G CONTROL DATA
CORPORATION

60372600

SCOPE 2.1
USER’S GUIDE

CDC® COMPUTER SYSTEMS:

CYBER 70 MODEL 76
7600

REVISION RECORD

REVISION DESCRIPTION
A Original printing,
(11-30-72)
B Correct technical and typographic errors, reflect changes to system through PSR Summary 65,
(9-73) and add appendix G.
C Add SCOPE 2.1 features through PSR Summary 175. This edition obsoletes all previous editions.
(6-74)
D Add SCOPE 2.1 features through PSR Summary 201 (SCOPE 2.1.3). This edition obsoletes all
(12«75) previous editions.
E Add description of CDC CYBER control language (CCL) and make miscellaneous corrections
(3-78) through PSR Summary 258 (SCOPE 2, 1. 5).

60372600

Publication No.

REVISION LETTERS |, 0, @ AND X ARE NOT USED

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue

© 1972, 1973, 1974, 1975, 1978 St. Paul, Minnesota 55112
by Control Data Corporation

or use Comment Sheet in the back of

Printed in the United States of America this manual,

ii

LIST OF EFFECTIVE PAGES

New features, as well as changes, deleticns, and additions to infermation in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

L PAGE REV PAGE REV ' PAGE REV PAGE REV PAGE REV
Front Cover| - 3-5 E 5-22 C 8-10 E 12-1 C
Title Page - 3-6 D 5-23 C 8-11 D 12-2 C
ii E 3-7 D 5-24 D 8-12 D 12-3 E
iii E 3-8 E 5-25 D 8-13 D 12-4 D
iv E 3-9 D 5-26 D 8-14 E 12-5 E
v E 3-10 D 5-27 D 8-15 D 12-6 E
vi E 3-11 C 5-28 C 8-16 D 12-7 E
vii/ viii E 3-12 c 5-29 E 8-17 D 12-8 C
ix E 3-13 D 5-30 D 8-18 E 12-9 E
X E 3-14 E 6-1 C 8-19 E 12-10 D
xi E 3-15 E 6-2 C 8-20 E 12-11 D
xii E 3-16 D 6-3 E 8-21 E 12-12 E
xiii E 3-17 E 6-4 E 8-22 E 12-13 E
xiv E 3-18 E 6-5 E 9-1 E 12-14 E
XV E 3-19 E 6-6 E 9-2 E 12-15 E
xvi E 3-20 E 6-7 E 9-3 E 12-16 E
xvii E 3-21 E 6-8 E 9-4 C 12-17 E
1-1 E 3-22 E 6-9 E 9-5 D 12-18 E
1-2 E 3-23 D 6-10 E 9-6 D 12-19 E
1-3 E 3-24 D 6-11 E 9-7 D 12-20 E
1-4 E 4-1 E 6-12 E 9-8 D 13-1 E
1-5 E 4-2 E 6-13 E 9-9 D 13-2 E
1-8 D 4-3 E 6-14 E 9-10 E 13-3 E
1-7 E 4-4 E 6-15 C 9-11 D 13-4 E
1-8 E 4-5 D 6-16 D 9-12 C 13-5 E
1-9 E 4-6 D 6-17 D 9-13 C 13-6 i)
1-10 D 4-7 D 6-18 c 9-14 D 13-7 E
1-11 E 4-8 D 6-19 c 9-15 E 13-8 B
1-12 E 4-9 D 6-20 E 9-16 E 13-9 E
1-13 E 4-10 D 6-21 D 9-17 D 13-10 E
1-14 E 4-11 E 6-22 E 9-18 D 13-11 E
1-15 D 4-12 E 7-1 D 9-19 D 13-12 E
1-16 E 4-13 D 7-2 D 9-20 D 13-13 E
1-17 E 4-14 D 7-3 E 9-21 D 13-14 E
1-18 D 4-15 E 7-4 E 9-22 E 13-15 E
1-19 D 4-186 D 7-5 E 10-1 E 13-16 E
1-20 D 4-11 E 7-6 D 10-2 E 13-17 E
1-21 D 4-18 D 7-7 E 10-3 E 13-18 E
1-22 D 5-1 C 7-8 D 10-4 E 13-19 E
1-23 D 5-2 E 7-9 D 10-5 E 13-20 E
2-1 c 5-3 D 7-10 D 10-6 E 13-21 E
2-2 E 5-4 D 7-11 D 10-7 E 13-22 E
2-3 E 5-5 E 7-12 E 10-8 E 13-23 E
2-4 E 5-6 D 7-13 D 10-9 E 13-24 E
2-5 E 5-7 C 7-14 E 10-10 C 13-25 E
2-6 E 5-8 E 7-15 D 10-11 E 13-26 E
2-7 D 5-9 D 7-16 D 10-12 c 13-27 E
2-8 C 5-10 E 7-17 E 10-13 E 13-28 E
2-9 D 5-11 C 7-18 B 10-14 E 13-29 E
2-10 D 5-12 E 7-19 C 10-15 D 13-30 E
2-11 D 5-13 D 8-1 E 10-16 E 13-31 E
2-12 D 5-14 L 8-2 E 11-1 C 13-32 E
2-13 D 5-15 D 8-3 E 11-2 E 13-33 E
2-14 D 5-16 E 8-4 E 11-3 D A-1 D
3-1 E 5-17 E 8-5 E 11-4 D B-1 E
3-2 E 5-18 E 8-6 D 11-5 D B-2 E
3-3 D 5-19 E 8-7 E 11-6 D B-3 E
3-4 E 5-20 D 8-8 D 11-7 E Cc-1 C

5-21 D 8-9 E 11-8 C Cc-2 C

60372600 E iii

>
W
o
w
(&)
<
[«
>
w
[
w
(&)
<
o
>
w
[+ 4
w
(L)
<
o
>
UnoAAAAAHMNHARNMEANEREAREREAEAREREAR ©
~
w - 4
m 123456789wu maw
a NWOM~OOHO 01.-V_A.__v.nv-4v.a.v.amek
388522 nanyreroeln i tii s Li eaY
pootrooonomnoooooonmn SS555585858558580 A
>
WIOVAVVHAVHHHRHAKRAHAEMAEMMMQARMARMAMEEMENEEMAROVNUAAMEARAAAAARAAAAARAVUKRAAAANRADD
w
2
o O =N O mNMIPIN WO QNN AENOONRO-TANNHINWOE=ONO ~—NMm
R D SRR A A B AR O N A R B S B A B R R B B R R B A 1
VULLLARNAANAARAAAANANMEERAAMNEEAEEERARAEEEOOOOOOOOTVO0CTOLVTTOOLOBLBLVBOTOY

60372600 E

iv

PREFACE

One of the most frequent criticisms of technical manuals is that the manner in which the
material is presented is inconsistent with the needs of those who must use it. For some
it is too technical; for others it is too basic. To avoid such misunderstandings, we
should be sure that we agree on the intent of this guide.

WHOQO IS THE USER?

The user is an applications programmer /analyst who:
L Has experience in the use of FORTRAN or COBOL
° Has had little or no experience in the use of SCOPE 2

L] May have, but is not required to have, experience in the use of NOS/BE or l
SCOPE 3.4

WHAT IS A GUIDE?

e A guide is a document that goes beyond the presentations of bare facts in a
reference manual

e Its main purpose is to explain; that is, to examine system features, the reasons
for their existenee, and the conditions under which they are used

e A guide makes extensive use of examples and illustrations

WHAT DOES THIS GUIDE DO FOR YOU?

. It describes the operating environment at a SCOPE 2 installation

e It contains guidelines that will help you to set up and run your programs

e It defines system features that can make your programs more efficient
Because this guide is intended for applications programmers, the features of SCOPE 2 that
have meaning only to system analysts have been intentionally omitted. Those who want more

detailed descriptions of the SCOPE 2 Operating System and its related products may refer
to the publications listed under Related Publications.

HOW TO USE THIS GUIDE

As a programmer/analyst, you should expect to obtain from this guide the information
you need for defining your jobs and running them under SCOPE 2. To accomplish this
goal, you should be aware not only of the subjects discussed, but also the format in
which the material is presented.

For those who have no experience with SCOPE 2, the introductory material in section 1
provides a brief overview of the hardware and software components of the system and

a brief description of how a job progresses through the system. Section 2 contains gen-
eral information that applies to the structure of all jobs. Section 3 begins with material
that describes how compilers are loaded and executed and how the user causes the

60372600 E v

programs generated by compilers to be loaded and executed. Following this, the user is

led into an analysis of the loader and information telling how to control the loading process.
Section 4 describes many of the options available to the user for controlling his job. If these
options are not exercised, the system controls the job according to a set of default param-
eters. Sections 5 through 9 discuss the organization and transmission of data and the use of
permanent and temporary files. Section 10 describes system utility operations such as
copying, comparing, and positioning files. Section 11 contains a brief description of file
label usage. Features of the system that aid in analyzing the program and debugging it are
described in section 12. Section 13 describes the CONTROL DATA® CYBER control
language (CCL). :

Before you continue, please note the presence of the comment and evaluation sheet at the
end of this guide. We invite you to make specific comments and suggestions as you read
the guide and to summarize your opinions when you have completed it. Your assessment
of this material will help us to improve our guides and provide more of the information
you need.

NOTE

All references in this manual to the SCOPE
3.4 Operating System also apply to the NOS/
BE 1 Operating System.

REIATED PUBLICATIONS

For readers who want a more detailed description of the SCOPE 2 system, information
about topics not discussed in this guide or information about the members of the product
set, a list of related publications follows.

Control Data Publication Publication Number
CYBER 70/Model 76 Computer System Reference Manual 60367200
SCOPE 2 Reference Manual 60342600
SCOPE 2 Instant Manual 60344300
SCOPE 2 Record Manager Reference Manual 60454690
SCOPE 2 Loader Reference Manual 60454780
SCOPE 2 Diagnostic Handbook 60344100
SCOPE 2 Installation Handbook 60426100
COMPASS Reference Manual 60360900
COMPASS Instant Manual 60361000
COMPASS Instruction Card 60361700
NOS/BE Enhanced Station Operator's/Reference Manual 60494200

vi 60372600 E

Control Data Publication

UPDATE Reference Manual
UPDATE Instant Manual

FORTRAN RUN Reference Manual
FORTRAN Extended Reference Manual
FORTRAN Extended Instant Manual
ALGOL Reference Manual

SYMPI. Reference Manual

APEX II Reference Manual

APEX ITI Reference Manual

APT Reference Manual

SIMSCRIPT Reference Manual
COBOL Reference Manual

SORT /MERGE Reference Manual
SORT /MERGE Instant Manual

Programming Reference Aids

This product is intended for use only as

dacnrilhed in thi
described in this document.

parameters,

60372600 E

Publication Number

Control Data
cannot be responsible for the proper func-
tioning of undescribed features or undefined

60449900
60450000
60305600
60497800
60497900
80496600
60496400
59158100
76070000
17313600
97400200
60496800
60497500
60497600
60158600

vii/viii ®

CONTENTS

SECTION 1 GENERAL DESCRIPTION 1-1
Introduction to SCOPE 2 1-1
Operating Environment 1-2
Hardware Configuration 1-2
Multiple Mainframes 1-5
Software Configuration 1-5
CDC CYBER Station Operating System 1-11
Job Flow 1-13
Job Initiation 1-14
Job Processing 1-16
Job Termination 1-1%
The Job Dayfile 1-17
Introduction to Logical Files 1-19
Naming Files ' 1-20
FORTRAN Object-Time File Names 1-20
COBOL Object-Time File Names 1-23
SECTION 2 USING SCOPE CONTROL STATEMENTS 2-1

The Job Name
Optional Job Identification Statement Parameters
CDC CYBER Station Processor Code
Execution Time Limit
Job Priority
Control Statements
Directives
Separator Cards
End-Of-Section Card
End-Of-Partition Card
End-Of-Information Card
Examples
Control Statement Section
Compile Source Language Program
Compile and Execute
Two Compilations With Combined Execution of the

DNNNNNNNNDNNDNDNDDNDNDN
]
bbb el et (O OO0 0 DT AW

N OO

Object Programs 2-13
Complex Data Structure 2-14
SECTION 3 JOB PROCESSING 3-1

Compiling or Assembling Programs 3-1
Loading and ExXecuting Programs 3-4
Combined TL.oad and Execute Request 3-4
Loading of Object Modules 3-1

80372600 E ix

SECTION 4

SECTION 5

Program Image Modules and How They are Loaded
Loading and Execution as Separate Operations
Using NOGO to Generate Program Image lModules

Looad Sequences

Selectively Load Modules From Files

Setting Load Sequence Characteristics
Using Libraries

Definition of Library

Library Sets

Loading Directly From Libraries

Loading Partitions From Libraries

PROGRAM AND JOB OPTIONS

Using Memory
User SCM
User LCM
Job Supervisor IL.CM
1/0 Buffers in LCM
Maximum Available LCM
Automatic Memory Management
User-Controlled Memory Mode
Returning to Automatic Mode
Presetting Memory
Inserting Comments in the Program Listing
Pause for Operator Action
Setting Program Switches
Processing Interdependent Jobs
Job Dependency Parameter
TRANSF Control Statement
Job Rerun Limit
Rewinding of Load Files

FILE STRUCTURES

File Information Table
Introduction to FILE Statement
Multiple FILE Statements
Specifying Record Type
Specifying the Maximum Record Length
Unblocked File Format
Rules for Accessing Unblocked Files
How to Specify Unblocked
Blocked File Format
The Block
Accessing Blocked Files
How to Specify Blocking
Partitions
Sections
Access Methods
File Processing Direction
Program Exit Conditions
End-of-Data Exit
Error Exit

3-10
3-11
3-14
3-14
3-16
3-17
3-18
3-18
3-19
3-22
3-23

>
i
—

|
bbbt b et e 00 U1 GO DN R e e e

]
ST WN O

N R Y N ol ol T N A o S
1

5-12
5=-12
5=-13
5-14
5-14
5=-14
5-18
5=-16
5-19
5=21
5=26
5=27
5=27
5-28
5-28

60372600 E

SECTION 6

SECTION 7

SECTION 8

60372600 E

MAGNETIC TAPE FILES

Staging Tapes
Job Statement Parameters for Tape Staging
Prestaging
Poststaging
Specifying Type of Tape Unit and Density
Identifying the Station for Staging
Character Conversion and Parity
Staging All or Part of Files
Using On-Line Tapes
Scheduling On-Line Tape Units
Requesting On-Line Tape Units
Character Conversion and Parity
Positioning On-Line Magnetic Tape Files
Using Volume Serial Numbers With On-Line Tapes
Multifile On-Line Tapes
Mount Option
Suppressing Read-Ahead/Write-Behind
Using On-Line Tape Units for Staging
Unloading/Returning On-Line Tape Units
Magnetic Tape Recovery Procedures
Standard Recovery Procedures

MASS STORAGE FILES

Introduction to REQUEST Statement
Mass Storage Sets
System Set
Removable Seis
How Mass Storage Files Originate
Using the System Set
Assignment by Device Type
Assignment by SETNAME
Assignment by VSN
Using Removable Sets
Device Scheduling - 844-2 Disk Storage Subsystem
Creation of Removable Sets
Mounting Set Members
Requesting Use of Removable Sets
Dismounting Set Members
Deleting Set Members
Minimum Allocation Units (MAU)
Transfer Unit Size
Write Check Option
Returning Mass Storage Files
Job Mass Storage Limit

PERMANENT FILES

Using SCOPE 2 Permanent Files
Cycles
Cycle Numbers
Logical and Permanent File Names
Creator Identification (ID)
Creating the Initial Cycle of a File
Accessing the Initial Cycle of a File

[=2]
L]
—

1
=k O =T O U W W

]
[ErgaT gy
~J O U1 O

1 [| 1 t

[er e WerNorNer WerNer NorNerNorier e o]
]

6-18
6-18
6-19
6-19
6-20
6-21
6-21
6-21

-3
]
(oY

t
HEOOMNU UG W W W

]
b ek ek
DN - O

G TR P TG T, TR R IR, PN R TR T TP PR, BRSPS IR N
1

7-16
7-17
7-19

8-1
8-1
8-1
8-2
8-2

8-2
8-4

xi

SECTION 9

SECTION 10

SECTION 11

xii

Catalog with Passwords

Cataloging Subsequent Cycles
Cataloging a File on a Removable Set
Attaching a File on a Removable Set
Altering the Size of Permanent Files
Purging Permanent Files

Installation Defined Privacy Procedures

Using Permanent Files at Other Mainframes

Using the Station Parameter

UNIT RECORD DEVICES AT STATIONS

Card Reader Input
Coded Punched Card Input
SCOPE Binary Card Input
Free-Form Binary Card Input
End-of-Section Level Numbers
Printer (List) Output
Identifying Printer Output
Printer Carriage Control
Disposing Print Files to Stations
Punched Card Output
Identifying Punched Output
Separator Cards
Mispunched Cards
Coded Punched Cards
SCOPE Binary Punched Cards
Free-Form Binary Punched Cards
Routing Punched Files to Stations

COPYING AND POSITIONING FILES

Introduction to Copy Routines
How to Copy Files
Selecting the Copy
File Descriptions for Copies
Specifying Buffer Size
Positioning Sequential Files
Positioning Files Forward
Positioning Files Backward
Writing File Delimiters
Comparing Files
Comparing Sections
Comparing Partitions
Comparing S Records
Error Record Count
List Control Parameters
Abort Parameter

FILE LABELS

Introduction

Labels on Magnetic Tape
Users

Standard Labels

Requesting Standard Labeled Tapes
Providing Standard Label Information
Protection of Unexpired Labeled Tapes
Copying Labeled Tapes

Label Density

Label Parity and Character Conversion

10-1

10-1
10-1
10-1
10-5
10-6
10-7
10-7
10-10
10-12
10-12
10-13
10-13
10-15
10-15
10-15
10-16

11-1

11-1
11-1
11-1
11-1
11-1
11-2
11-6
11-6
11-8
11-8

60372600 E

SECTION 13

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

APPENDIX F
APPENDIX G
APPENDIX H

60372600 E

ANALYTICAL AIDS

Controlling Your Job With EXIT Statements
Setting Error Conditions
Setting Loader Error Options
Obtaining Program Dumps
Requesting a Standard Dump
Requesting SCM Dumps
Requesting LLCM Dumps
Obtaining Load Maps

A iy

MAP Statement
LDSET Option
Obtaining File Dumps
Requesting a Dump of Entire File
Specifying a List File
Specifying Dump Limits
Obtaining Dayfile Summaries

CDC CYBER CONTROL LANGUAGE (CCL)

Syntax
Expressions
Operators
Operands
CCL Statement Overview
SET and DISPLAY Statements
SET
DISPLAY
Functions
FILE
Conditional Statements (IFE, SKIP, ELSE, ENDIF)
IFE
SKIP
ELSE
ENDIF
Iterative Statements (WHILE, ENDW)
Procedures
Procedure Header Statement (. PROC)
Procedure Body
Procedure Call and Return
Keyword Substitution
Procedure Commands

APPENDIXES

CDC CYBER STANDARD CHARACTER SET
JOB COMMUNICATION AREA

STANDARD LABELS

SUMMARY OF FILE FORMATS

USING RECORD MANAGER FOR FILE FORMAT
CONVERSION

DEFAULT FILE DESCRIPTIONS
ANALYZING ERRORS IN A SAMPLE FORTRAN PROGRAM
GLOSSARY

xiii @

LR T T T R U N N S N N N S |

COUOVWWWWEWO-TAOUTUL U O U U WWN DN N e et et
R R |
OO ERWNEENFEOOUTBRWNFNFWN M-I U N -

—
U
[N

W LN DN DN DN N -
1
DN = O U QO W

xiv

INDEX
FIGURES

System Configuration (CDC CYBER 70/Model 76 or 7600)
CDC CYBER Station Configuration

7611-1 I/O Station Configuration

Job Flow Through System

Job Deck Translation

Switch, Swap, and Rollout

Sample Dayfile Listing

End-Of-Section Card (EOS)
End-Of-Partition Card (EOP)
End-Of-Information Card (EOQI)

Structure of Loaded Program

Processing of Control Statements

Unblocked File Format

Blocking Types

Blocked File Format on Mass Storage
End-Of-Partition on Blocked Magnetic Tape
File Hierarchy

Relationship of S and Z Records (C Blocking)
Unlabeled Magnetic Tape Files

Labeled Magnetic Tape Files

Relationship of MAUs and Transfer Unit Size
Hollerith (026) Coded Card

ASCII (029) Coded Card

Coded Card Images as W Records on INPUT
SCOPE Binary Card

Flag Cards to Delimit Free-Form Binary Deck
Free-Form Binary Card Translation
Printer Banner Page (Two Styles)

Lace Card

Selecting the Proper Copy Statement

Flow Chart of EXIT Processing

Standard Dump

SCOPE 2 Load Map

Sample of DMPFILE Output

Calling a Procedure from a Job

Calling a Procedure from Another Procedure

EXAMPLES

Correlating File Names With FORTRAN I/O Statements

Equating File Declarations on FORTRAN PROGRAM
Statements

COBOL File Name Assignments

Sample Job

Job Containing Control Statements Only

Job With Source Language Program

Job With Source Language Program and Data

Job With Two Compiler Language Programs

Job With Complex Data Structure

Request for FORTRAN Extended Compilation

Request for COBOL Compilation With Options Specified

1
DN DN et b €O O =T O WD D =N

[B I A |
©w N

=
NNOOLOWOOWOOWOLO~TITOOOM
1

|
-
o

12-15
12-18
13-18
13-19

1-21

1-22
1-23
2-2

2-10
2-11
2-12
2-13
2-14
3-1

3-2

60372600 E

| J T T I NN U I I R R T T | | R A T Y N T R EO O T U A T B |
R-IN U WNHO

DD DR R DD D WWWWWWwWwwWwwwwwwww
|
DN = b bt (OO =T U D WN e b et o bk = = b O 00 =3O U W

(%7}
i
w

| J T FE NN N N N N S N |

TS A S M T T N S B |
WO

PN IR PN IO (PG B PN [P e > e)l o> e)l e s o o2 e i o r M e Rl o P o2 0 IS L TG I) BV
|
CO-ION UTHN WIH) I = = = O 00 =10 G W = =30 O

60372600 E

LGO File Name Statement

Renaming the Load-and-Go File

No Substitution of File Names on LGO
Substitution of File Names on LGO
Precedence of Equating File Names

Loading From INPUT

Illegal Verb/Name Call Statement

Load From LGO and INPUT; Then Execute
Selective Load From a File by Program Name
Using LDSET Statements in Load Sequence

Combining New and Old Library Sets

Defining a Local Library

Direct Load From Library Using LIBLOAD

Load Partition From Library Using LOAD

Load Partition From Library Using SLOAD

Job Using Automatic Memory Management

Using the CM Parameter to Control SCM

Using the RFL Statement to Control SCM

Mixed Mode Control of SCM

Mixed Mode Control of Both SCM and LCM

Comments in Dayfile Listing

Comment Two Lines Long

Directing the Operator Through a PAUSE Statement

Using the SWITCH Statement

COBOL Test of Sense Switches

Job Dependency String

Rewind or No Rewind of Load Files

Placement of FILE Statement

Overriding Default of W Record Type for FORTRAN
Program

COBOL Assignment of Record Types Through File
Description

Using a FILE Statement to Specify Blocking

FORTRAN Treatment of EOS on Input File

COBOL Treatment of EOS on Input File

Specifying Error Option as Accept With No Display

Prestaging an Unlabeled Tape

Poststaging an Unlabeled Tape

Identifying the Station for Staging

7-Track Code Conversion for Poststaged Tape

9-Track Code Conversion for Poststaged Tape

Prestaging Using Volume Serial Numbers

Partial Staging by Blocks

Partial Staging by Tapemark

Staging Entire File

Scheduling and Requesting On-Line Tape Units

9-Track Code Conversion for On-Line Input Tape

On-Line Staged Tape

No Recovery and Accept Data Options

REQUEST Statement Placement

Scheduling of Removable Device

Identify Master Device

Changing Default Setname for Job

Adding a Member to a Set

Mounting the Master Device for a Removable Set

Deleting Set Members .

