
CONTROL DATA®
STAR-100
COMPUTER

60256000

&J ~ CONT"OL DATA
\:::. ~ CO~R{\TION

HARDWARE REFERENCE MANUAL

COMPUTER INSTRUCTION INDEX

Inst. Page Inst. Page T Inst. Page 1 Inst. Page 1 Inst. Page
Code No. Code No. Code No. Code No. ! Code :r-:o.

00 6-235 34 6-31 67 6-35 99 6-70 I DO 6-102

04 6•231 35 6-54 68 6-34 9A 6•70 Dl 6-10'0

OS 6-233 36 6-54 69 6-34 9B 6-75 I D4 6-102

08 6-235

I
37 6-188 SB 6-34 9C 6-77 I D5

6-100

09 6-55 38 6-29 SC 6-34 tAO 6-89 . itD6 6-158

OA 6-238 39 6-190 so 6-32 tAl 6-89 tltD7 6-166

oc 6-236 3A 6-190 6E 6-33 tA2 6-89 tD8 6-214

OD 6-236 3B 6-51 6F 6-34 tA4 6-89 tD9 6-214

OE 6-236 3C 6-187 70 6-35 tA5 6-89 DA 6-97

OF 6-237 30 6-187 7i 6-35 tA6 6-89 DB 6-98
10 6-39 3E 6-27 72 6-35 tA8 6-91 DC 6-116

11 6-39 3F 6-27 73 6-39 tA9 6-91 DD 6-205

12 6-188 40 6-34 74 6-44 tAB 6-91 DE 6-105

13 6-188 41 6-34 75 6-44 tAC 6-91 DF 6-108

14 6-197 42 6-34 76 6-39 tAF 6-91 EO 6-127

15 6-199 44 6-34 77 6-39 BO 6-57 El 6-127

16 6-199 45 6-34 78 6-35 Bl 6-57 E2 6-127

17 6-203 46 6-34 79 6-35 B2 6-57 E3 6-127

18 6-221 48 6-34 7A 6-35 B3 6-57 E4 6-147

19 6-224 49 6-34 7B 6-38 B4 6-57 E5 6-147

lA 6-228 4B 6-34 7C S-39 B5 6-57 E6 6-143

lB 6-228 4C 6-34 7D 6-189 B6 6-59 E7 6-143

lC 6-228 40 6-27 7E 6-188 B7 6-114 EB 6-182
1D· 6-228 4E 6.:z1 7F 6-188 I B8 6-1'03 I E9 6_.f82

lE 6-229 4F 6-34 tao 6-68 B9 6-216 EA 6-153

lF 6-231 50 6-35 t81 6-68 BA 6-111 EB 6-168

20 6-47 51 6-35 f82 6-68 BB 6-190 EC 6-130

21 6-47 52 6-35 83 6-69 BC 6-191 ED 6-130

22 6-47 53 6-39 t84 6-68 BD 6-195 tftEE 6-162

23 6-47 S4 6-44 f85 6-68 BE 6-28 tftEF 6-165

24 6-47 5S 6-44 tB6 6-68 BF 6-28 FO 6-184
25 6-47 S8 6-35 87 6-69 co 6-94 Fl 6-184

26 6-47 59 6-35 t88 6-68 Cl 6-94 F2 6-184

27 6-47 5A 6-35 f89 6-68 C2 6-94 F3 6-184

28 6-224 5B 6-38 tBB 6-68 C3 6-94 F4 6-184

29 6-224 SC 6-39 tac 6-68 C4 6-208 F5 6-184

2A 6-45 so 6-39 t8F 6-68 C5 6-208 F6 6-184
2B 6-45 SE 6-188 90 6-70 C6 6-208 F7 6-184

2C 6-30 5F 6-188 91 6-70 C7 6-208 1ftF8 6-150 I

2D 6-30 60 6-34 92 6-70 CB 6-211 fftF9. 6-150

2E 6-30 61 6-34 f93 6-77 C9 6-211 FA 6-146
2F 6-48 62 6-34 94 6-81 CA 6-211 FB 6-132
30 6-30 63 6-35 95 6-81 CB 6-211 FC 6-132
31 6-54 64 6-34 96 6-77 CD 6-28 fftFD 6-155
32 6-51 6S 6-34 97 6-77 CE 6-28 tf"FE 6-158
33 6-49 66 6-34 98 6-70 tcF 6-192 ttFF 6-158

I
tThese instructions have sign control capability.

it Automatic index incrementinit takes place on these instructions. (Refer to the individual
· ··instruction descriptions.) - ·

tttDelimeters may be used on these instructions 1 automatic index incrementing also takes
place. (Refer to the individual instruction descriptions.)

l
I

I

I

TITLE: STAR-100 Computer Hardware Reference Manual

PUBLICATION NO. 60256000
REVISION 09

REASON FOR CHANGE:

This edition obsoletes all previous editions.

DATE: 12-l!i-75

I I l.,,.,_, __ ~ __ ..J

REVISION

01

J.9-2-701

02

il0-9-70)

03

_1_3-31-71)

04

J.8-31-711

05

_1_5-1-731

06

J_l0-30-73)

07

(5-1-74)

08

(12-15-74)

09

(12-15-75)

Publication No.
60256000

REVISION RECORD
DESCRIPTION

Preliminary edition

Manual revised, pages 3-3 3-8_._ 3-20, 3-21, 4-4 4-20. 4-46, 4-59, 4-64, 4-68, 4-9"h 4-95..L

4-101, 4-176, A-9 B2 through 6, B-8, B-10 through 12, B-14 and B-18 revised.

Manual revised. Technical and editorial corrections affectin_g__g_a_g_es: Front Cover.L Title Pa_g_e,

Revision Record iii_._ v. ix 1-1 throue-h 1-3. 2-1 through 2-4_._ 3-3_.._ 3-4...r.. 3-8_._ 3-14_._ 3-16 3-17_._

3-19, 3-20..i... 3-33..i... 4-1. 4-2. 4-4 through 4-6, 4-9 through 4-25, 4-28, 4-30 through 4-33, 4-37

through 4-44, 4-46, 4-49 throu_g_h 4-52, 4-54 through 4-57..i... 4-59..i... 4-60.L 4-62 throu_g_h 4-67..i... 4-71..L

4-73.L 4-75..i... 4-76.L 4-77...r.. 4-79, 4-82 throu_g_h 4-89_._ 4-91,_ 4-92 4-97_._ 4-98.L 4-100 through 4-102.L

4-104_._ 4-106, 4-107 4-113, 4-117 4-119, 4-121, 4-122_._ 4-124 throu_g_h 4-126 4-128, 4-131

throu_g_h 4-135_._ 4-139 throu_g_h 4-141_._ 4-144_._ 4-145_._ 4-148 4-150_._ 4-157 4-159, 4-161._ 4-163

throu_g_h 4-171.L 4-174.L 4-177. 4-180 through 4-182_.._ 4-191 4-192_.L 4-197.L 4-199, 4-202 4-214

throu_g_h 4-216_.._ 4-220_._ 4-224 throu_g_h 4-227_._ 4-229~ 4-235 through 4-238.L 6-1 through 6-4, 6-6L

6-7, A-2, A-4, A-7. B-1 through B-3, B-6, B-7, B-11 B-12_._ B-18 and Comment Sheet.

Manual revised.

Manual revised.

Manual revised.

Manual revised.

Manual revised.

Manual revised.

This edition obsoletes all previous editions.

This edition obsoletes all previous editions.

This edition obsoletes all previous editions.

This edition obsoletes all previous editions.

This edition obsoletes all_p_revious editions.

Address comments concerning this
manual to:

© 1970, 1971, 1973, 1974, 1975

by Control Data Corporation

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual. Printed in the United States of America

LIST OF EFFECTIVE PAGES

New features. as well as changes. deletions. and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina
tion rather than content has changed.

PAGE SFC t REV PAGE SFC t REV PAGE SFC t REV PAGE SFC t REV

Cover - 3-9 08 4-10 08 5-17 09

Title 3-10 08 4-11 08 5-18 09
Page - 3-11 08 4-12 08 5-19 08
ii 09 3-12 08 4-13 08 5-20 09
iii 09 3-13 08 4-14 08 5-21 09
iv 09 3-14 08 4-15 08 5-22 09
v 09 3-15 08 4-16 09 5-23 08
vii 09 3-16 08 4-17 08 5-24 09
viii 09 3-17 08 4-18 08 5-25 08
ix 09 3-18 08 4-19 08 5-26 08
x 08

3-19 08 4-20 08 5-27 09
xi 08 3-20 08 4-21 08 5-28 08
xii 09 3-21 08 4-22 08 5-29 09
xiii 09 3-22 08 4-23 08 5-30 09
xiv 09 3-23 08 4-24 08 5-31 09
xv 09 3-24 08 4-25 09 5-32 08
xvi 09 3-25 08 4-26 09 5-33 08
xvii 09 3-26 08 4-27 09 5-34 08
xviii 09 3-27 08 4-28 09 5-35 08
xix 09 3-28 08 4-29 09 5-36 08
xx 09 3-29 08 4-30 09 5-37 08
xxi 09 3-30 08 4-31 09 5-38 08
1-1 08

3-31 08 4-32 09 5-39 09
1-2 08 3-32 09 4-33 09 5-40 09
1-3 08

3-33 08 5-1 08 5-41 09
1-4 09 3-34 08 5-2 08 5-42 09
2-1 08 3-35 08 5-3 08 5-43 09
2-2 08 3-36 08 5-4 08 5-44 09
2-3 08 3-37 09 5-5 08 6-1 08
2-4 08

3-38 08 5-6 08 6-2 09
2-5 08

3-39 08 5-7 08 6-3 08
2-6 08 4-1 08 5-8 09 6-4 08
2-7 08 4-2 09 5-9 09 6-5 09
3-1 08 4-3 08 5-10 08 6-6 09
3-2 08 4-4 08 5-11 08 6-7 09
3-3 08

4-5 08 5-12 09 6-8 09
3-4 09 4-6 08 5-13 08 6-9 08
3-5 08 4-7 08 5-14 08 6-10 08
3-6 08 4-8 08 5-15 09 6-11 09
3-7 09

3-8 mr
4-9 08

" - -.,.- q-J~6 0,8, Q"-J~ Q9

tSFC Software Feature Change

AA 5935

60256000 09 iii

PAGE SFC t REV PAGE SFC t REV PAGE SFCt REV PAGE SFC t REV

6-13 09 6-53 09 6-93 09 6-133 09

6-14 09 6-54 09 6-94 09 6-134 09

6-15 09 6-55 09 6-95 09 6-135 09

6-16 09 6-56 09 6-96 09 6-136 09

6-17 09 6-57 09 6-97 09 6-137 09

6-18 09 6-58 09 6-98 09 6-138 09

6-19 09 6-59 09 6-99 09 6-139 09

6-20 09 6-60 09 6-100 09 6-140 09

6-21 09 6-61 09 6-101 09 6-141 09

6-22 09 6-62 09 6-102 09 6-142 09

6-23 09 6-63 09 6-103 09 6-143 09

6-24 09 6-64 09 6-104 09 6-144 09

6-25 09 6-65 09 6-105 09 6-145 09

6-26 08 6-66 09 6-106 09 6-146 09

6-27 08 6-67 09 6-107 09 6-147 09

6-28 08 6-68 09 6-108 09 6-148 09

6-29 08 6-69 09 6-109 09 6-149 09

6-30 08 6-70 09 6-110 09 6-150 09

6-31 08 6-71 09 6-111 09 6-151 09

6-32 08 6-72 09 6-112 09 6-152 09

6-33 08 6-73 09 6-113 09 6-153 09

6~34 09 6-74 09 6-114 09 6-154 09

6-35 08 6-75 09 6-115 09 6-155 09

6-36 08 6-76 09 6-116 09 6-156 09

6-37 08 6-77 09 6-117 09 6-157 09

6-38 08 6-78 09 6-118 09 6-158 09

6-39 08 6-79 09 6-119 09 6-159 09

6-40 08 6-80 09 6-120 09 6-160 09

6-41 08 6-81 09 6-121 09 6-161 09

6-42 08 6-82 09 6-122 09 6-162 09

6-43 08 6-83 09 6-123 09 6-163 09

6-44 08 6-84 09 6-124 09 6-164 09

6-45 08 6-85 09 6-125 09 6-165 09

6-46 08 6-86 09 6-126 09 6-166 09

6-47 09 6-87 09 6-127 09 6-167 09

6-48 09 6-88 09 6-128 09 6-168 09

6-49 09 6-89 09 6-129 09 6-169 09

6-50 09 6-90 09 6-130 09 6-170 09

6-51 09 6-91 09 6-131 09 6-171 09

6-52 09 6-92 09 6-132 09 6-172 09

tsFC Software Feature Change

AA 5935

iv 60256000 09

PAGE SFC t REV PAGE SFC t REV PAGE SFCt REV PAGE SFC t REV

6-173 09 6-213 09 A-15 08 Comment

6-174 09 6-214 09 A-16 08 Sheet -

6-175 09 6-215 09 A-17 08 Return
Envelope -

6-176 09 6-216 09 A-18 08
Back

6-177 09 6-217 09 A-19 08 Cover -
6-178 09 6-218 09 B-1 08

6-179 09 6-219 09 B-2 08

6-180 09 6-220 09 B-3 08

6-181 09 6-221 09 B-4 08

6-182 09 6-222 09 B-5 08

6-183 09 6-223 09 B-6 09

6-184 09 6-224 09 B-7 09

6-185 09 6-225 09 B-8 09

6-186 09 6-226 09 B-9 09

6-187 09 6-227 09 B-10 09

6-188 09 6-228 09 B-11 09

6-189 09 6-229 09 B-12 09

6-190 09 6-230 09 B-13 09

6-191 09 6-231 09 B-14 09

6-192 09 6-232 09 B-15 09

6-193 09 6-233 09 B-16 09

6.-194 09 6-234 09 B-17 09

6-195 09 6-235 09 B-18 09

6-196 09 6-236 09 B-19 09

6-197 09 6-237 09 B-20 09

6-198 09 6-238 09 B-21 09

6-199 09 A-1 08 B-22 09

6-200 09 A-2 08 B-23 09

6-201 09 A-3 08 B-24 09

6-202 09 A-4 08 C-1 09

6-203 09 A-5 08 C-2 09

6-204 09 A-6 08 C-3 09

6-205 09 A-7 08 C-4 09

6-206 09 A-8 08 C-5 08

6-207 09 A-9 08 C-6 09

6-208 09 A-10 08 C-7 09

6-209 09 A-11 08 D-1 08

6-210 09 A-12 08 D-2 08

6-211 09 A-13 08 D-3 08

6-212 09 A-14 08 D-4 08

tSFC Software Feature Change

AA 5935

60256000 09 v

PREFACE

This manual contains hardware reference information for the CONTROL DATA®

STAR-100 Computer.

All manuals applicable to the CDC STAR-100 Computer and associated equipment include

the following.

Control Data Publication

STAR-100 Computer Hardware Maintenance Manuals

General Description, Operation, Theory of Operation
Installation and Checkout, Maintenance

Memory and Storage Access Control
Block Diagrams

Stream
Block Diagrams

Floating Point
Block Diagrams

Power Diagrams

Engineering Diagram Set

Memory
Logic Diagrams

Logic Diagrams
Storage Access Control
LA Panel

Logic Diagrams
Storage Access Control
LB Panel

Logic Diagrams
Storage Access Control
NA Panel

Logic Diagrams
Storage Access Control
NB Panel

Logic Diagrams
Storage Access Control
KA Panel

60256000 09

Publication No.

60256100

60430100

60430200

60430300

60433200

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

vii

• viii

Control Data Publication

Logic Diagrams
Storage Access Control
KB Panel

Logic Diagrams
Stream
FA Panel

Logic Diagrams
Stream
FB Panel

Logic Diagrams
Stream
GA Panel

Logic Diagrams
Stream
GB Panel

Logic Diagrams
Stream
HA Panel

Logic Diagrams
Stream
HB Panel

Logic Diagrams
Stream
JA Panel

Logic Diagrams
Stream
JB Panel

Logic Diagrams
Stream
PA Panel

Logic Diagrams
Stream
PB Panel

Logic Diagrams
Floating Point
AA Panel

Logic Diagrams
Floating Point
AB Panel

Publication No.

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

60256000 09

Control Data Publication

Logic Diagrams
Floating Point
BA Panel

Logic Diagrams
Floating Point
BB Panel

Logic Diagrams
Floating Point
CA Panel

Logic Diagrams
Floating Point
CB Panel

Logic Diagrams
Floating Point
DA Panel

Logic Diagrams
Floating Point
DB Panel

Logic Diagrams
Floating Point
EA Panel

Logic Diagrams
Floating Point
EB Panel

Logic Diagrams
Floating Point
KA Panel

ST AR-100 Refrigeration System Customer
Engineering Manual

Control Data Intebrid Circuits Manual

Control Data Motor-Generator Sets
Electric Machinery Volumes 1 and 2

Control Data Large and Medium Scale Computer
Systems Site Preparation Manual
Section 1 General Information

Control Data STAR-100 Computer System
Site Preparation Manual
Section 2 System Data

60256000 09

Publication No.

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

60329800

60201000

60166800
and 60423100

60275100

60381600

ix •

x

Control Data Publication Publication No.

STAR-100 Computer Hardware Reference Manual

STAR-100 Peripheral Stations Hardware
Reference Manual

STAR-100 Peripheral Stations Customer Engineering
Manual (Maintenance)

STAR-100 Peripheral Stations Customer Engineering
Manual (Diagrams)

Station Buffer Unit Core Control

Station Buffer Unit Interfaces

Station Control Unit

Station Display Unit

NOTE

and

and

60256000

60405000

60325300

60382000
60406700

60382100
60406800

60362900

60382500

These manuals are available on a controlled distribution
basis only from:

Control Data Corporation
STAR-100 Publications Distribution
STAR-100 Development Support
4201 North Lexington Ave.
Arden Hills, Minnesota 55112

60256000 08

CONTENTS

1. GENERAL DESCRIPTION Parity Fault Isolation 3-5

General 1-1 SAC Write Operations 3-5

Computer Characteristics 1-2 Virtual Address Mechanism 3-6

Central Processor 1-3 MCS Page Sizes 3-6

Magnetic Core Storage 1-3 Storage Protect Features 3-6

Input I Output 1-3 Searching the Page Table 3-7

Multiple-Match Fault 3-11

Absolute Bounds Address 3-11

2. MAGNETIC CORE STORAGE Input I Output Channels 3-11

Assembly I Disassembly 3-12
Description 2-1 I/O Data 3-13
Storage Word 2-2

I/ 0 Addressing 3-13
MCS Access and Control Signals 2-3

I/ 0 Channel Priority 3-16
Request 2-4

I/O Channel Write
Address 2-4 Lockout 3-17

Quarter Sword Address 2-5 System Communication 3-17

Read Data 2-5
Stream 3-19

Read Parity 2-5
Instruction Control 3-19

Write Data 2-5
Addressing 3-22

Write Parity 2-6
Stream Input and Buff er Control 3-23

Write Enable 2-6

Split Cycle I Clear Data Register 2-6
Register File 3-23

Clock 2-6
Operand Shift Network 3-26

Master Clear 2-6
Data Interchange 3-26

MCS Degradation 2-7
C -Stream Operand Shift Network 3-26

524K System Degradation
Write Bus 1 Output Buffer and
Control 3-26

Options 2-7
Write Bus 2 and Control 3-26

1048K System Degradation
Options 2-7 X-and Y-Stream Control and

String Input Interface 3-27

3. CENTRAL PROCESSOR UNIT String Unit 3-27

Edit Control 3-27
Description 3-1

Storage Access Control 3-1
Logical Instruction Control 3-27

SAC Read Op~rations 3-3
Binary Arithmetic Control 3-27

Memory Parity Fault 3-3

60256000 08 xi

Decimal Arithmetic Control 3-29 Illegal Instruction in Monitor

Miscellaneous Operations 3-30 Mode 5-2

Register Logical and Shift Unit 3-31 Exchange from Job Mode to
Monitor Mode 5-3

Interrupt Cou-nters 3-31
Interrupts 5-4

P Section Interchange 3-31
Storage Access Interrupts 5-4

Load I Store Unit 3-31
External Interrupts 5-6

Microcode 3-32
I/ 0 Channel Interrupt Lines 5-6

MIC Operation 3-32
Monitor Interval Timer Interrupt 5-7

MIC Interrupt 3-34
Invisible Package 5-7

MIC Parity 3-34
Addressing Modes 5-10

Checkpoint 3-35
Virtual Addressing 5-10

MIC Write Lockout 3-35
Pages 5-10

Floating Point 3-35
Virtual Address Format 5-10

Pipe 1 3-36
Associative Words 5-12

Pipe 2 3-38
Associative Registers 5-14

Register Divide 3-39
Space Table 5-15

Multipurpose 3-39
Page Table 5-15

Operation of Virtual Address 5-17 I
4. MAINTENANCE CONTROL UNIT

Absolute Address 5-18

Description 4-1 Real-Time Counters 5-19

MCU Interfaces 4-3 Free Running Clock Counter 5-19

MCU Monitoring 4-23 Monitor Interval Timer 5-19

Display Registers 4-23 Job Interval Timer 5-20

Monitoring Counters 4-25 Register File 5-20

Count Gates and CPU Lines 4-30 Register File Restrictions 5-21

Carry Lines 4-31 Register 0 (Trace

Stop Lines 4-31 Register) Restrictions 5-22

Counter Setup 4-31 Registers 1 and 2 (64-bit),
2 through 5 (32-bit)

Logic Fault Monitoring 4-32 Restrictions 5-29
l

Temperature Pressure and Dew- Registers 0 through 7
point Monitoring 4-32 (64-bit), 0 through F

Power Fail Monitoring 4-33 (32-bit), Monitor Mode
Restrictions 5-29

Compressor Monitoring 4-33
Register 1 (32-bit) Right-
most Half of 64- Bit

5. PROGRAMMING CONSIDERATIONS Register 0 5-29

Register Restrictions for I General 5-1 the STAR-1B 5-29

Monitor and Job Modes 5-1 Common Register File for

Exchange from Monitor Mode Monitor and Job Modes 5-29

to Job Mode 5-2 Data Flag Branch Register 5-30

Data Flags 5-31

xii 60256000 09

1\Jr ""1,.. u.;+"" 5-31 4E Half Word Increase (R) .i.V.l.Q.i::Jn .J.....Jl.1..1!..0

Product Bits 5-31
by I (16 Bits) 6-27

CD Half Word Enter (R) with
Dynamic Inclusive OR for I -(24 Bits) 6-28 Product Bits 5-32

Data Flag Branch Enable Bit 5-32 CE Half Word Increase (R)
with I (24 Bits) 6-28

Free Data Flags 5-32 BE Enter (R)with I (48 Bits) 6-28
Monitoring Counter Enabie Flags 5-32 BF Increase (R) by I (48 Bits) 6-28
Pipe 2 Register Instruction Flag 5-32 38 Transmit (R Bits 00-15) to
Data Flag Branch Operation 5-38 (T Bits 00-15) 6-29

Data Flag Branch Timing Register Instructions 6-:29
Considerations 5-39 2C Logical Exclusive OR (R),

General Definitions and Program-
(S), to (T) 6-30

ming Guides 5-40 2D LogiCal and (R), (S), to (T) 6-30

Overlap of Operand and Result 2E Logical Inclusive OR (R),
6-30 Fields 5-40 (S), to (T)

Illegal Instructions 5-40 30 Shift (R) Per S to (T) 6-30

Instructions Which Cause 34 Shift (R) Per (S) to (T) 6-31
Undefined Results or 6D Insert Bits from (R) to
Operations 5-40 (T) Per (S) 6-32
Item Count 5-41 6E Extract Bits from (R) to
Field Length and Offset 5-41 (T) Per (S) 6-33

Index 5-42 40/60 Add U; (R) + (S) to (T) 6-34

Data Fault 5-42 41/61 Add L; (R) + (S) to (T) 6-34

Operand Size Definitions 5-42 42 / 62 Add N; (R) + (S) to (T) 6-34

Restrictions on Self- Modifying 44/64 Sub U; (R) - (S) to (T) 6-34
Programs 5-43 45/65 Sub L; (R) - (S) to (T) 6-34
Result Vector 64-·Sword 46/66 Sub N; (R) - (S) to (T) 6-34 Lookahead 5-44

48/68 Mpy U; (R) • (S) to (T) 6-34

6. INSTR UC TIO NS
49/69 Mpy L; (R) • (S) to (T) 6-34

4B/6B Mpy S; (R) e (S) to (T) 6-34
General 6-1 4C/6C Div U; (R) I (S) to (T) 6-34

Instruction Word Formats 6-1 4F/6F Div S; (R) I (S) to (T) 6-34
Instruction Designators 6-1 63 Add Address (R) + (S) to (T) 6-35
Unused Bit Areas 6-2 67 Sub Address (R) - (S) to (T) 6-35
Instruction Types 6-10

58/78 Transmit (R) to (T) 6-35
Instruction Descriptions 6-26 59/79 Absolute (R) to (T) 6-35

Index Instructions 6-27 51/71 Floor (R) to (T) 6-35
3E Enter (R) with I (16 Bits) 6-27

52 I 72 Ceiling (R) to (T) 6-35
3F Increase (R) by I (16 Bits). 6-27

5A/7A ExponenLof (R) to (T) 6-35
4D Half Word Enter (R) with

50/70 Truncate (R) to (T) 6-35 I (16 Bits) 6-27
5B/7B Pack (R), (S) to (T) 6-38

60256000 09 xiii

5C Extend 32 Bit (R) to BO Index, Branch if
64 Bit (T) 6-39 (A)+ (X) = (Z) 6-57

5D Index Extend 32 Bit (R) to Bl Index, Branch if
64 Bit (T) 6-39 (A) + (X) :f (Z) 6-57

76 Contract 64 Bit (R) to B2 Index, Branch if
32 Bit (T) 6-39 (A)+ (X) > (Z) 6-57

77 Rounded Contract 64 Bit (R) B3 Index, Branch if
to 32 Bit (T) 6-39 (A)+ (X) < (Z) 6-57

7C Length of (R) to (T) 6-39 B4 Index, Branch if

53 I 7 3 Significant Square Root
(A)+ (X) .:S,. (Z) 6-57

of (R) to (T) 6-39 B5 Index, Branch if

10 Convert BCD to Binary,
(A)+ (X) > (Z) 6-57

Fixed Length 6-39 B6 Branch to Immediate

11 Convert Binary to BCD,
Address (R) + I (48 Bits) 6-59

Fixed Length 6-39 Vector Instructions 6-59

54/74 Adjust Significance of Instruction Formats 6-59
(R) Per (S) to (T) 6-44

Subfunction Bits 6-60
55 I 75 Adjust Exponent of (R) Field Lengths, Base Address, Per (S) to (T) 6-44

and Offsets 6-62
2A Enter Length of (R) with

Control Vector 6-63 I (16 Bits) 6-45

2B Add to Length Field 6-45 Vector Instruction Termination 6-64

Branch Instructions 6-47 Example of Vector Instruction
Operation 6-65

20/24 Branch if (R) = (S)
80 Add U; A + B-C 6-68 (32 /64 Bit FP) 6-47

21/25 Branch if (R) f (S) 81 Add L; A+ B-C 6-68

(32 /64 Bit FP) 6-47 82 Add N; A+ B-C 6-68

22/26 Branch if (R) > (S) 84 Sub U; A - B-C 6-68
(32 /64 Bit FP) 6-47

85 Sub L; A - B-C 6-68
23/27 Branch if (R) < (S)

86 Sub N; A - B-C 6-68 (32 /64 Bit FP) 6-47

2F Register Bit Branch 88 Mpy U; A e B-C 6-68

and Alter 6-48 89 Mpy L; A • B--C 6-68

33 Data Flag Register Bit 8B Mpy S; A e B--C 6-68
Branch and Alter 6-49 8C Div U; A/B--c 6-68
3B Data Flag Register Load/

8F Div S; A/B--C 6-68 Store 6-51

32 Bit Branch and Alter 6-51 83 Add A; A + B--C 6-69

36 Branch and Set (R) to Next 87 Sub A; A - B-C 6-69

Instruction 6-54 98 Transmit A--C 6-70

31 Increase (R) and Branch 99 Absolute A--C 6-70
if (R) :f 0 6-54

91 Floor A--C 6-70
35 Decrease (R) and Branch

92 Ceiling A--C 6-70 if (R) :f 0 6-54

09 Exit Force 6-55 9 A Exponent of A- C 6-70

• xiv 60256000 09

90 Truncate A-C

9B Pack A, B-C

9C Extend 32 Bit A-64 Bit C

96 Contract 64 Bit A-32 Bit C

97 Rounded Contract 64 Bit A-
32 Bit C

93 Significant Square Root of
A-C

94 Adjust Significance of
A Per B-C

95 Adjust Exponent of
A Per B-C

Sparse Vector Instructions

Sparse Vector Instruction
Format

Base Addresses and Field
Lengths

Sparse Vector Instruction
Termination

AO Add U; A + B-C

Al Add L; A+ B-C

A2 Add N; A+ B-C

A4 Sub U; A - B-C

A5 Sub L; A - B-C

A6 Sub N; A - B-C

AB Mpy U; A• B-C

A9 Mpy L; A• B-C

AB Mpy S; A • B- C

AC Div U; A/B-C

AF Div S; A/B-C

Vector Macro Instructions

CO Select EQ; A = B,
Item Count to (C)

Cl Select NE; A 1 B,
Item Count to (C)

C2 Select GE; A > B,
Item Count to (Cr

C3 Select LT; A < B,
Item Count to (C)

DA Sum (AO + Al + A2
+ ••• An) to (C) and (C + 1)

60256000 09

6-70

6-75

6-77

6-77

6-77

6-77

6-81

6-81

6-84

6-86

6-86

6-86

6-89

6-89

6-89

6-89

6-89

6-89

6-91

6-91

6-91

6-91

6-91

6-94

6-94

6-94

6-94

6-94

6-97

DB Product (AO: Al: A2,
••• An) to C

D5 Delta (An+l - An) -en

Dl Adj. Mean (An+l +An)
/2-Cn

DO Average (An+ Bn)/2-Cn

D4 Ave. Diff. (An - Bn)/2-Cn

BB Transmit Reverse A-C

DE Polynomial Evaluation

DF Interval A Per B-C

BA Transmit Indexed List- C

B7 Transmit List- Indexed C

DC Vector Dot Product to
(C) and (C + 1)

String Instructions

String Instruction Data
Code and Formats

String Instruction Format

EO Binary Add; A + B-C

El Binary Sub; A - B-C

E2 Binary Mpy; A• B-C

E3 Binary Div; A/ B-C

EC Modulo Add A+ B-C

ED Modulo Sub A - B-C

FB Pack Zoned to BCD;
A-C

FC Unpack BCD to Zoned;
A-C

E4 Decimal Add; A+ B-C

ES Decimal Sub; A - B-C

E6 Decimal Mpy; A e B-C

E7 Decimal Div; A/B-C

FA Move and Scale; A-C

FB Move Bytes Left; A-C

F9 Move Bytes Left,
Ones Comp. A-C

EA Merge Per Byte Mask A
B Per G-C

FD Compare Bytes A,
B Per Mask Field C

6-98

6-100

6-100

6-102

6-102

6-103

6-105

6-108

6-111

6-114

6-116

6-117

6-118

6-121

6-127

6-127

6-127

6-127

6-130

6-130

6-132

6-132

6-143

6-143

6-143

6-143

6-146

6-150

6-150

6-153

6-155

xv •

FE Search for Masked BC Compress A-C· Per Z 6-191
Key Byte; A, B Per C, G 6-15B CF Arith. Compress A-c
FF Search for Masked Key Per B 6-192
Word; A, B Per C, G 6-15B BD Merge A, B-C; Per Z 6-195
DB Search for Masked Key Bit; 14 Bit Compress 6-197
A, B Per C, G 6-15B

EE Translate A Per B-C 6-162 15 Bit Merge 6-199

EF Translate and Test Per 16 Bit Mask 6-199

B-C 6-165 17 Character String Merge 6-203

D7 Translate and Mark A Per DD Sparse Dot Product to
B-C 6-166 (C) and (C + 1) 6-405

EB Edit and Mark A Per B-C 6-16B C4 Compare EQ; A= B,

EB Compare Binary A, B 6-1B2 Order Vector-z 6-20B

E9 Compare Decimal A, B 6-1B2 C5 Compare NE; A f B,
Order Vector- Z 6-208

Logical String Instructions 6-1B4 C6 Compare GE; A_: B,
FO Logical Exclusive OR Order Vector-z 6-208
A, B-C 6-1B4 C7 Compare LT; A< B,
Fl Logical AND A, B-C 6-1B4 Order Vector- Z 6-20B

F2 Logical Inclusive OR CB Search EQ; A = B,
A, B-C 6-184 Index List-c 6-211

F3 Logical Stroke, A, B-C 6-184 C9 Search NE; A f B,

F4 Logical Pierce A, B-C 6-1B4 Index List-c 6-211

F5 Logical Implication CA Search GE; A _:B,
6-211 A, B-C 6-184

Index List-c

F6 Logical Inhibit A, B-C 6-184 CB Search LT; A < B,
Index List-c 6-211

F7 Logical Equivalence DB Max, of A to (C) A, B-C 6-1B4 Item Count to (B) 6-214
Nontypical Instructions 6-187 D9 Min. of A to (C)

3D Index Multiply (R) • (S) to (T) 6-187 Item Count to (B) 6-214

3C Half Word Index Multiply B9 Transpose/Move 6-216
(R) e (S) to (T) 6-187

18 Move Bytes Right 6-221
5E/7E Load (T) Per (S), (R) 6-18B

19 Scan Right 6-224
5F/7F Store (T) Per (S), (R) 6-188 28/29 Scan Equal/Unequal 6-224
12/13 Load/Store Byte (T)

lA Fill Field T with Byte R 6-228 Per (S), (R) 6-188

37 Transmit Job Interval lB Fill Field T with Byte (R) 6-22B

Timer to (T) 6-188 lC Form Repeated Bit Mask

7D Swap S-T, R-S 6-189 with Leading Zeros 6-228

39 Transmit Realtime lD Form Repeated Bit Mask 6-228
Clock to (T) 6-190 with Leading Ones

3A Transmit (R) to Job lE Count Leading Equals R 6-229

Interval Timer 6-190 lF Count Ones in Field R,

BB Mask A, B-C Per Z 6-190 Count to T 6-231

• xvi 60256000 09

04 Breakpoint - Maintenance OD Load Associative Registers 6-236 • 6-231 I 06 Fault Test - Maintenance 6-233 OE Translate External

Monitor Instructions
Interrupt :6-236

6-235

00 Idle 6-235
OF Load Keys From (R),
Translate Address (S) to (T) 6-237

08 Input/ Output Per R 6-235 OA Transmit (R) to Monitor
OC Store Associative Registers 6-236 Interval Timer 6-238

APPENDIXES

A. NUMBER SYSTEMS AND TABLES c. G BITS AND TERMINATING

FLOATING POINT ARITHMETIC
CONDITIONS

B.
D. DATA FLAG APPLICATIONS TO

INSTRUCTIONS

FIGURES

1-1 Basic CDC STAR-100 5-3 Virtual Address Formats 5-11
Configuration 1-4 5-4 Associative Word Formats 5-12

2-1 One of Eight MCS Sections
5-5 Virtual Address Key (Cabinets) 2-1

Register Format 5-13
2-2 Superword (Sword) Configura-

5-6 Page Table Format 5-16
tion 2-2

2-3 SAC/Memory Connections 2-3 5-7 Virtual Address to Absolute I Address 5-18
2-4 MCS Address Selection 2-4

5-8 Register File 5-21
3-1 Storage Access Control 3-2

5-9 Virtual/ Absolute Address Zero 5-22
3-2 Page Table Search Examples 3-10

5-10 DFB Register Format 5-30
3-3 I/ 0 Data Formats 3-14

6-1 Instruction Formats 6-3
3-4 I/O Address Formats 3-15

6-2 6-10 Instruction Listing Format
3-5 Basic Stream Block Diagram 3-20

6-3 Example of Register Content
3-6 Instruction Stack 3-21 for an Insert Bits From

3-7 Instruction Stack Use 3-21 (R) to (T) Per (S) Instruction 6-32

3-8 Register File 3-25 6-4 Example of Register Content
for an Extract Bits From (R)

3-9 Register File Addressing 3-25 to (T) Per (S) Instruction 6-33

3-10 String Block Diagram 3-28 6-5 Example of Register Content

3-11 Operand Formats 3-35 for a Ceiling (R) to (T)
Instruction 6-37

3-12 Floating Point Pipe 1 3-37 6-6 Example of Register Content
3-13 Floating Point Pipe 2 3-38 for a Truncate (R) to (T)

4-1 Maintenance Control Unit 4-2 Instruction 6-38

4-2 Block Diagram of Counter 6-7 Example of Register Content

Logic Lines 4-26 for an Extend 32 Bit (R) to
64 Bit (T) Instruction 6-40

4-3 Block Diagram of Counter A 4-27 6-8 Example of Register Content
5-1 Invisible Package Word for a Contract 64 Bit (R) to

xx ••• xxE ~g Format for 32 Bit (T) Instruction 6-41
Access In rrupt 5-5 6-9 Example of Register Content

5-2 Invisible Package Format 5-8 for a Rounded Contract 64 Bit

60256000 09 (R) to 32 Bit (T) Instruction 6-43

xvii

6-10 Example of Register Content 6-31 Example of an Add U; A+ B
6-90 for a Convert BCD to Binary, - C Sparse Vector Instruction

Fixed Length Instruction 6-43 6-32 Example of a Mpy U; A • B
Example of Register Content - C Sparse Vector Instruction 6-93 6-11
for an Adjust Exponent of (R) 6-33 Example of Select EQ; A =B

6-96 Per (S) to (T) 6-46 Item Count to C
6-12 Example of Bit Branch and 6-34 Example of a Delta Instruction 6-101

Alter Instruction 6-53
6-35 Example of a Transmit

6-104 6-13 Address Formats for Exit Reverse A - C Instruction
Force Instruction
(Monitor to Job) 6-56 6-36 Basic Arithmetic Sequence for

Polynomial Evaluation 6-14 General Vector Instruction Instruction 6-107
Format 6-59

6-37 Example of a Transmit
6-15 Operand Field Length. Base Indexed List - C Instruction 6-114

Address. and Offset Formats 6-63
6-38 Example of General Format

6-16 Vector Field Address Format 6-63 of a Data String Field 6-117
6-17 Control Vector Base 6-39 Example of the Packed

Address Format (Z) 6-64 Decimal Format 6-119
6-18 Vector Instruction Example 6-40 Example of the Zoned BCD

of Register Content and Format 6-120
Instruction Format 6-66

Vector Address Fields for
6-41 General String Instruction

6-19
Format 6-121 Vector Instruction Example 6-67

6-42 String Instruction Register
6-20 Example of an Add A; Formats 6-121

A + B - C Instruction 6-69
6-43 Example of Index and Field

6-21 Example of Floor A-:. C Instruc- Length Applied to a Data Field 6-122
tion with Negative Exponent 6-71

6-44 Example of Delimiter
6-22 Example of a Ceiling A - C Termination of a Data Field 6-123

Instruction with Negative
Exponent 6-73 6-45 Example of a Binary Add;

6-23 Example of Source and Result
A + B - C Instruction 6-128

Elements for a Truncate A - C 6-46 Format of a Binary Divide
Instruction 6-75 Result Field 6-129

6-24 Example of Pack A. B - C 6-47 Example of Zoned to BCD
Instruction 6-76 Format Conversion

(G Bit O=O and ASCII 6-25 Example of Extend 32 Bit A Selected) 6-132
- 64 Bit C Instruction 6-78

6-48 Example of Zoned to BCD 6-26 Example of Vector Elements Format Conversion
for a Rounded Contract 64 Bit

6-80 (G Bit O=O and EBCDIC
A-32 Bit C Instruction Selected) 6-135

6-27 Example of Adjust Exponent 6-49 Example of Zoned to BCD
of A Per B - C Operation 6-83 Format Conversion

6-28 Example of Compressing (G Bit 0-=l and G Bit l=O) 6-136
Initial Vector Field into

6-85 6-50 Example of Zoned to BCD
Sparse Vector Field Format Conversion (G Bit

6-29 General Sparse Vector 0 = 1 and G Bit 1 = 1) 6-137
Instruction Format 6-87

6-30 Sparse Vector Field Length
6-88 and Base Address Formats

• xviii 60256000 09

6-51 Exa_rnple of BCD to Zoned 6-68 Example 4 of Edit and Mark
Format Conversion A Per B - C Instruction
(G bit O=O and G Bit 1=0 (Multiple Field Editing) 6-179
ASCII Mode) 6-139 6-69 Example 5 of Edit and Mark

6-52 Example of BCD to Zoned A Per B - C Instruction
Format Conversion (Result Field Shorter
(G Bit O=O and G Bit 1=0 than Pattern Field) :6-180
EBCDIC Mode) 6-140 6-70 Example 6 of Edit and Mark

6-53 Example of BCD to Zoned A Per B - C Instruction
Format Conversion (Decimal Data Fault -
(G Bit O=l and G Bit l=O) 6-141 Undefined Results) 6-181

6-54 Example of BCD to Zoned 6-71 Example of Field Formats
Format Conversion for the Compare Binary A,
(G Bit O=l and G Bit 1=1) 6-142 B Jnstruction 6-183

6-55 Example of Decimal Add A + B 6-72 Example of Field Formats for
- C Instruction 6-144 the Compare Decimal A, B

6-56 Format of Decimal Divide Instruction 6-183

Result Field 6-145 6-73 Example of Logical String

6-57 Example of a Move and Scale; Instruction (Logical Exclusive

A - C Instruction with a
OR) 6-186

Negative Scale Count 6-148 6-74 Example of Arithmetic

6-58 Example of Move and Scale; Compress A - C Per B

A - C Instruction with Instruction 6-194

Positive Scale Count 6-149 6-75 Examples of BD Merge

6-59 Example of Move Bytes Left; Instruction 6-196

A-C Instruction 6-152 6-76 Example of Bit Compress

6-60 Example of Merge Per Byte
Instruction 6-198

Mask A, B Per G - C 6-154 6-77 Example of Bit Merge

6-61 Basic Field Formats for
Instruction 6-200

Compare Bytes A, B Per 6-78 Example of Bit Mask Instruction 6-202
Mask Field C Instruction 6-156 6-79 Example of the Character String

6-62 Example of Search for Masked Merge Instruction 6-204
Key Byte; A, B Per C, G 6-80 Example of Sparse Dot Instruction 6-160

Product to (C) and (C + 1)
6-63 Example of Translate A Instruction 6-207

Per B - C Instruction 6-164
6-81 Example of Compare GE;

6-64 Example of Field Formats A~ B; Order Vector - Z
for the Edit and Mark A Per Instruction 6-210
B -c Instruction 6-169

6-82 Example of Search EQ;
6-65 Example 1 of Edit and Mark A= B, Index List - C 6-213

A Per B - C Instruction 6-83 Example of Initial 10 x 10 (Single Source Field, Sign +) 6-176 Matrix 6-218
6-66 Example 2 of Edit and Mark 6-84 Example of Transposed 8 x 8

A Per B - C Instruction
(Single Source Field, sign -) 6-177 Segment in a 10 x 10 Matrix 6-218

6-67 Example 3 of Edit and Mark 6-85 Example of Transpose/

A Per B - C Instruction Move Instruction Codes 6-219

(Fieltt-Separa:to:r- Specified~ t)...;80 Exampleofa:Move Bytes
No Second Field) 6-178 Right Instruction with a

Positive S Index 6-222

60256000 09 xix •

6-87 Example of a Move Bytes 6-90 Example of Repeated Bit
Right Instruction with a Mask Data Format (Leading
Negative S Index 6-223 Zeros) 6-229

6-88 Example of Scan Right 6-91 Example of Count Leading
Instruction with a Positive Equals Data and Register

6-230 Scan Index 6·225 Format

6-89 Example of Scan Right 6-92 Breakpoint Register Format 6-231
Instruction with a Negative

6-226 6-93 Register Formats for the OF Scan Index
Instruction 6-238

TABLES

3-1 Channel Flag Assignments 3-18 4-15 Channel BTA7
4-1 Channel ATBl (Connector BTA 78) 4-20

(Connector ATB12) 4-4 4-16 Channel BTA8
4-2 Channel A TB2 (Connector BTA 78) 4-il

(Connector ATB12) 4-5 4-17 Display Register Select
4-3 Channel ATB3 Codes 4•23

(Connector A TB34) 4-6 4-18 Counter Events 4-28
4-4 Channel ATB4

External Interrupt Lines 5-7 (Connector ATB34) 4-7 5-1

4-5 Channel ATB5 5-2 Associative Word Usage
(Connector ATB56) 4-8 Codes 5-13

4-6 Channel A TB6 5-3 Lockout Codes 5-14

(Connector ATB56) 4-9 5-4 Page Table Restrictions
4-7 Channel ATB7 and Requirements 5-17

(Connector ATB78) 4-10 5-5 Results for Specified
4-8 Channel A TB8 Register Zero 5-25

(Connector ATB78) 4-11 5-6 Data Flag Register Bit
4-9 Channel BTAl Assignments 5-33

(Connector BT Al 2) 4-12 5-7 Free Data Flag Bit
4-10 Channel BTA2 Assignments 5-36

(Connector BTA12) 4-14 6-1 Instruction Designators 6-6
4-11 Channel Register from 6-2 Instruction List by Function

Channel BTA3 Code 6-11
(Connector BTA34) 4-16

6-3 Instruction List by Instruc-
4-12 Channel Register from tion Type 6-19

Channel BTA4
(Connector BTA34) 4-17 6-4 Bit Branching Conditions 6-48

4-13 Channel BTA5 (Connector 6-5 Bit Altering Condtions 6-48
BTA56) 4-18 6-6 DFBR. Bit Branch

4-14 Channel BTA6 Conditions 6-49
(Connector BTA56) 4-19 6-7 D FBR Bit Altering

Conditions 6-50

xx 60256000 09

6-8 DFBR Branch Address 6-30 T- ...l--- T- ---~ --+.-. ~-..,. I\ """"'rl r"' .i.I.lUt:X J.lJ.\,;.i.-C.l.J..i.t:;.1.11.P .i.V.i. ..n. c;w..iu. '-"'

Source Conditions 6-50 Fields for F8 and F9

6-9 Bit Branching Conditions 6-52 Instructions 6-151

6-10 Bit Altering Conditions 6-52 6-31 Index Increments for
Compare Bytes A. B. Per

6-11 Branch Address Source Mask Field C Instructions 6-157
Conditions 6-52

6-32 DFB Conditions for the FD
6-12 Index Branch Instruction Instruction 6-157

Designators 6-57
6-33 Index Increments for Search

6-13 Integer Ranges 6-58 for Masked Key Byte; A.
6-14 Vector Instruction B Per c. G Instruction 6-158

Designators 6-60 6-34 Index Increments for Trans-
6-15 Subfunction Bits 6-61 late A Per B -- C Instruction 6-163

6-16 Sign Control Subfunction Bits 6-62 6-35 Index Increments for Trans-
late and Test A Per B -- C

6-17 . Sparse Vector Instruction Instruction 6-166
Designators 6-87

6-36 DFB Conditions for the EF
6-18 D F Interval A per B _,. C 6-109 Instruction 6-166

Instruction 6-37 Pattern Select Characters 6-171

6-19 DF Interval Instruction 6-38 DFB Conditions for the EB
with Interrupt 6-110 Instruction 6-173

6-20 Decimal Data Codes 6-118 6-39 Operation of Edit and Mark
A Per B -- C Instruction 6-175

6-21 Result Signs 6-119
6-40 DFB Conditions for E8 and 6-22 G Designators for String E9 Instructions .6-182

Instructions 6-124
6-41 Truth Table for Logical 6-23 DFB Conditions for the EC String Instructions 6-184

Instruction 6-130
6-42 DFB Conditions for FO 6-24 DFB Conditions for the ED Through F7 Instructions 6-185

Instruction 6-131
6-43 Search Iteration. Starting 6-25 Pack Zoned to BCD Digit and Designator Conditions 6-212

Sign Codes 6-133
6-44 Transpose/Move Instruction 6-26 Pack Zoned to BCD Sign and Designators 6-217

LSD Translation Table
(ASCII Mode) 6-134 6-45 Example of Storage and

6-27 Preferred Sign Codes 6-135
Register Mapping for Trans-
pose /Move Instruction 6-220

6-28 Zone Bits and Sign Codes 6-136 6-46 Breakpoint Conditions 6-232
6-29 Unpack BCD to Zoned Sign and

LSD Translation Table
(ASCII Mode) 6-139

60256000 09 xxi •

GENERAL DESCRIPTION

GENERAL

,
I

The CONTROL DATA® STAR-100 (STringARray)computer is a large scale,, high-speed,

logical, and arithmetic computer. The STAR-100 computer utilizes many advanced

design features i:;uch as stream processing, integrated circuitry, virtual addressing,,

hardware macro instructions,, and a high density logic (HDL) hardware register file.

The STAR-100 computer also contains stream arithmetic and functional units especially

designed for sequential and parallel operations on single bits, 8-bit bytes, and 32-bit

or 64-bit floating point operands and vectors. The virtual addressing method employs

a high-speed mapping technique to convert a logical address to an absolute storage

address.

The basic computer consists of a central processor unit (CPU),, magnetic core storage

(MCS),, four input/output (I/O) channels,, and a maintenance control unit (MCU).

Figure 1-1 shows the basic computer configuration.

The CPU contains functions of storage access control (SAC),, stream,, string,, and

floating point. The SAC unit controls I/0 channels,, data transmission to and from

memory,, memory parity checking,, and virtual addressing comparison and translation.

The stream unit performs all streaming and instruction control,, operand alignment,,

buffering,, and addressing. This unit contains a 64-bit by 256-location register file

which is used for instruction and operand addressing,, indexing, field length counts,,

and source and destination points for register instruction operands and results. A

microcode memory in the stream unit controls setup, interrupt,, and termination of

vector-like instructions. The string and floating point units perform the majority of

the computer arithmetic operations.

The MCS consists of 524, 288 64-bit memory words. The memory is field expandable

by adding an optional memory of 524,, 288 64-bit words to make a maximum memory

size of 1,, 048,, 576 words.

60256000 08 1-1

The I/O channels consist of control units for 16-bit data communications between SAC

and the MCU and between SAC and peripheral stations. Any one of the I/O channels

connects to the MCU and the other channels connect to the peripheral stations. These

stations consist of a buffer controller and related control circuitry connected to the

corresponding peripheral equipment. The buffer controller allows flexibility in the

selection of peripheral equipment connected to it, in that the software driver programs

perform the functions previously done by separate peripheral controllers. A typical

peripheral station might be connected to a line printer, a card reader, and some

magnetic tape units. As shown in Figure 1-1 11 additional I/O channels may be added

to the system up to a total of 12. The additional I/O channels must be added in

groups of four.

The MCU consists of a peripheral station with special maintenance control and monitor

ing capabilities.

Cooling for the basic computer consists of two 30-ton water-cooled condensing units.

These units cool only the CPU, MCS11 and I/O sections. The MCU is air cooled.

With the optional memory, the basic computer requires an additional 30-ton condensing

unit.

Power for the basic computer consists of one 2 50 kva, 400 Hz motor-generator set.

The motor-generator set has the capability of providing power for the CPU, MCS11 I/011

and the MCU. The optional memory requires the use of an additional 80 kva motor

generator set.

1-2 60256000 08

COMPUTER CHARACTERISTICS

CENTRAL PROCESSOR

• Three address logic

• Two's complement arithmetic

• Parallel I dual segmented arithmetic units

• Hardware register file composed of 256 64-bit. addressable registers

• Integrated circuits

• Hardware macro instructions

• Sequential stream processing

• Synchronous internal logic with 40-nanosecond clock period (minor cycle)

MAGNETIC CORE STORAGE

• Virtual addressing

• 32 multiphased banks of 16. 384 64-bit words each. giving a total storage of

524.288 64-btt words

• Optional 524. 288 64-bit words

• Eight 64-bit words (plus two parity bits per word) read from each

memory bank

• Two 64-bit words plus four parity bits transfer to/from the CPU on each

of four independent read/write buses every minor cycle

• 1. 2-microsecond cycle time

• Two levels of MC S degradation for maintenance

INPUT /OUTPUT

• Four 16-bit I/O channels

• Optional I/O channels up to a total of 12

• Highly flexible peripheral stations

60256000 08
1-3

CENTRAL PROCESSOR UNIT

MEMORY -~----..-~- STORAGE ~

r---..,
I 'i' I I w
I OPTIONAL~ ~~ ~
I MEMORY I L __ .J

ACCESS

CONTROL

(SAC) ~

' T ~~'~'~
I I
I I
I I

: I
I I
I I
I I
I I
T I

I I
I I
I I

STREAM

J

STRING

~ MAINTENANCE
q-J CONTROL

'---~~ UNIT
,. (MCU) ~

I I .W\jf\lr

I I\!{-!/
I I 1/0
I CHANNELS 1-4

~
OPTIONAL 1/0
CHANNELS
5.:..e a 9-12

FLOATING POINT

~ ~ FLOATING POINT

PIPE I

11111~;...----1~~..- FLOATING POINT

PIPE 2

NOTES:
(])OPTIONS ARE SHOWN IN DASHED

LINES.

@THE MCU IS ALWAYS CONNECTED
TO THE HIGHEST NUMBER (LOW
EST PRIORITY) CHANNEL AVAIL
ABLE (i.•,4, 8·,or 12).

!APIA

Figure 1-1. Basic CDC STAR-100 Configuration

• 1-4 60256000 09

MAGNETIC CORE STORAGE 2

DESCRIPT10N

Magnetic core storage (lVICS) consists of 524. 288 66-bit words (64 data bits and 2 parity

bits). physically arranged as 65. 536 528-bit words. For convenience. the MCS is

referred to as a 525K memory (for 66-bit words) and a 65K memory (for 528-bit words).

Each 52 8-bit word is called a super word or sword and is contained in two 264-bit

planes. The MCS is divided into 32 banks. physically located in eight sections. Each

section contains four banks as shown in Figure 2-1. For addressing considerations.

one bank contains 2048 addresses of 528 bits each. Two planes are referenced simul

taneously to read or write one 52 8-bit sword. An MC S option for another 524K memory

may be added to the computer. The MCS option requires an additional eight sections

of MCS.

60256000 08

REAR VIEW

BANKI { 88 88} BANK0

BANK

NOTES:

68} BANK2

VIEWED FROM
WlREO SIDE

0 EACH BANK CONTAINS TWO 264-BIT PLANES
OF 2K EACH.

2. ONE BANK EQUALS 2048 ADDRESSES OF 528
BITS EACH OR 16,384 ADDRESSES OF 66 BITS EACH.

SAP2A

Figure 2-1. One of Eight MCS Sections (Cabinets)

2-1

STORAGE WORD

A storage word is one sword (Figure 2-2). One sword contains four quarter-swords.

Each quarter-sword contains two 66-bit words. 64 data bits, and 2 parity bits per word.

One sword, therefore. contains eight 66-bit words which are addressed from left to

right within the sword.

The 528 bits of one sword transfer to/from MCS during each write/read operation,

although only part of the sword may actually be stored or used. When the storage

access control (SAC) performs a write/read operation, it addresses each of the eight

MC S sections (Figure 2-3). In addition. SAC sends a bank request signal that selects

cnly one of the 32 memory banks. A storage word transfer then takes place between

SAC and the selected MC S memory bank. The transfer occurs in four quarter-sword

transmissions. The transmissions go through a 132-bit data trunk which goes to the

MC S section that contains the selected memory bank. The transfer requires a period

of four minor cycles, one quarter-sword per minor cycle. During a write operation.

SAC sends a write enable signal for each half-word (32-bits). Depending on how the

enables are set, any or all of the half-words within the sword may be written into

storage. The SAC unit sends the enable signals in two 8-bit groups. Similarly. SAC

may select and use any or all of the half-words of a sword that it receives in a read

operation.

Data parity checking and generating is accomplished in SAC.

All signals between SAC and MCS use transistor current switch (TCS) ac transmission

techniques (described in the Control Data Intebrid Circuits Manual, Publication Number

60201000).

2-2

PARITY BIT
PO

l}l SWORD 0

w- Pl

oalOM
I]

Pa

oteJOM

11
/

./
\ U •IT HALF WOllD
\ PLUel PARITY •1T

' \
\

' \
\
\

e4elT WOltD
PLU• PARITY •rr
AIR EACH NALP''WORD

/

/
/

/
/

/
/

/

1 1"

NOTH:

1/4 SWORD 0 V4 IWORD I l/41WORDI l/4SWORDS

(TWO e4 BIT WORDI
PLUl4 PARITY BITI)

ONE IWORD • EllHT e4 e1T WORDI
PWS .. PARITY ens
(4 PARITY BITS l'OR EACH

V41WORD)
I. •tTSARENUaERED 000-117 wmt• EACH

1/4 IWOftDAND PREl'IXIEDWITHTHE 1/4 IWORD
RUllRR (le.0-117:tll1T1170I' 1/ltSWOROO.)

I. MRITY llTI Altll NUllHltlD PO• PS WITHIN IACN 1/4 IWORD.

3AP3A

Figure 2-2. Superword (Sword) Configuration

60256000 08

MCS ACCESS AND CONTROL SIGNALS

Figure 2-3 is a block diagram showing the four banks of a memory section and the

connections to the SAC.

FROM
SAC

BANKO
REQUEST

WRITE
DATA

WRITE
ENABLE

ADDRESS

IA SWORD
ADDRESS

CLEAR DATA
REGISTER

SPLIT
CYCLE

MASTER
CLEAR

CLOCK

BANKI
REQUEST

BANK 2
REQUEST

BANK 3
REQUEST

MEMORY SECTION

I _,..

132 -.....
TO S AC

8
_; 132 READ DATA

II -"
MEMORY

2 - BANKO

I
...

I -
I -~
I,..

I
~,..

i----. --?' MEMORY
BANK I ----.....

----:_
..... --.....

I -
~ --::. t-----t MEMORY ... :. BANK 2 -..,.. --:

I -
L;
~ 1----' -:: MEMORY

BANK 3 _.,J ...,..
-"-.....
....
:;

IAP4A

Figure 2-3. SAC/Memory Connections

60256000 08 2-3

REQUEST

There is one request line for each of the 32 banks in a 524K word system (four for

each memory section). When the system is increased to 1048K words, 32 additional

request lines are added. The request is a single pulse sent when SAC requires a

memory reference from a specific bank.

ADDRESS

Eleven bits of sword address are sent simultaneously to all 32 MCS banks. Only the

bank requested during the same minor cycle will use the address. Eleven bits are

needed to select one of 2048 addresses of 528 bits each. Figure 2-4 shows the MCS

address selection.

DR I VE BOARD O=LOWER lK
l=llPPER lK

2-4

READ GATE,
WRITE DR IVE TIMING

O=LOWER
l=UPPER

SELECT
1 OF 2049--~

SELECT
r---1 OF 1024
I (32 x 32)

0 1

I I
2 3 4 5 o 7 8 9 10 /LEAST SIGNIFICANT BIT

I I I I I I I I 12°1
~ ~ /lo ADDRESS BITS FOR

~AO DRIVE, WRITE GATE

16 ADDRESS BITS FOR
READ GATE, WRITE DRIVE

Figure 2-4. MCS Address Selection

60256000 08

QUARTER-SWORD ADDRESS

Two bits determine the order of quarter-sword transfer to/from MCS. These bits

accompany the request and address to all 32 MCS banks. Only the requested bank

uses the quarter-sword address. Each quarter-sword (numbered 0, 1, 2, or 3) consists

of 132 data bits. The quarter-sword address and transfer order of the four groups are

shown in the following listing.

Quarter- Sword Address Read Write
Bit 0 Bit 1 Sequence Sequence

0 0 0123 0123

0 1 123t undefined

1 0 23t t undefined

1 1 3210 3210

READ DATA

Four banks in a section share a common read data path. One 132-bit data bus carries data

from each MCS section to SAC. This requires four quarter- sword transfers to read one

528-bit sword. The first quarter-sword leaves MCS five minor cycles after the request is

received. The remaining quarter-swords are transmitted on the next three minor cycles.

READ PARITY

There is one odd parity bit for each 32 bits of data. Therefore, four read parity-bit

lines exist between each MCS section and SAC. All parity checking takes place ex

ternal to MCS.

WRITE DATA

Four banks in a section share a common write data bus. One 132-bit data bus carries

data from SAC to each section. Each sword transfers as four quarter-sword bytes.

The first quarter-sword arrives at MCS one minor cycle after the request. The re

maining quarter-swords are transmitted on the next three minor cycles.

t Transfer is undefined for group four.
t t Transfer is undefined for groups three and four.

60256000 08
2-5

WRITE PARITY

There is one odd parity bit for each 32 bits of data. Therefore, four write parity-bit

lines exist between each section and SAC. Parity generation takes place in the SAC

unit.

WRITE ENABLE

There is one write enable bit for each 32 bits of data. The presence of a write enable

bit causes the corresponding 32 bits on the write data lines, plus parity, to be written

into memory. The SAC unit sends the write enable bits for the first two quarter

swords to memory one minor cycle after the request. SAC sends the write enable bits

for the last two quarter-swords to memory three minor cycles after the request. Thus,

16 write enable bits accompany each sword of data. If none of the t'6 write enable bits

are set, the request is a read. If any or all of the 16 write enable bits are set, the

request is a write.

SPLIT CYCLE/CLEAR DATA REGISTER

The split cycle signal specifies that a pause will occur between the read and write

portions of a memory cycle. The read bus timing is normal and the write bus timing

is special. Virtual addressing circuits use the split cycle for a page table search.

This allows the computer to read data and make a decision to change it or write the

same data back into the same location. During this pause between read and write

cycles, the clear data register signal specifies the writing of new data or the restoring

of original data. The clear data register signal clears the data register in the memory

bank prior to the receipt of write data. This signal is sent simultaneously to all mem

ory banks and only the bank in the appropriate part of its memory cycle will respond.

CLOCK

The clock signal from SAC runs continuously when the power is on.

MASTER CLEAR

SAC pulses the master clear signal continuously whenever a master clear is present in

the central processor unit (CPU).

2-6 60256000 08

MCS DEGRADATION

The MCS degradation feature allows normal operation of the system within a segregated

part of MCS and allows maintenance programs to be run in the bad portion. Many

MCS degradation options are available from the maintenance control unit (MCU)

depending on the total MCS size and the type of fault.

524K SYSTEM DEGRADATION OPTIONS

Due to the interleaving of the MCS banks, the general failure of one bank results in

one faulty sword occurring on a 32-sword period through sequential addresses. Should

this general failure of a bank occur in a 524K MCS system or in a degraded 1048K

system, the phase 16 signal line from the MCU to SAC restructures MCS in a way that

sequential addresses sweep through 16 banks rather than 32. This function segregates

MCS into lower and upper blocks, one of which is composed exclusively of good memory

locations. The swap 262K signal line from the MCU to SAC causes either block to

appear as lower 262K. The use of the phase 16 feature causes an associated time

penalty on certain instructions due to the lower order of bank interleaving.

If only a single memory location is faulty or the failure is restricted to a few pages t ,

operations may continue without using the phase 16 feature with its corresponding time

penalty. This is accomplished by avoiding the defective pages. Note that certain moni

tor instructions and internal CPU operations produce absolute addresses. If these

addresses reference defective MCS, it may be necessary to use the swap 262K feature

to move the absolute address references out of the defective area of MCS.

1048K SYSTEM DEGRADATION OPTIONS

If there is a general failure of one bank, causing defective pages throughout upper or

lower 524K, two options are available. The first alternative is to only reference the

good 524K MCS block. This enables full CPU speed. The other alternative is to use

the phase 16 feature to segregate the defective pages into a single 262K block. This

feature provides a 786K block of good MCS to the system but also includes the asso

ciated time penalty. In either case, the good memory can be made contiguous in lower

memory with appropriate use of the swap 524K and swap 262K lines.

If the MCS failure is restricted to a few pages, operation can continue at normal speed pro

viding that the defective pages can be avoided.

tFor a description of pages, refer to virtual addressing in section 5.

60256000 08 2-7

CENTRAL PROCESSOR UNIT 3

DESCRIPTION

The central processor unit (CPU) shown in Figure 1-1 consists of the following functional
areas.

• Storage access control (SAC)

• Stream and string (physically part of the stream unit)

• Floating point pipes 1 and 2

STORAGE ACCESS CONTROL

The SAC unit controls the transmission of data to/from magnetic core storage (MCS)

and performs virtual address comparison and translation. The SAC unit also generates

parity bits for write data and checks parity for read data. Thus, SAC provides access

to MCS for stream and the input/ output (I/O) channels.

The SAC unit shown in Figure 3-1 connects to memory via eight read and write data

sets. In this case a data set is defined as a physical grouping of cables and associated

circuits used to carry data. There is one data set to each memory section. If the

optional MCS is connected to the system, a total of 16 data sets is available for data

transmission to/from MCS. For each reference, the data transmissions to/from MCS

are in the form of four 132-bit portions of the 528-bit superword (sword) contained in

MCS. Each 132-bit portion is referred to as a quarter-sword and consists of 128 data

bits and four parity bits (Figure 2-2). One parity bit is associated with each half-word

of data. The SAC unit references memory on a sword basis. In a write operation,

write enables determine the number of half-words written into memory. Therefore,

less than one sword may be written into memory, even though the time allocation is

for a full sword.

60256000 08 3-1

TO STREAM

3-2

READ BUS I

READ.BUS 2

READ IUSI

1/4 SWORD
SELECT

ADDRESS

REQUESTS

SLOT BANIC
ADDRESS

Figure 3-1.

READ
DATA

INPUT/OUTPUT

FOUR 18- BIT 1/0 CHANNELS
AND ASSOCIATED CONTROL

PRIORITY

IAP5A

Storage Access Control

TO MEMORY

ONE SET TO
EACH OF THE
lllEMORY
SECTIONS.

BANIC REQUESTS

60256000 08

SAC READ OPERATIONS

The SAC unit contains three read accesses. An access is defined as a grouping of one

or more buses which share a selection network for accessing MCS. Read buses 1, 2,,

and 3 provide read access for the stream unit and use read access 1.. 2,, and 3, re

spectively, in SAC. These three read buses provide i..'1.structions and operands to the

stream unit. The input/ output buffer also connects to read access 3 via a 128-bit read

bus. The associative registers share read access 1 with the stream unit.

On read operations.. SAC performs an odd parity check on each half-word of data. If

a parity fault is detected .. the parity fault condition is set. The resulting operation de

pends on the access input that requested the data containing the parity fault as described

in a subsequent subparagraph. If no parity fault is detected, the data is transmitted to

the input that made the request. In all requests except the requests associated with

read bus 3, only the data bits are transmitted. Since instruction words are transmitted

over read bus 3, the SAC unit first checks the parity in the normal manner and then

transmits the 128 data bits with the corresponding parity bits to the stream unit for

further checking.

MEMORY PARITY FAULT

The SAC unit generates and checks parity. The existence of a memory parity fault is

sensed on bit 0 of channel ATB8 to the maintenance control unit (MCU). The type and

address of the memory parity fault are available to the MCU via code 04 of the display

register (refer to section 4 of this manual for a description of monitoring of system

activities by the MCU). There are six classes of parity faults.

1. ACCESS INSTRUCTION

The SAC unit detects access instruction parity faults one minor cycle after

the quarter-sword containing the fault is sent to stream. The CPU stops

before executing the next instruction following detection of an access instruc

tion parity fault. The MCU, after processing and clearing the fault,, may

restart the CPU.

60256000 08 3-3

I

3-4

2. STREAM INSTRUCTION

The stream unit detects stream instruction parity faults just before the in

struction containing the parity fault is executed. The CPU stops when an

instruction parity fault is detected. The MCU, after processing and clearing

the fault, may restart the CPU. The parity fault address is not valid since

the parity fault must have occurred in stream or resulted from a previous

access instruction parity fault. The content of the current instruction counter

is more meaningful in this case.

3. CPU

The SAC unit detects CPU parity faults one minor cycle after the quarter

sword containing the fault is sent to stream. The CPU stops before executing

the next instruction following detection of a CPU parity fault. The MCU after

processing and clearing the fault, may restart the CPU. CPU parity faults do

not include parity faults in swords which contain instructions.

4. SEARCH

The SAC unit detects search parity faults one minor cycle after the quarter

sword containing the fault is sent to the associative registers. The CPU

stops before executing the next instruction following detection of a search parity

fault. The MCU, after processing and clearing the fault, may restart the

CPU. This fault can only occur during a space table search.

5. EXCHANGE

The SAC unit detects exchange parity faults one minor cycle after the quarter

sword containing the fault is sent to the register file. The CPU stops before

executing the next instruction following the detection of the exchange parity

fault. The MCU, after processing and clearing the fault, may restart the

CPU. This fault can only occur during a register file exchange.

6. 1/0

The SAC unit detects 1/0 parity faults one minor cycle after the quarter

sword containing the fault is sent to the 1/0 channel buffer. The MCU

can cause the CPU to stop on an 1/0 parity fault (MCU channel

BTA2 bit 3). The appropriate parity fault indicator is set and the

60256000 09

address of the I/O parity fault is transmitted to the MCU upon request. If

another parity fauit is detected before the IvICU ciears the first fauit, the

appropriate parity fault indicators are set but the address of the fault is the

address of the first fault detected.

A parity fault signal is sent to the I/O station to indicate if a parity fault was

detected in data sent to it.

PARITY FAULT ISOLATION

When one parity fault occurs. SAC stores the absolute physical bit address of the data

that caused the fault and the type of fault in a register which may be read by the MCU.

The stream instruction parity faults do not store the correct absolute addresses since

they are detected just before the instruction is executed and therefore. too late to catch

the absolute address of the fault. For this case. the current instruction address regis

ter contains the virtual address of the current instruction containing the parity fault(s).

From this. it is possible to determine the absolute address. if desirede

If two or more parity faults occur before the MCU ·can analyze and clear each one

individually. SAC stores the address of only the first fault. the type of the first fault.

and the types of any other six faults. Two or more of the same kind of faults, which

occur before a clearing. cause only the first fault to be recorded.

SAC WRITE OPERATIONS

The SAC unit contains two write accesses. Write buses 1 and 2 provide two inputs

for the stream unit access to MCS. These two write buses transmit result operands

and other output data from the stream unit to SAC for storage in l\11: S. The SAC unit

assembles the 16-bit bytes transmitted from the I/O channels into quarter-swords and

transmits these to MCS. The I/O channels share write access 2 with the stream unit.

The stream unit uses write access 2 for exchange operations only. The stream unit

and associative registers use write access 1.

60256000 08 3-5

In write operations, the SAC unit generates the four parity bits for each quarter-sword.

The format of the write data, as transmitted to MCS, is identical to the read data.

VIRTUAL ADDRESS MECHANISM

The SAC unit contains the 16 associative registers~' and corresponding control circuits.

When the CPU is in job modet, all addresses sent from the stream unit are virtual

addresses. The SAC unit compares a virtual address with the virtual address identifier

of the associative registers. If a match is found and one of four keys compares with

the lock of the associated word, the virtual address control circuits convert the virtual

address into the corresponding absolute memory address from which the reference is

made. If no match is found in the associative registers, the virtual address control

circuits read additional associative words from a restricted portion of MCS, termed the

space table. The associative registers and the space table make up a page table.

MCS PAGE SIZES

There are two MCS page sizes available for virtual address references: the 65, 536

and the 512 64-bit word pages. The page sizes are selectable under program control

and are applicable only for virtual address references.

STORAGE PROTECT FEATURES

The SAC unit contains the storage protection circuits for the computer system. The

storage protection features consist mainly of a lock and key arrangement. Each

associative word in the page table contains a 12-bit lock code. The lock code is

associated with a page of MCS. Each job is assigned four 12-bit keys by the monitor

program. If a virtual address matches the corresponding portion of the associative

word, the four keys associated with the current job are compared with the lock code in

the matching associative word. One of the four keys must match the lock code before

the storage reference can be completed. Thus, the monitor program can restrict MCS

page access to only the specified jobs by assigning the lock and key codes accordingly.

t Refer to section 5 of this manual for a description of job and monitor modes and
' addressing.

3-6 60256000 08

In addition to the lock/key protection feature, each ·of the four keys is associated with

a 4-bit usage lockout code. This code can lockout CPU write operations, CPU read

operations, and/ or CPU instruction references. If a key matches the lock of an asso

ciative word, but the requested type of reference is inhibited by the usage lockout code,

an access interrupt takes place to the monitor program. Thus, the monitor program

can restrict MCS page access for a job to a particular type of reference.

Since during monitor mode all CPU references are absolute addresses, the storage

protection features are disabled for these references. In the same manner I/O channel

references are absolute addresses and are unrestricted by the storage protection features.

Section 5 of this manual describes the operation of the lock/key and usage lockout in

more detail.

SEARCHING THE PAGE TABLE

There are 16 associative registers (AR's), labeled 00 through 15. They are loaded

from absolute addresses 400016 through 43C0 16 by a load AR (OD) instruction. They

can also be stored into the same absolute addresses by a store AR (OC) instruction.

The associative words in the AR' s are moved dynamically using the following scheme.

Whenever a virtual address is presented for association and a hit is made, the content

of the AR containing the hit is moved to AROO. Simultaneously, the content of the

AR' s from AROO to, but not including the hit AR, are moved down one AR. (For ex

ample, 00 to 01, 01 to 02, 02 to 03, etco) Thus, the associative words are in des

cending order of most recent usage in AROO through 15. Whenever an address is pre

sented and no hit is made, a search through the space table is begun using a ripple

method. AROO through 14 are moved down one AR and AR15 is placed in AROO. Then

the first associative word of the space table is read and examined; its spot in storage

is filled by the old content of AR15. If the first word read from the space table is

not a hit, the second is read and replaced in storage by the first word read and so on

until a hit is made or an end of table is reached.

60256000 09 3-7

I

If during the search a hit is made, the content of the hit address is placed in AROO and then

replaced in memory by the associative word which formerly preceded it in the space table.

I Entries in the space table beyond the hit address are not modified.

If an end of table (END) is read before a hit is made, the entire space table is pushed down

I
by one word position. However, if the unsuccessful search was initiated by a memory

reference in job mode, the NULL may be pushed down through AROO before the exchange

to monitor mode is performed. This condition is sent to the CPU and an access interrupt

results.

I

If a NULL exists in the AR's and no hit is made in the AR's, the space table is not pushed

down. A read and compare takes place until a hit is made and the NULL replaces that word

in the space table.

If no hit is made in the AR's and a NULL is encountered in the space table, the operation

changes from a ripple to a read only (no push down) and now if no hit is found, the null re

mains in AROO, as before. If a hit is made deeper in the space table, the NULL replaces it.

Thus, only one NULL need exist at any given time in the page table.

If the monitor sets up the page table with one NULL, and it never adds or deletes a NULL,

the END remains at a fixed address for any given number of associative words in the page table.

At the termination of an unsuccessful space table search, there will be a NULL in AROO if

the unsuccessful search was initiated by an OF (load keys, translate address) instruction.

Figure 3-2 is an example of a page table search where the content of the AR's and the con

tiguous entries in the space table are depicted as P3, P4, etc., NULL and END, where P3

represents the associative word for page 3, NULL is a NULL associative word, and END is

an end of table entry.

The example shows seven consecutive virtual address page references and the resulting page

table transfers. Assume that there are 21 associative words in the page table (16 in the asso

ciative registers and 5 in the space table) and that no lockout bits are set; the last entry is an

end of table.

3-8

1. The first reference is to page 3. P3 is in AR03 and is moved to A ROO and the content

of AROO through AROl is moved down one word. The space table was not altered.

2. The next reference is to page 18. No hit is made in the AR's so the AR's are pushed

down one and the content of AR15 (P16) is pushed down into the space table. Pl 7 is

read and replaced with Pl6. Since Pl 7 is not a hit, it is swapped with the next entry

in the space table, Pl8. P18 caused a hit so it is replaced by Pl 7 and moved to AROO.

60256000 09

3. The third reference is to P21 which is not in the page table. The result is that

the entire page table is examined and pushed down including the END, AROO is set

to a NULL, and an access interrupt is generated.

4. Assume that the access interrupt is properly handled by the monitor program and

the page table is not altered. The next storage reference in job mode is to Pl.

Since Pl is in AR03 when the reference is made, it is moved to AROO, and AROl

through AR02 moved down one word.

5. The fifth reference is to Pl6 which is now the second entry of the space table.

This time there is a NULL in the AR' s. The NULL is moved to AROO and AROO

is moved down one word. P14 is not moved into the space table and the space

table is not pushed down. A read and compare takes place until the hit is found

and then the NULL replaces the selected associative word in the space table.

6. The next reference is to P20. Since there is no hit or NULL in the AR' s, the

page table is pushed down until the NULL is encountered. Push down ceases and

read and compare takes place until P20 is read, causing a hit. P20 is moved to

AROO and is replaced by a NULL.

7. The last reference is to P21 which is not in the page table. The page table is

pushed down until the NULL is encountered. Push down ceases and then searching

ceases when the END is read.

AROO is set to a NULL and an access interrupt is generated.

60256000 08 3-9

REFERENCE
MADE TO PAGE P3 Pl Pl Pl

ASSOC I AT IVE AFTER 2 AFTER 3 AFTER 4 AFTER 5 AFTER 6 AFTER 7
REG I STER 00 Pl 20 NULL

01 P2 P20

02 P3 P16

03 P4 P3 PIS Pl

•
•
•
•

12 PI I P9

13 P14 P14 P13 P12 P12 Pl2 PIO

14 P15 P15 P14 P13 Pl3 P13 Pl2 P 11

IS P16 Pl6 P15 P14 P14 P14 P12

ABSOLUTE
A.OD RESS 4400 p 17 P17 P15 Pl5 P15 Pl3

(SPACE TABLE) 16

4440 PIS PIS Pl6 Pl6

44SO P19 P17 P17 P17

44CO P20 P20 P20 P19 P19 Pl9 P19 Pl7

4500 ENO ENO ENO P20 P20 P20 NULL Pl9

4540 xx xx xx END END END END END

NOTE: I. PAGE TABLE IS MADE UP OF ASSOCIATIVE REGISTERS AND THE
SPACE TABLE.

3AP8A

Figure 3-2. Page Table Search Examples

3-10 60256000 08

MULTIPLE-MATCH FAULT

One of the ground rules of the CDC STAR-100 system is that any given combination of

lock and virtual page identifier in an associated word may occur in only one associative

word in the page table. A multiple-match fault occurs whenever a violation of this

rule is detected and the CPU is stopped. If two keys are identical, their lockout bits

must be the same. Otherwise, a reference made to the differing lockout bits generates

a multiple-match fault, resulting in an undefined condition.

ABSOLUTE BOUNDS ADDRESS

The absolute bounds address mechanism notifies the MCU of a memory reference

(read or write) to a specified block of memory. The block of memory is specified by

an upper bounds sword address and a lower bounds sword address. The addresses are

absolute physical sword addresses and are transmitted from the MCU on channels BTA4

and BTA5 (refer to section 4). The bounds addresses are not included in the block of

memory.

Various classes of requests can be tested for in-bounds conditions. Any combination

of classes may be selected (channel BTA6, bits 0 through 5).

If the CPU is stopped by a bounds hit, the hit is cleared by the clear fault signal from

the MCU before the CPU restarts. The CPU restarts by setting bit 3 of MCU output

channel BTAl. Bit 3 of BTAl, if set, causes the CPU to execute the next instruction

in sequence.

A bounds hit (a selected memory reference inside bounds) is sent to the MCU on bit 3

of channel ATB8. To identify a second bounds hit, the MCU must clear the first bounds

hit signal via the clear fault signal (bit 7, channel BTAl).

INPUT /OUTPUT CHANNELS

There may be up to 12 channels in the CDC STAR-100 SAC unit. Channels 1 through

4 are required in the minimum system and channels 5 through 8 and 9 through 12 may

be added as options. One channel must be reserved for the MCU. The MCU provides

the interface to the operator for maintenance, system control, and monitoring. The

MCU can disable-any or aUifO channels from reading or writing into central memory.

The peripheral station on a disabled channel can carry on all functions with the

60256000 08 3-11

CDC STAR-100 1/0 channel, except the transmission of data to/from central memory.

This feature is very useful for maintaining the 1/0 channels and peripheral stations.

A typical I/O channel connects to a peripheral station. The peripheral station may,

in turn, be connected to various peripheral devices or be connected to another second

level peripheral station.

Data is transmitted to/from the I/O channel in 16-bit transmissions. In I/0 write

operations, two successive 16-bit data transmissions from the peripheral station are

assembled into one 32-bit half-word. The half-words are temporarily stored in the

I/O buffer. When sufficient data has been assembled and stored in the I/O buffer, it

is transmitted one quarter-sword (128 bits) at a time through the SAC data circuits to

central storage. In I/O read operations, the SAC data circuits transmit one complete

sword from central storage, quarter-sword at a time, into the I/O buffer. The I/O

control circuit then reads 32-bit half-words from the I/O buffer into the data registers.

The data is disassembled into 16-bit transmissions which are sent to the peripheral

station.

At the beginning of an I/O read or write t operation, a starting address is sent to the

I/O channel in the form of two successive 16-bit transmissions (only 21 of the 32 bits

are used). Of the total, 11 bits are used as the MCS sword address and 6 bits are

used as the bank address. The remaining bits define the quarter-sword and the half

word addresses for the I/O buffer assembly/disassembly operation.

ASSEMBLY/DISASSEMBLY

Each I/O channel contains a 32-bit assembly/disassembly register and address register

circuits. In addition, a 32-word-by-128-bit high density logic (HDL) memory is shared

by the I/O channels as the I/O buffer. The I/O buffer is used for assembly, disassem

bly, and buffer operations. An I/O channel is allocated a quarter, half, or whole

sword in the I/O buffer. The amount of I/O buffer space that is allocated to an I/O

channel is predetermined and may only be altered by specific contractual arrangement.

tAll I/O write references to the lower eight 512-word pages of central memory are
locked out. This lockout is disabled only after a master clear until the first I/ O
interrupt is received. The temporary disable allows a peripheral station to write the
basic system program into central memory on system startup.

3-12 60256000 08

The allocation for each I/O channel is:

Channels 1- 5

Channels 6-10

Channels 11 and 12

four quarter- swords each

two quarter-swords each

one quarter-sword each

The data trunk between the assembly I disassembly buffer (ADB) and central memory is

128 bits wide. The data trunk between the ADB and the channel assembly/ disassembly

registers is 32 bits wide. The data trunks between the peripheral stations and the

assembly/ disassembly registers are 16 bits wide.

1/0 DATA

Figure 3-3 shows that in I/0 write operations, each 32-bit half-word consists of two

successive 16-bit transmissions from the peripheral station. The two 16-bit portions

are assembled in the assembly/ disassembly register for transmission to the I/O buffer.

1/0 ADDRESSING

Figure 3-4 shows that the starting address for an I/O read or write operation is sent

from the peripheral station as two 16-bit transmissions. The first 16 bits contain the

upper or lower 500K MCS selection bit and the high-order 4 bits of the sword address.

The second 16 bits contain the low-order 7 sword bits, the 5-bank selection bitst., the

quarter-sword address, and the half-word address. The 11 sword address and 6 bank

address bits are transmitted to the channel address register where they are incremented

as sword boundaries are crossed during central storage references. The quarter-sword

address bits are sent to I/O control where they determine the quarter-sword that is

loaded into or transmitted from the I/O buffer. The half-word address bits determine

the 32-bit half-word that is loaded into or transmitted from the I/O buffer.

fThe 5 bank selection bits and the 500K MCS selection bit are combined to form the
6-bit bank address as shown in Figure 3-4.

