GDCONTROL DATA

CDC ${ }^{\circledR}$ 722-30 DISPLAY TERMINAL
PART NO. 51942413, 51942414

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

This manual provides training and on-site maintenance information for the CDC ${ }^{\circledR}$ 722-30 Display Terminal, part number 51942413 or 51942414. This information is divided into the following major sections:

- Section 1, Training - Provides the self-study training information for maintaining the display terminal.
- Section 2, General Description - Gives an overview of the terminal and describes its standard and optional features, its operator controls, and its specifications.
- Section 3, Installation - Describes the installation of optional character sets in the terminal.
- Section 4, Theory of Operation - Describes the general functions of the terminal, its major assemblies, and its external interfaces.
- Section 5, Diagrams - Provides an interconnection diagram of the terminal.
- Section 6, Maintenance - Provides general maintenance information, SAM listings for troubleshooting the terminal, and corrective maintenance procedures.
- Section 7, Parts Data - Provides spare parts information.

Other display terminal manuals include:

Title
Publication Number
722-30 Display Terminal Owner's Manual 62950139
722-30 Display Terminal Reference Manual
62950137

All manuals may be ordered from:

Control Data Corporation
Literature and Distribution Services 308 North Dale Street
St. Paul, Minnesota 55103

1. TRAINING
Learning Activities 1-2
Learning Activity 1-A. Exercise: 722-30
Components 1-3
Objective 1-3
Directions 1-3
Answers to Learning Activity l-A 1-5
Learning Activity l-B. Exercise: Parameter Entry 1-6
Objectives 1-6
Directions 1-6
Part One 1-6
Part Two 1-6
Part Three 1-7
Answers to Learning Activity $1-B$ 1-9
Learning Activity l-C. Exercise: Diagnostics 1-11
Objective 1-11
Directions 1-11
Answers to Learning Activity 1-C 1-14
Learning Activity l-D. Exercise: FRU Removal
Replacement and Adjustments 1-15
Objective 1-15
Directions 1-15
Answers to Learning Activity 1-D 1-18
Learning Activity l-E. Exercise: Fault Isolation 1-19
Objective 1-19
Introduction 1-19
Directions 1-19
Answers to Learning Activity l-E 1-21
2. GENERAL DESCRIPTION
Overview 2-1
Standard Features 2-1
Optional Features 2-3
Operator Controls 2-3
Specifications 2-4
Electrical Specifications 2-4
Environmental Specifications 2-4
Physical Specifications 2-5
3. INSTALLATION 3-1
THEORY OF OPERATION
General Functions 4-1
Terminal Firmware 4-1
Keyboard-Entered Parameters 4-2
Categories of Parameters 4-2
Storage of Parameter Settings in Memory 4-3
Major Assemblies 4-3
Keyboard 4-5
Power Supply 4-5
Main Logic Board 4-6
Monitor Board 4-6
CRT/Yoke Assembly 4-6
External Interfaces 4-6
4. DIAGRAMS
Interconnection Diagram 5-2
5. MAINTENANCE
General Maintenance Information 6-1
Suggested Emergency Maintenance Procedure 6-1
Before Leaving for Customer Site 6-2
Upon Arriving at Customer Site 6-2
Safety Precautions 6-3
Electrostatic Discharge Precautions 6-4
Special Tools 6-4
Resident Diagnostics 6-5
Power-On Tests 6-5
Keyboard-Connection Test 6-6
Monitor Mode 6-6
Diagnostic and Corrective Maintenance Procedures 6-6
SAM Format 6-7
Use of SAMs 6-7
Organization of SAMs and Procedures 6-9/6-10
SAM l - Defining the Problem 6A-1
SAM 2 - Power Problems 6A-3
SAM 3 - No Video 6A-7
SAM 4 - Power-On Self Tests Fail 6A-9/6A-10
SAM 5 - Video Problems 6A-11
SAM 6 - Communication/Printing Problems 6A-13
SAM 7 - Keyboard Problems $6 A-15 / 6 A-16$
Procedure 1 - Turning Power On/Off 6B-1
Procedure 2 - Running/Interpreting Power-On
Self Tests 6B-1
Interpreting Power-On Self Tests 6B-1
Running Power-On Self Tests in a Loop 6B-3
Procedure 3 - Testing Keyboard Input 6B-5
Procedure 4 - Displaying/Changing Parameters 6B-18
Displaying Parameters 6B-18
Changing/Storing Parameters 6B-18
Definition of Parameters 6B-19
Procedure 5 - Removing/Replacing Hood 6B-31
Procedure 6 - Removing/Replacing Main Logic
Board 6B-31
Procedure 7 - Checking Power Supply Voltages 6B-33
Procedure 8 - Removing/Replacing Power Supply 6B-34
Procedure 9 - Removing/Replacing Power-Supply- to-Main-Logic-Board Cable 6B-35
Procedure 10 - Removing/Replacing Monitor Board 6B-36
Procedure 11 - Removing/Replacing CRT/Yoke
Assembly or Bezel 6B-39
Procedure 12 - Making Video Adjustments 6B-41
Sync Adjustment 6B-4 3
Horizontal Centering/Width Adjustment 6B-43
Vertical Height/Linearity Adjustment 6B-44
Brightness Adjustment 6B-44
Focus Adjustment 6B-44
Geometric Distortion Adjustment 6B-45
Procedure 13 - Removing/Replacing Keyboard 6B-45
Procedure 14 - Removing/Replacing Power Switch 6B-46
Procedure 15 - Removing/Replacing AC Power Cord or Fuse Holder 6B-47
Procedure 16 - Removing/Replacing Cabinet Base, Pedestal, or Pedestal Spring 6B-49
Procedure 17 - Doing Loopback Testing $6 B-51 / 6 B-52$
6. PARTS DATA
Spare Parts Kit 7-2
Spare Parts List 7-3
Source/Cross-Reference List 7-5
Source/Cross-Reference List for Foreign Character Sets 7-8

APPENDIX
A. INPUT OF OPTIONAL CHARACTER SET KEYS A-1

FIGURES

1. TRAINING

$1-1$	Major Assemblies	$1-4$			
$1-2$	Power Supply Board	$1-16$			
$1-3$	Video Control Board

2. GENERAL DESCRIPTION
2-1 Display Terminal 2-2
2-2 Operator Controls and Identification Tag 2-4
2-3 Terminal Dimensions 2-5
3. INSTALLATION
3-1 Replacing IC Chips 3-1
3-2 Accessing Keyboard Switches 3-3
3-3 United Kingdom Keycaps 3-4
3-4 German Keycaps 3-4
3-5 French Keycaps 3-4
3-6 Spanish Keycaps 3-5
3-7 Swedish/Finnish Keycaps 3-5
3-8 Danish/Norwegian Keycaps 3-5
4. THEORY OF OPERATION
4-1 Simplified Terminal Block Diagram 4-4
4-2 Location of Major Assemblies and Interface Connectors 4-4
4-3 Keyboard with Standard Keycaps 4-5
5. MAINTENANCE
6-1 Location of a Displayed Error Code 6-6
6-2 Example of a SAM 6-8
6-3 Organization of SAMs and Corrective MaintenanceProcedures6-9/6-10
6A-1 Power Check Items 6A-3
6A-2 No-Video Check Items 6A-7
6A-3 Example of Good Alignment Display 6A-11
6B-1 Status Line 6B-2
6B-2 Removing/Replacing Hood 6B-31
6B-3 Removing/Replacing Main Logic Board 6B-32
6B-4 Accessing Power Supply 6B-33
6B-5 Power Supply Board with Cover 6B-34
6B-6 Connection of Power Supply Output Connectors 6B-36
6B-7 High-Voltage Discharge 6B-37
6B-8 Monitor Board Connections 6B-38
6B-9 Removing/Replacing CRT/Yoke Assembly or Bezel 6B-40
6B-10 Video Controls 6B-4 2
6B-ll Example Alignment Display 6B-43
6B-l2 Display with Barrelling/Pincushioning 6B-45
6B-13 Keyboard Cable Connector 6B-46
6B-14 Removing/Replacing Power Switch 6B-47
6B-15 Removing/Replacing AC Power Cord or Fuse Holder 6B-48
6B-16 Mounting of Pedestal/Pedestal Spring to Cabinet Base 6B-50
6. INSTALLATION
3-1 Keyboard Switch Settings for Character Sets 3-2
7. MAINTENANCE
6A-1 Problem/SAM Correlation 6A-1
6B-l Nonfatal Error Codes 6B-3
6B-2 Displayed Input for ADV Emulation 6B-5
6B-3 Displayed Input for ADDS Emulation 6B-9
6B-4 Displayed Input for ANSI Emulation 6B-13
6B-6 Terminal Parameters 6B-20
6B-7 Video Controls 6B-41

This section contains the student training material for the 722-30 Maintenance Course (course number HIOO10).

This individualized course consists of one PLM module. The module contains several learning activities which teach the task required to maintain the $722-30$ display terminal. The course does not require any tools or equipment. It is suggested, if possible, you schedule some time on the terminal to practice running diagnostics and changing parameters.

The maintenance philosophy for the 722-30 terminal is on-site replacement of the failing field replacement unit (FRU). No special tools are necessary for on-site maintenance. No preventive maintenance is necessary for the terminal. The terminal will be installed by the customer.

Although terminal installation is the customer's job, you should be familiar with the installation procedures. To gain additional information about installation and operation, read the 722-30 Owner's Manual (see preface for publication number and ordering information).

To receive credit for this training, complete the learning activities in this section, enroll in course HIOOlO, and successfully complete the PLATO Learning Management (PLM) Module Test.

You may now begin the 722-30 Maintenance Course by following the instructions on the next page.

MODULE 1
MAI NTENANCE

This module presents the tasks required to maintain the 722-30 display terminal.

LEARNING ACTIVITIES

Check off each learning activity listed below when completed. This will show your progress as you proceed through the learning activities.

Completed	Activity	Description	Page
--	1-A	Exercise: 722-30 Components. This learning activity presents an overview of the 722-30 display terminal.	1-3
--	1-B	Exercise: Parameter Entry. This learning activity presents the steps required to change control parameters.	1-6
--	1-C	Exercise: Diagnostics. This learning activity covers the steps required to run the 722-30 diagnostics.	1-11
--	1-D	Exercise: FRU Removal/Replacement and Adjustments. This learning activity studies the removal, replacement, and adjustment procedures for the 722-30 terminal.	1-15
--	1-E	Exercise: Fault Isolation. This learning activity describes the 722-30 troubleshooting aids found in this manual.	1-19

LEARNING ACTIVITY 1-A. EXERCISE: 722-30 COMPONENTS

This learning activity will present an overview of the 722-30 display terminal.

Objective

You will be able to recall the location and function of the 722-30 major assemblies and connectors.

Directions

Read the information presented in sections 2, 3, and 4 of this manual. Return to this learning activity when you complete the reading assignment.

Write your response to the following questions in the space provided. Check your answers with those given at the end of this activity.

1. What three emulations does the 722-30 have?
a.
b. \qquad
c.
2. To change character sets, you must replace three integrated circuit (IC) chips and change the keyboard switch setting. The ICs are located on the while the switch block is found on \qquad .
3. When installing a German character set, the keyboard switches are set to \qquad
4. List the three memories used in the storage of parameter settings.
a. \qquad
b. \qquad
c. \qquad
5. Of the three memories, which memory is cleared by a power off or reset?
6. Parameter settings which are used by the user on a permanent basis are stored in which memory?
7. During the initial power on (installation), the parameter values stored in the \qquad memory become effective.
8. How is screen contrast changed?
\qquad
9. To which connector is the communication line connected to?
\qquad
Identify the numbered components in figure l-1.

Figure l-1. Major Assemblies

1. a. Advanced (ADV) mode that emulates the advanced mode of a CDC 722-10/20 (CC628-A/B) Display Terminal
b. ADDS mode that emulates an Applied Digital Data Systems Viewpoint Terminal
c. ANSI mode that is compatible with ANSI standard X3.64
2. Main logic board; keyboard printed-circuit board.
3. Switch 1 either ON or OFF, switch 2 OFF, switch 3 OFF, and switch 4 ON.
4. a. EPROM
b. EEPROM
c. Volatile RAM
5. Volatile RAM
6. EEPROM
7. EPROM
8. By changing a parameter value
9. Connector marked EIA/CL
10. CRT/yoke assembly (replaced as one unit)
11. Monitor board
12. Main logic board
13. Keyboard connector
14. EIA/CL connector - port for host communications
15. AUX EIA connector - auxiliary port for connecting serial printer
16. Power supply
17. Keyboard

LEARNING ACTIVITY 1-B. EXERCISE: PARAMETER ENTRY

This learning activity will present the steps to change the control parameters.

Objectives

You will be able to list the steps required to change and store a parameter setting.

Directions

The only switch found on the 722-30 terminal is the On/Off switch. Instead of parameter switches, the terminal uses nonvolatile memory to store control parameter settings. The parameter settings can be entered and/or changed via the keyboard. Certain maintenance actions require you to change parameter settings. This learning activity will look at how to change parameters.

The learning activity has three parts. First, you will read the procedure for changing and displaying parameters. Second, you will review examples of changing parameters. Last, you will demonstrate your knowledge of changing and storing parameters.

Part One

Read the information found in procedure 4 of section 6B. Be sure to study both tables found in this procedure. Return to part two of this learning activity after you have completed the reading assignment.

Part Two

Study the following examples.

After the first parameter is displayed, press and hold the SHIFT key and then use the \uparrow or \downarrow key to display another parameter.

Example l: Screen display is "Ol Auto LF/CR On". Holding the SHIFT key pressed and pressing the \uparrow key once will cause the screen display to change to "02 Auto Repeat On".

Example 2: Screen display is "Ol Auto LF/CR On". Holding the SHIFT key pressed and pressing the \downarrow key three times will change the screen display to " 40 Tx. EOM FF".

To select an alternate parameter setting or step through the available settings, press and hold the SHIFT key and then use the \rightarrow or \leftarrow key.

Example 3: Screen display is "04 Auto Wrap On". Holding the SHIFT key pressed and pressing the \rightarrow or \leftarrow key once will change the screen display to "04 Auto Wrap Off".

Example 4: Screen display is "07 Baud Rate 9600". Holding the SHIFT key pressed and pressing the \leftarrow key four times will change the screen display to "07 Baud Rate 1200".

Part Three
Write your response to the following questions in the space provided. Check your answers with those given at the end of this activity.

1. After completing a service call on the 722-30, you are asked to show a new operator how to change parameters. List the steps (keys pressed) required to display parameter 01 on the screen. Also indicate the message that will appear on the screen for each step.
a. \qquad
b.
c.
2. Which key must be pressed to exit from parameter display mode?
3. The screen display is "ll Data Bits 7". What will be displayed on the screen after pressing and holding the SHIFT key down and pressing the \uparrow key once?
4. The screen display is "l8 LF Bias Bias". What will be displayed on the screen after pressing and holding the SHIFT key down and pressing the \downarrow key four times?
5. The screen display is "3l Screen Contrast 9". What will be displayed on the screen after pressing and holding the SHIFT key down and pressing the \leftarrow key five times?
6. In question number 5 , will the final screen display be dimmer or brighter than the original display?
7. The screen display is " 19 Margin Bell Off." What will the screen display be after pressing and holding the SHIFT key down and pressing the \rightarrow key two times?
8. After a parameter setting has been changed on the screen, what key(s) store the new parameter value in volatile memory?
9. A certain maintenance activity requires the terminal to be in local mode and ADV emulation. Presently your terminal is online and in ADDS emulation. List all the key strokes and the number of times each key is pressed to change these two parameters.
a. Press SETUP - once e.
b. \qquad f. Press SETUP - once
c.
d.
10. With no reset switch present on the front panel of the terminal, how is the terminal reset?
\qquad
\qquad
11. What will appear across the bottom of the screen if parameter 35 is set to Off?
12. While using a terminal, the operator changes and stores in volatile memory the following parameters: 17 to On and 31 to 6. To save these new values for the next time, he/she presses the CTRL and S keys simultaneously before powering off. What will the settings of these parameters be after the terminal is powered on?

17 - \qquad
\qquad

Answers to Learning Activity 1-B

1. a. Press SETUP key. "PRESS UP-DOWN ARROWS TO SEE MORE, AND LEFT-RIGHT ARROWS TO CHANGE VALUES" message will appear on the screen.
b. Press and hold SHIFT key down and press the \uparrow key once. This will display the set tabs line.
c. Repeat step c. This causes parameter 01 to be displayed.
2. SETUP key
3. 12 DTR On/Off Off
4. 14 Emulation ADV
5. 31 Screen Contrast 4
6. Dimmer
7. The screen display will be the same. The first depression toggles the setting to $O N$, while the second toggles it back to OFF.
8. Either the Cursor Up, Cursor Down, or SETUP keys will store the last value selected.
9. a. Press SETUP once. "PRESS UP-DOWN ARROW TO SEE MORE, AND LEFT-RIGHT ARROWS TO CHANGE VALUES" message will be displayed on the screen.
b. Press and hold the SHIFT key down then press the \uparrow key fifteen times. The first time the \uparrow key is pressed, the set tabs parameter is displayed. The next fourteen times will move you to parameter 14.
c. Press and hold the SHIFT key down then press the \rightarrow key twice or press and hold the SHIFT key down and press the \leftarrow key once. Either sequence changes parameter 14 to ADV.
d. Press and hold the SHIFT key down and then press the \uparrow key eight times. This moves from parameter 14 to parameter 22. Note, the first time the \uparrow key was pressed the new value for parameter 14 was stored in volatile memory as a temporary change.
e. Press and hold the SHIFT key down and then press the \rightarrow key once. This changes parameter 22 to Local.
f. Press SETUP once. This stores the new value for parameter 22 in volatile memory as a temporary change and exits from the parameter display.
10. Enter the parameter display; move to parameter 28; press and hold the SHIFT key down and then press CR.
11. If in $A D V$ or $A D D S$ emulation, $R=x x C=x x$ will appear in the lower right corner of the screen. R for row, C for column and $x x$ will be a decimal number indicating cursor location. If in ANSI mode, nothing will appear at bottom of the screen.
12. 17 will be On and 31 will be 9 . If the screen contrast parameter is set to a value not between 7 and 15 , it will be defaulted to 9 .

