60455940

@ CONTROL DATA
CORPORATION

TERMINAL-INDEPENDENT
GRAPHICS SYSTEM (TIGS)
VERSION 1.1

REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70
MODELS 72, 73, 74
6000 SERIES

TIGS SUBROUTINE SUMMARY

Subroutine

ALARM(lon)

ARCA(ex,ey,x,y)
ARCA3(cx,cy,02,X,y,2z,xdir,ydir,zdir)
ARCDA(ex,cy,deg)
ARCDA3(ex,cy,cz,ddeg,xdir,ydir,zdir)
ARCDR(edx,edy,ddeg)
ARCDR3(edx,edy,cdz,ddeg,xdir,ydir,zdir)
ARCR(edx,cdy,dx,dy)
ARCR3(cdx,cdy,cdz,dx,dy,dz,xdir,ydir,zdir)

BLINDS(idpiet,ldown)

CLRSCR

CLRSTK

CLRST3

CLSPIC

CLSSEG

COP Y(idseg,newseg)

DELPIC(idpiet)
DELSEG(idseg)
DELVUP(idport)
DELWIN(idwind)
DOTA(x,y)
DOTA3(x,y,z)
DOTR(dx,dy)
DOTR3(dx,dy,dz)
DRAWA(x,y)
DRAWA3(x,y,z)
DRAWR(dx,dy)
DRAWR3(dx,dy,dz)
DSPLAY

EM¢TY (idseg)

ENDPAR(ex,cy,x1,y1,x2,y2,nares, xnl,ynl,xn2,yn2)

ENDPLN(x1,y1,x2,y2,ishow,xn1,yn1,xn2,yn2)

ENDPL3(x1,y1,2z1,x2,y2,22,ishow,xn1,yn1,zn1,xn2,
yn2,zn2)

EVENT(Iky,ids,coords,iremng)

EXTPIC(idpict)

EXTSEG(idseg)

IERROR(ierr)
INITIG(Isquar,Inwf{il,filnam)

KYAC(idky,iactn)
KEYBRD(maxchr,nchrs,itext)

WYALR
irurr

KYON

LCKSEG
LOCATE(x,y,iremng)

MOVEA(x,y)
MOVEA3(x,y,z)
MOVER(dx,dy)
MOVER3(dx,dy,dz)

OPNPIC(idpict)
OPNSEG(idseg)

PLOTA(npoint,xary,yary,line)
PLOTA3(npoint,xary,yary,zary,line)
PLOTR(npoint,dxary,dyary,line)
PLOTR3(npoint,dxary,dyary,dzary,line)
POP

POP3

Page

52 52 59 82 53 19 10 8 @
N R S \ T L Y

OOMNNNN[T)MM%%MW
= WWWWWLWWNNWW

mdﬁw
N = O

NS O ON
CLOW MO LN

7-4

n
[N

7T
NN

3-4
3-5

2-4
2-4
2-4
2-4
5-4
5-4

Subroutine

PREEVN(lucord,idvuwi)
PRELOC(lucord,idvuwi)
PROMPT(nchar,itext)
PUSH

PUSH3

QUITIG(Idelet)

RAAC(idseg,iactn)
RACSIZ(idseg,wide,high)
RADSIZ(idseg,wide,high)
RAFONT(idseg,ifont)
RAHILT(idseg,lhilit)
RAINFO(idseg,ninfo,info)
RAINT(idseg,finten)
RAPICT(idseg,idpict)
RAROT(idseg,deg)
RAROT3(idseg,xbase,ybase,zbase,xplane,yplane,
zplane)
RASTYL(idseg,istyle)
RASYM(idseg,isym)
RAVIS(idseg,lvis)
RAXFA(idseg,bmat23)
RAXFA3(idseg,bmat34)
RAXFL(idseg,bmat23)
RAXFL3(idseg,bmat34)
RAXFR(idseg,bmat23)
RAXFR3(idseg,bmat34)
REMSCR
RENAME(idold,idnew)
RTANGL(x11,yll,xur,yur)
RTANG3(x11h,yllh,zllh,xury,yury,zury)

SCRNUR(idwind,xsern,ysern,xuser,yuser)
SMAC(iactn)

SMCSIZ(wide,high)
SMDSIZ(wide,high)

SMERR(routin)

SMFONT(ifont)

SMHILT(1hilit)

SMID(idintr)

SMINFO(ninfo,info)

SMINT(finten)

SMLOCR(iloer)

SMPICT(idpict)
SMPLIM(x11,yll,xur,yur)
SMPLI3(xllh,yllh,zllh,xury, yury,zury)
SMPORT(idport)

SMROT(deg)
SMROT3(xbase,ybase,zbase,xplane,yplane,zplane)
SMSTYL(istyle)
SMSVP(iscren,xll,vll,xur,yur)
SMSYM(isym)

SMVIS(lvis)

SMXFA(bmat23)

SMXFA3(bmat34)

SMXFL(bmat23)

Vo424
SPV,J[XFLU\UIHGLO‘}}

SMXFR(bmat23)
SMXFR3(bmat34)

TAAC(idseg,iactn)
TACSIZ(idseg,widout,hiout)
TADSIZ(idseg,widout,hiout)
TAFONT(idseg,ifont)
TAHILT(idseg,lhilit)
TAINFO(idseg,ninfo,info)

Page

7-5
7-5
7-6
5-4
5-4

8-3

7-6
2-5
2-6
2-7

1

1
U033 DNDW

DD

PELTTERPERES S
G0 00 Q0 00 00 QO | < 00 O © O ~J
oo

QNML}’)M%‘I
NIRRT D

60455940

G 5 CONTROL DATA
CORPORATION

TERMINAL-INDEPENDENT
GRAPHICS SYSTEM (TIGS)
VERSION 1.1 |
REFERENCE MANUAL

CDC® COMPUTER SYSTEMS:
CYBER 170 SERIES
CYBER 70
MODELS 72, 73, 74
6000 SERIES

REVISION RECORD

REVISION DESCRIPTION

A Manual released.

(06-12-78)

B

(01-12~79) Manual revised to add description of Sanders Graphic 7 postprocessor and to make miscellaneous corrections.

C

(07-20-79) Manual revised to reflect version 1.1 features and to make miscellaneous corrections. This manual obsoletes

all previous editions.

Publication No.
60455940

REVISION LETTERS I, O, @ AND X ARE NOT USED

© 1978, 1979
by Control Data Corporation
Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation

Publications and Graphics Division
4201 North Lexington Avenue

St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE RE\d PAGE REA PAGE RS/J PAGE REV PAGE REV
Front Cover - 5-1 A C-6 C
Inside Cover - 5=2 A C-7 C
Title Page - 5-3 A Cc-8 C
ii C 5-4 A C-9 C
iii/iv C 5-5 B
v/vi C 5-6 B D-1 A
vii C 5-7 B D-2 A
viii C 5-8 A

5-9 C E-1 C
1-1 A 5-10 A E-2 C
1-2 A 5-11 A E-3 C
-1-3 A 5-12 A E-4 C
1-4 C 5-13 A | |E-5 C
1-5 A | |5-14 A
5=15 A F-~1 C
2-1 C F-2 C
2-2 A 6-1 A F-3 ()
2-3 A 6-2 C F-4 c
2-4 C 6-3 A F-5 C
2-5 C F-6 C
2-6 C 7-1 B F-7 C
2-7 C 7-2 C F-8 C
2-8 C- 7-3 C F-9 C
2-9 C 7-4 B F-10 C
2-10 C 7-5 A F-11 C
2-11 C 7-6 C F-12 C
2-12 C =7 A F-13 B
2-13 C 7-8 C F-14 C
7-9 B
3-1 B 7-10. A G-1 C
3-2 A 7-11 A G-2 C
3-3 C ' G=-3 C
3-4 C 8-1 C G-4 C
3-5 C | |8-2 C G-5 C
- 3-6 C 8=-3 C G-6 C
3-7 - C | |8-4 C G-7 'C
3-8 A 8-5 C G-8 C
3-9 - A 8-6 C
Index-1 C
4-1 A 9-1 C Index-2 C
4-2 - C 9~2 C Index-3 C
4-3 C : . .
4-4 C A-1 - A | | Comment Sheet| C
4-5 C Inside Back
4-6 C B-1 A Cover -
4-7 c B-2 “A Back Cover -
4-8 C :
4-9 C C-1 A
4-10 c |]c-2 C
4-11 C C-3 A
C-4 A
C-5 C
60455940 C

iii/iv

PREFACE

m

This manual describes the Terminal-Independent Graphics
System (TIGS). It is in reference format and contains
descriptions of TIGS external characteristics together
with deseriptions and calling formats of each of the
software routines that compose TIGS.

TIGS is available through the NOS and NOS/BE operating
systems of the CONTROL DATA® CYBER 70 Series
Models 71, 72, 73, and 74, CDC® CYBER 170 Series, and
CDC ® 6000 Series Computer Systems. TIGS software
communicates with the host computer via the interactive
facility of the operating system: NAM/IAF or the Time-
Sharing Module under NOS, and INTERCOM under
NOS/BE.)

This manual is intended és a reference source and
programming guide for all users of TIGS. A familiarity

with FORTRAN and the operating system under which
TIGS will operate is assumed

RELATED PUBLICATIONS

Publication

Control Data PUDlicatioh Number
NOS/BE 1 Reference Manual 60493800
INTERCOM Versmn 4 Reference
Manual : 60494600
INTERCOM Vers1on 5 Reference
Manual 760455010
INTERCOM Version 4 Guide for Users
of FORTRAN Extended 60495000
INTERCOM Version 5 Guide for Users
of FORTRAN Extended - = 60455950
NOS Version 1 Reference Manual —

Volume 1 60435400

Time-Sharing User's Reference Manual 60435500

Network Products Interactive Facility :
60455250

Version 1 Reference Manual

CYBER Loader Referer{ce Manual 60429800
UNIPLOT Version 2.1 Reference/ 60454730
User Guide

Terminal Independent Graphics 60456360
System Instant

Terminal Independent Graphies 60456040

System (TIGS) User's Guide

60455940 C

: Publication
Control Data Publication Number
FORTRAN Extended Version 4
Reference Manual 60497800
Beginning Graphies User's Guide 76077300

The following manuals are available only from Tektr.:(_)nix,
Inc., P.O. Box 500, Beaverton, Oregon, 97077.

Tektronix 4006 and 4006-1 Termmal

User's Guide ~070-1891-00
Tektronix 4010 and 4010-1 User's)

Manual ;) 070—12{25—00
Tektronix 4014 and 4014-1 Computer

stplay Termmal User's Instructlon

‘Manual) 070-1647-00
Tektronix 4631 Hardcopy Umt User's :
Manual 070-1830-00
Tektromx 4953/4954 Graphies Tablet

Instruction Manual 070-1791-00 -
Tektronix Data Communications

Interface Instruction Manual 070-2026-00

The following manual is available only from Sanders
Associates, Inc., Damel Webster Highway, Nashua, New
Hampshire, 03061. :

Graphic 7 Computer Graphics
Display System
Graphies Support Software (GSS-4)

Version 1.1 User's Manual H-78-0047

DISCLAIMER

This product is intended for use only as deseribed in this

document. Control Data cannot be responsible for the
proper functioning of undescrlbed features or undefined

‘parameters.

v/vi

CONTENTS

E

1. GENERAL DESCRIPTION 1-1 4. WINDOWS AND VIEWPORTS 4-1
Operating Environment 1-1 Window and Viewport Routines 4-2
Manual Overview 1-1 DELVUP 4-2
Structural Overview of TIGS 1-1 DELWIN - 42
Primitives g 1-1 VUPORXx 4-3
Segments and Picetures 1-1 WINxxx 4-3
Windows and Viewports 1-2 Mode/Attribute/Feature Routines 4-7
Modes, Attributes, and Features 1-2 xxPORT 4-7
Transformation Routines 1-3 - xxSVP : 4-8
Geometry Utilities 1-3 Example of Window and Viewport Usage 4-9
Interaction 1-3
Terminal Funetions 1-3
Error Processing 1-3. 5. TRANSFORMATION MATRICES 5-1
Subroutine and Parameter Conventions 1-3
General Format of a TIGS Program 1-4 General 5-1
) Transformation Matrix Routines 5-4
CLRSTx 5-4
2. PRIMITIVES 2-1 POPx 5-4
PUSHx 5-4
General 2-1) XIDNTx 5-4
Primitives Routines 2-1 XINVRx 5-5
ARCxxx 2-1 XROTx 5-5
DOTxx : 2-3 XSCLxx 5-6
DRAWxx ' 2-3 - XTRNxx 5-7
MOVExx 2-4 Mode/Attribute/Feature Routines 5-7
PLOTxx 2-4 xxXFxx 5-7
TEXTx 2-5 Examples of Transformation Routine Usage 5-9
Mode/Attribute/Feature Routines 2-5
xxCSIZ 2-5
xxDSIZ 2-6 6. GEOMETRY UTILITIES 6-1
xxFONT 2-7
xxHILT 9-7 General 6-1
xxINT 2-8 Geometry Utility Routines 6-1
*xROT 2-8 ENDPAR 6-1
*xxROT3 2-9 ENDPLx 6-2
RTANGx 6-2
?;ngML 3:51;0 Example of Geometry Utility Usage 6-2
xxVIS 2-10
TFNSIZ 2-11
Example of Graphies Primitives Usage 2-11 7. INTERACTION L
General 7-1
_ Interaction Routines 7-2
3. SEGMENTS AND PICTURES 3-1 EVENT 7-2
General A ' 3-1 gEX%RD 3::;
Segment and Picture Routines 3-2 KYOFF 7-4
BLINDS 3-2 KYON 7-4
CLSPIC 3-2 LOCATE
CLSSEG 3-2 74
COPY 3-9 PREEVN 7-5
DELPIC 3-3 g -5
DELSEG 3-3 PT . -6
EMPTY 3-3 Mode/Attribute/Feature Routines 7-6
EXTPIC ‘ 3-3 XxfAC iy
EXTSEG 3-4 X :
LCKSEG 3-4 xxINFO -7
OPNPIC 3-4 xxLOCR -1
OPNSEG 3-5 Example of Interaction Routine Usage 7-8
RENAME 3-5
Mode/Attribute/Feature Routines >3 8. TERMINAL FUNCTIONS 8-1
g:l;glx g:g General 8-1
Example of Segments and Picture Usage 3-7

60455940 C \ , © il

Terminal Function Routines

ALARM
CLRSCR
DSPLAY
INITIG
QUITIG
REMSCR
SCRNUR
UDATA
UNISCR
WHEREx

Test Feature Routines

C.
D.

4-6
4-7

viii

TFHARD

CHARACTER SET

GLOSSARY

ERROR MESSAGES
TRANSFORMATION MATRICES IN TIGS

- Relationship of TIGS Elements

TIGS General Program Flow

Three-Dimensional Coordinate Axes
Orientation

Direction Cosines

Major and Minor Arcs

Sample Primitives Program Display

Three-Dimensional Picture Limits

Relationship of TIGS Elements

Three-Dimensional Viewport

Default 3-D Viewing System

The Frustum of Vision for Three-
Dimensional Perspective Window

Parallelepiped of Vision for Three-
Dimensional Axonometriec Window

Projection Plane

Sample Program with Viewport and
Window Calls

Supported Continuous Character Set
Supported Plotting Symbols

8-1 TFSCRN 8-5

8-1

8-1 :

8-1 9. ERROR PROCESSING 9-1

8-2

8-3 General 9-1

8-3 Error Status Routine 9-1

8-3 IERROR 9-1

8-4 Mode/Feature Routines 9-]

8-4 xxERR 9-1

8-5

8-5

8-5

APPENDIXES

A-1 E. OPERATING SYSTEM DEPENDENCIES E-1

B-1 AND LOADING PROCEDURES

C-1 . F. TEKTRONIX 401x POSTPROCESSOR F-1

D-1 - G. SANDERS GRAPHIC 7 POSTPROCESSOR G-1

INDEX
FIGURES

1-2 4-8 Sample Viewport and Window Usage Display 4-11

1-5 5-1 Rotation of Triangle About Interior Point 5-3
5-2 Three-Dimensional Rotation, Front View 5-6

2-1 5-3 Three-Dimensional Rotation, Back View 5-6

2-2 5-4 Mirroring of Display 5-7

2-3 5-5 Output from First Example, Step 1 5-11

2-13 5-6 Output from First Example, Step 2 5-11

3-7 5-7 Output from First Example, Step 3 5-12

4-1 5-8 Output from First Example, Step 4 5-12

4-3 5-9 Output from Second Example, Step 1 5-15

4-5 5-10 Output from Second Example, Step 2 5-15
6-1 Intersection of Arc with Clipping Rectangle 6-1

4-6 6-2 Example of Geometry Utility Usage 6-3
7-1 Output from Interaction Routines Usage

4-7 Example 7-11

4-7 8-1 SCRNUR Calculation 8-4

4-9

TABLES
2-6
2-10

60455940 C

GENERAL DESCRIPTION

Qe

The Terminal-Independent Graphics System (TIGS) is a
graphics software package designed to support a variety
of graphies display terminals while providing a high degree
of application program independence from constraints
caused by differing terminal characteristics. Under TIGS,
it is not necessary to write programs tailored for the
capabilities of a particular terminal, although a program-
mer may do so if he chooses.

TIGS consists of a single software preprocessor providing
display - generation and interactive capabilities for a
general "class of terminals and software postprocessors
which translate the generalized preprocessor output into
specific display instructions for the various terminal types
supported by TIGS. Data is conveyed between the two
processor packages by means of a neutral display file
(NDF). Version | of TIGS supports a single postprocessor
which is the interface for storage tube graphies terminals.
Postprocessor information is contained in appendixes to
this manual; the main body of the manual describes only
the terminal independent preprocessor. .

OPERAYTING ENVIRONMENT

TIGS is available ‘through the NOS and NOS/BE operating
systems of the CDC CYBER 70 Series, CDC CYBER 170
Series, and 6000 Series computers. TIGS software
communicates with the host computer via the interactive
facility of the operating system: NAM/IAF or the Time-
Sharing Module under NOS, and INTERCOM under
NOS/BE. Full time-sharing facilities are available at the

terminal. This manual does not provide basic operating’

system information related to -interactive or bateh job
processing. Only those points of job processing which are
unique to TIGS will be described here.

The manual also assumes a good working knowledge of
FORTRAN. Al TIGS routines are called as subroutines or
functions’ from programs coded in FORTRAN Extended
(FTN) and are contained on special TIGS program librar-
ies. An effort has been made to adhere to ANSI
FORTRAN usage in the interest of clarity. FORTRAN
coding conventions are followed.

TIGS has been designed for ease of learning by having a
small number of parameters in any graphies routine ecall.
Parameter conventions are described at the end of this
section. ‘

MANUAL OVERVIEW

Each section of this manual contains the TIGS calls.

appropriate to the topie being discussed and supporting
explanatory material. The ecalls dealt with in a given
section are listed alphabetically at the beginning of each
section. The format for each call ineludes the call and all
its parameters, an explanation of the call's function, a list
of parameter descriptions, programming notes if. indi-
cated, and usage examples where the routine's function is
not self-evident. :

60455940 A

Besides the postprocessor material mentioned already, the

_appendixes include a glossary, a list of error messages,

and other TIGS supplementary material related to the
main body of the manual.

STRUCTURAL OVERVIEW OF TIGS

TIGS gives a programmer the capability to construct,
organize, and display graphic material in either two- or

* three-dimensional mode, and to interactively modify any

display. In order to understand how to use TIGS calls
properly and efficiently, it is desirable to know how these
displays are constructed.

To produce a display on the terminal screen, the program--
mer must complete a two-part task. First, to-model the
display, the programmer uses TIGS structural building
blocks: primitives, segments, and pictures to define and
spatially organize objects in two- or three-dimensional
space. Using TIGS window and viewport routines, the
programmer then develops a viewing pattern, consisting of
instructions on how the constructed model will appear on
the terminal screen. TIGS applies this viewing pattern
against the model to produce the display on the terminal
screen. Figure 1-1 shows how these TIGS elements relate
to each other. :

PRIMITIVES

Primitives are the structural building blocks of TIGS.
They include lines, arcs, dots, plotting symbols, and text.
These are the basic drawing elements which the graphies
terminals are capable of produeing, and whieh, in combi-
nation, make up ‘even the most complex graphics displays.
There are separate routines for two- and three-dimen-
sional primitives. Three-dimensional primitives are iden-
tical to two-dimensional primitives with the addition of
sufficient parameters to describe the primitives in the
added dimension. In generating primitives, the program-
mer is exercising the primary capabilities of TIGS to draw
pictures. All other TIGS routines are concerned with
organizing or otherwise affecting what has already been
laid out in primitives. Section 2 fully deseribes primi-
tives. ’

SEGMENTS AND PICTURES

A segment is a collection of primitives organized for

.purposes of display manipulation. ‘Segments constitute the

lowest organizational level at which display modification
can take place. In a TIGS program, a segment’is defined
and primitives are placed into it; thereafter,-no modifi-
cation of the display can affect a levellower than a single

- segment. Segments--can -be - left -undefined. so- that.all

primitives in a display belong to. one default segment, but
usually the display is logically grouped into segments: for
purposes of later segment-by-segment manipulation.

i WINDOW
PRIMITIVE
SEGMENT /
\

PICTURE

DISPLAY SCREEN

Figure 1-1. Relationship of TIGS Elements .

Similarly, segments can. be grouped into pictures for
purposes of display manipulation. Certain TIGS operations
can be specified - which - affect whole pictures. The
programmer may use the defaull picture, or one or more
nondefault pictures. A picture is a bounded area defined
by programmer-supplied or-defaulted picture limits. A
three-dimensional picture is ‘more properly called a
picture space, analogous to a two-dimensional picture but
with the inclusion of the -third dimension.

Pictures and segments are described in section 3.

WINDOWS A.ND VIEWPORTS

The- programmer uses a window lo control how much of

the picture is displayed by selecting all or part of the
picture to include in the window. The programmer can
use the default window, or one or more nondefault
windows; and can overlap windows and superimpose them
on one another.

The-viewport is a certain portion of the display screen.
The display sereen can consist of the default viewport
which covers the usable screen or one or more nondefault
viewports dividing the screen to suit the application
program. .

Window is to bicture as viewport is to the terminal display
screen. The assigning of window to viewport determines
how -the display will eventually appear to the viewer.

A three-dimensional - window is a subset of the total
volume of the picture space. The three-dimensional
window specifies how the simulation of space behind the
display screen will occur. Orthogonal projections and
perspective projections are both possible.

MODES, ATTRIBUTES, AND FEATURES

In keeping with the TIGS design objective of programming
simplieity, TIGS employs the concept of modality. - A

mode is a condition, set or defaulted, which affects all

subsequent program operations until changed. There are
always modes in effect. Modes control a wide variety of

1-2

program conditions, afnong them. the assigning of window
to viewport and the assigning of qualities to primitives
(this process is described in a following paragraph).

There are obvious advantages to the mode system. When
it is desirable to set a program condition which will
prevail for a series of calls, a modal setting obviates the
need to specify that condition with every call. Also, the
mode system permits the TIGS calls to be more compact

-and easily remembered with fewer parameters. For

example, to construet a triangle for display, the program-
mer uses primitives to specify the spatial nature and
location of the triangle. Deseribing such qualities as the
style of the line used to draw the triangle is done by
setting the appropriate line style mode before the triangle
is constructed.

For ease of usage, TIGS provides defaults for all modes, so
that a programmer need learn only the routines that set or
change modes he wishes to use. It is possible to construct
a functioning TIGS program which does not make any calls
to subroutines which affect modes. All modes can be left

- as defaulted, set to a value, or changed from a current

value. In addition, routines exist to test for modal
settings currently in effect.

Attributes of a segment are qualities inherited from
modal settings in effect when that segment was defined.
When the first primitive in a segment is defined, those
attributes become a part of - the segment definition.

- Attributes can be tested or changed later in the program

through the attribute testing and resetting routines. - For

. example, a programmer.can change the v1snb111ty attribute

of a triangle from visible (inherited from the default mode
in effect when the triangle was defined) to invisible by
spec1fy1ng the proper reset attribute call.

For ease of learning, TIGS uses a call prefix sequence for
the routines of the mode/attribute system. All test mode
routines begin .with TM prefixes, all set mode routines
with SM, all test attribute routines with TA, and all reset
attribute routines with RA. For example, when a
programmer has learned that there is a series of routines
affecting line style, xxSTYL, he knows that there is a test
mode call TMSTYL for testing current line style mode, a
set mode call SMSTYL to set line style mode, a test
attribute call TASTYL to test the line style attribute of a
segment, and a reset attribute call RASTYL to reset that:
attribute. Exceptions to this system are noted in the
descriptions of -the individual mode/attribute routines.

60455940 A

For most modal qualities there is a companion test
feature routine (TF prefix) to ascertain whether and how a
given terminal type supports a given feature. The test
feature routines allow a programmer to .inquire of the
postprocessor if a particular feature is supported by that
postprocessor, or to allow the postprocessor to describe a
particular feature. All but three of the test feature
routines (TFHARD, TFNSIZ, and TFSCRN) have compan-
ion mode setting and testing routines.

Some test feature routines test for hardware support of a

given feature. It should be noted that such features are

supported for all postprocessors, regardless of the value
returned to the test feature routine. If the test feature
routine indicates that a given feature is not hardware-
supported, the programmer assumes the feature is soft-
ware-supported. This capability was included in TIGS
because, in general, execution time is greatly increased if
a feature must be software-supported; the programmer
may elect not to perform - operations which use a given
software-supported feature because of this consideration.

Each of the reference sections of the manual contains a
subsection dealing with the mode/attribute/feature rou-
tines which affect the material covered in that section.
For example, xxSTYL is described in Primitives (section
2), xxPORT under Windows and Viewports (section 4), and
SO on.

The following general information about modes and
attributes should be kept in mind. Additional notes,
cautions, and usage examples are included where neces-
sary in the mode/attribute/feature subsections of each of
the reference sections.

® Test routines that return only one value can be
called as functions or subroutines; ANSI usage
requires that they be called as functions.

® Modes can be set at any point in a program,
except as noted in the description of the routines
SMPLIX (section 3), SMPICT (section 3), SMAC
(section 7), SMHILT (section 2), and SMVIS
(section 2).. However, caution should be used in
setting modes because modes become attributes
of segments and if a mode is changed within a
segment definition, a subsequent attempt to
reset that attribute will yield unpredictable
results (refer also to Pictures and Segments).

® There are no reset attribute (RA) routines which
do not have companion mode routines. There are
modes, however, which cannot become attri-
butes. These are viewport mode (xxPORT,
section 4), system viewport (xxSVP, section 4),
error routine (xxERR, section 9), locator
(xxLOCR, section 7), and intrasegment identifier
(xxID, section 7). All other modes can become
attributes.

® Al attributes can be tested (TA routines). All
attributes can be reset except picture limits
(xxPLIx, section 3), and plctur‘e dimensionality
(xx3D, section 3).

e Modes in effect when the first primitive of a

‘'segment is defined become attributes of that
segment and are stored as part of the segment
definition. -Calls - to the routines SMPICT,
EXTPIC, and EXTSEG (all in section 3) reset
current modal settings to the modal settings in
effect when the picture or segment was defined.

60455940 A

SMPICT and EXTPIC reset picture limits, picture
identification, and picture dimensionality only.
EXTSEG resets all segment attributes.

TRANSFORMATION ROUTINES

Three of the ways a graphies display can be altered are by
translation, rotation, and scaling. TIGS uses transforma-
tion matrices to carry out these three functions, in both
two- and three-dimensional modes. In addition, a pro-
grammer can accomplish other matrix multiplication
operations, such as shearing, by providing his own matrix
and using the proper mode/attribute routine to perform
the desired transformation. Transformation matrix opera-
tions, associated utility routines, and explanatory material
are contained in section 5.

GEOMETRY UTILITIES

TIGS provides the programmer with tools for determining
in advance how a display will appear in a given two- or
three-dimensional space. These geometry utilities are
described in section 6.

INTERACTION

TIGS permits not only passive modification of the termi-
nal graphics display, but has also the programming
capabilities to permit interactive display modification
based on information returned to the application program
as terminal input. = Because TIGS 'is independent of
terminal input devices which may vary from terminal to
terminal, the programmer can write his programs for
virtual devices defined for the preprocessor and let the
postprocessor link these virtual devices to actual terminal
input devices at the terminal on whieh the program is run.
Interaction is discussed in section 7.

TERMINAL FUNCTIONS

TIGS provides a number of routines for determining
terminal characteristies, for influencing the display in
very basic ways, and for communicating with terminals.
These routines are documented in section 8.

ERROR PROCESSING

Programmers can obtain current error status by . using
routines supplied as part of the TIGS software. Section 9
deals with this topic. -

SUBROUTINE AND PARAMETER
CONVENTIONS :

A number of arbitrary but orderly rules have been adopted
for ordering and naming subroutines and parameters which
appear in the calling sequences defined in this manual.

e For coordinates: X variable before Y variable
before Z variable. :

e For dimensioned quantities: width variable
before height variable before depth variable.

e All input variables appear before output vari-
ables. i

e A count of the number of elements in arrays and
character strings appears before the elements.
The first character of such parameters is N.

e Identifier names are of the form idxxxx; for
example, idseg, idpiet, and so on. The name
reflects the kind of identifier.

e Identifiers always appear before modifiers or

attributes.

e A d (delta) denotes variables whose values are
relative; for example, dx, dy, and so on.

e Names of logical variables begin with L and the
name will: reflect the .TRUE. condition of the
variable. '

e Subroutine names with a noun and a verb always
have the verb first; for example, OPNSEG,
CLRSCR, EXTSEG, DELWIN, PRELOC, and
SMINT. -

There are no optional parameters in a TIGS subroutine
call; if a programmer calls a subroutine, he must specify
all parameters. Default conditions deseribed in this
manual are valid only if no call is made to the routine.
The programmer may supply any names he wishes for
subroutine parameters. However, all error messages use
the parameter names given in the subroutine descriptions
in this manual.

All variables describing coordinates must be floating point

variables.

This manual uses designations for classes of routines (for
example, xxPLIX) in which the lower case x's refer to

PROGRAM statement t

prefixes and suffixes that distinguish individual routines in
that class of routines.

All lowercase parameter names reflect the general condi-
tion of the parameter. In specific examples of subroutine
usage, the parameters are uppercase. Lowercase param-
eter names are in boldfaced type.

GENERAL FORMAT OF A TIGS
PROGRAM

A TIGS program is written in FORTRAN and follows basic
FORTRAN conventions. Specific adaptations required by
a particular postprocessor- are noted in the appropriate
postprocessor appendix.

In general, a TIGS prdgram must do the following:

e Initialize communication with TIGS (INITIG, sec-
tion 8). i

e Construet desired pictures (sections 2, 3).

e Organize pictures (section 4).

e Display pictures (DSPLAY, section 8).

e Modify display if desired (sections 5 through 7).

e End ecommunication with TIGS (QUITIG, section
8). .

Except for the INITIG and QUITIG calls which are the
first and last graphies calls in the program, the order of
steps deseribed above need not be rigidly followed.

The following general program example and the flowchart
(figure 1-2) illustrate this process. Examples .in the
reference sections of this manual are sometimes only
program fragments to illustrate a particular point and do
not adequately show the broader outline of a - TIGS
program. :

(DIM ENSION statemeht, LOGICAL statefnent, ete. for reserving storage)

CALL INITIG (.TRUE.,.TRUE.,5SLIFILE)

(set desired modes prior to opening pictures, segments)

CALL OPNSEG(n)
(primitives)
CALL CLSSEG -

CALL DSPLAY

(interaction calls, if desired)
CALL QUITIG (.TRUE.)
STOP

END

* Must be first graphics call

Twarning: format of PROGRAM statement is partially determined by postprocessor or operating system requirements.
Refer to appropriate postprocessor and operating system appendices.)

60455940 C

60455940 A

Modify desired
modal parameters
from default or
previous values

)

Open picture

Open segment

i

Define transfor-
mation matrix
for segment
(optional)

]

Calls to
primitives to
define segment

)

Close segment

Al
segments
defined
?

yes

Define
viewport

)

Define
window

)

Close picture
(optional}

le

Add or
change view
of model

Calls to
window
routines

yes

¥

Enable function
keys, segments,
ete. for
interaction

r3

Perform
picking

)

Perform desired
action on-picked
segments

Figure 1-2. TIGS General Program Flow

PRIMITIVES

The following TIGS calls are documented in this section.

ARCA MOVER3 SMINT TFDSIZ
ARCA3 PLOTA SMROT " TFFONT
ARCDA PLOTA3 SMROT3 TFHILT
ARCDA3 PLOTR SMSTYL TFINT
ARCDR PLOTR3 SMSYM TFNSIZ
ARCDR3 RACSIZ SMVIS TFROT
ARCR RADSIZ TACSIZ TFSTYL
ARCR3 RAFONT TADSIZ TFSYM
DOTA RAHILT TAFONT TFVIS
DOTA3 = RAINT TAHILT TMCSIZ
DOTR RAROT TAINT TMDSIZ
DOTR3 RAROT3 TAROT TMFONT
DRAWA RASTYL TAROT3 TMHILT
DRAWA3 RASYM TASTYL TMINT
DRAWR - RAVE TASYM TMROT
DRAWR3 SMCSIZ TAVIS TMROT3
MOVEA SMDSIZ . TEXT TMSTYL
MOVEA3 SMFONT TEXT3 TMSYM
MOVER SMHILT TFCSIZ TMVIS

This list includes routines which generate primitives, and
those mode/attribute/feature routines which affect primi-
tives. The mode/attribute/feature routines are contained
in a separate group following the primitive generation
calls.

Following the TIGS ecalls is an example using many of the
primitives routines described in this section.

GENERAL

Primitives subroutines are used in the application program
to draw lines, ares, dots, plot symbols, and text on the
terminal display surface. ~Two- and three-dimensional
drawing modes use separate routines, but the routines are
described together. Text primitives can be used in eithér
two- or three-dimensional segments. However, other two-
dimensional primitives can only be used with two-
dimensional pictures, windows, and viewports; the situa-
tion is similar for three-dimensional pictures, windows,
and viewports. Refer to section 3 for more information.

Coordinates for primitives may be specified in absolute or
relative terms. Absolute coordinates are the. actual
coordinates at which the primitive is to be drawn, in
terms of user coordinates established when a picture is
defined and picture limits are specified (section 3).
Relative coordinates state that the primitive is to be
drawn at a position relative to the current drawing beam
position. Current drawing beam position is defined as the
location in user coordinates where the drawing beam is
left upon completion of the last TIGS routine affecting
beam movement. Beam movement is continuous. Primi-
tives routines with relative coordinates are especially
useful in constructing subroutines to a main application
program when a figure is to be drawn at an arbitrary
location. Present beam position can be determined by a
call to WHERE or WHERES (section 8).

The programmer should be aware that TIGS employs a
right-handed coordinate system for modeling. That is, the
positive coordinate axes in three-dimensional space have
the basic orientation to each other illustrated in figure
2-1.

60455940 C

Figure 2-1. Three-Dimensional Coordinate
Axes Orientation

The following paragraphs give capsule descriptions of the
primitives routines in this section.

The MOVExx, DRAWxx, and DOTxx subroutines position
the drawing beam, draw lines, and draw dots, respectively.
Absolute or relative coordinates in either two- or three-
dimensional mode can be specified for these routines.

The TEXTx subroutines draw a text string starting at the
current beam position. Mode and attribute routines
specify text characteristies.

Using the PLOTxx routine, a series of points can be
plotted with optional plot. symbols at each point and
optional lines connecting the plotted points. Both two-
and three-dimensional plots can be constructed.

Circular ares can be drawn using the ARCxx routines in
two ways: by supplying the coordinates of the center and
the end point, or by specifying the center and the angular
position of the end point. Either method allows the use of

absolute or relative coordinates in either two- or three-
dimensional mode. .

PRIMITIVES ROUTINES

ARCxxx

Format

ARCA(ex,ey,X,y)
Draw absolute 2-D arc to endpoint.

ARCR(edx,ecdy,dx,dy)
Draw relative 2-D arc to endpoint.

ARCDA(ex,cy,deg)
Draw absolute 2-D are through angle.

. ARCDR/(edx,cdy,ddeg)
Draw relative 2-D are through angle.

2-1

ARC A3(ex,cy,Cz,X,Y,Z,xdir,ydir,zdir)
Draw absolute 3-D are to endpoint.
ARCR 3(edx,edy,cdz,dx,dy,dz,xdir,ydir,zdir)
Draw relative 3-D arc to endpoint.
ARCDA3(cx,cy,cz,ddeg,xdir,ydir,zdir)
Draw absolute 3-D arc through angle.
ARCDR 3(cdx,cdy,cdz,ddeg,xdir,ydir,zdir)
Draw relative 3-D arc through angle.

Parameters
CX,CY,CZ Input parameters; absolute user co-
‘ ordinates of the are center.

Input parameters; user. coordinates
-of the arc center relative to cur-
rent beam position.

cdx,cdy,cdz

X,¥,2 Input parameters; absolute user co-
i ordinates of the arc endpoint.
_Ihput parameters; relative user co-
ordinates of the arc endpoint.

- dx,dy,dz

- deg - Inpul parameter; absolute angular
. position of the arc endpoint, meas-
ured in degrees counterclockwise
from the X axis. If deg is negative,
_ angular measurement is clockwise.

Not used with ARCDAS3.
ddeg Input parameter; relative angular
position of the arc endpoint, meas-
ured in degrees from the radius
defined by the are center and the
‘current beam. position. Positive
ddeg values indicate counterclock-
wise are direction for 2-D ares and
ares in the direction of the diree-
tion cosines for 3-D arcs. Negative
ddeg values imply clockwise direc-
tion for 2-D and arcs opposite to
- the direction of the direetion co-

sines for 3-D ares.

xdir,ydir,zdir
defining the direction of 3-D ares.
In the special cases of semicircles
“and full circles, the direction co-
sines also define the plane of the
arc. :

Programming Notes

Calls to ARCxx are affected by the following subset of
the mode/attribute/feature routines described. in the

mode/attribute/feature subsection.

S XXHILT
xxXINT
xxSTYL
XxVIS

" Input parameters; direction cosines’

The modal settings in effect when the first primitive in
the segment containing the ARCxx routines is defined
determine the attributes that segment will have.

Arcs are drawn as sections of cireles only. Drawing of the

are begins from current beam position.

Direction of two-dimensional ares is counterclockwise
except as noted in the description of the deg and ddeg
parameters.

Direction ofk three-dimensional ares is in the direction of
the direction cosines except as noted in the description of
the ddeg parameter. :

Calls to ARCDA may not yield the results the program-
mer expects when the y coordinates of the current beam
position and the arc center are not the same (that is, the
arc radius defined by the arc center and current beam
position ‘is not parallel to the x axis). The absolute
angular- position is measured from the x axis, but drawing.
always begins from current beam position.

" Direction cosines are used for three-dimensional ares,

since clockwise and counterclockwise are not readily
applicable terms in. three dimensions. The direction
indicated by the vector from (xi,y1,21) toward (xg,y2,22)
corresponds to direction cosines defined:

XX ' Y9,
xdirs———=" ydir= zdir=

/ac? A/ ac? /ac?
/2 2 2 2
‘Ac” = '\/(;2—x]) »+ (yz-y]) + (zz—z]-)

These direction cosines unequivocally point the direction
of the arc in the plane of the are. They are supplied as
floating-point values to three-dimensional arc routines. In
the case of semicircles and full circles and for the
ARCDAS and ARCDR3 routines, the direction cosines also
define the plane of the arc because a single line
(established- either by the three colinear points of a
semicirele or the two colinear points of a circle) does not
define a plane, but a line and the vector described by the

Z 'Zj

" direction cosines do define a plane.

All that is required of the direction‘ cosines is that they lie
in the plane of the circle and on the same side of the line

_drawn between the arc starting point (current beam

position) and the arc center as the direction in which the
are is to be drawn. Direction cosines are considered to be
based at current beam position. This situation, viewed in

" the plane of the arc, is illustrated in figure 2-2.

ACCEPTABLE
RANGE OF
DIRECTION

ARC
DIRECTION .

COSINES
-
RAALA
e o i i s s i) e e e —
ARC CURRENT
CENTER BEAM
v POSITION

Figure 2-2. Direction Cosines

60455940 A

END

CHORD USED
TO CALCULATE
DIRECTION

COSINES °

CENTER

CURRENT
BEAM
POSITION

MAJOR
ARC

Figure 2-3. Major and Minor Arecs

In many instances, the computation of direction cosines is
facilitated by the selection of points that are related to
the desired are. In the cases of the ARCA3 and ARCR3
routines where the are endpoint is known (and the are is
not a full cirele or semicircle), the direction cosines can
be computed using the current beam position as one point
and the are endpoint as the other, as shown in figure 2-3.

For ARCDA3 and ARCDR3 and for all full and semicireles
where the direction cosines define the plane of the arc as
well as the direction of the are, it is necessary to
establish another point to calculate the direction cosines.
A point on the arc may be found, or a point that yields a
tangent to the circle of the arc, or any other point of the
plane on the proper side of the center/starting point line.

For full circles, the direction cosines can lie on either side

of this line.

To draw arcs opposite to the direction indicated by the
direction cosines, multiply the direction cosines by -1.
The same effeet is achieved by specifying the ddeg
parameter with a negative sign (ARCDA3 and ARCDR3).

For example, the major arc in figure 2-3 can be drawn

without recomputing direction cosines by using either of
the techniques deseribed.

DOTxx

Format

DOTA(x,y)
Draw dot at absolute 2-D position.

DOTR(dx,dy)
Draw dot at relative 2-D position.

DOTA3(x,y,2)
Draw dot at absolute 3-D position..

DOTR 3(dx,dy,dz)
Draw dot at relative 3-D position.

60455940 A

Parameters

X,¥,% Input parameters; absolute user co-
ordinates of the dot.

dx,dy,dz Input parameters; user coordinates of
the dot relative to the current beam
position.

Programming Notes

Calls to DOTxx are affected by the following subset of
the mode/attribute/feature routines described in the
mode/attribute/feature subsection.

xxHILT
xXINT
xX VIS
Modal settings in effect when the first primitive in the

segment containing the DOTxx routine is defined deter-
mine the attributes of that segment.

DRAW xx

Format
DRAWA(x,y)
Draw line to absolute 2-D endpoint.

DRAWR(dx ,dy)
Draw line to relative 2-D endpoint. -

DRAWA3(x,y,z)
Draw line to ‘absolute 3-D endpomt.

DR AWR 3(dx,dy,dz) »
Draw line to'relative 3-D endpoint.

" Parameters

X,¥,2 Input parameters; absolute user coordi-
nates of endpoint.

dx;dy,dz = Input parameters; user coordinates of

the endpoint relative to current beam
position. :

Programming Notes

Calls to DRAWxx are affected by the following subset of
the. mode/attribute/feature . routines descrlbed in the
mode/attribute/feature subsection.

xxHILT
xxINT
xxSTYL
xx VIS

2-3

Modal settings in effect when the first prlmmve in the
segment containing the DRAWxx routine is defined deter-
mine the attributes of that segment.

Lines are drawn from current beam posmon to the
specified endpoint.

MOVExx

Format

MOVEA(X,y) .
Move beam to absolute 2-D position.

MO VER (dx,dy)
Move beam to relative 2-D position.

MOVEA3(x,y,z)
Move beam to absolute 3-D position.

