical functions; 6 string functions;

17 file operations and 14 arithmetic operations.

Option 73 - ZOOM and Buffer Processor - ZOOM expands

any rectangular area to the entire window area.

(automatically scaled to closest fit). Buffer

Processor has CREATE and REDRAW functions. Codes

are input into the buffer while in CREATE mode.

The REDRAW function reexecutes the buffer to re-

create the original display. The buffer may be

transmitted using the XMIT function or saved en

disk by the Disk Operating System.

C.s Display Functions

Graphic Node:

Alphanumeric
Mode:

Option 71 - Extended graphic functions (arc genera-

tion. circle generation. rectangle generation

and solid object auto fill).

Option 72 - Extended alphanumeric functions. (roll

lines within window. insert line. delete line.

insert character, delete character. overstrike).

C.6 Interfaces

Serial:

Parallel:

C-4

Option 31 - Second serial I/O port - asynchronous,

independental1y programmable from 110 to 31,250

baud, (9600 baud highest standard rate), single

stop bit (programmable to 1.5 or 2), TTL, RS-232C,

RS-422 and 20 mA current loop interfaces with

busy output lines (additional clear to send status

line included in RS-232C interface).

Option 32 - RS-422 and 20 mA current loop inerface for

stanard SIO port 111.

Option 33 - Parallel I/O port, 2 each - 8 bits (program­

mable to a single 16 bit I/O port), Tn. compatible

with 2 handshakes on each 8 bit port, 416,000 bytes/

second transfer rate maximum with DMA option (208,000

words/second transfer rate with 16 bit operation and

DMA option) •

Option 34 - DNA controller - provides high speed transfers

from memory to memory, I/O to memory , memory to I/O

and I/O to I/O. Maximum transfer rate is 416,000

bytes per second.

Option 35 - IEEE-488 (CPIB) interface and controlling

software.

D. EXTERNAL INTERFACE SPECIFICATIONS

This appendix gives specifications for the RS 232 and RS 422

external interface couplers. The numbering for the pins is

given in Figure D.1, (both types use the same numbering).

Table D-1 gives the meanings of the pins for both RS 232 connectors

J3 and J4.

13 01

25 14

Connector Rear Chassis View J3 & J4

Figure D-1

13 \0 -=- ~ 0 / 01
25 \"",0 __________ ..:.....0/ 14

Connector Rear Chassis View J7

Figure D-2

D-2

Table D-1

RS 232 Connectors

1 _I a22t2&a

2

3

4~ Lii:;s ___)

6

7 ~.lt2_

8

9

10 TTL Send Data (Output)

11 TTL Receive Data (Input)

12

13

14

15

16

17

18

19

2" /Busy (Output)

21

22

23

24

25 TTL Busy (Output)

D-3

Table D-2

RS 422 & 20 mar Current Loop Connector

1 RS 422-1 Busy (Output)

2 RS 422-fl Bli'Sy (Output)

3 RS 422-1 Send Data (Output)

4 RS 422-fl Send Data (Output)

5 RS 422-1 Receive Data (Input)

6 RS 422-fl Receive Data (Input)

7 Port 1 Select Bit A

8 Port fl Se1ec t Bit A

9 Select Ground

1fl CL-0 Receive Data "_"

11 CL-1 Receive Data n_1!

12 CL-l Send Data n+"

13 CL-0 Send Data n+"

14 RS 422-1 Busy (Output)

15 RS 422-0 Busy (Output)

16 RS 422-1 Send Data (Output)

17 RS 422-0 Send Data (Output)

18 RS 422-1 Receive Data (Input)

19 RS 422-fl Receive Data (Input)

20 Port 1 Select Bit B

21 Port 0 Select Bit B

22 CL-fl Receive Data "+I!

23 CL-1 Receive Data "+"

24 CL-1 Send Data "_It

25 CL-fl Send Data I!-I!

SELECT LOGIC

CL

RS422

TTL

RS232
I

B A

Pin 9 Pin 9

Pin 9 nc

nc Pin 9

nc nc

nc = no connection

D-4

Connectors J4 and J3 may be selected as shown in Figure D-3 to be

compatible with either RS-232 or TTL specifications. That is, to

use J4 (S10 #0) as a TTL port, connect pin 8 to pin 9 on connector

J7. To use J3 (SIO #1) as a TTL port, connect pin 7 to pin 9 on J7.

