60483500

@ S CONTROL DATA
CORPORATION

DMS-170
C FORTRAN DATA BASE FACILITY
VERSION 1
APPLICATION PROGRAMMING
USER’S GUIDE

CDC® OPERATING SYSTEMS:
NOS 1
NOS/BE 1

00

REVISION RECORD U

”
Revision Description : :) W& ’
A (03/06/81) Original release at PSR lLevel 528.
TN
oy
N
.\«&/
//') \\
1\{\”/
REVISION LETTERS I, 0, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE £

©COPYRIGHT CONTROL DATA CORPORATION 1981 SUNNYVALE, CALIFORNIA 94086 k J
ALL Rights Reserved -

Printed in the United States of America or use Comment Sheet in the back of this manual 4(\

o

i 60483500 A

©O

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected.

indicates pagination rather than content has changed.

Page

Front Cover

Inside Front Cover

Title Page

ii

iii/iv

v

vi

vii

viii

ix

1-1 thru 1-6
2-1 thru 2-5
3-1 thru 3-15
4~1 thru 4-7
5-1 thru 5-22
6-1

6-2

A-1 thru A-4
B-1 thru B-3
C-1 thru C-14
Index-1 thru -3
Comment Sheet
Mailer

Back Cover

60483500 A

1 1 2> > > I a>>» | > |

Revision

A bar by the page number

iii/iv

Y

\éL P

s

0&
O

PREFACE

The DMS-170 data management system clearly defines
two roles: the role of a data administrator who
develops, controls, and maintains the physical data
base; and the role of an application programmer who
accesses and manipulates the data within that data
base. Although the two roles differ considerably,
each role requires a knowledge of the tasks being
performed by the other. The data administrator,
for example, cannot develop a data base without
first understanding what type of applications will
be required. The application programmer, on the
other hand, cannot successfully access data without
first understanding how the data is described and
what specific controls have been established.

This guide describes the role of the FORTRAN 5
application programmer who is accessing data within
a DMS-170 controlled data base environment. The
presence of a data administrator dis assumed, and
the functions associated with that position are
described as they directly affect the application
programmer.

entitled The

You should note that appendix ¢C,

Sample Application, is particularly important.
This appendix sets wup a working environment
complete with stored data for use with sample

programs. This environment can be duplicated to
provide a better understanding of DMS-170 and the
tools that are wused to create a total data
management system.

The following manuals are of primary interest:

Publication

FORTRAN Data Base Facility
Version 1 Reference Manual

FORTRAN Version 5 Reference Manual

The following manuals are of secondary interest:

Publication

CYBER Database Control System
Version 2 Reference Manual

NOS Version 1 Manual Abstracts

NOS Version 1 Reference Manual,
Volume 1 of 2

NOS/BE Version 1 Manual Abstracts

NOS/BE Version 1 Reference Manual

Software Publications Release
History .

60483500 A

As described in this publication, DMS-170 operates
under control of the following operating systems:

e NOS 1 for the CONTROL DATA CYBER 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000
Series Computer Systems.

e NOS/BE 1 for the CDC CYBER 170 Series; CYBER
70 Models 71, 72, 73, and 74; and 6000 Series
Computer Systems.

Abstracts and the NOS/BE Manual
Abstracts are instant-sized manuals containing
brief descriptions of the contents and intended
audience of all NOS and NOS product set manuals,

and NOS/BE and NOS/BE product set manuals,
respectively. The abstracts manuals can be useful

in determining which manuals are of greatest
interest to you. The Software Publications Release
History serves as a guide 1in determining which
revision Level of software documentation
corresponds to the Programming Systems Report (PSR)
Llevel of installed site software.

The NOS Manual

As a FORTRAN S application programmer, you can find
additional pertinent information 1in the Llisted
Control Data Corporation publications. These
publications are Llisted alphabetically in groupings
that indicate relative importance to you as readers

of this guide.

Publication
Number

60482200
60481300

Publication
Number

60481800

84000420

60435400
84000470
60493800

60481000

vi

(4]

Literature and Distribution Services, 308 North Dale
St. Paul, Minnesota 55103.

This manual describes a subset of the features
and parameters documented in the FORTRAN Data
Base Facility Version 1 Reference Manual.
Control Data cannot be responsible for the
proper functioning of any features or
parameters not documented in the FORTRAN Data
Base Facility Version 1 Reference Manual.

manuals can be ordered from Control Data Corporation,

Street,

60483500 A

,/('_7\

N

SN
N

O
C

CONTENTS

S 0 A

NOTATIONS
1. FORTRAN PROGRAMMING WITHIN DMS-170

System Components
' Data Description Language
The Schema
The Sub-Schema
FORTRAN Data Manipulation Language
CYBER Database Control System
Master Directory
CDCS Batch Test Facility
Data Base Procedures
CYBER Record Manager
File Organization
Multiple-Index Processing
Special Features
Concurrency
File Privacy
Relations
Constraints
Recovery
Summary of DMS-170 Components and Features

2. ACCESSING THE DATA BASE

Interpreting the FORTRAN Sub-Schema
FORTRAN Data Manipulation Language
DML Language Components
Syntax Requirements
Statement Positioning

3. PROCESSING THE DATA

Using DML to Access the Data Base
Identifying the Sub-Schema
Establishing the Interface With CDCS
Satisfying Privacy Requirements
Opening a Realm
Locking/Unlocking a Realm
Closing a Realm
Terminating the Interface With CDCS

Us1ng DML to Manipulate Data
Writing a Record
Reading a Record

Sequential Read
Random Read
Positioning a Realm
Rewriting a Record

Deleting a Record

Using DML to Process Relations
Structure of a Relation
Using the Sub-Schema
Opening a Relation
Closing a Relation
Reading a Relation

Sequential Relation Read
Random Relation Read
Control Break
Null Occurrence
Positioning a Relation
Updating Realms Joined in a Relation

60483500 A

1-4
14
1-4
1-4

3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-6
3-6
3-7
3-8
3-8
3-9
3-10
3-10
3-10
3-12
3-12
3-13
3-13
3-13
3-14
3-15

4. ERROR PROCESSING AND STATUS
HANDLING TECHNIQUES

Using ERR and END Processing Options
Establishing a Data Base Status Block
Error Checking
Status Checking
Defining Recovery Points
Avoiding Constraint Violations
Anticipating Deadlock Situations

5. DEVELOPING FORTRAN PROGRAMS

Developing an Application Program
Compiling and Executing the Source Program
Sample Programs

6. USING THE CDCS BATCH TEST FACILITY

Requirements
Obtaining Load Maps
Executing the CDCS Batch Test Facility

APPENDIXES

A Standard Character Sets
B Glossary
C The Sample Application

INDEX

FIGURES

1-1 Schema and Sub-Schema Generation

1-2 CYBER Record Manager Interface

2-1 A Basic FORTRAN Sub~Schema

2-2 A Relational FORTRAN Sub-Schema

2-3 DML Statement Positioning

3-1 Sub-Schema AVERAGE

3-2 Identifying the Sub-Schema

3-3 Establishing the Interface With CDCS

3-4 Satisfying Privacy Requirements

3-5 Opening a Realm

3-6 Locking/Unlocking a Realm

3-7 Closing a Realm

3-8 Terminating the Interface With CDCS

3-9 Writing a Record

3-10 Reading Sequentially

3-11 Reading Randomly

3-12 Positioning a Realm

3-13 Rewriting a Record

3-14 Deleting a Record

3-15 Tree Structure and Ranks of a
Three-Realm Relation

3-16 Sub-Schema COMPARE

3-17 Tree Structure of Record Occurrences

3-18 Reading a Relation Sequentially

3-19 Reading a Relation Randomly

3-20 Null Record Occurrence Examples

3-21 Positioning a Relation

4-1
4=2
42
4-2
b=t
b=t
4=6

1-2
1-3
2-2
2-3
2-5
3-2
3-2
3-3
3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-8
3-9

3-9

3-11
3-13
3-13
3-13
3-14
3-15

vii

4=-1
4-2
4-3
4-4
4=5
5-1
5-2
5-3

5-4
5-5
5-6

5-7
5-8

viii

Establishing a Data Base Status Block

Defining Recovery Points

Single-~File Constraint Example

Two-File Constraint Example

Deadlock Processing

FORTRAN DML Preprocessing

DML Control Statement

Executing DML and Compiling the
Source Program

Compiling and Executing the
Source ‘Program

Program RATING

Program INDAVGE

Program RELATE

Program CHARGES

4-2
4=4
4-5
45
4-7
5-1
5-2

5-3

5-3
5~4
5-7
5-11
5-15

5~9° Program ADMIT 5-18
6-1 CDCSBTF Control Statement Format 6-1
6-2 Sample FORTRAN Execution of CDCS

Batch Test Facility 6-2
TABLES
1-1 Summary of DMS-170 Components and

Features 1-5
2-1 DML Statements 2-4
4-1 Error and Status Processing Mechanisms 4-1
4-2 Status Block Content 4-3
4-3 Locking Operations 4=7
6-1 Load Map Switch Settings 6-1

60483500 A

\'l_,/

7 - \

\\,/’

00

NOTATIONS

The specifications for FORTRAN DML statements and
for particular control statements are described in
reference formats. The notations wused in the
reference formats are described as follows:

UPPERCASE Uppercase words are reserved words
and must appear exactly as shown.
You can use reserved words only as
specified in the reference formats.
Lowercase Lowercase words are generic terms

that represent user-supplied words
or symbols.

60483500 A

L1 Brackets enclose optional portions
of a reference format. You can
optionally omit or include all of
the format within the brackets.

ces Ellipses immediately follow a pair
of brackets to dindicate that you
can optionally repeat the enclosed
material.

Punctuation symbols shown within the formats are
required unless enc losed in brackets and
specifically noted as optional. One or more spaces
separate the elements in a reference format.
Numbers shown are decimal unless otherwise
specified.

ix

M
L

a4

5

00

FORTRAN PROGRAMMING WITHIN DMS-170 1

L]

DMS-170 is a Control Data software package for data
management. The system was designed on the premise
that a data base should be centrally controlled and
the data within that data base should be completely
independent: of application programs. In line with
this philosophy, the role of data administrator
emerged. This individual was to lead the design,
programming, imp lementation, maintenance, and
recovery efforts associated with the DMS-170 data
management system.

The data administrator 1is responsible for the
structural organization and Llayout of an entire
data base. This individual assigns names to and
describes the characteristics of all data items
within the data base. This total description is
called a schema. . The schema 1is generated by the
data administrator and stored as a permanent file.

As a FORTRAN programmer, you probably would never
need or even want to access an entire data base.
You would, however, need to access selected
portions of a data base organized in a number of
ways to meet the requirements of your various
application programs. The grouping of data base
items 1into separate data base portions is the
responsibility of the data administrator. The
descriptions of these grouped items are called
sub-schemas. Sub-schemas are generated by the data
administrator and stored in a permanent file
library.

Internal control is handled by the CYBER Database
Control System (CDCS). CDCS interprets all data
base requests from application programs, ensures
the validity of such requests, and passes them
along to the input/output processor. The controls
exercised by CDCS guarantee that one user cannot
alter the contents of the data base and adversely
affect another user's program.

The controls designated by the data administrator,
incorporated into the schema and sub=-schema, and
carried out by CDCS relieve application programmers
of many tedious tasks such as data description,
data conversion, and validity checking.

SYSTEM COMPONENTS

The components of DMS-170 that are discussed in
this guide include the Llanguage that describes the
data (Data Description Language); the Llanguage that
provides data base access to a FORTRAN application
program (FORTRAN Data Manipulation Language); the
module that controls data base activity (CYBER
Database Control System); and the processor that
handles all 1input and output operations (CYBER
Record Manager). The components of DMS-170 that
are not discussed in this guide include a special,
nonprocedural language (Query Update) that provides
data base access to programming and nonprogramming
users and the COBOL Language extensions that
provide data base access to COBOL application
programs.

60483500 A

DATA DESCRIPTION LANGUAGE

The Data Description Language (DDL) 1is a compiler
Language that the data administrator wuses to
describe data. DDL can generate four types of
descriptions: the schema definition that describes
an entire data base; the FORTRAN sub-schema
definition that describes selected portions of a
schema-defined data base for use by a FORTRAN
application program; the COBOL sub-schema
definition that describes selected portions of a
schema-defined data base for use by a COBOL
application program; and the QUERY UPDATE
sub-schema definition that either describes
selected portions of a schema-defined data base or
describes an independently controlled data base for
use by the interactive query software product Query
Update. The data descriptions for the schema and
each sub-schema are declared in DDL source
statements for input to the DDL compiler.

A block diagram illustrating schema/sub~schema
generation is shown in figure 1-1.

The Schema

The schema is a detailed description of all the
data in a data base. The schema description is
generated from DDL statements that name the schema,
organize the schema into files (called areas in the
schema), describe each record type together with
the characteristics of the data in the record, and
describe relationships (called relations) and
dependency conditions (called constraints) among
areas. The schema also includes an access control
capability that provides privacy at the area level.

The data administrator writes the DDL source
statements and wuses them as 1input to the DDL
compiler for compilation into an object schema or
schema directory. After storing the directory as a
permanent file, the data administrator provides you
with pertinent information so you can tailor your
FORTRAN program to meet processing requirements.
I1f, for example, you need to access an area that
has been defined as having controlled access in the
schema, it 1is the responsibility of the data
administrator to supply you with the appropriate
privacy key.

The Sub-Schema

The sub-schema 1is a detailed description of
selected portions of the data in a data base. The
FORTRAN sub-schema description is generated from
DDL statements that identify the schema and
sub-schema, specify files <(called realms in the
sub-schema) and the content and structure of
records, indicate changes in data format required
by the application program, identify relations to
be - used, and specify record qualification for
relation processing.

1-1

Schema
Source

Schema
Directory

—
N

bDL
Compiler
Sub-Schema o
Source
Listings

#1 Sub-Schema
Directories

Sub-Schema
Library

"~

Figure 1-1. Schema and Sub-Schema Generation

The data administrator writes the DDL source
statements and uses them as dinput to the DDL
compiler for compilation into an object sub-schema
or sub-schema directory. After storing the
directory 1in the sub-schema Library, the data
administrator provides you with a Llisting of the
sub-schema so you can obtain the names and
descriptions of the data to be referenced in your
FORTRAN program. The data administrator also
provides you with the name of the sub-schema
library, which you must attach with an operating
system ATTACH control statement for DML
preprocessing of the Data Manipulation Language
statements in your FORTRAN program just before
compilation.

FORTRAN DATA MANIPULATION LANGUAGE

The FORTRAN Data Manipulation Language (DML) is the
Llanguage that provides a FORTRAN application
program with access to the DMS=170 controlled data
base. The Llanguage consists of a -series of
statements that provide for opening and closing of
data base files; reading, writing, updating, and
deleting records from those files; and relation
processing. The DML statements you include in your
FORTRAN source program code are translated by the
DML preprocessor into statements acceptable to the
FORTRAN compiler.

CYBER DATABASE CONTROL SYSTEM

The central controlling component of DMS~170 is
CYBER Database Control System - (CDCS), which
monitors and interprets all data base requests from
application programs. CDCS preprocesses each

application program request, performs any necessary
data conversion, handles structural differences
between the schema and the sub-schema by an
operation called mapping, and prepares the request
for input/output processing.

Master Directory

The master directory is a file that contains
information relating to all data bases, schemas,
and sub-schemas known to CDCS. The directory is
generated by one of the data base utilities
provided through CDCS. The data administrator
creates the master directory and stores it as a
permanent file. Your application program cannot
reference a sub-schema unless information about
that sub-schema exists in the master directory. It
is the responsibility of the data administrator to
ensure the sub-schema 1is valid. The master
directory file is attached through the job stream
of CDCS and is automatically available for your job.

CDCS Batch Test Facility

The CDCS Batch Test Facility is an absolute program
that you can use during program development and
testing. The facility enables you to run CDCS as a
normal batch job, which means you can attach a new
version of the master directory file each time you
run a job.

The program, which resides on the system tibrary,
is called into execution by the CDCSBTF control
statement. When wusing this facility, you are
responsible for attaching the master directory file
and any necessary log files each time you run a job.

60483500 A

NS

7N

TN

\'JL_, E ,

[}

o

C
O

Data Base Procedures

Data base procedures are special-purpose subpro-
grams that CDCS calls when specific situations
occur during CDCS processing. The data admin-
istrator writes the data base procedures and stores
them in a permanent file library. The name of the
procedure, the point at which it is to be called,
and the conditions governing its execution are
specified in the schema definition. Loading of
data base procedures is handled automatically
for you.

CYBER RECORD MANAGER

CYBER Record Manager (CRM) 4is the processor that
performs all input/output operations for FORTRAN as
well as the other CYBER host Llanguages operating
within DMS-170. The Advanced Access Methods (AAM)
file manager handles all operations concerning the
physical storage and access of data by application
programs. ALl data base files supported by CDCS
are conventional CRM files.

ALl necessary information regarding the
characteristics of a data base file is supplied to
CRM at schema compilation time. The data
administrator specifies appropriate parameters on
FILE control statements that are included in the
DDL source deck when the schema is created. 1In
DMS-170, all communication with CRM is handled
automatically for you.

A block diagram illustrating the CRM interface with
CDCS and the data base is shown in figure 1-2.
File Organization

File organization information is stored in the
schema directory. The three file organizations

allowed for data base fites that are to be accessed
through. CDCS are: indexed sequential, direct
access, and actual key. :

Records 1in indexed sequential files are stored in
ascending order by key. An application program can
access the records either randomly by key or
sequentially.

Records 1in direct access files are stored randomly
in fixed-length blocks. The number of the block to
receive a record is determined by a calculation
performed by the system on the record. An
application program can access the records either
randomly by key or sequentially.

Records 1in actual key files have key values
assigned by the system. The key value is a number
that identifies the block and the position within
the block in which the record 1is stored. An .
application program can access the records either
randomly by actual key or sequentially.

The primary key 1is specified in the schema. A
Listing of the sub-schema provides you with this
information.

Multiple-Index Processing

Multiple-index processing is performed when
alternate keys are defined for a file. An index is
created for each alternate key in a data file when
the file 1is created. The 1indexes are ‘updated
automatically whenever the data file is updated.
An application program can retrieve the records by
the primary key or by an alternate key.

Each alternate key is specified in the schema. A
Listing of the sub-schema provides you with this
information.

FORTRAN/DML . DML . FORTRAN
Source Program Preprocessor Compiler

FORTRAN

Object
Program

Sub-Schema
Library

i Master
Directory

Schema
Directory

Data Base Files

cbcs - CRM

Figure 1-2. CYBER Record Manager Interface

60483500 A

SPECIAL FEATURES

Five special features with which you need to be
familiar are: concurrency, file privacy, relations,
constraints, and recovery. When these mechanisms
are present in the CDCS operating environment, some
action on the part of your application program
might be required. ‘

CONCURRENCY

The concurrency feature allows two or more
application programs to access the same data base
file at the same time for retrieval or update
purposes. buring concurrent update operations,
CDCS provides a Llocking mechanism by which files
and records <can be locked and unlocked at
appropriate times.

CDCS always Llocks the current record whenever the
file is opened for input/output. Your application
program, however, can dissue explicit Llock and
unlock requests for CDCS to lock the entire file.
By issuing a Llock request, your program prevents
other jobs from updating the file that it is using
until it issues an unlock request. The file being
locked and unlocked must be a file identified in
the sub-schema.

A deadlock situation can occur when a program
attempts to access files or records that have been
locked by CDCS for other programs. When this
situation occurs, CDCS arbitrarily releases the
locked resources held by one of the contending
programs. To ensure proper recovery handling in
this type of situation, you should include
appropriate code in your FORTRAN program.

FILE PRIVACY

The file privacy feature provides file access
control. When file privacy has been specified in
the schema, your program must supply privacy keys
to gain access to the file.

The data administrator provides you with this
information so you can ensure your FORTRAN program
meets the privacy requirements when CDCS checks for
appropriate privacy keys.

RELATIONS

The relational data base feature allows files to be
linked together into a logical relationship called
a relation. An application program can access the
data from related files with a
request. Relations are specified in the schema.
Any relation that is available to an application
program is specified in the sub~schema.

Your application program can access a relation by
specifying a single read request with the name of
the relation that is to be read. CDCS processes
the request and returns a record occurrence from
each file in the relation to your program's working
storage area for the file.

single .read

The data administrator can place Llimitations on
relations by including restrictions in the sub-
schema. Restrictions are in the form of quali-
fication criteria that must be satisfied before a
record occurrence is made available to your program.

A Llisting of the sub-schema provides you with the
name of the relation and indicates what specific

restrictions apply.

CONSTRAINTS

The constraint feature allows controls to be
imposed on update operations involving logically
associated files. Constraints protect the integ-
rity of the data base by allowing update operations
to be performed only when specific conditions are
satisfied. Constraints are specified in the schema
and are enforced by CDCS. -

The data administrator provides you with
information concerning constraints. You can avoid
constraint violations by becoming familiar with the
rules that apply when modifying files on which
constraints have been imposed.

RECOVERY

The recovery feature provides for reconstruction of
a damaged or inconsistent data base and provides
for the removing of updates made with erroneous
logic. The data base can be recovered when
physical storage or system failure occurs and all
or part of the data base is Llost or otherwise
unreadable. The data base can be restored to a
previous checkpoint or beginning of job when an
application program failure or logic error occurs.

Reccvery operations are made possible through a
logging facility, which is the recording of user
interactions with a data base file. Logging
requirements are defined in the schema and serviced
by CDCS. CDCS records the logging information on
an independent file that ultimately serves as input
for data base recover and restore operations. Log
files, if specified, are attached through the job
stream of CDCS and are automatically available to
record the interactions of your program with the
data base.

ALl logging specifications and recovery operations
are performed under the jurisdiction of the data
administrator. You can, however, define recovery
points to CDCS in your FORTRAN program as an aid to
recovery operations.

SUMMARY OF DMS-170
COMPONENTS AND FEATURES

A summary of DMS-170 components and features
appears in table 1-1. This table provides a quick
reference for appropriate information.

60483500 A

’/-'\«

N

AN

;‘”‘k_,}"

TABLE 1-1. SUMMARY OF DMS-170 COMPONENTS AND FEATURES

Component/
Feature

Definition

Information
Appears In

Programmer Action

Alternate key

CDCS Batch Test
Facility

Concurrency

Constraints

CYBER Database
Control System
(CDCS)

CYBER Record
Manager (CRM)

Data base

procedures

Data
Description
Language (DDL)

File
organization

File privacy

FORTRAN Data
Manipulation
Language (DML)

Log files

Master
directory

60483500 A

A key other than the primary key by
which a file can be accessed; de-
fined by the data administrator.

A simulator for use during program
development.

Simultaneous access to the same
data by two or more application
programs during a given span of
time.

Controls imposed on records in
associated files or on items in a
single file to protect the integ-
rity of the data base during update
operations; defined by the data
administrator.

The central controlling module of
DMS-170.

The input/output processor for
DMS-170 operations.

Special-purpose routines that per-
form predefined operations; written
by the data administrator.

The Language that is used to struc-
ture a schema and sub-schema; used
by the data administrator.

The predetermined arrangement of
stored data; indexed sequential,
direct access, or actual key;
defined by the data administrator.

A situation in which an application
program can only gain access to a
file by supplying a privacy key;
defined by the data administrator.

The language that provides a
FORTRAN application program with
access to the DMS-170 controlled
data base.

Disk or tape files on which user
interactions with data base files
are recorded for recovery purposes.

A file containing information re-
Lating to all data bases, schemas,

and sub-schemas known to CDCS;
created by the data administrator.

Sub-schema Llisting

N/A

N/A

Schema

N/A

N/A

Schema

N/A

Schema

Schema

N/A

Master directory

N/A

On a random read, set by the
application program to a
value indicating the desired
record occurrence.

Attach the master directory
and appropriate log files
when executing the applica-
tion program.

Include appropriate code in
the application program to
handle a deadlock situation;
deadlock can occur when two
programs are contending for
access to a Locked file or
record.

Obtain information from the
data administrator. Follow
the rules for modifying
files on which constraints
have been imposed.

None.

None.

None.

None.

None.

Obtain information from the
data administrator. Include
a PRIVACY statement in the
application program.

Include appropriate DML
statements in the FORTRAN
source program code.

Attach the necessary log
files only when executing
the application program
through the CDCS Batch Test
Facility.

Attach the master directory

only when executing the pro-
gram through the CDCS Batch

Test Facility.

Primary key

Recovery

Relations

Restrictions

" Schema

Sub-schema

A key that must be defined for
a file when the file is first
created; defined by the data
administrator.

A means by which a damaged or
destroyed data base can be re-
constructed; defined by the data
administrator.

Logical structures formed by the
joining of files; permit retrieval
of data from more than one file at
the same time; defined by the data
administrator.

-Criteria that must be satisfied in

a relation before a record occur=~
rence can be made available to the
application program; defined by the
data administrator.

A detailed description of all the
data in a data base; created by the
data administrator through DDL.

A detailed description of selected
portions of the data in a data
base; created by the data adminis-
trator through DDL.

Sub-schema listing

N/A

Sub-schema Llisting

Sub-schema Llisting

Schema Llisting

Sub-schema Llisting

TABLE 1-1. SUMMARY OF DMS-170 COMPONENTS AND FEATURES. (Contd)
Component / sosas Information .
Feature Definition Appears In Programmer Action
Multiple-index A processor that allows CRM files N/A None.
processor to be accessed by alternate keys. ’

On a random read, set by the
application program to a
value indicating the desired
record occurrence.

If practical, define a re-~
covery point to CDCS in the
application program.

To read a relation, specify
a single read request with
the name of the relation.
During update, follow the
rules for updating files
joined in a relation.

None.

None.

Attach the sub-schema
Library in which the sub-
schema resides for DML
preprocessing of the
application program.

1-6

60483500 A

o

L‘&&-.‘A 3

/1}

TN

‘M\,/

N

NS

oNeo

- ACCESSING THE DATA BASE ' 2

Every DMS-170 data base file that is to be accessed
through FORTRAN must be described in a directory
called a FORTRAN sub-schema. The data admin-
istrator, working with application programmers, is
responsible for creating the sub-schemas. Every
FORTRAN program that accesses a DMS-170 data base
fite must wuse the FORTRAN Data Manipulation
Language (DML). The application programmer is
responsible for coding appropriate DML statements
and including them in the FORTRAN source program.

This section details the two principal data base
access tools: the sub-schema that describes the
data, and the language that provides access to that
data.

INTERPRETING THE FORTRAN
SUB-SCHEMA

The data administrator tailors sub-schemas to meet
specific applications. Assume, for example, you
have an application that requires access to only
two fields in a data base file: student IDs and
tuition charges. The data administrator might
provide you with a sub-schema that resembles
sub-schema SAMPLE1 shown in figure 2-1.

With the exception of the sub-schema Llibrary name
and any required privacy keys, the Llisting provides
you wWith complete information. The handwritten
notation in this example indicates the sub=-schema
Library name is DDLLIB. If you were planning to
compile an application program using sub-schema
SAMPLE1, you would need to attach DDLLIB. Since no
privacy key is required, the schema obviously
imposes no access control on realm ACCOUNT.

Notice the three alijases assigned. Since symbolic
names in FORTRAN cannot exceed seven characters and
cannot include a hyphen, the data administrator
changes the names for your application.

Assume, for example, you have an application that
requires access to two data base files. Assume,
also, that you need a relationship between the two
files so that you can search one file and retrieve
corresponding records from the other. The data
administrator might provide you with a sub-schema
that resembles sub-schema SAMPLE2 in figure 2-2.

The handwritten notation in this example indicates
the sub=schema library name is DDLLIB. If you were
planning to compile an application program using
sub-schema SAMPLE2, you would need to attach
DDLLIB. The schema apparently imposes access
control on realm FILE2. The privacy key XX99 must
be dincluded in a DML PRIVACY statement to gain
access to that realm.

FORTRAN DATA MANIPULATION
LANGUAGE

The FORTRAN Data Manipulation Language (DML) 1is the
means through which your FORTRAN program accesses

60483500 A

the data base. You must code the DML statements

along with FORTRAN statements in the FORTRAN source
program. The DML statements identify the sub-
schema, establish an interface with ¢DCS, and
provide access to realms defined by the sub-
schema. DML statements can appear both in the main
program and in subprograms.

