CONTROL DATA ${ }^{\bullet}$ CYBER 70/MODEL 76 COMPUTER SYSTEM 7600 COMPUTER SYSTEM

REVISION RECORD	
REVISION	
A	DESCRIPTION
$12-72$	Original printing.

Address comments concerning this manual to:

Control Data Corporation
Technical Publications Dept.
4201 North Lexington Avenue
Arden Hills, Minnesota 55112
© 1972
by Control Data Corporation
or use Comment Sheet in the back of this manual.

PREFACE

This manual provides information needed to install and modify the SCOPE 2.0 operating system. It is assumed that the analyst has at least six months of experience with a 7600 or C.YBER 70 computer.

The SCOPE 2.0 Installation Handbook has the following format.
Part I List of all materials (such as tapes and cards) released with SCOPE 2.0, its product set members, and stations.
A flow chart and general description of the process of installing and modifying the SCOPE 2.0 operating system that includes the purchased product set and stations.

Part II The procedures for deadstarting standard stations and SCOPE. 2.0.
Part III The standard installation options, procedures to modify, and detailed description of jobs necessary to modify each of the stations, product set members, and SCOPE 2.0.

Part IV Information related to installation, such as installation cautions, installation messages, and memory requirements.

SCOPE 2.0 is intended to be installed and configured only as described in this installation handbook. Therefore, Control Data is only responsible for the proper functioning of features or parameters described in this manual.

CONTENTS

PREFACE
iii
PART I

INTRODUCTION

SECTION 1
LIST OF PRODUCTS
I-1-1

1. 1 Released Products for SCOPE 2.0

I-1-1
1.2 Optional Products

I-1-1

SECTION 2
RELEASE MATERIALS
I-2-1
2.1 SCOPE 2.0 Maintenance Package I-2-1
2.2 System Maintenance Monitor 3.0 (SMMB) I-2-1
2.3 7611-1 I/O Station I-2-1
2.4 7611-2 Magnetic Tape Station I-2-2
2.56000 or CYBER 70 Series SCOPE 3.4 Station I-2-2
2.6 SCOPE 2.0 I-2-2
2.7 COMPASS 2.0 I-2-3
2.8 FORTRAN Extended 2.0 I-2-3
2.9 FORTRAN Run 2.0 I-2-3
2.10 FORTRAN Object Time Routines I-2-4
2.11 COBOL 1.0

1-2-4
2.12 Sort/Merge 1.0 I-2-4
2.13 Diagnostic Control Program I-2-5

SECTION 3 SUMMARY OF PROCEDURES TO INSTALL OR MODIFY A CONFIGURED SYSTEM AND PRODUCT SET I-3-1
3.1 Establish Base System Materials I-3-1
3.1.1 Tapes Necessary for a Base System I-3-1
3.1.2 Decks Necessary for a Base System I-3-2
3.1.3 Procedures to Build Base Materials I-3-2
3.1.4 Caution if Building a System During
Production
3.2 Build a Production Release System I-3-2
3.3 Add Customer Modifications I-3-3
3.4 Create Back-up Materials I I-3-3
3.5 Generate Maintenance Information I-3-3
3.6 Table of Installation Dependencies I-3-4

SECTION 4
ADDITIONAL MANUALS

PART II
DEADSTART OF UNCONFIGURED STATIONS AND SYSTEM

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SCOPE 2.0 MAINTENANCE PACKAGE II-1-1
$\begin{array}{lll}\text { SYSTEM MAINTENANCE MONITOR } & 3.0 \text { (SMMB) } & \mathrm{II}-2-1 \\ 2.1 & \text { Requirements } & \\ 2.2 & \text { Deadstart Procedure } & \mathrm{II}-2-1 \\ \mathrm{II}-2-1\end{array}$

7611-2 MAGNETIC TAPE STATION II-4-1
4.1 Requirements II-4-1
4.2 Procedures

II-4-1
4.2.1 Tape Deadstart II-4-1
4.2.2 Disk Deadstart II-4-3
$\begin{array}{ll}\text { 4.2.3 Deadstart SCOPE 2.0 From the 7611-2 } & \\ \text { Magnetic Tape Station }\end{array}$
4.2.4 Log In II-4-4

6000 OR CYBER 70 SERIES SCOPE 3.4 STATION II-5-1
5.1 Requirements II-5-1
5.2 Procedures

II-5-1
5.2.1 Installation and Log In
5.2.2 Deadstart SCOPE 2.0 From 60003.4 Station

II-5-1
II-5-1

SCOPE 2.0
6. 1 Deadstart Initialization Procedure $11-6-1$
6.2 Format of SCPSID Deadstart Deck II-6-3
6.2.1 FLPP Decks

II-6-4
6.2.2 DS1 Deck

II-6-5
6.2.3 Deadstart Reply Deck II-6-7
6.2.4 Sample SCPSID Deck Structure II-6-7
6.3 Deadstart Requests and Replies for Deadstart Initialization
6.3.1 Equipment Status Table (EST) II-6-11
6.3.2 Memory Size

II-6-13
6.3.3 Channel Queue Table (CHQ) II-6-14

```
    6.3.4 Give System Source II-6-19
    6.3.5 Permanent File Recovery Y/N II-6-19
    6.3.6 Enter Disk Address
    6.3.7 Enter Flaw
    6.3.8 System PFN and Cycle Request
    II-6-21
    6.3.9 Enter Flaw (for Permanent File Devices) II-6-23
    6.3.10 System pfn and Cycle (Message) II-6-23
    6.3.11 Go
    6.3.12 Enter Flaw (for Remaining Mass Storage
        Devices)
    6.3.13 Volume Label Group Resides II-6-26
    6.3.14 Station Communication Channels
    6.3.15 Date
    6.3.16 Operator Comment
    6.3.17 Time
    6.3.18 Deadstart Complete
6.4 Deadstart Recovery Procedure
6.5 Flow charts
    6.5.1 Deadstart Initialization
    6.5.2 Deadstart Recovery
    -6-25
    II-6-26
II-6-27
II-6-27
II-6-28
II-6-28
II-6-29
II-6-38
II-6-38
II-6-45
```

PART III
INSTALLATION OF CONFIGURED SYSTEM AND PRODUCT SET

SECTION 1

SECTION 2

SECTION 3

76113.1	I/O STATION	III-3-1
	Requirements	III-3-1
	3.1.1 Tapes	III-3-1
	3.1.2 Permanent Files	III-3-1
	3.1.3 Decks	III-3-1
	3.1.4 Dependencies	III-3-1
3.2 C	Configuration Parameters	III-3-1
3.3	Representative Decks	III-3-2
	3.3.1 STADMP	III-3-3
	3.3.2 STAMOD	III-3-5
	3.3.3 STADCK	III-3-8

SECTION 4

7611-2	MAGNETIC TAPE STATION	III-4-1
4.1	Requirements	III-4-1
	4.1.1	Tapes
	III-4-1	
	4.1.2	Permanent Files
	4II-4-1	
	4.1.3	Decks
	Dependencies	III-4-1
		III-4-1

6000 OR CYBER 70 SERIES SCOPE 3.4 STATION
III-5-1

SECTION 6

SCOPE 2.0			III-6-1
6.1	Requirements		III-6-1
	6.1 .1	Tapes	III-6-1
	6.1 .2	Permanent Files	III-6-1
	6.1 .3	Decks	III-6-1
	6.1 .4	Dependencies	III-6-2
6.2	Configuration Parameters		III-6-2
	6.2 .1	Debugging	III-6-2
	6.2 .2	Libraries	III-6-2
	6.2 .3	System Control	III-6-2
	6.2 .4	Job Management	III-6-3
	6.2 .5	Device Management	III-6-5
	6.2 .6	Permanent Files	III-6-5
	6.2 .7	Loader	III-6-8
	6.2 .8	Information Routing	III-6-8
	6.2 .9	System Statistics	III-6-10
	6.2 .10	Record Manager	III-6-11
	6.2 .11	Deadstart Parameters	III-6-12
	6.2. 12	Temporary Parameters	III-6-12
	6.2 .13	ORL Parameters	III-6-13
	6.2 .14	UPDATE	III-6-14
	6.2 .15	DSC Deck in FLPP Deck	III-6-15
6.3	Representative Decks		III-6-15
	6.3 .1	SCPINS	III-6-16
	6.3.2	DBUGINS	III-6-18
	6.3 .3	SCPMOD	III-6-20
6.4	$\begin{aligned} & \text { System } \\ & 6.4 .1 \end{aligned}$	Information File (SIF)	III-6-26
		RTRVSIF - Retrieve System Information File	III-6-27
	6.4.2	SIF Definition Format and Macros	III-6-27
	6.4.3	Standard Record Formats in the Released SCOPE 2.0	III-6-31
	6.4.4	SIH, SIS, SIJ, SIX Record Formats	III-6-31
6.5	Modification of ANALYZE		III-6-32
	6.5 .1	Identifying the Function	III-6-32
	6.5 .2	Coding the Function	III-6-33
	6.5.3	Writing a LIST Subfunction	III-6-36

SECTION 7

SECTION 8

SECTION 9

COMPASS 2.0
7.1 Requirements
7.1.1 Tapes
7.1.2 Permanent Files
7.1.3 Decks
7.1.4 Dependencies
7.2 Configuration Parameters 7.3 Representative Decks
7.3.1 CM2INS
7.3.2 CM2MOD

FORTRAN EXTENDED 2.0
8.1 Requirements
8.1.1 Tapes
8.1.2 Permanent Files
8.1.3 Decks
8.1.4 Dependencies
8. 2 Configuration Parameters
8.3 Representative Decks
8.3.1 FN2INS
8.3.2 FN2MOD

FORTRAN RUN 2.0
9.1 Requirements
9.1.1 Tapes
9.1.2 Permanent Files
9.1.3 Decks
9.1.4 Dependencies
9.2 Configuration Parameters
9.3 Representative Decks
9.3.1 RN2INS
9.3.2 RN2MOD

FORTRAN OBJECT TIME ROUTINES
10.1 Requirements
10.1.1 Tapes
10.1.2 Permanent Files
10.1.3 Decks
10.1.4 Dependencies
10.2 Configuration Parameters
10.3 Representative Decks
10.3.1 FTNLIB7
10.3.2 FLIBGEN
10.3.3 RLIBGEN

COBOL 1.0
11.1 Requirements
11.1.1 Tapes
11.1.2 Permanent Files

III-11-1
III-7-1
III-7-1
III-7-1
III-7-1
III-7-1
III-7-1
III-7-1
III-7-1
III-7-2
III-7-4

III-8-1
III-8-1
III-8-1
III-8-1
III-8-1
III-8-1
III-8-1
III-8-2
III-8-3
III-8-5

III-9-1
III-9-1
III-9-1
III-9-1
III-9-1
III-9-1
III-9-1
III-9-2
III-9-3
III-9-5

III-10-1
III-10-1
III-10-1
III-10-1
III-10-1
III-10-1
III-10-1
III-10-2
III-10-3
III-10-5
III-10-6

III-11-1
III-11-1
III-11-1

	11.1.3	Decks
11.1.4	Dependencies	III-11-1
11.2	Configuration Parameters	III-11-1
11.3	Representative Decks	III-11-2
	11.3.1 COBINS	III-11-2
	11.3 .2 COBMOD	III-11-3
		III-11-5

SECTION 12
SORT/MERGE 1.0
12.1 Requirements
12.1.1 Tapes
12.1.2 Permanent Files
12.1.3 Decks
12.1.4 Dependencies
12.2 Configuration Parameters
12.3 Representative Decks
12.3.1 SRTINS
12.3.2 SRTMOD

III-12-1
III-12-1
III-12-1
III-12-1
III-12-1
III-12-1
III-12-1
III-12-3
III-12-4
III-12-6

SECTION 13
DIAGNOSTIC CONTROL PROGRAM
III-13-1
13.1 Requirements
13.1.1 Tapes
13.1.2 Permanent Files
13.1.3 Decks

III-13-1
III-13-1
III-13-1
13.1.4 Dependencies
13.2 Configuration Parameters

III-13-1
13.3 Representative Decks

III-13-1
III-13-1
13.3.1 DIAINS
13.3.2 DIAMOD

III-13-2
III-13-3
III-13-5

ADDITIONAL INFORMATION

SECTION 1

SECTION 2

SECTION 3

REQUIREMENTS	IV $-1-1$	
1.1	Hardware	IV-1-1
	1.1 .1	Minimum Configuration
	1.1 .2	FCO Levels

INSTA	LLATION MESSAGES	IV-2-1
2.1	SCOPE 2.0 Maintenance Package	IV-2-1
2.2	System Maintenance Monitor 3.0 (SMMB)	IV-2-7
2.3	7611-1 I/O Station	IV-2-7
2.4	7611-2 Magnetic Tape Station	IV-2-7
2.5	6000 or CYBER 70 Series SCOPE 3.4 Station	IV-2-7
2.6	SCOPE 2.0	IV-2-7
	2.6.1 Deadstart Initialization and Recovery Messages	IV-2-7
	2.6.2 Processing Messages Hardware Error	IV-2-13
2.7	COMPASS 2.0	IV-2-17
2.8	FORTRAN Extended 2.0	IV-2-17
2.9	FORTRAN Run 2.0	IV-2-17
2.10	FORTRAN Object Time Routines	IV-2-17
2.11	COBOL 1.0	IV-2-17
2.12	Sort/Merge 1.0	IV-2-17
2.13	Diagnostic Control Program	IV-2-17

NOTES	AND C	AUTIONS	IV-3-1
3.1	SCOPE	2.0 Maintenance Package	IV-3-1
3.2	System	Maintenance Monitor 3.0 (SMMB)	IV-3-1
	3.2.1	System Hang	IV-3-1
	3.2.2	SMMB and SMMD	IV-3-1
	3.2 .3	CN Command	IV-3-2
	3.2.4	MCU Card Reader Notes	IV-3-2
3.3	7611-1	I/O Station	IV-3-3
	3.3.1	Punch Deadstart and Dump Cards	IV-3-3
	3.3.2	Dump CPU at 7611-1 I/O Station	IV-3-3
	3.3 .3	Dump the 7611-1 I/O Station	IV-3-4
3.4	7611-2	Magnetic Tape Station	IV-3-4
	3.4.1	Dump 7611-2 Magnetic Tape Station	IV-3-4
	3.4.2	Unit Assignments	IV-3-5
3.5	6000 or	CYBER 70 Series SCOPE 3.4 Station	IV-3-6
	3.5 .1	6000 Station FLPP Operation	IV-3-6
3.6	SCOPE	2.0	IV-3-7
	3.6.1	Dump Contents of Mass Storage Into LCM	IV-3-7
	3.6.2	PASSWRD Control Statement	IV-3-8
	3.6.3	SYSLIBE Control Statement and Use	IV-3-8
	3.6.4	DUMPQ and LOADQ Control Statements	IV-3-10
	3.6.5	System Mass Storage Format	IV-3-18
	3.6.6	System Debug Aids	IV-3-19

3.6.7 Description of Deadstart Initialization and Recovery

IV-3-21
3.6.8 Overlay Naming and Numbering Conventions
IV-3-22
3.6.9 Restarting the On-line Tape FLPP IV-3-23
3.7 COMPASS 2.0
IV-3-23
3.8 FORTRAN Extended 2.0
3.9 FORTRAN Run 2.0
3.10 FORTRAN Object Time Routines
COBOL 1.0
$\begin{array}{ll}3.11 & \text { COBOL } 1.0 \\ 3.12 & \text { Sort/Merge } 1.0\end{array}$
3.13 Diagnostic Control Program
IV-3-24
IV-3-24
IV-3-24
IV-3-24
IV-3-24
IV-3-24

I-3.1	Table of Installation Dependencies	I-3-4
I-3.2	Flowchart of Installation	I-3-5
II-2.1	SMMB Deck as Viewed From Back to Show Card Formats II-2-1	
II-6.1	Diagram of Deadstart Options	II-6-1
II-6.2	Diagram of Typical Configuration	II-6-18
II-6.3	EST Through CHQ	II-6-39
II-6.4	System Library or Tape; No Permanent File Recovery	II-6-40
II-6.5	System Library on Tape or Disk; Permanent File	
II-6.6	Recovery	II-6-42
IV-3.1	Volume Label Group Through End	II-6-44
IV-3.2	DUMPQ/LOADQ File Format	IV-3-16
IV-3.3	DUMPQ/LOADQ File Header Record Format	IV-3-17
IV-3.4	DUMPQ/LOADQ File Check Record Format	IV-3-17
IV-3.5	System Mass Storage File Allocation After Deadstart	IV-3-18
		Volume Label Group (Track 20 and 21)

1.1 RELEASED PRODUCTS FOR SCOPE 2.0

The following products are released with the SCOPE 2.0 operating system.

SCOPE 2.0 Maintenance Package
System Maintenance Monitor 3.0 (SMMB)
SCOPE 2.0
ANALYZE
LIBEDT
Loader
Record Manager
UPDATE 2.0
COMPASS 2.0
Diagnostic Control Program (DCP)
One or more of the following stations is required.
CONTROL DATA 7611-1 I/O Station Version 2
CONTROL DATA 7611-2 Magnetic Tape Station Version 2
CONTROL DATA 6000 CYBER 70 Series SCOPE 3. 4 Station Version 2

1.2 OPTIONAL PRODUCTS

The following products may also be purchased separately to be used with SCOPE 2.0.
FORTRAN Extended 2.0
FORTRAN Run 2.0
COBOL 1.0
Sort/Merge 1.0

2.1 SCOPE 2.0 MAINTENANCE PACKAGE

Tapes

MODTAPE 7-track tape file with the following characteristics: labeled, 556 bpi, odd parity, $B T=I, R T=W$, and $M R L=5120$. MODTAPE*SCP2.0 is the file identifier in the HDR1 label. Refer to part III, section 1 for more detail.

Partition 1 MODPL Modifications to released system in an OLDPL format ($*=/$).
Partition 2 SYSDECKS Installation, modification, and utility decks for SCOPE 2.0 in an OLDPL format ($*=\$$).

2.2 SYSTEM MAINTENANCE MONITOR 3.0 (SMMB)

Materials other than the SMMB deck are available to the customer engineer through the SMM Software Availability Bulletin (SAB).

Cards

SCPSMM SMMB binary deck configured for SCOPE 2.0.

2.3 7611-1 I/O STATION

Tapes
STALIB

STAOPL
7-track tape file with the following characteristics: unlabeled, 800 bpi, odd parity, $\mathrm{BT}=\mathrm{C}$, $\mathrm{RT}=\mathrm{S}$, and $\mathrm{MBL}=5120$; contains all 7611-1 system routines in binary format and is used to deadstart the station.

7 -track tape file with the following characteristics: labeled, 800 bpi, odd parity, $B T=I, R T=W$, and $M B L=5120$; STAREL*SCP2. 0 is the file identifier in the HDR1 label. Refer to part III, section 3 for more detail.

Partition 1 STAOPL Source code in UPDATE format for STALIB.

Cards

STATDS

STADDS
One deadstart binary card that initializes the station disk pack from the STALIB tape.

One deadstart binary card that initializes the station from its disk pack.

2.4 7611-2 MAGNETIC TAPE STATION

Tapes
MTSLIB 7-track tape file with the following characteristics: unlabeled, 556 bpi, odd parity, $\mathrm{BT}=\mathrm{I}, \mathrm{RT}=\mathrm{W}$, and $\mathrm{MBL}=5120$; contains the binary deadstart for the station.

MTSOPL
7 -track tape file with the following characteristics: labeled, 800 bpi, odd parity, $\mathrm{BT}=\mathrm{I}$, $\mathrm{RT}=\mathrm{W}$, and $\mathrm{MBL}=5120$; MTSREL*SCP2. 0 is the file identifier in the HDR1 label. Refer to part III, section 4 for more detail.

Partition 1 MTSOPL Source code in UPDATE format for MTSLIB tape.

Cards
MTSTDS

MTSDDS
A binary card deck of the program to be loaded into the FLPP to initialize the 7611-2 station disk pack from the MTSLIB tape.

A binary card deck of the program to be loaded into the FLPP to initialize the 7611-2 station from the 7611-2 station disk pack. This program is also on the SCPLIB tape under program name FDS and is loaded by the SCOPE 2.0 system when the system is installed.

2.5 6000 OR CYBER 70 SERIES SCOPE 3.4 STATION

The SCOPE 3.4 station release materials are described in the 6000 SCOPE 3.4 Installation Handbook, Pub. No. 60307400.

2.6 SCOPE 2.0

Tapes
SCPLIB 7-track tape file with the following characteristics: unlabeled, 556 bpi, odd parity, $\mathrm{BT}=\mathrm{C}, \mathrm{RT}=\mathrm{W}$, and $\mathrm{MBL}=5120$; contains the SCOPE 2.0 operating system and is used to deadstart SCOPE 2.0. This tape contains the binary of UPDATE, COMPASS, and diagnostic control package.

7 -track tape file with the following characteristics: labeled, 800 bpi, odd parity, $B T=I, R T=W$, and $\mathrm{MBL}=5120$. SCPOPL2.0 is the file identifier in the HDR1 label. Refer to part III, section 6 for more detail.

Partition 1 SCPOPL Source code in UPDATE format for the SCPLIB tape. The source for UPDATE is in this partition, but COMPASS and the diagnostic control package have separate OPLs.
Partition 2 DBUGBIN Binary code for the DBUGLIB system library.

Cards
SCPSID
SCOPE 2.0 deadstart deck. Only the following binary decks of DS1 and the FLPP drivers are included in the release materials. The other cards are installation dependent and are described in part II, section 6.2.

The following SCPSID binary decks are released.
DS1 Deadstart binary deck
CPL FLPP binary deck for 6000 SCOPE 3.4 station
DSC FLPP binary deck for 7611-2 magnetic tape station
DSK FLPP binary deck for system mass storage device
MMD FLPP binary deck for on-line tape unit

2.7 COMPASS 2.0

Tape
CM2REL 7-track tape file with the following characteristics: labeled, 800 bpi, odd parity, $B T=I, R T=W$, and $M B L=5120$. CM2REL*SCP2. 0 is the file identifier in the HDR1 label. Refer to part III, section 7 for more detail.

Partition 1 CMPOPL Source code in UPDATE format for CMPBIN.
Partition 2 CMPBIN Absolute binary image of COMPASS assembler.

2.8 FORTRAN EXTENDED 2.0

Tape
FN2REL 7-track tape file with the following characteristics: labeled, 800 bpi, odd parity, $\mathrm{BT}=\mathrm{I}, \mathrm{RT}=\mathrm{W}$, and $\mathrm{MBL}=5120$. FN2REL*SCP2.0 is the file identifier in the HDR1 label. Refer to part III, section 8 for more detail.

Partition 1 FTNOPL Source code in UPDATE format for FTNBIN.
Partition 2 FTNBIN Absolute overlay of FORTRAN Extended.

2.9 FORTRAN RUN 2.0

Tape
RN2REL 7-track tape file with the following characteristics: labeled, 800 bpi, odd parity, $\mathrm{BT}=\mathrm{I}, \mathrm{RT}=\mathrm{W}$, and $\mathrm{MBL}=5120$. RN2REL*SCP2.0 is the file identifier in the HDR1 label. Refer to part III, section 9 for more detail.

Partition 1	RUNOPL	Source code in UPDATE format for RUNBIN.
Partition 2	RUNBIN	Absolute overlay of the FORTRAN Run compiler.

2.10 FORTRAN OBJECT TIME ROUTINES

Tape
FCLOPL 7-track tape file (SCOPE 3.4 tape) with the following characteristics: labeled, 556 bpi , odd parity, $\mathrm{BT}=\mathrm{C}, \mathrm{RT}=\mathrm{S}$, and $\mathrm{MBL}=5120$. FTNLIBS*3P4 is the file identifier in the HDR1 label. Refer to part III, section 10 for more detail.

Partition 1 FCLOPL Source code in UPDATE format for the system libraries FORTRAN and RUNLIB.

2.11 COBOL 1.0

Tape

COBREL
7 -track tape file with the following characteristics: labeled, 800 bpi, odd parity, $B T=I, R T=W$, and $M B L=5120$. COBREL*SCP2. 0 is the file identifier in the HDR1 label. Refer to part III, section 11 for more detail.

Partition 1	COBOPL	Source code in UPDATE format for COBREL and COBBIN.
Partition 2	COBBIN	Absolute overlay of the COBOL com- piler.
Partition 3	COBREL	COBOL relocatable binary subroutines.

2.12 SORT/MERGE 1.0

Tape
SRTREL 7-track tape file with the following characteristics: labeled, 800 bpi, odd parity, $\mathrm{BT}=\mathrm{I}, \mathrm{RT}=\mathrm{W}$, and $\mathrm{MBL}=5120$. SRTREL*SCP2.0 is the file identifier in the HDR1 label. Refer to part III, section 12 for more detail.

Partition 1 SRTOPL Source code in UPDATE format for SRTBIN, SRTREL, and SRTMAC.

Partition 2 SRTBIN
Partition 3 SRTREL

Partition 4 SRTMAC Sort/Merge macros in XTEXT format.

2.13 DIAGNOSTIC CONTROL PROGRAM

Tape
DIAREL 7-track tape file with the following characteristics: labeled, 800 bpi, odd parity, $\mathrm{BT}=\mathrm{I}, \mathrm{RT}=\mathrm{W}$, and $\mathrm{MBL}=5120$. DIAREL*SCP2.0 is the file identifier in the HDR1 label. Refer to part III, section 13 , for more detail.

Partition 1	DIAOPL	Source code in UPDATE format for DCP and diagnostic programs CT73 and MEMC.
Partition 2	DIABIN	Absolute binaries of decks DCP, CT73, and MEMC.

SUMMARY OF PROCEDURES TO INSTALL OR MODIFY A CONFIGURED SYSTEM AND PRODUCT SET

The installation and modification of the SCOPE 2.0 operating system involves five general steps. These steps are summarized in this section and are presented in detail in part III, section 1. The sequence is also reflected in the flow chart in Figure I-3.2.

General Procedure	Summary, Part I	Detail, Part III
1. Establish base system materials from the materials issued at release time.	section 3.1	section 1.2
2. Build a production release system that contains the customer's product set either as released or modified according to installation parameters.	section 3.2	section 1.3
3. Apply customer modifications, if any, to materials created in step 2.	section 3.3	section 1.4
4. Create back-up copies of production materials that contain the product set and customer modifications.	section 3.4	section 1.5
5. Generate maintenance information.	section 3.5	section 1.6

3.1 ESTABLISH BASE SYSTEM MATERIALS

To establish base system materials the following tapes and decks must be available and at least PRDLIB must be cataloged as a permanent file.

The heart of the procedures to install or modify the system is the set of decks called SYSDECKS in partition 2 of MODTAPE (part III, section 1). These decks require that tapes, decks, and permanent files with special names, labels, permissions, and IDs be used to install a customer's system. If these materials do not exist, the person installing the system must either create them or modify the contents of SYSDECK.

3.1.1 TAPES NECESSARY FOR A BASE SYSTEM

Release materials for operating system and products as described in part I, section 2.

A deadstart tape (SCPLIB) containing at least UPDATE and COMPASS.
A LOADPF/DUMPF tape containing permanent files (cataloged with ID=PRDLIB) for product set libraries, product set core image binaries, and operating system core image binaries, (part III, section 1.2.2).

3.1.2 DECKS NECESSARY FOR A BASE SYSTEM

SMMB deck to install SMMB 3.0 at the MCU (part II, section 2)
SCPSID, the deadstart deck for SCOPE 2.0 (part II, section 6.2)
Deadstart cards for all stations at the customer site (part II, sections 3.1, 4.1, and 5.1)

Any required decks from SYSDECK (part III, section 1.2.3)

3.1.3 PROCEDURES TO BUILD BASE MATERIALS

Following is an overview of procedures to create a base system.

1. Construct the SCPSID deck (part II, section 6.2).
2. Deadstart SMMB, available stations, and SCOPE 2.0 as they are released (part II, sections 2.2, 3.2, 4.2, 5.2, and 6.1).
3. Use MODCAT to catalog MODPL and SYSDECK, and list SYSDECKS MEMO at the same time (part III, section 1.2.3).
4. Use PUNCHDKS to punch SYSDECK decks to be used to install or modify the system (part III, section 1.2.3).
5. For an initial installation, run the OPRDLIB job to catalog COMPASS and DCP from the SCPLIB tape as a dummy PRDLIB PF.
6. For subsequent installations, run the LDIDPRD job to execute a LOADPF on the ID = PRDLIB DUMPF tape (part III, section 1.6). Or, if in a production environment (running jobs), verify that files are cataloged using AUDIT (part III, section 1.2.4).

3.1.4 CAUTION IF BUILDING A SYSTEM DURING PRODUCTION

The procedures in this handbook assume that the installation or modification does not occur during production time. Some SYSDECK jobs create files that are used by other jobs. These permanent files may conflict with production permanent files. For example, the FTN object library permanent file causes problems if a SYSLIBE job that attaches the highest cycle is run.

The detailed procedures in part III, section 1 contain batch notes that indicate possible problems and ways to avoid these problems. The customer must evaluate each of the solutions in terms of his special circumstances.

3.2 BUILD A PRODUCTION RELEASE SYSTEM

A production release system contains the operating system, as released or with modified installation parameters (part III, section 6.2). It also contains products the customer has purchased, either as they are released or modified according to product configuration parameters in part III.

The basic steps in building the production release system are:

1. Run the $x x x M O D$ or xxxGEN job ($x x x$ is the product abreviation) to update, assemble, and catalog the binaries for the products purchased by the customer and for which modifications exist on the MODPL (part III, sections 1.3.1 and 1.3.2). Refer to part I, section 3.6 for product dependencies.

Or, run the xxxINS job to copy the product's binary from the release tape and catalog the binary (part III, sections 1.3.1 and 1.3.2).
2. For subsequent installations, run the FTNLIB7 job to update the old FCLOPL tape and to create a new FCLOPL tape (part III, section 1.3.3).
3. Run the NPRDLIB job to update the PRDLIB file. Binaries for products not modified in current PSR summary are retained from the previous system (part III, section 1.3.2).
4. Run the FLIBGEN and RLIBGEN jobs to update, assemble, and catalog the binary for the FTN and RUN object libraries (part III, section 1.3.3).
5. Run the SCPMOD or SCPGEN job to modify SCOPE 2.0, create a library of SCOPE 2.0 code, add the product set from PRDLIB, and create a new deadstart tape (part III, section 1.3.4).
6. Run the DBUGINS job to catalog the DBUGLIB permanent file (part III, section 1.3.4).

3.3 ADD CUSTOMER MODIFICATIONS

The procedures in SYSDECK assume that customer modifications are contained on a permanent file called USERMODPL, which is an OLDPL (with the master control character set to /) with one deck for each released product's program library (that is, one deck for the COMPASS program library, one deck for the FTN program library, etc.). SYSDECK contains a set of xXxUSR decks that update the release materials created by the xxxMOD decks. FTNLIBX adds customer modifications to the FORTRAN object libraries. The procedure to include customer modifications is similar to the procedure to apply PSR modifications.

3.4 CREATE BACK-UP MATERIALS

When the final tapes and decks are created, make copies of tapes and decks so that back-up materials are available. There are several SYSDECK jobs to copy the tapes and decks (part III, section 1.5).

3.5 GENERATE MAINTENANCE INFORMATION

There are several jobs on SYSDECK to produce maintenance information, such as listings of the system and various cross references of overlays, macros, and symbols (part III, section 1.6).

3.6 TABLE OF INSTALLATION DEPENDENCIES

The following table lists the elements, other than COMPASS and UPDATE, that are necessary to build the product (column 1) and also those elements necessary to use the product once it is built (column 2). The order of installation jobs is discussed in detail in part III, section 1.

In the following table, DBUGLIB is the object time library used by the TRAP utility; COBLIB is the object time library used by COBOL; FORTRAN and RUNLIB are the object libraries used by FTN and RUN respectively. SRTMACS is an XTEXT file containing COMPASS Sort macros.

Product	Required Elements To:	
	$\begin{gathered} \text { Build } \\ (\mathrm{xxxGEN} \text { or } \mathrm{xxxMOD}) \end{gathered}$	$\begin{gathered} \text { USE } \\ \text { (User Execution) } \end{gathered}$
SCOPE 2.0		
ANALYZE	FTN Compiler FORTRAN Library	
LIBEDT	FTN Compiler FORTRAN Library	
TRAP		DBUGLIB
COMPASS 2.0		
SORTMRG 1.0		SRTMACS SRTLIB Library
COBOL 1.0	SRTLIB Library	SRTLIB Library COBLIB Library
FORTRAN Extended 2.0		FORTRAN Library
FORTRAN Run 2.0		RUNLIB Library
FORTRAN Library	FTN Compiler	
RUNLIB		

Figure I-3.1. Table of Installation Dependencies

Figure I-3.2. Flow chart of Installation

Refer to the following publications for hardware, operating system, and product set information. Those with an asterisk (*) are combined SCOPE 2.0 and SCOPE 3.4 manuals.

> Control Data Publications Pub. No.

SCOPE 2.0 Manuals

SCOPE 2.0 Reference Manual	60342600
SCOPE 2.0 User's Guide	60372600
*Loader Reference Manual	60344200
*Record Manager Reference Manual	60307300
SCOPE 2.0 Diagnostic Handbook	60344100
On-line Diagnostics Reference Manual	60405900
Hardware Manual	
CONTROL DATA® CYBER 70/Model 76 Reference Manual	60367200
Station Manuals	60343600
$7611-1$ I/O Station Version 2 Operator's Reference Manual	60343700
$7611-2$ Magnetic Tape Station Version 2 Operator's Reference Manual	
6000 and CYBER 70 Series SCOPE 3.4 Station Version 2 Operator's/	60343800
Reference Manual	60307400

SCOPE 2.0 Support Manuals
System Maintenance Monitor Version 3 Reference Manual 60312400
System Maintenance Monitor Version 3 Operator's Guide 60373800
Product Set Manuals
*COBOL Reference Manual 60384200
*COMPASS Reference Manual 60279900
FORTRAN Run Reference Manual Version 2660360700
*FORTRAN Extended Reference Manual b 60305600
*Sort/Merge Reference Manual 60343900
*UPDATE Reference Manual 60342500

Since the SCOPE 2.0 maintenance package is only used to modify the system and not to deadstart, it is described only in part III, section 1.

2.1 REQUIREMENTS

The SMMB initialization card deck is released in absolute (ABS) format. The first card is a 77 (prefix) card. The last card is a lace card that contains binary data.

Figure II-2.1. SMMB Deck as Viewed from Back to Show Card Formats
It is the customer engineer's responsibility to install and maintain SMM 3.0. SMMB installation information is included in this manual because SMM is a requirement to deadstart and run SCOPE 2.0. Refer to the System Maintenance Monitor Version 3.0 Operator's Guide for SMM operating procedures and interface specifications.

2.2 DEADSTART PROCEDURE

Perform the following operations to deadstart the MCU and load the MCU operating system monitor program from the card reader.

1. Load the SMMB card deck as formatted in section 2.1 into the MCU card reader.
2. Press the deadstart button (ON-LINE/OFF-LINE button) on the card reader.
3. Press MOTOR POWER switch on the MCU card reader.
4. Press AUTO/MAN switch so that MAN lights.
5. Press the READY switch on the card reader operator panel.

The MCU reads in the card deck and initiates execution of the MCU monitor program in the MCU.

A successful deadstart of the MCU is indicated when the following information appears on the console: COPYRIGHT CONTROL DATA CORPORATION 1971 on the right screen and SMMB3000* on the lower left screen.

NOTE
If SMMB is restarted after SCOPE 2.0 is installed, it is necessary to reestablish communication with the CPU by typing in or reading in by card:

CN 10730, 10460, 5344, 10540.
Part IV section 3.2.3 describes each of these parameters. Refer to the SMM Operator's Guide for a detailed description of the CN command and the SMM MCU/CPU communication block.

3.1 REQUIREMENTS

SMMB must be installed, as in part II, section 2. The installation of the 7611-1 I/O Station involves:

1. Transferring the 7611-1 I/O Station system from the STALIB tape to the station disk pack (section 3.2.1)
2. Deadstarting the 7611-1 I/O Station from disk (section 3. Z. $\overline{2}$)

The following materials are needed to perform this installation.
STATDS Card to transfer the 7611-1 I/O Station system from tape to disk
STADDS Card to initialize the 7611-1 I/O Station from disk
STALIB Tape containing the 7611-1 I/O Station library
STACLR Card to clear memory and channel
Additional instructions included in this section are:
Procedures to read the SCOPE library (SCPLIB) tape from the 7611-1 I/O Station (section 3.2.3)
Procedures to \log in the station (section 3.2.4)

3.2 PROCEDURES

3.2.1 TAPE DEADSTART

1. Turn on all I/O station peripheral equipment. For turn-on procedures, refer to the reference/CE manual for each device. (It isn't necessary to turn on the punch to deadstart the station.)
2. Place the 7611-1 disk pack to be used for the new system on the I / O station disk drive; ready the unit.
3. Mount the 7611-1 I/O Station library tape (STALIB) on tape unit 0; ready the unit at 800 bpi.
4. Place STATDS (tape deadstart card) in the 7611-1 I/O Station card reader.
5. Press MOTOR POWER switch on the card reader operator panel.
6. Press deadstart button (ON-LINE/OFF-LINE button) on the inside panel of the card reader.
7. Press AUTO/MAN swtich so that MAN lights.
8. Press READY switch on the operator panel.
9. After the card is read ${ }^{\dagger}$, press the END OF FILE switch twice.

PPUs 0, 3, 4, and 5 are deadstarted. (The disk pack is initialized which requires about three minutes. To avoid addressing the pack, type TERM 4 and press CR.) PPU 5 reads the tape and displays every program name. The system builds the station disk pack from the binaries on the STALIB tape.

The initialization operation is complete when the system rewinds the tape and turns off the selection unit light. Deadstart the disk using the procedure in section 3.2.2.

3.2.2 DISK DEADSTART

1. Turn on all I/O station peripheral equipment. For turn on procedures, refer to the reference/CE manual for that device.
2. Place the disk pack (created in section 3.2.1) on the I / O station disk drive; ready the unit.
3. Place STADDS (disk deadstart card) in the card reader.
4. Press MOTOR POWER switch on the card reader operator panel.
5. Press the deadstart button (ON-LINE/OFF-LINE button) on the inside panel of the card reader.
6. Press the AUTO/MAN switch so that MAN lights.
7. Press the READY switch to read the card.
8. After the STADDS card is read ${ }^{\dagger}$, press END OF FLLE switch twice; the system deadstarts PPUs 0,3 , and 4 and brings up the INITL. display.
9. Deadstart the remaining PPUs using the AUTO command.

Type AUTO. Press CR

The deadstart operation is complete when the SFNT display appears on the console.
10. Turn off any printer that isn't useable.

3.2.3 DEADSTART SCOPE 2.0 FROM THE 7611-1 I/O STATION

To deadstart the SCOPE 2.0 system from the $7611-1$ station, follow the procedures in part II, section 6.1, noting these exceptions:

1. Specify the 7611-1 I/O Station as the system source device (part II, section 6.3.4).
\dagger If the STATDS or STADDS card does not perform its function, it may be necessary to clear memory and channel. Read in the STACLR card using the same procedure as to read in the STATDS or STADDS cards.
2. The following messages appear in the PPU5 message buffer area on the station console.
a. DEADSTART 7000 SCOPE 2.0 indicates that the SCPLIB tape is being read.
b. DEADSTART COMPLETE WAITING FOR LOGIN appears while the tape is rewinding and until the deadstart process is complete.
c. CPU REQUESTS LOGIN appears when the deadstart process is complete.

3.2.4 LOG IN

When SCOPE 2.0 is installed, log the station in with the following procedure.

1. Press the / key to select CENTRAL mode; **CENTRAL** is displayed at the bottom of the display area.
2. To allow communication between the I/O station and central:

Type LOGIN, ggg.
ggg Optional three-alphanumeric-character station identifier; if omitted, the default station parameter IOS is used.

Press CR
Refer to part II, section 6.1 for the procedures to ready the station for communication with central, to designate a SYSTEM OPERATOR station, and to assign the number of jobs to multiprogram in central.

4.1 REQUIREMENTS

The procedures in section 4.2 describe the installation of the $7611-2$ Magnetic Tape Station.

SMMB must be installed as in part II, section 2.
Materials to install the station are:
MTSTDS Deck to initialize the station disk pack from tape; it is also on the SCPLIB tape as TDS
MTSLIB Tape containing the station system library
MTSDDS Card deck that initializes the station from disk; it is also on the SCPLIB tape as FDS to initialize the station at SCOPE 2.0 installation time.

Refer to the 7611-2 Magnetic Tape Station Version 2 Operator's Reference Manual for operating procedures.

4.2 PROCEDURES

Use the procedure in section 4.2.1, tape deadstart, for the initial deadstart of the station. These procedures load the station system from the MTSLIB tape to a disk pack and then load the system from the disk pack into the 7611-2.

The disk pack does not need to be loaded with the station system each time the station is deadstarted. After the system has been placed on the 7611-2 disk pack, use the procedure in section 4.2.2 to deadstart the station from disk either at SCOPE 2.0 installation time or after SCOPE 2.0 is already installed. However, if the system has been lost (because of disk errors, for example), the disk pack must be reloaded.

4.2.1 TAPE DEADSTART

1. Turn on the peripheral equipment. For turn-on procedures, refer to the reference/ CE manual for the device.
2. Master clear the CC522 station console (maintenance panel) and select the left display page; turn up intensity on display.
3. Place a disk pack on the 857 disk drive.
4. Mount the MTSLIB tape on unit 0 at 800 bpi ; ready the unit.
5. Load the MTSTDS deck into the MCU card reader; the format of the deck is as follows.

XX.

DPxx.
LPxx, 0.

RUxx, 100. Executes the program in the designated FLPP starting at address 100
6. Press the AUTO/MAN switch so that AUTO lights.
7. Press the MOTOR POWER switch so that the motor runs.
8. Press READY switch (operator panel).

The system reads the MTSTDS deck and loads the station system on the disk pack.
The following message appears on the station display while the disk is addressed.
INITIALIZING DISK
Then
CREATING LIBRARY
appears; the tape is read and written in a scratch portion of the station disk.
The following message appears as the routines are placed in the proper portion on the disk (xxx = routine name).

CREATING LIBRARY $x x x$
9. The installation of the station is completed during the installation of SCOPE 2.0.

When installing SCOPE 2.0, insert a CHQ card describing the station in the deadstart reply deck (section 6.3.3).

When the deadstart deck SCPSID is read, the station receives a bootstrap called FDS that reads the library from its disk pack. FDS deadstarts the multiplexer PPU (XPP) in the station and sends it a deadstart program. The XPP deadstarts the remaining station PPUs. SCOPE 2.0 must be installed. The station is now capable of performing blank labeling functions and diagnostic operations.

4.2.2 DISK DEADSTART

If SCOPE 2.0 has been installed and the station system is on a disk pack, use the following procedure to deadstart the station (unless the system library is lost because of disk errors).

If SCOPE 2.0 and the station are to be installed at the same time, use only steps 1 through 3 and then proceed with the SCOPE 2.0 installation procedures (part II, section 6.1).

1. Turn on the peripheral equipment. For turn-on procedures, refer to the reference/ CE manual for the device.
2. Master clear the CC522 station console (maintenance panel) and select the left display page; turn up the density on the display.
3. Place the disk pack containing the station system on the 857 disk drive.
4. Load the MTSDDS deck into the MCU card reader in the following format.

xx .
FLPP connected to the station
DPxx.
LPxx, 0. Loads the binary cards in MTSDDS into the FLPP specified starting
at location 0
5. Press the AUTO/MAN switch so that AUTO lights.
6. Press the MOTOR POWER switch so that the motor runs.
7. Press the READY switch on the operator panel.

The system reads the FDS program contained in MTSDDS and reads the library from its disk pack. FDS deadstarts the multiplexer PPU (XPP) in the station and sends it a deadstart program. The XPP deadstarts the rest of the station PPUs. The station is now capable of performing blank labeling functions and diagnostic operations.

4.2.3 DEADSTART SCOPE 2.0 FROM 7611-2 MAGNETIC TAPE STATION

To deadstart the SCOPE 2.0 system from the $7611-2$ magnetic tape station, follow the procedures in part II, section 6.1 noting the following:

1. Specify the 7611-2 Magnetic Tape Station as the system source device (part II, section 6.3.4).
2. n. LOG IN THE STATION appears on the station display console when the deadstart process is complete.

