
- --- - -

CONTROL DATA
(ORF'ORA~10N

CONTROL DATA®
STAR COMPUTER SYSTEM

FORTRAN LANGUAGE REFERENCE MANUAL

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD
REVISION DESCRIPTION

A Original printing. 1his manual supersedes FORTRAN Reference Manual, Publication Number 60384500.

(6-20-74)

Publication No.

60386200

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

©
1974

Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Software Documentation
215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

PREFACE

This manual describes the FORTRAN language for the CONTROL DATA® STAR' computer line. STAR
FORTRAN is designed in compliance with the guidelines for ANSI FORTRAN (ASA document X3.9-1966),
established by the American National Standards Institute. STAR FORTRAN is also designed with extensions
to the ANSI FORTRAN capabilities. The extensions provide additional capabilities and make efficient use of
the unique architecture of the STAR computers.

The STAR FORTRAN compiler functions under control of the STAR Operating System and is non-conversa
tional. The compiler, object time libraries, and generated object programs are re-entrant and location independ
ent. The compiler provides options for object code optimization, implicit vectorization, source listings, assembly
listings, memory maps, and cross reference listings.

The reference section, Part I, contains a full description of the STAR FORTRAN language .. Part II contains
sample programs designed to illustrate some capabilities of the compiler. Discussions of some programming
considerations are included with the sample programs.

For additional information about related software refer to the following document:

STAR Operating System Reference Manual, Publication Number 60384400.

60386200 A

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or undefined parameters.

iii/iv

CONTENTS

1-1 CODING FORTRAN STATEMENTS 1-1-1
FORTRAN Character Set 1-1-1
FORTRAN Statements 1-1-3

Statements and Labels 1-1-3
Continuation of Statements I-1-3

Comments 1-1-3
Columns 73-80 1-1-3

1-2 LANGUAGE ELEMENTS 1-2-1
Symbolic Names 1-2-1
Constants 1-2-1

Integer Constants 1-2-1
Real Constants 1-2-2
Double Precision Constants 1-2-2
Complex Constants 1-2-3
Logical Constants 1-2-3
Hollerith Constants 1-2-3
Character Constants 1-2-4
Hexadecimal Constants 1-2-4

Variables 1-2-5
Arrays 1-2-5

Subscripts 1-2-7
Array and Subarray References 1-2-7

1-3 EXPRESSIONS 1-3-1
Arithmetic Expressions 1-3-1
Relational Expressions 1-3-3
Logical Expressions 1-3-4
Character Expressions 1-3-5
Evaluation of Expressions 1-3-5

1-4 ASSIGNMENT STATEMENTS 1-4-1
Array and Subarray Assignment 1-4-2

Array or Multiple Assignment 1-4-3

60386200 A v

1-5 CONTROL STATEMENTS 1-5-1
Unconditional GO TO Statement 1-5-1
Computed GO TO Statement 1-5-1
ASSIGN Statement I-5-2
Assigned GO TO Statement I-5-2
Arithmetic IF Statement I-5-2
Logical IF Statement 1-5-3
DO Statement I-5-4
CONTINUE Statement I-5-6
PAUSE Statement I-5-6
STOP Statement I-5-7
END Statement I-5-7
RETURN and CALL Statements I-5-7

1-6 SPECIFICATION STATEMENTS I-6-1
Type Statements I-6-1

IMPLICIT Type Statement I-6-1
Explicit Type Statements 1-6-2

DIMENSION Statement 1-6-3
Adjustable Dimensions I-6-3

EXTERNAL Statement 1-6-3
COMMON Statement I-64
EQUIVALENCE Statement I-6-5

EQUIVALENCE and COMMON I-6-5
DATA Initialization Statement 1-6-6

Mixed Modes in DATA Initialization Statements 1-6-7
Character, Hollerith, and Hexadecimal Data I-6-8

1-7 PROGRAM UNITS 1-7-1
Main Program and Subprograms 1-7-1
PROGRAM Statement 1-7-1
Subprograms I-7-2

Defining a Statement Function 1-7-3
Referencing Statement F~.mctions 1-7-4
Defining a Function Subprogram 1-74
Referencing External Functions 1-7-5
Defining a Subroutine Subprogram 1-7-5
RETURN Statement 1-7-6
Referencing Subroutine Subprograms I-7-7

vi 60386200 A

I-8 INPUT /OUTPUT I-8-1
FORTRAN Record Length I-8-2

Input Statements I-8-2
READ Formatted I-8-2
READ Unformatted I-8-3
READ with Implied Device I-8-4

Output Statements I-8-5
WRITE Formatted I-8-5
WRITE Unformatted I-8-6
PRINT I-8-7
PUNCH I-8-8

Unit Positioning I-8-9
REWIND Statement I-8-9
BACKSPACE Statement I-8-10
ENDFILE Statement I-8-10

Name list I-8-11
NAMELIST Statement I-8-11
Namelist Input I-8-12
Namelist Output I-8-13

Encode /Decode I-8-14
ENCODE Statement I-8-15
DECODE Statement I-8-16

Input/Output Lists I-8-17
Implied DO Specification I-8-17

I-9 FORMAT I-9-1
FORMAT Statement I-9-1
Field Descriptors I-9-2

Repeat Specificaitons I-9-3
Format Control Interaction with Input/Output List I-9-3
Scale Factor I-9-4

Numeric Conversions I-9-4
Integer Conversion I-9-5
Real Conversion I-9-5
Double Precision Conversion I-9-7
Complex Conversion I-9-7

Logical Conversion I-9-7
Character Conversion I-9-7
Hollerith Field Descriptor I-9-8

Apostrophe Field Descriptor I-9-8
Blank Field Descriptor I-9-8
Tabulation Descriptor I-9-9
Hexadecimal Descriptor I-9-9
Format Specification by Array I-9-9
Print Carriage Control I-9-10

I-10 PROGRAM OPERATION UNDER STAR
OPERATING SYSTEM I-10-1
FORTRAN Control Card I-10-1

Compile Options I-10-2

60386200 A vii

Il-1 SAMPLE PROGRAMS II-1-1

APPENDIXES

A CHARACTER SET A· 1

B LIBRARY FUNCTIONS B-1

C MA THEMATIC AL LIBRARY FUNCTION DESCRIPTIONS C-1

D ERROR DIAGNOSTICS D-1

FIGURES

1-1 Program PASCAL 1-1-2

viii 60386200 A

CODING FORTRAN STATEMENTS 1-1

A FORTRAN program is written on a coding form as illustrated in figure 1-1. If a statement is too long to
fit on a 72-character line it may be continued to 19 additional lines. No more than one statement is permitted
on a single line. Executable statements specify action the program is to take, and non-executable statements
describe characteristics of operands, statement functions, arrangement of data, and format of data. Lines may
also be used for comments, wr.ich are ignored by the compiler.

Each line on the coding form is a sequence of characters from the following character set.

FORTRAN CHARACTER SET

Alphabetic:

Numeric:

Special:

A to Z

0 to 9

fi

=

+

*
I
(

)

Blankt

Equals

Plus

Minus or Dash

Asterisk

Slash or Divide

Left parenthesis

Right parenthesis

Comma

Decimal point/period

$ Currency symbol

& Ampersand

Apostrophe

Colon

tnuoughout this manual the blank is shown as a fi where its presence is significant, otherwise a space is used.

60386200 A 1-1-1

-I
w

°' 0
w
00

°' N
0
0

>

..
PROGRAM

ROUTINE

T
STATE·

c
y

MENT 0

NO.
N
T.

FORTRAN CODING FORM

?ASCA-L

FORTRAN STATEMENT

O• ZERO 1 •0NE
f6• ALPHA 0 I• ALPHA I

Figure 1-1. Program PASCAL

NAME

DATE

2•TWO
~·ALPHAZ

PAGE
OF

SERIAL
NUMBER

FORTRAN STATEMENTS

Column I C indicates comment line (not processed by compiler)

Columns 1-5 Numeric statement label; blanks and leading zeros are ignored

Column 6 Any character other than blank or zero denotes continuation of a statement;
does not apply to comment line

Columns 7-72 Statement; blanks are ignored except in Hollerith strings

Columns 73-80 Identification field (not processed by compiler)

STATEMENTS AND LABELS

Each statement begins with an initial line which must contain either a blank or the digit 0 in column 6;
columns I through 5 may be blank or contain a numeric statement label. A given statement label must not
be used more than once in the same program unit. The numeric value of a statement label has no significance
and any values between I and 99999 may be used in any order.

CONTINUATION OF STATEMENTS

Statements are coded in columns 7-72; a statement longer than 66 columns may be continued on as many as
19 lines. A character other than blank or zero in column 6 indicates a continuation.

Columns 1 through 5 are ignored unless column 1 contains a C which makes it a comment line. An END state
ment cannot be continued.

COMMENTS

A C in column I denotes a comment line and, except for being printed in the output listing, the remainder of
the line has no significance. A comment line must be followed immediately by an initial line of a statement or
by another comment line. No other restrictions are imposed on the placement of comments within a program.

COLUMNS 73-80

Columns 73 through 80 may contain any valid STAR characters; they have no effect on the program. Generally,
these columns are used to order punched cards in the deck. Information in these columns is printed with the
source listing.

60386200 A I-1-3/I-1-4

LANGUAGE ELEMENTS 1-2

SYMBOLIC NAMES

A symbolic name consists of one to eight alphabetic characters or digits. The first character of a symbolic
name must be an alphabetic character. Symbolic names are used to identify: variables, program units, functions
and subroutines, common blocks, and namelists.

CONSTANTS

There are three classes of constants - those that deal with numeric values, those that deal with logical values
.TRUE. and .FALSE., and those that deal with literal character strings.

INTEGER CONSTANTS

Form

Element Definition

Each n · is a decimal digit

Examples

0
3471
775

3619257
5
14669

The maximum value of an integer constant is 247_1=140737488355327

An integer constant "is a string of digits written without a decimal point. It must not contain embedded commas.
Its value is that of the digit string interpreted as a decimal numeral.

60386200 A 1-2-1

REAL CONSTANTS

Form

n .

. n

n.n

n.E±s

.nE±s

n.nE±s
nE±s

Element Definition

n Each n is a string of decimal digits

Denotes itself

E Denotes itself

± Is either a plus or minus sign or is omitted to imply plus

s Is an integer constant

Examples

o. 3.97 .55772 lElO b.024t.-23 .59E+5

The range of values is zero or .519211284565733E-8617 through .953708115431876E+8645, and the precision
retained is approximately 1 S significant digits.

A real constant must not contain embedded commas. Its value is that of the decimal number multiplied by ten
raised to the power of the constant which follows the E. Thus, the value of 1El0 is ten billion. The exponent
E+O is assumed if the constant contains no E specification.

DOUBLE PRECISION CONSTANTS

A double precision constant is written and interpreted identically to a real constant except that the letter D
and integer exponent value must be present in a double precision constant.

Examples

o.oo i.oo 705 20-1 6.023024

The range of values is the same as for real constants, however the precision retained is approximately 30 signif
icant digits.

I-2-2 60386200 A

COMPLEX CONSTANTS

A complex constant is written as a pair of real constants separated by a comma and enclosed in parentheses.
The first real constant denotes the vaiue of the reai part and the second real constant denotes the value of
the imaginary part. Either constant can be preceded by a plus or minus sign. Complex values are represented
internally by two consecutive computer words.

Examples

(• 3 t 2 •) Has the value . .3+2i
(-3E 1•0 •) Has the value ..:3o+Oi

LOGICAL CONSTANTS

There are two logical constants:

Form

.TRUE •
• FALSE.

Element Definition

The periods are part of the constants.

HOLLERITH CONSTANTS

Form

nHs

Element Definition

n Integer in the range of 1 to 255

H Denotes itself

s String of exactly n characters

Examples

SHLABEL
7HMAD DOG

60386200 A 1-2-3

Blanks are significant in the Hollerith string. This type of constant can be used as data in a DAT A statement,
as an argument in a CALL statement, or as a character expression.

CHARACTER CONSTANTS

Character constants can be used wherever Hollerith constants are used.

Form

I I
s

Element Definition

Denotes itself

s String of 1 to 255 characters

An apostrophe can be represented within the string by two consecutive apostrophes; the additional apostrophe
is not counted in the m~mum number of characters allowed.

HEXADECIMAL CONSTANTS

Form

Zd

Element Definition

Z Denotes itself

d Is a string of hexadecimal digits

The value is normally an integer with d interpreted as a number in base 16 notation (hexadecimal). Hexa
decimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The digit Fis equal to decimal 15.

Examples

Z~AE3 Value is 39651

llOO Value is 256

1-24 60386200 A

VARIABLES

L~ FORTRA~J a variable is a symbolic name representing a quantity \Vhich may assume different values during
program execution. Each variable is associated with a storage location; when the variable is used, it has the
value determined by the contents of its location and the type associated with the symbolic name used to
identify the variable.

The value of a variable is changed during program execution by:

Executing an assignment statement where its name occurs to the left of the equals sign

Reading a new value into it

Using it as a DO index (including implied DO's in an I/O list)

Using it in an ASSIGN statement

Using it as an argument to a subprogram that changes the argument value

Changing the value of a variable to which it has been equivalenced

Unless overridden by a Type or IMPLICIT statement, the type of a variable is determined by the first char
acter of the variable name. The variable is integer if the first character of its symbolic name is I, J, K, L, M,
or N and it is real if the first character of the name is any other letter. This convention is the traditional
FORTRAN method of implicitly specifying the type of a variable as being either integer or real .. In this man
ual this convention on types is assumed unless otherwise noted.

ARRAYS

A set of variables may be thought of collectively as an array and identified by a single array name. A particular
element of the array is identified by following the array name with a subscript which specifies the position of
the element within the array. The subscript is a list of subscript expressions enclosed in parentheses. One to
seven subscript expressions may appear in the list, separated by commas. The size and number of dimensions

·associated with an array name are declared in a DIMENSION, Type, or COMMON statement. Type is associated
with array names in the same manner as with variable names and the type of each element of the array is
determined by the array name. The number of elements in an array is the product of the dimensions, and the
number of dimensions in the array is indicated by the number of subscripts in the declaration.

Example

DIMENSION APE(7tJ), LIP<l6)t TOT<2t2t2t2>

APE is a two-dimension array of 21 real elements.

LIP is a one-dimension array of 16 integer elements.

TOT is a four-dimension array of 16 real elements.

60386200 A I-2-5

The number of subscript expressions used to reference an element of an array must be the same as the number
of dimensions in the array declaration, and the value of each expression should be between one and the corre
sponding value in the declaration.

The entire array may be referenced by the unsubscripted array name when it is passed as an argument to a
subprogram or referenced in an input/output list or DATA statement. When the entire array is referenced, the
elements are ordered with the value of the first subscript varying through its range, then the second subscript
increased by one with the first going through its range again, and so on until each subscript has gone through
out its entire range.

Example

I-2-6

C WHERE DECLARATION WAS A(J,3t3>
REAO<St3> A

3 FORMAT<El0.2)

Would read the elements in the following order:

A{l ,1,1)
A(2,l,1)
A(3,l,1)
A{l ,2,1)
A{2,2,1)
A(3,2,1)
A{l ,3,1)
A(2,3,1)
A(3,3,l)
A{l ,1,2)
A(2,l,2)
A(3,l,2)
A{l,2,2)
A(2,2,2)
A(3,2,2)
A{l,3,2)
A(2,3,2)
A(3,3,2)
A{l ,1,3)
A(2,l ,3)
A(3,l ,3)
A{l,2,3)
A(2,2,3)
A(3,2,3)
A{l, 3,3)
A(2,3,3)
A(3,3,3)

60386200 A

SUBSCRIPTS

A subscript can be any arithmetic expression of type integer, reai, or doubie precision. wb.en ihe vaiue of the
expression is not integer it is truncated to integer.

ARRAY AND SUBARRAY REFERENCES

An array name reference ·is a subarray reference in which an array name is not qualified by a subscript expres
sion. It identifies all the elements of the array.

Example

C WHERE DECLARATION wAS A<lOOtlOO>
12 READ(2tl02> A

A Represents all the elements of the array A in the order in which A is stored internally.

A subarray reference simultaneously identifies one or more array elements. In an implied-DO subarray reference,
the array name is qualified by one of the implied DO forms. The basic forms of the implied DO subscript are
as follows:

*

The Mi are indexing parameters. M 1 is the initial scalar subscript value. M2 is the terminal scalar value, which
may be expressed as * when the value of M2 is identical to the declared length of the dimension. M3 is the
index incrementation value. M3 assumes the value 1 when omitted. M 1' M2, and M3 must be unsigned integer
constants or integer variables.

Example

c
c
c
c
c
c
c
c
c

60386200 A

WHERE DECLARATION WAS A<4.4>t
A<1:4:2,2:J) REPRESENTS

t:H *)

8(2:*:2)
8(3:*)
A(*t2:3)

REPRESENTS
REPRESENTS
REPRESENTS
REPRESENTS

~HS>

A(lt2)t A(3t2>t A(ltJ),
ACh3>
B<l>tB<2>tBCJ>t8(4)t8(5)
i::H2>t8(4)
B<J> t8(4) tt:HS>
A(lt2)t A(2t2>t A(3t2),
A(4t2)t A<lt3>t A(2tJ),
A(3t3)t A(4t3>

1-2-7

The array name reference may be transformed to the equivalent implied DO reference. In fact, the compiler
transforms array name references to equivalent implied DO references before processing. The following example
illustrates this transformation.

Example

I-2-8

c
c

WHERE DECLARATION WAS X(lOt20t30)
ARRAY REFERENCE x IS EQUIVALENT TO xc1:10,1:20.1:JO)

60386200 A

EXPRESSIONS 1-3

Expressions are used to specify a computation or a relationship between two or more constants and/or variables.
In its simplest form, an expression consists of a single constant or v&riable. More complex expressions are formed
from elements, operators, and parentheses. This section gives the formation and evaluation rules for four types
of expressions: arithmetic, relational, character, and logical. Arithmetic expressions have a value whose type is
integer, real, double precision, or complex. Logical expressions always have a truth value of true or false. Rela
tionai expressions appear within the context of logical expressions and only have values of true and false. Char
acter expressions have values which are character strings.

The formation and evaluation rules in this section conform to ANSI rules but are liberalized with respect to
operand types.

ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of constants, variables, and function references separated by operators
and parentheses. for example, the following arithmetic expression is valid:

(A-3.S>*f+C/D**E

FORTRAN arithmetic operators:

Operator Representing

+ Addition

Subtraction

* Multiplication

I Division

** Exp on en tiation

60386200 A 1-3-1

Arithmetic elements can be any of those listed below:

Primary

Factor

Term

Signed term

Simple arithmetic
expression

Arithmetic expression

An arithmetic expression enclosed in parentheses, a constant, a variable
reference, an array element reference, or a function reference

A primary or a construct of the form:

primary* *primary

A factor or a construct of one of the forms:

term/factor or term*term

A term immediately preceded by + or -

A term or two simple arithmetic expressions separated by + or -

A simple arithmetic expression, a signed term, or either of the preceding
forms immediately followed by + or - immediately followed by a simple
arithmetic expression

A primary of type double precision, real, or integer may be exponentiated by any of the types double precision,
real, or integer as shown in the following table.

A primary of type complex may be raised only to an integer or real factor. Only in these cases is the expo
nentiation operation defined.

Arithmetic operators other than exponentation may be used to combine any admissible elements of the same
type; the resultant element will be the same type. Further, an admissible real element may be combined with
an admissible integer, double precision, or complex element; the resultant element will be type real, double
precision, or complex, respectively.

Type of Result for a **b

a\b Complex Double Precision Real Integer

Complex Illegal Illegal Complex Complex

Double Precision Illegal Double Precision Double Precision Double Precision

Real Illegal Double Precision Real Real

Integer Illegal Double Precision Real Integer

1-3-2 60386200 A

The expression a**b**c.**d is defined to mean a**(b**(c**d))

Type of Result for a*b, a/b,a-b,a+b

a\b Complex Double Precision Real Integer

Complex Complex Complex Complex Complex

Double Precision Complex Double Precision Double Precision Double Precision

Real Complex Double Precision Real Real

Integer Complex Double Precision Real Integer

RELATIONAL EXPRESSIONS

A relational expression consists of two arithmetic or character expressions, separated by a relational operator,
for which the logical result is true or false. When two character expressions are separated by a relational oper
ator, the comparison proceeds from left to right one character at a time. The hierarchy of characters is deter
mined by the collating sequence of the processor. When two character expressions of differing length are
compared, the shorter of the two character expressions is treated as though it were padded with blanks on the
right until the expressions are of equal length.

One arithmetic expression may be of type integer, real, or double precision; and the other may be any of the
types integer, real, or double precision. Arithmetic expressions that are of unequal type are converted before
comparison as follows:

Type Conversion for Relational Arithmetic Expr~ions a.OP .b

a \b Double Real Integer Character Hollerith
Precision

Double Precision Double Double Precision Double Precision Illegal
Precision

Real Double Real Real Illegal
Precision

Integer Double Real Integer Illegal
Precision

Character Hollerith Illegal Illegal Illegal Character

60386200 A I-3-3

Relational operators:

Operator Representing

.LT. Less than

.LE . Less than or equal to

. EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

Type of Relational Result for a.OP.b

a\ b Double Precision Real Integer Character/Hollerith

Double Precision Logical Logical Logical lie gal

Real Logical Logical Logical Illegal

Integer Logical Logical Logical lie gal

Character /Hollerith lie gal Illegal Illegal Logical

LOGICAL EXPRESSIONS

A logical expression is formed with the logical operators and logical elements, listed below, and has a logical
value of true or false.

Logical operators:

Operator Representing

.OR. Logical disjunction

.AND. Logical conjunction

.NOT. Logical negation

1-3-4 60386200 A

The logical elements are listed below:

Logicai primary

Logical factor

Logical term

Logical expression

CHARACTER EXPRESSIONS

A iogicai expression enclosed in parentheses, a reiationai expression, a
logical constant, a logical variable reference, a logical array element
reference, or a logical function reference

A logical primary or .NOT. followed by a logical primary

A logical factor or a construct of the form:

logical term .AND. logical term

A logical term or a construct of the form:

logical expression .OR. logical expression

An expression of type character consists of only one element.

It may be one of the following:

Character constant

Hollerith constant

Character array element reference

Character variable reference

Character function reference

EVALUATION OF EXPRESSIONS

A part of an expression need be evaluated only if necessary to establish the value of the expression.

