60480400

@ CONTROL DATA
CORPORATION

NETWORK PRODUCTS

NETWORK ACCESS METHOD
VERSION 1

FORTRAN APPLICATION
PROGRAMMER’'S SYSTEM BULLETIN

CDC® OPERATING SYSTEMS:
NOS 1

REVISION RECORD
REVISION DESCRIPTION
A Original release at PSR level 477.
(08-15-78)
Publication No.
60480400
, Address comments concerning
REVISION LETTERS I, O, Q AND X ARE NOT USED /

© 1978

Control Data Corporation
Printed in the United States of America

this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-
tion rather than content has changed.

-

Page Revision Page Revision Page Revision

Cover

Title Page

ii

iii/iv

v

vi

vii

1-1

1-2

2-1 thru 2-6
3-1 thru 3-10
4-1 thru 4-10
5-1 thru 5-6
6-1 thru 6-16
A-1 thru A-6
B-1

B-2

C1

D-1

Index-1
Index-2
Comment Sheet
Mailer

Back Cover

(I i g B B i e i i i g g S

60480400 A fiifiv

PREFACE

m

This Programmer's System Bulletin explains how a user
application program should be written to communicate with
the network through the Network Access Method (NAM).

Such an application program can be written in one of the
high-level languages, such as FORTRAN, COBOL, or
SYMPL, where communication is with the various NAM
components through interface routines; or it can be written
in COMPASS, where communication is provided through a
set of macros.

This bulletin does not contain all details concerning the use
of NAM; however, it explains the basic principles to the
novice user. For more detail concerning the use of NAM,
refer to the NAM 1 reference manual.

Publication

NOS 1 Reference Manual (Volume D)

NOS 1 Reference Manual (Volume II)

NOS 1 System Maintenance Reference Manual

NOS 1 Operator's Guide

Transaction Facility Version 1 Reference Manual

Interactive Facility Version 1 Reference Manual

COMPASS Version 3 Reference Manual

FORTRAN Extended Version 4 Reference Manual

Network Products Stimulator Version 1
Reference Manual

Network Products Network Access Method

Version 1 Reference Manual

Network Products Network Access Method

Version 1 Network Definition Language
Reference Manual

Network Products Remote Batch Facility
Version 1 Reference Manual

Network Products 255x Series Communications
Control Program Version 3 Reference Manual

8-Bit Subroutines Reference Manual
Programming Reference Aids

731-12 Remote Batch Terminal Operating
and Programming Guide

200 User Terminal
Operating and Programming Guide

714-10/20 Remote Terminal Subsystem
Operating Guide

714-10/20 Remote Terminal Subsystem
Reference Manual

60480400 A

Examples and routine call formats are presented in
FORTRAN, and only the interactive features are discussed.
Shading is used on sample listings to highlight coding
changes to an earlier example that implement additional
features. Shading does not indicate ANSI or non-ANSI
usages.

RELATED MANUALS

The NAM applications programmer can find additional
pertinent information in the following Control Data
Corporation manuals: :

Publication Number

60435400
60445300
60455380
60435600
60455340
60455250
60492600
60497800

60480500

60499500

60480000

60499600

60471400
60495500
60158600

82186800

82136000

82184500

82184600

vi

711-10 CRT Display Terminal Operatog"s Guide
711-10 CRT Display Terminal Reference Manual
750 Terminal Subsystem Operator's Guide

750 Terminal Subsystem Reference Manual

713-10 Conversational Display Terminal
Operator's Guide

713-10 Conversational Display Terminal
Reference Manual

734 Batch Terminal Operator's Guide
734 Batch Terminal Reference Manual

Mode 4C Data Communication
Control Procedure System Standard

62034100
62022700
6295140d
62962800

62037900

62033400
62971500
62971300

CDC-STD 1.10.020

CDC manuals can be ordered from Control Data Literature and Distribution Services,

8001 East Bloomington Freeway, Minneapolis, Minnesota 55420.

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of

undescribed features or parameters.

60480400 A

CONTENTS

1. INTRODUCTION

What Is NAM?

What Does Network Mean?

Why Is NAM Needed?

What are the Basic NAM Components?
How is NAM Used?

2. BASIC TERMS

The Application Connection Number

The Message

The Block

Supervisory Messages

The Text Area -

The Application Block Header

Basic Protocols Involving Supervisory Messages
NAM to Application Supervisory Messages
Application to NAM Supervisory Messages

3. NETWORK ACCESS

NETON and NETOFF
NETGET, NETPUT, and NETWAIT
NETGET
NETPUT
NETWAIT
First Steps in Connection Establishment
First Sample Program
NFETCH and NSTORE Subroutines
NFETCH Function
NSTORE Function
Keywords ’
The Application List Number
NETGETL

4. DATA FLOW AND ERROR CONTROL

Logical Connection Breakage
Application Initiates the Disconnect
Application is Informed of the Disconnect

Standard Character Sets
List of Keywords

o>

1-1 Network Software Relationships

2-1 Application Connection Numbers

2-2 BLK and MSG Message Blocks

2-3 Application Block Header and Text Area
2-4 Application Block Header Format

2-5 ABH Configuration of 'ATHISAISAINPUT'

60480400 A

1-1 Downline Flow Control
Acknowledgment/Nonacknowledgment of

1-1 Block Delivery

1-1 STOP Versus BREAK

1-1 Inactive Connection and Host Shutdown

1-1 SHUT/INSD Supervisory Message

1-2 Error Handling

The ECHO Program Example

5. DATA FORMATS AND TERMINAL
CONTROL

The Interactive Virtual Terminal
IVT Mode Transforms and Format Effectors
Input and Output Operation
Input
Output
Format Effectors
The Transparent Mode
Character Type Control
Terminal Characteristics
Specifying Individual Characteristics
Selecting Terminal Class
Selecting and Delimiting Transparent
Made Input
Terminal Characteristics Changed
by the User
ABH Flags

NNNNI.\JNNNN
VMELENNNNN-

i
[

6. MISCELLANEQCUS FEATURES

The Parallel Mode
The Fragmented Buffer Routines

uuwuuu\l»uuuwww

NETGETF
4-1 NETGTFL
NETPUTF
4-1 Application-To-Application Communication
4-1 The Debug Option
4-1 The Statistical Option
APPENDIXES
A-1 C Supervisory Messages
B-1 D Configuration Files -
INDEX
FIGURES
1-2 2-6 Content of Text Area of 'ATHISAISAINPUT'
2-1 2-7 ABH Configuration of
2-2 'ENTERAINPUTAPLEASE'
2-2 2-8 Content of Text Area of
2-3 'ENTERAINPUTAPLEASE'
2-3 2-9 Format of Supervisory Message

\n\h\ﬂ\h\ﬂ\'ﬂ\ﬁ\.ﬂ\.ﬂ\ﬂ\ﬂ

U"
] J
v\ S NN NON P R b s

\‘ﬂ\.ﬂ

X
=

S W

R N
(R TRV NV I W

C-1
D-1

vii

2-10 ABH for an Asynchronous Supervisory . : 4-9 FC/BRK Protocol 4-4
Message 2-6 4-10 Format for Stop (FC/STP) 4-4
2-11 ABH for a Synchronous Supervisory 4-11 Format for Start (FC/STA) 4-4
Message) 2-6 4-12 Format for Break (FC/BRK) 4-5
3-1 NSUP Word 3-2 4-13 Format for Reset (FC/RST) 4-5
3-2 Format for Data Block Header 3-2 4-14 Format for Flow-Control/Inactive (FC/INA) 4-6
3-3 ABH Configuration of 'AINPUTAPLS' 3-3 4-15 Format for Host Shutdown (SHUT/INSD) 4-6
3-4 Format of Connection Management 4-16 Format for Logical Error (ERR/LGL) 4-7
Supervisory Messages 3-5 4-17 The ECHO Program 4-7
3-5 Normal Response Format for Connection : 5-1 - Format for Change Input Character Type)
: Request (CON/REQ/N) ’ 3-5 (DC/CICT) 5-2
3-6 Abnormal Response Format for Connection 5-2 . Format for Terminal Characteristic
Request (CON/REQ/A) 3-5 Redefinition (CTRL/DEF) 5-3
3-7 Flow-Control/Initialized Format (FC/INIT) 3-6 5-3 Format for Terminal Characteristics
3.8 Normal Response Format for Connection Redefined (TCH/TCHAR) 5-5
Initialized (FC/INIT/N) 3-6 5-4 Input ABH Flag Format 5-5
3-9 Abnormal Response Format for Connection 5-5 Output ABH Flag Format 5-6
Initialized (FC/INIT/A) 3-6 6-1 NSUP Word Parallel Mode Bit 6-1
3-10 Sample Program EASY 3-7 6-2 Sample Program EASY in Parallel Mode 6-2
3-11 Sample Program EASY Revised 3-9 6-3 Format for Fragmented Vector 6-3
3-12 Field of Application-List Number (ALN) 3-10 6-4 Example of Memory Allocation Technique 6-4
3-13 CON/REQ Processing 3-10 6-5 Application-to-Application Communication 6-5
4-1 CONnection/END Supervisory Message 4-1 6-6 Format of Request Application Connection
4-2 Connection Breakage Steps 4-1 (CON/ACRQ) 6-6
4-3 Format for Connection Broken (CON/CB) 4-1 6-7 Format of Request Connection Reject
4-4 Format for Connection Ended (CON/END) (CON/ACRQ/A) 6-6
Application to NAM 4-2 6-8 Application-to-Application (ECHO-»MONIT) 6-6
4-5 Format for Connection Ended (CON/END/N) 6-9 Output Sent by OUTPT 6-12
NAM to Application 4-2 6-10 ECHO-MONIT Interaction 6-13
4-6 Format for Block Delivered (FC/ACK) 4-3 6-11 Debug Output Example 6-15
4-7 Format for Block Not Delivered (FC/NAK) 4-3 6-12 NAM Statistic Gathering 6-16
4-8 FC/STP Protocol 4-3 6-13 Statistical Option Output Example 6-16
TABLES
3-1 Connection Establishment Chart 3-4 6-1 Output Information and Conditions of
5-1 Terminal Classes 5-4 Debug Options 6-14

viii) 60480400 A

INTRODUCTION 1

M

'WHAT IS NAM?

Network Access Method (NAM) is a data message-switching
and routing system. It enables host applications to share
access with a network of terminals and other host
applications.

NAM is not only an interface between programs running in a
host and the network, but is also an access method. NAM
has its own unique communication protocols. Application
programs requiring network access must be specially
written.

This bulletin is oriented toward application programs that
support interactive terminals. An application to drive a
remote batch station, which contains card readers and line
printers, can also be written. These features, however, are
not discussed in this bulletin.

WHAT DOES NETWORK MEAN?

A network is an interconnected complex that consists of
terminals, network processing units (NPUs), couplers, and a
host computer (such as the CONTROL DATA® CYBER 170
Models 171, 172, 173, 174 and 175; the CYBER 70 Models 71,
72, 73 and 74; and the 6000 Series Computer Systems). At
present, only one host computer is supported. Future
networks will provide multihost configurations.

WHY NAM IS NEEDED?

The topology of a network can become extremely complex,
consisting of hundreds of different terminals, NPUs, and a
host computer. NAM is provided as an interface between
application programs executing in the host at one end and
the terminals connected to the network at the other end.
NAM provides simple, concise, and unique communication
protocols, relieving the applications programmer of concern
for different and complex protocols needed for such data
and message traffic.

NAM also provides the following features:

@ Isolation of network communications from the operating
system

® Management of network protocol

® Dynamic establishment, maintenance, and termination
of data paths between terminals and programs, or
between programs

® Buffering and queuing of data for regulation of data
flow

® Support of a wide variety of terminals through
normalization of data formats (code conversion), as well
as the ability to handle transparent unnormalized and
unconverted data

® Communication of any program with a number of
terminals, addressed individually or as members of a
group :

® Detection of inactivity on any data path

60480400 A

WHAT ARE THE BASIC
NAM COMPONENTS?

The basic NAM components are shown in figure 1-1. A
description of these basic components is as follows:

® The Network Interface Program (NIP) — a central
processor program running in a dedicated system
control point. NIP can read and write intoc the field
lengths of other control points.

® The Peripheral Interface Program - (PIP) -~ the
NPU-NAM interface running in a dedicated peripheral
processing unit (PPU) for the NIP control point. One or
more copies of PIP can reside in the PPUs, depending on
the configuration of enabled network nodes.

® The Application Interface Program (AIP) — a collection
of relocatable subroutines residing in the field length of
all network application programs. AIP performs access
control and buffering functions-for the application. -

® The Communications Control Program (CCP) - a
program to drive the terminals connected to the NPUs.
It resides in the NPUs and contains TIPs (Terminal
Interface Programs). CCP is technically not a part of
NAM but must be used when NAM is used.

Other NAM components execute as application programs
running at normal control points. The following components
are not dedicated and can be rolled out:

® The Network Supervisor (NS) — coordinates the
activities of the various NPUs. NS is responsible for
loading the software into the NPUs, and for establishing
and controlling physical paths through the communi-
cation network.

® The Communication Supervisor (CS) ~ coordinates the
line-oriented and terminal-oriented activities of the
host computer.

® The Network Validation Facility (NVF) ~ is responsible
for granting network access to the terminal user.

The above components enable any user to write his own
application. Various standard application programs provide
a set of commonly used communications functions:

® The Remote Batch Facility (RBF) — supports remote
job entry terminals, such as 200 User Terminals or
HASP workstations. i

® The Interactive Facility (IAF) — supports interactive
control statement processing.

® The Transaction Access Facility (TAF) — supports
transactional terminal operation.

® The Terminal Verification Facility (TVF) - provides
terminal verification tests.

1-1

HOW IS NAM USED?

The main user of NAM is a programmer who writes
installation applications. Application programs communi-
cating with terminals, or with other application programs,
must call the appropriate AIP routines. The AIP routines
interface between the application and other NAM
components.

Access to the network must be initialized by calling the AIP
NETON routine. After NETON has been granted by NAM,
other AIP routines can be called. These routines enable data

and supervisory message traffic between the application and
the network. When an application no longer requires use of
the network, it must call the AIP NETOFF routine, which
causes NAM to disconnect the application from the network.

In the following sections, some basic terms and a few
FORTRAN-writtén application programs are presented. The
programs start with a simple program showing connection-
establishment steps. The programs are expanded later to a
multiterminal conversation program. Parallel mode and
application-to-application communication program examples
are also presented.

T-terminal

Remote NPUs

Local NPUs

r————-———————— e —_— g ——_———_——_—_———_= .
l Host Computer ’
| _JVF__ PIP |
| AIP I
1 |
| NVF NS '
: T AP \ / G :
| ' NIP |
I TAE / \ cs I
| T TAar AP |
| |
| I
I IAF RBF |
| AIP AIP |
L e e e e e e e e e e e e ———— . — — —— — — —— —— |

Figure 1-1. Network Software Relationships

60480400 A

BASIC TERMS

A

Before writing our first application program, some basic
terms are essential to further our understanding of NAM.

THE APPLICATION CONNECTION
NUMBER

When data passes between a terminal and an application, a
message path exists between the two. This message path is
called a logical connection. After access, a terminal is
logically connected to one application at a time. It can be
switched from application to application as needed. Appli-
cations can be connected simultaneously to many terminals.

This logical connection is identified as the application
connection number (ACN). The ACN is a 12-bit integer
value, assigned by NAM, used to specify a particular path.
An ACN that becomes available because of disconnections is
reassigned to a subsequent connection. An ACN of O
indicates the = control connection along which certain
supervisory messages are sent and received.

When the application inputs data from a specific terminal or
another application, it calls the AIP NETGET routine, and
specifies the ACN from which input is requested.

When the application program outputs data to a specific
terminal or another application, it calls the AIP NETPUT
routine, again specifying the ACN to which output is to be
sent.

Notice that ACNs and connections are not the same; while
connections are always unique at a given time, ACNs are
unique only within the same application program. For
example, in figure 2-1, an ACN of 2 identifies connection b
for application A, connection e for application B, and
connection h for.application C.

Also notice that application-to-application connections are
identified by two ACNSs, which are not necessarily the same
number. For example, application A is assigned an ACN of 5
for connection g, while application C is assigned an ACN of
1 for the same connection,

O,

connection b

@—connection S
—-connection ¢ -@

©

connection e

@

connection h

—connection f . _@
= connection |
l_ - 1" ——— - T - — - = - — T = —I
| connection d —connection g I HOST
| ACN=2 —I] |
- ACN=2
I ACN=3 ACN_‘;‘CN‘Z |
| ACN=4 ACN=1 | |Acn=3 ACN=T JACN=3
| |) | |
| |
I Application — Application Application I
| A c |
ACN=5
| [|
| |
- __I

Figure 2-1. Application Connection Numbers

60480400 A

2-1

THE MESSAGE

A message is a logical unit of information exchanged
between NAM and the application. It can be a line of data,
a screen, or a file. A message can be of arbitrary length and
content. If long, the message is broken into smaller units
called blocks.

THE BLOCK

A block is the basic unit of information exchanged between
. NAM and the application. Block length is dependent on the
terminal device, but cannot exceed 410 60-bit words or 2043
characters.

There are two types of blocks involved in data transfer:

BLK blocks — the first n-1 blocks of the message when
a message is composed of n blocks.

MSG block — the last or nth block of a message. See
figure 2-2.

A message can contain a MSG type block only when the
message is short enough to be contained in one block.

In addition to BLK blocks and MSG blocks, there are two
special type blocks:

Null blocks — blocks containing no physical informa-
tion, but rather indicate a status. A status results when
NAM has no input for the application input operation.

SM blocks — supervisory message blocks. They are not
part of a message. They convey information about the
data and connections. Supervisory messages consist of
one block and are used for control purposes.

SUPERVISORY MESSAGES

Application programs exchange supervisory messages (SM)
with NAM to control logical connections and data flow.
There are two types of supervisory messages:

Asynchronous supervisory message (ASM)
Synchronous supervisory message (SSM)

All supervisory messages that are sent or received on an
ACN of 0 are asynchronous, and are exchanged independent
of the data; conversely, supervisory messages that are sent
or received on an ACN not equal to 0 are synchronous, and
are exchanged at the same time as the data. Synchronous
supervisory messages can be used as markers in the data
stream. All supervisory messages have a special role and
format, and are listed in appendix C.

THE TEXT AREA

The text area (ta) is a buffer used to exchange information
between NAM and the application program. See figure 2-3.
Text area length cannot exceed 410 central memory words,
and can contain one of the following:)

e A BLK type block

e A MSG type block

e An SM type block

Application Block Header

Text Area

(410 central memory words
maximum)

Figure 2-3. Application Block Header and Text Area

THE APPLICATION BLOCK HEADER

Every block or supervisory message passed between NAM
and the application must be accompanied by one word which
is called the application block header (ABH). See fig-
ures 2-3 and 2-4. Each header contains detailed information
describing the text area information it accompanies,
indicating what NAM or the application should do with it.

On output, the application creates the ABH and NAM
interprets it. On input, NAM creates ABH and the
appllcatlon interprets it. The ABH and the text area can
reside in two different areas in memory; therefore, they
need not be contiguous. Usages of the ABH and text area
are shown in the following examples.

After inputting the ASCII characters
THIS IS INPUT
the contents of the ABH word are configured, as shown in

figure 2-5. The contents of the text area are shown in -
figure 2-6.

MSG
BLK BLK . . BLK block
block block block
n
1 2 n-1

Figure 2-2. BLK and MSG Message Blocks

2-2

60480400 A

ABT

ADR

ABN

ACT

FLAGS
TLC

59

53 41 23 19 11 0

ABT

ADR ABN ACT] FLAGS TLC

Application block type:

0 = Nuli
1 =BLK
2 = MSG

block, input only,
type block, firsl_: n-1 blocks of a message,

type block, which is the last block of a message, or the only block.

3 = Supervisory message, input or output,

Addressing information; contains the ACN.

Application block number; a number created by the application to keep track of transferred blocks. It can be:

A serial number

The block’s core address

The block’s disk address.

An external name

or whatever the application chooses appropriate to identify the block.

Application character type. This is a number identifying the associated block character type and can be:

1 = 60-bit words. Must be used for application-to-application connections and for supervisory messages
when an ADR is not equal to 0. Cannot be used for application-to-terminal connections.

2 = 8-bit ASCII characters 7.5 characters per word, used for application-to-terminal connections, and for
synchronous supervisory messages when ADR is equal to 0. See section 2.

3 =-8-bit ASCII characters, right-justified in 12-bit bytes 5 per central memory word. Used as an alter-

nate

form for application-to-terminal. connections. Cannot be used for supervisory messages.

4 = 6-bit display code characters, 10 per word.

Alternate form for application-to-terminal connections.

Cannot be used for supervisory messages.

Various flags. Their use is explained in section 5.

Text length in units specified by the ACT.

Figure 2-4. Application Block Header Format

02000100000014000016

S e, — N—— ——
LText Length = 14 characters
Character type = 3
(ASCli, 5 characters per word)
Connection number 1
A MSG Block

60480400 A

Figure 2-5. ABH Configuration of 'ATHISAISAINPUT'

2-3

A T H | S
A | S A |
N P U T

Figure 2-6. Content of Text Area of ' ATHISAISAINPUT!