60256000 08 3-13

3-14

DATA SENT FROM PERIPHERAL STATION

0 1 2 3 4 5 6 7 8 9 10 1112131415

I I l I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 101112131415

I I I I I I I I I I I I I I I I I

FIRST TRANSMISSION
(UPPER 16 BITS)

SECOND TRANSMISSION

(LOWER 16 BITS)

I/0 CHANNEL
AD REGISTER

0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031

~t 11111111111111111111111117~
UPPER 16-B ITS LOWER 16-B ITS

HIGHEST ORDER BIT LOWEST ORDER BIT
!AP7A

Figure 3-3. I/O Data Formats

60256000 08

60256000 08

NOT USED SWORD ADDRESS rl=SELECT UPPER SOOK MCS

HIGH-ORDER 4 BITS OF

2 3 4 5 6 7 8 9 10 II~ 0

I I I I I I I I I I I I I I I I I FIRST TRANSMISSION

I

rl/4 SWORD ADDRESS
LOW-ORDER 7 BITS OF BANK

SWORD ADDRESS SELECT HALF - WORD ADDRESS
A A ~____A_

0 I 2 3 4 5 6 \/ 7 8 9 10 I I \r;;--;3'~ ~

I I) I I I I I I I I I I I I I I SECOND TRANSMISSION

'------------~~------------'~
I/O BUFFER

ADDRESS COUNTERS

~ A'----~------
0. I 2 3 4 / 5 6 7 8 9 10 II 12 13 14 15 16 \

I I I I I I I I I I I I I I I I I Ii~~~~;~ ~;5TER

SWORD
ADDRESS

SAC CONTROL CIRCUITS

BANK
ADDRESS

Figure 3-4. I/ 0 Address Formats

SAPIA

3-15

1/0 CHANNEL PRIORITY

The I/O channels have the lowest priority of the memory accesses. There are two

modes of operation to determine priority, random mode and stream or slot mode.

1. RANDOM MODE

"W"hen a channel needs a memory access, the request goes through

a channel priority. Channel 1 has the highest priority and channel 12

the lowest priority. After channel priority is granted, the request goes

through a system priority. Before the access is allowed, no read next in

struction (RNI) request can be present. At this point, the memory busy is

checked and if not busy, the access is granted. If the memory is busy, the

requesting channel is limited to making requests on alternate I/O timing

signals, thus allowing a lower priority channel to make a request while the

higher priority channel waits for the memory to go not busy. The requesting

channel requests memory on alternate access cycles (I/O timing signals) until

the access is granted or until a higher priority channel makes an access

request.

2. STREAM OR SLOT MODE

In the stream or slot mode, the A operand, B operand, C operand and I/ 0

are each allocated a seperate memory bank such that memory conflicts are

avoided. Each allocation is for four minor cycles. After the four minor cycles,

the allocation moves to the next memory bank. This continues through the

32 memory banks, then repeats. In effect, the operand and I/ 0 allocations are

like moving slots that sweep through the memory banks defining the area of

memory to which operands and I/0 references may be made.

"W"hen a channel needs a memory access, the first check is to ensure that the bank

requested is in the slot. "W"hen the selected memory bank is in the slot, the channel

makes a request. This request goes through the channel priority where channel 1 has

the highest priority and channel 12 has the lowest priority. After channel priority

grants the request, the request goes through the system priority. Before the access

is allowed, no RNI request can be present. At this point, the memory busyt is checked

and if not busy, the memory request is granted. If the memory bank is busy, the

channel waits until the next time the banks go not busy.

tMemory busy is unlikely in slot mode.

3-16 60256000 08

1/0 CHANNEL WRITE LOCKOUT

All 1/0 write references to the lower eight 512-word pages of central memory are

locked out. A master clear disables the lockout until the first 1/0 interrupt is re

ceived. This disable allows 1/0 stations to write the basic system program into lower

memory on system startup and protect the system during normal operation. The con

trol from A signals consist of a 2-bit function code and a strobe.

SYSTEM COMMUNICATIONS

The CPU (A) and first level stations (B) communicate by exchanging control and inter

rupt information. Signals sent from the CPU are called control from A (CFA) and

signals sent to the CPU are B to A interrupts.

The control from A function codes are defined as follows:

Channel Flag

External Flag

Suspend

60256000 08

A channel flag is transmitted by the execution of an

08 instruction. Twelve channel flags are available

in the computer,, one for each 1/0 channel. The 08

instruction designates the 1/0 channel. Table 3-1

shows the assignment of the channel nags. A typical

use of a channel flag is to indicate the CPU has a

message concerning normal communication from sys

tem software placed in a prearranged area of storage.

An external nag directs B to master clear and enter

an autoload sequence. The external flag is initiated

through the maintenance control unit.

A suspend code directs B to cease transmission on

the channel and go into a stand-by mode. Any mas

ter clear involving SAC causes a suspend code.

The suspend code is transmitted to all stations simul

taneously.

3-17

TABLE 3-1. CHANNEL FLAG ASSIGNMENTS

Channel Fla gt Assignment

0 Not available

1 I/0 channel 1

2 I/O channel 2

3 I/0 channel 3

4 I/O channel 4

5 I/O channel 5

6 I/O channel 6

7 I/0 channel 7

8 I/0 channel 8

9 1/0 channel 9

A 1/0 channel 10

B 1/0 channel 11

c 1/0 channel 12

D Not used

E Not used

F Not used

tRefer to the 08 instruction in section 6.

3-18 60256000 08

STREAM

The stream unit provides basic control for the computer. Figure 3-5 is a basic

block diagram of stream. The stream unit performs the following functions.

• Initiates all central storage reference requests for instructions and operands.

• Translates these instructions and transmits control signals to the arithmetic

units.

• Provides addressing for all source operands and arithmetic results.

• Buffers and positions all operands and arithmetic results between central

storage and the arithmetic units.

• Performs logical instructions such as exclusive OR, AND, inclusive OR. and

shift on operands from the register file.

• Performs binary and decimal arithmetic operations on byte strings. It also

performs other bit or byte string type operations such as edit. pack, unpack.

compare, merge. modulo arithmetic. logical, and search with or without de

limiter.

The stream unit interfaces with the SAC. floating point pipe 1 and floating point pipe 2.

It also interfaces with the l\CU for loading the microcode memory. maintenance. and

fault monitoring.

The fallowing paragraphs describe· the main functional area of the stream unit.

INSTRUCTION CONTROL

Instruction control receives all instructions from central storage via read bus 3. The

rate of instruction issue is increased through use of buffering in instruction control.

The buffer is a high density logic (HDL) storage instruction stack which holds four

swords of instructions arranged in 16 addresses of 128 bits (quarter-sword) each

(Figure 3-6). Each request to central storage transfers one sword of instructions

in.to the instruction stack. This sword of instructions arrives in the stack at a rate of

one quarter-sword each minor cycle. The read next sword (RNS) lookahead mechanism

makes a request for the next sword of instructions when instructions issue from the

most recently acquired sword of instructions {Figure 3-7). The program may branch

forward in the instruction stack to any location in the same sword of instructions (or

to the next sword after it is loaded into the stack). It may branch back in the stack

60256000 08 3-19

SAC

READ BUS I

READ BUS 2

WRITE BUS I

WRITE IOS I
WRITE ENABLES

WRITE BUS 2

BITS 64-127

VIRTUAL~
ADDRESS

READ BUS 3

3-20

STREAM INPUT,
BUFFER CONTROL,
ANC Mi SWORD
It<PUT BUFFER

WRITE BUS I
Mi SWORD
OUTPUT BUFFER
AND CONTROL

WRITE BUS 2
AND CONTROL

A STREAM
REGISTER FILE

B STREAM

C-STREAM
OPERAND SHIFT
NETWORK

6K MULTIPLY BUFFER

FROM { lfAINTENANCE
STATION

A STREAM

RESULT

FIEAD BUS I

CONTROL
TO STREAM

MICROCODE llDlCllT
ANDCOllTR<ll.. .------f--~-+-'

Figure 3-5. Basic Stream Block Diagram

DATA INTERCHANGE

T COUNT

A STREMI} TO
B STREAM FLOATING

POINT
PIPE I

A STREAM} TO
FLOATING

B STREAM POINT
PIPE 2

TO
FLOlTING
POINT
PIPE I

FLOATING POINT
PIPE I RESULT

FLOATING POINT
PIPE 2 RESULT

INTERRUPT COUNT
REGISTERS

60256000 08

SWORD 3

SWORD 2

SWORD I

SWORD 0

4-SWORD
INSTRUCTION STACK

0

1 /4 SWORD OF INSTRUCTIONS ll28 BITS)

Figure 3-6. Ins true ti on Stack

SWOR
LOCATI

D
ON

3 xxxx 3 xx xx SWORD
3 xx xx LOAD ~3 OF

INST

2 xx xx 2 xx xx
SWORD

,___,. 2 OF
SWORD

---;.! 2 OF LOAD ISSUE
INST INST

I xx xx LOAD
SWORD

'--ill i OF
INST

SWORD
:------;. I OF

INST

SWORD

I OF
INST

(USED)

ISSUE

SWORD SWORD SWORD SWORD
LOAD* ~o OF ISSUE --70 OF 0

OF
0

OF

60256000 08

INST INST INST
(USED)

INST
(USED)

TIME----------

* EACH SWORD OF INSTRUCTIONS IS LOADED INTO THE INSTRUCTION STACK
SWORD LOCATION SPECIFIED BY THE LOWER TWO BITS OF THE SWORD ADDRESS

INSTRUCTION STACK ADDRESSING IS WRAPAROUND

Figure 3-7. Instruction Stack Use

128

SWORD BRANCH
3 OF SACK

INST INS TACK

SWORD
ISSUE 2 OF

INST

SWORD
OF

INST
{USED)

SWORD
OF OR

0 INST
(USED)

3APIOA

3-21

to any executed instruction remammg in the stack which was loaded after the last branch

·out of the stack. The instruction stack is effectively cleared upon branching out of the

stack.

Each sword of instructions obtained from central storage via read bus 3 is accompanied

by 16 parity bits which are stored in a group of 64 flip-flops. The hardware checks

parity on each 32 bits of instruction at the time the instruction is read out of the in

struction stack. A parity error will stop the CPU prior to execution of that instruction.

Refer to section 5 for restrictions for self-modifying instructions and virtual memory

restrictions.

ADDRESSING

Addressing is done in stages; that is, the addressing circuits break the address down

into groups of bits and send these bits to the various areas of the CPU and memory

where they control the selection or shifting of data.

The addressing area receives the address from the register file via the data interchange,

interrupt count registers, and P-section interchange.

The following are examples of address bits sent to the various areas of the CPU and

memory. Address bits 0 through 15 are not used for addressing.

3-22

1. Bits 16 through 54 are the virtual sword address. Addressing sends these bits

to SAC for comparison with the page table.

2. Bits 55 and 56 select the quarter-sword. These bits are sent to the stream

input and buffer control area for selection of operands. They are also sent

to the instruction control area for selection of the control vector. Bits 55 and

56 also control the selection of the quarter-sword sent to memory from the

write bus 1 output buff er area.

3. Bits 57 and 58 are sent to the operand shift network where they control the

operand alignment shift from quarter-sword to word or half-words. Bits 57

and 58 also control the C stream operand shift network where they control the

half-word/word to quarter-sword shift of the result.

4. Bits 57 through 63 control the selection and shifting of the A and B stream

operands from the quarter-sword level to the byte and bit ievei in the X and

Y stream control and string interface.

60256000 08

5.. Bits 55 through 5 9 select read bus 3 from the sword level to the quarter-word

level for the string output interface. This selection takes place in the instruc

tion control area.

6. Bits 60 through 63 control the shifting in the string output interface. If the

output goes back into the string unit (read 3 path), the shift is from quarter

word to byte or bit. If the output is to the data interchange. the shift is from

bit or byte to quarter-word ..

STREAM INPUT AND BUFFER CONTROL

This hardware consists basically of two 128-bit data paths between memory (read bus 1

and read bus 2) and the quarter-sword to item count addressing interfaces (X and Y

stream control, string interface, register file, and operand shift network). This area

handles quarter- swords and supplies them to the item count addressing interfaces at

a usable rate. There is an SK buffer (128 bits x 64) which is used to buffer the data

to reduce the data rate of a sword from memory in some operations and to align the

two operand vectors for streaming in other operations.

REGISTER FtlE

The stream unit contains a register file composed of two 64-word by 128-bit HDL

memories (Figure 3-8). The computer uses the register file for instruction and operand

addressing, indexing. field length counts. and as a source or destination for register

type instruction operands and results. The 8-bit designators. in the instructions,

address the register file as 256 64-bit registers or address the first (lower) half of the

register file as 256 32-bit registers.

The register file addressing area of the stream unit uses the 8-bit instruction designator

and a forced zero bit to form a 9-bit register file address (Figure 3-9). For 32-bit

register addresses. the 8-bit instruction designator is right-justified in the 9-bit register

file address with the leftmost bit (bit O) forced to zero. For 64-bit register addresses,

the 8-bit designator is left-justified with bit 8 forced to zero.

Bits 1 through 6 of the 9-bit register file address are used to address both of the HDL

memories for normal operation. Therefore. two 128-bit words are referenced with

60256000 08 3-23

each reference to the register file. For example, the reference is a read and the

register addressed is register 5, the register file reads registers 4, 5, 132, and 133.

The operand shift network or selection networks use register file address bits O, 7,

and 8 to make the final selection of register 5. If the reference is a write register 5,

the write address references registers 4, 5, 132, and 133 but register 5 is the only

register with a write enable. Registers 4, 132, and 133 remain unchanged.

The swap (7D)instruction is the same as the above normal operation (that is, both HDL

memories share the same address). Register file adqressing generates the 9-bit

address starting at the even numbered 64-bit register specified by the instruction and

increments it by one HDL address each minor cycle. Bits 0, 7, and 8 then select two

64-bit registers per minor cycle for transfer to/from memory.

For an exchange operation, register file addressing addresses each HDL memory

separately and transfers two 128-bit register file words to/from memory per minor

cycle.

See section 5 of this manual for more information on the register file and section 6

for more information on the swap (7D)instruction.

3-24 60256000 08

60256000 08

LOWER REGISTER FILE
64 ADDRESSES OF !28 B!TS EACH

(USED AS 128 64-BIT REGISTERS OR .256 32- BIT REGISTERS)

MEMORY ADDRESS 0

MEMORY ADDRESS I

MEMORY ADORES S 2

0

REG. 010

2

4

..L-

63 64 127

REG. 110

3

5

...L. ""-

UPPER REGISTER FILE
64 ADDRESSES OF 128 BITS EACH
(USED AS 128 64-BIT REGISTERS)

TO OPERAND
SHIFT NETWORK
OR SELECT
NETWORKS

MEMORY AODRESS 0

MEMORY ADDRESS I

MEMORY ADDRESS 2

NOTES:

0 63 64 127

REG. 12810 (8016) REG. 12910 (811sl

13010 (8216 1 13110 (e316l

13210 (e416 l 13310 (8516 l

..L,, ...I ~

1. ALL REGISTER NUMBERS SHOWN ARE FOR 64-811 REGISTERS.
2. IF LOWER REGISTER FILE JS ADDRESSED AS 32-BlT REGISTERS,

LOWER REGISTER FILE MEMORY ADDRESS 0 WILL CONTAIN 32-BIT
REGISTERS 0,1,2,AND ~;MEMORY ADDRESS I WILL CONTAIN
4 • 5 t 6 I AND 7 ETC.

Figure 3-8. Register File

8-BlT INSTRUCTION
DESIGNATOR

ft

3APllA

"--o_.a.,__...___2__._3 __ L...-4-'---"'--6--L-7-..J'--o-1...I FORCED TO lERO

64-BJT REGISTER ADDRESS FORMAT

8-BIT INSTRUCTION
DESIGNATOR

FORCEO TO lERO"\ 0 2 3 4 5 6 7 8

j~\ ~--,.---,---1 --.--) _____.;;......._...._;;_
32-BIT REGISTER ADDRESS FORMAT

0 2 3 4 5 6 7 B

SELECT UPPE.Jt I)
OR LOWER '---v---1
REGISTER FILE ADDRESS TO SELECT REGISTER

HDt. MEMORY

Figure 3-9. Register File Addressing

3AP12A

3-25

OPERAND SHIFT AND SELECTION NETWORK

The operand shift network performs the final pairing of the operands before they enter

the floating point pipes. A and B stream buses (128 bits wide) enter the operand shift

network from either the register file or the stream input network. The operand shift

network is capable of any shifting on 32-bit boundaries. After pairing, the operands

are sent to the floating point pipes via two 64-bit trunks to each pipe.

This network also contains circuits which may select either the A stream,, B stream,,

upper register file, or lower register file for transmission to the data interchange.

DATA INTERCHANGE

The data interchange performs the following functions.

• Receives and routes all data from the floating point pipes, string unit,, register

logical and shift unit,, and the load store unit.

• Routes all data going out write buses 1 and 2.

• Routes all data going to and from the large and small adders.

C-STREAM OPERAND SHIFT NETWORK

The C-stream operand shift network realigns data to its proper position for writing

into memory. The shift network is capable of any shifting on 32-bit boundaries.

WRITE BUS 1 OUTPUT BUFFER AND CONTROL

This hardware consists basically of one 128-bit data path between the item count to

quarter-sword addressing and memory. This area handles quarter-swords (or 64 or

32-bit quantities aligned to the proper quarter-sword bits) and assembles them into

swords for storage. There is an 8K buffer (128 bits x 64) which is used to buffer the

data to increase the data rate of a sword to memory in some operations and to align

the output vector for streaming in other operations.

WRITE BUS 2 AND CONTROL

Write bus 2 and control consists basically of a 128-bit wide data path into memory

(write bus 2) and a large OR gate fed by all the registers which are saved in the

invisible package. t These registers feed into their appropriate bit positions for storage

tsection 5 of this manual contains a description of the invisible package.

3-26
60256000 08

in the the data interchange is

in for storage of the register file in memory during an exchange operation.

X- AND Y-STREAM CONTROL AND STRING INPUT INTERFACE

"-T">-...l vnt::u

This hardware consists basically of three 128-bit wide input data paths (read 1, read 2,

and read 3) which are addressed to the quarter-sword level, and two 16-bit wide out

put data paths which can be addressed to the bit level. For one type of operation,

two inputs (read 1 and read 2) supply operands to the string unit via the two output

paths. For another operation, one input (read 3) supplies control vector bits via one

of the 16-bit outputs to be used as output vector write enables.

STRING UNIT

The string unit (Figure 3-10) processes strings of decimal and binary numbers. The

X - stream, Y - stream, and data interchange areas of stream perform the bit boundary

addressing required for the string instructions.

EDIT CONTROL

The edit control processes strings of numbers in packed binary coded decimal (BCD)

format according to the control characters in the pattern field. Source characters are

transferred to the result field with commas, decimal point, fill (check suppress) charac

ters, and messages inserted as specified by the pattern field.

LOGICAL INSTRUCTION CONTROL

This control performs the exclusive OR, AND, inclusive OR, stroke, pierce, implica

tion, inhibit, and equivalence operations on the input data fields.

BINARY ARITHMETIC CONTROL

This control performs the binary add, subtract, multiply, and divide operations on

operand strings. The add, subtract, and divide operations are executed in one 16-bit

adder. The multiply operation uses four consecutive 16-bit half adders and a 20-bit

full adder to generate partial products. The partial product from one pass is added to

the partial product of the previous pass in the 16-bit adder used for binary add, subtract,

and divide.

60256000 08 3-27

NOTE

MAO I DATA VIA
X-STREAM CONTROL

16 - r--A-F-IE-LD--,

READ 2 DATA
VIA Y-STREAM
CONTROL

FAN-INS AND
llEGfSTERS

9 FIELD
FAN-INS Allll
llal:STERS

I THIS DIA- IS A 8UIERAL
11£11f1£5£NTATION OIF THE

STlllNG UltlT ANO 00£5

NOT SHOW ALL DETAIL

MULTIPLICAND/

DMOENO

llULTlPLIER

EDIT
CONTROL

~------i_16'..--------~

DECIMAL MID, SU8TttACT, MPLY AND DIVIDE

Figure 3-10. String Block Diagram

A ANO B
FIELDS

STORE
RESULTS
!PARTIAL
OR FINAU

3-28 60256000 08

• BINARY ADD AND SUBTRACT

The two operand fields are processed through the adder in 16-bit groups from

right to left. A register overflow (carry) out of the adder from one 16-bit

group is presented as a carry into the adder for the next 16-bit group.

• BINARY DIVIDE

The hardware executes the divide instruction using an algorithm similar to the

pencil and paper method of solution. The B field operand is subtracted from

the left end of the A field operand generating one bit of quotient and a partial

remainder that is stored. The hardware subtracts the two fields in 16-bit

groups until the first pass is complete. On the second pass, the B field

operand is subtracted from this partial remainder (shifted one bit) to generate

a new partial remainder and the second quotient bit. The process continues

until the division is complete. The hardware uses a nonrestoring type divide

operation.

• BINARY MULTIPLY

The binary multiply is accomplished in a manner similar to the pencil and

paper method of solution. The A field operand is streamed through in 16-bit

groups which are multiplied by the rightmost four bits of the B field operand.

The second pass uses the next four bits of the multiplier with the partial re

sults of this pass being added to the partial results of the previous pass. This

process continues until the B field is exhausted.

The multiplication by the 4-bit multiplier occurs in the four half adders, one

multiplier bit per half adder. The partial sum and carry bits from the four

half adders, together with the upper four carry bits from the previous 4- by

16-bit multiply, are combined in the 20-bit full adder. The lower 16 bits of

the partial product are combined with the partial products of the previous passes

in the 16-bit binary adder used for binary add, subtract, and divide.

The binary multiply unit multiplies only positive operands. Negative operands

are complemented at the inputs to the various adders. If a negative result is

required, the final product is complemented in a separate pass.

DECIMAL ARITHMETIC CONTROL

This control performs the decimal add, subtract, multiply, and divide operations

through the use of two 16-bit decimal adders, a divide table, and a 4-digit multiply

60256000 08 3-29

table. The add and subtract operations are performed in the second adder which also

combines the partial results of the successive passes on multiply and divide operations.

• DECIMAL MULTIPLY

The A field operand is divided into 4-digit groups which are multiplied by the

rightmost digit of the multiplier on the first pass. The multiply lookup table

generates a product digit and a carry digit for each digit of the 4-digit group.

The product and carry digits, together with the most significant carry digit

from the previous 4-digit group, are combined in the first 4-digit decimal

adder and are then stored.

The other multiplier digits are processed on the second and successive passes.

The partial products of a pass are combined with the partial products of the

previous passes in the second decimal adder.

• DECIMAL DIVIDE

The hardware executes the decimal divide instruction by examining the most

significant divisor digit and the two most significant dividend digits. The

divide table generates the largest quotient digit possible for this input combina

tion. The divisor, divided into 4-digit groups, and the trial quotient digit are

multiplied in the multiply table. This product is subtracted from the dividend

to yield a partial remainder (similar to the pencil and paper method of solu

tion). Since only one digit of the divisor is examined in determining the

quotient, the remainder may be negative (as when 080 is divided by 19 for

which a quotient of 8 is generated by the divide table). A negative partial

remainder forces the hardware into a correction cycle which adds the di visor

to the partial remainder and decreases the value of the trial quotient digit by

one. The correction cycle is repeated until the partial remainder is positive.

The second pass generates the second quotient digit using the divisor and the

partial remainder from the first pass (plus the next dividend digit). Additional

passes occur until all digit positions of the dividend are processed.

MISCELLANEOUS OPERATIONS

The string unit also performs move, compare, merge, pack, and unpack operations

not specifically identified by controls in Figure 3-10.

3-30 60256000 08

REGISTER LOGICAL AND SHIFT UNIT

The register logical and shift unit operates on 64-bit operands from the data inter

change. The logical operations (2C, 2D, and 2E instructions) are executed when the

unit accumulates two sequential operands. The shift operation (30 and 34 instructions)

shifts a 64-bit operand left end-around or right end-off with sign extension according to

the sign of the shift count. The shift count is supplied from the operand bus, the in

struction bus, or from microcode. The register logical and shift unit also performs

the insert (6D), extract (6E),, and register bit branch and alter (32) instructions. The

unit returns results to the data interchange via the P section interchange.

INTERRUPT COUNTERS

The interrupt counters function as follows:

• Hold addresses,, delimiters, field lengths, which are necessary to restart

vector-type instructions after an interrupt.

• Acts as a buffer for load/ store operands and addresses for register instructions.

• Keeps track of pass counts and termination conditions for multipass instructions.

P SECTION INTERCHANGE

The P section interchange performs the following:

• Receives data from the data interchange, register logical and shift unit, load

store unit, interrupt count registers, and microcode memory control registers.

• Routes data to the data interchange,, load/ store unit,, and addressing.

LOAD/STORE UNIT

The load/ store unit acts as a pipe line; that is, the operands issue to the unit and the

CPU is free to do other work. The CPU places the operands in the interrupt count

registers which act as a buff er for the load/ store unit. The interrupt count registers

can hold up to three sets of operands waiting execution. The load/ store unit receives

the operands from the interrupt count registers via the P section interchange,, performs

the specified operation,, and delivers the result to the data interchange via the P section

interchange.

60256000 08 3-31

Instructions performed by the load/ store unit are:

• Load/ store byte 12, 13

• Load half word/word SE, 7E

• Store half word/word SF, 7F

• Bit branch and alter 32

See section S of this manual for restrictions on self-modifying instructions.

MICROCODE

The computer uses microcode (MIC) to start up and shut down vector type operations.

I For most other operations microcode is not used. The MCU loads the microcode

memory via a second block transfer channel. This channel between the MCU and the

microcode is also used to read MIC memory, MIC status, and set conditions (switches)

in MIC.

MIC memory is used as a read-only memory. Writing into MIC memory is reserved

exclusively for loading systems or diagnostic microcode programs.

MIC memory is composed of two memories, memory 0 and memory 1, each one

operating on a cycle time of 80 nanoseconds but offset by 40 nanoseconds. Memory 0

leads memory 1 by 40 nanoseconds. Every read from memory 0 is unconditionally

followed by a read from memory 1 at the same address, even if the memory 0 word

forced a branch.

Each of these memories has 1S36 words. Memory 0 has 128 bits (0-127) per word

and memory 1 has 96 bits (128-223) per word. The memory access time of each

memory is about 6S nanoseconds.

MIC OPERATION

When the CPU initiates an instruction which requires microcode control, it sends the

F code t of the instruction and a microcode go pulse to the microcode unit. The

microcode go pulse forces the F code into bits 3 through 10 of the microcode program

tSection 6 of this manual describes the instructions.

3-32 602S6000 09

address (P) register (bits 0 through 2 are forced to zero) and starts the memory control

timing chain. The F code of the instruction thus forms the starting address of the

microcode program for that instruction. An exception to the above startup process

occurs if the interrupt flag is set when the microcode unit receives the microcode go

pulse. In this case, only the timing chain starts, and the F code does not go to the

microcode P register. The microcode P register was set previously with the P address

contained in the invisible package.

This type of operation is used when the microcode program is restarted after an

interrupt.

After the CPU starts the microcode program, the microcode unit takes control of the

startup and termination of the instruction, and in the case of an interrupt, saves all

the operands and parameters necessary to resume execution of the instruction after an

interrupt. Once initiated, the microcode program continues to execute until the KIL

bit is read in a microcode word or until the MCU stops execution.

The microcode program performs the following operations in a typical instruction start-

up.

1. Reads the addresses from the register file according to the instruction desig

nators.

2. Makes the necessary address modifications.

3. Transfers the addresses to the appropriate interrupt count registers.

4. Sets up the usage and mode of operation of the read and write buses to/from

main memory.

After startup, the microcode program waits for the conditions that indicate the end of

the operation and terminates. The program also monitors the external or access in-

terrupt conditions, and if an interrupt occurs during instruction execution, the program

saves the information needed to restart the instruction at the point it was interrupted.

The microcode program initiates the exchange to monitor mode, sets the interrupt flag,

and terminates.

60256000 08 3-33

MIC INTERRUPT

When the microcode program senses an interrupt condition. it continues execution until

it comes to an appropriate point to stop and allows the interrupt to proceed. At that

point. the microcode sets the interrupt flag. initiates the exchange to monitor mode, and

stops. During the exchange. pertinent microcode control information is stored into word

3 of the invisible package. This information is used later to restart microcode

execution at the point it was stopped.

When the microcode program is restarted. the initial address depends on the state of

the interrupt flag as reloaded from the invisible package. If the interrupt flag from

the invisible package is set. the P address contained in the invisible package is forced

into the MIC P register. The P address from the invisible package is one plus the

address where the KIL bit terminated the microcode control to process the interrupt.

If the interrupt flag from the invisible package is clear. the F code is forced into the

MIC P register.

MIC PARITY

Each 224-bit microcode word has two parity bits forming odd parity, parity bit 0 (PBO)

for memory 0 and parity bit 1 (PBl) for memory 1. Software generates the parity bits

before loading the word into the microcode memory.

Each microcode memory has hardware which tests the parity as it reads each micro

code instruction for execution. A parity fault in either memory stops microcode and

CPU instruction execution. Bit 1 of MCU channel ATB8 indicates the occurrence of

an MIC memory parity fault stop.

Each MIC memory also has a separate MIC memory parity fault status bit available

to the MC U via the display register (bits 6 and 7 of display register code 4). The

clear faults signal sent from the MCU clears all three MIC memory parity fault status

bits.

There is no MIC memory parity fault during loading or storing MIC memory from the

MCU.

3-34 60256000 08

rucrvor'\111.1T
'-l 11..'-i'i '""'""'I

The checkpoint bit (CPT field in MIC memory 1) is a maintenance aid used for micro

code program debugging and oscilloscope triggering. During execution of a microcode

word, the checkpoint flip-flop sets if the CPT microcode bit in that word is equal to 1.

The checkpoint flip-flop is sensed and cleared by the MCU. The MCU senses the

checkpoint flip-flop via. bit 0 of microcode status word 1 and clears the checkpoint

flip-flop via microcode switch bit O.

MIC WRITE LOCKOUT

A lock and key located on the same chassis as the microcode memory enables or dis

ables the writing of data into microcode memory. If the key is in the disable position,,

the block transfer channel from the MCU acts as though it made a normal micro-

code load but no data is written into memory. This protects the microcode program

from alteration once the program is loaded.

FLOATING POINT

Floating point numbers in the computer are two lengths, 32 bits and 64 bits.

The 32-bit format has an 8-bit exponent and a 24-bit coefficient (Figure 3-11). The

64-bit fqrmat has a 16-bit exponent and a 48-bit coefficient. The leftmost bit of each

exponent and coefficient is the sign bit. A detailed description of floating arithmetic is

presented in the instruction specification.

0 78

I (8)

UPPER
EXPONENT

0 15 16

(16)

31 32 39 40

(24) I (8) I
UPPER LOWER

COEFFICIENT EXPONENT

(48)

Figure 3-11. Operand Formats

32-BIT FORMAT

63

(24)

LOWER
COEFFICIENT

64-BIT FORMAT

63

!APISA

60256000 08 3-35

The floating point arithmetic hardware is divided into two units or pipes. Pipe 1

(Figure 3-12) performs register add, register subtract, register multiply, and all vec

tor arithmetic instructions except divide and square root. Pipe 2 (Figure 3-13) per

forms register divide, register square root, and all vector instructions. This organi

zation of hardware allows optimum performance for both register and vector divide

operations. For vector operations common to both pipe 1 and pipe 2, the data is divi

ded in half with every second pair of 64-bit operands going to pipe 2 (that is, first

pair, third pair, ·etc.) and every second pair (that is, second pair, fourth pair, etc.)

to pipe 1. In 32-bit mode, each pipe divides in half to become two 32-bit pipes. There

fore, two pair of operands go alternately to each pipe.

PIPE 1

Floating point pipe 1 receives operands from the stream unit, performs the instructed

operation, and returns the results to the stream unit. Pipe 1 performs arithmetic

operations on operands in floating point format and address operations on nonfloating

point numbers. Arithmetic operations include such operations as add, subtract, multi

ply,, truncate, adjust exponent, contract,, extend, and compare. Address type operations

are those which manipulate various parts of instructions and registers for addressing

and indexing purposes. These include operations like the 2A instruction where the

rightmost 16 bits of the instruction transfer to the leftmost 16 bits of register R.

The rightmost 48 bits of register R remain unchanged. Refer to Figure 3-12 for the

following description of some basic operations of pipe 1.

For addition and subtraction operations, the input exponents are compared in the expo

nent compare circuit. The difference in the two exponents is used as a shift count.

This shift count determines the amount the coefficient with the smaller exponent is right

shifted in the coefficient alignment section. The coefficients are added in the add sec

tion. If the operation being performed specifies normalization, the result of the add

operation is fed to the normalize count. This circuit produces a shift count which con

trols the normalize shift network and modifies the result exponent. The transmit circuit

returns the shifted result to the stream unit.

If normalization is not specified, the result of the add operation is the desired result

and is transmitted to stream.

3-36 60256000 08

If the instruction is a multiply, the operands are multiplied in the high- speed multiply

unit. The result of the multiply is either returned directly to the transmit section or

to the normalize count logic for normalization.

the multiply significant instructions.

The normalize count functions only for

Any result from pipe 1 may be returned directly to either of the inputs of pipe 1 if the

result is needed as an input operand. This process is called shortstopping and elimi

nates the time necessary to store the result in the register file and then retrieve it. I

SHORTSTOP

EXPONENT COEFFICIENT COEFFiCIENT NORMALIZE NORMALIZE TRANSMIT

COMPARE ALIGNMENT ADD COUNT SHIFT
64

SHIFT

1 MULTIPLY 2

HIGH SPEED MULTIPLY UNIT

MERGE 2 MULTIPLY I MERGE 64 MERGE I

3AP20B

Figure 3-12. Floating Point Pipe 1

60256000 09 3-37

PIPE 2

Floating point pipe 2 (Figure 3-13) receives operands from the stream unit. performs

the instructed operation, and returns the results to the stream unit. Pipe 1 performs

arithmetic operations on operands in floating point format and address operations on

nonfloating point numbers. Arithmetic operations include such operations as add. sub

tract. multiply. divide, truncate, adjust exponent, contract. extend. and compare.

Pipe 2 performs only two address type operations. These are the vector add and sub

tract address instructions (83 and 87 instructions). Pipe 1 and pipe 2 are similar

except pipe 2 has a high-speed register divide unit and a multipurpose unit.

EXPONENT COEFFICIENT COEFFICIENT NORMALIZE NORMALIZE

COMPARE ALIGNMENT ADD COUNT SHIFT

SHIFT

MULTIPURPOSE UNIT

(24 SEGMENTS)

Figure 3-13. Floating Point Pipe 2

TRANSMIT

REGISTER

DIVIDE

UNIT

3APl9A

RESULT

3-38 60256000 08

REGISTER DIVIDE

The register divide unit performs all register divide operations and binary to binary

coded decimal (BCD) and BCD to binary conversions. This is a single segment unit

and the operands loop within the unit until the res ult is reached.

MULTIPURPOSE

The multipurpose unit performs the square root, vector divide, and vector multiply

instructions. The multipurpose unit contains 24 segments. Each segment performs an

add type operation. The segments are arranged in four groups of six segments per

group. In 64-bit mode, the operands loop on each group, going through each group

twice. In 32-bit mode, the operands proceed from segment to segment going through

all of them only once. The multipurpose unit delivers its results to the normalize or

transmit portions of pipe 2.

60256000 08 3-39

MAINTENANCE CONTROL UNIT 4

DESCRIPTION

The maintenance control unit (MCU) provides system autoload and system performance

monitoring capabilities. The MCU also provides the capability to load, control, and

monitor the central processor unit (CPU) diagnostics. The MCU consists of a control

unit, line printer, disc drive, and 3000 channel interface. Connections from the MCU

to the computer are normally made through the CDC STAR-100 input/output (I/0)

channel 12 and special internally connected interfaces (Figure 4-1). The interfaces

allow the MCU to monitor CPU status and gather performance statistics.

The primary purpose of the MCU is to support the reliability, availability, and main

tainability of the computer system. Customer Engineering has priority use of the

MCU for these purposes. The MCU provides operators with the means of autoloading

the operating system kernal, checking the CPU status. and gathering event counter data.

The MCU operates in off-line and on-line software modes.

1. In an off-line mode, the MCU loads CPU diagnostic routines from the disk drive.

The MCU then controls and monitors the diagnostic operations and furnishes the

results of the operations to a display unit or a line printer.

2. In an on-line mode, the MCU performs real-time monitoring of the CPU and

displays its status.

60256000 08 4-1

4-2

FLOATING
POINT
PIPE I

FLC)O.TING
POINT --PIPE2 -

,

NOTES:

MIC
MEMORY ~

524 K

STREAM SAC ~ MEMORY

"""- --- -
r--1 OPTIONAL
~ -- _.,

524K -

I/O
MEMORY

/pl ~.I I

-- 1 .,J
l t II t --

.I \L_ _j

cb •
® CD

0
,-*BTAI

~ ~
..._BTA__S_

• 1

MAINTENANCE
CONTROL UNIT

:-- CHANNELS 0-7 0 ,- ATBI~

~ ~ >CHANNELS 8-F
ATB8_..,

...._ -~

i----~~-.. 8 STANDARD INPUT CHANfELS
TO PERIPHERAL EQUIPMENT
ANO 8 STANDARD OUTPUT

1----;_...~, CHANNELS FROM
::>PERIPHERAL EQUIPMENT.

lllE~-----·

-
CD ANY ONE OF THE 16-BIT CDC STAR·dOO I/O CHANNELS CONNECTS TO THE MCU.

© 16-BIT CHANNEL SIMILAR TO CDC STAR-100 CHANNEL.

© 8 PULSED NORMAL OUTPUT CHANNELS NUMBERED BTAl-BTA8 CONNECT TO MCU

OUTPUT CHANNELS 8-F.

© 8 PULSED NORMAL INPUT CHANNELS NUMBERED ATBl-ATB8 CONNECT TO MCU
INPUT CHANNELS 8-F.

3AP14A

Figure 4-1. Maintenance Control Unit

60256000 09

MCU INTERFACES

The MCU connects to the central processor unit via three separate interfaces

(Figure 4-1).

1. The MCU has a main 16-bit block transfer channel that connects to any one of

the CDC STAR-100 I/O channels and requires no extra control. This channel

is the main data communication channel between the MCU and the CPU.

2. The MCU has a second 16-bit block transfer channel which connects to the

microcode (MIC) memory. This channel loads, stores, checks status, and

sets conditions in the MIC memory. This channel is similar to a standard

CDC STAR-100 I/O channel.

3. The MCU has 8, pulsed, normal 16-bit channels in each direction which connect

to the CPU for control and monitoring purposes. The channels which carry

information from the CPU to the MCU (referred to as ATB) are numbered

ATB1 through ATB8 and connect to MCU input channels 8 through F. The

channels which carry information from the maintenance station to the CPU

(referred to as BTA) are numbered BTA1 through BTA8 and connect to MCU

output channels 8 through F. Tables 4-1 through 4-8 show the ATB channels

and Tables 4-9 through 4-16 show the BTA channels. Each table shows the

channel bit number, connector, and function of each bit for a channel.

Tables 4-1 to 4-8 list the ATB channel bits and their functions; tables 4-9 to

4-16 list the BTA channels. The connector for each channel is contained in

the table title.

60256000 08 4-3

TABLE 4-1. CHANNEL ATBl (CONNECTOR ATB12)

Bit No. Function

0 Bit 16 Current instruction address register

1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

A 26

B 27

c 28

D 29

E 30

F 31

4-4 60256000 08

TABLE 4-2. CHANNEL ATB2 (CONNECTOR ATB12)

Bit No. Function

0 Bit 32 Current instruction address register

1 33

2 34

3 35

4 36

5 37

6 38

7 39

8 40

9 41
A 42

B 43

c 44

D 45

E 46

F 47

60256000 08 4-5

TABLE 4-3. CHANNEL ATB3 (CONNECTOR ATB34)

Bit No. Function

0 Bit 48 Current instruction address register

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

A 58

B 59

c 60

D 61

E 62

F 63

4-6 60256000 08

TABLE 4-4. CHANNEL ATB4 (CONNECTOR ATB34)

Bit No. Function

0 Bit 0 Display register; displays the register selected by

1 1 bits C through F of channel BTAl in the MCU.

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B 11

c 12

D 13

E 14

F 15

60256000 08 4-7

TABLE 4-5. CHANNEL ATB5 (CONNECTOR ATB56)

Bit No. Function

0 Bit 16 Display register

1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

A 26

B 27

c 28

D 29

E 30

F 31

4-8 60256000 08

TABLE 4-6. CHAI'l"NEL ATB6 (CONNECTOR ATB56)

Bit No. Function

0 Bit 32 Display register

1 33

2 34

3 35

4 36

5 37

6 38

7 39

8 40

9 41

A 42

B 43

c 44

D 45
• E 46

J
F 47

4-9
60256000 08

TABLE 4-7. CHANNEL ATB7 (CONNECTOR ATB78)

Bit No. Function

0 Bit 48 Display register

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

A 58

B 59

c 60

D 61

E 62

F 63

4-10 60256000 08

TABLE 4-8. CHANNEL ATB8 (CONNECTOR ATB78)

Bit No. Function

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

60256000 08

These lines

indicate

why the

CPU has

stopped.

Memory parity fault

MIC memory parity fault

Multiple match

Absolute sword bounds hit

Event stop

Not used

CPU clock; used for gating data back to the CPU.

The MCU buffer controller cannot read

this line.

Monitor mode

Temperature / dewpoint alarm

Not used

Section power fail

60 Hz input power fail, mainframe-memory MG

60 Hz input power fail, optional memory MG

Not used

CPU idle

CPU stopped

4-11

TABLE 4-9. CHANNEL BTAl (CONNECTOR BTA12)

Bit No. Function

0 SAC master clear; master clear to SAC and central

memory only. This includes the I/ 0 channels. This

signal must be set a minimum of 3 microseconds.

1

2t

st

4t

Stop; CPU stops before next instruction issue.

Step; execute one instruction. Store the register file

and the invisible package (job mode only); then stop.

Faults must be cleared before the computer can be

stepped.

Run; start CPU from manual stop or fault stop.

Faults must be cleared before computer can be

started.

Store associative registers and register file; asso

ciative registers are stored starting at absolute

address 4000
16

• The register file is stored starting

at absolute address 0000 16 in monitor mode and vir

tual address 0000 16 in job mode. This operation

destroys the contents of the associative registers.

Therefore, after this operation, they must be reloaded

by executing a load associative register command

(BTAl bit 5).

Load associative registers and register file; asso

ciative registers are loaded starting from absolute

address 4000
16

• The register file is loaded starting

at absolute address 0000
16

in monitor mode and vir

tual address 000016 in job mode.

t Computer must be stopped before executing these commands.

4-12 60256000 Off

Bit No.

6

7

8

9

B

c

D

E

F

60256000 08

TABLE A f'I
"±- v. CHANNEL BTA1 (CONNECTOR BTA12) (Contd)

Function

Stream floating point master clear; master clear to

stream and floating point only. SAC and central

memory are not included. This signal must be set

a minimum of 1 microsecond.

Clear fault conditions; this signal clears the following

conditions and allows the computer to be restarted

with a run signal (bit 3):

• Memory parity fault

• MIC memory parity fault

• Multiple match

• Absolute sword bounds hit

• Parity fault address register and bounds
register

• Reference to illegal address in microcode

Not used

MC U sync; this signal is used in the CPU to gate

the CPU data back to the MCU. When reading the

display registers, the MCU sync signal must be set

after the read signal is set.

Read; transfer selected register and current instruc

tion address register into the display register.

Display register selection;

see display registers in this section.

4-13

TABLE 4-10. CHANNEL BTA2 (CONNECTOR BTA12)

Bit No. Function

Ot

lt

2t

3t

4

5t

6t
7t

St

Static

Static

Static

Static

Static

Static

Static

Static

Not used

Interrupt gate; when this signal is a 1, time inter

rupts and external interrupts will only be processed

between instructions.

Block instruction execution overlap; this signal allows

only one register instruction to be in execution at any

time.

Stop on I/O PF; enable the CPU to stop when a

central memory parity fault is found in data going to

I/O.

Not used

Not used

Select mainframe clock frequency:

00 = 25 MHz

01 = Increase clock frequency

10 = Decrease clock frequency

11 = Select variable frequency

(adjust on oscillator pak)

Delay trailing edge; delay the trailing edge of all of

the clocks on the panel which are specified by bits

B through F of channel BTA2. If bits 8 and 9 are

set, only the odd or even clocks on a panel are

moved depending on bit A.

t Computer must be stopped before executing these commands.

4-14 60256000 08

l

TABLE 4-10. CHANNEL BTA2 (CONNECTOR BTA12) (Contd)

Bit No. Function

9t

At

B (24)

c (2 3)

D (2 2)

E (2 1)

F (20)

Static

Static

Delay leading edge; delay the leading edge of all

the clocks on the panel which are specified by bits B

through F of channel BTA2. If bits 8 and 9 are set,

only the odd or even clocks on a panel are moved

depending on bit A.

O; move even clocks (see description for bit 8 or 9).

1; move odd clocks.

Panel designator for clock margins; bit B is the left

most bit of the designator. The designators are de

fined as follows:

Designator 16
Panel(s)

00 All panels
01 All floating point panels
02 All SAC panels
03 All stream and string panels
04 Not used
05 Not used
~~~~~~~~~- ' 

06 Panel AA 
07 Panel AB 
08 Panel BA 
09 Panel BB 
OA Panel CA 
OB Panel CB 
OC Panel DA 
OD Panel DB 
OE Panel EA 
OF Panel EB 
~~~~~~~~~-' 

10 Panel KA
11 Panel KB
12 Panel LA
13 Panel LB
14 Panel NA
15 Panel NB

16
17
18
19
lA
lB
lC
lD
lE
lF

Panel PA
Panel PB
Panel FA
Panel FB
Panel GA
Panel GB
Panel HA
Pariel HE
Panel JA
Panel JB

Floating point

SAC

Stream, string

tComputer must be stopped before executing these commands.

60256000 08 4-15

TABLE 4-11. CHANNEL REGISTER FROM CHANNEL

BTA3 (CONNECTOR BTA34)

Bit No. Function

0

1

2

3

4

5

6

7

8

9

A

B

c

0

E

F

Not Used

Send external flag on the channel specified by the channel select

code in bits 4 through 8. t t t

Not Used

Not Used

Channel select code. A code of 116 through c 16 selects a channel

(1
10

through 12
10

) for the operation specified in bits 1, 2, and

3. t Bit 7 of BTA-3 is bit 2° of the select code.

Select all channels for the operation specified in bits 1, 2, and 3. t

Not Used

Not Used

Not Used

Not Used

Phase 16

Swap 262K

Swap 524K
} Memory Degradation

Refer to Section 2

t The channel select code in bits 4 through 8 must be set before any commands are
sent on bits 1, 2, and 3, and it must remain set until after the command has
dropped.

t t The external flag is transmitted to the device on the I/ 0 channel corresponding to
the code in bits 4 through 8. External flag instructs the device to autoload. Refer
to Systems Communications, section 3 for a description of external flag •

• 4-16 60256000 09

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c

I
D

E

I
I

F

60256000 08

TABLE 4-12. CHAl'·mEL REGISTER FROM CHANNEL
BTA4 (CONNECTOR BTA34)

Not Used

Channel 1

2

3

4

5

6

7

8

9

10

11

12

Not Used

0 Channel

1 Channel

Channel

Disables

BTA5 contains

BTA5 contains

Function

The channel disables are trans- j

mitted to SAC. If the disable line

for a channel is set, no central

memory references are allowed

from that channel. Channel com -

munications can proceed normally

in and out of the channel buff er.

When the last word in the channel's

buffer area is reached, the opera

tion continues end around within

the buffera

lower bounds sword address.

upper bounds sword address.

Bit E should be set to the proper bounds register before the

bounds address is transferred to channel BTA5 and to bit F of

channel BTA4.

This is the highest order bit of the bounds limit

address (524K select bit).

4-17

Bit No.

0 '

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

4-18

TABLE 4-13. CHANNEL BTA5 (CONNECTOR BTA56)

1 Function

This is the rightmost 16 bits of the 17-bit bounds

limit address. This may be either the lower or

upper bounds limit address depending upon the

state of bit E in BTA4. The bounds limits are

absolute physical sword addresses. An address is

inbounds (bounds hit) when it is greater than the

lower limit and less than the upper limit.

60256000 08

TABLE 4-14. CHANNEL BTA6 (CONNECTOR BTA56)

Bit No. Function

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

60256000 08

Check bounds on memory reads

Check bounds on memory writes

Check bounds on CPU references

Check bounds on channel references

Stop CPU on bounds hit

If bits 0
and 1 or
bits 2 and
3 are zero,
no bounds
hits can
occur.

Enable bounds check; the bounds addresses and con

ditions must be set up before the enable is set.

Count A; monitoring counter A is enabled while this

line is a 1 and held clear when this line is a 0. The

proper counter specification and bits 8 through E of

channel BTA6 must not be changed while this line is

enabled.

Count B; monitoring counter B is enabled while this

1 line is a 1 and held clear when this line is a 0. The

proper counter specification and bits 8 through E of

channel BTA6 must not be changed while this line is

enabled.,

Clear counter overflow bits only [see monitoring with

counters (code 6) in this section]

Stop CPU on Counter A increment

Stop CPU on Counter B increment

Enable carry into A 1

Enable carry into A 2

See monitoring
with counters in
this section.

Enable carry into Bl

Enable carry into B2

0; bits 0 through F of channel BT A 7 are the count

specification for counter A.

1; bits 0 through F of channel BTA7 are the count

specification for connter B.

This bit should be set to the proper counter before the I
count specification is set into channel BT A 7. J

4-19

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

4-20

TABLE 4-15. CHANNEL BTA7 (CONNECTOR BTA78)

J Function

Event select for counters Al and Bl;
see monitoring with counters in this section for codes.

Event select for counters_ A2 and B2;
see monitoring with counters in this section for codes.

Not used

Job mode gate

Monitor mode gate

Selected job mode gate

Data flag 56 gate

Data flag 57 gate

Event counter gates;
see monitoring with
counters in this
section

60256000 08

TABLE 4-16. CHANNEL BTA8 (CONNECTOR BTA78)

Bit No. Function

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

60256000 08

8-bit function select code. Bit 0 is the leftmost bit

of the code. See event number 12 in monitoring with

counters in this section.

8-bit mask. Bit 8 is the leftmost bit of the mask.

See event number 12 in monitoring with counters

in this section.

4-21

MCU MONITORING

The MCU monitors the output of two display registers as its main monitoring of system

activity. One display register contains the output of the current instruction address

register (CIAR). The other display register contains the output of the register selected

by the MCU. A 4-bit code sent from the MCU (channel BTAl, bits C through F)

selects the appropriate display register. In addition to monitoring the display registers,

the MCU can also monitor:

• The status of memory parity, microcode memory parity, CPU idle, CPU

stopped, etc.

• Abnormal conditions of temperature, dewpoint, and power.

DISPLAY REGISTERS

The MCU sends a read signal to enable the CIAR and the selected register into the

two 64-bit display registers. The read signal is defined as bit B on channel BTAl,

and its leading edge simultaneously transfers both registers into the display registers.

The MCU determines the register select code (Table 4-17) before transmitting the read

signal to the CPU. All unaccounted for bits coming into and going out of the display

registers are undefined.

The MCU receives the CIAR on channels ATBl through ATB3, and the station receives

the selected register on channels ATB4 through ATB7.

The CIAR and the event counters may be read anytime. Other displays are examined

only when the CPU is not running.

4-22 60256000 08

ry.,f\~T-.::;'\ A 'ii";
l...n.DJ....1.C.. "::I:- J. i .• DISPLAY REGISTER SELECT

Code16 I Register(s) I Bits

0 Current instruction register 0-63

1 Data flag register 3-15, 19-31,,
35-47, 51-58

2 Invisible package address
(absolute sword address) 0-22

Page zero address 38-48
(absolute small page address)

3 External interrupt register 17-31
Channel 1 17

2 18

3 19

4 20

I 5 21

6 22 I
7 23

I
8 24 I
9 25 !

10 26

11 27

12 28

Not used 29

Not used 30

Monitor interval timer 31

Channel read active - write active 32-55

Channel 1 32-33

2 34-35

3 36-37

4 38-39

5 40-41

6 42-43

7 44-45

8 46-47

9 48-49

1() 50-51

11 52-53

12 54-55

60256000 08 4-23

TABLE 4-17. DISPLAY REGISTER SELECT CODES (Contd)

J Register(s) 1 Bits

4 Parity fault type 0-7

Access instruction parity fault 0

Stream instruction parity fault 1

CPU parity fault 2

Search parity fault 3

Exchange parity fault 4

I/O parity fault 5

MIC memory 0 parity fault 6

MIC memory 1 parity fault 7

Illegal MIC memory address 8

These signals are all reset by the clear fault condition signal from the MCU.

5

6

4-24

Parity fault address 32-63
(absolute, physical memory bit address)

The address of the first parity error is
retained in this register.

The parity fault address register is reset
by the clear fault condition signal from the
MCU.

Bounds hit address
(absolute, physical memory bit address,
right justified)

The address of the first bounds hit is
retained in this register. The bounds
hit address register is reset by the
clear fault condition signal from the
MCU. The bounds checking is performed
on sword boundaries only.

Counter Al

Counter A2

Counter Bl

Counter B2

If bit 8 of channel BTA6 in the MCU is a
0, both counters are cleared after the
read signal is received and after both
counters transfer into the display register.
If bit 8 is a 1, only the upper bit of each
32- or 16-bit counter is cleared.

To ensure proper initialization of the coun
ters, the count lines must be zero prior to
the new count selection.

0-31

0-15

16-31

32-47

48-63

60256000 08

For monitoring purposes,, the CPU has four 16-bit counters (Figure 4-2). Each of

these counters can be connected to an event line selected by a command from the

MCU. Table 4-18 contains a list of ev-ents which can be counted and their correspond

ing select codes. There are two pairs of 16-bit counters,, A 1,, A2 and Bl,, B2. The

A and B counters are completely independent and cannot be tied together. However,,

they do share the same input event lines and CPU lines (Figure 4-3). The counters I
are selected for display via the MCU display register. They can also be combined

in various ways to form one or two 32-bit counters. This configuration is accomplished

via the carry lines from the MCU. The counters are enabled by hardware and soft-

ware lines selected with gates from the MCU. The MCU has the option of stopping the I
CPU on a count condition by enabling the stop lines.

60256000 09 4-25

I

I

FROM

INPUT~------~~.~

EVENTS Al/81 • • _,,,, -
INPUT ----..-;r-r-7--_..

• EVENTS A2 /B2 • • __,,, - COUNTERS Al AND A2 1• 32-A COUNTER BITS
TO MAINTENANCE

• CONTROL UNIT

CPU EVENT COUNTER

INEv~:,~t~ B~lc~~~~----.1t-1---t-t-~.._
JOBMOOE--...-t-+-+-lt-+~~

MONITOR MODE----41-t-+-+-+-+-+~....,. t-A LINES

DATA FLAG BIT 56 ~

DATA FLAG BIT 57 -"" A GATES
I'" I 1 I

4 e e •J If\ e e e 1' ~ I~ ~ ~ •
EVENTJ

SELECT Al

I~

A STOP
r-cpu

EVENT
SELECTA2-'

t tf"i:Yfc.fl:E2~ COUNTER

ENABLE CARRY INTO A2
I.ENABLE CARRY INTO A I

SELECTED JOB GATE-' I.COUNT A

JOBMODE GATE- DATAFLAG57GATE

MONITOR MOOE GATE- '-DATA FLAG 56 GATE

\ J

• • ..::..

-
....... -

----~..,_. t- B LINES

...::..

- t-

FROM MAINTENlNCE CONTROL UNIT

COUNTERS Bl ANO 82

B GATES
I

4 ••• J •... 4'" •
EVENT J

SELECT Bl

132-B COUNTER BITS
• TO MAINTENANCE

CONTROL UNIT •

t tSTOP CPU ON COUNTER
B INCREMENT

ENABLE CARRY INTO 82
EVENT"'

SELECT B2..;
L. ENABLE CARRY INTO Bl

L..COUNT B
SELECTED JOB SATE

DATA FLAG 57 GATE
JOB MODE GATE-'

MONITOR MODE GATE - '-DATA FLAG 56 GATE

v
FROM MAINTENANCE CONTROL UNIT

3APl5A

Figure 4-2. Block Diagram of Counter Logic Lines

4-26 60256000 09

MCU
INPUTS

SPECIFY
COUNT

FOR
COUNTER

A

CPU LINES

EVENT COUNTER ENABLE BIT
FROM INVISIBLE PACKAGE

JOB MODE

MONITOR MODE

DATA FLAG B!T56 l
DAT.~ FLAG BIT 57 I

e a e

EVENT t 1
SELECT -. ..

Al >--1-------

JOB
MODE~--+--~1-----4-...,_
GATE

MCU MONITOR
GATES MODE >---+---+-;:.i

l
GATE

DATA
FLAG

56
GATE

DATA
FLAG

57
AT::

COUNT ">------'
A

ENABLE CARRY
INTO Al

ENABLE CARRY
INTO A2

STOP CPU ON ">-----""'

COUNTER A
INCREMENT

CARRY

B

CPU INPUTS

y l

B

COUNTER A2/B2
INPUT EVENTS l
82 . .

SELECTION
NETWORK A2

EVENT
COUNT
LINE

I

EVENTS

I
I

INPUT EVENTS
COUNTER Al/Bl

81

• •
SELECTION
!llETWORK Al

EVENT
COUNT
LINE

EVENT MASK

TO MCU

3AP21A

Figure 4-3. Block Diagram of Counter A

Bl

60256000 09 4-27

i

I

I
I

I

TABLE 4-18. COUNTER EVENTS

Codes 16
Events

Counter Counter
Al/Bl A2/B2

01 Number of branches out of instruction stack

01 Number of branches in instruction stack

04 Time enabled from microcode; number of minor cycles

microcode MON = 1 is selected

04 Number of shortstop paths

05 Number of space table searches

05 Number of quarter-swords searched in space table searches

09 Number of normal channel memory requests

09 Number of normal channel memory requests accepted

OA Number of CPU memory requests

OA Number of CPU memory requests accepted

OB Total number of memory requests

OB Total number of memory requests accepted

11 Number of minor cycles from selected instruction issue to

next nonselected issue. The counter will begin counting when

an instruction whose function code meets the conditions de-

scribed in code 12 is loaded into IRO. It will stop counting

when the next instruction which does not meet the conditions

is loaded into mo .

• 4-28 60256000 09

I
I

Codes16

Counter
Al/Bl

12

13

60256000 09

Counter
A2/B2

12

13

TABLE 4-18. COUNTER EVENTS (Contd)

Events

Number of times a particular function code or particular

category of function codes is executed. The count condition

is determined by an 8-bit select code and an 8-bit mask sent

to the CPU on channel BTA8. If the select code bits and

the corresponding instruction function code bits are equal

wherever there is a 1 in the mask., the counter is

incremented. If the mask contains all zeros. all instruc

tions are counted.

Time - in microseconds

Number of times the microcode monitor field (MON) is equal

to 2

Number of cycles where data is not available at the output

of a functional unit (string or floating point) once data has

been requested for all input streams. This time does not

include the time required for initial setup (preceding re

quests for memory) or shutdown (following the input of the

last operands to a functional unit) of vector or string in

structions. This count thus permits the programmer to

analyze the amount of time required for startup memory

accesses., pipeline/functional unit length. space table

searches. and memory conflicts for a specific instruction.

4-29

I

I

I COUNT GA TES AND CPU LINES

The event counters are incremented when the selected event occurs, the count line is

I up, and one or more of the following gate-line conditions are satisfied.

1. The event counter enable bit is set in the invisible package of the job currently

being executed and the selected job gate from the MCU is set. This allows

counts to be made during selected jobs only.

2. The CPU is in job mode and the job mode gate from the MCU is set.

3. The CPU is in monitor mode and the monitor mode gate from the MCU is set.

4. Data flag bit 56 or 57 is set in the data flag register of the CPU, the data flag

56 or 57 gate from the MCU is set, and the CPU is in monitor mode.

5. Data flag bit 56 or 57 is set in the data flag register of the CPU, the data flag

56 or 57 gate from the MCU is set, and the event counter enable bit is set in

the invisible package of the job currently being executed.

I There is one set of gate-line enable logic for counters A 1 and A2 and one set

for counters Bl and B2; therefore, the A counters may be enabled by different

gates than the B counters.

I
The CPU lines are:

• Data flag bit 56

• Data flag bit 57

• Monitor mode

• Job mode

• Job enable of monitoring counters from invisible package.

The MCU gates are:

• Data flag 56

• Data flag 57

• Monitor mode

• All jobs mode

• Selected jobs mode

4-30 60256000 09

CARRY LINES

There is one enable carry line associated with each 16-bit counter. Enable carry line

Al enables the carry into counter Al from counter A2. Enable carry line A2 enables

the carry into counter A2 from counter Al. There are equivalent lines for the B coun

ter. A zero on carry lines Al and A2 allows the counters to operate as two 16-bit

counters. Only half of the total number of events are available at the selection network

for one counter Al or A2; therefore., if a 32-bit count is desired either counter may

contain the lower bits. For example., if an event is enabled to counter Al and a

32-bit count is desired., then enable carry line Al must equal 0 and enable carry line
A2 must be a 1. In this example., counter Al has the least significant bits and counter

A2 has the most significant.

STOP LINES

There is one stop line associated with each counter pair; one for the A counters and

one for B counters. When the stop line is a one., an event incrementing either 16-bit
l<

counter stops the computer. Mode line event stop is returned to the MCU (bit 4.

channel ATB8) to show why the CPU has stopped. The MCU, after sending a clear

fa ult signal. may restart the CPU.

COUNTER SETUP

Typically., the four counters would be set up by the MCU as follows:

1. Set the following bits as required

• Stop CPU on A increment (bit 9, channel BTA6)

• Stop CPU on B increment (bit A., channel BT A6)

• Enable carry into Al (bit B, channel BTA6)

• Enable carry into A2 (bit C, channel BTA6)

• Enable carry into Bl (bit n. channel BTA6)

• Enable carry into B2 (bit E, channel BTA6)

2. With bit F, channel BTA6, a O, set event and mask selection for counter A

into channel BTA7.

3. Set bit F, channel BT A6 to a 1.

4. Set event and mask selection for counter B into channel ETA 7.

5. If Al /Bl event code 12 for function counting has been selected, set channel

ETAS to the desired function and mask.

6. Set count line A or B (bit 6 or 7, channel BTA6) as desired.

60256000 09 4-31

I

I

The counters are now counting events and will continue to count until their respective

count lines are dropped.

LOGIC FAULT MONITORING

There are three types of logic faults detected in the computer.

1. Memory parity

2. MIC memory parity

3. Multiple match

When a logic fault is detected, the computer stops between instructions. The type of

fault may be sensed on channel ATB8.

After sensing the logic fault, the MCU clears the fault via bit 7 of channel BTAl. The

MCU determines the appropriate response to the fault and has the option of restarting

the CPU by setting bit 3 of channel BT Al.

Information on memory parity faults may be found in the SAC description in section 3

of this manual.

Information on MIC memory parity faults may be found in the microcode description

in section 3 of this manual.

Information on multiple match faults may be found in the SAC description in section 3

of this manual.

TEMPERATURE PRESSURE AND DEWPOINT MONITORING

The system contains a monitoring unit which monitors heatsink temperatures and freon

pressure in each section of the machine and the room dewpoint. If the temperature,

pressure, or dewpoint exceeds the safe limits set for the system, the monitor circuit

rings an audible alarm and sends a signal to the MCU (bit 8, channel ATB8). Upon
detecting this signal, the MCU can halt the CPU. The CPU can recover operation

when the faulty condition is corrected.

I 4-32 60256000 09

.... i.. _ ___ .: --:--
1.J..U:; .l.J..1.UJ.J..Ll.U.L . .L.l.J./5 circuit

disconnects system power and locates the source of the fault.

In addition to the monitoring unit,, each machine section contains a thermostat. If the

temperature in a particular machine section exceeds the safe upper limit,, the corre

sponding thermostat disconnects power in that section immediately.

POWER FAIL MONITORING

If the input power to the motor-generator drops for more than 100 ms, the 60-Hz

power fail signal is transmitted to the MCU (bit 9, channel ATB8). Upon detecting

this signal, the MCU can bring the CPU to a recoverable halt. The system power

remains up for approximately 500 ms after the 60-Hz input power drops.

If 400-Hz power drops in any section of the computer, the section power fail signal

is sent to the MCU (bit A, channel ATB8). A short circuit in any section trips

the corresponding circuit breaker and lights an indicator, locating where the short

exists in the section. This set of indicators is contained on the annunciator panel in

each section. A test switch on each panel tests the indicators.

COMPRESSOR MONITORING

High head pressure, low oil pressure, or a compressor motor fault on either condens

ing unit lights an indicator on the temperature monitor box, initiates an alarm, and

initiates a power-down sequence. Each fault also causes an audible alarm on the con

densing units.

A refrigerant liquid line temperature fault or a condenser cooling water fault lights

an indicator on the monitor box. This is a warning device and is not connected into

the alarm and power-down circuitry.

60256000 09 4-33 I

PROGRAMMING CONSIDERATIONS 5

GENERAL

This section describes various registers and operations of the CDC STAR-100 computer

which are of particular interest to the programmer. Included are descriptions of job

and monitor modes, interrupts, the invisible package, addressing modes, real time

counters, the register files, the data flag branch register, addressing modes, and gen

eral definitions and programming guides.

MONITOR AND JOB MODES

The central processor unit (CPU) operates in one of two programming modes:

• Monitor mode

e Job mode

The CPU automatically exchanges from the job mode to the monitor mode when it re

ceives an interrupt or when a job program executes an exit force (09) instruction. The

monitor mode disables all interrupts and virtual addressing* and permits absolute ad

dressingt to central storage. Any interrupts that occur during the monitor mode tem

porarily store until the monitor program executes an idle (00) or an exit force (09) in

struction. The idle instruction causes the CPU to wait until an interrupt occurs. The

exit force (0 9) instruction switches the CPU to the job mode and starts executing the

selected job program. Switching to the job mode enables the interrupts and virtual

addressing.

The purpose of the exchange is to change the prime role of the CPU. In job mode,

job tasks are performed. In monitor mode, the system decisions are made and the

page table is altered.

Some instructions in progress may be interrupted prior to their completion. The flags

stored in the invisible package are used to restart the interrupted instruction exactly

where it left off.

t Absolute and virtual addressing are described later in this section.

60256000 08 5-1

EXCHANGE FROM MONITOR MODE TO JOB MODE

This is always accomplished with an exit force (09) instruction. The monitor program

must set up the invisible packaget for the job prior to exchanging to that job via the

exit force (09) instruction. The exit force operation is as follows:

L The register file for monitor is stored into absolute memory locations 0

through 3FC016• The register file for the job is loaded from the job's virtual

memory locations 0 through 3FCO16• Any job mode reference to this area of

a job's virtual memory causes the executing instruction to be treated as an

illegal instruction. The absolute bit address of the job's virtual page zero is

in the monitor's register S specified by the exit force instruction.

2. The CPU's major control registers and flags are loaded from the invisible

package which is located starting at the absolute bit address in the monitor's

register T specified by the exit force instruction. This starting address is

saved in a register to provide for storing the current invisible package when

returning to the monitor program.

3. The CPU's mode is changed from monitor mode to job mode. This enables the

virtual address mechanism and the interrupts.

4. The contents of P (program address register) is then read up using virtual

addressing and either the initial start or the restart sequence is executed. An

initial start will be executed if the program is at the beginning of an instruc

tion; a restart is executed if the program was in the middle of an instruction.

that is, continuing an interrupted vector or string instruction.

ILLEGAL INSTRUCTION IN MONITOR MODE

If an attempt is made by the monitor program to perform an illegal instruction code,

an automatic branch is made to the absolute address contained in the monitor's register

4. This hardware trap is to aid in the debugging of the monitor software and to trap

some hardware failures. This trap is not to be utilized by the monitor software as a

normal branch.

tThe invisible package is described in detail later in this section.

5-2 60256000 08

EXCHANGE FROM JOB MODE TO MONITOR MODE

The exit force (09) instruction,, channel interrupt,, and access interrupt are the three

normal ways of getting from job mode to the monitor program in monitor mode.

Attempting to execute either a monitor-type instruction in job mode or an illegal in

struction is the fourth way into the monitor. Except for the starting point in the moni

tor program,, the operations performed in getting to the monitor are identical for the

four.

The operation is as follows:

1. The current invisible registers and flags are stored into the invisible package

starting at the same address used to load the invisible package when the job was

entered.

2. The register file for the job is stored in virtual memory locations 0 through 3FCo 16 •

Absolute memory locations 0 through 3FC0 16 are read into the register file.

3. The CPU is changed from job to monitor mode and the virtual addressing

mechanism is disabled. Any external interrupts that occur after this point are

honored only if the CPU executes an idle instruction. Otherwise the interrupts

are saved until the CPU reverts to job mode,, or until the monitor program

clears the interrupts with a translate external interrupt (OE) instruction.

4. The monitor program executes starting at the absolute address contained in the

rightmost 48 bits of registers 3,, 5,, 6,, or 7 in the monitor's register file.

The method used to enter monitor mode determines the register selection.

The address in the selected register transfers to the program address register

(P register).

Method of getting
to the Monitor

1. Illegal instruction,, monitor-type
instruction in job mode,, or a
reference to the register file as
memory (bit address 0000 -
3FFF

16
).

60256000 08

Register in Monitor's Register File
used for Starting Address (P Address)

Register 3

5-3

Method of getting
to the Monitor

2. Illegal instruction in
monitor or reference to the
register file as memory (bit
address 0000 - 3FFF 16).

3. Exit force

4. External interrupt

5. Storage access interrupt

INTERRUPTS

Interrupts consist of two main types:

• Storage access

• External

Register in Monitor's Register File
used for Starting Address (P Address)

Register 4

Register 5

Register 6

Register 7

The occurrence of either type of interrupt during the job mode causes the CPU to

switch to monitor mode. The monitor program then processes the interrupt.

During the monitor mode, the interrupt system is disabled except during the idle (00)

instruction. Any external interrupts that occur are stored until the CPU switches back

to the job mode or until the monitor program clears the interrupts with the translate

external interrupt (OE) instruction.

STORAGE ACCESS INTERRUPTS

A storage access interrupt occurs when a job program attempts to reference a central

storage page that does not contain the corresponding word in the page table. A storage

access interrupt also occurs when a job program attempts a storage reference that

violates the corresponding lockout code.

5-4 60256000 08

Any CPU storage reference can cause an access interrupt even if it occurs in the middle

of a vector or string instruction. The virtual address of the reference causing the

interrupt and bits indicating the reason for the access interrupt (cause bits) are stored

in word address xx .•• xxE16 of the invisible package for the corresponding job (Figure

5-1). Refer to the invisible package explanation in this section.

0

WILL BE SET
TO ZEROS

11 12 15 16

CAUSE
BITS VIRTUAL BIT ADDRESS CAUSING INTERRUPT

Figure 5-1. Invisible Package Word xx ..• xxE16 Format for Access Interrupt

63

The condition of the cause bits indicate the type of storage reference that initiated the

access interrupt as shown below:

Cause Bits Type of Access Attempted

12 13 14 15

0 1 0 0 Write operand violation

1 0 0 0 Associative word not in the page table

1 1 0 Ot Associative word not in the page table and reference
attempted was a write operation

0 0 1 0 Read operand violation

0 0 0 1 Read instruction violation

Following the access interrupt, the CPU switches to the monitor mode. The program then

branches to the absolute address contained in the rightmost 48 bits of register 7 in the

register file for the monitor program. The monitor program proceeds to allocate space

for the requested page and/or procures the requested page directly. The monitor program

can restart the job where it was interrupted by using the exit force (09) instruction If the job

is to be restarted, however 1 the monitor program must alter the page table and central

storage to include the new page.

t This is the only case where more than one cause bit is set at one time.

60256000 08 5-5

EXTERNAL INTERRUPTS

Each input I output (I /0) channel and the monitor interval timer can interrupt the CPU by

transmitting an interrupt signal on the assigned interrupt line. The interrupt signal

sets the corresponding flag bit in the external interrupt register. The external line

assignments are listed in Table 5-1.

1/0 CHANNEL INTERRUPT LINES

As shown in Table 5-1, each I/0 channel has an external interrupt line assignment.

The transmission of the interrupt from B (IFB) signal on the corresponding external

interrupt line sets the corresponding external interrupt register flag bit. The setting

of this bit indicates to the CPU that the I/0 device (peripheral station) has stored a

message in a predetermined location in central storage.

TABLE 5-1. EXTERNAL INTERRUPT LINES

External
Interrupt Line Assignment

0 Not available

1 1/0 channel 1

' 2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 I/O channel 12

13 Not used

14 Not used

15 Monitor interval timer

5-6 60256000 08

MONITOR INTERVAL TIMER INTERRUPT

When the monitor interval timer (described in this section) decrements to a zero count.

an external interrupt signal is transmitted on line 15. The resultant setting of external

register flag bit 15 indicates to the CPU that the specified period initially set in the

monitor interval timer has elapsed, requiring processing by the monitor program.

INVISIBLE PACKAGE

The invisible package contains the address and control information necessary to begin a new

job or to continue a job interrupted during execution. Each invisible package is asso

ciated with a job. The invisible package for a particular job is stored at 16 consecu

tive word addresses in central storage beginning at the initial address assigned

by the monitor program. The invisible package is always stored starting at an even

numbered sword address. Therefore, the rightmost 10 bits of the starting address of

the invisible package must be zeros. Refer to the exit force (09) instruction in the

instructions section of this manual.

The monitor must set up an invisible package for each job. There is no invisible

package for the monitor program itself.

When the CPU switches from monitor to job mode. the invisible package for the

corresponding job is automatically loaded from central storage beginning at the address

assigned to that job. The invisible package data is loaded into the appropriate registers

in the CPU.

When the CPU switches from job to monitor mode. as in an interrupt. the contents

of the corresponding registers are automatically stored in central storage as the in

visible package for that job.

If a job is to be reentered, the monitor should not alter the job's invisible package

except for possibly the keys.

Figure 5-2 shows the invisible package format.

60256000 08 5-7

PROGRAM ADDRESS 9

2 KEY 3

6 53 NFJ2

©
_(62 ~6 DATA FLAG BRANCH REGISTER

oo@) PFOI 15116 PF fl

(6)

00. PF02 15j16 PFl2

6 40 JOB INTERVAL TIMER

00 CURRENT INSTRUCTION

00 PF04 15 16 PFl4

00 PARTIAL STRING DATA 3132 _(1} 47]48

00 PF05 15 16 PFl5

00 _(1} 15 16 ACCESS INTERRUPT ADDRESS

00 PF06 15 16 PFl6

Notes:

(D Access interrupt cause bits (Addresses XO and XE)

0

5-8

Bits 0-11

Bit 12

Bit 13

Bit 14

Bit 15

Not usedi and· are set to zeros

Associative word not in page table

Write operand violation attempted

Read operand violation attempted

Read instruction violation attempted

Usage lockout bits for each key

Bit 0 Not used and must be set to zero
Bit 1 If set, locks out CPU write operations
Bit 2 If set, locks out CPU read operations
Bit 3 If set, locks out CPU instruction references

Figure 5-2. Invisible Package Form at

(1}

63

63

63

63

63

63

63

63

63

63

63

63

63

63

63

WORD 0

I

2

3

4

5
6

7

8

9

A

B

c
D

E

F

3AP16A

60256000 09

0

0
0
0

Bit 16 Flag 0

Bit 17 Flag 1

Bit 18 Flag 2

Bit 19 Flag 3

Bit 20 Interrupt flag

Bit 21 Not used

Bit 22 Load/store 1

Bit 23 Load/store 2

Bit 24 Sub function bit 0

Bit 25 Subfunction bit 1

Bit 26 Sub function bit 2

Bit 27 Sub function bit 3

Bit 13 Fault test instruction enable

Bit 14 Monitoring counters enable

Bit 15 ASCII = 0, EBCDIC = 1

Contents undefined following the storing of the invisible package in memory after

a job to monitor exchange.

Ci) String internal data and control. The data and control saved in bits 32 through

63 of invisible package word C is dependent on the instruction being interrupted.

@ Usage bits for breakpoint register.

G) The program address stored into the first location of the invisible package

when an interrupt occurs is the address of the instruction which must be

executed to restart the job at the same point at which the interruption occurred.

In the case of an illegal interrupt, this address is the address of the illegal

instruction.

@ For the specific use of any large or small IC for a given instruction, consult

the microcode comment listing.

Heavy lines identify areas which are used for the same purposes in other computers

of the CDC STAR line.

Figure 5-2. Invisible Package Format (Contd)

60256000 09
5-9

ADDRESSING MODES

The computer system uses two modes of addressing central storage:

• Virtual addressing

• Absolute addressing

VIRTUAL ADDRESSING

Virtual addressing provides an efficient, dynamic method of allotting portions of central

storage to each job program by the monitor program. Virtual addressing is used ex.;.

elusively when the CPU is in the job mode. The switching of the CPU to the monitor.

mode automatically disables virtual addressing. However, central storage recognizes

all addresses as being absolute. Thus,· the virtual addressing control circuits convert

virtual addresses to the corresponding absolute addresses.

PAGES

Portions of central storage are logically partitioned into pages. A page contains 512

or 65, 536 consecutive 64-bit words. If 524, 288 total words of central storage are

available,, there are 1024 512-word pages or eight 65K pages. Page size selections

may be intermixed in the page table (refer to page table in this section).

The monitor program allots a page or pages to each job program. All of the words

in a page are identified by a common page identifier. The common page identifier is

an absolute address which locates the page in central storage.

VIRTUAL ADDRESS FORMAT

Figure 5-3 shows the virtual address formats for the 512-word page and 65K-word

page,, respectively. Note that in the 512-word page,, the virtual page identifier consists

of 33 bits. In the 65K-word page,, on the other hand, the virtual page identifier is

contained in 26 bits of the virtual address. This difference results from the number

of bits needed to locate the word in the page. In the 65K-word page selection,, 16 bits

are needed to locate the word in the page, giving a word-address range of 0000 16 -

FFFF 16, which is equivalent to 65, 53610 storage locations. In the 512-word page,

the 9-bit word identifier gives a word-address range of 00016 - lFF 16 (512 storage

locations).

5-10 60256000 08

The bit, b:y--te, half-word, and word identifier portions of the vi.rtual address are abso=

lute. Thus, when the virtual page identifier is converted into an absolute page identi

fier, these portions of the virtual address are substituted directly into the absolute

address.

16

512- WORD PAGE

(33)

VIRTUAL PAGE
IDENTIFIER

65K-WORD PAGE

41 49

(9)

WORD
IDENTIFIER

HALF WORD

•• 41 42 57 58 51 60 61 13

l~~~-(26)~---1~-(l-6)--~,,(-2)1-~)1

60256000 08

VIRTUAL PAGE
IDENTIFIER

WORD
IDENTIFIER

Figure 5-3. Virtual Address Formats

Y'--v-'

\ ~BIT
I_ BYTE

HALF WORD

5-11

I

ASSOCIATIVE WORDS

The associative words contain the information necessary to convert a virtual address

into an absolute address. The monitor program must assemble the associative words

into a page table as necessary for a given run. Figure 5-4 shows the formats of the

associative words for the 512-word page and 65K-word page, respectively.

If a page has been referenced with code bits in Table 5-2, a job program has made at

least one storage reference to the page defined by the associative word. If a page is

altered, a job program has performed a write operation on at least one bit in the page

defined by the associative word. In the monitor mode, the CPU does not use the asso

ciative words in addressing. Thus, alteration or referencing storage by the monitor
program is not recorded in the associative words.

512 -WORD PAGE

0 4 5 15 •• 18 It IO SI

® I (II) I (3) I 021 (33)

\~~----..--~--1/__J'---------u---------~L--------------------------,ir----------------------------y -,-

PAGE
ABSOLUTE ~ LOCK

ADDRESS CD USAGE CODE

(SEE TABLE 5-2)

65K-WORD PAGE

O 4 5 I 9 15 18 18 19 30 SI

VIRTUAL PAGE
IDENTIFIER

(26)

se57 a

®
Ly-J YL---v---J\.---------,r---------'

~ABSOLUTE _ us::::ODE VI~~~~~,~~~
PAGE ADDREss(!) (SEE TABLE 5-2)

CD IF 500 K WORD TOTAL CENTRAL STORAGE IS USED, BIT 5 MUST BE A 0 .

@ BITS MUST BE SET TO ZEROS.

Figure 5-4. Associative Word Formats

5-12 60256000 09

TABLE 5-2. ASSOCIATIVE WORD USAGE CODES

Code Bits
(16 17 18) Definition

000 End of page table
001 Null associative word
010 512-word page has not been referenced by the CPU
011 65K-word page has not been referenced by the CPU
100 512-word page has been referenced by the CPU
101 65K-word page has been referenced by the CPU
110 512-word page has been altered by the CPU
111 65K-word page has been altered by the CPU

LOCK

A lock is a 12-bit quantity contained in each associative word (Figure 5-4). The lock

associates a page of central storage with a job program or several job programs.

KEYS

The monitor assigns four 12-bit keys to each job. The keys for a particular job are

read from central storage as part of the invisible package for that job. The monitor

program transfers the keys to the virtual address key register (Figure 5-5). After the

virtual page address portion of an associative word matches with the corresponding

portion of a virtual address, one of the four keys for the job must match the lock in

the associative word before the storage reference can take place.

0 34 15 16 1920 3132 3536 47 48 51 52 63

I 141
I

(12) I (41 I (12) I (4) I
(12)

I
141

I
(12)

'--v-1' ''--v-1' ''--v-1' /~\ v v v v
o CD KEY 0 I CD KEY I 2CD KEY 2 3 CD KEY 3

(D LOCKOUT CODES FOR CORRESPONDING KEY

Figure 5-5. Virtual Address Key Register Format

Figure 5- 5 shows that each key is associated with a four-bit lockout code. The setting

of a particular bit in this code locks out the corresponding type of storage reference.

Table 5-3 lists each bit of the lockout code and the type of storage reference locked out

if the bit is set.

60256000 08
5-13

I
I

I

If a key matches the lock of an associative word for a particular storage reference,

but the operation is disabled by the lockout code for that type of reference, a storage

access interrupt takes place. A storage access interrupt causes an exchange to the

monitor mode.

TABLE 5-3. LOCKOUT CODES

Bit Position
0 1 2 3 Type of Storage Reference Locked Out

0 1 x x CPU write operations

0 x 1 x CPU read operations

0 x x 1 CPU instruction references

Notes: 1 The actual bit number depends on the key field to which it
corresponds (Figure 5-5).

2 X denotes that the bit can be 0 or 1.

3 Bit position 0 is always a 0.

ASSOCIATIVE REGISTERS

The SAC unit contains 16 64-bit associative registers (AR 's). Each AR contains one

associative word. The AR 's contain the first 16 associative words in the page table.

For example, if the computer system consists of 1, 048, 576 words of central storage

and if only 65K-word pages are selected, the associative words for all 16 pages would

be contained in the AR's. In the monitor mode, the contents of the AR's can be stored

into or loaded from central storage with the store associative registers (OC) or load

associative registers (OD) instructions, respectively.

The contents of the AR 's cannot be referenced directly for read or write operations

except through the OC and OD instructions.

5-14 60256000 08

SPACE TABLE

The space table (shown in Figure 5-6) consists of the locations in central storage that

contain the list of associative words. The space table starts at absolute bit address

4400 16 (word address 0110 16) and may continue to 3FFC016 . The space table extends I
into central storage until an end of page table code is found in the usage bits (Table 5-2)

of the corresponding associative word. If no end of page table entry is found before I
location 3FFCo16, the search hardware will loop between addresses 20, 000 16 and

3FFCo16, resulting in a CPU hang. Thus, the space table serves as an extension of

the AR's to make up a complete page table.

PAGE TABLE

The page table contains the complete list of associative words and includes both the

associ~tive registers and space table. The associative words contained in the page

table define the pages currently allotted space in central storage. Figure 5-6 shows

the format of the page table. Note that if the associative words in the associative

registers are stored in central storage with the store associative registers (OC)

instruction, they are stored in 16 consecutive 64-bit storage locations of absolute bit

addresses 4000 16 through 43C0 16 .

Table 5-4 lists page table restrictions and requirements.

60256000 09 5-15

ASSOCIATIVE
REGISTER
NUMBER

AROO

AROI

AR02

AR03

ARl4

ARl5

ABSOLUTE
BIT
ADDRESSES
(BASE 16)

4400

4440

4480

4000t40(N-I)

4000+40N

0

0

_...,,

ASSOC WORD 0

ASSOC WORD

ASSOC WORD 2

ASSOC WORD 3

,---z- -z..

ASSOC WORD 15

ASSOC WORD 16
I

ASSOC WORD 17
, I

ASSOC WORD 18

--.

