
NOS/VE
Screen Formatting
Usage

60488813 (S 2) CONTl\.OL DATA

CONTROL DATA CORPORATION
Technology and Publications Div
4201 North Lexington Avenue
St. Paul, MN 55126-6198

Title: NOS/VE Screen Formatting
Publication No.: 60488813
Revision: C
Date: April 1988

REASON FOR CHANGE:

This manual reflects the release of Screen Formatting under
NOS/VE Version 1.3.1, PSR Level 700.

CDC NOS/VE Screen Formatting
60488813 c

NOS NE

Screen Formatting

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60488813

Manual History

System PSR Product
Revision Version Level Version Date

A 1.2.1 670 1.0 December 1986

B 1.2.2 678 1.1 April 1987

c 1.3.1 700 4.0 April 1988

This manual reflects the release of Screen Formatting under NOSNE
Version 1.3.1, PSR Level 700.

This revision documents the following new features for managing
forms using COBOL, CYBIL, and FORTRAN:

• Changing the size of a table.

• Combining forms.

• Setting line mode.

This revision also documents the following new features for creating
forms using CYBIL:

• Converting to program and screen variables.

• Creating and displaying help and error forms.

• Creating and displaying help and error messages.

The information in this manual is reorganized and rewritten. Change
bars mark only the technical changes.

This edition obsoletes all previous editions.

©1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 NOS/VE Screen Formatting Revision C

Contents

e About This Manual 5 Helping the User Start
the Application. . . . 3-24

Audience 5 FORTRAN Subroutine
The NOS/VE User Calls for Interacting

Manual Set 6 with Forms 3-27
Conventions 8
Submitting Comments 9 Using CYBIL to Manage
CYBER Software Support Forms 4-1

Hotline 9
Writing a Program to

Use Forms 4-1
Introduction to Screen Expanding and Formatting 1·1 Compiling a Program . 4-22

What Is Screen Helping the User Start
Formatting? 1-1 the Application 4-24

Example of Creating and CYBIL Procedure Calls
Managing a Form. 1-6 for Interacting with

Coordinating Tasks Forms 4-27
Using a Design
Specification 1-10 Using CYBIL Procedures

e Summary of the Process 1-11 to Create Forms. . 5-1

What Is a Form? . 5-1
Using COBOL to Manage What a Form Can Forms 2·1 Contain 5-2

Writing a Program to How a Form Is Created 5-14
Use Forms 2-1 Data Validation

Expanding and Capabilities 5-15
Compiling a Program . 2-28 Cursor Positioning on

Helping the User Start the Form 5-16
the Application. 2-30 Instructions for

COBOL Subroutine Calls Designing Forms. 5-17
for Interacting with Rectangle Form
Forms 2-33 Program 5-30

Defining Attributes for a
Using FORTRAN to Form 5-37

e Manage Forms 3·1 CYBIL Screen
Formatting Procedures. 5-85

Writing a Program to
Use Forms 3-1

Expanding and Glossary A-1

e Compiling a Program . 3-22

Revision C Contents 3

Related Manuals B-1 FORTRAN Call

Ordering Printed
Definitions F-1

Manuals B-1 e Accessing Online Accessing Online
Manuals B-1 Examples G-1

Accessing Examples by
Screen Formatting and Name or by Manual. . G-2 e Terminal Definitions . .. C-1 Searching for Examples

by Command or

COBOL Parameter
Procedure Name G-3

Definitions D-1 Viewing, Copying, and
Printing an Example . G-4

CYBIL Constants and
Executing an Example . G-4

Types ... E-1 Using Function Keys
and Directives . G-5

Constants E-1
Types .. E-3 Index Index-1

4 NOS/VE Screen Formatting Revision C

About This Manual

This manual describes the CONTROL DATA® Screen Formatting
application for use under the CDC® Network Operating
SystemNirtual Environment (NOSNE).

Audience
.The first chapter of this manual describes Screen Formatting in a
manner that does not require knowledge of programming.

The remainder of this manual is directed to application programmers
who want to create forms with CYBIL programs and manage them by
writing COBOL, FORTRAN, or CYBIL programs that use Screen
Formatting. You need knowledge of these programming languages, as
well as some knowledge of NOSNE and the System Command
Language (SCL) as presented in the Introduction to NOSNE manual.

The NOSNE Screen Design Facility manual describes a screen
interface you can use for creating forms using Screen Formatting that
requires no programming knowledge.

Revision C About This Manual 5

The NOSNE User Manual Set

This manual is part of a set of user manuals that describe the
command interface to NOS/VE. The descriptions of these manuals
follow:

Introduction to NOS/VE

Introduces NOS/VE and SCL to users who have no previous e
experience with them. It describes, in tutorial style, the basic
concepts of NOS/VE: creating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOS/VE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOS/VE.

NOS/VE System Usage

Describes the command interface to NOS/VE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online
documentation, file and catalog management, job management, tape A
management, and terminal attributes. W

NOS/VE File Editor

Describes the EDIT_FILE utility used to edit NOS/VE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility.

NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOSNE. Program
execution is described in detail. Topics include loading a program,

6 NOSNE Screen Formatting Revision C

program attributes, object files and modules, message module
capabilities, ·code sharing, segment types and binding, ring
attributes, and performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File
Management Utility (FMU), and keyed-file utilities. Sort/Merge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create ~eyed files (such as
indexed-sequential files).

NOSNE Terminal Definition

Describes the DEFINE_ TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOS/VE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision C About This Manual 7

Conventions

The following conventions are used in this manual:

Boldface

Italics

UPPERCASE

lowercase

Blue

Vertical bar

Numbers

In a format, boldface type represents names and
required parameters.

In a format, italic type represents optional
parameters.

In a format, uppercase letters represent reserved
words defined by the system for specific purposes.
You must use these words exactly as shown.

In a format, lowercase letters represent values you
choose.

In examples of interactive terminal sessions, blue
represents user input.

A vertical bar in the margin indicates a technical
change.

All numbers are decimal unless otherwise noted.

8 NOSNE Screen Formatting Revision C

Submitting Comments

There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual's usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data Corporation
Technology and Publications Division ARH219
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use NVO (zero) as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street e St. Paul, Minnesota 55103

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

CYBER Software Support Hotline

Control Data's CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

Revision C About This Manual 9

Introduction to Screen Formatting

This chapter explains the NOS/VE Screen Formatting application and
gives an example of how to use it.

What Is Screen Formatting?

Screen Formatting consists of a set of subroutines and procedures on
system object library $SYSTEM.FDF$LIBRARY. Using Screen
Formatting subroutines and procedures, you can design a form that

1

the user of an application program sees on the screen and uses to
interact with the program. For example, for a program that computes
the area of circles and rectangles, you might use Screen Formatting to
design the following form:

r

Revision C

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

Introduction to Screen Formatting 1-1

What ls Screen Formatting?

Besides designing the forms, you use Screen Formatting to manage
the forms in the application program; for example, you use Screen
Formatting to display and remove the forms from the application
user's screen.

Designing the forms and managing the forms in the program are
separate tasks, usually performed by two people. A designer familiar
with the needs of the application user creates the forms and puts
them on an object library; an application programmer manages the
forms in the application. When a user executes the. application, Screen
Formatting combines the work done by the designer and the
programmer:

Designer creates form Programmer codes program

m
~~

1-2 NOSNE Screen Formatting

R Screen Formatting LJ Object Library

User sees form and
Interacts with program

Revision C

What Is Screen Formatting?

Screen Formatting provides different sets of procedures and
subroutines for designing and managing forms. The form designer uses
a set of CYBIL procedures, and the application programmer chooses
between a set of COBOL subroutines, FORTRAN subroutines, or
CYBIL procedures, depending on the language of the application
program:

Designer

CYBIL
Procedures

Revision C

Screen
Formatting

Object
Library

Programmer

CYBIL
Procedures

Introduction to Screen Formatting 1-3

What ls Screen Formatting?

Application programmers access the procedures or subroutines that
manage forms by including calls to the procedures or subroutines in
the application program.

Designers, on the other hand, have a choice of how to access the
CYBIL procedures that create forms. They can either call the
procedures in a CYBIL program or use a screen interface provided by
the Screen Design Facility:

- allj9CI c.m
Alclarigl•

.~:~-; ... ~
Screen Design Facility

CYBIL Program

Designer

~ u:::r

CYBIL
Procedures

With the Screen Design Facility, the designer uses function keys to
draw the form on the screen, save its image, and define its
characteristics. A designer who is not a CYBIL programmer will
probably choose this method of designing forms. 1

Designers who want to either provide special forms for help
information or redefine forms while the application is running must
use a CYBIL program to create the form. With CYBIL, the form is
described in code, using attributes.

1. For more information, see the NOS/VE Screen Design Facility manual.

1-4 NOSNE Screen Formatting Revision C

What Is Screen Formatting?

Screen Formatting also includes subroutines and procedures that
relieve the program of some of the tasks it normally performs. For
example, for a form that contains a table with more values than can
be displayed at one time, Screen Formatting includes procedures and
subroutines that page or scroll through the values.

Screen Formatting is an intermediary between a form and the
program. This means that when an application user enters a value on
a form, the value is sent not to the program, but to Screen
Formatting. Screen Formatting stores the value until it receives a call
for the value from the program. Information is transferred between a
form and the program only when the application programmer includes
calls to Screen Formatting.

Revision C Introduction to Screen Formatting 1-5

Example of Creating and Managing a Form

Example of Creating and Managing a Form
Using a specific form as an example, this section shows how the form
designer and application programmer divide the tasks that create and
manage forms.

Graphic or Text Objects

A form contains several discrete areas, each of which Screen
Formatting calls either a graphic or a text object

\G•opMc Object ----;Text Object

""C"""'ute Area of Rectangle I ~

I A.ea ,., I Type he1ght, ----

Type width:

• The designer:

Determines what graphic or text objects appear on the form.

Defines display attributes for the objects. The designer chooses
from many different attributes, such as blinking, inverse video,
color, or underline.

- Names the form so the programmer can identify it in the
program.

• The programmer _displays the form and removes it from the screen
using the name assigned by the designer.

1-6 NOSNE Screen Formatting Revision C

Example of Creating and Managing a Form

Variable Text Objects

For some forms, the designer's and programmer's tasks may be
complete as just described. However, the example form has two objects
that allow the application user to enter variables and one object that
allows the program to return variables:

Compute Area of Rectangle

Area is:

Type width:

Variable text objects require the designer and programmer to perform
additional tasks.

• The designer:

Defines the text objects to accept variables from the user or
the program.

Names each text object and display attribute so the
programmer can identify them in the program. For this form,
the designer:

Assigned the name SIDE to the variable text object for the
height of the rectangle. (This is the first occurrence of the
variable SIDE.)

Assigned the name SIDE to the variable text object for the
width of the rectangle. (This is the second occurrence of the
variable SIDE.)

Assigned the name RECTANGLE-AREA to the variable text
object for the computed area.

Defines the types of values the user can enter and the program
can return. (On this form, the user can enter real numbers and
the program returns a real number.)

Revision C Introduction to Screen Formatting 1-7

Example of Creating and Managing a Form

Defines the action the user takes to send the values to Screen
Formatting. (For this form, the designer might define the
action as pressing the return key.) An action like this returns *.
control to Screen Formatting and is called an event. 'W'

Names the event so the programmer can identify it in the
program. (For this form, the event defined as pressing the
return key is called COMPUTE.) e
Defines the event as a task that Screen Formatting either
performs itself or passes to the program. (For this form, the
user enters values for the program to compute, so the designer
defines pressing the return key as passing the event from
Screen Formatting to the program.)

• The programmer:

Copies the designer's definitions of the variable text objects into
the beginning of the program.

Controls the position of the cursor, which allows the user to
enter data.

Causes the program to wait for the event the user executed.

Provides the code to process the event named COMPUTE e
(pressing the return key). For this form, the programmer:

Enters calls to Screen Formatting to get the values the user
entered for variable text objects from the form to the
program. On the call, the programmer specifies the name of
the variable text object. (For this form, the name is SIDE.)
The programmer then causes the program to go to the part
that computes the area.

Includes a call to Screen Formatting to redisplay the screen
showing the computed area of the rectangle in the variable
text object named RECTANGLE-AREA. The program
replaces data on the form using the names of variables
defined as objects on the form.

1-8 NOS/VE Screen Formatting Revision C

Example of Creating and Managing a Form

Events

At the bottom of the example form is a menu that contains an event
the user can execute by pressing a function key.

The menu is optional and requires the designer and programmer to
perform additional tasks.

• The designer:

Names the event so the programmer can identify it in the
program and defines it to appear as part of a menu of events.
(For this form, the name of the event is QUIT.)

Defines the event as a task that Screen Formatting either
performs itself or passes to the program. (For this form, the
designer defines the event named QUIT to pass control to the
program.)

e • The programmer provides code to process the event, identifying it
in the program with the name assigned by the designer. (For this
form, the programmer defines that the event named QUIT stops
the application.)

Revision C Introduction to Screen Formatting 1-9

Coordinating Tasks Using a Design Specification

Coordinating Tasks Using a Design
Specification

As you saw in the example, the interaction between the form and the
program is complex. To control the process, the designer prepares a
list called the design specification that tells the programmer what
appears on the form and the definitions used for the form and its
events. In this specification the designer:

• Names the forms.

• Establishes the order in which forms appear and disappear on the
screen.

• Defines and names the variable text objects.

• Defines the types of values the user or program can enter as
variables.

• Defines and names the display attributes for objects.

• Defines and names the events that return the user to the program.

• Defines the events that Screen Formatting processes itself.

With this information available, the programmer:

• Displays and removes forms.

• Gets and replaces values on forms.

• Gets and processes events executed by the application user.

• Changes how variable text objects are displayed.

• Changes the position of the cursor on the screen.

1-10 NOS/VE Screen Formatting Revision C

e

Summary of the Process

Summary of the Process

To create a screen interface for an application user, the designer and
programmer perform the following steps:

1.

2.

3.

4.

5.

6.

The form designer and programmer plan the forms and program.

The form designer creates the forms and prepares a design
specification.

The form designer puts the forms in an object library and makes
the form record available.

The programmer codes the program, including calls to Screen
Formatting procedures based on the design specification.

The programmer expands and compiles the program.

The programmer writes a user procedure to start the application
and helps the user set up the correct terminal environment for
using the forms.

When the last step is complete, the program and forms are ready for
the application user.

e The process of creating a screen interface for an application user is
described in detail in the remainder of this manual. The programmer's
tasks and the formats of the subroutine or procedure calls are in
chapters 2 (for COBOL programmers), 3 (for FORTRAN programmers),
and 4 (for CYBIL programmers).

The designer's tasks and the formats for CYBIL procedure calls are
described in chapter 5. (If you want to design forms using the Screen
Design Facility, see the NOSNE Screen Design Facility manual
instead.)

Revision C Introduction to Screen Formatting 1·11

e

-

Using COBOL to Manage Forms 2

Chapter 1 presented an overview of the process for creating and
managing forms. It mentioned the following tasks a programmer uses
to manage forms:

1. Writing the application program to include calls to the Screen
Formatting COBOL subroutines that manage forms.

2. Expanding and compiling the program.

3. Creating a procedure that starts the program for the user.

This chapter describes these three tasks and shows them being
executed in a COBOL program. At the end of the chapter you will
find format and parameter descriptions for each COBOL subroutine
used by Screen Formatting.

Writing a Program to Use Forms

To use forms in any program you write, you must:

• Copy the parameter definitions provided by Screen Formatting.

• Copy the data definitions generated by Screen Formatting when
the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

• Call Screen Formatting subroutines to manage the forms and the
variable text objects on the forms.

Following the descriptions of these tasks is a COBOL program in
which these tasks are executed.

Revision C Using COBOL to Manage Forms 2-1

Copying Parameter Definitions

Copying Parameter Definitions

To obtain the values for the COBOL status parameter, copy the A
FDE$COBOL_STATUS deck into your program. The following example W
shows some of the contents of this deck:

01 FOE-COBOL-STATUS USAGE COMP PIC S9(18) SYNC LEFT.
88 FOE-REQUEST-SUCCESSFUL VALUE O.
88 FOE-TERMINAL-DISCONNECTED VALUE 1.
88 FOE-NO-INPUT-REQUEST VALUE 2.
88 FOE-CURSOR-NOT-IN-VARIABLE VALUE 3.

To obtain the values for the COBOL variable status parameter, copy
the FDE$COBOL_ VARIABLE_STATUS deck into your program. The
following example shows some of the contents of this deck:

01 FOE-COBOL-VARIABLE-STATUS USAGE COMP PIC S9(18) SYNC LEFT.
88 FOE-NO-ERROR VALUE 0.
88 FOE-INVALID-STRING VALUE 1.
88 FOE-INVALID-REAL VALUE 2.

2-2 NOSNE Screen Formatting Revision C

•

Copying Data Definitions

Copying Data Definitions

The data definitions for each form reside on a form definition record
created by the form designer. In your program, you transfer data to
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a
common deck that defines the form definition record. For example,
Screen Formatting1 generated the following source file for a form
named COBOL-SELECT-FORM. (The form definition record name is
the same as the form name.)

*DECK COBOL_SELECT_FORM expand = false
01 COBOL-SELECT-FORM.

03 SELECT-MESSAGE PIC X(40).
03 OBJECT PIC X(1).

The designer saves this file as a deck on a NOSNE SOURCE_
CODE_ UTILITY (SCU) library.2

In the beginning of your program, you must copy the form definition
deck for each form the designer created:

• Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

• Copy the deck by specifying its name on either the SCU *COPY
directive or the COBOL COPY statement.

1. For this example, Screen Formatting was accessed through the Screen Design
Facility.

2. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source text using SCU. (For information on
SCU, see the NOSNE Source Code Management manual.)

Revision C Using COBOL to Manage Forms 2-3

Calling Screen Formatting

Calling Screen Formatting

When you write a program that uses forms, you perform two basic
tasks with Screen Formatting subroutines:

• Displaying and removing forms and variable data on the
application user's screen.

• Processing events executed by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user's screen,
you perform the following steps in the sequence given:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

No matter how many times you use or update a form in your
program, you need only open it once. For this reason, you usually
begin an application program by opening all the forms you will
use. However, when a form requires a large amount of storage for
variables, you may want to open the form only when the A
application user needs it. •

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user's screen.

To display more than one form at a time, add all the forms before
you display them (the next step). The last form you schedule for
display is the top form on the screen. Because forms are opaque,
the top form covers other forms appearing in the same area. The
cursor position indicates which form is ready for processing.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

2-4 NOS/VE Screen Formatting Revision C

Displaying and Removing Forms and Variable Data

3. Read the form.

When you read forms, Screen Formatting displays all the forms
you added.

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms
later in this chapter. When none of the forms scheduled for display
has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read forms, the
deleted form is removed from the screen. However, the form
remains available for later use in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources
the form uses. The form is no longer available to the user or your
program.

(For the format of the call that closes a form, see Closing a Form
later in this chapter.)

Revision C Using COBOL to Manage Forms 2-5

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user A
can execute to return control to the program: normal and abnormal. •

• For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

• For abnormal events, the program takes its own action. y OU e
generally then delete the form and go on, or stop the program.

Processing Normal Events

To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event at the end of this chapter.) e

2. Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting a Record, Getting an Integer Variable,
Getting a Real Variable, and Getting a String Variable.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing a Record, Replacing an
Integer Variable, Replacing a Real Variable, and Replacing a
String Variable.)

You can also reset the variables on a form to their original state.
(For formats of the calls that reset variables to their original state,
see Resetting a Form and Resetting an Object Attribute later in this
chapter.)

2-6 NOSNE Screen Formatting Revision C

Processing Events and Data

Processing Abnormal Events

To process an abnormal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event later in this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

• Resetting a form and redisplaying it.

• Moving the user to a new form for additional processing.

• Returning the user to a previous form.

• Stopping the program.

The user's screen is updated when you either read the forms again
or end the program.

Revision C Using COBOL to Manage Forms 2-7

Example Program for Managing Forms with COBOL

Example Program for Managing Forms with COBOL

The program in this example computes the area of circles and
rectangles. The example includes:

• Pictures of the forms managed in the program.

• The design specification supplied by the form designer.

• The form definition decks.

• The example program.

Forms Managed in the Program

The example program manages three forms residing on an obje~t
library named EXAMPLE_OBJECT_LIBRARY that must be in the
user's command list.

When a user starts the application, Select Form appears (figure 2-1).

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

Figure 2-1. Select Form

2-8 NOSNE Screen Formatting Revision C

Forms Managed in the Program

On Select Form, a user enters either c to compute the area of a circle
or r to compute the area of a rectangle.

e When a user enters r on Select Form, Rectangle Form (figure 2-2)
appears.

•

Compute Area of Rectangle

Type he; ght: ----

Area ;s:

Type w;dth:

Figure 2-2. Rectangle Form

On Rectangle Form, the user enters the lengths of the sides of the
rectangle as integers and presses the return key to have the program
compute the area .

Revision C Using COBOL to Manage Forms 2-9

Forms Managed in the Program

When a user enters c on Select Form, Circle Form (figure 2-3)
appears.

Compute Area of Circle

Type radius: ___ _

Area is:

Figure 2-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

2-10 NOSNE Screen Formatting Revision C

e

-

Design Specification

Design Specification

In writing the example program, the programmer uses the information
the form designer listed in the following design specification:

• The names for the three forms used by the program are:

COBOL_SELECT_FORM
COBOL_RECTANGLE_FORM
COBOL_CIRCLE_FORM

• The user can call both the Rectangle Form and Circle Form from
the Select Form.

• The following variable text objects are defined on the forms:

Variable Object

Select Form:

SELECT-MESSAGE

OBJECT

Rectangle Form:

SIDE-TABLE

SIDE

RECTANGLE-AREA

RECTANGLE-MESSAGE

Circle Form:

RADIUS

CIRCLE-AREA

CIRCLE-MESSAGE

Revision C

Description

Area for displaying error messages.

Area for user input of r or c.

Table that holds values for the
rectangle's sides.

Areas (two) for user input of values
for the rectangle's sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle's radius.

Area for returning value of
computed area.

Area for displaying error messages.

Using COBOL to Manage Forms 2-11

Design Specification

• The following events are defined on the forms:

Event

COMPUTE

BACK

QUIT

Description

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

2-12 NOSNE Screen Formatting Revision C

Form Definition Decks

Form Definition Decks

When the designer creates the three forms (by writing a program or
using Screen Design Facility), a form definition record is created with
each form. For the example program, the programmer copies the
following form definition decks placed by the designer on an SCU
library. The library in this example is named EXAMPLE_SOURCE_
LIBRARY.

The COBOL_SELECT_FORM deck:

01 COBOL-SELECT-FORM.
03 SELECT-MESSAGE PIC X(40).
03 OBJECT PIC X(l).

The COBOL_RECTANGLE_FORM deck:

01 COBOL-RECTANGLE-FORM.
03 SIDE-TABLE OCCURS 2.

05 SIDE PIC S9(18)
COMP SYNC LEFT.

03 RECTANGLE-AREA PIC S9(18) COMP SYNC LEFT.
03 RECTANGLE-MESSAGE PIC X(40).

The COBOL_CIRCLE_FORM deck:

01 COBOL-CIRCLE-FORM.
03 CIRCLE-AREA COMP-1.
03 RADIUS COMP-1.
03 CIRCLE-MESSAGE PIC X(40).

Revision C Using COBOL to Manage Forms 2-13

Example COBOL Program

Example COBOL Program

This COBOL program calls the forms and executes the events
described in the previous sections. The program is in the SCU deck
named COMPUTEAREA. To run the example program, see the
Examples online manual.

IDENTIFICATION DIVISION.
PROGRAM-ID. COMPUTEAREA.
DATA DIVISION.
WORKING-STORAGE SECTION.

• Copy def1n1t1ons for Screen Formatting conditions.

•COPY FDE$COBOL_STATUS
*COPY FDE$COBOL_VARIABLE_STATUS

• Copy record for select form.

•COPY cobol_select_form

• Copy record for circle form.

•COPY cobol_cf rcle_form

• Copy record for rectangle form.

•COPY cobol_rectangle_form

01 CHARACTER-POSITION
USAGE COMP PIC S9(18) SYNC LEFT.

01 CIRCLE-FORM-IDENTIFIER
USAGE COMP PIC S9(18) SYNC LEFT.

01 EVENT-NAME PIC X(31).
01 EVENT-NORMAL PIC X.
01 EVENT-OBJECT-NAME PIC X(31).
01 EVENT-OCCURRENCE USAGE COMP PIC S9(18) SYNC LEFT.
01 EVENT-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 EVENT-TYPE USAGE COMP PIC S9(18) SYNC LEFT.
01 FORM-IDENTIFIER USAGE COMP PIC S9(18) SYNC LEFT.
01 FORM-NAME PICTURE X(31).
01 FORM-X-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 FORM-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 LAST-EVENT PIC X.
01 OCCURRENCE USAGE COMP PIC S9(18) SYNC LEFT.
01 OBJECT-TYPE USAGE COMP PIC S9(18) SYNC LEFT. ~

2-14 NOS/VE Screen Formatting Revision C

Revision C

Example COBOL Program

01 OBJECT-X-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 OBJECT-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 PI COMP-1 VALUE 3.14.
01 RECTANGLE-FORM-IDENTIFIER

USAGE COMP PIC S9(18) SYNC LEFT.
01 SCREEN-X-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 SCREEN-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 SELECT-FORM-IDENTIFIER

USAGE COMP PIC S9(18) SYNC LEFT.
01 VARIABLE-NAME PIC X(31).
01 VARIABLE-STATUS USAGE COMP PIC S9(18) SYNC LEFT.

PROCEDURE DIVISION.
BEGIN.

*Open all forms used by the program
• and assign form identifiers.

MOVE "COBOL_SELECT_FORM• TO FORM-NAME.
CALL "FDP$XOPEN_FORM" USING FORM-NAME

SELECT-FORM-IDENTIFIER FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Open failed on form select.•
STOP RUN

END-IF.

MOVE "COBOL_CIRCLE_FORM" TO FORM-NAME.
CALL "FDP$XOPEN_FORM" USING FORM-NAME

CIRCLE-FORM-IDENTIFIER FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Open failed on form circle.•
STOP RUN

END-IF.

MOVE "COBOL_RECTANGLE_FORM" TO FORM-NAME.
CALL "FDP$XOPEN_FORM" USING FORM-NAME

RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Open failed on form rectangle.•
STOP RUN

END-IF.

Using COBOL to Manage Forms 2·15

Example COBOL Program

• Add select form to list scheduled for display.

CALL •FDP$XADD_FQRM• USING SELECT-FORM-IDENTIFIER
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY •Add failed on form select.•
STOP RUN

END-IF.

• Update screen and accept user terminal entry
•for object; display all added forms.

GET-OBJECT-INPUT.
CALL •FDP$XREAD_FORMS• USING FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY •Read failed on form select.•
STOP RUN

END-IF.

• Get screen events that determine next actions.

CALL "FDPSXGET_NEXT_EVENT• USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-X-POSJTION
OBJECT-Y-POSITION
LAST-EVENT FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY •Get event failed on form select.•
STOP RUN

END-IF.

•Stop program on QUIT or BACK event.

IF EVENT-NAME NOT EQUAL TO •COMPUTE"
PERFORM STOP-PROGRAM

END-IF.

2-16 NOS/VE Screen Formatting Revision C

Revision C

Example COBOL Program

• Transfer object variable from form to program.

MOVE "OBJECT" TO VARIABLE-NAME.
MOVE 1 TO OCCURRENCE.
CALL "FDP$XGET_STRING_VARIABLE" USING

SELECT-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
OBJECT FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get string failed on form select."
STOP RUN

END-IF.

• If terminal user entered invalid data, display
• error message and ask for another entry.

IF NOT FOE-NO-ERROR THEN
MOVE "Type r or c" TO SELECT-MESSAGE
MOVE "SELECT-MESSAGE" TO VARIABLE-NAME
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

SELECT-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SELECT-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-OBJECT~INPUT
END-IF.

IF OBJECT EQUALS "R" THEN

• Remove select form and compute area of rectangle.

CALL "FDP$XDELETE_FORM" USING
SELECT-FORM-IDENTIFIER FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Delete failed on form select."
STOP RUN

END-IF
PERFORM COMPUTE-RECTANGLE-AREA THRU CRA-END

ELSE
IF OBJECT EQUALS "C" THEN

Using COBOL to Manage Forms 2-17

Example COBOL Program

• Remove select form and compute area of circle.

CALL •FDPSXDELETE_FORM• USING
SELECT-FORM-IDENTIFIER FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY •oelete failed on form select.•
STOP RUN

END-IF
PERFORM COMPUTE-CIRCLE-AREA THRU CCA-END

ELSE

•If terminal user entered invalid value for object,
• display error message and ask for another entry.

MOVE •Typer or c.• TO SELECT-MESSAGE
MOVE •SELECT-MESSAGE• TO VARIABLE-NAME
CALL °FDP$XREPLACE_STRING_VARIABLE· USING

SELECT-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SELECT-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY
•Replace string failed on form select.•

STOP RUN
END-IF

GO TO GET-OBJECT-INPUT
END-IF

END-IF.

• Process event from rectangle form or circle form.

IF EVENT-NAME EQUALS ·QUIT·
PERFORM STOP-PROGRAM

END-IF.

2-18 NOS/VE Screen Formatting Revision C

Revision C

Example COBOL Program

* A BACK event occurred; display select form in
* original state.

CALL "FDP$XRESET_FORM" USING SELECT-FORM-IDENTIFIER
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form select."
STOP RUN

END-IF.

CALL "FDP$XADD_FORM" USING SELECT-FORM-IDENTIFIER
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Add failed on form select."
STOP RUN

END-IF.

GO TO GET-OBJECT-INPUT.

COMPUTE-CIRCLE-AREA.

* Display circle form in original state.

CALL "FDP$XRESET_FORM" USING CIRCLE-FORM-IDENTIFIER
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form circle."
STOP RUN

END-IF.

CALL "FDP$XADD_FORM" USING CIRCLE-FORM-IDENTIFIER
FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Add failed on form circle."
STOP RUN

END-IF.

Using COBOL to Manage Forms 2-19

Example COBOL Program

* Update screen and get radius from
* terminal user entry.

GET-CIRCLE-INPUT.
CALL "FDP$XREAD_FORMS" USING FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Read failed on form circle.•
STOP RUN

END-IF.

CALL "FDP$XGET_NEXT_EVENT" USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-X-POSITION
OBJECT-Y-POSITION
LAST-EVENT FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get event failed on form circle."
STOP RUN

END-IF.

IF EVENT-NAME NOT EQUAL TO "COMPUTE"
CALL "FDP$XOELETE_FORM" USING

CIRCLE-FORM-IDENTIFIER FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Delete failed on form circle."
STOP RUN

END-IF
GO TO CCA-END

END-IF.

* Transfer terminal user entry for radius to program.

MOVE "RADIUS" TO VARIABLE-NAME.
MOVE 1 TO OCCURRENCE.
CALL "FDP$XGET_REAL_VARIABLE" USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
RADIUS FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get real failed on form circle."
STOP RUN

END-IF.

2-20 NOSNE Screen Formatting Revision C

Revision C

Example COBOL Program

IF NOT FOE-NO-ERROR THEN
MOVE •Type val id value for radius." TO

CIRCLE-MESSAGE
MOVE "CIRCLE-MESSAGE" TO VARIABLE-NAME
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-CIRCLE-INPUT
END-IF.

*Compute area of circle and display it.

COMPUTE CIRCLE-AREA = PI * RADIUS ** 2.

MOVE "CIRCLE-AREA" TO VARIABLE-NAME.
CALL 11 FDP$XREPLACE_REAL_VARIABLE" USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
CIRCLE-AREA FOE-COBOL-VARIABLE-STATUS
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY

"Replace real fa1led on form rectangle."
STOP RUN

END-IF.

IF NOT FOE-NO-ERROR THEN

* Area value could not be displayed using output
• format defined for form. Revise form or program
* to acconmodate size of number.

MOVE 8 Format cannot display area." TO
CIRCLE-MESSAGE

MOVE "CIRCLE-MESSAGE" TO VARIABLE-NAME
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-CIRCLE-INPUT
ENO-IF.

Using COBOL to Manage Forms 2-21

Example COBOL Program

• Blank error message in case previously displayed.

MOVE SPACES TO CIRCLE-MESSAGE.
MOVE "CIRCLE-MESSAGE• TO VARIABLE-NAME.
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Replace string failed on form circle.•
STOP RUN

END-IF.

• Process next user entry.

GO TO GET-CIRCLE-INPUT.
CCA-END. EXIT.

COMPUTE-RECTANGLE-AREA.

• Display rectangle form in original state.

CALL "FDP$XRESET_FORM" USING
RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form rectangle.•
STOP RUN

END-IF.

CALL "FDP$XADD_FORM" USING
RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY •Add failed on form rectangle.•
STOP RUN

END-IF.

2-22 NOS/VE Screen Formatting Revision C

Revision C

Example COBOL Program

* Update screen and get terminal user entry for
* rectangle height and width.

GET-RECTANGLE-INPUT.
CALL "FDP$XREAD_FORMS" USING FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Read failed on form rectangle."
STOP RUN

END-IF.

CALL "FDP$XGET_NEXT_EVENT" USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-X-POSITION
OBJECT-Y-POSITION
LAST-EVENT FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get event failed on form rectangle.•
STOP RUN

END-IF.

* If abnormal event (BACK or QUIT) occurs,
*return to caller.

IF EVENT-NAME NOT EQUAL TO "COMPUTE"
CALL "FOP$XDELETE_FORM" USING

RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Delete failed on form rectangle."
STOP RUN

END-IF
GO TO CRA-END

END-IF.

Using COBOL to Manage Forms 2-23

Example COBOL Program

• Transfer he1ght value from form to program.

MOVE "SIDE" TO VARIABLE-NAME.
MOVE 1 TO OCCURRENCE.
CALL "FDP$XGET_INTEGER_VARIABLE• USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SIDE (1) FOE-COBOL-VARIABLE-STATUS
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get 1nteger fa1led on form rectangle.•
STOP RUN

END-IF.

• If data invalid, move cursor to height value
• and display error message.

IF NOT FOE-NO-ERROR THEN
MOVE 1 TO CHARACTER-POSITION
CALL "FDP$XSET_CURSOR_POSITION" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CHARACTER-POSITION
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY •set cursor failed on form rectangle.•
STOP RUN

END-IF

MOVE "Type valid value for height.• TO
RECTANGLE-MESSAGE

MOVE •RECTANGLE-MESSAGE" TO VARIABLE-NAME
CALL •FDP$XREPLACE_STRING_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-RECTANGLE-INPUT
END-IF.

2-24 NOS/VE Screen Formatting Revision C

Revision C

Example COBOL Program

* Transfer width value from form to program.

MOVE 2 TO OCCURRENCE.
CALL "FDP$XGET_INTEGER_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SIDE (2) FOE-COBOL-VARIABLE-STATUS
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get integer failed on form rectangle.•
STOP RUN

END-IF.

• If data invalid, move cursor to width value and display
• error message.

IF NOT FOE-NO-ERROR THEN
MOVE 1 TO CHARACTER-POSITION
CALL "FDP$XSET_CURSOR_POSITION" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CHARACTER-POSITION
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Set cursor failed on form rectangle."
STOP RUN

END-IF

MOVE "Type valid value for width."
TO RECTANGLE-MESSAGE

MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME
MOVE 1 TO OCCURRENCE
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-RECTANGLE-INPUT
END-IF.

Using COBOL to Manage Forms 2-25

Example COBOL Program

•Compute area of rectangle and display it.

MULTIPLY SIDE (1) BY SIDE (2) GIVING
RECTANGLE-AREA.

t.l>VE •RECTANGLE-AREA" TO VARIABLE-NAME.
t.l>VE 1 TO OCCURRENCE.
CALL "FDP$XREPLACE_INTEGER_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-AREA
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY

"Replace 1nteger failed on form rectangle. 0

STOP RUN
END-IF.

IF NOT FOE-NO-ERROR THEN

• Area value could not be displayed us1ng output
• format defined for form. Revise form or program
• to accommodate size of number.

MOVE "Format cannot display area."
TO RECTANGLE-MESSAGE

MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME
MOVE 1 TO OCCURRENCE
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-RECTANGLE-INPUT
END-IF.

2-26 NOS/VE Screen Formatting Revision C

Revision C

Example COBOL Program

• Blank error message in case previously displayed.

MOVE SPACES TO RECTANGLE-MESSAGE.
MOVE •RECTANGLE-MESSAGE" TO VARIABLE-NAME.
CALL •FDP$XREPLACE_STRING_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY

"Replace string failed on form rectangle.•
STOP RUN

END-IF.

• Process next user entry.

GO TO GET-RECTANGLE-INPUT.
CRA-END. EXIT.

STOP-PROGRAM.

•Close all forms and delete from list scheduled
• for display.

CALL "FDP$XCLOSE_FORM" USING
SELECT-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form select."

END-IF.

CALL "FDP$XCLOSE_FORM" USING
CIRCLE-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form circle."

END-IF.

CALL "FDP$XCLOSE_FORM" USING
RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form rectangle."

END-IF.

STOP RUN.

Using COBOL to Manage Forms 2-27

Expanding and Compiling a Program

Expanding and Compiling a Program

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code.a

To expand and compile a program maintained in SCU decks:

1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE_SOURCE_LIBRARY.)

PROC cobol_compile_deck, cobcd (
deck, d: name=$reQuired
status : var of status = $optional
)

source_code_utility
use_library base=example_source_11brary result=$null
expand_deck deck=$value(deck) ..
comp11e=$local.compile ..
alternate_base=$system.cybi1.osf$program_interface

QUit

cobol input=$1ocal.compile ..
list=$local. listing runtime_checks=all
debug_a; ds=a 11

3. For information on SCU, see the NOS/VE Source Code Management manual.

2·28 NOS/VE Screen Formatting Revision C

Expanding and Compiling a Program

create_object_library
add_module library=example_object_library
combine_module 11brary=$1ocal .lgo
generate_llbrary library=example_object_library.$next

QUit

PROCEND cobol_compile_deck

To use the procedure, put it on library EXAMPLE_ OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the
procedure by entering:

/cobol_compile_deck deck=cobol_compute_object_area

The compiled program is now also on library EXAMPLE_OBJECT_
LIBRARY.

For more information on writing and using procedures, see the
NOSNE System Usage manual.

Revision C Using COBOL to Manage Forms 2·29

Helping the User Start the Application

Helping the User Start the Application

The complete application consists of your program and the forms
created by the designer. To integrate the forms with your program,
you must:

• Create a procedure that gives users access to the object library A
containing the forms. •

• Ensure that the user's terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

• Ensure that users know how to start the application.

Creating a User Procedure

To give the user access to the object library containing the forms:

1. Write a NOSNE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program.

For example, the following procedure executes the application that e
uses the starting procedure COMPUTEAREA on library EXAMPLE_
OBJECT_LIBRARY. The other libraries accessed by the program are
$SYSTEM.FDF$LIBRARY and $SYSTEM.TDU.TERMINAL_
DEFINITIONS. Users must have these libraries available in order for
the program to call the Screen Formatting subroutines.

PROC cobol_compute_area, cobca (
status : var of status =optional
)

execute_task ..
library=(example_object_library,$system.fdf$1ibrary, ..
$system.tdu.terminal_definitions)
starting_procedure=computearea

PROCEND cobol_compute_area

2-30 NOSNE Screen Formatting Revision C

Creating a User Prolog

Creating a User Prolog

To ensure that the users' terminal environment is set up properly to
use the forms, make sure they set the following terminal
characteristics before they execute the procedure:

Characteristic e Terminal model

Attention
character

Hold messages

Description

Identifies the terminal to NOSNE.

Provides a character users can enter to interrupt
the application.

Tells the network to hold all network messages
until the user stops the application.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

• Identifies a Digital Equipment Corporation VT220 terminal to the
system.

• Chooses the exclamation point as a way to interrupt the program.

e • Holds all messages from a NAMVE/CDCNET network.

• Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220
attention_character='!' ..
status_action=hold

change_term_conn_defaults attention_character_action=1
change_connection_attributes terminal_file_name=input aca=1
change_connection_attributes terminal_file_name=output aca=1
change_connection_attributes terminal_file_name=conrnand aca=1

For a further explanation of how to interrupt a screen application
during an interactive session, and what commands to use for networks e other than NAMVE/CDCNET, see the NOS/VE System Usage manual.

Revision C Using COBOL to Manage Forms 2-31

Starting the Application

Starting the Application

To start the application, the users enter:

/create_conrnand_list_entry e=example_object_library
/cobol_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_command_list_entry e=example_object_library

2-32 NOSNE Screen Formatting Revision C

COBOL Subroutine Calls for Interacting with Forms

COBOL Subroutine Calls for Interacting with
Forms
The subroutines that follow are used by Screen Formatting to manage
forms. These subroutines are external routines that reside on the
library called $SYSTEM.FDF$LIBRARY. To execute your program,
users must have this library in their program library lists.

For each subroutine, there is a purpose description, input format, list
of parameters and their types, condition identifiers, and pertinent
remarks.

Revision C Using COBOL to Manage Forms 2-33

Adding a Form

Adding a Form

Purpose

Format

FDP$XADD_FORM schedules a form for display on the
application user's screen.

CALL "FDP$XADD_FORM" USING form-identifier
fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_ STATUS directive you put in
the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
f de-form-already-added
fde-form-pushed
fde-form-too-large-for-screen
fde-invalid-form-identifier
fde-no-space-available
f de-system-error

• When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
displays the added form on the terminal screen. The
added form is placed on top of other forms occupying
the same area on the screen.

• Before you add a form, you must open it.

• You cannot add a pushed form.

2-34 NOS/VE Screen Formatting Revision C

Changing Table Size

Changing Table Size

Purpose

Format

Parameters

Revision C

FDP$XCHANGE_ TABLE_SIZE changes the size of the
table during program execution.

CALL "FDP$XCHANGE_ TABLE_SIZE" USING
form-identifier table-name table-size fde-cobol-status

form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC 89(18) SYNC LEFT.

table-name {input}

The name of the table to change in size. Include the
following data description entry:

01 table_name PIC X(31).

table-size {input}

The size of the table. While this subroutine is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

Include the following data description entry:

01 table-size
USAGE COMP PIC 89(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

Using COBOL to Manage Forms 2-35

Changing Table Size

Conditions The following conditions apply to this call and are defined

Remarks

Examples

as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-table-name
fde-invalid-table-size
fde-no-space-available
fde-unknown-table-name

• The table must be present in an open form.

• The size limitation remains in effect until the next
time you call the FDP$XCHANGE_ TABLE_SIZE
subroutine.

• The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (fde-invalid-table-size).

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

• If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

• If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

2-36 NOS/VE Screen Formatting Revision C

Closing a Form

Closing a Form

Purpose

Format

FDP$XCLOSE_FORM releases resources used to process
a form and deletes the form from the list scheduled for
display.

CALL "FDP$XCLOSE_FORM" USING form-identifier
fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is def"med with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defmed
as COBOL condition names in appendix D.

Remarks

Revision C

fde-bad-data-value
fde-invalid-form-identifier
fde-form-pushed
fde-no-space-available

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting removes the closed form from the terminal
screen as a result of calling this procedure.

• Before you can close a form, you must open it.

• You cannot close a pushed form.

Using COBOL to Manage Forms 2-37

Combining Forms

Combining Forms

IP~•

I :=~n

j·! Conditions

ii

I
;:

!

FDP$XCOMBINE_FORM combines a form with a
previously added form and schedules the combined form
for display on the terminal screen.

CALL "FDP$XCOMBINE_FORM" USING
added-form-identifier combine-form-identifier
fde-cobol-status

added-form-identifier {input}

The identifier for this instance of the previously added
form. Include the following data description entry:

01 added-form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

combine-form-identifier {input}

The identifier for the form you are combining with the
previously added form. Include the following data
description entry:

01 combine-form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-already-added
fde-form-already-combined
fde-form-pushed
fde-form-too-large-for-screen
fde-invalid-form-identifier
fde-no-space-available
f de-system-error

2-38 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Combining Forms

• You cannot combine a pushed form.

• The combined form inherits the event definitions of
the previously added form.

• Before you combine a form with a previously added
form, you must open both forms.

• When the programs calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the combined form. The combined
form is placed on top of other forms occupying the
same area on the screen.

• When the application user executes an event to return
to the program normally, Screen Formatting updates
all program variables associated with both the added
and combined forms.

• To combine several forms with a previously added
form, call this subroutine more than once.

Using COBOL to Manage Forms 2-39

Deleting a Form

Deleting a Form

Purpose

Format

FDP$XDELETE_FORM deletes a form from the list of
forms scheduled for display.

CALL "FDP$XDELETE _FORM" USING
form-identifier fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC 89(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-available

• When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting removes the deleted form from the
terminal screen and replots any forms uncovered by
the deleted form with the next screen update.

• When you add a form (FDP$XADD_FORM) again that
you previously deleted, the data in the form is
retained.

2-40 NOSNE Screen Formatting Revision C

Revision C

Deleting a Form

• Before you delete a form, you must open it.

• You cannot delete a pushed form.

• If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

• When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

Using COBOL to Manage Forms 2-41

Getting an Integer Variable

Getting an Integer Variable

Purpose FDP$XGET_INTEGER_ VARIABLE gets the value the
user entered on a form for an integer variable and
transfers it to the program.

Format CALL "FDP$XGET_INTEGER_ VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the integer variable to get and transfer to
the program. Include the following data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following e
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {output}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following data description entry:

01 variable
USAGE COMP PIC S9(18) SYNC LEFT.

2-42 NOSNE Screen Formatting Revision C

e Conditions

Revision C

Getting an Integer Variable

fde-cobol-variable-status {output}

The condition name that describes the status of the
integer variable. The following values are possible:

FOE-INVALID-INTEGER

The user entered data that is not in the range defined
for variable.

FOE-LOSS-OF-SIGNIFICANCE

The user entered an integer that is too large.

FOE-NO-ERROR

No error occurred.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the subroutine results. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-error
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
f de-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

Using COBOL to Manage Forms 2-43

Getting an Integer Variable

Remarks • Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the a
form, the program returns the initial value specified W
by the form designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form, ~
the program does not need to look at the variable •
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

2-44 NOS/VE Screen Formatting Revision C

Getting the Next Event

Getting the Next Event

Purpose

Format

FDP$XGET_NEXT_EVENT gets the event resulting from
the most recent FDP$XREAD_FORMS subroutine.

CALL "FDP$XGET_NEXT_EVENT" USING
event-name event-normal screen-x-position
screen-y-position form-identifier form-x-position
form-y-position event-type object-name
object-occurrence character-position object-type
object-x-position object-y-position last-event
fde-cobol-status

Parameters event-name {output}

Revision C

A data name to receive the application user's event.
Include the following data description entry:

01 event-name PIC X(31).

event-normal {output}

A data name to receive the event normal indication. If
the event is normal, T is returned; if the event is not
normal, F is returned. Include the following data
description entry:

01 event-normal PIC X(l).

screen -:x-position {output}

A data name to receive the x position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the x position increases by 1 for each
character on the screen counting from left to right.
Include the following data description entry:

01 screen-x-position
USAGE COMP PIC 89(18) SYNC LEFT.

screen·y·position {output}

A data name to receive the y position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the y position increases by 1 for each
character on the screen counting from top to bottom.
Include the following data description entry:

01 screen-y-position
USAGE COMP PIC S9(18) SYNC LEFT.

Using COBOL to Manage Forms 2-45

Getting the Next Event

form-identifier {output}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

form-x-position {output}

A data name to receive the x position of the event on the
form. The character in the upper left corner of the form
is 1; the x position increases by 1 for each character you
count from left to right. Include the following data
description entry:

01 form-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

form-y-position {output}

A data name to receive the y position of the event on the
form. The character in the upper left corner of the form
is 1; the y position increases by 1 for each character you
count from top to bottom. Include the following data
description entry:

01 form-y-position
USAGE COMP PIC 89(18) SYNC LEFT. e

event-type {output}

The event type. The following values are possible:

Value Event Type

0 The event occurred on an area of a form
containing no object.

1 The event occurred on a form object.

Include the following data description entry:

01 event-type
USAGE COMP PIC 89(18) SYNC LEFT.

object-name {output}

When event-type is 1, the variable returns a value giving
the name of the object on which the event occurred.
Include the following data description entry:

01 object-name PIC X(31).

2-46 NOS/VE Screen Formatting Revision C

Revision C

Getting the Next Event

object-occurrence {output}

When event-type is 1, the variable returns a value giving
the occurrence of the object name. Include the following
data description entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

character-position {output}

When event-type is 1, the variable returns a value giving
the character position within the object where the event
occurred. The first character position is 1. Include the
following data description entry:

01 character-position
USAGE COMP PIC S9(18) SYNC LEFT.

object-type {output}

When event-type is 1, the variable indicates the type of
object on which the event occurred. The following values
are possible:

Value Object Type

0
1
2
3
5
6

Box
Constant text
Constant text box
Line
Variable text
Variable text box

Include the following data description entry:

01 object-type
USAGE COMP PIC S9(18) SYNC LEFT.

object-x-position {output}

When event-type is 1, the value returned is the x origin
position of the object. The character in the upper left
corner of the form is 1; the x position increases by 1 for
each character you count from left to right. Include the
following data description entry:

01 object-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

Using COBOL to Manage Forms 2-47

Getting the Next Event

object-y-position {output}

When event-type is 1, the value returned is the y origin
position of the object. The character in the upper left
comer of the form is 1; the y position increases by 1 for
each character you count from top to bottom. Include the
following data description entry:

01 object-y-position
USAGE COMP PIC S9(18) SYNC LEFT.

last-event {output}

Indicates whether this is the last event. The following
values are possible:

Value

T

F

Meaning

This is the last event.

This is not the last event.

Include the following data description entry:

01 last-event PIC X(l).

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value

The FDP$XREAD_FORMS subroutine deletes existing
events. If the event is normal, Screen Formatting updates
the variables in the added and combined forms containing
the event. Later, you can request the transfer of these
variables to program storage. If the event is abnormal,
Screen Formatting does not update or validate variables.

2-48 NOSIVE Screen Formatting Revision C

Getting a Real Variable

Getting a Real Variable

Purpose

Format

FDP$XGET_REAL_ VARIABLE gets a value the user
entered on a form for a real variable and transfers it to
the program.

CALL "FDP$XGET_REAL_VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

Revision C

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the variable to get. Include the following
data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {output}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following data description entry:

01 variable COMP-1.

Using COBOL to Manage Forms 2-49

Getting a Real Variable

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FOE-INDEFINITE

The user entered an indefinite number.

FDE-INVALID-BDP-DATA

The user entered data that does not correspond to the
defined data type.

FOE-INVALID-REAL

The user entered data that is not within the range of
real numbers defined for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The user entered a number too large to be converted
to the defined real program type.

FDE-NO-ERROR

No error occurred on the variable.

FOE-OVERFLOW

The user entered an exponent that is too large.

FOE-UNDERFLOW

The user entered an exponent that is too small.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

2-50 NOSNE Screen Formatting Revision C

Conditions

Remarks

Revision C

Getting a Real Variable

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name

• Before you get a real variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using COBOL to Manage Forms 2-51

Getting a Record

Getting a Record

Purpose

Format

FDP$XGET_RECORD transfers the values of the form
record to the program record.

CALL "FDP$XGET_RECORD" USING form-identifier
record fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

record {output}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the variable definition
entries in this record. It is the program work area for the
variables used on the form.

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INDEFINITE

The user entered an indefinite number.

FDE-INFINITE

The user entered an infinite number.

FDE-INVALID-BDP-DATA

The user entered data that does not correspond to the
defined data type.

FDE-INVALID-INTEGER

The user entered data that is not within the range of
integer numbers defined for the variable.

FDE-INVALID-REAL

The user entered data that is not within the range of
real numbers defined for the variable.

2-52 NOSNE Screen Formatting Revision C

Getting a Record

FDE-INVALID-STRING

The user entered data that does not match the strings
defined as valid for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The user entered a number too large to be converted
to the defined real or integer data type.

FDE-NO-DIGITS

The user, who should have entered a real or integer
number, did not enter digits.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OVERFLOW

The user entered an exponent that is too large.

FDE-UNDERFLOW

The user entered an exponent that is too small.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined

Revision C

as COBOL condition names in appendix D.

ide-bad-data-value
fde-form-has-no-variables
f de-in valid-form-identifier
fde-no-space-available
fde-system-error
fde-work-invalid

Using COBOL to Manage Forms 2-53

Getting a Record

Remarks • Before you get a record for a form, you must open the
form. If you get the record after opening the form and
before reading or replacing the record, the program ~
returns the initial value specified by the form ,.,
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form, A
your program does not need to look at the variable W
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

2-54 NOSNE Screen Formatting Revision C

Getting a String Variable

Getting a String Variable

Purpose

Format

FDP$XGET_STRING_ VARIABLE gets a value the user
entered on a form for a string variable and transfers it to
the program.