4.2.4 LOG IN

1. When SCOPE 2.0 is ready to communicate with the station, it sends an initiate message and the station displays the following message on the console display.
n. LOG IN THE STATION
2. Type n.LOGIN ggg

Press CR
$\mathrm{n} \quad$ Same number as in preceding message
ggg Optional three-alphanumeric-character station identifier; if omitted, the default station identifier MTS is used.

The station is operational when the data appears in the upper right-hand corner of the unit status display.

5.1 REQUIREMENTS

Refer to the SCOPE 3.4 Installation Handbook for installation of the 6000 SCOPE 3.4 Station and to the 6000 and CYBER 70 Series SCOPE 3.4 Station Version 2 Operator's Reference Manual for operating procedures.

5.2 PROCEDURES

5.2.1 INSTALLATION AND LOG IN

1. Install the 6000 SCOPE 3.4 operating system using the installation instructions in the 6000 SCOPE 3.4 Installation Handbook. To indicate that the 6000 computer system is to be used as a station, insert *DFFINE, STATION in the UPDATE record of the SCOPE1 deck. (Remove the card from the deck when a configured program library is created.)
2. To bring the station to control point after SCOPE 3.4 is deadstarted and is executing:

$$
\begin{array}{ll}
\text { Type } & \text { n. STATggg } \\
\text { Press } & \text { CR }
\end{array}
$$

n Control point number assigned to 6000 station
ggg Optional three-alphanumeric-character station identifier; first character must be alphabetic. If parameter is omitted, the default station identifier CCP is used.
3. If SCOPE 2.0 is already deadstarted and executing, \log in occurs automatically; if the SCOPE 2.0 deadstart tape SCPLIB is to be read from the 6000 station, log in of the 6000 station occurs when SCOPE 2.0 deadstart initialization or recovery is complete; if SCOPE 2.0 is not deadstarted and executing, the following message appears at the 6000 station control point.

WAITING FOR 7000

5.2.2 DEADSTART SCOPE 2.0 FROM 6000 3.4 STATION

To read the SCPLIB file from the 6000 station, use the following procedure.

1. Complete the preceding LOG IN procedure (section 5.2.1).
2. Use the SCOPE 2.0 installation procedure (part II, section 6.1) assigning the 6000 station channel as the channel through which the system library is to be sent (source command in part II, section 6.3.4).
3. After receiving the deadstart signal from the 7000 , the 6000 station searches for a permanent file named DEADST (a default file name set by an assembly option) to transfer it to the SCOPE 2.0 system. If that permanent file is found, the SCPLIB file is copied from the 6000 station to the SCOPE 2.0 system disk. (Procedures to catalog SCPLIB on permanent file DEADST are in the Operator's Reference Manual for the SCOPE 3.4 Station.)
4. If the default file DEADST cannot be found as a permanent file, the following message appears on the SCOPE 3.4 system B display.

REQUEST DEADSTART FILE, LAST ASSIGN NOT FOUND
5. If the deadstart file is on tape:

Type n. ASSIGN uu. Press CR
n Control point number assigned to the 6000 Station
uu 6000 equipment status table (EST) ordinal of the tape unit uu

Type	DSFILE, uu, dd.

uu Deadstart file is on tape at EST ordinal uu
dd LO, HI, HY for 7-track tape density; if omitted, default is HI for 7-track. This parameter is ignored for 9-track tapes.
6. If the deadstart file is another permanent file (other than DEADST):
$\begin{array}{ll} \\ \text { Type } & \text { DSFILE, pfn. }\end{array}{ }^{\dagger}$
pfn Deadstart file is a permanent file with file name pfn.
7. The SCPLIB is copied from the 6000 station to the SCOPE 2.0 system disk. When SCOPE 2.0 is deadstarted, it sends a station initiate message to all stations known in the system.

Continue with SCOPE 2.0 installation in part II, section 6.1.

[^0]Deadstart is the process that prepares a computer system for running jobs. With SCOPE 2.0 there are two kinds of deadstart.

Deadstart initialization The DS1 module is loaded into SCM from the MCU card reader; the system library to be initialized is either on a tape or is one of five cycles of the system library permanent file resident on the system disk.

Procedure is in section 6.1.
The DS 1 module is loaded into SCM from the system disk; the system library to be recovered is either on a tape or is one of five cycles of the system library permanent file resident on the system disk.
Procedure is in section 6.4.
The functions of the deadstart program during the deadstart process are described in part IV, section 3.6.7. The following figure identifies the information that can be recovered from the previous deadstart.

Deadstart Option	Deadstart Initialization		Deadstart Recovery	
	System Library from Tape	System Library from Disk	System Library from Tape	System Library from Disk
EST, LIB, SYS, FLS, FLL, and CHQ re- covered?	no	no	yes	yes
Permanent files re- covered?	optional	automatic	optional	automatic
Flaw table (in vol- ume label group) recovered?	automatic if permanent file recovery selected	automatic	automatic	automatic
T. MAXS, T. MAXL, and T. MAXBUF recovered?	no	no	yes	yes
SFT I/O files re- covered?	no	no	no	optional
SIF LCM buffers recovered?	no	no	no	automatic if
SFT I/O files				
recovered				

Figure II-6.1. Diagram of Deadstart Options

6.1 DEADSTART INITIALIZATION PROCEDURE

This section contains a brief description of the deadstart initialization procedure with references to other sections for detailed information.

NOTE
Read all information contained in part II, sections 6.1 through 6.4 before attempting to use this procedure. It is necessary to know the hardware assignments (such as channel and FLPP assignments) before beginning the installation.

1. Construct the SCPSID deck to reflect the site's configuration.
2. Deadstart the MCU.
3. Deadstart the stations that are to be used in the deadstart process.
4. If the system library is on tape, mount the SCPLIB tape on either a 7611-1 station, $7611-2$ station, 6000 station, or on-line tape unit; ready the unit. The default values for the 7611-1 and 7611-2 station and on-line tapes are: unit 0, 556 bpi, 7-track tape. A 6000 station tape unit must be assigned to the station control point.
5. Place the SCPSID deck in the MCU card reader.
a. Press the AUTO/MAN switch so that AUTO lights.
b. Press the MOTOR POWER switch so that the motor runs.
c. Press the READY switch on the operator panel.

The cards are read; if the card reader does not begin to read cards, begin again with step 2 or refer to the EP command in part IV, section 3.2.4.
6. Reply to the deadstart requests at the MCU display console. (The sequence of requests and replies are in the flowchart in section 6.5.1).
7. Log in the stations.
8. Ready the 7611-1 and 6000 stations for communication with central.

Type ONSTAT.
Press CR
part II, section 6.2
part II, section 2
part II, sections $3.2,4.2$, and 5.2
part II, sections 3.2.3, 4.2.3, or 5.2.2
part II, section 6.3
part II, sections $3.2 .4,4.2 .4$, and 5.2.1
9. Designate one SYSTEM OPERATOR station.

Type SETOP.
Press CR
Type ONOP.
Press CR
10. At the SYSTEM OPERATOR station, assign the number of jobs to be executed in multiprogramming mode.

Type JCB, n
Press CR
11. If a permanent file dump tape of the system part III, sections 1.2 .2 and 1.2.4 libraries exists, run the LDIDPRD job:
12. Run the SYSLIB job to specify the object
part IV, section 3.6.3 libraries to the operating system.

6.2 FORMAT OF SCPSID DEADSTART DECK

The purpose of this section is to describe the structure of the deadstart deck. (Its function is described in part IV, section 3.6.7.) The deck contents and the SMM commands necessary in the deadstart deck are described in sections 6.2.1 through 6.2.4. Refer to the System Maintenance Monitor Version 3 Reference Manual for a more detailed description of each SMM command.

NOTE
Keypunch errors in the deadstart deck may cause deadstart to abort.

SCPSID contains the following decks and control cards.

6.2.1 FLPP DECKS

Place a FLPP card deck in the SCPSID deck to initialize each FLPP in the site's hardware configuration.

Deck Format for FLPPs Used to Deadstart SCOPE 2.0
Construct a deck similar to the following for each FLPP to be used for the deadstart process.

DPxx. Loads resident program and deadstarts the designated PPU
KPxx. Clears the entire FLPP memory, except for resident
CExx.
LPxx,0. Loads binary program to the FLPP specified starting at location 0 ; all load addresses given to SMM for all FLPPs are 0.

FLPP binary FLPP binary programs used to deadstart SCOPE 2.0; deck names module are:

CPL 6000 station deck
DSC 7611-2 Magnetic Tape Station deck

DSK System mass storage device decks
MMD On-line tape unit device (MTD is COMPASS ident)
The 7611-1 I/O station does not have an FLPP.
$M P x x_{1}, \mathrm{xx}_{2}$. If there is more than one FLPP driver for a given device in the system, an FLPP deck is necessary for each driver. Since the binary deck for each is identical, the MP (move) command can be used to move the contents of $\mathrm{FLPPXx} 1_{1}$ to FLPPxx_{2}.

Deck Format for Other FLPPs
Construct a deck in the following format for each FLPP not part of the deadstart process.

DPxx. Loads resident program and deadstarts the designated PPU
KPxx. Clears the entire PPU memory, except for resident
CExx. Clears parity errors for designated PPU

6.2.2 DS1 DECK

The DS1 deck must consist of the following cards.

AX. Commands SMM to bring up an X format display of SCM on the A screen

BX. Commands SMM to bring up an X format display of SCM on the B screen

Forcing of an SCM display during the initial (noninterruptable) phase of DS1 prevents SMM from displaying LCM. Avoid displaying LCM while the CPU is executing in noninterruptable mode, because the MCU stops communicating with the CPU after a period of time.

HC. Applies the deadstart signal to the CPU until an RD or DC command is given or until a reference to LCM is required

CE. Clears parity error indicators for SCM and LCM
The CF. and $\mathrm{KC} 0, f 1 \mathrm{~s}, 0$. commands are needed after running off-line diagnostics in the CPU to prevent the DS1 binary deck from writing over the MCU/CPU communication area in SCM.

The CF. command directs the MCU to stop monitoring the MCU/CPU communication area and to stop writing parity status into the communication area.

KC0, fls, 0 . Sets SCM from 0 to fls -1 to zeros. fls is length of SCM: 100000_{8} for half-sized SCM or 200000_{8} for full-sized SCM.

KL fwa, lwa+1, Sets LCM from fwa to lwa to value of data; optional
data.
LC0. Loads binary module DS1 to SCM starting at location 0
DS1 binary The module must end with a 7/8/9 card
module
DC.
$\begin{array}{ll}\text { CN 10730, } & \text { Directs the MCU to monitor the MCU/CPU call block for CPU calls } \\ 10460 \text {, } & \text { and to store FLPP and SCM/LCM status in the communication area. }\end{array}$ 10460 , 5344, 10540. The parameters specify the locations of the communication area, the EEA exchange package, and addresses required by the SMM SY command. Whenever ORE or ORL changes are made, check the CN parameters for accuracy. Refer to part IV, section 3.2.3 for a detailed description of the CN parameters.

6.2.3 DEADSTART REPLY DECK

The deadstart reply deck is constructed in the following way.

${ }_{9}^{8}$ SC2 | The 8/9 punch in column 1 indicates to SMM that this is a reserve |
| :--- |
| control card. SC2 is an identifier to DS1 to signal the beginning of |
| the SCOPE 2.0 deadstart reply deck. This card is necessary even |
| if there are no requests entered by card (when all are entered |
| through the MCU console). |

Deadstart
Replies
:---
Replies must be in the same order as presented in section 6.3.

BCD text on the card begins in column 1.

6.2.4 SAMPLE SCPSID DECK STRUCTURE

Following is the SCPSID deck as it would be constructed for the typical configuration described in sections 6.3.1 and 6.3.3. There are two examples of.deadstart reply decks, the first for a deadstart initialization without permanent file recovery and the second for a deadstart recovery with permanent file recovery.

Only FLPP decks necessary to deadstart the system are required in the SCPSID. FLPPs are reloaded automatically by deadstart. In the following example all possible decks are included.

$$
\text { ! indicates an } 11 / 12 \text { punch; } * \quad \text { indicates optional cards. }
$$

FLPP and DS1 Decks
AN.
BN.
DP2.
KP2.
CE2.
LP2, 0 .
DSK (Disk FLPP binary driver)
7/8/9
DP3.
KP3.
CE3.
$\left.\begin{array}{l}\text { LP3, } 0 \text { (Disk FLPP binary driver) } \\ \begin{array}{l}\text { DSK } \\ \text { DP4 }\end{array}\end{array}\right\}$ or MP2,3.
DP4.
KP4.
CE4.
DP5.
KP5.
CE5.
DP6.
KP6.
CE6.
DP7.
KP7.
CE7.
DP10.
KP10.
CE10.
LP10, 0.
CPL (6000 FLPP binary driver)
7/8/9
DP11.
KP11.
CE11.
LP11, 0.
MMD (On-line tape FLPP binary driver)
7/8/9
DP12.
KP12.
CE12.
LP12, 0 .
DSC (7611-2 FLPP binary driver)
7/8/9
DP14.
KP14.
CE14.
LP10, 0 .
$\left.\begin{array}{l}\text { LP10, } 0 . \\ \begin{array}{l}\text { CPL } \\ 7 / 8 / 9\end{array}(6000 \text { FLPP binary driver })\end{array}\right\} \quad$ or MP10, 14.
DP15.
KP15.
CE15.
AX.
BX.
HC.

CE.
CF.
KC 0 , f1s, 0
*KL.
LC0.
DS1 binary module
7/8/9
DC.

CN 10730, 10460, 5344, 10540.
Deadstart Reply Decks

The following example is a deadstart reply deck for deadstart initialization without permanent file recovery and the source of the system library on tape.

```
    8/9SC2
    FLS=200000,FLL=1764000!
    LIB=205!
    EST=1,DT=AF/PF/SY, CH=2/3,UN=0!
    EST=2,DT=AF,CH=3/2,UN=1!
    EST=3,DT=AF,CH=4/5,UN=0!
    EST}=4,\textrm{DT}=\textrm{AF},\textrm{CH}=6/7,\textrm{UN}=1\mathrm{ !
    EST}=40,\textrm{DT}=\textrm{MT},\textrm{CH}=11,\textrm{UN}=0
    EST=41,DT =MT, CH=11,UN=1!
    EST=42,DT=MT,}\textrm{CH}=11,\textrm{UN}=2\mathrm{ !
    !: END OF EST ENTRIES
    CHQ=2,DT=AF/2P,FC=01043276!
    CHQ =3,DT =AF/2P,FC=01047632!
    CHQ=4,DT=AF/4P,FC=01043200!
    CHQ}=5,DT=AF/4P,FC=01040032
    CHQ =6,DT=AF/4P, FC=01043200!
    CHQ=7,DT =AF/4P,FC=01040032!
    CHQ =10,DT=6ST, FC=01200000!
    CHQ=11,DT=MT, FC=01003200!
    CHQ=12,DT=MTS, FC=01320000!
    CHQ=13,DT=6ST,FC=01200000, PP=14!
    CHQ=16,DT=7ST, FC=0!
    CHQ=17,DT = 7ST,FC=0!
    ! END OF CHQ ENTRIES
    T12! GIVE SYSTEM SOURCE REPLY
    N! NO PERMANENT FILE RECOVERY
    20,5,1! FLAW ON TRACK 20 OF C2, U0 (SYSTEM RESIDENT DEVICE)
    ! END OF FLAWS ON C2, U0, TRACK 20
1200! OTHER FLAWS ON C2, U0
35,0,12! OTHER FLAWS ON C2, U0
37,1,1! OTHER FLAWS ON C2, U0
! END OF FLAWS ON C2,U0
AUTO! GO REPLY
*STORE 340,L,T.MAXBUF! Maximum number of buffers that can be allo-
*STORE, 0, L, T. SPF!
*STORE 160000,L,T.MAXS!
*STORE 1400000, L, T. MAXL!
    cated to a job.
    SFT disk write is inhibited
    Optional for full size machine; maximum user
    FLS
    Optional for full size machine; maximum user
    FLL
GCM!
!
\(!\)
\(!\)
                                    NO FLAWS ON TRACK 20 of C3, U1
                                    NO OTHER FLAWS ON C3, U1
                                    NO FLAWS ON TRACK 20 OF C4, U0
                                    NO OTHER FLAWS ON C4, U0
```

```
20,8,1! FLAWS ON TRACK 20 OF C6, U1
! NO OTHER FLAWS ON TRACK 20 OF C6, U1
145,12! OTHER FLAWS ON C6, U1
!
END OF FLAWS ON C6, U1
8/9 END
```

The following example is a deadstart reply deck for a deadstart recovery with permanent file recovery. The system library is on tape. The next command to appear after using this deck is the request for the disk address of the volume label group.

```
8/9SC2
\(\mathrm{FLS}=200000\), \(\mathrm{FLL}=1764000\) !
LIB \(=205\) !
\(\mathrm{EST}=1, \mathrm{DT}=\mathrm{AF} / \mathrm{PF} / \mathrm{SY}, \mathrm{CH}=2 / 3, \mathrm{UN}=0\) !
\(\mathrm{EST}=2, \mathrm{DT}=\mathrm{AF}, \mathrm{CH}=3 / 2, \mathrm{UN}=1\) !
\(\mathrm{EST}=3, \mathrm{DT}=\mathrm{AF}, \mathrm{CH}=4 / 5, \mathrm{UN}=0\) !
\(\mathrm{EST}=4, \mathrm{DT}=\mathrm{AF}, \mathrm{CH}=6 / 7, \mathrm{UN}=1\) !
\(\mathrm{EST}=40, \mathrm{DT}=\mathrm{MT}, \mathrm{CH}=11, \mathrm{UN}=0\) !
\(\mathrm{EST}=41, \mathrm{DT}=\mathrm{MT}, \mathrm{CH}=11, \mathrm{UN}=1\) !
\(\mathrm{EST}=42, \mathrm{DT}=\mathrm{MT}, \mathrm{CH}=11, \mathrm{UN}=2\) !
\(!\quad\) END OF EST ENTRIES
\(\mathrm{CHQ}=2, \mathrm{DT}=\mathrm{AF} / 2 \mathrm{P}, \mathrm{FC}=01043276\) !
\(\mathrm{CHQ}=3, \mathrm{DT}=\mathrm{AF} / 2 \mathrm{P}, \mathrm{FC}=01047632\) !
\(\mathrm{CHQ}=4, \mathrm{DT}=\mathrm{AF} / 4 \mathrm{P}, \mathrm{FC}=01043200\) !
\(\mathrm{CHQ}=5, \mathrm{DT}=\mathrm{AF} / 4 \mathrm{P}, \mathrm{FC}=01040032\) !
\(\mathrm{CHQ}=6, \mathrm{DT}=\mathrm{AF} / 4 \mathrm{P}, \mathrm{FC}=01043200!\)
\(\mathrm{CHQ}=7, \mathrm{DT}=\mathrm{AF} / 4 \mathrm{P}, \mathrm{FC}=01040032\) !
\(\mathrm{CHQ}=10, \mathrm{DT}=6 \mathrm{ST}, \mathrm{FC}=01200000\) !
\(\mathrm{CHQ}=11, \mathrm{DT}=\mathrm{MT}, \mathrm{FC}=01003200\) !
\(\mathrm{CHQ}=12, \mathrm{DT}=\mathrm{MTS}, \mathrm{FC}=01320000\) !
\(\mathrm{CHQ}=13, \mathrm{DT}=6 \mathrm{ST}, \mathrm{FC}=01200000, \mathrm{PP}=14\) !
\(\mathrm{CHQ}=16, \mathrm{DT}=7 \mathrm{ST}, \mathrm{FC}=0\) !
\(\mathrm{CHQ}=17, \mathrm{DT}=7 \mathrm{ST}, \mathrm{FC}=0\) !
\(!\quad\) CHQ CONFIRMATION
T12! GIVE SYSTEM SOURCE REPLY
Y!
8/9 END
```


6.3 DEADSTART REQUESTS AND REPLIES FOR DEADSTART INITILIZATION

Information defining the site's hardware configuration can be partially submitted in the SCPSID deck. All information not provided in this deck is requested at deadstart time at the MCU console with the request messages noted in this section. The first request displayed at the MCU console when the SCPSID deck is read is the one that follows the last reply supplied in the deadstart deck.

The following possibilities are available to the person installing the system.

- Answering all requests at the MCU console by only submitting the $8 / 9 \mathrm{SC} 2$ and the $8 / 9 E N D$ cards in the SCPSID deck to represent the deadstart reply deck.
- Submitting some replies in the SCPSID deck with the following restrictions.

If permanent files are not to be recovered from the previous deadstart, replies in sections 6.3.1 through 6.3.11 (up to but not including the volume label group) can be entered by card.

If permanent files are to be recovered from the previous deadstart, only replies in sections 6.3.1 through 6.3 .5 can be submitted by card.

If any reply is entered incorrectly, an ERROR message appears. Refer to part IV, section 2.6 for corrective action.

6.3.1 EQUIPMENT STATUS TABLE (EST)

The EST contains the on-line equipment settings. They are set as each reply is received through the card reader or the MCU console.

Display Format

NO.
EST entry ordinal

TYPE
STATUS
CHANNELS
UNIT
LIBRARY BUFFERS number
Number of 10008 word library buffers; to modify released value of 220 refer to section 6.3.2
SYSTEM TABLES Number of 10008 word system tables; to modify released value of 40 refer to section 6.3.2
FLS $\quad \begin{aligned} & \text { Field length for } \mathrm{SCM} \text {; to modify released value of } 100000 \\ & \text { section } 6.3 .2\end{aligned}$ refer to
FLL $\quad \begin{aligned} & \text { Field length for LCM; to modify released value of } 0764000 \\ & \text { to section } 6.3 .2\end{aligned}$

Reply Format
A single carriage return when information is typed in (or $11 / 12$ punch in column 1 when the information is on card) confirms that the EST is accurate and/or that EST input is completed.

To add to or modify the EST, submit the following information by card in the deadstart reply deck or at the MCU console when the EST display appears. The on-line equipment is set in the EST as each reply is received and the display is updated.

During a deadstart initialization with permanent file recovery only changes to the magnetic tape entries (MT and NT) can be made. Do not make any additions, deletions, or modifications to the system mass storage entries. They must be the same as in the last successful deadstart or recovery.

ord EST entry ordinal; 1 through NE.EST-1 (NE.EST $=100_{8}$ in released system)
dt Device type and device characteristics when necessary. AF indicates that the equipment is a mass storage disk; SY indicates that the system library is read onto that file during deadstart; PF indicates that the equipment is for permanent file directory (PFD) and permanent file catalog (PFC).

AF Mass storage device
AF/PF Mass storage device; available for PFD and PFC.
AF/PF/SY Mass storage device; available for PFD, PFC, and system library file.
AF/SY Mass storage device; system library file residence
MT 7-track magnetic tape
NT 9-track magnetic tape
$\mathrm{cc}_{1} / \mathrm{cc}_{2} \quad$ FLPP primary (cc_{1}) and secondary (cc_{2}) channels when necessary; 2 through 17_{8}
unit Physical unit number; 0 through 77_{8}
To delete EST entries type or submit by card the following (ord is the ordinal of the equipment to be deleted):

Example:
The sample EST entries for the typical configuration in figure II-6.2 are:

```
EST=1,DT=AF/PF/SY,CH=2/3,UN=0!
EST=2,DT=AF,CH=3/2,UN=1!
EST=3,DT=AF,CH=4/5, UN = 0 !
EST=4,DT=AF, CH=6/7, UN=1!
EST}=40,\textrm{DT}=\textrm{MT},\textrm{CH}=11,\textrm{UN}=0
EST}=41,\textrm{DT}=\textrm{MT},\textrm{CH}=11,\textrm{UN}=1
EST}=42,\textrm{DT}=\textrm{MT},\textrm{CH}=11,\textrm{UN}=2
```


6.3.2 MEMORY SIZE

As an option at anytime during the building of the EST, the number of library buffers, the number of system tables, and the size of SCM and/or LCM buffer areas can be allocated. When submitting this information as part of the SCPSID deck, these cards should precede the EST cards. This information is displayed at the bottom of the EST display as shown in part II, section 6.3.1.

Reply Format for Library Buffers
Library buffers are allocated in LCM and are partially filled during deadstart with system overlays and directories. During system running, additional library buffers are used when the SYSLIBE function adds an LCM resident library. If the number of library buffers allocated is overflowed during the deadstart operations, the fatal error message LIB BUFFERS EXCEEDED is displayed. In this case, deadstart again with a larger number of library buffers specified.

Type or submit by card in the deadstart reply deck the following information.

$x x x \quad 3$-digit number of library buffers; each buffer is 10008 in length; default is in IP.LIB

Reply Format for System Table Definition
System tables are used by the system as a data area for FATs, PREs, and other temporary tables.

Type or submit by card in the deadstart reply deck the following information.

$x x x \quad 1$ to 3 digit number of system tables; each table is 1000_{8} words in length; default is in IP.SYS

Reply Format for FLS and FLL

Type or submit by card in the deadstart reply deck the following information.

$\operatorname{xxxxxx} 1$ to 6 digit field length for SCM ; default is 100000 B (IP.SCMSI in part III, section 6.2.12)
yyyyyyy 1 to 7 digit file length for LCM; default is 764000 B (IP. LCMSI in part III, section 6.2.12)

6.3.3 CHANNEL QUEUE TABLE (CHQ)

The channel queue table contains the characteristics of each hardware I/O channel.

Display Format

NO. CHQ entry ordinal number
TYPE Device type and characteristics; REJ refers to an unused channel
SC Maximum number of subchannels for a station channel; cannot be modified during deadstart

BL Hardware I/O buffer length; cannot be modified during deadstart
QL Maximum number of requests for a station channel; cannot be modified during deadstart

FC Channel function code for FLPP initialization

Reply Format
To add to or amend the CHQ, type at the MCU console or submit on cards in the deadstart reply deck the following information. As each reply is processed, the CHQ display is updated.

During a deadstart initialization with permanent file recovery, do not make any changes that would affect the EST and CHQ mass storage device assignments.

ord \quad CHQ entry ordinal; must be the I / O multiplexer channel (MUX) number to be described (2 through 178)
dt Device type and characteristics when necessary
AF/2P Mass storage device, 2 PPU configuration
AF/4P Mass storage device, 4 PPU configuration
MT 7-track magnetic tape
NT 9-track magnetic tape
MT/2P 7-track magnetic tape
2 PPU configuration
NT/2P 9-track magnetic tape
2 PPU configuration
6ST 6000 or CYBER 70 Station
7ST 7611-1 I/O Station
MTS 7611-2 Magnetic Tape Station
channel Channel configuration for FLPP initialization. The first four characters are data in direct address 6; the last four characters are data in direct address 7.

For system mass storage file driver (2 PPU configuration)

11
DIRECT
ADDRESS 7

| PRIMARY |
| :---: | :---: | :---: | :---: |
| UNIT DATA |
| CHANNEL | | PRIMARY |
| :---: |
| CONITT |
| CHANNEL |\quad| SECONDARY |
| :---: |
| UNIT DATA |
| CHANNEL | | SECONDARY |
| :---: |
| UNIT |
| CONTROL |
| CHANNEL |

For system mass storage file driver (4 PPU configuration)
Lower numbered PPU

11						
DIRECT ADDRESS 6	0 FOR MCU CHANNEL	1 FOR MUX CHANNEL	0	FOR UNUSED		INTER PPU
:---						
CHANNEL						

Higher numbered PPU

For station driver

For on-line tape driver

flpp Optional FLPP number; must be entered only when the FLPP number differs from the number of the CPU channel to which the FLPP is attached. For example, if CPU MUX channel 13 is connected to FLPP14, the parameters would be $\mathrm{PP}=14$ on the $\mathrm{CHQ}=13$,... reply.

REJ as type on the display indicates unused channel. Change a channel to unused channel by typing or submitting by card:

A single carriage return when information is typed in (or an $11 / 12$ punch in column one when the information is on cards) indicates that the CHQ is confirmed and/or that CHQ input is completed.

Before confirming the CHQ, the operator may display the EST. To do so, type EST and press CR. Return to the CHQ display by typing CHQ and pressing CR.

Example:
The CHQ entries for the typical configuration in Figure II-6.2 are:

```
CHQ=2,DT=AF/2P, FC=01043276!
CHQ=3,DT=AF/2P,FC=01047632!
CHQ=4,DT =AF/4P, FC=01043200!
CHQ=5,DT=AF/4P,FC=01040032!
CHQ=6,DT =AF/4P, FC=01043200!
CHQ=7,DT =AF/4P, FC=01040032!
CHQ=10,DT=6ST, FC=01200000!
CHQ}=11,DT=MT, FC=01003200!
CHQ=12,DT =MTS, FC=01320000!
CHQ =13,DT=6ST,FC=01200000, PP=14!
CHQ=16,DT=7ST, FC=0!
CHQ=17,DT=7ST, FC=0!
```

The EST entries for this typical configuration are in section 6.3.2.

Figure II-6.2. Diagram of Typical Configuration

6.3.4 GIVE SYSTEM SOURCE

This message requests the CPU channel through which the system library will be sent.

Display Format

Reply Format
If a new system is to be loaded from an on-line or station tape, type at the MCU or submit by card in the deadstart reply deck the following information. Defaults do not pertain to 6000 station.

channel 2-digit CPU channel number through which the system library is to be sent. The channel must contain either an on-line tape driver or a station from which to read the tape (SCPLIB).
unit Optional 1-digit physical unit number. If a 7611-1, 7611-2, or on-line tape unit is used to read the tape, the default is unit 0 . If it is to be read from the 6000 station, the tape unit must be assigned to the station control point.
density Optional 2-digit deadstart tape density: LO, HI, HY, or PE; HI (556 bpi) is default value when parameter is omitted.
type Optional 1-digit tape type: 7 or $9 ; 7$ is default value when parameter is omitted.

If the system library source is an existing cycle of the system file on disk, type at the MCU or submit by card in the deadstart reply deck the following:

6.3.5 PERMANENT FILE RECOVERY Y/N

This is displayed only when the system library source is tape; it is displayed in order to determine if the system should attempt the recovery of permanent files. Permanent file recovery is automatically attempted when the system library source is disk.

Reply Format

To attempt permanent file recovery, type or submit by card:

To specify that permanent files are not to be recovered, type or submit by card:

6.3.6 ENTER DISK ADDRESS

If permanent files are recovered, the following message is displayed requesting the track and sector address of the volume label group on the system mass storage device. Also, if permanent files are recovered, type all remaining replies, including this one.

Display Format

Reply Format

The track and sector address is that of the volume label group as presented in the previous deadstart (section 6.3.13). This address is 2000 (track 20, sector 00) if no flaws exist on track 20.

6.3.7 ENTER FLAW

Requests for flaws on mass storage devices can occur at different times during deadstart, depending upon whether permanent files are recovered. Refer to the flow chart for the precise sequence of requests. The following description applies to flaw requests for both deadstart initialization and recovery.

If permanent files are recovered:
Flaws are requested on devices according to the following order.
System resident mass storage device
Mass storage devices containing permanent files in order of EST ordinals
All other mass storage devices in EST ordinal order
A permanent file recovery recovers the track flaw table in the volume label group; therefore, all flaws from the previous deadstart are recovered. The request for track 20 flaws does not appear.

1. The first request occurs before loading the system library. It requests any flaws not specified during the previous deadstart on the mass storage device that contains the system library.
2. The second request occurs after loading the system library. It requests any flaws not specified during the previous deadstart on any other mass storage devices that contain permanent files.
3. The third request displayed is for flaws not specified on other mass storage devices in the previous deadstart.

If permanent files are not recovered:

1. The first request occurs before loading the system library. It requests all flaws that exist on track 20 of the system resident mass storage device. (With deadstart recovery, track 20 flaws are not requested.) When this reply is entered, then another request is displayed for all other flaws on the system resident device.
2. After the system library is loaded, flaw requests are displayed for all other mass storage devices in the order in which they appear in the EST. First the request for flaws on track 20 of a device is displayed (only if deadstart initialization), then the request for flaws on all other tracks on that device.

As each reply is received, the device allocation map for each unit is updated until a carriage return (or an $11 / 12$ punch in column 1 of a card) is received. If entering flaws through the console, enter a carriage return after the last track 20 flaw and again after the last flaw on the remaining tracks.

A disk I/O error message (described in part IV, section 2.6.1) that may occur is:
DISK I /O ERROR
Cchannel Uunit TRACKtrack SECTORsector

Display Format

channel Channel number; 1 through 17_{8}
unit Unit number; 0 or 1

Reply Format

track $\quad 1$ to 2 digit track number of flaw (20 in first reply); calculate the track number in the following way:

For example: position 257_{8} of stack 1 in head group 1 is equivalent to track number 12.77_{8}.

BITS
sector $\quad 1$ to 2 digit initial sector number (0 to 47_{8}) of flaw; if omitted, sector 0 is
no. $\quad 1$ to 2 digit total number of consecutive sectors (1 to 508) that are flawed; if omitted, the remainder of track is assumed to be flawed.

Examples:
$20,10,1$ Only sector 10 is flawed on track 20
20,10 All sectors 10 and above are flawed on track 20
20 All of track 20 is flawed

6.3.8 SYSTEM PFN AND CYCLE REQUEST

If permanent files are to be recovered, the following message is displayed. If permanent files are not recovered, the first system deadstarted is entered into cycle 1 of the permanent file named 7000 SCOPE VERSION 2.0.

Display Format

Reply Format
To specify a cycle of the current pfn, type:

cycle One of the five cycles of the current pfn that is to be recovered or entered into. The cycle number must be a value from 1 to 5 of the permanent file 7000 SCOPE VERSION 2.0. Deadstart from a user cataloged file is not allowed.

If the system library is from tape, the deadstart program catalogues the system library under the specified cycle. If the system library is from disk, the deadstart program recovers the specified cycle of the system.

To recover the current cycle of the system pfn, press CR. If the system library is from disk, the deadstart program uses the same cycle of the system permanent file as in the previous deadstart. If the system library is from tape, the deadstart program replaces the existing system library with one from tape so it has the same cycle of the system permanent files as in the previous deadstart.

6.3.9 ENTER FLAW (FOR PERMANENT FILE DEVICES)

Flaw requests at this point in deadstart initialization are displayed if permanent files are recovered to determine if there are additional flaws not specified in the previous deadstart on mass storage devices containing permanent files.

Refer to section 6.3.7 and the flowchart in section 6.5 for a detailed explanation.

6.3.10 SYSTEM PFN and CYCLE (MESSAGE)

If permanent files are recovered, the following informative message is displayed to indicate the cycle recovered.

Reply Format
Press $C R$ to continue deadstart initialization.
6.3.11 GO

The GO request is displayed twice. The first request requires a response of AUTO which is the command module to be processed by DS2. The second request is displayed when resident SCM and LCM have been retrieved from the system library. This request indicates that installation parameters can be inserted using the STORE command. Terminate this sequence with the GCM command.

Display Format

Reply Format
Type at the MCU or submit by card in the deadstart reply deck the following:

AUTO Name of the command module in the released system
Display Format

Reply Format
Type or submit by card STORE command(s).

value $\quad 1$ to 7 character default setting of parameter
memory $L=L C M$; $S=S C M$
param 1 to 7 character name of parameter to be set; parameter must be defined in OST

The following parameters in LCM resident (ORL) may be set with a STORE command during deadstart.
T. MAXBUF
T. MAXS
T. MAXL
T.SYSABT
T.BUFCHK
T.SPF

All of these parameters are defined in part III section 6.2.13.
The sample SCPSID deck in part II, section 6.2.4 includes the following STORE cards.
STORE 340, L, T. MAXBUF Maximum number of buffers that can be allocated to a job
STORE 0,L,T.SPF SFT disk write is inhibited
STORE 160000, L, T. MAXS Maximum user FLS; optional for full size machine
STORE 1400000, L, T. MAXL Maximum user FLL; optional for full size machine After submitting STORE commands, type or submit by card the following command.

6.3.12 ENTER FLAW (FOR REMAINING MASS STORAGE DEVICES),

Requests for flaws at this point occur to determine if there are any flaws on mass storage devices not containing permanent files.

Refer to section 6.3.7 and the flowchart in section 6.5 for a detailed description.

6.3.13 VOLUME LABEL GROUP RESIDES

Display Format

aa Channel number
bb Unit number
ccce Track number
dd Sector number
This is an informative message providing the physical disk address of the deadstart volume label group. (Part IV, section 3.6 .5 contains two diagrams showing the location of the volume label group on mass storage after deadstart.) Retain the information in this message for validation during recovery (part II, section 6.4).

Reply Format

Press CR at the MCU console.

6.3.14 STATION COMMUNICATION CHANNELS

Display Format

This is an informative message that provides information to the operator about the CPU channels on which the station initiate message is sent when the deadstart of SCOPE 2.0 is complete.

Reply Format
If no changes are necessary to the channels displayed at the MCU console (which is usually the case), press CR.

If changes are necessary to the information displayed, type the following at the MCU console.

aa Channel number to be inserted
bb cc Channels to be deleted; more than one channel can be specified

6.3.15 DATE

Display Format

Reply Format
Type at the MCU console:

mm Month
dd Day
yy Year
If the installation parameter IP. YMD is set to 1 , the format of the date is dd/mm/yy; if it is set to 0 , the format is $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$. The released system is set to 0 .

6.3.16 OPERATOR COMMENT

The following message is displayed so that the person deadstarting can enter a comment in the SIF at deadstart. The comment cannot be in SMM command format. The first 60 characters will be entered in a system information file message, record code SISDSD which also contains information about recovery type, EST, CHQ, and values of certain parameters such as FLL and FLS.

Display Format

Reply Format
Type at the MCU console any text within previously noted limitations. Press CR if there are no comments to be entered.
6.3.17 TIME

Display Format

Reply Format
Type at the MCU console:

hh	Hour
mm	Minute

6.3.18 DEADSTART COMPLETE

The following message indicates that the deadstart initialization is completed and that the operator can now log in or initialize the various stations before loading the permanent files and libraries.

Display Format

6.4 DEADSTART RECOVERY PROCEDURE

Displays and the possible replies during deadstart recovery are described as follows, in order of occurrence with references to detailed descriptions in section 6.3. Enter all replies at the MCU console; none can be entered on cards. Press CR after each entry.

The purpose of system recovery is to reestablish the operating system after system failure. During recovery, the system to recover may be specified as being on tape or a permanent file on mass storage. If recovery is to be from tape, the deadstart routine must be the same as with the initial deadstart. The system may be reconfigured as during initialization; permanent files and I/O queues may be reestablished. All error messages in part IV, section 2.6 pertain to recovery.

A flow chart of deadstart recovery follows with references to the detailed descriptions in section 6.5.

Recovery from tape may fail if changes were made in installation parameters, SCM resident (ORE), or LCM resident (ORL) since the previous deadstart.

If communication with SMM needs to be reestablished, at the MCU console type:

The parameters for the CN command are described in part IV, section 3.2.3.

1. Type the following information to initiate deadstart recovery.

	RSpp,addr, c,d
pp	1- or 2-digit FLPP number of system disk (FLPP with lowest number)
addr	Physical disk address (track and sector address) of volume label group that is supplied during deadstart initialization (section 6.3.13)
c	Disk control channel; default value is 2
d	Disk data channel; default value is 3

Example: RS4, 2000
2. The initial action of deadstart recovery is to attempt the recovery of the SIF buffers that have not been written to system mass storage before recovery. If the relevant pointers and counts in LCM indicate that a recovery attempt might not be possible, the attempt is aborted and the following message appears on the MCU display.

Dump LCM, SCM, and/or FLPPs when necessary (part IV). Continue the recovery process after the dump by typing the $R S$ command to restart recovery.
3. The EST display (section 6.3.1) appears on the console. It is formatted from the deadstart copy in the volume label group on system mass storage.

The number of library buffers, the number of system tables, FLL, and FLS are recovered to the value of the previous initialization or recovery. The formats for changing these values are in section 6.3.2.
a. To add or amend EST entries, type:

ord EST entry ordinal; 1 through NE.EST-1 (NE.EST=1008 in released system)
dt Device type and device characteristics when necessary as described in section 6.3.1
$c_{1} / c_{2} \quad$ FLPP primary $\left(c c_{1}\right)$ and secondary $\left(c c_{2}\right)$ channels when necessary; 2 through 178
unit Physical unit number; 0 through 77_{8}
b. To delete EST entries shown in the EST display, type:

ord EST ordinal to be deleted
c. To confirm the EST as displayed, press CR.
4. The CHQ display (section 6.3.3) is displayed on the console. It is formatted from the copy retrieved with DS1 from the volume label group.
a. To confirm the CHQ as displayed, press CR.
b. To add or amend any CHQ entries, type:

ord \quad CHQ entry ordinal; MUX channel number; 0 through 17_{8} dt Device type and characteristics as defined in section 6.3.3
channel Channel configuration as described in section 6.3.3
flpp Optional FLPP number; enter when FLPP differs from the number of the CPU channel to which it is attached
c. To specify a channel as unused, type:

5. The following message requests whether recovery is to be from tape or from mass storage.

a. To recover the system library from disk, type:

The disk can be dumped at this time.
b. To recovery the system library from tape, type:

channel 2-digit channel number through which the system library is to be sent
unit Optional 1-digit unit number; default value is 0 . If a 7611-1, 7611-2, or on-line tape unit is used to read the tape, it will be unit 0. If it is to be read from the 6000 station, the tape unit must be assigned (part II, section 5.2.2).
density Optional 2-digit tape density; LO, HI, HY, or PE; HI is the default value
type \quad Optional 1-digit tape type; 7 or $9 ; 7$ is the default value
If the driver for the FLPP or station at which the system library tape is to be read is not running, it must be loaded and initialized before typing the T command. Reload and initialize drivers or stations as follows.
a. If the system library is to be read from a 7611-1 station tape unit, type AUTO. in STATION mode and press CR before typing the T command.
b. If the system library is to be read from an on-line, 7611-2, or 6000 station tape unit and the FLPP is not running, reload the FLPP driver (section 6.2.1) at the MCU card reader using the following deck structure.

6. The following message is displayed only when the system library source is tape; it is displayed in order to determine if the system should attempt the recovery of permanent files. (Permanent file recovery is automatically attempted when the system library source is on disk.)

a. To attempt permanent file recovery, type:

An attempt is made in this case to retrieve the PFD from the system library unit and to set the DAMs for all FATs.
b. To specify that permanent files are not to be recovered, type:

7. The flaw request is displayed for flaws on the system resident mass storage device. Enter any flaws not indicated in the previous deadstart for tracks other than track 20 on this device.

The display is:

channel Channel number; 1 through 17_{8} unit Unit number; 0 or 1
a. To confirm existing flaws, press $C R$ on the MCU console.
b. To enter new flaws, type:

track Track number as described in section 6.3.7
sector Initial sector as described in section 6.3.7
no. \quad Consecutive sectors as described in section 6.3.7
8. If permanent files are to be recovered, the following message is displayed. If permanent files are not recovered, the first system deadstarted is entered into cycle 1 of the permanent file named 7000 SCOPE VERSION 2.0.

To specify a cycle of the current pfn, type:

cycle One of the five cycles of the current pfn that is to be recovered or entered into. The cycle number must be a value from 1 to 5 of the permanent file 7000 SCOPE VERSION 2.0. Deadstart from a user catalogued file is not allowed.

If the system library is from tape, the deadstart program catalogues the system library under the specified cycle. If the system library is from disk, the deadstart program recovers the specified cycle of the system.

To recover the current cycle of the system pfn, press CR. If the system library is from disk, the deadstart program uses the same cycle of the system permanent file as in the previous deadstart. If the system library is from tape, the deadstart program catalogues the system library as the same cycle of the system permanent files as in the previous deadstart.
9. During a deadstart recovery with permanent file recovery, additional flaw requests may occur at this time for tracks other than track 20 if any permanent files are resident on a disk other than the system disk unit. Refer to step 7 for reply format.
10. After permanent file recovery is performed, the following informative message is displayed to indicate the cycle recovered.

x	Cycle
pfn	Permanent filename

Continue recovery by pressing CR.
11. The following display requests the command module name.

a. Type:

b. The following display message reappears.