The DML statements are translated into statements
acceptable to the FORTRAN compiler. The DML

preprocessor performs the translation and writes
the translated statements to a file along with the

FORTRAN statements in the source program. This new
file is then the input fite to the FORTRAN compiler.

DML LANGUAGE COMPONENTS

The DML Language components include DML statement
keywords, recognized symbols and punctuation, and
user-supplied names of variables and constants.
These components are grouped together into

statements for. input to the DML preprocessor,
which translates each statement appropriately into

a FORTRAN specification or CALL statement.

The first word of a statement 1is always a DML
keyword that identifies the task to be performed.
Most keywords are followed by user-supplied
elements and sometimes are followed by additional
keywords. :

A Llist of available DML statements 1is shown in
table 2-1 for reference purposes. The statements
are Listed in alphabetic order by the Lleading word
(keyword), which identifies the purpose of the
complete statement. The comments column provides
specific rules for the statement and includes
applicable default options.

SYNTAX REQUIREMENTS

The syntax requirements and coding conventions for
DML statements are exactly the same as for FORTRAN
statements. The following restrictions apply:

® A DML statement cannot be the object of a
logical IF.

® A DML statement must not reference files that
are referenced elsewhere in the program by a
conventional FORTRAN input/output statement or
by a FORTRAN PROGRAM statement.

Any executable DML statement can have a statement
tabel. The DML preprocessor copies the label into
the translated FORTRAN statement.

STATEMENT POSITIONING

Some DML statements require special positioning

within the FORTRAN source program. These require-
ments are illustrated in figure 2-3.

N
AN

&4 ‘);

i //V\
N
N

BWAYIS-ONS NVYI¥O4 JLSeg ¥ *|-2 aJnbL4

*Buiss9004d wOUUD UL PBAJUDUDSRJ BJE
SLeuLpao 9sayy 49| Ldwod 7aq 2u3 Aq poubisse aue S{eULPUO W]

*paaoubr aq ued 3abessaw ayy ‘wesbouad uorjediidde ayz o3
U4a2u0d ou JO e suopjedsdo bupddey cewdyos sy3 03 |eILIUSPL
10U SL ewdyds-qns 3y} Isnedaq burddew wuaojudd LM $3QD

*INNOJJY Wi ead Joj A3) Auewiad 2y3 SL INIANLS
‘wd3} 49b6ajur ue se paqrsosap

SL YoLym C°NOILINL Pue fwdjL J93JRURYO-IT UR S PaqLAdSIp
SL UOLUM INJONLS . :PasSSadde G UED PJ0IBA Y3 UL SWIL OM]

* 334100V
PA0234 pue INMOJJY WLRAA O} SS3I0R SOPLAOUd RWBYIS-QNS BYY

*QI-IN3GNLS Pue °J3¥-100Y ‘ONILNNOIIY SOWeu ewsyds 03 puodsa4uod

A3yl fINIONLS PuUR “J3YLIOV “INNOJIY B4e Ssweu Mau ay)
‘WP3L pue ‘puoddd “(JLL4) wiess © 03 paubisse aue saweu MAN

*ALISYIAINN Si Sweu ewsyds sy3 f131dWYS SI Sweu ewdyds-qns ayj

"INy] TP Fay renqud oy
"€17710Q g&qﬁ% °$93S d3 %S0°0

“SIILSONOVIA 0

“q3asn Wl 8009.2%
“3137dW0Y 474¢

—=1INN0JJV - WIV3I¥ ¥03 43d33N SI ONIddVW QU0I3Y

—~— LINNQJIY VIUV 04 1IN3ANLS

INdNI 3JUNOS VW3IHIS-8NS 40 ON3
anN3

NOILINL ¥39ILNI

AN3ANLS 1 1*¥3LIVYVHD

JFYLIIV QYOI

ANNOJIV WV

GI-IN3ANLS=IN3ANLS (WILI)SVIW
J3¥~120V=03¥1IIV (Q¥0IIY)SVITV
ONILINNOIIV=LNNOIIY (WIVIH)SYITV

P .

——= ALISYIAINN=VWIHIS LI 1dWVS VWIHISENS

4700 (1SE08) *» ONILSIT 3JMNOS *

RRERR
0L000\ A3 AYVWINd

ARXRX
21000
4 TYNIGHO *»
11000
l IYNIGQYO *x
01000
ANNOJIV NIHLIM »»
60000
80000
20000
90000
<0000
%0000
€0000
20000
10000

L37dWVS

60483500 A

2-2

Bwayos-qns NVYiY04 1euOLleldy ¥ *2-2 dunbiry

°S33s 4 20L°0
“SIILSONDYIG O

,, -2 3715w Popme, b 6x X, Ry Fraamey
'g1171aq Twou Frogny

23714 - v3uy
L3714 - v3dy SNIOr L3y
SOILSILVLS NOILVT3Y

*pau4ngad xany
8q 01 8Je Q°y Jo abeusAe juLod speub e YILM SPUGIDL

fLug *93¥21I4 p40d94 uo paoe|d st uoL3oLJlsasd y INdNI 3J¥NOS YW3HIS-8NS 40 AN3

aN3

(0°% "D3" 3QVy¥9)IYZTII4 LITYLSIY
23TMd - WIVIY ¥0d 4343IN SI ONIJdVW G¥0I3Y
13714 - WIVIY ¥0d G3033N SI ONIddVW Qu0I3Y

3714 V3YY ¥0d 3avy9
23714 v3dV ¥0d4 QIzanrd

*pajsi| aJe SA3) 9jeUJd}|R puR AJdewldd 23714 Y3¥V 04 IN3AI
L3714 VYV ¥0d dOrvW
*pauLof aude 13714 Y3¥V ¥04 QIi3aId
¢311d Pue 13714 9|qejleAe Si 73y pajled uolje|ad y L7134 NOTLVTIIY
‘WAL |PIJ © SB PIQLJUISAP SL YoLyMm
‘30v¥9 pue fudll 4930PJRYD-TT UR SB PaQLJIS3P SL YILYM IqVY9 Va3
‘0I23714 ‘wall J930RJRyd-pT © SR PIQL4ISAP SL YILym
‘INJQI :p3ss3ITe 3Q ued JIYZTI4 P40234 UL SWRGL BDUY) QI2371d LL*¥3LIVYVHD

AN3AI 1*YILOVYVHI

*¢3I4 ultyim
J3¥21I4 P40294 03 SS3doe saprAoud ewdyds-qns oy 2382714 q¥0I3Y

*WRYL J9JIRURYI-(Z © SB PIQLUISAP Si YOOWW SwWaIL
J93oeURYd-T] UR S PBQLJUISAP SL QITITI4d “YOCWW pue YOrvW 02*¥ILIVEVHD
QIT37I4 :passadde 9q ued)IYTII4 PJ0JDJ UL SWI)L OM]

QILITI4 LL*¥ILIVIVHD
‘13704 uLtyiLm

J3¥T1I4 Pp4a0dB4 03 SS300e sapiAoad ewdyds-gns By REL TR E IR RE]
*23114 pue A 23714 WIv3y

I37I4 iswiesd OM3 03 SS8Ie S3pLAOUd BWBYIS-GnS By 13714 WIvay
‘WL ead puod3s Y3 J04 ‘A1dAL3dadsad “QIzITI4 I3Y-YYNI "QI-AINIANLS=QIZITI4 (WILIISVITY

pue “33¥Z71d4 23714 fwpedd IS4ty ay3 Joy A aAL329dsad JU-YUNI=I3Y21T4 (QYOIFN)SYIY
‘QIT3I4 Pue ©)IYTI4 ‘13714 94e SSWeu MU 8yl °swall WATNIIYYNI=231I4 (WIVIY)SYIW

pue °©spuodau ‘sw|iess OM3 03 paubLSSe odJe Soweu MaN —=
33¥-1N3ANLS°AI-LN3ANLS=AIL3TId (WILIISYITV
J3Y¥-LN3ANLS=I3YLTI4 (QY0IFY)SYITY
INIANLS=L3TI4 (WIVIY)ISYITY

*ALISHIAINN
SL 3WeU ewsyds dYz $231dWYS SL BWRU PRWBYISQNS Y| —————m ALISYIAINN=VWIHIS/231WVS YWIHISENS

47440 (1S£08) * ONILSIT 3JMUNOS

"a3sn Wd 800S0s

“3137dW0J d474aq

100 NOILVI3Y

RRRAX

LEEEEY
§2000
%2000
I TTEY
XRRXF

12000 A3X ILYN¥ILIV
02000 A3 31VN¥3LY
6L000 A3 AYVWINd
91000 A3X 3LvN¥3LVY
SL000 A3X AYVWING

€2000

3 TYNIQYO
22000
L2000

2 TYNIQ¥O
02000

L YNIQ¥O
61000

23714 NIHLIM
81000
2 IYNIQYO
£1000
91000
l YNIGYO
$1000
L3714 NIHLIM
%1000
£1000
21000
L1000
0Lo00
60000
80000
20000
90000
S0000
%0000
£0000
20000
L0000

237dWYS

*¥

*¥

*¥

¥

¥

*x

60483500 A

TABLE 2-1. DML STATEMENTS

Statement

Description

Comments

CLOSE
CLOSE relation

DELETE

INVOKE
LOCK
OPEN

OPEN relation

PRIVACY

READ

READ relation

REWRITE

START

START relation

Ends processing of a realm.

Ends processing of the realms joined
in a relation.

Removes a record from a realm.

Establishes the interface between
the executing program and CDCS.

Prevents other programs from up-
dating a realm.

Initiates processing of a realm.

Initiates processing of the realms
joined in a relation.

Establishes the right of a program
to access a realm.

Transfers data from a realm record
to the variables defined in the sub-
schema record description.

Transfers data from the relation
records to the corresponding vari-
ables defined in the sub-schema
record descriptions.

Replaces the last record read with a
new record, using the current values

.of the variables defined in the sub-

schema record description.

Logically positions a realm for
a subsequent sequential read
operation.

Logically positions the root realm
(the first realm named in the sub-
schema) of a relation for a subse~-
quent relation read operation.

Realms can be opened and closed any number of
times by a program.

Relations can be opened and closed any number of
times by a program.

The record being deleted is the record most
recently read from the realm. The value of the
primary key cannot change after the lLast read.

The statement must be executed before any other
DML statements except SUBSCHEMA.

The realm must be a realm described in the sub-
schema.

If the processing mode is not specified, the realm
is opened for input/output.

If the processing mode is not specified, the rela-
tion is opened for input/output. A processing
mode of open for output only is not valid.

If the processing mode is not specified, the realm
can be accessed for input/output. The mode must
be the same as the mode indicated in the OPEN
statement.

If a key is not specified, the read is sequential.
If a key is specified, the value of the referenced
key must be set by the program before the read is
executed.

If a key is not specified, the read is sequential.
If a key is specified, the key must be in the root
realm; the value of the referenced key must be set
by the program before the read is executed.

The value of the primary key must not have changed
since the last read.

The processing mode must be either input or
input/output. If a key is specified, it must be a
primary or alternate key defined for the realm.

If a key is not specified, positioning is by
primary key.

The processing mode must be either input or
input/output. If a key is specified, it must be
a primary or alternate key that is defined in
the root realm. If a key is not specified,
positioning is by primary key of the root realm.

SUBSCHEMA Identifies the sub-schema to be used A FORTRAN program can reference only one sub-
by the program. schema.

TERMINATE Terminates the interface between the Only another INVOKE statement can follow a
FORTRAN program and CDCS. TERMINATE statement.

UNLOCK Releases a lock on a realm. The realm must be a realm described in the sub~

schema.

WRITE Writes a record, using the current Schema record data items that are not defined in
values of the variables defined in the sub-schema are given null values by CDCS.
the sub-schema record description.

2-4 60483500 A

SN

NS

N

o

=N

SUBSCHEMA ' Must appear here

—
| DATA or NAMELIST statements 1
| Statement function definitions 1
| FORTRAN executable statements |
_ J

INVOKE Must precede other DML statements
: (except SUBSCHEMA statement)
PRIVACY Must precede OPEN statement
OPEN
rFr === =-=== A
| FORTRAN executable statements |
e oo s 4

- READ/WRITE/REWRITE/DELETE/START

LOCK/UNLOCK
____________ T
| FORTRAN executable statements |
____________ d
CLOSE
TERMINATE Must be last DML statement

60483500 A

Figure 2-3. DML Statement Positioning

2-5

7

SR

o oo Ay

S
.

N
L~
s

ol

O
C

PROCESSING THE DATA 3

T A

Processing data base files within the DMS-170
environment dinvolves several steps. These steps
are:

1. Obtain a current Llisting of the sub-schema from
the data administrator so you can have the
names and descriptions of the data your program
will be referencing.

2. Obtain the name of the appropriate sub-schema
Library from the data administrator. You will
need to attach this Llibrary for preprocessing
your program.

3. Ask the data administrator if any realms in the
sub-schema are defined in the schema as having
controlled access. When access is controlled,
you must know the privacy key.

4. Ask the data administrator if any constraints
exist in the schema. When constraints exist,
CDCS enforces them by not allowing updates that
violate constraints.

5. Code the FORTRAN program and include
appropriate Data Manipulation Language (DML)
statements for opening, closing, and processing
sub-schema realms.

6. Preprocess and compile the FORTRAN program.
Include, 1in the job stream before the FTNS
control statement, an ATTACH control statement
naming the sub-schema Library and a DML control
statement to execute the DML preprocessor.

7. When compilation 1is successful, execute the
FORTRAN program. Inctude an LDPSET control
statement to load the DMS-170 Llibrary.

DML statements are available to perform a variety
of operations on data base items described in a
FORTRAN sub-schema. This section describes these
statements and presents them in the following
sequence:

Data Base Access

SUBSCHEMA
INVOKE
PRIVACY
OPEN
LOCK/UNLOCK
CLOSE
TERMINATE

Data Base Manipulation

WRITE
READ
START
REWRITE
DELETE

60483500 A

Relation Access

OPEN
CLOSE
READ
START

For purposes of illustration, a new sub-schema
named AVERAGE is shown in figure 3-1. This
sub-schema s referenced in subsequent examples.
The examples show portions of program MODEL which
illustrate statements necessary for particular data
base operations.

The sub-schema provides the following information:
® The realm (file) to be accessed is named CFILE.
e The record is named CRECORD.

® A character item named IDENT is the primary key.

® A character item named STUDENT is an alternate
key.

e A character item named COURSE is an alternate
key.

® A real item named GRADE is an alternate key.

The handwritten notation on the Listing indicates
the sub-schema is stored on a Llibrary named SSLIB.
The notation also indicates CFILE has controlled
access and requires a privacy key of XX99.

USING DML TO ACCESS
THE DATA BASE

To access a data base, a FORTRAN program must

identify the sub-schema that the program uses,
establish an interface with €DCS, satisfy privacy
requirements, and perform the usual functions of
opening and closing files. The following para-
graphs describe these functions and the DML state-
ments that you include in your program to provide
these functions.

IDENTIFYING THE SUB-SCHEMA
To identify the sub-schema, you must include a
SUBSCHEMA statement in your program. This must be
the first DML statement to appear in your program.
The format is:

SUBSCHEMA (sub-schema-name)

The SUBSCHEMA statement 4is required. You must
position the statement in the program as follows:

® After the specification statements

® Before the first DATA or NAMELIST statement

AVERAGE %* SOURCE LISTING * (80351) DDLF 1.2+538.
00001 SUBSCHEMA AVERAGE,SCHEMA=UNIVERSITY
00002
00003 ALIAS(REALM) CFILE=CURRICULUM
00004 ALIAS(RECORD) CRECORD=CURR-REC
00005 ALIASCITEM) STUDENT=STUDENT-ID.CURR-REC
00006 ALIAS(ITEM) COURSE=COURSE-ID.CURR-REC
00007
00008 REALM CFILE
00009
00010 RECORD CRECORD
00011
** WITHIN CFILE
00012 CHARACTER*14 IDENT
** ORDINAL 1
00013 CHARACTER*11 STUDENT
*% ORDINAL 2
00014 CHARACTER*6 COURSE
** ORDINAL 3
00015 REAL GRADE
*% ORDINAL 4
00016 END
00017
kkdhk END OF SUB-SCHEMA SOURCE INPUT
PRIMARY KEY 00012 IDENT FOR AREA CFILE
ALTERNATE KEY 00013 STUDENT FOR AREA CFILE
ALTERNATE KEY 00014 COURSE FOR AREA CFILE
ALTERNATE KEY 00015 GRADE FOR AREA CFILE
Fekdkk RECORD MAPPING IS NEEDED FOR REALM - CFILE
fobzay name SSLIB.
Privngy koy 'kX99'naded. for. CFILE.
W/\/\.

® Before any statement function

e Before any executable statement

Figure 3-1. Sub-Schema AVERAGE

PROGRAM MODEL

At the point where the DML preprocessor encounters
the SUBSCHEMA statement, the DML preprocessor
copies into the source program the text declaration
and DATA statements resulting from the sub-schema
compilation. In this way, DML provides your
program with the ability to reference all records,
data items, and relations that are described in the
sub-schema.

In a program using the sample sub-schema AVERAGE,
the SUBSCHEMA statement appears as shown in
figure 3-2. : :

ESTABLISHING THE INTERFACE

WITH CDCS

To establish the interface with CDCS, you must
include an INVOKE statement in your program. This
must be the second DML statement to appear in your
program. The format is:

INVOKE

3-2

CHARACTER ...
DIMENSION ...

SUBSCHEMA (AVERAGE)
DATA ...
D0 ...

END

Figure 3-2. Identifying the Sub-Schema

The INVOKE statement is required. The statement
must appear in the program before any other DML
statement except SUBSCHEMA.

When the INVOKE statement is executed, CDCS
automatically attaches for use by the program all
realms described in the sub-schema identified by
the program.

60483500 A

@

T

£
g >

C
O

O

@

OO0

In a program using the sample sub-schema AVERAGE,
the INVOKE statement appears as shown in figure 3-3.

PROGRAM MODEL

CHARACTER ...
DIMENSION ...

SUBSCHEMA CAVERAGE)
DATA ...
b0 ...

INVOKE

END

The handwritten notation on the sample sub-schema
listing (figure 3-1) dindicates access to the realm
is controlled and a privacy key called XX99 is
required. In a program using the sample sub-schema
AVERAGE, the required PRIVACY statement appears as
shown in figure 3-=4.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY (CFILE,MODE=I0,PRIVACY="XX99"')

END

Figure 3-3. Establishing the Interface With CDCS

SATISFYING PRIVACY REQUIREMENTS

If a realm s defined in the schema as having
controlled access, your program must provide a
privacy key to access the realm. To provide the
privacy key, you must include the PRIVACY statement
in your program. The format is:

PRIVACY(realm-name, [MODE=mode,]
PRIVACY=privacy key)

where
mode = I (access allowed for input)
I0 (access allowed for both
input and output, called
input/output; default)
0 (access allowed for output)
privacy key = character constant, variable

name, unsubscripted array name

A privacy key can be from 1 through 30 characters
in length. If you use a character constant to
specify a privacy key, enclose the character string
in quotes. If you use a variable name to specify a
privacy key, define the variable as type
CHARACTER*30. Ensure that the privacy key is
left-justified and blank filled in the field of the
variable. If you use an array name to specify the
privacy key, define the array as a 3-word array.
Ensure that the privacy key 1is Lleft-justified and
blank filled in the field of the array.

The PRIVACY statement is required when access is
control led. A separate PRIVACY statement is
required for each realm defined with controlled
access. The PRIVACY statement must be executed
before the statement that opens the realm.

60483500 A

Figure 3-4. Satisfying Privacy Requirements

OPENING A REALM

Before your program can access any data records in
an existing realm, the program must open the
realm. To open the realm, you must include the
OPEN statement in your program. The format is:

OPEN(realm-name [,MODE=mode] [,ERR=s])
where
mode = I (open for input only)

10 (open for both dinput and output,
called input/output; default)

0 (open for output only; valid only for
creating a new file)

s = Label of an executable statement to
which control transfers on open error

For a realm with controlled access, the mode of
access indicated in the OPEN statement must be the
same as the mode indicated in the PRIVACY statement.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the OPEN statement appears as shown
in figure 3-5. The MODE option is not included,
indicating a default to input/output. Both the
PRIVACY and OPEN statements indicate the same mode,
input/output. If an error occurs on open, program
execution continues at statement 100.

LOCKING/UNLOCKING A REALM

Whenever your program issues a read request on a
realm that is open for dinput/output, CDCS
automatically Llocks the record that was read (the

current record) against update by another user.
Through DML, however, your progam can prevent

other jobs from performing . update operations

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY (CFILE,MODE=I0,PRIVACY="'XX99")

OPEN (CFILE,ERR=100)

-

100 PRINT *, "ERROR ON OPEN’

END

Figure 3-5. Opening a Realm

anywhere within a realm by issuing a request that
CDCS lock the entire realm. To dssue the lock
request, you must include the LOCK statement in
your program. The format is:

LOCK(realm-name [, ERR=s1)

where

s = label of an executable statement to which
control transfers on tock error

The LOCK statement should be executed before any
read request with intent to update the record.

CDCS releases the realm Lock held for your program
when the program 4issues an unlock request. To
issue the unlock request, you must dinclude an
UNLOCK statement in your program. The format is:

UNLOCK(reatm-name [,ERR=s1)

where

s = label of an executable statement to which
control transfers on unlock error

You should judiciously use a realm Lock. A realm
lock Llimits other users' access to the realm
(file); other application programs can read but
cannot update the file. Additionally, a realm Lock
overrides the CDCS record locking mechanism, which
provides a checking capability on rewriting and
deleting records (for additional information, see
the paragraphs Rewriting a Record and Deleting a
Record).

In a program using the sample sub~-schema AVERAGE
(figure 3-1), the LOCK and UNLOCK statements appear
as shown in figure 3-6. If an error occurs during
the Llock or unlock process, program execution
continues at statement 200 or 300, respectively.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY (CFILE,MODE=10,PRIVACY="XX99")

OPEN(CFILE,ERR=100)

LOCK (CFILE, ERR=200)

GNLOCK(CFILE,ERR=300)

200 PRINT *, 'ERROR ON LOCK®
300 PRINT *, 'ERROR ON UNLOCK®

END

Figure 3-6. Locking/Unlocking a Realm

CLOSING A REALM

When your program has completed processing on a
realm, the program must close the realm. To close
the realm, you must include the CLOSE statement in
your program. The format is:

CLOSE(realm-name [,ERR=s])
where

s = label of an executable statement to which
control transfers on close error

Once a program closes a realm, the program can
perform no further processing on the realm until it
reopens the realm.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the CLOSE statement appears as shown
in figure 3-7. If an error occurs on close,
program execution continues at statement 400.

TERMINATING THE INTERFACE
WITH CDCS

To terminate the dinterface with CDCS, you must
include a TERMINATE statement in your program. The
format is:

TERMINATE
Once the TERMINATE statement is executed, no

further data base processing can take place without
execution of another INVOKE statement.

60483500 A

AN

AN
\ngf

0

In a program using the sample sub-schema AVERAGE
(figure 3-1), the TERMINATE statement appears as
shown in figure 3-8. This statement must be
executed before the FORTRAN END or STOP statement.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY(CFILE,MODE=IO0,PRIVACY="XX99")

OPEN(CFILE,ERR=100)

LOCK (CFILE, ERR=200)

UNLOCK (CFILE,ERR=300)

CLOSE (CFILE,ERR=400)

400 PRINT *, 'ERROR ON CLOSE'

END

Figure 3-7. Closing a Realm

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY(CFILE, MODE=IO0,PRIVACY="XX99")

OPEN(CFILE, ERR=100)

CLOSE (CFILE, ERR=400)

100 PRINT %, "ERROR ON OPEN'

. 400 PRINT %, "ERROR ON CLOSE'

TERMINATE

END

Figure 3-8. Terminating the Interface With CDCS

60483500 A

USING DML TO MANIPULATE DATA

DML statements are available to create, read,
position, and modify data base records. The
following paragraphs describe these functions and
the DML statements that you must include in your
program to provide these functions.

WRITING A RECORD

To write a complete record, you must dnclude a
WRITE statement in your program. The format is:

WRITE(realm-name [,ERR=s])
where

s = label of an executable statement to which
control transfers on write error

Before the WRITE statement is executed, the program
must set the primary key and all alternate keys to
appropriate values. A sub-schema does not always
reflect all data items that appear in the schema
record; therefore, before allowing the new record
to be written to the data base, CDCS gives null
values to those schema data items that are not
defined in the sub-schema.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the WRITE statement appears as shown
in figure 3-9. The program sets the primary key
IDENT and alternate keys STUDENT, COURSE, and GRADE
to appropriate values before the WRITE statement is
executed. If an error occurs on write, program
execution continues at statement 500.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY(CFILE,MODE=I0,PRIVACY="XX99"')
OPEN(CFILE,MODE=I0,ERR=100)
IDENT='122-13-6704-09"
STUDENT='122-13-6704"

COURSE="'PSY136"*

GRADE=3.7

WRITE(CFILE,ERR=500)

500 PRINT %, 'ERROR ON WRITE'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-9. Writing a Record

This example shows a program writing a record to an
existing file, CFILE., Before the program writes to
this file, the PRIVACY and OPEN statements
establish access for input/output (MODE=IO). If
the program were creating this file, the OPEN and
PRIVACY statements would have to establish access
for output only (MODE=0).

READING A RECORD

To read a record, you must include a READ statement
in your program. The format is:

READ(realm-name [,KEY symbol item—-namel
[,ERR=s] C,END=s1)

where
symbol = = _.EQ. .GT. .GE.
item-name = primary or alternate key

s = Llabel of an executable statement to
which control transfers on read
error (ERR)

Llabel of an executable statement to
which control transfers on
end-of-file (END)

When you omit the KEY option, the read operation is
sequential. When you include the KEY option, the
read operation is random.

The END option is valid only for a sequential read
operation. :

Sequential Read

A sequential read accesses the record occurrence
located at the current record position. Successive
read operations return record occurrences by
position. Indexed sequential files are sequenced
in ascending primary key order, actual key files
are sequenced by block and record slot within the
block, and direct access files are sequenced by
position in home blocks.

Typical FORTRAN 5 statements issued outside of a
data base environment terminate with a fatal error
if EOF is sensed and a test for EOF status is not
included in the FORTRAN READ statement. If EOF
status is not tested 1in DML, program execution
continues with the next statement. Consequently,
it is necessary to test for EOF on a DML sequential
read operation. You can handle this test in one of
two ways:

e Include the END option on the READ statement.
When EOF is sensed, program execution continues
at the statement specified in the option.

e Test for an EOF value of 100g in the data
base status block. This option is described in
section 4.

In a program using the sample sub-schema AVERAGE
(figure 3-1), a sequential read appears as shown in
figure 3-10. If an error occurs on read, program
execution continues at statement 600. The READ
statement includes the END option to test for EOF.
When EOF is reached, program execution continues at
statement 900.

Random Read
A random read accesses a record occurrence by the
value of a referenced primary or alternate key.

The program must set the value of the referenced
key before the READ statement is executed.

3-6

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE

PRIVACY (CFILE,MODE=IO, PRIVACY='XX99')
OPEN(CFILE,ERR=100)

READ (CFILE,ERR=600,END=900)

600 ;RINT *, 'ERROR ON READ'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-10. Reading Sequentially

In a program using the samplte sub-schema AVERAGE
(figure 3-1), a random read appears as shown in
figure 3-11. The program sets the alternate key
GRADE to the value 4.0. - This read returns from
CFILE the first record occurrence in which the
alternate key GRADE has the value 4.0. If an error
occurs on read, program execution continues at
statement 600.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY(CFILE,MODE=I0,PRIVACY="XX99"')
OPEN(CFILE, ERR=100)

GRADE=4.0

READ (CFILE,KEY.EQ.GRADE,ERR=600)

600 PRINT *, 'ERROR ON READ'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-11. Reading Randomly

POSITIONING A REALM

To position a realm for subsequent sequential read
operations, you must include a START statement in
your program. The format is:

START(realm-name L[,KEY symbol item-namel
L,ERR=s1)

where
symbol = = LEQ. .G6T. .GE.

item-name = primary or alternate key

s = Label of an executable statement to
which control transfers on start
error

Before the START statement is executed, the program
must have opened the realm for input or
input/output.

