
DISK OPERATING SYSTEM
USER'S MANUAL

(INCLUDING ASSEMBLER
AND TEXT EDITOR)

CGC 7900 SERIES
COLOR GRAPHICS COMPUTERS

CHROMATICS

cae 1900 COLOR GRAPHICS COMPUTER SYSTEM

1900 DOS MANUAL
(with Assembler and Text Editor)

November, 1982

Copyright (C) 1982 by Chromatics, Inc.
2558 Mountain Industrial Boulevard

Tucker, Georgia 30084

Phone (404) 493-7000
TWX 810-766-8099

Document Number 070202
Revision A

PUBLICATION COMMENT FORM

Please use this sheet to give us feedback on the enclosed documentation.
Your comments on errors or omissions, suggested changes, format of
presentation, etc., will be helpful in preparing future manuals. Wherever
possible, refer to specific page numbers in your comments below. After
completing this form, mail to:

Chromatics, Inc.
2558 Mountain Industrial Boulevard
Tucker, GA 30084

Attn: R&D Department

Name: ______________________________ _

Company Name:

Date: __________ _

Name/Model Number of Product: __________________________ __

Title of Publication:

Date of Publication Release: Preliminary? ____ _

Page No. Comments

CONVENTIONS USED III THIS DOCUMEllT

1. Any keys which have labeled caps will be called by their full names,
capitalized and underlined. For example, the carriage return' key
will be denoted by:

RETURN

2. The modifier keys, CTRL, SHIFT, M1, and M2, must be held down while
striking the key they are ""t'O"modify. Note that these four keys do
not generate any characters on their own, but Simply modify the
character which is struck simultaneously. This process of holding
down a modifier key while striking another key will be denoted by the
modifier AND the key being underlined together. For example,

CTRL F

would indicate that the CTRL key should be held down while striking
the F key. If two or more:IDodifiers are needed Simultaneously, they
will all be underlined together:

CTRL SHIFT T

would mean that BOTH modifiers, ~ and ~, should be held down
while striking the T key.

3. Variable parameters will be enclosed in angle brackets, < >. Any
items enclosed in these brackets will be explained in full in the
text which immediately follows.

4. Optional parameters will be enclosed in SQuare brackets []. Any
items which may be repeated will be followed by an ellipsis (three
dots) •

Example of (3) and (4):

<X>, [<Y1>,<!2>, •••]

The parameter <X> is required. The parameters <Y1>, <Y2> , and so on,
are optional. Any number of these may be included. All three types
of parameters would be explained immediately beneath the example
which contained them.

5. Zeros will be slashed (0), alphabetic 0 will not be slashed.

Preface -- How to Use this Manual.

There are several ways to approach CGe DOS, depending on your needs:

If you wish to generate and save pictures, and have no interest in
programming, read Sections 1, 2, 3.1 through 3.2.15, and Appendix E.

If you are a programmer, read the entire manual, cover to cover. Skim
through Sections 1, 2, and 3; pay special attention to Section 4, and read
Section 5 thoroughly if you are unfamiliar with the MC68000 Assembler. Work
through the examples list~d in the Appendices until you understand what is
happening.

When you have become thoroughly acquainted with DOS, Sections 3 and 4 and
Appendices B, C, and D will continue to be valuable reference material.
Also, read Appendix A from time to time to keep the concepts discussed there
in mind.

Table of Contents

Section 1 -- Introduction to DOS

1.1 System Requirements
1.2 Introduction to DOS
1.3 Handling Floppy Disks

2.1 Entering DOS
2.2 DOS Command Line
2.3 Disk File Names
2.4 Disk Drive Numbers
2.5 Secondary File Names
2.6 File Name Patterns

3.1 General
3.2 DOS Transients

3.2.1 APPEND
3.2.2 BUFF
3.2.3 COMPRESS
3.2.4 COpy
3.2.5 DEBUG
3.2.6 DELETE
3.2.7 DIR
3.2.8 DRAW
3.2.9 DSKTST
3.2.10 DUPE
3.2.11 EXPLODE
3.2. 1 2 FETCH
3.2.13 FORMAT

Section 2 -- DOS OverYiev

Section 3 -- DOS transients

3.2.14 Initializing a New Diskette
3.2.15 IMPLODE
3.2.16 KILL
3.2.17 MOVEHEAD
3.2.18 PICTURE
3.2.19 REFRESH
3.2.21 STORE
3.2.22 SUMS
3.2.23 VERSION
3.2.24 XREF

1-1
1-2
1-3

2-1
2-3
2-5
2-7
2-9
2-10

3-1
3-2

3-2
3-3
3-4
3-6
3-10
3-11
3-12'
3-16
3-17
3-19
3-21
3-22
3-23
3-25
3-26
3-27
3-29
3-31
3-33
3-34
3-38
3-39
3-40

Table of Contents (cont.)

Sect:1oll lJ -- DOS Text Ed1.tor

4.1 Introduction to the Ed! tor
4.2 INLINE
4.3 Editor Commands

4.3.1 OPEN
4.3.2 GET
4.3.3 LIST
4.3.4 PRINT
4.3.5 INSERT
4.3.6 MODIFY
4.3.7 DELETE
4.3.8 FIND
4.3.9 SUBSTITUTE
4.3.10 PUT
4.3.11 CLOSE
4.3.12 PAGE
4.3.13 DRIVE
4.3".14 EXIT
4.3 • 15 ABORT

Sectioll 5 -- The 68000 Asseabler

5.1 Running the Assembler
5.2 Source File Format
5.3 Labels
5.4 Instructions
5.5 Operands
5.6 Comments
5.7 Pseudo-Instructions

5.7.1 ORG (Origin)
5.7.2 EQU (Equate)
5.7.3 SET
5.7.4 DC (Define Constant)
5.7.5 DS (Define Storage)
5.7.6 END
5.7.7 PAGE
5.7.8 LLEN
5.7.9 NOLST
5.7.10 LIST

5.8 Addressing Modes

5.8.1 Register Direct Mode
5.8.2 Address Register Indirect
5.8.3 Address Register Indirect with Postincrement
5.8.4 Address Register Indirect with Predecrement
5.8.5 Address Register Indirect with Displ~cement
5.8.6 Address Register Indirect with Index
5.8.7 Absolute Short
5.8.8 Absolute Long

4-1
4-3
4-5

4-6
4-7
4-8
4-9
4-10
4-12
4-13
4-14
4-15
4-17
4-18
4-19
4-20
4-21
4-22

5-2
5-5
5-6
5-7
5-8
5-9
5-10

5-10
5-11
5-12
5-13
5-15
5-16
5-16
5-17
5-17
5-17

5-18

5-18
5-19
5-19
5-20
5-21
5-22
5-23
5-23

Table of Contents (cont.)

5.8.9 PC with Displacement
5.8.10 PC with Index
5.8.11 Immediate

5.9 Assembler Errors

Appendix A -- P~ogramm1ng TechD1ques

A.1 Modules
A.2 The Linking Process
A.3 Module Construction

A.3.1 Boot Modules
A.3.2 Input/Output Modules

A.4 Argument Parsing
A.5 Mode Modul es

A.5.1 Example Mode Module

A.6 Plot Modules

A.6.1 Example PLOT Module

A.7 Escape and User Modules

A.7.1 Example ESCAPE code Module

A.8 Register Setup for Modules
A.9 Window Tables
A.10 Window Status and ESCAPE Code Status
A.11 Writing Transients

B.1 TERMEM Jump Tables
B.2 Plotting Functions
B.3 DOS Jump Tables

Appendix B -- Jump Tables

B.4 Inline Calling Sequences

Appendix C -- Meaory Allooat:1on

C.1 CMOS Memory Allocation
C.2 Low RAM Allocation
C.3 The User File Table

Appendix D -- Custaa Cursors and Character Sets

D.1 Custom Character Sets
D.2 Installing a New Cursor

5-24
5-25
5-26

5-21

A-2
A-4
A-5

A-6
A-7

A-9
A-11

A-12

A-13

A-15

A-16

A-17

A-18
A-19
A-22
A-23

B-1
B-10
B-16
B-21

C-1
C-3
C-5

D-1
D-5

Table of Contents (cont.)

Appendix E -- DOS Error Messages

cae· 7900 7900 DOS Manual Page 1-1

Section 1 -- Introduction to DOS

1.1 System Requirements

This manual applies to the current release of DOS, version 1.6,
released December, 1981. This release is similar to previous releases of
DOS, except that some new transients have been added. Transients released
with DOS 1.6 are not guaranteed to work with earlier releases of DOS.

To run DOS on a 7900, the system requires a disk controller and dual
floppy drives (option 1794002 or higher). A bard disk is very useful
al though not required. Note that a hardware change accompanied the
changeover from DOS 1.4 to 1.5. DOS 1.5 and 1.6 require a diff~rent disk
controller card. It you are upgrading from DOS 1.4 to the current
release, a new disk controller will be required, in addition to new PROMs
and transients.

Page 1-2 7900 DOS Manual cac 7900

1.2 Introduction to DOS

This is the manual for the Chromatics eGe 7900 Disk Operating System
(DOS), an optional feature of the 7900 series of color graphics computers.
The Disk Operating System uses two double-density flexible disk drives for
program and data storage. A fixed disk drive with 10 or 40 megabytes of
storage is also available. The DOS option consists of the~e parts:

Disk drives and controller

PROMs (firmware)

A diskette with system programs

This manual

The disk drives, controller, and PROMs are factory-installed, and
should require no attention by you (except that the fixed disk may require
special unpacking; instructions for this are attached to your unit if
applicable) •

The diskette contains programs which provide an interface between the
disk drives and your programs or data. Routines are provided to save data
on a disk, to retrieve data from a disk, and to manipulate the contents of
the disks. This diskette should be handled carefully while you are
learning to use DOS. You should make a copy of this diskette as soon as
possible. Instructions for copying a diskette are included in this manual
(see the FORMAT, COpy and DUPE commands in Section 3).

This manual begins by describing the commands and utility routines
available in DOS. In later sections, the Text Editor and MC68000 Resident
Assembler are discussed. These two programs allow you to create text
fil es and assembly language programs on the disk, and to generate
executabl e binary machine code for the 68000 processor.

Detailed descriptions of the eGC 7900 special features, such as the
color graphics plotting capability, are not provided here. Please refer
to your User's Manual for information on other aspects of the eGe 7900.

CGC 7900 7900 DOS Manual Page 1-3

1.3 Handling Floppy Disks

DOS stores information on the surface of disks, which are coated with
a magnetic material. - Flexible diskettes, or "floppy disks," are a very
reliable and convenient way to store data. A flexible disk will perform
well for many hours of use, if a few simple precautions are observed:

BARDLIllG - DO NOT touch the exposed surface of the diskette, which is
visible through a slot on either side of the diskette. DO NOT attempt to
remove the circular diskette from its square, dark jacket. Handle the
diskette carefully, and do not fold it.

LABELDlG - A diskette is provided with adhesive labels which should be
used to note the contents of the diskette. Write on these labels BEFORE
attaching the label to the diskette. If you must write on a label after
it has been attached, use a fel t-tip pen and press gently. A ball-point
pen will crease the disk and may cause permanent damage.

IISERTIIG - To insert a diskette into a drive, first remove the diskette
from its paper sleeve. Hold the diskette gently, with the vendor's label
UP, and the arrow on the label aiming toward the drive. Open the -drive
door by preSSing the rectangular button until the door snaps open. GENTLY
slide the diskette into the drive until it is completely inside the door
(it may seat with a soft "click"). Press the door shut. To remove the
diskette, press the rectangular button again.

STORAGE - When a diskette is not in use, it should be removed from the
drive and stored in its paper sleeve. Store the diskette away from dust,
away from extremely high or low temperatures, away from moist'ure, and AWAY
FROM MAGNETIC FIELDS. Protect the diskette from magnets, motors,
transformers, or anything else which COUld. create magnetism •.

OPERATION - When a disk drive is in use, the red light in the drive door
will light up. It is extremely important that nothing interfere with the
disk whil e this light is on. Whil e a disk is in use, removing the disk,
pressing RESET on the keyboard, or turning the power off, may damage the
data on a disk.

Page 1-4 7900 DOS Manual CGC 7900

The fixed disk is a sealed unit, located in the base of the 7900
chassis. It is not subject to many of the restrictions above, since it is
hidden away from normal view. But the warning about interrupting a disk
operation in progress is still valid: if you have any reason to believe
the system is accessing your fixed disk, DO NOT press RESET or otherwise
interrupt the process. If you give the system a comma:Iid'"to access ~he
fixed disk, be sure the command has been completed before turning the
system off or pressing~.

WRn'E-PBOTECTmll - A flexible diskette may be protected from accidental
destruction by uncovering 1ts write-protect notch. Some diskettes are
shipped with the notch covered, and some have it uncovered when you
receive them. In e1 ther case, the notch must be covered or DOS will not
be able to write on the disk. The write-protect notch is a small (114")
hole on the front edge of the disk.

CGC" 7900 7900 DOS Manual Page 2-1

Section 2 - DOS Overyiev

2. 1 Entering DOS

The Disk Operating System is entered by pressing the labeled key:

DOS

The DOS log-on message should immediately appear on the screen. If
this does not happen, it can be because the state of the system is not
what DOS expects to find (for example, if the screen is not connected as
the proper output device). You can optionally enter DOS by striking three
keys:

RESET CTRL BOOT DOS - -
This sequence initializes the entire system and will always cause

entry into DOS.

The DOS log-on message should now appear:

CGC Disk Operating System --- Version 1.6b
Copyright (c) 1981 by CHROMATICS, INC.

ENTER USER PASSWORD =
DOS will print its version number. This number should be noted in any

communications to Chromatics concerning DOS.

The DOS log-on message will request your User ~assword. At this
point, you may enter a 2-character password and press the RETURN key, or
you may simply press RETURN without entering a passWord. If you do not
enter a password, you will only have access to Public files which are not
assigned a password. If you do enter a password, you will have access to
all Public files, as well as any files whose password matches yours.

Legal characters for "a User Password are: digits ~-9, upper and lower
case alphabetiC characters, and these special characters:

• [] A _' { I } -

Entering any other characters may cause the system to ignore your
password and assign you a very strange password. This condition may
produce a situation in which existing files are not available. -

Page 2-2

NOTE:

7900 DOS Manual cae 7900

The User Password system in DOS is not designed to offer a high
level of protection. Its main purpose is to help organize files
into groups, so that users will see only the files they must work
with. This is especially important in the case of the hard disk,
where up to two hundred files may exist in the directory.

Atter completing the log-on procedure, DOS prints a green asterisk
(*) as its prompt character •. The asterisk means that DOS is ready to
accept a command.

Another way to enter DOS is by typing SHIFT DOS. This will skip the
password entry feature and assign the user to Public files.

CGC 1900 1900 DOS Manual Page 2-3

2.2 DOS Command Line

When you are entering commands to DOS, all of the text editing
functions labeled on the cursor keypad may be used to edit your input
line, except for up and down arrows, INS LJNE and DEL LINE. The left and
right arrow keys move the cursor around on the input line. The ~ key
moves the cursor to the beginning of the input line. The functions
labeled in blue are accessed by holding the .£!!ll:. modifier and pressing the
indicated key: these functions are Insert Character, Delete Character,
Clear Line, and Clear EOL. Pressing RECALL brings back a copy of previous
lines. RECALL and SHIFT RECALL may be used to retrieve .any line from the
"Recall Buffer." RECALL works back toward the oldest lines; SHIFT RECALL
wor ks forward toward the most recent lines. Once recalled, a previously
entered line may be edited with the other functions.

Regardless of where the cursor is on the input line, ALL characters
visible on the input line are accepted when the RETURN key is pressed.
DOS does nothing with your commands until you press RETURN. If you press
DELETE, BREAK, or CTRL C instead of RETURN, DOS ignores the line you
typed. -

(All of these functions are a part of the Inline Editor, used for
DOS, the MOnitor, and other 1900 programs. The Inline Editor is discussed
in more detail in the 1900 User t s Manual, and in Section 4 of· this
manual.)

Regardless of where the cursor is on the input line, ALL characters
visible on the input line are accepted when the RETURN key is pressed.
DOS does nothing with your commands until you press RETURN. If you press
DELETE, BREAK, or CTRL C instead of RETURN, DOS ignores the line you
typed. -

Be careful when typing in commands. DOS does not ignore excess spaces
in between words. Thus,

DIR • *12

is valid, but

DIR • *12

will NOT work!

DOS commands are described in detail in this manual. Most are simple
words or abbreviations, such as

DIR (followed by RETURN)

\ which lists the directory of a disk (the names of the files on that disk).

Page 2-4 7900 DOS Manual CGC 7900

You may enter several DOS commands on the same line, separating them
by a colon (:). For example, the following command would list the disk
directories from drives 1 and 2:

DIR/1 :DIR/2

(Do not type a space on either side of the colon.) You may type as
many commands as will fit on a single line of the screen. One line
contains up to 84 characters and a Carriage Return. If any command causes
an error, DOS will not process any following commands on that line.

cae 7900 7900 DOS Manual Page 2-5

2.3 Disk File Names

When you type a command to DOS, you are actually entering the name of
a disk file. DOS looks for the file, and if the file is found (and is
executable), it is loaded into memory and executed.

A fil e name may have several parts:

a) The primary name, which may be one to eight alphanumeric
characters plus the special characters . [] ... , { : } -

b) The secondary name, which is always three alphanumeric
characters. The secondary name is separated from the primary
name by a period. The secondary name is optional. If it is
omitted, DOS will assume a secondary name for the file (depending
on what the file name is to be used for).

c) A password, which must match the password assigned to the file.
The password is separated from'the name by a dollar Sign ($). If
a password is entered, it must precede the drive number. The
password is optional. If it is omitted, it is assumed to be the
password under which you logged onto DOS.

d) A drive number, identifying the disk drive on which the fil e
resides. The drive number is separated from the name by a slash
(I). The drive number is optional. If it is omitted, the file
is assumed to reside on the same drive which responded to the
last DOS command (the drive from which the last command was
loaded). Thus, the command COPY/2 11 13 would leave drive 2 as
the default name.

The four parts of a file name (primary. name, secondary name,
password, drive number) must occur in the order listed. If any of the
optional parts are omitted, the remaining parts must occur in the required

. order.

Page 2-6 7900 DOS Manual CGC 7900

Examples of' legal file names:

FILEname

STORY.SRC

PROGRAM/2

USRT29NE$PW

LISTING.OBJ/1

HardLuck.BUF$ED/3

Examples of improper file names:

-THISISTOOLONG Too many characters in the primary name -- only
the first eight characters would be recognized,.
so this is equivalent to THISISTO. It would,
however, still be accepted.

oops/A Illegal drive number.

NOWAYI.SYS Illegal character in primary name.

BADone.GO Secondary name too short.

Wrong/1.SRC Incorrect order.

CGC 7900 7900 DOS Manual Page 2-7

2.4 Disk Drive Numbers

The CGC 7900 supports up to four disk drives: two flexible disks and
two hard disks. Many disk commands require specifying the drive number of
the disk to which the command refers. The following numbers apply:

Drive 1: the left-hand flexible disk.

Drive 2: the right-hand flexible disk.

Drive 3: the hard disk.

Drive 4: additional hard disk (Remote Fixed Disk).

You may always specify the drive number if you wish. Anytime you do
not specify a drive number, DOS assumes you are still using the same drive
you used in a previous command.

If a drive number of e (zero) is entered, it implies that DOS should
search all drives to locate the requested file. The search 'begins with
drive 1. This only works for a DOS command, NOT for other files I "Thus,
the following command is legal:

DIR/t) • *
However, this command is not:

DIR FILE/t)

(If a "new file is being created, the drive number must be implicitly or
explicitly speCified, so a drive number of zero is not allowed.)

" When you enter DOS, 1mmediately after pressing the DOS key, the system
does not know which drive you want to use. The FIRST command you enter to
DOS acts as if you had specified a drive number of zero, so DOS will
search all drives in your system in an attempt to execute the command. If
this search succeeds, DOS now knows which drive you want to use, and it
will stay with that drive until you specify a different drive number.

On the other hand, if your first command to DOS fails (as it would if
you misspelled a command), DOS will display an error message. Using drive
e to specify a transient location will only pick up a real drive if no
errors occurred. Your next command to DOS will also cause the system to
search all drives for the command, assuming you did not give it a specific
drive number. This process continues until a command succeeds, at which
time DOS "remembers" that drive for future commands.

Page 2-8 7900 DOS Manual CGC 7900

The feature of "remembering" the current drive applies only to
commands. DOS only remembers where the last COMMAND came from, not the
last filename. If you type:

KILL/2 fllename/3

The KILL command is coming from drive 2, so DOS remembers drive 2 and
will search it for the next command (unless you specify a different drive
number) •

CGC 1900 7900 DOS Manual Page 2-9

2.5' Secondary File Names

The following secondary file names are recognized by DOS:

• SIS "System" file. These are executable by DOS, simply by typing
the fil e name as a DOS command. System fil es are not listed by
the DIR command unless specifically requested. They are called
"transients" since they are part of the set of DOS commands, but
do not reside in memory at all times. System fil es are listed
in the directory in YELLOW •

• KIL "Killed" file. These are files which have been removed from
active status by the KILL command. A.KIL file will be removed
by COMPRESS; it may be recovered before COMPRESS by using
RENAME. Killed fil es are listed in the directory in RED if
requested by the *.KIL or .* commands.

All of the file types below are listed in GREEN in the directory •

• SRC "Source" file. These files contain ASCII text, such as the
source code of an assembly program •

• BUF "Create Buffer" files. These files are created by the BUFF
command and recalled with DRAW. They contain commands used to
draw pictures •

• PIC "Picture" files. These files contain a dump of up to two
megabytes of image memory. They are created with PICTURE and
recalled with REFRESH •

• RLE "Run-Length Encoded" files. These files contain a compacted
version of the data from image memory. They are created with
IMPLODE and recalled with EXPLODE •

• ABS "Absolute" binary files. These files contain a dump of bytes
from selected areas of memory. They are created with STORE and
loaded with FETCH.

Page 2-10· 1900 DOS Manual CGC 1900

2.6 File Name Patterns

DOS allows a "pattern" to be used in place of a file name under many
conditions. A pattern permits a single command to affect several files at
once, or permits a command to affect any file meeting a set of criteria.
Depending on the command, using a pattern will ei tber affect the FIRST
file on a disk which matches the pattern, or ALL files which match.
Details are given in Section 3.2.

A pattern may consist of any combination of these items:

A primary name.

A secondary name (example: .SYS).

A wild card "." in either' the primary or secondary name.

A password.

A drive number.

The asterisk "." performs a special function. If the primary name is
an asterisk, it will match any file name. If. the secondary name is an
asterisk, it will dJatch any secondary name. If ei ther field CONTAINS an
asterisk (in addition to other characters), the asterisk will match any
single charac.ter in a file name. If the asterisk is in the last position
of a field (in addition to other characters), it will match any set of
zero or more characters.

If the primary name is blank, an asterisk is assumed to be inserted
in place of the blank. This means that the following two patterns are
equivalent:

·.SRC

.SRC

Either of these patterns would match any file whose secondary name is
.SRC (a text file).

If the sa co ndary name is bl ank, it will match any fil e EXCEPT a • SYS
or a .KIL file. These files are never matched except when specifically
asked for, by using a .SYS, .KIL, or .* pattern.

CGC 7900 7900 DOS Manual Page 2-11

Some examples of patterns:

A* Matches any fil e beginning with nAn except .SYS and .KIL
files.

A*.* Same as nA*n, but includes .SYS and .KIL files.

AB*D.SHC Matches files ABCD. SHC, ABFD.SHC, ABED.SHC, etc.

*.BUF Matches any • BUF fil e.

. Matches ANY file.

Patterns can be very convenient, but they should be used with
caution. Suppose a program created a set of scratch files, and named them
X1, X2, and so on. They could all be removed at once with the command

KILL X*

but this would also KILL any other files whose names began with the letter
X.

CGC·7900 7900 DOS Manual Page 3-1

Sect:lon 3 - DOS Transi.ents

3.1 General

Transients, or transient programs, are the files which make up the set
of commands recognized by DOS. By typing the name of a command, you tell
DOS to search the disk for the file with the same name. If the file is
found, it is loaded and executed, causing your command to be carried out.

This system of swapping commands in and out of memory as needed gives
DOS great flexibility. The entire DOS need never reside in memory at
once; only the current command is occupying space in memory. Further, it
is simple for you (or Chromatics) to add commands to the set of commands
DOS recognizes, by writing assembly language programs to carry out the
command. Transients are stored on the disk with a secondary name of
". SYS".

This section discusses the transients (or commands) supplied with
DOS. When typing in a command to DOS, the various parts of the command
line must be separated by delimiters. Valid delimiters are:

.ill£!

comma (,)

Certain control-characters and punctuation marks will also act as
delimiters, but they should not be used since it would make the command
line difficult to read.

If a command line contains several file names, delimiters must occur
between the names. Only a SINGLE delimiter should be used to separate
each pair of items on the command line; i. e., you should NOT type a comma
followed by a space. This would cause a "Syntax Error" message.