MOVERS(dx, ,dz)
Move-beam to relative 3-D posmon

Parameters

X,¥5Z ‘ Inpixt parameters; absolute user coordi-
nates of endpoint.

dx,dy,dz Input parameters; user coordinates of
endpoint relative to current beam posi-
tion. .

Programming Notes

Calls to MOVExx are not affected by the
mode/attribute/feature routines listed in this section.
MOVExx is not a pnmltwe in the same sense as other
routines in this section since it does not draw anything.
However, MOVExx routines are necessary in positioning
the drawing beam when constructing displays with the
other primitives.

Calls to MOVExx move the drawing beam from its current
position to the specified endpoint with the drawing beam

off. When a given segment is displayed, calls to MOVExx - -

within it do not appear as lines on the terminal display

surface. Drawing beam movement is continuous, ‘and the -

beam must either be moved with ealls to other primitives
when display information is involved, or with MOVExx
when 51mple beam repositioning is desired. When a
picture is defined (section 3), the drawing beam is xmtlally
positioned.in the center of the picture. When a segment is

2-4

opened, the drawing beam is positioned at the last position
described in the previous segment. Refer to the examples
at the end of this section.

Refer also to WHEREX in section 8.

PLOTxx

Format

PLOTA (npoint,xary,yary,line)
Plot symbols at absolute-2-D endpoints.

PLOTR(npoint,dxary,dyary,line)
Plot symbols at relative 2-D endpoints.

PLOTA3(1|point,xary,yary,2.ary,ﬁne)
"Plot symbols at absolute 3-D endpoints.

PLOTR 3(npoint,dxary,dyary,dzary;line)
Plot symbols at relative 3-D endpoints.

Parameters

npoint o Input -paramete'r' the number
of - endpoints in each array
(same for all arrays).

Input arrays of length npoint
containing the absolute user
coordinates of each endpoint,
in the proper sequence.

xary,yary,zary .

Input arrays of length npoint
containing ‘the relative user
coordinates of each endpoint,
in ‘sequence. The coordinates
- of each point are given rela-
tive to the last point in the
array, not relative to the ini-
tial beam posmon

dxary,dyary,dzary

line Input logical variable speclfy—
: ing whether or not lines are to
be drawn .between the plotted
" points. Applies to all points in

the plot. T
If LINE=.TRUE., lines are
drawn between the end points,
starting at current beam posi--

tion. :

~ If LINE=.FALSE., no lines are
drawn.

The symbol- is plotted regard- .
less of the value of line.

60455940 C

Programming Notes

Calls to PLOTxx are affected by the following subset of
the mode/attribute/feature routines desceribed in the
mode/attribute/feature subsection.

xxHILT
xxINT
xxSTYL
xxSYM
xxVIS

Modal settings in effect when the first primitive in the
segment containing the PLOTxx routine is defined deter-
mine the attributes of that segment.

Calls to PLOTxx draw the current modal plotting symbol
at each point in a series of endpoints. Refer to xxSYM, in
this section, for more information on'selecting plotting
symbols.

The current modal plotting symbol is drawn at the end of
the line segment when PLOTxx is called for one point.

When LINE=.TRUE., line style for the lines connecting the

plotted points is determined by the current line style
mode as set by SMSTYL.

TEXTx

Format

TEXT(nchar,itext)

Draw specified text string at current 2-D position.

TEXT3(nehar,itext)

Draw specified text string at current 3-D position.

Parameters

nchar Input parameter; number of characters
in text string:

itext Input array containing the nehar char-
acters to be drawn. The maximum
number of characters per word is ma-
chine dependent (10 characters per
word for CDC CYBER 70, CDC CYBER
170, and 6000 computers).

Programming Notes

Calls to TEXTx are affected by the following subset of
the mode/attribute/feature routines described in the
mode/attribute/feature subsection.

xxCSIZ
xxDSIZ

"~ xxFONT
xxHILT
xxINT
xxROT
xxROT3
xx VIS

60455940 C

In addition, the programmer may call TFNSIZ to find the
number of discrete character sizes supported.

Modal settings in effect when the first primitive in the
segment containing the TEXTx call is defined determine
the attributes of that segment.

The TEXTx routines draw the specified string of
Hollerith characters. The string is drawn beginning with
the lower left corner of the first character at current
beam position.

At the completion of the TEXTx primitives, the position
of the drawing beam is not predictable.

Before numerical information can be output via a TEXTx

call, data must be reformatted. The FORTRAN ENCODE
statement, although non-ANSI standard, will reformat
the data as needed. (Refer to the FORTRAN Reference
Manual.)

Refer to xxROT and xxROT3, in this section, for
information on character rotation.

MODE/ATTRIBUTE/FEATURE ROUTINES

xxCSIz

Format

TFCSIZ(lcchar)

Test to see if continuous character. sizes are
supported.

SMCSIZ{wide,high)
Modally set the continuous character size.
TMCSIZ(widout,hiout)

Test the current modal setting of continuous
character size.

RA CSIZ(idseg,wide,high)

Reset the continuous character size: attribute
of a segment.

TACSIZ(idseg,widout,hiout)

Test the continuous character: size attribute of
a segment.

Parameters

lechar Output parameter; if
: LCCHAR=.TRUE., postprocessor
supports - -continuous - character

sizes. i ' ‘

Input parameters specifying the
width and height of the rectangle
that is to contain the character.
These measurements ~are in
relative user coordinates and
include any spacing for - the
character.

wide,high

2-5@

DEFAULT is a discrete
character size. Refer to xxDSIZ.

widout,hiout ~ Output parameters specifying
the width and height of the
rectangle which contains - the
character.

idseg -Input parameter identifying the
segment whose attribute is being
tested or reset:
1<idseg<32,767
Programming Notes
The set of characters supported by xxCSIZ is shown in
table 2-1. Refer to the appropriate postprocessor

-appendix for any modification/additions to the supported
character set for continuous characters.

TABLE 2-1. SUPPORTED CONTINUOUS

° CHARACTER SET
Code Graphic Code Graphice

0 : 32 5
1 A 33 6
2 B 34 7
3 C 35 8
4 D 36 9
5 E 37 +
6 F 38 -
7 G 39 *
8 H 40 /
9 1 4 (
10 J 42)
11 K 43 $
12 L 4 =
13 M 45

14 N 46
15 O 47 .
16 P’ 48 #
17 Q 49 |
18 R 50]
19 S 51 %
20 T 52 "
21 U 53 —.
2 U 54 !
23 W 55 & -
24 X 56 '
25 Y 57 2
26 7 58 <
27 0 59 >
28 1 60 @
29 2 61 \
30 3 62 -~
31 4 63

Continuous character mode is complementary to discrete
mode. Continuous character mode is set by calling
SMCSIZ;. discrete character mode is set by calling
SMDSIZ.

If- discrete size is in effect, then (widout,hiout)'will be
returned as (0.,0.) for TMCSIZ and TACSIZ.

If the attribute is discrete, resetting it to continuous is
an error.

Continuous character size modes/attributes affect only
segments containing text primitives. Modes may be set
and attributes altered for segments not containing text
primitives, but there is no effect on the segment.

2-6

This routine affeets the TEXTx routines only; refer to-
TEXTx routines.

xxDSIZ

Format

TFDSIZ(wide,high,widout,hiout)

Test to see what discrete size of characters best
approximates a size of character the program-
mer wishes to use.

* SMDSIZ(wide,high)
" Modally set the discrete character size.

TMDSIZ(widout,hiout)

Test current modal setting of discrete character
size. '

RADSIZ(idseg, wide,high)

Reset the discrete character size attribute of a
segment. :)

TADSIZ(idseg,widout,hiout)

Test the discrete character size attribute of a
segment.

Parometers
wide,high Input .parameters specifying the
) width and height of the desired
character size as fractions of the
sereen size.)

DEFAULT is the hardware char-
acter size most closely approxi-
mating:

WIDE=.0125
‘HIGH=.0167

Refer to appropriate postprocessor
appendix for more information o
default character sizes. g

Output parameters specifying -the
width and height of the hardware
discrete ‘character size that best
approximates the . desired size
(TFDSIZ) or the character size that
is being used (TMDSIZ and
TADSIZ).

widout,hiout

idseg Input parameter identifying the
segment whose attribute is to be
tested or reset:

1<idseg<32,767

Programming Notes

Discrete character sizes are those character sizes the
terminal hardware is capable of generating.

TIGS accepts the values given by the wide and high

‘parameters and matches them to the terminal-supported

diserete size which best approximates the values (SMDSIZ
and RADSIZ). Best approximation is defined to be the

60455940 C

largest size that is less than or equal to the requested
size. The matching is done first on width; within the best
approximate width, the best approximate height is found.

If there is no disecrete character size less than or equal to
the desired size, the smallest available character size is
used. To test for the smallest available .discrete char-
acter size

CALL TFDSIZ(0.,0.,WIDOUT,HIOUT)

Character sizes for input parameters wide and high and
output parameters widout and hiout are expressed as
fractions of the screen area. For example,

WIDE=.0125
and HIGH=.0167

represent 1/80 of the sereen horizontally and 1/60 of the
sereen vertically. This allows 80 characters per line and

60 lines, which is the default. Some terminals support
only one character size.

If continuous size is in effect, then (widout,hiout) will be
returned as (0.,0.) for TMDSIZ and TADSIZ.

If the attribute is continuous, resetting it to discrete is
an error.

Discrete character size modes/attributes affect only
segments containing text primitives. Modes may be set
and attributes altered for segments not containing text
primitives, but there is no effect on the segment.

This routine affects .the TEXTx routines only; refer to
TFNSIZ and TEXTX routines.

xxFONT

Format

TFFON T(nfont)

Test the number of character fonts available on
a terminal.

SMFONT(ifont)
Modally set the character font.

TMFONT(ifont)
Test the current modal setting of character font.

RAFONT(idseg,ifont)
Reset the character font attribute of aksegm.ent.

TAFONT(idseg,ifont) k
Test the character font attribute of a segment.

Parameters

nfont Output parameter indicating the num-
ber of character fonts supported.

_ifont Input parameter (SMFONT and
RAFONT) or . output

character font used.

60455940 C

parameter -
(TMFONT and TAFONT) specifying

Range is 0 through 63. If IFONT >
NFONT, NFONT is used.

IFONT=1 Use normal font-DE-
’ FAULT.
IFONT=2 Use italicized char-

acters if supported.

IFONT=3 Use third font if sup-
ported.
IFONT=n Use nth font if sup-
ported.
IFONT=0 Reserved for future
expansion.
Number of supported fonts depends on
postprocessor.
idseg Input parameter identifying the seg-
ment whose attribute is to be tested or
reset:
1<idseg<32,767

Progromming thes

Character font modes/attributes affect only segments
containing text - primitives. Modes may be set and
attributes altered.for segments not ‘containing text primi-
tives but there is no effect on the segment.

This routine affects the TEXTx routines only; refer to
TEXTx routines. . .

xxHILT

Format

TFHILT(lhilt)

Test to see if hlghhghtmg of display.is suppor'ted
by postprocessor.

SMHILT(hilit)

Set highlighting mode on or off.
TMHILT(lhilit)

Test current highlighting mode.

RAHILT(idseg,lhilit)
Reset the highlighting attribute of a segment

TAHILT(idseg,1hilit)
Test the highlighting attribute of a segment

Parameters

Thilt Output parameter; if LHILT=.TRUE.,
highlighting is supported;.otherwise, it
is not.

Ihilit Input parameter (SMHILT and RAHILT)

or output parameter (TMHILT and
TAHILT) indicating highlighting mode
or attribute.

2-1

If LHILIT=.TRUE., affected segments
are highlighted; otherwise, they are not.

DEFAULT is LHILIT=.FALSE.

idseg Input parameter identifying the seg-

. ment whose attribute is to be tested or
reset: : :

1<idseg<32,767

Programming Notes

The implementation of highlighting is terminal dependent.
It can be done by blinking the item, using a reserved
intensity level, line style, color, font (for text), and so on.
Refer to the appropriate postprocessor appendix for more
information.

The highlighting mode cannot be changed after the first
primitive in a segment is defined and for as long as that
segment is open. :

The method used to echo a segment pick is independent of '

eurrent highlighting mode. Refer to seetion 7.

xxINT

Format

TFINT(ninten)]
Test the number of intensity levels available on a
terminal.} .

SMINT(finten)

Modally set the intensity.

TMINT(finten) ‘
Test the current modal setting for intensity.

RAINT(idseg,finten)
Reset the intensity attribute of a segment.

TAINT(idseg,finten)
Test the intensity attribute of a segment.

Parameters

ninten Output parameter indicating the num-
ber of discrete intensity levels sup-
ported:

1<ninten< 32,767

finten Input parameter (SMINT and RAINT) or
output parameter (TMINT and. TAINT)
indicating intensity levei. Range is
from 0. (dimmest) to 1. (brightest).

DEFAULT is FINTEN=.5.

Input parameter identifying segment
whose attribute is to be tested or reset:

i<idseg<32,767

idseg

xxROT

Format

TFROT(ninty,lcont)

Test to see if character rotation by ninety
degree increments is supported, and if continuous
character rotation is supported.

SMROT(deg)
Modally set the angle of 2-D character rotation.

TMROT(deg)

Test eurrent modal setting of angle of 2-D
character rotation. :

RAROT(idseg,deg)

Reset. the 2-D character rotation attribute of
a segment.

TAROT(idseg,deg)

Test the 2-D character rotation attribute of
a segment.)
Parameters
Ininty - Output parameter; if LNINTY=.TRUE., ter-

~ minal hardware supports 90° character rota-
tion.)

Output parameter; if LCONT=.TRUE., con-
tinuous - character rotation is supported by

_either terminal hardware or by TIGS soft-
ware.

lcont

deg Input parameter (SMROT and RAROT) or
output parameter (TMROT and TAROT)
specifying magnitude of rotation in degrees.
‘Measured eounterclockwise from X axis.

DEFAULT is no rotation.

Input- parameter identifying the segment

whose attribute is to be tested or reset: .
1<idseg<32,767

idseg

Programming Notes

Character rotation. modes/attributes affect. only 2-D.
segments containing text primitives. Modes can be set
and attributes altered for segments not containing text
primitives, but there is no effect on the segment.

Consult the appropriate postprocessor appendix. for speci-
fie information on how the character rotation is imple-
mented.

This routine affects the TEXT routine only; refer ‘to
TEXT routine. .

60455940 C

xxROT3
Format
SMR OT3(xbase, ybase,zbase, xplane,yplane,zplane)

Modally set the rotation angle and plane for
3-D characters.

TMR OT3(xbase,ybase,zbase, xplane,yplane,zplane)

Test current modal setting of rotation angle
and plane for 3-D characters.

RAROT3(idseg,xbase,ybase,zbase,xplane,yplane,
zplane)

Reset the 3-D character rotation and plane
attribute of a segment.

TAROT3(idseg,xbase,ybase,zbase,xplane,yplane,
zplane)

Test the 3-D character rotation and plane
attribute of a segment. .

>arameters

xbase,ybase, Input parameter (SMROT3 and

zbase - RAROT3) or output parameter
(TMROT3 and TAROT3) specifying a
relative vector (base vector) which
defines a line along which 3-D text will
be written.

DEFAULT is (1.,0.,0.).

xplane,yplane, Input parameter (SMROT3- and

zplane RAROT3) or output parameter
(TMROT3 and TAROT3) specifying a
relative veector (plane vector), which
together with the base vector, defines
the plane in which the text will be
written - (that is, the plane - vector
determines the up direction).

DEFAULT is (0.,1.,0.)

idseg Input parameter identifying the
‘segment whose attribute is to be tested
or reset:

1 <idseg <32,767
Programming Notes

The values of the base and plane vectors are specified in
ser coordinates relative to the beam position at the
time a call to TEXT3 is made.

3-D character rotation angle/plane modes/attributes
affect only 3-D segments econtaining text primitives.
Modes can be set and attributes altered for segments not
containing text Drlmltlves but there is no effect on the
segment.

[f the current mode for a 3-D segment is .a discrete
character size, the 3-D character angle and plane are
ignored. Discrete characters will be drawn with no
~otation in 3-D segments.

An-error occurs if the base vector and the plane vector
are colinear (lie along the same line), or if either vector
consists of all zeros.
This routine affects the TEXT3 routine only; refer to
the TEXT3 routine.

60455940 C

xxSTYL

Format

“TFSTY L(lhard)
Test for line styles supported by terminal hard-
ware.

SMSTY Liistyle)
Modally set line style.

TMSTY L(istyle)
Test current modal setting of line style.

RASTY L(idseg,istyle)
Reset line style attribute of a segment.

TASTY L(idseg, istyle)
Test the line style attribute of a segment.

Parameters

An output array of six Iogical variables
specifying what line styles are supported by
terminal hardware.

If LHARD(1)=.TRUE., solid line style is
supported. .

If LHARD(2)=.TRUE., long dashed line style
is supported.

If LHARD(3)=.TRUE., short dashed line style
is supported.

If LHARD(4)=.TRUE., dash-dotted line style
is supported.

If LHARD(5)=.TRUE., dotted line style is
supported.

If LHARD(6)=.TRUE., bit pattern line style
is supported.

thard

An input parameter (SMSTYL and RASTYL)
or output parameter (TMSTYL and TASTYL)
specifying line style.

ISTYLE=I]
ISTYLE=2
ISTYLE=3
ISTYLE=4
ISTYLE=5
ISTYLE>5 ~ Pattern line style.
1<istyle<7777B

DEFAULT is ISTY LE=I, solid line style.

istyle

Solid line style.

Long dashed line style.
Short dashedline style.
Dash-dotted line style.
Dotted line style. '

An input parameter identifying the segment
whose attribute is to be tested or reset:

I1<idseg<32,767

idseg

Programming Notes
xxSTYL routines do not affect text primitives.
As the value for istyle increases to 5, the percentage of

space in the line increases.

2-9

istyle values above 5 are used for patterned line styles
which allow the programmer to ereate his own line styles
for spec1a1 purposes. For patterned line styles, the istyle
value is given as a four-figure octal number. Numbers of
fewer than four figures are treated as mght—]ustlfled
‘zero-filled quantities. This octal number is translated
into its 12-bit binary equivalent which becomes the. line
style pattern. Each 0 value is a drawing beam off
segment and each 1 value is a beam on segment. This 12~
bit pattern is repeated as many times as is necessary,
depending on the line length. For example,

ISTYLE=7652B
yields a 12-bit pattern -
1]11]0101010
which is interpreted as a long dash followed by three dots

— " ¢

and . becomes the pattern for all lines drawn, until
changed.

Consult the appropriate postprocessor appendix for infor-

mation on the algorithm used to transfer this bit pattern
line style to the terminal display screen.

xxSYM

Format

TFSY M(nsym)

Test for maximum defined symbol number ina

given postprocessor.

SMSY M(isym)

Modally set the selected plotting symbol for use
with PLOTxx routines.

TMSY M(isym) A
Test current modal setting for plot symbol.

RASY M(idseg,isym)

Reset. the plotting symbol attribute of a seg-

ment.

TASY M(idseg,isym)
Test the plotting symbol attribute of a segment.

Parameters

nsym Output parameter indicating maximum
- ~symbol number for which a symbol is
defined:

-1smsym<32,767

laveas

NSYM=-1 implies no symbol is defined.

isym Input parameter (SMSYM and RASYM)
or output parameter (TMSYM and
TASYM) specifying symbol used. Refer
to appropriate postprocessor appendix
for supported symbol set.

DEFAULT is ISYM=-1; no symbol de-
fined. This option allows the plotting of
arrays of data without symbols.

If isym > nsym, nsym is used.
idseg Input parameter identifying the seg-

ment whose attribute is to be tested or
reset:

1<idsegs 32,767

Programming Notes

TIGS supports the Calcomp/UNIPLOT 'compatible set of
centered symbols shown in table 2-2.

TABLE 2-2. SUPPORTED PLOTTING SYMBOLS

- Code

Q
2
°
=
s

—MEHLKNAHDOX+PBOE

Shh oo uswo=O

Refer to the appropriate postprocessor appendlx for any
modifications/additions to this set.

This subroutine affects the PLOTxx routines only; refe1
to PLOTxx.

xxVIS

Format

TFVIS(tran)

Test to see if complete screen retransmission is
required to make any one segment invisible.

SMVIS(lvis)
Set visibility mode for visible or invisible.

TMVIS(lvis) ,
Test current setting of visibility mode.

RA VIS(idseg,lvis)
Reset visibility attribute of a segment.

TA VIS(idseg,1vis) ,
Test visibility attribute of a segment.

60455940 C

arameters

1tran Output parameter; if LTRAN=,TRUE., then

- retransmission of data to the screen is

necessary to make a visible segment
invisible.

lvis Input parameter (SMVIS and RAVIS) or
output parameter (TMVIS and TAVIS) indi-
cating visibility mode or attribute. If
LVIS=.TRUE., affected segments are visible;
otherwise, they are not. Visibility mode
may not be changed during segment defini-
tion; the entire segment is either visible or
not visible.)

DEFAULT is LVIS=.TRUE.

idseg Input parameter identifying the segment
- whose attribute is to be-tested or reset:

1<idseg<32,767

rogramming Notes

he effects of a reset visibility operation will typically
e seen immediately on a refresh terminal.

FNSIZ

ormat

TENSIZ(nsize)

Test to see how many diserete character sizes
are supported by the terminal. :

Parameters

nsize Output parameter giving number of discrete
- character sizes supported.

Programming Notes

This routine affects the TEXTx routines only; refer to
TFDSIZ and TEXTx routines.

EXAMPLE OF GRAPHICS PRIMITIVES
USAGE

The following example illustrates the use of many of the
graphics primitives covered in this section. Many of the
mode/attribute/feature routines which affect primitives
are used. The example is not a complete program; it
illustrates only the postprocessor-independent portions of
a TIGS program. TIGS calls that are not documented in
this section (for example, INITIG and QUITIG) may be
found elsewhere in the manual.

Figure 2-4 illustrates the display generated by this
example.

The sample program at the end of section 4 contains an -
elementary example of three-dimensional. primitives
usage. : ;

WARNING

Refer to appropriate postproceséor
and operating system appendices for -
format of PROGRAM statement.

PROGRAM statement ’
DIMENSION LHARD(6),X(21),Y(21)
INTEGER TMSTYL
LOGICAL LHARD,LINE
CALL INITIG(.TRUE.,.TRUE.,5LIFILE)
CALL TFSTYL(LHARD)
DO 100 I=1,4
J=6-1
IF (LHARD(J)) GO TO 150
100 CONTINUE
ISTYLE=1
GO TO 200

150 ISTYLE=J

200 CONTINUE

Initialize TIGS; refer to sec¢tion 8.

Find out which line styles are hardware-supported.. If dotted, -
dash-dotted, short dashed or long dashed lines are hardware-
supported, set line style parameter to the appropriate one

(first hardware-supported ' line style encountered is used).

Otherwise, set line style parameter to solid line. This is a

good example of postprocessor-independent programming. -

Set mode, line style. Note that this is the line style attribute -

CALL SMSTYL(ISTYLE) : for the entire segment even though the line style for this seg-
ment does not remain constant. :

CALL SMPLIM(-100.,-100.,100.,100.)

CALL OPNSEG(1)

60455940 C

Set picture 1imits; refer to section 3.

Open segment 1; refer to section 3.

v 2-11

CALL MOVEA(75.,-50.)
THETA=180. ' Draw arc in lower right quadrant.
CALL ARCDA(50.,-50.,THETA)
CALL MOVEA(-25.,-50.) : .
Draw circle in lower left quadrant.
CALL ARCA(-50.,-50.,-25.,-50.)
CALL MOVEA(-55.,-40.)

CALL TEXT(4,4HTIGS)

CALL MOVEA(-57.,~60.)

: Add text; default character size is used. -

CALL TEXT(7,7HEXAMPLE)

CALL MOVEA(44.,-50.)

CALL TEXT(6,6 HY =X **2)

CALL MOVEA(-100.,0.)

CALL DRAWR(200.,0.)

) - Draw X and Y axes using relative draw routines.
CALL MOVER(-100.,100.)
CALL DRAWR(0.,-200.)
VAL=-10.

DO 300 1=1,21

X()=VAL Set up X and Y arrays for plotting points.
Y(D=VAL**2 '
VAL=VAL+}

300 - CONTINUE
CALL SMSYM(12)
LINE=.TRUE. Set mode for special plotting symbol number 12 (hourglass

. shape) and set for connecting lines between points.
CALL MOVEA(X(1),Y(1))) '

CALL PLOTA(21,X(1),Y(1),LINE)

CALL MOVEA(-65.,90.)

CALL TEXT(9,9H(-10,100)) . o _

: Label 1st and 21st points; default character size is used. -

CALL MOVEA(55.,90.) ‘ ‘ .

CALL TEXT(8,8H(10,100))

JSTYLE=5 '

IF (TMSTYL(ISTY LE).EQ.5) JSTYLE=3

CALL SMSTYL(JSTYLE)

CALL MOVEA(54.,92.)

CALL DRAWA(12.,99.)) Add arrows to point from text to graph. Use dotted line style

if it was not used to draw the arcs; otherwise, use short
CALL SMSTYL(1) dashes. Use function subprogram to test the line style used for

arc drawing. Use relative draw routine to draw arrowheads.
CALL DRAWR(0.,-1.5)

CALL DRAWR(1.5,1.5)

CALL DRAWR(-1.5,0.)

| 212 60455940 C

CALL SMSTY L(JSTYLE)
CALL MOVEA(-46.,92.)

CALL DRAWA(-12.,99.)
CALL SMSTYL(]) Draw second arrow and arrowhead.
CALL DRAWR(0.,-1.5) |
CALL DRAWR(-1.5,! .5)

CALL DRAWR(1.5,0.)

CALL CLSSEG Close segment; refer to section 3.
CALL DSPLAY . Display picture; refer to section 8.
CALL QUITIG(.TRUE.) Terminate TIGS program; refer to section 8.
STOP '
END
-------- - B Aguusn .
stop 10100 (10.100)
S
x %
KSR
E3E3
x oz ,
X%
xiz

J——) [

R ad ... o ,-" B e .

ol Y . ‘4' ‘.“
., o “

TIGS '\ ! Y

e,

Yexx3d

Figure 2-4. Sample Primitives Program Display

60455940 C v : 2-13 ||

SEGMENTS AND PICTURES

The following TIGS calls are documented in this section.

BLINDS LCKSEG TAPLIM
CLSPIC OPNPIC TAPLI3
CLSSEG OPNSEG TA3D
COPY RAPICT TFPICT
DELPIC RENAME TMPICT
DELSEG SMPICT TMPLIM
EMPTY SMPLIM TMPLI3
EXTPIC SMPLI3 TM3D
EXTSEG TAPICT

This list includes routines which define and manipulate
segments and pictures, and those mode/attribute/feature
routines which affect segments and pictures. The
mode/attribute/feature routines are placed in a separate
group following the calls which define and manipulate
segments and pictures.

Following the deseription of the routines is an example in
which segment and picture usage is demonstrated.

GENERAL

To aid the programmer in effectively organizing a
graphies display, TIGS has a three-level organizational
scheme. From least comprehensive to most comprehen-
sive, these three levels are primitives, segments, and
pictures. This scheme allows effective planning of a
display: how that display will ultimately appear on the
terminal viewing area is also dependent upon the window
and viewport calls deseribed in section 4 of this manual.

A segment consists of a group of one or more graphics
primitives. The programmer defines a segment through
the use of the OPNSEG and CLSSEG subroutines, and
assigns each segment an identification number. Segments,
like pictures, are employed for purposes of selective
display modification. By using these organizational tools,
a programmer can manipulate and modify certain portions
of a total display without affecting other portions.
Segments compose the lowest organizational level at
which such modification can take place; that is, no
modification can be done on a primitive-by-primitive basis
unless each primitive is a separate segment. TIGS
operations such as translation, deletion, and interactive
picking act on individual segments through proper specifi-
cation of segment identifiers.

A segment possesses aitributes. Attributes such as
intensity, line style, and sensitivity to interactive picks
are automatically inherited by the segment from the
modal settings in effect when the segment is opened.

One or more segments compose a picture. The program-
mer defines a picture with the OPNPIC and CLSPIC ecalls
and assigns a segment to a picture with either the
OPNPIC call or the SMPICT or EXTPIC ealls (they

60455940 B

S

perform identical functions), whichever is encountered
latest. A segment can belong to only one picture at a
time. For example, the sequence of calls

CALL OPNPIC(5)
CALL SMPICT(18)
CALL OPNSEG(2)

would result in segment 2 belonging to picture 18. If the
OPNPIC and SMPICT calls were reversed, the segment
would belong to picture 5.

Only one picture can be open at any given point in the
program. The same is true for segments. Once opened
and then closed, a segment cannot be reopened with
OPNSEG. It can only be extended using the EXTSEG
routine. A picture cannot be reopened using OPNPIC, but
SMPICT or EXTPIC may be used to assign new segments

-to a previously defined picture. If SMPICT is used with a

picture identification number not previously defined with
an OPNPIC call, a warning message is issued and a picture
with that identification number is opened.

The dimensionality of a picture (2-D or 3-D) is established
when picture limits are specified. In TIGS, picture limits
and dimensionality are modally set values. A call to
SMPLIM is made for two-dimensional pictures, and a call
to SMPLI3 is made for three-dimensional pictures. Only
two-dimensional primitives, windows, and viewports can
be used with two-dimensional pictures. Only three-
dimensional primitives, windows, and viewports can be
used with three-dimensional pictures.

Default program conditions provide for situations in which
a programmer might not need TIGS multiple picture
capability. Segments may be defined without defining a
picture in which to place them. In this case, all segments
belong to a single default picture (picture ID=0). The
default picture can be either two- or three-dimensional,
but not both. When using the default picture, no calls to
OPNPIC, SMPICT, or EXTPIC should be made. Multiple
pictures are useful where a programmer is composing
displays from different sources (for example, several
different engineering drawings) or needs flexibility in
combining display elements.

Only when the default picture is used can the default
window and viewport be used. Any calls to OPNPIC,
SMPICT, or EXTPIC necessitate parallel calls to window
and viewport routines to display the graphies material
(refer to Windows and Viewports, section 4).

The following paragraphs glve capsule descriptions of the
segment and picture routines in this seetion.

The definition of a picture or segment is accomplished
with the OPNPIC and CLSPIC or OPNSEG and CLSSEG
routines. LCKSEG may be used to close a segment that is
not to be extended.

3-1

Primitives can be added to existing segments by using the
EXTSEG routine. New segments may be added to existing
pictures using the EXTPIC routine.

Existing segments are copied by using the COPY routine.
EMPTY removes all primitives from an existing segment.

Specific pictures and segments are deleted by using the
DELPIC and DELSEG subroutine.

Picture visibility is controlled by BLINDS.

The RENAME subroutine is used to give a segment a
different identification.

The xxPICT mode/attribute/feature routines control as-
signment of segments to pictures.

The xxPLIx mode/attribute/feature routines define pic-
ture limits.

The xx3D mode/attribute routines test picture dimension-
ality.

SEGMENT AND PICTURE ROUTINES
BLINDS

Format

BLINDS(idpict,ldown)

Control display of all parts of picture through all
windows with which the picture is associated.

Parameters

idpiet Input parameter . specifying the desired
picture.

ldown Input parameter specifying whether or not
the picture will be seen in associated win-
dows.

If LDOWN=.TRUE., the blinds are down and
no part of the picture is seen in any window.

If LDOWN=.FALSE., the blinds are up and
the pieture is visible in all associated win-
dows.

DEFAULT is LDOWN=.FALSE.

Programming Notes

BLINDS controls pieture visiblity by controlling whether
or not the windows of a given picture are mapped to their
assigned viewports on the terminal dispiay screen. Refer
to Windows and Viewports, section 4, for further informa-
tion.

To use BLINDS in the default picture, window, and
viewport situation, use IDPICT=0.

3-2

CLSPIC

Format

CLSPIC
Close an open picture.

Parameters

None.

Programming Notes

Together with -OPNPIC, CLSPIC is used to define the
beginning and end of a picture composed of segments.
CLSPIC will close any open picture. CLSPIC also closes
any open segment.

Refer to OPNPIC.

CLSSEG

Format

CLSSEG
Define the end of the currently open segment.

Parameters

None.

Programming Notes

Together with OPNSEG, CLSSEG is used to define the
beginning and end of a segment composed of primitives.
CLSSEG will close any open segment.

Refer to OPNSEG.

COPY

Format

COPY (idseg,newseg)

Generate a copy of the specified segment and
assign it the segment identifier newseg.

Parameters

idseg Input parameter specifying the identifier of
the segment to be copied. If the segment
does not exist or is open, an error occurs and
the call is ignored.

60455940 A

newseg Input parameter specifying the identifier to
be assigned to the copy:

l<newseg<32,767

If this ID is already is use, an error oceurs
and the call is ignored.

Programming Notes

The currently open picture does not influence the COPY
operation. The copy of the segment is inserted in the
same picture as the original. To put the copy in a
different picture, use the RAPICT routine.

OPNSEG and CLSSEG are not used to define the beginning
and end of a copied segment.

DELPIC

Format

DELPIC(idpict)
Delete specified picture.

Parameters

Input. parameter . specifying the ID of the
picture that is to be deleted.

idpict

Programming Notes

Deleting a picture also deletes all windows and. all
segments in that picture. The default picture cannot be
deleted. An error occurs if an attempt to do so is made.
A warning message is issued if an attempt is made to
delete a nonexistent picture (idpiet does not exist).

An idpiet which has been deleted is reusable.

DELSEG

Format

'DELSEG(idseg)
Delete specified segment.

Parameters

idseg Input parameter specifying the ID of- the

segment that is to be deleted.

Programming Notes
An open segment cannot be deleted. A warning message

is issued if an attempt is made to delete a nonexistent
segment (idseg does not exist).

60455940 C

An idseg which has been deleted is reusable.

The associated picture does not need to be open for the
DELSEG operation.

The effects of the delete operation will be seen
immediately on a refresh terminal.

EMPTY

Format

EMPTY(idseg)
Delete contents of a segment.

Parameters

Input parameter specifying the ID of the
segment that is to be emptied.

idseg

Programming Notes

This subroutine deletes all primitives from a segment. It
also restores modal settings to the values that prevailed
when the segment was opened if modes were reset within
the segment definition. "All attributes of the segment
(inherited from modal settings in effect when the segment
was originally opened) remain as they were.

The associated picture does not need to be open for the
EMPTY operation.:

The effects of the EMPTY operatlon will- be seen
immediately on a refresh terminal.

Refer to EXTSEG.

EXTPIC

Format

EXTPIC (idpict)
Add segments to an existing picture.

v Parameters

idpict
picture to be extended.

Programming Notes

This subroutine reopens an existing picture for extension.
An attempt to reopen an existing picture using OPNPIC is
an error. All segments created while the picture is open
belong to the picture. Pictures reopened with EXTPIC
must be closed.. Calls to- CLSPIC, EXTPIC SMPICT, and

: OPNPIC will elose an open plcture

Input' parameter . spemfymg the ID of the

Picture limits and picture dimensionality associated with
idpict become the current modal settings when EXTPIC is
called. That is, if a new picture is defined after a call to
EXTPIC, it will inherit its dimensionality and limits from
picture idpiet unless changed by the programmer.

After a call to EXTPIC, beam position is the same as it
was when picture idpict was last closed.

If no picture with identifier idpict exists, one is created
and a warning message is issued.

This subroutine is identical to SMPICT.

EXTSEG

Format

EXTSEG(idseg)

Add primitives to an existing segment.

Parameters

idseg Input parameter specifying the ID of the
segment to be extended.

Programming Notes

This subroutine reopens an existing segment for extension.
An attempt to reopen an existing segment using OPNSEG
is an error. All primitives specified while the segment is
reopened belong to the segment. Segments reopened with
EXTSEG must be closed again. ° Calls. to CLSSEG,
OPNSEG, LCKSEG, or EXTSEG close any open segment;
however, segments closed by OPNSEG and EXTSEG result
in warning messages.

Segments closed with LCKSEG cannot be reopened,for
extension.

After a call to EXTSEG, all modal settings in effect when 7

segment idseg was closed become the current modal
settings. For example, a call to EXTSEG results in a
resetting of current picture mode to the picture which
contains segment idseg. If segment 3 is in picture 1, the
-sequence

CALL SMPICT(9)

‘CALL EXTSEG(3)

means that picture 1, not picture 9, is the current picture

modal setting for subsequent operations, unless changed.

'Curfﬁent beam position is reset to _where it was when
segment idseg was last closed.

If a segment idseg does not exist, such a segment is
created and a warning message is issued.

LCKSEG

Format

LCKSEG
Lock the currently open segment.

Parameters

None.

Programming Notes

This subroutine permanently closes an open segment so
that the segment can never be extended. When the
programmer is certain that a segment will not be
extended, it is more efficient to use LCKSEG - than
CLSSEG to close a segment because CLSSEG must store
all modal settings in effect when the segment is closed.

OPNPIC

Format

OPNPIC(idpict)
Define the beginning of a picture.

Parameters

idpict Input parameter specifying ID of new pic-
. ture: .

1<idpiet<32,767

‘Programming Notes

OPNPIC defines the beginning of picture idpiet. Subse-
quent segments are placed in picture idpiet until another
picture is specified. All segments are placed in the
currently open picture. :

If idpict has previously been used, a warning message is
issued and the OPNPIC ecall is ignored. :

If a picture is open when the OPNPIC call is made, it is
closed before picture idpiet is opened.

If there is no open pieture, segments are placed in the
default picture, IDPICT=0.. o

The only attributes of a picture are -dimensionality (two- -
or three-dimensional) and ‘picture limits. If nondefault
picture limits are to be used, they must be set by using
SMPLIM for two-dimensional pictures or SMPLI3 for
three-dimensional pictures, and they must be set before
any TIGS, eall which describes coordinates in the picture.
These attributes cannot be reset. Refer to SMPLIM and
SMPLI3 in this section. -

60455940 C

Current beam position is moved to the center of the new
picture after a call to OPNPIC.

When using nondefault pictures defined by OPNPIC calls,
the default picture should not be used.

Refer to CLSPIC.

OPNSEG

Format

OPNSEG(idseg)
Define the beginning of a segment.

Parameters

idseg Input parameter specifying ID of new seg-
ment:

1<idseg<32,767

Programming Notes

OPNSEG defines the beginning of segment idseg. Subse-
quent primitives are placed in segment idseg until another
segment is specified. Primitives are always placed in the
currently open segment.

If idseg has previously been used, a warning message is
issued and the OPNSEG call is ignored.

If a segment is open when the OPNSEG call is made, it is
closed before segment idseg is opened and a warning
message is issued. Open segments should be closed with
CLSSEG.

If primitives are encountered when no segment is open, a
warning message is issued and the default segment
IDSEG=0 is opened or extended as needed.

Segments inherit attributes from modal settings in effect
when the segment is defined. Because modes do not
become attributes of a segment until the first primitive of
that segment is encountered, modes may be set before or
after the OPNSEG call. Since a segment as a whole can
logically possess only one value for any of its attributes,
some care must be exercised when setting modes if
attributes are later to be reset. Refer to Mode/At-
tribute/Feature Routines in this section for more informa-
tion.

RENAME

Format

RENAM E(idold,idnew)

Replace old segment identifier idold with new
identifier idnew.

60455940 C

Parameters

idold Input parameter; segment ID of segment
: * which is to be renamed:

1<idold< 32,767

idnew Input parameter; new ID of segment:
1<idnew<32,767

Programming Notes
idold is as established by OPNSEG.

The associated picture does not need to be open for the
RENAME operation.

MODE/ATTRIBUTE/FEATURE ROUTINES

Certain rules must be observed in the use of mode/attri-
bute/feature calls which affect segments and pictures.
Modes described in this section ean be set at any point in
a program except as noted under SMPICT, SMPLIM, and
SMPLI3. However, if a modal setting is changed in the
middle of a segment definition, a subsequent attempt to
reset the attribute represented by that modal setting will
yield unpredictable results, since a segment as a whole
can have only one value for a given attribute. Thus, for
any given segment, a programmer can:

® Change modes within a segment definition, or
® Subsequently reset the attribute of that segment,
but not both.

Segment attributes are not established until the first
primitive is defined for that segment; until that time,
modes may be changed without involving that segment in
the situation described above.

All set mode subroutines described below, except SMPLI3,
have defaults. A programmer who is content with default
conditions need not call any of the mode setting routines.

xxPICT

Format

TFPICT(npict)

Test for maximum number of pictures postpro-
cessor supports. .

SMPIC T(idpiet)

Modally set the already-existing picture to which
subsequent segments are added.

. TMPICT(idpiet)
Test for ID of current mode set picture.
RAPICT(idseg;idpict)

Reset the picture attribute of a segment.

TAPICT(idseg,idpict)
Test the picture attribute of a segment.

Parameters

npict Output parameter indicating the maxi-
mum number of pictures supported by
the postprocessor:

1<npict<32,767

idpict Input parameter (SMPICT and RAPICT)
or output parameter (TMPICT and
TAPICT) specifying a picture identifier.

For SMPICT and RAPICT:
1<idpiet<32,767

For TMPICT and TAPICT:
0<idpict<32,767

idseg Input parameter identifying the seg-
ment whose attribute is to be tested or
reset.

Programming Notes

If no call to SMPICT is made, all segments are placed in a
single default picture, IDPICT=0. However, if more than
one picture is used, the default picture should not be used.
When IDPICT=0, SMPICT and RAPICT calls produce
errors.

Default window and viewport assignment is made only
when the default window is used. Calls to SMPICT
necessitate parallel calls to window and viewport routines
to display the graphics material (refer to section 4).

SMPICT should not be called when a segment is open. A
call to SMPICT closes the currently open piecture. This
also closes the eurrently open segment.

For SMPICT, if no picture idpiet exists, one is created and
a warning message is issued. For RAPICT, the call is
ignored and an error message is issued.

SMPICT is identical to the EXTPIC subroutine. Refer to
EXTPIC in this section for more information.

When moving a segment from one picture to another with
RAPICT, the programmer should be aware that if the
picture limits of the new picture are not equal to the
picture limits of the old picture, improper scaling may
result, and identification of points in the segment may be
incorrect.

xxPLIx

Format

SMPLIM (x11,yll,xur,yur)
Modally set limits for 2-D picture coordinates.

3-6

TM PLIM (x1l,yll,xur,yur)

Test the limits of the current modally-set 2-D
picture.

TA PLIM(idseg,x11,yl1,xur,yur)

Test the limits of the 2-D picture which contains
the specified segment.

SMPLI3(x1lh,ylth,zllh,xury,yury,zury)
Modally set limits for 3-D picture coordinates.

TMPLI3(x1lh,yllh,z]lh,xury,yury,zury)

Test the limits of the current modally-set 3-D
picture.

TA PLI3(idseg,zllh,yllh,z1lh,xury,yury,zZury)

Test the limits of the 3-D picture which contains
the specified segment.

Parameters

xil,yIl,xur,yur Input parameters (SMPLIM) or out-
put parameters (TMPLIM and
TAPLIM) specifying the user co-
ordinates of the lower left and
upper right corners of the picture.
DEFAULT is:
x=yl1=0.
xur=yur=1.
x1lh,yllh,z11h, Input parameters (SMPLI3) or

xury,yury,zury output parameters (TMPLI3 and
TAPLI3) specifying the wuser
coordinates of the lower left
hither and upper right yon
corners of the pieture (refer to
figure 3-1), such that lower<
upper, left<right and hither<
yon, although these terms are
not necessarily meaningful for
any observer position.