RS-422 and current loop connections are both done on connector J7

for SIO #0 and S10 #1 as shown in Table D-2. Note that if RS-422 or

current loop is selected for 510 110 or 510 #1, the corresponding

RS-232 connector (J4 or J3) is not used. Table D-2 and Figure D-3

indicate that R5-422 operation can be selected for 510 #0 and/or

SIO #1 by connecting pin 21 and/or pin 20 (respectively) to pin 9 or

connector J7. Current loop operation may be selected by connecting

pins 8 and 21 to 9 for S10 #0 and 7 and 20 to 9 for S10 #1.

APPENDIX E

Special Graphic Character Fonts

j X'7 Special Graphic Character Set

I 1111'.

pace " $ %

() * + I

- -. I ..- I I

f..~
-. IT

IT
f"T
I.

1-1- -... !- "

,.1-
~~ -- ~~ l -~

1 2 3 4 5 6 7

-t

I I I I
I I I
I J
~ , ,

~~

""~ !-~

~t ~IIIIIII
- 1

"Ii' j

~ I

I

:it

~~
~ ..

8 9 < = > ?

II!! I I I I
iB:l r I
,., I I

@ A B C D E F G

! ' ,

H I J K L M N o

"""','''-",, :. i
"~~~ . .'
"', -

....... IIIi' ... ·"iIi.;··"'.~

p o R s T u v w

lace

~""-i- -
-1--
- .. I-------~--

()

1

I I TT T 1
I I I I

if

8 9

I I I _ I I I
111_.1' 1 I I
Ill.'
I I I ., I I

~.I-......
@ A

!I'""
II'"

i\- "i-
~

_

H I

f'I

/ X 9 Special Graph1c Character Set

" II $

~ I- .L.l
• I I I I I
LJ I I -.l ..II

" • J J I I I

~- -~ -i'"
."j ""'4-

-~ ~ ..

* +

2 3 4

I I I I 11 J
I r I I II "1"1

W
I t I I J

<

I 1111
1 I.

I I III
Ii I l1li

B D

J K L

T

%

5

=

E

M

Tl

&

6

>

F

•••••••••• •••••• • ···1It ••• £

••• •••• •••••••• •• 111 ••••

••••••••
N

/

7

?

G

• ••••••• •••••• '
i' •••

, .;1::
••••• :

••••••••
o

7 X 9 Special Graphic Character Set

x y z []

a b c d e f g

h i j k 1 n o

•

p q r s t u v

x y z { }

F. HOW TO ADJUST CONVERGENCE

Chromatics' proprietary method of convergence control makes touch-up

Ldjustment of convergence easy. Now anyone can keep their Chromatics

lisplay looking as good as new!

The front drawer accessible convergence controls are arranged

nto nine groups of three controls per group; one control for blue. one

'or red and one for green. The nine groups correspond to nine areas or

;ectors of the display screen, matching exactly as you look at them

:see diagram below}.

I

i- t t J--

h : .. .) ,... :: 0 J

J ~ :> I -I - ----
')VO J oJ - -.

f J ..)
:) :;) ~")

i
.:,:)~OOO
0 - 0

t '1
i

Display Screen Front Drawer. Controls

.\D_rtiSTI~G CO~VERCENCE: CE~'TER FIRST; CORNERS LAST

The Chromatics display computer has a built in test function which

:an be used to aid in adjusting convergence. Simply depress the "Test" key

Lnd then the It." key. The screen will then fill with dots. Dots are a

;ood test pattern to adjust with because they show every minor error

.n convergence.

~ow. select a dot in the center of the display screen first and adjust

:he three controls in the center group of convergence controls so that dll three

color dots align or "converge" on the same point (which then makes a

white dot).

Proceed to adjust the top center, bottom center, left center and

right center sectors (in any order). Always do the corners l!!!.

Green Red
(;n:~t!n Dot Red Dot

CD ® " .

~

~,t ~C 0 • CD I ,
Blue Dot Blue

·fISCO~VERr.ED DOTS CONTROLS CONVERGED DOT

HEX '"
0 0

1 0

2 0

:3 0

4 0

5 0

6 0

7 0

8 1

9 I

A 1

B I

C 1

D 1

E I

F I

HEX 0 I 2

AT 0 0 0

A6 0 0 0

'5 0 0 I

'4 0 1 0

'2 AI '0 C(i~TROL CONTROL SHIFT
TO 0 P TO _ • TO I

0 0 0 IIUU. 0 ::?< SI'AC'3Z

0 0 I 1I00E I >< I
IS

0 I 0 [2< >< · 14

0 I I C>< >< •]S

-I 0 0 ex: >< • 36

I 0 I ONE DOT MODE
'110 H UP ~ CANCELZ'

I I 0 DELET[' ONE DOT
CHARACT~ OOWN~ · ..

I I 1 IIiSlIITZ'l
I IELl 7 ~HAIIACTEII S.