T. MAXS, T. MAXL, and T. MAXBUF are the only parameters set with STORE commands that are recovered from the previous deadstart initialization or recovery. These values (as well as values for T.SYSABT,T.BUFCHK, and T.SPF) may be changed at this time with the store command; values are defined in section 6.3.11.

c. To continue or if no changes are made with the STORE command, type:

12. If there are any mass storage devices not containing permanent files, a request for flaws (on tracks other than track 20) is displayed at this time. Refer to step 7 for reply format.
13. The following message is displayed only during a recovery of a system library from disk. The reply specifies whether to recover SFT I/O files. (There is no attempt to recover the SFT during a recovery of a system library from tape.)

a. If recovery of SFT I/O files is not wanted, type:

b. To recover SFT I/O files, type:

A warning message is displayed for each SFT file that cannot be recovered. The message includes the SFT file job name and a reason for it not being recovered. These messages are defined in part IV, section 2.6.1. A job that is a member of a dependency string is not recovered by deadstart recovery.

A copy of the SFT is written to system mass storage periodically during system operation. (T.SPF controls the frequency with which the SFT is written to disk.) Recovery retrieves the SFT and determines its validity. If recovery finds indicators that are erroneous, the recovery of the SFT is aborted. Output files are rewound to beginning of information. Input files for which transmission was complete are recovered. Partially transmitted spooled input files must be retransmitted.
14. Save the following information to use in the next recovery ($R S$ command) or in next deadstart initialization (VOLUME LABEL GROUP request).

To continue with recovery, press CR.
15. The following message is displayed to verify that the station channels given during the last deadstart are correct (section 6.3.14). When recovery is completed, a station initiate message is sent on the CPU channels listed.

a. To continue recovery, press CR.
b. To insert (aa) and/or delete (bbcc) channels, type:

16. The following message is displayed.

Type:

17. The following message is displayed so that the person deadstarting can enter a comment in the SFT at deadstart. It cannot be the same format as an SMM command. The first 60 characters are entered in a system information file message, record code SISDSD which also contains information about recovery type, EST, CHQ, and values of certain parameters such as FLL and FLS.

Type at the MCU console any text within the previously noted limitations.
18. The following message is displayed.

Type:

19. The following display indicates end of recovery process and requires no reply.

The information supplied by the SYSLIBE operation in the previous deadstart is not recovered; the SYSLIB job must be run again to recover object libraries. Refer to part IV, section 3.6.3.

6.5 FLOWCHARTS

The following flow charts summarize the possible requests and replies during deadstart. It may aid in constructing a deadstart reply deck or in determining the sequence of events at the MCU console when the SCPSID deck is read at the MCU card reader.

Description
Replies that can be inserted by card in the SCPSID deck or typed at the MCU console

Replies that can only be typed at the MCU console

It is assumed that the person installing will press CR after typing any entry (or enter an $11 / 12$ on card). When the press CR, 11/12 symbol occurs in the chart, it means that CR must be pressed again or 11/12 entered on card again in order to continue with the next request.

A section reference next to a display or reply symbol refers to a description of that step in the previous sections.

6.5.1 DEADSTART INITIALIZATION

The following flow chart pertains to deadstart initialization.

Figure II-6.3. EST Through CHQ

Figure II-6.4. System Library on Tape; No Permanent File Recovery

Figure II-6-4. System Library on Tape; No Permanent File Recovery (Continued)

Figure II-6-5. System Library on Tape or Disk; Permanent File Recovery

Figure II-6-5. System Library on Tape or Disk; Permanent File Recovery (Continued)

Figure II-6-6. Volume Label Group Through End

6.5.2 DEADSTART RECOVERY

The following flow chart pertains to deadstart recovery. All replies must be typed at the MCU console.

Figure II-6-7. Recovery Flowchart

Figure II-6-7. Recovery Flowchart (Continued)

Figure II-6-7. Recovery Flowchart (Continued)

1.1 MODTAPE

The SCOPE 2.0 maintenance package is on the release tape labeled MODTAPE.

1.1.1 CONTENTS

This tape contains the following code.
Corrections to SCOPE 2.0 and product program libraries
Job decks to make these corrections to the released program libraries and to create new program libraries

Job decks to perform other functions needed to install and maintain the system
A worksheet that contains the procedures necessary to initially install or to subsequently update the system

1.1.2 FUTURE RELEASES OF MODTAPE

MODTAPE is part of the initial SCOPE 2.0 release package. Every two weeks after receiving the initial release materials, the customer receives a Programming System Report (PSR summary). This PSR summary lists customer inquiries concerning the system and product set as well as answers to some inquiries. The PSR summaries are numbered consecutively.

When the customer receives the odd-numbered PSR summary (every fourth week), he also receives a new MODTAPE containing corrective code to update the release materials to the current PSR level. All code on the new MODTAPE has been published in the preceding even-numbered PSR summary or in the accompanying odd-numbered summary.

However, some code published in the summaries may cause problems that are identified only after extensive testing. This problem usually occurs only with code presented in even-numbered summaries because this code has not undergone a full system test. Therefore, the retraction of code is usually noted in the odd-numbered summaries, and of course, is not included in that MODTAPE. The MODTAPE represents a fully tested system with no known regressions.

The installation decks on updated MODTAPEs are modified to reflect the current PSR summary level and any necessary changes in build procedures.

1.1.3 STRUCTURE

MODTAPE contains two partitions: MODPL which contains corrections to the released software and SYSDECK which contains installation decks.

MODPL
This partition contains modifications to the released software in UPDATE format with the master control character set to $/$. Its structure is as follows.

There is a /DECK on MODPL for each product's UPDATE program library. These /DECKs are named xxxPSR with xxx identifying the program library.

xxx	Deck Name	Product
STA	STAPSR	7611-1 I/O Station
MTS	MTSPSR	7611-2 Magnetic Tape Station
SO	SOPSR	SCOPE 2.0 operating system
CM2	CM2PSR	COMPASS 2.0
FN2	FN2PSR	FORTRAN Extended 2.0
RN2	RN2PSR	FORTRAN Run 2.0
FCL		FORTRAN object time routines; located on the SCOPE 3.4 modification tape
COB	COBPSR	COBOL 1.0
SRT	SRTPSR	Sort/Merge 1.0
DIA	DIA PSR	Diagnostic Control Program

The corrective code for each PSR is in its own /COMDECK. Each product's xxxPSR deck contains /CALLs to all the /COMDECKs that contain corrective code for that product's program library.

There are also /DECKs with the name of the individual PSRs that call the same /COMDECKs.

For example, for a MODPL containing three PSRs for product xxx (xxx0001, xxx1200, and xxx1342), there are three /COMDECKs (Dxxx0001, Dxxx1200, and Dxxx1342) and three /DECKs (xxx0001 containing a /CALL to Dxxx0001, xxx1200 containing a /CALL to Dxxx1200, and xxx1342 containing a /CALL to Dxxx1342). The xxxPSR deck calls the /COMDECKs for all three PSRs. A similar structure is repeated for each product's program library. The /IDENT contained in each /COMDECK usually has the same name as the /COMDECK, but they need not always be the same.

SYSDECK

This partition contains job decks in UPDATE format with the master control character set to $\$$. These job decks are used to update and generate materials during the normal system integration activities by SCOPE 2.0 developement and are catagorized in the Pricing Manual as level 3 support. SYSDECK contains the following kinds of jobs.

Installation decks using the binaries from released program libraries and optionally
General decks to generate binaries from released program libraries and optionally incorporate modifications (either from MODPL or from the customer) to produce new release materials

Utility decks to generate the configured system
Decks to verify that the installation is complete and correct

Decks to produce listings useful in maintaining the system
Decks to produce a description of the installation and modification procedures described in this section

1.1.4 PROCEDURE

The procedure in sections 1.2 through 1.6 describe the installation process as:

1. Initial installation using the initial set of release materials that are referred to in sections $1.2 .1,1.2 .2$, and 1.2 .3 and the procedures described in section 1.2 .4
2. Installation of PSR corrections that are on the monthly MODTAPEs according to information in section 1.3 ; this results in a new set of release materials updated to the current PSR summary level
3. Installation of customer modifications to create new materials as described in section 1.4
4. Creation of back-up materials as described in section 1.5
5. Creation of maintenance listings, such as source listings, symbol and macro cross reference listings, and system overlay listings as described in section 1.6

The use of this procedure requires the customer to build a new system with each MODTAPE, even if the new system is not used for production. This is necessary because each subsequent system is built using the one which immediately preceeded it.

The basic building of the system should not occur in a batch (production) environment. However, there are batch notes in this section that specify areas that require modification in order to mun in a batch environment. There are also several housekeeping hints to expedite installation.

In the following sections, the phrase product set refers to any part of the system that executes primarily or entirely in the user field length. Therefore, it includes the products that are unbundled (priced separately) as well as COMPASS and DCP. The products that are part of the SCPOPL, such as LIBEDT, UPDATE, and ANALYZE, are not product set members.

1.2 ESTABLISH BASE SYSTEM MATERIALS

1.2.1 TAPES

The initial release tapes described in part I, section 2 are necessary to build a base system. New release tapes (production release tapes) are created using the build procedure in section 1.2.4.

One additional tape is required, a DUMPF/LOADPF tape of all files cataloged with ID $=$ PRDLIB; refer to the permanent files description in section 1.2.2. The worksheet referred to in part III, section 1.7 contains detailed information on all tapes that can be used in the build procedure.

1.2.2 PERMANENT FILES

The use of the SYSDECK procedure outlined in section 1.1 .4 requires that various permanent files be created and/or modified. The IDs for these permanent files are:

ID
PRDLIB
S20CPLOPL
S20OPSOPL
S20OPSMOD
TOOLS
SCPSCR

Function

Use for files containing executable binary for the system. Use for files containing program libraries for the product set. Use for files containing program libraries for the operating system.
Use for the SCOPE 2.0 maintenance package.
Use for files containing utility programs.
Use for temporary files only during the build procedure.
These IDs are used so that files may be manipulated using the permanent file ID feature. With the exception of PRDLIB files, all permanent files are recreated (if desired) during each system build. They are not used as input to the next build.

PRDLIB

The files cataloged with ID PRDLIB contain the binaries of the SCOPE 2.0 operating system and product set. Subsequent installations of the system create higher cycles of these files; the lower cycles of these replaced files are purged. Make a DUMPF tape containing the highest cycle of each file for back-up purposes.

The procedure to build the LOADPF tapes for ID=PRDLIB requires that each system be built using the system which immediately preceeded it. The LOADPF procedure is:

1. Load the LOADPF tape (ID=PRDLIB) from the previous installation.
2. Build new cycles of files for products to be modified.
3. Execute ATTACH cards for the highest cycles (cycle parameter omitted).
4. Execute a DUMPF ($\mathrm{MO}=3$, $\mathrm{IN}=2$, $\mathrm{PW}=\mathrm{TY} \mathrm{PE} 3$, $\mathrm{ID}=\mathrm{PRDLIB}$) to purge inactive files (in this case files which are not the highest cycles).
5. Create a DUMPF tape containing files (each of which is the highest cycle) for use in a batch environment and for use as input to the next modification build.

This LOADPF procedure is not possible in a batch environment. Step four must be delayed until after production when there are no more references to the old files. The old files may be purged with a constructed job deck or by rerunning the SYSDECK job called DPIDPRD. DPIDPRD performs steps three through five with a GO/DROP pause before step four. If a DROP is entered, the job proceeds to step five immediately.

The permanent files with ID=PRDLIB are described as PRDLIB, object libraries, SRTMACS, and SYSLIB.

PRDLIB Permanent File: The permanent file PRDLIB is a library that contains the core image binaries for the product set. For an initial installation, use the OPRDLIB job to create the PRDLIB file. OPRDLIB generates a library from the COMPASS and DCP binaries on the release SCPLIB tape.

For subsequent installations, load the PRDLIB file from the PRDLIB LOADPF tape. As the products are installed, the temporary libraries (xxxLEL) are built. When all of the products are installed, create a new PRDLIB using the NPRDLIB job which updates the old PRDLIB from all of the xxxLELs.

Batch notes: With various cycles of PRDLIB cataloged, it is possible to use editions of the product set other than the one on the deadstart tape. Use the following procedure to pretest new compilers in a batch environment or to use past editions of the compilers. Again be sure that the correct cycle of PRDLIB is attached during the installation process. The following sequence compiles and executes code using the compiler from PSR summary 47 and the object library from PSR summary 45.

```
ATTACH(PRDLIB, PRDLIB,ID=PRDLIB,
CY=47)
LIBRARY(PRDLIB)
FTN.
ATTACH(IOLIB, FTNIOLIB,ID=PRDLIB,
CY=45)
LIBRARY(IOLIB)
LGO.
LIBRARY.
```

Object Library Permanent Files: The object time routine libraries corresponding to the various compilers are individual permanent files, each one with ID=PRDLIB. Catalog these files and use SYSLIB to merge them into the running system after all deadstarts to satisfy external references in compiler generated binaries before execution.

For an initial installation, create these files by passing relocatable binary copies from release tapes through LIBEDT and cataloging the libraries that are produced.

To produce the FORTRAN common library (which SCOPE 3.4 and SCOPE 2.0 share), update, assemble, compile, pass through LIBEDT, and catalog the binary.

For subsequent installations, replace each library by cataloging a higher cycle of the permanent files.

Batch notes: Running system generation jobs in a batch environment conflicts with jobs that attach the object library permanent file and omit the cycle number; therefore, they attach the highest cycle.

To use a different permanent file name of ID for accounting purposes, change the permanent file control statements in the installation, generation, and SYSLIBE decks. Also, since the COBOL build precedure attaches the SORTMRG object library and the SCOPE 2.0 build procedure attaches the FORTRAN Extended object library, modify these jobs.

Make similar modifications for ID changes. Unless all PRDLIB IDs are changed to a single, different ID, the customer must also devise ways to create back-up tapes and to reload files for subsequent installations.

SRTMACS Permanent File: The permanent file SRTMACS contains an XTEXT file that may be used to assemble COMPASS code containing SORT macros. To use the SRTMACS file, attach it to COMPASS specifying it as an XTEXT file.

Batch notes: The problems noted with object library permanent files also pertain to SRTMACS except that only the decks involving Sort need to be changed.

SYSLIB Permanent File: The SYSLIB permanent file contains the binary of SCOPE 2.0 as assembled from SCPOPL. This file may be used to build variations of the released system, such as a system containing accounting overlays.

Batch notes: Customer decks should attach SYSLIB using specific cycle numbers.

S20CPLOPL

There are job decks on SYSDECK that catalog each product set program library with the ID $=$ S20CPLOPL. There is also a deck to create a DUMPF tape for this ID. Execution of these decks is completely optional and is not required for system installation. The decks are provided as a convenience to customers who reference these files frequently enough to warrant their existence as permanent files.

Batch notes: Refer to the cycle number caution described in previous batch notes.

S200PSOPL

The job deck SCPPL catalogs SCOPE 2.0 with the ID S20OPSOPL. There is also a deck to create a DUMPF back-up of this ID. Creation of this file is optional; but it is necessary to create maintenance listings. Refer to part III, section 1.6.

Batch notes: Refer to the cycle number caution described in previous batch notes.

S200PSMOD

Catalog the MODPL and SYSDECK program libraries with the ID S200PSMOD. Both files are required during execution but may be purged afterwards. Both files are discussed in detail throughout this section.

A nother file that may be cataloged with this ID is USERMODPL. It is intended to contain customer modifications (other than installation parameters) to the operating system and the product set. USERMODPL is an UPDATE program library (master control character set to /) containing one /DECK for each OPL in the release materials. The deck name format is /DECK xxxMOD. xxx identifies the product.

Xxx	Deck Name	Product
STA	STAMOD	7611-1 I/O Station
MTS	MTSMOD	7611-2 Magnetic Tape, Station
SCP	SCPMOD	SCOPE 2.0 operating system
CM2	CM2MOD	COMPASS 2.0
FN2	FN2MOD	FORTRAN Extended 2.0
RN2	RN2MOD	FORTRAN Run 2.0
FCL	FCLMOD	FORTRAN object time routines
COB	COBMOD	COBOL 1.0
SRT	SRTMOD	Sort/Merge 1.0
DIA	DIAMOD	Diagnostic Control Program

The contents of each deck should be UPDATE directives (master control character set to *) to apply customer modifications to the products. The generation decks may be tailored to attach USERMODPL and to apply customer modifications to the newly created release materials to produce a modified system.

If using USERMODPL and adding new decks, use a *ADDFILE lfn, deckname directive only if lfn is UPIN or a local scratch file.

The decks on SYSDECK assume that modifications come from a file called UPIN, for example, UPDATE (I=UPIN,...). Do not attempt to execute the ADDFILE directive from the INPUT File.

TOOLS

There are utility programs on SYSDECK written in FORTRAN Extended and COMPASS code. During the build process these programs are compiled and the binaries are cataloged. TOOLS is the ID. For more detail refer to part III, section 1.6.

1.2.3 CARD DECKS

The following card decks must be available to install the system.

Binary Deadstart Decks

These decks are part of the SMMB and station release materials described in part I, section 2. New versions of these decks are generated during a modification of the system.

SCOPE 2.0 SCPSID Deadstart Deck

The SCPSID deck is described in part II, section 6.2. It consists of FLPP and DS1 binary decks and the deadstart reply deck. The binary decks depend upon the PSR summary level of the software and are generated during each system modification. The deadstart reply deck depends upon the hardware system (memory sizes, channels, equipment, flaws) and is not changed for each system modification. It is useful, therefore, to create a single reply deck that may be used with the binary decks for several different systems. Back-up copies are advantageous. It is also useful to have several deadstart reply decks if the customer has several 7000 mainframes.

SYSDECK Job Decks
The MODCAT job catalogs the maintenance package, and the PNCHDKS job is used to specify options.

MODCAT: Run the MODCAT job to catalog MODPL and SYSDECK as permanent files, list the SYSDECK worksheet, and punch the PNCHDKS deck from SYSDECK. The following job reflects the MODCAT version on SYSDECK containing the correct cycle numbers.

```
JON DECK MOUCAT
```

MOUCAI,CP7U, 「100,MTUL.
COMMENT. *SVUV,07155,36R3U,SOMILLEK
COMMENT.

COMMENT * *
COMMFNT. * THIS IS A SCUPER.0 INSTALLATION JECK AS CREATEO
COMAEINT* * *
COMMEN. " BY SCUPEZ.O INTEGRATION - AHUEN HILLS, MINNESOTA *
COMMFNT. *
CUMMENT.*
COMNENT. *
COMMENT. \#
CUMMENI.*
CUMMENT: *
CUMAEAT *
CUMMEN1.*
CUHMFNT* 4201 LFXINGTON AVE.N. *
COMFNT. ST PAUL. MINN. 55ll2
CUMMENT -
COMMEVT. * (NO PSRS)

COMNENT.
ATTACH(A, MGURL, IU $=$ SZOOPSMOU, FW $=S C H C N$,
Cr=51)
FURGE (A)
FXIT(J)
PETURN(A)
$\triangle T$ TACH(A,SYSUECK,IN=S2OOPSMOD),PW=SCPCN,
CY=5])
PURGE (A)
EXIT(u)
RETURM(A)
KEWINU(CUTHUI)
LABEL(1, OOTAPE, L = WMOUTAPF*SCP2.(0§)
STAGE (IUONTAPE,MT,HI,E,PRE,
$\left.\checkmark S_{n}=C Y 51\right)$
COHYR(MONTARE, MODPL)
COPYP(MONTAPE, SYSDECK)

COMMEIVT. *
CUMMENT. CATALOG MOOPL ANO SYSOLCK *
commeivt. *

CATALOG(MOLPL, MODPL, ID $=$ S2OUPSMOD, $F W=S C P C N, C I=S C P C N, E X=S C P E X, M D=S C P M D$,
(Y=51)
CATALGO(SYSULCK,SYSUECK,ID=S2OUPSMOD,MD $=S C P M 1$, $C N=S C P C N, E X=S C P E X$,
PW=SCPCN,
$C Y=51)$
UNLOAU (MAOURL•SYSUECK)


```
JOG IJCCK MOUCAT
COMMENT. *
CUMMENT. * LIST THE MEMO AND WORKSHEETS FROM SYSDECK. THE MEMO LISTS PROUUCTS
COMMENT. * FOR WHICH MONS EXIST ON THE MODPL, AND NOTTFS THOSE MODS WHICH MAY
CUMMENT. # HAVE UNUSUAL IMPACT ON THE USER. SIGNIFICANT CHANGES TO SYSDECK
COMMENT. WILL ALSO HE NOTED. THE WORSHEETS SERVE AS A TOOL FOR INSTALLATION.
CUMMENT * *
COMMENT. #########################################################################
ATTACH(OLUHL,SYSUECK,IU=S20OPSMOD,
CY=51)
UPDATE(P,Q,D,K,L=A134,*=$$$$)
CUMPaSS(I,d=LISTER,L=LIST)
I.1STEK(I,P=0,TR=4,CU=5,MEMO,L=MEMU,
CY=51)
HEWINU (MFMO)
COPY(MENO,OUTPUT)
CUMMENT. ###########################################################################
COMMENT. #
OUAHENT. PUNCH (ANU LIST) PNCHDKS - THE JOR USED TO LIST AND PUNCH ALL OTHER
COMHENT. # DECKS NEEDEO FOR INSTALLATION. PNCHDKS MAY NEED TO BE MODIFIED *
COMMENT. * TO TAILOK THE DECKS AS DESIREU. NOT ALLL DECK WILL BE NEEDED * *
COMMENT. *
CUMMENT. ##########################################################################
LISTEHK(I,L,P,DECK,SET=INS,
CY=5i)
FAUSF. MFPOU = JOB COMPLETFU SUCCESSFILLYY... TYPF XeGO
&XIT.
FAJSE. MPGOL - JOR FALLEU ... TYFE X.fog
---tijS--- 7/8/9
111 MODCATSUH
$/ A WUF STAGE CAKD WILL CAUSE DOF STAGE CARUS TO RE PLACED IN PNGHDKS
G/ WHICH WILL CAUSE DECKS PUNCHEU HY PNCHDKS TO HAVE STAGE CARDS INSTEAD
$/ OF REQUEST CARDS FUN ON-LINF TAPES.
$/
F/
yUF SlagF
*C LISTER
4C MFMO LIHRONUCTION TO MUNTAPEE, DESCRIPTION OF MUUPL AND SYSUECK
IC WURKSHELT
zC PNCrDokS
---tい1---5/7/8/9
```

PNCHDKS: The worksheet indicates which program libraries the PSR summary is to modify. Only punch the jobs that are needed to install the system by pulling out the unnecessary $\$ C$ cards in the PNCHDKS job. There are four updates in the PNCHDKS job.

Installation	The decks in this section are related to an initial instal- lation. Included are various utility decks that are also useful in installing PSR updates to the release materials.
PSR modification	The decks in this section apply PSR updates to previous release materials to create new release materials.
Customer modification	The decks in this section apply customer modifications to the release materials with the current PSR summary level modifications.
Utilities	The decks in this section are of a general utility nature. Included are decks to copy tapes, copy decks, catalog files, create DUMPF back-up tapes, and produce maintenance listings.

The decks are discussed in more detail in sections 1.3 through 1.6 of part III.
After determining which decks are required, select the options necessary to tailor the decks. Generation decks (decks that assemble or compile the source to produce the binary for the corresponding element of the system) may be modified using \$DEFINE options. Select these options by placing a \$DEFINE card into the input section of the appropriate UPDATE in PNCHDKS. The options are:

Option
\$DEFINE LIST
\$DEFINE NONEWPL
\$DEFINE EXTEND
\$DEFINE STAGE
\$DEFINE MODTAPEMD
\$DEFINE USERMODS

Description
If this option is defined, all generation decks (xxxGEN, xxxMOD, and xxxUSR) produce assembly listings, with the exception of SCPGEN. To produce SCOPE 2.0 listings, use the volume listing decks described in part III, section 1.6. If it is not defined, assemblies and compilations do not produce listings.

If defined, all generation decks omit the creation of a new program library on tape. If not defined, the decks create new program libraries.

If defined, all generation decks attach and extend existing permanent files. If not defined, new cycles of permanent files are cataloged.

If defined, all REQUEST statements are replaced in the job decks with STAGE statements.

If defined, generation decks take PSR modifications from the MODPL permanent file.

If defined, generation decks take customer modifications from the USERMODPL permanent file.

Combinations of $\$$ DEFINE cards produce decks for specific purposes.

Option
LIST, NONEWPL

MODTAPEMD, STAGE

USERMODS, EXTEND, NONEWPL

Description
Regenerates binary from a program library producing a listing; catalogs binary as a new file.

Updates a previous release tape from MODPL to produce a new release tape (staging both tapes); creates binary without an assembly listing; catalogs results as a new permanent file.

Updates a current release tape (on-line tape) from USERMODPL to produce a COMPILE file but not a new program library; assembles without listings; and extends an existing permanent file of the binary with the new binary.

There are two other \$DEFINE options: ARHOPS and XPRD. They tailor the jobs for CDC use. The customer is not required to use these options.

Do not define USERMODS and MODTAPEMD at the same time.
The following conventions apply to job names. Most job names are of the form xxxyyy. xxx is the mnemonic for the product as previously described, and yyy indicates the action. The yyy values for SYSDECK jobs are:

Housekeeping hint: Job cards created with \$DEFINE STAGE still have the MT parameter job cards.
yyy
GEN Job assembles code with installation options changed. A new program library may or may not be created. Neither USERMOD or MODTAPEMD are defined.

MOD Job applies PSR modifications before assembling code. A new program library is usually generated. MODTAPEMD is defined.

USR Job applies customer modifications before assembling code. A new program library may be generated. USERMODS is defined.

INS Job copies binary from a release tape and processes it.
CPY Job copies release tape.
PL Job catalogs release program library.
DCK Job creates a deadstart deck for product.
VFY Job verifies installation of product.

Action

defined on the job card. For installation with a small number or no tapes, change the

For installation with a small number or no tapes, change the

Housekeeping hint: Permanent file CATALOG cards in SYSDECK jobs are constructed to catalog a file regardless of the existence of a previous cycle. This is done by both defining the passwords ($\mathrm{EX}=, \mathrm{MD}=$, etc.) and specifying them ($\mathrm{PW}=$) and the cycle number. The SCOPE 2.0 permanent file manager uses the password definition if no previous cycle exists and uses the password specification if previous cycles exist. The passwords for all files cataloged by SYSDECK jobs are: EX=SCPEX, MD=SCPMD, $C N=S C P C N$. The passwords for RD and TK are null.

1.2.4 PROCEDURES

The procedures to establish a base system with the initial release materials are:

1. Deadstart the MCU with the SMMB deck (part II, section 2).
2. Deadstart stations (part II, sections 3, 4, and 5).
3. Deadstart the 7600 with the latest SCOPE 2.0 system (part II, section 6). For an initial installation, construct the deadstart SCPSID deck (part II, section 6.2).
4. Run the MODCAT job to catalog MODPL and SYSDECK, assemble the MEMO LISTER utility, print the formatted MEMO, and list and punch a card copy of PNCHDKS.
5. Modify and run the job PNCHDKS to list and punch the required installation decks from SYSDECK.
6. For an initial installation, run the OPRDLIB job to create an initial copy of the PRDLIB permanent file.
7. For subsequent applications of PSR updates, run the LDIDPRD job to catalog the object libraries, SRTMACS, PRDLIB, and SYSLIB.

Proceed with the next sections to install and configure the base system.
Batch notes: Each SYSDECK job calls two common decks: ACCOUNT and EXIT. ACCOUNT is called immediately after the job card in each job. If the jobs are to be run with a batch system and an ACCOUNT card is required, insert appropriate ACCOUNT cards into the common deck and it will be punched out in each deck. The common deck EXIT is called in most jobs at the end of the control statement section. It contains a PAUSE indicating a successful completion, followed by an EXIT, and then a PAUSE indicating failure. This allows job completion to be noted when using the worksheet. It may not be desirable to do this in a batch environment. To eliminate the pauses, delete the contents of EXIT (but not the common deck itself).

Housekeeping hint: Use the LISTER program to format listings of SYSDECK installation decks and the SYSDECK worksheets. This program 'accepts several keyword parameters that control the number of lines per page, depth of detail in the table of contents, and page ejects on section headers. For more detail refer to the listing of LISTER.

Housekeeping hints: Since there are so many decks punched by PNCHDKS, the user can reduce the number of cards by deleting the contents of the common decks ACCOUNT, COMMENTB, and COMMENTE. These decks only contain comment cards. This should not be done without a complete familiarity with the SYSDECK procedures. The only manual action required is to replace the $7 / 8 / 917$ cards with $6 / 7 / 8 / 9$ cards. Minimally, interpret the job cards.

1.3 BUILD A PRODUCTION RELEASE SYSTEM

Building a release system suitable for production involves one or more of the following procedures for each element of the system.

Generate binary from a program library with modified installation parameters using xxxGEN job

Generate binary from a program library updated from PSR modifications using xxxMOD job

Process existing binary to produce a production format using the xxxINS job
The worksheets described in part III, section 1.7 list the tapes and permanent files that are required and created by these jobs as well as the order of execution that is necessary.

These procedures are described more specifically for the stations in section 1.3.1, for the product set in section 1.3.2, for the FORTRAN object library in section 1.3.3, and for the SCOPE 2.0 operating system in section 1.3.4.

1.3.1 STATIONS

Both the generation jobs (STAGEN and MTSGEN) and modification jobs (STAMOD and MTSMOD) allow the setting of installation parameters. Both create deadstart tapes for initial deadstarts. An initial deadstart copies the deadstart tape to the station disk pack. After the initial deadstart, the station software may be deadstarted from the station disk pack.

1.3.2 PRODUCT SET MEMBERS

The first step for each product set member in building a production release system is to catalog the core image binary as an xxxLEL library file (ID=SCPSCR). There are three ways to do this.

1. Use the xxxINS job to copy the binary from the release tape to mass storage, pass it through LIBEDT, and catalog it.
2. Use the xxxGEN job to update the released program library (defining new installation parameters), assemble or compile it, load it if necessary, pass it through LIBEDT, and then catalog it (run SRTGEN before running COBGEN and COBMOD).
3. Use the $x x x M O D$ job to update the previous release program library from the PSR modifications on MODPL (with possible changes to installation parameters), assemble or compile it, load it if necessary, and then catalog it. The xxxMOD job takes its corrective code from the /DECK xxxPSR (run SRTMOD before running COBMOD or COBGEN).

The next step is to run the NPRDLIB job to combine the separate libraries into one product library PRDLIB (ID=PRDLIB). This file is then used to create a deadstart tape.

For the COBOL and Sort/Merge products, catalog the associated object libraries or XTEXT files. xxxINS jobs process existing binaries; xxxGEN jobs regenerate new copies of the binaries; and xxxMOD jobs apply PSR updates to create new binaries. COByyy creates the COBOL object library COBLIB; SRTyyy creates the Sort/Merge object library SRTLIB and the SRTMACS XTEXT files. All IDs are PRDLIB.

1.3.3 FORTRAN OBJECT LIBRARY

FCLOPL contains the source for the FORTRAN object library. This source is common to both 6000 SCOPE 3.4 and 7000 SCOPE. Customers who use both of these systems should maintain a single version of the program library.

The release tape does not contain binaries for the product because the two systems are not completely compatible at the binary level. Therefore, there is no installation job either. For an initial installation, generate the binary from the FCLOPL tape.

Actually, there are two versions of the SCOPE 2.0 binary. One is assembled to be used with FORTRAN Extended code, the other to be used with FORTRAN Run code.

The procedure to build the FORTRAN object libraries is:

1. If needed, run the FTNLIB7 job to apply PSR modifications to the release program library. The modifications to this program library are on the SCOPE 3.4 modification tape. This job produces a new release tape. A similar procedure may also be used under SCOPE 3.4.
2. Run RLIBGEN to create the permanent file RUNIOLIB (ID $=P R D L I B$) from the current program library.
3. Run FLIBGEN to create the permanent file FTNIOLIB (ID=PRDLIB) from the current program library. Do not run this job until the file PRDLIB is cataloged.

1.3.4 SCOPE 2.0

Use the following procedure to create a new SCOPE 2.0 deadstart tape that contains the binary of the product set.

1. Run the SCPINS job to update an existing deadstart tape from the PRDLIB file, produce a new deadstart tape, and create a permanent file SYSLIB (ID=PRDLIB) containing the operating system binary.
2. Run the SCPMOD job to update SCPOPL with PSR modifications to produce a new release tape, assemble the system, catalog the binary as the permanent file SYSLIB, and produce a deadstart tape by combining SYSLIB with PRDLIB.
3. Run the SCPGEN job to generate binary from the release tape, catalog the binary as SYSLIB, and create a deadstart tape by combining SYSLIB with PRDLIB.
The SCPINS job adds product set binary to the release deadstart tape SCPLIB, adds new compilers to an old system, or adds old compilers to a new system. The SCPMOD job updates release materials. Either the SCPMOD or the SCPGEN job may be used to redefine installation parameters.
After running the SCPxxx job, run the DBUGINS job to catalog the object library DBUGLIB which is necessary to use the TRAP feature of the SCOPE 2.0 loader.

1.4 ADD CUSTOMER MODIFICATIONS

There may be customer modifications to the operating system and product set. As noted in section 1.2.3, the decks to make these modifications may be punched from SYSDECK by defining the USERMODS parameter in the PNCHDKS input. These decks assume that customer modifications are in the file USERMODPL in UPDATE format with the master control character set to $/$. The USERMOD job creates this file.

Jobs punched with USERMODS defined should also have EXTEND defined. The assumption is that PSR modifications are applied to produce new release materials (if needed) and then the xxXUSR jobs are run to update existing permanent file libraries using EXTEND. If customer modifications are to be made, do not run the PURGSCR job until after the xxxUSR jobs are complete. Executing the jobs in this way produces updated PSR summary level deadstart tape and a customer modified tape. The release tape may be useful to determine the cause of either a CDC software or customer modification bug.

An alternate way to apply customer modifications is to run each xxxUSR job immediately after running the corresponding xxxMOD, xxxGEN, or xxxINS job. The binaries produced, including the deadstart tape are the modified versions. However, since this procedure does not produce a production release deadstart tape, this procedure is not recommended.

Another SYSDECK option to consider is \$DEFINE NONEWPL. Customer modifications may be very small and may not warrant separate program libraries in addition to the release program library.

1.5 CREATE BACK-UP MATERIALS

When the release system is generated, it is recommended that additional copies of tapes, permanent files, and card decks be made for back-up purposes. Several SYSDECK jobs are available to create these materials. They are described in sections 1.5.1 through 1.5.3.

1.5.1 TAPES

xxxCPY jobs copy release materials. MDTCPY copies MODTAPE. All of these jobs create correctly labeled and formatted tapes. The PRDCPY job copies any permanent file DUMP/LOADPF tape. The SDTCPY job copies 7611-1 I/O Station deadstart tapes. The DSLCPY job copies the 7611-2 Magnetic Tape Station deadstart tape and the SCOPE 2.0 deadstart tape.

1.5.2 PERMANENT FILES

There is a set of xxxPL jobs that catalog release program libraries as permanent files. The following jobs create DUMPF back-up tapes for permanent files with the specified ID.

ID	Job Name
PRDLIB	DPIDPRD
S20CPLOPL	DPCOPLS
S20OPSOPL	DPOSOPL
S20OPSMOD	DPOSMOD
TOOLS	DPTOOLS
(ALL)	DUMPF

1.5.3 CARD DECKS

The DSBCPY job punches copies of the SCOPE 2.0 deadstart binary from a deadstart tape. The STADCK and MTSDCK jobs assemble and punch deadstart cards and decks for the 7611-1 and 7611-2 stations respectively. The STADMP job assembles and punches the 7611-1 dump deck. The P80CPY job copies any card deck including the binary of SMMB.

1.6 CREATE MAINTENANCE INFORMATION

After the system is installed and back-up materials are created, there are two more steps: verify installation and generate maintenance listings.

1.6.1 VERIFY INSTALLATION

There is a set of jobs on SYSDECK named xxxVFY. These jobs are to be run against the newly created system to verify that the installation is successfully completed. Use the following steps.

1. Deadstart the new system using the new deadstart tape and new deadstart deck. The most efficient way is to do an initial deadstart specifying that permanent files be recovered (part II, section 6.2).
2. If permanent files were lost, load the PRDLIB tape.
3. Run the SYSLIB job. This job specifies the files from which to satisfy the externals of compiler generated code (part IV, sections 3.6.2 and 3.6.3).
4. Run the SIFACCT job to retrieve the SIF file and establish the master SIF file. This job works under almost any situation and may be used as a model for a similar installation job.
5. Run the verification jobs. These are mostly self-checking.

1.6.2 GENERATE MAINTENANCE LISTINGS

There are several SYSDECK jobs and programs that produce listings containing information useful in the understanding and maintenance of SCOPE 2.0.

The use of these decks is not required to install the system but, if used, produce useful system maintenance information. Each of the decks require the use of products such as FORTRAN Extended and Sort/Merge which are purchased separately from SCOPE 2.0.

CROSS

CROSS produces a cross reference listing of the SCOPE 2.0 system. As punched from SYSDECK it produces two copies of the listing that contains two parts. The first part lists system symbols from OST, overlay names, field names, macros, and OPDEFs in alphabetical order with the references to each one by overlay (for example, T. XYZ is referenced by overlays OE.A, OU.B, OS.C). The second part is a list of overlays and the symbols, overlay names, field names, macros, and OPDEFs referenced by that overlay.

The procedure used to create this listing is:

1. Apply temporary modifications to COMPASS so that COMPASS outputs a file called MACROS that contains the raw data.
2. Compile and execute a FORTRAN Extended program (PRESORT) to convert the raw data into formatted display code records.
3. Sort the records by item type, name, and then overlay name.
4. Compile and execute a FORTRAN Extended program (POSTSRT) to list the records in a formatted report.
5. Resort the records by overlay name.
6. Execute POSTSRT to list the records in a formatted report. The POSTSRT job reads a card from the INPUT file which indicates the style of the sorted input (0 item by ident, I - ident by item) and a title for page headings.

Source Listings

To obtain source listings of all program libraries, punch the xxxGEN jobs with NONEWPL and LIST defined but without MODTAPEMD or USERMODS defined. Remove CATALOG statements if the product is not to be installed while producing listings.

The exception is SCOPE 2.0 which is described as follows.
SCOPE 2.0 Listings
Part of the information on SYSDECK is a SCOPE 2.0 routine data base with each entry containing the following:

Overlay or service routine name
Overlay index
Level
Overlay number in level
Entry point number
Listing volume number
UPDATE deck name
Miscellaneous flags
Descriptive comments
There is at least one entry in the data base for each UPDATE deck, each overlay name or entry point, and utility program.

There are several programs and decks that list and manipulate the data base. These jobs are DBLIST, OVLVOL, TXTVOL, UTLVOL, and FTNVOL.

DBLIST

This job executes a program that updates the data base (MERGE is the program name), sorts it (SORTMRG), and lists it by overlay number, by UPDATE deck name, by volume number, and by indexes (REPORT is the program name).

It produces two copies of the output. The SCOPE 2.0 program library must be cataloged by the SCPPL job to execute this program.

OVLVOL

This job uses REPORT to selectively generate *COMPILE cards on a file called UPIN according to an input volume number. The job updates V2OPL using the *COMPILE cards to produce a listing of the overlays in the volume. The volume number appears on the first two columns of the input card. An input card for each appropriate volume is included. The job should be run once for each data card in the deck. At the beginning of each volume is a report listing the overlays in the volume.

The format of the data base cards and the correction cards is discussed in the documentation of the UPDATE program MERGE. The suggested procedure is to run the program to get listings of the release system, punch corrective cards to update the data base according to any customer modifications, and rerun the job to produce a corrected data base.

TXTVOL
This job updates V2OPL and lists OST, V2TEXT, the table description common decks, and the deadstart text partition AUTO.

UTLVOL

This job duplicates the function of OVLVOL for utility code assembled with V2TEXT.

FTNVOL

This job duplicates the function of OVLVOL for FORTRAN Extended code.

1.7 SYSDECK WORKSHEET

Run the MODCAT job (part III, section 1.1) to print the worksheets.

Information concerning the modification of SMMB is available through the Customer Engineering Division.

3.1 REQUIREMENTS

The following materials are necessary to build the 7611-1 I/O Station.

3.1.1 TAPES

STAOPL

3.1.2 PERMANENT FILES

MODPL (ID=S20OPSMOD)	Necessary for application of PSR updates only (STAMOD job)
USERMODPL (ID=S20OPSMOD)	Necessary for application of local customer modifi- cations only (STAUSR job)

3.1.3 DECKS

STAGEN
STAMOD

STAUSR

STADCK

STADMP

3.1.4 DEPENDENCIES

None.

Described in part I, section 2.3. cations only (STAUSR job)

Regenerates a STALIB tape from STAOPL
Creates a new STAOPL from the old STAOPL and MODPL, then generates a new STALIB tape when assembled.

Creates a new STAOPL from the old STAOPL and USERMODPL, then generates a new STALIB tape when assembled.

Assembles and punches the 7611-1 deadstart decks STATDS, STADDS, and STACLR from STAOPL

Assmebles and punches the 7611-1 deadstart dump deck from STAOPL

3.2 CONFIGURATION PARAMETERS

None.

3.3 REPRESENTATIVE DECKS

The following decks are included to indicate the format of the released decks. They are released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0.

3.3.1 STADMP

```
JUB DECK STADMP
```

```
STAOMP,CP7O,T100,MTU1.
CUMMENT. $VVUV,n7155,36830,SUMILLEK
CUMMENT.
COMMENT. ##################################################################
COMMENT * *
COMMENT. * THIS IS A SCOPEZ.0 INSTALLATION DECK AS CREATED
COMMENT. #
CUMMENT. BY SCOHEZZ.O INTEGRATION - AKDEN HILLS, MINNESOTA *
COMMEIVT . *
COMMEINT.* FOR PSK SUMMARY LEVEL 51 (SEE SYSDECK DESCRIPTION
CUMMENT.*
CUMMENT. * NONEWPL HAS REEN DEFINED
COMMENT.* STAGE HAS REEN DEFINED
CUMMAENT.*
COMMENT.*
COMMENT. *
CUMMFNT.*
CU:ANENT.*
COHMENT. #
CUIMMENT. * ( NO PSRS ) . *
```



```
COMMENT.
COAMENT. #########################################################################
CUMMENT. *
COMMENT. * THIS JOH NILL PUNCH THE STATION dUNH DECK. AN EASIER WAY TU DO
CUAMENT. * THIG IF IHE 7611-1 STAIION IS UP, IS TO PUNCH THE DECK FKOM THE
COMMENT. " SIATTON UISK. THIS CAN BE DONE GY TYPING (TN STATION MOOE.) .....
COMMENT. * PUNCH OOIIMPI HROR (CR)
COMMENT.* (FOF PRIMTERI (PPU1) LOAUER: DOOTSTRAP CARO)
CUAMEIVT. * PUNGM DOIIMPI P8OR (CR)
CUAMENT. # (FOR PRINTERZ (PPUZ) LUAOFK HOOTSTRAP CARD)
CUAMFNT.* PUNCH DUPQINT HAOR (CR)
CUMMENT.* (FOR IRE ACTUAL DUMF PROGKAM)
COMMENT. #
CUMMEN1. #######################################################################
LAMELISTAOHI.L=$STAUPL*SCP2.O末)
SlagF(STA!)rL,MT,HY,E,PRF,
vSN=CY51)
HPOATE(P=SIAOPL,O)
CUMPASS(T)
UISHOSE(IGU,HR) PUNCH BO CULUMN GINARY
PAUSF. MAPGOO - JOR COMPLETED SUCCESSFULLY... TYPE X.GO
EXIT.
PAUSE. MP:OL - JOH FAILED ... TYHE X.gOU •
---EOS-- 1/d/4
*I0 buMap
*/ PRLNTENI (PPI)hOOTSTPAP (AR:)
*C bigumpl
*/ PrliNTfRC (NPD) GOOTSTRAP CARD
```

Jul deck STADMA
*C DDUNP?

