NOS/VE

Screen Formatting
Usage

60488813 (S D CONTROL DATA

CONTROL DATA CORPORATION
Technology and Publications Div
4201 North Lexington Avenue

St. Paul, MN 55126-6198

Title: NOS/VE Screen Formatting
Publication No.: 60488813

Revision: C
Date: April 1988 '
RFASON FOR CHANGE:

This manual reflects the release of Screen Formatting under
NOS/VE Version 1.3.1, PSR Level 700.

CDC NOS/VE Screen Formatting
60488813 C

NOS/VE

Screen Formatting

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60488813

Manual History

System PSR Product

Revision Version Level Version Date

A 1.2.1 670 1.0 December 1986
B 1.2.2 678 11 April 1987

C 1.3.1 700 4.0 April 1988

This manual reflects the release of Screen Formatting under NOS/VE
Version 1.3.1, PSR Level 700.

This revision documents the following new features for managing
forms using COBOL, CYBIL, and FORTRAN:

® Changing the size of a table.
® Combining forms.
® Setting line mode.

This revision also documents the following new features for creating
forms using CYBIL:

® Converting to program and screen variables.
® (Creating and displaying help and error forms.
® (Creating and displaying help and error messages.

The information in this manual is reorganized and rewritten. Change
bars mark only the technical changes.

This edition obsoletes all previous editions.

©1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 NOS/VE Screen Formatting Revision C

Contents

@ svout This Manual . 5
Audience 5
The NOS/VE User
Manual Set. 6
. Conventions 8
Submitting Comments . .. 9
CYBER Software Support
Hotline

Introduction to Screen

Formatting 1-1
What Is Screen
Formatting?. 1-1
Example of Creating and
Managing a Form 1-6

Coordinating Tasks
Using a Design
Specification 1-10

‘ Summary of the Process 1-11

Using COBOL to Manage
Forms. 2-1

Writing a Program to

Use Forms 2-1
Expanding and

Compiling a Program . 2-28
Helping the User Start

the Application. 2-30

COBOL Subroutine Calls
for Interacting with
Forms. 2-33

Using FORTRAN to

. Manage Forms. 3-1
Writing a Program to
Use Forms 31
Expanding and

. Compiling a Program . 3-22

Revision C

Helping the User Start
the Application. 3-24

FORTRAN Subroutine
Calls for Interacting
with Forms. 3-27

Using CYBIL to Manage

Forms. 4-1
Writing a Program to
Use Forms 4-1
Expanding and

Compiling a Program . 4-22

Helping the User Start
the Application. 4-24

CYBIL Procedure Calls
for Interacting with
Forms. 4-27

Using CYBIL Procedures

to Create Forms. 5-1
What Is a Form? 5-1
What a Form Can

Contain. 5-2

How a Form Is Created 5-14
Data Validation

Capabilities. 5-15
Cursor Positioning on

the Form 5-16
Instructions for

Designing Forms. . . . 5-17
Rectangle Form

Program. 5-30
Defining Attributes for a

Form 5-37
CYBIL Screen

Formatting Procedures 5-85

Glossary A-1

Contents 3

Related Manuals B-1 FORTRAN Call

Definitions F-1
Ordering Printed
Manuals. B-1 . . .
Accessing Online Accessing Online
Manuals. B-1 Examples. G-1
Accessing Examples by
Screen Formatﬁng and Name or by Manual. . . G-2 .
Terminal Definitions . . . C-1 Searching for Examples

by Command or

COBOI.J.Parameter Vl;::v::uré::;i:ge .a'm.i .- G3
Definitions D-1 Printin,g o Exa;:nple. G4
Executing an Example . . G-4
C,I‘,{;;)I; Constants and E-1 Using Function Keys
"""""" and Directives G-5
Constants E-1
Types E-3 Index Index-1

4 NOS/VE Screen Formatting Revision C

About This Manual

This manual describes the CONTROL DATA® Screen Formatting
application for use under the CDC® Network Operating
System/Virtual Environment (NOS/VE).

' Audience

The first chapter of this manual describes Screen Formatting in a
manner that does not require knowledge of programming.

The remainder of this manual is directed to application programmers
who want to create forms with CYBIL programs and manage them by
writing COBOL, FORTRAN, or CYBIL programs that use Screen
Formatting. You need knowledge of these programming languages, as
well as some knowledge of NOS/VE and the System Command
Language (SCL) as presented in the Introduction to NOS/VE manual.

The NOS/VE Screen Design Facility manual describes a screen
interface you can use for creating forms using Screen Formatting that
requires no programming knowledge.

Revision C About This Manual 5

The NOS/VE User Manual Set

This manual is part of a set of user manuals that describe the
command interface to NOS/VE. The descriptions of these manuals
follow:

Introduction to NOS/VE

Introduces NOS/VE and SCL to users who have no previous
experience with them. It describes, in tutorial style, the basic
concepts of NOS/VE: creating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOS/VE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOS/VE.

NOS/VE System Usage

Describes the command interface to NOS/VE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online
documentation, file and catalog management, job management, tape
management, and terminal attributes.

NOS/VE File Editor

Describes the EDIT_FILE utility used to edit NOS/VE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility.

NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOS/VE. Program
execution is described in detail. Topics include loading a program,

6 NOS/VE Screen Formatting Revision C

program attributes, object files and modules, message module

capabilities, ‘code sharing, segment types and binding, ring
attributes, and performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File
Management Utility (FMU), and keyed-file utilities. Sort/Merge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOS/VE Terminal Definition

Describes the DEFINE_TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOS/VE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision C About This Manual 7

Conventions
The following conventions are used in this manual:

Boldface In a format, boldface type represents names and
required parameters.

Italics In a format, italic type represents optional .
parameters.
UPPERCASE In a format, uppercase letters represent reserved

words defined by the system for specific purposes.
You must use these words exactly as shown.

lowercase In a format, lowercase letters represent values you
choose.
Blue In examples of interactive terminal sessions, blue

represents user input.

Vertical bar A vertical bar in the margin indicates a technical
change.
Numbers All numbers are decimal unless otherwise noted.

8 NOS/VE Screen Formatting Revision C

Submitting Comments

There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual’s usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data Corporation

Technology and Publications Division ARH219
4201 North Lexington Avenue

St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use NVO (zero) as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation

Literature and Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

CYBER Software Support Hotline

Control Data’s CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

Revision C About This Manual 9

i
ol
\\’M ’,‘i

i o) i 0 h i
ol L i H
vl':’awl iy i AL il i i ‘\lt" v T MM}” }\}\| f
N i i i i i
’W W:’rlu) Wl ﬂ“ ol

I
i) \m “V‘ i “\N i
ik j‘ Wi li," ik ‘m‘ fat Up."
uhiany i i
‘\“'; i : %‘W o

i
i

i
¢

i

8‘«,4
‘V i
it n‘

[HA\ M‘!i,tm
i “"1‘Jyﬂ\J(*wgm\li‘f“}'i*"“”‘ it
e

u\ r‘ ; i

1

J}‘ i

) ‘}W’J ‘1’%
!

i
il
! 'W au,
i / LR ﬂf‘\“ "t

i Hrﬁ l»‘g wﬂh | “(i Q‘ W fﬂ“ 1)
"W f‘r‘*‘!;}vﬂ‘lfl'w"f'\‘\:‘:;; i | :f:‘l,{w;y:w wj”ﬂ s |
M’!M\”"& 1 ‘I “\ "“u‘ﬂ ! }‘v" “M‘ ! y
e ‘ ‘ﬂ m‘rj"\ i i i ”W“ y ’J
‘tlﬁ b) }5 ' T i '~ LA Wﬁ;‘lv\’ .
PR nh A ‘ j

o m\‘ ’
.,W\ i i M,(:
1,% o
(I “
i W

Y i A i 4’ g
i iR Al “\’l il AE\ ’T‘xgw“\ o M);
w\ g il il i)
] ‘y'dl § ‘ h f’ i %"‘
il & ”/{‘l ;
! b Mv ! m‘t [M‘

G ot i ‘0’

y
HM'
m\,‘"‘,“‘

! i
x‘_ W o

F
v» i i g
i mu‘":\wh'w Tt

OB R R Pt L T
A e

I 4\’%'

L
)

2

i gt il
CHSETE i g
Mgy i i A Ry : T
Rl ‘ i s
o
Hges

3

A
wn j
X “fn“‘lﬂ : w!!"fy‘n‘ why

ki)

i

e i R b [t
i) o P i e e
i A g e kG ; i ARG, w ! I

g J‘f ! e “\ S “:\ o ;' hida o /.\‘», “V!ﬂ\ i Ee P‘ : ..‘ ‘ﬂl "rT o @vi",&f‘{““
’\]) i ; i Vi i il

oy
g
I

it

it fy) o i) “:"Q: A ALy

i
i

i
fy g

N
i

Introduction to Screen Formatting 1

. This chapter explains the NOS/VE Screen Formatting application and
gives an example of how to use it.

‘ What Is Screen Formatting?

Screen Formatting consists of a set of subroutines and procedures on
system object library $SYSTEM.FDF$LIBRARY. Using Screen
Formatting subroutines and procedures, you can design a form that
the user of an application program sees on the screen and uses to
interact with the program. For example, for a program that computes
the area of circles and rectangles, you might use Screen Formatting to
design the following form:

4)

Select Object for Computing Area

. Circle

Rectangle

Type c or r:

Revision C Introduction to Screen Formatting 1-1

What Is Screen Formatting?

Besides designing the forms, you use Screen Formatting to manage

the forms in the application program; for example, you use Screen
Formatting to display and remove the forms from the application .
user’s screen.

Designing the forms and managing the forms in the program are

separate tasks, usually performed by two people. A designer familiar

with the needs of the application user creates the forms and puts .
them on an object library; an application programmer manages the

forms in the application. When a user executes the application, Screen
Formatting combines the work done by the designer and the

programmer:

Designer creates form Programmer codes program

8 Screen Formatting
Object Library .

User sees form and
interacts with program

1-2 NOS/VE Screen Formatting Revision C

What Is Screen Formatting?

Screen Formatting provides different sets of procedures and
subroutines for designing and managing forms. The form designer uses
a set of CYBIL procedures, and the application programmer chooses
. between a set of COBOL subroutines, FORTRAN subroutines, or
CYBIL procedures, depending on the language of the application

program:
. Designer Programmer
r Screen
Formatting
Object
- Library
CYBIL FORTRAN
Procedures Subroutines

=

COBOL
Subroutines

=

CYBIL
Procedures

Revision C Introduction to Screen Formatting 1-3

What Is Screen Formatting?

Application programmers access the procedures or subroutines that
manage forms by including calls to the procedures or subroutines in
the application program. .

Designers, on the other hand, have a choice of how to access the
CYBIL procedures that create forms. They can either call the
procedures in a CYBIL program or use a screen interface provided by
the Screen Design Facility:

Designer

T "I

Circle
Recangle
Typecorr. __
\ ..-I.--.) \ I
Screen Design Facllity Screen
| Formatting

PROGRAM create_form

. CYBIL

- Procedures

pScroass_form

CYBIL Program .

With the Screen Design Facility, the designer uses function keys to
draw the form on the screen, save its image, and define its
characteristics. A designer who is not a CYBIL programmer will
probably choose this method of designing forms.!

Designers who want to either provide special forms for help
information or redefine forms while the application is running must
use a CYBIL program to create the form. With CYBIL, the form is
described in code, using attributes.

1. For more information, see the NOS/VE Screen Design Facility manual. .

1-4 NOS/VE Screen Formatting Revision C

.r

What Is Screen Formatting?

Screen Formatting also includes subroutines and procedures that
relieve the program of some of the tasks it normally performs. For
example, for a form that contains a table with more values than can
be displayed at one time, Screen Formatting includes procedures and
subroutines that page or scroll through the values.

Screen Formatting is an intermediary between a form and the
program. This means that when an application user enters a value on
a form, the value is sent not to the program, but to Screen
Formatting. Screen Formatting stores the value until it receives a call
for the value from the program. Information is transferred between a
form and the program only when the application programmer includes
calls to Screen Formatting.

Revision C Introduction to Screen Formatting 1-5

Exzample of Creating and Managing a Form

Example of Creating and Managing a Form

Using a specific form as an example, this section shows how the form ‘
designer and application programmer divide the tasks that create and
manage forms.

Graphic or Text Objects .

A form contains several discrete areas, each of which Screen
Formatting calls either a graphic or a text object:

{ ’ N
Graphic Object Text Object

Compute Area of Rectangle

Type height:

Area is:

Type width:

1 Eed BfdsackEE] BRI RRlouitRE] RE] |
\

® The designer:
— Determines what graphic or text objects appear on the form.

- Defines display attributes for the objects. The designer chooses
from many different attributes, such as blinking, inverse video,
color, or underline.

- Names the form so the programmer can identify it in the
program.

® The programmer displays the form and removes it from the screen
using the name assigned by the designer.

1-6 NOS/VE Screen Formatting Revision C

Example of Creating and Managing a Form

Variable Text Objects

For some forms, the designer’s and programmer’s tasks may be

. complete as just described. However, the example form has two objects
that allow the application user to enter variables and one object that
allows the program to return variables:

Variable Objects

Compute Area of Rectangle

Area is: //

Type width: /

Variable text objects require the designer and programmer to perform
additional tasks.

Type height:

® The designer:

. - Defines the text objects to accept variables from the user or
the program.

- Names each text object and display attribute so the
programmer can identify them in the program. For this form,
the designer:

+ Assigned the name SIDE to the variable text object for the
height of the rectangle. (This is the first occurrence of the
variable SIDE.)

+ Assigned the name SIDE to the variable text object for the
width of the rectangle. (This is the second occurrence of the
variable SIDE.)

+ Assigned the name RECTANGLE-AREA to the variable text
object for the computed area.

- Defines the types of values the user can enter and the program
can return. (On this form, the user can enter real numbers and
the program returns a real number.)

Revision C Introduction to Screen Formatting 1-7

Example of Creating and Managing a Form

- Defines the action the user takes to send the values to Screen
Formatting. (For this form, the designer might define the
action as pressing the return key.) An action like this returns
control to Screen Formatting and is called an event.

— Names the event so the programmer can identify it in the
program. (For this form, the event defined as pressing the
return key is called COMPUTE.)

— Defines the event as a task that Screen Formatting either
performs itself or passes to the program. (For this form, the
user enters values for the program to compute, so the designer
defines pressing the return key as passing the event from
Screen Formatting to the program.)

® The programmer:

— Copies the designer’s definitions of the variable text objects into
the beginning of the program.

~ Controls the position of the cursor, which allows the user to
enter data.

— Causes the program to wait for the event the user executed.

- Provides the code to process the event named COMPUTE
(pressing the return key). For this form, the programmer:

« Enters calls to Screen Formatting to get the values the user
entered for variable text objects from the form to the
program. On the call, the programmer specifies the name of
the variable text object. (For this form, the name is SIDE.)
The programmer then causes the program to go to the part
that computes the area.

+ Includes a call to Screen Formatting to redisplay the screen
showing the computed area of the rectangle in the variable
text object named RECTANGLE-AREA. The program
replaces data on the form using the names of variables
defined as objects on the form.

1-8 NOS/VE Screen Formatting Revision C

Exzample of Creating and Managing a Form

Events

At the bottom of the example form is a menu that contains an event
. the user can execute by pressing a function key.