LEARNING ACTIVITY 1-C. EXERCISE: DIAGNOSTICS

This learning activity will present the steps necessary to initiate and execute the 722-30 diagnostics.

Objective

You will be able to exercise the $722-30$ resident diagnostics.

Directions

In this manual, read the following:

Topic entitled "Resident Diagnostics" in section 6 and procedures 2, 3, and 17 in section 6B.

Return to this learning activity after you have completed the reading assignment.

Write your response to the following questions in the space provided. Check your answers with those given at the end of this activity.

1. List the diagnostics available in the $722-30$ display terminal.
2. What indicates a fatal error occurred during the power-on self tests?
3. When powered-on, the terminal does not beep and has "722-30 ADV Rev 1.1" displayed on the screen. What type error has occurred?
4. When powered-on, the terminal does not beep and has "]*\& \%Tyhfg\#\$^\&)LK<hkjhy!\#" displayed on the screen. What type of error has occurred?
5. When powered-on, the terminal does beep and has "722-30 ADDS Rev l.l" displayed on the screen. What type of error has occurred?
6. When powered-on, the terminal does beep with "722-30 ADV Rev l. $06^{\prime \prime}$ displayed on the screen. What type of error has occurred?
7. What parameter numbers must be checked before running the power-on self tests in a loop? Also give the settings required to initiate the tests.
\qquad
\qquad
8. List the keystrokes necessary to place the power-on self tests in a continuous loop (assume ADV emulation).
\qquad
\qquad
9. What will stop a looping power-on self test. (Give both ways.)
10. To do the communication loopback test, parameter 22 (Operation Mode) is set to \qquad -
11. The part number of the communication loopback plug is
\qquad -
12. To display the complete status line, parameter \qquad must be set to \qquad .
13. What indication does the keyboard-connection test give if the keyboard was disconnected after the power-on tests have run? (List indication given with parameter 35 in the On setting and the Off setting.)
\qquad
\qquad
14. To display the character/symbol generated when a key is pressed, parameter 22 is set to ___ and parameter is set to \qquad -
15. When testing the keyboard input in ADV emulation, what will be displayed on the screen when pressing the CTRL and S keys simultaneously?

Answers to Learning Activity l-C

1. Power-on tests and keyboard-connection test; monitor mode is a diagnostic aid; loopback test is method to check the main interface port
2. No beep and a meaningless display or just a cursor
3. Keyboard error
4. Fatal error
5. No error, successful completion
6. Nonfatal error of 06
7. Parameter 22 must be set to Local mode and parameter 14 must be set to ADV or ANSI emulation
8. Hold the CTRL key down and press the $+/=k e y$, then the V key
9. Power off or an error
10. Online
11. 61409717
12. 35 , On
13. If parameter 35 is On, a field in the status line will say "KB ERROR." If parameter 35 is Off, no indication is given.
14. Local, 20, On
15. D_{3}

LEARNING ACTIVITY 1-D. EXERCISE: FRU REMOVAL REPLACEMENT AND ADJUSTMENTS

This learning activity will study the removal, replacement and adjustment procedures for the 722-30.

Objective

You will be able to remove/replace all FRUs, adjust monitor board controls, and measure dc voltage.

Directions

Read procedures 5 thru 16 in section $6 B$ of this manual. Pay special attention to all notes, warnings, and cautions given in the procedures. Return to this learning activity after you complete the reading assignment.

Write your response to the following questions in the space provided. Check your answers with those given at the end of this activity.

1. When replacing the main logic board, what must be done to ensure the parameter settings are transferred to the new board?
2. The dc voltages are checked at the power connectors on which board?
3. To measure the +5 volt output of the power supply, connect the meter between pins with \qquad wires and wires. (Indicate color.)
4. In figure $1-2$, the $115 / 230$ volt jumper wire would be connected to pin for 115 V operation.

Figure 1-2. Power Supply Board
5. To perform the video adjustments, set parameter 22 to \qquad -
6. List the key strokes required to display the alignment pattern (assume the terminal is in ADV emulation).
7. Circle the following power components that must be soldered when replaced.
power on/off switch
power supply
fuse holder
power cord
8. The yoke magnets will correct what problem?
9. What keys must be pressed to clear the video alignment display?
\qquad
For questions 10 thru 14 , use figure $1-3$ as a reference.

Figure 1-3. Video Control Board
10. Which control would you adjust for a vertically rolling display?
\qquad
11. Which control adjusts the height of the display?
12. The characters at the top of the screen are larger than those at the bottom. Which control would you adjust?
\qquad
13. The display pattern is seven inches wide. Which control would you adjust to change the display?
14. Which control will touch up the character focus?

1. If possible, you must record the parameters on paper thenenter them after the new board has been installed.
2. Power supply
3. Black, blue
4. 2
5. Local
6. Press the CTRL and = keys simultaneously, then hold the SHIFT key down and press the " and @ keys
7. Power switch, fuse holder, and power cord all require some soldering if replaced.
8. Barrelling or pincushioning
9. Press and hold the SHIFT key, then press the P CLEAR key
10. F, V HOLD VR203
11. E, V SIZE VR201
12. D, V LIN VR202
13. G, L3603
14. A, FOCUS VR303

This learning activity will describe the 722-30 troubleshooting aids found in the maintenance section.

Objective

You will be able to list the action(s) necessary to correct a 722-30 display terminal malfunction.

Introduction

Many elements are needed to isolate and repair a malfunction. These elements which include, changing parameters, running diagnostics, making adjustments and replacing components, have been covered in previous learning activities. This manual contains one additional aid to help you in fault isolation, the SAM listings.

There are seven listings in all. With the exception of SAM 1 , each listing covers a different type problem or symptom. SAM 1 is used to define the problem and select one of the other six listings.

Directions

Use the SAMs in section 6A to answer the following questions. If you are not familiar with the SAM format, read the SAM format information in section 6 before you answer the questions. Compare your answers with those given at the end of this activity.

1. A terminal you are working on has no beep when power is turned on. After warm up, a message does appear on the screen. According to SAM 1, what SAM would you use to further isolate the malfunction?
2. If the building circuit breaker trips when the terminal is plugged in, what component(s) would you replace?
\qquad
\qquad
3. For a power problem, list the location of the three fuses that must be checked?
\qquad
\qquad
4. When a 26 code appears on the first display line, which FRU would you replace first?
5. The power-on self test produces a normal emulation message with no beep. What components would you replace?
\qquad
\qquad
6. You have a vertically rolling display, what parameter should be checked before any adjustment or FRU is replaced?
7. The use of each key produces two characters on the screen. What parameter should be checked?
\qquad
8. On a terminal with no raster, you notice the filament is not lit. All the dc voltages are present. What FRU would you first replace?
9. A 722-30 terminal was dropped off at your office. No symptom was given. List the indications you would look for to define the malfunction.
\qquad
b. \qquad d. \qquad
10. SAM 4 according to steps 001 and 012 of SAM 1.
11. Power cord according to steps 001 and 017 of SAM 2.
12. AC line, power supply board and monitor board.
13. Main logic board according to steps 001 and 005 of SAM 4.
14. Check keyboard cable connection, then replace the keyboard according to steps 003, 008, and 009 of SAM 4.
15. Check parameter 25 as indicated by steps 002 and 018 of SAM 5.
16. Parameter 13 as indicated by steps 002 and 014 of SAM 6 .
17. Monitor board as indicated by steps 003 and 005 of SAM 3.
18. SAM 1 lists the following:
a. Listen for the beep when powered on
b. Look for emulation message
c. Look for an octal number at end of emulation message
d. See if keyboard entered data appears on screen

If these checks are $O K$, the terminal appears to be operating correctly. Before you return it to the customer, run the power-on self test in a loop. Any error indicated by these checks should be further isolated by using the indicated SAM.

This section gives an overview of the display terminal and describes its standard and optional features, its operator controls, and its specifications.

OVERVIEW

The display terminal (figure 2-1) is an interactive input/output device for a remote or local host computer. The terminal transmits keyboard-entered data to the host computer character by character in a manner like a teletypewriter. In addition, in the later mentioned ANSI X3. 64 mode, the terminal can also transmit blocks of data, allowing editing to be done before transmission. A serial-interface printer may be connected to the terminal to copy input/output or to make screen copies.

The terminal has three personalities: an advanced (ADV) mode that emulates the advanced mode operation of a CDC 722-10/20 (CC628-A/B) Display Terminal, an ADDS mode that emulates an ADDS* Viewpoint Terminal, and an ANSI X3.64** compatible mode. The emulation to be used may be selected by the terminal operator via the keyboard or be selected by the host computer.

STANDARD FEATURES

The standard features of the terminal include:

- Parameters governing operating characteristics are entered via the keyboard and are stored in electrically-erasable, programmable, read-only memory (EEPROM). This type memory provides nonvolatile storage until a parameter entry is made and the previous entry is electrically erased by associated circuits.

[^0]

Figure 2-1. Display Terminal

- Display format of 24 lines by 80 characters per line. In addition, terminal status information appears on a 25 th line if enabled in the parameters.
- Display character set includes 95 ASCII alphanumeric characters and two groups of special symbols. The special symbols include line-drawing symbols and graphic/ mathematical symbols. In addition, the terminal has a monitor mode where characters for 33 ASCII control codes are displayable without the control functions being performed.
- Characters may be displayed at half (low) intensity, blinking, underlined, in inverse video (dark characters on light background), or in any combination.
- Display cursor may be an underline or a block and may blink, be steadily-lit, or be blanked (not displayed).
- Self tests that check the terminal hardware.
- Host and printer interfaces that are asynchronous, RS-232-C/CCITT-V.24* compatible, and have selectable word formats and selectable speeds from 110 to 19200 bps. In addition, the host interface can be set up for currentloop communications.
- Detached keyboard with ASCII character set.
- Tilt and swivel display unit.

OPTIONAL FEATURES

Optional character sets are available that allow the terminal to operate in the languages listed below. These options require installation by customer engineering personnel (instructions are in section 3).

- English (United Kingdom)
- German
- French
- Spanish
- Swedish/Finnish
- Danish/Norwegian

OPERATOR CONTROLS

The operator controls on the terminal (figure 2-2) include the:

- Power switch - Pressing the front end of the switch up turns power on and pressing the back end turns power off.
- AC line fuse - Provides electrical overload protection.

[^1]

Figure 2-2. Operator Controls and Identification Tag

SPECIFICATIONS

The following paragraphs describe the electrical, environmental, and physical specifications for the terminal.

ELECTRICAL SPECIFICATIONS

The electrical specifications for the terminal are:

- Units with part number 51942413* require: 110 (± 11) V ac, 60 Hz , single phase input
- Units with part number 51942414* require: 220/240 ($\pm 22 / 24$) V ac, 50 Hz , single phase input

[^2]The environmental requirements of the terminal are:

Operating Temperature: 10 C to $40 \mathrm{C}(50 \mathrm{~F}$ to 104 F$)$
Nonoperating Temperature: -20 C to $65 \mathrm{C}(-40 \mathrm{~F}$ to 149 F$)$
Relative Humidity: 0 to 90\%, no condensation

PHYSICAL SPECIFICATIONS

The overall dimensions of the terminal and keyboard are shown in figure 2-3. The terminal weighs $7.0 \mathrm{~kg}(15.4 \mathrm{lb})$ and the keyboard weighs $1.5 \mathrm{~kb}(3.3 \mathrm{lb})$.

Figure 2-3. Terminal Dimensions

This section describes how to install an optional character set in the terminal. This is done by customer engineering personnel. The installation of the terminal is the responsibility of the customer and is covered in the 722-30 Display Terminal Owner's Manual.

To install an optional character set:

1. Unplug ac power cord.
2. Remove cabinet hood from terminal (procedure 5 in subsection 6 B of this manual).

CAUTION

Observe the Electostatic Discharge Precautions in section 6 when handling the integrated-circuit (IC) chips in the following steps.
3. Locate the 24 -pin IC 10 , the $28-$ pin IC 22 , and the 28 -pin IC 23 on main logic board at bottom of terminal (figure 3-1).

Figure 3-1. Replacing IC Chips
4. Use a small screwdriver and lift IC 10, IC 22, and 23 straight up to avoid bending pins.
5. Note alignment of notches (figure 3-1) and install the IC 10, IC 22, and IC 23 that came with optional character set kit.
6. Replace hood.
7. Disconnect keyboard cable from terminal.
8. Remove six screws from bottom of keyboard and remove lower keyboard case (figure 3-2).
9. Remove four screws holding keyboard printed-circuit board assembly to upper keyboard case.
10. Turn keyboard printed-circuit board assembly over to access SWl block switches.
11. Table 3-1 lists the SWl switch settings for the optional character sets. These settings compensate for the different keyboard configuration which will exist after the optional keycaps have been installed. Use a small screwdriver or a ball-point pen to set these switches.

TABLE 3-1. KEYBOARD SWITCH SETTINGS FOR CHARACTER SETS

CHARACTER SET	SW1 SWITCHES			
	1	2	3	4
United Kingdom	*	ON	OFF	ON
German, French, Spanish, Swedish/Finnish, or Danish/Norwegian	*	OFF	OFF	ON
Standard ASCII (original setting)	*	OFF	ON	OFF
*Either ON or OFF.				

12. Do steps 7 through 10 in reverse order and action and reassemble keyboard.
13. Figures 3-3 through 3-8 show which keycaps need to be replaced for each optional character set. Use a keycap removal tool (part number 71493510) and refer to the .appropriate figure and replace the indicated keycaps.

Figure 3-2. Accessing Keyboard Switches

(1) Upper-grave accent

LOWER-APOSTROPHE, ACUTE ACCENT
Figure 3-4. German Keycaps

(1)upper-umlaut

Figure 3-5. French Keycaps

Figure 3-7. Swedish/Finnish Keycaps

Figure 3-8. Danish/Norwegian Keycaps

This section describes the general functions of the display terminal and its major assemblies and external interfaces.

GENERAL FUNCTIONS

The display terminal functions as an interactive input/output device for a remote or local host computer. Data input/output occurs asynchronously. A serial-interface printer may be connected to the terminal to copy input/output or to do page prints of the data on the display screen.

The terminal has a standard ASCII character set and six foreign character sets are available as options. In addition, the terminal can display special symbols and can emulate the advanced mode of a CDC CC628 Display Terminal (ADV emulation), an ADDS Viewpoint Terminal (ADDS emulation), or an ANSI X3.64 compatible terminal (ANSI emulation). These emulations are generated by the terminal firmware. The chosen emulation is placed in effect by a keyboard-entered parameter or by a host command.

The following paragraphs describe the terminal firmware and the keyboard-entered parameters.

TERMINAL FIRMWARE

The terminal firmware resides in erasable, programmable, read-only memory (EPROM) on the main logic board of the terminal. The firmware consists of program instructions that drive a microprocessor in the logic circuits. The firmware contains the routines for:

- Operating online with the host using ADV, ADDS, or ANSI emulation. The emulation in effect governs which control codes the terminal recognizes and how it responds to them.
- Performing local mode operations (offline from the host). With these operations, keyboard entered data always displays even though the terminal may be set up for full-duplex operation (data displays when host echoes it back). No data is sent to the host in local mode operation and the emulation in effect governs how the terminal responds to control code keys.
- Self-testing the terminal hardware. These diagnostic self tests are described in section 6, maintenance.

KEYBOARD-ENTERED PARAMETERS

The keyboard-entered parameters determine which operating features are in effect (for example: determines whether the display operates in a scroll or page manner, whether the display cursor is an underline or a block, etc.). The settings currently in effect may be displayed, and if desired, changed in either online or local mode.

The next paragraphs describe the categories of parameters that exist and the storage of parameter settings in memory.

Categories of Parameters

The keyboard-entered parameters consist of parameters that:

- Are set to make the terminal compatible with the site and its host
- Are set for operator comfort
- Control functions commonly controlled on other type terminals by manual controls. These functions include:
- Screen contrast adjustment
- Terminal reset
- Online/local mode selection

The storage of parameter settings involves EPROM, EEPROM, and volatile random-access memory (RAM). The EPROM holds default parameter settings that are established at the factory. These default settings become effective when the terminal is initially powered on following installation. The person installing the terminal then changes the undesired default settings and stores the default and changed settings into EEPROM.

The EEPROM stores the parameter settings that the user desires to use on a permanent basis. These settings are permanent in that, unless changed, they automatically become effective each time the terminal is powered on or reset.

If a temporary parameter change is desired, the changed setting should be stored in volatile RAM. Such a change will override the permanent setting until cleared by a power off or reset.

> In addition to the initial power on, the default settings become effective if instructed via the keyboard or if the terminal cannot detect any stored settings in EEPROM when a power on or reset occurs. The procedure for displaying, changing, and storing settings via the keyboard is in subsection 6B of the maintenance section. The procedure also defines each parameter selection and indicates its default setting.

MAJOR ASSEMBLIES

Figure 4-1 is a simplified block diagram of the terminal. The major assemblies comprising the terminal include the keyboard, power supply, main logic board, monitor board, and the crt/yoke assembly. The physical location of these assemblies is shown in figure 4-2 and the following paragraphs describe their functions.

Figure 4-1. Simplified Terminal Block Diagram

Figure 4-2. Location of Major Assemblies and Interface Connectors

KEYBOARD

The detached keyboard (figure 4-3) provides for operator entry of alphanumeric characters and control codes. Each key when pressed sends an 8 -bit serial code with parity to a universal asynchronous receiver/transmitter (UART) on the main logic board.

The keyboard operates in four modes, unshifted, shifted, control, and shifted control. The codes transmitted for pressed keys are determined by the emulation in effect and are controlled by the main logic board circuits. Transmitted codes are also affected if an optional foreign character set is installed. The foreign character sets include special keycaps that are installed on the keyboard and the replacement of three integrated-circuit chips on the main logic board. In addition, the settings of switches inside the keyboard must be changed.

POWER SUPPLY

The power supply converts the site ac voltage to $+5,+12$, and -12 V dc. A jumper on the power supply conditions it for a nominal input of 115 V ac at 60 Hz or 230 V ac at 50 Hz . The power supply is a switcher type that provides regulated dc power with a minimal power loss. There are no voltage adjustments.

