(SDCONTROL DATA

LINEWRITER 400/800 MODELS CT301-D AND CT302-D WITH SERIES 1 INTERFACE

INSTALLATION AND CHECKOUT

FACTORY SWITCH SETTINGS
CHOOSING A LOCATION
INPUT POWER CONVERSIONS
INTERFACE SIGNALS

SET-UP AND REFERENCE MANUAL

REVISION RECORD

This manual reflects the equipment configurations listed below.

EQUIPMENT TYPE	SERIES	TOP LEVEL ASSEMBLY	COMMENTS
CT301-D	$5-12$	59829803	Series 1 I/O Connector
CT302-D	$3-8$	59829853	Series 1 I/O Connector

PREFACE

This manual contains switch setting information and installation and checkout instructions for the Linewriter printers. This manual will aid the user as it also contains reference material (such as power/frequency conversions) which may be desired at a later date.

The publications listed below are related publications for these printers.
PUBLICATION
PUBLICATION NUMBER
Set-Up and Reference Manual (With OEM Parallel Interface)
44689053
Set-Up and Reference Manual
(With RS-232 Serial Interface) 44689037
Maintenance Manual : 44689032
Technical Manual 44689051
Parts Identification Manual 44689062

WARNING: This equipment generates, uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions manual, may cause interference to radio communication. It has been tested and found to comply with the limits for a Class A peripheral computing device pursuant to Subpart J of Part 15 of the FCC Rules which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference in which case the user, at his own expense, will be required to take whatever measures may be required to correct the interference.

TABLE OF CONTENTS

SECTION
PAGE
I INSTALLATION AND CHECKOUT 1-1
Procedure 1-2
Paper Basket Installation 1-4
II FACTORY SWITCH SETTINGS. 2-1
III CHOOSING A LOCATION 3-1
IV INPUT POWER CONVERSIONS 4-1
V INTERFACE SIGNALS 5-1
LIST OF FIGURES
SECTION PAGE
I FIGURE 1-1. INSTALLATION AND CHECKOUT MAJOR COMPONENTS 1-1
FIGURE 1-2. RS-232 PERSONALITY MODULE (1PC1) SWITCHES 1-2
FIGURE 1-3. I/O CABLE INSTALLATION 1-3
FIGURE 1-4. PAPER BASKET INSTALLATION AND SET-UP 1-5
FIGURE 1-5. PAPER PATH FOR PRINTERS WITH FRONT DOORS 1-6
II FIGURE 2-1. PERSONALITY MODULE (1PC1) FACTORY SWITCH SETTINGS 2-2
FIGURE 2-2. CPU (1PC2) FACTORY SWITCH SETTINGS 2-3
FIGURE 2-3. BACKPLANE (1BP1) FACTORY SWITCH SETTINGS (TWO SWITCH VERSION) 2-4
FIGURE 2-4. BACKPLANE (1BP1) FACTORY SWITCH SETTINGS (SINGLE SWITCH VERSION) 2-5
III FIGURE 3-1. SERVICE ACCESS SPECIFICATIONS (WITHOUT FRONT DOORS) 3-2
FIGURE 3-2. SERVICE ACCESS SPECIFICATIONS (WITH FRONT DOORS) 3-3
IV FIGURE 4-1. INPUT POWER/FREQUENCY CONVERSIONS (EARLY VERSION) 4-2
FIGURE 4-2. INPUT POWER/FREQUENCY CONVERSIONS 4-3
V FIGURE 5-1. I/O SIGNALS AND PIN ASSIGNMENTS-RS-232 CONNECTOR 5-3
FIGURE 5-2. I/O SIGNALS AND PIN ASSIGNMENTS-RS-449 CONNECTOR 5-3
LIST OF TABLES
SECTIONIIIIIITABLE 3-1. ENVIRONMENTAL SPECIFICATIONS3-4
TABLE 3-2. ELECTRICAL SPECIFICATIONS 3-5

LINEWRITER 400/800

SECTION I
 INSTALLATION AND CHECKOUT

Before performing this procedure, study Figure 1-1 to identify and locate the major components necessary for proper Installation and Checkout.

Section II contains the factory switch settings of the printed circuit boards in locations 1PC1, 1PC2, 1BP1, and 6PC1 if applicable. These switch settings may be changed by the Customer Engineer. The illustrations will serve as a reference and will allow you to return the printer's switch settings to their original factory switch positions.