Event

f6 [7 e o ol +[EE: 2

The menu is optional and requires the designer and programmer to
perform additional tasks.

® The designer:

- Names the event so the programmer can identify it in the
program and defines it to appear as part of a menu of events.
(For this form, the name of the event is QUIT.)

- Defines the event as a task that Screen Formatting either
performs itself or passes to the program. (For this form, the
designer defines the event named QUIT to pass control to the
program.)

’ ® The programmer provides code to process the event, identifying it
in the program with the name assigned by the designer. (For this
form, the programmer defines that the event named QUIT stops
the application.)

Revision C Introduction to Screen Formatting 1-9

Coordinating Tasks Using a Design Specification

Coordinating Tasks Using a Design
Specification

As you saw in the example, the interaction between the form and the
program is complex. To control the process, the designer prepares a

list called the design specification that tells the programmer what

appears on the form and the definitions used for the form and its

events. In this specification the designer: .

® Names the forms.

® Establishes the order in which forms appear and disappear on the
screen.

® Defines and names the variable text objects.

® Defines the types of values the user or program can enter as
variables.

® Defines and names the display attributes for objects.

® Defines and names the events that return the user to the program.

® Defines the events that Screen Formatting processes itself.

With this information available, the programmer: .
® Displays and removes forms.

® Gets and replaces values on forms.

® Gets and processes events executed by the application user.

® Changes how variable text objects are displayed.

® Changes the position of the cursor on the screen.

1-10 NOS/VE Screen Formatting Revision C

Summary of the Process

Summary of the Process

To create a screen interface for an application user, the designer and
programmer perform the following steps:

1. The form designer and programmer plan the forms and program.

2. The form designer creates the forms and prepares a design
specification.

3. The form designer puts the forms in an object library and makes
the form record available.

4. The programmer codes the program, including calls to Screen
Formatting procedures based on the design specification.

5. The programmer expands and compiles the program.

6. The programmer writes a user procedure to start the application
and helps the user set up the correct terminal environment for
using the forms.

When the last step is complete, the program and forms are ready for
the application user.

The process of creating a screen interface for an application user is
described in detail in the remainder of this manual. The programmer’s
tasks and the formats of the subroutine or procedure calls are in
chapters 2 (for COBOL programmers), 3 (for FORTRAN programmers),
and 4 (for CYBIL programmers).

The designer’s tasks and the formats for CYBIL procedure calls are
described in chapter 5. (If you want to design forms using the Screen
Design Facility, see the NOS/VE Screen Design Facility manual
instead.)

Revision C Introduction to Screen Formatting 1-11

Using COBOL to Manage Forms 2

. Chapter 1 presented an overview of the process for creating and
managing forms. It mentioned the following tasks a programmer uses
to manage forms:

1. Writing the application program to include calls to the Screen
‘ Formatting COBOL subroutines that manage forms.

2. Expanding and compiling the program.
3. Creating a procedure that starts the program for the user.

This chapter describes these three tasks and shows them being
executed in a COBOL program. At the end of the chapter you will
find format and parameter descriptions for each COBOL subroutine
used by Screen Formatting.

Writing a Program to Use Forms

To use forms in any program you write, you must:

® (Copy the parameter definitions provided by Screen Formatting.

‘ ® Copy the data definitions generated by Screen Formatting when
the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

® (Call Screen Formatting subroutines to manage the forms and the
variable text objects on the forms.

Following the descriptions of these tasks is a COBOL program in
which these tasks are executed.

Revision C Using COBOL to Manage Forms 2-1

Copying Parameter Definitions

Copying Parameter Definitions

To obtain the values for the COBOL status parameter, copy the
FDE$COBOL_STATUS deck into your program. The following example .
shows some of the contents of this deck:

01 FDE-COBOL-STATUS USAGE COMP PIC S9(18) SYNC LEFT.
88 FDE-REQUEST-SUCCESSFUL VALUE 0. .
88 FDE-TERMINAL-DISCONNECTED VALUE 1.
88 FDE-NO-INPUT-REQUEST VALUE 2.
88 FDE-CURSOR-NOT-IN-VARIABLE VALUE 3.

To obtain the values for the COBOL variable status parameter, copy
the FDE$COBOL_VARIABLE_STATUS deck into your program. The
following example shows some of the contents of this deck:

01 FDE-COBOL-VARIABLE-STATUS USAGE COMP PIC S9(18) SYNC LEFT.
88 FDE-NO-ERROR VALUE 0.
88 FDE-INVALID-STRING VALUE 1.
88 FDE-INVALID-REAL VALUE 2.

2.2 NOS/VE Screen Formatting Revision C

Copying Data Definitions

Copying Data Definitions

The data definitions for each form reside on a form definition record
created by the form designer. In your program, you transfer data to
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a
common deck that defines the form definition record. For example,
Screen Formatting! generated the following source file for a form
named COBOL-SELECT-FORM. (The form definition record name is
the same as the form name.)

*DECK COBOL_SELECT_FORM expand = false
01 COBOL-SELECT-FORM.
03 SELECT-MESSAGE PIC X(40).
03 OBJECT PIC X(1).

The designer saves this file as a deck on a NOS/VE SOURCE_
CODE_UTILITY (SCU) library.2

In the beginning of your program, you must copy the form definition
deck for each form the designer created:

® Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

® Copy the deck by specifying its name on either the SCU *COPY
directive or the COBOL COPY statement.

1. For this example, Screen Formatting was accessed through the Screen Design
Facility.

2. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source text using SCU. (For information on
SCU, see the NOS/VE Source Code Management manual.)

Revision C Using COBOL to Manage Forms 2-3

Calling Screen Formatting

Calling Screen Formatting

When you write a program that uses forms, you perform two basic
tasks with Screen Formatting subroutines:

® Displaying and removing forms and variable data on the
application user’s screen.

® Processing events executed by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user’s screen,
you perform the following steps in the sequence given:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

No matter how many times you use or update a form in your

program, you need only open it once. For this reason, you usually

begin an application program by opening all the forms you will

use. However, when a form requires a large amount of storage for
variables, you may want to open the form only when the .
application user needs it.

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user’s screen.

To display more than one form at a time, add all the forms before
you display them (the next step). The last form you schedule for
display is the top form on the screen. Because forms are opaque,
the top form covers other forms appearing in the same area. The
cursor position indicates which form is ready for processing.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

2-4 NOS/VE Screen Formatting Revision C

Displaying and Removing Forms and Variable Data

3. Read the form.

When you read forms, Screen Formatting displays all the forms
you added.

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms
later in this chapter. When none of the forms scheduled for display
has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read forms, the
deleted form is removed from the screen. However, the form
remains available for later use in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)
5. Close the form.

When you close a form, Screen Formatting releases the resources
the form uses. The form is no longer available to the user or your
program.

(For the format of the call that closes a form, see Closing a Form
later in this chapter.)

Revision C Using COBOL to Manage Forms 2-5

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user
can execute to return control to the program: normal and abnormal. .

® For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

® For abnormal events, the program takes its own action. You .
generally then delete the form and go on, or stop the program.

Processing Normal Events
To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event at the end of this chapter.) .

2. Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting a Record, Getting an Integer Variable,
Getting a Real Variable, and Getting a String Variable.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing a Record, Replacing an
Integer Variable, Replacing a Real Variable, and Replacing a
String Variable.)

You can also reset the variables on a form to their original state.

(For formats of the calls that reset variables to their original state,

see Resetting a Form and Resetting an Object Attribute later in this .
chapter.)

2-6 NOS/VE Screen Formatting Revision C

Processing Events and Data

Processing Abnormal Events

To process an abnormal event:

1.

Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Geiting the Next Event later in this chapter.)

Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

® Resetting a form and redisplaying it.
® Moving the user to a new form for additional processing.
® Returning the user to a previous form.

® Stopping the program.

The user’s screen is updated when you either read the forms again
or end the program.

Revision C Using COBOL to Manage Forms 2-7

Example Program for Managing Forms with COBOL

Example Program for Managing Forms with COBOL

The program in this example computes the area of circles and
rectangles. The example includes:

® Pictures of the forms managed in the program.
® The design specification supplied by the form designer.
® The form definition decks.

® The example program.

Forms Managed in the Program

The example program manages three forms residing on an object
library named EXAMPLE_OBJECT_LIBRARY that must be in the
user’s command list.

When a user starts the application, Select Form appears (figure 2-1).

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

ol 7H <ofEXR o ol ([2

. J

Figure 2-1. Select Form

2-8 NOS/VE Screen Formatting Revision C

Forms Managed in the Program

On Select Form, a user enters either ¢ to compute the area of a circle
or r to compute the area of a rectangle.

. When a user enters r on Select Form, Rectangle Form (figure 2-2)
appears.

o ~

Compute Area of Rectangle

Type height:

Area is:

Type width:

ol <7 roEEYDY roll ol [MR 2 :H

o \ J

Figure 2-2. Rectangle Form

On Rectangle Form, the user enters the lengths of the sides of the
rectangle as integers and presses the return key to have the program
compute the area.

Revision C Using COBOL to Manage Forms 2-9

Forms Managed in the Program

When a user enters ¢ on Select Form, Circle Form (figure 2-3)
appears.

Compute Area of Circle

Type radius:

Area is:

ol «7HE roCEY rol "ol 1 1[NMR 2 I
.

w

Figure 2-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

2-10 NOS/VE Screen Formatting Revision C

Design Specification

Design Specification

In writing the example program, the programmer uses the information
the form designer listed in the following design specification:

® The names for the three forms used by the program are:

COBOL_SELECT_FORM
COBOL_RECTANGLE_FORM
COBOL_CIRCLE_FORM

The user can call both the Rectangle Form and Circle Form from

the Select Form.

The following variable text objects are defined on the forms:

Variable Object

Description

Select Form:
SELECT-MESSAGE
OBJECT

Rectangle Form:
SIDE-TABLE

SIDE

RECTANGLE-AREA

RECTANGLE-MESSAGE
Circle Form:

RADIUS

CIRCLE-AREA

CIRCLE-MESSAGE

Revision C

Area for displaying error messages.

Area for user input of r or c.

Table that holds values for the
rectangle’s sides.

Areas (two) for user input of values
for the rectangle’s sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle’s radius.

Area for returning value of
computed area.

Area for displaying error messages.

Using COBOL to Manage Forms 2-11

Design Specification

® The following events are defined on the forms:

Event

Description

COMPUTE

BACK

QuUIT

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

2-12 NOS/VE Screen Formatting Revision C

Form Definition Decks

Form Definition Decks

When the designer creates the three forms (by writing a program or
. using Screen Design Facility), a form definition record is created with

each form. For the example program, the programmer copies the

following form definition decks placed by the designer on an SCU

library. The library in this example is named EXAMPLE_SOURCE_
‘ LIBRARY.

The COBOL_SELECT_FORM deck:

01 COBOL-SELECT-FORM.
03 SELECT-MESSAGE PIC X(40).
03 OBJECT PIC X(1).

The COBOL_RECTANGLE_FORM deck:

01 COBOL-RECTANGLE-FORM.
03 SIDE-TABLE OCCURS 2.
05 SIDE PIC S9(18)
COMP SYNC LEFT.
03 RECTANGLE-AREA PIC S9(18) COMP SYNC LEFT.
03 RECTANGLE-MESSAGE PIC X(40).

. The COBOL_CIRCLE_FORM deck:
01 COBOL-CIRCLE-FORM.
03 CIRCLE-AREA COMP-1.

03 RADIUS COMP-1.
03 CIRCLE-MESSAGE PIC X(40).

Revision C Using COBOL to Manage Forms 2-13

Example COBOL Program

Example COBOL Program

This COBOL program calls the forms and executes the events
described in the previous sections. The program is in the SCU deck
named COMPUTEAREA. To run the example program, see the
Examples online manual.

IDENTIFICATION DIVISION.
PROGRAM-ID. COMPUTEAREA.
DATA DIVISION.

WORKING-STORAGE SECTION.

* Copy definitions for Screen Formatting conditions.

*COPY FDE$COBOL_STATUS
*COPY FDE$COBOL_VARIABLE_STATUS

* Copy record for select form.
*COPY cobol_select_form

* Copy record for circle form.
*COPY cobol_circle_form

* Copy record for rectangie form.
*COPY cobol_rectangle_form

01 CHARACTER-POSITION

USAGE COMP PIC S9(18) SYNC LEFT.
01 CIRCLE-FORM-IDENTIFIER

USAGE COMP PIC S9(18) SYNC LEFT.
01 EVENT-NAME PIC X(31).
01 EVENT-NORMAL PIC X.
01 EVENT-OBJECT-NAME PIC X(31).
01 EVENT-OCCURRENCE USAGE COMP PIC S9(18) SYNC LEFT.
01 EVENT-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 EVENT-TYPE USAGE COMP PIC S9(18) SYNC LEFT.
01 FORM-IDENTIFIER USAGE COMP PIC S9(18) SYNC LEFT.
01 FORM-NAME PICTURE X(31).
01 FORM-X-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 FORM-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 LAST-EVENT PIC X.
01 OCCURRENCE USAGE COMP PIC S9(18) SYNC LEFT.
01 OBJECT-TYPE USAGE COMP PIC S9(18) SYNC LEFT.

2-14 NOS/VE Screen Formatting Revision C

Exzample COBOL Program

01 OBJECT-X-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 OBJECT-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 PI COMP-1 VALUE 3.14.
01 RECTANGLE-FORM-IDENTIFIER

USAGE COMP PIC S9(18) SYNC LEFT.
01 SCREEN-X-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 SCREEN-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 SELECT-FORM-IDENTIFIER

USAGE COMP PIC S9(18) SYNC LEFT.
01 VARIABLE-NAME PIC X(31).
01 VARIABLE-STATUS USAGE COMP PIC S9(18) SYNC LEFT.

PROCEDURE DIVISION.
BEGIN.

* Open all forms used by the program
* and assign form identifiers.

MOVE "COBOL_SELECT_FORM" TO FORM-NAME .
CALL "FDP$XOPEN_FORM" USING FORM-NAME
SELECT-FORM-IDENTIFIER FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Open failed on form select.”
STOP RUN
END-IF.

MOVE "COBOL_CIRCLE_FORM* TO FORM-NAME.
CALL "FDP$XOPEN_FORM" USING FORM-NAME
CIRCLE-FORM-IDENTIFIER FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Open failed on form circle."
STOP RUN
END-IF.

MOVE "COBOL_RECTANGLE_FORM" TO FORM-NAME .
CALL "FDP$XOPEN_FORM" USING FORM-NAME
RECTANGLE-FORM-IDENTIFIER FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Open failed on form rectangle."
STOP RUN
END-IF.

Revision C Using COBOL to Manage Forms 2-15

Example COBOL Program

* Add select form to 1ist scheduled for display.

CALL "FDP$XADD_FORM" USING SELECT-FORM-IDENTIFIER
FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Add failed on form select."”
STOP RUN

END-IF.

* Update screen and accept user terminal entry
* for object; display all added forms.

GET-OBJECT-INPUT.
CALL "FDP$XREAD_FORMS" USING FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Read failed on form select."
STOP RUN
END-IF.

* Get screen events that determine next actions.

CALL "FDP$XGET_NEXT_EVENT" USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-X-POSITION
OBJECT-Y-POSITION
LAST-EVENT FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Get event failed on form select."

STOP RUN

END-IF.