0 0 0 IS 8>< (40

0 0 I TAl 9
ON[DOT

I LUT 25 41

0 1 0 LF '0 C?< • 42

0 1 I VT ESC 27 + 4,

1 0 0 [RAIf
HOII("t' 'Ail ,2 44

I 0 I CII
CUIISOII -IIIOHT 29 I' 45

I I 0 101
ON (Of 30 14 46

I I I 101 ONE DOT
0" " !tiGHT 51 I 47

>< INDICATE
UNUSED ANSI ASCII CODES,

ASCII CODE ASSIGNMENT

3 4 5 6 7 0 I 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0 0 0 0 0

0 I I I I 0 0 0 0 I I I I

I 0 0 I I 0 0 I I 0 0 I' I

I 0 I 0 1 0 1 0 I 0 I 0 1
SHIFT "HIFT SHIFT CONTROL CONTROL
• TO \ TO 0 P TO_ (Q) TO 0 P TO _

• ~64 ' 80 · , 112
SPACE I 48 +. 4 eo 'Itt 1 111 48 96 ,Z

I A 15 0 • • ~ 'It -L
, 'I)17 T III 41 .. ., II] In -.~

I
!IO • 66

II 12
,

88
,

114 J, 34 150 T .. • 12 (.. --;11

] c s • • i L 51 -1 • ~ II ~,,= 51 61 83 99 ,,5 3S 11 .~

4 ,. o 68 T 114
• '00

, f-- r r- .. • -/1- loa +JlI 116]6 52 14

--13 -1 .. ~l~
~ + 5 £ u 85 • • .., .~ ::::r 10, 53 69 '0' ,,1

~ 31

L r- 1n -\\02 1 I
:14

,
10 y 16

' '02 • III :14 8a III

t ...J T ~'03 ~ 1

" • 11 • 81 ' 103 • 119 39 lie 11 11 -
• 56 H H X ae II ,04 • 120 '4- 40 J III! .L n -41 sa J I~ -(

110

I ... 41 -;' t It "\ 10!)- 121
• 57

I
73 Y a9 .05

,
121 - 7.

I 42 ~5I I I 14 \.. I'
)111 :

51 J 14 Z 90 I 106 • 122 t, 101

: ~9
K

1~
(91 III .01 (, 2l

- L" I 7~ .j
~ '01 oj 12) 43 91

I I r--.o H 76 L -'\ >0
< 60 L 76 \ 92 .oa I IZ, 44 n 101 ~

It J) '25 ~ 1 Dn J ')IOt -C · 1ft 109 II 61 11 93 ., 12

'" r It 4 1 ~ 110
>-- .

> 62 II
" 94 • 18 .,,, '26 46 78 '4 '2&

? 6 o 7, - " • " • 127 I I -4; L~ • n f U + III
V l2

I / / .
SA-..[AS C ·I1RIJ 3! C HIC CHARACTERS.

FIGURE 1.3

1-2

DEL 1. 3.2 1-6 hexdigit7 2.4.8 2-8
delay 4.1. 7 4-4 hio 3.3.7 3-7
delete character 4.1.13 4-6 h10g 3.3.7 3-7
delete line 4.1.11 4-5 hnumber 3.5.1 3-9
delete symbol 1. 3.2 1-6 HOME 3.6.2.1 3-13
delim 5.2 5-2 horizontal mode 3.7.2.1 3-20
diSit 3.5.1 3-9 hEh~s 3.3.7 3-7
diSit7 2.4.B 2-B hEscode 3.3.3 3-5
DISK OS 2.4.4 2-7 hradius 4.2.3 4-6

6.1 6-4 hratecode 3.3.3 3-5
display memory 5.3.1 5-3 hsio 3.3.2 3-5
display registers 5.3.15 5-7 hstart-deg 4.2.3 4-6
dot distances 3.9.4 3-27 hwindow 3.3.4 3-6
DOT submode 3.9.5.5 3-32
dump memory 5.3.10 5-6 incremental dot 3.9.5.6 3-32

incremental X Bar 3.9.5.3 3-30
end of file 1.3.2 1-9 incremental Y Bar 3.9.5.4 3-32

4.3.1 4-10 initial conditions 3.1.1 3-2
5.3.2 5-3 insert character 4.1.12 4-5

erase line 3.7.5.2 3-22 insert line 4.1.10 4-5
ERASE PAGE 3.7.5.1 3-22 interline spacing 3.6.2.B 3-15
ERASE TO EOL 3.7.5.4 3-23 io 3.3.7 3-7
ESC 2.4.4 2-7