- -z- ~--z.. -

ASSOC WORD (N-1)

ASSOC WORD N

CD END OF PAGE TABLE USAGE CODE

Figure 5-6. Page Table Format

H

83

ASSOCIATIVE
REGISTERS

SPACE TABLE
(CENTRAL STORAGE)

5-16 60256000 08

TABLE 5-4. PAGE TABLE RESTRICTIONS AND REQUIREMENTS

Number Restrictions and Requirements

1

2

3

The monitor program must supply at least one END code as the last

entry in the page table before entering the corresponding job pro

gram. The END code may be in either the associative registers or

the space table.

If multiple entries are placed in the AR's., the results are undefined

and the multiple match fault may be set. The multiple match fault

is sent to the maintenance station.

Before the AR 1 s can be referenced in central storage., the contents

of the AR's must be stored in central storage using the store asso

ciative registers instruction (OC). The page table in central storage

starts at absolute address 4000 16 •

OPERATION OF VIRTUAL ADDRESSING

In the processing of a job program., each virtual address is transmitted from the stream

unit to the SAC unit. The SAC unit compares the virtual page identifier in the virtual

address (Figure 5-3) with the corresponding portion of each associative word (Figure

5-4) in the page table. If the virtual page identifiers match and the lock matches one

of the four keys., a match condition occurs. If a match results., the absolute page

address associated with the match-producing entry in the page table is combined with

the applicable portion of the word identifier sent from stream. The upper 17 bits of

this combined address references one sword (eight 64-bit words) from central storage.

The remaining word., half-word, byte., and bit identifiers remain in stream and select the

word, half-word, byte, and/or bit from the words transmitted from SAC. If the end of

the page table is detected with no preceding match condition, or if a match results but

the operation is disabled by the lockout code, a storage access interrupt results.

I

For a description of a page table search, refer to the storage access control area of the

central processor section of this manual (section 3).

60256000 09 5-17

ABSOLUTE ADDRESS

The absolute address formed by page table translation receives the page address portion

from bits 5 through 15 of the associative word (Figure 5-7). For 512 word pagesa 11 bits

(5 through 15) are placed in bit locations 38 through 48 of the absolute address allowing use

of 2048 possible pages in job mode with 1048K word memory size configuration. Bits 49

through 54 of the absolute address receive the corresponding bits from the virtual address.

For 65K word pages,, only four bits (5 through 8) are placed in bit locations 38 through 41

of the absolute address. Bits 42 through 48 of the absolute address receive the corresponding

bits from the virtual address; this allows 16 large pages usable with a 1048K word memory.

In a 1048K memory configuration,, bit 38 of the absolute address indicates which upper or

lower half-million word portion of memory is referenced. In a 524K word memory con

figuration,, if bit 5 of the absolute page address in the associative word is set for either

page size,, the absolute address formed will attempt to reference a nonexistent upper half

million words of memory. This type of memory reference is undefined,, and a parity error

is likely to occur on reads.

ASSOCIATIVE WORD

8 9 3031 5157

ABSOLUTE PAGE
~DDRESS

..----VIRTUAL PAGE IDENTIFIER SMALL PAGE---~
~~-LOCK--_..,. I

VIRTUAL PAGE IDENTIFIER LARGE PAGE~

I I
:_!-ARGEI
111t:PAGE~

I I

~SM~LL PAGE-J
1

1111~;-----LARGE PAGE COMPARE----:M~
I

IE SMALL PAGE COMPARE
/

I I
I I I

ABSOLUTE ADDRESS TO MEMORY
I I I

I I
I I

I I
I I

I I
I I

I I
I

' I I
', SMALL", I

, ~PAGE...;i... /
' ',I ',

', '~LARGE ..._PAGE~ 1
1

...... ABSOLUTE ' '
.......-ADDRESSING MODE~ I

' .. , ' ' I
' ,', ' ' I '
'' ' ' ' I I ' '....._ ' ', I

I ' ' ' ' I ' ' ' , I I
' ' ' ,1 I

I ' ' ' ~_ '_ I ' I
I_ ', '....._ I , I

,' , ' 1, '"-

/ ' ' I' ''
VIRTUAL ADDRESS ' ' I ' I '

I I '), '11 'l

I
I

I
I

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I

I

16 3738 4142 484950 5455 5758 I061 13

• 5-18
Figure 5-7. Virtual Address to Absolute Address

60256000 09

!EAL=T!ME COUNTERS

The CPU contains three counters that can be used for real-time programming applica

tions:

• Free running clock

• Monitor interval timer

• Job interval timer

Each of these counters is described in the following paragraphs.

FREE RUNNrNG CLOCK COUNTER

This counter consists of a free running 4 7-bit counter that is incremented at a 1-MHz

rate. and a positive sign bit for a total of 48 bits. The free running clock counter

is never cleared. The contents of this counter can be stored in a designated register

T with the transmit real-time clock to T (3 9) instruction.

MONITOR INTERVAL. TIMER

This 24-bit counter is decremented at a 1-MHz rate. The transmit (R) to monitor

interval timer (OA) instruction loads the contents of the designated register R into the

monitor interval timer counter when the computer is in the monitor mode. The timer

can be activated by loading it with any quantity other than all zeros. Once it is activated.

the timer decrements at a 1-MHz rate until it reaches an all zero count. When the

counter reaches a zero count. it causes an external interrupt on channel 15 which is

processed like any other external interrupt. At this point the timer is deactivated until

it is loaded with some value other than zero.

The monitor interval timer is deactivated by any one of the following three methods.

1. Master clear.

2. Loading it with all zeros.

3. Decrementing it to a zero count.

60256000 08 5-19

JOB INTERVAL TIMER

This 24-bit counter is decremented at a 1-MHz rate and can be loaded (job mode only)

from a designated register R using the transmit R to job interval timer (3A) instruction.

Once loaded, the job interval timer continues to decrement until either an exchange to

monitor mode occurs, the timer decrements to zero, or the timer is loaded with zeros.

If an exchange to monitor mode occurs, the job interval timer stops decrementing and

the operation stores the current contents of the timer in the invisible package for that

job. When the· execution of that job resumes, the operation loads the job interval timer

from the invisible package and resumes decrementing it. When the timer is decremen

ted to zero, the CPU sets bit 36 in the DFB register. Refer to the data flag branch

register description in this section.

Loading zeros deactivates the timer. This action does not set bit 36 of the data flag

branch register. Master clear also deactivates the timer.

The job interval timer is deactivated by any one of the fallowing three methods.

• Master Clear.

• Loading it with all zeros.

• Decrementing it to a zero count.

REGISTER FILE

For register operations, the 8-bit instruction designators directly address the 25610
registers of the register file. During program execution (monitor or job), these

registers reside in the CPU's register file. When an exchange operation occurs, the

registers are stored into the first 25610 memory locations of the particular job or

monitor mode program beginning at bit address zero (absolute address if in monitor

mode and virtual if in job mode). The registers may not be referenced as memory by

their associated monitor or job program. The only exceptions to this rule are the B7

I and BA instructions with G-bit 7 set. (Refer to B7 and BA instructions in section

6 of this manual.)

5-20 60256000 09

Figure 5-8 sho\:r1s a map of the register file and the relationship between the register,

its storage address, and its 8-bit designator. The number on the right is the bit

address and the number on the left is the value of the 8-bit designator for the 64-bit

operand. The number inside the register represents the value of the 8-bit designator

for the 32-bit operand.

0
I
2

BIT
0

..,A./

7F
80

FFl6t

0
2
4

FE

REGISTER FILE RESTRICTIONS

3132

I
3
5

FF

Figure 5-8.

SIT ADDRESS
WHEN Fl LE IS STORED
IN CENTRAL MEMORY.
VIRTUAL IN A JOB;

63 ABSOLUTE IN A MONITOR
0-000016
0-004016
0-008016

A/

O-IFC016
O-r-200016

T 0-3FC016

3APl7A

Register File

I

Certain registers within the register file have program.ming restrictions. The restrictions I
are grouped according to the instruction designator number of the register.

60256000 09 5-21

REGISTER 0 (TRACE REGISTER) RESTRICTIONS

Register file address zero (Figure 5-9) is used as the trace register in the 64-bit mode

only. The trace register contains the address from which the most recent branch was

taken. Register zero can be referenced by executing a 7D instruction. Refer to the

instruction section for the mode of the 7D instruction which moves register zero to

central memory. The maintenance station reads register zero by storing the register

file and reading virtual I absolute zero in central memory. After a job to monitor ex

change, the job's virtual address zero in memory contains the address of the last

branch taken prior to the exchange operation. After a monitor to job exchange,

monitor's address zero (absolute zero) contains the address of the last branch taken

I prior to the exchange operation. The B9 and BA instructions can also read register zero

fo:< data.

Undefined Virtual/ Absolute Trace Address
0 15 16

Figure 5-9. Virtual/Absolute Address Zero

REGISTER 0 CONTENTS RESULTING FROM AN EXCHANGE OPERATION

During a monitor to job exchange, the content of the trace register and the

appropriate memory location for register zero exchange as follows:

Absolute address zero

Virtual address zero

Trace register

Content Before
Exchange

A

B

c

Content After
Exchange

c
B

B

63

5-22 60256000 09

During a job to monitor exchange, the content of the trace register and the appropriate

memory location for register zero exchange (swap) as follows:

Absolute address zero

Virtual address zero

Trace register

Content Before
Exchange

A

B

c

Content After
Exchange

A

c
A

If monitor and job mode share a common register file (refer to common register

files for job and monitor modes in this section), the following will occur upon a

monitor to job or job to monitor exchange.

Absolute address zero

Virtual address zero

Trace register

Content Before
Exchange

A

A

B

Content After
Exchange

B

B

B

REGISTER 0 CONTENT RESULTING FROM A SWAP (7D) INSTRUCTION

During a swap (7D) instruction involving register zero as part of the register field,

note a required peculiarity. Although the current content of the trace register is

sent to the appropriate memory location for register zero, the current content of the

trace register is not altered.

60256000 08

Memory location for
register zero

Trace register

Content Before
7D

A

B

Content After
7D

B

B

5-23

REGISTER 0 WHEN REFERENCED BY AN INSTRUCTION DESIGNATOR

When referenced by an instruction designator, register zero provides machine zero as

an operand except when used as a source register for a base address or other de

scription for a vector or string instruction. In this case,, register zero appears to

contain 64 zero bits. The use of a zero address may cause the instruction to be

treated as an illegal instruction. The use of a zero field length may cause the instruc

tion to become undefined as when used in the AO to AF instruction. If register zero is

specified as the destination register, the instruction typically performs normally with

data flags being set,, if warranted,, but no data is stored. Some instructions become

undefined if register zero is specified as a destination register.

I Table 5-5 shows which operand is obtained when register zero is specified for a

source operand. To simplify the table,, the specifying of register zero as a destination

register is ignored since it causes the result to be lost. A blank in the table indicates

that register zero cannot be specified or that register zero may only be specified as a

destination register. The instruction designators R,, S,, T, G,, X,, A,, Y.. B,, z.. and C

are used for convenience,, although they do not apply to all instructions. The following

list contains definitions of symbols in the table.

Symbol

A

5-24

c

M

N

0

z

Result When Register Zero is used as an Operand

All zeros are provided.

No control vector is used.

Machine zero is provided.

8000 0000 0000 000016

8000 000016

64-bit mode

32-bit mode

Instruction performs as a no-op.

A mask of all ones is provided.

All zeros in the used portion. In this instance,

the leftmost bit is not used; thus, machine zero

and all zeros are indistinguishable.

60256000 09

TABLE 5-5. RESULTS FOR SPECIFIED REGISTER

Instruction Instruction
Op Designators Op Designators
Code R s T Code R s T

00 20 M M z
21 M M z
22 M M z
23 M M z

04 z 24 M M z
25 M M z

06 26 M M z
27 M M z

08 28 z A
09 z z 29 z A
OA z 2A

2B M z
oc 2C M M
OD 2D M M
OE z z 2E M M
OF z A 2F z z

10 M 30 M
11 z 31 z z z
12 z z 32 z z
13 z z z 33 z
14 A A A 34 M z
15 A A A 35 z z z
16 A A A 36 z z
17 A A A 37

18 z z A 38 M
19 z A 39
lA z A 3A z
lB z z A 3B z
lC A A A 3C z z
lD A A A 3D z z
lE A z 3E.
lF A z 3F z

60256000 08 5-25

TABLE 5-5. RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction
Op Designators Op Designators
Code R s T Code R s T

40 M M 60 M M
41 M M 61 M M
42 M M 62 M M

63 M z

44 M M 64 M M
45 M M 65 M M
46 M M 66 M M

67 M z

48 M M 68 M M
49 M M 69 M M

4B M M 6B M M

4C M M 6C M M
4D 6D M z
4E z 6E M z
4F M M 6F M M

50 M 70 M
51 M 71 M
52 M 72 M
53 M 73 M

54 M z 74 M z
55 M M 75 M z

76 M
77 M

58 M 78 M
59 M 79 M
5A M 7A M
5B z z 7B z z

5C M 7C M
5D M 7D A t A
SE z z 7E z z
SF z z M 7F z z M

~ Ref er to the swap 7D instruction in section 6 of this manual.

5-26 60256000 08

TABLE 5-5. RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction
Op Designators Op Designators
Code G x A y B z c Code G x A y B z c

BO z At z At c A AO A zt A Zt A z
Bl z At z At c A Al A Zt A Zt A z
B2 z At z At c A A2 A Zt A Zt A z
B3 z At z At c A

B4 z At z At c A A4 A Zt A Zt A z
B5 z At z At c A A5 A Zt A Zt A z 1

B6 z At z At c A A6 A Zt A Zt A z
B7 ' z At z At c A

BB z At z At c A AB A Zt A Zt A z
B9 z At z At c A A9 A Zt A Zt A z

BB z At z At c A AB A Zt A Zt A z

BC z At z At c A AC A zt A zt A z

BF z At z At c A AF A zt A zt A z

90 z At c A BO z M z z z
91 z At c A Bl z M z z z
92 z At c A B2 z M z z z
93 z At c A B3 z M z z z

94 z At z At c A B4 z M z z z
tl5 z At z At c A B5 z M z z z
96 z At c A B6 z
97 z At c A B7 z A z At z A I
9B z At c A BB z A c A
99 z At c A B9tt z z z z
9A z At c A BAt t z z z z z A
9B z At z At c A BB At At A z

I
9C z At c A BC z A z

BD z z At A
BE
BF

I t If register zero is selected to broadcast a constant, machine zero is that constant. I
~ t The B9 and BA instructions can read register zero for data. I

60256000 09 5-27

TABLE 5-5. RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction
Op Designators Op Designators
Code G x A y B z c Code G x A y B z c

co z At z At c EO z A z A z A
Cl z At z At c El z A z A z A
C2 z At z At c E2 z A z A z A
C3 z At z At c ES z A z A z A

C4 z At z At A E4 z A z A z N
cs z At z At A ES z A z A z N
C6 z At z At A E6 z A z A z N
C7 z At z At A E7 z A z A z N

CB A A c z EB z A z A
C9 A A c z E9 z A z A
CA A A c z EA z A z A z A
CB A A c z EB z A z A z A

EC z A z A z A
CD ED z A z A z A
CE z EE z A z z z A
CF z A z At z z EF z A z z z A

DO z At z At c A FO z A z A z A
Dl z A c A Fl z A z A z A

F2 z A z A z A
F3 z A z A z A

D4 z At z At c A F4 z A z A z A
DS z A c A FS z A z A z A
D6 z z A z A A 0 F6 z A z A z A
D7 z A z z z z F7 z A z A z A

DB z A c FB z A z A
D9 z A c F9 z A z A
DA z A c FA z A z z A
DB z A c FB z A z A

DC z At z At c FC z A z A
DD A At A At FD z A z A z 0
DE z At z A c A FE z A z A z 0
DF M M c A FF z A z A z 0

t If register zero is used to broadcast a constant. machine zero is that constant.

5-28 60256000 08

REGISTERS l AND 2 (64-BIT), 2 THROUGH 5 (32-BIT) RESTRICTIONS

If data flag branches are used, 64-bit registers 1 and 2 must be reserved exclusively

for that function. Register 1 stores the data flag branch exit address and register 2

the data flag branch entry address. Refer to the data flag branch register description

in this section.

REGISTERS 0 THROUGH 7 (64-BIT), 0 THROUGH F (32-BIT) MONITOR MODE RESTRICTIONS

In 64-bit mode, registers 0, l, and 2 (or in 32-bit mode registers 0 through 5) have the

restrictions during monitor mode as previously described. In 64-bit mode, registers 3

through 7 (or in 32-bit mode registers 6 through F) are used for the undefined instruc

tions, exit force, external interrupt, and storage access interrupt entry points. Refer

to the exchange from job mode to monitor mode description in this section.

REGISTER 1 (32-BIT) RIGHTMOST HALF OF 64-BIT REGISTER O

Any reference to 32-bit register one is undefined.

REGISTER RESTRICTIONS FOR THE ST AR-lB

Registers 0 and 8 through F are used for temporary storage by the CDC STAR-lB

CPU, and they must not be altered by the monitor program. This restriction affects

programs which are written for the STAR-100 and verified on the STAR-lB.

COMMON REGISTER FILE FOR MONITOR AND JOB MODES

Monitor and job modes have perfectly overlapping register files if monitor executes an

exit force instruction (0 9) with either designator S or the contents of register S equal to

zero. In an exchange from monitor to job mode, the monitor's register file is stored

starting at absolute bit address zero. The job's register file is then loaded from the

first 256 locations of its virtual page zero. Since register S contains the absolute ad

dress of the job's virtual page zero (refer to exit force instruction) and in this case S

is equal to zero, the register file for the job is loaded from the same memory locations

as the monitor's register file was stored. Also, since the rightmost 15 bits of register

S must contain~ zeros (refer to exit force :i.nstrudiori)~ orily a perfeCt overlap occurs.

Thus, following the exchange, the job's register file is identical to the monitor's regis

ter file.

60256000 09 5-29

When exchanging from job mode back to monitor mode, the job's register file is stored

where it came from,, in this case starting at absolute bit address zero. The monitor's

register file is then loaded from the same locations causing it to be identical to the

job's register file.

DATA FLAG BRANCH REGISTER

The data flag branch (DFB) register is a 64-bit register {Figure 5-10) that provides

the programmer with an automatic branching feature to a special subroutine for certain

operands, results, conditions, etc. The DFB register eliminates the time penalty of

explicitly checking for special programming conditions. If a condition, which has been

previously selected to cause an automatic branch, occurs during the execution of an

instruction, the computer completes the instruction, stores the address of the next

instruction that would have been executed in the address portion of register 01, and

branches to the address contained in register 02.

Because many register instructions may be executed in parallel, there may be some

uncertainty as to which instruction caused the data flag condition. The data flag set

condition may have occurred during an instruction which was issued a number of

instructions before the one just completed. A flag on a pipeline 2 register instruction

(divide, square root, and convert BCD to binary) could have occurred 0 to 43 instruc

tions earlier. A flag on the other register instructions could have occurred 0 to 5

instructions earlier.

0

I s-30

2 3 15 16

PRODUCT BITS

NOTE:
©THESE ARE UNDEFINED BITS.

ANY INSTRUCTION THAT ATTEMPTS
TO SET, CLEAR, OR SAMPLE THESE

18 19

BITS PRODUCES UNDEFINED RESULTS.

31 52

MASK BITS

4741 so 53 "

DATA FLAGS

DYNAMIC
INCLUSIVE OR FOR------'
PRODUCT BITS

DATA
FLAG BRANCH----'
ENABLE BIT

FREE DATA FLAGS---

MONITORING COUNTER
ENABLE FLAGS

PlPE2
REGlSTER

INSTRUCTlON
FLAG

3APllA

!59 65

Figure 5-10. DFB Register Format

60256000 09

DATA FLAGS

Data flag bits are bits 35 through 47 of the DFB register. These bits indicate con

ditions that have occurred. For example, the machine sets bit 37 at the end of a

search for masked key word (FF), byte (FE), or bit (D6) instruction if the operation

detects no match. If a subsequent search for masked key instruction detects

a match, the machine does not clear DFB bit 37. Bits 35 through 47 of the DFB

register are cleared only by the data flag register bit branch and alter (32) and the data

flag register load/ store (3B) instructions.

Refer to appendix D for a complete list of data flag applications to instructions.

Data flag bit 36 is applicable only to the job interval timer rather than a specific

instruction and therefore not listed.

If a control vector (refer to Control Vector under Vector Instruction in section 6) is

being used, the current control vector bit must be permissive for the operation

to set any of the data flags. For example, if a divide fault occurs but the control

vector bit for that result element is not permissive, that result element would not

set the divide fault data flag bit.

Table 5-6 lists the data flag register bit assignments and associated mask and product I
bits described in the following paragraphs.

MASK BITS

The mask bits are bits 19 through 31 of the DFB register. They select the conditions

that cause the automatic data flag branch to occur when the selected condition takes

place.

The 33 or 3B instruction sets and clears the mask bits. A mask bit need not be set

for its corresponding data flag bit to be set when the condition occurs. The mask bits

enable the setting of a corresponding bit in the product field when the associated masked

data flag bit is set. A product bit is set regardless of the order the mask bit and its

associated data flag bit are set.

PRODUCT BITS

Products bits are bits 3 through 15 of the DFB register. Each is the dynamic logical

product of a data flag bit and associated mask bit being set. The computer executes a data

flag branch when there is at least one bit set in the product field and the data flag branch

enable bit is set.

60256000 09 5-31

DYNAMIC INCLUSIVE OR FOR PRODUCT BITS

The dynamic inclusive OR for product bits is bit 51 of the DFB register. This bit is set by

setting any one of the product bits. It cannot be cleared directly.

DATA FLAG BRANCH ENABLE BIT

The data flag branch enable bit is bit 52 of the DFB register. This bit must be set for an

automatic data flag branch to take place. When bits 51 and 52 are both set, (setting may

occur in either order) the data flag branch takes place at the end of the current instruction.

The computer automatically clears bit 52 when a data flag branch takes place. The data flag

register bit branch and alter or a data flag register load/ store instruction resets the data

flag branch enable bit which reenables the data flag branch operation.

FREE DATA FLAGS

Free data flag bits are bits 53 through 55 of the DFB register. Table 5-7 lists each of the

free data flag bits and the corresponding assignments. There are no product or mask

bits associated with these bits. Each of the bits are cleared automatically. unless the

instruction is a no-operation (no-op), during the initial phase of the instruction which may

set them. If applicable, these bits must be sampled before executing another instruction

which would clear them. The setting of the bits does not cause a data flag branch operation.

MONITORING COUNTER ENABLE FLAGS

Monitoring counter enable flags are bits 56 and 57 of the DFB register. These flags enable

the monitoring counters under certain conditions. (Refer to Count Gates in section 4.)

PIPE 2 REGISTER INSTRUCTION FLAG

The pipe 2 register instruction flag is bit 58 of the DFB register. This flag indicates that

one of the other data flags has been set by a pipe 2 instruction. The flag is cleared by the

33 or 3B instructions.

5-32 60256000 08

Product
Bit

3

4

5

TABLE 5-6. DATA FLAG REGISTER BIT ASSIGNMENTS

Mask
Bit

19

20

21

Data Flag
Bit

35

36

37

Assignment I Description

Soft interrupt: Monitor software can set bit
35 of a job 1·s DFB register while the register
is stored in the job's invisible package. If,
after exchanging back to job mode, bit 35 and
its corresponding mask bit are set, a normal
data flag branch occurs following completion
of the current instruction.

Job interval timer •

Selected condition not met.

Search for masked key - no match.

Count of nonzero translated bytes > 2
16 -1.

6 22 38 t Decimal data fault: A sig"n is found in a
I digit position or a digit is found in a sign

l-~~~~~~-+~~~~~~l~~~~~~-1--p-o_s_it_i_o_n_.~-If~d-a_t_a~fl-a-g~b-i_t_3_8~i-s~s-e_t_,~D-F-B~----1 3 9 is undefined.

7 23 39t

8 24 40

Leading nonzero digits have been truncated.

Leading nonzero bits have been truncated.

Divide by zero; E3 and E7. The binary
result exceeds the range of ± 247 - 1.

Bit 40 is the inclusive OR of bits 37, 38,
and 39. Bit 24 masks bit 40. Bit 8 is
the logical product of bits 24 and 40.

t For those instructions which may set with data flag bit 38 and 3 9 (E4, E5, E6 and
E7), the following is true. If both a data fault and nonfloating-point arithmetic over
flow exist in the data, either one or the other or both of these flags are set, depend
ing on the algorithm used in the particular machine.

60256000 08 5-33

Product
Bit

9

10

11

12

5-34

TABLE 5-6. DATA FLAG REGISTER BIT ASSIGNMENTS (Contd)

Mask
Bit

25

26

27

28

Data Flag
Bit

41

42

43

44

Assignment/ Description

Floating point divide fault: The divisor has
an all zero coefficient or the divisor, as
read from the register file or from central
storage, is machine zero. If the divisor
and/or dividend is indefinite, no divide fault
exists. If a divisor causes a divide fault,
the quotient is set to indefinite. The ex
ponent overflow and ,result machine zero data
flags are not set by a divide operation whose
divisor caused a divide fault.

Exponent overflow: The exponent of the
result is larger than 6FFF (6F for 32-bit
arithmetic). Results are not checked for
exponent overflow until after the exponent
adjustment for normalization or significance
has taken place. In the adjust exponent
instructions, if a left shift exceeds the num -
ber of places required for normalization,
this data flag bit is set. Exponent overflow
causes the result to be set to indefinite;
thus, the indefinite flag is always set
on an exponent overflow. The exponent
overflow data flag bit is not set if either
source operand from central storage or the
register file is indefinite or by a divide
instruction whose division causes a divide
fault.

Result machine zero: The exponent of
the result returned to central storage or to
the register file is less than 9000 (90 for
32-bit arithmetic). Exponent underflow
causes the result to be set to ·machine zero.
Results are not checked for exponent under
flow until after the exponent adjustment for
normalization is completed. This data flag
bit is not set by a divide whose divisor
causes a divide fault.

Bit 44 is the inclusive OR of bits 41,, 42,,
and 43. Bit 28 masks bit 44. Bit 12 is the
logical product of bits 28 and 44.

60256000 08

TABLE 5-6. DATA FLAG REGISTER BIT ASSIGNMENTS (Contd)

Product
Bit

13

14

15

60256000 08

Mask
Bit

29

30

31

Data Flag
Bit

45

46

47

Assignment/ Description

Square root result imaginary: A negative
source operand was detected in a square root
instruction. The square root of the absolute
value of the operand is formed and the two's
complement of this square root is stored as
the result.

Indefinite result: An indefinite result was
placed in central storage or into the register
file. Bit 46 is also set if either or both oper
ands of a floating point compare were indefinite.

An indefinite result may be caused by one
or both operands of a floating point arith
metic operation being indefinite or by the
occurrence of either a divide fault or an
exponent overflow.

Breakpoint: DFB bit 47 is set on the
breakpoint instruction if breakpoint address
and usage conditions are met. Applicable
instruction: 04

5-35

Free Data
Flag Bit

5-36

53

54

55

53

54

55

53

54

55

53

54

55

TABLE 5-7. FREE DATA FLAG BIT ASSIGNMENTS

Assignment

Result field all zeros.

Result field mixed.

Result field all ones.

Equal operands

First operand high

First operand low

Last edited field is zero

Last edited field nonzero with negative
sign or unsigned (T flip-flop set)

Last edited field nonzero with positive
sign (T flip-flop clear)

Termination due to length or delimiter
rather than nonzero translated byte

Termination due to nonzero translated
byte which is not the last data byte in
the A field

Termination due to nonzero translated
byte which is the last data byte in the
A field

Applicable
Instructions

Logical string
(FO through F7)

String compares
(EB, E9,, and FD)

Edit and mark
(EB)

Translate and test
(EF)

60256000 08

TABLE 5 ... 7. FREE D ... Ll~TA FLAG BIT ASSIGNMENTS (Contd)

Free Data
Flag Bit

53

54

55

53

54

55

53

54

55

53

54

55 I
53

54

55

53

54

55

53

54

55

60256000 08

Assignment

Ones were counted

Undefined

Undefined

Undefined

Multiple hits

Undefined

Whole field scan~ no hit

Undefined

Undefined

All translated bytes are equal

Undefined

Undefined

A byte plus B byte < G for all bytes

A byte plus B byte > G for one or more
but not all bytes -

A byte plus B byte ~ G for all bytes

Applicable
Instructions

Count leading
equals (lE)

Maximum (D8)

Minimum (D9)

Scan right (19)

Scan equal (28)

Scan unequal (29)

Translate and
mark (D7)

Modulo add (EC)

.~~--~~~~~~--1~~~~~--~~~~--J

A byte < B byte for all bytes

A byte > B byte for one or more but not
all bytes

A byte ~ B byte for all bytes

No equal/unequal found

Undefined

Undefined

Modulo subtract
(ED)

Scan equal (28)

Scan unequal (2 9)

5-37

DATA FLAG BRANCH OPERATION

If a mask field bit and the associated data flag bit are set .. the corresponding product

field bit is set. Free data flag field bit 51 is also set since this bit is the dynamic

inclusive OR of all bits in the product field. Under these conditions .. the setting of bit

52 (data flag branch enable bit) initiates an automatic data flag branch operation.

The data flag branch operation begins at the termination of the instruction that caused

the data flag branch condition. The execution of the data flag branch transfers the bit

address of the next instruction into the rightmost 48 bits of register 01 of the register

file. A branch takes place to the bit address in the rightmost 48 bits of register 02.

The data flag branch operation automatically clears bit 52 at this time. The data flag

branch also clears the leftmost 16 bits of register 01.

I NOTE I
The clearing of bit 52 disables the data flag branch
operation. Caution must be used to ensure
that all data branch conditions are eliminated before
resetting bit 52 or the program may enter a tight
loop operation. The sampling of bit 51 for a zero be
fore setting bit 52 prevents this, situation in all cases
except those involving the job interval timer.

When using the job interval timer.. the setting of DFB bit 36 occurs asynchronously

with respect to instruction execution once the' job interval timer is loaded. Thus.. the

timer may set bit 36 after the check of bit 51 and before the branch to the content of

register 01.

This situation can be programmed by examining the content of register 01 upon entering

the routine for processing data flag branches. If register 01 indicates that the branch

occurred outside the DFB routine.. the content of register 01 could be transferred to a

temporary storage location.

If register 01 indicates that the branch occurred within the DFB routine.. the content of

register 01 would not be transferred to a temporary storage location. At the end of the

DFB routine,, the program would branch to the content of the temporary storage loca

tion.

A simpler method of programming the above condition is to combine the setting of bit

52 and the branch to the content of register 01 into a single 33 instruction (33603401).

5-38 60256000 08

DATA FLAG BRANCH T!M!NG CONSIDERATIONS

The automatic data flag branch (ADFB) can occur up to 35 instructions after the instruction

which caused it. The point at which the branch occurs can vary between executions of the

same program as a result of the asynchronous I/O activity affecting the load/ store

operations.

The following points pertain to the CDC STAR-100's use of the data flag register.

1. The contents of the DFR as stored into the register file by a 3B instruction will

reflect all previous activity on it. Also .. activity prior to the 3B instruction will

not affect the new contents of the DFR.

2. ADFBs caused by a 3B instruction or any instruction.previous to it may occur

after the next one or two instructions .. but no later.

3. Sampling or altering a data flag bit with a 33 ins~ruction may occur out of sequence

with a previous pipeline instruction up to 35 instructions earlier.

4. If a 33 instruction alters a bit which causes an ADFB .. the branch may occur up

to two instructions later .. even though all previous pipeline instructions may have

finished. If the ADFB is contingent on the completion of a pipeline instruction .. the

ADFB may occur up to 35 instructions after the instruction which caused it.

When registers 1., 2., or 4 in the STAR-100 register file are altered by an instruction., and

this instruction is followed by an automatic data flag branch or illegal monHor mode instruc

tion branch .. the store operation may occur out of sequence with the branch operation. For

example., if a 7E instruction loads register 4, and this instruction is followed by an illegal

monitor mode instruction., the automatic branch will be to the address specified by

either the old or new contents of register 4 .. depending on the timing of the 7E and the

instruction stream.

60256000 09 5-39 •

GENERAL DEFINITIONS AND PROGRAMMING GUIDES

The following paragraphs provide general definitions and guides to aid in the program
ming of the computer system.

OVERLAP OF OPERAND AND RESULT FIELDS

If (in instructions such as vector, string, etc.) the result field overlays a source field

such that elements of the result are stored in the source field before elements in this

portion of the source field are read, undefined results may occur. The source elements

may be the original elements or they may be the newly-stored elements. In the latter

case, the instruction results become undefined. Some instructions prohibit any overlap

of source and destination fields. This restriction is included in the instruction descrip
tions.

ILLEGAL INSTRUCTIONS

Illegal instructions are those with function codes that are not part of the computer

instruction set listed in the instruction list table in section 6. An illegal instruction.

when used in job mode, causes an exchange to the monitor mode. Instruction exe

cution then begins at the address specified by the content of the register file absolute

register 3. An illegal instruction, when used in monitor mode, causes a branch to

the register file absolute register 4. Instruction execution then begins at the address

specified by the content of the register file absolute register 4.

INSTRUCTIONS WHICH CAUSE UNDEFINED RESULTS OR OPERATIONS

Instructions which contain unused bits must have those bits set to zero or

instructions cause undefined results or operations. The unused bit areas of the

instructions are shown with cross-hatched lines in the instruction word formats in

section 6.

The job mode of operation protects memory from any undefined results or operations

with the key-lock virtual addressing mechanism. This mechanism permits memory

storage only to pages assigned to the current job for which the write lockout bits are

not set.

The monitor mode of operation does not have the protection against undefined results or

operations because it makes all memory references with absolute addresses.

I s-4o 60256000 09

ITEM COUNT

Item count is a term used in the instruction descriptions (section 6) to highlight the

fact that certain instructions perform operations on a number of items. The term is

general and refers to items which may be in bits, bytes, half-words, or words.

Descriptions which use the term are those which specify instruction field lengths, offsets,

indexes, and/or shift counts.

The size of the items in an item count is specified for applicable instructions in the

instruction list tables (located near the front of section 6). The item size is listed

under the table heading, number of bits in the operand. In an example from the tables

(shown below), the operand size is 8 which indicates that the field lengths and indexes for

the E 1 instruction are expressed in bytes.

El 3 8 ST Binary Sub; A-B-C

In another example (shown below), the operand is E. This indicates that the instruction uses

32-bit or 64-bit items, depending on the status of G bit 8 in the instruction. An item count

for a field length of this instruction means that the field contains 100 32-bit items or 100

64-bit items, depending on G bit 8.

80 1 E VT ADD U; A+B - C

When an item count (other than a field length) is contained in a 16-bit field, at least one sign

bit must be present. Item counts in 16 bit fields are therefore limited to the range of 2
15

-1

to -2 15 . (Refer to the following description of field length). When an item count other than

an index consists of 48 bits, the left most 33 bits of the item count must be identical sign bits.

Sign bits must always be extended to the left to fill the 16-bit or 48-bit field that contains it.

FIELD LENGTH AND OFFSET

Vector, vector macro, sparse vector, logical string, and some nontypical instructions use

a field length. An offset is used in vector, vector macro, and some nontypical instructions.

60256000 09 5-41 I

The field length as read from the register file before possible offset modification, is

always interpreted as a positive number in the range of 0 to 216-1 (65, 535).

If a vector or other data field has no offset. the field is considered terminated before

the reading of the first operand if the specified field length is zero.

Instructions having offsets must have 32 identical sign bits. The offsets are in the

range -216 to 2 16 -1. If the offset is not in this range, the operation of the instruction

is undefined. The resulting field length after subtracting the offset from the field

length (read from register A. B. or C) must be positive and less than 2
16

-1 or the

field length is treated as zero.

INDEX

String. some branch, and some nontypical instructions use an index. The sign of an

index may be either positive or negative. The maximum magnitude of an index depends

on its use as defined in the instruction descriptions. The machine left shifts the indexes

end-off zero, three, five. or six positions before the index is added to the base address.

The number of positions shifted depends on whether the unit for the index is bits, bytes,

half-words, or words, respectively.

DATA FAULT

A data fault occurs when a sign code is detected in an unexpected position of a packed binary

coded decimal (BCD) number. A sign code in the leftmost four bits of any byte always pro

duces a data fault. When only one BCD number is expected in a field, a sign code in any

position other than the rightmost bits of the rightmost byte is a data fault. If a data fault

is detected, the instruction operation is undefined.

OPERAND SIZE DEFINITIONS

Following is a listing of operand sizes which apply throughout this manual unless other

wise stated.

I s-42 60256000 09

Word A 64-bit qu.antit-y having the address of the leftmost bit always

being a multiple of 6410•

Half-word. A 32-bit quantity having the address of the leftmost bit always

being a multiple of 3 2
10

•

Byte An 8-bit quantity having the address of the leftmost bit always

being a multiple of 8
10

•

Character An 8-bit quantity, generally having some particular significance

associated with the particular bit pattern or code.

Digit A 4-bit binary coded decimal number or sign. In zoned format

there is one digit per byte and in packed BCD format there are

two digits per byte (refer to the string instructions description for

more detail).

RESTRICTION ON SELF-MODIFYING PROGRAMS

The use of self-modifying programs is strongly discouraged. The following rules

illustrate the difficulties encountered with this type of programming.

1. The twenty-four 64-bit words before (having addresses lower) and the thirty-two

64-bit words after (having addresses higher) the current instruction word shall

not be modified by the current instruction.

2. The 24 instructions before (in terms of order of execution) and the 32 instruc

tions after (in terms of order of execution) the current instruction words are

not modified by the current instruction.

3. The store into central memory of the 13, 5F, and 7F instructions may not

take place before the execution of the next instruction in sequence. Therefore,

if these instructions are used to modify code, it is difficult to guarantee that

the store has taken place before the execution of that code. There are three

procedures to guarantee that the store has taken place prior to execution of the

intended modified code:

60256000 09

• The execution of any instruction which references central memory. with

the exception of the 12, 13, 32, 5E, 5F, 7E, and 7F instructions.

These instructions must be executed between the store instruction

which modifies the code and the use of that modified code.

• The execution of the conditional branch feature of the 32 instruction

between the store instruction which modifies the code and the use of

that modified code.

5-43 I

• Execution of a load (12, 5E, or 7E) instruction followed by a transmit (78)

instruction where the source register for the 78 instruction conflicts with the

destination register for the load instruction. These instructions must be

executed between the store instruction which modifies the code and the use of

that modified code.

The instructions referenced in the previous three procedures must be executed from

addresses at least three swords before or four swords after the modified code.

RESULT VECTOR 64-SWORD LOOK'AHEAD

The length of the result vector for the following instructions is input data dependent:

• Sparse vector iAO through AF) and the compress (CF) instruction; the length of

the result vector (C) depends on the number of one bits in the output order

vector (Z).

• Compress (BC) instruction; the length of the result vector (C) depends on the

number of one bits in the order vector (Z).

• Translate (D7, EE, FB, and F9) instructions where termination is on

the input and the input is delimiter limited; the length of the result vector (C)

depends on the position of the delimiter in the input field.

As the computer proceeds through the execution of the above instructions, it checks

that an extra 64-sword page (small page) of result field is available if needed (64-sword

lookahead). Therefore, it is necessary to provide one more small page for the result

vector beyond the expected length.

For the sparse vector (AO through AF) instructions, it is not necessary to provide an

extra small page beyond the maximum possible result field length. The maximum

possible length of result vector C is equal to the field length of output order vector Z.

I s-44 60256000 09

!NSTRUCT!ONS 6

GENERAL

This section describes instruction word formats, instruction types, and instruction

descriptions. The instruction word format description explains the content of 32-bit

and 64-bit instruction formats used in the computer. The instruction type description

explains the instruction groups according to the operations they perform. The instruc

tion description gives detailed explanations and examples of individual instructions.

As an aid in finding instruction designator information and individual instruction

descriptions,, ref er to:

• Table 6-1 for instruction designators.

• Table 6-2 or inside front cover for locating instructions by function code.

• Table 6-3 for locating instructions by instruction type.

INSTRUCTION WORD FORMATS

The 32-bit and 64-bit instruction words have 12 types of formats (Figure 6-1). The

formats have hexadecimal numbers, 1 through C, which are used as references in

Tables 6-2 and 6-3. The bits in the instruction word formats number from left to

right, 0 through 31 or 0 through 63.

INSTRUCTION DESIGNATORS

Each instruction word format is divided into bit groups that have assigned instruction

designators shown in Figure 6-1. The designator letters (such as F, R, S, and T in

format 4) and their definitions are listed in Table 6-1. The definitions are general

and may vary between instructions. The instruction descriptions give more specific

designator information as it applies to individual instructions.

When the C + 1 designator is used, the C designator must specify an even-numbered

register. If the C designator specifies an odd-numbered register,, the results of the

instruction become undefined.

60256000 08 6-1

Bits 0 through 7 are commonly used by each instruction word as the function code

designator (F). The computer uses function codes in the range of 00 through FF.

The function codes in the range of 00 through 7F use 32-bit instruction word formats.

I The function codes in the range of 80 through FF use 64-bit instruction word formats.

UNUSED BIT AREAS

Cross-hatched lines like those shown in formats A. B. and C of Figure 6-1 indicate

unused bit areas. These areas must be cleared to all zeros or the instructions will

cause undefined results or operations.

6-2 60256000 09

0 78 15 16 23 24 31 32 39 40 47 48 55 56

G x A y B z
(LEN8TH a F (SUB- (OFFSET (LENGTH 8 (OFFSET (LENGTH a cc v <D

(FUNCTION) FUNCTION) FOR A) ~~5~_E_SS1 FOR B) BASE BASE BASE
ADDRESS} ADDRESS) ADD RES SJ

CD c v DENOTES CONTROL VECTOR

I C+ I I
(OFFSET I

LFOR £. S_!. J

FORMAT 1- USED FOR VECTOR, VECTOR MACRO, AND SOME NONTYPICAL INSTRUCTIONS

0 7 8 15 16 23 24 31 32 39 40 47 48 55 56

G x A y B z c
F

(SUB-
(0 V (i) LEtilGTH (BASE (0 V ~LENGTH (BASE <ovCIJ LENGTH (RESULT

FUNCTION a BASE a BAE 8 BASE LENGTH a
FUNCTION} ADDRESS) ADDRESS) ADDRESS) ADDRESS) AD-DRESS) BASE ADORE~

CD 0 v DENOTES ORDER VECTOR

FORMAT 2 - USED FOR SPARSE VECTOR AND SOME NONTYPICAL INSTRUCTIONS

0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63

F G x A y B z c
(FUNCTION) (SUB- (INDEX (LENGTH a (INDEX (LENGTH a (INDEX {LENGTH a

FUNCTION) FOR A) BASE FOR B) BASE FOR C) BASE
ADDRESS) AiiDRESS) At5DFtE_SS >

FORMAT 3 USED FOR LOGICAL STRING AND STRING INSTRUCTIONS

0 78 15 16 23 24 31

F R s T
(FUNCTION) {SOURCE I) (SOURCE 2) (DESTINATION~

FORMAT 4 USED FOR SOME REGISTER, ALL MONITOR, THE 30 AND 04 NONTYPICAL
INSTRUCTIONS

Figure 6-1. Instruction Formats

60256000 08 6-3

0 7 8 15 16

I (FUN~TION) ~EST~TI~ I (48 BITS)

FORMAT 5 USED FOR THE BE,BF,CD,AND CE INDEX INSTRUCTIONS AND FOR THE B6 BRANCH
INSTRUCTION

0 78 15 16 31

F R I
(FUNCTION) (DESTINATION~ (16 BITS)

FORMAT 6 USED FOR THE 3E, 3F, 4D, AND 4E INDEX INSTRUCTIONS AND
THE 2A REGISTER INSTRUCTION

0 71 1516 23 24 31

R s T

DESCRIBED WHERE USED

FORMAT 7 USED FOR SOME BRANCH AND NONTYPICAL INSTRUCTIONS

0 78 1516 23 24 31

F R s T

(FUNCTION) (REGISTER) (REGISTER)
(BASE
ADDRESS)

FORMAT 8 USED FOR SOME BRANCH INSTRUCTIONS

Figure 6-1. Instruction Formats (Contd)

6-4 60256000 08

63

0

G DESIGNATOR
~

0 78910 ISl6 23 24 31

s T

DESCRIBED WHERE USED

FORMAT 9 USED FOR THE 32 BRANCH INSTRUCTION

0 78 IS 16 23 24 31

F R T
(FUNCTION) OLD STATE) (NEW STATE)

FORMAT A USED FOR SOME INDEX, BRANCH, AND REGISTER INSTRUCTIONS

0

F

G DESIGNATOR
~

7 8 9 10 15 16 t7 18

(FUNCTION)
de I

\

23 24

I T

(6)
{BASE

ADDRESS)

DESCRIBED WHERE USED

31

FORMAT B USED FOR THE 33 BRANCH INSTRUCTION

G DESIGNATOR

7~16 23 24 31 32

F x A y

39 40 47 48

8 z
55 56 63

c • (FUNCTION} ~ (REGISTER) (REGISTER) (INDEX) (BASE (REGISTER) (REGISTER)
'./, ~ ADDRESS)

\~GBITS 5-7:
\ BRANCH CONTROL BITS

GBIT4
SEE 80-85 INSTRUCTIONS

FORMAT C USED FOR THE B 0 - B 5 BRANCH INSTRUCTIONS

Figure 6-1. Instruction Formats (Contd)

60256000 09
6-5 •

Designator

A

B

c

C+l

d

e

6-6

TABLE 6-1. INSTRUCTION DESIGNATORS

Format Type Definition

1 & 3 This 8-bit designator specifies a register that con

tains a field length and base address for the corre

sponding source vector or string field.

2

c

1 & 3

2

c

L 2, &3

c

1

9 & B

9 & B

This 8-bit designator specifies a register that con

tains the base address for a source sparse vector

field.

Specifies a register that contains a two's complement

integer in the rightmost 48 bits.

This 8-bit designator specifies a register that contains

a field length and base address for the corresponding

source vector or string field.

This 8-bit designator specifies a register that contains

the base address for a source sparse vector field.

This 8-bit designator specifies a register that contains

the branch base address in the rightmost 48 bits.

This 8-bit designator specifies a register that contains

the field length and base address for storing the re

sult vector, sparse vector, or string field.

Specifies the register that contains the two's

complement sum of (A) + (X) in the rightmost 48 bits.

The leftmost 16 bits are cleared.

This 8-bit designator specifies a register that contains

the offset for the C and Z vector fields.

This 2-bit designator is contained within the G desig

nator and specifies the branch conditions for the

corresponding branch instructions.

This 2-bit designator is contained within the G desig

nator and specifies the object bit altering conditions

'for the corresponding branch instructions.

60256000 09

Designator

F

G

I

60256000 09

TABLE 6-1. INSTRUCTION DESIGNATORS (Contd)

Format Type

1 - c

1, 2, 3,
9, B, &C

5

6

B

Definition

This 8-bit designator is used in all instruction

format types to specify the instruction function

code. This designator is always contained in the

leftmost eight bits of the instruction and is ex

pressed in hexadecimal for all instruction de

scriptions. Thus, the function code range is

OO-FF16 . However, not all of the possible

function codes are used.

This 8-bit designator specifies certain subfunction

conditions for the corresponding instruction. The

subfunctions include the length of the operands

(32- or 64-bit), normal or broadcast source vectors,

etc. The number of bits that are used in the G

designator vary with individual instructions.

(Appendix C lists the G bit usage codes according

to function code.)

The G designator bits have bit positions 8 through

15 in the word format. The manual references

these bits as G bits 0 through 7. G bit 0 corre

sponds to bit position 8 in the word format.

Other G bits follow,, in order,, from left to right.

This 48-bit designator functions as an index used

to form the branch address in a B6 branch

instruction. In the CD and CE index instructions,,

operand I is contained in the rightmost 24 bits.

In the BE and BF index instructions,, I is a 48-bit

operand.

In the 3E, 3F, 4D,, and 4E index instructions,,

I functions as a 16-bit operand.

In the 33 branch instruction,, the 6-bit I designa

tor specifies the riurilber of the data nag branch

register bit used in the branching operation.

6-7

I
I

11
I

Designator

R

I

s

T

6-8

TABLE 6-1. INSTRUCTION DESIGNATORS (Contd)

Format Type

4

5 & 6

7, 8,& A

4

7' 8,& 9

4

7,8,9,&B

A

Definition

This 8-bit designator specifies a register that

contains an operand to be used in an arithmetic

operation in the register and 3D instructions.

In the BE, BF, CD, CE, 3E, 3F, 4D, and 4E

index instructions, R functions as a destination

register for the transfer of an operand or operand

sum. In the B6 branch instruction, R specifies a

register that contains an item count which is used

to form the branch adHress.

In these format types, R specifies registers and

branching conditions that are described in the

individual instruction descriptions.

This 8-bit designator specifies a register that

contains an operand to be used in an arithmetic

operation in the register and 3D instructions.

In these format types, S specifies registers and

branching conditions that are described in the

in di vi dual instruction descriptions.

This 8-bit designator specifies a destination

register for the transfer of the arithmetic results.

In these formats, T specifies a register that con

tains the base address, and in some cases, the

field length of the corresponding result field or

branch address.

In this format, T specifies a register that

contains the old state of a register, data flag

branch register, etc.; in an index, branch or

interregister transfer operation.

60256000 09

Designator

x

y

z

60256000 08

TABLE 6-1. INSTRUCTION DESIGNATORS (Contd)

Format Type

1 & 3

2

c

1 & 3

2

c

1

2

3

c

Definition

This 8-bit designator specifies a register that contains

the off set or index for vector or string source field A. I
In this case, X specifies a register that contains the

length and base address for the order vector corre -

sponding to source sparse vector field A.

In the BO through B5 branch instructions, X specifies

a register that contains a signed, two's complement

integer in the rightmost 48 bits which is used as an

operand in the branching operation.

This 8-bit designator specifies a register that contains

the offset or index for vector or string field B.

In this format, Y specifies a register that contains the

length and base address for the order vector corre -

sponding to source sparse vector field B.

In the BO through B5 branch instructions, Y specifies

a register that contains an index that is used to form

the branch address.

This 8-bit designator specifies a register that contains

the base address for the order vector, used to control

the result vector in field C.

In this case, Z specifies a register that contains the

length and base address for the order vector corre -

sponding to source sparse vector field C.

In this format, Z specifies a register that contains the

index for result field C.

In the BO through B5 branch instructions, Z specifies

a register that contains a signed two's complement

integer in the rightmost 48 bits. This integer is used

as the comparison operand in determining whether the

branch condition is met.

6-9

INSTRUCTION TYPES

The following 10 types of instructions are grouped according to the operations they

perform.

• Index (IN) • Vector macro (VM)

• Register (RG) • String (ST)

• Branch (BR) • Logical string (LS)

• Vector (VT) • Nontypical (NT)

• Sparse vector (SV) • Monitor (lVIN)

Table 6-2 lists each instruction code in the computer instruction repertoire; the list

is in the numerical order (hexadecimal) of the function code. Table 6-3 lists the

instruction codes according to general type; the general types are in the same order

as previously listed. The unused and illegal function codes are omitted from Tables

6-2 and 6-3.

A page number is given for each instruction code in Tables 6-2 and 6-3. These page

numbers refer to the description of the corresponding instruction. Figure 6-4 provides

additional explanations for using the tables.

6-10

Instr
Code

Page
No.

Format
T pe

No. of Bits
in Operand

Instr
T e

INSTRUCTION
FUNCTION
CODES
DESIGNATED
00 - FF 16

INSTRUCTION
WORD
FORMAT TYPES
DESIGNATED

NUMBER OF BITS
IN OPERAND

1 - SING LE BIT

8 - BYTES

1 - c 16

32 - HALF-WORDS

64 - FULL-WORDS

E - EITHER 32-0R 64-BIT

B - BOTH 32-AND 64-BIT

NA - NOT APPLICABLE

INSTRUCTION TYPE

BR - BRANCH

IN - INDEX

LS - LOGICAL STRING

NT - NONTYPICAL

RG - REGISTER

ST - STRING

SV - SPARSE VECTOR

VM - VECTOR MACRO

VT - VECTOR

MN - MONITOR

Instr Title

INSTRUCTION TITLE
DESIGNATORS WITHIN
PARENTHESES ,(), INDI
CATE REGISTER LOCATIONS.
DESIGNATORS WITHOUT
PARENTHESES INDICATE
QUANTITIES.
DESIGNATORS SEPARATED
BY AN ARROW,-., INDICATE
FIELDS.
BRACKETS, [), INDICATE
ALGEBRAIC QUANTITIES.

Figure 6-2. Instruction Listing Format

60256000 08

TABLE 6-2e INSTRUCTION LIST BY FUNCTION CODE

Instr Page Format No. of Bits Instr

Code ~o. Type in Operand Type Instr Title

00 6-235 4 NA MN IDLE

04 6-231 4 64 NT BREAK POINT-MAINTENANCE

06 6-233 7 NA NT FAULT TEST-MAINTENANCE

08 6-235 4 64 MN INPUT /OUTPUT PERR

09 6-55 4 64 BR EXIT FORCE

Q_.\ 6-238 4 64 MN TRANSMIT (R) TO MONITOR
INTERVAL TIMER

oc 6-236 4 64 MN STORE ASSOCIATIVE REGISTERS

OD 6-236 4 64 MN LOAD ASSOCIATIVE REGISTERS

OE 6-236 4 64 MN TRANSLATE EXTERNAL
INTERRUPT

OF 6-237 4 64 MN LOAD KEYS FROM (R), TRANS-
LATE ADDRESS (S) TO (T)

IO 6-39 A 64 RG CONVERT BCD TO BINARY,
FIXED LENGTH

II 6-39 A 64 RG CONVERT BINARY TO BCD, I FIXED LENGTH

I2 6-188 7 64 NT LOAD BYTE (T) PER (S), (R)

I3 6-188 7 64 NT STORE BYTE (T) PER (S), (R)

I4 6-197 7 I NT BIT COMPRESS

15 6-199 7 1 NT BIT MERGE

16 6-199 7 1 NT BIT MASK

17 6-203 7 8 NT CHARACTER STRING MERGE

I8 6-221 7 8 NT MOVE BYTES RIGHT

I9 6-224 7 8 NT SCAN RIGHT

lA 6-228 7 8 NT FILL FIELD T WITH BYTE R

IB 6-228 7 8 NT FILL FIELD T WITH BYTE (R)

IC 6-228 7 I NT FORM REPEATED BIT MASK
WITH LEADING ZEROS

ID 6-228 7 1 NT FORMREPEATED BIT MASK
WITH LEADING ONES

lE 6-229 7 1

I
NT COUNT LEADING EQUALS

lF 6-231 7 1 NT COUNT ONES IN FIELD R,
COUNT TO (T)

20 6-47

I
8 32 BR BRANCH IF (R)=(S)(32 BIT FP)

21 6-47 8 32 BR BRANCH IF (R)#(S)(32 BIT FP) i 22 6-47 I 8 32 BR BRANCH IF (R)2:(S)(32 BIT FP)

60256000 09 6-11.

T.:\BLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code Xo. T~·pe in Operand Type Instr Title

2 3 6--17 8 32 BR BRANCH IF (R)<(S)(32 BIT FP)

2-l 6--17 8 64 BR BRANCH IF (R)=(S)(64 BIT FP)
•) --;) 6--±7 8 64 BR BRANCH IF (R)/(S)(64 BIT FP)

26 6-47 8 64 BR BRANCH IF (R)>(S)(64 BI'L' FP) -
27 6--±7 8 64 BR BRANCH IF (R)<(S)(64 BIT FP)

::rn 6-224 7 8 NT SCAN EQUAL

29 6-224 7 8 NT SCAN UNEQUAL

2_.\ 6-45 6 64 RG ENTER LENGTH OF (R) WITH
I (16 BITS)

2B 6-45 4 64 RG ADD TO LENGTH FIELD

2C 6-30 4 64 RG LOGICAL EXCLUSIVE OR (R),
(S). TO (T)

20 6-30 4 64 RG LOGICAL AND (R), (S) TO (T)

2E 6-30 4 64 RG LOGICAL INCLUSIVE OR (R.),
(S), TO (T)

2F 6-48 9 1 BR REGISTER BIT BRANCH AND
ALTER

30 6-30 7 64 l RG I SHIFT (R) PER S TO ('f)

I
31 6-54 7 64 BR INCREASE (R) AND BRANCH

IF (R) I O

32 6-51 9 1 BR BIT BRANCH AND ALTER

33 6-49 B 1 BR DATA FLAG REGISTER BIT

I
BRANCH AND ALTER

34 6-31 I 4 64 RG SHIFT (R) PER (S) TO (T)

35 6-54 7 64 BR DECREASE (R) AND BRANCH
IF (R) I 0

36 6-54 7 64 BR BRANCH AND SET (R) TO NEXT
INSTRUCTION

37 6-188 I A 64 NT TRANSMIT JOB INTERVAL
TIMER TO (T)

38 6-29 A 64 IN TRANSMIT (R BITS 00-15) TO
(T BITS 00-15)

39 6-190 A 64 NT TRANSMIT REAL-TIME CLOCK
TO (T)

3A 6-190 A 64 NT TRANSMIT (R) TO JOB INTERVAL
TIMER

3B 6-51 A 64 BR DATA FLAG REGISTER LOAD/
STORE

3C 6-187 4 32 NT HALF WORD INDEX MULTIPLY
(R)o(S) TO (T)

3D 6-187 4 64 NT INDEX MULTIPLE (R)o(S) TO (T)

3E I 6-27 I 6 64 IN ENTER (R) WITH I (16 BITS) I

• 6-12 60256000 09

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

I Instr
Code

3F

40

41

42

44

45

46

48

49

4B

4C

4D

4E

4F

50

51

52

53

54

55

58

59

5A

5B

5C

5D

5E

5F

60

I 61

Page Format
No. Type

6-27 6

6-34 4

6-34 4

6-34 4

6-34 4

6-34 4

6-34 4

6-34 4

6-34 4

6-34 4

6-34 4

6-27 6

6-27 6

6-34 4

6-35 A

6-35 A

6-35 A
6-39 A

6-44 4

6-44 4

6-35 A

6-35 A

6-35 A

6-38 4

6-39 A

6-39

6-188

6-188

6-34

6-34

A

7

7

4

4

60256000 09

No. of Bits
in Operand

64

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

32

B

B

32

32

64

64

Instr
Type

IN

RG

RG

RG

RG

RG

RG

RG

RG

RG

RG

IN

IN

RG

RG

RG

RG

RG

RG

RG

RG

RG

RG

RG

RG

RG

NT

NT

RG

RG

Instr Title

INCREASE (R) BY 1 (16 BITS)

ADD U; (R) + (S) TO (T)

ADD L; (R) + (S) TO (T)

ADD N; (R) + (S) TO (T)

SUB U; (R) - (S) TO (T)

SUB L; (R) - (S) TO (T)

SUB N; (R) - (S) TO (T)

MPY U; (R) • (S) TO (T)

MPY L; (R)o(S) TO (T)

MPY S; (R)· (S) TO (T)

DIV U ; (R) / (S) TO (T)

HALF WORD ENT ER (R)
WITH I (16 BITS)

HALF WORD INCREASE (R)
BY I (16 BITS)

DIV S; (R) / (S) TO (T)

TRUNCATE (R) TO (T)

FLOOR (R) TO (T)

CEILING (R) TO (T)

SIGNIFICANT SQUARE ROOT
OF (R) TO (T)

ADJUST SIGNIFICANCE OF (R)
PER (S) TO (T)

ADJUST EXPONENT OF (R)
PER (S) TO (T)

TRANSMIT (R) TO (T)

ABSOLUTE (R) TO (T)

EXPONENT OF (R) TO (T)

PACK (R), (S) TO (T)

EXTEND 32 BIT (R) TO 64
BIT (T)

INDEX EXTEND 3 2 BIT (R) TO
64 BIT (T)

LOAD (T) PER (S),, (R)

STORE (T) PER (S),, (R)

ADD U; (R) + (S) TO (T)

ADD L; (R) + (S) TO (T)

6-13

I

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr l
Code No. Type in Operand Type Instr Title \

62 6-34 4 64 RG ADD N; (R) + (S) TO (T)

63 6-35 4 64 RG ADD ADDRESS (R) + (S) TO (T)

64 6-34 4 63 RG SUB U; (R) - (S) TO (T)

65 6-34 4 64 RG SUB L; (R) - (S) TO (T)

66 6-34 4 64 RG SUB N; (R) - (S) TO (T)

67 6-35 4 64 RG SUB ADDRESS (R) - (S) TO (T)

68 6-34 4 64 RG MPY U; (R)-(S) TO (T)

69 6-34 4 64 RG MPY L; (R).(S) TO (T)

6B 6-34 4 64 RG MPY S; (R)o(S) TO (T)

6C 6-34 4 64 RG DIV U; (R) / (S) TO (T)

6D 6-32 4 64 RG INSERT BITS FROM (R) TO (T)
PER (S)

6E 6-33 4 64 RG EXTRACT BITS FROM (R) TO
(T) PER (S)

6F 6-34 4 64 RG DIV S; (R) / (S) TO (T)

70 6-35 A 64 RG TRUNCATE (R) TO (T)

71 6-35 A 64 RG FLOOR (R) TO (T)

72 6-35 A 64 RG CEILING (R) TO (T)

73 6-39 A 64 RG SIGNIFICANT SQUARE ROOT
OF (R) TO (T)

74 6-44 4 64 RG ADJUST SIGNIFICANCE OF (R)
PER (S) TO (T)

75 6-44 4 64 RG ADJUST EXPONENT OF (R)
PER (S) TO (T)

76 6-39 A B RG CONTRACT 64 BIT (R) TO 32
BIT (T)

77 6-39 A B HG ROUNDED CONTRACT 64 BIT (R)
TO 32 BIT (T)

78 6-35 A 64 RG TRANSMIT (R) TO (T)

79 6-35 A 64 RG ABSOLUTE (R) TO (T)

7A 6-35 A 64 RG EXPONENT OF (R) TO (T)

7B 6-38 4 64 RG PACK (R), (S) TO (T)

7C 6-39 A 64 RG LENGTH OF (R) TO (T)

7D 6-189 7 64 NT SWAPS - T AND R - S

7E 6-188 7 64 NT LOAD (T) PER (S), (R)

7F 6-188 7 64 NT STORE (T) PER (S), (R)

sot 6-68 1 l E

1
VT

1
ADD U; A+ B - C I ,._

I 8lt 6-68 1 E VT ADD L; A+ B - C

tThese instructions have sign control capability. l
6-14 60256000 09

L\BI.E 6-2. IXSTR:JCTION LIST BY FUNCTION CODE (Contd)

I !?~~r P~ge I F_.?rmat No. of Bits Instr
l·oae :\o. 1·ype in Operand Type Instr Title

I nri * . o..:. l 6=68 1 E VT /'J. n n l\.T. /'J. -1- n - r-
.l.. .l..J...J .J...J .1.. 'l, .J.. .l. I ..L....,; • "-

83 6-69 1 64 VT ADD A; A+ B - C

S-± t 6-68 1 E VT SUB U; A - B - C

8;) t 6-68 1 E VT SUB L; A - B - C

86 t 6-68 1 E VT SUB N; A - B - C

87 6-69 1 64 VT SUB A; A - B - C

88 t 6-68 1 E VT MPY U; A· B - C

189 t 6-68 1 E VT MPY L; A· B - C

8Bt 6-68 1 r
E VT MPY S; A· B - C

set 6-68 1 E VT DIV U; A/B - C

SFt 6-68 1 E VT DIVS; A/B - C

90 6-70 1 E VT TRUNCATE A - C

91 6-70 1 E VT FLOOR A - C

92 6-70 1 E VT CEILING A - C

193 t 6-77 1 E VT SIGNIFICANT SQUARE ROOT
OF A-C

194 6-81 1 E VT ADJUST SIGNIFICANCE OF A

195

PER B - C

6-81 1 E VT ADJUST EXPONENT OF A PER
B-C

96 6-77 1 B VT CONTRACT 64 BIT A - 32 BIT C

97 6-77 1 B VT ROUNDED CONTRACT 64 BIT
A - 32 BIT C

98 6-70 1 E VT TRANSMIT A - C

99 6-70 1 E VT ABSOLUTE A - C

9A 6-70 1 E VT EXPONENT OF A - C

9B 6-75 1 E VT PACK A, B - C

9C 6-77 1 B VT EXTEND 32 BIT A - 64 BIT C

AOt 6-89 2 E sv ADD U; A +B-C

Alt 6-89 2 E sv ADD L; A + B-C

A2t 6-89 2 E sv ADD N; A + B-C

A4 t 6-89 2 E sv SUB U; A - B -c
A5t 6-89 2 E sv SUB L; A - B -c
A6 t 6-89 2 E sv SUB N; A - B -c
Ast 6-91 2 E sv MPY U; A • B-C

A9t 6-91 2 E sv MPY L; A • B-C

A 6-91 2 E sv MPY S; A • B-C

tThese instructions have sign control capability.

60256000 09 6-15 •

•

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page
Code No.

AC t 6-91

AF t 6-91

BO 6-57

Bl 6-57

B2 6-57

B3 6-57

B4 6-57

B5 6-57

B6 6-59

B7 6-114

BB 6-103

B9 6-216

BA 6-111

BB 6-190

BC 6-191

BD 6-195

BE 6-2B

BF 6-2B

co 6-94

Cl 6-94

C2 6-94

C3 6-94

C4 6-20B

C5 6-20B

C6 6-20B

C7 6-20B

CB 6-211

C9 6-211

CA 6-211

Format
Type

2

2

c
c
c
c
c
c
5

1

1

1

1

2

2

2

5

5

1

1

1

1

1

1

1

1

1

1

1

No. of Bits
in Operand

E

E

64

64

64

64

64

64

NA

E

E

E

E

E

E

E

64

64

E

E

E

E

E

E

E

E

E

E

E

Instr
Type

sv
sv

BR

BR

BR

BR

BR

BR

BR

VM

VM

NT

VM

NT

NT

NT

IN

IN

VM

VM

VM

VM

NT

NT

NT

NT

NT

NT

NT

tThese instructions have sign control capability.

6-16

Instr Title

DIV U; A/B - C

DIV S; A/B - C

INDEX, BRANCH IF (A) + (X) = (Z)

INDEX, BRANCH IF (A) + (X) # (Z)

INDEX, BRANCH IF (A) + (Z) > (Z)

INDEX, BRANCH IF (A) + (X) < (Z)

INDEX, BRANCH IF (A) + (X) < (Z)

INDEX, BRANCH IF (A) + (X) > (Z)

BRANCH TO IMMEDIATE
ADDRESS (R) + I (4B BITS)

TRANSMIT LIST - INDEXED C

TRANSMIT REVERSE A - C

TRANSPOSE /MOVE

TRANSMIT INDEXED LIST - C

MASK A, B - C PER Z

COMPRESS A - C PER Z

MERGE A, B - C PER Z

ENTER (R) WITH I (4 B BITS)

INCREASE (R) BY I (48 BITS)

SELECT' EQ; A = B, ITEM
COUNT TO (C)

SELECT NE; A f B, ITEM
COUNT TO (C)

SELECT GE; A_:: B, ITEM
COUNT TO (C)

SELECT LT; A< B, ITEM
COUNT TO (C)

COMPARE EQ; A = B, ORDER
VECTOR - Z

COMPARE NE; A # B, ORDER
VECTOR - Z

COMPARE GE; A_:: B, ORDER
VECTOR - Z

COMPARE LT; A< B, ORDER
VECTOR - Z

SEARCH EQ; A = B, INDEX J,IST
-c
SEARCH NE; A # B, INDEX LIST
-c
SEARCH GE; A_:: B, INDEX LIST
-c

60256000 09

'

T.:\BLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code :Xo. Tvl_)_e in O_gerand T_yQe Instr Title

CB 6-211 1 E NT SEARCH LT; A < B. INDEX LIST
-c

CD 6-28 5 32 IN HALF WORD ENTER (R) WITH
I (24 BITS)

CE 6-28 5 32 IN HALF WORD INCREASE (R) BY
I (24 BITS)

CF't 6-192 1 E NT AR ITH. COMPRESS A - C PER Bi

DO

Dl

D-1

D5

D6 1t

I 07 m
Inst

i

DB

DC

DD

DE

DF

1 EO

I El

E2

E3

E4

E5

6-102 1

6-100 1

6-102 1

6-100 1

6-158 3

6-166 3

6-214 1

6-214 1

6-97 1

6-98 1

6-116 1

6-205 2

6-105 1

6-108 1

6-127 3

6-127 3

6-127 3

6-127 3

6-147 3

6-147 3

E VM

E VM

E VM

E VM

1 ST

8 ST

E NT

E NT

E VM

E VM

E VM

E NT

E VM

E VM

8 ST

8 ST

8 ST

8 ST

8 ST

8- ST

tThese instructions have sign control capability.

AVERAGE (A +B)/2-C n n n

ADJ. MEAN (A +lA)/2-C n n n

AVE. DIFF. (A -B)/2-C
n n n

DELTA (A +l-A)-C n n n

SEARCH FOR MASKED KEY;
BIT, A, B PER C2 G

TRANSLATE AND MARK A PER
B-C

MAX. OF A TO (C), ITEM
r T , .,,..., \ ___,OUNT 10 (B,

MIN. OF A TO (C),. ITEM
COUNT TO (B)

SUM (Ao+Al+A2+ •••• An) TO (C)

AND (C + 1)

PRODUCT (Ao, Al, A2, ••• An)

TO (C)

VECTOR DOT PRODUCT TO (C)
AND (C + 1)

SPARSE DOT PRODUCT TO (C)
AND (C + 1)

POLYNOMIAL EVALUATION

INTERVAL A PER B - C

BINARY ADD; A + B - C

BINARY SUB; A - B - C

BINARY MPY; A • B-C

BINARY DVD; A/B - C

DECIMAL ADD; A + B - C

DEClMAL SUB; .A. ~ B .- C

it Automatic index incrementing takes place on these instructions. (See the individual
instruction descriptions.)

tftDelimiters may be used on these instructions, automatic index incrementing also
takes place. (Refer to the individual instruction descriptions.)

60256000 09
6-17

I

•

Instr
Code

E6

E7

E8

E9

EA

EB

EC

ED

EE t
EFt

FO

Fl

F2

F3

F4

F5

F6

F7

F8 t
F9 t

FA

FB

FC

FD t

FE tt

FF ·ft

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Page
No.

6-143

6-143

6-182

6-182

6-153

6-168

6-130

6-130

6-162

6-165

6-184

6-184

6-184

6-184

6-184

6-184

6-184

6-184

6-150

6-150

6-146

6-132

6-132

6-155

6-158

6-158

Format
Type

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

No. of Bits
in Operand

8

8

8

8

8

8

8

8

8

8

1

1

1

1

1

1

1

1

8

8

8

8

8

8

8

64

Instr
Type

ST

ST

ST

ST

ST

ST

ST

ST

ST

ST

LS

LS

LS

LS

LS

LS

LS

LS

ST

ST

ST

ST

ST

ST

ST

ST

Instr Title

DECIMAL MPY; A B - C

DECIMAL DIV; A/B - C

COMPARE BINARY A, B

COMPARE DECIMAL A, B

MERGE PER BYTE MASK :\,
B PER G - C

EDIT AND MARK A PER B - C

MODULO ADD A + B - C

MODULO SUB A - B - C

TRANSLATE A PER B - C

TRANSLATE AND TEST A PER
B TO C

LOGICAL EXCLUSIVE OR A,
B-C

LOGICAL AND A, B - C

LOGICAL INCLUSIVE OR A,
B-C

LOGICAL STROKE A, B - C

LOGICAL PIERCE A, B - C

LOGICAL IMPLICATION A, B - C

LOGICAL INHIBIT A, B - C

LOGICAL EQUIVALENCE A,
B, - C

MOVE BYTES LEFT A - C

MOVE BYTES LEFT ONES
COMP. A - C

MOVE AND SCALE; A - C

PAC~ ZONED TO BCD, A - C

UNPACK BCD TO ZONED; A - C

COMPARE BYTES A, B PER
MASK FIELD C

SEARCH FOR MASKED KEY
BYTE; A, B PER C, G

SEARCH FOR MASKED KEY
WORD; A, B PER C, G

ff Delimiters may be used on these instructions, automatic index incrementing also
takes place. (Refer to the individual instruction descriptions.)

tft Automatic index incrementing takes place on these instructions. (See the individual
instruction descriptions=) J

• 6-18 60256000 09

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

INDEX INSTRUCTIONS (IN)

3E 6-27 6 64 ENTER (R) WITH I (16 BITS)

3F 6-27 6 64 INCREASE (R) BY I (16 BITS)

4D 6-27 6 32 HALF WORD ENTER (R) WITH I (16 BITS)

4E 6-27 6 32 HALF WORD INCREASE (R) BY I (16 BITS)

CD 6-28 5 32 HALF WORD ENTER (R) WITH I (24 BITS)

CE 6-28 5 32 HALF WORD INCREASE (R) BY I (24 BITS)

BE 6-28 5 64 ENTER (R) WITH I (48 BITS)

BF 6-28 5 64 INCREASE (R) BY I (48 BITS)

38 6-29 A 64 TRANSMIT (R BITS 00-15) TO (T BITS
00-15)

REGISTER INSTRUCTIONS (RG)

2C 6-30 4 64 LOGICAL EXCLUSIVE OR(:R).,(S), TO(T)

2D 6-30 4 64 LOGICAL AND(R),(S), TO(T)

I
2E 6-30 4 64 LOGICAL INCLUSIVE OR(R),(S), TO(T)

30 6-30 7 64 SHIFT(R) PER S TO(T)

34 6-31 4 64 SHIFT(R) PER (S) TO (T)

6D 6-32 4 64 INSERT BITS FROM (R) TO (T) PER (S)

6E 6-33 4 64 EXTRACT BITS FROM (R) TO (T) PER (S)

40/60 6-34 4 32/64 ADD U; (R) + (S) TO (T)

41/61 6-34 4 32/64 ADD L; (R) + (S) TO (T)

42/62 6-34 4 32/64 ADD N; (R) + (S) TO (T)

44/64 6-34 4 32/64 SUB U; (R) - (S) TO (T)

45/65 6-34 4 32/64 SUB L; (R) - (S) TO (T)

46/66 6-34 4 32/64 SUB N; (R) - (S) TO (T)

48/68 6-34 4 32/64 MPY U; (R) · (S) TO (T)

49/69 6-34 4 32/64 MPY L; (R) • (S) TO (T)

4B/6B 6-34 4 32/64 MPY S; (R) • (S) TO (T)

4C/6C 6-34 4 32/64 DIV U; (R) / (S) TO (T)

4F/6F 6-34 4 32/64 DIV S; (R) / (S) TO (T)

63 6-35 4 64 ADD ADDRESS (R) + (S) TO (T)

67 6-35 4 64 SUB ADDRESS (R) - (S) TO (T)

58/78 6-35 A 32/64 TRANSMIT (R) TO (T)

59/79 o-3"5 A 3"2/6"4 ABSOLUTE (R)TO(T)

51/71 6-35 A 32/64 FLOOR (R) TO (T)
I I I

60256000 08 6-19

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

52/72 6-35 A 32/64 CEILING (R) TO (T)

5A/7A 6-35 A 32/64 EXPONENT OF (R) TO (T)

50/70 6-35 A 32/64 TRUNCATE (R) TO (T)

5B/7B 6-38 4 32/64 PACK (R), (S) TO (T)

5C 6-39 A B EXTEND ~32 BIT (R) TO 64 BIT (T)

5D 6-39 A B INDEX EXTEND 32 BIT (R) TO 64 BIT (T)

76 6-39 A B CONTRACT 64 BIT (R) TO 32 BIT (T)

77 6-39 A B ROUNDED CONTRACT 64 BIT (R) TO 32

7C 6-39 A 64 BIT (T) LENGTH OF (R) TO (T)

53/73 6-39 A 32/64 SIGNIFICANT SQUARE ROOT OF (R) TO
(T)

10 6-39 A 64 CONVERT BCD TO BINARY, FIXED
LENGTH

11 6-39 A 64 CONVERT BINARY TO BCD, FIXED
LENGTH

54/74 6-44 4 32/64 ADJUST SIGNIFICANCE OF (R) PER (S)
TO (T)

55/75 6-44 4 32/64 ADJUST EXPONENT OF (R) PER (S) TO (T)

2A 6-45 6 64 ENTER LENGTH OF (R) WITH I (16 BITS)

2B 6-45 4 64 ADD TO LENGTH FIELD

BRANCH INSTRUCTIONS (BR)

20/24 6-47 8 32/64 BRANCH IF(R)=(S)(32/64 BIT FP)

21/25 6-47 8 32/64 BRANCH IF(R)/(S)(32/64 BIT FP)

22/26 6-47 8 32/64 BRANCH IF(R)2:(S)(32/64 BIT FP)

23/27 6-47 8 32/64 BRANCH IF(R) <(S) (32/64 BIT FP)

2F 6-48 9 1 REGISTER BIT BRANCH AND ALTER

33 6-49 B 1 DATA FLAG REGISTER BIT BRANCH AND
ALTER

3B 6-51 A 64 DATA FLAG REGISTER LOAD/STORE

32 6-51 9 1 BIT BRANCH AND ALTER

36 6-54 7 64 BRANCH AND SET (R) TO NEXT INSTRUC-
TION

31 6-54 7 64 INCREASE (R) AND BRANCH IF (R) I 0

35 6-54 7 64 DECREASE (R) AND BRANCH IF (R) I 0

09

I
6-55 4

I
64 I EXIT FORCE

BO 6-57 c 64 I INDEX, BRANCH IF (A) + (X) = (Z)
I

6-20 60256000 09

TABLE 6-3.. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page
Code Xo.

Bl 6-57

B2 6-57

B3 6-57

B-1 6-57

BS 6-57

B6 6-59

80t

81t

82t

84t

85t

I 86t

88f

89t

8Bt

8Ct

8Ff

83

87

98

99

91

92

9A

90

9B

9C

96

I :;t
194
95

6-168

6-168

6-168

6-168

6-1681

6-168

6-168

6-168

6-168

6-168

6-168

6-69

6-69

6-70

6-70

6-70

6-70

6-70

6-70

6-75

6-77

6-77

6-77

6-77

6-81

6-81

Format
Type

c
c
c
c
c
5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

No. of Bits
in Operand

64

64

64

64

64

NA

Instr Title

INDEX, BRANCH IF (A) + (X) # (Z)

INDEX, BRANCH IF (A) + (X) > (Z)

INDEX, BRANCH IF (A) + (X) < (Z)

INDEX, BRANCH IF (A) + (X) -:_ (Z)

INDEX, BRANCH IF (A) + (X) > (Z)

BRANCH TO IMMEDIATE ADDRESS
(R) +I (48 BITS)

VECTOR INSTRUCTIONS (VT)

E

E

E

E

E

E

E

E

E

E

E

64

64

E

E

E

E

E

E

E

B

B

B

E

E

E

ADD U; A+ B - C

ADD L; A+ B - C

ADD N; A+ B - C

SUB U; A - B - C

SUB L; A - B - C

SUB N; A - B - C

MPY U; A· B - C

MPY L; A· B - C

MPY S; A· B - C

DIV U; A/B - C

DIV S; A/B - C

ADD A; A+ B - C

SUB A; A - B - C

TRANSMIT A - C

ABSOLUTE A - C

FLOOR A-C

CEILING A - C

EXPONENT OF A - C

TRUNCATE A - C

PACK A, B - C

EXTEND 3 2 BIT A - 64 BIT C

CONTRACT 64 BIT A - 32 BIT C

ROUNDED CONTRACT 64 BIT A - 32 BIT C

SIGNIFICANT SQUARE ROOT OF A - C

ADJUST SIGN-IFICANT OF A PER B - C

ADJUST EXPONENT OF A PER B - C

tThese instructions have sign control capability.

60256000 09 6-21 •

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page
Code No.

AOt
Alt
A2t
A4t
A5t
A6t
A8t
A9t
ABt
ACt
AFt

co
Cl

C2

C3

DA

DB

D5

Dl

DO
D4

BB
DE

DF

BA

B7

DC

6-89

6-89

6-89

6-89

6-89

6-89

6-91

6-91

6-91

6-91

6-91

6-94

6-94

6-94

6-94
6-97

6-98

6-100

6-100

6-102

6-102

6-103

6-105

6-108

6-111

6-114

6-116

Format
Type

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

No. of Bits
in Operand Instr Title

SPARSE VECTOR INSTRUCTIONS (SV)

E

E

E

E

E

E

E

E

E

E

E

ADD U; A+ B - C

ADD L; A+ B - C

ADD N; A+ B - C

SUB U; A - B - C

SUB L; A - B - C

SUB N; A - B - C

MPY U; A· B - C

MPY L; A· B - C

MPY S; A· B - C

DIV U; A / B - C

DIV S; A / B - C

VECTOR MACRO INSTRUCTIONS (VM)

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

SELECT EQ; A = B,, ITEM COUNT TO(C)

SELECT NE; A -/= B,, ITEM COUNT TO(C)

SELECT GE; A ~ B. ITEM COUNT TO(C)

SELECT LT; A < B,, ITEM COUNT TO(C)

SUM Ao+ A
1

+ A 2 + .•• A) TO (C)
AND (C + 1) n

PRODUCT (Ao· A 1 • A2 •••• An) TO (C)

DELTA { An+l-An } - Cn

ADJ. MEAN { An+l +An } /2 - Cn

AVERAGE { A + B } / 2 - C n n n
A VE. DIFF. { An - Bn } / 2 - Cn

TRANSMIT REVERSE A - C

POLYNOMIAL EVALUATION

INTERVAL A PER B - C

TRANSMIT INDEXED LIST - C

TRANSMIT LIST - INDEXED C

VECTOR DOT PRODUCT TO (C) AND(C + 1)

I tThese instructions nave sign control capabiiity •

• 6-22 60256000 09

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page
Code No.

EO 6-127

El 6-127

E2 6-127

E3 6-127

EC 6-130

ED 6-130

FB 6-132

FC 6-132

E4 6-143

E5 6-143

E6 6-143

E7 6-143

FA 6-146

F8t 6-150

F9t 6-150

EA 6-153

FDf 6-155

FE'ft 6-158

FF"ft 6-158

D6 "ft 6-158

EE t 6-162

EFf 6-165

D7t 6-166

EB 6-168

EB 6-182

E9 6-182

FO

Fl

F2

6-184

6-184

6-184

Format
Type

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

No. of Bits
in Operand Instr Title

STRING INSTRUCTIONS (ST)

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

64

1

8

8

8

8

8

8

BINARY ADD; A + B - C

BINARY SUB; A - B - C

BINARY MPY; A • B - C

BINARY DVD; A / B - C

MODULO ADD A + B - C

MODULO SUB A - B - C

PACK ZONED TO BCD; A - C

UNPACK BCD TO ZONED; A - C

DECIMAL ADD; A + B - C

DECIMAL SUB; A - B - C

DECIMAL MPY; A • B - C

DECIMAL DVD; A / B - C

MOVE AND SCALE; A - C

MOVE BYTES LEFT; A - C

MOVE BYTES LEFT 11 ONES COMP. A - C

MERGE PER BYTE MASK A. B PER
G-C

COMPARE BYTES A. B PER MASK FIELD
c
SEARCH FOR MASKED KEY BYTE; A 11 B
PER C, G

SEARCH FOR MASKED KEY WORD; A 11 B
PER C, G

SEARCH FOR MASKED KEY BIT; A 11 B
PER C, G

TRANSLATE A PER B - C

TRANSLATE AND TEST PER B - C

TRANSLATE AND MARK A PER B - C

EDIT AND MARK A PER B - C

COMPARE BINARY A, B

COMPARE DECIMAL A. B

LOGICAL STRING INSTRUCTIONS (LS)

1

1

1

LOGICAL EXCLUSIVE OR A, B - C

LOGICAL AND A. B - C

LOGICAL INCLUSIVE OR A. B - C
t Delimiters may be used on these instructions, automatic index incrementing also

takes place. (Refer to the individual instruction descriptions.)

1t Automatic index increDJ.enting takes place on these instructions. (See the individual
instruction descriptions.)