Using the REQUEST Statement Allocation Parameter

1
— 0 =1 OO U U

|
N =
S 00 =1 W

W WWWWWWWwwww
]

3-21

wN'O

xv |}

LI O B B |
[l =]

111

I
l—n—\H@oo-Jcnq'nbwwo—n—-»—lco

]
et
DA WN=O

o

—
I

ODOWVWWOWWWWWWWWWOL 000D ~1-J=1
]

—

1
DR WNFREHROO=-I0U KW

e e
OO0
|

10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14

11-1
11-2

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
13-1

xvi

Using the REQUEST Statement Transfer Unit Parameter

Using the REQUEST Write Check Parameter

Returning Mass Storage Files

Permanent File With No Password Requirements

Using the Retention Parameter

Defining the Read Password

Modifying a Permanent File

Using the Turnkey Password

Cataloging a New Cycle

Cataloging File on Removable Set

Attaching a Permanent File From a Removable Set

Using the ALTER Control Statement

Using the EXTEND Control Statement

Purging a Cycle of a Permanent File

Purging a Cycle and Adding a New Cycle

Moving a Cycle From One Permanent File to Another

Attaching a CDC CYBER Station Permanent File

Cataloging a Permanent File Attached From a Linked 7600

Maintaining UPDATE OLDPL at a Linked NOS/BE Mainframe

Reading Cards From INPUT

Rewinding INPUT

ASCII (029) Coded Punch Input

FORTRAN Binary Input (CDC CYBER Station)

Copy INPUT to OUTPUT Shifting Each Record

Placement of DISPOSE Statement

Disposing Print File Created by FORTRAN Program

Generate Printer Character Sets

Punching Binary Output From Compiler

Punching Free-Form Binary

File-to-File Copy

Copying Records

Copying Sections

Copying Partitions

Copying a Tape as Record Type U, Block Type K

Setting MRL

Skipping Records Forward

Skipping Sections Forward

Skipping Partitions Forward

Skipping to End-Of-Information

Skipping Sections Backward on INPUT

Copy and Compare Files

Logical Compare of F Records and W Records

Literal Copy and Compare of Tapes Described as U
Records

Using LABEL Statement for Label Generation With COBOL
Program

Using LABEL Statement for Label Checking With COBOL
Program

Selective Exit Processing

Combination of Exit Paths

Using the MODE Statement

Requesting No Program Execution for Any Loader Error

Request for Standard Dump

SCM Dump Taken Within an Exit Path

User Control of Lioad Map

Requesting a File Dump

Intermediate Accounting Information

SET Statement

1 1
DN = =1 =3 O

OCOQWWWWWWWIWEWW©
1

ek e

[
DR W NN DN === 00U WN

—
o
1

60372600 E

13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20

13-21
13-22
13-23
13-24
13-25
13-26
13-27

13-28
13-29
13-30
13-31
13-32

GQLUT O U LW W
]
GO DN = QO DN e

Ll e

WNNNDO-ITO W,
)

=0 DN 2 e e O

60372600 E

DISPLAY Statement Register 1

DISPLAY Statement Register 2

DISPLAY Statement

DISPLAY Statement True or False

FILE Function Using Symbolic Name MS

File Function Using TP and LB

IFE Statement

IFE Expression is Fealse

Conditional IFE Statement Within Another IFE Statement

SKIP Statement

Use of ELSE When Expression in IFE Statement is False

Use of ELSE When Expression in IFE Statement is True

ELSE Does Not End a SKIP or Another ELSE

Skipping Control to the ENDIF Statement

WHILE Expression is True

Expression in WHILE Statement is False

Calling Procedure A from a Library

Implicit REVERT Sequence by CCL

Values Passed from Procedure File to GLOBAL to
Control Statement Section

User's REVERT Sequence

Keyword Substitution

Equivalence Mode

Inhibit Substitution

Substitution Without Delimiters

Value of R1 Substituted for Formal Keyword C4

COPYSBF Statement Copies Names from Temporary File
to OUTPUT File

The Default Temporary File is Assigned a Name

FORTRAN Program is in the Procedure File Named VAST

Call-by-Name Statement to Call Procedure from a Library

All Procedure Commands

Use of -+ in Rewinding a Data File

TABLES

System File Names

Requests for Compilation or Assembly

Options Available During Compilation/Assembly

System Verb Table

Preset Options

FORTRAN Record Type Constraints

COBOL Specified Record Types

COBOL Specification of Blocking

Maximum Block Sizes Allowed for Staged and On-Line
Tapes

COBOL Determined File Organization

Magnetic Tape Density Parameters

Allocation of Mass Storage

Carriage Control Characters

EXIT Statement Processing

MODE Statement Parameters

MAP Options . ,

Commonly Used Symbolic Names

13-6
13-7
13-7
13-7
13-9
13-9
13-10
13-11
13-11
13-12
13-13
13-13
13-14
13-14
13-15
13-186
13-20
13-21

13-22
13-23
13-25
13-26
13-26
13-27
13-28

13-29
13-30
13-30
13-31
13-22
13-33

(=1

—

1
= O 0000 WMEN

Ot OO W W=
]

-3

(o2 I, R
1 1

QY DN =t
(-]

7-13

9-13
12-3
12-6

12-16 -

13-4

GENERAL DESCRIPTION 1

This section introduces the principles of the SCOPE 2 Operating System, gives a brief
‘description of the hardware and software configurations, and describes how a job pro-
gresses through the system. In addition, it introduces the user to the topic of logical
files, especially those files defined for every job by the system. Files are described
in more detail in section 5.

INTRODUCTION TO SCOPE 2

An operating system is a group of computer-resident programs or subprograms that
monitors the input, compilation or assembly, loading, execution, and output of all other
programs processed by the computer. The operating system that directs these operations
for the CDC® CYBER 70/Model 76, CDC CYBER 170/Model 176, and the 7600 Computer
Systems is called SCOPE 2. SCOPE is an acronym for Supervisory Control Of Program
Execution.

SCOPE 2 operates on a multiprogramming basis, using the versatility of the computer
hardware to direct the simultaneous processing of programs. The maximum number of
programs to be executed simultaneously is specified by the system operator. These
programs can be written in compiler languages such as FORTRAN or COBOL, or in
the COMPASS assembly language.

SCOPE 2 is a collection of programs that monitor and control compilation, assembly,
loading, execution, and output of all programs that users submit to the computer.
SCOPE 2 controls storage assignment tasks and the sequence in which jobs are pro-
cessed. For each job, the system can print maps and dumps of memory to aid in de-
bugging, detects errors, and prints diagnostic messages. It allows modification of
stored programs through use of special editing routines. Jobs are submitted to SCOPE
through operator stations. An operator station is a computer system that has been
programmed to communicate with the SCOPE 2 system. SCOPE 2 returns job output
and user-created files to the station at which the job originated.

SCOPE 2 features include:

® Multiprogramming of jobs throughout the system
® Record management that supports a variety of tape record and block formats

L The capability to link several independent computer systems in a multiple main-
frame environment

L] Permanent file management to protect information from access by unauthorized
persons. Permanent files may be maintained at linked main frames as well as at
the SCOPE 2 system.

. A chronological history called a dayfile for each job run showing the results of each
control statement processed and any problems encountered. This history is printed
automatically when the job has been run.- R :

L Communication with operator stations that submit job and data files to the SCOPE 2
Operating System and receive the job output file and user-created output data files

® Checkpoint restart capability

60372600 E 1-1

OPERATING ENVIRONMENT

SCOPE 2 resides in a CDC CYBER 70/Model 76, CDC CYBER 170/Model 176, or 7600
Computer System. The hardware configuration of the computer system depends on the needs
of the particular installation. The needs will also determine the product set in use. The
following paragraphs briefly describe the components of the computer system and the
possible hardware/software configurations that may exist under SCOPE 2.

HARDWARE CONFIGURATION

The CDC CYBER 70/Model 76, CDC CYBER 170/Model 176, and 7600 Computing Systems
are large-scale, solid-state, general-purpose, digital computing systems. The advanced
design techniques incorporated in this system provide for extremely fast and efficient solu-
tions for large-scale, general-purpose processing.

A basic system (refer to Figure 1-1, which depicts one for a CDC CYBER 70/Model 76 or
7600) includes a central processor unit (CPU) and a number of peripheral processor units
(PPU). Some of the PPUs are physically located with the CPU and others may be remotely
located. The PPU provides a communication and message switching function between the
CPU and individual peripheral equipment. Each PPU may have a number of high-speed data
links to individual peripheral equipments as well as a data link to the CPU.

The data links may also be used to communicate with a variety of operator stations. Stations
are self-contained processing systems that serve primarily as input/output processors for
the CPU. The stations may connect through a first level PPU (FLPP) or directly to the
CPU, as in the case of the 7611-1 I/O Station.

CENTRAL PROCESSOR UNIT (CPU)

The CPU is a single integrated processing unit. It consists of a computation section, small
central memory, large central memory, and an input/output multiplexer. The sections are
all contained in the main frame cabinet and operate in a tightly synchronous mode under con-
trol of the master clock. Communication outside the main frame cabinet is asynchronous;
that is, independent of the master clock.

COMPUTATION SECTION
The computation section of the CPU contains nine functional units and 24 operating registers.

The units work together to execute a CPU program. Data moves into and out of the computa-
tion section of the CPU through the operating registers.

CENTRAL MEMORY
The CPU contains three types of internal memory arranged in a hierarchy of speed and size.
® The instruction stack contains 12 60-bit words for issuing instructions. The stack
holds the latest 10 instruction words and the two-instruction word look-ahead. Pro-
gram loops can be held in the stack thereby avoiding memory references.
[] The small central memory (SCM) contains 32, 768 or 65, 536 60-bit words of semi-

conductor or core memory, or 131,072 680-bit words of semiconductor memory.
Each word holds 10 6-bit characters.

1-2 60372600 E

e The large central memory (LCM) contains 262, 144 or 524, 288 60-bit words. How-
ever, the large central memory extension {LCME), or computer systems that con-
tain LCME, can consist of up to 2,087,152 60-bit words. Instructions cannot be

executed directly from LLCM/LCME.

7638 DISK STORAGE
COMPUTATION
colND SUBSYSTEM
ROL oM
819 HIGH CAPACITY
| DISK SUBSYSTEM
SCM
— MAGNETIC TAPE
SUBSYSTEM
MODULAR
— MAGNETIC TAPE
SYSTEM MASS STORAGE CONSISTS n ml CONTROLLER
OF 7638 DISK S .
844-2 DISK STORAGE UNITS, AND ~ 1 TO 8 ON-LINE
819 DISK SUBSYSTEMS, IN ANY e ’ MAGNETIC TAPE
COMBINATION. PPU

844 DISK
CONTROLLER

2 TO 63 844-2
DISK STORAGE UNITS

CDC CYBER 170/CYBER 70/6000
UNIT RECORD STATION

3AG2B

Figure 1-1, System Configuration (CDC CYBER 70/Model 76 or 7600)

The SCM performs certain functions in system operation that the LCM cannot effectively
perform. These functions are essentially those requiring rapid random access to unre-
lated fields of data. The first several thousand addresses in SCM are reserved for the
input/output control and data transfer to service the communication channels to the PPU.
CPU object programs do not have access to these areas., The remainder of the SCM
may be divided between CPU programs and associated data, A small portion contains
a resident monitor program.

INPUT/OUTPUT MULTIPLEXER

The function -of-the -CPU -inputfoutput multiplexer (MUX) is to deliver 60-bit words to
SCM for incoming data, to read 60-bit words from SCM for outgoing data, and to inter-
rupt the CPU program for monitor action on the buffer data. In the basic system, the
MUX includes eight 12-bit bidirectional channels of which one is reserved for use by
the maintenance control unit (MCU).

60372600 E 1-3

PERIPHERAL PROCESSOR UNIT (PPU)

The peripheral processor units (PPU) are separate and independent computers, some of
which may reside in the main frame cabinet., Others may be remotely located. A PPU may
be connected to the MUX, another PPU, a peripheral device, a controller, or a mix of these.
PPUs that connect directly to the MUX, whether on the main frame or remotely located, are
termed first level PPUs (FLPP). PPUs drive many types of peripherals without the need of
an intermediate controller,

MAINTENANCE CONTROL UNIT (MCU)

The maintenance control unit (MCU) is a main frame PPU with specially connected I1/O chan-
nels. The MCU performs system initialization and basic recovery for the system. It also
serves as a maintenance station for directing and monitoring system maintenance activity.
For a CDC CYBER 170/Model 176, the MCU refers to the peripheral processor subsystem
and its associated peripheral equipment on which the system maintenance monitor is running.

MASS STORAGE

Mass storage consists of 7638 Disk Storage Subsystems, 819 High Capacity Disk Subsystems,
and/or 844-2 Disk Storage Units,

Devices are grouped into sets of which there are two types, system and removable. Each
device in a set is a set member.

Mass storage devices of either type can be in the system set. The devices forming the sys-
tem set are identified at deadstart or recovery and are not logically removable,

Devices that can be logically added to or removed from the configuration belong to remov-
able sets. A user can control the availability of removable set members through control
statements. Any of the devices listed above can be used for removable set members.

The user can also control the assignment of files to set members, removable or system,
through control statements. Files are assigned to the system set by default.

STATIONS

Stations submit job files and data files to the SCOPE 2 Operating System and receive user-
created output data files. Each station operates under control of its own operating system
and is responsible for supporting unit-record, magnetic tape, or communication equipment,
A station may be physically or logically specified by a three-character identifier used in
conjunction with the ST parameter on control statements., A logical identifier refers to a
capability of the station rather than to the station itself, A system analyst should be con-
sulted for information on station identifiers used at your site. Refer to Multiple Mainframes,
in this section, for more information.

ON-LINE MAGNETIC TAPE UNITS

A configuration optionally includes one to eight magnetic tape units driven by a controller
directly connected to one or two first level PPUs.

On-line magnetic tape units are accessed through record manager requests. Information is
transferred directly to or from the on-line unit without the intermediate transfer to mass
storage that takes place for staged magnetic tapes from stations.

On-line tape units can be 657-X or 659-X magnetic tape units driven by the Modular Magnetic

Tape Controller (MMTC) or can be 667-X or 669-X units driven by the Magnetic Tape System
(MTS).

1-4 60372600 E

MULTIPLE MAINFRAMES

The CDC CYBER 70/Model 76 and CDC CYBER 170/Model 176 can be
CYBER Series Computer Systems in a multi-mainframe environment. A mainframe can be a

linked to other CDC

CDC CYBER 170/Model 172, 173, 174, or 175, CDC CYBER 70/Model 72, 73, or 74, or 6000
Series Computer System station or can be another CDC CYBER 70/Model 76 or a CDC

CYBER 170/Model 176,

mainframe, or jobs may be sent from one mainframe to another.

Each mainframe can process its own jobs; that is, act as a host

Through the use of logical

and physical identifiers, the user selects the mainframe on which the job is to be run. In
addition, the user may choose the mainframe on which a permanent file is to be maintained

or from which the job is to obtain a copy of a permanent file.

manent file information.

Refer to section 8 for per-

Each mainframe is identified by a 3-character physical identifier, abx, where a and b are
any alphanumeric characters and x is an alphanumeric character unique to all mainframes

connected in the network.
referred to by one or more logical identifiers.
capability of the mainframe.

SOFTWARE CONFIGURATION

Installation options also permit each mainframe to be optionally

Usually, a logical identifier refers to a

Software can be considered as consisting of an operating system (SCOPE 2) and a product
set that perform as a team to translate the user's request into instructions to the hardware.

The product set complements the SCOPE 2 Operating System to meet the user's requirements

for scientific applications and commerical data management.

The SCOPE 2 product set includes:
COMPASS Assembler
FORTRAN (RUN) Compiler
FORTRAN Extended (FTN) Compiler
COBOL Compiler
ATL.GOL Compiler
APEX Program
SIMSCRIPT Language
APT Program
Sort/Merge (SORTMRG) Program

UPDATE Library Maintenance Program

7611-1 Input/OQutput Station Operating System

CDC CYBER Control Language

SCOPE 2 counsists of a group of program modules.
These are the loader, the segment loader, the record manager, the

significant to the user.

Some of these modules are particularly

permanent file manager, and the checkpoint/restart routine.

60372600 E

1-5

LOADER

The primary function of a loader is to take the program unit (object module) produced by

the assembler or compiler and place it into available memory linking it with related modules,
if necessary, so that the program can be executed. An object module consists of specially
defined loader input that designates blocks, their contents, and address relocation informa-
tion, Because the location at which an object module can be loaded is variable, the object
module is often called relocatable,

When all of the units comprising a program have been loaded and are ready for execution,
they represent an absolute form of the program in memory, If a copy, termed a program
image, of this loaded program is written on a file, this image can be reloaded upon demand
and executed,

The SCOPE 2 loader loads program image (absolute) modules and object (relocatable) mod-
ules in response to calls from the system and from users, Modules, that is, subprograms
and data, can be loaded into user SCM and LCM from system and user libraries and from
files attached to the job, Programs can be called according to program name, file name,
or entry point name, External references made in an object module are satisfied from
system or user libraries, A reference to an external symbol causes the module containing
the symbol as an entry point to be loaded and linked to the module containing the reference,

Usually, the loader increases or decreases the amount of SCM and LCM available to the
user (field lengths) according to the requirements of the program being loaded. This
automatic memory allocation can be overridden if the user desires.

A number of loader options permits the user to request load maps, presetting of memory,
execution or no execution following the load, libraries to be used for satisfying externals,
etc.

The loader executes in the user field length. Programs that exceed available memory
storage can be loaded by organizing them into subdivisions that can be called, executed, and
unloaded through the use of overlays. This process of overlaying is controlled by the user.

SEGMENT LOADER (SEGLOAD)

Programs that exceed available memory storage can also be loaded and executed by organiz-
ing them into subdivisions called segments. The user controls the segmentation of a program
through directives issued to the segment loader (SEGLOAD),

A segmented load is more elaborate than an overlay load. SEGLOAD has the following
features.
P A segment can have more than one entry point.

Segment loads are implicit. Execution of an instruction that refers to an entry
point in a currently nonloaded segment automatically results in calling the
SEGLOAD resident program (SEGRES) which assumes control of loading of
segments.

e A segment load can involve more than one level. This feature allows gaps in
memory between segments that are logically connected.

e Calls for the SEGLOAD loader can be made through the control statement only.

1-6 60372600 D

RECORD MANAGER

The_ record manager is an integral part of the SCOPE 2 Operating System. It acts as
an interface between the user I/O functions and the SCOPE 2 physical I/O functions.
The record manager supplies the following facilities to the user.

° Recognizes a variety of data formats, some of which are industry standard
e Blocks and deblocks data

e Passes data between the user buffer and the system buffer in LLCM

°

Controls the transfer of large blocks of data from the system devices (mass storage
or on-line tapes) to LCM, and vice versa

Manipulates tape labels (labels can be in ANSI or user formats)
Detects errors in format

The variety of formats allows the user to reformat specific problems to optimize
problem solution.

The record manager is accessed through a simple repertoire of directives that free the
user from the problems of performing physical I/0.

Tk}e 'spet'ed of the logical data transfers depends only on internal LCM/SCM data rates,
eliminating any direct interface between the user and devices.

Th.e record manager does not execute in the user field length; it executes in the SCOPE
2 job supervisor area.

CHECKPOINT/RESTART

Valuable machine time could be lost if a job were to terminate abnormally due to a
machine malfunction, operator error, or program error. The checkpoint/restart
facility captures the environment of the job on a permanent file so that if a malfunction
occurs, the job can be restarted from the most recent capture point (checkpoint) rather
than from the beginning. This record of the environment includes all files associated
with the job.

PERMANENT FILE MANAGER

SCOPE 2 permanent file management offers the user a privacy scheme that provides
security and integrity of user information. Any mass-storage file local to a job can be
made permanent. When it is made permanent it can be assigned passwords limiting
access to those users that supply the passwords when they request the use of the file.

SCOPE 2 includes utility routines for maintaining permanent files. These routines provide
for dumping, loading, archiving, and auditing all permanent files residing on a specified set.

Permanent files may reside on removable or system set members.

60372600 E 1-7

FORTRAN COMPILERS

FORTRAN is the primary higher-level language used within the scientific computer industry.
It enables engineers and scientific programmers to solve complex problems without requir-
ing a substantial amount of training. Control Data Corporation provides two FORTRAN
compilers with the CDC CYBER 70/Model 76, CDC CYBER 170/Model 176, and 7600 Com-
puter Systems.

FORTRAN Called by the RUN control statement
FORTRAN Extended Called by the FTN control statement

The FORTRAN (RUN) compiler has been enhanced to comply with ANSI standards and RUN
version 1 compatibility and to allow the user to access and manage data in LCM.

FORTRAN (RUN) gives mixed-mode arithmetic, masking (Boolean), logical and relational
operators, shorthand notation for logical operators and constants, expressions as subscripts,
variable dimensions, and variable format capability.

The compiler also provides conversion formats for all data forms, array references
with fewer subscripts than dimensioned, Hollerith constants in arithmetic or relational
expressions, and left- or right-justified Hollerith constants. The record manager pro-
vides access to files generated by other programming languages.

The FORTRAN Extended (FTN) compiler provides ANSI FORTRAN features plus a con-
siderable number of language extensions. In particular, it allows five modes of com-
pilation. These modes are:

Syntax Scan Mode

Single Pass Compile Mode
Fast Compile Mode
Normal Compile Mode
Highly Optimized Mode

A programmer uses the syntax scan mode early in development of a program when he
is checking the source code for syntax and spelling errors. The mode provides ex-
tremely fast compilation and returns diagnostic messages to the programmer without
generating any executable code. This mode does not provide for program execution.

The single pass compile mode is used for very fast compilation and an executable program,

The fast compile mode provides fast compilation as well as producing an executable
program, This mode is used for program debugging and in other cases in which the
program need not be optimized.

In normal compile mode, compilation takes slightly longer than in fast compile mode.
However, the resulting program runs faster because it contains code that has been
optimized.

Finally, the executable program can be further optimized by selecting the highly
optimized mode, Optimization results in slower compilation speeds but the resulting
program runs much faster, This mode should be used for debugged production pro-
grams which are to be run on a regular basis.

1-8 60372600 E

FORTRAN LIBRARIES

Each of the FORTRAN compilers has associated with it a library of I/O routines and mathe-
matical subroutines. The library for FTN is called FORTRAN, the library for RUN is
called RUNLIB.

When the SCOPE 2 Operating System is installed, these libraries are generated through
assembly options from a program library known as the FORTRAN Common Library. The
FORTRAN Common Library contains the source programs (in UPDATE format) for the
NOS/BE 1 Operating System, SCOPE 3.4 Operating System, the SCOPE 2 Operating System, i
and the NOS 1 Operating System. l

COBOL COMPILER

The COBOL compiler combines with SCOPE 2 and the record manager to simplify the pro-
gramming of business data processing problems. The compiler produces easily modifiable
source programs, thus decreasing the cost of development and conversion.

The COBOL compiler very carefully adheres to ANSI standards. It provides full ANSI 68
compatibility through level 3 sort files. Data files can be sorted in conjunction with the
Sort/Merge Program. A report writer facilitates flexible formats for printed reports. In
addition, COBOL contains a subprogram capability based on CODASYL recommendations
for standard procedures.

The compiler has been internally optimized to take advantage of the features of the CDC
CYBER 70/Model 76, CDC CYBER 170/Model 176, or 7600 Computer Systems. It interfaces
directly with the record manager, removing from the user any concern for the physical re-
cording formats of each device.

ALGOL COMPILER

ALGOL is a language used to express problem-solving formulae for machine solution. It is
applicable for solving problems involving commercial, engineering, research, process con-
trol, and nonnumerical applications.

Features of the compiler include:

° Close conformance to ALGOL<«60 Revised Report
Extensive compile-time and object-time diagnostics
Fast compilation

Comprehensive input/output procedures

Generation of segmented or nonsegmented programs

SORT/MERGE PROGRAM

The Sort/Merge applications program accepts input from magnetic tape or disk and
constructs sorted output to user specifications on tape or disk.