This is the general form of a command line:

<CMD> [args] [;options]

Where:

CMD is the name of the DOS tr ansient, or command.

args are the patterns or files used by the command.

;options are options for modifying the operation of the command.
Options are one or more letters long, and may be preceded
by a + or -. The tr ansients ASMB and XREF use an arrow C")
instead of the semicolon.

Page 3-2 7900 DOS Manual CGC 7900

3.2 DOS Transients

The following transients are those currently supported by Chromatics.

3.2.1 APPEND

The APPEND command is similar to DRAW, except that the <file>
specified by APPEND is added to the end of the Create Buffer, instead of
replacing whatever was previously in the Create Buffer.

Format:

APPEND <fil e> RETURN

By performing a DRAW followed by one or more APPENDs, several • BUF
files may be concatenated. Then the BUFF transient may be used to store
the entire series as a single file. DO NOT use APPEND until after you
have used DRAW.

Example:

DRAW Part1 (load part one of a picture)

APPEND Part2 (add the second part)

APPEND Part3 (and the third part)

BUFF ALLofit (store the whole thing)

See also 3.2.2, "BUFFn and 3.2.8, nDRAwn.

CGC·7900 7900 DOS Manual Page 3-3

3.2.2 BUFF

The BUFF command stores the contents of the Create Buffer into a disk
file. The secondary name .BUF is given to the file. If the file name
already exists on this disk, the old file is automatically KILLed. BUFF
will not allow the user to specify the secondary name.

Format:

BUFF <file> RETURN

Where:

<file> is the name to be given to the file being created by BUFF.

BUFFed files can be called back into the Create Buffer with the DRAW
transient.

Examples:

BUFF ANDWAX

BUFF/1 FUDD/2

Create a file called ANDWAX.

In this case the .BUF file is created on a drive
other than the drive where the BUFF command
resides.

When creating a picture to be stored as a .BUF file, the following hints
may be helpful:

1) Turn on CREATE before transmitting any other commands which are
necessary to set up the system for your picture. For example, if your
picture will be drawn in the Bitmap, your .BUF file should include the
"Overlay Off" and "Overlay Transparent" commands. Remember that the
best .BUF files can be drawn directly from DOS, requiring no setup by
the user.

2) Turn the cursor off at the start of your .BUF file. This makes a
picture redraw faster.

Page 3-4 - 7900 DOS Manual CGC 7900

3.2.3 COMPRESS

The COMPRESS transient disposes of all files whose secondary name is
.KIL (killed files). Delete-protected .KIL files are also wiped out. The
space on the disk formerly occupied by these files is now available for
use again. The disposed files are NOT recoverable. COMPRESS also
reclaims the space formerly occupied by deleted files (see DELETE).

Format:

COMPRESS [$<pw>] [/<d>] [;A] RETURN

Where:

<pw> is the two-character password of the fil es to be COMPRESSed.
If omitted, the password under which you logged onto DOS is
assumed.

<d> is the drive number containing the disk to be compressed. If
omitted, the disk which contains the transient is compressed.

;A The A-option. If given, ALL files will be compressed
regardless of passwords.

If a file is delete-protected, it will not be affected by COMPRESS
even if it has been KILLed.

It- is advisable to make a backup copy of important files, or of the
entire disk, before executing COMPRESS. If COMPRESS is interrupted by
pressing Reset, by a power failure, or by removing the diskette during
COMPRESS, all data on the disk may be lost.

COMPRESSing a hard disk (drive 3 or drive 4) may take several
minutes.

CGC'7900 7900 DOS Manual Page 3-5

Examples:

NOTE:

COMPRESS

COMPRESS/2

COMPRESS/ 1 /2

COMPRESS $AB

COMPRESS jA

Remove .KIL files.

Compress the disk in drive 2.

Compress the disk in drive 2, using the COMPRESS
transient from drive 1.

Remove .KIL files under password "AB".

Remove • KIL fil es under ALL passwor ds •

Sin-ce the directory may not match the current status of the disk
fil e space at any time during the COMPRESSion, the program MUST NOT
be interrupted. If the power goes out while the COMPRESS is going
on, or the user presses RESET, recovering the data on the disk may
be impossible. -----

Page 3-6 7900 DOS Manual CGC 7900

3.2.4 COpy

COpy produces a copy of a fil e, on the original disk or on another
disk. The name of the copy may be the same as the original, or different.
If a file is copied to the same disk with the same name, the original file
is raLLed.

If a pattern is used instead of a file name, all files matching the
pattern are copied. This provides an easy way to transfer only .SYS files
to a new disk, for example.

Format:

COPY <source> <dest> RETURN

Where:

<source> and <dest> are each file names, or file name patterns. Wild
cards are allowed.

Example:
COPY/1 HERE.BUF/1 /3

NOTES:

If <dest> is located on the same drive as <source>, a wild card is
not allowed in the secondary name.

If the secondary names and the drive numbers of <source> and <dest>
are identical, only ONE file is copied regardless of any wild cards
in the fil e names. This rule, and the one above, are required to
prevent DOS from copying a copy (of a copy of a copy •••).

COpy does not recognize • KIL or • SYS files unless specifically
requested (see examples).

The new file p~oduced by COpy will have the same password as the old
file, unless the command line specifically changes the password (by
providing a password on the destination name).

The new file produced by COpy will always have the same status as the
old file (execute-only, delete-protected, etc.). See DIR for a discussion
of status attributes.

CGC·7900 7900 DOS Manual Page 3-7

Examples:

COpy AX BX Make a copy of AX; call it BX, and put it on the
same disk with AX.

COpy AX/1 12 Copy AX from drive 1 to drive 2.

COpy AXl1 BX/2 Copy AX from drive 1 to drive 2, and call the copy
BX.

COpy T./1 /2 Copy all files beginning with the letter T, from
drive 1 to drive 2 (except .SYS and .KIL files).

COpy ·.SYS/1 /2 Copy all .SYS files from drive 1 to drive 2.

COpy AZ BZ$aa Make a copy of AZ; call it BZ, and give it password
"aa" •

COpy AZ$aa $bb Copy file AZ from password "aa" to password "bb".

COpy .SRC .BUF Copy all text files into .BUF files. Use your
judgement when doing this kind of copy.

The source and destination disks must be formatted on a CGC 79(fJ0
before you try to COpy anything onto it (not tr'ue for DUPE). Formatting
prepares a disk to receive data. (See 3.2.13, "FORMAT," for details.)

Page 3-8 7900 DOS Manual cac 7900

If only the drive numbers are specified, and no file name pattern is
given, a special full-disk COpy occurs. This copies all data from the
source disk to the destination disk, including the disk name and the
entire directory. This kind of COPY is normally used to produce a backup
copy> of an entire disk. A FULL-DISK COpy DESTROYS ALL DATA ON THE
DESTINATION DISK.

Example:

COpy 11 12 Copy the entire disk in drive
onto the disk in drive 2.

A SPACE must occur between the COpy command and the source drive
number.---rf drive 1 contains the COpy transient, the command above is
equivalent to:

COPY/1 11 12

In this case, the drive number of the disk containing the COPY
transient is specified. The following command would NOT be legal:

COPY/1 12

This command specifies th~ . transient drive and the source drive, but
does not specify the destination drive. The result is an "Argument Error"
message.

When a diskette (floppy disk) is FORMATted, it is defined to be
ei ther single-density or double-density. A single-density diskette can
hold up to 256,256 bytes and a double-density diskette can hold up to
509,184 bytes •. The 7900 normally uses only double-density diskettes.

If you attempt a full-disk COpy between two disks which have
different denSities, a warning will be displayed:

Density mismatch. Continue (YIN) ?

Press the "Y" key if you want to proceed. If you asked DOS to copy
from a single-density diskette to a double-denSity diskette, the "denSity
mismatch" will not be a problem, since all the data on a single-density
diskette can easily fit onto a double-density diskette. If, however, you
asked DOS to copy from a double-density diskette onto a single-density
diskette, you will get an error after the disk has been halfWay copied.

CGe 7900 7900 DOS Manual Page 3-9

A similar situation arises if you attempt a full-disk COpy between a
diskette and the hard disk. The capacity of a diskette is approximately
256K bytes or 512K bytes, depending on the density. The hard disk
capacity may be either 1~M or 4~M bytes. You will see this warning:

Capacity mismatch. Continue (YIN) ?

If you press the nyn key, copying will proceed. BEWARE: If you asked
DOS to copy a diskette to the hard disk, EVERYTHING on the diskette will
be copied and no errors will be displayed. However, the hard disk
directory will now be a copy of the diskette directory, and will reflect a
disk size of 512K bytes instead of 1 ~ or 4~ Mbytes. inaccessable until
the hard disk is reformatted.

If you asked DOS to copy the hard disk to a diskette, an error will
occur as DOS attempts to write past the end of the diskette. However,
individual files can be copied back and forth between floppy disks and
hard disks.

Page 3-10 7900 DOS Manual CGC 7900

3.2.5 DEBUG

DEBUG loads a • SIS file into memory, just as DOS would load a
transient for execution. After loading the file, DEBUG jumps to the
MOnitor. If the file normally expects any arguments to be present on the
command line, they may be entered as <args>.

Format:

DEBUG <filename> [<args>] RETURN

Where:

<filename> is the name of a .SYS file to be loaded into memory.

<args> are the arguments expected by the • SYS file.

NOTE:

DEBUG will not load an execute-onlY file.

To avoid having to use an offset when loading the .SIS file, DEBUG
relocates itself to the top of the DOS Transient Program Area before
loading <filename>. However, the TPA must be large enough to accomodate
both DEBUG and your file. (DEBUG occupies'about 512 bytes.) If necessary,
the "Thaw" command can be used to change the DOS memory allocation. See
the 7900 User's Manual for details.

Example:

DEBUG Process

DEBUG Gnats 6 12

In the second example, 6 and 12 are arguments to be passed to the
program Gnats.

Since the current Monitor (version 1.3) reloads the stack pointer, it
will not be possible for your program to execute a normal return to DOS.
After using DEBUG to load your program, you may use the Monitor to trace
program execution up until the point where your program attempts to return
to DOS.

cac 7900 7900 DOS Manual Page 3-11

3.2.6 DELETE

DELETE removes a fil e from the disk directory. This process
immediately frees up the disk space formerly occupied by the file. THE
CONTENTS OF THE FILE ARE NOT RECOVERABLE.

Format:

DELETE <fil e> RETURN

Where:

<file> is the name of the file to be deleted.

The DELETE command is different from KILL. KILL simply renames a file
with a .KIL secondary name, thus the file still exists. After a file has
been deleted, however, the disk directory no longer shows the filets
existance.

When DOS creates a new file, it always takes the largest currently
available space on the disk. This means that it is not useful to DELETE a
small file, since the small space formerly occupied by that file would
never be ·used. DELETE is primarily useful for times when you need to
remove a large file (one occupying over 25% of the disk, for example).
DELETE allows you to reclaim the disk space without going through the
(time-co nsuming) process of KILLing the fil e and then COMPRESSing the
disk.

A pattern may be used in place of a file name. All files matching the
pattern will be DELETEd.

Example:

DELETE OLDdata

The space formerly occupied by deleted files is reclaimed when the
disk is COMPRESSed. If you DELETE several small files (going against the
advice above), you will have to COMPRESS the disk to make that space
available for use again.

If a file is delete-protected, it cannot be deleted.

Page 3-12· 7900 DOS Manual CGC 7900

3.2.7 DIR

The DIR (Directory) command lists the files in the directory of a
disk. Several options can be specified to tell the DIR command which
fil es you wish to see.

Format:

DIR [<pattern>] [;<options>] RETURN

Where:

<pattern> is a file name, or a pattern which may contain wild
cards.

<options> are as follows:

P List Public Files only, not the files under your
password (if you logged in with no password, this is
equivalent to listing the normal directory).

L Give Long version of the directory, including the disk
name, address of next available space on the disk,
address and length of each file, and ftattribute ft flags
pertaining to each file (defaul t case).

S Give Short version of the directory, with file names
only. LONG version is default.

A List files stored under ALL passwords.

Typing DIR by itself will give you a list of most files on the disk
whose password matches yours. Files with ei ther a • SYS or a .KIL
secondary name are not listed when you type DIR.

If <pattern> is included, only files matching. the pattern are listed.
Some examples of using a pattern with DIR are shown on the following
pages.

If you want to examine the fil es of another user, you may enter that
user's password as part of the pattern. It should be separated from the
rest of the pattern by a dollar sign ($).

You may use the DIR tranSient, residing on one disk, to examine the
files of another disk. This is normally done only if the second disk does
not contain the DIR transient. It is accomplished by specifying the drive
number of the disk whose directory is to be listed. This number is
preceded by a slash (/).

Examples for DIR are listed on the next page.

CGC· 7900 7900 DOS Manual Page 3-13

In the examples below, and on the following pages, the RETURN key has
been omitted, and a space has been used as a delimiter, so that the
example will closely resemble what you will see on the 7900 screen.

COMMAND

DIR

DIR • *

DIR .SYS

DIB *. SYS

DIR BR*

DIR T*N

DIR $XY

DIR • *$XY

DIR/2

DIR/1 /2

DIR/1 .KIL/2

DIR jP

DIR • *jP

DIR • *;L

DIR/3 • *;LP

DIR ;A

DIR • *;A

ACTION

List all except .SYS and .KIL files.

List ALL files (including .SYS and .KIL).

List all .SYS files.

List all .SYS files (same as above).

List all files whose names begin with the letters
BR. Possible matches would be BR, BREAK, BROWN,
etc.

List all files whose names are. three characters
long, begin with T, and end with N (TEN, TON, etc.)

List files under password "XY".

List all files under password "XY".

List files on drive 2.

List files on drive 2, using the DIR transient
from drive 1.

List all killed files on drive 2, using the DIR
transient from drive 1.

List public files.

List all public files.

List all files, with details.

List all public files on drive 3, with details.

List files under all passwords (except .SYS and
• KIL files) •

List fil es under all passwor ds , including • SYS and
.KIL files.

Page 3-14

NOTE:

7900 DOS Manual cac 7900

A SPACE must be present after the command DIR. No space is used
betWeen a pattern (if any) and the semicolon. This is illustrated
in the examples above.

The disk directory is displayed in this form:

DISKNAME

Filename
Prefix Sfx

Free Address: $nnnn

Status File File Addr ess Length

Sample12.SRC w....... $4000 $200

Free Length: $xxxxx

File Origin Last Access
Date Time Date Time

The disk is named "DISKNAME." The first free byte on the disk is byte
number $nnnn, and the length of the free space located at that byte is
$xxxxx bytes. (All numbers prefixed . by the dollar sign are in
hexadecimal, base 16.)

One file is listed in this directory. It is write-protected. It is
named Sample12, and has • SRC as a secondary name. The file begins at byte
$4000 and occupies $200 bytes of the disk.

The "Status" column of a directory may show any of the following
character s :

w The file is write-protected.

d The file is DELETE-protected (but it can be KILLed and
destroyed by COMPRESS).

e The fil e is execute-only. Transients marked as such cannot
be loaded by DEBUG, FETCH or EDIT.

o The file is odd length. A file will only occupy exactly the
number of bytes it requires, unless it contains an odd number
of bytes. In this case, a single extra byte of storage is
used by DOS to cause the fil e to occupy an even number of
bytes. This excess byte is transparent to the user when
using DOS firmware subroutines such as OPEN , RWBYTE, etc.
Note the efficiency of this scheme, in comparison with other
disk operating'systems which use blocks of 128 or 256 bytes,
regardless of the actual file length.

k The file has been KILLed.

CGC·7900 7900 DOS Manual Page 3-15

It your system contains the optional Real-Time Clock, DOS will also
display time and date information in the directory. The last columns of
the directory will show when a file was created, and when it was last
accessed. If the system has no Real-Time Clock, these spaces will be left
blank.

The "Free Length" entry in the directory always shows the length of
the largest free space available on the disk. If this number approaches
zero, the disk is getting full and should be COMPRESSed. See section
3.2.3, "COMPRESS" for more details.

Page 3-16 7900 DOS Manual CGC 7900

3.2.8 DRAW

DRAW takes a file previously created by BUFF and loads it into the
Create Buffer. This transient always assumes that the file being
referenced has the secondary name of .BUF.

Format:

DRAW <fil e> RETURN

Where:

<file> is a .BUF file.

After using the DRAW command, pressing the REDRAW key will cause the
picture in the Create Buffer to be redrawn. Pressing XMIT will cause the
Create Buffer contents to be sent out to Logical Output-rrevice 1, normally
the RS-232 serial port.

Examples:

NOTE:

DRAW POKER The file POKER.BUF is loaded into
the Create Buffer.

DRAW/3 Flies/1 The DRAW transient from drive 3 is
invoked to' call up the fil e Flies. BUF
from drive 1.

For best resul ts, press the TERMINAL key (leaving DOS and entering
the Terminal Emulator) before pressing REDRAW. If you do not press
TERMINAL before REDRAW, you will find that you are still in DOS
after your picture is redrawn, and anything you type may obliterate
your picture. To re-enter DOS after the picture finishes redrawing,
press SOFT BOOT and DOS. This will leave any picture in the Bitmap
intact. -

If <file> was created on a CGC 7900 containing a different number of
image memory planes, the picture you generate may not look the same as the
original picture.

cae 7900 7900 DOS Manual Page 3-17

3.2.9 DSKTST

DSKTST is a diagnostic routine which evaluates a disk. This
evaluation gives an indication of disk failures or potential problem
areas. This test can be run on any of the four drives currently supported
by DOS.

Format:

DSKTST I<n> [;options] RETURN

Where:

<n> is the number of the disk drive that is to be evaluated.

joptions are described below.

DSKTST can test for two types of errors:

Hard errors These are caused by some hardware failure in the- disk
controller, the disk drive, or the disk itself.
Errors such as "SERDES hardware failure," "Block not
found," or "uncorrectable data found during a read"
are examples of hard error s.

Verify errors Verify errors are caused by discrepancies found
during the comparision of the write data with the read
data. These errors are generated from sources such as
differences in the - comparison of the write data and
the read data, or a hardware failure -in the comparison
buffer. -

Option may be included in the [joptions] field, separated from the
rest of the command by a semicolon. Valid options are:

jR Read only test (defaul t).

jW Verify test (read after write).

;Y Proceed without pausing.

Page 3-18 7900 DOS Manual CGC 7900

With the R option active, the user will see this message:

DISK(ETTE) DIAGNOSTIC - READ TEST:
Test drive #<n> (YIN)?

This test does not destroy the contents of the specified driv'e, but
checks for hard error s only.

If the W option is selected, the first line will read:

DISK(ETTE) DIAGNOSTIC - WRITE TEST:

THIS TEST DESTROYS THE CONTENTS OF THE SPECIFIED DRIVE. It checks for
verify errors as well as hard errors.

Option 'Y' allows the capability to evaluate the specified disk
without prompting the user for permission to do so. If option 'I' is
used, evaluation of the specified disk will proceed with no questions
asked! Use option 'Y' with caution.

During the evaluation, the console screen will appear as follows:

Maximum byte address of this drive : $<num>

Pass number : $<num> Byte address : $<num> Status: ?

This display gives the current satatus of the disk test. The pass
number is equal to the number of times that this test has completed a run.
The byte address always shows the current location of the R/W head during
the test. The next part of the display give an indication of the current
status of the disk under test. The status can have two states: passing
or failure.

Disk failures are displayed in RED. Potential hard errors are given
four chances to correct themselves before the status is displayed as
failure. This information is shown in the following message:

Retry number : $<num> byte address: $<num>

Soft errors are reported as comparison errors as soon as they occur. The
<num> indeca ted how many bytes did not compare in the buffer. The disk
address of where this data is located is also shown. This information is
shown in the following message:

$<num> Comparison errors occurred at byte address : $<num>

eGe 7900 7900 DOS Manual Page 3-19

3.2.10 DUPE

DUPE is another method of copying disks. The source can be a eGe 7900
disk or a disk from another system. The source must, however, be an IBM
compatible single or double density disk.

Format:

DUPE /<source> /<dest> [;options] RETURN

Where:

<source> is the number of the disk drive for the source disk.

<dest> is the number of the disk drive for the desUnation disk.

;opt1ons are described below.

DUPE formats the destination disk according the the denSity of the
source disk and then copies the source disk. The format interleCl-ve is
user definable. Since DUPE requires an intermediate RAM buffer,
duplication speed may be enhanced by enlarging "DOSbuffZ" (7FEE is a good
number) with ~ (see the eGe 7900 Operator's Manual).

Options may be included in the [joptions] field, separated from the
rest of the command by a semicolon. Available options are:

;D Format for a DOS disk (default).

iI Format for an Idris disk.

;F<II> Special interleave code. I is a decimal number (1 or 2
digits) •

;R Repeat duplication with pause between duplications.

;Y Proceed with duplication without pausing.

Page 3-20 7900 DOS Manual CGC 7900

With the D option active, the user will see ~ the message:

DOS DUPLICATION:
format interleave code = $<num>
Copy from drive I<source> to drive I<destina tion) (YIN)?

A DOS duplication takes approximately two minutes.

If the desired option is I, the firs.t line will read:

IDRIS DUPLICATION:

An Idris duplication takes approximately twelve minutes. This is due to
the incompatibility of the DOS and Idris interleave codes.

Should the user choose the F option, the first line will read:

MISCELLANEOUS DUPLICATION:

Interleave factors greater than half the number of sectors per track are
illegal. An illegal factor will cause a DOS error to occur.

Option 'R' runs DUPE in a mass production mode. The initial message
display will depend on which of the above options was entered in the
option field along with the 'R' option. Once the souce disk has been
duplicated once, the destination disk is the only disk that needs to be
moved. This mode can be termina ted by typing N when the prompt appears.
After the first duplication, subsequent prompts will be merely "(YIN)?"
without the other text.

The format interleave codes are displayed in hexadecimal for
programming convenience.

cae 7900 7900 DOS Manual Page 3-21

3.2.11 EXPLODE

EXPLODE is the oPPOsite of IMPLODE. The data produced by IMPLODE will
be expanded back into its original form and displayed in Bitmap memory.
The Color Lookup Table will be restored to the colors it had at the time
the picture was stored by IMPLODE. See the description of IMPLODE in
section 3.2.15 for details.

Format:

EXPLODE <fil e> RETURN

Where:

<file> is the name of a .RLE file to be displayed in Bitmap memory.

EXPLODE, like REFRESH, allows the user to watch the file being sent
to the Bitmap. DOS errors will still be visible.

If <file> was created on a cac 7900 containing a different number of
Bitmap memory planes, the image produced by EXPLODE may not look the same
as the original image.

Example:

EXPLODE Dynamite

Page 3-22 7900 DOS Manual CGC 7900

3.2.12 FETCH

FETCH is the opposite of STORE. It may be used to retrieve bytes
saved by the STORE tranSient, or to load a • SYS or .OBJ file into memory.

Format:

FETCH <file> [<addr>] [+/-<offset>] RETURN

Where:

NOTE:

<file> is the name of the file to be loaded into memory. If no
filetype is specified, .OBJ is used.

<addr> is the address where the data from <file> is to be loaded.
<addr> is required if the file is NOT a .SYS or .OBJ file.

<offse t> is a displacement, to be added to the normal load address
of <file>. <offset> is required for a .SYS or .OBJ file,
even if the displacement is zero.

FETCH will not load an execute-onlY file.

If the file read in by FETCH happens to over-write important areas of
system memory, the system may hang.

Examples:

FETCH PGM.SYS/2+2900 Load the file PGM from drive 2,
at memory addresses 2900 (hex)
higher than it occupied when
it was STOREd.

FETCH BYTES.ABS 1F000 Load the file BYTES into memory
beginning at address 1F000 (hex).

CGe 7900 7900 DOS Manual Page 3-23

3.2.13 FORMAT

FORMAT initializes a disk, preparing it for data. A new disk must be
formatted before it oan be used. Formatting destroys all data on a disk.
After a disk has been formatted, it contains a blank directory and no
files. The blank directory shows only the disk's name, its Size, and
allows DOS to determine the disk's density (single or double).

Format:

FORMAT [<name>] I<n> [j<opt>] RETURN

Where:

<name> is the name given to the disk being formatted. If omitted,
the current revision level of DOS is used to form the disk
name.

<n> is the number of the disk drive containing the disk to be
formatted. <n> is required.

<opt> is one or more of the following options:

;D double density

is single density

jY "Yes," proceed with formatting.

If <name> is specified, the disk is given this name.· <name> may be
one to eight alphanumeric oharaoters. If <name> is not specified, the
·disk is named "DOSRevXX" where XX is the version of DOS which initialized
the disk. A disk formatted by DOS 1.6 would be named "DOSRev16".

FORMAT prints the message:

Format drive n. Continue (YIN) ?

where n is the drive number FORMAT will initialize. You are given this
chanoe to abort the process. Press the "Y" key to continue, or any other
key to abort. You may also insert a different diskette in the drive
before pressing "Y".

Page 3-24 7900 DOS Manual CGC 7900

When DOS begins formatting the disk, it prints:

Formatting drive n.

If successful, control returns to DOS with no further messages. If an
error occurs, such as a bad block detected on the diskette, error messages
are printed and the FORMAT should be tried again. If errors continue, the
diskette should be discarded.