Upon outputting the 18-character display code message
ENTER INPUT PLEASE

the contents of the ABH word are configured, as shown in
figure 2-7. The contents of the text area are shown in
figure 2-8.

BASIC PROTOCOLS INVOLVING
SUPERVISORY MESSAGES

A protocol is the ordered step-by-step process of exchanging
messages. An example of a supervisory message protocol is
the pair of messages for a request for some action to be
performed and a response to it (either acceptance or
rejection). As mentioned earlier, supervisory messages can
be initiated by NAM and responded to by the application, or
vice versa.

Every supervisory message is identified by two function
codes: : ’

Primary function code (PFC)

Figure 2-8. Content of Text Area of
'ENTERAINPUTAPLEASE!

Along with every PFC and SFC, there are three other
sections of a supervisory message:

EB A 1-bit field error bit which is set to 1 to
indicate error or abnormal response,
‘either from ‘NAM to the application or
vice versa.

RB A 1-bit field response bit which is set to'1l
in every normal response to a previous
supervisory message, either set by the
application as a response to NAM or vice
versa.

Parameter 1 to 63 words of parameters passed
Field between NAM and the application,
dependent on the specific request.

The general format of a supervisory message is shown in
figure 2-9. The ABH accompanies every block being
transferred whether it is a supervisory message block or a
data block. The ABH format for an asynchronous super-
visory message is shown in figure 2-10. The ABH for a
synchronous supervisory message is shown in figure 2-11.

NAM TO APPLICATION SUPERVISORY MESSAGES

PFC/SFC Meaning
Secandary function code (SFC) CON/REQ NAM informs the application that a
terminal or another application requests
All available PFCs and SFCs have numerical values assigned a logical connection.
to them. Each is also represented by a symbolic name which . P
can be gained through the use of keywords. (See CON/CB L.oglcgl connection is broken (for example,
- 0 line disconnect).
appendix B.)
FC/INIT NAM informs the application of the
A specific supervisory message is indicated by the pair logical initialization of a connection.
" PFC/SFC. This pair forms unique function requests. For .
example, the primary function code CON together with the FC/ACK NAM acknowledges the delivery of a
secondary function code REQ forms the unique function previously submitted block by the appli-
code CON/REQ (connection request). cation.
02000100000020000024
S g —— e v ot

Connection number 1

A MSG Block

Character type = 4
(Display Code, 10 characters per word)

L Text Length = 18 characters
(+12 zero bits for DC unit separator)

2-4

Figure 2-7. ABH Configuration of 'ENTERAINPUTAPLEASE'

60480400 A

NAM to.application messages are also used for the following
functions:

o Suspension or resumption of data traffic
e Detection of an-inactive connection
o Notification of network shutdown

e Logical error in response to an illegally formatted
request previously submitted by the application

For the complete list of NAM to application supervisory
messages, refer to appendix C.

APPLICATION TO NAM SUPERVISORY MESSAGES

PFC/SFC Meaning
CON/ACRQ The application requests connection to

another application. Application can
initiate connection request to another
application, but cannot do the same to a
terminal because this connection request
comes only from NAM.

CON/END The application informs NAM that it has
completed all processing on a logical
connection.

MSG/LOP The application sends a message to the.

local operator.

Application to NAM messages are also used for the following
functions:

e Temporarily switching OFF and ON data input
transmission

e Definition of terminal characteristics

e Changing input character type as chosen by the applica-
tion, in contrast to what is previously transferred by
NAM

For the complete list of application to NAM supervisory
messages, refer to appendix C.

59 515049 43

R
word 1 PFC |glg| SFC

Parameters

word 2 Parameters
[]
[]
. 63 words
d maximum
\d
[]
L]
L[]
L]
L]
L

word n Parameters

Figure 2-9. Format of Supervisory Message

boli
ymeo'e | ABT ADR
value 3 0

ACT

Figure 2-10. ABH for an Asynchronous Supervisory Message

60480400 A

symbolic
name

ABT

ACT

2-6

Figure 2-11. ABH for a Synchronoﬁs Supervisory Message

60480400 A

NETWORK ACCESS ' 3

When writing an application in one of the high-level
languages, AIP routines must be called in order to gain
network access.

All AIP routines begin with NET; routines used internally by
AIP begin with NP$. To avoid possible naming conflicts,
variabées and entry point names should not begin with NET
or NP$.

AIP routines are divided into three groups:

® Informative and control routines

NETON Establishes network access.
NETOFF Ends network access.
NETWAIT Temporarily suspends the
application.
NETDBG Turns NAM debugging option
on or off.
"NETSTC Turns NAM statistics capability

on or off.

® Data transfer routines

Input routines (from NAM to the application):

NETGET Gets input on a specified connection.

NETGETL Gets input on a connection that is a
member of a list.

NETGETF Gets input on a specified connection,
into a fragmented buffer.

NETGTFL Gets input on a connection that is a

member of a list, into a fragmented
buffer.

Output routines (from the application to NAM):

NETPUT Sends output to a specified
connection.
NETPUTF = Sends output on a specified

connection, from a fragmented
buffer. !
® Parallel mode control routines
NETSETP Selects or terminates parallel mode.
NETCHEK Checks for completion of NAM call
while in parallel mode.

The preceding features of NAM, and their communication
protocols, are expanded upon in the following subsections.

60480400 A

NETON AND NETOFF

In order to access the network and establish connections, the
application must first call NETON., The FORTRAN format
is .

CALL NETON (nHaname,nsup,status,minacn,maxacn)
NETON parameters are as follows:

aname - Application name, one to seven alpha-
numeric display code characters, left-
justified with blank fill. This name is used
to identify the application, and must be

made known to NAM before using it.

nsup A single-word variable into which NAM
‘stores various flags during subsequent
network calls. See figure 3-1.

status Another single variable, which indicates
NETON success or failure. The values
are:

0 NETON is successful.

1. Rejected because the network
is not available.

2 Rejected because of duplicate
application name.

3 Rejected because application name
is not known to NAM.

minacn A number that indicates the smallest ACN
the application accepts.

A number that indicates the largest ACN
the application accepts.

maxacn

NAM assigns ACNs starting at minacn and not exceeding
maxacn. The minacn and maxacn parameters must conform
to the following specifications:

0 < minacn £ maxacn < 4095.
Example:
CALL NETON (SHMYAPP,NSP,NST,5,12)

Application MYAPP requests network access and is willing
to accept only eight connections, starting with connection
number 5 (minacn) and not exceeding connection number 12
(maxacn). C, I, and S bits are returned in nsup (NSP) and
accept/reject status is returned in status (NST).

When the application desires to terminate network access, it
calls NETOFF (no parameters are required):

CALL NETOFF
After calling NETOFF, the application continues to execute

under control of the operating system. In order to resume
network access, NETON is called again.

except NETSETP. (Refer to section 6.)

unused
e
reserved

c Complete bit. This bit is applicable in the parallel mode of operation only. Refer to section 6 for further explanation

about this bit.
i Input a\}ailable bit. Set to 1 when input other than an asynchronous supervisory message is available to the applica-

tion. _ Set to 0.otherwise. This bit is set only after calling NETWAIT.
S Asynchronous supervisory message bit. Set to 1 if there are asynchronous supervisory messages available to. the

application. Set to O otherwise. !n contrast with the | bit, this bit is usually set or cleared after each AIP call,

Figure 3-1. NSUP Word

NETGET, NETPUT, AND NETWAIT

An application program can input data (NETGET), output
data (NETPUT), and suspend processing (NETWAIT). These
options are permitted by AIP statements. They are
discussed in the following subsections.

NETGET

After network access is made possible, supervisory messages
and input/output data traffic can begin. This can be
accomplished by calling NETGET for input and NETPUT for
output.

The FORTRAN farmat of IS\IETGET is
CALL NETGET (acn,ha,ta,tlmax)

This routine inputs one data block or a supervisory message
from the specified connection. The header of the block is
placed in the header area (ha), and the body of the block in
the text area (ta). Text area is an array of at least
maximum text length (tlmax) words.

An application connection number of O is used to obtain an
asynchronous supervisory message. If no blocks are
available for the specified connection, a null block is
returned to the application, an ABH with an ABT of 0 is
placed in the header area, and the text area remains
unchanged. If the block is longer than the maximum text
length, the block is not transmitted, but remains queued
within NAM. An ABH, which contains an IBU bit set to one

and the true length of the block, is returned to the
application. (See figure 3-2. See also section 5.) The text
area (ta) remains unchanged.

Example:

CALL NETGET (0,IHA,ITA,63)

This routine requests input from an ACN of 0. The ABH is
placed in IHA, and the text is placed in ITA. ITA is an array
of at least 63 central memory words.

NETPUT

The second routine is NETPUT. Its calling format is

CALL NETPUT (ha,ta)

This routine outputs one data block or a supervisory message
from the text area (ta) to the connection; it does so
according to the information placed in the header area (ha).
In contrast to NETGET, an ABH is constructed and placed in
the header area (ha) prior to calling NETPUT.

The header area must at least contain the following
information:

® The connection number (placed in the ADR field)

® The block type (placed in the ABT field)

59

19 11 0

|
B TLC
U

NETGETF and NETGTFL).

TLC Contains block’s actual length.

IBU bit Set to 1 when the block’s length is longer than the tlmax specified in NETGET (also applicable to NETGETL

Figure 3-2. Format for Data Block Header

3-2

60480400 A

® The block character type (placed in the ACT field)
® The block length in units (placed in the TLC field)

For the following example, assume that NAM has assigned
an ACN of 5. To output the display code characters

INPUT PLS

to the ACN of 5, an ABH is constructed which contains the
information shown in figure 3-3. ‘

The header area is given an octal value by the statement
IHA = 020005000000200000128

The following steps are required to prepare the text area
and send the message:

ITA(1) = 10H INPUT PLS
ITA(2)=0
CALL NETPUT (IHA,ITA)

NETWAIT

If the application is suspended, or when the NSUP word
should be updated, the NETWAIT subroutine must be called:

CALL NETWAIT (time,flag)
NETWAIT parameters are as follows:

time Time in seconds that the application is
suspended; must be in the range 1 through
4095. If smaller than 1, the default value of 1

is substituted. If greater than 4095, the
default of 4095 is substituted.

flag A single variable that indicates recall con-
dition. The values are:

0 Returns control when input is available or
time specified has elapsed, whichever

FIRST STEPS IN CONNECTION
ESTABLISHMENT

Suppose MYAPP, which handles up to a maximum of 10
terminals, is a configured application known to the network
software.” NETON is called by writing

CALL NETON (SHMYAPP,NSUP,NSTAT,1,10)

Network access becomes possible only after NETON is
complete with NSUP set toO0. NAM responds - with
CON/REQ supervisory messages on behalf of every terminal
or application.

Request by request, the application must decide whether to
accept or reject the CON/REQ supervisory message.
Rejection can occur for whatever reason the application
chooses; for example, when the application deals with TTY-
compatible terminals only and some other device requests a
connection.

If the application rejects the CON/REQ, it sets the error bit
to 1l and NETPUTs this rejection message to NAM. If the
application accepts the CON/REQ, it sets the response bit
tol and NETPUTs this response message to NAM. At this
point, data transfer between the requesting terminal and the
application is not yet possible. The application can continue
with some other processing or wait.

After NAM receives the CON/REQ, and the response bit
is 1, NAM responds with a flow-control initialized (FC/INIT)
supervisory message and the application responds by
accepting it. Data traffic now begins between the applica-
tion and the requesting terminal or another application.

The connection establishment steps are summarized in
table 3-1. In this table, a specific supervisory message is
indicated by the PFC/SFC pair.

A response to a supervisory message is indicated by the
triplet

occurs first. PFC/SFC/OPT
1 Returns control only when time specified where:
has elapsed, regardless of input avall-
ability. PFC/SFC are the supervisory message identifiers.
59 53 41 23 19 1 0
ABT ADR ABN ACT| FLAGS TLC
14
8
2 5 |
ACN =5
send 10 characters

2 = MSG type block

4 = display code
character type

followed by the
display code unit
separator

Figure 3-3. ABH Configuration of 'AINPUTAPLS'

60480400 A

3-3

N

TABLE 3-1. CONNECTION ESTABLISHMENT CHART

‘ Application ' .
Step i . . Message Terminal
No. Description of Action AIP Routine Flow NAM (or Application)

. Called
1. Application calls NETON. NETON
2. NETON was accepted by NAM (status of 0).
3. A terminal user, or another application, is NETWAIT
requesting the application; meanwhile, the
application can drop the CPU and wait for
supervisory message.
4. NAM sends a CON/REQ supervisory message; NETGET == CON/REQ
application receives the message only after
calling NETGET on an ACN of 0.
5. Application accepts the CON/REQ by setting NETPUT e CON/REQ/N
RB=1; N stands for RB=1, which is a normal
response, and NETPUTs this message to NAM,
6. Application can now do some other com- NETWAIT
putations or relinquish the CPU by calling
NETWAIT.
7. Flow-control is initialized by NAM sending NETGET FC/INIT
the FC/INIT.
8. Application accepts the FC/INIT and NETPUT FC/INIT/N
: NETPUTs the message back, setting RB=1.
9. Data traffic can start now on the assigned NETPUT
ACN not equal to 0.
NETGET
OPT indicates the type of response: ® The text area (ta)

N Normal response (RB=1)
A Abnormal response (EB=1)

For example, CON/REQ/N means a normal response to a
CON/REQ supervisory message.

The format of the supervisory messages involved in
connection management is shown in figure 3-4.

A normal response of the application to NAM for the
CON/REQ SM is shown in figure 3-5. An abnormal response
is shown in figure3-6. FC/INIT from NAM to the
application is shown in figure 3-7; a normal response of the
application to this request is shown in figure 3-8. An
abnormal response to this request is shown in figure 3-9.

FIRST SAMPLE PROGRAM

EASY, a sample program, is shown in figure 3-10. This
sample program demonstrates how an application program
communicates with the network. It identifies the use and
format of the following NAM terms: :

® The application connection number (ACN)

® The application block header (ABH)

® The supervisory message (SM)

3-4

@® The header area (ha)

EASY also identifies the use and format of the following AIP

routines:

e NETON

® NETWAIT
e NETGET
® NETPUT
® NETOFF

The remarks column, on the right in figure 3-10, explains
the step-by-step activity of the program.

NFETCH AND NSTORE SUBROUTINES

Using masks and special purpose constants, accessing
supervisory messages, and block header fields is awkward.
Besides the disadvantage of having to be aware of the exact
structure and value, it is good programming practice not to
use masks and special purpose constants. Instead, the
NFETCH and the NSTORE subroutines are used. These
routines must scan a table for matching the keywords;
scanning causes some increase in program execution time.
Therefore, it is advisable to set up as many constants as
possible, at initialization time only.

60480400 A

(NAM to Application)

. 59 515049 43 35 33 21 171615 13 7 0
symbolic R
rame _ | con IglsfReal b@N ast]]l oTf e | |
value 6316 0j0} 00g acn abl 010
TNAME or ANAME PW PL

acn The assigned application connection number.

abl The application block limit.

DT, TC, PW, and PL are device type, terminal.class, page width and page length, respectively. TNAME or ANAME are
1 through 7 alphanumeric characters of terminal or application name, respectively, left-justified, blank-filled with a leading
alphabetic character.

Figure 3-4. Format of Connection Management Supervisory Messages

(Application to NAM)

59 5150 49 43 35 23 9 5 0
symbolic name| CON .E.E. REQ CONACN ACT| ALN
value 6316 |0]1 3 acn ract aln

act The initial input application character type as determined by the application.

aln The application list number.

Figure 3-5. Normal Response Format for Connection Request (CON/REQ/N)

(Application to NAM)

59 515049 43 35 23 0
symbolic rame | con_ lgf8lrea] cowacn 1 _ _ _ ___ __
value 6316 | 0] 00g acn 0

Figure 3-6. Abnormal Response Format for Connection Request (CON/REQ/A)

60480400 A

(Application to NAM)

59 5150 49 43 35 23 0
symbolic name | FC |E|R] niT FCACN
value 8316 |0JO0 07g acn

Figure 3-7. Flow-Control/Initialized Format (FC/INIT)
(Application to NAM)

59 5150 49 43 35 23 0
symbolic name | FC [E|B] it FCACN
value 8316 0l1 078 acn

Figure 3-8. Normal Response Format for Connection Initialized (FC/INIT/N)
(NAM to Application)

59 5150 49 43 35 23 0
symbolic name| FC {E Rl it FCACN
value 8316 1|0} 07g acn

Figure 3-9. Abnormal Response Format for Connection Initialized (FC/INLT/A)

NFETCH FUNCTION

NFETCH is used to fetch a specifiéd field. For example:

var = NFETCH (arr,nLkeyword)

where:

arr

keyword

For example:

indicates an array that contains the table
from which the specified field is
extracted. If an arr is 0, then a constant
value represented by keyword is returned
rather than a field from a table.

indicates a symbolic field name.

KKK = NFETCH (TA,6LPFCSFC)

KKK contains the combined primary and

3-6

secondary function code from array TA.

LLL = NFETCH (0,6LFCINIT)

LLL contains the constant represented by
FCINIT (8307

16"

NSTORE FUNCTION

NSTORE is used to store a value in a table. For example:

CALL NSTORE (arr,nLkeyword,val)

where:
arr

keyword

val

indicates an array that contains the table.

is a symbolic name of the field in the
array into which the value is to be stored.

is a numeric or alphanumeric value to be
stored.

60480400 A

Step
No.

100

101

10

PROGR AM EASY (OUTPUT)

INTEGER PF,SFCyCONyREQyFCySySMHDR
INTEGER OTHORsHA,TA(B3)
CON=306000000000000000008
REQ=0)
FC=406000000000000000008
INIT=000034000000000800008
SMHDR=030000000000040000018
DTHOR=02000000000020000024B

CALL NETON (SHMYAPPyNSUP,NSTAT 41,10)
IF (NSTAT.EQ.0)G0 TO &

PRINT 100,NSTAT

FORMAT (*NETON FALLED,NSTAT=*%,020)
SToP 111

CALL NETHWAIT(4095,0)
S=SHIFTINSUP, =55) ,AND. 1
I=SHIFT(NSUP, =56) .AND, 1
IF(S.EQ.1) GO TO 6

IF (1.EQ.1)G0 TO 10

G0 10 5

CALL NETGET(0,HAyTA$63)

PFC=TA.AND.776000000000000000008
SFC=TA .AND, 000374000000000000008

IF (PFC.EQ.CON.AND.SFC.EQ.REQ) GO TO 7
IF (PFC.EQ.FC.,AND.SFC.EQ.INIT) G0 TO 8

PRINT 101,HA, TA

FORMAT (*UNKNOWN SUP, MESSAGE *,64(/,1X,020/))

CALL NETOFF

sToep 222

CON/REQ PROCESSING
ACN=SHIFT(TA, -24) ,AND, 77778
TA=TA, OR.000400000000000003008
HA=SMH DR

CALL NETPUT (HA,TA)

G0 TO 5

FCINIT PROCESSING
ACN=SHIFT(TA, -24).AND.7777B
TA=TA.OR.000400000000000000008
HA=SMH DR

CALL NETPUT (HA,TA)

3
.
.

TA=10H INPUT PLS
TA(2)=0
ACN=SHIFT(ACN,42)
HA=DTHDR+OR.ACN

CALL NMETPUT (HA,TA)

60 TO S5

INPUT IS AVAILABLE

CALL NETGET(ACNyHA,TA, 1)

.
.

ENO

. At this point, input data can be available or

Remarks

Set constants
6346

86

07,5 (in bits 44 through 49)

ABH for 1 word supervisory message
ABH for 10 character display code

Check if NETON has been accepted.

NETON failed. Print NSTAT value to find out
failure reason, disconnect application and drop.

Some other computations can now be made,
followed by a NETWAIT.

Supervisory message is available and can be
accessed through a NETGET.

Is it a CON/REQ?
Is it an FC/INIT?

Unknown supervisory message, print header
and text areas, disconnect and drop.

Proceed with a normal response to CON/REQ.
Set RB=1, and ACT=3.

Set ABH for 1 -word supervisory message.
Send response to NAM.

Look for input or another supervisory message.

Set RB=1

output data can be sent to terminal on
assigned ACN.
Construct the message “INPUT PLS".

Set ABH to reflect display data.
Send the output message and go wait for input.

Input is available here.

60480400 A

Figure 3-10. Sample Program EASY

3-7

KEYWORDS
Keywords can be made easier if the logic behind the

keyword names is understood. All the application block
header word keywords start with ABH. For example:

ABHABT is the keyword for the ABT field in the .
application block header word.
ABHACT is the keyword for the ACT field in the

application block header word.

Also for the text area, associated fields of every supervisory
message are prefixed with the PFC name. For the
PFC=CON, the ACN and ALN fields are referenced as
CONACN and CONALN, respectively. For the PFC=FC, the
ACN and ABN fields are referenced as FCACN and FCABN,
respectively.

For the general usage .of a supervisory message, the
following keywords exist:

PFC The primary function code field

SFC The secondary function code field
PFCSFC The combined field of the PFC and SFC
EB The error bit field

RB The response bit ffeld

RC v The reason code field

For the complete list of all the keywords, refer to
appendix B.

The first sample program revised, using NFETCH and
NSTORE, is shown in figure 3-11.