Sort/Merge provides both flexibility and speed. The user can specify either ANSI

standard collating sequence or any desired arbitrary sequence. A tournament sort
technique ensures that optimum speed is attained.

60372600 E 1-

[¥el

APEX

APEX is a mathematical programming system that uses a matrix generator to arrive at
optimal solutions to large linear programming problems. It produces either standard
or customized reports of the results. Solution strategies involve primal and dual algo-
rithms, mixed integer programming, generalized upper bounding, transportation, and
special ordered sets., APEX includes an all=in=memory algorithm to solve a certain
class of problems.

SIMSCRIPT LANGUAGE PROCESSOR

Using the SIMSCRIPT language, it is possible to simulate a real situation that changes
over a time interval.

SIMSCRIPT automatically generates a timing routine which keeps track of simulated

time and calls user-written routines at their scheduled times. A report generator
compiler provides for many different types of reports. Random table look-up procedures
and probability functions aid the user in simulating a situation in a realistic and accurate
manner., With SIMSCRIPT, different configurations may be compared as to economy,
efficiency, or feasibility, and reports made to management as to the best configuration
for the application involved.

Although the SIMSCRIPT language was developed primarily for simulation programming,
it is also a powerful language for nonsimulation problems; it offers many data proces-
sing features, as well as all the elements of a scientific programming language. Much
of the SIMSCRIPT instruction repertoire is similar to that of FORTRAN. SIMSCRIPT
has access to the FORTRAN Extended library routines and can reference user-coded
subprograms compiled by FORTRAN Extended.

APT IV SYSTEM

APT is the acronym for Automatically Programmed Tools. It denotes a language and
also a computer program (the APT system) to process statements written in that
language. The result of such processing is a control tape for automatically directing
a numerically controlled machine tool.

Input to the APT IV system is an APT part program. Output is a cutter-location file,
a file containing successive location coordinates and other control information ready
for postprocessing. Postprocessing converts the general solution produced by the main
processor into the exact form needed for some particular machine. Currently, APT
does not include postprocessors.,

The cutter-location file is compatible with the APT III standard established by the- APT

Long-Range Program. Printout consists of the part program, diagnostics, and the
edited cutter-location file,

COMPASS ASSEMBLER

The COMPASS Assembler language allows the user to express symbolically all hardware
functions of the CPU and PPUs.

Augmenting the instruction repertoire of COMPASS are over 100 pseudo instructions that
provide the user with a variety of options for generating macro instructions, controlling
list output, organizing programs, and so on,

1-10 60372600 D

COMPASS enables the user to tailor programs to the architecture of the central proces-
sor or peripheral processors. This detailed and precise level of programming is of
special use to those writing hybrid or real-time applications programs requiring code
that is optimized to the hardware.

COMPASS language macros are available for communicating with elements of the operat-
ing system, among them the loader, the record manager, and the permanent file

manager,
UPDATE PROGRAM

UPDATE provides a means of maintaining Hollerith card images of source programs or
data in conveniently updatable compressed format. The user converts decks into a file
called a program library. Each card in each deck is assigned an identifier when it is
placed on the library. Later, the user can reference any card for inserting, deleting,
or replacing cards. After a program or data is corrected, it can be passed to a

compiler, assembler, or some other processor. Corrections can be temporary for the
purpose of testing new code or can be permanent modifications to the program library.

SERVICE/ NUCLEUS LIBRARY

The library consists of programs, routines, and subroutines used by the operating
system or users,

The library resides on mass storage. User programs demand loading from the library
during several phases of job processing. For example, the compilation phase requires
the compiler to be loaded from the library.

LIBEDT AND COPYLB

Libraries can be either system libraries or user libraries.

CDC CYBER STATION OPERATING SYSTEM

A site that has a multiple of CDC CYBER 70/Model 76, CDC CYBER 170/Model 176, or

7600 Computer Systems, or one or more SCOPE 2 Operating Systems and a CDC CYBER 170/
Model 172, 173, 174, or 175, CDC CYBER 70/Model 72, 73, or 74, or a 6000 Series Com-
puter System may choose to link up to three systems. The 6000 or CDC CYBER Series
machine serves as a batch entry station and provides the peripheral processing for the 7600,
CDC CYBER 170/Model 176, or CDC CYBER 70/Model 76. The station executes under con- |
trol of the SCOPE 3.4 Operating System (Figure 1-2), Job decks entered at the station card
reader are routed either to the 7600 or the 6000/ CDC GYBER Series computer according to

a parameter supplied by the user on the first card of the job deck (the job identifier card).
Each job sent to the 7600 is tagged with its station origin so that instructions for the operator
and output from the job can be routed back to the station that originated the job. Three 6000/
CDC CYBER Series stations can be connected to a first level PPU.

60372600 E 1-11

CDC CYBER I70/MODEL 176 OR
CDC CYBER 70/MODEL 76
COMPUTER SYSTEM

TO FIRST LEVELPPU [y

/

CDC CYBER 170/MODEL 172, 173, |74, OR 175
CDC CYBER 70/MODEL 72,73, OR 74
OR 6000 SERIES COMPUTER SYSTEM

SATELLITE
COUPLER

6683
PRINTER

SATELLITE
COUPLER

-7 CONTROLLERS
AND

CONVERTERS

CARD READER
DISPLAY MAGNETIC TAPE UNITS STORAGE 2Ax38
CONSOLE

Figure 1-2. CDC CYBER Station Configuration

76111 INPUT/OUTPUT STATION OPERATING SYSTEM

The 7611-1 1/O Station Operating System services the 7600, CDC CYBER 170/Model 176, or
CDC CYBER 70/Model 76 Computer System by sending job decks to it for batch processing
and by processing output files from jobs. The I/O station operating system resides in all
six PPUs that comprise the 7611-1 1/O Station (Figure 1-3). The normal mode of operation
is for the I/O station to be coupled to a channel of the I/O multiplexer and to be in communi-
cation with the SCOPE 2 Operating System.

Features of the 7611-1 I/O Station Operating System include:

e Isolation of the high-speed CPU from low-speed peripheral devices by transfer-
ring all files from the station to system mass storage so that efficient CPU
utilization can be realized

e Automatic routing of input files to the CPU and processing of output files from
the CPU in a manner that optimizes the use of peripheral equipment

e Accounting information maintained for each job in a system dayfile

Operator control of utility operations independent of SCOPE 2

1-12 60372600 E

407-1 CARD READER

417 -1 CARD PUNCH
AND CONTROLLER

—_— |

517-1 LINE PRINTERS

PPUQO
PPU|
PPU2
PPU3

PPU4
PPUS MAGNETIC TAPE
CONTROLLER 857 DISK DRIVE

CC52z STATION CONSOLE

DJ 607 MAGNETIC TAPE UNITS

CDC CYBER 70/MODEL 76
COMPUTER SYSTEM s

Figure 1-3, 7611-1 I/O Station Configuration

JOB FLOW

A job enters the system in the form of a job deck submitted at a local or a remote
station. From the station, it is transmitted to the CDC CYBER 70/Model 76, CDC l
CYBER 170/Model 176, or 7600 where the job resides in the job input queue. Informa-
tion concerning station messages is inserted into the job's dayfile. From the job input
queue, the job proceeds in three phases: job initiation, job processing, and job termi-
nation. Figure 1-4 shows a generalized diagram of job flow.

60372600 E 1-13

JOB DECK
ed

STATION

OUTPUT FILE
SYSTEM MASS STORAGE

CDC CYBER 70/MODEL 76
COMPUTER SYSTEM 2AX68

Figure 14, Job Flow Through System

JOB INITIATION

The first card in a job deck is a job identification statement. The operating system
examines the parameters on the job identification statement to determine whether any
dependencies exist between the job and any other jobs in the system, and to determine
the resources needed. The job remains in the job input queue until the dependencies
are satisfied and until system resources (for example, table space in LLCM) required for
initiation are available, The algorithm used for scheduling on-line drives eliminates
the possibility of system deadlock when the job is in some stage of processing even
though the total number of units required is not available.

SCOPE 2 divides the job deck into two files (Figure 1-5); the control statement section
becomes the job control file and the remainder of the deck becomes a file named INPUT,

Initiation of a job includes preparing a job-related system area and positioning the job
control and input files for the first job step, constructing an SCM image in LCM, and
placing the job in a waiting queue for the CPU.

1-14 60372600 E

60372600 D

6/7/8/9 I

d

/7/8/9]
pd INPUT FILE

/ CONTROL STATEMENTS

7/ JOB IDENTIFICATION
STATEMENT

\/4)3 CONTROL FILE

2AXT7A

Figure 1-5. Job Deck Translation

1-15

JOB PROCESSING

As a job advances from step to step, the operating system reads and interprets control
statements in the job control file. It assigns resources as required. If a job is waiting
for resources, operator action, data transfer, or some other action, the CPU may be
assigned to some other job (job switching), the job may be moved from SCM to LCM (job
swapping), or its residence could change from LCM to mass storage (job rollout). The
operating system changes residence of a job as neéded by the job and as determined by the
overall considerations of scheduling the CPU (Figure 1-6). Jobs receive an aging incre-
ment while waiting in mass storage and in LLCM to ensure that every job is given a chance
to execute in SCM. Job field length requirements are evaluated against available memory
to maximize use of LCM and SCM. The CPU scheduling process selects a job to which the
CPU is assigned and controls memory so that the jobs selected can be brought into SCM,

A history of the job is maintained in a dayfile for the job. At job end, the system can
place one copy of the dayfile at the beginning of the file named OUTPUT and/or append
one or more copies of the dayfile to the end of OUTPUT. The total number of dayfile
copies printed depends on the system default value. The NDFILE control statement can
change the default value. (Refer to the SCOPE 2 Reference Manual for more informa-
tion on the NDFILE control statement.) OUTPUT is also the default name of a file used
for list output by compilers and assemblers. OUTPUT is printed automatically at the
station of job origin, unless redirected by a user control statement or macro.

JOB SWITCHING SR
BETWEEN JOBS ROLLOUT
IN SCM

X

JOB n ‘ /
// { MASS STORAGE
) TR
000 000

SCM LCM 3AG7A

Figure 1-6, Switch, Swap, and Rollout

1-16 60372600 E

JOB TERMINATICON

At completion of a job, the operating system returns all resources still assigned to the
job to the system for rescheduling. These resources include on-line drives, user field
length areas of SCM and LCM, job-related system areas in SCM and L.CM, and files
not yet unloaded.

THE JOB DAYFILE

The dayfile is the short list of comments at the end and/or beginning of the output for |
a job. It presents an abbreviated history of the progress of the job through the system.
Each control statement is listed in sequence followed by messages associated with the
job step. If a job is rerun, the control statements processed prior to the rerun are
listed without clock times. The list is terminated by the message JOB RERUN.

A dayfile usually consists of the following illustrated as items 1 through 6 in Figure 1-7.

1. First header line: identifies operating system, its current modification level,
and the date the job was run in two forms. The first form is either month,
day, year, or day, month, year, depending on an installation option. The second
form is Julian notation.

2. Second header line: contains information determined by an installation par-
ameter (here, system resources information is given).

3. Column heads: the leftmost column identifies the clock time for each job step,
the middle column identifies the accumulated CPU time for the job. For some
job manager messages there is no CPU time for the job step, and the clock
time is in the middle column rather than the left column. The rightmost
column identifies the system module that used the CPU time, or if execution
is in the user field notes USR. All times are in decimal. Entries commonly
noted are the following.

Sys System (I/O requests, etc).Sys is mainframe identifier; here, MFZ.
USR User program, including compilers and assembler time

LOD Loader

JOB Control statement processing

ggg Station processing (ggg is station identifier; for example, MFF

may indicate the CDC CYBER station)

4, Station subheading: gives the clock time the job was submitted at the station, the
station identification, and the fabricated job name. This line varies according
to the station that submitted the job.

5. Control statement: the first statement is always the job identification statement;
the last control statement listed is the last one processed by the job. Each
control statement is listed in sequence, prefixed by a hyphen. If the job ab-
normally terminates, as this one did, not all of the control statements will be
listed,

6. Dayfile messages: Any messages related to the control statement processing
are indented below the statement. These messages are listed in detail in the
SCOPE 2 Diagnostic Handbook.

60372600 E 1-17

wesr 7000 SCOPE 2.1 LVL 2131 10/22/75 17.48.,35 1:7/78/75 753 1

SYS DEVICES Bu4s L/FF R18/ 2/ ELS=z 200K FLL=1750K ¥XS=16"K MYL=1222K MXB=122

2n
HH.HH.SS CPU SECOND 0P IGIN <& @
11,55.31.MFF, *» SCOPE 3,6s% S/¥ 90 L 4.1875 G9/74/75
11.56.08 0CL00.0G3 F7, -PELAN,STMFZ,T100,Y02, YL 2. <§®
11.56.€8 30602.003 JoS. -ACTOUNT, GRED.

11.56.08 G0G03.745 USP, = = = = = = - ===~

11.56.08 0QC0G."15 'ISR. DIV/EIN NO. = N{69

11,56.68 50C000.015 USR. B T

11.56.08 00003.718 J03. ~MOUNT (SN=HCCY?1, VSN=2" 18)

11.59.26 AAR, 17 ASSIGNED,
11.59.27 00600.037 MF7, FC1G11- CECOVEFING SM = HNCY?2Y
00606132 MFZ. ®C1711~ CECOVEPET SN = MLOY21
80500.143 MFZ, EPS57(~ VSN GFF18 OF SET HICY21 4OINT=R

11.59.30 c06d0.149 JoA. ~BTTACH (HNCFY JHNCF ¥, TD= S2{ CFSMOD, SN=HNCY21)

11459.3¢ 00000.153 M77, PF254 - FYCLF 6 ATTACHIN FPRJ¥ SH=HPCY21

11.59.30 80400.153 LNO. ~COFYS CINPUTY

1159431 30000.159 YS?, HT3IL = £OOY GOMPLETH

11.59.31 -00000.160 USR. uTE 36 - EOF - 1 38 - 1

11.59431 GO(60.167 LOD. -HDrPY,

11.59.31 C0CLO.166 “FZ, OF727 = VSN 20F.18 NF SET HDLYDL wom

11.59.32 40c03.202 US®, FORTRAN LIBRARY F&(RA 6/23/75

11.59.34 00000.276 USP, EYSCUTION ERROR® - ARNPT CALLEN

11.59.34 GCCOO.285 MF7, SC097 - EOORRAM F.NGF

11.59.34 00G0C. 346 MF7, <0334 _-_JO3 ARCOTED _ _

11.59.34 60°07.367 MF7, fkn77c -TFAXTHUF ACTIVF FILES 4

11.59.3% 00005, 360 “FZ, | £M771 ~ PPEN/CLOSE FALLS H

11,5934 00L00.360 MF7, | RM772 - DATE THFANSFER FALLS 52 1

11.59.34 80005,360 MF7, | FM773 = CONTROL/POSITICNTNG CALLS 19}

11.59.36 0000C.361 “FZ. | 5M774 - 3M DATA TRANSETR CALLS 391

11.59.3% GGL00.361 HFZ, ! 2M776 - =M CONTEOL/PISITIONING T2LLS 172

11.59.34 0000C.361 MF7,) TM77R - QUEDE PANAGER.FALLS 77

11,59.34 00003.361 MTZ. | RM777 = FCALL CALLS 112}

11.59.36 30000361 “F7, pSoM 2,478 VWS)

1159434 00600.362 MF7, 1 Lem A, XT7 KNS)

11.59.36 GJIC0I.362 “°7. 1 I/0 [!

11.59.3% 00G00.362 MF7. I pMS T.05% WS |

1159434 G0LLU.I62 MF7, | usee 0.r15 €°3 !

11.59.34 G0i00.362 MFZ. | Jom .36 37 |
' '

H

11,59.36 30000.362 MF7., LSCJB' - €301 SC/LT SWAeS

sensvrnenas OCLAMEX //// END OF LYST ////
_ *sasanayaes NELAMAX ///7 SND OF LIST /777

Figure 1-7. Sample Dayfile Listing

ACCOUNTING INFORMATION

When a job reaches completion, SCOPE writes a summary of basic accounting data onto
the dayfile for the job (item 7 in Figure 1-7,)) Accounting information consists of the
following data in decimal. Items marked by ** are not included when an installation
parameter is set to inhibit them. An entry is omitted if it is zero or is irrelevant for

the job (for example, the average for on-line tape units appears only for jobs using on-
line tapes).

** e Maximum number of files active at any one time during the job. This number
may be higher than expected because it always includes the files that the system
creates for the job: INPUT, OUTPUT, job control file, and the dayfile.

*% @ File open and close requests
® Data transfer requests (COMPASS GET/PUT and READ/WRITE macro calls)
* ° File control and/or positioning requests (BKSP, SKIPF, etc.)

L) Record manager/buffer manager data transfer requests for next buffer

** @ Record manager/buffer manager control and/or positioning requests when no
data is in buffer

1-18 60372600 D

** e DMass storage requests to queue manager by record manager
% @ I/O recall requests; number of times job waits for I/0

*x @ SCM used expressed in kiloword seconds. Each kiloword second means that
the job used a thousand words for a second.

e LCM expressed in kiloword seconds. Each kiloword second means that the
job used a thousand words for a second. This does not include LCM system
I/0O buffers.

e Number of I/O words transferred by SCOPE for the job in millions of words

** e Mass storage used expressed in megaword seconds

*% @ On-line tape unit usage expressed as tape seconds, which measure the CPU
time for which the job has possession of an on-line tape unit

ar
3
¥
[]

844 Disk Storage Unit use averaged over total job time

® User execution time, that is, the CPU time used for executing programs in the
SCM field. This value is expressed to the nearest millisecond.

e CPU time used by the job expressed to the nearest millisecond. This value
includes system overhead and user execution time.

e The number of times the job was transferred (swapped) between SCM and LLCM

INTRODUCTION TO LOGICAL FILES

A SCOPE 2 file is a quantity of information kept by the system for a user and known
to the user by a 1 through 7 character symbolic name called a logical file name (I1fn).

SCOPE 2 regards all groups of information in the system as files and is, therefore,
said to be a file-oriented system. Files directly accessible to the computer system
can reside on mass storage and on on-line magnetic tape units. Other files can exist
in the form of punched card decks or magnetic tapes when they are entered into the
system and copied onto mass storage., Data on files leaving the system can be written
on magnetic tape, punched on cards, or printed, or can be maintained on removable
disk packs.

In considering a request for a file, the system looks for the logical file name in lists of'
files local to the requesting job.

Users accustomed to SCOPE 3.4 must realize that many of the file terms and con-
cepts with which they are familiar do not apply for SCOPE 2. For example, SCOPE 2
has no parallel to the physical record unit (PRU).

Information on files is divided into units of data called logical records. SCOPE 2
recognizes a wide variety of logical record formats to allow information interchange
with other computer systems. Logical records, depending on their definition, consist
of a fixed or variable number of 6-bit characters.

60372600 D 1-19

NAMING FILES

A SCOPE 2 logical file name (lfn) is a 1 to 7 alphanumeric character symbol, the first
character of which must be alphabetic. Any reference to the file (for example, to read
from it, write on it, position it, or change its characteristics) must use the logical

file name,

The name of the job input file (INPUT) is assigned by the system and cannot be changed.
In addition to INPUT, the file names listed in Table 1-1 have special meaning to SCOPE
2. A file assigned one of these names (other than INPUT) is automatically processed
at job termination,

TABLE 1-1. SYSTEM FILE NAMES

ifn Action
INPUT Consists of job deck minus control statement section
OUTPUT Line printer listing
PUNCH Punching on 80-column Hollerith cards
PUNCHB Punching in SCOPE binary on 80-column cards
FILMPR Microfilm printing
FILMPL Microfilm plotting Reserved for future use
HARDPR Hardcopy printing
HARDPL Hardcopy plotting

INPUT, OUTPUT, PUNCH, and PUNCHB are described in Section 9. Processors for the
microfilm and hardcopy files are not part of the standard SCOPE 2 system. The file names
are reserved for future use.

The system libraries are also assigned names by the system and are available to any job.

Most standard programs and product-set members have an established set of file names for
input and output files, For example, the COMPASS assembler and the FORTRAN and COBOL
compilers assume source language input is on INPUT, that list output is on OUTPUT, and
that executable binary output is on LGO. The compilers and assembler all permit the user
to substitute other files for the standard set.

Files used by object programs have names assigned by the programmer in the source
language program,

FORTRAN OBJECT-TIME FILE NAMES

The FORTRAN language does not refer to a file directly by its file name. Some of the I/O
statements imply certain system file names; others refer to a file by a unit number.

Thus, the READ fn,iolist statement refers to file INPUT, The PRINT statement refers
to file OUTPUT, and the PUNCH statement refers to file PUNCH. Most READ and
WRITE statements, positioning statements, and unit checking statements use unit num-
bers, where the number can be 1 through 99,

As a FORTRAN programmer, you must correlate the FORTRAN language references
with the actual file names through the file list on the PROGRAM statement. If you
use a FORTRAN statement such as PRINT, PUNCH, or READ fn, iolist, you must list
the implied file (OUTPUT, PUNCH, or INPUT) on the PROGRAM statement. If an
I/O statement refers to a unit number, you must list the file name as TAPEn, where
n is the unit number. That is, a reference to unit 16 is listed as TAPE16, the 1lfn
by wt;ii:h the system knows it. This does not mean that TAPE16 must be a magnetic
tape file,

1-20 60372600 D

The program illustrated in Example 1-1 contains READ and PRINT statements and a
WRITE statement referring to unit 1. Thus, its PROGRAM statement lists INPUT,
OUTPUT, and TAPEL.

An analysis of this sample program, which appears many times in this publication, is
contained in Appendix G.

List of fiies used

FORTRAN CODING FORM /

¥ |

FRCGRANM CME (I%FtY,(LTFLITﬂtFEi)

FRINT € - Writes on OUTPUT
FCRMAT (1F1)
REAC) 1CO,ERSELFEICHT,]
a0 FCRMAT (2F10.2,411) A
1F (I.CT.C) CGC TC 1cC
IF (EASE.LE.O0) CC TC 10%
IF (rEIGERT.LELE) CC TC 1e5

b A7)
[

i IGC TIC 136
135 Licary MSG N Reads ‘rom iNFUT
1

i3 PREA = JE*EASEFFEICHT

FRINT 110,B8SE,FEIGHT ,AREA
110 | [FCRMAT (/77 ,% [EESE=*Fz045,% FEICH] i
IF18.5,/4* AREA=*FZC.5) :
WRITE (1) AREZ

cC TC 19 ‘\\\\\\\
T .
1o CP Writes on TAPE!

ENC

"
L]

SUERICLYIME MSC
FRIMT 400 1
4oe FORMAT (777,% [FCLLCWING JINFLT CATH NEGATIVE [CR 2ERC *),
RETLRA
END

Example 1-1. Correlating File Names with FORTRAN I/O Statements

EQUATING FILE NAMES

FORTRAN allows you to equate two logical file names. One application of this feature
is to make a READ or WRITE statement more flexible. For example, if the I/O state-
ment refers to a unit number, the user can specify it as INPUT, OUTPUT, PUNCH, or
PUNCHB simply by renaming it on the PROGRAM statement. It is also convenient where
the system or some other subroutines refers to a file by a name that is illegal in the
FORTRAN language.

60372600 D 1-21 ®

Example 1-2 illustrates a FORTRAN program that uses the INPUT, OUTPUT, and

PUNCHB files.

The statement that writes on unit 1 now writes on PUNCHB.
named PUNCHB is automatically punched in binary when the job terminates.

The file

INPLT, CUTPL

HEIGHY,I.
11)

T0 129

6C TC 145
0) GO TC 1

YHEIGHT
s HEIGKT , AR
BEASE=*FZ0,
rthuass

\-

CONTROL DATA

- FORTRAN CODING FORM
Rcdanr CMNE (]
RINT S

5 CRMAT (1F1)

1E EAC, 100,EASE,

100 CRMAT(2F10.2,
F (I.6T.0) GC
F (BASE.LE.D)
F (FEIGKT.LE.
o Tc 106

1p5 ALL| NSG

106 \REA| = .E*BASE
RINT 110,BASE

110 CRMAT (//74%

IF18.54,7¢* AREA

RITE (1) AREA
c TC 10

1P 0

Example 1-2.

