Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS

CYBER 180 II ASSEMBLER

for

CPU

EXTERNAL REFERENCE SPECIFICATION

(85233)

+

This product is intended for
used only as described in this
document. Control Data cannot
be responsible for the proper
functioning of undescribed
features and parameters.

+

+

(¢) Copyright Control Data Corporation 1985,1990

$5233-G

+

1

90/10/03
Rev: G

Control Data - Silicon

CYBER 180 II Assembler

. 2
Valley Development Division

90/10/03
ERS : Rev: G

REVISION DEFINITION SHEET

REV

+— +

DATE

+— +

DESCRIPTION

05/30/80

09/15/80

05/05/81

08/14/81

12/01/81

04/11/85

04/18/90

Original, for CPU Assembler only.

Revigsed for comments against REV. A.

Revised to add IOU mnemonic instructions,
several appendicies, and other corrections.

Revised to correct comments against REV. C.

Revised to correct grammatical errors, delete
obsolete pseudo—op GEN from examples, correct
errors in descriptions of the I0U
instructions, update titles and update this
revision page. Since revision D of this
document was never submitted to DCS the
revision bars have been generated relative to
revision C.

Revigsed to include vector instructions for
the Cyber 180-990. Appendix A, which
describes the command parameters, changed to
include the LIST _OPTIONS parameter.

Revised to include the PSFSA instruction for

the Cyber 2000 and the vector instructions

for the Cyber 2000V. Descriptions of IOU.
instructions and discussion of differences

between CPU and IOU coding removed because

IOU assembly not supported.

‘ 1
Control Data - Silicon Valley Development Division

_ 90/10/03
CYBER 180 II Assembler ERS Rev: G
1.0 SCOPE e o s s e e s s e o o e s o o o 1-1
1.1 APPLICABLE DOCUHENTS e e s s e e e e e e e e e e 1-1
2.0 LANGUAGE STRUCTURE . . v v v v o o o o o o s e 2-1
2.1 STATEMENT . v v ¢ ¢ v v o o o o o o o o o « o o o 2-1
2.1, FIELD 4 v v v 6 v v v o o o o o o o o o v v u.. 2-1
2.1.2 SUBFIELD . « v v 4 ¢ o o o o o e e e e o o 2-2
2,1.3 NULL FIELD v v +v + 4 o o o o o o o o o o . « . 2-2
2.2 COMMENTS e ¢ o s 4 s e e e e o o o » 2-3
2.2.1 STATEMENT CONTINUATION e o o 6 e s e s e o o s 2-3
2.3 CHARACTER SET &+ + ¢ « & ¢ ¢ « o o o o « o o o« o« o 2-4
2.4 SYMBOL DEFINITION . . & & v & o o o o o o o o o . 2-5
2.4.1 LINRAGE SYMBOLS . v & v v ¢ 4 ¢ o o o o o o o 2-5
2.4,2 SYMBOL ATTRIBUTES . + & v o o « o o o o o o o . 2-5
2.5 REGISTERS . . v & v v v v o o o o o« o & « o s e 2-7
2.6 DATA NOTATION & v v v v v v o o o o o o o o« o o .. 2-7
2.6.1 SELF DEFINING TERMS e 6 e s s e e s o e s o 2-7
2.6.2 NUMERIC DATA NOTATION « e e e e o o o o o o o 2-9
2.7 EXPRESSIONS . & v v v v 4 4 o o o o o o o W « e e 2-11
2.7.1 TERMS & 40 v v vt et e e e e e e e e e e e e 2-11
2.7.2 ORDER OF EVALUATION . . v &v ¢ v o o o o o o o 2-12
2.7.3 THE LOGICAL NOT OPERATOR . & + « o o o o o o . 2-13
2.7.4 LOGICAL AND, OR, EXCLUSIVE OR . . . e e e o 2-14
2.7.5 THE BINARY SHIFT OPERATOR . « ¢ o o « o« o« o o . 2-14
2.7.6 THE COMPARISON OPERATORS . ¢ v & ¢ « o o o o . 2-14
2.8 ABSOLUTE AND RELOCATABLE TERMS AND EXPRESSIONS . . 2-15
3.0 PROGRAM STRUCTURE . . &+ v & & & o « o o e e e 3-1
3.1 PROGRAM SECTIONS & & v v v v o ¢ o o o o o o« o o 3-1
3.1.1 DEFAULT SECTIONS '+ « v & ¢ & ¢ o o o o o o o . 3-2
3.1.2 THE BINDING SECTION e e e e o e 3-2
3.2 SECTION CONTROL COUNTER . o o s e s e e e o o o @ 3-3
3.2.1 FORCING PARCEL ALIGNHENT ¢ o s & s e o e o o o 3-4
4.0 PSEUDO INSTRUCTIONS . v & & 4 v ¢ o o o o o o o« o 4-1
4.1 MODULE IDENTIFICATION e s e o e o o o @ 4-1
4.1.1 IDENT - MODULE IDENTIFICAIION e s e e o e o o @ 4-2
4,12 END - END MODULE . & & v 4 ¢ ¢ o o o o o o o 4-2
4,2 BINARY CONTROL e e e e s e o . 4-3
4,2.1 MACHINE - DECLARE OBJECT PROCESSO R TYPE 4-3
4.3 SYMBOL ASSIGNMENT . . v v v v v v o o o o o o o o 4-4
4.3.1 SET/EQU - ASSIGNMENT OF VALUES . . +« 4-4
4.3.2 ANAME DIRECTIVE . v v v 4 v o o o o o o o o o . 4-8
4.3.3 ATRIB DIRECTIVE . v +v v v 4o ¢ ¢ o o o o o o o 4-8
4.3.4 USE OF THE ANAME AND ATRIB PSEUDO INSTRUCTIONS 4-9
4.4 MODULE LINKAGE e e o o o o o o o 4-9
4.4.1 DEF,DEFG-DECLARE ENTRY SYMBOLS e e e e s e o 4-9
4.4.2 REF-DECLARE EXTERNAL SYMBOLS . . . « « + « . . 4-10
4.4.3 ALIAS - EQUATE LINKAGE SYMBOLS 4-11
4.4.4 ADDRESS - FORM CYBER 180 ADDRESS 4-11

2
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
4,5 DATA GENERATION . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o 4-13
4.5.1 BSSZ-RESERVE ZEROED STORAGE . « « « + « &« + o & 4-13
4.5.2 INT - GENERATE INTEGERS . . « ¢ ¢ o o o o + o & 4-14
4.5.3 DINT - GENERATE 64-BIT INTEGERS . . . « « . « . 4-14
4.5.4 FLOAT - GENERATE SINGLE PRECISION

FLOATING-POINT NUMBERS « ¢« . . . 4-15
4.5.5 DFLOAT - GENERATE DOUBLE PRECISION

FLOATEING-POINT NUMBERS . . ¢ ¢ ¢ ¢ ¢ ¢ o o o & 4-15

4.5.6 PDEC - GENERATE PACKED DECIMAL DATA 4-16
4.5.7 CMD -~ GENERATE BIT STRING . . « « ¢« + ¢ ¢ o « & 4-17
4.5.8 VFD - VARIABLE FIELD DEFINITION 4-18
4.5.9 TRUNC = TRUNCATE . . +. ¢ ¢ « « o o s o o o« o & 4-19
4,5.10 INFOMSG '+ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o s s o o o o 4-19
4.6 ASSEMBLY CONTROL . . ¢ ¢ ¢ ¢+ ¢ o o ¢ o o o o« « & « 4-20
4.6.1 DO/ELSE/DEND PSEUDO INSTRUCTIONS 4-20
4.6.2 WHILE/ELSE/DEND PSEUDO INSTRUCTIONS 4-22
4.6.3 SKIPTO -~ SKIP CODE . . ¢ ¢ 4 ¢ o o o o o o o 4-24
4.7 ERROR CONTROL ¢« + v ¢ ¢ v 4 o o o ¢ o o o o o o o & 4-26
4.7.1 ERROR PSEUDO OPERATION . . & ¢« v ¢ + ¢ o o o & 4-26
4.7.2 FLAG - CONDITIONALLY SET ERROR FLAG 4-28
4.8 LISTING CONTROL . + ¢ ¢ & ¢ &+ o ¢ ¢ ¢ o o o o o o @ 4-28
4.8.1 LIST - SELECT LIST OPTIONS . . . ¢« & o « ¢ « & 4-28
4,8.2 PAGE - EJECT PAGE ¢ + v 4+ ¢ ¢ ¢ ¢ o o o o « o 4-30
4.8.3 SPACE - SKIP LINES . . &« ¢ ¢ « ¢ o o o o o« o 4-30
4.8.4 TITLE - ASSEMBLY LISTING TITLE « .« . . 4-30
4.8.5 XRSY - CONCORDANCE SELECTION . . ¢ « &« & o o & 4-31
4.9 SECTIONS & & ¢ 4 ¢ ¢ ¢ o o o o ¢ o o o o o o o o 4-31
4.9.1 SECTION - ESTABLISH BLOCK . . . « « ¢ ¢ & o« « & 4-32
4,92 USE - USE BLOCK + & &« + ¢ ¢ o ¢ ¢ o o o o « o 4-33
4.9.3 ORG — SET SECTION COUNTER . « 4+ & « & « o o o & 4-34
4,9.4 POS - SET BIT POSITION IN THE SECTION COUNTER . 4-35
4,9.5 BSS — STORAGE RESERVATION . «. v « ¢ o o o o« o & 4-35
4.9.6 ALIGN - FORCE SECTION COUNTER ALIGNMENT 4-36
4,10 PROCEDURES . . « « ¢ & o o ¢ o s o o 2 o o o o« o o 4=37
4.10.1 PARAMETER REFERENCING WITHIN PROCEDURES . . . 4-38
4.10.1.1 Parameter Identification Examples 4-38
4.,10.2 PROC - PROCEDURE HEADING . . « ¢ ¢ + o & « « & 4-39
4.10.3 PNAME - PROCEDURE NAME DEFINITION 4-40
4.10.4 FNAME - FUNCTION NAME DEFINITION 4-40
4.10.5 PEND - END PROCEDURE DEFINITION 4-41
4,10.6 LOCAL - ESTABLISH LOCAL SYMBOLS 4-42
4.10.7 OPEN - DECLARE TEMPORARY SYMBOLS 4-43
4.10.8 CLOSE - ERASE TEMPORARY SYMBOLS 4-43
4.10.9 CONT - NO OPERATION . . ¢ ¢ ¢ ¢ o o o o o o o 4-44
4.10.10 PROCEDURE CALLS « &+ « v v v ¢ o o o o o o o« 4=b&
4,10.11 PROCEDURE EXAMPLES . . ¢ ¢ ¢ ¢ o o o o o o & 4-45
4.10.11.1 Procedure Definition . . . « ¢« « « « « & 4-45
4,10.11.2 LOCAL Directive's Use . . . « « ¢« « « « . 4=47

5.0 ATTRIBUTE FUNCTIONS . . v ¢ ¢ « ¢ o o o s o o o o o 5-1
5.1 LANGUAGE DEFINED ATTRIBUTES . . « « o« o ¢ o o o « & 5-1
5.1.1 SYMBOL CATEGORY ATTRIBUTE = SC: + ¢« « ¢« ¢ o o & 5-1
5.1.2 ADDRESS MODE ATTRIBUTE . . . ¢ ¢ « « & o o o « 5-3

3

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

3 VALUE ATTRIBUTE . . . « v ¢ & ¢ « & &
4 LENGTH ATTRIBUTES
5 STARTING BIT POSITION ATTRIBUTE . .
6 ELEMENT NUMBER ATTRIBUTE
7
8
.9

[
&S W

s o o o
.
* e o o
3
3
L]

LAST ELEMENT NUMBER ATTRIBUTE . . .
SYMBOL NUMBER ATTRIBUTE
RELOCATION ATTRIBUTE
ROGRAMMER DEFINED ATTRIBUTE FUNCTIONS . .
YMBOL ATTRIBUTE EXAMPLES

!
W IR Wn

.
¢ o e o

e e o o

e o o o o

T
-

OFFSET FUNCTIONS (#WOFF, #HOFF, #fPOFF, #BOFF) . . .

CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
SYMBOLIC NOTATION
CPU INSTRUCTION FORMATS . . .
G
3.
7.

* o o o . L]

¢ e o ¢ o

e e o o
e o o o
e o
e o o o o

ENERAL CPU INSTRUCTIONS
1 LOAD AND STORE .,
3.1.1 LBYTS,SBYTS-Load/Store Bytes, Xk Length
D 7-4
7-5

e o ¢ e o o o .

7.3.1.2 LXI,LX,SXI,SX-Load/Store Word, Xk -
7.3.1.3 LBYT,SBYT-Load/Store Bytes, Xk Length Per
X0 v i v e e e e e e et e e e e e e e e 7-6
7.3.1.4 LBYTP-Load Bytes, Xk Length per j 7-7
7.3.1.5 LBIT,SBIT-Load/Store Bit, Xk 7-7
7.3.1.6 LAI,LA,SAI,SA-Load/Store,Ak . . « o o . . . 7-7
7.3.1.7 LMULT,SMULT-Load/Store Multiple Registers . 7-9
7.3.2 INTEGER ARITHMETIC '+ v & v 4 4 ¢ o o o o« o o o 7-9
7.3.2.1 ADDX,ADDXQ, INCX-Integer Sum, Xk 7-10
7.3.2.2 SUBX,DECX-Integer Difference, Xk 7-10
7.3.2.3 MULX,MULXQ-Integer Product, Xk 7-11
7.3.2.4 DIVX-Integer Quotient « + . & « . . 7-11
7.3.2.5 ADDR,ADDRQ, INCR-Integer Sum, Xk right . . . 7-12
7.3.2.6 SUBR,DECR-Integer Difference, Xk Right . . 7-12
7.3.2.7 MULR,MULRQ-Integer Product, Xk Right . . . 7-13
7.3.2.8 DIVR-Integer Quotient, Xk Right 7-13
7.3.2.9 CMPX,CMPR-Integer Compare 7-14
7.3.3BRANCH & & 4 v v v v o v v o o o o o o o o e 7-14
7.3.3.1 BRXEQ,BRXNE,BRXGT,BRXGE-Branch Conditional 7-15
7.3.3.2 BRREQ,BRRNE,BRRGT,BRRGE-Conditional, X
Right « . & . ¢ o 0 vt e e e e e e e e 7-16
7.3.3.3 BRINC-Conditional, with Increment 7-18
7.3.3.4 BRSEG-Conditional, Ak . . . « « &« & & « . . 7-18
7.3.3.5 BRREL-Unconditional Branch, (P) indexed . . 7-18
7.3.3.6 BRDIR-Unconditional Branch, (A) indexed . . 7-19
L ol 7-19
7.3.4.1 CPYXX—Copy to Xk from Xj . . « v o o o o . 7-19
7.3.4.2 CPYAX-Copy to Xk from Aj . .« o« & & o « o . 7-19
7.3.4.3 CPYAA-Copy to Ak from Aj . . v o« & o o . . 7-20
7.3.4.4 CPYXA-Copy to Ak from Xj . « o oe 7-20
7.3.4.5 CPYRR-Copy to Xk Right from XJ Rxght . e 7-20
7.3.5 ADDRESS ARITHMETIC . . + +v v v « o o o o o o & 7-20
7.3.5.1 ADDAQ-Copy A with Displacement 7-21
7.3.5.2 ADDPXQ-Copy P with Indexing and

Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS

Displacement . .
3 ADDAX-A Indexed .

~
.

ER . . ¢ ¢ o
ENTP,ENTN-Enter j
ENTE-Enter Q . .
ENTL,ENTX-Enter jk

* o

~
NWSNNWNNNNNNYLWO Y

FT o o . e o o o o

1
2
3
4
5
6 ENTA-Enter X0 jkQ .
I
1
2
GICAL . . . « « . .
1

Prod. e e s e e

~
3 o o

\lb\l\l\l\l\lb\l\l\l\l\lbb\l\l\)\lb\lbuw\l\l\lw\l\l

GISTER BIT STRING .

.

0 MARK-MARK TO BOOLEAN
I

~
N
.

GENERAL DESCRIPTION .

~

DATA DESCRIPTORS . e
2

~N

P NUMERIC
.1 Arithmetic . . .

4 MOVN-Move

2
.3 SCLN,SCLR-Shift .
5

~

. E L } . e o . .

T
2 SCNB-Byte Scan .
3 TRANB-Translate .
4 MOVB-Move
.5 EDIT-Edit
MMEDIATE DATA . . .

~

D(Ak)

.

.

.2 ISOB-Isolate into Xk

.

.

.8
8
R
.9.1 ISOM-Isolate Bit Mask
9
9.

3 INSB-Ingert into Xk .

.

2 NOTX~-Logical Complement
3 INHX-Logical Imhibit

e o o

e o o

.

.

1 CMPB,CMPC-Comparison

.

.

CMPN-Comparison . . .

.

.

.

e o o o o o

.

ENTZ,ENTQ,ENTS-Enter Signs
ENTC-Enter X1 jkQ . . .

4 ADDAD-Copy A with Displacement
T

o »

1 Operation Codes

IORX,XORX,ANDX-Logical Sum,

NESS DATA PROCESSING INSTRUCTIONS

e o o o o o o w

e o o & o o o

. .

SHFC-Shift (Xj) to Xk, ercular
SHFX,SHFR-Shift (Xj) to Xk,

Modulo

e o o o e e o

End-Off

Diff.

. .
° .

e o

°
.
°
.
. ®
.
. .
.
.
e

.4.2.2 BDP Operand Type, T Field . . .

.

.1,
2
.2.3 BDP Operand Address, O Field
2
B

° °

. o o °

.1 MOVI-Move Immed Data (x;)

.

L] L] ° L] L] ° L] .

ADDN, SUBN,MULN,DIVN-Arithmetic

Right

e ® e o

e e & ¢ e e e o o o

.4 BDP Operand Length, F and L erlds
DATA AND SIGN CONVENTIONS .
D

e e o e o o

e e o o

plus D to

e o e o o o o ° e & e o o o e o o o

.

e e ® o o e & s e o

and

e e o o o o e o o o e e o o e e o o o o .

o o e o

.

. .

.

.
e ® o e o o e o o

e o e o e & o o & o e o
e e o o

e o o o o o

e & © e 8 o o o o

. .

* e

7.4.6.2 CMPI-Compare Immed Data(Xl) Right plus D

to D(AK)

.

. .

7.4.6.3 ADDI-Add Immed Data (XI) Right plus

D(AK)

7.5 FLOATING POINT INSTRUCTIONS . .

7.5.1 GENERAL DESCRIPTION .

.

.

°

D

to

e o e e o o o o o

e o

e o @ o e o @ e o o o e o .

e o o o o o o

e e o o

.

4

90/10/03

Rev:

G

7-21 .

7-21
7-22
7-22
7-22
7-23
7-23
7-24
7-24
7-25
7-25
7-26
7-26
7-27

7-27
7-28
7-28
7-28
7-29
7-29
7-30
7-30
7-32
7-32
7-34
7-34
7-35
7-35
7-37
7-37
7-38
7-38
7-39
7-40
7-41
7-44
7-44
7-45
7-45
7-46
7-47
7-48
7-48
7-49

7-49
7-50
7-52

7-52
7-53

Control Data - Silicon Valley Development Division

CYBER 180 I1 Assembler ERS

~
.
\l\l\l\l

7
7.
7
7.
7

~

\l
\l\l\l\l\l\l\l\l<\l\l\10\\10\\10\\l

5
5.
5.
5
5
7

.
. .
.

T ¢ ¢ o o o o

o o

2
3
4
5
6
5

F

0
0

N
DO
co
6.

RMATS . . & ¢ ¢ ¢ ¢ v v 4 v v e o o &
EXPONENT ARITHMETIC . . . ¢ « « ¢ & . .
RMALIZATION e . .
UBLE PRECISION REGISTER DESIGNATORS .
NVERSION

1 CNIF-Convert From Integer to Floatxng

.2 CNFI-Convert Floating Point to Integer
THMETIC Ll

POlnt o e o ¢ o

ADDF, SUBF-Add/Subtract, xx .
MULF-Product to XK
DIVF-Quotient to XK
ADDD, SUBD-Add/Subtract, Xk and Xk+1
MULD-Product to Xk and Xk+1

.7.6 DIVD-Quotient to Xk and Xk+1 . . .

0

e O

.1 BRCR-Branch and Alter Condxtxon

7
7
7
7
BRANCH e e e e e e
8
8.
8

2

H\DW\IO\UI.waH

11 PSFSA-Purge SFSA Pushdown .
CAL PRIVILEGED MODE

1

OBAL PRIVILEGED MODE

1

EM INSTRUCTIONS

BRFEQ, BRFNE, BRFGT BRFGE-Compare and
BROVR,BRUND, BRINF-Exception Branch
CMPF-Compare o v e e

LI e o

.

EXECUTE, HALT, SYNC .
CALLSEG,CALLREL-Call
RETURN
POP
EXCHANGE .

REYPOINT
CMPXA-Compare Swap
LBSET-Load Bit . .
TPAGE-Test Page . . .

-PRIVILEGED MODE

.
.
.
.
.

. ¢ o .

.
.
e & o o o o o

.
.
.
.
.
.
.
.

s o o o o
.
e o ¢ e o o o o

* & e o

x . . o . * o LI}

LPAGE-Load Page Table Index

INTRUPT-Interrupt Processor

XED Mo DE * . . L] L] L] * .

.2 CPYSX,CPYXS-Copy State Registers .

.3

TOR INSTRUCTIONS . . . & . ¢ ¢« ¢ o o 4 &

PURGE-Purge Buffer

GENERAL DESCRIPTION v « & . .
OMMON ATTRIBUTES OF VECTOR INSTRUCTIONS
NTEGER VECTOR ARITHMETIC . . e e e
1 ADDXV-Add Integer Vectors

C
I
3.
.3.
I
4
4

.4.1 CMPEQV-Integer Vector Comparison - Equal
+4.2 CMPLTV-Integer Vector Comparison - Less

2

SUBXV-Subtract Integer Vectors . .

TEGER VECTOR COMPARISON

Than« .

7.7.4.3 CMPGEV-Integer Vector Comparxson -

Greater Than Or Equal

.

.

0 CPYTX-Copy Free Runnxng Counter(TIHE) to

e e e o o o

e o e o e o ® e & o e o * o o e o

® e & o e s e+ e o & e o

5

90/10/03
Rev: G

7-53

7-56
7-56
7-57
7-57

Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS

7.7.4.4 CMPNEV-Integer Vector Comparison - Not

EQqual . . . ¢ o ¢ ¢ o ¢ o o o o
HIFT VECTOR CIRCULAR + s o+ &
OGICAL VECTORS « o e e
.1 IORV-Inclusive Or Vectors v e e e
.2 XORV-Exclusive Or Vectors
3 ANDV-Logical And Vectors
NVERT VECTORS . . . +. &+ &+ « « « o &

CNIFV-Convert Vector From Integer

\l\l

.

~
.

.
o/

~
.

ATING POINT VECTOR ARITHMETIC . .
ADDF-Floating Point Vector Sum .

~
.

ATING POINT VECTOR SUMMATION . . .

> e

6
6
6.
co
7
7.
FL
.8.
8
8
8.
FL
9
9

.

.2 MRGV-Merge Vector
GATHER AND SCATTER VECTOR
.10.1 Gather Vector . . « « « ¢ o + &
.10.2 Scatter Vector
ENDED VECTOR INSTRUCTIONS
GENERAL DESCRIPTION e o s e
FLOATING POINT VECTOR TRIADS . .

70

RN

~ 3 0
\lmmtﬂ\l\l\l\l\l\l\l\l\l\l\l\l\l\l\l\l\l\lﬂ

Instructions . « ¢ ¢ « ¢ « o o o
LOATING POINT VECTOR DOT PRODUCT . .

~
.

~
.
\lqooqoo

L]

.5
6
7
7
7
7
.7
7
8
7
7
7
7
9
7.
7.
1
.7
7
T
1
2
8
3
8
.4 GATHER/SCATTER VECTORS - INDEX LIST .
8

8

APPENDIX A L] . e L . °
CALLING THE ASSEMBLER ¢ « « o « ¢ ¢ &

APPENDIX B - NOTES AND EXAMPLES
PROGRAMMING NOTES . . « & ¢ ¢ ¢ ¢ o o o o o &
REGISTER USAGE . . « ¢ ¢ ¢« ¢ o o o ¢ ¢ o« &
GENERAL NOTES « v v ¢ o o« o o o o« &
SAMPLE PROGRAM . . ¢ « ¢« « ¢ ¢« ¢« o ¢ o o o &
SAMPLE EXECUTION « « ¢« ¢« « o« o &

APPENDIX C - RESERVED WORDS

APPENDIX D -~ ERROR MESSAGES
LISTING ERRORS ¢ ¢« ¢ ¢ v o o o & o

APPENDIX E o o s e e

1

2

0.

1
.2 SUBFV-Floating Point Vector Difference . .
3

4

0

1

to Float

CNIFV-Convert Vector From Float to Integer

* o « o o

MULFV-Floating Point Vector Product
DIVFV-Floating Point Vector Quotient . . .

¢ o * e o

SUMFV-Floating Point Vector Summation . . .

.2.1 TPSFV, TPDFV, TSPFV, TDPFV - vgctor Triad

o o . e o

o o . LI }

F
.3.1 SUMPFV - Floating Point Vector Dot Product
G

.8.4.1 GTHIV - Gather Vector Per Index List . . .
.4.2 SCTIV - Scatter Vector Per Index List . . .

CYBER 180 CPU SYMBOLIC HACHINE INSTRUCTION SUMMARY . e

6 .

90/10/03

Rev:

7-81
7-81
7-82
7-82
7-82
7-83
7-83
7-83
7-83
7-84
7-84
7-84
7-84
7-84
7-85
7-85
7-85
7-85
7-86
7-86
7-87
7-87
7-87

7-87
7-88
7-88
7-89
7-89
7-89

Al
Al

Bl
Bl
Bl
Bl
B2
B3

Cl

D1
D1

El
El

G

1-1
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
1.0 SCOPE
1.0 SCOPE

This document is the external specification for the CYBER 180
IT1 Assembler. This assembler runs on the CYBER 180 machine in
CYBER 180 mode and assembles CYBER 180 CPU code. The object
program output of the Assembler is compatible with the NOS/VE
loader. The II Assembler is the language successor to the CI
Assembler described in the ARH1693 ERS document.

1.1 APPLICABLE DOCUMENTS

The following documents reference related material which would
be of value to the reader.

. CYBER 180 Mainframe Model Independent GDS (MIGDS), Rev. AD |
(ARH 1700).
CYBER 180 CI CPU Assembler ERS (ARH 1693).
. NOS/VE Command Interface
. NOS/VE Program Interface

2-1

Control Data - Silicon Valley Development Division
, 90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE

2.0 LANGUAGE STRUCTURE

A CYBER 180 Assembly language source program consists of a
sequence of statements which contain symbolic machine
instructions, pseudo instructions, and comment lines. With the
exception of the comment lines, each statement consists of a
label field, an operation field, argument field(s), and a
comments field. Each field is terminated by one or more blank
characters. The size of the argument field is restricted by the
maximum statement size only. Statement format is essentially
free field, except for the label field which must start in column
1.

A statement consists of one or more physical lines of data. A
line may be up to 255 characters long and the Assembler will
print the entire line at the rate of 88 characters per print
line. Assembler will only examine the first 88 characters of a
line. Information after column 88 is presumed to be comments.

The language also supports a procedure mechanism with
parameter capability. Each time the name of the procedure 1is
referenced, the body of the procedure will be inserted in the
code. This will be further explained in the section entitled
'Procedures’.

2.1 STATEMENT

A statement is an ordered group of fields starting (from left
to right) with one Label field followed by Operation and Argument
fields and one Comments field. The number of fields allowed in a
statement is not limited. The comments field is optional, but
the other fields must be accounted for by field delimiters. A
statement may be continued onto more than one line, but no more
than one statement is allowed per line.

2.1.1 FIELD

A Field is a consecutive group of characters starting with a
non-blank character and terminated by a blank character ,
end-of-line, or character position 88 of the line, whichever
occurs first,

The only exceptions to this definition are:

a) Blanks may appear freely in a CHARACTER STRING without

2-2

Control Data - Silicon Valley Development Divigion
90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE
2.1.1 FIELD

causing field termination.
b) Blanks may appear freely in the COMMENTS field.

¢) If a continuation character ";" is encountered within a field
which is not a COMMENTS or CHARACTER STRING, the field is
continued on the next line.

d) Extra or spurious fields in a statement are not detected and
no error is diagnosed.

2.1.2 SUBFIELD

A Subfield is a consecutive group of characters starting with
a non-blank character and terminated by a comma "," or by
End-0f-Field, whichever occurs first. A field may have one or
more subfields.

The only exceptions to this definition are:

a) Commas may appear freely in a CHARACTER STRING without
causing subfield termination.

b) Commas may appear freely in the COMMENTS field.

¢) If a continuation character ";" is encountered within a
subfield, the subfield is continued on the next line.

d) Extra or spurious subfields in a field are not detected and
no error is diagnosed.

2.1.3 NULL FIELD

The absence of a field or subfield is automatically detected
by the Assembler based on the number of fields. An OPERATION
field must not be Null and must have as many ARGUMENT fields
following it as required by its defining pseudo instruction or
PROCEDURE, although the number of ARGUMENT fields can be variable
and depend on some other field. .

The rules for NULL field:

a) A blank in character position 1 of a line indicates the
absence of the LABEL field on that line. The next non-blank
character on the line, excluding comments, is accepted as
part of an OPERATION field.

‘ 2-3
Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE
2.1.3 NULL FIELD

b) An OPERATION field cannot be blank.

c) Two consecutive commas indicate the presence of a null
subfield.

d) One comma "," followed by a blank indicates (as specified)
end-of-subfield and end-of-field and can be used to delimit
trailing Null subfields. The configuration blank,blank
indicates a Null field with two Null subfields.

2.2 COMMENTS

Comments may start in any column, but are always the last
field on a line, and end at end of line. All comments must begin
with a period. Scanning by the Assembler stops when a period
preceded by a blank or a period in column 1 is encountered, thus
comments may contain any Ascii character, including characters
that would otherwise have special meaning (e.g. the semicolon
which denotes continuation when used outside of comments).

When a statement is continued to the next line, comments may
appear after the continuation character on the line being
continued.

2.2.1 STATEMENT CONTINUATION

Normally, column 88 terminates a source statement that has not
otherwise terminated. However, a statement that cannot be
contained in the first 88 characters can be continued on
successive lines by placing a semi-colon ";" at the continuation
point. A statement may only be broken between fields, subfields,
or terms of an expression. A term may not be broken onto 2 lines
(e.g. a long character string must £it on one line). The
statement will be continued at the first non-blank character on
the next line at or after character position 2. Character
position 1 of all continuation lines must contain a blank. The
continuation character, if used, must appear at or prior to
character position 88.

The only exceptions to this definition are:
a) Semicolons may appear freely in a CHARACTER STRING without
causing continuation. This implies that character strings

cannot be continued across statements.

b) Semicolons may appear freely in a COMMENTS field without
causing continuation. Comments cannot be continued across

Control Data - Silicon Valley Development Division

2-4

90/10/03

CYBER 180 II Assembler ERS Rev:

G

2.0 LANGUAGE STRUCTURE
2.2.1 STATEMENT CONTINUATION

statements.

2.3 CHARACTER SET

The Assembler recognizes the following, graphic character _

subset of the NOS/VE ASCII character set as input:

Alphabetic A through Z (upper or lower case)
Sed_:

Numeric 0 through 9
Special Characters:

Blank or Space

Add
Subtract or Unary Minus
Multiply
Divide or Logical NOT
Equal
Less Than
Greater Than
Logical AND
Logical Inclusive OR (vertical bar)
| Logical Exclusive OR (double vertical bar)
<= Less Than or Equal To
>= Greater Than or Equal To
/= Not Equal To
Period or Decimal Point
Comma
Left Parenthesis
Right Parenthesis
Left Bracket
Right Bracket
Apostrophe
; Continuation
** Shift

RV A NN %1 +

B

In addition to the characters listed above, the Assembler

accepts the following characters as part of program comments
as part of a Character String:

"\ttt o2 2 {} -

or

The Assembler distinguishes between upper and lower case

characters only when used within character strings enclosed
quotes.

by

2-5

Control Data - Silicon Valley Development Division
, . 90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE
2.3 CHARACTER SET

Other ASCII characters appearing before the comment field are
diagnosed as an error.

2.4 SYMBOL DEFINITION

A symbol is a set of alphabetic or numeric characters that
identifies a byte address or a value and its associated
attributes. The symbol must start with any alphabetic character,
and the symbol can be a maximum of thirty-one (31) characters
long, and cannot include any of the special characters. The
colon (:) may not be used as a character in a user defined
symbol, it is reserved for language defined names. Symbols are
defined when they are used in the label field of any statement
(CPU or pseudo instruction), except for some pseudo instructions
which ignore the label field and other pseudo instructions which
use the label field for other purposes.

EXAMPLES:

Legal Illegal
Symbols Symbols

P 543 First character must
. be alphabetic.

R3 ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 Exceeds 31 characters

PROGRAM ABE+15 Contains plus sign

2.4.1 LINKAGE SYMBOLS

Modules (assembly units) can be linked to other modules
(assembly/compilation units) through symbols defined as entry
points. ’

Entry points in the current module are declared with a DEF or
DEFG pseudo instruction. This allows the entry point to be
referenced from another module. External entry points can be
referenced by declaring them with the REF pseudo instruction and
are treated as relocatable values.

To link to entry points with different names, a symbol can be
ALIASed to another symbol.

2.4.2 SYMBOL ATTRIBUTES

In addition to the value or byte address associated with a
symbol, each symbol has symbol attributes. Symbol attributes are

2-6

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE
2.4.2 SYMBOL ATTRIBUTES

various pieces of information about the symbol which describe
properties of that symbol. Attributes are normally associated
with a symbol at the time the symbol is defined. This is an
automatic process within the Assembler and takes place whenever
symbol definition takes place.

The CYBER 180 Assembler contains six built-in attributes which
are associated with a symbol. These attributes and their
associated mnemonics are:

Symbol Category SC:

Address Mode AM:
Symbol Value VA:
Length LB:, LC:, LW:

Starting Bit Position SB:
Symbol Number SN:

Each attribute is discussed and defined in the section on
Attribute Functions. A symbol's attributes are always referenced
using one of the attribute function mnemonics listed above. This
reference may not be forward. It is used for retrieval only, and
has the form:

attribute_function(symbol)

The Assembler also permits any symbol to have any number of
additional programmer defined attributes. These additional
attributes can be given names and values by the programmer and
can have any meaning desired. The values may not exceed 64 bits.
The names and values can be altered during the course of the
program assembly using the ANAME and ATRIB pseudo instructions.
The ANAME pseudo instruction is used to assign a name to a
particular attribute. Following that, a symbol can then be
assigned a value associated with the named attribute. This
attribute name may then be used in the following manner to
retrieve the value of the attribute:

user_defined_attribute_name [symbol]

An attribute name for any of the programmer defined attributes
will be valid until changed.

2-7

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS , Rev: G

2.0 LANGUAGE STRUCTURE
2.5 REGISTERS

2.5 REGISTERS

Register designators symbolically represent the 32 operating
registers, The designators are inherent to the Assembler and
cannot be changed during assembly. However, other symbols may be
equated to them. There is an Assembler defined attribute
(#regtyp) which defines the type of register a symbol represents.

Register Type Designator
Address 'An' or a symbol with its #REGTYP attribute

set to "#AREG".

Operand 'Xkn' or a symbol with its #REGTYP attribute
set to "#XREG".

For the forms An or Xn, n is a single hex digit from O to F.
Any other value for n, for example H, causes An or Xn to be
interpreted as a symbol rather than a register designator.

EXAMPLES:
Al Designates address register 1
Al0 Interpreted as a symbol, not a register

2.6 DATA NOTATION

Data notation provides a means of entering values for
calculation, increment counts, operand values, line counts,
control counter values, text for printing out messages,
characters for forming symbols, etc.

The two types of data notation are character and numeric. The
Assembler allows the user to introduce data in the program in two
basic ways.

As a self defining term
As a number in numeric data notation
2.6.1 SELF DEFINING TERMS
A Self-Defining Term is a constant whose value is defined by

its structure. The value of a Self-Defining Term is constant
throughout the program and is not altered by the relative

2-8

Control Data - Silicon Valley Development Division
, 90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE
2.6.1 SELF DEFINING TERMS

position of the program in storage. The Assembler uses two
methods by which a Self-Defining Term can be expressed:

a) As an unsigned string of binary, octal, decimal, or
hexadecimal characters, the first character of which must be
a decimal digit, which has the following format:
numeric_character_string(base)
Base is optional, but when present it must be enclosed by
parenthesis. Base may only be hexadecimal (16), decimal (10),
octal (8), or binary (2). Any other value for base results in an

error. The following examples illustrate the numeric notation:

ALPHA+QOFF (16) "OFF(16)" is a Self-Defining Term
3* (NET_PAY) "3" is a Self-Defining Term

The range of this form of Self-Defining Term must be
consistent with its use in the program.

b) As a Generalized Self-Defining Term which has the following
structure

symbol 'character-string'

where the character string is always enclosed by apostrophes
and where '"symbol" is one of the characters:

Symbol Type of Generalized Self-Defining Term

C CHARACTER STRING: Constant translated into 8 bit
ASCII code. The characters can be any of the
characters in the Assembler character set.* Note
that a lower case letter will generate a different
8 bit ASCII code than an upper case character. The
maximum string length is limited to one line and
therefor cannot exceed 87 characters.

Self-defining terms can assume a range of values (e.g.
precision or storage occupied) depending on their type and usage.
In all cases however, the internal representation of a
self-defining term is an integral number of bytes. When
translation from input format to internal representation occurs,
self-defining terms are expanded to the next nearest multiple of
bytes, provided they do not exceed the maximum defined below.

*Two consecutive quote marks in a C character
string are used to indicate a single quote within the string.

2-9
Control Data - Silicon Valley Development Divigion

90/10/03
CYBER 180 II Assembler ERS ' Rev: G

2.0 LANGUAGE STRUCTURE
2.6.1 SELF DEFINING TERMS

During the expansion process, justification and filling (where
required) also take place as defined:

- -+
bl T

<+
+

+

-
+*

Type of Minimum | Maximum
Self-Defining Size Size
Term (Bytes) (Bytes) | Justification | Filling
Decimal 8 8 Right Zero
Hexadecimal 1 8 Right Zero
Octal 1 8 Right Zero
Binary 1 8 Right Zero
(o 1 as needed Left Space

A self-defining term used as a single term expression can
assume any of the values described above. When self-defining
terms are used as part of a multi-term expression however, the
following additional restrictions apply:

a) When an address symbol is used only the byte offset for the
address is used. Bit offset, if any, and section ordinal are
discarded.

b) The size of all numeric terms (decimal, hexadecimal, octal,
binary, or string) will be 8 bytes when arithmetic operations
are performed. Strings are right justified and truncated or
zero filled as necessary to be 8 bytes and are treated as
integer. When an expression contains operators, the result
is integer. Arithmetic operations are performed using 2's
complement arithmetic. When the expression contains only one
term, the result is that term (which is not converted in
form).