* Stop program on QUIT or BACK event.
IF EVENT-NAME NOT EQUAL TO "COMPUTE"

PERFORM STOP-PROGRAM
END-IF.

2-16 NOS/VE Screen Formatting Revision C

Exzample COBOL Program

* Transfer object variable from form to program.

MOVE "OBJECT" TO VARIABLE-NAME.

MOVE 1 TO OCCURRENCE.

CALL "FDP$XGET_STRING_VARIABLE" USING
SELECT-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
OBJECT FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Get string failed on form select."

STOP RUN

END-IF.

* If terminal user entered invalid data, display
* error message and ask for another entry.

IF NOT FDE-NO-ERROR THEN

MOVE “"Type r or c" TO SELECT-MESSAGE

MOVE “SELECT-MESSAGE" TO VARIABLE-NAME

CALL “FDP$XREPLACE_STRING_VARIABLE" USING
SELECT-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SELECT-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS
GO TO GET-OBJECT-INPUT

END-IF.

IF OBJECT EQUALS "R" THEN
* Remove select form and compute area of rectangle.

CALL "FDP$XDELETE_FORM" USING
SELECT-FORM-IDENTIFIER FDE-COBOL-STATUS
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Delete failed on form select."
STOP RUN
END-IF
PERFORM COMPUTE-RECTANGLE-AREA THRU CRA-END
ELSE
IF OBJECT EQUALS "C" THEN

Using COBOL to Manage Forms 2-17

Example COBOL Program

* Remove select form and compute area of circle.

CALL "FDP$XDELETE_FORM" USING
SELECT-FORM-IDENTIFIER FDE-COBOL-STATUS .
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Delete failed on form select."
STOP RUN

END-IF ‘
PERFORM COMPUTE-CIRCLE-AREA THRU CCA—END
ELSE

* If terminal user entered invalid value for object,
* display error message and ask for another entry.

MOVE "Type r or c." TO SELECT-MESSAGE

MOVE "SELECT-MESSAGE®" TO VARIABLE-NAME

CALL "FDP$XREPLACE_STRING_VARIABLE" USING
SELECT-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SELECT-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS
IF NOT FDE-REQUEST-SUCCESSFUL

DISPLAY

"Replace string failed on form select."
STOP RUN

END-IF .
GO TO GET-OBJECT-INPUT
END-IF
END-IF.

* Process event from rectangle form or circle form.

IF EVENT-NAME EQUALS "QUIT"
PERFORM STOP-PROGRAM
END-IF.

2-18 NOS/VE Screen Formatting Revision C

Example COBOL Program

* A BACK event occurred; display select form in
* original state.

CALL "FDP$XRESET_FORM" USING SELECT-FORM-IDENTIFIER
FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form select."
STOP RUN

END-IF.

CALL “"FDP$XADD_FORM" USING SELECT-FORM-IDENTIFIER
FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Add failed on form select."
STOP RUN

END-IF.

GO TO GET-OBJECT-INPUT.
COMPUTE-CIRCLE-AREA.
* Display circle form in original state.

CALL "FDP$XRESET_FORM" USING CIRCLE-FORM-IDENTIFIER
FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form circle."
STOP RUN

END-IF.

CALL "FDP$XADD_FORM" USING CIRCLE-FORM-IDENTIFIER
FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Add failed on form circle."
STOP RUN
END-IF.

Revision C Using COBOL to Manage Forms 2-19

Example COBOL Program

* Update screen and get radius from
* terminal user entry.

GET-CIRCLE-INPUT.
CALL "FDP$XREAD_FORMS" USING FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Read failed on form circle.”
STOP RUN
END-IF.

CALL "FDP$XGET_NEXT_EVENT" USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-X-POSITION
OBJECT-Y-POSITION
LAST-EVENT FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Get event failed on form circle."”

STOP RUN

END-IF.

IF EVENT-NAME NOT EQUAL TO "COMPUTE"
CALL "FDP$XDELETE_FORM" USING
CIRCLE-FORM-IDENTIFIER FDE-COBOL-STATUS
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Delete failed on form circle."”
STOP RUN
END-IF
GO TO CCA-END
END-IF.

* Transfer terminal user entry for radius to program.

MOVE "RADIUS" TO VARIABLE-NAME.

MOVE 1 TO OCCURRENCE.

CALL "FDP$XGET_REAL_VARIABLE" USING
CIRCLE-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
RADIUS FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Get real failed on form circle."

STOP RUN

END-IF.

2-20 NOS/VE Screen Formatting Revision C

Example COBOL Program

IF NOT FDE-NO-ERROR THEN
MOVE "Type valid value for radius." TO
CIRCLE-MESSAGE
MOVE "CIRCLE-MESSAGE" TO VARIABLE-NAME
CALL "FDP$XREPLACE_STRING_VARIABLE" USING
CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS
GO TO GET-CIRCLE-INPUT
END-IF.

* Compute area of circle and display it.
COMPUTE CIRCLE-AREA = PI * RADIUS ** 2.

MOVE "CIRCLE-AREA" TO VARIABLE-NAME.

CALL "FDP$XREPLACE_REAL_VARIABLE" USING
CIRCLE-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
CIRCLE-AREA FDE-COBOL-VARIABLE-STATUS
FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY

"Replace real failed on form rectangle."
STOP RUN
END-IF.

IF NOT FDE-NO-ERROR THEN

* Area value could not be displayed using output
* format defined for form. Revise form or program
* to accommodate size of number.

MOVE "Format cannot display area." TO
CIRCLE-MESSAGE

MOVE "CIRCLE-MESSAGE" TO VARIABLE-NAME

CALL "FDP$XREPLACE_STRING_VARIABLE" USING
CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS

GO TO GET-CIRCLE-INPUT

END-IF.

Revision C Using COBOL to Manage Forms 2-21

Example COBOL Program

* Blank error message in case previously displayed.

MOVE SPACES TO CIRCLE-MESSAGE.

MOVE "CIRCLE-MESSAGE" TO VARIABLE-NAME.

CALL "FDP$XREPLACE_STRING_VARIABLE" USING
CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Replace string failed on form circle.”
STOP RUN

END-IF.

* Process next user entry.

GO TO GET-CIRCLE-INPUT.
CCA-END. EXIT.

COMPUTE-RECTANGLE-AREA.
* Display rectangle form in original state.

CALL "FDP$XRESET_FORM" USING
RECTANGLE-FORM-IDENTIFIER FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form rectangle."
STOP RUN

END-IF.

CALL "FDP$XADD_FORM" USING
RECTANGLE-FORM-IDENTIFIER FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Add failed on form rectangle."
STOP RUN

END-IF.

2-22 NOS/VE Screen Formatting Revision C

Example COBOL Program

* Update screen and get terminal user entry for
* rectangle height and width.

GET-RECTANGLE-INPUT.
CALL "FDP$XREAD_FORMS" USING FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Read failed on form rectangle."
STOP RUN
END-IF.

CALL "FDP$XGET_NEXT_EVENT" USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-X-POSITION
OBJECT-Y-POSITION
LAST-EVENT FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Get event failed on form rectangle.*
STOP RUN

END-IF.

* If abnormal event (BACK or QUIT) occurs,
* return to caller.

IF EVENT-NAME NOT EQUAL TO “COMPUTE"
CALL "FDP$XDELETE_FORM" USING
RECTANGLE-FORM-IDENTIFIER FDE-COBOL-STATUS
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Delete failed on form rectangie."
STOP RUN
END-IF
GO TO CRA-END
END-IF.

Revision C Using COBOL to Manage Forms 2-23

Example COBOL Program

* Transfer height value from form to program.

MOVE "SIDE" TO VARIABLE-NAME.

MOVE 1 TO OCCURRENCE.

CALL "FDP$XGET_INTEGER_VARIABLE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SIDE (1) FDE-COBOL-VARIABLE-STATUS
FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Get integer failed on form rectangle."
STOP RUN

END-IF.

* If data invalid, move cursor to height value
* and display error message.

IF NOT FDE-NO-ERROR THEN

MOVE 1 TO CHARACTER-POSITION

CALL "FDP$XSET_CURSOR_POSITION" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CHARACTER-POSITION
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Set cursor failed on form rectangle."
STOP RUN

END-IF

MOVE “"Type valid value for height." TO
RECTANGLE-MESSAGE

MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME

CALL "FDP$XREPLACE_STRING_VARIABLE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS

GO TO GET-RECTANGLE-INPUT

END-IF.

2-24 NOS/VE Screen Formatting Revision C

Example COBOL Program

* Transfer width value from form to program.

MOVE 2 TO OCCURRENCE.

CALL "FDP$XGET_INTEGER_VARIABLE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SIDE (2) FDE-COBOL-VARIABLE-STATUS
FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Get integer failed on form rectangle."
STOP RUN

END-IF.

* If data invalid, move cursor to width value and display
* error message.

IF NOT FDE-NO-ERROR THEN

MOVE 1 TO CHARACTER-POSITION

CALL "“FDP$XSET_CURSOR_POSITION" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CHARACTER-POSITION
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS

IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Set cursor failed on form rectangle."
STOP RUN

END-IF

MOVE "Type valid value for width."
TO RECTANGLE-MESSAGE

MOVE “"RECTANGLE-MESSAGE" TO VARIABLE-NAME

MOVE 1 TO OCCURRENCE

CALL "FDP$XREPLACE_STRING_VARIABLE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS

GO TO GET-RECTANGLE-INPUT

END-IF.

Revision C Using COBOL to Manage Forms 2-25

Example COBOL Program

* Compute area of rectangle and display it.

MULTIPLY SIDE (1) BY SIDE (2) GIVING
RECTANGLE-AREA.

MOVE “RECTANGLE~AREA" TO VARIABLE-NAME.

MOVE 1 TO OCCURRENCE .

CALL "FDP$XREPLACE_INTEGER_VARIABLE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-AREA
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS.

IF NOT FDE-REQUEST-SUCCESSFUL

DISPLAY
"Replace integer failed on form rectangle."
STOP RUN
END-IF.

IF NOT FDE-NO-ERROR THEN

* Area value could not be displayed using output
* format defined for form. Revise form or program
* t0 accommodate size of number.

MOVE "Format cannot display area."
TO RECTANGLE-MESSAGE
MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME
MOVE 1 TO OCCURRENCE
CALL "FDP$XREPLACE_STRING_VARIABLE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS
GO TO GET-RECTANGLE-INPUT
END-IF.

2-26 NOS/VE Screen Formatting

Revision C

Exzample COBOL Program

* Blank error message in case previously displayed.

MOVE SPACES TO RECTANGLE-MESSAGE.
MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME.
CALL "FDP$XREPLACE_STRING_VARIABLE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FDE-COBOL-VARIABLE-STATUS FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY
"Replace string failed on form rectangle."
STOP RUN
END-IF.

* Process next user entry.

GO TO GET-RECTANGLE-INPUT.
CRA-END. EXIT.

STOP-PROGRAM.

* Close all forms and delete from list scheduled
* for display.

CALL "FDP$XCLOSE_FORM" USING
SELECT-FORM-IDENTIFIER FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form select."
END-IF.

CALL "FDP$XCLOSE_FORM" USING
CIRCLE-FORM-IDENTIFIER FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form circle."
END-1IF.

CALL "FDP$XCLOSE_FORM" USING
RECTANGLE-FORM-IDENTIFIER FDE-COBOL-STATUS.
IF NOT FDE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form rectangle."
END-IF.

STOP RUN.

Revision C Using COBOL to Manage Forms 2-27

Expanding and Compiling a Program

Expanding and Compiling a Program

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code.3

To expand and compile a program maintained in SCU decks:
1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE _SOURCE_LIBRARY.)

PROC cobol_compiie_deck, cobcd (

deck, d: name=$required

status : var of status = $optional

)

source_code_utitity
use_library base=example_source_library result=$null
expand_deck deck=$value(deck) ..
compile=$local.compile ..
alternate_base=$system.cybil.osf$program_interface

guit

cobol input=$local.compile ..

list=$local.listing runtime_checks=all
debug_aids=all

3. For information on SCU, see the NOS/VE Source Code Management manual.

2-28 NOS/VE Screen Formatting Revision C

Expanding and Compiling a Program

create_object_library
add_module library=example_object_library

combine_module library=$iocal.lgo
. generate_library library=example_object_library.$next
quit

PROCEND cobol_compile_deck

To use the procedure, put it on library EXAMPLE_OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the

procedure by entering:
/cobol_compile_deck deck=cobol_compute_object_area

The compiled program is now also on library EXAMPLE_OBJECT_
LIBRARY.

For more information on writing and using procedures, see the
NOS/VE System Usage manual.

Revision C Using COBOL to Manage Forms 2-29

Helping the User Start the Application

Helping the User Start the Application

The complete application consists of your program and the forms .
created by the designer. To integrate the forms with your program,
you must:

® Create a procedure that gives users access to the object library
containing the forms.

® Ensure that the user’s terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

® Ensure that users know how to start the application.

Creating a User Procedure
To give the user access to the object library containing the forms:

1. Write a NOS/VE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program:

For example, the following procedure executes the application that ‘
uses the starting procedure COMPUTEAREA on library EXAMPLE _
OBJECT_LIBRARY. The other libraries accessed by the program are
$SYSTEM.FDF$LIBRARY and $SYSTEM.TDU.TERMINAL_

DEFINITIONS. Users must have these libraries available in order for

the program to call the Screen Formatting subroutines.

PROC cobol_compute_area, cobca (
status : var of status = optional

)

execute_task ..
library=(example_object_library, $system.fdf$iibrary,..
$system.tdu.terminal_definitions) ..
starting_procedure=computearea

PROCEND cobol_compute_area ‘

2-30 NOS/VE Screen Formatting Revision C

Creating a User Prolog

Creating a User Prolog

To ensure that the users’ terminal environment is set up properly to
use the forms, make sure they set the following terminal
characteristics before they execute the procedure:

Characteristic Description

Terminal model Identifies the terminal to NOS/VE.

Attention Provides a character users can enter to interrupt
character the application.
Hold messages Tells the network to hold all network messages

until the user stops the application.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

® Identifies a Digital Equipment Corporation VT220 terminal to the
system.

® Chooses the exclamation point as a way to interrupt the program.

® Holds all messages from a NAMVE/CDCNET network.

® Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220 ..
attention_character="1" ..
status_action=hold
change_term_conn_defaults attention_character_action=1
change_connection_attributes terminal_file_name=input aca=1
change_connection_attributes terminal_file_name=output aca=1
change_connection_attributes terminal_file_name=command aca=1

For a further explanation of how to interrupt a screen application
during an interactive session, and what commands to use for networks
other than NAMVE/CDCNET, see the NOS/VE System Usage manual.

Revision C Using COBOL to Manage Forms 2-31

Starting the Application

Starting the Application
To start the application, the users enter:

/create_command_list_entry e=example_object_1library
/cobol_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_command_list_entry e=example_object_library

2-32 NOS/VE Screen Formatting Revision C

COBOL Subroutine Calls for Interacting with Forms

COBOL Subroutine Calls for Interacting with
Forms

. The subroutines that follow are used by Screen Formatting to manage
forms. These subroutines are external routines that reside on the
library called $SYSTEM.FDF$LIBRARY. To execute your program,

‘ users must have this library in their program library lists.

For each subroutine, there is a purpose description, input format, list
of parameters and their types, condition identifiers, and pertinent
remarks.