® 1-22

oe

E A

TsPUNCHE,TEPE1=FLNCFH

[

Equates TAPE|
with PUNCHB

F" FEIGHT

L)
-«

Writes on PUNCHB

Equating File Declarations on FORTRAN PROGRAM Statement

60372600 D

COBOL OBJECT-TIME FILE NAMES

The user assigns a SCOPE logical file name to each COBOL inplementor name through
the ASSIGN clause in the FILE-CONTROL paragraph in the INPUT-OUTPUT section.
Any legal SCOPE 2 name can be used.

Example 1-3 illustrates a COBOL program that has FD entries for COBOL files LIST-
FILE, PARAM-FILE, and TEST-FILE. The ASSIGN clauses assign these files to
SCOPE files named OUTPUT, INPUT, and DISKI1.

COBOL CODING FORM

ENVIRCNMENT DIVISICN.

L
INPL[T-OUTPUT SECTICN.
FILE CONTROL «

SELECT TEST-FILE ASSIGN TC CISK{.
SELECT LIST-FILE ASSIGN T0 CLTFLT.
SELECT FARAM-~FILE ASSIGN TC INFLT.
DATA| CIVISIGN.

FILE| SECTION.
FO LIST-FILE
®

FC PPRAM-FILE

FC TEST-FILE

Example 1-3. COBOL File Name Assignments

60372600 D 1-23 @

USING SCOPE CONTROL STATEMENTS 2

#

In the typical case, a programimer writes a program in some language (for example,
FORTRAN Extended) and submits it to the computer operator in the form of a job deck.
Where terminals are available, card images may replace the card deck. The same rules
apply for job decks and card images.

In addition to the source language program, the job deck must include SCOPE control
statements through which the programmer provides the information SCOPE needs to
supervise the job and perform job-related and file-related functions. This section
describes how the source program and control statements are organized into job decks.

THE JOB NAME

Assignment of a name to the job is the first step in preparing any job deck. Looking
at Example 2-1 you will see that the name of the sample job is JOBSAM. This name
is punched on the job identification statement.

A job name must begin in the first column of the job identification statement. A job
name can be any combination of up to seven letters and numbers but the first character
must be a letter. Blanks cannot be embedded within a job name. When the job name
is by itself (unaccompanied by the optional parameters), it must be terminated by a
period or right parenthesis. For example, each of the following job statements shows
the job name correctly terminated.

(JOBNAME. [JOBNAME)

Each job must be identified by a unique name both at the station and at the central com-
puter. Suppose you select the name PROCEED for your job and a job with this name
has already been submitted. The problem ig twofold. TFirst, how does the station dif-
ferentiate your job from other jobs of the same name, and second, how does SCOPE
differentiate jobs submitted from one station with those of the same name from some
other station?

When the job enters a station, the station automatically replaces the sixth and seventh
characters in the name with two characters unique for each job at the station. As a
result, a job named PROCEED might be processed with the name PROCEI14. If the
name consists of fewer than seven characters, the station fills the unused character
positions with zeros and adds the sixth and seventh characters. Thus, a job named K
might be changed to K00006M.

Next, when the station sends the job to the central computer system, it sends a 6-char-
acter internal identifier. The first three characters identify the station originating the
job; the next three characters identify a terminal at the station.

Even though two or more stations might submit a job named K00006M concurrently,
SCOPE 2 does not confuse the jobs; each job is uniquely identified.

60372600 C 9-1

w

d0092L809

FORTRAN CO:ING FORM

F

L
7

1

o

0BSA
TN,
T AGE
GO .
/8/9

0
00

05
06

o

20

8/9

NS W N

7/8

MsSTMIFZ , SM.
{TapPg1,POST)

AT (1H1)
100,BASE,
AT{2F10.2,
IF (1.GT.0) GO

FCRMAT

ENGC
dn co

0424
0424
9.00
6432

n one

500.76
€E0U. 7€
700.00
425,38

l

[

Control statement

sactlon

NPUT, CUTPL[T,TAPEL)

HEIGHT,1
11)
TC 120

GC TC 105

2) GO TC 105

s
(/7/7,% BASE=*FZ0.5,% FEIGHT

FCLLCWING

INPUT CATH

Program section

NEGATIVE

J

CR ZERC

€00.00
150.00
800.00
300.30
100.00
2039.00

0.00
0ol
00.00
S0« 00
5000

6
0
0
2
%0.00

in dofumn one

Data section

lixample 2-1.

Sample Job

77879
i
|
"l FTN.

6/7/8/9

e

(DATA SECTION)

7/8/9

prd

I
! (PROGRAM SECTION)

(iEéo.

STAGE (TAPE 1, POST)

[/GOBSAM,STMFZ,SM.

SCOPE 2 uses the station and terminal identifier to route output from the job back to
the originating station and terminal. The fabricated job name (without the appended
station and terminal identifier) appears on all of the printer and punch output returned
for a job.

OPTIONAL JOB IDENTIFICATION STATEMENT PARAMETERS

The job name is the only information required on the job identification statement. You
can optionally supply additional information. When supplying parameters, separate each
parameter with a comma and terminate the parameter list with either a period or a
right parenthesis. Comments can follow the terminator. The sequence in which param-

eters are listed is unimportant.

If you supply no other information, the SCOPE 2 system uses default parameters for the
job. Default values and the maximum values allowed for these parameters are deter-
mined by the installation manager at the time SCOPE 2 is installed in the computer
system. The values may vary from site to site. Generally, a system analyst can tell
you the values at your site. Record the default and maximum values for your site in
the table on the inside back cover of this guide.

The following parameters are allowed.

STggg Processor code for the CDC CYBER Station. This
parameter is described in the following text.
Tn CPU time limit in octal. This parameter is described
under Execution Time Limit in this section. |
Pn Processing priority in octal. This parameter is described
under Job Priority in this section. |
CMn Fixed number of words of small central memory allocated

for the job., This parameter is not usually specified since
it overrides dynamic memory management, The parameter.
is described with Using Memory, section 4.

ECn Fixed number of words (expressed in octal thousands) of
large central memory allocated for the job, This param-
eter is not usually specified since it overrides dynamic
memory management, The parameter is described with
Using Memory, section 4.

Dym Job dependency string parameter. This parameter is de-
scribed with the TRANSF control statement, with which it is
used, in section 4. |

Rn Job rerun limit, This parameter is described in section 4,
under Job Rerun Limit,

MTn Octal number of on-line 7-track magnetic tape units used
by the job. This parameter is described with the magnetic
tape REQUEST statement with which it is used, under Using
On-Line Tapes, in section 6.

NTn Octal number of on-line 9=track magnetic tape units used by the
job. This parameter is described with the magnetic tape
REQUEST statement with which it is used, under Using On-Line
Tapes, in section 6.

60372600 E 2-3

YDn Octal number of 844-2 Disk Drives that can be used concur-
rently by the job (refer to section 7).

YLd Octal number of CDC 881 Disk Packs that can be used by
the job (refer to section 7).

SM Indicator that job may require staged 7-track tapes (MT is
used for on-line staging), (Refer to the SCOPE 2 Refer-
ence Manual,)

SN Indicator that job may require staged 9-track tapes (NT
is used for on-line staging). (Refer to the SCOPE 2 Refer-
ence Manual.)

SP Indicator that the job may require an operation with perma-
nent files on a linked main frame. (Refer to the SCOPE 2
Reference Manual,)

JCclas clas is a 4-character alphanumeric string which is examined
by the system in making assignment to a job class, provided
clas is defined by the installation. Job classes are installa-
tion defined; the user should consult a site analyst to obtain
a description of the job classes used by that installation.
(Refer to the SCOPE 2 Reference Manual.)

CDC CYBER STATION PROCESSOR CODE

The STggg parameter is relevant for jobs entered through a CDC CYBER 170, CDC
CYBER 70, or 6000 Series station. If the parameter is used for a job submitted
through some other type of station, the parameter is ignored.

When a job is entered through the station, the SCOPE 3.4 Operating System must de-
termine from the job identification statement which central processor is to process
your job. When the ST parameter is omitted, the job is processed at the station where
it was submitted. When the parameter is included, the job is routed to the processor
identified by the physical or logical identifier ggg. It is possible to route a job to the
7600 processor, or to another station if your site has multiple stations, by including
the proper processor code.

7600 PROCESSING

Use STggg to unconditionally specify processing at the 7600 (CDC CYBER 170/Model 176,
or CDC CYBER 70/Model 76), where ggg is the processor code for the 7600 Computer
System at your site. For the purposes of this publication, STMFZ is used to identify
the 7600 system. If the 7600 is not currently communicating with the CDC CYBER
station, the job waits indefinitely for communication to be established.

[JOB,STMFZ.

EXECUTION TIME LIMIT

For each job in the system, SCOPE 2 imonitors the amount of time that programs for
the job occupy the central processor unit (CPU). This time does not include the time
spent in the input queue, staging files, waiting for access to the CPU, or waiting for
completion of I/O requests. When SCOPE detects that the execution time has expired,
it terminates job processing. The default time limit is 10g seconds. If the system
default time limit is insufficient for your job, supply the T parameter on your job
identification statement. You should also set a time limit if you feel that the default
is too high.

2-4 60372600 E

The time is expressed in seconds as an octal value prefixed by the letter T. You can
either calculate the octal value or you can use the following rule to arrive at an approx-
imation of the octal value.

Rule: The time in octal seconds equals the approximate time in minutes multiplied
by 100. Note, however, that a decimal value of 8 or more must be converted
to the octal equivalent.

sec, V1 100 x min

8
For example, if your job requires 4 minutes of CPU time, you would convert this time
to 400 octal seconds for use on the job identification statement. Enter the value as
T400. For 9 minutes, you would enter T1100, having converted the 9 to its octal
equivalent.

The following job identification statement sets the time limit for the job to approximately
9 minutes.

(BIGJOB, STMFZ, T1100.

If a job contains an EXIT statement, and the job step abnormally terminates because of
having used its time, SCOPE 2 extends the limit by 8 seconds to permit you to obtain
a dump or save valuable data.

To be certain that your job will have access to the CPU until it has completed processing,
regardless of the requested time limit, set the execution time parameter to T77777.

This special value acts as an infinite time limit. It also represents the maximum
possible value for the T parameter,

NOTE

Use caution when setting high or infinite time
limits. If your job contains an error such as
an infinite loop, the program will continue to

execute and you will be charged for the time

used.

JOB PRIORITY

The P parameter is rarely specified.f Default priority is adequate for most applications.
A job with very high resource requirements, however, will sometimes warrant an in-
crease in processing priority (for example, if it uses all the on-line units, requires a
large amount of CPU time, uses a large percentage of LCM, or is heavily I/O bound).

To override the default priority, specify the letter P followed by 1 to 4 octal digits.
The highest priority a user can assign is set by an installation parameter (usually 70008).

The lowest priority that can be assigned and still have the job processed is 1. If the
priority is 0, the job will not be processed until the operator assigns a valid priority.

T Some installations make more extensive use of the priority parameter. At some sites,
specifying any priority other than the default can be detrimental to the job turnaround.
Check with a systems analyst at your site for specific information on P parameter
usage.

60372600 E 2-5

On the following job identification statement,; the priority is set to 20008.

(SWIFTY, STMFZ, P2000.

CONTROL STATEMENTS

A control statement consists of one or more coded (punched) cards or card images.

All control statement® applying to a job must be in the control statement section, which
is always the first section in the deck; that is, control statements are the cards be-
tween the job card and the first 7/8/9 card. Control statements cannot appear in any
other part of the job deck. They are processed one at a time and determine all oper-
ations performed on subsequent sections of the job deck.

The control statement section consists of the following kinds of statements.

SCOPE 2 control statements

L.oader control statements

Record manager control statements

CDC CYBER control language (CCL) statements (refer to section 13)

These statements serve the following purposes.

e Identify the job and some of its characteristics

e Request devices needed for job processing and specify other file-related ac-
tivities

e Call for compilation or assembly of the source language program

Direct the loading of programs into small central memory arnd loading of data
into large central memory

e Call for loading and execution of file utility programs such as COPY and
REWIND

Call for execution of the object program resulting from compilation or assembly
Specify exit paths and job termination conditions

Control checkpoint/restart activities

Control the order of execution of other control statements

All statements must be prepared observing the following syntax rules for control state-
ments.

1. FEach statement must consist of a 1- to 7-character statement name and a ter-
minator, or must consist of a name followed by a separator, a parameter list,
and a terminator,

2. The terminator can be either a period or a right parenthesis,

(name. or (name)

3. The separator following the statement name is conventionally a comma or a left
parenthesis. However, one or more blanks following the statement name, or one
or more blanks followed by a nonblank separator, are also interpreted as one
separator. FElsewhere, blanks are ignored.

(name(parameters) or (name, parameters., or (name parameters,

2-6 60372600 E

4. The parameter list consists of one or more fields of information separated by
commas.

ﬁlame(pl,pz,...,pn) or ﬁlame,pl,pz,....pn. or (name PysPgseeesP .

Parameters in the list are often in keyword form, that is, each p, could be ex-
pressedasx=yorx=y./y,/.../y_. Thus, commas, equal signs, and slant
bars are conventional délingiters i parameter lists. Keyword parameters are
order-independent.

On the other hand, some control statements require certain parameters to be
in a specific order. These parameters are positionally dependent. A state-
ment that has both positionally dependent and keyword parameters always re-
quires that the positionally dependent parameters be listed first.

5. Literals permit any of the characters otherwise illegal or interpreted as
separators to be used in the parameter list. Blanks within a parameter are
deleted except within a literal. A literal is. any character string delimited by
a pair of dollar signs. Two consecutive dollar signs within a literal constitute
a single dollar sign. That is, the literal $ab$$cd$ is interpreted as ab$cd,

6. Any characters can follow the control statement terminator. This allows the
remainder of the line to be used for comments.

ﬁlame. comments or ﬁlame(parameters)comments

7. Continuation cards are allowed for statements too long for a single card. To
continue a statement, a (, / or = must end the card containing the statement
to be continued. It must not contain a terminator. The final card of a state-
ment must contain a terminator. Comments cannot be continued because they
follow a terminator. '

(more parameters)comments

ﬁame(parameters,

Each control statement is termed a job step. After successful completion of the
operation requested by the statement has occurred, SCOPE advances to processing the
next control statement, that is, performing the next step in your job.

Input sections optionally follow the SCOPE control statement section and may consist
of source language decks, binary object decks, data, or directives required by specific
job steps. If no job step requires input from the job deck, the deck consists of only
the control statement section.

Each input section is terminated by a 7/8/9 card. The job deck can also be divided
into units of a higher order than sections, called partitions. A partition consists of
one or more input sections and is terminated by a 7/8/9 card having a Hollerith 17
punched in columns 2 and 3.

60372600 D 2-7

Example 2-1 represents the typical case in which the first job step that requires an

input section in the job deck is the FORTRAN Extended compiler (called by the name
FTN). Thus, the FORTRAN language program is the first input section in the deck.
The next job step requiring input from the job deck is the object program. Its exe-
cution is called for by the control statement L.GO. Therefore, data for this program
forms the second and final section of the input.

DIRECTIVES

It is not unusual for a program called by a control statement to derive its control
information from a secondary kind of control statement known as a directive. Direc-
tives for a program can be cards in the job deck in an input section, or they can be
on some other file. In SCOPE 2, the system routines LIBEDT, TRAP, ANALYZE,
and UPDATE each has its own set of directives. The syntax of these directives is
tailored to the needs of each program.

SEPARATOR CARDS

Cards with certain unique patterns define the internal structure of a deck and identify
the end of the deck.

END-OF-SECTION CARD

Terminate each section with an end-of-section card (Figure 2-1). This card has rows
7, 8, and 9 punched in column 1. Columns 2 and 3 optionally contain the Hollerith
punch for octal codes 00 through 16. These are section level numbers. They are
ignored by SCOPE 2T but have significance to SCOPE 3.4. End-of-section cards are
often referred to as end-of-record cards as a holdover from SCOPE 3.3 terminology.

Hollerith Punched Octal Level Number

00 N
23 v seTaevynnnenyupwansan 2223 2425 26 21 28 29 30 31 52 33 34 35 M 3T M M 4 uuudsuuuuuuusuusscusunol

CRROs oo 0o o CaooREcaNOOBOONRRO0R IO UOORUOBICOORORROBOTONODOODOBINREnOENBONENOISSES
RN RN T T R Y R R L I T I I

(AR R R R R R R R R R R R R R RS RN R RN R AR RN R R R RN R AR]

22022222222222121212

1134580708300 uuuuununmlnnunmlunuunuuls:nunun-:uaauuuuun!susislus-ﬂunuuunnuunnun:nulunn

3333333333333333333,3313

AG4444 040040440404 04440840404444000044434484040040400400404408000000000000 00081004
IEEEERRERRMERNEN BN FEEEEEREENREEEE S R N Y I e e T T T Y I Y A L L

§5555555553595558555555555555555555555

CEEEEEREOOEEOOEOEEEOE OO OEO b EErEEE666CC66666666666666656666666666656666666666

IEENEERERERRERENRERERLY FEEEEERERRERENEE R Y R N R R T Y ' DN R A ST

| ERR R R R R RN R R R R R RN RN R R R R R R R R R A RN R R 2R
Do soa b a st oo a st ot ousoouauuatosttansoosooteasonosnassuossosssessotossosstnissis

tr1as 8 |aununuu\luuunnmnonnnnnuuunu:nnv:n:unuu«auuvuuuusxuussusmulnnuuuluuugnnlnursnnnnl

s

Figure 2-1, End-Of-Section Card (EOS)

T For remote entry terminals, levels 0, 1, and 2 have special significance, as described
in section 9 under Station-appended Level Numbers.

2-8 60372600 C

END-OF-PARTITION CARD

When loading, terminate a binary deck (program image or object module) with a single
end-of-partition card or two end-of-section cards. The end-of-partition card (Figure
2-2) has rows 7, 8, and 9 punched in column 1 and has the Hollerith punch for octal
code 17 in columns 2 and 3. As will be shown later, FORTRAN and COBOL object-
time routines also recognize the EOP separator.

/Hollerith Punched Octal Level Number

17 N
/I 2 3 4 5 6 7 8 9 K li 123 14 15 16 T 10 19 20 21 22 23 24 25 26 27 28 G 30 31 52 33 34 35 56 37 38 33 10 41 42 43 44 45 4% 47 48 49 58 51 50 53 54 59 56 51 58 59 §0)

(Grezescecscosras eyT0 i 12 15 1 15 16 71 18 19 ®0]

gogoo0
[RERE
1

g
222123222

11145818 !Illl|1|J|l|§|i"llllﬂﬂ7)317435251’![3171“].’1!!!)&Zﬁl!Jlnllé‘lt'.!“c')liﬂl!l!ilﬁiSZi:il‘;iﬂﬂSlﬁi@klilﬂ“ﬂ“"“ﬂnﬂ"n"f‘?‘"llll!

13333333333533

6000060000000060000000000000000000000000006000800003000008880800060000008

0
TSN RUHBEIRIANDAUNBENARNINBRGRI AN NCHUSEHIUAN L IHORI AR BHGEIAS IO sl
1

ge
[N
R R R R R R RN R R R R R R R R R R R RN R R R R R R R RN RN R R R RN ERE R

A4 44 4444448448808 4 0484834343444 4824448080383 4448430404 440484440000 0000008008484

T34 8T 83N NOUSENESAN NBNBHU 20223088 35363035 404147 ¢34 &5 45 4 4 49 53 50 52 S350 5 56 51 S0 99 6O 6t MBUSERaBINI RSN

§555355555955955955555555555555555855535555555555555535555555555955555555555555555

G66666666656666666666666666666666666666666566666C56666666666566666666666666666666

123456810980 NUGEHTRIRNDDUDR BN I B 637 3813440480005 6647 10295850 52535655 5657 38 S A GI G2 BIGUGS CGCTGE G M N D BT TS 1T P I g8

Rl R
Beo0080000066880820800060086688880088638B80068880880638803888088 088088888 00s0R808S

113456 T8IMNUBUERTNINYNDAUAGEIBNRUZNU BT RSN QOHGEI WO BRSNS RADE M GETABINNIUNS TN

B9999959989999958999999999999999939999999399999999999995999999399895999999393339939
3064

Figure 2-2. End-Of-Partition Card (EOP)
END-OF-INFORMATION CARD

The last card in a job deck is an end-of-information (EOI) card. This must be the
only EOI card in your deck. The end-of-information card (Figure 2-~3) has rows 6, 7
8, and 9 punched in column 1. Some programmers make a practice of including an
EOS card before the EOI card. This practice is usually unnecessary since the EOI
serves to terminate the last section and the job deck. In previous SCOPE 3.4 systems,
the end-of-information card is referred to as an end-of-file card,

60372600 D 2.9

/[l T3 4 5 6 T 8 9 W U7 13 14 206 (113 19 20 31 77 23 7425 26 71 28 20 43 31 8¢ €5 3433 36 3738 sV A0 AL 4i 43 44HL 15 4T 48 AN SH 5 5258 4109 N

S s s sdesca el sh G TO T 17 15 4 15 15 11 18 13 %)

pjsaospo0o00n00000O0B0000000020000208080¢000C00002000008000000000000000000008080008000¢26

P IAS S TN N USRI RINNE AN H AN NHBEU NN HSKIMARIPOHGERUEIARII NN

[RERRRE R R A R R R RN R R R R R R R R R R R R R R RN
22222222222222222222222222222222222222212122522200222212222202222221212272222121212121011222

P23 RPN RuBE RS DDA IRV N RYTLTGLHC NN MBI OEGU AN TN Y AT

333333333333332333333333333333333333333333353323333333353333333333337333333333133333

F444d 344444344444 4383838484 8404448418 344434 8084845884444 444544444443 84400 48444404414

[N AN R RN A B TRV A RV IR I BN SRR SR PR H I I B 1 AT M L IR PRI M T I BT I RURTIE Y BT RV LR B R R R R R TE F RTIC I I AL IS I B]

5555555555556 0595555559958565555595555555955955 9555555555565 05559555535995353555555%

q Pe66666566566666666655G606660666366665E666666666606665665G6656666666606566666666666

121485 813 3RBUUMSBPIUANRINDRUADNIRIEBADRIARBBUONLESVADA DS SYUMUMIARGHOIRBI NIRRT IR

| RRRRRERRRREERR RN R R R R R R RN R R R RN
Jeossasesoosassacensceensceagocaostocdnsncoescraoenpennaco008¢8aasaeo0800808308880008

P TASS TR IR IR INENINBNTEBRI NN EEINAITHOLT SR nBINNBBEsGEIEIAIIRIIRIRD NN

5939768599999959935999999966999996993959¢9599949989995359995999993393933999999993899

\ 1
5004

Figure 2-3. End-Of-Information Card (EOI)

EXAMPLES

CONTROL STATEMENT SECTION

In the simplest case, a job consists of only one section, the control statement section.
This happens when no job step requires card input with the job deck.

Example 2-2 illustrates a job that consists of only the one section.

€/7/8/9
e————EOI CARD

/JOBNAME,, STMFZ.

CONTROL STATEMENTS

2AX44A

Example 2-2. Job Containing Control Statements Only

2-10 60372600

COMPILE SOURCE LANGUAGE PROGRAM

A job consists of more than one section if one or more job steps (programs called by
the control statements) require card input from the job deck.

Usually, a program requiring input submitted as cards looks to the next section in the
job deck for these cards. Thus, if a compiler is the first program executed, it seeks
the source language program deck in the section immediately following the control state-
ments.

Example 2-3 illustrates a job that calls for compilation of a FORTRAN source language

program.
EOI CARD
6/1/8/9 /

SOURCE LANGUAGE PROGRAM
/ (SECOND SECTION)

/ »
/ /]/I EOS CARD
7/8/9

/ .