3.3.6 3-7 key modifier 1.4 1-9
3.10.2 3-38 key sequence 1.4 1-9
A.2 A-1,3 keyboard 1.2 1-3

escape code 1.3 1-4,5
processing 2.3 2-4 keyboard sync 3.B.2.l 3-25

escape functions 3.10.2 3-38 KIL 6.1 6-2
A.2 A-l,3 kill sub buffer 4.3.3 4-11

execute program 5.3.4 5-3
latch overstrike 4.1.4 4-2

fdelim 5.2 5-2 LF 3.6.2.4 3-14
filename 6.1 6-1 line feed 3.6.2.4 3-14
FILL off 4.2.2 4-6 load 5.3.7 5-5
FILL on 4.2.1 4-6 local 3.3.1 3-3
fill memory 5.3.3 5-3 logical 3.3.7 3-7
fixed device logical device

assignment 2.2 2-4 assignment 3.1.2 3-2
5.5.2 5-10

form feed 3.7.5.1 3-22 MODE functions 3.10.3 3-40
full duplex 3.3.1 3-3 A.3 A-l,5
F1 2.4.B 2-8 move 5.3.8 5-5

multiple windows 3.B 3-25
Go 5.3.4 5-3

number 3.5.1 3-9
Half duplex 3.3.1 3-3 numeric keypad 1.3.1 1-4
hehar 3.7.5.3 3-23
heo1num 3.6.1.3 3-1B OBJ 6.1 6-2
heoord 3.5.1 3-9 overlapping
heset 3.7.1.3 3-1B windows 3.B.3 3-25
hdegrees 4.2.3 4-6 overstrike 4.1.3 4-2
hdigit 3.5.1 3-9
hex 5.2 5-2 parity 3.3.3 3-6
hexadecimal 1.4 1-10 Eh~sical 3.3.7 3-7

I. INDEX

This index lists many of the key terms and phrases used in the manual

in alphabetical order. References are given by section an~ page.

Also see Appendix A.

addr 5.2 5-2 CIRCLE submode 4.2.4 4-8
alternate char- color 3.7.4.1 3-21

acter sets 3.7.1 3-17 color 1.4 1-9
append to buffer 4.3.4 4-11 colnum 3.6.1.3 3-12
arc submode 4.2.3 4-6 communications
arslist 6.1 6-1 rate 3.3.2 3-5
ASCII 1.3 1.;.4 compare 5.3.6 5-4

1.3.2 1-6 complex fill 4.1.8 4-4
ASMB 2.4.6 2-8 complex reverse fill 4.1.9 4-5

6.3 6-3 compute hex 5.3.5 5-4
assembler 6.3 6-3 concatenated
A7 off 3.7.1.2 3-1B vector 3.9.5.B 3-36
A7 on 3.7.1.1 3-17:1B control functions 3.1,.1 3-38

A.1 A-1,2
BACKGROUND OFF 3.7.4.3 3-21 conventions 1.4 1-9
BACKGROUND ON 3.7.4.2 3-21 coord 3.5.1 3-10
backspace 3.6.2.5 3-14 coordinates 3.5 3-9
BAS 6.1 6-1 CPUOS 2.4.2 2-7
BASIC 2.4.3 2-7 5.1 5-1

6.5 6-4 CREATE buffer 4.3.1 4-10
basic keyboard 1.3.1 1-4 CRT screen 3.4 3-8
BELL 1.3.2 1-6 CRTOS 2.4.1 2-7
binary coordinate 3.5.2 3-10 3.1.2 3-2
blind cursor 3.6.1.2 3-12 cset 3.7.1.3 3-18
BLINK off 3.7.4.5 3-22 CTRL 1.3.2 1-6
BLINK on 3.7.4.4 3-21 3.10.1 3-38
BOOT 1.2.1 1-3 A.l A-l,2

2.4.1 2-6 cursor 3.6 3;...11
3.1.1 3-1 cursor color 3.6.1.3 3-12
3.3.2 3-5 cursor control 1.3.1 1-4

BREAK 3.3.5 3-6 cursor movements
byte 5.2 5-2 character 3.6.2 3-12:15

dot 3.6.3 3-15:17
char 3.7.5.3 3-23 cursor right 3.6.1.3 3-12
character height 3.7.2.1 3-19 CURSOR X-Y 3.6.3.5 3-17
character mode 3.6 3-11

3.7 3-17 DAT 6.1 6-2
character set 5.5.3 5-12 decimal coordinate 3.5.1 3-9
character width 3.7.2.2 3-19 desrees 4.2.3 4-6