Revision C Using COBOL to Manage Forms 2-33

Adding a Form

Adding a Form

Purpose FDP$XADD_FORM schedules a form for display on the
application user’s screen.

Format CALL "FDP$XADD_FORM" USING form-identifier
fde-cobol-status

Parameters form-identifier {input} .

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE_STATUS directive you put in
the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value .
fde-form-already-added

fde-form-pushed

fde-form-too-large-for-screen

fde-invalid-form-identifier

fde-no-space-available

fde-system-error

Remarks ® When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
displays the added form on the terminal screen. The
added form is placed on top of other forms occupying
the same area on the screen.

® Before you add a form, you must open it.

® You cannot add a pushed form.

2-3¢ NOS/VE Screen Formatting Revision C

Changing Table Size

Changing Table Size

Purpose

Format

Parameters

Revision C

FDP$XCHANGE_TABLE_SIZE changes the size of the
table during program execution.

CALL "FDP$XCHANGE_TABLE_SIZE" USING
form-identifier table-name table-size fde-cobol-status

form-identifier {input}
The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

table-name {input}

The name of the table to change in size. Include the
following data description entry:

01 table_name PIC X(31).

table-size {input}

The size of the table. While this subroutine is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

Include the following data description entry:
01 table-size
USAGE COMP PIC S9(18) SYNC LEFT.
fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE_STATUS directive you put in
the program.

Using COBOL to Manage Forms 2-35

Changing Table Size

Conditions

Remarks

Examples

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-table-name
fde-invalid-table-size
fde-no-space-available
fde-unknown-table-name

The table must be present in an open form.

The size limitation remains in effect until the next
time you call the FDP$XCHANGE_TABLE_SIZE
subroutine.

The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (fde-invalid-table-size).

The following examples describe how changing the size of
a table affects the application user. On the form, the
table’s specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

® If you specify a table size of 10, Screen Formatting

displays 6 occurrences and allows the application user
to page to the 10th occurrence.

If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

2-36 NOS/VE Screen Formatting Revision C

Closing a2 Form

Closing a Form

Purpose

Format

Parameters

Conditions

Remarks

Revision C

FDP$XCLOSE_FORM releases resources used to process
a form and deletes the form from the list scheduled for
display.

CALL "FDP$XCLOSE _FORM" USING form-identifier
fde-cobol-status

form-identifier {input}
The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-invalid-form-identifier
fde-form-pushed
fde-no-space-available

® When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting removes the closed form from the terminal
screen as a result of calling this procedure.

® Before you can close a form, you must open it.

® You cannot close a pushed form.

Using COBOL to Manage Forms 2-37

Combining Forms

Combining Forms

Purpose FDP$XCOMBINE_FORM combines a form with a
previously added form and schedules the combined form
for display on the terminal screen.

Format CALL "FDP$XCOMBINE_FORM" USING
added-form-identifier combine-form-identifier
fde-cobol-status

Parameters added-form-identifier {input}

The identifier for this instance of the previously added
form. Include the following data description entry:

01 added-form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

combine-form-identifier {input}

The identifier for the form you are combining with the
previously added form. Include the following data
description entry:

01 combine-form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE__STATUS directive you put in
the program.

Conditions The following conditions apply to this call and are defined
: as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-already-added
fde-form-already-combined
fde-form-pushed
fde-form-too-large-for-screen
fde-invalid-form-identifier
fde-no-space-available
fde-system-error

2-38 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Combining Forms

You cannot combine a pushed form.

The combined form inherits the event definitions of
the previously added form.

Before you combine a form with a previously added
form, you must open both forms.

When the programs calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the combined form. The combined
form is placed on top of other forms occupying the
same area on the screen.

When the application user executes an event to return
to the program normally, Screen Formatting updates
all program variables associated with both the added
and combined forms.

To combine several forms with a previously added
form, call this subroutine more than once.

Using COBOL to Manage Forms 2-39

Deleting a Form

Deleting a Form

Purpose

Format

Parameters

Conditions

Remarks

FDP$XDELETE_FORM deletes a form from the list of
forms scheduled for display.

CALL "FDP$XDELETE _FORM" USING
form-identifier fde-cobol-status

form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE_STATUS directive you put in
the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-available

® When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting removes the deleted form from the
terminal screen and replots any forms uncovered by
the deleted form with the next screen update.

® When you add a form (FDP$XADD_FORM) again that
you previously deleted, the data in the form is
retained.

2-40 NOS/VE Screen Formatting Revision C

Revision C

Deleting a Form

Before you delete a form, you must open it.
You cannot delete a pushed form.

If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

Using COBOL to Manage Forms 2-41

Getting an Integer Variable

Getting an Integer Variable

Purpose FDP$XGET_INTEGER_VARIABLE gets the value the .
user entered on a form for an integer variable and
transfers it to the program.

Format CALL "FDP$XGET_INTEGER _VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the integer variable to get and transfer to
the program. Include the following data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following ‘
data description entry:)

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {output}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following data description entry:

01 variable
USAGE COMP PIC S9(18) SYNC LEFT.

2-42 NOS/VE Screen Formatting Revision C

. Conditions

Revision C

Getting an Integer Variable

fde-cobol-variable-status {output}

The condition name that describes the status of the
integer variable. The following values are possible:

FDE-INVALID-INTEGER

The user entered data that is not in the range defined
for variable.

FDE-LOSS-OF-SIGNIFICANCE
The user entered an integer that is too large.

FDE-NO-ERROR
No error occurred.

This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the subroutine results. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-error
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

Using COBOL to Manage Forms 2.-43

Getting an Integer Variable

Remarks ® Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the
form, the program returns the initial value specified .
by the form designer.

® If the form designer specifies data validation rules and
error processing to display an error message or form, .
the program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

2-44 NOS/VE Screen Formatting Revision C

Getting the Next Event

Getting the Next Event

Purpose

Format

Parameters

Revision C

FDP$XGET_NEXT_EVENT gets the event resulting from
the most recent FDP$XREAD_FORMS subroutine.

CALL "FDP$XGET_NEXT_EVENT"” USING
event-name event-normal screen-x-position
screen-y-position form-identifier form-x-position
form-y-position event-type object-name
object-occurrence character-position object-type
object-x-position object-y-position last-event
fde-cobol-status

event-name {output}

A data name to receive the application user’s event.
Include the following data description entry:

01 event-name PIC X(31).

event-normal {output}

A data name to receive the event normal indication. If
the event is normal, T is returned; if the event is not
normal, F is returned. Include the following data
description entry:

01 event-normal PIC X(1).

screen-x-position {output}

A data name to receive the x position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the x position increases by 1 for each
character on the screen counting from left to right.
Include the following data description entry:

01 screen-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

screen-y-position {output}

A data name to receive the y position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the y position increases by 1 for each
character on the screen counting from top to bottom.
Include the following data description entry:

01 screen-y-position
USAGE COMP PIC S9(18) SYNC LEFT.

Using COBOL to Manage Forms 2-45

Getting the Next Event

form-identifier {output}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

form-x-position {output}

A data name to receive the x position of the event on the
form. The character in the upper left corner of the form
is 1; the x position increases by 1 for each character you
count from left to right. Include the following data
description entry:

01 form-x-position
USAGE COMP PIC S9(18) SYNC LEFT.
form-y-position {output}

A data name to receive the y position of the event on the
form. The character in the upper left corner of the form
is 1; the y position increases by 1 for each character you
count from top to bottom. Include the following data
description entry:
01 form-y-position
USAGE COMP PIC $9(18) SYNC LEFT.

event-type {output}
The event type. The following values are possible:

Value Event Type

0 The event occurred on an area of a form
containing no object.

1 The event occurred on a form object.
Include the following data description entry:

01 event-type
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {output}

When event-type is 1, the variable returns a value giving
the name of the object on which the event occurred.
Include the following data description entry:

01 object-name PIC X(31).

2-46 NOS/VE Screen Formatting Revision C

Revision C

Getting the Next Event

object-occurrence {output}

When event-type is 1, the variable returns a value giving
the occurrence of the object name. Include the following
data description entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.
character-position {output}

When event-type is 1, the variable returns a value giving
the character position within the object where the event
occurred. The first character position is 1. Include the
following data description entry:

01 character-position
USAGE COMP PIC S9(18) SYNC LEFT.
object-type {output}

When event-type is 1, the variable indicates the type of
object on which the event occurred. The following values
are possible:

Value Object Type

Box

Constant text
Constant text box
Line

Variable text
Variable text box

AW N-=O

Include the following data description entry:

01 object-type
USAGE COMP PIC S9(18) SYNC LEFT.

object-x-position {output}

When event-type is 1, the value returned is the x origin
position of the object. The character in the upper left
corner of the form is 1; the x position increases by 1 for
each character you count from left to right. Include the
following data description entry:

01 object-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

Using COBOL to Manage Forms 2-47

Getting the Next Event

Conditions

Remarks

2-48 NOS/VE Screen Formatting

object-y-position {output}

When event-type is 1, the value returned is the y origin
position of the object. The character in the upper left
corner of the form is 1; the y position increases by 1 for
each character you count from top to bottom. Include the
following data description entry:

01 object-y-position
USAGE COMP PIC S9(18) SYNC LEFT.
last-event {output}

Indicates whether this is the last event. The following
values are possible:

Value Meaning
T This is the last event.
F This is not the last event.

Include the following data description entry:
01 last-event PIC X(1).
fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined

as COBOL condition names in appendix D.
fde-bad-data-value

The FDP$XREAD_FORMS subroutine deletes existing
events. If the event is normal, Screen Formatting updates
the variables in the added and combined forms containing
the event. Later, you can request the transfer of these
variables to program storage. If the event is abnormal,
Screen Formatting does not update or validate variables.

Revision C

Getting a2 Real Variable

Getting a Real Variable

Purpose FDP$XGET_REAL_VARIABLE gets a value the user
. entered on a form for a real variable and transfers it to
the program.

Format CALL "FDP$XGET_REAL_VARIABLE" USING
. form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status
Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC 59(18) SYNC LEFT.
name {input}
The name of the variable to get. Include the following
data description entry:
01 name PIC X(31).

occurrence {input}

. The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {output}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following data description entry:

01 variable COMP-1.

‘

Revision C Using COBOL to Manage Forms 2-49

Getting a Real Variable

fde-cobol-variable-status {output}
The condition that gives you the status of the variable.
The following values are possible: ‘

FDE-INDEFINITE
The user entered an indefinite number.

FDE-INVALID-BDP-DATA ®
The user entered data that does not correspond to the
defined data type.

FDE-INVALID-REAL

The user entered data that is not within the range of
real numbers defined for the variable.
FDE-LOSS-OF-SIGNIFICANCE

The user entered a number too large to be converted
to the defined real program type.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OVERFLOW
The user entered an exponent that is too large. .

FDE-UNDERFLOW
The user entered an exponent that is too small.

This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

2-50 NOS/VE Screen Formatting Revision C

Conditions
Remarks
Revision C

Getting a Real Variable

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name

Before you get a real variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using COBOL to Manage Forms 2-51

Getting a Record

Getting a Record

Purpose FDP$XGET_RECORD transfers the values of the form
record to the program record. .

Format CALL "FDP$XGET_RECORD" USING form-identifier
record fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input} .

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.
record {output}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the variable definition
entries in this record. It is the program work area for the
variables used on the form.

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INDEFINITE
The user entered an indefinite number.

FDE-INFINITE
The user entered an infinite number.

FDE-INVALID-BDP-DATA

The user entered data that does not correspond to the
defined data type.

FDE-INVALID-INTEGER

The user entered data that is not within the range of
integer numbers defined for the variable.

FDE-INVALID-REAL

The user entered data that is not within the range of
real numbers defined for the variable.

2-52 NOS/VE Screen Formatting Revision C

Getting a Record

FDE-INVALID-STRING

The user entered data that does not match the strings
‘ defined as valid for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The user entered a number too large to be converted
‘ to the defined real or integer data type.

FDE-NO-DIGITS

The user, who should have entered a real or integer

number, did not enter digits.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OVERFLOW
The user entered an exponent that is too large.

FDE-UNDERFLOW
The user entered an exponent that is too small.

This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE_STATUS directive you put in

‘ the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

ide-bad-data-value
fde-form-has-no-variables
fde-invalid-form-identifier
fde-no-space-available
fde-system-error
fde-work-invalid

Revision C Using COBOL to Manage Forms 2.53

Getting a Record

Remarks ® Before you get a record for a form, you must open the
form. If you get the record after opening the form and
before reading or replacing the record, the program
returns the initial value specified by the form
designer.

® If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

2-54 NOS/VE Screen Formatting Revision C

Getting a String Variable

Getting a String Variable

Purpose

Format

Parameters

Revision C

FDP$XGET_STRING_VARIABLE gets a value the user
entered on a form for a string variable and transfers it to
the program.

CALL "FDP$XGET_STRING_VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status
form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}
The name of the variable to get. Include the following
data description entry:

01 name PIC X(31).

occurrence {mput}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {output}

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include the
following data description entry (where n is the length of
the variable):

01 variable PIC X(n).

Using COBOL to Manage Forms 2-55

Getting a String Variable

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-STRING

The user entered a variable that does not match the
strings defined for the variable.

FDE-NO-ERROR
No error occurred on the variable.

FDE-VARIABLE-TRUNCATED

The storage length of the parameter variable is not
long enough.

This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of subroutine. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-name

2-56 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Getting a String Variable

Before you get a string variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using COBOL to Manage Forms 2-57

Opening a Form

Opening a Form

Purpose FDP$XOPEN_FORM locates a form and and prepares it
for use by the program. .

Format CALL "FDP$XOPEN_FORM" USING form-name
form-identifier fde-cobol-status

Parameters form-name {input} .

The name of the form you want to open. Include the
following data description entry:

01 form-name PIC X(31).

form-identifier {input-output}

The form identifier established for the form. Other Screen
Formatting subroutines use this identifier when
referencing the form. Include the following data
description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine. '
This variable is defined with the SCU *COPY '
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-already-open
fde-form-not-ended
fde-form-requires-conversion
fde-invalid-form-identifier
fde-invalid-form-name
fde-no-space-available
fde-system-error
fde-terminal-not-identified
fde-unknown-form-name

2-58 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Opening a Form

Screen Formatting locates a form as follows:

If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

If the form name is not blank, Screen Formatting
searches the list of ended dynamically created
forms.

If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object code libraries.
(You specify the order in which Screen Formatting
searches the list using the NOS/VE command
CREATE_COMMAND_LIST_ENTRY).

Executing FDP$XOPEN_FORM does not display the
form on the screen.

The form identifier that FDP$XOPEN_FORM returns
identifies the instance of open for a form. Forms
dynamically created have only one instance of open.
Forms stored on object libraries can have more than
one instance of open. For each instance of open,
Screen Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

Using COBOL to Manage Forms 2-59

Popping a Form

Popping a Form

Purpose

Format

Parameters

Conditions

Remarks

FDP$XPOP_FORMS deletes forms scheduled (added or
combined) since the last FDP$XPUSH_FORMS call.

CALL "FDP$XPOP_FORMS" USING fde-cobol-status

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-no-forms-to-pop

Events associated with the last list of pushed forms
become active.

2-60 NOS/VE Screen Formatting Revision C

Positioning a Form

Positioning a Form

Purpose FDP$XPOSITION_FORM schedules moving a form to a
' new location. Using this subroutine, you can define a
form at one location and display it at another location, or
you can move a form from where it is currently displayed
to a new location.