CONTROL STATEMENTS

JOBNAME, STMFZ. l
(FIRST SECTION)

2AX45A

Example 2-3. Job With Source Language Program

60372600 D 2-11

COMPILE AND EXECUTE

Typically, execution of the program compiled by the compiler is called for following the
compilation. In this example, execution is requested through the LGO statement, LGO
is a file on which all the compilers and assemblers place object programs unless some
other file is specified. This statement is described in detail under File Name Calls. .
If this object program requires data, it is the next section after the source language
section, as shown in Example 2-4, Again, each section other than the last terminates
with an EOS card and the final section terminates with an EOI card. Notice that the
deck illustrated in Example 2-4 parallels the job illustrated in Example 2-1. That is,
it contains three sections, the control statement section, the source language section,
and the data section.

6€/7/8/9
f¢—————— EQOI CARD

yi

I
i pd —— DATA SECTION
! 4 (THIRD SECTION)

T/8/9
- EOS CARD

; 1/

I e L SOURCE LANGUAGE
g w4 PROGRAM
/ (SECOND SECTION)

77879 » EOS CARD

. /go e
| /FTN.

JOBNAME, STMFZ.

CONTROL STATEMENTS
(FIRST SECTION)

2AX46A

Example 2-4. Job With Source Language Program and Data

60372600 D

TWO COMPILATIONS WiTH COMBINED EXECUTION OF THE CBJECT PROGRAMS

Very elaborate jobs are possible, such as those that include compilation and execution
of more than one program. Example 2-5 illustrates a job containing two FORTRAN
programs. Both calls to the compiler write the object programs on a file named LGO.
The object programs are loaded and executed as a single program through use of the

LLGO control statement.

/6777879
- EOI CARD
] e
! (-~ DATA
/ 7/8/9
- EOS CARD

e

I
: FORTRAN SOURCE
PROGRAM TWO

/7/8/9
EOS CARD

! - FORTRAN SOURCE
PROGRAM ONE

/7/8/9
EOS CARD
A
| C
i //Lso0.
{
ﬁm.
/FTN.
JOBNAME , STMFZ, CONTROL STATEMENTS

2AXA4TA

Example 2-5. Job With Two Compiler l.anguage Programs

60372600 D 5-13

COMPLEX DATA STRUCTURE

The data in the job deck need not be confined to a single section or partition.

entirely on what the progr
three partitions of data.

am is doing.

/

It depends

Example 2-6 illustrates a job deck containing
In this example, the data is divided into partitions rather than
sections because the FORTRAN object program considers an EOS equivalent to EOP.

=
I A
/7/8/9 LEVEL I7g
z
| e
i/ Jd
/7/8/9 LEVEL I7g
P
| —
Y Jd
/ 7/8/9
Z
| pdd
HEy i
ﬁ/e/s
Z

@.

' J/FIN.

JOBNAME , STMFZ.

Example 2-6.

2-14

EOI CARD

DATA PARTITION THREE

EOP CARD

DATA PARTITION TWO

EOP CARD

DATA PARTITION ONE

EOS CARD

FORTRAN SOURCE PROGRAM

EOS CARD

CONTROL STATEMENT
SECTION

2AX48A

Job With Complex Data Structure

60372600 D

JOB PROCESSING 3

f

This section describes the most common steps in a job and gives further information on
the principles and techniques involved in loading and executing programs.

COMPILING OR ASSEMBLING PROGRAMS

The most common first step in job processing is translation of the source language
program into an object program, that is, into machine language. This occurs through
compilation if the source.language program is written in a compiler language such as
FORTRAN or COBOL, or through assembly if it is written in the COMPASS Assembly
language.

The request for compilation or assembly is a request for SCOPE to load the compiler
into small central memory and execute the compiler program. The compiler translates
the source language program into machine language. Table 3-1 shows the requests
needed to compile or assemble programs written in the languages available with the
SCOPE 2 Operating System. Such requests often resemble the name of the compiler
or assembler called.

TABLE 3-1. REQUESTS FOR COMPILATION OR ASSEMBLY

Language Used for Request Issued for
Source Program Compilation/Assembly
FORTRAN Extended FTN.

FORTRAN (Run) RUN(S)

COBOL COBOL..
COMPASS COMPASS.
ALGOL =80 ALGOL.
SIMSCRIPT 1.5 SIMI5,

The arrow in Example 3-1 points to the statement that results in the load and
execution of the FORTRAN Extended compiler.

Rl FORTRAN CODING FORM

JOBSAM,STMFZ,,SM,
— e |||
TAGE{TAFE[L,PCST)
11/8/9 41»1 codumn one
p

RCGRAM CNE (INPLT,CLTPL|T,TAFEL)
PRINT 5

5 FCRMAT (1kH1)
REAQ 100,EASEHFEIGHT,I

0
1o FCRMAT (2F10Q 'IW"“/\

L’
(2]
o
LIS

Example 3-1. Request for FORTRAN Extended Compilation
60372600 E 3-1

For a job that contains both a COMPASS language program and a compiler language
program, the requests and deck arrangements required for compilation and assembly
vary. They depend on the language used and the order in which the programs are to
be assembled and compiled, as well as other factors.

As you become more familiar with the compiler or assembler language, you will want
to take advantage of the several programming options available on the compiler or
assembler request statement. These options have a direct effect on the compilation or
assembly.

Some options provide different kinds of program listings, others allow you to specify
different files for input and output. All such options are described in detail in the
reference manuals for each language. The most commonly used options are listed in
Table 3-2.

The codes used for the options vary according to the language used. Options are listed
after the word (for example, RUN, FTN, COMPASS, COBOL) that calls the compiler or
assembler. The options can be in any order. The first option is preceded by a comma
or left parenthesis; the last option is followed by a period or right parenthesis. All
other options are separated by commas.

Analyze Table 3-2 to see what happens when all optional parameters are omitted. For
COBOL, COMPASS, or FORTRAN Extended, your program will be read from the job
deck and translated into a machine language object program written on a file named
LGO. A listing of your source program and any errors that may have occurred during
assembly or compilation will be written on the OUTPUT file and automatically printed.
For FORTRAN RUN, parameters are required to produce the above results; a RUN
statement with no parameters results in compilation and execution without a source
listing.

Example 3-2 illustrates a COBOL request statement that calls for the binary output from
compilation to be written on file LGO, for the source language program to be on a staged
tape named MYTAPE, and a source library to be on a permanent file named SRCLIB. Use
of staged magnetic tapes is described in detail in section 6; attaching of permanent files

is described in section 8.

COBOL CODING FORM

JOBCOB,STMFZ,SM,

STAGE (MYTAPE)
ATTACH(SRCLIB,PFNAME , ID=1DNAME)
—— > | COBOL(B=LGO, I=MYTAPE ,$=SRCLIB)

Example 3-2. Request for COBOL Compilation With Options Specified

3-2 60372600 E

TABLE 3-2. OPTIONS AVAILABLE DURING COMPILATION/ASSEMBLY
FORTRAN

Option COBOL COMPASS FORTRAN RUNTt | Extended ALGOL
Reads source omitted omitted omitted omitted omitted
language program or or or or or
from INPUT file. I I=INPUT I=INPUT I=INPUT I

or or
I=INPUT [=INPUT
Takes source I=1fn 1=1fn I=1fn I=1fn I=1fn
language from or
file named ifn. T | INPUT=1fn
Translates source omitted omitted S omitted omitted
program into ob- or or or or
ject (binary) B B B B
program and or or or or
writes it on LGO B=LGO L B=LGO B=LGO
in preparation for or or or
loading and L L L
execution. Also
produces normal
listing of source
decks.
Translates source B=1fn B=1fn B=1fn B=lfn B=1fn
program into ob- or
ject (binary) P
program and
writes it on file
1fn in preparation
for loading and
execution, Also
produces normal
listing of source
decks.
Punches binary B=PUNCHB | BF=PUNCHB B=PUNCHB B=PUNCHB| B=PUNCHB
cards of object
programs,
Compiles and G G
executes. or all optional
parameters
omitted

t1fn = logical file name, 1 to 7 characters, first character must be alphabetic,

T FORTRAN RUN also recognizes an order-dependent form of the RUN statement for which
missing optional parameters are indicated by commas.

60372600 D

LOADING AND EXECUTING PROGRAMS

The request to load and execute a program can be very simple, requiring the use of a
single load and execute statement, or can be very complex, involving the use of an
elaborate series of control statements called a loader conirol statement sequence.

COMBINED LOAD AND EXECUTE REQUEST

THE LGO STATEMENT

After the program has been compiled or assembled, the most direct way to load the
object program into small central memory and have it executed is with a simple one-
statement request. If your request for compilation or assembly does not explicitly
name a binary output file, your program is written on a file named LGO. In this case,
you can use the following file name statement for loading and execution.

1.GO.

Literally, this request tells the operating system '"load and go'. In Example 3-3 the
arrow points to the LGO statement.

CONTROL DATA .
o FORTRAN COLING FUT

JOBSAM,STMFZ,SM,

FITN.
SITAGE[GTAFEL,FCST)
— > LiG0.
7/ 8/9 kn colfumn .one
PFCGIRAM CNE (INPLT,CUTFLT,TAFEL)

T £
AT (1F1)

| 1UC,EASELFICET,T
N

Example 3-3. LGO File Name Statement

5
1|0

The loader always rewinds LGO before loading from it. If more than one compiler or
assembler writes on LGO before execution is called for, the output from all the lan-
guage processors is loaded and executed as a single program.

The compiler options permit you to specify another file as the load-and-go file. In this case,
the statement that calls for loading and execution must use the file name you designate.

3-4 60372600 E

In Example 3-4, the load-and-go file
calls for lcad-and-go of the compiled

is renamed XXX on the FTN statement.
program,

FORTRAN

CODING FOR:H

FITN (B
SITAGE
XXX o
1/8/9

{

T TT ;
JOBSAM,STMFZ,SM,

XXX}

TAPEL,POST)

n cofumn one
PRCCGIRA2M CNE

=

s

(1

NELT, CUTFY

TsTAFED)

N

/\

Example 3-4,

Renaming the Load-And-Go File

SUBSTITUTING FILE NAMES AT EXECUTION TIME
Usually, the file names you supply on the PROGRAM statement are the names used for

the files at execution time.

the program by supplying parameters on the LGO statement.

If no parameter is specified on the load-and-go statement, the files are those in the

PROGRAM statement,

XXX

In Example 3-5, the program uses files INPUT, OUTPUT, TAPE1l, and TAPE2.

60372600 E

CONTROL DATA

FORTRAN CODING FORM

TN,

.40 8y S!T[MFZ.
E

=~
[2)
o
.

h cod
PRC(Q

File definition
statements

jumin. one
RAM TEST (

Example 3-5.

INPLT,OLTP

L1, TAPEL,T

APE2,TAFEJ

———-\-_'_

/‘\’

——

=TAFEL)

e —

No Substitution of File Names on LGO

You can, however, change these names ‘when you execute

File names specified on the load-and-go statement replace the names on the PROGRAM
statement in a one-to-one relationship.

In Example 3-6 the program still uses files INPUT and OUTPUT. However, files

TAPE1l and TAPE2 have been replaced by the files named DATA and ANSW, respectively.
TAPES3 which was equated to TAPEL is also replaced by DATA. Any reference to TAPElL
or TAPES3 in the program actually references DATA. Any reference to TAPE 2 actually

references ANSW.

FORTRAN CODING FORM

.l' ' l
85y STMFZ, |
TN,

m o

GO (yfy)CATAl, ANSW)

~
on
~
0

qINPUT ,CLTHALT, TAPEL,T|/APEZ,TEPEJ=TAFEL)

T ~——

——

Example 3-6. Substitution of File Names on LGO

If the file name on the load-and-go statement specifies a file that has been equated on
your PROGRAM statement, the equate on the PROGRAM statement takes precedence.
That is, the redefinition is ignored.

Note that in Example 3-7, DATA refers to the PROGRAM parameter TAPE1=OUTPUT.
Because TAPE1 has already been equated to OUTPUT, the redefinition to DATA is
ignored. Any reference to TAPEIL in the program is actually a reference to OUTPUT.

CONTROL DATA
FORTRAN CODING FORM OATA 15 Tanored

] LY because TAPE| ls
RS already egquated to

1 / QUTPUT

L|GO (}s|DATAl ANSH)

7/8/9 in column one
PRCGRAM TEST (INFLT,(‘LTPLT,TﬂPEl=CUTFUT,TBFEE,T¢FEE)

’\-.——‘/\/-

Example 3-7. Precedence of Equating File Names

3-6 60372600 D

LOADING FROM INPUT

If you have on hand the punched binary deck of an object program, you can load and
execute the program from the job deck. This requires an INPUT statement, as follows:

(INPUT.

When load is from INPUT, the loader does not rewind the file before loading from it.

Terminate the binary deck with an EOP card or two EOS cards. If the deck is at the
end of the job deck, however, the EOI is sufficient.

Example 3-8 illustrates placement of a binary deck (sometimes referred to as a SCOPE
binary deck, an object module, or a relocatable binary deck) in the job deck.

/5/7/3/9
< EOI CARD
: /
! (~——— OBJECT MODULE
7/8/9
4 -« EOS CARD
/INPUT. }/
i
: /JOBNAME, STMFZ.
I
2AX50A

Example 3-8. Loading From INPUT

NAME CALL STATEMENT

The LGO and INPUT statements, as well as the compiler and assembler request state-
ments, are examples of a special type of loader statement called the name call state-
ment. Indeed, many of the statements you will be using in the control statement section
are actually name call statements. That is, they are statements that summon the loader
to load a program into your SCM and LCM fields and then execute it. System verb
statements, by contrast, request the system to perform some specific action without
requiring a program to be loaded into the user SCM or LCM field. The system recog-
nizes the SCOPE and loader verbs given in Table 3-3.

A file from which loading is to take place cannot have the same name as one of these
verbs.,

60372600 D 3-7

TABLE 3-3. SYSTEM VERB TABLE
SCOPE 2 Verbs Loader Verbs

ACCOUNT DSMOUNT PAUSE EXECUTE
ADDSET DUMPF PURGE LDSET
ALTER DUMPOST ¥ RECOVER LIBLOAD
ATTACH EXIT REDUCE LOAD
AUDIT EXTEND REQUEST NOGO
CATALOG FILE RESTART SEGLOAD
CKP GETPF RFL SLOAD
COMMENT LABEL RTRVSIF
DELSET LIBRARY SAVEPF
DISPOSE LIMIT SETNAME
DMP LOADPF STAGE
DMPECS MAP SUMMARY
DMPFTB MODE SWITCH
DMPJSL MOUNT SYSLIBE
DMPJT NDFILE TRANSF
DMP PASSWRD VSN
DSJW
T Reserved for system use.

CCL verbs described in section 13 are as follows:
BEGIN, DISPLAY, ELSE ENDIF, ENDW, IFE. REVERT, SET, SKIP, and WHILE.

Any other control statement is a name call statement. The distinction is made between these
statements and name call statements because no name call statement can be the same as one
of these verbs. In interpreting a control statement, the system first determines whether the
control statement is one of the verbs. If it is, it performs the requested action. If the state-
ment is not a verb statement, the system checks to see whether the statement is a name call
statement. If the statement is not recognized as either a verb statement or a name call state-
ment, a control statement error occurs.

NOTE
Many system routines and programs use internal
file names in the form ZZZZZxx. Users should

avoid assigning names beginning with five Z's to
their files.

Name call statements divide into two classes: file name calls, of which LGO and INPUT are
examples; and entry point calls, of which FTN, RUN, COBOL, and COMPASS are examples.

FILE NAME STATEMENT

This statement consists of the name of a file that contains an object program. The file name
is optionally followed by parameters used by the program to be loaded.

(Ifn(pl, PgsPgseees pn)

Thus, any program that resides on a file used by your job can be loaded into SCM and
LCM and executed simply by referring to the name of the file.

The loader rewinds the file before loading from it. An exception to this rule is INPUT,
which the loader does not rewind. ILoading continues until the loader encounters EOI,

EOP, or double EOS., A single EOS separates modules (that is, groups of loader tables
that form a program) to be loaded.

In assigning a name to a file, there is nothing to prevent you from naming a file the same as
one of the verb statements. However, if you attempt to load and execute from the file by
using a file name call, you will find that the statement is always interpreted as a system verb
statement.

3-8 80372600 E

Example 3-9 illustrates a futile attempt to load from a file that has the same name as
a verb statement. In this case, the system interprets the FILE statement as a verb,
not as a name call. A file named FILE cannot be loaded in this way. The user re-
ceives an error message because the FILE statement is missing some required param-
eters. If the file had been given a name such as EXIT, there would be no error indi-
cation.

FORTRAN CODING FORM

I I1legal attempt to —
load and-execute
B.SA Aly STMFZ, L—"1 from file named l
FITN (8i=F 1LED FILE
FIILE.

NPUT, CUTPLIT,TAFE1)

/\Nv

Example 3-9. Illegal Verb/Name Call Statement

ENTRY POINT NAME STATEMENT

The locations at which execution can begin in a program are known as entry points.
Compilers and assemblers form lists of available entry points when programs are
compiled or assembled. These lists become significant when the programs are placed
on system and user libraries because the user can name an entry point on a control
statement and cause the program containing the entry point to be loaded and executed.

The entry point name statement consists of the name of the entry point (eptname) option-
ally followed by parameters to be passed to the loaded program.

(eptname(pl, Pos Pgs -+ pn)

In interpreting the statement, SCOPE 2 first determines that it is not a verb statement by
checking eptname against the list of verbs, and then that it is not a file name by checking it
against the list of files known to the job. Failing to find it in these two lists, the system
assumes that the name is an entry point and searches for it on the libraries known to the job.
To be recognized as an entry point, the name must have been declared as an entry point in
some program on a library. If no library lists the name as an entry point, the system issues
a control statement error.

For FORTRAN and COBOL programs, the program name is a primary entry point. For

COMPASS programs, the name is not an entry point. The ENTRY pseudo instruction l
defines the name as an entry point.

All of the standard product set members (COMPASS, FTN, RUN, COBOL, etc.) and many

of the SCOPE control statements (COPY, REWIND, CONTENT, etc.) fall in the classification

60372600 D 3-9

of entry point name statements. These programs are listed as entry points on the
system nucleus library. They were placed there during installation of the SCOPE 2
system.

Remember that file name calls take precedence over entry-point name statements.

Thus, if you name a file FTN and then attempt to call the FTN compiler, the loader
will attempt to load from a file named FTN instead of loading the FTN compiler from
the library.

For entry-point name calls, loading and execution can never be separate options and
cannot involve other loader statements.

LOADING OF OBJECT MODULES

The basic program unit nroduced by a compiler or assembler is an object module. It
consists of several loader tables that define blocks, their contents, and address reloca-
tion information. An object module is sometimes referred to as a relocatable subpro-
gram. When object modules are on a file, they can be called for loading and execution
through a file name call. When they are on libraries, they can be called through entry-
point names.

In either case, loading continues until an end-of-partition card or two consecutive end-
of-section cards are encountered. The load may consist of several modules separated by
end-of-section delimiters. Additional loading of modules is required if the loaded modules
contain references to entry points in other subprograms. These are known as external
references., The process of locating and loading of modules containing the entry points
is called satisfying of externals,

Figure 3-1 illustrates a program consisting of the four object modules PROGA, PROGB,
PROGC, and PROGD. PROGA is on the LGO file produced as a result of a compilation
and assembly. The other modules are on libraries. (Loading from libraries is des-
cribed in greater detail later in this section.) An LGO statement initiates the load se-
quence followed by program execution after all the object modules have been loaded.

A labeled common block is loaded below the program block of the first module that
defines it. The first module is loaded immediately above the job communication area.
This 1008-word area is shown in Appendix B.

PROGRAM IMAGE MODULES AND HOW THEY ARE LOADED

The program image module, also referred to as the loaded program or an absolute
program, is the contents of the SCM field and the LCM field produced by the load
operation.

When the program image module is copied onto a file, it is sometimes referred to as
an overlay. A program image module on a file can be reloaded and executed at any
time through a file name call. If the program image module is placed on a library, it
can be called through an entry point name.

Because a program image module is usually the product of an object module load se-
quence, all of its external references have been satisfied. No manipulation of data is
necessary. Loading is very swift and can consist of the one module only.

A program image module is also known as a "binary machine language program'' be-
cause it requires no processing whatsoever before execution.

3-10 60372600 D

RAS + RASFL
A

ANY OR ALL OF
BLANK COMMON MODULES REFERENCE
BLANK COMMON BLOCK.
LARGEST DECLARATION
IS USED FOR STORAGE
ALLOCATION.

PROGD - ,

PROGC [

LABELED COMMON BLOCK
(REFERENCED FIRST IN PROGC)

PROGB REFERENCES
ENTRY POINTS IN
PROGC AND PROGD.

PROGB

PROGA REFERENCES

PROGA — ENTRY POINTS IN
PROGB.

LABELED COMMON BLOCK
(REFERENCED FIRST IN PROGA)

RAS + IOO8
RAS+ O JOB COMMUNICATION AREA

2AXBA

Figure 3-1. Structure of Loaded Program

LOADING AND EXECUTION AS SEPARATE OPERATIONS

Suppose you want to load object modules from two different files and execute them as
a single program. This is not possible using just the file name call. It becomes
necessary to separate the load operation from the execute operation.

Another reason for separating the load operation from execution is if you wish to obtain
a load map, but do not wish to execute the program.

60372600 C .11

LOAD AND EXECUTE

To illustrate how the load operation can be separated from execution, replace an LGO
statement with the following two statements.

LCADWLGO)

EXECUTE.

These two statements combined perform the same action as the LGO statement alone.

LOAD FROM MULTIPLE FILES AND THEN EXECUTE

You can tell the loader to load from more than one file either by specifying all the files

to be loaded on one LOAD statement or by using several LOAD statements prior to the
EXECUTE statement.

The following are equivalent: either sequence causes files ALPHA, BETA, and GAMMA

to be loaded and executed as a single program. Remember that the files must be local
to the job.

e

LOAG(ALPHA)
LOAD(ALFHA,EETA,GANNA) LOAGC(BETA,GAMMA)

EXECUTE. EXECUTE.

Another alternative is to use LOAD to load from one or more files and then call for the
final load and execution through a file name call,

60372600 C

Example 3-10 illustrates this technique.

/ 6/7/8/3

OBJECT MODULE TwO

N\
4

—/1/8/9

(< FORTRAN SOURCE DECK
/ NPUT.

| ﬂmou_so)
{
1 = P OBJECT MODULE ONE
(: D IS ON FILE LGO
JOB, STMFZ. n
2AXS51A

Example 3-10. Load From LGO and INPUT; Then Execute

LOAD WITH NO EXECUTION

If you want to load from a file but do not wish to immediately execute the program,
replace the EXECUTE statement with a NOGO statement.

LCAC(LGC)
\QOGC,

The NOGO tells the loader that no more loads are to take place and that execution is
not to occur. If a map is requested, the loader generates the map but does not execute

the loaded program.

60372600 D 3-13

USING NOGO TO GENERATE PROGRAM IMAGE MODULES

In addition to using NOGO to inhibit program execution, NOGO can be used to write the
loaded program onto a file as a single program image module. To do this requires
the following NOGO control statement.

f NOGO(1fn)

The file name is required for this application. One application of this technique permits
execution of programs that would otherwise exceed available LCM. The following se-
quence illustrates this use.

LCAC(LGC)
NOGC(X)
Xeo

Generate program image module
Load program image and execute

LOAD SEQUENCES

The LOAD(LGO) statement followed by EXECUTE or NOGO is an example of a series of
loader control statements known as a load sequence. Usually, a load sequence consists

of a series of loader control statements terminated by an EXECUTE, a NOGO, or a file
name call. The entry point name call is a special case because the load sequence consists
of the entry point name call only. Other loader control statements are LDSET, LOAD,
LIBLOAD, and SLOAD.

As illustrated in Figure 3-2, load sequences are not interpreted in the same way as
SCOPE verb statements. The set of statements making up the loader sequence resem-
bles a single job step. The system accumulates all of the statements in a load sequence.

When the system encounters a terminating statement, the loader processes the entire
sequence and satisfies any unsatisfied external references.

Note that for compatibility with previous systems, four SCOPE control statements,
COMMENT, DMP, MAP, and REDUCE are recognized within a load sequence. Any
other SCOPE control statement or entry point statement such as RUN(S) or COMPASS
is illegal inside a load sequence and causes job termination with the message lfn FILE
UNKNOWN.