Figure 4-3. Keyboard with Standard Keycaps

The main logic board contains the circuits that control the terminal. The main logic component of the board is an Intel 8085 Microprocessor integrated circuit that executes the previously described firmware. Other circuits provide firmware storage, parameter storage, data storage, timing, display refresh, keyboard data encoding, and external input/output.

MONITOR BOARD

The monitor board contains horizontal and vertical deflection circuits, video circuits, and a high-voltage power supply circuit. These circuits provide the voltages that illuminate and deflect the electron beam in the crt. A video signal from the main logic board determines when the crt beam illuminates to form characters on the screen. The deflection circuits for the beam are synchronized by horizontal and vertical sync pulses from the main logic board.

The monitor board contains controls for adjusting display size, centering, linearity, brightness, focus, and vertical stability. These video adjustments are described in subsection $6 B$ of the maintenance section.

CRT/YOKE ASSEMBLY

This assembly provides the display screen. The crt has a green phosphor screen that has a display format of 24 lines by 80 characters with a 25 th line as a status line. The displayable area on the screen is typically $205 \mathrm{~mm}(8 \mathrm{in})$ wide and 150 mm (6 in) high. This can be adjusted via width and height adjustments on the monitor board.

EXTERNAL INTERFACES
The external interfaces of the terminal are on the main logic board, including the interface connectors. These connectors protrude through two openings at the rear of the terminal (figure 4-2). The connector labeled EIA/CL is the main interface port for host communications (EIA/CL equates to RS-232-C/current loop). The connector labeled AUX EIA is the auxiliary interface port for connecting a serial printer. The pin assignments of these connectors are shown in the interconnection diagram in section 5 .

This section contains an interconnection diagram of the display terminal.

This section provides information for performing on-site maintenance on the display terminal. This information is divided into three subsections in the following order:

- General maintenance information on pages 6-1, 6-2, 6-3, etc.
- SAM (structured analysis method) listings on pages 6A-1, 6A-2, 6A-3, etc.
- Corrective maintenance procedures on pages 6B-1, 6B-2, 6B-3, etc.

GENERAL MAINTENANCE INFORMATION

The following paragraphs provide information that the customer engineer should be familiar with before performing maintenance on the terminal. The topics discussed are:

- Suggested emergency maintenance procedure - Describes the suggested approach to emergency maintenance.
- Safety precautions - Describes the safety precautions to be taken when performing maintenance.
- Electrostatic discharge precautions - Describes the precautions to take to guard against equipment damage caused by static electricity.
- Special tools - Lists the special tools required for terminal maintenance.
- Resident diagnostics - Describes the diagnostic self-tests of the terminal.

SUGGESTED EMERGENCY MAINTENANCE PROCEDURE

The following procedure provides suggested steps for the customer engineer (CE) to follow when responding to a customer request for maintenance on the terminal.

Before leaving for the customer site, contact the person operating the terminal at the time the malfunction occurred, and then:

1. Determine the following:
a. Whether customer has on-call or carry-in maintenance coverage. (Check warranty and shipping tag.)
b. Specific configuration of terminal; for example, does it have an optional character set.
c. Type of symptoms terminal exhibited to indicate that a malfunction occurred.
d. Whether terminal is operating and what symptoms, if any, are present when an attempt is made to operate.
2. Determine a course of action, considering the following suggestions:
a. If it becomes apparent that the terminal itself is not at fault and, for example, it becomes likely that the cause of problem is either communication lines or a power loss, direct the customer to contact appropriate maintenance personnel.
b. Determine that an error in operating procedure rather then an equipment failure is probable cause of problem, and notify customer of correct operating procedure.
c. If appropriate, suggest that the terminal be brought into a repair center.
d. Go to customer site and begin troubleshooting.
3. If a site maintenance trip is required, determine a probable cause for failure and gather necessary tools, manuals, and spare parts that may be needed.

Upon Arriving at Customer Site

Upon arriving at the customer site, locate the appropriate supervisory personnel and again discuss the malfunction with the terminal operator. Then proceed as follows:

1. Visually inspect terminal to ensure that correct input/ output cable connections exist.
2. Verify that a malfunction does exist, and then begin troubleshooting the terminal, as follows:
a. Run the diagnostic self tests described later in this section.
b. Refer to the SAM in this section that covers the malfunction and perform the prescribed corrective actions.
3. After malfunction has been corrected, proceed as follows:
a. Rerun self tests to ensure that terminal is operational.
b. Inform or demonstrate to customer that terminal is now operating properly.
c. Complete all administrative paperwork (MAFs and defective tags, etc.).

SAFETY PRECAUTIONS

WARNING

Observe the following safety precautions at all times. Failure to do so may cause equipment damage and/or personal injury.

- Lethal voltages exist in the cathode-ray tube (crt) and on the monitor board of the terminal.
- Exercise caution any time checks or adjustments are being made to terminal when power is applied.
- Always turn power off and disconnect ac power cord when removing/replacing components or cables.

The precautions given here apply to the handling of electrostatic-sensitive components. Such components include semiconductors and assemblies that contain semiconductors. Heed the following precautions to avoid damage to these components.

- Equipment must be powered off when removing/replacing parts or disconnecting/connecting circuits.
- Parts are only to be removed from equipment when a grounded wrist strap is being worn. The wrist strap must be connected to the chassis of the equipment that the part is being removed from. If the removed part is to be turned in or reinstalled, the part must be placed in a static-shielded bag before it is laid aside.
- Replacement parts must only be removed from their static-shielded bag when you have a wrist strap on that is connected to the equipment being repaired.
- Only handle the edges of circuit boards, not the connectors or components.
e Touch leads of test devices to ground on equipment before testing.
- Wrist straps contain a 1 M ohm resistor for current limiting and user safety. The value of this resistor is to be checked monthly with an ohmmeter. This is done as follows:
- Measure from the banana plug to the inside metal strip of the wrist strap.
- The reading must be from 870 K ohms to 1.5 M ohms.
- If the reading is outside the specified range, discard the wrist strap and obtain a new one.

SPECIAL TOOLS

In addition to common hand tools and electronic test equipment, an alignment tool kit (part number 12263463) is recommended for making video adjustments and a loopback plug (part number 61409717 or any standard RS-232-C loopback plug) is recommended for doing loopback testing. The loopback plug is only applicable for testing a main interface port that is setup for RS-232-C/CCITT-V. 24 signals.

The next paragraphs describe the diagnostic self tests that reside in the terminal firmware. These are the power-on tests and the keyboard-connection test. Following that is a description of monitor mode, which is also in the firmware and is a diagnostic aid.

Power-On Tests

The power-on tests detect basic hardware faults. These tests run automatically when power is turned on or when the terminal is reset. These tests can also be run in a continuous loop. The procedures for running the tests and interpreting the results are in subsection 6B.

The sequence of the tests after a power on or reset is as follows:

- All segments of terminal memory are tested.
- The keyboard connection to the terminal is tested.
- If the keyboard connection is good and no fatal error occurs, the terminal sounds a soft beep.
- The screen clears and the cursor goes to the home position.
- The revision level of ADV, ADDS, or ANSI emulation displays. If a memory error was detected, an error code appears with the revision level message (figure 6-1).
- A status line appears at half intensity at the bottom of the screen if parameter 35 (Status Line) is set to on or just R/C (row/column) status appears in ADV or ADDS emulation if parameter 35 is set to Off.

This sequence immediately halts if a fatal (terminal cannot continue) error occurs. The screen in such a case will show random (meaningless) data. If the keyboard connection is bad, the sequence is completed but no beep sounds and the words KB-Error are displayed in the status line if the status line is enabled.

Figure 6-1. Location of a Displayed Error Code

Keyboard-Connection Test

The testing of the keyboard connection done in the power-on tests continues throughout all operations. If the connection is found bad, the words KB-Error are displayed in the status line if the status line is enabled. No other error indication is given.

Monitor Mode

Monitor mode is a diagnostic aid that is placed in effect through parameter 20. It allows control codes to be monitored on the screen instead of the control functions being performed. The procedure for using this feature to test keyboard input is in subsection 6B.

DIAGNOSTIC AND CORRECTIVE MAINTENANCE PROCEDURES

The remainder of this section contains the SAMs (subsection 6A) and associated corrective maintenance procedures (subsection 6B) for the terminal. The SAM listings provide information for isolating a malfunction and refer to the applicable corrective maintenance procedure for correcting it. The corrective maintenance procedures cover the available terminal adjustments and the replacement of field-replaceable components.

The next paragraphs describe the format and use of SAMs and explain the organization of the SAMs and procedures that follow in the section.

An example SAM showing the basic SAM format appears in figure 6-2. A SAM is a formatted listing that presents troubleshooting information in a logical manner. Each SAM contains a sequential listing of questions that can be answered yes or no. The response made to a particular question either leads to the next question or to the specific action (or numerical sequence of actions) that is to be taken to correct the problem.

Each SAM listing is identified by a SAM number and a title that denotes the type of problems that it covers. A hyphen and number following the SAM number identifies the pages within the listing.

USE OF SAMs

The SAMs are to be used in conjunction with the diagnostic self tests described earlier in this section. If the self tests detect an error or cannot be run, refer to the SAM that covers the existing problem. Verify that all assumed conditions stated at the beginning of the SAM are present and observe any preliminary instructions. Enter the listing and answer yes (Y) or no (N) to the question asked or the condition being tested. Follow down the appropriate Y or N column and when column leads to action numbers, perform the corresponding actions in numerical order to correct the problem.

The organization of the following SAMs (subsection 6A) and corrective maintenance procedures (subsection 6B) is shown in figure 6-3.

Figure 6-3. Organization of SAMs and Corrective Maintenance Procedures

NOTE

The keyboard entries referred to in the SAMs and procedures assume a standard keyboard is present. If the terminal being worked on has an optional character set, you will have to compensate for its different keys.

O

O

O

SAM 1 - Defining the Problem

Instructions: If you are not sure of the type problem a terminal has, use this SAM to help define the problem. If the type problem is known, refer to table 6A-1 below and go to the appropriate SAM.

TABLE 6A-1. PROBLEM/SAM CORRELATION

TYPE PROBLEM	SAM
Power problems	2
No video	3
Self tests fail during power on or in	4
loop or parameters change without	
operator intervention	5
Video problems	6
Communication/printing problems	7

Prerequisites: None.
Assumptions: The terminal has been installed and the power cord and interface cables are connected.

001 Y N Turn terminal of f and then on (procedure l). Is there absence of a beep or does the sound remain on?

002 Y N Message indicating revision level of the emulation (ADV, ADDS, or ANSI) missing from the screen)?

Does an octal number from 01 to 77 appear after the revision level?

Test keyboard input (procedure 3). Does an incorrect character or symbol display or is an input missing that should display?

Has incorrect data been displayed or data lost during recent online operations?

Terminal appears to be operating correctly. If trouble occurs intermittently, run power-on tests in a loop as described in procedure 2.
A B C D E F
007
008

SAM 2 - Power Problems

Instructions: Disconnect the power cord, remove the hood from the terminal (procedure 5), and do a preliminary check of cable and wire connections. Also look for foreign objects, such as paper clips, which may have fallen into the unit.

Prerequisites: To use this SAM, you must be able to locate the items shown in figure 6A-1.

Figure 6A-1. Power Check Items

Assumptions: Terminal is connected to a live power outlet.

001 Y N Does building circuit breaker for outlet trip when terminal is turned on?

002
Y N Is ac line fuse blown? To check, turn off power and unscrew fuse holder at rear of terminal.

Is fuse on power supply blown? To check, turn off power, unfasten the ground strap from the power supply, and lift up power supply from cabinet slots.
Y Is there complete absence of power?
Y N Check power supply voltages (procedure 7). Are any
voltages bad?
1 Problem is not covered in this SAM. Review SAM 1 to
make sure you have problem defined. If this manual
does not cover your problem, call for assistance.
Replace power supply (procedure 8). If that does not
correct problem, replace the following one at a time:
- Cable between main logic board and power supply
board (procedure 9)
- Main logic board (procedure 6)
- Monitor board (procedure 10)
- CRT/yoke assembly (procedure 11)
2 Call for assistance.
Disconnect power cord and check its continuity. Hot
(black) wire of power cord goes to rear-panel fuse
holder and neutral (white) wire goes to 2 -pin plug at
power supply board. If continuity does not exist,
replace power cord (procedure 15).
Check for continuity between wires of fuse holder
at rear of terminal. If continuity does not exist,
replace fuse holder (procedure 15).
Leave power cord disconnected and press front end
of Power switch up. Check for continuity between wires
of Power switch. If continuity does not exist, replace
Power switch (procedure 14).
Check continuity of brown wiring leading from rear-panel
fuse holder to Power switch and from Power Switch to
2-pin plug at power supply board. If continuity does
not exist, replace wire; if continuity does exist,
replace power supply (procedure 8).
014 A C C D E

Instructions: Remove the hood from the terminal (procedure 5).

Prerequisites: To use this SAM, you must be able to locate the items shown in figure 6A-2.

Figure 6A-2. No-Video Check Items

Assumptions: Terminal power is on, parameter 31 (Screen Contrast) is not set too low, and screen is not being blanked by parameter 32 (Screen Saver). If the setting of parameter 31 is unknown, turn the terminal off/on to select the setting stored in nonvolatile memory. If you are not sure whether Screen Saver is blanking the screen, check by pressing any key.
$001 \mathrm{Y} N$ Is fuse on monitor board blown?
002 Y N Check for $+12+0.60 \mathrm{~V}$ at fuse on monitor board (use adjacent G pin for ground). Is voltage low or missing?

003
Y N Is crt filament lit?
Turn off power and check seating of socket at end of crt.

Replace monitor board (procedure 10).

```
        A B C D
                            SAM 3-2
                                Replace main logic board (procedure 6).
                Call for assistance.
                Check for loose internal cable connection.
                    Check power supply voltages (procedure 7). If anyvoltages are bad, go to SAM 2 (Power Problems).
            Replace main logic board (procedure 6).
                Replace monitor board (procedure 10).
                Turn power off and replace fuse. If fuse blows again
                when power is turned on, replace fuse and the follow-ing items one at a time:
```

- Monitor board (procedure 10)
- CRT/yoke assembly (procedure 11)
014 25 Call for assistance.

SAM 4 - Power-On Self Tests Fail

Instructions: None.

Prerequisites: To use this SAM, you must be able to interpret the results of the power-on self tests (procedure 2).

Assumptions: The terminal did not successfully complete its self tests during a power on or when run in a loop or terminal parameters change without operator intervention.

001
Y N Is terminal displaying an error code of 01 to 77 octal
on first display line?
Is a meaningless display or just the cursor showing
and/or is the beep missing or constant?

If the status line is enabled, does it show the words KB-Error or is the absence of the beep the only indication that the self tests failed?

Did the beep sound but nothing displayed on the screen?

1 Problem is not covered in this SAM. Review SAM 1 to make sure you have problem defined. If this manual does not cover your problem, call for assistance.

Replace monitor board (procedure 10).
Replace main logic board (procedure 6).
Replace power supply (procedure 8).
Replace cable between main logic board and power supply (procedure 9).

Check that keyboard cable is securely connected at rear of terminal.

Replace keyboard (procedure 13).
$\underline{2} 7 \underline{4} \underline{3}$ Call for assistance.

SAM 5 - Video Problems
Instructions: Remove the hood from the terminal (procedure 5). Change parameter 22 (Operation Mode) to Local, and if in ANSI emulation, change parameter 14 (Emulation) to either ADV or ADDS (procedure 4). Then if in ADV emulation, press the CTRL and = keys simultaneously, then hold the SHIFT key down and press the " and @ keys; if in ADDS emulation, press the ESC key, then hold the SHIFT key down and press the " and @ keys. This should display an alignment pattern like shown in figure 6A-3. When completed with the pattern, press the SHIFT and P CLEAR keys to erase it from the screen.

```
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEHHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEH
н....................................................................................
```



```
н . . . . . . @@@@@@@@@@@@@@@. . . . . . . . . . . . . . .@@@@@@@@@@@@@@@ . . . . . . . . 
н . . . . . .@@@@@@@@@@@@@@@ . . . . . .нн . . . . . . .@@@@@@@@@@@@@@ . . . . . . . . . 
```



```
н . . . . . . .@@@@@@@@@@@@@@. . . . . . . нн . . . . . . .@@@@@@@@@@@@@@ . . . . . . . . . 
```



```
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEHHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEH
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEHHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEH
н.....................................................................................
```



```
н . . . . . . @@@@@@@@@@@@@@@ . . . . . . . . . . . . . . . @@@@@@@@@@@@@@@ . . . . . . . . н
н . . . . . . @@@@@@@@@@@@@@@ . . . . . . . нн . . . . . . .@@@@@@@@@@@@@@@ . . . . . . . . 
H . . . . . . .@@@@@@@@@@@@@@ . . . . . . . . . . . . . . .@@@@@@@@@@@@@@@ . . . . . . . . 
н. . . . . . .@@@@@@@@@@@@@@@ . . . . . . . . . . . . . .@@@@@@@@@@@@@@@@ . . . . . . . . . 
```



```
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEHHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEH
```

05376
Figure 6A-3. Example of Good Alignment Display

Prerequisites: None.