* 1 DUMF prugram
* C (n)rkINT
---tol--- 6/7/8/9

```
3.3.2 STAMOD
JOR DECK STAMOD
STAMOU,CPTO,T20D,MTOL.
COMMENT. #SVUVV,0715S,36830.SDMILLER
CUMMENT.
COMMENT. ###################################################################
CUMMENT.*
CUMMENT. *
COMMENT. *
CUMIMENT.*
CUMMENT. *
CUMMENT. *
CUMMENT.
COMMENT.
CUMMENT.
cumRtiNT.
CUMMENT.
COMmENr.*
CUMMENT.
CUMIENT.
CumitNT.
CUMMFNT.* ( NO PSFS ) *
COMNENT. ###################################################################
cumment.
LABEL(STAOHL.L=$STAOPL*SCPZ.C&)
SIAGFISTGOHLOMT,HY,L,HRF,
vSv=CY47)
COAMENT. ##########################################################################
CUMMENT.*
```

```
CUNBENT. * URDATE MUUPL TU GET LATEST CDC, MULIS
\thereforeいMलENT. **
```



```
AlTACH(MNUFL,MONPL.1U=``OOPSMUD.
CY=5.1)
iH:OATE(F=MOUHL,O,O,G,*=/,C=(jFIN)
HC TJRN(MCOHL)
CUMSNTNI.****##########################################################################
COMmENT.*
GUMMFNT. * UROATE 7GII-1 ULDML, CKEATE SFIUUENIIAL NEWPL
CuMERNT.*
```



```
!P!MTE(P=SIAOPI,F,C=0,N=KAIVDPL,I=UPIN)
|NLUAL(STALPL)
CUMN,NNT. **#########################################################################
CUMMENT.*
COIMNENT. * UUF 1O A DEFICIENCY IIN UPDAIE, TO INSURE THAT THE NFWPL CREATED) *:
COMMFNT. * IS VALJU, THF OLDPL IS MODJPIEO CREATING A RANDOM TEMPOKAKY NEWHL-*
CUAAENT. * KANOPL - WHICH IS THEN UPDAIEU CHEATING A SEQUENTIAL NEWPL - NEWPL.*
COMint.NT. * ratIURE TO nO THIS COULD PESULT IN IOSS OF DECK NAMES AND AN * * *
CUMrIENT. * IMPROPEK OHRIFRING OF DECKS (NHEH JFCKS AKF ADDED OR PURGED). *
COMMEINI.*
```



```
UPOATE (F=RANUPL,F,R,C=O,N,I=NULL)
KETUQN(KANDPI.)
```



```
CUMMENT. *
COMMFNT * UHDATE NEWPL INSERTING CURREINT CYCLF INDICATOR
CUMMEINI.* AND PROOUCF CIMPILE FILE
COMMEivT. * *
```



```
UPOATE(P=NEWHL,F,C)
```



```
CUMNEFNT. *
CUMMENT. * CREATE NEW STALIR TAPE (7G11-1 DEADSTART IAPF)
CJIMMFIVT. *
```



```
+1LE (\TA|IN,KT=S)
STAGF(STAI_IH*MY,HY,POST,
V\v=(Yつ1)
CDMPASS(I,G=STALIB,L=LIST)
|NLUAJ(STALIG)
```



```
CUMMENT.*
CU:AMENT. CHFATE NEw STAOPL TAPE
CUMMENT. & 0
```



```
LABEL(:NEn.STA,L=$STAOPL*SCPZ.O$)
STAGE}(1,NtWISIA,MT,HY,N.HOST.
V SN=CYら1)
REWINU(NF:PL, NFWSTA)
COPYP(NEWNL,NEWSTA)
```



```
COAMENT. *
CUMAENT. * TEST NEW TAPF VIA JHOATE゙
CUNIAE゙NT. * . #
```



```
IIINLOAU (INF VSTA)
STAGE(NEV`IA,MT,HY,E,PRF,
VSN=CYS1)
(,W)ATE.(P=NLWSTA,N=SCHAT,W,C=0,I=NULI.)
IINLOAU(NFNSTA,SCRAT)
FAUSE. MPUOU - JOH COMPLETEO SIJCLESSFIJLLY... TYPE X.GO
EXI1.
FAJSE. MPUOL - JOH FA&LFU ... TYFE X.GO
---EOS--- T/8/9
\prime\ STAPSF
--FOS---7/3/G
*1) CYCLENG
*U CYCSI.1 CYCLE INOICATOR
    UATA IRSOIRI CYCLE 51
```

--ービの1-~-6/7/ロ/9

3.3.3 STADCK

JOQ nerek stanck

4.1 REQUIREMENTS

The following materials are necessary to build the 7611-2 Magnetic Tape Station.
4.1.1 TAPES

MTSOPL
Described in part I, section 2.4

4.1.2 PERMANENT FILES

MODPL (ID = S20OPSMOD)

USERMODPL (ID $=$ S20OPSMOD)
Necessary for application of PSR updates only (MTSMOD job)

Necessary for application of local customer modifications only (MTSUSR job)
4.1.3 DECKS

MTSGEN
MTSMOD

MTSUSR

MTSDCK
Regenerates a MTSLIB tape from MTSOPL
Creates a new MTSOPL from the old MTSOPL and MODPL, then generates a new MTSLIB tape when assembled

Creates a new MTSOPL from the old MTSOPL and USERMODPL, then generates a new MTSLIB tape when assembled

Assembles and punches the 7611-2 deadstart decks MTSTDS and MTSDDS from MTSOPL

4.1.4 DEPENDENCIES

None.

4.2 CONFIGURATION PARAMETERS

4.2.1 MODIFICATIONS TO MTSLIB AND MTSOPL TAPES

XPP (Multiplexer PPU) Modifications
The XPP program must reside in PPU0.
Parameter

CHPAR	0
CHFI	0
CHFO	6
CHS	4
CHD1	1
CHD2	2
CHD3	3
CHD4	5

SPP (System PPU) Modifications
Released
Parameter
XP
DP1
DP2
DP3
DP4
DA
DB
S

PSTAT
Released Default Value

0
0
6
4
1
2
3
5

Default Value
0
1
2
3
5
6
7
4
see significance

Parity and deadstart channel number
FLPP to XPP channel
XPP to FLPP channel
Channel between XPP and SPP
Channel between XPP and driver 1
Channel between XPP and driver 2
Channel between XPP and driver 3
Channel between XPP and driver 4

Significance	
XPP channel number	
DPP channel number	
DPP2 channel number	
DPP3 channel number	
DPP4 channel number	
Disk function/status channel	
Disk data channel	
Display channel	
DPP status table	
Released DPP Table	Driver
$\mathrm{DH}=0, \mathrm{DSU}=2, \mathrm{DOF}=0$	1
$\mathrm{DH}=0, \mathrm{DSU}=1, \mathrm{DOF}=0$	2
$\mathrm{DH}=0, \mathrm{DSU}=4, \mathrm{DOF}=1$	3
$\mathrm{DH}=0, \mathrm{DSU}=3, \mathrm{DOF}=1$	4

For each DPP driver to be modified:

1. Set DH to 1 if driver PPU is disconnected; set to 0 if connected.
2. Set DSU to PPU number (1 to 4) that is connected to other half of 2 x 8 controller (a 2×8 controller is connected to two PPUs); set to 0 if 1×8 controller.
3. Set DOF to 1 if DPP is OFF; set to 0 if ON.
$\frac{\text { Parameter }}{\text { USTAT }}$

CHCH

Released Default Value
see significance
see significance

Significance	
Unit status table	
Released USTAT Table	Unit
$\mathrm{UNT}=0, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=1$	0
$\mathrm{UNT}=0, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=1$	1
$\mathrm{UNT}=1, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=1$	2
$\mathrm{UNT}=1, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=1$	3
$\mathrm{UNT}=0, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=1$	4
$\mathrm{UNT}=1, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=1$	5
$\mathrm{UNT}=0, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=1$	6
$\mathrm{UNT}=1, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=1$	7
$\mathrm{UNT}=0, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=3$	10
$\mathrm{UNT}=0, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=3$	11
$\mathrm{UNT}=0, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=3$	12
$\mathrm{UNT}=1, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=3$	13
$\mathrm{UNT}=1, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=3$	14
$\mathrm{UNT}=1, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=3$	15
$\mathrm{UNT}=0, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=3$	16
$\mathrm{UNT}=1, \mathrm{UOF}=0, \mathrm{U} 2 \mathrm{C}=1, \mathrm{UDC}=3$	17

For each unit to be modified:

1. Set UNT to 1 for 9 -track; set to 0 for 7-track.
2. Set UOF to 1 if unit is OFF; set to 0 if ON.
3. Set U2C to 1 if unit is a 2 x 8 controller; set to 0 if 1 x 8 controller.
4. Set UDC to DPP number (1 to 4) that is connected to unit; if unit is connected to two DPPs, set to lower DPP number.

PPU channel table

Released CHCH Table		PPU
CON	XPMD4+1	0
CON	DP1-XP	1
CON	DP2-DP1	2
CON	DP3-DP2	3
CON	DP4-DP3	5

NOTE
The DPPs that can be connected to a 2×8 controller are DPP1 and DPP2 or DPP3 and DPP4.

Parameter	Released Default Value
CHF	6
CHD	7

READ error recovery parameters:
LIM
LIMF

WRITE error recovery parameter:
LIM
6
Number of write recovery attempts without operator intervention

7611-2 Dump Program Modifications

Parameter	Released Default Value
CHXPP	3
CHDS	2
CHFLPO	6
CHDSS	0
CHDD	7

Number of single backspace attempts for read error recovery

Number of read recovery attempts without operator intervention
Significance
Data subchannel to XPP
Deadstart channel
XPP to FLPP data subchannel
Station deadstart line
Dead dump channel

4.2.3 CROSS REFERENCES

If DP1, DP2, DP3, and DP4 are to be modified in SPP, change the following:

1. CHD1, CHD2, CHD3, and CHD4 in XPP
2. CHCH and PSTAT in SPP

If fewer than four drivers are in the configuration, change the following:

1. DP1, DP2, DP3, DP4, CHCK, PSTSTA, and USTAT in SPP
2. CHD1, CHD2, CHD3, and CHD4 in XPP
3. DP1, DP2, DP3, DP4, and DPN in MTSDDS and MTSTDS

If the channel connects between the DPPs and the controllers are to be modified, change the following:

1. CHF and CHD in DPP overlays
2. CHF and CHD in MTSTDS and MTSDDS
3. CHF and CHD in MTSCPU (in SCOPE 2.0 FLPP binary deck)

4.3 REPRESENTATIVE DECKS

The following decks are included to indicate the format of the released decks. They are released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0.

4.3.1 MSTMOD

```
JUF3 HECK NTSMON
```


LETURN（MANUPL）

COMAENT＊＊
COMNENT＊UPDATE HEYPL INSERTING CURRENT CYCLE INDICATOR $\quad *$
（OMMLIVI．＊AVU PRONUCE COMPILE FILE＊
COMMENI． 4 爵

 CUMMtivt． 4 $*$
CUMAFITI＊PIROHICE NTS FINAHIES＊＊
CUMMENT＊

SKIrr（CONPILE）
CUNFASS（Y，N＝NINAKY•L＝LIST）
SAIFFACONPR1LE）
CU：FHSS（1，H＝GINARY，L＝LIST）
UNI＿いAU（COMTILE）

CUANENT．＊
4
CORMENT，CKEATE HE ATSLIM（MTS US TAHF）＊

勺I AuE（in：TSLH，MT，HI，PUST．
VSN＝CYD1）

CURY（BINARY，MTSI IK）
UNLUAU（MTSLIH）

STAGF（UE：MTS，MT，HY，N，WJST＇，
\checkmark Siv＝（Y）

CO：1ロビN1 CHEAT
（CREATE IIE MTSORL TAPE
CUMMENT＊

DENIN（INF：\＃FL，NFWMTS）
COPY（INE NFI．NHEWMTS）
UNL CAU（NF WINTS）
S「AGE（MENMISッMT，HYOE，PRF，
VSV＝CY引1）

CUMMENT •＊
＊
CUAMFIVT．＊TEST NFW TAPF VIA IJPDAIE＊
CUMMENT．＊ 6


```
JUN UECK NTSMOD
UNLOAU(NFWNTS)
UNLOAU (NFWMTG,SCHAT)
FAUSE. MPOOJ - JOH COMFLETEN SUCCESSFULLIY... TYPE X.GO
FXIT.
PAUSE. MPIJOL - JOR FAIItO .... TYPE X.FiO
---EJS-*- 7/8/9
c MTSPSR
---tuS--- 7/8/a
*IO CYCLFNO
*u htuozf.l
    SA!A lKS,lK! CYCLE 5l
---EUI--- b/l/&/9
```


4．3．2 MTSDCK

```
J\capQ \capF=% mTSOCK
MTSNRK,MDT0,T100, MTM1.
C\capMMENT.
C\capMME*T, #***************************************************************
ROMM=NT.*
```



```
COMa!-NT. * *
ROMM=HT. * NV SOOOFO.R TMTEGOATTON - AODFN HTLLO, MTNNESOTA *
COMM-リT, * *
CONMENT, F FOO DSO SUAMAOY LEVFL BA (SFE SYONECV ORCOOTOTTAN) *
C\capMMENT.*
COMMENT. * MOMENOI HAC TSFA REFTAER *
RCMMFNT. * CTAFF HAS TFEN ORFTHINO *
COMMENT. * * *
ROMMRNT. * RLEASF SFNT SUGGESTEV CORREOTTNNG ANO YONTFIRMTTONS TO *
COMMEMT.* SOOP? ?. T TATERONATON ARHP4R *
ROMMENT.* 42O1 LTYTNTTON NVF.N. *T
COMMFNT.* CT DAIIL, MINN. 55112 *
```



```
COMM-HIT.
「クMMENT, ##*******************************N***************************************
COMMEMT. *
```



```
ROMMENT,*
「へмм二N!, ************************************************************************
LADFL(MEHSRD,L=FSROODL?.O*)
CTARF(NFNSRO,MT,HV,E,ORR,
vCA!=NVシ1)
U\capOATF(D=NFWCNO,n)
COMNAS=(T, R=OUN,L=LTCT)
PEW[#न(OU||
COOY(P(UN, DINNHD)
FAUSF. MOחn# - InQ nクNOL-TEN SU^CESCFIJLY... TYOE X.rn
EXTT.
FAUSF. MPOO1-J\cap7FAILFN ... TYOE X.RT
---F\capC--- 7/n/0
*I! мт:
* TAPE OC חEOK --MTCTMS--
*r TпS
*/ nick ns nfore--vtcŋnc--
*r rnS
---E\capC--- 7ノロノの
*/OFL\IN \triangleRF CADOC FOD NOMTTIONAL COETES OF RTNARV TE ZECKE
DEWTMS (OIIN)
CGPY(DIJN, DUNA^HD)
REWTNר(PUN)
rODV(OGN, DlmARH'g)
--mпnT--- E/719/n
```

All modifications to SCOPE 3.4 are described in the 6000 SCOPE 3.4 Installation Handbook, Pub. No. 60307400, except for the following station parameter.

Released
Parameter
CNTMLO

Significance

The number of loops occuring in the CPL program (station FLPP) before the station logs out. Present setting of 512 causes 512 loops in CPL which is about one minute.

Equation is:
Value=(8.53)(wait time in seconds) $512=(8.53)$ (60 seconds)

6.1 REQUIREMENTS

The following materials are necessary to build the SCOPE 2.0 operating system.

6.1.1 TAPES

SCPOPL
Described in part I, section 2.6.
6.1.2 PERMANENT FILES

MODPL (ID=S20OPSMOD)

USERMODPL (ID=S20OPSMOD)

FTNIOLIB (ID = PRDLIB)

PRDLIB (ID=PRDLIB)
6.1.3 DECKS

SCPGEN

SCPMOD

SCPUSR

SCPINS

DSBCPY

DBUGINS

Necessary for application of PSR updates only (SCPMOD job)

Necessary for application of local customer modifications only (SCPUSR job)

Necessary to satisfy FTN generated externals in LIBEDT and ANALYZE

Necessary to add product set binary to deadstart tape and provide the FTN compiler for building LIBEDT and ANALYZE

Regenerates SCPLIB tape and SCPSID binary deck from SCPOPL; catalogs SYSLIB (ID=PRDLIB)

Creates a new SCPOPL from the old SCPOPL and MODPL, then generates a new SCPLIB tape and a SCPSID binary deck from the new SCPOPL; catalogs SYSLIB (ID=PRDLIB)

Creates a new SCPOPL from the old SCPOPL and USERMODPL, then generates a new SCPLIB tape and a SCPSID binary deck from the new SCPOPL; catalogs SYSLIB (ID=PRDLIB)

Replaces product set only; punches SCPSID and catalogs SYSLIB (ID=PRDLIB)

Punches SCOPE 2.0 SCPSID binary deck from a SCPLIB

Catalogs binary from SCPOPL as DBUGLIB (ID= PRDLIB)

6.1.4 DEPENDENCIES

FTN and FCL must be installed before building SCOPE 2.0; or at least PRDLIB must contain a FTN compiler updated to the current PSR summary level and FTNIOLIB must be updated to the current PSR summary level.

6.2 CONFIGURATION PARAMETERS

Parameters for configuring the SCOPE 2.0 system are defined in decks IPARAMS in OST and ORL. These decks are on the SCPOPL tape. Unless specified otherwise, the parameters described are in the IPARAMS common deck, which can be listed by assembling the deck OST (system text) using a *COMPILE OST UPDATE directive.

The cross references are the routines affected by the parameter.

6.2.1 DEBUGGING

None that can be changed by the user.

6.2.2 LIBRARIES

None that can be changed by the user.

6.2.3 SYSTEM CONTROL

Released			
Parameter	Default Value		Significance
IP. DRMGT	1		resource management (on-line code which is the tape I/O SECONDS in the accounting
		0	file message ge dayfile

The scheduler uses the following parameters to determine time slices and to select the next job for execution. Factors important to selecting a job include: job status (X1, X2, X3, W1, W2, W3), resource utilization (SCM, LCM, mass storage, on-line tapes), and external priority.

IP.LCMW	1	Weight of LCM for computing scheduling value when job is in X 1 or X 2 status \dagger.
IP.IOWT	Value $=(L C M$ allocated $/ 1000 B * 2 * *$ IP. LCMW $)$	

†When a job is in X 1 or X 2 status, the scheduling value is determined by the LCM value plus the I / O value plus the external priority specified on the job card.

Parameter	Released Default Value	Significance
IP.AUWT	1000B	When a job is rolled out to disk (X3 status ${ }^{\dagger}$), value is increased by au*IP.AUWT where au is allocatable devices such as tapes.
IP. MINT	3	Minimum job time slice in clock cycles (3.6 milliseconds); refer to IP.TSWT for SCM execution.
IP. MAXT	20D	Maximum job time slice in clock cycles (3.6 milliseconds); refer to IP.TSWT.
IP.TSWT	1	A job's time slice is the amount of time the job is assigned the CPU. At the completion of a time slice, the scheduler interrupts and assigns a new time slice to another job or to the same job. The size of the time slice is expressed in clock cycles (3.6 milliseconds). time slice $=($ priority $+777 \mathrm{~B} / 1000 \mathrm{~B} * 2 * * \mathrm{IP} . \mathrm{TSWT})$ The range is further restricted by: IP. MINT<time slice<IP. MAXT If IP. MINT is the same as IP. MAXT, all time slices are equal.
IP.SCVI	4000B	Interval in clock cycles at which SCHL (the scheduler) ages jobs in X2 and X3 status.
IP.LCMI	510B	Interval in clock cycles at which an X 2 job is forced from LCM into SCM.
IP. ROLI	12000 B	Interval in clock cycles at which SCHL attempts to swap an X3 job into LCM from disk.

6.2.4 JOB MANAGEMENT

Released
Parameter
Default Value

IP.DJMGT
1
Determines whether job management accounting code is to be assembled.
$0 \quad$ Code not assembled 1 Code assembled
\dagger When a job is in X3 status, the scheduling value is determined by the au value plus the external priority specified on the job card.

Parameter	Released Default Value	Significance
IP. MAXBJ	420B	Maximum number of I/O buffers for a job. When the maximum number of buffers is exceeded, the job is unconditionally aborted. This value is reduced by deadstart based on the number of I/O buffers physically available. Refer to T.MAXBUF in part III, section 6.2.13.
IP. MSCT	1000D	Maximum number of user dayfile messages for a job. When this parameter is exceeded, the job is aborted, but may be reprieved.
		Cross references: OS.CCMM, OS.STYY
IP.SCM	1000B	SCM field length to which the user field length is reduced between job statements.
		Cross references: OE.INJ, OE.SAM, OS.EXP, OS.TRJ2, OU.NOUN
IP. MPR	7000B	Maximum external priority. If the Pnnn parameter on the job card exceeds this value, priority is reduced to IP. MPR.
		Cross references: OE.ACJ2, OE.AGE, OE.INJ
IP.PRTY	1000B	Default external priority, if not specified on the job card.
		Cross references: OE.ACJ2, OE.FINP
IP.TIL	10B	Job default time limit in seconds; if not specified on the job card.
		Cross reference: OE.ACJ2
IP. MWJ	24000B	Default mass storage limit $x(10,0008)$ in words.
		The maximum amount of mass storage space that can be allocated to a job specified in units of 4096 words.
		The job aborts if mass storage limit is ex ceeded. This limit may be changed with the LIMIT statement.
		Cross reference: OE.INJ

Parameter $\begin{gathered}\text { Released } \\ \text { Default Value }\end{gathered}$		
IP.TPD	3	If tape density is defaulted on a REQUEST card, it is set to IP.TPD; possible values are:
		1 200 bpi 2 556 bpi 3 800 bpi 4 1600 bpi
		Cross reference: OU.RQM
IP.STG	1	If tape staging direction is defaulted on a STAGE card, it is defaulted to IP.STG; possible values are:
		2 Stage out
		1 Stage in
		Cross reference: OS.RQP
6.2.5 DEVICE MANAGEMENT		
Parameter	Released Default Value	Significance
IP.RTC	10D	Retry count for tape parity errors on on-Iine tapes. A read or write operation on tape is tried IP.RTC times before the parity error is declared unrecoverable.
		Cross references: OE.TQI, OE.TQO
6.2.6 PERMANENT FILES		
Parameter	Released Default Value	Significance
IP.DP	4	Defines the number of PFD pages as a power of two. In other words, the number of pages is $2 * *$ IP. DP. It is used in hashing the permanent file name.
		$\begin{aligned} \text { Cross references: } & \text { AUDIT, DUMPF, LOADPF, } \\ & \text { OU.ATT } 1, \text { OU.CG1 } \end{aligned}$
IP.OVP	4	Total number of PFD overflow pages; each PFD overflow page represents a 512 -word block on the disk.

Parameter	Released Default Value	Significance
		The size of the overflow area is a function of how evenly the permanent file name hash is distributed. It is recommended that the number of overflow pages be at least one quarter of the number of PFD pages.
		Cross references: OS.CG3, OS.CG4, OU.ATT1
IP. PFRP	1	Default retention period (in days) for permanent files; values may be from 0 to 999 . Value 999 is interpreted as indefinite retention. When modifying this parameter, consider the amount of mass storage available.
		Cross references: LOADPF, OS.CPC1
IP.PPP	0	Determines the type of privacy procedure that is used.
		0 Standard privacy procedure is used
		1 Installation privacy procedure in overlay OS.IPPP is called via a GOTO. OS.IPPP checks file privacy and must be added to the system.
		Input to OS.IPPP can be obtained through calling the common deck named PFPARAM. Location PFN is the beginning of the file definition block (FDB). On returning, OS.IPPP must set the permission bits right justified in register B3.
		OS.IPP is called when an ATTACH or new cycle CATALOG occurs and must do its own password checking. The PP parameter is available to OS.IPPP in the FDB parameter area.
		Cross reference: OSPWCK
IP. CY	3	Average number of cycles per unique permanent file name; used to determine the amount of disk space reserved for PFC during deadstart initialization. Value may be from 1 to 5 but in most cases should be 3 or greater.
		Cross reference: OST
IP.UVPM	17B	Determines which permissions are granted when the universal password is submitted. Submitting the universal password may cause either one or a combination of permissions to be granted.

Parameter

Released Default Value

UVPM Bit Position Permission

1	Read
2	Extend
4	Modify
10 B	Control
17 B	All

The released system defines the universal password as QZUYVXW. It may be modified by reassembling the deck OSPWCK using the following UPDATE directive.
*DELETE OSPWCK. 167
PASSWD DIS, *UNIVERSAL*
*COMPILE OSPWCK
Cross reference: OS.PWCK
Length of the attach permanent file table (APF); determines the number of permanent files that may be attached at a given time. The permanent file manager uses the first two APF words for communication information. The remainder of the APF contains one word entries. Every permanent file attached has an APF entry. There are no limitations on the size of the table.

Cross references: ORL, OS.CAPF, OS.SAPF, OS.UCL, AUDIT, LOADPF, ODS

Number of words reserved by the installation in the PFD entry. This space begins at word LE. PFD of each entry.

Cross references: AUDIT, LOADPF, DUMPF, OSCG4, OS. CPFC, OU.EXD1, OS. PFSR, OS.DPF, ODS, OV.FPDP

Number of words reserved by the installation in the PFC entry. This space begins at word LE. PFC of each entry.

Cross references: AUDIT, LOADPF, DUMPF, OS.EXD2, ODS, OU.FPDP

6.2.7 LOADER

Parameter	Released Default Value	Significance
IP. MAP	2	Map options
		$\underline{\text { Bit Positions }}$ Significance
		0 No map
		$1 \quad \mathrm{~S}$ type map
		$2 \quad \mathrm{~B}$ type map or partial map
		4 E type map
		10B $\quad X$ type map or map is on
		Cross reference: OS.COG
IP.LDPRS	0	Loader option to preset core image before loading
		No presetting
		1 Zeros
		2 Ones
		3 Indefinite
		4 Infinite
		5 Negative indefinite
		6 Negative infinite
		$7 \quad$ Alternating zeros (2525252525)
		10B Alternating ones (5252525252)
		Cross references: OS.COG, OS.CAL4, OS.EXP
IP.LDRWD	1	Option for rewinding of load files
		$0 \quad$ No rewind
		1 Rewind
		Cross reference: OS.COG
IP.LDER	2	Set level of errors at which loader aborts
		1 All
		2 Fatal
		3 None
		Cross reférences: OS.COG, OS.EXP

6.2.8 INFORMATION ROUTING

Released
Parameter
IP.FCAUS

Default Value
2

Significance
File copies default input allocation unit size for unit record input, 6000, attached permanent file, and staged tape input.

Parameter	Released Default Value	Significance
		For example, if IP.SPFTH were three and IP.SPFRQ were 5000D, after 5000D clock interrupts the SFT would be checked for activity. If during that time only two events occurred, the SFT would be written to disk. Cross references: OE.SPFE, OE.RSFT
6.2.9 SYSTEM STATISTICS		
Parameter	Released Default Value	Significance
IP.SIFNB	1	Number of system I/O buffers permanently assigned to the SIF after deadstart is equal to IP. FCLRF+3+IP. SIFNB. Under normal SIF usage, IP. SIFNB should be set to zero. However, when performance measurement is being done or when large quantities of output to the SIF is expected, set IP.SIFNB to higher values. One check on the validity of this value is the SIF reject count supplied by the RTRVSIF operation. If this value is large (consistently over 1), IP. SIFNB should be increased. If it is zero, IP.SIFNB should be decreased.
		Cross references: OE.SFQM, ORL
IP.SIFSC	100D	The current SIF buffers being filled as well as an updated FAT are written to disk when their number equals IP. SIFSC or IP. FURSI, whichever is less. In the released system IP. FURSI is 5. If IP.SIFSC is set greater than IP. FURSI-1, it has no effect. Setting it to less than IP.FURSI-1 causes the SIF buffers to be written to disk more often.
		Cross reference: OE. SFBF
IP. QUEA	1	Determines whether system queue is maintained and logged to the system information file. If IP. QUEA=1, information is gathered. If IP.QUEA $\neq 1$, no information is gathered.
IP. JACCT	1	Extended accounting
		$0 \quad$ Summary entries for tape and mass storage time are not entered in the job dayfile at job termination; they are sent to the SIF.
		1 Tape and mass storage time are printed.

Released			
Parameter	Default Value		Significance
IP.JACTL	0	ACCOUNT statement	
		0	ACCOUNT statement is not required and may appear anywhere in the job control statements.
		1	ACCOUNT statement is required and must appear immediately after the job control statement. The ACCOUNT statement may also appear elsewhere in the job control statements unless the installation supplied code in OS.ACRD flags it as an error.

6.2.10 RECORD MANAGER

The first four record manager parameters control the conditional assembly of accounting code and the output of a particular message in the dayfile accounting summary. If the parameter is set to 0 , the accounting code is not assembled and no dayfile message is printed. If the parameter is set to 1 , the code is assembled (to update a field in JSLCM, the job supervisor LCM area) and a dayfile message is printed.

Parameter	Released Default Value		
IP.FLA		\quad	Accounting of number of open/close calls
:---			
accumulated.			

 is $1,764,000 \mathrm{~B}$.

6.2.13 ORL PARAMETERS

The following parameters are in ORL. They can be modified (except for L. ZERO) with STORE statements during deadstart initialization and deadstart recovery. But the values specified during deadstart are only recovered with a deadstart recovery, not with a deadstart initialization.

Parameter	Released Default Value	Significance
T.SPF	IP.SPFTH=1	System permanent file (SFT) recovery; value is in IP.SPFTH (section 6.2.8)
T.MAXBUF	IP. MAXBJ $=4208$	Maximum number of I / O buffers for a job; value is in IP. MAXBJ (section 6.2.4).
		If the number of maximum buffers is set too high for the system, deadstart sets T.MAXBUF to the smaller of the two following values.
		1. T.MAXBUF as set by a STORE command during deadstart or the default value (a STORE setting overrides the default value). 2. $n-(r+s+4)$
		n Total number of system I/O buffers physically available.
		Number of buffers reserved for SIF. This value is IP.SFNB+IP. FCLRF+3 (8 in released system).
		$r \quad$ Number of buffers reserved for SCM image of job to be rolled to disk, the largest integer not greater than $\left[\frac{\mathrm{T} \cdot \mathrm{MAXS}+\mathrm{ljs}+777 \mathrm{~B}}{1000 \mathrm{~B}}\right]$
		ljs is length of job supervisor $\left(\mathrm{ILOO}_{8}\right.$ in released system).
T. MAXL	400, 000B	Maximum user LCM field length for a half size machine.
		The value for a full size machine would be 1, 400, 000B.
T. MAXS	60, 000B	Maximum user SCM field length for a half size machine.
		The value for a full size machine would be $160,000 \mathrm{~B}$.
T.LCMCHK	7	The number of LCM words to ensure that the resident loader checks so that no system overlay has written into low LCM. Refer to part IV, section 3.6.6, System Debug.

Parameter	Released Default Value		Significance
T.BUFCHK	0	A flag word indicating whether or not the buffer check code is to be executed. Refer to part IV, section 3.6.6, System Debug for further information.	
		0	Code not executed
		1	Code is executed; system aborts if buffer release problem is detected.
			CAUTION
			System performance is degraded by as much as fifteen per cent when BUFCHK is activated.
T.SYSABT	0	Defines the conditions under which a system error results in a system halt (crash). (The SAVE/RESTORE and CALL stacks are preserved on all crashes.)	
		0	No crash
		1	Crash on system EEA exits only. That is: an EEA exit (such as program range error or direct range errors) in the systems interchange, interrupt handlers, executive, or job supervisor results in a crash.
		2	Crash on system EEA and error exits. That is: an EEA or error exit (such as via ABORTJ macro) in the systems interchange, interrupt handlers, executive level, or job supervisor results in a crash. There is not a system halt on user program EEA or error exits.

The following parameter is in ORL but can only be modified by reassembling ORL.
L.ZERO 1000B The first L. ZERO words in LCM are set to zero. (The system has been run with L. ZERO set to 200B and 1000B.)
6.2.14 UPDATE

The following parameters are in *DECK UPDATE.

Released Default Value

1

1

Significance
Enables DECLARE directive
Supports full 64-character set

Parameter	Released Default Value	Significance
PMODKEY	1	Enables G option and PULLMOD card
AUDITKEY	1	Allows audit functions
EDITKEY	1	Allows merge and edit
OLDPLKEY	1	Enables UPDATE to read both old style and new style old program libraries
EXTOVLP	1	Enables detection of four types of overlap involving two or more cards in a correction set 1. Cards refer to same card 2. Card activates already active card 3. Card deactivates already inactive card 4. Insert refers to inactive card
DYNAMFL	1	Dynamic field length; field length is expanded as necessary.
6.2.15 DSC DECK IN FLPP DECK		
The DSC deck is on the SCOPE 2.0 library. It is part of the FLPP deck during installation when the 7611-2 Magnetic Tape Station is part of deadstart. If no parameters are changed, the driver is assumed to be in PPU1.		
Released		
FLDS	2	FLPP deadstart channel
CHXP	3	Channel from FLPP to PPU0
CHSCM	1	Channel from FLPP to SCM
CHDS	0	Channel to deadstart all other PPUs in the station
CHDR 1	1	Driver \leftrightarrow XPP channel, XPP program
CHFP	6	XPP \leftrightarrow FLPP channel
CHXPP	0	Driver \leftrightarrow XPP channel, driver program
CHF	6	PPU tape controller function/status channel
CHD	7	PPU tape controller data channel

6.3 REPRESENTATIVE DECKS

The following decks are included to indicate the format of the released decks. They are decks released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0.

6．3．1 SCPINS

JUH UECK SCHINS

SCPIND，CP7U日MTE1•TlU00．
CUMMENT．\＃SVIVVOT15b．3083U．SDMILLEF
CU：MMENT．

CUMMENT．＊
＊
CUMMEIT：＊THIS IS A SCOPEZ．O INSTALLATION UECK AS CREATED＊
CUMMENT．＊
CUMMENT．＊
COMMENT．＊
COMMEINT．＊
COMMENT．＊
COMMENT．＊
CUMAENT．＊
COMMENT．＊
CUMMENT．＊
By SCOPEZ．U INTEGRATION－ARDEN HILLS，MINNESOTA＊ $*$

FOR PSK SUMMAKY LEVEL 51 （SEE SYSOECK DEGCRIPTION）＊
＊
STAGE HAS RFEIN DEFINED＊
PIFASE SENN SUGGESTEU CORRECTIONS AHD MUDIFICATIONS TO＊
SCOPE 2． 0 INTEGRATIUN AKH248＊

C゚UMMENT．＊ 4 ZOI LEXINGTIN AVE．N．＊
CDMAENT．＊
CUMMENT．\＃
ST PAUL，MINN．SSIlZ＊
CUMMEINT．＊
（ NO PSRS ）

（1）MMEIT
COMMFNT．
CUMME
CUMMFINI．＊
Cumprivt．＊THIS JUb takfs an existinis dradstakt tape ano rfplaces the rroduct＊

CUMMENT．＊TAPE
COMMENT．\＃

FILE（DSIAPE，KT＝WORT＝C）
SIAGE（USTAFt，MT，HI，PHE，
VSV＝（Y）
RENINU（OSTAPE）
CUPY（I）STAPE，SCPLIB）
UNLOAU（DSTaNE）
AITACH（PRI）LIt，PR（ULIV，IU＝PRULIR）
L．LHEOI（M：
FILE（NEWLIM， $\mathrm{F} 0=\mathrm{S}_{\mathrm{O}}^{(\mathrm{J})}$
FILF（NOSTAHE，RT＝W，$B T=C$ ）
SIAGHE（NUSTADEMTOHIPPOST，
$\vee \mathrm{Siv}=(\mathrm{Y} 51)$
COPY（NEWIIH，NOSTAPE）
UNLOAD（ivns iart．）

CUMMENT．＊
COMMEINT．＊CATALOG SYSLIH（SYSTFM LIRKAKY WITHOUI PKUNUCT SET）＊
COIAMFNT．＊

EメII（C）


```
JUB DECK SCPINS
CY=51)
PAUSE. MPUJZ - NEw FILF CATALOGED SUCCESSFULLY..tYPE X.gO
FXIT.
PaUSE. MPUO4 - NEN PRULIG CYCLE EXISTS. TYPE X.GO TU REPLACE
ATTACH(A,SYSLIB,ID=PROLTR,PW=SCPCN,
CY=51)
PURGE(A)
RETURIN(A)
CATALOG(SYSLIB,SYSLIE,IN=PRDLIB,PW=SCPCN,CN=SCPCN,EX=SCPEX,MD=SCPMD*
CY=51)
PAUSE. MPOOS - JOR COMPLETED SIJCCESSFULLY... TYPE X.GO
FXIT.
PAUSE. MPis(01 - JOR FAILEO ... TYPE X.GO
---tUS--- 7/3/9
LISRAKY(NENLIB,NEW=2500)
0LDLIB(SCPLIJ)
WEPLACE(*,HRULIROLIB)
fLNISH.
LISTGIB(#,NEWLIRON=1)
*/ CREATF SYSLIR FHOM STPLIR
LI:3FAKY(SYSLIH,NEW=2500)
ULOLIG(SCPLIG)
*/ UELEEFF HRUDUCI SET - EHROR(SKIP) USED TO PHEVENT ARORT BECAUSE OF a dELETE
*/ ON A PRUOUCT NOT ON THE ORLGINAL DEADSTAKT TAPE
RRNOR(SKIP)
DELETE(RIIN+NOD)IAGF)
```



```
DELETE(FTTV+$HASS14吕%)
|ELETE(COHOL+COROL51)
OLLF「E(SOHIMR(j+SORTCO)
OLLFTE(UCP/MEMC/CT73)
EriROR(ABORT)
FINISH.
1.1STLIB(*,SYSLIR,N=1)
---EOI--- क/7/R/G
```


6.3.2 DBUGINS

JUd DtCK UBUGINS

CO:AMENT.

COMMEINT. *
4
COMMEINT. DITAIN DEGUG OBJECT TIME HINARIES RROM SCPOPL
CUMMENT. *

1. AHEI. (NEHSCP:L=\$SCPUPLZ.0 ${ }^{\text {S }}$)

STAGE (NEWSLP,MT,HY,E,PRE,
VSN=CYS1)
RENINU(NFWOCP)
COPYP(IJWWCP:OLDPL)
UivLOAU(OLDPL)
CUPYP(NEWSCP,DHJGBIN)
HEWINO(URJJJH(N)

CUMMENT. \#
COMMENT. \# CKEATE LIGEUT RORMAI LIGRARY OF DEBUG ORUECT TIME BINARIES *
COMMEINT. \#

I. IREIT (M)

CUMMENT. *
(OMAAFIT. * CATALOG URUGLIGT (OFBUG OBJECT TIMÉLIRKARY) *
COMMENT. *
*

 C $\mathrm{Y}=5 \mathrm{l}$)
UivLUAU(UnJolab)
PAJSF: MPIクG - JOH COMPLETED SIICCESSFULIY... TYRE X.an

```
JO& DECK DBUGINS
FXIT.
PAUSE. MPJUN - JOK FAILED ... TYHE X.GO
---EOS--- 7/0/9
LIBRARY(DHUGLIR,NE!=20n0)
REPLACE(#,URUGRIN)
FINISH.
LISTLIH(*,UHUGLIB,N=1)
---E゙OI--- E///9/9
```


6.3.3 SCPMOD

Jots beck bermon

SCPMOL, 170 O,CP7UQMIGZ.
COMMENT. "SVUV,07155,36R3D,SDMILLEK
COMMENT.

COMMENT. * *
COMMENT. * THIS IS A SCOPEZ.O IMSTALLATIOM MECK AS CREATED *
COMMENT. *
CUMMENT. * BY SCOPEZ. O INTEGRATION - AROLN: HILLS MINNESOTA *
COAMEIVT. \# *

COMMENT. * FOR PSK SUMMARY LEVEL 51 (SEE SYSOECK DESCRIPTION) *
CUMMENT. *
COMMENT. * MODTAPEMD HAS REEN DEFINED *
COMMENT. * STAGE MAS REEN DEFINED * * *
CUMMFNT. * *
CUMHERI. PLFASE SFND SUGGFSTFU COHRECTIUNS AND MGOIFICATIUNS TO *
COMMENT. * SCOPE 2.0 INTEGRATION AHHZ.4R *
CUMMENT.* 4ZOl LEXINGTON AVE.N. * *
CUMMENT. * ST PAUI. MINN. SSll2 *
COMMENT
CUMAENT. * (NG PSRS)

CUMMENT.

COMAENT.*
CUAMFNT. * UHDATE MOUPL TO GET LAIEST CDC MOOS *
CU.MMENT. $\#$ *

aTTACH(MOUFI., MODFL, ILI=S UUUPSMOU,
$C Y=51)$
UPDATE(H=MUOPL,OPD,
GETUKN(NOND)HL)
CUPYS(INPUI,SUP)
RENINU(SHP)
cUDYS(INPUT, SUP)
COHYS(INPUI,FLIR)
COPYS(INPIJ, SLIR)
HEWINU(HLIE,SLIR)
LAHEL (SCPOFL,L = $\$$ SCPOPLZ.0g,R)
STAGE (SCPOFL,MT,HY, E,PRF,
$v S_{i v}=\left(Y_{47}\right)$

COMMENT. *
COMNEINT. * UPRATE SCPOPL, CREATE SEQUENTIAL IUEWÍL *
CUMMENT. *

UFOATE (P=SCPUPL,F, $C=0, I=(J P I N, N=F: A N U H L)$
UNL.OAU(SCPUPL)

COMMENT. *


```
CUMMENT. * CUMPILE ANALY\angleE ANO LIBEDT *
C(OMMENT. * USING LAIEST FTN COMPILER (ON HIGHEST CYCLE OF PROLIB) *
COMMENT.#
CUMMENT. #ザ######################################################################
A/TACH(FPO)I_Ib,PRDLIB,IU=PROLIB)
LIHRAKY(PRULIB)
FIV(I =COMPILE,L=0,R=LBANLGO)
LlokaKY.
DEWINU (LPAINLGO)
CU:1MFNT. #########################################################################
CUMMENT. *
COMMENT. # SAVF AUTU MODULE FRIMM LOMPILEE *
CUAMEINT. *
```



```
CUPYS(COMPILE, AlJTOT)
FeTURIN(COMr'ILE)
REWINU(AUTOT)
COMMENT.##########################################################################
COMMEHT. *
CUMMENT. * CKEATE NE# SCPOPL TAPE...FIRST HARTITION- NFWPL, *
COAMENT. * SECOND PARTITION- DEHUG LIRRAKY MINAKIFS *
COMMENT. #
Cu.AMEN「. ########################################################################
LA3HLL(NL WSLPP要=$SCPUPLZ`.0$)
STAGE (:NEWSCP,MT,HY,N,POST,
vSv=CYSl)
HE NIGU(NFWNL.DBUGRIN)
CUPYP(NEWPL,NFWSCP)
UNLOAU(INENHL)
CUPYP(!IRIJGRIN,NEWSCP)
CO1MFNT. #乡#########################################################################
CUMMENT. *
*
CU:AMENT. * TEST NEN TAPF VIA UPOAIE *
(口MNIFNT, * *
```



```
UNLOAU (NENSCP)
STAGE (.HEWSCP,MT,HY,E,PRF,
VSN=CYSl)
RE:HINU(NEWSCH)
CUPYF(NEWSCP,OL\capPL)
CUSYR(VEWSCP,NFWHIN)
UNLOAU (NFWSCH)
(IHOAIE(P,N,AOP,C=0,I=NULL)
RETUYIN(G) IHL)
RE TURN(DRUGFINONEWRIN)
UNLOAIS (INF WSCP)
C丁MNANNT. ###########################################################################
CUMMENT. *
#
CUMMFINT.* הUILD LIGEDI ANI) ANALY&E FROM RELOCATAHLE RTNARY. *
```



```
JNH DicCh SCPMON
*/
*/ SET SYSTEM IDENTIFICATION
H/ (41-50 CHARACTEH DATA STRING)
*/
*/
*/
*11) Pux
#DC OHL
*U OKL.44H
OATA H$l###* 7000 SCOPE 2.0 **** SYSTEM 51T $
*/ (wHFRE NNN IS THE LATEST PSR SUIMNARY LEVEL AND A IS AN ALPHA SUFFIX)
#/
*/ SET INSTALLATION IUENTIFICATIUN - DATA CAHO MUST RE REPLACED
*/ ( 4]-5U CHARACTER DATA STRING)
*/
#/
#U ORL.421
    UAIA HSO(THIS CARD SHOULD BE REPLACED WITH INSTALL.ID)$
*/
*/
```



```
*/
*/
*/
#/
*O SOU163AB.&゙
            VFU 60/1
*/
|
*/
```



```
*/
*/
#// ################## MAKE INSIALLATION CHANGES *******************
*/
---EOS--- 7/8/9
LIBRARY (UTLREL,NEW=1200)
HLWINU(UTLLGO,LRANL(%O)
TYPE(REL)
REPLGCL (*,|TLLGO)
PEPLACE(*,LBANLGO)
FINISH.
L.ISTLIH(*,UTLREL,NmI)
---EOS-m- 7/8/9
LIHHAKY(SYSLIR,NEW=2500)
REWINU(UST,OVLLGO,VZTEXT,UTLLGO,ANAL7,LIBEDI7)
HEPLACE (OST,UST)
```

```
.JON itECK SCrMOD
NEPLACE(*g(GVLGO)
*EPLACL(v己TFXT,V2TF゙XT)
WEHLACE(*gALIO7)
HEHLACE(ISUOMPL + COFYGHP|TLLG(I)
-CPIACE (IPUAIE,|TLIGO)
HEPLACE.(%,ANAL.7)
LE|INは(LI甘t|l7)
HEPLACE(*,LISE!T7)
#/ PUNCH SLNARTFS FOK US IECK - 2 COPIFS
FCOPY(USK/LPL/MTU/TUS/USC/DSI,PUNCHE)
HCOPY(USK/(PL/MTU/TUS/USC/IJSl, PUNCHh)
FI:vism.
1.1S|l.1H(*,OYSLIM,N=1)
1.I.4RARY(AE*L!B,NEw=くう), )
\&!|![F(FPDLJH)
MEPI ACF(*,SYSLJRgL!b)
is/
*/USH THE UIPFCIIvF ... DELETE(FIN+*PASSI4**D) *. LF FORTRAN EXTENDEU
*/ IS MOT AN INSIAILEU FLGOUCT (ISED UHILY FGM SYSTEM ANO PHODUCT MAINTAINENCE)
*/
*/
&1vISN.
1.13T!.14(4, AtNLIR@N=1)
---rus=-- //s/C
-m-r!)1--- :/7/!!/す
```


6.4 SYSTEM INFORMATION FILE (SIF)

The SIF is generated by SCOPE 2.0 during the execution of the system and serves as a general log of hardware, system, and job activities. The installation may also add code to the system to collect a variety of information associated with other activities such as debugging and performance measurement. Section 6.4.2 gives details and an example of adding information classification to the SIF. The user obtains the contents of the current SIF by executing the RTRVSIF control statement. The ANALYZE control statement enables the user to extract and reduce the information desired. Section 6.4.1 defines the RTRVSIF parameters and section 6.5 gives instructions on how to add any directives for ANALYZE. Section 6.4.3 details the content of SIF as released. Two macros, SIFX and SIFJ, add data to the SIF. The SIFX adds data from the executive level. The SIFJ adds data from the job supervisor level.