3-14 60372600 E

| PROCESSING
OF LOADER
CONTROL
STATEMENTS

ENTRY POINT YES
NAME-CALL
STATEMENT?

NO

STORE LOADER

YES

CONTROL STATEMENT]
AS LOADER REQUEST

READ NEXT
CONTROL
STATEMENT

MAP, DUMP, \YES
OR REDUCE ?

NO

LOADER
CoNTRaL \NO/ COMPLETION
STATEMENT? STATEMENT?

|
|
|
|
|
|
i
|
|
!
i
|
|
1
I
I
|
t
!
!
1
|
1
|
|
I
[
1
!
|
!
I
!
1
1
I
I
|
|
I
|
!
[
I
i
|
I
|
|
[

NOY YES §
ABORT LOADER PERFORMS
JOB LOADS ACCORDING TO
STEP LIST OF LOADER
REQUESTS
Figure 3-2.

60372600 E

BEGIN END- OF - JOB
JOB PROCESSING
l
SCOPE READS
NEXT _CONTROL
STATEMENT
()YES TERMINATE
EOI? A
NO | YES
(EXIT ves | PERFORM TERMINATE) NO |
STATEMENT? PRCCAISING - "508> HO——
NO |
SCOPE PERFORM
CONTROL REQUESTED
STATEMENT?2 ACTION
NO
LOADER
CONTROL
STATEMENT

LOADER INITIATES
AND COMPLETES
LOADING

LOADED

EXECUTED

MODULES ARE

PERFORM
REQUESTED
ACTION

COMPLETION

NO

|

STATEMENT
IS NOGO?

YES

Processing of Control Statements

2AXSA

3-15

Thus, the following sequence is illegal:

LOSET(PRESET=ZE£K0)
RUN(S)

Begin load sequence
Entry-point name illegal
in loader sequence

However, the following is legal:

P —— ——

LOSET(FRESET=ZERQC)

LGO. Begin load sequence

File name completes
loader sequence

SELECTIVELY LOAD MODULES FROM FILES

Suppose a file has a number of object or program image modules on it and you wish to
selectively load one or more modules. A file name call cannot be used because that.
would load all of the modules nor can an entry point name call be used because the file
is not in library format and cannot be declared as a library. Similarly, the LOAD state-
ment does not apply because all the modules are on the same file, not separate files.
The statement that is needed is the SLOAD loader control statement.

(SLOAD(lfn, modnamel, modnamez, modname3, e modnamen)

SLLOAD causes the loader to search the file for the modules named (modnames) by
looking at the PRFX table that precedes each module. The PRFX table is a loader table
created in all object modules and serves to identify the program to the loader. A
module name is the program name assigned to the source program through the FORTRAN
PROGRAM, SUBROUTINE, or FUNCTION statement; COBOL Identification Division; or
COMPASS IDENT pseudo instruction. In addition to being the name of the program,

this name is usually a primary entry point in the module,

Each module is a section on the file. Loading terminates upon encountering the end-of-
section, end-of-partition, or end-of-information.

Remember that for execution to occur, you must complete the load sequence with
EXECUTE or a file-name call. Also, since only selected modules are loaded from the
file, references usually linked with the remaining modules will have to be satisfied from
libraries,

3-18 60372600 D

Example 3-11 illustrates a load sequence that uses SLOAD to load modules ABLE,
FRANK, and XRAY (in the sequence encountered on the file) from a file named PROGS.
The file may contain many programs in addition to those to be loaded.

*

JOB,STMFZ. (

EXECUTE.

7/8/9 4u_column one
\M

Example 3-11. Selective Load From a File by Program Name

SLCAD(PRCGS,)‘RI\Y,AELE,FPM\K)} Single load sequence

SETTING LOAD SEQUENCE CHARACTERISTICS

The LDSET loader control statement is a general-purpose statement that allows you to
isti a specific load sequence. It has the following form:

o+
o
0
n
=
o]
[

ﬁDSET(optionl, optionz, option3, cees optionn)

Each option consists of a keyword which may or may not be equated to a parameter. You
can use LDSET statements anywhere in the load sequence.

Options include the following:

ERR=level Determines level (ALLL, FATAL, or NONE) of error for
which loader aborts load and does not initiate execution.
The option is described under Setting Loader Error Options,
section 12, The default is for FATAL errors to result in
job termination.

Specifies list of library files to be searched when satisfying
externals. This is described under Using Libraries in this
section. The default is the system library declared by the
compiler during compilation.

LIB=lfny/Mng/. .. lfn,

MAP=p/lfn Specifies degree of load map produced and file on which map
is to be written. This is described under Obtaining Load
Maps, section 12, The default map is determined by an instal-
lation parameter or a MAP statement. The default file name
is OUTPUT.

60372600 E

PRESET=value Specifies that user SCM and LCM fields are to be preset to
the indicated value. The default is for no presetting to occur.
The option is described under Presetting Memory, section 4.

REWIND and NOREWIN Specifies file positioning prior to load. Default is REWIND.
This option is described under Rewinding of Load Files,
section 4.

Example 3-12 illustrates a load sequence that contains two LDSET statements. The first
statement requests that memory be preset to zeros and that a partial map be written on
file XXX. The second statement requests that subsequent files be not rewound and that
libraries RUNLIB and COBLIB be used for satisfying externals.

CONTROL DATA

JOB,STMFZ,

LOCSET(MAP=E/XXX,PRESET=ZERC)

LOAD (MYFILE) Single load sequence
LDSET(NCREWIN,LIB=RUNLIEB/COELID)
LCAC(A)

EXECUTE.

e

Example 3-12. Using LDSET Statements in Load Sequence

USING LIBRARIES

Several times we have alluded to the use of libraries as the source of object modules
and program image modules to be loaded. Now let us consider what libraries are and how
you determine which libraries are searched.

DEFINITION OF LIBRARY
A library is a collection of program image modules and/or object modules that can be

efficientlv accessed bv the loader through a directory. Libraries are generated using
the LIBEDT program. Libraries can be either system libraries or user libraries.

3-18 60372600 E

SYSTEM LIBRARIES

When the operating system was installed, several system libraries were placed on mass
storage as permanent files. (A system library need not be attached to be used; it is

not a permanent file in the usual sense.) The names of these libraries are maintained

in a system library table. Often, the programmer will make use of these libraries
without being aware of it. This is because the compilers all make external references

to modules on system libraries. When the loader loads the object program, it knows to -
search the proper system library through a library declaration that the compiler inserted
into the object program. As a result, object time programs for FORTRAN RUN declare
a library named RUNLIB. Object programs for FORTRAN Extended declare the library
named FORTRAN. COBOL object programs declarethe COBLIB library. Generally a systems |
analyst can tell you the names of system libraries at your site.

THE NUCLEUS LIBRARY

One system library file, the NUCLEUS, contains most of the operating system and pro-
duct set members. The NUCLEUS library contains only program image modules. It con-
tains no object modules and cannot be searched to satisfy externals. The contents of
NUCLEUS are determined when the operating system is installed.

USER LIBRARIES

The user can create libraries, and direct the loader to satisfy externals from them
instead of or in addition to the system libraries. A user library must be an input file
for the job; it cannot be a magnetic tape file.

LIBRARY SETS

A library set is the list of libraries to be searched for entry point names and for satis-
fying externals. The user can declare that a library set be used for all subsequent loads
in the job until further notice is given to the loader. This is called a global library set.
The user can also declare a second, temporary library set, that is, a list of libraries

to be used for a single load sequence in addition to the global set. This is called the
local library set. In either case, a library set can consist of both system and user
libraries, but the number of user libraries is limited to five. The maximum size of a
library set is ten libraries. The NUCLEUS library is not considered as part of a library set.l

THE SEARCH FOR ENTRY POINT NAMES

As previously noted, the loader searches the library set for entry point names when the
loader request consists of an entry point name. The search takes place after the system
has eliminated the possibility that the name is either a system verb or a file name.
The library sets are searched in the following order.

The global library set, if any

The local library set, if any

The NUCLEUS library
THE SEARCH FOR EXTERNALS

When the loader is attempting to satisfy external references encountered during an object
module load, it searches library sets in the following order.

60372600 E 3-19

The global library set, if any.

The local library set: The local library set automatically includes as a minimum
the system library referenced by the compiler used. The RUN compiler refer-
ences RUNLIB, the FTN compiler references FORTRAN, and the COBOL compiler
references COBLIB.

The system searches all libraries in the set for all unsatisfied externals. If there are any
externals left unsatisfied, the user can be sure they are not in any library of the set.

NUCLEUS is not searched. It contains program image modules only and cannot be used for
satisfying externals.

The loader does not attempt to satisfy externals until it encounters an EXECUTE, NOGO,
or file name call in the load sequence. This is sometimes called load completion.

DEFINING THE GLOBAL LIBRARY SET

With a LIBRARY statement, you can define your global library set, declare a new global
set, or add to an existing global library set, Place the statement in your SCOPE control
statements prior to the loader sequences in which you want to use the libraries. The
LIBRARY statement is not a loader control statement and must not occur in a load sequence
(for example, between LOAD and EXECUTE). The LIBRARY statement has the following
format:

(LIBRARY(libnamel, libname,, libname,, . . ., libname)

The library files are searched in the order listed. If a user library (local file) and a sys-
tem library have the same name, the user library takes precedence. Ten libraries can be
specified with a maximum of five of them being user libraries. It is possible to completely
nullify a previous set and declare an empty set by using the LIBRARY statement with no
parameters.,

Example 3-13 illustrates a job that creates user library, LIB. The LIBRARY statement
declares this library to be a member of the global library set to be used for satisfying ex-
ternals when LLGO is loaded. It takes precedence over FORTRAN, the system library auto-
matically entered in the local library set.

FORTRAN CODING FORM

Generates directive
causing FORTRAN to
be searched as a

‘bataﬂl TVF focal library
~ s
FTh. 4
< Statements
defining L!B
LIERA Y(LIE) g
1/ 8/9 Jg~sbumn one

Declares LIB as
global library

PRCGRAET~CAE (INPLT, CUTPL

RINT 5
5 FCRMAT (1H1) \\“-\\\\

110 REAC 1UCEASE GWEIGHET, I N
to | ForMaT(2F10.2T)1) Loader searches
: IF (I.G gl Tc 120 global library LIB
i, . oS TC 4G ‘ and local !ibrary
e named FORTRAN
3-20 50372600 =

xample 3-13. Defining Global Likrary

To retain a previous set as part of a new set, use an asterisk in place of a library
name to indicate the point in the new list at which the previous global library set is to
be inserted.

In Example 3-14, the first LIBRARY statement defines the global set as consisting of system
library FORTRAN and user libraries A and B. After execution of the deck on INPUT, the

second LIBRARY statement defines the global set as consisting of system library FORTRAN
and user libraries A, B, C, and D.

CONTROL DATA

JGB,STMFZ,
ATTACH(A,8,IC=A)
LIBRARY (FORTRAN,A, B)
INFLUT.
LIBRARY(*,C,D)
LOAD(INPUT)
INPUT,.)
7/8/9 in column one

(EINARY CECK CNE)
7/8/9 Level 17

(BINARY CECK TW(C)
7/8/9 Level 17

(BINARY CECK THREE)
6/7/8/9 in cofumn one

Example 3-14. Combining New and Old Library Sets

DEFINING THE LOCAL LIBRARY SET

Use the LIB option on the LDSET loader control statement to declare a library local to
the load sequence. Place the LDSET statement inside the load sequence for which the

library is to be used. The LDSET statement is a loader control statement and either

initiates or continues a load sequence.

LDSET(LIB =libn:aLme1 /1ibname2 /libname3 /libnamen)

Library files can be either system or user libraries. Libraries are searched in the
order listed.

Any library declared by a compiler or by a previous LDSET statement in the load sequence
is added to the list of local files. Clear the local set by omitting all parameters. This also
clears any previous compiler library declarations (for example, it clears FORTRAN which
is declared by the FTN compiler). If no global library set has been declared and the user
clears the local set, there is no way for externals to be satisfied. No libraries are avail-
able to be searched. As previously noted, LDSET has many optional parameters of which
LIB is only one. LIB can occur in any parameter position in the LDSET statement.

60372600 E 3-21

In Example 3-15, there is no global library set; the local library set consists of

§ FORTRAN and ULIB.

)

Declares system |ib-
FORTRAN CODING FORM rary FORTRAN as

CONTROL DATA

JL’JESAP ST“HI?Z /,.——-" local library
1 - .

o Statements defining
LE;ET(LIE=ULIE) user florary ULIB
LIGC. :

7 3/9‘ 20 n One\ I /i — :
RCORAY CNE (IMPUT, CUTPUTicr | Adds ULIB fo ioca
RINT 5 f fiprary set
5 CRMAT (1F1)
1o EAC| 1G0,EASE,FOLT,]
- MAT(ZF11.2111)
*“1‘” 0 AT(-; :i)) éC TC 123 Loader searches
x \' local libraries
FORTRAN and ULIB

Example 3-15. Defining a Local Library

LOADING DIRECTLY FROM LIBRARIES

Now that you know how to declare libraries in global and local library sets, you can tell
the loader to load from them. One loader control statement that can be used is the
LIBLOAD statement. LIBLOAD loads one or more modules from a library in a global
or local library set. Modules are specified through entry-point names.

(LIBLOAD(Iibname, eptname,, eptnamez, eptnameS, e eptnamen)

The first parameter must name the library containing the entry points. If one module
contains more than one of the entry points, fewer modules are loaded than entry points.

3-99 60372600 E

Example 3-16 illustrates a load sequence containing a library load request. Library
USER contains entry point names ALPHA and BETA. Notice that a statement that
terminates the load sequence must follow the LIBLOAD statement before execution can
occur. In this case, the file name statement for HEIDI completes loading and begins

execution.

JO? »STMFZ. Statements |
./ defining HEIDI

ATTACH(USERj o)
LOSET(LIE=USER)
LIBLOAD(USER,ALPHA,BETA)
HEICI.

Example 3-16. Direct Load From Library Using LIBLOAD

LOADING PARTITIONS FROM LIBRARIES

LIREDT allows each partition on a library to be named. The name is either the pro-
gram name for the object module or program image module in the partition, or is a
name assigned by the creator of the library. The LOAD and SLOAD statements both
provide options for loading a partition by name from a given library. Instead of entering
a file name on the LOAD or SLOAD statement, enter a library name and a partition
name in the form libname/pname.

60372600 D 3-23

LOAD allows loading of modules from both libraries and files, as shown in Example 3-17,

1

Generates ob ject
—~ module SUB on LGO2

JOR,STMFZ,
ATTACHU(A,PERNM,IC=A) (

FIN(B=LGC1) Writes SUB as par-
COMPASS(E=LGC2) tition on LIB

{LIBEDT (V) -
LCAG(LGC1,LIE/SLB) ’
Ae
8/9 in column one \ Loads object modules
1081 (FORTRAN SCURCE FRCCRAM) from flle LGOI and
7/8/9 in column one from partitionSuB on
(COMPASS SUEBPROGRAM) LIB

7/8/9 in colum one
(LIBECT CIRECTINES)

i LIBEDT generates
9 Lumt one ge
/8l tﬂf:) \ library named LIB

11/819 in columm one containing partition

Example 3-17. Load Partition From Library Using LOAD

With SLOAD it is possible to load one or more modules from the partition indicated
(see Example 3-18).

Remember that I.LOAD and SLOAD are loader control statements and can be used only in

load sequences. Note that SLOAD allows loading of several modules from a partition.
For LOAD, if the partition contains more than one module, only the first module is

loaded.

Léads modules SUB!
JOB,STMFZ,
ATTACH(LIE,PERFILE) /:"'d Sélag froTlgan‘l-
SLOAD(LIB/SULB,SUB1,SUEJ) ngn on rary
EXECUTE.

7/8/9 in colum one
(DATA)
6/7/8/9 in column one

Example 3-18. Load Partition From Library Using SLOAD

3-24 60372600 D

PROGRAM AND JOB OPTIONS 4

—

SCOPE 2 provides several options for overriding system defaults that normally affect
every load during processing of the job. For example, a user can specifically designate
the size of the SCM and LCM fields instead of having the loader assign a field length

or he can tell the loader to always set the SCM field or the LCM field to a predeter-
mined value before loading. This section describes how these options interrelate with
the system-defined default values and tells why a user may want to use them.

Because none of these options is required for normal job processing, the user may
omit this section and continue with section 5.

USING MEMORY
USER SCM

Each user job is composed of at least an SCM field length image, the length of which
depends on the memory management mode selected by the user and may vary from job
step to job step as the job progresses through execution.

USER LCM

A user job may also have an LCM field length image which may contain operands for
the user program. The length of the user LCM image is also controlled by the way

the user structures his job and by the user's selection of memory management mode.
JOB SUPERVISOR LCM

In conjunction with any user job there is always a fixed-length job supervisor (JS) resident
contiguous with the user's SCM image. This job supervisor also maintains a work

area in LCM, outside the user LCM, if any, which contains various tables required for
processing the job. The size of JS LCM is variable (minimum length is 1024 words),
depending upon job I/O activity.

1/0O BUFFERS IN LCM

SCOPE 2 also allocates and manages all I/O buffers associated with files used by a job,
These buffers are contained in LLCM outside the user LCM field length. Each buffer is
512 words., The number of buffers allocated varies according to the number of files
used by the job and according to current file I/O activity during job processing. In
particular, the following system files are assigned to each job regardless of the job's
other file activities.

The job dayfile
The job control file containing the job control statements

The SCOPE 2 file containing the system library (NUCLEUS). This file requires
0 through 124 buffers

The absolute minimum number of buffers for a job is four,

60372600 E 4-1

MAXIMUM AVAILABLE LCM

The maximum LCM field that a user could request is either 400,000, or 1,400,0008,
depending on the half or full system configuration.I If a user attemp?s to request more
LCM than is available in the system, he receives a message informing him that the
LCM limit per job has been exceeded.

The maximum LCM field length assumes a minimum of four system buffers. In actual
practice, this minimum is often difficult to achieve. However, by using the following
techniques, the user can expect to have access to the maximum LCM for his job., A
user may not need to employ all of these techniques to run a job using LCM. In fact,
if all these procedures are required, it may be a good idea to reconsider the program's
use of L.CM,

1. Use a RETURN (Ifny,...,1lfn,) statement to return all files no longer needed.
If you have created one absolute program image of your program, the followmg
files can be returned.

ZZ22ZZNC System NUCLEUS library
LGO Relocatable binary file
Although the library file names listed above are quite common, system library

names may be different at your site, Check with a systems analyst if you are
uncertain about system library names.

You can also return any local or global library files you may be using.
2. Restrict the number of buffers allocated for any I/O operations on a given file.
a. For mass storage scratch files, you can ensure that only two buffers
are allocated by using the T parameter on the REQUEST statement

for each mass storage file or on the STAGE statement for each staged
file.

PRE

REQUEST(lfn, T) or STAGE(lfn, POST

T)
Refer to Transfer Unit Size, section 9.

b. In addition, the number of buffers per file will be further reduced by
one if you change the file organization from sequential (default) to
word-addressable by specifying

FILE(ifn, FO=WA)

Refer to Access Methods, section 5.

l TA site may elect fo reduce or increase the maximum during system deadstart, More
field length is available with large LCME memory.

4-9 60372600 E

¢c. Buffer space for on-line tape files is a function of physical tape block
size., Normally, tapes with short blocks will use up to five LLCM
buffers (5000 octal words). Tapes with long physical records
require additional buffers. The maximum buffer space needed for any
on-line tape can be reduced by half by suppressing read-ahead via the
FILE statement SPR parameter; for example:

))

REQUEST (1 £, HY,MT , VSN=xxxxxx)
FILE (! fn,RT=S,SPR=YES)

L—-’N

Note, however, that reducing the number of buffers for an 1/ O-bound
program may significantly increase running time. It may be necessary
to balance LCM requirements against I/O requirements. The SPR
parameter is described further in section 6.

AUTOMATIC MEMORY MANAGEMENT

User SCM and LCM field sizes either are automatically determined by the loader or
are specifically defined by the user.

The most common, most efficient, and easiest way of managing SCM and LCM field lengths
is by using the automatic mode. This mode {(also called dynamic field assignment and
system controlled mode) is the system default. It is initially in effect for small central
memory if the CM parameter is omitted from the job identification statement and is in
effect for large central memory if the EC parameter is omitted. Automatic mode is over-
ridden for the applicable memory type if CM or EC is specified on the job statement, or if
an RFL control statement is used.

Automatic mode applies separately to SCM field size and LCM field size, One can be
user controlled while the other can be in automatic mode,

Example 4-1 illustrates a job that consists of five job steps. The FILE and STAGE
statements involve the control statement processor only, which uses about 1000, words
of SCM and does not need any LLCM. UPDATE executes in the user field length in two
passes, each of which has different SCM requirements. ULANG is a fictitious compiler
that executes in the user field length. It has low SCM requirements and high LCM
requirements, These requirements vary with each of the three passes, The final step
is object program execution (LGO). In this example, the object program requires both
SCM and LLCM. The SCM requirements are increased when an overlay load occurs.
Requirements for object programs depend entirely on the source program.

When automatic memory management is in effect, the only limitation on the size of the
SCM field length for a job step is the amount of SCM available to all users in the system.
This is 60000g for 32K systems and 160000g for 65K systems. Any time the loader is
called, the amount of memory assigned to the job is reevaluated.

LCM limits are slightly more complex because system I/O buffers for a job are in LCM
but are not in the user LCM field length. Thé sum of the memory used for buffers and
for LCM field length (FLIL.) cannot exceed an installation parameter that is normally set
at 400000g for 256K systems and at 1400000g for 512K systems.

60372600 E 4-3

CONTROL DATA

JOB,STMFZ,S)
FILE(OLDPL,RT=S7 No CM or EC
STAGE(CLCPL) parameter
LPCATE. T
LL’GLA(?‘G' ~— | Fictitious 3
7/8/9 in column one pass Compifer
(LPCATE CIRECTIVES)
6/7/8/9 in column one

_______ -====—=-<«—JOB DEPENDENT
]
|
! OVERLAY
SCM FIELD UPDATE LOADER
———
t
PRIMARY
LOADER ! LOADER LOADER
! ULANG o
MAIN | MAIN
FWAS H H
FLL
----- T--—-7---— =<—JOB DEPENDENT
! I
i 1
| 1
1 1
!]
i
i 1 JOB DEPENDENT
I e w
LCM FIELD ! !
1 1
| 1
1]
]]
[}]
] i
]]
] f
[} i
]]
o
FWAL ! !
le I Sl) Sle . |
O|®| ® i ® | ® i

2AX524

Example 4-1, Job Using Automatic Memory Management

4-4 60372600 B

After each load, the system increases or decreases the field lengths to meet the changed
requirements. Each call for the loader results in loader execution in SCM (about 3000
words). The loader uses tables in system buffers in LCM, but these buffers are not 8
in the user LCM field length and do not affect the amount of LCM required for field
length.

'USER-CONTROLLED MEMORY MODE I

Although user controlled memory management is provided primarily for compatibility
with other systems, certain types of programs cannot execute under automatic mode.
For these programs, the user must explicitly specify memory requirements.

Automatic mode cannot be used in special cases such as when the program legally con-
tains a reference to a memory location that exceeds the highest address loaded with
the module (for example, it references a blank common block that is not known to the
loader). Only COMPASS allows this type of condition to occur legally.

CONTROLLING SCM

The amount of SCM assigned for the job can be determined either by the CM parameter
on ‘the job identification statement or by a parameter on the RFL control statement.

CM parameter: On the job identification statement, enter the amount of SCM to be
assigned to the job as an octal value prefixed by the letters CM.
The amount of SCM assigned the job is the exact amount specified
by the CM parameter. Unlike SCOPE 3.4, no roundup of the value
occurs. Any attempt to load a program beyond this fixed amount of
SCM causes job termination, SCM cannot be set below 1000g, the
amount required for interpreting control statements nor can it be
set above an installation defined value,

Example 4-2 illustrates a job using the CM parameter. In this
example, the program being loaded occupies 5000, words of SCM

and no LCM. However, the program references addresses in SCM
above 5000, that the loader is unaware of because they are initially
empty and were not generated as part of the program image module l
to speed up loading. This technique is described in the COMPASS
Reference Manual,

60372600 D 4-5

JOB,STMFZ,CM20008.
ATYACH(PROGA,PERMFILE,ID=XX)

FLS=20000g

SCM FIELD

50008

FWAS

LOADER

BUFFERS

PROGRAM IMAGE
MODULE

AUTOMATIC MODE WOULD
HAVE SET FLS HERE.