THE APPLICATION LIST NUMBER

The application list number is used to avoid specifying
different ACNs for every terminal that sends input. The
ACN is specified whenever data is input from a specific

connection, which is equivalent at any given time to one

specific terminal.

On input only, it is possible for the application to group
several ACNs together to form the ALN. The ALN is a
6-bit integer value that is determined by the application (in
contrast to the ACN, which is assigned by NAM).

The ALN enables the application to receive data from
several terminals without specifying the ACNs for every
terminal. By specifying the ALN only, data comes in a
round-robin fashion, each time from one single terminal.

In order to input data using ALNSs, the AIP NETGETL routine
is called, rather than NETGET.

When responding to a NETGETL. request, ACNs with empty
input are skipped, and data is transferred only from the next
ACN that has input available. Using a specific ACN (on

3-8

NETGET) always results in the return of a null block if there
is currently no input available from the specified ACN.
NETGETL returns the null block only if there is no input
available for all the ACNs in the specified ALN.

The ALN is both more convenient and more efficient than
ACN. The ALN should-be used whenever an application
handles all terminals the same, in which case it places them
all in the same ALN. If an application desires to handle
batch and interactive terminals in ‘a different manner, it
assigns all the batch terminals to ALN=1l, and all the
interactive terminals.to ALN=2. ’

The ALN is made known to NAM by specifying it in every
response of the application to the CON/REQ message from
NAM. Recalling the normal response format of the
application to CON/REQ in figure 3-5, the ALN field is
shown in figure 3-12. In the sample revised program, to
access all terminals on an ALN of 1, add the ALN field by
calling NSTORE during CON/REQ processing (after state-
ment 7 and before calling NETPUT). See figure 3-13,
CON/REQ Processing.

NETGETL

To get input on. a list of ACNs use NETGETL; the calling
format is

CALL NETGETL (aln,ha,ta,tlmax)

where:
aln indicates one of the ALNs chosen by
the application and previously made
known to NAM in response to its
CON/REQ supervisory message.
ha,ta,tlmax indicates header and text area, and

maximum text length, as covered
under NETGET.

An ALN of 0 is a valid list number. It differs from ALNs not
equal to 0 by the fact that it inputs data both from ACNs
of 0 and ACNs not equal to 0. ALNs not equal to 0 input
data only from ACNs not equal to 0. To NETGET on an ALN
of 0, all asynchronous supervisory messages are delivered
before data from any ACN not equal to 0.

When the response to a CON/REQ supervisory message
contains an ALN of 1, replace the call to NETGET with a
call to NETGETL. This replacement is necessary only when
data is input. For example, the revised sample program
statement 10 is replaced by

10 CALL NETGETL (1,HA,TA,1).

Changing the NETGET call at statement 6 of the revised
sample program to a NETGETL is not necessary since it
deals only with asynchronous supervisory messages.

60480400 A

The changes made are marked by shading:
' PROGRAM EASY (OLTPUT)
INTEGER PFCSFCyCONREQ, FCINIT,S
INTEGER SMHOR ,0THDRyHA,TA(63)
c S CONSTANTS

CALL NETON(SHMYAPP NSUP,NSTAT, 1,10}
S=SHIF T(1455)
I=SHIFT(1,56)
IF (NSTAT.EQ. 0)GOTO %
PRINT 1004NSTAT
100 FORMAT (*NETON FAILED,NSTAT=¥,020)
CALL NETOFF
SToP 11t

5 CALL NETWAIT(4095,0)
c CHECK FOR A SUP. MESSAGE OR INPUT AVAILABLE
IFINSUP.AND.S) 6,3
3 IF(NSUP.AND.I) 10,5
c SUP. MESSAGE IS AVAILABLE

IF (PFCSFC.EQ.FCINIT) GO TO 8
PRINT 101,HA,TA
101 FORMAT (*UNKNOWN SUP, MESSAGE *,64(/,1Xy020/))
CALL NETOFF
sTop 222

CALL NETPUT(HA,TA)

60 T0 5
C FC/INIT PROCESSING

HA=SMH OR ,
CALL NETPUT (HA,TA)

TA=10H INPUT PLS

c INPUT IS AVAILASBLE
10 CALL NETGET(ACNyHA,TA,1)

END

Figure 3-11. Sample Program EASY Revised

60480400 A

3-9

59 515049 43 35 .23 B 5 0

symbolic name | CON g FB‘ REQ : CONACN ACT | ALN
_____ IR il i I B SN I — SR SE—
value 63,5 0]1] oog

Figure 3-12. Field of Appliéation List Number (ALN)

. A . icati
The changes made are marked by shading: certain application

¥ CONREQ PROCESSING
7 ACN=NFETCH(TA,6LCONACN))
CALL NSTORE(TA,2LRB,1) ® Returns the null block if there is no input available on
CONACT ,WS) the specified ACN.

An asynchronous supervisory message on ACN=0

2h
CALL NETPUT(TA,HA) NETGETL .
H ® Inputs data in a round-robin fashion; each call inputs
END , data from a different ACN. The ACNs from which data
was input were previously grouped by specifying an ALN
Figure 3-13. CON/REQ Processing ’ in response to every CON/REQ supervisory message

from NAM.
In summary, the differences between NETGET and :

NETGETL are as follows: @® Accesses asynchronous supervisory messages only on an

NETGET ALN of 0. All asynchronous supervisory messages are
delivered before any data from ACNs not equal to O.

® Inputs data only on a specific ACN, which can be one of

the following: @® Skips ACNs that do not have input available. The null
. block is returned only if no ACN in the list has input
A specific terminal available.

3-10 60480400 A

DATA FLOW AND ERROR CONTROL 4

The first sample programs recognized only two supervisory
messages, the CON/REQ and the FC/INIT. The application
can also initiate more requests to NAM enabling it to have
better control and overall greater flexibility. Other
supervisory messages and extra features supported by NAM
are explained in detail in the following sections. Appendix C
provides a complete list of all supervisory messages and
their meanings.

LOGICAL CONNECTION BREAKAGE

A logical connection can be broken at any time by either the
application or by NAM. The application can either initiate
disconnection or be informed of disconnection by NAM.

APPLICATION INITIATES THE DISCONNECT

If the application is to be disconnected from a specific
logical connection, it sends the CONnection/END
supervisory message, as shown in figure 4-1. The
disconnected ACN is now free, and is available for
reassignment.

Application M ' NAM
CON/END -

NAM responds:

~~— CON/END/N

Figure 4-1. CONnection/END Supervisory Message

APPLICATION IS INFORMED OF THE DISCONNECT

In this case, the application receives a CON/CB SM from
NAM, with a code giving the reason for the disconnect.
After receipt of this message, the application should not
NETPUT on that connection, but can still NETGET until a

null block is received. The application then sends the
CON/END SM. NAM responds by sending a CON/END/N
response, after which the ACN is made free and can be

reassigned to a new connection. See figure 4-2.)

Normal disconnection processing steps are:

Application SM NAM
~ - CON/CB

CON/END -
- CON/END/N

Or if the application is willing to accept NAM’s CON/REQ
but NAM. cannot complete the logical connection establish-
ment, the steps can be:

Application SM NAM
i CON/REQ
CON/REQ/N F—
~— CON/CB
CON/END -
CON/END/N

Figure 4-2. Connection Breakage Steps

The CON/CB and the CON/END formats are shown in
figures 4-3 and 4-4, respectively. A new application can
automatically be assigned after terminating the current
application activities with the CON/END.

If application MYAPP is written to recognize a special type-
in to terminate the connection (such as TERM), and allows
the terminal user to type in the next. application name (for
example, TERM,IAF), application MYAPP can then be

con_[5l5] cB RC
6316 ojo . 058 rc

CONACN

acn The ACN on which the connection was broken.

1
2

line disconnect

rc The reason code for breaking the connection and it can be:

connection broken by NAM (for example, a result of bad parameter on CON/REQ/N)

Figure 4-3. Format for Connection Broken (CON/CB) ‘

60480400 A

4-1

59 515049 43 35 23 0
con [El8] eno| Re CONACN
6315 |0]o] 065 0 acn
aname
paramy
L
L]
[]
-
paramy,
acn The ACN to be ended.
aname 1 throu?h 7 alphanumeric display code characters with a leading alphabetic character specifying the name of
the application to which the connection should be switched.
paramqto Parameters passed to the new application.
param,,

Figure 4-4. Format for Connection Ended (CON/END) Application to NAM

triggered to do a CON/END specifying IAF as the next
application to which the terminal user is connected.
Whether or not an application specifies the name of another
application in its CON/END message, it receives a response
message with the format shown in figure 4-5.

DOWNLINE FLOW CONTROL

Downline flow control involves acknowledgment/-
nonacknowledgment of block delivery and stop versus break.

ACKNOWLEDGEMENT/NONACKNOWLEDGEMENT
OF BLOCK DELIVERY

Because host computers are faster than terminals, it is
possible for an application to send blocks along a particular
connection faster than can be output at the terminal. It is
also possible for the same application to send blocks so
slowly that the terminal is underoccupied. Therefore, NAM
provides a set of programming conventions allowing the

application program to control the flow of data between the
application and its terminals.

The application block limit (ABL) field is found in the
CON/REQ supervisory message format. (See figure 3-4.)
The ABL is established for each logical connection. It
indicates how many blocks of data an application can have
outstanding at the requested ACN at any given time.

As blocks are delivered to the terminal, an FC/ACK
(acknowledge) supervisory message is returned to the
application. If, for any reason, a block cannot be dehvered,
an FC/NAK (negatlve acknowledge) supervisory message is
returned instead, and the block is lost. ‘The application can
attempt recovery by sending the lost block again. However,
if more blocks have been sent following the lost block, the
lost block might be delivered out of sequence.

The FC/ACK and the' FC/NAK supervisary messages do not
require responses from the application. The FC/ACK and
FC/NAK formats are shown in figures 4-6 and 4-7,
respectively.

59 515049 43 35 23 0
| con sfgleno} mc | cowaen | 4
63,5 [0] 1] 06g 0

Figure 4-5. Format for Connection. Ended (CON/END/N) NAM to Application

60480400 A

(NAM to Application)

59 515049 43 35 23 5 0
Fc 5[5l Ack] ~FCACN FCABN
EN I T T

acn The ACN along which the block was delivered.
abn The ABN of the delivered block.

Figure 4-6. Format for Block Delivered (FC/ACK)

(NAM to Application)

59 5150 49 43 35 23 5 0
rc_ |5]Bl nak] Re FCACN FCABN
8316 |0]O] 03g rc acn abn
rc The reason code explaining why the block cannot be delivered:

acn The ACN along which a block cannot be delivered.

abn The ABN, which cannot be delivered.

1 = Lost block, (occurs only because of a system error)

Figure 2&-7. Format for Block Not Delivered (FC/NAK)

If the number of blocks exceeds the value of ABL, an
ERR/LGL (logical error) supervisory message is sent to the
application, along with the reason for the error. The block
to be delivered is discarded by NAM.

The following strategy is used to control the flow of blocks
for delivery:)

1. Define two vectors K(n) and M(n), where n is the largest
ACN possible.

2. Set K(i)=0 and M(i)=ABL upon receipt of CON/REQ on
ACN-=i,

3. Set K(i)=K(i)-1 whenever an FC/ACK (block delivered)
supervisory message is accepted for ACN=i.

4. Set K(i)=0 whenever an FC/BRK (break) is received for
ACN=i.

5. Set K(i)=K(i)+1 and output one block on ACN=i, when a
block is to be output to NAM and K(i) < M(@). If
K(i) = M(i), wait until K(i) is decreased by step 3.

STOP VERSUS BREAK

Network conditions occasionally require the suspension of
downline data traffic on a logical connection. When one of
these conditions occurs, the application is notified to stop
block delivery on the specified ACN until the condition has
cleared.

60480400 A

If the NPU is able to determine when the condition has
cleared, the NPU causes NAM to send an FC/STP (stop)
supervisory messadge to "the application, requesting it to
suspend data traffic. The application then waits for an
FC/STA (start) supervisory message from NAM. When the
FC/STA is received from NAM, the application sends an
FC/RST (reset) to enable traffic to resume. The FC/STP,
FC/STA, and the FC/RST formats are shown in figures 4-8,
4-9, and 4-10, respectively.

Application SM NAM

— FC/STP

NAM discards all outstanding output. The application
must wait for FC/STA.

FC/STA
— FC/RST

Y

Normal communications may now resume.

Figure 4-8. FC/STP Protocol

If the NPU is not able to determine when the condition has
cleared or, if a user break occurs, then an FC/BRK (break)
supervisory message is sent to the application. When the
FC/BRK is received from NAM, the application sends an
FC/RST which enables traffic to resume. The FC/BRK
format is shown in figure 4-11.

sm
FC/BRK

All outstanding output is discarded. The 'application
should send:

Application

-

FC/RST

Normal communications may now resume.

Figure 4-9. FC/BRK Protocol

When a stop condition occurs, the following events take
place:

3. The application uses NETGET to fetch any pendmg

* input until a null block on ACN or an FC/STA is
received.

4, The apphcatlon receives an FC/STA.

5. The application sends an FC/RST message to resume

data traffic. - The FC/RST message does not require a
response from NAM.

The FC/STP protocol is shown in figure 4-12.

When a break condition occurs, the following events take
place:

1. The blocks that were output by the application but not
1. The blocks that were output by the application but not acknowledged by NAM are discarded.
acknowledged by NAM are discarded.
2. An FC/BRK message with the following information is
2. An FC/STP message with the following information is sent to the application:
sent to the application:
® The ACN of the .connection on which the break
@® The ACN of the stopped connection condition occurrea)
® The code giving the reason for the stop ® The code specifying the reason for the break
® The ABN of the last acknowledged downline block ® The ABN of the last acknowledged downline block
(zero if none) (zero if none)
{(NAM to Application)
59 615049 43 35 23 5 0
FC g_ STP RC FCACN FCABN
8346 |0]0 058 rc acn abn
acn ACN of the stopped connection.
abn ABN of the last acknowledged block, zero if none.
rc Reason code for stop:
1 = Terminal busy
2 = Terminal failure
Figure 4-10. Format for Stop (FC/STP)
(NAM to Application)
59 'é ‘349 43 35 23 0
FC_|els)STAL _ _ _J_FeASN_ L\ i
8316 |0|0] 0O6g acn '

Figure 4-11. Format for Start (FC/STA)

4-4

60480400 A

"3, The application sends an FC/RST to resume data
traffic. The FC/RST message does not require a
response from NAM.

4. The application uses NETGET to fetch any pending
input until a null block is received.

The FC/BRK protocol is shown in figure 4-13.

INACTIVE CONNECTION AND HOST
SHUTDOWN

Whenever NAM detects that 10 minutes have elapsed
without any message traffic over a connection, it sends the
FC/INA (flow-control/inactive) supervisory message to the
application. Whether further action is performed on that
connection depends on the coding of the application
program. For example, the application can send a message
to the terminal operator, disconnect the terminal, or do
whatever is appropriate.

NAM continues sending the FC/INA supervisory message at
10-minute intervals, as long as there is no activity on the
connection. The format of the FC/INA is ‘shown in
figure 4-14. The FC/INA message does not require a
response from the application.

SHUT/INSD SUPERVISORY MESSAGES

The network operator can request idle down of network
activities, or an immediate network shutdown by disabling
the network. In either case, NAM sends the SHUT/INSD
supervisory ‘message to every application connected to it.
The SHUT/INSD supervisory message is shown in
figure 4-15.

If i is equal to O, the application is allowed to end its
current activities by issuing a CON/END message for every
connection and a NETOFF. If i is equal tol, immediate
shutdown has been requested, and the application should
issue NETOFF at once.

ERROR HANDLING

When the application sends an ill-formatted request to NAM,
an ERR/LGL (logical error) supervisory message is queued
for the application, informing it of the kind of error
detected. The application inputs the ERR/LGLs queued for
it, and takes action according to the error codes reported to
it.

A counter is incremented each time an ERR/LGL is sent to
the application. This procedure prevents deadlock situations
when an application is outputting an infinite number of
erronecus messages, and never obtaining the resulting
ERR/LGLs queued for it. This counter is reset to zero every

(NAM to Application)

59 515049 43 35 23 5 0
Fc [g g_ BRK RC __FCACN_ |~ FCABN |
8316 [0]0] 00g re abn 0

rc Reason code for break condition: '

1

]

Output device not ready.

2
3.
4 = Incorrectly. formatted data.

abn ABN of the last acknowledged block, zero if none.

acn ACN of the connection on which a break condition occurred.

User break 1. Caused by user input of the defined B1 key for his terminal, normally : .

User break 2. Caused by user input of the defined B2 key for his terminal, normally) .

Figure 4-12. Format for Break (FC/BRK)

{Application to NAM) .

59 5150 49 43 35 23 0
EIR
| _FC [g|g| ST __ _ _|_FeacN | —
83,6 [0]0] 014 0 0

acn ACN of the connection to be reset.

Figure 4-13. Format for Reset (FC/RST)

60480400 A

4-5

(NAM to Application)
59 5150 49 43 35 23 0
Fc [E[B] ina FCACN
e cme— e — e c— — o —— —— S S e SIS E— G S SIS — — — -
8315 lo Q-1 04g acn
acn ACN of the connection observed inactive.
Figure 4-14. Format for Flow-Control/Inactive (FC/INA)
59 51 5049 43 0
| swur JBlBlwso f i
4716 010 068 i
i=0 The operator has requested an idle-down of network activities.
i=1 The operator is disabling the network.

Figure 4-15. Format for Host Shutdown (SHUT/INSD)

time the number of supervisory messages queued for the
application is down to zero. Zero indicates that the
application has read all of its outstanding supervisory
messages. Once the counter has reached 100, NAM ignores
any supervisory message resulting in another ERR/LGL until
the counter of outstanding messages has decreased to zero
again.

The counter mechanism protects NAM from accumulating an
infinite number of ERR/LGLs queued for an application;
however, it cannot make the application end its erratic
behavior. An application can input all outstanding super-
visory messages queued to it, including the ERR/LGLs, but
disregard or misinterpret the ERR/LGLs and continue
outputting an endless number of erroneous messages. In this
case, the NAM counter never reaches 100 and the
application remains in an erroneous loop.

The ERR/LGL format is shown in figure 4-16.

For greater detail about error codes, refer to the NAM 1
reference manual.

THE ECHO PROGRAM EXAMPLE

The ECHO program accepts every terminal requesting it, up
to a maximum of 20. After connection is initialized, it
sends the message INPUT PLS and then expects an input of
any character string terminated by a carriage return (CR).
It then echoes the string to the terminal, followed again by
INPUT PLS, and waits for new input.

If one of the two user break keys defined for the terminal,
normally the colon () or right parenthesis ()), is hit, ECHO
responds by sending BYE BYE and resumes normal echo
mode. When more than 10 minutes have passed without
terminal activity, the message TIMEOUT is sent to the
terminal, which is then disconnected. An input of ten zeros
from any terminal terminates ECHO.

The ECHO program is shown in figure 4-17.

(NAM to Application)

59 515049 43 35 0
ERR [E|R} LGL RC
IR I:1 151 Kl R -
8446 Jojo] O1g rc
ABH
FWTA

Figure 4-16. Format for Logical Error (ERR/LGL) (Sheet 1 of 2)

4-6

60480400 A

rc Reason code for error:

1 = lllegal ACT value
= |llegal TLC value
= |llegal ABT value
Invalid ACN

= ABL exceeded

» o » w N
n

= NAM'’s counter of outstanding ERR/LGLs has reached 100. No more ERR/LGLs are sent, until the
number of outstanding supervisory messages is zero again.

7 = lllegal or illogical super_/isory message
8 = Fragmented input/output error
ABH If this word is nonzero, this is a copy of the ABH for the message causing the logical error.

FWTA This is the first word of the text area of the message which caused the logical error. FWTA is sent only if
ABH is nonzero.