60483500 A

0O

/
£on
N7

©0

When you omit the KEY option, the realm is
positioned by primary key value; the realm is
positioned to the record occurrence with a primary
key value equal to the current value of the primary
key item. When you include the KEY option, the
realm is positioned to the first record occurrence
with a matching key value.

In a program using the sample sub-schema AVERAGE
(figure 3-1), both forms of the START statement
appear as shown in figure 3-12. If an error occurs

on start, program execution continues at
statement 700.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE

PRIVACY(CFILE, MODE=IO,PRIVACY="XX99')
OPEN(CFILE,ERR=100)
IDENT='122~13-6704-01"

START (CFILE,ERR=700)

READ (CFILE,ERR=600,END=900)

700 PRINT *, 'ERROR ON START!®

COURSE="PSY100*
START (CFILE,KEY.GE.COURSE,ERR=700)
READ (CFILE,ERR=600, END=900)

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-12. Positioning a Realm

The first START statement omits the KEY option,
which means CFILE will be positioned by primary
key. The program sets the primary key (IDENT) to
the value 122-13-6704~01 before the START statement
is executed; the realm will be positioned to the
record occurrence with the matching primary key
value.

The second START statement includes the KEY
option. The program sets the alternate key COURSE
to the value PSY100. The first record occurrence
in CFILE with an alternate key COURSE greater than

or equal to PSY100 will be the one to which CFILE
is positioned.

REWRITING A RECORD

To rewrite a record, you must include a REWRITE
statement in your program. The format is:

REWRITE(realm-name [,ERR=s1)
where

s = label of an executable statement to which
control transfers on rewrite error

60483500 A

When a record is rewritten, the current values of
those variables defined in the sub-schema are
rewritten to the specified data base record. Data
items defined in the schema but not defined in the
sub-schema remain unchanged.

Before your program can rewrite a record, your
program must have locked the record either with a
record lock or with a realm lock. Typically, the
record Lock s used.

For a rewrite using a record Llock, the program
establishes the record Locking mechanism by opening
the realm for input/output. To rewrite the record,
the program must include the following steps:

1. Read the record to the program's working
storage area by executing a DML READ statement.

2. Set the value of each data item being changed
to the appropriate new value.

3. Rewrite the record by executing a REWRITE
statement.

When the realm is opened for input/output and the
read is executed, CDCS expects an update operation
and consequently locks the record. CDCS allows
rewriting of only the locked record.

The program must not change the value of the
primary key between the read and the rewrite of the
record. The following examplte illustrates a
processing sequence to avoid:

IDENT='100-22-5860~04"
READ (CFILE, KEY=IDENT)
IDENT="'200-44-7863-01"'
REWRITE(CFILE)

Assuming a rewrite using a record lock, CDCS does
not allow the rewrite in this example to be
performed because the record 1is not locked;
record 100-22-5860-04 is locked, but the rewrite is
attempted on record 200-44-7863-01. CDCS issues an
error diagnostic on the rewrite.

If an update requires that the value of a primary
key be changed, the program must first delete the
record with the old primary key value and then
write the record with the new primary key value.

For a rewrite using a realm Llock, the program
establishes the realm Llock by executing the LOCK
statement. Then to rewrite a record, the program
needs only to set the value of the primary key to
the value of the record being rewritten and execute
the REWRITE statement. The recommended rewriting
procedure, however, includes more steps than
these. The recommended procedure is the same as
for a rewrite using a record lock: read the
record, change the appropriate values, then rewrite
the record. By reading the record, the program can
test for an error on the read and, thereby, protect
the dintegrity of the data base. With the realm
lock, it is your responsibility to ensure that the
program does not change the value of the primary
key between the read and the rewrite of the record.

You should judiciously wuse a realm lock when
rewriting records because the realm Llock overrides
the record Lock and the checking capability
available through the record lock.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the REWRITE statement appears as
shown in figure 3-13. The program performs the
rewrite by using a record Llock. The program reads
the record occurrence with a primary key value
of 100-22-5860-04, changes the value of data item
GRADE to the value 3.8, and then rewrites the
record. In the rewritten record, all other values
in the record occurrence remain unchanged. If an
error occurs on rewrite, program execution
continues at statement 800.

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE
PRIVACY(CFILE,MODE=I0,PRIVACY="XX99")
OPEN(CFILE,ERR=100)
IDENT="'100-22-5860-04"

READ (CFILE KEY=IDENT,ERR=600)
GRADE=3.8

REWRITE(CFILE,ERR=800)

600 PRINT *, 'ERROR ON READ'

800 PRINT *, 'ERROR ON REWRITE'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-13. Rewriting a Record

DELETING A RECORD

To delete a record, you must include a DELETE
statement in your program. The format is:

DELETE(realm-name [,ERR=s])
where

s = label of an executable statement to which
control transfers on delete error

Before your program can delete a record, your
program must have locked the record either with a
record lock or with a realm Llock. Typically, the
record lock is used.

For a delete using a record Llock, the program
establishes the record Llocking mechanism by opening
the realm for input/output. To delete the record,
the program must include the following steps:

1. Read the record by executing a DML READ
statement.

2. Delete the record by executing a DELETE
statement.

When a realm is opened for input/output and the
read is executed, CDCS expects an update operation
and consequently locks the record. (DCS allows
deletion of only the locked record.

The program must not change the value of the
primary key between the read and the delete of the
record. The following example illustrates a
processing sequence to avoid:

IDENT='100-22-5860~04"
READ (CFILE, KEY=IDENT)
IDENT="'400-23-1248-07"
DELETE(CFILE)

Assuming a delete using a record lock, CDCS does
not allow the delete in this example to be
performed because the record 1is not Llocked;
record 100-22-5860-04 is locked, but the delete is
attempted on record 400-23-1248-07. CDCS issues an
error diagnostic on the delete.

For a delete using a realm Llock, the program
establishes the realm Locking mechanism by
executing the LOCK statement. Then to delete a
record, the program needs only to set the value of
the primary key to the value of the record being
deleted and execute the DELETE statement. The
recommended procedure for deleting a record,
however, 1includes more steps than these. The
recommended procedure is the same as for a delete
using a record lock: read the record and then
delete the record. By reading the record, the
program can test for an error on the read and,
thereby, protect the integrity of the data base.
With the realm Llock, it is your responsibility to
ensure that the program does not change the value
of the primary key between the read and the delete
of the record.

You should judiciously wuse a realm Llock when
deleting records because the realm lock overrides
the record Llock and the checking capability
available through the record lock.

In a program using the sample sub-schema AVERAGE
(figure 3-1), the DELETE statement appears as shown
in figure 3-14. The program performs the delete by
using a record lock. The program reads from CFILE
the record occurrence with a primary key C(IDENT)
equal to 100-22-5860-04 and then deletes that
record. If an error occurs on delete, program
execution continues at statement 850.

USING DML TO PROCESS
RELATIONS

Relation processing greatly simplifies programming
when several related realms are required by the
application program. Realms that have common data
items can be joined in a relation. When a relation
is included in a sub-schema, the relation can be
accessed and read through DML. This means that a
single relation read request by an application
program returns a relation occurrence, which
consists of one qualifying record from each of the
realms comprising the relation.

60483500 A

C O

TN

ole

©0

PROGRAM MODEL

SUBSCHEMA (AVERAGE)

INVOKE

PRIVACY (CFILE,MODE=IO0,PRIVACY="'XX99"')
OPEN(CFILE,ERR=100)
IDENT="'100-22-5860-04"

READ (CFILE KEY=IDENT ,ERR=600)
DELETE(CFILE,ERR=850)

600 PRINT %, 'ERROR ON READ'

850 PRINT *, 'ERROR ON DELETE'

900 CLOSE(CFILE)
TERMINATE
END

Figure 3-14. Deleting a Record

DML statements are available to provide for
processing relations. The functions involved in
relation processing are opening and closing the
realms of the relation, positioning a relation
through a start operation, and reading the
relation. Paragraphs that follow describe these
functions and the DML statements that you must
include 1in your program to provide the functions.
First, however, it is necessary to examine the
structure of a relation and the manner in which
CDCS returns records to the program's working
storage area.

STRUCTURE OF A RELATION

A relation can be described as a hierarchical tree
structure. The root of the tree is the realm
through which the relation is entered; this is the
first realm Listed for a relation in the
sub-schema. A data item in the realm at the root
of the structure joins the realm to a common data

item in the next realm Llisted for the relation.
When the relation is entered, the value of the data
item in the root realm record leads to a record in
the second realm. More than one record in the
second realm can contain the same value; thus one
record in the root realm can lead to several
records in the second realm.

The second realm in the relation can be joined to a
third realm through a common data item. Once
again, a record in the second realm can lead to
several records in the third realm. This branching
out from the root of the tree continues through
each realm in the relation.

The tree structure of the three-realm relation REL3
of the university data base 1is idtlustrated in
figure 3-15. The tree structure 1is normally
pictured upside down, with the root at the top and
branches going down. The first realm, PFILE, which
is the root of the structure, consists of a master
record for each professor. The second realm,
CRSFILE, consists of a master record for each
course. The third realm, CFILE, consists of
curricutum records. The common data item joining
the first and second realms 1is the professor
identification; the common data item joining the
second and third realms is the course
identification.

Realms in a relation are numbered consecutively as
ranks. The first realm entered (called the root
realm) dis always assigned rank 1. The rank is
incremented by 1 for each successive realm 3in the
relation. The value of the rank of a realm
contrasts with the placement of the realm in the
tree structure. The lower the rank, the higher the
realm is shown in the tree structure; i.e., rank 1
(the lowest rank) 1is shown at the top of the tree
structure. Figure 3-15 also shows ranks in the
relation REL3.

When a relation is read, a record occurrence from
each realm in the relation 1is returned to the
program. A relationship exits between record occur-
rences in a relation: a parent/child relationship.
A record occurrence that has another record occur=-
rence at the next numerically higher rank in the
relation 1is referred to as the parent record

Tree Structure

Root Realm

Realm Name Rank
PFILE Rank 1
CRSFILE Rank 2
CFILE Rank 3

Figure 3-15. Tree Structure and Ranks of a Three-Realm Relation

60483500 A

occurrence. A record occurrence that has another
record occurrence at the next numerically Llower
rank in the relation 1is referred to as the child
record occurrence. In a parent/child relationship
in relation REL3, a record occurrence in PFILE
would represent the parent with corresponding record
occurrences of CRSFILE representing the children.
Additionally, a record occurrence in CRSFILE would
represent the parent with corresponding record
occurrences in CFILE representing the children.

USING THE SUB-SCHEMA

The structure of a relation is defined when the
schema is created. A relation that is available to
an application program is included in the
sub-schema. The sub-schema Llisting provides the
names of the realms in the relation. A new sample
sub-schema named COMPARE, which makes available a
three-realm relation, is shown in figure 3-16.

The sub-schema Listing provides the following
information:

® A relation is available to DML because the

RELATION statement is included in the
sub-schema.

® Three schema areas are joined by relation named
REL3. The areas are named PROFESSOR, COURSE,
and CURRICULUM in the schema; they are renamed
as realms PFILE, CRSFILE, and CFILE in the
sub=schema. The order in which the areas

(realms) appear 1in the Relation Statistics
portion of the Llisting indicates the ranks of

the realms: the first realm Llisted has the
rank 1; the second, rank 2; and so forth.

e PFILE has a primary key named PROFID; CRSFILE
has an alternate key named PROF. Looking at
the Llisting of aliases, you can see these
fields both appear as PROF-ID in the schema.
Obviously these fields represent unique
professor identification and are common to both
realms. You can assume that these items join
the realms . The data administrator, however,
should provide the common data items if they
are not obvious and if programming con-
siderations require that you know them.

e CRSFILE has a primary key named CRSID; CFILE
has an alternate key named COURSE. Looking at
the Llisting of aliases, you can see these
fields both appear as COURSE-ID in the schema.
Obviously these fields represent unique course
information and are common to both realms. You
can assume that these ditems join the realms.
The data administrator, however, should provide
the joining data items under the conditions
indicated previously.

® A restriction is placed on CRECORD. A relation
occurrence wWwill not be returned unless data
item CODE contains the character C. Before a
relation occurrence is returned to the pro-
gram's working storage area, CD(S checks for
restrictions and enforces any restrictions.
CDCS allows only qualifying records to be
returned.

3-10

OPENING A RELATION

Before your program can access any data records in
an existing relation, the program must open the
appropriate realms. To open all the realms in a
relation, you can include a relation OPEN statement
in your program. The format is:

OPEN(relation-name [,MODE=model [,ERR=s])
where
mode = I (open for input only)

I0 (open for both dinput and output,
called input/output; default)

. s = label of an executable statement to
which control transfers on open error

Your program should normally open a relation for
input (MODE=I). The program should open the
relation for input/output (MODE=I0) under two

circumstances:

® Processing requirements indicate that the
program should Llock the records to prevent
update during the relation read.

e The program updates individual realms in the
relation following the relation read.

If your program is opening a relation in which one
or more realms have controlled access, you must
include in the program a PRIVACY statement for each
realm that has controlled access.

The following statement opens for input the realms
joined 1in relation REL3, which 1is shown in sample
sub-schema COMPARE (figure 3-16). If an error
occurs on open, program execution continues at
statement 50:

OPEN(REL3,MODE=1,ERR=50)

If you have included an OPEN statement in your
program for each realm in the relation, you do not
need to include a relation OPEN statement.

CLOSING A RELATION

When your program has completed relation
processing, the program must close the appropriate
realms. To close all the realms of a relation, you
can include a relation CLOSE statement in your
program. The format is:

CLOSE(relation-name [,ERR=s])

where

s = label of an executable statement to which
control transfers on close error

The following statement closes the realms joined in
relation REL3, which is shown in sample sub-schema
COMPARE (figure 3-16). If an error occurs on
close, program execution continues at statement 60:

CLOSE(REL3,ERR=60)
If you include a CLOSE statement in your program

for each realm in the relation, you do not need to
include a relation CLOSE statement.

60483500 A

C O

ol

©0O

ok

*k

*%

*k

Kk

dok

sk

sk

*k

dok

COMPARE

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
WITHIN PFILE
00026
ORDINAL 1
00027
ORDINAL 2
00028
00029
ORDINAL 3
00030
WITHIN CRSFILE
00031
ORDINAL 1
00032
ORDINAL 2
00033
00034
ORDINAL 3
00035
WITHIN CFILE
00036
ORDINAL 1
00037
ORDINAL 2
00038
ORDINAL 3
00039
ORDINAL 4
00040
00041
ORDINAL 5
00042

PRIMARY KEY = 00026
ALTERNATE KEY 00028
PRIMARY KEY 00031
ALTERNATE KEY 00033
PRIMARY KEY 00036
ALTERNATE KEY 00037
ALTERNATE KEY 00040

sk
dkdekk
ek
00043
00044

* SOURCE LISTING * (80351) DDLF 1.2+538.

SUBSCHEMA COMPARE,SCHEMA=UNIVERSITY

ALIAS(REALM) PFILE=PROFESSOR
ALIAS(RECORD) PRECORD=PROF-REC
ALIAS(ITEM) PROFID=PROF-ID.PROF-REC
ALIASCITEM) PNAME=PROF-NAME

ALIAS(REALM) CRSFILE=COURSE
ALIAS(RECORD) CRSREC=COURSE-REC
ALIASCITEM) CRSID=COURSE-ID.COURSE~-REC
ALIASCITEM) CRSNAME=COURSE~NAME
ALIAS(ITEM) PROF=PROF-ID.COURSE-REC
ALIASCITEM) FIELD=ACADEMIC-FIELD

ALIAS(REALM) CFILE=CURRICULUM
ALIAS(RECORD) CRECORD=CURR-REC

ALIAS(ITEM) COURSE=COURSE-ID.CURR~REC
ALIAS(ITEM) CODE=COMPLETE-CODE
ALIASCITEM) DATE=COMPLETE-DATE

REALM PFILE

REALM CRSFILE
REALM CFILE
RECORD PRECORD
CHARACTER#8 PROFID
CHARACTER*30 PNAME

CHARACTER*20 FIELD

RECORD CRSREC
CHARACTER*6 CRSID
CHARACTER*20 CRSNAME

CHARACTER*8 PROF

RECORD CRECORD
CHARACTER*14 IDENT
CHARACTER*6 COURSE
CHARACTER*1 CODE
CHARACTER*8 DATE

REAL GRADE

RELATION REL3
PROFID FOR AREA PFILE
FIELD FOR AREA PFILE
CRSID FOR AREA CRSFILE
PROF FOR AREA CRSFILE
IDENT FOR AREA CFILE
COURSE FOR AREA CFILE
GRADE FOR AREA CFILE
RECORD MAPPING IS NOT NEEDED FOR REALM - PFILE
RECORD MAPPING IS NEEDED FOR REALM - CRSFILE
RECORD MAPPING IS NEEDED FOR REALM - CFILE
RESTRICT CRECORD (CODE .EQ. 'C')
END

60483500 A

Figure 3-16. Sub-Schema COMPARE (Sheet 1 of 2)

RELATION 001 REL3 JOINS

00045
dkddk END OF SUB-SCHEMA SOURCE INPUT
Fekkkk RELATION STATISTICS Fekkdk

"‘“\\‘__,/f‘—_—_“"—_——-“‘__,/”’——_—‘\“’/”__-\\\‘~___——"'~_‘—“‘-.__—”"‘—._“

AREA - PFILE
AREA - CRSFILE
AREA - CFILE

Librany nama. SSLIB
Prinnig Aoy XX99'nacded. for CFILE.

Figure 3-16. Sub=-Schema COMPARE (Sheet 2 of 2)

READING A RELATION

To read a relation, you must include a relation
READ statement in your program. The format is:

READ(relation-name [KEY symbol item—namel
T,ERR=s] [,END=s])

where
symbol = = JEQ. .G6T. .GE.
item~name = primary or alternate key

s = Llabel of an executable statement to
which control transfers on read
error (ERR)

Label of an executable statement to
which control transfers on
end-of-file (END)

When you omit the KEY option, the read operation is
sequential. When you include the KEY option, the
read operation is random.

The END option is valid only for a sequential read
operation.

Sequential Relation Read

A sequential relation read accesses the relation
occurrence located at the current relation
position. Successive read operations return
relation occurrences by position of the root realm,
which is the first realm listed for the relation in
the Relation Statistics portion of the sub-schema
listing. Indexed sequential files are sequenced in
ascending primary key order, actual key files are
sequenced by block and record slot within the
block, and direct access files are sequenced by
position in home blocks.

A relation occurrence is composed of record
occurrences. A tree structure of record occur-
rences for relation REL3 is shown in figure 3-17.
Assuming that A1 is the first record in PFILE, the
first and subsequent sequential reads return record

occurrences to the working storage area in the
following order: A1B1C1, A1B1C2, A1B1C3, A1B2C4,
and so forth. When record occurrences in CRSFILE
and CFILE are exhausted, a subsequent sequential

read returns the next record (A2, not shown) in

PFILE and associated records in CRSFILE and CFILE
as the operation repeats.

Typical FORTRAN 5 statements 1issued outside of a
data base environment terminate with a fatal error
if EOF is sensed and a test for EOF status is not
included in the FORTRAN READ statement. If EOF
status is not tested in a DML READ statement and
EOF is sensed, program execution continues with the
next statement. Consequently, it is necessary to
test for EOF on a DML sequential read operation.
This can be handled in one of two ways:

® Include the END option on the READ statement.

When an EOF 1is sensed, program execution
continues at the statement specified in the

option.

® Include a test for an EOF value of 100g in
the data base status block. This option is
described in section 4.

In a program using sample sub~schema COMPARE
(figure 3-16), a sequential read appears as shown
in figure 3-18. If an error occurs on read,
program execution continues at statement 600. The
END option 1is included on the READ statement to
test for EOF. When EOF is reached, program
execution continues at statement 900.

The sequential read returns the first record in
PFILE and the first corresponding record occur-
rences in CRSFILE and in CFILE. Successive reads
return qualifying record occurrences as indicated
in the preceding discussion of the tree structure
of record occurrences. If EOF is sensed on PFILE,
the relation read transfers control to the state-
ment specified by the END option.

Notice the PRIVACY statement. Since CFILE s

joined in the relation and has controlled access,
the privacy key for that realm is required.

60483500 A

oC

SR

OO0

PRECORD Record Occurrence
PFILE Realm

CRSREC Record Occurrence

CRSFILE Realm 81
CRECORD Record Occurrence
CFILE Realm

. €1 ¢c2 ¢3

C4 C5 €6 C7 €8 €9 €10 C11 €12

M Rank 1

83 B4 Rank 2

Rank 3

Figure 3-17. Tree Structure of Record Occurrences

PROGRAM RELMOD

SUBSCHEMA (COMPARE)

INVOKE

PRIVACY(CFILE, MODE=I,PRIVACY="'XX99"')
OPEN(REL3,MODE=1I ,ERR=100)

READ (REL3 ,ERR=600,END=900)

900 CLOSE(REL3)
TERMINATE
END

Figure 3-18. Reading a Relation Sequentially

Random Relation Read

A random relation read accesses a relation
occurrence by the value of a referenced primary or
alternate key. The referenced key must be in the
root realm. For a program using the sample
sub-schema COMPARE, the key named in the READ
statement must be associated with PFILE (the root
realm) rather than CRSFILE or CFILE. The program
must set the value of the referenced key before the
READ statement is executed.

In a program using sub-schema COMPARE
(figure 3-16), a random read appears as shown in
figure 3-19. The program sets the primary key
PROFID of PFILE to RSS00860. The random read
returns the record occurrence in PFILE that has
PROFID equal to RSS00860 and the first
corresponding record occurrences 1in CRSFILE and
CFILE.

Control Break

A control break occurs when a new record occurrence
is read for a parent realm in a relation. Control
break status, however, is returned for the realm of
the child. Therefore, if a realm in a relation has
control break status after execution of a
sequential read, the record occurrence read for
this realm is a child record occurrence for a new
parent record occurrence.

60483500 A

PROGRAM RELMOD

SUBSCHEMA (COMPARE)

INVOKE

PRIVACY(CFILE, MODE=I,PRIVACY='XX99')
OPEN(REL3,MODE=I,ERR=100)
PROFID='RSS00860"*

READ (REL3 ,KEY=PROFID ,ERR=600)

900 CLOSE(REL3)
TERMINATE
END

Figure 3-19. Reading a Relation Randomly

In the example shown in the tree structure of
record occurrences (figure 3-17), control break
occurs when A1 is first read (when A1B1C1 s
returned). In this situation, control break status
is returned for CRSFILE (rank 2) and for CFILE
(rank 3). A control break occurs when B2 is first
read (when A1B2C4 is returned), when B3 is first
read (when A1B3Cé6 is returned), and so forth. In
these situations, control break status is returned
for CFILE, which is rank 3 of the relation.

The presence of a control break and the rank of the
realm that is the Llowest ranked realm with control
break status can be determined by checking the data
base status block. Status checking is described in
section 4.

Null Occurrence

A null occurrence denotes that either no record
occurrence qualifies for a read or that a record
occurrence does not exist at a given level in a
relation.

A read relation operation produces a null
occurrence when one of the following is true:

e A parent record occurrence qualifies for the
read, but no child record occurrence qualifies.

® A parent record occurrence qualifies for the
read, but no child record occurrence exists.

3-13

If a null record occurrence is returned for each
realm in a relation except the root realm, another
READ statement must be executed to obtain the next
set of record occurrences.

A null occurrence consists of a display code right
bracket (1) in each character position of the
record in the working storage area. The presence
of a null occurrence and the lowest rank on which

it occurred can be detected by checking the data

base status block.
section 4.

Status checking is described in

Some examples: of null record occurrences returned
are shown in figure 3-20. In the first example,
the lowest rank with a null record occurrence is
rank 2. In the second and third examples, the
lowest rank with a null record occurrence is rank 3.

POSITIONING A RELATION

To position a relation for subsequent sequential
read operations, you must include a START statement
in your program. The format is:

START(relation—-name [,KEY symbol item-namel
C,ERR=s])

where

symbol = = J.EQ. .G6T. .GE.

item-name = primary or alternate key defined in
: the root realm

Before the START statement is executed, the realm
must have been opened for input or input/output.

When you omit the KEY option, the relation is
positioned by primary key value of the root realm;
the root realm is positioned to the record
occurrence with a primary key value equal to the
current value of the primary key item. When you
include the KEY option, the root realm is
positioned to the first record occurrence with a
matching key value.

In a program using the sample sub-schema COMPARE
(figure 3-16), both forms of the START statement
appear as shown in figure 3-21. If an error occurs
on start, program execution continues at
statement 700. :

The first START statement omits the KEY option,
which means the relation ocurrence wWwill be
positioned by the root realm primary key. The
primary key (PROFID) of the root realm is set to
the value MLNOO840 before the START statement is
executed; the relation is positioned to the root
realm record occurrence with the matching primary
key.

The second START statement dincludes the KEY
option. Alternate key FIELD is set to the value
PSYCHOLOGY. The first record occurrence in PFILE
with an alternate key equal to PSYCHOLOGY is the
one to which root realm PFILE is positioned. The
subsequent sequential reads reference the alternate
key FIELD. These reads return record occurrences

s = Llabel of an executable statement to in the root realm in alphabetical order (collating
which - control transfers on start sequence order) according to the value of the
error alternate key FIELD.

- Record Occurrences in a Relation
Rank 1 Al
Rank 2
Rank 3

(] €2

Program's Working Storage Area

A1 and B2 qualify.

Program's Working Storage Area

Program's Working Storage Area

A1 qualifies, B! and B2 do not qualify.

A1 and B1 qualify, C1, €2, and C3 do not qualify.

c3
Al 1...3 J1...3
A1 ‘ B2 11...3
A B1 1n...]

Figure 3-20.

3-14

Null Record Occurrence Examples

60483500 A

O

/'(‘. \
',

SN

O

o
O

PROGRAM RELMOD

SUBSCHEMA (COMPARE)

INVOKE

PRIVACY(CFILE, MODE=I,PRIVACY="'XX99"')
OPEN(REL3,MODE=1,ERR=100)
PFOFID="MLNGCO840"
START(REL3,ERR=700)

READ (REL3 ,ERR=600,END=900)

FIELD='PSYCHOLOGY"
START (REL3,KEY. EQ. FIELD,ERR=700)
READ (REL3, ERR=650, END=750)

900 CLOSE(REL3)
TERMINATE
END

Figure 3-21. Positioning a Relation

UPDATING REALMS JOINED IN A

RELATION

Realms joined in a relation can be updated, but
care should be exercised. Related files are joined

in the schema by a common data item to form a
parent/child relationship. The schema contains a

60483500 A

JOIN clause in which a data item in one realm is
equated with an identical data item in another
realm. This common data item is called a join item.

CDCS normally does not monitor update operations
that would alter the underlying relationship
between related files. The exception s when
constraints have been incorporated in the schema by
the data administrator, as described in section 4.

Assuming constraints are not present, the following
precautions should be noted:

® Modification of join item values can change
parent/child relationships.

e Deletion of parent record occurrences can make
all child record occurrences of the deleted
parent record occurrence 1inaccessible when a
relation is read.

Important rules to remember for relation update are:

e Always delete a child occurrence before
deleting the parent record occurrence.

® Always write the parent record occurrence
before writing a child record occurrence.

@ Be aware of file positioning; dinput/output
operations could alter positions on the files
joined in the relation while within a
sequential read loop.

3-15

eie

N
N/

o0

O

0O

ERROR PROCESSING AND STATUS 4
HANDLING TECHNIQUES

DMS-170 offers a variety of error and status
processing mechanisms. Each serves a specific
purpose in the operating environment. These
mechanisms are summarized in table 4-1 and detailed
in the following paragraphs.