2.6.2 NUMERIC DATA NOTATION

Numeric data can be specified in binary, octal, hexadecimal,
or decimal notation with the INT and DINT pseudo instructions.
Only decimal notation is available with the FLOAT and DFLOAT
pseudo instructions. The value is converted to an integer or a
floating point number in single or double precision. Floating
point conversion is performed by a CYBER 180 math library
conversion program. The actual representation of the output data
is beyond the scope of this document.

2-10

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Ax;embler ERS Rev: G

2,0 LANGUAGE STRUCTURE
2.6.2 NUMERIC DATA NOTATION

Formats:

Data Item

sign

value

modifier

-
T

+

value | modifier

-+
*r

sign

+—+
+— +

+

Optional.
+ or omitted The value is positive.
- The negative value is formed.

A series of binary, octal, hex or decimal digits
consisting of an integer (required), optional
decimal point and optional fraction, or optional
base. An integer value (fixed point) does not
contain a point, but may contain an optional base
indicator enclosed in parenthesis. The fixed point
format is thus a numeric, self-defining term with a
sign preceding. A floating point value is noted by
the occurrence of the point. If point occurs then
base may not occur and value is decimal.

An octal value can be a maximum of 22 octal digits
and cannot exceed 64 bits of significant data. A
decimal value cannot exceed 5.2 x 10*%*1232 in
absolute value. used in a floating point pseudo
instruction. Extra significant digits cause a
diagnostic. A hex value can be a maximum of 16
digits. If value is omitted, it is assumed to be
zero, The actual minimum or maximum values
permitted are further limited by the pseudo
instruction in which the data notation appears.

Associated with a floating point value is an
optional exponent modifier. Exponent defines a
power of 10 scale factor.

Format is E, En, E+n, or E-n.

When the sign is plus or omitted, the exponent (n)
is positive.

When n is omitted, it is assumed to be 0. The
value of n cannot exceed 32767 and is always a
decimal integer.

A fixed point value can have 32-bits or 64-bits of
precision and a floating point value can be

2-11

Control Data - Silicon Valley Development Division
A 90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE
2.6.2 NUMERIC DATA NOTATION

geherated in either single precision (one word) or
double precision (two words), depending on the
pseudo instruction.

The effect of the exponent is to multiply the value
by 10 decimal raised to the n power or -n power.
Limitations of maximum and wminimum values and
exponents may be found in the appropriate CYBER 180
math library documents.

Legal Illegal Explanation

Examples: -21904 316E missing base
3.14159 7F(16)E-3 value must be decimal
1.7E-6 .2893 interpreted as comments.

2.7 EXPRESSIONS

Entries in sub~fields of most source statements are
interpreted as expressions consisting of a combinartion of one or
more terms. A comma or blank terminates the expression. When
symbolic names appear as terms in expressions the Assembler must
be able to replace the symbolic name with its associated wvalue.
The association of a symbolic name with a value is called symbol
definition and is described in Section 2.4. An expression in
which all the symbolic names can be evaluated (which means the
expression can be reduced to a single value) is said to be an
"evaluable expression'". An "absolute evaluable expression' is an
expression whose symbolic name terms are all defined in
statements previous to the current statement.

2.7.1 TERMS

A term represents an evaluation made during the assembly
process. A value is assigned to a term either by the Assembler
or the term may be self-defining (as in the case of a constant).

A term can be a:

Symbol that is evaluable
(One that Assembler can associate with a value)

Self-defining term
Function reference

Attributes

2-12

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE
2.7.1 TERMS

Register designator

2.7.2 ORDER OF EVALUATION

Expression evaluation normally is determined by the binding
strength of the operators involved. This can be altered by the
use of parenthesis. Terms inside of parenthesis are evaluated
first. Parenthesis can be nested to any depth, and will be
evaluated in the order of innermost to outermost. An expression
such as INDEX+4 or AD*(9+PAN), is reduced to a single value as
follows:

a) The expression takes on the attributes of the first term in
the expression from left to right. :

b) Each term is given its defined value. When arithmetic
operations are performed on a term it's internal
representation is converted to integer. When strings are
used as arithmetic terms they are truncated, if necessary, or
right justified with zero £ill, if necessary, to occupy 8
bytes and are treated as an integer.

c) Arithmetic operations are performed from left to right.
Operations at the same parenthetical level within the highest
binding strength are performed first. For example:

VE+VX*AE/AX
is evaluated as VE+((VX*AE)/AX).

d) Division always yields a truncated integer result and

division by zero yields a zero result with a generated

diagnostic.

The operators processed by the Assembler during expression
evaluation are:

| 2-13
Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS : Rev: G
2.0 LANGUAGE STRUCTURE
2.7.2 ORDER OF EVALUATION

Operators Binding Strength Function

+ 7 . Plus (unary)

- 7 Minus (unar&)

/ 7 Logical NOT or Complement

(unary)

*x 6 Binary Shift (logical)

* 5 Integer Multiply

/ 5 Integer Divide

+ 4 Integer Add

- 4 Integer Subtract

< 3 Less Than

> 3 Greater Than

<= 3 Less Than or Equal

= 3 Greater Than or Equal

= 3 Equal

/= 3 Not Equal

& 2 Logical AND

| 1 Logical OR

I 1 Logical Exclusive OR

NOTE: All operators are binary (i.e., require two operands)
except the three specifically indicated as unary. These

require only one operand. .

2.7.3 THE LOGICAL NOT OPERATOR

The logical NOT or complement operator causes a one's
complement of its operand, based on a length of 64 bits.

Value Binary Equivalent One's Complement

2-14

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

2.0 LANGUAGE STRUCTURE
2.7.3 THE LOGICAL NOT OPERATOR

5 000...0101 © 111...1010
12 000...1100 111...0011
2.7.4 LOGICAL AND, OR, EXCLUSIVE OR

The logical AND, OR, and exclusive OR compare two operands "A"
and "B" as follows:

Ialele I Il
1 1 1 1 0
1 0 0 1 1
0 1 0 1 1
0] 0 0 0 0

e e -+
* b -*

+
+
+

2.7.5 THE BINARY SHIFT OPERATOR

The Binary Logical Shift Operator determines the direction of
shift based on the sign of the second operand: a negative operand
denotes a right shift and a positive operand denotes a left
shift. For example: 7**(-2) results in a logical right shift of
two bit positions for the operand 7. Shifts are end-off with
zero bit replacement.

2.7.6 THE COMPARISON OPERATORS

The result of any comparison produced by the comparison
operators is: False = 0; True = 1.

EXAMPLES:
Expression Value
9>11 0 (9 is not éreater than 11)
/3=4 0 (the word-size wvalue /3 is

equal to 11...1100 and is not
equal to 4; i.e., 00...0100)

3/=4 1 (3 is not equal to 4)

2-15
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
2.0 LANGUAGE STRUCTURE
2.7.6 THE COMPARISON OPERATORS
/ (3=4) 11...11 (3 is not equal to 4, so the

result of the comparison is 0
which NOTed becomes a word size
value of all 1's.)

2.8 ABSOLUTE AND RELOCATABLE TERMS AND EXPRESSIONS

Any term in an expression may be relocatable or absolute
(non-relocatable). A relocatable term is one which represents
the location of some piece of assembled code (i.e. represents an
address in the memory of the computer). Its symbol category
would be 6. An example would be the label of a BSS statement.

An absolute expression consists of either an absolute term or
a combination of terms that, when evaluated, has no relocation.
An absolute term is an absolute symbol or a constant. All
operators may be used with absolute terms. Absolute terms are
always internally represented in the 2's complement number system
(the number -0 does not exist in this system).

A relocatable expression consists of a single relocatable term
or a number of terms that, when evaluated, has relocation. A
relocatable term results when an absolute term is added to or
subtracted from a relocatable term and the result is not negative
and does not exceed the storage capacity of a section. All
arithmetic operations may be performed on relocatable terms. 1If
a relocatable term cannot result, then the relocatable term is
first converted to an absolute term whose value is the byte
offset of the relocatable term and the result of the arithmetic
operation is an absolute term.

If an absolute value is required of an expression, then it is
converted to absolute value. A relocatable value is required
only for certain operands of the ADDRESS pseudo instruction. If
an expression contains only a single term, the result is that
term and the result may be absolute, relocatable, or string.

3-1

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

3.0 PROGRAM STRUCTURE

3.0 PROGRAM STRUCTURE

This chapter describes the general structure of a program. In
some cases, it repeats information described elsewhere and
correlates it so that the programmer will obtain a better
understanding of how the program is assembled, loaded, and
executed. Some references are made to the NOS/VE Loader but for
a complete description of the loader, refer to the applicable
NOS/VE document.

A CYBER 180 program consists of one or more modules that can
be assembled separately, either in the same computer run or in
independent runs. The Assembler will assemble many modules from
the same input file per call. These many program modules can all
be written in the Assembler source language, or can be written in
any other source language available in the product set of the
operating system as long as the compiler or Assembler produces
relocatable binary output in a form acceptable to the NOS/VE
loader. An Assembly language module is composed of statements
beginning with an IDENT pseudo instruction and ending with an END
pseudo instruction.

The Assembler repertoire includes pseudo instructions that
facilitate relocatable module linkage. Through these linkages,
modules loaded together can transfer control to each other and
can access common storage locations.

The first topic considered in this chapter is the program
module and how the Assembler and the programmer organize the
object code into program sections. Following this is a brief
description of the counters that control the sections.

3.1 PROGRAM SECTIONS

A CYBER 180 Assembly program is a collection of statements
which are translated via an assembly process, into a CYBER 180
object module. Object modules resulting from separate
assemblies, or compilations by a CYBER 180 Compiler (CYBIL,
FORTRAN, etc.) can be combined, via a linking process, into a
single object module, and may undergo further transformation into
a form capable of direct execution by the CYBER 180 hardware.

A set of statements between an IDENT pseudo instruction and an
END pseudo instruction is a program module. A CPU program module
can be divided into sections having different attributes. For
instance, the CODE section has the attributes of READ and

3-2

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ' Rev: G

3.0 PROGRAM STRUCTURE
3.1 PROGRAM SECTIONS

EXECUTE, while the WORKING section is READ and WRITE. The use of
sections provides a means of code protection. As assembly of a
program module proceeds, the Assembler or the user designates
that object code be generated or that storage be reserved in
specific sections. By properly assigning code sequences, data,
or reserved storage areas in blocks through use of ORG or USE, a
programmer can intermix instructions and data for the different
sections. The Assembler assigns locations in a sgection
consecutively as it encounters instructions destined for the
section. A symbol defined within a section is not local to the
section. That is, it is global and can be referred to from any
other section in the program.

For the CPU there are several types of sections available.
Only a CPU module may contain SECTION or USE statements. If a
CPU module does not contain a USE instruction or if object code
is generated (or storage reserved) before the first USE
instruction, the Assembler places the object code in the CODE
section, which is one of the five default sections. The wuser
controls use of the default-sections and any user-established
sections, through USE, ORG, and SECTION pseudo instructions.

3.1.1 DEFAULT SECTIONS
The following is a 1list of default sections and their
attributes established for the user by the Assembler:

CPU SECTIONS:

CODE READ+EXECUTE
WORKING READ+WRITE
BINDING* BIND+READ
STACK* READ+WRITE

IOU SECTIONS:
CODE READ+WRITE+EXECUTE

* Symbols may be associated with addresses in these sections,
but data may not be initialized at assembly time except for
the BINDING section in which pointers may be established
through the use of the ADDRESS pseudo instruction.

3.1.2 THE BINDING SECTION

The BINDING section is a special purpose section whose
function is to permit access to data and code that is either
internal or external to the current module. This is accomplished
via pointers in the BINDING section which are built by the NOS/VE

3-3

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

3.0 PROGRAM STRUCTURE
3.1.2 THE BINDING SECTION

loader. In addition, the NOS/VE Library Generator may "bind"
modules together. Part of this "binding" process consists of
consolidating the separate BINDING section of each module into
one common BINDING section by eliminating redundant entries
(pointers) in the BINDING section. This means that "binding"
inherently requires that entries in the BINDING section be "order
independent'. The user must beware to preserve this 'order
independence'.

It is recommended that reference to the pointers in the
BINDING section be limited to the "load" type instructions (See
Section 7.3.1) or the CALLSEG instruction. For these
instructions the Assembler inherently generates '"relocation"
object text which permits the Library Generator to adjust the
displacement field of these instructions to a new value as a
result of module "binding".

The use of other CPU instructions (e.g. ADDRQ) or generation
of data which contains a displacement relative to the BINDING
section is permitted and the Assembler will generate the
necessary 'relocation'" object text with the assumption that the
field (displacement) being generated is an unsigned positive
field. If this assumption is not correct, the relocation
attributes may be specified by the intrinsic Relocation_function
(R:) (See Section 5.1.9). If the relocation attributes cannot be
specified by the relocation function (R:), then the module cannot
be bound and if the module is to be assembled without diagnostics
the module must be declared '"NONBINDABLE" via the MACHINE
statement (See Section 4.2.1). |

3.2 SECTION CONTROL COUNTER

Each section has a section counter from which the byte offset
from the beginning of the section, and the bit offset in the
current byte can be obtained. The Assembler automatically
updates and maintains this counter when a section is first
established, or its use is resumed. The current contents of the
location counter may be returned as a relocatable value via the
location counter function $§ (dollar sign).

The byte offset is the relative location of the next byte to
be assembled or reserved in the section. It is possible to
increment the byte offset simply by using either ORG or BSS
pseudo instructions. ORG also permits the programmer to reset
the counter to some lower location in the section. The current
byte offset can be referenced by using the function $(0).

The bit offset points to the next bit to be used in the

3-4

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

3.0 PROGRAM STRUCTURE
3.2 SECTION CONTROL COUNTER

current byte, and can range in value from 0 to 7. It can be
referenced by using the function $(1).

3.2.1 FORCING PARCEL ALIGNMENT

A parcel is the minimum instruction size. A parcel is 2 bytes
or 16 bits. The CYBER 180 hardware requires that all
instructions start on a parcel boundary. This also means that
the byte address of the instruction must be even. In a CYBER 180
Virtual Machine assembly, if any of the following conditions are
true, the Assembler forces parcel alignment.

= Insufficient room remains in a partially filled parcel for the
next instruction to be generated.

- The current statement is an END, IDENT, or ALIGN 0,2 pseudo
instruction.

4-1

Control Data - Silicon Valley Development Division
. 90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS

4.0 PSEUDO INSTRUCTIONS

Pseudo instructions are instructions needed by the programmer
to write ©programs, but for which there are no hardware
equivalents.

Pseudo instructions discussed in this chapter are classified
according to application as follows:

Module identification (IDENT and END)

Binary control (MACHINE)

Symbol assignment (EQU, SET, ANAME, ATRIB)

Module linkage (DEF, DEFG, REF, ALIAS and ADDRESS)

Data generation (BSSZ, INT, DINT, FLOAT, DFLOAT, PDEC, CMD,
VFD and TRUNC)

Assembly control (DO, ELSE, DEND, WHILE, and SKIPTO)
Error control (ERROR, FLAG)

Listing control (LIST: PAGE, SPACE, TITLE, XRSY)
Section control (SECTION, USE, ORG, POS, BSS, ALIGN)

Procedure/function pseudo instructions (PROC, PEND, PNAME,
FNAME LOCAL, OPEN, CLOSE, CONT)

In general, pseudo instructions can be placed anywhere in a
module. The following list of pseudo instructions is valid only
for a CPU module.

ADDRESS ALIAS DEF DEFG DFLOAT DINT
- FLOAT INFOMSG PDEC REF SECTION USE

4.1 MODULE IDENTIFICATION

Module identification pseudo instructions designate the
beginning and end (IDENT-END) of a module).

Control Data - Silicon Valley Development Division

4-2

90/10/03

CYBER 180 II Assembler ERS Rev:

G

4.0 PSEUDO INSTRUCTIONS
4.1.1 IDENT - MODULE IDENTIFICATION

4.1.1 IDENT - MODULE IDENTIFICATION

An IDENT pseudo instruction of the following form is the fi
statement of a module recognized by the Assembler. The fi
input statement must be an IDENT or comment statement and if
of information does not £follow an END statement then

rst
rst
end
the

statement following END must be another IDENT or comment

statement. Assembler flags any spurious use of IDENT before

END

as an error. For a CPU module the argument field must be blank.

| 1abel |operation |argument
| name | IDENT |
name Name of the module, it is required and can be 1

characters of which the first must be alphabetic
defined in Section 2.3. This name cannot

=31
as
be

redefined, and may be used to reference the code

section.
Example:
TEST IDENT . TEST is the name of the module

4.1.2 END - END MODULE

An END pseudo instruction must be the last statement of each

module. It causes the Assembler to terminate all counte
conditional assembly, procedure generation and code duplicati

The Assembler combines all 1local blocks (sections) into

rs,
on.

relocatable subprogram block, generates the relocatable binary

tables and produces the listing.

e < <

| 1abel |operation |argument
| 1abel |END |tralabel
label Optional, last address of the module.

tralabel Optional, a 1-31 character symbol specifying

the

entry point to which control transfers for a CPU

module. This symbol must be declared as an en

try

point in the (linked) CPU module, either by a DEF,

DEFG, or REF pseudo instruction in this module.

At

4-3
Control Data - Silicon Valley Development Division
' 90/10/03
CYBER 180 II Asgembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.1.2 END - END MODULE

least one module must specify a transfer address or
the loader signals an error. If more than one module
indicates a transfer address, then the 1loader uses
the first one encountered.

Example:
END START .START is the transfer label

4.2 BINARY CONTROL

This section describes a pseudo instruction that allows the
user to control the binary output produced by the Assembler.

4.2.1 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer
processor on which the object program can be executed. A MACHINE
statement must appear before any generated code. The MACHINE
pseudo instruction also identifies which instruction mnemonics
are permitted (CPU or IOU) and which type of object text to
generate (CPU or 10U). No more than one MACHINE pseudo
instruction may appear within any assembly unit (IDENT-END).

e
+

|label |operation |argument
I

|MACHINE |type,bind

type C180CPU The object processor is a CYBER 180 CPU
(default). The Assembler will accept CPU
instruction mnemonics and will generate CPU
object text.

C18010U The object processor is a CYBER 180 IOU. The
"Asgembler will accept IOU instruction
mnemonics and will generate IOU object text.
Negative numbers in the generated data will be
in 1's complement form (since the IOU is a 1's
complement processor). This value is
accepted, but not supported at this time.

No other type is available at this time.
bind This subfield is applicable only if type is C180CPU.

BINDABLE (DEFAULT) The Assembler will generate

, - 4-4
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS - Rev: G

4.0 PSEUDO INSTRUCTIONS
4.2.1 MACHINE - DECLARE OBJECT PROCESSOR TYPE

additional object text to permit the
Library_generator to '"bind" the module. If
the other statements in the module do not
conform to the rules for "bindable" code then
a FATAL diagnostic will be issued for each of
these statements (See Section 5.1.9).

NONBINDABLE The object text generated will have the
"non-bindable" attribute set. No diagnostics
will occur if the rules for "bindable" code
are not followed. The Library_generator will
abort if an attempt is made to "bind" this
module.

Example:
MACHINE C180CPU .Binary is for a CYBER 180 CPU

4.3 SYMBOL ASSIGNMENT

The pseudo instructions SET and EQU permit direct assignment
of values to symbols. The values can be absolute or relocatable.
Subsequent use of the symbol in an expression produces the same
result as if the value had been used as a constant. Symbols
defined using EQU cannot be redefined.

Any symbol may be given one or more programmer defined
attributes by wusing the ANAME pseudo instruction to define an
attribute name, and then using the ATRIB pseudo instruction which
assigns a specific value to a specific symbol. Once defined, the
attribute function may be used to recover the attribute value
assigned to the argument.

4.3.1 SET/EQU - ASSIGNMENT OF VALUES

A SET or EQU pseudo instruction defines the symbol in the
label field as having the value and attributes indicated by the
expressions in the argument field. The difference between SET
and EQU is that symbols defined with an EQU cannot be redefined,
whereas symbols defined with a SET may be redefined with a
subsequent SET any number of times.

4-5

Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
PSEUDO INSTRUCTIONS
.3.1 SET/EQU - ASSIGNMENT OF VALUES
|1abel |operation |argument
label SET list
label EQU list
label (Required) A list of one or more symbols, or symbol

element number identifiers to which the argument
field list is assigned. It will have a symbol
category of 9.

list Evaluatable expressions. The expressions cannot
include symbols as yet undefined. The maximum value
of a list element cannot exceed 64 bits
(OFFFFFFFFFFFFFFFF(16)). When the first element in
the 1list is a symbol, the attributes of that symbol
will replace the attributes of the symbol in the
label field.

Any symbol in the label field cannot be referred to prior to
its first definition.

The SET and EQU pseudo instructions assign a list of values to
the symbol(s) in the 1label field. The list must contain only
evaluable expressions at the time the pseudo instruction is
processed by the Assembler.. The label field may consist of list
names (symbols) or list element identifiers.

List elements are referenced using the form:
listname [element number]

where listname is the name of the list, and element number is an
evaluable expression denoting a particular element in the list,
where, for an n element list, element number = 0, 1, 2,...,n-1.
A negative element number is diagnosed as an error.

A SET or EQU pseudo instruction within a PROCEDURE is
processed by the Assembler only when the PROCEDURE is referenced
and not when the PROCEDURE is defined. The expressions which
comprise the list elements must be evaluable therefore, only when
the PROCEDURE is referenced.

A particular list element may have a value of ZERO or NULL
depending on how that element is defined. A null element is
assigned to a list whenever a position for a list element is
indicated with appropriate commas, but the position is devoid of
contents. A null 1list element has the numeric value zero when
used computationally. Null elements may be transferred from one

4-6

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.3.1 SET/EQU - ASSIGNMENT OF VALUES

list to another.

The argument field is completely processed and for each
subfield in the argument 1list the value is assigned to the
corresponding value element of each of the symbolic names in the
label field. If a list is specified, it is replaced completely
by the argument. If a list element is specified, replacement is
on an element by element basis. The designated element is
replaced by the first argument 1list value, and succeeding
elements being replaced by the corresponding argument value.

Example #1
A SET 3,5,7,12,15
When this pseudo instruction is processed by the Assembler,

the label "A" is associated with the 1list 3,5,7,12,15. The
elements and their values are:

Af0) = 3
Al1] = 5
Al2] = 7
A[3] = 12
Af4] = 15
A[5] = 0 .(Null)

Following the previous pseudo instruction, we could then give
the pseudo instructions:

A1) SET 42
Al4]) SET 17
A[5] SET 8

And the list associated with "A" would then be:

Af0] = 3
Afl] = 42
Af2) = 7
Af3] = 12
Al4] = 17
A[5] = 8
A[6] = 0 . (Null)

Example #2
X,Y SET SUM+3,12,SUM+7,6

In this case, the symbol SUM must have been previously
defined. If its value were 50, then the Assembler would

4-7

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.3.1 SET/EQU - ASSIGNMENT OF VALUES

establish two lists X and Y which would both be associated with
the list:

53,12,57,6

In addition, any previous list associated with either X or Y
would be erased. The following instructions may then be given:

z SET X
X[0] SET SuM+l
2z SET X

X SET 5,3,1

After these pseudo instructions have been executed, the 1lists
appear as:

X=5,3,1

Y = 53,12,57,6

Z = 53,12,57,6

2Z = 51,12,57,6
Example #3

BIND REG EQU A3 .points to the binding segment
TEMP_REG SET A5 .temporary working register

BIND_REG now is equal to 3 and has the attributes of #AREG.
The symbol BIND_REG cannot be redefined. TEMP_REG is equal to A5
and has the attributes of #AREG. TEMP_REG can be changed with a
subsequent SET.

Example #4

A SET 0,1,2,3,4
Al2] SET 5,6

results in the list:
A=0,1,5,6,4
The pseudo instruction:
Al1] SET ,,10,,11
modifies the list to:

A=20,,,10,,11

4-8
Control Data - Silicon Valley Development Division
_ 90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.3.2 ANAME DIRECTIVE

4.3.2 ANAME DIRECTIVE

The ANAME pseudo instruction is used to define a programmer
defined attribute name and to assign a particular attribute
number to that name. A particular attribute number may have
several names associated with it by using ANAME more than once.

< & -

Ilabel ioperation iargument
Ilabel iANAHE Ivalue
label A previously undefined symbol.
value Evaluatable expression whose value can be any

positive integer.

4.3.3 ATRIB DIRECTIVE

The purpose of the ATRIB pseudo instruction is to assign a
value to the programmer defined attribute of a particular symbol.
The symbol to which the attribute value is assigned is the symbol
in the LABEL field. If the symbol in the LABEL field of this
pseudo instruction is not previously defined, it will be placed
in the permanent symbol table and given a symbol category of 1,
and the specified attribute assigned to it., If the symbeol in the
LABEL field has been previously defined, the value is assigned to
the attribute of the symbol and replaces any previous value
assigned to that symbol for that attribute. Normally, a symbol
must be defined before attribute values are assigned to that
symbol. An exception occurs when PROCEDURES are executed while a
source statement is being processed.

|1abel |operation |argument

|1abel |ATRIB |attribute,value
label A label field symbol is required.
attribute A previously defined (using the ANAME

pseudo instruction) programmer defined
attribute name.

value : Evaluatable expression,

4-9

Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
4.0 PSEUDO INSTRUCTIONS
4.3.4 USE OF THE ANAME AND ATRIB PSEUDO INSTRUCTIONS

4.3.4 USE OF THE ANAME AND ATRIB PSEUDO INSTRUCTIONS

CONSIDER THE FOLLOWING SEQUENCE OF DIRECTIVES:

INDEX ANAME 1
BASE ANAME 2

. At this point we have defined two programmer defined
. attributes INDEX and BASE. Any symbol can now have values
. assigned to these attributes.

SMB1 ATRIB INDEX,5
SMB1 ATRIB BASE,0A(16)

. At this point, the INDEX attribute of SMBl is 5
and the BASE attribute of SMBl is a hexadecimal A.

SMB1 ATRIB INDEX,O0
SMB1 ATRIB BASE,2

- At this point the INDEX and BASE attributes of SMB1 have been
. reassigned to the values:

. INDEX [SMB1] = 0
. BASE[SMB1] = 2

. Attributes may be used as terms of an expression.

JA SET BASE[SMB1]
JB EQU INDEX[SMB1]

4.4 MODULE LINRAGE

The pseudo instructions DEF, DEFG, and REF are valid only in
CPU modules, and are used to denote entry points, either in the
current module or a separately assembled/compiled module. A
symbol flagged as an entry point denotes an address representing
data or code, which can be referenced by other modules. It is
through the use of entry points that the NOS/VE loader is able to
link modules together. See the appropriate NOS/VE loader
document for complete details.

4.4.1 DEF,DEFG-DECLARE ENTRY SYMBOLS

The DEF and DEFG pseudo instructions define symbols as entry
points in the current CPU module. DEFG pseudo instruction

4-10

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.4.1 DEF,DEFG-DECLARE ENTRY SYMBOLS

defines symbols as gated entry points. (Gated entry points are
explained further in the NOS/VE loader documentation.)

-
+

label |operation |argument

.
+

+— +

syml,sym2,...,symn
syml,sym2,...,symn

DEF
DEFG

symi (Required) Linkage symbol from 1-31 characters of
which the firsgt must be alphabetic as defined in
section 2.4. (Also see ALIAS statement.) Each
symbol must be further defined in the module as a
relocatable address (catagory 6). The symbol may not
be a LOCAL or OPENED symbol. The appearance of the
same symbol more than once in a DEF or DEFG is not an
error, but the symbol may not appear in both a DEF
and DEFG statement.

Example:
DEF PRGI .PRGl is a symbol in this compilation unit.
4.4.2 REF-DECLARE EXTERNAL SYMBOLS
The REF pseudo instruction lists symbols that are defined as

entry points in independently compiled or assembled CPU modules
for which references can appear in the module being assembled.

|1abel |operation |argument
| |REF |syml,sym2,...,symn
symi (Required) Linkage symbol, 1-31 characters of which

the first must be alphabetic as defined in Section
2.4, These symbols must not be further defined
within the module being assembled. Note that it is
still possible to have new definitions for the symbol
by using LOCAL or OPEN statements. (Also see ALIAS
statement.) :

Symbols may be declared in a REF statement prior to or
subsequent to their use in the program. They must be global
symbols, and cannot have been declared OPEN or LOCAL. Symbols
which are declared in a REF pseudo instruction are assumed to be
relocatable and their use in expressions must follow the rules
for relocatability. Any further definition of a REF symbol will

4-11

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS Rev: G

0

4.0 PSEUDO INSTRUCTIONS
4.4,2

.2 REF-DECLARE EXTERNAL SYMBOLS

be diagnosed as an error.
Example:

REF TAGX .TAGX IS AN ENTRY POINT IN A DIFFERENT
.ASSEMBLY/COMPILATION UNIT.

4.4.3 ALIAS - EQUATE LINKAGE SYMBOLS
The ALIAS pseudo instruction gives the programmer the ability

to declare entry points with names other that that used within
the current CPU module.

| 1abel |operation |argument
|namel |ALIAS |name2
namel 1-31 character linkage symbol used by the Assembler.

This symbol must be further defined in the module as
a DEF, DEFG, or REF symbol.

name2 1-31 character CYBER 180 linkage symbol. This symbol
is not restricted by the limits of symbol definition
in Section 2.4. The symbol must consist of
alphabetic or numeric characters, the first of which
must be alphabetic. The colon may not be used as one
of the characters.

Example:

TAG ALIAS TAGFORALONGNAME .TAG FOR A LONG NAME IS
.DEFINED IN A DIFFERENT
.COMPILATION UNIT.

4.4.4 ADDRESS - FORM CYBER 180 ADDRESS

The ADDRESS pseudo instruction enables the generation of
references to full Process Virtual Address (PVA's) in a CPU
module, to be filled in by the NOS/VE Loader. Generally, this
pseudo instruction is used in the BINDING section to form
pointers.

4-12

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.4.4 ADDRESS - FORM CYBER 180 ADDRESS

label

typi

< +

-+ T

| 1abel |operation |argument

<

|1abel | ADDRESS |typl,syml,...,typn,symn

Optional, symbol assigned the value of the beginning
of the address list. Symbol category equals 6.

Type designating the address insertion type. It can
have only the following values else an error is
diagnosed:

P - (Pointer) Creates a pointer (PVA) to the
specified address. The generated object code is
one word long and is word aligned relative to the
section origin. The PVA is stored in the
generated object code right justified with zero
£ill.

C - (Code Base Pointer) Used for linking procedures.
The format £for the PVA is one word of generated
object code for internal symbols, and two words
of generated object code for external symbols.
The generated object code is always word aligned
relative to the section origin with the PVA being
right justified with zero fill.

CI- (Code Base Pointer Internal Format) Generates
object code for a code base pointer in internal
format (1 word) for the symbol, without regard as
to whether the symbol is internal or external.
The generated object code is word aligned
relative to the section origin with the PVA being

~right justified with zero fill.

CE- (Code Base Pointer External Format) Generates
object code for a code base pointer in external
format (2 words) for the symbol, without regard
as to whether the symbol is internal or external.
The generated object code is word aligned
relative to the section origin with the PVA being
right justified and zero filled.

R - (Relative) Generates object code for a PVA which
points to a symbol with an offset. The length of
the generated object code is 8 bytes in the
binding section, or 6 bytes in any other section.
The generated object code is word aligned
relative to the section origin when in the

4-13

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.4.4 ADDRESS - FORM CYBER 180 ADDRESS

binding section with the PVA being right
justified with zero £ill, When not in the
binding section, the generated object code is
byte aligned.

symi Following each TYPI subfield there must be a single,
corresponding SYMI subfield which contains a symbol
or expression which identifies the internal or
external location for which a PVA is to be created.
Expressions are permitted only when TYPI is R.

Example:

USE BINDING
REF TESTDATA

TAG ADDRESS C,TESTDATA .GENERATES A 2 WORD PVA FOR TESTDATA
USE #LASTSEC -WHICH IS IN A DIFFERENT MODULE.

4.5 DATA GENERATION

The instructions described in this section are the only pseudo
instructions that generate data. All other program data is
generated through symbolic machine instructions.

4.5.1 BSSZ-RESERVE ZEROED STORAGE

The BSSZ pseudo instruction generates zeroed bytes of data in
the section of a CPU module currently in use.

n
-+

| label |operation |argument
| 1abel |BSSZ |aexp
label Optional, label defined as the byte offset in the

section after the appropriate alignment occurs. The
symbol identifies the beginning of the reserved
storage area.

aexp Absolute evaluable expression specifying the number
of zeroed bytes of storage to be reserved. The
expression cannot contain external symbols or result
in a relocatable or negative value.

A BSSZ 0 or an erroneous expression causes a force to a byte
boundary and the symbol definition, but no storage is reserved.
If storage is to be reserved in a CPU module starting at a word,

: 4-14
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.5.1 BSSZ-RESERVE ZEROED STORAGE

halfword, or parcel boundary, then the BSSZ must be preceded by
one of the appropriate alignment pseudo instructions.

Example:

ALIGN 0,8 .FORCE BYTE OFFSET TO A WORD BOUNDARY.
TAG BSSZ 10 -RESERVES 10 BYTES OF ZEROES.

4.5.2 INT - GENERATE INTEGERS
The INT pseudo instruction generates one or more 32-bit

integers on a byte boundary in the current section of a CPU
module for each item listed in the argument field.

| 1abel |operation |argument
|1abel | INT |iteml,item2,...,itemn
label Optional, symbol is assigned the byte offset in the

section after the force to the appropriate boundary
occurs. Symbol category equals 6.

itemi Numeric data item. Value of the numeric data item
cannot exceed the storage capacity of the item being
generated.

Example:

TAG INT 1,2,3

4.5.3 DINT - GENERATE 64-BIT INTEGERS

The DINT pseudo instruction generates one 64-bit integer on a
byte boundary in the current section of a CPU module for each
item in the argument field.

A}

|1abel |operation |argument
|1abel |DINT |iteml,item2,...,itemn
label Optional, symbol assigned the byte offset in the

section after the force to a byte boundary occurs.
Symbol category equals 6.

4-15

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 11 Assembler ERS Rev:

G

4.0 PSEUDO INSTRUCTIONS
4.5.3 DINT - GENERATE 64-BIT INTEGERS

itemi Numeric data item.
Example:
TAG DINT 1,2,3

4.5.4 FLOAT - GENERATE SINGLE PRECISION FLOATING-POINT NUMBERS

The FLOAT pseudo instruction generates one 64-bit floati

ng

point number on a byte boundary in the current section of a CPU
module for each item listed in the argument field. Note that

floating point numbers entered with a decimal point must have

digit preceding the period (else the remainder of the statement

will be interpreted as comments).

< -+ <

|1abel |operation |argument
|1abel | FLOAT |iteml,item2,...,itemn
label Optional symbol assigned the byte offset in the

section after the force to a byte boundary occur
Symbol category equals 6.

8.

itemi Numeric data item. Value of numeric data item cannot

exceed the storage capacity of a single precisi

on

(64-bit) floating point item. Conversion of the
numeric data item into the internal floating point

representation is performed by a CYBER 180 ma

th

libray program. Consult the appropriate CYBER 180

math libray documentation for further information.
Example:
TAG FLOAT 1.347E-6,0,-6.3416E12,1.

4.5.5 DFLOAT ~ GENERATE DOUBLE PRECISION FLOATING-POINT NUMBERS

The DFLOAT pseudo instruction generates one double precision,

128-bit floating point number on a byte boundary in the current

section of a CPU module for each item listed in the argument

field. Note that floating point numbers entered with a decimal

point must have a digit preceding the period (else the remainder

of the statement is interpreted as comments).

Control Data - Silicon Valley Development Division

4-16

90/10/03

CYBER 180 II Assembler ERS : Rev: G

4.0 PSEUDO INSTRUCTIONS
4.5.5 DFLOAT - GENERATE DOUBLE PRECISION FLOATING-POINT NUMBERS

label

itemi

Example:

<

+— +

-+

.

|1abel

<+

label |operation |argument
|

DFLOAT |iteml,item2,...itemn

Optional symbol assigned the byte offset in the
section after the force to a byte boundary occurs.
Symbol category equals 6.

Numeric data item. The value of the numeric data
item must be within the 1limits of the storage
capacity of the item being generated. Conversion of
the item into internal floating point representation
is performed by a CYBER 180 math library progran.
Consult the appropriate CYBER 180 wmath library
documentation for further information.

TAG DFLOAT -22.661,6.87701E-14,1E3,0.00000001762

4.5.6 PDEC - GENERATE PACKED DECIMAL DATA

The PDEC pseudo instruction generates packed decimal data on a
byte boundary for the length of the field desired.

label

string

<

hd

-
o+
e
<+

label

abel |operation |argument
|

PDEC |C'string'

Optional symbol assigned the byte offset in the
section after the force to a byte boundary occurs.
Symbol category equals 6.

Signed or unsigned numeric decimal character string
is required. Any other argument type is diagnosed as
an error. Each character in the string generates a
4-bit code. Only the characters 0-9 and + or - are
permitted. Any other characters in the string are
diagnosed as an error. The sign character (+ or =)
must be the last (rightmost) character. If the data
is to be used by a BDP instruction the user must
insure that the contents of the generated object code
fit the requirements of the BDP type designator (See
Section 7.4).

4-17

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.5.6 PDEC - GENERATE PACKED DECIMAL DATA

Example:
TAG PDEC (C'l234'

4,5.7 CMD - GENERATE BIT STRING

The CMD pseudo instruction is a single statement form of
PROCEDURE. The output of the CMD pseudo instruction is a string
of binary bits together with appropriate control information for
the CYBER 180 LOADER. The length of the binary bit string is
controlled by the "length list" and the contents of the binary
bit string are controlled by the 'value list". Both the "length
list" and the '"value 1list" can contain multiple subfields,
provided that the total bit string produced is greater than zero
and less than or equal to 1024 bits.

|1abel |operation |argument
| 1abel |cMD,1_1st |v_lst
label A label field symbol is required. It is used to

define the OPERATION field name by which this
particular CMD definition will be referenced in
subsequent statements of the program. The CMD
statement must appear prior to any reference to the
operation it defines and may not appear within a
PROCEDURE definition. The (optional) label
appearing on a line referencing a CMD defined
operation will be associated with the generated bit
string. Symbol category equals 6.

1_lst The length list is a list of evaluable expressions
whose value represents the length in bits, of each
argument field element to be generated by the
Assembler. This list is ordered from left to right.
If the value of the "l1_lst" causes an overflow of
the section counter, then an error will be
diagnosed.

v_lst In one-to—one correspondence with the "length list"
is a3 "value list", which is a 1list of expressions
which determines the value assigned to the
corresponding element of the '"length 1list". If
number of elements in "1 _lst" does not match the
number of elements in ''v_lst" then an error is
diagnosed. If the value of a '"v_lst" element
exceeds the storage capacity allocated by the

4-18

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS : Rev: G

4.0 PSEUDO INSTRUCTIONS
4.5.7 CMD - GENERATE BIT STRING

corresponding ''l_lst" element, then an error may or
may not be diagnosed depending on the use of the
TRUNC statement (See Section 4.5.9).

Example: (Also see the section on PROCEDURES)
LA CMD,8,4,4,16 84(16),F:(2,1),F:(2,0),F:(2,2)

4.5.8 VFD - VARIABLE FIELD DEFINITION

The VFD pseudo instruction generates a string of binary bits.
The (optional) label is associated with the data string.