The default format for diskettes is double density. If desired, a
single density diskette may be formatted using the "S" option. A diskette
created. for single density may be used on any CGC 7900 system.

Option "Y" prevents the system from asking the "Continue?" question
above. If option "Y" is used, the disk or diskette will be immediately
formatted with no questions asked. However, the "Formatting drive n"
message will still be printed. Use option "Y" with caution.

CGe· 7900 7900 DOS Manual Page 3-25

3.2.14 Initializing a New Diskette

Formatting prepares a disk for data, but does not store anything on
it. A freshly formatted disk has a blank directory. Here is a sample
procedure which might be used to format a brand new diskette:

NOTE:

1) Load a disk containing the FORMAT command, and other
transients, into drive 1. Load a blank disk into drive 2.

2) Enter the following:

FORMAT/1 NewDisk/2

and press RETURN. The FORMAT transient responds:

Format drive 2. Continue (Y/N) ?

3) Press the nyn key. The formatting proceeds. When complete, and
no error messages have been printed, you can assume the new disk
is now formatted properly. It has the name nNewDiskn. Now you
may wish to copy the DOS transients onto this disk, so that it
will be useable without referring to other disks. Enter:

COPY/1 *.SYS/1 /2

and press RETURN. All system transients (.SYS files) will be
copied to the new disk.

If everything on the source disk is to be copied over, DUPE is an
easier way to do this. See section 3.2.10.

Page 3-26· 7900 DOS Manual CGe 7900

3.2.15 IMPLODE

IMPLODE stores an image from Bitmap memory, similar to PICTURE.
However, IMPLODE uses a data compression technique which can significantly
reduce the amount of storage a picture requires. Like PICTURE, IMPLODE
also stores the Color Lookup Table. The file produced by IMPLODE has a
.RLE secondary name.

Format:

IMPLODE <file> [j<n>] RETURN

Where:

<file> is the name of a file to be created by the IMPLODE command.
If a file by that name already exists, the old file is
KILLed.

<n> is a hexadecimal number (see below).

The advantage of IMPLODE over PICTURE depends on the complexity of
the image, and in extreme cases, IMPLODE can actually use more disk space
than PICTURE. IMPLODE will display the number of bytes it stored, and
will also display the number of bytes PICTURE would have used. You can
then decide whether to try PICTURE instead.

<Ii> is a hexadecimal number which tells IMPLODE which planes to
store. It acts exactly like the optional <n> argument in the PICTURE
command. See section 3.2.18 for a description of PICTURE.

Examples:

IMPLODE Baseball

IMPLODE CRT;7

CGC·7900 7900 DOS Manual Page 3-27

3.2.16 KILL

The KILL transient changes a file's,secondary name to .KIL (except if
the file is a • SYS file, which cannot be killed by KILL).

Format:

KILL <fil ename> RETURN

Where:

<filename> is the file to be KILLed.

KILL is used to remove a file from "active" status, and mark it for
eventual destruction with COMPRESS (see below). After a file has been
killed, it is still recoverable, but is not recognized unless specifically
requested. The DIB command will not display killed files unless the • KIL
or • * pattern is included. Most programs will ignore killed files.

Files with the .SYS extension may be killed using the RENAME command,
to change their secondary name to .KIL (this should only be done with
great care).

After a file has been killed, it is still recoverable until the disk
is compressed (see 3.2.3, "COMPRESS"). A .KIL file may be recovered using
the RENAME command, to change the secondary name to something other than
.KIL (.BUF, .SRC, etc.). After a COMPRESS, the file is NOT recoverable.

If a pattern is used instead of a filename, ALL files matching the
pattern are KILLed. Wild cards (*) may be included in the pattern.

Page 3-28· 1900 DOS Manual CGC 1900

Examples:

KILL ANORC Kill the file named ANORC.

KILL DATA/2 Kill DATA on drive 2.

KILL DATA$XY/2 Kill DATA on drive 2, passworded "XI".

KILL X* Kill any file beginning with "X1I.

KILL TEST Kill any file with primary name TEST.

KILL .SRC Kill any file with secondary name .SRC (be
careful I).

CGC' 7900 7900 DOS Manual Page 3-29

3.2.17 MOVEHEAD

MOVEHEAD positions the R/W head of a disk drive to any· valid logical
block address (lba). The lba is the contiguous hexadecimal address of a
sector on a disk. The first lba is zero.

Format:

MOVEHEAD [/<n>] [joptions] RETURN

Where:

<n> is the number of the disk to be positioned. The defaul t
value is the drive number specified with the transient
name.

joptions are described below.

The primary purpose of MOVEHEAD is to prepare a CGC 7900, equipped
with a fixed disk drive, for shipment. Two different configurations
currently exist for shipping these kinds of units:

1) CGC 7900 with DOS (option 7940-01) and at least one fixed disk
drive.

2) CGC 7900 with Idris (option 7965-01).

MOVEHEAD performs this operation by sending the head to the innermost
lba on the media. In this manner, should the head bounce on the disk
during shipment, damage will be kept to a minimum.

Options may be included in the [joptions] field. Allowed options are:

jD Positions R/W head to the innermost lba for DOS (default).

jI Positions head to the outermost lba for Idris.

jA<#> Positions head to lba <I>. This is a hexadecimal number (1-8
digits) •

Page 3-30· 7900 DOS Manual CGC 7900

With the D option active, the following message will be displayed:

HEAD PLACEMENT FOR DOS:
R/W head moved to lba = $<num> on drive I<n>

If t~e I option is selected, the first line will read:

HEAD PLACEMENT FOR IDRIS:

Finally, if the A option is active, the first line will be omitted. If
the lba following option A is omitted, a defaul t value of $0 will be
selected.

WAIUIIllG:

The protection that this transient offers assumes that the locking
mechanisms will be used during shipment. With these mechanisms
deactivated, positioning the R/W head will not do any good.

CGe·7900 7900 DOS Manual Page 3-31

3.2.18 PICTURE

PICTURE stores an image from Bitmap memory into a disk file. This may
require up to two megabytes of storage, depending on the number of Image
Memory planes installed in your system. The file oreated by PICTURE has a
.PIC secondary name.

Format:

PICTURE <file> [;<n>] RETURN

Where:

<file> is the name of a file to be created by PICTURE. If a file
with that name already exists, the old file is KILLed.

<n> is a hex number (see below).

PICTURE also stores the contents of the Color Lookup Table so the
ourrent oolors on the Bitmap soreen can be reoreated later.

Example:

NOTE:

PICTURE mrs

If the disk beoomes full while PICTURE is storing data, an error
ooours and no data is saved on the disk.

Page 3-32 7900 DOS Manual eGe 7900

The optional argument <n> allows you to specify which planes of
Bitmap memory will be stored. You can store the planes which are
applicable to your picture, and save disk space by not storing unneeded
planes. <n> is a hexadecimal number between Sand FFFF. Each bit in <n>
which is SET corresponds to a plane which will be stored. The least
significant bit of <n> corresponds to plane S, the most significant bit to
plane 15. If you enter more than four hex digits, only the last four are
used.

Example:

PICTURE FRAME;87

The hex number 87 has bits S, 1, 2, and 7 set. This command stores
the four planes which are normally installed in a four-plane system. If
your system contains only four planes, this example is equivalent to using
PICTURE without the optional <n>.

NOTE:

Each plane stored by PICTURE occupies 128K bytes of a disk, or
$2S000 hex bytes. The "Free Length" entry in the directory must be
enough to accommodate this length (plus 1e24 bytes for the Color
Lookup Table), or PICTURE will generate an error message.

Example:

PICTURE BOOK;7

This example stores only planes S, 1, and 2, a total of 385K bytes.
If a picture was drawn on a four-plane system and the blink plane was not
in use, this command woul,d store just the information necessary to
reproduce the picture. Now this file would fit on a floppy diskette, but
if four planes had been stored, it would not fit.

For most applications, BUFF, DRAW and APPEND are much more efficient
methods of storing images. See section 3.2.15, "IMPLODE" and 3.2.11,
"EXPLODE. "

CGC 7900 7900 DOS Manual Page 3-33

3.2.19 REFRESH

REFRESH is the oPPOsite of PICTURE. REFRESH brings in up to two
megabytes of data from the disk and displays them on the screen. The
Color Lookup Table is also loaded by REFRESH. See the description of
PICTURE for details.

Format:

REFRESH <fil e> RETURN

Where:

<file> is the name of a • PIC file to be brought in from the disk,
and displayed in image memory.

REFRESH modifies the overlay present/future visibility attributes
to allow the user to see the • PIC file being transmitted to the Bi-tmap.
DOS errors will still be visible.

If the • PIC file specified in the REFRESH command was created on a
CGC 7900 containing a different number of Image Memory planes, the image
produced by REFRESH may not look exactly like the original image stored
by PICTURE.

Example:

REFRESH Yourself

Page 3-34· 7900 DOS Manual CGC 7900

3.2.20 RENAME

RENAME alters a file's name. The primary name, secondary name, or
both, may be al tered in the RENAME process. <file2> must not specify a
drive number, since the fil~ itself does not move from the disk where it
currently resides. If <file2> specifies a drive number, that number is
ignored.

Format:

RENAME <file1> [<file2>J [;<opts>J RETURN

Where:

<file1> is the name of an existing file.'

<file2> is the new ,name to be given to the file.

<opts> are one of the following options:

W Write-protect
-w Write-enable

D Delete-protect
-D Delete-enable

E Execute-only

RENAME may also be used to change a file's attributes, such as
write-protection (see below). If you want to change a file's attributes
and leave its name the same, you may omit the <file2> name. It is NOT
legal to omit both <file2> and <opts>. At least one of these must be
present.

RENAME is not allowed to change a file's password. COPY should be
used for this purpose.

If <file1> contains wild cards, any files matching the pattern are
renamed. If <file2> contains wild cards, characters are pulled from the
name of <file1> to substitute for ·'s in <file2>.

If <file1> specifies only a primary name, all files with that name
(regar.dless of their secondary name) are renamed. Likewise, if <file1 >
specifies only a secondary name, all files with that name are renamed
(regardless of their primary name). This can resul t in more than one
file having exactly the same name. If this occurs, you can rename the
files again (giving them different names) by specifying the primary AND
secondary name of the file to be renamed. If <file1> completely
specifies a file name, RENAME will only act on one file.

CGC·7900 7900 DOS Manual Page 3-35

RENAME will not affect .SYS or .KIL files unless you specify a
se co ndary fil ename of • SYS, • KIL, or • * in (fil e 1> • REN AME can change a
.SYS file to a .KIL, and can revive a .KIL file into its original type.
BE CAREFUL.

If no options are specified, the file retains its old attributes.

NOTE:

For security reasons, RENAME 'will not remove the execute-onlY
status of a file. Once a file has the fte ft status, that status may
not be al tered.

, Examples:

RENAME AX BX

RENAME AX BX;W

RENAME DATA OLDATA;WD

RENAME ZOO; -W-D

RENAME SECRET;E

RENAME XX/1 YY/2

RENAME XX

RENAME AB* CD-

Rename file AX to BX, giving it the same
attributes AX had.

Same as above, but write-protect the
file.

Rename DATA to OLDATA, write-prot~cting

and delete-protecting it.

Remove Wand D attributes from the file
ZOO.

Make file SECRET execute-only.

File XX on drive
ft/2ft is ignored.

is renamed to YY; the

This produces ftArgument Error.ft

Any file beginning with ftABft will now
begin with ftCD. ft

RENAME can also change the name of a disk (the name given to the
disk when it was FORMATted). Use this form of the command:

RENAME 12 Newname

The disk in drive 2 will be renamed to ftNewname ft •

I

Page 3-36· 7900 DOS Manual CGe 1900

3.2.21 STORE

STORE creates a disk file containing all bytes from the range of
memory <addr1> through <addr2>, inclusive. The file created by STORE may
contain an absolute binary image of memory, or it may be an image in
executable form (readable by the DOS loader). STORE decides which type of
file to create, based on the secondary name of <file>.

Format:

STORE <file> <addr1> <addr2>
[+I-<offset>] [@<exec>] [;<opt1ons>] RETURN

Where:

<file> is the name of the file to be created by STORE.

<addr1> and <addr2> are the starting and ending (hex) addresses of
the range to memory to be stored. .

<offset> is an address offset (hex) specifying the difference
between the address the data was STOREd from. and the
address it will be loaded into. <offset> must be preceded
by a + or - sign. <offse t> MUST be specified, even if it
is +0. Note that <offset> does not relocate cOde as a
linker would -- absolute branches jump to the same address
they would have before.

@<exec> is the address at which execution of the data must begin
(assuming the data is a program).

; P if included, makes the fil e "proprietary" (i. e., se ts the
execute-only flag in the file's attributes).

STORE will allow you to specify any secondary name. If you do not
specify a secondary name, the defaul t secondary name of • SYS is used and a
load module is generated. If you specify .OBJ as a secondary name, a load
module is also generated. Any other secondary name causes an absolute
binary image to be stored into the file.

CGC·1900 1900 DOS Manual Page 3-31

The arguments to STORE are affected by the secondary name of <file>:

1) If the file type is • SYS, the defaul t value for <offset> is
zero, and the defaul t value for <exec> is zero.

2) If the file type is • OBJ, the defaul t value for <offset> and
<exec> is zero. If the .OBJ file will be renamed to a • SYS file,
<exec> must be specified at this time: a .OBJ file whose <exec>
is zero cannot be executed.

3) If the file type is nei ther • SYS nor • OBJ, <offset> and <exec>
are not allowed. An absolute binary file is generated which
stores data in an unformatted form, storing just the bytes and no
addressing information. This type of file may be given any
secondary name, al though • ABS is recommended.

A file created by STORE may be brought back into memory by FETCH or
DEBUG. If STORE is used to create a .SYS file, the file may be executed
directly by typing its name as a DOS command.

Examples:

STORE/1 HOUSE.ABS/2 4000 4FFF

STORE Program 14000 14FFF-10000@4400

STORE SECRETS 11C 12AF0-10000;P

Note that the + or - sign, and the @ sign, . act as delimiters in the
command line and should not be preced~d by a space.

DOS expects • SYS fil es to load and execute in the DOS transient
program area (TPA). The size of this area is set with the 1900 "Thaw"
command, but will normally be at least 16K bytes. The DOS areas begin at
memory address $1C3C, and user programs should be arranged to run in this
area.

The STORE tranSient also runs in the DOS area, and would overwrite
any data in this area you are trying to STORE. That is the reason for the
<offse t> parameter. Data to be STOREd can be moved to a higher address
with the Monitor "Move Memory" function, then the STORE command with an
offset can be used to move the data back to its original addresses in the
DOS area.

Page 3-38. 7900 DOS Manual CGC 7900

3.2.22 SUMS

SUMS performs a checksum of all PROMs in the 7900 system. This is
normally used as a check on the integrity of a PROM, or to determine which
version of firmware is installed in a system.

Format:

SUMS RETURN

SUMS also displays the software revision level of the PROMs in your
7900 system, by searching for the ASCII string "VERI" in each PROM. If'
your system contains PROMs version 1.1 or higher (DOS version 1.4 or
higher), SUMS will display the version number of these programs.

Example:

SUMS

CGC·7900 7900 DOS Manual Page 3-39

3.2.23 VERSION

VERSION displays the release date of the transients matching
<pattern). You may use VERSION to see whether you have the latest set of
transients from Chromatics, or to indicate the release date of a transient
when reporting a expected malfunction to Customer Service.

Format:

VERSION <pattern) RETURN

You must enter at least the disk number as <pattern). Typing VERSION
by itself causes an "Argument Error."

Example:

VERSION 12 Display the release date of all
transients on the disk in drive 2.

If VERSION is given a file with a secondary name different than. SYS,
the message, "MISSING OR INVALID VERSION RECORD" will be printed.

Page 3-40· 7900 DOS Manual CGC 7900

3.2.24 XREF

XREF is a program designed to be used with the Chromatics MC68~0.0
Assembler (discussed in Section 5 of this manual). XREF produces a
cross-reference list of all labels in an MC68~00 assembly language.source
file. The line at which a label is defined is flagged with a pound sign
(I).

Format:

XREF [A<options>] <file1> [<flle2> ••• <filen>] RETURN

Where:

<file1> , <file2>, etc. are ASCII files containing
an MC68~00 assembly language program.

<options> may include any of the following characters:

L Transmit output to Logical Device ~ (normally the
screen) •

T Transmit output to Logical Device 1 (normally the
RS-232 serial port, assumed to connect to a printer).

P<n> Print <n> lines per page (including 4 lines used as
a header).

W<m> Print lines up to <m> characters wide «m> may range
from 81 to 132).

+R List register usage.

-R Don't cross-reference registers (A0, D1, etc.).

If <options> are omitted, the default is ATP61W132+R. This causes the
listing to be directed to the printer, 61 lines per page, 132 columns per
line, and registers are included in the XREF listing.

Example:

XREF Program

XREF ALW85 Program List on the screen, limit lines
to 85 characters wide.

cac· 7900 7900 DOS Manual Page 3-41

A space in the operand field terminates the operand, so that in a
statement such as:

DC.W SYM1,SYM2

both SYM1 and SYM2 will be found. However, in this line:

DC. W SYM1, SYM2

SYM2 would not be listed.

CGC 7900 7900 DOS Manual Page 4-1

Section 11 - DOS Text Editor

4.1 Introduction to the Editor

The Chromatics CGC 7900 Text Editor is a disk-based program used for
creating and maintaining text files. It is primarily used in conjunction
with the Assembler, for creating programs executable by the MC68000
processor. The editor is also good for working with other types of text
files, such as correspondence or documentation. This manual was, in fact,
written using a text editor.

The editor executes under DOS, the Disk Operating System, which was
described in Sections 1 through 3 of this manual. If the DOS prompt (a
green asterisk) is not currently visible, press the DOS key. Enter your
password and press 'RETURN (or simply press RETURN). Make sure that the
system contains a disk which has the editor on it, the program EDIT. SIS.
Then type:

EDIT RETURN

It may be necessary to specify the number of the disk drive containing
the EDIT program, as:

• EDIT/n

Where n is the number of the drive where EDIT. SIS resides. This will only
be necessary if another drive, not containing the editor, has been in use.

When the editor expects input, it will prompt you in one of three
ways. If the editor expects a command, the prompt is a 4-digit line
number followed by a question mark. If .it expects a line of text to be
inserted into the fil e, the prompt is a 4-digi t line number followed by an
"I" and a question mark. If you are in MODIFY mode, the prompt is a
number followed by the letter "M" and a question mark.

Examples:

? Command prompt

Insert prompt

Modify prompt

Page 4-2 7900 DOS Manual CGC 7900

The line number is a pointer position wi thin the fil e. The editor
refers to lines by number, and maintains an internal pointer somewhere
within the file. Commands are provided which will explicitly move the
pointer around, and many commands will implicitly move the pointer. For
example, if the pointer is on line 3, and you LIST lines 3 through 2" of
the file, the pointer is now on line 2".

NOTE:
When the edit pointer is at the beginning of the file, the line
number is displayed as "13". When it is at the end, the line number
is displayed as "E".

When you see the command prompt, you may enter any of the legal
editor commands described in this manual. The INSERT command will take
you out of command mode and put you into insert mode. When you see the
insert prompt, anything you type will be inserted into the file at the
current pointer position. Hitting the DELETE key will return you from
insert mode to command mode.

Each of the commands in this section may be abbreviated to the
smallest number of characters which will uniquely identify that command.
For example, the OPEN command may be abbreviated as 0, since no other
command begins with that letter. However,. the command PRINT can only be
abbreviated to two characters, PR, so that it won't be confused with the
PAGE command (both begin with "P"). In general, it is safe to abbreviate
commands to two or three characters.

cac· 7900 7900 DOS Manual Page 4-3

4.2 INLINE

"INLINE" is the standard subroutine used by the editor for fetching a
line of input from the keyboard. This routine is also used by other cac
7900 programs, such as DOS.

INLINE accepts a line of input, and allows inserting, deleting and
replacing characters. When the line is completed to your sa. tisfaction,
press RETURN. The cursor can be anywhere on the input line when RETURN is
struck, but the entire visible line will always be accepted as input.

The left and right arrow keys move the cursor around within the line
currently being typed. The HOME key moves the cursor to the left edge of
the current line. The cursor poSition is used to determine where text
will be inserted, or where othe~ commands will take effect.

INLINE supports the editing commands printed in blue on the front of
the cursor control keys: INS CHAR, DEL CHAR, CLEAR EOL and RECALL. These
blue functions are accessed by holding down the CTRL (control) key and
pressing the indicated key. The key printed in whi~CLEAR LINE, is also
supported.

DEL CHAR (Delete Character) removes one character at the current
cursor position. All characters to the right of the cursor move left one
position.

CLEAR LINE erases the line currently being typed.

CLEAR EOL (Clear to End Of Line) erases all characters from the
current cursor pOSition to the end of the line.

RECALL (Recall Last Line) replaces the line currently being typed
wi th the last complete line that was typed. This function is useful for
repeating a command, perhaps al tering it slightly with the other
functions. Press Recall more than once to bring back earlier lines; this
moves backward into the recall buffer. Press SHIFT RECALL to move forward
in the recall buffer.

Page 4-4 7900 DOS Manual CGC 7900

ms CHAR (Insert Character) puts the routine into insert mode. The
character under the cursor begins blinking, and any characters typed are
now inserted, forcing characters to the right of the cursor to move out of
the way. To leave insert mode, use one of the arrow keys to move the
cursor. This places the routine in its normal (overstrike) mode, and any
characters typed now will simply overwrite existing characters under the
cursor.

INLINE is designed to be a general-purpose routine for ALL user input
in the CGC 7900. Appendix B describes the calling sequence for INLINE,
for users who wish to use it in their own programs. It is STRONGLY
SUGGESTED that all programs use INLINE to accept input from the user.
This means that all programs will support character editing as described
above, and the user will become accustomed to using the same editing
sequence for all program input.

CGC·7900 7900 DOS Manual Page 4-5

4.3 Editor Commands

This section discusses the commands accepted by the editor. Each of
these commands may be entered at the command prompt.

In each command, one or more delimiters may be present to separate
the various parts of the command. A delimiter may be ei ther a space or a
comma. For convenience, we will always use a space in our examples.

Ir the editor cannot interpret a command, or ir for any reason an
error occurs during a command, the command line is re-printed on the
screen with the cursor positioned over the error. You may then edit the
command line, using the INLINE editing functions on the cursor keypad.
This avoids retyping the entire input line, and also illustrates exactly
where the error occurred.

Page 4-6 7900 DOS Manual CGC 7900

4.3.1 OPEN

The OPEN command searches for a specified fil e and returns an error
if the file cannot be located. If the file does exist, OPEN simply
returns to command mode. Before a file can be edited, it must be OPENed
as an input fil e.

NOTE:
OPEN does not actually cause any text to be read in from the fil e !
See 4.3.2, "GET."

Format:

OPEN <file) RETURN

Where:

<file) is the name of an existing disk file containing ASCII text.
<file) is assumed to have the secondary name • SRC, unless a
different seCondary name is entered.

The file is assumed to contain ASCII text. Each line of the file is
termina ted by a Carriage Return character, and no Line Feed. The editor
will provide a Line Feed after each Return when LISTing or PRINTing the
text.

Examples:

OP DOOR

OP WINDOW

OP ThatFile/2

CGC-7900 7900 DOS Manual Page 4-7

4.3.2 GET

GET reads in text from the currently open input file (the file most
recently specified by OPEN) _ If the GET command is used without an
argument, enough text' is read in to fill approximately half of the
available memory_

Format:

GET RETURN

GET <I) RETURN

Where:

<I) is a decimal number. If <I) is specified, only that many lines
are read in. Text is appended to the ~nd of text already in
memory_

If the GET command causes the entire fil e to be read in, the
message "End Of Input Data" is printed, and no more text may be read
in from the input file.

If the GET command causes memory to be filled with text, the
message "Workspace Full" is printed, and no more text is read in. It
is now necessary to PUT some text back on disk, to make room for more
of the file. See PUT and PAGE for examples.

NOTES:

Use GET without arguments whenever possible, since it will
never totally fill the workspace unless several GETs are used.

Examples:

GET

GET 30

Page 4-8 7900 DOS Manual CGC 7900

4.3.3 LIST

LIST displays lines of text. If no line numbers are entered, LIST
begins at the current pointer position. If one line number is given,
listing begins at that line and continues through memory. If two line
numbers are given, listing begins at the first line number entered and
continues through the second line number.

LIST expands tabs in accordance with the tab specification found in
the Window 10 table.

Format:

LIST RETURN

LIST <11> RETURN

LIST <11> <12> RETURN

Where:

<11> and <12> are line numbers.

LIST may be paused by typing a CTRL S, and restarted with CTRL Q.
LIST may be stopped at any time by pressing DELETE.

The output from LIST is always directed to Logical Output Device ",
normally the screen or a part of the screen. Each line displayed by LIST
is shown with its line number, far reference.

Examples:
LI

LI200

CGC 7900 7900 DOS Manual Page 4-9

4.3.4 PRINT

PRINT performs the same function as LIST, but sends its output to
Logical Output Devices ~ and 1. Since Logical Output Device 1 is normally
connected to a printer, this produces a hardcopy of the lines listed.
Unlike LIST, PRINT does not display line numbers in front of each line.
PRINT, however, does expand tab characters like LIST.