CALL "FDP$XGET_STRING_ VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

Revision C

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the variable to get. Include the following
data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {output}

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include the
following data description entry (where n is the length of
the variable):

01 variable PIC X(n).

Using COBOL to Manage Forms 2-55

Getting a String Variable

Conditions

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-STRING

The user entered a variable that does not match the
strings defined for the variable.

FDE-NO-ERROR

No error occurred on the variable.

FDE-VARIABLE-TRUNCATED

The storage length of the parameter variable is not
long enough.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol·status {output}

The variable that indicates the results of subroutine. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-a vailable
f de-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-name

2-56 NOSNE Screen Formatting Revision C

Remarks

Revision C

Getting a String Variable

• Before you get a string variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using COBOL to Manage Forms 2-57

Opening a Form

Opening a Form

Purpose FDP$XOPEN _FORM locates a form and and prepares it
for use by the program.

Format CALL "FDP$XOPEN _FORM" USING form-name
form-identifier fde-cobol-status

Parameters form-name {input}

The name of the form you want to open. Include the
following data description entry:

01 form-name PIC X(31).

form-identifier {input-output}

The form identifier established for the form. Other Screen
Formatting subroutines use this identifier when
referencing the form. Include the following data
description entry:

01 form-identifier
USAGE COMP PIC 89(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine. A
This variable is defined with the SCU *COPY W
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-already-open
fde-form-not-ended
fde-form-requires-conversion
fde-invalid-form-identifier
fde-invalid-form-name
fde-no-space-available
fde-system-error
fde-terminal-not-identified
fde-unknown-form-name

2-58 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Opening a Form

• Screen Formatting locates a form as follows:

- If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

- If the form name is not blank, Screen Formatting
searches the list of ended dynamically created
forms.

- If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object code libraries.
(You specify the order in which Screen Formatting
searches the list using the NOS/VE command
CREATE_COMMAND_LIST_ENTRY).

• Executing FDP$XOPEN_FORM does not display the
form on the screen.

• The form identifier that FDP$XOPEN _FORM returns
identifies the instance of open for a form. Forms
dynamically created have only one instance of open.
Forms stored on object libraries can have more than
one instance of open. For each instance of open,
Screen Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

Using COBOL to Manage Forms 2-59

Popping a Form

Popping a Form

Purpose FDP$XPOP _FORMS deletes forms scheduled (added or
combined) since the last FDP$XPUSH_FORMS call.

Format CALL "FDP$XPOP _FORMS" USING fde-cobol-status

Parameters fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-no-forms-to-pop

Events associated with the last list of pushed forms
become active.

2-60 NOSNE Screen Formatting Revision C

Positioning a Form

Positioning a Form

Purpose

Format

FDP$XPOSITION_FORM schedules moving a form to a
new location. Using this subroutine, you can define a
form at one location and display it at another location, or
you can move a form from where it is currently displayed
to a new location.

CALL "FDP$XPOSITION _FORM" USING
form-identifier screen-x-position screen-y-position
fde-cobol-status

Parameters form-identifier {input}

Revision C

The form identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

screen-x-position {input}

The x position on the screen for determining the upper
left corner of the form. The character position in the
upper left corner of the screen is 1, and the x position
increases by 1 for each character on the screen counting
from left to right. Include the following data description
entry:

01 screen-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

screen-y-position {input}

The y position on the screen for determining the upper
left corner of the form. The character position in the
upper left corner of the screen is 1, and the y position
increases by 1 for each character on the screen counting
from top to bottom. Include the following data description
entry:

01 screen-y-position
USAGE COMP PIC S9(18) SYNC LEFT.

Using COBOL to Manage Forms 2-61

Positioning a Form

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY e
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defmed
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-pushed
fde-form-too-large-for-screen
fde-invalid-form-identifier
fde-no-space-available
f de-system-error

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the form on the screen at the
position specified in the call to FDP$XPOSITION _
FORM.

• If you call this subroutine while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form lays on top of
any other form occupying the same area on the screen. e

• If you call this procedure before the form is displayed,
the form is displayed at the specified location.

• Before you position a form, you must open it.

• You cannot position a pushed form.

2-62 NOS/VE Screen Formatting Revision C

Pushing a Form

Pushing a Form

Purpose

Format

FDP$XPUSH_FORMS deactivates the events associated
with forms scheduled for display (added or combined)
since the last push call.

CALL "FDP$XPUSH_FORMS" USING
fde-cobol-status

Parameters fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

Revision C

fde-bad-data-value
fde-no-forms-to-push

• Events associated with these forms are not passed to
the program.

• A program cannot change or close a pushed form.

• Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

• This subroutine causes Screen Formatting to record
added and combined forms so you can return to them
later.

Using COBOL to Manage Forms 2-63

Reading a Form

Reading a Form

Purpose FDP$XREAD_FORMS updates the terminal screen and
accepts input from the application user.

Format CALL "FDP$XREAD_FORMS" USING
fde-cobol-status

Parameters fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-no-events-active
fde-no-forms-to-read
f de-system-error
fde-terminal-disconnected

• A call to FDP$XREAD_FORMS:

- Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call.

- Updates on the screen the variables replaced since
the last FDP$XREAD_FORMS or FDP$XSHOW_
FORMS call.

- Updates on the screen the objects for which display
attributes were set or reset since the last
FDP$XREAD_FORMS or FDP$XSHOW_FORMS
~. e

2-64 NOS/VE Screen Formatting Revision C

Revision C

Reading a Form

• Events not retrieved with the FDP$XGET_NEXT_
EVENT subroutine are deleted before any input is
accepted from the user.

• The FDP$XREAD_FORMS subroutine does not execute
unless the forms scheduled for display contain at least
one active event.

Using COBOL to Manage Forms 2-65

Replacing an Integer Variable

Replacing an Integer Variable

Purpose FDP$XREPLACE_INTEGER_ VARIABLE transfers a
program integer variable to Screen Formatting.

Format CALL "FDP$XREPLACE_INTEGER_ VARIABLE"
USING form-indentifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the variable to replace. Include the following
data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry: e

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {input}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following data description entry:

01 variable
USAGE COMP PIC S9(18) SYNC LEFT.

2-66 NOS/VE Screen Formatting Revision C

Replacing an Integer Variable

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-INTEGER

The program supplied a value that is not within the
range of integer numbers defined for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The program supplied a value that is too large for the
form variable.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Revision C

fde-bad-data-value
fde-form-pushed
f de-in valid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

Using COBOL to Manage Forms 2-67

Replacing an lnt.eger Variable

Remarks • When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
replaces the integer variable on the terminal screen.

• Before you replace an integer variable, you must open
the form on which it is replaced.

e YOU cannot replace an integer variable for a pushed A
form. W'

• If the integer variable is not valid, it is not replaced.

2-68 NOS/VE Screen Formatting Revision C

Replacing a Real Variable

Replacing a Real Variable

Purpose

Format

FDP$XREPLACE_REAL_ VARIABLE transfers a program
real variable to Screen Formatting.

CALL "FDP$XREPLACE_REAL_ VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

Revision C

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC 89(18) SYNC LEFT.

name {input}

The name of the variable to replace. Include the following
data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC $9(18) SYNC LEFT.

variable {input}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following data description entry:

01 variable COMP-1.

Using COBOL to Manage Forms 2-69

Replacing a Real Variable

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-REAL

The value the program supplied is not within the
range of real numbers defined for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The value the program supplied is too large for the
form variable.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifi.er
fde-no-space-available
f de-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-variable-name
fde-wrong-variable-type

2-70 NOSNE Screen Formatting Revision C

Remarks

Revision C

Replacing a Real Variable

• When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
replaces the real variable on the terminal screen.

• Before you replace a real variable, you must open the
form on which it is replaced.

• You cannot replace a real variable for a pushed form.

• If the real variable is not valid, it is not replaced.

Using COBOL to Manage Forms 2-71

Replacing a Record

Replacing a Record

Purpose FDP$XREPLACE_RECORD transfers values of program
variables to Screen Formatting for later display on a
form.

Format CALL "FDP$XREPLACE_RECORD" USING
form-identifier record fde-cobol-variable-status
fde-co bol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

record {input}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the variable definition
entries in this record. It is the program work area for the
variables used on the form.

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INDEFINITE

The program supplied an indefinite number.

FDE-INFINITE

The program supplied an infinite number.

FDE-LOSS-OF-SIGNIFICANCE

The program supplied a number too large to be
converted to the form v:ariable size.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

2-72 NOSNE Screen Formatting Revision C

Replacing a Record

FOE-OVERFLOW

The program supplied an exponent that is too large.

FOE-UNDERFLOW

The program supplied an exponent that is too small.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of subroutine. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

Revision C

fde-bad-data-value
fde-form-has-no-variables
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-a vailable
fde-work-invalid

• When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting replaces the variables on the terminal
screen with the values stored in Screen Formatting.

• Before you replace a record, you must open the form
on which the variables are replaced.

• You cannot replace a record for a pushed form.

Using COBOL to Manage Forms 2-73

Replacing a String Variable

Replacing a String Variable

Purpose FDP$XREPLACE_STRING_ VARIABLE transfers a string
variable to Screen Formatting.

Format CALL "FDP$XREPLACE_STRING _VARIABLE"
USING form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC 89(18) SYNC LEFT.

name {input}

The name of the string variable to replace. Include the
following data description entry:

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry: e

01 occurrence
USAGE COMP PIC 89(18) SYNC LEFT.

variable {input}

The variable that Screen Formatting generates
automatically in the form defmition record. If you do not
want to use the automatically generated variable, include
the following data description entry (n is the length of the
variable):

01 variable PIC X(n).

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FOE-INVALID-STRING

The program supplied a variable that does not match
the strings defined for the variable.

2-74 NOS/VE Screen Formatting Revision C

Conditions

e Remarks

Revision C

Replacing a String Variable

FDE-NO-ERROR

No error occurred on the variable.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting replaces the string variable on the
terminal screen.

• Before you replace a string variable, you must open
the form on which it is replaced.

• You cannot replace a string variable for a pushed
form.

• If the string variable is not valid, it is not replaced.

• If the form specifies that the data must be in
uppercase, Screen Formatting converts it to uppercase
before storing the data in the form.

Using COBOL to Manage Forms 2-75

Resetting a Form

Resetting a Form

Purpose

Format

FDP$XRESET_FORM resets the form to the state
specified by the form definition.

CALL "FDP$XRESET_FORM" USING form-identifier
fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defmed with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined

Remarks

as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-a vailable
fde-system-error

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the form on the terminal screen
with the reset specifications.

• All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

• Before you reset a form, you must open it.

• You cannot reset a pushed form.

2-76 NOS/VE Screen Formatting Revision C

Resetting an Object Attribute

Resetting an Object Attribute

Purpose

Format

FDP$XRESET_ OBJECT_ATTRIBUTE resets the display
attributes for an object to those specified in the form
definition.

CALL "FDP$XRESET_OBJECT A'ITRIBUTE" USING
form-identifier object-name object-occurrence
fde-cobol-status

Parameters form-identifier {input}

Conditions

Revision C

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {input}

The name of the object whose attributes are reset. Include
the following data description entry:

01 object-name PIC X(31).

object-occurrence {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following data description
entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are deimed
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-object-name
fde-invalid-occurrence
fde-no-space-available
fde-unknown-object-name

Using COBOL to Manage Forms 2-77

Resetting an Object Attribute

Remarks • You can reset the attributes of objects that are
variable text, constant text, lines, or boxes.

• Before you reset the attribute of an object, you must e
open and either add or combine the form the object is
on.

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the object using the reset
attributes.

• If the object you specify is not displayed on the screen,
Screen Formatting shifts the data so the object is
displayed (updates the screen automatically.)

2-78 NOS/VE Screen Formatting Revision C

Setting the Cursor Position

Setting the Cursor Position

Purpose

Format

FDP$XSET_CURSOR_POSITION sets the cursor to a
selected position for later display.

CALL "FDP$XSET_CURSOR_POSITION" USING
form-identifier object-name object-occurrence
character-position fde-cobol-status

Parameters form-identifier {input}

Revision C

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {input}

The name of the object on which you want the cursor set.
Include the following data description entry:

01 object-name PIC X(31).

object-occurrence {input}

The integer specifying the occurrence of the object name.
For the first occurrence, use 1. Include the following data
description entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

character-position {input}

The character position to which you want the cursor set.
For the first character position, use 1. Include the
following data description entry:

01 character-position
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Using COBOL to Manage Forms 2-79

Setting the Cursor Position

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
fde-invalid-character-position
f de-in valid-form-iden tiller
fde-invalid-object-name
fde-no-object-available-defined
fde-no-space-available
f de-system-error
fde-unknown-object-name
fde-unknown-occurrence

• Use this subroutine to alter the default sequence of
the application user's entry of variables. (In the
default sequence, Screen Formatting places the cursor
on the first input variable of the highest priority form.
The highest priority form is the form last added,
combined, or positioned.)

• When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
updates the terminal screen with the cursor at the e
specified position.

• If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

• Before you set the cursor position on a form, you must
open the form and either add or combine it.

• You cannot set the cursor position in a pushed form.

2-80 NOSNE Screen Formatting Revision C

Setting Line Mode

Setting Line Mode

Purpose

Format

e Parameters

Conditions

Remarks

Revision C

FDP$XSET_LINE_MODE begins line-by-line interaction
with an application user.

CALL "FDP$XSET_LINE_MODE" USING
fde-cobol-status

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value

• Use this call for extended dialogues in line mode. For
short dialogues, Screen Formatting automatically
switches to the proper mode (line or screen) but
resources used for screen mode interaction remain.

• This call releases all screen mode resources:

Open forms are closed.

The mode is set to line.

Using COBOL to Manage Forms 2-81

Setting an Object Attribute

Setting an Object Attribute

Purpose FDP$X8ET_OBJECT_ATTRIBUTE changes a display
attribute for an object.

Format CALL "FDP$XSET_OBJECT_ATTRIBUTE" USING
form-identifier object-name object-occurrence
attribute-name fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC 89(18) SYNC LEFT.

object-name {input}

The name of the object whose display attribute is being
set. Include the following data description entry:

01 object-name PIC X(31).

object-occurrence {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following data description
entry:

01 object-occurrence
USAGE COMP PIC 89(18) SYNC LEFT.

attribute-name {input}

The program name of the display attribute being set.
Include the following data description entry:

01 attribute-name PIC X(31).

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

2-82 NOS/VE Screen Formatting Revision C

Setting an Object Attribute

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

e fde-bad-data-value

Remarks

e

Revision C

fde-form-not-scheduled
fde-form-pushed
fde-inV"alid-attribute-position
fde-invalid-form-identifier
fde-invalid-object-name
fde-invalid-occurrence
fde-no-space-available
fde-unknown-display-name
fde-unknown-object name
fde-unknown-occurrence

• You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

• Changed attributes replace existing attributes.

• When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
displays the object using the set attributes.

• If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

• Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

• You cannot set attributes of objects on a pushed form.

Using COBOL to Manage Forms 2-S3

Showing Forms

Showing Forms

Purpose

Format

FDP$XSHOW_FORMS updates the terminal screen.

CALL "FDP$XSHOW _FORMS" USING
fde-cobol-status

Parameters fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-too-large-for-screen
fde-form-to-show
fde-no-space-available
fde-system-error
fde-terminal-disconnected

• When none of the forms scheduled for display has an
event or input variable defined, use this subroutine
instead of FDP$XREAD_FORMS.

• When you do not want any input from the terminal
user, use this subroutine.

• A call to FDP$XSHOW_FORMS:

Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call, it displays them for
the first time.

Removes from the screen the forms you deleted
since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call.

2-84 NOSNE Screen Formatting Revision C

Revision C

Showing Forms

- Displays variables replaced since last
FDP$XREAD_FORMS or FDP$XSHOW_FORMS
call.

- Displays objects with attributes set or reset since
last FDP$XREAD_FORMS or FDP$XSHOW_
FORMS call.

Using COBOL to Manage Forms 2-85

Using FORTRAN to Manage Forms

Chapter 1 presented an overview of the process for creating and
managing forms. It mentioned the following tasks a programmer uses
to manage forms:

1. Writing the application program to include calls to the Screen
Formatting FORTRAN subroutines that manage forms.

2. Expanding and compiling the program.

3. Creating a procedure that starts the program for the user.

3

This chapter describes these three tasks and shows them being
executed in a FORTRAN program. At the end of the chapter you will
find format and parameter descriptions for each FORTRAN subroutine
used by Screen Formatting.

Writing a Program to Use Forms

To use forms in any program you write, you must:

• Copy the data definitions generated by Screen Formatting when
the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

• Call Screen Formatting subroutines to manage the forms and the
variable text objects on the forms.

Following the descriptions of these tasks is a FORTRAN program in
which these tasks are executed.

Revision C Using FORTRAN to Manage Forms 3-1

Copying Dat.a Definitions

Copying Data Definitions

The data definitions for each form reside on a form definition record ,A
created by the form designer. In your program, you transfer data to 9
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a
common deck that defines the form definition record. For example, A
Screen Formatting1 generated the following source file for a form 9
named SELECT. (The form definition record name is the same as the
form name.)

*DECK SELECT expand = false

CHARACTER SELECT*41
CHARACTER XSELEC(41)
EQUIVALENCE (SELECT,XSELEC(1))
CHARACTER MESSAG*40
EQUIVALENCE (XSELEC(1),MESSAG)
CHARACTER OBJECT*1
EQUIVALENCE (XSELEC(41),0BJECT)

The designer saves this file as a deck on a NOSNE SOURCE_
CODE_ UTILITY (SCU) library.2

In the beginning of your program, you must copy the form definition e
deck for each form the designer created:

• Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

• Copy the deck by specifying its name on the SCU *COPY
directive.

1. For this example, Screen Formatting was accessed through the Screen Design
Facility.

2. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source text using SCU. (For information on .A
SCU, see the NOSNE Source Code Management manual.) ~

3-2 NOSNE Screen Formatting Revision C

Calling Screen Formatting

Calling Screen Formatting

When you write a program that uses forms, you perform two basic
tasks with Screen Formatting subroutines:

• Displaying and removing forms and variable data on the
application user's screen. e. Processing events executed by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user's screen,
you perform the following steps in the sequence given:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

No matter how many times you use or update a form in your
program, you need only open it once. For this reason, you usually
begin an application program by opening all the forms you will
use. However, when a form requires a large amount of storage for
variables, you may want to open the form only when the
application user needs it.

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user's screen.

To display more than one form at a time, add all the forms before
you display them (the next step). The last form you schedule for
display is the top form on the screen. Because forms are opaque,
the top form covers other forms appearing in the same area. The
cursor position indicates which form is ready for processing.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

Revision C Using FORTRAN to Manage Forms 3-3

Displaying and Removing Forms and Variable Data

3. Read the form.

When you read forms, Screen Formatting displays all the forms
you added.

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms e
later in this chapter. When none of the forms scheduled for display
has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read forms, the
deleted form is removed from the screen. However, the form
remains available for later use in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources
the form uses. The form is no longer available to the user or your e
program.

(For the format of the call that closes a form, see Closing a Form
later in this chapter.)

3-4 NOS/VE Screen Formatting Revision C

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user
can execute to return control to the program: normal and abnormal.

• For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

• For abnormal events, the program takes its own action. You
generally then delete the form and go on, or stop the program.

Processing Normal Events

To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the format of the call that gets the event name and cursor e position, see Getting the Next Event at the end of this chapter.)

2. Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting a Record, Getting an Integer Variable,
Getting a Real Variable, and Getting a String Variable.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing a Record, Replacing an
Integer Variable, Replacing a Real Variable, and Replacing a
String Variable.)

You can also reset the variables on a form to their original state.
(For formats of the calls that reset variables to their original state,
see Resetting a Form and Resetting an Object Attribute later in this
chapter.)

Revision C Using FORTRAN to Manage Forms 3-5

Processing Events and Data

Processing Abnormal Events

To process an abnormal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event later in this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

• Resetting a form and redisplaying it.

• Moving the user to a new form for additional processing.

• Returning the user to a previous form.

• Stopping the program.

The user's screen is updated when you either read the forms again A
or end the program. W

3-6 NOSNE Screen Formatting Revision C

Example Program for Managing Forms with FORTRAN

Example Program for Managing Forms with
FORTRAN

The program in this example computes the area of circles and
rectangles. The example includes:

• Pictures of the forms managed in the program.

• The design specification supplied by the form designer.

• The form definition decks.

• The example program.

Forms Managed in the Program

The example program manages three forms residing on an object
library named EXAMPLE_OBJECT_LIBRARY that must be in the
user's command list.

When a user starts the application, Select Form appears (figure 3-1).

r

Revision C

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

Figure 3-1. Select Form

Using FORTRAN to Manage Forms 3-7

Forms Managed in the Program

On Select Form, a user enters either c to compute the area of a circle
or r to compute the area of a rectangle.

When a user enters r on Select Form, Rectangle Form (figure 3-2) e
appears.

Compute Area of Rectangle

... _________ _..! Type height' ----
Area is: .

Type width:

Figure 3-2. Rectangle Form

On Rectangle Form, the user enters the lengths of the sides of the
rectangle as integers and presses the return key to have the program
compute the area.

3-8 NOS/VE Screen Formatting Revision C

9·

Forms Managed in the Program

When a user enters c on Select Form, Circle Form (figure 3-3)
appears.

Compute Area of Circle

Type radius: ___ _

Area is:

Figure 3-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

Revision C Using FORTRAN to Manage Forms 3.9

Design Specification

Design Specification

In writing the example program, the programmer uses the information
the form designer listed in the following design specification: e
• The names for the three forms used by the program are:

SELECT (for Select Form)
RECTAN (for Rectangle Form)
CIRCLE (for Circle Form)

• The user can call both the Rectangle Form and Circle Form from
the Select Form.

• The following variable text objects are defined on the forms:

Variable Object

Select Form:

MESSAG

OBJECT

Rectangle Form:

SIDE

AREA

MESSAG

Circle Form:

RADIUS

AREA

MESSAG

3-10 NOS/VE Screen Formatting

Description

Area for displaying error messages.

Area for user input of r or c.

Areas (two) for user input of values tit
for the rectangle's sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle's radius.

Area for returning value of
computed area.

Area for displaying error messages.

Revision C

Design Specification

• The following events are defined on the forms:

Event

COMPUTE

BACK

QUIT

Revision C

Description

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

Using FORTRAN to Manage Forms 3-11

Form Definition Decks

Form Definition Decks

When the designer creates the three forms (by writing a program or
using Screen Design Facility), a form definition record is created with
each form. For the example program, the programmer copies the
following form definition decks placed by the designer on an SCU
library. The library in this example is named EXAMPLE_SOURCE_
LIBRARY.

The SELECT deck:

CHARACTER SELECT*41
CHARACTER XSELEC(41)
EQUIVALENCE (SELECT,XSELEC(1))
CHARACTER MESSAG*40
EQUIVALENCE (XSELEC(1),MESSAG)
CHARACTER OBJECT*1
EQUIVALENCE (XSELEC(41),0BJECT)

The RECTAN deck:

CHARACTER RECTAN*64
CHARACTER XRECTA(64)
EQUIVALENCE (RECTAN,XRECTA(1))
INTEGER SIDE (2)
EQUIVALENCE (XRECTA(1),SIDE(1))
INTEGER AREA
EQUIVALENCE (XRECTA(17),AREA)
CHARACTER MESSAG*40
EQUIVALENCE (XRECTA(25),MESSAG)

The CIRCLE deck:

CHARACTER CIRCLE*56
CHARACTER XCIRCL(56)
EQUIVALENCE (CIRCLE,XCIRCL(1))
REAL AREA
EQUIVALENCE (XCIRCL(1),AREA)
REAL RADIUS
EQUIVALENCE (XCIRCL(9),RADIUS)
CHARACTER MESSAG*40
EQUIVALENCE (XCIRCL(17),MESSAG)

3-12 NOS/VE Screen Formatting Revision C

Example FORTRAN Program

Example FORTRAN Program

This FORTRAN program calls the forms and executes the events
described in the previous sections. The program is in the SCU deck
named COMPUT. To run the example program, see the Examples
online manual.

PROGRAM COMPUT (OUTPUT, TAPE2=0UTPUT)

• Copy definitions for Screen Formatting subroutines.

•COPY FDP$FORTRAN_ALIASES

• Copy variables for select form.

•COPY select

INTEGER IFORM, ISFORM, ICFORM, IRFORM, ISTAT,IVSTAT
INTEGER ISX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT,IOX,IOY
CHARACTER•31 FNAME, ENAME, ONAME, VNAME
CHARACTER•1 NORMAL, LAST

•Open all forms used by the program
• and assign form identifiers.

FNAME='SELECT'
CALL FDOPEN (FNAME, ISFORM, ISTAT)
CALL CHECKS ('Open failed on form select', ISTAT)

FNAME,.'CIRCLE'
CALL FDOPEN (FNAME, ICFORM, ISTAT)
CALL CHECKS ('Open failed on form circle', ISTAT)

FNAME='RECTAN'
CALL FDOPEN (FNAME, IRFORM, ISTAT)
CALL CHECKS ('Open failed on form rectangle', ISTAT)

• Add select form to list scheduled for display.

CALL FDADD (ISFORM, ISTAT)
CALL CHECKS ('Add failed on form select'. ISTAT)

Revision C Using FORTRAN to Manage Forms 3-13

Example FORTRAN Program

• Update screen and accept user terminal entry
• for object; dtsplay all added forms.

20 CALL FDREAD (ISTAT)
CALL CHECKS ('Read failed on form select', ISTAT)

• Get screen events that determine next actions.

CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME,IOCCUR,ICP,IOT,IOX,IOY,LAST,ISTAT)

CALL CHECKS ('Get event failed on form select', ISTAT)

IF (ENAME .NE. 'COMPUTE') THEN

•Stop program on QUIT or BACK event.

GO TO 30
END IF

• Transfer object variable from form to program.

VNAME = 'OBJECT'
CALL FDGETS (ISFORM, VNAME, 1, OBJECT, IVSTAT, ISTAT)
CALL CHECKS

('Get string variable failed on form select', ISTAT)

• If terminal user entered invalid data, display
• error message and ask for another entry.

IF (IVSTAT .NE. 0) THEN
CALL DISMES ('Typer or c.', ISFORM)
GO TO 20

END IF

IF (OBJECT .EQ. 'R') THEN

3-14 NOS/VE Screen Formatting Revision C

Example FORTRAN Program

• Remove select form and compute area of rectangle.

CALL FDDEL (ISFORM, ISTAT)
CALL CHECKS ('Delete failed on form select', ISTAT)
CALL COMPR (ENAME, IRFORM)
GO TO 25

END IF

IF (OBJECT .EQ. 'C') THEN

• Remove select form and compute area of circle.

CALL FDDEL (ISFORM, ISTAT)
CALL CHECKS ('Delete failed on form select', ISTAT)
CALL COMPC (ENAME, ICFORM)
GO TO 25

END IF

• If terminal user entered invalid value for object,
• display error message and ask for another entry.

CALL DISMES ('Typer or c.', ISFORM)
GO TO 20

• Process event from rectangle form or circle form.

25 IF (ENAME .EQ. 'QUIT') THEN
GO TO 30

END IF

• A BACK event occurred on rectangle form or circle form;
• display select form in original state.

Revision C

CALL FDRESF (ISFORM, !STAT)
CALL CHECKS ('Reset failed on form select', !STAT)

CALL FDADD (ISFORM, ISTAT)
CALL CHECKS ('Add failed on form select', !STAT)
GO TO 20

Using FORTRAN to Manage Forms 3-15

Example FORTRAN Program

*Close all forms.

30 CALL FDCLOS (ISFORM, !STAT)
CALL CHECKS ('Close failed on form select', ISTAT)

CALL FDCLOS (ICFORM, ISTAT)
CALL CHECKS ('Close failed on form circle', ISTAT)

CALL FDCLOS (IRFORM, !STAT)
CALL CHECKS ('Close failed on form rectangle', !STAT)

STOP
END

SUBROUTINE CHECKS (MESSAG, !STAT)

*Check Screen Formatting subroutine call status.

INTEGER ISTAT
CHARACTER*(*) MESSAG

5 FORMAT (lX, A, ' status ',I4)

IF (ISTAT .NE. 0) THEN
WRITE (2,5) MESSAG, ISTAT
STOP

END IF

RETURN
END

SUBROUTINE DISMES (MESSAG, !FORM)

3-16 NOS/VE Screen Formatting Revision C

Example FORTRAN Program

• Display message for variable status errors.

INTEGER !FORM, IVSTAT, !STAT
CHARACTER*31 VNAME
CHARACTER*(*) MESSAG

*COPY FDPSFORTRAN_ALIASES

VNAME='MESSAG'
CALL FDREPS (!FORM, VNAME, 1, MESSAG, IVSTAT, !STAT)
CALL CHECKS ('Replace string failed on message', !STAT)
RETURN
END

SUBROUTINE COMPC (ENAME, ICFORM)

• Copy subroutine to compute area for circle.

*COPY FDPSFORTRAN_ALIASES

• Copy variables for circle form.

*COPY circle

INTEGER !FORM, ISTAT,IVSTAT, ICFORM
INTEGER ISX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT,IOX,IOY
CHARACTER*31 ENAME, ONAME, VNAME
CHARACTER*l NORMAL, LAST

• Display circle form in original state.

CALL FDRESF (ICFORM, ISTAT)
CALL CHECKS ('Reset failed on form circle', !STAT)

CALL FDADD (ICFORM, !STAT)
CALL CHECKS ('Add failed on form circle', ISTAT)

Revision C Using FORTRAN to Manage Forms 3-17

Example FORTRAN Program

• Update screen and get radius from termtnal user entry.

5 CALL FDREAD (ISTAT)
CALL CHECKS ('Read failed on form circle', ISTAT)

CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME,IOCCUR,ICP,IOT,IOX,IOY,LAST,ISTAT)

CALL CHECKS ('Get event failed on form cfrcle', ISTAT)

IF (ENAME .NE. 'COMPUTE') THEN
CALL FDDEL (ICFORM, ISTAT)
CALL CHECKS ('Delete failed on form circle', ISTAT)
RETURN

END IF

• Transfer terminal user entry for radius to program.

VNAME = 'RADIUS'
CALL FDGETR (ICFORM, VNAME, 1, RADIUS, IVSTAT, ISTAT)
CALL CHECKS

-('Get real variable failed on form circle', ISTAT)
IF (IVSTAT .NE. 0) THEN

CALL DISMES ('Type valid value for radius.', ICFORM)
GO TO 5

END IF

•Compute area of circle and display it.

AREA=3.15•(RADIUS••2)

VNAME = 'AREA'
CALL FDREPR (ICFORM, VNAME, 1, AREA, IVSTAT, ISTAT)
CALL CHECKS

-('Replace real variable failed on form circle', ISTAT)
IF (IVSTAT .NE. 0) THEN

3-18 NOS/VE Screen Formatting Revision C

Example FORTRAN Program

* Area value could not be displayed using output format
* defined for form. Revise form or program to accOITlllOdate
* size of number.

CALL DISMES ('Type valid value for radius.', ICFORM)
GO TO 5

END IF

• Blank error message in case previously displayed.

CALL DISMES (' ', ICFORM)

* Process next user entry.

GO TO 5
END

SUBROUTINE COMPR (ENAME, IRFORM)

* Copy subroutine to compute area of rectangle.

*COPY FDP$FORTRAN_ALIASES

* Copy variables for rectangle form.

*COPY rectan

INTEGER !FORM, ISTAT,IVSTAT,IRFORM
INTEGER ISX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT,IOX,IOY
CHARACTER*31 ENAME, ONAME, VNAME
CHARACTER*1 NORMAL, LAST

* Display rectangle form in original state.

CALL FDRESF (IRFORM, !STAT)
CALL CHECKS ('Reset failed on form rectangle', !STAT)

CALL FDADD (IRFORM, !STAT)
CALL CHECKS ('Add failed on form rectangle', !STAT)

Revision C Using FORTRAN to Manage Forms 3-19

Example FORTRAN Program

• Update screen and get terminal user entry
• for rectangle height and width.

5 CALL FDREAD (!STAT)
CALL CHECKS ('Read failed on form rectangle', ISTAT)

CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME,IOCCUR,ICP,IOT,IOX,IOY,LAST,ISTAT)

CALL CHECKS ('Get event failed on form rectangle', ISTAT)

• If abnormal event (BACK or QUIT) occurs, return to caller.

IF (ENAME .NE. 'COMPUTE') THEN
CALL FDDEL (IRFORM, !STAT)
CALL CHECKS ('Delete failed on form rectangle', ISTAT)
RETURN

END IF

• Transfer height value from form to program.

VNAME = 'SIDE'
CALL FDGETI (IRFORM, VNAME, 1,SIDE (1), IVSTAT, !STAT)
CALL CHECKS

-('Get integer variable failed on form rectangle', !STAT)

* If data invalid, move cursor to height value
• and display error message.

IF (IVSTAT .NE. 0) THEN
CALL FDSETC (IRFORM, VNAME, 1, 1, !STAT)
CALL CHECKS

-('Set cursor failed on form rectangle', ISTAT)
CALL DISMES ('Type valid value for height.', IRFORM)
GO TO 5

END IF

* Transfer width value from form to program.

CALL FDGETI (IRFORM, VNAME, 2, SIDE(2), IVSTAT, !STAT)
CALL CHECKS

-('Get integer variable failed on form rectangle', !STAT)

3-20 NOSNE Screen Formatting Revision C

Example FORTRAN Program

* If data invalid, move cursor to width value and display
* error message.

IF (IVSTAT .NE. 0) THEN
CALL FOSETC (IRFORM, VNAME, 2, 1, !STAT)
CALL CHECKS

-('Set cursor failed on form rectangle', !STAT)
CALL DISMES ('Type valid value for width.', IRFORM)
GO TO 5

END IF

*Compute area of rectangle and display it.

AREA=SIDE(1)*SIDE(2)

VNAME = 'AREA'
CALL FDREPI (IRFORM, VNAME, 1, AREA, IVSTAT, !STAT)
CALL CHECKS

-('Replace integer variable failed on form rectangle',
-!STAT)

IF (IVSTAT .NE. 0) THEN

* Area value could not be displayed using output format
* defined for form. Revise form or program to accommodate
• size of number.

CALL DISMES ('Format cannot display area.', IRFORM)
GO TO 5

END IF

* Blank error message in case previously displayed.

CALL DISMES (' ', IRFORM)

* Process next user entry.

Revision C

GO TO 5
END

Using FORTRAN to Manage Forms 3-21

Expanding and Compiling a Program

Expanding and Compiling a Program

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code.a

To expand and compile a program maintained in SCU decks:

1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE_SOURCE_LIBRARY.)

PROC fortran_compile_deck, forcd (
deck, d: name=$reQuired
status : var of status = $optional
)

source_code_utility
use_library base=example_source_library result=$null
expand_deck deck=$value(deck) ..
compile=$1ocal.compile ..
alternate_base=$system.cybil .osf$program_interface

quit

fortran input=$1ocal .compile ..
list=$1ocal. listing runtime_checks=all
debug_aids=dt

3. For information on SCU, see the NOSNE Source Code Management manual.

3-22 NOSNE Screen Formatting Revision C

Expanding and Compiling a Program

create_object_library
add_module library=example_object_library
comb1ne_module 11brary=$local.lgo
generate_library library=example_object_library.$next

Quit

PROCEND fortran_compile_deck

To use the procedure, put it on library EXAMPLE_OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the
procedure by entering:

/fortran_compile_deck deck=fortran_compute_object_area

The compiled program is now also on library EXAMPLE_ OBJECT_
LIBRARY.

For more information on writing and using procedures, see the
NOSNE System Usage manual.

Revision C Using FORTRAN to Manage Forms 3-23

Helping the User Start the Application

Helping the User Start the Application

The complete application consists of your program and the forms
created by the designer. To integrate the forms with your program,
you must:

• Create a procedure that gives users access to the object library
containing the forms. e

• Ensure that the user's terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

• Ensure that users know how to start the application.

Creating a User Procedure

To give the user access to the object library containing the forms:

1. Write a NOS/VE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program.

For example, the following procedure executes the application that e
uses the starting procedure COMPUT on library EXAMPLE_
OBJECT_LIBRARY. The other libraries accessed by the program are
$SYSTEM.FDF$LIBRARY and $SYSTEM.TDU.TERMINAL_
DEFINITIONS. Users must have these libraries available in order for
the program to call the Screen Formatting subroutines.

PROC fortran_compute_area, forca (
status : var of status = optional
)

execute_ task
11brary=(example_object_library,$system.fdf$1ibrary, ..
$system.tdu.terminal_definitions)
starting_procedure=canput

PROCEND fortran_canpute_area

3-24 NOS/VE Screen Formatting Revision C

•
Creating a User Prolog

Creating a User Prolog

To ensure that the users' terminal environment is set up properly to
use the forms, make sure they set the following terminal
characteristics before they execute the procedure:

Characteristic Description e Terminal model

Attention
character

Identifies the terminal to NOS/VE.

Provides a character users can enter to interrupt
the application.

Hold messages Tells the network to hold all network messages
until the user stops the application.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

• Identifies a Digital Equipment Corporation VT220 terminal to the
system.

• Chooses the exclamation point as a way to interrupt the program.

e • Holds all messages from a NAMVE/CDCNET network.

• Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_term1nal_attr1butes term1nal_model=dec_vt220
attention_character='!' ..
status_act1on=hold

change_term_conn_defaults attent1on_character_action=1
change_connection_attr1butes term1nal_file_name=input aca=1
change_connection_attr1butes term1nal_file_name=output aca=1
change_connection_attributes terminal_file_name=c0111Tiand aca=1

For a further explanation of how to interrupt a screen application
during an interactive session, and what commands to use for networks e other than NAMVE/CDCNET, see the NOS/VE System Usage manual.

Revision C Using FORTRAN to Manage Forms 3-25

Starting the Application

Starting the Application

To start the application, the users enter:

/create_cOllllland_ltst_entry e=example_object_library
/fortran_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_cOllllland_ltst_entry e=example_object_ltbrary

3-26 NOSNE Screen Formatting Revision C

FORTRAN Subroutine Calls for Interacting with Forms

FORTRAN Subroutine Calls for Interacting
with Forms

The following sections describe the FORTRAN subroutine calls to
Screen Formatting modules. For each subroutine, there is a purpose
description, input format, list of parameters and their types, and
pertinent remarks.

The FORTRAN program calls Screen Formatting subroutines that
allow a user to interact with forms. These subroutines are external
routines that reside on the library called $SYSTEM.FDF$LIBRARY.
This library must be in the user's program library list in order to
execute the program.

A subroutine name is an alias that is defined by the deck
FDP$FORTRAN _ALIASES. The SCU directive *COPY
FDP$FORTRAN _ALIASES must be included for each application
subroutine that calls a Screen Formatting subroutine. See appendix F
for a list of aliases.

Revision C Using FORTRAN to Manage Forms 3-27

Adding a Form

Adding a Form

Purpose

Format

FDADD schedules a form for display on the application
user's screen.

CALL FDADD (iform, istat)

Parameters iform {input}

Remarks

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifier is invalid.

36 System error occurred.

39 Form is pushed.
70 Form is already added.

131 Form is too large for screen.
145 Data value is bad.

Include the following type statement:

INTEGER istat

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting displays the added form
on the terminal screen. The added .form is placed on
top of other forms occupying the same area on the
screen.

• Before you add a form, you must open it.

• You cannot add a pushed form.

3-28 NOS/VE Screen Formatting Revision C

e

e

Changing Table Size

Changing Table Size

Purpose

Format

Parameters

Revision C

FDCHAT changes the size of the table during program
execution.

CALL FDCHAT (iform, tname, isize, istat)

iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

tname {input}

The name of the table to change in size. Include the
following type statement:

CHARACTER*31 tname

isize {input}

The size of the table. While this subroutine is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

Include the following type statement:

INTEGER isize

Using FORTRAN to Manage Forms 3-29

Changing Table Size

I E~pl••

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifier is invalid.

37 Table name is invalid.

39 Form is pushed.
40 Table name is unknown.

145 Data value is bad.
151 Table size is invalid.

Include the following type statement:

INTEGER istat

• The table must be present in an open form.

• The size limitation remains in effect until the next
time you call the FDCHAT subroutine.

• The maximum size for a table is identified by the e
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (table size is invalid).

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

• If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

• If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

3-30 NOS/VE Screen Formatting Revision C

Closing a Form

Closing a Form

Purpose

Format

FDCLOS releases resources used to process a form and
deletes the form from the list scheduled for display.

CALL FDCLOS (iform, istat)

Parameters iform {input}

Remarks

Revision C

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.

7 No space is available.

9 Form identifer is invalid.

39 Form is pushed.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting removes the
closed form from the terminal screen as a result of
calling this procedure.

• Before you can close a form, you must open it.

• You cannot close a pushed form.

Using FORTRAN to Manage Forms 3·31

Combining Forms

Combining Forms

Purpose FDCOM combines a form with a previously added form
and schedules the combined form for display on the
terminal screen.

Format CALL FDCOM (iaform, icform, istat)

Parameters iaform {input}

The identifier for this instance of the previously added
form. Include the following type statement:

INTEGER iform

icform {input}

The identifier for the form you are combining with the
previously added form. Include the following type
statement:

INTEGER icform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

39 Form is pushed.

70 Form is already added.
131 Form is too large for screen.
145 Data value is bad.
150 Form is already combined.
152 Form is not added.

Include the following type statement:

INTEGER istat

3-32 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Combining Forms

• You cannot combine a pushed form.

• The combined form inherits the event definitions of
the previously added form.

• Before you combine a form with a previously added
form, you must open both forms.

• When the programs calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
combined form. The combined form is placed on top of
other forms occupying the same area on the screen.

• When the application user executes an event to return
to the program normally, Screen Formatting updates
all program variables associated with both the added
and combined forms.

• To combine several forms with a previously added
form, call this subroutine more than once.

Using FORTRAN to Manage Forms 3-33

Deleting a Form

Deleting a Form

Purpose

Format

FDDEL deletes the form from the list of forms scheduled
for display.

CALL FDDEL (iform, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.

7 No space is available.

9 Form identifer is invalid.

39 Form is pushed.

54 Form is not scheduled for display.

145 Data value is bad.

Include the following type statement:

INTEGER istat

3-34 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Deleting a Form

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting removes the
deleted form from the terminal screen and replots any
forms uncovered by the deleted form.

• When you add a form (FDADD) again that you
previously deleted, the data in the form is retained.

• Before you delete a form, you must open it.

• You cannot delete a pushed form.

• If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

• When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

Using FORTRAN to Manage Forms 3-35

Getting an Integer Variable

Getting an Integer Variable

Purpose FDGETI gets the value the user entered on a form for an A
integer variable and transfers it to the program. W

Format CALL FDGETI (iform, vname, ioccur, ivar, ivstat,
istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to get and transfer to the
program. Include the following type statement:

CHARACTER*31 vname

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

ivar {output}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following type statement:

INTEGER ivar

3-36 NOSNE Screen Formatting Revision C

Revision C

Getting an Integer Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values can be returned:

Value Meaning

0 No error occurred on the variable.

3 The user entered data that is not a valid
integer.

5 The user entered data that does not match the
defmed program data type.

7 User entered an integer that is too large.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the subroutine results. The
following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

Using FORTRAN to Manage Forms 3-37

Getting an Integer Variable

Remarks • Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the
form, the program returns the initial value specified
by the form designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form, e
the program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

3-38 NOSNE Screen Formatting Revision C

Getting the Nert Event

Getting the Next Event

Purpose

Format

Parameters

Revision C

FDGETE gets the event resulting from the most recent
FDREAD subroutine.

CALL FDGETE (ename, normal, isx, isy, iform, ifx,
ify, iet, oname, ioccur, icp, iot, iox, ioy, last, istat)

ename {output}

A data name to receive the application user's event.
Include the following type statement:

CHARACTER*31 ename

normal {output}

A data name to receive the event normal indication. If
the event is normal, T is returned. If the event is not
normal, F is returned. Include the following type
statement:

CHARACTER*! normal

isx {output}

A data name to receive the x position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the x position increases by 1 for each
character you count from left to right. Include the
following type statement:

INTEGER isx

isy {output}

A data name to receive the y position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the y position increases by 1 for each
character you count from top to bottom. Include the
following type statement:

INTEGER isy

iform {output}

The variable that returns the instance of the form for the
event. Include the following type statement:

INTEGER iform

Using FORTRAN to Manage Forms 3-39

Getting the Next Event

ifx {output}

A data name to receive the x position of the event on the
form. The character in the upper left corner of the form e
is 1; the x position increases by 1 for each character you
count from left to right. Include the following type
statement:

INTEGER ifx e
ify {output}

A data name to receive the y position of the event on the
form. The character in the upper left corner of the form
is 1; the y position increases by 1 for each character you
count from top to bottom. Include the following type
statement:

INTEGER ify

iet {output}

The event type. The following values are possible:

Value Meaning

0 The event occurred on an area of a form
containing no object.

1 The event occurred on a form object.

Include the following type statement:

INTEGER iet

oname {output}

When event type is 1, the variable returns a value giving
the name of the object where the event occurred. Include
the following type statement:

CHARACTER*31 oname

ioccur {output}

When event type is 1, the variable returns a value giving A
the occurrence of the object name. Include the following ,.,
type statement:

INTEGER ioccur

3-40 NOSNE Screen Formatting Revision C

Revision C

Getting the Nex:t Event

icp {output}

When event type is 1, the variable returns a value giving
the character position within the object where the event
occurred. The first character position is 1. Include the
following type statement:

INTEGER icp

iot {output}

When event type is 1, the variable indicates the type of
object on which the event occurred. The following values
are possible:

Value Object Type

0 Box
1 Constant text
2 Constant box
3 Line
5 Variable text
6 Variable box

Include the following type statement:

INTEGER iot

iox {output}

When event type is 1, the value returned is the x origin
position of the object. The character in the upper left
corner of the form is 1; the x position increases by 1 for
each character you count from left to right. Include the
following type statement:

INTEGER iox

ioy {output}

When event type is 1, the value returned is the y origin
position of the object. The character in the upper left
corner of the form is 1; the y position increases by 1 for
each character you count from top to bottom. Include the
following type statement:

INTEGER ioy

Using FORTRAN to Manage Forms 3-41

Getting the Next Event

Remarks

last {output}

Indicates whether this is the last event The following
values are possible:

Value Meaning

T This is the last event.

F This is not the last event.

Include the following type statement:

CHARACTER*! last

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.

145 Data value is bad.

Include the following type statement:

INTEGER istat

The FDREAD subroutine deletes existing events. If the
event is normal, Screen Formatting updates the variables
in the added and combined forms containing the event.
Later, you can request the transfer of these variables to
program storage. If the event is abnormal, Screen
Formatting does not update or validate variables.

3-42 NOSNE Screen Formatting Revision C

Getting a Real Variable

Getting a Real Variable

Purpose

Format

FDGETR gets a value the user entered on a form for a
real variable and transfers it to the program.

CALL FDGETR (iform, vname, ioccur, var, ivstat,
istat)

Parameters iform {input}

Revision C

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to get. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

var {output}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following type statement:

REAL var

Using FORTRAN to Manage Forms 3-43

Getting a Real Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

2 The user entered data that is within the range
of real numbers defined for the variable.

5 The user entered data that does not correspond
to the defined data type.

7 The user entered a number too large to be
converted to the defined real program type.

9 The user entered an exponent that is too large.

10 User entered an exponent that is too small.

11 User entered an indefinite number.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifier is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

3-44 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Getting a Real Variable

• Before you get a real variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using FORTRAN to Manage Forms 3-45

Getting a Record

Getting a Record

Purpose FDGET transfers the values of the form record to the
program record.

Format CALL FDGET (iform, record, ivstat, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

record {output}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the type statements in this
record. It is the program work area for the variables used
on the form.

ivstat {output}

the condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

1 The user entered data that does not match the
strings defined for the variable.

2 The user entered data that is not within the
range of real numbers defined for the variable.

3 The user entered data that is not within the
range of integer numbers defined for the
variable.

5 The user entered data that does not correspond
to the defined data type.

7 User entered a number that is too large to be
converted to the defined real or integer data
type.

9 The user entered an exponent that is too large.

3-46 NOSNE Screen Formatting Revision C

Remarks

Revision C

Getting a Record

Value Meaning

10 The user entered an exponent that is too small.

11 The user entered an indefinite number.

12 The user entered an infinite number.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
9 Form identifer is invalid.

14 Work area is invalid.
36 System error exists.
52 Form has no variable.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• Before you get a record for a form, you must open the
form. If you get the record after opening the form and
before reading or replacing the record, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using FORTRAN to Manage Forms 3-47

Getting a String Variable

Getting a String Variable

Purpose FDGETS gets a value the user entered on a form for a
string variable and transfers it to the program.

Format CALL FDGETS (iform, vname, ioccur, cvar, ivstat,
istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to get. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

cvar {output}

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include the
following type statement (n is the number of characters in
the variable):

CHARACTER*n

3-48 NOSNE Screen Formatting Revision C

Revision C

Getting a String Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

1 The user entered data that does not match the
strings defined for variable.

15 The storage length of the parameter variable is
not long enough.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

Using FORTRAN to Manage Forms 3-49

Getting a String Variable

Remarks • Before you get a string variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and .A
error processing to display an error message or form, ..
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

3-50 NOS/VE Screen Formatting Revision C

Opening a Form

Opening a Form

Purpose

Format

FDOPEN locates a form and prepares it for use by the
program.

CALL FDOPEN (fname, iform, istat)

Parameters fname {input}

Revision C

The name of the form you want to open. Include the
following type statement:

CHARACTER*31 fname

iform {input-output}

The form identifier established for the form. Other Screen
Formatting subroutines use this identifier when
referencing the form. Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
5 Form name is unknown.
7 No space is available.
9 Form indentifier is invalid.

26 Form name is invalid.
36 System error exists.

100 Terminal is not defined.
136 Form is not ended.

139 Form is already open.
141 Form requires conversion.
145 Data value is bad.

Include the following type statement:

INTEGER istat

Using FORTRAN to Manage Forms 3-51

Opening a Form

Remarks • Screen Formatting locates a form as follows:

If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

If the form name is not blank, Screen Formatting
searches the list of ended dynamically created A
forms. ..,

If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object code libraries.
(You specify the order in which Screen Formatting
searches the list using the NOS/VE command
CREATE_COMMAND_LIST_ENTRY).

• Executing FDP$XOPEN _FORM does not display the
form on the screen.

• The form identifier that FDOPEN returns identifies
the instance of open for a form. Forms dynamically
created have only one instance of open. Forms stored
on object code libraries can have more than one A
instance of open. For each instance of open, Screen W
Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

3-52 NOSNE Screen Formatting Revision C

Popping a Form

Popping a Form

Purpose

Format

FDPOP deletes forms scheduled (added or combined) since
the last FDPUSH subroutine.

CALL FDPOP (istat)

Parameters istat {output}

Remarks

Revision C

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

42 No forms are available to pop.

145 Data value is bad.

Include the following type statement:

INTEGER istat

Events associated with the last list of pushed forms
become active.

Using FORTRAN to Manage Forms 3-53

Positioning a Form

Positioning a Form

Purpose

Format

FDPOS schedules moving a form to a new location. Using ~
this subroutine, you can define a form at one location and W
display it at another location, or you can move a form
from where it is currently displayed to a new location.

CALL FDPOS (iform, isx, isy, istat) e
Parameters iform {input}

The form identifier established when the form was opened.
Include the following type statement:

INTEGER iform

isx {input}

The x position on the screen. The character position in
the upper left corner of the screen is 1, and the x position
increases by 1 for each character you count from left to
right. Include the following type statement:

INTEGER isx

isy {input}

The y position on the screen. The character position in
the upper left corner of the screen is 1, and the y position
increases by 1 for each character you count from top to
bottom. Include the following type statement:

INTEGER isy

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

36 System error exists.

39 Form is pushed.
54 Form is not scheduled

131 Form is too large for screen.
145 Data value is bad.

3-54 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Positioning a Form

Include the following type statement:

INTEGER istat

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
form on the screen at the position specified in the call
to FDPOS.

• If you call this subroutine while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form lays on top of
any other form occupying the same area on the screen.

• If you call this procedure before the form is displayed,
the form is displayed at the specified location.

• Before you position a form, you must open it.

• You cannot position a pushed form.

Using FORTRAN to Manage Forms 3-55

Pushing a Form

Pushing a Form

Purpose

Format

FDPUSH deactivates the events associated with forms
scheduled for display (added or combined) since the last
push call.

CALL FDPUSH (istat)

Parameters istat {output}

Remarks

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

46 No forms are available to push.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• Events associated with these forms are not passed to
the program.

• A program cannot change or close a pushed form.

• Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

• This subroutine causes Screen Formatting to record
added and combined forms so you can return to them
later.