USING ERR AND END
PROCESSING OPTIONS

A transfer of control to special processing for
error or end-of-file (EOF) conditions can be
specified in your program. This is accomplished by
including the ERR and END options in the
appropriate DML statements.

The ERR option can appear in the following
statements:

OPEN CLOSE START
LOCK UNLOCK READ
REWRITE WRITE DELETE

The END option can appear 1in the following
statement:

READ (sequential only)

The formats for the ERR and END options are:
ERR=statement-label
END=statement-Label

When the ERR or END option is executed, control

transfers to the statement identified by
statement-~label. The didentified statement must be

executable.

Assume an input/output error occurred during
execution of the following statement:

OPEN(FILEX,ERR=50)

Execution of the OPEN statement is terminated,
status is set to the appropriate error code as
described later in this section, and program
execution continues at statement 50.

Assume an EOF was sensed during execution of the
following statement:

READ (FILEX,END=75)

Execution of the READ statement is terminated and
execution continues at statement 75.

TABLE 4-1. ERROR AND STATUS PROCESSING MECHANISMS

break occurs.

End-of~file
processing
option

logic on an EOF condition.

Status block
status information.

resources.

Mechanism Definition Programmer Action

Error Syntax option that passes control to program Include ERR option in appropriate DML
processing Logic on an error condition. Control is not statements. ’
option passed when a CDCS relation condition indi-

cating a null record occurrence or control

Syntax option that passes control to program

An array to which CDCS returns data base

Recovery Defined points to which the data base can be
points recovered with no loss of data.

Constraint A method of avoiding situations in which
handling constraints could be violated.

Deadlock A method of recovering from a situation in
processing which programs are contending for Llocked

Include END option in appropriate DML
statements.

Include the following operations in the pro-
gram: establishing the data base status
block, calling subroutine DMLDBST once, and
testing the status block contents at appro-
priate points.

Include a call to subroutine DMLRPT at
appropriate points in the program.

Be aware of constraints, and follow the
rules for modifying the files on which
constraints have been imposed.

If the program must have locks on several
resources, include a test for deadlock
status and provide program logic to re-
establish any released locks.

60483500 A

Several examples ‘of this type of error and
end-of-file processing appear throughout section 3.

ESTABLISHING A DATA
BASE STATUS BLOCK

An array called a data base status block can be
established in your program to receive data base
status information. When the status block s
included 1in your program, CDCS updates the block
after every operation on a realm or a relation.

The minimum length of the data base status btock is
one word; the maximum length is 11 words. You can
include some or all of the words for testing
purposes. The content of the status block is shown
in table 4-2,

The following rules apply to the status block:

® Only one status block can exist at a time in
the program.

e The status block must be declared as type
INTEGER.

e The length of the block must be sufficient to
completely 1include each desired portion of
status information.

The following dectaration would provide a complete
status block:

INTEGER STATUS(11)

The following declaration would provide a S-word
status block reflecting all information except that
pertaining to relation processing:

INTEGER STAT(5)

The Llocation and length of the status block are
conveyed to CDCS through a call to the DMLDBST
routine. The routine can be called at any point in
the program after the INVOKE statement. The format
of the call is:

CALL DMLDBST(block-name,length)
where
block-name = name of the status block

Llength = Length in words of the status block

The following rules apply to the DMLDBST routine:

e The routine needs to be called one time only.

e The call to DMLDBST should appear before the
first DML statement after INVOKE. Positioning
of the DMLDBST call s important because the
call initializes the status block to zeros and
blanks.

e If DMLDBST is called more than once in a
program, the status block defined in the Llast
call is the one that is updated by CDCS.

In a program using the sample sub~schema COMPARE
shown in section 3, a data base status block
declaration appears as shown in figure 4-1. The
formats for printing the contents of the data base
status block are also shown in the figure.

4~2

PROGRAM DBSEXMP
INTEGER STATBLK(11)

SUBS CHEMA (COMPARE)

INVOKE _

CALL DMLDBST(STATBLK,11)
PRIVACY(CFILE,MODE=I,PRIVACY="'XX99")
OPEN (REL3,MODE=I ,ERR=100)
PFOFID="MLNO0840"

READ (REL3 ,ERR=600, END=900)

600 PRINT *, 'ERROR ON READ'
PRINT 700, STATBLK
700 FORMAT (1X, °*STATUS BLOCK®' /
1 1X,04,2X,15,2X,03,2X,12,2X,
1 A10,2X,15,2X,15,2X,15,2X,A30)
900 CLOSE(REL3)
TERMINATE
END

Figure 4-1. Establishing a Data Base Status Block

ERROR CHECKING

Error checking should be performed after every
operation on a realm or relation. Two methods are
available:

e Test the error code in word 1 of the data base
status block after every operation. For
example:

OPEN(CFILE)
IF(STATBLK(1) .NE. 0)...

e Include the ERR option on the DML statement as
appropriate and handle status block printing in
one specific section of the program. For
example:

OPEN(CFILE,ERR=50)

50 PRINT 60,STATBLK

STATUS CHECKING

Status checking should be performed as appropriate
during relation processing to determine control
breaks and null occurrences. Testing is performed
on words 7 and 8, respectively, of the data base
status block. (For more information about control
break and null occurrence, see section 3.)

Word 7 indicates the lowest rank on which a control
break occurred. A nonzero value 1in this word

indicates a control break. To test for a control
break, you can include a test on word 7 in your
program. For example:

READ(CFILE)
IF(STATBLK(7) .NE. O)...

60483500 A

ofe

/(-\\

oo

©0O

TABLE 4-2. STATUS BLOCK CONTENT
Word Content Comments

1 The CDCS or CRM octal error code for the Only error codes are returned. Status codes indi-
Llast data base operation on a realm or a cating null occurrences or control breaks are not
relation, returned in this word. A zero value indicates no

error occurred. Use 0 format for printing.

2T A sub-schema item ordinal for CDCS errors Item-level errors are associated with data valida-
occurring at the item level. tion and data base procedures established by the

: data administrator in the schema, and with CDCS
record mapping. A zero value indicates no error
occurred. Use I format for printing.

3T A CRM octal code indicating file position Code values are:
of the realm when the Last data base oper-
ation was performed. The code is returned 01g Beginning-of-information.
for open, close, read, and start opera-
tions. For a relation operation, the code 10g End-of-keylist. The last primary key value
indicates the file position of the root associated with a given alternate key was
realm. returned during a read operation using an

alternate key value.

20g End-of-record. A record was returned during
a read operation.

1008 End-of-information. A sequential read
operation was attempted after the previous
operation returned the last record in the
realm.

Use 0 format for printing.

4T Not used (reserved for CDCS).

5 The name of the function being performed If no error has occurred, this word contains no
when an error or relation condition oc- valid information. Use A10 format for printing.
curred; the name is left-justified and
blank filled.

6TT The rank of the realm on which a CDCS or A zero value indicates no error occurred. Use
CRM error occurred during a relation oper- I format for printing.
ation. (The ranks of realms joined in a
relation are numbered consecutively, with
the root realm having rank 1.) ’

YTT The Llowest rank on which a control break ALl realms in the relation with a rank greater than
occurred during a relation operation. the rank stored in this word also have control

breaks or null status. (Null status overrides

control break status.) A zero value indicates no
control break occurred. Use I format for printing.

BTT The lowest rank for which there was a ALL realms in the relation with a rank greater than
null record occurrence during a relation the rank stored in this word also have null occur-
operation. rences. A zero value indicates no null occurrence.

Use I format for printing.

9,10,11 The name of the realm on which an error A blank value indicates no error occurred; a blank

occurred; the name is left-justified and
blank filled.

value also can indicate the error occurred on an
operation not associated with input/output or
occurred on an input/output operation not explic—-
itly requested by the application program. Use A30
format for printing.

?Uords 2, 3, and 4 are treated as a single unit by CDCS; lLength must be provided for all three words if
information for any portion of the unit is to be returned.

TTHords 6, 7, and 8 must all be defined to obtain any one word of relation status information.

60483500 A

4-3

Word 8 indicates the Llowest rank for which there
was a null occurrence. A nonzero value in this
word indicates a null occurrence. Since the right
bracket character (]) is stored in a null record,
you would probably want your program to bypass
printing or move spaces to the print line. To test
for a null occurrence, you can dinclude a test on
word 8 in your program. For example:

READ(CFILE)
IF(STATBLK(8) .NE. 0)...

DEFINING RECOVERY POINTS

Protection of the data base is a primary concern of
the data administrator. This individual employs
all of the available CDCS resources to guarantee
the data base is not inadvertently lost or
destroyed as a result of system failure or entry of
incorrect data. Although you might not be aware of
it, record 1images are being recorded on special
files called Log files during data base
processing. If problems develop, these log files
are used by the data administrator to recreate all
or specified portions of a data base.

Sometimes it is important to select certain points
in an application program to which the data base
can be vrecovered and the application program
successfully restarted. Incorporating these
recovery points dncurs a considerable amount of
overhead and if wused extensively, can impact
throughput; therefore, the determination to include
recovery ‘points is always made by the data
administrator.

Recovery points can be established in your program
through a call to the DMLRPT routine. The call
marks the point for recovery purposes. The format
of the call is:

CALL DMLRPT (number,comment)
where

number = the name of an integer field to which
CDCS 1is to assign a unique recovery
point number

comment = the name of an array containing a
30-character explanatory comment
about the recovery point

It is your responsibility to establish the number
field and to declare the field as type INTEGER.
You might want your program to save this number for
reference purposes. It is also your responsibility
to establish the comment field and to declare the
field as a 3-word array.

In a program using the sample sub-schema AVERAGE
shown in section 3, a recovery point definition
appears as shown in figure 4-2. Routine DMLRPT is
called immediately after a write operation. The
number that CDCS assigned is printed out in the
example only for reference purposes. Execution of
DMLRPT causes the application program to be
suspended and the following events to occur in the
order given: :

b=4

1. ALl input/output buffers for schema data base
areas associated with sub-schema AVERAGE are
flushed.

2. A recovery point log record is written to the
log file for the data base. The CDCS-assigned
recovery point number (NUM) and the comment
PROGRAM RCVEXMP are stored in the log record.

PROGRAM RCVEXMP
INTEGER STATBLK(11)
INTEGER NUM(10)
CHARACTER *30 CMT
SUBSCHEMA (AVERAGE)
INVOKE
CALL DMLDBST(STATBLK,11)
PRIVACY(CFILE,MODE=I,PRIVACY="XX99')
OPEN(CFILE,ERR=100)
CMT='PROGRAM RCVEXMP'®
IDENT="122-13-6704-10"
STUDENT="122-13-6704"
COURSE="CHM103"'
WRITE(CFILE, ERR=500)
CALL DMLRPT (NUM,CMT)

30 PRINT 40,NUM

40 FORMAT(1X,110)

900 CLOSE(CFILE)
TERMINATE
END

Figure 4-2. Defining Recovery Points

After execution of the DMLRPT routine, you are
assured the data base can be recovered to its
current state.

AVOIDING CONSTRAINT
VIOLATIONS

The data administrator incorporates constraints in
the schema for the purpose of protecting
interdependent data. Constraints can be defined
for two logically associated items within a single
file (single-file constraint) and for two logically
associated items within two files (two-file
constraint).

Consider an employment file in which each record
occurrence contains an employee number and a
manager number, where the manager number conforms
to the structure of the employee number.
Figure 4-3 illustrates this concept. Assume, for
example, the data administrator designed the schema
with the following single-file constraint:

MNGR-NO DEPENDS ON EMP-NO

In this example, MNGR-NO (the child item) is
dependent upon EMP-NO (the parent item). This
means that no occurrence of the child record can

exist in the data base unless an occurrence of the
parent record also exists with the same value of
the associated data item. Also, no parent record
can be deleted if a child record exists with the
same value of the associated data item.

60483500 A

C O

W/

ehe

ol

O

o N/

The parent item in a single-file constraint is
always a primary key or an alternate key with no
duplicates; the child item is a primary key or an
alternate key, and the alternate key can have
duplicates. You would violate the constraint
presented in the example if you attempted to do any
of the following:

® Store an employee EMPLOYMENT record if an
EMPLOYMENT record for the referenced manager
does not exist. (An organization could not
recognize a manager who was not first an
emp loyee.)

e Change the value of the parent item (EMP-NO) if
a corresponding child item (MNGR-NO) exists.
(An organization could not change an emp lLoyee
number as long as references to the old number
existed.)

e Delete a manager EMPLOYMENT record if an

employee EMPLOYMENT record with the
corresponding manager number exists. (An
organization could not remove a manager while
an employee was still reporting to that
individual.)

In a single-file constraint, at Least one record
exists that has no parent record. This situation
occurs in the single-file constraint example for
the employee who has no manager. The record for
this employee must have the same value for both
EMP-NO and MNGR-~NO.

If you are creating a file on which a single-file
constraint has been imposed, take the following
steps in the order given:

1. Create the file with record occurrences of the
items that have no parent.

2. Close the file.

3. Reopen the file for input/output and add the
record occurrences of the child items. (Ensure
that a parent record occurrence exists before
adding any corresponding child item.)

For a situation involving a two-file constraint,
consider a course file and a curriculum file.
Assume that the data administrator designed the
schema with the following two-file constraint:

COURSE-ID OF CURR-REC DEPENDS ON
COURSE~ID OF COURSE-REC

The records of the two files and the data items
associated in the constraint are shown in
figure 4-4. CURR-REC (the child record) 1is
dependent upon COURSE-REC (the parent record) if
there s a correspondence between them. A
correspondence exists if the child record and the
parent record each contain the same value for the
common item, which is COURSE-ID in this example.

Manager EMPLOYMENT Record

Employee EMPLOYMENT Record

EMP-NO MNGR-NO

(Primary Key) | (Alternate Key) ADDRESS | SALARY j:>
EMP-NO MNGR-NO

(Primary Key) | (Alternate Key)| ADDRESS | SALARY

Figure_4-3. Single-File Constraint Example

COURSE-REC COURSE=ID ¢oypsE-NAME SCHOOL ... | PROF-1D

(Course File) (Primary Key)

CURR-REC IDENT - COURSE-1D

(Curriculum File) (Primary Key) STUDENT-ID (Alternate Key) | """ UNITS :>>

Figure 4-4. Two-File Constraint Example

60483500 A

4-5

You would violate the contraint presented in the
two-file constraint example if you attempted to do
any of the following:

e Delete a COURSE-REC occurrence if a
corresponding CURR-REC occurrence exists. (The
university could not drop a course from its
curriculum while a student was still enrolled.)

e Change the COURSE-ID value of a COURSE-REC
occurrence if a corresponding CURR-REC
occurrence exists. (The university could not
change the identification code of a course as
long as a student's record still uses that
code.)

@ Add a CURR-REC occurrence if a corresponding
COURSE-REC occurrence does not exist. (A
student could not be enrolled in a course that
was not being offered by the university.)

If you are modifying the common item of a file on
which a two-file constraint has been imposed and
the common item is a primary key, take the
following steps in the order given:

1. Write the parent record with the new value in
the common item.

2. Read a dependent child record, and change the
value of the common item to the new value of
the parent record. Rewrite the child record.
(Perform this step for each child record of the
parent.)

3. Delete the parent record with the old value.

If you are modifying the common item of a file on
which a two-file constraint has been imposed and
the common item is an alternate key, take the
following steps in the order given:

1. MWrite each child record containing the old
value of the item to a temporary file.

2. Delete each child record containing the old
value of the item from the data base.

3. Read the parent record, and change the value of
the data item to the new value. Rewrite the
parent record.

4. Read a dependent. child record from the
temporary file, and change the value of the
common item to the new value of the parent
record. Write the child record to the data
base. (Perform this step for each child record
of the parent.)

Since constraints are established in the schema and
not indicated in any way in the sub-schema, it is
the responsibility of the data administrator to
supply you with this information. By being aware
of constraints, you can anticipate violations and
prevent them from occurring in your application
program.

When a constraint dis violated, CDCS aborts the

particular operation, returns a nonfatal 601g
error code, and continues processing. The .error
message identifies the record on which the
4-6

attempted violation occurred. Whenever you are
writing, deleting, or rewriting a record, the
appropriate data base status block entry should be
tested.

constraint

Two general rules to remember for

processing are:

® Always delete a child record occurrence before
deleting the parent record occurrence.

® Always write the parent record occurrence
before writing a child record occurrence.

ANTICIPATING DEADLOCK
SITUATIONS

CDCS allows concurrent access to a data base. This
means that two or more application programs can
access the same file (realm) at the same time. The
following can take place:

e Two or more application programs can open the
same file for input and perform simultaneous

read operations.

® One application program can open a fite for
input/output and perform update operations,
while other programs can open the same file for
input and perform simultaneous read operations.

e Two or more application programs can open the
same file for dnput/output, but only one
program can gain immediate access to a
particular record to perform update operations.

The integrity of the data base is maintained
through CDCS locking mechanisms: the record
locking mechanism and- the file locking mechanism.
CDCS holds a Llock for an application program and
prevents update of the Locked file or record by any
other program.

An application program causes the CDCS record
Llocking mechanism to be in effect by opening a file
for dinput/output and not Llocking the file. When
the CDCS record locking mechanism is in effect,
CDCS always Llocks a record for an application
program when that program reads a record. Other
application programs can read the Llocked record but
can not update the record. The record lock does
not affect access to other records in the file.
CDCS releases the record lock when the application
program for which the Llock is held rewrites or
deletes the record, reads another record, or closes
the file.

An application program causes the CDCS file locking
mechanism to be in effect by issuing an explicit
lock request (that is, by execution of the DML LOCK
statement). When the CDCS file Llocking mechanism
is in effect, CDCS Llocks the entire file for the
requesting program. Other programs can read that
file if they have opened it for input; programs
that have opened that file for 1input/output can
neither read nor update.

Table 4-3 Llists the various locking operations and
their effects. k

60483500 A

.

)

AN
"

oo

olle

O
O

TABLE 4-3. LOCKING OPERATIONS

Operation

Effect

An application program opens a realm for input/output
and includes a DML LOCK statement. (This should be
avoided whenever possible.

An application program opens a realm for input/output
without including a DML LOCK statement.
An application program opens a realm for output with-

out including a DML LOCK statement.

An application program opens a relation for
input /output.

CDCS locks the entire realm against update by other
users. An unlock or close operation by that pro-
gram releases the lock.

CDCS Locks the record on the read operation. A
rewrite, delete, or another read operation by that
program releases the Lock.

CDCS Locks the entire realm. A close operation by
that program releases the lock.

CDCS Llocks all records in a given relation occur-
rence. A rewrite or delete operation by the pro-
gram releases the lock on the record updated. The
next relation read operation by that program re-
Lleases the record locks on the files for which a
new record has been read.

If your
resources, your program should always test for
deadlock status before attempting to update a
file. If deadlock occurs, your program should
reestablish the Llocks that it held
continuing further processing.

Whenever two or more application programs contend
for locked resources, which are files or records, a
deadltock situation can occur.
when two programs, each
resource locked, attempt to lock a resource that is
locked by the other program.
continue processing, because neither program can
obtain the necessary locks. CDCS automatically
releases the locked resources of one program. The
other program then can obtain the locks it requires
and can continue processing.

Contention occurs
having at Lleast one

Neither program can

When CDCS has detected a deadlock situation and has
reieased the Llocked resources of an application
program, CDCS issues the deadlock error status code
663g to that program.
established the data base status block, the program
can check the first word for the deadlock code.

If the application program
several

program must have Llocks on

before

An example illustrating deadlock processing appears
in figure 4-5.

Files joined in relation REL3 are

60483500 A

PROGRAM DEADLCK
INTEGER STATBLK(11)
SUBSCHEMA (COMPARE)
INVOKE
CALL DMLDBST(STATBLK,11)
PRIVACY(CFILE,PRIVACY="'XX99")
OPEN(REL3,ERR=100)
PROFID='JMS00160"*

30 READ(REL3,KEY=PROFID)
IF(STATBLK(1) .EQ. 0"663") GO TO 30

900 CLOSE(REL3)
TERMINATE
END

Figure 4-5. Deadlock Processing

opened for input/output. The program presumably is
reading a record prior to update and CDCS has
locked all records in the relation occurrence. The
example dincludes a test of word 1 in the status
block to enter a Lloop in case of deadlock. 1In the
loop, the program attempts to reestablish the locks
and checks for deadlock.

4-7

O

oo

o
O

DEVELOPING FORTRAN PROGRAMS S5

FORTRAN application programming in the DMS-170
environment relieves you of several respon-
sibilities. For example:

® You do not have to describe data within your
program; the data administrator incorporates
data descriptions in the schema and sub-
schema. Data descriptions in a sub-schema are
included in your program.

® You do not have to write conversion routines;
CDCS handles all conversion for you.

® You do not have to write all routines that
perform validity checking; the data admin-
istrator generates data base procedures, which
are specified in the schema and called at
appropriate times.

e You do not have to write separate logging and
recovery utilities; the data administrator
provides for data base restoration by speci-
fying logging operations in the master
directory.

® You do not have to be concerned with the
details of input/output; CDCS handles them.

DEVELOPING AN APPLICATION
PROGRAM

To develop a DMS-170 application program, you must
do the following:

® Obtain a Llisting of the sub~-schema from the
data administrator.

® Obtain the name of the sub-schema Llibrary from
the data administrator.

e Obtain the appropriate privacy keys from the
data administator. B

e Be aware of any constraints that have been
incorporated in the schema.

® Include appropriate DML statements 1in your
FORTRAN program.

COMPILING AND EXECUTING
THE SOURCE PROGRAM

To compile and execute a DMS-170 FORTRAN
application program, you must do the following:

1. Attach the sub-schema Llibrary for DML pre-
processing of the source program.

2. Include a DML control statement for DML pre-
processing of the source program.

3. Include an FIN5 control statement that
specifies the DML output file as the input file
for the FORTRAN 5 compiler.

4. Include an LDSET control statement for Lloading
the system Library for execution of the source

program.

5. Include the name of the file containing the
relocatable binary program (LGO is the default
name) to execute the program.

DML statements are preprocessed before source
program compilation. The DML preprocessor trans-
Lates the DML statements into appropriate FORTRAN
statements. When translation is complete, the DML
preprocessor writes the FORTRAN source program to
an output file with the default name DMLOUT. This
output file, complete with translated DML state-
ments, becomes the input file to the FORTRAN
compiler. A block diagram ijllustrating FORTRAN/DML
preprocessing is shown in figure 5-1.

The DML control statement calls the DML preproc-
essor. A Llist of DML control statement parameters
is shown in figure 5-2.

The statements required to execute the DML
preprocessor and to compile the source program are
shown in figure 5-3.

The statements required to execute the DML
preprocessor and to compile and execute the source
program are shown in figure 5-4. An LDSET control
statement naming the system (ibrary, DMSLIB, must
be included for program execution.

FORTRAN Source DML
Program Preprocessor
(includes DML (translates
statements) DML statements
to FORTRAN)

pmLOoUT FORTRAN

(default Compiler
output file)

Figure 5-1. FORTRAN DML Preprocessing

60483500 A

5-1

DML(p1,p2,p3,p4,p5,p6,p7)

p1 $B=Lfn Name of file containing sub-schema T Trivial. The syntax of the usage
Library. is correct, but it is questionable.
SB Same as SB=SBLFN. W Warning. The syntax is incorrect,
but the processor has been able to
$8=0 Not allowed. recover by making an assumption
about what was intended.
omitted Same as SB=SBLFN.
f Fatal. An error prevents DML from
p2 LV=F5 Specifies FORTRAN 5. processing the statement in which
it occurs. Unresolvable semantic
Lv Same as LV=FS. errors also fall into this
category. Processing continues
omitted Dependent on installation. with the next statement.
p3 I=Lfn Name of file containing FORTRAN C Catastrophic. Compilation cannot
source program with added DML continue; however, DML advances to
statements to be preprocessed by DML. the end of the current program
unit and attempts to process the
1 Same as I=COMPILE. next program unit.
omitted Same as I=INPUT. ET Same as ET=F.
1=0 Not allowed. omitted Same as ET=0.
p4 0=Lfn Name of file to which translated ET=0 The job step is not to be aborted
version of FORTRAN source program is even if errors occur (except for
to be written. DML statements control statement errors).
appearing in FORTRAN program are
translated into FORTRAN statements T and W errors do not invalidate the output
before being written to this file. file produced by DML (the file specified by
the 0 option). The translated code on the
0 Same as 0=DMLOUT. file can still be compiled (barring any errors
not related to DML), but the results might not
omitted Same as O=DMLOUT. be what the user intended. F and C errors,
however, produce an output file that cannot be
0=0 No output is produced. successfully compiled by FORTRAN.
p5 E=Lfn Name of file to which error p?7 DS Directive suppression. Listing
diagnostics are to be written. control directives are not generated;
all FORTRAN statements generated by
E Same as E=ERRS. DML preprocessing appear in the
FORTRAN source Listing.
omitted Same as E=OUTPUT.
omitted Listing control directives are
p6 ET=op Error termination code. Four Llevels generated; FORTRAN statements
of errors are defined; if an error of generated by DML preprocessing of the
the specified level or higher takes SUBSCHEMA and INVOKE statements do
place, the job is aborted to an not appear in the FORTRAN source
EXIT(S) control statement (NOS/BE) or listing.
EXIT control statement (NOS). The
abort does not take place until DML FORTRAN CALL statements generated as a result
is finished. The possible values for of executable DML statements always appear on
op, in increasing order of severity, the FORTRAN source Llisting regardless of DS
are as follows: specification.
Figure 5-2. DML Control Statement
5-2 60483500 A

1/4,\w

ole

©0

Job statement
USER statement }
CHARGE statement
ACCOUNT statement
ATTACH(sub-schema-Library)

DML (§B=sub-schema-library ,LV=F5)

FTNS (I=DMLOUT)

End-of-record

FORTRAN source program containing DML statements
End-of-information

NOS only
NOS/BE only

Figure 5-3. Executing DML and Compiling
the Source Program

Job statement
USER statement }
CHARGE statement
ACCOUNT statement
ATTACH(sub-schema-Library)

DML (SB=sub-schema-library,LV=F5)

FTNS (I=DMLOUT)

LDSET(LIB=DMSLIB)

LGO.

End-of-record

FORTRAN source program containing DML statements
End-of-information

NOS only
NOS/BE only

Figure 5-4. Compiling and Executing
the Source Program

SAMPLE PROGRAMS

Sample programs appear in the remainder of this
section. Each program wuses the data base
environment that is established and illustrated in
appendix C. You should read this appendix to
become familijar with the schema, sub-schemas, and
stored data before examining the FORTRAN programs.

60483500 A

When the DML preprocessor translates DML statements
into FORTRAN statements, the FORTRAN statements can
be printed out or suppressed, depending on the
setting of the DS parameter on the DML control
statement. When the DS parameter is included, all
FORTRAN statements generated by the DML
preprocessor appear in the FORTRAN source Llisting.
When the DS parameter is omitted, Llisting control
statements are generated and inserted immediately
after the SUBSCHEMA and INVOKE statements;
therefore, the FORTRAN statements generated by DML
preprocessing of these statements do not appear in
the FORTRAN source Listing.

Listing control directives appear in the sample
program source Listings in the following form:

c$ LIST(ALL=0)
cs LIST(ALL)

These directives are generated automatically by the
DML preprocessor. They appear because the DS
parameter in each DML control statement was
omitted. Notice, however, that CALL statements
generated as a result of executable DML statements
appear regardless of the DS parameter setting.