Figure 4-16. Format for Logical Error (ERR/LGL) (Sheet 2 of 2)

PROGRAM ECHOLOUTPUT)
LOOP BACK TEST DEMONSTRATION PROGRAM
IMPLICIT INTEGER (A-2)
COMMON Kyl 9IySyNSUP,NSTATySMHORy DSHOR JASHDR
GOMMON CONENDs FCRST ¢FCSTA,AGNy ABN,SM(20) »ABL (20) yNB(20),HA,TA(63)

[¢}

L INITIALIZE AND SET GONSTANTS

c K IS THE APPLICATION BLOCK NUMBER COUNTER
K=1

G S AND 1 ARE NSUP WORD FIELD MASKS
S=SHIFT(1,455)

I=SHIFT{1,56)
00 15 Li=1,20
15 ABL(LL)=NBILL)=0
c SMHOR = SUPERVISORY MESSAGE HEADER CONSTANT
¢ DSHOR =~ DISLAY COOE OUTPUT HEADER CONSTANT FOR NMSG BLOCK
G APHOR - APPLICATION-TO-APPLICATION CCMMUNIGATION HEADER CONSTANT
SMHOR =030000000000040C00018
DSHOR =020000000000200000248
c SET APPL. TO NAM SM CONSTANTS
CONEND=NFETCH (0, 6LCONEND)
FCRST =NFETCH({0,5LFCRST)
FCSTA=NFETCH(0,5LFCSTA)
c BUILD A BRANCHING TABLE FOR SUPERVISORY MESSAGES
SM(1)=NFETCH(0 y5LFCAGK)
SM{2) =NFETCH(0 ,6LCONREQ)
SH(3) =NFETCH(0,6LFCINIT)
SHMU4) =NFETCH(0 ,5LFCBRK)
SH(S)=NFETCH(G »5LFCSTP)
SMI{6) =NFETCH(O,SLFCINA)
SM(T7)=NFETCH(O,5LCONCB)
SM(8)=NFETCH(0 ,SLFCNAK)
SM(9)=NFETCH(0 y6LERRLGL)
SM{10) sNFETCHI0,6LSHUINS)
SM{11) =NFETCH(0,5LFCSTA)

SM(12)=999
c ESTABLISH NETWORK AGGESS

CALL NETON(S6HTAPPL&9NSUP,NSTATy1,20)
c TEST FOR NETON ACCEPTANGE

Figure 4-17. The ECHO Program (Sheet 1 of 4)

60480400 A

(¥

C G

999

101

71

555

556

IF (NSTAT.EQ.0) GO T0 5

PRINT 100,NSTAT)

FORMAT {* NSTAT = *,022)

s3ToP 111 -

CALL LOOK3M

GO TO (595940559595 55559595555999),L
INITIALIZE CONNECTION BY SENDING OUTPUT

HA=0SHOR

CALL NSTORE(HA 96LABHADR,AGN)

TA(L)=10H INFUT PLS

TAL2)=0

CALL OUTPT

60 TG 5

ALN=1 :

GALL NETGETL(ALNyHA,TA,63)

ABT=NFETCH (HA, 6LAGHABT)

ACT=NFETGH (HA, 6LABHACT)

AGN=NFETCH (HA y 6LABHADK)

TLC=NFETCH(HA,6LABHTLOC)

BRANCH TO PROCESS A DATA 8LOCK

IF(ABT.NE.3) GO TO & ‘
PRINT *,2 SM RECEIVED WHEN INPUT DATA WAS EXPECTED ON AGN. =2,AQN
PRINT 101,HA,TA
FORMAT (* HA = *,020/*% TA = %/63(1X,0207))
G0 TO 5
HA=SHA CAND.7777777777777408077778

TEST FOR 10 UISPLAY CODE ZEROES WHICH SIGNAL ENO OF EGHO RUN

"IF(TA(1) .EQ.10H0000600300) GO TO 555

CHANGE BLOCK TYPE TO BLK BLOCK
CALL NSTORE (HA,6LABHABT 1)
INHIBIT FORMAT EFFEGTORS
CALL NSTORE(HA,6LABHNFE,1)
ECHO INPUT AS OUTPUT,AFTER ADDING A UNIT SEPARATOR
FOR ABT=4,DISPLAY GODE, THE UNIT SEPARATOR MUST BE 12 BITS
OF ZERO RIGHT JUSTIEG. I.E. IF THERE IS ONE OR ZERO GHARACTER
POSITIONS REMAINING (XTRA) THEN ANOTHER WORD OF ZEROS WILL SE
ADDED.
FULWD=TLC/10
XTRA=TLC~10*FULND
ZFILL=10-XTRA
TLC=TLC+ZFILL
MASK=770000000000600900008
IF(XTRAEQ.0) TA(FULND+1)=0
TA(FUL WD+1) =TA (FULND+1) +AND« SHIFT (MASK, - (6*XTRA))
IF(ZFILL.NE.1) 60 TO 71
TLC=TLC#10
TA(FUL WD 42) =0
CALL NSTORE(HA ,6LABHTLG,TLC)
CALL OUTPT
CALL LOOKSM
60 TO (40555409555959595955555,999),L
SEND CON/END TO ALL ACTIVE CONNECTIONS
TA(1)=0
CALL NSTORE (TAy6LPFCSFC»CONEND)
HA=SMHOR '
D0 556 LL=1,20
IF(ABL (LL) +EQ.0) GO TO 556
CALL NSTORE(TA,6LCONACN,LL)
CALL NETPUT(HA,TA)
CONTINUE
CALL NETCFF
SToP 777
END

4-8

Figure 4-17. The ECHO Program (Sheet 2 of 4)

60480400 A

(7]

oN v

100¢C

10

(¥

20

22

30

&0

SUBROUTINE LOOKSM
PROCESS ASYNCHRONOUS SUPERVISORY MESSAGES
IMPLICIT INTEGER (A=2)
COMMON K,LgI,S,NSUP,NSTAT,SHHDR,DSHDR,&SHDR
COMMON CONEND,FGRST gFCSTAy AGNy ABNySM120) yABL{20) ,NB(20) yHA,TA(63)
L=12
CHECK FOR CUTSTANDING SUPERVISORY MESSAGES
IF(NSUP.AND.S) 6,3
PAUSE FOR INPUT DATA OR A SUPERVISORY MESSAGE

- GALL NETHWAIT (4895,0)

IF (NSUP.AND.S) 6,5
IFINSUP«ANDI) 2,3

RETURN

ALN=0

FETGH AN ASYNCHRONOUS SM FROM ACN=0
CALL NETGETLCALNyHAyTA,63)

FETCH PFCSFC AND STRIP OFF RB ANU EB BITS
PFCSFC=NFETCH (TA,6LPFCSFC) JANDT77777777777777774778
00 8 L=1,20
IF(SMIL) «€EQ.999) GO TO 9

BRANGH ACCORDING SUPERVISORY MESSAGE GODE
IF(PFCSFC.EQ.SMIL)) GO TO(10,20530,40550550,70,80,90,90,100) ,L
CONT INUE
PRINT *,2 COULLC NOT FIND SM IN TABLE:Z
PRINT 1000,HA,TA
FORMAT (* HA =%,020/* TA = */63(1X,0207))

60 T0 3

PROCESS FC/ACK
ACN=NFETGH (TA, SLFCAGN)

UPDATE FLOW CONTROL ALGORITHM
NB (ACN)=NB (ACN) -1
RETURN o

PROCESS CON/REQ
ACN=NF ETCH (TA y 6LCONACN)

ABL(ACN) =NFETCH(TA, 6LCONABL)
NB(ACN)=0

SET RESPONSE BIT TO ACCEPT THE GONNEGTION
GALL NSTORE(TA,2LRBy1)

CHECK IF APPL-TO-APPL CONNEGTION
IF (DT (ACN) «NE.240B) GO To 21

SET ACT TO 1 (APPL-TO-APPL)

CALL NSTORE(TA,6LCONACT,1)
G0 To 22
SET ACT TO DISPLAY CODE,10 CHARACTERS PER WORD

ASSIGN AL. INTERACTIVE GONSOLES 70 LIST 1
CALL NSTORE(TA,6LCONALN;1)

TA(1)=TA(1) JAND.777774007777000017778
HA=SMHODR

CALL NETPUT (HA,TA)

RETURN.

PROCESS FC/INIT

CALL NSTORE(TA,2LRBj,1)
ACN=NFETCH (TA , SLFCACN)
HA=SMHOR

CALL NETPUT(HA,TA)
RETURN

PROGESS FC/8RK
RC=NFETCH(TA,2LRE)

ACN=NFETCH (TA, SLFCACN)

UPDATE FLOW CONTROL ALGORITHM FOR THIS CONNECTION
N8 (ACN)=0
HA=SMHOR
CALL NSTORE (HA y6LABHADR s ACN)

TA(1)=0

CALL NSTORE(TA,6LPFCSFC,FCRST)
CALL NSTORE (TA,5LFCACN,ACN)
CALL NETPUT(HA,TA)

HA=DSHOR

TA(1)=10H B8YE BYE

60480400 A

Figure 4-17. The ECHO Program (Sheet 3 of 4)

103

60

76

80

1015

90

ul

TA(2)=0
GALL NSTORE(HA 6LABHADA yACN)
CALL OUTPT
RETURN
PKOGESS FG/STP
ACN=NF £TCH (TA» 6LCONAGN)
NB (ACN)=0
WAIT FOR AN INDICATION THAT TRANSMISSION CAN RESUME
CALL NETWAIT(4095,0)
IF (NSUP.ANG.S) 52,51
ALN=0
GALL NETGETL(ALNyHA,TA,63)
PFLSFU=NFETCH(TA,6LPFCSFE)
IF(PFCSFC.NE.FCSTA) GO TO 51
ISSUE RESE(SM TO RESTART THE TRANSMISSION
CALL NSTORE(TA,6LPFUSFCyFGRST)
HA=SMHOR
GALL NETPUT(HA,TA)
RETURN
PKOCESS FG/INA
AGN=NFETCH (TA5LFLAGN)
HA=DSHDR
CALL NSTORE (HA,6LABHADRsACN)
OUTPUT #TIME OUTZ
TA(1)=10H TIME OUT
TA(2)=0
CALL ouTeT
TA(1)=0
CAiL NSTORE(TA,6LPFGSFG,CONEND)
CALL NSTORE (TA y6LCONACN yATN)
HA=SMHDR
GALL NETPUT (HA,TA)
RETURN
PROCESS GON/GB
ACN=NFETCH (TA y 6LLONAGN)
RC=NFETGH(TA,2LRC)
PRINT *,# CONNEGTION BROKEN. ACN= #,ACN,# RC= #,RC
CLEAR ACTIVE CONNECTION INOICATOR
ABL(AGN) =0
RETURN
PROCESS FC/NAK
ACN=NFETCH (TA, SLFCACN)
ABN=NFETCH (TA,5LFCABN)
PRINT 1015,ACNyABN
FORMAT (* ACN = *,164% ABN = *,I10,* NOT OELIVERED*)

RETURN
PROCESS EXR/LGL AND SHUT/INSD
PRINT 1000,HA,TA
CALL NETOFF
STOP 666
END

SUBROUTINE OUTPT
OUTPUT ONE DATA BLOGK
IMPLICIT INTEGER (A-2)
COMMON Kyl 51 »S9NSUPyNSTAT,SMHOR,DSHORyASHOR
COMMON CONENDy FCRSToFCSTA,ACNy ABNy SM{20) ,ABL(20),NB(20) yHA,TA(63)
TEST AND UPDATE FLOW CONTROL ALGORITHM
IF(NB(ACN) .GE.ABL(ACN)) 50 TO 5
ABN=ACN*64 +K
CALL NSTORE(HA,6LABHABNA3N)
K=K#1
NB (ACN)=NB (ACN) ¢+1
CALL NETPUT (HA,TA) ‘
RETURN)
PRINT *¥,2 Ai. LIMIT HAS REAGHED ON ACN =%, AC
RETURN
ENU

4-10

Figure 4-17. The ECHO Program (Sheet 4 of 4)

60480400 A

DATA FORMATS AND TERMINAL CONTROL

THE INTERACTIVE VIRTUAL TERMINAL

An interactive virtual terminal (IVT) is defined as a logical
device that sends or receives logical lines of ASCII
characters. These logical lines are transformed by the IVT
interface software to physical lines of characters of the
appropriate code set for the real terminal. IVT eliminates
the application program of having to be concerned with
which real terminals it is connected to and what specific
characteristics they ‘have (for example, line length, page
length, control capabilities). IVT relieves the application
from having to provide separate procedures in order to
functionally service a variety of real terminals.

The choice of functions provided by an IVT is deliberately
restricted to ensure efficient implementation, even when
transferring data to a real terminal with the lowest
capabilities. The following IVT characteristics can be
assumed by the application:

o Infinite line width
e Infinite page size
e Use of the ASCII 128-character set

When an application requires features that are not provided
by the IVT, but known to exist on the connected real
terminal, the application can perform the following
functions:

e Embed appropriate control characters in the output
text, or scan for significant control characters in the
input text.

@ Transfer data in transparent mode (in which case, the
application has direct access to, and responsibility for,
all real terminal features).

IVT MODE TRANSFORMS AND
FORMAT EFFECTORS

As already explained, when working in IVT mode, logical
lines are transformed by the IVT interface to physical lines
of the appropriate code set, according to the real terminal
characteristics. These are known as IVT mode transforms.

These transforms are explained in greater detail in the
following subsections.

INPUT AND OUTPUT OPERATION

ASCII is the recommended character type, although display
code can be used. All 128 ASCII characters are valid, and
the 7-bit ASCII characters are right-justified in either 8-bit
or 12-bit bytes, as specified by the ACT field of the ABH.
(See section 2.) The parity bit in both the 8-bit and 12-bit
bytes is always set to zero by IVT transforms of the
network. On output, NAM strips the upper 4 bits of the
12-bit bytes and sets them to zero on input. When using
display code characters, only the characters of the instal-
lation character set are valid. They occupy 6-bit frames, 10
characters per word. Note that the use of display code

60480400 A

characters involves a character-by-character conversion
process, which significantly increases processing overhead.

INPUT

The line feed (LF) key signifies the end of a physical line,
and when it is detected (or when the number of data
characters reaches the page width defined for the real
terminal), the preceding data is sent to the application as a
BLK type block. (See section 2.)

The carriage return (CR) key signifies the end of a logical
line. When it is detected, the preceding data is sent to the
application as a. MSG type block. FEither delimiter is
discarded.

A logical line compr'ses a message; it can consist of one or

more BLK blocks for every physical line, followed by a MSG
block for the last line terminated by a CR.

OUTPUT

One or more logical lines can comprise a BLK or a MSG type
block, subject to the restriction that a logical line cannot
span block boundaries.

The application terminates logical lines by -one of the
following:

® A unit separator character (IF16) when using ASCII
characters

e 12 to 66 bits of binary zeros, right-justified in one or
two 60-bit words, when using display code characters

The user can also control output lines by using format
effectors.

FORMAT EFFECTORS

Format effectors are data characters that prefix -each
logical output line, but are not printed or displayed. They
provide a means of achieving device-independent format
control.

Format effectoré are the same for either ASCII or display
code output. They are interpreted as follows:

blank Space 1 line before printing (note 1).
0 Space 2 lines before printing (note 1).

- Space 3 lines before printing (note 1).

+ Position to start of the current line before
printing.

* Position to top of form or home cursor before
printing. '

1 Position to top of form or home cursor, and

clear the screen before printing.

, Perform no action.

5-1

. Space 1 line after printing.
/ Position to start of the current line after
printing.
NOTE

1. If the previous operation was input, the
number of spaces is reduced by 1.

2. Any characters other than the pre-
ceding format effectors are treated as
blanks.

Format effectors do not exist if the no format effector
(NFE) bit of the ABH word is set to 1. See section 5.

LF and CR characters can be embedded anywhere within an
ASCII output logical line. They are interpreted as follows:

LF Cursor down one line.

CR Return cursor to start of the current line.

THE TRANSPARENT MODE

Transparent mode can be seen as the opposite of IVT mode.
In transparent mode, IVT transforms are inhibited; for
example, all 256 possible 8-bit characters can be used
without conversion or interpretation by the network
software.

While in transparent mode, the application has complete
freedom and responsibility with regard to data formatting
and terminal control; IVT format effectors, code conversion,
and paging are not perfermed. Auto-input still applies, and
page-waiting occurs on message boundaries. Transparent
mode is selected differently for output and input operations.

On output, it is selected by setting the transparent
mode/IVT mode indicator (XPT) bit in the ABH word. The
transparent mode is then in effect until TLC characters are
transferred (see section 5). After that, normal IVT mode
resumes.

On input, it is selected either by the application program or
by the terminal user. In both cases, transparent input mode
is terminated by one of the three possible methods:

e By a specific character code identification

e By a character limit count

e By acharacter timeout of 200 to 400 milliseconds

The CTRL/DEF SSM is used-to select and delimit trans-
parent input data. (For further information, refer to
section 5.))

The parity bit, as selected by the parity (PA) option,
determines the actual character codes received by the
application. For a PA of N, all 256 8-bit character codes
are received; for all other parity settings, the eighth bit is
set to zero by the network.

CHARACTER TYPE CONTROL

When an application program changes its output character
type, it changes the ACT field in the ABH to the appropriate
character type. (See section 2.) When an application
program changes its input character type, it sends the data
control/change input character type (DC/CICT) supervisory
message to NAM. (See appendix C.) The initial input
character type is specified in the ACT field of the normal
response to the CON/REQSM. The format for the
DC/CICT SM is shown in figure 5-1. The DC/CICT does not
require a response from NAM,

TERMINAL CHARACTERISTICS

An application can redefine or modify certain terminal
characteristics and parameters, where those of the
connected real terminal differ from the assumptions made
for the IVT mode. The application sends the CTRL/DEF
(terminal characteristic redefinition) SM to NAM. 1t has the
format shown in figure 5-2.

SPECIFYING INDIVIDUAL CHARACTERISTICS

The following character strings are used as terminal
definition declarations.

PW=nnn Specifies the physical page -width of the
terminal to be nnn decimal characters.

On output, the network software advances the
cursor to the beginning of the next physical
line, where the number of characters trans-
mitted equals the specified page width.

The nnn parameter must be in the range of O
to 255, where nnn=0 means never advance to a
new line as a result of a page width.

(‘Application to NAM)

59 515049 43 35 23 5 0
oc |§|B|cicT DCACN , ‘ ACT
acn The ACN from which 1 new character type input is requested.

act The new character type code (as defined in section 2).

Figure 5-1. Format for Change Input Character Type (DC/CICT)

5-2

60480400 A

cce .

59 515049 43 0
ctr_|&[B] oer

= — = — - ccec...
Clie J0JO] 45

. C A string of ASCI| characters in the form:

kk=param Also the form used for specifying terminal control commands.

kk ‘ A two-character keyword called the terminal descriptor.

param A parameter associated with the keyword to define a certain terminal characteristic.

PL=nnn

PA=t

BS=c

Bl=x

B2=x

60480400 A

Figure 5-2. Format for Terminal Characteristic Redefinition (CTRL./DEF)

Specifies the number of physical lines on a
page. On output, the network software
advances the cursor to the next page when the
number of physical lines transmitted equals
the page length.

The nnn parameter must be in the range of 0
to 255, where 0 means no paging is desired.

Specifies which type of parity to expect on
input, and which to generate on output.
The t parameter can have the following
values:

Z Sets parity bit to zero.

O Sets or checks for odd parity.
E. Sets or checks for even parity.
N Is an information bit, no parity.

The difference between PA equal to Z and PA
equal to O or E is that for PA equal to Z, no
parity check calculation is made and the bit
must always be zero; for PA equal toO or E a
parity check is made by the Network
Processing Unit (NPU), but to the application
the parity bit is always passed as a zero. The
reason for this is to form the same ASCII
character bit-pattern in memory, whether it
comes from an even or odd parity terminal.

On input operation, the eighth bit is not set to
0 when PA is equal toN and while the
operation is in transparent mode. - In all other
parity settings, the eighth bit is set to zero,
regardless of the parity checking performed.

Specifies c¢ as the backspace character
associated with the terminal. Whenever c is
detected, the last character entered is deleted
from the input buffer. The deleted character
and the selected backspace character are not
transmitted to the application.

Specifies x as the character for user break-1.
It means that when x @ is sent by the user,
it causes NAM to send to the application the
FC/BRK SM, specifying that a user break-1
has occurred. (See section 4.)

Specifies x as the character for user break-2.
It means that when x é@ is sent by the user,
‘it causes NAM to send to the application the
FC/BRK SM, specifying that a user break-2
has occurred.

CN=x

PG=t

Specifies x as the character to be used to
cancel the input logical line in progress. It
means that whenever x is entered as the last
character of an input line (followed by a

), and any portion of the logical line has
already been sent to the application, a MSG
block is sent with the cancel bit set. The
application is notified to cancel the last
entered input line. See section 5.

The t parameter specifies whether or not
page-waiting is in effect. It can have the
following values:

Y Page-waiting is in effect.
N Page-waiting is not in effect.

When output is sent to a CRT and page-waiting
is in effect, the Terminal Interface Program
(TIP) pauses its output display at each page
boundary, and waits for any input followed by
a to be typed in, before it displays the
next output page.

If the page is not full and more output is
available, OVER is displayed on the next
available line. = The next available output_is
displayed only after input followed by a

is entered by the user.

NOTE

A null input line can be entered by .
the user; for example, when a page of
output is to be acknowledged. In
order to do so, the user must enter |

x €
or simply @

where x is the control character
defined for the terminal.

If page-waiting is in effect when the
null line is entered, the line signals
output acknowledgment only, and the
line is not sent to the application. If,
however, page-waiting is not in
effect, the line is sent to the appli-
cation as a MSG block. :

Only one terminal control command can be specified for
each CTRL/DEF SSM. ' If the PA and BS commands are
needed, they are requested in separate supervisory
messages. For example:

59 51 50 49 43 0
cTRL |o|o| DEF PA=E
followed by
59 51 50 49 43 0
cTrRL |o|o] DEr BS = *

SELECTING TERMINAL CLASS

In order to associate a terminal with a set of
characteristics, a terminal class is specified. =A terminal
class is a number, 1 through 15, which identifies a specific
physical terminal type, and associates it with a set of
default terminal characteristics. There are 14 terminal
classes and they are shown in table 5-1.

TABLE 5-1. TERMINAL CLASSES

Terminal Terminal
Type Class
= — —— = —]
M33 1
713 2
2741 4
M40 5
H2000 6
751 7
T-4014 8
HASP 9
200UT 10

214 11
711 12
714 13
731 14
734 15

Every class has its associated set of default terminal
characteristics. = For example, a few of the associated
characteristics of the 713 terminal are as follows:

PW (page width) = 72

PL (physical number of lines) = 0, indicating an infinite
page length

PA (parity) = E

BS (backspace character) ==
Bl (user break-1 character) = :
B2 (user break-2 character) =)

CN (cancel input line character) = $

For a complete list of terminal characteristics, refer to the
NAM 1 reference manual. - i

To select terminal class (TC), use the following command:

TC=n Specifies the terminal as belonging. to terminal
class n.