3-56 NOS/VE Screen Formatting Revision C

e

e

Reading Forms

Reading Forms

Purpose

Format

Parameters

Remarks

Revision C

FDREAD updates the terminal screen and accepts input
from the application user.

CALL FDREAD (istat)

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
1 Terminal is disconnected.

36 System error exists.
104 No forms to read.
142 No events are active.
145 Data value is bad.

Include the following type statement:

INTEGER istat

• A call to FDREAD:

Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDREAD or FDSHOW call, it
displays them for the first time.

Removes from the screen the forms you deleted
since the last FDREAD or FDXSHOW call.

- Updates on the screen the variables replaced since
the last FDREAD or FDSHOW call.

Updates on the screen the objects for which display
attributes were set or reset since the last FDREAD
or FDSH OW call.

• Events not retrieved with the FDGETE subroutine are
deleted before any input is accepted from the user.

• The FDREAD subroutine does not execute unless the
forms scheduled for display contain at least one active
event.

Using FORTRAN to Manage Forms 3-57

Replacing an Integer Variable

Replacing an Integer Variable

Purpose

Format

FDREPI transfers a program integer variable to Screen
Formatting.

CALL FDREPI (iform,vname,ioccur,ivar,ivstat,istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to replace. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

ivar {input}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following type statement:

INTEGER ivar

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

3 The program supplied a variable that is not e
within the range of integer numbers defined for
the variable.

3-58 NOSNE Screen Formatting Revision C

Remarks

Revision C

Replacing an Integer Variable

Value Meaning

7 The program supplied a value that is too large
for the form variable.

14 The output format defined for the variable
cannot cannot output the variable.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifer is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
39 Form is pushed.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting replaces the integer
variable on the terminal screen.

• Before you replace an integer variable, you must open
the form on which it is replaced.

• You cannot replace an integer variable for a pushed
form.

• If the integer variable is not valid, it is not replaced.

Using FORTRAN to Manage Forms 3-59

Replacing a Real Variable

Replacing a Real Variable

Purpose

Format

FDREPR transfers a program real variable to Screen
Formatting.

CALL FDREPR (iform, vname, ioccur, var, ivstat,
istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to replace. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

var {input}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following type statement:

REAL var

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0

2

No error occurred on the variable.

The value the program supplied is not within the
range of real numbers defined for the variable.

3-60 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Replacing a Real Variable

Value Meaning

7 The value the program supplied is too large for
the for variable.

14 The output format defined for the variable
cannot output the vari~ble.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
39 Form is pushed.

91 Occurrence is unknown.
145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting replaces the real
variable on the terminal screen.

• Before you replace a real variable, you must open the
form on which it is replaced.

• You cannot replace a real variable for a pushed form.

• If the real variable is not valid, it is not replaced.

Using FORTRAN to Manage Forms 3-61

Replacing a Record

Replacing a Record

Purpose FDREP transfers values of program variables to Screen
Formatting for later display on a form.

Format CALL FDREP (iform, record, ivstat, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

record {input}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the type statements in this
record. It is the program work area for the variables used
on the form.

ivstat {output}

The condition that gives you the status of the variable.

Value Meaning

0 No error occurred on the variable.

1 The program supplied an invalid string variable.

2 The program supplied an invalid real variable.

3 The program supplied an invalid integer
variable.

7 The program supplied a number too large to be
converted to the form variable size.

9 The program supplied an exponent that is too
large.

10 The program supplied an exponent that is too
small.

11 The program supplied an indefinite number.

3-62 NOSNE Screen Formatting Revision C

-

-

Remarks

Revision C

Replacing a Record

Value Meaning

12 The program supplied an infmite number.

14 The output format defmed for the variable
cannot output the variable.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifer is invalid.

014 Work area is invalid.
39 Form is pushed.
52 Form has no variable.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting replaces the
variables on the terminal screen with the values
stored in Screen Formatting.

• Before you replace a record, you must open the form
on which the variables are replaced.

• You cannot replace a record for a pushed form.

Using FORTRAN to Manage Forms 3-63

Replacing a String Variable

Replacing a String Variable

Purpose FDREPS transfers a program string variable to Screen
Formatting.

Format CALL FDREPS (iform, vname, ioccur, evar, ivstat,
istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to replace. Include the following
type statement:

CHARACTER*31 vname

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

cvar {input}

The string variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include the
following type statement (n is the number of characters in
the variable):

CHARACTER*n

3-64 NOSNE Screen Formatting Revision C

Revision C

Replacing a String Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

1 The program supplied a variable that does not
match the strings defined for the variable.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifier is invalid.

11 Variable name is unknown.
36 System error exists.
38 Variable name is invalid.

39 Form is pushed.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

Using FORTRAN to Manage Forms 3-65

Replacing a String Variable

Remarks • When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting replaces the
string variable on the terminal screen.

• Before you replace a string variable, you must open
the form on which it is replaced.

• You cannot replace a string variable for a pushed
form.

• If the string variable is not valid, it is not replaced.

• If the form specifies that the data must be in upper
case, Screen Formatting converts it to upper case
before storing the data in the form.

3-66 NOSNE Screen Formatting Revision C

Resetting a Form

Resetting a Form

Purpose

Format

FDRESF resets the form to the state specified by the
form definition.

CALL FDRESF (iform, istat)

Parameters iform {input}

Remarks

Revision C

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

7 No space is available.

9 Form indentifier is invalid.

36 System error exists.

39 Form is pushed.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
form on the terminal screen with the reset
specifications.

• All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

• Before you reset a form, you must open it.

• You cannot reset a pushed form.

Using FORTRAN to Manage Forms 3-67

Resetting an Object Attribute

Resetting an Object Attribute

Purpose FDRESO resets the display attributes for an object to
those specified in the form definition.

Format CALL FDRESO (iform, oname, ioccur, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

oname {input}

The name of the object whose attributes are reset. Include
the following type statement:

CHARACTER*31 oname

ioccur {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following type statement:

INTEGER ioccur

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully
7 No space is available.
9 Form indentifer is invalid.

20 Occurrence is invalid.

25 Object name is invalid.
33 Object name is unknown.
39 Form is pushed.
54 Form is not scheduled.

145 Data value is bad.

Include the following type statement:

INTEGER istat

3-68 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Resetting an Object Attribute

• You can reset the attributes of objects that are
variable text, constant text, lines, or boxes.

• Before you reset the attribute of an object, you must
open and either add or combine the form the object is
on.

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
object using the reset attributes.

Using FORTRAN to Manage Forms 3-69

Setting the Cursor Position

Setting the Cursor Position

Purpose FDSETC sets the cursor to a selected position for later
display.

Format CALL FDSETC (iform, oname, ioccur, icp, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

oname {input}

The name of the object on which you want the cursor set.
Include the following type statement:

CHARACTER*31 oname

ioccur {input}

The integer specifying the occurrence of the object name.
For the first occurrence, use 1. Include the following type
statement:

INTEGER ioccur

icp {input}

The character position to which you want the cursor set.
For the first character position, use 1. Include the
following type statement:

INTEGER icp

3-70 NOSNE Screen Formatting Revision C

Remarks

Revision C

Setting the Cursor Position

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

7 No space is available.
9 Form indentifer is invalid.

21 Character position is invalid.

25 Object name is invalid.
33 Object name is unknown.
36 System error exists.

39 Form is pushed.
54 Form is not scheduled.
86 Attribute name is unknown.

91 Occurrence is unknown.
134 No object variable is defined.
145 Data value is bad.

Include the following type statement:

INTEGER istat

• Use this subroutine to alter the default sequence of
the application user's entry of variables. (In the
default sequence, Screen Formatting places the cursor
on the first input variable of the highest priority form.
The highest priority form is the form last added,
combined, or positioned.)

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting updates the terminal
screen with the cursor at the specified position.

• If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

• Before you set the cursor position on a form, you must
open the form and either add or combine it.

• You cannot set the cursor position in a pushed form.

Using FORTRAN to Manage Forms 3-71

Setting Line Mode

Setting Line Mode

Purpose

Format

Parameters

FDSETL begins line-by-line interaction with an
application user.

CALL FDSETL (istat)

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• Use this call for extended dialogues in line mode. For
short dialogues, Screen Formatting automatically
switches to the proper mode (line or screen), but
resources used for screen mode interaction remain.

• This call releases all screen mode resources:

Open forms are closed.

The mode is set to line.

3-72 NOSNE Screen Formatting Revision C

Setting an Object Attribute

Setting an Object Attribute

Purpose

Format

Parameters

Revision C

FDSETO changes a display attribute for an object.

CALL FDSETO (iform, oname, ioccur, aname, istat)

iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

oname {input}

The name of the object whose display attribute is being
set. Include the following type statement:

CHARACTER*31 oname

ioccur {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following type statement:

INTEGER ioccur

aname {input}

The program name of the display attribute being set.
Include the following type statement:

CHARACTER*31 aname

Using FORTRAN to Manage Forms 3-73

Setting an Object Attribute

Remarks

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifer is invalid.

20 Occurrence is invalid.

25 Object name is invalid.
29 Attribute name is invalid.
33 Object name is invalid.
39 Form is pushed.

54 Form is not scheduled.
86 Attribute name is unknown.
91 Occurrence is unknown.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

• Changed attributes replace existing attributes.

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting displays the object using
the set attributes.

• If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

• Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

e YOU cannot set attributes of objects On a pushed form. e

3.74 NOSNE Screen Formatting Revision C

Showing Forms

Showing Forms

Purpose

Format

Parameters

e Remarks

Revision C

FDSHOW updates the terminal screen.

CALL FDSHOW (istat)

istat {output}

A status variable that indicates the results of the
subroutine. The following values are possible:

Value Meaning

0 Routine completed successfully.
1 Terminal is disconnected.
7 No space is available.

36 System error exists.

53 No forms are scheduled for display.
131 Form is too large for screen.
145 Data value is bad.

Include the following type statement:

INTEGER istat

• When none of the forms scheduled for display has an
event or input variable defined, use this subroutine
instead of FDREAD.

• When you do not want any input from the terminal
user, use this subroutine.

• A call to FDSHOW:

- Displays all the forms you have scheduled for
display and have not deleted. If you added or
combined forms since the last FDREAD or
FDSHOW call, it displays them for the first time.

- Removes from the screen the forms you deleted
since the last FDREAD or FDSHOW call.

- Displays variables replaced since last FDREAD or
FDSHOW call.

- Displays objects with attributes set or reset since
last FDREAD or FDSHOW call.

Using FORTRAN to Manage Forms 3.75

Using CYBIL to Manage Forms 4

Chapter 1 presented an overview of the process for creating and
managing forms. It mentioned the following tasks a programmer uses
to manage forms:

1. Writing the application program to include calls to the Screen
Formatting CYBIL procedures that manage forms.

2. Expanding and compiling the program.

3. Creating a procedure that starts the program for the user.

This chapter describes these three tasks and shows them being
executed in a CYBIL program. At the end of the chapter you will find
format and parameter descriptions for each CYBIL procedure used by
Screen Formatting.

Writing a Program to Use Forms
To use forms in any program you write, you must:

• Copy the procedure definitions for the CYBIL procedures used by
Screen Formatting.

• Copy the data definitions generated by Screen Formatting when
the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

• Call Screen Formatting procedures to manage the forms and the
variable text objects on the forms.

Following the descriptions of these tasks is a CYBIL program in
which these tasks are executed.

Copying Procedure Definitions

The procedure defmitions define the procedures and their parameters.
For every procedure used in the program, you must copy the
procedure defmition using the SCU *COPYC directive.

Revision C Using CYBIL to Manage Forms 4-1

Copying Data Definitions

Copying Data Definitions

The data definitions for each form reside on a form definition record
created by the form designer. In your program, you transfer data to
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a
common deck that defines the form definition record. For example,
Screen Formatting1 generated the following source file for a form
named CYBIL-SELECT-FORM. (The form definition record name is
the same as the form name.)

*DECK CYBIL_SELECT_FORM expand false
TYPE

cybil_select_form =record
altgn_field: ALIGNED [0 MOD 8] string (0),
message: string (40),
object: string (1),

recend;

The designer saves this file as a deck on a NOS/VE source library
using the SOURCE_CODE_UTILITY (SCU).2

In the beginning of your program, you must copy the form definition
deck for each form the designer created:

• Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

• Copy the deck by specifying its name on the SCU *COPY
directive.

1. For this ex.ample, Screen Formatting was accessed through the Screen Design
Facility.

2. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source text using SCU. (For information on .a
SCU, see the NOS/VE Source Code Management manual.) •

4-2 NOS/VE Screen Formatting Revision C

Calling Screen Formatting

Calling Screen Formatting

When you write a program that uses forms, you perform two basic
tasks with Screen Formatting procedures:

• Displaying and removing forms and variable data on the
application user's screen.

• Processing events executed by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user's screen,
you perform the following steps in the sequence given:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

No matter how many times you use or update a form in your
program, you need only open it once. For this reason, you usually
begin an application program by opening all the forms you will
use. However, when a form requires a large amount of storage for
variables, you may want to open the form only when the
application user needs it.

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user's screen.

To display more than one form at a time, add all the forms before
you display them (the next step). The last form you schedule for
display is the top form on the screen. Because forms are opaque,
the top form covers other forms appearing in the same area. The
cursor position indicates which form is ready for processing.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

Revision C Using CYBIL to Manage Forms 4-3

Displaying and Removing Forms and Variable Data

3. Read the form.

When you read forms, Screen Formatting displays all the forms
you added.

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms
later in this chapter. When none of the forms scheduled for display
has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read forms, the
deleted form is removed from the screen. However, the form
remains available for later use in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources A
the form uses. The form is no longer available to the user or your W'
program.

(For the format of the call that closes a form, see Closing a Form
later in this chapter.)

4-4 NOSNE Screen Formatting Revision C

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user
can execute to return control to the program: normal and abnormal.

• For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

e • For abnormal events, the program takes its own action. You
generally then delete the form and go on, or stop the program.

Processing Normal Events

To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defmed as an event.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event at the end of this chapter.)

2. Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting a Record, Getting an Integer Variable,
Getting a Real Variable, and Getting a String Variable.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing a Record, Replacing an
Integer Variable, Replacing a Real Variable, and Replacing a
String Variable.)

You can also reset the variables on a form to their original state.
(For formats of the calls that reset variables to their original state,
see Resetting a Form and Resetting an Object Attribute later in this
chapter.)

Revision C Using CYBIL to Manage Forms 4-5

Processing Events and Data

Processing Abnormal Events

To process an abnormal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event later in this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

• Resetting a form and redisplaying it.

• Moving the user to a new form for additional processing.

• Returning the user to a previous form.

• Stopping the program.

The user's screen is updated when you either read the forms again A
or end the program. W'

4-6 NOSNE Screen Formatting Revision C

Example Program for Managing Forms with CYBIL

Example Program for Managing Forms with CYBIL

The program in this example computes the area of circles and
rectangles. The example includes:

• Pictures of the forms managed in the program.

• The design specification supplied by the form designer.

• The form definition decks.

• The example program.

Forms Managed in the Program

The example program manages three forms residing on an object
library named EXAMPLE_OBJECT_LIBRARY that must be in the
user's command list.

When a user starts the application, Select Form appears (figure 4-1).

r

Revision C

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

Figure 4-1. Select Form

Using CYBIL to Manage Forms 4-7

Forms Managed in the Program

On Select Form, a user enters either c to compute the area of a circle
or r to compute the area of a rectangle.

When a user enters r on Select Form, Rectangle Form (figure 4-2) e
appears.

Compute Area of Rectangle

Type height: ----

Area is:

Type width:

Figure 4-2. Rectangle Form

On Rectangle Form, the user enters the lengths of the sides of the
rectangle as integers and presses the return key to have the program
compute the area.

4·8 NOSNE Screen Formatting Revision C

Forms Managed in the Program

When a user enters c on Select Form, Circle Form (figure 4-3)
appears.

Compute Area of Circle

Type radius: ___ _

Area is:

Figure 4-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

Revision C Using CYBIL to Manage Forms 4-9

Design Specification

Design Specification

In writing the example program, the programmer uses the information
the form designer listed in the following design specification: tit
• The names for the three forms used by the program are:

CYBIL_SELECT_FORM
CYBIL_RECTANGLE_FORM e
CYBIL_CIRCLE_FORM

• The user can call both the Rectangle Form and Circle Form from
the Select Form.

• The following variable text objects are defined on the forms:

Variable Object

Select Form:

MESSAGE

OBJECT

Rectangle Form:

SIDE_ TABLE

SIDE

AREA

RECTANGLE_MESSAGE

Circle Form:

RADIUS

AREA

MESSAGE

4-10 NOSNE Screen Formatting

Description

Area for displaying error messages.

Area for user input of r or c.

Table that holds values for the
rectangle's sides.

Areas (two) for user input of values
for the rectangle's sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle's radius.

Area for returning value of
computed area.

Area for displaying error messages.

Revision C

Design Specification

• The following events are deimed on the forms:

Event

COMPUTE

BACK

QUIT

Revision C

Description

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

Using CYBIL to Manage Forms 4-11

Form Definition Decks

Form Definition Decks

When the designer creates the three forms (by writing a program or
using Screen Design Facility), a form definition record is created with
each form. For the example program, the programmer copies the
following form definition decks placed by the designer on an SCU
library. The library in this example is named EXAMPLE_SOURCE_
LIBRARY.

The CYBIL_SELECT_FORM deck:

TYPE
cybil_select_form =record

align_field: ALIGNED [O MOD 8) string (0),
message: string (40),
object: string (1),

recend;

The CYBIL_RECTANGLE_FORM deck:

TYPE
cybil_rectangle_form =record

align_field: ALIGNED [0 MOD 8) string (0),
side_table: array [1 .. 2) of record

side: ALIGNED [O MOD 8] integer,
recend,
area: ALIGNED [0 MOD 8) integer,
message: string (40),

recend;

The CYBIL_CIRCLE_FORM deck:

TYPE
cybil_circle_form = record

align_field: ALIGNED [0 MOD 8) string (0),
area: ALIGNED [0 MOD 8) real,
radius: ALIGNED [0 MOD 8] real,
message: string (40),

recend;

4-12 NOSNE Screen Formatting Revision C

Example CYBIL Program

Example CYBIL Program

This CYBIL program calls the forms and executes the events
described in the previous sections. The program is in the SCU deck
named COMPUTE_OBJECT_AREA. To run the example program, see
the Examples online manual.

?? RIGHT := 110 ??
MODULE compute_object_area;

{ Copy definitions for Screen Formatting procedures.

*COPYC fdp$add_form
•copyc fdp$close_form
•copyc fdp$delete_form
•copyc fdp$get_real_variable
•copyc fdp$get_1nteger_variable
•copyc fdp$get_next_event
*COPYC fdp$get_string_var1able
•copyc fdp$open_form
•copyc fdp$read_forms
•copyc fdp$replace_string_variable
•copyc fdp$rep1ace_1nteger_variable
•copyc fdp$replace_real_variable
•copyc fdp$reset_form
•copyc fdp$set_cursor_position

•copyc pmp$abort
•copyc pmp$ex1t

VAR
circle_form_identifier: fdt$form_identifier,
event_name: ost$name,
event_normal: boolean,
event_position: fdt$event_pos1tion,
form_name: ost$name,
last_event: boolean,
rectangle_form_identifier: fdt$form_identif1er,
select_form_identifier: fdt$form_ident1fier,
status: ost$status,
variable_name: ost$name,
variable_status: fdt$variable_status;

Revision C Using CYBIL to Manage Forms 4-13

Example CYBIL Program

PROCEDURE [INLINE] check_status;

IF NOT status.normal THEN
pmp$abort (status);

I FEND;

PROCEND check_status;

PROCEDURE dtsplay_variable_status
(message: strtng (•);

VAR form_identifier: fdt$form_identifier);

variable_name :='MESSAGE';
fdp$replace_string_vartable (form_identifier, variable_name,

1, message, variable_status, status);
check_status;

PROCEND display_variable_status;

PROCEDURE compute_circle_area;

{ Copy variables for circle form.

•copyc cybil_ctrcle_form

VAR
circle_data: cybil_circle_form;

{ Display circle form in original state.

fdp$reset_form (circle_form_identifier, status);
check_status;
fdp$add_form (circle_form_identifier, status);
check_status;

4-14 NOSNE Screen Formatting Revision C

Example CYBIL Program

{ Update screen and get radius from terminal user entry.

/get_ input/
REPEAT

fdp$read_forms (status);
check_status;

fdp$get_next_event (event_name, event_normal,
event_posit1on, last_event, status);

check_status;

{ On BACK or QUIT event, return to caller.

IF event_name <> 'COMPUTE' THEN
fdp$delete_form (circle_form_identifier, status);
check_status;
RETURN;

I FEND;

{ Transfer terminal user entry for radius to program.

variable_name := 'RADIUS';
fdp$get_real_variable (c1rcle_form_identifier,

vartable_name, 1, circle_data.radius,
variable_status, status);

check_status:
IF vartable_status <> fdc$no_error THEN

display_vartable_status ('Type valid value for radius.',
ctrcle_form_identifier);

CYCLE /get_1nput/;
I FEND;

{ Compute area of circle and display it.

Revision C

ctrcle_data.area := 3.14 • (ctrcle_data.radius •
c1rcle_data.radius);

var1able_name := 'AREA';
fdp$replace_real_variable (circle_form_tdentifier,

variable_name, 1, circle_data.area, var1able_status,
status);

check_status;

Using CYBIL to Manage Forms 4-15

Example CYBIL Program

{ Area value could not be displayed using output format
{ defined for form. Revise form or program.

IF variable_status <> fdc$no_error THEN
display_variable_status ('Format cannot display area.',

ctrcle_form_identifier);
CYCLE /get_input/;

!FEND;

{ Blank error message in case previously displayed.

display_variable_status (' ', circle_form_identifier);
UNTIL FALSE ;

PROCEND compute_circle_area;

PROCEDURE compute_rectangle_area;

{ Copy variables for rectangle form.

*copyc cybil_rectangle_form

VAR
rectangle_data: cybil_rectangle_form;

{ Display rectangle form in original state.

fdp$reset_form (rectangle_form_identifier, status);
check_status;

fdp$add_form (rectangle_form_identifier, status);
check_status;

{ Update screen and get terminal user entry
{ for rectangle height and width.

/get_ input/
REPEAT

fdp$read_forms (status);
check_status;

fdp$get_next_event (event_name, event_normal,
event_position, last_event, status);

check_status;

4-16 NOSNE Screen Formatting Revision C

Example CYBIL Program

{ If abnormal event (BACK or QUIT) occurs, return to caller.

IF event_name <> 'COMPUTE' THEN
fdp$delete_form (rectangle_form_identifier, status);
check._status;
RETURN;

!FEND;

Transfer height value from form to program.

variable_name :='SIDE';
fdp$get_integer_variable (rectangle_form_identifier,

variable_name, 1, rectangle_data.side_table [1].side,
variable_status, status);

check._status;

If data invalid, move cursor to height value
and display error message.

IF variable_status <> fdc$no_error THEN
fdp$set_cursor_position (rectangle_form_identifier,

variable_name, 1, 1, status):
display_variable_status ('Type valid value for height.',

rectangle_form_identifier);
CYCLE /get_input/;

!FEND;

Transfer width value from form to program.

Revision C

fdp$get_integer_vartable (rectangle_form_identifier,
varfable_name, 2, rectangle_data.side_table [2].side,
variable_status, status);

check._status;

Using CYBIL to Manage Forms 4-17

Example CYBIL Program

{ If data invalid, move cursor to width value
{ and display error message.

IF var1able_status <> fdc$no_error THEN
fdp$set_cursor_position (rectangle_form_identifier,

var1able_name, 2, 1, status);
display_variable_status ('Type valid value for width.',

rectangle_form_ident1fier);
CYCLE /get_1nput/;

IFEND;

{ COmpute area of rectangle and display 1t.

rectangle_data.area := rectangle_data.s1de_table [1].side •
rectangle_data.s1de_table [2J.s1de;

variable_name :='AREA';
fdp$replace_integer_variable (rectangle_form_identifier,

variable_name. 1, rectangle_data.area,
variable_status, status);

check_status;
IF variable_status <> fdc$no_error THEN

{ Area value could not be displayed using output format
{ defined for form. Revise form or program to acconmodate
{ size of number.

display_variable_status ('Format cannot display area.',
rectangle_form_ident1fier);

CYCLE /get_input/;
I FEND;

{ Blank error message in case previously displayed.

display_variable_status (' ', rectangle_form_identifier);

UNTIL FALSE;

PROCEND compute_rectangle_area;

PROCEDURE stop_program;

4-18 NOS/VE Screen Formatting Revision C

Example CYBIL Program

{Close all forms.

fdp$close_form (select_form_fdentlfier, status);
check_status;

fdp$close_form (cfrcle_form_fdentiffer, status);
check_status;

fdp$close_form (rectangle_form_identffier, status);
check_status;

status.normal := TRUE;
pmp$exft (status);

PROCEND stop_program;

PROGRAM compute_object_area;

*copyc cybil_select_form

VAR
select_data: cybil_select_form;

{Open all forms used by the program
{ and assign form identifiers.

form_name := 'CYBIL_SELECT_FORM';
fdp$open_form (form_name, select_form_identifier, status);
check_status;

form_name := 'CYBIL_CIRCLE_FORM';
fdp$open_form (form_name, circle_form_ldentffler, status);
check_status;

form_name := 'CYBIL_RECTANGLE_FORM';
fdp$open_form (form_name, rectangle_form_identlfler, status);
check_status;

Revision C Using CYBIL to Manage Forms 4-19

Example CYBIL Program

{ Add select form to list scheduled for display.

fdp$add_form (select_form_identifier, status);
check_status;

{ Update screen and accept user terminal entry
{ for object; display all added forms.

/get_ input/
REPEAT

fdp$read_forms (status);
check_status;

{ Get screen events that determine next actions.

fdp$get_next_event (event_name, event_normal,
event_position, last_event, status);

check_status;

{ Stop program on QUIT or BACK event.

IF event_name <> 'COMPUTE' THEN
stop_program;

I FEND;

{ Transfer object variable from form to program.

variable_name :='OBJECT';
fdp$get_string_variable (select_form_identifier,

variable_name, 1, select_data.object,
variable_status, status);

check_status;
IF variable_status <> fdc$no_error THEN

display_variable_status ('Type corr.',
select_form_identifier);

!FEND;

IF select_data.object 'R' THEN

4-20 NOSNE Screen Formatting Revision C

Example CYBIL Program

{ Remove select form and compute area of rectangle.

fdp$delete_form (select_form_1dentifier, status);
check._status;
compute_rectangle_area;

ELSEIF select_data.object = 'C' THEN

{ Remove select form and compute area of circle.

fdp$delete_form (select_form_identifier, status);
check._status;
compute_circle_area

ELSE

{ If terminal user entered invalid data, display
{ error message and ask for another entry.

display_variable_status ('Type corr.',
select_form_identifier);

CYCLE /get_input/;
IFEND;

{ Process event from rectangle form or circle form.

IF event_name = 'QUIT' THEN
stop_program;

IFEND;

{ A BACK event occurred on rectangle form or circle form;
{ display select form in original state.

fdp$reset_form (select_form_ident1f1er, status);
check_status;

fdp$add_form (select_form_1dent1fier, status);
check_status;

UNTIL FALSE;

PROCEND compute_object_area;
MODEND compute_object_area;

Revision C Using CYBIL to Manage Forms 4-21

Expanding and Compiling a Program

Expanding and Compiling a Program

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code.3

To expand and compile a program maintained in SCU decks:

1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE_SOURCE_LIBRARY.)

PROC cybil_compile_deck, cybcd (
deck, d: name=$required
status : var of status = $optional
)

source_code_uti11ty
use_library base=example_source_library result=$null
expand_deck deck=$value(deck) ..
compi le=$1ocal .comp; le ..
alternate_base=$system.cybil.osf$program_interface

Quit

cybil input=$1ocal.compile ..
list=$1ocal. listing runtime_checks=all
debug_a i ds=a 11

3. For information on SCU, see the NOSNE Source Code Management manual.

4-22 NOSNE Screen Formatting Revision C

Expanding and Compiling a Program

create_object_l1brary
add_module library=example_object_library
combine_module library=$local. lgo
generate_library library=example_object_library.$next

QU1t

PROCEND cybil_compile_deck

To use the procedure, put it on library EXAMPLE_ OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the
procedure by entering:

;cybil_compile_deck deck=cybil_compute_object_area

The compiled program is now also on library EXAMPLE_OBJECT_
LIBRARY.

For more information on writing and using procedures, see the
NOSNE System Usage manual.

Revision C Using CYBIL to Manage Forms 4-23

Helping the User Start the Application

Helping the User Start the Application

The complete application consists of your program and the forms
created by the designer. To integrate the forms with your program,
you must:

• Create a procedure that gives users access to the object library
containing the forms. e

• Ensure that the user's terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

• Ensure that users know how to start the application.

Creating a User Procedure

To give the user access to the object library containing the forms:

1. Write a NOS/VE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program.

For example, the following procedure executes the application that e
uses the starting procedure COMPUTE_ OBJECT_AREA on library
EXAMPLE_OBJECT_LIBRARY. The other libraries accessed by the
program are $SYSTEM.FDF$LIBRARY and
$SYSTEM.TDU.TERMINAL_DEFINITIONS. Users must have these
libraries available in order for the program to call the Screen
Formatting procedures.

PROC cybil_compute_area, cybca (
status : var of status = optional
)

execute_task ..
library=(example_object_library,$system.fdf$1ibrary, ..
$system.tdu.terminal_definitions) ..
starting_procedure=compute_object_area

PROCEND cybil_compute_area

4-24 NOSNE Screen Formatting Revision C

Creating a User Prolog

Creating a User Prolog

To ensure that the users' terminal environment is set up properly to
use the forms, make sure they set the following terminal
characteristics before they execute the procedure:

Characteristic

e Terminal model

Attention
character

Hold messages

Description

Identifies the terminal to NOSNE.

Provides a character users can enter to interrupt
the application.

Tells the network to hold all network messages
until the user stops the application.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

• Identifies a Digital Equipment Corporation VT220 terminal to the
system.

• Chooses the exclamation point as a way to interrupt the program.

• Holds all messages from a NAMVE/CDCNET network.

• Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220
attention_character='!'
status_action=hold

change_term_conn_defaults attention_character_action=1
change_connection_attributes terminal_file_name=input aca=1
change_connection_attributes terminal_file_name=output aca=1
change_connection_attributes terminal_file_name=conmand aca=1

For a further explanation of how to interrupt a screen application
during an interactive session, and what commands to use for networks
other than NAMVE/CDCNET, see the NOSNE System Usage manual.

Revision C Using CYBIL to Manage Forms 4-25

Starting the Application

Starting the Application

To start the application, the users enter:

/create_cOllllland_list_entry e=example_object_library
/cybil_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_cOllllland_list_entry e=example_object_library

4-26 NOSNE Screen Formatting Revision C

CYBIL Procedure Calls for Interacting with Forms

CYBIL Procedure Calls for Interacting with
Forms
The following sections describe the CYBIL procedure calls to Screen
Formatting modules. For each procedure, there is a purpose
description, input format, list of parameters and their types, condition
identifiers, and pertinent remarks.

An application program calls Screen Formatting procedures to interact
with an application user through the use of forms. Each of these
procedures is defined as a deck on the SCU library
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. This library must be
in the alternate base when compiling the application program.

These procedures are external routines that reside on the library
called $SYSTEM.FDF$LIBRARY. This library must be in the user's
program library list in order to execute the program.

For detailed information on CYBIL procedure calls, see the CYBIL
Language Definition manual.

Revision C Using CYBIL to Manage Forms 4-27

Adding a Form

Adding a Form

Purpose

Format

FDP$ADD_FORM schedules a form for display on the
application user's screen.

FDP$ADD _FORM (form_identifier, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_already _added
fde$form_pushed

Remarks

fde$form_ too_ large_for _screen
fde$invalid_form_identifier
fde$no_ space_available
fde$system_error

• When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
displays the added form on the terminal screen. The
added form is placed on top of other forms occupying
the same area on the screen.

• Before you add a form, you must open it.

• You cannot add a pushed form.

4-28 NOSNE Screen Formatting Revision C

Changing Table Size

Changing Table Size

Purpose FDP$CHANGE_TABLE_SIZE changes the size of the
table during program execution.

Format FDP$CHANGE_TABLE_SIZE (form_identifier, table_
name, table_size, status)

e Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

table_name,: ost$name;

The name of the table to change in size.

table_size: fdt$table_size;

The size of the table. While this procedure is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_ pushed
fde$invalid_form_ identifier
fde$invalid_ table_name
fde$invalid_ table_ size
fde$no_ space_ available
fde$unknown_ table_name

Remarks • The table must be present in an open form.

Revision C

• The size limitation remains in effect until the next
time you call the FDP$CHANGE_ TABLE_SIZE
procedure.

• The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (fde$invalid_table_size).

Using CYBIL to Manage Forms 4-29

Changing Table Size

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

• If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

• If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

4-30 NOS/VE Screen Formatting Revision C

Closing a Form

Closing a Form

Purpose

Format

Parameters

FDP$CLOSE_FORM releases resources used to process a
form and deletes the form from the list scheduled for
display.

FDP$CLOSE_FORM (form_identifier, status)

form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$invalid_form_ identifier
fde$form_ pushed
fde$no_ space_ available

Remarks • When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting removes the closed form from the terminal
screen as a result of calling this procedure.

e • Before you can close a form, you must open it.

• You cannot close a pushed form.

Revision C Using CYBIL to Manage Forms 4-31

Combining Forms

Combining Forms

Purpose

Format

Parameters

Conditions

FDP$COMBINE_FORM combines a form with a
previously added form and schedules the combined form
for display on the terminal screen.

FDP$COMBINE _FORM (added _form_identifier,
combine_ form _identifier, status)

added_form_identifier: fdt$form_identifier;

The identifier for this instance of the previously added
form.

combine _form _identifier: fdt$form_identifier;

The identifier for the form you are combining with the
previously added form.

status: VAR of ost$status;

The record that indicates the results of the procedure.

fde$bad_data_ value
fde$form_already _added
fde$form_ already_ combined
fde$form_ pushed
fde$form_ too_large_for _screen
fde$invalid_form_identifier
fde$no_space_available
fde$system_error

4·32 NOSNE Screen Formatting Revision C

Remarks

Revision C

Combining Forms

• You cannot combine a pushed form.

• The combined form inherits the event definitions of
the previously added form.

• Before you combine a form with a previously added
form, you must open both forms.

• When the programs calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting displays the combined form. The combined
form is placed on top of other forms occupying the
same area on the screen.

• When the application user executes an event to return
to the program normally, Screen Formatting updates
all program variables associated with both the added
and combined forms.

• To combine several forms with a previously added
form, call this procedure more than once.

Using CYBIL to Manage Forms 4-33

Deleting a Form

Deleting a Form

Purpose FDP$DELETE_FORM deletes the form from the list of
forms scheduled for display.

Format FDP$DELETE_FORM (form_identifier, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_not_ scheduled
fde$form_pushed
fde$invalid_form_identifier
fde$no_space_available

Remarks • When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting removes the deleted form from the
terminal screen and replots· any forms uncovered by
the deleted form.

• When you add a form (FDP$ADD_FORM) again that
you previously deleted, the data in the form is
retained.

• Before you delete a form, you must open it.

• You cannot delete a pushed form.

• If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

• When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

4-34 NOS/VE Screen Formatting Revision C

Getting an Integer Variable

Getting an Integer Variable

Purpose

Parameters

Revision C

FDP$GET_INTEGER_ VARIABLE gets the value the user
entered on the form for an integer variable and transfers
it to the program.

FDP$GET_INTEGER_ VARIABLE (form_identifier,
name, occurrence, variable, variable_status, status)

form _identifier: fdt$form_identifier;

The identifier established when the form was opened.

name: ost$name;

The name of the integer variable to get and transfer to
the program. This name was defined when the form was
created.

occurrence: fdt$occurrence;

The occurrence of the variable name. The values allowed
are 1 .. 1000. Use 1 for the first or only occurrence.

variable: VAR of integer;

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, use a
variable of type integer.

variable_status: VAR of fdt$variable_status;

The condition name that describes the status of the
integer variable.

FDC$INVALID_BDP _DATA

The user entered data that does not correspond to the
defined program data type.

FDC$INVALID_INTEGER

The user entered data that is not in the range defined
for the variable.

FDC$LOSS_ OF _SIGNIFICANCE

The user entered an integer that is too large.

FDC$NO_ERROR

No error occurred on the variable.

Using CYBIL to Manage Forms 4-35

Getting an Integer Variable

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_error
fde$invalid_form_identifier
fde$invalid_ variable_ name
fde$no_space_available
fde$system_error
fde$unknown_occurrence
fde$unknown_ variable_name
fde$wrong_ variable_ type

Remarks • Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the
form, the program returns the initial value specified
by the form designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
the program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the a
variable status parameter. •
If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

4-36 NOS/VE Screen Formatting Revision C

Getting the Next Event

Getting the Next Event

Purpose FDP$GET_NEXT_EVENT gets the next event resulting
from the most recent FDP$READ_FORMS procedure.

Format FDP$GET_NEXT_EVENT (event_name, event_
normal, event_position, last_event, status)

e Parameters event_name: VAR of ost$name;

Revision C

A data name to receive the application user's event.

event_normal: VAR of boolean;

A data name to receive the event normal indication. If
the event is normal, TRUE is returned; if the event is
abnormal, FALSE is returned.

event_position: VAR of fdt$event_position;

A data name to receive the position of the event. The
character position in the upper left corner of a screen or
a form is 1; the x position increases by 1 for each
character, counting from left to right; the y position
increases by 1 for each character counting from top to
bottom.

The following fields are returned:

Field

form_
identifier

screen_x_
position

screen_y_
position

form_x_
position

form_y_
position

Meaning

The identifier of the form on which the
event occurred.

Returns the x position of the event on the
terminal screen.

Returns the y position of the event on the
terminal screen.

Returns the x position of the event on the
form.

Returns the y position of the event on the
form.

Using CYBIL to Manage Forms 4-37

Getting the Next Event

For the event_position key, one of the following values is
returned:

FDC$FORM_EVENT

The event occurred in a form, but not in an object.

FDC$0BJECT_EVENT

The event occurred in an object. It has the following
fields:

Field

object_
name

object_
occurrence

object_x_
position

object_y_
position

object_
definition_
key

4-38 NOSNE Screen Formatting

Meaning

The object name. If the object doesn't
have a name, the field is OSC$NULL_
NAME.

The occurrence of the object. The first or
only occurrence is returned as 1.

The x position of the object. The origin
is the upper left corner of the form.

The y position of the object. The origin
is the upper left corner of the form.

A variant record that contains one of the e
following values:

FDC$BOX
FDC$LINE
FDC$CONSTANT_TEXT
FDC$CONSTANT_TEXT_BOX
FDC$VARIABLE_ TEXT
FDC$VARIABLE_ TEXT_BOX

For variable text and variable text boxes,
it also returns the character position of
the variable as it appears in the
program (which is not necessarily how it
appears on the form). The first position
is 1.

Revision C

Conditions

Remarks

Revision C

Getting the Next Event

last_event: VAR of boolean;

Indicates whether this is the last event. If this is the
last event, the value is TRUE; if this is not the last
event, the value is FALSE.

status: VAR of ost$status;

The record that indicates the results of the procedure.

fde$bad_data_ value

The FDP$READ_FORMS procedure deletes existing
events. If the event is normal, Screen Formatting updates
the variables in the added and combined forms containing
the event. Later, you can request the transfer of these
variables to program storage. If the event is abnormal,
Screen Formatting does not update or validate variables.

Using CYBIL to Manage Forms 4.39

Getting a Real Variable

Getting a Real Variable

Purpose

Format

FDP$GET_REAL_ VARIABLE gets a value the user
entered on a form for a real variable and transfers it to
the program.

FDP$GET_REAL_ VARIABLE (form_identifier, name,
occurrence, variable, variable_status, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

name: ost$name;

The name of the variable to get. This name was defined
when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: VAR of real;

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include a variable of type real.

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$INDEFINITE

The user entered an indefinite number.

FDC$INVALID_BDP _DATA

The user entered data that does not correspond to the
defined data type.

FDC$INVALID_REAL

The user entered data that is not within the range of
real numbers defined for the variable. e
FDC$LOSS_ OF _SIGNIFICANCE

The user entered a number too large to be converted
to the defined real or integer program type. (II

4-40 NOSNE Screen Formatting Revision C

Getting a Real Variable

FDC$NO_ERROR

No error occurred on the variable.

FDC$0VERFLOW

The user entered an exponent that is too large.

FDC$UNDERFLOW

The user entered an exponent that is too small.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$invalid_form_identifier
fde$invalid_ variable_name
fde$no_ space_available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_name

Remarks • Before you get a real variable, you must open the

·Revision C

form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• H the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

H the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using CYBIL to Manage Forms 4-41

Getting a Record

Getting a Record

Purpose FDP$GET_RECORD transfers the values of the form
record to the program record.

Format FDP$GET_RECORD (form_identifier, p_ work_area,
work_area_length, variable_status, status)

Parameters form _identifier: fdt$form_identi:fier;

The identifier established when the form was opened.

p_ work_area: { output } "'cell;

Pointer to the work area for the form record. When the
form is created, Screen Formatting generates the variable
definition entries in this record.

work_ area_ length: fdt$work_ area_ length;

The number of cells in the work area to be used in
transferring the record.

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$INDEFINITE

The user entered an indefinite number.

FDC$INFINITE

The user entered an infinite number.

FDC$INVALID_BDP _DATA

The user entered data that does not correspond to the
defined data type.

FDC$INVALID_INTEGER

The user entered data that is not within the range of
integer numbers defined for the variable.

FDC$INVALID_REAL

The user entered data that is not within the range of e
real numbers defined for the variable.

4-42 NOSNE Screen Formatting Revision C

Conditions

Remarks

Revision C

Getting a Record

FDC$INVALID_STRING

The user entered data that does not match the strings
defined for the variable.

FDC$LOSS_ OF _SIGNIFICANCE

The user entered a number too large to be converted
to the defmed real or integer data type.

FDC$NO_ERROR

No error occurred on the variable.

FDC$0VERFLOW

The user entered an exponent that is too large.

FDC$UNDERFLOW

The user entered an exponent that is too small.

status: VAR of ost$status;

The record that indicates the results of the procedure.

ide$bad_data_ value
fde$form_has_no_ variables
fde$invalid_form_identifier
fde$no_space_available
fde$system_error
fde$work_invalid

• Before you get a record for a form, you must open the
form. If you get the record after opening the form and
before reading or replacing the record, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using CYBIL t.o Manage Forms 4-43

Getting a String Variable

Getting a String Variable

Purpose FDP$GET_STRING_ VARIABLE gets a value the user
entered on a form for a string variable and transfers it to e
the program.

Format FDP$GET_STRING_ VARIABLE (form_identifier,
name, occurrence, variable, variable_status, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

name: ost$name;

The name of the variable to get. The name was defined
when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: VAR of fdt$text;

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include a
variable of the following type (* is the number of
characters in the variable):

string (*)

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$INVALID_STRING

The user entered data that does not match the strings
defined for the variable.

FDC$NO_ERROR

No error occurred on the variable.

FDC$VARIABLE_ TRUNCATED

The storage length of the VARIABLE parameter is not
long enough.

4-44 NOSNE Screen Formatting Revision C

e Conditions

Remarks

Revision C

Getting a String Variable

status: VAR of ost$status;

The record that indicates the results of the procedure.

fde$bad_data_ value
fde$invalid_form_identifier
fde$invalid_ variable_name
fde$no_ space_available
fde$system_ error
fde$unknown_ occurrence
fde$unknown_ variable_ name
fde$wrong_ variable_name

• Before you get a string variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using CYBIL to Manage Forms 4-45

Opening a Form

Opening a Form

Purpose FDP$0PEN _FORM locates a form and prepares it for use A
by the program. .,

Format FDP$0PEN _FORM (form_name, form_identifier,
status)

Parameters form_name: ost$name;

The name of the form you want to open.

form_identifier: VAR { input-output } of fdt$form_
identifier;

The form identifier established for the form. Other Screen
Formatting procedures use this identifier when referencing
the form.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_already _open
fde$form_not_ended
fde$form_requires_conversion
fde$invalid_form_identifier
fde$invalid_form_name
fde$no_space_available
fde$system_error
fde$terminal_not_identified
fde$unknown_form_name

4-46 NOS/VE Screen Formatting Revision C

Remarks

Revision C

Opening a Form

• Screen Formatting locates a form as follows:

If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

- If the form name is not blank, Screen Formatting
searches the list of ended dynamically created
forms.

If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object libraries. (You
specify the order in which Screen Formatting
searches the list using the NOSNE command
CREATE_COMMAND_LIST_ENTRY).

• Executing FDP$0PEN _FORM does not display the
form on the screen. (See Reading a Form or Showing
a Form.)

• The form identifier that FDP$0PEN _FORM returns
identifies the instance of open for a form. Forms
dynamically created have only one instance of open.
Forms stored on object libraries can have more than
one instance of open. For each instance of open,
Screen Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

Using CYBIL to Manage Forms 4-47

Popping a Form

Popping a Form

Purpose FDP$POP _FORMS deletes forms scheduled (added or
combined) since the last FDP$PUSH_FORMS call.

Format FDP$POP _FORMS (status)

Parameters status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$no_forms_ to_pop

Remarks Events associated with the last list of pushed forms
become active.

4-48 NOS/VE Screen Formatting Revision C

e

Positioning a Form

Positioning a Form

Purpose

Format

FDP$POSITION _FORM schedules moving a form to a
new location. Using this procedure, you can detme a form
at one location and display it at another location, or you
can move a form from where it is currently displayed to a
new location.

FDP$POSITION _FORM (form_identifier, screen_x_
position, screen _y _position, status)

Parameters form_identifier: fdt$form_identifier;

The form identifier established when the form was opened.

screen _x _position: fdt$x_ position;

The x position on the screen. The character position in
the upper left corner of the screen is 1, and the x position
increases by 1 for each character counting from left to
right.

screen_y _position: fdt$y_position;

The y position on the screen. The character position in
the upper left corner of the screen is 1, and the y position
increases by 1 for each character counting from top to
bottom.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_pushed

Revision C

fde$form_ too_large_for _screen
fde$invalid_form_identifier
fde$no_space_available
fde$system_error

Using CYBIL to Manage Forms 449

Positioning a Form

Remarks • When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting displays the form on the screen at the
position specified in the call to FDP$POSITION _
FORM.

• If you call this procedure while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form is displayed on
top of any other form occupying the same area on the
screen.

• If you call this procedure before the form is displayed,
the form is displayed at the specified location.

• Before you position a form, you must open it.

• You cannot position a pushed form.

4-50 NOSNE Screen Formatting Revision C

Pushing a Form

Pushing a Form

Purpose

Format

FDP$PUSH_FORMS deactivates the events associated
with forms scheduled for display (added or combined)
since the last push call.

FDP$PUSH_FORMS (status)

Parameters status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$no_forms_ to_ push

Remarks

Revision C

• Events associated with these forms are not passed to
the program.

• A program cannot change or close a pushed form.

• Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

• This subroutine causes Screen Formatting to record
added and combined forms so you can return to them
later.

Using CYBIL to Manage Forms 4-51

Reading a Form

Reading a Form

Purpose FDP$READ_FORMS updates the terminal screen and
accepts input from the application user.

Format FDP$READ_FORMS (status)

Parameters status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$no_events_ active
fde$no_forms_ to_read
fde$system_ error
fde$terminal_disconnected

Remarks • A call to FDP$READ_FORMS:

- Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$READ_FORMS or
FDP$SHOW_FORMS call, it displays them for the
first time.

- Removes from the screen the forms you deleted
since the last FDP$READ_FORMS or
FDP$SHOW_FORMS call.

- Updates on the screen the variables replaced since
the last FDP$READ_FORMS or FDP$SHOW_
FORMS call.

- Updates on the screen the objects for which display
attributes were set or reset since the last
FDP$READ_FORMS or FDP$SHOW_FORMS call.

• Events not retrieved with the FDP$GET_NEXT_
EVENT procedure are deleted before any input is
accepted from the user.

4-52 NOS/VE Screen Formatting Revision C

Revision C

Reading a Form

• The FDP$READ_FORMS procedure does not execute
unless the forms scheduled for display contain at least
one active event.

• After issuing this request, your program does not
regain control until the user issues a normal event
and Screen Formatting validates all the data, or the
user issues an abnormal event.

Using CYBIL to Manage Forms 4-53

Replacing an Integer Variable

Replacing an Integer Variable

Purpose FDP$REPLACE_INTEGER_ VARIABLE transfers a
program variable to Screen Formatting.

Format FDP$REPLACE_INTEGER_ VARIABLE (form_
identifier, name, occurrence, variable, variable_
status, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

name: ost$name;

The name of the variable to replace. This name was
defined when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable : integer;

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include e
a variable of type integer.

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$LOSS_ OF _SIGNIFICANCE

The program supplied a value that is too large for the
form field.

FDC$NO_ERROR

No error occurred on the variable.

FDC$0UTPUT_FORMAT_BAD

The output format defined for the variable cannot
output the variable.

status: VAR of ost$status;

The record that indicates the results of the procedure.

4-54 NOSNE Screen Formatting Revision C

Conditions

Remarks

Revision C

fde$bad_data_ value
fde$form_pushed
fde$invalid_form_identifier
fde$invalid_ variable_name
fde$no_space_available
fde$system_error
fde$unknown_occurrence
fde$unknown_ variable_name
fde$wrong_ variable_ type

Replacing an Integer Variable

• When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
replaces the integer variable on the terminal screen.

• Before you replace an integer variable, you must open
the form on which it is replaced.

• You cannot replace an integer variable for a pushed
form.

• If the integer variable is not valid, it is not replaced.

Using CYBIL to Manage Forms 4-55

Replacing a Real Variable

Replacing a Real Variable

Purpose

Format

FDP$REPLACE_REAL_ VARIABLE transfers a real
program variable to Screen Formatting.

FDP$REPLACE_REAL_ VARIABLE (form_identifi.er,
name, occurrence, variable, variable_ status, status)

Parameters form_identifi.er·: fdt$form_identifier;

The identifier established when the form was opened.

name: ost$name;

The name of the variable to replace. This name was
defined when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: real;

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include a variable of type real. e
variable_status: VAR of variable_ status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$LOSS_ OF _SIGNIFICANCE

The value the program supplied is too large for the
form variable.

FDC$NO_ERROR

No error occurred on the variable.

FDC$0UTPUT_FORMAT_BAD

The output format defined for the variable cannot
output the variable.

status: VAR of status;

The record that indicates the results of the procedure.

4-56 NOSNE Screen Formatting Revision C

Conditions

Remarks

Revision C

fde$bad_data_ value
fde$form_pushed
fde$invalid_form_identifier
fde$no_space_available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_name
fde$variable_name
fde$wrong_ variable_ type

Replacing a Real Variable

• When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
replaces the real variable on the terminal screen.

• Before you replace a real variable, you must open the
form on which it is replaced.

• You cannot replace a real variable for a pushed form.

• If the real variable is not valid, it is not replaced.

Using CYBIL t.o Manage Forms 4-57

Replacing a Record

Replacing a Record

Purpose

Format

FDP$REPLACE_RECORD transfers values of program
variables to Screen Formatting for later display on a
form.

FDP$REPLACE_RECORD (form_identifier, p_ work_
area, work_area_length, variable_status, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

p_ work_area: Acell;

The pointer to the program work area for variables. When
the form is created, Screen Formatting generates a type
definition for you to assign to this variable.

work_ area_ length: fdt$work_area_ length;

The number of cells in the work area.

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variables. The
following values are possible:

FDC$INDEFINITE

The program supplied an indefinite number.

FDC$INFINITE

The program supplied an infinite number.

FDC$LOSS_ OF_ SIGNIFICANCE

The program supplied a number that is too large to be
converted to the form variable size.

FDC$NO_ERROR

No error occurred on the variables.

FDC$0UTPUT_FORMAT_BAD

The output format defined for a variable cannot output A
the variable. •

FDC$0VERFLOW

The program supplied an exponent that is too large.

4-58 NOS/VE Screen Formatting Revision C

e Conditions

Rem.arks

Revision C

Replacing a Record

FDC$UNDERFLOW

The program supplied an exponent that is too small.

status: VAR of ost$status;

The record that indicates the results of the procedure.

fde$bad_data_ value
fde$form_has_no_ variables
fde$form_pushed
fde$invalid_form_identi:fier
fde$no_space_available
fde$work_invalid

• When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting replaces the variables on the terminal
screen with the values stored in Screen Formatting.

• Before you replace a record, you must open the form
on which the variables are replaced.

• You cannot replace a record for a pushed form.