60256000 09 6-23 •

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

F3 6-184 3 1 LOGICAL STROKE A, B - C

F4 6-184 3 1 LOGICAL PIERCE A, B - C

F5 6-184 3 1 LOGICAL IMPLICATION A, B - C

F6 6-184 3 1 LOGICAL INHIBIT A, B - C

F7 6-184 3 1 LOGICAL EQUIVALENCE A, B-C

NONTYPICAL INSTRUCTIONS (NT)

3D 6-187 4 o4 INDEX MULTIPLY(R} • (S) TO(T)

3C 6-187 4 32 HALF WORD INDEX MULTIPLY(R) • (S
TO(T)

5E/7E 6-188 7 32 LOAD (T) PER (S), (R)

5F/7F 6-188 7 32 STORE (T) PER (S) ,(R)

12/13 6-188 7 64 LOAD/STORE BYTE (T) PER (S), (R)

37 6-188 A 64 TRANSMIT JOB INTERVAL TIMER TO (T)

7D 6-189 7 64 SWAP S-T AND R-S

39 6-190 A 64 TRANSMIT REAL-TIME CLOCK TO(T)

3A 6-190 A 64 TRANSMIT(R) TO JOB INTERVAL TIMER

BB 6-190 2 E MASK A,, B - C PER Z

BC 6-191 2 E COMPRESS A - C PER Z

CF* 6-192 1 E ARITH. COMPRESS A - C PER B

ED 6-195 2 E MERGE A, B - C PER Z

14 6-197 7 1 BIT COMPRESS

15 6-199 7 1 BIT MERGE

16 6-199 7 1 BIT MASK

17 6-203 7 8 CHARACTER STRING MERGE

DD 6-205 2 E SPARSE DOT PRODUCT TO(C) AND(C + l)i

C4 6-208 1 E COMPARE EQ; A = B, ORDER VECTOR - Z

C5 6-208 1 E COMPARE NE; A # B, ORDER VECTOR - Z

C6 6-208 1 E COMPARE GE; A_?: B, ORDER VEC'.rOR - Z

C7 6-208 1 E COMPARE LT; A< B, ORDER VECTOR - Z

CB 6-211 1 E SEARCH EQ; A = B, INDEX LIST - C

C9 6-211 1 E SEARCH NE; A # B, INDEX LIST - C

CA 6-211 1 E SEARCH GE; A > B, INDEX LIST - C

lt'Ihese instructions have sign control capability.

• 6-24 60256000 09

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format
Code No. Type

CB 6-211 1

D8 i" 6-214 1

D9 t 6-214 1

B9 6-216 1

18 6-221 7

19 6-224 7

28 6-224 7

29 6-224 7

lA 6-228 7

lB 6-228 7

lC 6-228 7

lD 6-228 7

lE

lF

04

06

00

08

oc
OD

OE

OF

OA

6-229

6-231

6-231

6-233

6-235

6-235

6-236

6-236

6-236

6-237

6-238

7

7

4

7

4

4

4

4

4

4

4

No. of Bits
in Operand

E

E

E

E

8

8

8

8

8

8

1

1

1

1

64

NA

Instr. Title

SEARCH LT; A < B,, INDEX LIST - C

MAX. OF A TO(C) ITEM COUNT TO (B)

MIN. OF A TO(C) ITEM COUNT TO (B)

TRANSPOSE /MOVE

MOVE BYTES RIGHT

SCAN RIGHT

SCAN EQUAL

SCAN UNEQUAL

FILL FIELD T WITH BYTE R

FILL FIELD T WITH BYTE (R)

FORM REPEATED BIT lVIASK WITH
LEADING ZEROS

FORM REPEATED BIT MASK WITH
LEADING ONES

COUNT LEADING EQUALS

COUNT ONES IN FIELD R, COUNT TO m
BREAKPOINT - 'MAINTENANCE

FAULT TEST- MAINTENANCE

MONITOR INSTRUCTIONS (MN)

NA

64

64

64

64

64

64

IDLE

INPUT /OUTPUT PER R

STORE ASSOCIATIVE REGISTERS

LOAD ASSOCIATIVE REGISTERS

TRANSLATE EXTERNAL INTERRUPT

LOAD KEYS FROM (R), TRANSLATE
ADDRESS (S) TO IT)

TRANSMIT (R) TO MONITOR INTERVAL
TIMER

tThese instructions have sign control capability.

60256000 09 6-.25.

INSTRUCTION DESCRIPTIONS

The instruction descriptions are grouped in the following order.

• Index Instructions

• Register Instructions

• Branch Instructions

• Vector Instructions

• Sparse Vector Instructions

• Vector Macro Instructions

• String Instructions

• Logical String Instructions

• Nontypical Instructions

• Monitor Instructions

The description of each of the general types of instructions contains the instruction formats,

operating parameters, and instruction termination conditions that are applicable to the

instruction. The individual instructions within a general type are grouped according to

the specific functions they perform within that group. Instructions that differ slightly in the

functions they perform have a common description. For example, the index branch instruc

tions (BO through B5) differ only by the sign or magnitude of the branch quantity. Thus,

these instructions have a common description.

Each description begins with a listing of the function code (hexadecimal) and title of the

instruction. This listing is followed by the instruction format. The formats specifi

cally apply to the listed instructions and show the variations from the general format

types shown in the beginning of this section.

Where applicable, the instruction descriptions include examples. These examples show

a simplified illustration of the instruction operation using arbitrarily assumed operands,

register contents, indexes, etc. The assumed operands and operating parameters are

selected mainly to illustrate the instruction operation and are not necessarily typical

operating values. The numbers used in the examples are in hexadecimal notation un

less otherwise noted.

6-26 60256000 08

INDEX INSTRUCTIONS

The index instructions manipulate sixteen 24- or 48-bit operands in the designated

operational registers. These instructions are used primarily in performing numerical

calculations on field lengths and addresses.

3E ENTER (R) WITH I (16 BITS)
3F INCREASE (R) WITH I (16 BITS)
4D HALF WORD ENTER (R) WITH I (16 BITS)
4E HALF WORD INCREASE (R) BY I (16 BITS)

0 7 8 15 16 31

F

(3E,3F,
4D,4E)

R I

(16 BITS)

3E ENT ER {R) WITH I {16, BITS)

.1

This instruction enters the 16-bit operand I into the rightmost 48 bits of the 64-bit register

designated by R. The sign bit of the immediate 16-bit operand is extended through bit 16

of the destination register R. Register R is cleared before the transfer of I.

3F INCREASE {R) WITH I (16 BITS)

This instruction replaces the rightmost 48 bits of the 64-bit register designated by R with

the sum of these bits and the 16 -bit operand I. The leftmost 16 bits of register R are

unaltered. The sign bit of the immediate 16 -bit operand is extended through bit 16 in the

addition. Arithmetic overflow is ignored if it occurs.

4D HALF WORD ENT ER {R) WITH I {16 BITS)

This instruction enters the 16-bit operand I into the rightmost 24 bits of the 32-bit register

designated by R. The sign of the immediate 16-bit operand is extended through bit 8 of the

destination register R. Register R is cleared before the transfer of I.

4E HALF WORD INCREASE {R) BY I (16 BITS)

This instruction replaces the rightmost 24 bits of the 32-bit register designated by R with

the sum of these bits and the 16-bit operand I. The leftmost 8 bits of register R are

unaltered. The sign of the operand is extended through bit 8 for the addition. Arithmetic

overflow is ignored if it occurs.

60256000 08 6-27

CD HALF WORD ENTER (R} WITH I (24 BITS}

CE HALF WORD INCREASE (R} WITH I (24 BITS}

0 78 1516 3940 63
R

-
I

(24 BITS)

CD HALF WORD ENTER (R) WITH I (24 BITS)

This instruction clears the 32-bit register designated by R and enters the operand I,,

contained in the rightmost 24 bits of this instruction,, into the rightmost 24 bits of register

R.

CE HALF WORD INCREASE (R) WITH I (24 BITS)

This instruction replaces the rightmost 24 bits of the 32-bit register designated by R with

the sum of these bits and operand I,, contained in the rightmost 24 bits of this instruction.

The leftmost 8 bits of register R are unaltered. Arithmetic overflow is ignored if it occurs.

BE ENTER (R) WITH I (48 BITS)

BF INCREASE (R) WITH I (48 BITS)

0 7 8 15 16 63

R I
(48 BITS)

The BE instruction enters the 48-bit operand I into the rightmost 48 bits of the R

register. Register R is cleared before the transfer of I.

The BF instruction replaces the rightmost 48 bits of the R register with the sum of

these bits and the 48-bit operand I. The leftmost 16 bits of H are unaltered. Arith:

metic overflow is ignored.

6-28 60256000 08

"""' r.i. ,. T '"' l"\JT,.. "" ,,., T,...,.. 1-r n1Tl" n.n. 1r\
.SO I KAN~MI I \K DI I~ UV·I:>/ I U \I DI I.:> VV·l;:JJ

(~8) 7 i R
31

T

This instruction replaces the leftmost 16 bits of register T with the leftmost 16 bits

of register R. The remaining bits of register T are unaltered.

REGISTER INSTRUCTIONS

The source and result operands of register instructions are contained in specified

registers in the register file. The 8-bit R, S, and T designators, contained in the

instructions, denote the numbers of the registers to be used in the operation. For

example, if a 64-bit, floating 1 point, add upper instruction is executed (instruction code

60) with R = 02, S = 03, and T = 7F, the content of register 02 is added to the con

tents of register 03 (floating point format), and the upper result is stored in destination

7F.

A regi.ster may contain one or both source operands as well as the result. Register 00

provides a special case. If this register is designated as containing the source operand,

the instruction uses machine zero as the source operand (8X 000000 for 32-bit operands

and 8XXX 000000 000000 for 64-bit operands where X represents any hexadecimal digit).

If the instruction specifies 00 as the destination register, no result is stored. However,

the instruction sets the corresponding data flags if applicable.

Unless the individual instruction description states differently, register-to-register

operations do not change the content of the source registers. These operations clear

the destination register before the result is transferred into it.

60256000 08 6-29

2C LOGICAL EXCLUSIVE OR (R),(S},TO (T}

20 LOGICAL AND (R),(S), TO (T)

2E LOGICAL INCLUSIVE OR (R),(S},TO (T)

0 78 1516 2324 31

F R s T
(2C,2D, (SOURCE I) (SOURCE2) ~DESTINATION)
OR,2E)

These instructions perform the following logical functions. The function occurs bit by bit

on the 64-bit operands contained in the registers designated by R and S. The result in each

case is stored in the register designated by T.

Exclusive Inclusive
OR AND OR

R s R-S R•S R+S

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 0 1 1

If the R or S designators equal zero,, register zero contains machine zero.

30 SHIFT (R) PER S TO (T)

0 78 1516 23 24 31

F R s T

(30) (ORIGIN) (SHfFT) (DESTI NATIONl

This instruction shifts the 64- bit operand from the register designated by R and stores

the result into the register designated by T. The S designator specifies the type and

amount of the shift.

If the S designator is in the range from 0 through 3F 16 (O through 63
10

),, the operand

from register R shifts left end-around the number of specified places and then stores

in register T.

6-30 60256000 08

If the S designator is in the range from FF 16 through c1 16 (-1 through -63 10), the

operand from register R shifts right with sign extension and then stores into register

T. For this case, bit zero of the operand from register R is considered to be the

sign bit of the shifted operand. The number of right shifts is equal to the two's

complement of the S designator.

If, for example 51 S is equal to FE16, the operand from register R shifts right two

places.

If the S designator is greater than 3F16 or less than c1 16, the results of this in

struction are undefined.

If the R designator is equal to zero, register zero provides machine zero.

This instruction does not test for machine zero, indefinite or does not set any data flags.

34 SHIFT (R) PER (S) TO (T)

0 78 1516 23 24 31

F R s T
(34) (ORIGIN) (SHIFT) ~DESTINATION)

This instruction shifts the 64-bit operand from the register designated by R and stores

the result into the register designated by T. The register designated by S specifies

the type and amount of the shift.

If the rightmost byte of register S is in the range from 0 through 3F
16

(0 through

63 10), the operand from register R shifts left end-around the number of specified

places and then stores into register T.

If the rightmost byte of register Sis in the range from FF 16 through c1 16 (-1 through

-63 10), the operand from register R shifts right with sign extension and then stores into

register T. For this case, bit zero of the operand from register R is considered to be

the sign bit of the shifted operand. The number of right shifts is equal to the two's com

plement of the rightmost byte of register S.

If the rightmost byte of register S is greater than 3F
16

or less than Ct
16

, the results

of this instruction are undefined.

60256000 08 6-31

The leftmost seven bytes of register S are ignored.

If the R designator is equal to zero, register zero provides machine zero.

This instruction does not cause a test for machine zero, indefinite or does not set any data

flags.

60 lNSERT BlTS FROM (R) TO (T) PER (S)

0 78 1516 2324

F R s T

(6D) (REGISTER) (REGISTER) (DESTINATION

This instruction inserts a number of rightmost bits (m) from the register designated R to

the register designated T (Figure 6-3). In the register designated S, bits 10 through 15

specify the number of bits (m} to be inserted, and bits 58 through 63 specify the location (n)

in register T for the leftmost bit of the inserted bits. Bits 0 through 9 and 16 through 57

of register S are undefined and must be set to zeros.

m
REGISTER RI

---'--------------....J
1~ j BITS

~

REGISTER T I H e7TS ~
~leJTn

BITS

INSERT

UNALTERED
BITS

I

0 9 10 II 16 17 18 61

REGISTER sl o_ -_-_o_J __ m __ J _o~======-o-L-J __ n __ _.

Figure 6-3. Example of Register Content for an Insert,
Bits from (R) to (T) Per (S) Instruction

If the R designator is equal to zero, register zero provides machine zero. If m plus

n is greater than 64
10

, or if m is equal to zero, the results of this instruction are un-

defined.

6-32 60256000 08

6E EXTRACT BITS FROM (R) TO (T) PER (S)

0 78 1516 2324 31

F R s T
(6E) (REGISTER) (REGISTER) ~DESTINATION)

This instruction extracts a number of bits (m) from the register designated R and stores

them in the rightmost part of the register designated T (Figure 6 -4). Register T is cleared

before receiving the extracted bits. In the register designated S, bits 10 through 15 con

tain the number of bits (m) to be extracted and bits 58 through 63 specify the leftmost bit

number of the extracted bits in register R. Bits 0 through 9 and 16 through 57 of register

S are undefined and must be set to zeros.

BIT n
t

H
m

REGISTER R
BITS

EXTRACT

REGISTER T I ~ ----------- 0 L ~ J . r BITS]

0 9 10 II 1e 17 II

REGISTERS m n

Figure 6-4. Example of Register Contents for. an Extract,
Bits from (R) to (T) Per (S) Instruction

If the R designator is equal to zero,, register zero provides machine zero. If m

plus n is greater than 64
10

,, or if m is equal to zero,, the results of this instruction

are undefined.

60256000 08
6-33

40/60

41/61
42/62
44/64

45/65
46/66

48/68

49/69

48/68
4(/6(

4F/6F

ADD U; (R) + (S) TO (T)

ADD l; lRJ + lS) TO (T)

ADD N; (R) + (S) TO (T)

SUB U; (R) - (S} TO (T}

SUB l; (R) - (S) TO (T)

SUB N; (R) - (S) TO (T)

MPV U; (R) • (S) TO (T)

MPV l; (R) • (S) TO (T)

MPV S; (R) • (S) TO (T)

DIV U; (R)/(S) TO (T)

DIV S; (R)/(S) TO (T)

0 7 8

F

(4X OR 6X)

DESIGNATES
SOURCE OPERAND--""'
REGISTERS

R
15 16 23 24

s T
31

DESIGNATES RESULT
DESTINATION REGISTER

These instructions perform the indicated floating point arithmetic operation on the 32-bit

(4X function codes) or 64-bit (6X function codes) operands contained in the registers desig-

I
nated by R and S. Appendix B describes the floating-point operations and operand formats.

This appendix also describes how certain instructions are order-dependent and will result

in unexpected answers unless the execution order is known. An example is shown in the

appendix under Order-Dependent Result Considerations. The arithmetic operation is the

same for the 32-bit or 64-bit operands with adjustment for bit length of the result. The

instruction, in each case, stores the arithmetic result in destination register T.

Designator U signifies that the upper result is stored, L signifies that the lower result is

stored, N signifies that the normalized upper result is stored, and S signifies the significant

result is stored. Appendix B of this manual defines the U, L, N, and S results.

Data flag bits 41 (floating point divide fault), 42 (exponent overflow), 43 (result machine

zero), and 46 (indefinite result) are set by the applicable instructions if the necessary

operating and result conditions are present.

6-34 60256000 09

63 ADD ADDRESS (R) + (S) TO (T)

67 SUB ADDRESS (R) - (S) TO (T)

0 7 8 15 16 23 24 3
F R s T

(63 OR 67) (SOURCE (SOURCE (RESULT
OPERAND OPERAND DEST I NATI ON
REGISTER) REGISTER) REGISTER)

These instructions .add/ subtract bits 16 through 63 in register S to/ from bits 16 through 63

in register R. The instructions then store the result in corresponding bits of register T.

The instructions operate on bits 16 through 63 as 48-bit, positive, unsigned integers. Arith

metic overflow is ignored if it occurs. The instructions transmit bits 0 through 15 of regis

ter R to corresponding bit positions of register T without modification.

58/78

59/79

51/71

52/72
5A/7A

50/70

TRANSMIT (R) TO (T)

ABSOLUTE (R) TO (T)

FLOOR (R) TO (T)

CEILING (R) TO (T)

EXPONENT OF (R) TO (T)

TRUNCATE (R) TO (T)

0 7 8 15
F

(5X OR 7X)
R

(ORIGIN)

58/78 TRANSMIT (R) TO (T)

31
T

DESTINATION

This instruction transmits the 32-bit (58) or 64-bit (78) operand in the register designated

by R to the register designated by T.

59/79 ABSOLUTE (R) TO (T)

This instruction transmits the absolute value of the 32-bit (59) or 64-bit (79) floating point

operand in register R to register T. If the coefficient of the initial operand is negative, the

operand is complemented and is transmitted to register T. If the initial coefficien;I;, is posi

tive, it is sent to register T as it is. Applicable data flag bits are 42 (exponent overflow),

43 (result machine zero), and 46 (indefinite result).

60256000 08 6-35

51/71 FLOOR (R) TO (T)

This instruction transmits the closest integer less than or equal to the 32-bit (51) or 6 4-bit

(71) floating point operand in register R to register T. This integer (T) is expressed by

an unnormalized 32-bit or 64-bit floating point number with a positive exponent.

If the exponent of the source operand is positive (greater than or equal to zero), the operand

is transmitted directly to register T. If the exponent of the source operand is negative, the

machine right-shifts the coefficient end-off and increases the exponent by one for each shift.

Sign bits are extended on the left during the shift. When the exponent becomes zero, the

shifting stops and the machine transmits the shifted coefficient and zero exponent to register

T. If machine zero is used as the source operand, 3 2 I 64 zeros are transmitted

to register T.

The applicable data nag bit is 46 (indefinite- result).

52/72 CEILING (R) TO (T)

This instruction transmits the closest integer greater than or equal to the 32-bit (64-bit for

72 function code) operand in origin register R to destination register T. This integer is

represented as an unnormalized 32-bit (64-bit) floating point number with a positive ex

ponent.

If the source operand exponent is positive (greater than or equal to zero), the instruction

transmits the source operand directly to register T.

If the source operand exponent is negative, the machine right-shifts the two's complement of

the coefficient end-off and increases the exponent by one for each position shifted until the

exponent becomes zero. The shift operation extends the sign. The instruction then recomple

ments the shifted coefficient and transmits it with zero exponent to register T. Figure 6-5

shows the results of a ceiling (R) to (T), 52/72, instruction with a source operand having a negative

exponent. In this example, a shift of four was necessary to reduce the exponent to zero. The

example shows the complement of the shifted coefficient with zero exponent in register T.

If machine zero is used as the source operand, the machine transmits 32/64 zeros as a

result. The applicable data flag bit is 46 (indefinite result).

6-36 60256000 08

0

0

34 78 1112 15 16 19 20 23 24 2728 31

I

II II I 100 Olo 00 0000 0000 00 0 0 1000 00 00

{ F) {Cl l<ol { 0) (0) { 0) { 8) { 0)

\-y---1\ v
EXPONENT COEFFICIENT

34 78 11 12 15 16 19 20 23 24 27 28 31

0000 000 0 o:ooo 00 00 0000 00 00 0000 I 0 00

{ 0) { 0) ,co} (0) { 0} (0) (0) (8)

ORIGIN OPERAND (R)

(80X2-4)

RESULT OPERAND(T)

(8 x 2 0)

NUMBERS IN PARENTHESES REPRESENT HEXADECIMAL DIGITS FOR

EACH BINARY GROUP.

Figure 6-5. Example of Register Content for a Ceiling (R) to (T) Instruction

5A/7A EXPONENT OF (R) TO (T)

This instruction transmits the exponent in the leftmost 8 bits (16 bits for 64-bit

operands) of register R to the rightmost 8 bits (16 bits for 64-bit operands) of regis

ter T. The instruction extends the sign of the exponent through bit 8 of register T.

The exponent portion (leftmost 8 or 16 bits) of register T is cleared.

50/70 TEUNCATE (R) TO (T)

This instruction transmits the closest integer the magnitude of which is less than or equal

to the 32-bit (64-bit for 70 function code) operand in origin register specified by R to desti

nation register T. This integer is represented by an unnormalized 32-bit (64-bit) floating

point number with a positive exponent.

If the origin operand exponent is positive (greater than or equal to zero), the instruction

transmits the origin operand directly to register T.

If the origin operand exponent is negative, the machine right-shifts the magnitude of the coef

ficient end-off and increases the exponent by one for each position shifted until the exponent

becomes zero. The operation extends zeros on the left during the shift. If the coefficient of

the origin operand was positive, the shifted coefficient with zero exponent is transmitted to

the destination register. If the coefficient of the origin operand was negative, the two's

complement of the shifted coefficient and zero exponent is transmitted to the destination

register. If machine zero is used as the origin operand, 32 /64 zeros are transmitted as a

result.

60256000 08 6-37

0

Figure 6-6 shows the results of a truncate (R) to (T), 50 I 70, instruction with an origin

operand having a negative exponent and positive coefficient. A right shift of eight is required

to reduce the negative exponent to zero.

The applicable data flag bit is 46 (indefinite result).

0 34 78 11 12 15 II 19 20 23 24 27 21 31

1T1 I I 1000 olooo 0000 0001 I I II 11 11 II I I
I I

(Fl (F) (F) l{F) (8) 1(0} (0) (I)

~\ v
EXPONENT COEFFICIENT

0 34 71 II 12 15 II 19 20 23 24 27 21 31

oJooo 0000 oJooo 0000 0000 0000 0001 I I I I

l l
~'--~~~~----~~~~~-

EXPONENT COEFFICIENT

ORIGIN OPERAND {R)
(OOIFFFX2-.e)

RESULT OPERAND (T)
(OOOOIF X 2 0)

Figure 6-6. Example of Register Content for a Truncate (R) to (T) Instruction

58/78 PACK (R), (S) TO (T)

7 I US II 23 24 31

F R s T
(58 OR 78) (ORIGIN I) (ORIGIN 2) (DESTINATION)

~~
EXPONENT COEFFICIENT

This instruction transmits a 32-bit (64-bit for the 7B function code) floating-point

number to the destination register T. The instruction transmits the exponent of the

number from the rightmost 8 bits (16 bits for 7B) of register R and the coefficient

from the rightmost 24 bits (48 bits for 7B) of register S.

6-38 60256000 08

SC

SD

76
77

7C

53/73

10

11

0

EXTEND 32 BiT (R) iO 64 BiT (Tj

INDEX EXTEND 32 BIT (R) TO 64 BIT (T)

CONTRACT 64 BIT (R) TO 32 BIT (T)
ROUNDED CONTRACT 64 BIT (R) TO 32 BIT (T)

LENGTH OF (R) TO (T)

SIGNIFICANT SQUARE ROOT OF (R) TO (T)

CONVERT BCD TO BINARY, FIXED LENGTH
CONVERT BINARY TO BCD, FIXED LENGTH

71 11511 2S 24 51

F R
(5C, 76, 53,
73,10 OR 11) (ORIGIN)

T
(DESTINATION)

SC EXTEND 32 BIT (R) TO 64 BIT (T)

This instruction extends the 32-bit floating point number from register R into a 64-bit

floating point number and transmits the result to 64-bit register T (Figure 6-7). The

value of the resulting exponent is 24 10 less than the exponent of the origin operand.

The result coefficient results from the transmission of the origin coefficient to bits 16

through 39 of register T. The instruction clears the rightmost 24 bits of the destina

tion register.

If the contents of register R is indefinite, the result in register T is also indefinite

and data flag bit 46 (indefinite result) is set. If the contents of register R is machine

zero, register T contains machine zero, and data flag bit 43 (result machine zero) is

set.

SD INDEX EXTEND 32 BIT (R) TO 64 BIT (T)

This instruction extends the 32-bit floating point number from register R into a 64-bit

floating point number and transmits the result to 64-bit register T. The value of the

resulting 16-bit exponent is the same as the origin operand's exponent with the sign bit

extended through bit 0 of the result exponent.

The result coefficient results from the transmission of the rightmost 24 bits of the

origin register into bits 40 through 63 of the destination register. Bits 16 through 39

of the destination register are set to the sign of the origin coefficient.

If the contents of register R is indefinite, the result in register T is also indefinite

and data fiag bit 46 · (indefini.fe result) is set. If the contents of register R is machine

zero, register T contains machine zero and data flag bit 43 (result machine zero) is

set.

6-39
602S6000 08

0 34 71 1112 II 11 1110 1324 21 n 31

I I I I I I
ORIGIN REGISTER (R)

6 4 0 0 6 8 A 6

'---y---J
EXPONENT

EXPONENT
(6416 - 24 10 =
64 t6 - I 8 f 6 = 4C

COEFFICIENT

TRANSFERRED FROM
ORIGIN REGISTER

DESTINATION REGISTER (T)

COEFFICIENT

CLEARED BY
INSTRUCTION

Figure 6-7. Example of Register Content for an Extend
32-Bit (R) to 64-Bit (T) Instruction

76 CONTRACT 64-BIT (R) T0-32 BIT (T)

This instruction (Figure 6-8) contracts the 64-bit floating point number from register R into

a 32-bit floating point number. The instruction then transmits the result to a 32-bit register

designated by T. The resulting 8-bit exponent represents the sum of the least-significant

eight bits of the origin exponent and 24 10• If the result exponent cannot be contained in eight

bits, exponent overflow or underflow is detected.

The following input exponent conditions are listed with the corresponding results of the 76

instruction execution.

6-40

Input
Exponent

7FFF

7000

6FFF

0058

0057

FF78

FF77

8000

Result

Result indefinite

Indefinite data flag bit 46 (indefinite result) is set.

Result indefinite

Data flag bits 42 (exponent overflow) and 46 (indefinite result) are set.

Result exponent is 24 10 larger than the input exponent. The leftmost
24 bits of the input coefficient are transferred.

Result is machine zero. Data flag bit 43 (result machine zero) is set.

60256000 08

Bits 16 through 39 of the origin are transmitted directly to the rightmost 24 bits of

register T as the result coefficient. This operation contracts all source operands having

a negative coefficient with an absolute value of less than 224 to -1 (Figure 6-8) and positive

coefficients with an absolute value of less than 224 to zero.

ORIGIN REGISTER (R)

0 14 Tl 1112 111• 1110 2124 2T21 1112 161• 1940 4144 4T41 SISZ SSH HeO H

0 4

EXPONENT
(4C16 + 2410 =
4C16+l816 = 6416)

c F

0 14 Tl

F F

I
+

II II II le 19 10 21 14 2T H 11

F F F F F I F I
~'-------------~-------------1

EXPONENT COEFFICIENT

DESTINATION REGISTER (Tl

Figure 6-8. Example of Register Content for a Contract 64-Bit (R) to 32-Bit (T)
Instruction

60256000 08 6-41

77 ROUNDED CONTRACT 64 BIT (R) TO 32 BIT (T)

This instruction performs a rounded contract operation on the 64-bit, floating point operand

in origin register R and transmits the 32-bit floating point result to destination register T

(Figure 6-9). The resulting 8-bit exponent represents the sum of the least-significant eight

bits of the origin exponent and 2410· If the result exponent cannot be contained in eight bits,

exponent overflow or underflow is detected. The instruction then adds a +1 to bit position

40 of the origin operand and coefficient. If overflow occurs, the ~nstruction increases the

exponent by one and right-shifts the coefficient one place. The leftmost 24 bits of the

shifted result coefficient are transmitted to the corresponding bits of the destination register.

The 8-bit exponent of each nonend case result element is 2410 (25 10 if overflow occurred)

greater than the exponent of the corresponding source element.

Applicable data flag bits are 42 (exponent overflow). 43 (result machine zero). and 46

(indefinite result).

7C LENGTH OF (R) TO (T)

This instruction transmits the leftmost 16 bits of origin register R to the rightmost 16-bit

positions of destination register T. The leftmost 48 bits of register T are cleared.

53/73 SIGNIFICANT SQUARE ROOT OF (R) TO (T)

This instruction transmits the square roott of a 32-bit (53 function code) or 64-bif (73 function

code) operand in register R to register T. The result contains the same number of significant

bits as the source operand. Applicable data flag bits are 45 (square root result imaginary),

46 (indefinite result). and 43(result machine zero).

10 CONVERT BCD TO BINARY. FIXED LENGTH

This instruction converts the packed BCD number in register R to a signed (two's complement)

binary number and transfers the result to the rightmost 48 bits of register T. Figure 6-10

shows an example of the register contents following a convert BCD to binary. fixed length

instruction. The leftmost 16 bits of register T are cleared by this instruction. The con

version is undefined for binary results greater than +(247 -1) or less than -(247 -1). Thus,

the largest decimal number that this instruction can convert is ± 140, 737, 488, 355, 327.

The instruction sets data flag bit 39 (refer to data flag register bit assignments in section

5) for numbers outside this range.

If the input number is not a valid BCD number. the results are undefined.

11 CONVERT BINARY TO BCD, FIXED LENGTH

This instruction converts the rightmost 48 bits (two's complement, binary number) of register

R to a packed BCD number and transfers the result to register T. The result is a number

containing 15 packed BCD digits (four bits per digit and the sign in bits 60 through 63). Figure

6-10 shows the packed BCD format; the binary range is : (247 -1).

t Appendix B describes the floating point square root operation.

6-42 60256000 08

ORIGIN REGISTER (R)
3 4 7 8 II 12 19 20 23 24 27 28 31 32 39 40 43 44 47 48 51 52 55 56 59 60 63

1111 11 I I 1100 1111 I I 11 11 I I 11 11 I I I I I I 11 11 11 11 11 11 11 I I 11 I I 11 1111 I 100
(F) (F) (F) (C) (F) (Fl (F) (Fl (F) (F) (F) (F) (F) (F) (F) (C)

EXPONENT(-4) COEFFICIENT (- 4)

COEFFICIENT AFTER -t I ADDED TO BIT 40
16 19 20 23 24 27 28 31 32 35 36 39 40 43 44 47 48 SI 112 SS H 59 CO U

(FC16+ 2410=

FC15+ 1815=+1415

0 34
I

78 II 12 15 16

11 1100

I
I

* \
19 20 23 24 27 28 31

0001 010 I 0000 0000 0000 0000 0000 0000
(I} (5)

DESTINATION REGISTER (T)

'----v----1~~~~~~~~~~~~~~

EXPONENT COEFFICIENT

Figure 6-9. Example of Register Content for a Rounded
Contract 64-Bit (R) to 32-Bit (T) Instruction

ORIGIN REGISTER (R)

0 14 71 1111 1611 1920 2114 2721 1132 HH 1940 4144 4748 5151 55H HIO

PACKED BCD NUMBER

DESTINATION REGISTER (T)

0 14 71 1111 1518 It 10 2124 27 H 11 H H H H 40 43 44 47 48 51 52 55 H 5110 H

00000000000000000000000000000000 1001II101001 0111

UNCHANGED 48-BIT BINARY EQUIVALENT

60256000 08

Figure 6-10. Example of Register Content for a Convert
BCD to Binary, Fixed-Length Instruction

6-43

0

54/7 4 ADJUST SIGNIFICANCE OF (R) PER (S) TO (T)

55/75 ADJUST EXPONENT OF (R) PER (S) TO (T)

78 1516 23 24 31

F R S T
(54174

OR 55175) (SOURCE I) (SOURCE 2 DESTINATION)

SOURCE OF
FLOATING
POINT
OPERAND

INTEGER
SHIFT COUNT

54/74 ADJUST SIGNIFICANCE OF (R) PER (S) TO (T)

This instruction adjusts the significancet of the floating point operand in register R and

transmits the adjusted result to register T. The rightmost 24 bits (48 bits for 74 function

code) of register S contains a signed, two's complement integer. The absolute value of this

integer is a shift count.

If the shift count is positive, the machine shifts the coefficient of the operand left the number

of positions specified by the shift count or the number of positions needed to normalizet the

coefficient, whichever is the smaller number.

In either case, the instruction reduces the exponent of the operand by one count for each

position shifted. The instruction left-shifts an all zero coefficient the number of positions

specified.

If the shift count is negative, the instruction shifts the coefficient of the operand right the

number of positions specified by the shift count and increases the exponent of the operand by

one count for each position shifted. If (R) is indefinite, the machine sets the (T) to indefi-

nite and sets data flag bit 46 (indefinite result). If (R) equals machine zero, the machine

sets (T) to machine zero but does not set data flag bit 42 (exponent overflow).

Ths instruction is undefined if the absolute value of the shift count is greater than 23 10 for

the 54 or 47 10 for the 7 4 instruction. The addition of the shift count can cause either

exponent overflow or exponent underflow.

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46

(indefinite result).

t Appendix B describes the process of adjusting a floating point operand for significance and
of normalizing a floating point number.

6-44 60256000 08

55/75 ADJUST EXPONENT OF (R) PER (S) TO (T)

This instruction transmits the adjusted operand from register R to result register T. The

instruction sets the result exponent equal to the exponent of the operand in register S. The

machine forms the coefficient of the result by shifting the coefficient of the operand from

register R.

The shift count is the difference between the exponents in registers R and S. If the exponent

in register R is greater than the exponent in register S, the machine shifts the coefficient

left. The shift is to the right if the exponent in register R is less than the exponent in regis

ter S. If register R contains a zero coefficient, the exponent in register S is transferred to

register T with an all zero coefficient. Figure 6-11 shows that the exponent in register S

exceeds the exponent in register R by 4 (62 - 5E = 4); thus, the machine right-shifts the

coefficient in register R four positions.

If a left shift exceeds the number of positions required for normalization, the machine sets

the result to indefinite and sets data flag bit 42 (exponent overflow). If either or both operands

are indefinite or machine zero, the machine also sets the result to indefinite. However, in

this case, data flag bit 46 (indefinite result) is set and data flag bit 42 (exponent overflow) is

not set.

2A ENTER LENGTH OF (R) WITH I (16 BITS)

0
R T I

(16 BITS) I (2~)
This instruction transfers operand I contained in the rightmost 16 bits of the instruction

word to the leftmost 16 bits of the 64-bit register specified by R. The rightmost 48 bits

of register R are left unchanged.

28 ADD TO LENGTH FIELD

0
F

(28)

78 1516 2324
R S

(SOURCE 1) (SOURCE 2)
T

STINATl

31

This instruction adds bits O through 15 of the 64-bit register specified by R to bits 48 through

63 of 64-bit register Sand stores the re,sult in bits 0 through 15 of register T. Overflow is

ignored if it occurs. Bits 16 through 63 of register R are transferred to bits 16 through 63

of register T.

60256000 08 6-45

6-46

0 34 71 1112 1511 1120 2324 2721 31

0101 1110 0000 0110 1110 1111 1110 ORIGIN OPERAND I (R)
(5) (E)

EXPONENT

0 3 4 78

(Ol < 6) (E) <Fl <El (INITIAL VALUE)

COEFFICIENT

SIGN BIT(-)

II 12 15 16 19 20 2324 27 28 31

ORIGIN OPERAND 2 (S}

'-----y----1'--~~~~--~~~~~~~~

EXPONENT COEFFICIENT
(THESE BITS HAVE NO EFFECT ON

THE EXECUTION OF THE INSTRUCTION)

0 34 78 1112 15 II 19 20 23 24 2721 51
T

0110 0010 q 1 I I I 011
(6) (2) J(Fl (8)

0000 0110
(0) (6)

1110
(El

I I I I
(F)

RESULT OPERAND (T)
(FINAL VALUE)

~'--~~~~~-r~~~~~~~-

EXPONENT COEFF I Cl ENT

NOTE: NUMBERS IN PARENTHESES REPRESENT
HEXADECIMAL EQUIVALENTS OF BINARY GROUPS

Figure 6-11. Example of Register Content for an Adjust
Exponent of (R) Per (S) to (T)

60256000 08

BRANCH INSTRUCTIONS

The branch instructions compare or examine single bits, a 48-bit index, 32-bit floating

point operands, or 64-bit operands. The results of the comparison or examination de

termine whether the program continues with the next sequential instruction (branch con

dition not met) or branches to a different instruction sequence (branch condition met).

The different instruction sequence may consist of a single instruction or a series of

instructions beginning at the branch address specified in the branch instruction format.

A special branch instruction provides for entering or leaving the monitor program.

20/24 BRANCH IF (R) = (S) (32/64 BIT FP)

21/25 BRANCH IF (R) -J; (S) (32/64 BIT FP)

22/26 BRANCH IF (R) ~ (S) (32/ 64 BIT FP)

23/27 BRANCH IF (R) < (S) (32/64 BIT FP)

0 7 8 1 5 16 23 24
F R s T

(20 - 27) (ORIGIN (ORIGIN (BRANCH
OPERAND 1} OPERAND 2) ADDRESS)

3.....!

These instructions perform the indicated comparison of the 32-bit (64-bit for the 24 through

27 function codes) floating point (FF) operands in the registers designated by R and S.

If the specified comparison condition is met, the next instruction is read from the branch

address, contained in the rightmost 48 bits of 64-bit register T. Register T is a 64-bit

register for the 20 through 27 instruction codes. The byte and bit portions of the address

(bits 59 through 63) are ignored in the reading of an instruction. If the specified comparison

condition is not met, the next instruction is read from the next sequential program address.

The comparison of (R) and (S) is based on the floating point compare rules in appendix B.

An example of a 22 instruction is also in appendix B.

If either or both of the compared operands are indefinite, data flag bit 46 is set.

60256000 09 6-47

I

2F REGISTER BIT BRANCH AND Al TER

G DESIGNATOR
,------1\----\

s T T

yy
G BITS 0 1 I: ~

BRANCH CONDITION
G BITS 2 1 3:

BJ-T AL TERI NG

This instruction examines bit 63 of register T as specified by the G designator. A

branch is made to the address contained in the rightmost 48 bits of register S. The

branch occurs according to G bits 0 and 1 (Table 6-4).

TABLE 6-4. BIT BRANCHING CONDITIONS

G Designator Branch Conditions

Bit 0 Bit 1

0 0 No branch

0 1 Unconditional branch

1 0 Branch if object bit = 1

1 1 Branch if object bit = 0

After the branch decision has been made and regardless of the decision, the object bit

is altered according to G· bits 2 and 3 (Table 6""!5).

TABLE 6-5. BIT ALTERING CONDITIONS

G Designator Altering Conditions

Bit 2 Bit 3

0 0 No altering

0 1 Toggle the bit

1 0 Set the bit 1

1 1 Clear the bit 0

6-48 60256000 09

33 DAT A FLAG REGiSiER Bii BRANCH AND Al TER

0

F
(33)

G
~

78 1516 1718 2324
d e T

(BRANCH
ADDRESS)

31

G BITS O, 1: BIT (00-3F)
____.- \Y~'----C- NUMBER OF DFBR

BRANCH CONDITION G BITS 5, 6:
SOURCE OF BRANCH ADDRESS

G BITS 2, 3:
BIT ALTERING

This instruction examines the state of a specified bit in the data flag branch register (DFBR).

If the designated branch condition is met, the next instruction is read from the half-word

address as sp~cified by G designator bits 5 and 6. If the designated branch condition is not

met, the next instruction is read from the next sequential program address. In either case,

the state of the DFBR bit is altered as specified by G bits 2 and 3.

The 6-bit designator I specifies the number of the DFBR bit. The bit numbers range from

00 through 3F (00 through 63
10

). The 2-bit designator denotes the branch condition

(Table 6-6).

TABLE 6-6. DFBR BIT BRANCH CONDITIONS

G Designator Branch Condition

Bit 0 Bit 1

0 0 No branch

0 1 Unconditional branch

1 0 Branch if selected DFBR bit = 1

1 1 Branch if selected DFBR bit = 0

After the branch decision is made, the instruction alters the DFBR bit according to G

designator bits 10 and 11 (Table 6-7). The bit altering occurs regardless of the branch

decision.

60256000 09 6-49 •

I

I

I

TABLE 6-7. DFBR BIT AL TE RING CONDITIONS

G Designator

Bit 2 Bit 3 Altering Conditions

0

0

1

1

0 No altering
I 1 Toggle the bit I

0 Set the bit 1

1 Clear the bit

I NOTE I

Do not attempt to alter bits in the DFBR product
field since the altering of these bits is only a
function of the corresponding data flag and flag
mask bits.

0

The source of the branch address is determined by the state of G designator bits .5

and 6 (Table 6-8).

TABLE 6-8. DFBR BRANCH ADDRESS SOURCE CONDITIONS

G Designator

Bit 5 T Bit 6 Branch Address Source Conditions
I

T
0 ! 0 or 1 Register T contains the branch address.

1
!

0 Branch address is formed by addition of the T
designator.., used as an item count, in half-words
to the content of the program address register.

1 1 Branch address is formed by the subtraction
of the T designator, used as an item count,
from the contents of the program address
register.

6-50 60256000 09

3B DAT A FLAG REGISTER LOAD/STORE

I 0 (3~)
7 8 15 16 23 24 31

'--v--1 '--v--1
~ws~~ o~s~~

OF DFB OF DFB

This instruction transfers the content of register R to the DFB register. The 3B

instruction also transmits the previous content of the DFB to the T register. Since

the DFB is a 64-bit register, both R and T must be 64-bit registers. The R and T

designators may be equal which exchanges data flag values.

I NOTE I
An immediate data flag branch results at the ter
mination of this instruction if the new content of
the DFB register meets the appropriate branch con
ditions.

32 BIT BRANCH AND ALTER

0

F
(32)

G

7~16
d e

2324

s T
OBJECT BIT (BRANCH
ADDRESS) ADDRESS)

__ YYY
G BITS 5, 6:

31

G BITS O, 1: ~ ~
BIT BRANCHING ~ BRANCH ADDRESS SOURCE DESIGNATOR BITS

G BITS 2, 3:
BIT ALTERING

This instruction reads the word from the address contained in the register designated

by S and examines the specified object bit.. The remaining bits are not used in the

instruction. If the object bit meets the ?ranch condition specified by G designator bits

O and 1, the next instruction is read from the branch address contained in the T

register. If the branch condition is not met,, the next instruction is read from the

next sequential program address. In either case,, G designator bits 2 and 3 determine

the final state of the object bit. Tables 6-9 and 6-10 list the bit branching and altering con

ditions, respectively. Table 6-11 lists branch address source conditions.

60256000 09 6-51 I

I s-s2

TABLE 6-9. BIT BRANCHING CONDITIONS

G Designator

Bit 0 Bit 1 Branch Conditions

0 0 No branch

0 1 Unconditional branch

1 0 Branch if object bit = 1

1 I 1 Branch if object bit = 0

TABLE 6-10. BIT ALTERING CONDITIONS

G -Designator

Bit 2 Bit 3 Altering Conditions

0

0

1

1

0 No altering

1 Toggle the bit

0 Set the bit 1

1 Clear the bit 0

I NOTE t
If G bits o. 2. and 3 = o. the word containing
the object bit is not read and the object bit
is not altered.

If G bit 0 = 1 and G bits 2 and 8 = 0 • the word
is read but the object bit is not written.

TABLE 6-11. BRANCH ADDRESS SOURCE CONDITIONS

G Designator

Bit 5 Bit 6 Branch Address Source Conditions

0 0 or 1 Register T contains the branch address.

1 0 Branch address is formed by addition of the
T designator. used as an- item count. to the
contents of the program address register.

1 1 Branch address is formed by the subtraction
of the T designator. used as an item count,
from the contents of the program address
register.

60256000 09

• Figure 6-12 shows an exampie of the bit branch and alter instruction with assumed I

0

register content and branch conditions. The object bit is located in bit 7 of byte 3 of

word 100000. Since G bit 0 equals 1 and G bit 1 equals 0 and the object bit is a 1,

a branch takes place to the assumed branch address which is contained in the T

register as specified by G designator bits 5 and 6.

78 15 16 23 24 31
32 INSTRUCTION

F s T
(32} 0000 (07) (I 0)

BRANCH IF
OBJECT BIT:z I ~~NCH ADDRESS

\. BIT ADDRESS TOGGLE OBJECT
BIT

S=07

(000000000400001F)
0

0

0

3 4 7 19 II 12 15 16 19 20 23 24 2728 31 32 35 36 3940 4344 4748 5152 5558 5960 63

0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000 0001 1111 REG 07

34

BITS NOT USED
IN ADDRESS

HALF-WORD ADDRESS BYTE ADDRESS=3'7Ly-i
BIT ADDRESS =7 ~
(000000005000000) T=IO

7 8 1112 15 16 19 20 23 24 27 219 31 32 35 36 3940 43 44 47 48 51 52 55 56 59 60 63