FIGURE 1-1. INSTALLATION AND CHECKOUT MAJOR COMPONENTS

Procedure

1. Roll the printer to an area where there is adequate environmental conditions, electrical power and clearance for service. Refer to Section III if necessary.
2. Plug the printer into its ac source and open the bonnet. The bonnet release latch is located in the center of the printer on the sloping surface directly beneath the bonnet window.
3. Install paper, ribbon cassette and print band per the Operator Instruction Cards beneath the bonnet as follows:
a. Paper Installation-Card 1, Step 2 only.
b. Ribbon Cassette Installation-Top Card.
c. Print Band Installation-Card 7 (Back).
4. For units without front doors: Install and set up the paper platform or paper basket if provided. See Figure 1-4. Read Paper Basket Installation for the explanation of the basket accessories. The paper platform is installed such that the wires that run perpendicular to the edge of the paper are facing up. This allows the paper to slide along the wires when the paper contacts the paper platform. If the paper platform is installed up-side-down, the paper will catch on the wires as it enters the paper platform and will cause stacking problems.

For units with front doors: Be sure the paper is loaded into the printer properly. See Figure 1-5 for the correct paper path through the printer. Press the FORM FEED switch until approximately 3 or 4 sheets of paper are resting on the paper platform at the back of the printer.
5. Turn the printer's power switch ON (located on the sloping outside surface, directly beneath the Control Panel for units without doors). For units with doors, the power switch is located on the back of the printer.
6. Press the STOP/START switch on the Control Panel. The START INDICATOR should light. Press it again, the START INDICATOR will go out.
7. Press the TEST PRINT switch to print a test pattern. Press the switch again to stop test printing. If printing does not occur or if the printer is performing erratically, assure the switches on cards 1PC1 and 1PC2 are set in the proper factory positions. Refer to Section II.

FIGURE 1-2. RS-232 PERSONALITY MODULE (1PC1) SWITCHES
8. Check the Diagnostic Test Print feature as follows:
a. Press the START/STOP switch on the Control Panel.
b. Open the Card Cage Cover and set SWN1 (or SW1 on early units) to the "OFF" or "CE" position. See Figure 1-2.
c. Press START/STOP switch on the Control Panel. A diagnostic message will print until the START switch is pressed again.
d. Stop the diagnostic test by pressing the START/STOP switch. Return SWN1 or SW1 to the "ON" or "RUN" position.
9. Turn the printer's power switch OFF.
10. Install the I/O cable through the cutout in the back of the printer (bottom right side). See Figure 1-3. The cable and its connector must be CSA certified or rated UL94V-1 or better. Check to be sure the bonnet latches correctly. If it doesn't, the printer may have to be leveled. Leveling is achieved by rotating the appropriate caster's adjusting nut; clockwise will raise the caster, counter-clockwise will lower the caster.
11. The printer is ready to be put On Line with the data source.
12. Close and lock all access covers.
13. Installation and Checkout is now complete.

FIGURE 1-3. I/O CABLE INSTALLATION

Paper Basket Installation (See Figure 1-4)

The paper basket mounts on the back of the printer. The thumb screw on each mounting bracket is loosened and the mounting hook on the basket slips down in a hole in the top of the mounting bracket. The thumb screws on both mounting brackets are tightened to secure the paper basket.

The basket can be used with several accessories to insure proper stacking for all types of forms under humid and non-humid conditions. Boxes of forms can be irregular in their natural stacking tendency from box to box. The accessories can be used together, or in any combination to help modify the stacking tendencies of a particular box or a particular type of paper.

The following will describe the use of the accessories and their function.

The Paper Stops are used for all but the very largest forms. They are used to provide a front and rear stacking guides. They can be moved forward or backward depending on the size of the form.

The Paper Bracket Support is installed to control form stacks which have a valley at the top. The valley can be caused by the printer's tractor positions. Check the horizontal tractor positioning if the feed holes on the edges of the forms are not smooth and flat. Forms left in the box at the front of the printer can increase forms tension and deform the feed holes. The paper bracket support is compressed to mount in the bottom center of the basket. This bracket can improve all types of forms stacking.

The Fold Breaker assembly can be installed to help "break" the paper perforations as the paper leaves the printer. This is normally installed.

FIGURE 1-4. PAPER BASKET INSTALLATION AND SET-UP

FIGURE 1-5. PAPER PATH FOR PRINTERS WITH FRONT DOORS

SECTION II
 FACTORY SWITCH SETTINGS

FIGURE 2-1. PERSONALITY MODULE (1PC1) FACTORY SWITCH SETTINGS.