For example, to select the 214 console, send
59 515049 43 0

TC =1l

CTRL |0|O} DEF

The device type (DT) is associated with the terminal class
and is used to identify batch devices. The device type is an
identifier passed to the application by the CON/REQ SM.
(Refer to figure 3-4.) It is also used to identify application-
to-application connections. Refer to section 6.

The device type (DT) codes are as follows:

0 Console

Card reader

Line printer

Card punch

Plotter
Application-to-application

vt W N

NOTE

The combined field of DT and TC in the
CON/REQ SM is also called the device
type, and is accessed by the CONDT
keywox)‘d. (Refer to figure 3-4 and appen-
dix B. '

SELECTING AND DELIMITING TRANSPARENT
MODE INPUT
The IN= descriptor is used for selecting the input device in

either an IVT or transparent mode. The IN= parameters are
as follows:

KB Input device is a keyboard in IVT mode.

PT Input device is a paper tape in IVT mode.

XK Input device is a keyboard in transparent
mode.

XP Input device ‘is a paper -tape in transparent

mode.
If the transparent mode is selected, the next input operation
is in transparent mode, until a transparent mode delimiter
occurs.
The delimiter is specified by

DL=Xhh,Cnnnn,TO

where:
hh indicates two hexadecimal digits representing
a delimiter that terminates transparent mode
input.
60480400 A

nnnn indicates 1 through 4096 maximum character
count for transparent mode.

T0 indicates ‘input character timeout of 200 to
400 milliseconds.

NOTE

At least one delimiter must be specified.
If more than one is selected, transparent
input mode is terminated by the delimiter
that occurs first.

TERMINAL CHARACTERISTICS CHANGED
BY THE USER :

A terminal user can define or modify certain terminal
characteristics.

Whenever terminal class (TC), page width (PW), or page
length (PL) are redefined by the user, the application is
notified of the change by NAM. NAM sends to it the
TCH/TCHAR SM (terminal characteristics redefined) shown
in figure 5-3.

NOTE

e Other redefinitions are not com-
municated to the application.

e No response to TCH/TCHAR is
required.

ABH FLAGS

There is one set of flags applicable for input operation, and
another set applicable for output operation. The flags for
input are shown in figure 5-4; the flags for.output are shown
in figure 5-5.

59 51 50 49 43 35 23 15 7 0
ton [B[RJrerad T aen T e J_ew [e
6416 |0]O] 00g 0 acn tc pw pl

acn ACN for which the user has redefined TC, PW or PL:
tc Terminal class
pw Page width
pl Page len§th

Figure 5-3. Format for Terminal Characteristics Redefined (TCH/TCHAR)

59 2019 141312 0
[XiC|D
B PJAIE
) TIN|F

JPEF Parity error flag:
PEF=1

; PEF=0 No parity error was detected.

CAN Cancel fIaQ:

CAN=1

CAN=0 Otherwise.

A parity error was detected in one or more input characters of the block transmitted.

Indicates that the message being received on this connection has been cancelled by the terminal
user; for example, one or more BLK blocks of the message were previously transmitted to the
application, and have been discarded.

Figure 5-4. Input ABH Flag Format (Sheet 1 of 2)

60480400 A

5-5

XPT Transparent mode/IVT mode indicator:

XPT=1 Transparent mode; IVT transforms are inhibited. This mode is applicable to ACT 2.or 3 only.
When an attempt is made to input in transparent mode and the ACT is not 2 or 3, the IBU bit
sets, and the block is not transmitted. (See also IBU bit.)

XPT=0 Normal VT mode transforms are in effect.

IBU Input block undeliverable:

IBU=1 An attempt was made to input a block which is Iarger than the maximum text area.- (Refer to
section 3). In such a case, the block is not transmitted, but rather remains queued within. NAM
until another AIP input call is performed, specifying enough length to accommodate the block.
The true length of:the block .is found in the TLC field of the ABH.

As mentioned in explaining the XPT bit, it is also set to 1 if transparent mode input is

requested and the ACT is not 2 or 3.

IBU=0 Thé block was transmitted to the text area.
Figure 5-4. Input ABH Flag Format (Sheet 2 of 2)
50 ' 19 1615141312 0
l NIX|PIA ’
FiP|B8l!
E|TICIM
AIM Auto input mode indicator:

AIM=1 Auto input mode is requested. It means that this data block is to be sent to a terminal as
output, and its first 20 characters are to form the subsequent input from that terminal. The
output block must be an. ABT of 2 (other ABTs are ignored). The block can be output in
transparent mode, but the corresponding input block is not transparent, unless explicitly declared.

AIM=0 Otherwise, normal mode.

PBC Punch banner card:
PBC=0 Otherwise, no punched banner card is requested.
XPT Transparent mode/{VT mode indicator:

XPT=1 Specifies the block to be output is in transparent mode, in which case IVT transforms are
inhibited. Normal IVT mode resumes after TLC characters have been transferred. The XPT=1
is ignored if ACT is not 2 or 3.

XPT=0 Normal IVT mode, transforms are in effect.

NFE No format effectors. Applies to data in an IVT mode only.

NFE=1 Specifies that no format effectors are to be associated with the data block. The output line is
single-spaced before printing, and the first character is printed or displayed. .

NFE=0 Format effectors are present in the output data block (for example, the'line is spaced according
: to the first character, which is not printed or displayed). .

Figure 5-5. Output ABH Flag Format

60480400 A

MISCELLANEOUS FEATURES

In this section, the following miscellaneous features of NAM
are presented: the parallel mode, fragmented buffer
routines, application-to-application communication, the
debug option,-and the statistical option.

THE PARALLEL MODE

In its normal mode of operation, NAM returns control to the
calling application only after a full completion of the
requested operation has occurred. In the parallel mode,
however, the application can continue execution before the
last NAM request has been completed.

To check the status of the last request, NAM sets the flag
bits in the nsup word. NAM checks the c bit in the nsup
word for parallel mode processing.

To select the parallel mode of operation, call the NETSETP
routine:

CALL NETSETP (0)

To terminate the parallel mode of operation, call the
NETSETP routine:

CALL NETSETP (1) or any other value not equal to 0

In parallel mode, NETCHEK must be called before checking
the c bit:

CALL NETCHEK

NETCHEK performs two functions:
It updates the c bit in the nsup word. See figure 6-1.

It attempts to reissue the previous call to AIP if it was
rejected by NAM.

If the ¢ bit is not set, NETCHEK must be called to reflect
the status of the last request. While the c bit is not set,
only NETCHEK or NETWAIT calls are allowed.

NETCHEK must be called and the c bit checked for a
completion status before any of the following routines or
NETWAIT can be called in again:

- NETGET
NETGETL
NETGETF
NETGTFL
NETPUT
NETPUTF

When NETWAIT is called in parallel mode, the program is
suspended and the parallel mode of operation is ignored.
The parallel mode is reinstated when the NETWAIT call is
completed.

Sample program EASY, as shown in figure 6-2, provides an
example of parallel mode operation.

THE FRAGMENTED BUFFER ROUTINES

The fragmented buffer routines perform data transfer from
a buffer that is split into fragments.

Data for input is split into independent fragments. Data for
output is gathered from the fragments to constitute one
complete block. - The fragmented buffer routines are
NETGETF and NETGTFL for input, and NETPUTF for
output. They are in all respects similar to NETGET,
NETGETL and NETPUT, respectively; only their text area is
split into fragments.)

There can be up to 40 fragments each having its own length
as chosen by the application.

The independent fragments make better use of memory
space. They gather memory space that is created when
messages are processed in a different order than they have
arrived. Although every fragment has its own length,
situations of a variable size buffer management processing
are rare. Therefore, the fragmented buffer mechanism is
recommended for. applications using a pool of fixed length
buffer areas.)

59 58575655

¢ Complete bit:

1 = Last NAM call has been completed
0 = Otherwise

The ¢ bit is applicable only when working in the parallel mode, and its meaning is:

Figure 6-1. NSUP Word Parallel Mode Bit

60480400 A

The changes made are marked by shading:

PROGRAM EASY (OUTPUT)
INTEGER PFCSFC,CONREQsFCINITySyC
INTEGER SMHDRsDTHORHA, TA(63)

¢ SET UP CONSTANTS
SMHDR=0
CALL NSTORE (SMHOR,6LABHABT 3)
CALL NSTORE(DTHOR,6LABHACT 1)
CALL NSTORE(SMHOR,6LABHTLC,1)
DTHOR=0
CALL NSTORE (CTHDR,6LABHABT,2)
CALL NSTORE(OTHORs6LABHACT ;%)
CALL NSTORE(OTHOR,6LABHTLC,10)
CONREQ=NFET CH (0, 6L CONREQ)
FCINIT=NFETCH(0,6LFCINIT)
S=SHIFT (1,55)
I=SHIFT (1,56)
C=SHIFT (1,59)
CALL NETON (SHMYAPP,NSUP,NSTAT ,1,10)
IF (NSTAT.EQ, 0) GO TO &
PRINT 100, NSTAT

100 FORMAT(*NETON FAILED,NSTAT=*,020)

CALL NETOFF

1 G;TOS}

2 CALL NETWAIT(4095,0)=
c CHECK FOR A SUP. MESSAGE OR INPUT AVAILABLE
IF (NSUP .AND.S) 6,3
3 IF (NSUP.ANC.I) 20,5
c SUPERVISORY MESSAGE IS AVAILABLE
6 CALL NETGET (0,HA,TA,63)
PFCSFC=NFETCHI TA» 6LPFCSFC)
IF (PFCSFC.EG.CONREQ) GO T0 7
IF (PFCSFC.EG.FCINIT) GO TO 8
PRINT 101,HA,TA
101 FORMAT (*UNKNOWN SUP., MESSAGE */64(1X,020/))
CALL NETOFF
sTop 222
c CON/REQ PROCESSING
7 ACN=NFETCH(TA ,6LCONACN)
CALL NSTORE(TA,2LRBy1)
CALL NSTORE (TA;6LCONACT,3)
" - |

60 TO 40 v
43 CALL NETPUT(HA;TA)

60 T0 S
c FC/INIT PROCESSING
8 ACN=NFETCH(TA,5LFCACN)
CALL NSTORE (T As2LRB,y 1)

_— s

Enter parallel mode

Update and then check the complete bit

The complete bit is not set. Meanwhile
some other processing may be performed.

- The complete bit is not set. (NETWAIT

is called to update the S and | bits)

Figure 6-2. Sample Program EASY in Parallel Mode (Sheet 1 of 2)

60480400 A

11 CALL NETPUT(HA,TA)

TA=10H INPUT PLS
HA=DTHDR

ACN;AGN)

60 To 12 A
CALL NETPUT(HA,TA)
GO TO &

NPUT IS AVAILABLE

13

GO TO 20
CALL NETGETC(ACNyHA,TA,1)

21
22

Figure 6-2. Sample Program EASY in Parallel Mode (Sheet 2 of 2)

The fragmented buffer mechanism is achieved by trans-
nitting to NAM a vector that contains the size and address
»f every fragment. The format of this vector is shown in
figure 6-3." An example of the memory allocation technique
s shown in figure 6-4. The following section provides a
lescription of fragmented buffer routines.

connection, a null block is returned, a header with an ABT
of 0 is placed in the header area, and the fragmented buffer
remains unchanged.

The format of NETGETF is

CALL NETGETF (acn,ha,n,va)

NETGETF
where:
The NETGETF routine inputs one data block or a supervisory .
nessage from the specified connection. acn indicates the ACN identifying the connection
from which data is transferred (ACN of 0 is
The application block header is placed in the specified also allowed).
eader area, and the body is . placed in the supplied
‘ragmented buffer. If blocks are not available for this ha indicates header area for ABH.
59 38 29 17 ‘ 0
0 sizeq 0 add4
0 sizey 0 addy
[
L]
[]
L J
0 size,, 0 add,,

suzei

add;

i is the address of the i-th fragment.

is the length in central memory words of the i-th fragment.

Figure 6-3. Format for Fragmented Vector

0480400 A

6-3

n indicates the number of buffer fragments NETGTFL
described in va (up to a maximum of 40).
va indicates the vector area containing address The NETGTFL routine selects the next connection from the
and size, in central memory words, of every specified list that has input available, and inputs from it on
fragment. data block or a supervisory message.
5 1000
3 1200
10 3200
L J
L]
[]
12 4600
1000 -
3200 -

10g word buffer

5 word buffer

1200

4600

12g word buffer

3 word buffer

6-4

Figure 6-4. Example of Memory Allocation Technique

60480400 A

The header of the block is placed in the specified header
area, -and the body of the block in the supplied fragmented
buffer. The null block is returned only if there is no input
available for all the connections in the specified list. If the
null block is returned, a header with an ABT of 0 is placed in
the header area, and the fragmented buffer remains
unchanged.

The format of NETGTFL is
CALL NETGTFL (aln,ha,n,va)
where:

aln indicates the ALN from which connections are
selected, and data is transferred.

ha,n,va serve exactly the same purpose as with
NETGETF.

For all fragmented buffer input routines, if the length of the
block exceeds the sum of the size values in the vector area,
the block is not transmitted, but instead remains queued
within NAM. The IBU bit of the ABH is set to 1, and the
true length of the block is placed in the text length (TLC)
field of the ABH.

NETPUTF

The NETPUTF routine outputs “one data block or a
supervisory message to the specified connection from the
fragmented buffer area, according to the information
contained in the header area.

The format of NETPUTF is
CALL NETPUTF (ha,n,va)
where:

ha,n,va serve exactly the same purpose as with
NETGETF.

APPLICATION-TO-APPLICATION
COMMUNICATION

An application can connect to another application by sending
NAM the CON/ACRQ SM. NAM validates the request and
establishes the connection with both applications.

The supervisory message dialog shown in figure 6-5 is used
when application A requires connection to application B.
The format for requesting an application connection is
shown in figure 6-6. If NAM can establish the connection, a
CON/REQ SM is sent to both applications. If, however, the
requested application is not available, an abnormal response
is sent to the requesting application. See figure 6-7.

To demonstrate an application-to-application communica-
tion example, the application program MONIT is shown in
figure 6-8. This program connects the ECHO program, and
writes into the output file all output sent by ECHO. In order
to do this, the ECHO program is slightly changed to
recognize and accept application-to-application connections,
and send its echoed output to the monitoring applications. It
is possible that more than one application monitors ECHO.
In fact, different copies of MONIT (with unique application
names passed at NETON time) can concurrently run and
monitor ECHO.

60480400 A

ECHO identifies ah application-to-application connection by
testing the device type (DT) field of the CON/REQ SM.
(Refer to figure 3-4.)

The OUTPT routine is also changed to send output to the
monitoring applications which are currently connected to
ECHO. The output sent by OUTPT is shown in figure 6-9.

MONIT issues a CON/ACRQ SM and waits for NAM to
establish and enable the connection.

Application A NAM lication B
CON/ACRQ —=
——CON/REQ ————8@
-«——— CON/REQ ——
-«— CON/REQ/N
CON/REQ/N —=
—— FC/INIT ——4—48M88
- FC/INIT ——
-«— FC/INIT/N
FC/INIT/N —=
In this case a connection was established and enabled
between application A and application B, input and out-

put can be exchanged.

if application B is not available, NAM rejects the
CON/ACRQ by:

Application A NAM Application B
CON/ACRQ —
-~-—— CON/ACRQ/A —

and the connection is not possible.

The connection can also be rejected by application B:

Application A NAM Application B
CON/ACRQ —»

-—— CON/REQ ————m

-~ CON/REQ ——

Appl. B
~— CON/REQ/A — PP ©
rejects
CON/REQ/N —»= the
request

~—— CON/CB ——
CON/END —
~«———— CON/END/N —

Data between the two applications can be exchanged
using an ACT of 1 only.

Figure 6-5. Application-to-Application Communication

6-5

aname

Requested application’s name, one through seven alphanumeric characters with the first character being
alphabetic, left-justified and blank-filled.

Figure 6-6. Format of Request Application Connection (CON/ACRQ)

rc

59 515049 43 35 17 0
con |glhlacral R
EN I 1
CONANM
T T T T T T T wame T T ~————77

Reason code for rejecting the request:

1

]

aname is not available, which might be because:
e There is no such application name in the LCF file (see appendix D)
® The requested application is not currently in the system

e The requested application has exceeded its defined connection limit

N
]

Shutdown is in progress.

3 = The requesting application has exceeded its defined connection limit.

Figure 6-7. Format of Request Connection Reject (CON/ACRQ/A)

PROGRAMN MONIT(OUTPUT,TAPEL)

G .

¢ MONIT PROGRAM IS AN APPLICATION-TO-APPLICATION

: COMMUNICATION EXAMPLE WHICH MONITORS ALL THE OUTPUT

G SENT 8Y THE ECHO PROGRAM.

c
IMPLICIT INTEGER (A-2)
DIMENSION SM(6),TX(3),TA(10),XX(53)

C

G INITIALIZE AND SET CONSTANTS
K=9
TX(1)=TX(2)=0
SMHDR=030000000000040000018

c

¢ S ANO I ARE NSUP WORD MASKS
S=SHIFT(1,535)
I=SHIFT(1,56)

9

c SET OQUTGOING SM CONSTANTS
CONAGR=NFETCH{056LCONACR)
CONEND=NFETCH{ 0,6LCONEND)

G

c CONSTRUCT CON/AGRQ SM TEXT AREA

CALL NSTORE(TX,6LPFCSFGyGCONAGR)
CALL NSTORE(TX,6LCONANM,7RTAPPLYG)

6-6

Figure 6-8. Application-to-Application (ECHO--MONIT) (Sheet 1 of 7)

60480400 A

[SR SN o Qo

[N v &

[A T A TN ¢

(&R TR ¥

Q)

QOO

(Y X 2 N $

100

£ O

101

10

11

12

20

21

BUILOD SUPERVISORY MESSAGE BRANGCHING TABLE
SM(L)=NFETCH(G,6LCONREQ)
SM(2) =NFETCH(Q,6LFSINIT)
SM(3)=NFETCH(D y6LCONACR)
SM(4)=NFETCH(0,5LCONGS)
SM(5)=NFETCH{C y6LERRLGL)
SM(6)=NF ETCH(O,6LSHUINS)

ESTABLISH NETWORK ACCESS

CALL NETONAZHTAPPLLA,NSUPyNSTAT,1,1)
iFINSTAT .£EQ.0) GO TO 1

PRINT 160, NSTAT

FORMAT (* NSTAT = *,020)

STOP 111

SENO CON/ACRG TO APPL. ECHO
HA=SMH DR +1

CALL NETPUT(HA,TX)
CALL NETWAIT(5,0)

TEST FOR A SUPERVISORY MESSAGE OR A DATA INPUT AVAILABILITY
IF(NSUP.ANU.S) 4,6
IFINSUP, AND.I) 22,3
CALL NETGET(0,HA,TA,63)

LOOK FOR A SUPERVISORY MESSAGE

FETCH PFCSFC AND STRIP OFF RB AND €8 BITS
PFGSFC=NFETCHUTAJ6LPFCSFC) JANDT77777777777777T74778
DO 5 L=1,6
IF(SM(L) sEQ.PFCSFG) GO TO (10,20,30,40,50,60) 4L
CONT INUE
PRINT ¢,# COULD NOT FIND SM IN TABLEZ
PRINT 101,HA,TA
FORMAT (* HA = ¥#,020/% TA = */10(1X,020/))

60 TO 3

PROCESS CON/REG. ACCEPT ONLY AN APPLICATION CONNECTION
HA=SMHOR

IF OEVICE TYPE = 5 IT IS AN APPLICATION CONNECTION
IF (NFETCH(TA,S5LCONOT)-2408) 12,11
ACN=NFETCH (TA, 6LCONACN)
TAC1)=TA{1) .AND.777774007777000000008
CALL NSTORE(TA,2LRB,1)
GCALL NSTORE(TA,6LCONACT,1)
CALL NETPUT (HA,TA)
60 T0o 3

REJECT THE CONNECTION

GALL NSTORE(TA,2LEB,1)
CALL NETPUT(HA,TA) :
CALL NETOFF

sToP 333

PROCESS FC/INIT

CALL NSTORE(TA,2LR3,1)
ACN=NFETCH(TA ,5LFCACN)
HA=SMHOR

GALL NETPUT(HA,TA)
CALL NETWAIT(4095,0)

60480400 A

Figure 6-8; Application-to-Application (ECHO-MONIT) (Sheet 2 of 7)

L

CHECK IF INPUT 1S AVAILABLE
IF (NSUP.AND.I) 2259
22 CALL NETGET(AGNyHA,TX,3)
ABT=NFETGH (HA,oLABHABT)
IF(ABT .NE.3) 60 TO 23
PRINT *,# SM RECEIVED WHEN INPUT DATA WAS EXPECTED ON ACN =#,ACN
PRINT 101,HA,TA :
60 T0 3
23 AGCNL1=NFETCH(TX(2),6LABHALR)
PRINT 102, TIME (M)oiXyACNL
102 FORMAT (1X,2A10,* HA = *,020,* TA = #,A10,%.SENT TO AGN =%,14)
50 T0 9