0000 0000 0000 0000 0000 0000 0000 0000 0000 01 O I 0000 0000 0000 0000 0000 0000 REG 10

~~~~--~~~~~---1--~~~~~~~~~~-~~~~~~~~~~~~~~~~'---v--1 

34 

BITS NOT USED 
IN ADDRESS 

HALF-WORD ADDRESS 

WORD READ FROM BIT ADDRESS 

BITS NOT USED 
IN INSTRUCTION 
WORD ADDRESS 

78 II 12 15 16 19 20 23 24 27 28 31 32 35 36 39 40 43 44 47 48 51 52 55 56 59 60 63 

ADDRESS 
10000016 

'----v--1 L---v----1~--r----'-----v--'~'----y---J L--...y-----1 
BYTE 0 

60256000 09 

BYTE I BYTE 2 BYTE 3 

31 
r1 

'o' I I 

BYTE 4 BYTE 5 

OBJECT BIT 

LL OBJECT BIT 
(AFTER TOGGLING) 

BYTE 6 

Figure 6-12. Example of Bit Branch and Alter Instruction 

BYTE 7 

I 

6-53 



36 BRANCH AND SET (R) TO NEXT INSTRUCTION 

31 INCREASE (R) AND BRANCH IF (R) t 0 

35 DECREASE (R) AND BRANCH IF (R) ~ 0 

0 7 8 15 16 23 24 31 
F R s T 

{36, 31 {INDEX) {BASE 
OR 35) ADDRESS) 

36 BRANCH AND SET (R) TO NEXT INSTRUCTION 

This instruction first stores the address of the next sequential instruction into register 

R. The program then branches to (S) + (T), where (S) represents an item count (index) 

of half-words and (T) specifies the base address. The machine forces bits 0 through 

15 of register R to zeros. Bits 59 through 63 are undefined. If the instruction desig

nator R is equal to the designator S, the results of this instruction are undefined. 

If S = 0 and R = T, this instruction sets register R to the half-word address of the 

next instruction. The program then continues at the next instruction. This method 

provides a means of sampling the Program address register. 

31 INCREASE (R) AND BRANCH IF (R) f 0 

35 DECREASE (R) AND BRANCH IF (R) f 0 

This instruction first increments (31 function code) or decrements (35 function code) the 

rightmost 48 bits of register R by one. The leftmost 16 bits of register R are not 

altered and arithmetic overflow (if it occurs) is ignored. 

If the increment/ decrement operation produces zeros in the rightmost 48 bits of R, the 

program reads the next sequential instruction. If the rightmost 48 bits of R are not 

all zeros, the program branches to (S) + (T). where (S) represents an item count in half

words and (T) specifies the base address. 

I 6-54 60256000 09 



09 EXIT FORCE 

This instruction provides a means of exchanging program control between a job and monitor 

program. For example,, if the machine is operating in the job mode, the exit force instruc

tion causes a branch to the beginning address of a portion of the monitor program. Similarly, 

in a monitor program, the exit force performs a branch to a job program. The starting 

address of the invisible package and register file for the job is defined by the content of the 

register designated by T and S, respectively. For either type of exchange (job to monitor 

or monitor to job), the invisible package and register file for the current job are transferred 

to/from central storage. (Refer to section 5 for a more comprehensive description of 

monitor and job operations. ) 

JOB TO MONITOR 

The following exit force instruction format is an exchange from a job to a monitor program. 

The R,, S,, and T designators are unused and must be zeros. In this case,, the instruction 

switches the machine to the monitor mode and unconditionally branches to the address speci

fied by the rightmost 48 bits of register 05 in the register file. Register 05 address is an 

absolute bit address since the machine was switched to the monitor mode. The monitor 

program then proceeds from this beginning address. 

0 

F 
(09) 

R 

7 

MONITOR TO JOB 

s T 

The following instruction format is an exchange from the monitor to a job program. The 

R designator is unused and must be zeros. 

0 
F 

(09) 

60256000 09 

23 24 
S T 

(FIRST ADRS FIRST AORS 
OF REG FILE F INVISIBL 

PA 

6-55 I 



When exchanging from the monitor mode to a job, this instruction loads the registers from 

the register file stored in central storage, beginning at the address contained in the register 

specified by S. The instruction also loads the invisible package for the applicable job from 

central storage, beginning at the address in the register specified by T. The S and T 

I addresses are absolute bit addresses. Figure 6-13 shows formats of the addresses in 

the Sand T registers. 

I 

In the S register, bits 38 through 63 define the starting address in central storage for 

loading the 256
10 

words in the register file. The starting address is the same as the 

first address of the page and must be on a small page boundary. In a small page starting 

address, bits 49 through 63 are always zeros. This means that the absolute bit range of the 

register file starting address is 0000000
16 

through 3FF80oo16. Since the register file is 

loaded from central storage in sequential 64-bit words, the bit, byte, and half-word bits of 

the address are not advanced. Thus, from an assumed starting address of XX00000 16, the 

sequence of loading the register file advances the address of a value of XX3FCo 16• If either 

the S designator or the content of register S is equal to zero, the job's register file and the 

monitor's register file are identical. 

In the T register, bits 38 through 63 define the starting address in central storage for loading 

the invisible package into 16 sequential word locations. 

S REGISTER MUST BE o's 

0 115 II 37 H 48 41 157 1581516061 63 

I ~ ['-v-1'-v-1 
DEFINES FIRST WORD BIT 
ADDRESS OF LOCATION lBYTE 
REGISTER IN PAGE HALF 
FILE WORD 

v 
MUST BE o's 

T REGISTER 

MUST BE o's 
I A ' 

0 115 16 37 38 153 154 15715815llOll 63 

-o--~ol (16 BITS) 104 ii i •ol 

6-56 

MUST BE o's DEFINES Fl RST 
ADDRESS OF 
INVISIBLE 
PACKAGE 

WORD '-..-JJ [t~ 
.LOCATION HALF 
IN WORD 
INVISIBLE 
PACKAGE 

Figure 6-13. Address Formats for Exit Force Instruction (Monitor to Job) 

60256000 09 



BO INDEX; BRANCH IF (A} + (X) = (Z} 

Bl INDEX, BRANCH IF (A) + (X) :# (Z) 

B2 INDEX, BRANCH IF (A) + (X) ,::= (Z) 

B3 INDEX, BRANCH IF (A) + (X) < (Z) 

B4 INDEX, BRANCH IF (A) + (X) s (Z) 
BS INDEX, BRANCH IF (A) + (X)> (Z) 

G 

0 

(SU BFUNCTION) 
7~16 23 24 31 32 39 40 47 48 55 56 63 

F X A 
(BO - 85) (REGISTER) (REGISTER) 

y 8 z 
(INDEX (BASE ADRS (REGISTER) 

REGISTER) EGISTER OR 

c 
(REGISTER) 

. l'-v--' '-G BIT 7 

~ BRANCH CCJ-ITROL( G BITS 5,6) 
GBIT4 

INDEX) 

In these instructions,, X,, A,, and Z designate registers. If G bit 4 is clear (0~ the rightmost 

48 bits of these registers contain signed,, two's complement integers. If G bit 4 is set (1 ),, 

these registers contain unsigned two's complement integers. These instructions then form 

the sum of the two integers from registers X and A. Overflows are ignored if they occur. 

These instructions then compare the sum to the integer in register Z according to the speci ~ 

fied branch condition. The original content of register Z is read before A + X is stored in 

register c. 
[(A)+ (X) = (Z) or (A)+ (X) -f (Z),, etc.] 

If the specified branch condition is met,, the program address branches to the address speci

fied by the branch control bits in the G designator (Table 6-12 ). In all cases,, the index 

is an item count in half-words that is left-shifted five places before the addition or sub

traction. 

TABLE 6-12. INDEX BRANCH INSTRUCTION DESIGNATORS 

G Designator 
Bit State Branch Address 

Bit 5 = 0 Branch to address formed by adding the item count in register Y 
to the base address in register B. The item count is shifted left 
five places before the addition. Overflow .. if any, is ignored. If 
the B or y designator is equal to the c designator,, the instruction 
is undefined. 

Bit 5 = 1 Branch according to the state of G designator bit 6 as follows-: 

60256000 09 6-57 I 



TABLE 6-12. INDEX BRANCH INSTRUCTION DESIGNATORS (Contd) 

G Designator 
Bit State Branch Address 

Bit 6 = 0 Branch to the address formed by adding the B and Y designators 
(taken together as a 16-bit item count of half-words) to the 
address of this instruction. 

Bit 6 = 1 Branch to the address formed by subtracting the B and Y desig-
nators (taken together as a 16-bit item count of half-words) from 
the address of this instruction. 

If the branch condition is not met, the program reads the next sequential instruction. 

In either case, the instruction stores the sum of the two 48-bit integers, (A) + (X), in 

the rightmost 48 bits of the register specified by C and the leftmost 16 bits of (A) in 

the leftmost 16 bits of register C. 

If the B or Y designator is equal to the C designator, this instruction is undefined. 

Comparisons against 48 zeros are enabled by setting the Z designator to zero. If G 

bit 7 is set, the register conflict checking hardware allows the conflict check on the 

B, Y, C, and Z designators to be omitted. This shortens instruction execution times 

but should be attempted only when there are no conflicts between the B, Y, C, and z 
I designators and any result register designator in the previous 40 instructions. 

Table 6-13 relates integer ranges to the state of G bit 4. 

TABLE 6-13. INTEGER RANGES 

48-bit hexadecimal quantities in descending order 
from the largest to the smallest, from top to bottom. 

G bit 4 = 0 G bit 4 = 1 
Largest 7F ------ FF FF ------ FF 

7F ------ FE FF ------ FE 

00 ------ 01 80 ------ 01 
00 ------ 00 80 ------ 00 
FF------ FF 7F ------ FF 

• Smallest 80 ------ 01 00 ------ 01 
80 ------ 00 00 ------ 00 

6-58 60256000 09 



0 

86 BRANCH TO IMMEDIATE ADDRESS (R) + (48 BITSj 

0 7 8 15 16 63 

(~) I (lN::rX) I 
I 

(BASE ADDRESS) 

This instruction branches unconditionally to the address formed by the sum of the right

most 48 bits of register R as the index and I as the base address. The index repre

sents an item count of half-words which is shifted left five positions before being added 

to the base address. Overflow,, if any, is ignored. 

The instruction makes a direct branch to the base address if the R designator is zero 

or if the rightmost 43 bits of register R are zeros. 

VECTOR INSTRUCTIONS 

The vector instructions perform operations on ordered scalars. Generally,, the vector 

instructions read the scalars,, which are in the form of 32-bit or 64-bit floating point 

operands,, from consecutive storage locations over a specified address range (field). 

These instructions perform the designated operation on each set of operands and store 

the results in consecutive addresses of a result field,, beginning at a specified starting 

address. Thus,, a single vector instruction can perform operations on two source fields 

of vector operands and automatically store the results in a result field of storage. 

INSTRUCTION FORMATS 

All vector inE'\tructions use the same general instruction format (Figure 6-14). I 
Table 6-14 lists each of the 8-bit designators in the vector instructions and gives a 

brief description of the function. 

7 8 15 16 23 24 31 32 3940 47 48 51556 ., 
F G x A y B z c 

(8X,9X) (OFFSET (FIELD LENGTH (OFFSET (FIELD 'LENGTH (CV BASE 
(FIELD LENGTH 

(SUB FUNCTION) 8 8 a 
FOR A ) BASE ADDRESS) FOR B} BASE ADDRESSj ADDRESS) BASE ADDRESS) 

C+I 
!<OFFSET FOR 

NOTE: CV DENOTES CONTROL VECTOR L :_a~> __ 

Figure 6-14. General Vector Instruction Format I 

60256000 09 6-59 



I 

TABLE 6-14. VECTOR INSTRUCTION DESIGNATORS 

Designator Function 

F Function code 

G Subfunction code 

x, y Specify registers that hold address offsets for corresponding 
source operand fields 

A, B Specify registers that hold base addresses and field lengths for 
source operand fields 

z Specifies register that contains the base address of the control 
vector (CV) 

c Specifies register that contains the base address and field length 
of the result field 

If C+l is used by the instruction, C must be an even number 
since the machine forms C+l by forcing the rightmost bit of 
C to a 1. If the C designator specifies an odd-numbered register, 
the results of the instruction become undefined. 

C+l Specifies register that holds offset for the control vector and the 
result field; C+l always references an odd register 

SUBFUNCTION BITS 

Table 6-15 lists the subfunction bits and their general usage. Table 6-16 gives the 

sign control subfunction bits. 

If the Z designator is zero, no control vector is used; thus, bit 9 becomes undefined. 

If G bit 3 and/or G bit 4 = 1, the A and/or B designator denotes a constant which is 

used as each element of the respective vector field. The instruction ignores the asso

ciated offsets in this case. The registers specified by A and B, respectively, contain 

these constants. Registers A and B are always 64-bit registers except when G bits 3 and 4 

indicate a broadcast. When broadcasting, the size of registers A and B track the size speci

fied by G bit 0 (refer to Table 6-15). 

Appendix C gives a composite listing of the G designator bits usage according to function 

code. 

6-60 60256000 09 



If bit 3 of G, 4 of G, or both are ones, then the A, B, or both source fields are 

constants used as each element of the respective vector stream and the associated 

off sets are ignored. These constants are found in the registers specified by A and B, 

respectively. If bit 3, 4, or both are ones and bit 0 of G is a one, register A, B,, 

or both are 32-bit registers. For all other cases, registers A and B are 64-bit registers. 

TABLE 6-15. SUBFUNCTION BITS 

Bit 
No. State Subfunction 

0 0 64-bit operands (words) 

1 32-bit operands (half-words) 

1 0 Control vector operates on ones 

1 Control vector operates on zeros 

2 0 No offset for result field and control vector 

1 Off set for result field and control vector 

3 0 Normal source vectors A 

1 Broadcast repeated (A) 

4 0 Normal source vectors B 

1 Broadcast repeated (B) 

5 x 
6 x Sign control (refer to Table 6-16) 

7 x 

60256000 09 6-61 

I 



Bit 5 

0 

0 

1 

1 

x 

x 

TABLE 6-16. SIGN CONTROL SUBFUNCTION BITS 

Bit 6 Bit 7 Control Operation 

0 

1 

0 

1 

x 

x 

x 

x 

x 

x 

0 

1 

The operands from the A stream are used in the 
normal manner. 

The coefficients of the operands from the A stream 
are complemented before they are used. 

The magnitude of the operands from the A stream is 
used. 

The coefficients of all positive operands from the 
A stream are made negative before they are used. 
Negative operands are not altered. 

The operands from the B stream are used in the 
normal manner. 

The magnitude of the coefficients of the operands 
from the B stream is used. 

I NOTE I 
1. X denotes that the bit can be either a 0 or a 1. 

2. Any required complementing is two's complement. 
Complementing is performed before the operand is 
used in the specified arithmetic operation. If the 
complement of the coefficient 8000 0000 0000 is 
required, the operand is used as 4000 0000 0000 
with 1 added to the exponent. 

3. Any necessary significance calculation is performed before the 
previous complementing is performed. 

FIELD LENGTHS, BASE ADDRESS, AND OFFSETS 

I Figures 6-15 and 6-16 show the formats of the register contents for the field lengths, 

base addresses, and offsets. The computer allows 16-bit field lengths to be specified 
16 

and assumes them to be positive. The field lengths are in the range of 0 through 2 -1 

before any offset adjustments. The offsets are taken from a 48-bit register and must 

have at least 32 identical sign bits. The offsets are in the range of -216 to 216-i. 

The operation of subtracting the offset from the field length must result in a field length 

which is positive and less than 2
16

-1. If the resulting vector length is not positive 

and less than 2
16

-1, it is treated as a zero vector length. The instruction obtains 

the beginning address by adding the offset (including sign extension) to the base address 
I (Figures 6-16 and 6-19 ). In the (offset + base address) addition, the offset is first 

shifted left five (half-words} or six (words) places since the bit and byte bits are not 

used in the vector operand field address. 

6-62 60256000 09 



A OR B 

0 II II 

FIELD LENGTH BASE ADDRESS 

X OR Y 
0 .... 47 48 

- 32 BITS FOR SIGN EXTENSION OFFSET 

Figure 6-15. Operand Field Length, Base Address, and Offset Formats 

The C and C+l registers are identical in format to the A or B and X or Y content, respec

tively. If bit 10 specifies that vector field C is to be offset, register C+l contains the offset. 

FIELD 
LENGTH 

CONTROL VECTOR 

32-BIT OR 64-BIT OPERAND 
i...__:":] 
~ l BASE ADDRESS 

>p OSITIVE OFFSET 

, ~ -

v 
>(U 

BEGINNING ADDRESS 
(BASE ADDRESS + OFFSET) 

ECTOR FIELD 
SEO PORTION) 

Figure 6-16 .• Vector Field Address Format 

I 

When the instruction specifies a control vector (Z designator I= O), a single bit from the 

control vector controls the storing of each element in the result field. When a bit from the 

control vector prohibits the storing of a result element, the instruction does not alter the 

previous c-Oflt€nt of the corresponding .storage address. Thus, the nth bit read from the 

control vector prohibits or allows the storing of the nth result in the result vector field. I 

60256000 09 6-63 



Bit 1 of the G designator selects whether a 0 or a 1 control vector bit allows the 

storing of the result (Table 6-11 ). If bit 1 of the G designator is a 0 or a 1, the in

struction stores the nth result if the nth bit of the contrcl vector is a 1 or a 0, respec

tively. 

The rightmost 48 bits of the register designated by Z contains the base address of the 

I control vector (Figure 6-17). The control vector uses the same field length as result 

vector c. 

The addition of the offset and base address provides the starting bit address of the 

control vector. Since offsets are item counts, the result vector and control vector use 

the same offset; however, the control vector offset represents a bit offset. 

BASE ADDRESS 

Figure 6-17,. Control Vector Base Address Format (Z) 

VECTOR INSTRUCTION TERMINATION 

Vector instructions terminate when the result vector field is exhausted. 

1. Exhausting a vector which has an offset. 

A vector is deemed exhausted prior to the first operand fetch if the result 

of subtracting the offset from the field length is zero or negative. 

For cases of zero field length, the resulting vector length used is the 

rightmost 16 bits of the two's complement of the offset. If this 16-bit 

quantity is zero or negative, the vector is deemed exhausted prior to the 

first operand fetch. 

A vector is exhausted when the result of subtracting both the offset and the 

number of operands encountered thus far, from the field length, is zero. 

2. Exhausting a vector which has no offset and exhausting other data fields or 

data strings. 

The string, field, or vector is deemed exhausted prior to the first operand 

fetch if its length is zero. These strings, fields, and vectors are exhausted 

when the result of subtracting the number of elements encountered thus far 

from the field length is zero. 

t Appendix C provides a complete listing of the various vector instruction field conditions 
and the resulting termination conditions. 

6-64 60256000 09 



EXAMPLE OF VECTOR INSTRUCTION OPERATION 

Figure 6-18 shows the register content and Figure 6-19 shows the resulting vector address I 
fields of an assumed add U, A+B-C (80) vector instruction. Although an 80 instruction is 

used, the general sequence of operations is the same for all vector instructions. 

The G designator bits used in the example specify the following conditions for the operation 

of the instruction. 

G-Designator Bit 

0 = 1 

1 = 0 

2 = 1 

3 = 0 

4 = 0 

5 = 0 } 
6 = 0 

7 = 0 

Condition 

32-bit, floating point operands 

Control vector operates on ones (ones in control 

vector enable storage of corresponding control 

vector) 

Result vector and control vector fields are 

offset (C+l designator is used) 

Normal vector source stream A 

Normal vector source stream B 

Use the operands from the A stream in the normal 

manner 

Use the operands from the B stream in the normal 

manner 

The X, A, Y, B, Z, and C register designator numbers are shown in parentheses. Thus, 

register 10 contains the offset for vector field A, register 11 contains the base address for 

vector field A, etc. 

Since the bit and byte address bits are not used in the vector field addresses, successive 

half-word addresses are shown. Thus, incrementing address 1000015 by a half-word count 

gives 1002016 as the next successive address. 

With the A vector offset equal to +4 and the B vector offset equal to -4 (Figures 6-18 and 

6-19), the first vector add U, A+B-C operation adds the A and B operands from the re

spective addresses 1008015 and 1FF8016 • The result of the first add operation does not 

store, because bit 7 of the addressed control vector field is a zero. Successive add opera

tions add successive A and· B operands, storing the results only when a corresponding one 

appears in the control vector. 

60256000 09 6-65 

I 



I 

6·66 

INSTRUCTION FORMAT 

71 15 II 23 24 lll 12 H 40 47 41 1111 II Ill 

F G x A y B z c 
(80) (10) ( II l (121 (13) (14) (16) 

INDICATES USE OF C + I 

32-BIT OPERANDS (17) 

( x = 10) 

3 4 71 II 12 Ill Ill 19 zo 2ll 24 27 ZI 31 52 35 311 39 40 43 44 47 41 51 52 515 511 51110 113 

0 0 00 0000 0000 0000 0000 0000 0000 0000 0000000000000100 

32 SIGN BITS OFFSET FOR A 

(A= II) 
ll 4 1e 1112 15111 1920 2324 2721 3132 llllllll 3940 044 4741 5152 1111511 5110 13 

I ()C,_____,. __ -+--Cl 11 I 0 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 :o 0 0 0 0 

FIELD LENGTH 

( y = 121 

BASE ADDRESS BIT 
ADDRESS 
NOT USED 

3 4 7 II II 12 15 II 19 20 23 24 27 211 31 32 35 31 39 40 43 44 4 7 411 51 52 5111111 5910 13 

-···fH:~ ... -.-. ;~t·· ···· ···· ···· ·· 

0 

~----------~~---------__J"-~----..----~ 
32 SIGN BITS OFFSET FOR B 

( B = 131 
34 711 11 12 111 111 It 20 23 24 27 21 31 32 35 31 lit 40 43 44 47 41 Ill 52 H H 5910 H 

FIELD LENGTH 

( z = 14) 

BASE ADDRESS BIT 
ADDRESS 
NOT USED 

34 711 1112 1511 1920 2324 2721 5132 31131 3940 4144 4741 5152 5556 5910 Ill 

-ooool:;,-:t ooo,ooooloooo[oooo 0000 oo' 100000000 ooo oo 1 oo 
BASE ADDRESS 

( c = 16) 

3 4 7 I II 12 15 16 1920 23 24 27 21 3132 35 36 39 40 4344 47 48 5152 55 56 11110 13 

~·-+---1----9>() I 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 
I 

FIELD LENGTH BASE ADDRESS 

( C +I= 17) 

34 78 1112 1516 19 20 23 24 27 28 31 32 35 36 39 40 43 44 47 411 51 52 55 56 59 60 13 

32 SIGN BITS OFFSET FOR Z AND C 

Figure 6-18. Vector Instruction Example of Register Content· 
and Instruction Format 

60256000 09 



60256000 09 

A VECTOR 
ADDRESS SOURCE FlELD 

10000 

I 0020 

10040 

IOOSO 

10080 

I OOAO 

IOOCO 

IOOEO 

10100 

10120 

10140 

10160 

IFF80 

IFFAO 

IFFCO 

IFFEO 

20000 

20020 

20040 

200SO 

20080 

200AO 

200CO 

200EO 

o OPERANDS :s1 

0 

Ao 

Al 

A2 

A3 

A4 

A5 

As 

A1 

A9 

A9 

A10 

A11 

B VECTOR 
SOURCE Fl ELD 

OPERANDS 

8_4 

B_3 

B_2 
s_, 
Bo 

s, 
82 

B3 

84 

85 

Bs 

87 

C VECTOR 
RESULT Fl ELD 

:SI 

BASE ADDRESS l 
+4 OFFS ET 

....l 

STARTING ADDRESS 

STARTING 

( 

FIELD 
LENGTH 

NO OFFSET) 

FIEL D 
LENG TH 

(WITH OFF SET) 

ADDRESS 

r 
-4 OFFSET 

J 
BASE ADDRESS 

FIEL D 
LENG TH 

SET) (WITH OFF 

FIELD 
LENGTH 

(NO OFFSET) 

" ' 

OPERANDS BEFORE OPERANDS OPERANDS AFTER 
ADD OPERATION -0--~____, ~.----3-1 ADD OPERATION 

--~--

40000 Co CO BASE ADDRESS 
40020 C1 c, +3 OFFSET 

C2 C2 40040 

40060 

40 0 80 

400AO 

400CO 

400EO 

c3 C3 STARTING ADDR ESS FIELD 

C4 A5 + 8_3 

c5 C5 

LENGTH 
(NO OFFSET) 

FIELD 
LENGTH 

Cs A7 +e_ 1 ( WITH OFFSET) 

C7 Aa+Bo 

Z CONTROL VECTOR 
FIELD 

0 I 2 :S 4 5 6 7 8 9 10 11 

30000 lxjx!xlxjilol1lol1lol1l1l\ 
BASE ADDRESS t ' BASE ADDRESS 30007 

30004 ~ WITH OFFSET 
+3 OFFSET 

Figure 6-19. Vector Address Fields for 
Vector Instruction Example 

I 

6-67 



80 ADD U; A + B•C 
81 ADD L; A+ B~C 

82 ADD N; A+ B +C 

84 SUB U; A - e-.c 
85 SUB L; A - B-+C 

86 SUB N; A - B-+c 
88 MPV U; A. e-.c 
89 MPV L; A. e~c 

88 MPY S; A• B-+c 

ac DIV U; A/B•C 

SF DIVS; A/B~C 

G 

~ 
0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63 

F x A y B z c 
(80 - SF) (OFFSET (FIELD LG (OFFSET (FIELD LG (C V BASE (FIELD LG 

FOR 'A) & BASE ADRS' FOR B) & BASE ADRS ADRS) & BASE ADRS 

I 

BITO;_j 1 Y'-v-' c + 1 
1(0FFSET I LG BITS 5,6, 7: I FOR C & Z) I G 

0 
I 

G 

= 64 BIT OPERAND 
= '32 BIT OPERAND 

BIT 1: 
O= CONTROL VECTOR 

OPERATES ON PS 
I =CONTROL VECTOR 

OPERATES ON O'S 

SIGN CONTROL 

G BITS '3,4 
BROADCAST 

G BIT 2. 
O= DO NOT OFFSET RESULT FIELD 
I= OFFSET RESULT FlELD 

L _____ J 

These instructions per-form the indicated floating point t arithmetic operations on the 

elements of vector fields A and Bo The instructions store the result elements in 

vector field C. All of the vector elements are in the form of 32-bit or 64-bit floating-

point operands. The u. L. N,, and S designators specify the upper,, lower. normal-
ized upper. or significant results. respectively. 

Applicable data flag bits are 41 (floating point divide fault). 42 {exponent overflow). 43 
.(result machine zero), and 46 (indefinite result). 

t Appendix B describes the floating point arithmetic operations. 

I s-sa 
60256000 09 



83 ADD A; A+ B+C 

87 SUB A; A -B-+C 

G 
~ 

0 7 8 1516 
F 

(83 & 87) 
x 

(OFFSET 
FOR A) 

23 24 31 32 
A 

(FIELD LG 
BASE ADRS) 

y 

(OFFSET 
FOR B) 

39 40 47 48 55 56 63 
z c B 

(FIELD LG 
& BASE ADRS 

{C V BASE (FIELD LG 
ADDRESS) BASE ADRS 

_J. tG BITS 3,4 
+ 1 I 

I (OFFSET I 

~ ~o~ ~:: :~ BROADCAST 

G BIT r G BIT 2 
CONTROL VECTOR OFFSET 

These instructions add/subtract bits 16 through 63 of the B vector elements to/from bits 

16 through 63 of the A vector elements (Figure 6-20). The instructions store the re- I 
sults in bits 16 through 63 of the C vector elements. Bits 16 through 63 of the source 

vector elements are treated as 48-bit. positive integers. Arithmetic overflow is ignored 

if it occurs. 

The instructions transmit bits 0 through 15 of the A vector elements to corresponding 

portions of the C vector elements. As shown in the previous instruction format, bit 0 

of the G designator must be zero since only 64-bit operands are used. 

0 I 4 7 I II 12 I& 16 19 20 

I 0 I 0 I 0 I c I 0 

TRANSFERRED DIRECTLY 
TO C VECTOR 

. ELEMENT (BITS 0-15) 
0 5 4 7 I II 12 I& 16 

0 

.. 20 

O I 4 7 I II 12 IS II 19 '20 

0 

0 

0 

A VECTOR ELEMENT 

25 24 27 21 II 52 55 H H 40 45 44 47 41 11 52 H H 19 10 15 

0 0 

ADDED TO B VECTOR EL~MENT 
B VECTOR ELEMENT 

25 24 27 21 11 52 H H H 40 41 44 47 41 .II 52 SI II H 10 

0 I 0 I 0 I 0 I 0 I 0 I 0 0 0 

C VECTOR RESULT ELEMENT 
21 24 27 21 51 12 II II H 40 41 44 47 41 11112 IHIH &910 61 

0 0 0 9 

Figure 6- 20. Example of an Add A; A + B - C Instruction 

60256000 09 6-69 

I 



98 TRANSMIT A ~c 

99 ABSOLUTE A~ C 

91 FLOOR A_.C 

92 CEILING A ~c 

9 A EXPONENT OF A -.c 
90 TRUNCATE A ~c 

G 

0 7~16 23 24 31 32 

G BIT o: ~ 
O= 64-BIT OPERAND 
I= '32-BIT OPERAND 

98 TRANSMIT A - C 

x 
{OFFSET 

FOR A) 

G BIT 1: 

(FIEto • 
LENGTH & 
BASE AORS 

0 = CONTROL VECTOR OPERATES ON I'S 
I= CONTROL VECTOR OPERATES ON O'S 

55 56 63 
z c 

(C V BASE (FIELD LG 
ADRS) BASE ADRS) 

I C + 1 I 

I (OFFSET : 
:__ :0~ E ~ !1 

This instruction transmits each element of the source field A to successive elements of 

result field C throughout the modified field length. 

99 ABSOLUTE A - C 

This instruction transmits the absolute value of each element of the source field A to 

successive elements of result field C throughout the modified field length. All vector 

elements are 32- or 64-bit,, floating point operands. If the coefficient of the source 

operand is positive,, the element is transmitted directly to the result vector field; if 

the coefficient is negative, the coefficient is complemented before transmission. 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 

(indefinite result). 

91 FLOOR A - C 

This instruction converts each floating point element of source field A to the nearest integer 

less than or equal to it. The resulting integers are transmitted to corresponding elements 

of result field C throughout the modified field length. The resulting integer is always an un

normalized, floating point number with a positive exponent. 

If the exponent of the source element is positive (greater than or equal to zero), the instruction 

transmits the element directly to the result field. If the exponent of the source element is 

negative, the instruction right-shifts the coefficient end-off and increases the exponent by one 

for each position shifted until the exponent becomes zero. Sign bits are extended on the left 

during the shift. The instruction then transmits the shifted coefficient with zero exponent to 

the corresponding element of result field C~ 

I s-7o 60256000 09 



The Y and B designators and G bits 4 through 7 are unused and must be zeros. 

If zero is used as a source element,, the instruction transmits all zeros as the 

corresponding result element. 

Figure 6-21 shows an example of a floor A - C (91) operation with one assumed I 
source vector element. Since the exponent of the source 'element is negative, the 

instruction right-shifts the coefficient thrEfe places and increments the exponent plus 

three. The sign bits are extended on the left. The result element becomes a minus 

one. Thus, the floor A - C (91) instruction provides a means of converting positive 

fractions to zero and negative fractions to a minus one. 

The applicable data flag bit is 46 (indefinite result). 

0 34 7 8 

I 
Ill I 111 I I I I 0 I I 

I I 

J 1 v I 
EXPONENT 

L EXPONENT 
SIGN BIT L 

0 ! 4 78 

11 12 IS 16 19 20 23 24 27 28 31 

II II I I I I I I I I I I I I I 

v 
COEFFICIENT 

F COE FICIENT 
SIGN BIT 

I I I 0 

1112 IS 16 19 20 23 24 27 28 31 

o:o 0 0 0 0 0 0 I: I I I I I I I I I I I I I I I I I I I I I I I 0 

,__1~_._~__,,~~-'-~--...~--''--~-'-~--i.~----i~ 

A SOURCE VECTOR 
ELEMENT 

(FD FFFFFE) 
y '---v-1 
-3 -2 

C RESULT VECTOR 
ELEMENT 

'----v---"-v-' 
EXPONENT SIGN 

BITS SHIFTED 
END OFF 

{00 FFFFFF) 
Y· '---y--J 

INCREMENTED BITS 
TO 0 EXTENDED 

(-3+3=0) COEFFICIENT SHIFTED 
RIGHT 3 POSITIONS 

0 -I 

Figure 6-21. Example of Floor A - C Instruction with Negative Exponent I 

60256000 09 6-71 



92 CEILING A - C 

This instruction converts each floating point element of source field A to the nearest 

integer greater than or equal to it. The resulting integers are transmitted to corre

sponding elements of result field C throughout the modified field length. The resulting 

integer is always an unnormalized floating point number with a positive exponent. 

If the exponent of the source element is positive,, the instruction transmits the element 

directly to the result field. If the exponent of the source element is negative, the 

instruction right-shifts the two's complement of the coefficient end-off and increases the 

exponent by one for each position shifted until the exponent becomes zero. Sign bits 

are extended on the left during the shift. The instruction then recomplements the 

shifted coefficient and transmits it with zero exponent to the corresponding element of 

the result field. 

The Y and B designators and G bits 4 through 7 are undefined and must be zeros. 

If machine zero is used as a source element, the instruction transmits all zeros as 

the corresponding result element. 

I Figure 6-22 shows an example of a ceiling A - C (92) operation with one assumed 

source vector element. Since the exponent of the source element is negative,, the 

instruction right-shifts the two's complement of the coefficient three places and in

crements the exponent by plus three. The zero sign bits are extended on the left 

The result element becomes all zeros. Thus, zero is the closest integer greater than 

the A source vector element. The ceiling A - C (92) instruction provides a means 

of converting negative fractions to zero and positive fractions to plus one. 

The applicable data flag bit is 46 (indefinite result). 

6-72 60256000 09 



0 3 4 78 1112 1516 1920 2324 2728 31 

1i1 I I I I 01 111 
I 

I I I I I I I I I I I I I I 11 11 1110 
I I 
l ...1. 

~''\ COEFFrCIENT 
iEXL.P/\;Nv~:~-. 

1 

COEFFICIENT 
SIGN BIT SIGN BIT 

0 34 7 8 II 12 15 16 19 20 23 24 2728 31 

1T1 I I I I 0 I oiooo 0000 0000 0000 0000 0010 
I I 
l I_ 

'--y---1--~~~~--~~~~ 

EXPONENT COEFFICIENT 

0 7 8 1112 15 16 19 20 2324 27 28 31 

oTooo 0000 opoo 0000 0000 0000 0000 0000 
I I 

J_ _l 

010 

'-v-1 

A SOURCE VECTOR 
ELEMENT 

{FD FFFFFE) 
y~ 
-3 -2 

A SOURCE VECTOR 
ELEMENT (TW0

1
S 

COMPLEMENT OF 
COEFFICIENT) 

C RESULT VECTOR 
ELEMENT {UNCOM
PLEMENTED) 

\ 

\_BITS SHIFTED 
END OFF 

COEFFICIENT SHIFTED 

'--y---1'-y-I 
EXPONENT SIGN 

BITS 
INCREMENTED EXTENDED 

TO 0 
(-3+3=0) RIGHT 3 POSITIONS 

0 3 4 78 II 12 15 16 19 20 23 24 27 28 31 

p;ooo I 
0000 opoo 0000 0000 0000 0000 0000 

I I 
J_ _I_ 

EXPONENT COEFFICIENT 

NOTE; 32 - BIT OPERANDS ARE ASSUM ED. 

C RESULT VECTOR 
ELEMENT (Two's 
COMPLEMENT OF 
COEFFICIENT) 

Figure 6-22. Example of Ceiling A - C Instruction with Negative Exponent I 

60256000 09 6-73 



9A EXPONENT OF A - C 

The elements of result vector C are formed by storing the exponents from input vector 

A into the rightmost position of the coefficients of vector C. The sign of the exponent 

is extended left to the coefficient sign bit position. The exponent portion of each ele

ment of vector C is cleared to zero. 

The Y and B designators and bits 4 through 7 of the G designator are unused and 

must be set to zeros. 

90 TRUNCATE A - C 

This instruction transmits to elements of vector C the nearest integer the magnitude of 

which is less than or equal to the corresponding elements of source vector A. These 

integers are represented by unnormalized floating point numbers having positive ex

ponents. 

If the origin-operand exponent is positive (greater than or equal to zero),, the instruction 

transmits the source element directly to the corresponding result elements. 

If the source-element exponents are negative,, the machine right-shifts the magnitude of 

the corresponding coefficients end-off and increases the exponent by one for each posi

tion shifted until the exponent becomes zero. 

The operation extends zeros on the left during the shift after complementing if the coef

ficient is negative. If the coefficient of a source element is positive., the shifted coef

ficient with zero exponent is transmitted to the corresponding result element. If the 

coefficient of a source element is negative.. the two's complement of the shifted coef

ficient and zero exponent are transmitted to the corresponding result element. If 

zeros are transmitted as a source element., zero is also transmitted as the corre

sponding result element. 

I Figure 6-23 shows a typical source element and the corresponding result element for a 

truncate A - C (90) instruction. A 32-bit source element with a positive coefficient and 

negative exponent is assumed. A right shift of eight is required to reduce the negative 

exponent to zero. 

The applicable data flag bit is 46 (indefinite result). 

6-74 60256000 09 



0 

0 54 78 1112 1118 1920 2524 2728 51 

til I I 1000 opoo 0000 0001 I I I I I I I I I I I I 

l<Fl (8) ~O) (O) ( I) (F) (F) (F) 

'----v----1\ v 
EXPONENT COEFFICIENT 

0 54 78 9 1112 1516 1920 2524 2728 51 

o:ooo 0000 0~000 0000 0000 0000 0001 I I I I 

!CO) (0) ~0) (Q) (0) (0) ( I ) (F) 

'----v----1\ y 

EXPONENT COEFFICIENT 

(A) 

TYPICAL SOURCE 
ELEMENT 

( 0 0 I F FF X 2 - 8 ) 

(C) 

RESULT ELEMENT 

(OOOOIF X 20) 

Figure 6-23. Example of Source and Result Elements for a Truncate A - C Instruction I 

98 PACK A,B+C 

F 
( 98) 

x 
(OFFSET 

FOR A) 

BROADCAST 

25 24 5152 

A 
(FIELD LENGTH 

8 BASE 
ADDRESS) 

J ~
\_GBITS 3,4: 

G BIT 0: G _BIT 2: 
0=64-BIT OPERAND 0- DO NOT OFFSET RESULT FIELD 
I =32-BIT OPERAND I= OFFSET RESULT FIELD 

G BIT 1: 

y 
(OFFSET 
FOR Bl 

0 =CONTROL VECTOR OPERATES ON ts 
I = CONTROL VECTOR OPERATES ON dS 

3940 47 48 

B Z 
(Fl ELD LENGTH ( C v BASE 

a Ac8~~SSl ADDRESS) 

85 

c 
(FIELD LENGTH 

8 BASE 
ADDRESS) 

C +I 
I (OFFSET t 
I FOR Ca Zl I L _____ J 

This instruction moves an exponent from an element of source vector A and a coefficient 

from an element of source vector B into the corresponding exponent and coefficient posi

tions of result vector C. 

This instruction forms the elements of a floating point result vector C. The elements 

of result vector C consist of exponents from the rightmost 16 bits (64-bit operands) or 

8 bits (32-bit operands) of source vector A elements and coefficients from the rightmost 

48 bits/24 bits of the corresponding elements of source vector B. 

Figure 6-24 shows an example of an assumed A source and B source vector element I 
used in forming a C result vector element in a pack A. B - C instruction. 

60256000 09 6-75 



v 

I 

6-76 

0 3 4 7 8 II 12 15 16 19 20 23 24 27 28 31 

0000 0000 0000 0000 0000 0000 0100 0000 
(4) (0) 

\ I 

"""'-.... 

0 34 78 1112 15 16 19 20 23 24 27 28 31 

0010 0010 0101 11 I I 0001 1100 0111 0000 
(2) ( I } (5) ( F) ( I ) (C) ( 7) (0) 

\ J 

II 

r ' 0 34 78 II 12 15 16 19 20 23 24 2728 31 

0100 0000 010 I 111 I 0001 1100 0111 0000 
(4) (0) (5) (F) ( I ) (C) (7) (0) 
~'--~~~~~~.....-~~~~~~ 

EXPONENT COEFFICIENT 

A SOURCE VECTOR 
ELEMENT 

B SOURCE VECTOR 
ELEMENT 

C RESULT VECTOR 
ELEMENT 

Figure 6- 24. Example of Pack A, B - C Instruction 

60256000 09 



9C EXTEND 32 BIT A •64 BIT C 

96 CONTRACT 64 BIT A ~32 BIT C 

0 

97 ROUNDED CONTRACT 64 BIT A~32 BIT C 

93 SIGNIFICANT SQUARE ROOT OF A~C 

G 
,----1L-.. 
tt 

7 8 15 16 23 24 55 56 63 
F 

( 9C, 96 
93, 97) 

G 
(SUB
FUNCT 

x 
(OFFSET 
FOR A) 

A 
(LENGTH & 
BASE ADRS) 

z 
(C V BASE 

ADRS) 

c 
(FIELD LG 
& BASE ADRS) 

\_G BITS 5, 6: t 
SIGN CONTROL 

9C EXTEND 32 BIT A - 64 BIT C 

: c + 1 : 
1 ( OFFSET FOR I 
I C & Z) I L. ______ J 

t IN THIS GROUP OF INSTRUCTIONS, THE SIGN CONTROL 
BITS ARE USED IN INSTRUCTION 93 ONLY. IN ALL 
OTHER CASES, THESE BITS MUST BE ZERO. 

ttG BIT 0 MUST BE A ZERO FOR THE 9C, 96, AND 97 
INSTRUCTION BUT MAY BE A ZERO OR A ONE FOR THE 
93 INSTRUCT ION. 

This instruction forms the elements of result vector C by extending the 32-bit, floating 

point operands of vector field A into 64-bit, floating point operands. The instruction 

reduces the exponent of the result elements by 24
10

• The 9C instruction transmits the 

rightmost 24 bits of the corresponding source elements to bits 16 through 39 of the 

result elements. The rightmost 24 bits of each result element are cleared. 

If an element of vector A is indefinite, the instruction sets the corresponding element 

of vector C to indefinite and sets data flag bit 46. If an element of vector A is machine 

zero, the instruction stores machine zero as the corresponding element of vector C and 

sets data flag bit 43 (result machine zero). 

Since the instruction uses only one source field, the Y and B designators and bits 4 

and 7 of the G designator are not used. These bits must be zeros. 

Figure 6-25 shows an example of the extension of one assumed source element into the I 
corresponding result element. The instruction reduces the exponent of the assumed 

source element (4F16) by 2410 to 3716. The sign of the result exponent is extended in 

bits 0 through 7. The 9C instruction always clears bits 40 through 63 of the result

element coefficients. 

60256000 09 6-77 



I 

0 3 4 7 8 11 12 1!5 16 19 20 23 24 27 28 31 

0100 I I I I 01 I I 
(4) (F) 

'---v---'\ 
EXPONENT 
(4F16 -2410)= 

(4F16-l816) = 

( 3715) 

(7) 
0 I 00 1110 0110 

(4) {E) (6) 

y 
COEFFICIENT 

t 

1000 0000 
(8) (0) 

SOURCE ELEMENT 
VECTOR FIELD A 

RESULT ELEMENT 

l~--------.VECTOR FIELD C t THESE BITS ARE CLEARED 
,~~~~~~~-- ,~~~~~~~~~~--~~~~----.. 

0 3 4 7 8 " 12 1!5 16 19 20 23 24 27 28 31 32 3!5 36 39 40 43 44 47 48 !51 !52 !5!5 !56 !59 10 63 

0000 0000 0011 0111 011 I 0100 11I0 0110 1000 0000 0000 0000 0000 0000 0000 0000 
(0) (0) (3) (7) (7) (4) {E) (6) (8) (0) (0) (0) (0) {O) (0) (0) 

\ I\ 
v v 

EXPONENT COEFFICIENT 

Figure 6-25. Example of Extend 32 Bit A - 64 Bit C Instruction 

96 CONTRACT 64 BIT A - 32 BIT C 

This instruction contracts each 64-bit,, floating point element of vector field A into its cor

responding 32-bit floating point result. The result element becomes the corresponding ele

ment of result vector field C. The instruction increases each nonend case source-element 

exponent by 2410 in forming the 8-bit exponent for the result element. 

The following is a list of input exponents and the corresponding result of the 96 instruction 

execution. 

6-78 

Input Exponent 

7FFF 

7000 
6FFF 

0058 
0057 

FF78 
FF77 

8000 

Result 

Result indefinite 

Data flag bit 46 (indefinite result) is set. 

Data flag bits 42 (exponent overflow) and 46 
(indefinite result) are set. 
Result exponent is 24 10 larger than the input 
exponent. The leftmost 24 bits of the input 
coefficient are transferred. 

Result is machine zero. Data flag bit 43 
(result machine zero) is set. 

60256000 09 



The coefficient of the result element becomes the leftmost 24 bits of the source element 

coefficient. This operation contracts the coefficients of all elements with an absolute 

value of less than 224 (neglecting the exponent) to minus one for negative coefficients 

and zero for positive coefficients. 

The Y and B designators and bits 0 and 4 through 7 of the G designator are not used 

and must be zeros. Applicable data flag bits are 42 (exponent overflow), 43 (result 

machine zero), and 46 (indefinite result). 

97 ROUNDED CONTRACT 64 BIT A - 32 BIT C 

This instruction performs a rounded contract operation on the 64-bit, floating point 

elements of vector field A and transmits the 32-bit, floating point results to elements 

of vector field C (Figure 6-26). Each resulting 8-bit exponent represents the sum of I 
the least significant eight bits of the source element and 2410 • If the result exponent 

cannot be contained in eight bits, exponent overflow or underflow is detected. 

The instruction then adds a plus one to bit positions 40 of the source-element coefficients. 

If overflow occurs (Figi.lre 6-26 ), the instruction increas_es the exponent by one and I 
right-shifts the coefficient one. place. (Since the result coefficient in Figure 6-26 

contains all zeros, the example does not show the right-shift of one place.) The leftmost 

24 bits of the shifted result coefficient are transmitted to the corresponding bits of re-

sult element C. The exponent of each nonend case result element is 2410 (2510 if 

overflow occurred) greater than the exponent of the corresponding source element. 

The Y and B designators and bits 0 and 4 through 7 of the G designator are not used 

and must be zeros. Data flag bits 42 (exponent overflow), 43 (result machine zero), 

and 46 (indefinite result) conditions are probed by the execution of this instruction. 

60256000 09 6-79 



TYPICAL SOURCE ELEMENT 

O 3 4 7 8 II 12 I& le II 20 23 24 27 28 31 52 35 38 59 40 43 44 47 48 51 52 55 56 59 60 e3 

I I I I I I I I I I I I I I 00 I I I I I I I I I I I I I I I I I I 11 I I I I I I I I I I I I I I I I I I I I I I I I 1100 

( F) (F) (F) (C) ( F) (F) ( F) ( F) (F) ( F) (F) (F) (F) (F) (F) ( c) 

EXPONENT(-4) COEFFIClENT (-4) 

( FC 16 + 2410 = COEFFICIENT AFTER + I ADDED TO BIT 40 

FC 16 + 18 16 = + 1416 ) " 
19 20 23 24 27 28 31 32 35 36 59 40 43 44 47 48 51 52 5& H 59 IO 83 

! 
0000 0000 0000 0000 0000 0000 0:1 I I I I I I I I I I I I I I I I I I I I I I 

I 
OVERFLOW +-1--~~~~~-~~~~~~--

(ADD + I TO EXPONENT) I 
I 
I 
I 

I 

0 3 4 7 fl * II 12 15 1e 19 20 23 24 27 28 31\ 

0001 0101 0000 0000 0000 0000 toooo 0000 
( I ) (5) 

RESULT ELEMENT C 

"---v---'-------------------P---------------------
EXPONENT COEFFICIENT 

Figure 6-26. Example of Vector Elements for a Rounded 
Contract 64-Bit AC-32-Bit C Instruction 

93 SIGNIFICANT SQUARE ROOT OF A -c 

This instruction forms the square roott of each element of vector field A and places the 

result in each corresponding element of vector field C. Each result element contains 

the same number of significant bits as the corresponding source element. 

Since the instruction uses only one source field, the Y and B designators and bits 4 

and 7 of the G designator are not used and must be zeros. Bits 5 and 6 of the G 

designator perform sign control functions as given in Table 6-16. Applicable data 

flag bits are 43 (result machine zero), 45 (square root result imaginary), and 46 

(indefinite result). 

t Appendix B describes the floating point square root operation. 

6-80 60256000 09 



0 

94 ADJUST S!GN!F!CANCE OF A PER B ~c 

95 ADJUST EXPONENT OF A PER B +C 

23 24 31 32 39 40 47 48 55 56 63 
F 

{94 OR 95) 
x 

(OFFSET 
FOR A) 

A-

( FIELD LG 
& BASE ADRS) 

y 

(OFFSET 
FOR B) 

B 
(FIELD LG 
& BASE ADRS 

z c 
{C V BASE (FIELD LG 
ADRS) & BASE AD R 

G BIT 0 . I \~---G BIT 3,4: 
O= 64 BIT OPERAND \ \ BROADCAST G BIT 2: 
I: 32 BIT OPERAND -----------o= DO NOT OFFSET RESULT FIELD 

I = OFFSET RESULT FIELD 
G BIT I: 
0 = CONTROL VECTOR OPERATES ON I'S 
I= CONTROL VECTOR OPERATES ON o's 

c + 1 
I (OFFSET FOR I 
I C & Z) I L _____ J 

94 ADJUST SIGNIFICANCE OF A PER B - C 

This instruction adjusts the significance t of floating point elements from vector field A 

and transmits the adjusted elements to corresponding elements of vector field C. The 

rightmost 48 (64 .. bit operands)/24 (32-bit operands) bits of the elements in vector field 

B contain signed, two's complement integers. The absolute values of these integers 

are shift counts. 

If a shift count is positive, the instruction left- shifts the coefficient of the element from 

vector field A the number of positions specified by the shift count or by the number of 

positions necessary to normalize the coefficient, whichever is smaller. In either case, 

the instruction reduces the exponent of the source element by one for each position 

shifted. The instruction left- shifts an all zero coefficient by the specified number of 

positions. 

If a shift count is negative, the instruction right- shifts the coefficient of the source 

element by the shift count. The instruction increases the exponent by one for each 

position shifted. If the absolute value of the shift count is greater than 47
10

, the shift 

operation is undefined. The addition of the shift count can cause either exponent over

flow or underflow. 

If the source element is indefinite, the instruction sets the corresponding result element 

to indefinite and sets data flag bit 46 (indefinite result). If the source element is 

machine zero, the instruction sets the corresponding result element to machine zero (re

sult machine zero) and sets data flag bit 43. Data flag bit 42 (exponent overflow) is also 

applicable. 

tAppendix B describes the operation of adjusting floating point operands. 

60256000 09 6-81 I 



95 ADJUST EXPONENT OF A PER B - C 

This instruction transmits adjusted source elements from vector field A to corresponding 

result elements in vector field C. The instruction sets the exponent of a result element 

equal to the exponent of the associated source element in vector field B. The coeffi

cients of the result elements are formed by shifting the coefficients of the source 

elements from vector field A. 

The difference between the exponents of associated elements from vector fields A and 

B forms the shift count. If the exponent from A is greater /less than the exponent of 

the element from B, the shift is to the left/right, respectively. If A contains a zero 

coefficient, the exponent of the corresponding element of B is transferred to the 

corresponding element of C with an all zero coefficient. If a left shift exceeds the 

number of positions required for normalization, the corresponding result element is 

set to indefinite, and data flag bit 42 (exponent overflow) is set. 

If either or both source elements are indefinite or machine zero. the instruction sets 

the result element to indefinite. In this case, data flag bit 46 (indefinite result) is 

set and data flag bit 42 (exponent overflow) is not set. 

I Figure 6-27 shows one adjust exponent of A per B- C operation with assumed 32-bit 

source elements for vector fields A and B. The exponent of the source element in 

vector field B is greater than the source element from field A by eight. As a result,, 

the instruction right-shifts the coefficient eight positions end-off. The vacated positions 

on the left are filled with zeros. 

6-82 60256000 09 



0 34 7 8 II 12 1!5 16 II 20 23 24 27 21 31 

0011 0000 0010 11 I I 0101 1100 0001 1001 

(3) (0) (2) (F) (5) (C) ( I ) (9) 

~\ y 

EXPONENT COEFFICIENT 

0 3 4 7 8 II 12 15 16 19 20 23 24 27 28 31 

~---~~~~~--,~~~~~~-' 

EXPONENT 

~ 
COEFFICIENT 
(NOT USED) 

0 34 78 II 12 15 16 19 20 23 24 Z7 28 31 

0011 LOOO 0000 0000 0010 I I I I 0101 1100 

(3) (8) (O} (0) (2) ( F) ( 5) (C) 

'----v----1 
0 FILL 

COEFFICIENT SHIFTED 
8 POSITIONS (30-38= -8} 

NOTE: 32- BIT OPERANDS ARE ASSUMED. 

SOURCE ELEMENT 
VECTOR FIELD A 

SOURCE ELEMENT 
VECTOR FIELD B 

RESULT ELEMENT 
VECTOR FIELD C 

Figure 6-27. Example of Adjust Exponent of A Per B-C Operation 

60256000 09 

I 

6-83 



I 

I 

SPARSE VECTOR INSTRUCTIONS 

Arithmetic operations may reduce many elements of a vector field to a zero or near

zero value. Except for positional significance,, the near zero values need not occupy 

storage locations as floating point operands in the vector field. In order to conserve 

storage space and calculating time, the sparse vector instructions make possible the 

expansion and compression of vectors of this type into sparse vectors. 

A sparse vector consists of a vector pair [one of which is a bit string,, identified as an 

order vector,, and the other is a floating point array (32- or 64-bit) identified as the 

data vector]. Sparse order vectors determine the positional significance of the segments 

of the corresponding sparse data vector. 

Typically, a sparse vector is formed by the following procedure. 

1. The compare instructions generate an order vector. 

2. The compress A - C per Z (BC) instruction reduces the corresponding 

vector to a sparse vector. 

3. The BC instruction uses the generated order vector as a means of discarding 

all near- zero elements and still maintain their positional significance through 

the order vector. 

Figure 6-28 shows an example of compressing an initial vector into a sparse vector. 

Initial vector elements Ao through A8 are contained in consecutive, half-word addresses, 

beginning at arbitrary address m. A compare instruction first generates an order 

vector from the initial vector. The compare instruction sets the bits in the order 

vector corresponding to vector elements that are to be retained in the data vector. 

Conversely,, zeros in the order vector designate the near zero elements that are to be 

discarded in the sparse vector field. 

The compress A - C per Z instruction stores the vector elements in consecutive 

addresses of the data vector corresponding to ones in the order vector. Thus, the 

initial vector is now represented or the sparse vector consisting of the order vector 

and data vector. 

6-84 60256000 09 



INITIAL VECTOR FIELD A 
HALF-WORD 

ADDRESS o 31 

m Ao 

m+I A1 (NEAR i!ERO) 

m+2 A2 

m+3 A3 

m+4 A4(NEAR i!ERO) 

m+5 As 

m+6 As (NEAR i!ERO) 

m +7 A1 

m+8 Aa (NEAR i!ERO) 

GENERATED ORDER VL . OR i! 

31 

l1Jol1l1lq1lol1lol 

GENERATED DATA VECTOR A 
HALF-WORD 

ADDRESS ~0 ____________________________ 3_1 GENERATED 

ELEMENTS DISCARDED 

IN FORMING THE 

SPARSE VECTOR FIELD 

n Ao SPARSE VECTOR 

n+I A2 

n +2 A3 1--------------_;_ ____________ ~ 
n +3 As 

1----------------------------~ 
n +4 A1 

NOTE: 32 - BIT OPERANDS 

Figure 6-28. Example of Compressing Initial Vector Field into Sparse Vector Field 

60256000 09 6-85. 



SPARSE VECTOR INSTRUCTION FORMAT 

I All sparse vector instructions use the same general format as shown in Figure 6-29. 

I 

Table 6-17 lists each of the 8-bit designator portions of the sparse vector instruction 

format and the corresponding definition. 

BASE ADDRESSES AND FIELD LENGTHS 

Figure 6-30 shows that the base addresses and field lengths for the sparse data vectors 

are the same format as the corresponding field lengths and base addresses of the 

normal vectors. However, the field lengths associated with source sparse data vectors 

are not used; thus, Figure 6- 30 shows bits 0 through 15 of the registers designated 

by A, B, and C as not used. The field lengths for these vectors are determined by 

the number of ones in the corresponding order vectors. The field lengths of the 

source order vectors (X and Y) and the result order vector (Z) are item counts in 

bits. The addresses to these order vectors are bit addresses. --

SPARSE VECTOR INSTRUCTION TERMINATION 

Sparse vector instructions terminate when the result order vector, as defined by 

corresponding field length, is filled. If the Z designator is zero or if the Z field 

length is zero, the instructions set no data flag bits and become no-operation (no-op) 

instructions. The sparse vector instructions term'inate differently than the vector· or 

vector macro instructions. 

Source order vectors with a zero or short field length are extended with zeros as 

required. If vector Z contains a nonzero field length and the C designator is zero, 

the results of the instruction are undefined. 

6-86 60256000 09 



0 
F 

(FUNCTION) 

G 
(SUBFUNCTION) 

7'a * 1516 2324 

x 
3132 

A y 
3940 4748 5556 

B z c 
( 0 V LENGll-1 · (BASE ADRS) ( 0 V LENGTH (BASE ADRS) ( 0 V LENGTH (LENGTH & 

63 

I & BASE ADRS1 & BASE ADRS) & BASE ADRS~ BASE ADRS) 

I ~----G BITS 5-7: 
G BTT 0: \NOS ~ SIGN CONTROL (SEE TABLE 6-16) 

0 = 642-BIITT OOPEPERRAANNDDSS G BITS 3, 4: 
1 = 3 -B (SEE TABLE 6-15) NOTE: 0 V DESIGNATES ORDER VECTOR 

Figure 6-29. General Sparse Vector Instruction Format 

TABLE 6-17. SPARSE VECTOR INSTRUCTION DESIGNATORS 

8-Bit 
Designator 

F 

G 

X,Y 

A11B 

c 

z 

Definition 

Instruction code 

Suboperation code; the state of G bit 0 denotes the following. 

State Designation 

0 64-bit operands 
1 32-bit operands 

Bits 1 and 2 of the G designator must be zero for all sparse 
vector instructions. When bit 3 is set, the function is broad
cast A. When bit 4 is set 11 the function is broadcast B. G 
bits 5 through 7 function as sign control bits (ref er to 
Table 6-16). t 

Specify the register that contains the base address and field 
length of the source order vector associated with source 
sparse data vectors A and B, respectively 

Specify the register that contains the base address of the corre
sponding source sparse data vector 

Specifies the register that contains the base address of the 
result sparse data vector 

Specifies the register that contains the base address and the 
field length of the result sparse order vector associated with 
result sparse data vector C 

t Appendix C provides a composite listing of the G designator bits usage according to 
function code. 

60256000 09 6-87 • 



0 

0 

I 

6-88 

IS 16 

NOT USED (D 

IS II 

FIELD LENGTH 

(A),(B) OR {C) 

BASE ADDRESS 

(X),(Y)OR(i!) 

BASE ADDRESS 

CD AT THE COMPLETION OF THE SPARSE 
VECTOR INSTRUCTIONS, THE LENGTH 
OF THE RESULTING SPARSE VECTOR 
IS TRANSFERRED TO THIS PORTION 
OF REGISTER C. 

Figure 6-30. Sparse Vector Field Length and Base Address Formats 

60256000 09 

63 

63 



AO ADD U; A+ B~c 

Al ADD L; A + B_.C 

A2 ADD N; A + B ~ 

A4 SUB U; A - B ~c 

AS SUB L; A - B ~c 

A6 SUB N; A -B~C 

G 
(SU BFU NCT ION) 

0 7~16 23 24 3132 3940 47 48 55 56 63 

F ~ x A y B z c 
(AO - A2; ~ (0 V LENGTH {BASE ADRS) (0 V LENGTH (BASE ADRS) ( 0 V LENGTH (LENGTH & 
A4 - A6 ~ & BASE ADRS) & BASE ADRS) & BASE ADR~ BASE ADRS) 

'~ 
G BITS 5-7: 

G BIT 0: ~ SIGN CONTROL BITS (SEE TABLE 6-16) 
0 = 64-BIT OPERANDS ~ 
1 = 32-BIT OPERANDS G BITS 3, 4: 

(SEE TABLE 6-15) 

These instructions perform the indicated floating point operations on elements of sparse 

data vectors A and B. The instructions return the results to elements of sparse data 

vector C. The instructions read an element from sparse data vector A and/or B when the 

corresponding sparse order vector X and/or Y contains a one in the associated bit position. 

A zero in a source order vector causes machine zero to be used as the associated A and /or 

B element. The instructions generate an element in the C field when a one is in the 

corresponding bit position of order vector X and/or Y. Each bit position of order vector Z 

is the bit-by-bit inclusive OR of order vectors X and Y. The instruction transfers the 

resulting field length of sparse vector C to bits 0 through 15 of register C. 

In the previous sparse vector instructions, U, L, and N denote that the upper, lower, and 

normalized floating point t results are generated, respectively. Applicable data flag bits 

for the sparse vector instructions are 42 (exponent overflow), 43 (exponent underflow), and 

46 (indefinite operand). However, the instructions set the data flag bits only when an 

element is actually stored in the result vector. 

Figure 6-31 shows an example of an add U; A + B - C sparse vector instruction operation 

with assumed register contents and vector address fields. Although an AO instruction is 

used in the example, the general execution sequence is the same for all the previous 

instructions. The dashed lines in Figure 6-31 connect the elements of the sparse data vector 

with the corresponding order vector bits. 

t Appendix B describes the normalize floating point operations. 

60256000 09 6-89 • 



0 

I 

I 

I 

I 

I 

I 

6-90 

1 8 15 16 23 24 31 32 

F G 

I 
x A 

I 
y 

AO 80 03 04 05 

"'--SPECIFIES 32- BIT OPERANDS 

BEFORE EXECUTION 

REGISTER 

DATA VECTOR 
HALF-WORD 

39 40 47 48 55 58 

B 2 

06 07 

ADD U; A+B--+ C 
INSTRUCTION 

I FIELD 1 BASE 
1LENGTH1 ADDRESS 

I I 

0 3 = : 0 0 0 7 : 000000004000: 

04= I 0000 100000000500ol 

o 5= : 0008 :000000006000~ 
06 = I 0000 I0000000070001 

o 1 = 1 oo 09 :ooooooooecrool 
I I I 

08 = I 0000 1000000009000, 

A 
0 31 ADDRESSES 0 I 2 3 4 5 6 7 

ORDER VECTOR 

x 

I 
Ao ~-----i1jtjol1§lol1I 5000 I I 
A 3 - - - - - - - -.J I 

1----------------1 5020 I 

A6 -----------...J ..___ __________ __, 5040 

DATA VECTOR 

B 

Bl T ADDRESSES 
4000-4006 

ORDER VECTOR 

y 
0 31 012345678 

B1 

B3 

B4 

Bs 

B6 

B1 

DATA VECTOR 

c 
Ao 

81 

(A3+B~ 
B4 

B5 

(A6+B6) 

B1 

IE 

~ 

liE 

foE 

IC 

IC 

----, ltj1lol1l1l1l1I 
7000L_ =j I ,. ;..-________ _,I I 

7020 I : I 

---------.....l I I 
7040 I: ___________ .J 

7060 : 
------------.....l 

7080 
- - - - - - - - - - - - - _J 

70AO 

BIT ADDRESSES 

6000-6007 

ORDER VECTOR 

2 
31 0 I 2 3 4 5 8 1 8 I 

~ 

"" !<€ 

IC 
~ 

~ 

IE 

- - - - - - ~ 1 I 1 lol 1 I 1 ! 1 I 1 I 1 lol 
9000 I I I I I I _______ _, 11•11 

9020 I I I I _______ ;_ __ JI I I 

9040 I I 
----------.JI 

9060 I __________ _J 

9080 I ___________ J 

90AO _____________ _J 

90CO 

BIT ADDRESSES 

8000-8008 

FIELD BASE 

c 
08 

31 

31 

AFTER EXECUTION 
REGISTERS 03, 04,05,06 AND 07 ARE UNCHANGED. 

1LENGTH1 ADDRESS 
1 

0 8 = i 00 0 7 1000000009000 I 

Figure 6-31. Example of an Add U; A + B -c Sparse Vector Instruction 

63 

60256000 09 



In an AO instruction operation~ an actual addition of an element from data vector A to an 

element from data vector B takes place only when the corresponding source order vector 

bits are both ones. For example, the A3 + B 3 addition takes place because bit 3 of X and Y 

order vectors is a one. In cases where a source order vector bit is a one and the 

corresponding bit for the other source order vector bit is a zero, machine zero is 

essentially added to the sparse vector element. 

At the end of the sparse vector operation, the resulting output data vector length is inserted 

in the corresponding portion of the register designated by C. In the example, the instruction 

transfers a 0007 16 to the leftmost 16 bits of register 08. The 0007 denotes the number of 

elements in the result data vector C. 

AS MPV U; A• B•C 

A9 MPV l; A• B-+C 

AB MPV S; A. e+c 
AC DIV U; A/B+C 

AF DIV S; A/B+C 

G 
(SUBFUNCTION) 
~ 

2324 3132 3940 0 7 8 1516 47 48 5556 63 

F x A Y B Z C 
( SASE ADRS} ( 0 V l£NGTH ( BASE ADRS) ( 0 V LENGTH ( LENGTH & (AO - A2; 

A4 - A6) 
{ 0 V LENGTH 

BASE ADRS . & BASE ADRS & BASE ADRS BAS~ AD~} 

~ . 

G BIT 0: ~G BITS. 5-7: 
O = 64-BIT OPERANDS SIGN CONTROL (SEE TABLE 6-16) 
1 = 32-BIT OPERANDS G BITS 3, 4: 

(SEE TABLE 6-15) 

These instructions perform the indicated floating point t, multiply, and divide operations 

on elements of sparse data vectors A and B. The instructions store the results in elements 

of sparse data vector C. The instructions read an element from vector A and/or B if the 

bit position of the corresponding order vector X and/or Y is a one. An element is generated 

for sparse data vector C when both the X and Y order vectors contain a one in the corre

sponding bit position. Result order vector is the bit-by-bit, logical AND of order vectors 

X and Y. 

t Appendix B describes the floating point arithmetic operations. 

60256000 09 6-91 • 



I 

I 

In the sparse vector instructions previously listed,, U .. L, and S denote that the upper .. 

lower, and significant upper floating point results are generated,, respectively. Appli

cable data flag bits for the multiply and divide sparse vector instructions are 41 

(floating point divide fault), 42 (exponent overflow) .. 43 (result machine zero),, and 46 

(indefinite result). However, the instructions set the data flag bits only when an 

element is actually stored in the result vector. 

Figure 6-32 shows an example of multiply U; A • B - C sparse vector instruction 

operation with assumed register contents and vector address fields. Although an A8 

instruction is used, the general execution sequence is the same for all instructions 

of this type. Dashed lines connect the elements of the sparse data vector with the 

corresponding order vector bits. 

In an A8 operation, an actual product is generated as an element of data vector C only 

when the corresponding order vector bits for the A and B data elements are both ones, 

In cases where one or both of the source order vector bits is a zero, no multiplica

tion takes place and the corresponding result order vector bit is cleared. In Figure 

6-32, only three products are generated by the instruction (A3 • B3 ), (A6 • BG), 

and (A7 e B 7 ). 

At the end of the sparse vector operations, the resulting output data vector length is 

inserted in the corresponding portion on the register designated by c. In the example,, 

the instruction transfers a 0003 to the leftmost 16 bits of register 09. The 0003 de

notes the number of elements in the result data vector C. 

6-92 60256000 09 



0 

F 

AS 

DATA 

7 8 

G 

80 

IS 16 23 24 31 32 

y 

06 

39 40 

B 

07 

47 48 

~ 

08 

"-SPECIFIES 32-BIT OPERANDS MPY U; A• B ~c 
INSTRUCTION 

VECTOR 

BEFORE EXECUTION 

REGISTER 

HALF-WORD 

1 FIELD I BASE 
LENGTH : ADDRESS 

- I 
04= 0 0 0 8 :000000005000 I 

I 

05= oo o o !0000000060001 
I I 

06= 0 0 08 :0000000010001 

07 = 0 0 0 0 1000000008000 I 

08 = 0 0 0 9 : 000000009000: 
I 

09= 0 0 0 O~OOOOOOOOAOOO: 
ORDER VECTOR 

0 A ______________ 31 ADDRESSES o 1 2 3 4 s s 1 a x 
Ao 

. 6000 I I I 

T 

I 

A3 

A6 ~ 
- - - - - - ~ 1 lo@1 IC~ol 1 / 1 I 
-----------' I I 

1--------------~ 6020 I I 
------------_JI 

-------------- 604 0 : 

BIT ADDRESSES 
5000-5007 

-----------~ A1 

DATA VECTOR 
.___ ____________ ___, 6060 ORDER VECTOR 

0 B 31 

B1 IE-
B3 IE-
B4 IE-
Bs IE 
B6 IE-
87 IE 

012345678 

aooo' ltj 1191l 1l1l1l 1 I 
L ___ J I I I I I 

--------- _ _. I I I I 
8020 I It I 
------------'I I I 
8040 t I I 
-----------1 I I 
8060 I I 

-------------•I 
8080 I _____________ J 

y 

BIT ADDRESSES 

7000-7007 

SOAO 
DATA VECTOR 

0 C 31 0 I 2 3 4 S 6 7 8 

ORDER VECTOR 
~ 

~i-----A-:~-,:-:-~---~t ~~; ~~~~t~-~~j lol 
· · A040 

AFTER EXECUTION 

REGISTERS 04,05,06,07 AND 08 ARE UNCHANGED. 

FIELD BASE 1 

:LENGTH: ADDRESS I 
I 

0 9 =: 0 0 0 3 ~ OOOOOOOOAOOO I 

BIT ADDRESSES 

9000-9008 

Figure 6-32. Example of a Mpy U; A • B -c Sparse Vector Instruction 

60256000 09 

c 
09 

31 

I 

31 

31 

I 

6-93 

I 

I 

I 

I 

I 



VECTOR MACRO INSTRUCTIONS 

Vector macro instructions perform operations similar to vector instructions. However, 

some vector macro instructions do not form result vector fields, but store the results 

in one or two registers which are specified by the instruction. In these instructions, 

the control vector contains neither length nor offset, but controls the use of elements 

of the source vectors. Bit 2 of the G designator is undefined and must be a zero. 

Designators C and C + 1 denote 32-bit. registers when bit 0 of the G designator t 
specifies 32-bit operands. In the vector macro instructions that produce result vector 

fields, the control vector performs the same function as in the vector instructions. 

Vector macro instructions with result fields (as opposed to result registers) extend 

short source fields with machine zeros or normalized ones and terminate in an identical 

fashion to the vector instructions. The other vector macro instructions do not extend 

short source vecbrs but terminate when either source vector is exhausted. For in

structions of this type, broadcasting both source fields causes an undefined condition 

to exist. Appendix C gives a complete listing of the various field conditions and the 

resulting termination condition. 

CO SELECT EQ; A = B, ITEM COUNT TO(C) 

Cl SELECT NE; A :I= B, ITEM COUNT TO (C) 

C2 SELECT GE; A 2' B. ITEM COUNT TO (C) 

CJ SELECT LT; A< B, ITEM COUNT TO(C) 

These instructions compare each element of vector field A with its corresponding ele-

1 
m ent of vector field B by subtracting vector B from vector A. The conditions for 

comparing floating point operands are described in the Floating Point Compare Rules, 

appendix B. The comparing operation proceeds until the compare condition is met 

(for a pair of elements not inhibited by the corresponding bit of the control vector) 

or the shorter of the two vector fields is exhausted. If broadcast is selected for field 

A or B (but not both), the instruction will terminate when the nonbroadcast field ter

minates. 

0 

G 
{SUBFUNCTION) 

78 1516 23 24 31 32 
F 

(CO - C3) 
x 

(OFFSET 
FOR A) 

A 
(LENGTH & 
BASE ADRS) 

y 
(OFFSET 

FOR B) 

39 40 47 48 55 56 63 
B 

(LENGTH & 
BASE ADRS) 

z c 
(C V BASE (ITEM COUNT 
ADRS) REGISTER} 

G BITO: I 
0 = 64-B IT OPERAND 

G BITS3,4: 
------- O = NORMAL A/ B SOURCE VECTOR 

1 = BROADCAST REPEATED (A)/(B) 

1 = 32-BIT OPERANDS GBITI: 

I 

0 = CONTROL VECTOR OPERATES ON 1 '5 
1= CONTROL VECTOR OPERATES ON 0 1S 

tAppendix C provides a comprehensive listing of the G designator bits usage according 
to function code. 

6-94 60256000 09 



If the compare condition is met, the item count equals the number of pairs of elements 

encountered up to (but not including) the pair meeting the specified condition,, including 

the pairs inhibited by the control vector. If the compare condition is not met, the item 

count equals the length of the shorter vector after the offset adjustment. The instruction 

stores the item count into the rightmost 48 bits of a cleared register C. t 

The control vector, if used, determines which pairs of elements are compared. For 

example, if G designator bit equals zero, a one bit in the control vector enables the 

comparison of the corresponding pair of source elements. A zero bit in a control vec

tor disables the comparison of the corresponding pair of source elements. The item 

count, as previously described, includes all pairs of elements encountered, including the 

pairs for which the comparison was inhibited. If a control vector is used and either 

source vector A or B is exhausted before a permissive control vector bit is encountered, 

the instruction makes no comparisons. In this case, the item count represents the 

length of the shorter vector field minus the offset. Applicable data flag bits are 3 7 

(select condition not met) and 46 (indefinite result). 

Figure 6-33 shows an example of a select EQ; A=B; item count - C(CO) instruction I 
with assumed instruction codes, register contents,, and vector fields. The G designator 

specifies 32-bit operands and broadcast source vector A0• Since the B offset equals 

3, the first comparison takes place between source element B3 and broadcast vector 

Ao; this comparison is not met. Element B5 satisfies the comparison condition,, but 

the zero in bit 5 of the control vector disables the comparison. Element B6 satisfies 

the comparison condition, and the control vector enables the comparison. 

item count of three is transmitted to the rightmost 48 bits of register OA. 

Thus, the 

The item 

count includes the B5 comparison although the control vector disabled this comparison. 

tff the C designator is zero, this instruction produces undefined results. 

60256000 09 6-95 



I 

0 

F 
(CO) 

1 • 

G 
(90) 

15 •• 

BEFORE EXECUTION 

x 
(00) 

23 24 

INSTRUCTION CODES 

A 
(02) 

31 32 

y 

(04) 

3940 

REGISTER 02= BROADCAST VECTOR Ao 

B 
(06) 

(Ao= 32-BIT FLOATING-POINT OPERAND) 

B VECTOR FIELD 

04= 0000 poooooooooo31 v 
FIELD LENGTH B OFFSET 

06='00'0r 000000005000 
~ 

B BASE ADDRESS 

oa =oooo pooooooosooo, 
v 

CONTROL VECTOR BASE ADDRESS 
OA=OOOO 000000000000 

47 48 

r 
(08) 

(32-BIT FLOATING POINT OPERAND) 
0 

6-96 

31 

Bo 

B, 

B2 

83 'I Ao 

B4 t- Ao 

B5 =Ao 

...., .... 
14-r--

::.o 

5000 

FFSET 

01234567 

I~ 
... FIE 

;> LE 

f\..s 
~~TH H081IHI 

A 

CONTROL VECTOR 

(ADDRESS 6000) 

~ Bs =Ao ... ( 

TARTING~ 
DD RESS 

5060) DISABLE COMPARISON 

AFTER EXECUTION 

COMPARISON 
DISABLED 

REGISTER 02, 04,06, AND 08 ARE UNCHANGED 
QA= 0000 ,000000000003 1 v 

ITEM COUNT 

Figure 6-33. Example of Select EQ; A=B, Item Count to C 

c 
(OA) 

:SI 

60256000 09 



DA SUM (Ao+ A 1 + A2 + ••••An ) TO (C) AND (C+l) 

0 
F 

(DA} 

G BITO: 
O = 64-BIT OPERANDS 
.i = 32-B IT OPERANDS 

x 
(OFFSET 

FOR A) 

GBITI'. 

23 24 
A 

(LENGTH & 
BASE ADRS) 

O =CONTROL VECTOR OPERATES ON l'S 
1 = CONTROL VECTOR OPERATES ON O'S 

47 48 55 56 63 
z 

(C V BASE 
ADRS) 

c 
{U-SUM) 

C + 1 I 

(L-SUM) I 
I I 
L-----J 

NOTE: U DENOTES THE UPPER RESULT. 
L DENOTES THE LOWER RESULT. 

This instruction forms the double-precision,, unnormalized,, floating point sum t of all 

the elements of vector field A. The instruction is executed in the following manner. 

Ao + A2 + A4 + AB + 

Ai + A3 + As + A7 + 

Where A 0,, Ai,, A2, 

• = sum X 

sum Y 

• are elements of vector A. 

If necessary, the instruction right normalizes the partial sums after each addition. 

Sums X and Y (both double-precision quantities) are then added to form the final sum. 

The instruction transmits the upper result portion of the sum to the register specified 

by C and the lower result to the register designated by C+l. 

Registers C and C + i are either 32- or 64-bit registers, depending on the state of 

G bit 0 in the instruction. Register C must be even; if register C is odd or zero, 

the instruction results are undefined. 

The Y and B designators (bits 32 through 47) and bits 2 through 7 of the G designator 

are not used and must be zeros. There is no length specification for control vector Z. 

The instruction terminates when the source vector field A is exhausted. If the control 

vector allows no elements to be summed, the instruction sets the result to machine 

zero. 

If a control vector (CV) is specified and contains no permissive elements, the result 

is machine zero. The instruction does not specify control vector length or offset. 

t Appendix B describes the double-precision addition of floating point operands and I 
order-dependent result considerations. 

60256000 09 6-97 



Applicable data flag bits are 42 (exponent overflow),, 43 (result machine zero), and 46 

(indefinite result). Data flag bits 43 and 46 are determined only by the final upper and 

lower results; if the upper result is indefinite,, the lower result is undefined. Data 

flag bit 43 is set if the exponent of the lower result is less than 900016 for 64-bit 

mode and 9016 for 32-bit mode. In this case, the exponent of the upper result may 

be greater than 900016 and will be stored as is and will not be forced to machine zero. 

The instruction sets flag bit 42 if any of the add operations overflow. 

DB PRODUCT (A0 A 1, A2, • • ••An) TO C 

0 23 24 55 56 63 

z c F 

(DB) 
x 

(OFFSET 
FOR Aj 

A 
(LENGTH & 
BASE ADRS) 

'/;:(-

( C V B.ASE 
ADRS 

S IGNIFICAN 
PRODUCT) 

G BITO: 
0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

G BIT!: 
O = CCJHROL VECTOR OPERATES ON l 1S 
1 = CetlTROL VECTOR OPERATES ON 0 1S 

This instruction forms the significant product t of successive, floating-point elements 

in the following manner. in source field A. The instruction is executed 

Ao 

Xi 

X2 

• A2 = Xi Ai • A3 =Yi 

• A4 X2 Yi • As = Y2 

• A6 X3 Y2 • A7 Y3 

Where Ao,, Ai, A2,, • • • are elements of source field A, and X and y are 
partial products. 

Sums X and Y are then multiplied to form the final product. The instruction then 

stores the final significant product in the register specified by c. Register c is either 

a 32- or 64-bit register, depending on whether 32- or 64-bit operands are used,, re
spectively. 

t Appendix B describes the floating point multiplication operation and order-dependent 
result considerations. 

6-98 60256000 09 



In the execution of the DB instruction, the following result differences may occur. The 

STAR-100 may multiply the partial products (X and Y) by a normalized one (EA40 0000 

in 32-bit mode or FFD2 4000 0000 0000 in 64-bit mode) an indeterminate number of 

times, depending upon discontinuities in the input data stream. If the coefficients of 

the partial products are nonzero, the partial products are unchanged by this additional 

multiply. However,, if the coefficient is all zeros,, EA or FFD2 will be added to the 

exponent. This is normal under the definition of significant multiply. If the interrup

tions last long enough,, the exponent may decrease to machine zero,, setting data flag 43. 

Input Stream Partial Products 

OOFF FFFF 1800 0000 1st 

0080 0000 

Interruption 0200 0000 2nd 
occurs here - (First normalized one) ECOO 0000 3rd 

D600 0000 4th 

cooo 0000 5th 

AAOO 0000 6th 

9400 0000 7th 

8EOO 0000 8th 

All of the above products are equal under the floating point compare rules. The last product, 

however,, will set data flag 43. 

These discontinuities may be caused by hardware-generated gaps in the input data or by 

machine interrupts. 

The Y and B designators (bits 32 through 4 7) and bits 2 through 7 of the G designator are 

not used and must be zeros. Applicable data flag bits are 42 (exponent overflow),, 43 (re

sult machine zero),, and 46 (indefinite result). 

If bit 1 of the G designator is a zero, for example, a zero bit in the control vector 

disables the multiplication of the corresponding source element and the partial product. 

Thus, the multiplication of a source element and the partial product takes place only 

when the corresponding control vector bit is enabled. This instruction contains no 

length specification for the control vector. The instruction terminates when the A source 

field is exhausted. If the control vector contains no enabling elements, the result is a 

normalized one. 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 

(indefinite result). 

60256000 09 6-99 • 



DS DELTA (An + 1 - An )~en 

Dl ADJ. MEAN (An+l+An) /2 ~en 

F 
{DS OR Dl) 

GBITO: 

x 
(OFFSET 
FOR A) 

23 24 31 32 
A 

(LENGTH & 
BASE ADRS) 

39 40 

O = 64-B IT OPERANDS G BIT r: 
1 = 32-B IT OPERANDS O = CONTROL VECTOR OPERA lES ON 1 1 S 

1 = CONTROL VECTOR OPERATES ON ·0 1S 

D5 DELTA A -A - C n+l n n 

55 56 63 

z c 
( C V BASE ( LENGTH & 
ADRS) BASE ADRS) 

I C + 1 I 
I (OFF'SET I 

L~o~: ~ :>J 

This instruction forms the nth element of result vector field C by subtracting the nth 

element of source field A from the n+l th element of A. Normalized. floating point 

I arithmetic is used in the subtraction. Figure 6-34 shows an example of a delta instruc

tion with assumed instruction codes. operands, and register contents. 

The example shows that since there is no offset of the A vector. the first subtraction 

consists of A
1 

-A
0 

which produces result element c0 • The subtraction of the A vector 

elements continues in this manner until element C 4 is reached. The corresponding Z 

control vector bit is a zero which prohibits the storing of the result element C 
4 

and 

leaves the C 4 result field location unchanged. 

Since the source field is one element shorter than the result field, c 5 becorn:es minus 

A5 and c
6 

becomes zero. The delta (D5) instruction terminates when the result field is 

exhausted. 

The Y and B designators and bits 3 through 7 of the G designator are unused and must 

be zeros. 

Applicable data flag bits are 42 (exponent overflow). 43 (result machine zero). and 46 

(indefinite result). 

6-100 60256000 09 



0 

2.. 

0 

F 
(05) 

71 

G 
(80) 

•••• 
x 

(0 0) 

A VECTOR SOURCE FIELD 

Ao 

Al 

A..2.. 
A~ 
A4 

As 

C VECTOR RESULT FIELD 

Co CA1-Ao> 
C1 (A 2

-A 1) 

c2 CA 3 -A2 ) 

c
3 

CA4 -A 3 ) 

C4 NO CHANGE 

C5(0-A5) 

c6 co> 

INSTRUCTION CODE 

024 

:51 

A 
(0 2) 

ADDRESS 

6000 

6020 

6040 

6060 

6080 

60AO 

31 ADDRESS 

8000 
8020 

8040 
8060 

8080 

80AO 

80CO 

:5132 

y 

(00) 

H40 

B 
(0 0) 

z 
(03) 

REGISTER CONTENTS 

02=0006 000000006000 
03=0000 000000007000 
04=0007 oooooooosooo 

Z CONTROL VECTOR 

NOTE: VALUES IN PARENTHESES INDICATE 

A VECTOR ELEMENTS SUBTRACTED 
FOR CORRESPONDING C VECTOR ELEMENT. 

Figure 6-34 . Example of Delta Instruction 

60256000 09 

c 
(04) 

l 
ADDRESS 

7000 

6-101 

I 



Dl ADJ. MEAN { An+l + An} /2 - Cn 

This instruction forms the nth element of result vector field C by the normalized addi

tion of the nth and n+lth elements of source field A. The instruction then divides the 

result element by two, producing the mean of the two source elements. The mean re

sult is stored as the corresponding result element in vector C. All operands and 

arithmetic operations are expressed in floating point. 

The division by two is accomplished by subtracting one from the exponent of the result 

element. 

The Y and B designators and bits 3 through 7 of the G designator are not used and 

must be zeros. 

Applicable data flag bits are 43 (result machine zero) and 46 (indefinite result). 

DO AVERAGE {_An+- Bn-} / 2 ~en 

04 AVE. DIFF. {An - Bn} /2 ~ Cn 

0 
F 

(DO OR 04) 

6 BIT 1: 
0: CONTROL VECTOR OPERATES ON I' S 
I = CONTROL VECTOR OPERATES ON O'S 

63 

These two instructions form the normalized average and normalized average diffE:rence, 

respectively, of elements AN and EN in the A and B vector fields. The sum (DO) or 

difference (D4) of elements A(N) and B(N) is divided by two. The result elements be

come corresponding elements of result vector field C. The division by two is accom

plished by subtracting one from the exponent. 

In all other respects., these instructions function the same as the normal vector in

structions described under Vector Instructions in this section. Thus, short source 

fields are extended with machine zeros. These instructions terminate when the result 

field is exhausted. 

Applicable data flag bits are 43 (result machine zero) and 46 (indefinite result). 

I 6-102 60256000 09 



88 TRANSMIT REVERSE A ~c 

0 
F 

(BS) 

/ 

2324 
x 

(OFFSET 
FOR A) 

G BIT 2: 

A 
(LENGTH & 
BASE ADRS) 

0 = DO NOT OFFSET RESULT FIELD 
1 = OFFSET RESULT FIELD 

G BIT 0: G BIT 1: 
0 = 64-BIT OPERANDS 0 =CONTROL VECTOR OPERATES ON l'S 
1 = 32-BIT OPERANDS 1 =CONTROL VECTOR OPERATES ON QtS 

8 55 63 
z 

(C V BASE 
ADRS) 

c 
(LENGTH & 
BASE ADRS) 

I C + 1 
I (OFFSET FOR I 
I C &. Z) I L ____ _J 

This instruction transmits the elements of vector source field A to vector result field C. 

The elements are transmitted in reverse order from A to C. Thus, the last element of 

vector A becomes the first element of vector C, the next to the last element of vector A 

becomes the second element of vector C, etc. 

This instruction terminates when the result field is exhausted. Short source fields are 

extended with machine zero elements. If the source and result fields overlap in storage, 

the results of the instruction are undefined. 

The Y and B designators and bits 3 through 7 of the G designator are not used and 

must be zeros. This instruction sets no data flag bits. 

Figure 6-35 shows an example of the operation of a transmit reverse A - C instruction 

with assumed instruction codes, addresses, field lengths, and vector fields. 

Since the offsets for the A and C vector fields are equal (+3), the first operation trans

mits element A7 to c3. The operations continue in this manner until bit 5 of the con

trol vector is reached. Since bit 5 = zero, the transmission of A5 to CS is disabled; 

and CS remains unaltered. 

The last three elements of vector field C (C8, c
9

, and CA) are set to machine zero 

since the result field length is three elements longer than the source length. The dashed 

lines show the order of tr an sf er of elements from the A vector source field to the C 

vector result field. 

60256000 09 6-103 I 



I 

0 

F 

(88) 

Tl 

REGISTERS 

02= 

03= 

04= 

OS= 

07= 

FIELD 
LENGTH 

FIELD 
LENGTH 

G 

(AO) 

x 
(02) 

INSTRUCTION CODES 

A 

(03) 

1111 

y 

(00) 

B 

(OO) 

z 
(04) 

.... 
c 

(OS) 

Ct I I 
I I 
L J~!_ ..J 

0000 000000000003 

0008 00000000 5000 Z CONTROL VECTOR FIELD 

0000 00000000 sooo 
FIELD LENGTH ADDRESS 

6000 
0008 000000007000 

0000 000000000003 

0 I I J 4 I I T I 9 A I JI 

l+IHHHl+I ~ 0 
;;;:ET \_ D1S-AB.LE- TRA~SMIT A-. C 

A SOURCE VECTOR Fl E LO ADDRESS 

OFFSET { 

STARTING_. 
ADDRESS 

0 

0 

OFFSET { 

STARTING_,. 
ADDRESS 

Ao 

Al 

A2 

A3 

A4 

As 

As 

A7 

C RESULT VECTOR FIELD 

Co 

C1 

C2 

C3 (A7) 

C4 (A6) 

C 5 (UNALTERED) 

Cs (A 4) 

C7 (A 3) 

Ce (0) 

Cg (0) 

CA (0) 

31 

SI 

~ 

I-

I-

5000 

5020 

5040 

5Q..SQ_ 

5Q_8Q_ 

50AO 

5Q.CQ_ 

- - ..., 
- ..., 

t- 5Q.EQ.. ..., I 

I I 

ADDRESS 

7000 

7020 

7040 I 
7Q..SQ.. _J 

~ 
7Q..8Q.. _J !«-' 
70AO 

i--
7Q.CQ_ __ _J 

7Q.EQ_ ___ _J 
i--

7100 

7120 

7140 

NOTE: VALUES IN PARENTHESES DENOTE 

FINAL VALUES OF RESULT ELEMENTS. 

Figure 6- 35. Example of Transmit Reverse A -c Instruction 

6-104 60256000 09 



DE POL YNOMiAl EVALUATiON 

0 
F 

(DE) 
x 

(OFFSET 
FOR A) 

23 24 31 32 
A 

(LENGTH & 
BASE ADRS) 

y 
(OFFSET 

FOR B) 

39 40 47 48 55 56 63 
B 

(LENGTH & 
BASE ADRS) 

z c 
( C V BASE (LENGTH & 
AORS) BASE ADRS) 

I C + 1 

&SITO. ------GBIT3: 

1{0FFSET I 
I FOR C & Z) I 

L- - - - - _.J 0 = 6._BIT OPERANDS 0 = NORMAL VECTOR ··A 
1 = 32-B IT OPERANDS 

G SjT 1: I 
0 =CONTROL VECTOR OPERATES ON l'S 

1 = BROADCAST VECTOR A 

GBIT2: 
0 = DO NOT OFFSET RESULT· FIELD 

1 = CONTROL VECTOR OPERATES ON O'S 1 = OFFSET RESULT FIELD 

This instruction forms result elements, each of which represents a polynomial evalua

tion of the repeated product of an element from vector field A and the constants from 

vector field B. All operands are in floating point format. The elements of source 

vector A contain the arguments while the elements of source vector B contain the con

stants necessary for the polynomial evaluation. The instruction forms each result ele

ment by evaluating the polynomial at each argument of source vector A. The instruction 

uses significant upper multiplication and unnormalized addition t (add upper) in perform

ing the evaluation. All arithmetic operations are performed in .floating point format. 

Bits 4 through 7 of the G designator are not used and must be zeros. 

This instruction evaluates polynomials of the following general form. 

y = ~XO + Kn-lxl + Kn-2X2 + ••• + K2Xn-2 + Klxn-1 + KoXn 

The grouping of terms produces the expression of the same polynomial of the following 

form. 
y = Kn + x { Kn-1 + x [~-2 + • • • X(K2 + x (Kl + KoxJ )] } 

The DE instruction evaluates the polynomials expressed in the previous general form. 

t Appendix B describes the significant upper and unnormalized floating point operations. 

60256000 09 6-105 I 



I 

The substitution of vector- element terms in the preceding polynomial expression yields 

the following. 

co= Bn +Ao { Bn-1 +Ao. [Bn-2 + ••• Ao (B2 +Ao (Bl+ BoAoJ )] } 

• 
• 

Cm = Bn +Am { Bn-1 +Am [Bn-2 + • • • ~(B2 + ~ (Bl + BoArnJ )] } 

In the previous polynomial expressions: 

B0 represents the first element of vector field B (the highest order constant in the 

polynomial B ) and B denotes the lowest order element. x n 

A0 represents the first element and Am the last element of vector field A. 

c 0 denotes the first element and Cm the last element of result vector field C. 

The DE instruction forms each element of result vector field C (polynomial evaluation) 

by performing the series of floating point multiplications and additions indicated in the 

preceding polynomial expressions. Figure 6-36 illustrates the basic sequence of arith

metic operations in the execution of the polynomial evaluation DE, instruction. 

I Figure 6-36 shows that the first pass multiplies each element of field A by the first 

element of field B. The computer stores the result from the first pass and all suc

cessive passes in field C. The second pass adds each element of field C to the second 

element of field B and stores the result in field C. The third pass multiplies each 

element of field C by its respective element of field A and stores the results in field C. 

The rest of the passes are like the second and third.: add, multiply, add, multiply, etc. 

Each add pass decrements field B to the next lower order field B operand. The in

struction terminates when field B is exhausted. 

I Short A vector source fields are extended with normalized ones. If in Figure 6-36, for 

example, the A vector source field was only two elements in length, c 2 would equal the 

sum of all the B vector elements (B0 + B1 + B2 + B3 + B 4) since all of the A vector 

source elements in the evaluation would equal one. As indicated by the instruction for

mat, the A vector can be a single broadcast element. 

ThP. B vector cannot be broadcast. In regard to control vectors and offsets, the DE 

instruction functions are the same as normal vector instructions. 

6-106 60256000 09 



If the B vector length (length minus offset} equals zero before the reading of the first i 
operand,, the instruction operates as a no-operation (no-op). If the B field length equals 

one,, two,, or three,, the results are as follows: 

B field Length Result 

One Undefined 

Two Bl + AB
0 

Three B2 +A (B
1 

+ AB
0

) 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 

(indefinite result). The setting of data flag bits 43 and 46 is determined only by each 

result stored into field C and not by any partial result in forming that element. Data 

flag bit 42 (exponent overflow) is set if overflow occurs in any add or multiply operation. 

CO =Bil+ 

c, = Bn. + 

C2 =en+ 

C3 = Bn+ 

CM= Bn+ 

PASS 

N 

60256000 09 

Ao 

Al 

A2 

A3 

AM 

PASS 

N-1 

{ 8n-1 + 

{ Bn-1+ 

{ Bn-1+ 

{ 8n-1 + 

{ 8n-1 + 

PASS 

N-2 

AO 

Al 

A2 

A3 

AM 

PASS 

N-3 

[8 n-2+ 

[ 8n-2+ 

(8n-2+ 

[sn-2+ 

[ Bn-2+ 

PASS 

N-4 

• 
• 
• 
• 

ff 

AO (82 + AO 

Al (82 + Al 

A2 (82 + A2 

A3 (82 + A3 

AM (82+ AM 

PASS PASS PASS 

5 4 3 

(01 + 

(s, + 

(s, + 

(s1 + 

(s, + 

PASS 

2 

Figure 6-36. Basic Arithmetic Sequence for Polynomial 
Evaluation Instruction 

B0A0 ) 1]} 

BoA1 J >J} 
B0A2] l]} 
BoA3) 1J} 

BifM] l]} 

PASS 

6-107 

I 



OF INTERVAL A PER 8 -.c 

0 
F 

(OF) 

---GBITZ: 

A 
(SWRCE 
ELE~NT) 

47 48 55 56 63 

z c B 
(SOURCE 
ELE~NT) 

{C V BASE (LENGTH & 
ADRS) BASE ADRS) 

I C + 1 
1(0FFSET I 
I FOR C & Z) I 
L-- - - __ J 

GBIT o: 
O = 64-B IT OPERAND 

O : DO NOT OFFSET RESULT FIELD 
1 a OFFSET RESULT FIELD 

1 = 32-BIT OPERAND 
G BITI: 
0 : CONTROL VECTOR OPERATES ON 
1 = CONTROL VECTOR OPERATES ON 

This instruction forms a result vector field C. The initial element of vector field C 

is the constant from the register designated by A. The instruction forms each suc

ceeding result element by adding the constant in register B to the preceding element. 

Thus,, the second element of vector C equals the first element plus the content of 

register B. The third element of vector C equals the second element plus the content 

of register B,, etc. The instruction uses unnormalized,, floating point addition. t Thus,, 

the first element of C = A and the succeeding elements are C = C 1 + B. o n n-

If the instruction uses a control vector.. an element is generated for each control bit of 

the field length,, although it may not be stored in the result field. If the instruction 

detects a nonpermissive bit in the control vector, the addition operation is performed, 

but the result element is not stored in the result field. If the control vector disables 

the storing of a result element and this element is indefinite, data flag bit 46 (indefinite 

result) is not set until a permissive bit is detected in the control vector. Similarly,, 

data nag bit 42 (exponent overflow) or. 43 (result machine zero) is set on the next per

mitted store although· the iterative step which overflowed was not stored. 

The X and Y designators and bits 3 through 7 of the G designator are not used and 

must be zeros. 

I t Appendix B ·describes floating point arithmetic and order-dependent result considerations. 

6-108 60256000 09 



I 

The STAR-100 executes the DF instruction (Table 6-i8) with the pipelines performing 

an add operation. 

Cycle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

TABLE 6-18. DF INTERVAL A PER B-C INSTRUCTION 

A Input 

B 

B 

B 

B 

I NOTE I 
A = A operand., B = B operand., MZ = machine 
zero., SSA = short stop A., and SSB = short stop B. 

Pipeline 1 Pipeline 2 

B Input Output B Input A Input 

~~ 
x x x 
x x x 
x B B 

x MZ 

Output 

x 
x 
x 

2B ~ssA- 2B ..-SSB-2B B 
M;~ X 

M~ ~ ~ 2B 2B 2B B 

2B 2B 2B B 2B ~ssA--2B 

2B 2B 2B A MZ MZ 

MZ 4B..-SSB-4B A B B 

MZ 4B 4B A 2B 2B 

MZ 4B 4B A 3B 3B 

MZ 4B 4B--t-4B A ..---A 

MZ 4B 4B I 4B I 
A+B A+B 

MZ 4B 4B 4B 
I 

A+2B A+2B 

MZ 4B 4B I 4B I A+3B A+3B 

MZ 4B 4B 4B A+4B A+4B 

MZ 4B 4B 4B A+5B {A+B)+4B 

MZ 4B 4B 4B A+6B {A+2B)+4B 

I 
I 

I i....-... Results 

l 
to 

• ~ Stream j 

60256000 09 6-109. 



The results to stream may be modified slightly if an interrupt occurs. For example, 

if an interrupt occurs at cycle 12, the instruction will progress as shown in Table 6-19. 

Cycle 

11 

12 

13 

14 

1µ 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

\ 

•6-110 

TABLE 6-19. DF INTERVAL INSTRUCTION WITH INTERRUPT 

I NOTE I 

A Input 

MZ 

MZ 

A =A operand, B = B operand, MZ = machine 
zero, SSA = short stop A, and SSB = short stop B. 

Pipeline 1 Pipeline 2 

B Input Output B Input A Input 

4B 4B 4B 3B 

4B 4B 4B A 

Interrupt Held in Stream -------------
during Interrupt 

B x x 
B B X x x 
B B X B B 

Output 

3B 

A 

A+B 

x 
x 
x 

BiX 
B B X MZ MZ~ 

~~ 2B~SsA-2B ~ssB-2B B MZ 

2B 2B 2B B B x 
2B 2B 2B B 2B.-SSA-2B 

2B 2B 2B A+B MZ MZ 

MZ 4B ..-ssB-4B A+B B B 

MZ 4B 4B A+B 2B 2B 

MZ 4B 4B A+B 3B 3B 

MZ 4B 4B -~ 4B A+B A+B ..... 

MZ 4B 4B 4B A+B+B (A+B)+B 

MZ 4B 4B 4B A+B+2B (A+B)+2B 

• 

l l \ l l Results 
·to 

Stream 

60256000 09 



After an interrupt,, the instruction is resta:cted in a rn.anner sin.1ilar to its initial startup 

but with the next result after the interrupt used in place of A. In Table 6-19, A+B is 

the first valid result after the interrupt followed by A+B+B etc. (A+B)+B would cor

respond to the result A+2B in the case where no interrupt occurred. Since add is order 

dependent,, these two quantities may not be equal. 

Example: 

A= 01 000001 

B = 00 000001 

A+B = 01 000001 

+B = 00 000001 

(A+B)+B = 01 000001 
..._________Not Equal 

B = 00 000001 

+B = 00 000001 

2B = 00 000002 

A= 01 000001 

+2B = 00 000002 

A+2B = 01 000002 

BA TRANSMIT INDEXED LIST+ C 

0 2324 3132 3940 4748 5556 63 
F 

(BA) 
A 

(LENGTH & 
BASE ADRS) 

B 
GROUP LENG 

& BASE ADRS 

c 
(BASE ADRS) 

I 
G BIT 0: 

0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

BIT 7: 
0 =VECTOR B RESIDES IN CENTRAL f'EMORY 
1 = ALL ELEf'ENTS OF INPUT VECTOR B M..JST 

RESIDE WITHIN THE RANGE OF ABSOLUTE OR 
VIRTUAL BIT ADDRESS 0 THROUGH 3FCO 

G BIT 6: 
0 = SINGLE ELEf'ENT CASE 
1 = GROUP CASE 

This instruction forms an indexed list of result elements in vector field C by trans

ferring elements from addresses in vector field B as indexed by the item counts in the 

A-vector field. The rightmost 48 bits (no half-word option) of each element of vector 

A contains an item count. 'Ihe insirtiCtion a'1ds the fir-st. item count in vector A to the 

base address of the first element of vector B. The element at the new address is 

60256000 09 6-111• 



• 

transferred to result vector C. Before the addition of the item count (index) to the 

base address, the index is left-shifted five places (32-bit operands) or six places (64-

bit operands) to form the half-word or full .. word address, respectively. 

The instruction then adds the next element of vector A to the base address of the first 

element of vector B. The resulting address indexes the second element of vector B. 

This process continues until vector A is exhausted. 

The elements of vector A are always 64-bit operands, while G bit 0 specifies the B 

and C vector element size. 

Bits 1 through 5 of G designator are not used and must be set to zero. 

If G bit 6 is a zero, the instruction transmits single elements as previously described. 

If G bit 6 is set, a group of elements is transmitted from vector B to vector C for 

each element of vector A. The group length is specified in the upper 16 bits of 

register B. All groups are of equal length. 

If G bit 7 is set, all elements of input vector B must reside in the register file within 

the range of absolute or virtual bit addresses 0 through 3FCO. Reference to the reg

ister file as central memory is normally not allowed. This instruction and the B7 

instruction are the only instructions which permit this type of reference to occur. Re

fer to section 5 for other register file restrictions. If all the addresses for vector B 

are not contained in the register file, this instruction is undefined. This instruction 

is also undefined if G bits 6 and 7 are both set. 

The search: index list- C (C8 through CB) instructions may be used to produce the 

index list for the BA instruction. 

Figure 6-37 shows an example of a transmit indexed list-C instruction with assumed 

instruction codes, register content, and vector fields. The first item count is read 

from address 4000. This value indexes the B vector base address by five half-words 

after the left shift of five. Thus, the instruction transfers the first B vector element 

from address 70AO to the C vector element address 9000. Six B vector elements are 

transferred to the C vector. 

No data flag bits are set by the BA instruction. 

6-112 60256000 09 



0 

0 

F 
(BA) 

Ao 

A1 

A2 

A3 

A4 

A5 

0 

Bo 
81 

82 

83 

84 

7 8 

A 

(0000 

(0000 

(0000 

(0000 

(0000 

(0000 

INSTRUCTION CODE 

15 16 23 24 :SI 32 39 40 47 48 

G 
(80) 

x 
(02) 

VECTOR SOURCE 

000000000005) 

000000000001 

000000000000) 

00000000000 2) 

000000000003) 

000000000004) 

A 
(03) 

y 
(00) 

REGISTER CONTENT 

·a 
(04) 

03= 0006 000000004000 
04 = 0005 000000007000 

06= 0006 000000009000 

FIELD 
63 ADDRESS 

4000 

4040 

4080 
FIELD LENGTH 

40CO 

4100 

414 0 

COUNTS 

3RD ELEMENT 
B VECTOR SOURCE FIE LO £ ADDR ESS 

0 

31 

II 700 

702 0 

704 0 

706 0 

708 0 
__!!;. 

IST ELEMENT 

NOTE: 

VALUES IN PARENTHESES 
INDICATE C VECTOR ELEMENTS 
AFTER TRANSFER OF INDEXED 
LIST. B AND C VECTOR ELEMENTS 
ARE IN HALF- WORDS. 

0 

Co 
C1 

C2 

C3 

C4 

'5 

C VECTOR RESULT FIELD 

(85) 

(81) 

(Bo) 

(B 2) 

(B 3) 

~) 

z 
(05) 

Figure 6-3 7. Example of Transmit Indexed List -C Instruction 

60256000 09 

c 
(06) 

:s1 ADDRESS 
9000 

9020 

9040 

9060 

9080 

90AO 

FIELD 
LENGTH 

6-113. 



87 TRANSMIT LIST~ INDEXED C 

0 

F 
( 87) 

G BIT 0: 
0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

2324 

A 
(LENGTH & 
BASE ADRS) 

8 
(BASE ADRS) 

----G BIT 7: 

G BIT 4: 

0 =VECTOR C RESIDES IN CENTRAL fl.EMORY 
1 = ALL ELEJl.ENTS CF OUTPUT VECTOR C M.JST 

RES IDE WITH IN THE RANGE OF ABSOLUlE OR 
VIRTUAL BIT ADDRESS 0 THROUGH 3FCO 

G BIT 6: 
0 = SINGLE ELEr-ENT CASE 
1 = GROUP ELEJl.ENT CASE 

0 = NORMAL VECTOR El 
1 = BROADCAST VECTOR B 

This instruction adds the rightmost 48 bits of the first element of vector field A to the 

base address in register C to form the address of the first element of result vector 

field C. The instruction then transmits the first element of vector field B to the com

puted address in C. The rightmost 48 bits of each element of vector field A is an 

item count. Before the addition of the item count (index) to the base address, the in

dex is left-shifted five places (32-bit operands) or six places (64-bit operands) to form 

the half-word or full-word address, respectively. 

• 6-114 60256000 09 

63 



adding the second element of vector field A to the base address in register C. The 

second element of vector field B is then transmitted to the computed address in the 

result vector field C. The instruction continues in this manner until the A vector field 

length is exhausted. 

The X, Y, Z, and C+l designators are not used and must be zeros. The elements of 

vector field A are 64 bits while the elements of vectors B and C are 64 bits or 32 

bits as specified by G designator bit 0. 

Bits 1, 2, 3, and 5 of the G designator are not used and must be set to zero. Vector 

B is broadcast when bit 4 of the G designator is set and bit 6 is a zero. 

If G bit 6 is a zero, the instruction transmits single elements as previously described. 

If G bit 6 is set, a group of elements is transmitted from vector B to vector C for 

each element of vector A. The group length is specified in the upper 16 bits of reg

ister C. All groups are of equal length. 

If G bit 7 is set, all elements of output vector C must reside in the register file, 

within the range of absolute or virtual bit addresses 0 through 3FCO. Reference to 

the register file as central memory is normally not allowed. This instruction and the 

BA instruction are the only instructions which permit this type of reference. Refer to 

section 5 for other register file restrictions. If all the addresses for vector C are 

not contained in the register file, the instruction is undefined. This instruction is also 

undefined if either G bits 4 and 6 or G bits 6 and 7 are set. 

60256000 09 6-115 • 



DC VECTOR DOT PRODUCT TO (C) AND (C+l) 

0 

F 
(DC) 

x 
(OFFSET 

FOR A) 

2324 3132 

A 
(LENGTH & 
BASE ADRS) 

y 
(OFFSET 
FOR B) 

0 = CONTROL VECTOR OPERA TES ON 1 'S 

3940 4748 

B Z 
( LENGTH & ( C V BASE 
BASE ADRS) ADRS) 

NOTE: 

55 56 63 

c 
(U RESULT 
REGISTER) 

c + 1 
(L RESULT 

I REG I STER) I 

L- - - - _J I ""G BIT 1: 
G BIT O: 1 =CONTROL VECTOR OPERATES ON O'S U DENOTES THE UPPER RESULT. 

L DENOTES THE LOWER RESULT. 
0 = 04-B IT OPERANDS 
1 = 32-BIT OPERANDS 

This instruction multiplies corresponding elements of vector fields A and B and forms 

the sum of the products. This instruction uses double-precision., unnormalized., float

ing point t arithmetic in the operation. The sum of the double-precision products is of 

the following form. 

(AO •BO) + (A2 • B2) + +(An • Bn) x 

(Al •Bl) + (A3 • B3) + +(An • Bn) y 

where: An are elements of vector A .. 

Bn are elements of vector B., 

and X and Y are partial sums 

of the product. 

Sum X and sum Y (both double precision quantities) are then added to form the final 

sum. The instruction transmits the upper result portion of the sum to the register 

specified by C and the lower result to the register designated by C+l. The DC in

struction terminates when the shorter of the two source fields is exhausted. If the 

control vector contains no enabling elements.. the result is set to machine zero. 

Bits 2 through 7 of the G designator are not used and must be zeros. The instruction 

contains no length designator for the control vector Z. 

C must specify an even-numbered register. If C specifies an odd-numbered register .. 

the instruction results are undefined. 

t Appendix B describes floating point arithmetic and order-dependent result 
considerations • 

• 6-116 60256000 09 



The DC instruction probes the setting of data flag bits 42 (exponent overflov1), 

sult machine zero), and 46 (indefinite result). Data flag bits 43 and 46 are determined 

only by the final upper and lower results ; if the upper result is indefinite,, the lower 

result is undefined. Data flag bit 43 is set if the exponent of the lower result is less 

than 9000 16 . In this case, the exponent of the upper result may be greater than 

9000 16 and will be stored as is and will not be forced to machine zero. The instruction 

sets data flag bit 42 if any of the multiply operations overflow. 

STRING INSTRUCTIONS 

The string instructions typically perform arithmetic and logical operations on strings, of 

data in the form of 8-bit bytes. The 8-bit byte size allows handling large alphabets; 

this size is also compatible with ASCII and EBCDIC codes. The data strings are in 

the general format shown in Figure 6-38. I 

The field length of the data string can extend beyond one 64-bit word. The field length 

of the data string can also be less than one data word. 

0 78 15 16 23 24 31 32 3940 4748 5556 63 

BYTE BYTE BYTE BYTE BYTE FIRST WORD ADDRESS 

BYTE BY TE BYTE BYTE BY TE BYTE BYTE BY TE SECOND WORD ADDRESS 

BYTE BYTE BYTE BYTE BYTE BYTE THIRD WORD ADDRESS 

Figure 6-38. Example of General Format of a Data String Field 

60256000 09 6-117 

I 



I 

The order of processing the bytes in the string instructions may be from right to left 

or left to right as described in the instruction descriptions in this section. For string 

instruction terminations. refer to the descriptions of the individual instructions. 

STRING INSTRUCTION DAT A CODE AND FORMATS 

String instructions perform operations on data strings using decimal data codes in 

packed binary coded decimal (BCD), zoned BCD, and binary formats. The following 

paragraphs describe these codes and formats. 

DECIMAL DATA CODES 

The string instructions represent decimal numbers as signed magnitudes. Four bits 

represent the sign. Each group of four succeeding bits represents a decimal digit. 

Table 6-20 lists each decimal digit and sign representation and the corresponding binary 

code. 

TABLE 6-20. DECIMAL DATA CODES 

Decimal Binary Binary 
Digit Code Sign Code 

0 0000 + 1010 
1 0001 - 1011 
2 0010 + 1100 
3 0011 - 1101 
4 0100 + 1110 
5 0101 + 1111 
6 0110 
7 0111 
8 1000 
9 1001 

Although several binary codes represent the decimal sign in string instruction opera

tions, the four plus sign codes are equal. Similarly, the two minus signs equal each 

other. 

I During the job mode, the sign and zone bits (Table 6-21) are generated by the decimal 

string instructions and are conditioned by the ASCII/EBCDIC bit in the job invisible 

package. During monitor mode, only ASCII codes are generated. The move and scale 

A - C (FA) instruction, which transmits the sign bits directly, represents the only 

exception to this principle. 

6-118 60256000 09 



rr A DT "[;' a - ') 1 D "C'C!TTT rr C!Tl""l\TC! 
.i..c;J...._,.i..j.i.J v-...,.... .L\..i.JIJU.i..j .L IJ.L'-.;fJ..'llJ 

ASCII EBCDIC 
Sign Selected Selected 

+ 1010 1100 

- 1011 1101 

Zone 0011 1111 

PACKED BCD 

The string instructions perform decimal arithmetic on data in the packed format in 

Figure 6-39. 

Figure 6- 39 shows that the rightmost four bits of the rightmost byte in the field con

tain the sign. The leftmost four bits of the rightmost byte contain the least significant 

digit of the number. All other bytes in the field contain two 4-bit digits. 

MOST 
SIGNIFICANT 

BYTE 
~ 

lo11 +oil! 
Ly-I 
MOST 

SIGNIFICANT 
DIGIT 

ADDITIONAL 
BYTES 
IN STRING 

DIGIT 

LEAST 
SIGNIFICANT 

BYTE 
~~ 

9 

THIS EXAMPLE ASSUMES AN 
ASCII SELECTION. 

CD 

Figure 6-39. Example of the Packed Decimal Format 

60256000 09 6-119 

I 
I 

I 

I 



ZONED BCD 

The zoned BCD is used mainly in input/output operations. In the zoned BCD format, 

I each byte contains one BCD digit (Figure 6-40). 

I 

MOST 
SIGNIFICANT 

BYTE 
~ 

lo 0 I 111 0 0 I II 
~ 

ZONE MOST 
SIGNIFICANT 

DIGIT 

0 0 I I 00 0 0 0 0 I I 0 I 

LEAST 
SIGN I Fl CANT 

BYTE 
~ 

© 110011010010111000 

ZONE DIGIT ZONE DIGIT ZONE DIGIT SIGN LEAST 
SIGNIFICANT 

ADDITIONAL DIGIT 
BYTES 
IN STRING 

Q) THIS EXAMPLE ASSUMES AN 

ASCII SELECTION. 

8 

Figure 6-40. Example of the Zoned BCD Format 

Figure 6-40 shows that the left four bits of the rightmost byte in the field contain the 

sign. The leftmost four bits of all other bytes contain the zone designator for the 

corresponding digit. Since an ASCII selection is assumed in the example, a zone code 

of 0011 corresponds to a decimal digit. Refer to the ASCII conversion table in appendix 

A. Some string instructions pack zoned numbers into the packed decimal format and 

unpack packed decimal numbers into the zoned fermat. 

BINARY FORMAT 

String instructions represent binary numbers as strings of 8-bit bytes. The least sig

nificant bit is the rightmost bit of the rightmost byte. The leftmost bit of the leftmost 

byte contains the sign bit. Positive numbers have a zero sign bit. Negative numbers 

are expressed in two's complement form and have a one for the sign bit. All binary 

numbers in string instructions must have the sign extended through the sign bit. The 

length of the binary numbers is dependent upon the specified field length as described 

in the following paragraphs. 

6·120 60256000 09 



SiRiNG iNSiRUCTiON FORMA i 

The string instructions use the general format shown in Figure 6-41. 

0 1 8 

F 
(FUNCTION) 

G 
(SUB-

15 16 

x 
(INDEX 

2324 

A 
(LENGTH 8 

39 40 

B 
(LENGTH 8 

z 
(INDEX 

c 

FUNCTION) FOR A BASE ADRS 

y 
(INDEX 
FOR B BASE ADRS FOR C) 

F = 8 - BIT INSTRUCTION CODE '-----y--1 
(RESULT LENGTH 

G = a- BIT DIRECT OPERAND ,TWO . 'a BASE ADRS) 
2- BIT DESIGNATORS, OR AN 8-BIT REGISTER DESIGNATOR 

X,A'i(, 
B,Z,C = a- BIT DESIGNATORS; THE REGISTERS 

CONTAIN ADDRESSING INFORMATION FOR 
THE FIELDS TO BE USED. 

Figure 6-41. General String Instruction Format 

FIELD LENGTHS, BASE ADDRESSES, AND INDEXES 

I 

I 

Figure 6-42 shows the format of the registers containing the field length, base address, I 
and index for a given data string. 

0 

FIELD LENGTH 
(OR DELIMITER) 

I& 1e 

BASE ADDRESS 

X, Y, AND Z REGISTER FORMAT 

-- INDEX 

Figure 6-42. String Instruction Register Formats 

60256000 09 

l 

I 

6-121 



If any of the 8-bit designators x. Y. or Z are 00 16• the instruction does not use in

dexing for that string but obtains the address of the initial byte from the base address. 

I Figure 6-43 shows an example of the addition of the index to an initial address to ob

tain the initial byte and field length for the data string. 

I Figure 6-43 shows that the effective length of the data field is the same as the field 

length contained in the specified register. Indexing does not affect the effective field 

length as does offsetting in the vector instructions. 

I 

'o 

INDEX = 02
16 

A 

7 8 

'- BASE 
ADDRESS 

23 24 

'- BASE ADDRESS 
+ INDEX 

(DATA FIELD USED) 
FI~LD LENGTH = 0006

16 A 

31 32 39 40 4 7 48 

I I I 
55 56 

Figure 6-43. Example of Index and Field Length Applied to a Data Field 

If the specified length of a string source field is zero. that field is identical to a nor

mal field containing positive zero. If the specified length of the result field is zero. 

the instruction functions as a no-op. 

STRING INDEXES 

In all string instructions, indexes are item counts in bytes except for the search for 

masked key bit (D6) and masked key word (FF) instructions. String indexes differ from 

vector offsets in that the range of vector offsets is limited to :1: 216_ 1 while string 

indexes have any value up to :1: 245_ 1 for byte item counts. Since byte indexes are 

left-shifted three places before they are added to the base address. the leftmost three 

bits of a string index are not used. The sign bit of negative indexes must be extended 

through bit 16 (Figure 6-42). Overflows are ignored when indexes are added to base 

addresses. 

6-122 60256000 09 



DELIMITERS 

The following six instructions can use delimiter termination. 

1. Move bytes left; A - C (F8) 

2. Move byte left, one's complement (F9). 

3. Compare bytes A, B per mask field C (FD). 

4. Translate A per B - C (EE). 

5. Translate and test A per B- C (EF ). 

6. Translate and mark (D7). 

All other string instructions contain fields that are limited by the specified field length. 

Delimiters are contained in the field length specification (bits 0 through 15) of the des

ignated register as shown in Figure 6-42. When a delimiter character is used, the I 
field terminates when a character matching the delimiter is reached in the data field. 

Figure 6-44 shows an example of a delimiter used in a data field. The subfunction I 
(G designator bits) controls the selection of field length or delimiter character as 

follows: 

d ( G bits 0 and 1) = designator for fields A and B 

e ( G bits 2 and 3) designator for field C 

(G bits 4 and 6) = 
(G bits 5 and 7) 

undefined, must be zeros except for instructions D7 and FD 

when used, these bits control the incrementing of the A and 
C field indexes, respectively 

A DATA SOURCE FIELD 

I INITIAL 
BYTE 

0 78 

I i 

REGISTER I I 
~~S~GNATED----------~~·-1-11_1_1_1_1_1_._~~ 
~ 
SPECIFIED 
OEUMUER 
CHARACTER 

LAST 
BYTE 

BYTES IN NEXT 
DATA FIELD 

~------~~--~~--

f 111111111 I 

DELIMITER 
CHARACTERS 
MATCH 

55 56 63 

~ jooooooool 

Figure 6-44. Example of Delimiter Termination of a Data Field 

60256000 09 6-123 

I 



I Table 6-22 lists the bit values for the G bit d and/or e designators and the corresponding 

functions. 

I TABLE 6-22. G DESIGNATORS FOR STRING INSTRUCTIONS t 

Designator 

d and/or e 

d and/or e 

d and/or e 

d 

d/e 
Bit 

Value 

00 

10 

11 

01 

Function 

The 16-bit length specification in A. B, and/ or C 

represents an item count of the number of items 

in the field (field length). This item count has the 
16 range of +2 -1. 

The rightmost eight bits of the length specification 

in A. B, and/ or C are used as a delimiter character. 

The entire 16 bits of the length specification in A. 

B. and/ or C are used as a delimiter character. 

The rightmost eight bits of the length specification 

function as a delimiter character. The leftmost 

eight bits serve as a mask on the comparison. Bits 

in the delimiter character and the operand byte are 

compared only where ones exist in the mask. This 

specification applies only to source fields. Any in

struction becomes undefined if this specification is 

used for a result field. 

If a delimiter is specified for a source field. the instruction does not use the delimiter 

character as an operand. In the case of a 16-bit delimiter. the field terminates when 

the leftmost eight bits and the rightmost eight bits of the 16-bit delimiter character 

match two consecutive source bytes. 

If an 8-bit or 16-bit delimiter is specified for the result field. the instruction stores 

the delimiter character at the end of the result field. The delimiter does not specify 

a fi~ld length in this case since the instruction does not search the result field for the 

delimiter. If a 16-bit delimiter is used. the instruction stores the leftmost eight bits 

and rightmost eight bits in consecutive order at the end of the result field. 

fAppendix C provides a comprehensive listing of the G designator bits usage according 
to function code. 

6-124 60256000 09 



In the tra..11slate A per B - C (EE) instruction, the use of a delimiter character for the 

result field causes the instruction to terminate when the A field is exhausted. 

INDEX INCREMENTS 

The following instructions contain index incrementing capabilities. 

1. Move bytes left; A - C (F8). 

2. Move bytes left, one's complement (F9). 

3. Compare bytes A, B per mask field C (FD). 

4. Search for masked key, byte A, B per C (FE). 

5. Search for masked key, word A, B per C (FF). 

6. Search for masked key bit A 1 B per C (D6 ) •. 

7. Translate A per B - C (EE). 

8. Translate and test A per B - C (EF). 

9. Translate and mark A per B - C (D7). 

At the termination of these instructions, the index registers associated with the fields 

will be in no increment, partial increment, or full increment, as described in the follow-

ing paragraphs. 

NO INCREMENT 

In this state, the index register remains at the initial value. Index registers associated 

with a translate table provide an example of this state. In this case, the instruction 

adds the characters to be translated to the indexed address of the table to obtain the 

translated character. The index associated with the table does not change during the 

instruction execution. 

PARTIAL INCREMENT 

In this case, the index register is incremented to specify a particular character or 

word in its associated field. The compare bytes A, B per mask field C (FD) instruc

tion, which searches two byte strings for inequality, provides an example of this type 

of indexing. When the instruction finds an inequality, the search terminates and the 

number of no-hit byte compares is added to each index; the fields may not have reached 

the end of their specified lengths. However, the storage location of the characters that 

were unequal can be found ay manipulating· the incremented index register and the base 

address. 

60256000 09 6-125 I 



FULL INCREMENT 

In this case, the index register is incremented by one for each byte from the 

corresponding field. When the translate A per B to C instruction terminates, for 

example, the index associated with source field A is incremented throughout the length 

of field A. Thus, this index indicates the starting point of the next consecutive field. 

If a delimiter character specifies a field length, the instruction searches the field for 

the delimiter character. The instruction then increments the index of the associated 

field so that the starting point of the next field is one byte beyond the delimiter charac

ter. 

Where appropriate, each instruction description contains a table that provides informa

tion concerning indexing and field length. Each of these tables specifies the state of 

the index for each field following the termination of the instruction. The table also 

lists the type of field length specifications allowable for the corresponding instruction. 

I 6-126 60256000 09 



0 

EO BINARY ADD; A + B ~c 

El BINARY SUB; A - B • C 

E2 BINARY MPV; A• B+ C 

E3 BINARY DIV; A I B +( 

7~16 
F 

(EO - E3) 
x 

(INDEX 
FOR A) 

23 24 31 32 
A 

(LENGTH & 
BASE ADRS) 

y 

{INDEX 
FOR B) 

39 40 47 48 
B 

(LENGTH & 
BASE ADRS) 

z 
(INDEX 

FOR C) 

55 56 63 
c 

(LENGTH & 
BASE ADRS) 

These instructions use the instruction format shown; the G designator is not used and 

must be all zeros. All indexing is in bytes. 

If the length of the destination field C is too short to correctly contain the result of 

the operation, overflow occurs. This causes the leading nonzero digits to be trun

cated and data flag 39 (string arithmetic overflow) to be set. 

EO BINARY ADD; A + B - C and El BINARY SUB; A - B - C 

These instructions add/subtract binary field B to/from binary field A. The instructions 

use two's complement arithmetic in the operation. If the source field lengths are un

equal, the instruction automatically extends the sign bit of the shorter field. 

These instructions produce a result binary field C with the sign bit extended, if neces

sary, to fill out the specified field length. 

Figure 6-45 shows an example of a binary add; A + B - C (EO) operation with assumed I 
instruction codes, register contents, and source fields. The sign bit of the A source 

field is extended in the addition operation. The addition operation is a conventional, 

two~ s complement add. 

60256000 09 6-127 



0 

I 

6-128 

F 

(EO) 

7 • 

G 

(00) 

15 1• 

INSTRUCTION CODE 

x 
(02) 

23 24 

REGISTER 

REGISTER 

A 

(03) 

II 32 

y 

(04) 

3940 

B 

(05) 

NOT USED I INDEX I 
·A1, " 'I 

02 = 0000 I 000000000002 
04 = 0000 l 00000000000 I J 
06 = 0000 I 000000000001 

I 
FIELD BASE 

LENGTH I ADDRESS 
~p " ,, 

03= 0002- 000000005000 
0-5-= 0003 I 000000006000 I 
07 = 0003- I 00000000 7000 r 

STRING SOURCE FIELD A 

47 41 

0 5 4 7 t II 12 27 21 31 

'"\_ v INDEX 
BASE ADDRESS 

( 5000) 

FIELD LENGTH 
STARTING ADDRESS 

(50 I 0) 

STRING SOURCE FIELD 8 

0 5 4 7 t II 12 15 1• 19 20 23 24 27 29 51 

~ 

(06) 

(48C I) 

55,. 

I I l1111j11 1+11 1j1000Foooj11 ooj (FFFBOCl 
~'"-""(FIELD vLENGTH 

/ 