Assumptions: Terminal power is on and the alignment display in figure 6A-3 has been called up.


```
    A B C
    SAM 5-2

Instructions: If the problem being experienced involves certain characters or control codes from the keyboard, verify that keyboard input is correct (procedure 3). If keyboard input is not correct, go to SAM 7 (Keyboard Problems).

Prerequisites: None.
Assumptions: Terminal power is on, interface cables are connected, and terminal is in online mode (parameter 22 set to Online).
\(001 \mathrm{~N} Y\) Can communications with host be established and kept without being cut off?
\(002 \mathrm{~N} Y\) Does one character display for each alphanumeric keyboard entry?

N Y Is correct data being displayed?
\(Y\) If terminal has a printer connected, are print operations performed OK?

1 Problem is not covered in this SAM. Review SAM 1 to make sure you have problem defined. If this manual does not cover your problem, call for assistance.

Verify that host and communications equipment are operational. If communications are via phone lines, dial the number for host and listen for high-pitch answering tone or carrier signal when connection is made. Then verify that phone line is switched to terminal.

Change parameter 22 to Local (procedure 4) and try doing an offline print operation (print operations are described in section 2 of the \(722-30\) Display Terminal Reference Manual). If offline printing can be done, system software is likely at fault.


SAM 7 - Keyboard Problems

Instructions: None.

Prerequisites: None

Assumptions: Terminal power is on and display is working.
001 Y N KB-Error appears in fifth field of status line?

002
003

004

005

006

007

008

009
010
011

Absence of keyboard input on screen?
Key(s) generate incorrect input when tested per procedure 3?

Problem is not covered in this SAM. Review SAM 1 to make sure you have problem defined. If this manual does not cover your problem, call for assistance.

Check that keyboard cable is securely connected at rear of terminal.

If problem key(s) are in numeric pad on right side of keyboard, check that parameter 21 (Numeric Keypad) is set for desired operation (procedure 4). If parameter is set to Shifted, normally shifted cursor functions and normally unshifted numbers are generated just the opposite than normal.

Keyboard may have gotten inadvertently locked (KB-Lock shown at bottom of screen if status line is enabled). Turn terminal off/on and repeat the operation that was being attempted. If keyboard remains locked, disconnect cables from interface ports. If keyboard then unlocks, problem is not with terminal or keyboard.

If this is occurring when online, change parameter 22 to Local (procedure 4). If keyboard input then displays, go to SAM 6 (Communication/Printing Problems).

Replace keyboard (procedure 13).
Replace main logic board (procedure 6).
Call for assistance.


0

C

O

0

\section*{0}

O
O

Procedure 1-Turning Power On/Off

To turn terminal power on:
1. Check that power cord is plugged into site outlet.
2. Press front of Power switch up.

To turn power off:
l. Press back of Power switch up.
2. If replacing parts, disconnect power cord from site outlet.

Procedure 2-Running/Interpreting Power-On Self Tests

The power-on self tests run automatically when power is turned on or when the terminal is reset via parameter 28. This procedure describes how to interpret the test results and how to run the tests in a loop. Running the tests in a loop is good for isolating intermittent problems.

Interpreting Power-On Self Tests

The power-on self tests complete in less than a second after power is turned on or the terminal is reset. There are four basic ways the tests may end:
- Successfully without an error
- With a fatal error (terminal cannot continue)
- With a keyboard error
- With a nonfatal error

To interpret the results of the power-on tests, listen and look for the following sequence:


Figure 6B-l. Status Line

For any failing indication in the power-on tests, go to SAM 4 for troubleshooting information. If the error is nonfatal, record the displayed error code. The error code indicates which memory on the main logic board may have failed. Include this information on the Defective Parts Tag when returning a faulty main logic board.

TABLE 6B-1. NONFATAL ERROR CODES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ERROR CODE} & \multicolumn{6}{|c|}{POSSIBLE FAILING MEMORY} \\
\hline & EPROM 2 & \[
\begin{aligned}
& \overline{\mathrm{DATA}} \overline{\overline{1}} \\
& \text { RAM }
\end{aligned}
\] & \[
\begin{gathered}
\text { ATTRIBUTE } \\
\text { RAM }
\end{gathered}
\] & \[
\begin{aligned}
& \text { NONVOLATILE } \\
& \text { RAM }
\end{aligned}
\] & EPROM 1 & \[
\begin{aligned}
& \text { SYSTEM } \\
& \text { RAM }
\end{aligned}
\] \\
\hline 01
02 & & & & & X & X \\
\hline 03
04 & & & & X & X & X \\
\hline 05 & & & & x & & X \\
\hline 06 & & & & x & x & \\
\hline 07 & & & & X & X & x \\
\hline 10 & & & x & & & \\
\hline 11 & & & X & & & X \\
\hline 12 & & & X & & X & \\
\hline 13 & & & X & & X & X \\
\hline 14 & & & X & x & & \\
\hline 15 & & & X & X & & x \\
\hline 16 & & & X & X & x & \\
\hline 17 & & & X & X & X & X \\
\hline 20 & & x & & & & \\
\hline 21 & & x & & & & X \\
\hline 22 & & X & & & X & \\
\hline 23 & & X & & & X & X \\
\hline 24 & & X & & X & & \\
\hline 25 & & x & & X & & X \\
\hline 26 & & X & & X & X & \\
\hline 27 & & X & & X & X & X \\
\hline 30 & & X & X & & & \\
\hline 31 & & X & X & & & X \\
\hline 32 & & X & X & & X & \\
\hline 33 & & x & X & & X & X \\
\hline 34 & & X & X & X & & \\
\hline 35 & & X & X & X & & X \\
\hline 36 & & x & X & X & x & \\
\hline 37 & & X & X & X & X & X \\
\hline 40 & x & & & & & \\
\hline 41 & X & & & & & X \\
\hline 42 & X & & & & X & \\
\hline 43 & X & & & & X & X \\
\hline 44 & X & & & x & & \\
\hline 45 & X & & & x & & X \\
\hline 46 & X & & & X & X & \\
\hline 47 & X & & & X & X & x \\
\hline 50 & X & & X & & & \\
\hline 51 & X & & X & & & X \\
\hline 52 & x & & X & & x & \\
\hline 53 & X & & X & & X & X \\
\hline 54 & X & & X & X & & \\
\hline 55 & X & & X & X & & X \\
\hline 56 & X & & X & X & x & \\
\hline 57 & X & & X & X & X & x \\
\hline 60 & X & x & & & & \\
\hline
\end{tabular}

TABLE 6B-1. NONFATAL ERROR CODES (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { ERROR } \\
& \text { CODE } \\
& \hline
\end{aligned}
\]} & \multicolumn{6}{|c|}{POSSIBLE FAILING MEMORY} \\
\hline & EPROM 2 & \[
\begin{aligned}
& \text { DATA } \\
& \text { RAM }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ATTRIBUTE } \\
& \text { RAM }
\end{aligned}
\] & NONVOLATILE & EPROM 1 & SYSTEM-
RAM \\
\hline 61 & x & X & & & & X \\
\hline 62 & x & X & & & X & \\
\hline 63 & X & X & & & X & x \\
\hline 64 & X & X & & x & & \\
\hline 65 & X & X & & x & & x \\
\hline 66 & X & x & & x & x & \\
\hline 67 & X & x & & X & X & X \\
\hline 70 & X & X & x & & & \\
\hline 71 & X & X & X & & & X \\
\hline 72 & X & X & X & & X & \\
\hline 73 & X & X & X & & X & X \\
\hline 74 & X & X & X & & & \\
\hline 75 & X & x & x & X & & X \\
\hline 76 & X & X & X & x & x & \\
\hline 77 & X & X & X & X & X & x \\
\hline
\end{tabular}

Running Power-On Self Tests in a Loop

The following steps place the terminal in a continous test loop. When in this loop, the screen flickers and no beep sounds. The looping only stops if an error occurs or power is turned off.
1. Test looping requires that the terminal be in local mode and in either ADV or ANSI emulation. If these are not in effect, change parameters 14 and 22 (procedure 4). The operation mode and emulation in effect are shown in the first and fourth fields of the status line if parameter 35 is set to On.
2. If in ADV emulation, hold the CTRL key down and press the \(+/=\) key, then the \(v\) key. This starts test looping. If in ANSI emulation, start test loop by pressing the following keys: LF/ESC, ]/[, @/2, :/; , */8, Y.

This procedure is for testing the input of suspect key(s) or for testing the entire keyboard. To do either type testing:
1. Set parameter 13 (Duplex Mode) to HDX, parameter 20 (Monitor Mode) to On (allows keys for control codes to be tested), and parameter 22 (Operation Mode) to Local (procedure 4).
2. Keyboard input differs with the emulation being used (parameter 14). Tables 6B-2, 6B-3, and 6B-4 list the correct input for ADV emulation, ADDS emulation, and ANSI emulation. If input for a key (unshifted, shifted, with CTRL, or with CTRL shifted) is displayed incorrectly, go to SAM 7 (Keyboard Problems). For testing keys unique to optional foreign character sets, refer to appendix A.

TABLE 6B-2. DISPLAYED INPUT FOR ADV EMULATION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{4}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNS HIFTED & SHIFTED & WITH CTRI & WITH CTRL SHIFTED \\
\hline & PRINT & & \(\mathrm{R}_{\mathrm{S}} \mathrm{D}_{1}\) & \(\mathrm{R}_{\mathrm{S}} \mathrm{S}_{\mathrm{H}}\) & \(\mathrm{R}_{\mathrm{S}} \mathrm{D}_{1}\) & \(\mathrm{R}_{\mathrm{S}} \mathrm{S}_{\mathrm{H}}\) \\
\hline & SETUP & & None & None & None & None \\
\hline & F1 & & \({ }^{\mathrm{R}_{\mathrm{Sq}}}\) & \(\mathrm{R}_{\mathrm{S}} \mathrm{a}\) & \(\mathrm{R}_{\mathrm{S}} \mathbf{1}^{1}\) & \(\mathrm{R}_{\mathrm{S}}\) ! \\
\hline & F2 & & \(\mathrm{R}_{\mathrm{S}} \mathrm{r}\) & \(\mathrm{R}_{\mathrm{S}}{ }^{\text {b }}\) & \(\mathrm{R}_{\mathrm{S}} \mathbf{2}\) & \(\mathrm{R}_{S}{ }^{\prime}\) \\
\hline & F3 & & \(\mathrm{R}_{\mathrm{S}} \mathbf{S}\) & \(\mathrm{R}_{\mathrm{S}} \mathrm{C}\) & \(\mathrm{R}_{\mathrm{S}} 3\) & \(\mathrm{R}_{\mathrm{S}}{ }^{\text {\# }}\) \\
\hline & F4 & & \(\mathrm{R}_{\mathrm{S}} \mathrm{t}\) & \(\mathrm{R}^{\mathbf{S}}{ }^{\mathbf{d}}\) & \(\mathrm{R}_{\mathrm{S}}{ }^{4}\) & \(\mathrm{R}_{\mathrm{S}} \mathrm{S}\) \\
\hline & F5 & & \({ }^{\mathrm{R}_{\mathrm{S}} \mathbf{u}}\) & \(\mathrm{R}_{\mathbf{S}}{ }^{\text {e }}\) & \(\mathrm{R}_{\mathrm{S}} 5\) & \(\mathrm{R}_{\mathrm{S}}{ }^{\text {\% }}\) \\
\hline & F6 & & \(\mathrm{R}_{\mathbf{S}} \mathbf{v}\) & \(\mathrm{R}_{\mathrm{S}} \mathrm{f}\) & \(\mathbf{R}_{\mathbf{S}} 6\) & \(\mathrm{R}_{\mathbf{S}}{ }^{\text {® }}\) \\
\hline & F7 & & \(\mathrm{R}_{\mathrm{S}} \mathbf{w}\) & \(\mathrm{R}_{\mathrm{Sg}}\) & \(\mathrm{R}_{\mathrm{S}} 7\) & \(\mathrm{R}_{\mathrm{S}}{ }^{\prime}\) \\
\hline & F8 & & \({ }^{R_{S} \times}\) & \(\mathrm{R}_{\text {S }} \mathrm{h}\) & \(\mathrm{R}_{\mathrm{s}} 8\) & \(\mathrm{R}_{\mathrm{S}}(\) \\
\hline & F9 & & \({ }^{\mathrm{R}_{\mathrm{S}} \mathrm{y}}\) & \(\mathrm{R}_{\mathrm{S}}{ }^{\mathbf{i}}\) & \(\mathrm{R}_{\mathrm{S}} 9\) & \(\mathrm{R}_{\mathrm{S}}\) ) \\
\hline & F10 & & \(\mathrm{R}_{\mathrm{S}} \mathrm{z}\) & \(\mathrm{R}_{\mathrm{Sj}}\) & \(\mathrm{R}_{\mathrm{S}}\) : & \(\mathrm{R}_{\mathrm{S}}\) * \\
\hline & F11 & & \({ }^{\mathrm{R}}\) S \(\{\) & \({ }^{\text {R }}\) k & \(\mathrm{R}_{\mathrm{S}}\); & \(\mathrm{R}^{+}{ }^{+}\) \\
\hline & (Blank) & & \({ }^{\mathrm{R}} \mathrm{S}^{\text {D }}\) 2 & \({ }^{R_{S} S_{X}}\) & \(\mathrm{R}_{\mathrm{S}} \mathrm{D}_{2}\) & \(\mathrm{R}_{\mathbf{S}} \mathrm{S}_{\mathrm{X}}\) \\
\hline
\end{tabular}

TABLE 6B-2. DISPLAYED INPUT FOR ADV EMULATION (CONTD)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{5}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UP PER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH & CTRL SHIFTED \\
\hline & E & & e & E & \(\mathrm{E}_{2}\) & & \(E_{Q}\) \\
\hline & R & & \(\mathbf{r}\) & R & \(\mathrm{D}_{2}\) & & \(\mathrm{D}_{2}\) \\
\hline & T & & \(t\) & T & \(D_{4}\) & & \(\mathrm{D}_{4}\) \\
\hline & Y & & y & Y & \(\mathrm{E}_{\mathrm{M}}\) & & \(\mathrm{E}_{\mathrm{M}}\) \\
\hline & U & & u & U & \({ }^{N} \mathrm{~K}\) & & \(\mathrm{N}_{\mathrm{K}}\) \\
\hline & I & & i & I & \(\mathrm{H}_{T}\) & & \(\mathrm{H}_{T}\) \\
\hline & 0 & & 0 & 0 & \(S_{I}\) & & \(S_{I}\) \\
\hline & P & & p & P & \(D_{L}\) & & \(\mathrm{D}_{\mathrm{L}}\) \\
\hline ] & & [ & [ & ] & \(\mathrm{G}_{\mathbf{S}}\) & & \(\mathrm{G}_{\mathbf{S}}\) \\
\hline i & & 1 & 1 & ; & \(\mathrm{F}_{\mathrm{S}}\) & & \(\mathrm{F}_{\mathbf{S}}\) \\
\hline & BACK TAB & & \(\mathbf{R}_{\mathbf{S}} \mathrm{V}_{\mathbf{T}}\) & \(\mathrm{R}_{S} \mathrm{~V}_{\mathrm{T}}\) & \(\mathbf{R}_{\mathbf{S}} \mathrm{V}_{\mathbf{T}}\) & & \(\mathrm{R}_{\mathbf{S}} \mathrm{V}_{\mathbf{T}}\) \\
\hline - & & 4 & 4 & \(\mathrm{E}_{\mathrm{M}}\) & 4 & & \(E_{M}\) \\
\hline HOME* & & 5 & 5 & \({ }^{B}\) S & 5 & & \({ }^{\text {B }}\) \\
\hline \(\rightarrow\) & & 6 & 6 & \(\mathrm{C}_{\mathrm{N}}\) & 6 & & \(C_{N}\) \\
\hline ALPHA & & LOCK & None & None & None & & None \\
\hline & A & & a & A & \(\mathrm{S}_{\mathrm{H}}\) & & \(\mathrm{S}_{\mathrm{H}}\) \\
\hline & S & & s & S & \(D_{3}\) & & \(D_{3}\) \\
\hline & D & & d & D & \(E_{T}\) & & \(E_{T}\) \\
\hline & F & & \(\pm\) & F & \({ }^{A_{K}}\) & & \({ }^{\text {AK }}\) \\
\hline  & G & & \(g\) & G & 0 & & 0 \\
\hline  & H & & h & H & \({ }^{B} \mathbf{S}\) & & \({ }^{B} S\) \\
\hline  & \(J\) & & j & \(J\) & \(\mathrm{I}_{\mathrm{F}}\) & & \(\mathrm{L}_{\mathrm{F}}\) \\
\hline & K & & k & K & \(\mathrm{V}_{\mathrm{T}}\) & & \(V_{T}\) \\
\hline & L & & 1 & L & \(\mathrm{F}_{\mathrm{F}}\) & & \(\mathrm{F}_{\mathrm{F}}\) \\
\hline
\end{tabular}

TABLE 6B-2. DISPLAYED INPUT FOR ADV EMULATION (CONTD)


TABLE 6B-2. DISPLAYED INPUT FOR ADV EMULATION (CONTD)


TABLE 6B-3. DISPLAYED INPUT FOR ADDS EMULATION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{5}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UP PER & CENTER & LOWER & UNS HIFTED & SHIFTED & WITH CTRL & WITH & CTRL SHIFFTED \\
\hline & PRINT & & None & None & None & & None \\
\hline & SETUP & & None & None & None & & None \\
\hline & F 1 & & \(S_{X}{ }^{1 C_{R}}\) & \(S_{x}!C_{R}\) & \(S_{X}{ }^{1} C_{R}\) & & \(S_{X}!C_{R}\) \\
\hline & F2 & & \(S_{X}{ }^{2} C_{R}\) & \(S_{X}{ }^{\prime \prime} C_{R}\) & \(S_{X}{ }^{2} C_{R}\) & & \(S_{X}{ }^{\prime \prime} C_{R}\) \\
\hline & F3 & & \(S_{X} 3 C_{R}\) & \(S_{X} \# C_{R}\) & \(S_{X}{ }^{3} C_{R}\) & & \(S_{X} \# C_{R}\) \\
\hline & F4 & & \(S_{X} 4 C_{R}\) & \(S_{X} \$^{\left(C C_{R}\right.}\) & \(S_{X} 4 C_{R}\) & & \(S_{X} \$^{(1)}\) \\
\hline & F5 & & \(S_{X} 5 C_{R}\) & \(S_{X}{ }^{*} C_{R}\) & \(S_{X} 5 C_{R}\) & & \(S_{X}{ }^{*} C_{R}\) \\
\hline & F6 & & \(S_{X} 6 C_{R}\) & \(S_{X} \& C_{R}\) & \(S_{X} 6 C_{R}\) & & \(S_{X} \& C_{R}\) \\
\hline & F7 & & \(S_{X} 7 C_{R}\) & \(S_{X}{ }^{\prime} C_{R}\) & \(S_{X} 7 C_{R}\) & & \(S_{X}{ }^{\prime} C_{R}\) \\
\hline & F8 & & \(S_{X} 8 C_{R}\) & \(S_{X}\left(C_{R}\right.\) & \(S_{X} 8 C_{R}\) & & \(S_{X}\left(C_{R}\right.\) \\
\hline
\end{tabular}

TABLE 6B-3. DISPLAYED INPUT FOR ADDS EMULATION (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{5}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH & CTRL SHIFTED \\
\hline & F9 & & \(S_{X} 9 C_{R}\) & \(\left.S_{X}\right) C_{R}\) & \(S_{X} 9 C_{R}\) & & \(\left.S_{X}\right) C_{R}\) \\
\hline & F 10 & & \(S_{X}: C_{R}\) & \(S_{X} * C_{R}\) & \(S_{X}: C_{R}\) & & \(S_{X} * C_{R}\) \\
\hline & F11 & & \(S_{X} ; C_{R}\) & \(S_{X}+C_{R}\) & \(S_{X} ; C_{R}\) & & \(S_{X}+C_{R}\) \\
\hline & (Blank) & & \(S_{X}<C_{R}\) & \(S_{X}, c_{R}\) & \(S_{X}<C_{R}\) & & \(S_{X}, C_{R}\) \\
\hline P & CLEAR & EOL & \(\mathrm{E}_{\mathrm{C}}\) & \(\mathrm{F}_{\mathrm{F}}\) & \(E_{C}{ }^{K}\) & & \(\mathrm{F}_{\mathrm{F}}\) \\
\hline LF & & ESC & \(\mathrm{E}_{\mathrm{C}}\) & \(\mathrm{L}_{\mathrm{F}}\) & \(\mathrm{E}_{\mathrm{C}}\) & & \(\mathrm{I}_{\mathrm{F}}\) \\
\hline M REL & & BrEAK & None & None & None & & None \\
\hline & TAB & & \(\mathrm{H}_{T}\) & \(\mathrm{H}_{T}\) & \(\mathrm{H}_{T}\) & & \(\mathrm{H}_{T}\) \\
\hline ! & & 1 & 1 & ! & None & & None \\
\hline @ & & 2 & 2 & @ & \(\mathrm{N}_{\mathrm{U}}\) & & \(\mathrm{N}_{\mathrm{U}}\) \\
\hline \# & & 3 & 3 & \# & 3 & & \# \\
\hline \$ & & 4 & 4 & \$ & 4 & & \$ \\
\hline \% & & 5 & 5 & \% & 5 & & \% \\
\hline \(\wedge\) & & 6 & 6 & \(\wedge\) & \(\mathrm{R}_{\mathrm{S}}\) & & \(\mathrm{R}_{\mathbf{S}}\) \\
\hline \& & & 7 & 7 & \& & 7 & & \& \\
\hline * & & 8 & 8 & * & 8 & & * \\
\hline ( & & 9 & 9 & \((\) & 9 & & 1 \\
\hline ) & & 0 & 0 & ) & 0 & & ) \\
\hline & & - & - & - & \(\mathrm{U}_{\mathrm{S}}\) & & \(\mathrm{U}_{S}\) \\
\hline + & & \(=\) & \(=\) & + & \(=\) & & + \\
\hline \(\sim\) & & , & , & \(\sim\) & \(\mathrm{N}_{\mathrm{U}}\) & & \(\mathrm{R}_{S}\) \\
\hline & BACKSPACE & & \({ }^{B}\) S & \({ }^{B} \mathrm{~S}\) & \({ }^{\text {B }}\) S & & \(\mathrm{B}_{S}\) \\
\hline L & 7 & & 7 & None & 7 & & None \\
\hline 1 & & 8 & 8 & \(S_{B}\) & 8 & & \(S_{B}\) \\
\hline
\end{tabular}

TABLE 6B-3. DISPLAYED INPUT FOR ADDS EMULATION (CONTD)


TABLE 6B-3. DISPLAYED INPUT FOR ADDS EMULATION (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{5}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH & CTRL SHIFTED \\
\hline \multirow[t]{3}{*}{} & J & & j & J & \(\mathrm{L}_{\mathrm{F}}\) & & \(\mathrm{L}_{\mathrm{F}}\) \\
\hline & K & & k & K & \(\mathrm{V}_{T}\) & & \(\mathrm{V}_{T}\) \\
\hline & L & & 1 & L & \(\mathrm{F}_{\mathrm{F}}\) & & \(\mathrm{F}_{\mathrm{F}}\) \\
\hline : & & ; & ; & : & ; & & : \\
\hline " & & ' & 1 & " & 1 & & " \\
\hline \} & & \{ & \{ & \} & \(\mathrm{E}_{\mathrm{C}}\) & & \(\mathrm{G}_{\mathrm{S}}\) \\
\hline & \begin{tabular}{l}
RETURN \\
NEW LINE
\end{tabular} & & CR & CR & CR & & CR \\
\hline & 1 & & 1 & None & 1 & & None \\
\hline \multirow{10}{*}{C DLETE*} & & 2 & 2 & \(\mathrm{L}_{\mathrm{F}}\) & 2 & & \(\mathrm{L}_{\mathrm{F}}\) \\
\hline & 3 & & 3 & None & 3 & & None \\
\hline & SHIFT & & None & None & None & & None \\
\hline & \(z\) & & \(z\) & z & \(S_{B}\) & & \(\mathrm{S}_{\mathrm{B}}\) \\
\hline & x & & x & x & \(\mathrm{C}_{\mathrm{N}}\) & & \(\mathrm{C}_{\mathrm{N}}\) \\
\hline & c & & c & C & \(E_{X}\) & & \(\mathrm{E}_{\mathrm{X}}\) \\
\hline & v & & \(v\) & v & \(\mathrm{S}_{\mathrm{Y}}\) & & \(S_{Y}\) \\
\hline & B & & b & B & \(S_{x}\) & & \(\mathrm{S}_{\mathrm{X}}\) \\
\hline & N & & n & N & So & & So \\
\hline & M & & m & M & \(\mathrm{C}_{\mathrm{R}}\) & & \(\mathrm{C}_{\mathrm{R}}\) \\
\hline \(<\) & & , & , & < & , & & < \\
\hline > & & - & - & > & - & & > \\
\hline \multirow[t]{3}{*}{?} & & \(1 /\) & 1 & ? & 1 & & ? \\
\hline & SHIFT & & None & None & None & & None \\
\hline & , & & , & None & , & & None \\
\hline
\end{tabular}

TABLE 6B-3. DISPLAYED INPUT FOR ADDS EMULATION (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{5}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH & CTRL SHIFTED \\
\hline \multirow[t]{4}{*}{EDIT*} & 0 & & 0 & None & 0 & & None \\
\hline & - & & - & None & - & & None \\
\hline & CTRL & & None & None & None & & None \\
\hline & (Space Bar) & & None & None & None & & None \\
\hline CR & & DEL & \(\square\) & \(\mathrm{C}_{\text {R }}\) & \(\square\) & & \(\mathrm{C}_{\mathrm{R}}\) \\
\hline & RETURN & & & & & & \\
\hline ENTER* & NEW LINE & & CR & CR & CR & & CR \\
\hline \multicolumn{8}{|l|}{Notes:} \\
\hline
\end{tabular}

TABLE 6B-4. DISPLAYED INPUT FOR ANSI EMULATION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{5}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH CTRL & SHIFTED \\
\hline & PRINT & & None & None & None & None & \\
\hline & SETUP & & None & None & None & None & \\
\hline & F 1 & & \(E_{C} \mathrm{OP}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Oq}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{OP}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Oq}\) & \\
\hline & F 2 & & \(\mathrm{E}_{\mathrm{C}} \mathrm{OQ}\) & \(\mathrm{ECOr}_{\text {cor }}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{OQ}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Or}\) & \\
\hline & F3 & & \(\mathrm{E}_{\text {COR }}\) & \(\mathrm{E}_{\mathrm{COs}}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{OR}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Os}\) & \[
\begin{array}{|l|}
\text {-See } \\
\text { Note }
\end{array}
\] \\
\hline & F 4 & & \(\mathrm{E}_{\mathrm{C}} \mathrm{OS}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Ot}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{OS}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Ot}\) & \\
\hline & F5 & & \(\mathrm{E}_{\mathrm{COm}}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Ou}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Om}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Ou}\) & \\
\hline & F6 & & \(\mathrm{E}_{\mathrm{C}} \mathrm{Ol}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Ov}\) & \(\mathrm{ECOl}_{\text {c }}\) & \(\mathrm{E}_{\mathrm{C}} \mathrm{Ov}\) & \\
\hline
\end{tabular}


TABLE 6B-4. DISPLAYED INPUT FOR ANSI EMULATION (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{6}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH & CTRL & SHIFTED \\
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
L \\
INSRT* \\
\(\uparrow\) \\
L \\
DLETE*
\end{tabular}} & \multirow[t]{2}{*}{7} & \multirow{13}{*}{8} & 7 & \(E_{C}[L\) & 7 & & \(\mathrm{E}_{\mathrm{C}}[\mathrm{I}\) & \\
\hline & & & 8 & \(\mathrm{E}_{\mathrm{C}}[\mathrm{A}\) & 8 & & \(E_{C}[\mathrm{~A}\) & \\