The default picture (IDPICT=0) can
be 2-D or 3-D, but not both. De-
fault picture limits for 2-D pic-
tures are given above. There are
no default pieture limits for 3-D; a
programmer using the default pie-
ture must still establish 3-D pie-
ture limits by calling SMPLI3.

idseg Input parameter identifying the
segment whose attribute is to be
tested.

60455940 C

Z |
zury - -
]
1
1
1
i
1
]
1
1
1
[
1
i
1. Yih yury
2lth +—eo 7 Y
g K
[!
i !
! lll .
xllh $eeee +
’
’
,
N
’
7
’
’
’
4
’

Figure 3-1. Three-Dimensional Picture Limits

Prog ramming Notes

There are no test feature (TF) or reset attribute (RA)
routines for two- or three-dimensional pieture limits. TF
routines are not applicable. RA routines are omitted
because of the great complexity and potential for misin-
terpretation of such procedures.

Picture dimensionality (2-D or 3-D) is established by the
selection of SMPLIM for two-dimensional pictures and
SMPLI3 for three-dimensional pictures. If neither routine
is selected, the picture will be two-dimensional with
default picture limits. Either two- or three-dimensional
picture limits can be in effect for a given picture, but not
both. Any attempt to modify the picture limits of a
picture, as when extending an existing pieture, is an error.

Nondefault picture limits ean be specified for the default
picture; use of SMPLIM does not necessitate the use of
OPNPIC. There are no default picture limits for three-
dimensional pictures.

Picture limits must be declared before any routine is
ealled in which user coordinates are specified; among
these routines are primitives routines, window routines,
the LOCATE subroutine, and transformation mode-setting
routines. To be sure of unambiguously establishing desired
picture limits, it is strongly recommended that if a
picture is to have nondefault limits, these limits should be
set immediately following the OPNPIC call.

60455940 C

The default 3-D viewing -system is described in the
windows and viewports chapter.

As in the case of the window and viewport routines:

xlI<xur
yll<yuf
xllh<xury
yih<yury
zllh<zury

xx3D

Format

TM3D(3D)
Test current mode for picture dimensionality.

TA3D(idseg,13D)
Test dimensionality attribute of given segment.

Parameters

13D Output parameter; if L3D=.TRUE., the cur-
rent modal setting or attribute is 3-D;
otherwise, it is 2-D.

idseg Input parameter identifying the segment
whose attribute is to be tested.

Programming Notes

Test feature (TF), set mode (SM), and reset attribute (RA)
routines for picture dimensionality do not exist. A TF
routine is not applicable. The dimensionality of a picture
or segment, once established by SMPLIM or SMPLI3,
cannot be altered. Therefore, there are no SM or RA
routines. Refer to SMPLIM and SMPLI3.

EXAMPLE OF SEGMENTS AND

PICTURE USAGE

The following example uses many of the segment and
picture calls documented in this section. It is not a
complete program. Postprocessor-dependent portions of
the program are not illustrated, nor are portions dealing
with topies not covered in this section, such as the calls to
graphics primitives subroutines and window and viewport
routines. These topics are dealt with elsewhere in the

manual.

The example uses three separate pictures, one of which is
three-dimensional.

WARNING
Refer to appropriate postprocessor and

operating system appendices for format
of PROGRAM statement.

3-17

PROGRAM statement

CALL INITIG (.TRUE.,.TRUE.,5LIFILE)
CALL OPNPIC(1)

CALL OPNSEG(1)

2-D primitives

' CALL LCKSEG

_CALL OPNSEG(2)

2-D primitives

CALL LCKSEG

CALL CLSPIC

" CALL OPNPIC(2)

CALL SMPLI3(-100.,-100.,-100.,100.,100.,100.)

CALL OPNSEG(33)
CALL SMSTYL(2)

.
.

3-D primitives

CALL DRAWA3(00.,100.,100.)
CALL CLSSEG

CALL OPNPIC(3)

CALL SMPLIM(0.,0.,1.,1.)
CALL COPY(1,11)

CALL RAPICT(11,3)

CALL RAPICT(2,3)
CALL DELPIC(1)

Open first picture, 2-D.

Open, define, and close first segment so it cannot be extended.

—

Open, define, and close second segment so it cannot be ex-
tended.

Close first picture.
Open second picture, 3-D.
Set picture limits; there are no default 3-D picture limits.

Piceture limits- should be established immediately after the
plcture is opened.

Open, define, and close 3-D segment; line style is long dashed
lines, beam position at end is (100,100,100).

Open third picture; 3-D is current picture dimensionality until
SMPLIM changes it to 2-D.

»

Copy segment 1 into new segment 11.

Even though picture 3 was the open picture when the segment
was copied, the copy is in the ongmal picture unless RAPICT
is called.

Move segment 2 to picture 3.

Delete picture 1.

60455940 A

CALL EXTSEG(33)
CALL TMPICT(IDPICT)

IF(IDPICT.NE.2)STOP 66

CALL SMSTYL(3)

3-D primitives

.

CALL CLSSEG

.
.

Calls to window and viewport routines,
display routines, and so on.

60455940 A

Extend segment 33; all modes that were in effeet when the
segment was closed become current modes. The call to
TMPICT and the conditional statement demonstrate that

current picture modal setting has changed from picture 3 to

picture 2; picture 3 is automatically closed. Current beam
position is where the beam was left when segment 33 was
closed, at (100,100,100). - Line style is long dashed line
(ISTYLE=2).

Set line style mode to short dashed lines; line style attribute of
segment 33 remains ISTYLE=2, long dashed. Since the
segment now contains multiple modal settings for line style,

the line style attribute of the segment can no longer be pre-

dictably reset.

3-9

WINDOWS AND VIEWPORTS

The following TIGS calls are documented in this section.

DELVUP TMPORT WINDOW
DELWIN TMSVP WINPER
SMPORT VUPORT WINPLN
SMSVP VUPOR3 WINSIZ
TFPORT WINCLP WINUP
TFSVP WINDIR

This list includes routines which define and manipulate
windows and viewports, and those mode/attribute/feature
routines. which affect windows and viewports. The
mode/attribute/feature routines are placed in a separate
group following the calls which define and manipulate
windows and viewports.

Following the routines is an example in which window and
viewport usage is demonstrated.

The programmer composes a graphics model through calls
to primitives, segments, and picture routines. He must
then determine how the model is to be viewed .on the
sereen of the graphics terminal by using window and
viewport subroutines. These window and viewport subrou-
tines are described in this section.

A window is a subset of the picture with whieh it is
associated. A viewport is a subset of the display sereen.
By means of window subroutines, the programmer controls
what parts- of the picture he has composed are displayed,
and by means of viewport subroutines, where those parts
are displayed on the terminal display screen. Window is to
picture as viewport is to display screen. This relationship
is illustrated in figure 4-1.

Viewports, like pictures, are modally set.. Windows are
not modally set; a new window must be defined each time
one is required in the program.

WINDOW
PRIMITIVE
SEGMENT / ’
\ /

PICTURE

A default window -and viewport are provided for situations
whieh do not require multiple windows and viewports. No
calls to window or viewport routines are necessary to use
the default window and viewport. However, the following
restrictions on default window and viewport usage apply.

"® The default window and viewport should not be
used if nondefault pictures have been defined.
Only the default picture can be displayed through
the default window and viewport. A program
should not contain calls to OPNPIC, SMPICT, or
EXTPIC if the default window and viewport are
to be used. However, nondefault windows and
viewports can be used with the default picture.

® Nondefault windows cannot be used with the
default viewport and vice versa.

& A program using the default window and view-

’ port can draw either two- or three-dimensional
pictures, but not both, because the default
picture cannot be both two- and three~dimen-
sional. For three-dimensional pictures, the
programmer must specify the dimensionality of
the picture by calling SMPLI3. A program using
the default window and viewport for a two-
‘dimensional picture need not declare picture
dimensionality; however, -the programmer can
specify nondefault picture limits for the default
picture by calling: SMPLIM.

In the default case, the window ineludes the entire default
picture; the window limits are the same as the picture
limits. The default viewport covers the entire usable
sereen (refer to INITIG, section 8, for more information).

For nondefault windows and viewports, a window ecall
defines what portion of the current modally set picture is

_ displayed in the current modally set viewport. Thus, the
‘series of calls - .

DISPLAY SCREEN

Figure 4-1. Relationship of TIGS Elements

60455940 A

4-1

CALL OPNPIC(])
CALL SMPORT(5)
CALL WINDOW(63,XLL,YLL,XUR,YUR)

will result in assigning window 63 of picture 1 to viewport
5. In this example we assume that viewport 5 has already
been defined, as it must be before it can be used.

If another window is defined without changing the modally
set picture or viewport, two windows of the same picture
will appear in the viewport, the second window superim-
posed on the first. Or, if the current picture is changed
before the second window is defined

CALL OPNPIC(1)

CALL SMPORT(5). -
CALL WINDOW(63,XLL,YLL,XUR,YUR)

CALL SMPICT(3)
' CALL WINDOW(66,XLL,YLL,XUR,YUR)

window 66 of picture 3 will be displayed in viewport 5, on
top of window 63 of picture 1. This technique is useful
when composing a display from multiple sources to be
used in various combinations, like overlay engineering
drawings.

Remember that OPNPIC, SMPICT, EXTPIC, and EXTSEG
all change the current modally set picture.

When the modally set viewport is changed, subsequent
window calls are associated with that viewport. In this
way it is possible to simultaneously display different views
of the same object.

A number of useful effects are possible by properly
manipulating window and viewport calls. If a window is
defined at the picture center and the window limits are
changed symmetrically with respect to the picture center,
the picture can be zoomed in or out. Zooming in makes
items appear larger, zooming out makes items appear
smaller. For three-dimensional pictures, this effect can
also be achieved by varying the position of the projection
plane (refer to WINPLN).

A panning effect can be achieved by maintaining a
constant window size but changing the window location
with respect to the picture center, similar in effect to
panning a movie camera over a scene. For three-
dimensional pictures, the effect of circling around an
object can be achieved by changing the eye position
relative to the object (refer to WINDIR)."

In all cases, if the window X:Y or X:Y:Z ratio is not equal
to the viewport X:Y or X:Y:Z ratio, distortion will result
because the scale factors of the display will not be equal.
Some postprocessors may not be able to support this
distortion.

Only two-dimensional windows and viewports can be used
with two-dimensional pictures. Only three-dimensional
windows and viewports can be used with three-dimensional
pictures. :

A given window can appear in only one viewport.

Following are capsule descriptions of the window and
viewport routines covered in this section.

WINDOW. defines two-dimensional windows. WINDIR,

WINSIZ, WINPLN, WINUP, WINPER, and WINCLP define
three-dimensional windows. '

4-2

VUPORT and VUPOR3 define two- and three-dimensional
viewports and viewport limits.

DELWIN and DELVUP delete the specified window or
viewport.

The xxPORT mode/attribute/feature routines control
viewport modal settings.

The xxSVP mode/attribute/feature routines control sys-
tem viewport modal settings.

WINDOW AND VIEWPORT ROUTINES

DELVUP
Format
DELVUP(idport)

Delete the specified viewport.

Parameters

idport Input parameter specifying ID of viewport to
be deleted.

Proércmming Notes

When the specified viewport is deleted, all associated
windows are also deleted. If the current modally set
viewport is deleted, the default viewport is used
(IDPORT=0).

Deleting the default viewport or a nonexistent viewport is
an error; the DELVUP call is ignored.

An idport which has been deleted is reusable.

DELWIN

Format

DELWINGidwind)
Delete the specified window.

Parameters

idwind Input parameter specifying the ID of the
window to be deleted.

Programming Notes

When the specified window is deleted, the portion of the
associated picture within the window limits is no longer
visible in the viewport. The picture itself and any other
windows associated with it are unaffected.

If all window definitions for the default picture
(IDPICT=0) are deleted, the default window is used.

60455940 C

Deleting the default window or a nonexistent window is an
error; the DELWIN call is ignored.

An idwind which has been deleted is reusable.

VUPORX

Format

VUPOR T(idport,xll,yll,xur,yur)
Define 2-D viewport ID and limits.

VUPOR 3(idport,xIlh,yllh,zllh,xury,yury,zury)
Define 3-D viewport ID and limits.

Parameters

idport) Input parameter specifying ID of
viewport:

1<idport<32,767

Input parameters specifying sereen
_coordinates of the lower left and
upper right corners of the 2-D
viewport. Refer to the following
programming notes for defaults.

xli,yll,xur,yur

xllh,yIlh,zlih, Input parameters -speecifying the

xury,yury,zury screen coordinates of the lower
left hither and upper right yon cor-
ners of the viewport space (figure
4-2).

{xury,yury,zury)

I'e
- (xith,yllh,zlth) &

Figure 4-2. Three-Dimensional Viewport

Programming Notes

Viewport limits are supplied in terms of screen, not user,
coordinates. The range of these coordinates depends upon
the value for the lsquar parameter of the INITIG subrou-
tine. . If LSQUAR=.TRUE., the coordinate system ranges
from (0.,0.) at the lower left to (I.,1.) at the upper right
for a two-dimensional display. For a three-dimensional
display, the values are (0.,0.,0.) for the lower left hither
corner to (1.,1.,1.) at the upper right yon corner. All
viewports must lie within. these bounds. If LSQUAR=
.FALSE., screen coordinates are dependent upon the

60455940 C

postprocessor used. 'Refer to INITIG, section 8, and the
appropriate postprocessor appendix for more information.

If no viewports are specified, a single defauit viewport
covering all the usable screen is used. This is true for
LSQUAR=TRUE. and LSQUAR=.FALSE.. However, the
default viewport ean only be used with the default picture
and window. In addition, the default picture, window, and
viewport should not be used in any program which uses
nondefault pictures, windows, and viewports.

Viewports can be overlapped and superimposed on the
sereen. For a three-dimensional display, depth overlap-
ping is also possible: viewports may be defined behind
other viewports.
Depth of a three-dimensional viewport is also used to
implement depth queueing for postprocessors which sup-
port this feature. Depth queueing is the process of
varying line intensity according to the distance from the
front or hither plane defining the viewport.
As is the case in the window and picture limits routines:

x1I<xur

yli<yur

xh<xury

ylih<yury

zlIh<zury

A viewport specification for a given idport may be
redefined without affecting the modally set viewport.

WINxxx

Format
WINDO W (idwind,xll,yll,xur,yur))
Define 2-D window ID and limits.
WINC LP(idwind,lelpnr,lclpfr,disner,disfar)
Define 3-D window clipping.

WINDIR(idwind,xeye,yeye,zeye,xat,yat,zat)
Define 3-D line of vision.

WINPER(idwind;lpersp)
Define 3-D window perspective.

WINPLN(idwind,distat)
Define 3-D projection plane.

WINSIZ(idwind,width,height)
Define 3-D window size.

WINU P(idwind,dxup,dyup,dzup)
‘Define 3-D window up direction.

“4-3

Parameters

4-4

idwind

x11,yll,xur,yur

lelpnr,lelpfr

disner,disfar

xeye,yeye,zeye

xat,yat,zat

Input parameter specifying ID of
window:

1<idwind< 32,767

Input parameters specifying the
user coordinates of the lower left
and upper right -corners of a 2-D
window. The conditions

xlI<xur

yli<yur
must be satisfied.

DEFAULT is picture limits; default
applicable only to default picture
(IDPICT=0).

Input parameters specifying elip-
ping planes; if LCLPNR=TRUE.,
clipping is done to the near clipping
plane; otherwise, it is not. If
LCLPFR=.TRUE., clipping is done
to the far clipping plane; other-
wise, it is not. '

DEFAULTSs are:
LCLPNR=.FALSE.
LCLPFR=.FALSE.

Input parameters specifying clip-
ping plane distances from the cen-
ter of attention (refer to WINDIR).
If LCLPNR=.FALSE., disner is
meaningless; if LCLPFR=,FALSE.,
disfar is meaningless. Otherwise,
these parameters specify the di-
rected distance along the line of
vision from the center of attention
to the near and far clipping planes.
Positive distances are away from
the eye; negative distances are
toward the eye. There are no
defaults because the overall de-
faults for WINCLP specify no clip-
ping at all. :

Input parameters specifying'the co-
ordinates of a point to be used as
the viewer's eye position.

DEFAULTSs are:

XEYE = xury+(xury-xlih) (refer
to SMPLI3, section 3).

YEYE = centér of y-axis pic-

ture limits.

ZEYE = center of z-axis pie~
ture limits.

Input parameters specifying the co-
ordinates of the center of atten-
tion. This point and the eye
position point define a line of
vision.

DEFAULT is the center of the
picture limits.

Ipersp Input parameters specifying 3-D
perspective type. If LPERSP=
.TRUE., the window has a perspec-
tive projection; if = LPERSP=.
.FALSE., the window has a parallel
(axonometric) projection.

DEFAULT is LPERSP=.TRUE.

distat Input parameter specifying the
‘ directed distance from the center
of attention to the projection
plane. Positive distances are away
from the eye, negative distances
are toward the eye.

DEFAULT is DISTAT=0.

width ' Input parameter specifying the
width of the viewing window on the
projection plane, centered about
the line of vision and perpendicular
to the up direction (refer to
WINUP).

DEFAULT is the width of the
picture (refer to the following pro-
gramming notes).

height Input parameter specifying the
height of the viewing window on
the projection plane, centered
about the line of vision and parallel
. to the up direction (refer to
WINUP).

DEFAULT is the height of the
picture (refer to the following pro-
gramming notes).

dxup,dyup,dzup Input parameters specifying the co-
ordinates of a point relative to the
center of attention. The directed
line segment from the center of
attention to this point defines an
up direction for the window; this
line segment becomes the vertical
axis when the window is mapped to
the viewport.

DEFAULT is:

DXUP=0.
DYUP=0.
DZUP=l1.

making the up direction parallel.to
the positive z axis.

Programming Notes

Window subroutines define window limits which are
applied to the current modally set (currently open) picture
to control what is displayed in the current modally set
viewport. All coordinates and distances are specified in
user coordinates, established when picture limits were
defined with SMPLIM or SMPLI3 or by default. Coordi-_
nate values outside the established range are permissible.
For example, a three-dimensional eye position of (-1,-1,-1)
where .the picture ranges from (0,0,0) to (1;1,1) will be
correctly interpreted. However, primitives defined out-
side of the picture limits are clipped when the default
window is used. :

60455940 C

A default window is provided for use with the default
picture (IDPICT=0). Window limits are the same as the
picture limits so that the entire default picture appears in
the window. However, the default window can only be
used with the default pieture and viewport. In addition,
the default picture, window, and viewport should not be
used in any program which uses nondefault pictures,
windows, and viewports. Refer to the General subsection
in this section.

The TIGS default 3-D viewing system is right-handed,
with Z as the default up direction. The TIGS user is
required to define the 3-D picture limits subject to the
constraints that "lower, left, hither" coordinates must be
smaller than the "upper, right, yon" coordinates as was
described in the Segments and Picture chapter. The
default attention point is the center of the picture space
and the default eye position places the eye outside of the
picture space, on the positive x side at a distance from
the box equal to the box width in the x direction. Figure
4-3 depicts the default situation. Note that the terms
upper, lower, left, right and hither, yon are not
necessarily meaningful with respect to the default

so that lower < upper, left<right and hither <yon.
A window specification for a given idwind may be

redefined. This redefinition will be reflected in the next
update of the display.

z
DEFAULT “UP*
2oy - DIRECTION
Zilh — - yllh‘ . ZU'Y v
Z /
/
N
xlih DEFAULT
ATTENTION
POINT
xXury
/ ' xury-xilh
X
’
4
I" N
DEFAULT EYE
POSITION

Figure 4-3. Default 3-D Viewing System

The two-dimensional window is defined in the same way as
the two-dimensional picture; the parameters give the
coordinates of the lower left and upper right corners of a
rectangle which is a subset of the picture. i

The three-dimensional window is also a subset of the
three-dimensional picture but its specification is more
complicated. The three-dimensional window is initially
defined by combining the information given in three-
dimensional window subroutine calls made in the program
with default values for any three-dimensional window
subroutine not called. Any subsequent window calls for
that window identification modify the window as it is
already defined. For example, the program sequence

60455940 C

(observer) eye position; rather, they are chosen strietly

CALL WINUP(1,0.,1.,0.)
CALL WINPER(1,.FALSE.)

accepts ‘all three-dimensional window defaults except for
the window up direction and the perspective defauit. For
this window, the up direction will be in the direction of
the positive y-axis and the projection will be axonometric
(nonperspective, refer to WINPER description and to the
example at the end of this section for more information).
All other characteristics are as defaulted:

e Default line of vision, as defined by eye position,
and center of attention.

e Default window covering the entire picture.

e Default projection plane located at the center of
attention.

® No near or far clipping planes so that the window
depth is the same as the picture depth.

The window can be modified later in the program, if
desired:

CALL WINDIR(1,1.,1.,1.,.5,.5,.5)

This call changes the eye position while leaving the center
of attention unchanged, resulting in a new above-and-to-
the-right viewing position for a picture with limits of
(0,0,0) to (1,1,1).

All other window specifications remain: a nondefault up
direction and perspective specification, and all else as
defaulted.

A programmer can accept all default specifications for a
nondefault window. However, one call to a window
routine must be made to establish the window ID. For
example, the call

WINPER(12,.TRUE.)

establishes window 12 with all defaults, since .TRUE. is
the default value for the WINPER routine.

No call to any window routine is necessary to use the
default window (IDWIND=0) with the default picture and
viewport.

‘Window proportions must match the viewport proportions,

or distortion will result. For three-dimensional windows,
window width and height and the picture depth must be
proportionate to the three-dimensional viewport X:Y:Z
ratio. The distance between clipping planes need not be
proportional to the three-dimensional viewport depth.

Each of the three-dimensional window routines, WINCLP,
WINDIR, WINPER, WINPLN, WINSIZ, and WINUP, controls
a different aspect of the three-dimensional window. Each
routine is examined separately in the following para-
graphs. Figures 4-4 and 4-5 show the frustum of vision
defined by these routines. : S

WINCLP — This subroutine specifies depth clipping for the-
Three-dimensional window. The programmer. can speeify
near and/or far clipping planes and their distances from
the center of attention defined in WINDIR. - Default
conditions call for the entire front-to-back extent of the
three-dimensional picture space to be included in-the
window. When the near eclipping plane is defined,;

WINDOW UP
DIRECTION
PROJECTION

DISFAR

EYE POSITION 4:
(xeye,yeye,zeve) K~

CENTER OF
ATTENTION
(xat,yat,zat)

Fig’hre 4-4. The Frustum of Vision for Three-Dimensional Perspective Window

everything lying in picture space between the plane and

the eye position is deleted. When the far clipping plane is
defined, everything lying . in picture space beyond the
plane is deleted. There is an implied near clipping plane
at the eye position; anything lying behind the eye position
in picture space is never included in a three-dimensional
window. Both clipping planes must be in front of the eye
position, and the near plane must be closer to the eye than
the far plane. Clipping planes are always parallel to each
other and perpendicular to the line of sight..

WINDIR — WINDIR defines a line of sight through picture

space by describing a viewer's position and the direction in -

which he is looking. The line of sight is a directed line
segment between the eye position (xeye,yeye,zeye) and
the center of attention (xat,yatzat). There are no
restrictions on this direction; the. programmer is not
constrained to any particular orientation toward picture
-space or to a line of vision parallel to -one of the major

axes. This line of sight is the line used for locating all.

major window planes (clipping planes and projection
plane); all planes must be perpendicular to the line of
sight and are specified as located a directed distance from
the point defining the center of attention (figure 4-4).

When the lpersp parameter of WINPER has a value of
.FALSE., the two points defining the line of sight do little
more than give a viewing direction in space. When
LPERSP=.TRUE., however, wide and narrow fields of
vision can be simulated by the proper choice of eye
position and center of attention points. When the eye
position and center of attention points are chosen to lie

relatively close together, a panoramic or fish-eye lens
view is obtained. Lines drawn from the eye position
through the corners of .the window plane include a greater
angle the closer the eye is to the window plane (refer to
WINSIZ). This gives a wider field of view, just as a person
sees more of the interior of a building the closer he stands
to a window. Effects of perspective are also enhanced by
placing the eye position closer to the window plane. When
the wider angle of the frustum of vision thus produced is
mapped to the three-dimensional viewport, which is a
parallelepiped, objects nearer the eye are reduced in size
less than objects farther from the eye (refer to WINPER).

Tunnel vision can be simulated by placing the eye position
relatively farther away from the window plane. Perspec-

. tive is also reduced thereby.

WINPER — WINPER specifies whether the window uses a
perspective or axonometric projection. LPERSP=TRUE.
preserves perspective; objects farther away in picture
space appear smaller than objects which are closer to eye’
position. When LPERSP=.FALSE., an axonometric view of
everything contained in the window is obtained. That is,
objects of equal size appear equal sized regardless - of
relative distance away from the eye; there is no perspec-
tive in an axonometric window. When the window up
direction and line of sight are chosen so that the z-axis
projects toward. the lower left corner of the screen, the
axonometric projection looks like the isometric projee-

" tions used in engineering drafting. Figure 4-5 illustrates '

an axonometric projection; note that it is a rectangular
parallelepiped, not a truncated pyramid like figure 4-+4.

60455940 C

FAR
CLIPPING
PLANE

WINDOW uP
DIRECTION

~N
PROJECTION \‘
HEIGHT

DISFAR

EYE POSITION = &
(xeve,veye,zeye) "\= LINE OF SIGHT Vv

CENTER OF
ATTENTION

(xat,yat,zat)

WINDOW 44 A)TH
PLANE

Figure 4-5. Parallelepiped of Vision for Three-Dimensional Axonometric Window

WINPLN -~ This subroutine specifies the distance of the
projection plane from the center of attention. Default is
a projection plane at the center of attention, making the
projection plane identical with the window plane. When
LPERSP=.FALSE. (refer to WINPER), WINPLN has no
effect on the display. When LPERSP=.TRUE., varying the
distance of the plane from the eye alters the size of the
viewed objects. When distat values are positive, the
projection plane moves away from the eye and objects get
larger. When distat values are negative, the plane moves
closer to the eye and objects get smaller (figure 4-6).
The display is still clipped to the window defined in
WINSIZ or as defaulted. The projection plane must be
located in front of the eye position.

WINSIZ — This subroutine specifies the size of the window
to be used by defining an aperture on the window plane.
The window plane is the plane which is perpendicular to
the line of sight at the center of attention. This
subroutine defines a subset of this plane. The width
parameter specifies the width of the viewing window
centered at the .center of attention and perpendicular to
the window up direction (refer to WINUP). The height
parameter specifies the height of the viewing window
centered at the center of attention and parallel to the

window up direction. Because of the way the default.

three-dimensional coordinate system is oriented (refer to
WINUP), the programmer should use this routine when it is
necessary to tailor a window to a non-square viewport.
He should not attempt to define a non-square picture to
match the viewport and then use the default window.
Refer to the example at the end of this section.

WINUP — WINUP establishes an up direction to the window
and gives meaning to the width and height parameters of

the WINSIZ routine. The parameters define a directed-

line segment from the center of attention. When the
window is mapped to a viewport, the projection of this

line segment in the window plane is oriented vertically in
the viewport. It is important to remember two things
about this mapping:

® Because a projection of the line segment onto
the window plane is used, the line segment
cannot be colinear with the line of sight; if it
were colinear, there would be no projection.

e This subroutine can only rotate a basic display
around the center of attention. Because it is the
projection of the line segment that is made

" perpendicular and not the line segment itself, the
basic orientation of the viewer to the viewed
object(s) does not change. The eye position and
center of attention must be changed to alter the
basic orientation.

In the default case, the posmve z-axis is used as the
window up direction.

MODE/ATTRIBUTE/FEATURE ROUTINES
xxPORT

Format

TFPOR T(nport)

Test for maximum number of viewports sup-
ported by a postprocessor.

CLIPPED

PROJECTION /
PROJECTED

— T T T " OBJECT

DISTAT

EYE <
POSITION =

LINE OF SIGHT _

I\ CENTER OF
"ATTENTION

OBJECT

PROJECTION
PLANE

Figure 4-6. Projection Plane

60455940 C : . a1 |

SMPOR T(idport)

Modally set viewport into which subsequent
windows are mapped.)

TMPOR T(idport)
Test for current modally set viewport.

Parameters

nport Output parameter specifying the maximum
number of viewports the postproeessor sup-
ports:

1<nport<32,767

idport Input parameter (SMPORT) or output param-
eter (TMPORT) specifying a viewport identi-
fier as established by a call to the VUPORT
or VUPORS routines.

Programming Notes

There are no reset attribute (RA) or test attribute (TA)

routines because a segment, as part of a pieture, can
appear in more than one viewport at a time. -~

Like pictures, viewports are modally set. Thus, after a

viewport is defined with VUPORT or VUPORS3, it must be - '

made the current modally set viewport before windows
can be assigned to-it. Windows are always assigned to the
current modally set viewport. In a program which mixes
two- and three-dimensional pictures, the programmer
should take care that the current modally set viewport is
appropriate for the type of window being defined.

The default case provides for a single viewport covering

the entire usable sereen to be used only with the default -

picture and window. ' This viewport is either two- or
three-dimensional, depending on the dimensionality of the
default picture. No calls to SMPORT or VUPORX are
necessary to use the default viewport. Refer to VUPORX
in this section.

xxSVP

Format

TFSVP(Isysvp)

Test for a default system viewport separate from
grahpies area.

SMSVP(Iseren,xll,yll,xur,yur)

Modally set a viewport to be used for system
messages and user entries.

TMSVP(Iscren,xll,yll,xur,yur)

Test for viewport used for system messages and
user entries.

Parameters
Isysvp Output parameter; if LSYSVP=

.TRUE., the postprocessor supports
a default system viewport that is

| s

guaranteed separate from the area
of the screen used for graphics
displays. If LSYSVP=.FALSE., the
default viewport is not guaranteed
to be separate. Dependent on
Isquar value given in INITIG rou-
tine.

Iscren Input parameter (SMSVP) or output
parameter (TMSVP). If LSCREN=
.TRUE., system viewport coordi-
nates are given in a terminal inde-
pendent coordinate system (refer
to the following programming
notes). If LSCREN=.FALSE., sys-
‘tem viewport coordinates are given
in terminal dependent coordinate
system.

x11,yll,xur,yur Input parameters (SMSVP) or out-
put parameters (TMSVP) specifying
the lower left and upper right
corners of the screen area used as
a system viewport; possible values
are dependent on lscren value.

Programming Notes

There are no reset attribute (RA) or test attribute (TA) .
routines because the system viewport cannot become an
attribute of a segment. :

The system viewport is the area of the terminal display
sereen to be used for messages from and operator
responses to the PROMPT and KEYBRD interactive
routines (refer to section 7). Screen placement of
operating system messages, such as FORTRAN diagnos-
ties, is not controlled by TIGS; these messages are not
affected by system viewport placement. The programmer
can place the system viewport in any portion of the
sereen, depending on the value of the Iseren parameter.

There is always a default system viewport defined for
programmers who do not wish to define their own.

However, it is not always guaranteed to be separate from
the graphies display area. The placement of the default
system viewport is postprocessor dependent; refer to the
appropriate postprocessor appendix.

The INITIG routine interacts with the system viewport
routines in the following ways (refer to INITIG, section 8).

e If the INITIG Isquar parameter is set to
LSQUAR=.FALSE. during initiation, the lsysvp
parameter of TFSVP can-never be .TRUE.. A
separate area for a system viewport is dependent
on LSQUAR=TRUE..

e If the SMSVP Isecren parameter is set to
LSCREN=.FALSE., the programmer can take
advantage of the separate area made available
by setting LSQUAR=.TRUE. in a call to INITIG.
If LSCREN=.TRUE., the system viewport must
be located within the graphies display area. In
the absence of other considerations, it is recom-
mended that LSCREN=.FALSE. be specified so
that the graphics display area is not overwritten
by messages in the system viewport area.

60455940 C

Terminal independent sereen coordinates range from
{(0.,0.) in the lower left corner of the usable screen area to
(1.,1.) in the upper right corner of the usable screen.
Terminal dependent screen coordinates vary from postpro-
cessor to postproecessor; refer to the appropriate postpro-
cessor appendix.

EXAMPLE OF WINDOW AND
VIEWPORT USAGE

The example in figure 4-7 uses many of the window and
viewport calls documented in this section. This is not a

complete program; postprocessor-dependent portions of
the program are not illustrated.

PROGRAM statement

DIMENSION ITEXT(4)

DATA ITEXT/32HTHIS IS THE SYSTEM VIEWPORT AREA/

LOGICAL LSYSVP
CALL INITIG(.TRUE.,.TRUE.,5LIFILE)

CALL TFSVP(LSYSVP)

IF(.NOT.LSYSVP) STOP 77
CALL OPNPIC(1)
CALL VUPORT(1,0.,0.,.333,1.)

CALL SMPORT(!)
CALLO PNSEG(J)
CALL MOVEA(.05,.4)
CALL DRAWA(.25,.4) .
CALL DRAWA(.25,.6)
CALL DRAWA(.05,.6)

CALL DRAWA(.05,.4)

CALL CLSSEG

CALL WINDOW(1,0.,0.,.333,1.)

CALL OPNPIC(2)
CALL SMPLI3(0.,0.,0.,1.,1.,1.)

CALL VUPORS3(2,.333,0.,0.,.666,1.,1.)

CALL SMPORT(2)

WARNING

Ref_er to appropriate postprocessor and
operating system appendices for format of
PROGRAM card.

This program combines two- and three-dimensional
capabilities to illustrate differences in two- and
three-dimensional window and viewport usage. The
program uses one two-dimensional picture, window, and
viewport, one three-dimensional picture, and two
three-dimensional windows and viewports. A message is
placed in the system viewport area to illustrate its
positioning. Figure 4-8 illustrates how the final displav
looks on the terminal screen.

Establish array for use with PROMPT.

TIGS is initialized with lsquar parameter of INITIG
set to .TRUE.. A value of .FALSE. precludes the
possiblility of a default system viewport separate
from the graphics display area.

Test for default system viewport separate from
display area; if not separate, the programmer must
make other arrangements (not shown in this program)
to divide the screen between system and other
viewports. .

Define first picture; 2-D by default with default
picture limits.

Define 2-D viewport covering first third of graphics
display area of screen.

Make viewport 1 the current modally set viewport.

Define 2-D box.

Create window on portion of picture containing 2-D
box to appear in current modally set viewport; ratio
of width to height is the same for window and
viewport to avoid distortion.

Define 3-D picture; SMPLI3 specifies it as 3-D.

Define- 3-D viewport covering second third of
graphics display area.

Make viewport 2 the current modally set viewport.

Figure 4-7. Sample Program with Viewport end Window Calis

60455940 C

4-9

CALL OPNSEG(2)

CALL MOVEA3(.4,.05,.4)
CALL DRAWA3(.6,.05,.4)
CALL DRAWA3(.6,.25,.4)
CALL DRAWA3(.4,.25,.4)
CALL DRAWA3(.4,.25,.6)
CALL DRAWA3(.6,.25,.6)
CALL DRAWA3(.6,.05,.6)
CALL DRAWA3(.4,.05,.6)
CALL DRAWA3(.4,.05,.4)
CALL DRAWA3(.4,.25,.4)
CALL MOVEA3(.6,.05,.4)

CALL DRAWAS3(.6,.05,.6)

CALL MOVEA3(.8,.25,.4)

CALL DRAWAS3(.6,.25,.6)

CALL MOVEAS(.4,.0.5,.6)

CALL DRAWA3(.4,.25,.6)

CALL CLSSEG

CALL WINPER(2,.FALSE.)

CALL WINSIZ(2,.333,1.)

CALL WINDIR(2,1.,.27,.7,.5,.167,.5)

CALL VUPOR3(3,.666,0.,0.,1.,1.,1.)

CALL SMPORT(3)
CALL WINPER(3,.TRUE.)
CALL WINSIZ(3,.333,1.)

CALL WINDIR(3,1.,.27,.7,.5,.167,.5)

CALL PROMPT(32,ITEXT)

Define 3-D box.

Create axonometric 3-D window, a subset of current
modally set 3-D picture, to appear in current modally
set 3-D viewport; distortion is avoided by ensuring
that window and viewport width, height, and depth
are proportional. Line of sight is chosen.to give an
above-and-to-the-right viewing position. Balance of .
window characteristics are as defaulted.

Define second 3-D viewport covering last third of
graphics display area.

Make viewport 3 the current modally set viewport.

Create 3-D window (with depth perspective) as subset
of current modally set 3-D picture, to appear in
current modally set 3-D viewport. All other char-
acteristics are the same as in window 2.

Use PROMPT routine (section 7) to display message
in default system viewport area.

Figure 4-7. Sample Program with Viewport and Window Calls (Contd)

60455940 C

THIS IS THE SYSTEM VIEWPORT AR
EA

Figure 4-8. Sample Viewport and Window Usage Display

60455940 C ' a1 |

TRANSFORMATION MATRICES

0

The following TIGS calls are documented in this section.

CLRSTK SMXFL3 TMXFA XROTR3
CLRST3 = SMXFR TMXFA3 XSCLA
POP SMXFR3 TMXFL XSCLA3
POP3 TAXFA TMXFL3 XSCLL
PUSH TAXFA3 TMXFR XSCLL3
PUSH3 TAXFL TMXFR3 XSCLR
RAXFA TAXFL3 XIDNT XSCLR3
RAXFA3 TAXFR XIDNT3 XTRNA
RAXFL TAXFR3 XINVR XTRNA3
RAXFL3 TFXFA XINVR3 XTRNL
RAXFR TFXFA3 XROTA XTRNL3
RAXFR3 TFXFL XROTA3 XTRNR
SMXFA TFXFL3 XROTL XTRNR3
SMXFA3 TFXFR XROTL3

SMXFL =~ TFXFR3 XROTR

This list includes routines which perform matrix manipula-
tions, and the mode/attribute/feature routines which
affect transformation matrix operations. The mode/attri-
bute/feature routines are placed in a separate group
following the matrix building and manipulation routines.

Following the routine descriptions are examples of trans-
formation matrix usage.

GENERAL

With the transformation matrix routines, the TIGS pro-
grammer can alter his two- or three-dimensional display
by translating, rotating, and scaling it up or down. In
addition, TIGS allows the programmer to supply his own
matrix to the matrix multiplication routines for other
effects.

There are two steps in using TIGS transformation routines.
First, the required matrix is built using matrix utility
routines. This group of routines includes XIDNTX,
XINVRx, XROTxx, XSCLxx, and XTRNxx. Second, sub-
routines from the xxXFxx group are selected to effect the
desired transformation.

Transformation matrices are modally set, and affect all
segments defined while a given transformation is in
effect. Each segment receives a transformation attribute
from the modally set transformation. This transformation
attribute can subsequently be changed with attribute
resetting calls which specify a new transformation matrix.

The current modally-set transformation is called the
current transformation matrix (CTM)t. This is a central
concept of TIGS transformation capability. In the defauit
case, the CTM is the identity matrix. No translation,
rotation, or sealing effects are produced by the identity
matrix: segments appear as originally defined.

The CTM is changed each time a call is made to a
transformation matrix mode-setting subroutine (SMXFxx).
The programmer has a choice of absolute or relative
setting of a new CTM. What the terms absolute and
relative mean in the context of transformation subrou-
tines is as follows: the absolute mode-setting subroutines
specify that the supplied matrix is to be used as is for the
transformation operations through simple replacement of
the old CTM; the relative mode-setting subroutines
specify that the supplied matrix is to be concatenated
(multiplied) with the CTM, with the resultant matrix
becoming the new CTM. In other words:

® Absolute routines imply no matrix concatenation.

® Relative routines imply matrix concatenation,
and hence, cumulative transformations.

Absolute mode-setting subroutines have -A suffixes for
two-dimensional transformations and -A3 suffixes for
three-dimensional transformations, such as SMXFA and
SMXFA3. Relative mode-setting routines have -R and -L
suffixes for two-dimensional transformations and -R3 and
-L3 suffixes for three-dimensional transformations, such
as SMXFR and SMXFL3. The -R and -L suffixes imply
right and left side matrix multiplication, respectively.
The significance of each type of multiplication is dis-
cussed later in this section.

The situation is analogous for the transformation attri-
bute-resetting subroutines (RAXFxx), except that the
supplied matrix is concatenated with the transformation
matrix already associated with the segment, which is not
necessarily the CTM. Again, the programmer has a choice
of using left or right side matrix multiplication when using
relative routines, as, for example, RAXFL and RAXFR3.

Absolute and relative have no meaning for the test mode
(TMXFxx) and test attribute (TAXFxx) routines; absolute
and relative routines are supplied here for consistency.

Remember the following things about absolute versus
relative transformation routine usage.

e TFor an initial transformation to be applied to a
segment, an absolute routine is used. The
programmer could get the same effect by using a
relative routine which concatenates the desired
transformation matrix with the identity matrix.

e If cumulative transformations are desired, the
relative routines are used.

® If each transformation of a series of transforma-
tions is to be applied to the segment as the
segment was originally defined, the absolute
routines are used.

+ CTM3 for three-dimensional transformations; collectively referred to as CTM, exeept where distinguished for clarity.

60455940 A

5-1

Illustrations of cumulative transformations are found in
the examples at the end of this section.

When the CTM is changed, the programmer has the option
of saving the old CTM for later use. This is accomplished
by calling the PUSHx subroutine which places a copy of
the CTM on a stack. The CTM can then be changed
without losing the old matrix. When the old matrix is
needed, a call to POPx fetches the old matrix from the
stack and establishes it as the CTM for subsequent
transformations. CTMs &re collected in the stack on a
first-in, last-out basis; if six calls to PUSHx were made in
creating the stack, six calls to POPx must be made to
reestablish the original matrix as CTM.

The programmer should keep in mind that EXTSEG
restores all modes that were in effect when the segment
to be extended was closed. This means the CTM in effect
when the segment was closed becomes the new CTM when
EXTSEG is called.

Before transformations are done, the matrix to be
supplied to the mode/attribute routines must be built.
This can be done by the programmer or by TIGS
transformation utility routines. If done by the program-
mer, the matrix is supplied in a 2 x 3 array (for two-
dimensional pictures) or 3 x 4 array (for three-dimensional
pictures), which is then specified by the mode/attribute
routines. To help in construeting these matrices, the
mathematical basis for TIGS transformation routines is
described in appendix D.

TIGS transformation utility routines will construet trans-
formation matrices for translating, rotating, and scaling
displays, or a combination of any of the preceding. A
transformation building matrix (the B matrix) is con-
structed by these utilities. The programmer again has the
option of using absolute or relative utility calls. Absolute
utility routines, like XTRNA, replace the current B matrix
with the matrix built by the XTRNA call. Relative utility
routines, like XTRNR or XTRNL, supply a matrix which is
concatenated with the current B matrix to form a new B
matrix for cumulative transformations. In its turn, this B
matrix can be specified in a mode/attribute call, where it
either replaces the CTM or current segment transforma-
tion matrix in absolute mode/attribute calls, or it is
concatenated with the CTM or current segment transfor-
mation matrix to form a new matrix in relative mode/at-
tribute calls, as discussed previously. Refer to the
examples at the end of this section for more information.

Any transformation operation which involves matrix con-
catenation can specify that the multiplication take place
on either the right or left side. This is true of the matrix
utility subroutines which build matrices, such as XTRNR
and XTRNL; the mode-setting subroutines such as
SMXFR3 and SMXFL3; and the attribute-resetting subrou-
tines such as RAXFR and RAXFL. .The mathematical
details of this process are contained in appendix D. It is
the purpose of this introduction only to guide the
programmer in choosing the matrix multiplication proce-
dure appropriate to his needs. Failure to choose the
correct one may have unexpected results.