The difference between the CMD and VFD pseudo instructions is
that the CMD pseudo instruction is a template which does not
generate output until called, whereas the VFD pseudo instruction
generates output when it is encountered.

< <+

Ilabel Ioperation Iargument
Ilabel TVFD,I_lst Iv_lst
label Optional symbol assigned the byte offset in the
section.
1_1st A list of evaluable expressions which represent the

length in bits of each subfield to be constructed.
This list is ordered from left to right. If length
list causes an overflow of the section counter then
an error will be diagnosed.

v_list In one-to—one correspondence with the length list is
a list of expressions which determine the value
assigned to the elements of the length list. If the
number of elements of "1_lst" does not match the
number of elements of "v_lst" then an error is
diagnosed. If the value of the "v_lst" element
exceeds the storage capacity specified by the
corresponding '"1_lst" element, then an error may or
may not be diagnosed depending on the use of the
TRUNC statement (See Section 4.5.9).

Example:

LIST1 VFD,8,16,8,3*8 1,4F(16),6,C'ABC'

4-19

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.5.9 TRUNC - TRUNCATE

4.5.9 TRUNC - TRUNCATE

The TRUNC pseudo instruction is used to indicate what action
is to be taken, if it is necessary to truncate a value in order
to enable it to fit into a field specified by a CMD or VFD pseudo

instruction.
|1abel |operation |argument
| | TRUNC |value
value Value is one of the numbers 0 and 1 which have the

following meaning:

0: Truncate and do not associate an error flag
with the data generated.

1: Truncate and flag the word generated as in
error.

An attempt will always be made to fit the significant bits of
a value into a field. When type 1 truncation is specified, the
elimination of an unbroken string of non-significant zeros or
elimination of an unbroken string of 1's in the case of a
negative number, is not considered to be an error. When
character data is truncated, trailing blanks are not considered
an error.

More than one TRUNC pseudo instruction may appear in a
program. The most recently encountered TRUNC pseudo instruction
will be used. If no TRUNC pseudo instruction appears in a
program, "type 0" truncation will be used.

Example:
TRUNC 1 +FLAG TRUNCATION ERRORS.
4.5.10 INFOMSG
The INFOMSG pseudo instruction is used to control the
generation of the Informative Diagnostic issued when data

generation occurs in the BINDING or STACK sections of a CPU
module.*

4-20
Control Data — Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
4.0 PSEUDO INSTRUCTIONS
4.5.10 INFOMSG
| 1abel |operation |argument
l |INFOMSG |value
value - LISTON - Turns generation of error message on

(default).
- blank =~ Suppresses generation of error message.
Example:
INFOMSG LISTON ,FLAG DATA GENERATION ERRORS.
* Data cannot be initialized in the Binding and Stack sections
at assembly time, with the exception of the ADDRESS pseudo

instruction which can be used in the Binding section.

4.6 ASSEMBLY CONTROL

4.6.1 DO/ELSE/DEND PSEUDO INSTRUCTIONS

This group of pseudo instructions is used for conditional
iterative control of Assembler processing. The format of these
pseudo instructions is:

|label |operation |argument
label DO expression
: ELSE
label DEND
label Optional label that is assigned the value of the

expression when used on the DO statement. It is not
valid on the ELSE pseudo instruction. When specified
on a DEND, a cycle effect can be created by using a
SKIPTO LABEL instruction. The 1label of a DEND
statement is never entered in the Assembler's symbol
table and the presence of a label field is used only
as the object of a SKIPTO.

expression Expression must be absolute and evaluable. This
expression represents the number of times the DO loop
will be executed. If no expression is present, the
argument of the DO will be treated as 0. A boolean
condition can be specified for conditional assembly
of code.

4-21

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.6.1 DO/ELSE/DEND PSEUDO INSTRUCTIONS

A DEND pseudo operation must be associated with each DO pseudo
operation written. However, the ELSE need not be present, but if
desired, must occur between the DO and DEND.

The DO pseudo operation operates as follows:

a) An internal counter is set up and initially given the value
of 0.

b) If a label is present on the DO line, its value is set to O.

¢c) The expression on the DO line is evaluated. Denote the
results of this calculation by n. (If no expression was
present or the expression was not evaluable, n = Q).

d) If n < 0, skip succeeding lines until an ELSE or DEND pseudo
operation is encountered.

1) If an ELSE pseudo operation is encountered, assemble
succeeding statements until a DEND line is encountered.
Continue assembly at the statement after the DEND line.

2) If a DEND pseudo operation is encoﬁntered, resume
assembly at the statement following the DEND line.

e) If n > 0, the following action occurs:
1) Increment the internal counter by 1.

2) 1If a label was present on the DO line, set the value of
the label equal to the new value of the internal counter.

3) Assemble all lines until an ELSE or DEND pseudo operation
is encountered.

4) Compare the internal counter to n.

a) If the count is less than n, repeat the procedure
from step (e). This causes the count to be
incremented, and resumes assembly of the statements
following the DO.

b) If the count is equal to n, terminate control of the
DO pseudo operation and resume assembly at the line
immediately following the DEND, skipping all
statements between the ELSE and DEND if necessary.

Example:

4-22

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 I1 Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.6.1 DO/ELSE/DEND PSEUDO INSTRUCTIONS

. EXAMPLE 1)

FACT SET
I DO
FACT SET
ELSE
FACT SET
DEND

The following code will assemble one 64-bit word
with a value of X factorial. If X is negative or
zero, then a word with value zero is assembled
instead:

1

X
FACT*I PROCESSED X TIMES IF X>0
0 PROCESSED ONCE IF X<0

VFD,64 FACT

. EXAMPLE 2)

The following code will assemble N+1 64-bit words
whose values are 0,...,N where N can be either
positive or negative. The inner DO block is
processed only if N<O0.

VFD,64 0

I DO

N

VFD,64 I PROCESSED N TIMES IF N>0

ELSE
J DO

-N

VFD,64 =] PROCESSED -N TIMES IF N<O

DEND
DEND

. If N=3 the above code is equivalent to:
VFD,16 0
VFD,16 1
VFD,16 2
VFD,16 3

. If N=-2 the example code is equivalent to:
VFD,16 O
VFD,16 -1
VFD,16 -2

4.6.2 WHILE/ELSE/DEND PSEUDO INSTRUCTIONS

The format of these pseudo instructions are:

Control Data - Silicon Valley Development Division

4-23

90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.6.2 WHILE/ELSE/DEND PSEUDO INSTRUCTIONS

n n
-* *r

|label |operation |argument

label WHILE expression
ELSE

label DEND

Label and expression have the same meaning as in the DO pseudo
operation. However, there is no limit pPlaced on the value of the

expression.

The execution of the WHILE loop is similar to that of the

DO,

except that the expression is evaluated for each iteration in the

loop.

The WHILE pseudo operation is performed as follows:

a) An internal counter is set up and initially is given the

value O.

b) If a label is present on the WHILE line, its value is set to

0.

¢) The expression of the WHILE line is evaluated. Denote

the

results of this evaluation by m. (If no expression is

present, or the expression is not evaluable, m = 0.)

d) If m < 0 and this is the first time through the WHILE

loop,

suppress assembly until an ELSE or DEND pseudo operation is

encountered.

1) If an ELSE pseudo operation is encountered, assemble
succeeding statements until a DEND line is encountered.

Continue assembly at the statement following the
line.

2) If a DEND pseudo operation is encountered,
assembly at the line following the DEND line.

If m < 0 and this is not the first time through the

DEND

resume

WHILE

loop, skip all 1lines until a DEND _pseudo operation is

encountered and resume assembly at the line following

DEND.
e) Ifm>0,

1) Increment the internal counter by 1.

the

2) Set the value of the label on the WHILE line (if present)

4-24

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS _ Rev: G

4.0 PSEUDO INSTRUCTIONS
4,6.2 WHILE/ELSE/DEND PSEUDO INSTRUCTIONS

to the new value of the counter.

- 3) Continue assembly until an ELSE or DEND pseudo operation
is encountered, and then repeat the procedure from step
c.

Note that the only logical way to get out of a WHILE loop is
to change within the loop, one or more of the items which
make up the expression on the WHILE line so that the
expression will have a value <0.

Example:

. This code will assemble a number of 16-bit words whose value
. are from the Fibonacci series. Starting with the value 1,

. each word is equal in value to the sum of the previous two

. words. In this example the series is terminated when all of
. its members less than N have been generated.

OPEN A,B,TEMP

A SET 0

B SET 1
WHILE B<N
VFD,16 B

TEMP SET B

B SET A+B

A SET TEMP
DEND
CLOSE A,B,TENP

. If N=10 the above code is equivalent to:
VFD, 16
VFD, 16
VFD, 16
VFD, 16
VFD, 16
VFD, 16

—

00 n W N =

4.6.3 SKIPTO - SKIP CODE

The SKIPTO pseudo operation enables the user to conditionally
alter the sequence in which assembly lines are processed. It has
the form: '

"
T

label |operation |argument

<

-+
-+
-+
+ -+

| SKIPTO, exp |namel,...,namen

4-25

Control Data - Silicon Valley Development Division

‘ 90/10/03
CYBER 180 II Assembler ERS Rev: G
4.0 PSEUDO INSTRUCTIONS
4,6.3 SKIPTO - SKIP CODE
exp Optional, must be evaluable.
namei A valid label appearing on a CONT, DEND, or PEND

statement which follows the SKIPTO statement.

If the expression is not present, only a single label is

permigsible.

a)

b)

SKIPTO operates as follows:

If no expression is present on the SKIPTO line, skip
succeeding lines until a line with the appropriate label is
found.

If an expression is present, it is evaluated.

1) If value of the expression is k and k lies between 0 and
n-1 where n is the number of 1labels on the SKIPTO
directive, the succeeding lines are skipped until a CONT,
DEND, or PEND statement is found which has as its label,
namek.

2) If the value of the expression is < 0 or > n (or the
expression is not evaluable), assembly resumes at the
line immediately following the SKIPTO pseudo instruction.

Note that when in the skipping mode, all pseudo instructions
except LOCAL, OPEN and CLOSE are ignored. Any symbol defined
by LOCAL or OPEN pseudo instructions are not recognized.
Labels within PROC/PEND, WHILE/DEND, or DO/DEND blocks are
not recognized, and it is illegal to write a SKIPTO pseudo
instructions which branches out of a procedure definition,
WHILE/DEND sequence, or DO/DEND sequence.

Example:

- In the following example, the statement processed following

the first SKIPTO directive depends on the value of "A".

SKIPTO, A SMALL ,MEDIUM, LARGE , HUGE
UNEXPT SKIPTO MORE THIS STATEMENT IS PROCESSED
. IF A IS NOT EQUAL TO 0, 1, 2
. OR 3.
SMALL RES 50 THIS STATEMENT IS PROCESSED

IF A IS EQUAL TO O.
SKIPTO MORE

MEDIUM RES 100 THIS STATEMENT IS PROCESSED

IF A IS EQUAL TO 1.
SKIPTO MORE

4-26
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS , Rev: G
4,0 PSEUDO INSTRUCTIONS
4,6.3 SKIPTO - SKIP CODE
LARGE RES 250 THIS STATEMENT IS PROCESSED

. IF A IS EQUAL TO 2.
SKIPTO MORE
HUGE RES 1000 THIS STATEMENT IS PROCESSED
. IF A IS EQUAL TO 3.
MORE CONT

. If "RES" is a user-defined procedure which reserves the

. number of words of core specified by its argument, then the

. amount of core reserved by the above code varies depending on
. "A" .

. This example illustrates the effect of OPEN/CLOSE and DO/DEND
. blocks on the SKIPTO directive.

SKIPTO X
OPEN X
X RES 5 THIS LINE IS SKIPPED BECAUSE
IT APPEARS
CLOSE X BETWEEN AN OPEN AND CLOSE
I DO 10
LOCAL X
X VFD,16 I THIS LINE IS SKIPPED BECAUSE
IT APPEARS WITHIN A DO/DEND
DEND BLOCK
X ADD BASE,DISP THIS LINE IS PROCESSED

FOLLOWING THE SKIPTO DIRECTIVE

4.7 ERROR_CONTROL

4.7.1 ERROR PSEUDO OPERATION

-
+

——
| ERROR, exp, label

| 1abel |operation | argument
| |C'message’

The ERROR pseudo operation provides a method for conditionally
generating an error message in the object listing and

4-27
Control Data - Silicon Valley Development Division

. 90/10/03
CYBER 180 II Assembler ERS Rev: G
4.0 PSEUDO INSTRUCTIONS
4.7.1 ERROR PSEUDO OPERATION
transferring control to another portion of the program.
label Label is any valid symbol appearing in the label

field of a subsequent CONT, DEND, or PEND statement.
The statement must be a CONT, DEND, or PEND statement
before label comparison is made.

exp Exp is a conditional expression whose value

. determines whether the error message is to be

produced and .if a transfer of control is necessary.

If this subfield is omitted, then the message is
unconditionally generated.

message Message is any valid combination of characters (see
Character set).

When an ERROR pseudo instruction is encountered, the
expression is evaluated.

If it is true (1) or not specified, the error message is
produced on the object listing. If symbol is present,
control is transferred to the indicated line. 1If no
symbol is present, assembly continues with the next
statement.

If the expression is false (0), no message is produced
and assembly is continued at the succeeding line.

Example:

ERROR, A<0 C'ILLEGAL ARGUMENT'
NELX SET 2,3,A,M,XO0R,COMX

. WHEN THE ABOVE DIRECTIVE IS ENCOUNTERED, IF A IS LESS THAN

. ZERO THEN THE MESSAGE "ILLEGAL ARGUMENT" WILL BE PRINTED. IF

. A IS NOT LESS THAN ZERO, NO MESSAGE WILL BE PRINTED. IN
EITHER CASE, THE LINE NELX WILL BE PROCESSED NEXT.

ERROR,B<0|B>15,ILR C'ILLEGAL REGISTER'

PSRL LPD,2 B
SKIPTO NEWL

ILR ERR

NEWL CONT

. WHEN THIS ERROR DIRECTIVE IS ENCOUNTERED, IF 0<B<15, NO
. MESSAGE IS PRINTED OUT AND THE LINE PSRL IS PROCESSED,
. FOLLOWED BY LINE NEWL. IF B<0 OR B<15, THEN THE MESSAGE

4-28

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.7.1 ERROR PSEUDO OPERATION

"ILLEGAL REGISTER" WILL BE PRINTED AND THE LINE ILR IS
. PROCESSED, FOLLOWED BY THE LINE NEWL. IN THIS EXAMPLE, "LPD"
. AND "ERR" ARE -USER-DEFINED PROCEDURES.

4.7.2 FLAG - CONDITIONALLY SET ERROR FLAG

A FLAG pseudo instruction produces an assembly error, but does
not affect other code.

Ilabel Ioperation Targument
I IFLAG ierrtype
errtype FATAL - a fatal error detected.
WARNING - a non-fatal error detected.
Example:
FLAG FATAL

4.8 LISTING CONTROL

The instructions described in this section permit extensive
control of the assembly listing format.

4,8.1 LIST - SELECT LIST OPTIONS

<=
+

label

+— +

operation |argument

—+—+

|LIST,val |exp_l,exp_2,exp_3

The LIST pseudo operation controls the assembly 1listing
generated. The argument field is wused to select the various
listing options.

val Val is an optional evaluable expression which is
interpreted as follows:

0 = List this statement according to the listing
controls in effect when this statement is
encountered.

"1 = List this statement according to the value of
expression 3. This is the default.

4-29
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
4.0 PSEUDO INSTRUCTIONS
4.8.1 LIST -~ SELECT LIST OPTIONS
exp_1 An evaluable expression which may assume the

following values:
0 = Suppress complete listing.
1 = List input statements.

2 = List input statements plus all statements that
generate code (VFD, CMD statements that normally
would not be listed).

3 = List all generated statements including internal
procedure expansions.

4 = List all generated statements.

exp_2 An evaluable expression used to control the listing
of unprocessed statements that are by-passed during
the assembly procedure and also the repeated
statements in a DO/WHILE which normally would not be
listed. This may occur during the processing of
SKIPTO, DO and WHILE pseudo instructions. The values
of the expression are as follows:

0 = List only processed statements, but not repeated
DO/WHILE statements.

1 = List processed statements including repeated
DO/WHILE statements that are processed.

2 = List all statements.
exp_3 Used to control the listing of the 1listing control
pseudo instructions, TITLE, PAGE, SPACE, XRSY, and
LIST. The values of this expression are as follows:
0 = Do not list the Listing control statements.
1 = List the Listing control statements.
The standard LIST parameters established by default are:
LIST 1,2,1
Causing a full listing to be generated. Subsequently any of
these parameters may be altered. A null subfield specifies that
the parameter is to be wunchanged. If no parameters are

specified, the LIST options will revert back to their previous
settings.

4-30

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS : Rev: G

4.0 PSEUDO INSTRUCTIONS
4.8.2 PAGE - EJECT PAGE

4.8.2 PAGE - EJECT PAGE

< e
+ T

|1abel |operation |argument
|

+

| PAGE |

The appearance of this pseudo operation will cause the next
line of output to appear at the top of a new page on the computer
listing. If the next line would normally appear at the top of a
new page, the PAGE pseudo operation is ignored. Two consecutive
PAGE directives will generate a blank page.

4.8.3 SPACE - SKIP LINES

-

"
+

|1abel |operation |argument

<

.
-+ -+

| SPACE |expression

expression Expression is any evaluable expression. The value of
this expression specifies the number of lines to be
spaced before the next line appears on the computer
listing.

If the expression is not present, a value of 1 is assumed. If
the value of the expression is greater than the number of lines
remaining on the page, the SPACE pseudo operation will have the
same effect as the PAGE pseudo operation.

Example:
SPACE 3

4.8.4 TITLE - ASSEMBLY LISTING TITLE

<
-+

label |operation |argument
l

+

—t— ¢

TITLE |C'character string'

character string

Character string is a sequence of any characters (see
Character Set) up to a maximum of 56 characters.

The TITLE pseudo instructions enables the programmer to

4-31

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.8.4 TITLE - ASSEMBLY LISTING TITLE

specify an identification for assembly listing.

When a TITLE pseudo instructions is encountered, the assembly
listing is advanced to a new page (if it is not already at a new
page). The indicated character string is printed at the top of
this page and at the top of all succeeding pages until another
TITLE pseudo instruction is encountered or the end of assembly is
reached.

A null argument field on a TITLE pseudo instruction line will
cause the listing to be advanced to a new page, but no heading
printed.

Example:

TITLE C'TESTCODE'

4.8.5 XRSY - CONCORDANCE SELECTION

<+ <+ -+
T - T

label |operation |argument

-+

| | XRSY |namel,...,namen
The XRSY pseudo operation is used to select certain symbols to
be included in the concordance.

namen Namen designates symbols to be included in the
concordance.
Example:
XRSY X0

4.9 SECTIONS

Sections are established for the user by the Assembler, and
optionally by the user. The concept of sections is valid only
for CPU programs. Sections in a CPU module are established with
differing levels of access to allow the user who uses them
protection for code and data. The concept of sections is similar
to the hardware concept of segments. Hardware segments are
established to have different levels of access, and generally so
are the Assembler sections. However, sections can be established
with the same level of access, and they will then be combined
into the same hardware segment.

4-32

Control Data — Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.9 SECTIONS

Sections can be used to establish a blocking of data and code.
The section counter is automatically maintained by the Assembler,
but can be modified by using the ORG, POS or BSS pseudo
instructions.

Data and code within a section is not relocatable. The
sections are treated as relocatable with references made via the
use of pointers. The CYBER 180 instruction set has been designed
to efficiently access data and code in other sections via a
mechanism of pointers to a byte address plus an offset in the
specific section. The pointers are generally established via the
ADDRESS pseudo instruction in the BINDING section.

4.9.1 SECTION - ESTABLISH BLOCK

SECTION establishes a new block. This statement is valid only
for a CPU module. A user may establish up to 10 sections in
addition to the five default sections established for him. All
SECTION pseudo instructions must appear before any code or data
generation instructions are specified.

Ilabel Ioperation Iargument
Iname ISECTION itype,attr,cid,algn,maxsize
name (Required) Internal section name for USE block
definition.
type (Required) The section type identifier which must be

one of the following names:

CODE Code section, only one code section is
permitted per module.

BINDING Binding section, only one binding section
is permitted per module.

WORKING Working storage section.

COMMON Common block section.

EXTWORK Extensible working storage section. Data
may not be established in sections of this
type at Assembly time.

EXTCOM Extensible common block section. Data may
not be established in sections of this
type at Assembly time. ‘

attr (Required) An absolute expression which specifies
legal combinations of access attributes of the
segment to contain the section. Only the '"+" ~

4-33

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.9

.9.1 SECTION - ESTABLISH BLOCK

operator is permitted in the expression.

READ - Read

WRITE - Write

EXECUTE - Executable

BIND - Binding

CACHE_BYPASS - cache bypass (hardware feature)

cid (Optional) Common section name (1-31 character alias -
name) .
algn (Optional) Two absolute expressions separated by a

comma which define section alignment. The first
parameter is an offset, the second is the base
(modulus).

Examples are:

0,8 - Word aligned section start.

8,64 - Section starts at word one of an 8 word block
boundary.

0,8 - Word aligned section start (default for all
sections except binding sections).

maxsize (Optional) Absolute evaluable expression which
specifies the maximum section size.

The following default sections are established by the
Assembler for a CPU module:

Section Name Attributes
*CODE Read+Execute
WORKING Read+Write
BINDING Read+Bind
STACK Read+Write

* The name on the IDENT card can also be used to reference the
CODE section.

Example:
DUMMY SECTION WORKING,READ+WRITE,,O0,8

4.9.2 USE - USE BLOCK

The USE statement is wvalid only for CPU modules. USE

‘ 4-34

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS : Rev: G

4,0 PSEUDO INSTRUCTIONS
4.,9.2 USE - USE BLOCK

starts/resumes use of an already established section into which
code is subsequently assembled.

| 1abel |operation |argument
| | USE | name
name The name of the section into which the text that

follows is assembled. (It corresponds to the name of
a SECTION pseudo instruction). A blank name causes
the assembly of code into the default CODE section.
The name #LASTSEC will resume using the section in
use prior to the last USE statement.

The current position in a section is automatically maintained
by the Assembler. When the USE pseudo instruction is executed,
the section counter will automatically be restored to its
previous value.

Example:

DUMMY SECTION WORKING,READ+WRITE,,O0,8

USE DUMMY

USE #LASTSEC
4,9.3 ORG - SET SECTION COUNTER

The ORG pseudo instruction specifies the byte offset to which
the section counter is to be set.

- -+ <&

|1abel |operation |argument
| 1abel |orRG | exp
label Optional, if present, is set to the value of exp.

Symbol category equals 6.

exp An absolute expression specifying the address to
which the unit offset is to be set. Any symbols in
the expression must have been previously defined.

4-35

Control Data - Silicon Valley Development Divigion

90/10/03

CYBER 180 II Assembler ERS Rev: G

.0 PSEUDO INSTRUCTIONS
9.3 ORG - SET SECTION COUNTER

Example:

TAG BSS 10 +DATA AREA.

.

.

ORG TAG .STORE IN DATA AREA.
4.9.4 POS - SET BIT POSITION IN THE SECTION COUNTER
The POS pseudo instruction sets the value of the bit offset in

the section counter to the value specified by the expression in
the argument field. :

|1abel |operation | argument
I | pOS |aexp
aexp An absolute, evaluable expression having a positive

value less than or equal to the bit position with a
byte. A negative value, or a value greater than 7
causes an error. The value indicates the bit
position within the current address unit at which the
Assembler is to generate the next data. Use caution,
because if the new bit position value is less than
the old bit position value, part of the byte is
reassembled. (New code is ORed with previously
assembled data). If the new bit position value is
greater than the old bit position value, the
Assembler generates zero bits to the specified bit
position.

CAUTION: 1If the POS pseudo instruction is used on a word
containing relocatable or external addresses, undefined
results may occur with no diagnostics.

The POS pseudo instruction does not alter the byte offset.
The POS instruction never causes the byte to be changed.

Example:
POS 3

4.9.5 BSS - STORAGE RESERVATION

The BSS pseudo instruction reserves memory in the section in

4-36

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4.9.5 BSS - STORAGE RESERVATION

use by adjusting the addressable byte offset. It does not
generate data to be stored in the reserved area.

| 1abel |operation |argument
| Label |BSS |aexp
label Optional label defined as the addressable unit offset
after the force to an addressable unit boundary
occurs. It 1is the beginning symbol for the storage
area. Symbol category equals 6.
aexp Absolute expression specifying the number of
addressable storage units to be reserved. All
symbols must be previously defined. Aexp cannot
contain external symbols or be relocatable. The
value of the expression can be zero or positive, but
not negative, and the value is added to the
addressable units offset. A BSS O causes a force to
byte boundary and symbol definition, but no storage
is reserved.
Example:
TAG BSS 5

4.9.6 ALIGN - FORCE SECTION COUNTER ALIGNMENT

The ALIGN pseudo instruction forces the unit offset to the
specified byte boundary and sets the bit offset to zero.

-

(3
»
o
o
—
+—+

+

operation |argument

-
+
e
+

label
increment

unitsize

-+

label | ALIGN |increment,unitsize

Optional label defined as the unit offset after the
force to the specified offset plus increment occurs.
Symbol category equals 6.

The increment is a value that is added to the unit
offset after the alignment is made to a wunitsize
boundary.

The wunitsize specifies a value by which the unit
offset must be evenly divisible. The number
specified must be greater than zero. To do this, a

4-37

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS Rev: G

4.0
4.9

PSEUDO INSTRUCTIONS
.6 ALIGN - FORCE SECTION COUNTER ALIGNMENT

number between 0O and unitsize -1 is added to the unit
offset to make it evenly divisible.

Example:

ALIGN 0,2 .PARCEL BOUNDARY (CPU).
ALIGN 0,8 .WORD BOUNDARY (CPU).

4.10 PROCEDURES

A procedure definition is a sequence of source statements that
are saved and then assembled whenever needed through a procedure
call, A procedure call consists of the occurrence of the
procedure name in the operation field of a statement. It usually
includes parameters to be substituted for formal parameters in
the procedure code sequence so that code generated can vary with
each procedure call.

Use of a procedure requires two steps, definition of the
procedure sequence, and calling of the procedure.

A definition consists of three parts: heading, body, and
terminator.

Heading A 'PROC definition is headed by a PROC pseudo
‘instruction initiating the definition of a procedure,
and a PNAME pseudo instruction stating the name of
the procedure.

Body The body begins with the first statement in a
definition after the heading. The body consists of a
series of symbolic instructions. All instructions
other than PEND, including other procedure calls are
legal within a definition. Within a PROCEDURE, calls
can appear to other Procedures, but a PROCEDURE
cannot call itself nor can any PROCEDURE in a nest of
calls call any other PROCEDURE previously in the
nest. PROCEDURE definitions cannot be nested. That
is, a PROC pseudo operation must be followed by a
PEND pseudo operation prior to the appearance of
another PROC pseudo operation. The overall order of
PROCEDURE definition is immaterial so long as the
definition precedes the first call to assemble the
PROCEDURE (i.e. a procedure call within a procedure
definition may reference a procedure that is not
defined prior to this point).

Terminator A PEND pseudo instruction terminates a procedure

4-38
Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ' Rev: G

4.0 PSEUDO INSTRUCTIONS
4.10 PROCEDURES

definition.

A procedure can be defined anywhere in a program before it 1is
called.. When the Assembler encounters a definition, it places
the name of the procedure along with the number of substitutable
parameters and local symbols in the Assembler operation code
table.

4.10.1 PARAMETER REFERENCING WITHIN PROCEDURES

Parameters on a procedure call can be referenced using the
Field function "F:" and specifying the position of the parameter.
The position of the parameter is indicated by using an (i,j)
notation to describe where on the procedure call the parameters
should be gotten. Using the (i,j) notation, i describes the
field number (label £field = O, operation field = 1, argument
field = 2), and j describes the position in the field starting at
0. An entire field may be referenced by just quoting the first
parameter.

When a label is specified on the PROC statement, that label is
equated to the Field function and can optionally be used instead
of F: (the colon is part of the Field function name). For more
information, refer to the section discussing the PROC statement.

on, the i**th field and the j**th subfield of a
e e

F:(i,j)
A reference to the entire i**th field would be:
F: (i)

References to a particular field or subfield may occur
anywhere that such a reference has meaning. Each reference acts
as a direct substitution of the referenced subfield into the
referencing entity. The actual substitution mechanism can have

several meanings which are discussed in subsequent chapters.

4,10.1.1 Parameter Identification Examples

. THIS EXAMPLE SHOWS HOW RELATIVE FIELD IDENTIFICATION WORKS.
. CONSIDER TRANSLATION OF THE FOLLOWING LINE:

IMPERAT ADD,3,4 ADDEND,AUGEND MOVE,5,6 DEST,SOURCE

4-39
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
4,0 PSEUDO INSTRUCTIONS
4.10.1.1 Parameter Identification Examples
. DURING PROCESSING OF THE OPERATION:
F: (0) = IMPERAT
F:(1,0) = ADD F:(1,1) = 3 F:(1,2) = 4
. F:(2,0) = ADDEND F:(2,1) = AUGEND
. F:(3,0) = MOVE F:(3,1) = 5 F:(3,2) = 6
. F:(4,0) = DEST F:(4,1) = SOURCE

4.10.2 PROC - PROCEDURE HEADING

The PROC pseudo instruction is the first pseudo instruction
which must be given in the process of defining a PROCEDURE. This
pseudo instruction may contain an optional label field.
Following the PROC pseudo instruction must appear the statements
which comprise the entire PROCEDURE being defined. The
appearance of the PROC pseudo instruction initiates definition of
a PROCEDURE. All statements which follow the PROC pseudo
instruction up to and including the first encountered PEND pseudo
instruction will be included as part of the PROCEDURE being
defined.

The PROCEDURE being defined will be considered terminated when
the first subfield of any subsequent OPERATION field contains the
pseudo instruction PEND. All statements of the PROCEDURE which
lie between the PROC pseudo instruction and the next PEND pseudo
instruction are considered to be the body of the PROCEDURE.
Within this PROCEDURE body, the first subfield of any subsequent
OPERATION field prior to a PEND pseudo instruction cannot contain
another PROC pseudo instruction.

|1abel |operation |argument
|1abel | PROC |
label Optional, the 1label field of a PROC pseudo

instruction contains a symbol, this symbol can then
be used as a field function name within the procedure
body and also by any other (nested) procedures. Note
that the label is defined only while the procedure is
active (referenced), and cannot be used to call the
procedure.

The label on the PROC pseudo instruction line is
normally used within the PROCEDURE followed by field
and subfield notation to reference the actual
arguments by which the PROCEDURE was called. If no
label appears with the PROC pseudo instruction, then
the parameters by which the procedure is called can

4-40

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ‘ , Rev: G

4.0 PSEUDO INSTRUCTIONS
4.10.2 PROC - PROCEDURE HEADING

be referenced only by using the F: notation described
in the previous section.

Examples can be: found in the section entitled "Procedure
Examples”.

4.10.3 PNAME - PROCEDURE NAME DEFINITION

The PNAME pseudo instruction is used to provide a name by
which a PROCEDURE can be referenced. The PNAME pseudo
instruction must immediately follow the PROC, FNAME, or another
PNAME pseudo instruction when a8 PROCEDURE is being defined. Any
PROCEDURE may have multiple PNAME pseudo instructions and,
therefore, be referenced by several names.

n <4 <+

Ilabel ioperation Iargument

Ilabel IPNAHE Ivalue
label Name by which the procedure is referenced.
value An evaluable expression.

Within the PROCEDURE, the value of the expression following
the name by which the PROCEDURE was actually referenced is
available as F:(1,0). This permits the programmer to distinguish
between referencing names, when desired.

A PROCEDURE is referenced (as a procedure) by placing one of
its defined PNAME's in the first subfield of a OPERATION field.
The expression which represents the value associated with the
PNAME is evaluated each time the PROCEDURE is referenced using
that name.

Examples can be found in the section entitled "Procedure
Examples".

4.10.4 FNAME - FUNCTION NAME DEFINITION

The FNAME pseudo operation is used to provide a name by which
a PROCEDURE may be referenced as a FUNCTION. The FNAME pseudo
operation must immediately follow the PROC, PNAME or another
FNAME pseudo operation when a PROCEDURE is being defined. Any
PROCEDURE may contain multiple FNAME pseudo instructions and,
therefore, be referenced by several names.

4-41
Control Data - Silicon Valley Development Division

. 90/10/03
CYBER 180 II Assembler ERS Rev: G
4.0 PSEUDO INSTRUCTIONS
4.10.4 FNAME - FUNCTION NAME DEFINITION
|1abel |operation |argument
| 1abel | FNAME |value
label Name by which the procedure is referenced as a
function.
value An evaluable expression.

Within the PROCEDURE, the value of the name by which the
PROCEDURE was actually referenced is available as F:(1,0). This
permits the programmer to distinguish between referencing names,
when desired.

A PROCEDURE is referenced (as a function) by forming a
structure:

name (argument)

Where name is its defined FNAME and argument is the argument to
the PROCEDURE. This bounded argument, less parentheses, is
available, starting at F:(2,0), just as if the PROCEDURE was
referenced as a procedure (via PNAME). The argument is limited
to one field, although it may contain as many subfields as
necessary. No blanks may appear between the argument and the
enclosing parentheses. The expression which represents the value
associated with the FNAME is evaluated each time the PROCEDURE is
referenced using that name.

A PROCEDURE, referenced using one of its FNAME's will have the
entire reference replaced by the value of the expression on the
PEND pseudo instruction when the PEND pseudo instruction is
executed. This value will always be 8 bytes long.

Note that a function may not generate code or change location
counters 1if it is invoked from a statement which, itself, is
generating code.

Examples can be found in the section entitled "Procedure
Examples".

4.10.5 PEND - END PROCEDURE DEFINITION
A PEND terminates any unterminated definition. A PEND outside

the range of any procedure sequence has no effect other than to
be included in statement counts.

4-42
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS ‘Rev: G
4.0 PSEUDO INSTRUCTIONS
4,10.5 PEND - END PROCEDURE DEFINITION
| 1abel |operation |argument
|1abel | PEND | exp
label (Optional) May be used as the object of a skip by a

SKIPTO or ERROR statement. The label symbol is not
entered into Assembler's symbol table and the
presence of a label does not constitute symbol
definition,

exp The argument field can be null or can be an evaluable
expression. When the PROCEDURE is called as a
procedure reference, any PEND expression is ignored.
When a PROCEDURE is called as a function reference,
the PEND expression is evaluated and the value is
returned as the value of the function. A null
expression returns the value zero.

Examples can be found in the section entitled 'Procedure
Examples".

4.10.6 LOCAL - ESTABLISH LOCAL SYMBOLS

The LOCAL pseudo instruction is wused to establish symbols
which are to be considered local to the PROCEDURE in which they
are defined. The appearance of a LOCAL pseudo instruction
supersedes all previous LOCAL pseudo instructions in that program
or PROCEDURE and all symbols previously declared 1local are
erased. A PEND or END line terminates the LOCAL.

o
T

label |operation |argument

*

—_—— 4

|LOCAL Inamel,...namen
namel,...namen Establish symbols local to a procedure.

A symbol may not be defined as LOCAL if its symbol ﬁategory is
one of the following:

2 CMD defined instruction

4 PROCEDURE call

10 PROCEDURE Reference List

12 ANAME defined symbol (programmer defined attribute)
13 Section counter

Examples can be found in the section entitled "Procedure

4-43

Control Data - Silicon Valley Development Division
. 90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS ,
4.10.6 LOCAL - ESTABLISH LOCAL SYMBOLS

Examples".

4.10.7 OPEN - DECLARE TEMPORARY SYMBOLS

The OPEN pseudo instruction is used to declare temporary
symbols without affecting any prior use of the label. A label
declared by an OPEN pseudo instruction remains active until
closed by a CLOSE pseudo instructio using the same label. OPEN
pseudo instructions may be nested using the same label. The
label created under the last OPEN pseudo instruction executed
will be active until closed. It is important to note that
closing opened symbols takes place in reverse order from the
opening process. That is, the last open symbol is closed first,
then the next-to-last, etc. Subsequent OPEN pseudo instructions
only affect each other if they use the same symbol, otherwise
they act independently without cancelling prior OPEN pseudo
instructions as is the case with LOCAL pseudo instruction.
Definitions of OPEN'ed symbols are restricted in the same way as
LOCAL symbols.

< -
+

|1abel |operation |argument
| | OPEN |namel,...,namen
namel,...,namen Establish - temporary symbols with names

namel,...,namen

Examples can be found in the section entitled "Procedure
Examples".

4.10.8 CLOSE - ERASE TEMPORARY SYMBOLS

The CLOSE pseudo instruction erases the symbols whose names
are used as arguments to the pseudo instructions. If a symbol
has been opened by more than one OPEN pseudo instruction, then
CLOSE only erases the last OPEN and the symbol usage then reverts
to its usage under the previous OPEN., If there was only one OPEN
associated with the symbol, the symbol becemes non-existent and
is completely erased. It is illegal to CLOSE a symbol that has
not been opened.

-
b

| 1abel |operation |argument
| |

+

CLOSE |namel, ..., ,namen

| 4-44
Control Data — Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS ' Rev: G
4.0 PSEUDO INSTRUCTIONS
4,10.8 CLOSE - ERASE TEMPORARY SYMBOLS
namel,...namen Erase temporary label field symbols with

names namel,...namen.

Examples can be found in the section entitled "Procedure
Examples".

4.10.9 CONT - NO OPERATION

The CONT pseudo instruction is used to place a symbol on a
statement only for the purpose of assembly time transfer of
control. The CONT pseudo instruction functions in all other
respects as a3 no-op.

|1abel |operation |argument
| 1abel | CONT |
label (Required) Symbol used for transferring control

during the assembly process. The symbol is not
entered in Assembler's symbol table and use of a
symbol in the label field does not constitute symbol
definition.

 Examples can be found in the section entitled "Procedure
Examples'.

4.10.10 PROCEDURE CALLS

A procedure headed by the PROC pseudo instruction can be
called by an instruction in the following format:

- <

| 1abel | operation| argument
|1abel | procname | fieldl,field2,...fieldn
label Optional, its value can be retrieved from within the

procedure's body by the F:(0) field function.

procname Name of a predefined procedure (label on PNAME).
fields One or more fields which might consist of several
subfields.

A defined PROCEDURE may be referenced using any one of its
names as defined by a PNAME or FNAME pseudo instruction. This

‘ 4-45
Control Data - Silicon Valley Development Division

, 90/10/03
CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO INSTRUCTIONS
4,10.10 PROCEDURE CALLS

name is written as the first subfield of the OPERATION field.
The remainder of the OPERATION field and as many argument fields
as necessary can follow the OPERATION subfield and contain the
arguments to the PROCEDURE. The Assembler is capable of handling
as many arguments as the user wishes to provide.

Parameters passed to PROCEDURES are call by name in that a
parameter is evaluated each time it is referenced within the body
of a PROCEDURE. Any previous statements within the body of the
PROCEDURE which have changed the value of a given parameter will
affect later references to the parameter. Any OPEN or LOCAL
pseudo instructions within the body of a referenced PROCEDURE
which declare labels with the same symbol as a label passed as a
parameter will not affect the parameter being passed.