\hline & \multirow[t]{2}{*}{9} & & \multirow[t]{2}{*}{9
9} & \(\mathrm{E}_{\mathrm{C}}[\mathrm{M}\) & 9 & \multicolumn{3}{|c|}{\(\mathrm{E}_{\mathrm{C}}[\mathrm{M}\)} \\
\hline & & & & 2 & \(\mathrm{D}_{1}\) & \multicolumn{3}{|c|}{\(D_{1}\)} \\
\hline & & & w & W & \(E_{B}\) & \multicolumn{3}{|c|}{\(E_{B}\)} \\
\hline & & & e & E & \(E_{Q}\) & \multicolumn{3}{|c|}{\(\mathrm{E}_{2}\)} \\
\hline & & & \(r\) & R & \(\mathrm{D}_{2}\) & \multicolumn{3}{|c|}{\(\mathrm{D}_{2}\)} \\
\hline & - & & \(t\) & T & \(\mathrm{D}_{4}\) & \multicolumn{3}{|c|}{\(\mathrm{D}_{4}\)} \\
\hline & \% & & y & Y & \(\mathrm{E}_{\mathrm{M}}\) & \multicolumn{3}{|c|}{\(\mathrm{E}_{\mathrm{M}}\)} \\
\hline & J & & u & U & \(\mathrm{N}_{\mathrm{K}}\) & \multicolumn{3}{|c|}{\(\mathrm{N}_{\mathrm{K}}\)} \\
\hline & I & & i & I & \(\mathrm{H}_{T}\) & \multicolumn{3}{|c|}{\(\mathrm{H}_{T}\)} \\
\hline & 0 & & 0 & 0 & \(S_{I}\) & \multicolumn{3}{|c|}{\(S_{I}\)} \\
\hline & P & & p & P & \(D_{L}\) & \multicolumn{3}{|c|}{\(\mathrm{D}_{\text {L }}\)} \\
\hline ] & & [ & [ & ] & \(E_{C}\) & \multicolumn{3}{|c|}{\(E_{C}\)} \\
\hline 1 & \multirow{3}{*}{BACK TAB} & 1 & 1 & ! & \(\mathrm{F}_{\mathbf{S}}\) & \multicolumn{3}{|c|}{\(\mathrm{F}_{S}\)} \\
\hline \multirow[b]{2}{*}{\(\sim\)} & & & \(E_{C}[\mathrm{~F}\) & \(\mathrm{E}_{\mathrm{C}}[\mathrm{F}\) & \(E_{C}[\mathrm{~F}\) & \multicolumn{3}{|c|}{\(E_{C}[\mathrm{~F}\)} \\
\hline & & 4 & 4 & \({ }^{E} C\) [ & 4 & \multicolumn{3}{|c|}{\(\mathrm{E}_{\mathrm{C}}[\mathrm{D}\)} \\
\hline HOME* & & 5 & 5 & \(\mathrm{E}_{\mathrm{C}}[\mathrm{H}\) & 5 & \multicolumn{3}{|c|}{\(\mathrm{E}_{\mathrm{C}}[\mathrm{H}\)} \\
\hline \multirow[b]{2}{*}{ALPHA} & & 6 & 6 & \(E_{C}[C\) & 6 & \multicolumn{3}{|c|}{\(E_{C}[C\)} \\
\hline & & LOCK & None & None & None & \multicolumn{3}{|c|}{None} \\
\hline \multicolumn{2}{|r|}{A} & \multirow[t]{2}{*}{} & a & A & \(\mathrm{S}_{\mathrm{H}}\) & \multicolumn{3}{|c|}{\(\mathrm{S}_{\mathrm{H}}\)} \\
\hline & S & & \(s\) & S & \(D_{3}\) & & \(D_{3}\) & \\
\hline & D & & d & D & \(E_{T}\) & & \(E_{T}\) & \\
\hline
\end{tabular}

TABLE 6B-4. DISPLAYED INPUT FOR ANSI EMULATION (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{5}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH & CTRL SHIFTED \\
\hline & F & & f & F & \(\mathrm{A}_{\mathrm{K}}\) & & \(A_{K}\) \\
\hline & G & & g & G & 0 & & 0 \\
\hline & H & & h & H & \({ }^{B}\) S & & \({ }^{B} S\) \\
\hline & J & & j & J & \(L_{\text {L }}\) & & \(\mathrm{L}_{\mathrm{F}}\) \\
\hline & K & & k & K & \(\mathrm{V}_{T}\) & & \(\mathrm{V}_{\mathrm{T}}\) \\
\hline & I & & 1 & L & \(F_{F}\) & & \(F_{F}\) \\
\hline : & & ; & ; & : & ; & & : \\
\hline " & & , & 1 & " & 1 & & " \\
\hline \} & & \{ & \(\{\) & \(\}\) & \(\{\) & & \} \\
\hline & RETURN NEW LINE & & \begin{tabular}{l}
See \\
Note 2
\end{tabular} & \begin{tabular}{l}
See \\
Note 2
\end{tabular} & \begin{tabular}{l}
See \\
Note 2
\end{tabular} & & \begin{tabular}{l}
See \\
Note 2
\end{tabular} \\
\hline C & 1 & & 1 & \(E_{C}[4 h\) & 1 & & \(E_{C}[4 h\) \\
\hline 1 & & 2 & 2 & \(E_{C}[B\) & 2 & & \(E_{C}{ }^{[B}\) \\
\hline C & 3 & & 3 & \(E_{C}[P\) & 3 & & \(\mathrm{E}_{\mathrm{C}}{ }^{\text {P }}\) \\
\hline & SHIFT & & None & None & None & & None \\
\hline & z & & \(z\) & z & \(S_{B}\) & & \(S_{B}\) \\
\hline & x & & \(\mathbf{x}\) & X & \(\mathrm{C}_{\mathrm{N}}\) & & \(\mathrm{C}_{\mathrm{N}}\) \\
\hline & C & & c & C & \(E_{X}\) & & \(E_{X}\) \\
\hline & V & & v & V & \(S_{Y}\) & & \(S_{Y}\) \\
\hline & B & & b & B & \(S_{X}\) & & \(S_{\text {X }}\) \\
\hline & N & & n & N & So & & So \\
\hline & M & & m & M & \(\mathrm{C}_{\mathrm{R}}\) & & \(C_{R}\) \\
\hline \(<\) & & , & , & \(<\) & , & & < \\
\hline
\end{tabular}

TABLE 6B-4. DISPIAYED INPUT FOR ANSI EMULATION (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{KEYCAP LEGEND} & \multicolumn{5}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNS HIFTED & SHIFTED & WITH CTRL & WITH & CTRL SHIFTED \\
\hline > & & - & - & > & - & & > \\
\hline \multirow[t]{3}{*}{?} & & / & / & ? & \(/\) & & ? \\
\hline & SHIFT & & None & None & None & & None \\
\hline & , & & , & , & , & & , \\
\hline \multirow[t]{4}{*}{EDIT*} & 0 & & 0 & \begin{tabular}{l}
See \\
Note 3
\end{tabular} & 0 & & \begin{tabular}{l}
See \\
Note 3
\end{tabular} \\
\hline & - & & - & - & - & & - \\
\hline & CTRL & & None & None & None & & None \\
\hline & (Space Bar) & & None & None & None & & None \\
\hline CR & & DEL & & \(\mathrm{C}_{\mathrm{R}}\) & & & \(\mathrm{C}_{\mathrm{R}}\) \\
\hline ENTER* & RETURN NEW LINE & & \begin{tabular}{l}
See \\
Note 4
\end{tabular} & \begin{tabular}{l}
See \\
Note 4
\end{tabular} & \begin{tabular}{l}
See \\
Note 4
\end{tabular} & & \begin{tabular}{l}
See \\
Note 4
\end{tabular} \\
\hline
\end{tabular}

Notes:
*Labeled on front of keycap.
1. If parameter 37 (Tx. CR) is set to \(O n, a C_{R}\) should display at the end of these character groups.
2. If parameter 1 (Auto \(L F / C R\) ) is set to Off, \(C_{R}\) should display. If parameter 1 is set to \(O n, C_{R} L_{F}\) should display.
3. If terminal is in block (edit) mode and parameter 23 (Page Key) is set to DEF, \(E_{C}[? 10 \mathrm{~h}\) should display. If terminal is in character mode and parameter 23 is set to \(D E F, E_{C}[? 101\) should display. If parameter 23 is set to IMMED, nothing should display in either block or character mode.
4. If terminal is in character mode, either \(C_{R}\) or \(C_{R} L_{F}\) should display per the condition described in note 2. If terminal is in block mode and parameter 38 (Tx. Execution) is set to DEF, \(E_{C} S\) should display. If terminal is in block mode and parameter 38 is set to IMMED, nothing should display.

The following paragraphs describe how to display, change, and store the terminal parameters. Following that is a definition of the parameters.

\section*{Displaying Parameters}

Pressing the SETUP key enters the terminal into setup mode where parameter information is displayed at the bottom of the screen. The first information displayed is the message:

PRESS UP-DOWN ARROWS TO SEE MORE, AND LEFT-RIGHT ARROWS TO CHANGE VALUES

Pressing the shifted Cursor Up ( \(\uparrow\) ) key or the shifted Cursor Down \((\downarrow)\) key then clears the message and displays the terminal parameters one at a time. The first parameter displayed is the set tabs parameter. The display of the set tabs parameter includes a line of digits 0 through 9 repeated 8 times (for the 80 columns across the screen) with letter Ts above the digits where tabs have been set when in ANSI emulation.

After the set tabs parameter is a series of 41 numbered parameters. The shifted Cursor Up key steps the display to the next higher-numbered parameter (to parameter 1 from set tabs parameter), while the shifted Cursor Down key steps the display to the next lower-numbered parameter (wrapped around to parameter 41 from set tabs parameter).

A second pressing of the SETUP key exits the terminal from setup mode.

\section*{Changing/Storing Parameters}

The following is an example parameter.

\section*{1 Auto LF/CR On}

The 1 identifies the example parameter as being parameter 1 and the word On indicates the Auto LF/CR (automatic line feed/ carriage return) is in effect. The alternate setting for this particular parameter is Off.

The setting of On can be toggled to Off using either the shifted Cursor Left ( - ) key or the shifted Cursor Right \((\rightarrow\) ) key. The last selection made automatically goes into volatile memory when either the Cursor Up or Cursor Down key is pressed to step the display to another parameter or when the SETUP key is pressed a second time to leave setup mode.

A parameter change stored in volatile memory automatically clears after a power off or reset. If a change is to be permanent (such as a correction), store the change in nonvolatile memory. The keyboard entries for doing this (plus other operations) are given in table 6B-5.

TABLE 6B-5. KEYBOARD ENTRIES TO CHANGE/STORE PARAMETERS
\begin{tabular}{|c|c|}
\hline OPERATION & KEYBOARD ENTRY \\
\hline \begin{tabular}{l}
Toggle alternate setting of parameter on screen. If parameter has more than two possible settings, shifted Cursor Left key steps display to next lower setting and shifted Cursor Right key steps dispiay to next higher setting. \\
Display default setting for parameter currently on screen and store default settings for all parameters into volatile memory. \\
Display setting stored in nonvolatile memory for current parameter and store all nonvolatile memory settings into volatile memory. \\
Store current displayed setting and all volatile memory settings into nonvolatile memory (permanent change).
\end{tabular} & \begin{tabular}{l}
Shifted Cursor Left ( \(\sim\) ) or Shifted Cursor Right \((\rightarrow)\) \\
CTRL and D keys simultaneously \\
CTRL and \(R\) keys simultaneously \\
CTRL and \(S\) keys \\
simultaneously
\end{tabular} \\
\hline
\end{tabular}

\section*{Definition of Parameters}

Table 6B-6 defines the parameters. Unless indicated otherwise, the definitions given apply to all three emulations.

TABLE 6B-6. TERMINAL PARAMETERS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & \multirow[t]{2}{*}{DEFAULT
SETTING} \\
\hline NO. & PARAMETER & SELECTION & & \\
\hline - & Set tabs display described earlier in this procedure under Displaying Parameters & - & Applies only to ANSI emulation. Allows tab stops to be set. & ```
Tab every
8th
column
``` \\
\hline 1 & Auto LF/CR & On, Off & Applies only to ADDS & Off \\
\hline & & & and ANSI emulations. With the On setting, cursor does an automatic line feed with each carriage return received from the host or generated by the RETURN/NEW LINE keys. In ADDS emulation, this also applies to each carriage return that is generated by the shifted CR key. With the Off setting, & \\
\hline 2 & Auto Repeat & On, Off & \begin{tabular}{l}
cursor does not do an automatic line feed. \\
Determines whether
\end{tabular} & On \\
\hline & & & alphanumeric keys repeat at 15 characters per second when held down for one-half second. & \\
\hline 3 & Auto Scroll & On, Off & Determines whether display operates in a scroll (On) or page manner (Off). & On \\
\hline 4 & Auto Wrap & On, Off & Determines whether cursor automatically advances to the beginning of the next line after the previous line is filled (On) or does not automatically advance (Off). & On \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & \multirow[t]{2}{*}{DEFAULT
SETTING} \\
\hline No. & PARAMETER & SELECTION & & \\
\hline 5 & Auto Xon-Xoff & On, Off & Determines whether terminal sends \(X\)-off/ \(X-o n\) codes on main port when it cannot/ can receive further data. & On \\
\hline 6 & Backspace Key & Normal, DEL & Applies only to ADV emulation. With the Normal setting, BACKSPACE and CR/DEL keys operate normally. With the DEL setting, BACKSPACE key performs the delete function of the CR/DEL key and the CR/DEL key performs only the carriage return function. & Normal \\
\hline 7 & Baud Rate & \[
\begin{aligned}
& 110,150,300, \\
& 600,1200, \\
& 1800,2400, \\
& 4800,9600, \\
& 19200
\end{aligned}
\] & Sets transmit/receive rates for main and auxiliary ports. & 9600 \\
\hline 8 & Block Mode & On, Off & Applies only to ANSI emulation. Determines the transmission mode that terminal enters after a power on or reset. With the On setting, keyboard entered data can be edited and sent in a block (block transmission mode). With the Off setting, keyboard entered data is sent character by character (character transmission mode). & Off \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DEFAULT } \\
& \text { SETTING } \\
& \hline
\end{aligned}
\]} \\
\hline NO. & PARAMETER & SELECTION & & \\
\hline 9 & Character Sent & All, Unprotected & Applies only to block transmission mode in ANSI emulation. With the All setting, all data on screen is enabled to be sent to host. With the Unprotected setting, only unprotected data on screen is enabled to be sent. & All \\
\hline 10 & Cursor & \begin{tabular}{l}
BNK-LIN, \\
LIN -CUR, \\
BNK-BLK, \\
BLK-CUR, \\
Blank
\end{tabular} & \begin{tabular}{l}
Determines which of the following type cursors display: \\
- Blinking underline (BNK-LIN) \\
- Steadily lit underline (LIN-CUR) \\
- Blinking block (BNK-BLK) \\
- Steadily lit block (BLK-CUR) \\
- Blank
\end{tabular} & BNK-LIN \\
\hline 11 & Data Bits & 7,8 & Determines whether received/transmitted characters on main and auxiliary ports contain 7 or 8 data bits (not including parity). & 7 \\
\hline 12 & DTR On/Off & On, Off & Determines whether terminal issues a constant Data Terminal Ready signal on main port (On) or drops Data Terminal Ready when in local mode (Off). & Off \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { DEFAULT } \\
& \text { SETTING }
\end{aligned}
\]} \\
\hline NO. & PARAMETER & SELECTION & & \\
\hline 13 & Duplex Mode & HDX , FDX & Affects the internal routing of keyboard entered data when online and transmitting character by character. With the HDX (half-duplex) setting, entered characters display simultaneously as they are transmitted. With the FDX (fullduplex) setting, entered characters do not display until echoed back by host. & F DX \\
\hline 14 & Emulation & ADV, ADDS , ANSI & Determines whether ADV, ADDS, or ANSI emulation is in effect. & ADV \\
\hline 15 & Erasure Mode & All, Unprotected & Applies only to ANSI emulation. With the All setting, all data on screen can be erased by host. With the Unprotected setting, only unprotected data on screen can be erased by host. & All \\
\hline 16 & Interface & EIA, C.L. & Determines whether main port uses EIA RS-232-C/CCITT-V. 24 signals (EIA) or current loop signals (C.L.). & EIA \\
\hline 17 & Keyclick & On, Off & Determines whether a beep sounds each time a key is pressed. & Off \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & DEFAULT \\
\hline No. & PARAMETER & SELECTION & & SETTING \\
\hline 18 & LF Bias & Bias, Normal & Applies only to ADV emulation. Determines whether cursor address is biased by \(20_{16}\) (2016 added) when receiving/ sending \(X / Y\) positioning data. & Bias \\
\hline 19 & Margin Bell & On, Off & Determines whether a beep sounds when cursor is 8 character positions from end of line. & Off \\
\hline 20 & Monitor Mode & On, Off & Determines whether terminal displays symbols for control codes instead of executing them (On). & Off \\
\hline 21 & Numeric Keypad & Unshifted, Shifted & Determines whether keys in numeric pad on right side of keyboard operate in accordance with their lowercase/uppercase legends (Unshifted) or operate just the opposite (Shifted). & Unshifted \\
\hline 22 & Operation Mode & Local, Online & Sets terminal for online operations with host or for independent, local operations. & Online \\
\hline 23 & Page Key & IMMED, DEF & Applies only to ANSI emulation. With the IMMED setting, shifted use of key labeled EDIT (on front of keycap) switches terminal between character transmission mode and block transmission mode. With the DEF setting, shifted & IMMED \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { DEFAULT } \\
& \text { SETTING } \\
& \hline
\end{aligned}
\]} \\
\hline NO. & PARAMETER & SELECTION & & \\
\hline & Page Key (Contd) & & use of key labeled EDIT sends code sequences to host that must be echoed back to switch terminal between character transmission mode and block transmission mode. & \\
\hline 24 & Parity & Odd,Even,Spc, Mark, No & Determines whether terminal uses odd, even, space (Spc), mark, or no parity on main and auxiliary ports. & No \\
\hline 25 & \begin{tabular}{l}
Power \\
(Refresh)
\end{tabular} & \(60 \mathrm{~Hz}, 50 \mathrm{~Hz}\) & Establishes display refresh rate (to be the same frequency as site line voltage). & 60 Hz \\
\hline 26 & Print Extent & Full, Scroll & Applies only to ANSI emulation. With the Full setting, all characters on screen are enabled to be transferred to a connected printer. With the Scroll setting, only characters in programmed scroll region (two lines to whole screen) are enabled for printing. & Full \\
\hline 27 & Print EOM & FF,No & Applies only to ANSI emulation. With the FF (form feed) setting, terminal inserts a form feed code at end of print operations, while with the No setting, it does not. & FF \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DEFAULT } \\
& \text { SETTING } \\
& \hline
\end{aligned}
\]} \\
\hline NO. & PARAMETER & SELECTION & & \\
\hline 28* & Reset Terminal & & When this parameter is being displayed, pressing the shifted CR key resets the terminal. & \\
\hline 29 & Response Suppress & On, Off & Applies only to ADV emulation. Determines whether terminal sends a completion response to host (Off) or does not (On). & Off \\
\hline 30 & RTS On/Off & On, Off & Determines whether terminal issues a Request to Send signal on main port whenever Data Set Ready and Data Terminal Ready signals are on or when only a transmission occurs (Off). & Off \\
\hline 31 & Screen Contrast & 1 through 15 & Determines whether screen contrast is dimmer (8 through 1) or brighter (l0 through 15) than the default value of 9 . Only a value of 7 through 15 is allowed to be stored in nonvolatile memory. If storage of a value outside that range is attempted, a 9 is stored instead. & 9 \\
\hline 32 & Screen Saver & On, Off & Determines whether screen goes blank after 15 to 20 minutes of no activity from keyboard or host (On) or does not go blank (Off). A blanked screen returns to normal upon keyboard or host activity. & On \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & DEFAULT \\
\hline NO. & PARAMETER & SELECTION & & SETTING \\
\hline 33 & Set Protection & Off, HF, RV, RV/HF, UL, UL/HF, UL/RV, UL/RV/HF, BI, \(\mathrm{BI} / \mathrm{HF}\), \(\mathrm{BI} / \mathrm{RV}\), BI/RV/HF, BI/UL, BI/UL/ HF, BI/UL/RV, BI/UL/RV/HF, Normal High & \begin{tabular}{l}
Applies only to ANSI emulation. The setting of this parameter determines the type of displayed characters that can be assigned as protected from operator entries). The abbreviations used are: HF = half intensity, \(R V=\) inverse video, BI = blinking, and UL = underlined. \\
With the Normal High setting, normal displayed characters can be assigned as protected data. With the Off setting, no characters can be assigned as protected data.
\end{tabular} & Off \\
\hline 34 & Space Compression & On, Off & Applies only to block transmission mode in ANSI emulation. With the On setting, terminal sends a control code in place of consecutive spaces when transmitting to host. With the Off setting, spaces are transmitted as encountered on the screen. & Off \\
\hline 35 & Status Line & On, Off & Determines whether a complete halfintensity status line appears (On) or just row/column status in ADV or ADDS emulation (Off). & Off \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & & DEFAULT \\
\hline NO. & PARAMETER & SELECTION & DEFINITION & SETTING \\
\hline 36 & Stop Bits & 1,2 & Determines whether received/transmitted characters on main and auxiliary ports contain one or two stop bits. & 1 \\
\hline 37 & Tx. CR & On, Off & \begin{tabular}{l}
Applies only to ANSI emulation. With the On setting, the following occurs as applicable: \\
- If in character transmission mode, terminal adds a carriage return (CR) code to the code sequence transmitted for a special function key (a Fl through Fl2 key or the blank key). \\
- If in block transmission mode, pressing a special function key starts a block transmission and a CR code is added after the code sequence for the special function key like in character transmission mode. In addition, a CR code is sent to end each block transmission started by the key labeled ENTER (on front of keycap).
\end{tabular} & On \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{DISPLAYED INFORMATION} & \multirow[b]{2}{*}{DEFINITION} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { DEFAULT } \\
& \text { SETTING } \\
& \hline
\end{aligned}
\]} \\
\hline NO. & PARAMETER & SELECTION & & \\
\hline & Tx. CR (Contd) & & With the Off setting, no CR code is added for special function keys in either character or block transmissions. In addition, no CR code is added to block transmissions started by the ENTER key. & \\
\hline 38 & Tx. Execution & IMMED, DEF & Applies only to block transmission mode in ANSI emulation. With the IMMED setting, pressing the ENTER key starts a block transmission. With the DEF setting, pressing the ENTER key transmits a control code sequence that notifies host that terminal has a block of data to transmit. No block transmission occurs until commanded by host. & IMMED \\
\hline 39 & Tx. Extent & Page, Part, Line & \begin{tabular}{l}
Applies only to block transmission mode in ANSI emulation. \\
Determines the size of data block sent to host. The Page setting selects the data within the programmed scroll region. The Part setting selects the data from either the start of the scroll region or from a programmed transmit marker up to the current cursor position. The Line setting selects the data from the current line.
\end{tabular} & Page \\
\hline
\end{tabular}