FIGURE 2-2. CPU (1PC2) FACTORY SWITCH SETTINGS

FIGURE 2-3. BACKPLANE (1BP1) FACTORY SWITCH SETTINGS (TWO SWITCH VERSION)

FIGURE 2-4. BACKPLANE (1BP1) FACTORY SWITCH SETTINGS (SINGLE SWITCH VERSION)

SECTION III
 CHOOSING A LOCATION

The important factors to be considered when choosing a location for the printer are environmental, electrical and service access requirements. Ideally a computer room environment is desired. See Table

3-1 for environmental specifications, Table 3-2 for electrical specifications and Figures $3-1$ and $3-2$ for service access specifications.

FIGURE 3-1. SERVICE ACCESS SPECIFICATIONS (WITHOUT FRONT DOORS)

FIGURE 3-2. SERVICE ACCESS SPECIFICATIONS (WITH FRONT DOORS)

OPERATING TEMPERATURE, HUMIDITY, BAROMETRIC PRESSURE

Temperature Range - Dry Bulb.	$\begin{aligned} & 10^{\circ} \mathrm{C}-40^{\circ} \mathrm{C} \\ & \left(50^{\circ} \mathrm{F}-104^{\circ} \mathrm{F}\right) \end{aligned}$
Temperature Change (Max)	$10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ per 60 minutes
Relative Humidity Range	20-80\%
Humidity Change (Max).	10\% per 60 minutes
Dew Point Temperature	Maximum $26^{\circ} \mathrm{C}\left(79^{\circ} \mathrm{F}\right)$
Restrictions	Minimum $-4^{\circ} \mathrm{C}\left(25^{\circ} \mathrm{F}\right)$
Barometric Pressure Standard.	105 Kilopascals (kpa)
	79.5 Kilopascals (kpa)
	(maximum equivalent altitude
	6560 feet or 2000 meters)
High Altitude (Option)	105-Kilopascals (kpa)
	69 Kilopascals (kpa)
	(maximum equivalent altitude
	9850 feet or 3000 meters)

A high altitude optional cooling system is required for altitudes between 6560 and 9850 feet or the maximum temperature should be derated from $95^{\circ} \mathrm{F}$ to $87^{\circ} \mathrm{F}$ between 6560 to 9850 feet.

Maximum temperature of $104^{\circ} \mathrm{F}$ applies at altitudes up to 1000 feet. Above this altitude, the maximum temperature is derated linearly to $95^{\circ} \mathrm{F}$ at 6560 feet.

NON-OPERATING TEMPERATURE, HUMIDITY, BAROMETRIC PRESSURE

Storage (Period Up To 3 Months)

Temperature Range	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \\ & \left(14^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F}\right) \end{aligned}$
Temperature Change/Rate .	$15^{\circ} \mathrm{C}\left(27^{\circ} \mathrm{F}\right)$ per hour maximum
Humidity Range	10 to 90\% R.H. non-condensing

TRANSIT (Period Up To One Week)

Temperature Range	$-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
	$-40^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$
Temperature Change/Rate.Humidity Range.	$20^{\circ} \mathrm{C}\left(36^{\circ} \mathrm{F}\right)$ per hour maximum
	5 to 95\% R.H.
Barometric Pressure.	105 Kilopascals (kpa)
	38 Kilopascals (kpa)
	(Maximum equivalent altitude
	$\mathbf{2 5 , 0 0 0}$ feet or 7600 meters)

TABLE 3-2. ELECTRICAL SPECIFICATIONS

a. b. c. d. e.	
a. b. c. d. e.	
a. b. c. d. e.	

SECTION IV
 INPUT POWER CONVERSIONS

The printer comes from the factory specifically wired for your application. Conversion within the printer from one frequency of operation to another is only available on optional $50 / 60 \mathrm{~Hz}$ units. The conversion requires reprogramming the ac power board plug for the required configuration if the unit is equipped with a universal programming board (4PC1) as shown in Figure 4-1, or by repositioning fast-on terminal connectors to new positions on a terminal strip as shown in Figure 4-2, and changing the 50 HZ or 60 HZ band pulley. 60 HZ units come equipped with a power cord and is terminated with a non-locking 3 prong plug, 50 HZ units come equipped with a power cord which is terminated without a plug at the wall plug end. Refer to Figure 4-1 for input power frequency modifications for early units with a universal programming board. Refer to Figure 4-2 for input power frequency modifications for units with a terminal strip. The ex tra 50 Hz or 60 Hz band pulley is stored on early u_{1} its, in an accessory box. In later units it is stored in the printer's interior and is located beneath the ri; ht rear power board cover (as viewed from the fr, nt of the printer with the bonnet open).