It is the actual call to a PROCEDURE which requires that it be
defined and not just the appearance of a call in an Assembler
statement. Unexecuted calls do not require that the named
PROCEDURE be defined.

4.10.11 PROCEDURE EXAMPLES

4.10.11.1 Procedure Definition

. THIS IS AN EXAMPLE OF THE USE OF PROCEDURES. THE

. PROCEDURE STATEMENTS (THOSE APPEARING BETWEEN A PROC AND
A PEND DIRECTIVE) ARE NOT PROCESSED UNTIL THE PROCEDURE
NAME APPEARS IN THE OPERATION FIELD OF A STATEMENT BEING

. PROCESSED. IN THIS EXAMPLE, AFTER THE STATEMENT LABELLED

. "CALLING" IS ENCOUNTERED, PROCESSING OF THE STATEMENTS IN

. PROCEDURE "SAM" BEGINS. WHEN THE PEND DIRECTIVE IN "SAM"

. IS ENCOUNTERED, PROCESSING RESUMES AT "NEXTLINE".

SAMR PROC

SAM PNAME 5

A SET F:(2,0) .F:(2,0) REFERENCES X*3
B SET F: (2,1) .F:(2,1) REFERENCES ZXT
F:(2,2) ANAME 6 .ASSIGNS NAME INDEX TO

.ATTRIBUTE NUMBER 6
MAX SAMR (2,2) ,SAMR (2, 1)

PEND
PROC
MAX PNAME
F:(2,1) ATRIB F:(2,0),5 . INTERPRETED AS: ZXT ATRIB
. . INDEX, 5
PEND . F: REFERENCES LINE CALLING

. . MAX,
. . SAMR REFERENCES LINE

4-46

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS Rev: G

4.0 PSEUDO

INSTRUCTIONS

4,10.11.1 Procedure Definition

CALLING

CALLING
. . SM

SAM X*3,ZXT, INDEX

NEXTLINE VFD, 16 ZXT

THE ABOVE CODE IS EQUIVALENT TO:

A

B
INDEX
ZXT

SET X*3
SET ZXT
ANAME 6

ATRIB INDEX,5

NEXTLINE VFD, 16 ZXT

. THE FOLLOWING EXAMPLE INVOLVES TWO DIFFERENT DEFINITIONS OF
. THE LABEL X. THE NET EFFECT OF THIS CODE IS TO SET THE VALUES
. OF XAND Y TO 7:

PROC
ZED PNAME
LOCAL X
X SET 2
F:(2,0) SET F:(2,0)+X
Y SET F:(2,0)
PEND .WHEN EXECUTED LOCAL X NO LONGER EXISTS
X SET 5 .GLOBAL X
ZED X .GLOBAL X AS PARAMETER F:(2,0)
. THIS PROCEDURE DEFINES A SET OF INSTRUCTIONS FOR THE C180 CPU
. EACH OPERATION CODE IS SPECIFIED AS A PROCEDURE ENTRY NAME
. WHEN HAS THE MACHINE CODE AS THE VALUE.
. THESE INSTRUCTIONS ARE IN THE FORNM OP R1,R2 WHERE
. R1 AND R2 SPECIFY REGISTERS.
PROC
ADDR PNAME 20(16)
SUBR PNAME 21(16)
MULR PNAME 22(16)
DIVR PNAME 23(16)
SR PNAME 1B (16)
F: (090) VFDa894’4 F: (1,0),F:(2,1)9F: (2’0)

PEND

4-47
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
4,0 PSEUDO INSTRUCTIONS
4.10.11.2 LOCAL Directive's Use
4.10.11.2 LOCAL Directive's Use
A SET 5 THIS IS A GLOBAL "aA"
PROC
EVAL PNAME
LOCAL A,B,C ANY REFERENCES TO A, B, OR C WITHIN THE
. EVAL PROCEDURE SIGNIFY SYMBOLS LOCAL
A SET 7 LOCAL "aA"
D SET A GLOBAL "D", LOCAL "aA"
B SET A LOCAL "B'", LOCAL "a"
. AT THIS POINT, VA:(A) = 7, VA: (B) = 7,
PEND
C SET A GLOBAL "C", GLOBAL "aA"
E SET D
. AT THIS POINT, VA:(A) = 5, VA:(C) = 5,
. VA: (D) = 7, AND VA:(E) = 7

5-1

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

5.0 ATTRIBUTE FUNCTIONS

5.0 ATTRIBUTE FUNCTIONS

The Assembler provides a set of built in functions to assign
and/or retrieve values of a symbol attribute. They are usually
used to aid in parameter analysis in procedure and function
definitions.

An attribute function is a replacement operation in which the
value of the specified attribute replaces the function in the
expression. The permitted arguments to an attribute function are
defined later in this section. -

The set of Symbol Attribute Functions (SC:, VA:, LB:, LC:,
LW:, SB: and SN:), and the basic Field Reference Function ("F:"
used for parameter referencing), all include the character 's!
(colon), which is an alphabetic character within the meaning of
the Assembler. This character is included as a means of avoiding
potential conflicts with user-defined symbols, and does not
represent an operator of any kind. Note that this character must
be entered in the NOS ASCII representation.

The general form of an attribute function is:
attribute_function_name (argument)

where attribute_function_name is the name of a specific attribute
function, and the argument, enclosed in parentheses, immediately
follows.

All of the symbol attributes discussed in the section on
Symbol Definition have a corresponding attribute function which
can be used to retrieve that particular symbol attribute from the

internal Assembler symbol table.

5.1 LANGUAGE DEFINED ATTRIBUTES

All the attribute functions described in this section are
built into the Assembler.

5.1.1 SYMBOL CATEGORY ATTRIBUTE - SC:

Format: SC: (argument)

The SYMBOL CATEGORY Attribute function is used to determine
the symbol category assigned to the argument. The argument can

5-2

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

5.0 ATTRIBUTE FUNCTIONS
5.1.1 SYMBOL CATEGORY ATTRIBUTE - SC:

be a symbol name or a PROCEDURE reference field specification.
This function returns the value of the category and may be used
for testing. When the argument refers to an expression rather
than a symbol, the category of the expression will be the
category of the first term in the expression. The category of a
NULL subfield in a PROCEDURE reference is zero. The Symbol
Category attribute has the following values and meaning:

Category Meaning

0 Non-existent symbol. The symbol in question has
not been encountered by the Assembler. The
existence of a blank LABEL field can be detected by
this category.

1 The symbol has appeared in a LABEL field, may have
certain attributes, but no operation has taken
place to further define the symbol. After each
statement is processed, any remaining category 1
symbols are erased from the symbol table, unless
they have programmer defined attributes.

2 The symbol has been defined by a CMD pseudo
instruction and is now recognized as an instruction
generating symbol.

3 The symbol is an Assembler defined function.

4 The symbol is a PROCEDURE call, defined by an FNAME
or PNAME pseudo instruction. .

5 The symbol is an Assembler pseudo instruction.

6 The symbol is a relocatable address defined by use

in a code generating statement such as VFD, INT,
DINT, FLOAT, DFLOAT, PDEC, BSS, BSSZ, ADDRESS, ORG,
ALIGN, or by the execution of an instruction
generating symbol defined by a CMD pseudo

instruction.
7 The symbol was defined by a REF pseudo instruction.
8 The symbol is the symbol "$" (section counter).
9 The symbol is a list name defined by a SET or EQU

pseudo instruction or as the label of a DO or WHILE
pseudo instruction. '

10 The symbol is a list name of a symbolic list

5-3

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 I1 Assembler ERS Rev: G

5.0 ATTRIBUTE FUNCTIONS
5.1.1 SYMBOL CATEGORY ATTRIBUTE - SC:

holding PROCEDURE references. The symbol was
defined by a PROC pseudo instruction (see
PROCEDURES) .

11 The symbol is a self-defining term.

12 The symbol is defined by an ANAME pseudo
instruction,

13 The symbol is a list defined by a SECTION pseudo
instruction.

Symbols defined in the label field of pseudo instructions
where the label field is not ignored will have the symbol
category documented for that instruction. Symbols defined in the
label field of the symbolic machine instructions will have a
Symbol Category of 6.

5.1.2 ADDRESS MODE ATTRIBUTE

Format: AM: (argument)

The ADDRESS MODE attribute function is used to determine the
relocatability of the argument. The argument can be a symbol
name or a PROCEDURE field reference specification. This function
returns the value 1 if and only if the argument is defined and
relocatable. Otherwise, it returns a value of zero. When the
argument refers to an expression rather than a symbol, the
ADDRESS MODE will be the ADDRESS MODE of the first term in the
expression. When the symbol is the symbol "$", the address mode
value will be O.

5.1.3 VALUE ATTRIBUTE

Format: VA:(argument)

The VALUE attribute is used to determine the value assigned to
the argument, where argument is either a symbol or a PROCEDURE
field reference specification. The meaning of the VALUE
attribute varies with the symbol category of the argument:

SYMBOL CATEGORY VALUE and/or MEANING

(oloNo N

0
1
2
3

5-4
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
5.0 ATTRIBUTE FUNCTIONS
5.1.3 VALUE ATTRIBUTE
4 The value of the PNAME/FNAME symbol when the
procedure is called.
5 0
6 (Integer) address assigned to the symbol.
7 0
8 The current integer location counter value.
9 The value of the first element of the list.
10 0
11 The (word) value of the self-defining term.
12 The value is the programmer defined attribute
number assigned to the symbol.
13 The value of the first element of the 1list

(the integer location counter).

The value of an expression is the net value found by
evaluating the expression. A NULL field or subfield has the
value of zero.

The VALUE attribute function is processed in a similar manner
to normal expression evaluation, except that errors caused by
invalid use of symbols are suppressed.

5.1.4 LENGTH ATTRIBUTES

Format: LB:(argument)
LC: (argument)
LW: (argument)

The LENGTH attribute is used to determine the length in bits
(LB:), bytes or cells (LC:), or words (LW:) of the argument,
where the argument is a symbol representing a data or instruction
area assigned by the Assembler in a module. A CYBER 180 CPU word
is 64 bits long.

The LENGTH function rounds up to the next integral number of
units in cases where the bit length of the argument is not an
exact multiple of the defined character or word. LENGTH returns
the value 0 if a symbol has not been defined at the time the
evaluation of LB:, LC:, or LW: takes place.

As explained in the section on SYMBOL DEFINITION, a symbol
acquires a length attribute when it becomes defined by appearing
in the LABEL field of a data generating pseudo instruction. This
length attribute is the quantity of storage assigned to the
information labeled with the symbol. A Self-Defining Term has a
LENGTH attribute assigned to that term based on its structure.

If the symbol has been defined with a code generating pseudo

5-5

Control Data - Silicon Valley Development Divigion
90/10/03
CYBER 180 II Assembler ERS ‘ Rev: G

5.0 ATTRIBUTE FUNCTIONS
5.1.4 LENGTH ATTRIBUTES

instruction (category 6) then the bit length is given by the
total number of bits generated by the statement. Applicable
pseudo instructions include VFD, INT, DINT, FLOAT, DFLOAT, PDEC,
BSS, BSSZ, ADDRESS, and CMD calls. A character is assumed to be
8 bits, and the word size is taken to be 64 bits for a CPU
module.

If the argument is a self-defining term, the length is
determined based on its structure. A character string (types C
and E) have a character/byte length equal to the number of
characters in the string, a bit length of 8*LC. For all other
types of self-defining terms, the bit length is equal to the
appropriate CYBER 180 word size.

5.1.5 STARTING BIT POSITION ATTRIBUTE

Format: SB: (argument)

The STARTING BIT POSITION attribute is used to determine the
value of the BIT offset in the stored byte at the time storage
was assigned to the argument. This function has a zero value for
all arguments whose symbol category is not equal to 6. The

_ STARTING BIT POSITION attribute for an expression is the STARTING
BIT POSITION attribute of the first term in the expression. The
STARTING BIT POSITION attribute of a NULL field or subfield is
zero. The maximum value for this attribute is 15.

5.1.6 ELEMENT NUMBER ATTRIBUTE

Format: EN: (argument)

The ELEMENT NUMBER attribute determines the number of
subfields (elements) associated with or assigned to the argument.
The argument can be any 1list name and the value of the EN:
function will be the number of elements assigned to the 1list at
the time evaluation takes place. Note that a symbol name becomes
defined as a list only by appearing in the LABEL field of the SET
pseudo instruction.

When a PROCEDURE field reference is used as an argument to the
EN: function, then one of two forms of substitution take place:

a) If the specification contains a field index and no subfield
index (F:(0),F:(1),...etc.), then the count is made against
the actual subfield elements in the PROCEDURE reference line
itself.

5-6

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

5.0 ATTRIBUTE FUNCTIONS
5.1.6 ELEMENT NUMBER ATTRIBUTE

b) If the specification contains both a field AND subfield index
(F:(0,0),F:(2,0),...etc.), then the count is made against the
contents of the designated subfield.

5.1.7 LAST ELEMENT NUMBER ATTRIBUTE

Format: EL: (argument)

The LAST ELEMENT NUMBER attribute determines the element
number of the last element assigned to the list used as an
argument. For lists with one or more elements:

EL: (argument) = EN: (argument)-1
For all non-list arguments:
EL: (argument) = 0

When a PROCEDURE field reference is used as an argument to the
EL: function, then one of two forms of substitution take place:

a) If the specification contains a field index and no subfield
index (F:(0),F:(1),,,,.etc.), then the count is made against
the actual subfield elements in the PROCEDURE reference line
itself,

b) 1If the specification contains both a field AND subfield index
(F:(0,0),F:(2,0),...,etc.), then the count is made against
the contents of the designated subfield.

5.1.8 SYMBOL NUMBER ATTRIBUTE

Format: SN: (argument)

The SYMBOL NUMBER attribute determines a unique value
representing the symbol. This value is only meaningful when used
for comparison to test equality with the SYMBOL NUMBER of other
symbols. If the argument does not correspond to a symbol, then a
value of zero is returned. :

5.1.9 RELOCATION ATTRIBUTE

The Relocation attribute is not a property of a symbolic name.
The Relocation attribute is a function that is used to associate
relocation information with the generation of data and as such it
is meaningful only when used in an expression in the argument

5-7

Control Data - Silicon Valley Development Division
v 90/10/03
CYBER 180 II Assembler ERS Rev: G

5.0 ATTRIBUTE FUNCTIONS
5.1.9 RELOCATION ATTRIBUTE

field of a VFD, CMD, INT, or DINT statement. See the example
below. The function is valid only in a CPU module. If the CPU
module is declared '"NONBINDABLE", then the relocation information
is ignored. This function must have three (3) arguments. The
relocation function is called as follows:

R: (EXP,RCT,ADT)

EXP An expression defining the byte offset to be used as a
displacement. If the expression is not relocatable in the
BINDING section then no '"relocation'" object text is
generated. The function result is the expression result
divided, if necessary, as determined by the ADT subfield.

RCT Defines the relocation container type (width and alignment).
This applies to the field being generated. (Note that only
discrete values are permitted.): Unless otherwise indicated
the field must start on an addressable boundary.

0 = Parcel Size (2-bytes)

1 = Three Bytes (3-bytes)

2 = Half Word (4-bytes)

3 = Word , (8-bytes)

4 = Instr. D-Field (12-bits/MOD 4)

5 = Instr. Q-Field (2-bytes)

6 = Long D-Field (3-bytes) ENTC & ENTA Instr.

Any other value is diagnosed as an error.

ADT Defines the address displacement type of the field. The
function result is EXP divided by a constant determined by
the ADT subfield as follows:

0 = Byte Positive R: = EXP

1 = Parcel Positive R: = EXP / 2
2 = Halfword Positive R: = EXP / 4
3 = Word Positive R: = EXP / 8
4 = Byte Signed R: = EXP

5 = Parcel Signed R: = EXP / 2
6 = Halfword Signed R: = EXP / &
7 = Word Signed R: = EXP / 8

Any other value is diagnosed as an error.

EXAMPLE:
VFD, 16 R:(binding_sect_disp,5,5)

5.2 PROGRAMMER DEFINED ATTRIBUTE FUNCTIONS

Any symbol may be given one or more ‘programmer defined
attributes by first using the ANAME pseudo instruction to give
each programmer defined attribute a name and then using the ATRIB

. 5-8

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

5.0 ATTRIBUTE FUNCTIONS
5.2 PROGRAMMER DEFINED ATTRIBUTE FUNCTIONS

pseudo instruction which assigns a value to a specific attribute
of a symbol. The Assembler permits the definition up to 16
programmer defined attribute names. Each programmer defined
attribute is given a name and an attribute number using the ANAME
pseudo instruction:

INDEX ANAME 1

BASE ANAME 2

FREQ ANAME 3
etc.

Once defined, a programmer defined attribute function of the
form:

programmer defined_attribute_name (argument)

may be used in the same way as an Assembler defined attribute
function to recover the value of a particular programmer defined
attribute assigned to the argument.

When the argument to an programmer defined attribute function
is an expression, the function value is the value of the named
programmer defined attribute of the first symbol in the
expression.

The names and values can be altered during the course of the
program assembly using the ANAME and ATRIB pseudo instructions
discussed in the section on pseudo instructions.

5.3 SYMBOL ATTRIBUTE EXAMPLES

length aname 1 .LENGTH IS A PROGRAMMER DEFINED ATTRIBUTE
proc

data pname

. This procedure generates a character string of data

. in the WORKING section starting on a half-word

. boundary. It will also assign the length in

. bytes as an attribute called length.

Control Data — Silicon Valley Development Division

5-9

90/10/03
CYBER 180 II Assembler ERS Rev: G
5.0 ATTRIBUTE FUNCTIONS
5.3 SYMBOL ATTRIBUTE EXAMPLES
. label data charstring
use working .puts us in working section
align 0,4 .puts us on a half-word boundary
£:(0,0) v£d,1b:(£:(2,0)) £:(2,0) .generate data
£:(0,0) atrib length,lc:(£:(2,0)) .puts byte length
use j#lastsec
pend
labell data C'EXAMPLE' .data procedure call

numbyte set length(labell) .picks up byte length of string

6-1

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

6.0 OFFSET FUNCTIONS (#WOFF, #HOFF, #POFF, #BOFF)

6.0 OFFSET FUNCTIONS (§WOFF, {#HOFF, #POFF, #BOFF)

The offset functions return the Word, Half-Word, Parcel, or
Byte offset of an address relative to the beginning of a CPU
section in which it is defined. An informative error will be
generated if label does not fall on the appropriate boundary.

The functions are:

{WOFF (1abel) Returns the offset in words.
#HOFF (label) Returns the offset in half-words.
#POFF (label) Returns the offset in parcels.

#BOFF (1abel) Returns the offset in bytes.

7-1

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS

The CYBER 180 Assembler recognizes symbolic notation for all
CYBER 180 CPU Instructions. Instructions in this group are valid
only for a MACHINE pseudo instruction type of C180CPU. If the
MACHINE pseudo instruction type is C180I0U the mnemonics listed
in this section will generate errors.

The Assembler identifies each symbolic instruction according
to its mnemonic. The object code £for the instruction is
generated in the block in use when the instruction is
encountered. For a more complete description of the hardware
instructions, refer to the CYBER 180 Processor—Memory
Model-Independent GDS. '

7.1 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CYBER
180 instructions. The CPU instructions are listed according to
the CYBER 180 MIGDS Reference Numbers.

The instruction descriptions are obtained from the CYBER 180
MIGDS. Lengths will always specify the actual number. The
Assembler will make any adjustments necessary, as when the
hardware requires the length to be entered as length-l. Any D or
Q field that is adjusted by the Assembler will be denoted by the
word label in the mnemonic description, and will then be further
described as to exactly what the Assembler expects for that
field.

The label field of a symbolic machine instruction optionally
contains a label. When the label is present, it is assigned the
value of the byte offset after it is forced (if required) to
parcel boundary. The symbol category of the label will be set to
6.

The operation field of a symbolic machine instruction contains
an instruction mnemonic and might also contain several other
subfields.

The argument field contains the instruction operands as one or
more subfields.

An optional comment field may appear following the last
subfield of the argument field. A comment field must begin with
a period (.) character.

7-2

Control Data - Silicon Valley Development Division
_ 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.1 SYMBOLIC NOTATION

The mnemonics chosen are descriptive of the actual hardware
operation being performed and will provide for a high degree of
recognition by the 2nd and 3rd reader of assembly language
programs. In all cases, the mnemonics are 8 characters or less,
and in most cases much less. This should provide for a certain
ease in programming. The rules enforced when defining the
instructions are:

© A common abbreviation used when shortening the mnemonics.

o The first part of the mnemonic describing the action to be
performed.

o The second part of the mnemonic further qualifies the type of
action to be taken (X used to represent a full X register, R
for right half of an X register, BIT signifying operation on a
bit field, etc.).

o The operand fields are written such that multiple subfields
relating to source or destination are positioned together.

o Implied registers are written as part of required instruction
syntax.

o The operands are written such that the most significant or
resultant register is written first. :

7.2 CPU _INSTRUCTION FORMATS

The figures in this section illustrate the formats for the
CYBER 180 16-bit and 32-bit CPU instructions generated by the
Assembler. For all instructions the Assembler generates parcel
alignment whenever necessary.

Operation Code] k i D

+— +
+— 4+
+— +
+— +
+— +
+ — +

8 4 4 4 12

Figure 8.1 CYBER 180 jkiD Instruction Format

7-3
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.2 CPU INSTRUCTION FORMATS

Operation S 3 k i D
Code
5 3 4 4 4 12

Figure 8.2 - CYBER 180 SjkiD Instructions Format

For these 32-bit instruction formats: the j, k, and i fields
provide register designations, the D field provide either a
signed shift count, a positive displacement or a bit-string
descriptor, and the S field provide a sub-operation code.

Operation Code k

i

+—+
+— +
+— 4
+— +

8 4 4
Figure 8.3 - CYBER 180 jk Instruction Format
For this 16-bit instruction format, the j field provides a

register designation, a sub-operation code, or an immediate
operand value and the k field provides a register designation.

k Q

8 4 4 16

Operation Code j

+— +
+— +
+— +
+— +
+— +

Figure 8.4 - CYBER 180 jkQ Instruction Format
For this 32-bit instruction format, the j and k fields provide
register designations or sub-operation codes. The 16-bit Q-field
provides a signed displacement or an immediate operand value.

7.3 GENERAL CPU INSTRUCTIONS

The CYBER 180 Assembler's CPU Instructions Group is subdivided
into the following classes of instructions according to function.

7.3.1 LOAD AND STORE

This sub-group of instructions shall provide the means for
transferring data, in the form of a single bit, a byte string, a
64-bit word, or multiple 64-bit words between one or more
Registers and one or more locations in central memory as
specified by the individual instruction mnemonic.

7-4

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1 LOAD AND STORE

For the purpose of establishing operand access validity for
the associated central memory read and write accesses, the ring
number used for validation is the value of the ring number
contained in bit positions 16 through 19 of the associated A
Register.

The central memory operand access type is read-access for any
instruction which loads an A or X register, and write-access for
any instruction which stores an A or X register.

Instructions which transfer data from one or more Registers to
central memory, (namely, Store instructions), do not alter the
contents of any Register which serves as a source of the data to
be transferred to central memory.

7.3.1.1 LBYTS,SBYTS-Load/Store Bytes, Xk Length Per S

a) Load Bytes to Xk from (Aj) displaced by D and indexed by (Xi)
Right, Length Per S.

LBYTS - (Format = SjkiD Op Code = DO-D7 Ref# = 001)

< <
+

label |operation |argument

e

—_+— 4

|LBYTS,S |Xk,Aj,Xi,D
S - number of bytes to load(1-8).
b) Store Bytes from Xk at (Aj) displaced by D and indexed by
(Xi) Right, Length per S.

SBYTS - (Format = SjkiD Op Code = D8-DF Ref# = 003)

-+ -+
-+ +

label |operation |argument

<

—_—.— ¢

|SBYTS,S |Xk,Aj,Xi,D

S - number of bytes to store(1-8).

7-5

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.2 LXI,LX,SXI,SX-Load/Store Word, Xk

7.3.1.2 LXI,LX,SXI,SX-Load/Store Word, Xk

a) Load Xk from (Aj) displaced by 8*D and indexed by 8%(Xi)
Right.

LXI - (Format = jkiD Op Code = A2 Ref# = 005)

-+ <
-+ *

label |operation |argument

—_—-—+

| Lx1 |Xk,Aj,Xi,label

label - byte address, must be on a word boundary.

b) Load Xk from (Aj) displaced by 8*Q.

LX - (Format = jkQ Op Code = 82 Refjf = 006)

<+ &
*r *

label |operation |argument

—_—— ¢

|LX |Xk,Aj,label
label - byte address, must be on a word boundary.
c) Store Xk at (Aj) displaced by 8*D and indexed by 8*(Xi)
Right.

SXI - (Format = jkiD Op Code = A3 Reff = 007)

o
*

operation |argument

| 1abel
I

&
<+
<
+

SXI |Xk,Aj,Xi,label

label - byte address, must be on a3 word boundary.

7-6

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.2 LXI,LX,SXI,SX-Load/Store Word, Xk

d) Store Xk at (Aj) displaced by 8*Q.

SX - (Format = jkQ Op Code = 83 Ref# = 008)

-
-+

operation |argument

label

—_t—
—_t—+

SX |Xk,Aj,label

label - byte address, must be on a word boundary.

7.3.1.3 LBYT,SBYT-Load/Store Bytes, Xk Length Per X0

a) Load Bytes to Xk from (Aj) displaced by D and indexed by (Xi)
Right, Length per XO0.

LBYT - (Format = jkiD Op Code = A4 Reff# = 009)

e
+

label |operation |argument
L

—_—+t— 4

LBYT,X0 |Xk,Aj,Xi,D

b) Store Bytes from Xk at (Aj) displaced by D and indexed by
(Xi) Right, Length per XO.

SBYT - (Format = jkiD Op Code = A5 Reff = 011)

n &
b b

label |operation |argument

—_—t— ¢

|SBYT,X0 |Xk,Aj,Xi,D

: 7-7
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS ‘ Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.4 LBYTP-Load Bytes, Xk Length per j

7.3.1.4 LBYTP-Load Bytes, Xk Length per j

a) Load Bytes to Xk from (P) displaced by Q, Length per j.

LBYTP - (Format = jkQ Op Code = 86 Ref# = 013)

n
+*

label |operation |argument
|

—_—t—

LBYTP,j |Xk,label

label - byte address of the data.
j - number of bytes to load(1-8).

7.3.1.5 LBIT,SBIT-Load/Store Bit, Xk

a) Load Bit to Xk (Aj) displaced by Q and bit indexed by (X0)
Right.

LBIT - (Format = jkQ Op Code = 88 Ref# = 014)

< e
™ <

| 1abel |operation |argument
[|LBIT |Xk,Aj,Q,X0
b) Store Bit from Xk at (Aj) displaced by Q and bit indexed by
(X0) Right.

SBIT - (Format = jkQ Op Code = 89 Ref# = 015)

-
*

operation |argument

| 1abel
| SBIT |Xk,Aj,Q,X0

7.3.1.6 LAI,LA,SAI,SA-Load/Store, Ak

a) Load Ak from (Aj) displaced by D and indexed by (Xi) Right.

LAI - (Format = jkiD Op Code = AQ Ref# = 016)

Control Data - Silicon Valley Development Divigion

CYBER 180 II Assembler ERS

7-8

90/10/03
Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.6 LAI,LA,SAI,SA-Load/Store,Ak

< -
+

+

label |operation |argument

<

—_—t— ¢

|LAT |Ak,Aj,Xi,D

b) Load Ak from (Aj) displaced by Q.

LA - (Format = jkQ Op Code = 84 Ref# = 017)

-+ -

+

label |operation |argument

—_——

|La |Ak,Aj,Q

c) Store Ak at (Aj) displaced by D and indexed by (Xi) Right.

SAI - (Format = jkiD Op Code = Al Refff = 018)

-+

-+

|1abel | operation |argument
| I

SAI |Ak,Aj,Xi,D

d) Store Ak at (Aj) displaced by Q.

SA - (Format = jkQ Op Code = 85 Ref# = 019)

-+

+

operation |argument

|1abel |
| |

SA |Ak,Aj,Q

7-9

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS , Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.1.7 LMULT,SMULT-Load/Store Multiple Registers

7.3.1.7 LMULT,SMULT-Load/Store Multiple Registers

a) Load Multiple Registers from (Aj)- displaced by 8%*Q,
Selectivity per (Xk) Right.

LMULT - (Format = jkQ Op Code = 80 Ref# = 020)

< <
h g

label |operation |argument

—_——

| LMULT |Xk,Aj,label
label - byte address, must be on a word boundary
b) Store Multiple Registers at (Aj) displaced by 8*Q,
Selectivity per (Xk) Right.

SMULT - (Format = jkQ Op Code = 81 Ref# = 021)

-
+

label |operation Iargument
|

!
| SMULT |Xk,Aj,label

label - byte address, must be on a word boundary

. s 0 e .

7.3.2 INTEGER ARITHMETIC

Integer arithmetic operations shall be performed on words and
halfwords contained in Register Xk and Register Xk Right,
respectively, as described in the following subparagraphs.

Binary integers contained in the X Registers consist of
signed, two's complement, 32-bit or 64-bit quantities. The
leftmost bit, (in position 00 for 64-bit integers and in position
32 for 32-bit integers), constitute the sign bit.

The ranges in magnitude, M, covered by binary integers in each
of the two fixed point formats, are the following:

32-bit Integer: -2(31)<M<2(31)-1

64-bit Integer: -2(63)<M<2(63)-1

7-10
Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.2.1 ADDX,ADDXQ, INCX-Integer Sum, Xk

7.3.2.1 ADDX,ADDXQ, INCX-Integer Sum, Xk

a) Integer Sum, (Xk) replaced by (Xk) plus (Xj).
ADDX - (Format = jk Op Code = 24 Reff = 022)

-
+

argument

-

label |operation

— 4

| ADDX | Xk, Xj

b) Integer Sum, (Xk) replaced by (Xj) plus Q.

ADDXQ - (Format = jkQ Op Code = 8B Reff = 143)

< e
* ™

label |operation |argument

+

—_+—

| ADDXQ

Xk,Xj,Q

¢) Integer Sum, (Xk) replaced by (Xk) plus j.

INCX - (Format = jk Op Code = 10 Reff = 166)

n <
* -+

| label |operation |argument
|

IINCX | Xk, j

7.3.2.2 SUBX,DECX-Integer Difference, Xk

a) Integer Difference, (Xk) replaced by (Xk) minus (Xj).

SUBX - (Format = jk Op Code = 25 Ref# = 023)

<
+

label |operation |argument
|

—— ¢

SUBX | Xk, Xj

7-11

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS o Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.2.2 SUBX,DECX-Integer Difference, Xk

b) Integer Difference, (Xk) replaced by (Xk) minus j.

DECX - (Format = jk Op Code = 11 Ref# = 167)

-+ <
+

label |operation |argument

+

| DECX | Xk, j

7.3.2.3 MULX,MULXQ-Integer Product, Xk

a) Integer Product, (Xk) replaced by (Xk) times (Xj).

MULX - (Format = jk Op Code = 26 Ref# = 024)

e
+

—_—t—+

label |operation |argument
|

MULX | Xk, Xj

b) Integer Product, (Xk) replaced by (Xj) times Q.
MULXQ - (Format = jkQ Op Code = B2 Ref# = 168)

< < <
+ *

|1abel |operation largument

<

+

| | MULXQ |Xk,Xj,Q

7.3.2.4 DIVX-Integer Quotient

a) Integer Quotient, (Xk) replaced by (Xk) divided by (Xj).

DIVX - (Format = jk Op Code = 27 Refff = 025)

-
+

label |operation |argument

<

—_t—

|DIVX | Xk, Xj

7-12

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.2.5 ADDR,ADDRQ, INCR-Integer Sum, Xk right

7.3.2.5 ADDR, ADDRQ, INCR-Integer Sum, Xk right

a) Integer Sum, (Xk) Right replaced by (Xk) Right plus (Xj)
" Right. ‘

ADDR - (Format = jk Op Code = 20 Ref# = 027)

-+ -+
T

|label |operation |argument
|

| ADDR | Xk, Xj

b) Integer Sum, (Xk) Right replaced by (Xj) Right plus Q.

ADDRQ - (Format = jkQ Op Code = 8A Ref# = 028)

-+ -
+* -+

label loperation Iargument

—t—+

| ADDRQ |Xk,Xj,Q

¢) Integer Sum, (Xk) Right replaced by (Xk) Right plus j.
INCR - (Format = jk Op Code = 28 Reff = 029)

<+
+

operation |argument

|1abel
|

—_— — 4

INCR | Xk, j

7.3.2.6 SUBR,DECR-Integer Difference, Xk Right

a) Integer Difference, (Xk) Right replaced by (Xk) Right minus
(Xj) Right.

.
SUBR - (Format = jk Op Code = 21 Ref# = 030)

g -
Ly

label |operation |argument

—t— ¢

| SUBR | Xk, Xj

7-13

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.2.6 SUBR,DECR-Integer Difference, Xk Right

b) Integer Difference, (Xk) Right replaced by (Xk) Right minus
j‘

DECR - (Format = jk Op Code = 29 Ref# = 031)

< o
.l +*

|1abel |operation |argument
|

| DECR | Xk, j

7.3.2.7 MULR,MULRQ-Integer Product, Xk Right

a) Integer Product, (Xk) Right replaced by (Xk) Right times (Xj)
Right.

MULR - (Format = jk Op Code = 22 Ref# = 032)

-+ -+
b -

| 1abel |operation |argument
|

< <
+

| MULR | Xk, X

b) Integer Product, (Xk) Right replaced by (Xj) Right times Q.

MULRQ - (Format = jkQ Op Code = 8C Ref# = 033)

. <
- *

|operation |argument

-

|MULRQ |Xk,Xj,Q

|1abel
|

7.3.2.8 DIVR-Integer Quotient, Xk Right

a) Integer Quotient, (Xk) Right replaced by (Xk) Right divided
by (Xj) Right. ‘

DIVR - (Format = jk Op Code = 23 Refj# = 034)

e
h

label |operation |argument

—_—t—+

|DIVR | Xk, Xj

7-14

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.2.9 CMPX,CMPR-Integer Compare

7.3.2.9 CMPX,CMPR-Integer Compare

a) Integer Compare (Xj) to (Xk), result to X1 Right.

CMPX - (Format = jk Op Code = 2D Ref# = 035)

< <+
+

label |operation | argument

—_—t—

| CMPX |X1,Xj,Xk

b) Integer Compare (Xj) Right to (Xk) Right, result to X1 Right.

CMPR - (Format = jk Op Code = 2C Ref# = 036)

-+
T

-+ -+

|1abel |operation |argument
I

| CMPR [X1,Xj,Xk

® o 000 .

7.3.3 BRANCH

The instructions within this subgroup consist of both
conditional and unconditional branch instructions.

Each conditional branch instruction performs a comparison
between the contents of two general registers. Then, based on
the relationship between the results of that comparison and the
branch condition as specified by means of the instruction's
operation code, each conditional branch instruction performs
either a normal exit or a branch exit.

Normal exit: When the results of a comparison do not satisfy.
the branch condition as specified by the operation code, a normal
exit is performed. A normal exit for all conditional branch
instructions consists of adding four to the rightmost 32 bits of
the PVA obtained from the P Register, with that 32-bit sum
returned to the P Register in its rightmost 32-bit positions.

Branch exit: When the results of a comparison satisfy the
branch condition as specified by the operation code, a branch
exit is performed. A branch exit consists of expanding the
16-bit Q field from the instruction to 31 bits by means of sign
extension, shifting these 31 bits left one bit position with a
zero inserted on the right, and adding this 32-bit shifted result

7-15

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.3 BRANCH

to the rightmost 32-bits of the PVA obtained from the P Register,
with the 32-bit sum returned to the P Register in its rightmost
32-bit positions.

Unconditional branch instructions perform branch exits
according to the appropriate instruction descriptions contained
in subparagraphs 2.2.3.5 and 2.2.3.6 of the MIGDS.

The Assembler sets the instruction's Q field according to the
value of the 'label' subfield of the instruction mnemonics, which
must correspond to a label of an Assembler statement within the
currently active section. Relative addresses cannot span section
boundaries.

7.3.3.1 BRXEQ, BRXNE,BRXGT,BRXGE-Branch Conditional

a) Branch to (P) displaced by 2*Q if (Xj) equal to (Xk).

BRXEQ - (Format = jkQ Op Code = 94 Ref# = 037)

<+ -
+* L

label |operation |argument

4.

—_—t—+

| BRXEQ |Xj,Xk,label

label - byte address of the new location.

b) Branch to (P) displaced by 2*Q if (Xj) not equal to (Xk).

BRXNE - (Format = jkQ Op Code = 95 Ref# = 038)

<
T

|operation |argument
|

BRXNE |Xj,Xk,label

| 1abel
|

label - byte address of the new location.

7-16
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.3.1 BRXEQ,BRXNE, BRXGT, BRXGE-Branch Conditional

¢) Branch to (P) displaced by 2*Q if (Xj) greater than (Xk).

BRXGT - (Format = jkQ Op Code = 96 Ref# = 039)

<+ <
y

|1abel |operation |argument
| | BRXGT |Xj,Xk,label

label - byte address of the new location.

d) Branch to (P) displaced by 2*Q if (Xj) greater than or equal
to (Xk).

BRXGE - (Format = jkQ Op Code = 97 Ref# = 040)

-+ -+
T <+

label Ioperation |argument

—t—

| BRXGE |Xj,Xk,label

label - byte address of the new location.

7.3.3.2 BRREQ,BRRNE,BRRGT,BRRGE-Conditional, X Right

a) Branch to (P) displaced by 2*Q if (Xj) Right equal to (Xk)
Right.

BRREQ - (Format = jkQ Op Code = 90 Ref# = 041)

"
“+

|1abel |operation |argument
l |

BRREQ |Xj,Xk,label

label - byte address of the new location.

7-17

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.3.2 BRREQ,BRRNE,BRRGT,BRRGE-Conditional, X Right

b) Branch to (P) displaced by 2*Q if (Xj) Right not equal to
(Xk) Right.

BRRNE - (Format = jkQ Op Code = 91 Ref# = 042)

-
T

label operation |argument

<

| BRRNE |Xj,Xk,label

+— +

—_—

label - byte address of the new location.

¢) Branch to (P) displaced by 2*Q if (Xj) Right greater than
(Xk) Right.

BRRGT - (Format = jkQ Op Code = 92 Ref# = 043)

4 -4
* r

label Ioperation |argument

-

—_—t—+

| BRRGT |Xj,Xk,label
label - byte address of the new location.
d) Branch to (P) displaced by Z*Q‘if (Xj) Right greater than or
equal to (Xk) Right.

BRRGE - (Format = jkQ Op Code = 93 Ref# = 044)

-
T

-+

| 1abel |operation |argument
] | BRRGE |Xj,Xk,label

label - byte address of the new location.

7-18

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.3.3 BRINC-Conditional, with Increment

7.3.3.3 BRINC-Conditional, with Increment

a) Branch to (P) displaced by 2*Q and increment (Xk) if (Xj)
greater than (Xk).

BRINC - (Format = jkQ Op Code = 9C Reff = 045)

-
-

+
ks

label |operation | argument

-+
T

|BRINC |Xj,Xk,label
label - byte address of the new location.