TABLE 6B-6. TERMINAL PARAMETERS (CONTD)

\section*{Procedure 5-Removing/Replacing Hood}

To remove the hood, refer to figure \(6 \mathrm{~B}-2\) and:
1. Remove two screws at rear of hood.
2. Lift rear of hood up and slide hood backward off terminal. To replace the hood:
1. Engage tabs at front of hood under bezel and lower hood in place.
2. Install two screws at rear of hood and tighten.

Figure 6B-2. Removing/Replacing Hood

\section*{Procedure 6 - Removing/Replacing Main Logic Board}

To remove the main logic board, refer to figure \(6 \mathrm{~B}-3\) and:
NOTE

> If a new main logic board is to be installed, ensure that parameter settings are recorded for later entry.
1. Turn off terminal and unplug ac power cord (procedure 1).
2. Disconnect keyboard cable and any other cables attached to connectors at back of terminal.
3. Remove hood (procedure 5).
4. At main logic board, remove monitor-board-to-main-logicboard connector.
5. At main logic board, remove two ground clips from pins.
6. At main logic board, remove power supply connector.
7. Remove two screws that secure main logic board to cabinet base (one screw also secures a ground strap from the power supply).
8. Lift straight up and remove power supply. Place power supply to side of terminal.
9. Push main logic board about \(1 / 2\) inch toward front of terminal until board stops.
10. Lift back edge of main logic board about two inches and pull board toward back of terminal until board is free.

To replace the main logic board, do the preceding steps in reverse order and action. If the board is new, refer to procedure 4 after the board is installed and change the default parameter settings to match the recorded settings and store the settings into nonvolatile memory.

Figure 6B-3. Removing/Replacing Main Logic Board

To check the power supply voltages, do as follows:
1. Turn off terminal (procedure 1).
2. Remove hood (procedure 5).
3. Unfasten ground strap from power supply cover.
4. Lift straight up and remove power supply from cabinet slots. Leave cables connected and lean power supply over outside of cabinet so the three output connectors are accessible (figure 6B-4).
5. Turn on power.

\section*{\(\overline{\text { WARNING }}\)}

> Line voltages are present on the power supply board. Touch only the cover when power is on.
6. Check voltages at pins shown in figure 6B-4. Voltages should be:
- \(+12 \pm 0.60 \mathrm{~V}\) between pins with black (common) wires and violet wires
- \(+5 \pm 0.25 \mathrm{~V}\) between pins with black wires and blue wires
- \(-12 \pm 0.60 \mathrm{~V}\) between pins with black wires and white

Figure 6B-4. Accessing Power Supply
7. If voltages are OK, turn off power and do steps 1 through 4 in reverse order and action to reassemble terminal. If voltages are not OK, go to SAM 2 (Power Problems).

Procedure 8 - Removing/Replacing Power Supply
To remove the power supply, refer to figure \(6 B-5\) and:
1. Turn off terminal and unplug ac power cord (procedure l).
2. Remove hood (procedure 5).
3. Unfasten ground strap from power supply cover.
4. Lift power supply straight up and disconnect power-supply-to-main-logic-board cable at main logic board.
5. Disconnect ac input cable at power supply.
6. Disconnect ground terminal from power supply and lift power supply free from cabinet.
7. Remove power-supply-to-main-logic-board cable from three connectors on power supply.

Figure 6B-5. Power Supply Board with Cover
1. If unit being worked on is a llo-V ac, \(60-\mathrm{Hz}\) terminal (part number 51942413), do the preceding steps of removal procedure in reverse order and action. When replacing power-supply-to-main-logic-board cable, see figure 6B-5 for color coding of leads of the three power supply connectors. If unit being worked on is a \(220 / 240-\mathrm{V}\) ac, \(50-\mathrm{Hz}\) terminal (part number 51942414), the following must be done to the new power supply before replacement:
a. Remove screw holding power supply board to bottom cover plate.
b. Remove four screws holding two-piece cover together and remove bottom cover plate.
c. Remove two screws holding power supply board to top cover.
d. Pull sides of the top cover apart to remove power supply board.
e. Reposition ll5/230-V jumper on power supply board to 230-V pin (figure 6B-5).
f. Do steps a through \(d\) in reverse order and action and reassemble power supply.