The rules for formation of expressions imply the binding strength of operators. The range of the subtraction
operator is the term that immediately succeeds it. Evaluation may proceed according to any valid formation
sequence (except as noted below).

When two elements are combined by an operator, the order of evaluation of the elements is optional. If math
ematical use of operator is associative, commutative, or both, full use of these facts may be made to revise
orders of combination, provided integrity of parenthesized expressions is not violated. The value of an integer
factor or term is the nearest integer whose magnitude does not exceed the magnitude of the mathematical value
represented by that factor or term. Since the associative and commutative laws do not apply in the evaluation
of integer terms containing division, the evaluation of such terms must proceed from left to right.

60386200 A 1-3-5

Any use of an array element name requires evaluation of its subscript. The evaluation of functions appearing
in an expression must not alter the value of any other element within the expressions, assignment statement,
or CALL statement containing the function reference. The type of the expression that contains a function
reference or subscript does not affect, nor is it affected by, the evaluation of the actual arguments or subscript.

No factor may be evaluated that requires a negative valued primary to be raised to a real or double precision
exponent. No factor may be evaluated that requires raising a zero valued primary to a zero valued exponent.

No element may be evaluated whose value is not mathematically defined.

Hierarchy of Operator Evaluation:

Operator Hierarchy Type

** Class 1

Oass 2 Arithmetic

Class 3

Class 4 Relational

Class 5

} Logical Oass 6

Class 7

In an expression with no parentheses or within a pair of parentheses in which unlike classes of operators
appear, evaluation proceeds according to the hierarchy of classes listed above.

Where the operators are of the same hierarchical class, evaluation proceeds from right to left for class 1 oper
ators, and from leff to right for operators of all other classes.

1-3-6 60386200 A

ASSIGNMENT STATEMENTS 1-4

An assignment statement evaluates an expression and assigns this value to a variable or array element. The
statement is written in the following form:

Form

var= expr

Element Definition

var Variable or array element name

expr Expression

The meaning of the equals sign differs from the conventional mathematical notation. In FORTRAN it means
replace the value of var with the value of expr. The type of stored value is always the type associated with
the name to the left of the equals sign. For logical and character expressions it is an error if var is of a type
different than expr.

Rules for Assignment var = expr

var\ expr Integer Real D.Precision Complex

Integer Assign Fix and assign Fix and assign Fix real part and assign

Real Aoat and assign Assign Truncate and assign Take real part and assign

D.Precision D.Precision float Extend and assign Assign Extend real part and assign
and assign

Complex Aoat and assign Assign real part; Truncate and assign Assign
real part; zero zero imaginary real part; zero imag-
imaginary part part inary part

60386200 A 1-4-1

Assign Transmit resulting value expr, without change, to var

Truncate Convert double precision to real

Extend Convert real to double precision and fill with zero significance

Float Convert integer to real

Double precision float Convert integer to real and extend

Fix Take real and convert to integer, truncating the fractional part

Real part Real part of complex expr or var

When var and expr are type character, their lengths can di ff er. If var is longer than expr, blanks are
added on the right until it matches the length of var. If var is shorter than expr, characters are dropped
from the right until it matches the length of var, then it is stored~

ARRAY AND SUBARRAY ASSIGNMENT

A multiple value expression produces one or more results. It consists of one or more subarray references and
also can contain scalar expressions.

An array expression is evaluated by performing the stated operation on corresponding array elements. Scalar
references are treated as arrays of the proper sizes with all elements containing the same value.

Example

14-2

C WHERE DECLARATION WAS XClOt20>t YClO>t ZC10t20)

The following are array expressions.

X+Y(J)

Tiris expression has I 0 by 20 array result.

This array expression yields a two dimensional array result. The 200 results produced
by adding value of Y(3) to each element of array X.

60386200 A

ARRAY OR MULTIPLE VALUE ASSIGNMENT

The general form of an assignment statement is var = expr

Array assignment occurs when the replaced variable var is a subarray reference. The assignment expression
expr may be either a scalar or an array expression. A scalar assignment expression produces one value which
is assigned to all identified elements of the referenced array. An array expression must conform to var; iden
tifled elements of the subarray var are replaced with the corresponding elements in the array expression
results. The conditions of conformability of each subarray reference in expr with the subarray reference var
are as follows:

The number of implied DO subscripts of a subarray reference in expr must be exactly equal to that of
the subarray reference var.

Each implied DO subscript of a subarray reference in expr must match exactly with an implied DO sub
script of the subarray reference var.

Example

C WHERE DECLARATION WAS XC10t20)t Y(l0t20), Z<lO)
C SOME LEGAL ARRAY ASSIGNMENT STATEMENTS ARE:

X=Y+3.0
Xl*tl:20:2>= Y(l:10,1:20:2>
vc1:•:2,i>= zc1:10:2>

C SOME iLLEGAL ARRAY ASSIGNMENT STATEMENTS ARE:

60386200 A

X=Z
XC•:J): YC2t*)
xc1:10:3,2:20:2)= Y<*•*>

1-4-3 /1-4-4

CONTROL STATEMENTS 1-5

Normally, FORTRAN statements are executed sequentially. Control statements are available to alter and control
the sequence of execution of statements in the program. Control may be transferred to executable statements;
it is an error to reference the statement label of a non-executable statement in a control statement. Control
statements are executable and may be referenced by other control statements.

UNCONDITIONAL GO TO STATEMENT

Form

GO TO n

Element Definition

n Statement label of an executable statement in the current program .unit

Control is transferred so the statement labeled n is the next statement to be executed.

COMPUTED GO TO STATEMENT

Form

Element Definition

n Each n is the label of an executable statement in the current program unit

Non-subscripted integer variable name

Control is transferred so the statement label nk is the next statement to be executed, when k is the value
of i at execution time .. When the value of i is not in the range of 1 to m, the first executable statement

following the GO TO will be executed next.

The comma following the right parenthesis and preceding is optional and may be omitted.

60386200 A 1-5-1

ASSIGN STATEMENT

Form

ASSIGN n TO

Element Definition

n Statement label of an executable statement in the current program unit

Non-subscripted integer variable name

Tiris statement is used to put statement label information in i for subsequent use in the execution of an
assigned GO TO statement. The label information in i need not be numerically equivalent to the decimal
value of n. In fact, i should not be referenced in any statement other than an assigned GO TO until it
has been redefined.

ASSIGNED GO TO STATEMENT

Form

Element Definition

Non-subscripted integer variable name

n Each n is the_ label of an executable statement in the current program unit

At execution time, the most recent definition of i must have appeared in an ASSIGN statement. Control is
transferred to the statement label referenced in the most recently executed ASSIGN statement defining i.
The comma following i or the comma and the entire list may be omitted. If the list is present, however, the
label information in i must match one of the statement labels in this list.

ARITHMETIC IF STATEMENT

Form

Element Definition

ex pr Arithpletic expression of type integer, real, or double precision

Three executable statement labels in the current program unit

I-5-2 60386200 A

Control transfers to n 1 if the value of · expr is negative: n2 if it is zero, or n3 if it is positive,

If expr is type real or double precision it is not mewingfu! to expect a precise zero value, therefore n2
should be the same as either n 1 or n2. For example,

cos (0.) -1. 0

is mathematically zero, but in a finite precision computer the value cannot be expected to be close enough to
zero to take the n2 branch in an IF statement.

LOGICAL IF STATEMENT

Form

IF (expr) s

Element Definition

expr Logical expression

s Any executable statement except a DO statement or another logical IF

Example

IFtAMINl(A,BtC).LE.O.> STOP
lf<AMAXl(AtBtC>.LT.A+H+C-AMAXl(AtBtC>> P~INT 7tAt~tC

1 FO~MAT(JG12•4t29HCOULD BE SIDES Of A TRIANGLE.)

If expr is true, s is executed, then the next executable statement following the logical IF is executed. If
expr is false, s is not executed; and control goes to the next executable statement following the logical IF.

60386200 A I-5-3

DO STATEMENT

Form

Element Definition

n Executable statement label in the program unit that physically occurs after the
DO statement

Non-subscripted integer variable name

Integer constants or non~subscripted integer variable names with values of one or
greater

The DO statement is used to execute repeatedly the succeeding statements through the. statement label n.
The terminal statement with the label n must not be:

GO TO of any form

Arithmetic lF

RETURN, STOP, or PAUSE

Another DO

READ statement containing an ERR= or END= branch

CALL statement which passes a return label

Logical IF that has any of the named executable statements

When value of m3 is 1, m3 and the preceding comma may be omitted.

The effect of the DO statement is the same as if the following changes were made:

Replace the DO with the two statements

d CONTINUE

and immediately following the terminal. statement insert the three statements

i = i + m3

IF(i .LE. m2) GO TO d

i = u

where d is a statement label different from any existing label in the program unit, and u is an
unknown and unusable integer value.

~54 60386200 A

The preceding defiPition of the effect of the DO statement is valid for nested DO loops having the same
terminal statement under the following conditions. Logical changes must be completed one at a time, starting
from the first statement of the progrruu unit aird proceeding to the end.

The following rules cah be deduced from the above definition of the effect of the DO.

The terminal statement should not be a branching statement.

If a jump is made out of a DO loop, the index variable i has its most recent value.

If the DO is satisfied and control goes to the statement following the terminal statement, the index
variable i becomes undefined as a result of efficient implementation.

The range of a DO statement can include other DO statements providing the range of each DO is
entirely within the range of the containing DO statement.

·If more than one DO loop has the same terminal statement, a transfer to that terminal statement can
be made only from within the range of the innermost DO.

When DO loops are nested, each much have different index variables.

The use of, and return from, a subprogram from within a DO loop is permitted.

The following rules are true even though they are not apparent from the preceding definition.

The index variable i and the indexing parameters mi. m2, and m3 cannot be given new values
during the execution of the DO loop.

A DO loop can be entered only through the DO statement; however if a transfer has been made from
within the range of the DO then a transfer back into the same DO loop is valid if none of the indexing
parameters i, m1, m2, or m3 have been redefined.

60386200 A I-5-5

CONTINUE STATEMENT

Form

CONTINUE

The CONTINUE statement is a dummy executable statement used to carry a statement label. The CONTINUE
statement serves no purpose unless it has a label. It is frequently used as the last statement in a DO loop to
avoid ending the loop with a branching statement. For example, the following loop, which locates the first non
positive element in a I 0-element· array, requires the CONTINUE statement.

C ~HERE DECLARATION WAS A(lO>
DO 1 I=lt 10
IF<ACI>> 9,9,7

7 CONTINUE
c -OTHER STATEMENTS-

9 NPOS=I

PAUSE STATEMENT

Form

PAUSE n

Element Definition

n String of one to five digits or a character constant; n can be omitted

Execution of the PAUSE statement causes program execµtion to be suspended. The .string n will be displayed
on the operator's console or at the terminal. If execution is resumed, the program continues with the statement
following PAUSE.

I-5-6 60386200 A

STOP STATEMENT

Form

STOP n

Element Definition

n String of one to five digits or a character constant; n can be omitted

Execution of the STOP statement terminates the program and returns control to the operating system. The
string n will be displayed on the operator's console or at the termirial.

END STATEMENT

Form

END

The END line indicates to the compiler the end of the program unit. Every program unit must physically
terminate with an END line.

RETURN AND CALL STATEMENTS

Technically, these statements may be considered as control statements, but they are discussed with subprograms.

60386200 A 1-5-7 /1-5-8

SPECIFICATION STATEMENTS 1-6

Specification statements are non-executable; they define the type as~ociated with variable and array names,
specify the dimensions of arrays, control the sharing of storage, and can assign initial values to variables and
elements of arrays.

TYPE STATEMENTS

All variable and array names have an associated type which is implied whenever that name is used. When the
programmer does not specify type, it is considered integer if the first character of the name is I, J, K, L, M,
or N and real if the first character is any other letter. These defaults for the first character of the name can
be overridden by the IMPLICIT statement. The explicit Type statement overrides all others.

IMPLICIT TYPE STATEMENT

The IMPLICIT statement must be the first statement in a main program or it must follow the PROGRAM
statement; in a subprogram, it must be the second statement.

Form

Element Definitions

typ Each typ is the name of a variable type:

INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or CHARACTERt

v Each v is a single alphabetic character (or two alphabetic characters separated by a minus sign
to denote the first and last characters of a range) indicating the initial letters of the variables
to be considered type typ

tThe word CHARACTER can be followed by *n where n is a decimal number which specifies the element
length in bytes. If *n is omitted, the assumed length is one.

60386200 A I-6-1

The IMPLICIT statement does not alter the type of basic and intrinsic functions; however, in a subprogram, it
affects the type of the dummy arguments and the fonction name, as well as other variables in the subprogram.

Example

The following IMPLICIT statement would alter the default type specifications to make each variable
beginning with A through D double precision, each beginning with L logical, and those beginning with
Z complex.

IMPLICIT DOUBLE PRlCISION(A-D>t LOblCAL(L), COHPLEX<Z>

Explicit typing of specific names with any of the following Type statements overrides IMPLICIT or default
typing.

EXPLICIT TYPE STATEMENTS

Form

FJement Definitions

typ Name of the Type statement:

INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or CHARACTERt

v Each v represents a variable, array, or function name

(k) Optional; each k represents 1 to 7 integer constants, separated by commas, representing
the maximum value of each subscript in the array (in a subprogram they can be integer ·
dummy arguments)

/x/ Optional; each x represents initial data values as described for the DAT A statement

The Type statement is used to override or confirm any implicit typing; this method is preferred for specifying
dimension and initial values even though they may be specified in DIMENSION and DATA statements.

The Type statements should occur before the first executable statement in the program unit.

tTue word CHARACTER can be followed by *n where n is a decimal number specifying the length in bytes
of each v . When *n is not specified, the assumed length is 1. If the word CHARACTER is not followed by
*n , each v can be followed by its own length specification *n .

1-6-2 60386200 A

DIMENSION STATEMENT

Form

Element Definitions

ar Each ar is an array name

k Each k represents I to 7 integer constants, separated by commas, representing the maximum
value of each subscript in th.e array (in a subprogram they can be integer dummy arguments)

The DIMENSION statement is an alternative to the TyI?e statement declaring an array and specifying the size
and dimensions. The same name can appear in both a DIMENSION· and a Type statement if the (k) is not
used in the Type statement.

ADJUSTABLE DIMENSIONS

When an array is passed as a parameter to a subprogram, the array dimension specifications within the sub
program can be integer variables, as well as integer constants, provided ·the array name and all variable names
used for array dimension specifications are dummy arguments of the subprogram. Within the subprogram,
dummy arguments representing array names must appear in a DIMENSION or type statement that gives dimen
sion information. If dummy arguments are not dimensioned, they cannot be referenced as an array in the
subprogram.

If the dimensions of a dummy array in a subprogram are adjustable, they may change each time the sub
program is called; however, the absolute dimensions of the array must have been declared in a program unit
earlier in the calling sequence. The adjustable dimensions can be passed through more than one level of
subprogram calls.

Adjustable dimensions cannot be used for arrays that appear in a COMMON statement.

EXTERNAL STATEMENT

Form

EXTERNAL ext 1, . . .extn

Element Definition

ext Each ext is an external procedure name, block data name, or name of an entry point in
an external procedure

The EXTERNAL statement declares each ext as a subprogram name rather than a data name. A subprogram
name or a basic function name must be declared in an EXTERNAL statement in the calling program unit be
fore it can be used as an argument to another subprogram. When ext is an intrinsic function name, it no
longer refers to an intrinsic function within the program unit.

60l86200 A I-6-3

COMMON STATEMENT

Form

or

Element Definition

/lab/ Each lab is a symbolic common block name. This name could be the same name as any
variable or array name, but they would bear no relationship to each ot~er. Absence of lab
denotes blank (unlabeled) common; also, if blank common is the first block in the statement,
the slashes can be omitted. The same block name can be used more than once in the same or
different COMMON statements within a program unit; in which case, all variables in blocks
having the same name will be linked into a single block in order of their occurrence.

v Each v is a variable or array name

(k) Optional; each k represents 1 to 7 integer constants, separated by commas, representing
the maximum value of each subscript in the array

COMMON is a non-executable statement that allows variables or arrays in a calling program or subprogram to
share the same storage locations with variables or arrays in other program units. Variables and arrays are
stored in the order in which they appear in the common block specification.

Program units sharing the same common block can assign different names to members of the block; but to
identify the same common block, they must use the same block name.

Within subprograms, dummy arguments are not allowed in a COMMON statement.

Dimension information for an array name must be specified only once in a program unit in a Type, COMMON,
or DIMENSION statement.

The size of a common block is the maximum storage required for that block in any program unit. The size
of a common block in a program unit is the sum of the storage required for all variables and array elements
declared in that block, as well as those brought into that block with the EQUIVALENCE statement. Common
blocks with the same block name in the various program units that comprise an executable program need not
be the same size. Also, the size of blank common in various program units can be different.

Program units can assign the same type to a given position within a common block, determined by the num-·
ber of storage units from the beginning of the block. In such cases, references to that position reference the
same quantity. Except for type character, where each position is one byte, storage units always fall on full
word 8-byte boundaries.

1-6-4 60386200 A

EQUIVALENCE STATEMENT

Form

Element Definiton

grp Each grp is a list of the form:

v Each v is a variable name, array name, or subscripted array name (number of
subscripts must be one or must conform to the array declaration)

A single subscript refers to the variable at that position in the array .. Elements in an array are ordered as
described for unsubscripted array references in section 1-2. When an array name is used, it is the same as
using the subscript (1).

The EQUIVALENCE statement is a non-executable statement which assigns the elements of grp to the same
storage location within the program unit (as opposed to COMMON which assigns variables in different pro
gram units to the same location.) When an element of an array is referenced in an EQUIVALENCE statement,
the relative locations of the other array elements are also defined. It is incorrect to cause a ·single storage unit
to contain more_ than one element of the same array.

A logical, integer, or real entity equivalenced to a double precision or complex entity shares the same location
as the real or most significant part of the complex or double precision entity. When variables of differing
types are equivalenced they share the same location, however, type is associated only with the name used to
reference it and that name will determine the interpretation of the item. The comma between the right and
left parentheses separating groups can be omitted.

EQUIVALENCE AND COMMON

An element or array is brought into a common block if it is equivalenced to an element in common. Two
elements in common, even in different blocks, must not be equivalenced to each other. An array brought into
common through EQUIVALENCE can extend the common block beyond the last position; however, an
EQUIVALENCE statement is not allowed to extend the origin of a common block.

60386200 A I-6-5

Example

Given the declarations:

COMMON/DESK/ f ,f ,G
OIMENSION H(4)

The following EQUIVALENCE statement is illegal because it would extend the origin of the
common block DESK:

EQUIVALENCE(EtH(J>>

but this next statement would be acceptable:

~QUIVALENCE(GtH(J))

The last EQUN ALENCE implies that E and H{l) share the same locations and F and H(2) share
the same location. These statements indicate DESK is four storage units long.

DATA INITIALIZATION STATEMENT

Form

Element Definition

k Each k is a list of variables, array elements, or arrays. Items in the list are separated by
commas. Subscripts used to identify array elements must be integer constants.

x Each x is a list of constants, optionally signed, any of which can be preceded by the repeat
specification j* where j is an integer constant.

The commas after each second slash are optional.

The data statement is non-executable; it assigns initial values to variables or array elements. The rules for
initializing values with the DATA statement given here also apply to data initialization with the Type statements
described earlier in this section.

The number of items in the data list should be the same as the number of variables in the variable list pre
ceding the data list. Only variables assigned values by a data initialization statement have specified values when
program execution begins.

When the form j* appears before a constant, it indicates the number of times the constant is specified. An
unsubscripted array name references all elements of the array.

1-6-6 60386200 A

The DATA statement cannot be used to assign values to elements in blank common or to dummy arguments.
Elements in a labeled common block can be initialized with a data initialization statement in any program
uPit; furthermore, different parts of a block can be initialized in different program units as well as with differ
ent statements in the same program unit.

MIXED MODES IN DATA INITIALIZATION STATEMENTS

Mixing of modes between list elements and constants is allowed. The following table shows the legal combin
ations and the mode of the constant after conversion.

Data~stant Double Character/
Element Integer Real Precision Complex Logical Hollerith Hexadecimal

Integer Integer Integer Integer Integer Illegal Character Hexadecimal

Real Real Real Real Real Illegal Character Hexadecimal

Double Double Double Double Double Illegal Character Hexadecimal
Precision Precision Precision Precision Precision

Complex Complex Complex Complex Complex Illegal Character Hexadecimal

Logical Illegal Illegal Illegal Illegal Logical Character Hexadecimal

Character Illegal Illegal Illegal Illegal Illegal Character Hexadecimal

60386200 A I-6-7

CHARACTER, HOLLERITH, AND HEXADECIMAL DATA

The initialization rules for character, Hollerith, and hexadecimal constants- follow:

CHARACTER OR HOLLERITH CONSTANT

Character variable or character array element:

Requires a character/Hollerith constant whose length must be less than or equal to that of the list item.

Character array of n elements:

Requires n character/Hollerith constants, each must be of a length less than or equal to that Qf an
array element.

Non-character variable or array element:

The character/Hollerith constant must be of a length less than or equal to the number of characters
that may be contained in the storage required by the list item.

Non-character array:

Must be last item in list k, and the length of the character constant must not exceed the number of
characters that may be contained in the storage required by the array.

The j* specification may not be used in a non-character array.

If the number of characters in the character/Hollerith constant is less than the number of characters defined
by the variable list element, the constant will be treated as though an appropriate number of blank characters
had been added to the right-hand side of the constant.

If the number of characters in the character/Hollerith constant is greater than the number of characters
defined by the variable list element, the constant will be truncated on the right-hand side and a warning
error message will be issued.

HEXADECIMAL CONSTANT

If the number of bits in the hexadecimal constant is less than the number of bits defined by the variable list
element, the constant will be treated as though an appropriate number of zero bits had been added to the
left-hand side of the constant.

If the number of bits in the hexadecimal constant is greater than the number of bits defined by the variable
list element, the constant will be truncated on the left-hand side and a warning error message will be given.

1-6-8 60386200 A

PROGRAM UNITS 1-7

An executable program consists of one main program, any number of subprograms, and any number of other
external procedures. An executable program is usually a self-contained computing procedure.

A program unit is either a main program or a subprogram consisting of FORTRAN statements and optional
comments, terminating with an END line. A program unit containing no FOR TRAN statements other than
comments and an END line is considered to be a null program; it is diagnosed and executed as if it contained
a STOP statement.