7.3.3.4 BRSEG-Conditional, Ak

a) Branch to (P) displaced by 2*Q if SEG(Aj) not equal to
SEG(Ak); else Compare BN(Aj) to BN(Ak), result to X1 Right.

BRSEG - (Format = jkQ Op Code = 9D Ref# = 046)

" <+
-+ *

label |operation largument

—_+—

|BRSEG ~ |X1,Aj,Ak,label
label - byte address of the new location.

7.3.3.5 BRREL-Unconditional Branch, (P) indexed

a) Branch to (P) indexed by 2*(Xk) Right.

BRREL - (Format = jk Op Code = 2E Ref# = 047)

e + -+
T y *

|1abel |operation |argument
|

-
+

| BRREL | Xk

7-19
Control Data - Silicon Valley Development Division

‘ 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.3.6 BRDIR-Unconditional Branch, (A) indexed

7.3.3.6 BRDIR-Unconditional Branch, (A) indexed

a) Branch to (Aj) indexed by 2*(Xk) Right.

BRDIR - (Format = jk Op Code = 2F Refj = 048)

<=
T

| 1abel Ioperation]argument
I I

BRDIR |Aj, Xk

3 s 0000 .

7.3.4 COPY

The instructions within this subgroup provide the means for
accomplishing inter-register transfers to the extent defined by
the following instruction descriptions.

7.3.4.1 CPYXX-Copy to Xk from Xj

CPYXX - (Format = jk Op Code = OD Ref# = 049)

-+
-+

label |operation |argument

| cPYXX | Xk, X j

7.3.4.2 CPYAX-Copy to Xk from Aj

CPYAX - (Format = jk Op Code = OB Ref# = 050)

3 -+
b -

Ilabel Ioperation |argument
I

|cPYAX | Xk, Aj

7-20

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.4.3 CPYAA-Copy to Ak from Aj

7.3.4.3 CPYAA—Copy to Ak from Aj

CPYAA - (Format = jk Op Code = 09 Ref# = 051)

3 -+
-+ T

label ,|operation Iargument

< -+

—_——

|CPYAA | Ak, Aj

7.3.4.4 CPYXA-Copy to Ak from Xj

CPYXA - (Format = jk Op Code = 0OA Ref# = 052)

-+
*r

operation |argument

label

e e 4

CPYXA | Ak, Xj

7.3.4.5 CPYRR-Copy to Xk Right from Xj Right

CPYRR - (Format = jk Op Code = OC Ref# = 053)

-+ o+
- +

label |operation |argument

<o

_—-

| CPYRR | Xk, Xj

. s 0o 3

7.3.5 ADDRESS ARITHMETIC

The instructions within this subgroup shall provide the means
for accomplishing address arithmetic to the extent defined by the
following instruction descriptions.

7-21

Control Data - Silicon Valley Development Division
_ 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.5.1 ADDAQ-Copy A with Displacement

7.3.5.1 ADDAQ-Copy A with Displacement

a) Address (Ak) replaced by (Aj) plus Q.

ADDAQ - (Format = jkQ Op Code = 8E Ref# = 054)

label |operation |argument

&

—_—t —

| ADDAQ |Ak,Aj,Q

7.3.5.2 ADDPXQ-Copy P with Indexing and Displacement

a) Address (Ak) replaced by (P) plus 2*(Xj) Right plus 2*Q.

ADDPXQ - (Format = jkQ Op Code = 8F Ref# = 055)

e
+

label |operation |argument

-+

—_— ¢

| ADDPXQ |Ak,Xj,label

label - byte address of the new location.

7.3.5.3 ADDAX-A Indexed

a) Address (Ak) replaced by (Ak) plus (Xj) Right.

ADDAX - (Format = jk Op Code = 2A Ref# = 056)

-+ n
r +

label |operation |argument

-+ <

—_—.—

| ADDAX | Ak, X j

7-22

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.5.4 ADDAD-Copy A with Displacement, Modulo

7.3.5.4 ADDAD-Copy A with Displacement, Modulo

a) Address (Ak) replaced by (Ai) plus D per j.

ADDAD - (Format = jkiD Op Code = A7 Ref# = 161)

-+
T

label |operation |argument

—+— ¢

|ADDAD ° |Ak,Ai,D,j
7.3.6 ENTER

The instructions within this subgroup provide the means for
entering immediate operands, (consisting of logical quantities of
signed, two's complement binary integers), into the X Registers
to the extent defined by the following instruction descriptions.

7.3.6.1 ENTP,ENTN-Enter i

a) Enter Xk with plus je

ENTP - (Format = jk Op Code = 3D Refff = 057)

3
-+

label |operation |argument
l

—_—t— 4

ENTP | Xk, j

b) Enter Xk with minus i

ENTN - (Format = jk Op Code = 3E Ref# = 058)

-+ -+
+

label |operation |argument

—_—t— ¢

|ENTN | Xk, j

7-23

Control Data - Silicon Valley Development Division
, 90/10/03
CYBER 180 II Assembler ERS ’ Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.6.2 ENTE-Enter Q

7.3.6.2 ENTE-Enter Q

a) Enter Xk with sign extended Q.

ENTE - (Format = jkQ Op Code = 8D Ref# = 059)

<
T

argument

|1abel |operation
I |

7.3.6.3 ENTL,ENTX-Enter jk

—_—t—+

ENTE Xk,Q

a) Enter X0 with logical jk.

ENTL - (Format = jk Op Code = 3F Ref# = 060)

<
T+

label |operation |argument

r

—+—+

|ENTL | X0, jk

b) Enter X1 with logical jk.

ENTX - (Format = jk Op Code = 39 Ref#f = 164)

label |operation |argument
| I

—_—-—

ENTX X1, jk

7-24
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.6.4 ENTZ,ENTQ,ENTS-Enter Signs

7.3.6.4 ENTZ,ENTQ,ENTS-Enter Signs

a) Enter Xk Left with signs per j.

The value of the right most 2-bits of the j field from the
instruction shall be translated as follows:

If 00, 32 bit positions of Xk Left shall be cleared
(zeroes).

If 01, 32 bit positions of Xk Left shall be set (ones).

If 10 or 11, 32 bit positions of Xk Left shall be set to
the value of the sign bit in position 32 of Xk Right.

ENTZ - (Format = jk Op Code = 1F Ref# = 061)
ENTO - (Format = jk Op Code = IF Ref# = 061)

ENTS - (Format = jk Op Code = IF Ref# = 061)

-
+

|label |operation |argument
ENTZ
ENTO Xk
ENTS

The assembler computes the value of j from the specific
instruction mnemonic used.

7.3.6.5 ENTC-Enter X1 ikQ

a) Enter X1 with sign extended jkQ.

ENTC - (Format = jkQ Op Code = 87 Ref# = 165)

-
T

label |operation |argument
|

—_t—+

ENTC |X1,jkQ

7-25
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 I] Assembler ERS ' Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.6.6 ENTA-Enter X0 jkQ

7.3.6.6 ENTA-Enter X0 jkQ

a) Enter X0 with sign extended jkQ.

ENTA - (Format = jkQ Op Code = B3 Refff = 169)

e
T

label

|operation
|

ENTA |0, j%Q

argument

——

7.3.7 SHIFT

The instructions within this subgroup provided the means for
shifting the initial contents of the Xj Register and transferring
the result to the Xk Register, to the extent defined by the
following descriptions.

All of the instructions within this subgroup derive the
computed shift count in the following manner: The rightmost 8
bits of the D field from the instruction is added to the
rightmost 8 bits initially contained in bit positions 56 through
63 of Register Xi Right and the 8-bit sum represents the computed
shift count. Any overflow from the 8-bit sum is ignored. In
this context, the contents of Register X0 Right are interpreted
as consisting entirely of zeroes.

" The instructions within this subgroup shall interpret the
computed shift count as follows: The sign-bit in the leftmost
position of the 8-bit computed shift count shall determine the
direction of the shift. When the computed shift count is
positive (sign bit of zero), these instructions shall left shift.
When the computed shift count is negative (sign-bit of one),
these instructions shall right shift. For 32-bit quantities,
shifts shall be from O0-31 bits left and from 1-32 bits right.
For 64-bit quantities, shifts shall be from 0-63 bits left and
from 1-64 bits right.

When these interpretations of the computed shift count result
in an actual shift count of zero, the associated instructions
transfer the initial contents of the Xj Register to the Xk
Register and no shifting is performed.

7-26
Control Data - Silicon Valley Development Division

; 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.7.1 SHFC-Shift (Xj) to Xk, Circular

7.3.7.1 SHFC-Shift (Xj) to Xk, Circular

a) Shift (Xj) to Xk Circular, Direction and Count per (Xi) Right
plus D.

SHFC - (Format = jkiD Op Code = A8 Reff# = 062)

e
+

label operation |argument

—_—— ¢

— +— 4

SHFC |Xk,Xj,Xi,D

7.3.7.2 SHFX,SHFR-Shift (Xj) to Xk, End-Off

a) Shift (Xj) to Xk, Direction and Count per (Xi) Right plus D.

SHFX - (Format = jkiD Op Code = A9 Ref# = 063)

<
T

label

+— +

operation |argument

—_t—

| SHFX - |Xk,Xj,Xi,D

b) Shift (Xj) Right to Xk Right, Direction and Count per (Xi)
Right plus D.

SHFR - (Format = jkiD Op Code = AA Ref# = 064)

-+
+

label |operation |argument

|
| | SHFR |Xk,Xj,Xi,D

e e oo e .

7-27

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.8 LOGICAL

7.3.8 LOGICAL

The instructions within this subgroup shall provide the means
for performing Boolean operations on the 64-bit words contained
in the X Registers to the extent defined by the following
instruction descriptions.

7.3.8.1 IORX,XORX,ANDX-Logical Sum, Diff. and Prod.

a) Logical Sum (Xk) replaced by (Xk) OR (Xj).

IORX - (Format = jk Op Code = 18 Reff# = 065)

-
-+

label |operation |argument
I

—_—+t—+

IORX | Xk, Xj

b) Logical Difference, (Xk) replaced by (Xk) EOR (Xj).

XORX - (Format = jk Op Code = 19 Ref# = 066)

e
-+

operation Iargﬁment

| XORX | Xk, Xj

c) Logical Product, (Xk) replaced by (Xk) AND (Xj).

ANDX - (Format = jk Op Code = 1A Ref# = 067)

-+ 3
-+ ha

label . |operation |argument

| ANDX | Xk, Xj

7-28

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS Rev: G

7
7

.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
.3.8.2 NOTX-Logical Complement

7.3.8.2 NOTX-Logical Complement

a) Logical Complement, (Xk) replaced by (Xj) NOT.

NOTX - (Format = jk Op Code = 1B Refjf = 068)

-+
+

label operation |argument

-+

—_— t—+
— —

NOTX | Xk, Xj

7.3.8.3 INHX-Logical Inhibit

a) Logical Inhibit, (Xk) replaced by (Xk) AND (Xj) NOT

INHX - (Format = jk Op Code = 1C Ref# = 069)

e <
ha -+

<

|1abel |operation | argument
I

| INHX | Xk, Xj

7.3.9 REGISTER BIT STRING

The instructions within this subgroup provide the means for
addressing a contiguous string (field) of bits, beginning and
ending independently with any bit positions within a 64-bit word.

For each of these instructions in this subgroup, the bit
string is addressed by means of a 12-bit field referred to as a
bit string descriptor. Any field of bits, including the field
constituting a bit field descriptor, is numbered from left to
right, with the leftmost bit numbered 00. The six-bit subfield
in bit positions 00 through 05 of a bit string descriptor
designates the beginning, or leftmost, bit position within a
64-bit word. The 6-bit subfield in bit positions 06 through 11
of the bit string descriptor is a length designator that is
interpreted as designating one less than the length (in bits) of
a bit string within a 64-bit word.

Control Data - Silicon Valley Development Division

7-29

90/10/03
CYBER 180 II Assembler ERS Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.9 REGISTER BIT STRING
Bit String Descriptor
|00 05!06 11}
| Leftmost Position Designator | Length Designator |

-
+

(Bit Length-1)

For all instructions within this subgroup, indexing is carried
out as follows: the bit string descriptor obtained from the D
field of the instruction is zero—extended on the left to 32 bits
and then added, without overflow detection, to the contents of
register Xi Right (in this context, the contents of register X0
shall be interpreted as all zeroes); the rightmost 12 bits of the
result is then interpreted as a bit string descriptor, in the
manner described above.

7.3.9.1 ISOM-Isolate Bit Mask

a) Isolate Bit Mask into Xk per (Xi) Right plus D.

ISOM - (Format = jkiD Op Code = AC Ref# = 070)

-+ -+
h -+

label |operation |argument

-+ 4o

—_——+

| IsoM | Xk,Xi,D, j

7.3.9.2 ISOB-Isolate into Xk

a) Isolate into Xk from Xj per (Xi) Right plus D.

ISOB - (Format = jkiD Op Code = AD Ref# = 071)

-
T

label |operation Iargument

—_

| 1S0B | Xk, Xj,Xi,D

7-30

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.9.3 INSB-Insert into Xk

7.3.9.3 INSB-Insert into Xk

a) Insert into Xk from Xj per(Xi) Right plus D.
INSB - (Format = jkiD Op Code = AE Refj = 072)

-
-

label operation |argument

+— +

— t—

| INSB |Xk,Xj,Xi,D

7.3.10 MARK-MARK TO BOOLEAN

This instruction tests the two bits initially contained in the
leftmost two bit positions, 32 and 33, of Register X1 Right
according to the 4-bit j field from the instruction. When the
value of the two leftmost bits initially contained in Register X1
Right is equal to any of the one or more values specified by the
instruction's j field, Register Xk shall be cleared in bit
positions 1 through 63 and set in bit position 0. When the value

of the two leftmost bits initially contained in Register X1
Right is not equal to any of the one or more values specified by
the instruction's j field, Register Xk Right is cleared in all 64
bit positions, O through 63.

7-31

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS S Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3.10 MARK-MARK TO BOOLEAN

The values of the j field and the leftmost two bits initially
contained in Register X1 Right shall be interpreted with respect
to equality (EQ) as follows: '

b

+
]

| i

e

.

+

<4
+

Binary Value of Bits 32 and 33 of X1 Right, respectively

| 00 1 01 ! 10 1 1|
100001) Uncondition;I inequality j I
Jooor] | ! =]
looto] | = !
foous] | I T
Jouoo) L ! !
Josox] L= L
o110 | 0| | |
Join1| | | | 0|
fooo] m_ | 1 I !
110011 EQ I I 1 EQ I
|1010] €| | | |
1011 0| | 0| 0 |
111001 EQ I EQ I I I
juot] e | 0 | | 0 |
1110| 0 | B | | |
illlli) Unconditio;al Equality) I
N ' ' C
B + | '

+ + +
+

<
+

The four individual bits of j can be visualized as individual
pointers which are associated, from left to right, with the four
possible values (00,01,10,11) of the tested bit-pair (bits 32 and

7-32

Control Data - Silicon Valley Development Division

90/10/03

CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.3

+10 MARK-MARK TO BOOLEAN

33 of Register X1 Right). For example, if j = 0101, equality is
detected when the value of the tested bit pair is 01 or 11.

a) Set Xk per j and (X1) Right.
MARK - (Format = jk Op Code = lE Ref# = 145)

-
r

operation |argument

+— +

| 1abel
l

|MARK - |Xk,X1,j

7.4 BUSINESS DATA PROCESSING INSTRUCTIONS

The general form of execution for this group shall involve the
utilization of a first data field in central memory, referred to
as the "source", to modify, replace, or compare with a second
data field in central memory referred to as the '"destination".
Both the source and destination fields shall be individually
described by means of independently designated Data Descriptors,
with respect to the types of representation, sign and zone
conventions, lengths and relative locations of the data fields.

The Data Descriptors shall be obtained from central memory at
locations immediately following the BDP instruction, as defined
by the BDP instruction format and number of descriptors used by
the instruction. All descriptors consist of a 32-bit half word,
aligned to a parcel (16 bit) boundary in central memory.

7.4.1 GENERAL DESCRIPTION

The instructions of this group utilize the jk and jkiD
instruction formats in combination with one or two descriptors in
the following combinations:

1) jk and two descriptors.

)

Operation Code j k

7-33

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.1 GENERAL DESCRIPTION

Descriptor j

+

P+2 T 32 |
‘Descriptor k
oo | 32 j
2) jkid and two descriptors.
Operation Code j k i | D
e 1 s Jelelal 1|
Descriptor j
P+4 I 32 i
Descripfbr k
s | 32 f
3) jkiD and one descriptor.
Operation Code i k i D
e 1 s Jelela] x|

Descriptor j or k

+

P+4 32

+— +

+

7-34

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.1.1 Operation Codes

7.4.1.1 Operation Codes

A total of 18 operation codes shall be utilized by the
instructions comprising the BDP Instruction group. For the
purpose of this specification, the BDP Instruction group shall be
further divided into four subgroups, including '"short"
instruction names, as follows:

NOTE: For the order of exception sensing for these instructions,
as well as all other instructions, refer to the CYBER 180
Processor—Memory Model-Independent GDS.

Subgroup Short Name

-+
+

BDP Numeric Sum

Difference
Product
Quotient

Scale

Scale Rounded
Decimal Compare
Numeric

+

Byte Compare

Compare Collated

Scan While Non-Member
Translate

Move Bytes

Edit

+

Subscript Calculate Subscript

Immediate Data Move Immediate Data
Compare Immediate Data
Add Immediate Data

+

7.4.2 DATA DESCRIPTORS

7-35

Control Data ~ Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.2 DATA DESCRIPTORS

The generated Data Descriptor shall be formatted as follows:

lelol o v : |
|13] 4 | 8 | 16 |
00 32-bit Descriptor

When specifying the data descriptor, the D field is not
specified. The format for the source descriptor (SD) and the
destination descriptor (DD) is the same, and is specified as
F,T,L,O.

- 1 bit - field specifier for length
- 4 bits ~ data types

- 8 bits - optional length field

- 16 bits - offset address field

or+-m

The data descriptor fields may be specified via either of two
methods.

1. - The field may consist of four subfields each containing
an evaluatable expression.

2. - The field may consist of a single SET or EQU symbol
(category 9) which is associated with four values.

Example:

ADDN,A7,X0 AF,X1 0,7,0,16 1,7,0,16 «DESCRIPTOR
.FIELDS ARE F,T,L,O.

DSCRPTR SET 0,7,0,16 .BDP DESCRIPTOR
ADDN,A7,X0 AF,X1 DSCRPTR DSCRPTR .ALTERNATE METHOD

7.4.2.1 BDP Descriptor, D Field

The D field is a 3 bit reserved field in bit positions 01, 02
and 03 of the data descriptor. Interpretation of other Data
Descriptor fields follow. This field is not specified in the
instruction.

7.4.2,2 BDP Operand Type, T Field

The T field shall consist of &4 bits, in bit positions 04
through 07 of the Data Descriptor, and shall describe the type of
data representation used in the associated source or destination

7-36

Control Data - Silicon Valley Development Division
, 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.2.2 BDP Operand Type, T Field

field. The 16 values of the T field are assigned data type
representations as follows:

0 Packed Decimal No Sign
1 Packed Decimal No Sign Leading Slack Digit'
2 Packed Decimal Signed
3 Packed Decimal Signed Leading Slack Digit
4 Unpacked Decimal Unsigned
5 Unpacked Decimal Trailing Sign Combined Hollerith
6 Unpacked Decimal Trailing Sign Separate
7 Unpacked Decimal Leading Sign Combined Hollerith
8 Unpacked Decimal Leading Sign Separate
9 Alphanumeric
10 Binary Unsigned
11 Binary Signed
12 Translated Packed Decimal Signed
13 Translated Packed Decimal Signed Leading Slack Digit
14 Translated Binary Unsigned
15 Translated Binary Signed
As determined by the operation code, source and destination
field, data types shall be restricted to only those combinations
which are defined as valid within the instruction descriptions.
The designation of invalid T field combinations within the
associated Data Descriptors shall result in the detection of an
Instruction Specification error, the instruction's execution
- shall be inhibited and the corresponding program interruption
shall occur. The term '"freely compatible" as used in the BDP

instruction descriptions, means that any allowable source field
data type may be used with any allowable destination field data

type.

7-37

Control Data - Silicon Valley Development Division
. 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.2.3 BDP Operand Address, O Field

7.4.2.3 BDP Operand Address, O Field

The PVA corresponding to the leftmost byte of a BDP source or
destination field shall be obtained by utilizing the 16 bit 0O
field of the corresponding data descriptor (bit positions 16
through 31) as a byte item count to be added as a sign extended
32 bit offset (2's complement for negative offset) to the byte
number (BN) portion of the base PVA contained in Register Aj or
Ak respectively.

7.4.2.4 BDP Operand Length, F and L Fields

The length in bytes of a BDP source or destination field shall
be obtained according to the value of the l1-bit F field (bit 00)
of the corresponding descriptor as follows:

F Length

0 Obtained from the 8 bit L field (bits 08 through 15) of the
corresponding descriptor.

1 Obtained from bits 55-63 of X0 Right for the first
descriptor following an instruction, and from bits 55-63 of
X1 Right for the second descriptor following an instruction.

Although field lengths as long as 256 bytes are possible, the
length of a BDP operand shall be restricted to a smaller value
for decimal and binary operations, according to the operand data
type. These inclusive limits are the following:

19 bytes for Packed Decimal (types O through 3, 12 and 13)
38 bytes for Unpacked Decimal (types 4 through 8)
8 bytes for Binary (types 10, 11, 14, and 15)

When any BDP field length exceeds the specified maximum
associated with a given data type, an Instruction Specification
error shall be detected, the execution of that instruction shall
be inhibited, and the corresponding program interruption shall
occur, :

If F equals 1, then only the rightmost 9 bits of X0 and X1
will be checked to determine whether or not the field length
exceeds the maximum allowed. The other bits of X0 and X1 will
not be inspected.

7-38

Control Data - Silicon Valley Development Division
_ 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0
7.4.

CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
3 DATA AND SIGN CONVENTIONS

7.4.3 DATA AND SIGN CONVENTIONS

With respect to numeric data and 'sign conventions, -
interpretation shall be performed according to Type (T) where
applicable, for characters (C), Digits (D) and Signs (S), using
hexadecimal notation.

NOTE: Data field examples are illustrated in the CYBER 180
Processor—-Memory Model-Independent GDS.

7.4.4 BDP NUMERIC

The instructions in this subgroup shall provide the means for
performing arithmetic, shift, conversion and comparison
operations for byte fields in central memory consisting of
numeric decimal data.

Unless the length- and format fields within the Data
Descriptors associated with the source and destination fields,
conform to the restrictions defined within the following
instruction descriptions, the detection of a Length or Type error
shall result in an Instruction Specification Error condition, the
execution of the associated instruction shall be inhibited and
the corresponding program interruption shall occur.

Overflow into or other alteration of the slack digit of
destination field types 1 and 3 is not allowed. The result shall
be right justified in the destination field. If the decimal
result is shorter than the destination field, the destination
field shall be zero filled to the left. If the result is longer
than the destination field, the result shall be truncated on the
left as necessary. Thus, conceptually, these instructions shall
process the data fields from right to left.

Note that these conventions shall cover the end cases for
numeric operands of length equal to 1 for all numeric data types.
For instance, a Move Numeric from a type 5 operand to a type 3 or
type 6 operand of length 1 would amount to an extraction of the
source field sign.

A source BDP operand of numeric type (0 through 8 and 12
through 15) and a length zero, shall be interpreted as the value
zero.

A destination BDP operand of length zero shall transform the
associated instruction into a no-op. However, exception sensing
for the source field shall occur normally, including the testing

7-39

Control Data - Silicon Valley Development Division
: 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4 BDP NUMERIC

for an Arithmetic Loss of Significance or Arithmetic Overflow
condition, provided the source field does not also have a length
of zero.

Minus zero shall be considered equivalent to plus zero by all
the instructions in this subgroup, with respect to decimal
numeric data.

The representation for zero, zones and signs shall be normally
determined by interpreting the T field from the Data Descriptor
associated with the destination field.

Division by zero shall not be allowed to the extent that the
destination field in central memory shall not be changed and a
Divide Fault condition shall be detected.

Each source digit shall be checked for decimal digit validity.
An invalid decimal digit shall cause an Invalid BDP Data
condition to be detected and, if enabled, a program interruption
shall occur upon the completion of these instructions.

7.4.4,.]1 Arithmetic

a) Decimal Sum, D(Ak) replaced by D(Ak) plus D(Aj).
074 jk (2 descriptors)
b) Decimal Difference, D(Ak) replaced by D(Ak) minus D(aj).
075 jk (2 descriptors)
c) Decimal Product, D(Ak) replaced by D(Ak) times D(Aj).
076 jk (2 descriptors)
d) Decimal Quotient, D(Ak) replaced by D(Ak) divided by D(Aj).
077 jk (2 descriptors)
Operation: These instructions shall arithmetically modify the
initial contents of the destination field in central memory,
(treated as an augend, minuend, multiplicand or dividend as
determined by the operation code) by the contents of the source
field in central memory (treated as an addend, subtrahend,
multiplier or divisor as determined by the operation code) and
shall transfer the decimal result consisting of a sum,

difference, product or quotient, as determined by the operation
code, to the destination field in central memory.

7-40

Control Data - Silicon Valley Development Division
‘ 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4.]1 Arithmetic

Types: All Packed decimal types and all Unpacked decimal types,
except for the Leading Sign formats, shall be freely allowed for
decimal arithmetic; i.e., types 0 through 6, 12 and 13 shall be
compatible for these instructions.

Unpacked Decimal Leading Sign (both conventions) shall not be
supported in the decimal arithmetic. A Numeric Move instruction
must be generated to format the operands of those types prior to
their use in arithmetic operations.

Lengths: The maximum allowable lengths for the source and
destination fields shall be determined according to their
respective decimal data types.

NOTE: Decimal operands shall be treated as integer values.

When the results of these instructions exceed the capacity of
the designated field such that significant digits are not stored
into central memory, an Arithmetic Overflow condition shall be
detected. When the corresponding user condition mask bit is set
and the trap is enabled, instruction execution shall be inhibited
and program interruption shall occur.

7.4.4.2 ADDN, SUBN,MULN,DIVN-Arithmetic

a) Decimal Sum, D(Ak) replaced by D(Ak) plus D(Aj).

ADDN - (Format = jk2 Op Code = 70 Ref# = 075)

operation Iargument

+

| ADDN,Aj,X0 |Ak,X1 SD DD

+— +

|1abel
l

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

7-41

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4.2 ADDN,SUBN,MULN,DIVN-Arithmetic

b) Decimal Difference, D(Ak) replaced by D(Ak) minus D(Aj).

SUBN - (Format = jk2 Op Code = 71 Ref# = 075)

<

argument

F— +

|1abel |operation

| |SUBN,Aj,X0 |Ak,X1 SD DD
When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter,

¢) Decimal product, D(Ak) replaced by D(Ak) times D(aj).

MULN - (Format = jk2 Op Code = 72 Ref# = 076)

label operation |argument

+— +

—— 4

|MULN,Aj,X0 |Ak,X1 SD DD

When the F field in the data descriptor is equal to O, the
length register (X0 for source, X1 for destination) is not a
required parameter.

d) Decimal Quotient, D(Ak) replaced by D(Ak) times D(Aj).

DIVN - (Format = jk2 Op Code = 73 Ref# = 077)

|labe1 |operation |argument

| |DIVN,Aj,X0 |Ak,X1 SD DD
When the F field in the data descriptor is equal to O, the
length register (X0 for source, X1 for destination) is not a

required parameter. '

7.4.4.3 SCLN,SCLR-Shift

The following instructions shall move data initially contained
in the source field to the destination field, and shall provide
shifting of the data under control of a shift count. The shift
count shall be derived in the following manner: The rightmost 8
bits from the instruction's D field shall be added to the
rightmost 8 bits initially contained in bit positions 56 through
63 of Register Xi Right and the 8-bit sum shall represent the

7-42

Control Data - Silicon Valley Development Division
: 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4.3 SCLN,SCLR-Shift

computed shift count. Any overflow from the 8-bit sum is
ignored. In this context, the contents of Register X0 shall be
interpreted entirely of zeroes. A zero shift count shall cause
the instruction to act as a move only instruction.

The 8-bit shift count shall be interpreted as a signed, binary
integer. When this 8-bit shift count is positive, the direction
of the shift shall be left with the number of decimal digit
positions to be shifted determined by the value of the right-most
seven bits (bit positions 57-63) of the shift count. When this
8-bit shift count is negative, the direction of the shift shall
be right with the number of decimal digit positions to be shifted
determined by the value of the 2's complement of the rightmost 7
bits (bit positions 57-63) of the shift count, with minus 128
(1000 0000) being interpreted as zero. Thus, positive shift
counts shall provide the means for multiplying the source data
field by powers of ten, and negative shift counts shall provide
the means for dividing the source data fields by powers of ten,
as the source data is moved to the destination field.

When non-zero digits are shifted left end-off, or truncated on
the left, an Arithmetic Loss of Significance condition shall be
detected. If the corresponding user condition mask bit is set
and the trap is enabled, instruction execution shall be inhibited
and program interruption shall occur.

Shifting shall be accomplished end-off with zero f£ill on the
appropriate end(s) as required to accommodate the length and type
of the receiving field. (For example, when the destination field
is longer than the source field, and the difference in field
lengths is greater than the left shift count, such a scale
instruction shall provide zero fill, to the extent required, on
both the right and left ends of the destination field result).

Types: Source field data shall be restricted to Types 0 through
6, 9, 12 and 13, all of which shall be freely compatible with
allowable destination field data Types of 0 through 6, 12 and 13.

Lengths: The maximum allowable lengths for the source and
destination fields shall be determined according to their
respective decimal data types.

7-43

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ‘ Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4,3 SCLN,SCLR-Shi ft

a) Decimal Scale, D(Ak) replaced by D(Aj), scaled per (Xi) Right
plus D.

SCLN - (Format = jkiD2 Op Code = E4 Ref# = 078)

operation |argument

+

SCLN,Aj,X0 |Ak,X1,Xi,D SD DD

label

—t—+

—+—+

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

b) Decimal Scale Rounded, D(Ak) replaced by rounded D(Aj),
scaled per (Xi) Right plus D.

SCLR - (Format = jkiD2 Op Code = E5 Reff# = 079)

-+ .
T

label Ioperation |argument

—_——t

|SCLR,Aj,X0 |Ak,X1,Xi,D SD DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

These instructions shall move and scale the decimal data field
initially contained in the source field to the destination field.
They shall transfer the sign of the source field to the
destination field without change (unless the results consist
entirely of zeroes and there is no loss of significance, in which
case the sign of the destination field shall be made positive, or
unless the result would otherwise contain a non-preferred sign,
in which case the sign of the destination field shall contain the
preferred sign).

When specified by means of the operation code, rounding shall
be performed for negatively signed scale factors by adding five
to the last digit shifted end—off and propagating carries, if
any, through the decimal result transferred to the destination
field. Thus the absolute value shall be rounded upwards.

o~

7-44
Control Data - Silicon Valley Development Division

. 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4.4 MOVN-Move

7.4.4.4 MOVN-Move

a) Numeric Move, D(Ak) replaced by D(4j), after formatting.

MOVN - (Format = jk2 Op Code = 75 Ref# = 092)

label operation [argument

— +— 1+

I
|MOVN,Aj,X0 |Ak,x1 SD DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

This instruction formats the number obtained from the source
field and transfers the result to the destination field.

The source field validated according to the T field from its
associated descriptor; the source field is reformatted according
to the T field from the data descriptor associated with the
destination field and the result is transferred to the
destination field.

7.4.4,5 CMPN-Comparison

a) Decimal Compare, D(Aj) to D(ak), result to X1 Right.

CMPN - (Format = jk2 Op Code = 74 Ref# = 083)

-+ -
T -+

label |operation |argument

—_— - +

|CMPN,Aj,X0 |Ak,x1 SD DD

When the F field of the source descriptor is equal to 0, X0 is
not a required parameter.

This instruction algebraically compares the decimal contents
of the source field to the decimal contents of the destination
field and transfers a 32-bit halfword to Register X1 Right
according to the results of the comparison.

When the results of the source and destination fields are
equal, the entire 32-bit Positions of Register X1 Right are
cleared.

7-45

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ‘ Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.4.5 CMPN-Comparison

When the contents of the source field are greater than the
contents of the destination field, Register X1 Right is cleared
in bit positions 32 and 34 through 63, and set in bit position
33.

When the contents of the source field are less than the
contents of the destination field, Register X1 Right 1is cleared
in bit positions 34 through 63 and set in bit positions 32 and
33. .

7.4.5 BYTE

The instructions in this subgroup provide the means for
comparing, scanning, translating, moving and editing byte fields
in - central memory to the extent defined by the following
descriptions.

7.4.5.1 CMPB,CMPC—-Comparison

a) Byte Compare, D(Aj) to D(Ak), result to X1 Right, Index to X0
Right,

CMPB - (Format = jk2 Op Code = 77 Refff = 084)

-+
+

|label |operation |[argument
l I

+

CMPB,Aj,X0 |Ak,X1 SD DD

b) Byte Compare Collated, D(Aj) to D(Ak), both translated per
(Ai) plus D, result to X1 Right, Index to X0 Right.

CMPC - (Format = jkiD2 Op Code = E9 Ref# = 085)

label operation |argument

—_—t — 4

—_—+— 4

CMPC,Aj,X0 |Ak,X1,Ai,D SD DD

These instructions compare the bytes contained in the source
field to the bytes contained in the destination field and
transfer the results to the comparison to Register X1 Right.

The comparison proceeds from left to right. When the field
lengths are -unequal, trailing space characters are used for the
field having the shorter length. The maximum length for each

7-46

Control Data - Silicon Valley Development Division
4 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.5.1 CMPB,CMPC-Comparison

operand is 256 bytes.

The comparison continues until the longer field has been
exhausted or until an "inequality" is detected between
corresponding bytes from the source and destination fields
according to the following definitions. For the compare
instruction, inequality between the bytes obtained directly from
the source and destination fields results in the completion of
the comparison. For the Collated Compare instruction inequality
of the bytes obtained directly from the source and destination
fields results in the translation of both bytes by means of a
translation table, and inequality of the post-translation bytes
results in the completion of the comparison. When the translated
bytes are equal, and the longer field has not been exhausted,
comparison between the corresponding bytes obtained directly from
the source and destination fields is resumed.

Each byte shall be translated by using its value as a positive
offset to be added to the beginning (leftmost) address of the
Translation Table, (Ai) + D, for the purpose of addressing the
translated byte to be read from central memory.

7.4.5.2 SCNB-Byte Scan

a) Byte Scan While Non-Member, D(Ak) for presence bit in (A4i)+D,
index to X0 Right, character to X1 Right.

SCNB - (Format = jkiDl Op Code = F3 Ref# = 086)

< e
T

label |operation |argument

+

—_—t—

|SCNB,Aj,X0 |Ak,X1,Ai,D DD -

The Aj field of this instruction is unused and optional.
Operation: The operation shall proceed from left to right on the
destination field addressed by D(Ak). One character at a time
shall be taken from this character string and used as a bit
address into the string addressed by a PVA whose Ring Number (RN)
and Segment (SEG) are obtained from Ai, and whose Byte Number
(BN) is formed by the 32-bit sum (ignoring overflow) of the
rightmost 32 bits of Ai plus the instruction's 12-bit D field
extended to the left with 20 zeroes. The scan shall terminate if
the bit thus addressed in ON or if the destination field has been
exhausted; otherwise the next character in D(AK) is considered.

Source Field: The operand addressed by Ai+D shall be interpreted
as a bit string consisting of 256 bits (32 bytes). The entire

7-47
Control Data - Silicon Valley Development Division
' 90/10/03
CYBER 180 II Assembler ERS ‘ Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.5.2 SCNB-Byte Scan

table, consisting of 256 bits, may be loaded internally to the
processor, on a model dependent basis, before any operation on
the data is performed.

Destination Field: The type field in D(Ak) shall be ignored.
The operand addressed by D(Ak) shall be interpreted as a byte
string, and restricted to no more than 256 characters.

The binary value of the sequence number in the string of the
byte which caused the scan to terminate shall be placed right
justified into X0 Right.

The binary value of the character itself which caused the scan
to terminate shall be placed right justified into X1 Right.

If the scan stops by exhaustion of the characters in the byte
string, X0 Right shall contain the length of the original byte
string and X1 Right shall be set in bit position 32 and cleared
in bit positions 33 through 63.

7.4.5.3 TRANB-Translate

a) Byte Translate, D(Ak) replaced by D(Aj), translated per (Ai)
plus D.

TRANB - (Format = jkiD2 Op Code = EB Reff = 088)

< -+
t +*

operation |argument

label

—_—t— 4

| TRANB,Aj,X0|Ak,X1,Ai,D SD DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

This instruction translates each byte contained in the source
field according to the translation table in central memory and
transfers the results of the byte-by-byte translation to the
destination field.

The translation table is addressed in a manner identical to
that previously described for the Collated Compare instruction.
The type fields in the Data Descriptors associated with the
source field and the destination field are ignored. Both
operands are restricted to no more than 256 bytes.

The translation operation shall occur from left to right with

7-48

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.5.3 TRANB-Translate

each source byte used as a positive offset to be added to the
beginning (leftmost byte) address of the translation table for
the purpose of permitting each byte's translation. Translated
bytes, thus obtained from the translation table, shall be
transferred to the destination field. The translation operation
shall terminate after the destination field length has been
exhausted. When the source field length is greater than the
destination field length, rightmost bytes from the source field
shall be truncated, to the extent required, with respect to the
translation operation. When the source field length is less than
the destination field length, translated space characters shall
be used to fill the rightmost byte positions of the destination
field to the extent required.

7.4.5.4 MOVB-Move

a) Move Bytes, D(Ak) replaced by D(Aj).

MOVB - (Format = jk2 Op Code = 76 Ref# = 089)

-+

label |operation |argument

<+

—_—

|MOVB,Aj,X0 |Ak,X1 SD DD

When the F field in the data descriptor is equal to 0, the
length register (X0 for source, X1 for destination) is not a
required parameter.

This instruction provides the means for moving the bytes
contained in the source field to the destination field. The type
fields of the source and destination data descriptors are
ignored. Field lengths are restricted to a maximum of 256 bytes.

7.4.5.5 EDIT-Edit

a) Edit, D(Ak) replaced by D(Aj) edited per M((Ai) + D).

EDIT - (Format = jkiD2 Op Code = ED Reff = 091)

|1abel |operation |argument
| |EDIT,Aj,X0 |Ak,X1,Ai,D SD DD

The Aj field is unused and optional. When the F field in the
data descriptor is equal to 0, the length register (X0 for

7-49
Control Data - Silicon Valley Development Division

; 90/10/03
CYBER 180 II Assembler ERS ' Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.5.5 EDIT-Edit

source, X1 for destination) is not a required parameter.

This instruction shall edit the digits or characters contained
in the source field according to an edit mask in central memory
and shall transfer the result to the destination field. The edit
mask shall be addressed by a PVA whose Ring Number (RN) and
Segment (SEG) are obtained from Ai, and whose Byte Number (BN) is
formed by the 32-bit sum (ignoring overflow) of the rightmost 32
bit of Ai plus the instruction's 12-bit D field extended to the
left with 20 zeroces. The edit mask shall consist of a one byte
length indication followed by a string of micro—operations. The
length indication shall include the byte containing the length.