PROCESS GCON/AGR

[N 2N

30 IF(NFETCH(TA,2LEB)-1) 3,31

CON/ACRQ REJECTED. WAIT 30 SEGONCS AND TRY AGAIN

[N SN]

31 IF(NFETCH(TAs2LRC)=~1) 33,32
32 PRINT *,# CON/AGRQ REJECTEDZ
PRINT 101,HA,TA
VALL NETWAIT(30,1)
K=K#1 _
IF (K.LE.7) GO TO 1
33 CALL NETOFF
. SToP 777

PROCESS CON/CB

[SN v N+

40 ACN=NFETCHITA»6LCONACN)
PRINT *,# GONNECTION BROKEN#
PRINT 101,HA,TA
CALL NETOFF
STOoP 222

PROCESS ERR/LGL

O

50 PRINT ®,2 LOGIGAL ERROR?
PRINT 101,HA,TA :
CALL NETOFF
sToP 333

PROGESS SHUT/INSD

(1A 2 2]

60 PRINT *,# HOST SHUT OOWNZ
PRINT 101,5HA,TA
CALL NETOFF
STOP uih
END

The changes made in ECHO are shown by the shaded lines:

PROGRAN ECHOLOUTPUT)

-6 LOOP BACK TEST DEMONSTRATION PROGRAM

IMPLICIT INTEGER (A-2) : g
COMMON KoL I, SsyNSUPyNSTAT, SHHOR, DSHORASHOR, R
{ GO ~{,FGRST.FOSTI,AGN’ABN,SH(ZOD,ABL(ZO),NB(ZD!,NI,TA(63)

fonaingny

INITIALIZE AND SET CONSTANTS
K IS THE APPLICATION BLOCK NUNBER COUNTER

Q0

K=1
'S AND I ARE NSUP WORD FIELD MASKS
S=SHIFT(1, 55)
I=SHIFT(1,56)
D0 15 LL=1,20

[2

6-8

Figure 6-8. Application-to-Application (ECHO--MONIT) (Sheet 3 of 7)

60480400 A

(RN 2]

(¥

(1]

OO0 0 (2]

15

999

104

ABLILL)I=NB(LL)=0T(LL) =8
SMHOR - SUPERVISORY MESSAGE HEAOER CONSTANT
TP

NSRHDR osnonuononnuu«onoaaia
osuoR_-ozooonooononzooooqzss

] 00 100

SET APPL. TO NAM SN OONSIANTS
CONEND=NFETCH(O,6L3O0NEND)

FGRST =NFETCH{0,5LFCRST).
FCSTA=NFETCH(0,5LFCSTA)

BUILO A BRANCHING TABLE FOR SUPERVISORY MESSAGES
SM(1)=NFETCH(0y5LFCACK)
SH{2)=NFETCH(0,6LCONREQ)
SM{3)=NFETCH(0,6LFCINIT)
SH(4)=NFETCH(0,5LFCBRK)

SM(5)=NFETCH(0 ,SLFCSTP)
SM(6)=NFETCH(0 y5LFSINA)
SM(7)=NF ETGHI0 ,5LCONCB)
SM(B8)=NFETCH(0,5LFCNAK)
SH(I)=NFETCH(0 ,6LERRLGL)
SM(10) =NFETCH(0,6LSHUINS)
SM(11) =NFETCH(045LFCSTA)
SM(12) =999

ESTABLISH NETWORK ACCESS
CALL NETON(6HTAPPLU4NSUP,NSTAT ,1,20)

TEST FOR NETON ACCEPTANCE
IF (NSTAT.EQ.Q3) GO ¥0 5
PRINT 100, NSTAT
FORMAT (* NSTAT = *,020)

STOP 111

CALL LOOKSH

60 .T0 (5,5,“0,5.5,5,5,5,5,5, 2999 ,L

INITIALIZE CONNECTION BY SENDING OUTPUT

SHDR

L NSTORE
TA(1)=10H INPUT PLS
TA(2)=0

CALL oUTPT

60 T0 5

ALN=1

CALL NETGETL(ALNyHA,TA,63)

ABT=NFETCH (HA» 6LABHABT)
AGT=NFETCH (HA, 6LABHACT)
ACN=NFETCH (HA , 6LABHADR)
TLC=NFETCH (HA, 6LABHTLC)

BRANCH TO PROCESS A DATA BLOCK
IF(ABT .NE.3) 60 TO &

- PRINT %52 SM RECEIVED WHEN INPUT DATA WAS EXPECTED ON AGN =#,ACN

PRINT 101,HA,TA
FORMAT (* HA = *,020/* TA = ’163(1X,020/)}
60 TO S
HA=HA LAND . 7T77777777777740077778
TEST FOR TEN DISPLAY GCODE ZEROES WHICH SIGNAL END OF EGHO RUN
IFE(TFAUL) sEQ.10HG000000008) 60 TO 555
CHANGE BLOCK TYPE TO BLK BLOCK
CALL NSTORE(HA,6LABHABT,1)
INHIBIT FORMAT EFFECTORS
CALL NSTORE (HA,6LABHNFE,1)
ECHO INPUT AS OUTPUT,AFTER ADOING A UNIT SEPARATOR
FOR ABT=4,DISPLAY CODEy THE UNIT SEPARATOR MUST BE 12 @ITS
OF ZERO RIGHT JUSTIED. I.E. IF THERE IS ONE OR ZERO CHARAGTER
POSITIONS REMAINING (XTRA) THEN ANOTHER WORD OF ZEROS WILL BE
ADOED.
FULWD=TLC/ 10
XTRA=TLC-10*FULNWD
ZFILL=10 “XTRA

60480400 A

Figure 6-8. Application-to-Application (ECHO~~MONIT) (Sheet 4 of 7)

TLC=TLC+ZFILL
HASK’?TOOQ0000009000000008
IFIXTRAEQ.0)TA(FULWD#+1)=0
TALFULND#+1)=TA(FULWD*1) sAND. SHIFTC(MASKy=(6*XTRA))
IF(ZFILL WNEL1) GO TO 71
TLC=TLC+10
TA(FULND #2)=0
71 CALL NSTORE(““’BL“BHTLG,TLCI
CALL OUTPT
CALL LOOKSM
GO TO (4D09554055959595959595952999) 50
SEND CONZEND TO ALL ACTIVE CONNECTIONS
TA(1)=10
CALL NSTORE (’A,GLPFGSFC,GONENU,
HA=SNHDR
DO 556 iL=1,20
IF(ABL (LL) .EQ.D) GO TO 556
CALL NSTORE(TA,6LCONACNsLL)
CALL NETPUTIHA,TA)
556 GCONTINUE
CALL NETOFF
stoP 777
END

[Y
ut
w
Vi

The LOOKSM changes are shown by the shaded lines:

SUBROUTINE LOOKSM

c PROGESS “SVNCHRONOUS SUPERVISORY MESSAGES
IMPLICIT INTEGER (A-Z)
GOMMON K,L,I,S,NSUP.NSI’AI,SHHOR,OSHDR,ASH) -
GCOMMON (:ONEND,FGRSI’,FGSI’A,AON,AEN,SH(ZO) ;‘BL‘ZQ)’NB(ZU),H‘,TA(63’

2

c CHECK FOR OUTSTANDING SUPERVISORY MESSAGES
IF(NSUP.AND.S) 6,3

G PAUSE FOR INPUT DATA OR A SUPERVISORY MESSAGE

CALL NETWAIT(4095,0)

IF (NSUP .AND.S) 6,5

IFINSUP.AND.I) 2,3

RETURN

ALN=0

e FETCH AN ASYNCHRONOUS SM FROH ACN=0
CALL NETGETLU(ALN,HR,TA,63)

G FETCH PFGSFC AND STRIP OFF R8 AND €8 BITS
PFCSFC=NFETCH(TA,6LPFCSFC) sAND 777777777 77TTTTITILTT8
DO 8 L=1,20
IF(SMIL) .EQ.999) 6D TO 9

e BRANCH ACCORDING SUPERVISORY MESSAGE COOE
IF(PFCSFC.EQ.SMIL)) GO TO(10,20,30,40,50,60470,80,90,90,100),L

8 CONTINUE
9 PRINT *,% COULD NOT FIND SM IN TABLE?#

PRINT 1000,HA,TA

1000 FORMAT(* HA =%,020/7% TA = */63(1X,020/))
G0 70 3

c PROGESS FG/ACK

10 ACN=NFETCH (TA, SLFCACN)

4 UPDATE FLOW CONTROL ALGORITHM
NB (AGN)=NB (ACN) -1~
RETURN

G PROCESS CON/REQ

20 ACN=NFETCH(TA, 6LGONACN)

ABL(AGN)-NFETGH(TA.&LGONABL)

NB (ACN =0

N w

SET RES ON CEPT THE CONNECTION
CALL NSTORE(TA,2LRB,1)
¢ CHEGCK IF APPL-TO-APPL CONNECTION

6-10

Figure 6-8. Application-to-Application (ECHO--MONIT) (Sheet 5 of 7)

60480400 A

<

<«

21 oA

AL INSTORECTY

[AV]
~n

30

40

50

51

52

100

60

70

1F(OT (AGN) «NE.2408) GO TO 21
SET ACT TO 1 (APPL~-TO-APPL)
CGALL NSTORE(TA,éLGONACT,l)
GO To 22
SET ACT TO DISPLAY CODE, 10 CHARACTERS PER WORD

GONAGT 4)

ASSIGN ALL INT:RACfI E CONSOLES TO LIST 1
GALL NSTORE(TA,6LCONALN,1)
TA(1)=TA(1) JAND.777774007777000017778
HA=SMHOR
CALL NETPUT (HA,TA)
RETURN

PROGESS FGZ/INIT
CALL NSTORE(TA,2LRB,1)
ACN=NFETCH(TA,5LFCACN)
HA=SMHOR
CALL NETPUT (HA,TA)
RETURN

PROCESS FC/BRK
RO=NFETCH(TAy2LRC)
ACN=NFETCH (TA,SLFCACN)

UPDATE FLOW CONTROL ALGORITHM FOR THIS CONNECGTION :
NB(ACN)=0
HA=SMHOR
GALL NSTORE(HA,6LABHADR,ACN)
TA(1) =0
CALL NSTORE (TA,6LPFCSFGC,FCRST)
CALL NSTORE(TA,5LFCACN,ACN)
CALL NETPUT(HA,TA)
HA=DSHDR
TA(1)=10H B8YE BYE
TA(2)=0
CALL NSTORE(HA,6LA3HADR,ACN)
CALL ouTPT
RETURN

PROCESS FC/STP
ACN=NFETGH (TA,6LCONACN)
NB(ACN)=0

WAIT FOR AN INDICATION THAT TRANSMISSION CAN RESUME
CALL NETWAIT(4095,0)
IF (NSUP.AND.S) 52,51
ALN=0
CALL NETGETL(ALNyHA,TA,63)
PFUSFC=NFETCH(TA,6LPFCSFC)
IF(PFCSFC.NE.FCSTA) 60 TO 51
ISSUE RESET SM TO RESTART THE TRANSMISSION

‘GALL NSTORE (TA36LPFCSFC,FCRST)

HA=SMHDR
CALL NETPUT(HA,TA)
RETURN
PROCESS FC/INA
ACN=NFETCH (TA, SLFCACN)
HA=DSHOR :
CALL NST ORE (HA,6LABHADR,ACN)
OUTPLT #TIME OUT#
TA(1)=10H TINE OUT
TA(2) =0
CALL OUTPT
TA(L) =0
CALL NSTORE (TA,6LPFCSFC,CONEND)
CALL NSTORE(TA,6LCONACNsACN)
HA=SMHOR
CALL NETPUT(HA,TA)
RETURN
PROCESS CON/CB
ACN=NFETCH (TA, 6LCONAGN)
RC=NFETGH(TA 2LRC)
PRINT *,# CONNECTION BROKEN. ACN= #,ACN,# RC= #,RC
CLEAR THE DEVIGCE TYPE
DT (ACN)=0

60480400 A

Figure 6-8. Application-to-Application (ECHO—~MONIT) (Sheet 6 of 7)

6-11

L CLEAR ACTIVE CONNECTION INDIGATOR
ABLI{ACN) =D
RETURN :
G PROGESS FG/NAK.
80 ACN=NFEZTGH(TA,5LFCACN)
ABN=NFETCH (TA,SLFGABN)
PRINT 1015,ACGN,ABN . ;
1015 FORMAT(* ACN = *,156,* ABN = *,I10,* NOT DELIVERED™)
RETURN
s PROCESS ERR/LGL ANO SHUT/INSD
90 PRINT 1000,HA,TA
CAiLL NETOFF
STOP 666 :
END

The OUTPT subroutine changes are shown by the shaded lines:

SUBROUTINE OUTPT
OUTPUT ONE DATA BLOCK
INPLICIT INTEGER (A-Z)
GONMON Kyl »3I5SyNSUP,NSTATySMHDRy OSHOR yASHDR
COMMON CONENDy FCRST sFCSTAy ACNy ABN, SM(20) 5AB

<>

8(20),HA,TA(E63)

ATE FLOW CONTROL ALGORITHM
IF(NB(ACN) . GE.ABL(ACN)) GO TO 5

ABN=ACN® 64+K ~

CALL NSTORE(HA »6LABHABN,ABN)

K=K#1

NB(ACN)=NB (ACN)+1

CALL NETPUT(HA,TA)

[¢

RE .

5 PRINT *,# ABL LIMIT HAS REACHED ON AGN =#,ACN
RETURN
END

Figure 6-8. Application-to-Application (ECHO—~MONIT) (Sheet 7 of 7)

hh.mm.ss ABH cCCi...C
word 1 word 2 word 3
hh.mm.ss The time this message was sent to a terminal.
ABH The original ABH sent to a terminal.
ccc....cC The echoed characters sent to a terminal.

6-12

Figure 6-9. Output Sent by OUTPT

60480400 A

If CON/ACRG@ is rejected, MONIT checks the reason code
(RC). If RC isl (for example, ECHO is probably not

currently in the system), MONIT reissues the request again .

in 30-second intervals, up to seven times. If RC is not equal

THE DEBUG OPTION

NAM provides debugging options used for program tracing

tol or7, CON/ACRQ SMs are rejected and MONIT and verification. This feature can be turned on and off at
NETOFFs. If the connection with ECHO is enabled, MONIT execution time, and can log supervisory message dialogs and
NETGETs 'the messages sent to it by ECHO, and outputs data message transactions between NAM and the
them prefixed by the time they were accepted. See application.
figure 6-10.
ECHO-=———=MONIT interaction
”
user typings AAAAAAAAAA
BBBBBBBBBB
ccccececccec .
DDDDDDDDDD
I
.
a I user typings 111111111
] | 2222222222
l ' 3333333333
| | MONIT ECHO |
| I
'MONIT's output
P user typings 1212121212
4545454545
18.05.44 ‘18.05.36 HA = 02000100000020000012 TA = INPUT PLS ‘SENT TO ACN = 1
18.06¢12 18,06.06 HA = 01000100000020000012 TA = AAAAAAAAAA SENT TO ACN = 1
18406414 18,06.07 HA = 02000100000020000012 TA = INPUT PLS SENT TO ACN = 1
18.06455 18.06.50 HA = 01000100000020000012 TA = BBBBBBBBBB SENT TO ACN = 1}
18407401 18.06,51 HA = 02000100000020000012 TA = INPUT PLS SENT TO ACN = 1
18407446 18.07.45 HA = 02000200000020000012 TA = INPUT PLS SENT TO ACN = 2
18.08+32 18.08.31 HA = 01000200000020000012 TA = 1111111111 SENT TO ACN = 2
18,03.33 18,08.,31 HA = 02000200000020000012 TA = INPUT PLS SENT TO ACN = 2
18.09.25 18.09.,25 HA =.01000100000020000012 TA = CCCCCCCCCC SENT TO ACN = 1
18,0926 18.09.25 HA = 02000100000020000012 TA = INPUT PLS SENT TO ACN = 1
18.09.51 18,09.48 HA = 01000200000020000012 TA = 2222222222 SENT TO ACN = 2
18.09.52 18,09.48 HA = 02000200000020000012 TA = UNPUT PLS SENT TO ACN = 2
18.11.12 18,11,11 HA = 02000300000020000012 TA = INPUT PLS SENT TO ACN = 3
18411454 18.11.54 HA = 01000200000020000012 TA = 3333333333 SENT TO ACN = 2
18.11.55 18.11.54 HA = 02000200000020000012 TA = INPUT PLS SENT TO ACN = 2
18412443 18,12.43 HA = 01000300000020000012 TA = 1212121212 SENT TO ACN = 3
18.12.45 18,12.44 HA .= 02000300000020000012 TA = ONPUT PLS SENT TO ACN = 3
18413446 18,13.45 HA = 01000300000020000012 TA = 4545454545 SENT TO ACN = 3
18413.47 18413.45 HA = 02000300000020000012 TA = INPUT PLS SENT TO ACN = 3
18.14414 18,14413 HA = 01000100000020000012 TA = DDDDDDDDDD SENT TO ACN = 1
18¢14416 18414414 HA = 02000100000020000012 TA = INPUT PLS SENT TO ACN = 1
t t |
The time when The time the Echoed output The ACN to
the message message was which the
was accepted sent by ECHO Original ABH message was
by MONIT sent by ECHO sent
Figure 6-10. ECHO-MONIT Interaction
50480400 A 6-13

The system library, NETIO, contains all AIP procedures
without the debugging option, while system library, NETIOD,
contains AIP procedures with the debugging options.

If debugging options are not required, load AIP procedures
from NETIO. Loading from NETIOD requires additional
central memory at the control point of the application.

In order to check if the debugging options are available and
turn them on or off, the AIP NETDBG routine must be
called:

CALL NETDBG (optl,optz,stat)

where:
opt1 =0 turns on logging of asynchronous super-
visory messages (without FC/ACK).
{0 turns off logging of asynchronous super-
visory messages.
opt, = 0 turns on logging of data messages
(including FC/ACK) up to a maximum of
10 words.
£0 turns off logging of data messages.
stat =0 indicates debugging options are available
(AIP procedures were loaded from
NETIOD).
£1 indicates debugging options are not avail-
able (AIP procedures were loaded from
NETIO).

All debug output is written to the local file ZZZZZDN. Data
is formatted as display code .character strings which can
later be rewound and copied to the OUTPUT file routed to
the print queue. -Debug output is written to the log file by
calling NETON, NETOFF, NETDBG and each one of AIP
input/output routines. NETON and NETOFF calls are logged
to indicate the start and end of the NAM interface. The
NETDBG call is logged to indicate the debugging options
selected. The AIP input/output routines are logged to

indicate supervisory messages and the data messages .

exchanged between NAM and the application. Table 6-1

summarizes the output information and the conditions under

which it is logged. A debug output example is shown in
figure 6-11.

6-14

TABLE 6-1. OUTPUT INFORMATION AND
CONDITIONS OF DEBUG OPTIONS

%):lﬁ:;e Information Logged Notes
NETON NETON parameters, Logged only if
date and time, routine successful
name and address status = 0; refer
to section 3.
NETOFF Date and time, routine | An EOR is
- name and address written after
NETOFF call is
logged.
NETDBG Debugging options
selected, time, routine
name and address
NETGET Header and routine Logged only if
NETGETL parameters, text area the call results
NETGETF and/or fragmented inthe transfer
NETGTFL area contents, time, of a message,
NETPUT routine name and and the appro-
NETPUTF address priate option
is on.

THE STATISTICAL OPTION

Statistical information can be gathered by NAM from the
local file ZZZZZSN. The statistical option is automatically
activated when loading from the NETIOD system library. In
order to check option availability and turn it on or off, the
user must call NETSTC as follows:

CALL NETSTC (opt,stat)
where:

opt =0 turns statistical option on.

=1 turns statistical option off.

60480400 A

— NETON parameters

60480400 A

Header area
address
Text area
AlP
routine Routine Application address
called address name
Hour * * *
———— i ——
03.57.38. NETON (7300) ANAME = TAPPLY DATE/= 78706705,
NSUP . ADOR = 17226 MINACN = 1 MAXACN = 20
. ’/
— ———— ——
10,44,08. NETGETL (2746) ALN = 0 HA = 17334 TA = 17335 TLMAX = 63
ABT = 3 ADR = 0 » ABN = 0 ACY = 1 STATUS = 00000000 TLC = 10
pd
1 530000001400200 30600000000120001000 Xz AP H MSG NO. 1
2 5007189208448080 241534334 45555044000 TH109 DS
3 00000000000010% 000000009000000004L04 DD
() 000000000000008 00000000000000000000 Display code
5 4094E08C0000003 23312340430000000003 SYSS8 ¢ }cha[r)ac\t/ers
6 4CB60B7587C008% 23133333353337000204 SK00204 BD of text area
7 Q000FFFFFFFFFFFR 00 0077?77 777TTITITINT? 333583358
8 FFFFCOO00AFFFFFP 77777700000007777777 338 G333
9 FFFFFFFFFFFBFSF TT777777777777707557 $3335335+2>2,
10 7C014018A148157 37000500061205100527 4 £ FJEHEW
N - '
10,4608, NETPUT C 3034) HA = 17334 TA = 17335
ABT = 3 |AGR = 0 ABN = @ ACT =1 STATUS = 00000000 TLC = L §
1 '6340000010000C1 30640000000100000301 xe A CA MSG NO. 2
09.224260 !NiTOFF .0 akb1) DATE = 787067006,
~Hexadecimal Octal digits of :::;g eirnarea
digits of text area bina'ry digits
text area o
—Header area
values
Figure 6-11. Debug Output Example
6-15

stat =0 indicates statistical option is available
(AIP procedures were loaded from

NETIOD).