Format CALL "FDP$XPOSITION _FORM" USING
form-identifier screen-x-position screen-y-position
fde-cobol-status

Parameters form-identifier {input}

The form identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

screen-x-position {input}

The x position on the screen for determining the upper
left corner of the form. The character position in the
upper left corner of the screen is 1, and the x position
increases by 1 for each character on the screen counting

‘ from left to right. Include the following data description
entry:

01 screen-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

screen-y-position {input}

The y position on the screen for determining the upper
left corner of the form. The character position in the
upper left corner of the screen is 1, and the y position
increases by 1 for each character on the screen counting
from top to bottom. Include the following data description
entry:

01 screen-y-position
USAGE COMP PIC S9(18) SYNC LEFT.

Revision C Using COBOL to Manage Forms 2-61

Positioning a Form

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-form-too-large-for-screen
fde-invalid-form-identifier
fde-no-space-available
fde-system-error

Remarks ® When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the form on the screen at the
position specified in the call to FDP$XPOSITION _
FORM.

® If you call this subroutine while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form lays on top of
any other form occupying the same area on the screen.

® If you call this procedure before the form is displayed,
the form is displayed at the specified location.

® Before you position a form, you must open it.

® You cannot position a pushed form.

2-62 NOS/VE Screen Formatting Revision C

Pushing a Form

Pushing a Form

Purpose

Format

Parameters

Conditions

Remarks

Revision C

FDP$XPUSH_FORMS deactivates the events associated
with forms scheduled for display (added or combined)
since the last push call.

CALL "FDP$XPUSH_FORMS" USING
fde-cobol-status

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-no-forms-to-push

® FEvents associated with these forms are not passed to
the program.

® A program cannot change or close a pushed form.

® Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

® This subroutine causes Screen Formatting to record
added and combined forms so you can return to them
later.

Using COBOL to Manage Forms 2-63

Reading a Form

Reading a Form

Purpose FDP$XREAD_FORMS updates the terminal screen and
accepts input from the application user.

Format CALL "FDP$XREAD_FORMS" USING
fde-cobol-status

Parameters fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-no-events-active
fde-no-forms-to-read
fde-system-error
fde-terminal-disconnected

Remarks ® A call to FDP$XREAD_FORMS:

— Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call.

- Updates on the screen the variables replaced since
the last FDP$XREAD_FORMS or FDP$XSHOW_
FORMS call.

- Updates on the screen the objects for which display
attributes were set or reset since the last
FDP$XREAD_FORMS or FDP$XSHOW_FORMS
call.

2-64 NOS/VE Screen Formatting Revision C

Revision C

Reading a Form

Events not retrieved with the FDP$XGET_NEXT_
EVENT subroutine are deleted before any input is
accepted from the user.

The FDP$XREAD_FORMS subroutine does not execute
unless the forms scheduled for display contain at least
one active event.

Using COBOL to Manage Forms 2-65

Replacing an Integer Variable

Replacing an Integer Variable

Purpose

Format

Parameters

FDP$XREPLACE_INTEGER_VARIABLE transfers a
program integer variable to Screen Formatting.

CALL "FDP$XREPLACE _INTEGER _VARIABLE"
USING form-indentifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the variable to replace. Include the following
data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {input}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following data description entry:

01 variable
USAGE COMP PIC S9(18) SYNC LEFT.

2-66 NOS/VE Screen Formatting Revision C

Conditions

Revision C

Replacing an Integer Variable

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-INTEGER

The program supplied a value that is not within the
range of integer numbers defined for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The program supplied a value that is too large for the
form variable.

FDE-NO-ERROR
No error occurred on the variable.

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE__STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

Using COBOL to Manage Forms 2-67

Replacing an Integer Variable

Remarks ® When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
replaces the integer variable on the terminal screen.

® Before you replace an integer variable, you must open
the form on which it is replaced.

® You cannot replace an integer variable for a pushed
form.

® If the integer variable is not valid, it is not replaced.

2-68 NOS/VE Screen Formatting Revision C

Replacing a Real Variable

Replacing a Real Variable

Purpose

Format

Parameters

Revision C

FDP$XREPLACE_REAL_VARIABLE transfers a program
real variable to Screen Formatting.

CALL "FDP$XREPLACE _REAL_VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status
form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.
name {input}
The name of the variable to replace. Include the following
data description entry:
01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.
variable {input}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following data description entry:

01 variable COMP-1.

Using COBOL to Manage Forms 2-69

Replacing a Real Variable

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-REAL

The value the program supplied is not within the
range of real numbers defined for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The value the program supplied is too large for the
form variable.

FDE-NO-ERROR
No error occurred on the variable.

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

This variable is defined with the SCU *COPY
FDE$COBOL_VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-variable-name
fde-wrong-variable-type

2-70 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Replacing a Real Variable

When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
replaces the real variable on the terminal screen.

Before you replace a real variable, you must open the
form on which it is replaced.

You cannot replace a real variable for a pushed form.

If the real variable is not valid, it is not replaced.

Using COBOL to Manage Forms 2-71

Replacing a Record

Replacing a Record

Purpose FDP$XREPLACE_RECORD transfers values of program .
variables to Screen Formatting for later display on a
form.

Format CALL "FDP$XREPLACE_RECORD" USING
form-identifier record fde-cobol-variable-status .
fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.
record {input}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the variable definition
entries in this record. It is the program work area for the
variables used on the form.

fde-cobol-variable-status {output} .

The condition that gives you the status of the variable.
The following values are possible:

FDE-INDEFINITE
The program supplied an indefinite number.

FDE-INFINITE
The program supplied an infinite number.

FDE-LOSS-OF-SIGNIFICANCE

The program supplied a number too large to be
converted to the form variable size.

FDE-NO-ERROR
No error occurred on the variable. .

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

®

2-72 NOS/VE Screen Formatting Revision C

Replacing a Record

FDE-OVERFLOW
The program supplied an exponent that is too large.

. FDE-UNDERFLOW
The program supplied an exponent that is too small.

] This variable is defined with the SCU *COPY
‘ FDE$COBOL_VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of subroutine. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value

fde-form-has-no-variables

fde-form-pushed

fde-invalid-form-identifier

fde-no-space-available
‘ fde-work-invalid

Remarks ® When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting replaces the variables on the terminal
screen with the values stored in Screen Formatting.

® Before you replace a record, you must open the form
on which the variables are replaced.

® You cannot replace a record for a pushed form.

Revision C Using COBOL to Manage Forms 2.73

Replacing a String Variable

Replacing a String Variable

Purpose

Format

Parameters

FDP$XREPLACE_STRING_VARIABLE transfers a string
variable to Screen Formatting.

CALL "FDP$XREPLACE _STRING_VARIABLE"
USING form-identifier name occurrence variable

fde-cobol-variable-status fde-cobol-status

form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the string variable to replace. Include the
following data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {input}

The variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following data description entry (n is the length of the
variable):

01 variable PIC X(n).

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.

The following values are possible:
FDE-INVALID-STRING

The program supplied a variable that does not match
the strings defined for the variable.

2-74 NOS/VE Screen Formatting Revision C

Conditions

‘/ Remarks

Revision C

Replacing a String Variable

FDE-NO-ERROR
No error occurred on the variable.

This variable is defined with the SCU *COPY
FDE$COBOL__VARIABLE _STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

® When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting replaces the string variable on the
terminal screen.

® Before you replace a string variable, you must open
the form on which it is replaced.

® You cannot replace a string variable for a pushed
form.

® If the string variable is not valid, it is not replaced.

e If the form specifies that the data must be in
uppercase, Screen Formatting converts it to uppercase
before storing the data in the form.

Using COBOL to Manage Forms 2-75

Resetting a Form

Resetting a Form

Purpose FDP$XRESET_FORM resets the form to the state
specified by the form definition.

Format CALL "FDP$XRESET_FORM" USING form-identifier
fde-cobol-status

Parameters form-identifier {mput}

The identifier established when the form was opened.
Include the following data description entry:

‘01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-available
fde-system-error

Remarks ® When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the form on the terminal screen
with the reset specifications.

® All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

® Before you reset a form, you must open it.

® You cannot reset a pushed form.

2-76 NOS/VE Screen Formatting Revision C

Resetting an Object Attribute

Resetting an Object Attribute

Purpose

Format

Parameters

Conditions

Revision C

FDP$XRESET_OBJECT_ATTRIBUTE resets the display
attributes for an object to those specified in the form
definition.

CALL "FDP$XRESET_OBJECT ATTRIBUTE" USING
form-identifier object-name object-occurrence
fde-cobol-status

form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {input}

The name of the object whose attributes are reset. Include
the following data description entry:

01 object-name PIC X(31).

object-occurrence {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following data description
entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-object-name
fde-invalid-occurrence
fde-no-space-available
fde-unknown-object-name

Using COBOL to Manage Forms 2-77

Resetting an Object Attribute

Remarks

® You can reset the attributes of objects that are

variable text, constant text, lines, or boxes.

Before you reset the attribute of an object, you must
open and either add or combine the form the object is
on.

When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the object using the reset
attributes.

If the object you specify is not displayed on the screen,
Screen Formatting shifts the data so the object is
displayed (updates the screen automatically.)

278 NOS/VE Screen Formatting Revision C

Setting the Cursor Position

Setting the Cursor Position

Purpose

Format

Parameters

Revision C

FDP$XSET_CURSOR_POSITION sets the cursor to a
selected position for later display.

CALL "FDP$XSET_CURSOR_POSITION" USING
form-identifier object-name object-occurrence
character-position fde-cobol-status

form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.
object-name {input}
The name of the object on which you want the cursor set.
Include the following data description entry:
01 object-name PIC X(31).

object-occurrence {input}

The integer specifying the occurrence of the object name.
For the first occurrence, use 1. Include the following data
description entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.
character-position {input}

The character position to which you want the cursor set.
For the first character position, use 1. Include the
following data description entry:

01 character-position
USAGE COMP PIC S9(18) SYNC LEFT.
fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Using COBOL to Manage Forms 2-79

Setting the Cursor Position

Conditions

Remarks

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
fde-invalid-character-position
fde-invalid-form-identifier
fde-invalid-object-name
fde-no-object-available-defined
fde-no-space-available
fde-system-error
fde-unknown-object-name
fde-unknown-occurrence

Use this subroutine to alter the default sequence of
the application user’s entry of variables. (In the
default sequence, Screen Formatting places the cursor
on the first input variable of the highest priority form.
The highest priority form is the form last added,
combined, or positioned.)

When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
updates the terminal screen with the cursor at the
specified position.

If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

Before you set the cursor position on a form, you must
open the form and either add or combine it.

You cannot set the cursor position in a pushed form.

2-80 NOS/VE Screen Formatting Revision C

Setting Line Mode

Setting Line Mode

Purpose FDP$XSET_LINE_MODE begins line-by-line interaction
with an application user.

Format CALL "FDP$XSET_LINE _MODE" USING
fde-cobol-status

Parameters fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value

Remarks ® Use this call for extended dialogues in line mode. For
short dialogues, Screen Formatting automatically
switches to the proper mode (line or screen) but
resources used for screen mode interaction remain.

® This call releases all screen mode resources:

- Open forms are closed.

- The mode is set to line.

Revision C Using COBOL to Manage Forms 2-81

Setting an Object Attribute

Setting an Object Attribute

Purpose FDP$XSET_OBJECT _ATTRIBUTE changes a display
attribute for an object.

Format CALL "FDP$XSET_OBJECT_ATTRIBUTE" USING
form-identifier object-name object-occurrence
attribute-name fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {input}

The name of the object whose display attribute is being
set. Include the following data description entry:

01 object-name PIC X(31).

object-occurrence {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following data description
entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.
attribute-name {input}
The program name of the display attribute being set.
Include the following data description entry:
01 attribute-name PIC X(31).

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

2-82 NOS/VE Screen Formatting Revision C

Conditions
Remarks
Revision C

Setting an Object Attribute

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
fde-invalid-attribute-position
fde-invalid-form-identifier
fde-invalid-object-name
fde-invalid-occurrence
fde-no-space-available
fde-unknown-display-name
fde-unknown-object name
fde-unknown-occurrence

You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

Changed attributes replace existing attributes.

When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
displays the object using the set attributes.

If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

You cannot set attributes of objects on a pushed form.

Using COBOL to Manage Forms 2-83

Showing Forms

Showing Forms

Purpose

Format

FDP$XSHOW_FORMS updates the terminal screen.
CALL "FDP$XSHOW_FORMS" USING

fde-cobol-status

Parameters

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY

Conditions

Remarks

FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-too-large-for-screen
fde-form-to-show
fde-no-space-available
fde-system-error
fde-terminal-disconnected

When none of the forms scheduled for display has an
event or input variable defined, use this subroutine
instead of FDP$XREAD_FORMS.

When you do not want any input from the terminal
user, use this subroutine.

® A call to FDP$XSHOW_FORMS:

- Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call.

2-84 NOS/VE Screen Formatting Revision C

Showing Forms

- Displays variables replaced since last
FDP$XREAD_FORMS or FDP$XSHOW_FORMS
call.

- Displays objects with attributes set or reset since
last FDP$XREAD_FORMS or FDP$XSHOW_
FORMS call.

Revision C Using COBOL to Manage Forms 2-85

o, »m,r

Tt

s"
! M»‘ i

‘,Agra ;

m g . F

P i} /g
o 4]
leting a
i
t&h g
‘;“‘ i “"" T, ‘ugm Ay
\"r‘l\l\‘ e “ \\,‘ i ,,l i .w,‘ (
i o | hy "!\
| Getting ¢ th
l"‘
!

L
i
3 JM

‘m‘\r
‘Hv,‘

i :

w,»’w

M‘m,m

, \ ; el

Ty n

£ §
| Re m
it LA ¥y %]
S Mpg,‘,‘,ml o) Ml'

o
i \,\N“ ki N |]v“

ey o

' Replacing
e Rﬂ‘“m i

f
iy By HJ) 3
Mw ;rwh i ‘, g ; W

Tl
)

'n“'
}

il “w“

L

,’[G
m,{‘,

‘ L el o
“(’ g {1 rhe i ‘ "
i i3 f i m m,‘

’4\

&
,*
t“‘m i

i“ g P L W : ! i 0
nw m 1 b ,“ il e
o {' al Ve “ | _‘i«,‘ | *'?«“‘ g
ol ‘y“\\ 8 i i
L W\Ma x t,,ly ﬁ o ‘W"‘h
: i A w' g a‘mg(
N ‘
u\‘h, 4 ‘l’u(v‘” 9‘“ il i ey
¢ i, 1 e

ol i
m,‘,

U \ u;
b

Wil 9

;" 1%

Hilf e m

‘A?

i w“); M

e “‘(‘ ‘U
w\‘ iy f

‘, -
.

et)
U“-‘»ywt‘\n“' ““ A
Wk i

#,00
il 3 5
. "
b i
“Bm:‘
" Va‘!‘ v,mm
‘

Mw‘ ;!L\\h i .”
i ~.w
AR T
8 ”@ *

it it
5 g A
RN m
i 5 1‘ ‘fn . M
b i ”
IR iR,
i ‘/“h‘ i .’,/’u w“’ ol
B w
il ¢
ji

i

il ““v u il
i

o

i

i

)
iy i
;

x“

-
‘,r; i
K

g
o

|

it i
iy g ; ; : ! 3
»r»\wl\ i iy " i i
N
ot

ik
it
L

A8
i
i Al
:mé »’fﬂl"q\i@'l'
N
ik
| hf" ' k(e i mlqu 0
L AN, | 1 : et M ;
il f bt e j g i]
G G e R Dty Lalig
: iy ; K i A

14
i

it
'M\ ik

Hi, i
Wl ‘Y‘w
il

T

W T
by

i
g

i
i

A
i

i

i

Using FORTRAN to Manage Forms 3

‘ Chapter 1 presented an overview of the process for creating and
managing forms. It mentioned the following tasks a programmer uses
to manage forms:

1. Writing the application program to include calls to the Screen
' Formatting FORTRAN subroutines that manage forms.

2. Expanding and compiling the program.
3. Creating a procedure that starts the program for the user.

This chapter describes these three tasks and shows them being
executed in a FORTRAN program. At the end of the chapter you will
find format and parameter descriptions for each FORTRAN subroutine
used by Screen Formatting.