Format:

PR INT RETURN

PRINT <11) RETURN

PRINT <11) <12) RETURN

Examples:

PR

PR 1~0 190

Page 4-10· 7900 DOS Manual CGC 7900

4.3.5 mSERT

mSERT takes the editor from command mode to insert mode. While in
insert mode, the prompt is in the form:

NNNN I ?

The "In indicates that material is being inserted into text.

Format:

INSERT RETURN

mSERT (I) RETURN

Where:

(I) is a line number.

If (I) is entered with the mSERT command, insertion begins at the
line specified. All lines from (I) up will move up in the file to make
room for lines being inserted. If (I) is not specified, insertion begins
at the current pointer position.

mSERT is the most im,portant command in the editor. It allows you to
enter text to create a new file. While in insert mode, any of the INLINE
editing features may be used, such as insert and delete character.

Insert mode remains in effect until the DELETE key is struck, at
which time the editor returns to command mode.

CGC 7900

NOTE:

7900 DOS Manual Page 4-11

The INSERT command causes the line numbers of part of the text in
memory to be changed, as all lines past the insertion move up in
memory. You should LIST the file after leaving insert mode, before
performing any operations which are dependent on line numbers.

Examples:

IN

IN 15

If you enter a Mode code sequence (such as a "Set Color" command)
into the input line, the sequence is displayed in compressed form, using
special characters. It is not executed until you press the RETURN key.
If you enter a tab character (CTRL I) into the line, it too is displayed
but not executed. The Mode character resembles a double tilde (-), and
the tab character resembles a right-pointing arrow. (These characters are
taken from the "A 7" character se t, described in the CGC 7900 User's
Manual.) Pressing RETURN will redisplay the input line with all Mode codes
executing as they normally would when printed from a program. Tabs' will
be executed according to the current tab stop spacing in effect (normally
4 characters apart).

Using the up and down arrow keys or the Delete Line function, you can
move from INSERT mode into MODIFY mode. Modify can also be entered by
giving the MODIFY command, as discussed next.

Page 4-12· 7900 DOS Manual eGe 7900

4.3.6 MODIFY

MODIFY is the editor's most flexible mode. When you enter MODIFY, the
editor's prompt is in the form

NNNN M ?

and is displayed in magenta. The current line is also displayed in
magenta.

Format:

MODIFY RETURN

MODIFY <II> RETURN

Where:

<II> is a line number.

MODIFY allows you to use the INLINE editing features on existing text
in memory. You can insert or delete characters using the labeled
functions on the cursor keypad. When you have finished altering a line,
you must press RETURN to store that line in its new form. If you move the
cursor up or down using the arrow keys, the line you modified will NOT be
stored, but will return to its previous condition.

Using the Insert Line and Delete Line functions, you can move between
MODIFY mode and INSERT mode at will. When in MODIFY, the prompt will be
displayed in magenta and will be in the form "NNNN M ?" While in INSERT
mode, the prompt is in yellow, and is in the form "NNNN I ?"

Pressing DELETE moves you back to command mode.

Examples:

MO

MO 25

When in MODIFY, as in INSERT, a special compressed form is used to
display Modes, tabs, and other control-characters. In MODIFY, the line
containing the cursor is always displayed in compressed form so that any
control-characters in the line will be visible and may be edited. Other
lines on the screen during MODIFY are displayed normally; only the line
with the cursor is displayed in this special form.

cae 7900 7900 DOS Manual

4.3.7 DELETE

DELETE removes a set of lines' from the text.
with no arguments, only the current line is deleted.
the line whose number is printed in the prompt.)

Format:

DELETE RETURN

DELETE <11> RE'I1JRN

DELETE <11> <12) RETURN

Page 4-13

If DELETE is entered
(The current line is

If DELETE is entered wi th one argument <11> , the singl e line whose
line number is <11> is deleted. If DELETE is entered with both <11> and
<12>, all lines within the range <01> through <12), inclusive, are
deleted.

NOTE:
The DELETE command causes the line numbers of part of the text to
be changed, as all lines past the lines deleted are moved down in
memory. After a DELETE, it is, advisable to LIST the file before
doing any other operations which are dependent on line numbers.

Page 4-14 7900 DOS Manual cae 7900

4.3.8 FIND

FIND looates a string. The range of lines to be searched, and the
number of searohes to perform, are speoified in the oommand.

Format:

FIND \<string)\ RETURN

FIND <11) \<string)\ RETURN

FIND <11) <12) \<string)\ RETURN

FIND <11) <12) <N> \<string)\ RETURN

FIND with no arguments other than <string) begins searching at the
ourrent pointer position, and reports all ooourrenoes of <string) until
the end of the fil e.

FIND with <11) is the same as above, but begins searching at line
<11) rather than at the our rent pointer position.

FIND with <11) and <12) searches all lines from <11) to <112),
inolusive.

FIND with <11), <12) and <N) begins searching at line <11), and
terminates when it reaches line <12) OR if it has found <N> occurrences of
<string).

The backslash character "\" is used as a delimiter to define the
search string. Any non-numeric character (except "en) could be used as a
delimiter, provided it does not occur in <string). The terminating
delimiter (just before RETURN) is not required.

Examples:

FI \0\ Find all zeroes from the current pointer to the
end of the file.

FI 1 999\. \ Find all decimal pOints in the file (through line
999).

FI 1 999 10\the\ Find up to 1" ocourrences of the word "the",
between lines 1 and 999.

During a FIND, you may press CTRL S to pause the display, and then
CTRL Q to continue. DELETE returns you to command mode.

eGe 7900 7900 DOS Manual Page 4-15

4.3.9 SUBSTITUTE

SUBSTITUTE performs a search-and-replace function.

Format:

SUBSTITUTE \<string1)\<string2)\ RETURN

SUBSTITUTE <11) \<string1>\<string2)\ RETURN

SUBSTITUTE <11) <12) \<string1)\<string2)\ RETURN

SUBSTITUTE <11) <12) <P) \<string1>\<string2)\ RETURN

SUBSTITUTE <11) <12) <P) <F> \<string1)\<string2)\ RETURN

You Can enter a number of options to specify exactly how the
substitution takes place:

SUBSTITUTE with no arguments affects only the current line, and if
<string1) is on that line, it is replaced by <string2). Only one
occurrence of <string1) will be replaced.

SUBSTITUTE with <11) affects only the line specified, and only one
occurrence will be replaced.

SUBSTITUTE with <11> and <12) begins at line number <11) and
continues through line number <12>. If <string1> is found on any
line, it is replaced by <string2>, but only the first occurrence of
<string1> per line will be affected.

SUBSTITUTE with <11), <12) and <P> affects all lines from <11> to
<12), inclusive, and replaces <P> occurrences per line.

SUBSTITUTE with <11), <12>, <P> and <F> affects all lines from <11>
to <12>, inclusive, replaces <P> occurrences per line, but begins at
occurrence <F> on each line.

The backslash "\" is used as a delimiter to define the beginning and
end of each string. Any non-numeric character (except "En) could also be
used as a delimiter, provided it does not occur in either <string1> or
<string2>.

The terminating delimiter (just before the RETURN) is not required.

Page 4-16· 7900 DOS Manual CGC 7900

Examples:

SU I A/BI Change the fir st occurance of "A" to "B"
on the current line (if any).

SU 54/123/3211 On line 54, change "123" to "321" (one
occurance at most).

SU 10~ 2~~/me/I/ Change "me" to "I" everywhere between
lines 100 and 200 (not more than once per
line) •

SU 100 200 99/me/I/ Same as above, but up to 99 times per line
(effectively changes all occurrences on
each line in the range).

SU 1 10~ 1 2/this/the/ Between lines 1 and 100, change the second
occurance "this" to "the" on each line.

SU 1 100 99 2/this/the/ Same as above, but changes all occurrences
EXCEPT the first occurance on each line.

SU 1" 55. \./. Change backslash to slash (using a period
as a delimiter), once per line, between
lines 1" and 55.

SUBSTITUTE displays each line it changes. To abor t the SUBSTITUTE
process, press the DELETE key. You will return to command mode, and any
lines which have. not already been displayed by SUBSTITUTE will not be
affected.

SUBSTITUTE can be very destructive, if not used carefully. It is good
practice to use FIND before SUBSTITUTE, to see exactly what will be
affected by SUBSTITUTE. For example,

FI 1 99 1/AI

SU IA/BI

Find the first occurance of "A"
and display the line.

Change "A" to "B" at this line

By using the Recall Last Line function, you can repeat these two
commands as often as required, examining each occurance of "A" before
changing it to "B".

CGe 7900 7900 DOS Manual Page 4-17

4.3.10 PUT

PUT removes text from memory, and writes it back to the disk.

Format:

PUT RETURN

PUT <11) RETURN

PUT <11) </2) RETURN

If PUT is entered with no arguments, all text in memory is written
out to the disk. If only one argument is entered, all lines from the
beginning of text through line </1) are written out to the disk.

If two arguments are entered, only lines between line number </1) and
line number </2) are written out to the disk.

PUT is primarily useful for dividing up a file into smaller files. By
doing a PUT followed by a CLOSE, a new file is created which contains. only
the lines which were PUT.

NOTE:

PAGE and EXIT are more general-purpose commands for ending an
editing session.

Examples:

PU

PU 60 9"

Page 4-18· 7900 DOS Manual CGC 7900

4.3.11 CLOSE

CLOSE enters the output file into the disk directory, and closes the
file.

Format:

CL OSE RETURN

CLOSE <fll ename> RETURN

If CLOSE is entered without a <filename>, the new file has the same
name as the old file. The editor will automatically KILL the old file.

If a <filename> is specified, the new file has that name. The file
will have • SHC as a secondary name unless you specify a different
se co ndary name.

Once a file has been closed, either by CLOSE or by EXIT, it exists on
the disk and can be re-opened by OPEN as an input file.

Examples:

ROTE:

CL

CL MIND

CL NEWFILE

PAGE and EXIT are more general-purpose commands for ending an
editing session.

CGC·7900 7900 DOS Manual Page 4-19

4.3.12 PAGE

The PAGE command is used when editing large files. If a file is too
large to fit entirely in memory, you must bring in a portion of the file,
edit that portion, then go on to the next. PAGE dumps all of the text in
memory back to the disk, then brings in enough text from the input file to
fill half of the available memory.

Format:

PAGE RETURN

PAGE is equivalent to doing a PUT of all text in memory, followed by
a GET.

Example:

PA

Page 4-20. 7900 DOS Manual CGC 7900

4.3.13 DRIVE

DRIVE causes the editor to oreate a new output file, on the specified
disk.

Format:

DRIVE <I> RETURN

The output from the editor normally goes onto the same disk from
which the input file was read. You may alter this with the DRIVE command,
forcing the editor's output onto another disk.

Example:

DR 2

If you have already written some text to the output file, using PAGE
or PUT, DRIVE is not allowed until you CLOSE the ourrently open output
file. (If it were allowed, the text you had written to the disk would be'
lost.)

CGC·7900 7900 DOS Manual Page 4-21

4.3.14 EXIT

.EXIT is the proper way to end an editing session. EXIT first PUTs all
text in memory onto the disk. Then it performs a series of GETs and PUTs
(if necessary) to insure that the entire input file has been written to
the output file. When no text remains in the input file, the output file
is closed.

Format:

EXIT RETURN

EXIT <fil ename> RETURN

If EXIT is entered with no <filename>, the output file has the same
name as the input file. The editor then automatically KILLs the old input
file.

If EXIT is entered with a <filename>, the output file is given that
name. The file will have .SHC as a secondary name unless you specify
otherwise.

Example:

IlOTE:

EX

EX RAMP

Due to a bug in EXIT, this command cannot be used for new files.
When ending a session with a newly created file, type the following
three commands:

PUT
CLOSE <file>
ABORT

Page 4-22· 7900 DOS Manual CGC 7900

4.3.15 ABORT

The ABORT command ends an editing session, but does not close the
output file. If any changes had been made in the file, the changes are
lost.

Format:

ABORT RETURN

ABORT is used if you decide that you don't want to al ter the file
after all. If you had been using the editor simply to examine a file
(rather than making changes), ABORT would be the logical way to end the
session.

Example:

NOTE:

AB

Pressing the ~, MONITOR, or TERMINAL keys will also resul t in
aborting the editor.

CGC·7900 7900 DOS Manual Page 5-1

Sect.ioD 5 - The 68", AsseJRbler

The Chromatics MC68~00 resident assembler is used to produce
machine-readable object code from assembly language source files. The
assembler executes under the Chromatics Disk Operating System, described in
Part 1 of this manual.

The full MC68000 instruction set is supported by the assembler. For this
section, you should understand the MC68~00 processor architecture, as
described in the Motorola MC68~00 User's Guide (available trom Chromatics).
The examples provided in this manual are intended only to demonstrate proper
syntax, and do not necessarily show useful programming techniques.

You should also be familiar with the basic operating techniques used in
the CGC 7900; if not, consult the CGC 7900 User's Manual before attempting to
use the assembler.

Page 5-2 7900 DOS Manual CGC 7900

5.1 Running the Assembler

The ASMB command invokes the file ASMB. SYS, the Chromatics MC6800iJ
resident assembler. The ASMB command must be entered at the DOS prompt,
which is a green asterisk (*).

Format:

ASMB [A<options>] <file1> RETURN

ASMB [A<options>] <file1 >

[A<options>] <file2> ••• RETURN

Where:

<file1>,<file2>, etc. are the names of source
files to be assembled.

<options> are characters which specify assembly
options (see below).

The assembler expects its input files to be in ASCII text form. Input
files must have the secondary name • SRC.

The assembler produces an output file of type • SYS, which may be
directly executed by DOS. If you enter the command line

ASMB PROGRAM

and press the RETURN key, the file PROGRAM.SRC would be assembled and an
output file named PROGRAM. SYS would be produced. This. SYS file can be
directly executed by typing its name as a DOS command:

PROGRAM

When the assembler closes its output • SYS file, any old • SYS file with
the same name is KILLed. Thus, a program: can be edited, assembled,
re-edited and re-assembled any number of times, but only the most recent
version of the source and object code will be active on the disk.

caC·7900 7900 DOS Manual Page 5-3

Several options are available to control the assembly and the output
listing. The option field is indicated by the "carat" character, A The
options may be entered in any order.

C Close output file, producing an executable program file as output.

·-c Do not close output file.

T TYpe listing on printer (through Logical Output 1).

-T Display listing on screen (through Logical Output ~).

Follow LIST/NOLST commands in source file. The listing is on until a
NOLST is encountered.

+L Force listing ON regardless of source file commands.

-L Force listing OFF regardless of source file commands.

+S List symbol table.

-S Do not list symbol table.

The defaul t conditions for options are C and L. If no options are
specified, the output file will be closed, the listing will be sent to the
7900 screen, and the listing will be controlled by LIST and NOLST commands
in the program source file.

If you do not specify any options, you must not enter the carat (A).

Page 5-4 7900 DOS Manual eGe 7900

All options are valid at the start of the command line, befor e the
first file name <file1>. You may repeat any of the "L" options prior to
other fUes, in order to control listing of the various files
individually.

Examples:

ASMB TEST

ASMB ,.. -C TEST

ASMB A_L TEST

ASMB AT-C+L TEST

Assemble the file TEST, close output
file, listing on the screen. Output
file is named TEST. SYS.

Assemble, list to screen, do not close
output fUe.

Assemble and close, no listing.

Assemble, list on printer, do not
close output file, listing ON.

The last example assembles the program whj,ch is contained in both
files, TEST1 and TEST2. The output file is closed, and is given the name

-TEST2.SYS. This file is created on the same drive which contained the
-file TEST2. Listing is suppressed for file TEST1 and is forced on for
TEST2. (Options other than the "L" family would not be valid prior to
TEST2.)

If a program is contained in more than one file, each file must have
its own END statement.

cac 7900 7900 DOS Manual Page 5-5

5.2 Source File Format

The text editor is used to create program source files, which are
processed by the assembler. Source files have a secondary name of • SRC,
and are stored in ASCII text form.

The general form of a line in the source fil e is:

[<label>] <instr> [<operands>] [<comments>]

The four fields may be separated by spaces or tabs. The MODE character
($1) always begins a comment.

<label> is optional. If included, it must be alphanumeric, from one
to twenty-three characters. The first character must be a letter. Other
lines of code may refer to this line by referencing <label>.

<instr> is required. It must be a legal instruction mnemonic, as
defined in the MC680fJ0 instruction set; or it may be a pseudo-instruction
recognized by the assembler. This manual includes descriptions of the
pseudo-ops available. Consult Motorola literature for details on the
MC68000 instruction se t.

<operands> are the argu,ments to the instruction.
instructions require different arguments.

Different

<comments> may be included on any line, at the programmer t s
convenience. It may be useful to use a color-code at the beginning of a
comment, to distinguish different sections of a program.

In addition, any line beginning with an asterisk (*) is ignored, and
whole-line comments may be included in this way.

The first (or only) source file- in a program will generally begin
with an ORG statement, to initialize the Internal Program Counter (IPC).
Each source file must end with an END statement.

Page 5-6 7900 DOS Manual CGC 7900

5.3 Labels

Labels always begin in the first column (character position) of a
line of code. If the first character in a line is a space or tab, the
line does not contain a label.

A label may contain any upper or lower case letter, A-Z or a-z, or
digits ~-9. It may contain up to 23 characters, and all characters are
significant. Upper and lower case characters are distinct; that is, the
labels AB and Ab are considered different. A label must begin with a
letter.

A label is assigned the value of the IPC at the instruction where the
label occurs, unless the instruction is EQU or SET (see
Pseudo-Instructions).

Certain reserved words have special meanings to the assembler, and
may not be used as labels. They are:

D0
A~
SP

D1
A1
USP

D2
A2
CCR

D3
A3
SR .

D4
A4
IPC

D5
A5

D6
A6

D7
A7

It is possible, but not wise, to use an instruction mnemonic as a
label.

cac 7900 7900 DOS Manual Page 5-7

5.4 Instructions

The instruction field is separated from the label by a space or a
tab. If a line does not contain a label, the instruction must be preceded
by a space or tab to separate it from the beginning of the line.

An instruction will ei ther be a member of the MC68rr3f'0 instruction
set, or an assembler pseudo-instruction.

If an instruction is a legal MC68rr3f'f' op code, it may have a data size
associated with it. Certain MC68rr3f'0 instructions can operate on different
data sizes: Byte (8 bit), Word (16 bit), or Long (32 bit). For these
instructions, the desired data size may be specified by appending the
characters ".B", ".W" or ".L" to the op code., The default data size of
Word (16 bit) is assumed if the data size code is omitted.

If an instruction does not have a variable data size associated with
it, the characters B, W or L may NOT be appended.

Examples:

MOVE D1,D2 Word size is assumed by default.

MOVE.B D3,D4 Byte size is declared.

LEA (A 1) ,A2 Long word size is required for this
instruction; a data size code would
not be permitted here.

Page 5-8 1900 DOS Manual CGC 1900

5.5 Operands

The operands, if any, follow the instruction. Operands are separated
from the instruction by a space or tab. If more than one operand is
present, they are separated by commas.

Most instructions have one or two operands. Instructions which use
two operands consider the first to be a "source" and the second to be a
"destination", as:

MOVE. W D1,D5

ANDI.L 1$1F, (A2)

SUB. W D0, (A3)+

Move 16-bit data from D1 to D5.

Get 32-bit data from the address
pointed to by A2; AND it with
immediate data $7F (hex); then put
the result back where we got it.

Subtract D0 from the 16-bit word
pointed to by A3; put back the
result, then increment A3 by 2.

The same terminology of "source" and "destination" is applied to
compare operations. Note that the "destination" is compared to the
"source", not the other way around:

CMP.L
BHI

A0,A1
Somewhere

Is A 1 greater than A01
If YES, do the branch.

CGC 7900 7900 DOS Manual Page 5-9

5.6 Comments

Any line may contain a comment field. The comment field is separated
from the remainder of the line by a MODE character, which with a "C" and a
color code will cause the comment to be displayed in a different color
from the instructions. The color change is not necessary in most cases
(except as mentioned in the note below), but it will improve the
legibility of your programs. The printer driver strips the MODE codes
before sending the comments to the printer.

To insert a color-coded comment into a line of program source USing
the 7900 editor, first separate it from the rest of the line by a tab
(CTRL I) or spaces. Then press SET, followed by a color key. When
displayed by the editor in response toLlST, the color will be executed as
typed. When in MODIFY or INSERT mode, the line containing the cursor is
always displayed in compressed form, using special symbols for
control-characters. A typical statement might normally appear as:

LABEL EQU value This is a comment

If a color code had been typed before "This", the comment field would
appear in that color. In MODIFY mode, or when entering the line in INSERT
mode, the same line would appear as:

LABEL EQU~value~:G6, This is a comment

The tab character is abbreviated with a right-arrow symbol, and the Mode
character is abbreviated with a double tilde. This example uses color
number 6, or yellow, as the comment color. You may wish to define a
Function Key to be the equivalent of a "Set Color" command.

Certain op-codes will accept an indefinite number of arguments
(Example: Define Constant, DC). In these cases, the assembler will
continue to parse arguments from the source line until it reaches a
Mode character or a carriage return. If you include a comment in a
source line of this type, you MUST delimit the comment with a Mode
code, or the comment will be assembled! Note that the END pseudo-op
also accepts a variabl e number of arguments (zero or one
expressions). A comment on an END statement should be delimited
with a color code.

Page 5~10 7900 DOS Manual CGC 7900

5.7 Pseudo-Instructions

Pseudo-instructions, or pseudo-ops, are instructions to the
assembler. They affeot how the assembler generates object code, but do
not, in general, generate code themselves. (The DC pseudo-op is an
exception, ~d does generate code.)

5.7.1 ORG (Origin)

ORG is used to set the "origin" of the code generated by the
assembler. ORG loads a value into the Internal Program Counter (IPC).
When using the (default) ORG form, all absolute addresses are assembled in
"absolute short" form, which· confines them to values between $0000 and
$7FFF, and between $FF8000 and $FFFFFF. This is because the 16-bit number
is treated as a two's complement number and sign-extended through 32 bits.

Format:

ORG <expression>

ORG.L <expression>

In the CGe 7900, the "long" ORG.L. is more commonly used. ORG.L forces
all absolute addresses to long form, which allows access to the entire
7900 address space ($000000 to $FFFFFF).

(The exception to this rule occurs if a symbol name is suffixed with
a ".W" or ".L" specifier. In this case, the specifier is used and the ORG
type is overridden.)

Examples:

ORG.L PROGSTART

ORG.L $1C3C

DOS expects programs to run in the DOS Transient Program Area, which
begins at $1C3C. Your programs should normally be ORG'ed at this address.

ORG may be used in several places during a program, if desired.

CGC 7900 7900 DOS Manual Page 5-11

5.7.2 EQU (Equate)

EQU equates a label to a value. A label is required in this context,
for the EQU statement is meaningless without a label. The value may be a
constant or another label which has been previously defined in the
program.

Format:

<label> EQU <expression>

Examples:

HexNum EQU

Gold EQU Sllver+32

HERE EQU IPC

The last example equates the label "HERE" to the value . of the
assembler's Internal Program Counter. The IPC always has the value of the
address for which code is currenty being generated. Note the equivalence
of the following two pieces of code: .

SUBRT

and,

SUB~T

mVE. L

EQU
MOVE.L

D1,D3

IPC
D1,D3

Either of these two sections would generate identical object code if
used in the same place in a program.

Page 5-12 7900· DOS Manual CGC 7900

5.7.3 SET

SET assigns the value of <expression> to <label>. The difference
between SET and EQU is that a label defined by SET may be re-defined later
in the program by another SET. A label defined by SET may not be defined
by EQU, nor may it be us~d in the label field of a line of code.

Format:

<label> SET <expression>

The rules for <expression> are the same as for EQU.

CGC 7900 7900 DOS Manual Page 5-13

5.7.4 DC (Define Constant)

The DC pseudo-ops generate bytes, words or long-words of code whose
value is equal to <expression>. More than one constant may be defined by
a single DC statement, by using a list of expressions.

Format:

DC.B <expression> [,<expression> •••]

DC.W <expression> [,<expression> •••]

DC.L <expression> [,<expression> •••].

Examples:

NOTE:

DC.B thit

DC.B S,S,1,-5,$A9,$FF

DC.W $45S4,7S00,-1,'WD'

DC.L $18~1A4C9,'LONGt

(defines 2 bytes)

(defines 6 bytes)

(defines 4 words)

(def ines 2 long wor ds)

The DC.B pseudo-op may cause the IPC to end up on an odd address
after assembling an odd number of bytes. This will cause
instructions following the DC.B to assemble on odd addresses, which
is ,illegal. See DS.L' below for a way around this problem.

If the expression does not evaluate to a number within the size range
specified (8, 16 or 32 bits), an "S" error occurs.