=1 indicates statistical option is not available
(AIP procedures were loaded from
NETIO).

The statistical information written to ZZZZZSN is shown in
figure 6-12.

Between the STATISTICS GATHERING STARTED and
TERMINATED messages, if one of the counters overflows,
the corresponding line of statistical information is written
to file ZZZZZSN, preceded by the message

¥*¥COUNTER OVERFLOW*x

and the corresponding counter is reset to 0. See figure 6-13.

NAM STATISTICS GATHERING TERMINATED
NETyyy DATE xx/xx/xx TIME XX.XX.Xx

where yyy is either OFF or STC.

CPU TIME USED: xxxxxx SEC
FREQUENCY OF PROCEDURE CALLS

NETCHEK XXXXXX
NETGET XXXXXX
NETGETF XXXXXX
NETGETL XXXXXX
NETGTFL XXXXXX
NETPUT XXXXXX
NETPUTF XXXXXX
NETSETP XXXXXX
NETWAIT XXXXXX

NUMBER OF WORKLIST TRANSFER ATTEMPTS

SUCCESSFUL XXXXXX
UNSUCCESSFUL xxxxxx

NUMBER OF INPUT/OUTPUT BLOCKS
TRANSFERRED

INPUT ABT=0 XXXXXX
INPUT ABT=1 XXXXXX
INPUT ABT=2 XXXXXX
INPUT ABT=3 XXXXXX

OUTPUT ABT=1 XXXXXX

OUTPUT ABT=2 XXXXXX

OUTPUT ABT=3 XXXXXX
NUMBER OF ERRORS

LOGICAL ERROR XXXXXX
NAK-S XXXXXX

where xxxxxx is a 60-bit signed integer, if O the corre-
sponding line is not printed.

NAM STATISTICS GATHERING STARTED
NETON DATE 77/09/27. TIME 04.11.09.

NAM STATISTICS GATHERING TERMINATED
NETOFF DATE 77/09/27. TIME 04.11.09.

CPU TIME USED: 0.311 SEC
NUMBER OF PROCEDURE CALLS
NETGTFL 3
NETPUT 5
NETPUTF 2

NUMBER OF WORKLIST TRANSFER ATTEMPTS
NUMBER OF INPUT/OUTPUT BLOCKS TRANSFERRED

INPUT ABT=0 3
OUTPUT ABT=1 4
OUTPUT ABT=2 1

NUMBER OF ERRORS

Figure 6-12. NAM Statistic Gathering

6-16

Figure 6-13. Statistical Option Output Example

60480400 A

STANDARD CHARACTER SETS A

OPERATING SYSTEM CHARACTER SETS

CDC operating systems offer the following variations of a
basic character set:

CDC 63-character set
CDC 64-character set
ASCII 63-character set
ASCII 64-character set
ASCII 128-character set

The set in use at a particular installation is specified when
the operating system is installed or deadstarted. Depending
on another installation option, the system assumes an input
deck has been punched either in 026 or 029 mode (regardles
of the character set in use). :

For card decks read at-local peripherals, alternate keypunch
modes can be specified by a 26 or 29 punched in columns 79
and 80 of any 6/7/9 card or 7/8/9 card. The specified mode
remains in effect through the end of the job unless it is reset
by specification of the alternate mode on a subsequent 7/8/9
card or 6/7/9 card.

For card decks read from remote batch stations through
RBF, the ability to. use the alternate mode selection is
dependent upon the remote terminal equipment. See Input
Deck Structure in the RBF reference manual.

Graphic character representation appearing at a terminal or
printer depends on the installation character set and the
terminal type. Characters shown in the CDC Graphic
column of the standard character set table (table A-1) are
applicable to BCD terminals; ASCII graphic characters are
applicable to ASCII terminals. Tables A-1 through A-4 are
provided for the reader's use while coding an application
program to run under the operating system. They do not

60480400 A

describe character transmissions between an application
program and the network. The BCD code shown in table A-1
is a'7-track tape code, while the ASCII code shown is a
9-track tape code. Network character translation is
described in the following subsection.

' 128-CHARACTER ASCII SET

Table A-5 contains the 128-character ASCII set supported
by the Network Access Method. A 96-character subset
consists of the rightmost six columns; a 64-character subset

consists of the middle four columns. Note that display code

equivalents exist for the characters in this 64-character
subset only.

While the network supports the 128-character set, terminal
restrictions might require that output to a device be limited
to a smaller subset. This is accomplished by replacing the
control characters in columns 0 and 1 of table A-5 with
blanks to produce the 96-character subset, and additionally
replacing the characters in columns 6 and 7 with the
corresponding characters from columns 4 and 5, respec-
tively, to produce the 64-character subset.

Similarly, input from a device may be limited to a smaller
subset by the device itself because of an inability to produce
the full 128-character set. A character input from a device
using a character set other than ASCII is converted to an
equivalent ASCII character; characters without ASCII
character equivalents are replaced by the ASCII blank
character. .

An application can also cause character replacement as
described for output above as well as the character
conversion, by requesting display-coded input from the
network,

The 7-bit hexadecimal code value for each character
consists of the character's column number in the table,
followed by its row number. For example, N is in row E and -
column 4, so its value is 4E16.

A-1

A-2

TABLE A-1. STANDARD CHARACTER SETS

[ASCHI
Display Hollerith External .
Code Graphic Punch BCD %’j‘:::f ':g;g')‘ (g‘c’;’a‘:)
{octal) (026) Code

oot : (colon) TT 82 00 : (coton) TT 82 072
01 A 1241 61 A 12-1 101
02 B 122 62 B 12-2 102
03 c 12-3 63 c 12:3. 103
04 D 12-4 64 D 12-4 104
05 E 125 65 E 125 105
06 F 12-6 66 F 126 106
07 G 12-7 67 G 127 107
10 H 128 70 H 128 110
11 | 129 71] 129 1"
12 J 141 41 J 1141 12
13 K 11-2 42 K 112 113
14 L 11-3 43 L 113 114
15 M 11-4 44 M 114 115
16 N 15 45 N 115 116
17 o 11-6 46 o 116 117
20 P 17 47 P 117 120
21 Q 118 50 Q 118 121
22 R 119 51 R 119 122
23 S 02 22 S 02 123
24 T 0-3 23 T 03 124
25 U 0-4 24 u 04 125
26 v 05 25 v 05 126
27 w 06 26 w 06 127
30 X 07 27 X 07 130
31 Y 08 30 Y 08 131
32 z 09 31 z 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 1 9 9 071
45 + 12 60 + 1286 053 -
46 : 1" 40 : 1 055
47 1184 54 1184 052
50 / 0-1 21 / 0-1 057
51 (084 34 (1285 050
52) 1284 74) 1185 051
53 $ 11-8-3 53 $ 1183 044
54 = 8-3 13 = 86 075
55 blank no punch 20 blank no punch 040
56 , {comma) 08-3 33 , (comma) 08-3 054
57 . (period) 128-3 73 . {period) 1283 056
60 = 086 36 # 83 043
61 { 87 17 { 12-8-2 133
62] 08-2 32 3 1182 135
63 %1t 86 16 % Tt 084 045
64 # 84 14 " (quote) 8-7 042
65 r~ 085 35 _ (underline) 085 137
66 v 110 or 1182111 52 1 1287 or 11-0'11 041
67 A 08-7 37 & 12 046
70 t 1185 55 ' (apostrophe) 85 047
71 | 1186 , 56 ? 087 . 077
72 < 120 or 12:82111 72 < 12-84 or 120 074
73 > 1187 57 > 086 076
74 < 85 15 @ 84 100
75 > 1285 75 N\ 08-2 134
76 : = 12-8-6 76 -~ (circumfiex) 11-8-7 136
77 ; {semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

TTwere zero bits at ti : end of a 60-bit word in a zero byte record are an end of record mark rather than

two colons.

t¥In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon (8-2 punch).

yield a blank (55,
The alternate Hol

).
ﬁerith (026) and ASCIi (029) punches are accepted for input only.

The % graphic and related card codes do not exist and translations

60480400 A

{leunsapexaH) 8pod 91093 —W=VS i S—a0eieyd 910083
41
#po) psed— |\ [~S——a30e184D 1108V an3oal
44 aa L8 36 SL “les 13 al N2 |0 130196 o|as ~ [9a0 |49 |19 JAED sni | 40 1S (1)
£~8-6-0-11~TL | €-8-6-LL—CL (—0~11-CL 9-8-11-ZL | S-6-0-L1-ZL | L-6-L1-TL 1-6-0-11 | €-8-6-LL| £-6-Z) | 9-t1-ZL |g-8-0 |9~LL | £-8-0 -0 L~8-6~11 1~-8-6-T1 a1 [A}
o3) 130 o [} é / sn 1S
EE] va o8 as veL 9g 3¢ YO WAS|ILvy ~|g6 u|d46 ~[SaN |39 <|8v g ED sHi | 30 0s @
9-8-6-0-11-2L | 2-8-6-LL-ZL | 9~0-Li-Cl| S-8-tl-CTL | ¥-6-0-L1-CL [-9-6-11-CL 9-8-6| 2-8-6-ZL | L-0-LL |G-il-Ti [L-8-LL |G-LL m.w.m €-8-ZL mcm.w.m: mnw-mumm bl 0L Lt
~ u v N - Y [}
a4 40 o] 26 €L S5 vl s34 | 60 474 | oa Azw wlve i|vaw|3ac ={09 - |ai soi [ao |35} @
G-8-6-0-11-ZlL | (-8-6-0-TL|. S-0-Li-ZlL v-8-11-ZL | €-6-0~-LL~Z1l | §-6-L1-CL -6-L1 1-8-6-CL o.:A p-L1-zi w.m.—ﬂ =il 9-8 1 m.wum.m: S-8-6-C1 L 10 L1
i w W = - 1] 40
foE] 0 t | v8 26 lee vS 0 3d | o¢ ve9 | je6 1{oa \jea1{ov >|a9 ‘oL S31 | 00 EE ©)
¥-8-6-0~11-ZL | 9-8-6-0-CL P-0-L1-ZL £-8-L1-ZL [2-6-0-11-CL | t—6-1L1-Z1 -6-2Z1L v=8=6-0.| LI=Zl | €-L1-ZL | Z-8-0 | €l | 8Ll £-8-0 Tmum.mp v-8-6~2Z1 Z 00 L
! [\ 1 > i 4 EEl
ad ao €8 v6 1 €9 .| ae €ND | 82 zno | 00 VS “oa|wy plzad|3s ‘| 3w + [z 2s3 | €0 1A @
€-8-6-0-Ll-¢l | §-8-6-0-ClL €-0-11-2L ¢-8-11-Zt | 1-6-0-1L-ZL | €-6-LL-Cl £-8-6 £€-8-6-0 o-u_v z-11-zL m.w&“ -1 | 9-8-tL | 9-8-zZL. 1-6-0 | €£-8-6-ClL i 1L 1.0 1
) 3 b : + 053 LA
v WA | 20 J | ze 06 oL s | ve Ve WS{6v ‘z{16 ~ f|le3a z|iwar{ve :]0S » |48 ans | sz 41)
z-8-6-0-11-Zl| v-8-6-0-TL| Z-0-iL-TlL 1-8-L1-Z1L 0-L1-ZL | Z-6-LL~Cl z-8-6 2-8-6-0 | 6-0-LL _.-:-S_ 6-0 | L-LL 8| v8ilL L~8-6 5~6~0 o1 0 1L 01
L z ! z r : . ans 41
43 €0 18 48 69 1S 6€ ‘62 gv. Ales 1]83 A6 1|63 6]aS (|8l w3 | so 1H
1-8-6-0-L1| £-~8-6-0-Cl 1-0-11-2L L~-8-0-Z1 1~8-0 | L-6-it~2t 1-8-6 1-8-6-0 | m.o-f_, 6-0~Z1 8-0 | 6-CL mm mlm.:A 1-8-6-L1 S-6-CL 6 L 00 L
' A 1 L E] iH
33 vOo 08 38 89 12 S |.82 vy x|88 u|.3 X|8OH|8d 8|av NED NVO | oL s8
9-8-6-0~LL| z-8-6-0-ZL | L-8-0-11-CL 9-8-0-¢l 8-6-0~11 1-8~ZL 8-6 8-6-0| L-0-L1| 8-0-Cl L0 | 8-ZL 8 5-8-CL 8-6-11 9-6-L1 8 000 L
X Y X H 8) NV sg
a3 48 4V as L9 8y 80 ECIRT N|ovy Mm|g8 6193 M|OO|d L] AL sloz 813 | 42 REL]
G-8-6-0-L1| L-8-0-L1~Cl L-8-0-11 5-8-0-Cl L-6-0-L1L | 8-6-0-ClL 8-6-Cl t-6-1L| 9-0-1L| z-0-z21| 9-0f -2t L 5-8 9-6-0 1-8-6-0 L [A
. . " 6 M 9 L ‘ 13 139
23 H | 38 v 08 |99 Ly 9€ . onlso o1f{sy al98 3{s3 A|9o4 (94 9|os B |ze NAS |32 MOV
v-8-6-0-11 | 9-8-0-L1-ClL 9-8-0-11 -8-0-ZL 9-6-0-1L | (-6-0-CL 9-6 [9-6-ZL | 'g-0-11 | 9-0-ZL S-0 | 9-ZL 9 zL 6 9-8-6-0 9 []
. 5 T A sl A 4 9 k] NAS oV
a3 as av a8 S9 4 Se . .SH| St IN|(vy njgg e|¥3 NjSO3I|Sd 6|09 % |aE YN [@z ©ON3
€-8-6-0-L1 | 5-8-0-LL-CTl S-8-0-L1 €-8-0-ClL §-6-0~LL | 9-6-0~Zt S-6 S-6-1L | v-0-Li | s-0-ZL ¥-0 | S-ZL S ¥-8-0 5-8-6 5-8-6-0] t 0t o
: i : n] n 3 S % VYN ON3
v3 og ov v8 9 St ve Nd| vz =~ drg8lev - 3[¥8 p|e3 L([(voa|vds v]|as $ |oe voa | ce 103
¢-8-6-0-L1 | v—8-0-LL-Cl v-8-0-11 2-8-0-Cl $-6-0-1L| S-6-0-ZlL 6 6-0| €-0-LL| ¥-0-zL| €-0[v-cL v €-8-11 v-8-6 L6 ¥ 0010
: :)] p i a |4 $ $¥0a 103
4a L] av ' 08 €9 v €€ - >4 lev - s{es olza s|eoofed €|ar #|er we | €0 Xx.13
L-8-6-11-CL | £-8-0-1L1-CL €-8-0-11 1-8-0-2l €-6-0-LL | t-6-0-21 €6 €-6-0| ¢-0-tL| €-0-zL| 2-0|¢e-zt € €-8 €-6-L1 €-6-Z1 € L Lo0oO
s 3 s o) € # €00 X13
aa va vv 8L 29 €Y vi 001 2z sd | 66 slze alea w|eoales zlaz B 2oa | 20 X1S
9-8-6-L1-Cl | T-8-0-tL-TlL 2-8-0-11 | 8-6-0-L1-CL 2-6-0-LL | €-6-0-TL| T-8-6-11L 2-6-0 | 6-t1-2L | ¢-0-¢cL| 6-LL |z-TL 4 L-8 z-6-11 2-6-CL z 0100
i ;o i q Y L] z " zoa X1S
aa 68 ov LL - 65 ’ 44 [X>4 1z SOs | 86 blig elgad DoV ild L|av | | 100 | 10 HOS
S-8-6-1L1-CL 6-0-LL-2ZL 1-8-0-11 |- L~6-0-LL-CL 1-8=11 | .2-6-0-Zl 1-6 1-6-0 | 8-t1-ZL | 1-0-2L | 8Lt [1-CL L -8~Tl 1-6~11 1-6~Z1 ! L 00O
- . b e o} v 3 i 10a HOS
24 88 46 oL 85 Iy 0e 0z sale6 d|esc |iza 4]orefod OO as (Ol 370 (00 NN
v-8-6-LL-ZL| 8-0-LL-CL L-8-11-21 | 9-6-0-1L-ZL 8-6-11-C1 |- 1~6-0-Zi | L-8-6-0-LL~CL | L-8~6-0-L1 | L-LL-TL =8| ¢-LL | v-8 0 | yound-ou | |-g-6-11-ZL | L-8~6~0~ZL 0 0000
d N d ® 0 ds 310 NN
(2 @ @) (a) v) P 8 ‘ o s | v e z L o 08 | |0 2q £q 10
-1 vL €l zL it oL
- 109
L 0 L 0 3 1] 3 0 [} 0 L (] L 0 L 0 Sq
3 3 0 0 L [0 0 3 3]] L 3 0 0 9q
L [} 3 1 1] 0 1] 0 i 3 3 3 (1]] 0 1] iq
3 L 3 L L L L 3 0 0 0 0 0 0 0 0 8q