Writing a Program to Use Forms

To use forms in any program you write, you must:

® Copy the data definitions generated by Screen Formatting when
. the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

® (Call Screen Formatting subroutines to manage the forms and the
variable text objects on the forms.

Following the descriptions of these tasks is a FORTRAN program in
which these tasks are executed.

Revision C Using FORTRAN to Manage Forms 3-1

Copying Data Definitions

Copying Data Definitions

The data definitions for each form reside on a form definition record
created by the form designer. In your program, you transfer data to '
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a

common deck that defines the form definition record. For example, .
Screen Formatting! generated the following source file for a form

named SELECT. (The form definition record name is the same as the

form name.)

*DECK SELECT expand = false

CHARACTER SELECT*41
CHARACTER XSELEC(41)
EQUIVALENCE (SELECT,XSELEC(1))
CHARACTER MESSAG*40

EQUIVALENCE (XSELEC(1),MESSAG)
CHARACTER OBJECT*1

EQUIVALENCE (XSELEC(41),0BJECT)

The designer saves this file as a deck on a NOS/VE SOURCE_
CODE_UTILITY (SCU) library.2

In the beginning of your program, you must copy the form definition .
deck for each form the designer created:

® Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

® Copy the deck by specifying its name on the SCU *COPY
directive.

1. For this example, Screen Formatting was accessed through the Screen Design
Facility.

2. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source text using SCU. (For information on
SCU, see the NOS/VE Source Code Management manual.) .

3-2 NOS/VE Screen Formatting Revision C

Calling Screen Formatting

Calling Screen Formatting

When you write a program that uses forms, you perform two basic
. tasks with Screen Formatting subroutines:

® Displaying and removing forms and variable data on the
application user’s screen.

. ® Processing events executed by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user’s screen,
you perform the following steps in the sequence given:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

No matter how many times you use or update a form in your
program, you need only open it once. For this reason, you usually
begin an application program by opening all the forms you will
use. However, when a form requires a large amount of storage for

. variables, you may want to open the form only when the
application user needs it.

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user’s screen.

To display more than one form at a time, add all the forms before
you display them (the next step). The last form you schedule for
display is the top form on the screen. Because forms are opaque,
the top form covers other forms appearing in the same area. The
cursor position indicates which form is ready for processing.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

Revision C Using FORTRAN to Manage Forms 3-3

Displaying and Removing Forms and Variable Data

3. Read the form.
When you read forms, Screen Formatting displays all the forms

you added. ‘

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms .
later in this chapter. When none of the forms scheduled for display

has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read forms, the
deleted form is removed from the screen. However, the form
remains available for later use in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources

the form uses. The form is no longer available to the user or your .
program.

(For the format of the call that closes a form, see Closing a Form

later in this chapter.)

3-4 NOS/VE Screen Formatting Revision C

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user
can execute to return control to the program: normal and abnormal.

For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

For abnormal events, the program takes its own action. You
generally then delete the form and go on, or stop the program.

Processing Normal Events

To process a normal event:

1.

Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event at the end of this chapter.)

Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting a Record, Getting an Integer Variable,
Getting a Real Variable, and Getting a String Variable.)

Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing a Record, Replacing an
Integer Variable, Replacing a Real Variable, and Replacing a
String Variable.)

You can also reset the variables on a form to their original state.
(For formats of the calls that reset variables to their original state,
see Resetting a Form and Resetting an Object Attribute later in this
chapter.)

Revision C Using FORTRAN to Manage Forms 3-5

Processing Events and Data

Processing Abnormal Events
To process an abnormal event: ‘

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen .
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event later in this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

® Resetting a form and redisplaying it.
® Moving the user to a new form for additional processing.
® Returning the user to a previous form.

® Stopping the program.

The user’s screen is updated when you either read the forms again
or end the program. .

3-6 NOS/VE Screen Formatting Revision C

Exzample Program for Managing Forms with FORTRAN

Example Program for Managing Forms with
FORTRAN

The program in this example computes the area of circles and
rectangles. The example includes:

® Pictures of the forms managed in the program.
¢ The design specification supplied by the form designer.
® The form definition decks.

¢ The example program.

Forms Managed in the Program

The example program manages three forms residing on an object
library named EXAMPLE_OBJECT_LIBRARY that must be in the
user’s command list.

When a user starts the application, Select Form appears (figure 3-1).

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

ol 7I oEEX ol ol '[MR 2l

. J

Figure 3-1. Select Form

Revision C Using FORTRAN to Manage Forms 3-7

Forms Managed in the Program

On Select Form, a user enters either ¢ to compute the area of a circle
or r to compute the area of a rectangle.

When a user enters r on Select Form, Rectangle Form (figure 3-2)
appears.

Compute Area of Rectangle

Type height:
Area is:

Type width:

i Ry RisackRE R RRouidRE RE
\.

J

Figure 3-2. Rectangle Form
On Rectangle Form, the user enters the lengths of the sides of the

rectangle as integers and presses the return key to have the program
compute the area.

3-8 NOS/VE Screen Formatting Revision C

Forms Managed in the Program

When a user enters c¢ on Select Form, Circle Form (figure 3-3)
appears.

Compute Area of Circle
Type radius:

Area is:

ol <7 +sCEY ol 1ol (MR 2HE s

. J/

0 Figure 3-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

Revision C Using FORTRAN to Manage Forms 3-9

Design Specification

Design Specification

In writing the example program, the programmer uses the information
the form designer listed in the following design specification:

® The names for the three forms used by the program are:

SELECT (for Select Form)
RECTAN (for Rectangle Form)
CIRCLE (for Circle Form)

® The user can call both the Rectangle Form and Circle Form from
the Select Form.

® The following variable text objects are defined on the forms:

Variable Object

Description

Select Form:
MESSAG
OBJECT
Rectangle Form:

SIDE

AREA

MESSAG
Circle Form:

RADIUS

AREA

MESSAG

3-10 NOS/VE Screen Formatting

Area for displaying error messages.

Area for user input of r or c.

Areas (two) for user input of values
for the rectangle’s sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle’s radius.

Area for returning value of
computed area.

Area for displaying error messages.

Revision C

Design Specification

® The following events are defined on the forms:

Event

Description

COMPUTE

BACK

QUIT

Revision C

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or ¢ and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

Using FORTRAN to Manage Forms 3-11

Form Definition Decks

Form Definition Decks

When the designer creates the three forms (by writing a program or
using Screen Design Facility), a form definition record is created with
each form. For the example program, the programmer copies the
following form definition decks placed by the designer on an SCU
library. The library in this example is named EXAMPLE_SOURCE_
LIBRARY.

The SELECT deck:

CHARACTER SELECT*41

CHARACTER XSELEC(41)
EQUIVALENCE (SELECT,XSELEC(1))
CHARACTER MESSAG*40

EQUIVALENCE (XSELEC(1),MESSAG)
CHARACTER OBJECT*1

EQUIVALENCE (XSELEC(41),0BJECT)

The RECTAN deck:

CHARACTER RECTAN*64

CHARACTER XRECTA(64)
EQUIVALENCE (RECTAN,XRECTA(1))
INTEGER SIDE (2)

EQUIVALENCE (XRECTA(1),SIDE(1))
INTEGER AREA

EQUIVALENCE (XRECTA(17),AREA)
CHARACTER MESSAG*40

EQUIVALENCE (XRECTA(25),MESSAG)

The CIRCLE deck:

CHARACTER CIRCLE*56

CHARACTER XCIRCL(56)
EQUIVALENCE (CIRCLE,XCIRCL(1))
REAL AREA

EQUIVALENCE (XCIRCL(1),AREA)
REAL RADIUS

EQUIVALENCE (XCIRCL(9),RADIUS)
CHARACTER MESSAG*40

EQUIVALENCE (XCIRCL(17),MESSAG)

3-12 NOS/VE Screen Formatting Revision C

Example FORTRAN Program

Example FORTRAN Program

This FORTRAN program calls the forms and executes the events
described in the previous sections. The program is in the SCU deck
named COMPUT. To run the example program, see the Examples
online manual.

PROGRAM COMPUT (OUTPUT, TAPE2=0UTPUT)
* Copy definitions for Screen Formatting subroutines.
*COPY FDP$FORTRAN_ALIASES
* Copy variables for select form.
*COPY select
INTEGER IFORM, ISFORM, ICFORM, IRFORM, ISTAT,IVSTAT
INTEGER ISX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT,IOX,I0Y
CHARACTER*31 FNAME, ENAME, ONAME, VNAME

CHARACTER*1 NORMAL, LAST

* Open all forms used by the program
* and assign form identifiers.

FNAME=“SELECT”
CALL FDOPEN (FNAME, ISFORM, ISTAT)
CALL CHECKS (“Open failed on form select’, ISTAT)

FNAME="CIRCLE"

CALL FDOPEN (FNAME, ICFORM, ISTAT)

CALL CHECKS (‘Open failed on form circle’, ISTAT)
FNAME="RECTAN"

CALL FDOPEN (FNAME, IRFORM, ISTAT)

CALL CHECKS (‘Open failed on form rectangie’, ISTAT)

* Add select form to list scheduled for display.

CALL FDADD (ISFORM, ISTAT)
CALL CHECKS (’Add failed on form select’, ISTAT)

Revision C Using FORTRAN to Manage Forms 3-13

Example FORTRAN Program

* Update screen and accept user terminal entry
* for object; display all added forms.

20 CALL FDREAD (ISTAT)
CALL CHECKS (‘Read failed on form select’, ISTAT)

* Get screen events that determine next actions.
CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME, IOCCUR, ICP, IOT, I0X, IOY,LAST,ISTAT)
CALL CHECKS (‘Get event failed on form select’, ISTAT)
IF (ENAME .NE. ‘COMPUTE’) THEN

* Stop program on QUIT or BACK event.

GO TO 30
END IF

* Transfer object variable from form to program.

VNAME = “OBJECT”’

CALL FDGETS (ISFORM, VNAME, 1, OBJECT, IVSTAT, ISTAT)
CALL CHECKS

- (’Get string variable failed on form select’, ISTAT)

* If terminal user entered invalid data, display
* error message and ask for another entry.

IF (IVSTAT .NE. 0) THEN
CALL DISMES (‘Type r or c.’, ISFORM)
GO TO 20

END IF

IF (OBJECT .EQ. “R“) THEN

3-14 NOS/VE Screen Formatting Revision C

Example FORTRAN Program

* Remove select form and compute area of rectangle.

CALL FDDEL (ISFORM, ISTAT)
CALL CHECKS (’Delete failed on form select’, ISTAT)
CALL COMPR (ENAME, IRFORM)
GO TO 25
END IF

IF (OBJECT .EQ. “C”) THEN
* Remove select form and compute area of circle.

CALL FDDEL (ISFORM, ISTAT)
CALL CHECKS (’Delete failed on form select’, ISTAT)
CALL COMPC (ENAME, ICFORM)
GO TO 25
END IF

* If terminal user entered invalid value for object,
* display error message and ask for another entry.

CALL DISMES (‘Type r or c.’, ISFORM)
GO TO 20

* Process event from rectangle form or circle form.
25 IF (ENAME .EQ. ‘QUIT’) THEN
GO TO 30
END IF

* A BACK event occurred on rectangle form or circle form;
* display select form in original state.

CALL FDRESF (ISFORM, ISTAT)
CALL CHECKS (‘Reset failed on form select’, ISTAT)

CALL FDADD (ISFORM, ISTAT)

CALL CHECKS (“Add failed on form select’, ISTAT)
GO TO 20

Revision C Using FORTRAN to Manage Forms 3-15

Example FORTRAN Program

* Close all forms.

30 CALL FDCLOS (ISFORM, ISTAT)
CALL CHECKS (’Close failed on form select’, ISTAT)

CALL FDCLOS (ICFORM, ISTAT)
CALL CHECKS (‘Close failed on form circle’, ISTAT)

CALL FDCLOS (IRFORM, ISTAT)
CALL CHECKS (’Close failed on form rectangie’, ISTAT)

STOP
END

SUBROUTINE CHECKS (MESSAG, ISTAT)
* Check Screen Formatting subroutine call status.
INTEGER ISTAT
CHARACTER*(*) MESSAG
5 FORMAT (1X, A, ‘, status = ’,14)
IF (ISTAT .NE. 0) THEN
WRITE (2,5) MESSAG, ISTAT
STOP
END IF

RETURN
END

SUBROUTINE DISMES (MESSAG, IFORM)

3-16 NOS/VE Screen Formatting Revision C

Exzample FORTRAN Program

* Display message for variable status errors.
. INTEGER IFORM, IVSTAT, ISTAT
CHARACTER*31 VNAME
CHARACTER*(*) MESSAG
*COPY FDP$FORTRAN_ALIASES
VNAME =“MESSAG”
CALL FDREPS (IFORM, VNAME, 1, MESSAG, IVSTAT, ISTAT)
CALL CHECKS (“Replace string failed on message’, ISTAT)
RETURN
END
SUBROUTINE COMPC (ENAME, ICFORM)
* Copy subroutine to compute area for circle.
*COPY FDP$FORTRAN_ALIASES
* Copy variables for circle form.
*COPY circle
‘ INTEGER IFORM, ISTAT,IVSTAT, ICFORM
INTEGER ISX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT, IOX,IOY
CHARACTER*31 ENAME, ONAME, VNAME

CHARACTER*1 NORMAL, LAST

* Display circle form in original state.

CALL FDRESF (ICFORM, ISTAT)
CALL CHECKS (“Reset failed on form circle’, ISTAT)

CALL FDADD (ICFORM, ISTAT)
CALL CHECKS (“Add failed on form circie’, ISTAT)

',

Revision C Using FORTRAN to Manage Forms 3-17

Example FORTRAN Program

* Update screen and get radius from terminal user entry.

5 CALL FDREAD (ISTAT)
CALL CHECKS (’Read failed on form circle “, ISTAT) .

CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME, IOCCUR, ICP,IOT,IOX,IOY,LAST,ISTAT)
CALL CHECKS (‘Get event failed on form circle’, ISTAT) .

IF (ENAME .NE. ‘COMPUTE’) THEN
CALL FDDEL (ICFORM, ISTAT)
CALL CHECKS (‘Delete failed on form circle’, ISTAT)
RETURN

END IF

* Transfer terminal user entry for radius to program.