MAIN PROGRAM AND SUBPROGRAMS

A FORTRAN program may be written with or without subprograms. One main program is required in any
executable FORTRAN program; any number of subprograms may be included.

A main program should begin with the PROGRAM statement. An executable subprogram must begin with
either a FUNCTION or SUBROUTINE statement. A specification subprogram must begin with a BLOCK DATA
statement.

PROGRAM STATEMENT

Form

Element Definition

progname Must be a unique symbolic name within the main program. It will be the entry point name
and the object module name.

p Each p is a file information parameter required for each input/output file used by the
main program and by all subprograms. Each p assumes one of the following forms:

UNITi=filename
T APEi=filename
INPUT
OUTPUT
PUNCH

Is a logical unit number in the range 1-99

filename ls a 1-8 character name identifying the file. Maximum number of files is 16.

60386200 A I-7-1

The form UNITi=filename allows the FORTRAN input/output library module to associate filename with logical
unit number i. The form TAPEi=filename serves the same function. The crucial difference is that UNIT identifies
a mass storage file and TAPE identifies a tape file.

When a program uses PRINT, PUNCH, or READ statements, the corresponding file names OUTPUT, PUNCH,
or INPUT must appear in the PROGRAM statement.

A main program can contain any statement except:

Another PROGRAM statement

BLOCK DATA

FUNCTION

SUBROUTINE

ENTRY

RETURN

Any statement, such as a CALL, that would attempt to reference the program being defined.

A main program must either have a STOP statement or call a subprogram that has a STOP statement.

SUBPROGRAMS

A subprogram is defined by a subprogram header statement: BLOCK DATA, FUNCTION, or SUBROUTINE.
The header statement either must be the first statement of a source deck or must immediately follow an
END statement of a preceding program unit.

A subprogram headed by a FUNCTION or SUBROUTINE statement is called a procedure subprogram.

Procedure subprograms may be subroutines or functions. Function subprograms return a single value to the
expression containing the function's name. The four kinds of functions are:

Statement functions
FUNCTION subprograms

User defined

Intrinsic functions (in-line functions)
library functions

System supplied

Subroutine subprograms can return a number of values (or none); they are referenced by a CALL statement.
They may be:

User subroutines

Library subroutines

1-7-2 60386200 A

Subprograms are defined separateiy from the calling program and may be compiled independentiy of the
main program. They are complete program units conforming to all rules of FORTRAN programs. The term
program unit refers to either a main program or a subprogram.

A subprogram can call other subprograms; but it cannot call itself directly or indirectly. For example, if
program A calls program B, B should not call A. A calling program is a program unit which calls a subprogram.

Subprogram definition statements declare certain names to be the arguments of the subprogram - they are
called dummy arguments. They are used as ordinary names within the defining subprogram and indicate the
number, type, and order of the arguments and how they are used. The parameters in a subroutine call or a
function reference are actual parameters. Actual parameters are expressions which should agree in type with
the corresponding dummy arguments in the subprogram definition. The dummy arguments have the value of
the actual arguments when the subprogram is executed. Dummy arguments and subprogram name must not
appear in COMMON, EQUNALENCE, or DATA statements:

DEFINING A STATEMENT FUNCTION

Form

Element Definition

fname

d

ex pr

Function name; the function type is determined by the type of this symbolic name

Each d is a dummy argument which must be a simple variable

Any expression conforming to the rules for expressions used in assignment statements. It can
contain references to library functions, other previously defined statement functions, or
function subprograms. Names in the expression which are not dummy arguments have the
same value as they would have outside the function when the function is referenced.

The definition of a statement function is contained in a single statement, and it applies only to the program
unit which contains the definition.

Statement function names must not appear in DIMENSION, DATA, EQUIVALENCE, COMMON, or
EXTERNAL statements. They can appear in a Type statement, but cannot be dimensioned or given an initial
value. If the function name is type logical or character, the expression must be the same type. For other types,
if the function name and expression differ, conversion is performed as a part of the statement function.

A statement function must precede the first executable statement in the program unit and must follow all
specificatiOn statements.

60386200 A 1-7-3

REFERENCING STATEMENT FUNCTIONS

A statement function is referenced when the name of the function appears in an expression. An actual argu
ment is any expression of the same type as the corresponding dummy argument.

DEFINING A FUNCTION SUBPROGRAM

Form

Element Definition

typ

fname

d

Type declaration: INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL,
CHARACTERt, or omitted.

Function name. If typ is omitted, the function type is determined by the type of the
symbolic name fname.

Each d is a dummy argument which can be a variable name, array name, or external pro
cedure name. At least one dummy argument is required; no two dummy arguments can have
the same name.

The FUNCTION subprogram is a FORTRAN subprogram consisting of any number of statements. Since it is
written independently, except for association through the arguments and COMMON, names and statement
numbers bear no relationship to names used in other program units. The FUNCTION subprogram is executed
whenever its name is referenced in an expression in another program unit.

A function subprogram begins with a FUNCTION statement and ends with an END statement. It returns
control to the calling program when a RETURN statement in the function subprogram is executed. The actual
arguments in the calling program can be any expression of the same type as the corresponding dummy argu
ment. Effectively, when the function is called the dummy arguments have the values of the actual arguments
at the time the function is referenced. Execution of the FUNCTION subprogram returns a single value to the
referencing expression through the function name.

The fname must appear as a variable name in the defining function subprogram, and this variable must be
given a value at least once in every execution of the subprogram. Within the function, the variable fname can
be referenced as a simple variable and redefined. The value returned to the expression referencing the function
is the value of fname upon execution of a RETURN statement. If typ is omitted in the FUNCTION state
ment, fname can occur in a Type statement within the function subprogram. Otherwise fname must not appear
in any non-executable statement within the function definition subprogram.

ti[type is CHARACTER, name can be followed by *n where n is a decimal number specifying the
length in bytes returned when the function name is referenced. When *n is not specified the assumed
length is one. Whenever the dummy arguments are CHARACTER, they must be declared by a Type state
ment in the function defipition.

I-7-4 60386200 A

Dummy arguments corresponding to actual arguments in the calling reference, which are either array elements
or simple variable names, can be given values and redefined within the function subprogram to return results
in addition to the value of the function. When dummy arguments are arrays and correspond to array names
in the calling references, any elements. within the array can be given values or redefined.

When the same variable is used for two or more arguments in a function reference, the corresponding dummy
arguments shollld not be given values within the subprogram definition. Likewise, when an argument in a
function reference is in common, the corresponding dummy argument should not be given a value within the
subprogram.

REFERENCING EXTERNAL FUNCTIONS

A function or entry point into a function is referenced by using its name together with its argument list,
enclosed in parentheses, as a primary in an expression. The actual arguments, which constitute the list, must
agree in order, number, type, and length with the corresponding dummy arguments in the defining function
subprogram. The one exception is: actual arguments which are character or Hollerith constants also can cor
respond to dummy arguments of type other than character. Each actual argument in an external function
reference must be:

An expression t

An array name

The name of an external procedure

If an actual argument is an external function name or subroutine name, that name must appear in an
EXTERNAL statement in the referencing program unit. Furthermore, the corresponding dummy argument
must be used as an external function reference or as a subroutine name in a CALL statement.

DEFINING A SUBROUTINE SUBPROGRAM

Form

E.ement Definition

sname Symbolic name of the subroutine subprogram

d Each d is a dummy argument following the same rules as for dummy arguments in the
FUNCTION statement, or each d is an * denoting a return point specified by a state
ment number in the call. Parameters can be omitted entirely for a subroutine, in which
case the parentheses must also be omitted.

tVariable names, array element names, and constants are expressions of simple form.

60386200 A 1-7-5

The subroutine subprogram and the function subprogram are independent of the main program. Except for
association through the arguments and through common, names and statement numbers used in the subroutine
subprogram bear no relationship to names used in other program units. The subroutine subprogram is executed
whenever it is referenced in a CALL statement.

A subroutine subprogram begins with a SUBROUTINE statement and ends with an END statement. It returns
control to the calling program unit when a RETURN statement is executed.

The sname must not appear in any statement in the subroutine definition except the SUBROUTINE statement.

The rules for dummy arguments (except when * occurs as a dummy argument) are the same as those for
function subprograms.

Whenever an * occurs as a dummy argument in the SUBROUTINE statement, in the corresponding position
in the CALL statement there must be a statement label as an actual argument. In a CALL statement, an
argument is a statement label if it is an & followed by the digits required to comprise a valid label. When
an actual argument in a calling program is a FORMAT statement number, the corresponding dummy argument
must be an array name in the subroutine.

If the actual argument is a NAMELIST name, the dummy argument must not be an array name; that name
should be used only as a NAMELIST name in input/output statements. Furthermore, the elements of that
NAMELIST name are elements of the calling program even though the input/output statement occurs in the
subprogram.

RETURN STATEMENT

Form

RETURN i

Element Definition

Integer constant or variable whose value denotes the nth * in the dummy argument list;
is not allowed in function subprograms

Execution of this statement in a subprogram causes control to return to the calling program unit. In a function,
control returns with the function value to the referencing expression. In a subroutine, control returns to the
first executable statement following the CALL statement when i is omitted; when i is specified, control
returns to the statement label associated with the ith * in the SUBROUTINE statement. If i is out of
range, control is returned as though i were not specified.

I-7-6 60386200 A

REF.ERENCING SUBROUTINE SUBPROGRAMS

Form

Element Defmition

sname

p

Name of the subroutine being called.

Each p is an actual argument of any of the forms described for a function reference. Each
p can also take the form &n where n is a statement number. If the SUBROUTINE
statement for sname includes no parameters, the parameter list and parentheses are omitted.

Execution of the CALL statement transfers control to the subroutine· subprogram or to an entry ·point in a
subroutine subprogram. The actual arguments, which constitute the argument list, must agree in order, number,
type, and length with the corresponding dummy arguments in the defining subroutine subprogram. The only
exception is that actual arguments which are character or Hollerith constants can also correspond to dummy
arguments of type other than character;

Control normally returns to the next executable statement following the CALL statement in the calling program
unit. If statement labels are passed as arguments, the subroutine can select alternative returns of the form
RETURN i.

Results from the subroutine are returned to the calling program unit (or other program units) when the sub
routine changes the values of elements in COMMON, changes values of the arguments, or writes the results to
a logical input/output device.

60386200 A 1~7-7/I-7-8

INPUT /OUTPUT 1-8

An executing FORTRAN program generally operates on data external to the program itself, so that different
sets of data can be manipulated by the same unchanged program. A meaningful FORTRAN program also stores
the results it has generated. For input/output, the compiler uses the following information:

Input/Output Unit or Device Ordinal

The operating system associates this number {1-99 decimal) with a particular 1/0 device (see PROGRAM
statement, section 7). Default usually will be a dedicated card reader for input and a dedicated line
printer for output.

F onnat Specification

The format specifies the type of translation required between input data and internal storage and between
internal storage and output data (see FORMAT statement, section 9). The format is specified by reference
to th~ statement label (1-99999 decimal) of a FORMAT statement in the program unit containing the
1/0 command, by reference to the name of an array containing the format specification, or by special
reference to input data in the case of NAMELIST. Absence of a format specification results in no con
version. Input data must be in binary form, and output data remain in binary form.

List of Variables

This list contains the names of variable to be input or output. When an array name is included in the
list, the entire array is input or output in the order in which the array is stored. A subscripted array
name causes the element specified to be input or output. Specific elements of an array also may be
input or output through the implied DO specification.

In the absence of the list of variables, on input one record. is read,· and on output one record is·written.

End Condition

If a READ statement is executing when the next sequential record of input data is an end-of-file indi
cator, the variables become undefined, the end-of-file record becomes the preceding record, execution of
the READ is abandoned, and control transfers to the statement specified by the END= option. For input,
when end-of-file is encountered and no END= option is specified, control passes to the operating system,
which terminates the job and issues an appropriate error message.

Error Condition

If a READ statement is executing when a data transfer error occurs, the variables become undefined, the
record in error becomes the preceding record, execution of the READ is abandoned, and control transfers
to the statement specified by the ERR= option. On input, if a data transfer error occurs when no ERR=
option is specified, control passes to the operating system, which terminates the job and issues an error
message.

Sets of input and output data are accessed sequentially. The list of variables determines the task for execution
of an input or output command. A READ, WRITE, PRINT, or PUNCH statement processes at least one input
or output record and transmits values for each variable in the list. When the list of variables is exhausted, exe
cution is considered complete.

60386200 A 1-8-1

FORTRAN RECORD LENGTH

The length of each record input from cards is 80 characters, and the length of each record output to a card
punch device must not exceed 80 characters. The length of each output record to be printed must not exceed
137 characters.

INPUT STATEMENTS

READ FORMATTED

Form

READ (u,fmt,END=m,ERR=n) folist

Element Definition

u Integer constant or integer variable specifying the input device

f mt Label of a FORMAT statement or name of an array containing the format specification

END=m Optional; transfers control to the statement labeled m when end-of-file is encountered

ERR=n Optional; transfers control to the statement labeled n when a data transfer error occurs

iolist List of variables and/or arrays to be read sequentially; iolist can be omitted

Examples

C WHERE DECLARATION WAS R(20>• T(l2tl5), X(5)
READ (5t500l> AtBtCtD

12 READ CINt2tERR=47) x,y,z
READ (12111304) R<l>1R(S)1(R(J),J=8115>
READ (99;100tEND=901> TfltlS>

l 00 READ C lt l 0 >

The READ statement transmits data from the specified device u to storage locations named in iolist, accord
ing to the format specified by fmt. More than one record of input data can be transmitted under control of
the format specification. Input record length is a maximum of 80 characters.

I-8-2 60386200 A

READ UNFORMATTED

Form

R..E.An {u,END=m,ERR=n) iolist

Element Definition

u Integer constant or integer variable specifying the input device

END-111 Optional; transfers control to the statement labeled m when end-of-file is encountered

ERR=n Optional; transfers control to the statement labeled n when a data transfer error occurs

iolist List of variables and/or arrays to be read sequentially; iolist can be omitted

Examples

C WHERE DECLARATION WAS RC20>• T<l2tl5>, X(5)
REAO (5) AtBtCtO

12 READ (1NtERR=47) x,y,z
R~AD <12> R<l),R(5),(R(J),J=8tlS>

531 READ (99tEND=90l> T<ltlS>
READ (l)

The READ statement transmits one record of input data from the specified device u to the storage locations
named in iolist, using no format specification. The input record must be in binary form, and no conversion
takes place.

60386200 A 1-8-3

READ WITH IMPLIED DEVICE

Form

READ fmt, iolist

Element Definitions

fmt Label of a FORMAT specification statement or name of an array containing
the format specification

iolist list of variables and/or arrays to be read sequentially; iolist can be omitted

Examples

C WHERE DECLARATION WAS R(20>• Ttl2tl5), XCS>
READ SOOitAtBtCtD
READ 2.x;y,z

27 READ 11304tR<l>tR(5)t(R(J),J=8tl5)
READ lOOtT U t 15)

8 READ 10

The READ statement transmits data from the installation default device, usually a card reader to storage loca
tions named in iolist, according to the format specified by fmt. More than one record of input data can be
transmitted under control of the format specification. Input record length is a maximum of 80 characters.

1-8-4 60386200 A

OUTPUT STATEMENTS

WRITE FORMATTED

Form

WRITE (u,fmt) iolist

Element Definitions

u Integer constant or integer variable specifying the output device

fmt label of a FORMAT specification statement or name of an array containing
the format specification

iolist list of variables and/or arrays to be output sequentially; iolist can be omitted

Examples

C WHERE DECLARATION WAS DOG(J)t S(25)t U<St2t40>
WRITE (6t6001> EtftGtH
-~ITE <IOUTtJ) CATtOOG,cows

2 WRITE tl3tll305) Sll>t(S(K)tK=3t9),S(20)
44112 WRITE <1Stl6> U<ltlt3>

WRITE (2tll>

The WRITE statement transmits data from storage locations named in iolist to the specified device u, accord
ing to the format specified by fmt. More than one record of output data can be transmitted under control of
the format specification, and the format also can specify literal data to be transmitted. An output record with
carriage control character contains a maximum of 137 characters.

60386200 A 1-8-5

WRITE UNFORMATTED

Form

WRITE (u) iolist

Element Definitions

u Integer constant or integer variable specifying the output device

iolist list of variables and/or arrays to be output sequentially; iolist can be omitted

Examples

C WHERE DECLARATION WAS DOG(J), S<2S>t U<St2t40)
56-~~If~- t6l ~.~,G~H

WRITE (6) CATtDOGtCOWS
WRITE <13) S<l>t<S(K)tK=3t9)t5(20)

204 WRITE Cl5> U<ltlt4)
WRITE <2>

The WRITE statement transmits one record of output data from storage locations named in iolist to the
specified device u, using no fonnat specification. No conversion takes place, and the output record is trans-
mitted in binary form. ·

1-8-6 60386200 A

PRINT

Form

PRINT fmt, iolist

Element Definitions

fmt label of a FORMAT specification statement or name of an array containing
the fonnat specification

iolist List of variables and/or arrays to be ~utput sequentially; iolist can be omitted

Examples

C WHERE DECLARATION WAS DOG<J), 5(2S>t U<St2t40)
P~INT 600l•E•ftGtH
P~INT 3tCATt00GtCOWS

99 PRINT llJOStS(l)t(S(K)tK=J,9),5(20>
1001 PRINT 16tU(4tlt2>

PRINT 11

The PRINT statement transmits data from storage locations named in iolist to a line printer, according to the
format specified by fmt. More than one record of output data .·can be transmitted under control of the for
mat specification, and the format also can specify literal data to be transmitted. An output record with car
riage control character contains a maximum of 137 characters.

60386200 A 1-8-7

PUNCH

Form

PUNCH fmt, iolist

Element Definitions

fmt Label of a FORMAT specification statement or name of an array containing the
format specification

iolist list of variables and/or arrays to be output sequentially; iolist can be omitted

Examples

C WHERE DECLARATION· WAS OOG<J>
PUNCH 600ltEtftGtH
PUNCH 3tCATt00GtCOWS

44211 PUNCH 11305

The PUNCH statement transmits data from storage locations named in iolist to a card punch, according to
the format specified by fmt. More than one record of output data can be transmitted, and the format also
can specify literal data to be transmitted. Output record length is a maximum of 80 characters..

I-8-8 60386200 A

UNIT POSITIONING

REWIND, BACKSPACE, and ENDFILE statements can be used only for sequential input/output devices.
Sequential units contain one or more records grouped as a totally ordered sequential set. The initial position
of a unit precedes the first record of information, and the end-of-file indicator follows the last record of
information.

REWIND STATEMENT

Form

REWIND u

Element Definition

u Integer constant or integer variable specifying the sequential unit

Examples

~EWIND 5
70 REWIND !OUT

Execution of a REWIND cuases the sequential unit specified by u to be positioned at its initial point.

60386200 A 1-8-9

BACKSPACE STATEMENT

Form

BACKSPACE u

Element Definition

u

Examples

Integer constant or integer variable specifying the sequential unit

~ACKSPACE 5
BACKSPACE IVER

Execution of a BACKSPACE causes the sequential unit specified by u to be positioned at the record preced
ing the current position. If u is at the initial point, BACKSPACE has no effect.

ENDFI LE STATEMENT

Form

ENDFILE u

Element Definition

u

Examples

Integer constant or integer variable specifying the sequential unit

ENDf ILE b
ENDf ILE NX

Execution of this statement causes an end-of-file indicator to be written as the last record on the sequential unit.

1-8-10 60386200 A

NAME LIST

The NAMELIST statement permits a list of variable names or array names to be grouped under an identifying
NAMELIST name. In input/output operations, reference to a NAMELIST name reads or writes all variables or
arrays associated with the NAMELIST name. Any NAMELIST statement must precede the first executable state
ment in the program unit and must precede any statement function definitions.

NAMELIST STATEMENT

Form

NAMELIST /i:llname/nllist
or
NAMELIST /nlname 1/nllist1. . ./nlnamen/nllistn

Element Definitions

nlname

nllist

Examples

NAMELIST name following rules for symbolic names

list of variables and/or arrays associated with nlname; dummy arguments
are not permitted

c wnERE DECLARATION WAS GARAGE(4)t INK(3t2)
NAMELIST./FARM/BA~N,SHEDtGARA6E
NAMELIST /ART/PENtlNKtPAPEk /Y/TtUtVtW /GARF/NUkf tSURftlNK

Each NAMELIST name declared in a NAMELIST statement must be unique within the program unit. No
restriction is placed on the number of variable or array names in nllist, and any variable or array name can
be associated with more than one NAMELIST name.

60386200 A 1-8-11

NAMELIST INPUT

The NAMELIST name is used to identify a NAMELIST data block, which can contain one or more records.
The NAMELIST data block can be used to set the values of the variables and arrays associated with the
NAMELIST name.

NAMELIST DATA BLOCK

Form

b&nlnamebnlexpl ,nlexp2, ... nlexpn&END
or
b&nlnamebnlexpl ,nlexp2, .. ,nlexpn,&END

Eleme:Qt Definitions

&nlname

nlexp

&END

The character blank

Ampersand followed by the NAMELIST name, which must contain no embedded blanks

NAMELIST data expression which must take the fonn:

nli tem=nlconst

nlitem

nlconst

Variable name or array name associated with the NAMELIST name. Array
names can be unsubscripted or have unsigned integer constant subscripts.
nlitem must contain no embedded blanks.

Constant which agrees in type with nlitem and specifies the value to
which nlitem is set. When nlitem designates an array or a number of
array elements, nlconst can specify either a number of constants separated
by commas or repeat specifications for constants. The repeat specification
consists of an unsigned integer constant indicating the number of repeats,
an *, and the constant to be repeated.

Tenninator of the NAMELIST data block. &END must contain no embedded blanks and
must be complete withinin a single record.

Each nlitem in the NAMELIST data block must be associated with the NAMELIST name nlname by pre
vious declaration. If nlitem is an array, no attempt must be made to store values beyond the length of
nlitem. The entire NAMELIST data block can extend over a number of records, but the information for any
nlitem or any nlconst must be complete within a single record (each part of a complex constant must be
complete within a single record). Character constants are the exception to the rule, as they can be continued
on a succeeding record. The NAMELIST data block can be used to specify values for some or all of the
variables and/or arrays declared as associated with the NAMELIST name nlname, but execution of a NAMELIST
READ always causes input of the entire NAMELIST data block.