Each sample program is illustrated by including the
control statements, the source program statements,
the compilation Llisting, and the output of program
execution. The programs are:

Program RATING Figure 5-5
Program INDAVGE Figure 5-6
Program RELATE Figure 5-7

Program CHARGES Figure 5-8

Program ADMIT Figure 5-9

S

TN
L
TN
hy

«<
(g 30 | 399ys) ONILVY weuboug “G-g aunbiy m
pJ033u-j0-puz 2
aN3
JLYNIWYIL
(31142)35012 08
(Le94’xL I

/ ST 39VY¥3IAV, ‘XL) LVWY¥Od 9]

101762 INI¥d
N / W10L=1V1O0L 02

08 oL 09

(OEV/X27SI/X2/S1“X2/S1“X2“0LY l

“%X2721/%X27€0/X2°S1X2/907X1 l
/ 422078 SNLVLS.“XL) LVWNO4 09
ABLYLIS‘09 INI¥d 0s

0z oL 09

3QVY¥9 + VI0L=TVLO0L

L+N=N

02 0L 09 (0°0"©3°30V¥9) 41
(02=AN3/0S=¥¥331149) AV 02

0=1v10L

0=N

(0S=¥43/31149)N3d0

(166XX1=AIVATYd’ 31140 AIVAT UG

(LLYXT18LVLS) LSEA WA TIV)

3NOANT
(39VY3AY) YWIHISANS
CLLYNISLVLS ¥393INI

“NOILNTOS 3HL

100 SINIY¥J ONV 3FOVHIAY 3HL SILVINITIVI NIHL WYY90¥d 3IHL
©403 NO OZ IN3W3LVLS OL TOYINOD SYIJSNVYL INIWALYLS qvVIY
WA 3HL NO ¥3L3WVHVd ON3I 3HL °S3AVYD IN3ANLS TV 40 avIy
TIVIIN3ND3S V SW¥O0J¥3d WYYS0¥d FHL “7TOOHIS IHL ¥04 IOVYIAV
JHL SALVINDTIVI ANV S3IGVYD LINIANLS 1TV SAVIY WVA90Ud SIHL

LVLoowooooo

ONILYY WYd90¥d
weJbodd 994nog

PJOJ3d-4j0=-pPU3

, 091
(8ITSWE=817) 13807
(LNOTMWA=T)SNLd
(S4=A17817155=86S) W
(8ITSSIHIVLLY
juswajels 3IOYVHI
juswaiels yasn
juawaiels qor

SjuaWale3s 10J43u09

5-4

(€ 30 2 139ys) ONILVY wesboug *g-g aunbL4

aN3 16

AN3WA 1Y) 06

JLYNIWY3L ¥ 68

(L000“1000464)S19IWa 1V 08 88

(31142735071 P .8

(L 9d’XL [98

/ ST 3OVY3AY, “XL) LVWYOA (] $8

VL0152 INI¥d Y8

N / YLi01=1V10L 0 €8

08 0L 09 28

(0EV/X27SI“X27SI“X2/S1“X20LY L 18
IX27217X2750“X27SI /X2 %0’X1 L 08

/ 12078 SNLYLS,‘XL) LVW4O4 09 6

H18LVLS‘09 INIY¥d 0s 8.

0z oL 09 2

QY49 + WL0L=VLOL 9L

L+N=N s

02 0L 09 (D°0°®3"3QV¥9) 4T 9.

¢ 02+’ 0S+*“1”17100071000480) Q¥ IWA 1V 02 €
(02=GN3“0S=¥¥3/31142) avI¥ - 2L

0=v10L 1

0=N 0L

¢. 0S*‘0IHZ2/L000”100048G)NOTWA TV 69

. (0S=¥¥3731142)N3d0 > 89
Cu :\: :\: Qoxx:\:oo..o.v 19
‘100070717 L)AYdING TIVD 99
C166XX1=AIVAIYd’3TT4D) AIVATYd P $9.

(LL19LYLS) L1SE8CTING 1Y) %9
(ul201905%192£0L5Y1555.,07 HOL+ €9
HOLY 39VY¥3AVHOL/10004807L000) ANI WG TVD 29
(T LSIT $ 19

(0=11¥) LSI1 $

INOANI *¥

VILSIT $)

(0=TV) 1817 $

(39VYIAY)VWIHISENS »
CLLINTELYLS ¥3I93LNI

“NOILNT0S 3IHL

N0 SINI¥d GNV 3OVHIAV IHL SILVINIIVI NIHL WY¥OONd IHL
°403 NO 02 LN3IW3LVLS OL TONLNOD S¥IJSNVYL INIWILVLS av3y
WG 3HL NO ¥3IL3WYYVL ON3 3HL °S3QV¥9 IN3ANLS 1TV 40 avay
AVILNIND3S V SWH0JY¥3d WY¥90Ud 3HL “TT00HIS 3HL ¥04 IOVY3AY
FHL SALVINITIVI ANV S3IAVY9 IN3IANLS 1TV SAVIY WVAOON¥d SIHL

oo
CTAMTNONODOO NN ONM
=N nin

ONILYY WY¥90¥d

8ES+L°S N1d . 0=1d0 921/9Z ONILYY WY¥90¥d

Bur3sty uog3eq tdwo)

O

5-5

60483500 A

VAN
\Mf‘ ’y‘

® >

(£ 30 ¢ 133ys) ONILVY wesboud °g-g aunbLy

88
S8
€8

43¢-~-~$311Y¥3d0Y¥d--~---SSIYQGAY-138V 1~

1

ViW¥04

SAN0J3S 6£0°0
%202 = 800409

S =849

971 = &eee
899 08 6L
8Lzl 71 82
819 0L €L

9°€
ST ‘39VY3IAVY

uoL3je]Ldwo) wedbodqd wod4 3nding

IWIL 3TIdW0D

a3sn 39VI0LS WIS

HL9N3T NOWWOD 4377138V WIS
HLON3T LINN-WYIO0Ud

-=SJILSIlViS~-

0 85 ONILVY
-==SOYV--$S3YAQV~~-3WYN-
(V=0T)--SLNIOd AYINI-~

1VW304 a0lL 09
29s 0s
a0y 02

-43¢=~=~~$311¥3d0¥d-~~---SS3Yq4QV-138V1-

(V=0T1)--$738V7 INIWILVLIS—~

JISNIYINI 3 JI¥aN3® 4201 anILnoyans 9 ANITNG
ANILNOYENS 9 ay¥TWa anNILnoyans 0 AN3TWa
aANILnodans] AddTWa 3aNILNOY¥ENS 2 18847Wa
ANILNOYENS Y NdOTWa 3NILnoyans 2 $7197Wa
SSV1D SOYY 3dAL JWYN- =====S8Y 1)mwnnee§OYY = mmemmnIdA L~ == =m-FWYN~
(¥=07)--$34NQ3004d-~
13 YIOILINI 8502 AaLvis
3y alee aviol Y393INI 8022 N
L L¥dYH) /1000807 8L IN3aNLs YL#¥VH) A®3 /L00084/ €0 IN34aI
v /vv10004/ €0 Qv Y3931INI /00008a/ 82 aInyac
4 43931INI /000084/ €09 L0ooi8q l Y393UINI /00008¢/ 80L 18713484
¥393UINI /000084/ @yl Looosaa € Y3I93INI /000084/ €0 Wiv3yed
Y393 INI /000080/ 8¢ lvisaq L*¥VYH) Ad3 /100080/ €0 L00018¢
€ Y393UINI /00008a/ 8y WYNJSE8a 11 Y393UNI /000084/ 8si 1000380
3 4393INI /00008¢/ €Ll 1000484 9%YVH) /100084/ 82 3S¥N0I
3718§=========3dAl~-=--==8IT 1 YIdOYd~~---)2018~~SSIUAGY-~=-JWYN- 3718-========IdAl~w=m===SIT LYIdOYd~~===-NI0 VG~ ~S$THAQV~~~IWYN~

(V=0T)--dVi 318VIY¥VA--

60483500 A

5-6

(¥ 40 | 383Ys) 3IOAVANI weaBoud "9-g au4nbiy

pJ402334~-10-pUZ

aN3
JLYNIWYIL
(37142)3501)
(OEV/X2781/X27SI“X2’/S1/X2/0LY
“X2721°X27€07X2’S1“X2/ %07 X1

/ 42078 SNLVLS,“Xl) LVWYOd
AELYLS‘09 LNI¥d
13714 INANT ALdW3, “* INIY¥d
00L oL 09
0L 0L 09 (4ON, "®3" TYNI4)4I
L9 /XELLY/X6700u) LYWNO4
V1017410710 ‘S2 INI¥d
N / W10L=TvLO0L
0¢ 0L 09 (D *®3" N)4I
4IaN3

02 0L 09 (QIQI0 °d3* INIANLS)II
38713

+S3A=TUNIZ
N3HL (00Lu0 “®3" (£INIELVLS) 4TI
(0S=¥¥3731142)av3y
41aN3

3AYY9+IVLOL=TTVIOL

L+N=N
N3HL (0"l *39° 3qQvy9)4I
LIN3ANLS=41410
0°0=1v10L
=N
0% 0L 09 (,.00L,0 °®3" (S)N1ELYLS)AI
(0S=¥¥3731149) vy
(0S=¥¥3“3TI4I)IN3dO
C166XX1=AIVATYAIIT4I) AJVAT YL
(LL/A18LYLS) LSEaTWE 1Y)
INOANT
1ON=TTUNIS
(39VY¥3AY) YWIHISANS
L1*QIQT0 ¥3LIVHVHI
£¥TYNIJ ¥ILOVYVHD
(LLMIBLYLS ¥3I9ILNI

"403 ¥0d SMIIHD N1ELVLS 40 quOM
QYIHL 3JHL ONILS3L “Q3SN3IS SI 303 ILNN 3714 IHL Qvay
0L SINNILNOD N3HL “39YY3AV IHL SINI¥d ANV S3ILYINIIVI
WYY90dd 3HL “SIONVHI QI INIANLS IHL NIHM "aI IN3ANLS
1S¥I4 3IHL S3AVS AVIY LSYI4 3FHL °S3IOVY3AV TYNAIAIANI
S3LYINITVI ANV S3AVYD LINIANLS 7TV SAVIY WYYOONd STHL

JIAVANI WYY¥903d

weJdbodd 3dJnog

ooL

09
0s
oy

113
114

02

oL

Cuoouwowouwov o

pJ0934-40-pug

“091

(8ITSWa=8171) 13847
(1LNOIWA=TI)SNLS
(S4=A18115$=8S) WG
(8I7SS)HIVLLY
juswaieis IOYVYHI
Juawalels yasn
juswajeis qop

SJuswalels J1043U0)

60483500 A

O

) >)

A

~

(¥ 40 2 3294S) IDAVANI WedBodg *9-g aunbiy

N / TvLl0l=1vLi0L
0€ 0L 09 (0O °d®3° NYJI

16
06
4I0N3 68
02 0L 09 (4IQ10 “®3° IN3ANLS)4I 88
3s73 .8
1S3A="1YNIS 98
~ N3HL (,00Lu0 *03° (£)N18LV1S)II (1]
¢ 0S*70“1“1000“100048¢) ¥4 IHA TV %8
(0S=¥4337142) av3y *x €8
41aN3 28
, 3qYY9+Y10L=1V.10L 18
L+N=N 08
NIHL (0°L "39" 3aQvy9)dI 02 6L
IN3GN1S=a1070 8.
0°0="1vl0L Ll
0=N oL 9L
0% 0L 09 (.0O0LuO "03° (£)MN18LVLS)dI sl
(0S+“07171000710004€4) G¥ WA 1VD Y2
(0S=¥43/371142)av3y ¥ €2
¢ 0$*“0IHZ/100071000480)NdOTWA TV 22
(0S=¥Y¥3/31149)N3dO - (W3
Cn :\: :\: OOXX:\:OQ:O._v 02
‘100070717 L)AYdING 1TV 69
. C166XX1=AIVAT¥L/31T4D) AIVATYd > 89
(LL2181YLS) LSEATWa TIVI 29
(1201907192501 €Y 155507 HOL+ 99
HOLY 39V¥3AVHOL/100048G/1L000) ANITWA TTV2 s9
1) 1817 $2 %9
(0=1Y) LSIN $ 09
INOANI ¥ 6S
1ON=1VYNIJ 8S
(M) L1811 $ 28
(0=TIV) 1SI7 $ vl
(39V¥3AV) YWIHISENS E el
LL*QIQI0 ¥ILIVYVHI 2t
€xTYNId ¥ILIVAVHI I
CLL)N1ELVLS ¥3IDILNI oL
3 6
"403 ¥0d4 SMIFHI HN1GLYLS 4O QUOM 2 8
QYIHL 3JHL ONILS3IL *43SN3IS SI 403 TILNN 3714 3IHL av3¥ I L
0L S3NNILNOI N3IHL “39V¥3AV 3HL SINI¥A GNV SILYVINITVY I 9
WYY90¥d 3HL ‘SIONVHI 4I INIANLS 3HL NIHM QI IN3ANLS I S
1S¥T4 3HL S3AVS QV3¥ LSHI4 IHL "SIOVYIAV TVNAIAIONI I 4
SILYINITVI ANV SIAVYD LIN3ANLS TV SAYIY WVHD0¥d SIHL I €
i) 2
IOAVANI WY¥S0¥d L
8ES+L"G NLd 0=1d0 921/92 JOAVANI WY390¥d

buL3siy uoije)Ldwo)d

60483500 A

5-8

(¥ 40 ¢ 393ys) 3IOAVANI wesboud *"9-g aunbiLy

20l ayzL 001 %6 ayil o€
86 LYWH04 8261 09 €6 LVWy04 avsl c2
26 azzl 0s 6L ass 02
96 a0zt oY 9 €0$ oL
43¢---~$31143d0Yd-----$SI¥AaY-138Y 1~ 434--~-§31143d0Y¥d----~-$S3Y¥aav-13av1-
(¥=0T1)--$138VT INIWILYLS-—
JISNIYINI L J1¥3N35 4301 aNILNOYENS 9 ANI WG
3NILno¥ENS S a¥Ne aINILNOY¥SENS 0 aN3TWa
aNILNOYENS 8 A¥dTWG aNILNOY¥ENS 2 1580710
3INILNO¥ENS Yy NdOWa 3INILNOYENS 2 $7127Wa
SSY1) SOYY———--—-=3dAL-=~===IWYN- SSY1) SOYY. 3dAL FWYN-
(VY=01)--S34NA3I0¥d~~
¥393INI /000084/ 8yl Looosea
Ivay €0zg Lol Y39ILNI /000084/ 8¢ lvissaq
LL*¥¥VHD /10008¢/ 8t 1N3anis g ¥3931INI /00008¢/ &% WYNJSEd
) ¥393UNI aL0s MaLvLs < ¥393INI /000084/ €Ll 1000484
LL*¥YH) a51¢ 41010 ¥393INI /00008¢/ €2 qaIndaq
Y393INI alls N L ¥393LNI 7000084/ €0L 1s73¥8aq
H1*¥4VHI A3 /L00080/ €0 IN30I 3 ¥393INI /000084/ €0 Wiv3yag
Iv3y /¥VL000d/ 80 qvyo L*Y¥VHI A®3 /100080/ €0 1000184
SxYVHD ayLs TYNIS s¢ ¥393INI /0000847 8sL 1000484
2 ¥393INT /000084/ €09 1000180 9%¥YHI /L00084/ €2 35¥N02
3218 3dAL $311Y¥3d0Y¥d-~---NH)018--SSTUAAY---IWYN- 32IS===m==m==3dAl-———~=~§ITLYIdOY¥d~—~~=XI018~-S SIYAQY~~~TWYN-
(¥=0T1)--dVi I1GVI¥VA~~
an3]
ANITWG 1Y) 201
JLVNIWY3L ¥ €01
(L000“1L000486)S12 WA T¥D Q0L 201
(371142)3501) xx 1oL
(0gY/X27S17X2/S1“X2751X2“0LY L ool
“X2721/X27507X2/SI1/X2790” XL l 66
/ 432078 SNLVLS.‘XL) LYWYO03 09 86
NELVLS‘09 INI¥d 0s L6
«37I4 INANI ALdW3.: ‘* INI¥d = O% 96
0oL OL 09 sé6
Ol OL 09 (,ON, "B3" TYNIJ)JI os %6
(L 94/XE LIV/X6700) LYWYOA §2 €6
V101741070 “S2 LNI¥d 26

60483500 A

RN

K:& v}v
AT
N

(% 40 & 190yS) 9AVANT weuBouy

*9«g dunbyy

SANOJ3S 250°0
92052 = 800209
§§ = 8.9
602 = Ql2g

6's 0012-91~289
0%y PLL-2L-849
8's 1202-68-£5S
s's 0925-4%-021
£€ £968-95-25Y
9°s Ovi2-Li-261
8's 0825-£5-92L
0%y 7029-51-221
bos 0925~99~021
s's 0985-22-001

UOLINJaxX3 Welbodg Wodg 3Indang

WIL 37IdW0J

q43asn 39vy0LS WIS

HLONIT NOWWOI 4377138V WIS
HLONIT LINN-WYYOOYd

==-SJILSIlViS~~

0. 8s JOAVANI

~==SOYV~~SSIUAAV-~-IWVN-
(V=0T1)~~SINIOd AYLNI~-

60483500 A

5-10

5-11

(¥ 30 | 393ys) 3LVT13Y wedbodd .-G 4nbL4

P4028J~-}40-puz

aN3

JLYNIWYIL
(113¥)38071) 0

(OEV/X2751/X2S1X2/S1“X2‘0LV i

7%2721/%X27€07%27S1/X2 %0 X1 L
/ M20718 SNLVLS.“XL) LyW¥od 09
N18LVLS/09 INI¥d 0s

SL oL 09

04 0L 09 (0°3N"(2)X18LYLS)4I
| (02=AN3/0S=Y¥3“1713¥)avIy 52
(L°94“XE/LLY/X670HL) LVW¥04 02
30Y¥97QILS) ‘02 INI¥d Sl

02 0L 09 (4 CCCCCCECCCE, "D3"AINAAVYS)AI

QILS=AINIAVS
(0S=4437QI1S=A3N’L13¥)avIY ol

10926-99-021,=0118

(0S=¥¥3“113¥)N3d0

C166XX1=AIVATNEYIT1T42) AIVAT Y

(LL181YLS) 1SAATIWA TTV2

INOANT

(NOILYI3¥) YWIHISENS

LLXAINIAVS ¥ILOVHVHD

CLLINELYLS ¥3IDILINI

“3V3¥E T0YLNOD ¥0d4 L1S3L V AQ 4IM0TT04 VILNIND3S

SI aQv3¥ ONOJ3S 3IHL °dY¥0I3Y TINN ¥O4 1S3l V A8 4IM0T04
WOAONYY SI QV3Y L1S¥I4 IHL °092¢-%%-021 QI IN3ANLS

¥0Jd SIAVYO SLINIY¥Yd ONY NOILVIIY A8 SAV3Y WYYD0¥d SIHL

oL w

31VI3¥ WYd90ud
weiboJd 99Jn0S

ULOOOLI%OI_ocm

*091

(8ITSWa=811) 13841
(1NOTWA=I)SNL1d
(S4=A1761155=8S) T3
(8ITSS)HIVLLY
juswaiels I9YVHI
Juawaiels ¥3sn
jusawajleis qor

SjuaWolels 10J3u0)

60483500 A

—,

(7 40 Z 393ys) 3LvI3y weuboud -G Bunbiy

an3 8cl
N3G TIVD 251
JLYNIWYIL *x 9¢L
(L000Y84Q“ LODONSAQ) ¥S1D WA TV 0L cgt
(1L13¥)3S0 ¥ 9¢1L
(0EV/X2/ST1/X27ST1/X2/S1“X20LY i gsl
‘X2721°X27€07X2/SI1‘X2 %0“X1 L 2¢l
/ 0078 SNLVLS.‘XL) 1VW¥O4 09 LEL
AELYLS/09 LNI¥d 0s ogl
Sl 01 09 621
0Z 0L 09 (0°3IN"(2INTELVLS) 4T 82l
¢ 02+ 0S+“1L“1L/1000”LOCONSG)TIWA 1V <2 221
(02=AN3“0S=¥43/1134) av3y ™ 921
(L=94/XE’LLV/X6“0HL) 1VW¥04d 0z szl
3QVY97QILS) ‘02 INI¥d (1 4 74"
04 0L 09 (. CCCCCCCCCCE,"®3"A3NIAVS)AT €21
QILS=AINIAVS 22l
. ¢ 0S*‘1000 + 12
4115007000070/ 100“ L1000 L0000 LOOO’ LOOONSA) ¥4 IWa V) oL 0zl
(0S=¥¥3/QI1S=A3N’L13¥)AV3IY *x 6LL
10928-Y-021,=011S gLl
. (0S*“0IH2/1000vEa’ LOOONEA) ¥NJOTWA 11V yANA
(0S=¥¥3717134)N3dO ¥ 9Lt
A: :\: :\: Qoxx.-\..oo..o... MFP
‘200070717 1) A¥JING VD il
C166XX1=AIVATYA’IT49) AIVATY > sLL
(LL/Y181V1S) 1SEGTIWG TVD 2Ll
(1€029€5192255%990L292,07 HOL+ LLL
‘ HOLY NOILVI3¥HOL’L00049G“2000) ANITWA 11V oLl
TV LSIT $) 601
(0=1)18I1 $9 L0l
INOANT *¥ ool
V) LSIT $ 66
(0=11¥) 1S11 $ L
(NOILYI3¥)YWIHISENS > oL
LL¥A3NAAVS ¥3LIVHVHD 6
(LL)NIBLYLS ¥393INI 8
b} L
“JV3¥8 0YINOI ¥Od4 1S3L V A8 Q3IMOTI04 IVILNIN®IS I 9
ST Qv3¥ ANOJ3S 3HL *q¥0I3Y¥ TINN ¥04 1S3i V A8 Q3IMOTI04 9 S
WOANVY SI QV3¥ LSUI4 IHL °092¢-¥%-02L 4I LINIANLS I R
Y04 S3QVU9 SINI¥d ANV NOILYVI3Y¥ AG SAVIY WYHOO¥d SIHL 2 €
b 2
31V134 WYH90¥d i
8ES+L"S N4 0=Ld0 921/92 31V713Y8 WY¥S0¥d

buLlsty uolieqidwo)

60483500 A

5-12

5-13

(¥ 40 ¢ 393Yg) 3LvI3Y weusbouyg =y-¢ aunbiry
SAN023s /.S0°0 IWIL 37IdW0I
%20s2 = 800209 43SN 3I9VY0LS WIS
90L = 8251 HLO9N37 NOWWOI 431138V WIS
€61 = 8l0g HLON3T LINN-WY¥90¥d
~=~SJI1SIlVLS—-
0 =19 EIRAE]
~==S9YY~--SSIYQQV-———IWYN-
(¥=07)--SINIOd AYLN3--
221 *S434 ONx G2
sel 8s0l 0L Y42 1VWy04 ayel 0e
Lel 1ViWy04 a.¢l 09 2l a9 Sl
ogl as0l 0s oel *S43Y4 ONx 0Ol
4334----$31L43d0Yd--~--SSIYQQY-138V 1~ 430----531143d0Yd~~---SS3¥qav~-138V1-
(V=01 --S7138V1 INIWILYLS—~
INILNO¥ENS Y UNdO G
JISNIYINI l JIY3N39 4201 3NILNO¥ENS 9 ANITTWG
3INILNOYENS 2L AT¥Wa aNILNoY¥ENs 0 ANITWa
INILNOYENS 9 t-pldg ANILNOYENS 4 1S847Wa
3aNILnoY¥ans 8 AddTWa INILNOYSNS 4 YSIIWa
SSY12 SOYY JdAl JWYN- SSY1) SOYY 3dAl IWYN-
(V=01)--S34NA390¥d~-
Y393 UINI /3v20004/ 80 SLINN R\ EL] /v¥v20004/ €0 3avy9
LL#¥VH) Ad3 /1L0008a¢/ €0 aILs 2 ERENL) /0000847 8251 20004144
L Y393 LINI 8192 ATaLvLs 4 Y393INI /0000847 819 1000184
LL*YvH) ay/le AINIAYS YI9ALINI /000084/ 899 2000s84
0Z*4YH) /10008a/ 81 dOrvYW YI9IJUNI /00008a/ 8slL L000s&dq
Y1*4V¥HI Ab3 /200084/ 80 IN3aI Y393UINI /0000847 8¢ lvissa
¢ Y3931INI /000084/ g% WYNJSEd L*Y¥VHI Ad3 /100080/ €0 1000184
< Y393 INI /00008a/ 8¢9 2000384 s¢ Y393 UNI /00008a/ €29 2000484
¢ ¥Y3I9IINI /0000847 821 1000¥8q 3% Y393INT /00008a/ 89l 1000484
YI9IINI /00008a/ 82 aInyea ¢ Y3I93IUNI 8922 Looovaa
Z YI93UNI /00008¢/ 80l 1873¥8q 8*4VHI /8v20004/ €0 3lva
¢ Y3I9IINI /000084/ €0 Wiv3yag L L*¥VH) /20008a4/ 8l aILs?
¢ Y3I9IUINI /00008¢/ 8%¢l LOOONEa 9x4YHI /20008a/ &2 SiN0I
L*¥VHI Ab3 /20008a/ 80 2000184¢ L*dVYHI /8v20004/ €0 3402
371S 3dAL S3ITLYIJ0Yd~——~=-NI018--$SIYAAY-—-TWYN- 3718 3dAL S3ATLYIdOYd-~--=NHI018~-SSIYAQY-—-ITWYN-
(Y=0) ~-dVid ITGVIYYA--

60483500 A

Q0

AN

N
P GERN
L

(¥ 40 9 393ys) 3I1y13y weuboud

"2-G 3JnbLy4

AN

W

'€ 0926-y9-02L
$°€ 0925-99-021
0'% 0925-79-02L
0°s 09.5-v-021
0°2 09:5-99-021

UOL3IN29X3 Welb0Jdd Wodd4 3ndIng

60483500 A

5-14

(€ 40 | 393ys) SIOYVH) wedbodd *g-G aunbiy

vLOowLI+OIch

E]

JLYNIWYIL
(273¥)350712 06

(OSY’/X2761/X27ST1/X2/S1/X2‘0LV l

“X2721°X27£07%X2751/X2/%07X| i
/ %2078 SNLYLS./XL) LVWYO4 08
A1E1YLS“08 INIY¥d 0L

06 01 09
(2°847XE70EV“X6710:) LYWHOA 09 .
IVLOLY3IWYN’Q9 LNI¥d 0s

(1)SY008 + (L)avl + (LINOILINL=1VLOL

(0Z=¥¥371INNOIIV) ILIYMIY

9%1=(1)$M008

gZ=(lyavi

00%L=(LINOILINL

(02=4437QILS=A3N‘213Y) av3y

10%12-L1-261,=QI1S

(0/=¥¥3727134)N3d0

0=1v10l

(LL/M18LYLS) 1S8ATWAE 11VD

INOANT

(¥vVS¥NA) YWIHISENS

(LLXT8LYLS ¥39ILNI

“IN3ANLS 3IHL 40 3WYN IHL HLIM 9NOTV 1NO QILNI¥d ANV
a3LYINIIYI ST IVLOL V °SQI3I4 3IIFYHL OLNI S3NIYA v3¥ ILIYM
ANV O%12-LL-261 41 LN3ANLS 12373S OL QV3Y¥ WOGNYY

V SWYOJ¥3d WVY¥90¥d SIHL “SWILI ONILVIAI¥ ONIAVH SY VWIHIS
JHL NI G3NI430 SI LNNOJJY 31I4 °LINMOJIV ANV IN3ANLS

S$37T4 SILVIJOSSY 27134 NOILVIIY “ALITIEVdYD 3ILI¥MIY

WG IHL ANV ONIL4INISBNS SILYULSNOWIAA WV¥90¥d SIHL

VOOV LL LV

SIOUVHI WYU90Yd
weabcad 894nog

PJ4028d~J0~-puz

*091
(8I7SWG=8171)138a1
(LNOTWA=I) SN.Ld
(S4=A1781715S=8S) TWa
(8ITSS)HIVLLY
jusuwalels I9YVYHI
juswajels yasn
luswajzeas qorp

Sjuswajelg J043U0)