SCOPE 2.0 formats data in the SIF as type W records. Other format conventions are given in the following paragraphs.

The first word (word 0) of each record contains date and time consisting of the following three fields.

Bits 59 through 51	Year in binary
Bits 50 through 42	Day in year in binary
Bits 41 through 00	Time of day expressed in clock periods

The first two fields constitute a Julian date. The contents of word 0 are generated as the result of the SIFX/J macro call.

Various parts of SCOPE 2.0 format the rest of the record, depending on the part of the system that creates or captures the data. For example, an I/O queue manager discovers an error and formats a record including room for word 0 and issues a SIFX/J macro to add the record to the SIF.

The SIF follows mainly a binary code format. Each SIF record of an installation format is identified by a unique 6 -bit number between 00 and 77 octal. Each record written to the SIF contains the value of this 6-bit record code which identifies the format of the record. An installation must establish a unique record code for any added installation defined record formats. The record code appears in word 3 (bits 59 through 54) of each record. The record code also classifies the general contents of the record and indicates the prefix to be used for all field location symbols associated with the record. The four classifications are as follows.

Record Code (Octal)		Symbol Contents
00 through 17		Sardware information
20 through 37		SIHxxx
40 through 57		SISxxx

There are four common decks (SIH, SIS, SIJ, SIX) which contain the various descriptions of records in the corresponding classification. For example, an installation could add a record that documents an error in drum I/O by calling the record SIHDRM, giving it a record format value of 10 B and placing the record in the SIH common deck. Similarly, an installation might add a debugging record called SIXDBG, with a record format value of 70 B , and appearing in the SIX common deck.

Macros are available to describe the format of added records. These macros also supply individual fields (and the record format as a whole) with unique field location symbols which may be used to construct the record and later analyze it via the program ANALYZE (refer to the SCOPE 2.0 Reference Manual). These macros are discussed in detail in section 6.4.2.

6.4.1 RTRVSIF - RETRIEVE SYSTEM INFORMATION FILE

The RTRVSIF control statement retrieves the current contents of the SIF and begins a new SIF. The current contents of the SIF are cataloged as a permanent file before being made available to the job. The file 1 fn must not exist before this function. For a detailed description of the SIF, refer to section 6.4.2.

```
    RTRVSIF(lfn, pfn, p
Parameters:
\begin{tabular}{ll} 
lfn & Logical file name, required parameter \\
pfn & Permanent file name, required parameter
\end{tabular}
```

Optional parameters:

PP	Privacy procedure. Written PP=procedure ${ }^{\dagger}$
RP	Retention period. Written RP=number (0 through 999)
CY	Cycle number. Written CY=number (0 through 63)
TK	Turnkey password. Written TK=password ${ }^{\dagger}$
CN	Control password. Written CN=password ${ }^{\dagger}$
MD	Modify password. Written MD=password ${ }^{\dagger}$
EX	Extend password. Written EX=password ${ }^{\dagger}$
RD	Read password. Written RD=password ${ }^{\dagger}$
ID	Creator identification. Writien ID=name ${ }^{\dagger}$
PW	Password list (has meaning only when new cycle is cataloged. Written PW $=1$ ist. \dagger

6.4.2 SIF DEFINITION FORMAT AND MACROS

As an introduction to the detailed content of the released SIF and as a guide to an installation adding record classifications, the following macros are described. The macros define the format of the SIF record.

1. RECHDR defines the name of the record and the code that identifies the record format. This macro must precede all of the field definitions for the record. The macro is written:

location	operation	variable subfields
symbol	RECHDR	value

\dagger From 1 to 9 alphanumeric characters

```
symbol Section 6.4.3
value Octal code from section 6.4.3
```

2. FIELD defines an individual field in a record. The macro is written:

Location	Operation	Variable subfieids
symbol	FIELD	wp, lb, rb

symbol	Name of field (it must begin with the same prefix as the record name)
wp	Word offset
lb	Upper bit
rb	Lower bit of the field

3. OCTNUM, DECNUM, DISPLAY define how the ANALYZE directive LIST is to display the field. Each of the macros is written:

LOCation	Operation	Variable subfields
Symbol	macro	

symbol Corresponding FIELD macro. The FIELD must occur after the OCTNUM, DECNUM, or DISPLAY macro.
macro OCTNUM, DECNUM, or DISPLAY
4. RECEND terminates the description of the record. This macro must follow all of the field definitions. The name field and parameter fields are ignored.

Iocation	Operation	Variable subfields
	RECEND	

	TITLE SIqxxx - title for record
*	
*	Description of record including
*	General contents, how, and why
*	Placed in the SIF
*	
SIqxxx	RECHDR num
SIqaàa	FIELD
SIqbbb	FIELD
	RECEND

To illustrate, an installation might add a new record to collect information about the progress of jobs through the system by outputting a record at each major milestone in the processing of a job. The record would be described as follows.

TITLE SISJOB - JOB MILESTONE RECORD
*

* THIS RECORD IS OUTPUT WHENEVER A JOB PASSES
*
*

SISJOB
SISJNM
SISJNM
SISJCD
*
*
*
*
*
*
SISJA M
SISJRF

A MILESTONE IN ITS PROCESSING

RECHDR 30B
DISPLAY
FIELD 1,59,18 JOB NAME
FIELD 1, 17,00 MILESTONE CODE
$=00$ - BEGIN INPUT FROM STATION
$=01$ - END INPUT FROM STATION
=02 - BEGIN JOB
$=03$ - END JOB
=04 - BEGIN OUTPUT TO STATION
=05 - END OUTPUT TO STATION
ADDITION INFORMATION
RECORD CODE (=30B)

For this example, the installation places this code in the common deck SIS. The installation then adds code to the appropriate parts of the operating system to place the operating data in the fields of this record. Refer to operating system listing for additional detail and examples. The routines building the record must include UPDATE *CALLs for the common decks SIFMACR (which defines all of the macros in this section except FIELD) and SIS, in that order.

In order to use the symbol field locations defined in the record, the deck OSUANLZ must be reassembled with the modified common deck SIH and ANALYZE rebuilt (s ation 6.5). It is not necessary to do this, however, if the user needs nothing more than octal dumps. It is also possible to copy records based on an absolute nonsymbolic record format number.

Example:

```
RTRVSIF (SIFDATA, SIF , CY=10, PW =SPECIAL)
```

Retrieval and catalog current contents of SIF as cycle 10 of permanent file SIF.

For another example, the following program can be used to dump the dayfile from the system information file. In addition it creates a permanent file (PFILE) from the current contents of the SIF.

JOHN, CP70.
PASSWRD(BLANKET)
RTRVSIF(MYFILE, PFILE)
ANALYZE(M)
7/8/9
SIF(MYFILE,R)
LIST (RTYPE=SIJJDF)
6/7/8/9

If further information were to be retrieved from this same portion of the SIF it would have to be retrieved from the permanent file (PFILE). For example, to get a second dump of the same dayfile dumped previously, the following program is required.

```
JOHN, CP70.
ATTACH(MYFILE, PFILE)
ANALYZE(M)
7/8/9
SIF(MYFILE,R)
LIST(RTYPE=SIJJDF)
6/7/8/9
```


6.4.4 SIH, SIS, SIJ, SIX RECORD FORMATS

The SIF record formats and field descriptions are contained in common decks on the SCOPE 2.0 OLDPL. A current listing of all the SIF records can be obtained by listing the common decks SIH, SIS, SIJ, SIX along with the SIF macro common deck SIFMACR.

Run the TXTVOL job on the MODTAPE (described in part III, section 1.6.2) to accomplish this.

6.5 MODIFICATION OF ANALYZE

This section describes the steps to modify the ANALYZE utility by the installation. The directives of the released version of ANALYZE are general and apply to a variety of record formats. However, the installation may add directives. The following section gives the steps to add a new directive.

1. Identify the new directive for the system
2. Code function for the new directive
3. Add new code to ANALYZE deck

The installation may reference further detail and examples if needed by obtaining a listing of the released ANALYZE module.

6.5.1 IDENTIFYING THE FUNCTION

The verb table VRBTAB contains one entry per function. The entry supplies the basic information needed by the general directive scan routine. Most new directives only require modification to the deck OSUANLZ (in the verb table) and to the ANALYZE generation deck (to include new decks in the load). Where nonstandard processing of a directive is required, the deck OSUAN1 may have to be modified.

The verb table entry is generated by a VERB macro entry which is written:

Example:

AVERAGE VERB AVERAGE,6,,1,2

In the case of AVERAGE the example specifies: that the entry point AVERAGE processes the function indicated by the directive verb AVERAGE, that the function accumulates six local variables above and beyond the standard contents of the common FUNCOM, that one FIELD/1 =parameter is required in the parameter field of the directive, and that up to two VALUE/i parameters may be present.

6.5.2 CODING THE FUNCTION

Because ANALYZE does most of the processing, the coding for directives may be very simple. The records are read, unpacked, and tested to see if the records should be processed. If a record is determined to be part of the input set for the directive, the copy of the function common FUNCOM is moved from LCM to SCM and the function is executed. Upon entry, the following variables are set.

FUNSEQ	Set by ANALYZE to facilitate initialization and final report generation. If PRCNDX is set in the VERB table, the function is called with FUNSEQ equal to minus one. The directive at this point is cracked into arrays FIELD and VALUE in the labeled common ANLCOM where it may be processed by the function. Upon initial entry with the first record, FUNSEQ is set to 0. Initialization and processing of the first record can then occur. For all other records, FUNSEQ is set to 1. To indicate the end of the ANALYZE run, FUNSEQ is set to 2, and the function is executed one more time with no input record. This last execution is to complete the function output and print reports, graphs, etc.
FUNQAL	Set by ANALYZE from the verb table, FUNQAL is the function qualification value. This field would only be used if several verbs were processed by the same entrypoint, to determine the verb.
FUNCNT	Maintained by ANALYZE to indicate the number of records processed by the function.

The fields in RECOM that are set by ANALYZE for the function include:
RECNAM The name of the current record, determined by looking the record code up in the symbol table. If the record code is not found, RECNAM is set to UNKNOWN.

RECODE The current record code
RECBJD The binary Julian date from the current record
RECWCT The binary wall clock time of the current record in clock periods
RECLTH The binary length of the current record in words
RECORD The actual record, as read from the SIF

Upon initial entry to the function (F UNSEQ $=0$), the following variables are set in the array FUNARY in the labeled common FUNCOM.

FUNARY(1) through FUNARY (numfld) inclusive hold the indexes to RECOM for each unpacked (right justified, zero filled unless DISPLAY which is left justified, zero filled) input variable. If $\operatorname{FIELD} / \mathrm{i}=\mathrm{a}$, then $\operatorname{RECOM}(\operatorname{FUNARY}(\mathrm{i})$) is the value of a, from the current record.

FUNARY(numfld+1) through FUNARY(numfld+numval) hold the constants specified by the VALUE/i parameter. If no VALUE/i parameter was specified, then the word would contain -1.

To prevent confusion it is suggested that the function code equivalence meaningful names to these locations.

There are many useful utility routines available to a new function. Specifically the installation should look at OSUXCV, OSUXSV, OSUXHT, and OSUXPL for the routines and the calling sequences. The following are of general interest.

1. CALL OSUDPT (0) prints directive of the current function, plus $* /$ comments preceding the directive.

0 Double space before print
1 Eject before print
2. WALTYM(n) where n is the time of day in clock periods, as logged in each SIF record header (RECWCT). Output is $\triangle h h . m m . s s \triangle$ in display code.
3. CALDAT(n) where n is the calendar Julian date in binary as logged in each SIF record header (RECBJD). Output is $\Delta \mathrm{mm} / \mathrm{dd} / \mathrm{yy} \Delta$ in display.

SYMNDX (6Lname) where name is display code (left justified, zero filled) for the desired record field. SYMNDX returns the index to RECFLD where that field was unpacked.

Example:
$J O B=R E C F L D(S Y M N D X(6 L S I J J N M))$
The user should not use the index unless the user knows RECFLD contains the record in which the filed occurs.

If the name is not known, a negative value is returned.
SYMVAL (6Lname) where name is the display code of the symbol of the desired record field. SYMVAL returns the value of the unpacked filed. If the field name is unknown, a negative one is returned. If the field is not available because the associated record is not in memory, a negative two is returned.

To enable access to FUNCOM and RECCOM, the two common decks should be called in the function. The decks are:

CALL OSUAFC ANALYZE FUNCTION COMMON
CALL OSUARC ANALYZE RECORD COMMON
Example:

1. Place SUM verb in verb table located in deck OSUANLZ.

SUM VERB =XSUM,3,,1,1
2. Code SUM function

SUBROUTINE SUM

* ANALYZE FUNCTION TO COMPUTE THE SUM
* AND AVERAGE OF A SPECIFIED FIELD
* (FIELD/1) WITH ONE CONVERSION
* FACTOR (VALUE/1).
*CALL OSUAFC
*CALL OSUARC
INTEGER FIELD1, VALUE1, TOTAL
* ANALYZE/FUNCTION COMMUNICATION S

EQUIVALENCE (FIELD1, FUNARY(1)), * (VALUE1, FUNARY(2)),

* SAVE CUMMULATIVE TOTAL FOR EACH RTYPE SUM * (TOTAL, FUNARY(3))
* INITIAL ENTRY POINT -
* CHECK ENTRY CONDITION IF (FUNSEQ-1) 1000, 2000, 3000
*
* INITIAL ENTRY - INITIALIZE FUNCTION
*

1000 TOTAL = RECCOM(FIELD1)

* CHECK FOR DEFAULTED VALUE/1

IF(VALUE1. LE. 0) VALUE1=1
RETURN
*

```
* INTERMEDIATE RECORD INPUT-PROCESS IT
*
2000
    TOTAL = TOTAL + RECCOM (FIELD1)
    RETURN
*
* TERMINATION PROCESSING
*
3000 TOT = FLOAT (TOTAL)/FLOAT(VALUE1)
AVRG = TOT/FLOAT (FUNCNT)
*
    PRINT DIRECTIVE AND COMMENTS
    CALL OSUDPT(0)
*
9 0 0 0
    PRINT SUM AND AVERAGE
    PRINT 9000, FUNCNT, TOT, AVRG
    FORMAT(*NUMBER OF RECORDS PROCESSED=*
    *,I10/*SUM OF RECORD=*,F15.6,
    */*AVERAGE VALUE=*,F15.6)
RETURN
END
```

With this code assembled in ANALYZE, a sample directive would be:
SUM(FIELD / 1+SIJAJT, VALUE / 1+CPSEC, RTY PE=SIJACT, SIJAJT=CPSEC+CPHR)
This gives the sum of job times greater than one second and less than one hour, as well as the average time of those jobs in seconds.

6.5.3 WRITING A LIST SUBFUNCTION

In the released version of ANALYZE there is a LIST function. For those record formats which are known, the printout of each record consists of a header (record name, length, time of day, and date entered into the SIF) and each field symbol along with the value of the symbol printed in octal, decimal, or display as described with the macros of section 6.4.2. If the record format is unknown, LIST merely dumps the record contents.

An exception to this is a LIST of the dayfile records. A special sublist routine lists these records just as they appear at the end of each job's output.

To add a new special list program for a specific record type to be called by the LIST directive, the installation should include a LISTER macro at the end of the deck OSUANLZ. The macro is written:

Iocation	Operation	Variabie subfields
program	LISTER	recode

```
program Gives entry point name of subfunction
recde Record format value or a symbol equated to it selected from
                                section 6.4.3
```


Example:

DSKLST LISTER SIHDSK
Causes the routine DSKLST to be called whenever an SIHDSK record is the input of the LIST function.

7.1 REQUIREMENTS

The following materials are necessary to install COMPASS 2.0.
7.1.1 TAPES

CM2REL \quad Described in part I, section 2.7
7. 1.2 PERMANENT FILES

MODPL (ID=S20OPSMOD) Necessary for application of PSR updates only (CM2MOD jobs)

USERMODPL (ID=S20OPSMOD) Necessary for application of local customer modifications only (CM2USR job)
7.1.3 DECKS

CM2GEN Regenerates COMPASS binary from CM2REL and catalogs

CM2 MOD Creates a new CM2REL from the old CM2REL and MODPL, then generates the binary from the new CM2REL and catalogs CM2LEL (ID=PRDLIB)

CM2 USR

CM2INS
Creates a new CM2REL from the old CM2REL and USERMODPL, then generates the binary from the new CM2REL and catalogs CM2 LEI (ID= PRDLIB)

Catalogs binary from a CM2REL as CM2LEL (ID=PRDLIB)

7.1.4 DEPENDENCIES

None.

7.2 CONFIGURATION PARAMETERS

None.

7.3 REPRESENTATIVE DECKS

The following decks are included to indicate the format of the released decks. They are released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0

7.3.1 CM2INS

Jut veck CMCINS

CMEINS,CP7E, MTOT,T1400.
CURMENT. *SVUV•O7155,3683D,SDMILLER
cGMNENT.

COMMENT. *
CUNMEMT. *
COMMFNT. *
CUMMENT. *
CUMMENT. *
CUMMENT. \#
COMMFNT. *
CUMMENT. \#
COMMENT. *
COMMENT. *
COMMENT. *
CUMMENT. *
COMMENT. *
CUMMENT. *
THIS IS A SCOPEZ•O INSTALLATIUM UECK AS CRFATED *
by SCUPEZ. INTEGRATION - AROLIN hills, minnesota *
FOR PSK SUMMAFY LEVEL 5] (SEE SYSTIECK UESCKIPTION) *
*
STAGE HAS FEEN DEFINED *
PLFASE SERN SUGGESTEU CORRECTIUNS AND NUOIFICATIONS TO *
SCOPE 2.0 INTEGRATION AKH248 *
42O1 LEXINGTOA: AVE.N. *
ST PAUL, MINN. 55112 *
COMMENT * (NC PSPS) (*

COMMENT.

COMMENT. *
COMMENT. \# INSTALL CUMPASS FROM KELEASE TAPE. *

```
COMMENT. \#
```


LAהEL (CM2REL,L $=\$$ CMZREL*SCP2.0\$)
STAGE (CMZREL,MT, HY, E, PRE.
$\checkmark S N=C Y 51)$
REWIND(CMZKEL)
COPYP(CMZREL,OLOPL)
COPYP (CMPREL, CMPEIN)
 COMMENT. *
COMMENT * CNEATE LIHEUT FORMAT LIBFARY OF COMPASS HINARIES *
COMMENT. \#

LIBEDT(N)

COMMENT. *
COMMENT: * CATALOG CMZLFL (USEO BY NPRDLIB) *
COMMENT. \#

CATALUG (CMCLEL, CM2LEL, ID=SCPSCK,CN=SCPCN,EX=SCPEX,MD=SCPMD,PW=SCPCN,
$C Y=51$)
RETURN(CM2LEL)
pause. npoou - Jof completed successfully... tyre x.go
EXIT.
PAUSF. MPOUL - JOR FAIIFU... TYHE X.GO

JOG DECK CMZINS
---EOS-- 7/R/G
LIOKAKY (CMZLEL.,NEW=2000)
REWINU (CMPGIN)
REPLACE (*,CMPRTN)
FINISH.
LISTLIB(*,CN:CLFL, $N=1$)
---EOI-… 6/7/R/4

7．3．2 CM2MOD

```
NHE bitck CMCMON
```

CMCMOU，CD7U，IluNU，Nilel－
COMMENT＊SVUV，O715b，35م3U，SDMILLER
CONMERT．

COMMENT。＊
CUMMENT．＊THIS IS A SCUFEZ．INSTALLATITN UFCK AS CPEATEU＊
CUMMENT．＊
CUMMFNI．＊BY SCOFEZ。O INTEGHAIIOM－AHIEN HILLS，NINNESOTA＊
COAMENT．＊＊
COMAENT．＊FRR PSK SUMMARY LEVEL 51 （SEF SYSOECK JESCKIPTION）＊
COMAFNT．\＃
COMMENT．MODTAPEMO HAS REEN DEFINEO＊
GUQVENT．＊STAGF MAS REEN DEFINEU＊
CUMMENT．＊

CUMMENT．＊
COMMEN1．＊ 4201 LEXINGTON AVE．N．\quad＊
CUMiAFN．$*$ ST FALL．MINN． 55112
COMMÉNT•＊＊
CUMMENT＊（NO HSRS）（ $*$

CUMAVERT．

COMMENINT＊
＊
CJMMENT• UHIATE AONPL TO GFT LAIEST CDC MOUS＊
COMAENT＊
\＃
 A1TACH（MODFL，MOOPI ，11）＝ $2200 P S H O D$ ，
$C Y=51)$
UHOATE（ $\mathrm{H}=\mathrm{MODPL}, 0, \mathrm{Q}, 6 \cdot \mathrm{~F}=/, \mathrm{C}=\mathrm{OPIC})$
Return（MOURL）

COMMENT．＊
CUMMFNT．＊UHDATE CUMFASS ULDPL，CNEATF SENUENTIAL WEWPL
C以MMETV＊

LAHKL（CM2REL，L＝\＄CM2KEL＊SCH2．0\＄）
S 「AGE（CMZREL，MT，HY， C ，PRF．
$V S N=C Y 45)$

JIVLOAU（CMZKEL）

CUMIEENT．＊
CUMMENT＊UUE TO A DEFICIENCY IN UPDATE，IU INSURE THAT THE NEWPL CREATED CUMMENT．＊IS VALIL，THF OLUPL IS MOOIFIEO CREATING A RANHOM TEMPORARY NEWPL－＊ COMMENT．＊KANAPL－WHICH IS IHEN UPDATED CKEATING A SEQUENTIAL NEWPL－NEWPL．＊ CUAMENT．$*$ FAILUHF TO NO THIS COULD RESULI IN LUSS UF JECK NAMES AND AN H
COMMENT＊IMPROPEK ORDFRING OF UECKS（WHE UECKS AKF ADDED OR PURGEU）．＊
CUMMENT＊


```
URUATE (P=RANUPL,F,C,N,W,I=NIJLL)
RETUFN(RANDPL)
```



```
COMMEINT. *
* ASSFMBLE COMPASS HINAKLES *
COMMENT. * 分
```



```
CUMHASS(I,G=CMPRIN,A,L=LIST)
RE TURN(COMPILE)
```



```
CUMMENT * *
CUMEIT CHEATE LIBEDT FORMAT LIHRARY OF COMPASS EINAHIES N
COMINENT & % 
```



```
LIGEDT (M)
```



```
COMMENI.*
COMMENT. * CATAIOG CMZLEL (USEU GY NPROLIR)
COMIENT * * 星
```



```
CATALUG(CMZLEL,CMZLEL,I }=S=SCPSCR,CN=SCPCN,EX=SCPEX,MU=SCPMD,PW=SCPCN,
CY=51)
HETURN(CMZLEL)
```



```
CCMMENT.**
```

CCOMENT © CHEATE NEW CMZREL TAPE...FIRST FAKTITIONO NEWPL.
COMMENT * SECOND PARTITION- COMPASS OVERLAY $*$
COMMENT * * \not

```COMAENT
LAREL (NEWCNP;L=$CN2REL*SCF2.0$)
STAGE (NEWCMP,MT,HY,N,POST.
VSN=CY51)
REWINU (NFWCMP, C.MPBIN)
COPYP (NFWPL,NEWCMP)
CUFYP(CMPBINONFWCMP)
```



```
COMMENT.*
COMMENT. * TEST NEW TAPF VIA UPDATE
COMNENT.* #
```



```
UNLOAU (NEWCMP)
STAGE (NE WCNP,MT,HY,E,PRE,
VSN=CY5J)
REWIND (NEWCMP)
COPYP(NEWCMF,OL DPL)
COPYP(NEWCMP,NEWBIN)
UNLOAU (NFWCMH)
UPUATE.(P,N=SCRAT,W,C=0,I=NULL)
```

```
Jum fit(k LHEMOIT
KE Juriv(GLDFL, sc,pAT, HFWEIN)
```



```
FXII.
FAUSF. MPDEL - Jore rallell... Tyrt x.GC
---tub--- 7/8/0
c(NCHSP
---tツS--- 7/e/g
L1BHAKY(CMCLEI, NE:=zUOU)
HENINU((MPYIN)
HEPLACE(*,CMHATN)
FLNISH.
LISTLIn(*g(MCLFION=1)
---tol--- t/i/H/4
```


8.1 REQUIREMENTS

The following materials are necessary to install FORTRAN Extended 2.0

8.1.1 TAPES

FN2REL \quad Described in part I, section 2.8

8.1.2 PERMANENT FILES

MODPL (ID=S20OPSMOD) Necessary for application of PSR updates only (FN2MOD job)

USERMODPL (ID=S20OPSMOD) Necessary for application of local customer modifications only (FN2USR job)
8.1.3 DECKS

FN2GEN Regenerates FTN binary from FN2REL and catalogs FN2LEL (ID=PRDLIB)

FN2MOD Creates a new FN2REL from the old FN2REL and MODPL, then generates the binary from the new FN2REL and catalogs FN2LEL (ID=PRDLIB)

FN2USR

F N2INS
Creates a new FN2REL from the old FN2REL and USERMODPL, then generates the binary from the new FN2REL and catalogs FN2LEL (ID=PRDLIB)

Catalogs binary from FN2REL as FN2LEL (ID=PRDLIB)

8.1.4 DEPENDENCIES

None.

8.2 CONFIGURATION PARAMETERS

The following assembly options and parameters are defined in deck FTN.

Parameter	Released Default Value	Significance
CCABT	1	Option to abort the job if there is an error on the FTN control card.
		0 No abort
		1 Abort on control card error
CTIMO	1	Option to issue compilation time message to dayfile at completion of an FTN compilation.
		0 No message
		1 Issue dayfile message for CPU compilation time
DEF.DFL	60000_{8}	FTN raises the SCM field length to this value in system controlled field length mode and aborts the job in user controlled field length mode if less than MIN. DFL is supplied for an FTN D option compilation. DEF. DFL may not be set to less than MIN. DFL.
DEF.FL	500008	FTN raises the SCM field length to this value in system controlled field length mode and aborts the job in user controlled field length mode if less than MIN. FL is supplied for an FTN compilation. DEF. FL may not be set to less than MIN. FL.
LMAX	57D	The source listing from an FTN compilation contains LMAX lines per page; does not apply to intermixed COMPASS programs.
MIN. DFL	570008	Minimum SCM field length necessary for an FTN compilation if the D option is selected on the FTN control card. MIN. DFL may not be set to less than MIN. FL + 17000B.
MIN. FL	400008	Minimum SCM field length necessary for an FTN compilation. IP. MNFL may not be set to less than $40000{ }_{8}$.

8.3 REPRESENTATIVE DECKS

The following decks are included to indicate the format of the released decks. They are released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0.

8.3.1 FN2INS

JUB DECK FNCINS

FNZINS,CP7O,T1000,MTO1.
COMMENT. *SVUV,07155,36R3U.SUMILLER
COMNENT.

COMMENT. *
COMMENT. *
COMMENT. *
COMMENT. *
COMMENT. *
CUMMENT. \#
CUMMENT. *
COMMENT. *
COMMENT. *
COMMENT. *
CUMMENT. *
COMMENT. *
THIS IS A SCOPEZ.O INSTALLATION UECK AS CREATED *
BY SCUPEZ.0 INTEGRATION - AKDEN HILLS, MINNESOTA *
FOR PSK SUMMARY *EVEL SI SEE SYSDECK DESCRIPTION
FOR PSK SUMMARY LEVEL 51 (SEE SYSDECK DESCRIPTION) *
STAGE HAS REEN DEFINED *
PLFASE SEND SUGGESTEU CORRECTIONS AND MODIFICATIONS TO *
SCOPE 2.0 INTEGHATION ARH248 *
4201 LEXINGTON AVE. N. *
ST PAUL, MINN. 55112 *
COMMENT:
COMMENT: * (NO PSRS) *

COMMENT.

COMMENT.*
COMMENT. * INSTALL FTN FROM RELEASE TAPE *
CUMMENT. * \&

LABEL (FN2REL; $=\$$ FNOKEL*SCP2.08)
STAGE (FNZREL, MT, HY,E,PRE,
VSN=CY47)
REWINU (FNZREL)
COPYP (FNZREL.OLDPI.)
COPYP (FNZREL,FTN)
REWIND (FTN)

COMMENT. *
COMMENT. * CHEATE libEOT f ORMAT llbRARY OF FTN overlay
COMMENT. *
 LIREOT (M)

COMMENT. *
CUMMENT. * CATALOG FNZLEL (USED BY NPRDLIB) *
COMMENT. *
COMMENT. *\#
CATALOG(FN2LEL, FNZLEL, ID $=$ SCPSCK, $C N=S C P C N, E X=S C P E X, M D=S C P M D, P W=S C P C N$,
$C Y=51)$
UNL OAU (FNZLEL)
PAUSE. MPUOU - JOK COMPLETED SUCCESSFULLY... TYPE X.gO
EXIT.

JOA OtCK FNIZINS

PAUSE. MPNOL - JOH FAILFII ... TYFE X.GO
---EOS-- $1 / 6 / 0$
LIBRARY (FNCLEL, NEW=Z(011)
REWINU (FTN)
Pt.PLACE (\#, FTV)
FINJSH.
LISTLLB(\#9+NCLFI, $N=1)$

8.3.2 FN2MOD

JUW DECK rNEMOR

```
FN2MUU,CPT:,Il000,MT01.
COMMENT. #SVUV,O7155,3583U,SUMILLER
COMIMENT.
COMMFNT. ####################################################################
COIMMENT. *
COMMENT.* THIS IS A SCOPEZ.0 INSTALLATION DECK AS CREATED
COMMENT. * *
COMMENT. * BY SCUPER.0 INTEGRATION - AHOEN HILLS. MINNESUTA *
COFMENT. *
COMMENT. *
COMMENT.*
COMMENT.*
COMMENT. *
CUMMENT. *
COMMENT.*
COMMENT.*
COMMENT.*
COMMENT. *
COMMENT. #
COMMENT. * (NO PSHS )
COMMENT. ###################################################################
COMMENT.
LABEL(FNOREL,L=$FN2REL#SCP2.0D)
STAGE(FNZREL,MT,HY,E,PRE,
VSN=CY45)
CUMMENI.*##*############################################################################
COMMENT. * *
COMMENT * UPDATE MUOPL TO GET LATEST CUC MOOS *
COMMENT. *

```

ATTACH(MOUPL,MODPL,ID=S2OOPSMOU),
CY=51)
UPOATE (P=MUDPL,Q,D,\&,\#\#%,C=UPIN)
RETURN(MODPL)
COMMENT. \#
COMMENT. *
COMMENT.\#

```

```

UPOATE (P=FN2REL,F,C=O,N=RANDPL,I =UPIN)
UNLOAU(FNZREL)
COMMENT.\#
COMMENT.\#
COMMENT. * UUE TO A DEFICIENCY IN UPDATE, TU INSURE THAT THE NEWPL CREATED *
COMMENT. \# IS VAI_IU. THE OLDPL IS MOOIFIEO CREATING A RANDOM TEMPORARY NEWPL- *
COMMENT. * KANDPL - WHICH IS THEN UPOATEU CREATING A SEQUENTIAL NEWPL - NEWPL.*
COMMENT.* FAILURE TO DO THIS COULLC RESULT IN LOSS UF DECK NAMES AND AN
COMMENT. \# IMPROPER ORDERING OF UECKS (WHEN OECKS ARF ADDED OR PURGEU).
COMMENT. \#

```

```

JOH ULCK FNZMOD
COPYL(OBGSKEL,SYSMAIN,SYSDBG)
AETURN(OHGSKEl.)
REWIND (SYSMAIN.SYSDBG)
COPYP(SYSMAIN,SYSFTN)
SKIP\&(SYSFIN)
COPYP(SYSI5,SYSFTN)
SKIPG(SYSFIN)
COPYP(SYSDEG,SYSFTN)
RETUKN(SYSMAIN,SYSIS,SYS[GHG)
REWINO (SYSFTN)

```

```

COMMENT. *
COMMENT. PRODUCE FTN OVERLAY *
COMMEINT. * *

```

```

LOAD(SYSFTN)
NOGO.
HEWIND(FTN)

```

```

COMMEINT *
COMMENT. CREATE LIREIT FORMAT LIBRARY OF FTN OVERLAY
COMMENT.* *

```

```

LIBEOT (M)

```

```

COMMENT.*
COMMENT. \& CATALOG FNZLEL (USED BY NPRILIB),
COMMENT. \# \#

```

```

CATALOG(FNZLEL,FNZLEL,IO=SCPSCR,CN=SCPCN,EX=SCPEX,MD=SCPMD,PW=SCPCN,
CY=51)
UNLOAU(FNZLEL)
LABEL (NEWFTNOL=\$FN2REL*SCP2.0.5)
STAGE (NEWFTNOMT,HY,N,POST,
VSN=CY47)

```

```

COMMENT. \#
COMMENT * CREAIE NEW FNZRFI TAPK. *FIRST PARTITION E NEWPL
COMMENT. \& SFCOND PARTITIUN - FTIN GVERLAY N
COMMFNT . *4

```

```

PEWIND (NFWFTN,FTN)
COPYP(INEWPL,NEWFTN)
COPYP(FTN,NFWFTN)

```

```

CUMMENT * *
COMMENT, TEST THE NEW TAPE VIA UPIOATE *
CUMMENT *

```

```

JUH DECK FHamON
Uivloau(NfuF 1N)
STAGE (NHWFINOMT,HY,E,HKE,
VSN=CY47)
hEwINU(Nf:N+TN)
CUPYP(NEGFINPOLIPL)
COPYP(NE vF TN,NEWHIN)
UNLOAL(NIFWFTN)
UPDATE(P,N=SCRAT,W,C=0, j=rULL)
HETURIN(OLOPL,SCRAT, NEWOTN)
FAUSE. MPUOU. - JOF COMPLETED SUCCESSFULLY... TYPE X.GO
EXIT.
FAUSE. NPOCI - JOF FAILEU ... TYHE X.gO
---EOS--- 1/6/a
C FNCPSF
---EUS--- 7/5/9
*10 cucleno
*1 CYCLE.Z
CYNR UELMIC 47
---EOS--- 1/8/9
LIBRARY (NEWFIN,NEW=COOOO)
REWINLU(FTN)
REPLACE(\#,FTN)
FINISH.
---EOS--- 7/8/9
LD-3HAKY(F:NZLEL,NEW=2000)
REWINU(FTN)
REPLACE(\#,FTV)
FINISH.
LISTLIG(*,FNCLEL,N=1)
---EO1--- 0/7/R/9

```

\subsection*{9.1 REQUIREMENTS}

The following materials are necessary to install FORTRAN Run 2. 0.

\subsection*{9.1.1 TAPES}
RIN2REL Described in part I, section 2.9

\subsection*{9.1.2 PERMANENT FILES}
\begin{tabular}{ll} 
MODPL (ID=S20OPSMOD) & \begin{tabular}{l} 
Necessary for application of PSR updates only \\
(RN2MOD job)
\end{tabular} \\
USERMODPL (ID=S20OPSMOD) & \begin{tabular}{l} 
Necessary for application of local customer modifi- \\
cations only (RN2USR job)
\end{tabular}
\end{tabular}

\subsection*{9.1.3 DECKS}
\begin{tabular}{ll} 
RN2GEN & \begin{tabular}{l} 
Regenerates FORTRAN Run binary from RN2REL and \\
catalogs RN2 LEL (ID=PRDLIB)
\end{tabular} \\
RN2MOD & \begin{tabular}{l} 
Creates a new RN2REL from the old RN2REL and \\
MODPL, then generates the binary from the new \\
RN2REL and catalogs RN2LEL (ID=PRDLIB)
\end{tabular} \\
RN2USR & \begin{tabular}{l} 
Creates a new RN2REL from the old RN2REL and \\
USERMODPL, then generates the binary from the
\end{tabular} \\
new RN2REL and catalogs RN2LEL (ID=PRDLIB)
\end{tabular}

\subsection*{9.1.4 DEPENDENCIES}

None.

\subsection*{9.2 CONFIGURATION PARAMETERS}

The following installation parameters are defined in deck RUN.
\begin{tabular}{|c|c|c|}
\hline Parameter & Released Default Value & Significance \\
\hline IP. DMSZ & \(54000_{8}\) & If less than IP. MINMS is supplied for a RUN compilation, RUN raises the SCM field length to this value; cannot be set smaller than IP. MINMS. \\
\hline IP. MINMS & 450008 & Minimum SCM field length required for a RUN compilation; cannot be set to less than 45000 . \\
\hline IP. PGSZ & 58 & The source listing from a RUN compilation contains IP. PGSZ lines per page; does not apply to intermixed COMPASS programs. This parameter is defined twice, in the 0,0 and the 1,0 overlays. \\
\hline
\end{tabular}

\subsection*{9.3 REPRESENTATIVE DECKS}

The following decks are included to indicate the format of the released decks. They are released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0.

\subsection*{9.3.1 RN2INS}
```

Jus veCk HNizImS
RN2INS,CPTG,MTOT,T1COC.
CUMMENT. *SVUV,07155,30830,SDMILLER
COMNENT.

```

```

CUMMENT. *
COMMENT.*
COMMMNT.*
CUMMENT. *
COMMENT.*
COMMENT.*
COMMENT. *
COMNENT.*
CUNMENT. \#
COMMENT.*
COMMENT.*
COMMENT. *
CUMMENT. *
COMMENT. *
COMMENT. * (NO PSRS) *
COMMENT. \#
COMMENT.
COMMENT. \#
COMMENT.*
cOmMENT. \# INSTALL hun from release tape
COMmENT. \#
COMMENT. \#
LABEL(RNPREL,L=\$RNZKEL*SCPZ.OS,R)
SIAGE (RNZREL,MT,HY,E,PRF,
VSN=CY47)
REWINL(RN2HEL)
COPYF(RNZKEL,OLDPL)
COPYPIKNRPEL:ZYX!
COMMENT. \#
COMMENT. *
COMMENT. \& CRFATE LTBEDT FORMAT LIERARY OF PUN OVFRLAY *
CUMMENT. * *
COMMENT. \#
LIBEOT (M)
COMMENT. \#
COMMENT. \#
COMMENT. *ATALOG KNZLFL (USEU AY NPROLIB) *
COMMENT. * *

```

```

CATALOG(RNZLEL,RN2LEL,ID=SCPSCK,CN=SCPCN,EX=SCPEX,MD=SCPMD,PW=SCPCN,
CY=51)
UNLOAD(RNZLEL)
PAUSE. MPOOO - JOH COMPLETED SUCLESSFULLY... TYHE A.go
EXIT.
PAUSE. MPCOL - JOh FAILED ... TYFE X.gO

```

Jun itck ricids
－－－tos－－1／Nノし

TEAINU（ \(\angle Y X)\)
トEFLACF（＊，\(\angle Y A\) ）
Flivsto．



\subsection*{9.3.2 RN2MOD}


```

JUW UECK HNLMOO
COPYP(LYX,NEWRUN)

```

```

COMMENT * *
COMMENT. * TEST THF NEN TAPE VIA UPDATF
COMPENT. *
COMMENT *
UNLOAU (NFWKUIN)
SIAGE (NEWRUN,MT,HY,E,PRF,
VSIN=CY47)
REWINU (NIFWHUN)
CUPYP(NEWIRUN, OLDPL)
COPYP (NE.WRUN:NEWBIN)
UNLOAD (NFWKUN)
UPDATE (H,N=SCRAT,W,C=0, I=NUL.L)
HETURN(OLDPL,SCRAT,NEWBIN)
PAUSE. MPOOO - JOH COMPLETEU SUCCESSFULLY... TYPE X.GO
EXIT.
FAUSE. MP.INI - JOR FAILFD ... TYPE X.GO
=--FOS-- //8/9
ll RNZPSR
---EOS--- 7/8/9
*lO RNECYC
*O COPYRT.Z
UATA IOL CYCLE }4
---tOS---7/d/9
LIHRAKY (RNCLEL,NEW=2000)
REWINU(\angleYX)
REPLACE (*,\angleYX)
FINISH.
LISTLIB(*,KNCLEL,N=1)
---EOI-=-6/7/8/9

```

\subsection*{10.1 REQUIREMENTS}

The following materials are necessary to install the FORTRAN object time routines.
10.1.1 TAPES

FCLOPL

MODS3 P4

SCOPE 3.4 release tape described in SCOPE 3.4 Installation Handbook

SCOPE 3.4 modification tape described in SCOPE 3.4 Installation Handbook

\subsection*{10.1.2 PERMANENT FILES}

USERMODPL (ID=S20OPSMOD) Necessary for application of local customer modifications only (FTNLIBX job)

Necessary to compile part of FTNIOLIB
10.1.3 DECKS
\begin{tabular}{ll} 
FTNLIB7 & \begin{tabular}{l} 
Creates a new FCLOPL from the old FCLOPL and \\
MODS3P4
\end{tabular} \\
FLIBGEN & \begin{tabular}{l} 
Generates and catalogs the binary as FTNIOLIB \\
(ID=PRDLIB), FTN object time routines, from an
\end{tabular} \\
RLIBGEN & \begin{tabular}{l} 
FCLOPL; requires use of PRDLIB (ID=PRDLIB)
\end{tabular} \\
& \begin{tabular}{l} 
Generates and catalogs the binary as RUNIOLIB \\
(ID=PRDLIB), Run object time routines, from an \\
FCLOPL
\end{tabular} \\
FTNLIBX & \begin{tabular}{l} 
Creates a new FCLOPL from the old FCLOPL and
\end{tabular} \\
& USERMODPL.
\end{tabular}

\subsection*{10.1.4 DEPENDENCIES}

FORTRAN Extended must be installed before FCL at least to the extent that PRDLIB contains a FTN compiler updated to the current PSR summary level.

\subsection*{10.2 CONFIGURATION PARAMETERS}

The following parameter is in common deck LIBMAC.

Released
Parameter
CALL

0

Significance
Indicates which library to assemble.
\(0 \quad\) FTN object library
1 RUN object library

\subsection*{10.3 REPRESENTATIVE DECKS}

The following decks are included to indicate the format of the released decks. They are released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0.

\section*{10．3．1 FTNLIB7}
```