Using CYBIL to Manage Forms 4-59

Replacing a String Variable

Replacing a String Variable

Purpose FDP$REPLACE_STRING_ VARIABLE transfers a
program string variable to Screen Formatting.

Format FDP$REPLACE_STRING_ VARIABLE (form_
identifier, name, occurrence, variable, variable_
status, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

name ost$name;

The name of the variable to replace. This name was
defined when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: fdt$text;

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want e
to use the automatically generated variable, use a
variable of the following type (* is the number of
characters in the variable):

string (*)
variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following value is possible:

FDC$NO_ERROR

No error occurred on the variable.

status: VAR of ost$status;

The record that indicates the results of the procedure.

4-60 NOS/VE Screen Formatting Revision C

Conditions

Remarks

Revision C

fde$bad_data_ value
fde$form_pushed
fde$invalid_form_identifier
fde$invalid_ variable_ name
fde$no_ space_available
fde$system_error
fde$unk.nown_occurrence
fde$unknown_ variable_name
fde$wrong_ variable_ type

Replacing a String Variable

• When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting replaces the string variable on the
terminal screen.

• Before you replace a string variable, you must open
the form on which it is replaced.

• You cannot replace a string variable for a pushed
form.

• If the string variable is not valid, it is not replaced.

• If the form specifies that the data must be in upper
case, Screen Formatting converts it to upper case
before storing the data in the form.

Using CYBIL to Manage Forms 4-61

Resetting a Form

Resetting a Form

Purpose FDP$RESET_FORM resets the form to the state specified a
by the form definition. •

Format FDE$RESET_FORM (form_identifier, status)

Parameters form _identifier·: fdt$form_identifier;

The identifier established when the form was opened.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_pushed
fde$invalid_form_identifier
fde$no_space_available
fde$system_error

Remarks • When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting displays the form on the terminal screen
with the reset specifications.

• All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

• Before you reset a form, you must open it.

• You cannot reset a pushed form.

4-62 NOSNE Screen Formatting Revision C

Resetting an Object Attribute

Resetting an Object Attribute

Purpose

Format

FDP$RESET_ OBJECT_ATTRIBUTE resets the display
attributes for an object to those specified in the form
definition.

FDP$RESET _OBJECT _ATTRIBUTE (form _identifier,
object_name, occurrence, status)

Parameters form _id en ti.tier: fdt$form_ identifier;

e Conditions

Remarks

Revision C

The identifier established when the form was opened.

object_name: ost$name;

The name of the object whose attributes are being reset.
This name was defined when the form was created.

occurrence: fdt$occurrence;

The occurrence of the object. For the first or only
occurrence, use 1.

status: VAR of ost$status;

The record that indicates the results of the procedure.

fde$bad_data_ value
fde$form_not_ scheduled
fde$form_ pushed
fde$invalid_form_ identifier
fde$invalid_object_name
f de$invalid_ occurrence
fde$no_space_available
fde$unknown_object_name

• You can reset the attributes of objects that are
variable text, constant text, lines, or boxes.

• Before you reset the attribute of an object, you must
open and either add or combine the form the object is
on.

• When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting displays the object using the reset
attributes.

Using CYBIL to Manage Forms 4-63

Setting the Cursor Position

Setting the Cursor Position

Purpose FDP$SET_CURSOR_POSITION sets the cursor to a
selected position for later display.

Format FDP$SET _ CURSOR_POSITION (form_identifier,
object_name, occurrence, character _position, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

object_name: ost$name;

The name of the object on which you want the cursor set.
This name was defined when the form was created.

occurrence: fdt$occurrence;

The integer specifying the occurrence of the object name.
Use 1 for the first occurrence.

character _position: fdt$character_position;

The character position to which you want the cursor set.
Use 1 for the first character position.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_not_scheduled
fde$form_pushed
fde$invalid_character _position
fde$invalid_form_identifier
fde$invalid_ object_name
fde$no_object_available_defined
fde$no_space_available
fde$system_ error
fde$unknown_object_name
fde$unknown_occurrence

4-64 NOSNE Screen Formatting Revision C

Remarks

Revision C

Setting the Cursor Position

• One use of this procedure is to alter the default
sequence of the application user's entry of variables.
(In the default sequence, Screen Formatting places the
cursor on the first input variable of the highest
priority form. The first character of the highest
priority form is the form last added, combined, or
positioned.)

• When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
updates the terminal screen with the cursor at the
specified position.

• If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

• Before you set the cursor position on a form, you must
open the form and either add or combine it.

• You cannot set the cursor position in a pushed form.

Using CYBIL to Manage Forms 4-65

Setting Line Mode

Setting Line Mode ! Porpo,. FDP$SET_LINE_MODE begins line-by-line interaction
with an application user.

I
Format

Parameters

Conditions

I Remarks

I
II
:~

~

FDP$SET _LINE_ MODE (status)

status: VAR of ost$status;

The record that indicates the results of the procedure.

fde$bad_data_ value

• Use this call for extended dialogues· in line mode. For
short dialogues, Screen Formatting automatically
switches to the proper mode (line or screen) but
resources used for screen mode interaction remain.

• This call releases all screen mode resources:

Open forms are closed.

The mode is set to line.

4-66 NOSNE Screen Formatting Revision C

Setting an Object Attribute

Setting an Object Attribute

Purpose

Format

FDP$SET_OBJECT_ATTRIBUTE changes a display
attribute for an object.

FDP$SET _OBJECT _ATTRIBUTE (form _identifier,
object_name, occurrence, attribute, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

object_name: ost$name;

The name of the object whose display attribute is being
reset.

occurrence: fdt$occurrence;

The occurrence of the object. For the first or only
occurrence, use 1.

attribute: ost$name;

The program name of the display attaribute being set.

status: VAR of ost$status; e The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_not_ scheduled
fde$form_pushed

Revision C

fde$invalid_ attribute_position
fde$invalid_form_identifier
fde$invalid_object_name
fde$invalid_occurrence
fde$no_ space_available
fde$unknown_display _name
fde$unknown_object_name
fde$unknown_occurrence

Using CYBIL to Manage Forms 4-67

Setting an Object Attribute

Remarks • You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

• Changed attributes replace existing attributes.

• When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
displays the object using the set attributes.

• If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

• Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

• You cannot set attributes of objects on a pushed form.

4-68 NOS/VE Screen Formatting Revision C

Showing Forms

Showing Forms

Purpose

Format

FDP$SHOW_FORMS updates the terminal screen.

FDP$SHOW _FORMS (status)

Parameters status: VAR of ost$status; e A record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_ too_ large_for _screen
fde$form_ to_ show
fde$no_ space_available
fde$system_ error
fde$terminaL disconnected

Remarks • When none of the forms scheduled for display has an

Revision C

event or input variable defined, use this procedure
instead of FDP$READ_FORMS.

• When you do not want any input from the terminal
user, use this subroutine.

• A call to FDP$SHOW_FORMS:

Displays all the forms you have scheduled for
display and have not deleted. If you added or
combined forms since the last FDP$READ_FORMS
or FDP$SHOW_FORMS call, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last FDP$READ_FORMS or
FDP$SHOW_FORMS call.

Displays variables replaced since the last
FDP$READ_FORMS or FDP$SHOW_FORMS call.

Displays objects with attributes set or reset since
the last FDP$READ_FORMS or FDP$SHOW_
FORMS call.

Using CYBIL to Manage Forms 4-69

•/.•'•' •,<'·

. •','

,, ,. '1
.' 5~15 ..

' ,,,.' ,'
'11'• ' • .' '· ,. ,'•

·.,,,,.,, 1'··'·

11',

,',;. :1','
,.,,I 'i 1 !,

·.·/,i>: .. 1.'. ,,,rl

Using CYBIL Procedures to Create Forms 5

This chapter describes the structure of a form and explains how you
create and change forms using CYBIL procedures with Screen
Formatting. At the end of the chapter, the formats and parameters
are described for each CYBIL procedure you can use.

What Is a Form?

A form is a collection of objects treated as a unit on the terminal
screen. A form adds visual clarity and organization to the screen,
making it easier for the user to interact with the computer. Forms
have the following general properties:

• A form always occupies a rectangular area on a terminal screen.

• A form can occupy either the entire screen or a part of the screen.

• More than one form can be displayed simultaneously on a terminal
screen.

• One form can completely or partially cover another form.

• All forms are opaque. When one form covers another form, the
covered form is not visible.

• Forms have a priority for display on the terminal. The current
form covers anything displayed previously.

• The lifetime of a form cannot exceed the lifetime of the program.

• A form and form objects can have different display attributes
(display attributes include color, inverse video, and bold lines).

• A form can have one or more events associated with it.

Revision C Using CYBIL Procedures to Create Forms 5-1

What a Form Can Contain

What a Form Can Contain
A form can contain the following:

• Constant text objects (protected text, such as titles or labels)

• Variable text objects (unprotected text, such as user or program
data entry)

• Tables (occurrences of variables)

• Graphic objects (lines or boxes)

• Display attributes (inverse video, color)

• Error and help messages

• Error and help forms

• Events (actions the user executes)

Constant Text Objects

A constant text object is text you do not intend the user or program
to change. It is often general information, such as a title or a label.
Constant text objects have the following properties:

• You can associate program display attributes with constant text.

• Programs and forms do not transfer constant text between each
other.

• Constant text can occupy part or all of one or more lines on the
form.

• You specify how constant text is formatted from line to line.

• If the user temporarily changes constant text (only on a terminal
without protection), Screen Formatting resets the text to its initial
value as soon as possible.

5-2 NOSNE Screen Formatting Revision C

Variable Text Objects

Variable Text Objects

Variable text objects are areas where data is entered by the user or
the program. They have the following properties:

• A program refers to them by a variable name.

• When a variable name occurs more than once on a form, the
variable text objects must be part of a table.

• They can occupy part or all of one or more lines on the form.

• You can specify the following attributes for variables:

Data flow

Data type

Output formatting

These attributes are described in the following sections.

Data Flow Attributes

You can specify how you want the data to flow to and from the
application user and to and from the application program.

The modes are:

• User Input Only

When the user enters data, Screen Formatting attempts to prevent
the data from being echoed to the screen. If the terminal does not
support this mode, Screen Formatting replaces the data with
blanks as soon as possible.

• Output Only

Screen Formatting attempts to prevent the user from entering data
in the variable text object. If the terminal does not protect text,
Screen Formatting updates the form with the correct value when
the user changes the variable.

• Terminal Input and Output

When the user enters data, it appears on the screen. A program
can change this data.

Revision C Using CYBIL Procedures to Create Forms 5-3

Variable Text Objects

• Program Input and Output

The data does not appear on the screen. A program uses a
variable to record information about the user's interaction. This is
called hidden text.

Data Type Attributes

For more convenient program processing, you can convert the type of e
data entered by the user as follows:

• Character

The program receives data as entered by the user.

• Uppercase Character

Screen Formatting converts the characters the user enters to
uppercase and passes them to the program. When the program
passes data to the screen, Screen Formatting converts it to
uppercase also.

• Integer

Screen Formatting converts the data the user enters to integers
and passes them to the program.

• Real

Screen Formatting converts the data the user enters to real
numbers and passes them to the program.

Output Formatting Attributes

You specify the following output formatting attributes:

• You can assign an initial display attribute to variable text objects.
(A program can temporarily change the attribute and later reset
the attribute to its initial value.)

• When text is on more than one line, you define the text box by
specifying its location, height, and width.

You also specify how the text is mapped into the text box as
follows:

Wrap Characters

Text that does not fit on a line is placed on the next line.
Data that exceeds the text box area is not displayed (the user
can scroll to the undisplayed text).

5-4 NOS/VE Screen Formatting Revision C

Tables

- Wrap Words

When possible, text is displayed in its box so that words are
not broken between lines (a space indicates the end of a word).
Data that exceeds the text box area is not displayed (the user
can scroll to the undisplayed text).

Tables

A table contains one or more occurrences of one or more variable text
objects. These objects can appear anywhere on the form.

Use a table to group variable text objects in the following ways:

• Objects that are logically related like quantity, part number,
description, and cost on an order form.

• Objects whose attributes are identical except for their position on
the form.

Graphic Objects

Graphic objects include boxes and line drawings (some terminals
support only vertical and horizontal lines).

You can draw a box on a form or around a form. For example, you
can use a box to point out a table to the application user or, when
more than one form appears on the screen, to indicate the context of
a form.

Graphic objects have the following general properties:

• You can assign display attributes to graphic objects. For example,
a commonly used display attribute is line thickness.

• A program can change the display attribute.

• You can assign object names to graphic objects.

• A graphic object cannot intersect another graphic object.

Revision C Using CYBIL Procedures to Create Forms 5-5

Events

Events

An event is an action the application user executes to return control
to Screen Formatting. You define events by specifying both the event
trigger that identifies the set of keystrokes the user makes and the
event action that tells Screen Formatting to either perform a task
itself or pass it through to the program. For example, you could
define the following events: e
• When users press the return key, Screen Formatting passes control

to the program to make a call to display the next form.

• When users press the keys that perform the standard move
forward event on their terminals, Screen Formatting pages forward
in a table. (The standard events defined by Control Data are
described later in this section.) The event is not passed through to
the program.

You can allow the following user actions:

• The user enters data and then executes an event.

• The user places the cursor on an object and then executes an
event.

• The user just executes an event.

When more than one form is on the user's screen, how Screen
Formatting interprets events is determined by whether the forms are
added or combined before they are displayed on the user's screen. If
the forms are added, Screen Formatting processes only events
associated with the form the user places the cursor on. Even though
the events displayed are for all the forms appearing on the screen,
when the events are processed only the data appearing on the form
containing the cursor is affected.

If a form is combined with another form, the events associated with
the first form are in effect for the combined form also; data appearing
on either form is affected when Screen Formatting processes an event.

When more than one form is on the screen, the event and its position
can be important to application processing. In the design
specifications, identify whether forms should be added or combined
before they are displayed.

The following sections describe the tasks you can specify for Screen
Formatting and the standard events you can use.

5-6 NOSNE Screen Formatting Revision C

e

Defining Screen Formatting Tasks

For each event, you must specify one of the following Screen
Formatting tasks:

• Make a normal return to the program .

• Make an abnormal return to the program .

• Page or scroll on the form .

• Display help forms .

• Erase error and help forms .

Normal Return to Program

Events

When you want the application to process the data the user enters on
the form, you define an event to make a normal return to the
program.

Before returning control to the program, Screen Formatting uses the
data definitions to validate all the values the user entered. For each
invalid value, Screen Formatting:

1. Highlights the invalid value;

For each variable you define, you select the display attribute for
highlighting errors. The default display attribute for errors is
inverse video.

2. Sets the cursor to the first character of the invalid value.

3. Displays a message that explains how to correct the error.

When you create the form, you define the error message either on
its own form or in the program. If you do not, Screen Formatting
skips this step.

4. Returns to the form for input from the application user.

Each time the user executes a normal event, Screen Formatting
repeats the validation process until either no invalid values are left or
the user executes an abnormal event. The program does not regain
control until this occurs. Each time Screen Formatting checks for
valid values, it removes previous error highlights and error messages.

Revision C Using CYBIL Procedures to Create Forms 5-7

Events

Abnormal Return to Program

When you want the application to perform any task other than
processing user-entered data, you define an event to make an
abnormal return to the program.

Examples of program tasks that require you to define an abnormal
return are:

• Quitting the program.

• Displaying a different form without checking for valid data on the
first form.

Specifying several abnormal returns to the program allows the user
flexibility in telling the program what to do next.

When the user makes an abnormal return to the program, Screen
Formatting does not update or validate variables for the application.

Paging and Scrolling

When you have more data for a variable or table than you can
display at one time, you define an event to page or scroll through the
data. Screen Formatting performs this task; the application program .A
does not need to execute any statements, nor does it regain control. W

Displaying Help

When you define help information for a form, you also define an event
that displays the help. Use the standard request help event defined by
Control Data. The event action is FDC$DISPLAY_HELP. Screen
Formatting performs this task; the application program does not need
to execute any statements, nor does it regain control.

5-8 NOSNE Screen Formatting Revision C

Events

The help message displayed depends on the position of the cursor:

• When the user positions the cursor on a variable text object and
executes the request help event, the help message for the variable
is displayed.

• When the user positions the cursor anywhere else on the form and
executes the request help event, the help message for the entire
form is displayed.

Only one help or error message can appear on the screen at a time.

Executing a normal or abnormal event erases help messages. You can
also define an event to erase the help message without returning to
the program.

If you did not define help information when you created the form,
Screen Formatting does nothing when a user executes the request help
event.

Erasing Error and Help Forms

Because error or help forms can cover other forms on the screen, the
user may want to erase the error or help forms.

When you define help information for a form, you can also define an
event that allows the application user to erase it. Define the trigger
and event action for erasing help forms as FDC$ERASE_HELP.

Screen Formatting supplies the standard back to previous context event
to erase error forms. The user positions the cursor in the error form
and executes the back to previous context event.

Revision C Using CYBIL Procedures to Create Forms 5-9

Events

:=: Standard Events
~j~
·_,::,:,:.: To be consistent with other NOSNE screen applications, consider

using the following Control Data-defined standard events in your own

I ::;:n:vent
I Move backward

Move to first
:::
iii Move forward

:~: Move to last

''' Alternate exit

5-10 NOS/VE Screen Formatting

Description

Display the previous set of data

Display the first set of data

Display the next set of data

Display the last set of data

Switch to a previously shown display

Display help

Remove changes made to the last event

Restore an undone user event

Terminate the application and save any
changed data

Terminate the application and do not save
any changed data

Revision C

Display Attributes

Display Attributes

While you are creating a form, you can associate display attributes
with it and with objects on the form. You can specify terminal
attributes (for example, color, inverse video, and bold lines) for
program attributes (for example, error, warning, and title).

A form can also have a foreground and background color attribute. If
you specify no attributes for an object on a form, the foreground and
background color of the form are used.

For information about creating terminal attributes, refer to the
NOSNE Terminal Definition manual and to appendix C of this
manual.

Protected and Unprotected Text

A form can contain text that cannot be changed by the user (protected
text) and text that can be changed by the user (unprotected text). The
following areas on a form are always protected:

• An area that contains no defined objects.

• Constant text objects.

• Graphic objects.

For variable text objects, you define whether they are protected or
unprotected.

Error and Help Information

For each form you create, you can define:

• Error information for each variable text object on the form. Screen
Formatting displays the error information when its validation
process reveals that the user entered an invalid value.

• Help information for both the entire form and for each variable
text object on the form. Screen Formatting displays the help
information when the user executes the request help event (see
Events earlier in this chapter).

Revision C Using CYBIL Procedures to Create Forms 5-11

Error and Help Information

::: Error and help information is on its own form, which Screen

.:

1,._,I Formatting displays on top of the form currently being used.

You can also define an event that erases error or help forms. By

:

I_,[,: positioning the cursor inside the error or help form and pressing the
keys assigned, the user can remove the form from the screen before

1:1 returning to the program. A normal or abnormal event also erases
l\ error and help forms.

:~: You have a choice of two methods for creating an error or help form:

:II •
You can use a form already created by Screen Formatting for this
purpose (default message form) and simply define in your program
the message you want to appear.

You can create your own unique form just as you do any other
form .

.......
:1 __ .. ···''_ ... ···'i Thhe advantagde to usin~ theh default fo1 rm iTs hthadt. thde form is. alwhays h t e same an appears m t e same p ace. e 1sa vantage 1s t at t e

form is small and may not display all the data users want to see at

! ;;~ ;~~~g sections de~ribe the hvo methods for creating error and

:::

I .
For an error form, specify its name on a field in
FDC$VARIABLE_ERROR.

The error form is displayed on the user's screen after the user
enters data that is not valid for a given variable text object.

For a help form, specify its name on a field in either
FDC$FORM_HELP or FDC$VARIABLE_HELP.

The help form is displayed when the user executes the request help e
event defined for the form.

5-12 NOSNE Screen Formatting Revision C

Error and Help Information

Using the Default Form for Error and Help Information

You specify the text for the error or help message in the program
that creates the user form and include a pointer to the message in
the attributes for the form:

• For an error message, specify the pointer on a field in
FDC$VARIABLE_ERROR.

An error message is displayed on the user's screen after a user
enters data that is not valid for a given variable text object.

• For a help message, specify the pointer on a field in either
FDC$FORM_HELP or FDC$VARIABLE_HELP.

A help message is displayed when the user executes a request help
event that has been defined for the form.

The form Screen Formatting generates has the following
characteristics:

• It occupies 78 columns and 3 lines.

• A box outlines the form.

• The upper left corner of the form is at column 2, row 1 of the
user's screen.

• One variable text object is defined in the form for displaying a
message. The variable starts at column 3 of the form (column 4 of
the screen). The length of the variable can be up to 255
characters. However only 76 characters are visible on one line at
one time.

• The standard events of move forward, move backward, back to
previous context, move to last, and move to first are defined for the
form. The user executes the back to previous context event to
delete the form. The move forward and move backward events
allow the user to scroll through the message when it is longer
than one line. The move to last and move to first events display
the first and last characters of the message.

You can change the default form by creating your own message form
with the name given by FDC$MESSAGE_FORM_NAME
(FDM$MESSAGE_FORM) and putting it in an object library included
in the user's command list.

Revision C Using CYBIL Procedures to Create Forms 5-13

How a Form ls Created

How a Form Is Created

There are two methods available for creating a form: using the Screen A
Design Facility1 or using Screen Formatting procedures. The latter .,
method requires writing a CYBIL program that uses the procedures
documented in this chapter.

With either method, you create a form by defining attributes. These .A
attributes are placed in a form definition record and stored in an 9
object library. From this record, the program interacts with the form.
The following items define a form:

• The position and area occupied by the form on a terminal screen.

• The display attributes that affect the entire form (such as
background color).

• Events for the form.

• The program processor that accesses the form (COBOL, FORTRAN,
or CYBIL). The language processor determines the rules for valid
names of variables and tables, and how the record definition is
generated.

• Objects on the form such as text, lines, or boxes.

• Display attributes for objects.

• Names for objects so that the objects can be manipulated by a
program without concern for their form position.

• Variable attributes.

When creating a form with Screen Formatting procedures in a CYBIL
program, you can also:

• Copy a form definition.

• Get the current definitions for a form, table, variable, or object.

• Change a form, table, variable or object.

• Delete a table, variable, or object.

• Create error and help messages and forms.

1. For more information, refer to the NOSNE Screen Design Facility manual.

5-14 NOSNE Screen Formatting Revision C

Data Validation Capabilities

For instructions on creating a form with Screen Formatting
procedures, refer to Instructions for Designing Forms, later in this
chapter.

Data Validation Capabilities
Screen Formatting automatically validates the data entered by a user
against a set of application-defined rules. The rules typically specify
the format and values for the data. You specify the application rules
when you create the form.

To provide a smooth interface for users when they encounter
difficulties in using a form, you can use Screen Formatting to:

• Create help messages and forms.

The message or form can be associated with the entire form or a
specific variable text object on the form.

• Create error messages and forms.

Screen Formatting identifies errors when it validates data. A
message or form you create is automatically displayed when an
error is detected.

• Change the highlighting display attribute for errors.

Screen Formatting automatically highlights errors in inverse video.
You can change the highlighting to another display attribute.

• Allow users to move to another part of the program without
correcting an invalid value.

You define abnormal events that return to the program without
storing the values entered by the user.

• Allow users to enter just enough characters to make a text string
unique so the system recognizes which valid character string it
represents.

When defining the values for a variable, you specify the strings
that are acceptable entries and whether or not the system will
recognize unique substrings.

Revision C Using CYBIL Procedures to Create Forms 5-15

Cursor Positioning on the Form

To provide additional help to the application programmer in validating
data, you can define data according to a specific format and content.

You can define the format as:

• Allowing numbers in FORTRAN integer formats.

The integer format includes only numeric characters (0 through 9)
or signed numeric characters. e

• Allowing numbers in FORTRAN real formats.

FORTRAN programmers know these as: Fw.d, Ew.d, Ew.dEe,
Gw.d, and Gw.dEe edit descriptors.

You can define the content as:

• Allowing any characters.

• Allowing only alphabetic characters (A through Z; a through z).

• Allowing one or more specified integer ranges.

• Allowing one or more specified real ranges.

• Allowing unique substrings that contain enough characters to
identify valid strings the system can recognize.

• Allowing only valid real or integer numbers.

Any data conversions from the application user's input to program
variables that cause loss of significance or overflow are invalid.

Cursor Positioning on the Form

By default, tab cursor positioning works on the form as a whole
according to the terminal hardware. For terminals with protected
fields, the tabbing works as follows. The cursor moves from one
variable text object to the next variable text object. The cursor starts
at the top line of the form. It moves from left to right on each line.
When no variable text object appears on a line, the cursor moves
down to the next line.

Screen Formatting places the cursor on the first variable text object of
the highest priority form.

5-16 NOSNE Screen Formatting Revision C

Instructions for Designing Forms

Instructions for Designing Forms
There are two ways of using Screen Formatting to create and change
forms: dynamically or interactively.2 These methods are described in
the following sections.

Designing a Form Dynamically

The following are the steps for dynamically creating a form.

1. Create the form by executing the FDP$CREATE_FORM procedure.

2. Create objects (such as line or box graphics and constant or
variable text) by executing the FDP$CREATE_OBJECT procedure.
An object can have a name attribute, which allows you to
associate a variable definition with the object. You also can change
the attributes of an object by referring to the object name.

The position of an object is relative to the form. The top left
comer of the form is the origin of the form coordinate system. The
x position starts at 1 and increases by 1 for each character
counting from left to right. The y position starts at 1 and
increases by 1 for each line counting from top to bottom.

A variable can be created before or after the creation of the object.
Each variable and visible variable table occurrence must have an
associated object created before the FDP$END_FORM procedure is
issued. An initial value for variable text is specified by using the
FDP$CREATE_OBJECT procedure. The value is output by using
the output format defined for the variable.

3. Create variables by executing the FDP$CREATE_ VARIABLE
procedure. Data is passed to and from the program using
variables.

4. Create groups of variables that occur more than once by executing
the FDP$CREATE_ TABLE procedure. You can store more
variables than can be shown on the screen at one time. The table
can be created before all the variables have been created. All the
variables in the table must be created before a FDP$END_FORM
procedure is executed. Execute a FDP$CREATE_OBJECT
procedure for each table occurrence visible on the form. If you

e 2. Forms can be created with CYBIL, but not with COBOL or FORTRAN.

Revision C Using CYBIL Procedures to Create Forms 5-17

Designing a Form Dynamically

want to specify an initial value of an occurrence that does not
appear initially on the form, you can accept the default value of
spaces or execute the FDP$CREATE_STORED_OBJECT
procedure.

5. Change the record definition (containing attributes) that is used to
transfer variables between the program and Screen Formatting by
executing the FDP$CHANGE_FORM_RECORD procedure.

The attributes affected can be:

- The SCU deck name. If you don't specify a name, Screen
Formatting uses the form name.

- The record definition name. In COBOL, the record definition is
a COBOL 01-level data name; in CYBIL, it is a CYBIL record
type name.

6. End the form definition by executing the FDP$END_FORM
procedure. Any errors are returned in a sequence.

7. Write the form definition to a file by executing the FDP$WRITE_
FORM_DEFINITION procedure. You can now save the form on an
object library.

The file attributes must have particular values to be processed by A
the CREATE_OBJECT_LIBRARY utility. The file content •
attribute must be set to SCREEN (AMC$SCREEN) and the file
structure attribute must be set to FORM (AMC$FORM). The
CREATE_OBJECT_LIBRARY utility subcommands ADD_
MODULE, COMBINE_MODULE, REPLACE_MODULE, and
DELETE_MODULE update the library using this file.

8. Write the record definition to permanent storage by executing the
FDP$WRITE_RECORD _DEFINITION procedure.

9. You can now interact with the form by issuing Screen Formatting
requests that get the form values and transfer them to the
program.

10. When you have finished interacting with the form, close it by
executing the FDP$CLOSE_FORM procedure.

5-18 NOS/VE Screen Formatting Revision C

Changing a Form

Changing a Form

The general steps for changing an existing form definition are as
follows:

1. If the form exists on an object library, open the form by using the
FDP$0PEN_FORM procedure, copy the form by using the
FDP$COPY_FORM procedure, and issue the FDP$EDIT_FORM
procedure. If the form was created with the FDP$CREATE_FORM
procedure, then delete the form (if the form is currently scheduled
for display) and issue the FDP$EDIT_FORM procedure.

2. Get the desired attributes about the form by using the FDP$GET_
FORM_ATTRIBUTES procedure. These attributes can supply
values to be used in forms that tell the application user about
display attributes. This request can also tell you the number of
objects in the form image.

3. You then allocate an array for the object definitions and execute
the FDP$GET_FORM_ OBJECTS procedure to obtain the objects.
From these definitions the visual image of the form can be
recreated on a form designed for editing. You can also get names
of tables and variables for a form by using the FDP$GET_FORM_
NAMES procedure. You can change the attributes associated with
tables and variables.

4. Change the form attributes by using the FDP$CHANGE_FORM
procedure. You can add, replace, or delete attributes associated
with the form.

5. Get the variable attributes by executing the FDP$GET_
VARIABLE_ATTRIBUTES procedure. Change the variable
attributes by executing the FDP$CHANGE_ VARIABLE procedure.
You can add, replace, or delete attributes associated with the
variable. The variable name can be changed.

6. Get the table attributes by using the FDP$GET_TABLE_
ATTRIBUTES procedure. Change the table attributes by using the
FDP$CHANGE_ TABLE procedure. You can add, replace, or delete
attributes associated with the table. The table name can be
changed.

Revision C Using CYBIL Procedures to Create Forms 5-19

Changing a Form

7. Get the object attributes on the form image by using the
FDP$GET_ OBJECT_ATTRIBUTES procedure. Change the
attribute~ of an object on the form image by using the
FDP$CHANGE_OBJECT procedure. You can add, replace, or
delete attributes associated with the object. The position of the
object can be changed.

8. Delete an object at a particular form position by using the
FDP$DELETE_ OBJECT procedure. This does not update any
related tables or variables.

Delete a table by using the FDP$DELETE_ TABLE procedure.
Variables and objects associated with the table are not deleted.

Delete a variable by using the FDP$DELETE_ VARIABLE
procedure. This does not update any related table or objects.

9. Get the definitions for the form record by using the FDP$GET_
RECORD_ATTRIBUTES procedure. Change the definitions for the
form record by using the FDP$CHANGE_RECORD_ATTRIBUTES
procedure.

10. End the form definition. The FDP$END_FORM procedure checks
the form for consistency and ends the form definition. This request
returns the errors in a sequence. To make further changes to the
form definition, you must issue a FDP$EDIT_FORM procedure.

11. Save the changed form by using the FDP$WRITE_FORM_
DEFINITION procedure.

Save the changed record definition by using the
FDP$WRITE RECORD_DEFINITION procedure.

12. Close the copied form by using the FDP$CLOSE_FORM procedure.

Close the original form by using the FDP$CLOSE_FORM
procedure.

5-20 NOSNE Screen Formatting Revision C

Designing a Form Interactively

Designing a Form Interactively

You can write an application program that interacts with the user to
create, display, or change a form. A user might, for instance, want
some of the text of the form translated into another language.

Creating the Form

To create a form interactively with an application user, you use two
forms:

• The design form is used interactively by the application user to
create the desired form.

• The target form is the form the application user desires, and is
created by using the design form.

Each form has different properties. The design form has events such
as save, mark, and define that help the application user and your
application program design a form. Save collects all the information
for a target form and stores it on an object library for future use.
Mark displays text with distinctive display attributes so that the
application user can recognize what text will be affected by some
future command such as copy, move, or define. Defme allows the
application user to specify some special attributes about the marked
text. For example, the application user may want to define the text as
a variable for program interaction or to have special display attributes
such as inverse video.

The target form has events meaningful to the application user's
application. A target form used for helping an application user can
have no events.

The text on the two forms also can have different display attributes.
To make entry of text easy, allow the application user to simply type
the desired text on the design form where it will appear on the target
form. If the application user makes an error or decides on a different
entry, he or she should be able to simply type in the new text. Most
of the design form is not protected from modification by the
application user. However, when the application user's application
program displays the target form, the application user may want to
protect much of the same text from modification.

Revision C Using CYBIL Procedures to Create Forms 5-21

Designing a Form Interactively

The display attributes of the text on the two forms can also differ in
another way. Some text the application user enters on the design form
requires special attributes. The application user wants the text to be a ,a
variable for program interaction or to be displayed with special W
attributes such as inverse video on the target form. On the design
form, the text with special attributes must be protected. The
protection prevents changes in other text from changing the text
which has special attributes. For example, deleting a character might ~
change the text assigned special attributes. On the target form, that .._,
text can require modification. For example, on the design form, text
that will be a variable on the target form needs to be protected. On
the target form the variable text is unprotected.

Some terminals do not have hardware that prevents modification of
text displayed on the screen. In this case, Screen Formatting restores
any modified text that is supposed to be protected after the
application user transmits the data. When your form design
application must handle these terminals, an additional problem
appears. The application user can modify any text on the design form.
However, some of the text can be logically protected by Screen
Formatting. When the application user transmits the data, some of the
changed text is restored to protected value.

One way to alleviate this problem is to provide a display attribute
which allows the application user to recognize protected areas. The e
form attribute FDC$DESIGN _DISPLAY_ATTRIBUTE provides this
feature. When an object on a design form does not have an attribute,
Screen Formatting uses this attribute to display the object.

The general steps for designing a form interactively are:

• Create a design form. Define events that allow the application user
to specify attributes for text. The events will cause your
application program to display other forms on which the
application user specifies the attributes.

• Create a target form. A profile of the application user's application
can help specify many of the values for the target form and reduce
the number of inputs by the application user.

• Tell the application user to type in text on the design form that
represents what the user wants on the target form.

5-22 NOS/VE Screen Formatting Revision C

Designing a Form Interactively

• Give the application user a menu of events that perform special
events on the text.

• When the application user executes an event such as define, your
design application creates objects for the design form and for the
target form. Suppose the application user wants to define some
text as a variable for program interaction. In that case, create a
constant text object on the design form, and a variable and
variable text object on the target form.

• When the application user wants to save the target form, create
constant text objects for the target form from the unprotected text
on the design form.

The following steps describe this process in more detail.

1. Create a design form by using the FDP$CREATE_DESIGN_FORM
procedure. You specify form attributes just like on the
FDP$CREATE_FORM procedure.

The FDP$CREATE_DESIGN_FORM procedure, however, does not
need a FDP$END_FORM procedure to signal the completion of its
definition. Before displaying the design form on the terminal
screen you need to issue FDP$0PEN_FORM and FDP$ADD_
FORM procedures.

The FDP$CREATE_DESIGN_FORM procedure creates a table and
a variable that allows you to access all characters on the design
form. The name of the variable is specified by using the form
attribute FDC$DESIGN _ VARIABLE_NAME. If you do not specify
this form attribute, the variable name is given by FDC$SYSTEM_
DESIGN_ VARIABLE_NAME. You can use the FDP$GET_
STRING_ VARIABLE and FDP$REPLACE_STRING_ VARIABLE
procedures to access characters on the design form. The variable
has a length the same as the width of the design form. The table
has the number of occurrences the same as the height of the
design form. The program data type of the variable is character.
The variable allows both terminal input and output.

2. Create a target form by using the FDP$CREATE_FORM
procedure.

3. Open the design form by using the FDP$0PEN_FORM procedure.

4. Schedule the design form for display by using the FDP$ADD_
FORM procedure. The next FDP$READ_FORMS procedure
displays the design form.

Revision C Using CYBIL Procedures to Create Forms 5-23

Designing a Form Interactively

5. Place initial text on the design form. The initial text might come
from information the application user specified earlier in the
application profile. Text the application user can simply modify by A
typing over is placed on the design form by using the •
FDP$REPLACE_STRING_ VARIABLE procedure. Text which must
be protected is placed on the design form by using the
FDP$CREATE_OBJECT procedure. You cannot create any variable
text objects on the design form. Any text created by the e
FDP$CREATE_OBJECT procedure is also stored in the design ·
form and can be retrieved by using the FDP$GET_STRING_
VARIABLE procedure.

6. Update the screen and read the design form by using the
FDP$READ_FORMS procedure.

7. Get the events the application user executed by using the
FDP$GET_NEXT_EVENT procedure.

a. If the application user executes a save form event:

1) Collect the unprotected text on the design form by using
the FDP$CREATE_CONSTANT_ TEXT procedure. This
creates constant objects with no attributes for the target
form. Any protected text on the design form is ignored. You
::~ously created objects on the target form for protected e

2) End the target form. The FDP$END_FORM procedure
checks the form for consistency and ends the form
definition. This request returns the errors in a sequence.
Screen Formatting organizes the data for the form for
efficient processing of form interaction requests. To make
further changes to the form definition, you must issue a
FDP$EDIT_FORM procedure.

3) Write the form to permanent storage by using the
FDP$WRITE_FORM_DEFINITION procedure. Update the
object library containing the application user's forms.

b. If the application user executes a mark text event:

1) Save the position of the event. This is the beginning of the A
text. •

2) Issue a FDP$CREATE_MARK procedure to show the
application user the beginning of the marked text.

5-24 NOS/VE Screen Formatting Revision C

Designing a Form Interactively

3) Read the design form by using the FDP$READ_FORMS
procedure. The screen is updated and the application user
can see the mark.

4) Get the next event the application user executes by using
the FDP$GET_NEXT_EVENT procedure. In this case,
assume the application user executes another mark event.

5) Save the position of the event. This is the end of the text.

6) Use a FDP$CREATE_MARK procedure to show the
application user the full area of text selected.

7) Update the form and get the application users next input
event by using the FDP$READ_FORMS procedure.

c. If the application user executes a define variable event, do the
following:

1) Conduct a dialogue with the user to obtain additional
information about the variable. For instance, the application
user may want to specify the variable name, the program
data type, and the terminal input and output actions. The
marked text on the design form gives the position, length
and initial value of the variable. Create the variable for the
target form by using the FDP$CREATE_ VARIABLE
procedure.

2) Protect the text representing the variable on the design
form by creating a constant text object by using the
FDP$CREATE_ OBJECT procedure. Also create a variable
text object on the target form by using the FDP$CREATE_
OBJECT procedure.

d. If the application user executes a delete mark event, clear any
program pointers to marked text, issue the FDP$DELETE_
MARK procedure, and read the design form by using the
FDP$READ_FORMS procedure.

e. If the application user executes a move event, do the following.
Assume that the application user had previously marked the
area to be moved and moved the cursor to the desired
destination when executing the move event.

Revision C Using CYBIL Procedures to Create Forms 5-25

Designing a Form Interactively

1) Move the objects on the design form by using the
FDP$MOVE_AREA procedure. On the design form, both
constant text objects (protected text) and unprotected text a
will then be moved. Move the objects on the target form by ..,
using the FDP$MOVE_AREA procedure.

2) Update the terminal screen by using the FDP$READ_
FORMS procedure.

f. If the application user executes a copy event, do the following.
Assume that the application user had previously marked the
area to be copied and then moved the cursor to the desired
destination when executing the copy event.

1) Copy the objects on the design form by using the
FDP$COPY_AREA procedure. On the design form, both
constant text objects and unprotected text will then be
copied. Copy the objects on the target form by using the
FDP$COPY_AREA procedure.

2) Update the terminal screen by using the FDP$READ_
FORMS procedure.

Displaying a Form

Your interactive form design application needs to display previously
saved forms to the application user. The application user may want to
view a form to evaluate some changes. You want to define one
consistent event for the application user to execute to end the viewing
of any form handled by your interactive design form application. This
means you want to change the events originally defined for the form.
To do this, you program the following steps.

1. Open the desired form by using the FDP$0PEN_FORM procedure.

2. Copy the form to storage that can be modified by using the
FDP$COPY_FORM procedure.

3. Begin editing of the copied form by using the FDP$EDIT_FORM
procedure.

4. Change the events associated with the copied form by using the
FDP$CHANGE_FORM procedure. You delete all previous events
by using the form attribute FDC$DELETE_ALL_EVENTS. Define
one event that the application user executes to terminate viewing
of the form.

5-26 NOSNE Screen Formatting Revision C

Designing a Form Interactively

5. End the form changes for the copied form by using the
FDP$END_FORM procedure.

e 6. Open the copied form by using the FDP$0PEN _FORM procedure.

7. Schedule the copied form for display by using the FDP$ADD_
FORM procedure. e 8. Display the form by using the FDP$READ_FORMS procedure.

9. Learn when the application user wants to finish viewing the form
by using the FDP$GET_NEXT_EVENT procedure. When the
application user executes the display termination event, close the
opened form and the copied form by using the FDP$CLOSE_
FORM procedure. Otherwise, continue displaying the form.

Changing the Target Form

The steps for changing a form are as follows:

1. Open the form by using the FDP$0PEN _FORM procedure.

2. Copy the form by using the FDP$COPY_FORM procedure. The
output of the FDP$COPY_FORM procedure is the target form.

e 3. Indicate that you wish to change the target form by using the
FDP$EDIT_FORM procedure.

4. Create the design form by using the FDP$CREATE_DESIGN_
FORM procedure.

5. Create the initial data on the design form. The FDP$CREATE_
DESIGN_ TEXT procedure creates constant text objects (protected
text), line drawings (protected), and unprotected text on the design
form from the target form. Constant text objects with attributes on
the target form will be represented as constant text objects on the
design form. Variables on the target form will be represented as
constant text objects using their initial value on the design form.
If the variable has no display attributes, the display attributes
specified by the form attribute FDC$DESIGN _DISPLAY_
ATTRIBUTE will be used. The FDC$DESIGN _DISPLAY_
ATTRIBUTE helps the form designer to recognize variables.

Constant text objects without any attributes will be represented as
unprotected text on the design form. Objects in the target form
representing unprotected text on the design form are deleted from

Revision C Using CYBIL Procedures to Create Forms 5-27

Designing a Form Interactively

the target form. When the application user saves the form, the
constant text objects for the target form will be created using the
unprotected text from the design form.

6. Schedule the design form for display by using the FDP$ADD_
FORM procedure.

7. Read the design form by using the FDP$READ_FORMS procedure. .A.
The application user may freely modify unprotected text (such as 9
form titles, variable labels, and directions). The application user
executes events to change protected text.

8. Get the events the application user executed by using the
FDP$GET_NEXT_EVENT procedure. Many of the events described
in the section on creating a form also occur when changing a
form. The following steps highlight events that occur when
changing a form.

a. If the application user executes a delete event:

1) Delete the object from the design form by using the
FDP$DELETE_ OBJECT procedure. Any text on the design
form associated with the object is set to spaces. An
FDP$GET_STRING_ VARIABLE procedure accessing
characters occupied by the deleted object would get spaces. A
Also delete the object from the target form. If the object is W
a variable text object, you may also want to delete the
variable with the FDP$DELETE_ VARIABLE procedure and
update the table (if any). The variable is associated with
using the FDP$CHANGE_ TABLE procedure.

2) Update the screen and get the terminals user's next input
by using the FDP$READ_FORMS procedure.

b. If the application user executes a change event:

1) Get the current attributes of the object by using the
appropriate FDP$GET_OBJECT_ATTRIBUTES, FDP$GET_
VARIABLE_ATTRIBUTES, and FDP$GET_ TABLE_
ATTRIBUTES procedures.

2) Conduct a dialogue with the application user to learn the A
desired change. Show the application user the current -
attributes. Allow the application user to change only the
attributes that the user desires.

5-28 NOSNE Screen Formatting Revision C

Designing a Form Interactively

3) Change the object on the design form by using the
FDP$CHANGE_OBJECT procedure. Any text on the design
form is also changed. An FDP$GET_STRING_ VARIBLE
procedure would see the changed text. Change the object on
the target form by using the appropriate FDP$CHANGE_
OBJECT, FDP$CHANGE_ TABLE, and FDP$CHANGE_
VARIABLE procedures.

Revision C Using CYBIL Procedures to Create Forms 5-29

Rectangle Form Program

Rectangle Form Program

The following example shows a program that creates the form and
form definition record for Rectangle Form (used in the CYBIL
program in chapter 4).

?? RIGHT := 110 ??
MODULE create_rectangle_form;
•copyc amp$close
•copyc amp$get_segment_pointer
•copyc amp$open
•copyc amp$set_segment_eoi
•copyc fdp$close_form
•copyc fdp$create_form
•copyc fdp$create_object
•copyc fdp$create_table
•copyc fdp$create_variable
•copyc fdp$end_form
•copyc fdp$wrtte_form_definition
•copyc fdp$wrtte_record_definition
•copyc pmp$abort

PROGRAM create_rectangle_form
(VAR status: ost$status);

VAR
access_selections: [STATIC] array [1 .. 3] of

amt$access_selectton := [[amc$access_mode,
pftusage_selections [pfc$read, pfc$append,
pfc$shorten, pfc$modify]],
[amc$file_contents, amc$screenJ,
[amc$file_structure, amc$form]],

area_variable_name: [READ] ost$name :='AREA',
form_attributes: array [1 .. 5] of fdt$form_attribute,
form_fid: amt$file_identifier,
form_identifier: fdt$form_identifier,
form_lfn: [STATIC] amt$local_file_name := 'FORM_BINARY',
form_name: [READ] ost$name := 'CYBIL_RECTANGLE_FORM',
local_status: ost$status,
number_errors: fdt$number_errors,
message_ var i ab 1 e_name: [READ] ost$name : = 'MESSAGE' , e
object_attributes: array [1 .. 2] of fdt$object_attribute,
object_definition: fdt$object_definition,
p_errors: ·sEQ (•),
record_lfn: [STATIC] amt$local_file_name := 'FORM_RECORD',

5-30 NOSNE Screen Formatting Revision C

Rectangle Form Program

record_fid: amt$file_1dent1f1er,
segment_pointer: amt$segment_pointer,
side_table_name: [READ] ost$name := 'SIDE_TABLE',
side_var1able_name: [READ] ost$name := 'SIDE',
table_attributes: array [1 21 of fdt$table_attribute,
text: string (80),
variable_attributes: array [1

fdt$variable_attribute;
21 of

{ Define form attributes.

form_attributes [1].key := fdc$add_event;
form_attributes [1].event_action :=

fdc$return_program_norma1;
form_attributes [1].event_name := 'COMPUTE';
form_attributes [1).event_label := 'Comput';
form_attributes [1].event_trigger := fdc$next;
form_attributes [2].key := fdc$add_event;
form_attributes [2].event_action :=

fdc$return_program_abnorma1;
form_attributes [2].event_name := 'QUIT';
form_attributes [2].event_label :='Quit';
form_attributes [2).event_trigger := fdc$stop;
form_attributes [3].key := fdc$add_event;
form_attributes [3J.event_action :=

fdc$return_program_abnorma1;
form_attributes [3].event_name := 'BACK';
form_attributes [3].event_label :='Back';
form_attributes [3].event_trigger := fdc$back;
form_attributes [4].key := fdc$form_name;
form_attributes [4).form_name := form_name;
form_attributes [SJ.key := fdc$event_form;
form_attributes [5].event_form_definition.key :=

fdc$system_default_event_form;
fdp$create_form (form_identifier, form_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
I FEND;

Revision C Using CYBIL Procedures to Create Forms 5·31

Rectangle Form Program

{ Create variable for side.

variable_attributes [1].key := fdc$program_data_type;
variable_attributes [1].program_data_type :=

fdc$program_integer_type;
variable_attributes [2].key := fdc$unused_variable_entry;
fdp$create_variable (form_identifier, side_variable_name,

variable_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
IFEND;

{ Create variable for area.

variable_attributes [2].key := fdc$io_mode;
variable_attributes [2].io_mode := fdc$terminal_output;
fdp$create_variable (form_identifier, area_variable_name,

variable_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
IFEND;

{ Create variable for message.

variable_attributes [1].key := fdc$unused_variable_entry;
fdp$create_variable (form_identifier, message_variable_name,

variable_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
IFEND;

{ Create table of rectangle sides.

table_attributes [1].key := fdc$stored_occurrence;
table_attributes [1].stored_occurrence := 2;
table_attributes [2].key := fdc$add_table_variable;
table_attributes [2].variable_name := side_variable_name;
fdp$create_table (form_identifier, side_table_name,

table_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
IFEND;

5-32 NOSNE Screen Formatting Revision C

Rectangle Form Program

{ Create constant text objects.

object_attributes [1].key := fdc$unused_object_entry;
object_attributes [2].key := fdc$unused_object_entry;
text :='Compute Area of Rectangle:';
object_definition.key := fdc$constant_text;
object_definition.p_constant_text := •text (1, 26);
object_definition.constant_text_width := 26;
fdp$create_object (form_identifier, 20, 5, object_definition,

object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
!FEND;

text := 'Type height:';
object_definition.p_constant_text := •text (1, 12);
object_definition.constant_text_width := 12;
fdp$create_object (form_identifier, 52, 9, object_definition,

object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
I FEND;

text := 'Type width:';
object_definition.p_constant_text := ·text (1, 11);
object_definition.constant_text_width := 11;
fdp$create_object (form_identifier, 20, 11,

object_definition, object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
I FEND;

text :='Area is:';
object_definition.p_constant_text :=•text (1, 8);
object_definition.constant_text_width := 8;
fdp$create_object (form_identifier, 20, 9, object_definition,

object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
I FEND;

Revision C Using CYBIL Procedures to Create Forms 5-33

Rectangle Form Program

{ Create box.

object_definition.key := fdc$box;
object_definition.box_width := 36;
object_definition.box_height := 4;
object_attributes [1).key := fdc$unused_object_entry;
object_attributes [2).key := fdc$unused_object_entry;
fdp$create_object (form_identifier, 15, 7, object_definition, ~

object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
I FEND;

{Create variable text for height (side [1]).

object_definition.key := fdc$variable_text;
object_definition.variable_text_width := 10;
text (1, 10) :=' ';
object_definition.p_variable_text := ~text (1, 10);
object_attributes [1).key := fdc$object_name;
object_attributes [1).object_name := side_variable_name;
object_attributes [1).occurrence := 1;
object_attributes [2).key := fdc$object_display;
object_attributes [2].display_attribute :=

fdtdisplay_attribute_set [fdc$underline);
fdp$create_object (form_identifier, 65, 9, object_definition,

object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
I FEND;

{Create variable text for width (side [2]).

object_attributes [1).occurrence := 2;
fdp$create_object (form_identifier, 32, 11,

object_definition, object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
I FEND;

5-34 NOSNE Screen Formatting Revision C

Rectangle Form Program

Create variable text for area.

object_attributes [1].object_name := area_variable_name;
object_attributes [1].occurrence := 1;
object_attributes [2].key := fdc$unused_object_entry;
fdp$create_object (form_identifier, 29, 9, object_definition,

object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
IFEND;

Create variable text for message.

object_attributes [1].object_name := message_variable_name;
text (1, 40) := • ';

object_definition.variable_text_width := 40;
object_definition.p_variable_text := "text (1, 40);
fdp$create_object (form_identifier, 20, 15,

object_definition, object_attributes, status);
IF NOT status.normal THEN

pmp$abort (status);
!FEND;

fdp$end_form (form_identifier, NIL, number_errors, p_errors,
status);

IF NOT status.normal THEN
pmp$abort (status);

IFEND;
IF number_errors <> O THEN

pmp$abort (status);
IFEND;

amp$open (form_lfn, amc$segment, ·access_selections,
form_fid, status);

IF NOT status.normal THEN
pmp$abort (status);

!FEND;

Revision C Using CYBIL Procedures to Create Forms 5-35

Rectangle Form Program

amp$get_segment_pointer (form_fid, amc$sequence_pointer,
segment_pointer, status);

IF NOT status.normal THEN
pmp$abort (status);

I FEND;

RESET segment_pointer.sequence_pointer;

{ Write binary form definition for object library.

fdp$write_form_definition (form_identifier,
segment_pointer.sequence_pointer, status);

IF NOT status.normal THEN
pmp$abort (status);

!FEND;

amp$set_segment_eoi (form_fid, segment_pointer, status);
amp$close (form_fid, local_status);
IF NOT status.normal THEN

pmp$abort (status);
!FEND;

{ Generate CYBIL record definition for source library.

amp$open (record_lfn, amc$record, NIL, record_fid, status); ~
IF NOT status.normal THEN -

pmp$abort (status);
!FEND;

fdp$write_record_definition (form_identifier, record_ftd,
fdc$cybil_processor, status);

IF NOT status.normal THEN
pmp$abort (status);

!FEND;

amp$close (record_fid, status);
fdp$close_form (form_identifier, status);

PROCEND create_rectangle_form;

MODEND create_rectangle_form;

5-36 NOS/VE Screen Formatting Revision C

Defining Attributes for a Fonn

Defining Attributes for a Form
When defining a form using Screen Formatting, you must define its
attributes. These attributes can be categorized as:

• General attributes

Attributes that describe the appearance of the form and events
associated with it; for example, the names of the events that are
part of the form.

• Variable attributes

Attributes that describe variables on a form; for example, the data
types of the variables.