5-15

60483500 A

D & &

(£ 40 2 3193ys) SIPYVH) wedboud °g-g aunbiy

an3 91
ANITWA TV £yl
JLVNIWY3L *% vt
(1L000vEAd“ LOOONSA) ¥STI WG T1IVI 06 i
(2713¥)3801) % oYL
(0EV/X27SI“X27S1“X2S1/X2/0LY L : 6€l
“X2721%X27€07X2/S1/X2 907 XL L 8¢l
/ 3078 SALYLS,‘XL) LYW¥Od 0s 251
ANLYLS/08 INIY¥d 0L 9gL
06 0L 09 ssi
(2°84“XE/0EV/X6710:) LYWHOS 09 vsl
IVL0L/3WYN’D9 LININ¥d 0s eel
(1)S¥008 + (L)Y + (LINOILINL=TV.IOL 2¢l
¢ 0+7100002000°072000480) M3¥TWA TTVD LEL
(0Z=¥¥3“1NN0JIV) LTUMIY ¥ ostL
9%L=(l)SMo08 62l
S2=(L)8v1 821
00%i=(CL)NOILINL 22l
¢ 0Z%“1000 + 921
Q1157007000070 11001”1000 LOOOG LOOO LOOONEA) X1 TWa 1IV) (24}
(02=¥Y¥37QI1S=A3%“213¥)av3y ¥ 2l
10%12-L1-2614=011S g2l
. ¢ 02+0IH21000vEq“ LOOONEQ) YNJOTWA TV ezl
(02=¥432713¥8)N3d0 x* L2t
0=1v101 0zl
(L1L378LYLS) LS8ATINA TIVI 6LL
(99091 2200LYLESLE99911,07 HOL+ 8lL
’ HOL’ YVSUNEHOL / L000480“2000) ANI WG 11VD Ll
v LS 3] 9iL
(0=11V) LS1 $2 80L
INOANI - 201
) LS1Y $3 90L
(0=1¥) LSI7 $ €L
(¥VS¥NE) YWIHISANS ™ 2l
CLL)X181V1lS ¥39IINT L
_) oL
"IN3ANLS JHL 40 3WYN JHL HLIM ONOIY 1NO G3LNIN¥d ANV I 6
Q3LYIN3IVI SI WLOL V *SQT3I4 33¥HL OLINI S3NIVA 1V3Y 3LINM I 8
ANV O%12-11-261 QI LN3ANLS 1237135 0L QV3IY¥ WOANVY 3 L
V SWY0JY¥3d WY¥OON¥d SIHL °“SW3LI ONILVIA3¥ ONIAVH SV VWIHIS I 9
3HL NI 43NI430 SI INNOJIV 3ITI4 “INMOJIV ANV LNIANLS 2 S
SITI4 SIALVIIOSSY 27134 NOILVIAY “ALITISVdY) ILINYMIY 9 /
IWE JHL GNY ONILJI¥ISENS SILVYLSNOWIG WYN¥90¥d SIHL 9 €
b} 2
SIUVHI WYHU90Ud l

8¢S+L°S NiJ 0=1d0 941/92 SAYVHI WYi90Ud

Bur3asi] uorye] Ldwoy

60483500 A

5-16

(g 30 ¢ 193Ys) SI9YVH) wesbBodq *g-g aJnblLy

0071291 NOSTIIN N3¥Vd

uoLINdax3 wedboudd wos4d 3inding

SANOJ3S 9S0°0 INIL ITILWOD

%2082 = 800209 a3sn 3I9VIOLS WIS

691 = 8ise HLON3T NOWWOJ 437138V WIS

L1 = 4192 HL9NIT LINN-WYYS0¥d
~=SJILSILVIS—

0 as SIOUVHI

==-SOY¥Y--5SIYAQY--~TWYN~-
(V=0T1)-~SINIOd AY¥LIN3--

Lyt 8,01 06
L1 LVWy0d a0yl 08
9¢L asol 0L
Yel 1YWY04 as¢l 09
ecl *S43¥ ON+* 0S

- 430-~--S3I1Y3d0Yd-----SS3Yqav-13gyi-
(¥=0T)--$738Y71 INFWILYLIS--

JISNIYINI l JTYIANIO 4301 INILNOAENS 9 ANITWa
INILNno¥ENS r4% ATENa INILNOY¥ENS 0 AN3TWA
ANILNOY¥ENS S M3¥TWa ANILNOYANS 4 188074
INILNoYEns Y UNdOTWa ANILNOY¥ENS 4 ¥STINa

SSYT1) SOYY---————-3dAL-~———-3WVYN~- SSVT1) SOYY~-————--3dALl-—-—~-JWYN-

(¥=07)~~$34Na3I04d-~
S*YYHI /100080/ 82 dIZ 9l vy /¥v20004/ 802 avi
9L BLEL /¥v20004/ €0 NOILINL 4 Y393.INI /000084/ 82¢l 2000.8d
W 092 viol 2 4393INI /000084/ 4lL9 1000186
L L*¥VHD Adb3 /1L00084/ €0 qails ¥393INI /00008a/ 899 2000s8d
2¥UVYHI /10008¢/ 82 31vis ¥393UINI /00008¢/ aslL L000s8q
113 Y393UNI 82%¢ AaLvils EERENL] /0000847 8¢ lvisaa
OE*YYHD /10008¢/ 8L JWYN € 4393UINI /00008¢/ 8% WYNJSsaa
9L W /¥v¥20004/ 809 JISIN 3 YIF9IINI /000084/ 8¢9 2000yeda
¢ ¥393INI /0000847 €21 1000484 113 Y393UINI /000084/ 8.9 2000484
Y393UNI /000084/ 8. aInyaq 113 Y393LINI 1000084/ 891 1000484
4 Y393UNT . /000084/ €0l 18713344 |3 Y393UINI 8ss2 looovaa
3 Y3931INI /000084/ 80 Wiv3yeaa OL*dVHD /10008¢/ @9 ALID
¢ Y3I9IUNT /000080/ aycl LOOONE4a 9L kD /¥v¥20006/ 80% $xo08
L*dVHI Ad3 /200084/ €0 2000180 L L*¥VH) A®3 /200084/ €0 aIisy
L¥dVYHD Ad3 /1L0008¢/ €0 L0001I8a 02xdVYHD /L0008¢/ &% daqy

Erasy 3dAL S3ITLYIdOY¥d-~~--NI0T18--SSTYAAY——~3WYN- 3ZIS~—=—~====3dAl~--=---§3I1LY3d0Yd~~~=~}I018~-SSIYAqY--~IWVN~

(V=01 -~dV¥iW 318VIYYA--

5-17

60483500 A

AN

It
{

L

(S 30 | 393ys) IIWQY wesBoud

“6~5 94nbBLy

JWVS IHL JUNSNI OL LINN WYYO0N¥d AN¥3IA3 NI G3YINDIY 3yy
SINIWIALVIS 3S3IHL “INIWILVLS INOANI ANV YWIHISENS Vv
S3YINDIY INILNOYENS 3IHL LVYHL IITLON °GI 3ISINOI ANV

I IN3ANLS 3JHL INI¥d OL 437IVI SI EnSLNY¥d 3INILNONENS
‘37142 3714 NI ANNO4 SI 340D (IDILITAWOINI NV NIHM

pJ0daJd-~j0-pug
an3
N¥NL3Y
(OV/XE/LLY/X6710u) LYWYNOS 0s
4IJ227LIN3ONLS’0S INIY¥d
INOANT
(SNOISSIWQY)YW3HISANS
8NS1Ndd 3INILNOY¥EANS

ANz
JLYNIWY3L
(37142)35079 00L
(0EY/X27S1X2S1/X27S1/X2/0LY l
IX27217X27€07X27S1“X2/ %07 X1 l
/ 100718 SNLVLS,‘XL) lvWy¥od 08
AI8LVLS‘08 LNI¥d 0
0L 0oL 09
8NSIN¥d 12 (,I, °®3" 340941
(00L=AN3/02=¥¥3371142) av3y ol
(02=¥Y¥37371149)N3d0
(:66XX1=AJVATYd’3TTI49) ADVATYd
CLLN8LYLS) 1S8aTWa TIVD
IIOANT
(SNOISSIWAY) YWIHISENS
(L1)X78LVLS ¥393LINI

"NOWWOJ NI q3JN3¥343¥ 9NI3I8 SI Vivd

"SINILNOYUENS 40 3ISN IHL SILVYLSNOWIA WYH90Nd SIHL

COOLOOLOUOLLOLOLO

LIWQY WV¥90¥d

weibolqd 204nog

PJ4033Jd~}0~-pUT

*091

(8I1SWA=8171) 13807
(1NOIWA=I)SNL4
(S4=A178115$=8S) TWa
(8ITSS)HIV.LLY
jusWwalels IOYVHI
1uswaleis Yasn
juswaiels gop

S1UsWale3s j043uU0)

60483500 A

5-18

(S 30 2 193YS) LIWQY we.boud *g-g aunbLy

an3 Lil

ANITWG 7TV 9Ll

JLYNIWY3L ™ SiL

(2000/2000480)$12WG VI 00L YLl

(37142)350719 x% €Ll

(0EY/X2/SI/X2/SI“X2/S1“X2/0LY L 2Ll
“X2721°%27€0°X2’SI“X2 %0’XL l LiL

/ «N2078 SNLYLS.“XL) LYWY¥O4 08 oLl

A8LYLS‘08 LNI¥d 0L 60l

0L oL 09 80l

aNSIN¥d VI (I, "d3* 3403)4I 201

(00L*’ 0.%7L‘17200020004€0)a¥ WA 1Y) oL 90l
(001=aN3“0/=¥¥3“31149)av3y ¥ S0l

¢ 02%70IHZ2“20002000480)NdOTWA TIVD %0l
(02=¥¥37371149)N3d0 ¥ 1]

Cu :\: :\: Ooxx:\..oo..c... cotL

- “2000707L7L)A4dTWG TTVD 1oL
(166XX1=AIVAIYATT4I) AJVAIYd ¥ 0oL

CLL181YLS) 1SEAING T11VD 66

(0L9L0E2YS22551559095..07 HOL+ 86

‘ HOL “SNOISSIWAYHOL/ L000490“2000) ANI WG 17V) L6

1Y) L8171 $2

(0=T) 18I $

IIOANI *¥

YHLSI $2

(0=TI¥) 1811 $

(SNOISSIWAQY)VYWIHISANS %
(LL)NI8LYLS ¥393UINI

“NOWWOD NI 43IN3¥3434 9NIIE SI VLva

3WYS 3HL JUNSN3 OL LINN WY¥S0¥d A¥3IAZ NI Q3¥INDIY iy
SINIWALYLS 3ISTHL °“LNIWILVLS INOANI ANV YW3IHISENS V
SIYIND3Y 3INILNOYENS FHL LVHL 3IIILON "4I 3ISVNOI ANY
QI IN3ANLS 3HL INI¥d OL 4377VI SI 8NSIN¥d 3INILNOYENS
‘37140 3714 NI GNAO4 ST 3403 (I)3LITJWOINI NV NIHM
“SIANILNOYENS 40 3SN IHL SILVHLISNOWIA WYNO0¥d SIHL

(SRS NENENENENENSNE)
CANMTNONVOO~NMOOO O
T 0000 O

1IWAY WYY90ud

8eS+1L"GS NLld 0=1d0 9.L/9L LINQY WYY90¥d

BUL3ISLT UoL3e Ldwo)

5-19

60483500 A

(S 30 § 393YS) LIWQY WeuBoud *g-g unbly

SAN0J3S 9%0°0
¥20s¢ = 800209

JWIL 3TIdWOD
a3sn 39vVY0LS WIS

201 = a9yl HLON3T NOWWO) 43713871 WIS
gsL = 8212 HL9N31 LINN-WV¥90¥d
~-SITLSILVLS~~
0 as LIWAV
~~-S9YY~--$SIHAQY-~-THYN-
(¥=01)--SINIOd A¥LNI--
9L 829 0oL
oLl 14404 €90L 08
601 €09 02
901 a4y o0l
430=---$311¥3d0¥d-~---$S3YAAY-138Y 1~
(¥=01)--5738V7 INIWILVLS--
3INILNO¥ENS Y NdOTWa
aNILNO¥ENS 0 anS1NYd aNILNOYENS 9 ANITWG
JTSNIYINI L IT¥INI9 4301 3aNILnO¥ENS 0 AN WA
aNILNO¥ENS 9 a¥a aNILNOY¥SENS 2 15807Wa
INILNOYENS 8 A¥dTING aNILNO¥ENS 2 $107Wa
SSY1) SOuV 3dAL JWVN- SSV10 SOuV 3dAL FWYN-
(¥=071) --S3¥NA3I0¥d~-
£ ¥393.NI /000084/ &Y WYNISaq
¥393INI /¥¥L0004/ €0 SLINN € ¥393INI /000084/ 829 2000¥84
LL¥¥VH) /200080/ 8L 1N3anLs € ¥393INI /000084/ €11 L0O0OO¥SA
L ¥393.NT 821 YELvis ¥393.NI /000084/ €2 a1n¥sq
02%4VHI /10008¢/ €2 100HIS i ¥393.INI /000080/ €0L 1s73yed
9¥UVHD /100080/ & CENER™ £ ¥393INI /0000807 €0 W1v3¥sq
02%dVH) /100080/ 80 JWVN L¥4VHD Ad3 /200084/ 80 2000180
#1¥YHI A®3 /200084/ €0 1N3aT L¥dVHD A®3 /100080/ €0 1000184
2 ¥393INT /000080/ €LEL 2000184 13 ¥393INI /000080/ 899 2000484
2 ¥393INT /000080/ 809 L0OOOLSG 33 ¥393INT /000080/ 8SL L0D0D048q
¥393INT /000080/ €S9 2000S€Q L¥UVHD /200080/ @€ 3003
¥393INT /000084/ 891 L000SEd 9¥YVHI Ab3 /100080/ €0 a1’
¥393INT /000084/ €€ 1v1s8q 9¥dVHI /200080/ @2 1)
321§-~===---3dAL--=----$3T L¥Id0Ud~--~=X)018-~SSTUAQAY---TWYN- 3718---------3dAl---~-~-§ 1 L4IdOYd~~~—-%I018~~SSIYAQY~~~TWYN-

(V=01)~--dVW 319VIYVA--

60483500 A

5-20

(S 30 % 393Ys) LIWNQY weabBoud “g~g a4nbiy
16 LYwyo4 ary 0s
430----$311¥3d0¥d~----5SIN¥AAY~-13aV 1~
(¥=01)--S138Y7 INIWILVLS--
JISNIYINI i JIY¥3N39 4201
aNILNOYENS 9 ANIWG
SSV13 SONY. 3dAL JWYN-
(¥=07)--$3¥NQ3I0¥d~~
¥3931NI /¥Y10006/ €0 SLINN € ¥3931NI /0000807 829 20004€4d
LL*dYHI /2000807 4l IN3anLs € ¥393INI /000084/ 8Lt L000¥8aa
02*4YHI 7100080/ 82 T00HIS ¥393INI 7000080/ 82 aInygs
9¥yVHI /io0080/ g% LENERE L ¥393INI , /00009¢/ €01 1873384
02*dVH) /100084/ 80 JWYN € ¥393INI /000080/ €0 Wiv3yeaq
Y158YHI A3 /200084/ 80 IN3aI L*dVH) Av3 /200080/ €0 2000144
4 ¥393INI /00008d4/ gL€L 2000L86¢ L*Y¥VHI A3 /10009¢/ €0 Looo1aaq
2 ¥393UNI /000084/ €09 LoooLaa 14 ¥393INI /000084/ 899 2000484
¥393LNI /000080/ 859 2000s8d s¢ ¥393LNI 7000084/ 8Sl 1000484
¥393INI /0000847 8yl Looosaa L*¥YHD /200084/ 8¢S 3002
¥393INI /00008¢/ 8% lvissaq 9¥¥YH) Ad3 /L0008¢/ €0 a1l
€ Y393INT /00008a/ &y WYNJSEa 9xYVH) /200084/ €2 qa122
371§--~-=~===3dALl=—==—===$3T LYIdOYd~--~--%I018--SSTYAGY~--IWVYN~ 371S~~-~---—-3dAl--=--==831L¥3d0Yd~~~~~NI018--$SIUAAV~~~IWYN-
(¥=01)--dV¥W I1BVIYYA--
aN3 €6
N¥NL3Y 26
(OV/XE’ LLY/X671,0.) LYWYOS 0s L6
QI2971IN3ANLS’0S LNIY¥d 06
(0192082522851 £59095,07 HOL+ 68
‘ HOL“SNOISSIWAVHOL‘1000484“2000) ANITWG TV 88
1Y) LSIT $2 28
(0=1V) 1SI1 $ 18
INOANI *% 08
TV 1SIT $ 6
(0=TIV)LSIT $ Y
(SNOISSIWGY)VYWIHISEANS *¥ €
8NSIN¥d INILNO¥ENS 2
) L

8¢S+l "S Nld

0=1d0 92L/92 8NSLIN¥d INILNOYENS

5-21

60483500 A

.

(S 40 g 193ys) 1IWQV weuBoug

»
*6-G 94nbLy
€OLSIH %%LL-21-829
ZL0sng 2gzl-%1-28¢
9£LASd 2¢2L-%1-/8F
SOOWH) 2g2l-%L-28¢
OLHLYW 2g2l-%l-28¢
9¢LASd Y0.9-£L-221
200ASd 0985-22-001
uoLIN33X3 wedbodg Wod4 3ndIng
SAN0J3S ££0°0 JWIL 3TIdWOD

¥20s2 = 800209 43sn 39YY0LS WIS
20l a9l HLONIT NOWWOI 4377138V WIS
sS 829 HLON3T LINN-WYU90Ud

==SJI1SIlVLiS~-

0 a4 8NS.LNY¥d

—===-S9YY~-$SIYAQY-~~IWVYN~-
(V=0T1)--SINIOd AYINI--

60483500 A

5-22

O

O
O

USING THE CDCS BATCH TEST FACILITY 6

—

This user's guide assumes that CDCS is active and
available for your job. This method of operation
implies established schemas, appropriate sub-schema
libraries, and successfully implemented appli-
cations. Any change in the data base environment,
such as the addition of a new file definition,
forces the data administrator to terminate CDCS and
to reinitiate CDCS with a new master directory file
attached. By using the CDCS Batch Test Facility,
you can have CDCS running as a normal batch job.
Each time you run your job, you attach a new
version of the master directory file.

The CDCS Batch Test Facility is an absolute program
called CDCSBTF. The program resides on the system
Library and is called into execution by the CDCSBTF
control statement. The format of the CDCSBTF
control statement is shown in figure 6-1.

CDCSBTF(Lfn-1 L[,Lfn-2] ...)

Lfn Specifies the Llogical file name of a
relocatable binary file containing a
user program. Up to 16 files can be
specified.

Figure 6-1. CDCSBTF Control Statement Format

When CDCS is executing as the Batch Test Facility,
the name of the output file produced by CDCS is
CDCSOUT.

REQUIREMENTS

When you are running application programs with the
CDCSBTF program, you must meet certain
requirements. These requirements are:

e Attach the master directory file, which must
have the local file name MSTRDIR.

® Attach any necessary Llog files. It is the
responsibility of the data administrator to
provide you information about the Log files.

e Have the application program in relocatable
binary format as a local or a permanent file.

® Assign unique names to non-CDCS files. Do not
use any of the following names:

60483500 A

INPUT

OUTPUT

MSTRDIR

CDCSOUT

Pnnnnnn

Xnnnnnn } where n is any six digits
Fannnnn

A name beginning with 2ZZ1z

A log file name

e Be sure your application program executes a DML
TERMINATE statement before a FORTRAN STOP or
END statement. Failure to do this would
discontinue processing for all programs
specified in the CDCSBTF control statement that
have not completed execution.

® Set the DB parameter in the FTN5 controtl
statement equal to 0. Multiple copies of
COCSBTF can be run concurrently, and as many as
16 user programs can be run with a copy of
COCSBTF. If more than two concurrent calls to
the RECOVR routine are made, CDCS aborts
processing.

OBTAINING LOAD MAPS

You can obtain load maps by setting sense switches
1 through 4 prior to execution of the CDCSBTF
control statement. Each sense switch setting
corresponds to different information on the Lload
map. The settings and the associated types of
information are shown in table 6-1.

TABLE 6-1. LOAD MAP SWITCH SETTINGS

Setting Load Map Information
SWITCH (1) Statistics (S)
SWITCH(2) Block maps (B)
SWITCH (3) Entry point maps (EO)
SWITCH (4) Entry point cross-reference maps (X).

EXECUTING THE CDCS BATCH
TEST FACILITY

You need to include a number of control statements
when executing the CDCS Batch Test Facility for
your FORTRAN application program. Figure 6-2
provides a sample Llist of statements. Parameters
correspond to the application that appears in
appendix C.

6-1

NOS Operating System

Jobname (CMxxxxx)
USER statement
CHARGE statement

ATTACH(SSLIB/UN=XXX)
DML (SB=SSLIB,LV=F5)

FTN5 (I=DMLOUT,DB=0)

ATTACH(MSTRDIR/UN=xxx)
ATTACH(LOGFILE/UN=xxx)

NOS/BE Operating System

Jobname (CMxxxxx)
ACCOUNT statement

ATTACH(SSLIB, ID=xxx)
DML (SB=SSLIB,LV=F5)

FTN5 (I=DMLOUT ,DB=0)

ATTACH(MSTRDIR, ID=xxx)
ATTACH(LOGFILE, ID=xxx)

- Specifies the account to which the job's use of

Names the job and specifies maximum field Tength.
Identifies the user.

system resources is logged.

Attaches the sub-schema.

Preprocesses the DML statements in the FORTRAN
program.

Compiles the FORTRAN program and places it on the
file LGO.

Attaches the master directory.

Attaches the journal Tog file.

SWITCH(T) SWITCH(1) Requests statistics on program-initiated load.
SWITCH(2) SWITCH(2) Requests block map on program-initiated load.
SWITCH(3) SWITCH(3) Requests entry point map on program-initiated load.
SWITCH(4) SWITCH(4) Requests entry point cross-reference map on
: program-initiated load.
LIBRARY (DMSLIB) LIBRARY (DMSLIB) Specifies that the library DMSLIB is to be used to
satisfy externals.

CDCSBTF (LGO) CDCSBTF(LGO) Executes CDCSBTF,
REWIND (CDCSOUT) REWIND (CDCSOUT) Rewinds the CDCS output file.
COPY (CDCSOUT, OUTPUT) COPY(CDCSOUT,OUTPUT) Prints the CDCS output file.
CRMEP, CRMEP. Prints the CRM error file.
EXIT. EXIT. Establishes processing if error occurs.
DMP. DMP. Dumps the exchange package.
DMP (177000) DMP (177000) Dumps the contents of the field length.
CRMEP. CRMEP. Prints the CRM error file.

Figure 6-2. Sample FORTRAN Execution of CDCS Batch Test Facility

6-2

60483500 A

co

A ™
iy S

O
O

o

o No

STANDARD CHARACTER SETS A

Control Data operating systems offer the following
variations of a basic character set:

® CDC 6b4~character set
® CDC 63-character set
® ASCII 64-character set

® ASCII 63-character set

The set in use at a particular installation was
specified when the operating system was installed
or (for NOS only) dead started.

Depending on another dinstallation option, the
system assumes an input deck has been punched
either in 026 or in 029 mode (regardless of the
character set in use). Under NOS/BE, the alternate
mode can be specified by a 26 or 29 punched in
columns 79 and 80 of the job statement or any 7/8/9
card. The specified mode remains in effect through

60483500 A

the end of the job wunless it 1is reset by
specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS, the alternate mode can be specified also
by a 26 or 29 punched in columns 79 and 80 of any
6/7/9 card, as described previoustly for a 7/8/9
card. In addition, 026 mode can be specified by a
card with 5/7/9 multipunched in column 1, and 029
mode can be specified by a card with 5/7/9
multipunched in column 1 and a 9 punched in
column 2.

Graphic character representation appearing at a
terminal or printer depends on the installation
character set and the terminal type. Characters
shown in the CDC Graphic column of the standard
character set table (table A-1) are applicable to
BCD terminals; ASCII graphic characters are
applicable to ASCII-CRT and ASCII-TTY terminals.

Standard collating sequences for the two printer
character sets are shown in tables A-2 and A-3.

TABLE A-1. STANDARD CHARACTER SETS

O

€bc ASCH
Display Hollerith External .
Code Graphic Punch BCD Gaphic Punch Code
(octat} (026) - Code (029) (octal)
oo : (coton) Tt 82 00 : (colon) T 82 072
01 A 12-1 61 A 1241 101
02 B 12-2 62 B 12-2 102
03 Cc 12-3 63 Cc 12-3 103
04 D 12-4 64 D 124 104
05 E 12-5 65 E 125 105
06 F 12-6 66 F 126 106
07 G 12-7 67 G 12-7 107
10 H 128 70 H 128 110
11 | 129 71 I 129 111
12 J 111 41 J 111 112
13 K 11-2 42 K 112 113
14 L 11-3 43 L 1-3 114
15 M 11-4 44 M 114 ' 115
16 N 115 45 N 115 116
17 (o] 116 46 [0} 11-6 117
20 P 11-7 a7 P 117 120
21 Q 118 50 Q 118" 121 o
22 R 119 51 R 119 122 AN
23 S 02 22 S 02 123 y ;
24 T 03 23 T 03 124 g
25 U 04 24 U 04 125
26 v 05 25 \" 05 126
27 w 0-6 26 w 0-6 127
30 X 07 27 X 0-7 130
31 Y 08 30 Y 08 131
32 Z 09 31 ¥4 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064 AT
40 5 5 05 5 5 065 =
41 6 6 06 6 6 066 W
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 1 9 9 on
45 + 12 60 + 12-8-6 053
46 ; 1 40 . 1 055
47 11-8-4 54 1184 052
50 / 01 21 / 01 057
51 (084 34 (1285 050
52) 1284 74) 1185 051
53 $ 11-8-3 53 $ 11-8-3 044
54 = 8-3 13 = 8-6 075 -
55 blank no punch 20 blank no punch 040 /’(™,
56 , (comma) 08-3 33 , [comma) 08-3 054 . \,{ r
57 . {period) 12-8-3 73 . {period) 1283 056 =
60 = 086 36 # 8-3 043
61 (87 17 (1282 133
62 1 082 32] 11-8-2 135
63 %t 86 16 9% Tt 084 045
64 * 84 14 " (quote) 8.7 042
65 r~ 0-85 35 _ (underline) 0-8-5 137
66 v 110 52 ! 1287 041
67 A 087 37 & 12 046
70 t 1185 55 ' {apostrophe) 85 047
71 } 1186 56 ? 08-7 077
72 < 120 72 < 1284 074
73 > 187 57 > 086 076
74 < 85 15 @ 84 100
75 2 1285 75 AN 082 134
76 - 12-8-6 76 =~ (circumflex) 1187 136
77 ; (semicolon) 1287 77 ; (semicolon) 118-6 073
fTwere zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than
two colons,)
Ttn installations using a 63-graphic set, display code 00 has no associated graphic or card code; display
code 63 is the colon (8-2 punch). The % graphic and related card codes do not exist and translations
yield a blank (55g).

60483500 A O

OO

00

TABLE A-2.

CDC CHARACTER SET COLLATING SEQUENCE

Collating Collating
Sequence cbC Display External Sequence CDC Display | External
Decimal/Octal Graphic Code BCD Decimai/Octal Graphic Code BCD
— - == = = =
00 00 blank 55 20 32 40 H 10 70
01 01 < 74 18 33 41 | 1 71
02 02 % 63t 16t 34 42 v 66 52
03 03 [61 17 35 43 J 12 41
04 04 nd 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 t 70 55 39 47 N 16 45
08 10 | 71 56 40 50 o} 17 46
09 11 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
1" 13 —_ 76 76 43 53 R 22 51
12 14 . 57 73 44 54) 62 32
13 156) 52 74 45 55 S 23 22
14 16 : 77 77 46 56 T 24 23
i5 17 + 45 60 47 57] 25 24
16 20 $ 53 53 48 60 \Y 26 25
17 21 ¢ 47 54 49 61 W 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 b4 32 31
21 25 (51 34 53 65 : oot nonet
22 26 = 54 13 54 66 0 33 12
23 27 #* 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 1"
Tln installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,
External BCD code 16.
A-3

60483500 A

A4

TABLE A-3. ASCII CHARACTER SET COLLATING SEQUENCE

Collating ASCI'I Display | ASCII Collating ASCI.I Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code

Decimal/Octal | Subset Decimal/Octal | Subset

—_———— —————— |

00 00 blank 55 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 8 02 42
03 03 # 60 23 35 43 C 03 43

- 04 04 $ 53 24 36 44 D 04 44
05 05 % 63t 25 37 45 € 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ' 70 27 39 47 G 07 47
08 10 (51 28 40 50 H 10 48
09 1) 52 29 41 51 | 1 49
10 12 » 47 2A 42 52 J 12 4A
11 13 + 45 2B 43 53 K 13 4B
12 14 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 2E 46 56 N 16 4E
15 17 / 50 2F 47 57 0 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 U 25 55
22 26 6 41 36 54 66 \% 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 9 44 39 57 71 Y 31 59
26 32 : 00+ 3A 58 72 2 32 5A
27 33 : 77 38 59 73 [61 5B
28 34 < 72 3C 60 74 \ 75 5C
29 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 ~ 76 S5E
31 37 ? 71 3F 63 77 _ 65 5F

Tln installations using a 63-graphic set, the % graphic does not exist. The : graphic
is display code 63. :

60483500 A

oC

TN

'

ole

00

GLOSSARY B

3 S S A SN

Access Control -
Protection of data from unauthorized access or
modification.