Jug utCk rTNLIAT
FTNLIG7,CP7UPT1000,MTOZ.
COMMENT. \#SVUV,07155,36830,SDMILLER
CUMMENT.

```

```

COMMEHT.*
THTS IS A SCOPE? O INSTALLATTOV DECK AS CPEATED
COMMENT**
CUMMENT. *
CUMMENT.*
COMMENT.*
COMMENT. *
CUMNENT. *
COMPIENT.\#
COMMENT. *
COMMENT. \#
COMMENT.*
COMFENT.*
COMMENT. \#
COMMENT. *
COMMENT. *
THIS A SCOPEZ.O INSTALLATJON DECK AS CREATED *
BY SCOPEZ.0 INTEGRATION - ARUEN HILLS, MINNESUTA *
FOR PSH SUMNAHY LEVEL SI (SEE SYSDECK DESCRIPTION)
MOITAPEMO HAS REEN DEFINED *
STAGE HAS REEN DEFINED *
Plfase SEND suggestel corrections and modifications to *
SCOPE 2.0 INTEGRATION AHH24R
4201 LEXINGTON AVE. N. *
ST PAUL, MINN. 55112 *
(NO PSRS) *

```

```

CUMMENT.
COMMENT. \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\&゙\#れ\#
COMMENT.*
COMMENT. * THIS JOH APPLIES MOUS FHOM THE SCOPE 3.4 MODTAPE (OR USERMODPL,) TO
COMMENT. * THE FORTKAN COMMON ORJLCT LIBRARY PRODUCING A NENPL TO BE USEU BY
COMMENT. FLIRGEN AND/OR RLIBGEN TO GENERATE BINARIES
CUMMENT. \#
COMMENT. \#\#\#\#\#\#れ゙\#
FILE(MODS3P4,RT=S)
STAGE(MOOSSP4,MT,HI,E,PRE)
UPOATE (P=MODS3P4,Q,*=/,C=UPIN,8,O)
UNLOAO (MODS3H4)
FILE(OLUPL,RT=S)
I.ABEL (OL DPL,L=$,FTNLIBS*3^4%)
STAGEIOLDPL,MT,HI,EOPRE,
VSN=CY45)
LABEL (NEWPL,L=$FTNLIBS*3P4\$)
FILE (NEWPL,RI=S)
STAGE (NEWPL,MT,HI,N,POST,
VSN=CY51)
UPUATE (P,F,C=O,N=RANDPL,I=UPIN)
UNLOAU(OLDHL)
COMMENT. \#
COMMENT.*
COMMENT. * UUE TO A DEFICIENCY IN UPDATE, }10\mathrm{ INSURE THAT THE NEWPL CREATED
COMMENT. \# IS VALIU, THE OLDPL IS MODIFIED CREATING A RANDOM TEMPORAKY NEWPL - *
CUMMENT. * KANIPL - WHICH IS THEN UPDATED CREATING A SEQUENTIAL NFWPL - NEWPL.*
COMMENT.* FAILUFFF TO DO THIS COULO RESULT IN LOSS OF DECK NAMES AND AN

```


```

CUM隹N]. *

```


```

FE rIM-N(K\DeltaNIFL)

```

```

C\1a|NEはJ.*
COMgEG1. * TEST re" TAHF VIA UHGAIt.
C0|mardil**

```

```

UNLUAV(NFWHL)

```

```

F1Lr (NE שPL, ب1=S)
STH|FG(:JEHML,MT,HI OE, FRE,
V\心=C\S:i)
|POATE(F=NHWFL,N=SCKAT,F,N,C=O,T={N|LL)

```

```

FXIT.

```

```

---t.|S--- 1/8/9
1/
// TMT. FOLLUNIMG EXIKACT FTNGRUY CUMMON OJJECI LIHRARYY MONS (IF AMY)
// FRUM mULSSP4 (3.4 MUOTAPE)
CHCL
-m-ru1--- 0/1/8/4

```

\subsection*{10.3.2 FLIBGEN}
```

JNH DECK FL.DHGFN
FLIGigEN,CP7:,Tl0%0,MTOL.
CUMMENT. \#SVUV,O7155,36R30,SDMILLER
COMMENT.
COMMENT. ****\#
COMMENT. *
COMMENT. * THIS IS A SCUPEZ.O INSTALLATION DECK AS CREATE!
COMMENT.*
COMMENT.*
CUMMFNT. *
COMMENT: *
CUMMENT.
COMMENT.
COMMENT.
COMMENT. *
COMMENT.*
COMMENT. *
4201 LEXINGION AVE. N.
COMMENT. * ST PAUL, MINN. SSII2
COMMENT. * (NO PSRS)
COMMENT. \#
COMMEINT.
CUMMENT. \#
COMMENT. *
CUMMENT. * USING THE 3.4 RELEASE IAPE FOR THE FORTRAN COMMON OBJECT LIBRARY
COMMENT. * (FCL) OR AN UPOATED VERSION OF THAT TAPE PRODUCED BY FTNLIBT,
COMMENT. FINLIBX OR THE 6000 SCUPE 3.4 FCL MAINTAINENCE DECK , GENEKATE
COMMENT. * THE FORTKAN SYSTEM LIBKARY (FORTRAN EXTENDFD OBJECT LIBRARY)
COMMENT.*
COMMFNT. \#
FILE (OLDPL,RT=5)
LABEL (OLDPL,L=\$FTNL18S*3P45)
STAGE (OLDPL,MT,HI,E,PRE,
VSN=CY51)
REWINU(OLDFL)
COMMENT.*\#\#4\#
CUMMENT. *
COMMENT. * UHDATE OLDPL ADDING CYCLE INUICATOR AND PLACE SOURCE FOR FURTRAN**
COMMENT. \# OBJECT LIGRARY ON FTNSKC *
COMMENT. \#
COMMENT. \#
UPOATE (P,F,C=FTNSRC)
UNLOAU(OLDPL)
COMMENT. \#名\#
CUMMENT. *
COMMENT: * ASSEMBLE FTNSRC (COMPILE USING LATEST FTN COMPILER) *
COMMENT. \# *
COMMENT. \#
COMPASS(I=FTNSRC,B=FTNLTB,A,L=LIST)
ATTACH(PRDLIH,PRDLIB,IU=PROLIB,

```
```

JUB DECK rlahGF:N
CY=51)
I.1NRARY(PKULDA)
FIN(I=FINSHC,OPT=?,K=FTANIG,A,L=LIST)
LIGRAKY.
RETUKN(F TNSRC)
COMMENT. *\#
COMMENT. * *
COMMENT. \# CKEATE LIBEUT FORMAT LIBK\&RY UF FOKTHAN OBJFCT TIME BINAKIES *
COMMENT. * *
COMMENT. *\#
REWINU(FTNLID)
LIBEDT (M)
COMMENT. \#\#\#\#\#\#\#*\#
COMMENT.*
COMMENT. \# CATALOG FTNIOLIB (FORTKAN OBJECT LIHHARY)
COMMFNT. \# *
COMMENT. \#
CATALOG(FTNIO,FTNIOLIB,ID=PRDLIH,CN=SCPCN,EX=SCPEX,MU=SCPMD,PW=SCPCN,
CY=51)
RETURN(FTNIO)
PAUSE. MPUOO - JOR COMPLETED SUCCESSFULLY... TYPE X.GO
EXIT.
PAUSE. MPOOL - JOG FAILED ... TYPE X.GO
---EOS--- 7/8/9
*IDENT CYCLNUM
*I MOULVL.2
MODLVL MICRO 1., 51
SUBLVL MICRO 1,'
---EOS-O- 7/0/9
L\perpBRANY(FTNIO,NFW=2000)
REPLACE (*,FTINLIH)
FINISH.
LISTLIB(*,FTNIO,N=1)
---EOI--- 6/7/8/9

```

\subsection*{10.3.3 RLIBGEN}
```

jOB DECK RLIBGEN

```
```

RLIBGEN,CP70.T1000,MTO1.
CUMMENT. \#SVUV.07155,36830,SDMILLER
COMMENT.
COMMENT. \#
COMMENT.*
COMMENT. \#
COMMENT.*
COMMENT. *
COMMENT.*
COMMENT. *
COMMENT. *
COMMENT.*
COMMENT. \#
COMMENT. *
COMMENT.*
COMMENT.*
COMMENT.
COMMENT. * (NO PSRS)
COMMENT. \#
COMMENT.
COMMENT. \#
COMMENT.*
COMMENT. USING THE 3.4 RELEASE TAPE FOR THE FORTRAN COMMON OBJECT LIBRARY *
COMMENT. * (FCL) OR AN UPUATED VEKSION OF THAT TAPE PRODUCED BY FTNLIBT. *
COMMENT. FTNLIBX UR THE 6000 SCOPE 3.4 FCL MAINTAINFNCE DECK, GENERATE
COMMENT. * THE RUNLIB SYSTEM LIBRARY (FORTRAN RUN OBJECT LIBRARY)
COMMENT. *
THIS IS A SCOPE2.0 INSTALLATION DECK AS CREATED
BY SCOPEZ.O INTEGRATION - ARDEN HILLS, MINNESOTA *

STAGE HAS REEN DEFINED
*
PLEASE SEND SUGGESTEU CORRECTIONS AND MODIFICATIONS TO *
SCOPE 2.0 INTEGRATION ARH248
4201 LEXINGTON AVE. N.
ST PAUL, MINN. 55112
FILE (OLDPL,RI=S)
LABEL (OLDPL,L=$FTNLIBS*3P4$)
STAGE (OLDPL,MT,HI,E,PRE,
VSN=CY51)
REWINO(OLDPL)
COMMENT. \#
COMMENT. *
COMMENT. \# UPDATE OLOPL ADOING CYCLE INDICATOR AND PLACE SOURCE FOR RUNLIB *
COMMENT. * OBJECT LIBRARY ON RUNSRC
COMMENT. *


```
UPOATE (P,F,C=RUNSRC)
UIVLOAD (OLUPL)
CUMMENT. ########################################################################
COMMENT. #
COMMENT. * ASSFMBLE RUNSRC *
COMMENT. *

```

CUMPASS(I=KUIVSRC,B=RUNLIR,A,L=LISI)
SKIPF(RUNSKC)

```

JUH ULCK HLlHGセN
```

COMPASS (I=KUNSRC, B=KUNL.IH, $A, L=L I S T)$
HETURN(HUNSRC)

```

```

COMMENT *
COMMENT * CMFATE LIBEUT FORMAT LLBRARY OF KUNLIB OBJFCT TIME BINARIES \quad O
COMMENT *

```

```

REWIND (RUNLI
LIHEOT (M)

```

```

COMMENT *
COMMENT * CATALOG RUNIOILH (RUNI.IB OBJECT LIBRARY)
COMMENT. \quad.

```

```

CATALUG(PUNIU,PUNIOLIN•IU=PRDLIR,CN=SCPCN,EX=SCPEX,MU=SCPMD,PW=SCPCN,
$C Y=51)$
RETURN(RIJNLO)
PAUSE. MPUOU - JOH COAPIETED SUCCESSFULLY... TYPE X.GO
EXIT。
PAiJSE゙. MPOTL-JOR FAIIEU.. TYPEX.GO

- - - EOS- - $1 / 8 / 9$
* IUENT CYCLNUM
*I MOULVL•C
MOUL_VL $\because I C R O$ 1,95」
SUHI_VL WICRO 1.,
*U L[BMAC.7!
 - CALl toU 1
---E゙OS-- $1 / 8 / G$
LLGRAKY (RUNIU,NFW=2000)
REPLACE (a, K KINLIB)
FINISH.
LISTLIB(*, ruivIO, $N=1$)
---EリI-- - $0 / 7 / R / 9$

```

\subsection*{11.1 REQUIREMENTS}

The following materials are necessary to install COBOL 1.0.

\subsection*{11.1.1 TAPES}
```

COBREL Described in part I, section 2.11

```
11.1.2 PERMANENT FILES

MODPL (ID=S200PSMOD) Necessary for application of PSR updates only (COBMOD job)

USERMODPL (ID=S20OPSMOD) Necessary for application of local customer modifications only (COBUSR job)

SRTLIB (ID=PRDLIB) Necessary to satisfy externals in COBOL compiler
11.1.3 DECKS

COBGEN

COBMOD

COBUSR

COBINS

Regenerates COBOL from COBREL and catalogs COBLEL and COBLIB7 (both jobs' ID=PRDLIB)

Creates a new COBREL from the old COBREL and MODPL, then generates the binary from the new COBREL and catalogs COBLEL and COBLIB7 (both jobs' ID=PRDLIB)

Creates a new COBREL from the old COBREL and USERMODPL, then generates the binary from the new COBREL and catalogs COBLEL and COBLIB7 (both jobs' \(I D=P R D L I B\) )

Catalogs binary from COBREL as COBLEL (both jobs' ID=PRDLIB)

\subsection*{11.1.4 DEPENDENCIES}

Sort/Merge must be installed before COBOL, or at least SRTLIB7 must be updated to the latest PSR summary level.

\subsection*{11.2 CONFIGURATION PARAMETERS}

The following installation parameters are in common deck CBLTEXT, which also contains all of the COBOL assembly parameters.

Released
Parameters
IP. DOPT

Default Value
0

\(\underline{\text { Significance }}\)
If fatal errors are encountered in a COBOL compilation, COBOL aborts the LGO file only if the \(D\) parameter is or is not present on the COBOL control card, depending upon the value of this symbol.

0 Abort the LGO file only if the \(D\) parameter is specified.

1 Abort the LGO file only if the \(D\) parameter is not specified.

If less than IP. MNLCM is supplied for a COBOL compilation, COBOL raises the LCM field length to this value; cannot be set to less than IP. MNLCM.

Minimum LCM field length necessary for a COBOL compilation; cannot be set to less than \(40000_{8}\).

Minimum SCM field length necessary for a COBOL compilation; cannot be set to less than \(40000_{8}\).
If less than IP. MNSCM is supplied for a COBOL compilation, COBOL raises the SCM field length to this value; cannot be set to less than IP. MNSCM.

\subsection*{11.3 REPRESENTATIVE DECKS}

The following decks are included to indicate the format of the released decks. They are released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0.

\section*{11．3．1 COBINS}

JUR itck COUING

COAINS，CPTU，NITA19T1UON．
CU：AMENT．＊SVUV， 07155,3 万\＆31），SDMILLEK
CUMMENT．

COMMFNT．＊
CUMMENT．
CUMMENT．＊
COMMENT．＊
COMPIENT．＊
COMMEIVT．＊
COMMENT．＊
COMMENT．
Cummervt．＊
CUMPENT．＊
COMAFNT＊＊
COMMENT．＊
COMMFNT．\(\quad\) ．
COMMENT．＊
THIS IS A SCOHEZ．O INSTALLATIOA DECK AS CREATED
思

HY SCUHEC．O INTEGRATION－ANUEN HILLS．MINIVESOTA＊
FOP PSK SUMMAKY LEVEL 51 （SEE SYSDECK IESCRTPTION）：
STAGE HAS FFEN DEFINED＊
＊
PLEASE SENO SUGGESTEU CORRECTIUNS ANO MONIFICATIONS TO＊ SCOPE 2．0 INTEGRATION AKHZ248＊
4201 LFXINGION AVE．N．＊
ST UAUL，MINN．5511Z
COMNFNT．＊（NO PSRS）（

COMMENT．

COMMENT ．＊
COMMFIVT．＊JNSTALL COHOL FKOM RELEASF TAPF．＊
COMMENT •＊

LABEL（CORRTL L＝\＄（OWHEL＊SCト2．0す）
STAGE（CORKEL，MT，HY，E，PKF，
\(V S N=C Y 47)\)
REWIND（COBKEL）
COPYP（COBRELOOLOFL）
COPYP（CORREL，COROL．）
COPYP（CORREL CORON）
KEWINU（CNBUL，CORUH）

COMMENT．＊
COMTFNT．\(\%\) CREATE LREUT FORMAT LIBKARY OF COBOL OVEHIAY
COMMENT．＊
＊
 LIBEDT（M）

CUMIENT．＊

CUMMENT•＊CATAIOG COBLFL（USEO HY NPRDLIE）＊
COMMENT． \(4 \quad 4\)

CATALUG（CO甘LEL，COBLEL，In＝SCPSCR，CN \(=\triangle C P C N, E X=S C P E X, M D=S C P M O\) ，\(P W=S C P C N\) ．
\(C Y=51)\)
UivLOAD（COBLEL）


JOA，JECK じJロINS

COAMENT＊＊
COMMENT．＊CRFATE LIGEUT FORMAT LIGRARY OF OBJECT TIVIF BINARIES＊
COMMENT．＊

LIAE！I（M）

CUMMENT＊
COMMENT．＊CATALOG COHLIHT（COBOL OBJECI TIAE LIHKARY）
CJMENT＊LIERARY）

CATALUG（COOLLHT，COBLIBT，IU＝PKDLIE，CN＝SCPCN，\(X X=S C P E X, M D=S C P M D, ~ H W=S C P C N\), \(C Y=51)\)
UNLOAW（COHLIET）
PAUSF．MrJOU－JOR COMPLETED SUCCESSFULLY．．．TYPE X．GO
EXIT．
PAIJSE MPOQI－JOH FAILED．．．TYHE X．GO
－－－COS－m－7／B／9
LLBRAHY（COULEL，NEW＝20חO）
HEPLACt（＊）COOOL）
FINISH．
LISTLIH（＊，CODLEL，\(N_{1}=1\) ）
－－－EOS－\(-1 / 8 / 9\)
LIHHAKY（COOL1R7，NEW＝2000）
REPLALE（＊，COSOF）
FI：VISH．
LISTLIB（＊，COnLIRT，N＝1）
－－－EOI－＝－6／7／内／9


UPUATE（ \(\mathrm{H}=\) RANUPL，\(F, R, C=0, N, I=N U L L)\)
HETURM（RANLHL）

COMNENT。＊
COMFFFT＊UPDATF NFWPI INSERTING CURKENT GYCLE INOICATOR
COMMENT．＊ANO PROUUCE COMPILEF FLLE

 UPIJATE（ \(P=\) iJt WrL，\(F, C\) ）

CUMMENT．\＃
あ
COMHENT．＊ADSFMBLE COMOL JRJECT I IVE RUUTIIVES
COMMENT－＊
4
 COMFASS（1， \(0=C O R O B, A, L=L T S T)\)

CUMMEIT＊
人

COMMENA ．＊AOSEMBLE COHOL COMPILER
COMMENT。 \(\Rightarrow\)＊

CUMPASS（I，\(\quad=\) COPCF，A，L \(=L\) TST）

CUMMFNT＊＊
\(\$\)
CUMIVFNT．\＆BUILD OVEKLAY ON FILE COROL．SATISFY ELRTATN＊
COMMEIVT．＊EXTERNALS FHOA SORT MEKGE LIEKAZY＊
COMMFMT，＊ 4

A）TACH（SPTLIVX，SRTLIBT，1D＝WRDLIR）
LIHAARY（SKILIRX）
LOAU（COHCH）
NOGO．
LIHKAKY．
REWINU（COBUL，COROR）

CUMMFNT．＊
CUMMENT．＊CKRATE LIBEUT FURMAI LABKARY OF COKOL OVEKLAY＊
COMMENT．＊
 L．LIGED）（M）

CUMMENI．＊
CUMMENT＊CATALOG COHLEL（USED HY NPRDLIH）＊
CUVMEIVT．＊＊
 CATAI，UG（COHLEL，CORLEL，IJ＝SCPSCR，CN＝SCPCN，EX＝SCPEXX，MD＝SCPMD，PW＝SCPCN，
Cr＝51）
UNLOAI（COBLELL）

```

JUH 0tCK COOMOD

```

```

CUMMENT, * CKFATE LINEOT FOFNAT LIBRARY OFH UKJECT TIMF FINARIES
COMMENT." *

```

```

LI.jFOT(i^)

```


```

CUMMENT. * CATALUG CORLTHT (COBOL ONJECT TIME LIBRAFY)
CUANENT.*
*

```

```

CATALUG(CDOL1B7,CORLIB7,IU=PRDLIB,CN=SCPCN,EX=SCPEX,MO=SCPMD,PW=SCPCN,
CY=51)
UNLOAU(COBL.1B7)
LAGEL (NEWCOGOL = $COHKEL*SCFZ.O$)
SI゙AGE (NEWCOR,MT,HY,N, WOST,
VSN=CY47)

```

```

CUMMENT.*
CUMMENT. * CREATE NL:N COHREL TAPE..FIKST PARTITION - NEWPL, \#
COMMENT. SECOND PARTITION - COBOL OVEKLAY, THIRD PARTITION- *
CUMMENT. COROL OKJECT TIMF BLNAKIES
CUMMENT.*


```
REWINU(NENCOU,COBOL,COUCB)
CUPYP(INEWPL,NEWCUF)
COPYP(COROL,NEWCOE)
CUPYP(COROT,NENCOR)
```



```
COMMENT.*
CUMMENT.* IEST THE NEW TAPE VIA UHDATE
CONMENT.* * *
```



```
UNLOAD(NFWCOE)
STAGF(NEWCOB,MT,FIY,E,PRFF,
VSN=CY47)
HEWIMU(NFWCOL;
COPYF(NEWCUB,OLDPL)
CUPYF(NEWCOF,NEWABS)
COPYP(NEWCOB, NEWREL)
UINLOAU(NFWCOH)
UPUATE(F,N=SCRAT,W,C=O,I=NULL)
HETURN(OI DHL, SCRAT,NEWAFPS,NEVREL)
HAUSF MPJZC - TYPE X.GO TO CAT FILES FOR AHHOPS, GACK-TAPE
FXIT(C)
```



```
COMME゙NT. * * 
CUMAEINT. * FLCATALOG CORFL, COBETN ANO CREATE CUGREL RACKUP TAHE ****
COMNE!NI.*
#
```



```
JUW btck LOMMON
&TACH(A,CUHHL,PN=SCPCN,IU=S2OCOLOPL,
(Y=51)
HURGE(A)
&XIT(U)
aETURN(A)
ATTACH(A,CU日GIN,ID=S2OCPLOPL,PW=SCPCN,
CY=5l)
0UR(FE(a)
FxIT(U)
HETUNN(A)
CATALUG(NENHL,COEPL,IO=S2OCPLOHI,CN=SCPCF,NL=SCFMD,EX=SCPEX,
W=SCHCN.
CY=51)
CATALOG(CORCR,COHFIN,IU=S2OCPLOPL,CM=SCHCNOMLI=SCPMO,EX=SCPEX,
\GammaW=SCPCN.
CY=ち1)
LANEL (INEWCHY,L=$CORKEL#SCH2.O$)
STAGE(NE,UCHY,INT,HY,N,PIST,
YSN=CY47)
RENIND (NFNHL, COROL, CUBUP,COECP,NEWCPY)
COPYF (NF WPL, NEWCPY)
CUPY&(COHOL,NEWCPY)
COPYF(CUFOOS NEWCHY)
JIVLOAU (NFWCFY)
SIAGE (NEWCHY,MT,HY,E,FHE,
VSN=CY47)
HEWINU(NFWCPY)
COPYP(NEWCPY,OLDPL.)
CUHYP(NEWCHY NEWARS)
CUPYP(NEWCHYONEWKEL)
INNLOAU(NFWCPY)
UHOATE(F,N=SCRAT,W,C=O,I=RIULL)
PAUSE. MPUJO - JOB COMPLETFD SUCCLSSFULLY... TYPE A.GO
EXIT.
PAUSE. MPUOL - JOG FAILED... TYHE X.GO
---FOS--- 7/8/G
/C COtSPSP
---EOS--- 7/8/9
*ID CYClFivu
HU CY37.1
    tilTLUN MICKO 1,9DCY47D
---EUS---7/8/9
LIBHAKY(COMLEL,NE:N=2000)
REPLACE (*,COONL)
FINISH.
L1STLIn(*,COBLEL,N=1)
-m-E゙リゝ--- 1/o/G
L.IGRAKY(COMI.IF7,NFW=2\capOn)
&EPI_ACE(H,COOOOR)
FINTSH.
LISTLIE(*,COHLIRT,N=1)
---FOL---6;7/8/9
```


12.1 REQUIREMENTS

The following materials are necessary to install Sort/Merge 1.0.
12.1.1 TAPES

SRTREL Described in part I, section 2.12

12.1.2 PERMANENT FILES

MODPL (ID= S20OPSMOD) Necessary for application of PSR updates only (SRTMOD job)

USERMODPL (ID= S20OPSMOD) Necessary for application of local customer modifications only (SRTUSR job)
12.1.3 DECKS

SRTGEN Regenerates Sort/Merge binary from SRTREL and catalogs SRTLEL, SRTLIB7, and SRTMACS (all have $I D=P R D L I B$)

SRTMOD Creates a new SRTREL from the old SRTREL and MODPL, then generates the binary from the new SRTREL and catalogs SRTLEL, SRTLIB7, and SRTMACS (all have ID=PRDLIB)

SRTUSR Creates a new SRTREL from the old SRTREL and USERMODPL, then generates the binary from the new SRTREL and catalogs SRTLEL, SETLIB7, and SRTMACS (all have ID=PRDLIB)

SRTINS Catalogs binary from SRTREL as SRTLEL, SRTLIB7, and SRTMACS (all have ID=PRDLIB)

12.1.4 DEPENDENCIES

None.

12.2 CONFIGURATION PARAMETERS

The following parameters are in deck SMSRTX and common deck SMCONCN.

Parameter	Released Default Value	Significance
IP. FLSD	40000 B	The default field length (SCM) for the Sort/Merge directive version; refer to the IP. FLSM parameter.
IP. FLSM	14000B	The minimum field length (SCM) in which Sort/Merge executes for the directive call version. If the field length is less than IP. FLSM when the SORTMRG call is made, the default (IP. FLSD) field length is requested by Sort/Merge.
IP. IDMX	144B (100D)	The maximum number of names in the IDNAME and the SQNAME tables; that is, each table may contain this many names. IDNAME contains field (key) names and SQNAME contains sequence names. Attribute tables for these names are also set in length by this parameter.
IP. LCBM	25000B (10752D)	This is the IP. LCMB used if the user declares an LCMSB parameter in the range:
		$1 \leq \mathrm{LCMSB} \leq \mathrm{IP} . \mathrm{LCBM}$ This is the minimum IP. LCMB.
IP. LCMB	141520B (50000D)	Total LCM buffer area for record manager for all intermediate scratch files; that is, all files developed internally by Sort/Merge. The default (IP. LCMB) is used if the user does not declare the LCMSB parameter or if he declares LCMSB $=0$.
IP. ORDL	2	Minimum merge order for LCM resident intermediate merge files (sort strings).
IP. ORDM	6	Merge order; the number of files that are merged in one merge pass, although more files may be available for merging.
IP. PRGD	24000B	This is the default SCM used by the relocatable version of Sort/Merge; refer to the IP. PRGM parameter.
IP. PRGM	22000B	The minimum SCM required by the relocatable (macro callable) version of Sort/Merge. This parameter is the length of the Sort/Merge program plus a reasonable work area. The user may restrict available SCM within his field length by selecting the COMMON

Released
Default Value

Significance

parameter within a Sort/Merge macro call sequence. Sort/Merge calculates available core with respect to the COMMON parameter. If the available SCM is less than this minimum, Sort/ Merge requests a field length that provides for the default (IP. PRGD) SCM program and work area.

12.3 REPRESENTATIVE DECKS

The following decks are included to indicate the format of the released decks. They are released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0 .

12.3.1 SR TINS

```
Jur liter Gr'llas
```

SHTIMS.CH7:1, MTO1, 1100.

COMMENT.

COMMEINT *
COMMENT * *
CUTMENT.*
CUMMFNT *
COMMENT *
COMMENT *
COMMENT - \#
COAMEINT.
COMMENT *
COMNENT.*
COANENT * \#
COMMFNT.*
COMMENT.
COAMENT. *
THTS IS A SCOPFZ•O INSTALLATION UECK AS CREATED *
*
HY SCUFF2.C INTEGHATION - NBDEN HILLS, MINNESOTA *
FOR FSK SUMMARY LEVEL 51 (SEF SYSOECK DESCRIPTION) *
STAGF HAS PEEN DEFINEU *
PIFASF. SF NIY SUGGESTEU CORRECTIONS AND MONIFICATIUNS TO * SCOFL 2.0 INTFGKATION ARH24R * 4201 LEXIMGTOF AVE.N. * ST PAUI. HIVN. 55112 \&
CUMMENT. $\#$ (NiO \because SRS) (

CUMMEINT.

COMMENT - *
COAMENT * INSTAIL SORT MEKGE FHOM RFLFASF IAHE *
CUMMFNT. 4 胃

I. ASEL (SHTKEL. $L=\$$ SHTKEL \& CCPZ.0\$)

STAGE (SKTREL, MT,HY, E, PKF,
$V S_{N}=C$ 45)
REWINU (SRTHEL)
COPYP(SNTREL•OL_HPL)
-COPYO (SKTREL, SORTOV)
COPYR(SHTREL, RFLB)
COPYP (SATREL, SRTMACS)
REwINL (SORIOV)

CUMMETVT. *
COMMEINT: * CREATE LIBEDT FORMAI LIBHARY DF SORT OVFRLAY *
COMMENT. *

LIAE I (M)

COMMENT. *
CO:AMENT * CATALOG SRTLFL. (USED RY NPRDLIB) *
COMMENT *
COMMENT。
CATALUGISRILEL, SRTLEL,I $=S C P S C R, C N=S C P C N, E X=S C P E X, M D=S C P M \cap, P W=S C P C N$,
$C Y=51)$
UNLOAU(SNTLEL)

```
JUH 片CK SHIINS
```



```
COMMAENT.*
CUMMENT.* CHEATE LINEIT FORGAI L.AGMAHY OF SOMT ORJECT TIME GINARIFS * O
CUMMENT. *
```



```
REMINU(RFLH)
1. (-3t)|(M)
```



```
COMMFNT. *
COMMENT
CUMMENT.*

```

CA「ALUG(SRILIRT,SRTLIHT,TU=PROLIH,CM=SCPCN, 价=SCPMH,EX=SCPEX,PW=SCPCN,
CY=51)
UNLOAU(SRTLIB7)

```

```

COM\&ENT.*
CUMTENT. * CATALUG SRTMACS \#
CUMMENT. \$ *

```

```

CATALUC(SRTVACS, SKTMACS,IU=PKULIF,CN=SCFCM,EX=SCFEX,MN=SCPMD,PW=SCPCN,
CY=51)
HAUSF - MPOOO - JOR CGMPIETFD SUCCESSFIJLLY... TYFE X.GO
EXIT.
PA,JSF. NPUOL - JOH FAILFD ... TYFF X.GO
---EUS-=- 7/\sigma/G
LINFARY(SRTLEL, NEW=2OON)
REPLACE (%,SOKTOV)
FLNISH.
LISTLIG(*,SRILFI,N=1)
---E゙OS-- 7/8/9
LIHFAKY(SRTL\R7,NEw=2O0O)
REPLACE(s,NELN)
FIVISH.
LISTLIG(*,SKILTRT,N=1)
---EOI=-- 0/1/\&/4

```

\section*{12．3．2 SRTMOD}

\section*{J03 1）}


CUMMENT.
LABEL (SHTREL,L= KSRTKEL*S(Fで。Oq.)
STAGE (SKTHRL, MT,HY, E, HRF,
VSN=CY45)

COMMENT. *
CUMMENT. * UPDATE MUUPL TO GET LATEST CUC MODS *
CUMMENT. * *

ATTACH(IACDHL, MODPL, IU \(=\) S 200 OSMOU,
\(C Y=51)\)

HETURN (MOURL)

COMMENT. *
4
CUMMEIVI. * UPDATE SORT/MERGE OLUPL, CHEAIE SEGUENTLAL NEWPL *
CUMMENT. * AND COMPILE FILE FOR SURT UVEULAY *
COMMENT * * *

1JPDATE ( \(\mathrm{H}=\mathrm{SH} T \mathrm{HFL}, \mathrm{F}, \mathrm{C}=\mathrm{U}, \mathrm{V}=\) RANDPL, \(\mathrm{I}=\mathrm{UH} I \mathrm{~N})\)
UNLOAU (SPTCEL)

COMMENT. \#
COMMENT * *
COMMENT UTO O AEFICIENCY IN UPDATE, TO LINSURE. THAT THE NEWPL CREATEEGHL -
COMMENT. i RANDPL - WHICH IS THEN UPIOAIED CREATING A GEOUFNTIAL NFWPL - NEWPL *
cumment. * railure to no this colld rejuli in luss uf deck names and an *
CUMMENI. * IMPROPEK OKNEKING DF DECKS (WHEN UECKS ARF ADIED OK PURGEU). *


COMMENT．CMFATE IIHFIIT FORMAI I LHMARY OF SOKT ORJECT TIME HINARIES


ふもWINU（KFLr！）
I．1BEDT（M）

CUAMENT．＊
COMMENT．＊CATAIOG SHTLIFT（SORT／MEKKE UHJFCT TIME LIRPARY）\＆
CUMNANT＊＊

CATALUG（SRILLB7，SRTLIBT，IU＝PRDLJB，CN＝SCHCN，MO＝SCHMD，\(X=S C P E X, P W=S C P C N\) ，
\(C Y=51)\)
UNLOAU（SHTLIB7）

CUTAMENT＊
COAMFIVT＊CATALOG SHTMACS
＊


COPYト（UVICUMP，SRTMACS）
CATALOG（SRTMACS，SRTMACS，IU＝PRDLIB，CH：＝SCFCN，\(X=S C P E X, M \cap=S C P N D, P W=S C D C N\) ，
\(C Y=51)\)

COMMENT＊
CUMPAENT＊CRE

CUMMFIVT．＊SECOND PARTITTON－SORT UVFRIAY，THIRU PAKIITION＝＊
COAMENT．OGJFCT TIME RINARIES，FUURTH HARIITION－SORT MACROS
CUMMENT．＊


LABEL（NEWSRT•L＝末SRTREL＊SCPZ．0\＄）
STAGE（NEWSWT，MT，HY，N，POST，
\(V S N=C Y 45\) ）
HEWINU（NEWSHI，RFLB，SORTOV，SRTMACS）
COPYP（INEWPL IVE WSRT）
CUPYP（SORTUV，NFWSKT）
CUPYO（REL B，NEWSRT）
COPYF（SKTMACS，NEWSRT）

COMMENT．\＆
\(\#\)
CUMMEMT．＊TEST THE NEW TAHE VIA UPDATE＊
COMMENT．＊\(\quad\)－
 UIVLOAリ（NFWSHI）
SIAGE（NEWSHT，MT，HY，E，PRF。
\(\checkmark S N=C(45)\)
RE NIND（NFWSRT）
COPYP（NEWSAT；OLDPL）
COPYP（WEWSHT，NEWABS）
COUYP（NEWSHT，NEWREL）
CUPYR（NEWISTTOEWIAC）

```

(|NL.|AU(NFMSHT)

```


```

HAJSF MP:OU - JOR COMPIFTEU SUCCESSFULLY... TYPE X.GO
f人l!.
\#AUSF. MPGI - JOH FAIIEll... TYKt X.GO
---rいS--- ?/B/?
\primeG SKTHSH
-=-f!\=- //N/G
*/ COMPILE CAKIS FOK REIOCATABI.F SURT
*ITENI SMRELUC 1/7
\#L_SRRT SMBHiA.? 26it
SMRELUC 3/7
*C SINAHITH.SINSI2TX 4/7
*C SMMACF,SMCOLP 5/7
*C SHEIHD.SNCNVT 6/7
\#C SIMYCD,SMSFTC,SMIFNS,SMSRTM 7/1
---EOS-- // \&/G
LINKAKY(SRTLEL,NEw=<00!)
HトFLACF(*gSOKTrIV)
FINISH.
LISTL1H(*,SHTLFL,M=1)
---F.OS--- 1/ふ/G
I. I\&RAKY(SFilLIH?,NEN=2O|%)
FEPLACE(*,HELB)
FLNISH.
LISTLIF(*,SRILIR7,N=1)
---EOL--- 0/7/\&/y

```

\subsection*{13.1 REQUIREMENTS}

The following materials are necessary to install the Diagnostic Control Package.

\subsection*{13.1.1 TAPES}

DIAREL
Described in part I, section 2.13

\subsection*{13.1.2 PERMANENT FILES}
\begin{tabular}{ll} 
MODPL (ID=S20OPSMOD) & \begin{tabular}{l} 
Necessary for application of PSR updates only \\
(DIAMOD job)
\end{tabular} \\
USERMODPL (ID=S20OPSMOD) & \begin{tabular}{l} 
Necessary for application of local customer modifi- \\
cations only (DIAUSR job)
\end{tabular}
\end{tabular}

\subsection*{13.1.3 DECKS}
\begin{tabular}{ll} 
DIAGEN & \begin{tabular}{l} 
Regenerates DCP binary from DIAREL and catalogs \\
\\
DIALEL (ID=PRDLIB)
\end{tabular} \\
DIAMOD & \begin{tabular}{l} 
Creates a new DIAREL from the old DIAREL and \\
\\
MODPL, then generates the binary from the new \\
DIAREL and catalogs DIALEL (ID=PRDLIB)
\end{tabular} \\
DIAUSR & \begin{tabular}{l} 
Creates a new DIAREL from the old DIAREL and \\
\\
USERMODPL, then generates the binary from the
\end{tabular} \\
new DIAREL and catalogs DIALEL (ID=PRDLIB.) \\
DIAINS & Catalogs binary from DIAREL tape and catalogs \\
DIALEL (ID=PRDLIB)
\end{tabular}

\subsection*{13.1.4 DEPENDENCIES}

None.

\subsection*{13.2 CONFIGURATION PARAMETERS}
\begin{tabular}{lcl} 
Parameter & Value & \(\frac{\text { Significance }}{\text { INTEGM }}\) \\
0 & \begin{tabular}{l} 
Location that indicates if integer multiply is \\
installed.
\end{tabular}
\end{tabular}

\subsection*{13.3 REPRESENTATIVE DECKS}

The following decks are included to indicate the format of the released decks. They are decks released with the initial release of SCOPE 2.0 and may be modified in subsequent modifications of SCOPE 2.0.

\section*{13．3．1 DIAINS}
```

JJH リヒCK UlATNS
ULAINS,C口T,110gu,NTOl.
CJMMENT. *SV!V,07155,3083U,SDMIIIEN
comment.

```

```

CommE!T, *
COMMENT. * THTS IS A SCOPEZ.O INSTALLATION DECK AS CREATEO
CUMMFNT. * * *
CUMAERT. * HY SCOPF?.0 INTEGRATION - ARDEN HILLS. MINNESUTA *

```

```

COHMEENT.* FOR PSK SUMMAYY LFVEL 51 (SEE SYSDECK DESCRIPTIUN)
CURMENT, *
COMMENT * STAGE MAS RFEN DEFINED
CJMMENT. *
COMMENT. * PIFASE SEINN SUGGESTEU CORRECTIONS ANO MONTFICATIUNS TO
SCOOE 2.0 INTEGRATION AKH?4R
4201 LEXINGTON AVE. N.
*
CUMMESTT.*
CUMMENT. *
CUMMENT.*
COMMEINT. *
ST paul, MINN. 5Sllz

CUMMENT.
CUMMENT. \#
COMMFNT. *
COMMENT. * INSTALL UIAGNOSTIC LIBKAKY FKOM KELEASE TAPE *
CIMMFNT. * * *
CUMMENT. \#
LABtI.(DIAREL,I_=$UIAREL*SCP2.0$)
SIAGF (i)TAIZEL,MT,HY,E,PRE,
vin=Crsl)
KEWIND(DTAKEL)
COPYP(DIAREL,OLOPI)
COPYP(1)IARELOOCP)
REWINO(DC,N)

```

```

CJMMFINT. *
CUMMENT. * CREATE llBEJT furmal libRARy ur uCP ovERLAY *
COMMENT. * *
C.JMMFNT. अ\#
LIHEDI(M)
CUMMFNT. \#
COMMENT.*
COMAFNT.* CATALOG DIALFL (USEO) BY NPRDLIB) *
CUMMENT. *
**
CATALOG(OIALLL,DIALEL,ID=SUPSCH,CN=SCPCN,EX =SCPEX,NO=SCPMD,PW=SCPCN,
CY=51)
CY=(NN)
UNLOAU (DTAL_HL)
DAIJSE. MPOOU - JOH CONPLFTED SUCCESSFULLY.... TYPE X.GON

```
```

JUB DECK UIAINS
EXIT.
PAUSE. MP`OL - JOB FAILEU ... TYPE X.GO
---EOS--- 7/B/9
LIBRARY(DIALEL,NEW)
REPLACE(*,OCP)
FlNISH.
LISTLIH(*.UIALFL,N=1)
---EOI--- 6///8/9

```

\subsection*{13.3.2 DIAMOD}
```

JUR DECK UIAMOD

```

OLAMOU,CP70.T1900, MTUL.
CUMMENT. \#SVUV.07155,35P3UPSUMILLER
CuMARENT.

CUMMENT. *
THIS IS A SCUPEZ.0 INSTALLATION DECK AS CREATED *
CUMNFNT. * *
COAMENT. * BY SCUPFR.U INTEGRATION - AKDEN HILLS, MINNESOTA *
COAMENT. *
COMARENT. *
COMNENT. *
COMVENT. * MODTAPEMD HAS BEEN DEFINEI) *
CUMMENT. * STAGE MAS FEEN lUEFINEI *
CUMMENT. * *
CUMMENT. * PLEASE SFNN SIGGGESTEU CORHECTIUNS AND MODIFICATIONS TO *
COMMENT. * SCOPE 2.0 INTEGKATION ARH248 *
COMMENT. * 4201 LEXINGTON AVE.N. *
CUMMENT. * ST PAUL, MINN. 55112
COMMEINT. * *
COMMENT. * ( NO PSLS ) *
 COMMENT.
LABEL (UTAREL,L=\$UIAKEL*SCPZ.C \(\$\) )
STAGE (llAAREL, MT, HY, , PRF,
\(\checkmark S N=C Y 47\) )

COMMENT. \#
COMMENT. * UPDATE MOOPL TU GET LAIEST COC MUOS *
COMMENT. *
 ATTACH(MOUPL,MODPL, 1U=SつUOPSMOU, \(C Y=51)\)

GETURIN MOUPL)

COMMENT. *
CUMMENT. * UPDATE Z̈DAGNOSTIC OLDPL CRFATE COMPILE FIIE * *
COMMENT. * PRODUCE A SEGUFATIAL NIEWPL *
CUMMEIVT. *

UPDATE ( \(\mathrm{P}=\mathrm{D}\) IAREL, \(\mathrm{C}=0, \mathrm{~F}, \mathrm{~N}=\mathrm{PANDHL}, I=U P I N)\)
UNLOAU (DIAREL)

COMMENT. *
COMMENT. * UUF TO A DEFICIENCY IN JPDATE, TO INSURE THAT THE NEWPL CREATED COMMENT. * LS VALIU, THE OLDPL IS MODIFIED CREATING a RANDOM TEMPORARY NEWPL- * CUMIENT. * KANOPL - NHICHI IS THEN UPDATED CREATING A SEQUENTIAL NEWPL - NEWPL.* COMMEIVT. \# PAILURF TO DO THIS COULD RESULT IN LUSS OF DECK NAMES AND AN * COMMENT. * IMPROPEK ORDERING OF UEGKS (WHEIV IJECKS AKF ADDED OR PURGED).


JUS UECK LIAMON
```