• Table attributes

Attributes that describe tables containing variables, for example,
the number of occurrences of the variables in the table.

• Object attributes

Attributes for objects that appear on the form; for example, the
name and position of objects. Objects can be either text or
graphics.

• Record attributes

Attributes for form definition records, including the name and
length of the record.

You can add new attributes, replace attributes, and delete attributes,
as well as accept default attributes. You can also retrieve the current
attributes.

These attributes are contained in an array of records, each attribute
stored as a value in a separate record. You must initialize this value
to the desired attribute in order to create, change, or get a specific
attribute.

Revision C Using CYBIL Procedures to Create Forms 5-37

General Attributes

General Attributes

These attributes define the appearance of the form and its events.
They are divided into two groups, those for creating and changing
forms and those for getting other attributes.

Creating and Changing Forms

The following attributes are for creating and changing forms. As
stated earlier, each attribute is specified as a value in a record in an
initialized array. Each record is of type FDT$FORM_ATTRIBUTE,
which is listed in appendix E.

Once established, this array is named on the form_attributes
parameter in the call to any of the following CYBIL procedures, which
are described later in this chapter:

FDP$CHANGE_FORM
FDP$CREATE_FORM
FDP$CREATE_DESIGN _FORM
FDP$CREATE_EVENT_FORM

The following are the attribute records, their descriptions, and the
values permitted for each. The attribute record names are in italics.

add_event

Specifies that an event is added to the list of events for a form.
This record contains the following fields: event_name, event_label,
event_trigger, and event_action.

event_ name

The name of the event that the application programs use (type
OST$NAME). It must be unique and follow the form processor
language conventions. Examples are copy, delete, and add. The
event name is also the variable name on an event form
associated with this form.

event_ label

The label a user sees when Screen Formatting displays an
event form associated with this form (type OST$NAME). Screen
Formatting uses only the first 6 characters of the event label e
when generating an event form. For the standard events
defined by Control Data, use the following labels.

5-38 NOS/VE Screen Formatting Revision C

Standard Event

Move backward
Move to first
Move forward
Move to last
Back to previous context
Request help
Undo last event
Redo last event
Quit save
Alternate exit

event_ trigger

Label

Bkw
First
Fwd
Last
Back
Help
Undo
Redo
Quit
Exit

General Attributes

An ordinal that specifies the terminal event (type
FDT$EVENT_ TRIGGER). These correspond to keys that can be
specified in the termi~al definition. Screen Formatting assigns
a key when a key does not exist in the terminal definition. If a
terminal definition key does not have a label, Screen
Formatting assumes the key does not exist. If a key cannot be
assigned, Screen Formatting still permits you to interact with
the form. Screen Formatting uses the following rules to assign
keys:

• Screen Formatting first assigns the event triggers to their
corresponding terminal definition keys using the priority
given after these rules.

• If an event trigger cannot be assigned, Screen Formatting
executes the following steps:

Revision C

1. Assigns standard event triggers (FDC$NEXT,
FDC$SHIFT_NEXT, .. FDC$SHIFT_DATA) to unused
terminal function keys (FDC$FUNCTION_l,
FDC$SHIFT_FUNCTION_l, .. FDC$SHIFT_
FUNCTION_l6).

Using CYBIL Procedures to Create Forms 5-39

General Attributes

2. Assigns application event triggers to unused terminal
function keys in ascending order of function number.
This means that FDC$FUNCTION_l, FDC$SHIFT_
FUNCTION_! is assigned before FDC$FUNCTION _2,
FDC$SHIFT_FUNCTION_2. (Triggers are assigned to
the same key, whether shifted or unshifted, if possible.)

3. Assigns non-shifted event triggers to non-shifted unused
terminal function keys. Screen Formatting tries to
assign shifted event triggers to shifted unused terminal
function keys.

4. Assigns keys while opening the form. By using the
FDP$GET_FORM_ATTRIBUTES request with the key
FDC$GET_NEXT_EVENT, you can learn the keys
(event trigger) that Screen Formatting assigned.

The priority in which terminal definition keys are assigned is
as follows:

FDC$NEXT
FDC$SHIFT_NEXT
FDC$HELP
FDC$SHIFT_HELP
FDC$STOP
FDC$SHIFT_STOP
FDC$BACK
FDC$SHIFT_BACK
FDC$UP
FDC$SHIFT_ UP
FDC$DOWN
FDC$SHIFT_DOWN
FDC$FORWARD
FDC$SHIFT_FORWARD
FDC$BACKWARD
FDC$SHIFT_BACKWARD
FDC$UNDO
FDC$REDO
FDC$EDIT
FDC$SHIFT_EDIT
FDC$DATA
FDC$SHIFT_DATA
FDC$FUNCTION _ l
FDC$SHIFT_FUNCTION _ l
FDC$FUNCTION _2
FDC$SHIFT_FUNCTION _2
FDC$FUNCTION_3

5·40 NOSfVE Screen Formatting Revision C

Revision C

FDC$SHIFT_FUNCTION _3
FDC$FUNCTION _4
FDC$SHIFT_FUNCTION _4
FDC$FUNCTION _5
FDC$SHIFT_FUNCTION _ 5
FDC$FUNCTION _6
FDC$SHIFT_FUNCTION_6
FDC$FUNCTION _ 7
FDC$SHIFT_FUNCTION _ 7
FDC$FUNCTION _8
FDC$SHIFT_FUNCTION _ 8
FDC$FUNCTION _9
FDC$SHIFT_FUNCTION _ 9
FDC$FUNCTION_10
FDC$SHIFT_FUNCTION _ 10
FDC$FUNCTION_ll
FDC$SHIFT_FUNCTION _ ll
FDC$FUNCTION _ 12
FDC$SHIFT_FUNCTION _ 12
FDC$FUNCTION _ 13
FDC$SHIFT_FUNCTION _ 13
FDC$FUNCTION_l4
FDC$SHIFT_FUNCTION _ 14
FDC$FUNCTION_l5
FDC$FUNCTION_l6
FDC$SHIFT_FUNCTION _ 16
FDC$PICK
FDC$INSERT_ LINE
FDC$DELETE_LINE
FDC$HOME_CURSOR
FDC$CLEAR_SCREEN
FDC$TIME_ OUT
FDC$VARIABLE_ TRIGGER

General Attributes

Using CYBIL Procedures to Create Forms 5-41

General Attributes

Screen Formatting supports standard events. A standard event
is one that has a label defined by Control Data and performs
an event defined by Control Data.

The system assigns the standard events as follows:

1. The application must use the standard event if it exists for
the event being defined.

2. If a terminal has a dedicated key that performs the
standard event, the standard event is assigned to that key.

3. If a terminal does not have a dedicated key that performs
the standard event, the standard event is assigned either to
a key such as a programmable function key or to a
sequence of keys defined by the terminal.

The following table lists the Screen Formatting trigger for each
standard event.

Standard Event

Move backward
Move to first

Move forward
Move to last
Back to previous context
Request help
Undo last event
Redo last event
Quit save
Alternate exit

Screen Formatting
Trigger

FDC$BACKWARD
FDC$SHIFT_BACKWARD/
FDC$FIRST
FDC$FORWARD
FDC$SHIFT_FORWARD/ FDC$LAST
FDC$BACK
FDC$HELP
FDC$UNDO
FDC$REDO
FDC$STOP/ FDC$QUIT
FDC$SHIFT_STOP/ FDC$EXIT

If you specify one of the alternate forms (FDC$FIRST,
FDC$LAST, FDC$QUIT, FDC$EXIT) for the Screen Formatting
trigger, Screen Formatting stores the primary form
(FDC$SHIFT_BACKWARD, FDC$SHIFT_FORWARD,
FDC$STOP, FDC$SHIFT_STOP). That means any request that
returns a trigger returns the primary form.

5-42 NOS/VE Screen Formatting Revision C

General Attributes

event_ action

Specifies a variant record of type FDT$EVENT_ACTION
containing one of the following:

Revision C

FDC$RETURN_PROGRAM_NORMAL

When this event occurs, Screen Formatting returns to the
program indicating that the event is normal. You can
specify one or more normal events.

FDC$RETURN_PROGRAM_ABNORMAL

When this event occurs, Screen Formatting returns to the
program indicating that the event is abnormal. You can
specify one or more abnormal events.

FDC$PAGE_TABLE_FORWARD

When this event occurs, Screen Formatting pages the table
indicated by the cursor position forward. The next group of
stored table occurrences is displayed on the screen. The
table cannot be paged beyond the number of stored table
occurrences. If there is only one table on the screen (form),
the user does not need to position the cursor on the table.
The user cannot specify more than one of these events. The
event is not returned to the application program.

FDC$PAGE_TABLE_BACKWARD

When this event occurs, Screen Formatting pages the table
indicated by the cursor position backward. The previous
group of stored table occurrences is displayed on the screen.
The table cannot be paged beyond the number of stored
table occurrences. If there is only one table on the screen
(form), the user does not need to position the cursor on the
table. The user cannot specify more than one of these
events. The event is not returned to the application
program.

Using CYBIL Procedures to Create Forms 543

General Attributes

FDC$SCROLL_TABLE_FORWARD

When this event occurs, Screen Formatting scrolls forward
the table indicated by the cursor position. The first variable .A
the application user will see in the table on the screen is W'
the one that the cursor was on when the event occurred
providing that enough program occurrences exist to fill the
visible size of the table. The table cannot be scrolled beyond
the number of program variable occurrences. The user e
cannot specify more than one of these events. The event is
not returned to the application program.

FDC$SCROLL_TABLE_BACKWARD

When this event occurs, Screen Formatting scrolls backward
the table indicated by the cursor position. The last variable
the application user will see in the table on the form is the
one that the cursor was on when the event occurred. The
user cannot specify more than one of these events. The
event is not returned to the application program.

FDC$DISPLAY_HELP

When this event occurs, the help information is displayed
for either the form, or for the variable on which the cursor
is positioned.

FDC$ERASE_HELP

When this event occurs, the help information currently
displayed on the screen is erased.

FDC$EXECUTE_COMMAND

Currently unused.

FDC$IGNORE_EVENT

When this event occurs, Screen Formatting ignores this
event. The event is not returned to the application program.

5-44 NOSNE Screen Formatting Revision C

Revision C

General Attributes

FDC$TAB_ TO_NEXT_FORM_FIELD

When this event occurs, Screen Formatting moves the
cursor to the next input variable on the form. If the cursor
is on the last variable on the form, then the cursor moves
to the first input variable on the form. The variables on the
form are ordered left to right, top to bottom. Note that this
is different than tabbing to the next unprotected field on
some terminals. This tabbing feature works on a form
rather than on the whole screen. This feature is useful for
terminals that do not support tabbing to the next
unprotected field. The event is not returned to the
application program.

FDC$TAB_ TO_PREVIOUS_FORM_FIELD

When this event occurs, Screen Formatting moves the
cursor to the previous variable on the form. If the cursor is
on the first variable on the form, the cursor moves to the
last input variable on the form. The input variables are
ordered left to right, top to bottom on the form. Note that
this is different from tabbing to the previous unprotected
field provided in some terminals. This type of tabbing works
on the form rather than the screen. This feature is useful
on terminals that do not support tabbing to the previous
unprotected field. The event is not returned to the
application program.

FDC$SCROLL_ VARIABLE_FORWARD

When this event occurs, Screen Formatting scrolls the
variable specified by the cursor position forward. The first
character the application user sees in the variable field on
the form is the character the cursor is on when the event
occurred providing that enough program variable characters
exist to fill the visible size of the variable. The variable
cannot be scrolled beyond the number of program variable
characters. You cannot specify more than one of these
events. The event is not returned to the application
program.

FDC$SCROLL_ VARIABLE_BACKWARD

When this event occurs, Screen Formatting scrolls the
variable specified by the cursor position. The last character
the user sees in the variable field on the form is the
character the cursor is on when the event occurred. You
cannot specify more than one of these events. The event is
not returned to the application program.

Using CYBIL Procedures to Create Forms 5-45

General Attributes

add_form_comment

Currently unused.

add_display_definition e
Specifies the set of terminal attributes for a program attribute that
a program uses to change the display characteristics of an object
on the form. This record contains two fields: display _attribute and A
display _name. '9'

display _attribute

A set of display attributes (type FDT$DISPLAY_ATTRIBUTE_
SET). Possible values are:

FDC$INVERSE_ VIDEO
FDC$LOW_INTENSITY
FDC$HIGH_INTENSITY
FDC$BLINK
FDC$UNDERLINE
FDC$PROTECT
FDC$HIDDEN
FDC$BLACK_FOREGROUND
FDC$BLUE_FOREGROUND
FDC$GREEN_FOREGROUND
FDC$MAGENTA_FOREGROUND .-ta
FDC$RED_FOREGROUND ...
FDC$CYAN_FOREGROUND
FDC$YELLOW_FOREGROUND
FDC$WHITE_FOREGROUND
FDC$BLACK_BACKGROUND
FDC$BLUE_BACKGROUND
FDC$GREEN_BACKGROUND
FDC$MAGENTA_BACKGROUND
FDC$RED_BACKGROUND
FDC$CYAN_BACKGROUND
FDC$YELLOW_BACKGROUND
FDC$WHITE_BACKGROUND
FDC$FINE_LINE
FDC$MEDIUM_LINE
FDC$BOLD_LINE
FDC$ITALIC_DISPLAY_ATTRIBUTE
FDC$TITLE_DISPLAY_ATTRIBUTE A
FDC$INPUT_DISPLAY_ATTRIBUTE W
FDC$ERROR_DISPLAY_ATTRIBUTE
FDC$MESSAGE_DISPLAY_ATTRIBUTE

5-46 NOS/VE Screen Formatting Revision C

General Attributes

display _name

The application program name that sets the attribute for an
object (type OST$NAME).

delete_all_ displays

Deletes all currently defined displays.

delete_all_events

Deletes all events.

delete_event,

delete_display_definition

Deletes the specified event from a list of events, or deletes the
specified display definition (type OST$NAME).

delete_form_ comments

Currently unused.

design_display_attribute

Specifies the set of display attributes to be used with an object on
the design form when the object has no attributes assigned. This
allows the form designer to recognize the object (type
FDT$DISPLAY_ATTRIBUTE_SET). The default is
FDC$UNDERLINE. For the list of display attributes, refer to
add_ display_ definition.

design_ variable_ name

Specifies the variable name used to access text on a design form
(type OST$NAME).

Revision C Using CYBIL Procedures to Create Forms 5-47

General Attributes

event_form

Specifies the event form definition as a variant record (type
FDT$EVENT_FORM_DEFINITION). The form being defmed can
have an associated event form that shows what terminal events
cause program events. This event form can contain program event
labels and terminal event labels.

A maximum of 16 terminal function keys can be shown on the .A
event form. Two program event labels can appear for each W'
terminal function key. The upper label is a shifted function key
(MARK, for instance, is shifted Fl in the following example).

Here is an example of an event form:

MARK MOVE
Fl UNMARK F2 COPY

REDO
F8 UNDO

Fl, F2, . . . FS are terminal function key labels that come from the
terminal definition. MARK, UNMARK, MOVE, COPY, ... REDO,
UNDO are event labels that come from the form definition.

The KEY field (type FDT$EVENT_FORM_KEY) contains one of
the following:

FDC$NO_EVENT_FORM

No event form is generated.

FDC$SYSTEM_DEFAULT_EVENT_FORM

Screen Formatting generates an event form showing application
functions.

FDC$USER_EVENT_FORM

Screen Formatting uses the specified event form (type
OST$NAME).

5-48 NOS/VE Screen Formatting Revision C

General Attributes

form_area

Contains a variant record specifying which area of the terminal
screen is occupied by the specified form (type FDT$FORM_AREA).
Its KEY field (type FDT$FORM_AREA_KEY) contains one of the
following (by default, the entire terminal screen is occupied):

FDC$DEFINED_AREA

Indicates the location and size of the form. It contains four
fields:

x_position

The first x is numbered 1. The x position on the screen is
relative to the top left corner of the terminal screen. x
increases by 1 left to right for each character. Allowable
values are from 1 to 256.

y_position

The first y position is numbered 1. The y position on the
screen is relative to the top left corner of the terminal
screen. y increases by 1 for each line of the screen from top
to bottom. Allowable values are from 1 to 256.

width

The form width represented in characters. It must be a
number greater than or equal to one.

height

The form height represented in characters. It must be a
number greater than or equal to one.

FDC$SCREEN _AREA

Uses the entire screen. The size of the screen (the number of
columns and rows displayed) is determined by the number of
lines the form contains and its widest line.

Revision C Using CYBIL Procedures to Create Forms 5-49

General Attributes

form_display _attribute

Specifies a set of display attributes for the form (type
FDT$DISPLAY_ATTRIBUTE_SET). If you don't specify any
attributes for an object on the form, the background and
foreground attributes associated with this record are used. The
default attributes are FDC$BLACK_BACKGROUND and
FDC$WHITE_BACKGROUND. A

FDC$INVERSE_ VIDEO W
FDC$BLACK_BACKGROUND
FDC$BLUE_BACKGROUND
FDC$GREEN_BACKGROUND
FDC$MAGENTA_BACKGROUND
FDC$RED_BACKGROUND
FDC$CYAN_BACKGROUND
FDC$YELLOW_BACKGROUND
FDC$WHITE_BACKGROUND
FDC$BLACK_FOREGROUND
FDC$BLUE_FOREGROUND
FDC$GREEN_FOREGROUND
FDC$MAGENTA_FOREGROUND
FDC$RED_FOREGROUND
FDC$CYAN_FOREGROUND
FDC$YELLOW_FOREGROUND
FDC$WHITE_FOREGROUND
FDC$FINE_BORDER
FDC$MEDIUM_BORDER
FDC$BOLD_BORDER

form_ help

Contains a variant record (type FDT$HELP _DEFINITION)
specifying the help information available with the form. This
information is provided when the user executes a help event on a
form area that contains no object. Its KEY field (type
FDT$HELP _KEY) contains one of the following:

FDC$HELP _FORM

The name of an application-defined form containing the help
(type OST$NAME).

FDC$HELP _MESSAGE

A pointer to a help message (type AFDT$HELP_MESSAGE)

5-50 NOS/VE Screen Formatting Revision C

General Attributes

FDC$NO_HELP _RESPONSE

Specifies that Screen Formatting does nothing when the user
executes the help event.

form_ language

Currently unused.

form_ name

Contains the name of the form (type OST$NAME). You must
specify this attribute if you want to save the form on an object
library.

form_processor

Specifies the computer language of the program that uses the form
(type FDT$FORM_PROCESSOR). You should specify the language
before any variable, table, object, or event is created. The default
processor is FDC$CYBIL_PROCESSOR. The values are the
following:

FDC$ANSI_FORTRAN _PROCESSOR
FDC$CDC_FORTRAN_PROCESSOR
FDC$COBOL_PROCESSOR
FDC$CYBIL_PROCESSOR
FDC$SCL_PROCESSOR

message_form

Specifies the name of the form that you have designed for error
messages (type OST$NAME). This form must be in an object
library in the user's command list.

unused_form_entry

Indicates a null filler in the FDT$FORM_ATTRIBUTES array.

Revision C Using CYBIL Procedures to Create Forms 5-51

I

General Attributes

Getting General Attributes

The following attribute records return certain other attributes of a ..
form, such as its name or processor. These records are specified in an 9
initialized array. Each record is of type FDT$GET_FORM_
ATTRIBUTE, which is listed in Appendix E.

Once established, this array is named on the GET_FORM_ A
ATTRIBUTES parameter in the call to the FDP$GET_FORM_ W
ATTRIBUTES procedure, described later in this chapter.

All fields contained in each record are output, unless otherwise stated.
The KEY field in the FDT$GET_FORM_ATTRIBUTE record is an
input field.

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.

get_ event_ form

Returns the event form definition. This record specifies a variant
record (type FDT$EVENT_FORM_DEFINITION). Its KEY field
(type FDT$EVENT_FORM_KEY) contains one of the following
definitions:

FDC$NO_EVENT_FORM

An event form is not generated with the application functions.

FDC$SYSTEM_DEFAULT_EVENT_FORM

An event form is generated with the application functions.

FDC$USER_EVENT_FORM

The event form indicated by this record (type OST$NAME) is
used.

get_ event_form_ identifier

Returns the form identifier of the event form (type FDT$FORM_
IDENTIFIER). This identifier can be used in requests to change
the value or display attributes of an event label.

5-52 NOS/VE Screen Formatting Revision C

General Attributes

get_form_area

Returns the area occupied by the form (type FDT$FORM_AREA).
This record specifies a variant record (type FDT$FORM_AREA).
Its KEY field (type FDT$FORM_AREA_KEY) contains one of the
following:

FDC$DEFINED_AREA

Specifies the location and size of the rectangle which the form
occupies. This record returns the following fields:

x_position

The x position is determined relative to the top left corner
of the screen. The first x position (type FDC$X_POSITION)
is one.

y_position

The y position is determined relative to the top left corner
of the screen. The first y position (type FDC$Y_POSITION)
is one.

width

The form width (type FDT$WIDTH) is represented as a
number greater than or equal to one.

height

The form height (type FDT$HEIGHT) is represented as a
number greater than or equal to one.

FDC$SCREEN _AREA

The entire terminal screen is used.

Revision C Using CYBIL Procedures to Create Forms 5-53

I
I
I
I

General Attributes

get_form_display _attribute

Returns the set of display attributes used by the form (type
FDT$_DISPLAY_ATTRIBUTE_SET). It can be one or more of:

FDC$INVERSE_ VIDEO
FDC$BLACK_BACKGROUND
FDC$BLUE_BACKGROUND
FDC$GREEN_BACKGROUND
FDC$MAGENTA_BACKGROUND
FDC$RED_BACKGROUND
FDC$CYAN_BACKGROUND
FDC$YELLOW_BACKGROUND
FDC$WHITE_BACKGROUND
FDC$BLACK_FOREGROUND
FDC$BLUE_FOREGROUND
FDC$GREEN_FOREGROUND
FDC$MAGENTA_FOREGROUND
FDC$RED_FOREGROUND
FDC$CYAN_FOREGROUND
FDC$YELLOW_FOREGROUND
FDC$WHITE_FOREGROUND
FDC$FINE_BORDER
FDC$MEDIUM_BORDER
FDC$BOLD_BORDER

get_form_ help

Contains a variant record which returns the help processing
available for the form (type FDT$GET_HELP _DEFINITION). Its
KEY field (type FDT$GET_HELP_KEY) contains one of:

FDC$GET_HELP_FORM

Returns the name of an application-defined help form (type
OST$NAME).

FDC$GET_HELP _MESSAGE

Returns the length of the help message in characters (type
FDT$HELP _MESSAGE_LENGTH). Use get_form_help_
message to return the help message.

FDC$GET_NO_HELP _RESPONSE

Specifies that Screen Formatting does nothing when the user
executes the help event.

5-54 NOS/VE Screen Formatting Revision C

General Attributes

get_form_help_message ~

Contains a pointer (type "FDT$HELP _MESSAGE) for Screen .'._,,_.';:~ ··'·
Formatting to return the help message displayed when the user ,
executes the help event on an area of the form that does not
contain an object.

get_form_ name

Returns the form name that is used in the object library (type
OST$NAME). The default is OSC$NULL_NAME.

get_form_processor

Returns the computer language of the program that uses the form
(type FDT$FORM_PROCESSOR).

FDC$COBOL_PROCESSOR
FDC$CYBIL_PROCESSOR
FDC$ANSl_FORTRAN _PROCESSOR
FDC$CDC_FORTRAN_PROCESSOR

get_ next_ event

Returns the next event in the list of events for a form. The first
occurrence of this record returns the first event, the second returns
the second, and so forth. The following events may be returned:

event_ action

Refer to the description of the event_action record under the
add_event attribute earlier in this chapter (type FDT$EVENT_
ACTION).

event_ name

Returns the event name (type OST$NAME).

event_ command_ length

Currently unused.

event_ trigger

Ref er to the description of the event_ trigger record under the
add_event attribute earlier in this chapter (type FDT$EVENT_
TRIGGER).

Revision C Using CYBIL Procedures to Create Forms 5-55

General Attributes

get_ next_ display

Returns the next display definition, which allows a program to
change the attributes of a form object. The first occurrence of this A
record returns the first display attribute, the second returns the W
second, and so forth. This record contains two fields:

display _attribute

Returns the following display attributes (type FDT$DISPLAY_ e
ATTRIBUTE_SET).

FDC$INVERSE_ VIDEO
FDC$LOW_INTENSITY
FDC$HIGH_INTENSITY
FDC$BLINK
FDC$HIDDEN
FDC$BLACK_BACKGROUND
FDC$BLUE_BACKGROUND
FDC$GREEN_BACKGROUND
FDC$MAGENTA_BACKGROUND
FDC$RED_BACKGROUND
FDC$CYAN_BACKGROUND
FDC$YELLOW_BACKGROUND
FDC$WHITE_BACKGROUND
FDC$BLACK_FOREGROUND
FDC$BLUE_FOREGROUND
FDC$GREEN_FOREGROUND
FDC$MAGENTA_FOREGROUND
FDC$RED_FOREGROUND
FDC$CYAN_FOREGROUND
FDC$YELLOW_FOREGROUND
FDC$WHITE_FOREGROUND
FDC$FINE_LINE
FDC$MEDIUM_LINE
FDC$BOLD_LINE
FDC$ITALIC_DISPLAY_ATTRIBUTE
FDC$TITLE_DISPLAY_ATTRIBUTE
FDC$INPUT_DISPLAY_ATTRIBUTE
FDC$ERROR_DISPLAY_ATTRIBUTE
FDC$MESSAGE_DISPLAY_ATTRIBUTE

5-56 NOSNE Screen Formatting Revision C

General Attributes

display _name

Returns the display attribute name (type OST$NAME).

get_ number _events

Returns the number of records needed to get the events for the
form (type FDT$NUMBER_EVENTS).

get_ number _displ.ays

Returns the number of display attributes specified for a form (type
FDT$NUMBER_OBJECT_DISPLAYS). For the set of display
attributes, refer to the get_next_display record earlier in this
section.

get_ number _objects

Returns the number of objects on the form (type FDT$NUMBER_
OBJECTS).

get_ number _tables

Returns the number of tables on the form (type FDT$NUMBER_
TABLES).

get_ number_ variables

Returns the number of form variable definitions created for a
particular form (type FDT$NUMBER_ VARIABLES). Occurrences
created by a table definition are not included.

get_ unused_form_ entry

Indicates a null filler in the FDT$GET_FORM_ATTRIBUTES
array.

Revision C Using CYBIL Procedures to Create Forms 5-57

Variable Attributes

Variable Attributes

The attributes in this section define form variables.3 They are divided ~
into two groups, those for creating and changing variables and those •
for returning the values of other variable attributes.

Creating and Changing Variables

Each attribute for creating or changing variables is specified as a
value in a record in an initialized array. Each record is of type
FDT$VARIABLE_ATTRIBUTE, which is listed in Appendix E.

Once established, this array is named on the VARIABLE_
ATTRIBUTES parameter in the call to the FDP$CHANGE_
VARIABLE or FDP$CREATE_ VARIABLE procedure, described later in
this chapter.

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.

add_ valid_ integer_ range,

delete_ valid_ integer_ range

Adds or deletes a range of integer values that are valid for the
variable. The range must not overlap any existing integer ranges. A
To specify more than one range, you may use this record more 9
than once. The range specified for delete_ valid_ integer _range
must correspond to the range that was specified by add_ valid_
integer _range. This record has two fields:

maximum_ integer

The maximum integer value for the variable (type integer).

minimum_ integer

The minimum integer value for the variable (type integer).

3. For more information on variables, refer to What a Form Can Contain, earlier in A
this chapter. •

5-58 NOS/VE Screen Formatting Revision C

e
add_ valid_ real_ range,

delete_ valid_ real_ range

Variable Attributes

Adds or deletes a range of real values that are valid for the
variable. The range must not overlap any existing real ranges. To
specify more than one range, you may use this record more than
once. The range specified for delete_ valid_real_range must
correspond to the range that was specified by add_ valid_reaL
range. This record has two fields:

maximum_ real

The maximum real value for the variable (type real).

minimum_ real

The minimum real value for the variable (type real).

add_ valid_ string,

delete_ valid_string
Adds or deletes a string that is valid for the variable. To specify
more than one string, you may use this record more than once.
This record specifies a pointer (type "FDT$VALID_STRING) to a
string of characters which the user may enter at the terminal.
Comparison takes place according to the rules laid down by the
string_compare_rules attribute, described later in this section.

Revision C Using CYBIL Procedures to Create Forms 5-59

Variable Attributes

input_ format

Specifies the data-entry format for the terminal. This is a variant
record (type FDT$INPUT_FORMAT). Its KEY field (type .A
FDT$1NPUT_FORMAT_KEY) contains one of the following: 9'

FDC$CHARACTER_INPUT_FORMAT

Allows any ASCII characters. This is the default value.

FDC$ALPHABETIC_INPUT_FORMAT

Allows alphabetic characters only (upper and lower case A
through Z).

FDC$DIGITS_INPUT_FORMAT

Allows numeric characters only (O through 9).

FDC$REAL_INPUT_FORMAT

Allows real numbers in the format of FORTRAN F, E, or G.

FDC$SIGNED_INPUT_FORMAT

Allows numeric characters with or without leading signs.

io_mode

Specifies the input and output transferring of variables (type
FDT$IO_MODE). The following values are available:

FDC$PROGRAM_INPUT_ OUTPUT

Programs save data from one application user interaction to
another. The user does not see the entered variable.

FDC$TERMINAL_INPUT

The user inputs data, which is blanked out as soon as possible.

FDC$TERMINAL_INPUT_OUTPUT

The user inputs data, which remains visible. The program
outputs data to this variable. This is the default value.

FDC$TERMINAL_OUTPUT

The program outputs data to the terminal (the user cannot
enter data). Any modification of the variable is corrected as
soon as possible.

5-60 NOSNE Screen Formatting Revision C

Variable Attributes

new_ variable_ name

Specifies another name for a variable (type OST$NAME). The form
processor language rules must be obeyed.

error _display

Specifies the attribute used for displaying an error when a
variable does not pass validation. This record (type
FDT$DISPLAY_ATTRIBUTE_SET) may contain one or more of
the following values. The default value is FDC$INVERSE_ VIDEO.

FDC$INVERSE_ VIDEO
FDC$LOW_INTENSITY
FDC$HIGH_INTENSITY
FDC$BLINK
FDC$UNDERLINE
FDC$BLACK_FOREGROUND
FDC$BLUE_FOREGROUND
FDC$GREEN_FOREGROUND
FDC$MAGENTA_FOREGROUND
FDC$RED_FOREGROUND
FDC$CYAN_FOREGROUND
FDC$YELLOW_FOREGROUND
FDC$WHITE_FOREGROUND
FDC$BLACK_BACKGROUND
FDC$BLUE_BACKGROUND
FDC$GREEN_BACKGROUND
FDC$MAGENTA_BACKGROUND
FDC$RED_BACKGROUND
FDC$CYAN_BACKGROUND
FDC$YELLOW_BACKGROUND
FDC$WHITE_BACKGROUND
FDC$ITALIC_DISPLAY_ATTRIBUTE
FDC$TITLE_DISPLAY_ATTRIBUTE
FDC$INPUT_DISPLAY_ATTRIBUTE
FDC$ERROR_DISPLAY_ATTRIBUTE
FDC$MESSAGE_DISPLAY _ATTRIBUTE

Revision C Using CYBIL Procedures to Create Forms 5-61

Variable Attributes

output_format

Contains a variant record (type FDT$0UTPUT_FORMAT)
specifying the output format and the length of the formatted A
output for a variable text object. •

Its KEY field (type FDT$0UTPUT_FORMAT_KEY) contains one
of the following output formats:

FDC$CHARACTER_OUTPUT_FORMAT 4t
The ASCII characters are output as is. This record specifies the
character field width, which corresponds to the FORTRAN A
descriptor.

FDC$E_E_OUTPUT_FORMAT,FDC$G_E_OUTPUT_
FORMAT

These are the FORTRAN Ew.dEe and Gw.dEe formats (type
FDT$EXPONENT_OUTPUT_FORMAT). This record contains
the following fields:

field_ width

The FORTRAN w descriptor (type FDT$REAL_FIELD_
WIDTH).

digits_in_exponent

The FORTRAN e descriptor (type FDT$DIGITS_IN _
EXPONENT).

digits_ right_ decimal

The FORTRAN d descriptor (type FDT$DIGITS_RIGHT_
DECIMAL).

sign_ treatment

A value of MLC$MINUS_IF _NEGATIVE or
MLC$ALWAYS_SIGNED (type FDT$SIGN _TREATMENT).

suppress_zero

A boolean value. If TRUE, a zero is displayed as spaces.

5-62 NOSNE Screen Formatting Revision C

Variable Attributes

FDCF_OUTPUT_FORMAT, FDCE_OUTPUT_FORMAT,
FDC$G_OUTPUT_FORMAT

This record specifies the FORTRAN Fw.d, Ew.d, and Gw.d
formats (type FDT$FLOAT_OUTPUT_FORMAT). It contains
the following fields:

digits_ right_ of_ decimal

The FORTRAN d descriptor (type FDT$DIGITS_RIGHT_
DECIMAL).

field_ width

The FORTRAN w descriptor (type FDT$REAL_FIELD_
WIDTH).

sign_ treatment

A value of MLC$MINUS_IF _NEGATIVE or
MLC$ALWAYS_SIGNED (type FDT$SIGN_ TREATMENT).

suppress_ zero

A boolean. If TRUE, a zero is displayed as spaces.

INTEGER_OUTPUT_FORMAT

This record (type FDT$1NTEGER_OUTPUT_FORMAT)
corresponds to the FORTRAN I format. It contains the
following fields:

Revision C

field_ width

The FORTRAN w descriptor (type FDT$INTEGER_FIELD_
WIDTH).

minimum_ output_ digits

The FORTRAN m descriptor (type FDT$MINIMUM_
OUTPUT_ DIGITS).

sign_ treatment

A value of MLC$MINUS_IF _NEGATIVE or
MLC$ALWAYS_SIGNED (type FDT$SIGN _TREATMENT).

Using CYBIL Procedures to Create Forms 5-63

Variable Attributes

program_data_type

Specifies the program data type for the variable (type
FDT$PROGRAM_DATA_ TYPE) using one of the following values: e

FDC$PROGRAM_CHARACTER_TYPE

The characters entered by the user are passed to the program.

FDC$PROGRAM_INTEGER_ TYPE

The characters entered by the user are converted to an integer.

FDC$PROGRAM_REAL_TYPE

The characters entered by the user are converted to a real
type.

FDC$PROGRAM_UPPER_CASE_TYPE

The characters entered by the user are converted to uppercase
before being transferred to the program. The characters
transferred by the program to the form are also converted to
uppercase.

string _compare_ rules

Specifies how the terminal input is compared to valid strings
specified for the variable. For information on establishing valid
strings for a variable, refer to the add_ valid_string attribute
earlier in this section. Contains two fields:

compare_in_ upper _case

A boolean. If TRUE, the user's input is converted to upper case
before the comparison is made with the valid strings.
Otherwise, the user's input is not changed before the
comparison is made.

compare_ to_ unique_ substring

A boolean. If TRUE, the user may enter a unique substring for
the value. The comparison starts at column 1. The complete
strings are defined by the add_ valid_string record. The
application program gets the entire string as specified by add_
valid_ string.

unused_ variable_ entry

Indicates a null filler in the FDT$VARIABLE_ATTRIBUTES
array.

5-64 NOS/VE Screen Formatting Revision C

Variable Attributes

variable_ error

Contains a variant record (type FDT$ERROR_DEFINITION)
specifying the error processing for the variable. Its KEY field (type
FDT$ERROR_ KEY) contains one of the following:

FDC$ERROR_FORM

The name of an application-defined form to be displayed (type
OST$NAME).

FDC$ERROR_MESSAGE

A pointer to the message to be displayed (type AFDT$ERROR_
MESSAGE).

FDC$NO_ERROR_RESPONSE

Screen Formatting does not display an error form or message
when the user enters invalid data.

variable_ help

Contains a variant record (type FDT$HELP _DEFINITION)
specifying the help information provided when the user executes a
help event with the cursor placed on the variable. Its KEY field
(type FDT$HELP _KEY) contains one of the following:

FDC$HELP _FORM

The name of an application-defined form containing the help
(type OST$NAME).

FDC$HELP _MESSAGE

A pointer to a help message (type AFDT$HELP _MESSAGE).

FDC$NO_HELP _RESPONSE

Screen Formatting does nothing when the user executes the
help event.

variable_ length

Contains an input field that specifies the character length of the
data area for a character variable (type FDT$VARIABLE_
LENGTH). If the length is not specified, the size of the screen text
object for the variable is used. The user can execute scrolling
commands to see all the data in the program variable. This
attribute does not apply to real and integer data types.

Revision C Using CYBIL Procedures to Create Forms 5-65

Variable Attributes

Getting Variable Attributes

The following attribute records return additional attributes of a form.
These records are specified in an initialized array. Each record is of
type FDT$GET_ VARIABLE_ATTRIBUTE, which is listed in Appendix
E.

Once established, this array is named on the GET_ VARIABLE_
ATTRIBUTES parameter in the call to the FDP$GET_ VARIABLE_
ATTRIBUTES procedure, described later in this chapter. All fields
contained in each record are output, unless otherwise stated. The KEY
field in the FDT$GET_ VARIABLE_ATTRIBUTE record is an input
field.

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.

get_ error _displ,ay

Returns the display attribute(s) used when the variable does not
pass validation (type FDT$DISPLAY_ATTRIBUTE_SET). May be
one or more of the following:

FDC$INVERSE_ VIDEO
FDC$LOW_INTENSITY
FDC$HIGH_INTENSITY
FDC$BLINK
FDC$UNDERLINIE
FDC$BLACK_BACKGROUND
FDC$BLUE_BACKGROUND
FDC$GREEN_BACKGROUND
FDC$MAGENTA_BACKGROUND
FDC$RED_BACKGROUND
FDC$CYAN_BACKGROUND
FDC$YELLOW_BACKGROUND
FDC$WHITE_BACKGROUND
FDC$BLACK_FOREGROUND
FDC$BLUE_FOREGROUND
FDC$GREEN_FOREGROUND
FDC$MAGENTA_FOREGROUND
FDC$RED_FOREGROUND
FDC$CYAN_FOREGROUND
FDC$YELLOW_FOREGROUND
FDC$WHITE_FOREGROUND
FDC$ITALIC_DISPLAY_ATTRIBUTE
FDC$TITLE_DISPLAY_ATTRIBUTE
FDC$INPUT_DISPLAY_ATTRIBUTE

5-66 NOS/VE Screen Formatting Revision C

FDC$ERROR_DISPLAY_ATTRIBUTE
FDC$MESSAGE_DISPLAY _ATTRIBUTE

get_ input_format

Variable Attributes

Contains a variable record (type FDT$INPUT_FORMAT) that
returns the type of data the user can enter. Its KEY field (type
FDT$INPUT_FORMAT_KEY) contains one of the following:

FDC$CHARACTER_INPUT_FORMAT

Allows any ASCII characters. This is the default value.

FDC$ALPHABETIC_INPUT_FORMAT

Allows alphabetic characters only (upper and lower case A
through Z).

FDC$DIGITS_INPUT_FORMAT

Allows numeric characters only (0 through 9).

FDC$REAL_INPUT_FORMAT

Allows real numbers in the format of FORTRAN F, E, or G.

FDC$SIGNED_INPUT_FORMAT

Allows numeric characters with or without a leading plus or
minus sign.

get_ io_ mode

Returns the input and output transfers done for the variable (type
FDT$IO_MODE). The following values can be returned:

FDC$PROGRAM_INPUT_OUTPUT

The program uses the variable to save data from one
application user interaction to another. The user does not see
the entered variable.

FDC$TERMINAL_INPUT

The user inputs data, which is blanked out as soon as possible.

FDC$TERMINAL_INPUT_ OUTPUT

The user inputs data, which remains visible. The program
outputs data to this variable.

Revision C Using CYBIL Procedures to Create Forms 5-67

Variable Attributes

FDC$TERMINAL_OUTPUT

The program outputs data to the terminal (the user cannot
enter data). Any modification of the variable is corrected as
soon as possible.

get_ next_ valid_ real_ range

Returns the next range of real values that are valid for the
variable. To return more than one range, you can use this record
more than once. The first record returns the first range, the
second record returns the second range, and so on.

This record contains two fields:

minimum_ real

The minimum real valid value for the variable (type real).

maximum_ real

The maximum real valid value for the variable (type real).

get_ next_ valid_ string

Returns to the pointer the next string of characters valid for the
variable (type "FDT$VALID_STRING). These are the characters
the user can enter. To return more than one string, you can use
this record more than once. The first record returns the first
string, the second record returns the second string, and so on.

get_ number _valid_integers

Returns the number of valid integer ranges (type FDT$NUMBER_
VALID_INTEGERS). You then allocate an array of attributes to
get the valid integer ranges and use the get_ valid_ integer _range
attribute to return them.

get_ number _valid_ reals

Returns the number of valid real ranges (type FDT$NUMBER_
VALID_REALS). You then allocate an array of attributes to get
the valid real ranges and use the get_next_ valid_real_range
attribute to return them.

get_ number _valid_strings

Returns the number of valid strings (type FDT$NUMBER_ A
VALID_STRINGS). You then allocate an array of attributes to get 9
the lengths of the valid strings and use the get_next_ valid_ string
attribute to return them.

5-68 NOS/VE Screen Formatting Revision C

#d,_n1put_fo1'1M.t
Returns the output format (type FDT$0UTPUT_FORMAT). For a
description of this record, ref er to the output_format attribute
earlier in this chapter under Creating and Changing Variables.

g'd_prog'ram_dattt_type

Returns the data type the program uses for manipulation (type
FDT$PROGRAM_DATA_ TYPE). For a description of this record,
refer to the description of the program_data_ type attribute earlier
in this chapter under Creating and Changing Variables.

get_lftring_compare_rules

Returns the values that specify how the terminal input is
compared to valid strings specified for the variable. Contains the
fields compare_in_ upper _case and compare_ to_ unique_substring.
Refer to the string_compare_rules attribute earlier in this secton
for a description of these fields.

get_ WUU1ed_vwiable_entry
Indicates a null filler in the FDT$GET_ VARIABLE_ATTRIBUTES
array.

get_valkl_integer _range
Returns the next range of integer values that are valid for the
variable. To return more than one range, you may use this record
more than once. The first record returns the first range, the
second record returns the second range, and so forth.

This record contains two fields:

minimum_ integer

The minimum integer value valid for the variable (type
integer).

maximum_ integer

The maximum integer value valid for the variable (type
integer).

get_ valid_ string_ length

Returns the length of a string for valid string validation (type
FDT$VALID_STRING_LENGTH). To return more than one string
length, you can use this record more than once. The first record
returns the first valid string length, the second record returns the
second length, and so forth.

Using CYBIL Procedures to Create Forms 5-69

Variable Attributes

get_ var_ error_ message

Contains an input field that returns the message displayed in the
message form when the data entered by the user does not pass
validation (type hFDT$ERROR_MESSAGE). The error message is
returned to the string specified by this pointer.

get_ var _help_message

Contains an input field that returns the message displayed in the
message form when the user executes the help event on this
variable (type hFDT$HELP_MESSAGE). The help message is
returned to the string specified by this pointer.

get_ variable_ error

Contains a variant record that returns information about error
processing for the variable (type FDT$GET_ERROR_
DEFINITION). Its KEY field (type FDT$GET_ERROR_KEY)
contains one of the following:

FDC$GET_ERROR_FORM

The name of the error form (type OST$NAME).

FDC$GET_ERROR_MESSAGE

The length of the error message in char_acters (type
FDT$ERROR_MESSAGE_LENGTH). You then allocate a
string of this length and use the FDP$GET_ VARIABLE_
ATTRIBUTES procedure with the get_var_error_message
record to obtain the message.

FDC$GET_NO_ERROR_RESPONSE

Screen Formatting does not display an error form or message
when the user enters invalid data.

5-70 NOSNE Screen Formatting Revision C

Variable Attributes

get_ variable_ help l:

~;~~:~ga f::r!::\::~:~~e t~~e~~~;G~;~1:i~-~:;~;1~f 0N). ,!_I,!

This processing applies when the user executes the help event with

:~~:~:=::::·£~~= field (type FDnGET_ I
The name of the help form (type OST$NAME). ,.

FDC$GET_HELP _MESSAGE

FDC$GET_NO_HELP _RESPONSE

Screen Formatting does not display a help form or message.

get_ variable_ length

Returns the character length of the program data area for the
variable (type FDT$VARIABLE_LENGTH).

Revision C Using CYBIL Procedures to Create Forms 5-71

~= ,,

1:

Table Attributes

Table Attributes

The attributes in this section describe the tables containing variables. .A
These attributes are divided into two groups, those for creating and ~
changing tables and those for returning the values of other table
attributes.

Creating and Changing Tables e
Each attribute for creating or changing tables is specified as a value
in a record in an initialized array. Each record is of type
FDT$TABLE_ATTRIBUTE, which is listed in Appendix E.

Once established, this array is named on the TABLE_ATTRIBUTES
parameter in the call to the FDP$CHANGE_ TABLE or
FDP$CREATE_ TABLE procedure, described later in this chapter.

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.
All fields are input fields unless otherwise noted.

add_ table_ variable,

delete_ table_ variable

Associates a variable with a table or deletes one from a table
(type OST$NAME).

For add_ table_ variable, the following rules apply:

• The variable name can already have been created when this
attribute is specified.

• The variable name must exist when the form definition ends,
but must not currently exist in the list of variable names
associated with the table.

• The name must obey the rules for names given by the form
processor.

• A variable cannot be associated with more than one table.

For delete_ table_ variable, any variable definition created by the
FDP$DEFINE_ VARIABLE procedure is not deleted.

5-72 NOSNE Screen Formatting Revision C

Table Attributes

new_ table_ name

Specifies a new name for the table (type OST$NAME). The name
must follow the rules for names given by the form processor
language. The new name must be unique.

stored_ occurrence

Specifies the maximum number of stored occurrences allowed in
the table (type FDT$0CCURRENCE). The value must be greater
than or equal to the value for the visible_occurrence attribute,
described below. The default value is 1. (You can create stored
objects using FDP$CREATE_STORED_OBJECT.)

unused_ table_ entry

Indicates a null filler in the FDT$TABLE_ATTRIBUTES array.

visible_occurrence

Specifies the number of occurrences in the table that are visible to
the user (type FDT$0CCURRENCE). You must create a visible
object that is variable text for each occurrence on the form
(FDP$CREATE_ OBJECT).

This attribute is optional. The default is the current value of the
stored_occurrence attribute (described above).

Revision C Using CYBIL Procedures to Create Forms 5-73

Table Attributes

Getting Table Attributes

The following records return the values of other table attributes.
These records are specified in an initialized array. Each record is of
type FDT$GET_ TABLE_ATTRIBUTE, which is listed in Appendix E.

Once established, this array is named on the GET_ TABLE_
ATTRIBUTES parameter in the call to the FDP$GET_ TABLE_
ATTRIBUTES procedure, described later in this chapter.

All fields contained in each record are output fields. The KEY field in
the FDT$GET_ TABLE_ATTRIBUTE record is an input field.

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.

get_ next_ table_ variable

Returns the next variable associated with the table (type
OST$NAME). To return more than one variable, you can use this
record more than once. The first record in the array returns the
first variable, the second returns the second variable, etc.

get_ number_ table_ variables

Returns the number of variables in the table (type
FDT$NUMBER_TABLE_ VARIABLES). You can use this record to e
allocate an array and then use the get_ next_ table_ variable
attribute to return the variables.

get_stored_ occurrence

Returns the number of stored occurrences in the table (type
FDT$0CCURRENCE).

get_ unused_ table_ entry

Indicates a null filler in the FDT$GET_TABLE_ATTRIBUTES
array.

get_ visible_ occurrence

Returns the number of occurrences in the table that are visible to
the user (type FDT$0CCURRENCE).

5-7 4 NOS/VE Screen Formatting Revision C

Form Definition Record Attributes

Form Definition Record Attributes

The attributes in this section are in two groups, those for creating
and changing form definition records and those for getting other form
definition record attributes.

Changing Records

Each attribute for creating or changing form definition records is
specified as a value in a record in an initialized array. Each record is
of type FDT$RECORD_ATTRIBUTE, which is listed in Appendix E.

Once established, this array is named on the RECORD_ATTRIBUTES
parameter in the call to the FDP$CHANGE_FORM_RECORD
procedure, described later in this chapter.

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.
All fields are input fields, unless otherwise specified.

record_deck_na.,:,,,e

Specifies the Source Code Utility deck name for the form definition
record (type OST$NAME). If you don't specify this name, the form
name is used.

record_ name

This is the name of the 01-level item for COBOL or the type for
CYBIL. Specifies the name of the record (type OST$NAME). If you
don't specify this name, the deck name is used.

unused_ table_entry

Indicates a null filler in the FDT$RECORD_ATTRIBUTES array.

Getting Record Attributes

The following records return the values of other record attributes.
These records are specified in an initialized array. Each record is of
type FDT$GET_RECORD_ATTRIBUTE, which is listed in Appendix
E.

e Once established, this array is named on the GET_RECORD_
ATTRIBUTES parameter in the call to the FDP$GET_RECORD_
ATTRIBUTES procedure, described later in this chapter. All fields
contained in each record are output fields. The KEY field in the e FDT$GET_RECORD_ATTRIBUTE record is an input field.

Revision C Using CYBIL Procedures to Create Forms 5.75

Object Attributes

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.

get_ record_ deck_ name

Returns the name of the deck for the SOURCE_CODE_UTILITY
(type OST$NAME).

get_ record_ length

Returns the length of the record in cells (type FDT$RECORD_
LENGTH).

get_ record_ name

Returns the record name (type OST$NAME).

get_ unused_ record_ entry

Indicates a null filler in the FDT$GET_RECORD_ATTRIBUTES
array.

Object Attributes

This section describes the attributes for form objects. 4 Objects can be
either text or graphics. They are divided into two groups, those for
creating and changing objects and those for returning the values of
other object attributes.

Creating and Changing Objects

Each attribute for creating or changing an object is specified as a
value in a record in an initialized array. Each record is of type
FDT$0BJECT_ATTRIBUTE, which is listed in Appendix E.

Once established, this array is named on the OBJECT_ATTRIBUTES
parameter in the call to the FDP$CHANGE_ OBJECT or
FDP$CREATE_OBJECT procedure, described later in this chapter.

4. For more information on objects, refer to chapter 1.

5-76 NOSNE Screen Formatting Revision C

Object Attributes

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.
All fields are input fields, unless otherwise specified.

object_ display

Specifies a set of display attributes for the object (type
FDT$DISPLAY_ATTRIBUTE_SET). When the object is displayed,
this attribute is used. This set may contain one or more of the
following:

FDC$INVERSE_ VIDEO
FDC$LOW_INTENSITY
FDC$HIGH_INTENSITY
FDC$BLINK
FDC$UNDERLINE
FDC$PROTECT
FDC$HIDDEN
FDC$BLACK_FOREGROUND
FDC$BLUE_FOREGROUND
FDC$GREEN_FOREGROUND
FDC$MAGENTA_FOREGROUND
FDC$RED_FOREGROUND
FDC$CYAN_FOREGROUND
FDC$YELLOW_FOREGROUND
FDC$WHITE_FOREGROUND
FDC$BLACK_BACKGROUND
FDC$BLUE_BACKGROUND
FDC$GREEN_BACKGROUND
FDC$MAGENTA_BACKGROUND
FDC$RED_BACKGROUND
FDC$CYAN_BACKGROUND
FDC$YELLOW_BACKGROUND
FDC$WHITE_BACKGROUND
FDC$FINE_ LINE
FDC$MEDIUM_LINE
FDC$BOLD_LINE
FDC$ITALIC_DISPLAY_ATTRIBUTE
FDC$TITLE_DISPLAY_ATTRIBUTE
FDC$INPUT_DISPLAY_ATTRIBUTE
FDC$ERROR_DISPLAY_ATTRIBUTE
FDC$MESSAGE_DISPLAY_ATTRIBUTE

Revision C Using CYBIL Procedures to Create Forms 5-77

Object Attributes

object_ height

Specifies the height of the object (type FDT$HEIGHT).

object_line_x_ increment

Specifies the new x increment by changing the x increment from
The line origin to the line destination (type FDT$X_
INCREMENT).

object_line_y _increment

Specifies the new y increment by changing the y increment from
the line origin to the line destination (type FDT$Y_INCREMENT).

object_ name

Specifies a name for the object. The object name must follow the
conventions of the form processor. Use the object name to associate
an object on the form with a variable definition. This record
contains two fields:

object_name

The name of the object (type OST$NAME).

occurrence

The occurrence of the name (type FDT$0CCURRENCE).

object_position

Specifies a new position for the object, with the following two
fields:

x_position

The new x position of the object (type FDT$X_POSITION).

y_position

The new y position of the object (type FDT$Y_POSITION).

object_ text

Changes the text associated with an object or a constant text box
object. Specifies a pointer to the new text (type AFDT$TEXT).