7.4.6 IMMEDIATE DATA

Within this instruction group, the Immediate Data Byte is an 8
bit field formed by the 2's complement addition of bits 56-63
(Xi) Right and the rightmost 8 bits of the instruction's D field.
Overflow is ignored on this summation, In this context, the
contents of Register X0 shall be interpreted as consisting
entirely of zeroes.

7.4.6.1 MOVI-Move Immed Data (Xi) Right plus D to D(Ak)

MOVI - (Format = jkiDl Op Code = F9 Ref# = 154)

—_— 4

label - |operation |argument
|MOVI,Xi,D |Ak,X1,j DD

When the F field in the data descriptor is equal to 0, the
length register (X1 for destination) is not a required parameter.

This instruction shall move the Immediate Data Byte to the
destination field after format conversion per the destination
field type and the j field sub-operation code. The 1least
significant 2 bits of the j field shall be used as an encoding of
the operation to be performed:

a) If = 00, the unsigned (considered positive) numeric value
(Type 10) contained in the Immediate Data Byte shall be moved
right justified to the receiving field, which must be of type
10, 11, 14 or 15. 1If necessary, the destination field is
filled with zeroes on the left.

b) If = 01, the decimal numeric value (Type 4) contained in the

7-50

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.6.1 MOVI-Move Immed Data (Xi) Right plus D to D(Ak)

Immediate Data Byte shall be moved right justified, to the
receiving field after possible reformatting to match the data
type of the destination. If the format requires a sign, a
positive sign shall be supplied. The destination shall be
restricted to one of the decimal data types O through 6, 12
or 13. This move shall be executed according to the rules of
the numeric move for truncation, padding and validation.

Each source digit shall be checked for decimal digit
validity. An invalid decimal digit shall cause an Invalid
BDP Data condition to be detected. When the corresponding
user mask bit is set, and the trap is enabled, instruction
execution shall be inhibited and program interruption shall
occur. ;

¢) If = 10, the ASCII character contained in the Immediate Data
Byte is repeated left to right in the receiving field. The
destination data type shall be ignored.

d) If = 11, the ASCII character contained in the Immediate Data
Byte is moved left justified into the receiving field, the
rest of that field is space filled. The destination data
type shall be ignored.

7.4.6.2 CMPI-Compare Immed Data(Xi) Right plus D to D(Ak)

CMPI - (Format = jkiDl Op Code = FA Reff = 155)

-+ -+
T -

|1abel |operation |argument
| |CMPI,Xi,D |Ak,X1,j DD

This operation shall, depending on the value of the j field,
compare the explicit value contained in the Immediate Data Byte
to D(Ak) after a possible reformatting to match the data type and
shall transfer a 32-bit half word to Register Xl Right according
to the result of the comparison.

When the contents of the source and destination fields are
equal, the entire 32-bit positions of Register X1 Right shall be
cleared.

The rightmost two bits of the j field shall be used as an
encoding of the operation to be performed:

a) If J=00, the unsigned (considered positive) numeric value
(Type 10) contained in the Immediate Data Byte shall be

7-51

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.6.2 CMPI-Compare Immed Data(Xi) Right plus D to D(Ak)

compared to the contents of field D(Ak), which must be of
type 10, 11, 14 or 15. 1If field D(Ak) is longer than one
byte, then the Immediate Data Byte will be zero filled to the
left as necessary.

b) If j=01, the decimal numeric value (Type 4) contained in the
Immediate Data Byte shall be compared to the contents of
field D(Ak) after possible reformatting to match the data
type of field D(Ak). If the format requires a sign, a
positive sign shall be supplied. The D(Ak) field shall be
restricted to one of the decimal data types 0 through 6, 12
or 13. If field D(Ak) is longer than one byte, then the
Immediate Data Byte shall be zero filled to the left as
necessary.

Each source digit shall be checked for decimal digit
validity. An invalid decimal digit shall cause an Invalid
BDP Data condition to be detected. When the corresponding
user mask bit is set, and the trap is enabled, instruction
execution shall be inhibited and program interruption shall
occur.

c) If j=10, the ASCII character contained in the Immediate Data
Byte shall be compared left to right with each successive
byte contained in the D(Ak) field. The data type of field
D(Ak) shall be ignored.

d) If j=11, the ASCII character contained in the Immediate Data
Byte shall be compared to the leftmost byte in field D(Ak).
If the comparison is equal and if field D(Ak) is longer than
one byte, then a space character shall be compared left to
right with each successive remaining byte contained in the
D(Ak) field. The data type of field D(Ak) shall be ignored.

When the contents of the source field are greater than the
contents of the destination field, Register X1 Right shall be
cleared in bit positions 32 and 34 through 63 and shall be set in
bit position 33.

When the contents of the source field are less than the
contents of the destination field, Register X1 Right shall be
cleared in bit positions 34 through 63 and shall be set in bit
positions 32 and 33.

The interpretation of the source and destination fields are
analogous to those described under the Move Immediate Data
Instruction.

7-52

Control Data - Silicon Valley Development Division
‘ 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.4.6.3 ADDI-Add Immed Data (Xi) Right plus D to D(Ak)

7.4.6.3 ADDI-Add Immed Data (Xi) Right plus D to D(Ak)

ADDI - (Format = jkiDl Op Code = FB Ref# = 156)

e 4
T r

label |operation |argument

—_—t— ¢

|ADDI,Xi,D |Ak,X1,j DD

When the F field in the data descriptor is equal to O, the
length register (X0 for source, Xl for destination) is not a
required parameter.

This operation shall add the explicit integer value contained
in the Immediate Data Byte to D(Ak) after a possible conversion
to match the destination data type.

Source: The Immediate Data Byte is used to store the integer
value of the addend. The j field is used as an encoding of the
type of the data contained in the Immediate Data Byte. The least
significant bit of the j field is decoded as follows:

a) If = 0, the Immediate Data Byte, contains an unsigned
(considered positive) binary integer value; Immediate Data
Byte = Data Type 10.

b) If =1, the Immediate Data Byte, contains one ASCII character
representing a decimal digit; if invalid decimal data is
encountered in the Immediate Data Byte, an Invalid BDP Data
condition shall be detected. When the corresponding user
condition mask bit is set and the trap is enabled,
instruction execution shall be inhibited and program
interruption shall occur. Immediate Data Byte = Data Type 4.

If the source corresponds to case a) above, the destination
shall be confined to types 10, 11, 14 and 15.

If the source corresponds to case b) above, the destination
shall be confined to types O through 6, 12 and 13.

7.5 FLOATING POINT INSTRUCTIONS

7-53

Control Data - Silicon Valley Development Division
. 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.1 GENERAL DESCRIPTION

7.5.1 GENERAL DESCRIPTION

A floating point number consists of a signed exponent and a
signed fraction. The signed exponent can also be referred to as
the characteristic and the signed fraction can also be referred
to as the coefficient. :

The quantity expressed by a floating point number is of the
form (£)2x where f represents the signed fraction and x
represents the signed exponent of the base 2.

The exponent base of 2 is an implied constant for all floating
point numbers and thus does not explicitly appear in any floating
point format.

7.5.2 FORMATS

Floating point data occupies one of two fixed length formats;
64-bit word (Single Precision) or 128-bit doubleword (Double
Precision).

In both the single and double precision formats, the leftmost
bit position, 00, is occupied by the sign of the fraction. The
fifteen bit positions immediately to the right of bit 00, Ol
through 15, occupied by the signed exponent.

The field immediately to the right of the signed exponent is
occupied by the fraction which in single precision format
consists of 48 bits and in double precision format consists of 96
bits, according to the following figures.

00|01 15|16 63

48-bit fraction

e
<4
4
+

o—
+— +—

S |Signed Exponent

+

Single Precision Floating Point Number

7-54
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.2 FORMATS
|oojo1 15|16 63|
|S |Signed Exponent |Leftmost 48-bits of the fraction |
64|65 71|72 127

+— +

S ISigned Exponent |Rightmost 48-bits of fraction

+

Double Precision Floating Point Number

A double precision floating point number consists of two
single precision floating point numbers located in consecutively
numbered X Registers. The two single precision floating point
numbers comprising a double precision floating point number are
referred to as the leftmost and rightmost parts as contained in
the Xn and Xn+l, respectively. The leftmost part may be any
single precision floating point number and when it is normalized,
(the leftmost bit of the fraction, in bit position 16, is equal
to a one) the double precision floating point number is
considered to be normalized. The sign of the fraction and the
characteristic of the leftmost part constitutes the sign of the
fraction and the characteristic of the double precision number.

The fraction field of . the leftmost part constitutes the
leftmost 48 bits of the 96-bit double precision fraction. The
fraction field of the rightmost part constitutes the rightmost 48
bits of the 96-bit double precision fraction. The sign of the
fraction and the characteristic of the rightmost part cannot be
utilized from any number constituting an input operand (argument)
to a double precision floating point operation. Such operations
assume that the sign of the fraction of the rightmost part is the
same as the sign of the fraction of the leftmost part and that
the characteristic of the rightmost part is 48 less than the
characteristic of the leftmost part. However, the formation of a
double precision floating point result includes making the sign
of the fraction of the rightmost part the same as that of the
leftmost part and, except for certain cases involving
non-standard forms of floating point results, also includes
making the characteristic of the rightmost part 48 less than the
characteristic of the leftmost part. .

The following table illustrates hexadecimal exponent codes for
corresponding non-standard as well as standard floating point
numbers:

Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS

7-55

90/10/03
Rev: G

7.
7'

0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
5.2

.2 FORMATS

+

-+
+

<+

Hexadecimal Exponent including coefficient sign

+

Actual Exponent (to the base of 2)

+

Input Arguments

e

|Results
* | 7XXX| ————- | Indefinite|7000.0--->0
6FFF |2%*12287 Overflow Mask = 0 :
) 4 Infinite 5000.00--->00
| | Overflow Mask = 1 :
Coefficient |5000]2%*4096 As Shown
Sign Equal + + + + +
to O 4FFF | 2%*4095
(Positive * 4
numbers)
4000|2**Q Standard |As Shown
3FFF|2**(-1)
| l
v v
3000 | 2** (-4096)
2FFF|2** (-4097) B Underflow Mask = 0 :
| I Zero 000.00--->00
v v Underflow Mask = :
1000|2%**(-12288) As Shown
v | OXXX |
+ + Zero Not Applicable
* | 8XXX
9000|2**(-12288 Underflow Mask = :
1 ? 0000.00--->00
| | Zero Underflow Mask = 1 :
Coefficient |AFFF|2*¥*(-4097) As Shown
Sign Equal + + + + +
to 1 |BOO0|2%*(-4096)
(Negative * 4
Numbers) | | |
BFFF|2%*(-1) Standard |[As Shown
C000|2**Q
| |
v v
CFFF|2%*4095
D000 | 2**4096 Overflow Mask = 0 :

7-56

Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS ' Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.2 FORMATS
| | Infinite |D000.00--->00
v v Overflow Mask = 1 :
EFFF|2*%*12287 As Shown
v |FXXX| =-—-- | Indefinite|7000.00--->00 l

Floating Point Representation

7.5.3 EXPONENT ARITHMETIC

When the exponent fields from input arguments are added, as
for floating point multiplication, or subtracted, as for floating
point division, the exponent arithmetic is performed
algebraically in 2's complement mode. Moreover, such operations
take place, conceptually, as if the bias were removed from each
exponent field prior to performing the addition or subtraction
and then restored following exponent arithmetic so as to
correctly bias the exponent result.

Exponent Underflow and Overflow conditions are detected for
all single precision, but only for the leftmost part of double
precision floating point results. When the generation of the
exponent of the rightmost part, by reducing the exponent of the
leftmost part by 48, results in underflow for the rightmost part,
this underflow is not to be detected and utilization of an Out of
Range exponent permits the rightmost part of the double precision
floating point number to correctly express its value.

7.5.4 NORMALIZATION

A normalized floating point number has a one in the leftmost
bit position, 16, of the fraction field. If the leftmost bit of
the fraction is a zero, the number is considered unnormalized.
Normalization takes place when intermediate results are changed
to final results. Numbers with zero fractions cannot be
normalized and such fractions remain equal to zero.

For intermediate results in which coefficient overflow has not
occurred and the initial operands were normalized, the
normalization process consists of left shifting the fraction
until the leftmost bit position contains a one and
correspondingly reducing the characteristics by the number of

-positions shifted. For intermediate results in which coefficient

overflow has occurred, the normalization process consists of
right shifting the fraction one bit position and correspondingly

7-57

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
5.4

7.
7. NORMALIZATION

increasing the characteristic by one. For double precision
floating point numbers, the entire fraction participates in the
normalization such that the rightmost part may or may not appear
as a normalized single precision number as determined by the
value of the fraction.

For quotient and product instructions (reference numbers 103,
104, 107, 108) if the operands are unnormalized, the results may
be unnormalized.

When exponent arithmetic operations on standard floating
numbers generate an intermediate exponent which is Out of Range,
but normalization requirements generate an adjusted exponent
which is no longer Out of Range, then neither Exponent Overflow
nor Exponent Underflow is recorded for the final results.

7.5.5 DOUBLE PRECISION REGISTER DESIGNATORS

The terms "Xk+1" and "Xj+1" is used to designate an X Register .
associated with the rightmost part of a double precision floating
point number. When the leftmost part of a double precision
floating point number, as designated by the terms "Xk" and"Xj" is
associated with Register XF (in hexadecimal notation) the terms
"Xk+1" and "Xj+1" are interpreted as designating Register XO.

7.5.6 CONVERSION
The instructions within this subgroup provide the means for
converting 64-bit words, contained in the X Registers, between

floating point and integer formats.

7.5.6.1 CNIF-Convert From Integer to Floating Point

a) Floating Point Convert from Integer, Floating Point (Xk)
formed from Integer (Xj).

CNIF - (Format = jk Op Code = 3A Refff = 097)

ha ™+ T

7-58

Control Data - Silicon Valley Development Division
, 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.6.2 CNFI-Convert Floating Point to Integer

7.5.6.2 CNFI-Convert Floating Point to Integer

a) Floating Point Convert to Integer, Integer (Xk) formed from
Floating Point (Xj).

CNFI - (Format = jk Op Code = 3B Ref# = 098)

+ +
+ T

label |operation |argument

| CNFI | Xk, Xj
7.5.7 ARITHMETIC

The instructions within this subgroup provide the means for
performing arithmetic operations on floating point numbers to the
extent described in the following subparagraphs.

7.5.7.1 ADDF,SUBF-Add/Subtract, Xk

a) Floating Point Sum, (Xk) replaced by (Xk) plus (Xj).

ADDF - (Format = jk Op Code = 30 Ref# = 099)

< -
™ T

label |operation |argument

-+

—t—+

| ADDF |Xk,Xj
b) Floating Point Difference, (Xk) replaced by (Xk) minus (Xj).

SUBF - (Format = jk Op Code = 31 Ref# = 100)

- L
T -+

|operation |argument

.

| SUBF | Xk, Xj

| 1abel
|

7-59

Control Data - Silicon Valley Development Division
. 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.7.2 MULF-Product to XK

7.5.7.2 MULF-Product to XK

a) Floating Point Product, (Xk) replaced by (Xk) times (Xj).

MULF - (Format = jk Op Code = 32 Ref# = 103)

<+ b
-*r -+

label |operation |argument

-+ i

|MULF | Xk, Xj

—t—+

7.5.7.3 DIVF-Quotient to XK

a) Floating Point Quotient, (Xk) replaced by (Xk) divided by
xj3).

DIVF - (Format = jk Op Code = 33 Ref# = 104)

-+ 4 +
T T +

label lopetation]argument

.
-+

|DIVF | Xk, X j

7.5.7.4 ADDD, SUBD-Add/Subtract, Xk and Xk+1

a) Floating Point DP Sum (Xk, Xk+1) replaced by (Xk, Xk+1) plus
(Xj, Xj+1).

ADDD - (Format = jk Op Code = 34 Ref# = 105)

<+
-+

operation |argument

—
[]
o
o
—

+— +

| ADDD | Xk, X j

7-60

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.7.4 ADDD,SUBD-Add/Subtract, Xk and Xk+1

b) Floating Point DP Difference (Xk, Xk+1) replaced by (Xk,
Xk+1) minus (Xj, Xj+1).

SUBD - (Format = jk Op Code = 35 Ref# = 106)

-+
-+

label |operation |argument

-+

| SUBD | Xk, Xj

7.5.7.5 MULD-Product to Xk and Xk+1

a) Floating Point DP Product (Xk, Xk+1) replaced by (Xk, Xk+1)
times (Xj, Xj+1).

MULD - (Format = jk Op Code = 36 Ref# = 107)

< +
- -+

label |operation | argument

<

—_t—+

| MULD | Xk, Xj

7.5.7.6 DIVD-Quotient to Xk and Xk+1

a) Floating Point DP Quotient, (Xk, Xk+1) replaced by (Xk, Xk+1)
divided by (Xj, Xj+1).

DIVD ~ (Format = jk Op Code = 37 Reff = 108)

4 e
T -*

e

|1abel |operation |argument
|

|DIVD | Xk, Xj

] e e e o0 .

7.5.8 BRANCH

The instructions in this subgroup consist of conditional
branch instructions.

Each of these conditional branch instructions perform a
comparison between two floating point numbers. Then, based on
the relationship between the results of that comparison and the
branch condition as specified by means of the instruction's

7-61
Control Data - Silicon Valley Development Division

. 90/10/03
CYBER 180 II Assembler ERS Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.8 BRANCH

operation code, each conditional branch instruction performs
either a normal exit or a branch exit.

Normal Exit: When the results of a comparison do not satisfy
the branch condition as specified by the operation code, a normal
exit is performed. A normal exit for all conditional branch
instructions consist of adding four to the rightmost 32 bits of
the PVA obtained from the P Register with that 32-bit sum
returned to the P Register in its rightmost 32-bit positions.

Branch Exit: When the results of a comparison satisfy the
branch condition as specified by the operation code, a branch
exit is performed. A branch exit consists of expanding the
16-bit Q field from the instruction to 31 bits by means of sign
extension, shifting these 31 bits left one bit position with a
zero inserted on the right and adding this 32-bit shifted result
to the rightmost 32-bits of the PVA obtained from the P Register
with the 32-bit sum returned to the P Register in its rightmost
32-bit positions.

The Assembler sets the instruction's Q field according to the
value of the 'label' subfield of the instruction mnemonics, which
must correspond to a label of an Assembler statement within the
currently active section. Relative addresses cannot span section
boundaries.

7.5.8.1 BRFEQ,BRFNE,BRFGT,BRFGE-Compare and Branch

a) Branch to (P) displaced by 2*Q if Floating Point (Xj) equal
to (Xk).

BRFEQ - (Format = jkQ Op Code = 98 Refj = 109)

<+ "
v 4 -+

label |operation |argument

-

—_—-—t

| BRFEQ |Xj,Xk,label

label - byte address of the new location.

7-62

Control Data - Silicon Valley Development Divigion
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.8.1 BRFEQ,BRFNE,BRFGT,BRFGE-Compare and Branch

b) Branch to (P) displaced by 2*Q if Floating Point (Xj) not
equal to (Xk).

BRFNE - (Format = jkQ Op Code = 99 Ref# = 110)

4 <+
a ha

label |operation |argument

—+—+

| BRFNE |Xj,Xk,label
label - byte address of the new location.

¢) Branch to(P) displaced by 2*Q if Floating Point (Xj) greater
than (Xk). ’

BRFGT - (Format = jkQ Op Code = 9A Ref# = 111)

<+ &4
h +

|1abel |operation |argument
|

|BRFGT |Xj,Xk,label

label - byte address of the new location.

d) Branch to (P) displaced by 2*Q if Floating Point (Xj) greater
than or equal to (Xk).

BRFGE - (Format = jkQ Op Code = 9B Ref# = 112)

-
T

operation |argument

label

&
*

-+
h

—_t—+

BRFGE |Xj,Xk,label

label - byte address of the new location.

. 7-63
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.5.8.2 BROVR,BRUND,BRINF-Exception Branch

7.5.8.2 BROVR,BRUND,BRINF-Exception Branch

a) Branch to (P) displaced by 2*Q if Floating Point Exception
per j contained in Xk.

The values of the rightmost 2 bits of the j field from the
instruction are associated with exception conditions as
follows: 4

if 00, Exponent Overflow

if 01, Exponent Underflow

if 10 or 11, Indefinite

BROVR - (Format = jkQ Op Code = 9E Ref# = 113)
BRUND - (Format = jkQ Op Code = 9E Ref# = 113)

BRINF - (Format = jkQ Op Code = 9E Refj = 113)

o+

-+
T

|1abel |operation |argument
BROVR
BRUND Xk, label
BRINF
label - byte address of the new location.

The Assembler computes the value of j from the specific
instruction mnemonic used.

7.5.8.3 CMPF-Compare

a) Compare Floating Point (Xj) to (Xk), result to Xl Right.

CMPF - (Format = jk Op Code = 3C Ref# = 114)

e I
T+ r

label |operation

argument

<+

—_t—

| CMPF |X1,Xj,Xk

. e e e 00 .

7-64

Control Data - Silicon Valley Development Division
. 90/10/03
CYBER 180 II Assembler ERS ’ Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6 SYSTEM INSTRUCTIONS

7.6 SYSTEM INSTRUCTIONS

7.6.1 NON-PRIVILEGED MODE

This class of instructions is permitted to execute in any
processor mode.

7.6.1.1 EXECUTE, HALT, SYNC

a) Execute Algorithm - Processor Model Dependent Instruction.

EXECUTE - (Format = SjkiD Op Code = CO0-C7 Ref# = 139)

< -+
+

| 1abel |operation |argument
| | EXECUTE,S |j,k,i,D
b) Program Error.

HALT - (Format = jk Op Code = 00 Ref# = 121)

I
-+

label |operation |argument

e

—_— ¢

|HALT |k
¢) Synchronization - Scope Loop Sync.

SYNC - (Format = jk Op Code = 01 Ref# = 194)

-+
r

|operation |argument
I

SYNC |jx

| 1abel
|

7.6.1.2 CALLSEG,CALLREL-Call

These instructions save the "environment',as designated by the
contents of Register X0 Right, in the stack frame save area
pointed to by the Dynamic Space Pointer initially contained in
Register A0. The stack associated with the current ring of
execution, as determined by the RN field initially contained in
the P Register, '"pushed" by transferring the Dynamic Space
Pointer, modified in 1its rightmost 32-bit positions by the

7-65

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.2 CALLSEG,CALLREL~-Call

addition-of 8 times the number of words stored into the stack
frame save area, to the appropriate Top of Stack entry in the
executing process's Exchange Package.

The A0, Al, and A2 Registers altered to reflect changes with
respect to the Current and Previous Stack Frames and the A3, and
A4 Registers shall be altered to reflect pertinent parameter
changes as required, in accomplishing this transfer of control
from a "calling" procedure to a "called" procedure.

Register assignments are as follows:

(A0)- Dynamic Space Pointer

(A1)~ Current Stack Frame Pointer
(A2)- Previous Save Area Pointer
(A3)- Binding Section Pointer
(A4)- Argument Pointer

(X0) RIGHT - the Save Environment is defined as follows:
Bits 52-55: Xs = Starting X-Reg to save
Bits 56-59: At = Final A-Reg to save
Bits 60-64: Xt = Final X-Reg to save
a) Call per (Aj) displaced§£y 8*Q, Arguments per (Ak).

The PVA obtained from Register Aj is modified in its
rightmost 32-bit positions by the addition of the
zero-extended Q field from the instruction, (shifted left
3-bit positions with 2eroes inserted on the right), and the
resulting PVA is used to address a Code Base Pointer from a
Binding Section Segment. This Code Base Pointer is
translated into a PVA used to address the first instruction
to be executed in the "called" procedure. The ring of
execution of the called procedure, P(RN) final, shall be used
to obtain a Top of Stack pointer from the process'’ Exchange
Package to be used as the new Current Stack Frame Pointer.

CALLSEG - (Format = jkQ Op Code = B5 Ref# = 115)

| 1abel |operation |argument
+ + +
| |CALLSEG |label,aj,Ak
label - byte address of entry point in the new

procedure, must be on a word boundary.,

7-66

Control Data — Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.2 CALLSEG,CALLREL-Call

b) Call to (P) displaced by 8*Q, Binding Section Pointer per
(Aj), Arguments per (Ak).

The P Register sghall be modified in its rightmost 32-bit
positions by the sign extended Q field from the instruction,
(left shifted 3-bit positions with zeroes inserted on the
right) and the final contents of the P Register shall be made
zeroes in the least significant three bit positions (61-63)
and shall be used to address the first instruction to be
executed in the "called" procedure.

CALLREL - (Format = jkQ Op Code = BO Ref# = 116)

o
+

—_——

label |operation Iargument
I

CALLREL |label,Aj,Ak

label - byte address of the location to continue
execution, must be on a word
boundary.

The Assembler computes the value of Q from the "label" field
of the instruction mnemonics, which must correspond to a
label of an Assembler statement within the currently active
section. Relative addresses cannot span section boundaries.
The address represented by the 1label must be on a word
boundary. This can be insured by using the ALIGN pseudo
instruction.

7-67

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.3 RETURN

7.6.1.3 RETURN

This instruction re—establishes the Stack Frame and
"environment" of a previous procedure as defined by the Previous
Save Area Pointer.

The j and k fields from this instruction are not translated by
the hardware. Th wvalues have no effect on the execution of this
instruction for which all execution parameters are implicit.

The Stack Frame Save Area from which a previous procedure's
"environment" is obtained, is addressed by means of the PVA
initially contained in Register A2.

The RETURN instruction may also require global privilege.
Consult the MIGDS for further information.

RETURN - (Format = jk Op Code = 04 Reff = 117)

r e
-+ +

|1abel |operation |argument
|

| RETURN |ik

7.6.1.4 POP

This instruction re-establishes the Stack Frame of a previous
procedure as defined by the Previous Stack Frame's Save Area.

The j and k fields from this instruction are not translated by
the hardware. Th values have no effect on the execution of this
instruction for which all execution parameters are implicit.

The Stack Frame Save Area from which a previous procedure's
Stack Frame pointers is obtained, is addressed by means of the
PVA initially contained in Register A2.

POP - (Format = jk Op Code = 06 Reff = 118)

- -+ !
T - L

label |operation |argument

___+__.._ PSR-

-4
n g

| POP lik

7-68

Control Data - Silicon Valley Development Division
. 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.5 EXCHANGE

7.6.1.5 EXCHANGE

When executed in Monitor mode, this instruction shall change
the processor from monitor process state to job process state.

When executed in Job mode this instruction changes the
processor from job process state to monitor process state. In
addition, the System Call bit in position 10 of the Monitor
Condition Register, job process state, is set.

The PVA contained in Word 0O (P Register) of the Exchange
Package associated with the state from which the exchange is
taking place, is updated such that it points to the instruction
which would have been executed had the exchange not taken place,
i.e., the PVA of the "Exchange" instruction with 2 added to its
BN field.

The j and k fields from this instruction are not translated
and their values have no effect on the execution of this
instruction.

EXCHANGE - (Format = jk Op Code = 02 Ref# = 120)

-+ -+
T T

label |operation |argument

e -+

|EXCHANGE | jk

——— 4

7.6.1.6 KEYPOINT

The Keypoint Instruction allows performance monitoring of
programs via the optional Performance Monitoring Facility or via
Trap Interrupts. The Keypoint Instruction shall test bit j of
the Keypoint Mask Register. The j field, termed the Keypoint
Class Number (KCN), shall be used as a bit index into the
Keypoint Mask Register. Thus, a KCN or j field of value 4 tests
the fifth bit from the left in the Keypoint Mask Register (KMR).

7-69
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.6 REYPOINT

a) Keypoint, class j, code equal to (XK) Right plus Q.

KEYPOINT - (Format = jkQ Op Code = Bl Ref# = 136)

-+ -+
+

label Ioperation |argument

—_—t+—+

 |REYPOINT |j,Xk,Q

7.6.1.7 CMPXA-Compare Swap

a) "Compare (Xk) at (Aj); if not equal, load Xk from (Aj); if
equal store (X0) at (Aj); however, if (Aj) locked, branch to
P plus 2*Q.

CMPXA - (Format = jkQ Op Code = B4 Ref# = 125)

-+ -+
ha -

| 1abel |operation |argument
| |cMPxA |Xk,Aj,X0, 1abel

label - byte address of the new location, must be in
. the same section.

A serialization function is performed before this instruction
begins and again at its end. Execution of this instruction is
delayed until all previous accesses to central memory on the part
of this processor are completed. Execution of subsequent
instructions is delayed until all central memory accesses due to
this instruction are completed.

Conceptually, the execution of this "Compare" instruction on
the part of a. processor results in preventing other processors
from accessing any part of the central memory word at the PVA
contained in Register Aj between the read and write accesses
associated with the execution of this instruction, provided such
processors are also executing a '"Compare" instruction. With
respect to this instruction only, in order to satisfy its
"non-preemptive" requirement, the use of 64-bit words consisting
entirely of ones in their leftmost 32-bit positions, 00 through
31, is reserved for each processor's implementation of this
instruction.

7-70

Control Data - Silicon Valley Development Division

, 90/10/03
CYBER 180 II Assembler ERS Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.8 LBSET-Load Bit

7.6.1.8 LBSET-Load Bit

a) Load Bit to Xk Right from (Aj) bit indexed by (X0) Right and
set bit in central memory.

LBSET - (Format = jk Op Code = 14 Ref# = 124)

<+ 4
T T

|1abel |operation |argument
I

|LBSET | Xk,Aj,X0

This instruction transfers a single bit into Register Xk
Right, bit position 63, from a bit position in central memory.
This instruction also clears the Xk Register in its leftmost 63
bit positions, 00 through 62. The bit position in central memory
is unconditionally set without changing any other bit positions
within the byte or word.

No other accesses from any port shall be permitted access to
the byte in central memory from the beginning of the read access
until the end of the write access which sets the bit within that
byte.

A serialization function is performed before this instruction
begins and again at its ending. Execution of this instruction is
delayed until all previous accesses to central memory by this
processor are completed. Execution of subsequent instructions by
this processor is delayed until all central memory accesses from
this instruction are completed.

7.6.1.9 TPAGE-Test Page

a) Test Page (Aj) and Set Xk Right.

TPAGE - (Format = jk Op Code = 16 Reff = 126)

4
-+

| label |operation |argument
|

| TPAGE | Xk, Aj

This instruction shall test for the presence of the page in
central memory corresponding to the PVA contained in Register Aj.
When this instruction finds the corresponding page in central
memory, the '"Used" bit in the UM field of the associated Page
Descriptor is set, and the Real Memory Address (RMA) translated

7-71

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.1.9 TPAGE-Test Page

from the PVA contained in Register Aj is transferred to Register
Xk Right. When this instruction cannot find the corresponding
Page in central memory, Register Xk Right is set in bit position
32 and cleared in bit positions 33 through 63. '

7.6.1.10 CPYTX-Copy Free Running Counter (TIME) to X

a) Copy to Xk from Central Memory Maintenance Register at X
Right. .

CPYTX - (Format = jk Op Code = 08 Ref# = 132)

n
-+

label |operation |argument

—t—

|CPYTX | Xk, Xj

This instruction shall copy the central memory Maintenance
Register specified by the contents of Register Xj into the Xk
Register. All 64 bits of the Xk Register shall be cleared before
the selected register is copied into it.

. ® o000 .

7.6.1.11 PSFSA-Purge SFSA Pushdown

PSFSA - (Format = jk Op Code = 07 Refj# = 203)

<+
d

label |operation |argument

<+

—_—t—

|PSFSA |k

This instruction, when the sub-op k=1, shall cause processors
having Stack Frame Save Area (SFSA) Pushdown to store the
contents of the Pushdown into its properly defined locations in
central memory. For the purposes of the this store the processor
shall ignore the state of the valid bit in the Page Table Entry.
If a Page Table Search without Find is encountered, the processor
shall record a DUE and take the appropriate interrupt. This
instruction, when the sub-op k is not 1, shall be executed as a
no-op.

For all oprocessors other than‘Cyber 2000, this instruction
shall be executed as a no-op.

7-72
Control Data -~ Silicon Valley Development Division
' 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.2 LOCAL PRIVILEGED MODE

7.6.2 LOCAL PRIVILEGED MODE

This class of instructions shall be permitted to execute only
from segments having either 1local privileged mode or global
privileged mode. If an instruction in the local privileged mode
class attempts execution from a segment having neither local nor
global privileges, a Privileged Instruction Fault shall be
detected, execution of that instruction shall be inhibited, and
the corresponding program interruption shall occur.

Instructions in the local privileged mode class are executable
whenever a processor is executing instructions from a segment
whose Segment Descriptor defines that segment as either a local
privileged executable segment or a global privileged executable
segment. :

7.6.2.1 LPAGE-Load Page Table Index

a) Load Page Table Index per (Xj) to Xk Right and Set X1 Right.

LPAGE - (Format = jk Op Code = 17 Ref# = 127)

-+
+

label operation |argument

+— +

—_— 4

LPAGE | Xk,Xj,X1

This 1local privileged instruction searches the Page Table in
central memory, returns the final index value to Register Xk
Right, and sets Register X1 Right according to the results of the
search.

The entry searched for within the Page Table is defined by the
System Virtual Address (SVA) contained in Register Xj.

The number of entries searched shall always be transferred to
Register X1 Right, bits 33-63, right-justified with zeroes
extended.

When a Page Descriptor corresponding to the SVA initially
contained in Register Xj is found, the index into the Page Table
which is associated with that entry shall be transferred
right-justified and zero-extended to Register Xk Right, and bit
32 of Register X1 Right shall be set.

When the Page Table search terminates as a result of not
finding a Page Descriptor which corresponds to the SVA initially

7-73

Control Data - Silicon Valley Development Division
' 90/10/03

CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.2.1 LPAGE-Load Page Table Index

contained in Register Xj (whether the termination results from a
Continue bit equal to 0 or performing a maximum of 32
comparisons), the index into the Page Table associated with the
last entry compared shall be transferred into Register Xk Right
and bit 32 of Register X1 Right shall be cleared.

7.6.3 GLOBAL PRIVILEGED MODE

This class of instructions shall be permitted to execute only
from segments having global privileged mode. If an instruction
in the global privileged mode class attempts execution from a
segment not having global privileges, a Privileged Instruction
Fault shall be detected, execution of that instruction shall be
inhibited, and the corresponding program interruption shall
occur,

Global privileged mode exists whenever the processor is
executing instructions from a segment whose Segment Descriptor
defines that segment as a global privileged executable segment.

7.6.3.1 INTRUPT-Interrupt Processor

a) Interrupt Processor per (Xk).

INTRUPT - (Format = jk Op Code = 03 Ref# = 122)

n
T

label operation largument

—_—— 4
—_—+— 4

INTRUPT |Xk,j

The execution of this global privileged class instruction
sends an external interrupt to one or more processors via their
central memory ports. The processors are identified by the
central memory port number to which they are connected.

The interrupting processor sends the contents of Register Xk
to central memory. Central memory then sends an external
interrupt to the processor(s) on those ports whose port numbers
correspond to the bit positions which are set within Register Xk.
When the interrupting processor has two ports connected to the
same memory, a "Switch" selects the port used to transmit the
contents of Register Xk to central memory along with the
"interrupt" function.

When the interrupting processor has two ports connected to
independent memories, the state of Bit 33 of Register Xk selects

7-74
Control Data - Silicon Valley Development Division :
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.3.1 INTRUPT-Interrupt Processor

the port used to transmit the contents of Register Xk to central
memory along with the '"interrupt" function. When Bit 33 is
clear, Port O is used; when Bit 33 is set, Port 1 is used.

A serialization function is performed before this instruction
begins execution. That is, execution of this instruction is
delayed until all previous central memory accesses on the part of
the interrupting processor are complete.

7.6.4 MIXED MODE

This class of instructions includes those instructions whose
mode is dependent on a parameter selection within the
instruction. Depending on the value of the parameter, the mode
of the instruction is non—privileged, local privileged, global
privileged, or monitor. The description of each instruction
defines which parameter selects the mode and how the selection is
made.

7.6.4.1 BRCR-Branch and Alter Condition Register

a) Branch to (P) displaced by 2*Q and alter Condition Register
per jk.

BRCR - (Format = jkQ Op Code = 9F Ref# = 134)

label

operation |argument

-+
T

3
b

BRCR |j.k,label

label - byte address of the new location.

This instruction tests the value of a selected bit in the
Condition Register. The 3 field selects the bit number within
the Monitor Condition Register or within the User Condition
Register depending on the k field. The k field shall also
determine the branch decision and Condition Register bit
alteration as follows:

k = 0 or 8, if bit j of the Monitor Condition Register is set,
clear it and take a branch exit.

k =1 or 9, .if bit j of the Monitor Condition Register is not
set, set it and take a branch exit.

7-75
Control Data - Silicon Valley Development Division
' _ 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.4.1 BRCR-Branch and Alter Condition Register

k =2 or A, if bit j of the Monitor Condition Register is set,
take a branch exit.

k = 3 or B, if bit j of the Monitor Condition Register is not
set, take a branch exit.

k = 4 or C, if bit j of the User Condition Register is set, clear
it -and take a branch exit.

k =5 or D, if bit j of the User Condition Register is not set,
set it and take a branch exit.

k = 6 or E, if bit j of the User Condition Register is set, take
a branch exit.

k=7 or F, if bit j of the User Condition Register is not set,
take a branch exit.

Monitor and Privileged Mode - Some values of the k field of this
instruction shall cause this instruction to be a Monitor or
Non-privileged instruction as follows:

k | Mode
0 or 8 | Monitor
1 or 9 | Monitor
2 or A | Non-privileged
3 or B | Non—privileged
4 or C | Non-privileged
5 or D | Non-privileged
6 or E | Non-privileged
7 or F | Non-privileged

7.6.4.2 CPYSX,CPYXS—-Copy State Registers

These instructions provide the means for copying certain state
registers to and from X Registers. The state register is
addressed by means of the rightmost 8-bits initially contained in
Register Xj Right.

The address assignments are defined in Table 2.6-1 and the
restrictions in Table 2.6-2 of the MIGDS.

7-76

Control Data - Silicon Valley Development Division
: 90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.6.4.2 CPYSX,CPYXS—Copy State Registers

a) Copy to Xk per (Xj).

CPYSX - (Format = jk Op Code = OE Reff# = 130)

-+
+

operation |argument

|cPYSX | Xk, X j

This instruction copies the contents of the state register
addressed by the contents of Register Xj into Register Xk. This
instruction is a non-privileged instruction.

b) Copy from XK per (Xj).

CPYXS - (Format = jk Op Code = OF Ref# = 131)

-+ -+
T r

|1abel |operation |argument
| |cPYXS | Xk, X

This instruction copies the contents of Register Xk into the
state register addressed by the contents of Register Xj.

7.6.4.3 PURGE-Purge Buffer

a) Purge Buffer k of Entry per (Xj).

PURGE - (Format = jk Op Code = 05 Ref# = 138)

-
g

label |operation |argument
|

—_—t—+

PURGE |Xi,k

The Purge Buffer instruction invalidates entries in the Map
and Cache buffers. The purge may invalidate all entries in a
buffer, invalidates all entries in a buffer which derive from a
given segment, invalidate all entries in a buffer for a given
page, or invalidate all entries in a buffer for a given 512 byte
block. Register Xj contains the required address information,
either System Virtual Address (SVA) or Process Virtual Address
(PVa).