As a guide to the proper choice of relative transformation
routines, it is useful to consider what the effect of each
step in a cumulative transformation process is for both
the left and right types of multiplieation routines.

The left type, like SMXFL and RAXFL3, implies that each
successive step in a cumulative transformation series
occurs after the preceding steps. If a programmer has a
series of transformation ecalls for rotating, translating,

and scaling a segment, the segment will be first, rotated;
second, translated; and third, scaled. Each new step
occurs after the previous step has been applied.

The right multiplication type, like SMXFR and RAXFR3,
implies that each successive step in a cumulative trans-
formation series occurs before the preceding steps. If the
series previously mentioned for rotating, translating, and
scaling a segment employs right multiplication routines,
the segment will be first, scaled; second, translated; and
third, rotated. Each new step occurs before the previous
step has been applied. The right multiplication routines .
invert the series order given in the program.

In summary, left multiplication routines mean that each
step in a cumulative transformation series occurs after
the preceding step; right multiplication routines mean
that each step oceurs before the preceding step. Refer to
appendix D for more information.

The before/after effects of the matrix multiplication
routines have important implications for the type of
graphics tasks the left and right types of routines are
suited for. Simply stated, the left side multiplication
routines are used in straightforward displacement and
manipulation of graphies displays, while the right side
multiplication routines are used in transformation model-
ing tasks. Both types of tasks are discussed in the
following paragraphs.

The majority of instances in which transformation rou-
tines are used involve simple manipulation of a display by
translating, rotating, and scaling elements of that display.
Routines with an -L or -L3 suffix are selected for these
purposes. The following example illustrates the sort of
task for which -L or -L3 routines are best suited.

Assume we wish to rotate a triangle about a point in the
interior of the triangle. The center of the triangle is at
(10,10) relative to the origin of the picture (figure 5-1).
TIGS routines perform all transformations relative to the
picture origin (not necessarily the center of the terminal
sereen). Thus, if we simply used the matrix utility routine
XROTA, the triangle would be rotated around the origin,
not around the interior point we want. To aceomplish the
desired rotation, the triangle must be:

1. Moved to the origin.
2. Rotated the desired amount.
3. Moved back to its original position.

This involves building a B matrix with three utility calls,
as follows: :

1. Acallto
XTRNA (-10.0,-10.0,B)
to move the interior point to the origin (0,0).

2. Acall to
XROTL (45.0,B)
to rotate the triangle 45°.

Note that we specify the same array to place the
matrix in.

3. Acallto
XTRNL (10.0,10.0,B)

to move the triangle back to its original position.

60455940 A

W

Figure 5-1. Rotation of Triangle About Interior Point

These three calls will achieve the desired effect. Note
that the first call, to XTRNA, was to an absolute routine
because the first matrix is not concatenated with any
other matrix but applied directly to the segment as the
segment was originally defined. The other two calls, to
XROTL and XTRNL, have the -L suffix because the
ultimate effect we want is to be cumulative and in the
order specified, the result of matrix concatenation.

Similar steps are required in scaling a display about a
point other than the origin.

In the special case in which the matrix utility routines
build a matrix to be used in resetting the attribute of a
segment which already has a transformation attribute
(other than the identity matrix), further steps are neces-
sary. The first example at the end of this section deals
with this situation.

Transformation modeling is an extension of the concept of
modeling introduced in section 1. The twin objectives of
defining and spatially organizing a graphies model are
generally accomplished together in defining the primi-
tives, segments, and pictures that compose the model.
The example at the end of section 2 employs this method.

The two objectives may, however, be separated. Some
models are constructed by defining each segment indepen-
dently of the others; in effect, each in its own coordinate
system. Then, transformations can be applied to each
segment to organize the total model. Transformation
modeling is the process of orienting segments each drawn
in terms of its own coordinate system within another
coordinate system. Many engineering drawings are con-

strueted this way: for example, a drawing of a transistor -

in a subeircuit in an overall circuit. The transistor, the
subeireuit, and the overall cireuit can be drawn each in its
own coordinate system. In regard to the total model, the
programmer only knows the positions of each component
relative to the larger circuit or coordinate system in
which it fits. He knows that the transistor goes at a
certain location in the subeircuit, and the subcireuit is
situated at a certain location in the larger circuit. Unless
he wants to calculate it himself, he does not know the

60455940 A

position of the transistor relative to the overall circuit.
He employs transformation routines to link each compo-
nent in the proper overall relationship. From the
information he has regarding the relative positions of
these components, he decides to use right side multiplica-
tion routines to accomplish this. It is clear that before he
moves the subeircuit into the overall circuit, he must
move the transistor into the subeircuit. If he were to
move the transistor after the subeireuit, his knowledge of
the position of the transistor relative to the subeirecuit
would be useless and he would have to calculate its final
position himself. Thus, he moves the transistor into the
subeireuit, and by cumulative transformations, moves the
transistor along with the subcircuit into the overall
circuit.

The key to his choice of matrix multiplication routines is
the use of the word before. When a transformation must
be done before another transformation to preserve overall
relationships, the right side routines are used. All tasks

‘analogous to the one deseribed above employ -R or -R3

suffix routines to achieve the desired effect. This process
is demonstrated in the second example at the end of this
section.

To summarize the discussion of the important task of
selecting the proper transformation matrix routine, re-
member the following:

® Absolute routines, whether matrix utility rou-
tines like XTRNA, mode-setting routines like
SMXFA, or attribute-resetting routines like
RAXFA, imply no matrix concatenation. They
are used in the initial transformation of a
segment and any time successive transformations
are not to be ecumulative, but each is applied to
the segment as it was originally defined.

e Relative routines with an -L suffix, whether
utility routines like XROTL3, mode-setting rou-
tines like SMXFL3, or attribute-resetting rou-
tines like RAXFL3, imply matrix concatenation
with multiplication done on the left. -For these
routines, the effect of each step in a cumulative
transformation series is felt after the effects of
the preceding steps. They are used in graphics
tasks which involve simple rearranging of ele-
ments in a display by translating, rotating, and
sealing the segments which make up the display.
Refer to the first example at the end of this
section.

® Relative routines with an -R suffix, whether

utility routines like XSCLR, mode-setting rou-
tines like SMXFR, or attribute-resetting routines
like RAXFR, imply matrix concatenation with
multiplication done on the right. For these
routines, the effect of each step in a cumulative
transformation series is felt before the effeects
of the preceding steps. They are used in
transformation modeling tasks where objects
drawn in one coordinate system are to be
oriented in another coordinate system. Refer to
the second example at the end of this section.

5-3

Following are capsule descriptions of the transformation
routines covered in this section.

XTRNxx utility routines build two- and three-dimen-
sional translation matrices.

XROTxx utility routines build two- and three-dimen-
sional rotation matrices.

XSCLxx utility routines build two- and three-dimen-
sional sealing matrices.

XIDNT and XIDNT3 build two- and three-dimensional
identity matrices.

XINVR and XINVR3 build two- and three-dimensional
inverse matrices.

PUSHx pushes the current transformation matrix
(CTM or CTM3) onto the transformation matrix
storage stack. POPx replaces the CTM or CMT3 with
the matrix on top of the matrix storage stack.
CLRSTx clears the transformation matrix storage
stack.

The xxXFxx mode/attribute/feature routines control
the transformation matrix mode or attribute settings.

TRANSFORMATION MATRIX ROUTINES

CLRSTx

Format

CLRSTK

Clear the 2-D transformation matrix storage
stack.

CLRST3

Clear the 3-D transformation matrix storage
stack.

Parameters

None.

Programming Notes

These routines clear all entries from the two- and three-
dimensional transformation matrix storage stacks. Also,
the CTM or CTM3 is set to the identity matrix following a
call to CLRSTK or CLRST3.

POPx

Format

POP

Replace the CTM with the matrix on the top of
the 2-D transformation matrix storage staek.

POP3

Replace the CTM3 with the matrix on the top of
the 3-D transformation matrix storage stack.

Parameters

None.

Programming Notes

POPx modally sets the CTM or CTM3 from the top of the
transformation matrix storage stack and moves the other
matrices in the stack up one position. If the stack is
empty when POPx is called, the CTM or CTM3 is set to
the identity matrix and an error message is issued.

Two~ and three-dimensional matrices are maintained on
separate stacks.

Refer to the general heading in this section for more
information on PUSHx and POPx interaction.

PUSHx

Format

PUSH

Place a copy of the CTM on the 2-D transforma-
tion matrix storage stack.

PUSH3

Place a copy of the CTM3 on the 3-D transfor-
mation matrix storage stack.

Parameters

None.

Programming Notes

PUSHx places a copy of the CTM or CTM3 on the
appropriate stack; the CTM or CTM3 is unchanged by a
call to PUSHx.

Unpredictable results can occur if the programmer pushes
two-dimensional matrices onto the three-dimensional
stack or vice versa.

Refer to the general heading in this section for more
information on PUSHx and POPx interaction.

XIDNTx

Formét

XIDNT(bmat23)
Build 2-D identity matrix.

60455940 A

XIDNT3(bmat34)
Build 3-D identity matrix.

Parameters

bmat23 Input parameter; 2 x 3 array used for 2-
D building matrix.
bmat34 Input parameter; 3 x 4 array used for 3-

D building matrix.

Programming Notes

When applied to a segment, the identity matrix results in

no transformations. Refer to the general heading in this -

section for more information.

bmat23 and bmat34 are the arrays in which the identity
matrices are assembled. The arrays must be specified to
other utility routines or mode/attribute routines which use
the matrices.

XINVRx
Format
XINVR(bmat23,binv23)

Build 2-D inverse matrix.

XINVR 3(bmat34,binv34)
Build 3-D inverse matrix.

Parameters

bmat23 Input parameter; 2 x 3 array used for
2-D building matrix.

binv23 Output parameter; inverse matrix of
bmat23; 2 x 3 array.

bmat34 Input parameter; 3 x 4 array used for
3-D building matrix.

binv34 Output parameter; inverse matrix of

bmat34; 3 x 4 array.

Programming Notes

XINVRx accepts the matrix in array bmat23 or bmat34,
creates the inverse of that matrix and places it in binv23
or binv34.

XINVRx is useful in reversing the effect that a previous
matrix has had on a segment. That is, if matrix X has
moved a segment from point A to point B, matrix X -lwill
move the segment back to A. '

binv23 and binv34 are the arrays in which the inverse
matrices are placed. The arrays must be specified to
other utility routines or mode/attribute routines which use
the matrices.

- 60455940 B

XROTxx

Format’

XROTA(deg,bmat23)
2-D absolute rotation.

XROTL(ddeg,bmat23)
2-D relative rotation, left multiplication.

XROTR(ddeg,bmat23)
2-D relative rotation, right multiplication.

XROTA3(idaxis,deg,bmat34)
3-D absolute rotation.

XROTL3(idaxis,ddeg,bmat34)
3-D relative rotation, left multiplication.

XROTR 3(idaxis,ddeg,bmat34)
' 3-D relative rotation, right multiplication.

‘Parameters

deg Input parameter; absolute number of
degrees to rotate segment; positive
values indicate counterclockwise rota-
tion.

ddeg Input parameter; relative number of
degrees to rotate segment; positive
values indicate counterclockwise rota-
tion.

idaxis Input parameter; axis about which to
perform the rotation for 3-D; specify as
1HX, 1HY, or 1HZ.

bmat23 Input parameter (relative rotation) and
output parameter (all); 2 x 3 array. used
for 2-D building matrix.

bmat34 Input -parameter (relative rotation) and

output parameter (all); 3 x 4 array used
for 3~D building -matrix.

Programming Notes

Rotation transformations rotate segments about the pic-
ture origin by the specified number of degrees. To rotate
a segment about any other point, refer to the general
heading in this section and to the examples at the end of
the section.

For the deg and ddeg parameters, positive values result in
counterclockwise rotations. Negative values result in
¢lockwise rotations. For three-dimensional pictures,
rotation can be. done only around one of the major
coordinate axes specified in FORTRAN Hollerith format.
Direction of three-dimensional rotation is as viewed from
the positive side of the axis of rotation. Note that this is
not necessarily the direction of rotation that will appear
on the sereen. For example, the cail i

XROTA3(1HZ,45.,B)

results in a matrix to effect counterclockwise rotation of
45° about the z-axis, as viewed in figure 5-2.

5-5

45°

Figure 5-2. Three-Dimensional Rotation, Front View

Figure 5-3. Three-Dimensional Rotation, Back View

If, however, the line of vision of the three-dimensional
window were chosen so that the display is viewed from the
back (figure 5-3), the rotation appears to be in a clockwise
direction.

The absolute rotation routines imply that the B matrix is
to be built as specified in the call. The relative
translation routines imply that the B matrix is to be built
by concatenating the specified matrix with the existing B
matrix to form the new B matrix. The programmer has a
- choiee of right or left matrix multiplication for relative
routines. Refer to the general heading in this section for
more information on relative and absolute transformation.

Only the beginning character position of a text string is
altered by XROTxx; the basic orientation of the string to
the display sereen does not change. Refer to xxROT in
section 2 for more information on rotation of text.

bmat23 and bmat34 are the arrays in which the rotation
matrices are assembled. The arrays must be specified to

other utility routines or mode/attribute routines which use
the matrices. :

XSCLxx

Format

XSCLA(sx,sy,bmat23)
2-D absolute scale.

XSCLL(sdx,sdy,bmat23)
2-D relative scale, left multiplication.

XSCLR(sdx,sdy,bmat23)
2-D relative scale, right multiplication.

XSCLA3(sx,sy,sz,bmat34)
3-D absolute scale.

XSCLL3(sdx,sdy,sdz,bmat34)
- 3-D relative scale, left multiplication.

X SCLR 3(sdx,sdy,sdz,bmat34)
3-D relative scale, right multiplication.

Parameters

SX,SY,SZ ‘Input parameters; absolute scale factors
in x, y, and z axes. ‘

sdx,sdy,sdz Input parameters; relative scale factors
in X, y, and z axes.

bmat23 Input parameter (relative scale) and
output parameter (all); 2 x 3 array used
for 2-D building matrix.

bmat34 Input parameter (relative seale) and
output parameter (all); 3 x 4 array used
for 3—D building matrix.

Programming Notes

Sealing transformations are done relative to the pieture
origin only. It may be useful to think of two-dimensional
sealing transformations as occurring on a sheet of elastic
material: The material is stretched or shrunk the
appropriate amounts in each direction while remaining
anchored at the origin.” Segments on the fabrie are scaled
up or down as the fabrie is stretehed or shrunk. It can be
seen that segments that are not centered at the origin will
not only be scaled up or down but also generally displaced
by this process. Scaling a segment about a point other
than the origin is done in a way analogous to rotating a
segment about a point other than the origin. Refer to the
general heading in this section for more information.

sX, sy, sz, sdx, sdy, and sdz represent the absolute and
relative scale factors in the x, y, and z directions. Secale
factors > 1 result in enlargement. Positive scale factors
< 1 result in shrinking. For example, SX=2 results in an
effective doubling of the distance between units on the x
axis, and an elongation in the x direction of an affected
segment. Unequal scale factors (for example, SX=2,
SY=3) result in distortion of the original display. A
negative scale factor in any axis results in the mirroring
of the segment about the other axes (figure 5-4).

The absolute scaling routines imply that the B matrix is to
be built as specified in the eall. The relative scaling
routines imply that the B matrix is to be built by
concatenating the specified matrix with the existing B
matrix to form the new B matrix. The programmer has a
choice of right or left matrix multiplication for relative
routines. Refer to the general heading in this section for
more information on relative and absolute transforma-
tions.

Text segments are not scaled; the beginning character

position of a text string may be altered by a scaling
transformation.

60455940 B

@

§$X=1, SY=1

$X=1, §¥=-1

o ©

SX=-1, SY=-1

Figure 5-4. Mirroring of Display

bmat23 and bmat34 are the arrays in which the scaling
matrices are assembled. The arrays must be specified to
other utility routines or mode/attribute routines which use
the matrices.

XTRNxx

Format

XTRN A(x,y,bmat23)
2-D absolute translation.

XTRNL(dx,dy,bmat23)
2-D relative translation, left multiplication.

XTRNR(dx,dy,bmat23)
2-D relative translation, right multiplication.

XTRNA3(x,y,z,bmat34)
3-D absolute translation.

XTRNL3(dx,dy,dz,bmat34)
3-D relative translation, left multiplication.

XTRNR3(dx,dy,dz,bmat34)
3-D relative translation, right multiplication.

Parameters

X,V,Z Input parameters; absolute displace-
ments in X, y, and z directions.

dx,dy,dz Input parameters; relative displace-
ments in X, y, and z directions.

bmat23 Input parameter (relative translation)
and output parameter (all); 2 x 3 array
used for 2-D building matrix.

bmat34 Input parameter (relative translation)

and output parameter (all); 3 x 4 array
used for 3-D building matrix.

60455940 B

Programming Notes

- Translation transformations displace segments in a
straight line by the specified distances in the x, y, and z
directions.

The absolute translation routines imply that the B matrix
is to be built as specified in the call. The relative
translation routines imply that the B matrix is to be built
by coneatenating the specified matrix with the existing B
matrix to form the new B matrix. The programmer has a
choice of left and right matrix multiplication for relative
routines. Refer to the general heading in this section for
more information on relative and absolute transforma-
‘tions. -

bmat23 and bmat34 are the arrays in whieh the transla-
tion matrices are assembled. The arrays must be
specified to other utility routines or mode/attribute
routines which use the matrices. ’

MODE/ATTRIBUTE /FEATURE ROUTINES

xxXFxx

Format

TFXF A(xlat,lseal,Irot)
TFXFL(ixlat,lscal,lrot)
TFXFR(ixlat,lseal,lrot)

Test for terminal hardware capability to perform
2-D transformations; there is no difference
among TFXFA, TFXFL, and TFXFR.

TFXFA3(xfm3,lpersp,lpyram)
TFXFL3(1xfm3,lpersp,lpyram)

TFXFR3(1Xfm3,lpersp,lpyram)

Test for terminal hardware capability to perform
3-D transformations; there is no difference
among TFXFA3, TFXFL3, and TFXFR3.

SMXFA(bmat23)
Modally set absolute 2-D transformation.

SMXFL(bmat23)
Modally set relative 2-D transformation, left
multiplication.

SMXFR(bmat23)
Modally set relative 2-D transformation, mght
multiplication.

SMXFA3(bmat34)
Modally set absolute 3-D transformation.

SMXFL3(bmat34)
Modally set relative 3-D transformation, left
multiplication.

SMXFR 3(bmat34)
Modally set relative 3-D transformation, right
-multiplication.

TMXFA(bmat23)

TMXFL(bmat23)

TMXFR(bmat23)

Test the current modally set 2-D transformation
matrix; a copy of the CTM is placed in bmat23.
There is no difference among TMXFA, TMXFL,
and TMXFR.

TMXFA3(bmat34)

TMXFL3(bmat34)

TMXFR3(bmat34)

Test the current modally set 3-D transformation
matrix; a copy of the CTM3 is placed in bmat34.
There is no difference among TMXFAS,
TMXFL3, and TMXFR3.
RAXFA(idseg,bmat23)
Absolutely reset the transformation attribute of
a 2-D segment.
_ RAXFL(idseg,bmat23)
Relatively reset the transformation attribute of
a 2-D segment, left multiplication. i
RAXFR(idseg,bmat23)
Relatively reset the transformation attribute of
a 2-D segment, right multiplication.
RAXFA3(idseg,bmat34)
Absolutely reset the transformation attribute of
a 3-D segment.
RAXFL3(idseg,bmat34)
Relatively reset the transformation attribute of
a 3-D segment, left multiplication.)
RAXFR 3(idseg,bmat34)

Relatively reset the transformation attribute of
a 3-D segment, right multiplication.

TAXF A(idseg,bmat23)
TAXF L(idseg,bmat23)
TAXFR(idseg,bmat23)

Test the transformation attribute of a 2-D
segment; a copy of the matrix is placed in
bmat23. There is no difference among TAXFA,
. TAXFL, and TAXFR.

TAXFA3(idseg,bmat34)
TAXFL3(idseg,bmat34)

TAXFR3(idseg,bmat34)

Test the transformation attribute of a 3-D
segment; a copy of the matrix is placed in
bmat34. There is no difference among TAXFA3,
TAXFL3, and TAXFR3.

Parameters

Ixlat Output parameter; if LXLAT=.TRUE.,
2-D translation is hardware supported;
otherwise, it is not.

Iscal Output parameter; if LSCAL=.TRUE.,
2-D scaling is hardware supported;
otherwise, it is not.

Irot Output parameter; if LROT=.TRUE.,
2-D rotation is hardware supported;
otherwise, it is not.

Ixfm3 - Output parameter; if LXFM3=.TRUE.,
all 3-D transformation functions are
hardware supported; otherwise, they are
not.

Ipersp Output parameter; if LPERSP=.TRUE.,
perspective preservation during 3-D
transformations is hardware supported;
otherwise, it is not.

Ipyram Output parameter; if LPYRAM=.TRUE,,
clipping to-3-D window pyramid during
transformations is hardware supported;
otherwise, it is not.

bmat23 Input parameter (SMXFA, SMXFL,
SMXFR, RAXFA, RAXFL, RAXFR) or
output parameter (TMXFA, TMXFL,
TMXFR, TAXFA, TAXFL, TAXFR)
which is the name of the 2 x 3 array
used in 2-D transformations.

bmat34 Input parameter (SMXFA3, SMXFL3,
SMXFR3, RAXFA3, RAXFL3, RAXFR3)
or output parameter (TMXFA3,
TMXFL3, TMXFR3, TAXFA3, TAXFL3,
TAXFR3) which is the name of the 3 x 4
array used in 3-D transformations.

idseg Input parameter identifying the seg-

ment whose attribute is to be tested or
reset.

60455940 A

Programming Notes

Absolute (-A suffix) and relative (-R and -L suffix) test
routines perform ‘identical functions; they are included
only for consistency.

The test feature (TF prefix) routines test only to see if
transformation capabilities are hardware or software
supported; all capabilities are supported for all postpro-
cessors. If capabilities are software supported, however,
execution time is greatly increased.

For background -information on the lpersp and lpyram
parameters, refer to the three-dimensional window rou-
tines in section 4.

bmat23 and bmat34 are the names of arrays in which the
transformation matrices are placed. The matrices may be
supplied by the programmer or assembled by the matrix
utility routines described earlier in this section. The

array containing the matrix is then specified in the call to
the mode/attribute routine.

EXAMPLES OF TRANSFORMATION |
ROUTINE USAGE

The following examples use many of the transformation
routines. documented in this section. They are not
complete programs.

WARNING
Ref er to appropriate postprocessor and
operating system appendices for format
of PROGRAM statement.
PROGRAM statement
DIMENSION A(2,3),B(2,3),C(2,3)
CALL INITIG(.TRUE.,.TRUE.,5LIFILE)
CALL SMPLIM(-50.,-50.,50.,50.)
CALL OPNSEG(I)
CALL MOVEA(0.,50.)
CALL DRAWA(0.,-50.)
CALL MOVEA(-50.,0.)
CALL DRAWA(50.,0.)
CALL CLSSEG
CALL OPNSEG(2)
CALL MOVEA(!5.,15.)
CALL DRAW A(20.,25.)
CALL DRAWA(25.,15.)
CALL DRAWA(15.,15.)

CALL CLSSEG

60455940 C

The first example illustrates the use of TIGS
transformation routines in simple translation, rotation,
and scaling of segments. In this program, a
two-dimensional picture is used. The coordinate axes are
drawn in for reference markings. Then, a triangle, circle,
and square are drawn in quadrants I, II, and III
respectively (figure 5-5). In three steps, the square is
rotated and placed in the circle (figure 5-6), the triangle
is scaled up and placed in the square (figure 5-7), -and
then all three segments are moved to the origin (figure
5-8). Each step is shown separately on the screen, using
the TIGS DSPLAY call (section 7) and the FORTRAN

PAUSE command.

The second example illustrates the use of both left and
right matrix multiplication routines. A house, chimney,
and flag are defined, each without regard for the final
relationship between them. However, before each is
defined, a matrix is built to move that segment into the
proper relationship with the model unit, or eoordinate
system, which will contain it - the house with the overall
picture, the chimney with the house, and the flag with
the chimney. Cumulative transformations are effected
by concatenating the old CTM with a new matrix. Each
segment is oriented without regard for what eventually
happens to the segment, or coordinate system, in which
it is oriented. For example, the fact that the house will
eventually double in size does not matter to the
programmer when he scales the chimney down to 1/8
scale in order to fit it to the originally defined house.
The doubling in size, through cumulative
transformations, will apply to the now properly oriented
chimney as- well as to the house. Program output is
reproduced in figures 5-9 and 5-10.

Dimension arrays to be used for matrices.

Draw coordinate axes.

Draw triangle in first quadrant.

CALL OPNSEG(3)

CALL MOVEA(-15.,15.)

CALL ARCDR(-5.,5.,360.)

CALL CLSSEG

CALL OPNSEG(4)

CALL MOVEA(-15.,-15.)

CALL DRAWA(-15.,-25.)

CALL DRAWA(-25.,-25.)

CALL DRAWA(—25.,-1 5.)

CALL DRAWA(-15.,-15.)

CALL CLSSEG

CALL DSPLAY

PAUSE

CALL XTRNA(20.,20.,A)

CALL XROTL(45.,A)

CALL XTRNL(-20.,20.,A)

CALL RAXFA(4,A)

CALL DSPLAY

PAUSE

CALL XTRNA(~20.,-20.,B)

CALL XSCLL(1.5,1.5,B)

CALL XTRNL(-20.,20.,B)
- CALL RAXFA(2,B)

CALL DSPLAY

PAUSE

CALL XTRNA(20.,-20.,C)

CALL RAXFA(3,C)

CALL RAXFL(2,C)
CALL RAXFL(4,C)
CALL DSPLAY
PAUSE

CALL QUITIG(.TRUE.)
STOP

END

Draw cirele in second quadrant.

Draw square in third quadrant.

Display picture on terminal screen and then wait for
operator response.

Construet matrix to move square to origin, rotate it
45° counterclockwise and then move it onto the
circle. Note that first call is to an absolute routine
but subsequent calls to build matrix are relative
routines for concatenation. Call to reset attribute
routine could have been to RAXFL instead of RAXFA
since transformation matrix attribute of square was
the identity matrix (no transformations). Modified
picture is then displayed and program pauses.

Construct matrix to move triangle to origin, scale it
up 1.5 times and move it onto the cirele. Other
observations from last step apply here.

For the final step, each segment is moved to the
origin. Each segment has to be moved separately.
For segment 3 (cirele) which has not been previously
moved, this is accomplished by setting up the trans-
lation matrix C and resetting segment 3's transfor-
mation attribute.

For segments 2 and 4 (triangle and square) the pro-
cedure is identical except that a relative routine
using left matrix multiplication, namely RAXFL, is
used. The same matrix is used for all three segments.

60455940 A

Figure 5-5. Output from First Example, Step 1

PAUSE

Figure 5-6. Output from First Example, Step 2

60455940 A : 5-11

PAUSE

Figure 5-7. Output from First Example, Step 3

STOP

Figure 5-8. Output from First Example, Step 4

5-12 . 60455940 A

PROGRAM statement

DIMENSION A(2,3)

CALL INITIG(.TRUE.,.TRUE.,5LIFILE)

CALL SMPLIM(-100.,~100.,100.,100.)

CALL XTRNA(-30.,0.,A)

CALL XSCLL(2.,2.,A)

CALL SMXFA(A)

CALL OPNSEG(!)
CALL MOVEA(0.,0.)
CALL DRAWA(60.,0.)
CALL DRAWA(30.,30.)
CALL DRAWA(0.,0.)
CALL DRAWA(0.,-30.)
CALL DRAWA(60.,-30.)
CALL DRAWA(60.,0.)

CALL CLSSEG

CALL XSCLA(.125,.125,A)

CALL XTRNL(30.,30.,A)

CALL SMXFR(A)

60455940 A

Dimension array -in which to build transformation
matrices. Only one array is necessary because CTM
is saved by TIGS; the programmer does not have to do
so.

Build transformation matrix for house segment; it is
to be centered in the picture and scaled up two times.
Note first call (XTRNA) is to an absolute routine
because it is the first transformation to be applied to
the segment. This applies to the first step of building
the matrix for each segment. Second call is to left
multiplication routine because the house-is to be
scaled after the house is moved.

Set transformation mode for house segment to be
drawn in next section of program. An absolute rou-
tine is used because it is the first CTM and does not
involve matrix multiplication with any other CTM.
Note that this CTM will eventually be concatenated
with the matrices for the chimney and flag segments.

Draw house.

Build matrix for chimney segment. It is to be scaled

.down to 1/8 size and moved to the right 30 units and

up 30 units. This will place it on top of the house as
the house was originally defined. Left routines are
used because this step involves straightforward scal-
ing and translating. Do not be concerned that the
house is subsequently altered by transformations; the
next step takes care of that problem.

Set transformation mode for chimney segment to be
drawn in next section of program. A relative routine
is used because the final position of the chimney is a
result of cumulative transformations; a right multi-
plication routine is used because the chimney must
first be moved to the top of the house and then house
and chimney moved together to their final location.
Only the relationship of chimney to house is known,
not the relationship of the chimney to the overall
picture. The chimney is moved before the house
transformation is applied.

CALL OPNSEG(2)

CALL MOVEA(0.,0.)
CALL DRAWA(20.,-20.)
CALL DRAWA(20.,40.)
CALL DRAW A(-40.,40.)
CALL DRAW A(-40.,-40.)
CALL DRAWA(0.,0.)

CALL CLSSEG

CALL XTRNA(-30.,-30.,A)
CALL XROTL(-90.,A)
CALL XTRNL(20.,100.,A)

CALL SMXFR(A)

CALL OPNSEG(3)
CALL MOVEA(30.,30.)
CALL DRAWR(0.,30.)
CALL DRAWR(25.,0.)
"‘CALL DRAWR(0.,-30.)
CALL MOVER(-25.,0.)
CALL DRAWR(60.,0.)
.CALL CLSSEG

CALL DSPLAY
PAUSE

CALL XIDNT(A)

CALL RAXFA(1,A)
CALL RAXFA(2,A)
 CALL RAXFA(3,A)
CALL DSPLAY
PAUSE

CALL QUITIG(.TRUE.)
STOP

END

Draw chimney.

Build matrix for flag segment. It is to be rotated 90°
and placed on top of the chimney. Since the flag is
not defined at the origin, it is moved to the origin
before rotation and then moved to the top of the
chimney as the chimney was originally defined. Left
routines are used in this step because we want to
move the flag to the origin, then rotate it, and then
move it to the chimney. Each step happens after the
preceding step.

Set transformation mode for flag segment to be
drawn in next section of program. The relative
routine states that the final position of the flag is a
result of cumulative transformations. The right
routine is used so that when the new matrix is con-
catenated with the old CTM, the transformation to
move the flag to the top of the chimney is applied
before the transformation to move flag, chimney, and
house to their final locations.

Draw flag; relative draw routines are used (refer to
section 2).

Display picture.

Set identity matrix to move all segments back to
original location.

Reset transformation attributes of all three segments
to show position of segments as they were originally
defined. :

60455940 A

60455940 A

PAUSE

PAUSE

Figure 5-9. Output from Second Example, Step |

Figure 5-10. Output from Second Example, Step 2

GEOMETRY UTILITIES

.

The following TIGS calls are documented in this seection.

ENDPAR
ENDPLN
ENDPL3

RTANGL
RTANG3

There are no mode/attribute/feature calls specifically
associated with TIGS geometry utilities.

An example of geometry utility usage follows the docu-
mentation of the calls listed above.

GENERAL

Before calling graphic primitives routines for drawing ares
or lines, the programmer may want to investigate how
~much of an are or line lies within a specific rectangular
area. This can be useful information in caleulating how
much of a picture will appear in a given window, for
example. He can in this way determine in advance how
window clipping will affeet his display.

There are separate routines for two- and three-dimen-
sional pictures. The RTANGx routine sets up the
boundaries of the rectangle or rectangular parallelepiped
of interest. Then the ENDPLx routine calculates the
points of intersection, if any, of a line with the area or
volume desceribed by RTANGx. The ENDPAR routine
calculates the points of intersection, if any, of an are with
the area of interest.

GEOMETRY UTILITY ROUTINES
ENDPAR

Format

ENDPAR(ex,cy,x1,y1,x2,y2,nares,xnl,ynl,xn2,yn2)
Determine endpoints of specified 2-D are.

Parameters

ex,ey Input parameters; coordinates of the
center of the are to be checked against
the boundaries specified by RTANGL.

x1,y1 Input parameters; coordinates of the
x2,y2 endpoints of the are.
60455940 A

nares Output parameter; contains the number
of arc sections that are inside the area
specified by RTANGL:

0<nares<5

If NARCS=0, then xnl,ynlxn2,yn2 are
meaningless (refer to the following pro-
gramming notes).

xnl,ynl Output parameters; coordinates of in-

xn2,yn2 tersections of line with boundaries of

* area. Each is dimensioned as an array

of five words (refer to the following
programming notes).

Programming Notes

This subroutine determines whether or not the specified
arc crosses the boundaries of the area defined by
RTANGL. If the arc interseets any boundary, the
intersection point is calculated. An arc can intersect a
rectangle such that up to five sub-ares (ten endpoints) are
produced (figure 6-1). Thus, outpul parameters xnl,ynl,
xn2,yn2 must each be dimensioned as five-word arrays to
contain the possible endpoints of the sub-ares. The.
endpoints resulting from this operation are returned to the
application program for subsequent use in the appropriate
primitives.

N /
~_

Figure 6-1. Intersection of Arc With Clipping Rectangle

Coordinates are specified and returned as user coordinates
(that is, in terms- of the coordinate system specified by
SMPLIM, section 3).

6-1

ENDPLx

Format

ENDPLN(x1,y1,x2,y2,ishow,xn1,yn1,xn2,yn2)
Determine endpoints of specified 2-D line.

ENDPL3(x1,y1,21,x2,y2,22,ishow,xnl,ynl,zn1,
xn2,yn2,zn2)

Determine endpoints of specified 3-D line.

Parameters

x1,y1,z1 Input parameters; endpoints of line to

x2,y2,z2 be checked against boundaries specified
by RTANGxX.

ishow Output parameter; specifies the result

of the boundary check.
- If ISHOW=0, line lies outside area or

volume and xnl,ynl,znl,xn2,yn2,zn2 are

meaningless.

If ISHOW=1, line lies totally within area
and new endpoints are the same as
original endpoints:

x1=xnl x2=xn2
yl=ynl y2=yn2
zl=znl z2=zn2

If ISHOW=2, first endpoint is eclipped
and at least one of the following rela-
tionships is true:

x1 #xnl
yl #ynl
z1 # znl

If ISHOW=3, second endpoint is clipped

and at least one of the following rela--

tionships is true:

x2 #xn2
y2 #yn2
z2 # zn2

If ISHOW=4, both endpoints are clipped
and at least one of the relationships in
each column is true:

x1 #xnl x2 # xn2
y1 #ynl y2 #yn2
z1 # znl z2 # zn2

xnl,ynl,znl Output parameters; coordinates of in-
xn2,yn2,zn2 tersections of line with boundaries of
area/volume (new endpoints).

Programming Notes

These subroutines determine whether or not the specified
line crosses the boundaries of the area/volume defined by
RTANGx. If the lin€ intersects any boundary, the
intersection point is calculated. The endpoints resulting
from this operation are returned to the application
program for subsequent use in the appropriate primitives.

6-2

Coordinates are specified and returned as user coordinates
(that is, in terms of the coordinate system specified by
SMPLIx, section 3).

RTANGx

Format
RTANGL(x11,y11,xur,yur)
Define limits for 2-D endpoint calculations.
RTANG 3(x11h,yllh,zllh,xury,yury, zury)

Define limits for 3-D endpoint calculations.

‘Parameters

xlLyll,xur,yur Input parameters; coordinates of
the lower left and upper right
corners of the 2-D rectangle used
by the ENDPLN and ENDPAR sub-
routines.

xllh,ylih,z11h, Input parameters; coordinates of

xury,yury,zury the lower left hither and upper
right yon corners of the 3-D rec-
tangular parallelepiped used by the
ENDPL3 subroutine (refer to the
following programming notes).

Programming Notes

The parameters for these routines are specified the same
as the parameters for SMPLIx, section 3. However, these
routines have no effect on picture limits as established by
SMPLIx. They simply specify the area or volume to be
used when subsequent ENDPLx and ENDPAR calls are
made.

Coordinates are specified as user coordinates established
by a prior call to SMPLIx.

EXAMPLE OF GEOMETRY UTILITY USAGE

The following example uses the geometry utilities calls
documented in this section. It is not a complete program.
Postprocessor dependent portions of the program are not
illustrated, nor are portions not dealing with topies
covered in this seection.

The program tests for the portions of a proposed line and
arc which will fit in a defined rectangle, then draws those
portions. Figure 6-2 illustrates the situation (this figure is
not program output). The rectangle and the parts of the
line and are which lie outside the rectangle are drawn
with dotted lines. The parts of the line and arc lying
within the rectangle are drawn with solid lines.

WARNING

Refer to postprocessor and operating system
appendices for format of PROGRAM statement.

60455940 C

PROGRAM Statement

DIMENSION X1(5),Y1(5),X2(5), Y2(5)

CALL RTANGL(.23,.3,.7,.7)

CALL ENDPLN(.6,.9,.8,.1,ISHOW,XN1,YN1,XN2,YN2)

CALL MOVEA(XN1,YN1)

CALL DRAWA(XN2,YN2)

CALL ENDPAR(.5,.5,.5,.8,.5,.2,NARCS,X1,Y1,X2,Y2)
IF (NARCS.EQ.0) GO TO 200
DO 150 I=1,NARCS
CALL MOVEA(X1(I), Y1(1))
CALL ARCA(.5,.5,X2(D),Y 2(1))
150 CONTINUE

200 CONTINUE

Dimension 4 arrays of 5 words each for ENDPAR
routine, because the intersection of an arc with a
rectangle may yield up to 5 subares (refer to figure
6-1).

Define rectangle of interest; program uses defaull
picture with units of (0.,0.) to (1.,1.).

Define line; on return, ISHOW will be set to 4, and
XN1,YN1,XN2,YN2 will contiain the coordinates of
the endpoints of the line segment contained in the
rectangle.

Draw the line segment.

Define are; on return, NARCS is set to 2 which
indicates 2 subarcs are contained in the rectangle. If
NARCS had been 0 (no subares in rectangle), the are
drawing routine would have been skipped.

The arrays X1 and Y1 contain the starting point of
the two subares and the arrays X2 and Y2 contain the
endpoints. There are two significant words in each:
array (NARCS=2). The program loops twice to draw
the subares from starting point to endpoint.

e o e

Figure 6-2. Example of Geometry Utility Usage

60455940 A

INTERACTION

#

The following TIGS routines are documenied in this
seetion.

EVENT PROMPT TAINFO
KEYBRD RAAC TFAC
KYAC RAINFO TFID
KYOFF SMAC TFLOCR
KYON SMID TMAC
LOCATE SMINFO TMID
PREEVN SMLOCR TMINFO
PRELOC TAAC TMLOCR

This list includes routines which perform interactive
functions, and those mode/attribute/feature routines
which affect interaction routines. The mode/atiri-
bute/feature routines are placed in a separale group
following the interaction routines.

Following the description of the routines is a comprehen-
sive example which illustrates interaetive programming
techniques.

GENERAL

TIGS may be used in either passive or interactive mode.
In the passive mode, the terminal operator is essentially a
spectator observing the display generated by the applica-
tion program. In the interactive mode, the terminal
operator responds to the graphics display with terminal
input which influences and modifies the display. Calls ‘to
TIGS interaction routines permit this interaction. Only
TIGS interaction routines are described in this section; a
limited form of interaction is possible through the
operating system (such as with the FORTRAN PAUSE
statement) but this is interaction between the operator
and the operating system, not the operator and the TIGS
application program.

The TIGS interaction subroutines are used by the applica-
tion program to obtain reports about events that occur
when the terminal operator responds to the graphics
display. Possible events are the picking of a segment with
a locator device and the pressing of a function key. The
interaction routines have been defined independently of
the physical input devices to which they relate. Thus, the
programmer can write his program for virtual devices
(such as the locator device) defined for the preprocessor
and the postprocessor will link these virtual devices to the
equivalent physical input devices available at a given
terminal. The programmer interrogates the postprocessor
as to available virtual input devices with the TFLOCR
subroutine. The programmer should consult the appropri-
ate postprocessor appendix for specific information on
linkage of virtual input devices to physical input devices.

These terminal events can be assigned by the applieation
program to action types which dictate what action will be
performed when an action occurs. There are three action
types as follows:

60455940 B

® Ignore - No action is taken by the system on the
terminal event. This ignore capability is in-
cluded so that specific segment pick and funetion
key evenls may be temporarily deactivated
during an interactive session. The ignore action
can be permanently assigned to segments which
are not meant to be involved in interaction.

® Recognize - When a segment or function key
which has been assigned the recognize action is
selected by the terminal operator, that selection
is recognized by the system. When an event is
recognized, the information about that event is
reported to the application program Dby " the
subroutine EVENT. In addition, if the event is a
segment pick, the event is echoed at the termi-
nal. The implementation of the echo is postproc-
essor dependent. For example, the segment may
be redrawn or made to blink to echo a piek.

e Terminate - The terminate action includes all
the functions of the recognize action. In
addition, when a segment or function key has
been assigned to the terminate action type, the
selection of that segment or function key flags
the event as the last event in the queue for a
given call to the subroutine EVENT. If no
segment or function key has been assigned to the
terminate action type, there is no way to return
control to the main program from the subroutine
EVENT. This is the default action type.

" Action types are assigned via the xxAC mode/attribute -

routines for segments. The action type to which a
segment is assigned becomes an attribute of that segment,
and thus may be reset. For example, a segment may
initially be assigned the recognize action and subsequently
reset to the ignore action. :

Action types are assigned to the function keys with the
KYAC, KYON, and KYOFF routines.

TIGS interaction routines can be divided into three main
groups. The first group includes the TIGS main interac-
tive capability centered on the EVENT subroutine. The
second group is composed of routines for dealing with
interactive text items. The third is composed of routines
which allow the reporting of sereen locations to the
application program.

The first group is composed of the following interaction k
routines.

EVENT
PREEVN
KYON
KYOFF
KYAC
xxAC
xxID
xxINFO -

Calling the EVENT subroutine enables the segment pick
and function key press events. The program pauses while
the terminal operator selects one or more segments or
function keys. The information associated with each
segment or function key is not reported to the application
program until the terminate action is performed by the
selection of a segment or function key that has been
assigned to the terminate action type. Then the EVENT
subroutine is called repeatedly until all (or as much as the
programmer wants) of the event information is processed.
EVENT is called once for each event which has been
placed on the queue. :

PREEVN is called to prepare the mode set locator (refer
to SMLOCR) for use as a segment pick device. The
locator device is not displayed until a subsequent call to
EVENT. If there is a current EVENT queue, it is cleared.