1-8-12 60386200 A

NAMELIST READ

Form_

READ (u,nlname,EN~m,ERR=n)
or
READ nlname

Element Definitions

u Integer constant or integer variable specifying the input device

nlname NAMELIST name following rules for symbolic names

END=m Optional; transfers control to the statement labeled m when end-of-file is encountered

ERR=n Optional; transfers control to the statement labeled n when a data transfer error occurs

Examples

READ FARM
10 READ <StART>

READ <lOtYtEND=BO>
1458 READ (3tGARf ,ERR=900>

The NAMELIST READ causes records to be input from the specified device u or from the implied device
until the NAMELIST data block identified by &nlname is found. All information in the NAMELIST data
block is transmitted to the variables and arrays associated with the NAMELIST name.

NAMELIST OUTPUT

Reference to a NAMELIST name in a NAMELIST WRITE, PRINT, or PUNCH statement causes output of all
variables and arrays associated with the NAMELIST name. The entire sequence of records produced by a
NAMELIST output statement is suitable to be input by a NAMELIST input statement referencing the same
NAMEUST name.

60386200 A 1-8-13

NAMELIST WRITE, PRINT, PUNCH

Form.

WRITE (u,nlname)
or
PRINT nlname
or
PUNCH nlname

Element Definitions

u Integer constant or integer variable specifying the output device

nlname NAMELIST name following rules for symbolic names

Examples

1035 ~~ITE (6tfARM)
PRINT Y

~ PUNCH ART

The NAMELIST WRITE, PRINT, or PUNCH causes the NAMELIST data block identified by nlname to be
output to the device u, to a line printer, or to a card punch. All variables and arrays associated with the
NAMEUST name nlname are output according to the order of the NAMELIST statement declaration, and
all array elements are output in the order in which arrays are stored.

El\lCODE/DECODE

ENCODE and DECODE statements are similar in action to formatted input/output statements, except records
are not transmitted to or from output or input devices. Instead, the records are transferred to or from a buffer.
The buffer is either a variable or an array, and it can be considered as a sequence of records. The ENCODE
statement, acting like a WRITE statement, transfers records to the buffer. The DECODE statement, acting
like a READ statement, transfers records from the buffer.

1-8-14 60386200 A

ENCODE STATEMENT

Form

ENCODE (cl,fmt,bufname) iolist

Element Definitions

cl

f mt

bufname

iolist

Examples

Length in characters of each record

Label of a FORMAT specification statement or name of an array containing the
format specification

Variable or array name identifying the buffer into which encoded records are placed

List of variables and arrays to be encoded; the list can be omitted

ENCODE (40tltALPHA) A,s.c
19 ENCODE (b4,FORMltGAMMA> X

The ENCODE statement transfers one or more records to the buffer bufname by the action of the format
specified by fmt on the variables named in iolist. Each record produced must not be longer than cl
characters (if less than cl characters, trailing blanks are inserted). Records written by the ENCODE state
ment are stored contiguously and in the order in which they were created. The first record written is stored
at the start of the buffer identified by bufname. The ENCODE statement must not attempt to store records
beyond the length of the buffer.

The variable or array name specified by fmt must not be identical to bufname, and no variable or array
name in iolist can be identical to bufname.

60386200 A 1-8-15

DECODE STATEMENT

Form

DECODE (cl,fmt,bµfname) iolist

Element Definitions

cl

fmt

bufname

iolist

Length in characters of each record

Label of a FORMAT specification statement or name of an array containing the
format specification

Variable or array name identifying the buffer from which records are decoded

list of variables and arrays which receive decoded records; the list can be omitted

Examples

1036 DECODE (40t2tALPHA> DtEtf
DECODE (64tfORM2tGAMMA> Y

The DECODE statement transfers one or more records from bufname to the storage locations named in
iolist, according to the format specified by fmt. DECODE must not attempt to use more than cl char
acters of each record. The DECODE statement reads records sequentially from bufname, and must not
attempt to read records beyond the length of the buffer bufname.

On execution of a DECODE statement, no variable or array name in iolist can be identical to bufname.

1-8-16 60386200 A

INPUT/OUTPUT LISTS

The entries in the iolist of an input/output statement are separated by commas. The list is transmitted sequen
tially from left to right. Specification of a variable name in the list causes that variable to be read or written.
Array names appearing in the list can be subscripted or unsubscripted. Specification of an unsubscripted array
name causes the entire array to be read or written in order. The order of array element storage follows the
rule that each subscript to the right will not increment until the subscript to the left has gone through its
range. Specification of a subscripted array name causes the referenced array element to be read or written. Some
or all of the elements of an array can be read or written when the implied DO specification is used.

IMPLIED DO SPECIFICATION

The standard implied DO specification is used within the iolist of an input/output statement.

Form

. . . , (aname(isub),isub=i 1,ii ,i 3), . . ·
or
... , ((aname(isubjsub),isub=i 1,ii,i3)jsub=j1 j1J3), ...
or
... , (((aname(isubjsub,ksub),isub=i1i2,i3)jsub=j1J2J3), ksub=k1,k2,k3), ...

Element Definitions

aname

isub

jsub,ksub

60386200 A

Array name

Integer variable name unsubscripted, whose value is changed by the succeeding DO
specification for isub

Same as isub, but different integer variable names must be used

Integer constants which specify the initial values of isub, jsub, and ksub

Integer constants which specify the terminal values of isub, jsub, and ksub

Optional; integer constants which specify the value of the increment to be applied to
isub, jsub, or ksub in execution of the DO loop. Default is 1.

1-8-17

Examples

C WHERE DECLARATION WAS Q(8)t R(l0t20>t 5(10tl2tl2>
••• ,(Q(l>•l=ltS>••••
••et((R(l,J>,1=3t6t3>tJ=ltl2>t•••
••••<<<S<LtMtN>tL=lt7>tM=2tl2t2>tN~ltlO>••••
••••<RC3tJ)tJ=ltl2>••••
••••((5(L,MtlO>tL=lt7>,Mz2,12t2>••••

The subscripted array name is separated from the implied DO specification by a comma, and the entire expres
sion is enclosed in parentheses. For arrays with multiple subscripts, the use of more than one implied DO
nests the specifications. Each implied DO to the right will not increment until the implied DO to the left has
gone through the specified range.

If an unsigned integer constant is used as a subscript of aname, the implied DO specification must not appear.

1-8-18 60386200 A

FORMAT 1-9

Unformatted information appears as strings of binary word values in the form in which they normally appear
in storage. Formatted information appears as strings of digits, letters, or characters in a form that can be inter
preted easily by the user. A FORMAT statement is required to convert input data to internal representations
and to convert internal storage values to external output representations.

FORMAT STATEMENT

Form

Element Definitions

snumb Required; statement label referenced by an input/output statement

fs Field specification

Examples

21203 FORMAT<IS,12,fS.2>
12 f0RMAT<21H WEIGHTS AND MEASURES/5Xt12G20.5>

4 f0RMAT<SA8,fl0.4t212>

The FORMAT statement is non-executable, but it must have a statement label. It can appear anywhere within
the program unit in which. it is referenced. Field specifications are separated by commas or slashes (which
demarcate formatted records); and the field specifications can be grouped by parentheses. Blanks are not signi
ficant except in Hollerith specifications.

The FORMAT statement converts input data with no regard for the type of the variable that receives the
value. The format field specifications also convert on output with no regard for the type of variable to be
output. In general, each format field specification should match the type of each variable of the input/output
list.

60386200 A 1-9-1

FIELD DESCRIPTORS

Fonn

srFw.d

srEw.d

srGw.d nX

srDw.d Tp

rlw r'ZW

rLw

rRw

rAw

Element Definitions

F, E, G, D, I., L, R, A~ H, X, T, Z and the apostrophes are called the conversion codes; they indicate
the manner of conversion and editing between internal and external representations.

w and n Non-zero integer constants representing field width in the external character string.

d Integer constant representing number of digits in fractional part of the external character
string (except for G conversion code)

r Repeat count; optional non-zero integer constant indicating the number of times to repeat
the succeeding basic field descriptor

s Optional; represents a scale factor designator

h Character that can be represented by the processor

p Non-zero integer constant indicating character position within record

For all descriptors, except T and the apostrophe descriptor, the field width must be specified, even if it is
zero (except for a G descriptor associated with integer, logical, or character type items). Further, w must
be greater than or equal to d.

Basic field _descriptor is -used to signify the field descriptor uninodified·by s or. r.

External fields are internally represented as constants of the corresponding type.

I-9-2 60386200 A

REPEAT SPECIFICATIONS

Repetition of individual field descriptors (except nH, apostrophe, nX and Tp) is indicated through the
repeat count. If the input/output list warrants, conversion will be used the number of times specified by r.

A group is formed by enclosing field descriptors, field separators, or groups within parentheses. The parentheses
enclosing the format specification are not considered group delineators.

When a group of field descriptors or field separators is to be repeated, an integer constant group repeat count
precedes the left parenthesis to indicate how many times the group is to be interpreted. If not specified, a
group repeat count of one is assumed.

FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LIST

Execution of formatted READ/WRITE statements or ENCODE/DECODE statements initiates format control.
Format control depends on information provided jointly by an element of the input/output list and the field
descriptor obtained from the format specification.

When a formatted READ statement is executed, one record is read when the format control is initiated; there
after, additional records are read only as the format specification demands. Such action must not require more
characters than a record contains.

When a formatted WRITE statement is executed, an external record is built as the format specification and
the input/output list are processed. This external record is output when the format specification demands that
a new record be started. Termination of format control causes the current record to be written. A slash in
the format specification demands a new record start or the preceding record terminate.

Except for the effects of repeat counts, the format specification is interpreted from left to right.

Each I, F, E, G, D, R, A, L, or Z basic descriptor interpreted in a format specification associates with one
element specified by the input/output list; complex elements require interpretation of two F, E, or G basic
descriptors. For the H, apostrophe, X, or T descriptors, no corresponding element is specified by the input/
output list, and the format control communicates directly with the record.

During a READ operation, any unprocessed characters of the current input record are ignored when format
control terminates or when a slash is encountered.

Upon encountering an I, F, E, G, D, A, R, or L descriptor in a format specification, the format control
determines if a corresponding element is specified by the input/output list. If so, converted information is
transmitted. When the input/output list is exhausted, format control terminates.

When the last outer right parenthesis of the format specification is encountered, a test is made to determine
if another list element is specified. If not, control terminates. If another list element is specified, the format
control demands a new record start and control returns to the group repeat specification terminated by the
last preceding right parenthesis (if none exists, to the first left parenthesis of the format specification). This
action has no effect on the scale factor.

60386200 A I-9-3

SCALE FACTOR

The optional scale factor designator is defined for use with F, E, G, and D conversions (except when G is
used on integer, logical, or character} and takes the form nP; n is an optionally signed integer constant.

A scale factor of zero is established when each format statement is first referenced; it holds for all F, E, G,
and D field descriptors until another scale factor is encountered. Once a scale factor is specified, it holds for
all D, E, F, and G specifications in that FORMAT statement until another scale factor is encountered. To
nullify this effect for subsequent D, E, F, and G specifications, a zero scale factor, OP must precede a
specification.

The scale factor n affects conversion as follows:

For F, E, G; and D input conversions with no exponent in the external field, as well as F output conver
sions, the scale factor sets the externally represented number to an internally represented number times
ten raised to the nth power.

For F, E, G, and D input with an exponent in the external field, the scale factor has no effect.

For E and D output, the basic real constant part of the output quantity is multiplied by 10n and the
exponent is reduced by n.

For G output, the effect of the scale factor is suspended unless the magnitude of the data is outside
the range that permits effective use of F conversion. If E conversion is required, the scale factor has
the same effect as with E output.

NUMERIC CONVERSIONS

The numeric field descriptors I, F, E, and D are used to specify input/output of integer, real, double precision,
and complex data. The G descriptor also may be used for numeric conversion.

I-9-4

With all numeric input conversions, leading blanks are not significant and other blanks are zero. Plus
signs can be omitted.

With F, E, G, and D input conversions, a decimal. point in the input field overrides the decimal point
specification supplied by the field descriptor.

With output conversions, the output field is right justified. If the number of characters produced by the
conversion is smaller than the field width, leading blanks are inserted in the output field.

With output conversions, the external representation of a negative value is signed.

The number of characters produced by an output conversion must not exceed the field width w

60386200 A

INTEGER CONVERSION

lw

The numeric field descriptor Iw indicates the external field occupies w positions as an integer. The value
of the external field is stored internally as integer.

In the external input field, the character string is an optionally signed integer constant. Embedded blanks are
zeros.

REAL CONVERSION

Three conversions are available for use with real data: F, E, and G.

Fw.d

The numeric field descriptor Fw .d indicates the external field occupies w positions, the fractional part of
which consists of d digits. The value of the external field is stored internally as real.

The basic form of the external input field consists of an optional sign followed by ·a string of digits which
may contain a decimal point. The basic form can be followed by an exponent in one of the forms:

Signed integer constant

E followed by optionally signed integer constant

D followed by optionally signed integer constant

An exponent preceded by D is equivalent to an exponent preceded by E.

The external output field consists of optional leading blanks, a minus sign if the internal value is negative,
and a string of digits, containing a decimal point, which represent the internal value modified by any estab
lished scale factor and rounded to d fractional digits.

Ew.d

The numeric field descriptor Ew .d indicates the external field occupies w positions, the fractional part of
which consists of d digits. The value of the external field is stored internally as real.

60386200 A 1-9-5

The standard form of the external output field for a scale factor of zero is:

b.al ... adE±ee

b .a 1 . . . ad E±eeee

For values where the magnitude of the exponent is less than· 100

For values where the magnitude of the exponent is 100 to 999

For values where the magnitude of the exponent is greater than 999

b is a minus sign if the number is negative, and blank if the number is
positive.

a 1 . . . ad are the d most significant digits of the value correctly rounded.

Each e is a digit of the decimal exponent.

A scale factor shifts the dedmal point so that a 1 .- .. ad is multiplied by ·10n -and the decunal exponent is
reduced by n .-

If n~O, there will be exactly -n leading zeros with d+n significant digits after the decimal point.

If n>O, there will be exactly n significant digits to the left of the decimal point and d-n+ 1 to the right
of the decimal point.

Gw.d

The numeric field descriptor Gw .d indicates the external field occupies w positions with d significant
digits. The value of the external field is stored internally as real.

Input processing is the same as for the F conversion.

The method of representation in the external output string is a function of the magnitude of the real data
being converted. Let N be the magnitude of the internal data. The following tabulation exhibits a corre
spondence between N and the equivalent resulting method of conversion:

1-9-6

Magnitude
of Data

O.l~N<I

l~N<IO

10d-2~N<10d-l

Otherwise

Equivalent
Conversion

F(w-4).d,4X

F{w-4).{d-l),4X

F(w4).1,4X

F{w-4).0,4X

sEw.d

The effect of the scale factor is suspended unless the
magnitude of the data is outside the range that permits
effective use of F conversion

60386200 A

DOUBLE PRECISION CONVERSION

Dw.d

The numeric field descriptor Dw .d indicates the external field occupies w positions, the fractional part of
which consists of d digits. The value of the external field is stored internally as real. The basic form of the
external input field is the same as for real conversions.

The external output field is the same as for E conversion, except the character D, rather than E,
precedes the exponent.

COMPLEX CONVERSION

Since complex data consists of a pair of separate real data, the conversion is specified by two real field descrip
tors interpreted successively. - . the first for the real part - the second for the imaginary part.

LOGICAL CONVERSION

Lw

The logical field descriptor Lw indicates the external field occupies w positions as a string of information,
defined below. The value of the external field is stored internally as logical.

The external input field consists of leading blanks, decimal point, T (for true) or F (for false), and optional
trailing characters.

The external output field consists of w-1 blanks followed by T or F.

The G field descriptor also may be used for logical conversion; Gw is the equivalent of Lw. If Gw.d is
used the .d is ignored.

CHARACTER CONVERSION

Character information is transmitted through three field descriptors, Aw, Gw, and Rw~

Aw

The Aw descriptor causes w Hollerith characters to be read into, or written from, a specified list element.

Let cl be the character length of the list element. If the field width specified for A input is greater than
or equal to cl, the rightmost cl characters will be taken from the external input field. If the field width
is less than cl, w characters will appear left justified with cl-w trailing blanks in the internal representation.

If the field width specified for A output is greater than cl, the external output field will consist of w-cl
blanks followed by cl characters from the internal representation. If the field width is less than or equal to
cl, the external output field will con&ist of the leftmost w. characters fr-0m the mtemal representation.

60386200 A 1-9-7

Gw

The G descriptor also can be used for transmitting character information only if the corresponding data list
element is type character. Gw is the equivalent of Aw. If Gw.d is used, the d is ignored.

Rw

The Rw descriptor causes w Hollerith characters to be read into, or written from a specified list element.

Let cl be the character length of the list element. If the field width specified for R input is greater than
or equal to cl, the rightmost cl characters will be taken from the external input field. If the field width is
less than cl, w characters will appear right justified with cl-w leading zeros in the internal representation.

If the field width specified for R output is greater than cl, the external output field will consists of w-cl
zeros followed by cl characters from the internal representation. If the field width is less than or equal to
cl, the external output field will consist of the rightmost w characters from the internal representation.

HOLLERITH FIELD DESCRIPTOR

Hollerith information can be transmitted through four field descriptors, Aw, Rw, nH, and 'h1h2 ... hn'·

nH

The nH descriptor causes Hollerith information to be read into, or written from, the n characters
(including blanks) following the nH descriptor in the format specification.

APOSTROPHE FIELD DESCRIPTOR

The apostrophe descriptor causes character information to be read into, or written from the characters
(including blanks) between the two apostrophes. If the apostrophe character itself occurs within the apostrophe
delimiters, it must be written as two consecutive apostrophes.

Character information may not be read into an apostrophe descriptor containing two consecutive apostrophes.

BLANK FIELD DESCRIPTOR

nX

The field descriptor for blanks is nX.

On input, n characters of the external input record are skipped.

On output, n blanks are inserted in the external output record.

1-9-8 60386200 A

TABULATION DESCRIPTOR

The Tp descriptor specifies that character position p in the external record is where the next external field
begins. Conversion, under format control, continues at character position p until another T descriptor is
encountered or until processing begins on the next external record.

p can be either greater than or less than the character position currently being processed, but it must not
exceed the record length.

On output, if the same character position is defined more than once, the latest definition will take effect.
Because of carriage control, the actual print position is at p-1 when the output is printed.

HEXADECIMAL DESCRIPTOR

Zw

The Zw field descriptor indicates the external field occupies w positions.

On input w hexadecimal digits are transmitted to the associated list element right justified and zero filled.
Leading, embedded, and trailing blanks in the input field are treated as zeros. If w is greater than the num
ber of hexadecimal digits that can be represented in the list element, the input string is truncated on the left.

On output, w hexadecimal digits are transmitted from the list element to the output field. If w is less
than the number of hexadecimal digits in the list element, the rightmost w digits are output. If w is
greater than the number of hexadecimal digits in the list element, the output field is right justified and blank
filled.

FORMAT SPECIFICATION BY ARRAY

Any formatted input/output statement can reference an array name instead of a FORMAT statement label.
The format specification in the array (beginning with a left parenthesis and ending with a right parenthesis)
must constitute a valid format specification. Any information after the right parenthesis ending the format
specification is ignored.

The format specification can be inserted in the array by a DATA statement, by a READ statement together
with an A format, or by a character assignment statement.

60386200 A 1-9-9

PRINT CARRIAGE CONTROL

The carriage control character does not exist for output records transmitted to a card punch, rotating mass
storage, magnetic tape device, or any output device other than the line printer.

The first character of an output record to be printed is used as the carriage control character, which is not
printed but controls vertical spacing of the printer. The following values are standard for FORTRAN carriage
control for line printers:

Character Action

blank Single line feed

0 Double line feed

Feed to first line of next page

+ No line feed

Failure to specify a carriage control character may cause unexpected results, because the first good character
of output data would be used as the carriage control character.

1-9-10 60386200 A

PROGRAM OPERATION
UNDER STAR OPERATING SYSTEM 1-10

Control statements direct the STAR Operating System to take specified actions for the user. If the user is
communicating interactively with the operating system, control statements are entered individually. If the
user runs a job in batch mode, the control statement cards are stored as a file. Execution of the batch
processor causes execution of each control card.

All cards in the control card record of a job have the same general format. The first element must be a
keyword of one to eight characters. Parameters may follow on the control card; their formats are determined
by the keyword. Standard separator characters (between parameters, or between the keyword and parameters)
may be any of the following:

(,/=+-

Blanks can precede keywords. Blanks to the right of the last character are ignored.

Control card information always terminates with a period or right parenthesis. If no terminator appears on the
first control card, the system assumes control information is continued on the next card, starting in column
one.

For the proper control card setup for a batch job, see the STAR Operating System Reference Manual (publi
cation no. 60384400).

FORTRAN CONTROL CARD

The STAR FORTRAN control card is of the form:

FOR TRAN (I=fn l ,B=fn2,L=fn3 ,OPT=optlist)

fnl Name of a physical file containing the FORTRAN program to be compiled

fn2 Name of a physical file to hold the compiler generated object decks or modules

fn3 Name of a physical file to hold the compiler generated listings and output

optlist Any combination, in any order of the letters A, B, C, L, M, 0, V, and Y.

All three files are of type physical and must have been created before control is transferred to the compiler.
These files may be created by the CREATE utility program provided with STAR-OS. This utility provides a
simple way to create a file with a control statement.

The compiler then opens these files at hexadecimal addresses 10000000, 30000000, and 50000000 for fnl,
fn2, and fn3, respectively.

60386200 A 1-10-1

COMPILE OPTIONS

All compiler options can be used in any combination and in any order:

Option A Requests the assembly listing

B Requests the compiler to build the object file

c Requests cross reference listing of all labels and symbolic names

L Suppresses the source listing

M Requests a memory map of all storage and register assignments for variables and
arrays

0 Requests the compiler to optimize object code. This option causes the optimization of
object code at the expense of a longer compile time

v Requests implicit vectorization of all DO loops satisfying the conditions for vectorization

y Requests a fast syntax check. The source listing and all error diagnostics of a syntactical
nature are produced.

EXAMPLE OF A FORTRAN COMPILATION AT THE TERMINAL

LOGON 9~9997 A 400SDS
CREATE<PRINT,30tU=ltT=P> I 100 I
CREATE<08J,50tU=2,T=P> I 4~ I

--~---------~------~~-----
USER READS IN A CARD DECK 10 FILE FTNTSTOO

------~-----~-~-------~-----~-~--------------~------~------~----
FORTHAN<I=FTNTSTOOtL=PRINTtB=OBJ.OPT=ABCM> I 1000 I
GIVECPR1NT,U=999999> I 20 I
LOGOFF

1-10-2 60386200 A

SAMPLE PROGRAMS 11-1

The following sample programs are coordinated with the reference section to provide specific examples of
FORTRAN statements as they can appear in complete programs.