VSN=CYS1)
REWINU(NENDIA)
COPYD(NEWD[A,OI_\capPL)
CUPYP(NEWDIA,NFWHIN)
UNLOAD (NEWUIA)
URDATE(P,N=SLRAT,W,C=O,I=NULL)
RET:IRN(OLUPL,SCRAT,NFWHTN)
PAUSE. MPOJU - JOH COMPLETED SUCCESSFULLY... TYPE X.GO
EXIT.
PAUSE. MPOJI - JOB FAILED ... TYPE X.GO
---EOS--- 7/8/9
/C DIAPSR
---EOSm=- 7/%/9
LIBRARY (DIAI_EL,NEW)
REPLACE (*,OCP)
FINISH.
LISTLIB(*,OLALEL,N=1)
---EOI--- 6/7/8/9

```

\subsection*{1.1 HARDWARE}

\subsection*{1.1.1 MINIMUM CONFIGURATION}

The minimum configuration that SCOPE 2.0 requires is:
One 7600 central computer system
One 7638 mass storage file
Six FLPPs
One MCU with card reader and CRT display
One 6000 station or one \(7611-1\) I/O Station
1.1.2 FCO LEVELS

The released version of SCOPE 2.0 and its product set were tested on a \(\mathrm{CDC}{ }^{\circledR}\) CYBER 70/Model 76 with the following FCOs installed.
\begin{tabular}{llll} 
Serial 7 (AA102A08) & & Serial 12 (AA102A01) \\
\hline & & 27817 \\
27240 & 24512 & 31865 \\
28004 & 25648 & 29720 \\
29050 & 25139 & \\
27678 & 26669 & \\
& 27240 & \\
& 27008 & \\
& 28004 & \\
& 29030 & \\
& 26353 &
\end{tabular}

\subsection*{1.2 MEMORY}

Minimum memory requirements to use SCOPE 2.0 are:
32 K words of SCM
256 K words of LCM
8 million characters of mass storage

\subsection*{2.1 SCOPE 2.0 MAINTENANCE PACKAGE}

The following messages may appear during the execution of SYSDECK jobs as comments on PAUSE cards.
```

Message
MP000
JOB COMPLETED SUCCESSFULLY...
TYPE X.GO

```
MP001
JOB FAILED. . . TYPE X.GO
MP002
NEW FILE CATALOGED SUCCESSFULLY...
    TYPE X.GO
MP003
OLD PRDLIB CYCLE EXISTS.
TYPE X. GO TO REPLACE
MP004
NEW PRDLIB CYCLE EXISTS.
TYPE X.GO TO REPLACE
MP005
TYPE X. GO TO PURGE
INACTIVE ID=PRDLIB FILES

\section*{Significance}

Job has completed successfully.

Job failed.

A cycle of PRDLIB has been cataloged successfully.

The job OPRDLIB was run to create PRDLIB, but the file already exists.

The job NPRDLIB was run to create a new cycle of PRDLIB, but the cycle already was cataloged.

The job DPIDPRD is running.

\section*{Action}

Note this fact on the SYSDECK worksheets. Type X. GO to obtain output.

Note this fact on the SYSDECK worksheets. Type X. GO to obtain output.

Determine and correct the cause of the error; rerun the job before proceeding with the next group of jobs.

NOTE this on worksheet. Type X. GO to continue.

Type \(X\). GO to replace it; otherwise, type X. DROP

Type X. GO to replace it; otherwise, type X. DROP.

Type X. GO to begin a \(\mathrm{MO}=3\) DUMPF of inactive files cataloged with ID=PRDLIB. This eliminates files which have been replaced in this build.

Type X. DROP to skip this step.
Message
MP006
TYPE X. RERUN FOR MORE COPIES
ELSE X. GO
ELSE X.GO

\section*{MP007}

TYPE X. GO TO PURGE CERTAIN INACTIVE FILES

\section*{MP008}

TYPE X. GO TO PURGE INACTIVE ID \(=\) S20OPSOPL

MP009
TYPE X. DROP AT THE MTS

\section*{MP010}

TYPE X. GO. .
VERIFICATION GOOD IF MTS

MP011
SET SENSE SW.
X. ONSW, NN. THEN X. GO

MP012
VERIFY SENSE SW. THEN X. GO.

Significance
Pause at completion of DUMPF by ID jobs.

Pause for operator action.

Pause for operator action.

Pause in verification job for 7611-2 station.

Message appears at 7611-2 display. Test is successful.

Type X. RERUN to rerun the job in order to produce another copy of the DUMPF tape.

Type X. GO to terminate the job.

Type X. GO to begin a \(\mathrm{MO}=3\) DUMPF of inactive files cataloged with various IDs.

Type X. DROP to skip the step.

Type X. GO to begin a \(\mathrm{MO}=3\) DUMPF of inactive files cataloged with ID=S20OPSOPL.

TYPE X. DROP to skip that step.

Type X. DROP at the 7611-2 station for the job.

Type X. GO to continue.

Type X. ONSW, NN.
Type X. GO.

Verify that sense switch set in response to MP011 is on. Type X. GO to continue.

\section*{Message}
```

MP013
SET SENSE SW
X. OFFSW, NN.
THEN X.GO
MP014
VERIFY SENSE SW OFF
THEN X.GO
MP015
J-DISPLAY PLEASE.
THEN X.GO
MP016
CHANGE JOB PRIORITY
X. ENPR, NNNN.
THEN X.GO
MP017
VERIFY NEW PRIORITY
PLEASE. THEN X.GO
MP018
CHANGE JOB TIME LIMIT
X. ENTL, XXXX.
THEN X.GO
MP019
VERIFY CARDS PUNCHED
AT COMPLETION. X.GO
MP020
ENTER - X. COMMENT.
VERIFIED. THEN X.GO
MP021
PLEASE RERUN JOB. X. RERUN.

```

Action
Type X．OFFSW，NN．to turn off the sense switch set in response to MP011．

Type X．GO to continue．
Verify that sense switch set in response to MP013 is off Type X．GO to continue．

Bring up J display for job． Type X．GO to continue．

Type X．ENPR，nnnn．to change job priority（nnnn is new priority）．Type X．GO to continue．

Verify that priority set in response to MP016 is correct． Type X．GO to continue．

Type X．ENTL，xxxx to change time limit
（xxxx＝new time limit）；value of 20 is suggested．Type X ．GO to continue．

Verify that cards are punched． Type X．GO to continue．

Type X．COMMENT．
Inspect J display to verify that message is displayed． Type X．GO to continue．

Type X．RERUN．
Verify that job is rerun．


MP110
INVALID DECK SET
MP111
NO CYCLE SPECIFIED
MP120
ERROR IN PARAMETER XXX

\section*{Significance \\ Unknown value of SET keyboard.}

CY parameter is required for all calls to LISTER.

This message is printed after all MP101 through MP111 messages. The value xxx indicates the keyword being processed at the time when the error was discovered. If xxx is \(A L L\), the error concerns all of the parameters.

Refer to MP120.
Refer to MP120.

\subsection*{2.2 SYSTEM MAINTENANCE MONITOR 3.0 (SMMB)}

None.

\subsection*{2.3 7611-1 I/O STATION}

Message
TAPE ERROR

\section*{Significance}

There is an error on the deadstart tape.

\subsection*{2.4 7611-2 MAGNETIC TAPE STATION}

The following tape error messages may appear during the 7611-2 Magnetic Tape Station tape deadstart process. To reinitialize the disk and read the deadstart tape from the beginning respond with:

Type GO
Press CR
Message
Significance
BAD TAPE FORMAT The tape mounted is not in the correct format. (Record size may have exceeded 512 words.)

BLANK TAPE
RPE UNRECOVERED
There is no data written on the mounted tape.
The driver is unable to recover from a read parity error.
TAPE UNIT MALF The tape unit and/or controller is not working properly.

\subsection*{2.5 6000 OR CYBER 70 SERIES SCOPE 3.4 STATION}

None.

\subsection*{2.6 SCOPE 2.0}

\subsection*{2.6.1 DEADSTART INITIALIZATION AND RECOVERY MESSAGES}

If a fatal or nonfatal error condition occurs during deadstart of SCOPE 2.0, one of the following error messages is displayed at the MCU console. Continuation of the deadstart process depends upon the nature of the error.

\section*{Message}

DEADSTART EEA EXIT

DISK AREA EXHAUSTED

DISK I/O ERROR
Cchannel Uunit TRACKtrack SECTORsector

\section*{Significance}

Deadstart encountered an EEA condition.
Possible problems may be: DS2 from the system library does not align with the DS1 from cards or disk, and a jump to an invalid address occurs. This could occur, for example, when a deadstart recovery is attempted with a system cycle different than the deadstart tape.
DS2 from the system library is zero length indicating a problem during creation of the library.

All the area on the designated system disk unit is allocated or flawed.

An irrecoverable I/O error occurred on the unit, track, and sectors specified.

\section*{Action}

To determine the cause of the error, examine the deadstart EEA exchange package at the SCM location T. EEAXPA (10460). If the PSD at location 10463 indicates an SCM or LCM parity error (in bits 46 and 47), the problem is a hardware problem. (An SCM or LCM parity error is also displayed.) If the problem is not a parity error, examine the \(P\) address (or the location before that address) from the EEA XP. These should normally indicate the cause of the crash.

If recovery is attempted, do not recover the SFT (spooled files). If there are any permanent files, they can be recovered. To recover, clear the LCM locations \(0-200008\) using the KL command before attempting the recovery.
When the request SYSTEM FILE TABLE RECOVERY Y/N is typed, reply with N .
If the problem is still evident, a deadstart initialization is necessary.

\section*{Possible actions are:}

The CE could run diagnostics against the suspected disk area and/or punch a flaw card for the bad area and continue with deadstart initialization or deadstart recovery.

Message
DS2 NOT IN LIBRARY

SIF LCM BUFFER
RECOVERY ABORTED

\section*{ERROR}

ERROR
TYPE-IN OR REREAD CARD
TO RESUME READING, TYPE
CARRIAGE RETURN
INPUT FILE lfn NOT
RECOVERABLE
FILE IN TRANSIT
CARRIAGE RETURN TO
CONTINUE
INPUT FILE lfn NOT
RECOVERABLE
ILLEGAL SFT ORDINAL
CARRIAGE RETURN TO CONTINUE

\section*{INPUT FILE lfn NOT}

RECOVERABLE
INVALID FAT ADDRESS
CARRIAGE RETURN TO

\section*{CONTINUE}

INPUT FILE lfn NOT
RECOVERABLE JOB NO'T
RE-RUNNABLE CARRIAGE
RETURN TO CONTINUE

\section*{Significance}

DS2 module cannot be located during a search of the system library directory.

Recovery of the SIF LCM buffers is aborted because the validation of pointers and tables in LCM indicated erroneous information.

All deadstart reply entries are checked for format errors. When the reply is typed at the MCU console, this message appears at the end of the current display.

All deadstart reply entries are checked for format errors. When the reply is by card, the message appears with the current display.

Input file not completely transferred from station.

SFT ordinal for this entry is invalid

Disk address of FAT is invalid.

No rerunnable bit set for this input file.

\section*{Action}

Determine cause of fault, correct fault; reattempt deadstart initialization.

Continue recovery by pressing carriage return.

The format error is ignored; reenter the corrected reply.

Card reading stops. Type any number of entries; resume reading of cards by pressing CR.

Press CR to continue deadstart; SFT entry is lost.

SFT entry is lost; press CR to continue deadstart.

SFT entry is lost; continue deadstart by pressing CR.

SFT entry is lost; press CR to continue deadstart.

INPUT FILE lfn NOT
RECOVERABLE
NO STATION ID
CARRIAGE RETURN TO

\section*{CONTINUE}

I/O ACTION TIME OUT

INVALID RMS UNIT

INVALID TIME DATE

LABEL ERROR

LIB BUFFERS EXCEEDED

\section*{Significance}

SF T entry has zero station ID.

Indicates a deadstart hang. A tape or disk I/O device with which deadstart is attempting to communicate cannot accept I/O activity, such as not ready.

When permanent files are being recovered, an illegal entry in the PFD or the FAT is found. This is usually a result of a disk area being inadvertently overwritten.

The text of the time or date entry is invalid.

Occurs during a deadstart initialization with permanent file recovery; a correct SCOPE 2.0 volume label group was not found at the specified address.

The overlays and directories from the system library overflowed the number of library buffers allocated. The default number of library buffers is specified by IP. LIB or by a LIB card that may be included in the SCPSID deck.

\section*{Action}

SF T entry is lost; press CR to continue.

Dump the PFD from disk; redeadstart without permanent file recovery.

Press CR, then reenter date and time with correct text.

Deadstart initialize entering correct address of volume label group; or, deadstart initialize without permanent file recovery.

If the problem occurs during a deadstart initialization, increase the specification on the LIB card by at least 108 buffers and deadstart initialize again.

If the problem occurs during a deadstart recovery, specify the number of library buffers when the CHQ display occurs during the next recovery.

\section*{Message}
```

MORE THAN }8\mathrm{ RMS
DEVICES

```

\section*{NBR PFD PAGES CHANGE}

NO SYSTEM DEVICE

OUTPUT FILE lfn NOT
RECOVERABLE ILLEGAL SFT
ORDINAL CARRIAGE RETURN
TO CONTINUE
OUTPUT FILE lfn NOT RECOVERABLE INVALID
FAT ADDRESS
CARRIAGE RETURN TO CONTINUE

OUTPUT FILE lfn NOT
RECOVERABLE
NO STATION ID
CARRIAGE RETURN TO CONTINUE

OUTPUT FILE lfn NOT RECOVERABLE
SPOOLED TO STATION CARRIAGE RETURN TO CONTINUE

\section*{Significance}

Occurs at deadstart initialization when an attempt is made to install more than eight mass storage units through the EST card. The system does not allow more than eight units.

Deadstart has been assembled with a systems text value for the number of PFD pages (NE. NP) that conflicts with the actual number of PFD pages or disk or the number indicated on a system disk.

No system rotating mass storage device has been specified in the EST.

SFT ordinal for this entry is invalid.

Disk address of FAT is invalid.

SFT entry has zero station ID.

Output file has already been transferred to station.

Action
Deadstart initialize assigning the allowed number of mass storage units with the EST replies.

Reassemble deadstart (ODS), and punch a new DS1 deck.

Specify system device and reattempt deadstart initialization or recovery.

SFT entry is lost; press CR to continue deadstart.

SFT entry is lost; continue deadstart by pressing CR.

SFT entry is lost; press CR to continue.

SFT entry is lost; press CR to continue deadstart.

Message
PF CYCLE NOT FOUND

PFD POINTERS FULL

SFT RECOVERY ABORTED

SST LABEL NOT FOUND

SST mod NOT FOUND

TAPE INPUT FAULTY

\section*{Significance}

This situation occurs only during deadstart recovery; it indicates that the cycle of the system permanent file specified by the operator or by the default does not exist.

This problem occurs only during a deadstart recovery from tape. The new system is to be entered in the next available entry of the PFD entry of the current or specified permanent file name; but all five cycle entries are full.

Recovery of the SFT was aborted because the validation of appropriate indicators, pointers, etc., indicate erroneous information. The SIF is lost.

The label operand specified cannot be located in the system text.

The specified SST module (OST) name cannot be located in the system library.

The driver transmitting the deadstart tape forwarded a status response indicating a tape error was detected, such as parity error. Deadstart automatically tries five times to have the tape contents transmitted correctly. If a fault still exists after the fifth attempt, this message is displayed.

\section*{Action}

Repeat deadstart recovery using the correct cycle to the SYSTEM PFN AND CYCLE request. If subsequent attempts produce the error message, deadstart initialize.

Repeat deadstart recovery and specify that the new system replace one of the five existing cycle entries.

If acceptable and no action is to be taken to get a copy of the SIF from dis, press CR.

This is a fatal error indicating a faulty system library requiring recreation of the system library.

This is a fatal error indicating a faulty system library requiring recreation of the system library.

Recreate the deadstart tape, and reattempt deadstart initialization.

Message
TOO MANY FLAWS TK20
2.6.2 HARDWARE ERROR PROCESSING MESSAGES

SC100
SCM TRANSIENT
PARITY address/bits

SC101
LCM TRANSIENT
PARITY address/bits

\section*{Significance}

At least eight sectors must be available for the volume label group.

\section*{Action}

Reattempt deadstart initialization with fewer track 20 flaws.

If the address of the error is within the following areas, the system hangs.
1. 0
2. 10000B beginning of user area (SCM address of File router job FRJCB)

Restart the system by doing a deadstart recovery.

If the address of the error is within the field length of the currently active job, including the job supervisor, then parity error processing for the job is initiated. The job is either repressed or rerun (if possible).

If the address of the error is in the SCM I/O buffer area, 2000B-7777B, or if none of the above, the error is ignored. No action to be taken.

If the address of the error is less than the first system I/O buffer, the system hangs.

Restart the system by doing a deadstart recovery.

If the address is within the LCM field length of the currently active job, the parity error processing for the job is initiated.

\section*{Significance}

When set, the bits indicate bad parity for the portions of the LCM word:

Bits 0-14 Bits 15-29 Bits 30-44 Bits 45-59

\author{
SC104 \\ TAPE CHANNEL chan \\ FLPP flpp ERROR status
}

\section*{Action}

All other errors are ignored.

At the MCU card reader:
Reload the FLPP program from cards using the following deck structure. Refer to part II, section 6.2.1 for a complete description of the deck. The EP cards are added.

DPxx.
KPxx.
CExx.
LPxx, 0.
FLPP binary deck
EPxx, 6, channel.
EPxx, 7, channel.
Initialize the flpp channel configuration by setting cells 6 and 7.
xx flpp number
channel same as values on
numbers FC parameter on
CHQ card (part II,
section 6.3.3)
RUxx, 100.
\(7_{8}\)
At the system operator station:
Turn on the channel so that the system issues further requests to the FLPP. Type ONCH, chan.

\section*{Message}
```

SC105
DISK CHANNEL chan
FLPP flpp ERROR status

```

\section*{SC1 06}

STATION CHANNEL
chan FLPP flpp ERROR status

\section*{SC1 07}

MCU ERROR status
\begin{tabular}{ll} 
& \multicolumn{1}{c}{ Significance } \\
chan & \begin{tabular}{l} 
CPU channel FLPP is \\
driving
\end{tabular} \\
flpp & FLPP with error \\
status & \begin{tabular}{l} 
FLPP status bits from \\
SMIM. Refer to SC104 \\
Status description
\end{tabular}
\end{tabular}

The error processor automatically issues DP and CE commands to deadstart the FLPP and to clear parity for both the failing FLPP and its partner FLPP. The operator must reload the FLPP program from cards as in the next column.
\begin{tabular}{ll} 
chan & \begin{tabular}{l} 
Channel FLPP is \\
driving
\end{tabular} \\
flpp & FLPP with error \\
status & FLPP status bits from
\end{tabular}

The error processor automatically issues DP and CE commands to deadstart the FLPP and to clear parity. The operator must reload the FLPP program from cards as in the next column.

Indicates a FLPP 0 (the
MCU FLPP) error.
status Error status bits from SMM

\section*{Action}

At the MCU card reader:
Reload the FLPP program from cards using the deck structure in the SC104 action column. Reload both the failing FLPP and its partner FLPP.

At the system operator station:
Turn on channel so that the system can issue further requests to the FLPP. Type ONCH, chan.

Turn on disk unit(s) connected to channel. Type ON ord.

The E display indicates ON/OFF status as well as the EST ordinal for all online equipment.

At the MCU card reader:
Reload the FLPP program from cards using the deck structure in the SC104 action column.

At the system operator station:
CPU- FLPP communication automatically resumes. Log in all stations connected to that FLPP.

Reload and reinitiate SMM in the MCU. Enter the CN command with parameters as set in deadstart SCPSID deck. If the error reoccurs, call customer engineering.

Message
SC110
SCM RECURRENT
PARITY address/bits

\section*{SC111}

LCM RECURRENT
PARITY address/bits

Significance
Hard memory parity error.
address SCM address of error
bits Section error bits; refer to SC100 description

Hard memory parity error.
address LCM address of error
bits Section error bits;
refer to SC101
description

Action
Call customer engineer.

Call customer engineer.

\subsection*{2.7 COMPASS 2.0}

None.
2.8 FORTRAN EXTENDED 2.0

None.
2.9 FORTRAN RUN 2.0

None.

\subsection*{2.10 FORTRAN OBJECT TIME ROUTINES}

None.
2.11 COBOL 1.0

None.

\subsection*{2.12 SORT/MERGE 1.0}

None.

\subsection*{2.13 DIAGNOSTIC CONTROL PROGRAM} None.

\subsection*{3.1 SCOPE 2.0 MAINTENANCE PACKAGE}

None.

\subsection*{3.2 SYSTEM MAINTENANCE MONITOR 3.0. (SMMB)}

\subsection*{3.2.1 SYSTEM HANG}

If the system is hung in monitor mode, type \(H C\) (and press \(C R\) ) before trying any of the following:

Displaying LCM (LAD, LBD, LAM, etc.)
Clearing LCM (KL)
Taking a 7000 dump of LCM

\subsection*{3.2.2 SMMB and SMMD}

The SMM Version 3.0 Operator's Guide describes the SMMB and SMMD Version 3.0 MCU monitor programs in detail. Refer to this manual also for details concerning SMM operating procedures and the interface between SMM and SCOPE 2.0.

SMMB is the MCU monitor program released with SCOPE 2.0; it does not require that the 857 disk pack be installed at the MCU.

The SMIMD MCU monitor program is released through customer engineering to be installed on the MCU 857 disk pack by the customer engineers at an installation site. The SMMD monitor has all SMMB monitor capabilities plus additional features. The customer can use any of these additional features available under SMMD in the following situations.

The use of SMMD is restricted to less than ten percent of the available 857 storage capability. The remaining ninety percent of the 857 storage is reserved for customer engineering use.

The use of SMMD is for improved reliability, availability, and maintainability of the hardware.

The use of SMMD does not result in the system being dependent on 857 availability. The system must at all times be capable of operating with only the features provided by SMMB.

\subsection*{3.2.3 CN COMMAND}

Following is a detailed description of the CN command that is required in the DS1 deck. The format is:
\[
\text { CN } 10730,10460,5344,10540
\]

This command directs the \(M C U\) to monitor the \(M C U / C P U\) call block for CPU calls and to store FLPP and SCM/LCM status in the communication area. The parameters specify the locations of the communication area, the EEA exchange package, and LCM addresses required by the SMM SY command. The last two parameters are optional. Whenever ORE or ORL changes are made, check the CN parameters for accuracy.

10730 MCOVL is the location of the MCU's SCM data block. This block has the tag T. MCOVL and contains the areas for LCM I/O buffers, SCM/LCM parity error recording, and PPU error recording. These areas start at T. MCOVL \((10700)+30\) in the released system. Therefore, MCOVL=10730.

10460 EEAXP is the address of the EEA exchange package. SMM sets this address into EEA in the LCM I/O exchange package that is used for LCM displays etc. The package tag is T. EEAXPA and is equal to 10460 in the released system.

5344 Optional parameter; add to ensure the proper functioning of the SY command.
SYKEY is the address to which SMM transfers the keyboard line when processing a SY command. The value of SYKEY is: (P. LCMCDCP)+W. LMCKJ1). Therefore, in the released system:
\[
\begin{aligned}
& \text { (P. LMCDCP) }=5320 \\
& \text { W. LMCKJ }=\quad 24 \\
& \hline \text { SYKEY }=5344
\end{aligned}
\]

SYKEY is an address in the LCM table; it may change if the fixed tables in ORL are altered in length. W. LMCKJ1 is defined in CTEXT MCL and should not change. Check PLMCDCP for a change if ORL is modified. Installation parameter changes may alter ORL or ORE.

10540 Optional parameter; add to ensure the proper functioning of the SY command.
SYEXCH is the address of the MCU interrupt exchange package called when executing a SY command. The package tag is IH. MCU; its value in the released system is 10540 . This package is copied to SCM0000 before interrupting the CPU during processing of the SY command.

MCOVL, EEAXP, and SYEXCH does not change unless the exchange package areas are moved in ORE.

\subsection*{3.2.4 MCU CARD READER NOTES}

If the MCU card reader fails to read a deck and there is a deadstart message displayed on the MCU console, press the clear key (CLR) on the keyboard to read the cards.

If the MCU card reader fails to read a deck after an aborted deadstart, type the following entry at the MCU keyboard to allow SMM to read the cards.
\(\begin{array}{lllll}\text { Type } & \text { EP } & 0 & 5 & 0 \\ \text { Press } & \text { CR } & & & \end{array}\)

If the MCU (or any other card reader) fails to read a deck for no apparent reason, check the panel inside the lower left door of the card reader for any circuit breakers that are improperly positioned.

\subsection*{3.3 7611-1 I/O STATION}

To refresh displays, type the RDON command and press CR.

\subsection*{3.3.1 PUNCH DEADSTART AND DUMP CARDS}

To punch a new STATDS card, type the following in STATION mode:
PUNCH SCDC P80B
To punch a new STADDS card, type the following in STATION mode:
PUNCH DSC P80B
To punch cards necessary to dump the \(7611-1\) station, type any of the following pertinent commands in STATION mode.

PUNCH DDUMP1 P80B To punch bootstrap card for PPU 1 (PRINTER1) loader

PUNCH DDUMP2 P80B To punch bootstrap card for PPU2 (PRINTER2) loader
PUNCH DDPRINT P80B To punch dump program deck
These cards (and assembly listings) may also be generated with the SYSDECK jobs STADCK and STADMP.

\subsection*{3.3.2 DUMP CPU AT 7611-1 I/O STATION}

Dump the contents of the CPU memory at the 7611-1 I/O Station using the following procedure.
1. Read the dump card deck into the system through the MCU card reader in AUTO mode. Directions to obtain this deck are in part IV, section 3.3.1.
2. Deadstart the 7611-1 I/O Station if it is not active (part II, section 3.2).
3. Deadstart PPU5

Type DS 5
Press CR
4. In STA TION mode, type CPU

Press CR
5. In CENTRAL mode, type ON

Press CR
This command causes the 7611-1 I/O Station to begin communicating with the CPU. The message DEAD DUMP PROGRAM RUNNING IN THE CPU is displayed under PPU5 on the station display console.
6. Enter the range of the dump with the following command.

Type DUMP mem sa la fname
Press CR
\begin{tabular}{ll} 
mem & S for SCM; L for LCM \\
sa & Starting address \\
la & Last address \\
fname & Pseudo file name used temporarily during the dump procedure
\end{tabular}

The range of core dumps should be limited to 100 K maximum per file. The size of the station mass storage disk and the expansion encountered in converting from binary to line printer code requires the 100 K maximum per file limit. No more than 300 K should be at the station at one time.

\subsection*{3.3.3 DUMP THE 7611-1 I/O STATION}
1. Deadstart the 7611-1 station using the bootstrap card for the printer to which the station is to be dumped. (Refer to part IV, section 3.3.1 for directions to obtain the bootstrap card needed.) If a dump of one of the printer drivers is desired, use the other printer for dumps. Deadstart procedures are in part II, section 3 .
2. Read the dump card deck at the \(7611-1\) card reader in AUTO mode.
3. With the selected printer in READY mode, press the SINGLE SPACE switch \(n\) times. \(n\) is the number of the 7611-1 PPU that is to be dumped. Do not press SINGLE SPACE at all for a dump of PPU0.
4. Press the PAGE EJECT switch to dump the PPU selected.
5. Repeat steps 3 and 4 for each PPU dump desired.
6. Change the printer status to not ready to terminate a PPU dump in progress; press PAGE EJECT several times to remove the dump from the printer after taking dumps.

The format of the dump is 9 columns wide. The first digit of the first column is the PPU number; the next 4 digits are the address of the first location of that row. The next 8 columns are the contents of the locations beginning with the address in column 1.

\subsection*{3.4 7611-2 MAGNETIC TAPE STATION}

\subsection*{3.4.1 DUMP 7611-2 MAGNETIC TAPE STATION}

The 7611-2 station dump program transfers the memory of the 7611-2 station PPU specified in the control cards into the FLPP so that it can then be dumped to the 6000 station or the \(7611-1\) station.
1. Punch the dump program from the MTSOPL using the follow ing deck.

MTS, CM57000, T500, CP76.
COMMENT.
STAGE(MTSOPL, MT, PRE, HI, VSN=MTSOPL, ST=MTS)
REWIND(MTSOPL)
UPDATE ( \(\mathrm{P}=\mathrm{MTSOPL}, \mathrm{Q}\) )
REWIND(COMPILE)
COMPASS(I=COMPILE, B=PUNCHB, D)
7/8/9
*IDENT MODS
installation changes
*COMPILE DMP
6/7/8/9
2. At the MCU card reader, read the following deck.

xx \(\quad\) FLPP number
y \(\quad\) Number of PPU that is to be dumped (0 to 5)
3. Dump the FLPP for each station PPU desired, using the dump procedures in the 7611-2 Magnetic Tape Station Operator's Guide.

To dump the entire station, dump the FLPP first, then the XPP (PPU0), and then the other PPUs in any order.

\subsection*{3.4.2 UNIT ASSIGNMENTS}

Unit assignments vary with assignments noted as follows.
Two 7629-2 controllers:
The first controller is on drivers 1 and 2 with logical units 0 through 7 .
The second controller is on drivers 3 and 4 with logical units 10 through 17.

One 7629-2 controller:
This controller is on drivers 1 and 2 with logical units 0 through 7.
One 7629-1 controller:
This controller is on driver 1 with logical units 0 through 7.
One 7629-2 controller and one 7629-1 controller:
The 7629-2 controller is on drivers 1 and 2 with logical units 0 through 7. The 7629-1 controller is on driver 3 with logical units 10 through 17.

Two 7629-1 controllers:
The first controller is on driver 1 with logical units 0 through 7.
The second controller is on driver 4 with logical units 10 through 17.
One 7629-2 and two 7629-1 controllers:
The 7629-2 controller is on drivers 1 and 2 with logical units 0 through 7. The first 7629-1 controller is on driver 3 with logical units 10 through 13. The second 7629-1 controller is on driver 4 with logical units 14 through 17.

\section*{or}

The first 7629-1 controller is on driver 1 with logical units 0 through 3. The second 7629-1 controller is on driver 2 with logical units 4 through 7. The 7629-2 controller is on drivers 3 and 4 with logical units 10 through 17.

Three 7629-1 controllers:
The first 7629-1 controller is on driver 1 with logical units 0 through 7. The second 7629-1 controller is on driver 2 with logical units 10 through 13. The third 7629-1 controller is on driver 3 with logical units 14 through 17.

\subsection*{3.5 6000 OR CYBER 70 SERIES SCOPE 3.4 STATION}

\subsection*{3.5.1 6000 STATION FLPP OPERATION}

Occasionally attempts to communicate between the 6000 station and SCOPE 2.0 may fail because of a problem with the 7683 satellite coupler. Usually the FLPP for the 6000 station will display one of the following messages (each described in detail in the SCOPE 3.4 Operator's Reference Manual) if a coupler problem occurs.
```