~~~~; ADDRESS~STARTING ADDRESS 

SIGN EXTENSION

~
00000000
11111111
00000000

(6000) (6008)

0100 1000 1100 0001
I I I I I 000 0000 I I 00
0 I 00 0000 I I 00 I I 0 I

STRING RESULT FIELD C

SOURCE FIELD A
SOURCE FIELD B
RESULT FI ELD C

0 5 4 7 t II 12 15 I• It 20 U 24 27 H 51 I I joooojoooojo100 jooooj11ooj11o11 (0040CDl
~\!i.~IELD tENGTH I

~~~~~ ADDRES~STARTING ADDRESS 
(7000) ( 7008) 

Figure 6-45. Example of Binary Add; A t B - C Instruction 

c 
(07) 

60256000 09 



E2 BINARY MPY; A • B -- C 

This instruction multiplies binary field A by binary field B, using two's complement 

arithmetic. The instruction produces a binary product which is stored as result field 

C with the sign bit extended, if necessary, to fill out the specified field length. If the 

C field overlaps the A or B field,, the instruction results are undefined. 

E3 BINARY DVD; A/B -- C 

This instruction divides binary field A by binary field B, using two's complement 

arithmetic. The result is a remainder, having a field length equal to the field length 

of B and a quotient with a field length equal to the specified length of C minus the 

specified length of B. Figure 6-46 shows that the remainder is stored at the B length I 
portion of the C field, beginning at the starting address. The quotient is stored in the 

remaining portion of the C field length. The sign of the quotient is extended, if neces

sary, to fill the specified field length of C. If the C field overlaps the A or B field, 

the results of the instruction become undefined. 

BIT 

REMAINDER 

RESULT FIELD C 
SPECIFIED LENGTH OF C 

QUOTIENT 

~ 
SPECIFIED FIELD 
LENGTH OF B 

LEAST SIGNIFICANT 
BYTE OF QUOTIENT 

STARTING ADDRESS OF C 

60256000 09 

I NOTE I 
The sign of the remainder conforms to (quotient 
x divisor) + remainder = dividend; that is,, the 
sign of the remainder is the same as the sign of 
the dividend unless the remainder is 0 and the 
dividend is negative. 

Figure 6- 46. Format of Binary Divide Result Field 

6-129 

I 



I 

EC MODULO ADD A + e-.c 

ED MODULO SUB A - B ~c 

0 7 8 15 16 
F G 

23 24 
x A 

3 3 1 2 39 40 A.7 _48 55 56 63 
y B z c 

(EC OR ED) (COMPARE (INDEX (LENGTH & (INDEX (LENGTH & (INDEX (LENGTH & 
BYTE) FOR A) BASE ADRS) FOR B) BASE ADRS) FOR C) BASE ADRS) 

EC MODULO ADD A + B - C 

This instruction performs- a modulo add on the bytes in two binary strings, A and B. 

The source strings are considered positive. The instruction performs the add on a: 

byte-by-byte basis from left to right and does not permit carries to propagate across 

byte boundaries. Each byte sum is compared to the byte in the G portion of the in

struction code on the following basis. 

Compare Condition 

(A byte + B byte)< G byte 

(A byte + B byte)~ G byte 

Result 

(A byte + B byte) - C byte 

(A byte + B byte - G byte)- C byte 

The G field may be assigned any value in the range of 0 through FF 16 with 0 acting as 

though it were 100
16

• Therefore, if the A byte plus the B byte is greater than or equal 

to 100 16, A byte plus B byte minus G is stored into the C byte. 

If the A or B source string is shorter than the C string, the length of the A or B 

source string is extended with zero bytes until the length of the corresponding source 

string equals the length of the C string. 

The compare byte in G may have any value in the range of 0 through 25510 = 0 through 

FF16. A zero G. value functions as a 25610 value. 

At the termination of this instruction, data flag bits 53, 54, and 55 are set according to 

the results of the byte compare operation (Table 6-23 ). 

6-130 

TABLE 6-23. DFB CONDITIONS FOR THE EC INSTRUCTION 

DFB Bit 

53 

54 

55 

Conditions 

(A byte + B byte)< G byte for all bytes 

(A byte + B byte)> G byte for one or more bytes 

I 
but not for all bytes 

_ (A byte + B byte)_:: G byte for all bytes 

60256000 09 



ED MODULO SUB A•B - C 

This instruction performs a modulo subtract on the bytes in two binary source strings,, 

A and B. The binary source strings are considered positive. The instruction per

forms the subtracts on a byte-by-byte basis from left to right and does not permit bor

rows to propagate across byte boundaries. As part of each subtract operation,, the A 

byte is compared to the B byte on the following basis. 

Compare Conditions 

A byte 2: B byte 

A byte < B byte 

Results 

(A byte - B byte) - C byte 

(A byte - B byte + G byte) - C byte 

If the A and/ or B source string is shorter than the C string, the A and/ or B source 

string is extended with zero bytes until the length of the corresponding source string 

equals the length of the C string. 

Table 6-24 gives the conditions for setting data flags 53, 54, and 55. 

TABLE 6-24. DFB CONDITIONS FOR THE ED INSTRUCTION 

DFB Bit Conditions 

53 A byte < B byte for all bytes 

54 A byte ~ B byte for one or more bytes but not 
for all bytes 

55 A byte ~ B byte for all bytes 

The byte in G may have any value in the range of 0 through 25510 (0 through FF16)• A 

zero G value functions as a 25610 value. 

At the termination of this instruction, data flag bits 53, 54, and 55 are set according to 

I 

the results of the byte compare operation (refer to Table 6-21). I 

60256000 09 6-131 



FB PACK ZONED TO BCD; A -.c 
FC UNPACK BCD TO ZONED; A -.c 

FB PACK ZONEn TO BCD; A - C 

This instruction converts a string data field in the zoned format into a result field C that is 

packed in the BCD format. All zone bits in the source field are discarded except the bits 

in the least significant byte which constitute the sign. Both the source and result fields must 

be specified by a field length. The operation proceeds from right to left. The Y and B 

designators and bits 2 through 7 of the G designator are not used and must be zeros. Bits 

0 and 1 of the G designator control the translation and insertion of the sign bits. 

If the source field contains fewer digits than the result field,, the instruction inserts zeros 

I in the high order digit positions of the result field (Figure 6-47). The lengths of the source 

and result fields are item counts in bytes. 

I 

If the source field contains more digits than the result field can contain,, the instruction 

truncates the result field by discarding the necessary number of high order digits in the 

source field. 

6-132 

A SWRCE FIELD 

Zet.IE DIGI Zet.IE DIGIT Z<H: DIGIT ZONE DIGI Zet.IE DIGIT OVERPUNCHED DIGIT 

DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT LSD. SIGN 

INSERTED ZERO 
C ·RESULT FIELD 

Figure 6-47. Example of Zoned to BCD Format Conversion 
(G Bit 0 = 0 and ASCII Selected) 

8-BIT 
BYTE 

60256000 09 



• Table 6-25 lists the digit and sign codes that are used in the pack operation. Six I 
sign codes are recognized as valid codes. 

TABLE 6-25. PACK ZONED TO BCD DIGIT AND SIGN CODES I 

Digit Code Sign Code 

0 0000 + 1010 

1 0001 - 1011 

2 0010 + 1100 

3 0011 - 1101 

4 0100 + 1110 

5 0101 + 1111 

6 0110 

7 0111 

8 1000 

9 1001 

60256000 09 6-133 



I 

G DESIGNATOR BIT 0 = 0 (ASCII MODE) 

The rightmost byte of the A field is assumed to contain an overpunched digit which is 

translated into a sign and least significant digit (LSD) according to a translate table 

(Table 6-26 ). For the remaining bytes# the FB instruction discards the zone bits and 

copies the data bits without checking the validity of the codes (Figure 6-47). 

6-134 

TABLE 6-26. PACK ZONED TO BCD SIGN AND LSD 
TRANSLATION TABLE (ASCII MODE) 

Character Code LSD Signt 

0 30 0 A (+) 

1 31 1 A 

2 32 2 A 

3 33 3 A 

4 34 4 A 

5 35 5 A 

6 36 6 A 

7 37 7 A 

8 38 8 A 

9 39 9 A 

{ 7B 0 A 

A 41 1 A 

B 42 2 A 

c 43 3 A 

D 44 4 A 

E 45 5 A 

F 46 6 A 

G 47 7 A 

H 48 8 A 

I 49 9 A 

} 7D 0 B (-) 

J 4A 1 B 

K 4B 2 B 

L 4C 3 B 

M 4D 4 B 

N 4E 5 B 

0 4F 6 B 

p 50 7 B 

Q 51 8 B 

R 52 9 B 

tThe preferred signs are shown in hexadecimal 
(for example, A = 1010 and B = 1011}. 

notation 

60256000 09 



G DESIGNATOR BIT 0 = 0 (EBCDIC MODE) 

As in the previous operation, the operation discards the zone bits and copies the data 

bits without checking the validity of the codes (Figure 6-48). The operation then samples I 
the sign (assumed to be the ieftmost four bits of the least significant byte of the A field) 

and inserts the appropriate preferred sign code in the C field according to Table 6-27. I 
If the sign position of the A field does not contain one of the recognized six sign codes 

(Table 6-22), the rightmost four bits of the C field become undefined. I 

DISCARDED \ 

~ 

A SOURCE FIELD 
SAMPLED 

~~ 
ZONED 

FORMAT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT SIGN DIGIT 

BCD 
DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN 

FORMAT 

'--v--1 
INSERTED 

ZERO 
C RESULT FIELD 

'---.r---1 
8-BIT 
BYTE 

Figure 6-48. Example of Zoned to BCD Format Conversion 
(G Bit 0 = 0 and EBCDIC Selected) 

TABLE 6 .. 27. PREFERRED SIGN CODES 

Sign ASCII Mode EBCDIC Mode 

Positive 1010 1100 

Negative 1011 1101 

G DESIGNATOR BIT 0 = 0 AND G DESIGNATOR BIT' 1 1 

The instruction becomes undefined. 

60256000 09 

I 

I 

6-135 



G DESIGNATOR BIT 0 = 1 AND BIT 1 = 0 

The operation assumes that the rightmost byte of the A field contains a sign character 

I according to the ASCII or EBCDIC selection (Table 6-28). If the byte does not contain 

a sign character or a zoned digit, the content of the C field becomes undefined. The 

instruction discards the zone bits in the remaining bytes of the A field and copies the 

digits in the C field without checking for validity. 

I 

I 

I 

TABLE 6-28. ZONE BITS AND SIGN CODES 

Character 
Types ASCII Code EBCDIC Code 

Zone bits OOllXXXXt 1111 XXXXt 
Sign positive 0010 1011 0100 1110 

Sign negative 0010 1101 0110 0000 

t X's denote a digit code. 

If the rightmost byte of the A field contains the proper representation for a sign charac

ter, the instruction inserts the preferred 4-bit positive/negative sign code in the right

most four bits of the C field when it detects a positive/negative sign character in the 

rightmost byte of the 

DISCARDED 

\ 
~ 

ZONED 

FORMAT 
ZONE 

A field (Figure 6-49). 

A SOURCE FIELD 

\ \ \ 
~ ~ ~ 

DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT 

~ SAMPLED 
~,---L_, 

ZONE DIGIT 
SIGN 

CHARACTER 

PRE
FERRED 

SIGN 

BCD E FORMAT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN 

'---v--1 ~ 
INSERTED 

ZERO 
C RESULT FIELD 

8-BIT 
BYTE 

Figure 6-49. Example of Zoned to BCD Format Conversion 
(G Bit 0 = 1 and G Bit 1 = 0) 

6-136 60256000 09 



G DESIGNATOR BIT 0 = 1 AND BIT 1 = 1 

The pack operation inserts the preferred positive sign in the least significant four 

bits of the rightmost byte of the C field (Figure 6-50). The instruction then discards I 
the zone digits and copies the digit bits in the C field as previously describedo 

DISCARDED \ 

~ 
\ 
~ 

A SOURCE FIELD 

\ \ 
~ ,..A-,. 

ZONED 
FORMAT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT 

60256000 09 

BCD 
DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN 

FORMAT 

~ 
INSERTED 

ZERO 

~ 

C RESULT FIELD 

Figure 6-50. Example of Zoned to BCD Format Conversion 
( G Bit 0 = 1 and G Bit 1 = 1) 

8-BIT 
BYTE 

6-137 

I 



FC UNPACK BCD TO ZONED; A - C 

This instruction converts a string source field A in packed BCD format to result field 

C that is in the zoned format. The sign of the C field is determined by sampling 

the sign portion of the packed BCD number. The instruction inserts the preferred sign 

character in the corresponding portion of the C field under the control of G designator 

bits O and 1. The operation proceeds from right to left. 

If the source field contains fewer digits than the result field can store, the instruction 

fills out the result field with characters consisting of the zone code with a zero digit. 

If the source field contains more digits than the result field can store, the necessary 

number of digits are discarded from the source field, truncating the result field. 

The instruction must contain length specifications for both the source and result fields. 

The Y and B designators and bits 2 through 7 of the G designator are undefined and 

must be zeros. 

The instruction generates the zone bits, sign characters, and preferred sign bits accord-

1 ing to the ASCII or EBCDIC selection (Tables 6-27 and 6-28). 

I 

The following paragraphs describe the translation and insertion of the sign bits for each 

condition of G designator bits 0 and 1. In each case, the digits are copied and the zone 

bits generated in the result field as previously described. These operations are not 

described individually for each case. 

G DESIGNATOR BITS 0 0 AND BIT 1 0 (ASCII MODE) 

The operation translates the sign and LSD and places the appropriate overpunched digit 

in the rightmost byte of the C field (Figure 6-51) according to the translations listed 

in Table 6-29. If the rightmost four bits of the A field do not contain one of the six 

sign codes,, the rightmost byte of the C field becomes undefined. 

6-138 60256000 09 



Sign 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

ZONED 
FORMAT 

BCD 
FORMAT 

A SOURCE FIELD 
4-BITS 

~ 

DIG I LSD IGN 

r - - -, 
rmANsLAnoN 1 
L - - .J 

DIGIT OVERPUNCHE 
DIGIT 

INSERTED "----y--------
8-B IT 

ZONE CODE ___ ..___ ___ ___._ ____ ..___ ___ ____,, 

LSD 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

C RESULT FIELD BYTE 

Figure 6-51. Example of BCD to Zoned Format Conversion 
(G Bit 0 = 0 and G Bit 1 = 0 ASCII Mode) 

TABLE 6-29, UNPACK BCD TO ZONED SIGN AND LSD 
TRANSLATION TABLE (ASCII MODE) 

Character Code Si_g_n LSD Character 

{ 7B - 0 } 
A 41 - 1 J 

B 42 - 2 K 

c 43 - 3 L 

D 44 - 4 M 

E 45 - 5 N 

F 46 - 6 0 

G 47 - 7 p 

H 48 - 8 Q 

I 49 - 9 R 

60256000 09 

I 

I 

Code 

7D 

4A 

4B 

4C 

4D 

4E 

4F 

50 

51 

52 

6-139 



G DESIGNATOR BIT 0 = 0 AND BIT 1 = 0 (EBCDIC MODE) 

The sign in the rightmost four bits of the A field is sampled and the appropriate pre-

1 
ferred sign code is inserted in the C field (Figure 6-52 ). If the rightmost four bits of 

the A field do not contain one of the six recognized sign codes (Table 6-25 ), the four 

bits in the sign position are undefined. 

I. 

6-140 

ZONED 

FORMAT 

A SOURCE FIELD SAMPLED 

~~ 
BCD 

FORMAT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN 

ZONE DIG IT ZONE DIGIT ZONE DIGIT ZONE DIGIT SIGN DIGIT 

INSERTED ZONE~....._~~~__..__~~~--~~~~--J '---v---1 
CODE C RESULT FIELD 8-BIT 

BYTE 

Figure 6-52. Example of BCD to Zoned Format Conversion 
(G Bit 0 = 0 and G Bit 1 = 0 EBCDIC Mode) 

60256000 09 



G DESIGNATOR BIT 0 = 0 AND BIT 1 1 

The instruction becomes undefined. 

G DESIGNATOR BIT 0 = 1 AND BIT 1 = 0 

The instruction assumes that the rightmost four bits of the A field (Figure 6-53) contain I 
one of the six valid sign codes. The operation inserts the appropriate 8-bit sign char

acter for the positive or negative sign code according to the ASCII or EBCDIC selection 

(Table 6-28) in the rightmost byte of the C field. If the sign position of the A field I 
does not contain one of the six recognized sign codes 1 the rightmost byte of the C field 

becomes undefined. 

DISCARDED 
,-"---;. 

DIGIT DIGIT 

A SOURCE FIELD 

8-BIT SAMPLED 
BYTE 4 BITS f 
~~~ 

DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

SIGN
CHARACTER

ZONED ZONE DIGIT ZONE DIG IT ZONE DIGIT ZONE DIGIT ZONE DIGIT SIGN
FORMAT CHARACTER

INSERTEO~-L-~~~~-1.--~~~~-'-~~~~--~~~~~

ZONE CODE

60256000 09

C RESULT FIELD

Figure 6- 53. Example of BCD to Zoned Format Conversion
(G Bit 0 = 1 and G Bit 1 = O)

I

6-141

G DESIGNATOR BIT 0 = 1 AND BIT 1 = 1

I The instruction (Figure 6-54) samples the rightmost four bits of the A field, inserts the

appropriate 8-bit sign character for the positive or negative sign code, and sets data flag

bit 38 (decimal data fault) if the sign code is negative. If the sign position of the A field

contains no recognized sign code, the state of data flag bit 38 and the rightmost byte of the

C field become undefined. The digits in the A field are copied and the zone codes are

generated in the C field as previously described.

I

(SETS DFB 38 IF
A SOURCE FIELD SIGN IS NEGATIVE)

8-BIT SAMPLED
BYTE 4 BITS t

~~,.--1'-..

BCD
FORMAT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

ZONED ZONE DIG IT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT
FORMAT

INSERTED ZONE
CODE C RESULT FIELD

6-142

Figure 6-54. Example of BCD to Zoned Format Conversion
(G Bit 0 = 1 and G Bit 1 = 1)

60256000 09

E4 DECIMAL ADD; A + B .. C
ES DECiMAL SUB; A - s~c

E6 DECIMAL MPV; A. s~c

E7 DECIMAL DIV ; A I B ~c

G

0 7 ~16 23 24 31 32 39 40 47 48 55 56 63
--~---~~ ~~~xv-~.-~~7A~~.-~--:-:v~;;...;.....~~---=B~....;..;..~;__~z~...:;.:-;;..=--~-c~...::::.

(INDEX (LENGTH & (INDEX (LENGTH & (INDEX (LENGTH &
FOR A) BASE ADRS) FOR B) BASE ADRS) FOR C) BASE ADRS)

The decimal add, subtract, multiply, and divide instructions perf arm the indicated

arithmetic operations on the A and B source fields which are in the BCD packed for

mat. The result field is also in the packed BCD format. All of the indexes and field lengths

are item counts in bytes. These instructions extend the sum, difference, product, and

quotient to the left with zero digits, if necessary, to fill the specified result field length.

If the C designator or the C field length is zero, the instruction sets no data flag bits

and becomes a no- op. If the A and I or B designator is a zero or if the field length of A

and/ or B is a zero, the instruction uses a positive zero for the corresponding source

field.

If the instruction detects a sign in a digit position or a digit in a sign position. data

flag 38 (decimal data fault) is set. When this condition occurs. the result field and the

state of data flag bit 39 (string arithmetic overflow) become undefined. Data flag bit 39

is set if the instruction truncates nonzero result digits (too small a result field) or

attempts a divide with a zero divisor.

The G designator is not used and must be all zeros.

E4 DECIMAL ADD; A + B - C and E5 DECIMAL SUB; A - B - C

These instructions add/subtract source field B to/from source field A. The sum/dif

ference is stored in result field C. All data fields are in the packed BCD format.

The arithmetic operations proceed from right to left. These instructions force a zero

result positive. The field lengths are specified in bytes. Figure 6-55 shows an I
example of a decimal add; A + B-C (E4) operation with assumed instruction codes,,

' '

register contents,, and string data fields. The index values are shifted three positions

before they are added to the base addresses,, and the result field is extended with one

zero digit to fill out the specified field length.

60256000 09 6-143

0

I

6-144

F

(E4}

., I

G

(00)

15 II

x
(02)

H14

INSTRUCTION CODE

A

(03)

NOT

1151

y

(04)

USED INDEX

It 40

~l A \

REGISTER 02=0000:0000000000021
04=0000 000000000003 1

06=0000: 000000000001:
FIELD1 I

LENGTH1BASE ADDRESS
1

~I/ A \I
03= 000 3 I 000000004000 I
o·s= 00021 000000005000 1
07=00041 0000000060001

STRING SOURCE FIELD A

B

(05)

47 41

l

(06)

0 14 71 1111

T9 T9 T3T0 T4 T+i I I I I
'1\._ STARTING

ADDRESS
(4010)

STRING SOURCE FIELD B
0 14 71 llll 15• 19l0

I I I I I

-~ BASE AO::~~:
(5000}

STRING RESULT FIELD C

0 14 71 15 .. •to 2124 1711

I I I 0 I 0 I 0 I I
FIELD LENGTH

~'--v-1
LEAST SIGN

SIGNIFICANT
DIGIT

v
FIELD LENGTH

1112 1511 It

3 I 0 I + I
L~

BASE EXTENDED ZERO DIGIT
ADDRESS
(6000) STARTING

ADDRESS
(6008}

llOH

Figure 6-55. Example of Decimal Add; A + B -c Instruction

c
(07)

60256000 09

E6 DEC IlVIAL lVIPY; A ~ B C

This instruction multiplies source field A by source field B and stores the product in re

sult field c. All data fields are in the packed BCD format. The sign of the product follows

the rules of algebra. If the field lengths of either or both source fields are initially equal

to zero,, the result is forced to a positive zero. If the result field overlaps either source

field, the instruction produces undefined results~ The field lengths are expressed in bytes.

E7 DECIMAL DVD; A/B-C

I

This instruction divides the dividend in source field A by the divisor in source field Band

stores the quotient and remainder in result field C (Figure 6-56). All data fields are in I
the packed BCD format. The sign of the quotient follows the rules of algebra. The sign

of the remainder equals the sign of the dividend. If the result field overlaps either source

field,, the instruction produces undefined results. The field lengths are expressed in bytes.

SPECIFIED FIELD
LENGTH OF B

SPECIFIED LENGTH OF C

I REMAINDER I QUOTIENT

'--y-l~~DER SIGN DIGIT

STARTING LEAST SIGNIFICANT
ADDRESS REMAINDER DIGIT

(C BASE ADDRESS
+ l INDEX)

I I
'-v-1'-v-'

UOTIENT
IGN DIGIT

LEAST SIGNIFICANT
QUOTIENT DIGIT

Figure 6-56. Format of Decimal Divide Result Field

60256000 09 6-145

I

FA MOVE AND SCALE; A ~c

0
F

(FA)

23 24 47 48 55 56
c

(LENGTH &.

63
x

(INDEX
FOR A)

A
(LENGTH &.
BASE ADRS)

B
(SCALE
COUNT}

z
(INDEX

FOR C} BASE ADRS)

This instruction moves source field A to result field C and scales the source field within

the result field right or left by as many decimal positions as specified by the scale count

contained in register B. The scale count represents an item count of the number of

4-bit, decimal digits to be shifted. The scale count is expressed as a two's comple

ment, signed integer, contained in the rightmost 48 bits of register designated by B.

The shift is relative to the right end of the result field. The G and Y designators are

not used and must all be zeros.. The source and result fields are in the packed decimal

format.

If the scale count is positive, the instruction shifts the source field left within the result

field. The instruction inserts zeros in the rightmost, decimal digit positions of the result

field that are vacated by the left shift. However, the sign digit remains in the rightmost

four bits of the result field. With a positive scale count, the operation is equivalent to mul

tiplying an integer by the positive power of 10
10

•

The scaling operation proceeds from right to left. The overlapping of fields produces un

defined results.

If the scale count is negative, the instruction shifts the source field right within the result

field. This shift is end-off; thus, digits that are shifted into the sign position are discarded.

The original sign of the source field is always retained in the sign position of the result field.

The instruction inserts BCD zeros in the leftmost digit positions of the result field vacated

by the right shift.

If the source-field length is shorter than the length of the result field, the instruction extends

the result field with zero digits. If the relative magnitudes of the source and result field

lengths and a positive scale count (left shift) prohibit the storage of the BCD number in the

result field, the necessary number of high order digits of the result field are truncated. If

any nonzero digit is truncated, the instruction sets data flag bit 3 9 (string arithmetic

overflow).

I 6 .. 146 60256000 09

The indexes and field lengths are expressed in bytes. The instruction tenT1inates when the

result field is filled and after checking the remaining source-field characters on a right

shift for a nonzero character.

Figure 6-57 shows an example of a move and scale instruction with assumed instruc- I
tion codes, register content, and source field. The negative scale count in register B

denotes a right shift of two. As a result, the instruction shifts the low order, two

BCD digits off the end and inserts two BCD zero digits to replace the digits shifted.

The instruction extends the field length with BCD zeros and retains the original sign

in the sign position of the result field.

Figure 6-58 shows an example of a move and scale instruction; however, a positive I
scale count is used. Thus, the instruction left-shifts the field two BCD positions and

inserts zero BCD digits in the low order, two BCD positions. Since the length of the

result field is set at four bytes, the high order, two BCD digits are truncated. The

instruction sets data flag bit 39 (string arithmetic overflow),, indicating that nonzero

digits of the result field were truncated.

60256000 09 6-147

I

0

0

I

F
(FA)

I •

I

7.

G
(0 0)

REGISTER

7 • II II

I I

INSTRUCTION CODE

x
(0 2)

NOT

A
(0 3)

SIH

y
(0 0)

USED I INDEX

02 =~I f>00000"000002\

05 = 0000: 00000000000 I
FIELD

LENGTH I BASE ADDRESS
~f/ A \

03 = 0004 I 000000004000

06 = 0005 I 00000000 5000
NOT
USED I SCALE COUNT

"40
B

(0 4)

~1--~~J-~~-
04 = 0 0 0 0 1 F F F F F F F F F F F E (- 2 - R I G HT SH I FT)

SOURCE Fl E LO A

1111 It IO Hl4 1711 Siii HH 1940 ... 47

I 3 I 5 I 6 I 7 I 0 I 0 I 8 I + I
I

z
(0 5)

llH

c
(0 6)

'
'"STARTING

v _ . INDEX FIELD LENGTH

BASE ADDRESS ADDRESS
(4000)

0 14 71 II II II II

0 0 0

(4010)

RESULT FIELD C

Fl ELD LENGTH

ltlO H 24

0 3 5 6

SI H H 40 41 44 47

7 0 +

r - -,---,
I 0 I 8 I

I I
L - L... _.J

~
DIGITS
SHIFTED
END OFF

\

NDEX ZERO DIGITS
INSERTED

BASE ADDRESS STARTING ADDRESS ORIGINAL SIGN
RETAINED

6-148

(5000) (5 0 0 8)

Figure 6-57. Example of Move and Scale; A -c Instruction
with Negative Scale Count

60256000 09

0

0

I

F
(FA)

J 4

G
(00)

REGISTER

71 II 12

HI II

x
(07)

NOT

ZSM

INSTRUCTION CODE

A
(08)

JI J2

y
(00)

USED
1

INDEX
~I/ A \

07= 0000 000000000002

OA= 0000: 000000000002
FIELD

LENGTH I BASE ADDRESS
~I/ A \

os= 0004 I 000000005000

OB=0004,000000006000
NOT

B
(09)

z
(QA)

USED I SCALE COUNT

09= ~ 1booooo~oooo2' < +2 - LEFT SHIFT>
I

SOURCE Fl ELD A

15 II 19 20 2J 24 2721 31 J2 HH 5940 4J 44 47

I 1 I 4 I 0 I 9 I 8 I 2 0

I \ _ .
_STARTING

INDEX Fl ELD LENGTH

BASE ADDRESS ADDRESS

0

(5 000) (50 I 0)

RESULT FIELD C

r - T - ~----TRUNCATED DIGITS
I 7 I 4 ic-
L _ ...1 _ .J

FIELD LENGTH

J 4 7 I II II II II II 20 27 21 JI J2 H JI SI 40 4 J 44 47

0 9 8 2

INDEX

0 0 0

~
ZERO DIGITS
INSERTED

51551

\

\ v

BASE ADDRESS
(6000)

\ STARTING ADDRESS
(6010)

ORIGINAL SIGN
RETAINED

60256000 09

Figure 6-58. Example of Move and Scale; A -c Instruction
with Positive Scale Count

c
(OB)

6-149

I

I

F8 MOVE BYTES LEFT; A-+(

F9 MOVE BYTES LEFT, ONES COMP . A~ C

0 7 8
F

(F8 OR F9) d e

'--v---J
G BITS 0-3:

G

(SEE TABLE 6-22)

x
(INDEX
FOR A)

G BIT 5:

BIT 7:
0 = INCREtvENT C FIELD INDEX
1 = NOT INCREtvENT C FIELD INDEX

0 = INCREtvENT A FIELD INDEX
1 = NOT INCREtvENT A FIELD INDEX

F8 MOVE BYTES LEFT; A-C

tTHE LENGTH SPEC IF I CATION MAY
BE REPLACED Willi A DELIMITER
CHARACTER

This instruction moves source field A to result field C. The bytes in the field are

considered from left to right. Thus, the most significant byte of the source field is

moved to the most significant byte position of the result field.

The d and e designators in the instruction indicate whether field lengths or delimiting

is specified for the A and C fields.

When the destination field is delimited by a length rather than a delimiter character,

the following rules apply.

1. If the origin field is shorter than the destination field, the destination field is

filled in with the repeated byte found in the B designator of the instruction.

2. If the origin field is longer than the destination field, the operation is truncated

when the destination field is exhausted. For this case, if the origin field was

character delimited, the origin field is searched for the delimiter character so

that its associated index may be properly incremented. If the origin field was

length delimited, its associated index is incremented by the length rather than

the actual number of bytes transferred.

When the destination field is delimited by a character rather than a length, the move

continues until the origin field reaches its length specification. The operation is then

terminated, and the delimiter character specified for the destination is stored as the

last byte of the destination field. The delimiter character is stored even if the A

field length is initially zero.

6-150 60256000 09

The allov:ed index increments and length specifications (.d and e designators) for the

A and C fields are specified by G designator bits 5 and 7 in Table 6-30.

Field

A

A

c
c

TABLE 6-30. INDEX INCREMENTS FOR A AND C FIELDS
FOR F8 AND F9 INSTRUCTIONS

G Bit 5 G Bit 7 Index Incrementt

0 - Full increment

1 - No increment

- 0 Full increment

- 1 No increment

t For a complete definition of index incrementing,, ref er to Index Inc re-
ments at the beginning of the string instructions.

The Y designator and G· designator bits 4 and 6 are not used arid must be zeros.

I

I

Figure 6-59 shows an example of a move bytes left instruction with assumed instruction I
codes,, register content,, and source field. The G designator gives d and e values of

102• Thus,, the rightmost eight bits of the length specification for A and C denote the

delimiter character for the respective field. In the example,, G designator bits 5 and

7 are both zeros. Thus,, the A and C fields are incremented.

The instruction moves the bytes in field A to the corresponding positions of field C,,

beginning at the starting address of both fields. When the delimiter character (FF) is

detected in field A,, the operation terminates with the insertion of the delimiter char

acter (EE) in the result field. Before termination,, the instruction increments the

indexes for A and C by their respective field lengths. The incremented index for C

is added to the base address. The incremented index is left shifted three positions

before the addition; this results in the starting address of the next field in c.

F9 MOVE BYTES LEFT, ONES COMP. A-C

This instruction operates identically to the move bytes left; A-C instruction except that

the one's complement of field A is moved to field C. If a delimiter field is specified

for the source field, the instruction searches the uncomplemented field for the delimiter

character. The instruction complements only the data in the source field. Neither the

repeated byte (when used) nor the delimiter character specified for the result field is

complemented.

60256000 09 6-151

I

0

F
(F 8)

G
(AO)

15 ..

x
(02)

INSTRUCTION CODE

A
(03)

y
(00)

BEFORE EXECUTION
NOT USED I INDEX

~I " \
REGISTER 02= 0000 I 0000000 00002

04= oooolooooooooooo1
DELIMITER CHARACTER I BASE ADDRESS

~ 1, r. \
03= OOFF I 00000000 5000

05=00EEj000000006000

SOURCE Fl E LO A

59 40

B
(00)

47 48

0 3 4 7 I 11 12 1511 1920 2!24 2728 3132 3531 3940 4344 47

\ ,...-----'' '--v-1~

_

IN~EX _ SIGN DELIMITER
CHARACTER

BASE ADDRESS STARTING ADDRESS
(5000) (5010)

z
(04)

55H

c
(05)

. .,

_IN~EX \-STARTING ADDRESS =_STARTING ADDRESS{.5028)
{ 5008) OF NEXT FIELD IN C

BASE ADDRESS
(5000)

AFTER EXECUTION

REGISTER 0 3 AND 05 = SAME

6-152

NOT INCREMENTED
USED I INDEX

~,, " \
02 = 00 00 000000000 006

04 = 0000 I 000000000005
I

Figure 6-59. Example of Move Bytes Left; A -c Instruction

60256000 09

EA MERGE PER BYTE MASK A, B PER G ~c

0 7 8 15 16 23 24 31 32 39 40 Al_ 48 55 56 63
F G x A y B z c

(EA) (MASK FOR (INDEX (LENGTH & (INDEX (LENGTH & (INDEX (LENGTH &
A & B) FOR A) BASE ADRS) FOR B) BASE ADRS) FOR C) BASE ADRS)

This instruction merges the bits from the bytes in source field A with the bits from the

bytes in source field B according to the 8-bit mask in the G designator portion of the

instruction word. The result is stored in corresponding bytes of result field C. The

instruction uses bits of A corresponding to one bits in the mask byte and bits of B

corresponding to zero bits in the mask byte. The operation proceeds from left to

right; thus, the leftmost byte of field A is merged with the leftmost byte of field B

and is stored in the leftmost byte of field C.

If one of the two source fields is shorter than the other, the instruction extends the

shorter source field with null bytes (00
16

). If the result field is shorter than the longer

source field, the operation terminates when the result field is filled. If the result field

is longer than either source field, the instruction fills out the result field with null bytes.

Figure 6-60 is an example of a merge byte mask instruction used to convert zoned I
ASCII to zoned EBCDIC formats. The example uses assumed instruction codes, regis

ter content, and source fields. The mask (G designator) is expanded below the instruc

tion code. Positions 8 through 11 of the mask contain zero bits while positions 12

through 15 contain one bits.

Thus, the instruction substitutes the zone bits of source field B for the zone bits in

source field A in corresponding positions of result field C. Similarly, the one bits in

the mask enable the transfer of the digit bits in source field A to corresponding posi

tions of result field C. As a result, the zone bits from field B are merged with the

digit bits from field A and are stored in corresponding bytes of field C.

Since the assumed length of result field C is one byte longer than either source field,

the instruction inserts a null byte to fill the field. No index incrementing takes place

for this instruction.

60256000 09 6-153

I

0

F
(E A)

0

INSTRUCTION CODE

7 I 15 16 23 24

G x A y
(0 F) (02) (03) (04)

'----v--1
MASK

/8 9 10 II~ 13 14 15\

~NOT tlJ1Il1IJ USED INDEX
~

REGISTER 02= 0000 000000000002
04=0000 000000000002
06=0000 000000000001

FIELD
LENGTH BASE ADDRESS
~

03=0004 000000005000

05=0004 000000006000

07=0005 000000007000

SOURCE FIELD A

B
(05)

ZONE DIGIT SIGN DIGIT

II 12 15 16 19 20 23 24 Z1' 28 31~~0~

_
l:NDEX

BASE ADDRESS
(5000)

_
FIELD LENGTH

STARTING ADDRESS
(5010)

SOURCE FIELD B
ZONE SIGN ZONE
~~,--"--..

0 3 4 7 I II 12 Ill II It 20 23 24 'D 28 31 32 311 M 59 40 43 44 47

_
INDEX

BASE ADDRESS
(6000)

I l1 1 11l1111l1 1 11l1111j111 1j11 11l11 ool11 111

\- FIELD LENGTH

_STARTING ADDRESS
(6010)