Page 5-14 7900 DOS Manual cac 7900

When entering an ASCII string in a DC.W or DC.L statement, the string
is packed into memory as one character per byte. If' an odd number of
bytes is entered, the last word (or long word) is zero-filled on the
right, to the nearest word (or long word) boundary •

. Examples:

DC.W 'A' would put 'A',e in memory.

DC.W 'ABC' would put 'A','B','C',e in memory.

DC.L 'A' would put 'A',e,e,0 in memory.

DC.L 'AB' would put 'A','B',0,0 in memory.

CGC 7900 '7900 DOS Manual Page 5-15

5.7.5 DS (Define Storage)

The DS pseudo-op reserves space by advancing the IPC past a number of
bytes, words or lOng words. (expression) determines the number of bytes,
words, or long words skipped.

Format:

IOD:

DS.B(expression>

DS.W (expression)

DS.L (expression>

Storage allocated by the DS pseudo-op is always initially
undefined.

Examples:

ROTE:

DS.B 14

DS.L 1

The DS.B and DC.B pseudo-ops may cause an odd number of bytes to be
assembled. This causes the IPC to end up on an odd address, and
subsequent instructions will be assembled on odd addresses, which is
illegal. To avoid this problem, always tollow DC.B and DS.B
pseudo-ops with a "DS.L 9" line. This insures that no machine
instructions will begin on odd addresses. DS. L used with an
argument of zero bumps the IPC to the nearest even boundary.

Example:

DS.B

DS.L

9

o

Reserve some space, then

align IPC to a wor d boundary.

Page 5-16 1900 DOS Manual CGC 1900

5.1.6 mD

The END statement tells the assembler that no more lines of source
code exist in the file. Each file must end with an END, or the assembler
will attempt to read past the end of the file and an error will occur.

Format:

END [<addr>]

The last (or only) source file in a program may have an address,
<addr> , in the argument field of its· END statement. <addr> tells· DOS
where· to begin execution of the program, - if and when the program is
executed as a. • SYS file. This is known as the "run address. " If <addr> is
omitted, the file is NOT executable. Attempting to execute it will cause
DOS to print a "No Run Address" error message.

5.1.1 PAGE

The PAGE pseudo-op tells the assembler to output a· form-feed during
the assembly listing. It may be used to break up a +isting into
convenient pieces. PAGE has no effect on ~the object code.

Format:

PAGE

CGC 7909 7900 DOS Manual Page 5-17

5.7.8 LLEN

LLEN instructs the assembler that it may print lines containing up to
<length) characters. The default value for <length) is 85, corre:sponding
to the width of the CGC Overlay screen. <length) may be set to suit the
width of your printer, and must be a number between ~ and 255.

Format:

LLEN <length)

Example:

LLEN 132

5.7.9 NOLST

NOLST turns off the assembly listing. It is typically used in
conjunction with LIST, to cause only selected parts of the program to be
listed during assembly.

Format:

NOLST

5.7.10 LIST

LIST resumes the' assembly listing, following a NOLST.
assumed, unless a NOLST has been encountered.

Format:

LIST

LIST is

Page 5-18 7900 DOS Manual CGC 7900

5.8 Addressing Modes

The MC68000 provides a large number of addressing modes, which define
the source and/or destination operands in an instruction. This section
discusses and provides examples of each of the addressing modes supported
by the MC68000.

5.8.1 Register Direct Mode

This mode operates directly on the contents of a register, D0 through
D7 or A0 through A7.

Format:

An or Dn

Where:

n is a number, 0 through 7.

Examples:

MOVE.L A1,A4

ADD.W D0,D3

Move the contents of register A1
into register A4 (32 bits).

Add the lower 16 bits of the contents
of D0 to the lower 16 bits of the
co ntents of D3. Put the resul t into
the lower 16 bits of D3.

CGC 7900 7900 DOS Manual Page 5-19

5.8.2 Address Register Indirect

This mode operates on the memory location whose address is in the
specified address register, An.

Format:

(An)

Where:

n is a number, 0 through 7.

Examples:

MOVE.B

ADD.L

(Am),D1

D3, (AS)

Move the byte whose address is
in Am, into register D1.

Add the contents of register D3
(32 bits) to the long word whose
address is in AS.

5.8.3 Address Register Indirect with Postincrement

The operand is pointed to by the specified address register, as it
was in Address Register Indirect. After the address is used, the register
An is incremented by 1, 2, or 4, depending on whether the operation
specifies byte, word, or long word.

Format:

(An)+

Where:

n is a number, m through 7.

Examples:

MOVE.B

ADD.L

D4,(A2)+

(A3)+,D0

Move the low byte of D4 to the
address in A2, then add 1 to A2.

Add the long word whose address
is in A3, to D0; then add 4 to A3.

Page 5-20 7900 DOS Manual CGC 7900

5.8.4 Address Register Indirect with Predecrement

The operand is pointed to by the specified address register, An.
Before the address is used, it is decremented by 1, 2, or 4, depending on
whether the operation specifies byte, word, or long word.

Format:

-(An)

Where:

n is a number, 0 through 7.

Examples:

MOVE.L

CLR.B

D2,-(A1)

-(AS)

Decrement A1 by 4; then move 32-bit
data from D2 to the location whose
address is in A1.

Decrement AS by 1, then clear the byte
at that address (set it to zero).

CGe 7900 7900 DOS Manual Page 5-21

5.8.5 Address Register Indirect with Displacement

The displacement d is added to the contents of register An. This sum
. provides the address of the operand. d is a used as a sign-extended
16-bit number.

Fqrmat:

deAn)

Where:

n is a number, 0 through 7;
d is a 16-bit displacement.

Examples:

MOVE.B D3,TABLE(A3)

CMP.W 2(A0),D7

Move the low byte of D3 to the address pointed
to by the sum of TABLE plus the contents of A3.

Compare the lower word (16 bits) of D7, to the
word whose address is two plus the contents of
A0.

Page 5-22 1900 DOS Manual CGC 1900

5.8.6 Address Register Indirect with Index

,The index register (Rn) may be any address or data register. The low
word or the entire register may be used as index, depending on whether the
suffix ". WIt or ". L" is appended to the index register name.

Format:

d(An,Rn. W)
deAn, Rn.L)

Where:

n is a number, S through 1.

d is an 8-bit displacement (range -128 to +121).

The displacement d is used as an 8-bit sign-extended number. If the
low word of Rn is specified, its value is also sign-extended.

Examples:

MOVE.L Name(A1 ,D4.W) ,D5 Move 32-bit data from the address given
by: the contents of A1, plus the 16-bit
contents of D4, plus the a-bit value of
Name. Data moves into D5.

AND.B DtJ,1(Ae,D1.L) Logical AND the low byte of DtJ, with the
byte whose address is given by: AS plus D1
(32 bits) plus 1. The result is placed in
this same memory address. If the
displacement is zero, you should specify
it.

CGC 7900 7900 DOS Manual Page 5-23

5.8.7 Absolute Short

The absolute address of the operand is specified. It is used as a
sign-extended 16-bit number, which limits this mode to addressing memory
between $0000 and $7FFF, and between $FF8000 and $FFFFFF (see section
5.8.1).

NOTE:

If the statement ORG.L is included in the program, this addressing
mode will not be used by the assembler. Absolute Long will be
substituted (see below).

Example:

JMP

MEM EQU
MOVE.L

5.8.8 Absolute Long

$400C

$120
A1,MEM

Jump to address 400C (hex).

Move the 32-bit contents of A1
to the word called MEM (12~ hex).

The absolute address of the operand is specified, and is used as a
32-bit number.

Example:

CHAR OUT

ADD.W $1A2BC,D3 Add the 16-bit data from address
1A2BC to register D3, leave the
resul t in D3.

EQU
JMP

$800008
CHAR OUT Jump to CHAROUT (800008 hex).

Page 5-24 7900 DOS Manual CGe 7900

5.8.9 PC with Displacement

The address of the operand is given by adding the sign-extended
displacement d to the current value of the program counter.

Format:

Where:

d is a 16-bit expression (-32768 to 32767).

The expression "." has the value of the EXTENSION word of the code
which is generated for this instruction. Therefore, if the instruction
has a label NAME, the value of "." is NAME+2, or NAME+4, depending on the
number of words occupied by the instruction.

Examples:

BRA

LEA

MOVEM.L

·+LABEL-(IPC+2),A~

·+(expr-(IPC+4»,D4-D5

Branch to the address 2~ hex bytes
(16 words) past this instruction.

The second example above would be used to generate
position-independent code for loading the address of LABEL into A". It
would be operationally similar to the statement

MCVEA. L 'LABEL, A~

which would also load A~ with the address of LABEL. However, the LEA
statement above takes fewer bytes, and is preferred if LABEL is within the
16-bit displacement range required by this addressing mode.

Note the use of the expressions (IPC+2) and (IPC+4) in examples two
and three above. The LEA statement has a length of one word (plus the
extension word), so (IPC+2) is equal to "." for this instruction.
Subtracting (IPC+2) from "." leaves a result of zero, so the value of the
arithmetic expression is simply the value of LABEL, the desired result.
Similarly, the KlVEM instruction has a length of two words plus extenSion,
so (IPc+4) equals "." for this instruction.

cac 7900 7900 DOS Manual Page 5-25

5.8.10 PC with Index

The address of the operand is given by adding the sign-extended
displacement to the 16' or 32-bit contents of register Rn, and to the
current value of the program counter.

Format:

*+d(Rn.W) *-d(Rn.L)

Where:

d is an 8-bit expression (range -128 to +127).

Rn is an address or data register.

Examples:

JMP *+OFFSET(D3.L) Jump to the address given by OFFSET plus the
32-bit contents of D3, plus the current, Program
Counter.

MOVE.W *+{DATA-(IPC+2»(AB.W),D4

Move a word into D4 from the address which i:3
beyond label DATA by an amount contained in
AB.W (the low 16 bits of AB).

Page 5-26 7900 DOS Manual cac 7900

5.8.11 Immediate

Immediate data is always preceded by the pound sign ('). It is used
to specify an absolute number other than absolute addresses.

Format:

'<expression)

The , character tells the assembler to use immediate data, rather
than an address. Consider the distinction between these two statements:

MOVE.L $4~0,D0 Move a long word from address $4~0
into D0 (getting data from memory
at address 4~0 hex).

MOVE.L '$4~0,D0 Move the hex number $4~0 into D0.

Certain instructions require immediate data; for example, Move Quick:

MOVEQ.L '1m,D1 Put decimal 10 into D1.

CGC 7900 7900 DOS Manual Page 5-27

5.9 Assembler Errors

The assembler indicates errors as a one-character abbreviation, to
the left of the source line listing. Errors are always printed regardless
of the NOLST pseudo-opcode or the -L (suppress listing) option.

Error £22! Description

M Mode error (wrong operand type).

Z Size error (wrong size operand).

C Code error (unrecognized opcode).

S Division by zero.

D Doubly defined label.

U Undefined label.

A Argument error in operand.

{ Unbalanced parentheses.

L Label too'long.

E Expression error.

I Error in number.

o Overflow (number out of range).

The following are non-fatal errors:

Phasing error (label does not agree with IPC).

S Storage Error (overflow from a DC instruction).

Phasing errors are the result of other errors earlier in the program,
in which a statement did not assemble properly. It is a good practice to
fix other errors first, and phasing errors will usually disappear as a
result.

CGC 7900 7900 DOS Manual Page A-1

Append.1x A - Progranjm1 ng TechJU.ques

This section deals' with programming techniques applicable to the
Chromatics CGC 7900. Two important concepts are discussed, which greatly
simplify the process of adding custom features to the CGC 7900: writing
modules, and writing transients.

Modules are sub-programs which are loaded into memory (RAM or EPROM).
When the system is booted, all modules are "linked" together in a fashion
which allows any of them to be executed by ASCII code sequences. All of the
features implemented in the 7900 are written as modules: this includes I/O
drivers, Plot submodes, Mode, Escape and User codes. Using the information in
this section, the user can write modules which perform custom functions, and
link them into the CGC 7900 system.

Page A-2 . 7900 DOS Manual cac 7900

A.1 Modules

A module is a sub-program, written according to a list of guidelines
so that it may be linked into the CGC 7900 software. There are seven
types of modules:

B: Boot only. This module contains code which is executed at
boot time, but not otherwise used by the system.

I: Input device. This is a driver which interfaces a physical
input device to the system. Currently defined "I" modules
drive the keyboard and serial port.

0: Output device. This is a driver which interfaces a physical
output device to the system. Currently defined "0" modules

. drive the serial ports, windows, and keyboard lights.

Mode: Mode code. This module performs functions which modify the
attributes of a window. The window software calls Mode
modules when it receives a Mode code sequence.

Plot: Plot submode. This module describes a Plot submode, and is
called when a window receives a Plot code sequence.

Escape: Escape code. This module is called by the Escape code
processor when an Escape code sequence is received. Escape
codes generally alter the status of the entire system.

User: User code. This module is called by the Escape code
processor when a User code sequence is received. User codes
generally al ter the status of the entire system, or cause
execution of a controlling program (such as DOS).

cae 7900 7900 DOS Manual Page A-3

Modules may exist in EPROM or in RAM. Most of the EPROM firmware in
the 7900 consists of modules. For each Mode, Plot, Escape and User code
sequence recognized by the 7900, there is a module in firmware which
defines the actions taken by that code sequence. All modules in the
system are "linked" whenever: the system is powered-up; CTRL SHIFT RESET
is pressed; or when CTRL BOOT is pressed.

The process of "linking" means that the system is scanned for
modules, the addresses of all modules are loaded into dispatch tables, and
any necessary initialization is performed. Note that this "linking" is
done sequentially, through EPROM, then through any RAM modules which may
have been loaded by the user. This means that two or more modules may
define the same code sequence, and the LAST one linked will be the one in
the dispatch" table after linking is complete. This makes it easy for a
user module to re-define a system function, with the module replacing the
firmware module which has the same identifying code at its beginning.

Mode, Plot, Escape" and User modules may accept arguments. The
required arguments are defined by the module, and the system automatically
parses arguments before passing control to the module. This relieves the
user from writing argument parsing routines, and insures that all
arguments are parsed in a consistent manner.

A module must save any registers it modifies, and restore the
registers before exiting. As decribed below, ~everal registers are
pre-loaded before the module is executed and provide the module with
system status information.

Page A-4 7900 DOS Manual CGC 7900

A.2 The Linking Process

The system scans two areas for modules when linking is performed:
first, each EPROM pair on the 7900 Raster Processor Board is checked. If
a ROM Expander card is installed and its address is consecutive with the
Raster Processor, firmware in the ROM Expander will also be checked. If
an EPROM pair is installed, and if a valid module is found at the start of
the EPROM, linking proceeds through the EPROM. Linking terminates when an
invalid length descriptor or an invalid module type code (one not in the
set B, I, 0, etc.) is found. Linking then proceeds to the start of the
next EPROM pair.

After all EPROM modules have been linked, the system checks for RAM
modules. RAM modules, if they exist, must be loaded into system RAM at
the address pointed to by RAMMDLE. (RAMMDLE is a pointer in CMOS memory,
and its contents may be' al tered with the "Thaw" command. See the 7900
User's Manual for details.) The default address for RAM modules is $1F000;
this allows 4K of space for modules, when a single Buffer Memory card is
installed.

If RAM modules exist, they must follow all the rules described in
this section, with an additional· provision: to indicate the presence of
RAM modules, the bytes 'MDLE' must be loaded into RAM at the start of the
first RAM module:

ORG.L
DC.L
etc.

$1F000
'MDLE'

Org where Thaw wants us to be
Indicate RAM modules here

The bytes 'MOLE' must NOT be included if a module is being put into
EPROM.

Modules are expected to be "back to back", existing in consecutive
words of code through memory. Thus, any tables or other data used by a
module must be WITHIN the module, not after it.

The last module should e·nd with the following statement:

DC. L -1 ,-1

This indicates to the linker that no more modules follow.

CGC' 7900 7900 DOS Manual Page A-5

A.3 Module Construction

Each module begins with a length descriptor. The length is used to,
determine where one module ends, and where the next one begins. The
address of each module is determined at boot time during the linking
process, and loaded into a dispatch table for future reference.

Next, a module contains one of the characters B, I, 0, Mode
(Control-A), Plot (Control-B), Escape (Control-[), or User (Control-U), to
define the type of module. This is immediately followed by a character
which uniquely identifies that module.

The remainder of the module is variable, depending on the type of
module you are writing. All of the seven types of modules are discussed
in this section, and exam'ples are provided.

Page A-6 7900 DOS Manual CGC 7900

A.3.1 Boot Modules

A Boot module is executed upon power-up, when the system RESET key is
pressed, or when the system is booted (by pressing CTRL BOOT). A Boot
module might be written to initialize a piece of hardware, or to pre-load
the Case Table for interfacing to a certain host computer.

The Boot module contains a length descriptor (word), the character
'B' followed by a dummy character ,and the code to be executed. It ends
wi th a RTS instruction.

•

ORG.L $1F01J1J
DC.L 'MDLE'

DC.W MdleEnd-IPC
DC.B 'B',m

Org where Thaw says to Org
Required for RAM modules

This is our length
Identify a Boot module

• Boot code begins here •••
• •
• and ends here.
•

RTS

MdleEnd EQU IPC
DC.L -1,-1
END

Make sure linking ends here

CGC ,1900 7900 DOS Manual Page A-1

A.3.2 Input/Output Modules

I/O modules define the interface between a physical device, such as a
printer, and the logical device assignment structure in the 1900. The I
or 0 module must be responsible for handling all transfers to or .from the
device, checking the status of the device (if applicable), and booting the
device (if necessary). Note that the Boot section of an I or 0 module
performs the function of a B module.

The I or 0 module begins with a length descriptor (word). This is
followed by the character 'I' or '0', defining an input or output module,
and a character between A and Z to identify this particular I/O module.
This character (A-Z) is used in the "Assign" command to identify the
phyical device which is being assigned.

Two words of code must follow the identifying character. These must
be either SHORT branches to Boot and Status sections of the module, or RTS
instructions. The Status section is used in an 'I' module to see whether
a character is ready to be read. The Status code 'should return the Z flag
SET if no character is available, or clear it if a character is available.
If the Status code returns Z set, the system will not execute the main
code.

In an input module (type I), if input is being buffered, the Status
code may return a "snapshot" of the oldest character in the buffer in
D0.B. This feature is used by the STATIN routine in TERMEM, and is called
by DOS to check for X-ON and X-OFF commands (to suspend output). Note
that the character snapshot must not remove the character from the input
buffer; the character should remain in the buffer until read by the main
code of the I module.

The Status section is not used in an '0' module. An '0' module must
not return until it h~ completed processing a character.

The main body of the module follows, terminated by a RTS. The Boot
and Status portions of the module must also terminate with aRTS. The
system passes a character to an Output module in register D0, and expects
an Input module to return a character in D0. The low 8 bits of the
register are used.

Note that a single device capable of both input and output requires
two modules, one I and one O. (Our device 'Q' below may have an I module
and an 0 module associated with it.)

Page A-a 7900 DOS Manual

..

.. Sample Input module (type 'I') for a device named Q • ..
ORG.L $1F000 Org where Thaw says to Org
DC.L 'MDLE' Required for RAM modules

DC. W MdleEnd-IPC Our length
DC.B 'I','Q' Input module for device 'Q'

BRA.S Qboot
BRA.S Qstat

..

.. Mai,n code for inputting a character from device Q • ..
Get input data

CGC 7900

MOVE.B
BSR
RTS

Qbuffer,D0
Stompbuf Remove this data from buffer

..

.. Code for booting device Q. (Executed at Boot time.) ..
Qboot

..

M:>VE.B
MOVE.B
MOVE.L
RTS

#0, QCtr 1 Por t Ini ti aliz e device, Q •.
#$FF, QCtrlPort
IQISR,Qvector Load interrupt vector

.. Code for checking status of Q • ..
Qstat TST.W

MOVE.B
RTS

MdleEnd EQU
DC.L
END

Qbufstat
Qbuffer,D0

IPC
-1,-1

Check buffer status
Snapshot oldest character

No more modules here

CGC·7900 7900 DOS Manual Page A-9

A.4 Argument Parsing

The module types discussed below may have arguments associated with
them. An argument is a set of characters or numbers which is passed to
the module. Mode, Plot, Escape and User modules may accept arguments.
The arguments required by a module are defined by that module, and are
parsed by the system before the module is called. The module then simply
picks up its arguments and processes them.

The system will parse ten types of arguments:

Arg type

1

2

3

4

5

6

7

8

9

A

Description

No argument, just a placeholder.

A single character.

A string of characters, delimited by a space, comma, or
semicolon.

A string of characters, delimited by a semicolon ONLY.

A signed 16-bit decimal number (or a number in Binary
Coordina te form, if the system is in Binary Mode).

A 16-bit hexadecimal number.

A decimal number, or the X component of a co or dina te
defined by the cursor.

A decimal number,. or the Y component of a coordinate
def ined by th e cursor.

An X-Y. coordinate pair (combination of 6 and 7; will
accept a period for cursor position).

Any number of coordinate pairs, delimited by a semicolon.

A decimal number, scaled but without translation.

Argument types 6, 7, 8 and 9 are designed to parse coordinate data.
Each of these will scale and translate arguments according to the scale
factors i'n use in the window which executed the module.

Page A-10· 1900 DOS Manual cae 1900

In defining arguments, the system looks for two words immediately
following the module's name. Up to eight argument types may be placed in
these words. If no arguments are to be processed, fill both words with
zero.

Peculiarities of each type of module are ~iscussed below.

caC·7900 7900 DOS Manual Page A-11

A.5 Mode Modules

A Mode module is executed when a window receives the Mode code
sequence identifying that module. Mode modules are expected to affect
only the window which called them, al though nothing in the system will
prevent a Mode module from affecting other windows or other aspects of the
system.

A Mode module consists of a length descriptor (word), followed by the
Mode character (control-A, decimal 1), and a character which uniquely
identifies the module. This character may be any ASCII character above
, 0' (hex $3.0).

The next long word in the Mode module defines a list of arguments, to
be parsed and passed to the module. Each nybble (4 bits) of the long word
specifies one of the ten argument types listed in section A.4.

The argument list in this long word is right-justified, and the
least-significant nybble defines the FIRST argument to be parsed. The'
long word must be left-filled with zeros to indicate the end of the
argument list. Up to 8 arguments may be defined in this long word.

Example:

DC.W MdleEnd-IPC
DC.B Mode, 'L'
DC.L $.00000144

Length Descriptor
Name of Mode module
Argument list

This list would specify that the module requires two decimal numbers,
followed by a single character.

Arguments to a Mode module are put onto the "A1 stack." That is, the
Mode module may assume that its arguments are waiting for it at the
address pointed to by (A 1), and successive bytes. The stack may contain
up to 16 long words. MODE codes are processed when they reach the screen
(or other physical device).

Page A-12 7900 DOS Manual

/ ~ ~tJ~tJ

A.5.1 Example Mode Module

**
* * * This sample Mode module does the same thing as *
* the TERMEM FilION/OFF command (MODEl 1/0) *
* . *
*************************************** ************

ORG.L $1'000 Org where Thaw says to Org
DC.L 'MDLEt Required for RAM modules !

/
DC. W FillEnd-IPC Length descriptor

DC.B Mode, 'f' ~~~f'!JJV
Mode EQU 1 (Mode is control-l)(
FilIon EQU 8 Bit 8 in D7

DC.W $0000 Our arg list
DC. W $0001 (just one character)

* * Code far module "Mode f" begins here.

* * The user would type Mode f <ri>

* * where <n> is either 0 or 1.

*
*

CMP.B It"J',(A1) Get. the flag

tfj Jl vv'

BEQ.S FillOff If it equals zero, kill Fill
BSET IFillon,D7 Else turn it on
RTS Then quit

FillOff BCLR IFillon, D7 Turn off Fill mode
RTS

FillEnd EQU IPC
DC.L -1,-1 Only if no mor e modul es
END

CGC 7900

~.~.J<.J

cac 7900 7900 DOS Manual Page A-13

A.6 Plot Modules

A Plot module performs a graphics function. All of the plotting
features in the 7900 firmware are written as Plot modules. Plot modules
generally accept co or dina te data as arguments, and perform some plotting
function based on this data. The 1flinking1f procedure used for all modules
means that you can write your own Pl.ot modules, link them in to add new
features to the 7900 firmware, or replace any existing features. PLOT
codes, like MODE codes, are processed when they reach the current output
device.

Plot modules begin with a length descriptor (word). This is followed
by the Plot character (control-B, decimal 2) and a character which
identifies the module. The identifier may be any character above ASCII
1f@1f (hex $40).

The next two words specify arguments to be passed to the Plot module.
The FIRST time a Plot module is entered, it may need to execute a special
sequence of instructions to initialize itself. A status bit tells the
module whether it is being entered for the first time, or on subsequent
calls.

The second word of the argument list is used to select arguments for
the first call. The first word selects arguments for subsequent calls.

Once a Plot code sequence has been entered, execution of the Plot
module begins. The module can then be repeatedl·y called; it will be
executed automatically when it has enough arguments.

Example:
DC.W ModEnd-IPC
DC.B Plot, 'Z'

DC. W
DC. W

$IJIJ 11
$001J8

Two chars for repeated calls
Coord arg for first call

In this example, the Plot module requires a coordinate argument when
it is first executed. After the coordinates have been entered, the system
will accept two single characters before entering the module (this is the
argument scheme used by Incremental Vector).