REMOVE POWER

To change voltage on units equipped with a universa program board, move the voltage selection ju nper plug from its present position on 4PC1 J1-J5 to the selected voltage position J1, J2, J3, J4 or J5 (S:e Figure 4-1).

To change voltage on units equipped with a terminal strip, follow the wiring diagram label instructions ab,ve the terminal strip or Figure 4-2.

For frequency and voltage changes perform the following procedure:

REMOVE POWER

1. Change the Band Drive Pulley as follows. Remove the ribbon and print band, refer to the Operator Instruction Cards beneath the printer's bonnet. Remove the band motor flywheel by removing the nut on top. Refer to the Maintenance Manual procedure, Right Band Pulley and Shaft Replacement for a drawing of the parts.
2. Loosen the band motor mounting screws to release belt tension.
3. Pry up on the pulley to remove. Replace the pulley with the other frequency pulley in the location described above. The 50 Hz pulley is larger than the 60 Hz pulley.
4. Position the drive belt on the pulley and perform the Band Drive Belt Adjustment procedure in the Maintenance Manual.
5. Install the flywheel and its nut. Install the band and ribbon. Perform the Band Tracking Adjustment procedure in the Maintenance Manual.

If the unit is equipped with a universal program board (4PC1), refer to Figure 4-1 and perform steps 6 thru 8 . If the unit is equipped with a terminal strip, refer to Figure 4-2 and perform steps 9 thru 11.
6. Move the frequency plug to the correct frequency position on 4PC1 J9 (50 Hz), J10 $(60 \mathrm{~Hz})$.
7. Change the transformer cables for 50 and 60 Hz on the backplane board 1BP1-J9 with the unused cable plugged into the storage location on 4PC1.
8. Move the voltage selection jumper plug on 4PC1 to the correct voltage position J1, J2, J3, J4, or J5.
9. Change the transformer cables, $\mathrm{P} 9-60 \mathrm{HZ}$ (whichever frequency is desired) on backplane board 1BP1-J9.
10. Move the fast-on terminal connectors to new positions on the terminal strip. Refer to the wiring diagram label above the terminal strip or Figure 4-2.
11. For $100 \mathrm{VAC}, 120 \mathrm{VAC}, 220 \mathrm{VAC}(60 \mathrm{HZ}$ or 50 HZ), 1BP1-P8/P14 should be plugged into 1BP1-J8. For 240 VAC (50 HZ), 1BP1-P8/P14 should be plugged into 1BP1-J14.

FIGURE 4-1. INPUT POWER/FREQUENCY MODIFICATIONS (EARLY UNITS)

FIGURE 4-2. INPUT POWER/FREQUENCY MODIFICATIONS

SECTION V INTERFACE SIGNALS

This section describes the interface signals associated with this interface. Note that RS-449 systems may require special connector adaptors when used in RS-232 installations.

Clear to Send (CTS) (To Printer)

After the host has received the Request to Send from the printer and is capable of accepting a transfer from the printer, it will set the Clear to Send line to space (0) ON and hold it on as long as it is capable of accepting data. The printer may also be programmed to internally set CTS to a constant ON condition.

Data Set Ready (DSR) (To Printer)

Signals in this circuit are used to indicate the status of the local host data set. The mark (1) OFF condition is an indication that the printer is to disregard signals appearing on the Receive Data Line. The space (0) ON condition indicates that the data set is in a ready condition. This signal can be programmed to a constant $O N$ condition at the printer. Any pending status transmission from the printer will be cancelled if this line is OFF.

Data Terminal Ready (DTR) (From Printer)
A signal on this line is generated by the printer's communication interface to indicate that it is capable of receiving data.

Local Loopback (From Printer)

This signal will be activated when the operator selects the local loopback test mode and presses the START switch on the Control Panel. The printer will then monitor the test mode signal (Data Communication Equipment) and when active, it will send a sliding alpha ASCII print pattern followed by a Line Feed (LF) command. The printer will then monitor the Received Data Lines for an exact echo of the transmitted data from the local modem. The operator may select this received data to print if required.