Example 4-2.

2AX53A

Using the CM Parameter to Control SCM

60372600 D

RFL statement: Use the RFL statement to change from automatic control of SCM to
user control or fo change the amount of SCM assigned to your job.
Enter the amount of memory needed as an octal value. Place the
statement before the load sequence to be affected. The RFL state-
ment cannot occur within a load sequence.

Example 4-3 illustrates a job that initially acquires 30000 words of
SCM through dynamic allocation and then reduces the requirement to
5000 words before loading the second program.

CONTRCL DATA

J0B,STMFZ,

|PROG1.

RFL(5000)

PROG2.

7/8/9 in column one

Example 4-3. Using the RFL Statement to Control SCM

60372600 D 4-7

CONTROLLING LCM

Although some programs do not have any LCM requirements, others make heavy use of
LCM. The FORTRAN Extended, RUN, COBOL, and COMPASS languages all provide
for using LCM.

Compiler or Assembler Language Element That Uses LCM
FORTRAN Extended and RUN LEVEL statement where level is 2 or 3
COBOL SECONDARY STORAGE section
COMPASS USELCM pseudo instruction

If LCM is under user control, remember to schedule LCM for object programs that
use these statements.

Set the amount of LCM assigned to your job (excluding L.CM buffers) through the EC
parameter on the job identification statement or by an RFL statement.

EC parameter: On the job identification statement, enter the amount of LCM needed
in octal thousands prefixed by the characters EC. The COBOL com-
piler requires at least 40000, words of LCM; the COMPASS assembler
requires at least 26000B words.

(IOBNAME, STMFZ, EC16.

The preceding job identification statement sets LCM to a fixed value
of 160008 words.

RFL statement: Use the RFL statement to declare user control of LCM or to change
a previous field length assignment. This statement cannot occur
within a load sequence (for example between a LOAD statement and
an EXECUTE statement).

Enter the amount of LCM in octal thousands prefixed by the characters
L=. There is no minimum for LCM; it can be 0.

[RFL(L=16)

The preceding statement sets LCM to a fixed value of 160008.

RETURNING TO AUTOMATIC MODE

Return the job to automatic mode by placing a REDUCE statement in the control state-
ments as soon as possible.

To return both fields to automatic mode, use REDUCE with no parameters. Otherwise,
use an S to indicate SCM or an L to indicate LCM.

4-8 v 60372600 D

In Example 4-4, automatic memory management is in effect for the loading and execution
of program ABLE. The RFL statement sets SCM field length to 60000g for the loading
and execution of BAKER. When BAKER has terminated, the user specifies return to
automatic memory management through a REDUCE statement. CHARLIE is then loaded
and executed under memory management,

\
/ No CM parameter

108,STMFZ. <~ T I

* Flle related

C statements
ABLE. 1
RFL (60000)
FOAD(EAKER)‘\ User control
EXECUTE., of SCM
REDUCE . ,
ICHARL IE.

* Return to

° automatic mode

Example 4-4. Mixed Mode Control of SCM

In Example 4-5, SCM and LCM management are initially under user control through the
CM and EC parameters. Program ALPHA can reference the assigned field lengths but
must not initiate any loads that would exceed these limits. In the load sequence for
BETA, however, the management of LCM is returned to automatic through a REDUCE(L)
statement. Note that this statement is a SCOPE control statement. It is allowed to
occur within a load sequence for compatibility with previous operating systems. The
preferred location for the REDUCE statement is before the LOAD(BETA) statement
which begins the load sequence.

Following execution of BETA, the user again assumes control of LCM through an RFL
statement requesting 130000, words of LCM. Finally, for the loading of GAMMA, the
user returns SCM control to automatic with the REDUCE(S) statement.

Unlike SCOPE 3.4, SCOPE 2 allows the value specified on the RFL statement to exceed

the value specified by the corresponding EC- or CM parameter on the job identification
statement.

60372600 D 4-9

3

1
JOB,STMFZ, CHS 0000 ,EC120. 4

User control through
CM and EC

“| parameters

1

‘ALPHA.
[HLOAD(BETA)

File related
statements

REDUCE (L)
EXECUTE. \

RFL (L=130)

Changes LOM to
automatic mode

[REDUCE (S)

—

GAMMA, \

. Changes SCM to
. automatic mode

Return LCM to
user control
through RFL

Example 4-5.

| PRESETTING MEMORY

When the loader determines the SCM and LCM field lengths (either dynamically or under
user control), it has the option of setting the fields to an installation specified value or of

W\‘

Mixed Mode Control of Both SCM and LCM

not setting the fields. For this discussion, let us assume that the installation default
specifies no presetting of memory.

One option available is telling the loader to preset the field length for each load sequence
through the use of the LDSET PRESET option. Enter one of the parameters given in
Table 4-1 prefixed by the characters PRESET=. One reason to preset memory is to
ensure that any read reference preceding a store into blank common will return zeros.
In this case, use LDSET(PRESET=ZERO).

For NGINF, each location contains its address in the lower bits. For example, if
locations RAS + 1()008 and RAS + 10018 are unused, they are set to

4000 0000 0000 0000 1000
and
4000 0000 0000 0000 1001

For SCM, addr is a maximum of 18 bits. For LCM, it is a maximum of 21 bits.

4-10 60372600 D

TABLE 4-1. PRESET OPTIONS

Option Octal Preset Value

NONE No presetting

ZERO 0000 0000 0000 0000 0000
ONES A Y Y O O B O o o B A A
INDEF 1777 0000 0000 0000 0000
INF 3777 0000 0000 0000 0000
NGINDEF 6000 0000 0000 0000 0000
NGINF 4000 0000 0000 addr
ALTZERO 2525 2525 2525 2525 2525
ALTONES 5252 5252 5252 5252 5252

INSERTING COMMENTS IN THE PROGRAM LISTING

Comments help provide a history of a job. Insert special comments or remarks after
the terminator on any control statement. Such remarks are useful in interpreting pro-
gram listings, or in providing general information. Example 4-6 illustrates some con-
trol statements that include comments.

T TT | T ' i
J0B,STMFZ,SM, REQUIRES CDC CYBER STATION :
S
CE. STATEVMENT HERE IF KT=S FCR SCURCE
S GUIRES WR[ITE RING
FITN(I CN FILE XX
COMMEN PILER LSEF STAGEL SLURCE FILE
LGO. JECT PRCGRAM EBCST S[TAGE TAFE
6

Example 4-6. Comments in Dayfile Listing

Another way to introduce comments is through a COMMENT control statement. Any
remarks can occupy columns 9 through 80 following the period after COMMENT. Com-
ments can include any characters except the double colon which has special significance
because it may be interpreted as a 12-bit zero byte (end-of-line). Blanks, periods,
and other punctuation are allowed.

Remarks following COMMENT. are printed in the dayfile and the first 50 characters of
the statement including COMMENT,. are displayed to the operator on the console screen
at the originating station. If you have a message to the operator, however, use PAUSE
rather than COMMENT. because comments from the COMMENT statement may not be
displayed at the console long enough for the operator to-see-them, If a comment is
too lengthy to fit on the line of coding, it can be continued on a second and subsequent
COMMENT statement (Example 4-7).

4-11
60372600 E

CONTROL DATA

JOB, STMFZ,

CCMMENT, ¥E® THIS UCE CALCLLATES THE RESISTAMCE, CAFACITEMNCE,
COMMENT . yex

IN[**»
INCUCTARCE CF CIRCLIT FI2€& IN THE SAKER CSCILLATCR *%%

Example 4-7. Comment Two Lines Long

PAUSE FOR OPERATOR ACTION

The PAUSE statement allows the user to give an operator at one of the stations specific
directions regarding the processing of your job. A PAUSE statement causes a message
to remain on the console screen until it is acknowledged by the operator. Meanwhile,
the job has halted processing. The operator acknowledges the message and restarts
the job by typing GO, unless comments on the PAUSE statement direct him to DROP or
KILL the job. Example 4-8 shows a PAUSE statement that tells the operator at station

RDS to change tape units and rerun the job if any tape parity errors are encountered.
If the user omits the station/terminal identifier, the station that originated the job is
assumed. In the example, (RDS) would be replaced by a period. The message on the

PAUSE statement has a maximum length of 50 characters and cannot be continued on a
second statement.

CONTROL DATA

|
J0B,STMFZ,SM, -
’ P
STAGE(CATA,FCST,HY,ST=RECS) PAJSE routed to
FILE(DATA,RT=F,FL=137,CV= YES) perat

station RDS

.

L]
PAUSE(RECS) IF FPARITY ERRCFR, RETRY CN CTFER LANTIT

N

Example 4-8. Directing the Operator Through a PAUSE Statement

4-12 60372600 E

SETTING PROGRAM SWITCHES

SCOPE maintains for the user six control bits th
ments and through the FORTRAN language.
logically simulate manual switches that were physically present on very early camp
On early models the operator had to manually set or clear the switches. With

models.

These are the pseudo sense switches.

the pseudo switches, however, the programmer sets or clears them through SWITCH

statements.

(SWITCH(n,

Switches are numbered 1 through 6.
switch on or off, specify the switch number followed by ON or OFF,
If the setting (ON or OFF) is omitted, the current switch

ON)
OFF

That is, if it is off it is turned on and vice versa.

All of the switches are initially off.

respectively.

Example 4-9 illustrates a FORTRAN job that tests the status of sense switch 4,

60372600 D

FORTRAN CODING FORM

I
JbBEER y STMFZ
FITIN.

MITCHI(4,0N)
GO.
/§/9 L coBumn one

bRCOGIRAM ALPHA

~3 ™

(INPUT, CLTFLT)

CALL| SSWTCH(4,d)
EC TIC (30,400,

/7/849] in ¢olumn one

4

Example 4-9., Using the SWITCH Statement

at are accessible through control state-
They
uter

To turn a

position is reversed (toggled).

4-13

Example 4-10 illustrates a COBOL job that tests the status of sense switches 1 and 2.

Iﬁiﬁﬁﬁiﬂ COBOL CODING FORM

COBJCE|, STMFZ, \

COoB80L (BFXxM)

SWITCH{(l1,CND

SHITCH|(R2,0FfF) [

LGO.

7/8/9 iglca one \
TOENTIFICATICN CIVISICN. ’
PROGRAM-I0.SKITCH-TEST,

ENVIRCNMENT CIVISION.

CCNFIIGURATICN SECTICN.

SCURCE-CCMPLTER. 7600.)

DEJECT-CCMPLTER. 760C.

SPECITAL-NAMES.
WITCH 1 CN STATLS IS CME-CMN CFF STATLS IS CNE-CFF
WITCH 2 CN STATLS IS ThC-Ch CFF STATLS IS ThC-CFF,

[ATA| CIVISICA.

TEST| CNE.
F CME-CN DISPLAY #SKITCH 1 IS CMZELSE DISPLAY
SWITCH 1 IS OFF%

TEST| THC.
F ThO-CN DISPLAY# SRITCH 2 IS CN#ELSE DISPLAY
SWITCH 2 IS OFF%
TOP RUN,

&/1/8/9 one
\/\

Example 4-10, COBOL Test of Sense Switches

PROCESSING INTERDEPENDENT JOBS

Sometimes the user is faced with the problem that he must have the output from one job
or the job must satisfy some condition before he can run another job, but would like to
submit both jobs at the same time. SCOPE allows several related jobs to be submitted
together, and can delay the processing of a job until one or more criteria are met. A
user controls the progress of the related jobs through the combined use of the TRANSF
control statement and the dependency parameter on the job identification statement.

JOB DEPENDENCY PARAMETER

For each job in the dependency string, whether it supplies a requirement of a waiting
job or whether it is a job waiting for the requirement, enter the Dym parameter on the
job identification statement.

4-14 60372600 D

y is two alphabetic characters (A through Z) that is the same for all jobs in a
string, That is, it:

e Provides uniqueness for the events in the system. The event name is
formed by taking the first five characters of the job name and then append-
ing the string identifier. Note that if the job name is fewer than five
characters, zeros are used for the missing characters.

e Allows the operator using a console command to drop all of the dependent
jobs in a string.

m is a 1 or 2 octal digit count (0-77) of the dependencies the job must have
fulfilled before it can begin processing. For the first job to be processed in the
string, m must be 0, that is, DyO.

TRANSF CONTROL STATEMENT

Enter a TRANSF statement in the control statement sequence each time a job satisfies
a criterion needed by another job.

(TRANSF(jobl, joby, . +.sjob)

A job can contain several TRANSF statements. Also, with one TRANSF the user can
signal several jobs concurrently. Remember, the last job in the string cannot contain
any TRANSF statements.,

Parameters of the TRANSF statemenis consist of the names of jobs in the dependency
string for which the job meets some need. Only the first five characters of the job
name are relevant.

A job will wait indefinitely for its dependencies. Also, if a job posts a dependency for
a job not yet in the system, SCOPE maintains a record of the posting so that when the
required job is submitted, the waiting job can begin processing.

In Example 4-11, the dependency string consists of six jobs all submitted at the same
time and each identified with the identifier AB. JOBI1 has no dependencies so it can
immediately begin processing. Before its completion, JOB1 posts dependencies for
JOB2 and JOB3. Each of these two jobs has one dependency and can now begin pro-
cessing. Each job in turn signals jobs waiting. JOBS3 posts dependencies for JOB4 and
JOB5; JOB2, JOB4, and JOB5 each posts a dependency for JOB6. When the dependency
count for a job is reached, it can begin processing.

JOB RERUN LIMIT

The operator may terminate a job and resubmit it (that is, rerun it) at any time during
processing., Circumstances that might prompt such action are hardware problems at the
stgtlon, operator errors (for example, mounting the wrong tape), and so on. The oper-
ating system itself may also rerun a job upon encountering some system error when
processing the job (for example, if an SCM or LLCM parity error occurred within the
use.r's field length)., Following a recovery of the operating system, all currently exe-
cuting jobs (except those that cannot be rerun due to the conditions noted in the follow-
ing text) are automatically rerun, although most executing jobs can be recovered from
the point of interruption. The user is notified that his job is rerun through a special

listing of the control statements in the dayfile. This listing is terminated by the mes-
sage JOB RERUN. ’

60372600 E 4-15

6/7/8/9

Pl
/ OBJECT MODULE
/1/8/9

/INPUT.
JOB6,STMFZ,DABO

/6/7/8/9

//OBJECT MODULE

/7819

// TRANSF (JOB6)

/\NPUT.
JOBS,STMFZ,DABO
6/7/8/9 L

e
OBJECT MODULE

/7/8/9

TRANSF(JOB6)

/7 INPUT.

JOB4,STMFZ,DABO

6/7/8/9
/
/FORTRAN SOURCE
7/8/9
/ TRANSF(J0B4,J0B5)

/Leo.
/RUN(S)

/FORTRAN SOURCE

/7/8/9
ﬁnmsmoas)
/LGO.

/RUN(S)

JOB2,STMFZ,DABO
6/7/8/9

/OBJECT MODULE

/7/8/9

/ TRANSF(J0B2,J0B3)
INPUT.

JOBI,STMFZ,DABO

2AX55A

Example 4-11, Job Dependency String

4-16 ' 60372600 D

Normally, a job cannot be rerun if one of the following conditions has occurred. Placing
the Rr parameter on the job statement permits the operator to rerun the job despite the
occurrence of one of these conditions.

e The job has attached a SCOPE 2 permanent file with extend or modify permission.
e The job has cataloged a permanent file under either SCOPE 2 or SCOPE 3. 4.

e The job has executed a TRANSF,

e The job has purged a permanent file.

e The job has opened a connected file or has processed a CONNECT macro (refer
to the SCOPE 2 Reference Manual).

If none of the preceding conditions has occurred, there is no limit on the number of times
the job can be rerun.

If the user wants the job to be rerun regardless of the occurrence of any of the stated con-
ditions, he enters the letter R followed by one or two octal digits. The value specifies the
number of times that the job may be rerun unconditionally.

A job named JOB is to be unconditionally rerun a maximum of five times.

(JOB,STMFZ, R5.

To specify that the job is not to be rerun under any conditions, enter the parameter RO
on the job identification statement.

A job named ONCE is not to be rerun under any circumstances.

(ONCE, STMFZ, RO.

REWINDING OF LOAD FILES

Generally, positioning files before loading is not of concern. Rewinding of files is usually
assured through an installation rewind option. Refer to the following rules to ensure that
the file is rewound or not rewound before loading from it,

Rules for rewinding:

e Before loading from the file, the loader always rewinds a file name call (for ex-
ample, the LGO file)., INPUT is an exception. It is not rewound.

e Use the REWIND statement (section 10) to explicitly request a file to be rewound
before loading from it, This statement is illegal in the load sequence. It can be
used for repositioning the INPUT file, however. A rewind of INPUT positions the
file to the section following the control statement in the job deck.

e The REWIND and NOREWIN options of the LDSET statement are available for speci-
fying that files in the load sequence be rewound or not, This statement should pre-
cede the LOAD or SLOAD statements that refer to the affected files, After the
load sequence is completed, the installation option again takes effect.

60372600 E 4-17

There is no need to rewind libraries.

Use both LOAD and SLOAD loader statements to specify whether a file is to
be rewound or not before loading from it,
1fn/R to indicate rewind or as 1fn/NR to indicate no rewind.
on the LOAD and SLOAD statements take precedence over any LDSET state-
ment in the sequence.

Do this by entering a file name as
The parameters

Example 4-12 illustrates load sequences that use a combination of the previous options.

4-18

"CONTROL DATA

instaliation default
set for rewind

{

A is rewound
B is not rewcund

b

JOB,STMFZ, /

LOAD(A,P/NQ)
LDSET(NORENWIN)

LOAD(C,N,F, F/Q)

C, D, and E are not
rewound; F is,

SLOAD(G/Q 91,96)
H. \

G is rewound

.
LOAD (J)
EXECUTE,

wm

(

H is rewound; a file
catled by name is
always rewound

J is rewound; this
s a separate load
sequence, origina!l
default applies

Example 4-12,

Rewind or No Rewind of Load Files

60372600 D

FILE STRUCTURES 5

SCOPE 2 is a file-oriented system. All information, data, and programs known to the
system are maintained as logical files. The characteristics of files, for example,

5

record type, are determined by SCOPE 2 defaults, source language programs, or through
control statements. Familiarity with the File Information Table, the mechanism through
which the system and user communicate information about a file, is helpful to obtain an
understanding of how file characteristics are determined.

FILE INFORMATION TABLE

Each logical file used by a job has associated with it a File Information Table (FIT)
through which the system and the user communicate information about the file.

SCOPE 2, and the record manager, in particular, expect to find the following information.
about a file in the FIT.

Logical file name

File organization (sequential, word addressable, or library)

Record type and specifications relevant to record type

Blocking type, if any

Processing direction (input, output, or input/output)

Labeling requirements (blocked files only)

End-of-data exit options

Error exit options

Other, optional information

Generally, the programmer provides the file name and can rely entirely on the compilers
and assemblers to generate an FIT in the SCM field using system default values to fill

in the file description. For example, the FORTRAN compilers generate an FIT for each
file noted in the PROGRAM statement. The COBOL compilers generate an FIT for each
file assigned, using the file statement (FD) entry for the file.

INTRODUCTION TO FILE STATEMENT

Sometimes, the generated FIT does not automatically exactly match the requirements of
the file to be generated or the description of an existing file. When this happens, the
user has the option of overriding the information in the FIT supplied in the object pro-
gram by using a FILE control statement. This statement gives the user considerable
freedom to control the format of data to be read or written.

60372600 C 5-1

Place a FILE statement in the control statement section before the job step

that requires the file specification, The first parameter must be the logical file name
(1fn).

[FILE(lfn, ed)

All other parameters can be in any order separated by commas. These parameters are
described with related features. For example, the record type parameter (RT) is de-
scribed under Specifying Record Type.

MULTIPLE FILE STATEMENTS

Information from multiple FILE statements that refer to the same file is merged into
the FIT. 1If a specification is repeated, the most recently encountered specification takes
precedence over earlier specifications.

In Example 5-1, the FILE statement to redefine source input file PROG precedes the compi-
lation; the FILE statement that redefines TAPE1l precedes the load-and-go statement.

)

Specifies file def-
) inition options for

PROG
JOBSAM,STMFZ,SM, /l

STAGE (PFCG) \
FILE(PRCC,RT=F,FL=8D))
FTN(I=PFC(,3)<—'—__ §Ompvler uses PROG
“Or source program

CONTROL DATA

: 7

FILE(TAPEL,00s) <— | SPECifies file def-

initi tions for
LG0. ipition options fo
S raa Oblect=time proqgr
one : program
7/8/9(3'}”",5’,&“'"" uses TAPEL

6/7/8/9 in column one
\ .

Example 5-1, Placement of FILE Statement
SPECIFYING RECORD TYPE

The logical record is the basic unit of data handled by the record manager. Its defini-
tion varies according to record type. That is, the end-of-record is defined separately
for each record type other than U, for which it is undefined. Record lengths are defined
in units of 6-bit characters.

The eight record types and their associated FILE statement parameters are briefly
summarized in the following text. Additional detail is provided in appendix D.

5-2 60372600 E

W Control Word: The first word of each record is a control word header
containing sizes of current and previous records. This is the system and

FORTRAN (RUN and FTN) default. To specify, place RT=W on the FILE
statement,

e FULL WORD!
W
c DATA
w
- ~~aa NUSE
e Sl BITS
WCONTROLWORD ~~~___
42 24 18 Te=~ 00
w| LENGTH OF PREVIOUS LENGTH OF THIS
c RECORD¥* iN WORDS RECORD¥ IN WORDS
R INCLUDING W WORD LESS W WORD
NUMBER OF UNUSED BITS IN LAST
WORD OF THIS RECORD (ML =<60)
CONTINUATION FLAG
00 FULL RECORD
Ol BEGINNING PORTION
10 MIDDLE PORTION
11 FINAL PORTION
Lans RESERVED FOR CDC (BITS 53-44)
BITS RESERVED FOR USER (BITS 56 - 54)
TYPE OF RECORD:
0 DATA FOLLOWS
| RECORD IS DELETED (NOT LOGICALLY PRESENT)
2 END-OF - PARTITION ; NO DATA FOLLOWS THIS CONTROL WCRD
3 END-OF - SECTION; NO DATA FOLLOWS THIS CONTROL WORD
PARITY BIT 2AX61A

% OR PORTION OF RECORD, IF DIVIDED INTO PARTIAL RECORDS

A feature of W-records is that they may be constructed in portions. Each portion is
prefaced with its own W-control word along with a flag (WCR) in the control word to
indicate the portion is not a complete record but a partial record. The total record
length (RL) then becomes the sum of the lengths of all the portions. The advantage

is that W-type records can be constructed in portions without the RL being known at
the time the first portion is constructed.

60372600 D

S SCOPE Logical: Each record consists of blocks of data terminated by a
short block to which is appended a 48-bit level number or terminated
simply by the level number (called a zero length block). A block is the
data between two interrecord gaps on magnetic tape. This record type
is also known as 6000 SCOPE Standard. To specify, place RT=S on the
FILE statement.

SHORT BLOCK

BLOCK | BLOCK | BLOCK BLK EL]

}Je———LOGICAL RECORD ———> 48 BITS

A. RECORD TERMINATED BY SHORT BLOCK AND LEVEL NUMBER
FULL BLOCK

BLOCK | BLOCK| BLOCK BLOCK %
/4

l‘——‘—LOGICAL RECORD———>| N__48 BITS

8. RECORD TERMINATED BY FULL BLOCK AND ZERO-LENGTH
BLOCK CONTAINING LEVEL NUMBER.

In binary mode, the 48-bit number contains the following information; a 4-bit level
number is right-justified in the level field.