This process continues until another Plot submode is entered or until
the user turns Plot mode off.

Page A-14. 7900 DOS Manual CGC 7900

On entry to the Plot module (and other modules), certain registers
are set up for convenience. One of these is D7, which contains the window
status. The "Submode" bit of D7 (bit 17) is set when a Plot module is
first entered, to indicate that "this Plot Submode was just entered." If a
Plot module cares about whether the submode has just been entered, it must
check this bit and perform any necessary initialization if the bit is s.et.
Then, it must clear the "Submode" bit.

If the Plot module does not do anything special when it is first
entered, duplicate the argument list in the first and second word:

DC.W ModEnd-IPC
DC.B Plot,'Z'

DC. W
DC. W

$0008
$0008

A coord for repeated calls
and also for the first call.

Note that Plot modules may only parse FOUR arguments before execution
begins; Mode modules could have up to eight.

To prevent conflicts between Plot code and Mode code arguments, Plot
arguments are stacked on the "A3 Stack" and may be picked up from the
addresses pointed to by A3. The module must not al ter A3 or any other
registers. Up to 32 long words are allocated for Plot module arguments.

Remember that more than one window at a time may be in the same Plot
Submode. A Plot module should not store any local data which could
interfere with another window calling the Plot module. Local data should
be stored in the window table, or otherwise be localized to the window.

CGC·7900 7900 DOS Manual

A.6.1 Example PLOT Module

• • An example of how a Plot module should be set up.
•

ORG.L $ 1 Ff}f}f}
DC.L 'MDLE'

DC. W ModEnd-IPC
DC.B Plot, 'Z'

Plot EQU 2 (Plot is Control-B)

DC.W $f}008 One co or dina te pair normally,
DC.W $0088 Two pairs the first time through.

Submode EQU
BTST
BEQ.S

17
ISubmode,D7
Norm

Did we just enter the submode?
No, it's a normal entry

•
• Submode was just entered. We can set up
• in this block of code if necessary.
•

• •

BCLR ISubmode,D7 Prepare for next entry
RTS

• Come here if submode was NOT just entered.
• •
Norm

• •
• •

MOVEM.L D0-D2/A3,-(SP)
MOVE.W (A3)+,D0
MOVE.W (A3),D1

Save registers
Get X argument into Df)
Get Y argument into D1

Now, do something with the arguments here ••••
Maybe plot a vector or something.

MOVEM.L (SP)+,Df}-D2/A3 Restore registers
RTS

Page A-15

Page A-16 7900 DOS Manual CGC 7900

A.7 Escape and User Modules

Escape and User modules are identical to each other, and are similar
to the Mode modules discussed earlier. An Escape or User module begins
with a length descriptor (word), followed by the Esc ($1B hex) or User
($15 hex) character, and a single ASCII character which identifies the
module. The identifier may be any character above ASCII '@' ($40 hex).

The next two words define an argument list, exactly like a Mode
module. All arguments (up to eight) are parsed by the Escape Code
Processor and are passed to the Escape or User module. Arguments are
found on the A1stack (pointed to by A1). This does not conflict with the
stack of Mode arguments because Escape and User codes are processed by a
different routine than Mode codes.

Remember that Escape and User codes have identical priority in the
7900 code processing scheme. Escape and User modules are not specific to
a window, so they should be used to implement functions affecting the
entire machine. Escape and User codes are trapped and processed by the
Escape Code Processor.

CGC ·1900 1900 DOS Manual

A.1.1 Example ESCAPE code Module

* * A sample Escape code module to play with the
* lights on the keyboard. This could also have
* been written as a User module.
*

ORG.L $1F£I£I£I
DC.L 'MDLEt Identify a module is here

DC. W Mdl eEnd-IPC Length descriptor
DC.B Esc, 'X t Escape X is our sequence

Esc EQU $1B

DC.W $£1£1£1£1
DC.W $£1£1£14 We want one decimal /1

MOVE.W (A 1) ,Keybrd Send it to the keyboard
Keybrd EQU $FF8~8~ (Keyboard address)

RTS

MdleEnd EQU IPC
DC.L -1,-1

END

Page A-11

Page A-18. 7900 DOS Manual CGC 7900

A.8 Register Setup for Modules

When a module is executed, several registers are pre-loaded for
convenience. The following table defines what each register is used for,
when each type of module is entered.

Module

B (boot)

I (input)

o (output)

Mode, Plot

Escape, User

Register Usage

No registers pre-loadeq.

No registers pre-loaded.

No registers pre-loaded.

A0: Points to base of Window Table for
the window which called the module
(see Window Table description).

A1: Points to Mode arguments (parsed
before module execution begins).

A3: Points to Plot arguments (parsed
before module execution begins).

D7: Contains window status for the window
which called the module (see Window
Table description).

A0: Points to base of the Window Table
for window A (the Master Window).

A1: Points to arguments (parsed before
module execution begins).

D7: Contains window status for window A
and Escape code status.

CGC 7900 7900 DOS Manual Page A-19

A.9 Window Tables

512 bytes of data are allocated as a Window Table for each active
window. These bytes hold the current status of the window, including such
items as color, blink, scale, window limits, and most other window
attributes. Window attributes are usually set by Mode code sequences, and
Mode modules will often want to alter items in a Window Table.

The following chart lists the location of each item in the window
table, by giving an offset into the table where each item may be found.
An item can be al tered by a module by using the listed offset as a
displacement from (A"), since A" is pre-loaded with the base of the Window
Table.

Example:

FrgCol EQU $8E Offset in table
for Foreground color

MOVE.W FrgCol(A"),D0 Get color into D0

In this table, entries are marked with n.Bn, n.wn, or n.Ln, to indicate
the appropriate data size (where possible).

$00 .L !VALUE: Temporary storage area (reserved)
$04 .L Arglst: Mode argument list
$08 .L Parglst: Plot argument list
$0C .L STATUS: copy of D7 status long word
$10 .L AArgstk: pointer to Mode argument stack
$14 .L Argdsp: Mode dispatch address
$18 .L Aprgstk: pointer to Plot argument stack
$1C .L Prgdsp: Plot dispatch address (submode)

Window variables are stored beginning here
and occupy one word each.

$20 .W
$22 .W

$5C .W
$5E .W

Window Variable A
Window Variable B

Window Variable _
Window Variable"

Page A-20. 7900 DOS Manual

The following items are also Window Variables but
are used for system data as well.

$60 .W
$62 .w
$64 .W
$66 .W
$68 .W
$6A .W
$6C .W
$6E .W
$70 .W
$72 .W
$74 .W
$76 ".W
$78 .W
$7A .W
$7C .W
$7E .W
$80 .W
$82 .W
$84 .W
$86 .W
$88 .W
$8A .W
$8C .W
$8E • W
$90 .W
$92 .W
$94 .W
$96 .W
$98 .W
$9A .W
$9C .L
.$A0 .L
$A4 .L
$A8 .L

AcursX:
AcursY:
CursX:
CursY:
AwindX.0:
AwindY.0:
AwindX1 :
AwindY1 :
WindX.0:
WindY.0:
WindX1 :
WindY1 :
CharXZ :
CharYZ :
CharDX:
CharDY:
CharXM:
CharYM:
XVmin:
YVmin:
Tabcol:
Vecwid:
BkgCol:
FrgCol:
PlaneE:
CursCol:
OldX:
OldY:
!Sol:
YSo1:
Charadr:
Endbuf:
Plotdot:
Plotvect:

Overlay cursor X position
Overlay cursor Y position
Bitmap cursor X position
Bitmap cursor Y position
Overlay window upper left corner X
Overlay window upper left corner Y
Overlay window lower right corner X
Overlay window lower right corner Y
Bitmap window upper left corner X
Bitmap window upper left corner Y
Bitmap window lower right corner X
Bitmap window lower right corner Y
Character X raster size
Character Y raster size
Character delta X after write
Character delta Y after write
Character X multiplier
Character Y multiplier
Virtual X minimum value
Virtual Y minimum value
Tab stop spacing
Vector width
Background color
Foreground color
Planes enabled
Cursor color (not used, reserved)
Rubber band X position
Rubber band Y position
Virtual X Scale value
Virtual Y Scale value
Character set base address
End of arguments for virtual co or dina te
Dispa tch address for dot plotting
Dispatch address for vectors

The following five items are used for'
raster processor operations in the window.

$AC .W
$AE .W
$B0 .W
$B2 .W
$B4 .W

WXsrc:
WYsrc:
WDXsrc:
WDYsrc:
Wctrl:

X source raster operating point
Y source raster operating point
Delta X for source raster
Delta Y for source raster
Control bytes for rasters

CGC 7900

CGC·7900

$B6-$F5 Curstg:
$F6-$135 Argstk:
$136-$1B9 Pargstk:

7900 DOS Manual

32 words for cursor pixel storage
Argument stack for Modeargs (32 words)
Argument stack for Plot args (64 words)

The following four bytes contain the current
Overlay color, blink and transparency attributes.

$1BA
$1BB
$1BC
$1BD

$1BE-$1FF

AentSt:
AentBC:
AentFC:
AentCh:

Transparency
Background color
Foreground color
ASCII character portion

Reserved for future expansion

Page A-21

Page A-22· 7900 DOS Manual CGC 7900

A.10 Window Status and ESCAPE Code Status

As shown before, register ··D7 is pre-loaded with status information
when certain types of modules are executed. The bits in D7 are defined as
follows:

Bit

o
1
2
3
4
5
6
7
8
9

Hl
11
12
15
16
1T
18
19
2"
21
23
24
25
26
27
28
29
3~
31

modeF:
plotF:
Moredat:
Negnum:
visctrl:
Pltmode:
Overlay:
Curson:
Fillon:
Blinkon:
Rollon:
OvrStrk:
Binmode:
Rubron:
Patton:
Submode:
Cursin:
BinTwo:
VScale:
A7on:
Local:
Full:
Escflg:
Usrflg:
Create:
LitP~:
LitP1 :
Literal :
Escdone:

Meaning

Mode flag used by window processor
Plot flag used by window processor
Control bit used by argument scanners
Control bit used by argument scanners
SET when visible ctrls are on
SET when in a plot submode (not alpha)
SET when Overlay on (not Bitmap)
SET when cursor is on
SET when fill is on
SET when blink is on
SET when roll is on
SET when overstrike is on
SET when binary mode is on
SET when rubber band is on
SET when patterns are on
SET when Plot submode just entered
SET when Bitmap cursor in screen RAM
Flag for binary co or dina te parser
SET when scaling is on
SET when A7 character set active
SET in LOCAL mode
SET in FULL duplex
Escape code processor flag
Escape code processor flag
SET if Create is on
Escape code processor flag
Escape code processor flag
SET if Literal Create is on
Escape code processor flag

Bit ~ is the least significant bit.
Unused bits are reserved.

CGC 7900 7900 DOS Manual Page A-23

A.11 Writing Transients

This section describes the procedure for writing a transient program
executable under DOS.

A transient must be located in an appropriate area of RAM, usually
the DOS Transient Program Area. This begins at address $1C3C (hex). The
length of this area is variable depending on your requirements, but will
normally be at least 16K bytes.

Any RAM used by a transient should be in this same area of memory, or
in the DOS 'Buffer which immediately follows it. RAM allocations are
defined by pointers in system RAM and in CMOS, described earlier. Your
transient should be careful not to exceed these allocations or the system
may become confused.

When a transient is executed, DOS loads it at whatever address it was
assembled (DOS does not check whether this is a legal addressl). DOS then
begins execution at the start address you defined in your END statement.

On entry to a transient, A1 pOints past the first character after the
name of the transient. If your transient expects to pick up an argument
from the command line, such as a file name, A1 will be pointing to- that
argument.

NOTE:

DOS will only advance A1 past the FIRST delimiter it finds. If the
user typed two spaces, commas, etc., A1 will still be pointing to a
delimiter.

Your transient now has control of the system. Using routines provided
in the jump tables, your transient can pick up arguments from the command
line, open and close files, and (See Appendix D in the 7900 User's Manual
for information on Traps.)

If the last delimiter found by your program was a colon, assume that
another command follows on the command line, and flag this befor e
returning to DOS. This is done by setting D1.B non-zero, and pointing A 1
to the first character of the command following the colon. Note that most
DOS argument parsing routines automatically bump A 1 to the next character
after gathering arguments.

Page A-24· 7900 DOS Manual CGC 7900

Before returning to DOS, your transient must set Df'.B zero if no
errors occurred. If you want DOS to report an error, put the error number
in Df'.B and DOS will display the error message for you. If an error is
reported, DOS will not attempt to process any further commands which were
entered on the same command line.

If no errors were reported, and you return to DOS with D1.B non-zero,
DOS assumes another command is waiting on the input line to be processed.
A 1 should be pointing to the first character of the next command. Your
transient will have to determine whether a colon existed on the command
line by backing up A1 to look for it. (Some DOS routines, such as GETNAM,
assist in this process by returning the delimiter character to you).

cae 7900 7900 DOS Manual Page A-25

Here is a summary of registers used by DOS transients:

On entry to a transient:

AO.L points to the current User File Table.

A1.L points to the first unused character in the command line.

On exit from a transient:

DO.B D1.B A1

don't
care

Ala

don't
care

Action

No errors,
no further commands.

:~---~
<>Ia

I
I don't
I care

don't
care

I
I points to I Error, D0 = DOS
I UFT of fil e I error number.

I-~---~--------

<>0 pOints to
next cmd.

don't
care

No errors, process
next command.

Page A-26· 7900 DOS Manual

•••
• •
• Sample transient: READ
• Command format: READ (fil ename>

• •
• This transient demonstrates:
• • • • • • •

Parsing a file name as a command line argument
Opening a file
Reading data from the file
Exiting from a tranSient, returning properly to DOS

• •••
• • • DOS Equates
•
GETNAM EQU $8~C064
RWBYTE EQU $8~C024
OPEN EQU $8~C010
PRTMSG EQU $8~C084
• •
• DOS UFT Equates
•
TUFT1 EQU $11E2
U EQU " SLOT EQU U
BUFFP EQU SLOT+2
MBYTES EQU BUFFP+4
CONTRL EQU MBYTES+4
DRIVE EQU CONTRL+2
ERROR EQU DRIVE+1
BPNTR EQU ERROR+1
BLNGTH EQU BPNTR+4
PNAME EQU BLNGTH+4
SNAME EQU PNAME+8
REV EQU SNAME+3
PSWRD EQU REV+1
START EQU PSWRD+2
LENGTH EQU START+4
ORIGIN EQU LENG'I'H+4
ACCESS EQU ORIGIN+4
STATUS EQU ACCESs+4
•

Get file name from input line
Read/Write bytes to disk
Open existing disk file
Print ASCII string

UFT 11 for transients
Base of UFT
Logical file number
Memory pointer for transfer
of bytes to transfer
various flags
Drive 1 (LUN)
Error I of last operation
Current pointer to file on disk
Current file length
Primary file name
Secondary file name
Revision level (not used)
File password
Points to file start on disk
Length of fil e on di sk
Time/Date of file orl.gl.n
Time/Date of last access
File status

eGe 7900

CGC·7900

* * TERMEM Equates

*
CHAROUT EQU
CHARIN EQU
CTRLIN EQU
CTRL OUT EQU·
DOSBUFP EQU
DOSBUFZ EQU
*
*

$8~0008
$8~000C
$8~0014
$8~0010
$C3C
$E4~116

* ASCII Equates

* CR
LF
DEL
XOFF

*

EQU
EQU
EQU
EQU

13
10
$7F
$13

7900 DOS Manual

Character-out
Character-in
Character-in with Esc processing
Character-out with Esc proc
Pointer to DOS buffer
Size of DOS buffer

Carriage return
Line feed
Delete
X-off (Control-S)

* ***
*
* The transient begins execution here.

*

READ

*
*

ORG.L $1C3C
LLEN 132

EQU
MOVE.L
MOVE.L
JSR
MOVE.L
TST.B
BNE

IPC
ITUFT1,A"
IDefName,A2
GE'INAM
A1,SaveA1
D0
READerr

CMPI.B It: t ,D1
SEQ Another

We run in DOS tr ansient area
Printer is 132 columns wide

Point to UFT to use
Point to default name: '*.SRC'
Get file name into UFT.
Save cmd line pointer for DOS

GE'INAM found an error.

Was command delimiter a colon?
If YES, another command follows.

* The UFT now contains a filename, parsed by GETNAM. (If
* no filename was entered, the defaul t filename remains
* in the UFT, *.SRC)
*
*

*

JSR
TST.B
BNE

OPEN
D0
READerr

Attempt to open the file.

OPEN found an error.

Page A-27

Page A-28· 7900 DOS Manual

* * OPEN has now provided the UFT with details of the file
* such as its length and disk location.
*
*
READ 1 MOVE.L BLNG'IH-U(A~) ,D4 D4.L = file length remaining

BEQ.S READe x If zero, file is empty now.

MOVE.L DOSBUFP,BUFFP-U(A0) Put data in DOS buffer
CLR.L D5
MOVE.W DOSBUFZ,D5 D5.L = size of DOS buffer

* * Check if bytes left in file will fit into DOS buffer.
*

READ2

*

CMP.L D4,D5
BHI.S READ2
MOVE.L D5,D4

MOVE.L
BSET
JSR
TST.B
BNE

D4,MBYTES-tJ(A0)
IfJ,CONTRL-tJ(A0)
RWBYTE
DfJ
READerr

Will it all fit?
Yes.
NO, so only read what WILL fit.

Read this many bytes
Say READ
Go and read bytes from disk.

Error from RWBYTE.

* We have read bytes into the DOS buffer. D4 is the number
* of bytes.
*

*

MOVE.L DOSBUFP,A2
SUBQ.L 11,D4
CLR. W D1

* Display the bytes.

* READ3 MOVE.B (A2)+,DfJ

*

JSR CHAR OUT
CMP. B flCR , DtJ
BNE.S READ4
MOVEQ.L ILF,DtJ
JSR CHAROUT

POint to the data
Decrement count for DBRA below
Specify Device 0 for CHAR OUT

Get a byte of data
Display it
Was ita Carriage Return?
No

Follow Return with Line Feed.

* After printing each character, check if we should pause.

* READ4

*

JSR
BEQ.S
CMP.B
BEQ
CMP.B
BNE.S

CHAR IN
READ 5
IDEL,DtJ
READex
IXOFF,DtJ
READ5

Check the keyboard.
No key was hit.
Did he hit DELETE?
yes •••• quit.
Did he hit Ctrl-S?
No, so ignore the key.

CGC 7900

CGC 7900 7900 DOS Manual

•
• Control-S was hit, so pause.
•
READp JSR

BEQ.S
CMP.B
BEQ

READ 5 DBRA
BRA

CHAR IN
READp
IDEL,DIJ
READe x
D4,READ3
READ 1

Wai t for another key

DELETE?
Yes, so quit.
Go display more data.
Go get more data from disk.

•• ** •••
•
• Come here for normal exit from the transient.
•
READex CLR.B DIJ Flag NO error and fall into exit.

• * Come here to go back to DOS with error message.
• DIJ.B holds the error code.
• A~.L points to OFT of offending file.
•
READerr CLR.W D1

Df),-{SP)
ILF,Df)
CHAR OUT
CH~OUT

MOVE. W
MOVE.B
JSR .
JSR
MOVE.B Another,D1
MOVE.L SaveA1,A1
MOVE.W (SP)+,DIJ
RTS

DefName DC.B ,. SRC'
DS.L ~

SaveA1 DC.L 0
Another DS.B 1

DS.L 0
• • • •

END READ
• • •

Logical Device ~ for CHAROUT
Save the error flag
Print a line feed
Or two •••

Flag if another command existed
Restore command line pointer
Restore the error flag
Back to you, DOS!

Default name for OFT (11 chars)
Align even addresses after DC.B

Place to save A 1
Flag for colon on command line
Align even addresses after DS.B

Begin execution at label READ

Page A-29

caC·7900 7900 DOS Manual Page B-1

Appendix B -- Jump Tables

B. 1 TERMEM Jump Tables

This section describes the utilities available in cac 7900 PROM
firmware. Each of these routines may be accessed through a subroutine
call (JSR) to the appropriate address. BSR will not work, because the
jump tables will be located beyond a 16-bit displacement from your
program.

Registers used in each routine are defined in this section. Unless
noted, the routine only alters registers as necessary to return values to
the caller. The notation "D1.W" means that the low word (16 bits) of D1
are used by the routine, 00.B means the low byte of 00, and so on.

Name: CHAR OUT

Address: $8~~~08

Entry: 00.B = character to pass to logical device.
01. W = logical device number (0 to 4 are defined).

CHAR OUT is the ~stem character-out routine. It passes a character to
a logical output device. The system I s device assignment structure will
then pass the character on to a physical device, if possible. Logical
output device 13 is normally used to put characters on the screen, and
device 1 is normally connected .to the serial port. If the character is
part of a Mode or Plot code sequence, it will be processed when it reaches
a Window (physical device). Escape and User codes are NOT processed by
CHAR OUT, but are treated as normal characters. To process Escape and User
codes, see CTRLOUT, CTRLIN and ESCPROC below.

Page B-2 7900 DOS Manual CGC 7900

Name: CHAR IN

Address: $80000C

Entry: D1.W = logical device number to read from

Exit: Zero flag SET if no character was available. Zero flag CLEAR
and character in D0.B if available

CHARIN is the system character-in routine. It reads a character from
a logical input device. Reading from device " will get a character from
the keyboard (if available), device 1 will be the serial port.

To wai t for a character from CHAR IN , use a l·oop on the EQ condition:

Loop JSR
BEQ.S

CHAR IN
Loop

Get a character, if any
No character yet

Escape and User codes are not processed by CHAR IN , but are treated as
normal characters. See CTRLOUT, CTRLIN and ESCPROC below.

CGC·1900 1900 DOS Manual

Name: CTRLOUT

Address: $80~~1~

Entry: D~.B = character to pass to logical device.
D1.W = logical device number.
Zero flag must NOT be set.

Page B-3

CTRLOUT is like CTRLIN, but processes Escape and User codes before
passing the character on to the logical output device. It does this by
calling ESCPROC (see below), then calling CHAROUT.

NOTE:

Do not call CTRLOUT if the zero flag is set -- your character will
be ignored.

Name: CTRLIN

Address: $80~~14

Entry: D1 • W = logical device number to read from.

Exit: Zero flag SET if no character was available. Zero flag CLEAR
and character in D~.B if available.

CTRLIN is like CHAR IN , but processes Escape and User codes before
returning a character to you. It does this by calling CHARIN and then
ESCPROC. If an Escape or User code was entered, it will be "eaten" by
ESCPROC and ~he zero flag will be ret:urned to you, indicating that no
character was available.

Page B-4 7900 DOS Manual CGC 7900

Name: STAT IN

Address: $8S008C

Entry: D1 • W = logical device number to read from.

Exit: D0.B = snapshot of oldest character (see below). Zero flag
CLEAR if character available, SET if not.

STATIN is similar to CHARIN and CTRLIN, in that it returns the status
of an input device reflected in the zero flag. STATIN will also return a
snapshot of the oldest character in the input buffer (if possible; some
devices are not buffered). STATIN does not actually remove a character
from a buffer. A character returned by STAT IN will be 'returned again by
subsequent calls to STAT IN , and will also be returned by a call to CHAR IN •
Only after CHARIN or CTRLIN have been called, is the character removed
from the device's input buffer.

Name: ESCPROC

Address: $8S0018

Entry:

Exit:

D0.B = character to process. The zero flag must NOT be set.

Zero flag SET if character was "eaten" by ESCPROC. Zero flag
CLEAR if character is still available.

ESCPROC handles Escape and User code processing. It is used by CTRLIN
and CTRLOUT, and may also be called directly. ESCPROC detects Escape and
User codes, and processes them by setting the zero ·flag to indicate that
the character was processed (and thus should not be considered available).
After the Escape or User code is detected, ESCPROC will process subsequent
characters to satisfy the argument list of that particular Escape or User
function, then execute the function. This will normally be transparent to
the user.

Note that ESCPROC also processes the Create Buffer. Characters must
flow through ESCPROC (or CTRLIN, or CTRLOUT), or they will not be put into
the Create Buffer.

CGC·7900 7900 DOS Manual Page B-5

Name: BOOT

Address: $8~~~4C

BOOT boots the system. It does not return to the caller. One reason
for calling BOOT would be to link in any RAM modules you have loaded into
sy st em memory.

Name: TERMEM

Address: $800~40

TERMEM is the entry point for the Terminal Emulator, the main
operating program in the CGe 7900. Programs· can jump to this address to
terminate execution without returning to DOS. TERMEM does not return to
the caller. When entering TERMEM~ it remains in the same status it was
last in (half duplex, full duplex, or local).

Name: Keystuff

Address: $8~~088

Entry: D0.W = character to put into keyboard buffer

Keystuff puts 8-bit characters into the keyboard input buffer. These
characters will be read ~rom the buffer along with. any characters which
were actuallY typed. Keystuff also checks if the M1 and/or M2 keys are
active (signified by bits Hl and 11 being set), and performs translations
if so. To insert a normal 8-bit character into the keyboard buffer using
Keystuff, mask off these bits:

AND.W I$FF,D0 Make 8-bit only
JSR Keystuff And put into buffer

If the keyboard buffer is full, the character is discarded.