The sample programs were run using the compiler options A, B, M, 0, and V. Only the pages of output
showing the source listing and the generated results are reproduced.

60386200 A II-1-1

PROGRAM HIERARC

This program illustrates expression evaluation as described in part I, sectfon 3. The program does the following:

One NAMELIST name, called ODD, is declared to represent the four integer variables I I, 12, 13, and 14,
and the six real variables RI, R2, R3, R4, RS, and R6.

Each variable is set to the value of an expression. Each expression is evaluated.

The NAMELIST WRITE statement prints the values of all variables in the NAMELIST list DOD, and the
program terminates.

The rules for evaluation of expressions and the rules for assignment of variables are both involved in the
following explanations.

II-I-2

The value of I I is 4 after evaluation of the expression and assignment. The division was evaluated first,
and the result was 0 because the result 0.666 ... was truncated. The result of four plus zero was four.

The value of 12 is identical to II after evaluation and a~ignment. The division was performed first, with
0.666 ... as the result. The result of 4 plus 0.666 ... was 4.666 ... , but the final result was
assigned to an integer variable and truncated.

The value of 13 after evaluation and assignment was 6SS36 . Note that within the group, evaluation is
from right to left, therefore. the result represents the number 4 to the eighth power.

The value of 14 after evaluation and assignment is 37 . The exponentiation is evaluated first, with the
result 49 . Note that the minus sign is an operator on the number S and the following term 7**2 , not
a property of the constant seven.

For RI and R2, the evaluations are identical to the evaluations of I I and 12, and the assignments float
the results.

The value of R3 after evaluation and assignment is a real number very close to the value 4304672 I
Evaluation of the exponentiations was right to left. The result would have been exactly equal to three
to the eighth power, but the calculations were done in real mode because a real constant was in the
first term evaluated.

The value of R4 is S7.3S after evaluation and assignment. The divisions are done left to right, yielding
results of 2. 7 and I .3S . The result of the addition is assigned.

The value of RS is 2.S after evaluation and assignment. Multiplication and division are in the same
hierarchical group and are handled from left to right. One times three is three, divided by two is one,
times five is five, divided by the real constant 2. is 2.5 .

The value of R6 after evaluation and assignment is 44.0 . The calculations are done in real mode because
of the real constant 4.0 .

60386200 A

STAR_FORTRAN VER.1.• - SOURCE LISTING
DDDD1 PROGRAM HIERARClOUTPUT,TAPE6=0UTPUT>
DDDD2 NAHELIST/OOO/I~,I2,I3,I4,R1,R2,R3tR4,R5,R6
02003 !!~4+2/3

DDDD4 !2=4+2./3.
DODDS 13=4••2••3
00006 !4=5-1••2+81
D0007 R1=4+2/3
OD008 R2=4+2./3.
OOD09 R3=3••2••4.
00010 R4=56+5.4/2/2
DDD11 R5=1•3/2•5/2.
D0012 R6=4.•7/2+30
00013 WRITE(6,000)
00014 STOP
00015 ENO

NUMBER OF LOOPS IN THE PROG OOOD
NO OF UNCOLLAPSABLE LOOPS DODO

&.DOD
Ii
12
13
14
R1
R2
R3
R.4
RS
R&

&.ENO
•• STOP

4,
4,
6S536,
37,
.4E+01,
.4&6&666666667E+01,
.43D4672100002E+08,
.5735E+02,
.2SE+01t
.44E+02,

••

60386200 A

11S49 A.M. FRIDAY 26TH. APRIL, 1974.
DG 01/il OD U1
D001/00D02
00il1/DDDG3
DOil1/DD004
D001/0DOG5
0001/DOD06
0001/00007
0001/00008
0001/00009
0001/00010
ODD 1/0 OD11
DOOi/00012
0001/00013
0001/00014
0001/00D15

II-1-3

PROGRAM ASSIGN

This program illustrates the assignment statement as described in part I, 5ection 4. The program does the
following:

All variable names beginning with the letter D are declared double precision. All variable names begin
ning with the letter C are declared complex. The character and logical variables are declared explicitly.

Three NAMELIST lists are declared. The first, called INIT, contains the initial values of I (for integer), R (for
real), DP (for double precision), and CP (for complex). The second, called SET, holds the variables which
represent one variable type set to another. Here the variable names indicate the nature of the variable:

ITOI
CPTODP
DPTOI

means integer set to integer
means complex set to double precision
means double precision to integer

The third NAMELIST list, called SETCL, contains the character and logical variables. The variable name
ACH4 indicates a variable of type character, 4 bytes long. The variable name ACH7T04 indicates a
7-byte character variable set to a 4-byte character variable.

The NAMELIST WRITE statements output the three NAMELIST lists, and the program terminates.

Note that the constant to which DP was assigned should have been followed by a D specification, in this case
D+O. Because the D+O did not follow, the constant was assumed to be single precision, and the last seven
digits of precision were lost. Double precision notation for constants and double precision typing for variables
must be maintained if the precision is critical. Compare the original value of DP with the value of DPTODP
in the output of the NAMELIST· Iist SET.

II-1-4 60386200 A

STAR_FORTRAN VER.1.• - SOURCE LISTING
00001 PROGRAM VTEST(OUTPUT,TAPE4=0UTPUTI
00002 REAL At3,3>, 6(3)
OiHi 0 3
00001+
00005
00006

r4AHEi..ISi;Aa;A,6
00 5 K=1,3
B<K>= 3.1

00007 5 A<L,Kl= 1.0
00008 WRITE lit, AB>
00009 A<•,1l=B<•>
00010 HRITE(lt,ABI
00011 Al11311,31=B
00012 WRITE<4,AB>
00013 A<Z,113>=8+4
00014 WRITE(lt,ABl
00015 STOP
00016 ENO

11124 A.M. FKIDAY 26TH. AP~IL, 1974.
0CJii1/ ll 00G1
0001/00002
OOOiiOOOiJ3
00()1/ll00u4
00()1/000G5
OU01/000G6
0001/00007
001)1/00008
OGJ1/00009
ODJ1/00010
OG01/00011
0001/00012
0001100013
0001/00014
0001/00015
001l1/ll0016

STATEMENT ON LINE NUMBER 0013 HAS RENDERED FOLLOWING LOOPS UNCOLLAPSAdLE
LOOP LINE NO 0013
NUMBER OF LOOPS IN THE PROG 0005
NO OF UNCOLLAPSABLE LOOPS 0001

&AB
A .1E+o1, .1E+01, .1E+o1, .1E+01, .1E+01, .1E+01, .1E+01, .1E+o1, .1E+o1,
B .31E+01, .31E+01, .31E+01,
HND

i.AB
A .31E+01, .31E+01, .31E+01, .1E+01, .1E+u1, .1E+01, .1E+il1, .1E+01, .1E+01,
B .31E+01, .31E+01, .31E+01,
F.ENO

i..AB
A .31E+o1, .31E+01, .31E+01. .1E+01, .1E+a1, .1E+01, .31E+01, .31E+01, .31£+01,
B .31E+01, .31E+01, .31E+01,
F.ENO

i.AB
A .31E+01t .71£+01, .31E+01t .1E+o1, .71E+01, .1E+o1. .31E+01, .71£+01, .31~+01,
B .31E+01, .31E+01, .31E+01,
F.ENO
•• STOP ••

60386200 A Il-i-5

PROGRAM ARRAY

This program illustrates the order of array storage as described in part I, section 2. The program does the
following:

The array A is declared and dimensioned as 50 by 50.

Two DO loops are set up and nested. All elements of the array A are referenced and set to 1.5 ,
but the elements are referenced in an order which does not reflect internal storage of array A.

Two more DO loops are set up and nested. All elements of A are referenced and set to 1.5
but the compiler can implement vector optimization because the elements are referenced in the order
in which they are stored.

The program produces no output. The program terminates.

Significant improvements in execution time result when arrays are referenced in the order of their internal
storage.

11-1-6 60386200 A

STAR_FO~HAN VER.1."' - SOJ'tCE LETING 2102 F.H. FRIDAY 26Tri. APldL, 1971+.
iJ1'G1/000C1
0Cu1/00002
0001/00003
0001/00004
JOC1/0!J005
0001/00006
OC01/00007
OGG1/00008
U001tll0009
1Hiu1/00011}

00001 PROG~AH A~RAYCOUTPUT,TA~E6=0UTPUTI
00002 ~EAL ACS0,50)
00003 JO !~ I=1,5D
00004 DO 10 J=1,5G
00005 10 ACI,J>=1.5
0 0 0 0 6 00 2 0 I= 1 1 50
00007 00 20 J=1,50
00008 20 ACJ,Il=1.5
00009 STOP
00010 END

STATEMENf ON LINE NU~8ER

LOOP LINE ~O 0004
LOOP LINE NO 0003
NUMBER OF LOOPS IN THE P~OG
NO OF UNCJLLAPSABLE LOOPS

NO OUTPUT

60386200 A

GJ05

0 !) J 4
0002

HAS 'tEtDEJ:'.EJ FOLLOWING LOOPS UNCOLLAPSABLE

II-1-7

PROGRAM VTEST

This program illustrates the assignment of arrays as described in part I, section 4. The program does the
following:

11-1-8

Array A is declared and dimensioned as three by three.

Array B is declared and dimensioned for three elements.

The NAME LIST list AB is declared to include array A and array B.

A nest of loops assigns the value 3.1 to all elements of B and the value 1.0 to all elements of A.
The NAMELIST list AB is printed.

The first three elements of A are set to the values of the three elements of B. The NAMELIST
list AB is printed.

The last three elements of A are set to the values of the three elements of B. The NAMELIST list
AB is printed.

The second, fifth, and seventh elements of A are set to the values of the three elements of B added
to the constant 4 . The NAMELIST list AB is printed. The program terminates.

60386200 A

STAR_FORTRAN VER.1.• - SOURCE LISTING 9148 ~.M. FRIDAY 2oTH.
0000! PROGRAM ASSIGN!OUTPUT:TAPE6=0UTPUTl
00002 IMPLICIT DOUBLE PRECISION(Q), COHPLEX!C)
00003 CHAKACTEK•4 ACH4,ACH4T07
00004 CHARACTER•? ACH7,ACH7T04
00005 LOGICAL LOG,ILLOG
00006 NAHELIST/lNIT/I,K,OP,CP
00007 NAMELIST/SET/ITOI,ITOR,!TOOP,ITOCP,RTOI,RTOR,RTOOP,RTOCP,

00008
00009
00010
00011
00012
00 013
00 014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00 024
00025
00026

X DPTOI,DPTOR,OPTOOP,OPTOCP,CPTOI,CPTOR,CPTOOP,CPTOCP
NAHELIST/SETCL/ACH4,ACH4T07,A:H7,ACH7T04,LOG,ILLOG
I= 47
R= 4.361
DP= 7.11223344556677889911
CP= 16.023,.45>
ITO!=!
ITOR=R
ITO DP= DP
ITOCP=CP
KTOI=I
RTOR=R
RTODP=DP
RTOCP=CP
DPTOI=I
DPTJR=R
)PTJOP=DP
DPTOCP=CP
CPTOI=I
CPTOR=R

00027 CPTJDP=DP
00028 CPTOCP=CP
00029 ~RITE<6,INIT>
00030 WRITEl6,SETl
00031 ACH4='STAk'
00032 ACH7=7HFORTRAN
00033 ACH4T07=ACH7
00034 ACH7T04=ACH4
00035 LOG=.TRUE.
00036 llLOG=.NOT.LOG
00037 WKITElb,SETCLl
00038 STOP
00039 END

NUMBER OF LOOPS IN TrlE PROG 0000
~O OF UN:OLLAPSABLE LOOPS 0000

&!NIT
I
R
DP
CP
&END

&SET
!TOI
!TOR
I TOOP

ITOCP
RTOI
RTOR
RJ.QDP
RTOCP
DPTOI
DPTOR
DP TOOP
OPTOCP
CPTOI
CPTOR
CPTODP
CPTOCP
&ENO

&SETCL
ACH4
ACH4T07
ACH7
ACH7T04
LOG
11.,.L,OG
&ENO
•• STOP

47,
.1+361E+01,
.71122334455668C103778489870+01,

=I .8023E+01, .45E+OOI,

8,
047£+02,
.4361E+01,
.7112233445567£+01,
.8023E+01,
.470+02,
.436099999999998999555828050+01,
.711223344556680103776489870+01,
.8023000000000021+55635694790+01,

:(.47E+02, .O>,
:(.4361E+01, .01,
= (• 0' • 0).
=C .8023E+01, .45E+OOl,

'STAR',
'FOk.T',
'FORTRAN';
'STAtt',
.TRUE.,

.FALSE.,

....

60386200 A

APdL, 1971+.
il~il1/ilfiOJ1

iJOQ1/000G2
Oli01/000C3
0'101/000[4
Otlil1/000u5
OuJ1/000G6
OOJ1/u0007
0001/000L8
OuJ1/000u9
tiuil1/00010
01J01/00011
OiJJ1/00012
Ouili/00013
u ~ il 110GO11+
OOili/00015
OfJ01/00016
0001/00017
ilOQ1/UiJ018
0001/0001':1
00i11/00020
OJOi/00021
iiG.U/00022
OQ01/00023
Ou01/00021+
Ou01/JOiJ25
OIJ01/00026
0d01/00027

0001/00028
Ouill/00029
00il1/00030
Ou01/00031
iJ.101100032
O!lili/00033
0J(J1/00034
OC01/il0035
0Gil1/00036
OiJil1/00037
Ow01/0il038
Gao1100039
Qi)(]1/0004(;

Il-1-9

PROGRAM CRANK

This program illustrates the use of the FORMAT statement as described in part I, section 9. The program
does the following:

Double precision, character, and logical variable names are declared explicitly.

A double precision constant, which is 1T to 30 places, is assigned to the variable DPMANGLE. The
variable PIMANGLE is a single precision real representation of DPMANGLE. A 5-digit integer is assigned.
The next six assignments set variables to integer, real, and double precision representations of zero and
one. A character and a logical variable are assigned.

The WRITE statement outputs the variable PIMANGLE in various field widths under control of the
F, E, and G field descriptors. The variable DPMANGLE is printed in various field widths under control
of the D field descriptor. Note the asterisk which appears when the field width is not great enough.

The WRITE statement outputs the variable IOOOCH in three widths under control of the I field
descriptor. The asterisk indicates insufficient field width.

The WRITE statement outputs the internal representations of the integer, real, and double precision
constants zero and one under control of the Z field descriptor.

The WRITE statement outputs the variable LEEDGE in L format. Note that the L descriptor
generates a representation which is not in the form of a logical constant. The variable CHEERZ is
printed five times under control of the A and R field descriptors.

11-1-10 60386200 A

STAR.. FORTRAN
00001
00002
00003
OOOOlt
00005 -ooiio&--

VER.1.• - SOURCE LISTING
PROGRAM CRANK(OUTPUT,TAPE6=0UTPUT)
DOUBLE PRECISION DPHANGLE,DPZERO,OPONE
CHARACTER•5 CHEERZ
LOGICAL LEEDGE
OPHANGLE= 3.1415926535897932~84626433832790+0 - - ---Pii1A"N6ff=oPHANGLE -- - --- -- - - --- -------- - ------

IooocH= 23754
IZERO= 0
IONE= 1
RZERO= o.
RONE= 1.
DPiEifo~-- o ~
OPONE= 1.
CHEERZ=

0

5HURGLE
LEEDGE=.FALSE.

00001
00008
00009
00010
OOJl_1t
00012
00013
0001ft
00015
00016
00017 11_0

NRITE(6 11101 (PIMANGLE,I=119l,COPHANGLE,K=1,4J
FORHAJ OHJ,_1_0X, I PIM~NGl,.E =. ,F8.4/20X t. =' ~F12 .6/

x 2ox,•:•,F20.10112ox, 1 =•1E8.4/20X,•=•,E12.&1
X 20X,'=',EZ0.10//20X,'=',G8.4/20X,'=',G12.6/

·x 2ox,•= 1 ,G20.1011
x 1ox,•0PHANGLE = 1 ,D8.4/20X, 1 =•,012.6/20X,•:•,020.101
x 20~,·= 1 ,036.30J

3159 P.K. FRIDAY 2&TH. APRIL, 197ft.
0001/00001
0001/00002
oiloi1i10003
0001/0000lt

_0001/00005
0001/00006
0001/00007
0001100008
0001100009
0001/00010
0001100011
0001100012
0001100013
0001/00014
0001/00015
0001100016
0001/00017 --------·-·-- ------·-- -- 00017000I8 _____ _
0001/00019
0001/00020
0001/00021
0001/00022
0001100023 00018

00019
00020
00021
00022

WRITE(61 1301 IOOOCH,IOOOCH,IOOOCH
130 -- - FORHAHi5x, 'IOOOCH =•,i:3113x,t5ii3i<";t1ilf-- -

NRITE16t1401 IZER01IONE1RZERO,RONE,OPZER01DPONE
FORMAT(/15X, 1 HEX VALUES ='tZ32/ 11(27X,Z32/ll
WRITEC6,1601 LEEOGE,LEEOGE,ICHEERZ,N=1151

- - --------------------------- 0001/000Zlt

140

00023 160 FORMATC/1X,'LEEDGE = 1 ,L1,sx,•= 1 ,L7//
x 30 x'. CHE ERZ--=-; ; A8' i =' ; A5' '=' 'A3' '=' 'R5 t • =. 'RB I

00024 STOP
00025 END

STATEMENT ON LINE NUMBER 0022 HAS RENDERED FOLLOWING LOOPS UNCOLLAPSABLE
LOOP LINE NO 0022

STATEMENT ON LINE NUMBER 0Q16 HAS RENDERED FOLLOWING LOOPS UNCOLL,APS~~~I;: _________________ _
LOOP LINE NO 0016

STATEMENT ON LINE NUMBER 0016 HAS RENDERED FOLLOWING LOOPS UNCOLLAPSABLE
LOOP LINE NO 0016
NUMBER OF LOOPS IN THE PROG 0003
NO OF UN~OLLAPSABLE LOOPS 0003

PlHANGLE

3.H1593
3.1415926536

=•3142E+O
= .314159E+01

.3141592654E+01

=•11+2
= 3.14159

3.141592654

DPHANGLE =•3142D+O
·3141590+01

.31415926540+01
.314159265358979323846264338229D+01

IOOOCH =•54

LEEDGE =F

,,. • STOP ••

60386200 A

23754
23754

HEX VALUES 0000000000000000

F

0000000000000001
80000 O 000-D 00 O ii 0 O
FF02~00000000000

80000000000000008000000000000000
FF024000000000008000000000000000

CHEERZ URGLE=URGLE=URG=URGLE=ODDURGLE

0001/00025
0001/00026
0001/00027

0001/00028
· oooiioo-oicf-
0001100030
0001/00031

II-1-11/11-1-12

CHARACTER SET A

The following is the CDC standard ASCII 64-character subset:

Character Punch Hexadecimal Character Punch Hexadecimal

b space no punch 20 A 12-1 41
exclamation sign 12-8-7 21 B 12-2 42

II
quote 8-7 22 c 12-3 43

number sign 8-3 23 D 12-4 44
$ dollar sign 11-8-3 24 E 12-S 4S
% percent sign 0-84 2S F 12-6 46
& ampersand 12 26 G 12-7 47
I

apostrophe 8-S 27 H 12-8 48
(left parenthesis 12-8-S 28 I 12-9 49
) right parenthesis 11-8-S 29 J 11-1 4A
* asterisk 11-8-4 2A K 11-2 4B
+ plus sign 12-8-6 2B L 11-3 4C

comma 0-8-3 2C M 114 4D
- minus sign 11 2D N 11-S 4E

period 12-8-3 2E 0 11-6 4F

I slash 0-1 2F p 11-7 so
Q 11-8 Sl

0 0 30 R 11-9 S2
1 1 31 s 0-2 S3
2 2 32 T 0-3 S4
3 3 33 u 04 SS
4 4 34 v 0-S S6
s s 3S w 0-6 S7
6 6 36 x 0-7 S8
7 7 37 y 0-8 S9
8 8 38 z 0-9 SA
9 9 39

[left bracket 12-8-2 SB
colon 8-2 3A \ reverse slash 0-8-2 SC
semi-colon 11-8-6 3B l right bracket 11-8-2 SD

< less than sign 12-84 3C A circumflex 11-8-7 SE
= equals sign 8-6 3D underline 0-8-S SF
> greater than sign 0-8-6 3E
@ commercial at 84 40

Since collating is done by hexadecimal value, this list represents the collating sequence.

60386200 A A-1 I A-2

LIBRARY FUNCTIONS

INTRINSIC FUNCTIONS

Mathematical Number of Symbolic Type of:
Intrinsic Function Definition Arguments Name Argument Function

Absolute Value lal ABS Real Real
IABS Integer Integer
DABS Double Double

Truncation Sign of a times AINT Real Real
largest integer-;:;; la I INT Real Integer

ID INT Double Integer

Remaindering aI(mod a2) 2 AMont Real Real
Mont Integer Integer

Choosing Largest Value Max(aI ,a2, ...) n AMAXO Integer Real
AMAX I Real Real
MAXO Integer Integer
MAXI Real Integer
DMAXI Double Double

Choosing Smallest Value Min(a I ,a2, ...) n AMINO Integer Real
AMINI Real Real
MINO Integer Integer
MINI Real Integer
DMINI Double Double

Float Conversion from FLOAT Integer Real
integer to real

Fix Conversion from IFIX Real Integer
real to integer

Transfer of Sign Sign of a2 times la1 I 2 SIGN Real Real
ISIGN Real Real
DSIGN Double Double

tThe function MOD or AMOD (ai,a2) is defined as a1-la1/a2 la2, where lxl is the integer whose magnitude
does not exceed the magnitude of x and whose sign is the same as x.