Procedure 9-Removing/Replacing Power-Supply-to-Main-Logic-Board Cable

To remove the power-supply-to-main-logic-board cable:
1. Turn off terminal and unplug ac power cord (procedure l).
2. Remove hood (procedure 5).
3. Unfasten ground strap from power supply cover.
4. At main logic board, disconnect connector of power supply cable.
5. Lift power supply straight up and disconnect three connectors from power supply board (figure 6B-6).

Figure 6B-6. Connection of Power Supply Output Connectors

To replace the power-supply-to-main-logic-board cable, do the preceding steps in reverse order and action and refer to figure 6B-6 for connection of the three power supply board connectors.

Procedure 10 - Removing/Replacing Monitor Board

To remove the monitor board:
1. Turn off terminal and unplug ac power cord (procedure 1).
2. Remove hood (procedure 5).

WARNING
High voltage may be present at crt anode. Be sure to do steps 3 through 7 to discharge voltage from crt. A lo-inch or longer piece of wire with clips at each end will be needed.
3. Using long thin shaft screwdriver with insulated handle, attach one end of clip lead to screwdriver.
4. Attach clip at other end of lead to crt ground spring (figure 6B-7).
5. Hold screwdriver handle with one hand.

\section*{WARNING}

Do not touch any high voltage parts or screwdriver metal shaft.
6. Slip blade of screwdriver under plastic anode cap (figure 6B-7) until it contacts metal anode connector and discharges high voltage. A noticeable spark usually results when screwdriver touches anode metal contact. Hold screwdriver against anode for minimum of five seconds to completely discharge high voltage.

Figure 6B-7. High-Voltage Discharge
7. Remove screwdriver and disconnect clip lead from ground spring.
8. Lift edge of plastic anode cap and press on one of the contacts underneath to release connector.

\section*{WARNING}

Be careful of sharp edges on the tip of crt socket when socket connector is removed.
9. Remove crt socket connector (figure 6B-8).
10. At main logic board, disconnect monitor-board-to-main-logic-board connector.
11. At monitor board, disconnect yoke-to-monitor-board connector.
12. Remove ground lead from pin on monitor board.
13. Lift straight up and remove monitor board from cabinet slots.

05381
Figure 6B-8. Monitor Board Connections

To replace the monitor board:
1. Repeat steps 3 through 7 of removal procedure and place screwdriver in anode connector hole to discharge any residual charge that may have built up in crt.
2. Do other steps or removal procedure in reverse order and action.
3. If a new monitor board is being installed, do video adjustments (procedure 12).

Procedure 11 - Removing/Replacing CRT/Yoke Assembly or Bezel

WARNING

> Wear safety glasses and safety gloves when handling the crt. Do not hit or scratch the crt or subject it to more than moderate pressure. Do not hold the crt by its neck or by the yoke. The crt contains a high vacuum; breaking the crt may cause injury from flying glass.

To remove the crt/yoke assembly or bezel:
1. Remove monitor board (procedure l0).
2. Unfasten ground strap from power supply cover.
3. Lift power supply (figure 6B-9) straight up and disconnect power-supply-to-main-logic-board cable at main logic board.
4. Disconnect ac input cable at power supply.
5. Disconnect ground terminal from power supply and lift power supply free from cabinet.
6. Disconnect keyboard (procedure 13).
7. Place terminal screen down on a soft surface.
8. Remove four screws that hold bezel (and crt/yoke assembly) to cabinet base and set cabinet base aside.
9. Remove four screws and washers that hold crt/yoke assembly to bezel and remove two crt ground springs and crt/yoke assembly.

Figure 6B-9. Removing/Replacing CRT/Yoke Assembly or Bezel

To replace the crt/yoke assembly or bezel, do the preceding removal steps in reverse order and action. If a new crt/yoke assembly is being installed, do video adjustments (procedure 12) when replacement is done.

\section*{Procedure 12-Making Video Adjustments}

Table 6B-7 describes the functions of the video controls and the following steps give the sequence of adjustment. This sequence is for when a new monitor board or crt/yoke assembly has been installed. For touch-up adjustments, do the steps that are applicable. Figure \(6 \mathrm{~B}-10\) shows the location of the controls.

\section*{\(\overline{\text { WARNING }}\)}

Lethal voltages exist in the crt and on monitor board. Use extreme caution when performing adjustments.

TABLE 6B-7. VIDEO CONTROLS
\begin{tabular}{|c|l|}
\hline CONTROL & \multicolumn{1}{c}{ FUNCTION } \\
\hline \begin{tabular}{c}
VR201 V (vertical) \\
SIZE potentiometer \\
VR202 V LIN \\
(vertical linearity) \\
potentiometer
\end{tabular} & \begin{tabular}{l}
Controls size ratio between top and \\
bottom halves of screen
\end{tabular} \\
\begin{tabular}{c}
VR203 V (vertical) \\
HOLD potentiometer \\
VR301 CENT (horizontal \\
centering) \\
potentiometer
\end{tabular} & Controls vertical stability \\
\begin{tabular}{l}
VR302 BRITE (bright- \\
ness) potentiometer \\
VR303 FOCUS \\
potentiometer
\end{tabular} & Controls screen brightness \\
L3603 coil \\
Yoke magnets
\end{tabular}

Figure 6B-10. Video Controls
1. Turn terminal on (procedure l) and allow 15 minutes for crt to warm up before making adjustments.
2. Change parameter 22 (Operation Mode) to Local, and if in ANSI emulation, change parameter 14 (Emulation) to either ADV or ADDS (procedure 4).
3. If in ADV emulation, press CTRL and = keys simultaneously, then hold SHIFT key down and press " and @ keys; if in ADDS emulation, press ESC key, then hold SHIFT key down and press " and @ keys. This displays the alignment pattern shown in figure 6B-ll.

NOTE
When the alignment pattern is no longer needed, it is cleared from the screen by pressing the SHIFT and P CLEAR keys.
4. Remove hood (procedure 5).
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEHH EEEEEEEEEEEEEEEEEEEEEEEEEEHH. HH. H
н. H
H. н H
H@@@@@@@@@@@@@@@@ 4@@@@@@@@@@@@@@@@ H
H @@@@@@@@@@@@@@@@ H@@@@@@@@@@@@@@@@ H
H@@@@@@@@@@@@@@@@ 4 \(@ @ @ @ @ @ @ @ @ @ @ @ @ @ ~\) H
H@@@@@@@@@@@@@@@ HH@@@@@@@@@@@@@@@@ H
н. н H
н. н H
H. нH H
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEHHEEEEEEEEEEEEEEEEEEEEEEEEEEEHHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEHH EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEH
Н. HH H
H. H H H
н. H
H@@@@@@@@@@@@@@@@ H нH@@@@@@@@@@@@@@@@ H
н.@@@@@@@@@@@@@. @@@@@@@@@@@@@@@@ H
н@@@@@@@@@@@@@@@@ н @@@@@@@@@@@@@@@@ H
H. \(\mathrm{c}^{@ @ @ @ @ @ @ @ @ @ @ @ @ @ ~}\) HH @@@@@@@@@@@@@@@@ H
H. н H
H. HH H
H. HH H
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEHHEEEEEEEEEEEEEEEEEEEEEEEEEEEEEH

Figure 6B-11. Example Alignment Display

Sync Adjustment:
5. If display rolls vertically, adjust \(V\) HOLD (VR203) potentiometer half way between where rolling begins.

\section*{Horizontal Centering/Width Adjustment:}
6. If test pattern is horizontally off center, adjust CENT (VR301) potentiometer to center pattern on screen.
7. Displayed pattern should be nominally 205 mm (8 in) wide. To change width, use a nonmagnetic tool and adjust coil L3603.
```

Vertical Height/Linearity Adjustment:
8. Displayed pattern should be nominally 150 mm ( }6\mathrm{ in) high.
To change height, adjust V SIZE (VR20l) potentiometer.
9. If characters at top of pattern are different in size than
at bottom, adjust V LIN (VR202) potentiometer.
10. V SIZE and V LIN potentiometers interact with each other.
Repeat steps 8 and 9 as necessary until results are
satisfactory.

```

\section*{Brightness Adjustment:}

\section*{NOTE}

Overly bright characters will appear out of focus and contribute to eyestrain.
11. Change parameter 31 (Screen Contrast) to its highest setting of 15 and leave parameter display at bottom of screen (procedure 4).
12. Adjust BRITE (VR302) potentiometer until raster appears, then adjust it back just far enough so raster does not show.
13. Change parameter 31 to its lowest setting of 1 (do not exit from parameter display) and check that no video is visible on screen. Then change parameter 31 back to 15 and verify that raster does not show. If necessary, readjust BRITE potentiometer until these conditions are met.
14. Change parameter 31 to its default setting of 9 and press SETUP key to exit from parameter display.

Focus Adjustment:
15. Adjust FOCUS (VR303) potentiometer for best overall focus.

\section*{Geometric Distortion Adjustment:}
16. If barrelling or pincushioning exists (figure 6B-12), adjust yoke magnets in the following manner:
a. Use a nonmagnetic tool and rotate magnet slugs until best straightness is achieved.
b. If display cannot be corrected by rotating magnets, loosen screws holding magnets to yoke and adjust position of magnets until best straightness is achieved. Then tighten screws.
c. Repeat steps \(a\) and \(b\) as necessary.

BARRELED SIDES

PINCUSHIONING

Figure 6B-12. Display with Barrelling/Pincushioning

\section*{Procedure 13 - Removing/Replacing Keyboard}

To remove the keyboard:
1. Turn off terminal (procedure 1).
2. Press down on plastic tab at top of keyboard cable connector and disconnect cable from terminal (figure 6B-13).

To replace the keyboard, do the preceding steps in reverse order and action.

Figure 6B-13. Keyboard Cable Connector

\section*{Procedure 14 - Removing/Replacing Power Switch}

To remove the Power switch, refer to figure \(6 B-14\) and:
1. Turn off terminal and unplug ac power cord (procedure l).
2. Remove hood (procedure 5).
3. Unfasten ground strap from power supply cover.
4. Lift power supply straight up and disconnect power-supply-to-main-logic-board cable at main logic board.
5. Disconnect ac input cable from power supply.
6. Disconnect ground terminal from power supply and set power supply aside.
7. Remove two screws holding Power switch to cabinet base.
8. Unsolder leads from Power switch.

To replace the Power switch, do the removal steps in reverse order and action.

Figure 6B-l4. Removing/Replacing Power Switch

Procedure 15-Removing/Replacing AC Power Cord or Fuse Holder

To remove the ac power cord or fuse holder, refer to figure 6B-15 and:
1. Turn off terminal and unplug ac power cord (procedure 1).
2. Remove hood (procedure 5).
3. Unfasten ground strap from power supply cover.
4. Lift power supply straight up and disconnect power-supply-to-main-logic-board cable at main logic board.
5. Disconnect ac input cable from power supply.
6. Disconnect ground terminal from power supply and set power supply aside.
7. Remove screw that holds power-cord/fuse-holder bracket to cabinet base.
8. Push power-cord/fuse-holder bracket in and slide it up free from cabinet slot.
9. To remove fuse holder, do the following; to remove power cord, go to step 10.
a. Unsolder two leads from fuse holder.
b. Remove nut holding fuse holder to bracket and remove fuse holder.

Figure 6B-15. Removing/Replacing AC Power Cord or Fuse Holder
10. Remove screw holding green (safety ground) wire of power cord to ground strip on cabinet base.
11. Unsolder black (hot) wire of power cord from fuse holder.
12. Cut tie wrap securing brown wire from fuse holder to white wire of power cord.
13. Use a scribe or unbent paper clip and release white (neutral) wire of power cord from ac input connector.
14. Using pliers, pull strain relief from bracket on power-cord-plug side.
15. Remove power cord.

To replace the power cord or fuse holder, do the removal steps in reverse order and action.

\section*{Procedure 16 - Removing/Replacing Cabinet Base, Pedestal, or Pedestal Spring}

To remove the cabinet base, pedestal, or pedestal spring:
1. Remove main logic board (procedure 6).
2. Remove monitor board (procedure 10).
3. Do steps 3 through 8 of procedure 11 to remove crt/yoke assembly and bezel.
4. Remove two screws holding pedestal spring and pedestal to cabinet base (figure 6B-16).
5. If removing cabinet base:
a. Do steps 7,8 , and 10 through 15 of procedure 15 to remove power cord.
b. Remove two screws holding Power switch and remove switch and connected wires and fuse holder.
c. Remove screw holding ground strip and remove strip and connected ground wires.

To replace the cabinet base, pedestal, or pedestal spring, do the removal steps in reverse order and action.

Figure 6B-16. Mounting of Pedestal/Pedestal Spring to Cabinet Base

This procedure only applies to testing a main interface port that is setup for RS-232-C/CCITT-V. 24 signals. To do loopback testing:
1. Turn off terminal (procedure 1).
2. Disconnect cable from main interface port.
3. Install loopback plug (part number 61409717) in main interface port.
4. Turn terminal on.
5. If terminal is in local mode, change parameter 22 to Online (procedure 4).
6. Enter keyboard data and check for correct characters on screen. If terminal is set for half-duplex operation (parameter 13 set to HDX), two characters should display for each alphanumeric entry. If no errors occur, terminal is transmitting and receiving data correctly (do steps 4 through 1 in reverse order and action to reconnect terminal). If an error does occur, return to SAM 6 (Communication/Printing Problems).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Procedure & Page & Procedure & Page & Procedure & Page \\
\hline 1 & 6B-1 & 7 & 6B-33 & 13 & 6B-45 \\
\hline 2 & 6B-1 & 8 & 6B-34 & 14 & 6B-46 \\
\hline 3 & 6B-5 & 9 & 6B-35 & 15 & 6B-47 \\
\hline 4 & 6B-18 & 10 & 6B-36 & 16 & 6B-49 \\
\hline 5 & 6B-30 & 11 & 6B-39 & 17 & 6B-51/ \\
\hline 6 & 6B-31 & 12 & 6B-41 & & 6B-52 \\
\hline Figure & Page & Figure & Page & Figure & Page \\
\hline 6-1 & 6-6 & 6B-3 & 6B-32 & 6B-11 & 6B-43 \\
\hline 6-2 & 6-8 & 6B-4 & 6B-33 & 6B-12 & 6B-45 \\
\hline 6-3 & 6-9/6-10 & 6B-5 & 6B-34 & 6B-13 & 6B-46 \\
\hline 6A-1 & 6A-3 & 6B-6 & 6B-36 & 6B-14 & 6B-47 \\
\hline 6A-2 & 6A-7 & 6B-7 & 6B-37 & 6B-15 & 6B-48 \\
\hline 6A-3 & 6A-11 & 6B-8 & 6B-38 & 6B-16 & 6B-50 \\
\hline \(6 \mathrm{~B}-1\) & 6B-2 & 6B-9 & 6B-40 & & \\
\hline 6B-2 & 6B-31 & 6B-10 & 6B-4 2 & & \\
\hline Table & Page & Table & Page & & \\
\hline 6A-1 & 6A-1 & 6B-4 & 6B-13 & & \\
\hline 6B-1 & 6B-3 & 6B-5 & 6B-19 & & \\
\hline 6B-2 & 6B-5 & 6B-6 & 6B-20 & & \\
\hline 6B-3 & 6B-9 & 6B-7 & 6B-41 & & \\
\hline
\end{tabular}

This section contains spare parts information for the display terminal. This information includes a spare parts kit, a spare parts list, and source/cross-reference lists.

\section*{ED Control data ASSEMBLY PARTS LIST}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CONTROL DATA} & \multicolumn{5}{|l|}{} & & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { CODE IDENT } \\
& 15920
\end{aligned}
\]} & \multicolumn{2}{|l|}{SHEET} & 2 & SPL & \[
\begin{aligned}
& \text { DOCUMENT NO. } \\
& 66330135
\end{aligned}
\] & \[
\begin{array}{|c}
\mathrm{REV} \\
B
\end{array}
\] \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Find } \\
\text { no. }
\end{gathered}
\]} & \multirow[t]{2}{*}{PART identification} & \multicolumn{10}{|c|}{QUANTITY REQUIRED} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { UNIT } \\
\text { OF } \\
\text { MEAS }
\end{gathered}
\]} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{nomenclature or description}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SPECIFICATIONS, notes, or material}} \\
\hline & & & & & & & & & & & & & & & & \\
\hline 1 & 66329968 & 1 & & & & & & & & & & PC & & REPLACED BY 66329993 & For & \[
\begin{aligned}
& \text { se, this } \\
& \text { ngable }
\end{aligned}
\] \\
\hline 2 & 66329969 & 1 & & & & & & & & & & PC & & MONITOR PCB & w/66 & \\
\hline 3 & 66329970 & 1 & & & & & & & & & & PC & & CRT/YOKE & & \\
\hline 4 & 66329971 & 1 & & & & & & & & & & PC & & FUSE (AC 60 HZ) & & \\
\hline 5 & 66329972 & 1 & & & & & & & & & & PC & & FUSE (AC 50 Hz) & & \\
\hline 6 & 66329973 & 1 & & & & & & & & & & PC & & FUSE (MONITOR PCB) & & \\
\hline 7 & 66329974 & 1 & & & & & & & & & & PC & & FUSE (POWER SUPPLY PCB) & & \\
\hline 8 & 66329975 & 1 & & & & & & & & & & PC & & FUSE HOLDER (AC) & & \\
\hline 9 & 66329976 & 1 & & & & & & & & & & PC & & POWER CORD (60 HZ) & & \\
\hline 10 & 66329977 & 1 & & & & & & & & & & PC & & POWER CORD (50 HZ) & & \\
\hline 11 & 66329978 & 1 & & & & & & & & & & PC & & POWER SWITCH & & \\
\hline 12 & 66329979 & 1 & & & & & & & & & & PC & & CABLE (MONITOR TO MATN IOGTC) & & \\
\hline 13 & 66329980 & 1 & & & & & & & & & & PC & & \begin{tabular}{l}
\[
\frac{\text { MALNL }}{\text { CABLE (PS TO }}
\] \\
MAIN LOGIC)
\end{tabular} & & \\
\hline 14 & 66329981 & 1 & & & & & & & & & & PC & & BE2EL & & \\
\hline 15 & 66329982 & 1 & & & & & & & & & & PC & & BASE & & \\
\hline 16 & 66329983 & 1 & & & & & & & & & & PC & & COVER & & \\
\hline 17 & 66329984 & 1 & & & & & & & & & & PC & & PEDESTAL & & \\
\hline 18 & 66329985 & 1 & & & & & & & & & & PC & & SPRING PEDESTAL TENSION & & \\
\hline 19 & 66329986 & 1 & & & & & & & & & & PC & & MAIN LOGIC PCB & & \\
\hline 20 & 66329987 & 1 & & & & & & & & & & PC & & KEYBOARD W/ENCLOSURE & & \\
\hline
\end{tabular}

SOURCE CONTROL DRAWING
\begin{tabular}{|c|c|c|c|c|}
\hline LTR & ECO & DESCRIPTION & DATE & APPROVAL \\
\hline \(A\) & 16200 & RELEASED CLASS "A" & 12-0;- & lind \\
\hline B & 16487 & REVISED PER ECO Wict & 1-31-81 & 2\% \\
\hline C & 16599 & CHG TAB 82, 84, 88,89,90, ADD TAR 2 - 3-20.84 & 3-23-84 & W \\
\hline D & 16871 & ADD TAB 93 , INACTIVATE TAE 68 " & (1)-27-34 & 作 \\
\hline & & & & \\
\hline
\end{tabular}

RECORD OF REVISION STATUS OF EACH SHEET

WP0103a
CD8324R
```

The following source list contains products to be used as specified in
CDC-SPEC 51942413/14, the vendor (Tatung Electronics Corp.) guarantees
satisfactory operation.
The products and their containers shall be permanently and legibly
marked with the CDC part numbers.