KYAC, KYOFF, and KYON assign action types to
function keys. Depending on the terminal, function keys
may be a separate set of keys or function keys may be
simulated by certain keys on the alphanumeric keyboard.
(Refer to the appropriate postprocessor appendix for
details.) KYAC assigns individual function keys; KYOFF
and KYON assign all keys at once.

xXAC assigns and tests action types for individual seg-
ments. TFAC tests for postprocessor support of basic
interaction via the EVENT subroutine.

xxID assigns and tests intrasegment identifiers for subseg-
ments. For example, a single segment may be composed
of a triangle and a ball. Although a segment can only be
picked as a whole, intrasegment IDs can be used to inform
the application program of whether the locator was on the
triangle or the ball when the segment was picked. Note
that when the event is echoed at the terminal, however,
the entire segment, not just the portion picked, is echoed.

xxINFO is used lo store information about a segment
which can be reported to the application program. Its use
is not restricted to interactive graphies, but will most
often be used in connection with interactive graphies.

The second group is composed of the following interaction
routines.

KEYBRD
PROMPT

KEYBRD is used to inform the application program of
keyboard input from the terminal in the form of an
alphanumeric character string. PROMPT is used by the
application program to display text strings on the display
screen. The system viewport area of the screen is used by
both routines. ‘

The third group is composed of the following interaction
routines.

LOCATE
PRELOC
xxLOCR

The LOCATE subroutine is used to obtain the coordinates
of the loeator device for.use in the application program.
The locations are stored on a queue analogous to the
EVENT queue. The program pauses while the operator
selects one or more locations. Registration and termina-
tion of location selections is postprocessor defined. After
termination the LOCATE subroutine is called repeatedly
until all (or as many as the programmer wants) of the
locations are reported to the application program.

7-2

PRELOC prepares the mode set locator for use in
reporting locations. The locator device is not displayed
until a subsequent call to LOCATE. If there is a current
LOCATE queue, it is cleared.

The xxLOCR mode/attribute/feature routines control
testing and setting of the virtual locator device used with
the EVENT and LOCATE routines. Assignment of physical
input device to the virtual device is postprocessor
determined.

INTERACTION ROUTINES

EVENT

Format

EVENT(Iky,ids,coords,iremng)

Report terminal input to application program.

Parameters

lky Output parameter; indicates whether
event was a function key press or
segment pick.

If LKY=.TRUE., event was a function

key press.
If LKY=.FALSE., event was a segment
pick.

ids Output parameter; five-word array con-

taining information about the event
reported by the current call to EVENT.

If event was a function key press (LKY=
.TRUE.), IDS(1) contains the function
key ID; 0<ID<255.

The other elements of array ids have no
meaning, and the eoords parameter has
no meaning.

If event was a segment pick (LKY=.
FALSE.), array id has the following

significance.
Array
Element Contents
1 ID of picked segment
2 ID of window in
which segment is dis-
played
3 ID of picture contain-
ing segment
4 ID of viewport in
which segment 1s dis-
played
5 Intrasegment identi-

fier (zero if no intra-
segment ID)

60455940 C

coords Output parameter; three-word array
containing the best effort coordinate
values of the location of the segment
pick.

COORDS(1) = x coordinate
COORDS(2) = y coordinate

COORDS(3) = z coordinate (zero
for 2-D picks)

iremng Output parameter; the number of
events remaining on the event queue for
the current set of events.

Programming Notes

When a call to EVENT is encountered and the event queue
is empty:

© The application program pauses to permit the
terminal operator to make segment picks or
funetion key presses. A postprocessor-defined
prompt is initiated (erosshairs, cursor, ete.) to
inform the operator that the program is waiting
for input.

© Selections can be made until a segment or
function key in the terminate action type is
selected.

© Control is then returned to the calling program.

Events on the event queue are processed by repeated calls
to EVENT, one call per event on the event queue. When
IREMNG=0, lky, ids, and coords contain the information
about the last event on the queue.

A function key press event is registered by pressing the
key. A segment pick event is registered by moving the
locator device until it is on some line of the desired
segment (not a space. enclosed by the segment). For one-
shot locators (refer to SMLOCR), the operator must also
register the pick.

If no segment or function key has the terminate action
associated with it, the subroutine can never return control
to the calling program.

If there are events already on the event queue when
EVENT is called, there is no program prompt. The events
already on the queue are processed. The iremng param-
eter informs the programmer of the number of events
remaining on the queue. The PREEVN subroutine is used
to clear the event queue when necessary.

The exact coordinate values returned for the coords
parameter are postprocessor-dependent, but are typically
the endpoint of a picked line, are, are chord or segment, a
point, and so on. The coordinate system used in reporting

the values is the one specified in the most recent call to
PREEVN.,

KEYBRD

Format

KEYBRD(maxechr,nchrs,itext)

60455940 C

Return to application program the text string
entered from the terminal alphanumeric key-
board.

Parameters

maxchr Input parameter; maximum number of
characters permitted in string.

nehrs Output parameter; number of char-
acters contained in array itext up to
and including the last nonblank char-
acter:

nchrs < maxchr

itext Output parameter; first word of array
’ containing the text string.

Programming Notes

KEYBRD reports text strings entered by the terminal
operator. When a call to KEYBRD is encountered, the
cursor appears in the system viewport area and the
operator enters the desired character string. The charac-
ter string is terminated in the same way normal terminal
input is (RETURN, SEND, ETX key, and so on) and eontrol
is returned to the calling program.

If a text string larger than maxechr is entered at the
terminal, only maxchr characters are reported to the
application program. If a text string shorter than maxchr
is entered at the terminal, the remaining character
positions are blank filled. '

As many characters as possible are packed into a word;
the number of characters depends on the processor word
length. Characters are in the character set of the
processor.

The maximum number of characters which can be input
with one KEYBRD call depends on the postprocessor.
However, each postprocessor will allow at least 50
characters.

When numerical data is input via KEYBRD, the data
must be reformatted before any calculations can be
made. The FORTRAN DECODE statement, although

non-ANSI standard, will reformat the data as needed.
(Refer to the FORTRAN Manual for information.)

KYAC

Format

KYAC(idky,iactn) ‘
Assign individual function key to an action type.

Parameters

idky Input parameter; number of the function key
to be assigned:

7-3

0 < idky < 255
Number of available function keys is post-
processor-dependent. : .

iactn Input parameter; action to be performed

when idky is pressed:

IACTN =1 Ignore.

IACTN = 2 . Recognize.

IACTN =3 Terminate.
DEFAULT is IACTN = 3, terminate.

Programming Notes

KYAC assigns individual function keys to action types for
use with the EVENT subroutine. KYON and KYOFF can be
used to assign all keys at one time.

NOTE

So that application programs can be to the
greatest practical extent terminal-indepen-
dent, it is strongly recommended that the
programmer use only function keys 0 to 9
which always exist or will be simulated for any
terminal supporting the EVENT subroutine.

Refer to the general heading in this section for more
information on action types.

KYOFF

Format

KYOFF
Assign all function keys to ignore action type.

Parameters

None.

Programming Notes

KYOFF assigns all function keys to the ignore action type.
The number of function keys is postprocessor-dependent.

KYON assigns all function keys to the terminate action
type. In the default case (no calls to KYON or KYOFF),
all function keys are assigned to the terminate action
type.

For example, the following sequence of calls turns off all

keys except 9, which is assigned to the terminate action
type.

7-4

CALL KYOFF
CALL KYAC (9,3)

Refer to KYON.

KYON

Format

KYON

Assign all function keys to terminate action
type.

Parameters

None.

Programming Notes

KYON assigns all funetion keys to the terminate action
type. The number of function keys is postprocessor-
dependent.

KYOFTF assigns all funetion keys to the ignore action type.
In the default case (no calls to KYON or KYOFF), all
funetion keys are assigned to the terminate action type.

Refer to KYOFF.

LOCATE

Format

LOCATE(R,y,iremng)

Report one or more sets of locator symbol
coordinates.

Parameters

X,y Output parameters; coordinates of the
locator symbol.

iremng Output parameter; number of locations
left on location queue.

Programming Notes
This subroutine reports one or more sets of locator symbol

screen coordinates.. When a call to LOCATE is encoun-
tered and the location queue is empty:

60455940 B

® The mode set locator is enabled (refer to
SMLOCR).

e The locator symbol is displayed at the center
of the window or viewport specified by the
most recent call to PRELOC, or at the
coordinates of the location when LOCATE was
last terminated, if there is no intervening
PRELOC ecall.t

® Locations can-be entered until terminated by
- the operator; control is then returned to the
calling program.

Locations on the location queue are then processed by
repeated calls to LOCATE, one call per location on the
location queue. When IREMNG=0, x and y contain
information about the last set of coordinates picked.

Locations are selected at the terminal by moving the
postprocessor-determined locator symbol (crosshairs,
tracking cross, ete.) to the desired location. One-shot
locators require that each location be separately regis-
tered (refer to SMLOCR). The current set of locations is
terminated by the postprocessor-determined terminator.

If the set of locations is not terminated, eontrol cannot be
returned to the calling program.

If there are locations already on the location queue when
LOCATE is called, the mode set locator is not enabled;
the locations already on the queue are processed. The
iremng parameter informs the programmer of the number
of locations remaining on the queue. The PRELOC
subroutine is used 1o clear the location queue when
necessary.

LOCATE returns loeator coordinates based on the lucord
parameter of the PRELOC subroutine. If LUCORD-=
.TRUE., coordinates are returned as user coordinates.
User coordinate ranges are established by calling SMPLIM.
Only two-dimensional window IDs can be specified in
PRELOC when LUCORD=.TRUE.,; three-dimensional win-
dows result in diagnostics. If LUCORD=.FALSE., coor-
dinates are returned as screen coordinates. Screen
coordinate range is established when INITIG is called.
When LUCORD=.FALSE., the locator is associated with a
viewport, not a window. Either two- or three-dimensional
windows may be associated with a viewport. Only when
LUCORD=.FALSE. can LOCATE be used with three-
dimensional pictures.

PREEVN

Format

PREEVN(ucord,idvuwi)

Specify coordinate system and window/viewport
ID for EVENT processing.

Parameters

 lucord Input parameter; specify coordinate
system for returned coordinates and the
type of ID specified by idvuwi.

If LUCORD=.TRUE., coordinates are
returned as user coordinates; idvuwi
specifies the ID of a window.

If LUCORD=.FALSE., coordinates are
returned as screen coordinates; idvuwi
specifies the ID of a viewport.

idvuwi Input parameter; the ID of a window or
viewport in which initially to display
the locator symbol. The ID is for a
window or viewport depending on the
value given for lucord.

Programming Notes

This subroutine is used to prepare the locator device for a
subsequent call to EVENT. PREEVN specifies the window
or viewport in which initially to display the locator
symbol. (For some postprocessors, some locator devices
cannol be assigned in this way; their initial location is
determined solely by conditions at the terminal and are
not influenced by TIGS software. Refer to the appro-
priate postprocessor appendix for more information.) The
coordinate system in which pick coordinates are returned
to the calling program is specified by PREEVN: screen
coordinates if LUCORD=.FALSE., user coordinates if
LUCORD=.TRUE.. .

PREEVN clears any events remaining on the event queue.

The parameters apply to the mode set locator used as the
pick device when it is next enabled by a call to EVENT.

If PREEVN is not called prior to the first call to EVENT,
defaults are as follows:

LUCORD=.FALSE.

IDVUWI=0 (default viewport)

PRELOC

Format

PRELOC(lucord,idvuwi)

Specify coordinate system and window/viewport
ID for LOCATE processing.

Parameters

lucord Input parameter; specify coordinate
system for returned coordinates and the
type of ID specified by idvuwi.

If LUCORD=.TRUE., coordinates are
returned as user coordinates; idvuwi
specifies the ID of a window.

If LUCORD=.FALSE., coordinates are
returned as screen coordinates; idvuwi
specifies the ID of a viewport.

tSome locators (for example, thumbwheels) cannot be software-positioned; they appear where last positioned by terminal

locator controls.

60455940 A

7-5

idvuwi Inputl parameter; the ID of a window or
viewport in which initially to display
the locator symbol. The ID is for a
window or viewport depending on the
value given for lucord. A

Programming Notes

This subroutine is used to prepare the locator device for a
subsequent call to LOCATE. PRELOC specifies the
window or viewport in which initially to display the
locator symbol. (For some postprocessors, some locator
devices cannot be assigned in this way; their initial
location is determined solely by conditions at the terminal
and are not influenced by TIGS software. Refer to the
appropriate postprocessor appendix for more information.)
The coordinate system in which locations are returned to
the calling program is specified by PRELOC: screen
coordinates if LUCORD=.FALSE., user coordinates if
LUCORD=.TRUE..

PRELOC clears any locations remaining on the location
queue. ‘

The parameters apply to the mode set locator when it is
next enabled by a ecall to LOCATE.

If PRELOC is not called prior to the first call to
LOCATE, defaults are as follows:

LUCORD=.FALSE.

IDVUWI=0 (default viewport)
PROMPT
Format

PROMPT(nchar,itext)

Display a message in the system viewport area of
the screen.

Parameters

nchar Input parameter; number of charaecters in-
cluding blanks in the message:

0 < nchar < 256

itext Input parameter; name of array in which
prompting message is stored.

Programming Notes

For more information on the system viewport area, refer
to SMSVP, section 4. Messages in the system viewport
area are not redrawn when the screen is redrawn, as
segments containing text are. '

Before numerical information can be output via
PROMPT, the data must be reformatted. The FORTRAN
ENCODE statement, although non-ANSI standard, will
reformat the data as needed. (Refer to the FORTRAN
Reference Manual.)

7-6

MODE /ATTRIBUTE /FEATURE ROUTINES

xxAC

Format
TFAC(lactn)
Test for interaction support by postprocessor.
SMAC(iactn)

Modally set action type.

TMAC(iaetn)

Test the current modally set action type.

RAAC(idseg,iactn)

Reset the action type attribute of a segment.

TAAC(idseg,iactn)

Test the action type attribute of a segment.

Parameters

laetn Output parameters; if LACTN=.TRUE., then
the EVENT subroutine is supported by the
postprocessor; otherwise, it is not.

iasetn Input parameter (SMAC and RAAC) or out-
put parameter (TMAC and TAAC) specifying
the action type:

IACTN' =1 Ignore.

IACTN =2 Recognize.

IACTN =3 Terminate.
DEFAULT is IACTN = 3, terminate.

idseg Input parameter identifying the segment
whose attribute is to be tested or reset.

Programming Notes

"TFAC tests for postprocessor support of the EVENT

subroutine for basic interaection; it does nol imply any-
thing regarding LOCATE support.)

SMAC modally sets the action type to which subsequently
defined segments are assigned. The action type modal
setting cannot be changed while a segment is open; that
is, from the time the first primitive in a segment is
defined until the segment is closed.

60455940 C

xxID

Format

TFID(nid)
Test for postprocessor support of return of
intrasegment identifier.

SMID(idintr)
Modally set intrasegment identifier.

TMID(idintr)

Test for current modally set intrasegment iden-
tifier.

Parameters

nid Output parameter; the largest number sup-
ported by the postprocessor for intraseg-
ment identifiers; if NID=0, the feature is not
supported.

idintr Input parameter (SMID) or output parameter
(TMID) specifying the intrasegment identi-
fier:
0 £ idintr < 32,767
If idintr > nid, nid i5 used.

Programming Notes

There are no reset attribute (RA) or test attribute (TA)
routines because intrasegment identifiers are not attri-
butes of segments; a segment may not have a single
intrasegment identifier which could be tested or reset.

The xxID routines are primarily for use in conjunction
with the EVENT subroutine.

An intrasegment identifier is an ID assigned to a part of a
segment. A single segment may be composed of several
component parts, each of which may be assigned a
separate intrasegment identifier. Although a segment can
only be picked as a whole, intrasegment identifiers can
inform the application program of which component the
locator device was on when the segment was picked.

SMID is a mode-setting routine which, necessarily, can be
setl during a segment definition.

xxINFO

Format

SMIN FO(ninfo,info)
Modally set information stored with segments.

TMINFO(ninfo,info)

Test current modal setting for information
stored with segment.

60455940 A

RAINFO(idseg,ninfo,info)
Reset the application information attribute of a
segment.

TAINFO(idseg,ninfo,info)

Test the application information attribute of a
segment.

Parameters

ninfo Input parameter; the number of words in the
info array:

0 < ninfo < 4
DEFAULT, NINFO=0

info Input parameter (SMINFO and RAINKO) or
output parameter (TMINFO and TAINrO);
name of array containing or to contain the
application information.

idseg Input parameter; ID of the segment whose
atiribute is to be tested or reset.

Programming Notes

There is no test feature (TF) routine; all postprocessors
support this feature.

Application-related information is contained in a free-
field storage area that becomes an attribute of a segment
and part of its definition. There are no restrictions on
what the programmer places in this storage, other than
the physieal ones outlined in the following paragraphs. It
need not contain interactive information, but this subrou-
tine will be most often used to store information
regarding interaction.

ninfo cannot be greater than four words and cannot
subsequently be increased above the number specified
when the segment was defined.

For purposes of terminal independence, it is strongly
suggested that the info array be construeted of 16-bit,
right-justified data parcels. Although some postpro-
cessors may handle words of greater length than 16 bits,
all will handle at least 16-bit words.

xxL OCR

Format

TFLOCR(maxloe,nloers,deserp,lone)

Test for number of loecators (if any) supported
and what their characteristics are.

SMLOCR(ilocr)
Modally set the locator device to be used.

TMLOCR(iloer)

Test for current modally setl locator device.

Parameters

maxloe Input parameter; size of the arrays
descrp and lone.

nloers Output parameter; the total number of
locator devices supported by the post-
processor up to maxloe:

0 < nloers < maxloe

deserp Output integer array of size nhloers
deseribing the nloers locators for this
postprocessor. The information for a
given entry describes the type of
locator.

lone Output logical array of size nloers; if

LONE()=.TRUE., then DESCRP(I) is a’

one-shot loeator (refer to the following
programming notes).

iloer Input parameter (SMLOCR) or output
parameter (TMLOCR); specifies loca-
tor. Ordinals specify corresponding
members of deserp array; that is,
ILOCR-=1 specifies locator deseribed in
DESCRP(1). If iloer > nloers, the
highest numbered locator is used.

DEFAULT is ILOCR=1. ~

Programming Notes

There are no resel attribute (RA) or test attribute (TA)
routines because the locator cannot become an attribute
of a segment.

The TFLOCR routine returns to the application program
essentially the same information as is contained in the
locator section of the postprocessor appendix for a given
terminal. The choice of a terminal locator device from
within an application program is postprocessor-dependent
because the programmer must know the various codes
returned by the various postprocessors to select the
desired locator device.

TFLOCR informs the application program of whether or
not location operations are possible; if NLOCRS=0, no
such operations are possible. Also, TFLOCR informs the
application program of the current locator device status
of a variable configuration terminal. For example, for a
terminal with an optional tablet input device, nloers and
deserp report whether or not this device is in use in a
given terminal session.

7-8

The maxloe parameter establishes a maximum array size
for deserp and lone. If the terminal has a greater number
of locator devices than there are words in maxloe, only a
portion of the total locator device information is returned
to the application program; that is, only maxloe locators
will be described.

Each significant word of array deserp contains the right-
justified code equivalent for a locator device available at
a given terminal. These codes are explained in the
appropriate postprocessor appendix.

lone is an array of the same size as deserp. For each
entry in deserp, the corresponding entry in lone specifies
whether the locator is a one-shot type. A one-shot
locator is a locator in which the terminal operator must
manually register each location as he selects it as
opposed to a stream of points based on continuous
movement of the locator (for example, the
thumbwheel/crosshair locator is a oneshot locator
device; most lightpens are not). The programmer should
keep in mind that such locators are cumbersome when
they must be used to select a large number of points. The
human interaction characteristic should be a factor
weighed in the decision to use or not use a particular
locator device.

iloer must be in the range:
0 < iloer < 63

If ILOCR=0, all calls to LOCATE will produce errors.

EXAMPLE OF INTERACTION ROUTINE
USAGE

The following example uses many of the interaction
routines documented in this seetion. It is not a complete
program.

WARNING

Refer to appropriate postprocessor and
operating system appendices for format of
PROGRAM statement.

In this example, six circles are initially displayed on the
sereen, in addition to the light buttons (text segments)
ADD, DELETE, and STOP (figure 7-1). Selection of the
ADD button enables the operator to select a location for a
new circle. If the operator selects DELETE, any or all of
the circles can be deleted from the picture. When
DELETE is selected, an ACCEPT lightbutton appears so
that the operator can inform the program that he has
selected the circles to be deleted. The STOP button stops
this sample program.

60455940 C

PROGRAM statement

DIMENSION IDS(5), CORDS(3)
LOGICAL LVIS, LUSER, LKY

DATA LVIS/.TRUE./,LUSER/.TRUE./
CALL INITIG(.TRUE.,.TRUE.,5LIFILE)

CALL SMPLIM(-6.,-6.,6.,6.)

CALL PRELOC(LUSER,0) Prepare locator; it is assigned to window 0 (default
window) and coordinates are user coordinates.
CALL CIRCLE(-2.,4.) Call program subroutine to draw 6 cireles. Each

circle is assigned to the recognize action type (2) in
the subroutine. Note that when control is returned to
the main program, the modally set action type is still

CALL CIRCLE(-2.,0.)
CALL CIRCLE(-2.,-4.)
CALL CIRCLE(4.,4.)
CALL CIRCLE(4.,0.)

CALL CIRCLE(4.,-4.)

CALL SMAC(3) Create ADD, DELETE, STOP, and ACCEPT light
buttons; assign each light button to the terminate -
action type.

CALL OPNSEG(1)

CALL MOVEA(-5.75,5.)
CALL TEXT(3,3HADD)
CALL CLSSEG '
CALL OPNSEG(2)

CALL MOVEA(-5.75,3.)
CALL TEXT(6,6HDELETE)
CALL CLSSEG

CALL OPNSEG(3)

CALL MOVEA(-5.75,1.)
CALL TEXT(4,4HSTOP)
CALL CLSSEG

CALL SMVIS(.NOT.LVIS) _ Create ACCEPT but make it invisible until after the.
operator selects DELETE. . L

CALL OPNSEG(4)

CALL MOVEA(-5.75,-1.)
CALL TEX’I:(G,GHACCEPT)
CALL CLSSEG

CALL SMVIS(LVIS) : Visibility mode must be set back to visible so subse-
quent segments are visible.

60455940 B -

7-10

10

100

110 -

200

210

220

300

CALL EVENT(LKY,IDS,CORDS,NREM)

IF(LKY) GO TO 10

IF (IDS(1).LT.1.0R.IDS(1).GT.3) GO TO 10
GO TO (100,200,300) IDS(1)

CONTINUE

CALL LOCATE(X,Y,NREM)

CALL CIRCLE (X,Y)

IF (NREM.NE.0) GO TO 110
GO TO 10

CONTINUE

CALL RAVIS (4,LVIS)

CALL EVENT (LKY,IDS,CORDS,NREM)

IF (NREM.EQ.0) GO TO 220
CALL DELSEG (IDS(1))

GO TO 210

CONTINUE

CALL RAVIS (4,.NOT.LVIS)
GO TO 10

CAL’L QUITIG(.TRUE.)
END

SUBROUTINE CIRCLE (X,Y)
DATA ID/100/

CALL SMAC(2)

CALL OPNSEG(ID)

ID=ID+1

IF (ID.EQ. 32767) STOP
CALL MOVEA (X+.5, Y+.5)
CALL ARCA (X,Y,X+.5, Y+.5)
CALL CLSSEG

RETURN

END

Wait for event; successive IF statements ensure that
ADD, DELETE, or STOP must be selected for
program to proceed.

Select locations for additional circles. Operator must
terminate location queue with posiprocessor-deter-
mined termination procedure. Then the program loops
to process all locations on location queue, one call to
LOCATE per location. Program returns for next
event.

ACCEPT light button is made visible.

Operator selects circles to be deleted. Note that
since circles are associated with the reecognize
action, a segment associated with the terminate
action must be picked to terminate the event queue
and return control to the program. ACCEPT is used
for this, although in this program any light button (or
funetion key) could be used.

Subroutine to draw circles.

New segment IDs start at 100.

60455940 A

60455940 A

DELETE

sTOP

~ Figure 7-1. Output from Interaction Routines Usage Example

7-11

TERMINAL FUNCTIONS 8

f

The following TIGS calls are documented in this section.

ALARM QUITIG TFSCRN
CLRSCR REMSCR UDATA
DSPLAY SCRNUR UNISCR
INITIG TFHARD WHERE
WHERE3

The two feature testing routines, TFHARD and TFSCRN,
are documented following the terminal function routines.

GENERAL

The routines in this section can be treated in several
groups. The first group is composed of INITIG and
QUITIG. These two routines are used to initiate and
terminate a graphies program and should be the first and
last graphics calls, respectively, in the program.

In the second group are the routines DSPLAY, CLRSCR,
REMSCR, SCRNUR, UNISCR, WHERE, and WHERES.
These routines affect or report on displays at the
terminal screen,

In the third group are TFHARD and TFSCRN which test
terminal features.

A last miscellaneous group is composed of ALARM and
UDATA. ALARM is used by the application program to

alert the terminal operator. UDATA is used to include
non-TIGS data in the neutral display file.

TERMINAL FUNCTION ROUTINES

ALARM

Format

ALARM(lon)
Turn terminal alarm indicator on or off.

Parameters
lon Input parameter; turn alarm on or off.
If LON=.TRUE., turn alarm on.

If LON=.FALSE., turn alarm off.

Programming Notes
The minimum terminal configuration is assumed to have a

bell which is activated when the terminal receives the
ASCII bell character as part of the program output. For

60455940 C

this terminal, ALARM (.TRUE.) produces a single ASCII
bell character; ALARM (.FALSE.) does nothing. This type
of terminal requires a series of calls to ALARM to
produce a sustained tone. For other terminals capable of
a sustained alarm, the alarm must be turned on and off.
For some terminals, lights may be used instead of an
audible alarm.

CLRSCR

Format

CLRSCR

Clear all displays from terminal screen.

Parameters

None.

Programming Notes
This routine clears the display scrcen of all graphics and

system output. Nothing in the ncutral display file is
deleted; the matcrjial can be redisplayed, if desired.

DSPLAY

Format

DSPLAY
Display all pictures.

Parameters

None.

Programming Notes

This subroutine causes all currently defined pictures to be
displayed on the terminal screen. The only exceptions are
for segments which have a visibility attribute of .FALSE.
(refer to xxVIS, section 2) and pictures with blinds down
(refer to BLINDS, section 3). . :

The programmer must make provisions to display his
pictures. Any of the following routines force the terminal
display to be updated to refleet the current contents of
the neutral display file.

8-1

DSPLAY
" EVENT
KEYBRD
LOCATE

If a graphics program does not contain a call to any of
these subroutines, nothing - will be displayed on the
terminal screen.

INITIG

Format
INITIG(Isquar,Inwfil,filnam)

Set all TIGS and terminal conditions to- initial
values.

Parameters

Isquar Input parameter; define mapping of
screen coordinates onto terminal dis-
play surface.

If LSQUAR=TRUE, screen coordi-
nates will be mapped onto a square
portion of the terminal display surface
and there will be a separate area of
the screen for the system viewport. .

If LSQUAR=.FALSE., screen coordi-
nates will be mapped onto the entire
terminal display surface., In this case
the system viewport will overlap with
the graphies display area.

DEFAULT is LSQUAR=.TRUE.

Inwfil Input parameter; specifies whether the
neutral display file is new or old.

If LNWFIL=.TRUE., a new neutral dis-
play file will be created by this graphics
program. .

If LNWFIL=.FALSE., this program will

use an old neutral display file (refer 1o .

the following programming notes).
DEFAULT is LNWFIL=.TRUE.

filnam Input parameter; specifies the name of
the neutral display file.

DEFAULT is postprocessor-dependent.

Programming Notes

INITIG must be the first graphies routine called. All TIGS
modes are set to their default values by INITIG.

INITIG can be called at any point in a program. It is
useful in any situation in which it is desirable to reset all
modal settings to default values (refer to QUITIG).

The lsquar parameter specifies 'whether the display will
use a square portion of the terminal display surface, or
all available surface. When all available terminal display
surface is used, portions of the screen coordinate system
may liew outside the limits of the terminal display
surface resulting in the possible loss of part of the
display (for example, when the mapping is done to a
round display surface). When LSQUAR=TRUE., a
terminal-independent screen coordinate system is used
when specifying viewports, returning sereen coordinates
to the application program, and so on. This coordinate
system ranges from (0,0) at the lower left corner to (1,1)
at the upper right. When LSQUAR=.FALSE., the screen
coordinate system is postprocessor-dependent; refer to
the appropriate postprocessor appendix for the specific
range. For reasons of lerminal independence, it is urged
that Isquar be set to .TRUE..

Only when LSQUAR=.TRUE. can the system viewport he
guaranteed to be separate from the graphies working area
(refer to SMSVP, section 4).

The Inwfil parameter specifies whether or not a new
neutral display file is to be created by the graphies
application program. If LNWFIL=.TRUE., the filnam
parameter gives the name of the new neutral display file.
A new neutral display file must not have the same name
as an existing local file or conflicts will oceur. If
LNWFIL=.FALSE., the filnam parameter gives the name
of an existing neutral display file (created by a previous
graphics application program). It is the operator's
responsibility to ensure that this neutral display file has
been attached to the terminal before the application
program is executed. It is also the operator's
responsibility to extend, if necessary, the permanent file
if an old neutral display file is used and modifications
have been made. (Refer to the appropriate operating
system reference manual for details.) All picture,
window, segment, and viewport definitions are preserved
in an old neutral display file, but all modal settings are
reset to default values by the INITIG call. This capability
to use existing neutral display files is espeecially useful
where many application programs use a complex picture,
window, and viewport scheme. It is only necessary to
define this scheme once and preserve the resulting

. neutral display file. Then succeeding programs specify

that file in the INITIG call and display new segments in a
standardized picture/window/viewport arrangement. It is
the programmer's reponsibility to be familiar with the
segment, picture, window, and viewport definitions in an
existing neutral display file.

The filnam parameter specifies the name. of the neutral
display file, either new or old. The name of the file is
specified in one of two ways.

The programmer may simply specify an integer in the
range 1 through 60 and TIGS will interpret it as a file of

the form TAPE(integer), which is an ANSI standard file
name.

For example, the call

INITIG(LSQUAR,.TRUE.,58)

results in the creation of a neutral display file named

TAPES58. The call

INITIG(LSQUAR,.FALSE.,58)

60455940 C

results in TIGS searching for a neutral display file named
TAPES58.

The programmer ‘can also specify a file name, 1 to 7
characters, left-justified and zero-filled. The call

INITIG(LSQUAR,.FALSE.,7LOLDFILE)

results in TIGS searching for a neutral display file named
OLDFILE.

With each neutral display file, TIGS associates the version
number of the TIGS program library under which it was
created (refer to appendix E). If a program specifies that
an old neutral display file is to be used but the library
version number associated with the old file does not
correspond to the version number of the TIGS program
library in use, TIGS issues an error message and creates a
new file with the old file name.

NOTE

If a program aborts prematurely or if it has
not called QUITIG, the operator must return
the neutral display file before running a TIGS
application with the same neutral display file
name. :

Refer to QUITIG for information on how io save neutral
display files for future use.

NOTE

Neutral display files created with TIGS v.1.0
must undergo a conversion. Refer to the
operating system dependencies section for
information on the control language
statements needed to convert a 1.0 file to 1.1
format.

QUITIG

Format

QUITIG(idelet)

Ensure orderly shutdown of terminal at end of
program.

Parameters

1delet Inputl parameter; specifies whether neu-
tral display file used by program is to
be saved or discarded when QUITIG is
called.

If LDELET=.TRUE., neutral display file
is discarded.

If LDELET=.FALSE., neutral display
file is not discarded.

DEFAULT is LDELET=.TRUE..

60455940 C

Programming Notes

QUITIG is called to terminate a graphies program in an
orderly fashion. QUITIG can be called at any point in a
graphics program: the combination of calls

CALL QUITIG(1delet)
CALL INITIG(Isquar,Inwfil,filnam)

is used mid-program to clear all modal settings in effect
and reestablish default values for them. By specifying the
proper parameler values in the above sequence
(LNWFIL=.TRUE.), all current segment, picture, window,
and viewport definitions may also be cleared.

Neutral display files are saved for future use by specifying
LDELET=.FALSE. when QUITIG is called. This means
that the file space occupied by the neutral display file is
not returned to the system. It is the operator's respon-
sibility to make provisions to save the file at job end.

The neutral display file is discarded (file space is returned
to the system) by specifying LDELET=.TRUE.. However,
if the neutral display file is not in the proper format, it is
not discarded, even when LDELET=.TRUE.. Thus, for
example, if the programmer should mistakenly specify a
source file rather than an existing neutral display file in
the INITIG routine, the source file is not discarded when
the program terminates.

REMSCR

Format

REMSCR
Copy contents of sereen on remote hardcopier.

Parameters

None.

Programming Notes

REMSCR causes a copy of the terminal display screen to
be made at a remote hardcopier device. Implementation
is of course dependent on the presence of such a device.
Whether or not the system viewport area is copied is
postprocessor-dependent.

SCRNUR

Format

SCRNUR(idwind,xsern,ysern,xuser,yuser)

Convert sereen coordinates to user coordinates;
2-D pictures only. :

Parameters

idwind _ Input parameter; ID of 2-D window
to whose coordinate system con-
version is to be made.

XSCrn,ysern Input parameters; screen coor-
dinates 1o be converted.

xXuser,yuser Output parameters; user coor-

dinates converted from screen
coordinates.

Programming Notes

This subroutine will extrapolate user coordinates outside

the specified window if necessary. For example, in figure
8-1, a window with IDWIND=1 is displayed in a viewport
on the left half of the terminal screen. If a screen
location on the right half of the sereen (the x) is specified,
with the ID of the window on the left:

CALL SCRNUR (1,.9,.9,XUSER,YUSER)

the values for XUSER and YUSER will fall outside the
window limits.

This subroutine can be useful in calculating user coor-
dinates from values returned by LOCATE, when LOCATE
has been set up to return screen coordinates.

WINDOW
1

Figure 8-1. SCRNUR Calculation

UDATA

Format

UDATA (nwords,idat)
Place user data in neutral display file.

8-4

Parameters

nwords . Input parameter; number of words in
the idat array:
O0<nwords< 26
idat Input parameter; array containing user
data.

Programming Notes

This subroutine permits the programmer 1o place
program-defined data in the neutral display file to be used
for some non-TIGS funetion. The data is ignored by TIGS.
The programmer must make his own arrangements to use
the data once it has been placed in the neutral display
file. The data is stored in the currently open segment.

When this UDATA data. is encountered by the
postprocessor in processing the NDF for creating
terminal displays, the postprocessor hands control back
to the application program, passes the UDATA
information to the application program, and waits while
the application program processes the information.
Control is passed to a user subroutine which must be
called USRDAT. Its format is as follows:

SUBROUTINE USRDAT(NWORDS,ARRAY)

where ARRAY is the array into which the data from
UDATA will be placed, and NWORDS is the number of
words in this array. The application program then
processes the data and returns control to the
postprocessor.

Note that care should be exercised when using USRDAT.
It is not advisable to call other TIGS routines from
USRDAT particularly if the segment or overlay loader is
being used.

In the interest of terminal! independcnee, it is strongly
suggested that the programmer use only the rightmost 16
bits of each word of idat. All postprocessors will support
a minimum of 16 bits per word.

UNISCR

Format

UNISCR Create picture on UNIPLOT NPFILE

to reflect current state of neutral
display file.

Parameters

None.

60455940 C

Programming Notes

Upon completion of the TIGS run a hardcopy plot can be
made of all pictures on the NPFILE (neutral picture file)
via UNIPOST. Refer to the UNIPLOT Reference Manual
for information on UNIPLOT, UNIPOST and the NPFILE.
Of course, this routine can only be used on systems which
have the UNIPLOT package.

Sinece UNIPLOT creates a local file named NPFILE, the
user should not have a local file named NPFILE at the
time the UNISCR call is made.

TIGS does not update the sereen in conjunction with a
UNISCR ecall.

When running an application which uses the UNISCR call,
declare the TIGS library first and the UNIPLOT library
second. Refer to the operating systems dependencies
appendix for information on the TIGS library, and refer

to the UNIPLOT Reference Manual for information on
the UNIPLOT library.

WHEREX

Format

WHERE(x,y)
Obtain current beam position for 2-D picture.

WHERE3(x,y,2)

Obtain current beam position for 3-D picture.

Parameters

X,V,Z Outputl parameters; coordinates of drawing
beam.

Programming Notes

WHEREX returns the current drawing beam position to the
calling program. Coordinates returned are user coor-
dinates established by calling SMPLIx (section 3).

60455940 C

TEST FEATURE ROUTINES
TFHARD -

Format

TFHARD(remot)
Test for remote hardcopier availability.

Parameters

Iremot Output parameter; if LREMOT=.TRUE., a
remote hardcopier exists.

Programming Notes

If LREMOT=.TRUE., a REMSCR call will copy the
contents of the sereen to the hardeopy device.

TFSCRN

Format

TFSCRN(Irtang . xl1l,yll,xur,yur resltn)

Test the size, shape, and resolution of the
terminal sereen.

Parameters

Irtang,x1Lyll,xur,yur Output parameters describing
sereen shape and dimensions.

If LRTANG=.TRUE., the ter-
minal screen is reectlangular
and x1,ylLxur,yur give the low-
er left and upper right corners
of the screen, expressed in a
terminal-dependent coordinate
system.

If LRTANG=.FALSE., the
screen is assumed to be ecir-
cular and xILyll give the
sereen center, xur the radius
of the largest viewable circle
on the screen, and yur is
meaningless. AiiL vaiues are
expressed in a terminal-
dependent coordinate system.

resitn Output parameter; a value ex-
pressing the ability of the ter-
minal sereen to resolve images
(refer to the following pro-
gramming notes).

Programming Notes

The Irtang xIl,yll,xur, and yur parameters give the size and
shape of the terminal screen. The only general use of
these values which is compatible with the terminal-
independent aim of TIGS is in setting up a system
viewport (refer to SMSVP, secetion 4). All terminals used
with TIGS cean make use of the terminal independent
sereen coordinate system established in a call to INITIG.
Specific values for the various terminal types can also be
found in the appropriate postprocessor appendixes.

The resltn parameter indicates the ability of the terminal
_sereen to resolve images; that is, the ability of the
terminal sereen 1o distinguish portions of a graphics
display which are closc to cach other. Thc higher the

l 8-6

value for resltn, the better the ability of the terminal to
resolve images. For example, if RESLTN=780., the screen
may be thought of as divided into 780 units; portions of
the user's display lying less than 1/780 of the screen width
of each other will not be distinguished from each other. If
RESLTN=4095., portions of the display lying less than
1/4095 of the usable width from each other will be
displayed as one item; resolution is much greater in this
case. i

The value for resltn depends on the value given for the
Isquar parameter of INITIG as well as on the terminal
type. Specific values for the various terminals for cither
value of lsquar can also be found in thc appropriatc
postprocessor appendix.

60455940 C

ERROR PROCESSING ' 9

—

The following TIGS routines are documented in this
section.

IERROR
SMERR
TFERR
TMERR

This list includes the routine which checks error status,
and the mode/feature routines which set and test a user
error routine. The mode/feature routines are placed in a
separate group following the error status routine.

This section does not include a compilation of error
messages produced by TIGS. Error messages are found in
appendix C.

GENERAL

Part of the design philosophy of TIGS is to continue
program execution despite TIGS programming errors.
TIGS logs all errors on an error file and attempts to
continue execution. (Program execution is terminated if
errors 4104-4106 are generated.) The programmer has
the option of providing more selective error processing
capabilities in his program by using the routines in this
section.

SMERR allows the programmer to provide the address of
a programmer-written error routine to which TIGS jumps
any time it encounters an error in processing. TMERR
tests for the address of this routine. TFERR tests for
postprocessor support of user error routines.

IERROR is called to check current error status. It

returns the error number of the error (if any) produced
by the last encountered TIGS call.

ERROR STATUS ROUTINE

IERROR

Format

IERROR(err)
Check current error status.

Parameters

ierr Output parameter; TIGS error number.
If IERR=0 [I[ERROR(IERR)=0 if called as
funetion], no error was detected.

If IERR>1{IERROR(IERR)>1 if called as
function], IERR contains the error number
of the detected error.

60455940 C

Programming Notes

IERROR can be called either as a subroutine or as a
funetion. In either case, the error detected (if any) by the

“most recently called TIGS routine is returned to the

application program. Based on the information returned
to the program, a choice can be made regarding further
error processing (refer to SMERR).

Whether or not this routine is called, all error messages
are logged on the error file and then the modally set error
routine is called (refer to SMERR). The name and format
of the error file is postprocessor-dependent; refer to the
appropriate postprocessor appendix for more information.

MODE/FEATURE ROUTINES
xxERR

Format

TFERR(Iroutn)
Test for postprocessor support of a user-supplied
error routine.

SMERR(routin)
Modally set error processing routine to be used
when an error is detected.

TMERR(routin)

Test the current modally set error processing
routine.

Parameters

lroutn Output parameter; if LROUTN=.TRUE.,
‘then a user-supplied error routine is sup-
ported; otherwise, it is not.

routin Input parameter (SMERR) or output param-
eter (TMERR) specifying the address of the
error routine.

DEFAULT is an error routine named NULL.

Programming Notes

There are no reset attribute (RA) or test attribute (TA)
routines because an error routine cannol become an -
attribute of a segment.

SMERR allows the programmer to supply the address of

his own error routine to be used whenever TIGS encoun-
ters an error. In conjunction with IERROR, this routine

9-1

allows the programmer to respond selectively 1o encoun-
tered errors. If the programmer does not supply an error
routine, TIGS attempts to resume execution at the next
statement after the call that detected the error (default
error processing).

When the programmer uses either the overlay loader or
the segment loader for his TIGS job, the name of the user-
supplied error routine must be ERROR. .

The following program fragment illustrates a user error
routine which tolerates TIGS error number 901 but stops
the program on all other errors. Error 901 indicates that
the default segment was extended because no segment
was open when primitives were encountered. Each time a
TIGS routine encounters an error, control is passed to the
error routine. If the error number is 901, control is passed
right back to the main program; otherwise, the program
stops.

Note that the name of the
error routine must be de-
clared in a FORTRAN
EXTERNAL statement.

EXTERNAL ERROR
CALL SMERR (ERROR)

SUBROUTINE ERROR

IF [IERROR (IERR) .NE.901] STOP 11
RETURN

END

9-2

In the example above, IERROR was called as a funetion in
subroutine ERROR. It could have been called as a
subroutine, as follows:

SUBROUTINE ERROR
CALL IERROR (IERR)

IF (IERR.NE.901) STOP 11
RETURN

END

It is also possible to use the user-defined error routine for
only part of the time, and then return to default error
processing.

EX.TERNAL ERROR, NULL
CALL SMERR (ERROR)

CALL SMERR (NULL)

The programmer should exercise caution when developing
user-supplied error routine(s). With the exception of
IERROR, TIGS routines should not be called by the user's
routine because recursive subroutine calls may result.
Also, if the programmer is using either the overlay
loader or the segment loader, any user-supplied error
routine(s) must be included in the zero-level overlay or
the root segment.

60455940 C

CHARACTER SET A

;

TIGS FORTRAN programs, running under either NOS/BE For applications requiring the extended ASCII 128 char-
or NOS operating systems, use the character set shown in acter set for READ and WRITE input/output, refer to the
table A-1. The display code values shown in the table are appropriate operating system reference manual. The
{ranslated to Hollerith values for all FORTRAN usages, exiended character sel cannot be used with the TIGS
including input to the TEXT and PROMPT routines. TEXT and PROMPT routines.