B

60386200A B-L

Mathematical Number of Symbolic Type of:
Intrinsic Functions Definition Arguments Name Argument Function

Positive Difference a 1-Min(a l •a2) 2 DIM Real Real
IDIM Integer Integer

Obtain Most Significant SNGL Double Real
Part of Double Precision
Argument

Obtain Real Part of REAL Complex Real
Complex Argument

Obtain Imaginary Part of AIM AG Complex Real
Complex Argument

Express Single Precision DBLE Real Double
Argument in Double
Precision Form

Express Two Real Arguments a1+a2vCT 2 COMPLX Real Complex
in Complex Form

Obtain Conjugate of a 1 CONJG Complex Complex
Complex Argument

B-2 60386200 A

BASIC EXTERNAL FUNCTIONS

Number of Symbolic Type of:
Basic External Function Definition Arguments Name Argument Function

Exponential ea EXP Real Real
DEXP Double Double
CEXP Complex Complex

Natural Logarithm loge(a) ALOG Real Real
DLOG Double Double
CLOG Complex Complex

Common Logarithm log10(a) ALOGlO Real Real
DLOGIO Double Double

Trigonometric Sine sin(a) SIN Real Real
DSIN Double Double
CSIN Complex Complex

Trigonometric Cosine cos(a) cos Real Real
DCOS Double Double
ccos Complex Complex

Hyperbolic Tangent tanh{a) TANH Real Real
Square Root (al/2 SQRT Real Real

DSQRT Double Double
CSQRT Complex Complex

Arctangent arctan(a) ATAN Real Real
1 DATAN Double Double

arctan(a 1 / a2) 2 ATAN2 Real Real
2 DATAN2 Double Double

Remaindering ai(mod a2) 2 DMODt Double Double

Modulus (a2+b2)1/2 for a+bi CABS Complex Real

Basic External Function tan(a) TAN Real Real
DTAN Double Double

Arcsine arcsin(A) ASIN Real Real
Arccosine arccos(A) ACOS Real Real

tThe function DMOD (ai,a2) is defined as a1-{a1/a2)a2, where lxl is the integer whose magnitude does not
exceed the magnitude of x and whose sign is the same as the sign of x.

60386200 A B-3/B-4

MATHEMATICAL LIBRARY
FUNCTIONS DESCRIPTIONS c

Specifications in this appendix are intended as guidelines and are subject to change. The routines included are
listed below with the number of the page where each description begins.

ALOG C0 2 DAT AN C-22

ALOGlO C-3 DATAN2 C-22

ASINCOS C-4 DEXP C-23

ATAN C-5 DLOG C-24

ATAN2 C-6 DLOGIO C-25

CABS C-7 DSINCOS C-26

ccos C-8 DSQRT C-27

CEXP C-10 DTAN C-28

CLOG C-11 EXP C-13

cos C-16 SIN C-14

COT AN C-19 SQRT C-17

CSIN C-9 TAN C-18

CSQRT C-12 TANH C-21

60386200 A C-1

ALOG

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the natural logarithm of a real number.

Y = ALOG(X)

Where X is the single precision floating point argument, and Y is the result in single
precision floating point.

Return with result in Y

INDEFINITE ARGUMENT IN ALOG
ZERO ARGUMENT IN ALOG
NEGATIVE ARGUMENT IN ALOG

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from AWG.

Storage: 70 words {shared with ALOGlO)

Accuracy: 45 bits approximately

Mathematical Method: X = 2n*w where 1 /2 ~ W < 1

C-2

and n is an integer

For X outside the range {J2/2 ~ X < J2)

Let T = (W - J 2/2)/(W + J 2/2)

LOGe(X) = (N - 1/2)*WGe(2) + LOGe{{l + T)/(1 -T))

For X in the range (J2/2 ~ X < J2)

Let T = (X - 1)/(X + I)

LOGe(X) = LOGe{(l + T)/(1 -T))

Where
6

LOGe((l + T)/(1 -T)) 1 2T* L:cnT2n
n=O

60386200 A

Reference:

Purpose:

Usage:

Normal Return:

Error Messages:

CO=l.0000 00000 00000 01720 16224 E+OO

C1=3.3333 33333 32761 81768 85283 E-01

C2=2.0000 00003 09807 . 78908 99307 E-01

C3=1.4285 70799 46082 73472 61398 E-01

C4=1.llll 71831 83715 43428 06719 E-01

C5=9.0609 35658 17935 37172 14254 E-02

C6=8.4191 86575 86305 31375 34817 E-02

"A Study of Mathematical Approximation"
COC Publication Number 60114500, Rev. A., p. 26

ALOG10

To compute the logarithm to the base 10 of a real number.

Y = ALOG 1 O(X)

Where X is the single precision floating point argument, and Y is the result in single
precision floating point .

Return with result in Y.

INDEFINITE ARGUMENT IN ALOG 10
ZERO ARGUMENT IN ALOG 10
NEGATIVE ARGUMENT IN ALOG 10

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from ALOG 10.

Storage: 70 words (shared with ALOG)

Accuracy: 45 bits approximately

Mathematical Method: LOG1o(X) = LOG1o(e)*LOGe(X)

Where

LOGe(X) is computed as described for the function ALOG.

60386200 A C-3

ASINCOS

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the arcsin or the arccos of a real number.

Y = ASIN(X) or Y = ACOS{X)

Where X is the single precision floating point argument, and Y is the result in single
precision floating point.

Return with result in Y.

INDEFINITE ARGUMENT IN ASIN {ACOS)
ARGUMENT .GT. ONE IN ASIN {ACOS)

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from ASIN.

Storage: 65 words

Accuracy: 45 bits approximately

Mathematical Methods: Y = ASIN(X) X = 0

References:

C4

Y = - ASIN{X) X > 0

ACOS(X) = PI/2 - ASIN(X)

if 0.LE.X.LE.1/2 U = X ASIN(X) = ASIN(U)

if 1/2.LT.X.LE.1 U = SQRT(l - X/2) ASIN(X) = PI/2 - 2*ASIN(U)

ASIN(U) is calculated from a polynomial of degree 22

6400 FORTRAN Extended Library

60386200 A

Purpose:

Usage:

Normal Return:

Error Messages:

ATAN

To compute the arctangent of a real number.

Y = ATAN(X)

Where X is the single precision floating point argument, and Y is the result in single
precision floating point.

Return with result in Y.

INDEFINITE ARGUMENT IN ATAN

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from ATAN.

Storage: 79 words

Accuracy: 45 bits approximately

Mathematical Method: Let A = AT AN(X), then - PI/2 ~ A ~ + PI/2

Let P = TAN(PI/16), T = TAN(3Pl/16)

60386200 A

AT AN(X) = sign(X)* ATAN(V), V = ABS(X)

ATAN(V) = ATAN(R) + C, R, C defined below

0 ~ V < P, R = V, C = 0.0

P ~ V < J2-1, R = (V - P)/(1 + V*P), C = PI/16

J2 - 1 < V < 1, R = (V - T)/(1 + V*T), C = 3Pl/16

1 ~ V < J2 + 1, R = (V*T - 1)/(V + T), C = 5Pl/16

J2 + 1 ~ V, R = (V~P - 1)/(V + P), C = 7Pl/19

ATAN(R) = R - R*Q, Z = R2

no + n 1 z + n1 z2 + n3 z3
Q = ----------

do + d1 z + d2 z2 + d3 z3

no = .13 513 50000 00000 E + 06

n1 = .21700 74603 93686 E + 06

n1 = .97799 30329 54140 E + 05

n3 = .10721 37452 05930 E + 05

do= .17499 99999 99999 E - 11

C-5

Reference:

ATAN2

Purpose:

Usage:

Normal Return:

Error Me~ges:

d 1 = .45044 99999 99981 E + 05

d2 = .45308 82013 16777 E + 05

d3 = .85032 75632 14686 E + 04

6400 FORTRAN Extended Library

To compute the arctangent of the ratio of two real numbers.

B = ATAN2(Y,X)

Where X and Y are the single precision floating point arguments, and B is the single
precision floating point result.

Return with result in B.

INDEFINITE ARGUMENT IN ATAN2
x = y = 0.0

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from ATAN2.

Storage: 98 words

Accuracy: 45 bits approximately

Mathematical Method: Let B = ATAN2(Y,X), then B is the argument of the complex number X + iY and
- PI~ B ~+PI

B=

C-6

[

sign (Y)*PI/2, X = 0

ATAN(Y/X), X > 0

ATAN(Y /X) + sign (Y)*PI, X < 0

60386200 A

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the modulus of a complex number.

A= CABS(Z)

Where Z is the complex valued argument and A is the real result.

Return with result in A.

INDEFINITE ARGUMENT IN CABS
FLOATING OVERFLOW IN CABS

The message is written on the standard output ftle and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from CABS.

Storage: 32 words

Accuracy: 45 bits approximately

Mathematical Method: Let Z = X + iY, then

A = (X2 + y2)1/2

The square root function is evaluated by the machine instruction SQRT.

60386200 A C-7

ccos

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the complex valued cosine of a complex valued number.

R = CCOS(Z)

Where Z is the complex valued argument and R is the complex valued result.

Return with result in R.

INDEFINITE ARGUMENT IN CCOS
ABS (REAL -PART) TOO LARGE IN CCOS
IMAG. PART TOO LARGE IN CCOS

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite (both real and imaginary parts), and a normal exit is
taken from CCOS.

Storage: 72 words (shared with CSIN)

Accuracy: 45 bits approximately

Mathematical Method: Let Z = X + iY, R = U + iV, then

Reference:

C-8

U = COS(X) * (eY + e-Y)/2

V = [-SIN(X)*(eY ~ e-Y)/2

-SIN(X)*Y* L cn y2n
n=O

Where

for abs (Y) ~ 0.5

for ab(Y) < 0.5

Co = .99999 99999 99999 98116 72 E + 00

C1 = .16666 66666 66672 12323 95 E + 00

C2 = .83333 33333 07759 961

C3 = .19841 27027 90799 9

C4 = .27556 98073 56154

C5 = .25172 61882 51

E - 02

E - 03

E - 05

E -07

The real valued sine, cosine, and exponential functions are evaluated as described in
the respective routines.

If abs(X) > .110534964875444 E + 15 or if Y > 19905.80
the result is set to indefinite and the appropriate error message is issued.

'_'ComputeiApprbxiinations", Hart, Cheyney, Lawson _et al, John-_Wtley & Sons
(New York) 1968 (Index SINH 1985),

60386200 A

Purpose:

Usage:

. Normal Return:

Error M~ges:

To compute the complex valued sine of a complex valued number.

R = CSIN(Z)

Where Z is the complex valued argument and R is the complex valued result.

Return with result in R.

INDEFINITE ARGUMENT IN CSIN
ABS (REAL PART) TOO LARGE IN CSIN
IMAGINARY PART TOO LARGE IN CSIN

CS!N

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite (both real and imaginary parts), and a normal exit is
taken from CSIN.

Storage: 72 words (shared with CCOS).

Accuracy: 45 bits approximately

Mathematical Method: Let Z = X + iY, R = U + iV, then U = SIN(X)*(eY + e-Y)/2

U = SIN(X)*(eY + e-Y)/2

V; [COS(X)*(eY ~ e-Y)/2

COS(X)*Y* L: Cn y2n
n=O

for abs(Y) ~ 0.5

for abs(Y) < 0.5

Where Cn are as given in routine CCOS.

Real valued sine, cosine and exponential functions are evaluated as descnbed in the
respective routines.

60386200 A

If abs(X) > .110534964875444 E + 15
or if Y > 19905.80
the result is set to indefinite and the appropriate error message is issued.

C-9

CEXP

Purpose:

Usage:

Normal Return:

Error Messages:

To comp~te the complex valued exponential of a c0mplex valued number.

R = CEXP(Z)

Where Z is the complex valued argument and R is the complex valued result.

Return with result in R.

INDEFINITE ARGUMENT IN CEXP
REAL PART TOO LARGE IN CEXP
ABS (IMAG PART) TOO LARGE IN CEXP

The message is written on the standard output ftle and displayed on the user's terminal;
the result is set to indefinite (both real and imaginary parts), and a normal exit is
taken from CEXP.

Storage: 49 words

Accuracy: 45 bi ts approximately

Mathematical Method:· Let Z = X + iY, R = U + iV

then

U = COS(Y)*eX V = SIN(Y)*eX

Real valued sine, cosine, .and exponential functiOns are evaluated as described in the
respective procedures.

If X > 19905.80 or if ABS(Y) > .110534964875444 E + 15

the result is set to indefinite and the appropriate error message is issued.

C-10 60386200 A

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the complex valued logarithm of a complex valued number.

R = CLOG(Z)

Where Z is the complex valued argument and R is the complex valued result.

Return with result in R.

INDEFINITE ARGUMENT IN CLOG
ZERO ARGUMENT IN CLOG
FLOATING OVERFLOW IN CLOG

CLOG

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite (both real and imaginary parts) and a normal exit is
taken from CLOG.

Storage: 46 words

Accuracy: 45 bits approximately

Mathematical Method: Let Z = X + iY, R = U + iV

U = LOGe((X2 + y2)1/2)

V = arctangent (Y/X)

The real valued log and arctangent functions are computed as described for the functions
ALOG and ATAN2. The square root is computed by the machine instruction SQRT.

60386200 A C-11

CSQRT

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the complex valued square root of a complex valued argument.

R = CSQRT(Z)

Where Z is the complex valued argument and R is the complex valued result.

Return with result in R.

INDEFINITE ARGUMENT IN CSQRT
FLOATING OVERFLOW IN CSQRT

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite (both real and imaginary parts) and a normal exit is
taken from CSQRT.

Storage: 42 words

Accuracy: 45 bits approximately.

Mathematical Method: Let Z = X + iY, R = U + iV

A = (X2 + y2)1/2

B = (A + ab(X)/2)1/2

C = abs(Y)/2B

IfX~O U=B
V = C * sign(Y)

IfX<O U=C
V = B * sign(Y)

If X = 0 and Y = 0, U = 0
V=O

The square root function is computed by means of the machine instruction SQRT.

C-12 60386200 A

Purpose:

Usage:

Normal Return:

Error Messages:

EXP

To compute the exponential of a real number.

Y = EXP(X)

Where X is the single precision floating point argument, and Y is the result in single
precision floating point.

Return with result in Y.

INDEFINITE ARGUMENT IN EXP
ARGUMENT TOO LARGE, FLOATING OVERFLOW IN EXP

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from EXP.

Storage: 55 words

Accuracy: 45 bits approximately

Mathematical Method: eX = 2K * 2L/l6 * 2F/l6, where

60386200 A

K = [N/16] = integral part of bracketed quantity

if x ~ 0

= [N/16] -1

L = N modulo 16

if x < 0

if x ~ 0

= 16 - (N modulo 16) X < 0

N = [16 * (X/lo~ (2))]

F = {16 * {X/lo~(2))) - N {O ~ abs{F) < 1)

The factor 2L/l6 is obtained by table lookup.

The product 2K*2L/l6 is obtained by adding K to the exponent of 2L/l6.

2F/l6 = (Q + F * P)/{Q - F * P)

Q = QO I * F2 + QOO

P = POI * F2 + POO

QOO = .53283 25426 30989 E + 4

QOi = .i E + 1

POO = .1154I 60545 735I 7 E + 3

POI = .36IOO 70989 48762 E - 2

If X < - I 9842.03 I the result is set to zero and a normal return is taken.

C-I3

Reference:

SIN

Purpose:

Usage:

Normal Return:

Error Messages:

If X > 19905.80 the result is set to indefinite and the error message FLOATING
OVERFLOW is issued.

"Computer Approximations", Hart, Cheyney, Lawson et al, John Wiley & Sons
(New York), 1968 pp. 96-104.

6400 FORTRAN Extended Library

To compute the sine of a real argument expressed in radians.

Y = SIN(X)

Where X is the single precision floating point argument, and Y is the result in single
precision floating point.

Return with result in Y.

INDEFINITE ARGUMENT IN SIN
ARGUMENT TOO LARGE, ACCURACY LOST IN SIN

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from SIN.

Storage: 77 words (shared with COS).

Accuracy: 45 bits approximately.

Mathematical Method: Let R = abs(X)*4/PI; N = (R] = integral part of R

C-14

T = R-N

K = N modulo 8,

If K = 0,

K = l,

K = 2,

K = 3,

K = 4,

K = 5,

K = 6,

SIN(X)

SIN(X)

SIN(X)

SIN(X)

SIN(X)

SIN(X)

SIN{X)

(0 :s;;;; T < 1)

K = 0, 1, 2, 3, 4, 5, 6, 7

SIN(Z), Z = T

COS{Z), Z = 1 - T

COS(Z), Z = T

SIN(Z), Z = 1 - T

- SIN(Z), Z = T

- COS (Z), Z = 1 - T

- COS(Z), Z = T

SIN(X) = - SIN(Z), Z = 1 = T

60386200 A

Reference:

60386200 A

6 6
SIN(Z) = z L Snr2n; COS(Z) = L Cn r2n

n=O n=O

So = .78539 81633 97448 30701 4 D + 00

S1 = - .80745 51218 82805 30192 D - 01

S2 = .24903 94570 18873 6117 D - 02

S3 = - .36576 20415 84556 95

S4 = .31336 16216 61904

S5 = - .1757149292755

s6 = .68771 00349

D - 04

D - 06

D - 08

D - 11

Co = .99999 99999 99999 94429 D + 00

C1 = - .30842 51375 34037 22987 D + 00

C2 = .15854 34424 37345 682 D - 01

C3 = - .32599 18864 54040 01

C4 = .35908 59123 36036

C5 = - .24609 45716 614

c6 = .I 1363 81269 7

D - 03

D - 05

D - 07

D - 09

If abs(X) > .110534964875444 E + 15, the result is set to indefinite and the
appropriate error message is issued.

"Computer Approximations", Hart, Cheyney, Lawson et al, John Wiley & Sons
(New Y otk) 1968 p. 117 (INDICES SIN 3043, COS 3823).

C-15

cos

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the cosine of a real argument expressed in radians.

Y = COS(X)

Where X is the single precision floating point argument, and Y is the result in single
precision.

Return with result in Y.

INDEFINITE ARGUMENT IN COS
ARGUMENT TOO LARGE, ACCURACY LOST IN COS

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from COS.

Storage: 77 words (shared with SIN).

Accuracy: 45 bits approximately.

Mathematical Method: Let R = abs(X)*4/PI; N = integer part (R)

C-16

T = R - N (0 ~ T < 1)

K = (N + 2) modulo 8, K = 0, 1, 2, 3, 4, 5, 6, 7

Then COS(X) = SIN(X)

where SIN(X) is computed as described for each value of K in the description of
the SIN function. If abs(X) > .110534964875444 E + 15, the result is set to
indefinite, and the appropriate error message is issued.

60386200 A

Usage:

Normal Return:

Error Messages:

SQRT

To compute the square root of a real number.

Y = SQRT(X)

Where X is the single precision floating point argument, and Y is the single precision
floating point result.

Return with result in Y.

NEGATIVE ARGUMENT IN SQRT
INDEFINITE ARGUMENT IN SQRT

The message is written on the standard output file and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from SQRT.

Storage: 25 words

Accuracy: 45 bits approximately.

Mathematical Method: The square root function is computed by means of the machine instruction SQRT.

60386200 A C-17

TAN

Purpose:

Usage:

Normal Return:

Error Me~es:

To compute the tangent of a real number expressed in radians.

Y = TAN(X)

Where X is the single precision floating point argument, and Y is the single precision
floating point result.

Return with result in Y.

INDEFINITE ARGUMENT IN TAN
MAGNITUDE OF ARGUMENT IS TOO LARGE

ACCURACY LOST IN TAN
FLOATING OVERFLOW IN TAN

The message is written on the standard output file and displayed on-.the user's terminal;
the result is set to indefinite and a normal exit is taken from TAN.

Storage: · 98 words (shared with COTAN)

Accuracy: 45 bits approximately

Mathematical Method: Let R = abs(X*8/PI), N = [Rl = integral part of R

C-18

Z = R - N (O ~ Z < 1)

N = L modulo 8; K = [L if 0 ~ L ~ 3

(7 - L) if 4 ~ L ~ 7

If M is even (X reduces to interval [O, PI/2])

Then for

K = 0, TAN(X) = sign(X)*TAN(Y) where Y = Z

K = 1, TAN(X) = sign(X)*(l - TAN(Y))/(1 + TAN(Y)), where y = 1 - Z

K = 2, TAN(X) = sign(X)*(l + TAN(Y))/(1 - TAN(Y)), where Y = Z

K = 3, TAN(X) = sign(X)*(l/TAN(Y)) where Y = 1 -z

If M is odd (X reduces to interval [PI/2, PI])

Then for

K = 0, T AN(X) = - sign(X)*T AN(Y) where Y = 1 - Z

K = 1, TAN(X) = - sign(X)*(l - TAN(Y))/(1 + TAN(Y)) where Y = Z

K = 2, TAN(X) = - sign(X)*(l + TAN(Y))/(1 - TAN(Y)) where Y = 1- Z

K = 3, TAN(X) = - sign(X)*(l/TAN(Y)) where Y = Z

60386200 A

Reference:

Purpose:

Usage:

Normal Return:

Error Me~ges:

60386200 A

Where
7

TAN(Y) = Y I: Cny2n
n=O

Co= .39269 90816 98721 2163 E + 0

C1 = .20186 37804 74456 405 E - 1

C2 = .12451 97277 23964 36 E-2

C3 = . 77724 49638 61939 E-4

C4 = .48568 62790 1411 E-5

C5 = .30407 65954 617 E-6

c6 = .18381 90939 79 E-7

C7 = .15320 04254 E-8

If X = PI/2, the error message FLOATING OVERFLOW is issued.

If abs(X) > (247 - 1), the error message MAGNITUDE OF ARGUMENT TOO LARGE,
ACCURACY LOST is issued.

"Computer Approximations", Hart, Cheyney, Lawson et al, John Wiley & Sons,
(New York), 1964, (Index No. TAN 4186).

COT AN

To compute the contangent of a real argument expressed in radians.

Y = COTAN(X)

Where X is the single precision floating point argument, and Y is the single precision
floating point result.

Return with result in Y

INDEFINITE ARGUMENT IN COTAN
MAGNITUDE OF ARGUMENT IS TOO LARGE,

ACCURACY LOST IN COTAN
FLOATING OVERFLOW IN COTAN

The message is written on the standard output file, and displayed on the user's
termin.al; the result is set to indefinite and a normal exit is taken from COTAN.

C-19

Storage: 98 words (shared with TAN)

Accuracy: 45 bits approximately.

Mathematical Method: Let R = abs(X * .8/PI), N = [R] = integral part of R

C-20

Z=R-N {O ~ Z < 1)

N = L modulo 8 K = r L if 0 ~ L ~ 3

L(7 - L) if 4 ~ L ~ 7

M = [abs(X * 2/PI)] = integral part of bracketed quantity.