1-3

PLOT mode 3.9.1 3-26 transmit cursor
plot mode cursor 3.6 3-11 position 3.1.4 l-h

plot submodes 3.9.5 3-27 ~ 6.1 6-1
3.10.4 3-41
A.4 A-4,6 underline 1.3.2 1-9

position cursor 3.6.3.5 3-17 unlatch overstrike 4.1.5 4-3
POWER 1.2.1 1-3 upper character
primary keys i.3.2 1-6,8 set 3.7.1.3 3-18
PRCM 2.1 2-1 user functions 2.4.8 2-8
PROM programmer 2.4.7 2-8

6.4 6-4 variable device
pscode 3.3.3 3-5 assignment 2.2 2-4
punch 5.3.10 5-6 3.3.7 3-7: 8

VECTOR submode 3.9.5.7 3-36
radius 4.2.3 4-6 vertical tab 3.6.2.6 3-14
RAM 2.1 2-1 vertical mode 3.7.3.2 3-2(1
ratecode 3.3.2 3-3 view subbuffer 4.3.2 4-11
read from disk 5.3.12 5-6 visible cursor 3.6.1.1 3-12
RECTangle submode 4.2.5 4-8
REDRAW buffer 4.3.6 4-12 WHAT? 5.4 5-9
RESET 2.4.1 2-6 window 3.1.1 3-2
RETURN 3.6.2.2 3-13 3.4 3-8
ROLL off 4.1.2 4-2 window 3.3.4 3-6
ROLL on 4.1.1 4-1 WINDOW size 3.8.1 3-23

word 5.2 5-2
scrolling 4.1 4-1 write to disk 5.3.14 5-7
search 5.3.11 5-6
select overlay X BAR 3.9.5.1 3-29

planes 4.1.6 4-3 xaoord 3.9.5.1 3-29
send ESC 3.3.6 3-7 xhcoord 3.9.5.1 3-29
send nulls 5.3.9 5-5 XMIT 4.3.5 4-12
SHIFT 1.3.2 1-6 xxde1ta 3.9.5.6 3-32
sio 3.3.2 3-3 A.5 A-4,7

3.3.3 3-5 YBAR 3.9.5.2 3-30
SPACE 1.4 1-9 ~coord 3.9.5.2 3-30
special function xhcoord 3.9.5.2 3-30

keys 1.3.1 1-4
SRC 6.1 6-2 ZOOM 4.3.7 4-12
start-deg 4.2.3 4-6
stop bits 3.3.3 3-6
submodes 3.9.5 3-27

3.10.4 3-41
A.4 A-4,6

substitute 5.3.13 5-7
SYS 6.1 6-2

TAB 3.6.2.3 3-14
TEST 3.7.5.3 3-22
TEXT EDIT 2.4.5 2-8

6.2 6-3
transmit buffer 4.3.5 4-12

~xtension cable on the data communication equipment is permitted. An extension cable with a male
;onnector shall be provided with the data terminal equipment. The use of short cables (each less than •
lpproximately 50 feet or 15 meters) is recommended; however, longer cables are permissible, provided
that the resulting load capacitance (CL of Fig. 2.1), measured at the interface point and including the
;ignal terminator, does not exceed 2500 picofarads. (See section 2.4 and 6.5.)

- 3.1.1 When additional functions are provided in a separate unit inserted between the data ,
terminal equipment and the data communication equipment (See section 1.7), the female
connector, as indicated above shall be associated with the side of this unit which interfaces
with the data terminal equipment while the extension cable with the male connector shall be
provided on the side which interfaces with the data communication equipment.

Pin Number Circuit Description

I
1 AA Protective Ground

I 2 BA Transmitted Data
3 BB Received Data

I 4 CA Request to Send
5 CB Clear to Send ~ .. _. ------
6 CC Data Set Ready I

7 AB Signal Ground (Common Return) i

I 8 CF Received line Signal Detector
I 9 - (Reserved for Data Set Testing) I

10 - (Reserved for Data Set Testing) I
-

! II Unassigned (See section 3.2.3) I
12 SCF Sec. Rec'd. Line Sig. Detector I
13 I SCB Sec. Clear to Send I
14 SBA Secondary Transmitted Data
15 DB Transmission Signal Element Timing (DCE Source)

16 SBB Secondary Received Data
17 DD Receiver Signal Element Timing (DeE Source)
18 Unassigned
19 SCA Secondary Request to Send
20 CD Data Terminal Ready

--

21 CG Signal Quality Detector
22 CE Ring Indicator
23 CH/CI Data Signal Rate Selector (DTE/DeE Source)
24 DA Transmit Signal Element Timing (DTE Source)
25 Unassigned

Figure 3. t

Interface Connector Pin Assignments
•