An SVA contains the Active Segment (ASID)in bits 16 through 31
of Register Xj. A PVA contains the Segment number (SEG) in bits
20 through 31 of Register Xj. Bits 32 through 63 contain the

7-77

Control Data - Silicon Valley Development Division

CYB

90/10/03
ER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS

7.6

.4.3 PURGE-Purge Buffer

Byte Number (BN) for either an SVA or a PVA. The rightmost 9
bits of the BN are ignored and assumed to be zeros since the
smallest purgeable portion of a buffer is a 512 byte page or a
512 byte block of a larger page. Proportionately more rightmost
bits of the BN are ignored and assumed to be zero as page size
becomes larger than the 512 byte minimum.

16 20 32 | 55 63
[111111117] SEG | BN /111111117)
| | ASID | BN [/717111117]

The value of k determines the buffer to be purged, the range of
entries to be purged, and the type of addressing used to
determine the range of entries to be purged. The definition of k
follows.

k=0, Purge all entries in Cache which are included in the 512
byte block defined by the SVA in Xj.

k=1, Purge all entries in Cache which are included in the ASID
defined by the SVA in Xj.

k=2, Purge all entries in Cache.

k=3, Purge all entries in Cache which are included in the 512
byte block defined by the PVA in Xj.

k=4->7, Purge all entries in Cache which are included in the SEG

defined by the PVA in Xj.

k=8, Purge all entries in Map which are included in the page
defined by the SVA in Xj. This size of the page involved
shall be determined by the contents of the Page Size Mask
Register. o

k=9, Purge all entries in Map which are included in the ASID
defined by the SVA in Xj.

k=A, Purge all information from the map pertaining to the PTE
defined by the PVA in Xj. The size of the page involved
shall be determined by the contents of the Page Size Mask
Register.

k=B, Purge all information from the MAP pertaining to the SDE
defined by PVA in Xj, and to all PTE's included within
that segment.

k=C->F, Purge all entries in Map.

For k=0, 1, 2, 8->F this instruction is a local privileged
instruction. It is non-privileged for all other values of k.

. LAY I .

7-78

Control Data - Silicon Valley Development Division
: 90/10/03

CYBER 180 II Assembler ERS Rev: G

7;0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7 VECTOR INSTRUCTIONS

7.7 VECTOR INSTRUCTIONS

7.7.1 GENERAL DESCRIPTION

This class of instructions operate on vectors, - that is,
sequences of full-word integer or real numbers. These
instructions are only implemented on the Cyber 180 Model 99x
class and on the Cyber 2000V. Attempting to execute a vector
instruction on any other processor will result in an
Unimplemented Instruction condition. ‘

7.7.2 COMMON ATTRIBUTES OF VECTOR INSTRUCTIONS

All vector instructions utilize the jkiD instruction format.
However, some instructions do not use all operand fields. In
general, the J operand either is an A register which points to a
source vector, or is an X register which contains a value which
is turned into a vector by "broadcasting'" or repeating the value
the necessary number of times. The K operand is an A register
which points to the destination vector. The I operand is
normally a second source vector, but is used differently by some
instructions. All addresses used by vector instructions must
point to a word boundary, or an Address Specification error will
result.

In the instruction descriptions that follow, V(Aj) represents
either the vector addressed by Aj, or the broadcast vector
created from the value in Xj.

The D field contains the length of the vector, when non-zero.
It must be an positive integer less than or equal to 512. This
is the size of the vector in words. When the rightmost ten bits
of the D field are zero, X1 Right specifies the length of the
vector. When X1 Right is negative, an Instruction Specification
error is recorded, except on the Cyber 2000V, where the
instruction will be treated as a no—op. When X1 Right is greater
than 512, 512 is used for the size of the vector. When the
rightmost ten bits of the D field are greater than 512, an
Instruction Specification is recorded.

The leftmost bit of the D fieid is set by the Assembler when
the J operand is an X register, to indicate that broadcasting
shall take place.

7-79

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.3 INTEGER VECTOR ARITHMETIC

7.7.3 INTEGER VECTOR ARITHMETIC

7.7.3.1 ADDXV-Add Integer Vectors

a) Integer vector sum, V(Ak) replaced by V(Aj) plus V(ai).

ADDXV - (Format = jkiD Op Code = 44 Refft = 172)

-+ 3 -+
-+

|1abel]operatiou largument
ADDXV Ak,Aj,Ai,D
ADDXV Ak,Xj,Ai,D

The first form of this instruction adds each word in the
vector pointed to by Aj to the corresponding value in the vector
pointed to by Ai, storing the result in the vector pointed to by
Ak. The second form adds the value in Xj to each word pointed to
by Ai, storing the result in the vector pointed to by Ak.

7.7.3.2 SUBXV-Subtract Integer Vectors

a) Integer vector difference, V(Ak) replaced by V(Aj) minus
v(ai). .

SUBXV - (Format = jkiD Op Code = 45 Reff = 173)

+ e

+

 — +

|1abel operation |argument
SUBXV AK,Aj,Ai,D
SUBXV AK,Xj,Ai.D

In the first form, each value in the vector pointed to by Ai
is subtracted from its corresponding value in the vector pointed
to by Aj. The results are stored in the vector pointed to by Ak.
In the second form, the values pointed to by Ai are subtracted
from the value in Xj.

7.7.4 INTEGER VECTOR COMPARISON

The following four instructions compare corresponding elements
of two vectors. The results are stored in the vector indicated
by Ak, If the compare is true, bit O of the corresponding word
in V(AK) is set and bits 1 through 63 are cleared. If the
compare 1is false, bits 0 through 63 are cleared. If the second

7-80

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ' Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.4 INTEGER VECTOR COMPARISON

form is used, where Xj is specified, each value in V(Ai) is
compared to the value in Xj.

The following example shows the results in V(Ak) after the
instruction is executed.

CMPEQV A9,A7,A8,3

m——— + m—— + —————— +
A7--> 230| A8--> 200 A9-->100...00
75 75| (binary)|10...00

18 27 00...00

m———— + m———— + m————— +

7.7.4.1 CMPEQV-Integer Vector Comparison - Equal

a) Integer vector compare, V(Ak) replaced by V(Aj) equal to
V(Ai).

CMPEQV - (Format = jkiD Op Code = 50 Ref# = 176)

-+ R
™ *r

label |operation |argument

4

—_

CMPEQV Ak,Aj,Ai,D
CMPEQV Ak,Xj,Ai,D

7.7.4.2 CMPLTV-Integer Vector Comparison - Less Than

a) Integer vector compare, V(Ak) replaced by V(Aj) less than
v(ai).

CMPLTV - (Format = jkiD Op Code = 51 Ref# = 177)

- 4
r h

label |operation |argument

+

—_—

CMPLTV Ak,Aj,Ai,D
CMPLTV Ak,Xj,Ai,D

7.7.4.3 CMPGEV-Integer Vector Comparison - Greater Than Or Equal

a) Integer vector compare, V(Ak) replaced by V(Aj) greater than
or equal to V(Ai). '

7-81

Control Data -~ Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.4.3 CMPGEV-Integer Vector Comparison - Greater Than Or Equal

CMPGEV - (Format = jkiD Op Code = 52 Ref# = 178)

<+
T

label operation |argument

+— 4

—_—

CMPGEV Ak,Aj,Ai,D
CMPGEV AK,Xj,Ai,D

7.7.4.4 CMPNEV-Integer Vector Comparison - Not Equal

a) Integer vector compare, V(Ak) replaced by V(Aj) not equal to
v(ai).

CMPNEV - (Format = jkiD Op Code = 53 Ref# = 179)

. -+ -

llabel loperation |argument
CMPNEV Ak,Aj,Ai,D
CMPNEV Ak,Xj,Ai,D

7.7.5 SHIFT VECTOR CIRCULAR

a) Shift vector circular, V(Ak) replaced byV(Aj), direction and
count per V(Aj).

SHFV - (Format = jkiD Op Code = 4D Ref# = 180)

-+ s
T T

|label [operation | argument
SHFV Ak,Aj,Ai,D
SHFV Ak,Xj,Ai,D

This instruction performs a left circular shift on each
element of V(Ai), as directed by the corresponding element of
V(Aj), storing the results in V(AK). The shift count for each
element of V(Ai) is taken form the rightmost 8 bits of the
corresponding element of V(Aj) and is interpreted as follows:

The sign-bit in the leftmost position of the 8-bit shift count
shall determine the direction of the shift. When the shift count
is positive (sign bit of zero), this instruction shall left
shift. When the shift count is negative (sign bit of one), this
instruction shall right shift. Shifts shall be from 0-63 bits
left and from 1-64 bits right. Based on an 8-bit signed 2's
complement shift count, these shifts are as follows:

7-82

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.5 SHIFT VECTOR CIRCULAR

0111 1111 --\
: == Left Shift 0-63
0100 0000 --/

0011 1111 Left Shift 63
0000 0000 ' Left Shift 0
1111 1111 Right Shift 1
1100 0000 Right Shift 64

1011 1111 --\
: -- Right Shift 1-64
1000 0000 --/

When these interpretations of the shift count result in an
actual shift count of zero, the instruction transfers the element
of V(Ai) to the corresponding element of V(Ak) with no shift.

When broadcast of V(Aj) is selected and j=0, the contents of
the X0 register shall be interpreted as consisting entirely of
zeros.,

7.7.6 LOGICAL VECTORS

7.7.6.1 IORV-Inclusive Or Vectors

a) Logical vector sum, V(Ak) replaced by V(Aj) OR V(ai).

IORV - (Format = jkiD Op Code = 48 Ref# = 181)

|1abel |operation |argument
IORV Ak,Aj,Ai,D
IORV Ak,Xj,Ai,D

7.7.6.2 XORV-Exclusive Or Vectors

a) Logical vector difference, V(Ak) replaced by V(Aj) XOR V(Ai).

XORV - (Format = jkiD Op Code = 49 Reff# = 182)

7-83

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.6.2 XORV-Exclusive Or Vectors

-+
+

|1abel |operation |argument
XORV Ak,Aj,Ai,D.
XORV Ak,Xj,Ai,D

7.7.6.3 ANDV-Logical And Vectors

a) Logical vector product, V(Ak) replaced by V(Aj) AND V(ai).

ANDV - (Format = jkiD Op Code = 4A Refj = 183)

|1abel |operation |argument
ANDV Ak,Aj,Ai,D
ANDV Ak,Xj,Ai,D

7.7.7 CONVERT VECTORS

7.7.7.1 CNIFV-Convert Vector From Integer to Float

a) Convert vector, floating point V(Ak) formed from integer
V(Aj).

CNIFV - (Format = jkiD Op Code = 4B Reff = 184)

|1abel |operation |argument
CNIFV Ak,Aj,D
CNIFV Ak,Xj,D

7.7.7.2 CNIFV-Convert Vector From Float to Integer

a) Convert vector, integer V(Ak) formed from floating point
v(aj).

€

CNFIV - (Format = jkiD Op Code = 4C Ref# = 185)

operation |argument

<o
+

label

+— +

—_—

CNFIV Ak,Aj,D
CNF1V Ak,Xj,D

. 7-84

Control Data - Silicon Valley Development Divigion
90/10/03
CYBER 180 II Assembler ERS Rev: G

- 7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.8 FLOATING POINT VECTOR ARITHMETIC

7.7.8 FLOATING POINT VECTOR ARITHMETIC

7.7.8.1 ADDF-Floating Point Vector Sum

a) Floating point vector sum, V(Ak) replaced by V(Aj) plus V(Ai).

ADDFV - (Format = jkiD Op Code = 40 Ref#f = 186)

| 1abel |operation |argument
ADDFV Ak,Aj,Ai,D
ADDFV Ak,Xj,Ai,D

7.7.8.2 SUBFV-Floating Point Vector Difference

a) Floating point vector difference, V(Ak) replaced by V(Aj)
minus V(Ai).

SUBFV - (Format = jkiD Op Code = 41 Reff = 187)

Ilabel |operation Iargument
‘ SUBFV AK,Aj,Ai,D
| | SUBFV {Ak,X3,Ai,D

7.7.8.3 MULFV-Floating Point Vector Product

a) Floating point vector product, V(Ak) replaced by V(Aj) times
v(ai).

MULFV - (Format = jkiD Op Code = 42 Ref# = 188)

|1abel |operation |argument
MULFV Ak,Aj,Ai,D
MULFV Ak,Xj,Ai,D

7.7.8.4 DIVFV-Floating Point Vector Quotient

a) Floating point vector quotient, V(Ak) replaced by V(Aj)
divided by V(Ai). .

7-85

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.8.4 DIVFV-Floating Point Vector Quotient

DIVFV - (Format = jkiD Op Code = 43 Ref# = 189)

- -+
e T

|1abel |operation | argument
DIVFV Ak,Aj,Ai,D
DIVFV |Ak,Xj,Ai,D

7.7.9 FLOATING POINT VECTOR SUMMATION

7.7.9.1 SUMFV-Floating Point Vector Summation

a) Floating point vector summation, Xk replaced by summation of
elements in V(Ai).

SUMFV - (Format = jkiD Op Code = 57 Ref# = 190)

-+ s
-+ -+

label |operation |argument

——

| SUMFV |Xk,Ai,D Merge Vector

7.7.9.2 MRGV-Merge Vector

a) Merge vector, V(Ak) partially replaced by V(Aj) per mask
v(ai).

MRGV - (Format = jkiD Op Code = 54 Refjf = 191)

| 1abel]operation | argument
MRGV Ak,Aj,Ai,D
MRGV Ak,Xj,Ai,D

This instruction replaces the first element of V(Ak) with the
first element of V(Aj) if bit O is set in the first element of
V(Ai). If bit O is clear, the first element of V(Ak) is left
unchanged. This operation in repeated for successive elements
until the required number of operations has been performed.

7.7.10 GATHER AND SCATTER VECTOR

7-86

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ‘ Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.10.1 Gather Vector

7.7.10.1 Gather Vector

a) Gather vector, V(Ak) replaced by gathered V(Aj) with interval
Xi,

GTHV - (Format = jkiD Op Code = 55 Reff = 192)

3 <
-+ ha

| label |operation |argument
GTHV Ak,Aj,Xi,D
GTHV Ak,Xj,Ai,D

This instruction obtains the first element from V(Aj) and
stores it as the first element of V(Ak). The second element to
be stored in V(Ak) is taken from the address formed by adding the
rightmost 32 bits of Xi, shifted left three places with zero
fill, to the rightmost 32 bits of Aj. Successive elements in
V(Ak) are taken from the address formed by adding the rightmost
32 bits of Xi, shifted left three places with zero fill, to the
rightmost 32 bits of the previous address. The Nth
,2,3,...,n,...) element of V(Ak) is replaced by V(Aj) whose
address is (Aj)+8*(n-1)*(Xi). The contents of register Xi are
not altered by the execution.

Thus, contiguous vector V(Ak) is formed by gathering elements
from V(Aj) at interval Xi.

7.7.10.2 Scatter Vector

a) Scatter vector, V(Ak) replaced by scattered V(Aj) with
interval Xi.

SCTV - (Format = jkiD Op Code = 56 Ref# = 193)

<
T

|operation |argument
SCTV Ak,Aj,Xi,D
SCTV Ak,Xj,Ai,D

This instruction obtains the first element from V(Aj) and
stores it as the first element of V(Ak). The second contiguous
element from V(Aj) is stored into V(Ak) at the address formed by
adding the rightmost 32 bits of Xi, shfited left three places
with zero fill, to the rightmost 32 bits of Ak. Successive
elements from V(Aj) are stored into the addresses formed by

7-87

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.7.10.2 Scatter Vector

adding the rightmost 32 bits of Xi, shifted left three places
with zero fill, to the rightmost 32 bits of the prevous address.
The Nth (1,2,3,...,n,...) element of V(Aj) is stored into V (Ak)
at (Ak)+8*(n-1)*)Xi).

Thus, the contiguous elements from V(Aj) are scattered in
V(Ak) at interval Xi.

7.8 EXTENDED VECTOR INSTRUCTIONS

7.8.1 GENERAL DESCRIPTION

This class of instructions is implemented only on the Cyber
2000V. 1In all other respects, including broadcasting of Xj, they
are similar to the other vector instructions.

7.8.2 FLOATING POINT VECTOR TRIADS

7.8.2.1 TPSFV, TPDFV, TSPFV, TDPFV - Vector Triad Instructions

a) Floating point wvector triad, v (Ak) replaced by
[V(ai) times X0] pilus v(aj).

TPSFV - (Format = jkiD Op Code = 58 Ref# = 195)

<+ -+

| 1abel |operation |argument
TPSFV Ak,Aj,Ai, X0,D
TPSFV Ak,Xj,Ai,X0,D

b) Floating point vector triad, V(Ak) replaced by
[v(Ai) times (X0)] minus vV(aj).

TPDFV - (Format = jkiD Op Code = 59 Ref# = 196)

o -+

|1abel |operation |argument
TPDFV Ak,Aj,Ai,X0,D
TPDFV Ak,Xj,Ai,X0,D

¢) Floating point vector triad, V(Ak) replaced by
[V(4j) plus V(ai)] times (X0).

TSPFV - (Format = jkiD Op Code = 5A Ref# = 197)

7-88
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS ‘ Rev: G
7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.8.2.1 TPSFV, TPDFV, TSPFV, TDPFV -~ Vector Triad Instructions
|1abel |operation |argument
TSPFV Ak,Aj,Ai,X0,D
TSPFV Ak,Xj,Ai,X0,D

d) Floating point vector triad, V(Ak) replaced by
[V(Aj) minus V(Ai)] times (XO0).

TDPFV - (Format = jkiD Op Code = 5B Reff# = 198)

| 1abel |operation |argument
TDPFV Ak,Aj,A1,X0,D
TDPFV Ak,Xj,Ai,X0,D

These instructions perform the indicated floating point
arithmetic operations on the first element from V(Aj) and the
floating point constant contained in X0 and store the result as
the first element of V(Ak). The arithmetic operation inside the
brackets is done first. The operation is repeated for successive
elements until the required number of operations has been
performed. The contents of X0 are not altered by the execution
of these instructions.

7.8.3 FLOATING POINT VECTOR DOT PRODUCT

7.8.3.1 SUMPFV - Floating Point Vector Dot Product

a) Floating point vector dot product, Xk replaced by summation of
(Vv(aj) times Vv(ai)]

SUMPFV - (Format = jkiD Op Code = 5C Ref# = 199)

-

|1abel |operation |argument
SUMPFV Xk,Aj,Ai,D
SUMPFV Xk,Xj,Ai,D

This instruction multiplies each element of V(Aj) times its
corresponding element in V(Ai). The resulting products are added
together and the sum is stored in Xk. The summation may be done
in any order.

7-89
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G

7.0 CYBER 180 CPy SYMBOLIC MACHINE INSTRUCTIONS
7.8.4 GATHER/SCATTER VECTORS - INDEX LIST

7.8.4 GATHER/SCATTER VECTORS - INDEX LIST

7.8.4.1 GTHIV - Gather Vector Per Index List

Gather vector, v(ak) replaced by gathered V(4j) per index list
V(ai),

GTHIV - (Format = jkiD Op Code = 5p Ref# = 200)

'S ¢ 4 -

[label |operation Iargument
GTHIV Ak,Aj,Ai,D
GTHIV Ak,Xj,Ai,D

This instruction obtains the first element from V(Ai). The
first element to be stored in V(Ak) is taken from the address
formed by adding the rightmost 32 bjtg of the first element from
V(Ai), shifted left three places with zero fill, to the rightmost
32 bits of (Aj). Successive elements in V(Ak) are taken from the
addressess formed by adding the rightmost 32 bits of the
Successive elements from V(Ai), shifted left three places with
zero fill, to the rightmost 32 bits of (aj3). The Nth
(1,2,3,...N,...) element of V(ak) ;g replaced by the element of
V(Aj) whose address is (Aj) + 8 times the Nth element of v(ai).

Thus, contiguous vector V(Ak) is formed by gathering elements
from V(Aj) at indexes from list Vv(Ai).

7.8.4.2 SCTIV - Scatter Vector Per Index List

Scatter vector, V(Ak) replaced by scattered V(Aj) per index list
V(ai),

SCTIV - (Format = jkiD Op Code = 5E Ref# = 201)

-+

e Fomm—— ——

[1label |operation |argument

+- + + -
SCTIV Ak,Aj,Ai,D
SCT1V Ak,Xj,Ai,D

This instruction obtains the first elements from V(Ai) and
V(4j). The first element from V(Aj) is stored into V(Ak) at the
address formed by adding the rightmost 32 bits of the first
element from V(Ai), shifted left three pPlaces with zero fill, to
the rightmost 32 bits of (Ak). Successive elements in V(4j) are

7-90

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ' Rev: G

7.0 CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTIONS
7.8.4.2 SCTIV - Scatter Vector Per Index List

stored into V(Ak) at the address formed by adding the rightmost
32 bits of the successive elements from V(Ai), shifted left three
places with zero fill, to the rightmost 32 bits of (Ak). The Nth
(1,2,3,...N,...) element of V(Aj) is stored into V(Ak) at (Ak) +
8 times the Nth element of V(ai).

Thus, contiguous elements from V(Aj) are scattered in V(Ak) at
indexes from list V(Ai).

Control Data - Silicon Valley Development Divigion

Al

90/10/03
CYBER 180 II Assembler ERS Rev: G
APPENDIX A

APPENDIX A

CALLING THE ASSEMBLER

The Assembler is called on NOS/VE with the command name
"ASSEMBLE" followed by Parameters in the System Command Language
format. A1l Assembler call parameters are optional. Parameters

of the Assembler are:

I INPUT=file

INPUT specifies the file containing source statements that
are to be assembled, If this parameter is omitted the

value $INPUT will be used.

B BINARY OBJECT=file

BINARY OBJECT specifies the file to receive the object text

(binary) that ig generated bu the assembler.
parameter is omitted the value LGO will be used.

L LIiST=file

LIST specifies the file to receive the assembly

If this

listing,

If this parameter jis omitted the value SLIST will be used.

E ERROR=fji]e
ERROR specifies the file to receive the listing of
errors. If this parameter is omitted the value
will be used.

Lo LIST_OPTIONS=1igt of A, R, S, NONE

assembly
SERRORS

LIST_OPTIONS specifies the content of the listing file. 1If
S is included in the list, the Source and generated code
are listed. If A is included, the symbol attributes
listing ig included. If R is specified, the
cross-reference isg listed. If NONE is specified, only

eérrors will be listed. The default value is §.
C CHECKS=boolean

CHECKS specifies whether assembly checks are

to be

performed or omitted, Assembly checks are used with the

CPU instruction set to validate that the correct

register

A2

Control Data -~ Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

- APPENDIX A
CALLING THE ASSEMBLER

type designators (A-reg or X-reg) are used. If this
parameter is omitted a value of TRUE will be used.

STATUS=status variable

STATUS specifies a status variable to receive the command's
termination status.

EXAMPLE:

ASSEMBLE I=SOURCE B=BIN L=LISTING LO=(S,A,R) C=TRUE

Bl

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

APPENDIX B - NOTES AND EXAMPLES

APPENDIX B - NOTES AND EXAMPLES

PROGRAMMING NOTES

To fully understand the Cyber 180 Hardware instructions and
thier parameters, one must first understand that the Cyber 180
machine is designed to be Stack oriented. Software written for
the Cyber 180 will be written in a Stack oriented higher level
language (CYBIL). However there will be some code that will have
to- be written in Assembly language (ie Hardware diagnostics),
The following sections contain notes that will hopefully aid in
writing Assembly language programs.

REGISTER USAGE

When writing in Assembly language, it is important to
understand how the hardware works, especially register usage.
The contents of the following registers are assumed to be as
described by the hardware, and should not be overwritten.

A0 - Dynamic Space Pointer.

Al - Current Stack Frame Pointer.
A2 - Previous Save Area.

A3 - Binding Section Pointer.

A4 - Argument Pointer.

GENERAL NOTES

In addition to understanding the hardware, it is also
important to understand some things about the Assembler.

SECTIONS—-SEGMENTS The relationship between the Assembler
concept of Sections and the Hardware concept of Segments is
similar, but differs in that two or more sections may be loaded
in the same Hardware Segment when they have the same access
permissions.

RELOCATABILITY OF CODE Even though code in sections is
assembled as absolute, the sections can be loaded as relocatable,
and are accessed via pointers.

MONOLITH PROGRAMS When mixing code and data in the same
section, it is important to use the ALIGN command when resuming
to generate code. This will ensure that the code is generated on
the proper boundary.

B2

Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS

90/10/03
Rev: G

APPENDIX B - NOTES AND EXAMPLES
SAMPLE PROGRAM

SAMPLE PROGRAM

catalog.

The following
It is intended to aid in the understanding of the CYBER

sample program available in the SES

180 CPU Assembler and the CYBER 180 hardware.

test

ident
def

entl

.sample program
.defines the entry point

. This program will pick up an entry from the Literal section,

- and makes a copy of it in the working section.

The program

. 1is structured to use the default sections established by
« the Assembler, and is executed using the C180 defaults.

count
num_move

~ space

space
use

bss
align
bssz
space
use

align
vid,8*8
space
use

address p,msg
address p,temp

space
use

space
proc
pname
set
pend

3

working

1
0,8

20(16)

3

working

0,8

c'EXAMPLE

3

binding

code

num_move+lec: (£:(2,0))

2

.The working section will get loaded intoa
segment with read+write permissions.

-Put here to show effect of align.
.Ensures word boundary.

.20(16) bytes(4 words) of temp storage

.The WORKING section will be loaded
into a segment with read permission.
.Word boundary.

' .Test data to be moved

.The Binding section is used by the
hardware to store pointers which
facilitate the binding of segments.

This section will be loaded into

a segment with read+bind permissions.
.Creates a pointer to MSG.

.Creates a pointer to TEMP.

Pointers are set up with segment number
set to FFF, LINKER fills in this field.
The location field will show an offset of
word boundary + 2, because the 6 byte PVA
is right justified in the 8 byte field.

.The Code section will be loaded into
a segment with read+execute permissions.

.This proc will count the number of
.bytes moved.

.Add the number of bytes
.end of procedure

B3

Control Data - Silicon Valley Development Divigion

90/10/03
CYBER 180 II Assembler ERS Rev: G
APPENDIX B - NOTES AND EXAMPLES
SAMPLE PROGRAM
entl align 0,8 -Entry point on a word boundary
num move set 0 -Initialize byte counter
ente x0,33(16) -Include X0-X3 and A0-A3 when
. saving the environment.
callrel move_msg,a3,a4 .move a copy of msg to temp
return +End execution.
- Move_msg will move data to working storage
move msg align 0,8 +Ensure word boundary.
la a5,33,msg_pt .Load into A5 the pointer to MSG.
1x x1,a5,0 -Load data into X1.
la a5,a3,temp_pt +A5 = pointer to storage area.
sx x1,a5,0 .Store MSG.
count msg .Update NUM_MOVE.
return -Return to caller
end ent] -Entl is transfer label

SAMPLE EXECUTION

The sample program in the previous section was executed as
shown below: . .

To be supplied later.

C1

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ' Rev: G

APPENDIX C - RESERVED WORDS

APPENDIX C — RESERVED WORDS

The following words or categories have special meaning and can
not be redefined in the user's program.

Register identifiers (AO-AF, X0-XF)

Section identifiers (binding, code, stack, working)

Section types (Code, Binding, Working, Common, Extwork, Extcom)
Attribute identifiers (Bind, Execute, Read, Write)

Machine identifiers (C180CPU, C180I0U)

All pseudo and machine mnemonics.

All symbols starting with the pound-sign character.

Any symbol containing a colon.

Special internal symbols (PADA, PADB, SECT, ASECT, DSECT)

Control Data - Silicon Valley Development Division

D1

90/10/03

CYBER 180 11 Assembler ERS Rev:

G

APPENDIX D - ERROR MESSAGES

APPENDIX D - ERROR MESSAGES

Error messages may appear either on the listing, and/or on the

dayfile, depending on when the error is detected.

- LISTING ERRORS

Message
ALTAS NAME INVALID OR DUPLICATE

SIGNIFICANCE
The alias name has been defined as both an internal and
external entry point. (ie. appearing on both a DEF or
DEFG instruction and a REF instruction).

ACTION
An internal entry point must be unique. However, two
external entry points can be aliased to the same
linkage symbol.

ALIASED SYMBOL MUST BE REF OR DEF SYMBOL

SIGNIFICANCE
The label field of an alias statement has not been
defined in a DEF, DEFG, or REF pseudo instruction.
ACTION
Define the entry point to be aliased in a DEF, DEFG, or
REF instruction. Note for a DEF or DEFG symbol, these
values must be further defined as a relocatable symbol
(symbol category = 6).

ANAME SYMBOL REQUIRED FOR ATTRIBUTES REFERENCING
SIGNIFICANCE
2o P LANCE
attribute name was not previously defined in an ANAME
statement.
ACTION

Define attribute name using the ANAME pseudo
instruction.

A-REG DESIGNATOR REQUIRED

Control Data - Silicon Valley Development Division

D2

90/10/03

CYBER 180 II Assembler ERS ‘ Rev:

G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

SIGNIFICANCE
An A register is required in instruction.
ACTION
Check register specifications for instruction in ERS.

ARGUMENT SUBFIELD MUST BE SYMBOLIC NAME

SIGNIFICANCE
The argument field of the following pseudo instructions
must be a symbol and cannot be an expression: ADDRESS,
ALIAS, END, ERROR, FLAG, LOCAL, OPEN, REF, SECTION,
SKIPTO, and TITLE. (An exception is the address type R
on the ADDRESS instruction.)

ACTION
Check the ERS for definition of the argument field.
Many of these instructions have pre-defined values for
use in the argument field.

BDP DESCRIPTOR ERROR

SIGNIFICANCE
There's an error in either the source or destination
data descriptor within a BDP instruction.

ACTION

Check register specifications and descriptor

limitations for instruction in ERS.

BINDING ATTRIBUTE MUST BE BINDABLE OR NONBINDABLE

SIGNIFICANCE
The 'bind' type in the argument field of the MACHINE
pseudo instruction is not one of the pre-defined values
BINDABLE or NONBINDABLE.

ACTION
Check value in argument field of the MACHINE pseudo
instruction.

CHARACTER STRING TOO LONG

SIGNIFICANCE '
A character string cannot exceed one line, therefore is
limited to 87 characters.

ACTION
Check for missing quote mark or shorten current string.

Control Data - Silicon Valley Development Division

D3

90/10/03

CYBER 180 II Assembler ERS Rev:

G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

CMD STATEMENT ILLEGAL IN PROCEDURE DEFINITION

SIGNIFICANCE

A CMD instruction is equivalent to a one statement

procedure definition. Nested procedures are
allowed, therefore a CMD statement cannot be within
procedure definition.

ACTION
Take the CMD statement out of the procedure.
redefine the CMD statement as a separate procedure
replace the CMD with a 'procedure call'.

DATA GENERATION IN STACK OR BINDING SECTION

SIGNIFICANCE

Data cannot be initialized in the STACK or BINDING

sections at assembly time. (An exception is

binding section in which pointers can be initialized

with the ADDRESS pseudo instruction.)
ACTION
Check the last USE statement which was encountered.

DISPLACEMENT VALUE IS OUT-OF-RANGE

SIGNIFICANCE

The displacement value on a machine instruction
overflows the 1length of the field designated by the

instruction.
" ACTION

Check the ERS for the calculation of the address
displacement to make sure the value can be represented
by the number of bits allotted for the displacement
(ie. for a 16 bit Q-field with sign extension the

value must be in the range: -7££f£(16) < wvalue
TEE£(16)).

DIVISION BY ZERO ATTEMPTED

SIGNIFICANCE

While evaluating an expression, an attempt to divide by

zero was made,
ACTION
Check values in the divisor portion.

ERROR STATEMENT = 'character string'

Control Data - Silicon Valley Development Division

D4

90/10/03

CYBER 180 II Assembler ERS

Rev:

G

. APPENDIX D - ERROR MESSAGES
LISTING ERRORS

SIGNIFICANCE
The expression in the ERROR statement evaluated to true
causing the string or symbol in the argument field to
be printed in the object listing. Control is
transferred conditionally on the presence of a label in
the operation subfield.

ACTION
Check ERS for rules concerning the ERROR statement and
the transfer of control.

EXPRESSION EVALUATION ERROR

SIGNIFICANCE
While processing an expression, an arithmetic overflow
or underflow has occurred. The following conditions
will cause this error:
- exceeding the following limits in integer
arithmetic
32 bit integer - -2(31) <= M <= 2(31) - 1
64 bit integer - -2(63) <= M <= 2(63) - 1
— exponent overflow and underflow are detected for
all single precision, but only for the leftmost part
of double precision.
floating point absolute value - 5.2 * 10**1232
= for general BDP instructions with data descriptors,
the source operand fields will be checked for
overflow but the destination operand will not.
- in BDP floating point instructions, if the capacity
of designated fields are exceeded such that
significant digits are lost.
- an exception is the CALDF and EDIT instructions, no
overflow conditions detected for these.
ACTION
Check values used in the expression evaluation,

FIELD REFERENCE ERROR

SIGNIFICANCE
This error occured because some field in the source
statement requires a symbolic name but an illegal field
reference (ie. F: function) or list reference (ie.
symbol [X]) was encountered. The value that either of
these functions represent is not a symbolic name.
ACTION
Check the fields in the source statement that require
symbolic names (ie. label fields, operation subfields
as in the SKIPTO statement, etc.). One of the values

D5

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

being referenced is not defined to be a symbolic name.

FIRST STATEMENT IS NOT IDENT

SIGNIFICANCE
The first source statement encountered bv the assembler
was not an IDENT instruction. The only permissible
source lines before the IDENT are comments. This is
also true for multiple assembly modules, the only
allowable source lines between the END and the IDENT
are comments.

ACTION
Delete those statements before the IDENT instruction,

FLAG STATEMENT ERROR

SIGNIFICANCE
The FLAG statement was processed which conditionally
sets an error flag. The two permissible error types
are pre-defined as FATAL and WARNING.

ACTION
Processing of this statement does not affect other
code.

GENERATED CODE IS NOT "BINDABLE"

SIGNIFICANCE
The relocation information generated with a CMD, VFD,
INT, or DINT statement does not correspond to the
pre~defined values of the RCT or ADT fields of the
Relocation attribute. Both the Relocation Container
Type and the Address Displacement Type are pre-defined
and the relocation information must agree with these
attribute values.

ACTION :
Check values on these data generating statements so as
to make sure that all relocation information has the
correct values, ie. one of those that is pre-defined.

ILLEGAL ATTRIBUTE REFERENCE

SIGNIFICANCE
When evaluating the argument of an attribute, either
defined in an ANAME statement or an internal attribute
(ie. #REGTYP), an illegal argument was encountered or

D6

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS : Rev: G

APPENDIX D — ERROR MESSAGES
LISTING ERRORS

the argument was missing. This can also occur if a

register specification in a symbolic machine
instruction is incorrect.
ACTION

Check argument field of an attribute reference or check
the ERS for correct register specifications for machine
instructions.

ILLEGAL CONTINUATION

SIGNIFICANCE
The card following a continuation card contained a
non-blank character in column 1. This could also be a
non-graphic character.

ACTION
Change the card following the continuation character to
contain a blank in column 1.

ILLEGAL EXPRESSION

SIGNIFICANCE
While evaluating an expression an illegal reference has
been encountered by the assembler. This can be an

element number reference, an attribute reference, an
intrinsic or user-defined function reference.
ACTION

Check the following conditions:
= element number reference - wusing parenthesis
rather than brackets or trying to access a list
value of a symbol that is not a SET/EQU symbol,
- attribute reference - using parenthesis rather
than brackets or having more than one argument,
- intrinsic or user—-defined function reference -
using brackets rather than parenthesis or having no
argument or a null argument field. ’

ILLEGAL OR NON-GRAPHIC CHARACTER DETECTED

SIGNIFICANCE
An illegal or non-graphic character has been detected.
Note that a single quote, which is not preceded by a
symbolic character, will cause this error.

ACTION
The assembler accepts any graphic ASCII character in a
comment or character string. Check the ERS under
character set for the ASCII subset which the assembler

D7

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

accepts as input.

ILLEGAL STATEMENT IN FUNCTION EXPANSION

SIGNIFICANCE
A function may not generate code or change 1location
counters, if it is called form a statement which
itself, generates code. This condition may occur in
any of the following statements: ALIGN, BSS, BSSz, INT,
DINT, FLOAT, DFLOAT, PDEC, VFD or a CMD eall statement.
ACTION
Change the function or the source statement from which
it is called.

INSUFFICIENT NUMBER OF ARGUMENTS

SIGNIFICANCE
In either a CMD or VFD statement, the number of
elements in the value list is less than the number of
elements in the length list.

ACTION
Check the elements in the value list. Note that if the
number of elements in the value list exceeds the number
of elements in the length list no diagnostic occurs and
any extra arguments are ignored.

INTEGER OR REAL NUMBER CONVERSION ERROR

SIGNIFICANCE
The floating point number in the argument field of a
FLOAT or DFLOAT pseudo instruction is an infinite or
indefinite value.

ACTION
Limits on minimum and maximum values and exponents can
be found in the CYBER 180 math library documents.

INVALID ELEMENT NUMBER IDENTIFIER

SIGNIFICANCE
The element number being referenced has a value less
than 0.

ACTION
.Check expression within the brackets which must be
greater than or equal to 0.

Control Data - Silicon Valley Development Division

D8

90/10/03

CYBER 180 II Assembler ERS | Rev:

G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

INVALID LOCATION COUNTER DESIGNATOR

SIGNIFICANCE
-The value X in $(X) did not evaluate to O or 1.

ACTION ,
The value X can be an expression but this expression
must evaluate to O for current byte offset or 1 for
current bit offset. If no value is given the function
defaults to 0.

INVALID MACHINE TYPE

SIGNIFICANCE
The IDENT pseudo instruction is the first statement
recognized by the assembler and it pre-defines the
processor type due to the argument field. If this
value does not correspond with the type on the MACHINE
pseudo instruction this error will be produced.
Otherwise, the type in the argument field is not one of
the following pre-defined values, C180CPU or C18010U.
ACTION
Check the argument field of the IDENT and MACHINE
pseudo instructions to insure they correspond to the
same processor type.

INVALID SECTION ATTRIBUTES

SIGNIFICANCE
The attributes defined on a SECTION statement are
either not in the set of pre-defined attributes or
there's an illegal expression in the definition of
these segment access attributes.

ACTION
The pre—defined segment access attributes are: READ,
WRITE, EXECUTE and BIND and the only operator permitted
is the plus (+) operator.

INVALID SECTION TYPE

SIGNIFICANCE
The section type used in the SECTION statement was not
in the set of pre-defined types. Or the section type
was CODE, BINDING or STACK and these are already
defined by the assembler and cannot be redefined by the
user.

ACTION

D9

Control Data - Silicon Valley Development Division
. 90/10/03
CYBER 180 1I Assembler ERS Rev: G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

The section types available to the user are: WORKING,
COMMON, EXTWORK and EXTCOM.