If M is even (X reduces to interval [O, PI/2]).

Then for

K = 0, COTAN{X) = sign{X) * {l/TAN{Y)) where Y = Z

K = 1, COTAN(X) = sign(X) * {l + TAN(Y))/{l - TAN{Y)) where Y = 1 - Z

K = 2, COTAN(X) = sign(X) * {l - TAN(Y))/{l + TAN{Y)) where Y = Z

K = 3, COTAN{X) = sign(X) * TAN{Y) where Y = 1 - Z

If M is odd (X reduces to interval [PI/2, PI])

Then for

K = 0, COTAN{X) = - sign(X) * {1/TAN(Y)) where Y = 1 - Z

K = 1, COTAN{X) = - sign(X) * {1 + TAN(Y))/{l - TAN{Y)) where Y = Z

K = 2, COTAN(X) = - sign{X) * {l - TAN(Y))/{l + TAN{Y)) where Y = 1 - Z

K = 3, COTAN(X) = - sign(X) * TAN{Y) where Y = Z

where
7

TAN(Y) = y L cny2n
n=O

where Cn are constants defined in description of function TAN.

If X = 0, the error message FLOATING OVERFLOW is issued.

If abs(X) > (i4 7 - 1), the error message MAGNITUDE OF ARGUMENT TOO LARGE,
ACCURACY LOST is issued.

60386200 A

Usage:

Normal Return:

Error Me~ges:

TANH

To compute t11.e hyperbolic tangent of a real argument expressed in radians.

Y = TANH(X)

Where X is the single precision floating point argument, and Y is the single precision
floating point result.

Return with result in Y.

INDEFINITE ARGUMENT IN TANH

The message is written on the standard output file, and displayed on the user's
terminal; the result is set to indefinite and a normal exit is taken from TANH.

Storage: 48 words.

Accuracy: 45 bits approximately.

Mathematical Method: For 0 ~ abs(X) ~ .12

Reference:

60386200 A

5
TANH(X) = x L cnx2n

Where

Co= 1

C1 = - 1/3

C2 = 2/15

C3 = - 17/315

C4 = 62/2835

n=O

C5 = - 1382/155925

for .12 < abs(X) ~ 18.0

TAHN(X) = (eX - e-X)/(eX + e-X)

= 1 - (2/(e2X + 1))

Where the exponential function is computed as described for function EXP.

for abs(X) > 18.0

T ANH{X) = sign(X) * 1.0

6400 FORTRAN Extended Library.

C-21

DATAN
DATAN2

Purpose:

Usage:

Normal Return:

Error Messages:

To compute in double precision the arctangent of a double precision number, or the
arctangent of the ratio of two numbers.

Z = DATAN(Y) or Z = DATAN2(Y, X)

Where X and Y are double precision floating point arguments, and Z is the result in
double precision.

Return with result in Z.

INDEFINITE ARGUMENT IN DATAN {DATAN2)
X = Y = 0.0 IN DATAN (DATAN2)

If any of the above error conditions occur, the message is written on the standard
output file and displayed on the user's terminal; the result is set to indefinite and
a normal exit is taken fron DATAN.

Storage: 235 words.

Accuracy: 90 bits approximately.

Mathematical Method: For DATAN(Y) let X = 1 then DATAN(Y) = DATAN2(Y, X)

Let Z = MIN(ABS{X), ABS(Y))/MAX{ABS(X), ABS(Y))

Let V = ABS(Y/X)

DATAN(V) DATAN(Z) if ABS(Y) .LE. ABS{X)

PI/2 - DATAN{Z) if ABS{X) .LT. ABS{Y)

C-22

~ere DATAN(Z) is calculated as follows

Let P = TAN{PI/16), T = TAN{3PI/16)

DATAN(Z) = DAT AN(R) + C R and C defined below

O.LE.Z.LT.P R=Z

O.LE.Z.LT.SQRT{2) - 1 R = (Z - P)/{l + Z * P)

SQRT{2) - 1.LE.Z.LT.1 R = (Z - T)/{l + Z * T)

1.LE.Z.LT.SQRT{2) + 1 R = (I - Z * T)/{Z + T)

SQRT{2) + 1.LE.Z R = (1 - Z * P)/{Z + P)

C=O

C = PI/16

C = 3Pl/16

C = SPI/16

c = 7Pl/16)

where DATAN(R) is computed from a telescoped Taylor-Maclauren Power Series.

60386200 A

References

Purpose:

Usage:

Normal Return:

Error Messages:

T"- A~ A. ~T"'"'I/'/ IV\
Uf\ 1 f\l~.:.\. I {.I\.)

C'lr"l\.TfV\ol<Dl 11
JlUl'l_1).1.1./,i,,,

DAT AN(V)*SIGN(Y)

Pl - DATAN(V)

DATAN(V) - PI

6400 FORTRAN Extended Library

:+ v - (l
J.l .I'- - v

x > 0

X < 0 and Y.GE.O

X < 0 and Y < 0

To compute the exponential of a double precision number.

Y = DEXP(X)

DEXP

Where X is the double precision floating point argument, and Y is the result in
double pretision.

Return with result in Y.

INDEFINITE ARGUMENT IN DEXP
ARGUMENT TOO LARGE, FLOATING OVERFLOW IN DEXP

The message is written on the standard output ftle and displayed on the user's terminal;
the result is set to indefinite and a normal exit is taken from DEXP.

Storage: 120 words.

Accuracy: 90 bits approximately.

Mathematical Method: Let N = [X/LN(2) + .5]
and R = Rl + R2 = X - N*LN(2), ABS(R) < = LN(2)

Rl is the most significant part of R

R2 is the least significant part of R

E ** Rl is evaluated from a polynomial of degree 17.

The polynomial was telescoped from a truncated Malclauren Power Series.

E ** R2 = (1 + R2)

E ** X = (2 ** N)*(E ** Rl)*(E ** R2)

References: 6400 FORTRAN Extended Library.

60386200 A C-23

DLOG

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the double precision logarithm to base e of a double precision number.

Y = DLOG(X)

Where X is the double precision floating point argument, and Y is the result in
double precision.

Return with result in Y.

INDEFINITE ARGUMENT IN DLOG
ZERO ARGUMENT IN DLOG
NEGATIVE ARGUMENT IN DLOG

The message is written on the standard output file and displayed on the user's
terminal; the result is set to indefinite and a normal exit is taken from DLOG.

Storage: 196 words (shared with DLOGlO).

Accuracy: 90 bits approximately.

Mathematical Method: DLOG(X) is computed as follows:

X = (2**K)*w where SQRT(l/2) < = w < SQRT(2)

then DLOG(X) = K*LOG(2) + LOG(W)

LOG(W) is approximated by

Cl *T + C3*T**3 + CS*T**S + C7*T**7, where T = (W - l)(W + I)

References:

C-24

The iteration formula for F(A) = E** A - X = 0 is

A(N + 1) = A(N) - (1 - X*E** - A(N))

Let R = X*E** - AO and T = 1 - R

Rl, Tl, R2, T2 denote the 2 significant parts of T and R

The final result with desired accuracy is:

A2 = AO - Tl - T2 - (Tl **2)*(1/2 + Tl/2)

6400 FORTRAN Extended Library

60386200 A

Purpose:

Usage:

Normal Return:

Error Me~es:

DLOG10

To compute the double precision logarithm to base 10 of a double precision number.

Y = DLOGlO(X)

Where X is the double precision floating point argument, and Y is the result in
double precision.

Return with result in Y.

INDEFINITE ARGUMENT IN DLOGlO
ZERO ARGUMENT IN DLOG 10
NEGATIVE ARGUMENT IN DLOG 10

The message is written on the standard output file and displayed on the user's
terminal; the result is set to indefinite and a normal exit is taken from DLOG 10.

Storage: 196 words (shared with DLOG).

Accuracy: 90 bits approximately.

Mathematical Method: DLOGlO(X) =LOG BASElO (E) * DLOG(X)

Where DLOG(X) is computed as in DLOG routine.

60386200 A C-25

DSINCOS

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the double precision sine or cosine for a double precision number
expressed in radians.

Y = DSIN(X) or Y = OCOS(X)

Where X is the double precision floating point argument, and Y is the result in
double precision.

Return with result in Y.

INDEFINITE ARGUMENT IN DSIN(OCOS)
ARGUMENT TOO LARGE IN DSIN(DCOS)

The message is written on the standard output file, and is displayed on the user's
terminal; the result is set to indefinite and a normal exit is taken from DSIN (OCOS).

Storage: 160 words.

Accuracy: 90 bits approximately.

Mathematical Method: Let N = INT(ABS(X)*2/PI + .5)

References:

C-26

Let R = X - N*PI/2 then ABS(R).LE.PI/4

Let K = ABS(N) mod 4, K = 0, 1, 2, 3

then SIN(X) = SIN(R)*COS(K*PI/2) + COS(R)*SIN(K*PI/2) and

COS(X) = SIN(R)*SIN(K*PI/2) - COS(R)*COS(K*PI/2)

Depending upon whether SIN(X) or COS(X) is wanted and upon the value of K,
either the SIN or COS of R is evaluated and complemented if necessary.

The SIN and COS of R are evaluated by polynomials of degree 21 and 20 respectively.
These polynomials were telescoped from a truncated Taylor-Maclauren Power Series
of degree 25 and 24.

6400 FORTRAN Extended Library.

60386200 A

Purpose:

Usage:

Normal Return:

Error Messages:

DSQRT

To compute the double precision square root of a double precision number.

Y = DSQRT(X)

Where X is the double precision floating point argument, and Y is the result in
double precision.

Return with result in Y.

INDEFINITE ARGUMENT IN DSQRT
NEGATIVE ARGUMENT IN DSQRT

The message is WJ1tten on the standard output file and is displayed on the user's
terminal; the result is set to indefinite and a normal exit is taken from DSQRT.

Storage: 46 words.

Accuracy: 90 bits approximately.

Mathematical Method: An approximation to the square root is obtained using the SQRT instruction. This
number is accurate· to 14 decimal places. One Newton approximation is done to
double the accuracy of the number; the form is

A2 = 1/2*(AI + X/Al)

60386200 A C-27

DTAN

Purpose:

Usage:

Normal Return:

Error Messages:

To compute the tangent of a double precision number.

Y = DTAN(X)

Where X is a double precision floating point argument, and Y is the result in double
precision.

Return with result in Y.

INDEFINITE ARGUMENT IN DT AN
ARGUMENT TOO LARGE IN DTAN

The message is written on the standard output file and displayed on the user's
terminal; the result is set to indefinite and a normal exit is taken from DT AN.

Storage: 160 words.

Accuracy: 90 bits approximately.

Mathematical Methods: Let N = INT[X*2/PI + .5]

Reference:

C-28

Let R = X - N*Pl/2 Then ABS(R).LE.PI/4

Let K = ABS(N) MOD4, K = 0, 1, 2, 3

Then T AN(X) = SIN(X)/COS(X) where

SIN(X) = SIN(R)*COS(K*PI/2) + COS(R)*SIN(K*PI/2)

COS(X) = SIN(R)*SIN(K*PI/2) - COS(R)*COS(K*PI/2)

The SIN and COS of R are evaluated by polynomials telescoped from truncated
Taylor-Maclauren Power Series.

MODIFICATION OF DISINCOS ROUTINE

60386200 A

ERROR DIAGNOSTICS D

Error diagnostics are produced when the compiler detects FORTRAN syntax errors
in the source program or when the source program gives the compiler illegal
commands. The seriousness of the error is indicated by the error type code:

w (Warning)

F (Fatal)

The statement in error was compiled. Compilation
continued. At object time the run executed.

The statement iµ er~or was not compiled. compilation
did not continue. At object time the run was
terminated.

Error diagnostics are produced also when the compiler fails. The error type
code for compiler failure is:

A

Error
Number

93

94

95

(Abort)

Type

A

A

A

60386200 A

compilation was terminated and object time execution
was terminated.

Message

COMPILER FAILURE - SUBSCRIPT REFERENCE FOR NON-DIMENSIONED
ARRAY

Subscript processor has detected a bad symbol table entry.

COMPILER FAILURE - ALL FULL REG TABLE ENTRIES ARE CLOSE 4
(GFFULLRG)

The full word register assignment table in generation phase
has gone bad.

COMPILER FAILURE
(GFHALFRG)

ALL HALF REG TABLE ENTRI FS ARE CALL 4

The half word register assignment table in generation phase
has gone bad.

D4-1

ERROR
Number

96

97

98

99

100

101

102

103

104

105

D-2

Type

A

A

A

A

A

F

F

w

F

Message

COMPILER FAILURE - VARIABLE EQUIVALENCED TO COMMON THAT HAS
NO ELEMENTS

storage class table has gone bad in allocation phase.

COMPILER FAILURE - CANNOT FIND SYMBOL IN SYMBOL TABLE

The symbol table has gone bad.

COMPILER FAILURE - I/O STACK FORMED INCORRECTLY

I/O list stack that was built by IOLIST processor has gone
bad in parse phase.

COMPILER FAILURE
ALLOCATION PHASE (2)

ILLEGAL DESCRIPTOR ENCOUNTERED IN

Descriptor table has gone bad.

COMPILER FAILURE - TABLE AREA OVERFLOW

One of the 8 table areas has reached its maximum size.
Either the program is too big to be compiled or something
is wrong in the compiler.

COMPILER FAILURE

something has gone wrong in the compiler.

ILLEGAL SUBPROGRAM NAME

subprogram is compiled ·as a main program.

FUNCTION CANNOT BE CALLED AS A SUBROUTINE

CANNOT TYPE SUBROUTINE NAME

It has no meaning to type the name.

ILLEGAL SUBROUTINE REFERENCE

60386200 A

ERROR
Number

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Type

F

F

F

F

F

F

F

F

F

F

w

F

F

F

60386200 A

Message

MISSING OPERATOR OR DELIMITER

ILLEGAL OPERAND

ILLEGAL OR MISSING DELIMITER

ILLEGAL USE OF ARRAY NAME

Array name must be subscripted.

MISSING LEFT PARENTHESIS (

ILLEGAL USE OF STATEMENT FUNCTION ARGUMENT

RECURSIVE SUBPROGRAM REFERENCE IS ILLEGAL

A subprogram may not call itself.

ILLEGAL ARGUMENT DELIMITER

ILLEGAL USE OF FUNCTION NAME

ILLEGAL ARGUMENT IN INTRINSIC OR BASIC FUNCTION REFERENCE

The arguments are not what the function expects.

FUNCTION NAME USED OR ARGUMENT NOT DECLARED EXTERNAL

INTRINSIC FUNCTION CANNOT BE ACTUAL ARGUMENT

ILLEGAL DELIMITER PAIR

PARENTHESES DO NOT MATCH

There is not a one to one correspondence between left and
right parentheses.

D-3

ERROR
Number

120

121

122

124

125

126

127

128

129

131

132

D-4

Type

F

F

F

F

w

w

w

w

w

F

F

Message

INCORRECT NUMBER OF ARGUMENTS FOR INl'RINSIC OR BASIC
FUNCTION

INCORRECT ARGUMENT TYPE FOR INTRINSIC OR BASIC FUNCTION

ILLEGAL TYPE MIXING IN STATEMENT

ILLEGAL MODE USAGE OF RELATIONAL EXPRESSIONS

MORE THAN 19 CONTINUATION LINES

All continuation lines after 19 are ignored.

THIS STATEMENT CANNOT BE EXECUTED

The statement before this one will not allow execution of
this statement.

INDEFINITE RESULT PRODUCT TOO IARGE

DIVIDE FAULT IN CONSTANT ARITHMETIC

The division of one constant by another has produced a
divide fault.

EXPONENT OVERFLOW IN CONSTANT ARITHMETIC

The multiplication of two constants has produced exponent
overflow.

STATEMENT FU?CTION DEFINITION MUST PRECEDE ALL EXECUTABLE
STATEMENTS

The statement looks like a statement function definition.

THIS SYMBOL MAY NOT BE DEFINED TO BE A STATEMENT FUNCTION

The symbol is already defined.

60386200 A

ER .. ~OR
Number Type

133 F

134 F

135 F

136 F

137 F

138 F

139 F

140 F

141 F

142 F

143 F

144 F

145

146 F

60386200 A

Message

ILLEGAL STATEMENT FUNCTION ARGUMENT

ILLEGAL STATEMENT FUNCTION DEFINITION

ILLEGAL LABEL

I/O STATEMENT REFERS TO NON-FORMAT STATEMENT

ILLEGAL REFERENCE TO FORMAT

DOUBLY DEFINED LABEL

INCORRECT ARGUMENT TYPE FOR STATEMENr FUNCTION

The actual argument does not agree in type with the duIRDly
argument.

ILLEGAL DELIMITER IN STATEMENT FUNCTION ARGUMENT LIST

INCORRECT NUMBER OF ARGUMENTS FOR STATEMENT FUNCTIONS

COMPLEX MAY NOT BE USED AS EXPONENT

COMPLEX MAY ONLY HAVE EXPONENT OF INTEGER OR REAL

SUBSCRIPT MUST BE INTEGER CONSTANT

SPECIFICATION
STATEMENTS

STATEMENTS MUST PRECEDE ALL EXECUTABLE

ILLEGAL VARIABLE IN DATA STATEMENT

The symbol is defined to be something that cannot be
preset.

D-5

ERROR
Number Type

147 F

148 F

149 F

150 F

151 F

152 F

153 F

154 F

155 w

156 F

157 F

158 F

159 F

160 F

161 w

D-6

Message

SYNTAX ERROR IN DATA LIST

SUBSCRIPT Ml\. Y NOT BE AN EXPRESSION

TOO MANY SUBSCRIPTS

SYNTAX ERROR IN HEXADECIMAL CONSTANT

ILLEGAL DATA ITEM

ARRAY MUST BE LAST ITEM TO BE INITIALIZED BY HEX CONSTANT

CHARAcrER CONSTANT TOO LARGE

ARRAY MUST BE LAST ITEM TO BE INITIALIZED WITH CHARACTER
CONSTANT

TOO MANY DATA CONSTANTS

The excess constants are ignored

SYNTAX ERROR

SPECIFICATION STATEMENTS MUST PRECEDE STATEMENT FUNCTION
DEFINITION

ILLEGAL OPERATOR IN SPECIFICATION LIST

ILLEGAL OPERATOR IN SPECIFICATION LIST

LENGTH SPECIFICATION OF CHARACTER MUST BE INTEGER CONSTANT

NAMELIST NAME IN TYPE STATEMENT

It has no meaning to type a NAMELIST name.

60386200 A

ERROR
Number

162

163

164

165

166

167

168

169

170

171

172

173

174

Type

w

F

F

F

F

w

F

w

w

w

w

w

F

60386200 A

Message

VARIABLE TYPED MORE THAN ONCE

First type is retained.

LENGTH OF AJlJUSTABLE CHARACTER MUST BE TYPED INTEGER

ZERO LENGTH FOR CHARACTER VARIABLE

MISSING , or *

ILLEGAL STATF.MENT ON LOGICAL IF

The logical IF part of statement was compiled.

NO IABELED COMMON IN BLOCK DATA SUBPROGRAM

ILLEGAL STATEMENT IN BLOCK DATA SUBPROGRAM

MAIN PROGRAM HAS NO EXECUTABLE STATEMENTS

NO STOP STATEMENT IN MAIN PROGRAM

A STOP was generated.

END NOT PRECEDED BY BRANCH STATEMENT

A STOP was generated.

FUNCTION NAME IS NOT DEFINED

The function must take on a value during the execution of
the subprogram.

NO RETURN STATEMENT

A RETURN was generated.

ENTRY IN RANGE OF DO LOOP

D-7

ERROR
Number

175

176

177

178

179

180

181

182

183

184

185

186

187

188

D-8

Type

F

w

F

F

F

F

F

F

F

F

F

F

F

F

NO ARGUMENTS FOR FUNCTION

The subprogram was compiled as a main program.

ILLEGAL DUMMY ARGtMENT

The subprogram was compiled as a function or subroutine.

MISSING NAMELIST NAME

ILLEGAL NAMELIST NAME

MISSING SLASH AFTER NAMELIST NAME

LIST ITEM MUST BE A VARIABLE

ILLEGAL OPERATOR

ILLEGAL OR MISSING VARIABLE

SYNTAX ERROR IN !ABEL STRING

ILLEGAL KEYPOINT VALUE

INVALID !ABEL REFERENCE

MORE THAN 253 COMMON BLOCK NAMES

ATTEMPI'ED TO RE-ORDER COMMON

MORE THAN ONE ELEMENT OF A SET IN COMMON

Two variables in COMMON can not be equivalenced.

60386200 A

ERROR
Number

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Type

F

w

F

F

F

w

F

w

F

F

F

F

F

F

F

60386200 A

Message

ENTRY MUST BE IN A SUBROUTINE OR FUNCTION

DUPLICATION OF DUMMY ARGUMENT NAMES

The subprogram was compiled as a function or subroutinee

ILLEGAL DIMENSION SPECIFICATION

ILLEGAL FORMATION OF I/O STATEMENT

ILLEGAL ELEMENT IN UNIT POSITION

DUPLICATE OPTION IN I/O STATEMENT

First option is retained.

ILLEGAL OPTION IN I/O STATEMENT

REFERENCED UNDEFINED FORMAT

A FORMAT statement was supplied by the compiler.

ILLEGAL OR MISSING RECORD AREA PARAMEl'ER

NO FORMAT REFERENCE

ILLEGAL ELEMENT IN I/O LIST

ILLEGAL OR MISSING DELIMITER IN I/O LIST

ILLEGAL FORMATION OF REWIND, ENDFILE OR BACKSPACE

ILLEGAL FORMATION OF COMMON STATEMENT

COMMON BLOCK NAME IS NOT SYMBOLIC

D-9

ERROR
Number

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

D-10

Type

F

w

F

F

F

F

F

F

F

F

F

F

F

F

F

F

Message

DUPLICATE SYMBOLIC NAME IN COMMON STATEMENT

DATA SHOULD NOT BE PRESET IN BLANK COMMON

OOMMY ARGUMENT CANNOT APPEAR IN COMMON

ILLEGAL USE OF VARIABLE OR VARIABLE DIMENSIONED MORE THAN
ONCE

A VARIABLE IN A DIMENSION STATEMENT MUST BE DIMENSIONED

MISSING COMMA

DIMENSIONING FORMAT ERROR

ILLEGAL USE OF SUBSCRIPT

VARIABLE DIMENSION WAS NOT A DUMMY ARGUMENT

VARIABLE DIMENSION HAS TO BE A SIMPLE VARIABLE

VARIABLE DIMENSION CANNOT BE DEFINED

Subscript
changed.

for variable dimensioned arrays cannot be

MORE THAN 1 DIMENSIONS SPECIFIED

CONSTANT GREATER THAN 2**18 IN SPECIFICATION STATEMENT

ILLEGAL OR MISSING LABEL REFERENCE IN DO STATEMENT

LABEL REFERENCED GREATER THAN 99999

ILLEGAL PARAMETER IN DO STATEMENT

60386200 A

ERROR
Number Type

220 F

221 w

222 F

223 F

224 F

225 F

226 F

227 F

228 F

229 F

230 F

231 F

232 F

233 F

234 F

9935 F

60386200 A

Message

ILLEGAL OR MISSING DELIMITER

END OCaJRS BEFORE ALL DO LOOPS HAVE BEEN TERMINATED

The compiler has supplied closing loop labels.