RESULT FIELD C
ZONE DIGIT SIGN DIGIT NULL BYTE
~~~~~ 

0 3 4 7 I 1112 11111 1920 2324 2728 3132 HS• H40 4344 47 

I 111 0111 I 111 001 11110100 1100 011000000000 

';---v---'--~~~~~~,--~~~~~~-

\

INDEX \_STARTING ADDRESS 
(7008) 

FIELD LENGTH 

BASE ADDRESS 
('3000) 

55 51 u 

z c 
(06) ( 07) 

Figure 6-60. Example of Merge Per Byte Mask A, B Per G-C Instruction 

6-154 60256000 09 



0 

FD COMPARE BYTES A, B PER MASK FIELD C 

F 
(FD) 

7 8 
G 
A 

15)6 23 24 31 32 39 40 47 48 55 56 63 
c x 

(INDEX 
FOR A) 

A 
(LENGTH & 
BASE ADRS) 

y 

{INDEX 
FOR B) 

B 
(LENGTH & 
BASE ADRS) 

z 
(INDEX 
FOR C} (BASE ADRS) 

G BITS 5, 6: 
A AND B INDEX INCREt-ENT CONTROL BITS 

BITS O, 1: 
(SEE TABLE 6-22) 

This instruction compares the bytes in field A with the bytes in field B for masked 

inequality. The instruction compares the bits in the pair of bytes only where corre

sponding bits in mask field C are ones. The comparison continues byte-by-byte from 

left to right until the instruction detects inequality of a byte pair or one of the foil ow

ing occurs. 

1. Both of the source fields terminate 

2. A or B field delimiter comparison 

The shorter source field is extended with blanks. Figure 6-61 shows the basic format I 
of the data source and mask fields for the compare bytes A, B per mask field C in

struction. 

If the C designator portion of the instruction is zero, the instruction uses a mask con

taining all ones. The length of this mask is extended until one of the termination con

ditions is detected. If a mask field is used, the length specification is undefined. As 

shown in Figure 6-61, the mask field must be at least as long as the longer of the two I 
source fields. 

60256000 09 

I NOTE I 
If the mask field is shorter than the longer source 
field, the instruction will continue to read consecutive 
bytes of field C until a normal terminating condition 
is detected. Thus, the results of such an operation 
would be undefined. 

6-155 



I 

A SOURCE Fl ELD DATA STRING 
FI ELD LENGTH 

BYTE 0 BYTE I BYTE 2 BYTE 3 

CD ® @ © 

"' 
L< It_ ._ 

BYTE 0 BYTE I BYTE 2 BYTE 3 

FIELD LENGTH 
B SOURCE FIELD DATA STRING 

C MASK FIELD 

t ASCII MODE = 20 
EBCDIC MODE = 40 

BYTE 4 BYTE 5 

® ® 
\Lo :J 

EXTENDED WITH 
BLANKSt 

/ 
OPERATION TERMINATES 
AT THIS POINT 

NOTE: ----" 
IF SPECIFIED, MASK FIELD 
MUST BE AT LEAST AS 
LONG AS THE SHORTER 
SOURCE FIELD. 

Figure 6-61. Basic Field Formats for Compare Bytes A. B 
Per Mask Field C Instruction 

TERMINATION DUE TO MASKED INEQUALITY 

If the instruction terminates because it detects masked inequality of a byte pair, the in

dexes of the two source fields are incremented by the same value if enabled by the 

I corresponding A, B index control bit (Table 6-31). This value equals the number of 

masked byte compares made before (but not including) the compare that caused termin

ation. 

TERMINATION DUE TO EXHAUSTING A SOURCE FIELD 

If the instruction terminates because the source fields are exhausted, the instruction 

I increments each source field index by the corresponding field length (Table 6-31 }. In 

this case, the masked operands (source fields) are equal. If delimiter characters are 

used, the instruction searches each source field for the corresponding delimiter charac

ter. The index associated with each source field is incremented so that the corre

sponding base address plus the index locates the first byte of the next field. The 

types of length specification aength1 single character delimiter1 or 16-bit delimiter) 

for fields A and B are equal since the d designator in the instruction word governs 

I the termination of both fields (Table 6-22 ). 

6-156 
60256000 09 



TABLE 6-31. INDEX INCREMENTS FOR COMPARE BYTES A, B 
PER MASK FIELD C INSTRUCTION 

Field G Bit 5 G Bit 6 Index Incrementt 

A 0 - Full increment if equal 
Partial increment if not 

1 - No increment 

B - 0 Full increment if equal 
Partial increment if not 

- 1 No increment 

c No increment 

tFor a complete definition of index increment, refer to Index Increments 
at the beginning of the string instructions. 

DATA FLAG BITS 

equal 

equal 

-

Before the instruction exits, data flag bit 53, 54, or 55 is set according to the result 

I 

I 

of the byte compare operations. Table 6-32 lists the three data flag bits and the con- I 
dition for setting the corresponding bit. 

TABLE 6-32. DFB CONDITIONS FOR THE FD INSTRUCTION I 

DFB Bit Condition 

53 Masked operands are equal 

54 First masked operand is greater (A > B) 

55 First masked operand is less (A < B) 

60256000 09 6·157 



FE SEARCH FOR MASKED KEY BYTE; A, B PER C, G 

FF SEARCH FOR MASKED KEY WORD; A, B PER C, G 

06 SEARCH FOR MASKED KEY BIT; A. B PER C,G 

0 7 8 1 5 16 23 24 3 32 1 
F G x A y 

(FE,FF ( D IFFERENCE (INDEX (LENGTH & (INDEX 
THRESHOLD OR D6) 
COUNT REGi 

FOR A) BASE ADRS) FOR B) 

39 40 Al_ 48 
B z 

(LENGTH & (INDEX 
BASE ADRS) FOR C) 

FE SEARCH FOR MASKED KEY BYTE; A, B PER C, G 

55 56 63, 
c 

(BASE 
ADRS) 

This instruction searches source field A (reference field) for a match with source field 

B (key field). The first search compares the first byte of field A with the first byte 

of field B. If there is no difference in the comparison, the instruction compares the 

second byte of field A with the second byte of field B. This process continues until 

the key field is exhausted or the instruction detects a difference in the comparison of 

a pair of bytes. If the entire key field is compared with a portion of the reference 

field with no differences in the byte compares, a match results and the instruction 

terminates. If a compare difference is found, the instruction terminates that search 

and begins a new search by comparing the first byte of field B with the second byte of 

field A, the second byte of field B with the third byte of field A1 and so on. This pro

cess continues until the key field B is exhausted or a compare difference is detected. 

The instruction continues this process of repeated searches until it detects a match or 

searches the reference field for all possible matches. If no match is made, the maxi

mum number of searches is equal to the length of A minus the length of B plus one 

(A-B+l). If no match is detected, data flag bit 37 (select condition not met) is set. 

The A index is increased by one for each search initiated which does not result in a 

match. When a match is found, the A index provides a means of locating the portion 

of the reference field which matched the key field. If no match is found, the A index 

I is increased by the length of the A field. Table 6- 33 lists index increments for the 

instruction. 

I 

6 .. 158 

TABLE 6-33. INDEX INCREMENTS FOR SEARCH FOR MASKED 
KEY BYTE; A, B PER C, G INSTRUCTION 

Field Index Incrementt Length Specification 

A Full increment (no Field length 
match) 

A Partial increment Field length 
(match) 

B No increment Field length 

tFor a complete definition of index increment, refer to Index 

1 ___ -~~~E~!E-~El_~s at the beginning of the string instructions. 

60256000 09 



Field C serves as a mask such that the instruction makes a byte-by-byte comparison 

only when there are ones in the corresponding bit positions of the mask. Bits of the 

reference field and the key field are considered to match wherever there is a zero bit 

in the mask field. The mask field C is assumed to be as long as the key field B. 

There is no length specification for field C; the instruction represents field C as being 

at least as long as key field B. The mask field is associated with the key field such 

that on the second search, the instruction compares the first byte of B with the second 

byte of A, using the first byte of C as a mask. If the C designator is 0016 1 the instruc

tion generates a mask of all ones. 

Figure 6-62 is an example of search for masked key, byte; A, B per C,, G instruction I 
with assumed instruction codes, register content, and data fields. Although the C 

designator specifies a particular register,, the mask field is set to all ones. Thus,, 

all bits are compared in the byte compare operations. 

In Figure 6-62, the solid arrows indicate the first complete search and the dashed I 
arrows indicate the second complete search although a complete search does not actually 

take place in these cases. The third and subsequent searches follow the same pattern. 

The bytes in fields A and B are assumed to contain representations of alphabetical charac

ters. 

If no match is detected, the maximum number of complete searches equals the length of 

field A minus the length of field B plus one (A - B + 1 ), which in the example would be 

6 - 3 + 1 = 4. In the example, a match is detected on the fourth and final search. 

If any of the following conditions are present, the results of the instruction become 

undefined. 

1. Any or all of the A, B, or X designators are 0016 . 

2. The length of the A and/or B field is 0016 

3. The B field is longer than the A field. 

For certain applications, it is desirable to allow a match in two strings of bytes in which 

there are no more than a specified number of compare differences. For example, if 

one difference is allowed, the key field. (IVIINNEAPOLIS) would match the portion of the 

reference field (IVIINN ZAPOLIS ). The character Z represents the one allowed difference 

in the reference field for a match. The maximum number of allowed compare differ

ences is termed the difference threshold count. This count is contained in the rightmost 

48 bits of the register designated by G (Figure 6-62). Only a positive,, two's comple- I 
ment number is meaningful as a difference threshold count. 

60256000 09 6-159 



I 

INSTRUCTION CODE 

F 

(FE) 

G 
(02) 

x 
(03) 

2324 

A 
(04) 

NOT DIFFERENCE 
BEFORE EXECUTION USED I THRESH~D COUNT 

REGISTER 02 = ~ 
1
booooooooooo' 

NOT 
USED I INDEX 

03= ~ lbooooo000002' 

05= 0000 1000000000002 

07= 

04 = 
06 = 
08 = 

0000 1000000000002 
FIELD I BASE 

LENGTH ADDRESS 
~I A 

0006 
1
'oooooooosooo' 

0003 000000006000 
~ I 000000001000 

NOT I 
USED I 

3132 
y 

(05) 
B 

(06) 

4748 

z 
(07) 

55Y 

REFERENCE FIELD A 

INDEX 

0 

T 

t f 
BASE ADDRESS (5000) STARTING 

ADDRESS(~IO) 
INDEX 

0 7. 

FIELD LENGTH 

H 

55M 

T H 

/ MATCH 
/ EY FIELD B (4TH SEARCH) 

/ K 

/ AFTER EXECUTION 

c 
(0 8) 

E 

T 

+ v 

E 
REGISTER 02, 04-08= UNCHANGED 

NOT USE~ 
03=~ 000000000005 

BASE ADDRESS (6000) FIELD LENGTH 
INDEX STARTING ADDRESS (6010) FIELD LENGTH MASK FIELD C 

0 7. 15 .. 2324 31 32 39 

I I I FF I FF I FF 

t v 
BASE ADDRESS (7000) i ALL i's 

6-160 

STARTING ADDRESS (7010) 

Figure 6-62, Example of Search for Masked Key Byte; 
A, B Per C, G Instruction 

60256000 09 



If the C designator is zero, the operation is identicai to that with a mask of aii ones. 

If the A and/ or B designator is zero, if the length of field A and/ or B is zero, or 

if the B field is longer than the A field, the results of this instruction are undefined. 

The difference threshold count indicates the number of allowed differences on any one 

search. In Figure 6-62, the instruction compares the character T in the key field with I 
the same character in the reference field in the first search. Since there is no differ

ence in this comparison, the instruction compares the character H in the key field with 

the character T in the reference field, and a difference occurs. Thus,, the first search 

terminates. The instruction would then initiate the second search which would not 

detect a difference until the third byte comparison (E in the key field is compared with 

T in the reference field). The instruction initiates successive searches until it detects 

a match which,, in the example,, occurs on the fourth search. 

If the difference threshold count is set to one, the instruction allows one difference on 

any one search, if the difference threshold is set to two,, the instruction allows two 

differences, etc. In the example, a difference threshold of one gives a match on the 

second search, and a threshold of two gives a match on the first search. 

FF SEARCH FOR MASKED KEY, WORD; A, B PER C, G 

This instruction is identical in operation to the search for masked key, bytes (FE) in

struction, except masked words are compared rather than bytes. The length specifica

tions and indexes are expressed in words instead of bytes. The instruction compares 

masked full words. The only possible matches take place at word boundaries and the 

instruction initiates new searches at word boundaries. As in the FE instruction, the 

FF instruction sets data flag bit 37 if no match is found. 

D6 SEARCH FOR MASKED KEY, BIT; A, B PER C, G 

This instruction is identical in operation to the search for masked key, bytes (FE) in

struction, except masked bits are compared rather than bytes. The length specifications 

and indexes are expressed in bits rather than bytes; the instruction compares masked 

bits. The only possible matches take place at bit boundaries and the instruction ini

tiates new searches at bit boundaries. As in the FE instruction, the D6 instruction 

sets data flag bit 3 7 if no match is found. 

60256000 09 6-161 



I 

I 
I 

EE TRANSLATE A PER B ~c 

0 
F 

(EE) 

G 
(SUBFUNCTION) 
~ 

78 1516 
d e ~ x 

(INDEX 

23 24 31 32 39 40 47 48 55 56 63 

(LENG~t& 
y B z (LENG~t& ( INDEX (BASE (INDEX 

FOR A) BASE ADRS) FOR B) ADRS) FOR C) BASE ADRS) 

'--v--1 \ __ \...___ G BITS 5, 7 : 
G BITS 0-3: (SEE TABLE 6-34) 

(SEE TABLE 6-22) 

t THE LENGTH SPEC IF I CA TI ON MAY 
BE REPLACED WITH A DELIMITER 
CHARACTER 

This instruction translates the bytes (from left to right) in field A. A translate table, 

which is stored in field B, controls the translation. The instruction stores the trans

lated bytes in result field C. 

The bytes read from field A serve as item counts. The instruction first shifts each 

item count left three places and then adds it, after indexing, to the starting address of 

the B field to form a new address. The byte at this new B field address is trans

mitted to a position in the C field that corresponds to the item count that produced 

the shift. Thus, the C field contains the translated bytes. Field B is not incre

mented although the Y designator specifies an index in bytes for the B field. 

No field length or delimiter may be specified for the B field (translate table). How

ever, the effective length of the table cannot exceed 25610 bytes, because a byte (8 bits) 

is used to index the translate table. The computer loads the entire translate table 

into a buffer memory at the beginning of the instruction execution. If this table crosses 

a page boundary (but the portion actually used by the programmer is contained in the 

first page), it is possible for the computer to generate an unnecessary access interrupt 

while loading what will become the unused portion of the table. 

When field C is length-limited and field A is exhausted before field C is exhausted, 

field C is filled out with null (00
16

) bytes. If fields A and C are length-limited and 

field C is filled before A is exhausted, the index associated with the A field will be 

incremented by the A length rather than the actual munber of bytes translated. 

If field C is length-limited, field A is delimiter-limited, and field C is exhausted 

before field A, then field A is se::,irched for its delimiter character so its index may be 

properly incremented. When field C is delimiter-limited, the instruction proceeds until 

field A is exhausted. The delimiter for field C is then stored immediately following the last 

translated byte which was stored. The delimiter is stored even if the A field length is 

initially zero. 

6-162 60256000 09 



Index incrementation takes place for the A and C fields as specified by bits 5 and 7 

of the G designator (Table 6-34); the B field index is not incremented. 

TABLE 6-34. INDEX INCREMENTS FOR TRANSLATE 
A PER B - C INSTRUCTION 

Field G Bit 5 G Bit 7 Index Increment t 
A 0 - Full increment 
A 1 - No increment 
B - - No increment 
c - 0 Full increment 
c - 1 No increment 

t For a complete definition of index increment, refer fo 
Index Increment at the beginning of the string instructions. 

Figure 6-63 is an example of a translate A per B- C (EE) instruction with assumed 

instruction codes, register contents, and A and B fields. The example uses a de

limiter character for the A field and a length specification for the C field. G desig

nator bits 5 and 7 are zeros. Thus, both the A and C index are incremented. 

In the example, each byte in the A field represents a digit of a decimal number. The 

consecutive bytes of the translate table in the B field contain the translation code for 

the corresponding digits. The example translates the digits in the A field into trans

lated characters and transmits them to consecutive bytes of the C field. For example, 

the digit 3 is shifted left three places and is added to the starting address of the B 

field: 

0110 0000 0000 1000 

0000 0000 0001 1000 

0110 0000 0010 0000 

(600816) 

(001816) 

Thus, 2020
16 

becomes the address in the B field of the translation for character 3 

in the A field. This translation is then transmitted to the leftmost byte of the C field. 

This process continues until the C field is filled. The A index (register 02) is incre

mented by seven. The C index is incremented by six. 

60256000 09 6-163 

I 

I 



I 

6-164 

INSTRUCTION CODE 

0 1 I II II 11 14 II II H 40 41 41 •II H 

F G X A Y B Z C 
(EE) ( 80) (02) (03) (04) (05) (06) (07) 

'--r-1 
D = 10- DELIMITER CHARACTER 
E=OO-FIELD LENGTH SPECIFIED 

BEFORE EXECUTION 
NOT 

BASE 

USED INDEX 
~I "'-----.. 

REGISTER 02 = 00001000000000002 
04= 0000100000000000 I 
06 = 0000:000000000000 

DELIMITER' BASE ADDRESS 
~:--~~·--~~~ 

03=005A~00000005000 
I 

NOTI 
USED: 
~I 

05 = XXXX1000000006000 

FIELD1 

LENGTH: 

~· 07=0006~00000007000 

A FIELD (INITIAL CHARACTER SET) 

0 71 1s1• 2314 :st:SZ :S940 4741 HH HO 

'--v---1 
INDEX 

3 7 8 9 

FIELD LENGTH 

STARTING ADDRESS (5010) 

4 

DELIMITER 

ADDRESS (5000) 

B FIELD (TRANSLATE TABLE) 

0 71 ISi• Z:Sl4 Jl:SZ 3940 4741 HS• no 71 IS II Z:S 

A B c D E F 

STARTING 6020 
ADDRESS (6008) 

C FIELD (TRANSLATED CHARACTER SET> 

0 71 IS II z:s 14 ":sz ,. 40 47 

I D I H I I I J I B I E 

\_ BASE ADDRESS= 
STARTING ADDRESS (70001 

G H I J 

\_NEW WORD 
ADDRESS(6040) 

AFTER EXECUTION 

REGISTER 03,04,05, 07 - UNCHANGED 
02=000~000000000009 
06=0000~00000000006 

Figure 6-63. Example of Translate A Per B -C Instruction 

60256000 09 



EF TRANSLATE AND TEST A PER B ~c 

G 
(SUBFUNCTION) 
~ 

0 1 e 1516 23 24 31 32 39 40 47 48 55 56 63 
F 

(EF) 

\_G 

x 
(INDEX 
FOR A) 

A 
(LENGTH & 
BASE ADRS) 

\._ G BIT 5: 
(SEE TABLE 6-35) 

BITS o, 1: 
(SEE TABLE 6-22) 

y 
(INDEX 

FOR B) 

B 
(BASE 
ADRS) 

z 
ASSOCIATED 
A VECTOR 

BYTE 

c 
NONZERO 
VECTOR 

BYTE 

This instruction translates the bytes (from left to right) in field A. A translate table, 

which is stored in field B,, controls the translation. 

The bytes read from field A serve as item count~. The instruction first shifts each 

item count left three places and then adds it,, after indexing,, to the starting address of 

the B field to form a new address. The new address references a byte in the trans

late table (B field). If the byte in the ·translate table is zero,, the next byte to the 

right of the one referenced in the A field is referenced and translated. This process 

continues until the instruction reads a nonzero byte from the translate table or exhausts 

the A field. 

I 

No field length or delimiter may be specified for the B field (translate table). How- I 
ever, the effective length of the table cannot exceed 25610 bytes, because a byte (8 bits) 

is used to index into the translate table. The computer loads the entire translate 

table into a buffer memory at the beginning of the instruction execution. If this table 

crosses a page boundary (but the portion actually used by the programmer is contained 

in the first page), it is possible for the computer to generate an unnecessary access I 
interrupt while loading what will become the unused portion of the table. 

If the A field is delimiter limited, the delimiter character is not translated. When 

a nonzero translated byte is found, it is stored in register C and the associated byte 

from field A is stored in register z. The bytes are stored in the rightmost 8 bits, and 

the leftmost 56 bits in these two registers are cleared. If no nonzero translated byte 

is found, registers C and Z are not altered. The C and Z register results are undefined 

if the C and Z designators are equal in this instruction. 

The instruction terminates if a nonzero byte is referenced from the translate table or if field 

A is exhausted, whichever occurs first. The instruction increments the A index according to 

whether a nonzero byte is referenced as specified by G designator bit 5 (Table 6-35). Field 

B is not incremented,, although the Y designator specifies an index in bytes for the B field. 

60256000 09 6-165 



I 

I 

I 

TABLE 6-35. INDEX INCREMENTS FOR TRANSLATE AND 
TEST A PER B - C INSTRUCTION 

Field 
Field G Bit 5 Index Increment t Specification 

A 0 Partial increment (nonzero byte) All 

A 0 Full increment (all bytes zero) All 

A 1 No increment -
B - No increment -

iFor a complete definition of index increment, refer to Index Increments at 
the beginning of the string instructions. 

The instruction sets the data flag bits according to the results of the instruction 

(Table 6-36 ). 

TABLE 6-36. DFB CONDITIONS FOR THE EF INSTRUCTION 

DFB Bit Condition 

53 Termination due to length or delimiter rather than nonzero 

translated byte 

54 Termination due to nonzero translated byte which is not the 

last data byte in the A field 

55 Termination due to nonzero translated byte which is the last 

data byte in the A field 

D7 TRANSLATE AND MARK A PER e~c 

0 
F 

(D7) 

G 
{SU BFUNCT I ON) 
~ 

7 8 15 23 24 31 32 
d x 

(INDEX 
FOR A) 

~G BIT 5: 

A 
{LENGTH & 
BASE ADRS) 

y 

(INDEX 
FOR B) 

1 = PROHIBIT A FIELD INDEX 

BIT 4: 
0 = 64-BIT RESULT ELD£NTS 
1 = 32-BIT RESULT ELEtvENTS 

39 40 

B 
(BASE 
ADRS) 

47 48 

l 
(INDEX 
·r-CJR C) 

55 56 

c 
(BASE 
ADRS) 

63 

This instruction translates the bytes (from left to right) in field A. A previously stored 

translate table in the B field controls the translation. 

6-166 6025600fr 09 



The bytes read from field A are item counts. The instruction first shifts each item count 

three places and then adds it to the starting address of the B fieid to form a new address. 

The new address references a byte in the translate table (B field). If the byte in the 

translate table is zero, the next byte to the right of the one referenced in the A field is 

referenced and translated. This process continues until the instruction reads a nonzero 

byte from the translate table or exhausts the A field. Field B is not incremented although 

the Y designator specifies an index in bytes for the B field. 

No field length or delimiter may be specified for the B field (translate table). However,, I 
the effective length of the table cannot exceed 25610 bytes,, because a byte (8 bits) is used 

to index into the translate table. The computer loads the entire translate table into a buffer 

memory at the beginning of the instruction execution. If this table crosses a page boundary 

(but the portion actually used by the programmer is contained in the first page),, it is pos- I 
sible for the computer to generate an unnecessary access interrupt while loading what will 

become the unused portion of the table. 

If the A field is delimiter limited, the delimiter character will not be translated. When a 

nonzero translated byte is found, it is stored (right justified) in the cleared exponent 

portion of result vector C. The partially incremented A field index is stored (right 

justified) in the cleared coefficient portion of result vector C. The translate then con

tinues with every nonzero translated byte and its associated index being stored in 

vector C until the A field is exhausted. 

When the A field is exhausted, the operation enters the number of nonzero translated bytes 

into the field length portion of the register designated by C and terminates the instruction. 

When the number of nonzero translated bytes equals 2 16 , the instruction sets data flag bit 

37 (select condition not met). The instruction makes no further indication if the count 

exceeds 216_1 more than once. If all the translated bytes are zero,, data flag bit 53 is set. 

If G bit 4 is cleared, register Z specifies a word index for the result vector C which consists 

of 64-bit elements. If G bit 4 is set, register Z specifies a half-word index for the result 

vector C which consists of 32-bit elements. In forming the 32-bit element, the rightmost 

24 bits of the partially incremented A field index are stored in bits 8 through 31 of each 

element. The leftmost 24 bits of that A field index are ignored for this case. 

If G bit 5 is not used, the instruction full indexes the A field index. If G bit 5 is a one. 

the A field is prohibited from being indexed. G bit 5 controls only the updating of the A 

field index at the termination of the instruction. Thus, if G bit 5 is not set, the A field 

index retains appropriate updated index of the translated bytes. 

The Band C field indexes are. not incremented; the C field is in half words. 

60256000 09 6-167 



EB EDIT AND MARK A PER B + C 

0 7 8 15 16 2 3 24 31 32 39 40 _4]_ 48 55 56 b3 
F G x A y B z c 

(EB) (INDEX FOR (BASE (INDEX FOR {LENGTH &. (INDEX FOR (LENGTH &. 
A) ADRS) B) BASE ADRS) C) BASE ADRS) 

"---y----1 
'- REGISTER THAT STORES ADDRESS OF 

THE BYTE PRECEDING EACH FIRST 
SIGNIFICANT RESULT DIGIT 

This instruction edits field A under the control of pattern field B and stores the result 

I in field c. The editing operation proceeds from left to right. Figure 6-64 shows the 

general format of the fields for the EB instruction. Source field A is in packed BCD 

format while pattern field B and result field C are in the zoned format. 

Each of the characters in the pattern field and result field are contained in one 8-bit 

byte. The bytes are processed from left to right. The instruction examines the pat

tern characters in conjunction with the corresponding source digits and determines the 

result characters. The definitions and zoned codes for the pattern characters are listed 

I in Figure 6-64. Subsequent paragraphs describe the pattern characters in more detail. 

The field length specifications for fields B and C are item counts in bytes. The field 

length specification for field A is not used. Delimiter characters are not allowed in 

this instruction. This instruction permits the editing of multiple source fields with the 

use of a field separation character in the pattern field. As shown in the instruction 

format, the instruction stores the address of the byte preceding each first significant 

result digit of field C in the register designated by G. 

The instruction determines the character to be stored in the result field by an examin

ation of the pattern character and then, if necessary, the state of that T flip-flop and/or 

the digit read from the source field. The instruction stores characters in the result 

field according to one of the following conditions. 

1. The source digit (A field) is expanded to zoned format and transmitted to the result 

field. 

2. The pattern character is transmitted to the result field. 

3. The fill character is transmitted to the result fie Id. 

6-168 60256000 09 



BASE 
ADDRESS 

MOST 

SOURCE FIELD A (PACKED BCD) 

MOST 
INDEX SIGNIFICANT BYTE 

~~ 

STARTING 
ADDRESS 

PATTERN FIELD B (ZONED FORMAT) 

SIGNIFICANT BYTE 
~ 

BASE 
ADDRESS= 
STARTING 
ADDRESS 

(ZERO INDEX 
ASSUMED) 

60256000 09 

I D D D * I F D 

SPECIFIED FIELD LENGTH 

RESULT FIELD C (ZONED FORMAT) 

5 3 • 9 * 3 4 5 

SPECIFIED FIELD LENGTH 

NOTE: 
IN THIS EXAMPLE AN ASCII SELECTION IS ASSUMED. 

PATTERN FIELD CHARACTER DEFINITIONS 

S = SIGNIFICANT START CHARACTER 
(It 10 0001) 

D = DIGIT SELECT CHARACTER 
(I I 10 0000) 

* • MESSAGE INSERTION CHARACTER 

I = IGNORE-DIGIT CHARACTER (!II 0 0011) 

F = FIELD SEPARATION CHARACTER 
(11100010) 

Figure 6-64. Example of Field Formats for Edit and Mark 
A Per B --c Instruction 

D D 

I 

6-169 



T FLIP-FLOP 

The T flip-flop controls the placement of source digits, fill characters, and pattern 

characters in the result field. Initially, the instruction clears the T flip-flop. Sub

sequently, pattern characters and source digits direct the setting and clearing of the 

T flip-flop. 

The detection of a plus sign in the proper position of the source field clears the T flip

flop although it was previously set by a nonzero digit in the same source byte. This 

operation is described further in Source Digits. 

The address of the byte that precedes each first significant result digit stored in output 

field C is recorded in the rightmost 48-bit register designated by G. The leftmost 16 

bits are cleared to zero. The first significant result digit is defined as the first digit 

stored following a significance start character before a field separator. The first sig

nificant result digit may also result from a digit being stored as the result of a digit

select character when the T flip-flop is cleared and the digit is nonzero. This condition 

may occur several times during the execution of a single EB instruction. If no first 

significant result digit is stored, the contents of the G register is not altered. 

PATTERN CHARACTERS 

Any 8-bit byte may appear in the pattern field. The instruction interprets all bytes as 

message insertion characters except for the four special pattern characters. The four 

pattern characters with special significance are the digit- select, significance- start, field

separation, and ignore-digit characters. 

I Table 5 ... 37 lists each of the pattern characters and the conditions in which they function. 

DIGIT-SELECT CHARACTER 

This character causes either a source digit or the fill character to be transmitted to 

the result field. 

SIGNIFICANCE-START CHARACTER 

This character sets the T flip-flop which permits only source digits to be transmitted for 

digit select characters until the occurrence of a field separator. Nothing is transmitted to 

the result field. 

FIELD-SEPARATION CHARACTER 

This character identifies individual fields in a multiple source-field operation. When 

the instruction detects a field-separation character, it clears the T flip-flop and nothing 

is transmitted to the result field. 

6-170 60256000 09 



T.A"RLE 6-37. PATTERN SELECT CHARACTERS 

Initial Source Resulting 
Examine State of Digit Result State of 

Character Code Digit T Flip-Flop Status Character T Flip-Flop 

Digit-select XXlO 0000 Yes t = 1 Digit t = 1 
t = 0 d Io Digit t = 1 
t = 0 d = 0 Fill t = 0 

Significance-
start XXlO 0001 No t = 1 None t = 1 

t = 0 None t = 1 

Field-
separation XXlO 0010 No t = 0 or 1 - None t = 0 

Ignore-digit XXlO 0011 Yes t = 0 - None t = 0 
t = 1 - None t = 1 

Message- Any other 
insertion character No t = 1 - Pattern t = 1 

t = 0 - Fill t = 0 

Symbols: 

d - Represents a source digit. 
t - T flip-flop (cleared by plus signs or field separation characters). 

digit - The source digit is expanded to eight bits (zoned and is stored in the result field). 
fill - The fill character is stored in the result field. 

pattern - The pattern character is stored in the result field. 
XX - 11 in ASCII mode 

00 in EBCDIC mode 

IGNORE-DIGIT CHARACTER 

This character causes the next source digit to be skipped. The digit is not sampled 

for a zero I nonzero status and nothing is transmitted to the output field. Since the 

normal samples for sign codes are made, the ignore-digit character could result in a 

data fault or the clearing of the T flip-flops. 

MESSAGE-INSERTION CHARACTERS 

I 

The instruction does not examine a source digit when it reads a message-insertion 

character from the pattern field. If the T flip-flop is a 1 at this time, the instruction 

transmits the message-insertion character to the result field. If the T flip-flop is a 

0, the fill character is transmitted. The exception is if a message-insertion character 

appears as the first character of the pattern field (T=O), the message-insertion charac

ter defines the fill character for the instruction. No character is transmitted to the 

result field for this first pattern field character. 

60256000 09 6-171 



SOURCE DIGIT 

When the instruction stores the source digit in the result field, it expands the source digit 

code from the packed BCD format to the zoned format by attaching a zone code as the 

leftmost four bits of the byte. The zone code is conditioned by the ASCII/ EBCDIC bit in 

. the job's invisible package. If ASCII is selected, the zone code is 0011. If EBCDIC 

is selected, the zone code is 1111. 

Each byte in a source field contains two digits or a digit and a sign. When a byte con

tains a sign, the sign is in the rightmost four bits. The sign is processed in conjunc

tion with the digit in the leftmost four bits of the same byte. A positive sign clears 

the T flip-flop. If a sign should be in the leftmost four bits of a source byte, data 

flag 38 (decimal data fault) sets. 

The source digits are examined once during an editing operation. The instruction examines 

the leftmost four bits of the byte first. The rightmost four bits are then checked for sign. 

If these bits are not a sign, they are available for the next pattern character that calls for a 

digit examination. 

If the instruction detects a data fault in the source field, the contents of the result field 

and data flag bits 53, 54, and 55 are undefined. The instruction also sets data flag bit 

38 for this condition. 

Any of the plus sign codes (1010, 1100, 1110,or 1111) clear the T flip-flop after the 

preceding digit is examinedo The minus sign codes (1011 and 1101) do not affect the 

state of the T flip-flop. When one of the sign codes is encountered in the rightmost 

bits, the bits are no longer treated as a digit. In this case, the next digit to be ex

amined is in the leftmost bits of the next character. Digits in the source field 

are only examined for digit-select and ignore-digit pattern characterso 

FILL CHARACTER 

The fill character is the first character of the pattern field unless that character is 

one of the four special pattern characters. When the instruction reads the fill character 

from the pattern field, it retains this character for later use. It is not transmitted to 

the first character position of the result field. The instruction continues with an exam

ination of the second character in the pattern field to determine the first character in 

the result fieldo 

If one of the four special pattern characters is the first character of the pattern field, 

the instruction uses the blank character (20 16 for ASCII or 4016 for EBCDIC) as the 

fill character. The instruction continues with a reexamination of the first character 

of the pattern field to determine the first character of the result field. 

When the instruction detects a field-separation character in the pattern field, the fill 

character is neither changed nor is a source digit examined. In this case,, the instruction 

clears the T flip-flop and continues with an examination of the next pattern character. 

I 6-172 
60256000 09 



DATA FLAG BITS 

The EB instruction uses data flag bits to indicate the sign and zero status of the last 

source field edited. The state of the data flag bits pertains to fields specified by the 

field-separation characters, regardless of the number of signs contained within the field. 

For multiple field editing operations, the data flag bits indicate only the field following 

the last field-separation character. Thus, when the last character of the pattern field 

is a field-separation character, the data flag bits indicate an all zero field. Figure 

6-64 shows that the last source field contains a negative sign code; thus., data flag bit I 
54 is set. 

The instruction examines all source digits in a field for the zero code (00002 ) because 

of a digit-select. At the termination of the instruction, the data flag bits indicate 

whether the field edited after the last field-separation character contained all zero digits. 

When the last edited field contains all zero digits, the instruction sets data flag bit 53. 

If the T flip-flop is cleared and the last edited field contains at least one nonzero digit, 

the instruction sets data flag bit 55. Table 6-38 lists the data flag bits affected by I 
the EB instruction and the corresponding conditions under which they are set. 

TABLE 6-38. DFB CONDITIONS FOR THE EB INSTRUCTION 

DFB Bit Condition 

38 Decimal data fault 

53 Last edited field is zero 

54 Last edited field nonzero with negative sign or unsigned (T flip-flop set) 

55 Last edited field nonzero with positive sign (T flip-flop clear) 

DATA FAULT 

The instruction sets data fault flag bit 38 whenever the operation encounters a sign code 

in the leftmost four bits of a byte in the A field. The flag is also set whenever more 

than one numeric field is encountered by a single pattern field (that is, between the 

start of the pattern field and the first field-separator or between any two field-separator 

characters in the pattern). This condition occurs when a digit-select or ignore-

digit character is detected in the pattern field after a sign code was examined and be

fore a field-separator. If a data fault occurs, the contents of the output field C is 

undefined, data flags 53, 54, and 55 are undefined, and data nag 38 is set. 

60256000 09 6-173 

I 



TERMINATION 

The instruction terminates by filling result field C or by attempting to read beyond 

pattern field B. At termination, the instruction sets the data flag bits as listed in 

I Table 6-38. 

I 

EXAMPLES 

In the following examples, the character codes are used as defined.. In each 

case, the starting address for the result field C is 40000
16

, and the initial content of 

register G is 1000016• For purposes of clarity, all field indexes are assumed to be 

zero. All field lengths are assumed to equal the lengths actually shown in the examples. 

In the source fields, the BCD digits are shown in their normal decimal notation in the 

corresponding byte positions. The pattern and result fields are shown marked off in 

bytes with digit or symbolic representation of the character in each byte position. No 

bit, word, or byte addresses are shown for the fields and all fields are to be processed 

left to right. In the examples, solid lines (with arrows) show the actual transfer of a 

character or digit to the result field, while a dashed line indicates the pattern character 

that controlled the transfer of a digit from the source field or the fill character. 

The following symbols are defined for use in the examples. 

Symbol 

B 

D 

s 
F 

I 

EXAMPLE 1 

Definition 

Blank character 

Digit-select character 

Significance- start character 

Field-separation character 

Ignore-digit character 

Figure 6-65 shows an example of an edit/mark A per B - C instruction with a single 

source field containing a positive sign. Table 6-39 lists the step-by-step operation of 

the instruction for example 1. 

Figure 6-65 shows the retaining of the fill character (~:~) and its transfer to the corre

sponding byte positions in the result field. The final content of G represents the ad

dress of the byte preceding the first significant result digit (3) stored in output field c. 
This address occupies the rightmost 48 bits of G; the leftmost 16 bits of G are cleared 

to zero. 

6 .. 174 60256000 09 



TABLE 6-39. OPERATION OF EDIT AND MARK A PER B - C INSTRUCTION I . 
Pattern Source T Flip-Flop 

Character Digit State Conditions for Result Field 

* 0 This character is retained as 
the fill character. 

D 0 0 Fill character (*) 

D 0 0 Fill character (*) 

' 
0 Fill character (*) 

D 3 1 Digit (3) - First nonzero 
sets the T flip-flop. 

digit 

D 6 1 Digit (6) 

D 3 1 Digit (3) 

s 1 Significance-start character 
would have set T flip-flop if 
not already set. 

• 1 Pattern (.) 

D 2 1 Digit (2) 

D 9 1 Digit (9) 

+ 0 No output to result field. Plus 
sign cl ea rs T flip-flop. 

B 0 Fill character (*) 

c 0 Fill character (*) 

R 0 Fill character (*) 

60256000 09 6-175 



( 

* 
~ 
RESULT 
FIELD C 

(ZONED) 

SOURCE 
FIELD A 

(PACKED 
BCD) 

I 

6-176 

FILL 
CHARACTER 

~ 

* 0 

J \ 

\ 
\ 

00 

\ 

D 

\ 
\ 
\ 
\ 

\ \ \ 
\ \ 
\ 

)._~ 

* 
/ 

/ 

36 

PATTERN FIELD B (ZONED) 

• D 0 D s • 
\ \ \ ~ 

\ \ \ \ 

\ \ \ 
\ 

\ \ \ 
\ 

\ \ 
\ \ \ 

\ \ \ \ 

\ \ \ \ \ 

~ ~ ~ 
\ \ 

~ ~ • 
* * 3 6 3 . 

J J + 
) 

/ 
/ 

/ 

32 9+ 

l _ CLEAR T FLIP-FLOP - SET DFB 55 

FINAL CONTENTS OF (G) = 400 I 0
16 

0 0 B c 

l T T l 
I I I I 
I I I I 
I I I I 
I I I I 

_J_ 

! ! 1~ 1; 
2 9 * * 

4 • 
~ 

~ 

Figure 6-65. Example 1 of Edit and Mark A Per B - C Instruction 

(Single Source Field, Sign +) 

8 BITS 

~ 

R 

T 
I 
I 

I 
I 

)l 

* 

60256000 09 



EXAMPLE 2 

Example 2 (Figure 6-66} shows a pattern field identical to the pattern field shown in Figure I 
6-65. However, in example 2, only one fill character is used in the result field since the 

source field contains only one leading zero digit. As a result, the T flip-flop is set by the 

first significant digit (1). 

Example 2 shows that the T flip-flop remains set due to the negative sign in the source field. 

Thus, the instruction transfers pattern characters blank (B), C, and R to the result field in

stead of the fill characters that are transferred in example 1. 

c 
* 
l 

RESULT 
FIELD C 

(ZONED) 

FILL 
CHARACTER 

~ 

* D 

J \ 

D , 
\ 

\ \ 

\ \ 
\ \ 

\ \ 

\ \ 

1\J 
\ 
\ 
~ 

* I 

J 
/' 

/ 

PATTERN FIELD B (ZONED) 

D D D s • D D B c 

\ \ \ T r 
\ \ \ I I 

\ \ \ I I 
\ \ I I \ \ 

I 
\ 
\ \ \ I I 
\ \ \ I I 
~ 1- \ _t _i ~ J v • 

, 5 6 3 • 2 9 B c 

J ~ I I f> 

.J 
/' ../ 

SOURCE 
FIELD A 0 I 5 6 

(PACKED 
BCD) 

Figure 6- 66. 

60256000 09 

r ../ r ..J 

[ 
3 2 9 -

[_ T FLIP-FLOP REMAINS SET 
SET DFB 54 

FINAL CONTENT OF G = 40000 16 

Example 2 of Edit and Mark A Per B - C Instruction 
(Single Source Field, Sign -) 

8 BITS 

~ 

R 

., 
R 

6-177 

I 



EXAMPLE 3 

I The first character of the pattern field in example 3 (Figure 6-67) is significance- start 

character (S). 

I 

As a result, the blank character (B) is retained as the fill character. The pattern 

field also contains a field- separation character in the last byte of the field. Since 

there is no second BCD field in field A (following the sign), the T flip-flop is cleared 

and a blank character is stored as the last character in the result field. Thus, the 

instruction sets data flag bit 53, indicating that the last field edited contained all zero 

digits. 

s D 0 D 
FILL 

CHARACTER 

~ I 

PATTERN FIELD B (ZONED) 

D D D 

I. 

8 BITS 

~ 

0 F CLEAR T FLIP- FLOP 
SET DFB 53 

I 8-_j I 

RESULT 
FIELD C 

(ZONED) 

SOURCE 
FIELD A 

(PACKED 
BCD) 

6-178 

9- FINAL CONTENT OF (G) = 3Ff F8 IS 

Figure 6-67. Example 3 of Edit and Mark A Per B - C Instruction 
(Field Separator Specified, No Second Field) 

60256000 09 



EXAMPLE 4 

Example 4 (Figure 6-69) shows a multiple source field editing operation. The first I 
field is edited in the usual manner with the fill character (*) being retained. When the 

plus sign of the first field is detected,, the instruction clears the T flip-flop. Thus,, 

the fill character is inserted in the bytes of the result field corresponding to the two 

blank characters (B) and the two digit- select (D) characters which correspond to the 

two leading zero digits in the second source field. The detect10n of the first nonzero 

digit in the second source field sets the T flip-flop. The T flip-flop remains set 

since the sign of the second source field is negative. As a result,, the instruction sets 

data flag bit 54 and transmits the byte address (4004816) to register G. 

* 

RESULT 
FIELD C 
(ZONED) 

PATTERN FIELD B (ZONED) 

s D D D D • D 

01 5 3 9 + 00 

SOURCE 
FIELD A 

(PACKED BCD) 
CLEAR 
T FLIP-FLOP 

8 B F 0 D D 

I I I 
I I 

I I 
I 

I 

FINAL CONTENT OF (G) = 40048 16 

T FLIP- FLOP REMAINS SET 
SET OFB 54 

8 BITS 
~ 

I 
I 

I 
I 

Figure 6-68. Example 4 of Edit and Mark A Per B - C Instruction I 
(Multiple Field Editing) 

60256000 09 6-179 



EXAMPLE 5 

I Example 5 (Figure 6-69) shows the results of a result field termination before the 

pattern field. The pattern and source fields in example 5 are identical to the corre

sponding fields in example 4. However, in example 5 the result field is three bytes 

shorter than the pattern field. As a result, the last three characters of the pattern 

and source fields are not examined. Since no significant characters of the second 

source field are examined in this case, the T flip-flop remains cleared, and the in

struction sets data flag bit 53, indicating that the second source field contains all zero 

digits. 

I 

RESULT 
FIELD C 
(ZONED) 

6-180 

0 

SOURCE 
FIELD A 

(PACKED BCDI 

5 3 

PATTERN FIELD B (ZONED) 

D D • B B F 

SOURCE DIGITS NOT EXAMINED 
~ 

3 4 5 -

CLEAR T FLIP-FLOP 

D 

I 
I 

D 

I 
I 

D D 

8 BITS 

~· 

D 

v 
PATTERN 

CHARACTERS 
NOT EXAMINED 

RESULT FIELD 
---TERMINATES 

DFB 53 SET 
FINAL CONTENT OF (G)=3FFF816 

Figure 6- 69. Example 5 of Edit and Mark A Per B - C Instruction 
(Result Field Shorter than Pattern Field) 

60256000 09 



EX.AMPLE 6 

Example 6 (Figure 6-70) shows a source field with the sign character in the wrong position I 
of the last byte. Thus. the contents of the result field and the contents of register G become 

undefined. In addition, the instruction sets data flag bit 38 (decimal data fault). 

c 
FILL 

HARACTER 

~ 
:f 

B 

RESULT 
(FIELD C 
ZONED) 

SOURCE 
FIELD A 

I 

PATTERN FIELD B (ZONED) 

B D D D • 

J 
UN DEF I NED 

D 

8 BITS 
,--A--.. 

D 

~ 

0 I 5 3 + 9 

SIGN IN WRONG 
POSITION OF BYTE- SET DFB 38 (DECIMAL DATA FAULT) 

FINAL CONTENTS OF (G) =UNDEFINED 

Figure 6-70. Example 6 of Edit and Mark A Per B - C Instruction I 
(Decimal Data Fault, Undefined Results) 

60256000 09 6-181 



ES COMPARE BINARY A, 8 

E9 COMPARE DECIMAL A, B 

0 
F 

G 

7~16 

{ES OR E9) 
x 

{INDEX 
FOR A) 

23 24 31 32 
A 

(LENGTH & 
BASE ADRS) 

y 

{INDEX 
FOR B) 

z c 
39 40 47~ 

B 
{LENGTH & 
BASE ADRS) 

These two instructions compare source fields A and B for inequality. The comparison 

is from right to left. If the A and/ or B designator is zero or if the length of one or 

both of the source fields is zero, the instruction generates a corresponding source field 

containing positive zero. 

In the ES instruction, source fields A and B contain two's complement, signed numbers 

I (Figure 6-71). If the source fields are unequal in length, the shorter of the two fields 

is extended with sign bits to equal the length of the other field. 

I 
At the termination of the ES instruction, data flag bits 53, 54, and 55 are set according 

to the results of the compare operation as listed in Table 6-40. 

TABLE 6-40. DFB CONDITIONS FOR ES AND E9 INSTRUCTIONS 

DFB Bit Condition 

53 Equal operands (A = B) 

54 Operand A is high 

55 Operand A is low 

6-182 60256000 09 



A SOURCE FIELD 

FIELD LENGTH 

0000011 000000000000100100110001IOII001101010010 

STARTING ADDRESS 

r---r---

B SOURCE FIELD LENGTH 

FIELD LENGTH 

10000000010000000010 I I 000 I 0 0 I I I 0000 0000 I I I I 0 I I I 00 I 0 

L - - - L - - - L---~~~.L-~~~-1--~~~-+-~~---' 

NOTE: 

SIGN SIT 
EX TENTION ~ STARTING ADDRESS 

A ZERO INDEX IS ASSUMED FOR BOTH FIELDS 

Figure 6- 71. Example of Field Formats for the Compare Binary 
A,, B Instruction I 

In the E9 instruction,, source fields A and B contain packed BCD numbers (Figure 6-72). I 
If the two source fields are unequal in length,, the shorter field is extended with zero 

digits to equal the other field. The E9 instruction compares the numbers from right 

to left and makes the comparison on the signed magnitudes of the two fields. Applicable 

data flag bits are 38 (decimal data fault),, 53,, 54,, and 55 (Table 6-40 ). I 

60256000 09 

I· ·I··· 
\_ STARTING ADDRESS 

0 0 0 

A SOURCE FIELD 
FIELD LENGTH 

2 0 

B SOURCE FIELD 

6 

FIELD LENGTH 

\_ STARTING ADDRESS 

NOTE: 

7 

9 

A ZERO INDEX ·IS ASSUMED FOR ALL FIELDS 

3 

6 

Figure 6-72. Example of Field Formats for the Compare 
Decimal A, B Instruction I 

6-183 



LOGICAL STRING INSTRUCTIONS 

The logical string instructions function in the same general manner as corresponding 

string instructions. Logical string instructions operate with indexes and data fields 

identical to those of the string instructions except that the item counts and indexes are 

expressed in bits instead of bytes. Thus,, the logical string instructions perform bit 

operations on bit boundaries while string instructions perform byte operations on byte 

boundaries. 

FO LOGICAL EXCLUSIVE OR A, B ~c 
Fl LOGICAL AND A, B+C 

F2 LOGICAL INCLUSIVE OR A, B -+C 

f 3 LOGICAL STROKE A, B +C 

F.4 LOGICAL PIERCE A, B +C 

f 5 LOGICAL IMPLICATION A, B ~C 

f 6 LOGICAL INHIBIT A, B+C 

f 7 LOGICAL EQUIVALENCE A, s~c 

G 

31 32 47 48 55 56 63 0 7~16 39 40 
r--~~~- --------------------------------------------------------------F 

(FO - F7) 
x 

(INDEX 
FOR A) 

A 
(LENGTH & 
.BASE ADRS) 

y 

(INDEX 
FOR B) 

B 
(LENGTH & 
BASE ADRS) 

z 
(INDEX 
FOR C) 

c 
(LENGTH & 
BASE ADRS) 

These instructions perform bit-by-bit logical functions on binary source fields A and B and 

I 

store the results in binary field C. Table 6-41 lists the variations of source bits A and B 

with the corresponding result bit for each of the logical string instructions. 

TABLE 6-41. TRUTH TABLE FOR LOGICAL STRING INSTRUCTIONS 

Source OR AND Exclusive Stroke Pierce 
Impli-

Inhibit 
Equiva-

Bits OR cation lence 

A B (A+B) (A•B) (A-B) (A•B) (A+B) (A+B) (A·B) (A-B) 

0 0 0 0 0 1 1 1 0 1 
0 1 1 0 1 1 0 0 0 0 
1 0 1 0 1 1 0 1 1 0 
1 1 1 1 0 0 0 1 0 1 

6-184 60256000 09 



B, and C are The instruction proceeds from left to right 

and terminates when the result field C is filled. The instruction extends source fields 

A and/ or B with zeros if they are shorter than field C. The G designator is not used 

and must be all zeros. 

Data flag bit 53, 54, or 55 is set according to the condition of the result field as shown 

in Table 6-42. 

TABLE 6-42. DFB CONDITIONS FOR FO THROUGH F7 INSTRUCTIONS 

DFB Bit Condition 

53 Result field all zeros 

54 Result field mixed 

55 Result field all ones 

I 

Figure 6-73 shows an example of a logical string instruction operation. A logical I 
exclusive OR (FO) instruction is used for the example. In the example, source field B 

contains a mask of all ones which is used to complement the binary number in source 

field A through the exclusive OR function. All indexes and field lengths are item 

counts, expressed in bits (for example, the source and result field lengths equal 28 16 
bits). The operation proceeds from the starting addresses of A, B, and C to the end 

of the result field (to address 703016 ). Each operation forms the exclusive OR or the 

corresponding bits in source fields A and B and stores the result in the corresponding 

position of field c. 

60256000 09 6-185 



I 

6-186 

0 71 111• 2114 1112 1940 4741 llH H 

F G X A Y B Z C 
( FO) (00) ( 02) (03) (04) (05) (06) ( 07) INSTRUCTION CODES 

0 7 I 

NOT USED INDEX 
REGISTERS ,-IL,_ .-----''-----. 

02 = 0000 IO 00 0 O 000 0008 
0 4 = 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 8 
06= 00001000000000008 

FIELD I 
LENGTH 1 BASE ADDRESS 
~1.,--~-'·~~~~ 

03= 002atoooooooo5000 
05= o 02a100000 ooosooo 
07= 0 0281000000007000 

A SOURCE FIELD 
II II ZS 24 SI 12 H40 47 

0 I 0 I I 0 I 0 I I 0 I I 0 I I I 000 I I 0 I I 0 I 000 I 00 I 000 I 

BASE ~~ FIELD LENGTH 
ADDRESS= \_STARTING 

5000 ADDRESS =5008 

B SOURCE FIELD (MASK) 
0 71 111• 2124 1112 1940 47 

II II II 1111111111111111111 

BASE;~-
ADDRESS= INDEX \_ STARTING FIELD LENGTH 

6000 AODRESS=6008 

C RESULT FIELD (ONE'S COMPLEMENT OF A) 
0 71 111• 2114 II 12 lt40 47 

I I 0 I 0 0 I 0 I I 0 0 I 0 0 I 00 0 I I I 00 I 0 0 I 0 I I I 0 I I 0 I I I 0 

BASE)~\'-
ADDRESS= \_ STARTING 

7000 ADDRESS= 7008 

FIELD LENGTH 

Figure 6-73. Example of Logical String Instruction 
(Logical Exclusive OR) 

60256000 09 



NONTYPICAL INSTRUCTIONS 

These instructions perform operations such as register to storage transfers, formation 

of repeated bit masks, and maximum/minimum determinations that do not fall into any 

of the preceding categories of instructions. The separate instruction descriptions define 

the format and operation for these instructions. Appendix C provides a complete listing 

of the various nontypical instruction fields and the resulting termination conditions. 

3D INDEX MULTIPLY (R) • (S) TO (T) 

3C HALF WORD INDEX MULTIPLY (R) • (S) TO (T) 

0 7 8 15 16 23 24 31 

F R s T 

(3 D ) (SOURCE (SOURCE (DESTI-
NO. I) NO. 2) NATION) 

3D INDEX MULTIPLY (R) • (S) TO (T) 

This instruction forms the product of the two's complement integers contained in the 

rightmost 48 bits of the registers specified by the R and S designators, respectively. 

The instruction stores the product in the rightmost 48 bits of register T and clears the 

leftmost 16 bits. 

47 
If the product or either operand exceeds ± 2 -1, the result is undefined. 

3C HALF WORD INDEX MULTIPLY (R) • (S) TO (T) 

This instruction forms the product of the two's complement integers contained in the 

rightmost 24 bits of the registers specified by the R and S designators, respectively. 

The instruction stores the product in the rightmost 24 bits of register T and clears the 

leftmost eight bits. 

23 If the product or either operand exceeds ± 2 - L the result is undefined. 

60256000 09 6-1a7 I 



SE/7E LOAD (T) PER (S),(R) 

SF/7F STORE (T) PER (S),(R) 

12/13 LOAD/STORE BYTE (T) PER (S), (R) 

0 7 8 15 16 23 24 
F R s 

(FUNCTION) (BASE (INDEX) 
ADDRESS} 

5E/7E Load (T) Per (S), (R) 

31 
T 

These instructions load the 32 /64-bit register T with the content of the address specified 

by (S) + (R), where (R) is the base address. For the 5E instruction, (S) is an item count in 

hall-words,, arid for the 7E instruction,, (S) is an item count in words. The index in Sis 

shifted five/ six places to the left before it is added to the base address. S and Rare 

64-bit registers. Overflow resulting from this addition has no effect if it occurs. 

5F /7F Store (T) Per (S), (R) 

These instructions store the content of the 32 I 64-bit register T in the address specified by 

(S) + (R),_where (R) is the base address. For the 5F instruction, (S) is an item count in 

hall-words,, and for the 7F instruction,, (S) is an item count in words. The index in Sis 

shifted five/ six places to the left before it is added to the base address. S and Rare 

64-bit registers. These instructions do not detect overflow if it occurs. 

12/ 13 Load/Store Byte (T) Per (S), (R) 

These instructions load/store a byte from/into the address specified by (R) + (S),, where (R) 

is the base address and (S) is an item count in bytes. The index in S is shifted three places 

to the left before it is added to the base address. The byte is transmitted into/from bits 56 
through 63 of register T. The remaining bits in T are cleared on a load and ignored on a store. 

37 TRANSMIT JOB INTERVAL TIMER TO (T) 

R S 

0 7 24 31 

T 

This instruction transmits the contents of the job interval timer into bits 40 through 

63 of register T and clears bits 0 through 39 to zero. The designators R and S are 

undefined and must be set to zero. When executed in monitor mode, the operation of 

this instruction is undefined. This instruction does not deactivate the timer. 

I 6-188 60256000 09 



0 

7D SWAP S-+T AND R +S 

7 8 15 16 23 24 31 
F R s T 

(SOURCE {DESTINATION 
FIELD) FIELD) 

L DESIGNATES STARTING REGISTER 

This instruction moves to destination field T, a portion of the register file beginning at 

the 64-bit register specified by the rightmost eight bits of register S. The instruction 

also transmits source field R to the register file beginning at the 64-bit register speci

fied by the rightmost eight bits of register S. 

The leftmost 16 bits of registers R and T specify the field length in words for the 

source and destination fields, respectively. The field lengths of the source and destina

tion fields may be different,, but each must be even. A zero field length indicates no 

transfer for that field. Any transfer of words into or out of the register file that be

comes exhausted of registers (beyond the bounds of the register file) causes the in

struction to become undefined. 

The rightmost 48 bits of registers R and T specify the base address of the source and 

destination fields, respectively. These addresses must specify an even 64-bit word in 

central storage. Bits 57 through 63 of registers R and T are undefined and must be set 

to zero. Overlap of the source and destination fields is allowed only if the base ad

dresses for both fields are equal. 

There are no restrictions relating to registers R, S, or T being in the range of the 

registers being swapped. 

The starting register in the file specified by the rightmost eight bits of the register 

specified by S must be an even register. 

If the source field from the register file includes register zero, the computer 

will transmit the trace register. 

60256000 09 6-1s9 I 



39 TRANSMIT REAL TIME CLOCK TO (T) 

R S 

0 7~~24 31 

c~9 > ~oEsn:mool ~REGISTER) _ 

This instruction transmits the contents of the real-time clock to bits 16 through 63 of the 

register designated by T. Bits 0 through 15 of register T are cleared. 

3A TRANSMIT (R)TO JOB INTERVAL TIMER 

0 7 8 15 
F R 

(3A} (SOURCE 
REGISTER) 

This instruction transmits bits 40 through 63 of the register designated by R to the job 

interval timer. When executed in the monitor mode, this instruction functions as a no-op. 

BB MASK A, B ~c PER Z 

G 

0 
F 

(BB} 

47 48 55 56 
z c 

(0 V LG (RESULT LG 

63 
A 

(BASE 
ADRS) 

B 
(BASE 
AORS) BASE ADRS) BASE ADRS) 

GBITO" I \ GBIT4: 
· ~ \ 0 ; NORMAL SOURCE VECTOR B 

I 

0 = 64-BIT OPERANDS 1 =BROADCAST VECTOR (8) 
1 = 32-BIT OPERANDS 

G BIT 3: 
0 = NORMAL SOURCE VECTOR A 
1 = BROADCAST VECTOR (A) 

This instruction combines elements of vectors A and B to form result vector C as controlled 

by order vector Z. The general operation of this instruction follows the process described 

for sparse vector instructions in this section. When a one is detected in order vector Z, 

the next element of vector A is inserted into result vector C and the corresponding element 

6-190 60256000 09 



of vector B is s¥-...i.pped. When the instruction detects a zero in order vector Z, the instruction 

inserts the next element of vector B and skips the corresponding element of vector A. When 

all elements of A and B have been merged, the instruction transmits the resulting length of 

vector C to the length specification portion of register C as shown in Figure 6-30. 

The instruction format shows that bit 0 of the G designator determines whether 64- or 

32-bit operands are used for the A and B vectors. The X and Y designators and bits 

l, 2. and 5 through 7 of the G designator are not used and must be zeros. G bits 

3 and 4 determine whether normal vector elements or broadcast elements are used for 

vectors A and B, respectively. The use of normal or broadcast source vectors are 

described in Vector Instructions in this section. 

This instruction terminates when all bits of the order vector have been examined. The instruc

tion recognizes no lengths for vectors A and B. 

BC COMPRESS A~C PER Z 

0 
F 

(BC) 

55 56 63 
z c 

0 V LG RESULT LG 
A 

(BASE 
ADR$) BASE ADRS) & BASE ADRS 

I 

lGBITI: 
0 =TRANSMIT ON 0 V l 1S 

G BIT o: 1 =TRANSMIT ON 0 V O is 
1 = 32-BIT OPERANDS 
0 = 64-B IT OPERANDS 

This instruction forms a sparse data vector field C by compressing vector field A. 

Sparse data vector field C consists of elements of vector field A corresponding to ones 

in sparse order vector Z. Thus, the elements of vector field A that correspond to the 

positions of ones in sparse order vector Z transfer in order to corresponding elements 

of sparse data vector field C if G designator bit 1 equals zero. If this bit is one, the 

elements of vector field A that correspond to zeros in sparse order vector Z are 

transferred to corresponding elements of sparse data vector field C. 

In a typical operation, one of the compare instructions first generates sparse order 

vector Z. The BC instruction uses the generated order vector as a means of dis

carding all near-zero elements of vector field A and still maintaining their positional 

significance through the order vector. 

60256000 09 6-191 



I The instruction transfers the resulting length of sparse data vector C to the length 

specification portion of the register designated by C in the instruction word. If bit 0 

of the G designator is zero/one, the operand size (elements of vector A) is 64/32 bits. 

respectively. As shown in the instruction format, the X, Y, and B designators and 

bits 2 through 7 of the G designator are not used and must be zeros. 

I The instruction terminates when all bits of sparse order vector Z are used. The length 

specification portion of registers A and C (initial) is not used. 

I Figure 6-28 shows a simplified example of compressing a vector field into a sparse 

vector field. 

CF ARITH. COMPRESS A ~c PER B 

G 

0 7~16 23 24 31 32 39 40 47 48 55 56 
z c 

63 
F 

(CF) 
x 

(OFFSET 
FOR A) 

A 
(LENGTH & 
BASE ADRS) 

y 
{OFFSET 

FOR B) 
( 0 V LG ( LENGTH & 

BASE ADRS) BASE ADRS) 

GBITS 5-7 
SIGN CONTROL BITS 

GBIT4: 
0 = NORMAL SOURCE \£CTOR B 
1 = BROADCAST SCl.JRCE VECTOR (B) 

GOBIT=O~-B IT OPERANDS 
1 = 32-BIT OPERANDS 

This instruction forms sparse data vectort C and the associated sparse order vector Z 

by performing a floating point compare operation between elements of vector A and the 

elements of vector B. Each element of vector B is subtracted from the corresponding 

element of vector A. The conditions for comparing floating point operands are de

scribed in ·the Floating Point Compare Rules, appendix B. If an element of vector A is 

greater than or equal to the corresponding element of vector B (An ~ Bn). the instruc-

1 tion stores the element of A as the corresponding element of sparse data vector C and 

sets the associated order vector bit. If the element of vector A is less than the 

I corresponding element of vector B (An < Bn). the element of A is not stored in sparse 

data vector C and the. associated order vector bit is cleared. The element of C is not 

skipped if An < Bn.. Thus, in the case of broadcast vector (B). this instruction pro-

vides a means of generating a sparse vector field by comparing the elements of a source 

vector field with a fixed threshold element. 

The registers designated by X and Y contain the offsets for vectors A and B, respectively. 

t The sparse vector part of this section describes the general format of sparse vectors. 

6-192 60256000 09 



The elements of vectors A and B are in floating point format. t The sign control bits of the 

G field may specify operations on the elements of vector A and/ or B before the floating 

point compare is made. However, the element of A, if stored in C, will be the original 

element as read from A. The compare operation follows the floating point compare condi

tions as described in the branch instruction section. In the comparison, only (R.) ::::_ (S) 

condition is detected where,, in this case,, An and Bn are substituted for (R.) and S),, respec

tively. If the instruction detects an indefinite operand for vector A and/or B,, the indef

inite operand is stored as the corresponding element of vector C and the associated bit of 

the order vector is set. 

The instruction format shows that if bit 0 of the G designator is a zero/ one, the 

vector elements are 64-bit/32-bit operands, respectively. If bit 4 of the G designator 

is a one, a constant element is broadcast for vector B as described in Vector Instruc

tions in this section. In this case, the Y designator is not used. G bits 1 through 

3 are not used and must be zeros. G bits 5 through 7 function as sign control bits 

as described in Vector Instructions. 

This instruction terminates when all the elements of vector A have been compared. At 

termination, the instruction stores the length (in bits) of the generated order vector into 

the length portion (bits 0 through 15) of the register specified by Z. The number of 

elements stored in vector C is stored in the length portion of register C, thus providing 

the field length of the generated sparse vector. If the length of vector B is shorter 

than the length of vector A, the instruction extends the B field with machine zero elements 

to equal the A field length. The applicable data flag bit is 46 (indefinite result). 

Figure 6-74 is an example of an arithmetic compress instruction with assumed instruction I 
code, register contents, and source vector field A. In this example, a broadcast floating 

point constant Bis compared with source vector elements A
1 

through A
6

. Element AO is 

not compared because of the offset. The A vector elements are indicated as being An~ B 

or An< B. Thus, the instruction in this example generates a 4-element result vector C 

and a 6-bit order vector Z. The 6 and 4 values are stored in the field length portions of 

registers 08 and 09, respectively. 

t Appendix B describes the floating point format. 

60256000 09 6-193 



I 

6-194 

B Z C 
(07) (08) (09) INSTRUCTION CODE 

32- BIT OPERANDS BROADCAST ELEMENT (B) i Y NOT USED 

ADDRESS o 

5000 

50 20 

5040 

506 0 

5080 

50AO 

50CO 

ADDRESS 

7000 

7020 

7040 

7060 

NOT USED OFFSET 
BEFORE EXECUTION ,-Y~ 

SOURCE VECTOR 
FIELD A 

Ao (NOT COMPARED) 

A1 ~ B 

A2 < B 

A 3 ~ B 

A4 < B 

As ~ B 

A5 ~ B 

RESULT VECTOR 
FIELD C 

Co =A I 

C1 = A3 

C2 =A 5 

C3 = A5 

31 

REGISTER 05 = 0000 100000000000 I 
I 

} OFFSET 

FIELD 
LENGTH I BASE ADDRESS 
~I~ 

os= 00011oooooooosooo 
I 

07 = FLOATING POINT CONSTANT B 

FIELD I 
LENGTH! BASE ADDRESS 

~I~ 
08= 0000,000000006000 

0 9 = 0 0 0 010 0 0 0 0 0 0 0 7 0 0 0 

'STARTING ADDRESS 

ADDRESS 

6000 

ORDER VECTOR 
FIELD Z 

0111411• 

-
AFTER EXECUTION 

REGISTER 05, 06, AND 07 UNCHANGED 

FIELD 
LENGTH1 BASE ADDRESS 
~I~ 

08= 00061000000006000 

09 = 0 0041000000 007000 

Figure 6-74. Example of Arithmetic Compress A-C Per B Instruction 

60256000 09 



BD MERGE A, B-+C PER Z 

0 

F 
(BO) 

/ 
G BIT 0: 

O = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

2324 3132 3940 47 48 55 56 63 
B Z C A 

(BASE ADRS) {BASE ADRS) {O V LENGTH(RESULT LENGTH 
& BASE ADRS) & BASE ADRS} 

0 = MERGE A & B, SKIP NONE 
1 = DECOMPRESS A & B, SKIP B 

G BIT 4: 
WHEN USING ELEMENT OF VECTOR A 

0 = NORMAL SOURtE. VECTOR B 
G BIT 3 : 1 =BROADCAST SOURCE VECTOR (B)-EXPAND 

0 = NORMAL SOURCE VECTOR A 
1 = BROADCAST SOURCE VECTOR (A)-EXPAND 

This instruction merges the elements of vector field A with the elements of vector field 

B to form result vector field C as controlled by order vector z. Thus, this instruction 

could be used to reform a vector field from a sparse vector with a broadcast near-zero 

element. When the order vector Z contains a one in a given position, the instruction 

inserts the next element from vector field A into vector field C. If the order vector 

contains a zero, the instruction inserts the next element from vector field B in the result 

field (Figure 6-75 ). The instruction transmits the resulting length of vector C to the length 

specification portion (bits 0 through 15) of register c. 

Field B vector elements are controlled by G bit 7. When G bit 7 is a zero,, the 

operation (called merge) combines vectors A and B. When G bit 7 is set (decompress),, 

an element of vector B is skipped for each element of vector A used. No elements of 

vector A are skipped when elements of vector B are used. 

The instruction format diagram shows that if bit 0 of the G designator is a zero/one,, 

the operand size (vector A and B elements) is 64/32 bits,, respectively. The X and Y 

designators and G bits 1,, 2,, and 5 through 7 are not used and must be zeros. Bits 3 

and 4 of the G designator determine whether a constant element is broadcast from the 

registers designated by A and B,, respectively. If G bit 3 or 4 is a one,, the operation 

is called expand. 

The BD instruction terminates when all of the bits of the order vector have been pro

cessed. The field length specifications for vectors A and B are not used. 

60256000 09 6-195 • 



• 6-196 

THE Z-BIT STRING IS USED FOR ALL THREE EXAMPLES. G BITS NOT 
INDICATED ARE ZEROS. 

z I o o I I 0 0 I I 0 

EXAMPLE 1-80 MERGE A 

c 

B BO BI B2 B3 B4 

EXAMPLE 2 - B D DECOMPRESS A 
GBIT7=1 

c 

B BO BI 82 83 B4 B5 B6 B7 BS 

EXAMPLE 3 - BO EXPAND 
G BIT 3=1 

A BROADCAST (A) 

c 

B BO BI B2 83 84 

Figure 6-75. Examples of BD Merge Instruction 

60256000 09 



14 BIT COMPRESS 

0 7 8 15 16 23 24 31 
F R s T 

( 14) (LG OF R (LENGTH OF ~LENGTH & 
SEGl'-ENTS & S SEGMENTS) BASE ADRS) BASE ADRSj 

This instruction compresses specified segment lengths (in bits) of source field R into 

result field T. The R designator code in the instruction specifies a 64-bit register 

which contains the length of the R segments in the leftmost 16 bits and the base address 

of the source field in the rightmost 48 bits (Figure 6-76). The register denoted by S 

contains the length of the segments in the source field to be skipped in the compress 

operation. 

The rightmost 48 bits of register S are not used. Register T contains the destination 

field length in the leftmost 16 bits and the base address of the destination field in the 

rightmost 48 bits. 

The bit compress operation successively transmits the segment lengths of the source 

field, as specified by R, to corresponding lengths of the destination field. The in

struction moves from left to right in the source and destination fields. The 

instruction skips the segment lengths of the source field as specified by S. 

Figure 6-76 shows that the instruction transfers segments R
1

,, R2, and R
3 

in the source 

field to corresponding segment lengths of the result field. Source field segments s
1 

and s
2 

are skipped. The operation continues until the T field length is filled. If the 

field length specified by R or T is zero,, the instruction functions as a no- op. 

60256000 09 6-197 I 



REGISTER R 

REGISTER s 

LENGTH 
OF R 
SEGMENTS 
~/11 

Io o o 81 0 

LENGTH 
OF S 
SEGMENTS 
~/11 

I 
0 0 0 8 

T FIELD 
LENGTH 

I 
0 

R BASE ADDRESS 

,., 
13\ 

0 0 0 0 0 0 0 5 0 0 0 I 
NOT USED 

" 13\ 

0 0 0 0 0 0 0 0 0 0 0 

I 
T BASE ADDRESS 

~ " 
REGISTER T 

I° 0 0 I 8
1
• f--,~--0-0_0_0--0-10"-0--6-0--0-0-6-,1 

LENGTH LENGTH SOURCE FIELD R 
OF R OF S 

BASE SEGMENTS SEGMENTS 
ADDRESS="'\~~ 

5000 '0 R I 71 · s I ·r 31 32 39 40 

RESULT FIELD T 
BASE FIELD LENGTH 

ADDRESS::;~ " 6000 r 7 8 15 16 23\24 

R1 I R2 
I 

R3 15 

Figure 6-76. Example of Bit Compress Instruction 

I 6-198 60256000 09 



iS BiT MERGE 

16 BIT MASK 

0 7 8 15 16 23 24 31 
F R s T 

(15} (LGTH OF R (LGTH OF S (LENGTH & 
SEGfl£NTS & SEGfl£NTS & BASE ADRS} 
BASE ADRSJ BASE ADR_fil 

15 BIT MERGE 

The bit merge instruction merges specified segment lengths (in bits) of source fields 

R and S into result field T. The 64-bit register specified by R contains the length of 

the R segments in the leftmost 16 bits and the base address of the R source field in 

the rightmost 48 bits (Figure 6-77 ). The register denoted by S contains the length of 

the S segments in the leftmost 16 bits and the base address of the S source field in the 

rightmost 48 bits. Register T contains the destination field length in the leftmost 16 

bits and the base address of the destination field in the rightmost 48 bits. 

The bit merge operation successively merges the segment lengths of the R source field 

with segment lengths of the S source field into corresponding lengths of the destination 

field. The instruct:j.on moves from left to right in the source and destination fields. 

Figure 6-77 shows that the 15 instruction merges segments R 1,, R
2

, and R3 in source 

field R with segments s1 and s
2 

into corresponding segment lengths of the destination 

field. The operation continues until the T field length is filled. 

If bits 16 through 63 of the S register are cleared,, the instruction transmits zeros to 

the corresponding segment lengths in the destination field. If the field length specified 

by the R, S, or T registers is zero, the instruction functions as a no-op. 

60256000 09 6-199 I 



SASE\ ADDRESS= 
6000 

0 

I 

REGISTER R 

REGISTER S 

LENGTH OF 
R SEGMENTS r'·· oooalo 

LENGTH OF 
S SEGMENT 

'[ 0 OA I ~·r: 

T FIELD 
LENGTH 

R BASE ADDRESS 

,. .. \ 
0 0 0 0 0 0 0 5 0 0 0 I 

S BASE ADDRESS 

,, 

0000000 600 

T BASE ADDRESS 

/te A es\ 

REGISTER T I 0 0 3 8 I 0 0 0 0 0 0 0 0 7 0 0 0 I 

SOURCE FIELD R 

LENGTH OF SOURCE FIELD S 
S SEGMENTS 

ti II II 

s, S2 
11 

RESULT FIELD T 
FIELD LENGTH 

BASE\ ADDRESS= 
7000 ,__~~~~~~~~~~~~~~~~A·~~~~~~~~~~~~~~~~-

; o 7 I H 14 II II 47 41 H \ 

1~---R-1------.-------S--1-------------R---2----------S-2--------------R-3----1i 

Figure 6-77. Example of Bit Merge Instruction 

I 6-200 60256000 09 



16 BIT MASK 

The bit mask instruction is similar to the bit merge instruction. The specified 

R, S, and T registers contain segment lengths, base address, and field length in the 

same manner. However, the bit mask instruction (Figure 6-78), moving from left to 

right, transmits a segment equal to the length specified by R to the corresponding seg

ment length in the destination field. The 16 instruction then transmits a segment of 

field S equal to the segment length specified by the S register starting at an address 

equal to the base address plus the R segment length. The next segment of the R source 

field to be transmitted to the destination field starts at an address equal to the R base 

address plus the R segment length plus the S segment length. As in the bit merge 

instruction, if bits 16 through 63 of the S register are cleared, the instruction trans

mits zeros to the corresponding segment lengths in the destination field. In the same 

manner, if the field lengths specified by the R, S, or T register is zero, the instruc

tion becomes a no-op. The bit mask operation continues in this manner until the 

destination field is filled. 

60256000 09 6-201 I 



I 

REGISTER R 

REGISTER S 

LENGTH OF 
R SEGMENTS 
0 II II 

I 0 0 0 8 I 0 

LENGTH OF 
S SEGMENT 
0 II II I o o I oJo 

T FIELD 
LENGTH 

R BASE ADDRESS 

II 

0000000500 0 I 

S BASE ADDRESS 

H 

0000000 600 0 I 

T BASE ADDRESS 

~/~,.~~~~~~A.__~~~~~--

I o o 3 8 I o o o o o o o o 7 o o o .. I REGISTER T 

LENGTH OF SOURCE FIELD R 
BASE 

ADDRESS= 
5000 R SEGMENTS 

~ 

BASE 

ADDRESS=\ 
6000 

0 

0 

18 

R1 

18 

(MASKED SEGMENT) 

LENGTH OF 
S SEGMENT 

1114 1111 41 41 

R2 (MASKED SEGMENT) 

1114 llH 4141 

R3 

(MASKED (MASKED (MASKED 

II 

.. 
SEGMENT) s, SEGMENT) S2 SEGMENT) 

BASE 
ADDRESS=\ 

7000 

f 
,. 1114 1111 47 .. 

RI I S1 I R2 I S2 I R3 I 
Figure 6-78. Example of Bit Mask Instruction 

6-202 60256000 09 



17 CHARACTER STRING MERGE 

0 7 8 15 16 23 24 3_l 
F R s T 

(17) (SOURCE (SOURCE (RESULT 
STRING REG) STRING REG ) STRING REG I 

This instruction merges records t in the string specified by R with the records in the 

string specified by S in ascending order. The resulting merged records are stored in 

the string specified by T. Bits 0 through 15 of register T contain an item count of 

the number of bytes in a record. Bits 16 through 63 contain the starting address of 

the result string. 

The registers specified by R and S specify the two source strings. Bits 0 through 15 

of these registers contain the number of records in the corresponding string. Bits 16 

through 63 specify the starting address of the string. 

The instruction merges the R and S strings by comparing the leading records of each 

string and by tr an sf erring the numericallyt t smaller of the two records to the result 

field, starting at the base address. The next record in the string from which the 

record was transferred becomes the new leading record. The comparisons continue in 

this manner until one of the source strings is exhausted. The instruction then moves 

the remainder of the unexhausted string to the end of the result string. 

If the record length specified by T is zero, or the number of records specified by both 

R and S are zero, this instruction becomes a no-op. 

Figure 6-79 shows an example of the character string merge instruction. Note that in 

the example, alphabetical characters are used to denote the relative size of the records. 

Each character represents one 8-bit byte of data. For example in the first comparison, 

leading record AA (R string) is smaller than leading record AB (S string). As a result, 

record AA transfers to the result string and the next record in the R string (BA) be

comes the leading record which is compared with AB in the second comparison. 

The comparisons continue as shown in Figure 6-79 until the R string is exhausted in 

the eleventh comparison. Following this comparison, the remainder of the S string 

(record MN) transf~ as the last record- of the r~sult string. 

tin this case, a record is defined as a number of 8-bit bytes. 

t trhe records are all assumed to be positive. 

60256000 09 6-203 I 



BASE ADDRESS 
=8000 

BASE ADDRESS 
=AOOO 

ORDER OF 
COMPARISONS 
R STRING 

S STRING 

BASE ADDRESS = cooo 

1 6-204 

NO. OF RECORDS 
IN R STRING 

0 1516 

REGISTER R lo 0 0 7 I o 0 0 0 

NO. OF RECORDS 
IN S STRING 

0 

REGISTERS I 0 0 0 0 0 0 0 

RECORD 
LENGTH 

15 16 

REGISTER T 0 2 lo 0 0 0 

SOURCE STRING R 

3132 4748 63 0 1516 31 32 

A A I B A I C C I D D I J c I K K I L D 
I 

SOURCE STRING S 

1516 3132 47 48 63 0 15 

A B E F I G H I J KIM N 

COMPARISONS 

I 2 3 4 5 6 7 8 

A At B A B At c ct D Dt J c J c J ct 

A B A et E F E F E F E Ft G Ht J K 

t DENOTES RECORD TRANSFERRED TO RESULT STRING. 

RESULT STRING T 

15 16 31 32 47 48 63 0 15 16 31 32 4 7 48 63 

R BASE ADDRESS 

0 0 0 0 8 0 

S BASE ADDRESS 

0 0 0 0 A 0 

T BASE ADDRESS 

0 0 0 0 c 0 

9 10 II 

K K K Kt L Dt 

J Kt M N 

ADDRESS 
C040 

1(MN) 

31 32 

A A ABIB Alec DDIEFIG HIJC J KIK KIL 
I I I I 

Figure 6-79. Example of the Character String Merge Instruction 

63 

0 ol 

63 

0 ol 

63 

0 ol 

60256000 09 



DD SPARSE DOT PRODUCi TO {C) AND (C+1) 

0 
F 

(DD) 

/ 

23 24 31 32 39 40 

x A y 
{OV LENGTH 
&. BASE ADRS 

(BASE ADRS) (OV LENGTH 
B 

(BASE ADRS) 
&. BASE ADRS) 

c 
(UPPER 
RESULT) 

c + 1 

63 

I (LOWER I 
I RESULT) I 
L.- - - - _.J 

G BIT 0: 
0 :=c 64-BH OPERANDS 
1 = 32-BIT OPERANDS 

This instruction multiplies the elements of sparse vector A by the elements of sparse 

vector B and forms the sum of the products. This instruction functions much like a 

sparse vector multiply instruction., except rather than producing a sparse vector as a 

result, the DD instruction forms the sum of all the individual products as a result. 

f'he operation uses double precision, unnormalized, floating point arithmetic>:~ for both 

the multiply and subsequent addition. Vector A and B each are associated with an 

order vector as in the sparse vector instructions. The product of a given pair of 

vector A and B elements is added to the accumulating sum only when the corresponding, 

bit-by-bit, logical AND of the two source order vectors is a one. The instruction 

stores the upper and lower result in the registers denoted by C and C + 1, respectively. 

The instruction code shows that if G bit 0 is a zero/one, the operands (vector elements) 

are 64/32 bits, respectively. The Z designator and G bits 1 through 7 are not used 

and must be zeros. Registers X and Y contain the addresses and lengths of the A and 

B source order vectors in the rightmost 48 and leftmost 16 bits, respectively. 

This instruction terminates when all of the bits of the shorter of the two source order 

vectors have been examined. The C designator must be an even number. If this num

ber is odd or zero, the results of the instruction are undefined. If the order vectors 

disable any multiply operations, the corresponding result is machine zero. 

t Appendix B describes floating point arithmetic and order-dependent result considera
tions. 

60256000 09 6-205 

I 



Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 

(indefinite result). Data flag bits 43 and 46 are determined only by the final upper and lower 

result. If the upper result is indefinite, the lower result is less than 9000 16 . In this case, 

the exponent of the upper result may be greater than 9000 16 and will be stored as is and will 

not be forced to machine zero. The instruction sets data flag bit 42 if any of the multiply 

operations overflow. 

The computer forms two partial products,, X and Y. The sum of the products are ac

cumulated in the following manner, dependent upon the logical AND of the two source 

order vectors. The order vectors used in this example correspond to Figure 6-81. 

Match Match ~ Order .___ ________ _._ __________ __._ ___ 5JVector 

(Ao • Bo) + (A2 • B2) + • • • + (An • Bn) = x 

fuo Match B Exhausted! ~ Order 
-'------------"-----------~---__,;)$vector 
(A1 e B1) + (A3 e B3) + ••• + (An • Bn) = Y 

where: An are elements of vector A 

En are elements of vector B,, and 

X and Y are partial sums of the product 

Sum X and sum Y (both double precision quantities) are then added to form the final 

sum. 

Figure 6-80 is an example of a sparse dot product instruction with assumed instruc

tion code,, register content,, and vector source fields. In this example,, the B source 

field and order vector is one element shorter than the A source field and A order 

vector. Thus,, the instruction terminates after the A2 • B2 product is added to the 

sum. 

Since bit 1 of the B order vector is a zero,, the bit-by-bit AND does not enable the 

additon of the Ai • B1 product to the accumulating sum. The final sum of the prod

ucts (Sf) is stored in registers C(OA) and C + l(OB),, respectively. 

• 6-206 60256000 09 



0 78 1516 2324 3132 3940 4748 5556 63 

F G X A Y B Z C INSTRUCTION CODE 
(DD) (00) (05) (06) (07) (08) (00) (OA) 

FIELD 

C+I 
l(OB) I 
L_J 

BEFORE EXECUTION LENGTH! ORDER VECTOR ADDRESS 
~I~ 

ADDRESS o 

7000 

7040 

7080 

7000 

REGISTER 05 = 00041000000005000 
07 = 0003 ,000000006000 

NOT I 
USED BASE ADDRESS 
~I~ 

06 = 0000 0000 0000 7000 
08= oooo 1ooooooooaooo 

EXPONENT I COEFFICIENT 
r--A....-...1~ 

OA= 00001000000000000 
OB= 00001000000000000 

A SOURCE FIELD B SOURCE FIELD 

Ao ~ Bo 

A1 IE-

A2 IE-

A3 

A ORDER VECTOR B ORDER VECTOR 

63 ADDRESS 

8000 

8040 

8080 

ADDRESS 0 I 2 3 o 1 2 ADDRESS 

5000 [JIB 

0 

(UPPER) So= 

(UPPER) S1 = 

(UPPER) St = 

AFTER EXE~!.!TIQN 

(Ao•lso) 

So+l(A2•B2 
J_ 
T 

So +I SI 
_j_ 

~ 6000 

DISABLES ADDITION OF (A 1 *BI ) 
TO PARTIAL SUM 

127 

(LOWER) 

(LOWER) 

(LOWER) 

REGISTER 05-08 ARE UNCHANGED o 63 

OA I Sf UPPER I 
0 63 

OB I Sf LOWER I 

Figure 6-80. Example of Sparse Dot Product to (C) and (C+l) Instruction 

60256000 09 
6-207 



C4 COMPARE EQ; A = 8, ORDER VECTOR-.z 

CS COMPARE NE; A':/= 8, ORDER VECTOR ~z 

C6 COMPARE GE; A 2 8, ORDER VECTOR ~z 

C7 COMPARE l T: A< 8, ORDER VECTOR -.z 

6 
(SUIFUNCTION) 

0 7j) A 23 24 31 32 39 40 47 48 

c 
55~ 

F 
(C4 - C7) 

x 
(OFFSET 
·roR A) 

A 
(LENGTH & 
BASE ADRS) 

y 
(OFFSET 

FOR B) 

B 
(LENGTH & 
BASE ADRS) 

GBITO:J 
------G BIT4: 

0 =- 64-B IT OPERANDS 
1 = 32-BIT OPERANDS 

0 = NOR~L SOURCE VECTOR B 
1 = BROADCAST SOORCE VECTOR {B) 

GBIT3: 
0 = NOR~L SOURCE VECTOR A 
1 = BROADCAST SOURCE VECTOR {A) 

NOlE: ntE C + 1 DESIGNATOR IS NOT USED BY ntlS INSTRUCTION. 

z 
(0 V LG 
& BASE ADRS)I~~~~ 

These instructions compare successive elements of vector A with corresponding elements 

I
. of vector B by subtracting vector B from vector A. The elements of the vectors are in 

floating point format. t The conditions for comparing floating point operands are 

described in the Floating Point Compare Rules. appendix B. If the specified compare 

condition is met (A =, -/=, ~· or < B), the instruction sets the corresponding bit of order 

vector Z. If the condition is not met, the instruction clears the corresponding bit of Z. 

The instruction terminates when the order vector Z field is filled. Thus. the compare 

instructions provide a means of generating an order vector for reducing a vector field 

to a sparse vector field. 

The ins;truction format shows that G bits 1. 2. 5 through 7, and the C designator are 

not used and must be zeros. The C + 1 designator is not used. Thus, no offset can 

be assigned to order vector z. The floating point compare conditions as described in 

branch instructions are used in the comparisons of the vector elements. 

t Appendix B describes the floating point formats. 

6-208 
60256000 09 



The registers respec-

tively. When a constant is broadcast for either source vector, no field length is 

specified for that vector, and the offset is not used. 

The field lengths and base addresses for vectors A, B, and Z are contained in the 

registers specified by A, B, and Z, respectively. The lengths of vectors A and B are 

in words (64-bit operands) or half-words (32-bit operands), and the length of order 

vector Z is in bits. 

The applicable data flag bit is 46 (indefinite result). 

Figure 6- 81 is a simplified example of a compare instruction (C6) with assumed 

instruction codes, register contents, and source vecto1~ field A. In the example, a 

broadcast constant of +1 is used for vector field B. The elements of vector field A 

at addresses 5040, 5060, 50EO, and 5100 set the corresponding bits of order vector Z, 

while the elements at addresses 5080, 50AO, and 50CO clear the corresponding bits. 

Although the coefficients of the elements at addresses 5080 and 50AO are larger than 

the coefficient of constant B, the negative exponents cause the results of the floating 

point subtract operation (normalized upper) to be negative (A < B). 

60256000 09 6-209 I 



I 6-210 

0 71 15.. 25 24 51 32 555• 13 

F G X A Y B Z C 
(C6) (88) (02) (03) (04) (QA) (06) (00) 

NOT I 
USED! 
~, 

REGISTERS 02 = 0000 1000000000002 
04 = 0000 ,00000000 0000 

FIELD I 
LENGTHI BASE ADDRESS 
~1.--~~~~~~ 

03 = 00091000000005000 
06 = 0 0 07100 00 00 006000 

EXPONENT COEFFICIENT 

INSTRUCTION CODES 

~~ CD OA = 0 0 0 0 0 0 0 I VECTOR FIELD B (BROADCAST, 

VECTOR FIELD A 
EXPONENT COEFFICIENT 

ADDRESS 
r----A.. A.__~~ 

o >• ,! "" ,.,. , ... ,., • .,,. '1 OFFSET 

5000 

5020 

~.+--1-4---'-_....--+~---f, 

50 40 0 I O I 4 I 7 I A I E I O I I 

so6o olololol3101A11 

5080 

50AO 

50CO 

50 EO 

51 00 

ADDRESS 

6000 

Fl714IOIOIOl 1 IA 

010101ololololo 

ORDER VECTOR ~ 
011145. 1 

l·l·l+l+l·lf 

FIELD 
LENGTH 

NOTE: 

CD REGISTER OA IS 
A 32-BIT REGISTER. 

Figure 6-81. Example of Compare GE; A~ B; Order Vector -z Instruction 

60256000 09 



CB SEARCH EQ; A = B! INDEX LIST~ C 

C9 SEARCH NE; A¢ B, INDEX LIST +c 
CA SEARCH GE; A~ B, INDEX LIST ~ C 

CB SEARCH LT; A< B, INDEX LIST• C 

0 
F 

(ca - cs) 
A 

(LENGTH & 
BASE ADRS) 

47 48 55 56 
B 

(LENGTH & 
BASE ADRS) 

z 
(C V BASE 

ADRS) 

c 
(BASE 

ADRS) 

63 

~
"-.G BIT 2: 

SEE TABLE 6-43 
G BIT 1: 

NOTE: THE C + 1 DESIGNATOR 
IS NOT USED. I 

G BIT 0: 

0 =CONTROL VECTOR OPERATES ON l's 
1 =CONTROL VECTOR OPERATES ON ors 

0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

These instructions search and compare each element of vector field A with the succes

sive elements of vector field B by subtracting vector B from vector A. The conditions 

for comparing floating point operands are described in the Floating Point Compare 

Hules, appendix B. The comparison and search of a given element of A with the 

elements of B, as specified by G designator bit 2, is defined as one search iteration. 

Each search iteration terminates when the condition specified by the instruction is 

found (A =, f:., >, or < B) or when each element of B has been searched. 

After each iteration, the instruction clears the corresponding element of result vector 

C and transfers to this element an item count of the number of elements of B that were 

searched without the specified condition being found (no hit). The item count does not 

include the hit condition if one is found. R.egardless of the operand size (32- or 64-bit 

elements), the resulting item count is contained in the rightmost 4 8 bits of a 64-bit 

word. The leftmost 16 bits of each C vector element are cleared. If no element in 

the B vector causes a hit condition, the item count equals the field length of the B 

vector. The control vector controls the storing of the elements of vector C as speci

fied by bit 1 of the G designator. The function of the control vector is described in 

Vector Instructions in this section. 

60256000 09 6-211 

I 



These instructions use the floating point compare conditions as described in Branch 

Instructions in this section. The conditions specified by bits 0 and 1 of the G designator 

are shown in the previous instruction format. The conditions specified by bit 2 of the 

I G designator are listed in Table 6-43. The instruction format also shows that the X 

and Y designators and G bits 11 through 15 are not used and must be zeros. These 

instructions use no field lengths or offsets for vectors C and Z. Thus.., the C + 1 

designator is not used. 

I TABLE 6-43. SEARCH ITERATION STARTING DESIGNATOR CONDITIONS 

G Bit 2 Conditions 

0 Start at the beginning of vector B for each 
each element of vector A 

1 Start at the location of the last hit in vector B 
for each element of vector A 

These instructions terminate when each element of vector A has been compared with 

each element of vector B. The applicable data flag bit is 46 (indefinite result). 

Figure 6-82 is an example of a search equal (C8) instruction with assumed instruction 

codes.., register content.., and vector fields. In the example.., two search iterations 

compare the two elements of the A vector with the four elements of the B vector. The 

comparisons in the first iteration are represented by solid lines while those in the second 

iteration are indicated by dashed lines. Since bit 2 of the G designator is a zero for 

this case.., each search iteration starts at the beginning of vector B. If the B vector 

becomes exhausted and G bit 2=1, all search iterations start and end with the end of 

the B vector. If the length of vector B is initially zero, all indexes stored are zero. 

In the first iteration.., three comparisons take place before the hit condition (A = B) is 

detected. As a result.., an item count of three is entered into the first result element. 

No hit is detected in the second iteration; thus.., the second result element equals the 

field length of the H vector (4). Since the two corresponding bits of the control vector 

are set.., both result elements are stored. 

6-212 60256000 09 



0 711 1516 2324 3132 3940 4748 5556 63 

F G X A Y B Z C 
(CS) (80) (00) (02) (00) (03) (04) (05) INSTRUCTION CODES 

A VECTOR FIELD 

FIELD 
LENGTH BASE ADDRESS 
~'r---J'---~ I 

REGISTERS 02 = 00021000000005000 
03-= 0004 Loo 000000 sooo 

NOT USEGI BASE ADDRESS 
~l,.--~J'-~~-

04 = o o 001ooooo0001000 
o5 = oooo:ooooooooaooo 

B VECTOR FIELD 

EXPONENT COEFFICIENT EXPONENT COEFFICIENT 
~---~--'•---~~ ~ 

ADDRESS o 34 19 1112 151& 1920 23242129 31 0 34 78 1112 1516 192023242728 31 

010l4IOIAIF1F!F 

5020 01010101 101010 6121FIF18IOl317 

I 1 I I I I I s~~- ... 
011101010141010 O~D ......_ 

l'l".-:--... 
~'Y.q'f:' 

'o~ ........ 
010101010111010 

C RESULT FIELD 

NOT USED lNDEX LIST {ITEM COUNTS) 
,---A---.. --------''--------

ADDRESS o 1!1 16 63 

8000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 +--- FIRST ITERATION RESULT 

ADDRESS 

€000 

6020 

6040 

6060 

8040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 ~ - - -SECOND ITERATION RESULT 

ADDRESS 

7000 

60256000 09 

Z CONTROL VECTOR 

m-
~ONTROLS STORING OF SECOND RESULT 

LcoNTROLS STORING OF FIRST RESULT 

Figure 6-82. Example of Search EQ; A = B, Index List -C 

6-213 I 



DS MAX. OF A TO (C) ITEM COUNT TO (8) 

D9 MIN. OF A TO (C) ITEM COUNT TO (B) 

0 
F 

( 08 OR 
09) 

G ,__. _ ___,A.__ __ 

T8 

I 
G BIT o: 

0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

23 24 47 48 55 56 63 
x 

(OFFSET 
FOR A) 

G BIT 5: 

A 
(LENGTH & 
BASE ADRS) 

SIGN CONTROL BIT 

G BtTI: 

B Z 
(ITEM COUNT (C V BASE 
REGISTER) ADRS) 

0 = CONTROL VECTOR OPERA TES ON 1 ' s 
1 =CONTROL VECTOR OPERATES ON O'S 

c 
(MIN/MAX 
ELE~T 

These instructions search and compare the successive elements of vector A for the 

maximum/minimum element,, using floating point rules. The instructions then transmit 

the element to the register designated by C. The number of elements in vector A 

before,, but not including,, the maximum/minimum element is the item count which is 

stored in the rightmost 48 bits of a cleared register designated by B. The instructions 

terminate when vector A is exhausted. 

If multiple maximum/minimum elements occur,, the instruction sets data flag bit 54 and 

the first multiple maximum/minimum element examined is the one recorded. When 

this happens, the elements, although equal,, are not necessarily identical. 

If an indefinite element is encountered and examined. the register designated by C sets 

to indefinite and data flag bit 46 (indefinite result) sets. When this happens the content 

of the register designated by B and data flag bit 54 is undefined. 

The Z designator of the instructions provides the base address for a control vector. If 

used,, the control vector determines which of the vector A elements the instruction 

compares. This is possible by the association of individual control vector bits with 

single elements of vector A. Only permissive control vector bits permit compares for 

their associated vector A elements. If a control vector is used without any permissive 

elements,, none of the content of the register designated by C is undefined. In this 

case the item count stored in the register designated by B is the length of the vector A 

minus the A offset. The instruction does not use an offset for the control vector. 

I 6-214 60256000 09 



Bit 5 of the G bits provides sign control. When bit 5 is set,; the magnitude of the 

eiements of A vector are compared. The unaltered element as read from A vector 

stores in the register designated by C. 

Applicable data flag bits are 46 (indefinite result) and free data flag bit 54. 

The instruction format shows that the Y designator and G bits 2 through 4. 6, and 7 of 

the G designator are not used and must be zeros. Bit 5 provides sign control for 

vector A as described in Vector Instructions. There is no B vector sign control for 

this instruction; thus. bit 7 of the G designator is undefined and must be a zero. 

If the instruction specifies a control vector and the control vector contains no enabling 

bits. the instruction examines no elements of vector A. and the contents of register C 

becomes undefined. In this case, the item count in register B equals the field length 

of vector A minus the A offset. 

If the instruction examines (enabling bit in control vector) an indefinite element, the 

instruction sets register C to indefinite and sets data flag bit 46 (indefinite result). 

In this case,, data flag bit 54 is undefined. The instruction also probes the setting 

of data flag bit 43 (result machine zero). 

The operands are compared by subtracting the current element of vector A from the 

next element of vector A and checking the result coefficient. If the result is not 

equal to zero, the maximum or minimum operand (depending upon the instruction) is 

used for the next compare with a new element of vector A. If the result is equal to 

zero. the most recent element of A is used for the next compare. The relative 

positions of the elements within the vector dictate the order of the subtract. Since 

this type of compare operation is order dependent, t the final maximum or minimum 

can be affected by the order of the elements within the vector. 

t Appendix B describes floating point compare rules. 

60256000 09 6-215 



89 TRANSPOSE/MOVE 

0 
F 

(B9) 
x 

{OFFSET 
FOR A) 

23 24 
A 

(BASE 
ADRS) 

31 32 39 40 47 48 55 56 
y 

(FIRST C 
REG ADRS) 

B 
(FIRST A 
REG ADRS) 

z 
(ROW SIZE 

FOR A & C) 

c 
(BASE 
ADRS) 

I C + 1 

63 

_/ ~. GBtT4: 
1 = MOVE NOT PERFOR~D ; 0 = NO-OP 

G BIT O: . G BIT3: 
0 = 64-BIT OPERANDS l = TRANSPOSE NOT PERFOR~D l 

BITS 3 AND4 I (OFFSET I 
EQUAL TO ONE I FOR G) 1 

.... _ - - - _J 
IS A NO-OP 

1 = 32-BIT OPERANDS 
BIT 2: 

0 = NO OFFSET FOR C 
1 = OFFSET FOR C IN (C + 1) 

0 = N0-0 
N6TE: REG I STER C ~ST BE AN 

. EVEN NUMBERED REG I STER OR 
C + 1 BECOt<ES UNDEFINED. 

This instruction transposes an 8 row by 8 column segment of matrix A and enters 

the transposed matrix into 64 consecutively numbered registers beginning at the 

register designated by B. The instruction then moves the matrix segment from 64 

consecutively numbered registers beginning at the register specified by Y to matrix C. 

The register specified Z contains the row size matrices A and C. This row size is 

an item count contained in the rightmost 48 bits of register z. The leftmost 16 bits 

are cleared. The instruction completes the transpose operation before the move oper

ation begins. Thus, it is possible to return a transposed 8 by 8 matrix segment to its 

original location with a single instruction. 

Matrix A must be located at consecutive storage locations. The base address in register 

A locates the first word of the first row. If an A offset is used, the instruction adds 

the rightmost 48 bits to the base address in register A to locate the first element of 

the first row. Successive elements of the first row are stored at consecutive storage 

locations. 

The address of the first element of each of the following rows is the address of the 

first element of the previous row plus the row size (register Z). For example, the 

address of the first element in row 2 is the base address (register A) plus the row 

size (register Z). The address for the first element of row 3 is the address of 

the first element of row 2 plus the row size. Since the instruction transposes ma

trix segments of eight rows by eight columns, a row size of less than eight gives un

predictable results. If used, the register designated by C + 1 contains the C matrix 

offset in the rightmost 48 bits. The C designator must be an even number. or C + 1 

becomes undefined. 

I 6-216 60256000 09 



The instruction uses no length specification or control vector. The instruction termin~ 

ates when the last transposed segment is stored in result vector C. 

Any transfer of words into or out of the register file that becomes exhausted of registers 

(that is, beyond the bounds of the register file) causes the instruction to become 

undefined. 

Table 6-44 lists each of the instruction designators, the corresponding register length, 

and function of the contents. 

TABLE 6-44. TRANSPOSE/MOVE INSTRUCTION DESIGNATORS 

Register Register 
Designator Length (Bits) Function 

A 64 Base address of matrix A 

x 64 Item count (rightmost 48 bits) of the offset 
which locates the first element in the first 