TABLE A-1. TIGS CHARACTER SET

CODE INTERNAL CODE INTERNAL
CODE (7-8IT DISPLAY CODE CODE (7-BIT DISPLAY CODE

CHAR. | (7-BIT ocTAL)|HEXADECIMAL) | (6/12-BIT OCTAL) || CHAR. [(7-BIT OCTAL)| HEXADECIMAL)| (6/12-BIT OCTAL)
. 072 3A oot 5 065 35 40
A 101 4 ol 6 066 36 41
B 102 42 02 7 067 37 42
c 103 43 03 8 070 38 43
D 104 44 04 9 07! 39 44
E 105 45 05 + 053 28 45
F 106 46 06 - 055 2D 46
G 107 47 07 * 052 2A 47
H 110 48 10 / 057 2F 50
1 11 49 1 (050 28 51
J n2 4A 12) 051 - 29 52 -
K 1n3 4B 13 $ 044 24 53
L Ha 4C 14 = 075 3D 54
M us 4D -~ 15 (SPACE) 040 20 55
N 16 4E 16 , 054 2¢ 56
0 nz 4F 17 . 056 2E 57
P 120 50 20 #* 043 23 60
Q 121 51 21 C 133 58 61
R 122 52 22 1 135 5D 62
S 123 53 23 % 045 25 63t
T 124 54 24 " 042 22 64
u 125 55 25 - 1371 5F 65
v 126 56 26 | 041 21 66
w 127 57 27 & 046 26 67
X 130 58 30 ! 047 27 70
Y 131 59 31 ? or7 3F 71
z 132 S5A 32 < o074 3C 72
o] 060 30 33 > o076 3E 73
| 061 31 34 @ 100 40 74
2 062 32 35 A 134 5C 75
3 063 33 36 ~ 136 5E 76
4 064- 34 37 : 073 38 77

tIN THE 63-CHARACTER SET, THIS DISPLAY CODE REPRESENTS A COLON (:), 7-BIT ASCIl CODE 072,
7-BIT HEXADECIMAL CODE 3A. ; »

ttoN TTY MODELS HAVING NO UNDERLINE, THE BACKARROW (<) TAKE ITS PLACE.

60455940 A

Action

Attribute

Drawing Beam

Event

Event Queue

Font

Function Keys

60455940 A

GLOSSARY

Response to an event.

A funetion key or segment can be
assigned to one of three action
categories.

e IGNORE - No action is taken
by TIGS when a segment in
this action category is picked
or when a function key in this
action category is pressed.

® RECOGNIZE - Information
about the event is reported to
the application program; if the
event is a segment pick, it is
echoed at the terminal.

® TERMINATE - This category
encompasses all the functions
of the RECOGNIZE action.
Additionally, TIGS treats the
event associated with. this
action category as the last
event in a sequence of events
to be reported to the applica-
tion program.

A characteristic of a segment.
When the first primitive of a seg-
ment is defined, the current modal
settings become the attributes of
the segment.

A logical pointer. Current beam
position is defined as the position,
in absolute user coordinates, of the
beam in the segment being defined.
It should not be confused with the
beam that draws on the terminal
display screen: the current posi-
tions of the logical and physical
drawing beams are not necessarily
the same.

A segment pick or function key
press operation performed by the
terminal operator.

Function key presses and segment

picks are queued up until an event

with a TERMINATE action is
detected. The application program
can then take events off the queue
one at a time.

Character style to be used for text
generation (e.g., italies).

Keys which can be selected by the
operator to inform the application
about the next operation to be

Highlighting

Intrasegment
Identifier

Left-Hand
Relative
Transformation

Locate

Locator Device

Location Queue

Mode

Modeling

Neutral Display

File (NDF)

Picture

Plotting Symbols

Postprocessor

performed. Terminals without
physical function keys use numeric
keys 0-9 to simulate function keys.

A method of emphasizing certain
geomelry or text strings. The
implementation of highlighting is
terminal dependent ‘and could be
done by blinking or by using a
reserved intensity, line style, color,
and.so forth.

An identifier associated with a
portion of a segment which is
returned upon picking that portion
of the segment.

A transformation in which the
current transformation matrix is
left-multiplied by the input trans-
formation matrix, that is, the input
matrix is on the left.

To choose a point on the sereen and
have its coordinates returned to
the calling program.

The hardware device used tc per-
form segment picks or choose loca-
tions.

Locations are queued up until the
appropriate terminal-dependent
TERMINATE action is detectled.
The application program can then
process locations from the location
queue.

" The current state of a TIGS system

parameter; for example, line style,
character size, ploiting symbol.
Defaults exist for all modes.

The process of using primitives,
segments, and pictures to define
objeects in space.

File containing the data required to
generate the display. NDF data is
generated by the TIGS preprocessor
and interpreted by the TIGS post-
processor.

A collection of segments.

A set of centered symbols which
serve as markers on user-generated
plots.

The terminal-dependent, or device
driver, portion of TIGS.

B-1

Preprocessor

Primitives

Right-Hand
Relative
Transformation

Screen
Coordinates

Segment

The terminal-independent portion
of TIGS, that is, that part of TIGS
which remains the same regardless
of the type of terminal being used.

The products of the line drawing,
beam positioning, dot generation,
arc generation, plol generation,
and text generation funetions of
TIGS.

A transformation in which the
current transformation matrix is
right-multiplied by the input trans-
formation matrix; that is, the input
matrix is on the right.

Virtual coordinates ' defining the
area on the screen where the
graphical entities are to be viewed.
Range of defaull screen coor-
dinates is (0.,0.) to (1.,1.).

A collection of primitives which
has attribules associated with it.
One or more segments belong 1o a
picture. A segment belongs to only
one picture at a time.

System Viewport

User
Coordinates

Viewing

Viewport

Window

A portion of the physical sereen
where operator prompls are to
appear.

A coordinate system defined by the
programmer with the SMPLIx rou-
tine or by defaull. Limits on user
coordinates are the largest and
smallest numbers representable on
the processor being used.

The process of developing instrue-
tions, using window and viewport
routines, on how the basic graphies
model is to be viewed on the
terminal screen.

That part of the terminal sereen in
which the associated window is to
appear. One or more windows from
one or more pictures may appear in
a viewport.

That part of a piclure to be
viewed. One or more windows may
be defined on a picture. A window
is assigned to a viewport.

60455940 A

ERROR MESSAGES C

#

It is a part of the TIGS design philosophy to attempt to
continue program execution despite TIGS programming
errors. Thus there are no fatal TIGS programming errors
(although TIGS errors may eventually result in conditions
which will cause job step abort). The error messages in
this appendix are warning messages and serious error
diagnostics. The consequences of a programming error
which results in a warning message are generally trivial;
either TIGS can compensate for the error, or ignoring the

WARNING MESSAGES

ILLEGAL ID ERRORS (1-100}

Call is ignored.

Call is ignored.

Call is ignored.

statement containing the error will not hamper program
execution unduly. Serious error diagnosties indicate
conditions in which TIGS can only ignore the statement
contlaining the error and altempt to resume program
execution at the next statement.

All error messages issued by TIGS are logged on an error
file. The means of access to this file is operating system
dependent (refer to appendix E).

Action Taken by
TIGS Routines Affected

RAxxxx,TAxxxx,COPY
RENAME,EMPTY,DELSEG

Call is ignored. RAPICT

DELPIC,BLINDS

SCRNUR,LOCATE,EVENT,
DELWIN

LOCATE,EVENT,DELVUP,

Call is ignored.

The open segment
is closed.

Picture is opened.

Segment is opened.

SMPORT

OPNSEG,EXTSEG

SMPICT(=EXTPIC)

EXTSEG

Error
Number Cause

1 Attempt to use an idseg that is un-
defined or open when it should not
be.

2 Attempt to change the picture
attribute of a segment to a non-
existent idpiet.

3 Attempt to delete or put blinds on
a nonexistent picture.

4 ID of window is not defined.

5 ID of viewport is not defined.

6 Aitempt to open or extend a seg-
ment when one is already open.

10 Attempt to extend a picture that
does not exist.
11 Attempt to extend a segment that
does not exist.
60455940 A

CHARACTER OR WORD COUNT ERRORS (101-200)

Error
Number
102
103

104

105

Cause
npoint<0 on a plot call.
maxchr<0 on a request for key-
board input.

nwords< 0 or nwords>26 on "User
Data" specification.

Number of characters in prompt-
ing message or lext string is out
of range (nchars<0 or nchars>256).

Action Taken by
TIGS

Call is ignored.
Call is ignored.
Call is ignored.

If nchars<0, call
is ignored. If
nchars>256, the
first 256 char-
acters are proc-
essed.

CLIPPED AND UNCLIPPED BEAM POSITION ERRORS (201-300)

Error
Number

201

202

Cause

Clipped (to picture limits) and un-

clipped beam positions unequal when

picture was closed and now pro-
grammer wishes to extend picture.

Clipped and unclipped beam posi-
tions unequal when segment was

closed and now programmer wishes

1o extend segment.

Action Taken by
TIGS -

Picture will be
extended and un-
clipped position
sel to the clipped
position at the
previous close of
the picture.

Segment will be
extended and un-
clipped position
set to elipped
position at the
previous close of
the segment.

UNSUPPOR;I’ED POSTPROCESSOR FEATURES (301.400)

Error
Number

301

302

- 303

304

305

Cause

Request for unsupported font.

Request for unsupported intensity.

Request for unsupported plotting
symbol.

Request for highlighting when
highlighting is not supported.

Request for continuous characters
when not supported.

Action Taken by
TIGS

Font number
NFONT is used
where NFONT is
the number of
fonts supported.

Default intensity
is used.

Plotting symbol
number NSYM is
used where NSYM
is the number of
plotting symbols
supported.

Call is ignored.

Call is ignored.

Routines Affected

PLOTA,PLOTR,PLOTA3,

PLOTR3

KEYBRD

UDATA

TEXT,PROMPT,TEXT3

Routines Affected

SMPICT(= EXTPIC)

EXTSEG

Routines Affected

SMFONT,RAFONT

SMINT,RAINT

SMSYM,RASYM

SMHILT,RAHILT

SMCSIZ

60455940 C

RESERVED WARNING NUMBERS (401-900)

MISCELLANEOUS ERRORS (901-1000)

Error
Number

901

902

903

904

Cause

Primitive encountered and no open seg-

ment.

Mode set locator is 0 and user
wishes to specify locations.

Attempt to pop an emply 2-D
transformation stack.

Attempt to pop an empty 3-D
transformation stack.

SERIOUS ERROR DIAGNOSTICS

PRIMITIVE SPECIFICATION ERRORS (1001-1100)

Error
Number

1001

1002

1003

1004

1005

1006

60455940 A

Cause

Arc center outside picture limits.

Radii not approximately equal.

‘Radius < 0.

Relative degrees of arc approx- -

imately 0.

Sum of squares of direction
cosines £ 1.

Dirgetion cosine vector is coin-
cident with or parallel to the

vector from the start point to the

center point.

Action Taken by
TIGS

Segment 0 is ex-
tended.

Call is ignored.

CTM (Current
Transformation
Matrix) is set to
the identity ma-
trix.

CTM3 (Current 3-D

Transformation

Matrix) is set to
the identity ma-
trix.

Action Taken by
TIGS

Call is ignored.

Call is ignored.

Call is ignored.

Call is ignored.
Call is ignored.

Call is ignored.

Routines Affected

ARCA,ARCR,ARCDA,ARCDR,
DOTA,DOTR,DRAWA,DRAWR,
MOVEA,MOVER,PLOTA,
PLOTR,TEXT,ARCA3,ARCR3,
ARCDA3,ARCDR3,DOTA3,
DOTR3,DRAWA3,DRAWR3,
MOVEA3,MOVER3,PLOTA3,
PLOTRS3

LOCATE

POP

POP3

Routines Affected

ARCA,ARCR,ARCDA,ARCDR,
ARCA3,ARCR3,ARCDA3,
ARCDR3

ARCA,ARCR,ARCDA,ARCDR,
ARCA3,ARCR3,ARCDA3,
ARCDR3

ARCDR,ARCDA,ARCR,ARCA,
ARCDR3,ARCDA3,ARCR3,
ARCA3

ARCDA,ARCDR,ARCDR3,
ARCDA3

ARCA3,ARCR3,ARCDA3,
ARCDR3

ARCA3,ARCR3,ARCDA3,
ARCDR3

SEGME'NT, PICTURE, WINDOW, OR VIEWPORT ERRORS

Error

Number

1101

1102
1103

1104
1105

1106

1107

1108
1109

1110
1113
1114

1115

1116

1117

1118

1119
1120

1121

Cause

Attempt to extend a locked segment.

idwind out of range (idwind<0 or

" idwind>32767).

idport out of range (idport<0 or
idport>32767).

idpiet out of range (idpict<0 or
idpiet>32767). For BLINDS legal
range is 0<idpiet<32767.

idseg out of range (idseg<0 or
idseg>32767).

Viewport or system viewport
limits are invalid.

Window limits outside range of
picture limits or lower left corner

not less than upper right corner.

Attempt to define a window on the
default viewport.

Attempt to delete the modally set
picture.

New segment ID is already defined.
idseg already defined.
idpiet already defined.

Eye position is the same as the
center of attention.

width or height of window<0.

Zero-length up direction veetor
specified.

Far clipping plane is closer to eye
than near clipping plane or clipping
planes are coincident.

Up direction is parallel to the line
of sight.

Near or far clipping plane is not in
front of the eye.

Projection plane is not in front of
the eye.

Action Taken by
TIGS

Return without ex-

tending the seg-
ment. (If there
was an open seg-

ment, it is closed.)

Call is ignored.
Call is ignored.

Call is ignored.
Call is ignored.

Call is ignored.

Call is ignored.

Call is ignored.
Call is ignored.

Call is ignored.

Call is ignored.

Picture 0 is extended.

Call is ignored.

Call is ignored.

Call is ignored.

Call is ignored.

Call is ignored.
Call is ignored.

Call is ignored.

Routines Affected

EXTSEG

WINDOW,SCRNUR,LOCATE,
EVENT,DELWIN,WINxxx (3-D)

VUPORT,SMPORT,LOCATE,

EVENT,DELVUP,VUPOR3

SMPICT(= EXTPIC),OPNPIC,

DELPIC,BLINDS

RENAME,RAxxxx,TAXXXX,
COPY,EMPTY,DELSEG,
EXTSEG,OPNSEG
VUPORT,SMSVP,VUPOR3

WINDOW

WINDOW, WINxxx (3-D)
DELPIC

RENAME,COPY
OPNSEG
OPNPIC

WINDIR

WINSIZ

WINUP

WINCLP

WINUP,WINDIR
WINCLP,WINDIR

WINPLN,WINDIR

60455940 A

TWO./THREE-DIMENSIONAL INTERMIXING ERRORS (1201-1300)

Error Action Taken By
Number Cause TIGS Routines Affected

1201 Attempt to put a 2-D window on a Call is ignored. WINDOW
3-D piecture.

1202 Attempt to put a 2-D primitive or Call is ignored. RAXFA,RAXFL,RAXFR,
2-D transformation in a 3-D seg- ARCA,ARCR,ARCDA,
ment. . ARCDR,DOTA,DOTR,

DRAWA,DRAWR,MOVEA,
MOVER,PLOTA,PLOTR,
SMXFA,SMXFR,SMXFL,
TEXT,SMROT,RAROT

1203 2-D locations requested when Call is ignored. LOCATE
location queue is 3-D.

1205 Window or viewport is 3-D and both Call is ignored. SCRNUR
should be 2-D.

1206 ~ Attempt to put a 3-D primitive or Call is ignored. RAXFA3,RAXFL3,RAXFR3,
3-D transformation in a 2-D seg- ARCA3,ARCR3,ARCDA3,
ment. ’ ARCDR3,DOTA3,DOTR3,

DRAWA3,DRAWR3,MOVEA3,
MOVER3,PLOTA3,PLOTRS,
SMXFA3,SMXFR3,SMXFL3,

TEXT3,SMROT3,RAROT3
1207 Attempt to put a 3-D segment in a Call is ignored. RAPICT
2-D pieture or attempting to put a
2-D segment in a 3-D picture.
1208 Attempt to put a 3-D window on a Call is ignored. WINxxx(3-D)
2-D picture.
1209 Attempt to put a 3-D window in a Call is ignored. WINxxx(3-D)
2-D viewport.
1210 Attempt to modify a 2-D window Call is ignored. WINxxx(3-D)
with 3-D information.
1211 Attempt to "LOCATE" (2-D) in a Call is ignored. LOCATE
3-D window; conversion to user
coordinates is not possible.
1212 Segment picked was in a 3-D Coordinates are . EVENT
window and EVENT (2-D) was returned as zero.
called.
1213 Attempt to modify a 3-D window Call is ignored. WINDOW
with 2-D information.
1214 Attempt to modify a 2-D viewport Call is ignored. VUPOR3
with 3-D information.
1215 Attempt to modify a 3-D viewport Call is ignored. v VUPORT
with 2-D information.
1216 3-D routine was called where a Information wili be TMROT3,TAROT3
2-D call should have been made. returned, but z- TMPLI3, TAPLI3,WHERE3,
coordinate will be TMXFA3,TMXFL3,TMXFR3,
meaningless. TAXFA3,TAXFL3,TAXFR3
1217 2-D routine called where a 3-D Information will be TMPLIM, TAPLIM,WHERE,
call should have been made. returned for x and TMXFA, TMXFL,TMXFR,

y only, or for trans- TAXFA,TAXFL,TAXFR
formation routines, TMROT, TAROT

2-D transformation

matrix is returned.

60455940 C

SET MODE OR RESET ATTRIBUTE ERRORS (1301-1400)

SYMBOL TABLE (IDLIST) OVERFLOW (1401-1500)

C-6

Error
Number

1301

1302
1303
1304
1305
1306
1307

1308

1309
1310

1320
1321
1322 »
1323

1324

1325

Error
Number

1401

1402

Cause

Intensity out of range (finten<0. or
finten>1.)

Font value out of range (ifont<0 or
ifont>63).

Action type out of range (iaetn<0 or
iactn>3).

Function key number out of range
(idky<0 or idky>255).

Plot symbol number is out of range
(isym<0 or isym> 32767).

Line thickness percentage is out of
range (perent<0. or percnt>100.)

Intrasegment ID is out of range
(idintr<0 or idintr>32767).

Number of words of application-
related information is out of range
(ninfo< 0 or ninfo>4).

Locator code is out of range
(iloer<0 or iloer>63).

Line style value is out of range
(istyle<0 or istyle>4095).

Attempt to change action atiribute
of a segment after a primitive has
been defined.

Attempt to set picture limits after
a primitive or closed segment has
been defined.

Attempt to modify the visibility
attribute of a segment after the
first primitive has been defined.

Attempt to change highlighting
attribute of a segment after a
primitive has been defined.

Base and plane vectors are
colinear. -

Character height or width<0,

Cause

.

Symbol Table overflow on opening
a picture.

Symbol Table overflow on opening
a segment.

Action Taken by
TIGS

Call is ignored.

Call is ignored.
Call is ignored.
Call is ignored.
Call is ignored.
Call is ignored.
Call is ignored.

Call is ignored.

Call is ignored.
Call is ignored.

Call is ignored.
Call is ignored.
Call is ignored.
Call is ignored.

Call is ignored.

Call is ignored.

Action Taken by
TIGS

Picture 0 is ex-
tended.

No segment is
opened and sub-
sequent primitive
calls are not
proeessed.

Routines Affected

SMINT,RAINT

SMFONT,RAFONT

RAAC,SMAC,KYAC

KYAC

SMSYM,RASYM

SMTZOM,RATZOM

SMID

SMINFO,RAINFO

SMLOCR

RASTYL,SMSTYL

SMAC

SMPLIM,SMPLI3

SMVIS

SMHILT

SMROT3,RAROT3

SMCSIZ,RACSIZ

Routines Affectled

OPNPIC

OPNSEG,COPY,RENAME

60455940 C

Error
Number

1403

1404

RESERVED SERIOUS ERROR NUMBERS (1501-3900)

MISCELLANEOUS

Error
Number

3901

3902

3903
3904
3905
| 3906

3907

3908

3909

3910

DATA MANAGER

Error
Number

4001

60455940 C

Cause

~ Symbol Table overflow on defining

a viewport.

Symbol Table overflow on defining
a window.

ERRORS (3901-4000)

Cause

xllh>xury or ylih>yury or zllh>zury

Requested locator does not exist.

Attempt to hardcopy on a non-
existent hard copier.

Attempt to rotate about an un-
defined axis.

Attempt to invert a 2-D singular
matrix.

Attempt to invert a 3-D singular
matrix.

Attempt to reset continuous
character size attribute of a
segment with a discrete character
size attribute.

Attempt to reset discrete character
size attribute of a segment with a
continuous character size attribute.

Mode set or attribute character
size is discrete and a continuous
character size test routine

was called.

Mode set or attribute character
size is continuous and a discrete

character size test routine was
called.

DETECTED ERRORS (4001-5000)

Cause

No data file or in-core block space
available.

Action Taken by
TIGS

Call is ignored.

Call is ignored.

Action Taken by
TIGS

Call is ignored.

Use highest number .

locator that does
exist.

Call is ignored.
Call is ignored.
Call is ignored.

Call is ignored.

Call is ignored.

Call is ignored.

0.,0. is returned.

0.,0. is returned.

Action Taken by
TIGS

No allocation is
made.

Routines Affected

VUPORT,VUPOR3

WINDOW, WINxxx(3-D)

Routines Affected

RTANGL,RTANG3,SMPLIM,
SMPLI3

EVENT,LOCATE

REMSCR

XROTA3,XROTR3,XROTL3

XINVR

XINVR3

RACSIZ

RADSIZ

TMCSIZ,TACSIZ

TMDSIZ, TADSIZ

Routines Affected

All 2-D and 3-D primitives,
SMxxxx,CLSSEG,CLSPIC,
INITIG,OPNPIC,OPNSEG,
VUPORT,VUPOR3,WINDOW;
WINxxx(3-D)

Error
Number

4002

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

C-8

Cause

‘The version number of the old file
does not matceh the current TIGS
version number. ’

Action Taken by
TIGS

A new file is
opened with the
old-file name.

NOTE

Routines Affected
INITIG

The following error numbers, 4100-4109, will occur if an applica-
tion is run when a neutral display file from a previous run has not
been returned. QUITIG called with LDELET=.TRUE. will return
the NDF. Refer to Data Handler Reference Manual for details.

Illegal bead address passed o in-
ternal routine DMDMP.

The file to be dumped by internal
routine DMDMP has not been
initialized.

File to be accessed has not been
initialized.

Block eount limit exceeded.

File is not in the correct format
to be processed by the TIGS Data
Manager.

Internal Data Handler array, IBLK,
is too short.

Internal common bloek/ZLDMTB/
loaded after internal array IBLK.

Illegal bead address passed to in-
ternal routine DMRLBD.

lllegal bead address passed to in-

ternal routines DMSET or DMGET.

Illegal component type code passed

to internal routines DMSET or
DMGET.

Next address passed
to DMDMP is
processed.

Next address passed
to DMDMP is pro-
cessed.

No allocation is
made.

No bead is allo-
cated.

The error is re-
ported on the error
file and on the
terminal sereen.
Program execution
terminates.

The error is re-
ported on the error
file and on the
terminal screen.
Program execution
terminates.

The error is re-
ported on the error
file and on the
terminal screen.
Program execution
terminates.

Next address passed
to DMRLBD is
processed.

Call is ignored.

Call is ignored.

None.

None.

SMxxxx,COPY,INITIG,
OPNPIC,LCKSEG,CLSSEG,
OPNSEG,CLSPIC,SMPICT,
QUITIG,WINDOW, WINxxx(3-D),
PUSH,PUSH3

Same as for 4102.

INITIG

INITIG

INITIG

CLRSTK,QUITIG,CLRST3,
DELPIC,DELSEG,DELVUP,
DELWIN,EMPTY,POP,
POP3

SMxxxx,COPY,CLSPIC,
QUITIG,CLSSEG,OPNSEG,
CLRSTK,CLRST3,DELPIC,
DELSEG,DELVUP,DELWIN,
EMPTY,INITIG,OPNPIC,
EXTSEG,LCKSEG,BLINDS,
DSPLAY,EVENT,KEYBRD,
LOCATE,RAxxxx,TAXXXX,
SCRNUR,WINxxx(3-D),
VUPORT,WINDOW,VUPORS,
POP,POP3,PUSH,PUSH3,
RENAME

Same as for 4108.

60455940

TIGS RESERVED ERROR NUMBERS (5001-10000)

60455940 C c-9 |

TRANSFORMATION MATRICES IN TIGS D

MATRIX MULTIPLICATION

Recall that if A=(ajj) and B=(bjj) are matrices of the
appropriate dimension, the product AB=C=(ciJ~) is defined
by:

n

e ; 8310x;

where n is the number of columns of A and the number of
rows of B. If A is an n x n matrix and B is an n x 1 matrix,
the definition above includes the notion of a matrix
operating.on a vector.

If A and B are both n x n matrices, AB and BA are both
defined, but in general, AB does not equal BA.

Examples:

A= 100 B= 12
010 3
001 7

[

A= 0 1- B= 0-11
10 102
00 001
AB = 101 BA= |-1 0-2
0-1 4 0611
001 001

TRANSFORMATION OPERATIONS IN
TIGS

TIGS treats all transformation operations (translation,
rolation, shearing, and so forth) as matrices operating on
vectors. To implement this, TIGS augments vectors by
adding an additional coordinate which is always 1, and
augments matrices by adding an additional row which is
all zeroes except in the last column which is 1. The
augmentation is done internally by TIGS.

Matrices are specified by the programmer. The veectors
are implied by declaring the segment to be operated upon
by the transformation matrix.

The programmer specifies the transformation matrix
either by building a matrix with TIGS matrix utility calls
or by supplying the matrix direetly to the TIGS transfor-
mation routines SMXFxx and RAXFxx for effects TIGS
matrix utility routines do not produce, such as shearing.
In either case, the programmer must reserve storage
space for the matrix by dimensioning an array in whieh to

60455940 A

place it. These arrays are 2 x 3 arrays for two-
dimensional transformations and 3 x 4 arrays for three-
dimensional transformations. As mentioned earlier,
matrix augmentation is done internally by TIGS; the array
is not dimensioned to include the final row even when the
programmer supplies his own matrix.

Given below are the matrices built by TIGS matrix utility
routines. The last row of each matrix is enclosed in
parentheses to indicate that this row is supplied by TIGS.

1 0 TXW 2-D translation matrix,

0 1 Ty where Ty and Ty are the

(0 01] displacements in the x and
y directions.

cose -sina 0] 2-D rotation matrix,

sine cosa ¢ where a is the angle

0 0 1) through which to rotate
- the segment."

SX 0 0 2-D scaling matrix, where

0 Sy" Sx and Sy are the x and y

[(0 0 1) axis scale factors.

[1. 0 0 TX 3-D translation = matrix,
0 1 0 Ty where Ty, Ty, and Tz are
0 0 1 TZ the displacements in the
(0 0 0 1 X, y, and z directions.

[1 0 0 0 3-D rotation matrix for
0 cosa -sina 0 rotation about the x axis

sine cosa 0 where « is the angle

0 0 0 1) through which to rotate

the segment; refer to
section 5 for direction-of-

rotation conventions.

cosa 0 sine 0 3-D rotation matrix for
0 1 0 0 rolation about the y axis
-sine 0 cosa 0 where o« is the angle
(0 0 0 1) through which to rotate

the segment.

cosa -sina 0 0 3-D rotation matrix for
sina cosa 0 0 rolation about the z axis
0 0 1.0 where a is the angle
(0 0 0 1) through which to rotate
3 - the segment.
Sx 0 0 0 3-D scaling matrix where
Sy 0 Sy, Sy, and S are the x,
0 0 SZ 0 y, and z scale factors.
| (0 0 0 1 |

For two-dimensional transformations, the veetor used is:

X
Y
| @) |
For three-dimensional, it is:

X
Y

VA
;(1).

Initially, the transformation matrix for a given segment is
the identity matrix.

[1 0 0
0 1 .0 For 2-D segments
(0 0 1)

For 3-D segments

OO O
—Hooo

oo
~

TIGS matrix utility routines build matrices which are
applied to a segment by using the SMXFxx or RAXFxx
transformation routines. Both utility and transformation
routines can be specified as absolute or relative routines
(refer to section 5). Remember that the relative routines
imply matrix concatenation and are available in right or
left multiplication versions. The right mulliplication
routines perform matrix multiplication with the supplied
matrix on the right of the existing matrix; the left
multiplication routines perform multiplication with the
supplied matrix on the left. The following example will
make this clearer. -

Suppose a two-dimensional segment has an existing trans-
formation attribute represented by the matrix

1 0 -3
0 1 -3]
(0 0 1

which moves the segment 3 units in the negative X
direction and 3 units in the negative y direction. Now the
programmer wishes to apply an additional transformation
to the segment by rotating it 90° counterclockwise. A call
to XROTA produces the following matrix:

[0 -1 0]
1 0 0
(0 0 1)

The programmer now has a choice of using right or left
multiplication routines in resetting the transformation
attribute of that segment. RAXFL produces the following
multiplication:

0 -1 0 1 0 -3 0 -1 3
1 00 X({0 1 -3 =11 0 -3
(0 0 1) 0 o0 1) 0o 0 1
new existing resultant
matrix matrix matrix

while RAXFR produces:

1 0 -3 0 -1 0 0 -1 -3
0 1 -3 Xl11 0 0 =11 0 -3
o o 1) (0 0 1 o o0 v
existing new resultant
matrix matrix matrix

The considerations governing the choice of right or left
multiplication routines are detailed in section 5.

In either case, when the matrix has been built, it is
applied to the segment by multiplying vectors with the
vector to the right of the matrix.

0 -1 #3 X -Y+3
1 0 -3 | xX|Y|=] X3
0 0 1 (1) (1)

Refer to section 5 for further information.

60455940 A

OPERATING SYSTEM DEPENDENCIES AND LOADING PROCEDURES E

—

TIGS supports applications running on both NOS/BE and
NOS operating systems. There are aspects of TIGS usage
that vary depending on which operating system is being
used. Loading procedures, however, are the same on both
systems. This appendix describes both operating system
dependencies and loading procedures and is divided into
the following subsections: field Length considerations,
TIGS under NOS/BE, and TIGS under NOS.

FIELD LENGTH CONSIDERATIONS

The field length of a program using TIGS depends upon
the program's:

Complexity

Data structures

Operating system requirements

Utilization of TIGS features

Simple programs using TIGS require approximately 50K
words, hence advanced loading procedures such as
overlaying or segmenting beeome mandatory for
sophisticated programs. If a program is designed with
overlaying or segmenting in mind, field length can be
dramatically reduced without adding signficant overhead
due to overlay or segment swapping. In fact the reduced
field length often outweighs the additional overhead thus
yielding both better response time and less cost.

OVERLAY LOADING

TIGS routines contain no overlay calls, thus unless a
programmer is willing to go into the internals of TIGS,
the greatest potential for saving memory results from
overlaying the user's routines. This scheme indirectly
partitions the TIGS routines into the various overlays
realizing up to 10K words of savings above that saved by
overlaying the user routines.

CAUTION

When using the overlay loader the following
rules must be observed.

e The TIGS library must have been built
with UPDATE directive *DEFINE SEGLDR;
consult a systems analyst for this
information.

e INITIG, NULL and any user-supplied

error routines (refer to SMERR) must
be located in the zero-level overlay.

60455940 C

SEGMENT LOADING

The execution of a segmented program does not differ
greatly from the execution of an overlayed program. The
segment loader does however provide more flexible
overlay structure (via trees and levels) and is directive
driven so that explicit overlay calls do not have to be
inserted within the source code. If the programmer
structures his application to correspond to the general
structure of TIGS, the segment loader can save
considerable field length.

The TIGS application should be partitioned into at least
four subroutines: initialization, termination, display, and
picture creation/alteration. In addition, any application
functions not interfacing with TIGS directly should be
partitioned into subroutines. TIGS calls should be
distributed among the four primary partitions as follows:

Initialization INITIG

Termination QUITIG

Display ALARM,CLRSCR,DSPLAY,
EVENT,KEYBRD,
LOCATE,PROMPT,
REMSCR,UNISCR

Picture creation/ All other TIGS routines

alteration

A segment tree for the preceding structure would appear
as follows (note the similarity). '

INITIG QuITIG ALARM xxxPIC
CLRSCR xxxSEG
DISPLAY WHNxxx
: VUPORx
ARCxx
INIT QuIT SHOW BUILD
MAIN

The corresponding segment directives are:

TREE MAIN-(INIT,QUIT,SHOW,BUILD)
MAIN = INCLUDE NULL,INITIG, user-supplied error
routines B
MAIN GLOBAL All labeled common blocks (user,
TIGS and system level)
END :

CAUTION

As in the case of overlay loading this simple structure
" realizes the greatest memory savings from segmenting
the user's routines rather than TIGS.

When using the segment loader the following
rules must be observed.

e The TIGS library must have been built with
UPDATE directive *DEFINE SEGLDR,
consult a systems analyst for this
information. .

e INITIG,NULL and any user-supplied error
routines (refer to SMERR) must include the
zero-level root segment.

e All labeled common blocks (particularly
TIGS and system level) must be globalled in
the zero-level root segment. Note that
common block names vary from
postprocessor to postprocessor and from
system to system. Failure to global a
common bloek in the =zero-level root
segment does not produce a loader error
message and yields unpredictable results.

Any program that remains field length critical after the
application routines have been segmented requires that
the internal TIGS routines be segmented. Skeleton
segment directive files unique to each postprocessor is
available in this segmentation (consult a systems analyst
for this information). This file should be copied as
follows:

@ The user's main program name should replace
all references to MAIN in the directive file.

e Any user-supplied error routines must be
included in segment USER.

e System level and appropriate user level common
blocks must globalled in segment USER.

e Any additional user level segment directives
should be inserted.

Depending upon the application and the TIGS functions it
utilizes, this reasonably complex segment structure can
save from 2K to 20K words of main memory. An
experienced programmer with a good working knowledge
of the segment loader can further tailor these directives
to achieve further memory savings for his particular
application, however, caution must be exercised when
altering the TIGS portion of these directives because
incorrect placement of certain TIGS routines can lead to
excessive segment swapping and degraded performance.

TIGS UNDER NOS/BE

This section assumes a working knowledge of NOS/BE and
INTERCOM procedures.

INTERCOM is the interactive facility of NOS/BE. TIGS
applications in NOS/BE run on graphies terminals under
INTERCOM control. A graphics terminal logged in to
INTERCOM operates like any other time-sharing terminal
when not execuling a graphics application program. The
full range of INTERCOM commands and directives can be
entered from the graphies terminal, along with many
NOS/BE control statements.

The TIGS user has several basic tasks to accomplish
before running a graphics application program. He must:

® Establish communications with INTERCOM.

® Enter the source code of the application pro-
gram.t

® Compile the program under the NOS/BE
FORTRAN Extended compiler.t

® Select the correct postprocessor library.
® Execute the graphics application program.

INTERCOM has commands to accomplish all of the
preceding including variations like interactive entry of
code via EDITOR, XEQ options for compilation and
execution, and so on. Because all these tasks except the
selection of the postprocessor library are general time-
sharing subjects and not peculiar to TIGS, this appendix
does not deseribe how to aeccomplish them. The user
should consult the INTERCOM Version 5 Reference
Manual for this information.

Once execution of theé compiled graphics program has
been initiated, the program generates pictures on the
terminal display screen and interaets with the terminal
operator via TIGS FORTRAN calls. During the time the
graphics program is executing, the terminal is not in the
INTERCOM command mode; INTERCOM commands can-
not be entered. The graphics program can be terminated
by the application program through the QUITIG call, or by
the terminal operator using the INTERCOM abort pro-
cedure of Lyping %A. 11

When the program is terminated, the terminal is returned
to INTERCOM command mode, which permits the op-
erator to enter INTERCOM commands, execute another
graphies program, or reexecute the same program.

FILES

Files used by the application program are controlled and
maintained through standard NOS/BE procedures.

The user may declare file OUTPUT and WRITE to the
terminal or to the printer. This file is not automatieally
connected by TIGS; therefore, if the user wishes to direct
use of this file to the terminal, the user must CONNECT |
it before calling it. If this is not done, OUTPUT
automatically is directed to the printer, and aclual
printing may be initiated by using the INTERCOM BATCH
command.

TCan be accomplished as a batch job if preferred; refer to INTERCOM Version 5 Reference Manual.
+ tWhen a program is terminated in this manner, the neutral display file must be RETURNed to the system before another
program using the same neutral display file name can be executed.

60455940 C

Output from program WRITE statements for a printer
listing is made by writing a file which is not connected;
such a file may be printéed following execution of the job
using the INTERCOM BATCH command.

Files other than INPUT and OUTPUT may be connected or
disconnected from the terminal by use of the INTERCOM
commands CONNECT or DISCONT, or with the
FORTRAN Extended routines CONNEC or DISCON.

All files used from the console in either INTERCOM
command mode or during a graphics application must be
mass storage files or connected files. INTERCOM does
not permit the use of magnetic tape from interactive
programs. If a user wishes to refer to a magnetic tape, a
batech job must be submitted to the system which
manipulates a tape file and transfers required data to a
permanent file. This permanent file may then be accessed
under INTERCOM control.

TIGS uses units 61, 62, 63, 64, and 65 for internal input
and output of graphics data to the terminal. These units
must be defined on the PROGRAM statement of the
application program together with any other units re-
quired by the application. These units are used for the
following purposes:

TAPES61 TIGS input
TAPE62 TIGS output

TAPE63 1 Error file
TAPE64 LOCATE queue
TAPEGB5 EVENT queue

The programmer should not attempt to read from or write
to any of these units in his program.

The files listed on the PROGRAM card are each assigned
a default buffer size of 515 words (decimal). The
programmer can reduce field length requirements by
reducing the buffer sizes of the files. File OUTPUT must
not be equated to TAPE62, as this causes input/output
conflicts; however, the user may reduce the OUTPUT file
buffer size to a minimum of 64 words. File TAPE62 is
used exclusively by TIGS, but due to the manner in which
it is used, it can (with no degradation) be specified with a
buffer size of 64 words. The following code is an examole
of a PROGRAM card that utilizes buffer space in the
most efficient manner.

PROGRAM TEST(TAPE61=64,TAPE62=64,
c TAPE63=64,TAPE64=64,TAPE65=64)

TIGS LIBRARY SELECTION

All TIGS subroutines exist as library subroutines and are
loaded as needed when referred to by application pro-
grams. There is a separate library for each postprocessor

supported by TIGS. It is the operator's responsibility to
altach the correct library file to his job before loading
and execution. The names of the postprocessor libraries
may vary from site to site; consult a systems analyst for
the names in use. Also, the means of making the librarv
local to the graphics job may vary. If the TIGS library
exists as a permanent file, it must first be attached to the
job and declared as a library:

ATTACH,libname,ID=ident t
LIBRARY, libname

If TIGS libraries have been included in the system
deadstart tape, a different procedure will be used.
Consult a systems analyst for more information.

NOS/BE INTERCOM CHARACTER SET

FORTRAN programs using TIGS use a 64-graphic char-
acter set. Appendix A contains character set tables.

DATA HANDLER RESTRICTION

If a TIGS application program uses the Data Handler
utility, it is limited to using Data Handler files 1 through
7; TIGS software uses file 0. Refer to the Data Handler
Reference Manual.

NEUTRAL DISPLAY FILE CONVERSION

Any neutral display file created under TIGS v.1.0 will
need to undergo a one-time conversion in order to be
used by TIGS v.l.1. The conversion program to be used
should be installed as part of the TIGS installation
procedure.. Consult a systems analyst for the conversion
program file name. The following job should be run in
either interactive or batch mode.

ATTACH,NDF,ndfname,ID=xxx,PW=abe]
" local file name must be NDF.

ATTACH,conprog,ID=xxx.
conversion program.

conprog. execute conversion program.
EXTEND,NDF. extend neutral display file.

Note that this procedure permanently alters the v.1.0
neutrual display file.

t If the user wishes to see error messages as they are logged onto the error file, the user should CALL CONNEC (63) after

INITIG has been called.

t 1 Default library name and identifier may be changed by installation and will vary with the postprocessor used.

t t t Be sure file is attached with extend permission.

60455940 C

TIGS UNDER NOS

This section assumes a working knowledge of NOS and
NAM/IAF or the Time-Sharing Module.

NOS has two interactive facilities; NAM/IAF for sites
employing network processing of jobs, and the Time-
Sharing Module for non-network processing. TIGS applica-
tions in NOS run on graphics terminals under the control
of one of these two facilities, depending upon what is
available at the site. In either case, a graphies terminal
logged in to the available time-sharing facility operates
like any other time-sharing terminal when not currently
executing a graphics application program. The full range
of time-sharing commands can be entered from the
graphics terminal, and when the terminal is in the batch
_subsystem, many NOS control statements can also be
entered. There are minor differences between the
interfaces of the two systems. A TIGS user would find the
most noticeable differences in the log-in and program
interrupt/termination procedures. Consult a systems
analyst for information on the system in use at your site.

The TIGS user has several basic tasks to accomplish
before running a graphics application program. He must:

® Establish communications with the time-sharing
system.

® Enter the source code of the applications pro-
gram.)

® Compile the program under the NOS FORTRAN
Extended Compiler.

® Seclect the correct postprocessor library.
® Executle the graphics applications program.

"NOS time-sharing facilities have commands to accomplish
all of the preceding, including options like batch process-
ing for program compilation, on-line source code entry via
Text Editor, the Execute Subsystem for program execu-
tion, and so on. Because all these tasks except the
selection of the postprocessor library are general time-
sharing tasks and not peculiar to TIGS, this appendix does
not describe how lo accomplish them. The user should
consult the Time-Sharing User's Reference Manual for this
information.

Once execution of the compiled graphics program has
been iniliated, the program generates pictures on the
terminal display sereen and interacts with the terminal
operator via TIGS FORTRAN calls. The graphics program
can be terminated by the application program through the
QUITIG call, or by the terminal operator using the system
abort procedure (different for NAM/IAF and the Time-
Sharing Module).

When the program is terminated, the operalor can once
again enter commands, execute another graphics program,
or reexecute the same program.

-

FILES

Files used by graphics application programs are controlled
and maintained through standard NOS procedures.

The files INPUT and OUTPUT for TIGS programs are .
automatieally directed to and from the terminal. When a
WRITE or PRINT to the OUTPUT file is made, the data is
displayed in alphanumeric form on the screen. When a
READ from the INPUT file is made, the system wails
while the data is typed on the keyboard (followed by a
press of the RETURN key), and then passes the typed data
to the program.

To obtain a printed listing of output from program WRITE
statements, the programmer writes to a file other than
OUTPUT and then performs a SAVE on the file after the
job. The programmer can then produce the printed listing
on the host site printer or remote batch terminal by
submitting (SUBMIT command) a batch job or remote
batch job which copies the saved file to the OUTPUT file.

All files used from the console, whether in NOS command
mode or during an application execution, must be mass
storage files or system files. NOS normally does not allow
the use of magnetic tape from interactive programs. If a
user wishes to refer to a magnetic tape, it can be done by
submitting a bateh job to the system which manipulates a
tape file and transfers required data to or from a
permanent file. This permanent file may be accessed
from the application program.