Page B-6 7900 DOS Manual CGC 7900

Name: .Scankey

Address: $8~0098

Entry: Df>. W = character to be converted and buffered.

Scankey converts an 8-bit code (produced by the upper half of the
keyboard) into a stream of 7-bit codes, then stuffs them into the keyboard
input buffer. See Keystuff, described above.

Name: NOISE

Address: $800054

Entry: A0 points to tone descriptor block (14 bytes).

Ex! t: A0 is incremented past block.

NOISE feeds data to the sound generator. 14 bytes are loaded
. sequentially into the tone chip. These bytes go into registers 0 through

13 of the tone chip (a General Instruments AY-3-8910), and control the
following attributes:

Register I Purpose

0 Fine Tune A (8 bits)
1 Coarse Tune A (4 bits)
2 Fine Tune B (8 bits)
3 Coarse Tune B (4 bits)

4 Fine Tune C (8 bits)
5 Coarse Tune C (4 bits)
6 Noise Period (5 bits)
7 Output Enable

8 A Amplitude (5 bits)
9 B Amplitude (5 bits)
10 C Amplitude (5 bits)
11 Envelope Period Fine (8 bits)
12 Envelope Period Coarse (8 bits)

13 Envelope Shape/Cycle Control (4 bits)

CGC·7900 7900 DOS Manual Page B-7

The tone generator has three voices, A, B,. and C, each of which can
be programmed to produce tone or noise. If a given voice is programmed
for both tone and noise, noise will usually dominate. Tone and/or noise
are enabled by register 7:

7 6 5 4 3. 2

I X I X I An I Bn I Cn I At I Bt I Ct I

A zero on any of the "n" bits enables noise from that channel, and a
zero on any of the "t" bits enables tone from that channel. Unused
channels are turned off by writing ones in the desired bits.

Registers 8, 9 and 1~ control the output amplitudes:

7 6 5 4 3 2

I X I X I X I A I manual level ctrl I

A one in bit 4 specifies the channel t s amplitude to be controlled by
the envelope generator (Auto mode). If bit 4 is a zero, the amplitude is
fixed by the value in bits 0-3.

The envelope generator is controlled by register 13:

7 6 5 4 3 2

I X I X I X I X Icontlattkl altlholdl

Bits ~-3 describe the envelope with "continue," "attack,"
"alternate," and "hold." See General Instruments literature for the
envelope waveforms. The 7900 Hardware Reference Manual also has more.
information on the sound generator.

Page B-8 7900 DOS Manual cae 7900

Name: PRTDEC

Address: $8~0058

Entry: D0.W = decimal number to convert to ASCII.
A1.L = pointer to buffer where ASCII goes.

En t: A 1 is incremented past the string.

PRTDEC prints a decimal number as an ASCII string. The string is
placed into memory at (A1)+.

Name: SIND0

Address: $8~0064

Entry: DD.W = angle in integer degrees.

En t: DD. W = sine of that angle.

SINDD takes the sine of an angle and returns the value as a 14.:.bit
fraction. The form of the fraction is:

ISM F F F F F F F F F F F F F F I

Binary point

Where:

S is the sign of the value (1 is negative).

M is the mantissa (zero except if the value is one or negative).

F are the fractional bits.

The following example uses SINDD to compute Y*SIN(Theta). Dt} is the
angle Theta, and Y is in the lower word of D1. The value is returned in
D1.

JSR
MOLS
ASL.L
SWAP
EXT.L

SINDt}
DD,D1
112,D1
D1
D1

Get sine of theta
Y = Y*SIN (theta)
Adjust for 14-bit fraction

Clear garbage from high word

CGC·7900 7900 DOS Manual

Name: PLRRCT

Address: $800068

Entry: D0.W = radius
D1 • W = angle in integer degrees

Exit: D0.W = X
D1. W = Y

Page B-9

PLRRCT performs polar to rectangular conversion, using SIND0 and a
technique similar to the example above.

Name: READJOY

Address: $800070

Entry: A1.L = pointer to joystick X, Y or Z axis.

Exit: D0.W = value read from joystick.

READJOY returns the current value of a joystick axis as a 10-bit
number in the range m to 1 m23 .' A 1 must be se t to the address of one of
the joystick axes, as follows:

X $FF80C6
Y $FF80CA
Z $FF80CC

Page B-10. 7900 DOS Manual cac 7900

B.2 Plotting Functions

Many of the plotting primitives in the 7900 may be accessed through
jump tables. Plot functions are specific to a window, which means the
system must know which window to use for executing the plot routine. Data
from the Window Table determines such things as the color of the plotted
figure, and whether or not the figure will be filled.

Before calling any of these plot routines, the data to be plotted
must be scaled to screen coordinates, between " and '''23. Data outside
this range will be plotted unpredictably unless clipping is enabled. If
clipping is enabled, out-of-range data will not be plotted.

All of the plot routines discussed below need register A" to point to
the base address of the current Window Table. This will be done
automatically if your program is linked as a module,
wri ting a transient, you must load A" in your program.
window A is desired, you may set up A" by this code:

- B tmGWin EQU $C4!l
MOVE. L BtmGWin, A"

Pointer to W table base
Get pointer

but if you are
If plotting in

Each Window Table occupies 512 bytes. If Di).L contains the window
number (0 through 7, for windows named A through H), the following code
would point A" to the base of any Window Table:

MOVE.L BtmGWin,A"
ASL.L '5,Di)
ASL.L 14,D0
ADD.L Di),A"

Get pointer

Di)=512*Di)
Add to base

Some of the functions described below require an argument list, which
is passed on the -A3 stack.- The values passed to the routine are pointed
to by (A3), and the words following (A3). An area of the Window Table
called Pargstk (Plot Argument Stack) is normally used to pass arguments,
or your program. can use other RAM for this purpose. To load the Pargstk
area with four values for a vector, the following code could be used:

Pargstk EQU $136 Offset in W table for plot args

LEA Pargstk(A0) ,A3 Point to Pargstk
MOVE.W X1,(A3)
MOVE.W Y1,2(A3) Load XY values on A3 stack
MOVE.W X2,4(A3)
MOVE.W Y2,6(A3)
JSR F'VECT Draw a vector

CGC·7900 7900 DOS Manual Page B-11

Before calling any of these plot routines, the data to be plotted
must be scaled to screen co or dina tes, between 0 and 1023. Data outside
this range will be plotted unpredictably.

Page B-12·

Name: PLOTXY

Address: $8~005C

Entry: D0. W = X value
D 1 • W = Y value

7900 DOS Manual

Ae.L = pointer to Window Table

CGC 7900

PLOTXY plots a single dot in the Overlay or Bitmap, at the XY
co or dina te specified by Df) and D1. PLOTXY vectors through the Window
Table entry called Plotdot, which holds the address of a routine to plot a
dot in the Overlay or Bitmap. Plotdot also hold the address of a routine
which plots patterns in the Bitmap, if patterns have been enabled. The
address in Plotdot is loaded by any of the "Mode 0" or "Mode T" commands.
The current foreground color of the window is used unless patterns are
active.

Name: FVECT

Address: $8~0060

Entry: A3.L = pointer to X1, Y1, 12, Y2 (words)
Ae.L = pointer to Window Table

FVECT plots a vector in the Overlay or Bitmap, from (X1, Y1) to (X2,
Y2). FVECT vectors through the Window Table entry called Plotvect, which
holds the address of a routine to plot a vector in the Overlay or Bitmap
(see the discussion of Plotdot above). The address in Plotvect is loaded
by any of the "Mode 0" or "Mode T" commands. The current foreground color
of the window (stored in the window table) is used unless patterns are
active, OR UNLESS THE VECTOR IS HORIZONTAL. If Y1=Y2, a special fast
vector routine is used which writes part of the vector through proprietary
Color Status hardware. The color produced by Color Status is determined
by loading the Color Status Foreground latch, a word at address $E4~016.
To use FVECT properly, you must load the Window Table and the Color Status
latch with your desired color.

NOTE:

Both FVECT and PLOTXY make use of the optional Hardware VectOl~

Generator, if one is installed in your system.

CGC·7900 7900 DOS Manual Page B-13

Name: BVECT (Bold Vectors)

Address: $8~0074

Entry: A3.L = pointer to X1, Y1, X2, Y2 (words) and 4 scratch words
A~.L = pointer to Window Table
D7.L = Window Table status (see section A.10)

Name: CIRCLE

Address: $8~0078

Entry: A3.L = pointer to X, Y, radius (words)
A~.L = pointer to Window Table
D7.L = Window Table status

Name: ARC

Address: $8~007C

Entry: A3.L = pointer to X, Y, radius, start, delta (words)
A~.L = pointer to Window Table
D7.L = Window Table status

Name: CURVE

Address: $8~0084

Entry: A3.L = pointer to X1, Y1, X2, Y2, X3, Y3, X4, Y4 (words)
A0.L = pointer to Window Table
D7.L = Window Table status

Each of these routines plots a figure according to the attributes of
the Window Table pointed to by A0. Plotting will occur in the Overlay or
Bitmap, with or without patterns, according to the current status of the
window.

Page B-14 7900 DOS Manual

Name: POLYG

Address: $800080

Entry: A3.L = pointer to coordinate pairs (words)
A0.L = pointer to Window Table
D7.L = Window Table status

CGC 7900

POLYG is similar to the other plot routines described above, except
that it can accept a variable-length argument list. The beginning of the
list is pointed to by A3.L, and the end of the list is pointed to by an
entry in the Window Table named Endbuf. Endbuf is a long word, and it
holds the address of the word PAST the last co or dina te in the polygon
argument list.

1------------
BB.

,-----------
BB

BB

BB

(A3) -> X1

Endbuf(A0)->

Y1

,------------
X2 Each item in this

1----------- ta bl e is 0 ne wor d.
Y2

1------------
X3

,------------
Y3

1-----------
Xn

1------------
Yn

1-----------,
I EE
I . ,------------
I EE
l----~--------

CGC·7900 7900 DOS Manual Page B-15

Pairs of words before and after the list (marked BB and EE above) are
used as scratch areas by POLYG, and your program should allow room for
them.

The following code might be used to call POLYG:

Pargstk
Endbuf

EQU $136
EQU $A0

LEA Pargstk(A0) ,A3
MOVE.L A3,-(SP)
MOVE. W X1,(A3)+
MOVE.W Y1,(A3)+
MOVE. W X2,(A3)+
MOVE. W Y2, (A3)+

MOVE.W Xn,(A3)+
MOVE. W Yn, (A3)+
MOVE.L A3,Endbuf(A0)
MOVE.L (SP)+,A3

JSR POLYG

Offsets in W table

Point to arg stack
Save pointer

Load coordinates
onto A3 stack

Put last values

Set up end of list
Retrieve pointer to
start of list

Do polygon

Page B-16- 7900 DOS Manual CGC 7900

B.3 DOS Jump Tables

Name: DOS

Address: $8gC008

This is the main entry point to DOS. It requests the user's password
and begins accepting DOS commands.

Name: EXDOS

Address: $8~C00C

Entry:

Exit:

A 1.L = pointer to command line.

A1.L = pointer to next (unprocessed) character in line.
D0.B = error code (if any), or zero if no error.

EXDOS attempts to execute a transient. The name of the transient
should be pointed to (on the command line) by A1. EXDOS calls GETNAM to
parse the transient name, OPEN to locate the file on disk,. and LOAD to
load the file into memory. If successful, execution begins at the
transient's start address. The- TRANSIENT is responsible for returning A 1
and 00 as required above.

Name: OPEN

Address: $80C010

Entry: A0.L = pointer to UFT in use.

Exit: D0.B = error code (if any), or zero if no error.

OPEN looks up a file on a disk. Before calling OPEN, the UFT (User
File Table) should contain the complete filename: primary, secondary,
password, and drive. (The UFT is an area of RAM which defines the current
status of a file, and includes all of the file's vital statistics. OFT's
are discussed later.) See GE'INAM for a way to parse the filename. If
successful, OPEN will add the following information to the UFT: START,
LENGTH, ACCESS, STATUS, BPNTER, BLNGTH, SLOT. If unsuccessful, DD.B holds
the error code.

CGC, 7900 7900 DOS Manual Page B-17

Name: CLOSE

Address: $80C014

Entry: A0.L = pointer to UFT in use.

Exit: D0.B = error code (if any), or zero if no error.

CLOSE enters a new fil e into the disk directory. The UFT' must be
completely built before calling CLOSE. CLOSE is only used on files which
have been created by CREATE, not on existing files which have been OPENed.
If the file name specified in the UFT already exists, the old file by that
name is killed automatically.

Name: CREATE

Address: $80C018

Entry: A0.L = pointer to UFT to be used.

Exit: D0.B = error code (if any), or 'zero if no error.

CREATE prepares the largest available free space on the disk for
writing. Before calling CREATE, the UFT should contain the complete
filename: primary, secondary, password, and drive number. CREATE will add
SLOT, START, LENGTH, ORIGn~, ACCESS, BPNTER and BLNGTH. These items will
reflect th~ largest currently available disk space.

Name: LOAD

Address: $80C020

Entry: A0.L = pointer to UFT in use.

Exit: D0.B = error code (if any), or zero if no error.

LOAD reads ar.l executable file into memory. The file must be in load
module form, as a .SYS file. If the file is loaded successfully, RAM
location GOADDR ($11B4) will contain the file's normal execution address.
LOAD returns to the caller, who may then jump to the address in GOADDR if
desired.

Page B-18. 7900 DOS Manual CGC 7900

Name: RWB YTE

Address: $8~C024

Entry: A~.L = pointer to UFT in use.

Exit: D0.B = error code (if any), or zero if no error.

RWBYTE is the main disk read/write routine. The UFT must contain
proper values in BUFFP, MBYTES, DRIVE, CONTROL, BPNTER, BLNGTH, and
STATUS. BUFFP is the memory address to/from which data will be moved.
MBYTES is the number of bytes. If MBYTES <128, then data may be
transferred to/from an odd memory address. If MBYTES >= 128, data must be
transferred to/from even addresses only.

On exit, BUFFP points past the memory location where the last
transfer took place. MBYTES will be zero if all requested bytes were
transferred, else it will be the number of bytes NOT transferred (due to
error). The EOF bit of CONTROL will be set appropriately. BPNTER and
BLNGTH will be updated according to the current state of the file.

Name: GElNAM

Address: $8~C064

Entry: A0.L = pointer to UFT to use.

Exit:

Al.L = pOinter to input buffer (command line).
A2.L = pointer to default filename.

D0.B = error code (if any), or zero if no error.
D1.B = last character processed.
A1.L = pointer to first unprocessed character.

GElNAM parses the input buffer and extracts a file name. All parts of
the file name are loaded into the UFT. A string of 11 characters to be
used as a default name (if no name was entered) must be pointed to by A2.
If no password was entered, the current user password is copied into the
UFT. If no drive number was entered, the current drive number is copied
into the UFT.

GElNAM returns D1.B with the delimiter it found after the file name.
This may be a colon, in which case you must flag to DOS that another
command exists on the input line. It may also be a semicolon, used to
delimit an option field. A1 should be saved for return to DOS, or used as
a pointer to further arguments on the command line (if your program
expe ct s any).

CGC 7900 7900 DOS Manual Page B-19

Name: PRTMSG

Address: $8~CD84

Entry: A0.L = pointer to ASCII string (terminated by zero).
LogDev.W ($13E4). must contain the appropriate logical unit
number.

PRTMSG transmits an ASCII string to a logical output device. PRTMSG
goes through CTRLOUT to allow Escape and User code processing. BREAK and
CTRL S/CTRL Q are active during this routine. -

Name: PRTHEX

Address: $8~CD94

Entry: DD.L = data (hex long ward).
D1.L = number of hex digits to print (1 to 8).
LogDev. W ($13E4) must contain the appropriate logical unit
number.

PRTHEX prints a hex number to a logical output device. The number is
preceded by a dollar sign ($). D1 specifies the number of hex digits to
print, and these are taken from the least significant digits of DD. (If
D1 = 2, then the low byte of DD is printed.) The hex number is
left-justified, and padded on the right with spaces if necessary, to fill
out the number of characters specified by D1. This is the' format of hex
numbers printed in the disk directory. BREAK and CTRL S/CTRL Q are active
during this routine.

Name: GETCLK

Address: $8~CD98

Exit: DO.L = packed time and date information from clock.

GETCLK reads the Real Time Clock and encodes time and date
information into a long word. If the clock option is not installed, the
long word contains zero. This routine is intended for use with CLKBCD

. (next page).

Page B-20' 7900 DOS Manual CGC 7900

Name: CLKBCD

Address: $8~C0A~

Entry: D0.L = packed time and date in GETCLK format.
A~. L = pointer to 19-character buffer.

Exit: Buffer is loaded with ASCII time and date.

CLKBCD unpacks the time and date information produced by GETCLK. The
buffer pointed to by Ail will be loaded with month, day, year, hour, and
minute information in ASCII form. A zero byte is appended to the ASCII
text so that it can be printed by PRTMSG. If Df) contained zero on entry
to CLKBCD, the buffer will be loaded with 18 spaces and a zero.

Name: GETAR G

Address: $8~C0A8

Entry:

Exit:

Al.L = pointer to input buffer.

Al.L = pointer to character past delimiter.
Dl.L = hex argument returned.
D0.B = zero if no error, non-zero if error.

GETARG parses a hex number from an input buffer. The value of the
argument is returned in Dl. D0 is non-zero if a non-hex character was
detected before the delimiter was reached. If D0 is zero, no error was
detected. Al is advanced past the argument.

Name: DOSERR

Address: $8ilC0BC

Entry: A~.L = pointer to UFT of the file which caused an error.
D0.B = error code.

DOSERR prints a DOS error message. The drive number of the offending
file is printed also. Error codes available in DOSERRare listed in
Appendix E. Note that DOS automatically prints error messages if your
transient returns to DOS with D0.B non-zero.

Error messages always go to logical unit 0.

/

CGC· 7900 7900 DOS Manual Page B-21

B.4 Inline Calling Sequences

Name: INLINE

Address: $80A00C

Entry: A 1.L = pointer to input buffer to be used (must be at least 84

Exit:

characters long). .
D1.W = Logical Input Device number to read from.
D7.B = control bits (see below).

Zero flag SET if the user hit DELETE. Zero flag CLEAR if the
user hit RETURN.

INLINE is the 7900' s general-purpose input routine, used by DOS, the
Monitor, and Thaw. It reads a line of up to 83 characters from the user,
allowing character editing, Recall Last Line, . etc. Bits in D7 control
INLINE as follows:

Bit Meaning g ..§g

5 Treat line-feeds as logical line separators (newline
character) •

3 Echo the input line to the screen after RETURN is pressed ("in
expanded form, Modes and tabs executed normally).

2 Process Escape and User codes as they are entered.

Use "A7" character set for control-characters displayed in
compressed form.

Do not display the characters as they are entered (you can't
see what you type). The line will NOT be put into the Recall
Buffer.

DOS uses D7 equal to $.0E, D1 equal to zero, and A 1 pointing to the
DOS input buffer in low RAM. The end of the user's input line is
indicated by- a RETURN character ($.0D) in the buffer. Note that INLINE
does not echo a RETURN/LINEFEED when then user enters RETURN.

Page B-22 7900 DOS Manual CGC 7900

Name: INLINE1.

Address: $8~A~18

Entry:

Exit:

A1.L = pointer to input buffer to be used.
D1.W = Logical Input Device number to read from.
D2.L = length of input buffer.
D7.B = control bits as described for the INLINE routine.
A4.L = pointer to table of line termination characters.

Zero flag CLEAR if user hit RETURN; DO.L undefined.

Zero flag SET if the user entered a line delete character
sequence. DD.L = index into termination table of characters
causing delete (i.e. the instruction MOVE.L ~(A4,DiJ.L),DiJ will
put the terminating characters into DiJ).

INLINE1 is used to read lines of non-standard length. The length of
the input buffer is given in D2.L. INLINE1 will read up to length-l
characters into the buffer, with the end of the line being flagged by the
RETURN character ($0D). INLINE1 also provides for changing the list of.
characters which delete an input line (DELETE, BREAK and CTRL C are the
standard line termination characters). -

Note that lines longer than 255 characters will not be stored in the
Recall Buffer.

As an example, suppose you are writing an editor. You want to be able
to edit lines of up to 150 characters. Furthermore, you want the
characters CTRL X, INS LINE and DEL LINE to cause INLINE to abort input.
The following is a program fragment to accomplish this.

CGC·1900 1900 DOS Manual

*
* define input buffer storage

*
LmELEN
INPBUF

*

EQU
DS.B

150+1
LmELEN

* define termination table

150 characters + CR
Input buffer

Page B-23

* (you must ensure that it is on an even boundary!)
*
TRMTBL

*
* read a
*

trmnSed

DC.L
DC.L
DC.L
DC.L

line

MOVEQ.L
MOVEQ.L
LEA
LEA
MOVE.L
JSR
BEQ
BRA

CMP.L
BEQ
CMP.L
BEQ

$18
$00013E32
$00013C32
0

110,D1
#$0E,D7
*+(TRMTBL-(IPC+2)),A4
*+(INPBUF-(IPC+2)),A1
ilL DlELEN , D2
INLINE1
trmnSed
retin

114,00

118,00

CTRL-X
Insert line (MODE> 2)
Delete line (MODE < 2)
End of table marker

Read from Device 0
Control bits
Pointer to termination table
Pointer to input buffer
Line Length
Read line
If LmE DELETE char entered
Return entered

See if INSERT LmE entered
If yes
See if DELETE LmE entered
If yes

Page B-24 7900 DOS Manual CGC 7900

Name: INLINE2

Address: $8gAg1C

Entry: Registers as set up by INITINL (routine described below)

Exit: Same as INLINE1

INLINE2 is a low level routine used to get characters from the
specified device and preocess them until RETURN or a line term ina tion
character is entered. Its use will be demonstrated in the INLINE3 example
below.

Name: INL INE3

Address: $80A020

Entry: Registers as set up by INITINL or returned by INLINE3.
D~.B = character to process.

Exit: If Dt'.B was not a line termination character or RETURN, then
D2.1::91; Zero flag is SET. Registers are updated for another
character.

If Dt'.B was RETURN, then D2.1::1, Zero flag CLEAR.

If D0.B was a line termination character, then D2.L=2; Zero
flag is CLEAR; Dt'.L=index into termination table.

Important! Between calls to INLINE3, the only registers that may be
altered are D~, A1 and AS. Changing any other registers will most likely
crash the system. Also, INLINE3 will destroy Dt', A1 and AS.

INLINE3 is the workhorse of the INLINE system. It accepts characters
one at a time and processes them, performing all editing functions.

As an example of how these routines tie together, see the program
fragment below. It shows how the DOS editor (should) display lines for
editing. Assume that AS points to the line to be edited and that it is
termina ted by a RETURN. The oode on the following page will display the
line, then let the user modify it:

CGC·7900 7900 DOS Manual Page B-25

* * save pointer to char as INL INE3 eats things

*
MOVE.L A5,-(SP)

•
• set up inline for a new line:

*

*

MOVEQ.L
MOVEQ.L
LEA
LEA
MOVE.L
JSR

IfJ,D1
l$fJE,D7
·+(TRMTBL-(IPC+2)),A4
·+(INPBUF-(IPC+2)),A1
IL INELEN' , D2
INITINL

Read from device ~
Control bits
Pointer to termination table
Pointer to input buffer
Length of input buffer
Initialize the INLINE system

* get characters from EDIT buffer and feed to INLINE
•
X1

•

MJVE.L
MOVE.B
CMP.B
BEQ.S

. MOVE. L
JSR
BRA.S

(SP)+,A5
(AS)+,DfJ
ICR ,DfJ
X2
AS ,-(SP)
INLINE3
X1

* let user edit the line
•
X2 JSR INLINE2

*

Get pointer to char
Get the character
End of the line?
IT it is ••••
Remember: INLINE3 munches reg's
Feed char to INLINE3

• INLINE2 returns EQ/NE. Take appropriate action ••••
•

Page B-26. 7900 DOS Manual

Name: INITINL

Address: $80A024

Entry:

Exit:

A1.L = pointer to input buffer to be used.
D1.W = Logical Input Device number to read from.
D2.L = length of input buffer.
D7.B = control bits.
A4.L = pointer to table of line termination characters.

Registers as required by INLINE3.

cae 7900

INITINL is used to initialize all information as required by the
INLINE system.

Name: INLHOME

Address: $8~A~28

Entry: Registers as set up by INITINL.

Exit: -Cursor moved to home position of line.

After a line has been output (see INLINE3 example), INLHOME could be
used to put the cursor on the first character of the line before allowing
the user to edit the line. The Chromatics editors supporting INLINE put
the cursor at the end, but it is only a matter of taste.