row of the matrix segment read from 
matrix A 

B Either First of 64 consecutive registers used to 
hold the transposed segment of matrix A 

c 64 Contains the base address of matrix C 

c + 1 64 Item count (rightmost 48 bits) of the offset 
which locates the first element in the first 
row of the matrix segment to be stored 
into matrix C 

y Either First of 64 consecutive registers used to 
(operand size) hold the transposed segment of matrix C 

z 64 Contains (rightmost 48 bits) the item count 
of the row size for matrix A and matrix C 

60256000 09 6-217 

I 



EXAMPLES OF TRANSPOSE/MOVE INSTRUCTION 

Figure 6- 83 is an example of an assumed 10 row by 10 column matrix. The maxtrix 

segment to be transposed is outlined by heavy lines. 

For clarity of illustration. consecutive decimal numbers represent the elements of the 

matrix which. in the case of this example, would be 32-bit operands. In this example, 

the outlined 8 by 8 segment is transposed (row exchanged for column and column ex

changed for row) and is restored in the same matrix shown in Figure 6- 84. Rows 8 

and 9 and columns 8 and 9 are not affected by the transpose operation since they are 

outside the outlined segment. 

I 6·218 

0 

2 

3 

ROWS 4 

5 

6 

7 

8 

9 

COLUMNS 

0 2 3 4 5 6 7 8 9 

01 11 21 31 41 51 61 71 09 10 

02 12 22 32 42 52 62 72 19 20 

03 13 23 33 43 53 63 73 29 30 

04 14 24 34 44 54 64 74 39 40 

05 15 25 35 45 55 65 75 49 50 

06 16 26 36 46 56 66 76 59 60 

07 17 27 37 47 57 67 77 69 70 

08 18 28 38 48 58 68 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

NOTE 

8 X 8 SEGMENT OUTLINED 

WITH HEAVY LINES. 

Figure 6-83. Example of Initial 10 x 10 Matrix 

COLUMNS 

0 2 3 4 5 6 7 8 9 

0 01 02 03 04 05 06 07 08 09 10 

II 12 13 14 15 16 17 18 19 20 

2 21 22 23 24 25 26 27 28 29 30 

3 31 32 33 34 35 36 37 38 39 40 
ROWS 4 41 42 43 44 45 46 47 48 49 50 

5 51 52 53 54 55 56 57 58 59 60 

6 61 62 63 64 65 66 67 68 69 70 

7 71 72 73 74 75 76 77 78 79 80 

8 81 82 83 84 85 86 87 88 89 90 

9 91 92 93 94 95 96 97 98 99 100 

Figure 6-84. Example of Transposed 8 x 8 Segment in 10 x 10 Matrix 

60256000 09 



Figure 6-85 is an example of the transpose/rnove instruction codes used to perform 

the transposition of the 8 by 8 segment of the matrix shown in Figures 6- 83 and 6- 84. 

No offsets are specified for the matrices. 

Since the segment is transposed and returned to the original matrix, the A and C 

designators are equal. Thus,, the base address for both the A and C matrices is 

5000 16. In a similar manner,, the Y and B designators are equal. Thus~ the first 

register address in each case is 06 16. 

0 78 

5 
(89) 

1516 2324 3132 3940 4748 5556 63 

G x A y B z 
(80) (00) (02) (06) (06) (03) 

NOT USED BASE ADDRESS 
,-~I 

c 
(02) 

C+I 
l(NOT I 
LU~~DJJ 

REGISTERS 02= oooo:oo0000005000 

I 
NOT USED ROW SIZE 

r--"--J ----'------.. 
03 = 0000100000000 00 0 A 

I 
I 

Figure 6-85. Example of Transpose/Move Instruction Codes 

Table 6-45 lists the storage and register address mapping for the example. 

60256000 09 6-219 

I 



I 

Row 
No. 

0 

1 

9 

6-220 

TABLE 6 ... 45. EXAMPLE OF STORAGE AND REGISTER 
MAPPING FOR TRANSPOSE/MOVE INSTRUCTION 

Matrix A Matrix A Matrix C 
(Initial) (Trans posed Segment) (Result) 

Storage Row Register Row Storage 
Address Content No. Address Contents No. Address Content 

500016 01 0 0616 01 0 500016 01 

5020 02 07 11 5020 11 

5040 03 08 21 5040 21 

5060 04 09 31 5060 31 

5080 05 OA 41 5080 41 

50AO 06 OB 51 50AO 51 

50CO 07 oc 61 50CO 61 

50EO 08 OD 71 50EO 71 

5100 09 1 OE 02 5100 09 

5120 10 OF 12 5120 10 

5140 11 10 22 1 5140 02 

5160 12 11 32 5160 12 

5180 13 12 42 5180 22 

51AO 14 13 52 51AO 32 

51CO 15 14 62 51CO 42 

51EO 16 15 72 51EO 52 

5200 17 2 16 03 5200 62 

5220 18 17 13 5220 72 

5240 19 18 23 5240 19 

5260 20 19 33 5260 20 

5C20 98 7 43 76 9 5C20 98 

5C40 99 44 77 5C40 99 

5C60 100 45 78 5C60 100 

60256000 09 



18 MOVE BYTES RIGHT 

0 7 8 15 16 23 24 31 

F R s T 
(18) (SOURCE {RESULT (LENGTH & 

INDEX) INDEX) BASE ADRS} 

This instruction moves source field T starting with the rightmost byte and terminating 

with the leftmost byte. The register designated by T contains the field length and 

base address of field T in the leftmost 16 bits and rightmost 48 bits, respectively. 

The rightmost 48 bits of registers R and S contain signed, two's complement indexes. 

The R and S indexes are item counts in bytes and offset the source and result fields, 

respectively. The instruction left-shifts these indexes three positions before adding 

them to the base address. 

The instruction determines the address of the first byte of the source field by adding 

the T length and R index to the T base address and subtracting one (byte) from the 

sum. The address of the first byte of the result field is found by adding the T length, 

the R index, and the S index and then subtracting one byte. The instruction then 

moves the first source byte to the first result field address. The instruction continues 

to move successive source bytes to consecutive result field byte addresses until the 

result field is filled. The length of the result field equals the length of the source 

field (T length). If the T length is zero or negative, the instruction functions as a 

no-op. 

EXAMPLES OF MOVE BYTES RIGHT OPERATIONS 

Figure 6-86 shows an example of a move bytes right operation with a positive S index. 

In this example, the T base address is 5000
16 

and the R index is set to two. The bytes are 

numbered in the order in which they are moved. The address of the first source byte be

comes 104816 (TBA+ TL+ RI - 1 = 5000 + 8 + 2 - 1 = 5048 16). 

where: TBA = T - base address 

TL = T length 

RI = R index 

SI = S index 

TL' Rr and 1 (byte) are shifted left three positions before the addition. The instruc

tion determines the address of the first result byte in a similar manner except that the 

S index is added to the preceding sum. A positive S index may be less than the T 

length since the rightmost byte of the source field is moved first. 

60256000 09 6-221 I 



INSTRUCTION CODE 

0 Tl 1111 IS 14 SI 

F R S T 
(18) (04) (05) 06) 

REGISTERS 

0 Tl 15 .. U 24 SI SI S9 40 4T 41 55 91 H 

(~4, I 00 I 00 I 00 

'------y----J'------~~-------
NOT USED R INDEX 

,Os5, f 00 'i ooToo .. f:o Too ·roo.'f'oo ·r09 .. I 
~'--~~~~~~-~~~~~-J 

NOT USED S INDEX 

0 7 I 15 IC U 24 31 52 39 40 4T 41 55 91 H 

ADDRESS OF FIRST 
BYTE OF SOURCE ----. 

FIELD =5048 

T 
( 06) I 00 I 08 I oo I 00 I o o I o o I 50 I 00 

~'--------r-------J 
T LENGTH T BASE ADDRESS 

ADDRESS=5040 

SOURCE r ADDRESS 
RESULT FIELD =5080 

I A I 

r ·r T 8 ·r 7 r 6 T 5 ·r 4 T 3 .. , 2 'i r ·r 8 r 7 ·r 6 T 5 ·r 4 ·r 3 'I 2 T 
\ 

2114 

I 
~'~-----~-T_L_EN,rG_T_H ___ ~-~~---f 

v 
S INDEX 

T LENGTH 
ADDRESS OF 
FIRST BYTE 
OF RESULT 
FIELD=5090 

Figure 6-86. Example of a Move Bytes Right Instruction with a Positive S Index 

I 6-222 
60256000 09 



Figure 6- 87 is an example of a move bytes right instruction with a negative S index. 

The negative S index causes the instruction to move the source field left. In this 

example, the T length remains at eight,. but the T base address is now 504816• Thus, 

the address of the first byte in the source field becomes TBA + TL + R.I - 1 = 5090 16. 

Since S index is B 16, the address of the first byte in the result field becomes TBA + 

TL + R.I + SI - 1 = 5048 + 8 + 2 - B - 1 = 503816• With a negative index, an over

lap of result and source field causes the instruction results to become undefined. For 

example,. if the S index is set to -7 in Figure 6-87,. the address of the first result 

byte would be 5048 + 8 + 2 - 7 - 1 = 505816. Thus,. the first source byte would be 

stored in the eighth source byte position, producing undefined results. 

ADDRESS OF FIRST 
BYTE OF RESULT 

FIELD =5038 

ADDRESS= 5000 
RESULT FIELD 

INSTRUCTION CODE 

0 Ta 15.. IS 14 SI 

F R S T 
(18) (04) (05) (06) 

REGISTERS 

(O~) i 00 r 00 Too T:o Too "1:0 T:o ·r:2 i 
~-------------r------~-----
NOT USED R INDEX 

0 71 15 15 2S 14 SI SI H 40 47 41 H 55 IS 

10~ 1 I oo I oo I F F I FF I FF I FF I FF I F s 
~----~~~---~------~--~-

NOT USED S INDEX ( - B) 

r ADDRESS= 5040 

r
~o::sEI ADDRESS= 

SOURCE FIELD 
A 

c ADDRESS=5080 

I \ 

--------~~----------------.......,.----~- ~----------~~----~--~~-----1-----' 
T LENGTH R INDEX 7 

y 

S INDEX 

T LENGTH 

ADDRESS OF 
FIRST BYTE 
OF SOURCE 
Ft£LD=so9o 

Figure 6-87. Example of a Move Bytes Right Instruction with a Negative S Index 

60256000 09 6-223 I 



I 

19 SCAN RIGHT 

28/29 SCAN EQUAL/UNEQUAL 

0 7 8 15 16 23 24 31 
F R s T 

f 9,28 (SCAN (SIGNED (LENGTH & 
OR 29 BYTE) INDEX) BASE ADRS) 

19 SCAN RIGHT 

This instruction (Figure 6-88) scans the bytes in source field T, from right to left, until the 

scan operation locates the first byte not equal to byte R, contained in the instruction word. 

The scan operation is indexed by the signed scan index, contained in the rightmost 48 bits of 

the register denoted by S. When the operation locates the first unequal byte, the instruction 

stops the scanning and decrements the scan index by the number of bytes scanned before the 

unequal byte was found. 

The register specified by T contains the field length and base address of the source field in 

the leftmost 16 bits and rightmost 48 bits, respectively. The address of the first byte read 

from the source field is determined as fallows: 

TBA + TL + s1 - 1 (byte) = SA 

where: TBA T base address 

TL T length 

SI scan index 

SA starting address 

In Figure 6- 88, the starting address becomes SA = TBA + TL + SI - 1 = 5000 + 4 + 4 

-1 = 5038
16

• Since TL and s1 are item counts in bytes .. these values are left-shifted 

three places before the addition. 

The instruction sets data flag bit 53 if no unequal byte is found in the source field. In 

this case, the instruction terminates when the entire source field length is scanned. 

Figure 6- 88 is an example of a scan right instruction with a postive scan index. In 

this case, three equal bytes are scanned before the first unequal byte is detected. Thus, 

the scan index is decremented by three, giving a final value of +l. 

Figure 6- 89 is an example of a scan right instruction with a negative scan index. The 

same instruction codes and T register values are used as in Figure 6-88, however, in 

this case, the scan index is set to a -7. Thus.. the starting address becomes 

SA = TBA + TL + s
1 

- 1 = 5000 + 4 - 7 - 1 = 4FE0 16 . Since three equal bytes are 

again scanned before the unequal byte is detected, the final scan index is (-7-3) = -A 16. 

6-224 60256000 09 



INSTRUCTION CODE 

0 78 15 II Z5 24 51 

F R S T 
(19) (FF) (04) (05) 

REGISTERS (BEFORE EXECUTION) 

0 78 15 •• Z5Z4 51 sz 5940 47 48 5556 6S 

s (04) I 00 I 00 I 00 00 I 00 I oo I 00 04 

~ 
NOT USED SCAN INDEX 

0 71 15 16 ZS Z4 SI J2 S940 47 41 55 56 6S 

T ( 05) I 0 0 I 0 4 I 0 0 I 0 0 I 0 0 I 0 0 I 50 0 0 

~--~~~~~---~~~~~~~~ 

FIELD LENGTH BASE ADDRESS 

SOURCE FIELD T 
STARTING 

/.----ADDRESS =5038 

SCAN INDEX FIELD LENGTH 

REGISTERS (AFTER EXECUTION) 
0 1 8 15 16 ZS 24 SI SZ S9 40 47 48 55 56 6S 

S(04) 00 I 00 I 00 I 00 I 00 I 0 I I 
~~----------~r------------' 
NOT USED SCAN INDEX 

T(05) - UNCHANGED 

NOTES~ IN SOURCE FIELD T 

CD NUMBERS NOT IN PARENTHESES 
DENOTE ORDER OF BYTES SCANNED. 

@ NUMBERS IN PARENTHESES 

60256000 09 

DENOTE BYTE VALUES. 

Figure 6-88. Example of Scan Right Instruction with a 
Positive Scan Index 

6-225 I 



I 6-226 

INSTRUCTION CODE 

0 71 l!I II 23 24 31 

F R s T 
( 19) (FF) (04) (05) 

REGISTERS (BEFORE EXECUTION) 

0 7 I 15 16 23 24 31 32 39 40 47 41 55 56 63 

s (04) I 00 I 00 I FF I FF I FF I FF I FF I F9 

~--~~~~~---.1~~~~~~-

N OT USED SCAN INDEX (-7) 

0 71 15 16 2324 3132 3940 47 41 55 56 63 

T (05) I 00 I 04 I 00 I 00 I 00 I 00 , , 0 I 00 I 
~--~~~~~.--~~~~~-

FIELD LENGTH BASE ADDRESS 

STARTING BASE 
ADD~~~~= \ SOURCE FIELD T f ADDRESS =5000 

0 7 1 15 16 23 24 31 u 39 40 47 48 ss 56 13/0 

FIELD LENGTH 
v 

SCAN INDEX 

REGISTERS AFTER EXECUTION 
0 7 I 15 16 23 24 31 32 39 40 47 41 55 56 63 

s ( 04 I I 0 0 I 0 0 I FF I FF I FF I FF I F F I F 6 

NOT USED SCAN INDEX (-A) 

NOTES: IN SOURCE FIELD T 
T (05) - UNCHANGED CD NUMBERS NOT IN PARENTHESES 

DENOTE ORDER OF BYTES SCANNED. 

Figure 6- 89. 

@ NUMBERS IN PARENTHESES 
DENOTE BYTE VALUES. 

Example of Scan Right Instruction with a 
Negative Scan Index 

60256000 09 



28/29 SCAN EQUALiUNEQUAL 

These instructions scan the bytes in field T, from left to right, until the scan operation 

locates the first byte equal/unequal to byte R, contained in the instruction word. The 

scan operation is indexed by the signed scan index, located in the rightmost 48 bits of 

the register denoted by S. When the operation locates the first equal/unequal byte, the 

instruction stops scanning and increments the scan index (S) by the number of bytes 

scanned before the equal/unequal byte was found. 

The register specified by T contains the field length and base address of the source 

field in the leftmost 16 bits and rightmost 48 bits, respectively. Since the T field 

length and S index are item counts in bytes. they are left-shifted three places before 

they are added to th~ base address. 

The instruction sets data flag bit 53 if no equal/unequal byte is found. and the S index 

is incremented by the number of bytes in the T field. In this case, the instruction 

terminates when the entire source field is scanned. 

60256000 09 6-227 I 



lA FILL FIELD T WITH BYTE R 

0 7 8 15 16 23 24 31 
F R s T 

(lA) (FILL (INDEX) (LENGTH & 
BYTE) BASE ADRS) 

This instruction fills field T with bytes identical to the R portion of the instruction word. The 

register designated by T contains field length (number of bytes) and base address in the left

most 16 and rightmost 48 bits, respectively. Register S contains an index. The instruction 

adds the index to the base address (after left-shifting three positions). The resulting sum is 

the starting address of the T field. The instruction terminates when the T field is filled. 

lB Fill FIELD T WITH BYTE (R) 

0 7 8 15 16 23 24 31 
F R s T 

( lB) (REGISTER {INDEX) (LENGTH & 
CONTAINING BASE ADRS) FILL BYTE) 

This instruction fills field T with bytes identical to the byte contained in the rightmost eight 

bits of the register designated by R. Bits 0 through 55 of register R are not.used. The register 

designated by T contains the field length (number of bytes) and base address in the leftmost 

16 and rightmost 48 bits, respectively. Register S contains an index in bytes which is added 

to the base address (after left-shifting three places). The resulting swn is the starting ad

dress of the T field. The instruction terminates when the T field is filled. 

1C FORM REPEATED BIT MASK WITH LEADING ZEROS 

1D FORM REPEATED BIT MASK WITH LEADING ONES 

0 7 8 15 16 23 24 

F R s T 
{LENGTH OF (LENGTH OF (LENGTH & 

31 

(lC OR 10) 
LEAD 0'.I RE~TED BASE ADRS) 
OR -1 '5 MASK 

These instructions form a repeated mask in field T. The mask consists of a string of zeros I 
ones followed by a string of ones/zeros. The repeated mask consists of one combined string 

of zeros and ones or ones and zeros as shown in Figure 6-90. All length specifications 

shown in Figure 6-9 0 are in bi ts. 

I 6-228 60256000 09 



T FIELD LENGTH 

H+H+l1l1l1l1l1H+H+l1l1l1l1l1FH 
)---v----1 }---v---' : 
1 R LENGTH OF 1 R 1 

I LEADING o's I I 
I I I 

\ v I\ v----
s LENGTH OF S 

REPEATED 
BIT MASK 

Figure 6-90. Example of Repeated Bit Mask Data Format (Leading Zeros) 

The register specified by R (instruction format) contains the length of the string of zeros I 
ones in the leftmost 16 bits. The length of the repeated mask is contained in the leftmost 

16 bits of register S. The rightmost 48 bits of registers R and S are undefined and require 

clearing before execution of the instruction. If the field length specified by the S register 

is zero, the instruction becomes a no-op. The register specified by T contains the length 

and starting bit address of the T field in the leftmost 16 bits and rightmost 48 bits. respec

tively. The instruction terminates when the T field is filled. If length R is equal to length 

S, a string of zeros (lC) or ones ( lD) is formed. If length R is zero, a string of ones /zeros 

is formed. 

lE COUNT LEADING EQUALS 

0 7 8 15 16 23 24 31 
F R s T 

(lE) (LENGTH & (INDEX) (COUNT OF 
BASE ADRS) Ell.JAL BITS) 

This instruction scans the bits in field R, from left to right, until a bit unequal to the leftmost 

bit in the field is detected. The scanning operation starts with the bit immediately to the 

right of the leftmost bit in the field (Figure 6-91). The instruction stores the count of the 

number of bits equal to the leftmost bit of the binary field in the rightmost bits of the register 

designated by T. The entire T register is cleared before the count is stored into it. 

The register designated by R contains the length (in bits) and the base address in the leftmost 

16 bits and rightmost 48 bits, respectively. Register S contains an index {in bits) which is 

added to the base address to form the starting address of the field. The instruction terminates 

when it either detects a bit unequal to the leftmost bit in the field or scans the entire 

60256000 09 6-229 I 



field. In the latter case, the instruction stores a count equal to the field length minus 

one. In Figure 6-91,, a count of B16 is stored in register T. 

The instruction sets data flag bit 53 if the leftmost bit of the binary field is a one. 

0 15 ,. 

REGISTER R I 0 0 0 c I 0 0 0 0 0 0 0 0 5 0 0 0 

FIELD LENGTH BASE ADDRESS 

0 1516 H 

REGISTER s I o o o o I o o o o o o o o o o o e 

0 

REGISTER T 

INDEX 

1516 

oooojooooooooooo e 

COUNT OF EQUAL BITS 

BINARY FIELD R 

STARTING ADDRESS 
(LEFTMOST BIT) 

BASE ADDRESS =5000 \ FIELD LENGTH 

0 I 2 3 4 5 6 7 I 9 10 II 1213 1415US171819 2021221324252S27 

000 I I I I 1:1:1 I I I I I I I I 
I I 

I 
1101I01I00 

I 

~ v~~~~ 

INDEX COUNT STORED 

Figure 6-91. Example of Count Leading Equals Data and Register Format 

I 6-230 60256000 09 



IF COUNT ONES iN FiELD R, COUNT TO 1 

0 7 8 15 16 23 24 31 
F R s T 

(lF) (LENGTH & (INDEX) (COUNT OF 
BASE ADRS) l 1S ) 

This instruction scans left to right, counts the number of binary ones in field R, and trans

mits this count to the rightmost bits of the register specified by T. The entire T 

register is cleared before receiving the count of ones. The register specified by R contains 

the length and base address of the R field in the leftmost 16 and rightmost 48 bits, re

spectively. The rightmost 48 bits of register S contain an index (in bits) which the in

struction adds to the base address to form the starting address of the R field. The instruc

tion terminates when all bits in the R field have been scanned. 

04 BREAKPOINT -MAINTENANCE 

0 
F 

(04) (DESI~NATES 
REG TO BE 
TRANSFERRED 

s T 

The breakpoint instruction is a special instruction reserved as a maintenance and program 

debugging aid. This instruction transfers the content of the 64-bit register designated by 

R into the breakpoint register. The format of the breakpoint register is shown in Figure 

6-92. The breakpoint register is initially loaded from the invisible package of a job. 

0 8 9 15 16 

60256000 09 

BREAKPOINT 
USAGE 

BITS 
BREAKPOINT ADDRESS 

Figure 6-92. Breakpoint Register Format 

6-231 

I 



The breakpoint address is compared with the addresses listed in Table 6-46. If the 

breakpoint address matches one of these addresses and the proper usage bit is set. 

bit 47 of the data flag branch register is set. indicating a breakpoint condition. Any 

combination of usage bits is permissible. Therefore. the breakpoint address can be 

checked against any or all of the addresses listed in the table. 

Space table search or I/O channel references cannot cause a breakpoint match condition. 

Clearing the R. designator bits to zeros and executing the instruction causes the instruc

tion to stop. 

In job mode. virtual addresses are compared with breakpoint. and in monitor mode. 

absolute addresses are compared with breakpoint. Since the monitor program does not 

have an invisible package. the breakpoint register must be loaded each time the moni

tor program is entered. During the exchange to monitor mode. the breakpoint register 

is automatically cleared. Program address compares are made on half-word boundaries. 

and all other compares are made on sword boundaries. 

• 6-232 

TABLE 6-46. BR.EAKPOINT CONDITIONS 

Usage 
Bit No. Breakpoint Condition 

9 

10 

11 

12 

13 

14 

15 

Breakpoint on half-word content of the program address register 
(P) immediately after the execution of the instruction at that 
location 

Breakpoint on the A operand address for a vector or the read 
operand on a random addressing instruction 

Breakpoint on the B operand address for a vector instruction 

Breakpoint on the C operand address for a vector or string in
struction. or the write operand on a random addressing instruc
tion 

Breakpoint on the Z control vector or operand address for a 
vector or string instruction 

Breakpoint on the X order vector address or operand address 
for a string instruction 

Breakpoint on the Y order vector address or operand address 
for a string instruction 

I NOTE I 
The breakpoints occur just after execution of the instruction at the breakpoint 
address. 

60256000 09 



06 FAULT TEST -MAINTENANCE 

r F 
(06) 

R S T 
r--A--v--1'--v--~ 

7 8 9 10 II 12 13 14 15 18 23 24 31 

·-
This instruction enables modes that modify certain logic functions in the CPU in order to 

check the operation of the fault sensing circuits. The modes are enabled by the execution 

of the 06 instruction with a one in the appropriate R. designator bit position. A zero in the 

corresponding bit position clears the selected mode. 

During the job mode, the instruction is enabled only when bit 13 of word 8 in the invisible 

package of the job is set. If bit 13 is a zero, the instruction acts as a pass instruction. 

During the monitor mode, the instruction is always enabled. 

The R designator bits denote which fault sensing circuit is to be checked as follows: 

R Designator 
Bit No. 

12 

13 

14 

15 

60256000 09 

Fault Network 

Parity checker O; toggles the parity bit for the half-word 0 checker 

on all of the read buses 

Parity checker 1; toggles the parity bit for the half-word 1 checker 

on all of the read buses 

Parity checker 2; toggles the parity bit for the half-word 2 checker 

on all of the read buses 

Parity checker 3; toggles the parity bit for the half-word 3 checker 

on all of the read buses 

6-233 

I 

I 

I 



TYPICAL PARITY FAULT TEST PROCEDURE 

In this test, the half-word 0 parity checkers for read buses 1, 2. and 3 are tested, 

followed by the test of the half-word 1 checkers for each of the three read buses. The 

test continues in this manner until the half-word 3 checkers have been tested for each 

of the three read buses. After each parity fault stop. the type and address of the 

I fault should be determined to ensure that they are properly recorded. No interrupts or 

I/O memory requests are accepted during the execution of these tests. 

The general procedure for the parity fault test is as follows: 

6-234 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Set parity checker 0 test by executing the fault test instruction 

with an R designator bit 12 set. 

Test the bus 1 checker by executing an 80 instruction with a 

broadcast of vector B. The broadcasting of vector B ensures 

that read bus 2 does not reference memory; therefore. any 

parity errors are on read bus 1. 

Reverse the roles of the read operands above to test read bus 2 

(bro ad cast vector A). 

Test read bus 3 by executing a jump out of the instruction stack. 

An access instruction parity fault occurs when this instruction is 

read, and a stream instruction parity fault occurs when it is 

executed. For the stream instruction parity fault, the current 

instruction address register may be tested to ensure parity 

address is correct. 

Repeat steps 1 through 4 for checkers 1 through 3. 

Check search,, exchange. and I/O parity errors to ensure that 

these types can be detected. 

Clear all fault test modes. 

60256000 09 



MONITOR INSTRUCTIONS 

The monitor instructions function only during the monitor mode of operation. When the 

machine is in the job mode,, the attempt to execute a monitor instruction is detected in the 

same way as an attempt to execute an undefined instruction code. The result of such an 

attempt is that the function code (F) and virtual program address (P) of the current instruction 

are stored in the appropriate positions of the invisible package. The machine then exchanges 

to the monitor program starting at the address contained in register 03. Refer to section 5 

for a more detailed description of job to monitor exchange operations. 

00 IDLE 
R s T 

r (O~) 7 

If in the monitor mode,, this instruction enables the external interrupt and halts pro

gram operation until an external interrupt occurs. The R, S, and T designators are 

not used and must be zeros. 

08 INPUT /OUTPUT PER R 

F 
(08) 

S T 

78 15~~ 

l ~CHAN~L -
_FLAG) ~ 

In the monitor mode, this instruction sets the channel flag bit in the I /0 channel des

ignated by R. The setting of this bit indicates that the CPU has stored data at a 

predetermined location in central storage for the designated channel. The correspond

ing I/O channel then processes the stored data. If the R designator specifies a non

existent channel other than I/O 1 through 12, the instruction becomes undefined. The 

S and T designators are not used and must be zeros. 

60256000 09 6-2ss I 



OC STORE ASSOCIATIVE REGISTERS 

OD LOAD ASSOCIATIVE REGISTERS 

R s T 

These instructions store (OC)/load (OD) the contents of the 16 associative registers into/ 

from consecutive absolute addresses of central storage beginning at 4000 16 • The transfer 

is an ordered operation; thus, associative register 0 transfers to/from address 400016. 

The contents of associative register 1 transfers to/from address 404015, etc. The content 

of the associative registers are undefined following the execution of the OC instruction. 

The R, S, and T designators are not used and must be zeros. 

OE TRANSLATE EXTERNAL INTERRUPT 

0 7 8 15 16 23 24 3J 
F R s T 

(OE) (BASE (INDEX) (CHANNEL 
DESIGNATOR ADDRESS) TRANSLATI~ 

This instruction translates the lowest numbered bit set in the external interrupt register 

(EIR) into its associated, 4-bit code and transmits the code to the rightmost four bits of the 

register designated by T. The leftmost 60 bits of register Tare cleared to zeros. If only 

one bit in EIR is set, the program branches to the address formed by the sum of the content 

of the registers designated by S and R. The rightmost 48 bits of register S contain an 

index in half-words and the rightmost 48 bits of register R contain the base address. If 

more than one bit in EIR is set, the program executes the next instruction. 

Whether the branch condition is met or not, the instruction clears the EIR bit corresponding 

to the channel designator that was transmitted to register T. If the T and S designators 

are equal, the interrupting channel designator is the branch index. 

I 6-236 60256000 09 



If no bit in EIR is set, the instruction clears register T and perfonns no branch operation. 

Bit zero of EIR is never set since this bit is reserved for maintenance purposes. 

Each bit in the EIR is associated with one of the I/ 0 channels or the monitor interval timer. 

The EIR bit assignments are as follows: 

Bits Assignments 

0 Not available 

1-12 I/ 0 channels 1 through 12 

13 Not assigned 

14 Not assigned 

15 Monitor interval timer 

OF LOAD KEYS FROM (R), TRANSLATE ADDRESS (S) TO (T) 

0 7 8 15 16 23 24 31 

F R s T 

(OF) (KEYS) (VIR'TUAL {ABSOLUTE 
ADDRESS) ADDRESS) 

This instruction loads the four keys found in the register designated by R into the virtual 

address key registers. The instruction then translates the virtual address t located in the 

rightmost 48 bits of register S into an absolute bit address, using the four keys loaded from 

R and the associative words from the page table. The resulting absolute bit address is 

transmitted to the rightmost 48 bits of the register designated by T. If no translation is 

possible before the end of the page table is reached, the instruction clears the rightmost 

48 bits of register T. The leftmost 16 bits of register S are transmitted to the correspond

ing portion of register T. The associative word used to make the translation is placed at 

the top of the page table (associative register 0). The instruction moves the position of 

the associative words down in the page table, if necessary, when searching for the associa

tive word used to make the translation. The 3-bit usage code in the associative word is not 

altered by this instruction. Figure 6-93 shows the formats for the R, S, and T registers 

as they are used for this instruction. 

t Storage Access Control, section 3 describes the virtual addressing operation. 

60256000 09 6-237 I 



REGISTER R 

0 34 1516 It 20 3132 3536 4748 5152 

• KEY 0 • KEY I KEY 2 • KEY 3 

REGISTER T 
0 15 II 

ABSOLUTE BIT ADDRESS 

REGISTER S 
0 15 II 

VIRTUAL ADDRESS 

Figure 6-93. Register Formats for the OF Instruction 

OA TRANSMIT (R) TO MONITOR INTERVAL TIMER 

s T 

7 8 15 16 23 24 31 FIR-(OA) (SOURCE 
REGISTER) 

In the monitor mode, this instruction transmits bits 40 through 63 of the 64- bit register 

specified by the R designator to the monitor interval timer. The function of the monitor 

interval timer is described in section 3, The leftmost 40 bits of register R are ignored. 

I 5 .. 23a 6025.6000 09 



NUMBER SYSTEMS AND TABLES A 

GENERAL 

Any number system may be defined by the radix or base. The radix or base is the number 

of unique symbols used in the system. The decimal system has ten symbols, 0 through 9. 

Modulus is the number of unique quantities or magnitudes a given device can distinguish. 

For example, an adding machine with 10 digits, or counting wheels, has a modulus of 1010_1. 

The adding machine has a modulus because the highest number which this machine can ex

press is 9, 999, 999, 999. 

Most number systems are positional; that is, the relative position of a symbol determines its 

magnitude. In the decimal system, a 5 in the units column represents a different quantity 

than a 5 in the 1 O's column. Quantities equal to or greater than 1 may be represented by 

using the 10 symbols as coefficients of ascending powers of the base 10. The number 98410 
becomes: 

9 x 102 = 9 x 100 = 900 

+8 x 101 = 8 x 10 = 80 

+4 x 10° = 4 x 1 4 

98410 

Quantities less than 1 may be represented by usi.ag the 10 symbols as coefficients of ascending 

negative powers of the base 10. The number 0. 593 10 may be represented as: 

5xlo-1=5x.1 =.5 

9 x 10- 2 = 9 x . 01 = • 09 

3 x 10-3 = 3 x . 001 = . 003 
.59310 

BINARY NUMBER SYSTEM 

Internal operations in the computer use the binary number system. This system uses two 

symbols, 0 and 1; the base is 2. Because of the two-state characteristics, the binary system 

lends itself well to representation by the electronic switching circuits in the computer. The 

following numbers show the positional value of the binary number system: 

25 24 23 22 21 20 

32 16 8 4 2 1 Binary point 

60256000 08 A-1 



The binary number 011010 represents: 

0 x 25 = 0 x 32 = 0 

+1 x 24 = 1 x 16 = 16 

+1 x 23 = 1 x 8 = 8 

+ox 22 =ox 4 = 0 

+1 x 21 = 1 x 2 = 2 

+Ox 20- = 0 x 1 = 0 

2610 

Fractional binary numbers may be represented by using the symbols as coefficients of as

cending negative powers of the base. 

2-1 r2 r3 r4 rs 
Binary point 1/2 1 / 4 1/8 1/16 1 / 32 

The binary number O. 10110 may be represented as: 

1 x rl = 1x1/2 = 1/2 = 8/16 

oxr2=0xl/4 = 0 = 0 

1xr3=1x1/8 = 1/8 = 2/16 

1x2-4=1x1/16 = 1/16 = 1/16 

ox rs= ox 1/32 = o = o 

11/ 1610 

HEXADECIMAL NUMBER SYSTEM 

The hexadecimal number system uses 16 discrete symbols (base 16). Table A-1 shows the 

16 hexadecimal symbols with the decimal and binary equivalents. Note that the first 10 hexa

decimal symbols are identical to the corresponding decimal symbols. The remaining six 

symbols are represented by alphabetical characters A-F. 

I NOTE I 
To avoid confusion between hexadecimal and decimal num
bers in the instruction manuals, all numbers shown 
without the base number affixed are hexadecimal numbers. 
Decimal numbers are shown with the base designator 10 
affixed in the conventional manner. For example, the num -
ber 79847 represents a hexadecimal number. Conversely, 
7984710 represents a decimal number. 

With base 16, the positional value of hexadecimal numbers is: 

A-2 60256000 08 



165 
1,048,57610 

154 
65, 53610 

153 
4,09610 

The hexadecimal number 859F is: 

8 x 163 = 8 x 4, 09610 = 32, 76810 

5 x 152 = 5 x 25610 = 1, 28010 

9 x 161 = 9 x 

F x 150 =Ft x 

1610 = 

1 

34,20710 

Fractional hexadecimal numbers may be represented by using the sumbols as coefficients of 

ascending negative powers of the base. 

15-2 

1/25610 

15-3 

1/409610 

15-4 

1/6553610 

TABLE A-1. HEXADECIMAL EQUIVALENTS 

Binary Decimal Hexadecimal 

00000 00 00 

00001 01 01 

00010 02 02 

00011 03 03 

00100 04 04 

00101 05 05 

00110 06 06 

00111 07 07 

01000 08 08 

01001 09 09 

01010 10 OA 

01011 11 OB 
I 

01100 12 I oc 
01101 13 I OD 

I 01110 14 OE 

01111 15 j OF 

10000 16 10 

tTo perform this multiplication, the hexadecimal symbol F is first converted to its decimal 
equivalent 15 (Table A-1). 

60256000 08 A-3 



The hexadecimal number . 48CO represents: 

4xl6-1=4xl/16 = 1024 
409610 

8 x 16-2 = 8 x 1/256 = 128 
409610 

C x 16- 3 =C x 1/4096 = 12 
409610 
1164 
409610 

291 
= 102410 • 284 

Since a group of four bits can represent any one of the 16 hexadecimal symbols, this notation 

is used throughout the instruction manuals for instruction codes, operands, addressing, 

etc. Table A-1 shows the hexadecimal equivalents for each unique group of four bits. 

The hexadecimal number system enables direct substitution of a hexadecimal symbol for a 

group of four bits., Figure A-1 illustrates the substitution of a hexadecimal number for a 

32-bit operand. Thus, the equivalent hexadecimal symbol is substituted for each successive 

group of four bits, producing the complete hexadecimal equivalent. 

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31 

1111 1100 0101 0000 1001 0010 1010 0100 

F c 5 0 g 2 A 4 

Equivalent Hexadecimal Number = FC5092A4 

Figure A-1. Example of Hexadecimal Substitution for a Binary Number 

A-4 60256000 08 



Figure A-2 provides an easy way to add or multiply hexadecimal numbers. 

60256000 08 

0 

2 

3 

4 

5 

6 

7 

8 

9 

A 

8 

c 
D 

E 

F 

z 
3 

4 

5 

6 

7 

8 

9 

A 

8 

c 

D 

E 

F 

ADDITION 

0 23456789ABCDEF 

0 I 2 3 4 5 6 7 8 9 A 8 c D E F 

I 2 3 4 5 6 7 8 9 A B c D E F 10 

2 3 4 5 6 7 8 9 A B c D E F 10 II 

3 4 5 6 7 8 9 A B c D E F 10 II 12 

4 5 6 7 8 9 A 8 c D E F 10 II 12 13 

5 6 7 8 9 A B c D E F 10 II 12 13 14 

6 7 8 9 A B c D E F 10 II 12 13 14 15 

7 8 9 A 8 c D E F 10 II 12 13 14 15 16 

8 9 A 8 c D E F 10 II 12 13 14 15 16 17 

9 A 8 c D E F 10 II 12 13 14 15 16 17 18 

A 8 c D E F 10 II 12 13 14 15 16 17 18 19 

B c D E F 10 II 12 13 14 15 16 17 18 19 IA 

c D E F 10 II 12 13 14 15 16 17 18 19 IA 18 

D E F 10 II 12 13 14 15 16 17 18 19 IA 18 IC 

E F 10 II 12 13 14 15 16 17 18 19 IA 18 IC ID 

F 10 II 12 13 14 15 16 17 18 19 IA IB IC ID IE 

MULTIPLICATION 

z 4 

3 6 9 

4 8 c 10 

5 A F 14 19 

6 c IZ 18 IE 24 

7 E 15 IC 23 2A 31 

8 10 18 20 28 30 38 40 

9 12 18 24 20 36 3F 48 51 

A 14 IE 28 32 3C 46 50 5A 64 

8 16 21 2C 37 42 40 58 63 6E 79 

c 18 24 30 3C 48 54 60 6C 78 84 90 

0 IA 27 34 41 4E 58 68 75 82 SF 9C A9 

E IC 2A 38 46 54 62 70 7E SC 9A AS 86 C4 

F IE 20 3C 48 5A 69 78 87 96 A5 84 C3 02 El 

2 3 4 5 6 7 s 9 A B c D E F 

Figure A-2. Hexadecimal Matrices 

A-5 



BINARY ARITHMETIC 

The following subparagraphs present a brief description of binary arithmetic. including the 

one's and two's complement systems. 

ADDITION AND SUBTRACTION 

Binary numbers are added according to the following rules: 

1 + 1 = 0 with a carry of 1 

O+O=O 
o +a = 1 

1 + 0 = 1 

The addition of binary numbers proceeds as follows (the hexadecimal and decimal equivalents 

verify the result): 

Augend 1001 (9) 

Addend .QlQ1. (5) 

Partial Sum 1100 

Carrys 

Sum 1110 = E 16 = 1410 

Binary numbers are subtracted according to rules shown as follows: 

0 - 0 = 0 

0 - 1 = 1 with a borrow of l 

1 - 0 = 1 

1 - 1 = 0 

An example of binary subtraction is shown as follows: 

Minuend 1001 (9) 

Subtrahend 0101 (5) 

Partial 
Difference 1100 

Borrows .!QQQ. 
Difference 0100 (4) 

A-6 60256000 08 



NtL.rn.bers can also be subtracted by adding the complement of the addend as shown below: 

Aug end 

Addend 

Partial Sum 

Carrys 

Sum 

1010 (A) (1010) 

1100 (-3) Ones complement of +3. 

0110 

0001 (End around carry) 

0111 (+7) 

The example above shows that the carry generated by the most significant stage of the add is 

added to the least significant stage (end around carry). The procedure for obtaining the one's 

complement of a binary number is described in the following subparagraphs. 

ONE's COMPLEMENT 

In this system, positive numbers are represented by the binary equivalent. The negative 

numbers are represented in one's complement notation of the corresponding positive number. 

The one's complement of a number is found by subtracting each bit of the number from 1. 

For example: 

1111 
-0101 (5) 

1010 (One's complement of 5) 

The substitution of ones for zeros and zeros for ones also produces the one's complement 

representation of a negative number. 

In general, a negative number in the one's complement system contains a 1 in the most 

significant bit (sign bit). Conversely, a positive number contains a 0 in the most signifi

cant bit. This feature divides the range (modulus) of numbers that a given machine can 

represent into two halves. One half of the range represents positive numbers while the other 

half represents negative numbers. A machine with modulus of 8 has the following range of 

numbers: 

SIGN BIT 

(-7F 16) (-127 10) 100000002 (Maximum negative number) 

(+7F 16) (+127 10) 01111111 2 (Maximum positive number) 

Figure A-2. Example of a Modulus 8 System 

Thus, this machine has a modulus of± (27 -1). 

60256000 08 A-7 



If a 1 is added to the maximum positive number shown in the example, the result equals 

the maximum negative number as shown in Figure A-3. 

Such a result is termed an overflow because the result exceeds the modulus of the machine. 

Partial Sum 
Carrys 

Sum 

01111111 
+1 

01111110 
11111110 
10000000 
'LovERFLOW 

Figure A-3. Example of Overflow 

In a similar manner, Figure A-4 shows that the subtraction of a one from the maximum nega

tive number produces a result that exceeds the modulus of the machine in a negative direction. 

This result is termed an underflow. 

Partial Difference 
Borrows 

10000000 
-1 

10000001 
11111110 
Ollllllt 
'LuNDERFLOW 

Figure A-4. Example of Underflow 

In the STAR-100 computer, underflows and overflows are detected. In most cases, the 

detection of an overflow or underflow causes forced results. The type of forced results 

caused by the detection is included with the applicable instruction description. 

TWO's COMPLEMENT 

The two's complement system is used exclusively in STAR-100 arithmetic operations. This 

system is similar to the one's complement system. Positive numbers are represented iden

tically in the two systems. Negative numbers differ by one count. Table A-2 shows a com

parison of one's and two's complement representations of counts 0-9. Note that in the one's 

complement system there are two representations for zero: a + 0 and -0. Table A-2 shows 

the -0 as all ones in parentheses. This feature causes negative numbers in the one's and 

two's complement systems to vary by one count. 

A-8 60256000 08 



TABLE A-2. COMPARISON OF ONE'S AND TWO'S COMPLEMENT REPRESENTATIONS 

Two's Complement One's Complement 
Count Representation Representation 

+9 01001 01001 

+8 01000 01000 

+7 00111 00111 

+6 00110 00110 

+5 00101 00101 

+4 00100 00100 

+3 00011 00011 

+2 00010 00010 

+1 00001 00001 

0 00000 00000 (11111) 

-1 11111 11110 

-2 11110 11101 

-3 11101 11100 

-4 11100 11011 

-5 11011 11010 

-6 11010 11001 

-7 11001 11000 

-8 11000 10111 

-9 10111 10110 

Positive numbers in the two's complement system can be converted to the equivalent negative 

numbers by first taking the one's complement of the positive number and then adding +1 to the 

result. Figure A-5 shows an example of the procedure. 

00111 

11000 

+1 

11001 

(+7) 

(One 1 s complement :a -7) 

(Add one) 

(Two's Complement = -7) 

Figure A-5. Example of Converting a Positive Number to a Negative 
Number in Two's Complement 

60256000 08 A-9 



Addition and subtraction in the two's complement system are performed in the same way as 

in the one's complement system. However, the end-around carry and borrow features, used 

in the one's complement system, do not apply to the two's complement system. Figure A-6 

shows a comparison of adding a -1 to a +8 in the one's and two's complement systems, 

respectively. 

One's Complement 

01000 (+8) 
11110 (-1) 
iOi10 (Partial Sum) 
10001~ (Carrys) 
-- '-End-Around Carry 
00111 (Sum = +7) 

Two's Complement 

01000 (+8) 
11111 (-1) 
10111 (Partial Sum 
1 oooof\ (Carrys) 

LNo End-Around Carry 
00111 (Sum = +7) 

Figure A-6. Comparison of Addition in the One's 
and Two's Complement Systems 

MULTIPLICATION 

Binary multiplication proceeds according to the following rules. 

OxO=O 
Oxl=O 
lxO=O 
1 x 1 = 1 

Multiplication is always performed on a bit-by-bit basis. 

Decimal example: 

Multiplicand 
Multiplier 

14 
12 

Partial Products 
{ 

28 
14 (shifted left one place) 
16810 Product 

Binary example: 

A-10 

Multiplicand 
Multiplier 

Partial Products 

Product 

1110 
1100 

{ 

0000 
0000 shift to place 

1110 digits in proper 
1110 columns 

(16810> 101010002 

60256000 08 



The following example is one method of computer multiplication. The STAR-100 

computer uses variations of this method. However, the following example is valid 

for explanation. 

The computer determines the running subtotal of the partial products. Rather than shifting 

the partial product to the left to position it correctly, the computer right shifts the summa

tion of the partial products one place before the next addition is made. When the multiplier 

bit is a 1 , the multiplicand is added to the running total and the result is shifted to the _right 

one place. When the multiplier is a 0 , the running total is shifted to the right, effectively 

multiplying the quantity by 102. Figure A-7 shows an example of the multiplication procedure 

used in the computer. 

DIVISION 

Multiplicand 

Multiplier 

1110 

1100 

(Multiplier Bit = "O") 

(Multiplier Bit = "O") 

(Multiplier Bit = "1") 

0000 

00000 
1110 

111000 
1110 

10101000 

First Running Total 
(Shifted Right One) 

Second Running Total 
(Shifted Right One) 

Third Running Total 
(Shifted Right One) 
Product (16810) 

Figure A-7. Example of Computer Multiplication Procedure 

The following examples show the familiar method of decimal division. 

Divisor 
14 

13 [85 
li. 

55 
52 

3 

Quotient 
Dividend 

Partial Dividend 

Remainder 

The computer performs division in a similar manner (using binary equivalents): 

Divisor 

60256000 08 

1110 
1101 lio 111001 

1101 
10100 
..ll.Q.l... 
01110 

1101 
11 

Quotient (14) 
Dividend 

Partial Dividends 

Remainder (3) 

A-11 



However, instead of shifting the divisor right to position it for subtraction from the partial 

dividend (shown above), the computer shifts the partial dividend left, accomplishing the same 

result. Following each left shift, the divisor is subtracted from the dividend. If the result 

is positive, the corresponding bit of the quotient is set ( 1 ) and the resulting partial dividend 

is shifted left one position. If the result is negative, indicating that the divisor cannot be 

contained in the partial dividend, the corresponding bit of the quotient is cleared ( 0 ) and the 

previous partial dividend is shifted left one place. The process continues until the proper 

number (determined by the number of bits in the dividend) of subtraction and left-shift opera

tions take place. 

Figure A-8 shows an example of the division procedure used in the computer. Note that the 

first subtraction in the example would produce a negative result. Thus, the most significant 

bit of the quotient is cleared and the previous partial dividend (in this case, the initial divi

dend) is shifted left one position. 

Dividend 
Divisor 
Quotient 

10111001 
1101 

01110 
'10111001 First subtraction would produce 
l lOl ~,--~-negative result 

10111001 
1101 
101000l'f:........_ c . 

lOlOOOl ~ec?~d subtraction produces 

1101 pos1t1ve result 

111101 
111101 

1101 
00011 c:---- Remainder 
1101 < Subtraction would produce 

negative result 

Figure A-8. Example of Computer Division Procedure 

The second subtraction produces a positive result. Thus, the next most significant bit of the 

quotient is set and the result of the subtraction (partial dividend) is left shifted one place. 

Note that the result of the third subtraction is retained as the remainder since the fourth 

(final) subtraction would produce a negative result. 

NUMBER -CONVERSIONS 

The procedures that may be used when converting a number from one number system to 

another are power addition, radix arithmetic, and substitution. Table A-3 lists the recom

mended conversion procedures. 

A-12 60256000 08 



TABLE A-3. RECOMMENDED CONVERSION PROCEDURES 
(INTEGER AND FRACTIONAL) 

Conversion Recommended Method 

Binary to Decimal Power Addition 

Decimal to Hexadecimal t Power Addition 

Decimal to Binary Radix Arithmetic 

Hexadecimal to Decimal t Radix Arithmetic 

Binary to Hexadecimal Substitution 

Hexadecimal to Binary Substitution 

General Rules 

ri > rf: Use Radix Arithmetic, Substitution 

ri < rf: Use Power Addition, Substitution 

ri = Radix of initial system 

rf = Radix of final system 

tThe Programming Reference Aids Manual (Control Data 
Pub. No. 60158600) lists the decimal to hexadecimal con
versions for decimal numbers 0-40959. 

POWER ADDITION 

To convert a number from ri to rf (ri < rf), write the number in its expanded ri polynomial 

form and simplify using rf arithmetic. 

Example 1: Binary to Decimal (Integer) 

0101112 ;s: 1(24) + 0(23) + 1(22) + 1(21) + 1(20) 

= 1(16) + 0(8) + 1(4) + 1(2) + 1(1) 

= 16 + 0 + 4 + 2 + 1 

= 2310 

Example 2: Binary to Decimal (Fractional) 

• 0101 2 = o(rl> + 1(2-2> + 0(2-3> + 1(2-4> 

= 0 + 1/4 + 0 + 1/16 

= 5/1610 

60256000 08 A-13 



Example 3: Decimal to Hexadecimal (Integer) 

= 8(102) + 7(10 1) + 5(100) 

= 8(A~5) + 7(Af 6) + 5(A26) 

= 8(6415) + 7(A15) + 5(1) 

= 32015 + 4615 + 5 

= 36B15 

I NOTE I 
The base 10 is changed to the hexadecimal equivalent (A). 
The subsequent arithmetic is then performed in the hexa
decimal system. 

Example 4: Decimal to Hexadecimal (Fractional) 

= 2(10-l) + 5(10-2) 

= 2(AiS> + 5CAi~> 
= 2/A15 + 5/6415 

= 1916/6416 

~ • 4/ 16 

RADIX ARITHMETIC 

To convert a whole number from ri to rf (ri > rf): 

1. Divide the number to be converted by rf. as expressed in ri notation. using ri 

arithmetic. 

2. The remainder is the lowest-order digit in the new expression. 

3. Divide the integral part from the previous step by r r as expressed in r i notation. 

4. The remainder is the next higher-order digit in the new expression. 

5. The process continues until the division produces only a remainder which will be 

the highest-order bit in the r f expression. 

To convert a fractional number from r i to r f: 

1. Multiply the number to be converted by r r• as expressed in r i notation. using r i 

arithmetic. 

2. The integral part is the highest-order bit in the new expression. 

3. Multiply the fractional part from the previous operation by rf. as expressed in ri 

notation. 

4. The integral part is the next lower-order bit in the new expression. 

5. The process continues until sufficient precision is achieved or the process 

terminates. 

A-14 60256000 08 



EX...l\.MPLE 1 DecLrnal to Bin.ary (Integer) 

4500:- 2 = 22 remainder 1; record 

22 + 2 = 11 remainder O; record 

11-:- 2 = 5 remainder 1; record 

5 + 2 = 2 remainder 1; record 1 

2+ 2 = 1 remainder 0; record 0 

1 + 2 = 0 remainder 1; record 1 
1 0 1 

Thus 45 10 = 1011012 

EXAMPLE 2 Decimal to Binary (Fractional) 

. 25 x 2 = O. 5; record 

. 5 x 2 = 1. 0; record 

. 0 x 2 = 0. 0; record 

Thus • 25 10 = • 0102 

0 

1 

__ o 
. 010 

1 

1 

EXAMPLE 3 Hexadecimal to Decimal (Integer) 

0 

0 

9FC + 1010 (A16) =OFF remainder 6; record 6 

= 19 remainder 5; record 5 

2 remainder 5; record 5 

1 

1 

OFF"~ A15 

019 + A 16 

2 ~A16 0 remainder 2; record ..2,___ 
2556 

Thus 9FC15 = 255610 

EXAMPLE 4 Hexadecimal to Decimal (Fractional) 

. 2AC x 1010 (A 16) = 1. ABB; record 1 

. ABB x A 16 = 6. B30; record 6 

. B30 x A15 

.FEOxA15 

= 6. FEO; record 

= 9. ECO; record 

6 

9 

. 1669--
Thus • 2AC 16 ~. 166910 

60256000 OB A-15 



SUBSTITUTION 

This method permits easy conversion between hexadecimal and binary numbers. If a binary 

number is partitioned into groups of four bits to the left and right of the binary point, each 

group of four bits converts into a hexadecimal digit. Similarly, each hexadecimal digit con

verts directly into a group of four bits. Table A-1 lists the hexadecimal digits and the cor

responding binary equivalents. 

Example 1: Binary to Hexadecimal 

Binary= 1110 0000 0101. 

Hexadecimal = E 0 5 

Example 2: Hexadecimal to Binary 

Hexadecimal = 5 F 8 . 
0101 1111 1000. 

A-16 

1011 

B 

7 

0111 

0010 

2 

c 

1100 

1001 

9 

A 

1010 

60256000 08 



Tables A-4 and A-5 are translation tables for extended binary coded decimal interchange 

code (EBCDIC) and American National Standard Code for Information Interchange (ASCII). 

The double row of squares around the top and left edge of each table show the binary and 

hexadecimal codes for the characters in the table. The following list gives a description of 

the control characters in the tables. 

Null DLE Data Link Escape (CC) 

Start of Heading (CC) DCl Device Control 1 

Start of Text (CC) DC2 Device Control 2 

End of Text (CC) DC3 Device Control 3 

End of Transmission (CC) DC4 Device Control 4 (Stop) 

Enquiry (CC) NAK Negative Acknowledge (CC) 

Acknowledge (CC) SYN Synchronous Idle (CC) 

NUL 

SOH 

STX 

ETX 

EOT 

ENQ 

ACK 

BEL 

BS 

HT 

Bell (audible or attention signal) ETB End of Transmission Block (CC) 

LF 

VT 

FF 

CR 

so 
SI 

Backspace (FE) CAN Cancel 

Horizontal Tabulation EM End of Medium 
(ounched card skip) (FE) 

SUB Substitute 
Line Feed (FE) ESC Escape 
Vertical Tabulation (FE) FS File Separator (IS) 
Form Feed (FE) 

GS Group Separator (IS) 
Carriage Return (FE) RS Record Separator (IS) 
Shift Out us Unit Separator (IS) 
Shift In DEL Deletet 

I NOTE I 
(CC) Communication Control 
(FE) Format Effector 
(IS) Information Separator 

Bits in the tables are identified by b 8, b 7, b 6, •••. b1 where b8 is the highest order or most 

significant bit. Their numerical significance in binary is as follows: 

Bit Identification b 8 b
7 

b
6 

b 5 b 4 b 3 b 2 b 1 

Significance 2 7 2
6 

2
5 

2
4 

2
3 

2
2 

2
1 

2° 

tin the strict sense, DEL is not a control character. 

60256000 08 A-17 



TABLE A-4. EBCDIC TRANSLATION TABLE 

I 1 

.. 0 0 0 0 0 0 0 0 1 1 1 , 1 1 1 1 

!II 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

" 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

r 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

"Tl3!2I' ~ 0 1 2 3 4 5 6 7 a 9 10 , 1 12 13 14 15 

~ (A) (8) (C) (0) (E) lF) 

0 0 0 0 0 NUL OLE SP 8 - { } \ 0 

0 0 0 I I SOH DCI I a j ,.., A J 1 

0 0 1 0 2 STX DC2 SYN b k s B K s 2 

0 0 1 1 3 ETX DC3 c 1 t c L T 3 

0 1 0 0 4 d m u D M u 4 

0 1 0 1 5 HT LF e n v E N v 5 

0 1 , 0 6 BS ETB f 0 w F 0 w 6 

0 , 1 1 7 DEL ESC EQT g p x G p x 7 

1 0 0 0 8 CAN h q y H Q y 8 

1 0 0 1 9 EM \ i r z I R z 9 

1 0 1 0 10 (A) [ J I . 
I . 

1 0 1 1 II (8) VT . $ , # 

1 1 0 0 12 (C) FF FS DC4 < * O/o @ 

1 1 0 1 13 (0) CR GS ENQ NAK ( ) 
, 

-, , , 0 14 {El so RS ACK + . > = 
' 1 1 , 1 15 (F) SI us BEL SUB ! /\ ? II 

EO 

A-18 60256000 08 



TABLE A-5. ASCII TRANSL<'.\.>. TION T.i~""BLE 

"' 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

"' 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

"' 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

r ~ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

bT!Tl'~ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

(A) (B) (C) (D) (E) (F) 

I 1 ~, 
0 0 0 0 0 NUL OLE SP 0 @ p ' p 

0 0 0 1 1 SOH DCI ! 1 A Q a q 

0 0 1 0 2 STX DC2 
II 

2 B R b r 

0 0 1 1 3 ETX DC3 # 3 c s c s 

0 1 0 0 4 EOT DC4 $ 4 D T d T 

0 , 0 1 5 ENQ NAK O/o 5 E u e u 

0 1 1 0 6 ACK SYN 8 6 F v f v 

0 1 1 1 7 BEL ETB ' 7 G w g w 

1 0 0 0 8 BS CAN ( I 8 I H x I h I x I I I I I 

1 0 0 1 9 HT EM ) 9 I y i y T 
1 0 1 0 10 (A) LF SUB * 

. J z j z . 
1 0 1 1 11 (B) VT ESC + . 

K [ k { I ' 
1 1 0 0 12 (C) FF FS 

' < L \ 1 I 
I 

1 1 0 1 13 (D) CR GS - = M ] m } 
1 1 1 0 14 (E) so RS . > N /\ n ,.., 

1 1 1 1 15 (F) SI us I ? 0 - 0 DEL EO 

60256000 08 A-19 



FLOATING POINT ARITHMETIC 

GENERAL 

Most programmed arithmetic in the computer system takes place using two's complement, 

floating point procedures. The following paragraphs describe the formats and procedures 

used in performing floating point operations. Unless otherwise specified, numbers are 

expressed in hexadecimal notation (base 16). 

FLOATING POINT TECHNIQUE 

B 

The floating point technique allows the computer to represent numbers with variable radix 

points and to perform computations on these numbers. Using floating point procedures, the 

computer automatically places the radix point of the result at the proper position following 

a computation. Thus, by shifting the radix point and increasing or decreasing the exponent, 

computations on widely varying quantities which do not exceed the capacity of the machine 

can be performed. 

Floating point numbers within the computer are represented in a form similar to scientific 

notation, that is, a coefficient multiplied by a number raised to a power. Since the computer 

operates only on binary numbers,, the numbers are multiplied by powers of two. 

C • 2E Where: C = coefficient 

E =exponent 

In floating point, different coefficients need not relate to the same power of the base as do 

fixed point numbers. Therefore, the format of a floating point number includes both the 

coefficient and exponent. All coefficients and exponents represented in the equipment are 

signed integers. 

OPERAND FORMATS 

Floating point operations are performed on 32-bit and 64-bit operands. The function codes 

of the corresponding instructions specify whether 32-bit or 64-bit operands are to be used. 

The following subparagraphs describe the 32-bit and 64-bit formats. 

60256000 08 B-1 



32-BIT FORMAT 

Figure B-1 shows the format of the 32-bit floating point operands. Note that the bit positions 

of all operands are numbered left to right with the least significant bits in the rightmost bit 

positions of the word. 

LEAST SIGNIFICANT 
EXPONENT BITS \ 

EXPONENT" COEFFICIENT 
SIGN BIT ~ rstGN BIT 

rr .. ff 
EXPONENT\ COEFFICIENT 
(8 BITS) (24 BITS) 

EXPONENT 
Bl NARY POI NT 

LEAST SIGNIFICANT A COEFFICIENT BITS 

Tl 
\_coEFFICIENT 

BINARY POINT 

Figure B-1. 32-Bit Floating-Point Operand Format 

The range or" useful coefficients in the 32-bit format is from 800000 to 7FFFFF which provides 
23 23 a range of -(2 ). 10 through +2 -1) 10• 

Useful exponents range from 90 to BF which gives a range of -112 10 to +111 10 . Numbers 70 

through BF fall into a special end-case range as listed in Table B-1. 

TABLE B-1. SPECIAL END CASE RANGE FOR THE 32-BIT FORMAT 

Number Definition 

8XXXXXXX Machine Zero 

7XXXXXXX Indefinite 

Note: X = Any Hexadecimal Digit 

Table B-2 lists some floating point numbers in the 32-bit format. Unless otherwise indicated, 

all numbers are in two's complement, hexadecimal notation. 

B-2 60256000 08 



TABLE B-2. FLOATING-POINT NUJVfBERS IN 32-BIT FORlVl:AT 

Number (B~se 10) 

+1 

+1 Normalized* 

-1 

-1 Normalized* 

+26790.0 

+1I4 = +. 25 = +. 4016 Normalized t 

256 

Floating Point Format 

Exponent Coefficient 

00 000001 

EA 400000 

00 FFFFFF 

E9 800000 

00 0068A6 

ES 400000 

00 000100 

tin these examples, the coefficients are left shifted (normalized) until the 
sign bit is unequal to the bit immediately to its right. The exponent is 
reduced by one for each left shift. 

Note that in two's complement notation, a negative number is one more than the corresponding 

one's complement notation for the same number. For example, in two's complement, -1 = 

FFFFFF (all ones) while in one's complement -1 = FFFFFE. Positive numbers in two's 

complement are identical to the corresponding one's complement notation for the same num

ber. 

64-BIT FORMAT 

Figure B-2 shows the format of the 64-bit floating point operands. 

r EXPONENT 
SIGN BIT 

r1 
EXPONENT 
(16 BITS) 

LEAST SIGNIFICANT 

£-
EXPONENT BITS 

rrCOEFFICIENT 
~ SIGN BIT 

\_EXPONENT 
BINARY POI NT 

COEFFICIENT 
(48 BITS) 

LEAST SIGN I FI CANT "'\. 
COEFFICIENT BITS \\a 

COEFFICIENT _/ 
BINARY POINT 

Figure B-2. 64-Bit Floating-Point Operand Format 

60256000 08 B-3 



The range of useful coefficients in the 64-bit format is from 8000 0000 0000 to 7FFF FFFF 

FFFF which provides a range of -(2 4 7 )
10 

through +(2 47 -1)
10

. 

Useful exponents range from 9000 to 6FFF which gives a range of -28, 672
10 

to +28, 671
10

• 

Numbers 7000 through 8FFF fall into a special end case range as listed in Table B-3. 

TABLE B-3. SPECIAL END CASE RANGE FOR THE 64-BIT FORMAT 

Number Definition 

8XXX XXXX XX:XX XXXX Machine Zero 

7XXX XXXX XX:XX XXXX Indefinite 

Note: X = Any Hexadecimal Digit. 

The use of an undefined exponent in an arithmetic operation produces undefined results. 

Table B-4 lists some floating point numbers in the 64-bit format. 

B-4 

TABLE B-4. FLOATING-POINT NUMBERS IN 64-BIT FORMAT 

Number 
Base 10 

+1 

+1 Normalized t 

-1 

-1 Normalized t 

+26790.0 

+1/4 = +. 25 = +. 4016 

+25610 

Floating Point Format 

Exponent Coefficient 

0000 0000 0000 0001 

FFD2 4000 0000 0000 

0000 FFFF FFFF FFFF 

FFDl 8000 0000 0000 

0000 0000 0000 68A6 

FFDO 4000 0000 0000* 

0000 0000 0000 0100 

tln these examples, the coefficients are left shifted (normalized) until 
the sign bit is unequal to the bit immediately to its right. The exponent 
is reduced by one for each shift. 

60256000 08 



FLOATING POINT OPERATIONS 
-- --

In the following descriptions of floating point operations, the 32-bit format is used for all 

examples. All descriptions and definitions of the operations apply to 64-bit operands with 

the adjustment for bit length. The following bit length substitutions are made for opera

tions using 64-bit operands. 

Bit Lengths For 
32-Bit Operands 

DOUBLE PRECISION RESULTS 

22 

23 

46 

47 

11 

Bit Lengths For 
64-Bit Operands 

46 

47 

94 

95 

23 

Several instructions produce double precision results. The double precision add opera

tion is a floating point add producing both an upper and a lower result simultaneously 

and retaining both of these results for the next floating point add operation. Thus 

the partial result in 64-bit arithmetic consists of 94 coefficient bits plus sign informa

tion. The partial result in 32-bit arithmetic consists of 46 bits plus sign information. 

Dot Product instructions add both the upper and lower results of the multiply operations 

to the partial results of the add operations as described above. 

UPPER AND LOWER RESULTS 

Floating point add, subtract, and multiply instructions generate result coefficients twice the 

length of the source-operand coefficients. The left and right halves of the result operands 

are called the upper (U) result and lower (L) result, respectively. Figure B-3 shows the 

format of the result operands. 

U EXPONENT 
SIGN BIT \ 

ll 
U COEFFICIENT r SIGN BIT 

U EXPONENT U COEFFICIENT 

L EXPONENT 
SIGN BIT \ 

ff 
L EXPONENT 

L COEFFICIENT 
~SIGN BIT (FORCED 

I POSITIVE- 0 ) 

L COEFFICIENT 

Figure B-3. Add, Subtract and Multiply Result Format 

60256000 08 B-5 



The sign bit of the lower result coefficient is forced positive. The remaining bits of the 

lower coefficient are the normal results of the computations. Since the sign bit of the lower 

result coefficient is forced positive, the lower result is not meaningful alone, but must be 

used in conjunction with the upper result. 

END CASES 

If an indefinite operand is used in a floating point operation, the upper and lower results are 

indefinite. Table B-5 lists each of the end case conditions and the result of each condition. 

In Table B-5, 0 represents machine zero and N represents an operand that is not machine 

zero or indefinite. M represents an operand that is not machine zero or indefinite. The 

coefficient of M is not all zeros. 

TABLE B-5. END CASE CONDITIONS AND RESULTS 

Condition Result Condition Result 

0±0 0 N . 0 0 

O±N ±N 0 0 Indefinite 

N ± 0 N 0 M 0 

0 • 0 0 N+O Indefinite 

0 • N 0 

FLOATING POINT COMPARE RULES 

The rules governing the comparison of floating point operands are described on the following 

pages. 

B-6 60256000 09 



Neither Operand Indefinite or Machine Zero 

If the signs of the coefficients of the two operands are unlike. the operands are unequal. 

The operand with the positive exponent is the larger of the two. If the signs of the 

coefficient are alike, the machine performs a floating point subtract upper. This op

eration subtracts operand (S) from operand (R). Each of the arithmetic results are 

listed below with the corresponding compare results. 

Arithmetic Result 

Coefficient upper 24 bits all zeros 
(48 bits for 24 through 27 instructions) 

Coefficient upper 24 bits not all zeros 
(48 bits for 24 through 27 instructions) 

Coefficient positive 

Coefficient negative 

Compare Result 

(R) = (S) 

(R) ~ (S) 

(R)2 (S) 

(R) < (S) 

The compare results (R) = (S) and (R) f. (S) do not guarantee that (S) = (R) when (R) = (S). 

The order of events of the floating point subtract upper is first to complement the sub

trahend, then align the coefficient associated with the smaller exponent, and finally to 

perform a floating point add operation. The following is an example of (R) = (S) but 

(S) f. (R) for 64-bit compares. 

Operand (R) 0104 0000 0000 0001 
(S) 0100 0000 0000 0001 

Complement (S) 0100 FFFF FFFF FFFF 
Align (S) 0104 FFFF FFFF FFFF F 

Add (R) and 0104 0000 0000 0001 
complemented, 0104 FFFF FFFF FFFF F 
aligned (S) 0104 0000 0000 0000 F 

Since the upper 48 bits of the result coefficient are all zeros, the pair of operands are 

considered equal. However, if the operands are interchanged, the following happens: 

Operand (R) 0100 0000 0000 0001 
(S) 0104 0000 0000 0001 

Complement (S) 0104 FFFF FFFF FFFF 
Align R 0104 0000 0000 0000 1 

Add aligned 0104 FFFF FFFF FFFF 1 
(R) and complemented 
(S) 

Since the upper 48 bits of the result coefficient are not all zeros, the pair of operands 

are considered unequal. 

60256000 09 B-7 • 



Figure B-4 shows an example of the results of a branch if (R)2 (S) (32/64 bit FP), 22 

instruction with the assumed instruction codes and register content.. Note that in the initial 

comparison of the coefficient signs of (R) and (S) that they are alike. Thus a floating point 

subtract operation contains a positive sign which indicates that (R) > (S). Since this result 

satisfies the assumed branch condition, the program branches to the indicated branch address. 

0 18 II II 2114 

F 
( 22) 

R S T 
(07) (08) (10) BRANCH INSTRUCTION 

e EXPONENT COEFFICIENT 

BIT BIT 

/

SIGN /SIGN 

0 14 1 1111 1111 1910 2114 2121 II 

0 

0 

11 0 I 0 0 0 0 010 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 R= 07 
I 

14 ., . 

COEFFICIENT 

SIGNS ARE ALIKE 

1111 II II 1910 2114 2111 II 

11 11 

COEFFICIENT 

( 50 002000) 

s = 08 
(4FOOIFFFJ 

T= 10 
(OOOOOOOOOFFFFFEO) 

II II II It 19 10 21 14 27 II II II IS" II H 40 41 44 47 41 ti 11 16 H 59 10 11 

0 000 00 00 0000 0000 0000 00 00 0000 0000 0000 I I I I I I I I I I I I I I I I I I I 0 00 00 

--~~~..-~~~~----~~~~~~~~~~~~~~~~~~~~~~~~~--4'--y--J 

BITS NOT USED BRANCH ADDRESS 

14 1 • II 11 II It 1910 11 14 27 II 11 

COEFFICIENT 

SIGN ( +> 

0000 0000 RESULT OF FLOATING POINT 
SUBTRACT R-S-NORMALIZE 
UPPER (45 400400) 

THUS, R > S; BRANCH TO VIRTUAL ADDRESS OOOOFFFFFEO 

BITS 
NOT USED IN 
INSTRUCTION 

ADDRESS 

Figure B-4. Example of Branch if (H) 2: (S) (32/64 Bit FP) Instruction 

• B-8 60256000 09 



One or Both Operands Indefinite 

If one operand is indefinite, the compare condition is not met since indefinite is not 

greater than, less than, equal to, or not equal to any other operand. If both operands 

are indefinite, the (R) = (S) and (R) > (S) conditions can be met since indefinite equals 

indefinite. 

Neither Operand Indefinite But One or Both Operands Are Machine Zero 

Under this condition, the following definitions apply to the comparison. 

1. Any nonindefinite, nonmachine zero operand with a positive, nonzero coefficient 

is greater than machine zero. 

2. Any nonindefinite, nonmachine zero operand with a negative coefficient is less 

than machine zero. 

3. Machine zero is considered equal only to itself and to any number having a 

finite exponent and an all zero coefficient. 

RIGHT NORMALIZATION 

When the upper result coefficient overflows, the machine shifts the entire 47-bit result 

(with sign extension) one place to the right. The upper exponent is increased by one. 

The machine performs this operation, termed right normalization, when necessary, al

though normalization may not have been specified by the instruction. 

Figure B-5 shows an example of right normalization. In this example, assume that the 

following floating point numbers are added, causing the upper result coefficient to over

flow. 

60256000 09 B-9 • 



I 

B-10 

EXPONENT 

~ 
00 
00 

COEFFICIENT 

I 5F:AFF ~ Operand 1 
479FF2. Operand 2 
A 73AF1. Result (Unnormalized) 

......._OVERFLOW 
DETECTED 

COEFFICIENT f SIGN BIT 

I II 12 15 II It 10 II 14 27 ZI 

15 II It 20 13 14 17 H 31 

OPERAND I 
(00 5F9AFF) 

111001111111110010 OPERAND 2 
(00 479 FF2) 

• • 

r SIGN RESULT (UNNORMALIZED) 

0 I 4 7 I II 12 II II It 10 15 24 27 H JI llZ IS II It 40 41 44 47 

I I 0 0 I I I 0 I 0 I I I I 0 0 0 I 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 

(RIGHT SHIFT I) RESULT (NORMALIZED) 

27 H JI 12 H H It 40 47 

INCREASE 

UPPER '~"'-- v LOWER 

FORCED TO 0 

BY ONE \ 

J 4 7 

• 

• 

II II IS II It 20 21 14 27 21 JI 

• 
II II IS II It 10 II 24 27 II JI 

• 

UPPER RESULT 
(01 539D78.) 

LOWER RESULT 
(EA 400000) 

Figure B-5. Example of Right-Normalization 

60256000 09 



Note in the example that the sign bit of the iower resuit is forced positive ( 0 ) and bit 23 is 

shifted around it. 

ADD AND SUBTRACT OPERATIONS 

Before the computer adds or subtracts floating point numbers, the exponents are made equal 

by a procedure called alignment. The alignment procedure successively right shifts the co

efficient of the operand with the smallest exponent one bit and increases the exponent by one 

until the two exponents are equal. The sign of the shifted coefficients is extended from the 

left to the right during the shift. Negative coefficients approach a minus one and positive 

coefficients approach zero as they are shifted. 

Figure B-6 shows an example of floating point addition with both operands positive. In I 
Figure B-6, the exponent of operand 2 is one less than the exponent of operand 1. The align

ment procedure right shifts the coefficient of operand 2 one place to the right and increases 

its exponent by one, making it equal to the exponent of operand 1. Note that the least signi

ficant bit of operand 2 is shifted into bit 25 of the lower result (around the sign bit). 

The addition of the coefficients takes place, using conventional binary addition procedures. 

After right normalization, if required, the result is 46 bits (not including the sign bits). The 

leftmost 23 bits contain the coefficient for the upper result and the rightmost 23 bits con-

tain the coefficient for the lower result. 

The exponent for the upper result equals the larger of the two source operand exponents. Note 

that right normalization (not necessary in the example) increases this exponent by one. The 

exponent for the lower result equals the upper result exponent -23 10 (17 16) in all but the fol

lowing three conditions. 

1. Right normalization causes the upper result exponent to overflow. In this case, the 

computer sets the upper result to indefinite. The lower exponent will equal 5916 
(6FD1 16 for 64-bit operands). 

2. If the subtraction of 2310 from the upper result exponent causes the lower result 

exponent to underflow, the computer sets the lower result to machine zero. 

3. If one or both operands were indefinite, the computer sets the upper and lower 

results to indefinite. 

Figure B-7 shows an example of floating point addition with one operand negative and the I 
other positive. 

60256000 09 B-11 



I 

rEXPONENT 
I SIGN BIT 

0 I 4 7 m 
& 

0 I 4 7 

ffi 
& 

INCREASE 
BY I \ 

I 4 1 

& 

e I 4 T 

ED 
~ 

rCOEFFICIENT 
I SIGN BIT 

SIGN BIT 
EXTENDED 

11 M ar • 

II II It II 

I I I I 

UPPER 

.. ti . .. HM 

00000000010 1111 I I 
I 

EQUALS THE EXPONENT 
OF THE LARGER OF TWO 
SOURCE OPERANDS 

1111 ........... ., ... 

OPERAND I 
{ 50 002000.) 

OPERAND 2 -UNALIGNED 
(4F OOIFFF.) 

OPERAND 2-ALIGNED 
(SHIFTED ONE RIGHT-
EX PONENTS EQUAL-50 OOOFFF) 

RESULT (SUM) 
17 .. •• .. • .. • .. •• 44 47 

" LOWER 

FORCED 
POSITIVE 

UPPER RESULT 
(50 002FFF.} 

LOWER RESULT 
(39 400000) 

000 

Figure .B-6. Example of Floo.ting-Point Addition (Both Operands Positive) 

B-12 60256000 09 



INCREASE 
BY TWO 

COEFFICIENT 
/SIGN BIT 

• II IZ II 1• 11 zo ZS Z4 Z1 ZI II 

II IZ . II 1• II ZO ZS 24 21 ZI II 

10000000000001 

II 12 15 16 19 20 ZS 24 21 28 31 

I I I 000 0000 0000 

~ 
Ls1GN BIT EXTENDED 

OPERAND I 
( 50 002000) 

OPERAND 2 
(4E FFEOO I) 

OPERAND 2 - ALIGNED 
(SHIFTED TWO RIGHT
EXPONENTS EQUAL -50 FFFSOO) 

RESULT (SUM) 
0 s 4 1 • II IZ II 1• II zo ZS 24 Z1 ZI II IZ II H •• 40 41 44 41 

0 3 4 1 

ffi 
~ 

EQUALS THE EXPONENT 
OF THE LARGER OF TWO 
SOURCE OPERANDS 

UPPER 

0 I 4 1 • II IZ II 1• II zo ZS 24 21 a• II 

ffi 
~ 

50- 17= 39 

(5710) 

LOWER 

FORCED POSITIVE 

UPPER RESULT 
(50 001800) 

LOWER RESULT 
( 39 200000) 

Figure B-7. Example of Floating Point Addition (One Operand 
Negative and One Operand Positive) 

60256000 09 

I 

B-13 



• 

A floating point subtraction consists of complementing the coefficient of the subtrahend and 

performing a floating point addition. In 32-bit format, a 24-bit two's complement operation 

is performed before the operands are shifted. The complement of an 800000 coefficient is 

400000 with one added to the value of the exponent associated with the coefficient. 

The STAR-100 hardware used for floating point add or subtract operations has an extra 

(or extended) coefficient sign bit. This means that 8000 is complemented without the 

specified right shift of one and increase of the exponent by one. This will cause a result 

which, although not mathematically incorrect, may differ from the specified result when 

all of the following conditions are met for any given pair of operands. 

1. The operand having the larger exponent must have a coefficient of 8000. If the 

exponents of the two operands are equal, one of the two must have a coefficient 

of 8000. 

2. The operand described in condition 1, having a coefficient of 8000, must be 

complemented. This may be due to the operand being the subtrahend in a subtract 

operation or because of sign control in either a subtract or add operation. 

3. The other operand must have a negative coefficient. 

Figure B-8 shows two examples of floating point subtraction using an extra coefficient 

sign bit. 

If this operation is a subtract upper, the specified result is indefinite (with the appropriate 

data flags). The STAR-100 result did not overflow. If this operation were a subtract 

normalized, the following results would occur. 

Result of 
Subtract 
Upper 

Normalize the 
upper result 
by shifting 
zeros into the 
coefficient from 
the right and 
decrementing the 
exponent. 

B-14 

ST AR-100 Method 

6F (0) 7 F F F F F 

6F 7 F F F F F 

t 

Right Shift and Add Method 

70 3 F F F F F 

6F 7 F F F F E 

t 

60256000 09 



EXAMPLE I A - B 

A 60 F F F 0 0 0 

B 64 8 0 0 0 0 0 
RIGHT SHIFT AND ADD I 

STAR-100 METHOD TO EXPONENT METHOD 

EXTRA SIGN BIT • COMPLEMENT B B (64 (I) 8 0 0 0 0 0 64 8 0 0 0 0 0 

B 64 ( 0) 8 0 0 0 0 0 65 4 0 0 0 0 0 

ALIGN OPERAND ,60 ( I ) F F F 0 0 0 (60 F F F 0 0 0 
WI TH SMALLER 64 ( I ) F F F F 0 0 65 F F F F 8 0 
EXPONENT 

ADD A PLUS A 64 ( I ) F F F F 0 0 65 F F F F 8 0 
COMPLEMENT +B 64 ( 0) 8 0 0 0 0 0 65 4 0 0 0 0 0 OF B 

64 (0) 7 F F F 0 0 65 3 F F F 8 0 

64 7 F F F 0 0 65 3 F F F 8 0 

EXAMPLE 2 A - B 

A 50 F F F 0 0 0 

B 6F 8 0 0 0 0 0 
RIGHT SHIFT AND ADD I 

STAR-100 METHOD TO EXPONENT METHOD 

EXTRA SIGN BIT 
t 

COMPLEMENT B B (6F ( I ) 8 0 0 0 0 0 6F 8 0 0 0 0 0 

8 6F (0) 8 0 0 0 0 0 70 4 0 0 0 0 0 

ALIGN OPERAND (50 ( I ) F F F 0 0 0 50 F F F 0 0 0 
WITH SMALLER 6F ( I ) F F F F F F 70 F F F F F F EXPONENT 

ADD A PLUS A 6F ( I ) F F F F F F 70 F F F F F F 
COMPLEMENT +8 6F ( 0) 8 0 0 0 0 0 70 4 0 0 0 0 0 
OF B 

6F (0) 7 F F F F F 70 3 F F F F F 

Figure B-8. Examples of Floating Point Subtraction Using 
an Extra Coefficient Sign Bit 

60256000 09 B-15 • 



The normalized add and subtract instructions generate an intermediate result identical to 

the final result of the add U and the subtract U instructions. Normalizing of the intermediate, 

I 24-bit result then takes place. In this operation (Figure B-9), the computer left shifts the 

I 

24 upper result bits until the sign bit and the bit immediately to the right of the sign bit are 

different. 

The machine attaches zeros to the right of the result as it is shifted. The result exponent 

is reduced by the number of places shifted. If reducing the exponent by one causes exponent 

underflow, the result is set to machine zero. If the original coefficient consists of 24 zero 

bits, the result of the normalization becomes machine zero. If normalization is not specified 

in an add or subtract instruction, a zero coefficient and any exponent may result, and if 

reducing the exponent during shifting causes an exponent underflow, the machine sets the 

result to machine zero. 

B-16 

EXPONENT 
/SIGN BIT 

0 s 4 ' 

I I I 

COEFFICIENT 
rSIGN BIT 

I II II II II 

'-v-1 
LSIGN BIT AND ADJACENT BIT 

ARE DIFFERENT 

ASSUMED UPPER RESULT 
(4F FOD584.) 

o's ADDED TO RIGHT END OF 
SHIFTED RESULT. 

NORMALIZED UPPER RESULT 
(LEFT-SHIFTED 3 PLACES) 
(4C 86AC20) 

Figure B-9. Example of Normalized Upper Result 

60256000 09 



ORDER DEPENDENT RESULT CONSIDERATIONS 

The result of any sequence of floating point operations may be operand-order dependent 

[for instance, (A + B) + C f A + (B + C)J • 

The following example using 32-bit operands demonstrates this effect. 

A 00 000001 

B 00 000003 

c 01 000001 

A 00 000001 

+B 00 000003 

A+B 00 000004 

+C 01 000001 

(A+B)+C 01 000003~ 
B 00 000003 

+C 01 000001 

B+c 01 000002 
Coefficients not equal 

+A 00 000001~ 
A+(B+C) 01 000002 

It is important that this characteristic of floating point arithmetic be considered when 

predicting the results of the DA, DB, DC, DD, and DF instructions. 

B-17 • 



MULTIPLY OPERATIONS 

The multiplication of two floating-point operands produces a result coefficient with the least

significant 23 product bits in the lower result and the higher order 23 product bits in the 

I upper result (Figure B-10). Note that as in addition and subtraction, the sign bit of the lower 

result is cleared, forcing the lower result positive. The sign bit of the upper result is de

termined using the usual procedures of algebraic multiplication. Thus, in the example 

I shown in Figure B-10, the sign bit of the upper result is a zero (+) since both source operands 

are positive. 

In the multiply operation, the positive forms of the input operands are used. The signs of 

the input operands are recorded to determine the sign of the upper result and whether the 

resultant coefficient should be complemented. If either of the input operands contains a 

coefficient of 800000, the operation changes the operand to a positive form by right shifting 

its coefficient by one (with sign extension) and adding one to its exponent. This gives a co

efficient of COOOOO which will then be complemented to 400000. 

The lower result exponent is the sum of the exponents for the two source operands and the 

upper result exponent equals the lower result exponent plus 1716 or 23 10 with the following 

exceptions. 

1. The sum of the source operands' exponents (plus 23 10, if upper result) exceeds 

6F 
16

, in which case the result eJ;CPonent is set to indefinite. 

2. The sum of the source operands' exponents (plus 23 10, if upper result) is less than 

90
16

, in which case the result exponent is set to machine zero. 

3. Either or both operands are indefinite, in which case the result exponent is set to 

indefinite. 

4. Neither operand is indefinite but either or both operands are machine zero, in 

which case the result exponent is set to machine zero. 

DIVIDE OPERATIONS 

In divide operations, a floating point dividend is divided by a prenormalized divisor, pro

ducing a 23-bit coefficient (not including sign bit) of the quotient which appears as the upper 

result. If one or both source operands are negative, they are complemented and the absolute 

values are used in the divide operation. The signs of the original source operands determine 

the sign of the final coefficient according to the normal procedures of algebraic divisons. 

Figure B-11 shows an example of floating point division with both dividend and divisor positive. 

Note that prenormalization left shifts the divisor until the most significant one bit is adjacent 

to the sign bit. The normalize count (NC) is stored and will partially determine the exponent 

of the quotient. 

B-18 60256000 09 



r EXPONENT 
I SIGN BIT 

• 4 ' 

0 • 4 

f;ooojoo 1 'I 
~ 

(-1416> + 1711 = 
(-2010> + 2310 = +3 

• • 4 ' 

ffi 
(-C16 ) +(-811) 

= -1416 

r COEFFICIENT 
I SIGN BIT 

II 11 1• IS 19 10 D 14 IT le II 

001000100101000 OPERAND I= 1128. X 2-C = 1.128 

( F4 001128.) 

OPERAND 2 = OACD. X 2-8 = OA. CD 
(F8 OOOACD) 

MOST SIGN I Fl CANT 

RESULT I SIGN BIT f 
BIT OF PRODUCT 

RESULT (PRODUCT) 
(00000139 4008 ) 

e I 4 T e II II 1• 1• 19 te U 14 IT JO aa II I• H 19 40 4a 44 47 

UPPER 

FORCED POSITIVE 

LOWER 

UPPER RESULT 

(03 000001.) 

LOWER RESULT 

(EC 394008.) 

Figure B-10. Example of Floating Point Multiply 

60256000 09 B-19 

I 



I 

r EXPONENT 
I SIGN BIT 

e I 4 1 

1 

0 I 4 1 

o!ooo 0000 

l 

1 

100 

A 

COEFFICIENT I SIGN BIT 

8 II II II I• 19 10 1114 21 H II 

• II II IS I• 1e 10 II 14 11 H II 

I 

• 

SHI FT (NC)= 1810 
r------
1 

I 
_J 

II II IS I• 1e IO II 14 11 H 51 

10000000000000000000000 

II II IS I• 1e 10 111• •• 

EXPONENT OF OUOTI ENT= EXPONENT 
OF DIVIDEND-EXPONENT OF DIVISOR 
-2210 + NC= 0-0-2210 + 18 = -4 

OPERAND I (DIVIDEND)= 
00 001000. ,6 = 4096.10 

OPERAND 2 (DIVISOR)= 

00 0000 I 0.16 = 16.10 

DIVISOR 
(PRE-NORMALIZED) 

QUOTIENT= 
FC 001000.16 = 256.10 

Figure B-11. Example of Floating Point Divide 
(Dividend and Divisor Both Positive) 

The prenormalized divisor is then subtracted from the dividend and the corresponding bit 

of the quotient is determined. After each subtraction, the partial dividend is left shifted 

one position and the subtraction is repeated as in a conventional binary division operation. 

After 23 subtract and 22 shift operations have been completed, the absolute value of the quotient 

coefficient appears as the upper result. If either the original dividend or divisor (but not 

both) were negative, the coefficient of the quotient is complemented. The rightmost bit of 

the quotient is neither rounded nor adjusted. The remainder is not retained. 

I The exponent of the quotient is determined by the equation shown in Figure B-11. 

B-20 60256000 09 



Figure B-12 shows another example of floating point division. However. in this case. the I_ 
dividend is positive and the divisor is negative. As a result, the original divisor is comple

mented before the prenormalization takes place. Note that the quotient is complemented to 

form the negative final quotient. 

SIGNIFICANT RESULTS 

Certain multiply and divide instructions specify that the significant results of the product or 

quotient be obtained. The significant bit count for a floating point number equals the number 

of bit positions in the number (excluding sign bit) minus the left shift count necessary to nor-

malize the number. Refer to example in Figure B-13. I 

A coefficient containing all zeros or all ones has a significant bit count of zero. Note that 

in a nonzero coefficient that is an exact power of two, the positive form of the coefficient 

results in a significant bit count that is one greater than the significant bit count of the neg

ative form of the same coefficient. The operation determines the significance of an input 

operand as originally read from a register or from MCS before any operations such as sign 

control or the left shift for odd exponents in square root are performed. 

Significant arithmetic determines which of the source operands contains the smaller signif

icant bit count and records that count. After the following arithmetic operation, the sequence 

determines the significant bit count of the result after any necessary sign correction. The 

input significant bit count and the result significant bit count are then compared. If the signif

icant bit count of the result is less than the significant bit count of the input, the sequence 

left-shifts (with zeros shifted in) the result coefficient according to the difference in signif

icant bit counts and reduces the exponent accordingly. If the result and input significant bit 

counts are equal, the sequence does not shift the coefficient and does not adjust the exponent. 

If the result significant bit count is greater than the input significant bit count, the operation 

right-shifts (end off with sign extension) and increases the exponent accordingly. Note that 

for multiply, the entire 95-bit result (4 7 bits for 32-bit multiply) is shifted as required. 

Exponent overflow, exponent underflow, and divide fault cause forced results as previously 

described. Adjusting for significance can cause exponent overflow or underflow or it can 

take a result out of the exponent overflow or underflow condition. 

60256000 09 B-21 



I 

B-22 

0 I 4 1 

A 
EXPONENT OF 
QUOTIENT= 

I II II II 1• 19 IO II 14 If II II 

00000000010001001 
I 

II II 19 10 U 14 17 11 

I I I I I I I 0 I 0 I 0 I 0 00 0 I 000 0 

II 11 11 1• 19 10 11 14 11 U II 

00000000101010111110000 
I 

I 
I 

SHI Fr1 ~CJ=.! J 

& 

19 10 II 14 11 II II 

• II 11 II I• 19 10 II 

0-0-2210 +e = -1410 = -El6 

0 I 4 I II II II 1• 19 IO IS 14 1111 II 

OPERAND I ( DIVI DENO)= 
oo 002260. 16 = +eeoo. 10 

OPERAND 2 (DIVISOR)= 
00 FFAAI0. 16 = -0055F0.16 = 
-22000.10 

DIVISOR {COMPLEMENTED) 

DIVISOR 
(PRE-NOR MALI ZED) 

QUOT I ENT= F2 001999. 
(UNCOMPLEMENTED) 

FINAL 
QUOTIENT= F2 FFE667.16 = 
-0.410 (COMPLEMENTED) 

Figure B-12. Example of Floating Point Divide (Dividend 
Positive, Divisor Negative) 

60256000 09· 



0 I 4 1 

loiooof 0001 
• 

I 4 ., 
I I 00 

COEFFICIENT 
rslGN BIT 

e II 11 IS .. 19 IO II 14 11 H II 

LEFT SHIFT COUNT 
TO NORMA}IZE = 1810 

II II II I• 1e 10 U 14 
\ 
UH 

• 
le ao H 14 IT H II 

DIVISOR= 00 000010.16 

INITIAL QUOTIENT= 
Fe 001 ooo. 16 

SIGN I Fl CANT BIT 
COUNT= 2310-1810 = 5 

0 I 4 1 rn 
~ 

EXPONENT 
INCREASED 
BY 8 = +4. 

~ 

SIGNIFICANT QUOTIENT= 
04 0000 I o.16 

NO. OF SIGNIFICANT 
BITS = 5 

Figure B-13. Example of Significant Results of Floating Point Divide 

SQUARE ROOT OPERATIONS 

In floating point, square root operations, the following steps are performed. 

1. The significance of the coefficient of the input operand is determined and recorded. 

2. If negative, the input operand is complemented to its positive form. 

3. If the exponent of the input operand is odd, it is reduced by one and the coefficient 

obtained in step 2 is multiplied by two. If the exponent is even, no modification is 

performed. 

60256000 09 B-23 

I 



4. The machine now obtains the square root of the coefficient from step 3. Note that 

enough zeros are attached to the right end of the coefficient to produce 23 result bits 

(47 for 64-bit operands). 

5~ If the original input operand was negative, the result coefficient is complemented. 

If the input operand was positive, no modification takes place. 

'6~ The result exponent is formed by dividing the exponent by two and subtracting 11
10 

from the exponent obtained in step 3. (Subtract 2310 for 64-bit square root.) 

:t. The result coefficient is adjusted to produce a coefficient with the same significance 

as the input operand. The significance count obtained in step 1 is used in the opera

tion. The exponent of the result is also adjusted to compensate for the change in 

magnitude of the result coefficient. 

8. A source operand having an all zero coefficient will produce a result with an all 

zero coefficient. The operand exponent effectively divides by two by right shifting 

one plac-e with sign extension. If the source operand is negative. data flag bit 

45 is s-et. If the source operand is indefinite or machine zero. the result is 

indefinit-e or machine zero. respectively. In these two cases. data flag bit 

45 is not set. 

I Figure B-14 shows an example of a floating point, square root operation. In this example 

a positive input source operand is used. Thus, no complementing is necessary. 

I 

fF~f ,.j 
6 

~l>NBtrr+2 
~+.2~.E) 

•••• II 

INPUT OPERAND 04 000100 16 = 
2s~ 0 x 24 = 409&. 10 

fr~fn'i 
8 1112 1516 1920 2324 2728 31 

a 
lifftSUL.11" EXPONENT 
( -+?l- I I :: - 9 ) 

:ooo 0000 1000000000000000 

II II II I• 19 IO U 14 17 IO 

II II II II 1711 

RESULT COEFFICIENT (NOTE THAT THERE 
rs A ZERO SIGN BIT AND 12 RESULT BITS 
TO THE LEFT OF THE BINARY POINT, 
AND II RESULT BITS TO THE RIGHT 
OF THE BINARY POINT.) 

RESULT COEFFICIENT(BINARY POINT 
MOVED TO RIGHT END OF 
COEFFICIENT) 

RESULT (ADJUSTED FOR 
001 00000000 SIGNIFICANCE) 

(FE 000100) = 25610 X 2-2= 6410 

Figure B- 14. Example of Floating Point Square Root 

60256000 09 



,. G BITS AND TERMINATING CONDITIONS \,,, 

G BIT USAGES 

The following tables provide the instruction G bit usages in a condensed form. Thus, these 

tables provide quick look-up charts for determining the G bit control configuration for a 

particular instruction to which they apply. Note that the G bit usages tables are arranged 

according to instruction type, [vector (VT), sparse vector (SV), etc. ] and according to 

function code within that type of instructions. 

The key to the abbreviations used to designate the G bit usage conditions is given below: 

G Bit 

0 

1 

2 
3, 4 

5, 6~ 

5, 6, 

0, l, 2, 

Any 

Abbreviation 

E 

c 
0 

B 
7· s 
7 I 

3 D 

x 

Meaning 

Either 32- or 64-bit operands 

Control vector 

Offset 

Broadcast 

Sign control t 

Optional index increment 

Delimiter control 

Defined in individual instruction 
description 

tThe operand flow chart (Figure C-1) illustrates the order of operations when sign control 
is selected. 

60256000 08 
C-1 



Function 
Code 0 

BO E 

Bl E 

B2 E 

B3 

B4 E 

B5 E 

B6 E 

B7 

BB E 

B9 E 

BB E 

BC E 

BF E 

TABLE C-1. G BIT USAGES FOR VECTOR (VT) INSTRUCTIONS 

1 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

I NOTE I 
A blank space in the tables indicates that the corre
sponding G bit does not apply for that instruction and 
must be a zero. 

G Bit/Usage G Bit/Usage 
Function 

2 3 4 5 6 7 Code 0 1 2 3 4 

0 B B s s s 90 E c 0 B 

0 B B s s s 91 E c 0 B 

0 B B s s s 92 E c 0 B 

0 B B 93 E c 0 B 

0 B B s s s 94 E c 0 B B 

0 B B s s s 95 E c 0 B B 

0 B B s s s 96 c 0 B 

0 B B 97 c 0 B 

0 B B s s s 9B E c 0 B 

0 B B s s s 99 E c 0 B 

0 B B s s s 9A E c 0 B 

0 B B s s s 9B E c 0 B B 

0 B B s s s 9C c 0 B 

5 

s 

TABLE C-2. G BIT USAGES FOR SPARSE VECTOR (SV) INSTRUCTIONS 

Bit/Usage 
1 

G Bit/Usage Function G Function 
Code 0 1 2 3 4 5 6 7 Code 0 1 2 3 4 5 

AO E B B s s s AB E B B s 
Al E B B s s s A9 E B B s 
A2 E B B s s s AB E B B s 
A4 E B B s s s AC E B B s 
A5 E B B s s s AF E B B s 
A6 E B B s s s 

C-2 

6 7 

s 

6 7 

s s 

s s 

s s 

s s 

s s 



Function 
Code 0 

BO 

Bl 

B2 

B3 

B4 

B5 

Ti~iBLE C=3. G BIT USAGES FOR BRANCH (BR) INSTRUCTIONS 

G Bit/Usage 

1 2 3 4 5 

x x 

x x 

x x 

x x 

x x 

x x 

6 

x 

x 

x 

x 

x 

x 

7 

x 

x 

x 

x 

x 

x 

I NOTE I 
Instructions 2F, 32, and 33 are 

not listed in this table because 

their G bits are used for control 

purposes and do not follow the bit 

definitions at the beginning of this 

section. 

TABLE C-4. G BIT USAGES FOR VECTOR MACRO (VM) INSTRUCTIONS 

Function G Bit/Usage Function G Bit/Usage 

Code 0 1 2 3 4 5 6 7 Code 0 1 2 3 4 5 6 

B7t E B x x Dl E c 0 

BB E c 0 D4 E c 0 B B 

BAtt E x x D5 E c 0 

co E c B B DA E c 
Cl E c B B DB E c 

C2 E c B B DC E c 
C3 E c B B DE E c 0 B 

DO E c 0 B B DF E c 0 

7 

tThis instruction is undefined if G bits 4 and 6 are both set, or if G bits 6 and 7 are both set. 

t t This instruction is undefined if G bits 6 and 7 are both set. 

60256000 09 C-3 

I 

I 



TABLE C-5. G BIT USAGES FOR NONTYPICAL (NT) INSTRUCTIONS 

G Bit/Usage G Bit/Usage 
Function Function 

Code 0 1 2 3 4 5 6 7 Code 0 1 2 3 4 5 6 7 

B9 E x x x CB E c x 

BB E B B C9 E c x 

BC E x CA E c x 

I BD E B B x CB E c x 

C4 E B B CF E B s s s 

C5 E B B DB E c s 

CB E B B D9 E c s 

C7 E B B DD E 

TABLE C-6. G BIT USAGES FOR STRING (ST) INSTRUCTIONS 

G Bit/Usage G Bit/Usage 
Function Function 

Code 0 1 2 3 4 5 6 7 Code 0 1 2 3 4 5 6 7 

D6 D~smr4ATo1 FB D D D D I I 

D7 D D x I F9 D D D D I I 

EA MASK FB 
I 

x x 
I 

EB DESIGNATOR 

I 
FC x x 

I I 
EC MODULUS FD D D I I 

I I I ED MODULUS FE DESIGNATOR 

I EE D D I 
I I I 

D D I FF D~SIGfAT_£_R 

EF D D I 

C-4 60256000 09 



REGISTER FILE 

TEST FOR 
iili

DEFINITE 

CENTRAL STORAGE 

NOTE: 

YES 

PERFORM 
SiGNiFiCANCE 
COUNT IF 
NECESSARY 
(SB, 8F, 93, 
AB, AF) 

SET OF 46 

©A 7000 EXPONENT CAUSED 
BY APPLICATION OF SIGN 
CONTROL IS NOT TREATED 
AS AN OPERAND INDEFINITE 
BY THE FLOATING POINT COMPARE. 

APPLY SIGN PERFORM F. P. 
CONTROL Of'ERATiON 
(INPUT EXP. I. SET OF 41 
MAY BE IF DIVIDE 
INCREMEN- FAULT. 
TED TO 2. SET OF 45 
7000) IF NEGATIVE 

OPERAND AT 
THIS POINT 
ON SQRT 

© 

ADJUST 
SiGr.iiFiCAi'<iCE 
IF NECESSARY 
(8B, 8F, 93, 
AB,AF) 

CF, 08, 09 
ONLY 

SET RESULT 

INOEFIN ITE 

COMPARE RESULT 
AND DATA FLAG 
INFORMATION 
RETURNED TO 

_cF __ ,_o_s __ ,_D_9_0_N_L_Y _____ ALGORITHM 

TEST 
RESULi 
EXPONENT 
I. IF 7X 
SET OF 42 

OF 46 
2. 1F ex 
SET OF 43 

Figure C-1. Operand Flow For Instructions Having Sign Control 

INSTRUCTION TERMINATING CONDITIONS 

CENTRAL 
STORAGE 

For instructions which terminate upon exhausting the length of a data field, data string 

or a vector: if that item is exhausted prior to the first operand fetch, the instruction 

becomes a no-op; no data is fetched and no data flags are altered. 

The following paragraphs and tables address the termination of multiple operand instructions. 

Sparse vector instructions terminate as follows: 

Sparse vector instructions terminate when vector Z (the result order vector) is exhausted. 

If the Z designator is zero or if the Z length is zero, no data flags are set and the instruction 

is a no-op. Zero length or short source order vectors are extended, as required, with zero 

bits. If vector Z has a nonzero length and the C designator is zero, the results of the in

struction are undefined. 

For string instruction terminating conditions see the individual instruction descriptions in 

section 6 of this manual. 

The tables are arranged according to the general instruction types and that the instruction 

codes within that type are grouped, as much as possible, according to common data field 

terminating conditions. 

Note that in the tables, M-zero and N-one designate machine zero and normalized one, 

respectively. In addition, the availability of a control vector for the result field is (C or 

Z) designated by a yes or no and in the case of the vector macro or nontypical instructions, 

the yes condition is followed by an I or 0 designator if the control vector applies to an input 

or output, respectively. 

60256000 08 C-5 



I 

I 

TABLE C-7. VECTOR INSTRUCTION TERMINATING CONDITIONS 

Instruction A Field B Field C Field 
Code 

Result if Type of A field Result if Type of B field Result if C field 
A field is extension length init- B field is extension length init- C field is length init- Control 
exhausted if any ially zero exhausted if any ially zero exhausted ially zero Vector 

BO, Bl, B2 Extend M-Zero Extend Extend M-Zero Extend Terminate No-Op Yes 

B3, B4, B5 

B6 & B7 

BB, B9, BB Extend N-One Extend Extend N-One Extend Terminate No-Op Yes 

BC & BF 

90, 91, 92 Extend M-Zero Extend NA NA NA Terminate No-Op Yes 

& 93 

94 & 95 Extend M-Zero Extend Extend M-Zero Extend Terminate No-Op Yes 

96, 97, 9B Extend M-Zero Extend NA NA NA Terminate No-Op Yes 

99 & 9A 

9B Extend M-Zero Extend Extend M-Zero Extend Terminate No-Op Yes 

9C Extend M-Zero Extend NA NA NA Terminate No-Op Yes 

TABLE C-B. VECTOR MACRO INSTRUCTION TERMINATING CONDITIONS 

Instruction 
Code 

Result if 
A field is 
exhausted 

B7 Terminate 

BB Extend 

BA Terminat~ 

CO, Cl, C2 Terminate 

& C3 

DO & D4 Extend 

D1 & D5 Extend 

DA & DB Terminate 

DC Terminate 

DE Extend 

DF NA 

0 = Output vector 

I = Input vector 

C-6 

A Field 

Type of 
extension 
if any 

NA 

M-Zero 

NA 

NA 

M-Zero 

M-Zero 

NA 

NA 

N-One 

NA 

A field Result if 
length init- B field is 
ially zero exhausted 

No-Op NA 

Extend NA 

No-Op NA 

No-Op Terminate 

Extend Extend 

Extend NA 

No-Op NA 

No-Op Terminate 

Extend NA 

NA NA 

B Field C Field 

Type of B field Result if C field 
extension length init- C field is length init- Control 
if any ially zero exhausted ially zero Vector 

NA NA NA NA No 

NA NA Terminate No-Op Yes(O) 

NA NA NA NA No 

NA No-Op NA NA Yes (I) 

M-Zero Extend Terminate No-Op Yes(O) 

NA NA Terminate No-Op Yes.(0) 

NA NA NA NA Yes (I) 

NA No-Op NA NA Yes (I) 

NA No-Op Terminate No-Op Yes (0) 

NA NA Terminate No-Op Yes(O) 

60256000 09 



DATA FLAG APPLICATIONS TO INSTRUCTIONS D 

INSTR 53 INSTR 53 
CODE DATA FLAG BITS 54 CODE DATA FLAG BITS 54 

* 37 38 39 41 42 43 45 46 47 55 * 37 38 39 41 42 43 45 46 47 55 

00 20 x 
01 21 x 
02 22 x 
03 23 x 
04 x 24 x 
05 25 x 
06 26 x 
07 27 x 
08 28 x 
09 29 x 
OA 2A 
OB 2B 

oc 2C 
OD 
OE 
OF 

2D 

I I 2E 
2F 

10 x 30 
11 31 
12 32 
13 33 

-14 34 
15 35 
16 36 
17 37 

13 38 
19 x 39 
lA 3A 
lB 3B 

lC 3C 
lD 3D 
lE x 3E 
lF 3F 

60256000 08 D-1 



INSTR 53 INSTR 53 
CODE DATA FLAG BITS 54 CODE DATA FLAG BITS 54 

• 37 38 39 41 42 43 45 46 47 55 • 37 38 39 41 42 43 45 46 47 55 

40 x x x 60 x x x 
41 x x x 61 x x x 
42 x x x 62 x x x 
43 63 

44 x x x 64 x x x 
45 x x x 65 x x x 
46 x x x 66 x x x 
47 67 

48 x x x 68 x x x 
49 x x x 69 x x x 
4A 6A 
4B x x x 6B x x x 

4C x x x x 6C x x x x 
4D 6D 
4E 6E 
4F x x x x 6F x x x x 

50 x 70 x 
51 x 71 x 
52 x 72 x 
53 x x x 73 x x x 
54 x x x 74 x x x 
55 x x 75 x x 
56 76 x x x 
57 77 x x x 

58 78 
59 x x x 79 x x x 
5A 7A 
5B 7B 

5C x x 7C 
5D x x 7D 
5E 7E 
5F 7F 

D-2 60256000 08 



INSTR 53 INSTR 53 
CODE DATA FLAG BITS 54 CODE DATA FLAG BITS 54 

• 37 38 39 41 42 43 45 46 47 55 ~ 37 38 39 41 42 43 45 46 47 55 

80 x x x AO x x x 
81 x x x Al x x x 
82 x x x A2 x x x 
83 A3 

84 x x x A4 x x x 
85 x x x A5 x x x 
86 x x x A6 x x x 
87 A7 

I---

88 x x x AB x x x 
89 x x x A9 x x x 
SA AA 
BB x x x AB x x x 

BC x x x x AC x x x x 
SD AD 
8~ AE 
SF x x x x AF x x x x 

90 
I I 

x 
I 91 x 

92 
I xi~ I 93 x 

BO 
I I I I I I Bl 

B2 
I I I I I I B3 

94 x x x B4 
95 x x B5 
96 x x x B6 
97 x x x B7 

98 
99 x x x 
9A 

BB 

I B9 
BA 

9B BB 

9C x x BC 
9D BD 
9E BE 
9F BF 

60256000 08 D-3 



INSTR 53 INSTR 53 
CODE DATA FLAG BITS 54 CODE DATA FLAG BITS 54 

~ 37 3B 39 41 42 43 45 46 47 55 • 37 3B 39 41 42 43 45 46 47 55 

co x x EO x 
Cl x x El x 
C2 x x E2 x 
C3 x x E3 x 
C4 x E4 x x 
C5 x E5 x x 
C6 x E6 x x 
C7 x E7 x x 
CB x EB x 
C9 x E9 x x 
CA x EA 
CB x EB x x 
cc EC x 
CD ED x 
CE EE 
CF x x EF x 

DO x x FO x 
Dl x x Fl x 
D2 F2 x 
D3 F3 x 
D4 x x F4 x 
D5 x x x F5 x 
D6 x F6 x 
D7 x x F7 x 
DB x x x FB 
D9 x x x F9 
DA x x x FA x 
DB x x x FB 

DC x x x FC x 
DD x x x FD x 
DE x x x FE x 
DF x x x FF x 

D-4 60256000 OB 



"' z 
::l 
c:> z 

~I 
Bl 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~I 
~I 

11 
I 

., I ... 
~1 

51 .. 
:t 
c 
c I 

COMMENT SHEET 

MANUALTITLE ____ c_n __ c_s_T_A __ R_-_1_o_o_c __ o_m_p_u_t_e_r_Sy __ s_t_em_. __________________ ~ 

Hardware Reference Manual 

PUBLICATION NO. 602 5 6000 REVISION _ ___...0.....,9....._ __ 

FROM: NAME: _____________________ _ 

BUSINESS 
ADDRESS:-----------------------------------------~ 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A • 
FOLD ON DOTTED LINES AND STAPLE 



STAPLE STAPLE 

fOlD fOlD 

-------------------------------------------~ 

FOLD 

BUSINESS REPI. Y MAIL 
NO POSTAGE STAMP NECESSARY If MAILED IN U.S.A. 

POSTAGE Will BE PAID BY 

CONTROL DATA CORPORATION 
Publications and Graphics Division 

ARH219 
4201 North Lexington Avenue 

Saint Paul, Minnesota 55112 

FIRST CLASS 
PEIMIT NO. 82.t 1 

MINNEAPOLIS. MINN. 

FOLD 

Ill z 
::; 
0 z 
~ ... 
::::» 
u 



CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINNESOTA 55440 UTHO IN U.S.A. 
SALES OFFICES ANO SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

@::?) 
CONTR..OL DATA CO~O~TION 


	0001
	0002
	0003
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	6-115
	6-116
	6-117
	6-118
	6-119
	6-120
	6-121
	6-122
	6-123
	6-124
	6-125
	6-126
	6-127
	6-128
	6-129
	6-130
	6-131
	6-132
	6-133
	6-134
	6-135
	6-136
	6-137
	6-138
	6-139
	6-140
	6-141
	6-142
	6-143
	6-144
	6-145
	6-146
	6-147
	6-148
	6-149
	6-150
	6-151
	6-152
	6-153
	6-154
	6-155
	6-156
	6-157
	6-158
	6-159
	6-160
	6-161
	6-162
	6-163
	6-164
	6-165
	6-166
	6-167
	6-168
	6-169
	6-170
	6-171
	6-172
	6-173
	6-174
	6-175
	6-176
	6-177
	6-178
	6-179
	6-180
	6-181
	6-182
	6-183
	6-184
	6-185
	6-186
	6-187
	6-188
	6-189
	6-190
	6-191
	6-192
	6-193
	6-194
	6-195
	6-196
	6-197
	6-198
	6-199
	6-200
	6-201
	6-202
	6-203
	6-204
	6-205
	6-206
	6-207
	6-208
	6-209
	6-210
	6-211
	6-212
	6-213
	6-214
	6-215
	6-216
	6-217
	6-218
	6-219
	6-220
	6-221
	6-222
	6-223
	6-224
	6-225
	6-226
	6-227
	6-228
	6-229
	6-230
	6-231
	6-232
	6-233
	6-234
	6-235
	6-236
	6-237
	6-238
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	replyA
	replyB
	xBack