TIGS uses units 61, 62, 63, 64, and 65 for internal input
and output of graphics data to the terminal. TAPE63 is
the error log. TAPE64 is the LOCATE queue, and
TAPE6S is the EVENT queue. TAPE61 is the TIGS input
(this file must be equivalenced to INPUT on the
PROGRAM card), and TAPE62 is the TIGS output file.

The files listed on the PROGRAM statement are each
assigned a double buffer, which is included in the field
length of the application program. The size of the double
buffer defaults to 515 words decimal per file. The
programmer may wish to reduce these buffer sizes on the
PROGRAM statement to reduce the required field length
for the application program. For example, buffer sizes of
64 words each are specified in the following statement.

PROGRAM TEST(INPUT=64,0UTPUT=64,
¢ TAPE61=INPUT,TAPE62=0, .
c TAPE63=64, TAPE64=64,TAPE65=64)

Minimum file size for all units is 64 words.

1 When a program is terminated in this manner, the neutral display file must be returned to the system before another program

can be executed.

60455940 C

TIGS LiBRARY SELECTICN

All TIGS subroutines exist as library subroutines and are
loaded as necded when referred to by application pro-
grams. There is a separate library for each r~stprocessor
supporied by TIGS. It is the operator's responsibility to
gel the correct library file for his job before loading and
execution. The names of the postprocessor libraries may
vary from site to site; consult a systems analyst for the
names in use. Also, the means of making the library local
to the graphics job may vary. If the TIGS library exists as
a permanent file it must first be made local to the job and
declared as a library:

ATTACH,libname
X,LIBRARY, libname

The example above assumes that the permanent file is a
direet access file in the catalog of user name LIBRARY.
The LIBRARY control statement is preceded by an X, to
distinguish it from the time-sharing LIBRARY eommand,
which is unrelated. The LDSET statement can be used
instead of the LIBRARY statement if the library is to be
used only for a single load sequence (local library instead
of a global library; refer to the CYBER Loader Reference
Manual).

All TIGS program libraries have version numbers to

refleetl library updates. This version number has special
meaning for the INITIG routine (section 8).

PROGRAM EXECUTION
The execution of a TIGS application is initiated from

either the batch or execute subsystems; the batch
subsystem must be used to execute direct access files.

60455940 C

The TIGS user may find it convenient to use a NOS
procedure file to accomplish the library selection, loading,
and execution tasks; refer to the Time-Sharing User's
Reference Manual for information.

NOS CHARACTER SET

FORTRAN programs use the NOS 64-character TTY set
for normal READ and WRITE input/output for a terminal.
Opticns are also available for input and output of
additional characters for the full ASCH subset, and for
other special modes of input/output including binary and
transparent. Appendix A contains character set tables.

DATA HANDLER RESTRICTION

If a TIGS application program uses the Data Handler
utility, it is limited to using Data Handler files 1 through
7; TIGS software uses file 0. Refer to the Data Handler
Reference Manual.

Any neutral display file created under TIGS v.1.0 will
need to undergo a one-time conversion in order to be
used by TIGS v.l.1. The conversion program to be used
should be installed as part of the TIGS installation
procedures. Consult a systems analyst for the conversion
program file name. The following job should be run in
either interactive or batch mode:

ATTACH,NDF=ndfname/M=W.
local file name must be NDF.

ATTACH ,conprog.
converion program.
conprog. execute conversion program.

Note that this procedure writes over the v.1.0 neutral
display file to make the v.1.1 file.

TEKTRONIX 401X POSTPROCESSOR F

0

This appendix describes the postproeessor which supports
the following Tektironix 401x series of graphies ter-
minals. t

® Tektronix 4006 terminals.

® Tektironix 4010 series terminals (includes the
4012 and 4013 terminals).

® Tektronix 4014 terminals.

® Tektronix 4014 terminals with Enhanced
Graphics Module (EGM).

® Any terminal capable of emulating the 4014.
The appendix is organized in the following manner.

® A subsection on hardware/operating system en-
vironments for the postprocessor.

® A subsection on TIGS software features whose
implementation is dependent on. the post-
proeessor used, including a list of values returned
from TFxxx routines for the Tektronix post-
processor.

® A subsection containing information on each of
the terminal classes mentioned (except for ter-
minals in 4014 emulation). At the end of this
subsection are short descriptions of optional
Tektronix hardware, such as the tablet and
hardecopier.

OPERATING ENVIRONMENT

NOS/BE AND INTERCOM SYSTEM USER'S
HARDWARE ENVIRONMENT

Users with access to a CDC CYBER 70, CDC CYBER
170, or 6000 series computer running under NOS/BE and
INTERCOM can run TIGS with the 401x postprocessor on
any -of the Tektronix terminals previously listed. The
minimum hardware configuration needed to run TIGS is
the same as that needed to run NOS/BE and INTERCOM.
The terminal must be connected to the host ecomputer by
a telephone line through a data set.

Table F-1 shows the baud rates and modes of communica-
tion that are supported by TIGS for NOS/BE and
INTERCOM.

TABLE F-1. BAUD RATES AND MODES OF
COMMUNICATION FOR NOS/BE AND INTERCOM

Baud Mode of
Terminal Rate Communication
4006 300 Baud Asynehronous * l
4010 series, 4014 ’
4006 1200 Baud | Asynchronous
to 9600
Baud

4010 series, 4014
4010 series, 4014 2000 Baud | Synchronous
4010 series, 4014 2400 Baud | Synchronous
4010 series, 4014 4800 Baud | Synchronous

+ When running asynchronously, using the SCREEN, 132
command produces an improvement in throughput.

NOS NAM/IAF AND NOS TIMESHARING MODULE
SYSTEM USER'S HARDWARE ENVIRONMENT

Users with access to a CDC CYBER 70, CDC CYBER 170,
or 6000 series computer running under NOS NAM/IAF or
NOS with the Time-Sharing Module (refer to appendix E)
can run TIGS with the 401x postprocessor on any of the l
terminals previously listed. The minimum hardware
configuration needed to run TIGS is the same as needed to
run NOS. The terminal must be connected to the host
computer by a telephone line through a data set. Table
F-2 shows the baud rates and modes of communication
that are supported by TIGS for NOS NAM/IAF and NOS
Time-Sharing Module.

TABLE F-2. BAUD RATES AND MODES OF
COMMUNICATION FOR NOS NAM/IAF AND
NOS TIME-SHARING MODULE

Baud Mode of

Terminal Rate Communication
4006 300 Baud | Asynchronous 1
4010 series, 4014
4006 1200 Baud | Asynchronous

to 9600

Baud
4010 series, 4014 I
4010 series, 4014 2000 Baud | Synchronoust
4010 series, 4014 2400 Baud | Synchronoust
4010 series, 4014 4800 Baud | Synchronous'

tSynchronous communications supported on NOS NAM/
IAF only.

T Tektronix 401x terminals whose model number is followed with a -1 (for example, 4006-1) are included in this discussion.
The -1 signifies that the terminal ean be fitted with a hardcopy device.

60455940 C

F-1

401x POSTPROCESSOR LIBRARY

The 401x postprocessor is selected by declaring the proper
library in the graphies job before program loading takes
place. This process is described in appendix E. After the
401x postprocessor library has been selected, a display of
installation default. options appears on the screen. If the
default configuation is correct, no further questions will
appear. If not, four questions will appear to define the
current configuration. An example display follows:

IVETALLSTION DEFAULT LALLES aRE

d 13 CEGM ASYNCHRONOUS
1202 BRUD
] NO TaBRLET

RY HaRD COPY
DO YOL ACCEPT THESE DEFAULTS (Ys/N)

ENTER TERMINAL TYPE

4296 ASYNCHRONOUS

4010 SYNCHRONOUS

401@ ASYNCHRONOUS

4014 SYNCHRONOUS

4014 ASYNCHRONOUS

4014 W/EGM SYNCHRONOUS
4014 W/EGM ASYNCHRONOUS

NV AW

ENTER BAUD RATE., 300.1200.2000.2400.4800.9600

1S TABLET GOING TO BE USED
ENTER © FOR NONE.1 FOR 4953.2 FOR 4954

1S HARD COPY UNIT AUAILABLE
ENTER © FOR NONE.1 FOR TEKTRONIX.2 FOR VERSATEC

Figure F-1. Initial Postprocessor Display

I The questions appear one by one, each appearing only

after the last has been properly answered. An improper
answer causes the question to be repeated. It is important
to realize that only invalid answers are rejected, not
incorrect ones. That is, an operator response indicating
that a 300-baud communications line is in use when the
line is actually 1200 baud will be accepted by TIGS, even
though it is not correct. A breakdown in ecommunication is
the result of such a valid, but incorrect, answer.

It is the operator's responsibility to know the character-
istics of the communications line he is using, and to set

the terminal to the proper baud rate and communications
mode.

TIGS SOFTWARE FEATURES

The following TIGS software features are dependent on
the postprocessor for specifies of implementation:

® Default initialization.

® Supported plotting symbol set.

e Supported continuous character set.
e Line style algorithm.

¢ Echoing segment_picks.

e Implementing rotation of text.

o Determining the viewport for PROMPT routine
use.

e Returning coordinate values on an EVENT call.
e Erasing the screen.
o Determining default screen layout.
. Keyboard input maximum.
TIGS also contains a set of subroutines that test post-

processor features. This subsection contains a table of
values returned by these TFxxxx routines for the Tek-

- {ronix postprocessor.

DEFAULT INITIALIZATION

If an applications program does not make a call to INITIG,
the first TIGS routine called in the program results in a
call to INITIG with the following default values.

CALL INITIG(.TRUE.,.TRUE.,6LNEWNDF)

SUPPORTED PLOTTING SYMBOL SET

The Tektronix postprocessor supports the plotting svmbol
set as defined in the xxSYM routine documentation,
section 2.

SUPPORTED CONTINUOUS CHARACTER SET

The Tektronix postprocessor supports the continuous
character set defined in the xxCSIZ routine
documentation, section 2.

LINE STYLE ALGORITHM

The algorithm used in implementing the bit-pattern line
style of the SMSTYL and RASTYL (istyle>5) is as follows:
for each set bit of the binary representation of the istyle
value, the drawing beam is turned on for the distance of
.0034188 in terminal-independent coordinate system units.
The physical distance represented by this quantity varies
among the several Tektronix terminals; refer to the
appropriate terminal user's guide for specifie information.
In general, a single set bit results in a dot; several set bits
in a row result in a dash that is directly proportional in
length to the number of bits set. For example, the value

ISTYLE=7652B
is equivalent to the binary bit pattern

111110101010
In this case, the drawing beam would be turned on for five
sereen units in a row, then alternating off and on for the
next seven units before the pattern is repeated. This

results in a line style consisting of a dash followed by
three dots.

60455940 C

ECHOING SEGMENT PICKS

In the Tektronix 401x postprocessor, segment picks are
echoed at the terminal by redrawing the picked
segment. No screen erasure is involved in this
redrawing.

ROTATION OF TEXT

Rotation of text is implemented in TIGS for the Tektronix
401x postprocesor although continuous character sizes
(software-, not hardware-produced, character sizes) are
not supported. The character itself is not rotated; rather
the angle of the lower left corner of the character in
relation to the next character is positioned at the set
angle of rotation. Figure F-2 is an example of character
rotation for the 40xx postprocessor. Positive angles of

o?

rotation are counterclockwise and negative angles of
rotation are clockwise from the positive x-axis. Refer to
TEXT in section 2. :

DETERMINING VIEWPORT FOR PROMPT
ROUTINE USE

The minimum size for a system viewport is 10 characters
in width for the smallest character size. TIGS uses the
smallest hardware character size for system viewport
messages. If a programmer specifies a system viewport of
insufficient width, TIGS adjusts the system viewport
limits to adhere to the minimum size. ~Prompting
messages are put in the system viewport in multiples of 10
characters per line.

Ec. .
P
?Iﬁc'
oo

K

Figure F-~2. Example of Character Rotation

60455940 C

F-3

For example, suppose the system viewport holds 29
characters and a program calls PROMPT with NCHAR=27.
The first 20 characters appear on the next available line
of the system viewport and the last 7 characters appear
on the following line. Refer to PROMPT in section 7.

The defaull system viewport width is 20 characters for
the 4006 and 4010 series terminals, and 40 characters for
the 4014.

RETURNING COORDINATE VALUES ON AN
EVENT CALL

When EVENT is called and the operator makes a segment
pick, the COORDS array will contain the exaet coor-
‘dinates of the position the operator picked, within
hardware limitations. The coordinate system is as defined
in the most recent call to PREEVN (refer to section 7).

SCREEN ERASURE

The following are the four conditions that cause the
sereen to be erased. .

© A segment is visible and any of RAPICT,
RASTYL, RASYM, RAVIS, RAXFA, RAXFR,
RAXFL, RAXFA3, RAXFR3, RAXFL3, EMPTY,
or DELSEG involving that segment is called.

® A window, viewport, or picture is deleted.

e PROMPT or KEYBRD is called and there is
insufficient room in the system viewport.

® SMSVP is called.

For the first two conditions, the erasure is done when the
next display cycle is performed. For the third condition,
erasure is performed after a three-second delay. For the
last condition, the erasure is performed immediately. A
display eycle is performed upon calling DSPLAY, EVENT,
LOCATE, or KEYBRD (refer to the sections containing
these call statements).

DEFAULT SCREEN LAYOUTS

The default screen layout depends on the value of the
logical parameter lsquar in the call to INITIG (refer to
seetion 8). Figure F-3 shows default screen layouts for
Isquar values.

Default viewport covers entire screen; default viewport
and default system viewport overlap.

F-4

(1,1}

DEFAULT
VIEWPORT

‘SYSTEM//

/VlEWPORT

(-.31125,0} (0.,0.}

LSQUAR=.TRUE.

(1.,.76)

1
DEFAULT VIEWPORT COVERS ENTIRE
SCREEN; DEFAULT VIEWPORT AND
DEFAULT SYSTEM VIEWPORT OVERLAP
1]

LSQUAR=.FALSE.

{0..0.}

Figure F-3. Default Screen Layouts for Isquar Values

NOTE

The PROMPT routine requires that the mini-
mum size for a system viewport is at least 10
characters of the smallest character size fit in
the system viewport. When Isquar is false the
system and default viewports overlap. When
Isquar is true the system viewport occupies the
left side of the default screen layout. The
number of characters per line of prompting
information for the default system viewport
varies depending on the Tektronix terminal.’
For the Tektronix 4006 and 4010, 20 char-
acters per line are allowed. For the Tektronix
4014, 40 characters per line are allowed.

KEYBOARD INPUT

The Tektronix postprocessor supports an input of 140
characters for each KEYBRD call.

TEST FEATURE ROUTINES

Table F-3 lists the TFxxx subroutlines and the values
returned for them for the Tektronix postprocessor.

60455940 C

TABLE F-3. TEST FEATURE ROUTINES

Test Feature ' Returned Value
Routine Name Feature Tested from Routine
TFAC Test for postprocessor sup- LACTN = .TRUE.

port of EVENT routine.

TFCSIZ Test for support of con- LCCHAR=.TRUE.
tinuous character sizes.

TFDSIZ Test diseretle character size. If LSQUAR = .FALSE.:

4006 and 4010 series

Characters/line: 74
Lines/frame: 35
WIDOUT = 1./74. %
HIOUT =1./35.%

4014

Characters/line: 133
Lines/frame: 64
WIDOUT = 1./133.
HIOUT = 1./64.

Characters/line: 121
Lines/frame: 58
WIDOUT = 1./121.
HIOUT = 1./58.

Characters/line: 81
Lines/frame: 38
WIDOUT = 1./81. 1
HIOUT =1./38.1

Characters/line: 74
Lines/frame: 35
WIDOUT = 1./74.
HIOUT =1./35.

If LSQUAR = .TRUE.:
4006 and 4010

Characters/line: 56
Lines/frame: 35

WIDOUT = 1./56.%
HIOUT = 1./35.t

4014

Characters/line: 101
Lines/frame: 64
WIDOUT = 1./101.
HIOUT = 1./64.

Characters/line: 92
lines/frames: 58
WIDOUT = 1./92. %
HIOUT =1./58.T

Character/line: 62
Lines/frame: 38
WIDOUT = 1./62.
HIOUT = 1./38.

Characters/line: 56
Lines/frame: 35
WIDOUT = 1./56.
HIOUT = 1./35.

60455940 C

TABLE F-3. TEST FEATURE ROUTINES (Contd)

Test Feature
Routine Name

Feature Tested

Returned Value
from Routine

F-6

TFERR
TFFONT

TFHARD

TFHILT
TFID

TFINT

TFLOCR

TFNSIZ

TFPICT
TFPORT

TFROT

Test for support of user-
supplied error routine.

Test number of fonts
supported.

Test for existence of remote
hardcopiers.

Test for support of high-
lighting.

Test for support of intra-
segment identifiers.

Test for number of hard-
ware levels of intensity
supported.

Test for number of locators
on the terminal and their
characteristies.

Test for number of diserete
character sizes supported
by hardware.

Test for maximum number
of pictures allowed.

Test for maximum of view-
ports allowed.

Test for support of ehar-
acter rotation by 90 de-
grees and continuous
rotation of characters.

LROUTN =.TRUE.

NFONTS =1

If fourth question (that is, availability of hardeopy
unit) during initialization dialogue was answered 0,
LREMOT=.FALSE., Otherwise, LREMOT=.TRUE.

LHILT = .FALSE.
NID = 32767
NINTEN = 1
4006

NLOCRS =0

4010 series or 4014

If no tablet available:

NLOCRS =1

DESCRP (1) = 1001 (thumbwheels)

LONE (1) = .TRUE.
If small tablet (4953) available:

NLOCRS = 2

DESCRP (1) = 1001 (thumbwheels)
DESCRP (2) = 1002 (small)

LONE (1) = .TRUE.

LONE (2) = .TRUE.

If large tablet (4954) available:

NLOCRS =2

DESCRP (1) = 1001 (thumbwheels)
DESCRP (2) = 1003 (large tablet)
LONE (1) = .TRUE.

LONE (2) =.TRUE.

4006 or 4010 series

NDSIZE =1
4014
NDSIZE = 4

NPICT = 509 :

NPORT = 508

LNINTY = .FALSE.
LCONT = .TRUE. t1

60455940 C

TABLE F-3. TEST FEATURE ROUTINES (Contd)

Feature Tested

Returned Value
from Routine

Test Feature
Routine Name
TFSCRN
TFSTYL
TFSVP
TFSYM
TEVIS
TFXFA (= TFXFR and TFXFL)
TFXFA3
(= TFXFR3 and TFXFL3)

Test size, shape, and res-
olution of the screen.

Test for line styles sup-
ported by hardware.

Test for a default system
viewport separate from
the working area.

Test for maximum symbol
number for which a symbol is
defined.

Test to see if a complete
retransmission is required
to make a segment invisible.

Test for existence of dis-
play processor hardware
to perform transforma-
tions to a 2-D window.

Test for existence of dis-
play processor hardware

to perform transformations
to a 3-D window.

If LSQUAR = .FALSE.:

LRTNGL = .TRUE.

XLL =YLL =0.

XUR =1.

YUR =.75

RESLTN = 1024. (without EGM)
RESLTN = 4096. (with EGM)

If LSQUAR = .TRUE.:

LRTNGL = .TRUE.

XLL =-.31125

YLL = 0.

XUR = YUR = 1.

RESLTN = 780. (without EGM)
RESLTN = 3120. (with EGM)

4006, 4010 series, and 4014 without EGM

LHARD (1) = .TRUE.
LHARD (2) = .FALSE.
LHARD (3) = .FALSE.
LHARD (4) = .FALSE.
LHARD (5) = .FALSE.
LHARD (6) = .FALSE.
" 4014 with EGM

LHARD (1) = .TRUE.
LHARD (2) = .TRUE.
LHARD (3) = .TRUE.
LHARD (4) = .TRUE.
LHARD (5) = .TRUE.
LHARD (6) = .FALSE.
LSYSVP = .TRUE.if
LSQUAR = .TRUE.
LSYSVP = .FALSE. if
LSQUAR = .FALSE.

Isquar is a parameter of INITIG.

NSYM =13
LTRAN =.TRUE.

LXLAT = .FALSE. (2-D translate capabilily)
LSCAL = .FALSE. (2-D scale capability)
LROT =.FALSE. (2-D rotation capability)

LXFM3 = .FALSE. (3-D translation, rotation,
and scaling)

LPERSP = .FALSE. (3-D perspective preserva-
tion during transformations)

LPYRAM = .FALSE. (clipping to 3-D pyramid
during transformations)

t Default character size for given value of lsquar parameter.
t 1 Refer to Rotation of Text in this appendix for implementation of text rotation for Tektronix 401x terminals.

60455940 C

TEKTRONIX TERMINALS

This subsection is divided into five parts:
® 4006 terminals.
® 4010 series terminals.
® 4014 terminals.
® 4014 terminals with EGM.
e Optional hardware for 401x terminals.

It is assumed that the operator has access to the
Tektronix publications dealing with his terminal. The
publications are available from the manufacturer.

TEKTRONIX 4006 TERMINAL

The Tektronix 4006 display terminal contains a display
sereen, function switches, control indicators, and an
alphanumeric keyboard. The power switch and the
hardeopy intensity control for the 4006-1 are located on
the back of the terminal. The hardcopy intensity control
is a screw adjustment thal, when turned clockwise,
increases the intensity of hardcopies produced by an
optional hardeopy device. For further explanation of the
features and options available refer to the Tektronix 4006,
4006-1 Terminal User's Guide.

Strap Options

Strap options on the 4006 logic cards permit the operator
to change the operating configuration of the terminal.
Table F-4 lists these strap options, and the options that
must be selected to enable the terminal to communicate
with TIGS. The correct option choice is circled for each
feature. The location of these straps is shown in the
terminal user's guide. It should be noted that the options
necessary for communication with TIGS are in some cases
not the option strapped at the factory when the logic card
is shipped.

Alphanumeric Mode

For alphanumeric input and output in alphanumeric mode
the Tektronix 4006 terminal displays any of the printing
characters available in the character set in appendix A.
Lowercase characters are printed as uppercase. A cursor
is displayed on the screen indicating the next character
position. The display sereen allows up to 35 lines of up to
74 characters each. Backspacing is accomplished by
pressing the CTRL and H keys simultaneously.

The home position for the cursor is in the upper lefthand
corner of the display screen. The display automatically
sets the cursor to the home position upon powering up the
terminal or whenever the PAGE key is pressed. The
operator presses the PAGE key whenever the screen is to
be cleared. *

TABLE F-4. STRAP OPTIONS FOR 4006 TERMINAL

Feature) Description

CR-LF @ Carriage Return does not cause
’ line feed.

2. Carriage Return does cause auto-
matie line feed.

ECHO/NORMt| 1. ECHO-Display data is provided by
) the terminal logic.

@ NORM-Display data is returned to
.the terminal by modem or com-
puter.

Data Slrap' 1. Bil 8 is selected as a data bit.

@ Bit 8 is selected as a parity bit.
This strap is used with the Data
Select strap described below.

Data Select @ High (even). If the Data Strap

is set to BIT 8, bit 8 is set high.
If the Data Strap is set to
PARITY, even parity is selected.

2. Low (odd). If the Data Strap is
set to BIT 8, bit 8 is set low. If
the Data Strap is set to PARITY,
odd parity is selected.

Interface 1. Direct Connect to computer.

Connector

@ Telephone/Modem connection to
computer.

tReplaced by a rear panel switch if the optional half-
duplex interface is installed.

The 4006 screen is divided into two vertical pages. The
left side of the screen is the left margin for 35 lines of
data. The center of the screen becomes the left margin
for the next 35 lines. After both vertical pages are filled,
the screen must be cleared by the operator so data is not
overwritten. Lines in the first page over 36 characters
long extend into the second page. These long lines can be
overwritten by lines centered on the second; therefore,
operators frequently clear the screen after the first page
of data is full.

The operator terminates each line of input by pressing the
RETURN key (same funetion as the carriage return key on
a teletypewriter) which signals the end of an input line,
transmits the input line to the computer, advances the
line position one line, and places the cursor at the
lefthand margin ready for more input.

These margin and alphanumeric input and output consider-
ations have meaning only in alphanumeric mode. When
TIGS is initialized, the screen is cleared and data is
written to and oceasionally read from the terminal
according to the formats specified by the TIGS subroutine
calls. There are no preset margins when in graphics mode.
The terminal is in alphanumerie mode: :

60455940 C

® When logging in or entering NOS/BE INTERCOM
or NOS NAM/IAF or Time-Sharing Module com-
mands.

® When a graphics program calls KEYBRD request-
ing character input from the terminal.

® When a graphics program calls TEXT or PROMPT
to write text.

Locator Device

The 4006 has no locator device and any application
program requiring a locator is issued an error diagnostic
by TIGS when a request is made. Since the default locator
is 1, the programmer should call SMLOCR (0) before
calling EVENT and should not call LOCATE. EVENT can
be called for function key presses only, not segment picks.

Function Key Usage

Numerie keys 1 through 9 and 0 serve as function keys.
When the EVENT subroutine is called and KYON or KYAC
has been previously called, the operator may press any of
the function keys followed by a carriage return. Since
there are no locator crosshairs on a 4006 to prompt the
operator to respond to the EVENT call, the message

WAITING FOR FUNCTION KEY PRESS AND CR

is written in the system viewport area.

Mode of Communication

The Tektronix 4006 terminal is supported at 300 baud to
9600 baud, in asynchronous mode only. It is the operator's
responsibility to set the terminal baud rate correctly for
the communications line he is using.

Options

Refer to Optional Hardware for Tektronix 401x
Terminals in this appendix for specific usage information
for the following option:

® Tektronix 4631 hardcopies.

TEKTRONIX 4010 SERIES TERMINAL
This discussion includes the 4012 and 4013 terminals.

The Tekironix 4010 display unit contains a pedestal unit,
keyboard, function switches, and control indicators. The
pedestal contains two controls: display on/off switch and
hardeopy intensity control (4010-1). The display contains
a display screen, function switches, control indicators,
alphanumeric keyboard, and crosshair thumbwheels. More
information about the terminal is avaijlable in the Tek-
tronix 4010, 4010-1 User's Manual.

60455940 C

Strap Options

Strap options on the 4010 series terminals permit the
operator to change the operating configuration of the
terminal. Table F-5 lists these strap options, and the
options that must be selected to enable the terminal 1o
communicate with TIGS. The correct option choice is
circled for each feature. The location of these straps is
shown in the terminal user's guide. It should be noted that
the options necessary for communication with TIGS are in
some cases not the options strapped at the factory when
the logic card is shipped.

TABLE F-5. STRAP OPTIONS FOR 4010
SERIES TERMINALS

Feature Description

In.
|Baud Ratet R (Receive) 150, 300, 600, 1200,
2400, 4800, or 9600 baud.
2. T (Transmit) 150, 300, 600, 1200,
2400, 4800, or 9600 baud.
Modem/Com- 1. To computer direct.
puter

Character type @ Normal characters.
if alternate
icharacter 2. Alternate or normal characters

memory is with switeh 2 (on front panel).
installed)
3. Alternate or normal characters
with SO or SI control characters.
Linefeed Linefeed only.

CR with Linefeed.

Graphic Input CR, and EOT (CTRL D).
[Terminators

CR only (Normal Position).
No CR, No EOT.

Page Full Busy Out.

OIS CON:

In (Makes 4010 Busy)
(Normal Position).

Local Echo In.
Out.

Page Full Break Out (Normal Position).

Connections @ To Modem (turn the céble plug
over). (Normal Position).

t Depends on communication line baud rate.

Alphanumeric Mode

For alphanumerie input and output in alaphanumeric mode
the Tekironix 4010 series terminals display any of the
printing characters available in the character set: in
appendix A. Lowercase characters are printed as upper-
case. A cursor is displayed on the screen indicating the
next character position. The display screen allows up to
35 lines of 75 characters each. Backspacing is accom-
plished by pressing the BACKSPACE key when in the
asynehronous communications mode or by pressing the
RUBOUT key when in synchronous mode.

The home position for the cursor is in the upper lefthand
corner of the display screen. The display automatically
sets the cursor to the home position upon powering up the
terminal or whenever the PAGE key is pressed. The
operator presses the PAGE key whenever the screen is 10
be cleared.

The 4010 screen is divided into two vertical pages. The
left side of the screen is the left margin for 35 lines of
data. The center of the screen becomes the left margin
for the next 35 lines. After both vertical pages are filled,
the sereen must be cleared by the operator so data is not
overwritten. Lines in the first page over 36 characters
long extend into the second page. These long lines can be
overwritten by lines centered on the second; therefore,
operators frequently clear the screen after the first page
of data is full.

The operator terminates each line of input by pressing the
RETURN key (same function as the carriage return key on
a teletypewriter) which signals the end of an input line,
transmits the input line to the computer, advances the
line position one line, and places the cursor at the
lefthand margin ready for more input.

These margin and alphanumeric input and output consider-
ations have meaning only in alphanumeric mode. When
TIGS is initialized, the screen is cleared, and data is
written to and occasionally read from the terminal
according to the formats specified by the TIGS subroutine
calls. There are no preset margins when in graphies mode.
The terminal is in alphanumeric mode:

® When logging in or entering NOS/BE INTERCOM
or NOS NAM/IAF or Time-Sharing Module com-
mands.

® When a graphics program calls KEYBRD request-
ing character input from the terminal.

® When a graphics program calls TEXT or PROMPT
to write text.

Locator Device

Crosshair Cursor

_ The operator can use the Tektronix crosshair cursor for
sereen coordinates inpul to the application program and
for making selections of, displayed objects on the screen
(segment picks) if the crosshair cursor is the mode set
locator. The crosshair cursor is the default locator.

The crosshair cursor is displayed on the screen whenever
the LOCATE or EVENT subroutine is called. The idvuwi
parameter on a PRELOC or PREEVN call has no effect on
the positioning of the crosshairs. The crosshairs appear
where last positioned manually. The crosshair. eursor
location (intersection of the crosshairs) can be positioned
anywhere on the screen by use of the two thumbwheel
controls to the right of the alphanumerie keys.

When an application program calls the LOCATE sub-
routine, the crosshairs appear on the secreen and the
program waits for the operator to position the cursor at a
desired location and to press an alphanumeric Key. The
character T terminates a set of input coordinates and any
other character indicates to TIGS this point is not the last
point in a series of locations (refer to LOCATE, seection
7).

When an application program calls the EVENT subroutine,
the crosshairs appear on the screen. The operalor may
press a function key (numeric keys 0 through 9) or pick a
displayed object. To pick an object, the operatlor places
the crosshair cursor over any visible part of an object to
be selected and presses any alphabetic key. If the
operator picks a nonpickable object (a segment with an
IGNORE action attribute), the ecrosshairs reappear and
EVENT continues waiting until a valid selection is made.
Each valid selection is echoed by redrawing. A segment
or funetion key with TERMINATE action terminates the
input sequence.

Tablet

The operator can use the optional Tektronix 4953 or 4954
Tablet for screen coordinates input to the application
program and for making selections of displayed objeects
on the sereen provided the tablet is the mode set locator
(refer to Optional Hardware for Tektronix 401x
Terminals in this appendix and to SMLOCR, section 7).

The tablet is enabled for input whenever the EVENT or
LOCATE subroutine is called. The idvuwi parameter on a
PRELOC or PREEVN call has no effect on the positioning
of the pen; it is positioned by the operator.

When an application program calls the LOCATE routine,
the program waits for the operator to press and release
the pen tip on the tablet.)

The corresponding pen position is indicated on the
terminal display sereen with a cursor (NOS/BE only). The
coordinates of this point are placed on the location queue.
To terminate a set of locations, the operator must press
the T and RETURN keys on the keyboard. The application
program waits until the T, RETURN sequence is pressed.

When an application program calls the EVENT subroutine,
the operator can press a funetion key (numeric key 0
through 9) or pick a displayed object. To pick an objeect,
the operator positions the pen to a position corresponding
to a visible portion of the object and presses and releases
the pen tip. If the operator picks a nonpickable object (a
segment with an- IGNORE action. attribute), the operator
is required to select another object and EVENT continues
waiting until a valid selection is made.

60455940 C

Function Key Usage

Numeric keys 1 through 9 and 0 serve as function keys.
When the EVENT subroutine is called and KYON or KYAC
has been previously ecalled, the operator can press any of
the funetion keys. If the crosshair cursor is the mode set
locator, the crosshairs serve as a prompt indicating a
function key can be pressed. If the tablet is the mode set
locator, the READY light on the tablet controller signals
a function key can be pressed.

Mode of Communication

The Tektronix 4010 series terminal is supported at 300 to
9600 baud in asynchronous mode and at 2000, 2400, and
4800 baud in synchronous communications mode with
option 20.

Options

Refer to Opti'or{al Hardware for Tektronix 401x
Terminals in this appendix for specific usage information
for the following options:

® Tektironix 4631 Hard Copy Unit.
® Tektronix 4953 or 4954 Tablet.

® Tektronix Option 20 Synchronous Interface.

TEKTRONIX 4014 TERMINAL

Information in this section is also applicable to terminals
capable of emulating the 4014. However, keyboards and
input devices on terminals in 4014 emulation mode do not
necessarily correspond to information given here for the
4014; the operator is assumed to be familiar with the
operation of a terminal in 4014 emulation mode.

The Tektronix 4014 terminal is a display and pedestal unit.
The pedestal contains the display on/off switeh and the
display contains a display screen, function switches,
control indicators, alphanumerie keyboard, and crosshair
cursor position controls. Several switches and indicators
are not used unless certain strappable options are con-
nected to the terminal. Also, the AUTO PRINT/COPY
switeh and the serew adjustment for hardeopy intensity
apply to the 4014-1 only. For further information, refer
to the Tektronix 4014 and 4014-1 Computer Display
Terminal User's Instruction Manual.

Strap Options

Strap options on the 4014 terminal permit the operator to
change the operating configuration of the terminal. Table
F-6 lists these strap options, and the options that must be
selected to enable the terminal to communicate with
TIGS. The correct option choice is circled for each
feature. The location of these straps is shown in the
terminal user's guide. It should be noted that the options
necessary for communication with TIGS are in some cases
not the options strapped at the factory when the logic
card is shipped.

60455940 C

TABLE F-6. STRAP OPTIONS FOR 4014 TERMINAL

Feature Effeet

LF Effect LF causes Line Feed only.

> ©

LF-CR causes Line Feed and
Carriage Return.

CR Effect @ CR causes Carriage Return only.
2. CR-LF causes Carriage Return
and Line Feed.
DEL Implies @ DEL-LOY permits RUBOUT (DEL)
LOY Lo be used as LOY.

2. DEL permits ESC ? to be substi-
tuted for DEL.

Graphic Input 1. CR and EOT transmits CR and
Terminators EOT in GIN Mode.

CR transmits CR in GIN Mode.
NONE transmits neither CR nor
EOT in GIN Mode.

Indicator 3
(LED 3)
connections

3
Switeh 3 and @ No effeet; disconnected.
2.

Provides ground connections via
Switeh 3 from keyboard and pro-
vides +5 V to Indicator 3 on key-
board.

Alphanumeric Mode

Without the Enhanced Graphic Module (EGM), the Tek-
tronix 4014 has nearly the same alphanumeric input and
output characteristics as the Tektronix 4010. The 4014
can display 35 lines of alphanumeriec input or output, each
line containing 74 characters. Unlike the 4010, the 4014
displays characters in lowercase that are typed in lower-
case. The RUB OUT key is used for backspacing when in
synchronous communication mode and the BACKSPACE
key when in asynchronous mode. The terminal operator
can switch back and forth between character sizes by:

® Switehing- the LOCAL/LINE switch to LOCAL
(temporarily cuts off communication with the
host ecomputer).

® Pressing the ESC key.
® Pressing the key to determine character size.

8 large size

9 medium size
: normal size
; small size

® Switehing the LOCAL/LINE switeh back to LINE.

Whenever the Tektronix 4014 terminal is on, the screen
displays a cursor. The home position for the cursor is the
upper lefthand corner of the display sereen. The cursor 1s
automatically set to the home position when power is
applied to the terminal, and whenever the PAGE key is
pressed. The operator presses the PAGE key whenever
the screen is to be cleared.

The 4014 screen is divided into two vertical pages. The
left side of the screen is the left margin for 35 lines of
data. The center of the screen becomes the left margin

for the next 35 lines.” After both vertical pages are filled, .

the screen must be cleared by the operator so data is not
overwritten. Lines in the first page over 36 characters
long extend into the second page. These long lines can be
overwritten by lines centered on the second; therefore,
operators frequently clear the screen after the first page
of data is filled. The operator terminates each line of
input by pressing the RETURN key (same function as the
carriage return key on a teletypewriter) which signals the
end of an input line, transmits the input line to the
computer, advances the line position one line, and places
the cursor at the lefthand margin ready for more input.

These margin and alphanumeric input and output consider-
ations have meaning only in alphanumeric mode. When
TIGS is initialized, the screen is cleared, and data is
written to and occasionally read from the terminal
according to the formats specified by the TIGS subroutine
calls. There are no preset margins when in graphies mode.
The terminal is in alphanumeric mode:

© When logging in or entering NOS/BE INTERCOM
or NOS NAM/IAF or Time-Sharing Module com-
mands.

® When a graphies program calls KEYBRD request-
ing character input from the terminal.

® When a graphies program calls TEXT or PROMPT
1o write text.

Locator Device

Crosshair Cursor

The operator can use the Tektronix crosshair cursor for
sereen coordinates input to the application program and
for making selections of displayed objects on the screen
(segment picks) if the crosshair cursor is the mode set
locator. The crosshair eursor is the default locator.

The crosshair cursor is displayed on the secreen whenever
the LOCATE or EVENT subroutine is called. The idvuwi
parameter on a PRELOC or PREEVN call has no effect on
the positioning of the crosshairs. The crosshairs appear
where last positioned manually. The crosshair cursor
location (intersection of the crosshairs) can be positioned
anywhere on the screen by use of the two thumbwheel
controls to the right of the alphanumeric keys.

When an application program ecalls the LOCATE sub-
routine, the crosshairs appear on the screen and the
program waits for the operator to position the cursor at a
desired location and to press an alphanumerie key. The
character T terminates a set of input coordinates and any
other character indicates to TIGS this point is not the last
point in a series of locations (refer to LOCATE, section
.

When an application program calls the EVENT subroutine,
the crosshairs appear on the screen. The operator may
press a function key (numeric keys 0 through 9) or pick a
displayed object. To pick an object, the operator places
the crosshair cursor over any visible part of an objeet to

be selected and presses. any alphabetic key. If the
operator picks a nonpickable object (a segment with an
IGNORE action attribute), the crosshairs reappear and
EVENT continues waiting until a valid selection is made.
Each valid selection is echoed by redrawing. A segment
or function key with TERMINATE action terminates the
input sequence. .

Tablet

The operator can use the optional Tektronix 4953 or 4954
Tablet for screen coordinates input to the application
program and for making selections of displayed objects
on the screen provided the tablet is the mode set locator
(refer to Optional Hardware for Tektronix 401x
Terminals in this appendix).

The tablet is enabled for input whenever the EVENT or
LOCATE subroutine is called. The idvuwi parameter of a
PRELOC or PREEVN call has no effect on the positioning
of the pen; it is brought into use by the operator. .

When an application program calls the LOCATE routine,
the program waits for the operator to press and release
the pen tip on the tablet. The corresponding pen position
is indicated on the terminal display secreen with a cursor
(NOS/BE only). The coordinates of this point are placed
on the locate queue. To terminate a set of locations, the
operator must press the T and the RETURN keys on the
keyboard. The application program waits until the T,
RETURN sequence is pressed.

When an application program calls the EVENT subroutine,
the operator can press a function key (numeric key 0
through 9) or pick a displayed object. To pick an object,
the operator positions the pen to a position corresponding
to a visible portion of the objeet and presses and releases
the pen ip. If the operator picks a nonpickable object (a
segment with an IGNORE action attribute), the operator
is required to seleet another object and EVENT continues
waiting until a valid selection is made.

Function Key Usage

Numeric keys 0 through 9 serve as function keys. When
the EVENT subroutine is called and KYON or KYAC has
been previously called, the operator can press any of the
function keys. If the crosshair cursor is the mode set
locator, the crosshairs serve as a prompt indicating a
function key can be pressed. If the tablet is the mode set
locator, the READY light on the tablet controller signals
a function key can be pressed.

Mode of Communication
The Tektronix 4014 terminal is supported at 300 to 9600

baud in asynchronous mode and at 2000, 2400, and 4800
baud in synchronous ecommunication mode with option 20.

Options
Refer to Optional Hardware for Tektronix 401x .

Terminals in this appendix for specific usage information
for the following options.

60455940 C

® Tektronix 4631 Hardcopy Unit.
® Tektronix 4953 or 4954 Tablet.

® Tektronix Option 20 Synchronous Interface.

T‘EK.TRONIX 4014 TERMINAL WITH EGM

This section deals with the 4014 terminal equipped with
the Enhanced Graphics Module (EGM). All of the material
on the 4014 terminal without EGM is valid for the 4014
with EGM as well. The following material documents the
additional capabilities that EGM hardware provides for
the 4014 terminal.

Strap Options

The strap option selections described in table F-7 should
be made in addition to those deseribed for the 4014.

TABLE F-7. STRAP OPTIONS FOR 4014
TERMINALS WITH EGM

Feature Location Description

TIMING EGM logic board 1 4010/4012
' @ 4014

WRITE EGM logic board 1 4010/4012
@ 4014

The EGM provides the following additional capabilities to
the 4014 terminal.

e Expanded graphic resolution — a 12-bit graphic
resolution allowing 4096 by 3120 addressable
points as opposed to 1024 by 780 addressable
points for a terminal without EGM.

® Five line styles — line styles that are hardware
(as opposed to software) generated are:

Line Style TIGS Style Number

Solid
Long-dash
Short-dash

- Dash-dot
Dot

[L S

Two TFxxxx routines, TFSTYL and TFSCRN, return
different values depending on whether a 4014 terminal is
equipped with EGM or not, to reflect these added
capabilities. .

60455940 B

OPTIONAL HARDWARE FOR TEKTRONIX 401X TERMINALS

Tektronix Hardcopy Unit - 4631

The 4631 hardcopy unit is compatible with all Tektronix
terminals supported by the 401x postprocessor. The unit
can be shared by up.to four terminals if the multiplexer
option is available. ' Pressing the copy button on the front
panel of the terminal causes the image on the screen to-be
copied on the hardcopy unit. Calling the TIGS routine
REMSCR has the same results. For further information
on the 4631 hardcopy unit refer to the Tektronix 4631
Hardcopy Unit User's Manual.

Tektronix Tablets - 4953 and 4954

The 4953 and 4954 Graphics Tablets send graphic data to a
computer through a Tektronix 4010 series or 4014 Graphic
Display Terminal. The devices are identical except for
the size of the tablets; the 4953 (small) is 11 inches by 11
inches and the 4954 (large) is 40 inches by 30 inches.

Points picked by the tablet pen are digitized and sent to
the computer. When the operator moves the pen on the
tablet, a cursor indicates on the sereen a corresponding
position. When the pen is pressed and released, the
coordinates of the lower left corner of this cursor are
transmitted to TIGS. The cursor for tracking the pen
position appears only when running on NOS/BE. Refer to
the 4010 and 4014 terminal descriptions for TIGS applica~
tion of the tablet.

Strap options must be selected as indicated in table F-8
for tablet input. These strap. options are located on a
separate tablet logic board. If not strapped as indicated,
no assurance of proper operation is guaranteed. For
further information, refer to Tektronix 4953/4954
Graphies Tablet Instruetion Manual.