VNAME = ‘RADIUS’
CALL FDGETR (ICFORM, VNAME, 1, RADIUS, IVSTAT, ISTAT)
CALL CHECKS
-(’Get real variable failed on form circle’, ISTAT)
IF (IVSTAT .NE. 0) THEN
CALL DISMES (‘Type valid value for radius.‘, ICFORM)

GO TO 5
END IF ‘
* Compute area of circle and display it.
AREA=3. 15*(RADIUS**2)
VNAME = “AREA’
CALL FDREPR (ICFORM, VNAME, 1, AREA, IVSTAT, ISTAT)
CALL CHECKS

-(‘Replace real variable failed on form circle’, ISTAT)
IF (IVSTAT .NE. 0) THEN

.

3-18 NOS/VE Screen Formatting Revision C

Example FORTRAN Program

* Area value could not be displayed using output format
* defined for form. Revise form or program to accommodate
* size of number.
CALL DISMES (‘Type valid value for radius.’, ICFORM)
GO TO 5
END IF
* Blank error message in case previously displayed.
CALL DISMES (“ “, ICFORM)

* Process next user entry.

GO T0 5
END

SUBROUTINE COMPR (ENAME, IRFORM)
* Copy subroutine to compute area of rectangle.
*COPY FDP$FORTRAN_ALIASES
* Copy variables for rectangie form.
*COPY rectan
INTEGER IFORM, ISTAT,IVSTAT,IRFORM
INTEGER 1SX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT, IOX,IOY
CHARACTER*31 ENAME, ONAME, VNAME
CHARACTER*1 NORMAL, LAST

* Display rectangle form in original state.

CALL FDRESF (IRFORM, ISTAT)
CALL CHECKS (‘Reset failed on form rectangle’, ISTAT)

CALL FDADD (IRFORM, ISTAT)
CALL CHECKS (’Add failed on form rectangle’, ISTAT)

Revision C Using FORTRAN to Manage Forms 3-19

Example FORTRAN Program

* Update screen and get terminal user entry
* for rectangle height and width.

5 CALL FDREAD (ISTAT)
CALL CHECKS (‘Read failed on form rectangle’, ISTAT)

CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME, IOCCUR, ICP, IOT,IOX, IOY,LAST,ISTAT)
CALL CHECKS (‘Get event failed on form rectangle’, ISTAT)

* If abnormal event (BACK or QUIT) occurs, return to caller.

IF (ENAME .NE. ‘COMPUTE’) THEN
CALL FDDEL (IRFORM, ISTAT)
CALL CHECKS (’Delete failed on form rectangle’, ISTAT)
RETURN

END IF

* Transfer height value from form to program.

VNAME = “SIDE’

CALL FDGETI (IRFORM, VNAME, 1,SIDE (1), IVSTAT, ISTAT)
CALL CHECKS
-(’Get integer variable failed on form rectangle’, ISTAT)

* If data invalid, move cursor to height value
* and display error message.

IF (IVSTAT .NE. 0) THEN
CALL FDSETC (IRFORM, VNAME, 1, 1, ISTAT)
CALL CHECKS
-(’Set cursor failed on form rectangle’, ISTAT)
CALL DISMES (‘Type valid value for height.’, IRFORM)
GO TO 5
END IF

* Transfer width value from form to program.

CALL FDGETI (IRFORM, VNAME, 2, SIDE(2), IVSTAT, ISTAT)
CALL CHECKS
-(’Get integer variable failed on form rectangie’, ISTAT)

3-20 NOS/VE Screen Formatting Revision C

Example FORTRAN Program

* If data invalid, move cursor to width value and display
* error message.

IF (IVSTAT .NE. 0) THEN
CALL FDSETC (IRFORM, VNAME, 2, 1, ISTAT)
CALL CHECKS
-(’Set cursor failed on form rectangle’, ISTAT)
CALL DISMES (‘Type valid value for width.’, IRFORM)
GO TO 5
END IF

* Compute area of rectangle and display it.
AREA=SIDE(1)*SIDE(2)
VNAME = “AREA’
CALL FDREPI (IRFORM, VNAME, 1, AREA, IVSTAT, ISTAT)
CALL CHECKS
-(’Replace integer variable failed on form rectangle’,
-ISTAT)
IF (IVSTAT .NE. 0) THEN
* Area value could not be displayed using output format

* defined for form. Revise form or program to accommodate
* size of number.

CALL DISMES (‘Format cannot display area.’, IRFORM)
GO TO 5
END IF
* Blank error message in case previously displayed.
CALL DISMES (° “, IRFORM)

* Process next user entry.

GO TO 5
END

Revision C Using FORTRAN to Manage Forms 3-21

Expanding and Compiling a Program

Expanding and Compiling a Program

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code.3

To expand and compile a program maintained in SCU decks:
1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE_SOURCE_LIBRARY.)

PROC fortran_compile_deck, forcd (

deck, d: name=$required

status : var of status = $optional

)

source_code_utility
use_library base=example_source_library result=$null
expand_deck deck=$value(deck) ..
compile=$iocal.compile ..
alternate_base=$system.cybil.osf$program_interface

quit

fortran input=$local.compile ..
list=¢$local.listing runtime_checks=all
debug_aids=dt

3. For information on SCU, see the NOS/VE Source Code Management manual.

3-22 NOS/VE Screen Formatting Revision C

Expanding and Compiling a Program

create_object_library
add_module library=example_object_1library

combine_module 1ibrary=$local.1go
. generate_library library=example_object_library.$next
quit

PROCEND fortran_compile_deck

To use the procedure, put it on library EXAMPLE_OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the
procedure by entering:

/fortran_compile_deck deck=fortran_compute_object_area

The compiled program is now also on library EXAMPLE_OBJECT_
LIBRARY.

For more information on writing and using procedures, see the
NOS/VE System Usage manual.

Revision C Using FORTRAN to Manage Forms 3-23

Helping the User Start the Application

Helping the User Start the Application

The complete application consists of your program and the forms .
created by the designer. To integrate the forms with your program,
you must:

® (Create a procedure that gives users access to the object library
containing the forms. .

® Ensure that the user’s terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

® Ensure that users know how to start the application.

Creating a User Procedure
To give the user access to the object library containing the forms:

1. Write a NOS/VE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program.

For example, the following procedure executes the application that .
uses the starting procedure COMPUT on library EXAMPLE _
OBJECT_LIBRARY. The other libraries accessed by the program are
$SYSTEM.FDF$LIBRARY and $SYSTEM.TDU.TERMINAL_

DEFINITIONS. Users must have these libraries available in order for

the program to call the Screen Formatting subroutines.

PROC fortran_compute_area, forca (
status : var of status = optional

)

execute_task ..
library=(example_object_library,$system.fdf$library,..
$system.tdu.terminal_definitions) ..
start ing_procedure=comput

PROCEND fortran_compute_area

3-24 NOS/VE Screen Formatting Revision C

Creating a User Prolog

Creating a User Prolog

To ensure that the users’ terminal environment is set up properly to
use the forms, make sure they set the following terminal
characteristics before they execute the procedure:

Characteristic Description

Terminal model Identifies the terminal to NOS/VE.

Attention Provides a character users can enter to interrupt
character the application.
Hold messages Tells the network to hold all network messages

until the user stops the application.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

® Identifies a Digital Equipment Corporation VT220 terminal to the
system.

® (Chooses the exclamation point as a way to interrupt the program.
® Holds all messages from a NAMVE/CDCNET network.

® Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220 ..
attention_character="1" ..
status_action=hold
change_term_conn_defaults attention_character_action=1
change_connect ion_attributes terminal_file_name=input aca=1
change_connection_attributes terminal_file_name=output aca=1
change_connection_attributes terminal_file_name=command aca=1

For a further explanation of how to interrupt a screen application
during an interactive session, and what commands to use for networks
other than NAMVE/CDCNET, see the NOS/VE System Usage manual.

Revision C Using FORTRAN to Manage Forms 3-25

Starting the Application

Starting the Application
To start the application, the users enter:

/create_command_1list_entry e=example_object_1library
/fortran_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_command_list_entry e=example_object_1library

3-26 NOS/VE Screen Formatting Revision C

FORTRAN Subroutine Calls for Interacting with Forms

FORTRAN Subroutine Calls for Interacting
with Forms

The following sections describe the FORTRAN subroutine calls to
Screen Formatting modules. For each subroutine, there is a purpose
description, input format, list of parameters and their types, and
pertinent remarks.

The FORTRAN program calls Screen Formatting subroutines that
allow a user to interact with forms. These subroutines are external
routines that reside on the library called $SYSTEM.FDF$LIBRARY.
This library must be in the user’s program library list in order to
execute the program.

A subroutine name is an alias that is defined by the deck
FDP$FORTRAN_ALIASES. The SCU directive *COPY
FDP$FORTRAN_ALIASES must be included for each application
subroutine that calls a Screen Formatting subroutine. See appendix F
for a list of aliases.

Revision C Using FORTRAN to Manage Forms 3-27

Adding a Form

Adding a Form

Purpose FDADD schedules a form for display on the application ,
user’s screen. .

Format CALL FDADD (iform, istat)

Parameters iform {input} l

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifier is invalid.

36 System error occurred.

39 Form is pushed. ‘
70 Form is already added. '
131 Form is too large for screen.

145 Data value is bad.

Include the following type statement:
INTEGER istat

Remarks ® When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting displays the added form
on the terminal screen. The added form is placed on
top of other forms occupying the same area on the
screen.

® Before you add a form, you must open it.

® You cannot add a pushed form. ‘

3-28 NOS/VE Screen Formatting Revision C

Changing Table Size

Changing Table Size

Purpose

Format

Parameters

Revision C

FDCHAT changes the size of the table during program
execution.

CALL FDCHAT (iform, tname, isize, istat)

iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

tname {input}

The name of the table to change in size. Include the
following type statement:

CHARACTER*31 tname
isize {input}
The size of the table. While this subroutine is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one

time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

Include the following type statement:

INTEGER isize

Using FORTRAN to Manage Forms 3-29

Changing Table Size

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned: ‘

Value Meaning

0 Routine completed successfully.

7 No space is available. ‘
9 Form identifier is invalid.

37 Table name is invalid.

39 Form is pushed.

40 Table name is unknown.
145 Data value is bad.

151 Table size is invalid.

Include the following type statement:
INTEGER istat
Remarks ¢ The table must be present in an open form.

® The size limitation remains in effect until the next
time you call the FDCHAT subroutine.

® The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (table size is invalid).

Examples The following examples describe how changing the size of
a table affects the application user. On the form, the
table’s specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

® If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

® If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page. .

3-30 NOS/VE Screen Formatting Revision C

Closing a Form

Closing a Form

Purpose FDCLOS releases resources used to process a form and
. deletes the form from the list scheduled for display.

Format CALL FDCLOS (iform, istat)
. Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.
. 39 Form is pushed.
145 Data value is bad.
Include the following type statement:
INTEGER istat

Remarks ® When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting removes the
closed form from the terminal screen as a result of
calling this procedure.

® Before you can close a form, you must open it.

® You cannot close a pushed form.

Revision C Using FORTRAN to Manage Forms 3-31

Combining Forms

Combining Forms

Purpose FDCOM combines a form with a previously added form
and schedules the combined form for display on the
terminal screen.

Format CALL FDCOM (iaform, icform, istat)

Parameters iaform {input}
The identifier for this instance of the previously added
form. Include the following type statement:
INTEGER iform

icform {input}

The identifier for the form you are combining with the
previously added form. Include the following type
statement:

INTEGER icform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.

9 Form identifer is invalid.

39 Form is pushed.

70 Form is already added.

131 Form is too large for screen.
145 Data value is bad.

150 Form is already combined.
152 Form is not added.

Include the following type statement:
INTEGER istat

3-32 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Combining Forms

You cannot combine a pushed form.

The combined form inherits the event definitions of
the previously added form.

Before you combine a form with a previously added
form, you must open both forms.

When the programs calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
combined form. The combined form is placed on top of
other forms occupying the same area on the screen.

When the application user executes an event to return
to the program normally, Screen Formatting updates
all program variables associated with both the added
and combined forms.

To combine several forms with a previously added
form, call this subroutine more than once.

Using FORTRAN to Manage Forms 3-33

Deleting a Form

Deleting a Form

Purpose FDDEL deletes the form from the list of forms scheduled ‘
for display. .

Format CALL FDDEL (iform, istat)

Parameters iform {input} .

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.
39 Form is pushed. ’
54 Form is not scheduled for display.
145 Data value is bad.
Include the following type statement:
INTEGER istat

3-3¢ NOS/VE Screen Formatting Revision C

Remarks

Revision C

Deleting a Form

When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting removes the
deleted form from the terminal screen and replots any
forms uncovered by the deleted form.

When you add a form (FDADD) again that you
previously deleted, the data in the form is retained.

Before you delete a form, you must open it.
You cannot delete a pushed form.

If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

When you delete a combined form, only that form is

deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

Using FORTRAN to Manage Forms 3-35

Getting an Integer Variable

Getting an Integer Variable

Purpose

Format

Parameters

FDGETI gets the value the user entered on a form for an
integer variable and transfers it to the program.

CALL FDGETI (iform, vname, ioccur, ivar, ivstat,
istat)
iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to get and transfer to the
program. Include the following type statement:

CHARACTER*31 vname

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

ivar {output}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following type statement:

INTEGER ivar

3-36 NOS/VE Screen Formatting Revision C

Getting an Integer Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values can be returned:

Value Meaning

0 No error occurred on the variable.

3 The user entered data that is not a valid
integer.

5 The user entered data that does not match the
defined program data type.

7 User entered an integer that is too large.
Include the following type statement:
INTEGER ivstat

istat {output}

The variable that indicates the subroutine results. The
following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.

9 Form identifer is invalid.
11 Variable name is unknown.

36 System error exists.

38 Variable name is invalid.
91 Occurrence is unknown.
145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:
INTEGER istat

Revision C Using FORTRAN to Manage Forms 3-37

Getting an Integer Variable

Remarks ® Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the
form, the program returns the initial value specified .
by the form designer.

® If the form designer specifies data validation rules and
error processing to display an error message or form, .
the program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

3-38 NOS/VE Screen Formatting Revision C

Getting the Next Event

Getting the Next Event

Purpose

Format

Parameters

Revision C

FDGETE gets the event resulting from the most recent
FDREAD subroutine.