47 35 23 11 5 0

5523 3552 2574 00 level

Level numbers in the 48-bit appendages indicate either end-of-record or end-of-partition
as follows:

0-168 End-of-record

17g End-of-partition

5-4 60372600 D

60372600 E

|
Zero Byte: Each record consists of an integral number of 60-bit words in
which the last word has the low-order 12 bits set to zero, that is, contains
a zero byte. The user must specify RT=Z and FL=n on the FILE statement,
where n is a decimal count of characters. It must be large enough to ac-
commodate the largest record on the file, The default for n is 0.

FULL WORDS >

ZERO BYTE

2AX64A

Fixed Length: Each record consists of a fixed number of characters. This
record type is specified by RT=F, FL=n on the FILE statement, where n is
the decimal count of characters in each record. The default for n is 0,

DATA

FL 2AX65A

5-5

5-8

Decimal Count: Each record consists of a number of characters specified
in a decimal count field within the record. The record type is specified
as RT=D. The position of the length field is specified in characters as
LP=n; the length of the length field is specified as LLL=m, where m is 1
to 6. The defaults for n and m are 0.

LENGTH

DATA |LENGTH DATA

LLL:m, 2AX66A

LPz=n

Record Mark: &Fach record consists of a series of characters terminated
by a character designated as the record mark character, conventionally].
The default for 7600 record manager is]. Use RMK=n, where n is the
decimal or octal equivalent (octal equivalent suffixed by B) of the char-
acter in display code to specify a record mark character, Use RT=R to
specify R records.

DATA u|

RECORD MARK CHARACTER 2AX67A

Trailer Count: Each record contains a fixed length header followed by a
variable number of fixed length trailers. The header length is specified as
HL.=hl on the FILE statement. The trailer length is specified as TL=tl.
In addition, the trailer count field n which contains a decimal count of the
number of trailers in a record is defined through the count position (CP=cp)
and count length (CL=cl) parameters, where cp indicates the beginning
character position of the count field and cl indicates the length (1 to 6).
The default for all of the parameters is 0. To specify T records, use
RT=T.

- HL TL ot T L2t TL —2» le-TL—>
DATA | n DATA DATA | DATA | DATA DATA
oL e n TRAILERS
CP 2AXB8A
80372600 D

U Undefined: The size of each record is literally undefined. By using K
blocking with one record per block, the record manager uses block delimiters
as end-of-record delimiters. Use RT=U to specify U record type.

DATA

}
UNDEFINED 2AX69A

The user can either use the default type specified by the FIT assembled or compiled for
the file or can use the RT and associated parameters on a FILE control statement to
specify some other record type. This must be done with great care since some programs
are not designed to handle all record types. For example, the "“OPE 2 system default
record type is W. No other record type can be used for input or output from the loader
or for the standard files, INPUT, OUTPUT, PUNCH, and PUNCIIB.

The SCOPE 2 FORTRAN Extended and RUN compilers always generate a FIT with the
record type set to W. This is the easiest record type to use. Other record types are
subject to the constraints listed in Table 5-1.

SCOPE 2 uses record type W as the default, regardless of the FORTRAN I/O statement
used. When the file is assigned to magnetic tape, the file is blocked using I blocking
(refer to Blocked File Format); otherwise,the file is unblocked. This usage is in contrast

by the FORTRAN I/O statement used.

SCOPE 2 SCOPE 3.4
FORTRAN 1/0 Statement Record Type| Blocking Record Type | Blocking
READ/WRITE with a FORMAT statement W Unblocked z C
READ/WRITE without a FORMAT unless
statement W file is W I+
BUFFER IN/BUFFER OUT statement \% staged or S C
on-line
tape

The COBOL compiler generates a FIT for each of the system files INPUT, OUTPUT,
PUNCH, and PUNCHB whether they are assigned in the program or not. If they are
assigned, they have record type W.

For any other file, COBOL sets the record type according to the file description (FD)
entries in the COBOL source program, as shown in Table 5-2,

;n COBQI:,, because the record buffer area is defined in the source code, the user
is prohibited from using a FILE statement attempting to specify MRL or FL larger
than the source-language defined values. That is, MRL and FL can be used for

shorter records but not longer records than are defined in the source language
program,

f SCOPE 2 can read a tape created by SCOPE 3.4 I-blocked W record type only if it
has been recorded in Stranger Tape format. Otherwise, the I/W file is embedded in
SCOPE logical records; that is, the S record structure is superimposed over the
I/W structure,

60372600 C 5-7

As a general rule for output, regardless of the file description, a file can be redefined

as W record type.

If all of the records are the same length, the file can be defined

as F or Z record type. If records are all multiples of 10 characters (full words), the
file can be redefined as S record type.

TABLE 5-1, FORTRAN RECORD TYPE CONSTRAINTS

Record Type

Constraint When Writing

W

Recording mode must be binary for magnetic tape. FEach write
creates a W record.

Each write creates an S record. Recording mode must be binary.

Recording mode must be binary for magnetic tape. Each write
creates a Z record.

User must ensure that all records are fixed length.

User must insert record length in the decimal count field. Deci-
mal count field must be within FORTRAN object-time buffer limits,

User must supply record mark character that terminates data.

User must insert trailer count in the count field in the header.
The count field must be within the FORTRAN object-time buffer
limits.

Only block type K with one record per block is allowed. Each
write creates a block containing one record.

On a read, with the exception of Z records, if the record does not completely fill the
buffer, the remainder of the area is unchanged from the last read; it is not blank filled.
For Z records, the area is blank filled up to FL.

5=8

60372600 E

TABLE 5-2. COBOL SPECIFIED RECORD TYPES

FD Entries

01 Entries of
Same Length

01 Entries of
Different Lengths

01 Entry with
OCCURS...
DEPENDING
ON data name]

RECORD CONTAINS integer‘1 TO
in’ceger2 CHARACTERS

T A TATOU v~ e~

BLOCK CONTAINS i RECORD or
BLOCK CONTAINS clause omitted

&)

u

RECORD CONTAINS integer., TO

integer CHARACTERS

BLOCK CONTAINS 1nteger
RECORDS or
BLOCK CONTAINS 1nteger
CHARACTERS

1

RECORD CONTAINS clause
omitted

BLOCK CONTAINS 1 RECORD

RECORD CONTAINS clause
omitted

BLOCK CONTAINS 1nteger
RECORDS

RECORD CONTAINS integer
CHARACTERS

illegal

illegal

RECORD CONTAINS integer1TO
integery CHARACTERS DEPENDING
ON data-name

illegal

RECORD CONTAINS integer;TO
integergsCHARACTERS DEPENDING
ON RECORD MARK

illegal

When using COBOL,

CAUTION

it is possible for a file

to contain records of more than one type.

60372600 D

In Example 5-2, the FIT generated for TAPEl by the FTN compiler defines record type
as W, The STAGE statement, as will be described later, causes the file to be blocked.
To change the description, the programmer inserts a FILE statement before execution
causing record type to be Z with a record length of 80. In this example, block type
(BT) is also specified to change the block type to C from the default for Z which would
have been K.

FORTRAN CODING FORM

T 7 ; : I 1
JOBSAM,STMFZ, SM. Defines record type as 7

TN‘ / . . .
to override def t of W,
TAGE(TAPEinCSTL”, efauit of W

F

S o :
FIILE (T|APEY,RT=2,7T=80,BT=C) [n2XITUm record length Is
L

7

h .
G, 80 characters

8/9 kh coflimn one
FRCGRAM CAE (INPUT,CUTFLIT,TAFEL)

PRINT 5

5 FCRMAT (1F1)

10 READ| 109,EASE,HEIGHT,1
103 FCRMAT(2F13.2 ,JI1)

IF (I.GT.3) GC| TC 120

IF (BEASE.LE.U)|{GC TC 1S
IF (FFIGFT.LELP) GC TYC 1LE
GC TIC 1uE
ips CALL{ MSG
106 AREA| = JS5¥BASEPHEIGHT

FRINT 110,BASEpHEIGHT ,ARES
igo FCRMAT (//77,* ERSE=*FzU.E,* FEIGHTE®
IIF18eb /9% AREAF®F2N,5)
hRIT (1) ARE D je— Nr[fes Z“‘-.ybe
GC TC 10 records on file
ipo STCP
ENC

Example 5-2. Overriding Default of W Record Type for FORTRAN Program

5-10 60372600 E

Example 5-3 illustrates file description entries for COBOL implementor names LIST-
FILE, PARAM-FILE, and TEST-FILE. From the entries, COBOL determines that

LIST-FILE and PARAM-FILE are record type F. These descriptions are overridden,
however, by the ASSIGN clause which assigns these files to system files OUTPUT and

INPUT, making them W unblocked.

The FD entry for TEST-FILE describes trailer (T) records. Thus, the record type for
DISK1, to which TEST-FILE is assigned, is set to T.

COBOL CODING FORM ‘
ConTro! s+atements
:I do not inciude FILE
ENVIRCNMENT CIVISICN. statement for DISK!

:).

. Defines record type
INPUT-CLTFLT SECTICN, as W, block tyoe as
FILE CCNTRCL. [unblocked
SELECT TEST-FILE ASSIGN TC CISKi. |
SELECT LIST-FILE ASSIGA TC CLTPLY.
SELECT FARAM-FILE ASSIGN TC INFLT.
CATA DIVISICN,

FILE SECTICN.

FC LIST=FILE.

RECCRD CCNTAINS 120 CHARACTERS
LAFEL RECCRCS ARE CMITTEC

CATA RECCRD IS PRINT-LINE,

01 [PRINT-LINE

02 PRESET PRICTURE IS X{12G) VALUE IS ALL SFPACES
CATA RECCRC IS PARAM=CARC.
01 |[FARAM-CARC.

32 CCUNT PTCTURE IS S(10). Defines record
82 FILLER PICTLRE IS X(70). type as T
FC TEST-FILE,<—

ELOCK CCNTAINS 5 RECCRCS

RECCRC CCNTAINS 10 TC 1C1i CHERACTERS
LABEL RECCRCS ARE CFMITTEC

CATA RECCRC IS TEST-RECCRC,.

J1 |TEST-RECCKRC.

uZ HEADER.

72 LENGTH PICTURE IS ¢(1i()

03 TEST EATA PICTLRE IS °(1£).

~

Example 5-3. COBOL Assignment of Record Types Through File Description

60372600 C 5-11

SPECIFYING THE MAXIMUM RECORD LENGTH

The MRL parameter on the FILE statement permits the user to specify the maximum
record size for the file, MRL does not apply for F and Z records; for these two rec-
ord types, FI. serves the same purpose. MRL is significant only for input; it is
ignored on output.

The setting of MRL depends on whether the program I/O routines manipulate full or
partial records, The FORTRAN and COBOL object-time routines always manipulate full
records. Do not use a FILE statement to set MRL because the compiler sets the value
for you. Records accessed by unformatted reads and writes have MRL set to 327,680

characters.
In COBOL, the size of MRL is determined by the sum of all the fixed length elementary
items plus the sum of the maximum number of variable length items in the record.

Either the RECORD CONTAINS clause or the OCCURS clause is used in determining the
maximum size for variable length records.

The MRL set by the compiler takes precedence over the system default for MRL, which
is 5120,

To specify MRL, use the MRL parameter on the FILE statement where n is the number
of characters in decimal.

(FILE(lfn, MRL=n,...)

For block types K and E, MRL cannot exceed block size (MBL). (Refer to Blocked
File Format in this section.)

UNBLOCKED FILE FORMAT

NOTE

The term ''unblocked" used in the SCOPE 2 sense
is essentially a gapless format supported only on

mass storage. It is a continuous stream of data.
In comparison, the industry-accepted meaning for

unblocked describes the situation where the infor-
mation between two interrecord gaps on magnetic

tape comprises one record. In this case, a block
and a record are synonymous. To SCOPE 2, this
is a blocked format with one record per block.

The unblocked file can exist on mass storage only. Just one record type, the W record
type, permits delimiters of a higher order than records, that is, permits sections and
partitions on mass storage. This is because the unblocked file normally has no vehicle
for maintaining section and partition delimiters. When W control words are present,
they act as such a vehicle (Figure 5-1). Thus, for record types other than W, an un-
blocked file is simply a collection of records. S records cannot be unblocked.

5-12 60372600 E

LOGICAL | LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL | LOGICAL

RECORD | RECORD | RECORD | RECORD | RECORD RECORD | RECORD
'|‘ FORMAT OF UNBLOCKED FiLES HAVING RECORD TYPES A
OTHER THAN S OR W |
BOI EOI
ET Eos‘1 EOP on fop
SYSTEM MAS
S STORAGE I LROGICAL ‘g Losica (¥ WIW! LosicaL ¥l LosicAL ‘(’:VVCV‘g ¥ LosicaL (WIW
W| RECORD | RECORD |/ Wiw| RECORD || RECORD ol s [RECORD |-\
T el
d S~<
7’ S~
BOI e S~ EOI
i \\\\
,,// \\\\\\
e W CONTROL WORD TS
7 ~a
59,7 54 44 42 24 18 ~~~.00
o W ! LENGTH OF PRE- LENGTH OF THIS
t =0 DATA FOLLOWS €| VIOUS RECORDX RECORD* IN WORDS
|, DELETED RECORD IN WORDS LESS W WORD
S EOS \NUMBER OF UNUSED BITS IN LAST

WORD OF THIS RECORD (n<60)
FORMAT OF UNBLOCKED FILE USING RECORD TYPE W 2AXIOA
*0OR PORTION OF RECORD, IF DIVIDED INTO PARTIAL RECORDS

Figure 5-1, Unblocked File Format

RULES FOR ACCESSING UNBLOCKED FILES

. Unblocked files can be accessed using any of the file organizations. Remember,
however, that SCOPE 3.4 does not allow sequential (SQ) files to be un-
blocked.

. Only unblocked files can be accessed as word addressable (WA) files.

. Only unblocked files using W record type can be accessed as library (LB) files.

. Only unblocked files can be loaded.

Thus, the LB file organization can be considered as a special case of the word
addressable file,

60372600 D , 5-13

HOW TO SPECIFY UNBLOCKED

® The system default for blocking type (BT) in the FIT is normally unblocked for
mass storage files. The default for COBOL is blocked (Table 5-3).

® The user can specify unblocked for a mass storage file by providing a FILE
statement with a null BT parameter (simply BT).

[FILE(1fn, BT)

Specifying unblocked for a magnetic tape file is illegal.

BLOCKED FILE FORMAT

Blocking of records is the process of grouping a number of logical records before
writing them on a magnetic tape file. This grouping is called a block. Grouping two
or more records per block improves data transfer rates by reducing the number of
interrecord gaps in the file. Blocking usually increases processing efficiency by re-
ducing the number of physical input/output operations required to process the file.

Blocked files can be magnetic tape files (Figure 5-2) or mass storage files (Figure 5-3).
When on magnetic tape, a file must be blocked. Even when it is on mass storage, a
blocked file is basically an image of a magnetic tape file. Therefore, delimiters pos-
sible on magnetic tape file such as interrecord gaps and tapemarks must be simulated
on blocked mass storage files, The vehicle used to simulate these delimiters is the
recovery control word (RCW) (Figure 5-3).

THE BLOCK

On magnetic tape, a block is the information contained between two interrecord gaps.

On mass storage a block is the information between two recovery control words. Except
for the fact that the record manager must be informed that a file is blocked (see rules
for specifying blocking), blocking has little impact on the user. Blocks are invisible to
FORTRAN and COBOL object-time routines because the record manager deblocks the
records on input and blocks them on output. The various blocking types (Figure 5-2)
are designed to meet ANSI standards and/or to provide compatibility with formats used
on other computer systems.

For S and Z records with C blocking, a short block has special meaning. For S
records, it signals either end-of-record (level 0, 48-bit appendage) or end-of-partition
(level 17,, 48-bit appendage). For Z records, it signals either end-of-section (level O,
48-bit appendage) or end-of-partition (level 178, 48-bit appendage).

Generally, the default block type is the most efficient for the record type. The block
size depends on several factors; in general, it should be around 5000 characters.
Larger sizes tend to increase the chance of parity errors, which in turn reduces
throughput. For on-line tapes, if the application program processes data fast enough
to achieve nonstop I/O, it may be advisable to use shorter blocks to sustain the I/0.
Also, by selecting a small block size, the user could keep memory use to a minimum,
This technique is advisable in a heavily loaded multiprogramming environment.

5-14 60372600 E

LOAD

fg'o'g BLOCKS SEPARATED BY INTERRECORD GAP
™\ /" (RECOVERY CONTROL WORD ON MASS STORAGE)
EOI
BLOCK [BLOCK]||BLOCK | BLOCK | BLOCK | BLOCK | BLOCK | BLOCK %%
ol T RECORDS CAN
Pt C BLOCKING e SPAN BLOCKS
EACH C BLOCK CONTAINS |LOGICAL | LOGICAL | LOGICAL | LOGICAL LOGICAL LOGICAL
MBI OR FEWER CHARACTERS | RECORD | RECORD | RECORD | RECORD RECORD RECORD
]
K BLOCKING
B B aRE LaTH IS SUM [LosicaL [LosicaL [LosicaL |LosicaL LOGICAL [LOGICAL | | por oo e po
RECORD COUNT (RB) INcLupes | REGORD | RECORD | RECORD | RECORD RECORD | RECORD | ' OR FEWER RECORDS.
ZERO-LENGTH RECORDS.
[
1
]
]
]
EACH BLOCK LENGTH IS SUM E BLOCKING BLOCK ENDS ON LAST
T TR O aECORDS [LosicaL |LosicaL [LosicaL [LosicaL LOGICAL | LOGICAL | FULL RECORD THAT DOES
- RECORD | RECORD | RECORD | RECORD RECORD | RECORD | NOT CAUSE BLOCK LENGTH
RECORD SIZE AND BLOCK T Eeres har
SIZE ARE VARIABLE. '
: RECORDS CAN
. SPAN BLOCKS
' I BLOCKING ;
EACH I BLOCK CONTAINS MBL | {1LOGICAL |LoGICAL |LoGICAL |LOGICAL | LoGICAL LOGICAL LOGICAL | LOGICAL
OR FEWER CHARACTERS. RECORD | RECORD | RECORD | RECORD | RECORD RECORD RECORD | RECORD
(W RECORDS ONLY) .
ATICW S cw
e S
e S
7 ~,
e ‘\\
/’ \\\
INTERNAL CONTROL WORD Y MBL - MAXIMUM BLOCK LENGTH IN
5 a 8 00 CHARACTERS SPECIFIED IN
FIT; DEFAULT IS 5120 CHARACTERS.
BLOCK | NUMBER OF | LOCATION OF RB - RECORDS PER BLOCK; DEFAULT IS I.
ORDINAL | NEXT RECORD |NEXT RECORD

CDC AND USER BITS
PARITY (ODD)

Figure 5-2. Blocking Types

60372600 D

2AX11B

o

-15

R R R R R R
BLOCK |c | BLOCK |C c|sLock |c| BLock |c|BLOCK |C
w w w W w W
d N
,// \\\ EOI
d \\
/’ e
pid N
/// \\\
///, \\\\\
v N,
s RECOVERY CONTROL WORD o
vd \\
59,754 48 45 24 2| ~.00
MASS STORAGE , | unuseD PREVIOUS BLOCK BLOCK LENGTH
BITS IN (WORDS) (WORDS)
WORD INCLUDING RCW EXCLUDING RCW
¢ = 0 RECORD FOLLOWS LSTATUS: L—UNUSED (BIT 21)
= HARDWARE
| EOP MALFUNCTION EOV ENCOUNTERED (BIT 22)
2 EOI RRECOVERABLE

: pEmTY RECOVERED PARITY ERROR
LOST DATA STATUS (BIT 23)

2AXI2A

Figure 5-3. Blocked File Format on Mass Storage

E type blocking can be used, but is generally not as efficient as K type blocking. How-
ever, for particular applications, E blocking is more suitable than K blocking. For
example, E blocking is preferable when a file contains records that vary widely in size.

I blocking and C blocking allow records to span blocks. For K blocking and E blocking
records cannot span blocks, thus, maximum record length (MRL) cannot exceed maximum
block length (MBL).

ACCESSING BLOCKED FILES

Blocked files can be accessed as sequential (SQ) files only. Remember that blocked W
records cannot be printed, punched, loaded by the loader, or used as input to LIBEDT.

HOW TO SPECIFY BLOCKING

® Blocking is automatically specified by the record manager when the user defines
a file as being on magnetic tape through use of a REQUEST MT control state-
ment or through use of a STAGE control statement. The default block types are
then determined according to record type as follows:

Record Type Block Type
W I
S C
other K

5-18 60372600 E

e Blocking can be specified in the COBOL source language through the BLOCK
CONTAINS clause, as shown in Table 5-3. The BLOCK CONTAINS clause takes
precedence over system defaults described in the first rule under Rules for
Specifying MBL.,

TABLE 5-3. COBOL SPECIFICATION OF BLOCKING

BLOCK CONTAINS Clause Block Type
BLOCK CONTAINS integerg RECORDS
BLOCK CONTAINS integer; TO K
integer, RECORDS Record Count
Clause is omitted
BLOCK CONTAINS integery TO E
integery CHARACTER Exact Records
BLOCK CONTAINS integer, C
CHARACTERS Character Count

® To override the default or COBOL defined block type, or to specify blocking for
a mass storage file, use the following parameters on the FILE control statement,

FILE Statement
Block Type Parameters Notes

Internal BT=I, MBL=x BT=I is allowed for W records only. If the
block size (MBL) is unspecified, the default
for x is 5120.

Record count BT=K,RB=x BT=K is not allowed for S records.
If the number of records per block (RB)
is unspecified, the default for x is 1.

K blocking is conventional for U records.
RB must be 1 for U records.

Maximum block length is computed from
maximum record length (MRL) multiplied by
records per block (RB). If MRL has not
been previously specified, it is set to 5120

by default.
Character BT=C, MBL=x If the number of characters per block is
count unspecified, the default for x is 5120.

BT=C is the only block type allowed for S
records. It is conventional for Z records. ||

Exact records BT=E, MBL=x If the maximum number of characters per
block is unspecified, the default for x is
5120. BT=E is not allowed for S records. |

60372600 E 5-117

RULES FOR SPECIFYING MBL
e For I blocking, MBL must be 5120 to be compatible with SCOPE 3. 4.

e For C blocking, MBL must be 5120 to be compatible with SCOPE 3.4 S/L
devices.

° For S, Z, and W records, MBL must be a multiple of 10 characters (full
words).

e MBL (for BT=K, MRL x RB) is limited by location of the magnetic tape unit as

shown in Table 5-4. The CDC CYBER station restrictions apply also to
SCOPE 3.4 blocked permanent files,

TABLE 5-4. MAXIMUM BLOCK SIZES ALLOWED FOR STAGED
AND ON-LINE TAPES

Location of Tape Unit Block Size

6-Bit Characters Words
On-line tape 262, 140 26,214
Staged on-line tape 25,590 2559
CDC CYBER Station 25,590 2559
7611-1 I/0O Station 5120 512

Example 5-4 illustrates a job that lists a tape created on another computer system.

The tape contains records terminated by a 77, (; in display code). Records are blocked
5120 characters per block and can span blockS. Blocks are even multiples of 6-bit
characters. In this example, C blocking must be specified on the FILE statement to
override the system default of K blocking for R records.

T - .
CONTROL DATA Szecifies C-type

5tocking

JoB,STMFZ,SM,

STAGE (RTAPE)

FILE(RTAPE ,RT=R,RMK=77E,BT=C,MEL=5120)
CCPYSP(RTAPE)

6/7/8/9 in column one

Example 5-4. Using a FILE Statement to Specify Blocking

5-18 60372600 E

PARTITIONS

End-of-partition is synonymous with the term end-of-file as commonly used for FORTRAN
and COBOL languages and previous operating systems. See Figure 5-4, which illustrates
end-of-partition on magnetic tape. Note that the representation of end-of-partition is dif-
ferent for some of the record types. A single tapemark is equivalent to an end-of-parti-
tion (EOP) for the following:

® Blocked files with record types F, D, R, T, U, and W |
K or E blocked

- Z, records if +h
< TeloLla 1 uf o O O

For record types S and Z with C blocking,