CGC·7900 7900 DOS Manual Page C-1

Appendix C -- Me.ory Allocation

C.1 CMOS Memory Allocation

4096 bytes of CMOS or static memory are installed on the 7900 CPU
card. This memory is used to store Function Key definitions, information
for buffer sizes, and other important system pOinters. The CMOS memory is
optional, and comes with a battery-backed supply so that user-defined
parameters will be maintained while the system is turned off. This
concept is described in detail in the 7900 User t s Manual description of
the ftThaw ft command. If your system does not contain the CMOS option, you
will have static RAM installed at these addresses, but the data in this
RAM will still correspond to the following table.

This section describes the allocation of CMOS memory in the current
version of firmware, TERMEM 1.3. Alloca tion may change slightly or
greatly in future releases. All CMOS is reserved for system use, and any
user programs which occupy CMOS do so at the risk of interfering with
future system programs.

The CMOS entries which determine buffer sizes should not be al tered
except through the Thaw command. If these entries do not agree with
actual RAM allocation at all times, the system may crash.

Addresses $E40000 through $E40100 are also used by hardware registers
in the 7900 system. Accessing these addresses affects CMOS and the
hardware as well.

Where appropriate in the following tables, each entry is marked with
ft.Bft, ft.Wft, or ft.Lft, to indicate the data size of the entry.

Address

$E40000 .W
$E40002 .W
$E40004 .W
$E40006 .B
$E40007 .B
$E40008-$E40009
$E4000A-$E4000F
$E40010 .W
$E40012 • W
$E40014 • W
$E40016 • W
$E40018 • W
$E4001A .W
$E4001C-$E4001F
$E40020-$E4003E

Use

Bitmap roll counter
X pan register
Y pan register
X zoom register
Y zoom register
(Reserved)
Raster processor registers
Blink select register
Plane select register
Plane video switch register
Color status foreground register
Color status background register
Overlay roll counter
(Reserved)
Raster processor registers

Page C-2

Address

$E40040-$E4010B
$E4010C .L
$E40110-$E40113

$E40114 .w
$E40116 .w
$E40118 .B
$E40119
$E4011A .w
$E'4011C .w
$E4011E .w
$E40120 .w
$E40122 .w
$E40124 .w
$E40126 .w
$E40128 .w
$E4012A .L

$E4012E .L
$E40132 .L
$E40136 -$E40141
$E40142 .L
$E40146 .L
$E4014A .L

$E4014E-$E4015D
$E4015E .L
$E40162 .L
$E40166-$E40169
$E4016A .L
$E4016E .L
$E4017 2-$E4017 9
$E4017A-$E4017B
$E4017C-$E401C7
$E401C8-$E40213
$E40 214-$E40 21 D
$E4021E .L

$E40222 .B
$E40 223 -$E40 224
$E40225 .B
$E40 226 -$E40 229
$E4022A .B
$E4022B-$E4022C
$E4022D .B
$E4022E-$E40231

$E40232-$E407FF
$E40800-$E408FF
$E40 900-$E40BFF
$E40C00-$E40CFF
$E40D00-$E40FFF

7900 DOS Manual

Use

(Reserved)
CMOS verifier long word
(Reserved)

Size of DOS Transient Program Area
Size of DOS Buffer
Number of active windows
(Reserved)
Size of keyboard buffer
Size of Function Key stack (nesting)
Size of RS-232 input buffer
Size of RS-232 output buffer
Size of RS-449 input buffer
Size of RS-449 output buffer
Size of Escape code argument stack
Size of system stack
Highest RAM address used by system

Pointer to INLmE recall buffer
Recall buffer size
Pointers for INLINE
Pointer to start of Function Key buffer
Pointer to end of Function Key buffer
Pointer to Case Table

(Reserved)

CGC 7900

Address of default program (executed by Boot)
Address to search for RAM modules
TERMEM status flags
Address of Bitmap plot cursor descriptor
Address of Bitmap alpha cursor descriptor
(Reserved)
INLINE Recall flags
Defaul t Boot string
Default Reset string
Host EOL sequence
Address of vector-drawn character font

R3-232 mode command
(Reserved)
R3-232 handshake flags
(Reserved)
R3-449 mode command
(Reserved)
R3-449 handshake flags
(Reserved)

(Reserved)
Case Table
Function Key buffer
INLINE Recall buffer
(Reserved)

caC·7900 7900 DOS Manual Page C-3

C.2 Low RAM Allocation

The area of RAM between addresses $40k" and $FFF is used by the 7900
system for pointers and miscellaneous constants. The area between $1k"k"0
and $1C3B is used for DOS tables and pointers. As mentioned earlier,
areas marked "Reserved" should be left alone, for compatibility with
future releases of software.

Address

$400-$463
$464-$495
$496-$4E5
$4E6-$5k"9
$50A-$69B
$69C-$BFF
$C.00 .L
$C.04 .L
$C.08 .L
$C.0C • W
$C.0E .L
$C12 • W
$C14 • w
$C16 • w
$C18-$C1B
$C1C .L
$C20 .L
$C24 .L
$C28 .L
$C2C .L
$C3.0 .L
$C34 .L
$C38 .L
$C3C • L
$C40 .L
$C44 .L
$C48 .L
$C4C .L
$C50 .L
$C54 .L
$C58-$C5D
$C5E-$C61
$C62 .w
$C64 .w
$C66 • w
$C68-$C7F
$C80 .L
$CB4 .L
$CB8-$CBD
$CBE • L

Use

Monitor input line
Monitor flags and breakpoint storage
Monitor pseudo-register storage
Monitor register display formats
Morti tor stack
(Reserved)
Pointer to base of TERMEM dispatch tables
Pointer to Keyboard buffer start
Keyboard input pointer
Keyboard buffer character count
POinter to Keyboard buffer end
Joystick X center offset
Joystick Y center offset
Joystick Z center offset
Light pen argument list
Function Key stack pointer
Pointer to Function Key buffer
Pointer to Function Key stack
Pointer to RS-232 input buffer
POinter to RS-232 output buffer
Pointer to RS-449 input buffer
Pointer to RS-449 output buffer
Pointer to Esc argument stack
POinter to DOS buffer
Pointer to window table base
Pointer to top (start) of stack
POinter to bottom (end) of stack
Pointer to start of Create Buffer
POinter to end of Create Buffer space
Pointer to DOS transient area
TERMEM storage for keyboard light data
TERMEM storage for HVS calculations
Active image planes in system
Copy of interrupt mask register
Copy of baud rate generator data
Escape code processor storage area
Pointer to current character in Create Buffer
Pointer to end of Create Buffer data (EOF+1)
Joystick data storage area
Warmstart vector (for USER W)

Page C-4

Address

$C92-$C99
$C9A-$CA 1
$CA2-$CA9
$CAA-$CB1
$CB2-$FFF

1900 DOS Manual

Use

RS232 input ring buffer pointers
RS232 output ring buffer pointers
RS449 input ring buffer pointers
RS449 output ring buffer pointers
(Reserved)

DOS memory allocation begins here ••••

$1000-$1009

$100A-$103F

$1040-$113F
$1140-$1143
$1144-$118B
$118C-$11B3

$11B4 .L

DOS command block for disk controller

Default DOS UFT (details below)

Directory buffer space
Command block variable space
DOS input line buffer·
DOS variables and pointers

GOADDR: Start address for executable files

$11B8-$11C3 DOS pOinters

$11C4 .B
. $11C5 .B
$11C6 • w

$11C8-$11CD

$11CE • W
$11DD .W

$11D2-$11E1

REVN: Revision number of file (not used)
DRIVEN: Drive from which last transient came
USERN: Password of· current user (** = public)

DOS variables

FLSTAT: File status used by CLOSE
SLASH0: Slash/0 mode flag

Disk controller variables

$11E2-$1211 TUFT1: Transient UFT #1 I

$1218-$1243 DOS variables

$1244-$1279 TUFT2: Transient UFT #2

$127A-$1389 DOS variables

$138A-$13FF Reserved for DOS expansion

CGC 1900

caC·7900 7900 DOS Manual Page C-5

C.3 The User File Table

DOS maintains a User File Table (UFT) in memory for each file
currently being accessed. The UFT contains the file name, password,
directory location, size, and various pointers which uniquely identify
that file. Whenever DOS reads from or writes to a file, the UFT is
updated to show the current file status. The UFT must remain intact as
long as a file is in use, or until a new file is closed.

Each UFT occupies 54 bytes; DOS has three UFTs allocated in low RAM.
Your program may use these areas to build UFTs, or you may use other RAM.

Each item in the UFT is defined below. If A~ points to the start of a
UFT, the item of interest may be accessed with the "Indirect with
Displacement" addressing mode; e.g. OFFSET(A~).

Offset in UFT

$00 .W

$02 .L

$RlA .W

$RlC .B

$0D .B

Description

s..OT: Location of a file in the disk
directory.

BUFFP: Memory address to/from which the
data transfer will take place on
the next read or write.

MBYTES: Number of bytes to transfer on
next read or write.

CONTRL: Defines the next operation to
be performed. In this word,

Bit Meaning
9 1 = End of file
8 1 = Read, ~=Write
7 1 = Enable retry
6 1 = Enable ECC

DRIVE: Logical unit number of disk
drive: 0 and 1 are floppy
disks, 2 is the hard disk.

ERROR: Error code of last operation.

Page C-6

Offset in UFT -----
$0E .L

$12 .L

$16-$1D

$1E-$20

$21

$22-$23

$24 .L

$28 .L

$2C .L

$30 .L

$34 .w

7900 DOS Manual

Description

BPNTER: Pointer to current byte in
file.

BLNGTH: Current length of file (goes to
zero as file is read in).

PNAME: 8-character primary fil ename.

SNAME: 3-character secondary filename.

(not used)

PSWRD: 2-character password. Public
files are given password " •• ".

START: Starting address of -file on
disk (bytes).

LENGTH: Length of file on disk (bytes).

ORIGIN: File origin time/date.

ACCESS: Time/date of last access.

STATUS: File attributes as follows •••

Bit Meaning if SET
15 Blind rue-
a Active slot
7 Write-protected
6 Delete-protected
4 Free (deleted)
3 Execute-onlY
1 Odd length
o Killed

CGC 7900

CGC 7900 7900 DOS Manual Page D-1

Appendix D - Custc:. Cursors and Character Sets

D.1 Custom Character Sets

The 7900 allows user-defined character sets to be used in the Bitmap
in place of the two character sets supplied with the system. An entry in
each Window Table (Charadr) pOints to the base of the character set for
that window, and the size of the font (X by Y pixels) may also be defined
for each window. The character font dimensions may be up to 16 in the X
direction, and 256 in the Y direction.

Since the character set address for a window is stored in the Window
Table, it will defaul t back to the normal character set whenever Boot or
Soft Boot is executed.

The character set for the Overlay is stored in high-speed PROM, and
is not alterable through software.

The following. program is a module, designed to be linked into the
7900 system software. It will install a custom character set in any
window which receives a MODE i command. This program is an example DNLY.
It does not include a complete character set definition. The data set
which should accompany this program would be too long to fit into the
standard 7900 memory, unless ·you do one of the following: (1) change the
ORG address, which requires changing address RAMMDLE with the Thaw
command, (2) change the height of the character set to reduce the data
required, or (3) install additional memory above address $20000.

Page D-2 7900 DOS Manual

•
• Sample module to install a new character set.
• The set is installed in a window by the command:
•
• MODE i •
• To return to the standard set, use SOFT BOOT.
• •
•
• cac 79~~ equates •••
•
Mode EQU

CharXZ EQU
CharYZ EQU
CharDX EQU
CharDY EQU
Charadr EQU

•
•
•

$78
$7A
$7C
$7E
$9C

MODE is Control-A

Offset in window table for X raster size
Y raster size
X intercharcter spacing (step)
Y intercharcter spacing
Address of font for this window

ORG.L $1F.000 This is the address called "MDLE"
as specified by the Thaw command. •

•
• •
• • •
• •

•

DC.L

DC.W

DC.B

DC.W
DC.W

'MDLE'

CharEnd-IPC

Mode, 'i'

$~~0~
$00~~

This header must be present if
the module is located in RAM.

This is the length of the
module (including the
character set at end)

We are executed when the user
types this sequence.

We require no arguments.

• Execution begins here after MODE i is entered.
• TERMEM preloads A0 with the base of the window table.
•

MOVE.W 16,CharXZ(A0) Load character size (X)
MOVE.W 18,CharYZ(A~) (Y)
MOVE.W 16,CharDX(A0) Load step size (X)
MOVE.W 18,CharDY(A0) (Y)
MOVE~L IBASE,Charadr(A0) Load address of font
RTS That's all!

CGC 7900

CGC·7900 7900 DOS Manual

•••
•
• What follows is the character font definition.
•
• It is arranged as 128 regular characters, followed by 128
• A7 characters. All 256 characters should be defined.
• * Assume the font is set in a field X by Y. (Default is
• X = 6 and Y = 8.) Then each character requires 8 words
* of data, one for each Y scan; and 6 bits of each word
* are used. The active 6 bits are left-justified in the
* 16-bit word.
*
* * . Example: the character "A"
*
• bit I •
•
* •
*
*
* • •
•
•
* • •

Word I
(one per Y scan)

1

111111
54321~987654321~

.XXX' ••••••••••••
2 X ••• X •••••••••••
3
4
5
6
7
8

x ... x
XXXXX •••••••••••
x ... x ... e ••••••••

x ... x
x ... x

• The X by Y field must include any necessary
• spacing between characters or between lines.
• •
• Memory requirements:

Hex value

$7~~~
$880~
$8800
$F80~
$8800
$880~
$880~
$0000

* • This module will require 256 * Y words, plus 23 words of
overhead for the preceding code. This much memory must

Page D-3

•
• •
* •

exist between address "RAMMDLE" and the physical end of memory.
If necessary, use Thaw to alter the address of "RAMMDLE" (be
sure to put it where nothing will stomp on it!)

•

Page D-4

*
*

7900 DOS Manual

* This Scale Factor will left-justifY a 6-bit number in a
* 16-bit field, by shifting 1~ bits. All of the numbers in
* this database are 6-bit for convenience, and S justifies
* them properly.

*
S

*
*
BASE

*

EQU 1024

EQU IPC This is where it all begins.

* This is the regular character set.

*

*
*
*

*
*
*
*

DC.W
DC.W

DC. W
DC. W

$24*S,$34*S,$3C*S,$2C*S,$24*S,$04*S,$04*S,$07*S
$0C*S,$10*S,$08*S,$0S*S,$1D*S,$07*S,$0S*S,$0S*S

etc. for regular se t.

$01*S,$0E*S,$10*S,$00*S,$00*S,$00*S,$00*S,$00*S
$0A*S,$1S*S,$0A*S,$1S*S,$0A*S,$1S*S,$0A*S,$00*S

* Alternate (A7) character set begins here.

*

*
*
*

*
*

DC.W
DC.W

DC. W
DC. W

$1F*S,$1S*S,$15*S,$1F*S,$1S*S,$1S*S,$1F*S,$00*S
$08*S,$15*S,$02*S,$08*S,$1S*S,$02*S,$00*S,$00*S

etc. for A7 set.

$01*S,$02*S,$02*S,$04*S,$08*S,$10*S,$10*S,$20*S
$00*S,$00*S,$00*S,$00*S,$00*S,$00*S,$00*S,$3F*S

CharEnd EQU IPC
-1 ,-1

This is the end of our module.
No more modules follow this one. DC.L

END
*
*

CGC 7900

DL

DL

CGC·7900 7900 DOS Manual Page D-5

D.2 Installing a New Cursor

The 7900 Bitmap cursors, Plot and Alpha, are each described by a set
of data. This set is pointed to by pOinters in the CMOS area, one pointer
for the Plot cursor and one for the Alpha cursor.

Plotcur
Al ph cur

EQU $E4~16A
EQU $E4~16E

The cursor descript or data is a list of up to 32 long war ds • Each
long war d describes the displacement of one pixel of the cursor, with
respect to the center pixel of the cursor. The list is terminated with a
zero word. Since this zero word is part of the descriptor, the center
pixel of the cursor is always ON.

The displacements are given as addresses in Bitmap memory. Each pixel
in Bitmap memory corresponds to a word (two bytes) of memory, so an X
displacement of one pixel is produced by an address displacement of two.
(Positive X displacement is to the right.) Similarly, a Y displacement of
one pixel corresponds to an address change of 2~48 bytes (1024 pixels per
Y line of the screen, times two bytes per pixel. A positive Y
displacement is in the down direction.

A sample cursor might look like thiS, where X's correspond to pixels
included in the cursor:

X
XXX

X

The data list for this cursor would be:

+2 (the pixel to the right of center)
-2 (the pixel to the left of center)

+2~48 (the pixel below center)
-2~48 (the pixel above center)

0 (the center pixel, and end of the list)

To install a new cursor, first define it in the form above. Store
this data in memory. Then, alter -the pointer in CMOS (either Plotcur or
Al ph cur) so that it points to your data. Note that if you store your
cursor in RAM other than CMOS, the description will vanish when system
power is turned off, but the CMOS pointer will remain! This will cause you
to have NO cursor at all. To reload CMOS defaul ts, use CTRL SHIFT M1 M2
!!§!!. -- --- - -

Page D-6 7900 DOS Manual

* * Sample program PUTCURS

*
* Installs a new cursor as the Bitmap plot cursor.

* * This program stores its cursor descriptor in upper CMOS
* memory, unused by current 79g~ software. This may not be
* compatible with future 79g~ releases.
*
*
*

ORG.L $1C3C We run in DOS area

Point to some unused CMOS PUTCURS MOVE.L IHiCMOS,A2
MOVE.L ICursor,A3 Point to our new cursor descriptor

PUTloop MOVE.L
TST.L
BNE.S

(A3)+,(A2)+ Copy a long word into CMOS
-4(A2) Was it zero?
PUTloop No, continue copying

HiCMOS
Plotcur

Cursor

MOVE.L IHiCMOS,Plotcur Set up pointer to new cursor

CLR.L D0
CLR.L D1
RTS

EQU $E4~E~0
EQU $E4016A

DC.L -4*1024
DC.L -4*1024+2
DC.L -4*1024-2
DC.L -2*1024-4
DC.L -2*1024+4
DC.L -4
DC.L ·+4
DC.L +6
DC.L +8
.DC.L -2*1024+8
DC.L -2*1024+1~
DC.L -2*1024+12
DC.L -2*1024+14
DC.L -4*1024+1~
DC.L -4*1024+12
DC.L -4*1024+14
DC.L -4*1024+16
DC.L 4*1024

Flag no error occurred
(We don't check for colon on line)
Return to DOS

CMOS area (unused in TERMEM 1.3)
Plot cursor pOinter

New cursor descriptor

cac 7900

CGC·1900 1900 DOS Manual Page D-1

DC.L 4*HJ24+2
DC.L 4*HJ24-2
DC.L 2*1024-4
DC.L 2*1024+4
DC.L 2*1024+8
DC.L 2*1024+10
DC.L 2*1024+12
DC.L 2*1024+14
DC.L 4*1024+10
DC.L 4*1024+12
DC.L 4*1024+14
DC.L 4*1024+16
DC.L 0 (end of list)

END PUTCURS

CGC ·1900 1900 DOS Manual Page E-1

Appendix E - DOS Error Messages

The following error s may be reported by DOS. To for ce DOS to print an
error message, load the error number into Dtl.B before returning to DOS.

Error

01

tl2

03

04

05

.06

11

12

13

14

15

16

17

18

19

1A

2~

21

22

(hex) Message

.No index signal detected

No seek complete

Write fault

Drive not ready

Drive not selected

No track .00.0 detected

ID read error

Uncorrectable data error found during a read

ID address mark not found

Data address mark not found

Block not found

Seek error

No host acknowledgement

Diskette write protected

Data field error found and corrected

Bad track found

Format error

Invalid disk controller command

Illegal logical block address

Illegal function for the specified drive

Page E-2

3RJ

40

41

42

43

44

50

51

52

53

54

55

60

61

62

63

70

80

90

A0

A1

7900 DOS Manual

Diagnostic RAM error

Disk controller not ready

Controller time out error

Unable to determine controller error

Undefined controller state

Controller protocol sequence error

Undefined load error state

Record count error

Checksum error

Premature EOF during ;load

DOS buffer too small

Transient program size too small

End of fil e reached

File is write protected

Attempted to read through density barrier

Attempted to transfer data on odd address

Unable to find requested file

Unable to create new file space

Unable to close requested fil e

Empty slot found

Unable to update the directory

cac 7900

CGC· 7900

B1

B2

B3

I B4

B5

B6

B7

C.D

C1

C2

C3

C4

C5

C6

C7

C8

7900 DOS Manual

No run address

Unable to find disk name

Argument error

Attempt to access a non-existant drive

Unable to initialize drive 1

Unable to in1 tialize drive 2

Syntax error! Missing argument

Premature format termination

Error mapping routine not implemented

Unable to fetch this file

File is delete protected

Fil e type error

File is execute only

File is to big to append

Insufficient stack size

/0 mode is not allowed in argument filenames

Page E-3

Index

DOS (Jump Table Entry) B-16
DOS Command Line 2-3
DOS Jump Tabl as B-16

- A - DOS Transients 3-2
DOSDR B-20

ABORT 4-22 DRAW 3-16
Absolute Long 5-23 DRIVE . 4-20
Absolute Short 5-23 DS (DetillS Storage) 5-15 '
Address Register Indirect 5-19 DSKTST 3-17
Address Register Indirect with Displacement 5-21 DUPE 3-19
Address Register Indirect with Index 5-22
Address Register Indirect with Postincrement 5-19
Address Register Indirect with Predecrement 5-20 - E -
Addressing Modes 5-18
APPEND 3-2 Ed! tor Commands 4-5
ARC B-13 END 5-16
Argument Parsing A-9 Entering DOS 2-1
Assembler Errors 5-Z'T EQU (Equate) 5-11

ESCPROC B-4
Example ESCAPE code Module A-17

- B - Example Mode Module A-12
Example PLOT Module A-15

BOOT B-5 EIDOS B-16
BUFF 3-3 ElIT 4-21
BYECT (Bold Vectors) B-13 EXPLODE 3-21

- C - - F -
CHAR IN B-2 FETCH 3-22
CHAR OUT B-1 File Name Patterns 2-10
CIRCLE B-13 FIND 4-14
CLXBCD B-20 FORMAT 3-23
CLOSE (Editor Command) 4-18 FVEeT B-12
CLOSE (Jump Table Entry) B-17
CMOS Memory Allocation C-1
Comments 5-9 - G -
COMPRESS 3-4
COpy 3-6 GET 4-7
CREATE B-17 GETARG B-20
CTRLIN B-3 GETCLK B-19
CTRLOUT B-3 GE'INAM B-18
CURVE B-13
Custom Character Sets D-1
Custom Cursors D-5 - H-

Handling noppy Disks 1:"3
- D -

DC (DetillS Constant) 5-13 - I -
DEBUG 3-10
DELETE (Editor Command) 4-13 Immediate 5-26
DELETE (Transient) 3-11 IMPLODE 3-26
DIR 3-12 Initializing a New Diskette 3-25
Disk Drive Numbers 2-7 INITINL B-26
Disk Fil e Names 2-5 INLHOME B-26

Index

INL INE (Jump Tabl e Entry) B-21 - P -
INL INE (Usage) 4-3
Inline Calling Sequences B-21 PAGE 4-19
INLINE1 B-22 PAGE 5-16
INLINE2 B-24 PC with Displacement 5-24
INLINE3 B-24 PC wi th Index 5-25
Input/Output Modules A-7 PICTURE 3-31
INSERT 4-10 Plot Modul es A-13
Instructions 5-7 Plotting Functions B-10
Introduction to DOS 1-2 PLOTII B-12
Introduction to the Editor 4-1 PLRRC'l' B-9

POLIG B-14
PRINT 4-9 - [- PRTDEC B-8
PRTHEX B-19

ICeystut'f B-5 PRTMSG B-19
[ILL 3-27 Pseudo-Instructions 5-10

PUT 4-17

- L -
- R -

Labels 5-6
Linking Process A-lJ READJOY B-9
LIST 4-8 REFRESH 3-33
LIST 5-17 Register Direot Mode 5-18
LUll' 5-17 Register Setup for Modules A-18
LOAD B-17 Running the Assembler 5-2
Low RAM Allocation C-3 RWBYTE B-18

- M- - S -

~DIFY 4-12 Scankey B-6
Module Construction A-5 Secondary File Names 2-9
Modules A-2 SET 5-12

Boot A-6 SIND" B-8
Escape A-16 Sour oe Fil e Format 5-5
Mode A-11 STATIN B-4
User A-16 STORE 3-34

MOVEHEAD 3-29 SUBSTITUTE 4-15
SUMS 3-38
System Requirements 1-1

-N-

NOISE B-6 - T -
NOLST 5-17

TERMEM B-5
TERMEM Jump Tabl es B-1

-0- Transients, defined 3-1

OPEN (Editor Command) 4-6
OPEN (Jump Table Entry) B-16 - U -
Operands 5-8
ORG (Origin) 5-10 User File Table C-5

Index

- v -
VERSION 3-39

- W -

Window Sta tus and ESCAPE Code Status A-22
Window Tables A-19
Writing Transients A-23

- I -

IREF 3-40

	001
	002
	003
	004
	005
	006
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	I-01
	I-02
	I-03