```

\section*{SOURCE LIST}
\begin{tabular}{lll}
CDC & & Vendor \\
Part Number & \multicolumn{1}{c}{ Description } & Part Number \\
\hline 66329966 & Replaced by 66330135 & \\
66329967 & Replaced by 66330136 & N/A \\
66329968 & Replaced by 66329993 & N/A \\
66329969 & Monitor Printed-Circuit Board & 5719001311 \\
66329970 & CRT/Yoke & 5710717581 \\
66329971 & Fuse (AC 60 Hz) & 5711101121 \\
66329972 & Fuse (AC 50 Hz) & 5724714220 \\
66329973 & Fuse (Monitor Printed-Circuit Bd) & 5724714220 \\
66329974 & Fuse (Power Supply PC Board) & 5724712022 \\
66329975 & Fuse Holder (AC) & \\
66329976 & Power Cord (60 Hz) & 5056512010 \\
66329977 & Power Cord (50 Hz) & 5726800000 \\
66329978 & Power Switch & 5726800000 \\
66329979 & Cable, Monitor to Main Logic & 5724580011 \\
66329980 & Cable, PS to Main Logic & 5713300106 \\
66329981 & Bezel Cover & 5713300206 \\
66329982 & Lower Cover & 5642220400 \\
66329983 & Upper Cover & 5642220000 \\
66329984 & Base & 5642220300 \\
66329985 & Spring, Suppressor & 5742220500 \\
66329986 & Main Logic Board & 5731300040 \\
66329987 & Keyboard w/Enclosure & 5710707481 \\
66329988 & Spring Suppressor (Base) & 5712006240 \\
66329989 & Frictional Dome (Bumpers) & 5734200040 \\
66329990 & Washer (Whirl) & 5734200050 \\
66329991 & Frictional Washer & 5731201612 \\
66329992 & Screws for Spring Suppressor & 5734200060 \\
66329993 & VDEApproved Pwr. Supply w/Shield & 7001261612 \\
66329994 & Reserved & 5719400001 \\
66329995 & Reserved & \\
\hline
\end{tabular}

SOURCE CONTROL DRAWING
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Source/Cross & CODE IDENT
15920 & A & DWG NO
\[
66329966
\] & \[
\begin{array}{r}
\text { REV } \\
D
\end{array}
\] \\
\hline CORPORATION & Reference List for Viking TTY II & & & SHEET 2 & \\
\hline
\end{tabular}

\footnotetext{
WP0103b
CD8324R
}

\section*{CROSS REFERENCE LIST}
\begin{tabular}{llll}
\begin{tabular}{c}
Vendor \\
Part Number
\end{tabular} & \multicolumn{1}{c}{ (Description } & \begin{tabular}{c}
CDC \\
Part Number
\end{tabular} & Symbol \\
\hline & Fuse (AC 60 Hz) & 66329971 \\
& Fuse (AC 50 Hz) & 66329972 \\
& Fuse (Monitor Printed-Circuit Bd) & 66329973 \\
Fuse (Power Supply PC Board) & 66329974 \\
5056512010 & Fuse Holder (AC) & 66329975 \\
5642220000 & Lower Cover & 66329982 \\
5642220300 & Upper Cover & 66329983 \\
5642220400 & Bezel & 66329991 \\
5710707481 & Main Logic Board & 66329986 \\
5710717581 & Monitor Printed-Circuit Board & 66329969 \\
5711101121 & CRT/Yoke & 66329970 \\
5712006240 & Keyboard w/Enclosure & 66329987 \\
5713300106 & Cable, Monitor to Main Logic & 66329979 \\
5713300206 & Cable, PS to Main Logic & 66329980 \\
5719001311 & Replaced by Vendor P/N 5719400001 & 66329968 \\
5719400001 & VDEApproved Pwr. Supply w/Shield & 66329993 \\
5724580011 & Power Switch & 66329978 \\
5726800000 & Power Cord (60 Hz) & 66329976 \\
5726800000 & Power Cord (50 Hz) & 66329977 \\
5731201612 & Washer (Whirl) & 66329990 \\
5731300040 & Spring, Suppressor & 66329985 \\
5734200040 & Spring Suppressor (Base) & 663299988 \\
5734200050 & Frictional Dome (Bumpers) & 66329989 \\
5734200060 & Frictional Washer & 66329991 \\
5742220500 & Base & 66329984 \\
7001261612 & Screws for Spring Suppressor & 66329992
\end{tabular}

SOURCE CONTROL DRAWING
\begin{tabular}{l|l|c|c|c|c|}
\hline & \begin{tabular}{c}
CODE IDENT \\
Source/Cross \\
CONTROL DATA \\
Reference List for \\
Viking TTY II
\end{tabular} & & A & DWG NO & \begin{tabular}{c}
REV \\
CORPORATION
\end{tabular} \\
\hline
\end{tabular}

SOURCE CONTROL DRAWING

RECORD OF REVISION STATUS OF EACH SHEET

WPO103a
CD8831R

\begin{tabular}{lll}
\begin{tabular}{c}
Vendor \\
Part Number
\end{tabular} & \multicolumn{1}{c}{ Description } & CDC \\
\hline 5712007041 & French Foreign Character Set & Part Number \\
5712007042 & German Foreign Character Set & 66330159 \\
5712007043 & Swedish/Finnish Foreign Character Set & 66330160 \\
5712007044 & Danish/Norwegian Foreign Character Set & 66330161 \\
5712007045 & British Foreign Character Set & 66330163 \\
5712007046 & Spanish Foreign Character Set & 66330162 \\
& American Standard Character Set & 66330158 \\
&
\end{tabular}

SOURCE CONTROL DRAWING
\begin{tabular}{|l|l|c|c|c|c|}
\hline & \begin{tabular}{l}
Source/Cross Refer- \\
ence List for Tatung \\
Electronics Corp. for \\
CIKING TTY II Foreign \\
Character Sets
\end{tabular} & \begin{tabular}{c}
CODE IDENT \\
15920
\end{tabular} & A & \begin{tabular}{c}
DWG NO \\
66330158
\end{tabular} & \begin{tabular}{c}
REV \\
CORPORATION
\end{tabular} \\
\hline
\end{tabular}

WPO103b
CD8831R

This appendix contains information for testing the keyboard keys that are unique to optional foreign character sets. This information supplements procedure 3 (Testing Keyboard Input) in subsection 6B. The information assumes that parameter 16 (Monitor Mode) is set to On and parameter 18 (Operation Mode) is set to Local. Unless indicated otherwise, the inputs listed apply to both ADV emulation and ADDS emulation. The order of this information is as follows:
- Table A-1 - United Kingdom keys
- Table A-2 - German keys
- Table A-3 - French keys
- Table A-4 - Spanish keys
- Table A-5 - Swedish/Finnish keys
- Table A-6 - Danish/Norwegian keys

TABLE A-1. DISPLAYED INPUT FOR UNITED KINGDOM KEYS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{KEYCAP LEGEND} & \multicolumn{4}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH CTRL SHIFTED \\
\hline £ & & 3 & 3 & £ & 3 & £ \\
\hline , & & , & , & , & , & , \\
\hline - & & - & - & - & - & - \\
\hline - & & , & , & - & - & - \\
\hline > & & \(<\) & \(<\) & > & \(<\) & > \\
\hline
\end{tabular}

TABLE A-2. DISPLAYED INPUT FOR GERMAN KEYS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{KEYCAP LEGEND} & \multicolumn{4}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNS HIFTED & SHIFTED & WITH CTRL & WITH CTRL SHIFTED \\
\hline " & & 2 & 2 & " & None & None \\
\hline § & & 3 & 3 & § & 3 & \(\oint\) \\
\hline \& & & 6 & 6 & \& & 6 & \& \\
\hline 1 & & 7 & 7 & / & 7 & 1 \\
\hline \((\) & & 8 & 8 & 1 & 8 & \((\) \\
\hline) & & 9 & 9 &) & 9 &) \\
\hline \(=\) & & 0 & 0 & = & 0 & = \\
\hline ? & & \(\beta\) & \(\beta\) & ? & \(\mathrm{U}_{\mathrm{S}}\) & \(\mathrm{US}_{S}\) \\
\hline 1 & & , & , & , & \(\mathrm{R}_{\mathrm{S}}\) & \(\mathrm{R}_{S}\) \\
\hline & z & & z & Z & \(\mathrm{E}_{\mathrm{M}}\) & EM \\
\hline & Ü & & ui & Ü & \(\mathrm{G}_{\mathrm{S}}\) & \(\mathrm{G}_{S}\) \\
\hline * & & + & + & * & \(\mathrm{F}_{\mathrm{S}}\) & FS \\
\hline & Ö & & \(\because\) & Ö & Ö & Ö \\
\hline & \(\dddot{A}\) & & \(\ddot{a}\) & Ä & ä & A \\
\hline \(\wedge\) & & \# & \# & \(\wedge\) & \# & \(\wedge\) \\
\hline & Y & & y & Y & \(\mathrm{S}_{\mathrm{B}}\) & \(\mathrm{S}_{\mathrm{B}}\) \\
\hline ; & & , & , & ; & , & ; \\
\hline : & & - & - & : & - & : \\
\hline - & & - & - & - & - & - \\
\hline > & & \(<\) & \(<\) & > & \(<\) & > \\
\hline
\end{tabular}

TABLE A-3. DISPLAYED INPUT FOR FRENCH KEYS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{KEYCAP LEGEND} & \multicolumn{4}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH CTRL SHIFTED \\
\hline " & & 2 & 2 & " & None & None \\
\hline § & & 3 & 3 & § & 3 & § \\
\hline \(+\) & & 6 & 6 & + & 6 & + \\
\hline 1 & & 7 & 7 & / & 7 & / \\
\hline \((\) & & 8 & 8 & \((\) & 8 & \((\) \\
\hline) & & 9 & 9 &) & 9 &) \\
\hline \(=\) & & 0 & 0 & = & 0 & \(=\) \\
\hline ? & & ' & ' & ? & \(\mathrm{U}_{S}\) & \(\mathrm{U}_{S}\) \\
\hline \(\cdots\) & & \(\wedge\) & \(\wedge\) & . & \(\mathrm{R}_{S}\) & RS \\
\hline \(q\) & & 'a & 'a & \(\varsigma\) & \(\mathrm{G}_{\mathrm{S}}\) & \(\mathrm{G}_{\mathrm{S}}\) \\
\hline * & & \& & \& & * & \(\mathrm{F}_{\mathrm{S}}\) & \(\mathrm{F}_{S}\) \\
\hline `e & & \(\mathrm{e}^{\prime}\) & \(e^{\prime}\) & `e & \(e^{\prime}\) & `e \\
\hline \(\bigcirc\) & & 'u & ` & \(\bigcirc\) & 'u & - \\
\hline \(£\) & & , & , & £ & , & £ \\
\hline ; & & , & , & ; & , & ; \\
\hline : & & - & - & : & - & : \\
\hline - & & - & - & - & - & - \\
\hline > & & \(<\) & \(<\) & > & \(<\) & > \\
\hline
\end{tabular}

TABLE A-4. DISPLAYED INPUT FOR SPANISH KEYS

TABLE A-5. DISPLAYED INPUT FOR SWEDISH/FINNISH KEYS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{KEYCAP LEGEND} & \multicolumn{4}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH CTRL SHIFTED \\
\hline " & & 2 & 2 & " & None & None \\
\hline a & & 4 & 4 & a & 4 & \(\alpha\) \\
\hline \& & & 6 & 6 & \& & 6 & \& \\
\hline / & & 7 & 7 & / & 7 & / \\
\hline 1 & & 8 & 8 & \((\) & 8 & \((\) \\
\hline) & & 9 & 9 &) & 9 &) \\
\hline \(=\) & & 0 & 0 & \(=\) & 0 & \(=\) \\
\hline ? & & + & + & ? & \(\mathrm{U}_{\mathrm{S}}\) & \(\mathrm{U}_{\mathrm{S}}\) \\
\hline & E & & \(\dot{\mathrm{e}}\) & E & \(\mathrm{R}_{\mathrm{S}}\) & \(\mathrm{R}_{\mathrm{S}}\) \\
\hline & A & & \(\dot{\mathrm{a}}\) & A & \(\mathrm{G}_{\mathrm{S}}\) & \(\mathrm{G}_{\mathrm{S}}\) \\
\hline
\end{tabular}

TABLE A-5. DISPLAYED INPUT FOR SWEDISH/FINNISH KEYS (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{KEYCAP LEGEND} & \multicolumn{4}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH CTRL SHIFTED \\
\hline & ¿ن & & ui & ¿ & \(\mathrm{F}_{\mathrm{S}}\) & \(\mathrm{F}_{\mathrm{S}}\) \\
\hline & Ö & & \(\bigcirc\) & O® & Ö & Ơ \\
\hline & ̈̈ & & \(\ddot{a}\) & \(\ddot{\text { A }}\) & \(\ddot{a}\) & A \\
\hline * & & 1 & 1 & * & 1 & * \\
\hline ; & & ' & , & ; & ' & ; \\
\hline : & & - & - & : & - & : \\
\hline - & & - & - & - & - & - \\
\hline > & & \(<\) & \(<\) & > & \(<\) & > \\
\hline
\end{tabular}

TABLE A-6. DISPLAYED INPUT FOR DANISH/NORWEGIAN KEYS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{KEYCAP LEGEND} & \multicolumn{4}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH CTRL SHIFTED \\
\hline " & & 2 & 2 & " & None & None \\
\hline \& & & 6 & 6 & \& & 6 & \& \\
\hline / & & 7 & 7 & / & 7 & / \\
\hline \((\) & & 8 & 8 & 1 & 8 & \((\) \\
\hline) & & 9 & 9 &) & 9 &) \\
\hline \(=\) & & 0 & 0 & \(=\) & 0 & \(=\) \\
\hline ? & & + & + & ? & \(\mathrm{U}_{\mathrm{S}}\) & \(\mathrm{U}_{\mathrm{S}}\) \\
\hline @ & & 1 & , & @ & \(\mathrm{R}_{\mathrm{S}}\) & \(\mathrm{R}_{\mathrm{S}}\) \\
\hline & A & & \(\dot{\mathrm{a}}\) & A & \(\mathrm{G}_{\mathrm{S}}\) & \(\mathrm{G}_{\mathrm{S}}\) \\
\hline \(\wedge\) & & - & - & \(\wedge\) & \(\mathrm{F}_{\mathrm{S}}\) & \(\mathrm{F}_{\mathrm{S}}\) \\
\hline & \(\emptyset\) & & \(\emptyset\) & \(\emptyset\) & \(\emptyset\) & \(\emptyset\) \\
\hline & \& & & 2 & F & \(x\) & E \\
\hline
\end{tabular}

TABLE A-6. DISPLAYED INPUT FOR DANISH/NORWEGIAN KEYS (CONTD)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{KEYCAP LEGEND} & \multicolumn{4}{|c|}{DISPLAYED CHARACTER/SYMBOL} \\
\hline UPPER & CENTER & LOWER & UNSHIFTED & SHIFTED & WITH CTRL & WITH CTRL SHIFTED \\
\hline * & & * & ' & * & / & * \\
\hline ; & & , & , & ; & , & ; \\
\hline : & & - & - & : & - & : \\
\hline - & & - & - & - & - & - \\
\hline > & & \(<\) & \(<\) & > & \(<\) & > \\
\hline
\end{tabular}

\title{
MANUAL TITLE: 722-30 Display Terminal Hardware Maintenance Manual (On-Site Information)
}

PUBLICATION NO.: 62950138 REVISION: D
NAME : \(\qquad\)
COMPANY: \(\qquad\)
STREET ADDRESS: \(\qquad\)
CITY: \(\qquad\) STATE: \(\qquad\) ZIP CODE: \(\qquad\)

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please include page number references).
```


[^0]:    *Registered trademark of Applied Digital Data Systems.
    **ANSI X3.64 is a standard that establishes multi-code commands using ASCII codes. ANSI is an acronym for American National Standards Institute. ASCII is an acronym for American Standard Code for Information Interchange.

[^1]:    *RS-232-C is the Electronic Industries Association standard for signal interchange between data terminal equipment and data communication equipment. CCITT V. 24 is a comparable European standard.

[^2]:    *The part number of the terminal appears on the identification tag shown in figure 2-2.