Actual Key -
A file organization in which records are stored
according to their system—assigned key values.

Advanced Access Methods (AAM) -
A file manager that processes indexed
sequential, direct access, and actual key file
organizations and supports the Multiple~Index
Processor. See CYBER Record Manager.

Alias -
A data name used in the sub-schema in place of
a schema data name.

Area -
A uniquely named schema data base subdivision
that contains data records; identified in the
sub-schema as a realm; a file.

Basic Access Methods (BAM) -
A file manager that processes sequential and
word addressable file organizations. See CYBER
Record Manager.

cbCS -
See CYBER Database Control System.

CDCS Batch Test Facility -
A facility that allows an application to
simulate a data base environment without
impacting any other CDCS users on the system.

Child Record Occurrence -

For relation processing, a record occurrence
that has another record occurrence (the parent
record occurrence) at the next numerically
lower rank in the relation; for constraint
processing, a record occurrence that 1is the
dependent member of a condition defined by a
constraint.

Common Item -
A data item that appears in two or more files
joined in a relation; 1in each instance, the
data item contains the same value.

Concurrency -
Simultaneous access to the same data in a data
base by two or more application programs during
a given span of time.

Constraint -
A control imposed on records in related files
or on items in a single file for the purpose of
protecting the integrity of data in a data base
during update operations. A constraint s
defined in the schema and is based on the
common item in the records.

Control Break -
A condition that occurs during a relation read
to signify a new record occurrence was read for
the parent file.

60483500 A

CRM -
See CYBER Record Manager.

CYBER Database Control System (CDCS) -
The controlling module that provides the
interface between the application program and
the data base.

CYBER Record Manager (CRM) -

A generic term relating to the common products
BAM and AAM, which run under the NOS and NOS/BE
operating systems and allow a variety of record
types, block types, and file organizations to
be created and accessed. The execution time
input/output of the DMS~-170 products s
implemented through CRM. AlL CRM file
processing requests ultimately pass through the
operating system input/output routines.

i)

Data Administrator -
A person who defines the format and
organization of the data base.

Data Base -
A systematically organized, central pool of
information; organization is described by a
schema.

Data Base Procedure -
A special-purpose routine that performs a
predefined operation; specified in the schema
and initiated by CDCS.

Data Base Status Block -
An array defined within an application program
to which CDCS returns finformation concerning
the status of operations on data base files and
relations. The status block is updated after
each CDCS operation.

Data Description Language (DDL) =
The language used to structure the schema and
the sub-schema.

Data Item -
A unit of data within a record; can be a
variable or an array in the FORTRAN sub-schema.

Data Manipulation Language (DML) -
The extensions to FORTRAN that provide access
to a DMS-170 data base.

DDL -
See Data Description Language.

Deadlock -
A situation that arises in concurrent data base
access when two or more application programs,
each with Llocked resources, are contending for
a resource that is Llocked by one of the other
application programs, and none of the programs
can proceed without that resource.

‘Direct Access -
In the context of CRM, one of the five file
organizations. The organization is charac-
terized by the system hashing of the unique key
within each file record to distribute records
randomly in blocks called home blocks of the
file.

In the context of NOS permanent files, a file
that is accessed and modified directly, as
contrasted with an indirect access permanent
file.

bML -
See Data Manipulation Language.

File - .
A collection of records treated as a unit; an
area in the schema; a realm in the sub-schema.

Hierarchical Tree Structure -
A representation that commonly illustrates
record occurrences for files joined in a
directed relation. The root of the tree is a
record occurrence in the root file, and each
successive Llevel represents the record
occurrences in each joined file.

Home Block -
Mass storage allocated for a file with direct
access organization at the time the file is
created.

Indexed Sequential -
A file organization in which records are stored
in ascending order by key.

Keyword -
A word that is required in a source program
statement.

Log Files -
Files that hold historical records of
operations performed by users on data base
areas.

Mapping -
The process by which CDCS produces a record or
item image conforming to the schema or
sub-schema description.

Master Directory -
A file created by the data administrator and
used by CDCS in processing. This information
consists of schema and sub-schema tables, media
parameters, and data base procedure Llibrary and
logging specifications.

Multiple-Index Processor -
A processor that allows AAM files to be
accessed by alternate keys.

Null Record Occurrence -

A record occurrence composed of the display
code right bracket symbol 1in each character
position. The null record occurrence is used
in a relation occurrence to denote that no
record occurrence qualifies or that a record
occurrence does not exist at a given level in
the relation.

8-2

Parent Record Occurrence -
For relation processing, a record occurrence
that has another record occurrence -at- the next
numerically higher rank in the relation; for
constraint processing, a record occurrence that
is the dominant member of a condition defined
by a constraint.

Permanent File -
A file that resides on a mass storage permanent
file device and can be retained for Llonger than
a single job. The file 1is protected against
accidental destruction and can be protected
against unauthorized access.

Privacy Key =~
A character constant, variable name, or
unsubscripted name that 1is included in a
FORTRAN DML PRIVACY statement to gain access to
a particular realm.

Rank -
The rank of a file in a relation corresponds to
the position of the file in the schema
definition of the relation. The ranks of the
files joined in a relation are numbered
consecutively, with the root file having a rank
of 1.

Realm -
A uniquely named sub-schema data base
subdivision that contains data records;
identified in the schema as an area; a file.

Realm Ordinal -
A unique identifier assigned to each realm in a
sub~schema when the sub-schema is compiled.
Sub-schema realm ordinals are used in
conjunction with the data base status block.

Record -
A named collection of one or more data items
that are treated as a unit.

Record Occurrence -~
An actual data base record that conforms to a
record description in the schema.

Record Type ~-
The description of the attributes of a record;
record layout.

Recovery -
A process that makes a data base useful after
some type of software or hardware failure has
occurred.

Recovery Point -
A user-declared or system-generated point to
which CDCS guarantees recovery with no Lloss of
data. User—-declared recovery points are
generated by FORTRAN calls to DMLRPT.

Relation -
A group of files that are related by common
data items; therefore the files can be opened,
closed, or read by a single request. Relations
are defined in the schema.

Relation Occurrence -
The Llogical concatenation of a record
occurrence from each record type specified in
the relation.

60483500 A

oC

AT,

NS

AN
\k,;‘” 4

ele

o0

Restriction -
Criteria that must be satisfied by a record
occurrence in a relation before it can be made
available to the application program.
Restrictions are defined in the sub-schema.

Root Realm -
The first realm Llisted in a relation; the root
realm has the rank of 1 in a relation; record
occurrences of the root realm are pictured as
the root of a tree in a hierarchical tree
structure.

Schema -
A detailed description of the internal
structure of the complete data base.

60483500 A

Status Block -~
See Data Base Status Block.

Sub-Schema -
A detailed description of the portion of the
data base to be made available to one or more
application programs.

Sub-Schema Item Ordinal -
An identifier, unique within a record, assigned
to each item 1in a sub-schema when the
sub-schema is compi Lled. Sub-schema item
ordinals are used 1in conjunction with the data
base status block.

Sub-Schema Library -

A permanent file containing one or more
sub-schemas.

8-3

CC

-

ole

o
O

THE SAMPLE APPLICATION C

This appendix contains the source programs and
control statements used to generate the data base
environment for the university application
presented in this wuser's guide. Although all
programs reflect operation under the NOS operating
system, conversion to the NOS/BE operating system
could be accomplished by making the foltowing
changes:

e Substitute a NOS/BE ACCOUNT control statement
for the NOS USER and CHARGE control statements.

® Substitute the NOS/BE REQUEST and CATALOG
control statements for the NOS DEFINE control
statement.

e Substitute the NOS/BE file ddentification
parameter ID for the NOS file identification
parameter UN. This substitution applies to the
source input for the master directory and to
the Query Update program.

Setting up a DMS-170 data management environment is
a data administrator responsibility; the process is
shown here, however, to allow the reader to
duplicate the application and use it to gain an
understanding of DMS-170 FORTRAN application
programming. The source input for the jobs shown
in this appendix illustrates the university
application being created by a series of batch
jobs. The source dinput for each job 4is shown
exactly as required for processing on NOS with two
exceptions:

e End-of-record is indicated by the statement
end-of-record and a blank lLine that is inserted
to improve readability of the text.

e End of input for the job is indicated by the
statement end-of-information.

60483500 A

The steps the data administrator takes to establish
the application are Llisted in appropriate order as
follows:

1. Design, write, compile, and store the schema
definition as a permanent file. A schema named
UNIVERSITY is stored as a permanent file named
UNIVERS. See figure (C-1.

2. Design, write, compile, and store sub-schema
definitions as a permanent file Library. A
FORTRAN sub-schema Library 1is -stored as a
permanent file named SSLIB. Input consists of
four separate sub-schemas (AVERAGE, RELATION,
ADMISSIONS, BURSAR); the sub-schemas follow
each other with no intervening end-of-records.
See figure (-2 for both source input and the
Listing that results from compilation.

3. Design, write, compile, and store a sub-schema
for use by a data base creation program. This
application selects Query Update as the
language to store the data. A Query Update
sub-schema named CREATES is stored as a
permanent file Llibrary named QULIB. See
figure C-3.

4. Generate a master directory through the DBMSTRD
utility. A master directory is stored as a
permanent file named MSTRDIR. See figure C-4.

5. MWrite a program to store the data base. A
Query Update program creates four data base
files (COURSE, STUDENT, CURRICULUM, ACCOUNTING)
using the Query Update sub-schema, and defines
the appropriate index files assigned in the
master directory. See figure C-5. (CDCS must
be active to use this program.) For processing
on NOS/BE, the series of control statements
that must be executed for each area and index
file before the QU control statement is
executed 1is as follows: REQUEST, REWIND,
CATALOG, and RETURN.

6. Establish CDCS as an active system. This must

be done by the data administrator; the process
is not shown in this guide.

c-1

Job statement

USER statement

CHARGE statement

FILE (PROFESS,FO=IS,XN=PNDX)
FILE (COURSE ,FO=IS ,XN=CRSNDX)
FILE(STUDENT ,FO=IS,XN=SNDX)
FILE(CURRICU,FO=IS ,XN=CRNDX)
FILE(ACCOUNT ,FO=IS)

DEF INE (UNIVERS=UNIVERS/CT=PU,M=R)
DDL3 (DS, SC=UNIVERS)
End-of-record

SCHEMA NAME IS UNIVERSITY.

AREA NAME IS PROFESSOR.
RECORD IS PROF-REC WITHIN PROFESSOR.

PROF-ID" TYPE CHARACTER 8.
PROF-NAME PICTURE "X(30)".
ACADEMIC-FIELD TYPE CHARACTER 20.

AREA NAME IS COURSE.
RECORD IS COURSE-REC WITHIN COURSE.

COURSE-ID TYPE CHARACTER 6.
COURSE~NAME PICTURE "X(20)".
SCHOOL PICTURE "X(20)".
PROF-ID TYPE CHARACTER 8.
PREREQUISITE TYPE CHARACTER 6.
UNITS TYPE DECIMAL.

AREA NAME IS STUDENT.
RECORD IS STUDENT-REC WITHIN STUDENT.

STUDENT-ID TYPE CHARACTER 11.
STUDENT-NAME PICTURE "X(30)".
STREET-ADDRESS PICTURE "X(20)".
CITY PICTURE "X(10)",
STATE PICTURE "A(2)".
Z1P-CODE PICTURE "X(5)".
PHONE PICTURE "X(12)".
MAJOR TYPE CHARACTER 20.

AREA NAME IS CURRICULUM
ACCESS-CONTROL LOCK IS "XX99".
RECORD IS CURR-REC WITHIN CURRICULUM.

IDENT TYPE CHARACTER 14.
STUDENT-ID TYPE CHARACTER 11.
COURSE-ID TYPE CHARACTER 6.
GRADE TYPE FLOAT

CHECK VALUE 0.0 THRU 4.0.
COMPLETE-CODE TYPE CHARACTER 1.
COMPLETE-DATE TYPE CHARACTER 8.
UNITS TYPE DECIMAL.

AREA NAME IS ACCOUNTING.
RECORD IS ACCT-REC WITHIN ACCOUNTING.

01 STUDENT-ID TYPE CHARACTER 11.

01 TUITION TYPE FLOAT OCCURS 16 TIMES.
01 LAB-FEES TYPE FLOAT OCCURS 16 TIMES.
01 BOOKS TYPE FLOAT OCCURS 16 TIMES.

01 MISC~FEES TYPE FLOAT OCCURS 16 TIMES.

DATA CONTROL.

AREA NAME IS PROFESSOR -
KEY IS PROF~ID OF PROF-REC
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE ACADEMIC-FIELD
DUPLICATES ARE ALLOWED.

AREA NAME IS COURSE
KEY IS COURSE-ID OF COURSE~REC
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE PROF-ID OF COURSE-REC
DUPLICATES ARE ALLOWED.

AREA NAME IS STUDENT
KEY IS STUDENT-ID OF STUDENT-REC
DUPLICATES ARE NOT ALLOWED
KEY IS ALTERNATE MAJOR)
DUPLICATES ARE ALLOWED,

AREA NAME IS CURRICULUM

KEY IS IDENT

KEY IS ALTERNATE STUDENT-ID OF CURR-REC
DUPLICATES ARE ALLOWED

KEY IS ALTERNATE COURSE-ID OF CURR-REC
DUPLICATES ARE ALLOWED

KEY IS ALTERNATE GRADE
DUPLICATES ARE ALLOWED.

AREA NAME IS ACCOUNTING
KEY IS STUDENT-ID OF ACCT-REC
DUPLICATES ARE NOT ALLOWED.

CONSTRAINT NAME IS CON1
STUDENT-ID OF CURR-REC DEPENDS ON
STUDENT-ID OF STUDENT-REC.

CONSTRAINT NAME IS CON2
STUDENT-ID OF ACCT-REC DEPENDS ON
STUDENT-ID OF STUDENT-REC.

CONSTRAINT NAME IS CON3
COURSE-ID OF CURR-REC DEPENDS ON
COURSE-ID OF COURSE-REC.

RELATION NAME IS REL1 :
JOIN WHERE STUDENT-ID OF STUDENT-REC
EQ STUDENT-ID OF CURR-REC.

RELATION NAME IS REL2
JOIN WHERE STUDENT-ID OF STUDENT-REC
EQ STUDENT-ID OF ACCT-REC.

RELATION NAME IS REL3
JOIN WHERE PROF-ID OF PROF-REC
EQ PROF-ID OF COURSE-REC
COURSE-ID OF COURSE-REC
EQ COURSE~ID OF CURR-REC.
End-of-record

End-of-information

Figure C-1.

The UNIVERSITY Schema

60483500 A

C O

®

o

O
O

Source Input

Job statement

USER statement

CHARGE statement

ATTACH (UNIVERS)

DEFINE (SSLIB/CT=PU,M=W)

DDLF (F5,SB=SSLIB,SC=UNIVERS)
End-of-record

SUBSCHEMA AVERAGE,SCHEMA=UNIVERSITY

ALIAS(REALM) CFILE=CURRICULUM

ALIAS (RECORD) CRECORD=CURR-REC
ALIAS(ITEM) STUDENT=STUDENT-ID.CURR-REC
ALIAS(ITEM) COURSE=COURSE-ID.CURR-REC

REALM CFILE
RECORD CRECORD

CHARACTER*14 IDENT
CHARACTER*11 STUDENT
CHARACTER*6 COURSE
REAL GRADE

END

SUBSCHEMA COMPARE,SCHEMA=UNIVERSITY

ALIAS(REALM) PFILE=PROFESSOR
ALIAS (RECORD) PRECORD=PROF-REC
ALIASCITEM) PROFID=PROF-ID.PROF-REC
ALIAS(ITEM) PNAME=PROF-NAME

ALIAS(REALM) CRSFILE=COURSE

ALIAS (RECORD) CRSREC=COURSE-REC

ALIAS (ITEM) CRSID=COURSE-ID.COURSE-REC
ALIASCITEM) CRSNAME=COURSE-NAME
ALIAS(ITEM) PROF=PROF-ID.COURSE-REC
ALIAS(ITEM) FIELD=ACADEMIC-FIELD

ALIAS(REALM) CFILE=CURRICULUM

ALIAS (RECORD) CRECORD=CURR-REC
ALIASCITEM) COURSE=COURSE-ID.CURR-REC
ALIAS(ITEM) CODE=COMPLETE~CODE
ALIASCITEM) DATE=COMPLETE-DATE

REALM PFILE
REALM CRSFILE
REALM CFILE

RECORD PRECORD

CHARACTER*8 PROFID
CHARACTER*30 PNAME
CHARACTER*20 FIELD

RECORD CRSREC
CHARACTER*6 CRSID
CHARACTER*20 CRSNAME
CHARACTER*8 PROF

RECORD CRECORD
CHARACTER*14 IDENT
CHARACTER*6 COURSE
CHARACTER*1 CODE
CHARACTER*8 DATE
REAL GRADE

RELATION REL3
RESTRICT CRECORD (CODE .EQ, 'C")
END

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 1 of 8)

60483500 A

SUBSCHEMA RELATION,SCHEMA=UNIVERSITY

ALIASCREALM) SFILE=STUDENT
ALIAS (RECORD) SRECORD=STUDENT-REC

ALIAS(ITEM) STID=STUDENT-ID.STUDENT-REC

ALIAS(REALM) CFILE=CURRICULUM

ALIAS (RECORD) CRECORD=CURR-REC
ALIASCITEM) CSTID=STUDENT-ID.CURR-REC
ALIAS(ITEM) COURS=COURSE-ID.CURR-REC
ALIAS(ITEM) PROF=PROF-NAME
ALIASCITEM) CODE=COMPLETE-CODE
ALIASCITEM) DATE=COMPLETE-DATE

REALM SFILE
REALM CFILE

RECORD SRECORD
CHARACTER*11 STID
CHARACTER#20 MAJOR

RECORD CRECORD
CHARACTER*14 IDENT
CHARACTER*11 CSTID
CHARACTER*6 COURS
REAL GRADE
CHARACTER CODE
CHARACTER#8 DATE
INTEGER UNITS
RELATION REL1
RESTRICT CRECORD(CODE.EQ.'C')
END

SUBSCHEMA ADMISSIONS,SCHEMA=UNIVERSITY

ALIAS(RECORD) CRSREC=COURSE-REC
ALIAS(ITEM) CID=COURSE-ID.COURSE~-REC
ALIAS(ITEM) NAME=COURSE-NAME
ALIAS(ITEM) PREREQ=PREREQUISITE

ALIAS(REALM) CFILE=CURRICULUM

ALIAS (RECORD) CURREC=CURR-REC
ALIAS(ITEM) STUDENT=STUDENT-ID
ALIAS(ITEM) CCID=COURSE~ID.CURR-REC
ALIAS(ITEM) CODE=COMPLETE~CODE

REALM COURSE
REALM CFILE

RECORD CRSREC
CHARACTER*6 CID
CHARACTER*20 NAME
CHARACTER*20 SCHOOL
CHARACTER*6 PREREQ
INTEGER UNITS

RECORD CURREC
CHARACTER*14 IDENT
CHARACTER*11 STUDENT
CHARACTER*6 CCID
CHARACTER CODE

END

Figure C-2. The FORTRAN Sub-~Schema Library (Sheet 2 of 8)

60483500 A

C O

A

A
L

O
O

oke

O
O

SUBSCHEMA BURSAR,SCHEMA=UNIVERSITY

ALIAS(RECORD) STREC=STUDENT~REC
ALIASCITEM) STID=STUDENT-ID.STUDENT-REC
ALIAS(ITEM) NAME=STUDENT-NAME
ALIASCITEM) ADDR=STREET-ADDRESS
ALIASCITEM) ZIP=ZIP-CODE

ALIAS (REALM) ACCOUNT=ACCOUNTING

ALIAS (RECORD) ACCTREC=ACCT-REC
ALIAS(ITEM) ASTID=STUDENT-ID.ACCT-REC
ALIAS(ITEM) LAB=LAB-FEES

ALIAS(ITEM) MISC=MISC-FEES

REALM STUDENT
REALM ACCOUNT

RECORD STREC
CHARACTER*11 STID
CHARACTER#30 NAME
CHARACTER*20 ADDR
CHARACTER*10 CITY
CHARACTER*2 STATE
CHARACTER*5 ZIP

RECORD ACCTREC
CHARACTER*11 ASTID
REAL TUITION(16)
REAL LAB(16)

REAL BOOKS(16)
REAL MISC(16)

RELATION REL2
END

End~of-record

End~of-information

Compilation Source Listings

*k

dok

*k

*%

00005 ALIAS (ITEM)

00006 ALIAS (ITEM)

00007

00008 REALM CFILE

00009

00010 RECORD CRECORD

00011

*% WITHIN CFILE

00012 CHARACTER*14 IDENT
ORDINAL 1

00013 CHARACTER*11 STUDENT
ORDINAL 2)

00014 CHARACTER*6 COURSE
ORDINAL 3

00015 REAL GRADE

00016 END

00001 SUBSCHEMA AVERAGE,SCHEMA=UNIVERSITY

AVERAGE * SOURCE LISTING *
00002
00003 ALIAS (REALM)

ORDINAL

DDLF 1.2+538.

CFILE=CURRICULUM

00004 ALIAS (RECORD) CRECORD=CURR-REC
STUDENT=STUDENT-ID.CURR~REC
COURSE=COURSE-ID.CURR-REC

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 3 of 8)

c-5

00017
fekkkk
PRIMARY KEY 00012
ALTERNATE KEY 00013

ALTERNATE KEY 00014

ALTERNATE KEY 00015
Fedededkk

SUBSCHEMA
AVERAGE

DDLF COMPLETE.
476008 CM USED.

COMPARE

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
*% WITHIN PFILE
00026
% ORDINAL 1
. 00027
*% ORDINAL 2
00028
00029
*% ORDINAL 3
00030
%% WITHIN CRSFILE
00031
*% ORDINAL 1
00032
** ORDINAL 2
00033
00034
*% ORDINAL 3

END OF SUB-SCHEMA SOURCE INPUT

IDENT FOR AREA CFILE

STUDENT FOR AREA CFILE

COURSE FOR AREA CFILE

GRADE FOR AREA CFILE

RECORD MAPPING IS NEEDED FOR REALM - CFILE

BEGIN SUB-SCHEMA FILE MAINTENANCE ————

CHECKSUM
35514310376143061021

END OF FILE MAINTENANCE ————
0 DIAGNOSTICS.
0.064 CP SECS.

* SOURCE LISTING * (80351) DDLF 1.2+538.

SUBSCHEMA COMPARE,SCHEMA=UNIVERSITY

ALIAS(REALM) PFILE=PROFESSOR
ALIAS(RECORD) PRECORD=PROF-REC
ALIASCITEM) PROFID=PROF-ID.PROF-REC
ALIAS(ITEM) PNAME=PROF-NAME

ALIAS (REALM) CRSFILE=COURSE

ALIAS (RECORD) CRSREC=COURSE-REC
ALIASC(ITEM) CRSID=COURSE-ID.COURSE-REC
ALIAS(ITEM) CRSNAME=COURSE-~NAME
ALIAS(ITEM) PROF=PROF-ID.COURSE-REC
ALIASCITEM) FIELD=ACADEMIC-FIELD
ALIAS(REALM) CFILE=CURRICULUM
ALIAS(RECORD) CRECORD=CURR-REC
ALIASCITEM) COURSE=COURSE-ID.CURR-REC
ALIAS(ITEM) CODE=COMPLETE=-CODE
ALIASC(ITEM) DATE=COMPLETE-DATE

REALM PFILE

REALM CRSFILE

REALM CFILE

RECORD PRECORD

CHARACTER*8 PROFID

CHARACTER*30 PNAME

CHARACTER#*20 FIELD

RECORD CRSREC
CHARACTER*6 CRSID
CHARACTER*20 CRSNAME

CHARACTER*8 PROF

Figure C-2.

-6

The FORTRAN Sub-Schema Library (Sheet 4 of 8)

60483500 A

CC

O

/(N
‘%\l P //

-

ole

O
O

*%x WITHIN CFILE

** ORDINAL 1

00036

00037

** ORDINAL 2

00038

*% ORDINAL 3

00039

** ORDINAL 4

00040
00041

** ORDINAL 5

PRIMARY KEY
ALTERNATE KEY
PRIMARY KEY

- ALTERNATE KEY

PRIMARY KEY
ALTERNATE KEY
ALTERNATE KEY

00042
00026
00028
00031
00033
00036
00037
00040

Kkkkk

© Rkkdkkk

RELATION 001

SUBSC

dedkdkk

00043
00044
00045
Kekddek

Khkkk

HEMA

COMPARE

DDLF COMPLETE.
506008 CM US

ED.

RECORD CRECORD
CHARACTER*14 IDENT
CHARACTER*6 COURSE
CHARACTER*1 CODE
CHARACTER*8 DATE

REAL GRADE

RELATION REL3
PROFID FOR AREA PFILE
FIELD FOR AREA PFILE
CRSID FOR AREA CRSFILE
PROF FOR AREA CRSFILE
IDENT FOR AREA CFILE
COURSE FOR AREA CFILE
GRADE FOR AREA CFILE

RECORD MAPPING IS NOT NEEDED FOR REALM - PFILE
RECORD MAPPING IS NEEDED FOR REALM - CRSFILE
RECORD MAPPING IS NEEDED FOR REALM - CFILE
RESTRICT CRECORD (CODE .EQ. 'C")
END

END OF SUB-SCHEMA SOURCE INPUT

RELATION STATISTICS *kkkdk
REL3 JOINS AREA - PFILE
AREA - CRSFILE
AREA - CFILE

BEGIN SUB-SCHEMA FILE MAINTENANCE @ ———ma

CHECKSUM
71111404530456653576

END OF FILE MAINTENANCE @ = —-=——-

0 DIAGNOSTICS.
0.146 CP SECS.

60483500 A

Figure C-2.