A DO LOOP MAY NOT TERMINATE ON THIS STATEMENT

EQUIVALENCE FORMAT ERROR

ILLEGAL COMPONENT BEING EQUIVALENCED

ILLEGAL DELIMITER SEPARATING EQUIVALENCE GROUPS

ARRAY ELEMENT MUST HAVE AT LEAST ONE SUBSCRIPT

ONLY SYMOOLIC NAMES CAN APPEAR IN EXTERNAL STATEMENTS

EXTERNAL STATEMENTS DID NOT PRECEDE REFERENCE OR VARIABLE
IS WRONG TYPE

ILLEGAL USE OF NAME IN EXTERNAL STATEMENT

COMPLEX OR CHARACTER TYPE NOT ALLOWED IN ARITHMETIC IF

COMMA IS ONLY OPERATOR ALLOWED BETWEEN LABELS

SUBSCRIPI' EXPRESSION NOT INTEGER, REAL OR DOOBLE PRECISION

I/O SPECIAL EX IT PARAMETER MUST BE AN INTEGER VARIABLE

ITEMS IN COMMON MUST BE ARRAYS OR SIMPLE VARIABLES

END IS ILLEGAL IN DIRECI' ACCESS I/O

D-11

ERROR
Number Type Message

236 w UNREFERENCED FORMAT

237 F NAMELIST IS USED ILLEGALLY

238 w UNREFERENCED NAMELIST

239 F ADJUSTABLE LENGTH IS NOT A DUMMY ARGUMENT OR IN COMMON

240 F INCORRECT IX> SPECIFICATION IN I/O LIST

241 F VARIABLE APPEARS IN COMMON MORE THAN ONCE

242 F EQUIVALENCE REIATION ERROR BEl'WEEN GROUPS

243 F NON-REDEFINABLE VARIABLE IN INPUT LIST

244 F ARRAY REFERENCED WITH WRONG NUMBER OF SUBSCRIPTS

245 w CONSTANT MAY BE TOO IARGE

246 F EQUIVALENCE HAS ATTEMPTED TO REORIGIN COMMON

247 w MISSING SUBSCRIPT - A ONE IS SUBSTITUTED

248 F ILLEGAL COMPONENT IN I/O STATEMENT

249 F ILLEGAL OR MISSING BUFFER SPECIFICATION

250 w REI'URN STATEMENT IGNORED IN BLOCK DATA SUBPROGRAM

251 w RETURN STATEMENT REPLACED BY STOP STATEMENT IN MAIN PROGRAM

252 w ILLEGAL PARAMETER IN RETURN STATEMENT

0-12 60386200 A

ERROR
Number Type

253 w

254 w

255 F

256 F

257 F

258 F

259 F

260 F

261 F

262 F

263 F

264 F

265 F

266 F

267 F

60386200 A

Message

MODE OF RETURN PARAMETER MUST BE INTEGER

ILLEGAL VALUE FOR RETURN STATEMENT

SYNTAX ERROR ON LEFT SIDE OF ASSIGNMENT STATEMENT

NON-REDEFINABLE
STATEMENT

VARI;ABLE ON LEFT SIDE OF ASSIGNMENT

ILLEGAL FIELD SPECIFICATION IN FORMAT

FORMAT STATEMENT IN BLOCK DATA SUBPROGRAM

LENGTH OF HOLLERITH FIELD OUT OF RANGE

END OF STATEMENT IN HOLLERITH FIELD

The end of the record was reached before the N was
satisfied.

MISSING CLOSING APOSTROPHE ON CHARACTER STRING

NO LABEL SPECIFIED IN ASSIGN STATEMENT

ASSIGN VARIABLE MUST BE SIMPLE INTEGER VARIABLE

MISSING SUBSCRIPTS

HEX CONSTANT TOO IARGE

ILLEGAL LABEL VALUE IN ASSIGN STATEMENT

ATTF.MPT TO INITIALIZE CHARACTER VARIABLE WITH NON-CHARACTER
DATA

ERROR
Number

268

269

270

271

272

273

21ll

275

276

277

278

279

280

281

283

D-14

Type

F

F

F

F

F

w

F

F

F

F

F

F

F

F

w

Message

LOGICAL CONSTANT CAN NOT INITIALIZE Ol'HER TYPES

MISSING DATA

The list of variables is longer than the list of data.

FLOATING POINT NUMBER OUT OF ALLOWABLE RANGE

ARRAY CANNOT BE PARTIALLY HEX OR CHARACTER

ATTEMPT TO REINITIALIZE VARIABLE

MISSING END STATMENT

The compiler supplied an END statement.

ARRAY DECIARATOR NOT A VARIABLE

VARIABLE CANNOT BE DIMENSIONED

ATTEMPT TO REDIMENSION A VARIABLE

PROGRAM STARTS WITH A CONTINUATION CARD

SUBSCRIPT CANNOT BE ZERO

ARRAY HAS TO BE FORMAL ARGUMENT TO HAVE VARIABLE DIMENSION

VARIABLE DIMENSION SHOULD BE SIMPLE INTEGER VARIALBE

LOGICAL VARIABLE CANNOT BE INITIALIZED BY OTHER TYPES

EQUIVALENCE VARIABLE ATTEMPTED TO BE ASSIGNED TO IMPROPER
BOUNDARY

compiler put variable on proper boundary.

60386200 A

ERROR
Number Type Message

284 F ILLEGAL ELEMENT IN ARGUMENT VECTOR

285 w ILLEGAL FLOW IN THE PROGRAM

286 w ILLEGAL TRANSFER INTO RANGE OF DO LOOP

287 w REFERENCE TO UNDEFINED LABEL

288 w ILLEGAL EXPONENTIATION

299 F (-CONSTANT) ** (REAL OR DOUBLE PRECISION) IS ILLEGAL

300 w EXTRANEOUS INFORMATION AT END OF STATEMENT

301 F STATEMENT CANNOT BE IDENTIFIED

302 F A LABEL MUST BE AN INTEGER CONSTANT

303 F DIGIT STRING EXCEEDS MAXIMUM OF FIVE

304 F ILLEGAL CHARACTER

305 w ILLEGAL CONSTANT ON A PAUSE OR STOP

306 F ILLEGAL CONSTANT TYPE

307 F CHARACTER STRING EXCEEDS 255

308 F HOLLERITH FIELD COUNT IS TOO LARGE

309 F SYMBOLIC NAME HAS MORE THAN 8 CHARACTERS

310 F COMPONENT HAS MORE THAN 255 CHARACTERS

60386200 A D-15

ERROR
Number

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

D-16

Type

F

F

F

F

F

F

F

F

F

w

F

F

F

F

F

F

F

Message

REAL NUMBER HAS MORE THAN 255 DIGITS

LOGICAL CONSTANT OR LOGICAL/RELATIONAL OPERATOR IS
INCORRECT

ERROR IN HOLLERITH COUNT

REAL NUMBER CANNOT BE FOLLOWED BY A LETTER

COMPLEX NUMBER COMPONENTS CANNOT BE DOUBLE PRECISION

MISSING RIGHT PARENTHESIS)

SYNTAX ERROR IN A COMPLEX CONSTANT

ZERO LENGTH CHARACTER STRING

ILLEGAL ARGUMENT FIELD SYNTAX

IMPLICIT STATEMENT MUST BE FIRST SPECIFICATION STATEMENT

ILLEGAL TYPE IN IMPLICIT STATEMENT

ILLEGAL USE OF *

IMPLICIT RANGE IS INCORRECT

NON~FORTRAN CHARACTER
HOLLERITH/CHARACTER STRING

FOUND AND

SYNTAX ERROR AFTER A SYMBOLIC NAME

ILLEGAL CHARACTER AFTER A ZERO

SYNTAX ERROR AFTER AN INTEGER CONSTANT

IS NOT IN

60386200 A

ERROR
Number Type

328 F

329 F

330 F

331 F

332 w

333 F

334 F

335 F

336 F

337 F

338 F

339 F

340 w

341 F

342 F

60386200 A

Message

SYNTAX ERROR FOLLOWING A PERIOD

ILLEGAL CHARACTER IN A LOGICAL CONSTANT OR
LOGICAL/RELATIONAL OPERATOR

SYNTAX ERROR FOLLOWING A REAL NUMBER

ILLEGAL CHARACTER APPEARS IN THE NUMBER PART OF THE
EXPONENT FIELD

TOO MANY DIGITS IN THE EXPONENT FIELD

SYNTAX ERROR FOLLOWING A SYMBOLIC STRING THAT WAS FOLLOWED
BY A PERIOD

SYNTAX ERROR FOLLOWING A LOGICAL CONSTANT

S INT AX ERROR FOLLOWING A REAL CONSTANT

SYNTAX EPROR FOLLOWING AN *

SYNTAX ERROR FOLLOWING A CHARACTER STRING

SYNTAX ERROR FOLLOWING A COMPLEX CONSTANT

SYNTAX ERROR IN A LABEL REFERENCE FIELD

SUBSCRIPT REFERENCE OUT OF RANGE

DO LOOPS ARE NESTED ILLEGALLY

INDUCTION VARIABLE USED ILLEGALLY

D-17

A
A Descriptor I-9-7

Arithmetic
Arithmetic Expressions I-3-1
Arithmetic Operators I-3-1

Array

INDEX

Array Name Reference I-2-6, I-2-7
Array and Subarray Assignment I-4-2
Format Specification by Array I-9-9

Arrays
Arrays I-2-5

ASSIGN
ASSIGN Statement I-5-2

Assignment
Assignment Statement I-4-1
Array and Subarray Assignment I-4-2

BACKSPACE
BACKSPACE Statement I-8-10

BLOCK-DATA
BLOCK-DATA Statement I-7-2

CALL
CALL Statement I-5-4, I-5-7, I-7-2, I-7-5, I-7-6, I-7-7

Carriage
Print Carriage Control I-9-9

Character
Character Set I-1-1, A-1
Character Constants I-2-4
Character Expressions I-3-5

Comment
Comment Lines I-1-3

cmmoN
COMMON Statement I-6-4, I-6-5, I-6-6, I-7-3

Compile
Compile Options I-10-2

Complex
Complex Constants I-2-3

Constants
Integer Constants I-2-1
Real Constants I-2-2
Double-Precision Constants I-2-2
Complex Constants I-2-3
Logical Constants I-2-3
Hollerith Constants I-2-3
Character Constants I-2-4
Hexadecimal Constants I-2-4

60386200 A Index-!

Continuation
Continuation of Statements I-1-3

CONTINUE
CONTINUE Statement I-5-4, I-5-6

Control
Control Cards for STAR-OS I-10-1

D
D Descriptor I-9-7

DATA
DATA Statement I-6-6, I-7-3

DECODE
DECODE Statement I-8-14, I-8-16

Descriptors
Field Descriptors I-9-2
I Descriptor I-9-5
F Descriptor I-9-5
E Descriptor I-9-5
G Descriptor I-9-6, I-9-8
D Descriptor I-9-7
R Descriptor I-9-8
A Descriptor I-9-7
L Descriptor I-9-7
H Descriptor I-9-8
X Descriptor I-9-8
T Descriptor I-9-9
Z Descriptor I-9-9

Device
Input/Output Unit Device I-8-1

Diagnostics
Error Diagnostics D-1

DIMENSION

DO

DIMENSION Statement I-6-3, I-6-4, I-7-3
Adjustable Dimensions I-6-3

Implied DO Reference I-2-7, I-4-3, I-·8-1, I-8-17
DO Statement I-5-4

Double-Precision
Double-Precision Constants I-2-2

E
E Descriptor I-9-5

ENCODE
ENCODE Statement I-8-14, I-8-15

END
END Statement I-5-7, I-7-4, I-7-6

END FILE
ENDFILE Statement I-8-10

END=
END= Option I-5-4, I-8-1

ENTRY
ENTRY Statement I-7-2

Index-2 60386200 A

EQUIVALENCE
EQUIVALENCE Statement I-6-4, I-6-5, I-6-6, I-7-3

Error Diagnostics D-1
ERR=

ERR= Option I-5-4, I-8-1
Evaluation

Evaluation of Expressions I-3-5
Explicit

Explicit Type Statement I-6-2, I-6-4, I-7-3
Expressions

Arithmetic Expressions I-3-1
Relational Expressions I-3-3
Logical Expressions I-3-4
Character Expressions I-3-5
Evaluation of Expressions I-3-5

EXTERNAL

F

EXTERNAL Statement I-6-3, I-7-3, I-7-5
External Functions I-7-5, B-1

F Descriptor I-9-5
Field

Field Descriptors I-9-2
Filenames

Input/Output Filenames I-7-1
FORMAT

FORMAT Statement I-7-6, I-9-1
Format Specification by Array I-9-9

FUNCTION
FUNCTION Statement I-7-2, I-7-5
Statement Function I-7-3
Function Subprogram I-7-4

Functions
External Functions I-7-5, B-1

G
G Descriptor I-9-6, I-9-8

GO-TO

H

Unconditional GO-TO Statement I-5-1, I-5-4
Computed GO-TO Statement I-5-1, I-5-4
Assigned GO-TO Statement I-5-2, I-5-4

H Descriptor I-9-8
Hexadecimal

Hexadecimal Constants I-2-4
Hierarchy

Hierarchy of Operators I-3-6
Hollerith

Hollerith Constants I-2-3

60386200 A Index-3

I
I Descriptor I-9-5

IF
Arithmetic IF Statement I-5-2, I-5-4
Logical IF Statement I-5-3, I-5-4

IMPLICIT
IMPLICIT Type Statement I-6-1

Implied
Implied DO Reference I-2-7, I-4-3, I-8-1 1 I-8-17

Input/Output
Input/Output Filenames I-7-1
Input/Output Unit Device I-8-1

Integer
Integer Constants I-2-1

L
L Descriptor I-9-7

Labels
Statement Labels I-1-3

Logical
Logical Constants I-2-3
Logical Expressions I-3-4
Logical Operators I-3-4

Name
NAMELIST Name I-7-6, I-8-11, I-8-12, I-8-13, I-8-14

NAMELIST
NAMELIST Name I-7-6, I-8-11, I-8-12, I-8-13, I-8-14
NAMELIST Statement I-8-11
NAMELIST Data Block I-8-12, I-8-13, I-8-14

Names
Symbolic Names I-2-1
Variable Names I-2-5

Operators
Arithmetic Operators I-3-1
Relational Operators I-3-4
Logical Operators I-3-4
Hierarchy of Operators I-3-6

Options
Compile Options I-10-2

PAUSE
PAUSE Statement I-5-4, I-5-6

PRINT
PRINT Statement I-8-7, I-9-3
Print Carriage Control I-9-9

Program
Program I-1-1
Program Unit I-7-1
PROGRAM Statement I-7-1

PUNCH
PUNCH Statement I-8-8, I-9-3

Index-4 60386200 A

R
R Descriptor I-9-8

READ Formatted Statement I-8-2, I-9-3
READ Unformatted Statement I-8-3
READ with Implied Device Statement I-8-4, I-9-3

Real
Real Constants I-2-2

Record
Record Length I-8-2

Reference
Array Name Reference I-2-6, I-2-7
Subarray Reference I-2-7
Implied DO Reference I-2-7, I-4-3, I-8-1 I-8-17

Relational
Relational Expressions I-3-3
Relational Operators I-3-4

Repeat
Repeat Specification I-9-3

RETURN
RETURN Statement I-5-4, I-5-7, I-7-2, I-7-4, I-7-6, I-7-7

REWIND
REWIND Statement I-8-9

Scale
Scale Factor I-9-4

STAR-OS
Control Cards for STAR-OS I-10-1

Statement
Statement Labels I-1-3
Assignment Statement I-4-1
Unconditional GO-TO Statement I-5-1, I-5-4
Computed GO-TO Statement I-5-1, I-5-4
ASSIGN Statement I-5-2
Assigned GO-TO Statement I-5-2, I-5-4
Arithmetic IF Statement I-5-2, I-5-4
Logical IF Statement I-5-3, I-5-4
DO Statement I-5-4
CONTINUE Statement I-5-4, I-5-6
PAUSE Statement I-5-4, I-5-6
STOP Statement I-5-4, I-5-7
END Statement I-5-7, I-7-4, I-7-6
RETURN Statement I-5-4, I-5-7, I-7-2, I-7-4, I-7-6, I-7-7
CALL Statement I-5-4, I-5-7, I-7-2, I-7-5, I-7-6, I-7-7
IMPLICIT Type Statement I-6-1
Explicit Type Statement I-6-2, I-6-4, I-7-3
DIMENSION Statement I-6-3, I-6-4, I-7-3
EXTERNAL Statement I-6-3, I-7-3, I-7-5
COMMON Statement I-6-4, I-6-5, I-6-6, I-7-3
EQUIVALENCE Statement I-6-4, I-6-5, I-6-6, I-7-3
DATA Statement I-6-6, I-7-3

60386200 A Index-5

PROGRAM Statement I-7-1
BLOCK-DATA Statement I-7-2
FUNCTION Statement I-7-2, I-7-5
SUBROUTINE Statement I-7-2, I-7-6
ENTRY Statement I-7-2
Statement Function I-7-3
FORMAT Statement I-7-6, I-9-1
READ Formatted Statement I-8-2, I-9-3
READ Unformatted Statement I-8-3
READ with Implied Device Statement I-8-4, I-9-3
WRITE Formatted Statement I-8-5, I-9-3
WRITE Unformatted Statement I-8-6
PRINT Statement I-8-7, I-9-3
PUNCH Statement I-8-8, I-9-3
REWIND Statement I-8-9
BACKSPACE Statement I-8-10
ENDFILE Statement I-8-10
NAMELIST Statement I-8-11
ENCODE Statement I-8-14, I-8-15
DECODE Statement I-8-14, I-8-16
Statements I-1-3
Continuation of Statements I-1-3

STOP
STOP Statement I-5-4, I-5-7

Storage
Storage Units I-6-4

Sub array
Subarray Reference I-2-7
Array and Subarray Assignment I-4-2

Subprogram
Subprogram I-7-1, I-7-2
Function Subprogram I-7-4
Subroutine Subprograms I-7-5, I-7-7

SUBROUTINE
SUBROUTINE Statement I-7-2, I-7-6
Subroutine Subprograms I-7-5, I-7-7

Subscripts
Subscripts I-2-6, I-2-7

Symbolic
Symbolic Names I-2-1

T
T Descriptor I-9-9

Type
IMPLICIT Type Statement I-6-1
Explicit Type Statement I-6-2, I-6-4, I-7-3

Unit
Program Unit I-7-1
Input/Output Unit Device I-8-1
Unit Positioning I-6-9

Units
Storage Units I-6-4

Index-6 60386200 A

Variable
Variable Names I-2-5

Variables
Variables I-2-5

WRITE

x

z

WRITE Formatted Statement I-8-5, I-9-3
WRITE Unformatted Statement I-8-6

X Descriptor I-9-8

Z Descriptor I-9-9

60386200 A Index-7/8

COMMENT SHEET
CONTROL DATA . - .

TITLE: STAR Computer System FORTRAN Language Reference Manual

PUBLICATION NO. 60386200 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: ___________ _ POSITION: ------------------------

COMPANY
NAME=---

ADDRESS: __________________________________ ~~

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
r"r"\t n. l"'\11.f r"'\r"\"T'""T'"l"'"r"'\ I 111.ll"'"C' All.Ir"'\ C'"T'"Anl r"

STAPLE

FOLD

STAPLE

FOLD I -- -- ---- ---- -- -----1

BUSINESS REPLY MA IL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department
215 Moffett Park Drive
Sunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
I

lw

Ii
I~
lil
I

I
__________________________ J

FOLD FOLD I

CT/\01 C

I
I

I

I
I
I
I

........ CUT OUT FOR USE AS LOOSE -l E AF 81 NOE R TITLE TAB

Pub. No. 60386200

C_OMIROL DATA_
·- .

CORPORATE HEADQUARTERS. 8100 34th AVE. SO .• MINNEAPOLIS. MINN. 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

Li tho in U .S .A.

	001
	002
	003
	004
	005
	006
	007
	008
	1_01-01
	1_01-02
	1_01-03
	1_02-01
	1_02-02
	1_02-03
	1_02-04
	1_02-05
	1_02-06
	1_02-07
	1_02-08
	1_03-01
	1_03-02
	1_03-03
	1_03-04
	1_03-05
	1_03-06
	1_04-01
	1_04-02
	1_04-03
	1_05-01
	1_05-02
	1_05-03
	1_05-04
	1_05-05
	1_05-06
	1_05-07
	1_06-01
	1_06-02
	1_06-03
	1_06-04
	1_06-05
	1_06-06
	1_06-07
	1_06-08
	1_07-01
	1_07-02
	1_07-03
	1_07-04
	1_07-05
	1_07-06
	1_07-07
	1_08-01
	1_08-02
	1_08-03
	1_08-04
	1_08-05
	1_08-06
	1_08-07
	1_08-08
	1_08-09
	1_08-10
	1_08-11
	1_08-12
	1_08-13
	1_08-14
	1_08-15
	1_08-16
	1_08-17
	1_08-18
	1_09-01
	1_09-02
	1_09-03
	1_09-04
	1_09-05
	1_09-06
	1_09-07
	1_09-08
	1_09-09
	1_09-10
	1_10-01
	1_10-02
	2-01-01
	2-01-02
	2-01-03
	2-01-04
	2-01-05
	2-01-06
	2-01-07
	2-01-08
	2-01-09
	2-01-10
	2-01-11
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	replyA
	replyB
	xBack