5-78 NOSNE Screen Formatting Revision C

Object Attributes

object_ text_processing

Changes the text processing for a text box object (type
FDT$TEXT_BOX_PROCESSING). Contains the following values:

FDC$CENTER_CHARACTERS

Currently unused.

e FDC$WRAP _CHARACTERS

Wraps data that extends past the left boundary of the box onto
the next line, character-by-character.

FDC$WRAP _WORDS

Wraps data at the left boundary of the box onto the next line,
word-by-word. A space indicates the end of a word.

object_ width

Specifies the width of the object (type FDT$WIDTH).

unused_ object_ entry

Indicates a null filler in the FDT$0BJECT_ATTRIBUTES array.

Revision C Using CYBIL Procedures to Create Forms 5-79

Object Attributes

Getting Object Attributes

The following records return the values of other object attributes.
These records are specified in an initialized array. Each record is of
type FDT$GET_OBJECT_ATTRIBUTE, which is listed in Appendix E.

Once established, this array is named on the object_attributes
parameter in the call to the FDP$GET_ OBJECT_ATTRIBUTES
procedure, described later in this chapter. All fields contained in each
record are output fields. The KEY field in the FDT$GET_ OBJECT_
ATTRIBUTE record is an input field.

The following are the attribute records, their descriptions, and the
permitted values for each. The attribute record names are in italics.

get_ object_ definition

Returns the object definition. This is a variant record (type
aDT$GET_OBJECT_DEFINITION). Its KEY field (type
FDT$0BJECT_DEFINITION_KEY) can contain one of the
following values. (For each of these values, additional fields
describe each object.)

FDC$BOX

Describes the box with two fields:

box_ width

The character width (1 .. FDC$MAXIMUM_X_POSITION)
of the box (type FDT$WIDTH).

box_ height

The character height (1 .. FDC$MAXIMUM_ Y_POSITION)
of the box (type FDT$HEIGHT).

FDC$LINE

Describes the line with two fields:

x_increment

The number of characters needed to increment the x line
origin position given in the request to determine the end
point of the line (type FDT$X_INCREMENT).

y _increment

The number of characters needed to increment the y line
origin position given in the request to determine the end
point of the line (type FDT$Y_INCREMENT). e

5-80 NOSNE Screen Formatting Revision C

Object Attributes

FDC$CONSTANT_TEXT

Displays constant text on the form. Contains two fields:

constant_ text_ width

The width of the constant text in characters on the screen
(type FDT$WIDTH).

constant_ text_ length

The length of the text in characters (type FDT$TEXT_
LENGTH). Use the get_object_text attribute to obtain the
text. The text length indicates how much space is needed to
hold the text.

FDC$CONSTANT_TEXT_BOX

Describes a constant text box on the form. The text can occupy
several lines. Contains four fields:

Revision C

constant_ box_ height

The height of the text area in characters (type
FDT$HEIGHT).

constant_ box_ processing

One of the following (type FDT$TEXT_BOX_
PROCESSING):

FDC$CENTER_CHARACTERS

Currently unused.

FDC$WRAP _CHARACTERS

Wraps data that extends past the left boundary of the
box onto the next line, character-by-character.

FDC$WRAP _WORDS

Wraps data at the left boundary of the box onto the
next line, word-by-word. A space indicates the end of a
word.

constant_ box_ width

The width of the text area in characters (type
FDT$WIDTH).

Using CYBIL Procedures to Create Forms 5-81

Object Attributes

constant_ box_ text_ length

The number of characters of text created for the text box
(type FDT$TEXT_LENGTH). Allocate the amount of space
needed for the text using the text length, then use the get_
object_ text attribute.

FDC$TABLE

Currently unused.

FDC$VARIABLE_ TEXT_BOX

Describes a variable text box on the form. The text can occupy
more than one line. Contains four fields:

variable_ box_ height

The height of the text area in characters (type
FDT$HEIGHT).

variable_ box_ processing

One of the following (type FDT$TEXT_BOX_
PROCESSING):

FDC$CENTER_CHARACTERS

Currently unused.

FDC$WRAP_CHARACTERS

Wraps data that extends past the left boundary of the
box onto the next line, character-by-character.

FDC$WRAP _WORDS

Wraps data at the left boundary of the box onto the
next line, word-by-word. A space indicates the end of a
word.

variable_ box_ text_ length

The number of characters of text created for the text box
(type FDT$TEXT_LENGTH). Allocate the amount of space
needed for the text using the text length, then use the get_
object_ text attribute.

variable_ box_ width

The width of the text area in characters (type
FDT$WIDTH).

5-82 NOSNE Screen Formatting Revision C

Object Attributes

FDC$VARIABLE_TEXT

Describes a variable text object on the form. Contains two
fields:

variable_ text_ length

The number of characters of text created for the variable
text (type FDT$TEXT_LENGTH). Allocate the amount of
space needed for the text using the text length, then use
the get_object_text attribute.

variable_ text_ width

The visible form width of the text area in characters (type
FDT$WIDTH).

get_object_display

Returns the display attribute for the object (type FDT$DISPLAY_
ATTRIBUTE_SET). When the object is displayed, this attribute is
used. Returns one or more of the following:

FDC$INVERSE_ VIDEO
FDC$LOW_INTENSITY
FDC$HIGH_INTENSITY
FDC$BLINK
FDC$UNDERLINE
FDC$PROTECT
FDC$HIDDEN
FDC$BLACK_FOREGROUND
FDC$BLUE_FOREGROUND
FDC$GREEN_FOREGROUND
FDC$MAGENTA_FOREGROUND
FDC$RED_FOREGROUND
FDC$CYAN_FOREGROUND
FDC$YELLOW_FOREGROUND
FDC$WHITE_FOREGROUND
FDC$BLACK_BACKGROUND
FDC$BLUE_BACKGROUND
FDC$GREEN_BACKGROUND
FDC$MAGENTA_BACKGROUND
FDC$RED_BACKGROUND
FDC$CYAN_BACKGROUND
FDC$YELLOW_BACKGROUND
FDC$WHITE_BACKGROUND
FDC$FINE_LINE
FDC$MEDIUM_LINE
FDC$BOLD_LINE

Revision C Using CYBIL Procedures to Create Forms 5-83

Object Attributes

FDC$ITALIC_DISPLAY_ATTRIBUTE
FDC$TITLE_DISPLAY_ATTRIBUTE
FDC$INPUT_DISPLAY_ATTRIBUTE
FDC$ERROR_DISPLAY_ATTRIBUTE
FDC$MESSAGE_DISPLAY_ATTRIBUTE

get_object_name

Re_turnsh.the nameCfor t?e objectfi. P1drograms manipulate the object e
using t is name. ontams two ie s:

object_ name

The name for the object (type OST$NAME).

occurrence

The occurrence of the name (type FDT$0CCURRENCE).

get_ object_ text

Returns the object text to the specified pointer (type "FDT$TEXT).

get_ object_ text_ length

Returns the character length of the text (type FDT$TEXT_
LENGTH).

get_ unused_ object_ entry

Indicates a null filler in the FDT$GET_OBJECT_ATTRIBUTES
array.

5·84 NOS/VE Screen Formatting Revision C

CYBIL Screen Formatting Procedures

CYBIL Screen Formatting Procedures

Use the following CYBIL procedure calls when creating forms within
a CYBIL program.

Revision C Using CYBIL Procedures to Create Forms 5-85

Changing a Form

Changing a Form

Purpose

Format

FDP$CHANGE_FORM procedure changes the attributes
that apply to the entire form.

FDP$CHANGE_FORM (form_identifier, form_
attributes, status)

Parameters form_identifier: fdt$form_identifier;

The form identifier established when the form was opened.

form_attributes: VAR { input-output } of fdt$form_
attributes;

An array containing form attributes.

status: VAR of ost$status;

The status variable in which the completion status is
returned.

Conditions fde$bad_data_ value
fde$cannot_ update_opened_form
fde$display _name_exists
fde$event_name_exists
fde$invalid_ display _name
fde$invalid_event_name
fde$invalid_form_area_key
fde$invalid_form_identifier
fde$invalid_form_ language
fde$invalid_form_name
fde$no_comments_ to_ delete
fde$no_ space_available
fde$system_error
fde$unknown_display _name
fde$unknown_event_name

5-86 NOSNE Screen Formatting Revision C

Changing the Form Definition Record

Changing the Form Definition Record

Purpose

Format

FDP$CHANGE_FORM_RECORD procedure changes the
form record definition used to transfer data from the
program to Screen Formatting, and from Screen
Formatting to the program.

FDP$CHANGE_FORM_RECORD (form_identifier,
record_ attributes, status)

Parameters form_identifier: fdt$form_identifier;

Conditions

Revision C

The form identifier established when the form was opened.

record_ attributes: VAR { input-output } of fdt$record_
attributes;

An array containing record attributes.

status: VAR of ost$status;

The status variable in which the completion status is
returned.

fde$cannot_ update_opened_form
fde$invalid_form_identifier
fde$invalid_deck_name
fde$invalid_record_name
fde$invalid_ table_name

Using CYBIL Procedures to Create Forms 5-87

Changing an Object

Changing an Object

Purpose

Format

FDP$CHANGE_ OBJECT procedure changes the object
attributes.

FDP$CHANGE _OBJECT (form _identifier, x_position,
y _position, object_ attributes, status)

Parameters form_identifier: fdt$form_identifier;

The form identifier established when the form was opened.

x_position: fdt$x_position;

The x position of the object relative to the form.

y _position: fdt$y _position;

The y position of the object relative to the form.

object_attributes: VAR { input-output } of fdt$object_
attributes;

An array of object attributes.

status: VAR of ost$status;

The status variable in which the completion status is
returned. e

Conditions fde$bad_data_ value
fde$cannot_ update_opened_form
fde$invalid_form_identifier
fde$invalid_object_change
fde$invalid_ object_name
fde$no_object_at_position
fde$no_space_available
fde$no_ string_ specified
fde$object_occurrence_exists
fde$system_ error
fde$unknown_object_name

5-88 NOS/VE Screen Formatting Revision C

Changing a Stored Object

Changing a Stored Object

Purpose

Format

FDP$CHANGE_STORED_OBJECT procedure changes the
initial value for the occurrence of a table variable that
does not initially appear on a form.

FDP$CHANGE_STORED _OBJECT (form_identifier,
name, occurrence, text, display _attribute_set, status)

Parameters form_identifier: fdt$form_identifier;

Conditions

e Remarks

Revision C

The form identifier established when the form was opened.

name: ost$name;

The object name.

occurrence: fdt$occurrence;

The occurrence of the object.

text: fdt$text;

The text indicating the initial value.

display _attribute_ set: fdt$display _attribute_set;

The set of attributes that describe how to display the
object.

status: VAR of ost$status;

The status variable in which the completion status is
returned.

fde$bad_data_ value
fde$cannot_ update_ opened_form
fde$invalid_form_identifier
fde$invalid_ object_ name
fde$invalid_ occurrence
fde$no_space_available
fde$no _string_ specified
fde$system_ error
fde$unknown_object_name

The user can see stored cccurrences by executing paging
or scrolling events.

Using CYBIL Procedures to Create Forms 5-89

Changing a Table

Changing a Table

Purpose FDP$CHANGE_ TABLE procedure changes the attributes
of a table.

Format FDP$CHANGE_ TABLE (form_identifier, table_name,
table_ attributes, status)

Parameters form_identifier: fdt$form_identifier;

The form identifier established when the form was opened.

table_name: ost$name;

The name of the table.

table_attributes: VAR { input-output } of fdt$table_
attributes;

An array containing table attributes.

status: VAR of ost$status;

The status variable in which the completion status is
returned.

Conditions fde$bad_data_ value
fde$cannot_ change_form
fde$invalid_form_identifier
fde$invalid_occurrence
fde$invalid_ table_name
fde$invalid_ variable_name
fde$no_space_available
fde$system_ error
fde$table_name_ exists
fde$unknown_ table_name
fde$unknown_ variable_name

5-90 NOSNE Screen Formatting Revision C

Changing a Variable

Changing a Variable

Purpose

Format

FDP$CHANGE_ VARIABLE procedure changes the
variable attributes.

FDP$CHANGE_ VARIABLE (form_identifier,
variable_name, variable_attributes, status)

e Parameters form_identifier: fdt$form_identifier;

Conditions

Revision C

The form identifier established when the form was opened.

variable_name: ost$name;

The variable name.

variable_attributes: VAR { input-output } of
fdt$variable_attributes;

An array containing variable attributes.

status: VAR of ost$status;

The status variable in which the completion status is
returned.

fde$variable_name_exists
fde$valid_ string_ exists
fde$unknown_ variable_name
fde$unk.nown_ valid_ string
fde$unknown_real_range
fde$unknown_integer _range
fde$system_ error
fde$range_over lap
fde$no_ string_ specified
fde$no_space_available
fde$no_comments_ to_delete
fde$invalid_ variable_name
fde$invalid_real_range
fde$invalid_integer _range
fde$invalid_form_name
fde$invalid_form_identifier
fde$cannot_ update_opened_form
fde$bad_data_ value

Using CYBIL Procedures to Create Forms 5-91

Converting to Program Variable

Converting to Program Variable

Purpose

Format

FDP$CONVERT_ TO_PROGRAM_ VARIABLE procedure
converts data entered by an application user to program
data.

FDP$CONVERT _TO _PROGRAM_ VARIABLE
(program_data_type, p_program_ variable, program_
variable_length, input_format, p_screen_ variable,
screen_ variable_length, variable_status, status)

Parameters program_ data_ type: fdt$program_data_ type;

The variable definition of the data type the program uses
to manipulate the variable.

p_program_ variable: Acell;

A pointer to the first cell to receive the converted data
for the program variable.

program_ variable_ length: fdt$program_ variable_
length;

Length of the program variable in cells.

in put_ format: fdt$input_format;

The variable definition for the application user's input
format.

p_screen_ variable: Afdt$text;

A pointer to the string that contains the characters
entered by the application user to be converted.

screen_ variable _length: fdt$text_ length;

Length of the string containing the user's characters.

variable_status: VAR of fdt$variable status;

An ordinal value that gives you the status of the variable.

FDC$INVALID_BDP _DATA

The screen variable contains characters that can not
be converted to the program data type.

FDC$LOSS_ OF _SIGNIFICANCE

The screen variable is too large to fit in the program
variable.

5-92 NOSNE Screen Formatting Revision C

Converting to Program Variable

FDC$NO_ERROR

No error occurred on the conversion.

FDC$0VERFLOW

The screen variable when converted to the program
variable is infinite or indefinite.

status: VAR of ost$status;

The status variable in which the completion status is
returned.

Conditions fde$bad_data_ value

Revision C Using CYBIL Procedures to Create Forms 5.93

~:

II

I
I
II

Converting to Screen Variable

Converting to Screen Variable I Purpo,.
FDP$CONVERT_TO_SCREEN_ VARIABLE procedure
converts program data to characters for screen display.

FDP$CONVERT_TO_SCREEN_VARIABLE
(program_data_type, p_program_ variable, program_
variable_length, output_format, p _screen_ variable,
screen_ variable_length, variable_status, status)