Synchronous Interface (Option 20)

This interface enables synchronous communication be-
tween a 4010 series or 4014 Graphies Display Terminal
and the CDC CYBER 70, CDC CYBER 170, or 6000 series
computer. The Tektronix terminal simulates a CDC 200
User Terminal in synchronous mode.

All strap options for the synchronous interface are as set
by the factory, except for the C option which should be
completely disconnected. The factory set positions are
described in the Tektronix Data Communications Inter-
face Instruction Manual.

To switeh a 4010 series or 4014 series terminal back and

forth between synchronous and asynchronous communica-
tion modes, do the following. :

F-13

TABLE F-8. STRAP OPTIONS FOR 4953 OR
4954 GRAPHICS TABLET

Feature

Description
DELAY 1 Out
@ In
COMSUP OB
v 2 Out
ESUP @ m
2 Out
CR 1 Out
@ In
HEADER @O Letter (NOS)
(@) Control (NOS/BE)
SMALL/ 1 small
LARGE
(set for appro- 2 large
priate tablet)
STATUS 1 In
@ Out

4.

Set CLEAR WRITE switch to OFF.
Set ASCII/ALT Switch to ASCIL
Push TTY LOCK key on (down position).

Set BAUD RATE rotary switeh (back of terminal)
to EXT.

Set BCD/ASCIl switeh (back of terminal) to
ASCII.

Push RESET PAGE key after the power is turned
on and before dialing up the computer.

Asynchronous Operation

Synchronous Operation

1.

Set LOCAL/LINE switch to LINE.

2. Set CODE EXPANDER switch to ON.

1.

Set BAUD RATE rotary switeh (back of terminal)
Lo desired speed, i.e., 300.

Set BCD/ASCII switeh (back of terminal) to
ASCII.

Set CODE EXPANDER switch to OFF.
Setl ASCII/ALT switeh to ASCIIL.

Push TTY LOCK key on (down position).
Set LOCAL/LINE switch to LOCAL.

Simultaneously press RESET PAGE and SHIFT
keys.

Simultaneously press shift, CTRL and P keys.

Set LOCAL/LINE switeh to LINE.

60455940 C

SANDERS GRAPHIC 7 POSTPROCESSOR

M ——

This appendix describes the postprocessor for the Sanders
Graphic 7 terminal. It is organized in the following
manner. :

® A subsection on hardware/operating system en-
vironments for the postprocessor.

® A subsection on TIGS software features whose
implementation is dependent on the post-
processor used, including a list of values returned
from TFxxx routines for the Sanders post-
processor.

® A subsection containing information about the
terminal and hardware options, and their use.

e A subsection describing the host to terminal
loading procedure.

e A subsection on notes and cautions.

OPERATING ENVIRONMENT

NOS/BE AND INTERCOM SYSTEM USER'S
HARDWARE ENVIRONMENT

Users with access tooa CDC CYBER 70, CDC CYBER 170,
or 6000 Series Computer running under NOS/BE and
INTERCOM ecan run TIGS with the Sanders Graphic 7
postprocessor and terminal. The minimum hardware
configuration needed to run TIGS is the same as that
needed to run NOS/BE and INTERCOM. The terminal
must be connected to the host computer by a telephone
line through a data set.

Communication is supported at baud rates of 300 and 1200
in an asynchronous mode.

NOS NAM/IAF AND NOS TIME-SHARING MODULE

SYSTEM USER'S HARDWARE ENVIRONMENT

Users with access to a CDC CYBER 70, CDC CYBER 170,
or 6000 Series Computer running under NOS NAM/IAF or
NOS with the Time-Sharing Module (refer to appendix E)
can run TIGS with the Sanders Graphic 7 postprocessor
and terminal. The minimum hardware configuration
needed to run TIGS is the same as that needed to run NOS.
The terminal must be connected to the host computer by a
telephone line through a data set.

Communication is supported at baud rates of 300 and 1200
in an asynchronous mode.

GRAPHIC 7 POSTPROCESSOR LIBRARY

The Graphie 7 postprocessor is selected by declaring the
proper library in the graphics job before program loading
takes place. This process is described in appendix E. After
the Graphic 7 postprocessor library has been selected and

60455940 C

program execution has been initiated, a display of
installation defined hardware options will appear. (Refer
to the installation procedure for further details.)
An example display is as follows:
INSTALLATION DEFAULT VALUES ARE
LIGHTPEN IS AVAILABLE
TRACKBALL/FORCESTICK IS AVAILABLE
HARD COPY UNIT IS NOT AVAILABLE
ERROR DISPLAY IS ENABLED
DO YOU ACCEPT THESE DEFAULTS (Y/N)
If the user replies with a Y carriage return, the
postprocessor will continue the initialization process. If
the user entry is an N carriage return, the postprocessor
will query the user with the following questions.

IS LIGHTPEN AVAILABLE (Y/N)

IS TRACKBALL/FORCESTICK AVAILABLE (Y/N)

IS HARD COPY UNIT AVAILABLE (Y/N)

SHOULD ERROR DISPLAY BE ENABLED (Y/N)

The four questions appear one by one, each appearing only
after the last has been properly answered. An improper
answer causes the question to be repeated. It is important
to realize that only invalid answers are rejected, not
incorrect ones.

TIGS SOFTWARE FEATURES

The following TIGS software features are dependent on
the postprocessor for specifics of implementation:

® Default initialization.

e Supported plotting symbol set.

e Supported continuous character set.
o Line style algorithm.

® Echoing segment picks.

® Implementing rotation of text.

® Determining the viewport for PROMPT routine
use.

® Returning coordinate values on an EVENT call.

® Erasing the screen.

® Determining default sereen layoutv.

e Keyboard input maximum
TIGS also contains a set of subroutines that test post-
processor features. This subsection contains a table of

values returned by these TFxxxx routines for the Sanders
postprocessor.

DEFAULT INITIALIZATION

If an applications program does not make a call to INITIG,
the first TIGS routine called in the program results in a
call to INITIG with the following default values.

CALL INITIG(.TRUE.,.TRUE.,6 LNEWNDF)
SUPPORTED PLOTTING SYMBOL SET

The Sanders postprocessor supports the plotting symbol
set as defined in the xxSYM routine documentation,
“section 2.

SUPPORTED CONTINUOUS CHARACTER SET

The Sanders postprocessor supports the continuous
character set defined in the xxCSIZ routine
documentation, section 2.

LINE STYLE ALGORITHM

The algorithm used in implementing the bit-pattern line
style of the SMSTYL and RASTYL (istyle>5) is as follows:
for each set bit of the binary representation of the istyle
value, the drawing beam is turned on for the distance of
0.0034188 in terminal-independent coordinate system
units. In general, a single set bit results in a dot; several
set bits in a row result in a dash that is directly
proportional in length to the number of bits set. For
example, the value

ISTYLE=7652B
is equivalent to the binary bit pattern

111110101010

In this case, the drawing beam would be turned on for five
sereen units in a row, then alternating off and on for the
next seven units before the pattern is repeated. This
results in a line style consisting of a dash followed by
three dots.

The hardware supported line style of dash-dotted should
not be used for arc generation. This style makes ares
appear solid. If a nonsolid arc is desired, use either a
software bit pattern or the hardware style of short
dashed.

ECHOING SEGMENT PICKS

Segment picks are echoed at the terminal by turning the
visibility of the picked segment off and then on again. In
the case where the picked segment is to be deleted, it will
be seen to disappear, reappear, and finally disappear.

ROTATION OF TEXT

Hardware rotation of text for angles of exactly +90° is
supported by the Sanders postprocessor. Other angles of
character rotation are implemented by TIGS software.
With software rotation, the charaeter itself is not rotated;
rather, the angle of the lower left corner of the character
in relation to the next character is positioned at the set
angle of rotation. If text rotation of +900 is desired but
rotation of individual characters is not, the user may
simply specify a rotation angle very close to, but not
equal to, +900 (for example, +90.001°), Figure G-1 is an
example of character rotation for the Graphie 7
post-processor. Peositive angles of rotation are
counterclockwise and negative angles of rotation are
clockwise from the positive x axis. Refer to TEXT in
section 2.

G-2

DETERMINING VIEWPORT FOR PROMPT
ROUTINE USE -

The Sanders postprocessor uses the smallest hardware
character size for system viewport messages. The system
viewport is in a fixed location on the screen above the
working area. It consists of one line of text, a maximum
of 100 characters in length. The user is not allowed to
move the system viewport or change its size; calls to
SMSVP are ignored by this postprocessor. Consecutive
PROMPT calls should be used with care since the display
of each system viewport message causes the preceding
line to be removed first. Prompting for user interaction is
handled automatically by the postprocessor and is dis-
played in a special area in the upper right corner of the
sereen.

RETURNING COORDINATE VALUES OF AN
EVENT CALL '

Processing of segment picks is performed in one of two
ways, depending upon the locator used. Lightpen picks are
processed by the terminal controller. This type of
processing is fast but does not have the capability of
returning to the user the exact coordinates of the picked
point. The values returned in the COORDS array will be-
zero in this case. '

Segment picks via the trackball/joystick are processed by
finding the exact location picked and searching the
Neutral Display File for a graphie primitive at this
location. Although less time-efficient, this method will
return the exact coordinates of the picked point in the
COORDS array. ' ' ‘

If ‘both locators are available, the user should decide
which one is appropriate to use in a specific situation with
regard to the preceding considerations.

SCREEN ERASURE

Because the Sanders terminal is a refresh device, com-
plete screen erasure is never necessary. Items on the
sereen may be seleetively deleted. Calls to CLRSCR have
no funection under this postprocessor and are ignored.

DEFAULT SCREEN LAYOUT

The sereen layout used by the Sanders postprocessor is
independent of the value of the logical input parameter
Isquar in the call to INITIG. The default viewport is
always square with lower left and upper right coordinates
of (0.,0.) and (1.,1.) respectively, as shown in figure G-2.
Points outside this area cannot be addressed by the TIGS
user. Other important fixed areas on the screen are:

o System viewport area.

e User interaction request area.

® Keyboard input seratehpad area.

e Alarm area.
The‘ system viewport area has already been discussed. The
user interaction request area is used to indicate that the

application program is waiting for user input of a specific
type: keyboard, function key, lightpen pick, lightpen

60455940 C

€, §
3 s
| o
‘G
Ep
5
3
.GED @8l
0!2
GEP
2 2
4 6
) 9
D D
E
s s

.
3 G
mD . pE
6 P
EG
3‘1’D
@ DEG.
“3p
Dg 6,
3 %
D DE
E
£ G .

Figure G-1. Example of Character Rotation

locate, trackball pick, or trackball locate. If either a
lightpen pick or a trackball pick is requested, the user has
the option of pressing a funection key instead.

USER INTERACTION
REQUEST AREA

iﬁffgm “\B\ggg —(1.,1.)
ALARM
AREA
(0.,0.)
Y

KEYBOARD INPUT
SCRATCHPAD AREA

Figure G-2. Sereen Layout

60455940 C

The keyboard input seratchpad area is used for echoing
keyboard input on the screen whenever it is being
requested. The alarm area is where the word ALARM will
appear flashing on and off in the largest hardware
character size when a call to the ALARM routine is made.

KEYBOARD INPUT

The Sanders postprocessor supports an input of 62
characters for each KEYBRD call.

TEST FEATURE ROUTINES

Table G-1 lists the TFxxx subroutines and the values
returned for them from the Sanders postprocessor.

TABLE G-1. TEST FEATURE ROUTINES

Test Feature
Routine Name

Feature Tested

Returned Value
from Routine

TFAC
TFCSIZ

TFDSIZ

TFERR
TFFONT

TFHARD

TFHILT

TFID

TFINT

TFLOCR

TFNSIZ

TFPICT

TFPORT

TFROT

- Support of EVENT routine.

Support of continuous character sizes

Discrete character size.

Support of user-supplied error routine.
Number of fonts supported.

Existence of remote copiers.

Support of highlighting.

Support of intrasegment identifiers.
Number of hardware intensity levels
supported.

Number of locators available and their
characteristics.

Number of diserete hardware char-
acter sizes.

Maximum number of pictures allowed.

Maximum number of viewports
allowed.

Support of 90° character rotation
and continuous character rotation.

LACTN=.TRUE.
LCCHAR=TRUE.

Characters/line: 931
Lines/frame: 62
WIDOUT = 10./931.
HIOUT = 15./931.

Characters/line: 62
Lines/frame: 41
WIDOUT = 15./931.

"HIOUT = 22.5/931.

Characters/line: 46
Lines/frame: 31
WIDOUT = 20./931.
HIOUT = 30./931.

Characters/line: 31
Lines/frame: 20
WIDOUT = 30./931.
HIOUT = 45./931.

LROUTN = .TRUE.

NFONTS = 1.

If fourth question (that is, availability
of hardeopy unit) during initialization
dialogue was answered NO, LREMOT =
.FALSE. If answered YES, LREMOT =
.TRUE.

LHILT = .TRUE.

NID = 32767. (not supported for
lightpen picks.)

NINTEN = 8.

If no loeators available, NLOCRS = 0.

If lightpen available, NLOCRS =1,
DESCRP(1) = 1001 (lightpen), LONE(1) =
.FALSE.

If trackball available, NLOCRS =1,
DESCRP(1) = 1002 (trackball), LONE(1) =
.TRUE.

If lightpen and trackball available,
NLOCRS = 2, DESCRP(1) = 1001 (lightpen),
DESCRP(2) = 1002 (trackball), LONE(1) =
.FALSE., LONE(2) = .TRUE.

NDSIZE = 4.

NPICT = 509.

NPORT = 508.-

LNINTY = .TRUE.
LCONT =.TRUE.t1

60455940 C

TABLE G-1. TEST FEATURE ROUTINES (Contd)

Returned Value
from Routine

LRTNGL = .TRUE.
XLL = YLL =0.
XUR =YUR =1.
RESLTN = 931.

LHARD(1) = .TRUE.
LHARD(2) = .TRUE.
LHARD(3) = .TRUE.
LHARD(4) = .TRUE.
LHARD(5) = .FALSE.
LHARD(6) = .FALSE.

LSYSVP = .TRUE.
NSYM = 13.
LTRAN = .FALSE.

LXLAT =.FALSE. (2-D translate capability)
LSCAL = .FALSE. (2-D scale capability)
LROT =.FALSE. (2-D rotation capability)

LXFM3 = .FALSE. (3-D translation, rotation
and scaling)

LPERSP = .FALSE. (3-D perspective
preservation during transformations)
LPYRAM = .FALSE. (clipping to 3-D pyramid

during transformations)

Test Feature

Routine Name Feature Tested

TFSCRN Size, shape, and resolution of the
sereen.

TFSTYL Hardware-supported line styles.

TFSVP Default system viewport separate
from working area.

TFSYM Maximum symbol number for which.
a symbol is defined.

TFVIS . Retransmission required to make seg-
ment invisible. ’

- TFXFA Existence of 2-D hardware trans-

formations.

TFXFA3 Existence of 3-D hardware trans-
formations.

t Default character size.

t tRefer to Rotation of Text in this appendix for implementation of text rotation for Sanders terminal.

SANDERS HARDWARE

TERMINAL DESCRIPTION

The Sanders Graphic 7 terminal is an intelligent
interactive graphies terminal = using a refreshed
strokewriting CRT as a display. The basic hardware
consists of a CRT display, a terminal controller unit, and
an alphanumeric keyboard with function keys. The
controller contains Sanders GSS4 software for handling
communication between terminal and host, as well as
refresh memory for storing graphies information displayed
on the screen. Optional hardware available with the
Sanders terminal consists of two different locators - a
lightpen, and a trackball or a forcestick - as well as a
hardecopy unit. At least one locator should be available if
the full interactive capability of TIGS is to be used.

Both the display and controller have on/off switches in the
front; on the controller, however, the on/off switch is
behind a removable front panel. On the front of this panel
are two other switches, the system mode and local mode
switches, which will be explained in the next section. The
display has a row of three knobs on the front for adjusting
contrast, focus, and intensity.

OPERATING PROCEDURE

The Sanders terminal has several modes of operation of
which the operator should be aware. Switching from one

60455940 C

mode to another can be done either manually at the
terminal by the operator, or under the control of an
application program in the host. To enter either local
mode or system mode manually, the terminal operator
needs simply to push the correspondingly labeled button on
the front panel of the controller unit. The operator should
normally have no need to enter. system mode manually.
When a TIGS application program begins to execute, TIGS
software will automatically cause the host to send the
necessary commands to the terminal to put it into system
mode and transfer control to GSS4 software. Once in this
mode, any graphics commands sent to the terminal by the
host will be properly interpreted and displayed.

Entering local mode manually causes a test pattern to be

displayed. This pattern can be used to insure that the
display and locators are working correctly. Once in local
mode, it is possible to manually enter teletypewriter
emulation mode, in which the terminal functions as an
ordinary alphanumeric terminal, or teletypewriter. To do
this the operator must enter a carriage return at the
keyboard. This causes the test pattern to go down and an
M to appear in the center of the screen. The operator
should next enter a Y followed by carriage return. The
characters G7 followed by an F will then appear at the top
of the sereen. This indicates that the terminal is in
teletypewriter emulation mode, full duplex. Full duplex
means that characters entered at the keyboard will not be -
echoed on the sereen. Normally, the operator will want to
run in half duplex. Pressing the function key labeled F1,
at the upper left of the keyboard, will change the F to an
H, indicating half duplex. Pressing the function key
labeled FO will reverse the effect of F1 and also cause a
screen clear.

~Once in teletypewriter emulation mode, the operator can
log in to the operating system, attach or manipulate his
files, and execute his graphics application (refer to
appendix E). ‘

TIGS will next prompt him to enter information about
hardware availability. Once the information has been
entered, the sereen will go blank, indicating that the
terminal is in system mode. Next, a border around the
usable area- of the screen will appear and then disappear.
Two zeros will also appear in the upper left corner of the
sereen. These two digits are an error display used by the
terminal-resident GSS4 software to indicate whether it
has detected any illegal conditions. The operator has the
option of whether or not to display these digits (refer to
the Sanders Graphic Support Software manual for more
details). Normally, the digits remain zeros throughout
program execution. However, if an error does ocecur,
there is usually no way to recover the error, and program
execution must be aborted.

When program execution has been successfully completed,
a G7 followed by an F appears at the top of the screen,
indicating that the terminal has been returned to tele-
typewriter emulation mode. The operator can then
proceed to execute more programs; or log off the system.

LOCATOR DEVICES

Determining the Mode-Set Locator

The current mode-set locator is determined by two
conditions:

© The locator number specified in the latest call to
SMLOCR.

® The locators which were said to be available at
initialization time.

If, for instance, locator number 1 has been specified and
only the trackball is available, the trackball becomes the
mode-set loeator. If, however, the lightpen is available
and loeator number 1 is specified, the lightpen becomes
the mode-set locator, regardless of the availability of the
trackball (refer to the section on Test Feature Routines).

.

Lightpen

When it is available, the lightpen is the default locator. It
operates in two different modes, one for locating and one
for picking.

When an application program calls the LOCATE routine,
the postprocessor enables the lightpen for locating and
requests lightpen interaction. It then waits for the
operator to position the tip of the pen at the desired
location on the sereen and depress the tip by pushing the

pen into the screen. The request for lightpen interaction
is then terminated and the coordinates of the selected
point are added to the location queue. Continued requests
for lightpen locations are made until the function key
labeled F15 is pressed to terminate locating.

When an application program calls the EVENT routine, the
lightpen is enabled for picking and lightpen interaction is
requested. The operator can then press a function key, or
pick a displayed object. To pick an object the operator
positions the pen tip. at a location on the screen
corresponding to a visible portion of the object, and
depresses the pen tip. A slight increase in the intensity of
a line segment or hardware character will be evident when
the lightpen is pointing directly at it. This is a hardware
feature which helps the. operator determine where the
lightpen is pointing. Graphic primitives which are drawn
at low intensities might not be pickable with the lightpen.
When a hit has been detected, the request for lightpen
interaction is terminated. If the object picked was non-
pickable (was a segment with an IGNORE action attri-
bute), EVENT continues waiting until a valid selection is
made.

NOTE

When the lightpen has last been used for
locating, it remains in this mode. If the
operator is then requested to make a lightpen
pick, he must first terminate the locate mode
condition. Pressing the lightpen tip against
the screen will ‘accomplish this.

Trackball/Forcestick

The trackball and forcestick are equivalent input devices
from the viewpoint of the terminal and the application
program. The Sanders postprocessor will support one or
the other, but not both, of these devices at one time.
Any comments made here concerning the trackball also
apply to the forecestick. Whenever the LOCATE or
EVENT routine is called and the trackball is the
mode-set loeator, a cursor will appear and a request will
be made for either a trackball locate or a trackball pick.
The cursor can then be positioned anywhere on' the
sereen by rotating the trackball (or pushing on the
forcestiek).

After a call to the LOCATE routine, the program waits
for the operator to position the center of the cursor at a
desired screen location, and to press the funetion key
labeled F0 to register the location. The cursor will then
disappear and reappear. The operator can then enter
another location, or terminate the set of input coordinates
by pressing the function key labeled F15. Pressing any
funetion key other than F0 or F15 will have no effect. -

60455940 C

(Fo) | (F1) } (F2) | (F3) | (Fa) | (F5) | (F6) | (F7) | (F8)] (F9) {(F10) (F1IDF12)|(F13)](F14)](F15)
16 | .17 18 19 20 21 | 22 23 24 25 26 27 28 29 30 31

(m7) | (m8) | (m9) [(M15)

7 8 9 15

(va) | (m5) | (m6) [im14)

4 5 6 14

1) | (m2) | (m3) fm13)

1 2 3 13

(M10)] (MO) [(M11)}(M12))

10 0 11 12

Figure G-3. Function Keys

After a call to the EVENT routine the program waits for
the operator to press a function key, or to pick a displayed
object. To pick an object, the operator places the center
of the cursor over any visible part of the object and
presses the function key labeled F0. If the object picked
is non-pickable (is a segment with an IGNORE action
attribute), the cursor reappears and EVENT continues
waiting until a valid selection is made. Each valid
selection is echoed on the screen by making the object
momentarily disappear. A segment or function key with
the TERMINATE action type terminates the input se-
quence. The function key labeled F0 is reserved for
registering segment picks and cannot, therefore, be used
as an ordinary funection key.

FUNCTION KEYS

There are 32 function keys on the keyboard, numbered 0
through 31. Funetion keys 0 through 15 are in a cluster
on the right side of the keyboard and are labeled MO
through M15. Function keys 16 through 31 are in a row
along the top of the keyboard and are labeled F0 through
F15 (refer to figure G-3). When the EVENT subroutine is
called and KYON or KYAC has been previously called,
the operator can press any of the keys, even though the
interaction requested may be lightpen pick or trackball
pick. Only if the mode-set locator is locator number 0, or
if no locators are available, will function key input be
specifically requested. Function keys 16 and 31 (F0 and
F15) have special uses with regard to trackball
interaction and lightpen locating.

NOTE

It is important that the operator always wait
for an interaction request to appear in the user
interaction request area (refer to Default
Screen Layout) before attempting any inter-
action. The previous interaction request must
disappear before a new one can appear.

HARDCOPY UNIT

A hardcopy of the image on the screen will be generated
whenever the following three conditions are met.

60455940 C

o The hardeopy unit is turned on and connected to
the terminal.

o It was indicated at initialization that the hard-
copy unit was available.

® A call to the TIGS routine REMSCR has been

made by the application program.

SANDERS GRAPHIC 7 HARDWARE AND
FIRMWARE REQUIREMENTS

Minimum Configuration

The following list contains the Sanders products and
options which are necessary for the utilization of TIGS
with the Sanders postprocessor.

Description Model Number

Terminal controller 5709

Refresh memory

(8K, 16K, or 24K) 5702,5703,5704

Multiport serial interface 5713
Alphanumeric keyboard 5782
CRT display

0530

Optional Hardware

The following list contains optional Sanders hardware
supported by the Sanders postprocessor for TIGS.

Deseription Model Number
Photopen (lightpen) 5781
Trackball 5786
Forcestick 5787

0570

Hardecopy unit

Host to Terminal Loading Procedure

The Sanders postprocessor presently utilizes features not
found in the standard terminal firmware. This
necessitates loading from the host into the terminal the
upgraded code. Each time the terminal is powered up the
below described procedure must be followed.

I After powering up the terminal, place it in the
TTY or teletypewriter emulator mode (see the
section entitled "Operating Procedure" for
further details).

II. Login to the operating system.
III. Attach the loading program and its data file..
A. On NOSBE

1. ATTACH(WTSAND,ID=TIGS)
ATTACH(TAPES5,ID=TIGS)

B. On NOS

- 1. -ATTACH(WTSAND,TAPES5)

Iv. - Execute the program.
A. On NOSBE
1. enter: WTSAND
B. On NOS

1. enter: BAT @ (Enter the BATCH
subsystem) ‘

2. enter: WTSAND @

V. As the program begins execution, the user will
observe a screen erasure. The code is now
being loaded. The loading time is dependent on
the baud rate used. At 1200 baud the user
should expeet a 2 1/2 minute load.

VI When loading is complete, the terminal will
return to the TTY emulator mode. This will
occur when the "G7 F" appears at the top
center of the screen. The terminal is now
ready to run a TIGS program or allow the user
to perform operating system commands.

Notes and Cavtions

A TIGS program is run with the terminal in system mode.
While in this mode the terminal will not display error
messages issued by the operating system. The operator's
only indication of program failure is that nothing new is
displayed on the terminal screen. The operator must
return the terminal to the teletypewriter (TTY)
emulation mode (see the section entitled "operating
procedure" for details) and then abort the program.

Prior to entering system mode, certain system messages
such as loader error messages can be forced to appear at
the terminal. This is acecomplished by avoiding the use of
"type ahead" in answering the TIGS initialization
questions.

While running in system mode, the terminal will not
display a FORTRAN PAUSE. If the program requires a
pausing mechanism it is recommended to use a
combination of calls to the PROMPT and KEYBRD

‘routines.

The Sanders postprocessor maintains a host resident
symbol table. This table is in addition to the preprocessor
symbol table. The postprocessor table is used to maintain
a representation of the terminal's memory layout. Each
segment found in the preprocessor table is also found in
the postprocessor table. However, a segment which is
displayed in: multiple windows will appear as one entry in
the preprocessor table but as multiple entries (one for
each window-segment combination) in the postprocessor
table. If a program generates a large number of segments
all shown through multiple windows, an overflow of the
postprocessor table may occur. This condition is reported
via TIGS error number 11001.

The user routine USRDAT (called by TIGS due to a
segment containing user information) is only called if that
segment is modified. Refer to the UDATA description in
section 8.

60455940 C

INDEX

A

Absolute transformation routines 5-1
Action types 7-1,3,4,6

ALARM 8-1

Alphanumeric mode F-8,10,11

Arc clipping 6-1

ARCA 2-1

ARCA3 2-2

ARCDA 2-1

ARCDA3 2-2

_ARCDR 2-1

ARCDR3 2-2

ARCR 2-1

ARCR3 2-2

Ares, major and minor 2-3

Attributes 1-2; 2-5; 3-1,5; 4-7; 5-1,7; 7-6
Axonometrie projection 4-5,6

B matrix 5-2
Baud rates F-1; G-1
BLINDS 3-2

Call prefix sequence 1-2

Center of attention 4-3

Character font 2-6

Character set A-1

Character size, discrete 2-6; F-5; G-4
Clearing terminal screen 8-1
Clipping planes 4-3,5

Clipping rectangle 6-1,2

CLRSCR 8-1

CLRSTK 5-4

CLRST3 5-4

CLSPIC 3-2

CLSSEG 3-2

COPY 3-2

Conversion of NDFs 8-3; E-3

Copy screen 8-3

Crosshairs cursor F-10,12
Cumulative transformations 5-1
Current transformation matrix (CTM) 5-1,4

Data handler E-3,5

Default picture 3-1,2,6,7; 4-1
‘Default segment 3-5
Default viewport 3-1,6; 4-1,7
Default window 3-1,6; 4-1,5
DELPIC 3-3

DELSEG 3-3

DELVUP 4-2

DELWIN 4-2

Depth queueing 4-3
Dimensionality of pieture 3-1,3,6,7; 4-1
Direction cosines 2-2
Display sereen 4-1; 8-2
DOTA 2-3

DOTA3 2-3

DOTR 2-3

DOTR3 2-3

DRAWA 2-3

DRAWA3 2-3

160455940 C

Drawing beam 2-4; 3-4; 8-4
DRAWR 2-3

DRAWR3 2-3

DSPLAY 8-1

EGM F-13

EMPTY 3-3

ENDPAR 6-1

ENDPLN 6-2

ENDPL3 6-2

Error messages C-1
Error processing 1-3; 9-1
Error routine 9-1

Error routine example 9-2
Error status 9-1
EVENT 7-2

EXTPIC 3-3

EXTSEG 3-4

Eye position 4-3

Features 1-2; 2-5; 3-5; 4-7; 5-7; 7-6; 8-6; 9-1;
F-5 through 7; G-4,5

Files, TIGS program E-1,3

Forecestick G-6

Format, TIGS general program 1-4

Frustum of vision 4-5

Function Keys 7-2,4; F-9,11,12; G-7

Geometry utilities 1-3; 6-1
Geometry utility example 6-2,3
Glossary B-1

Graphics display area 4-8
Graphies model 4-1; 5-3

Highlighting 2-7; F-6; G-4

Identity matrix 5-1

IERROR 9-1

Initializing TIGS 1-4; 8~2; F-2; G-2
INITIG 8-2

Intensity of display 2-7; F-6; G-4
Interaction 1-3; 7-1

Interaction example 7-8 through 11
Intrasegment identifiers 7-2,7

KYAC 17-3
KEYBRD 7-3
KYOFF 7-4
KYON 7-4

LCKSEG 3-4
Library selection E-2,4; F-2; G-1

Index-1

Lightpen G-6 RAXFL3 5-8
Line style 2-8; F-2,7; G-2,5 RAXFR 5-8
Line style algorithm F-2; G-2 RAXFR3 5-8

Loading Procedures-E-1

Relative transformation routines 5-1

LOCATE 7-4 REMSCR 8-3
Loecation queue 7-5 RENAME 3-5
Locator device 7-2,5 through 7; F-6,9,10,12; G-6 Rotating 5-1,5; D-1
RTANGL 6-2
Manual overview 1-1 RTANG3 6-2
Matrix concatenation 5-1,2; D-1
Matrix inverse 5-5 Sanders postprocessor G-1
Matrix multipleation 5-1; D-1 Sealing 5-1,6; D-1
Modes 1-2; 2-5; 3-1,5; 4-7; 5-1; 7-7; 9-1 Sereen coordinates 4-3,8; 8-2,3; F-4; G-2
MOVEA 2-4 Sereen resolution 8-5
MOVERA 2-4) SCRNUR 8-3
MOVER 2-4 Segment definition 3-1,2,5
MOVER3 2-4 Segment pick 7-1,3; F-3; G-2
Segment usage example 3-7 through 9
Neutral display file 1-1; 8-2,3 Segment, visibility of 2-9
Neutral display file conversion 8-3; E-3 Segmentation loading E-1,2
NOS 1-1; E-4,5; F-1; G-1 Segments 1-1; 3-1; 5-1
NOS/BE 1-1; E-2,3; F-1; G-1 SMAC 7-6
. SMCSIZ 2-5
Operating system dependencies E-1 SMDSIZ 2-6
OPNPIC 3-4 SMERR 9-1
OPNSEG 3-5 SMFONT 2-7
Overlay loading E-1 SMHILT 2-7
SMID 7-7
Perspective projection 4-5,6 SMINFO 7-7
Physical input devices 7-1 SMINT 2-8
Picture, dimensionality of 3-1,3,6,7; 4-1 SMLOCR 7-7
Picture definition 3-1,2,5 SMPICT 3-5
Picture limits 3-3,6; 4-1 SMPLIM 3-6
Picture usage example 3-7 through 9 SMPLI3 3-6
Picture, visibility of 3-2 SMPORT 4-7
Pictures 1-1; 3-1; 4-1 SMROT 2-8
PLOTA 2-4,9 SMROT3 2-9-
PLOTA3 2-4,9 SMSTYL 2-9° !
PLOTR 2-4,9 SMSVP 4-8
PLOTR3 2-4,9 SMSYM 2-10
Plotting symbols 2-8; F-2; G-2 SMVIS 2-10
POP 5-4 SMXFA 5-8
POP3 5-4 SMXFA3 5-8
PREEVN 7-5 SMXFL 5-8
PRELOC T7-5 SMXFL3 5-8
Primitives 1-1; 2-1; 3-1 SMXFR 5-8
Primitives usage example 2-9 through 11 SMXFR3 5-8
Program execution E-4 Strap options F-8,9,11
Program loading E-2,4 Structural overview of TIGS 1-1
PROGRAM statement E-1,3 Subroutine and parameter conventions 1-3,4
Projection plane 4-3,6 System viewport 4-8; 8-2; F-3,4,7; G-3
PROMPT 7-6; F-3,4; G-2
PUSH 5-4 TAAC 7-6
PUSH3 5-4 Tablet F-10,12,13
TACSIZ 2-5
QUITIG 8-3 TADSIZ 2-6
TAFONT 2-7
RAAC 7-6 TAHILT 2-7
RACSIZ 2-5 TAINFO 7-7
RADSIZ 2-6 TAINT 2-8
RAFONT 2-7 TAPICT 3-5
RAHILT 2-7 TAPLIM 3-6
RAINFO 7-7 TAPLI3 3-6
RAINT 2-8 TAROT 2-8
RAPICT 3-5 TAROT3 2-9
RAROT 2-8 TASTYL 2-9
RARCT3 2-9 TASYM 2-10
RASTYL 2-9 TAVIS 2-10
RASYM 2-10 TAXFA 5-8
RAVIS 2-10 TAXFA3 5-8
RAXFA 5-8 TAXFL 5-8
RAXFA3 5-8 TAXFL3 5-8
RAXFL 5-8 TAXFR 5-8
TAXFR3 5-8
TA3D 3-7
e Index-2

60455940 C

Tektronix Synchronous interface F-13,14

Tektronix hard copy unit F-13
Tektronix postprocessor F-1
Tektronix terminals F-1
4006 F-8
4010 F-9
4014 F-11
4014 with EGM F-13
Terminal events 7-1
Terminal functions 1-3; 8-1
TEXT 2-5
TEXT3 2-5
Text rotation 2-5,7; F-3; G-2
TFAC 7-6; F-5; G-4
TFCSIZ 2-5; F-5; G-4
TFDSIZ 2-6; F-5; G-4
TFERR 9-1; F-6; G-4
TFFONT 2-7; G-4; F-6
-TFHARD 8-5; F-6; G-4
TFHILT 2-7; F-6; G-4
TFID 7-7; F-6; G-4
TFINT 2-8; F-6; G-4
TFLOCR 7-7; F-6; G-4
TFNSIZ 2-11; F-6; G4
TFPICT 3-5; F-6; G4
TFPORT 4-7; F-6; G-4
TFROT 2-8; F-6; G-4
TFSCRN 8-5; F-7; G-5
TFSTYL 2-9; F-7; G-5
TFSVP 4-8; F-7; G-5
TFSYM 2-10; F-7; G-5
TFVIS 2-10; F-7; G-5
TFXFA 5-7; F-7; G-5
TFXFA3 5-7; F-7; G-5
TFXFL 5-7; F-7
TF XFL3 5-7; F-7
TFXFR 5-7; F-7
TFXFR3 5-7; F-7
Thumbwheels F-10,12

TIGS operating environment 1-1

TMAX 7-6
TMCSIZ 2-5
TMDSIZ 2-6
TMERR 9-1
TMFONT 2-7
TMHILT 2-7
TMID 7-7
TMINFO 7-7
TMINT 2-8
TMLOCR 7-7
TMPICT 3-5
TMPLIM 3-6
TMPLI3 3-6
TMPORT 4-7
TMROT 2-8
TMROT3 2-9
TMSTYL 2-9
TMSVP 4-8
TMSYM 2-10
TMVIS 2-10
TMXFA 5-8
TMXFA3 5-8
TMXFL 5-8

60455240 C

TMXFL3 5-8

TMXFR 5-8

TMXFR3 5-8

TM3D 3-7

Trackball G-7

Transformation matrices 5-1
Transformation matrix stack 5-2,4
Transformation modeling 5-3
Transformation routines 1-3; 5-1
Transformation usage examples 5-9 through 15
Translating 5-1,7; D-1

UDATA 8-4
UNISCR 8-4
User coordinates 3-6; 4-4; 8-3

Vector, transformation D-2
Viewport usage example 4-8 through 10
Viewports 1-2; 4-1,2; 8-4

- Virtual input devices 7-1

VUPORT 4-3
VUPOR3 4-3

WHERE 2-1; 8-5
WHERE3 2-1; 8-5
WINCLP 4-3,5

WINDR 4-3,5

WINDOW 4-3

Window up direction 4-3,6
Window usage example 4-8 through 10
Windows 1-2; 4-1,2; 8-4
WINPER 4-3,6

WINPLN 4-3,6

WINSIZ 4-3,6

WINUP 4-3,6

XIDNT 5-4
XIDNT3 5-5
XINVR 5-5

XINVR3 5-5
XROTA 5-5
XROTA3 5-5
XROTL 5-5

XROTL3 5-5
XROTR 5-5
XROTR3 5-5
XSCLA 5-6

XSCLA3 5-6
XSCLL 5-6

XSCLL3 5-6
XSCLR 5-6

XSCLR3 5-6
XTRNA 5-7
XTRNA3 5-7
XTRNL 5-7

XTRNL3 5-7
XTRNR 5-7
XTRNR3 5-7

Zooming 4-2

3-D rotation conventions 5-6

Index-3

~ 0.

AR,

COMMENT SHEET

CDC Terminal-Independent Graphics System (TIGS)
Version 1.1 Reference Manual

PUBLICATION NO.: 60455940 REVISION: C

MANUAL TITLE:

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE: ___ ZIP CODE:

~ This form is net intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please

include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
‘ FOLD ON DOTTED LINES AND STAPLE

FOLD

FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

]

BUSINESS REPLY MAIL —

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. P
[]

POSTAGE WILL BE PAID BY ‘ e —
CONTROL DATA CORPORATION S
Publications and Graphics Division I —
4201 North Lexington Ave. [N
St. Paul, Minnesota 55112 [RN
R

]

.

*OLD o “foo

TIGS SUBROUTINE SUMMARY

Subroutine

TAINT(idseg,finten)
TAPICT(idseg,idpict)
TAPLIM(idseg,x11,yl1,xur,yur)
TAPLI3(idseg,x11h,yllh,zllh,xury,yury,zury)
TAROT(idseg,deg)
TAROT3(idseg,xbase,ybase,zbase,xplane,yplane,
zplane)
TASTYL(idseg,istyle)
TASYM(idseg,isym)
TAVIS(idseg,lvis)
TAXFA(idseg,bmat23)
TAXFA3(idseg,bmat34)
TAXFL(idseg,bmat23)
TAXFL3(idseg,bmat34)
TAXFR(idseg,bmat23)
TAXFR3(idseg,bmat34)
TA3D(13D)
TEXT(nchar,itext)
TEXT3(nchar,itext)
TFAC(lactn)
TF CSIZ(lechar)
TF DSIZ(wide,high,widout,hiout)
TFERR(routn)
TFFONT(nfont)
TFHARD(Iremot)
TFHILT(hilt)
TFID(nid)
TFINT(ninten)
TFLOCR(maxloe,nlocrs,deserp,lone)
TFNSIZ(nsize)
TFPICT(npict)
TFPORT(nport)
TFROT(Ininty,lcont)
TFSCRN(Irtang,xl1,yll,xur,yur,resltn)
TFSTYL(lhard)
TFSVP(Isysvp)
TFSYM(nsym)
TFVIS(itran)
TFXFA(Ixlat,lscal,lrot)
TFXFA3(1xfm3,lpersp,lpyram)
TFXFL(1xlat,lseal,lrot)
TFXFL3(1xfm3,lpersp,lpyram)
TFXFR(Ixlat,lscal,lrot)
TFXFR3(1xfm3,lpersp,lpyram)
TMAC(iactn)
TMCSIZ(widout,hiout)
TMDSIZ(widout,hiout)
TMERR(routin)
TMFONT(ifont)
TMHILT(hilit)
TMID(idintr)
TMINFO(ninfo,info)
TMINT(finten)
TMLOCR(iloer)
TMPICT(idpict)

Page

2-8
3-5
3-6
3-6
2-8

2-9
2-9
2-10
2-10
5-8
5-8
5-8
5-8
5-8

i L]
N o U

NmL\’)(IDNN‘\'IN

DSOS
~ U1 =] 00 ~] ~3
—_

}
NN~ == 0O U O

[]
[=N =}

[}
-~ ~3

-3

4

Subroutine

TMPLIM(x11,y11,xur,yur)
TMPLI3(x11h,ylih,z1lh,xury,yury,zury)
TMPORT(idport)

TMROT(deg)
TMROT3(xbase,ybase,zbase,xplane,yplane,zplane)
TMSTYL(istyle)
TMSVP(Iseren,xl1,yll,xur,yur)
TMSYM(isym)

TMVIS(lvis)

TMXFA(bmat23)

TMXFA3(bmat34)

TMXFL(bmat23)

TMXFL3(bmat34)

TMXFR(bmat23)

TMXFR3(bmat34)

TM3D(13d)

UDATA(nwords,idat)
UNISCR

VUPORT(idport,x1l,yl1,xur,yur)
VUPOR3(idport,xllh,yllh,zllh,xury,yury,zury)

WHERE(x,y)

WHERE3(x,y,z)
WINCLP(idwind,lelpnr,lelpfr,disner,disfar)
WINDIR(idwind,xeye,yeye,zeye,xat,yat,zat)
WINDOW(idwind,xl1,y11,xur,yur)
WINPER(idwind,lpersp)
WINPLN(idwind,distat)
WINSIZ(idwind,width,height)

WIN UP(idwind,dxup,dyup,dzup)

XIDNT(bmat23)
XIDNT3(bmat34)
XINVR(bmat23,binv23)
XINVR3(bmat34,binv34)
XROTA(deg,bmat23)
XROTA3(idaxis,deg,bmat34)
XROTL(ddeg,bmat23)
XROTL3(idaxis,ddeg,bmat34)
XROTR(ddeg,bmat23)
XROTR3(idaxis,ddeg,bmat34)
XSCLA(sx,sy,bmat23)
XSCLA3(sx,sy,8z,bmat34)
XSCLL(sdx,sdy,bmat23)
XSCLL3(sdx,sdy,sdz,bmat34)
XSCLR(sdx,sdy,bmat23)
XSCLR3(sdx,sdy,sdz,bmat34)
XTRNA(x,y,bmat23})
XTRNA3(x,y,z,bmat34)
XTRNL(dx,dy,bmat23)
XTRNL3(dx,dy,dz,bmat34)
XTRNR(dx,dy,bmat23)
XTRNR3(dx,dy,dz,bmat34)

a~)
a3
[

[)

S SRR
GO CO OO 00 QO jt bt

5-8

s
-3

T
LIS

o
W w

T
& o

4-3
4-3
4-3
4-3
4-3
4-3
4-3

5-4
5-5
5-5
5-5
5-5
5-5
5-5

5-5
5-5
5-6
5-6
5-6
5-6
5-6
5-6

5-7
5-7
5-7
5-7
5-7

oo

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A,
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

CONTROL DATA CORPORATION

JORGE DO