CALL FDGETE (ename, normal, isx, isy, iform, ifx,
ify, iet, oname, ioccur, icp, iot, iox, ioy, last, istat)
ename {output}

A data name to receive the application user’s event.
Include the following type statement:

CHARACTER*31 ename

normal {output}

A data name to receive the event normal indication. If
the event is normal, T is returned. If the event is not
normal, F is returned. Include the following type
statement:

CHARACTER*1 normal

isx {output}

A data name to receive the x position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the x position increases by 1 for each
character you count from left to right. Include the
following type statement:

INTEGER isx

isy {output}

A data name to receive the y position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the y position increases by 1 for each
character you count from top to bottom. Include the
following type statement:

INTEGER isy

iform {output}

The variable that returns the instance of the form for the
event. Include the following type statement:

INTEGER iform

Using FORTRAN to Manage Forms 3-39

Getting the Next Event

3-40

ifx {output}

A data name to receive the x position of the event on the
form. The character in the upper left corner of the form
is 1; the x position increases by 1 for each character you
count from left to right. Include the following type
statement:

INTEGER ifx

ify {output}

A data name to receive the y position of the event on the
form. The character in the upper left corner of the form
is 1; the y position increases by 1 for each character you
count from top to bottom. Include the following type
statement:

INTEGER ify

iet {output}
The event type. The following values are possible:

Value Meaning

0 The event occurred on an area of a form
containing no object.

1 The event occurred on a form object.
Include the following type statement:
INTEGER iet

oname {output}

When event type is 1, the variable returns a value giving
the name of the object where the event occurred. Include
the following type statement:

CHARACTER*31 oname

ioccur {output}

When event type is 1, the variable returns a value giving
the occurrence of the object name. Include the following
type statement:

INTEGER ioccur

NOS/VE Screen Formatting Revision C

Revision C

Getting the Next Event

icp {output}

When event type is 1, the variable returns a value giving
the character position within the object where the event
occurred. The first character position is 1. Include the
following type statement:

INTEGER icp

iot {output}

When event type is 1, the variable indicates the type of
object on which the event occurred. The following values
are possible:

Value Object Type

Box
Constant text
Constant box
Line
Variable text
Variable box

DUTWN = O

Include the following type statement:
INTEGER iot

iox {output}

When event type is 1, the value returned is the x origin
position of the object. The character in the upper left
corner of the form is 1; the x position increases by 1 for
each character you count from left to right. Include the
following type statement:

INTEGER iox

ioy {output}

When event type is 1, the value returned is the y origin
position of the object. The character in the upper left
corner of the form is 1; the y position increases by 1 for
each character you count from top to bottom. Include the
following type statement:

INTEGER ioy

Using FORTRAN to Manage Forms 3-41

Getting the Next Event

Remarks

last {output}

Indicates whether this is the last event The following
values are possible:

Value Meaning

T This is the last event.
F This is not the last event.
Include the following type statement:
CHARACTER*1 last

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
145 Data value is bad.
Include the following type statement:
INTEGER istat

The FDREAD subroutine deletes existing events. If the
event is normal, Screen Formatting updates the variables
in the added and combined forms containing the event.
Later, you can request the transfer of these variables to
program storage. If the event is abnormal, Screen
Formatting does not update or validate variables.

3-42 NOS/VE Screen Formatting Revision C

Getting a Real Variable

Getting a Real Variable

Purpose

Format

Parameters

Revision C

FDGETR gets a value the user entered on a form for a
real variable and transfers it to the program.

CALL FDGETR (iform, vname, ioccur, var, ivstat,
istat)
iform {input}
The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}
The name of the variable to get. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}
The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

var {output}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following type statement:

REAL var

Using FORTRAN to Manage Forms 3-43

Getting a Real Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning
0 No error occurred on the variable.
2 The user entered data that is within the range

of real numbers defined for the variable.

The user entered data that does not correspond
to the defined data type.

7 The user entered a number too large to be
converted to the defined real program type.

9 The user entered an exponent that is too large.

10 User entered an exponent that is too small.

11 User entered an indefinite number.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning
0 Routine completed successfully.
7 No space is available.
9 Form identifier is invalid.
11 Variable name is unknown.
36 System error exists.
38 Variable name is invalid.
91 Occurrence is unknown.
145 Data value is bad.
147 Variable type is wrong.
Include the following type statement:

INTEGER istat

3-44 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Getting a Real Variable

Before you get a real variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using FORTRAN to Manage Forms 3-45

Getting a Record

Getting a Record

Purpose FDGET transfers the values of the form record to the
program record.

Format CALL FDGET (iform, record, ivstat, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

record {output}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the type statements in this

record. It is the program work area for the variables used

on the form.

ivstat {output}

the condition that gives you the status of the variable.
The following values are possible:

Value

Meaning

0

1

3-46 NOS/VE Screen Formatting

No error occurred on the variable.

The user entered data that does not match the
strings defined for the variable.

The user entered data that is not within the
range of real numbers defined for the variable.

The user entered data that is not within the
range of integer numbers defined for the
variable.

The user entered data that does not correspond
to the defined data type.

User entered a number that is too large to be
converted to the defined real or integer data

type.

The user entered an exponent that is too large.

Revision C

Remarks

Revision C

Getting a Record

Value Meaning

10 The user entered an exponent that is too small.
11 The user entered an indefinite number.

12 The user entered an infinite number.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
9 Form identifer is invalid.

14 Work area is invalid.

36 System error exists.

52 Form has no variable.

145 Data value is bad.

Include the following type statement:

INTEGER istat

Before you get a record for a form, you must open the
form. If you get the record after opening the form and
before reading or replacing the record, the program
returns the initial value specified by the form
designer.

If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using FORTRAN to Manage Forms 3-47

Getting a String Variable

Getting a String Variable

Purpose

Format

Parameters

3-48 NOS/VE Screen Formatting

FDGETS gets a value the user entered on a form for a
string variable and transfers it to the program.

CALL FDGETS (iform, vname, ioccur, cvar, ivstat,
istat)

iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to get. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}

The occurrence of the variable name. Include the following

type statement:
INTEGER ioccur

cvar {output}

The variable that Screen Formatting generates
automatically in the form definition record. The form

definition record defines the variable. If you do not want

to use the automatically generated variable, include the

following type statement (n is the number of characters in

the variable):

CHARACTER*n

Revision C

Getting a String Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning
0 No error occurred on the variable.
1 The user entered data that does not match the
strings defined for variable.
15 The storage length of the parameter variable is

not long enough.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value

Meaning

0
7
9
11

36
38
91
145
147

Routine completed successfully.
No space is available.

Form identifer is invalid.
Variable name is unknown.

System error exists.
Variable name is invalid.
Occurrence is unknown.
Data value is bad.
Variable type is wrong.

Include the following type statement:

INTEGER istat

Revision C

Using FORTRAN to Manage Forms 3-49

Getting a String Variable

Remarks

® Before you get a string variable, you must open the

form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

3-560 NOS/VE Screen Formatting Revision C

Opening a Form

Opening a Form

Purpose

Format

Parameters

Revision C

FDOPEN locates a form and prepares it for use by the
program.

CALL FDOPEN (fname, iform, istat)

fname {input}

The name of the form you want to open. Include the
following type statement:

CHARACTER*31 fname

iform {input-output}

The form identifier established for the form. Other Screen
Formatting subroutines use this identifier when
referencing the form. Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
5 Form name is unknown.

7 No space is available.

9 Form indentifier is invalid.

26 Form name is invalid.
36 System error exists.
100 Terminal is not defined.
136 Form is not ended.

139 Form is already open.
141 Form requires conversion.
145 Data value is bad.

Include the following type statement:
INTEGER istat

Using FORTRAN to Manage Forms 3-51

Opening a Form

Remarks

® Screen Formatting locates a form as follows:

If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

If the form name is not blank, Screen Formatting
searches the list of ended dynamically created
forms.

If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object code libraries.
(You specify the order in which Screen Formatting
searches the list using the NOS/VE command
CREATE_COMMAND_LIST_ENTRY).

® Executing FDP$XOPEN_FORM does not display the
form on the screen.

® The form identifier that FDOPEN returns identifies
the instance of open for a form. Forms dynamically
created have only one instance of open. Forms stored
on object code libraries can have more than one
instance of open. For each instance of open, Screen
Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

3-52 NOS/VE Screen Formatting Revision C

Popping a Form

Popping a Form

Purpose FDPOP deletes forms scheduled (added or combined) since
. the last FDPUSH subroutine.

Format CALL FDPOP (istat)

. Parameters istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
42 No forms are available to pop.
145 Data value is bad.
Include the following type statement:
INTEGER istat

Remarks Events associated with the last list of pushed forms
become active.

Revision C Using FORTRAN to Manage Forms 3-53

Positioning a Form

Positioning a Form

Purpose FDPOS schedules moving a form to a new location. Using
this subroutine, you can define a form at one location and
display it at another location, or you can move a form
from where it is currently displayed to a new location.

Format CALL FDPOS (iform, isx, isy, istat)

Parameters iform {input}

The form identifier established when the form was opened.
Include the following type statement:

INTEGER iform

isx {input}

The x position on the screen. The character position in
the upper left corner of the screen is 1, and the x position
increases by 1 for each character you count from left to
right. Include the following type statement:

INTEGER isx

isy {input}

The y position on the screen. The character position in
the upper left corner of the screen is 1, and the y position
increases by 1 for each character you count from top to
bottom. Include the following type statement:

INTEGER isy

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.

9 Form identifer is invalid.
36 System error exists.

39 Form is pushed.

54 Form is not scheduled

131 Form is too large for screen.
145 Data value is bad.

3-54 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Positioning a Form

Include the following type statement:
INTEGER istat

® When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the

form on the screen at the position specified in the call
to FDPOS.

® If you call this subroutine while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form lays on top of
any other form occupying the same area on the screen.

® If you call this procedure before the form is displayed,
the form is displayed at the specified location.

® Before you position a form, you must open it.

® You cannot position a pushed form.

Using FORTRAN to Manage Forms 3-55

Pushing a Form

Pushing a Form

Purpose

Format

Parameters

Remarks

FDPUSH deactivates the events associated with forms
scheduled for display (added or combined) since the last
push call.

CALL FDPUSH (istat)

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
46 No forms are available to push.

145 Data value is bad.

Include the following type statement:

INTEGER istat

Events associated with these forms are not passed to
the program.

A program cannot change or close a pushed form.

Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

This subroutine causes Screen Formatting to record
added and combined forms so you can return to them
later.

3-56 NOS/VE Screen Formatting Revision C

Reading Forms

Reading Forms

y Purpose FDREAD updates the terminal screen and accepts input
' from the application user.

Format CALL

FDREAD (istat)

‘ Parameters istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning
0 Routine completed successfully.
1 Terminal is disconnected.
36 System error exists.
104 No forms to read.
142 No events are active.
145 Data value is bad.

Include the following type statement:

INTEGER istat

‘ Remarks ® A call to FDREAD:

Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDREAD or FDSHOW call, it
displays them for the first time.

Removes from the screen the forms you deleted
since the last FDREAD or FDXSHOW call.

Updates on the screen the variables replaced since
the last FDREAD or FDSHOW call.

Updates on the screen the objects for which display
attributes were set or reset since the last FDREAD
or FDSHOW call.

® Events not retrieved with the FDGETE subroutine are
deleted before any input is accepted from the user.

® The FDREAD subroutine does not execute unless the
forms scheduled for display contain at least one active
event.

Revision C

Using FORTRAN to Manage Forms 3-57

Replacing an Integer Variable

Replacing an Integer Variable

Purpose

Format

Parameters

FDREPI transfers a program integer variable to Screen
Formatting.

CALL FDREPI (iform,vname,ioccur,ivar,ivstat,istat)

iform {input}
The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}
The name of the variable to replace. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}
The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

ivar {input}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following type statement:

INTEGER ivar

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

3 The program supplied a variable that is not
within the range of integer numbers defined for
the variable.

3-58 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Value

Replacing an Integer Variable

Meaning

14

The program supplied a value that is too large
for the form variable.

The output format defined for the variable
cannot cannot output the variable.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

7 No space is available.

9 Form indentifer is invalid.
11 Variable name is unknown.
36 System error exists.

38 Variable name is invalid.
39 Form is pushed.

91 Occurrence is unknown.
145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

® When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting replaces the integer
variable on the terminal screen.

® Before you replace an integer variable, you must open
the form on which it is replaced.

® You cannot replace an integer variable for a pushed

form.

® If the integer variable is not valid, it is not replaced.

Using FORTRAN to Manage Forms 3-59

Replacing a Real Variable

Replacing a Real Variable

Purpose FDREPR transfers a program real variable to Screen
Formatting. .
Format CALL FDREPR (iform, vname, ioccur, var, ivstat,
istat)
Parameters iform {input} .

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}
The name of the variable to replace. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}
The occurrence of the variable name. Include the following
type statement:
INTEGER ioccur .

var {input}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following type statement:

REAL var

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

2 The value the program supplied is not within the
range of real numbers defined for the variable.

3-60 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Value

Replacing a Real Variable

Meaning

14

The value the program supplied is too large for
the for variable.

The output format defined for the variable
cannot output the variable.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

7 No space is available.

9 Form identifer is invalid.
11 Variable name is unknown.
36 System error exists.

38 Variable name is invalid.
39 Form is pushed.

91 Occurrence is unknown.
145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

® When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting replaces the real
variable on the terminal screen.

® Before you replace a real variable, you must open the
form on which it is replaced.

® You cannot replace a real variable for a pushed form.

® If the real variable is not valid, it is not replaced.

Using FORTRAN to Manage Forms 3-61

Replacing a Record

Replacing a Record

Purpose FDREP transfers values of program variables to Screen
Formatting for later display on a form.

Format CALL FDREP (iform, record, ivstat, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

record {input}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the type statements in this
record. It is the program work area for the variables used
on the form.

ivstat {output}
The condition that gives you the status of the variable.

Value Meaning

0 No error occurred on the variable.
1 The program supplied an invalid string variable.
2 The program supplied an invalid real variable.

3 The program supplied an invalid integer
variable.

7 The program supplied a number too large to be
converted to the form variable size.

9 The program supplied an exponent that is too
large.

10 The program supplied an exponent that is too
small.

11 The program supplied an indefinite number.

3-62 NOS/VE Screen Formatting Revision C

Replacing a Record

Value Meaning

12 The program supplied an infinite number.

14 The output format defined for the variable
cannot output the variable.

Include the following type statement:
INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifer is invalid.

014 Work area is invalid.
39 Form is pushed.
52 Form has no variable.

145 Data value is bad.
Include the following type statement:
INTEGER istat

Remarks ® When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting replaces the
variables on the terminal screen with the values
stored in Screen Formatting.

® Before you replace a record, you must open the form
on which the variables are replaced.

® You cannot replace a record for a pushed form.

Revision C Using FORTRAN to Manage Forms 3-63

Replacing a String Variable

Replacing a String Variable

Purpose FDREPS transfers a program string variable to Screen
Formatting. .
Format CALL FDREPS (iform, vname, ioccur, cvar, ivstat,
istat)
Parameters iform {input} 9

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}
The name of the variable to replace. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}
The occurrence of the variable name. Include the following
type statement:
INTEGER ioccur ‘

cvar {input}

The string variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include the
following type statement (n is the number of characters in
the variable):

CHARACTER*n

3-64 NOS/VE Screen Formatting Revision C

Replacing a String Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

1 The program supplied a variable that does not
match the strings defined for the variable.

Include the following type statement:
INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifier is invalid.

11 Variable name is unknown.
36 System error exists.
38 Variable name is invalid.

39 Form is pushed.

91 Occurrence is unknown.
145 Data value is bad.

147 Variable type is wrong.

Include the following type statement:
INTEGER istat

Revision C Using FORTRAN to Manage Forms 3-65

Replacing a String Variable

Remarks ® When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting replaces the
string variable on the terminal screen.

® Before you replace a string variable, you must open
the form on which it is replaced.

® You cannot replace a string variable for a pushed
form.

® If the string variable is not valid, it is not replaced.

® If the form specifies that the data must be in upper
case, Screen Formatting converts it to upper case
before storing the data in the form.

3-66 NOS/VE Screen Formatting Revision C

Resetting 2 Form

Resetting a Form

Purpose

Format

Parameters

Remarks

Revision C

FDRESF resets the form to the state specified by the
form definition.

CALL FDRESF (iform, istat)

iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifier is invalid.
36 System error exists.
39 Form is pushed.
145 Data value is bad.
Include<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>