I_

*

I
~~~ 

l 

Format 

Parameters program_ data_ type: fdt$program_data_ type; 

The variable definition of the data type the program uses 
to manipulate the variable. 

p_program_ variable: Acell; 

A pointer to the first cell of the program variable to be 
converted to the screen variable. 

program_ variable_ length: fdt$program_ variable_ 
length; 

Length of the program variable in cells. 

output_format: fdt$output_format; 

The variable definition for the screen output format. 

p_screen_ variable: Afdt$text; 

A pointer to the string to receive the characters converted 
from the program variable. 

screen_ variable_ length: fdt$text_ length; 

Length of the string displayed at the user's screen. 

variable_status: VAR of fdt$variable status; 

An ordinal value that gives you the status of the variable. 

FDC$BAD_PRARAMETERS 

The output format is not correct. 

FDC$INDEFINITE 

The program variable contains an indefinite number. 

FDC$INVALID_BDP _DATA 

The program variable contains characters used for 
terminal control. e 

5-94 NOSNE Screen Formatting Revision C 



Converting to Screen Variable 

FDC$LOSS_OF _SIGNIFICANCE 

The program variable is too large to display in the 
area specified for screen display. 

FDC$NO_ERROR 

No error occurred on the conversion. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 

Revision C Using CYBIL Procedures to Create Forms 5-95 



Copying an Area 

Copying an Area 

Purpose 

Format 

FDP$COPY_AREA procedure copies all objects and A 
unprotected text from one area to another on a form. W 

FDP$COPY_AREA (form_identitier, form_x_position, 
form_y _position, width, height, to_x_postion, to_y _ 
position, status) e 

Parameters form_identitier: fdt$form_identifier; 

The form identifier established when the form was opened. 

form_x_position: fdt$x_position; 

The form x position of the area that encloses the data to 
be copied. The origin of the area is the upper left corner, 
relative to the form. 

form_y _position: fdt$y _position; 

The form y position of the area that encloses the data to 
be copied. The origin of the area is the upper left corner, 
relative to the form. 

height: fdt$height; 

The height of the area to be copied. 

width: fdt$width; 

The width of the area to be copied. 

to_x_position: fdt$x_position; 

The x position of the destination area upper left corner, 
relative to the form. 

to _y _position: fdt$y _position; 

The y position of the destination area upper left corner, 
relative to the form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

5-96 NOS/VE Screen Formatting Revision C 



Conditions 

Remarks 

Revision C 

fde$area_ cuts_ object 
fde$bad_data_ value 
fde$copy _ outside_form 
fde$invalid_form_identifier 
fde$no_ space_available 
fde$object_overlays 
fde$system_error 

Copying an Area 

• A design form has objects (protected text, line 
drawings) and unprotected text. 

• A target form contains only objects. The area to be 
copied must not slice any objects. The destination area 
must not contain any objects. Object names and 
occurrence attributes are not copied. 

Using CYBIL Procedures to Create Forms 5-97 



Copying a Form 

Copying a Form 

Purpose 

Format 

FDP$COPY_FORM procedure copies a form and assigns a A 
new form identifier to the copied form. WI' 

FDP$COPY_FORM (from_form_identifier, to_form_ 
identifier, status) 

Parameters from_form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

to_form_identifier: VAR of fdt$form_identifier; 

The new form identifier that Screen Formatting assigns to 
the copied form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$invalid_form_identifier 
fde$no_space_available 
fde$system_ error 

Remarks To modify a copied form, you must issue an FDP$EDIT_ 
FORM procedure. 

5-98 NOSNE Screen Formatting Revision C 



Creating Constant Text 

Creating Constant Text 

Purpose 

Format 

FDP$CREATE_CONSTANT_ TEXT procedure creates 
constant text objects for a target form using the 
unprotected text on the design form. These objects have 
the background and foreground attributes of the target 
form. 

FDP$CREATE_ CONSTANT_ TEXT (design_form_ 
identifier, target_form_identifier, status) 

Parameters design _form _identifier: fdt$form_identifier; 

The form identifier of a design form that Screen 
Formatting uses to create constant text objects. 

Conditions 

Revision C 

target_form _identifier: fdt$form_identifier; 

The form identifier of a target form where Screen 
Formatting stores the constant text objects. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

fde$bad_data_ value 
fde$invalid_form_identifier 
fde$no_space_available 
fde$system_error 

Using CYBIL Procedures to Create Forms 5-99 



Creating a Design Form 

Creating a Design Form 

Purpose FDP$CREATE_DESIGN _FORM procedure creates a form 
for designing other forms interactively. 

Format FDP$CREATE _DESIGN _FORM (form_identifier, 
form_attributes, status) 

Parameters form_identifier: VAR of fdt$form_identifier; 

The form identifier established when the form was opened. 

form_attributes: VAR { input-output } of fdt$form_ 
attributes; 

An array containing attributes that apply to the entire 
form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$display _name_ exists 
fde$event_name_exists 
fde$invalid_display _name 
fde$invalid_ event_name 
fde$invalid_form_area_key 
fde$invalid_form_identifier 
fde$invalid_form_ language 
fde$invalid_form_name 
fde$no_comments_ to_ delete 
fde$no_ space_available 
fde$system_ error 
fde$terminaLdisconnected 
fde$unknown_display _name 
fde$unknown_event_name 

Remarks • It is not necessary to execute an FDP$ENO_FORM 
procedure to indicate the end of the definition. You 
open the design form with the FDP$0PEN _FORM 
procedure and can then execute other procedures, such 
as FDP$ADD_FORM and FDP$READ_FORM. 

5-100 NOS/VE Screen Formatting Revision C 



Revision C 

Creating a Design Form 

• A table and a variable are created for the design form 
so the FDP$GET_STRING_ VARIABLE and 
FDP$REPLACE_STRING_ VARIABLE procedures can 
access text on the form. The variable character field 
width is the form width. Refer to Defining Attributes 
for a Form in this chapter to read about the attribute 
FDC$DESIGN _ VARIABLE_NAME. 

• The table has as many occurrences as the height of 
the form. On the design form, you can create constant 
objects and line drawing objects, but no variable 
objects. 

Using CYBIL Procedures to Create Forms 5-101 



Creating Design Text 

Creating Design Text 

Purpose 

Format 

FDP$CREATE_DESIGN _TEXT procedure creates objects 
and unprotected text on the design form from objects 
defined on the target form. 

FDP$CREATE_DESIGN _TEXT (target_form_ 
identifier, design_form_identitier, status) 

Parameters target_form_identifier: fdt$form_identifier; 

The target form identifier to use as the source of the text 
for the design form. 

design_form_identifier: fdt$form_identifier; 

The form identifier of the design form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ change_form 
fde$invalid_ design_form 
fde$invalid_form_ identifier 
fde$no_space_available 
fde$system_ error 

Remarks The constant text objects on the target form (except for 
ones with the same color attributes as the target form) 
are created as objects on the design form. Constant text 
objects on the target form with the same color attributes 
as the target form and without names become free text on 
the design form. 

5·102 NOS/VE Screen Formatting Revision C 



Creating a Form 

Creating a Form 

Purpose FDP$CREATE_FORM procedure creates a form. 

Format FDP$CREATE_FORM (form_identifier, form_ 
attributes, status) 

Parameters form_identifier: VAR of fdt$form_identifier; 

The form identifier established when the form was opened. 

form_attributes: VAR { input-output } of fdt$form_ 
attributes; 

An array containing attributes that apply to the entire 
form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$display _name_exists 
fde$event_name_exists 
fde$invalid_display _name 
fde$invalid_event_name 
fde$invalid_form_area_key 
fde$invalid_form_identifier 
fde$invalid_form_language 
fde$invalid_form_name 
fde$no_comments_ to_ delete 
fde$no_ space_available 
fde$system_error 
fde$unknown_display _name 
fde$unknown_event_name 

Remarks After creating a form, you must issue an FDP$END_ 
FORM procedure to end it. 

Revision C Using CYBIL Procedures to Create Forms 5-103 



Creating an Event Form 

Creating an Event Form 

Purpose 

Format 

FDP$CREATE_EVENT_FORM procedure creates a form 
to display events. 

FDP$CREATE_EVENT_FORM (event_menus, form_ 
attributes, form_identifier, status) 

Parameters event_menus: array [1 .. *]; 

An array of fdt$event_menu records. This record contains 
three fields: 

event_ label 

The initial variable value on the form for the variable 
event_ name. 

event_ name 

The event name the application program uses to 
recognize the event. Also the variable name an 
application program can use to change the display 
attribute or event label value. 

event_ trigger 

The event trigger on the terminal that causes the e 
event. 

form_attributes: VAR { input-output } of fdt$form_ 
attibutes; 

An array containing attributes that apply to the entire 
form. Screen Formatting calculates the form size based on 
the number of application event triggers given in the 
event_menus. Screen Formatting calculates the form 
location based on the form size and home cursor position 
of the terminal. 

If the home cursor position is on the first line of the 
terminal screen, the event form occupies the last line of 
the terminal. If the home cursor position is on the last 
line of the terminal, then the event form occupies the 
next to the last line of the terminal. 

5-104 NOSNE Screen Formatting Revision C 



e Conditions 

Remarks 

Revision C 

Creating an Event Form 

form_identifier: VAR of fdt$form_identifier; 

The form identifier established when the form was opened. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

fde$bad_data_ value 
fde$invalid_display _name 
fde$invalid_event_name 
fde$invalid_form_ language 
fde$invalid_form_name 
fde$no_ space_ available 
fde$system_ error 
fde$unknown_event_name 

• This procedure ends the event form definition. 

• The form identifier the procedure returns was 
established when the form was opened. 

• Save the form by executing the FDP$WRITE_FORM_ 
DEFINITION procedure. 

Using CYBIL Procedures to Create Forms 5-105 



Creating a Mark 

Creating a Mark 

Purpose 

Format 

FDP$CREATE_MARK procedure creates a display 
attribute for a specific text area. 

FDP$CREATE_MARK (form_identifier, start_x_ 
position, start_y _position, end_x_position, end_y _ 
position, status) 

Parameters form _identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

start_x_position: fdt$x_position; 

The form x position that starts the mark on the form. 
The leftmost character is 1. X positions go from left to 
right. 

start_y _position: fdt$x_position; 

The form y position that starts the mark on the form. 
The top character is 1. Y positions go from top to bottom. 

end_x_position: fdt$x_position; 

The end x position to end the mark. 

end_y _position: fdt$x_position; 

The end y position to end the mark. 

status : VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$area_cuts_object 
fde$bad_data_ value 
fde$create_ mark_ invalid 
fde$form_ not_ scheduled 
fde$form_ pushed 
fde$mark_ outside_form 
fde$no_space_available 
fde$system_error 

5-106 NOS/VE Screen Formatting Revision C 



Remarks 

Revision C 

Creating a l\{ark 

• The marked area of the form must not slice any 
objects. 

• This attribute marks text on which the terminal user 
wants to perform an operation. 

• This procedure applies only to a design form. 

Using CYBIL Procedures to Create Forms 5-107 



Creating an Object 

Creating an Object 

Purpose 

Format 

FDP$CREATE_OBJECT procedure creates an object on 
the form. 

FDP$CREATE_OBJECT (form_identifier, x_position, 
y _position, object_definition, object_attributes, 
status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

x_position: fdt$x_position; 

The x coordinate for the origin of the object relative to 
the form. 

y _position: fdt$x_position; 

The y coordinate for the origin of the object relative to 
the form. 

object_ definition: fdt$object_ definition; 

This is a variant record that specifies the object type. Its 
KEY fields contain the following: 

FDC$BOX 

Draws a box on the form image. The FDP$CREATE_ 
OBJECT procedure gives the origin of the box with 
respect to the origin of the form. The origin of the 
form is the upper left corner. The origin of the box is 
the upper left corner. The FDC$BOX field contains 
two other fields: 

box_ width 

The width, in characters, of the box (type 
FDT$WIDTH). The box_ width must be greater 
than, or equal to, one. 

box_ height 

The height, in characters, of the box (type 
FDT$HEIGHT). The box_height must be greater ,_a 
than, or equal to, one. • 

5-108 NOSNE Screen Formatting Revision C 



Revision C 

Creating an Object 

FDC$CONSTANT_TEXT 

Displays constant text on the form image. The origin 
of the text object is given by the FDP$CREATE_ 
OBJECT procedure. The text can occupy all or part of 
a row on the form. The FDC$CONSTANT_ TEXT field 
contains two other fields: 

constant_ text_ width 

The width of the constant text, in characters, on 
the screen (type FDT$WIDTH). This must be a 
number greater than or equal to one. 

p_ constant_ text 

This is the text to display on the form image (type 
"FDT$TEXT). 

FDC$LINE 

Draws a line on the form image. The FDC$LINE field 
contains two other fields: 

x_increment 

The number of characters to increment the x 
position given in the procedure to determine the 
end point of the line (type FDT$X_INCREMENT). 
Some terminals only support vertical and horizontal 
lines. The x increment can be greater than or 
equal to zero. 

y _increment 

The number of characters to increment the y 
position given in the procedure to determine the 
end point of the line (type FDT$Y_INCREMENT). 
The x increment can greater than or equal to zero. 

FDC$CONSTANT_TEXT_BOX 

Defines an area on the form to display constant text. 
The text can occupy several lines. You can specify how 
text that crosses the right boundary of the text box is 
processed. The FDC$CONSTANT_ TEXT_BOX field 
contains the following fields: 

Using CYBIL Procedures to Create Forms 5·109 

,, 

I 
I 



Creating an Object 

constant_ text_ box_ height 

The height of the text area, in characters (type 
FDT$HEIGHT). This must be greater than, or 
equal to, one. 

constant_ text_ box_ processing 

Uses FDC$WRAP _WORD to wrap data at the right 
boundary of the box to the next line, if any, on a 
word basis (type FDT$TEXT_BOX_PROCESSING). 
The text for word wrap processing can include a 
formatting character. FDC$NEW_LINE_ 
CHARACTER causes Screen Formatting to start a 
new line in a text box. Uses FDC$WRAP _ 
CHARACTER to wrap data that goes past the 
right boundary of the box to the next line on a 
character basis. 

constant_ text_ box_ width 

The width of the text area, in characters (type 
FDT$WIDTH). This must be greater than, or equal 
to, one. 

p_constant_ box_ text 

The text to display on the form image (type 
AFDT$TEXT). 

FDC$VARIABLE_TEXT 

Defines an object for variable text. You associate the 
object to the variable by using an object name 
specified through the object attributes. The 
FDC$VARIABLE_ TEXT field contains the following 
fields: 

p_ variable_ text 

The pointer to the text (type AFDT$TEXT). This is 
the initial value of the variable. 

variable_ text_ width 

The width of the variable text in characters on the A 
screen (type FDT$WIDTH). This must be a number • 
greater than or equal to one. 

5-110 NOSNE Screen Formatting Revision C 



Revision C 

Creating an Object 

FDC$VARIABLE_TEXT_BOX 

Defines an area on the form to display variable text. 
The text can occupy several lines. You associate the 
object to the variable by using an object name 
specified through the object attributes. You can specify 
how text that crosses the right boundary of the text 
box is processed. The FDC$VARIABLE_ TEXT_BOX 
field contains the following fields: 

p_ variable_ box_ text 

The pointer to the text (type "FDT$TEXT). This is 
the initial value of the variable. 

variable_ text_ box_ height 

The height of the text area, in rows (type 
FDT$HEIGHT). This must be a number greater 
than or equal to one. 

variable_ text_ box_ processing 

Uses FDC$WRAP _WORD to wrap data at the right 
boundary of the box to the next line, if any, on a 
word basis (type FDT$TEXT_BOX_PROCESSING). 
The text for word wrap processing can include a 
formatting character. The FDC$NEW_LINE_ 
CHARACTER causes Screen Formatting to start a 
new; line in a text box. Uses FDC$WRAP _ 
CH; \.RACTER to wrap data that goes past the 
righ~ boundary of the box to the next line on a 
character basis. 

variable_ text_ box_ width 

The width of the text area, in characters (type 
FDT$WIDTH). This must be greater than or equal 
to one. 

object_attributes: VAR { input-output } of fdt$object_ 
attributes; 

An array of object attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Using CYBIL Procedures to Create Forms 5-111 



Creating an Object 

Conditions fde$bad_data_ value 

Remarks 

fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 
fde$invalid_ object_change 
fde$invalid_object_name 
fde$no_space_available 
fde$no_string_specified 
fde$object_occurrence_ exists 
fde$system_error 

• When the program data is too large to display on the 
form, it can be put into a text box. The user can then 
execute scroll events to see or modify the text. 

• A text box permits text processing. Characters or 
words can wrap from line to line in the text box. You 
can give name and display attributes to the object. 

• Programs can manipulate the object using the name. 
The name associates a variable text object with its 
variable definition. The initial value comes from the 
value specified for the object and is displayed using 
the output format defined for the variable and display 
attributes specified for the object. 

• Objects can be line or box graphics, constant or 
variable text. They can occupy a single line or a 
rectangular area (box) on the form. 

5-112 NOSNE Screen Formatting Revision C 



Creating a St.ored Object 

Creating a Stored Object 

Purpose 

Format 

FDP$CREATE_STORED_OBJECT procedure creates an 
initial value for a table variable occurrence that does not 
initially appear on the form. 

FDP$CREATE_STORED _OBJECT (form_identifier, 
name, occurrence, text, status) 

Parameters form_identifier: fdt$form_identifier; 

Conditions 

Remarks 

Revision C 

The form identifier established when the form was opened. 

name: ost$name; 

The object name. 

occurrence: fdt$occurrence; 

The occurrence of the object. 

text: fdt$text; 

The text specifying the initial value. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_object_name 
fde$invalid_occurrence 
fde$no_space_available 
fde$no_string_ specified 
fde$object_exists 
fde$object_occurrence_exists 
fde$system_error 

• The visible occurrences of a table initially appear on 
the form. The user can execute paging or scrolling 
events to look at the stored occurrences. 

• If this procedure is not issued, the initial value for a 
stored object is the first occurrence of the object. A 
table can have one or more variables, and a variable 
in a table can have one or more occurrences. 

Using CYBIL Procedures t.o Create Forms 5-113 



Creating a Table 

Creating a Table 

Purpose 

Format 

FDP$CREATE_ TABLE procedure creates a table 
containing variables. 

FDP$CREATE _TABLE (form _identifier, table _name, 
table_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

table_name: ost$name; 

The table name. 

table_attributes: VAR { input-output } of fdt$table_ 
attributes; 

The attributes of the table. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_ opened_form 
fde$invalid_form_ identifier 
fde$invalid_ table_ name 
fde$no_ space_a vailable 
fde$table_name_exists 

Remarks • The variables in a table can occur more than once and 
appear anywhere on the form. 

• A table name cannot duplicate an existing table or 
variable name. 

• You must create objects for table variable occurrences 
and variables for the table. When executing a 
FDP$END_FORM procedure, all variables and objects 
for the table must be defined. 

5-114 NOSNE Screen Formatting Revision C 



Creating a Variable 

Creating a Variable 

Purpose FDP$CREATE_ VARIABLE procedure creates a variable. 

Format FDP$CREATE _VARIABLE (form_identitier, 
variable_name, variable_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

Conditions 

Revision C 

The form identifier established when the form was opened. 

variable_name: ost$name; 

The name of the variable. 

variable_attributes: VAR { input-output } of 
fdt$variable_attributes; 

An array containing variable attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_form_name 
fde$invalid_integer _range 
fde$invalid_ reaLrange 
fde$invalid_ variable_name 
fde$no_comments_ to_delete 
fde$no_space_available 
fde$no_ string_specified 
fde$range_over lap 
fde$system_ error 
fde$unknown_integer _range 
fde$unknown_real_range 
fde$unknown_ valid_string 
fde$valid_ string_ exists 
fde$variable_name_exists 

Using CYBIL Procedures to Create Forms 5-115 



Creating a Variable 

Remarks • Every variable that appears to the user must have an 
object associated with it. The object can be created 
before or after the creation of the variable. Some 
variables are not shown on the form. 

• Issue an FDP$CREATE_OBJECT procedure to specify 
the initial value and display attributes for a variable 
appearing on the form. 

5-116 NOSNE Screen Formatting Revision C 



Deleting an Area 

Deleting an Area 

Purpose 

Format 

FDP$DELETE_AREA procedure deletes all objects and 
unprotected text in a specified area on the form. Any 
associated table and variable definitions are not deleted. 

FDP$DELETE_AREA (form_identifi.er, x_position, 
y _position, width, height, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

x_position: fdt$x_position; 

The x position of the origin (upper left corner) of the area 
enclosing the data to be deleted. 

y _position: fdt$y _position; 

The y position of the origin (upper left corner) of the area 
enclosing the data to be deleted. 

width: fdt$width; 

The width of the area. 

height: fdt$height; 

The height of the area. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$area_cuts_object 

Revision C 

fde$bad_data_ value 
fde$delete_outside_form 
fde$invalid_form_identifier 
fde$no_ space_available 
fde$system_error 

Using CYBIL Procedures to Create Forms 5-117 



Deleting a Mark 

Deleting a Mark 

Purpose FDP$DELETE_MARK procedure deletes the previous 
mark set by the FDP$CREATE_MARK procedure. 

Format FDP$DELETE_MARK (form_identifier, status) 

Parameters form_identifier fdt$form_identifier; 

The form identifier established when the form was opened. 

status VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$delete_mark_invalid 
fde$form_not_ scheduled 
fde$form_pushed 
fde$invalid_form_ identifier 
fde$no_space_available 
fde$system_ error 

Remarks This procedure can only be used on a form created with 
the FDP$CREATE_DESIGN_FORM procedure. 

5-118 NOSNE Screen Formatting Revision C 



Deleting an Object 

Deleting an Object 

Purpose 

Format 

FDP$DELETE_ OBJECT procedure deletes an object at a 
specified location on the form. Any variable or table 
definitions associated with the object are not deleted. 

FDP$DELETE_OBJECT (form_identifier, x_position, 
y _position, status) 

Parameters form_identifier: fdt$form_identifier; 

Conditions 

Revision C 

The form identifier established when the form was opened. 

x_position: fdt$x_position; 

The x position of the object to delete. 

y _position: fdt$y _position; 

The y position of the object to delete. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$no_object_at_position 

Using CYBIL Procedures to Create Forms 5-119 



Deleting a Stored Object 

Deleting a Stored Object 

Purpose FDP$DELETE_STORED_OBJECT procedure deletes an 
initial value for a table variable occurrence that does not 
initially appear on a form. 

Format FDP$DELETE_STORED _OBJECT (form_identitier, 
name, occurrence, status) 

Parameters form_identifier; fdt$form_identifier; 

The form identifier established when the form was opened. 

name: ost$name; 

The object name. 

occurrence: fdt$occurrence; 

The occurrence of the object. 

status : VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_ object_name 
fde$no_space_available 
fde$system_error 
fde$unknown_object_name 

5-120 NOS/VE Screen Formatting Revision C 



Deleting a Table 

Deleting a Table 

Purpose 

Format 

FDP$DELETE_ TABLE procedure deletes a table. Any 
variables or object defmitions associated with the table 
are not deleted. 

FDP$DELETE_ TABLE (form_identifier, table_name, 
status) 

Parameters form_identifier: fdt$form_identifier; 

Conditions 

Revision C 

The form identifier established when the form was opened. 

table_name: ost$name; 

The table to be deleted. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_ table_ name 
fde$unknown_ table_ name 

Using CYBIL Procedures to Create Forms 5-121 



Deleting a Variable 

Deleting a Variable 

Purpose 

Format 

FDP$DELETE_ VARIABLE procedure deletes a variable. 
Any table or object definitions associated with the 
variable are not deleted. 

FDP$DELETE _VARIABLE (form _identifier, 
variable_ name, status) 

Parameters form_identifier: integer; 

The form identifier established when the form was opened. 

variable_name: name; 

The variable to be deleted. 

status: VAR of status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_ variable_name 
fde$unknown_ variable_ name 

5-122 NOSNE Screen Formatting Revision C 



Editing a Form 

Editing a Form 

Purpose 

Format 

FDP$EDIT_FORM procedure permits you to make further 
changes to a copied form or a previously ended form 
definition. 

FDP$EDIT _FORM (form_identifier, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 

Revision C 

fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 

Using CYBIL Procedures w Create Forms 5-123 



Ending a Form 

Ending a Form 

Purpose 

Format 

FDP$END_FORM procedure ends the definition of a 
form. 

FDP$END_FORM (form_identifier, p_sequence, 
number _errors, p_errors, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

p_sequence: ASEQ(*); 

The sequence to return any errors. 

number _errors: VAR of fdt$number_errors; 

The number of errors contained in the form definition. 

p_errors: VAR of ASEQ (*); 

The sequence that contains the errors. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_ opened_form 
fde$invalid_form_identifier 
fde$no_ space_available 
fde$system_ error 

Remarks This procedure must be executed before you can use a 
form to interact with a terminal user. 

5-124 NOSNE Screen Formatting Revision C 



Getting Form Attributes 

Getting Form Attributes 

Purpose 

Format 

FDP$GET_FORM_ATTRIBUTES procedure gets the 
current form attributes. The form must be open or 
dynamically created. 

FDP$GET _FORM _ATTRIBUTES (form _identifier, 
get_form_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

get_form_attributes: VAR { input-output } of fdt$get_ 
form_ attributes; 

An array containing form attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 

Revision C 

fde$cannot_ update_opened_form 
fde$invalid_ event_ name 
fde$invalid_form_identifier 
fde$string_ too_small 
fde$system_error 
fde$unknown_event_name 

Using CYBIL Procedures to Create Forms 5-125 



Getting Form Names 

Getting Form Names 

Purpose 

Format 

FDP$GET_FORM_NAMES procedure gets the current 
names of tables, variables, and objects defined for a form. 

FDP$GET_FORM_NAMES (form_identitier, name_ 
selections, form_names, number _names, status) 

Parameters form_identitier: fdt$form_identifier; 

The form identifier established when the form was opened. 

name_ selections: fdt$name_ selections; 

A set containing selections for names. You can select 
FDC$SELECT_ VARIABLE_NAMES, FDC$SELECT_ 
TABLE_NAMES, and FDC$SELECT_OBJECT_NAMES. 

form_names: VAR of fdt$form_names; 

An array containing the form names. The form names are 
contained in a record with name and name_ type fields. 

Field Meaning 

name The item name (variable, table, object). 

name_ 
type 

The name type (FDC$SELECT_ VARIABLE, 
FDC$SELECT_TABLE, FDC$SELECT_ 
OBJECT). 

number _names: VAR of fdt$number _names; 

The number of names returned. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 
fde$too_many _form_names 

Remarks • Issue the FDP$GET_FORM_ATTRIBUTES procedure 
using the attribute key of FDC$GET_NUMBER_ 
OBJECTS, FDC$GET_NUMBER_ TABLES, and 
FDC$GET_NUMBER_ VARIABLES. 

• This procedure enables you to learn the array size 
needed to receive the form names. 

5-126 NOSNE Screen Formatting Revision C 



Getting Form Attributes 

Getting Form Attributes 

Purpose 

Format 

FDP$GET_FORM_ATTRIBUTES procedure gets the 
current form attributes. The form must be open or 
dynamically created. 

FDP$GET_FORM_ATTRIBUTES (form_identifier, 
get_form_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

get_form_attributes: VAR { input-output } of fdt$get_ 
form_ attributes; 

An array containing form attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 

Revision C 

fde$cannot_ update_opened_form 
fde$invalid_ event_ name 
fde$invalid_form_ identifier 
fde$string_ too_ small 
fde$system_ error 
fde$unknown_event_name 

Using CYBIL Procedures to Create Forms 5-125 



Getting Form Names 

Getting Form Names 

Purpose 

Format 

FDP$GET_FORM_NAMES procedure gets the current 
names of tables, variables, and objects defined for a form. 

FDP$GET_FORM_NAMES (form_identifier, name_ 
selections, form_names, number _names, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

name_ selections: fdt$name_ selections; 

A set containing selections for names. You can select 
FDC$SELECT_ VARIABLE_NAMES, FDC$SELECT_ 
TABLE_NAMES, and FDC$SELECT_OBJECT_NAMES. 

form_names: VAR of fdt$form_names; 

An array containing the form names. The form names are 
contained in a record with name and name_ type fields. 

Field Meaning 

name The item name (variable, table, object). 

name_ 
type 

The name type (FDC$SELECT_ VARIABLE, 
FDC$SELECT_TABLE, FDC$SELECT_ 
OBJECT). 

number _names: VAR of fdt$number _names; 

The number of names returned. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$too_ many _form_names 

Remarks • Issue the FDP$GET_FORM_ATTRIBUTES procedure 
using the attribute key of FDC$GET_NUMBER_ 
OBJECTS, FDC$GET_NUMBER_ TABLES, and 
FDC$GET_NUMBER_ VARIABLES. 

• This procedure enables you to learn the array size 
needed to receive the form names. e 

5-126 NOS/VE Screen Formatting Revision C 



Getting Form Objects 

Getting Form Objects 

Purpose 

Format 

FDP$GET_FORM_OBJECTS procedure gets objects 
defined for a form. 

FDP$GET_FORM_OBJECTS (form_identifier, form_ 
objects, number_ objects, status) 

Parameters form _identifier: fdt$form_identifier; 

Revision C 

The form identifier established when the form was opened. 

form_objects: VAR of fdt$form_objects; 

An array containing the form objects that Screen 
Formatting returns. Each record in the array has a name 
and an object field. 

Field 

name 

object 

Meaning 

The object name. If the object did not have 
a name defined, the name equals 
OSC$NULL_NAME. 

The object type. 

FDC$BOX 

The object is a box. 

FDC$CONSTANT_TEXT 

The object is constant text. 

FDC$CONSTANT_TEXT_BOX 

The object is a constant text box. 

FDC$LINE 

The object is a line. 

FDC$VARIABLE_ TEXT 

The object is variable text. 

FDC$VARIABLE_ TEXT_BOX 

The object is a variable text box. 

Using CYBIL Procedures to Create Forms 5-127 



Getting Form Objects 

Field 

occurrence 

x_position 

y_position 

Meaning 

The occurrence of the object name. If the 
name is OSC$NULL_NAME, the 
occurrence equals 1. 

The form x position of the object. 

The form y position of the object. 

number _objects: VAR of fdt$number_objects; 

The number of objects returned from Screen Formatting. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 

Remarks 

fde$cannot_ update_ opened_form 
fde$invalid_form_identifier 
fde$too_many _form_objects 

Issue the FDP$GET_FORM_ATTRIBUTES procedure by 
using the attribute key of FDC$GET_NUMBER_ 
OBJECTS. This procedure enables you to learn the array 
size needed to receive the form objects. 

5-128 NOSNE Screen Formatting Revision C 



Getting Object Attributes 

Getting Object Attributes 

Purpose 

Format 

FDP$GET_OBJECT_ATTRIBUTES procedure gets 
specified attributes about an object on the form. This 
procedure can be used on an open or dynamically created 
form. 

FDP$GET_OBJECT_ATTRIBUTES (form_identifi.er, 
x_position, y _position, get_object_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

x_position: fdt$x_position; 

The x position on the form. 

y _position: fdt$y _position; 

The y position on the form. 

object_attributes: VAR { input-output } of fdt$get_ 
object_ attributes; 

An array containing object attributes. Before you specify 
this parameter, you must first establish the array. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 

Revision C 

fde$cannot_ update_ opened_form 
fde$invalid_form_identifier 
fde$no_object_at_position 
fde$system_ error 

Using CYBIL Procedures to Create Forms 5-129 



Getting Record Attributes 

Getting Record Attributes 

Purpose 

Format 

FDP$GET_RECORD_ATTRIBUTES procedure gets form 
definition record attributes. You can execute this 
procedure on an open or dynamically created form. 

FDP$GET_RECORD_ATTRIBUTES (form_identifier, 
get_ record_ attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

get_record_attributes: VAR { input-output} of fdt$get_ 
record_ attributes; 

An array containing form definition record attributes. 
Before you specify this parameter, you must first establish 
the array. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_ opened_form 
fde$invalid_form_identifier 
fde$invalid_ table_name 
fde$invalid_ variable_ name 
fde$system_ error 
fde$unknown_occurrence 
fde$unknown_ table_ name 

5-130 NOSNE Screen Formatting Revision C 



Getting a St.ored Object 

Getting a Stored Object 

Purpose 

Format 

FDP$GET_STORED_OBJECT procedure gets the initial 
value for a table variable occurrence that does not appear 
initially on a form. 

FDP$GET_STORED_OBJECT (form_identifier, name, 
occurrence, text, text_length, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

name: ost$name; 

The object name. 

occurrence: fdt$occurrence; 

The occurrence of the object. 

text: VAR of fdt$text; 

The text specifying the initial value. 

text_length: VAR of fdt$text_length; 

The stored object length. This length can exceed the 
parameter text length. Allocate more space for the text 
and re-issue the procedure if the text_length is greater 
than the allocated space for the text. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$invalid_address 

Revision C 

fde$invalid_form_identifier 
fde$invalid_object_name 
fde$invalid_occurrence 
fde$no_space_available 
fde$no_ string_ speci:fied 
fde$system_error 
fde$system_ error 
fde$unknown_object_name 

Using CYBIL Procedures to Create Forms 5-131 



Getting Table Attributes 

Getting Table Attributes 

Purpose 

Format 

FDP$GET_ TABLE_ATTRIBUTES gets procedure-specified 
table attributes. You can execute this procedure on an 
open or dynamically created form. 

FDP$GET_ TABLE_ATTRIBUTES (form_identifi.er, 
get_table_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

table_name: ost$name; 

The table name. 

get_table_attributes: VAR { input-output } of fdt$get_ 
table_attributes; 

Table attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ vaule 
fde$invalid_form_identifier 
fde$no_object_at_position 
fde$system_ error 

5-132 NOSNE Screen Formatting Revision C 



Getting Variable Attributes 

Getting Variable Attributes 

Purpose 

Format 

FDP$GET_ VARIABLE_ATTRIBUTES procedure gets 
selected information about a variable. You can execute 
this procedure on an open or dynamically created form. 

FDP$GET_ VARIABLE_ATTRIBUTES (form_ 
identifier, variable_name, get_ variable_attributes. 
status) 

Parameters form _identifier: fdt$form_ identifier; 

The form identifier established when the form was opened. 

variable_name: ost$name; 

The variable name. 

get_ variable_attributes: VAR { input-output } of 
fdt$get_ variable_attributes; 

Gets an array containing attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ vaule 

Revision C 

fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_ variable_name 
fde$string_ too_ small 
fde$system_ error 
fde$unknown_ variable_ name 

Using CYBIL Procedures to Create Forms 5-133 



Moving an Area 

Moving an Area 

Purpose FDP$MOVE_AREA procedure moves all objects and 
unprotected text from one area of a form to another. The e 
destination area cannot slice any objects outside the origin 
area. 

Format FDP$MOVE_AREA (form_identifier, from_x_ 
position, from_y _position, width, height, to_x_ 
position, to _y _position, status) 

Parameters form _identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

from_x_position: fdt$x_position; 

The x position of the origin (upper left_hand corner) of 
the area enclosing the data to be moved. 

from_y _position: fdt$y_position; 

The y position of the origin (upper left_hand corner) of 
the area enclosing the data to be moved. 

width: fdt$width; 

The width of the area. 

height: fdt$height; 

The height of the area. 

to_x_position: fdt$x_position; 

The x position of the area (upper left_hand corner) where 
the data is to be copied. 

to_y _position: fdt$y_position; 

The y position of the area (upper left_hand corner) where 
the data is to be copied. 

status: VAR of ost$status 

The status variable in which the completion status is 
returned. 

5-134 NOS/VE Screen Formatting Revision C 



Conditions 

Revision C 

fde$bad_data_ value 
fde$invalid_form_identifier 
fde$move_outside_form 
fde$no_space_available 
fde$object_overlays 
fde$system_ error 

Moving an Area 

Using CYBIL Procedures to Create Forms 5-135 



Writing a Form Definition 

Writing a Form Definition 

Purpose 

Format 

FDP$WRITE_FORM_DEFINITION procedure writes a 
form to a segment access file. 

FDP$WRITE_FORM_DEFINITION (form_identifi.er, 
p_form_module, status) 

Parameters form_identifi.er: fdt$form_identifier; 

The form identifier established when the form was opened. 

p _form_module: VAR { input-output } of ASEQ (*); 

A pointer to a sequence that holds the form module. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$invalid_form_ identifier 
fde$no_space_available 

Remarks A segment access file can be used with the CREATE_ 
OBJECT_LIBRARY command to save a form. The form 
does not have to be ended and can contain errors. The 
form must have a non-blank name. 

5-136 NOS/VE Screen Formatting Revision C 



Writing a Form Record Definition 

Writing a Form Record Definition 

Purpose 

Format 

FDP$WRITE_RECORD_DEFINITION procedure writes 
the Source Code Utility deck defining the record to 
transfer data between the program and Screen 
Formatting. 

FDP$WRITE_RECORD_DEFINITION (form_ 
identifier, file_identifier, form_processor, status) 

Parameters form_identifier: fdt$form_identifier; 

Conditions 

Remarks 

Revision C 

The form identifier established when the form was opened. 

file _identifier: amt$file_identifier; 

The file identifier returned by the FSP$0PEN _FILE 
request that opened the file. This is the file to which the 
deck is written. 

form_ processor: fdt$form_ processor; 

The processor that uses the record definition. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

fde$bad_data_ value 
fde$form_ definition_errors 
fde$form_has_no_ variables 
fde$form_not_ended 
fde$invalid_form_identifier 
fde$invalid_form_processor 

The form cannot have any errors and must have ended 
with the FDP$END_FORM procedure. 

Using CYBIL Procedures to Create Forms 5-137 









e 

e 

Glossary 

A 

Alphabetic Character 

One of the following letters: 

A through Z 
a through z 

See also Character. 

Attribute 

A property of a form, variable, table of variables, object, or constant 
that is needed to process a form. 

B 

Batch Mode 

A 

A mode of execution in which a job is submitted and processed as a 
unit with no intervention from a user. Contrast with Interactive Mode. 

e c 
Catalog 

A directory of files maintained by the operating system for a user. In 
addition to files, a catalog can contain other catalogs. The catalog 
$LOCAL contains only file entries. 

Catalog Name 

The name of a catalog in a catalog hierarchy. By convention, the 
name of the user's master catalog is the same as the user's user 
name. 

Character 

An alphabetic character, digit, space, or symbol. See also Alphabetic 
Character, Digit, and Symbol. 

Revision C Glossary A-1 



Glossary 

D 

Design Form 

One of two types of forms necessary for enabling a terminal user to 
interact with an application program in order to create, display, or 
change a form. 

Digit 

One of the following characters: 

0 1 2 3 4 5 6 7 8 9 
See also Character. 

E 

Event 

A property of a form that is defined by the application programmer. 
An example would be a function key. 

F 

Family 

A logical grouping of NOSNE users that determines the location of 
their permanent files. 

Family Name 

A name that identifies a NOSNE family. 

File 

A collection of records referenced by a file name. A file is an 
autonomous collection of information that exists separately from the 
programs that read or write the file. 

File Name 

The name of a NOS/VE file. See also Name. 

Full Screen 

A program that utilizes the entire terminal screen to display the data •.. , 
and/or the user's options. The user can move the cursor around on the W 
screen to modify data or to indicate which operation to execute. 

A-2 NOSNE Screen Formatting Revision C 



Full Screen Definition 

Instructions to NOS/VE describing the full screen features and 
function keys for a terminal. To run full screen programs on a 
terminal, NOS/VE needs a full screen definition for the type of 
terminal used. 

Function 

Glossary 

An instruction to a full screen program. If function keys are available 
on the keyboard, the user can press a function key to execute a 
function. 

Function Key 

A key on a keyboard that is used to execute a function. Function keys 
are often labelled with an F and a digit. For example, Fl, F2, or F3. 

Function Key Assignments 

The association of functions with the function keys on the user's 
keyboard. In most full screen programs, the function key assignments 
are displayed at the bottom of the screen. 

I 

Identifier 

A character of group of characters that identify items of data. 

Integer 

Numeric data (positive or negative) that represents a whole number. 
An integer is stored internally as a binary value rather than as a 
character value. 

Interactive Mode 

A mode of execution during which a user enters commands, 
subcommands, or functions at a terminal and the computer responds 
immediately to each command, subcommand, or function. 

Revision C Glossary A-3 



Glossary 

L 

Local File 

A file that is accessed via the $LOCAL catalog as follows: 

$LOCAL.filename 

NOSNE discards all $LOCAL files when the user logs out. Contrast .a. . 

with Permanent File. W 

Login 

The process used at a terminal to gain access to an operating system 
such as NOSNE. Logging in starts a terminal session. 

Logout 

The process used at a terminal to end a terminal session. 

M 

Main Menu 

The menu that is available at the beginning of a program or online 
manual. 

Master Catalog 

The catalog the operating system creates for each user name. The 
user's master catalog contains entries for all permanent files and 
catalogs a user creates. By convention, the name of the master catalog 
is the same as the user name. 

N 

Name 

A combination of 1 through 31 characters chosen from the following: 

Alphabetic characters (A through Z and a through z) 
Digits (0 through 9) 
Special characters (#, @, $, or _) 

The first character of a name cannot be a digit. 

NOS/VE 

Network Operating SystemNirtual Environment. 

A-4 NOSNE Screen Formatting Revision C 



Glossary 

0 

Object 

An object can be constant or variable text, box drawing, line drawing, 
or a table that contains one or more occurrences of one or more 
variable text objects. 

Occurrence 

The number of times an object appears on a form. 

Online Manual 

A manual that the user reads on the terminal screen. The EXPLAIN 
command opens an online manual. 

p 

Permanent Catalog 

A catalog of permanent files, such as the master catalog or a catalog 
within the master catalog. 

Permanent File 

A file that is accessed via the user's master catalog. Permanent files 
are not discarded when the user logs out of NOSNE. Contrast with 
Local File. 

Program 

A set of instructions or actions that can interface with Screen 
Formatting. 

Protected and Unprotected Text 

Protected text is text that cannot be changed by the terminal user. 
Unprotected text can be changed by the terminal user. 

s 
SCL 

See System Command Language 

e Special Character 

See Symbol. 

Revision C Glossary A-5 



Glossary 

Symbol 

Any character that is not an alphabetic character or a digit. Examples 
are: #, $, %, &, and *. See also Character. 

System Command Language 

The language that provides the interface to the features and 
capabilities of NOSNE. 

T 

Target Form 

The desired form that is created from the design form. 

Temporary File 

See Local File. 

Terminal Session 

The processing sequence that begins when a user logs in to an 
operating system and ends when the user logs out. 

u 
User Name 

A name that identifies a NOSNE user. 

A-6 NOSNE Screen Formatting Revision C 







Related Manuals B 

All NOSNE manuals and related hardware manuals are listed in 
table B-1. If your site has installed the online manuals, you can find 
an abstract for each NOSNE manual in the online System 
Information manual. To access this manual, enter: 

/expla;n 

Ordering Printed Manuals 
To order a printed Control Data manual, send an order form to: 

Control Data Corporation 
Literature and Distribution Services 
308 North Dale Street 
St. Paul, Minnesota 55103 

To obtain an order form or to get more information about ordering 
Control Data manuals, write to the above address or call (612) 
292-2101. If you are a Control Data employee, call (612) 292-2100. 

41t Accessing Online Manuals 
To access the online version of a printed manual, log in to NOSNE 
and enter the online title on the EXPLAIN command (table B-1 
supplies the online titles). For example, to see the NOSNE Commands 
and Functions manual, enter: 

/help manual=scl 

The examples in some printed manuals exist also in the online 
Examples manual. To access this manual, enter: 

/help manual=examples 

When EXAMPLES is listed in the Online Manuals column in table 
B-1, that manual is represented in the online Examples manual. 

Revision C Related Manuals B-1 



Related Manuals 

Table B-1. Related Manuals 

Manual Title 

NOS/VE Site Manuals: 

CYBER 930 Computer System 
Guide to Operations 
Usage 

CYBER Initialization Package (CIP) 
Reference Manual 

DesktopNE Host Utilities 
Usage 

MAINTAIN _MAIL2 
Usage 

NOSNE Accounting Analysis System 
Usage 

NOSNE Accounting and Validation 
Utilities for Dual State 
Usage 

NOS/VE 
LCN Configuration and Network 
Management 
Usage 

NOSNE 
Network Management 
Usage 

NOSNE Operations 
Usage 

Publication Online 
Number Manualsl 

60469560 

60457180 

60463918 

MAIM 

60463923 

60458910 

60463917 

60463916 

60463914 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

2. To access this manual, you must be the administrator for 
MAILNE. 

(Continued) 

B-2 NOSNE Screen Formatting Revision C 



Related Manuals 

Table B-1. Related Manuals (Continued) 

e Publication Online 
Manual Title Number Manuals1 

Site Manuals (Continued): 

e NOSNE 60463915 
System Performance and Maintenance 
Volume 1: Performance 
Usage 

NOSNE 60463925 
System Performance and Maintenance 
Volume 2: Maintenance 
Usage 

NOSNE 60464513 
User Validation 
Usage 

NOS/VE User Manuals: 

EDIT_ CATALOG EDIT_ 
Usage CATALOG 

e EDIT_CATALOG for NOSNE 60487719 
Summary 

Introduction to NOSNE 60464012 
Tutorial 

NOSNE 60486412 AFM_T 
Advanced File Management 
Tutorial 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision C Related Manuals B-3 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

NOS/VE User Manuals (Continued): 

NOSNE 
Advanced File Management 
Usage 

NOSNE 
Advanced File Management 
Summary 

NOSNE 
Commands and Functions 
Quick Ref ere nee 

NOSNE File Editor 
Tutorial/Usage 

NOSNE 
Object Code Management 
Usage 

NOSNE Screen Formatting 
Usage 

NOSNE 
Source Code Management 
Usage 

NOSNE System Usage 

NOSNE 
Terminal Definition 
Usage 

Screen Design Facility for NOSNE 
Usage 

Publication Online 
Number Manuals1 

60486413 

60486419 

60464018 

60464015 

60464413 

60488813 

60464313 

60464014 

60464016 

60488613 

AFM 

SCL 

EXAMPLES 

OCM 

EXAMPLES 

SCM and 
EXAMPLES 

EXAMPLES 

SDF 

1. This column lists the title of the online version of the manual and .A 
indicates whether the examples in the printed manual are in the W 
online Examples manual. 

(Continued) 

B-4 NOS/VE Screen Formatting Revision C 



Table B-1. Related Manuals (Continued) 

Manual Title 

CYBIL Manuals: 

CYBIL for NOS/VE 
File Management 
Usage 

Publication 
Number 

60464114 

CYBIL for NOSNE 60464117 
Keyed-File and Sort/Merge Interfaces 
Usage 

CYBIL for NOSNE 60464113 
Language Definition 
Usage 

CYBIL for NOSNE 60464116 
Sequential and Byte-Addressable Files 
Usage 

CYBIL for NOS/VE 60464115 
System Interface 
Usage 

Related Manuals 

Online 
Manualsl 

EXAMPLES 

EXAMPLES 

CYBIL and 
EXAMPLES 

EXAMPLES 

EXAMPLES 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual 

(Continued) 

Revision C Related Manuals B-5 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

FORTRAN Manuals: 

FORTRAN Version 1 for NOSNE 
Language Definition 
Usage 

FORTRAN Version 1 for NOSNE 
Quick Reference 

FORTRAN Version 2 for NOSNE 
Language Definition 
Usage 

FORTRAN Version 2 for NOSNE 
Quick Reference 

FORTRAN for NOSNE 
Tutorial 

FORTRAN for NOSNE 
Topics for FORTRAN Programmers 
Usage 

FORTRAN for NOSNE 
Summary 

COBOL Manuals: 

COBOL for NOSNE 
Summary 

Publication Online 
Number Manuals1 

60485913 EXAMPLES 

FORTRAN 

60487113 EXAMPLES 

VFORTRAN 

60485912 FORTRAN_T 

60485916 

60485919 

60486019 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-6 NOSNE Screen Formatting Revision C 



Related Manuals 

Table B-1. Related Manuals (Continued) 

·e Publication Online 
Manual Title Number Manuals1 

COBOL Manuals (Continued): 

e COBOL for NOSNE 60486012 COBOL_T 
Tutorial 

COBOL for NOSNE 60486013 COBOL and 
Usage EXAMPLES 

Other Compiler Manuals: 

ADA for NOSNE 60498113 ADA 
Usage 

ADA for NOSNE 60498118 EXAMPLES 
Reference Manual 

APL for NOSNE 60485814 
File Utilities 
Usage 

e APL for NOSNE 60485813 
Language Definition 
Usage 

BASIC for NOSNE 60486319 
Summary Card 

BASIC for NOSNE 60486313 BASIC 
Usage 

LISP for NOSNE 60486213 
Usage Supplement 

Pascal for NOSNE 60485619 
Summary Card 

1. This column lists the title of the online version of the manual and 

e indicates whether the examples in the printed manual are in the 
online ExamEles manual. 

(Continued) 

-
Revision C Related Manuals B-7 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Other Compiler Manuals 
(Continued): 

Pascal for NOSNE 
Usage 

Prolog for NOSNE 
Quick Reference 

Prolog for NOSNE 
Usage 

VXNE Manuals: 

CNE for NOSNE 
Quick Reference 

CNE for NOSNE 
Usage 

DWBNX 
Introduction and User Reference 
Tutorial/Usage 

DWBNX 
Macro Packages Guide 
Usage 

DWBNX 
Preprocessors Guide 
Usage 

DWBNX 
Text Formatters Guide 
Usage 

Publication 
Number 

60485613 

60486718 

60486713 

60469830 

60469890 

60469910 

60469920 

60469900 

Online 
Manuals1 

PASCAL and 
EXAMPLES 

PRO LOG 

c 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the A 
online Examples manual. W 

(Continued) 

B-8 NOSNE Screen Formatting Revision C 



Related Manuals 

Table B-1. Related Manuals (Continued) 

e Manual Title 

VX!VE Manuals (Continued): 

VXNE 
Administrator Guide and Ref ere nee 
Tutorial/Usage 

VX/VE 
An Introduction for UNIX Users 
Tutorial/Usage 

VX/VE 
Programmer Guide 
Tutorial 

VXNE 
Programmer Reference 
Usage 

VX/VE 
Support Tools Guide e Tutorial 

VXNE 
User Guide 
Tutorial 

VXNE 
User Ref ere nee 
Usage 

Publication Online 
Number Manualsl 

60469770 

60469980 

60469790 

60469820 

60469800 

60469780 

60469810 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision C Related Manuals B-9 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Data Management Manuals: 

DM Command Procedures 
Reference Manual 

DM Concepts and Facilities 
Manual 

DM Error Message Summary 
for DM on CDC NOSNE 

DM Fundamental Query and 
Manipulation Manual 

OM Report Writer 
Reference Manual 

DM System Administrator's 
Reference Manual 
for DM on CDC NOSNE 

OM Utilities 
Reference Manual 
for DM on CDC NOSNE 

Publication Online 
Number Manuaisl 

60487905 

60487900 

60487906 

60487903 

60487904 

60487902 

60487901 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-10 NOSNE Screen Formatting Revision C 



Related Manuals 

Table B-1. Related Manuals (Continued) 

e Publication Online 
Manual Title Number Manuals1 

Information Management Manuals: 

e IM/Control for NOSNE L60488918 CONTROL 
Quick Reference 

IM/Control for NOSNE 60488913 
Usage 

IM/Quick for NOSNE 60485712 
Tutorial 

IM/Quick for NOSNE 60485714 
Summary 

IM/Quick for NOSNE QUICK 
Usage 

CDCNET Manuals: 

CDCNET Access Guide 60463830 CDC NET_ 

e ACCESS 

CDCNET Batch Device 60463863 CDCNET_ 
User Guide BATCH 

CDCNET Commands 60000020 
Quick Reference 

CDCNET Configuration and Site 60461550 
Administration Guide 

CDCNET Diagnostic Messages 60461600 

CDCNET Conceptual Overview 60461540 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 

- online Examples manual. 

(Continued) 

Revision C Related Manuals B-11 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

CDCNET Manuals (Continued): 

CDCNET Network Analysis 

CDCNET Network Configuration 
Utility 

CDCNET Network Configuration 
Utility 
Summary Card 

CDCNET Network Operations 

CDCNET Network Performance 
Analyzer 

CDCNET Product Descriptions 

CDCNET Systems Programmer's 
Reference Manual Volume 1 
Base System Software 

CDCNET Systems Programmer's 
Reference Manual Volume 2 
Network Management Entities and 
Layer Interfaces 

CDCNET Systems Programmer's 
Reference Manual Volume 3 
Network Protocols 

CDCNET Terminal Interface 
Usage 

CDCNET TCP/IP 
Usage 

Publication 
Number 

60461590 

60000269 

60461520 

60461510 

60460590 

60462410 

60462420 

60462430 

60463850 

60000214 

Online 
Manuals1 

NETCU 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-12 NOSNE Screen Formatting Revision C 



Related Manuals 

Table B-1. Related Manuals (Continued) 

e Publication Online 
Manual Title Number Manuals1 

Migration Manuals: 

e Migration from IBM to NOS/VE 60489507 
Tutorial/Usage 

Migration from NOS to NOS/VE 60489503 
Tutorial/Usage 

Migration from NOS to 60489504 
NOS/VE Standalone 
Tutorial/Usage 

Migration from NOS/BE to NOSNE 60489505 
Tutorial/Usage 

Migration from NOS/BE to 60489506 
NOSNE Standalone 
Tutorial/Usage 

Migration from VAX/VMS to NOS/VE 60489508 

e Tutorial/Usage 

Miscellaneous Manuals: 

Applications Directory 60455370 

CONTEXT 60488419 
Summary Card 

CYBER Online Text for NOS/VE 60488403 CONTEXT 
Usage 

Control Data CONNECT 60462560 
User's Guide 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 

- online Exam;eles manual. 

(Continued) 

Revision C Related Manuals B-13 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Publication Online 
Manual Title Number Manuals1 

Miscellaneous Manuals (Continued): 

Debug for NOSNE DEBUG 
Quick Reference 

Debug for NOSNE 60488213 
Usage 

DesktopNE for Macintosh 60464502 
Tutorial 

DesktopNE for Macintosh 60464503 
Usage 

NOSNE Diagnostic Messages 60464613 MESSAGES 
Usage 

MAILNE 60464519 
Summary Card 

MAILNE MAIL_ VE 
Usage 

Math Library for NOSNE 60486513 
Usage 

NOSNE Examples EXAMPLES 
Usage 

NOSNE System Information NOS_ VE 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-14 NOSNE Screen Formatting Revision C 

e 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Miscellaneous Manuals (Continued): 

Programming Environment 
for NOSNE 
Usage 

Programming Environment 
for NOSNE 
Summary 

Professional Programming 
Environment 
for NOSNE 
Quick Reference 

Professional Programming 
Environment 
for NOSNE 
Usage 

Remote Host Facility 
Usage 

Hardware Manuals: 

CYBER 170 Computer Systems 
Models 825, 835, and 855 
General Description 
Hardware Reference 

CYBER 170 Computer Systems, 
Models 815, 825, 835, 845, and 855 
CYBER 180 Models 810, 830, 835, 
840, 845, 850, 855, and 860 
Codes Booklet 

Publication Online 
Number Manualsl 

60486819 

60486613 

60460620 

60459960 

60458100 

ENVIRON­
MENT 

PPE 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision C Related Manuals B-15 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Hardware Manuals (Continued): 

CYBER 170 Computer Systems, 
Models 815, 825, 835, 845, and 855 
CYBER 180 Models 810, 830, 835, 
840, 845, 850, 855, and 860 
Maintenance Register 
Codes Booklet 

HPAIVE Reference 

Virtual State Volume II 
Hardware Reference 

Publication 
Number 

60458110 

60461930 

60458890 

7021-31/32 Advanced Tape Subsystem 60449600 
Reference 

7221-1 Intelligent Small 60461090 
Magnetic Tape Subsystem 
Reference 

Online 
Manuals1 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

B-16 NOSNE Screen Formatting Revision C 







Screen Formatting and Terminal 
Definitions c 
Here is a list of Screen Formatting and terminal definition attributes. 
Screen Formatting attributes are mapped to terminal definition 
attributes. Changing a terminal definition attribute can change how a e Screen Formatting attribute is displayed on the screen. 

Screen Formatting Attribute 

fdc$inverse_ video 
fdc$low _intensity 
fdc$high_intensity 
fdc$blink 
fdc$under line 
fdc$protect 
fdc$black_foreground 
fdc$blue_foreground 
f dc$green_foreground 
fdc$magenta_foreground 
fdc$red_foreground 
fdc$cyan_foreground 
fdc$yellow _foreground 
fdc$white_foreground 
fdc$black_ background 
fdc$blue_ background 
fdc$green_ background 
fdc$magenta_ background 
f dc$red_ background 
fdc$cyan_ background 
fdc$yellow _background 
fdc$white_ background 
fdc$fine_ line 
fdc$medium_ line 
fdc$bold_line 
fdc$fine_ border 
fdc$medium_ border 
fdc$bold_ border 
fdc$italic_display _attribute 
fdc$title_display _attribute 
fdc$input_display _attribute 
fdc$error _display _attribute 
fdc$message_display _attribute 

Revision C 

Terminal Definition Attribute 

inverse_ begin 
low _intensity_ begin 
high_intensity _begin 
blink_ begin 
underline_ begin 
protect_ begin 
black_ foreground 
bl ue_foreground 
green_foreground 
magenta_ foreground 
red_ foreground 
cyan_ foreground 
yellow _foreground 
white_foreground 
black_ background 
blue_ background 
green_ background 
magenta_ background 
red_ background 
cyan_ background 
yellow_ background 
white_ background 
ld_fine_ begin 
ld_medium_ begin 
ld_ bold_ begin 
ld_fine_ begin 
ld_ medium_ begin 
Id_ bold_ begin 
italic_ begin 
title_ begin 
input_ text_ begin 
error_ begin 
message_ begin 

Screen Formatting and Terminal Definitions C-1 



Screen Formatting and Terminal Definitions 

Screen Formatting uses for defaults: 

fdc$black_ background, fdc$white_foreground for forms 

fdc$medium_line for lines and boxes 

fdc$inverse_ video for event label text in event forms 

fdc$underline for design attributes of objects that do not have any -
other display attributes 

Here is a list of Screen Formatting event triggers and the appropriate 
terminal definition keys. The Screen Formatting event trigger maps 
the Screen Formatting definitions to the terminal definitions. 

Screen Formatting 
Event Trigger 

fdc$next 
fdc$shift_next 
fdc$help 
fdc$shift_ help 
fdc$stop 
fdc$shift_ stop 
fdc$back 
fdc$undo 
fdc$redo 
fdc$quit 
fdc$exit 
fdc$shift_ back 
fdc$up 
fdc$shift_ up 
fdc$down 
fdc$shift_down 
fdc$foreward 
fdc$shift_foreward 
fdc$backward 
fdc$shift_ backward 
fdc$edit 
fdc$shift_ edit 
fdc$data 
fdc$shift_data 
fdc$function_ l 
f dc$shift_function_ l 

C-2 NOSNE Screen Formatting 

Terminal Definition Keys 

next 
next_s 
help 
help_s 
stop 
stop_s 
back 
undo 
redo 
stop_s 
stop 
back_s 
up 
up_s 
down 
down_s 
fwd 
fwd_s 
bkw 
bkw_s 
edit 
edit_s 
data 
data_s 
fl 
fl_s 

Revision C 



Screen For:matting Event 
Trigger 

fdc$function_2 
fdc$shift_function_2 
fdc$function_ 3 
fdc$shift_function_ 3 
fdc$function_ 4 
fdc$shift_function_ 4 
fdc$function_ 5 
fdc$shift_function_ 5 
fdc$function_ 6 
fdc$shift_function_ 6 
fdc$function_ 7 
fdc$shift_function_ 7 
fdc$function_ 8 
fdc$shift_function_ 8 
fdc$function_ 9 
fdc$shift_function_ 9 
fdc$function_ l 0 
fdc$shift_function_ l 0 
fdc$function_ l l 
fdc$shift_function_ l l 
fdc$function_ 12 
fdc$shift_function_ 12 
fdc$function_ 13 
fdc$shift_function_ 13 
fdc$function_ l 4 
fdc$shift_function_ l 4 
fdc$function_ 15 
fdc$shift_function_ l 5 
fdc$function_ l 6 
fdc$shift_function_ l 6 

Revision C 

Screen Formatting and Terminal Definitions 

Terminal Definition Keys 

f2 
f2_s 
f3 
f3_s 
f 4 
f4_s 
f5 
f5_s 
f6 
f6_s 
f7 
f7_s 
f8 
f8_s 
f9 
f9_s 
flO 
flO_s 
fll 
fll_s 
f12 
f12_s 
f13 
f13_s 
f14 
f14_s 
f15 
f15_s 
f16 
f16_s 

Screen Formatting and Terminal Definitions C-3 









COBOL Parameter Definitions D 

This appendix contains the COBOL parameter definitions. Your 
COBOL program should copy the FDE$COBOL_STATUS deck into the 
program to obtain the conditions for the COBOL status parameter (see 
chapter 2). Your program should also copy the FDE$COBOL_ 
VARIABLE_STATUS deck into the program to obtain the conditions 
for the COBOL variable status parameter. Errors are then generated 
(if they occur) when the program is run. 

See chapter 2 for details on how to obtain the decks that contain the 
COBOL parameter definitions. The library, 

$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE 

contains the information you need to execute the COBOL program. 

FDE$COBOL_STATUS Deck 

The contents of this deck follow. 

01 FOE-COBOL-STATUS USAGE COMP PIC S9(18) SYNC LEFT. 
88 FOE-REQUEST-SUCCESSFUL VALUE 0. 
88 FOE-TERMINAL-DISCONNECTED VALUE 1. 
88 FOE-NO-INPUT-REQUEST VALUE 2. 
88 FOE-CURSOR-NOT-IN-VARIABLE VALUE 3. 

88 FOE-MORE-ERRORS-EXIST VALUE 4. 
88 FOE-UNKNOWN-FORM-NAME VALUE 5. 