TOO MANY WORDS FROM COUPLER
NO INPUT WD FLAG FROM COUPLER DURING TRANSFER
REC FLAG RECVD DURING BLOCK INPUT FROM COUPLER
NO REC FLAG FROM COUPLER
WORD COUNT FROM STATION TOO LAARGE
END XMT, OUT WD FLAG TO COUPLER WONT DROP

```

If one of the preceding messages is displayed at the MCU, press CR. The FLPP attempts to communicate with the 6000 station. If the message reappears:
1. At the MCU :

Type HT ppu.
Press CR
2. Drop the station; at the 6000 console:

Type X.DROP
Press CR
Type X.GO
Press CR
3. Press MASTER CLEAR switch on the coupler (if the coupler has the software master clear FCO installed).
4. At the 6000 station:

Type X.STATCCP. Press CR
5. AT the MCU:
\[
\text { Type RUppu } 102
\]

Press CR
If the situation persists with either no communication at all or the FLPP continuing to display the coupler error message, write an EOR on the coupler.

\subsection*{3.5.2 DUIMP PROCEDURES}

The detailed procedures to dump the SCM, LCM, and FLPPs are in the SCOPE 3.4 Station Operator's Reference Manual.

\subsection*{3.6 SCOPE 2.0}

The SCOPE 2.0 operating system requires that SMMB be loaded and running in the MCU and that it be in CPU ON state in relation to the CPU (refer to the CN command in part IV, section 3.2.3). If this is not true, the SCOPE 2.0 operating system may hang, waiting for a SMM response, whenever any of the following conditions occur: SCM or LCM parity error; FLPP parity, error stop, or time-out error; or SMM request from on-line diagnostic overlays.
3.6.1 DUMP CONTENTS OF MASS STORAGE INTO LCM

During deadstart recovery (before typing the system source) the following command can be used to dump disk information into LCM starting at location 0.

The format of the command is:

DISK \(\wedge{ }^{\mathrm{cc}} \wedge^{u} \wedge^{\mathrm{tttt}, \text { ss, no }}\)
\begin{tabular}{ll} 
cc & Two-digit channel number of disk \\
uu & One-digit unit number of disk \\
tttt & One to four-digit number of track to be dumped; 0 to 37778 \\
ss & One to two-digit number of the first sector to be dumped; 0 to 478 \\
no & One to two-digit number indicating total number of sectors to be dumped; \\
& 1 to 508
\end{tabular}

Repeat this command until all necessary information is dumped. Each sector when dumped requires 10008 LCM locations.

Use any LCM station dump procedure to dump the contents of LCM.

\subsection*{3.6.2 PASSWRD CONTROL STATEMENT}

The PASSWRD control statement enables a job with the proper system password to perform special privileged functions relating to activities such as system maintenance. The privileged status continues until the end of the job. Only one job can have privileged status at one time.

The format of the PASSWRD statement is:
PASSWRD (key)
key Password key of 1 to 7 alphanumeric characters.

\subsection*{3.6.3 SYSLIBE CONTROL STATEMENT AND USE}

\section*{Control Statement Format}

The SYSLIBE control statement dynamically modifies the system libraries. A job using SYSLIBE to modify the libraries must have privileged status through use of the PASSWRD statement (part IV, section 3.6.2).

SYSLIBE adds or replaces a library in the system library table (SLT) for use by the relocatable loader in satisfying external symbols. The residence of the file being added or replaced is specified on the SYSLIBE control statement. The residence of an existing file in the SLT may be changed with SYSLIBE control statement.

The format of the SYSLIBE statement is:
\(\sqrt{\text { SYSLIBE(libname }=1 \mathrm{fn}, \mathrm{RES}=r \text { ) }}\)
libname Library name as it appears in the system library table (such as DBUGLIB, COBLIB, FTNLIB, and SRTLIB).
lfn Name of a permanent file attached to the job as a local closed file written in library format and containing code for the library. The file must have read only permission. If no lfn is specified, the residence of the file already specified for the library is changed by the RES parameter.
\begin{tabular}{ll} 
LCM & File is made resident in LCM \\
RMS & File is resident in system mass storage
\end{tabular}

The job is aborted if the library name (libname) is not found in the system library table.

The job is aborted if the file specified by lfn is empty.
The file specified by 1 fn is no longer available to the user when the SYSLIBE function is completed. Only the loader can then access the file.

The specification of system libraries is not recovered by deadstart. Thus, the SYSLIBE statement must be executed after every deadstart initialization or recovery. The best way to accomplish this is to create a job that attaches the required files and executes a SYSLIBE statement for each of them. After an initial deadstart, the SYSLIB job (a sample of which is on SYSDECK) should be entered into the input queue, and given a priority of 7777 B . Such a priority causes the job to return to the input queue with a priority of 0000 B upon job termination. As long as the job has a priority of zero it does not begin execution. During a recovery this job is recovered and may be rerun by entering a priority of 7777B.

\section*{Use}

To add system libraries to the SCOPE 2.0 system using the SYSLIBE procedure, use the following instructions.
1. Change or enter new libraries in the libraries section of OST. These symbols are defined with the TEQU macro. They must be in the same order and of the same length as the system library tables in ORL.
2. Insert the SLT entries in the libraries sections of ORL.
3. Reassemble the system.

The format of the SLT entry in ORL is:
\begin{tabular}{lll} 
T. SLTxxx & EQU & \(*\) \\
& VFD & \(56 / \mathrm{nL}\) libname \\
& VFD & \(4 / 1\) \\
& BSSZ & LE.SLT-1
\end{tabular}

The parameters are:
\begin{tabular}{ll}
xxx & Three-character mnemonic for library \\
n & Length of name (in characters) \\
libname & Name of library
\end{tabular}

Sample ORL entry:
\begin{tabular}{lll} 
T. SLTCOB & EQU & \(*\) \\
& VFD & \(56 / 6\) L COBLIB \\
& VFD & \(4 / 1\) \\
& BSSZ & LE.SLT-1
\end{tabular}

Sample OST entry:
T.SLTCOB TEQU *, LE.SLT

Sample SYSLIBE control statement format:
ATTACH(COBLIB7, COBLIB7, ID=SCOPE 2)
SYSLIBE(COBLIB=COBLIB7, RES=RMS)

\subsection*{3.6.4 DUMPQ AND LOADQ CONTROL STATEMENTS}

\section*{DUMPQ Description}

DUMPQ is a SCOPE 2.0 utility that saves all or part of the input and/or output queue. The result of the DUMPQ operation is a \(W\)-format file called DPQFILE (described at the end of this section) that can be disposed in the following ways:

Staged tape STAGE and/or LABEL statement or macro must precede DUMPQ control statement.

On-line tape \(\quad\) REQUEST and/or LABEL statement or macro must precede DUMPQ control statement.

Catalog DPQFILE may be cataloged at either the 6000 station or at central.

If none of these are used, DPQFILE defaults to an unblocked mass storage file and is lost in job termination.

DPQFILE is always rewound when opened and is always closed and rewound at the conclusion of the dump.

All other files used by DUMPQ are opened and closed without rewinding.
Unless specified by a REQUEST statement, DPQFILE is assumed to have A0 allocation style and TO transfer size.

DUMPQ Control Statement Format
DUMPQ(FT=type, \(\mathrm{ST}=\mathrm{id}, \mathrm{FC}=\) forms, \(\mathrm{L}=\) list, \(\mathrm{I}=\mathrm{in}, \mathrm{PF}=\mathrm{pfn}\) )
All parameters are optional and may appear in any order.
type \begin{tabular}{l} 
FT (file type) option that may have the following values. \\
omitted \\
I \begin{tabular}{l} 
Dump all files that fulfill the requirements of the other \\
options.
\end{tabular} \\
O Dump all input files. \\
PR \\
P1
\end{tabular} \begin{tabular}{l} 
Dump all output files; this includes all files of PR, P1, \\
and P2 disposition.
\end{tabular}
Dump only files of PR disposition.
Dump only files of P1 disposition.

Dump only files of P2 disposition.
\(P \quad\) Dump all punch files; this includes all the disposition mnemonics that follow.

PU Dump only files of PU disposition.
\(\mathrm{PB} \quad\) Dump only files of PB disposition.
P8 Dump only files of P8 disposition.
FR Dump only files of FR disposition.
FL Dump only files of FL disposition.
HR Dump only files of HR disposition.
HL Dump only files of HL disposition.
PT Dump only files of PT disposition.

ST (station) option; may have the following values.
omitted Dump files regardless of station id.
\(\operatorname{ggg}(t t t) \quad\) Dump files from station \(g g g(t t t)\).
ggg Station id
ttt Terminal id
forms \(\quad \mathrm{FC}\) (forms code) option; may have the following values.
omitted Dump files regardless of forms code.
alphanum Dump only those files of indicated forms code; alphanum is a maximum of 12 bits in length ( 2 display coded characters or from 1 to 4 octal digits).

Specification of the FC parameter overrides the FT specification unless FT=I, which is fatal.

L (list) option; may have the following values.
omitted Full listing appears on file OUTPUT.
\(\operatorname{lfn}_{1} \quad\) Full listing appears on file specified by \(\operatorname{lfn}_{1}\).
0
Partial listing appears on file OUTPUT.
The full list option includes the following information for each file dumped; file name, station id, file type, priority, forms code, allocation style, and file length. The partial list option contains only the file names dumped.
omitted Dump files regardless of file name.
\begin{tabular}{ll} 
I & \begin{tabular}{l} 
Read file INPUT for list of file names to be selectively \\
dumped from DPQFILE.
\end{tabular} \\
\(\operatorname{lfn}_{2} \quad\)\begin{tabular}{l} 
Read file lfn \(_{2}\) for list of file names to be selectively \\
dumped to DPQFILE.
\end{tabular}
\end{tabular}

The file names appearing on file INPUT or lfn2 may have leading blanks, which are ignored. However, all blanks after the first nonblank character are converted to zeros. The file names may not exceed seven characters.
pfn PFN (permanent file name) option; may have the following values.
omitted If a system failure occurs during the DUMPQ, the result of the dump is lost.
pfn A unique 1 to 7 character permanent file name. A permanent file is created and expanded as each file in an \(I / O\) queue is dumped.

\section*{DUMPQ Operating Procedures}

When dumping input queues after \(D U M P Q\) begins execution, type JCB, 0 . This ensures that input files are not executed during the dump.

To dump output queues, either log out the station to which the output files are to be sent or use the OFFST command to eliminate sending output files to the station.

When DUMPQ cannot find files to be dumped, the message DUMP - LOOKING FOR FILES TYPE DROP TO DISCONTINUE appears. If the dump is complete, drop the DUMPQ job using the DROP statement. The job proceeds to an EXIT statement, if one is present, for further processing of DPQFILE.

The DUMPQ job should never be killed. This causes files that were to be dumped to remain in a locked status until another DUMPQ is attempted. That is, INPUT files are not executed and OUTPUT files are not spooled to the station.

LOADQ Description
LOADQ is a SCOPE 2.0 utility that restores all or part of the input and/or output queues. LOADQ requires as input a W -format file called DPQFILE.

DPQFILE is always rewound when opened and is always closed and rewound at the conclusion of the load. All other files used by LOADQ are opened and closed without rewind.

Unless specified in a REQUEST statement, DPQFILE is assumed to have A0 allocation style and T0 transfer.

LOADQ Control Statement Format

forms \(\quad\) FC (forms code) option; may have the following values.
omitted Load files regardless of forms code.
alphanum Load only those files of indicated forms code; alphanum is a maximum of 12 bits in length ( 2 display coded characters or from 1 to 4 octal digits).

FC specification overrides the FT parameter.
in
I (input) option; may have the following values.
omitted Load files regardless of file name.
I Read file INPUT for list of file names to be selectively loaded from DPQFILE.
\(\operatorname{lfn}_{2} \quad\) Read file lfn \(_{2}\) for list of file names to be selectively loaded from DPQFILE.

The file names appearing on file INPUT or lfn2 may have leading blanks, which are ignored. However, all blanks after the first nonblank character are converted to zeros. The file names may not exceed seven characters.

\section*{DUMPQ Examples}

The following is an example of a \(D U M P Q\) job that dumps the input files belonging to station ggg to an on-line tape.

SAVE, CM4000, T100, MT01.
REQUEST(DPQFILE, MT)
\(\operatorname{DUMPQ}(F T=I, S T=G G G, L=0)\)
6/7/8/9
The following is an example of a DUMPQ job that dumps the output files that have P2 disposition and PK forms code belonging to station CDC. Following the dump, DPQFILE is cataloged at station CDC and at central.

SAVE, CM4000, T100.
DUMPQ(ST=CDC, FT=P2,FC=PK, L=LIST)
EXIT.
CATALOG(DPQFILE, OU TPUTQ,ST=CDC)
CATALOG(DPQFILE, OUTPUTQ)
6/7/8/9

\section*{LOADQ Examples}

The following is an example of a LOADQ job that restores the input queue of station AAA from a staged tape.

RESTORE, CM4000, T100.
STAGE(DPQFILE, PRE, ST=AAA)
LOADQ(ST=AAA, FT=I)
6/7/8/9

The following is an example of a LOADQ job that selectively restores the output queue of station QED. DPQFILE is a blocked permanent file; FX0002L and FTNXOLG are the files to be loaded.

RESTORE, CM4000, T100.
FILE(DPQFILE, RT=W, BT=I)
ATTACH(DPQFILE, OUTPUTQ)
LOADQ(FT=O, ST=QED, L=LIST, I)
7/8/9
FX0002L
FTNXOLG
6/7/8/9
DUMPQ and LOADQ Examples
The following jobs save and restore both the SCOPE 2.0 input and output queues.

SAVE, CM4000, T100.
STAGE(DPQFILE, POST, VSN=DP1)
DUMPQ
6/7/8/9
RESTORE, CM4000, T100. restores SCOPE 2.0 I/O queues
dumps SCOPE 2.0 I/O queues

LOADQ.
6/7/8/9

\section*{DUMPQ and LOADQ Error Handling}

When an error occurs while writing a file that is being dumped, \(D U M P Q\) pauses for operator intervention. If the operator chooses to continue, the file in error is discarded and dumping continues.

When an error occurs while reading DPQFILE, LOADQ determines if DPQFILE is \(W\) formatted and I blocked. If not, loading terminates at the point of the error. If So, LOADQ pauses for operator intervention. If the operator chooses to continue, LOADQ attempts to continue loading with the next file.

DUMPQ and LOADQ File Format
When a file is jumped to DPQFILE, the file is read with \(R T=U\) and written to DPQFILE with \(R T=W\). Thus, the original \(W\) records are preserved and another set of \(W\) records is superimposed on all files dumped.

Each file dumped to DPQFILE is preceded by a \(W\) record that describes the file attributes. Following this header record is a set of \(W\) records of length 1000 B that contains the data for the dumped file. Following the file data is an end-of-section and a trailing \(W\) record used for data verification.

Since DPQFILE consists of two levels of \(W\) records, the file itself cannot be directly printed. DPQFILE must be read by LOADQ, the output queue rebuilt, and the files sent to the station before proper results can be expected.


Figure IV-3.1. DUMPQ/LOADQ File Format


Figure IV-3.2. DUMPQ/LOADQ File Header Record Format
\begin{tabular}{|c|}
\hline DUMPQ SEQUENCE NUMBER \\
\hline LENGTH OF FILE \\
\hline
\end{tabular}

Figure IV-3.3. DUMPQ/LOADQ File Check Record Format

\subsection*{3.6.5 SYSTEM MASS STORAGE FORMAT}

The following figure illustrates the contents (by track) of the system mass storage file device following system installation. Note that there are fixed areas in the beginning, middle, and end of the file that are reserved for preventive maintenance (diagnostic testing). The Permanent File Directory and Catalog (PFD and PFC) positions may vary and are located by position pointers in the volume label group. Likewise, the beginning of the system library file image may vary. The remainder of mass storage by sectors is indicated as allocatable through the Device Allocation Map or flawed (and not allocatable) through the Track Flaw Table.
\begin{tabular}{|c|c|}
\hline TRACK \(\quad\) TRACK 17 & RESERVED FOR PREVENTIVE MAINTENANCE USE \\
\hline TRACK 20\&2l & VOLUME LABEL GROUP \\
\hline TRACK 22 & PERMANENT FILE DIRECTORY \{PFD\} \{LENGTH DEPENDS ON PERMENENT FILE INSTALLATION PARAMETERSJ. \\
\hline TRACK 11,5 & AVAILABLE FOR ALLOCATION \\
\hline TRACK bll & PERMANENT FILE CATALOG \{PFC\} \{LENGTH DEPENDENT ON PERMAMANT FILE PARAMETERSJ \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
TRACK 2ll \\
TRACK 2le
\end{tabular}} & AVAILABLE FOR ALLOCATION \\
\hline & SYSTEM LIBRARY FILE \{ALLOCATED AS REQUIRED\} \\
\hline & AVAILABLE FOR ALLOCATION \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
TRACK l77ヨ \\
TRACK l774 \\
TRACK 200? \\
TRACK 2010
\end{tabular}} & RESERVED FOR PREVENTIVE MAINTENANCE USE \\
\hline & AVAILABLE FOR ALLOCATION \\
\hline TRACK 3763
TRACK 3764
TRACK 3777 & RESERVED FOR PREVENTIVE MAINTENANCE USE \\
\hline TRACK 377? & \\
\hline
\end{tabular}

Figure IV-3.4. System Mass Storage File Allocation After Deadstart
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{3}{*}{SECTOR 0} & VOLUME LABEL INFORMATION & \multirow[t]{2}{*}{\begin{tabular}{l}
WORD 0 \\
WORD 4 WORD 5
\end{tabular}} \\
\hline & \begin{tabular}{ll} 
UNUSED & VOLTABL OFFSET IN \\
VOLUME LABEL GROUP
\end{tabular} & \\
\hline & \begin{tabular}{ll} 
SECTOR ADDRESS OF & SECTOR ADDRESS OF \\
TRACK FLAW TABLE & BEVICE ALLOCATION MAP
\end{tabular} & WORD 6 \\
\hline through \(\{\) & \begin{tabular}{ll} 
SECTOR ADDRESS OF & SECTOR ADDRESS OF \\
PERMANENT FILE DIR. & PERMANENT FILE CATALOG
\end{tabular} & \multirow[t]{7}{*}{WORD 7} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { SECTOR N } \\
& \text { (AS } \\
& \text { REQU IRED) }
\end{aligned}
\]} & SYSTEM
CODE & \\
\hline & DEADSTART MODULE 1 CODE (DS1) & \\
\hline & UNUSED TO END OF SECTOR \(N\) & \\
\hline SECTOR \(N+1\) & TRACK FLAW TABLE & \\
\hline \multirow[t]{2}{*}{SECTOR \(N+2\)} & DEVICE ALLOCATION MAP & \\
\hline & UNUSED TO END OF TRACK 21 & \\
\hline
\end{tabular}

Figure IV-3.5. Volume Label Group (Track 20 and 21)

\subsection*{3.6.6 SYSTEM DEBUG AIDS}

SCOPE 2.0 contains validity checks which are described as follows. However, they are not standard features and may be modified or deleted at any time if necessary.

The locations defined in LCM (ORL) that activate or deactivate the debug code can be set in any of the following ways:

By assembling ORL with the debug flag locations set when the system is generated.
By using a STORE command in the deadstart reply deck during deadstart initialization.

By typing a STORE command during deadstart recovery.
By manually setting the contents of the location from the MCU console with the EL command after deadstart.

SCOPE 2.0 validity checks are as follows.
1. The first L. ZERO (1000B) locations in LCM are defined as zero by the operating system (ORL). The job supervisor resident loader checks the first \(n\) words of LCM ( \(n\) is specified by location T. LCMCHK) to ensure that no system overlay has written into low LCM. This check occurs before each job supervisor overlay is loaded for a CALL or GOTO; the check does not occur when a job supervisor overlay is reloaded following a RETURN. T. LCMCHK is described in part III, section 6.2.13.
2. All LCM buffers allocated to a job must subsequently be released by a job; otherwise, there is a buffer release problem that causes LCM buffers to be lost to the system. If the buffer check code detects a problem (such as a buffer allocated to a JCB and that job should not have buffers allocated) a system halt (crash) occurs through IH. DMP. The LCM location T. BUFCHK is a flag word indicating whether or not the buffer check code is to be executed. Refer to part III, section 6.2.13 for description of T.BUFCHK.
T. BUFCHK also controls the execution of code to ensure that all buffers allocated to the file router are known to the file router, (that is, contained in PRES).

If T. BUFCHK is set to 1 when deadstart completes, the file router buffer release code is activated. Setting T. BUFCHK to 0 inhibits execution of the file router buffer release checks. However, resetting T. BUFCHK to 1 when the system is executing does not activate the file router buffer release checks.
3. T.SYSABT in LCM specifies the conditions under which a system error results in a system halt (crash). In prereleases of SCOPE 2.0, the SCM location 13176B, (HALTFLG), was used in a similar way. T. SYSABT is described in part III, section 6.2.13.
4. A user program can dump the job supervisor LCM area by executing the DMPJSL control statement.
5. A user program can dump the JCB (job control block) and SFT (system file table entry) for the job by executing the DMPJT control statement. There are no parameters.
6. The deck queue manager (OE. DQM) halts the system on an illegal PRE (system table) chain.
7. The record manager (OS. CFL) halts the system on an illegal PRE (system table) address.

\subsection*{3.6.7 DESCRIPTION OF DEADSTART INITIALIZATION AND RECOVERY}

SCOPE 2.0 deadstart and recovery are accomplished by one program. This program exists in the two modules DS1 and DS2. It defines the system equipment, initializes the central system and the FLPPs, and synchronizes the programs running in the system hardware. This section describes the functions of DS1 and DS2 during deadstart and recovery and is not part of the installation procedure.

The DS1 binary module is loaded into SCM by the SCPSID deck from the MCU card reader at system deadstart time, or it is loaded from the system mass storage device via a special bootstrap driver at system recovery time.

DS1 performs the following functions.
1. Configures SCOPE 2.0 according to system hardware.
2. Obtains the system library from tape (SCPLIB) that is mounted either on a 7611-1, 7611-2, 6000, or on-line tape unit (through a controller to a FLPP), with a common interface being used by DS1 to read the tape (tape format is that of a system library file copied to tape with W -format records and C blocking).
3. Establishes this system library as a permanent file on the system mass storage device and the system directory in LCM.
4. Locates the system library entry for DS2, reads DS2 from the system mass storage device to SCM, and passes control to DS2.

DS2
DS2 is a partition on the system library. After DS1 establishes the system library as a permanent file in system mass storage, it locates the system library entry for DS2, reads DS2 to SCM, and then passes control to DS2. The AUTO command module on the system library controls the execution of DS2.

DS2 performs the following functions during installation.
1. Interfaces with SMM (the MCU resident program) to interpret the replies in the deadstart reply deck (part of SCPSID deck) and any replies the operator enters through the MCU console
2. Constructs LCM and SCM resident programs
3. Establishes LCM system buffers
4. Builds overlay libraries and directories
5. Deadstarts and loads the FLPPs indicated by the CHQ card when applicable
6. Creates the device allocation maps (DAMs)
7. Creates or recovers (operator option) the permanent file directory (PFD), the permanent file catalog (PFC), and the track flaw tables for each mass storage device on the system disk
8. Formats and writes the volume label groups to system disk
9. Passes control to SCOPE 2.0

The purpose of system recovery is to reestablish the operating system after system failure. Recovery of the system is accomplished by the two phases of execution DS1 and DS2. DS1 is given control after it is read from system mass storage by the special bootstrap driver supplied by SMM.

When the RSxx, addr, c, d command is typed, the system response is:
1. SMM transfers a system disk bootstrap driver from its own field length in the MCU to the FLPP specified by \(x x\).
2. This bootstrap driver transfers the first sector of the deadstart volume label group from the disk address specified by addr to location 0 of the specified FLPP. It contains a recovery disk driver and part of DS1.
3. The bootstrap driver transfers control to the recovery disk driver program.
4. The recovery disk driver requests SMM to transfer the DS1 information from the FLPP to location 0 in SCM.
5. Then the recovery disk driver requests SMM to transfer the rest of the volume label group (which contains the rest of DS1 and the standard system disk driver) from system mass storage to SCM.
6. The deadstart disk driver requests SMM to drop a deadstart signal on the CPU. This initiates an exchange jump to location 0 which is the location of DS1.

During the recovery process, various displays may appear on the MCU console. These displays along with possible operator replies are listed in part II, section 6.3 in the order in which they occur. All replies must be entered through the MCU console during deadstart recovery.

Using these replies, one of up to five cycles of a system library permanent file may be indicated as the system to recover, or the system may be specified as residing on tape as during initialization. The system hardware may be defined as during deadstart. Permanent files and I/O queues may be reestablished at the option of the system operator.

The second part of recovery, DS2, functions the same as in deadstart.
Completion of system recovery leaves a running SCOPE 2.0 operating system in the CPU and FLPPs.

\subsection*{3.6.8 OVERLAY NAMING AND NUMBERING CONVENTIONS}

To add an overlay to the system:
1. Find an available overlay number in the appropriate level, job supervisor, E1, E2, E3, IH.
2. In deck OST equate the overlay name to a five digit index having the following format.
x y zzz
zzz Overlay number; 0 through 777B
y
Overlay level
\begin{tabular}{cll} 
Level Number & \begin{tabular}{l} 
Level of System \\
0
\end{tabular} & \begin{tabular}{l} 
Job supervisor \\
E1, executive \\
level 1
\end{tabular} \\
2 & \begin{tabular}{l} 
E2, executive \\
level 2
\end{tabular} & OU., OS. \\
3 & \begin{tabular}{l} 
E3, executive \\
level 3 \\
Pseudo channel \\
interrupt handler
\end{tabular} & OE. \\
7 & OE.
\end{tabular}
\(\mathrm{x} \quad\) Entry point
\(\begin{array}{ll}0 & \text { Main overlay } \\ 1 \text { through } 7 & \text { Alternate entry points }\end{array}\)
OU. overlays can be called by both the user and system overlays. OS. overlays can be called by the system only. OU. overlay names must be the main overlay. A user cannot call an alternate entry point.

Overlays reserved for the user are as follows.
Job supervisor 740B through 777B
All others 340B through 377B
(E1, E2, E3, IH)

\subsection*{3.6.9 RESTARTING THE ON-LINE TAPE FLPP}

If an on-line tape job hangs the system because a unit drops ready status, it is possible to abort the job using the following procedure.
1. Ready the unit.
2. Restart the on-line tape FLPP at location 104B

Type RUxx, 104 ( \(x x\) is the FLPP number)
Press CR

\subsection*{3.7 COMPASS 2.0}

None.

\subsection*{3.8 FORTRAN EXTENDED 2.0}

None.

\subsection*{3.9 FORTRAN RUN 2.0}

None.

\subsection*{3.10 FORTRAN OBJECT TIME ROUTINES}

None.

\subsection*{3.11 COBOL 1.0}

None.

\subsection*{3.12 SORT/MERGE 1.0}

None.

\subsection*{3.13 DIAGNOSTIC CONTROL PROGRAM}

The job calling the diagnostic control program must have at least 10 K of LCM. If more is allocated, DCP verifies the proper functioning of that LCM.

\section*{INDEX}

ACCOUNT deck III-1-12
ACCOUNT station parameter III-6-11
Allocatable unit size parameter III-6-8
ANALYZE III-1-3, III-6-32 through 37
Control statement III-6-26
Dependency I-3-4
Function coding III-6-33
Function identification III-6-32
List subfunction III-6-36
Released status I-1-1
APF parameter III-6-7
ARHOPS option III-1-11
Assign SCOPE 3.4 station II-5-2
Attach permanent file table parameter
III-6-7
AUDIT I-3-2
AUTO command module
Deadstart initialization II-6-24
Deadstart recovery II-6-35
In flow chart II-6-43, 48
Listing III-1-18

Back-up materials
Full description III-1-15
Summary I-3-1, 3; III-1-3
Base system materials
Defined III-1-3
Procedure, detailed III-1-12
Procedure, summary I-3-1, 2
Batch installation environment defined III-1-3
Binaries, deck to generate III-1-2
Binary cards
Refer to individual deck name
Binary copy job III-1-11
Refer to product xxxINS job
Binary permanent files III-1-4
Buffer areas
Hardware I/O, length II-6-14
I/O III-6-4, 13
LCM, SCM modification II-6-13
Refer to library buffers System Information File

Carriage return convention II-6-38
CATALOG cards III-1-12, 17
Catalog files decks III-1-10
Central communication II-6-2
Channel queue table (CHQ)
Description II-6-14
Entry format II-6-15
Flowchart II-6-39, 46
Recovery II-6-1, 30, 32
Channels
FLPP configuration II-6-15
FLPP function code II-6-14
Magnetic tape station parameters
III-4-4; III-6-15
Refer to the station communication channel
Station initiate II-6-27, 36
System library II-6-19
Unused designation II-6-17
CHCH table III-4-3
CHQ card
Magnetic tape station II-4-2
Recovery II-6-1
Refer to the channel queue table
CM2GEN III-7-1
CM2INS III-7-1
CM2MOD III-1-6; III-7-1
Listing III-7-4
CM2PSR III-1-2
CM2REL III-7-1
Tape I-2-3
CM2USR III-7-1
CMPBIN partition I-2-3
CMPOPL partition I-2-3
CN command
Defined IV-3-2
Use II-2-2; II-6-29
COBBIN partition I-2-4
COBGEN III-11-1
Dependency III-1-13
COBINS III-11-1
Listing III-11-3
COBLIB I-3-4
Create III-1-13
Dependency I-3-4
COBMOD III-1-6; III-11-1
Dependency III-1-13
Listing III-11-5

COBOL I-1-1
Configuration parameters III-11-2
Control card parameter III-11-2
Dependencies I-3-4; III-11-1
Installation III-1-13
Installation requirements III-11-1
Modification materials III-11-1
Release materials I-2-4
Representative decks III-11-2
COBOPL partition \(\mathrm{I}-2-4\)
COBPSR III-1-2
COBREL
Partition \(\mathrm{I}-2-4\)
Tape I-2-4; III-11-1
COBUSR III-11-1
Command module II-6-24, 34
Refer to AUTO
Common decks listing III-1-18
COMPASS I-3-1; III-1-3, 7
Binaries III-1-5
Catalog I-3-2
Installation requirements III-7-1
Location in release materials I-2-2
Modification materials III-7-1
Release format I-1-1; I-2-3
Representative decks III-7-1
Configuration parameters
Refer to each product description
Refer to parameters, configuration
Configuration, typical II-6-18
Copy materials procedure I-3-1; III-1-11, 15
Core image binary, catalog III-1-13
Refer to the xxxLEL jobs
Core image parameter III-6-8
Corrections III-1-1
Refer to MODPL
CPL deck I-2-3; II-6-4
CPU channels
Refer to channels
xxxCPY job
Description III-1-11
Use III-1-15
CROSS job III-1-16
Cross reference listing III-1-16
CT73 program I-2-5
Customer modifications
Add I-3-3; III-1-14
Decks III-1-10
Installation III-1-3, 11
Option III-1-10
Refer to the xxxUSR job
USERMODPL III-1-6
Cycle
Refer to the permanent file

Data base update jobs III-1-18
Date request
Description II-6-27
Flowchart sequence II-6-44, 51
Parameter III-6-12
Recovery II-6-37
Dayfile account summary parameters
III-6-4, 11
FORTRAN parameter III-8-2
DBLIST job III-1-18
DBUGBIN partition I-2-2
DBUGINS job I-3-3; III-6-1
List III-6-18
Use III-1-14
DBUGLIB I-3-4
Cataloged I-3-3; III-1-14
Release materials I-2-2
xxxDCK III-1-11
DCP program I-2-5
Refer to the diagnostic control package
Deadstart
Defined II-6-1
Deadstart complete message II-6-28
Deadstart control parameter III-6-12
Deadstart deck, create III-1-11
Refer to xxxDCK
DS1
DS2
Deadstart dump deck, I/O station III-3-1
Deadstart initialization
Defined II-6-1; IV-3-20
Flowchart II-6-38
Messages IV-2-7
Deadstart recovery
Defined II-6-1, 29; IV-3-20, 22
Flow chart II-6-45
Messages IV-2-7
Options II-6-1
Deadstart replies and requests II-6-3;
III-1-7
Description II-6-2, 7, 10
Sample decks II-6-7, 8, 9, 10
Deadstart tape
Creation III-1-13
Refer to SCPLIB
Debug aids IV-3-19; III-6-26
Parameters III-6-2
Deck queue manager IV-3-20
DECNUM macro III-6-28
Decks
Base system I-3-2; III-1-7
Copy jobs III-1-7, 10, 16
Refer to
Generation decks
Individual decks
Listings decks
Maintenance decks
SYSDECKS
Verification decks
\$DEFINE options III-1-10
*DEFINE, STATION card II-5-1
Device allocation map (DAM)
Flow update II-6-21
Mass storage location IV-3-18, 19
Device management configuration parameter III-6-5
Device type CHQ II-6-15 EST II-6-11, 12
DIABIN partition \(\mathrm{I}-2-5\)
DIAGEN III-13-1
Diagnostic Control Package (DCP) I-3-2;
III-1-3
Binaries III-1-5
Configuration parameters III-13-1, 2
Installation requirements III-13-1
Modification materials III-13-1
Release materials I-1-1; I-2-2, 5
Representative decks III-13-2
DIAINS III-13-2 Listing III-13-3
DIAMOD III-1-6; III-13-2
Listing III-13-5
DIAOPL partition I-2-5
DIAPSR III-1-2
DIAREL tape I-2-5; III-13-1
DIAUSR III-13-2
Disk
Address of volume label group II-6-20
Refer to source request
DISK command IV-3-8
Disk storage subsystem (7638) II-6-18
DISPLAY macro III-6-28
DMPJSL control statement IV-3-20
DMPJT control statement IV-3-20
DPCOPLS job III-1-15
DPIDPRD job III-1-4, 15; IV-2-2
DPN table III-4-5
DPOSMOD job III-1-15
DPOSOPL job III-1-15
DPP table III-4-2
DPQ file IV-3-10, 15
DPTODLS job III-1-15
DS1 deck I-2-1; II-6-3, 6; III-1-7
Description IV-3-20, 21, 22
Location on mass storage IV-3-19
Structure II-6-5, 7
DS2 deck
AUTO II-6-24
Description IV-3-20, 21, 22
DSBCPY job III-1-16; III-6-1
DSC deck parameters I-2-3; II-6-4;
III-6-15
DSK deck I-2-3; II-6-4
DSLCPY job III-1-15
DUMP command IV-3-4

Dump procedure
CPU at I/O station IV-3-3, 4
FLPP II-6-30
LCM II-6-30
Magnetic tape station IV-3-4
Modifications III-4-4
Mass storage to LCM IV-3-7
SCM II-6-30
DUMPF
Command III-1-4
Job III-1-15
Tape III-1-6
Copy III-1-15
Create III-1-10
DUMPF/LOADPF tape III-1-3
Copy III-1-15
DUMPQ control statement IV-3-10
Examples IV-3-14, 15
File format IV-3-15, 16, 17
Operating procedure IV-3-12

Enter disk address request II-6-20
Enter flaw request
Refer to the flaw request
Equipment settings II-6-11
Refer to equipment status table
Equipment status table
Add entries II-6-12
Delete entries II-6-12
Description II-6-11
Flowchart II-6-39, 45
Recovery II-6-1, 30
ERROR message II-6-11
EST
Refer to the equipment status table
EXTEND option III-1-10, 11, 15
Extended, FORTRAN
Refer to FORTRAN Extended
External priority parameter III-6-4
EXIT deck III-1-12

Failure, system
Refer to deadstart recovery
System hang
FAT II-6-13
FCL
Refer to FORTRAN object time routines
FCLMOD III-1-6
FCLOPL
Description III-1-14
Partition I-2-4
Tape I-2-4; I-3-3; III-10-1

FCO levels IV-1-1
FDS program I-2-2; II-4-1, 4
Field length
In flow chart II-6-39, 45
Refer to LCM, SCM
FIELD macro III-6-28
Flaw request
Description II-6-21
Flow chart II-6-40, 41, 42, 43, 47, 48, 49, 50
Initialization II-6-23, 25
Recovery II-6-33, 34, 35
Table mass storage location IV-3-18, 19
Table recovery II-6-1
FLIBGEN III-10-1
Listing III-10-5
FLIBGEN job I-3-3; III-1-14
FLL
Recovery II-6-1
Refer to LCM
Flowcharts
Deadstart initialization II-6-38, 39
Deadstart recovery II-6-38, 45
Installation \(\mathrm{I}-3-5\)
FLPP II-6-14
Channel settings II-6-11, 12, 15, 17, 30
Requirements IV-1-1
FLPP binary decks I-2-3; II-6-3; III-1-7
Magnetic tape station III-6-15
On-line tape IV-3-23
Recovery II-6-32
Reload procedure II-6-32; IV-2-14
Structure II-6-4, 8
FLS
Recovery II-6-1
Refer to SCM
FN2GEN III-8-1
FN2INS III-8-1
Listing III-8-3
FN2MOD III-1-6; III-8-1
Listing III-8-5
FN2PSR III-1-2
FN2REL I-2-3; III-8-1
FN2USR III-8-1
FORTRAN Extended I-1-1; III-1-7
Code listing III-1-18
Configuration parameters III-8-1, 2
Dependencies III-1-16; III-6-2
Installation requirements III-8-1
Modification materials III-8-1
Release materials I-2-3
Representative decks III-8-2
FORTRAN object time routines
Configuration parameters III-10-1, 2
Decks III-10-2
Dependencies I-3-4; III-6-2

FCLMOD III-1-6
Installation requirements III-10-1
Modification materials III-10-1
Permanent files I-3-2
Production release materials III-1-14
Release materials I-2-4
Update I-3-3; III-1-5
FORTRAN Run I-1-1
Configuration parameters III-9-1, 2
Installation requirements III-9-1
Modification materials III-9-1
Release materials I-2-3
Representative decks III-9-2
FTNBIN partition I-2-3
FTNIOLIB permanent file III-1-14; III-6-1, 2
FTNLIB X job I-3-3; III-10-1
FTNLIB7 job I-3-3; III-1-14; III-10-1
Listing III-10-3
FTNOPL partition I-2-3
FTNVOL job III-1-18
FUNARY array III-6-32, 34
FUNCNT III-6-33
FUNCOM III-6-35
FUNQAL III-6-32, 33
FUNSEQ III-6-32, 33, 34

GCM II-6-25, 35
xxxGEN job I-3-3; III-1-15, 17
Description III-1-11
List option III-1-10
Generation decks III-1-13
Configure system III-1-2
Modify options III-1-10
Procedure III-1-3
Refer to xxxGEN job
GO request II-6-24, 34, 41, 43, 48

Hardware error processing messages IV-2-13
Hardware requirements IV-1-1

ID feature III-1-4
Information routing parameters III-6-8 Initial system

Refer to base system
Initialization
Refer to deadstart initialization
Input/output
Refer to I/O
xxxINS job I-3-3; III-1-13, 15
Description III-1-11
Installation decks III-1-10
Refer to SYSDECKS
Installation messages IV-2-1
Installation parameters I-3-1
Refer to parameters
Installation procedure III-1-3
Integer multiple parameter III-13-1 I/O

Buffer parameter III-6-13
Error message II-6-21
Rate parameter III-6-2
I/O Station (7611-1) I-1-1
Cautions IV-3-3
Central communication \(\mathrm{II}-6-2\)
CHQ entry II-6-15
Configuration parameters III-3-1
Copy decks III-1-16
Copy tapes III-1-15
Create deadstart cards IV-3-3
Create dump deck III-3-1; IV-3-3
Dependencies III-3-1
Dump procedures IV-3-3, 4
Installation requirements III-3-1
Messages IV-2-7
Modification materials III-3-1
Procedures
\[
\begin{aligned}
& \text { Disk II-3-2 } \\
& \text { Dump IV-3-3, } 4 \\
& \text { Login II-3-4 } \\
& \text { SCPLIB II-3-3 } \\
& \text { Tape II-3-1 }
\end{aligned}
\]

Release description I-2-1
Representative decks III-3-1
Tape defaults II-6-2
Typical configuration II-6-18
IPARAMS III-6-2
IP. LCMSI II-6-14; III-6-12
IP. LIB II-6-13; III-6-12
IP. MAXBJ III-6-13
IP. SCIMSI II-6-14; III-6-12
IP.SPFTH III-6-13
IP.SYS II-6-13; III-6-12
IP. YMD II-6-27; III-6-12

JCB
Assign II-6-3
Dump IV-3-20
Job
Aging parameter III-6-3
Copy materials III-1-15
Management parameters III-6-3
Time slice parameter III-6-3

Job card
Default time limit III-6-4
External priority III-6-4
Magnetic tape parameter III-1-11
Rnnn III-6-4
JSLCM III-6-11

LCM
Buffer area parameter III-12-2
Field length III-6-13
COBOL III-11-2
EST II-6-11
Modification II-6-14
Parity error IV-2-13
Recovery II-6-30
Size parameter III-6-12
Weight parameter III-6-2
LDIDPRD job I-3-2; II-6-3; III-1-12
xxxLEL jobs III-1-4, 13
LIB reply II-6-1, 13
LIBEDT III-1-3
Dependency I-3-4
Release format I-1-1
Library buffers
EST display II-6-11
Flowchart II-6-39, 45
Modify number II-6-13
Parameter III-6-12
Library file
Location on mass storage IV-3-18
Lines per page parameter III-8-2; III-9-2 LIST

Function III-6-36, 37
Option III-1-10, 11, 17
LISTER
Macro III-6-36, 37
Program III-1-12
Listings III-1-10
Decks to list III-1-3
Refer to CROSS
Maintenance listings
Source listings
Load file rewind parameter III-6-8
Loader
Configuration parameters III-6-8
Release format I-1-1
LOADPF/DUMPF
Procedure I-3-2
Refer to DUMPF
Tape I-3-1; III-1-4, 5
LOADQ
Control card IV-3-13
Description IV-3-12
Example IV-3-14, 15
File format IV-3-15, 16, 17
\begin{tabular}{|c|}
\hline Login stations II-6-2, 28 \\
\hline Magnetic tape station II-4-4 \\
\hline SCOPE 3.4 station II-5-1 \\
\hline L. ZERO parameter III-6-13, 14; IV-3-20 \\
\hline Maintenance information \(\mathrm{I}-3-1,3\); III-1-16 \\
\hline Maintenance listings generation III-1-3, 10, 16 \\
\hline Maintenance package I-1-1 \\
\hline Description III-1-1 \\
\hline Installation messages IV-2-1 \\
\hline Permanent files III-1-4 \\
\hline Refer to SC0OPSMOD \\
\hline Magnetic tape equipment \\
\hline CHQ II-6-15 \\
\hline EST II-6-12 \\
\hline Refer to tapes \\
\hline Magnetic tape station I-1-1 \\
\hline Configuration parameters III-4-1 \\
\hline Copy deadstart tapes III-1-15 \\
\hline Deadstart II-4-1 \\
\hline DSC, FLPP deck III-6-15 \\
\hline Dump FLPP IV-3-5 \\
\hline Dump program modifications III-4-4 \\
\hline Dump station IV-3-4 \\
\hline FLPP binary deck I-2-3 \\
\hline Installation requirements III-4-1 \\
\hline Modification materials III-4-1 \\
\hline Procedures II-4-1 \\
\hline Disk II-4-3 \\
\hline Login II-4-4 \\
\hline SCPLIB II-4-4 \\
\hline Tape II-4-1 \\
\hline Release materials I-2-2 \\
\hline Tape defaults II-6-2 \\
\hline Typical configuration II-6-18 \\
\hline Unit assignments IV-3-5 \\
\hline Manuals listed I-4-1 \\
\hline Map options III-6-8 \\
\hline Mass storage \\
\hline Devices \\
\hline Channel configuration II-6-15, 16 \\
\hline CHQ II-6-15 \\
\hline EST II-6-12 \\
\hline Refer to flaw request \\
\hline System I-2-3 \\
\hline Format IV-3-18 \\
\hline Limit default III-6-4 \\
\hline Requirement IV-1-1 \\
\hline Typical configuration II-6-18 \\
\hline Materials \\
\hline Refer to back-up materials \\
\hline Release materials \\
\hline
\end{tabular}

MCU
Card reader aids IV-3-2
Deadstart II-2-1; II-6-2; III-1-12
MDTCPY job III-1-15
MEMC program I-2-5
MEMO III-1-12
MEMO LISTER III-1-12
Memory
Requirement IV-1-1
Size designation II-6-13
Refer to buffer areas Library buffers System tables
MERGE program III-1-18
Messages, installation IV-2-1
MMD deck I-2-3; II-6-4
xxxMOD job I-3-3; III-1-15
Description III-1-11
List option III-1-10
MODCAT job I-3-2; III-1-12, 18
Description III-1-7
Listing III-1-7
Modification procedure III-1-3
Refer to customer modifications xxxMOD jobs PSR modifications
MODPL I-3-3
Catalog I-3-2; III-1-6, 7, 12
Description III-1-2
Partition I-1-1; III-1-1
Permanent file III-1-10; III-3-1
Refer to each product requirement
MODS3P4 tape III-10-1
MODTAPE I-3-1
Copies III-1-15
Description III-1-1
Format I-2-1
Option III-1-10, 11
MP messages IV-2-2
MT parameter III-1-11
MTSDCK job III-1-16; III-4-1
Listing III-4-10
MTSDDS
Description I-2-2
Format II-4-3
Modification III-4-5
Use II-4-1
MTSGEN job III-1-13; III-4-1
MTSLIB tape
Configuration parameters III-4-1
Description I-2-2
Job to copy III-1-15
Use II-4-1
MTSMOD job III-1-6; III-4-1
Listing III-4-7
Use III-1-13

MTSOPL III-4-1
Configuration parameters III-4-1
Description I-2-2
Punch dump deck IV-3-5
MTSPSR III-1-2
MTSTDS deck
Description I-2-2
Format II-4-2
Modify III-4-5
Use II-4-1
MTSUSR III-4-1
Multiplexer channels II-6-15
Configuration parameters III-4-1, 5
Typical configuration II-6-18

NONEWPL option III-1-10, 11, 15, 17
NPRDLIB job I-3-3; III-1-5, 13; IV-2-2

Object libraries III-1-13
Catalog III-1-12 Refer to LDIDPRD job
Permanent files III-1-5
Recovery II-6-38
Refer to FORTRAN Sort/Merge
OCTNUM macro III-6-28
OE.DQM IV-3-20
On-line tapes
Channel configuration II-6-17
Defaults II-6-2
Equipment settings II-6-11, 12
FLPP binary deck I-2-3
FLPP deadstart IV-3-23
Typical configuration II-6-18
OPDEFs list III-1-16
Operating system
Configuration parameters III-6-2
Dependencies III-6-2
Installation requirements III-6-1
Listings III-1-17
Modification materials III-6-1
Permanent files III-1-4
Refer to SCOPE 2.0 and SCPxxx jobs
Representative decks
OPRDLIB job I-3-2; III-1-5, 12; IV-2-2
Options, \$DEFINE III-1-10
Ordinal
CHQ entry II-6-14, 15
EST entry II-6-11, 12
ORE II-6-6
ORL configuration parameters II-6-6;
III-6-2, 13

OS. overlay convention IV-3-23
OST
Listing III-1-18
Parameters II-6-25; III-6-2
Symbols, list III-1-16
OU. overlay convention IV-3-23
Overlay
Addition IV-3-22
List III-1-17, 18
Names list III-1-16
Naming, numbering convention IV-3-22
OVLVOL job III-1-18

P80CPY job III-1-16
Parameters, configuration III-1-11, 13
Refer to xxxGEN jobs
Each product
STORE command II-6-24
Passwords III-1-12
Universal, parameter III-6-6, 7
PASSWRD control statement IV-3-8
Permanent file catalog (PFC) III-6-6
Location on mass storage IV-3-18, 19
Option III-1-10
Parameters III-6-5, 7
Permanent file directory (PFD)
Location on mass storage IV-3-18, 19
Overflow parameter III-6-5
Pages parameter III-6-5
Permanent files
Back-up copies III-1-15
Description III-1-4
Ids III-1-4
Load II-6-28
Name request to be recovered II-6-23
Recovery II-6-1, 10, 15, 19, 32, 40, 47
Refer to S20CPLOPL for product set S200PSMOD for maintenance package S200PSOPL for SCOPE 2.0 SCPSCR for temporary files TOOLS for utility programs
Retention period parameter III-6-6
PFC
Refer to permanent file catalog
PFD
Refer to permanent file directory
PFN message II-6-23, 33, 34, 42, 43, 49
xxxPL job III-1-11, 15
PNCHDKS job I-3-2; III-1-12
Description III-1-8
Punch III-1-7
Use III-1-14
POSTSRT program III-1-17

PPU
Configuration II-6-18
Magnetic tape station modification III-4-4
PRDCPY job III-1-15
PRDLIB id III-1-4, 15
PRDLIB permanent file \(I-3-1,2,3\);
III-6-1
Create III-1-12, 13
Description III-1-4, 5
Refer to LDIDPRD
PRE II-6-13
PRESORT program III-1-17
Product set defined III-1-3
Production release system I-3-1; III-1-13
Defined I-3-2, 3
Products listed I-1-1
Program library
Catalog III-1-11, 15
Creation option III-1-10
Permanent files III-1-4
Program system report III-1-1
xxxPSR decks III-1-2
PSR modifications III-1-3, 10, 11, 12, 13
Refer to product xxxMOD jobs
PSR summary III-1-1
PURGSCR job III-1-15

READ error recovery parameters III-4-4
RECEND macro III-6-28
RECHDR macro III-6-27
RECOM III-6-33, 34
Record formats, standard III-6-31
Record manager
Configuration parameter III-6-11
Debug aid IV-3-20
Release format I-1-1
Recovery complete message II-6-38
Refer to deadstart recovery
Release materials I-2-1
Replies, deadstart
Refer to deadstart replies
REPORT program III-1-18
Request, deadstart
Refer to deadstart replies and requests
RLIBGEN job I-3-3; III-1-14; III-10-1
Listing III-10-7
RN2GEN III-9-1
RN2INS III-9-1
Listing III-9-3
RN2MOD III-1-6; III-9-1
Listing III-9-5
RN2PSR III-1-2
RN2REL I-2-3; III-9-1
RN2USR III-9-1

RS command II-6-29, 36; IV-3-22
RTRVSIF control statement III-6-10, 26,
27, 30
Run, FORTRAN
Refer to FORTRAN Run
RUNBIN partition I-2-4
RUNIOLIB permanent file III-1-14
RUNLIB \(\mathrm{I}-3-4\)
RUNOPL partition I-2-4

S20CPLOPL id III-1-4, 6, 15
S200PSMOD id III-1-4, 6, 15
Refer to each product requirement
S20OPSOPL id III-1-4, 6, 15
Scheduling value parameter III-6-2
SCM
Field length II-6-11, 14, 30; III-6-4, 13

COBOL III-11-2
FORTRAN Extended III-8-2
FORTRAN Run III-9-2
Sort/Merge III-12-2
Parity error IV-2-13
Size parameter III-6-12
SCOPE 2.0
Configuration parameters III-6-2
Deadstart initialization II-6-1
Deadstart options II-6-1
Dump mass storage IV-3-7
Modification job I-3-3
Release materials I-2-2
SCOPE 3.46000 station I-1-1
CHQ entry II-6-15
Configuration parameters III-5-1
Deadstart procedure II-5-1
Defaults II-6-2
Dump procedures IV-3-7
FLPP deck I-2-3; IV-3-6
Login II-5-1
Read SCPLIB procedure II-5-1
Release materials I-2-2
Typical configuration II-6-18
SCOPE 2.0 maintenance package
Refer to maintenance package
SCPGEN job I-3-3; III-1-14; III-6-1
SCPINS job III-1-14; III-6-1, 16
Listing III-6-16
SCPLIB tape III-1-5
Base system I-3-1
Channel on II-6-19
Description I-2-2
Job to copy III-1-14, 15
Update III-1-14

SCPMOD job I-3-3; III-1-6; III-6-1
List III-6-20
Use III-1-14
SCPOPL I-2-2; III-1-3, 14; III-6-1
SCPPL job III-1-6
SCPSCR id III-1-4, 13; II-6-2, 10, 38;
III-1-7, 12
SCPSID deck I-3-2
Description I-2-3
Format II-6-3
SCPSMM deck I-2-1
Refer to system maintenance monitor
SCPUSR III-6-1
SDTCPY job III-1-15
Sector
Flaw calculation II-6-22
Volume label group II-6-20
SFT
Refer to system file table
SIF
Refer to system information file
SIFACCT job III-1-16
SIFJ III-6-26
SIFMACR III-6-31
SIFX III-6-26
SIH deck III-6-26, 31
SIJ deck III-6-26, 31
SIS deck III-6-26, 31
SISDSD II-6-27, 37
SIX deck III-6-26, 31
SLT entry in ORL IV-3-9
SMMB
Refer to system maintenance monitor
SOPSR III-1-2
SPP configuration parameter III-4-2
Sort/Merge I-1-1
Configuration parameter III-12-1, 2, 3
Dependencies III-1-16; III-11-1
Installation III-1-13; III-12-1
Modification materials III-12-1
Release materials I-2-4
Representative decks III-1-2, 3
SORTMRG object library III-1-5, 18
Source listings III-1-17
Source request, system
Description II-6-19, 31, 39
I/O station II-3-2
Magnetic tape station II-4-4
SCOPE 3.4 station II-5-1
SRTBIN partition I-2-4
SRTGEN III-12-1
Dependency III-1-13
SRTINS III-12-1
Listing III-12-4
SRTLIB
Create III-1-13
Dependency I-3-4
Permanent file III-11-1

SRTLIB7 dependency III-11-1
SRTMACS I-2-4; I-3-4
Permanent files III-1-5, 12
XTEXT files creation III-1-13
SRTMOD III-1-6; III-12-6
SRTOPL partition I-2-4
SRTPSR III-1-2
SRTREL tape I-2-4; III-12-1
SRTUSR III-12-1
STACLR deck II-3-1, 2
STADCK deck III-1-16
Listing III-3-7
Punch IV-3-3
STADDS deck
Description I-2-1
Punch IV-3-3
Use II-3-1, 2
STADMP job III-1-16; III-3-1
Listing III-3-3
Punch IV-3-3
STAGE option III-1-10, 11
STAGEN III-1-13; III-3-1
Staging default III-6-5
STALIB tape
Copy III-1-15
Description I-2-1
Use II-3-1
STAMOD job III-1-6; III-3-1
Listing III-3-5
Use III-1-13
STAOPL tape I-2-1; III-3-1
STAPSR III-1-2
STATDS deck I-2-1; II-3-1
Punch IV-3-3
Static resource management parameter III-6-2
Station
Communication channel message II-6-26, 37, 44, 51
Deadstart II-6-2; III-1-12
Driver channel configuration II-6-16
Id IV-3-11, 13
I/O station II-3-3
Magnetic tape station II-4-4
SCOPE 3.4 station II-5-1
Initiate message II-6-26, 36
Login II-6-28
Refer to I/O station (7611-1)
Magnetic tape station (7611-2)
SCOPE 3.4 station (6000)
Subchannel numbers II-6-14
Status table, equipment
Refer to equipment status table
STAUSR job III-3-1
STORE command
Configuration parameters III-6-13
Debug aid IV-3-19
Use II-6-24, 25, 35, 41, 43, 48
```

SYSDECKS I-2-1; I-3-1, 2, 7
Catalog III-1-6, 7, 12
Description III-1-2
Punch I-3-2
Refer to MODCAT
PNCHDKS
Worksheet

```
SYSLIB job
    Refer to SYSLIBE control statement
SYSLIB permanent file III-6-6, 12
    Refer to LDIDPRD
SYSLIBE control statement II-6-3, 13, 38;
    III-1-5, 16; IV-3-8
System control parameters III-6-2
System deadstart replies II-6-13
System debug III-6-13, 14
System file table (SFT)
    Dump IV-3-20
    Enter information during deadstart
        II-6-37
    Entry point III-6-9
    Events parameter III-6-9
    Recovery II-6-1
        Parameter III-6-13
        Request II-6-35, 36, 50
System halt parameter III-6-14
System hang IV-3-1
System information file (SIF)
    Buffer parameter III-6-10
    Buffer recovery II-6-29
    Description III-6-26, 31
    Insert II-6-27, 28
    Job messages II-6-36
    LCM buffer recovery II-6-1
    Retrieve III-1-16
System library
    Add IV-3-9
    Refer to SCPLIB source request
System maintenance monitor (SMMB) I-1-1;
    I-3-2; II-3-1; III-1-7
        Deck II-2-1; III-1-12
            Copy III-1-16
    Format I-2-1
    Notes and cautions IV-3-1
    Procedure II-2-1, 2
    SMMB and SMMD distinction IV-3-1
System operator station command II-6-3
System recovery II-6-1
    Refer to deadstart recovery
System source II-6-19
System statistics parameter III-6-10
System tables II-6-39, 45
    Buffer parameter III-6-12
    EST II-6-11
    Modify number II-6-13

V20PL III-1-18
V2TEXT list III-1-18
VERB macro III-6-32
Verb table III-6-32
Verification
Decks III-1-2
Installation jobs III-1-11
Procedure III-1-16
xxxVFY jobs III-1-11, 16
Volume label group II-6-20, 29, 36, 42, 44, 51; IV-3-21, 22

Location on mass storage IV-3-18, 19
Request II-6-26
Volume number list III-1-7
VRBTAB III-6-32

Worksheet III-1-1, 3, 7, 10, 13 Description III-1-18
WRITE error recovery parameter III-4-4

XPP configuration parameters III-4-1
XPRD option III-1-11
XTEXT file III-1-13

\section*{COMMENT SHEET}
manual title SCOPE 2.0 Installation Handbook

PUBLICATION NO. 60344000 REVISION_A A

FROM: NAME:
BUSINESS ADDRESS

\section*{COMMENTS:}

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be made below. Please include page number references and fill in publication revision level as shown by the last entry on the Record of Revision page at the front of the manual. Customer engineers are urged to use the TAR.

BUSINESS REPLY MAIL
nO postage stamp necessary if mailed in u.s.a.


CONTROL DATA CORPORATION
Technical Publications Dept. 4201 North Lexington Avenue Arden Hills, Minnesota 55112

MD220
FOLD```


[^0]:    $\dagger$ The DSFILE command can be entered after the n.STATggg (section 5.2.1, step 2) but before the SCOPE 2.0 deadstart procedure (section 5.2.2). In this case the REQUEST DEADSTART FILE message does not occur.