INVALID SYMBOL ERROR

SIGNIFICANCE
The symbol encountered was illegal because of one of
the following conditions:
- the first character of the symbol does not begin
with one of the legal alphabetic characters defined
for the assembler.
— there's a colon (:) somewhere in the symbol,
= the symbol is in the 1list of the assembler's
reserved words (see Appendix C of the ERS).
ACTION
Check symbol for illegal character or that it appears
on the reserved word list.

INVALID "TYPI" SUBFIELD IN ADDRESS STATEMENT

SIGNIFICANCE
The address type in the argument field of the ADDRESS
instruction is not one of the pre-defined types.

ACTION .
The address types for the ADDRESS instruction are
defined as: P, C, CI, CE, or R.

LABEL NOT SYMBOLIC NAME

SIGNIFICANCE
The label field of one of the following statements does
not contain a legal symbol: ALIAS, ANAME, ATRIB, CMD,
DO, WHILE, DEND, IDENT, SET or EQU.

ACTION
Check the label field on the source statement.

MACHINE STATEMENT MUST PRECEDE CODE GENERATION

SIGNIFICANCE
The MACHINE pseudo instruction did not precede a data
generating statement.

ACTION
The MACHINE pseudo instruction must appear before any
statment which generates code. Also there can be only
one MACHINE pseudo instruction between an IDENT and an

D10

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

END assembly unit.

MAXIMUM SEGMENT OFFSET EXCEEDED

SIGNIFICANCE
Code has been generated in a section that overflows the
maximum offset allowed by the operation system. This
value is OFFFFFFFF(16).

ACTION
Check the section that currently is being used for code
generation.

MISSING CONT STATEMENT

SIGNIFICANCE
While processing a procedure call or a DO/WHILE
sequence of statements a SKIPTO was encountered with a
name in it's argument field that did not appear before
a PEND or DEND statement. This also occurs if the
label on the ERROR statement does not appear.

ACTION
Check symbol names in argument £field of SKIPTO
statement.

MISSING DEND STATEMENT

SIGNIFICANCE
There's no matching DEND statement for a DO directive.
An END or a PEND statement was encountered first.
ACTION
Include the DEND statement in assembly module.

MISSING OPERATION FIELD

SIGNIFICANCE
There's a value in the label field of the sourge
statement which has nothing following it.

ACTION
A null operation field is 1illegal. Check source
statement for missing value.

MISSING PEND STATEMENT

SIGNIFICANCE

D11

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS Rev: G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

A°'PROC directive was encountered but no statement
between this and the END statement contained PEND in
the operation field.

ACTION
Include the PEND statement in the assembly module.

NESTED PROCEDURE DEFINITION

SIGNIFICANCE
Encountered a PROC psuedo instruction between a
PROC-PEND pair.

ACTION
Nested procedures are not allowed by the assembler. A
PROC instruction must be followed by a PEND instruction
before another PROC instruction can be processed.

OFFSET ARGUMENT NOT ON REQUIRED BOUNDARY

SIGNIFICANCE
While processing one of the offset functions (ie.
fWOFF, #HOFF, #POFF, or {BOFF) the address of the
argument does not fall on the appropriate boundary (ie.
for #WOFF function the argument must be on a word
boundary).

ACTION
Check the address of the function argument. Sue the
ALIGN statement before the argument definition to
assure the correct boundary.

OPERAND MUST BE A REAL NUMBER

SIGNIFICANCE)
An operand in the argument field of a FLOAT or DFLOAT
~pseudo instruction is not a legal floating point
number.

ACTION
Check the operands in argument field for legal floating
point numbers. Note, all floating point values must be
decimal values.

OPERAND TYPE INVALID

SIGNIFICANCE
The following pseudo instructions cause this error if
the argument field is incorrect:

D12
Control Data - Silicon Valley Development Division

. 90/10/03
CYBER 180 II Assembler ERS Rev: G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

- ERROR - argument must be a legal symbol or ascii
string, o
= FLAG - argument field must be pre-defined symbols
FATAL or WARNING,
- INFOMSG - if there is an argument, it must be the
symbol LISTON,
- PDEC - the argument must be an ascii string with
only the characters 0 = 9 or '+'/'='. The '+'/'-'
must be the last character in the string.

ACTION

Check the argument field for illegal value.

OPERATION SUBFIELD NOT A SYMBOLIC NAME

SIGNIFICANCE
One of the following two conditions has occurred:
- the operation field does not have a legal symbol
name in it,
- or one of the following pseudo instructions does
not have a legal symbol name in it's argument field:
CLOSE, DEF, DEFG, LOCAL, OPEN or REF.
ACTION
Check the operation field or the argument field of the
listed pseudo instructions.

PNAME/FNAME STATEMENT MISSING

SIGNIFICANCE
There was no PNAME or FNAME pseudo instruction between
a PROC/PEND pair. Or the PNAME/FNAME instruction was
not the instruction immediately following the PROC
instruction.

ACTION
The PNAME/FNAME statements must be the first
instruction after the PROC statement and there must be
at least one PNAME/FNAME statement in a procedure
defintion.

PNAME/FNAME STATEMENT OUT-OF-SEQUENCE

SIGNIFICANCE ,
The PNAME/FNAME statement is not immediately following

a PROC, FNAME, or another PNAME statement.
ACTION

The PNAME/FNAME pseudo instructions are part of the
procedure's heading along with the PROC statement. No

Control Data - Silicon Valley Development Division

D13

90/10/03

CYBER 180 11 Assembler ERS Rev:

G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

other instruction can appear between a PROC
PNAME/FNAME statement.
RELOCATABLE SYMBOL REQUIRED (CATEGORY = 6)

SIGNIFICANCE
An ADDRESS, DEF or END pseudo instruction has

non-relocatable symbol (ie. symbol has a symbol

category other than 6) in it's argument field.
ACTION

A relocatable term represents a location of some
assembled code. These are defined in the 1label Ffield
of a data generating statement such as VFD, INT, DINT,

FLOAT, DFLOAT, PDEC, BSS, BSSZ, ADDRESS, ORG, ALIGN

a call to a CMD instruction. The 1labels of the
symbolic machine instructions will also have a symbol

category equal to 6.

REQUIRED OPERAND MISSING

SIGNIFICANCE

The argument field is blank on a pseudo instruction

that is required to have an operand.
ACTION

The following pseudo instructions require a value to be
present in the argument field: ADDRESS, ALIAS, BSS,
BSSZ, CLOSE, DEF, DEFG, FLAG, LOCAL, INT, DINT, FLOAT,
DFLOAT, OPEN, ORG, PDEC, POS, REF, SECTION, SKIPTO,

TITLE, USE, VFD, and a call to a CMD statement.

SECTION ALIAS NAME INVALID

SIGNIFICANCE
The 'cid' field on the SECTION statement is either
a symbol or has been previously used as a 'cid'.
ACTION

The 'cid' field is optional but if it's not used it
must contain a legal null subfield (ie. two commas).
If the symbol has already been used, redefine one of

the fields.

SPECIFIED SECTION SIZE EXCEEDED

SIGNIFICANCE

The amount of code generated in the section exceeded

and

Dl4

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 1I Assembler ERS ' Rev: G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

the amount given by the 'maxsize' field on the SECTION
statement.

ACTION
Check value for 'maxsize' field on the SECTION
statement and increase this value as necessary. The
maximum segment length is OFFFFFFFF(16).

STATEMENT ILLEGAL IN IOU MODULE

SIGNIFICANCE
The ADDRESS, ALIAS, DEF, DEFG, INFOMSG, PDEC, DINT,
FLOAT, DFLOAT, REF, SECTION, and USE ©pseudo
instructions are illegal in an IOU assembly module.
ACTION
Delete these statements from assembly module.

STATEMENT IS VALID ONLY WITHIN A PROCEDURE

SIGNIFICANCE
The LOCAL pseudo instruction can only be used within a
procedure definition (ie. between a PROC/PEND pair).
ACTION
The LOCAL pseudo instruction is used to define symbols
local to a procedure. A PEND or an END statement
terminates the symbols.

STATEMENT LABEL IS NOT UNIQUE

SIGNIFICANCE
The symbol encountered in the label field has already
been defined. Note that this can be a directive or
procedure/function name.

ACTION

Redefine one of the symbols and change the references
to the symbol. Note if a symbol appears in the label
field of a pseudo instruction that does not require a
label, the symbol is not considered defined.

STATEMENT LABEL REQUIRED

SIGNIFICANCE
The label field of the source statement is blank.
ACTION
The following pseudo instructions require a label
field: ANAME, ATRIB, CMD, SET, EQU, PNAME, FNAME, and

Control Data - Silicon Valley Development Division

D15

90/10/03

CYBER 180 II Assembler ERS Rev: G
APPENDIX D - ERROR MESSAGES
LISTING ERRORS

SECTION.

SYMBOL CANNOT BE A LOCAL OR OPENED SYMBOL
SIGNIFICANCE
The symbol in the argument field of a REF, DEF, or DEFG

pseudo instruction is an OPENed, LOCAL or implied local

symbol that has not been closed.
ACTION

The symbol in the argument field of either a DEF, DEFG,
or REF statement must be a global symbol and cannot

have appeared in a LOCAL or OPEN instruction.
cannot be an implied local symbol,

SYMBOL MUST BE DECLARED REF OR DEF

SIGNIFICANCE

It also

The symbol in the argument field of the END pseudo
instruction has not been declared as an entry point.

ACTION

If the argument field contains a transfer address, the
symbol must be declared as an entry point by appearing
in either a DEF, DEFG, or REF pPseudo instruction in the

same assembly module.

SYNTAX ERROR

SIGNIFICANCE
The following conditions will cause this error

.
.

= an illegal character string such as missing or

misplaced quote marks,

= an illegal number such as a digit larger than the
base allows, a base value other than binary, octal,
decimal, or hexadecimal, an illegal character or a

missing parenthesis,
- an illegal floating point number which

includes

any base designator (ie. all floating point numbers

are decimal),

= expressions with mismatched parenthesis or illegal

or missing operands.
ACTION

Check the ERS for the vsyntax of self-defining terms

(ie. number values or character strings).
the expression in the source statement for
operands or missing operands. Note tha a
comma terminates an expression.

Or check
illegal
blank or

Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS

D16

90/10/03

Rev:

G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

TOO MANY ARGUMENTS

SIGNIFICANCE

The argument field of the ALIAS statement contains more

than one symbol.
ACTION

The ALIAS pseudo instruction allows only one symbol in
the argument field (ie. there can only be one linkage

symbol aliased to an internal entry point).

TOO MANY CHARACTERS IN SYMBOLIC NAME

SIGNIFICANCE

The symbol being processed has more than 31 characters

in it.
ACTION

The maximum symbol length is 31 characters, redefine

symbol to be less than 31 characters.

TOO MANY STATEMENT LABELS

SIGNIFICANCE

The instruction encountered can have only one symbol in

the label field.
ACTION

If the instruction is one of the following statements,
only one symbol in the label field is allowed: ALIAS,
IDENT, PNAME, FNAME or a code generating statement
which has the symbol category 6 (this includes the

symbolic machine instructions).

"TRALABEL" FIELD INVALID

SIGNIFICANCE
In an IOU module, the ‘'tralabel' field of the
pseudo instruction is not blank.

ACTION

END

The 'tralabel' field of the END instruction is invalid

in an IOU module and must be blank.

TRUNCATION ERROR

SIGNIFICANCE

The value that is being put into a field specified by a

CMD or VFD statement must be truncated to fit.

Control Data - Silicon Valley Development Division

D17

90/10/03

CYBER 180 II Assembler ERS Rev:

G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

ACTION
This message is turned on by the value 1 in the
argument field of the TRUNC pseudo instruction. If no
TRUNC instruction has been processed in the assembly
module the value defaults to zero. Check the TRUNC
statement in the ERS to see what constitutes loss of
significance.

UNDEFINED OPERATION SUBFIELD

SIGNIFICANCE
The symbol in the operation field is not a pseudo
instruction, symbolic machine instruction, an intrinsic
or user-defined function (ie. appeared on a FNAME
statement), a procedure definition (ie. appeared on a
PNAME statement) or appeared on a CMD statement.

ACTION
Check the symbol in the operation field for a valid
symbol that is either a pre-defined instruction or
function or is a user-defined procedure or function.

UNDEFINED SYMBOLIC NAME "symbolic_name"

SIGNIFICANCE .
This error occurs when trying to evaluate an expression
or function where one of the operands or argument is
undefined. It also occurs when a REF, DEF or DEFG
symbol has not appeared as a label for a code
generating statement.

ACTION
Symbol defintion occurs when a symbol appears in the
label field of a statement (CPU, IOU or pseudo
instruction) unless the label field is ignored or used
for some other purpose.

VALUE OUT-OF-RANGE

SIGNIFICANCE

The following conditions will cause this error:

~ ANAME <+ argument field < 0

BSS/BSSZ - argument field < 0
- CMD/VFD - value in the length field < 0
SET/EQU symbol - element number < 0
— LIST - argument field is incorrect value (check
ERS for legal value
- INT/DINT - argument field must be in the following
range:

D18

Control Data - Silicon Valley Development Division
90/10/03
CYBER 180 II Assembler ERS ‘ - Rev: G

APPENDIX D - ERROR MESSAGES
LISTING ERRORS

CPU - -7FFFFFFF(16) < M < 7FFFFFFF (16)
I0U - -7FFF(16) < M < 7FFF(16)
= ORG - CPU - argument field < 0 or > OFFFFFFFF(16)
- I0U - argument field < load_address (from
IDENT statement) or > OFFF(16)
- DO/WHILE - argument field < 0
- SECTION - the offset, alignment, or maxsize values
are < 0 or > OFFFFFFFF (16)
- SKIPTO - F:(1,1) < 0
- PAGE - argument field < 0
= TRUNC - argument field does not equal 0 or 1.
ACTION

Check ERS for each pseudo instruction for the legal
values.

X-REGISTER DESIGNATOR

SIGNIFICANCE

An X-register is required in the instruction.
ACTION

Check register specifications for instruction in ERS.

El
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G
APPENDIX E
APPENDIX E

CYBER 180 CPU SYMBOLIC MACHINE INSTRUCTION SUMMARY

REF #| INSTRUCTION | OPERANDS | OPCODE
001 | LBYTS,s Xk,Aj,Xi,D DO->D7
009 | LBYT,XO Xk,Aj,Xi,D A4
013 | LBYTP,j Xk,Q* 86
005 | LXI Xk,Aj,Xi,label* A2
006 | LX Xk,Aj,label* 82
014 | LBIT Xk,Aj,Q,X0 88
020 | LMULT Xk,Aj,Q 80
016 | LAI Ak,Aj,Xi,D AQ
017 | LA Ak,Aj,Q 84
003 | SBYTS,s Xk,Aj,Xi,D D8->DF
011 | SBYT,XO0 Xk,Aj,Xi,D A5
007 | sXI Xk,Aj,Xi,label* A3
008 | sx Xk,Aj,label* 83
015 | SBIT Xk,Aj,Q,X0 89
021 | SMULT Xk,Aj,Q : 81
018 | SsAI Ak,Aj,Xi,D Al
019 | sa Ak,Aj,Q 85
022 | ADDX Xk, Xj 24
027 | ADDR Xk, Xj 20
143 | ADDXQ Xk,Xj,Q ‘ 8B
028 | ADDRQ Xk,Xj,Q 8A
166 | INCX Xk, j 10
029 | INCR Xk, j 28
023 | SUBX Xk, Xj 25
030 | SUBR Xk, Xj 21
167 | DECX Xk, j 11
031 | DECR Xk, j 29
024 | MULX Xk,Xj 26
032 | MULR Xk, Xj 22
168 | MULXQ Xk,Xj,Q B2
033 | MULRQ Xk,Xj,Q 8C

Control Data — Silicon Valley Development Division

CYBER 180 II Assembler ERS

E2

.90/10/03

Rev:

G

APPENDIX E

CYBER 180 CPU SYMBOLIC MACHINE

INSTRUCTION SUMMARY

REF #| INSTRUCTION OPERANDS | OPCODE
025 | DIVX Xk, Xj 27
034 | DIVR Xk, Xj 23
035 | CMPX X1,Xj,Xk 2D
036 | CMPR X1,Xj,Xk 2C
049 | CPYXX Xk, Xj oD
053 | CPYRR Xk, Xj oc
050 | CPYAX Xk, Aj 0B
051 | CPYAA Ak, Aj 09
052 | CPYXA Ak, Xj 1A
054 | ADDAQ Ak,Aj,Q 8E
055 | ADDPXQ Ak,Xj,label* 8F
056 | ADDAX Ak, Xj 24
161 | ADDAD Ak,Ai,D,j A7
057 | ENTP Xk, j 3D
058 | ENIN Xk, j 3E
059 | ENTE Xk,Q 8D
060 | ENTL X0, jk 3F
061 | ENTZ Xk 1F

ENTO
. | ENTS
164 | ENTX X1,jk 39
165 | ENTC X1,jkQ 87
169 | ENTA X0, jkQ B3
065 | IORX Xk, Xj 18
066 | XORX Xk, Xj 19
067 | ANDX Xk, Xj 1A
068 | NOTX Xk, Xj 1B
069 | INHX Xk, Xj 1C
070 | ISOM Xk,Xi,D, j** AC
071 | 1S0B Xk,Xj,Xi,D AD
072 | INSB Xk,Xj,Xi,D AE
145 | MARK Xk, X1, j 1E
097 | CNIF Xk, Xj 3A
098 | CNFI Xk, Xj 3B
099 | ADDF Xk, Xj 30
100 | SUBF Xk, Xj 31
103 | MULF Xk, Xj 32
104 | DIVF Xk, Xj 33

Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS

E3

90/10/03
Rev: G

APPENDIX E
CYBER 180 CPU SYMBOLIC MACHINE

INSTRUCTION SUMMARY

REF #| INSTRUCTION | OPERANDS | OPCODE
114 | CMPF X1,Xj,Xk kTo
105 | ADDD Xk, Xj 34
106 | SUBD Xk, Xj 35
107 | MULD Xk, Xj 36
108 | DIVD Xk, Xj 37
062 | SHFC Xk,Xj,Xi,D A8
063 | SHFX Xk,Xj,Xi,D A9
064 | SHFR Xk,Xj,Xi,D AA
037 | BRXEQ Xj,Xk,label* 94
038 | BRXNE Xj,Xk,label* 95
039 | BRXGT Xj,Xk,label* 96
040 | BRXGE Xj,Xk,label* 97
041 | BRREQ Xj,Xk,label* 90
042 | BRRNE Xj,Xk,label* 91
043 | BRRGT Xj,Xk,label* 92
044 | BRRGE Xj,Xk,label* 93
109 | BRFEQ Xj,Xk,label* 98
110 | BRFNE Xj,Xk,label¥* 99
111 | BRFGT Xj,Xk,label* 9A
112 | BRFGE Xj,Xk,label* 98
113 | BROVR Xk, label* 9E

BRUND

BRINF
045 | BRINC Xj,Xk,label* 9C
046 | BRSEG X1,Aj,Ak,label* 9D
047 | BRREL Xk 2E
048 | BRDIR Aj,Xk 2F
134 | BRCR isk,label* 9F
115 | CALLSEG label* Aj,Ak B5
116 | CALLREL label* Aj,Ak BO
117 | RETURN jk** 04
118 | pop jk** 06
120 | EXCHANGE jk** 02
121 | HALT jk** 00
122 | INTRUPT Xk, j* 03
203 | PSFSA k 07
124 | LBSET Xk,Aj,X0 14
125 | CMPXa Xk,Aj,X0,label* B4
126 | TPAGE Xk, Aj 16
127 | LPAGE Xk,Xj,X1 17

Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS

E4

90/10/03

Rev:

G

APPENDIX E

CYBER 180 CPU SYMBOLIC MACHINE

INSTRUCTION SUMMARY

REF #| INSTRUCTION OPERANDS | oPCODE
130 | CPYSX Xk, Xj OE
131 | CPYXS Xk, Xj OF
132 | CPYTX Xk, Xj 08
136 | REYPOINT isXk,Q Bl
138 | PURGE Xj,k 05
139 | EXECUTE,s jok,i,D co->C7
074 | ADDN,Aj,X0 Ak,X1 SDDD | 70
156 | ADDI,Xi,D Ak,X1,j DD FB
096 | CALDF,Aj,X0 Xk,Ai,D SD F4
084 | CMPB,Aj,X0 Ak,X1 SD DD | 77
085 | CMPC,Aj,X0 Ak,X1,Ai,D SD DD | E9
083 | CMPN,Aj,X0 Ak, X1 SDDD | 74
155 | CMPI,Xi,D Ak,X1,j DD FA
077 | DIVN,Aj,X0 Ak, X1 SDDD | 73
091 | EDIT,Aj,X0 Ak,X1,Ai,D SD DD | ED
089 | MOVB,Aj,X0 Ak, X1 SDDD | 76
154 | MOVI,Xi,D Ak, X1, j DD F9
092 | MOVN,Aj,X0 Ak, X1 SDDD | 75
076 | MULN,Aj,X0 Ak, X1 SDDD | 72
078 | SCLN,Aj,X0 Ak,X1,Xi,D SD DD | E&4
079 | SCLR,Aj,X0 Ak,X1,Xi,D SDDD | ES
086 | SCNB,Aj,X0 Ak,X1,Ai,D DD F3
075 | SUBN,Aj,X0 Ak, X1 sDDD | 71
088 | TRANB,Aj,X0 Ak,X1,Ai,D SD DD | EB
172 | ADDXV Ak,Aj,Ai,D 44
Ak,Xj,Ai,D

173 | SUBXV Ak,Aj,Ai,D 45
Ak,Xj,Ai,D

176 | CMPEQV Ak,Aj,Ai,D 50
Ak,Xj,Ai,D

177 | CMPLEV Ak,Aj,Ai,D 51
Ak,Xj,Ai,D

178 | CMPGEV Ak,Aj,Ai,D 52
Ak,Xj,Ai,D

179 | CMPNEV Ak,Aj,Ai,D 53
Ak,Xj,Ai,D

180 | SHFV Ak,Aj,Ai,D 4D
Ak,Xj,Ai,D

181 | IORV Ak,Aj,Ai,D 48
Ak,Xj,Ai,D

Control Datg - Silicon Valley Development Divigion

CYBER 180 II Assembler ERS

APPENDIX E
CYBER 180 Cpy SYMBOLIC MACHINE INSTRUCTION SUMMARY

———— ———

182 | XoRv Ak,Aj,Ai,D
Ak,Xj,Ai,D
183 | aNDv Ak,Aj,Ai,D
Ak,Xj,Ai,D
184 | CNIFV Ak,Aj,D
Ak,Xj,D
185 | CNFIV Ak,Aj,D
Ak,Xj,D
188 | ADDFY Ak,Aj,Ai,D
, Ak,Xj,Ai,D
187 | SUBFv AK,Aj,Ai,D
Ak,Xj,Ai,D
188 | MULFv AK,Aj,Ai,D
AK,Xj,Ai,D
189 | DIVFV AK,Aj,Ai,D
Ak,Xj,Ai,D
190 | suMFv Xk,Ai,D
191 | MRgy Ak,Aj,Ai,D
Ak,Xj,Ai,D
192 | GTHY AKk,Aj,Ai,D
Ak,Xj,Ai,D
193 | scrv Ak,Aj,Ai,D
Ak,Xj,Ai,D
195 | TPSFV Ak,Aj,Ai,X0,D
- Ak,Xj,Ai,X0,D
196 | TPDFV Ak,Aj,Ai,X0,D
Ak,Xj,Ai,X0,D
197 | TSPFV Ak,Aj,Ai,X0,D
Ak,Xj,Ai,X0,D
198 | TDPFV Ak,Aj,Ai,X0,D
Ak,Xj,Ai,X0,D
199 | SuMPFv Xk,Aj,Ai,D
Xk,Xj,Ai,D
200 | GTHIV AK,Aj,Ai D
Ak,Xj,Ai,D
201 | scTIv Ak,Aj,Ai D
Ak,Xj,Ai,D

49
4A
4B
4C
40
41
42
43
47

54

55
56

58
59
5A
5B
5C
5D

SE

ES

90/10/03
Rev: G

—— ——----————---—_--——-—-—

NOTE 1: *-Thjs field will pe modified by the Assembler.

L * - :
NOTE 1: *x Parameter can optionally be left blank,

NOTE 2: SD and DD are Source Descriptor and Destination
Descriptor. They both have the format F,T,L,0. |

1
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS v Rev: G

LBYTS - (Format = SjkiD Op Code = D0-D7 Reff =
001) & v v v e e e e e e e e e e e . . 7-4

SBYTS -~ (Format = SjkiD Op Code = D8-DF Ref# =
003) . ¢ v v v v v ... e e e e e e e 7-4
LXI ~ (Format = jkiD Op Code = A2 Ref# = 005) . . 7-5
LX - (Format = jkQ Op Code = 82 Ref# = 006) 7-5
SXI - (Format = jkiD Op Code = A3 Ref# = 007) . . . 7-5
SX -~ (Format = jkQ Op Code = 83 Reff# = 008) 7-6
LBYT - (Format = jkiD Op Code = A4 Ref# = 009) . . 7-6
SBYT - (Format = jkiD Op Code = A5 Ref# = 011) . . 7-6
LBYTP - (Format = jkQ Op Code = 86 Reff# = 013) . . 7-7
LBIT - (Format = jkQ Op Code = 88 Ref# = 014) . . . 7-7
SBIT - (Format = jkQ Op Code = 89 Ref# = 015) . . . 7-7
LAI - (Format = jkiD Op Code = AQ Ref# = 016) . . . 7-7
LA - (Format = jkQ Op Code = 84 Ref# = 017) 7-8
SAI - (Format = jkiD Op Code = Al Ref# = 018) . . . 7-8
SA - (Format = jkQ Op Code = 85 Reff = 019) 7-8
LMULT - (Format = jkQ Op Code = 80 Ref# = 020) . . 7-9
SMULT - (Format = jkQ Op Code = 81 Ref# = 021) . . 7-9
o eeees e e e e s e e s e e e e e e e e e 7-9
ADDX - (Format = jk Op Code = 24 Ref# = 022) . .. 7-10
ADDXQ - (Format = jkQ Op Code = 8B Ref# = 143) . . 7-10
INCX - (Format = jk Op Code = 10 Ref# = 166) .. 7-10
SUBX -~ (Format = jk Op Code = 25 Ref# = 023) . . . 7-10
DECX - (Format = jk Op Code = 11 Reff#f = 167) . . . 7-11
MULX - (Format = jk Op Code = 26 Ref# = 024) . . . 7-11
MULXQ - (Format = jkQ Op Code = B2 Refj# = 168) . . 7-11
DIVX - (Format = jk Op Code = 27 Refff = 025) . . . 7-11
ADDR - (Format = jk Op Code = 20 Reff# = 027) . . . 7-12
ADDRQ - (Format = jkQ Op Code = 8A Reff = 028) . . 7-12
INCR - (Format = jk Op Code = 28 Ref# = 029) . . . 7-12
SUBR - (Format = jk Op Code = 21 Ref#f = 030) . . . 7-12
DECR - (Format = jk Op Code = 29 Ref# = 031) . . . 7-13
MULR - (Format = jk Op Code = 22 Refff = 032) . .. 7-13
MULRQ - (Format = jkQ Op Code = 8C Refff = 033) . . 7-13
DIVR - (Format = jk Op Code = 23 Ref# = 034) . . . 7-13

CMPX - (Format = jk Op Code = 2D Ref# = 035) . . . 7-14

jkQ Op Code = 9D Ref# = 046) . . 7-18
jk Op Code = 2E Ref# = 047) . . . 7-18
jk Op Code = 2F Ref#f = 048) . . . 7-19

BRSEG - (Format
BRREL - (Format
BRDIR - (Format

CMPR - (Format = jk Op Code = 2C Refff = 036) . . . 7-14
e esese e e e e e e e o e e e e e e e e e e e 7-14
BRXEQ - (Format = jkQ Op Code = 94 Ref# = 037) . . 7-15
BRXNE - (Format = jkQ Op Code = 95 Ref# = 038) . . 7-15
BRXGT - (Format = jkQ Op Code = 96 Ref# = 039) . . 7-16
BRXGE - (Format = jkQ Op Code = 97 Ref# = 040) . . 7-16
BRREQ - (Format = jkQ Op Code = 90 Ref# = 041) . . 7-16
BRRNE - (Format = jkQ Op Code = 91 Ref# = 042) . . 7-17
BRRGT -~ (Format = jkQ Op Code = 92 Refff = 043) . . 7-17
BRRGE - (Format = jkQ Op Code = 93 Ref# = 044) . . 7-17
BRINC - (Format = jkQ Op Code = 9C Ref# = 045) . 7-18

Control Data - Silicon

CYBER 180 II Assembler

. LG I 'Y

CPYXX - (Format
CPYAX - (Format
CPYAA - (Format
CPYXA - (Format
CPYRR ~ (Format

. L LI Y I

ADDAQ - (Format

ENTP - (Format
ENTN - (Format
ENTE - (Format
ENTL - (Format
ENTX - (Format
ENTZ - (Format
ENTO - (Format
ENTS - (Format
ENTC - (Format
ENTA - (Format
SHFC - (Format
SHFX - (Format
SHFR ~ (Format
IORX - (Format
XORX - (Format
ANDX - (Format
NOTX - (Format
INHX - (Format
ISOM

ISOB - (Format
INSB - (Format
MARK - (Format

ADDN - (Format
SUBN - (Format
MULN - (Format
DIVN ~ (Format
SCLN - (Format
SCLR - (Format
MOVN - (Format
CMPN - (Format
CMPB - (Fo;mat
CMPC - (Format
SCNB - (Format

2
Valley Development Division

90/10/03

ERS Rev: G
S T 7-19
= jk Op Code = OD Ref# = 049) . . . 7-19
= jk Op Code = OB Ref# = 050) . . . 7-19
= jk Op Code = 09 Ref# = 051) . . . 7-20
= jk Op Code = 0A Ref# = 052) . . . 7-20
= jk Op Code = OC Ref# = 053) . . . 7-20
S 7-20
= jkQ Op Code = 8E Ref# = 054) . . 7-21
ADDPXQ - (Format = jkQ Op Code = 8F Ref# = 055) . . 7-21
ADDAX - (Format = jk Op Code = 2a Ref# = 056) . . . 7-21
ADDAD - (Format = jkiD Op Code = A7 Reff#f = 161) . . 7-22
¢ eeeee R R T T T 7-22
= jk Op Code = 3D Reff = 057) . . . 7-22
= jk Op Code = 3E Reff = 058) . . . 7-22
= jkQ Op Code = 8D Ref# = 059) . . . 7-23
= jk Op Code = 3F Reff = 060) . . . 7-23
= jk Op Code = 39 Reff = 164) . . . 7-23
= jk Op Code = 1F Reff = 061) . . . 7-24
= ik Op Code = 1F Ref# = 061) . . . 7-24
= jk Op Code = 1F Reff = 061) . . . 7-24
= jkQ Op Code = 87 Ref# = 165) . . . 7-24
= jkQ Op Code = B3 Refj = 169) . . . 7-25
S T 7-25
= jkiD Op Code = A8 Ref# = 062) . . 7-26
= jkiD Op Code = A9 Ref# = 063) . . 7-26
= jkiD Op Code = AA Ref# = 064) . . 7-26
L T T 7-26
= jk Op Code = 18 Ref# = 065) . . . 7-27
= jk Op Code = 19 Ref# = 066) . . . 7-27
= jk Op Code = 1A Reff = 067) . . . 7-27
= jk Op Code = 1B Refff = 068) . . . 7-28
= jk Op Code = 1C Reff} = 069) . . . 7-28
L T 7-28
(Format = jkiD Op Code = AC Reff = 070) . . 7-29
= jkiD Op Code = AD Ref# = 071) . . 7-29
= jkiD Op Code = AE Ref# = 072) . . 7-30
= jk Op Code = 1E Ref# = 145) . . . 7-32
S T 7-32
= jk2 Op Code = 70 Refff = 075) . . . 7-40
= jk2 Op Code = 71 Ref# = 075) . . . 7-41
= jk2 Op Code = 72 Ref# = 076) . . . 7-41
= jk2 Op Code = 73 Ref# = 077) . . . 7-41
= jkiD2 Op Code = E4 Ref# = 078) . . 7-43
= jkiD2 Op Code = E5 Ref# = 079) . . 7-43
= jk2 Op Code = 75 Ref# = 092) . . . 7-44
= jk2 Op Code = 74 Reff# = 083) . . . 7-44
L T T 7-45
= jk2 Op Code = 77 Refff = 084) . . . 7-45
= jkiD2 Op Code = E9 Reff = 085) . . 7-45
= jkiDl Op Code = F3 Ref# = 086) . . 7-46
TRANB - (Format = jkiD2 Op Code = EB Reff# = 088) . 7-47
= jk2 Op Code = 76 Ref# = 089) . . 748

MOVB - (Format
EDIT - (Format

jkiD2 Op Code = ED Ref# = 091) . . 7-48

Control Data - Silicon Valley Development Division

CYBER 180 II Assembler ERS .

MOVI - (Format = jkiDl Op Code = F9 Ref# = 154)
CMPI - (Format = jkiDl Op Code = FA Refff = 155)

ADDI - (Format = jkiDl Op Code = FB Ref# = 156)
CNIF - (Format = jk Op Code = 3A Ref# = 097) .
CNFI - (Format = jk Op Code = 3B Refj = 098) .
ADDF - (Format = jk Op Code = 30 Reff = 099) .
SUBF - (Format = jk Op Code = 31 Ref# = 100) .
MULF - (Format = jk Op Code = 32 Refj = 103) .
DIVF - (Format = jk Op Code = 33 Ref# = 104) .
ADDD - (Format = jk Op Code = 34 Ref# = 105) .
SUBD - (Format = jk Op Code = 35 Ref# = 106) .
MULD - (Format = jk Op Code = 36 Ref# = 107) .
DIVD - (Format = jk Op Code = 37 Ref# = 108) .

. LRI . . ¢ e ¢ o o . . . e o * e o

BRFEQ - (Format
BRFNE - (Format = jkQ Op Code
BRFGT - (Format = jkQ Op Code

= JkQ Op Code
BRFGE - (Format = jkQ Op Code

98 Ref# = 109)
99 Ref# = 110)
9A Ref# = 111)
9B Reff# = 112)
BROVR - (Format = jkQ Op Code = 9E Ref# = 113)
BRUND - (Format = jkQ Op Code = 9E Reff# = 113)
BRINF - (Format = jkQ Op Code = 9E Refjf = 113)

CMPF - (Format = jk Op Code = 3C Reff = 114) .

LI B N BN B B |
¢ 6 8 & 2 e & 6 ° ° s 6 6 e ° © e ° o & o * e »

. CICRC A Y e & o o ¢« s ° e ¢ o L] . e e o o o

EXECUTE - (Format = SjkiD Op Code = CO-C7 Ref# =
5 1
HALT - (Format = jk Op Code = 00 Ref# = 121) . .
SYNC - (Format = jk Op Code = Ol Reff = 194) . .
CALLSEG - (Format = jkQ Op Code = B5 Refj# = 115)
CALLREL - (Format = jkQ Op Code = BO Reff = 116)
RETURN - (Format = jk Op Code = 04 Refff = 117) .
POP - (Format = jk Op Code = 06 Reff# = 118) . . .
EXCHANGE - (Format = jk Op Code = 02 Ref# = 120)
KEYPOINT - (Format = jkQ Op Code = Bl Ref# = 136)
CMPXA - (Format = jkQ Op Code = B4 Reff = 125)
LBSET - (Format = jk Op Code = 14 Ref# = 124)
TPAGE - (Format = jk Op Code = 16 Refjf = 126)
CPYTX - (Format = jk Op Code = 08 Reff = 132)

. ®e e o0 * o . . . ° . e o L] . e e o .

PSFSA - (Format = jk Op Code = 07 Ref# = 203) .
LPAGE - (Format = jk Op Code = 17 Ref# = 127) .
INTRUPT - (Format = jk Op Code = 03 Reff = 122)
BRCR - (Format = jkQ Op Code = 9F Ref# = 134) .
CPYSX - (Format = jk Op Code = OE Reff = 130) .
CPYXS - (Format = jk Op Code = OF Reff = 131) .
PURGE - (Format = jk Op Code = 05 Ref# = 138) ..
ADDXV - (Format = jkiD Op Code = 44 Reff = 172)
SUBXV - (Format = jkiD Op Code = 45 Refj = 173)
CMPEQV - (Format = jkiD Op Code = 50 Ref# = 176)
CMPLTV - (Format = jkiD Op Code = 51 Ref# = 177)
CMPGEV - (Format = jkiD Op Code = 52 Ref# = 178)
CMPNEV - (Format = jkiD Op Code = 53 Refj = 179)

* e e © e & & e o o e o o

® o o & 6 e & e e o o s e o e o e e o e e o o o

o e . ¢ o e o e e e o o 6 o e o o e s o o * o & e o o o

3

90/10/03

Rev:

7-49
7-50
7-52
7-52
7-57
7-58
7-58
7-58
7-59
7-59
7-59
7-60
7-60
7-60
7-60
7-61
7-62
7-62
7-62
7-63
7-63
7-63
7-63
7-63

7-64
7-64
7-64
7-65
7-66
7-67
7-67
7-68
7-69
7-69
7-70
7-70
7-71
7-71
7-71
7-72
7-73
7-74
7-76
7-76
7-76
7-77
7-79
7-79
7-80
7-80
7-81
7-81

G

4
Control Data - Silicon Valley Development Division

90/10/03
CYBER 180 II Assembler ERS Rev: G

SHFV - (Format = jkiD Op Code = 4D Ref# = 180) . . 7-81
IORV - (Format = jkiD Op Code = 48 Ref# = 181) . . 7-82
XORV - (Format = jkiD Op Code = 49 Ref# = 182) . . 7-82
ANDV - (Format = jkiD Op Code = 4A Refff = 183) . . 7-83
CNIFV - (Format = jkiD Op Code = 4B Ref# = 184) . 7-83
CNFIV - (Format = jkiD Op Code = 4C Ref# = 185) . 7-83
ADDFV - (Format = jkiD Op Code = 40 Ref# = 186) . 7-84
SUBFV - (Format = jkiD Op Code = 4] Ref# = 187) . 7-84
MULFV - (Format = jkiD Op Code = 42 Refff = 188) . 7-84
DIVFV - (Format = jkiD Op Code = 43 Ref# = 189) . 7-85
SUMFV - (Format = jkiD Op Code = 57 Reff = 190) . 7-85
MRGV - (Format = jkiD Op Code = 54 Ref# = 191) . . 7-85
GTHV - (Format = jkiD Op Code = 55 Ref# = 192) . . 7-86
SCTV - (Format = jkiD Op Code = 56 Refff = 193) . . 7-86
TPSFV - (Format = jkiD Op Code = 58 Ref# = 195) . 7-87
TPDFV - (Format = jkiD Op Code = 59 Ref# = 196) . 7-87
TSPFV - (Format = jkiD Op Code = 5A Ref# = 197) . 7-87
TDPFV - (Format = jkiD Op Code = 5B Reff = 198) . 7-88
SUMPFV - (Format = jkiD Op Code = 5C Ref# = 199) . 7-88
GTHIV - (Format = jkiD Op Code = 5D Ref# = 200) . 7-89

. 7-89

SCTIV - (Format = jkiD Op Code = 5E Ref# = 201)

—-end-