NOLLVTISNV YL 214083 ANV S3C03 AdvI A3HIONNd HLIM

(IIOSV) IONVHIHIALNI NOILVAHOANI ¥O4 3403 QHYANVLS TTYNOILVYN NYIIH3IWY “2-v 37av.L

A-3

60480400 A

{lewnoapexsH) 8po) 1\ OSV—-Q9

gL
8poy pse)—

[we——Ja10RI04D 11DSV

j——481084ey) 310283 anN3oal
44 03 led €4 a3 L3 L] oa (-] zz . |3€ ¢ |as v |z i v ans |0 138 |41 sn | 4o 1S [l g1
1-8-6-0-L1-Cl | (~8-6-0~11 | L-8-6-14-T) | L~8-6-0~Z) [L-8~0~L1~Tb | L~8-0~41 {L-8-11-TL |L-8-0-T) -8 1-8-0 t-8-1L | (-8-T W%.am Tm.,Wm Tm.omq__p_ Tw.mlu_m 3 [
. . . : - ¢ - | :
34 REZ 2] FE) 93 ~ lea 49 80 ae =136 < [8€ ‘18z + (36 90 MoV |3t SH |30 os [wn)
9-8-6-0-11-Z1 | 9-8~6-0~11 | 9-8-6-4i-ZL ??o.?«h. 9-8-0-11-21 | 9-8-0~11 |9-8-11-ZL |9-8-0-Z} 9-8 ??Ao o8-t | 98-zt 9-8-6 o.wwmmm o.m»wmh_p_ ??m:%w 3 [}
- ! -
a4 7] [¥] a3 . |s3 [30 0 € . |48 ~ ez [RE3 [RED MVYN [s0. ©ON3 |ai sofao 8o IF o),
6-8-6-0-11-Z} | 5~8-6-0-k4 | 9-8~6~11-2Zt | ~8-6-0~TL |9-8-0~41=-Z1 | 9-8~0~11 |S~8~11~Z} |S~8-0-CI s-8 $-8-0 m-w.:. mnmuuw mw_ama mum%ﬂm mlw.mmm_u_ m-w.aupw a Lottt
. Y N
04 [04 v3 3 »a ad [5] ov ® |sz % |V N EA B ED oL s3 |20 EER I
-8-6-0~11-Zt Tw.??ﬂ -8-6~11~Z1 T?o.o.m_" r8-0-11-Z1L | ¥-8-0~11 | ¥-8-14-TL |P-8~0-21 1% +-8-0 8-l | v-8-ZL T.M.m v-8-6-0 Tw.mmu_ Yw.m.uﬂ 5 (0011t
.) . % .. > a |
a4 Sd 43 63 €3 €a 20 [4] [>3 # |oz e $ |3z * |86 a8 38 80 unfl
£-8-6-0-11-Z1 | €-8-6-0~11 | £-8-6-11~Z1 | €~8-6-0-C) |€~-B-0~11-T} | €~8-0~1} | €~8-11~Zt |C~8-0-CI €-8 €-8-0 €-8-1L | €£-8-ZL £-8-6 €~8-6-0 e-8-6-11 | £-8-6-zl || 'y L0}
) # ! $. €Nd . zZnd 12} 1A
vd j ¥4 NEE 83 23 za [L) [ve ED ! {as {]as 1 [ve v8 26 38 ob)
2-8-6-0-11-Z4 | 2-8-6-0-11 | 2-8~6~4t~Zt | 2-8-6-0-Z1 | Z-8-0-1i~Z} | T~B~0-11 [Z-8~14~2} | T-8-0-C1 S -8 -zt g1 | z-s-2i z-8-6 z-8-6-0 z-8-6-L1 | z-8-6-2i || O oLot
. (WA}) . . _— . . : HEl i ? Ws | 29 WIS
6 6] v§ 2|z Y |6y +]13 Ve zlo 1169 1]o9 v |68 18 8V 66 68 61 wa|as
6 60 61l 6-zL | 6-0~11-ZL| &0-i1L | E-LI-ZL | 6-0-Z1 -8 1-8-0 1-8-t1 t-8-Zt 1-8-6 1-8-6-0 1-8-6-11 | 1-8-6-ZL | 6 L1001
) 6 r4 Y [2 4 . [\ W3 31y
8t 8] 65 Als 0|8y H |03 6L Al b 189 ylzo 88 [T] vy 86. 88 8t Nvo | 6
8 80 8-t ezt | e-0-t1-zt| @-0-4k | 8-11-21 | ©-0-Z1 | 8-6-0-11-Z1 |8-6-0-11 |8-6-LI-TL | 8-6-0-Z1 8-6 8-6-0 | © 8-6-LL 8-6-zL || 8 0001
8 Al 0 H A L 'R NV 39
I K] x | 08 d|tw 9 |40 8L x loe d 1.9 6110 L8 4v v ¥0 103 | a1 EEREE] 4 130)
L -0 -t =t | t~0~1s-Zh | ~0~tb | c-ua-zy | 1~0-2i | L-8-0-t1-2ZL | L-6-0-11 | L-6-LL-Tt | L-6-0-T1 (-6 1-6-0 L=6-11 6TV [l ¢ tLLo
L X d] 9 X d . 103 053 hll REL]
9€ 9| 8 mi oy o9 4 |3a e mid9 099 3]0 98 av SvY 96 i 413 |80 sg | 98
9 9-0 -4 13 o-zL | 9-0-1t-2t| ©-0-t4 | O-ti~zL | 9-0-21] 9-6-0-i1-Zt | 9-6-0-11 | 9-6-11-ZI | 9-6-0-C1L 9-6 9-6-0 9-6-11 o-6-zL || 9 ottLo
9 M] 4) "l o 3 : on 813 s8 o1
3 g| 9 Al 3y N | sy 3 |aa oL Al3s = wvilgg of 48 s8 av [96 Vo 41 {s8 60. . LH
] 80 g-tl | gzt | e-0-11-2v| S-0~1t | S-81-ZL| S-0-Z1 | G-6-0~11-ZL | G-6-0-tL | S-6-11-ZL | 5-6-0-TI 56 6-6-0 G-6-1t s-6-¢l | S L0t0
S A N 3 A v o SH 47 N 1H
[v|[ss n| av W[afoa (173 nla9 w9 3 ED va Tov ey v6 ¥8 as 06
v -0 i vzL| vo-tt-Zb{ -0-1t | v-b1=ZL | ¥-0-TL | ¥-6-0-Li-ZL | -6-0~LL | ~6-LL~ZL | -6-0-Z1 6 -6-0 6-1L1 r6-zL || ¢ 001LO
¥ n [<] . n w Pl Nd dAg s3y 3d
€€ €| vs NED 1| er 2| ea R K NE 1je8 ~ ofae €8 av v |e6 €8 €l €00 | €0 X13
€ €0 -1 €-Zb| €«0-11-Zb| €-0-41 | €-41-21 | €-0~ZI] €-6-0~11-TL | €-6-0-LL | €-6-11-CL | E-6-0-CL €-6 €-6-0 €-6-11 e-6-ZL | € L1100
€ 1 A E 9) [> . i [X13
ze z| es S| sy | zv 8|va €L s| g9 R ES) q] o8 z8 wv v ot NAS | 28 zL zoa|zo xis
z z-0 z-1t z-zt | z-0-1i-z1| z-o-1t| z-pi~zi | z-0-2i | Z-6-0-11-2ZL | 2-6-0~11 | Z-6-11-2i | T-6-0-C1 z-6 z-6-0 z-6-11 z-6- z oLo00
z S bl) [} s| - L] q NAS sS4 zoa XLS
1€ REC vy F| viea {3 ~|ve tlie e| g9 | 32 /| ev ov 16’ 18 1 19a| 10 HOS
3 1-6-0-11 = [5x4} 1=0-14-2E| 1011 1=11-Z1 1-0-z1 | t-6-0-11-2t 1-0 | 1-6-11-2L | 1-6-0-21L 16 1-6-0 1-6~11 1-6-21 3 L1000
L r A . ~ ! . / sos| 10a HOS
3 o] o8 R {| o VR_ 1] vd [ve az -9z 8|0z ds |06 08 oL 31a|00 1NN
0 z-8-0 0~11 0-Z4,| +-8-0~41-24 | 1-8-0~11 | 1-8-11~C} | 1-8-0-C) 0-41-Z1L 1) Zh | yound-ou | 4-8-6-0-11-ZL | 1-8-6-0-LL | 1-8-6-11-ZL [L-8~6-0-ZL f © 0000
0 \ v) - B ds sa 31a JNN
SL ¥ L E aNZ | L9 S ¥
.u_ (m: .ﬁ. .«% t i @: 6 8 L 9 s v . z . o o
. . 1SL sLi8
1 0 t 0 % 0 t [) 0 B 0) G 1 0 €
t 3 0 [} s i 0 [} [} 3 0 [} 3 3 0 - 0 Zgiim
1 : 1 1 [0 [° L 1 1 1 o ° ° o L S
L 3 1 v 3 3 [} 3 [} [[[} (] 0 0 [0

ZO~h<JmZ<M_._. 1135V ANV S3A00 YV 3 A3HIONNd HiIM
(2102€3) 340D FONVHIHILNI TYWIOZA d3A03 AMVYNIE AIANILXT *¢-V Iavl

60480400 A

TABLE A-4. CONTROL DATA CHARACTER SETS SHOWING TRANSLATIONS
BETWEEN DISPLAY CODE AND ASCII/EBCDIC

ASCII EBCDIC ASCIl EBCDIC
Display) Display
Code Upper- Lower- Upper- Lower- Code Upper- Lower- Upper- Lower-
case case case case case case case case
Octal | Char. | Char.| Hex |Char. | Hex Char.] Hex Char. | Hex || Octal l Char. ﬂi Hex | Char. | Hex|Char.| Hex | Char. | Hex
00 : : 3A |suB 1A : 7A SuB 3F 40 5 5 35 |NAK | 156} 5 F5 | NAK | 3D
01 A Al a a 61 Alc a 81 41 6 6 36 | SYN 6] 6 F6 | SYN | 32
02 B B | 42 b 62 B | C2 b 82 42 7 7 37 | ETB 17417 F7 | ETB 26
03 (¢ C | 43 c 63 Cc |c3 c 83 43 8 8 38 |CAN | 18] 8 F8 | CAN | 18
04 D D |44 d 64 D | c4 d 84 44 9 9 39 | EM 1919 F9 | EM 19
05 E E 45 e 65 E | C5 e 85 45 + + 28 vt | oB] + 4 | vT 0B
06 F F 46 f 66 F C6 f 86 46 - - 2D |CR oDj - 60 | CR oD
07 G G | 47 g 67 G | C7 g 87 47 * * 2A | LF 0A} * 5C | LF 25
10 H H | 48 h 68 H | Cc8 h 88 50 / / 2F | sl OF |/ 61 | Sl OF
1 1 I 49 i 69 | c9 i 89 51 ((28 | BS 08 (4D | BS 16
12 J J 4A | 6A J D1 i 91 52)) 29 | HT 09]) 5D | HT 05
13 K K | 4B k 68 K | D2 k 92 53 $ $ 24 |EOT [04] ¢ 5B | EOT | 37
14 L L | 4C | 6C L D3 | 93 54 = = 3D | GS iD] = 7E | I1GS 1D
15 M M |4D | m 6D Y D4 m 94 55 SP SP| 20 |NUL | 00 SP | 40 | NUL | 00
16 N N |4E | n 6E N | D5 n 95 56 . , 2C | FF ocy ., 6B | FF ocC
17 [¢) O | 4F | o 6F O | D6 o 96 57 . 2E | SO OE} . 4B | SO OE
20 P P 50 p 70 P D7 p 97 60 = # # 23 JETX | O3] # | 7B ETX | 03
21 Q Q | 51 q Al Q | D8 q 98 61 { 5B | FS icl ¢ 4A |IFS 1C
22 R R |52 {r 72 R | D9 r 99 62)] 56D |SOH | 01§ ! 5A | SOH | ot
23 S s | 53 s 73 S E2 - s A2 63 % % | 25 |ENQ | 05 % 6C | ENQ | 2D
24 T T | 54 t 74 T | E3 t A3 64 E " 22 | STX 02 " |7F | STX 02
25 U U | 55 u 75 U | E4 u A4 65 > _ | 5F {DEL | 7F| _ | 6D DEL | o7
26 v VvV ‘| 66 v 76 V| ES v A5 66 v ! ! 21 })1 '4F } DO
27 w W | 57 w 77 W | E6 w A6 67 A & & | 26 |ACK | 06] & |50 | ACK | 2E
30 X X | 58 X 78 X | E7 X A7 70 o ' 27 |BEL | 07} 7D | BEL 2F
31 Y Y | 59 y 79 Y | E8 y A8 Al V2 ? 3F jUS 1| ? 6F | 1US 1F
32 z z 6A | z 7A z E9 z A9 72 < < | 3 { 78] < |4C { Cco
33 0 0 30 |DLE 10 0 FO DLE | 10 73 > > | 3E |RS 1] > | 6E | IRS 1E
34 1 1 51 DC1 1" 1 F1 DC1 1" 74 < e @140 |’ 60j@ |7C |’ 79
35 2 2 32 |DC2 12 2 F2 DC2 12 75 =\ \ 5C } 7C |\ EO = 6A
36 3 3 33 |DC3 13 3 F3 ™ 13 76 —_ ~ 5E | ~ TE] — | 5F | ~ A1l
37 4 4 34 |DC4 14 4 Fa4 DC4 | 3C 77 ; : 3B |ESC | 1B : 5E | ESC 27
NOTES:
1. The terms uppercase and lowercase apply only to the 4. All ASCIl and EBCDIC codes not listed are translated to
case conversions, and do not necessarily reflect any true Display Code 55g(SP).
o 6. Where two Display Code graphics are shown for a single octaly
B i o ey Code o ASCEBCOL et e, ekl oot D b e
) character ASCII subset.
3. When translating from ASCII/EBCDIC to Display Code, 6. In a 63-character set system, the display code for the : graphic
the uppercase and lowercase characters fold together to is 63. The % character does not exist, and translations from
a single Display Code equivalent character. ASCII/EBCDIC % or ENQ yield blank (558).

60480400 A

TABLE A-5. FULL ASCII CHARACTER SET

128-Character Set

96-Character Subset

~s———— 64-Character Subset

DEL

SP

DLE
DC1
DC2
DC3
DC4
NAK
SYN

ETB
CAN
EM
SUB

ESC

FS

GS

RS

Us

NUL
SOH

STX

ETX

EOT
ENQ
ACK

BEL

BS

HT
LF
VT
FF
CR

COLUMN

0

1

60480400 A

A-6

LIST OF KEYWORDS B

1. The following general field names are applicable to all
supervisory messagess:

PFCSFC
PFC

EB

RB

SFC

RC
SPMSGO

SPMSG1

.
.

SPMSG9

Primary and secondary function code
‘Primary function code

Error bit

Response bit

Secondary function

Reason code

Word 0 of any supervisory message

Word 1 of any supervisory message

- Word 9 of any supervisory message

2. The following fields are in connection management

messages:

CONACN
CONABL
CONHW
CONDT
CONORD
CONTNM
CONANM
CONPW
CONPL
CONOWT

CONPAR

CONACT

CONALN

Application connection number
Application block limit
Hardwired line

Device type

Device ordinal

Terminal name

Name of requesting application
Page width

Page length

Controlling user's terminal name

First word of parameters passed on
a CON/REGQ

Application input character type

Application list number

3. The following fields are in other messages:

FCACN
FCABN
LSTACN
LSTALN

CTRSTR

50480400 A

ACN in all FC messages
ABN in FC/ACK

ACN in all LST messages
ALN in LST/SWH

String in CTRL/DEF

DCACN ACN in DC/CICT

ERRMSG Message text in ERR/LGL
ERRABH ABH in ERR/LGL

MSGNCH NCHAR in MSG/LOP
MSGTEX TEXT in MSG/LOP

SHUTYP Shut down type in SHUT/INSD

4. The following fields in the application block header are
for supervisory or nonsupervisory messages:

ABHABT Application block type
ABHADR Addressing information
ABHABN ‘Application block number
ABHACT Application character type
ABHIBU Input block undeliverable flag
ABHNFE No format effectors flag
ABHXPT Transparent bit

ABHCAN Cancel bit or punch-banner-card
ABHBIT Parity error or auto-input flag
ABHTLC Text length in characters
ABHWORD Whole word of ABH

5. Control Data defined values of the following symbols
are available to the application. Release values are
indicated in parentheses.

CON PFC for CON messages (6316)

LCONRQ Length of CON/REQ message not

including APARAM (4)

LCORGR Length of CON/REQ response (1)

REQ SFC for CON/REQ (00)

CONREQ PFC and SFC for CON/REQ (630016)
LCONAC Length of CON/ACRGQ (2)

ACRQ SFC for CON/ACRQ (0216)

CONACR PFC and SFC for CON/ACRQ (630216)
LCONEN Length of CON/END (2)

ENDD SFC for CON/END (0616)

CONEND PFC and SFC for CON/END (630616)

- B-1

cB
CONCB
LCONCB
LCTRL .
CTRL
START
CTRSTR
STOPP
CTRSTP
STPD
CTRSTD
DEFF
CTRDEF
LDC

DC
CICT
DCCICT
LLST

B-2

‘PFC and SFC for CTRL/START (C105

SFC for CON/CB (0516)

PFCSFC for CONCB (630516)

Length of the CON/CB message
Length of all the CTRL mességes
PFC for CTRL messages (Cllé)
SFC for CTRL/START (0516)

16)

SFC for CTRL/STOP (0616)

PFC and SFC for CTRL/STOP (C106l6)
SFC for CTRL/STPD
PFC/SFC for CTRL/STPD

SFC for CTRL/DEF (C10416)

PFC/SFC for CTRL/DEF (01041 6)

Length of DC/CICT (1)

PFC for DC/CICT (C2 1 6)

SFC for DC/CICT (0016)

PFCSFC for DC/CICT ((:2001 6)

Length of LST messages (1)

LST

OFF
LSTOFF
ON
LSTON
SWH
LSTSWH
LMSG
MSG
LOP
MSGLOP
LSHUT
SHUT
INSD
SHUINS
LTCH
TCH
TCHAR
TCHTCH

" PFC for LST messages (0016)

SFC for LST/OFF (1)

PFC and SFC for LST/OFF (000116)

SFC for LST/ON (0)

PFC and SFC for LST/ON (000016)

SFC for LST/SWH (02, ;)
PFC and SFC for LST/SWH (000216)
Length of MSG messages (1)

PFC for MSG (Eulé)

SFC for MSG/LOP (07,)

PFC and SFC for MSG/LOP (E00716)
Length of SHUT messages (1)

PFC for SHUT messages (4216)

SFC for SHUT/INSD (0616)

PFC and SFC for SHUT/INSD (420616)
Length of TCH messages (1)

PFC for TCH (64,)

SFC for TCH/TCHAR (0016)

PFC and SFC for TCH/TCHAR (640016)

60480400 A

SUPERVISORY MESSAGES C

S

NAM TO THE APPLICATION APPLICATION TO NAM
PFC/SFC Hex Code Meaning PFC/SFC Hex Code Meaning
CON/REQ 4206 Request logical CON/ACRQ 6302 Application connection

connection request
CON/CB 6305 Connection broken CON/END 6306 End connection
FC/BRK 8300 Break

MSG/LOP E007 Message to local

FC/STP 8305 Suspend data traffic operator
FC/STRT 8306 Resume data traffic DC/CICT C200 Change input character
FC/INIT 8307 Logical connection type

initialized

FC/RST 8301 Reset
FC/ACK 8302 Block delivered
. CTRL/DEFT Cl04 Define terminal char-

FC/NAK 8303 Block not delivered acteristics
FC/INACT 8304 Connection inactive
ERR/LGL 8401 Logical error LST/OFF Coao Temporary OFF
SHUT/INSD 4206 Network shutdown LST/ON cool Temporary ON
TCH/TCHAR 6400 Terminal character-

istics changed LST/SWH C002 Switch lists

1'Synchronm.ss SM; all other SMs are asynchronous.

60480400 A C-1

CONFIGURATION FILES "D

D .

Two files are used by the network host products software in
establishing, initiating, and operating the network:

® The network configuration file (NCF)

® The local configuration file (LCF)

Both files are direct access, random indexed permanent
files.

The NCF contains information that describes the physical
and logical configuration of the network elements, such as:

® The host and its connected couplers

®» The NPUs that are part of the network

0480400 A

® The physical and logical connections for the host,
couplers, and NPUs

The LCF describes those components of the network which
belong to a host computer, such as:

® The application program names known to the network

® The lines between NPUs and terminals

@ The initial terminal characteristics

These components are described by the Network Definition
Language (NDL) statements, and are created by the NDL
Processor. The NDL Processor executes as a batch job

separately from the network environment. For further
information, refer to the NDL reference manual.

INDEX

Application 4-1 IBU bit 5-6
name 6-15 Interactive Facility 1-1, 1-2
programs 1-2, 2-1 Interactive virtual terminal mode 5-1, 5-6

Application block header 2-2

Application block limit 4-2

Application block number 2-3 Keywords 3-8, B-1
Application connection number 2-1, 3-2

Application interface program 1-1

subroutines 3-1 Local connection breakage 4-1
Application list number 3-5, 3-8, 3-10 LST/OFF C-1
Application-to-application 1-2 LST/ON C-1

communication 6-5
ECHO-MONIT 6-6

ASCH 5-1, A-1 Memory allocation 6-4
Message 2-2
MONI'R, (see sample program)
Block MSG/LGOP 2-5
BLK 2-2
character type 3-3
delivery 4-2 NETCHEK 3-1, 6-1
MS% 22 2.3 NETDBG 3-1, 6-14
¢ .y NETGET 3-1, 6-1, 6-14
ype - NETGETF 3-1, 6-1, 6-14

NETGETL 3-1, 6-1, 6-14
NETIO 6-14, 6-16

Character type 5-2 -
Communications Control Program 1-1 EEHDOF?’ 63_114 6-14
Communication supervisor 1-1 . NETON 3-1 ’3_7 6-14
Configuration files D-1 NETPUT 3_’1 6-’1 6-14
Connection initialized 3-6 1, 6]

i i NETPUTF 3-1, 6-14
Connection establishment steps 3-3 : NETSTC 3-1
CON/ACRQ 2-5, 6-5 NETSTEP 3-1, 6-1
CON/CB 2-4, 4-1 NETWAIT 3-1, 3-2
CON/END 2-5, 4-2 : Network 1-1

CON/REQ 2-4, 3-5 Network access 3-1

Network Access Methed 1-1
Network Interface Program 1-1, 1-2

geb;xg otp tign 53113 - Network supervisor 1-1
evice P Network Validation Facility 1-1
De/eieT 5-2 NFETCH 3-6

NSTORE 3-6

EASY (see sample program) NSUP word 3-2, 6-1, 6-6

ECHO (see sample program)
Error bit 2-5, 3-8

Error handling 4-5 Page-waiting 5-3
ERR/LGL 4-6 Parallel mode 1-2, 3-2, 6-1 |
Parity 5-3
) Peripheral Interface Program 1-1, 1-2
Format effectors 5-1 PFC/SFC 2-4
Flow-control/initialized 3-6 Primary function code 2-4, 3-8
Fragmented buffer routines 6-1, 6-3 Protocol 1-1, 2-4

FC/ACK 2-4, 4-2, 6:14
FC/BRK 4-4, 4-5

Eg;:\'l\] pl‘.pl-(24'_43’ 3-4 Reason code 3-8, 4-7
Remote Batch Facility " 1-1, 1-2
FC/RST 4-3,4-5 Response bit 2-5, 3-8
FC/STA 4-3, 4-4 P ’
Header area 6-3, 6-15 Sample program 3-4
Host EASY 3-7, 39, 6-2
computer - 1-2 ECHO 4-6, 6-6, 6-13
shutdown 4-6 MONIT 6-6, 6-13

60480400 A Index-1

Secondary function code 2-4, 3-8
SHUT/INSD 4-5, 4-6
Statistical option 6-14
Supervisory message 1-2, 2-2
application to NAM 2.5, C-1
asynchronous 2-2, 3-2
basic protocols 2-4
format 2-5,2-6
NAM to application 2-4, C-1
synchronous 2-2

Index-2

TCH/TCHAR 5-5
Terminal
characteristics 5-2
classes 5-4
Terminal Verification Facility 1-1
Text area 2-2, 3-3
Time 3-3
Transaction Access Facility 1-1
Transparent mode 5-2, 5-6

User break keys 4-6

60480400 A

COMMENT SHEET

G B CONTROL DATA

CORPORATION
TITLE: Network Access Method Version 1, FORTRAN Application
Programmer’s System Bulletin ’

PUBLICATION NO. 60480400 REVISION A

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference).

General comments:

FROM NAME: POSITION:

COMPANY"
NAME:

ADDRESS:

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD FOLD

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

\ ,
BUSINESS REPLY MAIL —
NO POSTAGE STAMP NECESSARY {F MAILED IN U.S.A.]
T
E——
POSTAGE WILL BE PAID BY —
CONTROL DATA CORPORATION ——
Publications and Graphics Division —
215 Moffett Park Drive ——
Sunnyvale, California 94086 —
TR
EE—
S
———
fFOLCO - - T T T T T T T T T T T T TFowp

STAPLE BINFLE