88 FOE-FORM-COMPILATION-ERRORS VALUE 6. 
88 FOE-NO-SPACE-AVAILABLE VALUE 7. 

88 FOE-UNSUPPORTED-TERMINAL VALUE 8. 
88 FOE-INVALID-FORM-IDENTIFIER VALUE 9. 
88 FOE-INVALID-USER-ENTRY VALUE 10. 
88 FOE-UNKNOWN-VARIABLE-NAME VALUE 11. 

88 FOE-TOO-MANY-INTEGERS VALUE 12. 
88 FOE-OBJECT-NAME-EXISTS VALUE 13. 
88 FOE-WORK-INVALID VALUE 14. 
88 FDE-INVALID-X-FORM-POSITION VALUE 15. 

Revision C COBOL Parameter Definitions D-1 



COBOL Parameter Definitions 

88 FDE-INVALID-Y-FORM-POSITION VALUE 16. 
88 FOE-INVALID-WIDTH VALUE 17. 
88 FOE-INVALID-HEIGHT VALUE 18. 
88 FOE-INVALID-MESSAGE-FORM-NAME VALUE 19. 

88 FOE-INVALID-OCCURRENCE VALUE 20. 
88 FOE-INVALID-CHARACTER-POSITION VALUE 21. 
88 FOE-INVALID-MODE VALUE 22. 
88 FOE-INVALID-STATE VALUE 23. 

88 FOE-INVALID-VARIABLE-VALUE VALUE 24. 
88 FOE-INVALID-OBJECT-NAME VALUE 25. 
88 FOE-INVALID-FORM-NAME VALUE 26. 
88 FOE-FORM-CLOSED VALUE 27. 

88 FOE-TOO-MANY-ATTRIBUTES VALUE 28. 
88 FOE-INVALID-ATTRIBUTE-NAME VALUE 29. 
88 FOE-TOO-MANY-SCREEN-OCCURRENCE VALUE 30. 
88 FOE-NO-FORM-DEFINITION VALUE 31. 

88 FOE-TOO-MANY-STORED-OCCURRENCE VALUE 32. 
88 FOE-UNKNOWN-OBJECT-NAME VALUE 33. 
88 FOE-NO-DEFINE-OBJECT-NAME VALUE 34. 
88 FOE-INVALID-NAME VALUE 35. 

88 FOE-SYSTEM-ERROR VALUE 36. 
88 FOE-INVALID-TABLE-NAME VALUE 37. 
88 FOE-INVALID-VARIABLE-NAME VALUE 38. 
88 FOE-FORM-PUSHED VALUE 39. 

88 FOE-UNKNOWN-TABLE-NAME VALUE 40. 
88 FOE-NO-VARIABLE-DEFINED VALUE 41. 
88 FOE-NO-FORMS-TO-POP VALUE 42. 
88 FOE-ONLY-CHARACTER-DATA VALUE 43. 

88 FDE-ONLY-NONCHARACTER-DATA VALUE 44. 
88 FOE-FORM-DEFINITION-ERRORS VALUE 45. 
88 FOE-NO-FORMS-TO-PUSH VALUE 46. 
88 FOE-INVALID-PROGRAM-VALUES VALUE 47. 

D-2 NOSNE Screen Formatting Revision C 



COBOL Parameter Definitions 

88 FOE-INPUT-HAS-UNKNOWN-VALUE VALUE 48. 
88 FOE-INVALID-INPUT-VALUES VALUE 49. 
88 FOE-NOT-AN-INPUT-VARIABLE VALUE 50. 
88 FOE-CURSOR-NOT-IN-FORM VALUE 51. 

88 FOE-FORM-HAS-NO-VARIABLES VALUE 52. 
88 FOE-NO-FORMS-TO-SHOW VALUE 53. 
88 FOE-FORM-NOT-SCHEDULED VALUE 54. 
88 FOE-INVALID-EVENT-NAME VALUE 55. 

88 FDE-INVALID-X-POSITION VALUE 56. 
88 FDE-INVALID-Y-POSITION VALUE 57. 
88 FOE-UNKNOWN-EVENT-NAME VALUE 58. 
88 FOE-INVALID-DECK-NAME VALUE 59. 

88 FOE-INVALID-RECORD-NAME VALUE 60. 
88 FOE-OBJECT-EXISTS VALUE 61. 
88 FOE-TABLE-NAME-EXISTS VALUE 62. 
88 FOE-OBJECT-OVERLAYS VALUE 63. 

88 FOE-TOO-MANY-REALS VALUE 64. 
88 FOE-TOO-MANY-STRINGS VALUE 65. 
88 FOE-NO-OBJECT-AT-POSITION VALUE 66. 
88 FOE-ARRAY-TOO-SMALL VALUE 67. 

88 FOE-STRING-TOO-SMALL VALUE 68. 
88 FOE-VARIABLE-NAME-EXISTS VALUE 69. 
88 FOE-FORM-ALREADY-ADDED VALUE 70. 
88 FOE-INVALID-EVENT-ACTIVE VALUE 72. 

88 FOE-CANNOT-UPDATE-OPENED-FORM VALUE 73. 
88 FOE-HELP-FORM-EXISTS VALUE 74. 
88 FOE-ERROR-FORM-EXISTS VALUE 75. 
88 FOE-ERROR-MESSAGE-EXISTS VALUE 76. 

88 FOE-HELP-MESSAGE-EXISTS VALUE 77. 
&8 FOE-INVALID-DISPLAY-NAME VALUE 78. 
88 FOE-INVALID-REAL-RANGE VALUE 79. 
88 FOE-INVALID-INTEGER-RANGE VALUE 80. 

Revision C COBOL Parameter Definitions D-3 



COBOL Parameter Defmitions 

88 FOE-UNKNOWN-INTEGER-RANGE VALUE 81. 
88 FOE-UNKNOWN-REAL-RANGE VALUE 82. 
88 FOE-UNKNOWN-VALID-STRING VALUE 83. 
88 FOE-DISPLAY-NAME-EXISTS VALUE 84. 

88 FOE-EVENT-NAME-EXISTS VALUE 85. 
88 FOE-UNKNOWN-DISPLAY-NAME VALUE 86. 
88 FOE-TOO-MANY-FORM-NAMES VALUE 87. 
88 FOE-TOO-MANY-FORM-OBJECTS VALUE 88. 

88 FOE-NO-TEXT-AT-POSITION VALUE 89. 
88 FOE-NO-TEXT-FOR-OBJECT VALUE 90 .. 
88 FOE-UNKNOWN-OCCURRENCE VALUE 91. 
88 FOE-NO-STRING VALUE 92. 

88 FOE-RANGE-OVERLAP VALUE 93. 
88 FOE-NO-COMMENTS-TO-DELETE VALUE 94. 
88 FOE-OBJECT-OCCURRENCE-EXISTS VALUE 95. 
88 FOE-NO-STRING-SPECIFIED VALUE 96. 

88 FOE-VALID-STRING-EXISTS VALUE 97. 
88 FOE-INVALID-OBJECT-CHANGE VALUE 98. 
88 FOE-INVALID-ADDRESS VALUE 99. 
88 FOE-TERMINAL-NOT-IDENTIFIED VALUE 100. 

88 FOE-INVALID-FORM-LANGUAGE VALUE 101. 
88 FOE-INVALID-FORM-AREA-KEY VALUE 102. 
88 FOE-FORM-NAME-REQUIRED VALUE 103. 
88 FOE-NO-FORMS-TO-READ VALUE 104. 

88 FOE-INVALID-HELP-FORM-NAME VALUE 105. 
88 FOE-INVALID-ERROR-FORM-NAME VALUE 106. 
88 FDE-CREATc-MARK-INVALID VALUE 107. 
88 FOE-DELETE-MARK-INVALID VALUE 108. 

88 FOE-NO-MARK-DEFINED VALUE 109. 
88 FOE-AREA-CUTS-OBJECT VALUE 110. 
88 FOE-COPY-OUTSIDE-FORM VALUE 111. 
88 FOE-MOVE-OUTSIDE-FORM VALUE 112. 

D-4 NOS/VE Screen Formatting Revision C 



COBOL Parameter Definitions 

88 FOE-INVALID-FORM-ATTRIBUTE VALUE 113. 
88 FOE-INVALID-RECORD-ATTRIBUTE VALUE 114. 
88 FOE-INVALID-OBJECT-KEY VALUE 115. 
88 FOE-INVALID-OBJECT-ATTRIBUTE VALUE 116. 

88 FOE-INVALID-TABLE-ATTRIBUTE VALUE 117. 
88 FOE-PROGRAM-DATA-TYPE VALUE 118. 
88 FOE-INVALID-OUTPUT-FORMAT-KEY VALUE 119. 
88 FOE-INVALID-ERROR-KEY VALUE 120. 

88 FOE-INVALID-VARIABLE-ATTRIBUTE VALUE 121. 
88 FOE-INVALID-HELP-KEY VALUE 123. 
88 FOE-FEATURE-NOT-IMPLEMENTED VALUE 124. 
88 FOE-CANNOT-CHANGE-FORM VALUE 125. 

88 FOE-INVALID-RECORD-TYPE VALUE 126. 
88 FOE-OBJECT-NOT-IN-FORM VALUE 127. 
88 FOE-INVALID-FORM-PROCESSOR VALUE 128. 
88 FDE-INVALID-X-INCREMENT VALUE 129. 

88 FDE-INVALID-Y-INCREMENT VALUE 130. 
88 FOE-FORM-TOO-LARGE-FOR-SCREEN VALUE 131. 
88 FOE-INVALID-TEXT-PROCESSING VALUE 132. 
88 FOE-INVALID-DESIGN-FORM VALUE 133. 

88 FOE-NO-OBJECT-VAR-DEFINED VALUE 134. 
88 FOE-EVENT-NOT-ASSIGNED VALUE 135. 
88 FOE-FORM-NOT-ENDED VALUE 136. 
88 FOE-INVALID-EVENT-FORM-NAME VALUE 137. 

88 FOE-INVALID-EVENT-FORM-KEY VALUE 138. 
88 FOE-FORM-ALREADY-OPEN VALUE 139. 
88 FOE-INVALID-EVENT-LABEL VALUE 140. 
88 FOE-FORM-NEEDS-CONVERSION VALUE 141. 

88 FOE-NO-EVENTS-ACTIVE VALUE 142. 
88 FOE-DELETE-OUTSIDE-FORM VALUE 143. 
88 FOE-MARK-OUTSIDE-FORM VALUE 144. 
88 FOE-BAD-DATA-VALUE VALUE 145. 

Revision C COBOL Parameter Definitions D-5 



COBOL Parameter Definitions 

88 FDE-RECORD-DEFN-NOT-WRITTEN VALUE 146. 
88 FOE-WRONG-VARIABLE-TYPE VALUE 147. 
88 FOE-INVALID-VARIABLE-LENGTH VALUE 148. 
88 FOE-EVENT-TRIGGER-EXISTS VALUE 149. 

88 FOE-FORM-ALREADY-COMBINED VALUE 150 
88 FOE-INVALID-TABLE-SIZE VALUE 151. 
88 FOE-FORM-NOT-ADDED-VALUE 152. 
88 FOE-INVALID-INPUT-FORMAT-KEY VALUE 153. 

FDE$COBOL_ VARIABLE_STATUS Deck 

The contents of this deck follow. 

01 FOE-COBOL-VARIABLE-STATUS USAGE COMP PIC S9(18) SYNC LEFT. 
88 FOE-NO-ERROR VALUE 0. 
88 FOE-INVALID-STRING VALUE 1. 
88 FOE-INVALID-REAL VALUE 2. 

88 FOE-INVALID-INTEGER VALUE 3. 
88 FOE-UNKNOWN-USER-VALUE VALUE 4. 
88 FOE-INVALID-BOP-DATA VALUE 5. 
88 FOE-NO-DIGITS VALUE 6. 

88 FOE-LOSS-OF-SIGNIFICANCE VALUE 7. 
88 FOE-VARIABLE-NO-FILLED VALUE 8. 
88 FOE-OVERFLOW VALUE 9. 
88 FOE-UNDERFLOW VALUE 10. 

88 FOE-INDEFINITE VALUE 11. 
88 FOE-INFINITE VALUE 12. 
88 FOE-VARIABLE-NOT-ENTERED VALUE 13. 
88 FOE-OUTPUT-FORMAT-BAD VALUE 14. 
88 FOE-VARIABLE-TRUNCATED VALUE 15. 

D-6 NOSNE Screen Formatting Revision C 







CYBIL Constants and Types E 

This section lists the types and constants that are in each external 
reference routine. You can copy the data into your program by using 
the appropriate SCU *COPY directive. For an example, refer to the 
CYBIL chapters in this manual and the section on file interface 
procedures in the CYBIL for NOSNE Usage manual. 

Constants 
fdc$max_character_posit1on = fdc$maximum_record_length; 
fdc$maximum_conment_length = fdc$maximum_text_length; 
fdc$maximum_conments = 10000; 
fdc$maximum_errors = 10000; 

fdc$maximum_error_length = fdc$maximurn_text_length; 
fdc$rnaximum_events = 1000; 
fdc$rnaximum_help_length = fdc$maximurn_text_length; 
fdc$maximum_forrn_identifier = 1000; 

fdc$maximum_objects = 10000; 
fdc$maximum_object_displays = 100; 
fdc$maximurn_occurrence = 1000; 
fdc$maximum_record_length = osc$max_segment_length; 

fdc$maximum_table_variables = 10000; 
fdc$max1mum_tables = 10000; 
fdc$maximum_text_length = cyc$max_string_size; 
fdc$maximum_valid_ranges 10000; 

fdc$maximum_valid_string fdc$maximum_text_length; 
fdc$max1mum_valid_strings = 10000; 
fdc$maximum_variable_length = fdc$maximum_record_length; 
fdc$maximum_variables = fdc$maximum_objects; 

fdc$maximum_x_position = 256; 
fdc$maximum_y_position = 256; 
fdc$message_form_name = 'FDM$MESSAGE_FORM 
fdc$new_line_character = $char (31); {Unit separator} 

Revision C CYBIL Constants and Types E-1 



Constants 

fdc$system_coordinate_system = fdc$character_system; 
fdc$system_currency_sign = '$'; 
fdc$system_decimal_point = '.'; 
fdc$system_design_table_name = 'DTBL'; 

fdc$system_design_variable_name = 'DVAR'; 
fdc$system_display_name = 'HIGHLIGHT'; 
fdc$system_error_message ='Please correct.'; 
fdc$system_exponent_character = 'E'; 

fdc$system_form_processor = fdc$cybil_processor; 
fdc$system_help_message = 'Please enter.'; 
fdc$system_input_format = fdc$character_input_format; 
fdc$system_io_mode = fdc$terminal_input_output; 

fdc$system_output_format = fdc$character_output_format; 
fdc$system_occurrence = 1; 
fdc$system_program_data_type = fdc$program_character_type; 
fdc$system_record_type = fdc$program_data_type_record; 

fdc$system_thousands_separator = ','; 
fdc$system_unknown_entry = '?'; 
fdc$system_user_entry = fdc$must_enter; 

E-2 NOS/VE Screen Formatting Revision C 



Types 

Types 

fdt$change_form_key = (fdc$add_display_definition, 
fdc$add_event, fdc$add_form_conment, fdc$delete_a11_displays, 
fdc$delete_a11_events, fdc$delete_d1splay_defintion, 
fdc$delete_event, fdc$delete_form_conments, 
fdc$design_display_attribute, fdc$design_variable_name, 
fdc$event_form, fdc$form_area, fdc$form_display_attribute, 
fdc$form_help, fdc$fcrm_language, fdc$form_name, 
fdc$form_processor, fdc$message_form, fdc$unused_form_entry); 

fdt$change_object_key = (fdc$object_name, fdc$object_display, 
fdc$object_position, fdc$unused_object_entry, 
fdc$object_width, fdc$object_height, fdc$object_text, 
fdc$object_line_x_increment, fdc$object_line_y_increment, 
fdc$object_text_processing); 

fdt$change_record_key = (fdc$record_deck_name, fdc$record_name, 
fdc$record_type, fdc$table_access, fdc$unused_record_entry); 

fdt$change_table_key = (fdc$add_table_variable, 
fdc$delete_table_variable, fdc$new_table_name, 
fdc$stored_occurrence, fdc$unused_table_entry, 
fdc$visible_occurrence); 

fdt$change_variable_key = (fdc$error_display, 
fdc$output_format, fdc$input_format, fdc$io_mode, 
fdc$terminal_user_entry, fdc$variable_length, 
fdc$add_valid_real_range, fdc$delete_valid_real_range, 
fdc$add_valid_integer_range, fdc$delete_valid_integer_range, 
fdc$add_valid_string, fdc$delete_valid_string, 
fdc$variable_help, fdc$variable_error, fdc$add_var_comnent, 
fdc$delete_var_comnents, fdc$unused_variable_entry, 
fdc$new_variable_name, fdc$process_as_event, 
fdc$unknown_entry_character, fdc$string_compare_rules, 
fdc$program_data_type); 

Revision C CYBIL Constants and Types E-3 



Types 

fdt$character_position 1 .. fdc$max_character_position; 

fdt$conment =string • <= fdc$maximum_comment_length); 

fdt$conment_length = 0 .. fdc$maximum_comment_length; 

fdt$digits_in_exponent mltSexponent_style; 

fdt$digits_right_decimal = 1 .. 19; 

fdt$display_attribute = (fdc$inverse_video, fdc$1ow_intensity, 
fdc$high_intensity, fdc$blink, fdcSunderline, fdc$protect, 
fdc$hidden, fdc$black_foreground, fdc$black_background, 
fdc$blue_foreground, fdc$blue_background, 
fdc$green_foreground, fdc$green_background, 
fdcSmagenta_foreground, fdc$magenta_background, 
fdcSred_foreground, fdc$red_background, fdc$cyan_foreground, 
fdc$cyan_background, fdc$yellow_foreground, 
fdc$yellow_background, fdc$wh1te_foreground, 
fdc$white_background, fdc$f ine_ 1 ine, fdc$medi um_ 1 i ne, 
fdc$bold_line, fdc$fine_border, fdc$medium_border, 
fdc$bold_border, fdc$italic_display_attribute, 
fdcStitle_display_attribute, fdc$input_display_attribute, 
fdc$error_display_attribute, fdc$message_display_attribute, 
fdc$display_left_to_right, fdc$display_right_to_left, 
fdc$push_input_character, fdc$user_attribute_1, 
fdc$user_attribute_2, fdc$user_attribute_3, 
fdc$user_attribute_4, fdc$user_attribute_S, 
fdc$user_attribute_6, fdc$user_attribute_7, 
fdc$user_attribute_8, fdc$user_attribute_9, 
fdc$user_attribute_10); 

fdt$display_attribute_set = set of fdt$display_attribute; 

E-4 NOSNE Screen Formatting Revision C 



fdt$error_definition =record 
case key: fdt$error_key of 

fdc$error_form = 
error_form: ost$name, 
fdc$error_message = 
p_error_message: -fdt$error_message, 
fdc$no_error_response = 

fdc$system_default_error 

casend 
recend; 

fdt$error_key = (fdc$error_form, fdc$error_message, 
fdc$no_error_response, fdc$system_default_error); 

fdt$error_message =string • <= fdc$maximum_error_tength); 

fdt$error_message_length = O .. fdc$maximum_error_length; 

fdt$error_no_table_object =record 
occurrence: fdt$occurrence, 
table_name: ost$name, 
variable_name: ost$name, 

recend; 

fdt$error_no_table_variable 
table_name: ost$name, 
variable_name: ost$name, 

recend; 

fdt$error_no_variable_object 
occurrence: fdt$occurrence, 
variabte_name: ost$name, 

recend; 

record 

record 

Types 

Revision C CYBIL Constants and Types E-5 



Types 

fdt$event_action = (fdc$return_program_normal, 
fdc$return_program_abnormal, fdc$page_table_forward, 
fdc$page_table_bacKward, fdcSscroll_table_forward, 
fdc$scroll_table_bacKward, fdc$display_help, fdc$erase_help, 
fdc$execute_corrmand, fdc$ignore_event, 
fdc$tab_to_next_form_f1eld, fdc$tab_to_previous_form_field, 
fdc$scro11_variable_forward, fdc$scro11_variable_bacKward), 
fdc$page_variable_forward,fdc$page_variable_bacKward, 
fdc$page_variable_first,fdc$page_var1able_last, 
fdc$page_table_first,fdc$page_table_last); 

fdt$event_conmand =string ( • ); 

fdt$event_form_definition = record 
case Key: fdt$event_form_Key of 

fdc$no_event_form = 

fdc$system_default_event_form 

fdc$user_event_form = 
event_form_name: ost$name, 

casend 
recend; 

E-6 NOSNE Screen Formatting Revision C 



fdt$event_form_key = (fdc$no_event_form, 
fdc$system_default_event_form, fdc$user_event_form); 

fdt$event_pcsition = record 
form_1dent1f1er: fdtSform_identifier, 
form_x_pcsition: fdt$x_posit1on, 
form_y_pos1t1on: fdt$y_pcsition, 
screen_x_pesition: fdt$x_pos1tion, 
screen_y_position: fdt$y_pos1tion, 
case key: fdt$event_position_key of 

fdc$form_event = 

fdc$object_event 
object_name: ost$name, 
object_occurrence: fdtSoccurrence, 
object_x_posit1on: fdt$x_position, 
object_y_position: fdt$y_position, 

Types 

case object_definition_key: fdt$object_definition_key of 
fdc$box,fdc$constant_text, fdc$constant_text_box, 
fdc$1ine,fdc$table 

fdc$variable_text, fdcSvariable_text_box 
character_position: fdt$character_position, 

ca send 
ca send 

recend; 

Revision C CYBIL Constants and Types E-7 



Types 

fdt$event_posit1on_key (fdc$form_event, fdc$object_event, 
fdc$screen_event); 

fdt$event_trigger = (fdc$next, fdc$help, fdc$stop, fdc$back, 
fdc$up, fdc$down, fdc$forward, fdc$backward, fdc$undo, 
fdcSredo, fdc$Qutt, fdc$exit, fdc$ftrst, fdc$1ast, fdc$edtt, 
fdc$data, fdc$function_1, fdc$function_2, fdc$function_3, 
fdc$function_4, fdc$function_S, fdc$functton_6, 
fdc$function_7, fdc$function_8, fdc$function_9, 
fdc$function_10, fdc$function_11, fdc$functton_12, 
fdc$function_13, fdc$function_14, fdc$function_15, 
fdc$function_16, fdc$shift_next, fdc$shift_help, 
fdc$shift_stop, fdc$shtft_back, fdc$shift_up, fdc$shift_down, 
fdc$shift_forward, fdc$shift_backward, fdc$shift_edit, 
fdc$shift_data, fdc$shift_function_1, fdc$shift_function_2, 
fdc$shift_function_3, fdc$shift_function_4, 
fdc$shift_function_S, fdc$shift_function_6, 
fdc$shift_function_7, fdc$shtft_function_8, 
fdc$shtft_funct1on_9, fdc$shift_function_10, 
fdc$shift_function_11, fdc$shift_function_12, 
fdc$shift_function_13, fdc$shift_funct1on_14, 
fdc$shift_function_15, fdc$shift_function_16, fdc$p1ck, 
fdc$insert_line, fdc$delete_line, fdc$home_cursor, 
fdc$clear_screen, fdc$time_out, fdc$variable_trtgger); 

fdt$exponent_output_format = record 
field_width: fdt$real_field_width {w FORTRAN descriptor}, 
digits_in_exponent: fdt$digits_in_exponent {e FORTRAN 

descriptor}, 
digits_riQht_decimal: fdt$digits_right_decimal {d FORTRAN 

descriptor}, 
sign_treatment: fdt$sign_treatment, 
suppress_zero: boolean {TRUE to display zero as blanks}, 

recend; 

fdt$float_output_format = record 
digits_right_decimal: fdt$digits_right_decimal 

{d FORTRAN descriptor}, 
field_width: fdt$real_field_width {w FORTRAN descriptor}, 
sign_treatment: fdt$sign_treatment, 
suppress_zero: boolean {TRUE to display zero as blanks}, 

recend; 

E-8 NOSNE Screen Formatting Revision C 



fdt$form_area ; record 
case key: fdt$form_area_key of 

fdc$defined_area ; 
x_position: fdt$x_pos1tion, 
y_position: fdt$y_pos1t1on, 
width: fdt$width, 
height: fdt$height, 
fdc$screen_area 

casend 
recend; 

fdt$form_area_key; (fdc$defined_area, fdc$screen_area); 

fdt$form_attribute ; record 
put_value_status: fdt$put_value_status {output}, 
case key: fdt$change_form_key {input} of {input} 

fdc$add_event ; 
event_name: ost$name, 
event_label: ost$name, 
event_trigger: fdt$event_trigger, 
case event_action: fdt$event_action of 

fdc$execute_conmand ; 
p_event_conmand: "fdt$event_conmand, 

casend, 
fdc$add_form_conment ; 
p_form_conment: "fdt$conment, 
fdc$add_display_definition ; 
display_attribute: fdt$display_attribute_set, 
display_name: ost$name, 
fdc$delete_all_displays 

fdc$delete_all_events; 

fdG$delete_event, fdc$delete_display_definition 
name: ost$name, 
fdc$delete_form_conments ; 

fdc$design_display_attribute 
design_display_attribute: fdt$display_attribute_set, 
fdc$design_variable_name ; 
design_variable_name: ost$name, 

Types 

Revision C CYBIL Constants and Types E-9 



Types 

fdc$event_form = 
event_form_def;n;t;on: fdt$event_form_def;n;t1on, 
fdc$form_area = 
form_area: fdt$form_area, 
fdc$form_d;splay_attr;bute 
form_display_attribute: fdt$d;splay_attr;bute_set, 
fdc$form_help = 
form_help: fdt$help_def;nition, 
fdc$form_language = 

form_language: ost$natural_language, 
fdc$form_name = 
form_name: ost$name, 
fdc$form_processor = 
form_processor: fdt$form_processor, 
fdc$message_form = 

message_form: ost$name, 
fdc$unused_form_entry 

ca send 
recend; 

fdt$form_attr1butes array [1 .. • l of fdt$form_attr;bute; 

fdt$form_identifier .. fdc$maximum_form_;dent;f;er; 

fdt$form_module =SEQ • ); 

fdt$form_name = record 
name: ost$name, 
name_selection: fdt$name_select;on, 

recend; 

fdt$form_names array [1 .. • ] of fdt$form_name; 

E-10 NOSNE Screen Formatting Revision C 



fdt$form_object = record 
name: ost$name, 
object: fdt$object_definition_key, 
occurrence: fdt$occurrence, 
x_position: fdt$x_position, 
y_position: fdt$y_position, 

recend; 

fdt$form_objects array [1 .. * J of fdt$form_object; 

fdt$form_processor = (fdc$ansi_fortran_processor, 
fdc$cdc_fortran_processor, fdc$cobol_processor, 
fdc$cybil_processor, fdc$scl_processor); 

fdt$get_error_definition =record 
case key: fdt$get_error_key of 

fdc$get_error_form = 
error_form: ost$name, 
fdc$get_error_message, fdc$Qet_system_default_error 
error_message_length: fdt$error_message_length, 
fdc$Qet_no_error_response 

ca send 
recend; 

Types 

fdt$Qet_error_key = (fdc$get_error_form, fdc$get_error_message, 
fdc$get_no_error_response, fdc$get_system_default_error); 

fdt$get_form_attr1bute = record 
get_value_status: fdt$get_value_status {output}, 
case key: {input} fdt$get_form_key of 

fdc$Qet_event_command = 

Revision C 

event_command_name: {input} ost$name, 
p_event_command: {output} "fdt$event_c011111and, 
fdc$get_event_form = 
event_form_definition: {output} fdt$event_form_definition, 
fdc$get_event_form_identifier = 
event_form_identifier: {output} fdt$form_identifier, 
fdc$get_form_area = 

form_area: {output} fdt$form_area, 
fdc$get_form_comment_length = 

form_comment_length: {output} fdt$comnent_length, 

CYBIL Constants and Types E-11 



Types 

fdc$get_form_display_attribute = 
form_display_attribute: {output} fdt$display_attribute_set, 
fdc$get_form_help = 
form_help: {output} fdt$get_help_definition, 
fdc$get_form_help_message = 
p_form_help_message: {input} "fdt$help_message, 
fdc$get_form_language = 
form_language: {output} ost$natural_language, 
fdc$get_form_name = 
form_name: {output} ost$name, 
fdc$Qet_form_processor = 
form_processor: {output} fdt$form_processor, 
fdc$get_message_form = 
message_form: {output} ost$name, 
fdc$get_next_event = 
event_action: {output} fdt$event_action, 
event_ label: {output} ost$name, 
event_name: {output} ost$name, 
event_command_length: {output} integer, 
event_trigger: {output} fdt$event_trigger, 
fdc$get_next_form_comment = 
p_form_comment: {input} "fdt$conment, 
fdc$get_next_display = 
display_attribute: {output} fdt$display_attribute_set, 
display_name: {output} ost$name, 
fdc$get_number_events = 
number_events: {output} fdt$number_events, 
fdc$get_number_form_c0111Rents = 
number_form_corrments: {output} fdt$number_comments, 
fdc$get_number_displays = 
number_form_displays: {output} fdt$number_object_displays, 
fdc$get_number_objects = 
number_objects: {output} fdt$number_objects, 
fdc$Qet_number_tables = 
number_tables: {output} fdt$number_tables, 
fdc$get_number_variables = 
number_variables: {output} fdt$number_variables, 
fdc$get_unused_form_entry 

ca send 
recend; 

E-12 NOSNE Screen Formatting Revision C 



Types 

fdt$Qet_form_key = (fdc$get_event_conmand, fdc$get_event_form, 
fdc$get_event_form_identifier, fdc$get_form_area, 
fdc$Qet_form_conment_length, fdc$get_form_display_attribute, 
fdc$get_form_help, fdc$get_form_help_message, 
fdc$get_form_language, fdc$get_form_name, 

fdc$get_form_processor, 
fdc$Qet_message_form, fdc$get_next_display, 

fdc$get_next_event, 
fdc$get_next_form_conment, fdc$get_number_displays, 
fdc$get_number_events, fdc$get_number_form_conments, 
fdc$get_number_objects, fdc$get_number_tables, 
fdc$get_number_variables, fdc$get_unused_form_entry); 

fdt$get_form_attributes = array [1 .. • ] of 
fdt$get_form_attribute; 

fdt$get_help_definition = record 
case key: fdt$Qet_help_key of 

fdc$get_help_form = 

help_form: ost$name, 
fdc$get_help_message, fdc$get_system_default_help 
help_message_length: fdt$help_message_length, 
fdc$get_no_help_response 

ca send 
recend; 

Revision C CYBIL Constants and Types E-13 



Types 

fdt$get_object_attr1bute = record 
get_value_status: fdt$get_value_status {output}, 
case key: {input} fdt$get_object_key of 

fdc$get_object_def1nition = 
get_object_def1nition: {output} fdt$get_object_definit1on, 
fdc$get_object_display = 
display_attribute: {output} fdt$display_attribute_set, 
fdc$get_object_name = 
object_name: {output} ost$name, 
occurrence: {output} fdt$occurrence, 
fdc$get_object_text = 
p_text: {input} -fdt$text, 
fdc$get_object_text_length 
text_length: {output} fdt$text_length, 
fdc$get_unused_object_entry 

ca send 
recend; 

fdt$get_object_attributes = array [1 .. * J of 
fdt$Qet_object_attribute; 

fdt$get_object_definition = record 
case key: {input} fdt$object_definition_key of 

fdc$box = 
box_width: {output} fdt$width, 
box_height: {output} fdt$he1ght, 
fdc$1 ine = 
x_increment: {output} fdt$x_increment, 
y_increment: {output} fdt$y_increment, 
fdc$constant_text = 
constant_text_width: {output} fdt$width, 
constant_text_length: {output} fdt$text_length, 
fdc$constant_text_box = 
constant_box_height: {output} fdt$height, 
constant_box_processing: {output} fdt$text_box_processing, 
constant_box_width: {output} fdt$w1dth, 
constant_box_text_length: {output} fdt$text_length, 
fdc$table = 
table_height: {output} fdt$height, 
table_width: {output} fdt$width, 

E-14 NOSNE Screen Formatting Revision C 



Types 

fdc$variable_text_box = 
variable_box_height: {output} fdt$height, 
variable_box_processinQ: {output} fdt$text_box_processing, 
variable_box_text_length: {output} fdt$text_length, 
variable_box_width: {output} fdt$width, 
fdc$variable_text = 
variable_text_length: {output} fdt$text_length, 
variable_text_width: {output} fdt$width, 

casend 
recend; 

fdt$get_object_key = (fdc$get_object_definition, 
fdc$Qet_object_display, fdc$get_object_name, 
fdc$get_object_text, fdc$get_object_text_lenQth, 
fdc$get_unused_object_entry); 

fdt$Qet_record_attribute = record 
get_value_status {output} : fdt$Qet_value_status, 
case key {input} fdt$get_record_key of 

fdc$get_record_deck_name = 
record_deck_name: {output} ost$name, 
fdc$get_record_length = 
record_length {output} : fdt$record_length, 
fdc$get_record_name = 
record_name {output} : ost$name, 
fdc$get_record_type = 
record_type {output} fdt$record_type, 
fdc$get_table_access = 
table_name {input} : ost$name, 
access_all_occurrences {output} 
fdc$get_unused_record_entry 

boolean, 

ca send 
recend; 

fdt$get_record_attributes =array [1 .. * 1 of 
fdt$get_record_attribute; 

Revision C CYBIL Constants and Types E-15 



Types 

fdtSget_record_key = (fdc$Qet_number_record_var1able, 
fdcSget_record_deck_name, fdcSget_record_definition, 
fdcSget_record_length, fdc$get_record_name, 
fdcSget_record_type, fdc$get_record_var1able_names, 
fdcSget_table_access, fdcSget_unused_record_entry); 

fdtSget_table_attribute = record 
get_value_status: {output} fdtSget_value_status, 
case key: {input} fdtSget_table_key of 
= fdc$get_next_table_var1able = 

var1able_name: {output} ostSname, 
fdc$get_number_table_variables = 
number_table_variables: {output} 
fdtSnumber_table_variables, 
fdcSget_stored_occurrence = 
stored_occurrence: {output} fdt$occurrence, 
fdc$get_unused_table_entry 

fdc$get_vis1ble_occurrence = 
visible_occurrence: {output} fdt$occurrence, 

ca send 
recend; 

fdt$get_table_attributes =array [1 .. • 1 of 
fdt$get_table_attribute; 

fdt$get_table_key = (fdc$get_next_table_variable, 
fdc$get_number_table_variables, fdc$get_stored_occurrence, 
fdc$get_unused_table_entry, fdc$get_v1s1ble_occurrence); 

fdt$Qet_value_status = (fdc$system_computed_value, 
fdc$system_default_value, fdc$undefined_value, 
fdc$unprocessed_get_value, fdc$user_defined_value); 

fdt$get_variable_attribute = record 
get_value_status: {output} fdt$get_value_status, 
case key: {input} fdt$get_var1able_key of 

fdc$get_error_d1splay = 
display_attribute: {output} fdt$display_attribute_set, 
fdc$get_1nput_format = 
input_format: {output} fdt$input_format, 
fdc$get_io~mode = 
io_mode: {output} fdt$1o_mode, 

E-16 NOS/VE Screen Formatting Revision C 



Revision C 

fdc$get_next_valid_real_range 
minimum_real: {output} real, 
maximum_real: {output} real, 
fdc$get_next_valid_string = 

p_valid_string: {input} -fdt$valid_strfng, 
fdc$get_next_var_conment = 
p_var_conment: {input} -fdt$conment, 
fdc$get_number_valid_integers = 

Types 

number_valid_integers: {output} fdt$number_valid_integers, 
fdc$get_number_valid_reals = 
number_valid_reals: {output} fdt$number_valid_reals, 
fdc$get_number_valid_strings = 

number_valid_strings: {output} fdt$number_valid_strings, 
fdc$get_number_var_conments = 
number_var_conments: {output} fdt$number_comnents, 
fdc$get_output_format = 
output_format: {output} fdt$output_format, 
fdc$get_process_as_event = 
process_as_event: {output} boolean, 
fdc$get_program_data_type = 

program_data_type: {output} fdt$program_data_type, 
fdc$get_string_compare_rules = 

compare_in_upper_case: {output} boolean, 
compare_to_unique_substring: {output} boolean, 
fdc$get_terminal_user_entry = 
terminal_user_entry: {output} fdt$terminal_user_entry, 
fdc$get_unknown_entry_character = 
unknown_entry_character: {output} string (1), 
fdc$get_unused_variable_entry 

fdc$get_valid_integer_range = 
minimum_integer: {output} integer, 
maximum_integer: {output} integer, 
fdc$get_valid_string_length = 
valid_string_length: {output} fdt$valid_string_length, 
fdc$get_var_conment_length = 
var_comment_length: {output} fdt$comment_length, 
fdc$get_var_error_message = 

p_error_message: {input} -fdt$error_message, 
fdc$get_var_help_message = 
p_help_message: {input} -fdt$help_message, 

CYBIL Constants and Types E-17 



Types 

fdc$get_variable_error = 
variable_error: {output} fdt$get_error_definition, 
fdc$get_variable_help = 
variable_help: {output} fdt$get_help_def1nition, 
fdc$get_variable_length = 
variable_length: {output} fdt$variable_length, 

casend 
recend; 

fdt$get_variable_attr1butes =array [1 .. • l of 
fdt$get_variable_attribute; 

fdt$get_variable_key = (fdc$get_error_display, 
fdc$get_input_format, fdc$get_io_mode, 
fdc$get_next_valid_real_range, fdc$get_next_va11d_string, 
fdc$get_next_var_conment, fdc$get_number_valid_integers, 
fdcSget_number_valid_reals, fdc$get_number_valid_strings, 
fdc$get_number....;var_conments, fdc$get_output_format, 
fdc$get_process_as_event, fdc$get_program_data_type, 
fdc$get_string_compare_rules, fdc$get_terminal_user_entry, 
fdc$get_unknown_entry_character, 
fdc$get_unused_variable_entry, fdc$get_va11d_integer_range, 
fdc$get_valid_string_length, fdc$get_var_conment_length, 
fdc$get_var_error_message, fdc$get_var_help_message, 
fdc$get_variable_help, fdc$get_variable_error, 
fdc$get_variable_length); 

fdt$height = 1 .. fdc$max1mum_y_position; 

fdt$help_definition = record 
case key: fdt$help_key of 

fdc$help_form = 
help_form: ost$name, 
fdc$help_message = 
p_help_message: ·fdt$help_message, 
fdc$no_help_response, fdc$system_default_help 

casend 
recend; 

E-18 NOSNE Screen Formatting Revision C 



fdt$help_key = (fdc$help_form, fdc$help_message, 
fdc$no_help_response, fdc$system_default_help); 

~ fdt$help_message =string * <= fdc$maximum_help_length); 

fdt$help_message_length = O .. fdc$maximum_help_length; 

fdt$input_currency_format record 
currency_sybmol: string (1), 
thousands_separator: string (1), 
decimal_point: string (1), 

recend; 

fdt$input_format = record 

Types 

case key: fdt$input_format_key of 
fdc$character_input_format, fdc$alphabetic_input_format, 
fdc$digits_input_format, fdc$real_input_format, 
fdc$signed_input_format, fdc$ydm_format, fdc$mdy_format, 
fdc$dmy_format, fdc$iso_date_format, 
fdc$month_dd_yyyy_format = 

fdc$currency_input_format = 
input_currency_format: fdt$input_currency_format, 

ca send 
recend; 

fdt$input_format_key = (fdc$alphabetic_1nput_format, 
fdc$character_input_format, fdc$currency_input_format, 
fdc$digits_1nput_format, fdc$dmy_format, fdc$mdy_format, 
fdc$month_dd_yyyy_format,fdc$iso_date_format, 
fdc$rea1_1nput_format, fdc$signed_input_format, 
fdc$ydm_format); 

fdt$integer_f1eld_width .. 19; 

fdt$integer_output_format record 
field_width: fdt$integer_field_width {w FORTRAN descriptor}, 
minimum_output_digits: fdt$m1nimum_output_digits {m FORTRAN 

descriptor}, 
sign_treatment: fdt$sign_treatment, 

recend; 

Revision C CYBIL Constants and Types E-19 



Types 

fdt$1o_mode = (fdc$program_1nput_output {no 10 to terminal}, 
fdc$terminal_input, fdc$term1nal_input_output, 
fdc$terminal_output); 

fdt$mintmum_output_d1gits = O .. 19; 

fdt$name_selectton = (fdc$select_object, fdc$select_table, 
~dc$select_var1able); 

fdt$number_conrnents = 0 .. fdc$maxtmum_conrnents; 

fdt$number_errors integer; 

fdt$number_events = O .. fdc$maximum_events; 

fdt$number_names = integer; 

fdt$number_object_dtsplays = O .. fdc$maximum_object_displays; 

fdt$number_objects = 0 .. fdc$max1mum_objects; 

fdt$number_table_var1ables = O .. fdc$maxtmum_table_vartables; 

fdt$number_tables = O .. fdc$max1mum_tables; 

fdt$number_valid_integers = 0 .. fdc$maximum_valid_ranges; 

fdt$number_valtd_reals = O fdc$maxtmum_valid_ranges; 

fdt$number_valid_str1ngs o .. fdc$maximum_val1d_str1ngs; 

fdt$number_variables = O .. fdc$max1mum_var1ables; 

E-20 NOS/VE Screen Formatting Revision C 



fdt$object_attr1bute = record 
put_value_status: {output} fdt$put_value_status, 
case key: {input} fdt$change_object_key of 

fdc$object_display = 
display_attr1bute: {input} fdt$d1splay_attr1bute_set, 
fdc$object_height = 

height: {input} fdt$height, 
fdc$object_line_x_increment 
x_increment: {input} fdt$x_increment, 
fdc$object_line_y_increment = 

y_increment: {input} fdt$y_1ncrement, 
fdc$object_name = 

object_name: {input} ost$name, 
occurrence: {input} fdt$occurrence, 
fdc$object_position 
x_posit1on: {input} fdt$x_posit1on, 
y_position: {input} fdt$y_posit1on, 
fdc$object_text = 

p_text: {input} -fdt$text, 
fdc$object_text_processing 
text_box_processing: {input} fdt$text_box_processing, 
fdc$object_width = 
width: {input} fdt$width, 
fdc$unused_object_entry 

ca send 
recend; 

Types 

fdt$object_attributes array [1 .. * J of fdt$object_attribute; 

fdt$object_definition record 
case key: {input} fdt$object_definition_key of {input} 

fdc$box = 

Revision C 

box_width: fdt$width, 
box_height: fdt$height, 
fdc$constant_text = 

constant_text_width: fdt$width, 
p_constant_text: -fdt$text, 

CYBIL Constants and Types E-21 



Types 

fdc$constant_text_box = 
constant_box_height: fdt$height, 
constant_box_processing: fdt$text_box_processing, 
constant_box_width: fdt$width, 
p_constant_box_text: ·fdt$text, 
fdc$line = 
x_increment: fdt$x_increment, 
y_increment: fdt$y_increment, 
fdc$table = 
table_width: fdt$width, 
table_height: fdt$height, 
fdc$variable_text = 
p_variable_text: ·fdt$text, 
variable_text_width: fdt$width, 
fdc$variable_text_box = 
p_variable_box_text: ·fdt$text, 
variable_box_height: fdt$height, 
variable_box_processing: fdt$text_box_processing, 
variable_box_width: fdt$width, 

casend 
recend; 

fdt$object_definition_key = (fdc$box, fdc$constant_text, 
fdc$constant_text_box, fdc$line, fdc$table, 
fdc$variable_text, fdc$variable_text_box); 

fdt$object_event_position = record 
form_identifier: fdt$form_identifier, 
object_name: ost$name, 
occurrence: fdt$occurrence, 
case key: fdt$object_definition_key of 

fdc$box, fdc$line, fdc$constant_text, 
fdc$constant_text_box = 
{The x, y positions are relative to the form} 
form_x_position: fdt$x_position, 
form_y_position: fdt$y_position, 
fdc$variable_text, fdc$variable_text_box 
character_position: fdt$character_position, 

casend 
recend; 

E-22 NOSNE Screen Formatting Revision C 



fdt$occurrence = 1 .. fdc$maximum_occurrence; 

fdt$output_currency_format = record 
currency_sybmol: string (1), 
thousands_separator: string (1), 
decimal_point: string (1), 
field_width: fdt$text_length, 
sign_treatment: fdt$sign_treatment, 
suppress_leading_zeros: boolean {TRUE to suppress}, 

recend; 

fdt$output_format = record 
case key: fdt$output_format_key of 

fdc$character_output_format = 

fdc$currency_output_format = 
output_currency_format: fdt$output_currency_format, 

fdc$dmy_output_format 
{Uses an 8 character field, dd/nm/yy} 

fdc$e_e_output_format, fdc$g_e_output_format 
exponent_output_format: fdt$exponent_output_format, 
fdc$f_output_format, fdc$e_output_format, 
fdc$g_output_format = 
float_output_format: fdt$float_output_format, 
fdc$integer_output_format = 

integer_output_format: fdt$integer_output_format, 
fdc$iso_output_format = 

{Uses a 10 character field, yyyy-nm-dd} 

fdc$mdy_output_format = 

{Uses an 8 character field, nm/dd/yy} 

fdc$month_dd_yyyy_out_format = 

{Uses a 18 character field, monthxxxx dd, yyyy} 

fdc$undefined_output_format 

fdc$ydm_output_format = 

{Uses an 8 character field, yy/dd/nm} 

ca send 
recend; 

Types 

Revision C CYBIL Constants and Types E-23 



Types 

fdt$output_format_key = (fdc$character_output_format, 
fdc$currency_output_format, fdc$dmy_output_format, 
fdc$e_e_output_format, fdc$e_output_format, 
fdc$f_output_format, fdc$g_e_output_format, 
fdc$g_output_format, fdc$iso_output_format, 
fdc$mdy_output_format, fdcSmonth_dd_yyyy_out_format, 
fdc$integer_output_format, fdc$undefined_output_format, 
fdc$ydm_output_format); 

fdt$put_value_status = (fdc$put_value_accepted, 
fdc$unprocessed_put_value); 

fdt$program_data_type = (fdc$program_character_type, 
fdc$program_integer_type, fdc$program_real_type, 
fdc$program_upper_case_type); 

fdt$real_field_width 1 .. 19; 

fdt$record_attribute record 
put_value_status: {output} fdt$put_value_status, 
case key: {input} fdt$change_record_key of 

fdc$record_deck_name = 
record_deck_name: {input} ost$name, 
fdc$record_name = 
record_name: {input} ost$name, 
fdc$record_type = 
record_type: {input} fdt$record_type, 
fdc$table_access = 

table_name: {input} ost$name, 
access_all_occurrences: {input} boolean, 
fdc$unused_record_entry 

ca send 
recend; 

fdt$record_attributes = array [1 .. * l of fdt$record_attribute; 

fdt$record_length = O .. fdc$maximum_record_length; 

fdt$record_position 1 .. fdc$maximum_record_length; 

E-24 NOS/VE Screen Formatting Revision C 



fdtSrecord_type = (fdc$character_record, 
fdc$program_data_type_record); 

fdt$s1gn_treatment = mlt$sign_treatment; 

fdtStable_attribute = record 
put_value_status: {output} fdt$put_value_status, 
case key: {input} fdt$change_table_key of 

fdc$add_table_variable, fdc$delete_table_variable 
variable_name: {input} ostSname, 
fdc$new_table_name = 
new_table_name: {input} ostSname, 
fdc$stored_occurrence = 
stored_occurrence: {input} fdtSoccurrence, 
fdc$unused_table_entry 

fdc$visible_occurrence 
visible_occurrence: {input} fdtSoccurrence, 

casend 
recend; 

fdtStable_size = 0 .. fdcSmaximum_occurrence; 

Types 

fdt$table_attr1butes =array [1 .. * l of fdt$table_attr1bute; ~ 

fdtSterminal_user_entry =set of (fdc$entry_optiona1, 
fdc$must_enter,fdc$may_enter_unknown, fdc$must_fi11); 

fdtStext =string ( * <= fdc$max1mum_text_length); 

fdt$text_box_process1ng = (fdcScenter_characters, 
fdcSwrap_characters, fdcSwrap_words); 

fdt$text_length = O .. fdc$maximum_text_length; 

fdt$valid_string = string * <= fdc$maximum_valid_string); 

fdt$valid_string_length = O .. fdc$max1mum_valid_string; 

Revision C CYBIL Constants and Types E-25 



Types 

fdtSvariable_attribute = record 
put_value_status: {output} fdt$put_value~status, 
case key: {input} fdt$change_variable_key {input} of 

fdcSadd_valid_integer_range, 
fdc$delete_valid_integer_range 
maximum_integer: integer, 
minimum_integer: integer, 
fdc$add_valid_real_range, fdc$delete_valid_real_range 
maximum_real: real, 
minimum_real: real, 
fdc$add_valid_string, fdc$delete_valid_string 
p_valid_string: ·fdtSvalid_string, 
fdc$add_var_comment = 
p_var_cOlllllent: ·fdtScomment, 
fdc$delete_var_conments 

fdc$input_format = 
input_format: fdt$input_format, 
fdcSio_mode = 
io_mode: fdt$io_mode, 

= fdc$new_variable_name 
new_variable_name: ost$name, 
fdc$error_display = 
display_attribute: fdt$display_attr1bute_set, 
fdc$output_format = 
output_format: fdtSoutput_format, 
fdc$program_data_type = 
program_data_type: fdt$program_data_type, 

= fdc$process_as_event = 
process_as_event: boolean {If true, the value of the 
variable is treated as an event rather than a data 1tem to 
be transferred to and from a program}, 
fdc$str1ng_compare_rules = 
compare_in_upper_case: boOlean, 
compare_to_uniQue_substring: boolean, 
fdc$terminal_user_entry = 
termfnal_user_entry: fdt$terminal_user_entry, 
fdc$unknown_entry_character = 
unknown_entry_character: string (1), 
fdc$unused_variable_entry 

fdcSvariable_error = 
variable_error: fdt$error_definftion, 

E-26 NOS/VE Screen Formatting Revision C 



fdc$var1able_help = 
var1able_help: fdt$help_def1nition, 
fdc$var1able_length = 
var1able_length: fdt$variable_length, 

casend 
recend; 

fdt$variable_attributes =array (1 .. • ] of 
fdt$variable_attr1bute; 

fdt$variable_length 1 .. fdc$maximum_variable_length; 

fdt$variable_status (fdc$no_error, fdc$invalid_string, 

Types 

fdc$invalid_rea1, fdc$invalid_integer, 
fdc$unknown_user_value, fdc$invalid_bdp_data, fdc$no_digits, 
fdc$1oss_of_significance, fdc$variable_not_f111ed, 
fdc$overflow, fdc$underflow, fdc$indef1nite, fdc$infin1te, 
fdc$variable_not_entered, fdc$output_format_bad, 
fdc$variable_truncated); 

fdt$width = 1 .. fdc$max1mum_x_position; 

fdt$work_area_length = 1 .. fdc$maximum_record_length; 

fdt$x_increment = 0 .. fdc$maximum_x_posit1on - 1; 

fdt$x_posit1on = 1 .. fdc$maximum_x_position; 

fdt$y_increment = O .. fdc$maximum_y_position - 1; 

fdt$y_position = 1 .. fdc$maximum_y_posit1on; 

ost$name =string (osc$max_name_s1ze); 

ost$status = record 
case normal: boolean of 

FALSE = 
condition: ost$status_condition_code, 
text: ost$str1ng 
TRUE 

ca send 
recend; 

Revision C CYBIL Constants and Types E-27 









e 

FORTRAN Call Definitions 

The following FORTRAN call definitions give the aliases for the 
Screen Formatting subroutines used in the FORTRAN calls. These 
definitions must be present whenever you call Screen Formatting. 
Include the following SCU directive in every program or subroutine 
that has Screen Formatting calls: 

*COPY FDP$FORTRAN _ALIASES 

The contents of FDF$FORTRAN _ALIASES follows. 

C$ EXTERNAL (ALIAS='FDP$XADD_FORM' ,LANG=FTN), FDADD 

C$ EXTERNAL (ALIAS='FDP$XCHANGE_TABLE_SIZE' ,LANG=FTN), FDCHAT 

C$ EXTERNAL (ALIAS='FDP$XCOMBINE_FORM' ,LANG=FTN), FDCOM 

C$ EXTERNAL (ALIAS='FDP$XCLOSE_FORM' ,LANG=FTN), FDCLOS 

C$ EXTERNAL (ALIAS='FDP$XDELETE_FORM' ,LANG=FTN), FDDEL 

CS EXTERNAL (ALIAS='FDP$XGET_INTEGER VARIABLE,LANG=FTN), FDGETI 

C$ EXTERNAL (ALIAS='FDP$XGET_NEXT_EVENT' ,LAMG=FTN), FSGETE 

C$ EXTERNAL (ALIAS='FDP$XGET_REAL_VARIABLE' ,LANG=FTN), FDGETR 

C$ EXTERNAL (ALIAS='FDP$XGET_RECORD' ,LANG=FTN), FDGET 

C$ EXTERNAL (ALIAS='FOP$XGET_STRING_VARIABLE',LANG=FTN), FDGETS 

C$ EXTERNAL (ALIAS='FDP$XOPEN_FORM' ,LANG=FTN), FDOPEN 

CS EXTERNAL (ALIAS='FDP$XPOP_FORMS' ,LANG=FTN), FDPOP 

C$ EXTERNAL (ALIAS='FDP$XPOSJTION_FORM' ,LANG=FTN), FDPOS 

CS EXTERNAL (ALIAS=' FDP$XPUSH_FORMS', LANG=FTN), FDPUSH 

C$ EXTERNAL (ALIAS='FDP$XREAD_FORMS',LANG=FTN), FDREAD 

CS EXTERNAL (ALIAS='FDP$XREPLACE_JNTEGER_VAR!ABLE' ,LANG=FTN), FDREPI 

CS EXTERNAL (ALIAS='FDP$XREPLACE_REAL_VARIABLE' ,LANG=FTN), FDREPR 

CS EXTERNAL (ALIAS='FDP$XREPLACE_RECORD'LANG=FTN), FDREP 

C$ EXTERNAL (ALIAS='FDP$XREPLACE_STRJNG_VARIABLE' ,LANG=FTN), FDREPS 

C$ EXTERNAL (ALIAS='FDP$XRESET_FORM' ,LANG=FTN), FDRESF 

C$ EXTERNAL (ALIAS='FDP$XRESET_OBJECT_ATTR!BUTE' ,LANG=FTN), FORE SO 

C$ EXTERNAL (ALIAS='FDP$XSET_CURSOR_POSITJON' ,LANG=FTN), FDSETC 

C$ EXTERNAL (ALIAS='FDP$XSET_LINE_MODE' ,LANG=FTN), FDSETL 

C$ EXTERNAL (ALIAS='FDP$XSET_OBJECT_ATTRIBUTE' ,LANG=FTN), FDSETO 

C$ EXTERNAL (ALIAS='FDP$XSHOW_FORMS' ,LANG=FTN), FDSHOW 

F 

Revision C FORTRAN Call Definitions F-1 









Accessing Online Examples G 

An online manual named Examples contains examples which show you 
how to use various NOSNE concepts, SCL commands, and CYBIL 
procedures. You can use the online Examples manual to perform the 
following operations. 

• Access examples by name, manual, command name, or procedure 
name. 

• View the example. 

• Print the example. 

• Copy the example into your $USER catalog for subsequent 
execution. 

To access the online manual, enter: 

/help manual=examples 

In response, the system displays a menu of the topics for which 
examples are provided. This menu includes topics from the following 
manuals: 

COBOL for NOSNE 
CYBIL File Management 
CYBIL Keyed-File and Sort/Merge Interfaces 
CYBIL Language Definition 
CYBIL Sequential and Byte-Addressable Files 
CYBIL System Interface 
FORTRAN for NOSNE 
Introduction to NOSNE 
NOSNE File Editor 
NOSNE Screen Formatting 
NOSNE System Usage 
NOSNE Object Code Management 
NOSNE Source Code Management 

Revision C Accessing Online Examples G-1 



Accessing Examples by Name or by Manual 

Accessing Examples by Name or by Manual 
In each of the printed manuals containing examples, the example's 
name is supplied in the introduction to the example. Because the 
online Examples manual is indexed by example name, you can access 
the example directly by specifying its name. 

For example, suppose you are reading the CREATE_PERMIT_PF_l 
example in the CYBIL File Management manual and you want to 
have a copy of the example in one of your catalogs. You can quickly 

~ access the example by using either of the following methods. 
~ 
~! • Specify the name of the example on the SUBJECT parameter of 
~ the HELP command when you access the manual. For example: § 
x 
'" ~ help subjectscreate_permit_pf_1 manual=examples 

• If you have already accessed the Examples manual, enter the 
example's name followed by a question mark: 

create_permft_pf_17 

You are then positioned to the introductory screen of the CREATE_ 
PERMIT_PF_l example. This screen prompts you to view, copy, or 
print the example. 

To access examples associated with a specific manual, select an option 
from the main menu. The system displays a list of example names 
associated with that manual. You can then choose a specific example 
from the list. 

G-2 NOS/VE Screen Formatting Revision C 



Searching for Examples by Command or Procedure Name 

Searching for Examples by Command or 
Procedure Name 
The online Examples manual also enables you to search for examples 
by SCL command or CYBIL procedure names. You can either view 
the list of index topics by pressing the key associated with the ~ijgji 
operation, or you can access a topic directly by entering the command 
or procedure name itself. 

For example, if you want to look at one or more ways in which the 
CREATE_FILE command is used, enter the following request on the 
home line: 

create_file? 

If you want to see one or more ways that the FSP$0PEN_FILE 
procedure call is used in examples, enter: 

fsp$open_file? 

In response, the system displays an example that illustrates the use of 
the procedure or command you specified. 

You can also specify the command or procedure name on the 
SUBJECT parameter of the HELP command when you access the 
manual. For example: 

help subject=fsp$open_file manual=examples 

To view a further example that illustrates the use of the command or 
procedure you specified, enter another question mark (?). You can 
enter as many question marks as there are examples indexed for that 
command or procedure. 

When the number of examples for that command or procedure is 
exhausted, an informative message is displayed. 

Revision C Accessing Online Examples G-3 



Viewing, Copying, and Printing an Example 

Viewing, Copying, and Printing an Example 

After you access a particular example, the following menu of options 
appears: 

Enter your menu choice: 
a. view the example 
b. copy the example 
c. print the example 

USe the menu of options as follows: 

• To view the example, choose menu selection A, followed by a 
return. The example is displayed at your terminal. Since the 
example appears in full-screen mode, you can easily move from 
screen to screen by following the function key prompts. 

• To copy the example to a file, choose menu selection B, followed 
by a return. You are then prompted for the name of the file to 
which you want the example copied. Once you enter a file name, 
NOSNE displays a message verifying the name of the file to 
which the example was copied. 

• To print the example, choose menu selection C. A message soon 
appears which indicates that the file has been sent to the printer. 

Executing an Example 

After copying an example to a file, you can easily execute the 
example by completing the following steps: 

1. Exit the online Examples manual by entering a QUIT directive on 
the home line. 

2. Enter the full path name of the file to which the example was 
copied. 

For example, to execute the example contained in file DUP _FILE_ 
EXAMPLE in your $USER catalog, exit the online Examples manual 
and enter: 

/ $user . dup_ f i l e_examp le 

G-4 NOSNE Screen Formatting Revision C 



Using Function Keys and Directives 

Using Function Keys and Directives 
Once you access the online Examples manual, you can read it by 
pressing function keys or by entering directives on the home line. 

Function key prompts for using this manual are displayed at the 
bottom of your screen, provided you are in full-screen mode. These 
function keys vary according to the type of terminal you are using. 

If you need assistance on what a particular function key does, press 
the help key for your terminal, and then press the function key in 
question. Pressing the help key again displays a menu of online help 
options (such as how to use the menus, or how to page forward and 
backward). 

The following function key prompts help you search for examples: 

Function Key 
Prompt Description 

Enables you to locate screens where an example, 
command, or procedure you specify appears. 

Enables you to access the manual's index. After 
pressing the key associated with this operation, 
you can do one of the following: 

• Specify the topic where you want to begin 
reading the index. 

• Press RETURN to display the beginning of the 
index. 

Many terminals have function keys or dedicated keys that return you 
to the main menu (the first screen in the manual). On a VT220 
terminal, hold down the shift key and press the F17 key. 
Alternatively, you can enter the FIRST or TOP directive on the home 
line of any terminal at which you can read online manuals. 

The (;!lit~ function key prompt is associated with the key(s) you press 
to leave the Examples manual. On a VT220 terminal, press the Fll 
key. Alternatively, you can enter the QUIT directive on the home line 
of any terminal at which you can read online manuals. 

Revision C Accessing Online Examples G-5 









Index 

A 
Abnormal task 5-8 
Adding a form 

COBOL 2-34 
CYBIL 4-28 
FORTRAN 3-28 

Aliases, FORTRAN F-1 
Alphabetic character A-1 
Attributes 

B 

Form 5-2, 37 
Form definition record 5-75 
Glossary definition A-1 
Object 5-76 
Resetting 

COBOL 2-77 
CYBIL 4-63 
FORTRAN 3-68 

Screen Formatting C-1 
Setting 

COBOL 2-82 
CYBIL 4-67 
FORTRAN 3-73 

Table 5-66, 72 
Terminal definition C-1 
Variable 5-58 

Batch mode A-1 
Box 5-5 

c 
Calling Screen Formatting 

COBOL 2-4 
CYBIL 4-3 
FORTRAN 3-3 

Catalog A-1 
Catalog name A-1 
Changing 

Form 5-19, 27, 86, 123 
Form definition record 5-87 
Form definition record 

attributes 5-75 
Object attributes 5-88 

Revision C 

Stored object 5-89 
Table attributes 5-90 
Table size 

COBOL 2-35 
CYBIL 4-29 
FORTRAN 3-29 

Variable attributes 5-91 
Character 

Data type attribute 5-4 
Glossary definition A-1 
Validation 5-16 
Wrap 5-4 

Checking for valid data 5-15 
Circle form 

Example 
COBOL 2-10 
CYBIL 4-9 
FORTRAN 3-9 

Closing a form 
COBOL 2-37 
CYBIL 4-31 
FORTRAN 3-31 

COBOL 
Parameter definitions D-1 
Subroutines 2-33 

Combining forms 
COBOL 2-39 
CYBIL 4-32 
Events 5-6 
FORTRAN 3-32 

Constant text 5-2 
Constant text objects 

Creating 5-99 
Definition 5-2 

Constants, CYBIL E-1 
Content validation 5-16 
Conventions 8 
Converting 

Program data 5-94 
User data 5-92 

Copying 
Data definitions 

COBOL 2-3 
CYBIL 4-2 
FORTRAN 3-2 

Form 5-98 

NOSNE Screen Formatting Index-I 



Creating 

Form definition decks 
COBOL 2-13 
CYBIL 4-12 
FORTRAN 3-12 

Objects 5-96 
Parameter definitions 

COBOL 2-2 
Procedure definitions 

CYBIL 4-1 
Text 5-96 

Creating 
Constant text objects 5-99 
Design 

Form 5-100 
Text 5-102 

Error forms 5-12 
Event form 5~104 
Forms 

Discussion 5-14 
Example 1-2, 6 
Procedure 5-103 
Using CYBIL 5-17 

Help forms 5-12 
Mark display attribute 5-106 
Object 5-108 
Program example 5-30 
Stored object 5-113 
Table 5-114 
Variable 5-115 

Creating and changing 
Form definition record 

attributes 5-75 
General form attributes 5-38 
Object attributes 5-76 
Table attributes 5-72 
Variable attributes 5-58 

Cursor position 
COBOL 2-79 
CYBIL 4-64 
FORTRAN 3-70 
Initial 5-16 

CYBIL 
Constants and types E-1 
Creating forms 5-1, 85 
Displaying forms 4-27 
Usage 1-3 

lndex-2 NOS/VE Screen Formatting 

Design specification 

D 
Data 

Converting 5-92, 94 
Flow 5-3 
Type 5-4 
Validation 5-15 

Data definitions 
Copying 

COBOL 2-3 
CYBIL 4-2 
FORTRAN 3-2 

Deactivate events 
COBOL 2-63 
CYBIL 4-51 
FORTRAN 3-56 

Defining 
Constant text objects 5-2 
Display attributes 5-11 
Events 5-6 
Form 5-2 
General form attributes 5-38 
Object text 5-2 
Tasks 5-7 
Variable attributes 5-3 
Variable text objects 5-3 

Deleting 
Form 

COBOL 2-40 
CYBIL 4-34 
FORTRAN 3-34 

Mark display attribute 5-118 
Objects 5-117, 119 
Scheduled forms 

COBOL 2-60 
CYBIL 4-48 
FORTRAN 3-53 

Stored Object 5-120 
Table 5-121 
Text 5-117 
Variable 5-122 

Design form A-2 
Design specification 

Definition 1-10 
Usage 1-10 
Using 

COBOL 2-11 
CYBIL 4-10 
FORTRAN 3-10 

Revision C 



Designing forms 

Designing forms 
Dynamically 5-17 
Interactively 5-21 

Digit A-2 
Display attributes 

Changing 5-3, 38 
Defining 5-11 
Specifying 5-50 

Displaying forms 
COBOL 2-4, 64 
CYBIL 4-3, 52 
Description 5-26 
FORTRAN 3-3, 57 

E 
Editing a form 5-123 
Ending a form definition 5-124 
Error messages 

Default form 5-13 
Erasing 5-9 
Form attribute 5-51, 55 
Information 5-11 
Validating data 5-15 

Event form 
Creating 5-104 
Definitions 5-48 
Information 5-6 

Event_label 5-38 
Event_name 5-38 
Event_ trigger 5-39 
Events 

Deactivate 
COBOL 2-63 
CYBIL 4-51 
FORTRAN 3-56 

Defining 5-6 
Definition 1-9 
Form 5-6 
Getting the next 

COBOL 2-45 
CYBIL 4-37 
FORTRAN 3-39 

Glossary definition A-2 
Label 5-38 
Name 1-9; 5-38 
Processing 1-9 
Requirements 1-9 

Revision C 

Specifying form 
definitions 5-48 

Standard 5-10, 38 
Trigger 5-39; C-2 

Example 
Circle form 

COBOL 2-10 
CYBIL 4-9 
FORTRAN 3-9 

Program 
COBOL 2-14 
CYBIL 4-13 
FORTRAN 3-13 

Rectangle form 
COBOL 2-9 
CYBIL 4-8 
FORTRAN 3-8 

Select form 
COBOL 2-8 
CYBIL 4-7 
FORTRAN 3-7 

Expanding and compiling a 
program 

F 

COBOL 2-28 
CYBIL 4-22 
FORTRAN 3-22 

Family A-2 
Family name A-2 
File A-2 
File name A-2 
Form 

Adding 
COBOL 2-34 
CYBIL 4-28 
FORTRAN 3-28 

Attributes 5-11, 37, 125 
Changing 5-19, 86, 123 
Closing 

COBOL 2-37 
CYBIL 4-31 
FORTRAN 3-31 

Combining 
COBOL 2-39 
CYBIL 4-32 
FORTRAN 3-32 

Contents 5-2 

Form 

NOSNE Screen Formatting lndex-3 



Form defmition decks 

Copying 5-98 
Creating 5-1, 14, 17, 103 
Creating an event form 5-104 
Creating design 5-100 
Creating example 1-6 
Deactivate events 

COBOL 2-63 
CYBIL 4-51 
FORTRAN 3-56 

Defmition of 5-1 
Definition record 5-87 
Deleting 

COBOL 2-40, 60 
CYBIL 4-34, 48 
FORTRAN 3-34, 53 

Design dynamically 5-17 
Design interactively 5-21 
Designing 1-2 
Display attributes 5-50, 54 
Displaying 

COBOL 2-64 
CYBIL 4-52 
Description 5-26 
FORTRAN 3-57 

Ending a defmition 5-124 
Example of creating 5-30 
Graphic object 1-6 
Interaction with a 

program 5-6 
Managing 1-2 
Managing example 1-6 
Multiple 5-6 
Names 5-126 
Objects 5-2, 127 
Opening 

COBOL 2-58 
CYBIL 4-46 
FORTRAN 3-51 

Popping 
COBOL 2-60 
CYBIL 4-48 
FORTRAN 3-53 

Positioning 
COBOL 2-61 
CYBIL 4-49 
FORTRAN 3-54 

Reading 
COBOL 2-64 
CYBIL 4-52 
FORTRAN 3-57 

Index-4 NOS/VE Screen Formatting 

Record 
COBOL 2-52, 72 
CYBIL 4-42, 58 
FORTRAN 3-46, 62 

Resetting 
COBOL 2-76 
CYBIL 4-62 
FORTRAN 3-67 

Showing 
COBOL 2-84 
CYBIL 4-69 
FORTRAN 3-75 

Target 5-21, 27 
Text object 1-6 
Usage 1-1 

Getting 

Writing a defmition 5-136 
Form defmition decks 

Copying 
COBOL 2-13 
CYBIL 4-12 
FORTRAN 3-12 

Form defmition record 
COBOL 2-3 
CYBIL 4-2 
FORTRAN 3-2 

Format validation 5-16 
FORTRAN 

Call definitions F-1 
Subroutines 3-27 

Full screen A-2 
Full screen definition A-3 
Function A-3 
Function key assignments A-3 
Function keys 

Glossary defmition A-3 
See also Events 

G 
Getting 

Form 
Attributes 5-52, 125 
Names 5-126 
Objects 5-127 

Form defmition record 
attributes 5-75 

Help form attributes 5-54 
Object attributes 5-80, 129 
Record attributes 5-130 

Revision C 



Getting a real variable 

Stored object 5-131 
Table attributes 5-74, 132 
Variable 

COBOL 2-42, 49, 55 
CYBIL 4-35, 40, 44 
FORTRAN 3-36, 43, 48 

Variable attributes 5-72, 133 
Getting a real variable 

COBOL 2-49 
CYBIL 4-40 
FORTRAN 3-43 

Getting a record 
COBOL 2-52 
CYBIL 4-42 
FORTRAN 3-46 

Getting a string variable 
COBOL 2-55 
CYBIL 4-44 
FORTRAN 3-48 

Getting an integer variable 
COBOL 2-42 
CYBIL 4-35 
FORTRAN 3-36 

Getting the next event 
COBOL 2-45 
CYBIL 4-37 
FORTRAN 3-39 

Graphic line 5-5 
Graphic object, definition 1-6 

H 
Help 

Creating 5-12 
Default form 5-13 
Defining the event 5-7 
Displaying 5-8 
Erasing 5-9 
Form attribute 5-50, 54 
Information 5-11 

Hidden text 5-4 
Hotline 9 

Revision C 

I 
Identifier A-3 
Input 

COBOL 2-64 
CYBIL 4-52 
FORTRAN 3-57 

Master catalog 

Instructions for 
Creating forms 5-17 
Using forms 

COBOL 2-1 
CYBIL 4-1 
FORTRAN 3-1 

Integer A-3 
Getting 

COBOL 2-42 
CYBIL 4-35 
FORTRAN 3-36 

Replacing 
COBOL 2-66 
CYBIL 4-54 
FORTRAN 3-58 

Interactive mode A-3 
Introduction 1-1 

L 
Line drawing 5-2, 5 
Line mode 

COBOL 2-81 
CYBIL 4-66 
FORTRAN 3-72 

Local file A-4 
Login A-4 
Logout A-4 

M 
Main menu A-4 
Managing forms 

COBOL 2-1 
CYBIL 4-1 
Example 1-6 
FORTRAN 3-1 
Overview 1-2 

Mark display attribute 
Create 5-106 
Delete 5-118 

Master catalog A-4 

NOSNE Screen Formatting lndex-5 



Menu 

Menu 
See Events 

Message 
Creating 5-7 
Form attribute 5-51, 55 

Moving 
Objects 5-134 
Text 5-134 

Multiple forms 5-6 

N 
Name A-4 
N ormal task 5-7 
NOS/VE A-4 

0 
Object attributes 

Changing 5-88 
Description 5-76 
Getting 5-129 

Objects 
Copying 5-96 
Creating 5~99, 108 
Defining 5-2 
Deleting 5-117, 119 
Form 5-2 
Glossary definition A-5 
Moving 5-134 
Resetting attribute 

COBOL 2-77 
CYBIL 4-63 
FORTRAN 3-68 

Setting attribute 
COBOL 2-82 
CYBIL 4-67 
FORTRAN 3-73 

Occurrence A-5 
Online examples 

Accessing G-1 
Online manuals 

Accessing B-1 
Glossary definition A-5 

Opening a form 
COBOL 2-58 
CYBIL 4-46 
FORTRAN 3-51 

lndex-6 NOSNE Screen Formatting 

Program 

Operations 
See Events 

Ordering printed manuals B-1 
Output formatting 5-4 
Overview 1-1 

p 

Paging and scrolling 5-8 
Parameter definitions 

Copying COBOL 2-2 
Permanent catalog A-5 
Permanent file A-5 
Popping a form 

COBOL 2-60 
CYBIL 4-48 
FORTRAN 3-53 

Position of cursor 
COBOL 2-79 
CYBIL 4-64 
FORTRAN 3-70 

Positioning a form 
COBOL 2-61 
CYBIL 4-49 
FORTRAN 3-54 

Procedure definitions 
Copying CYBIL 4-1 

Procedures 
Accessing 1-4 
Creating forms 5-85 
Displaying forms 4-27 

Processing events 
Abnormal 

COBOL 2-7 
CYBIL 4-6 
FORTRAN 3-6 

Normal 
COBOL 2-6 
CYBIL 4-5 
FORTRAN 3-5 

Program A-5 
Converting data 5-92, 94 
Interaction with a form 5-6 
Output 5-4 
Record 

COBOL 2-52, 72 
CYBIL 4-42, 58 
FORTRAN 3-46, 62 

Tasks 5-7 

Revision C 



Protected text 

Protected text 5-11; A-5 
Pushing forms 

~R 

COBOL 2-63 
CYBIL 4-51 
FORTRAN 3-56 

'9' Reading a form 
COBOL 2-64 
CYBIL 4-52 
FORTRAN 3-57 

Real variable 
Getting 

COBOL 2-49 
CYBIL 4-40 
FORTRAN 3-43 

Replacing 
COBOL 2-69 
CYBIL 4-56 
FORTRAN 3-60 

Record attributes 
Getting 5-130 

Record definition 
Writing 5-137 

Record form 
COBOL 2-52, 72 
CYBIL 4-42, 58 
FORTRAN 3-46, 62 

Rectangle form 
Example 

COBOL 2-9 
CYBIL 4-8 
FORTRAN 3-8 

Program 5-30 
Related manuals B-1 
Replacing a real variable 

COBOL 2-69 
CYBIL 4-56 
FORTRAN 3-60 

Replacing a record 
COBOL 2-72 
CYBIL 4-58 
FORTRAN 3-62 

Replacing a string variable 
COBOL 2-74 
CYBIL 4-60 
FORTRAN 3-64 

Revision C 

Showing a form 

Replacing an integer variable 
COBOL 2-66 
CYBIL 4-54 
FORTRAN 3-58 

Resetting a form 
COBOL 2-76 
CYBIL 4-62 
FORTRAN 3-67 

Resetting an object attribute 
COBOL 2-77 
CYBIL 4-63 
FORTRAN 3-68 

s 
SCL A-5 
Screen Design Facility 

Definition 1-4 
Usage 1-4 

Screen Formatting 
Definition 1-1 
Process 1-2 
Process summary 1-11 

Screen updating 
COBOL 2-64, 84 
CYBIL 4-52, 69 
FORTRAN 3-57, 75 

Scrolling and paging 5-8 
Select form 

Example 
COBOL 2-8 
CYBIL 4-7 
FORTRAN 3-7 

Setting an object attribute 
COBOL 2-82 
CYBIL 4-67 
FORTRAN 3-73 

Setting line mode 
COBOL 2-81 
CYBIL 4-66 
FORTRAN 3-72 

Setting the cursor position 
COBOL 2-79 
CYBIL 4-64 
FORTRAN 3-70 

Showing a form 
COBOL 2-84 
CYBIL 4-69 
FORTRAN 3-75 

NOSNE Screen Formatting Index-7 



Size of table 

Size of table 
COBOL 2-35 
CYBIL 4-29 
FORTRAN 3-29 

Software support hotline 9 
Special character A-5 
Standard events 5-10 
Standard function keys 5-38 
Starting the application 

Creating a user procedure 
COBOL 2-30 
CYBIL 4-24 
FORTRAN 3-24 

Creating a user prolog 
COBOL 2-31 
CYBIL 4-25 
FORTRAN 3-25 

Stored object 
Changing initial value 5-89 
Creating 5-113 
Deleting 5-120 
Getting 5-131 

String variable 
COBOL 2-55, 74 
CYBIL 4-44, 60 
FORTRAN 3-48, 64 

Submitting comments 9 
Subroutines 

Acessing 1-4 
COBOL 2-33 
FORTRAN 3-27 

Symbol A-6 
System Command 

Language A-6 

T 
Table 

Attributes 5-72 
Changing attributes 5-90 
Creating 5-114 
Deleting 5-121 
Getting attributes 5-132 
In a form 5-5 
Object properties 5-5 
Paging 5-7 
Scrolling 5-7 

Index-8 NOSNE Screen Formatting 

Size 
COBOL 2-35 
CYBIL 4-29 
FORTRAN 3-29 

Target form 5-21; A-6 
Tasks 5-7 
Temporary file A-6 
Terminal 

Definition keys C-2 
Function keys 5-48 
Input 5-3 
Output 5-3 
Session A-6 
Update screen 

User prolog 

COBOL 2-64, 84 
CYBIL 4-52, 69 
FORTRAN 3-57, 75 

User and program 
interaction 5-6 

Text 
Constant 5-2 
Copying 5-96 
Creating design 5-102 
Deleting 5-117 
Hidden 5-4 
Moving 5-134 
Processing 5-3 
Protected A-5 
Variable 5-3 

Text object 
Constant 5-2 
Definition 1-6; 5-2 
Variable 1-7; 5-3 

Types, CYBIL E-1 

u 
Unprotected text 5-11; A-5 
User data 5-2, 92 
User input 

COBOL 2-64 
CYBIL 4-52 
FORTRAN 3-57 

User name A-6 
User prolog 

Creating 
COBOL 2-31 
CYBIL 4-25 
FORTRAN 3-25 

Revision C 



Validating data 

v 
Validating data 5-15 
Variable 

Creating 5-115 
Deleting 5-122 
Getting 

COBOL 2-42, 49, 55 
CYBIL 4-35, 40, 44 
FORTRAN 3-36, 43, 48 

Replacing 
COBOL 2-66, 69, 74 
CYBIL 4-54, 56, 60 
FORTRAN 3-58, 60, 64 

Variable attributes 
Changing 5-91 
Creating 5-58 
Defining 5-3 
Getting 5-133 

Revision C 

Writing a program to use forms 

Variable text 5-3 
Variable text objects 

Definition 1-7 
Requirements 1-7 
Usage 5-3 

w 
Wrap characters 5-4 
Wrap words 5-5 
Writing 

Form definition 5-136 
Record definition 5-137 

Writing a program to use forms 
COBOL 2-1 
CYBIL 4-1 
FORTRAN 3-1 

NOSNE Screen Formatting lndex-9 





Comments (continued from other side) 

lease fold on dotted line; 
'al edges with tape only. -------------

BUSINESS REPLY MAIL 
First-Class Mail Permit No. 8241 Minneapolis, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

CONTROL DATA 
Technology & Publications Division 
ARH219 
4201 N. Lexington Avenue 
Arden Hills, MN 55126-9983 

1.1.1 •• 1.1 •••• 11 .. 1.1.11 .. 1.1 .. 1.1 .. 1 .. 1 ... 11 ••• 1.11 

NO POSTAGE 
NECESSARY 
IF MAILED 

FOLD 

IN THE 
UNITED STATES 



NOS/VE Screen Formatting 60488813 c 
We value your comments on this manual. While writing it, we made some assumptions 
about who would use it and how it would be used. Your comments will help us 
improve this manual. Please take a few minutes to reply. 

Who are you? How do you use this manual? 

D Manager D As an overview 
D Systems analyst or programmer 
D Applications programmer 

D To learn the product or system 
D For comprehensive reference 

D Operator D For quick look-up 
a Other ___________ ~ 

What programming languages do you use? -----------------

How do you like this manual? Check those questions that apply. 

Yes Somewhat No 
D D D ls the manual easy to read (print size, page layout, and so on)? 

D D D ls it easy to understand? 
[J [J [J Does it tell you what you need to know about the topic? 

[J [J [J Is the order of topics logical? 

[J D D Are there enough examples? 

D D D Are the examples helpful? (D Too simple? D Too complex?) 

[J D D Is the technical information accurate? 
[J [J D Can you easily find what you want? 

[J D D Do the illustrations help you? 

Comments? If applicable, note page and paragraph. Use other side if needed. 

Would you like a reply? D Yes O No 

From: 

Name Company 

Address Date 

Phone 

Please send program listing and output if applicable to your comment. 