The FORTRAN Sub-Schema Library (Sheet 5 of 8)

RELATION * SOURCE LISTING * (80351) DDLF 1.2+538. 1[;:D
00001 SUBSCHEMA RELATION,SCHEMA=UNIVERSITY O
00002 .
00003 ALIAS(REALM) ~SFILE=STUDENT
00004 ALIAS(RECORD) SRECORD=STUDENT-REC
00005 ALIAS(ITEM) STID=STUDENT-ID.STUDENT-REC
00006
00007 ALIAS(REALM) CFILE=CURRICULUM
00008 ALIAS (RECORD) CRECORD=CURR-REC
00009 ALIAS(ITEM) CSTID=STUDENT-ID.CURR-REC
00010 ALIASCITEM) COURS=COURSE-ID.CURR-REC
00011 ALIASCITEM) PROF=PROF-NAME
00012 ALIASCITEM) ~ CODE=COMPLETE-CODE
00013 ALIASCITEM) DATE=COMPLETE-DATE
00014
00015 REALM SFILE
00016 REALM CFILE
00017
00018 RECORD SRECORD
** WITHIN SFILE
00019 CHARACTER*11 STID
** ORDINAL 1 N
00020 CHARACTER*20 MAJOR
00021 S
** ORDINAL 2
00022 RECORD CRECORD
** WITHIN CFILE
00023 CHARACTER*14 IDENT
** ORDINAL 1
00024 CHARACTER*11 CSTID
*% ORDINAL 2
00025 CHARACTER*6 COURS
** ORDINAL 3
00026 REAL GRADE
** ORDINAL 4 Y
00027 CHARACTER CODE \
** ORDINAL 5
00028 CHARACTER*8 DATE
** ORDINAL 6
00029 INTEGER UNITS
** ORDINAL 7
00030 RELATION REL1
PRIMARY KEY 00019 STID FOR AREA SFILE
ALTERNATE KEY 00020 MAJOR FOR AREA SFILE
PRIMARY KEY 00023 IDENT FOR AREA CFILE
ALTERNATE KEY 00024 CSTID FOR AREA CFILE
ALTERNATE KEY 00025 COURS FOR AREA CFILE AN
ALTERNATE KEY 00026 GRADE FOR AREA CFILE '
Hhddk RECORD MAPPING IS NEEDED FOR REALM - SFILE -~
bt RECORD MAPPING IS NEEDED FOR REALM - CFILE
00031 RESTRICT CRECORD(CODE.EQ.'C')
00032 END
00033
sk END OF SUB-SCHEMA SOURCE INPUT
et RELATION STATISTICS Hhekkx
RELATION 001 REL1 JOINS AREA - SFILE
- AREA - CFILE
———- BEGIN SUB~SCHEMA FILE MAINTENANCE -——-
SUBSCHEMA CHECKSUM
RELATION 76710464332261536703
—- END OF FILE MAINTENANCE —--
DDLF COMPLETE. 0 DIAGNOSTICS.
505008 CM USED. 0.128 CP SECS.

Figure C-2. The FORTRAN Sub-Schema Library (Sheet 6 of 8)

60483500 A

C}) ADMISSIONS * SOURCE LISTING * (80351) DDLF 1.2+538.
@ 00001 SUBSCHEMA ADMISSIONS,SCHEMA=UNIVERSITY
00002
00003 ALIAS (RECORD) CRSREC=COURSE-REC
00004 ALIASCITEM) CID=COURSE-ID.COURSE-REC
00005 ALIASCITEM) NAME=COURSE-NAME
00006 ALIASCITEM) PREREQ=PREREQUISITE
00007
00008 ALIAS(REALM) CFILE=CURRICULUM
00009 ALIAS (RECORD) CURREC=CURR-REC
00010 ALIASCITEM) STUDENT=STUDENT-ID
00011 ALIASCITEM) CCID=COURSE-ID.CURR-REC
00012 ALIASCITEM) CODE=COMPLETE-CODE
00013
00014 REALM COURSE
00015 REALM CFILE
00016
00017 RECORD CRSREC
*% WITHIN COURSE
00018 CHARACTER*6 CID
** ORDINAL 1
\ 00019 CHARACTER*20 NAME
/ ** ORDINAL 2
00020 CHARACTER*20 SCHOOL
** ORDINAL 3
00021 CHARACTER*6 PREREQ
*% ORDINAL 4
00022 INTEGER UNITS
00023
** ORDINAL 5
00024 RECORD CURREC
** WITHIN CFILE
00025 CHARACTER*14 IDENT
*% ORDINAL 1
00026 CHARACTER*11 STUDENT
0 *% ORDINAL 2
00027 CHARACTER*6 CCID
** ORDINAL 3
00028 CHARACTER CODE
** ORDINAL 4
00029 END
00030
Thkkk END OF SUB-SCHEMA SOURCE INPUT
PRIMARY KEY 00018 CID FOR AREA COURSE
PRIMARY KEY 00025 IDENT FOR AREA CFILE
ALTERNATE KEY 00026 STUDENT FOR AREA CFILE
0 ALTERNATE KEY 00027 CCID FOR AREA CFILE
Sk RECORD MAPPING IS NEEDED FOR REALM - COURSE
Fhkkk RECORD MAPPING IS NEEDED FOR REALM - CFILE
—— BEGIN SUB-SCHEMA FILE MAINTENANCE ~ =—-—--
SUBSCHEMA CHECKSUM
ADMISSIONS 56065313377542307610
----- END OF FILE MAINTENANCE ——--
DDLF COMPLETE. 0 DIAGNOSTICS.
500008 CM USED. 0.109 CP SECS.

- Figure C-2. The FORTRAN Sub-Schema Library (Sheet 7 of 8)

60483500 A

BURSAR

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
% WITHIN STUDENT
00019
*% ORDINAL 1
00020
**x ORDINAL 2
00021
** ORDINAL 3
00022
** ORDINAL 4
00023
** ORDINAL 5
00024
00025
** ORDINAL]
00026
*% WITHIN ACCOUNT
00027
*% ORDINAL 1
00028
*% ORDINAL
00029
** ORDINAL 3
00030
** ORDINAL 4
00031
00032
** ORDINAL 5
00033
PRIMARY KEY 00019
PRIMARY KEY 00027
Fkdkk
Fkkkk
00034

kddkk

Fedededk
RELATION 001

SUBSCHEMA
BURSAR

DDLF COMPLETE.
50500B CM USED.

* SOURCE LISTING * (80351)

SUBSCHEMA BURSAR,SCHEMA=UNIVERSITY

ALIAS(RECORD) STREC=STUDENT-REC

DDLF 1.2+538.

ALIAS(ITEM) STID=STUDENT-ID.STUDENT-REC

ALIAS(ITEM) NAME=STUDENT~NAME
ALIASCITEM) ADDR=STREET-ADDRESS
ALIAS(ITEM) ZIP=ZIP-CODE

ALIAS(REALM) ACCOUNT=ACCOUNTING
ALIAS(RECORD) ACCTREC=ACCT-REC

ALIAS(ITEM) ASTID=STUDENT-ID.ACCT-REC

ALIAS(ITEM) LAB=LAB-FEES
ALIAS(ITEM) MISC=MISC-FEES

REALM STUDENT
REALM ACCOUNT

RECORD STREC
CHARACTER*11 STID
CHARACTER*30 NAME
CHARACTER*20 ADDR
CHARACTER*10 CITY
CHARACTER*2 STATE
CHARACTER*S5 ZIP

RECORD ACCTREC
CHARACTER*11 ASTID
REAL TUITION(16)
REAL LAB(16)

REAL BOOKS (16)
REAL MISC(16)
RELATION REL2

STID FOR AREA STUDENT
ASTID FOR AREA ACCOUNT

RECORD MAPPING IS NEEDED FOR REALM - STUDENT
RECORD MAPPING IS NOT NEEDED FOR REALM - ACCOUNT
END

END OF SUB-SCHEMA SOURCE INPUT

RELATION STATISTICS
AREA - STUDENT
AREA - ACCOUNT

- REL2 JOINS

BEGIN SUB-~SCHEMA FILE MAINTENANCE

CHECKSUM
16643753141007716046

END OF FILE MAINTENANCE = = —cem-
0 DIAGNOSTICS.
0.107 CP SECS.

*kkkk

Figure C-2.

c-10

The FORTRAN Sub~-Schema Library (Sheet 8 of 8)

e

O
U

eole

O
O

Job statement

USER statement

CHARGE statement
DEFINE(QULIB/CT=PU,M=W)
ATTACH (UNIVERS)
pbL3(QC,SB=QULIB,SC=UNIVERS)
End-of-record

TITLE DIVISION.
SS CREATES WITHIN UNIVERSITY.

REALM DIVISION.
RD ALL.

RECORD DIVISION.

01 PROF-REC.
03 PROF-ID PIC X(8).
03 PROF-NAME PIC X(30).
03 ACADEMIC-FIELD PIC X(20).

01 COURSE-REC.

03 COURSE-ID PIC X(6).
03 COURSE-NAME PIC X(20).
03 SCHOOL PIC X(20).
03 PROF-ID PIC X(8).
03 PREREQUISITE PIC X(6).
03 UNITS PIC 9(2).

01 STUDENT-REC.
03 STUDENT-ID PIC X(11).
03 STUDENT~NAME PIC X(30).
03 STREET-ADDRESS PIC X(20).

03 CITY PIC X(10).
03 STATE PIC A(2),
03 ZIP-CODE PIC X(5).
03 PHONE PIC X(12).
03 MAJOR PIC X(20).
01 CURR-REC.
03 IDENT PIC X(14).
03 STUDENT-ID PIC X(11).
03 COURSE-ID PIC X(6).
03 GRADE PIC 9v9.

03 COMPLETE-CODE PIC A.
03 COMPLETE-DATE PIC X(8).

03 UNITS PIC 9V9.

01 ACCT-REC.
03 STUDENT-ID PIC X(11).
03 TUITION PIC 9(5)V99
03 LAB-FEES PIC 9(4)V99
03 BOOKS PIC 9(4)V99
03 MISC-FEES PIC 9(4)V99

End-of-record

End-of-information

USAGE IS COMP-2
OCCURS 16 TIMES.
USAGE IS COMP-2
OCCURS 16 TIMES.
USAGE IS CoMP-2
OCCURS 16 TIMES.
USAGE IS COMP-2
OCCURS 16 TIMES.

60483500 A

Figure C=3. The Query Update Sub-Schema Library

Job statement

USER statement

CHARGE statement

DEFINE (MSTRDIR/CT=PU)
ATTACH(UNIVERS)
ATTACH(SSLIB)
ATTACH(QULIB)

DBMSTRD (NMD=MSTRDIR,LD)
End-of-record

SCHEMA NAME 1S UNIVERSITY
FILE NAME IS UNIVERS
JOURNAL LOGGING ON LOGFILE.

AREA NAME IS PROFESSOR

PFN IS "PROFESS" UN IS "DBIDOO1"
INDEX FILE ASSIGNED
PFN "PNDX" UN IS "DBID0O1".

AREA NAME IS COURSE
PFN IS "COURSE" UN IS "DBIDOO1"
INDEX FILE ASSIGNED
PFN "CRSNDX" UN IS "DBID0O1".

AREA NAME IS STUDENT
PFN IS "STUDENT" UN IS "DBID0O1"
INDEX FILE ASSIGNED
PFN "SNDX" UN IS "DBID0O1".

AREA NAME IS CURRICULUM
PFN IS "CURRICU" UN IS "DBIDOO1"
LOG BEFORE IMAGE RECORDS
INDEX FILE ASSIGNED
PFN "CRNDX" UN IS "DBID001".

AREA NAME IS ACCOUNTING
PFN IS "ACCOUNT" UN IS "DBID001".

SUBSCHEMA NAME IS AVERAGE
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS COMPARE
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS RELATION
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS ADMISSIONS
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS BURSAR
FILE NAME IS SSLIB.

SUBSCHEMA NAME IS CREATES
FILE NAME IS QULIB.
End~of-record

End-of-information

c-12

Figure C-4. The Master Directory Build

60483500 A

CC

O

ele

Job statement

USER statement

CHARGE statement

DEFINE(PROFESS ,PNDX/CT=PU,M=W)
DEFINE(COURSE,CRSNDX/CT=PU,M=W)
DEFINE(STUDENT ,SNDX/CT=PU,M=W)
DEFINE (CURRICU,CRNDX/CT=PU,M=W)
DEFINE (ACCOUNT/CT=PU,M=W)
RETURN(PROFESS ,PNDX,COURSE, CRSNDX)
RETURN(STUDENT ,SNDX,CURRICU,CRNDX,ACCOUNT)
QU(I=INPUT)

End-of-record

CREATE PROFESSOR OF CREATES FROM LIBRARY QULIB(UN=DBID001)
STORE PROF-REC SETTING PROF-ID PROF~NAME ACADEMIC-FIELD

$CRLNOO80$ $CARLIN, W.L.$ SHISTORYS
$DVS00575% $DAVIS, M.E.$ $PSYCHOLOGY$
$JCKSN750% $JACKSON, U.B.$ $BUSINESSS
$JMS00160$ $JAMES, H.L.$ S$PSYCHOLOGYS$
$MLNOO840$ $MALONE, R.E.$ SHISTORYS
$RSS00860% $ROSS, W.R.$ $BUSINESSS
$SMTHO455% $SMITH, P.R.$ SMATHEMATICSS
$WLSNO855% SWILSON, G.R.$ $CHEMISTRYS$
$YMDOO170% $YMADA, J.V.$ $BUSINESSS
*END

CREATE COURSE OF CREATES FROM LIBRARY QULIB(UN=DBID001)
STORE COURSE-~REC SETTING COURSE-ID COURSE-NAME SCHOOL +
PROF-ID PREREQUISITE UNITS

$CHM103$ $BIOCHEMISTRY$ $SCIENCE$S $CRLNOOSO$S $CHMOOSS 3
$CHMOD5$ SQUANTITATIVE ANALS $SCIENCES S$WLSNO855% $N/AS 4
$CHM1103 SLINEAR OPTIMIZATIONS $SCIENCE$S $WLSNO855% $MATH10$ 3
$PSY1363 $SOCIAL PSYCHOLOGY$S $LIBERAL ARTSS $JMS001608 $N/AS 3
$PSY002$ SGENERAL PSYCHOLOGY$ S$LIBERAL ARTS$S $JMS00160% S$N/AS 3
$PSY003$ $PSYCHONOMICSS S$LIBERAL ARTS$ $DVS00575% $PSY002$ 3
$HIS103% $GREEK HISTORY$S SLIBERAL ARTS$ $MLNOO840$ N/A 3
$BUSD17% SCONSUMER LAWS $BUSINESS ADMINS $JCKSN750% N/AS 3
$BUS001$ SACCOUNTING I$ $BUSINESS ADMINS $YMD0O170$ N/AS 3
$BUS002$ SACCOUNTING II$ $BUSINESS AMIN$ $RSS00860%3 $BUS001$ 3
$MATH10$ $COLLEGE ALGEBRA$ $SCIENCES $SMTHO455% SN/A$S 3

*END

CREATE STUDENT OF CREATES FROM LIBRARY QULIB(UN=DBIDOO1)
STORE STUDENT-REC SETTING STUDENT-ID STUDENT-NAME +
STREET—~ADDRESS CITY STATE ZIP-CODE PHONE MAJOR

$122-13-6704% S$WALTER HILLS $1960 MONTANA ST.$ +
SMINNEAPOLISS MN 55112 $612-143-17608 S$HISTORYS
$100-22-5860% $GUY RICHARDS$ $143 E. LAKE BLVD.$ +
$MINNEAPOLISS MN $554408 $612-715-9187$% $BIOLOGYS
$124-33-5780% $BARBARA YOUNG$ $413 MAPLE AVE.$ +
SMINNEAPOLISS MN $554408 $612-731-4632% S$HISTORYS
$120-44-3760$ $JERI ADAMSS $1400 W. OAK LANES +
SMINNEAPOLISS MN $551128 $612-625-7913% S$CHEMISTRYS
$553-89-2021% $PAUL JOHNSONS $137 MARKET ST.$ +
$ST. PAULS MN $551043 $612-649-1377% $PSYCHOLOGYS
$687-14-21008 $PATRICIA ANDREWS$ $100 KAUREL DR.$ +
SMINNEAPOLISS SMN $551128 $612-436-87503 $BIOLOGYS
$197-11-2140% $CAREN NIELSON$ $12 MORRIS ST.$ +
$ST. PAULS MN $551048 $612-136-9800% $CHEMISTRYS
$678-12-1144% $MARK PETERSEN$ $1372 PARKVIEW DR.$ +
SMINNIAPOLISS MN $551128 $612-143-9877% $PSYCHOLOGY$
$387-14-12328 $LLOYD DAVISS $692 FIRST ST. APT. 1% +
$ST. PAULS S$MN$ $55104% $612-993-4773% $CHEMISTRYS
$437-56-8943% $JANET ANDERSON$ $986 SINCLAIRE AVE.$ +
$MINNEAPOLIS$ SMN $55112% $612-997-61603 $BIOLOGYS
*END

0 60483500 A

Figure C-5. The Query Update Data Base Creation Program (Sheet 1 of 2)

c-13

CREATE CURRICULUM OF CREATES FROM LIBRARY QULIB(UN=DBID0O1)
ACCESS KEY IS $XX99% ON OUTPUT FOR AREA CURRICULUM
STORE CURR-REC SETTING IDENT STUDENT-ID COURSE~ID +

GRADE COMPLETE-CODE COMPLETE-DATE UNITS

$122-13-6704-018 $122-13-6704% $HIS103$ 4.0 C $09/22/80% 3.0
$122-13-6704-02¢ $122-13-6704% $PSY136$ 0.0 I $ $ 3.0
$100-22-5860-01$ $100-22-5860$% $CHM103$ 3.0 C $05/30/79% 3.
$100-22-5860-02% $100-22-5860% $CHMOOS5S 4.0 C $09/22/79% 4.
$100-22~5860-03% $100-22-5860$ $MATH10$ 3.5 C $05/18/79% 3.
$100-22-5860-04% $100-22-5860% $PSY002% 0.0 I $ $ 3.0
$124-33-5780-01% $124-33-5780$ $HIS103$ 3.5 C $09/22/80% 3.
$124-33-5780~-02% $124-33-5780$ $BUSO01$ 4.0 C $02/24/80%8 3.
$124-33-5780-038 $124-33-5780% $BUSO02$ 4.0 C $09/22/80% 3.
$120-44-3760-01% $120-44-3760$ $CHMOO5$ 2.0 C $09/22/79% 4.
$120-44-3760-028 $120-44-3760$ $CHM103$ 3.0 C $05/30/80% 3.
$120~44-3760-03% $120-44-37603 $MATH10$ 4.0 C $05/30/808 3.
$120-44-3760-04% $120-44-3760% $CHM110$ 3.5 C $09/22/80% 3.
$553-89-2021-01% $120-44-3760$ $PSY136$ 3.5 C $05/30/80% 3.
1$553-89-2021-028 $553-89-2021% $PSY002$ 4.0 C $05/30/80%

$553-89-2021-03% $553-89-2021$ $PSY003$
$687-14~2100-01% $687-14-2100% $CHMDOS$
$687-14-2100-02% $687-14-2100% $CHM103$
$687-14-2100-03% $687-14-21008 S$MATH10$
$687-14-2100-04% . $687-14-2100$ $CHM110%
$197-11-2140-01% $197-11-2140% $CHMOOS$
$197-11-2140-02% $197-11-2140% $CHM103$
$197-11-2140-03% $197-11-2140% $CHM110$
$197-11-2140-04% $197-11-21408 $MATH10$
$678-12-1144-01$ $678-12-1144% 3IPSY136$
$678-12-1144-02% $678-12-11448 $BUSD17$
$678-12-1144~-03% $678-12-1144% S$HIS103$

C $09/22/80%
C $09/22/79%
C $05/30/80%
C $05/30/80%
C $05/30/80%
C $05/30/80%
$Cs $09/22/80%
C $09/22/80%
C $05/30/80%
C $05/30/80%
C $05/30/80%
$I1$ ¢ $ 3.0

WHWWNWWPWNANNSTWNWOWWANWNS W W W W
.
0000000000000 OO0O00O0D0O oo

WWWOOOOoOOoOPrRSPPUWEAEPDPUSW
.
MUVNOO0OOO0O0O00DO0O0OOUVMOOOUVO VO

$387-14~1232-01% $387-14-1232% $MATH10$ 0.0 I $ $ 3.0
$387-14-1232-02% $387-14-1232% $CHMOOS$ 0.0 I $ $ 4.0
$387-14-1232-03% $387-14-1232% $PSY136% 0.0 I $ $ 3.0

$387-14-1232-04% $387-14-1232¢ $BUS017$

$437-56-8943-01% $437-56~8943% $MATH10$

$437-56-8943-02%8 $437-56-8943% $CHMOO5S

$437-56-8943-03% $437-56-8943% $PSY002$
*END

$I1$ $ $ 3.0
C $05/30/80%
C $05/30/80%
C $05/30/80%

W W
.
(=N No

CREATE ACCOUNTING OF CREATES FROM LIBRARY QULIB(UN=DBID0O01)
STORE ACCT-REC SETTING STUDENT-ID

$122-13-6704%
$100-22-5860%
$124~-33-5780%
$120-44-3760%
$553-89-2021%
$687-14-2100%
$197-11-21408
$678-12-1144%
$387-14-1232%
$437-56-8943%

*END

END

End-of-record

End-of-information

c-14

Figure C~5. The Query Update Data Base Creation Program (Sheet 2 of 2)

60483500 A

C QO

oC

aje

O

O
O

INDEX

Access control B-1
Actual key file organization 1-3, 3-12, B-1
Advanced Access Methods (AAM) B-1
Alias 2-1, 3-10, B-1
Alternate key
Listed in sub-schema 2-3, 3-10
Multiple-index processing 1-3
Order sequenced 3-14
READ statement 3-6
START statement 3-7, 3-14
Area (see also Data base file) B-1

Basic Access Methods (BAM) B-1

cbCs
Definition B8-1
Description 1-2
Interface

Establish 3-2
Terminate 3-4

tocking mechanisms 4-6
CDCS Batch Test Facility 1-2, B-1
CDCSBTF control statement 6-1
Child record occurrence

Constraint &4-4

Definition B-1

Relation 3-10, 3-13, 3-15
CLOSE statement 3-4
Common item 3-8, 3-10, B-1
Concurrency 1-4, B-1
Constraint

Avoiding violations

Definition B-1

Description 1-4, 4-4
Control break

Definition B-1

Description 3-13

Information returned in status block 4-2, 5-12
Control statements

CDCSBTF 6-1

DML 5-1

FIN5S 5-1, 6-1

LDSET 5-1
CYBER Database Control System (see CDCS)
CYBER Record Manager (CRM)

Definition B-1

Description 1-3

Interface 1-3

4=4

Data administrator
Definition B-1
Description 1-1
Responsibilities

Data base B-1

Data base file (see also Realm)
Accessing 3-1
Attached by CDCS 3-2
Creating 3-5, 4-5
Direct access B-2
Error checking 4-2
File B-2

3-1, 5-1, ¢~

60483500 A

Data base file (Contd)
Lock
Description 4-6
LOCK statement 3-3
Use 3-7, 3-8, 4-6
Manipulating 3-5
Organization 1-3
Position 3-6, 4-3, 5-7
Privacy 1-4
Processing considerations
Constraint 4-4
Deadlock 4-6
Relation 3-10, 3-15
Processing function 3-1, 4-3
Status checking 4-2
Data base procedures 1-3, B-1
Data base status block
Content 4-3
Definition B-1
Establishing in FORTRAN program 4-2
Test for constraint violation 4-6
Test for control break 4-2, 5-11
Test for deadlock 4-7
Test for end-of-file 5-7
Test for null occurrence 4-2, 5-11
Data Description Language (see DDL)
Data item B-1
Data Manipulation Language (see DML)
pbL 1-1, B-1
Deadlock 4-4, B-1
DELETE statement 3-8
Direct access file organization
DML
Control statement 5-1
Definition B-1
Description 2-1
Language components 2-1
Preprocessor 5-1
Statement positioning 2-1
Statements 2-4, 3-1
Syntax requirements 2-1
DML statements
CLOSE statement
Realm 3-4
Relation 3-10
DELETE statement 3-8
INVOKE statement 3-2
LOCK statement 3-4, 4-6
OPEN statement
Realm 3-3
Relation 3-10
PRIVACY statement 3-3, 3-10
READ statement
Realm 3-6
Relation 3-12
REWRITE statement 3-7
START statement
Realm 3-6
Relation 3-14
SUBSCHEMA statement 3-1
TERMINATE statement 3-4
UNLOCK statement 3-4
WRITE statement 3-5

1-3, 3-12, B-2

Index-1

DMLDBST routine 4-2
DMLRPT routine &4-4
DMS-170
Description 1-1
Feature summary 1-5

End option 4-1

End-of-file 3-12, 4-1, 5-7

EOF (see End-of-file)

ERR .option 4-1

Error processing 4-1

Examp Les
Data Base C-1
FORTRAN application programs 5-3
Sub-schemas 2-1, 3-2, 3-11, C-1

File (see Data base file)

FORTRAN DML (see DML)

FORTRAN source program
Developing 2-1, 3-1, 5-1
Compiling and Executing 5-1
Sample programs 5-3

FTN5 control statement 5-1, 6-1

Hierarchical tree structure 3-9, B-2
Home block B-2

I (mode) 3-3, 3-10

Indexed sequential file organization 1-3, 3-12, B-2
INVOKE statement 3-2

10 (mode) 3-3, 3-10

Item ordinal 2-2, 4-3

KEY option
READ statement 3-6, 3-12
START statement 3-6, 3-14
Keyword B-2

LDSET control statement 5-1
Listing control 5-3
LOCK statement 3-14
Log files .
Definition B-2
Recovery point 4-4
Used with CDCS 1-4
Used with CDCS Batch Test Facility 6-1

Mapping 2-2, B-2
Master directory
Definition B-2
Sample C-1
Used with CDCS 1-2
Used with CDCS Batch Test Facility 6-1
MODE option
Creating a file 3-5
OPEN statement 3~3, 3-10
PRIVACY statement 3-3
Relation processing 3-10
Multiple index
Processor B-2
Processing 1-3

Null record occurrence
Definition B-1
Description 3-13 .
Information returned in status block
Null vatues 3-5

4-2, 5-12

Index-2

0 (mode) 3-5

OPEN statement
Realm 3-3
Relation 3-10

Parent record occurrence

Constraint 4-4

befinition B=-2

Relation 3-9, 3-13, 3-15
Permanent file B-2
Primary key

DELETE statement 3-8

Listed in sub-schema 2-2, 3-10

Order sequenced 3-12

READ statement 3-6, 3-13

REWRITE statement 3~7

START statement 3-7, 3-14
Privacy key

befinition B-2, 2-1

Description 1-4

Specification requirements 3-3
PRIVACY statement 3-3, 3-10

Query Update program C-1

Rank

Control break status 3-13

befinition B-2

Description 3-9

Nultl record status 3-13

Returned in status block 4-~3
READ

Locking mechanism 4-6

Random 3-6, 3-13, 5-5

READ statement

Realm 3-6
Relation 3-12

Sequential 3-6, 3-12, 5-4
Realm (see also Data base file)

Definition B-2

Listed in sub-schema 2-2, 3-1, 3-10

Name returned in status block 4-3
Realm lock

Description &4-6

LOCK statement 3-3

Use when updating 3-7, 3-8
Realm ordinal B-2
Record

Definition B-2

Ordered stored 1-3
Record lock

Description 4-6

Use when updating 3-7, 3-8
Record occurrence 3-9, 3-12, B-2
Record type B-2
Recovery 1-4, B-2
Recovery point 4-4, B-2
Relation

Accessing 3-8

Definition B-2

Description 1~4

Listed in sub-schema 3-10

Processing considerations 3-10, 3-15

Processing function 3-9

Structure 3-9
Relation occurrence 3-8, 3-12, B-2
Restriction

Definition B-3

Description 1-4

Listed in sub-schema 2-3, 3-10
REWRITE statement 3-7
Root realm 3-9, B-3

60483500 A

C0O

.

ele

®

o0

Schema 1-1, B-3, C-1
START statement
Realm 3-6
Relation 3-14
Status block (see Data base status block)
SUBSCHEMA statement 3-1
Sub-schema
Definition B-3
Description 1-1
Item ordinal 2-2, 4-3
Samples 2-1
Used in application programs 3-1, 3-10, C-1

60483500 A

Sub-schema item ordinal 2-2, B-3
Sub-schema library 2-1, B-3
Subscripting 5-15

Subroutine 5-9

TERMINATE statement 3-4

UNLOCK statement 3-4
Updating consideration 3-15

WRITE statement 3-5

Index-3

cC

oo

o
O

COMMENT SHEET

MANUAL TITLE: FORTRAN Data Base Facility Version 1
Application Programming User's Guide

PUBLICATION NO.: 60483500 REVISION: A

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of

this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

Please reply No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE TAPE
FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

]

BUSINESS REPLY MAIL e —

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]

|

POSTAGE WILL BE PAID BY N

CONTROL DATA CORPORATION R

Publications and Graphics Division E—

. N

215 Moffett Park Drive

Sunnyvale, California 94086 I

]

.|

]

R
FOLD - FOLD

CUT ALONG LINE

C O

O

|

c o