Protective Ground (Between Printer and Host)

This conductor is electrically connected to the equipment frame.

NOTE:
SIGNAL GROUND AND PROTECTIVE GROUND CAN BE TIED TOGETHER IN THE PRINTER OR CAN BE SEPARATED BY REMOVAL OF A 100 OHM RESISTOR.

Receive Common (In RS-449 Mode Only)
This line provides the signal return reference for Incoming Call (IC) and Test Mode (TM) signals coming to the printer from the host. It is connected to each differential receiver's reference pin and is not connected to the printer's common signal ground.

Received Data (To Printer)

Serial data (synchronous or asynchronous) signals on this line are generated by the host. This line is to be held in the OFF (marking) condition at all times when the Received Line Signal Detector (RLSD) line is in the OFF (1) condition.

Received Line Signal (Carrier) Detector (RLSD) (To Printer-Optional)

The ON condition of this optional line indicates that the data communication equipment is receiving a signal which meets its suitability criteria. These criteria are established by the data communication equipment manufacturer.

This signal can be programmed to a constant ON condition at the printer.

Receiver Signal Element Timing (To

 Printer-Optional)This signal may be optionally selected to be used by the printer to time its received data when in the synchronous mode.

Remote Loopback (From Printer)

This signal will be activated when the operator selects the remote loopback test mode and presses the START switch on the Control Panel. This operation is similar to the local loopback operation except that the host's remote modem will return the loopback data to the printer.

Request to Send (RTS) (From Printer)
This line is used to indicate that the printer has data to be transmitted to the host.

Reverse Channel (From Printer-Optional)

This signal is ON when the printer interface has not detected the following:

When the interface buffer is nearly full (as set by the selectable threshold points) or Data Terminal Ready is OFF. The reverse channel will be OFF for at least 200 MSEC or until the contents of the buffer have been reduced to below nearly empty (as set by the selectable threshold points). Printer speed may be degraded if data is being removed from the interface buffer at a rate which requires that more data be input (Almost Empty threshold) before the 200 ms time has elapsed. This condition can be avoided by setting the threshold points so that there will be sufficient data in the buffer to keep the printer in operation for at least 200 ms .

NOTES:

THIS SIGNAL MAY BE SWITCH SELECTED TO DRIVE EITHER RS-232C PIN 19 (SCA-SECONDARY REQUEST TO SEND) OR PIN 11 (UNASSIGNED).

IN RS-449 MODES THE SRS (SECONDARY REQUEST TO SEND) LINE WILL BE DRIVEN WHEN THE REVERSE CHANNEL OPTION IS SELECTED AND THE OPTIONAL 9 PIN CONNECTOR IS INSTALLED.

THE ACTIVE POLARITY OF THIS SIGNAL MAY BE SELECTED AS AN OPTION SETUP.

Ring Indicator (To Printer-Optional)

The ON condition indicates that a ringing signal is being received on the communication channel.

Send Common (From Printer) (in RS-449 (i.e. RS-422, 423) Modes Only)

This line provides the signal return reference for the Remote Loopback (RL), the Local Loopback (LL) and the Secondary Request to Send (SRS) signals sent to the host from the printer. It is not to be connected to the host's common signal ground.

Signal Ground (Between Printer and Host)

This signal provides the signal reference point for both received and transmitted signals. It is a signal return line only when in the RS-232C mode. It is not the system's protective or frame ground.

Test Mode (To Printer)

This signal is used to respond to either the LL or RL signals from the printer. It indicates that the host system will return any data from the printer back to the printer. The printer will then begin the test. In RS-232 Mode, this line may be jumpered to be held active internally.

Transmitted Data (From Printer)

This serial data (synchronous or asynchronous) line is sent from the printer to the host to send printer status and response data.

Transmitter Signal Element Timing (From Printer-Optional)

This printer supplied signal may be optionally selected to be used by the host to transmit data to the printer when in the synchronous mode. The frequency of this signal is determined by the printer baud rate select circuitry at times one (x 1).

Transmitter Signal Element Timing (To Printer-Optional)

This signal may be optionally selected to be used by the printer to time its transmitted data, when in the synchronous mode.

FIGURE 5-1. I/O SIGNALS AND PIN ASSIGNMENTS - RS-232 CONNECTOR

FIGURE 5-2. I/O SIGNALS AND PIN ASSIGNMENTS - RS-449 CONNECTOR

NOTES
\qquad

